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1 Analysis in several variables

1.1 Euclidean space Rd

The Euclidean space Rd is the set of all functions x : Id → R, where Id :=
{0, 1, . . . , d−1}. We call the elements x = (x(0), . . . , x(d−1)) of Rd ordered d-
tuples of real numbers. Many authors use a different convention, considering
functions from {1, . . . , d} to R. The two concepts are easily seen equivalent.
The operations

(x+ y)(i) = x(i) + y(i) x, y ∈ Rd

(ax)(i) = ax(i) x ∈ Rd, a ∈ R.

yield on Rd the structure of a vector space over R.
We equip Rd with the metric structure by defining the metric ρ : Rd×Rd → R

ρ(x, y) := ‖x− y‖,

where ‖x‖ is the length of x

‖x‖ :=

√√√√d−1∑
i=0

x2
i .
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We call d the canonical or Euclidean metric or distance.

Note that if the dimension d equals to 1, we are on the real line R. The length
‖x‖ of x ∈ R is the usual absolute value |x|. If d = 2, 3, then the length
coincides with the natural geometric length, as one can see from repeated
use of the Pythagorean theorem applied to right angled triangles. This is
illustrated in Figure 1.

d = 2

x0

x1
x

√
x20 + x21

d = 3

x

x1

x0

x2

√
x20 + x21

√
x20 + x21 + x22 =√
(
√
x20 + x21)

2 + x22

Figure 1: Pythagorean theorem.

We state some properties of the Euclidean metric.

1. For all x ∈ Rd, a ∈ R, ‖ax‖ = |a|‖x‖.
Proof. We calculate√√√√d−1∑

i=0

(axi)2 =

√√√√a2

d−1∑
i=0

x2
i =
√
a2

√√√√d−1∑
i=0

x2
i = |a|‖x‖.

Note that this in particular shows ‖x‖ = ‖− x‖ and thus symmetry of
the metric ρ. Also, by choosing a = 0 we obtain1 ‖0‖ = 0.

2. For all x ∈ Rd, ‖x‖ = 0⇒ x = 0.
Proof.

‖x‖ = 0⇒
d−1∑
i=0

x2
i = 0⇒ ∀i : x2

i = 0⇒ ∀i : xi = 0⇒ x = 0.

1Here ‖0‖ means the length of the null vector 0 = (0, . . . , 0).
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3. (Cauchy-Schwarz inequality) For all x, y ∈ Rd,

d−1∑
i=0

xiyi ≤ ‖x‖‖y‖.

Proof. Note that if x = 0 or y = 0, the inequality trivially holds. Thus
it suffices to show that for all x 6= 0, y 6= 0,

d−1∑
i=0

xi
‖x‖

yi
‖y‖
≤ 1.

In other words, since ‖ x
‖x‖‖ = 1 it is enough to show that for x, y with

‖x‖ = ‖y‖ = 1,

d−1∑
i=0

xiyi ≤ 1. (1)

For every i we have

0 ≤ (xi − yi)2 = x2
i + y2

i − 2xiyi

and hence

xiyi ≤
1

2
x2
i +

1

2
y2
i .

Inserting this into (1) we obtain

d−1∑
i=0

xiyi ≤
d−1∑
i=0

1

2
x2
i +

1

2
y2
i =

1

2
‖x‖2 +

1

2
‖y‖2 = 1.

4. (Triangle inequality) For all x, y ∈ Rd, ‖x+ y‖ ≤ ‖x‖+ ‖y‖.
Proof. We compute

‖x+ y‖2 =
d−1∑
i=0

(xi + yi)
2 =

d−1∑
i=0

(x2
i + y2

i + 2xiyi)

= ‖x‖2 + ‖y‖2 + 2
d−1∑
i=0

xiyi

Using the Cauchy-Schwarz inequality we estimate this by

≤ ‖x‖2 + ‖y‖2 + 2‖x‖‖y‖ = (‖x‖+ ‖y‖)2.

The claim follows by taking the square root on both sides.
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Remark. Let X be a vector space over R. A map ‖ · ‖ : X → [0,∞)
satisfying (1), (2) and (4) is called a norm. A norm on X induces a metric
by setting

ρ(x, y) := ‖x− y‖.

Note that this is exactly what we have done in the Euclidean case.

1.2 Metric spaces

In all of the following X will be a metric space with the metric induced by
a norm. Most of what we have to say easily extends to more general metric
spaces.

Definition 1.1. The open ball centered at x ∈ X of radius ε is the set

Bε(x) := {y ∈ X : ‖x− y‖ < ε}.

Definition 1.2. A set A ⊆ X is called open if for each x ∈ A there is an
ε > 0 such that Bε(x) ⊆ A.

Example. The interval (0, 1) is open in X = R, while [0, 1) is not.

Definition 1.3. A set A ⊆ X is called closed if X \ A is open.

Example. For x ∈ X and ε > 0, the set

{y ∈ X : ‖x− y‖ ≤ ε} (2)

is closed. To see this, let z ∈ X \A. We need to find an open ball Bδ(z) with
Bδ(z) ⊆ X \A. Since ‖z−x‖ > ε, we find a δ > 0 such that ‖z−x‖ > ε+ δ.
We claim that for this δ we have Bδ(z) ⊆ X \A. Indeed, let a ∈ Bδ(z). Then
‖a− z‖ < δ and hence

‖x− a‖ ≥ ‖x− z‖ − ‖a− z‖ > ε+ δ − δ = ε.

The set (1.15) is also called the closed ball at x of radius ε.

The notions ”open” and ”closed” depend on the ambient space X, as can be
seen from the following example.

Example. The interval [0, 1] is open in X = [0, 1], since B5(x) ⊆ X for all
x ∈ [0, 1]. The interval (0, 1) is closed in X = (0, 1). Indeed, note that the
empty set is open.

Now we turn to the notion of convergence in X.
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Definition 1.4. A sequence xn in X is called convergent, if there exists an
x ∈ X with

lim sup
n→∞

‖xn − x‖ = 0.

We also say that xn converges to x. The element x is called the limit of xn.

In a metric space, a sequence can have at most one limit, we leave this
observation as an exercise.

Lemma 1.5. A sequence xn converges to x ∈ X if and only if for every
ε > 0 there is an n such that for all m > n we have xm ∈ Bε(x).

We leave the proof as an exercise. In Rd we have an issue with double indices.
We wrote xi i = 0, . . . d − 1 for the components of a vector, while we also
wrote xn for the members of a sequence N → X. The following text will
have to be read carefully to avoid misunderstanding. We write xn,i for the
i-th components of the n-th member of a sequence.

Lemma 1.6. A sequence xn = (xn,0, . . . , xn,d−1) in Rd converges to x if and
only if for all i, xn,i converges to xi, i.e.

∀i : lim sup
n→∞

|xn,i − xi| = 0.

Proof. (⇒) We estimate

lim sup
n→∞

|xn,i − xi| ≤ lim sup
n→∞

‖xn − x‖ = 0.

(⇐) We have

lim sup
n→∞

‖xn − x‖ = lim sup
n→∞

√∑
i=0

(xn,i − xi)2

≤ d lim sup
n→∞

max
0≤i≤d−1

|xn,i − xi|

≤ d lim sup
n→∞

d−1∑
i=0

|xn,i − xi|

≤ d
d−1∑
i=0

lim sup
n→∞

|xn,i − xi| = d · 0 = 0.
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Theorem 1.7. A set A ⊆ X is closed if and only if for every convergent
sequence in A the limit x ∈ X lies in A.

Proof. (⇒) Let A ⊆ X be closed, i.e. X \ A open. Let xn be a convergent
sequence with elements in A and let x be its limit. We need to show x ∈ A.
Suppose the contrary that x ∈ X \ A. Thus there exists an ε > 0 such that
Bε(x) ⊆ X \ A. Since xn converges to x, there exists an n such that for all
m > n, xm ∈ Bε(x). In particular, xn+1 ∈ Bε(x) ⊆ X \ A. A contradiction
to xn+1 ∈ A.

(⇐) We need to show that X \A is open. Let y ∈ X \A. We have to find an
ε > 0 such that Bε(x) ⊆ X \ A. We again show the claim by contradiction.
Suppose there is no such ball. Then for all k ∈ N>0 there is an xk ∈ A
with xk ∈ B 1

k
(y). Convince yourself that this implies that xk converges to y,

hence y ∈ A. Contradiction.

Definition 1.8. The closure A of a set A ⊆ X is the set of all x ∈ X for
which there is a sequence in A which converges to x.

As an exercise one can show that A ⊇ A. Moreover, A = A if and only if A

is closed. Observe also that A = A and that X \ A is open. The set X \ A
is also called the interior of X \ A.

Definition 1.9. A metric space X is called separable if there is a countable
set A of open balls with the following property: every open set in X is the
union of the elements of a subset of A.

End of lecture 1. April 9, 2015

This section is dedicated to discussing some relevant concepts relating to
metric spaces. Previously we considered metrics induced by norms. In a
more general context we introduce the following definition.

Definition 1.10. A metric space X is a set with a mapping ρ : X ×X →
R≥0that satisfies the following properties:

• ∀x, y ∈ X ρ(x; y) = ρ(y;x), this property is called symmetry;

• ∀x, y ∈ X ρ(x; y) = 0 ⇐⇒ x = y;

• ∀x, y, z ∈ X ρ(x; z) ≤ ρ(x, y) + ρ(y, z), this property is called the
triangle inequality.

Important properties that a metric space can possess is that of being sepa-
rable, complete, and compact.
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1.2.1 Separability

Definition 1.11. A metric space X is said to be separable if there exists a
countable set of open balls A so that any open set of the space can be written
as a union of a subset of balls from A.

Definition 1.12. A subset Y ⊆ X of a metric space X is said to be dense
if all elements of X are limits of a sequence of elements of Y .

We are already familiar with a dense set of R≥0: the dyadic numbers Y ={
n

2m
with n ∈ N, m ∈ Z

}
. The two notions we have just introduced are

closely related by the following theorem.

Theorem 1.13. A metric space X is separable if and only if it has a count-
able dense subset.

Proof.

⇒ Let X be separable and let A be a countable set of open balls as in
Definition 1.11. Let Y be the set of all the centers of the balls in A;
we must show that Y is dense in X. Let x ∈ X be a given point; for
each n ∈ N>0 consider the open ball B 1

n
(x). Being a non-empty open

set (it contains at least x itself) it can be represented as a non-empty
union of a subset of balls from A. Let us call one of the balls used in
this representation by Bεn(yn) so that we have Bεn(yn) ⊆ B 1

n
(x) with

εn ∈ R>0 and yn ∈ Y . It is now sufficient to show that the sequence
yn converges to x i.e. lim supn→+∞ ρ(yn;x) = 0. For any δ > 0 choose
n ∈ N so that 1

n
< δ, then ∀m > n we have that ρ (ym; x) < 1

n
≤ δ as

required.

⇐ Let Y be a countable dense subset ofX. SetA =
{
B 1

n
(y) with y ∈ Y, n ∈ N≥1

}
;

it is clear that A is countable. The rest is left as an exercise.

Theorem 1.14. The Euclidean space Rd is separable.

Proof. The proof consist of several steps. The proof for any d ∈ N can
be done by induction and is left as an exercise. Here we limit ourselves to
proving the statement for d = 2.

• R≥0is separable. This is true because the set of dyadic numbers Y is a
countable dense subset of R≥0.

• R is separable since the set Y = Y ∪ −Y is countable and dense in R.
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• R2 is separable since the set Y 2 = {(y0, y1) with y0 ∈ Y y1 ∈ Y } is
countable and dense in R2. To see this, for any δ > 0 choose n ∈ N
such that 1

n
< δ and then choose points yn,i ∈ Y so that |yn,i − xi| < 1

2n

with i ∈ {0, 1}. We have that ‖yn − x‖ ≤ |yn,0 − x0| + |yn,1 − x1| ≤ 1
n

and this concludes the proof.

1.2.2 Completeness

Another very important property of metric spaces is completeness. To state
this property we need to introduce the concept of closed balls.

Definition 1.15. A closed ball Bε(x) ⊂ X of a metric space X is the set
Bε(x) = {y ∈ X ρ(y; x) ≤ ε}.

Definition 1.16. A metric space X is complete if for any set of closed balls
A with the properties

1. that for any two balls of A, one is included in the other, and

2. that for every ε > 0 there is ball of radius at most ε in A,

the intersection of all the balls in A is non-empty.

The positive real line R≥0 is an example of a complete space. Here the
completeness follows from the property that any set of points has a supremum
and an infimum. As a matter of fact we know that any closed ball is a closed
interval Bε(x) = [x − ε, x + ε]. Given a collection of closed balls A let
a = sup Bε(x)∈A(x − ε) and b = inf Bε(x)∈A(x + ε) where upper and lower
bounds are taken over all the balls in A. It is clear that the interval [a, b]
lies in the intersection of all the balls and since it is easy to check that a ≤ b
the interval is non-empty. Notice, however, that the condition that the balls
are closed is of crucial importance for this reasoning to hold.

Theorem 1.17. A metric space X is complete if and only if any Cauchy
sequence has a limit in X.

Proof.

⇒ Let X be a complete metric space; a sequence xn is a Cauchy sequence if
∀m ∈ N ∃n(m) ∈ N such that ∀n′, n′′ ≥ n(m) we have that ρ (xn′ ; xn′′) ≤
2−m. Consider the sets Um = B10 2−m

(
xn(m)

)
; we need to show that
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they are ordered by inclusion as required. Consider some m′ > m;
∀z ∈ B10 2−m′

(
xn(m′)

)
we have that ρ

(
xn(m); xn(m′)

)
≤ 2−m by applying

the Cauchy sequence hypothesis starting from index min (n(m); n(m′)).
Thus ρ

(
xn(m); z

)
≤ ρ

(
xn(m); xn(m′)

)
+ ρ

(
xn(m′); z

)
≤ 2−m + 10 2−m

′ ≤
6 2−m, so y ∈ B10 2−m

(
xn(m)

)
and we have shown that the Um′ ⊂ Um

as required. Let y ∈
⋂
m∈N≥1

Um, checking that limn→+∞ xn = y is left
as an exercise.

⇐ The proof that if all Cauchy sequences in a metric space X have a limit
in X then the space X is complete as per Definition 1.16 is left to the
reader.

In the above statement the fact that we consider closed and not open balls is
crucial. On the other hand, while it does not matter for the above statement,
there is a difference between our Definition 1.15 of a closed ball and that of
the closure of the open ball of the same radius. The closure of a set A written
as A is the set of all limit points of sequences of elements in A. The interior
of A indicated as A◦ is the union of all the open balls contained in A. For
any metric space X we have the relation A = X \ ((X \ A)◦). Notice that
for a general metric space X we have that the closure of an open ball Bε(x)
is contained but may not coincide with the closed ball of the same radius
Bε(x). As an example consider X = R≥0 ∪ {−1} as a subset of R with the
same distance: the closed ball is B̄1(0) = {−1} ∪ [0, 1] while for the closure
of the open ball of the same radius we have −1 /∈ B1(0) since there is no
sequence in B1(0) ⊂ X converging to −1.
Let us now return to the properties of complete metric spaces.

Theorem 1.18. The Euclidean space Rd is a complete metric space.

Proof. Once again we restrict ourselves to the proof for the case d = 2.

• R is a complete metric space. This is due to the fact that all Cauchy
sequences in R have a limit (as seen in the course of Analysis 1).

• For R2 we need to show that all Cauchy sequences have a limit in
R2. Consider such a sequence xn and the first and second coordinates
xn,0, xn,1 ∈ R. Since |xn,i − xm,i| ≤ ‖xn − xm‖ for i = 1, 2 we have
that xn,i are also Cauchy sequences but in R and as such converge to
yi, i = 1, 2 respectively. The proof of the fact that (y0, y1) ∈ R2 is the
limit of xn is left to the reader.
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1.2.3 Compactness

The third important property that a metric space can have is compactness.

Definition 1.19. A subset K ⊂ X of a metric space X is compact if for
every set A of open sets of X such that K ⊂

⋃
A∈AA (such a set is called an

open covering) one can find a finite subset A′ ⊂ A such that K ⊂
⋃
A∈A′ A.

Example. Any finite subset K ⊂ X of a metric space X is compact. Given
any covering A it is sufficient to select one open set A ∈ A for every element
x ∈ K. Since there are only finitely many elements one needs to select only
finitely many open sets A.

Similarly for the other properties we have encountered, the compactness of
a subset, that is expressed in topological terms (open sets, coverings), has
important implications on the behavior of sequences with elements in the
subset. In particular we have the following sequential property that is equiv-
alent to compactness in the case of metric spaces.

Theorem 1.20. A subset K ⊂ X of a metric space X is compact if and only
if any sequence of elements in K has a subsequence that has a limit in K.

First of all we will start with some basic properties: for a subset of a given
metric space X to be compact it has to contain all its limit points and be
bounded. The proof of this statement is left as an exercise.

Definition 1.21. A subset A ⊂ X of a metric space X is bounded if it is
contained in some ball of X i.e. ∃BR(x) such that A ⊂ BR(x).

If a subset A ⊂ X is bounded then for any point y ∈ X there is a ball
centered in that point that contains A. As a matter of fact if A ⊂ BR(x)
then A ⊂ BR+ρ(x,y)(y) by the triangle inequality.
Euclidean metric spaces have an explicit characterization of compact subsets.
While being closed and bounded is necessary for a subset to be compact, in
the case of Euclidean spaces it is also sufficient. This statement is known as
the Heine-Borel Theorem.

Theorem 1.22. All closed and bounded subsets of Rd are compact.

Proof. As usual we will give the proof in the case d = 2. The more general
case is based on the same argument. Let K ⊂ R2 be a closed and bounded
set. We will use the characterization of compactness via sequences given by
Theorem 1.20. Let xn be a sequence of elements in K then the sequences
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xn,i with i = 1, 2 are also bounded because |xn,i| ≤ ‖xn‖ ≤ R for some
R > 0. Then let xnk,0 be a monotone subsequence of xn,1 and let us select
a further subsequence so that xnkl ,1is also monotone. Since for i = 1, 2
xnkl ,i ∈ R are monotone and bounded they have finite limit points yi and so
liml→+∞ xnkl = (y0, y1). The fact that (y0, y1) ∈ K is due K being closed.

Theorem 1.23. A compact subset K ⊂ X of a metric space X is closed and
bounded.

Proof. Left as an exercise.

End of lecture 2. April 13, 2015

1.3 Hilbert spaces

Definition 1.24. A (real) normed space is a (real) vector space, on which a
norm is defined.

Recall from Lecture 1 that a norm on a real vector space V is a map ‖ · ‖ :
V → R≥0 satisfying

1. ‖x‖ = 0⇒ x = 0 for all x ∈ V

2. ‖λx‖ = |λ|‖x‖ for all x ∈ V, λ ∈ R

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ V

One can also consider more general normed spaces. For instance, if V is a
vector space over C, we talk about complex normed spaces. In this case one
has to modify 2. in the definition of the norm to hold for all λ ∈ C. However,
for now we will only focus on real normed spaces.

Example. On R2 we may consider

• ‖x‖ =
√
|x0|+ |x1|

• ‖x‖ =
√
x2

0 + x2
1

• ‖x‖ = max(|x0|, |x1|).

The second expression defines the Euclidean norm. It is easy to verify that
the other two expressions also define a norm on R2.
The closed unit ball centered at 0 with respect to each of these norms can
be seen in Figure 2.

12



−1 1

1

−1

|x0|+ |x1|

−1 1

1

−1

(|x0|2 + |x1|2)1/2

−1 1

1

−1

max(|x0|, |x1|)

Figure 2: Unit balls in R2.

We have rewritten the Euclidean norm as
√
x2

0 + x2
1 = (|x0|2 + |x1|2)1/2. This

way we see that replacing the exponent 2 by 1 yields the first norm. More
generally, one can replace 2 by any exponent 1 ≤ p <∞ and define the norm

‖x‖ := (|x0|p + |x1|p)1/p.

Definition 1.25. A normed vector space is called Banach space, if the in-
duced metric is complete.

Recall that the induced metric is defined as ρ(x, y) := ‖x− y‖.
Among the above examples, intuitively the case p = 2 produces the most
“round” ball. The following is an algebraic condition which singles out the
case p = 2 above, and thus can be viewed as a metric condition of “roundness”
of the ball.

Definition 1.26. A real Banach space V is called Hilbert space, if for all
x, y ∈ V ,

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2. (3)

The identity (3) is called the parallelogram law. Namely, it can be interpreted
as stating that the sum of squares of the lengths of the two diagonals of a
parallelogram is equal to the sum of squares of the lengths of the four sides
of a parallelogram.

We claim that on Rd, the Euclidean norm ‖x‖ =
(∑d−1

i=0 |xi|2
)1/2

satisfies
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x

y
x+ y

x
−
y

Figure 3: Parallelogram law.

the parallelogram law. Indeed, we have

d−1∑
i=0

(xi + yi)
2 +

d−1∑
i=0

(xi − yi)2 =
d−1∑
i=0

x2
i + 2xiyi + y2

i + x2
i − 2xiyi + y2

i

=2
d−1∑
i=0

x2
i + 2

d−1∑
i=0

y2
i .

Our next goal is to show that in some sense the converse also holds. That is,
if a norm on Rd satisfies the parallelogram law, it is up to a possible change
of basis of the vector space equal to the Euclidean norm. First we turn our
attention to some consequences of the parallelogram rule.

A closed subset A of a Hilbert space V is called convex, if for all x, y ∈ A
also 1

2
(x+ y) ∈ A.

Theorem 1.27 (Projection theorem). Let V be a Hilbert space and A ⊂ V
closed and convex. Let x ∈ V . Then there exists y ∈ A such that

‖y − x‖ = inf
z∈A
‖z − x‖.

Note that the condition of A being closed cannot be omitted. This can
already be seen from the example V = R with norm being the absolute
value, and A = (0, 1) and x = 2.

Proof. Set r := infz∈A ‖z − x‖. Let yn be a sequence in A such that r =
limn→∞ ‖yn− x‖. Let ε > 0. First we show that that yn is Cauchy. Let n be
such that for all m ≥ n we have

‖ym − x‖2 ≤ r2 +
ε2

4
.

By (3) we have

‖ym − yn‖2 + ‖yn + ym − 2x‖2 = 2‖yn − x‖2 + 2‖ym − x‖2

14



and hence for all m ≥ n

‖ym − yn‖2 ≤
(

2r2 +
ε2

2

)
+
(

2r2 +
ε2

2

)
− ‖yn + ym − 2x‖

=4r2 + ε2 − 4‖yn + ym
2

− x‖. (4)

By convexity yn+ym
2
∈ A. Thus we certainly have∥∥∥∥yn + ym

2
− x
∥∥∥∥ ≥ r,

since r is the infimum of all ‖z − x‖ for z ∈ A. Hence (4) is bounded by

≤ 4r2 + ε2 − 4r2 = ε2.

This shows that yn is Cauchy.
Now let y = limn→∞ yn, we know that such y exists since the Banach space
is complete. Since A is closed, y ∈ A. It remains to show that r = ‖y − x‖.
By the triangle inequality

‖y − x‖ − ‖yn − x‖ ≤ ‖yn − x‖.

Taking limits on both sides we obtain

‖y − x‖ − r ≤ 0⇔ ‖y − x‖ ≤ r.

By definition of r we have ‖y − x‖ ≥ r, and we conclude ‖y − x‖ = r as
desired. Note that the last steps in this proof could be done by referring to
the continuity of the norm.

Remark. The vector y from the previous theorem is unique. Indeed, suppose
we have y, y′ ∈ V satisfying ‖y − x‖ = r = ‖y′ − x‖. Then

‖y − y′‖2 + ‖y + y′ − 2x‖2 = 2(‖y − x‖2 + ‖y′ − x‖2)

i.e.

‖y − y′‖2 + 4

∥∥∥∥y + y′

2
− x
∥∥∥∥2

= 4r2.

In the spirit of the previous proof we conclude that

‖y − y′‖2 + 4r2 ≤ 4r2

which implies ‖y − y′‖2 ≤ 0 and thus y = y′.

15



We have the following generalization of the parallelogram rule.

Theorem 1.28. Let V be a Hilbert space. Then for all x, y ∈ V, λ ∈ R,

‖x+ λy‖2 − ‖x2‖ − ‖λy‖2 = λ(‖x+ y‖2 − ‖x‖2 − ‖y‖2). (5)

Note that if λ = −1, this identity is exactly the parallelogram law (3). Note
also that if λ = 0 or λ = 1, the identity trivially holds.

We can also interpret Theorem 1.28 in the following way. For a fixed x define
the function

f(y) := ‖x+ y‖2 − ‖x‖2 − ‖y‖2 (6)

The theorem then says that

f(λy) = λf(y),

that is, the function f is homogeneous.

Proof. For λ ∈ N we show this by induction. As we said, for λ = 0, 1 the
theorem holds. Assume now that we already know (5) for λ and we want to
prove it for λ+ 1. We use (3) on x+ λy and y:

‖x+ (λ+ 1)y‖2 + ‖x+ (λ− 1)y‖2 = 2‖x+ λy‖2 + 2‖y‖2.

Now we add −‖x‖2 − ‖(λ+ 1)y‖2 on both sides, which gives

‖x+ (λ+ 1)y‖2 − ‖x‖2 − ‖(λ+ 1)y‖2

=− (λ+ 1)‖y‖2

+ 2‖x+ λy‖2 − ‖x+ (λ− 1)y‖2 − ‖x‖2 − 2‖y‖2 (7)

We apply the induction hypothesis on terms in (7) involving x + λy and
x+ (λ− 1)y, so as to express (7) as linear combination of the norms squared
of x+ y and x and y. After a short calculation we see that the result equals

= (λ+ 1)‖x+ y‖2 − (λ+ 1)‖x‖2 − (λ+ 1)‖y‖2,

which finishes the induction step and thus the proof for λ ∈ N.
The claim for λ ∈ Z follows now by the observation that by the parallelogram
law the quantity

‖x− λy‖2 − ‖x2‖ − ‖λy‖2

is the negative of the quantity

‖x+ λy‖2 − ‖x2‖ − ‖λy‖2 .
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Now we show (5) for λ ∈ Q. Writing λ = p
q
, p, q ∈ Z, q 6= 0 we compute

‖x+
p

q
y‖2 − ‖x‖2 − ‖p

q
y‖2

=
1

q2
(‖qx+ py‖2 − ‖qx‖2 − ‖py‖2).

Since we know the claim for p ∈ Z, this equals

p

q2
(‖qx+ y‖2 − ‖qx‖2 − ‖y‖2).

Using the same argument for q ∈ Z and by symmetry in x, y we obtain

p

q
(‖x+ y‖2 − ‖x‖2 − ‖y‖2).

It remains to prove the theorem for λ ∈ R. For this we approximate λ with a
sequence of rational numbers, for which we already know (5). The conclusion
then follows by continuity of the norm. We leave details as an exercise.

Theorem 1.29. Let V be a Hilbert space and W a closed subspace of V . Let
x ∈ V be such that ‖x‖ = infy∈W ‖x+ y‖. Then for all y ∈ W

‖x+ y‖2 = ‖x‖2 + ‖y‖2. (8)

By a subspace W we mean a vector subspace of V . The equality (8) can be
seen as ”half of the parallelogram identity”: replacing y with −y gives

‖x− y‖2 = ‖x‖2 + ‖y‖2. (9)

Summing (8) and (9) we obtain the ”full” identity (3). In particular, in a
Hilbert space the identities (8) and (9) are equivalent and they are equivalent
to

‖x− y‖ = ‖x+ y‖

as well.
Figure 4 depicts the case when W is a subspace of R2 with the Euclidean
norm. The angle between x and y is right-angled and (8) is the well-known
Pythagorean theorem.

Proof. Let y ∈ W . By Theorem 1.28,

‖x+ λy‖2 − ‖x‖2 − λ2‖y‖2 = λ(‖x+ y‖2 − ‖x‖2 − ‖y‖2)
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Figure 4: Orthogonality of x and y.

Since λy ∈ W , by definition of x we have

‖x+ λy‖2 − ‖x‖2 ≥ 0.

Thus,
0 ≤ λ2‖y‖2 + λ(‖x+ y‖2 − ‖x‖2 − ‖y‖2).

The right hand side is a quadratic function in λ. Since λ = 0 is on of its zeroes
and its leading term is positive, the right hand-side can be non-negative if
and only if λ = 0 is a double zero. But this implies

‖x+ y‖2 − ‖x‖2 − ‖y‖2 = 0.

The preceding discussion motivates the following definition.

Definition 1.30. Let V be a Hilbert space. We say that x, y ∈ V are
orthogonal, if ‖x+ y‖ = ‖x− y‖.

End of lecture 3. April 16, 2015

The fact that x, y are orthogonal we shortly express by x ⊥ y. Note that
orthogonality of x, y can be rephrased by saying f(y) = 0, where f is defined
in (6). Homogeneity of f implies that for λ ∈ R,

x ⊥ y ⇒ x ⊥ λy.
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Theorem 1.31 (Gram-Schmidt). Let V be a Hilbert space and let W be a
d−dimensional subspace, d ∈ N≥1. Then there exists a basis y0, . . . , yd−1 of
W such that

v =
d−1∑
i=0

αiyi ⇒ ‖v‖ =
( d−1∑
i=0

|αi|2
) 1

2
.

Proof. We induct on d. Let d = 1. Pick x0 6= 0. It exists, since d 6= 0. Define

y0 :=
x0

‖x0‖

and observe that ‖y0‖ = 1. If v = α0y0, then

‖v‖ = |α0|‖y0‖ = |α0| =
( 0∑
i=0

|α0|2
)1/2

.

Assume now that the theorem holds for d ∈ N≥1. Let W be a (d + 1)−
dimensional subspace of V . Choose a basis x0, . . . , xd of W and set W ′ =
span(x0, . . . , xd−1). We have dimW ′ = d. By the induction hypothesis there
exists a basis y0, . . . , yd−1 of W ′ such that

v =
d−1∑
i=0

αiyi ⇒ ‖v‖ =
( d−1∑
i=0

|αi|2
)1/2

. (10)

Now we would like to complete y0, . . . , yd−1 to the desired basis of W . Con-
sider the map from Rd to W ′ defined via

(αi)i 7→
d−1∑
i=0

αiyi, (11)

which is a bijection. Moreover, by (10) it is an isometry, i.e.

‖(αi)i‖ =

∥∥∥∥∥
d−1∑
i=0

αiyi

∥∥∥∥∥ .
This implies that W ′ is complete, since Rd is complete. Then, W ′ is closed
in V . Since W ′ is a subspace of V , it is also convex. By Theorem 1.27 there
exists y ∈ W ′ such that

‖xd − y‖ = inf
z∈W ′
‖xd − z‖.
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Moreover, since for z ∈ W ′ also y + z ∈ W ′, we have

‖xd − y‖ = inf
z∈W ′
‖xd − y − z‖.

By Theorem 1.29 know xd− y ⊥ z for all z ∈ W ′, and thus λ(xd− y) ⊥ z for
all z ∈ W ′, λ ∈ R. Define

yd :=
xd − y
‖xd − y‖

Note that this is possible since from xd 6∈ W ′ it follows xd − y 6= 0. By the
above discussion also yd ⊥ z. In particular, yd ⊥ yl for all l < d.
Let now v be an arbitrary vector in W . Then we can write it as a linear
combination

v =
d∑
i=0

αiyi

where αi ∈ R. By orthogonality of yd to vectors in W ′ we have

‖v‖2 =

∥∥∥∥∥
d−1∑
i=0

αiyi

∥∥∥∥∥
2

+ ‖αdyd‖2

Since
∑d−1

i=0 αiyi ∈ W ′, by the induction hypothesis the last display equals( d−1∑
i=0

|αi|2
)1/2

+ |αd|2‖yd‖2 =
( d∑
i=0

|αi|2
)1/2

The bijection (11) is linear and thus an isomorphism. By this theorem, every
finite dimensional Hilbert space is isometrically isomorphic to the Euclidean
space Rd.

The procedure described in the proof is also called Gram-Schmidt orthogo-
nalization. A consequence of the proof is the following: If V is a Hilbert
space and W a d−dimensional subspace, there exists a basis y0, . . . , yd−1 of
W with

‖yk‖ = 1 for k = 0, . . . , d− 1

yk ⊥ yl if k 6= l.

That is, all vectors in this basis are of unit length and they are pairwise
orthogonal. We call such a basis an orthonormal basis.
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The following identity may be called a parallelepiped identity, as it involves
the eight corners of a parallelepiped if one adds 0 = ‖0‖2 on the right hand
side.

Theorem 1.32. Let V be a Hilbert space. Then for all x, y, z ∈ V ,

‖x+ y + z‖2 + ‖x‖2 + ‖y‖2 + ‖z‖2 = ‖x+ y‖2 + ‖x+ z‖2 + ‖y + z‖2.

Proof. First we prove the theorem for V = Rd, for which a simple computa-
tion shows that both hand-sides equal

d−1∑
i=0

2x2
i + 2y2

i + 2z2
i + 2xiyi + 2yizi + 2zixi.

For a general V consider the subspace W spanned by x, y, z, for which 1 ≤
dim(W ) ≤ 3 unless in the trivial case x = y = z = 0. Since W is isometrically
isomorphic to Rd, the claim follows.

The formula from the previous theorem has the following consequence.

Theorem 1.33. Let V be a Hilbert space and x ∈ V . Then the function

f(y) := ‖x+ y‖2 − ‖x‖2 − ‖y‖2

is linear in y ∈ V .

Note that the defining expression for f is symmetric in x, y, so that a sym-
metric statement to the theorem holds as well.

Proof. We have already mentioned the homogeneity f(λy) = λf(y), which
follows from Theorem 1.28. To show additivity we calculate

f(y + z) = ‖x+ y + z‖2 − ‖x‖2 − ‖y + z‖2,

while

f(y) + f(z) = ‖x+ y‖2 − ‖x‖2 − ‖y‖2 + ‖x+ z‖2 − ‖x‖2 − ‖z‖2.

Hence, using Theorem 1.32, f(y + z) = f(y) + f(z).

Definition 1.34. For x, y in a (real) Hilbert space V we define their scalar
product

〈x, y〉 :=
1

2
(‖x+ y‖2 − ‖x‖2 − ‖y‖2).
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We observe the following properties of the scalar product.

1. For a fixed x it is linear in y, i.e. for λ, µ ∈ R,

〈x, λy + µz〉 = λ〈x, y〉+ µ〈x, z〉.

2. It is symmetric, i.e. 〈x, y〉 = 〈y, x〉.

3. For a fixed y it is linear in x, i.e. for λ, µ ∈ R,

〈λx+ µz, y〉 = λ〈x, y〉+ µ〈z, y〉.

Properties 1. and 3. are usually stated saying the scalar product is
bilinear.

4. 〈x, x〉 = ‖x‖2

This holds since both hand-sides equal 1
2
(‖2x‖2 − ‖x‖2 − ‖x‖2).

5. 〈x, y〉 = 0⇔ x ⊥ y,
This holds since both statements are equivalent to ‖x + y‖2 − ‖x‖2 −
‖y‖2 = 0.

6. (Cauchy-Schwarz inequality) 〈x, y〉 ≤ ‖x‖‖y‖.
To derive this we first square the triangle inequality ‖x+y‖ ≤ ‖x‖+‖y‖
which yields

‖x+ y‖2 ≤ ‖x‖2 + ‖y‖2 + 2‖x‖‖y‖
⇔ 2〈x, y〉 ≤ 2‖x‖‖y‖
⇔ 〈x, y〉 ≤ ‖x‖‖y‖.

1.3.1 Complex Hilbert spaces

Let V be a vector space over C. A norm on the complex vector space ‖ · ‖ :
V → R≥0 satisfies

1. ‖x‖ = 0⇒ x = 0 ∀x ∈ V

2. ‖λx‖ = |λ|‖x‖ ∀x ∈ V, λ ∈ C

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ ∀x, y ∈ V

The difference to the real case is Property 2., which needs to hold for more
general λ. But it still holds for all λ ∈ R, so the normed space remains a real
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normed space as well. As such it is still called Hilbert space, if the induced
metric is complete and for all x, y ∈ V the parallelogram law

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2

holds.
In a complex Hilbert space, we call the property ‖x − y‖ = ‖x + y‖ of two
vectors real orthogonality, to distinguish it from complex orthogonality which
will be defined below.
We observe that

‖x+ ix‖ = |1 + i|‖x‖ =
√

2‖x‖ = |1− i|‖x‖ = ‖x− ix‖,

which means that x and ix are real orthogonal. In the complex setting this
is somewhat undesirable, as ix is a complex multiple of x and thus x and ix
are linearly dependent in the complex vector space.
In view of this, the real Gram Schmidt procedure does not produce a basis of
the complex vector space. To rectify this, we modify the real Gram Schmidt
as follows. We first choose a vector y0 with ‖y0‖ = 1. Then we define yi =
iy0. Inductively if we have chosen y0, . . . , y2d−1, we choose a unit vector y2d

orthogonal to the previously chosen vectors and then we choose y2d+1 = iy2d.
This gives a collection of 2d+2 pairwise real orthogonal vectors such that they
pair up into pairs of linearly dependent vectors over the complex numbers. If
the real dimension of the vector space is 2d, then taking the even numbered
vectors y0, y2, . . . , y2d−2 provide a basis of the d-complex-dimensional space.
It would be desirable to have a notion of complex orthogonality that deems
these 2d vectors a maximal set of orthonormal vectors.
Thus we define a different scalar product.

Definition 1.35. Let V be a complex Hilbert space. The complex scalar
product of two vectors x, y ∈ V is defined as

〈x, y〉 :=
1

2
(‖x+ y‖2 − ‖x‖2 − ‖y‖2) +

i

2
(‖x+ iy‖2 − ‖x‖2 − ‖iy‖2).

Note that this equals the real scalar product plus an additional imaginary
component. By the parallelogram law, 〈x, y〉 can also be written as

1

4
(‖x+ y‖2 − ‖x− y‖2) +

i

4
(‖x+ iy‖2 − ‖x− iy‖2).

First we show that we have the property

〈x, iy〉 = −i〈x, y〉,
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which in particular implies 〈x, ix〉 = −i‖x‖2 and thus 〈x, ix〉 6= 0 for x 6= 0.
To see that, we write by definition

〈x, iy〉 =
1

2
(‖x+ iy‖2 − ‖x‖2 − ‖iy‖2 + i‖x− y‖2 − i‖x‖2 − i‖y‖2),

which by the parallelogram law equals

1

2
(‖x+ iy‖2 − ‖x‖2 − ‖iy‖2 − i‖x+ y‖2 + i‖x‖2 + i‖y‖2)

=− i

2
(‖x+ y‖2 − ‖x‖2 − ‖y‖2 + i(‖x+ iy‖2 − ‖x‖2 − ‖iy‖2))

=− i〈x, y〉.

More generally, the complex scalar product satisfies the following.

1. For a fixed y it is linear in x.

2. It is conjugate symmetric, i.e. 〈x, y〉 = 〈y, x〉.

3. For a fixed x it is conjugate linear in y, i.e. for λ, µ ∈ C,

〈x, λy + µz〉 = λ̄〈x, y〉+ µ̄〈x, y〉.

We leave the proof of these properties as an exercise. Linearity in x and
conjugate linearity in y together are also called sesquilinearity.
In analogy with the real case we say that x, y are complex orthogonal if

〈x, y〉 = 0.

In particular, x and ix are not complex orthogonal if x 6= 0. Complex
orthogonality is stronger than real orthogonality: it is tantamount to

‖x+ y‖2 − ‖x‖2 − ‖y‖2 = 0 ∧ ‖x+ iy‖2 − ‖x‖2 − ‖iy‖2 = 0

As discussed above one can construct for a finite dimensional complex Hilbert
space an orthonormal basis by the mentioned variant of the Gram Schmidt
procedure.

1.3.2 Infinite dimensional Hilbert spaces

We are set to construct an infinite dimensional analog of Rd. For a set M
we define

`2(M) := {α : M → R :
∑
m∈M

|α(m)|2 <∞}
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where ∑
m∈M

|α(m)|2 := sup
M ′⊆M
M ′finite

∑
m∈M ′

|α(m)|2.

One could extend the definition of `2(M) to C by considering all square
summable functions mapping M to C. Note that if M = {0, . . . , d− 1}, we
obtain Rd.

Remark. If α ∈ `2(M), for every ε > 0 only finitely many α(m) satisfy
|α(m)| > ε. Since

{|α(m)| > 0} =
⋃

n∈N≥1

{|α(m)| > 1

n
},

only countably many α(m) can be different from 0. This is true even if M is
uncountable.

The space `2(M) is a real vector space with the operations

(α + β)(m) = α(m) + β(m)

(λα)(m) = λ(α(m)), λ ∈ R.

Definition 1.36. For α ∈ `2(M) set

‖α‖ :=

√∑
m∈M

|α(m)|2. (12)

This expression defines a norm, so `2(M) is a normed space. In fact, even
more is true.

Theorem 1.37. `2(M) is a Hilbert space.

Proof. First we show that (12) defines a norm. That ‖α‖ = 0 ⇒ α(m) = 0
for all m ∈ M and that ‖λα‖ = |λ|‖α‖ is clear. For the triangle inequality
we expand

‖α + β‖ =

√
sup
M ′⊆M
M finite

∑
m∈M ′

|α(m) + β(m)|2 ≤ sup
M ′⊆M
M finite

√∑
m∈M ′

|α(m) + β(m)|2
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the last inequality following by continuity of the square root. Using the
triangle inequality in the finite dimensional space R|M ′|, this is bounded by

sup
M ′⊆M
M finite

√∑
m∈M ′

|α(m)|2 +

√∑
m∈M ′

|β(m)|2

≤ sup
M ′⊆M
M finite

√∑
m∈M ′

|α(m)|2 + sup
M ′⊆M
M finite

√∑
m∈M ′

|β(m)|2

=‖α‖+ ‖β‖.

The next thing to show is completeness. This can be shown analogously
as completeness of `1(M), which was discussed in Analysis 1 and will be
addressed in the next lecture. The validity of the parallelogram law can
deduced from its validity in the finite dimensional Hilbert space R|M ′|. The
details of this last statement are left as an exercise.

End of lecture 4. April 20, 2015

We now turn to the question of completeness of the space l2(M) for some,
possibly infinite set of indices M .

Theorem 1.38. Given a set of indices M , the normed vector space l2(M)
is complete.

Proof. Let αn be a Cauchy sequence in l2(M). Then ∀m ∈ M the sequence
αn(m) is a Cauchy sequence in R since |αn(m)− αn′(m)| ≤ ‖αn − αn′‖. We
define

α(m) = lim
n→∞

αn(m) .

This is the candidate α being the l2(M) limit of the sequence of functions
αn. We need to verify that α is an element of l2(M). First note that for the
Cauchy sequence αn there exists a C > 0 so that ‖αn‖ < C for all n ∈ N. We

will show that ‖α‖ =
(∑

m∈M |α(m)|2
)1/2 ≤ C + 1. Given any finite subset

M ′ ⊂ M one must show that (
∑

m∈M |α(m)|2)1/2 ≤ C + 1. Choose n′ ∈ N
large enough with n′ > n so that |αn′(m) − α(m)| < ε for all m ∈ M ′ and
for a suitably chosen ε > 0. Then, by the triangle inequality in Rd and d the
cardinality of M ′,

(
∑
m∈M ′

|α(m)|2)1/2 ≤ (
∑
m∈M ′

(|αn(m)|+ ε)2)1/2
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≤ (
∑
m∈M ′

|αn(m)|2)1/2 + (M ′)1/2ε ≤ C + 1 ,

where the last line follows by suitable choice of ε.
We now need to show that α is, as a matter of fact the l2 limit of αn.
For any ε > 0 choose n ∈ N such that for every n′, n′′ ≥ n we have that
‖αn′ − αn′′‖2 ≤ ε. Let M ′ ⊂M be a finite set such that∑

m∈M ′
|αn(m)|2 ≥ ‖αn‖2 − ε∑

m∈M ′
|α(m)|2 ≥ ‖α‖2 − ε

This also gives us that for all n′ > n

‖αn′‖2 −
∑
m∈M ′

|αn′(m)|2 ≤ ‖αn‖2 −
∑
m∈M ′

|αn(m)|2 − 2
∣∣‖αn′‖2 − ‖αn‖2

∣∣ ≤ 5ε.

Let us choose N > n sufficiently large so that for all n′ ≥ N and for all
m ∈M ′ we have |αn′(m)−α(m)| < ε

|M ′| . This is possible since M ′ is a finite

set and limn′→∞ αn′(m) = α(m). It follows that for n′ > N

‖αn′ − α‖2 =
∑
m∈M

|αn′(m)− α(m)|2 ≤
∑
m∈M ′

|αn′(m)− α(m)|2+

∑
m∈M\M ′

|αn′(m)− α(m)|2 ≤
∑
m∈M ′

ε

|M ′|
+ 2

 ∑
m∈M\M ′

|αn′(m)|2

+
∑

m∈M\M ′
|α(m)|2

 ≤ ε+ 2

(
‖αn′‖2 −

∑
m∈M ′

|αn′(m)|2+

‖α‖2 −
∑
m∈M ′

|α(m)|2
)
≤ ε+ 10ε+ ε ≤ 12ε.

This proves the claim that αn → α in the metric space l2(M). We have used
the fact that for positive quantities a ≤ b+ c we have that a2 ≤ 2(b2 + c2).

The parallelogram identity holds for l2(M). The proof of this is left as an
exercise. As a consequence the scalar product on l2(M) is defined via the
expression

〈α, β〉 =
∑
m∈M

α(m)β(m).
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If we consider complex-valued functions the scalar product is given by

〈α, β〉 =
∑
m∈M

α(m)β(m).

As usual the complex scalar product is linear in the first term and anti-linear
in the second term and, as expected, we have 〈α, α〉 =

∑
m∈M α(m)α(m) =∑

m∈M |α(m)|2 = ‖α‖l2(M).
To see that all the above expressions are well defined for elements α, β ∈
l2(M) we show that the sequences are absolutely summable. In particular,
given that for any m ∈ M we have |α(m)β(m)| ≤ 1

2
(α(m)2 + β(m)2), for

any finite subset M ′ we have that
∑

m∈M ′ |α(m)β(m)| ≤ 1
2

(‖α‖2 + ‖β‖2).

1.3.3 Orthonormal systems and bases

The Hilbert space l2(M) is infinite dimensional when the set M is infinite.
While it would be tempting to assume that the set of elements

bm′(m) =

{
1 m = m′

0 m 6= m′

for m′ ∈M are a basis of l2(M) this is false according to the definition given
in linear algebra. The elements bm′ are linearly independent but it is not true
that any element of l2(M) can be represented as a finite linear combination
of elements bm′ . This is what would be required for bm′ to be a Hamel basis
i.e. a basis in the sense one uses this term in linear algebra.
However since l2(M) is a Hilbert space and thus has the additional property
of being a metric space and of having a scalar product we can introduce a
new set of notions that will allow a basis of whose elements we will take
infinite, albeit convergent in the Hilbert space metric, linear combinations.

Definition 1.39. Let V be a Hilbert space (real or complex). We say that
a set of vectors B ⊂ V is an orthonormal system if the following properties
are satisfied

• ∀b ∈ B the elements are normalized i.e. ‖b‖ = 1;

• ∀b, b′ ∈ B the elements coincide or are (real or complex, as the case
may be) orthogonal: b = b′ ∧ 〈b, b′〉 = 0.

We next argue that for an orthonormal set B there exists an linear map f :
l2(B) → V such that f(α) =

∑
b∈B α(b)b for any given sequence α ∈ l2(B).

The infinite sum is to be interpreted as convergent in the following sense:
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there exists a unique element v ∈ V so that for every ε > 0 there exists a
finite subset M ′ ⊂ B so that for all M ′′ ⊃ B′ we have

‖v −
∑
b∈M ′′

α(b)b‖V < ε .

We say that a linear map f from a normed vector spaces X to a normed
vector space Y is an isometry if ‖f(x)‖Y = ‖x‖X for all vectors x ∈ X.
Notice that such an isometric map is injective.

Proposition 1.40. Given an orthonormal system B ⊂ V of a Hilbert space
V . The map f defined by setting f(α) =

∑
b∈B α(b)b for all α ∈ l2(B) is a

well defined isometry.

Proof. We must show that the sum
∑

b∈B α(b)b converges to an element in
V for any α ∈ l2(B).
Let n ∈ N and let us choose a finite subset Mn ⊂ B so that

∑
m∈Mn

|αm|2 ≥
‖α‖2

l2(B) − 2−n. For any finite M ′′ ⊃Mn we have that

‖
∑
b∈M ′′

α(b)b−
∑
b∈Mn

α(b)b‖2 = ‖
∑

b∈M ′′\Mn

α(b)b‖2

since the sets Mn, M
′′, M ′′ \Mn are all finite we can expand the above norm

using the scalar product on V to obtain∥∥∥∥∥∥
∑

b∈M ′′\Mn

α(b)b

∥∥∥∥∥∥
2

=
∑

b, b′∈M ′′\Mn

α(b)α(b′)〈b, b′〉 =
∑

b∈M ′′\Mn

|α(b)|2 ≤ 2−n.

Here we used that B is an orthonormal system.
Now consider the closed balls B10 2−n

(∑
b∈Mn

α(b)b
)

and let us call the centers
of these balls vn :=

∑
b∈Mn

α(b)b. Since Mn can be chosen to be contained in
one another as n increases the above balls are also contained in one another.
Since V is a complete space there exists an element v ∈

⋂
n∈NB102−n(vn) and

we claim that v =
∑

b∈B α(b)b. To verify this is left as an exercise.
Linearity of f is also easy to show and is left as an exercise.

Similarly to how a set of linearly independent vectors must have the addi-
tional property of generating a finite-dimensional vector space, orthonormal
systems also require a notion of generating a Hilbert space before for them
to be an adequate substitute for the notion of a basis of Euclidean spaces.

Definition 1.41. An orthonormal system B of a Hilbert space V is said to be
an orthonormal basis if the map f : l2(B)→ V given by f(α) =

∑
b∈B α(b)b

is surjective.
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Theorem 1.42. An orthonormal system B of a Hilbert space V is an or-
thonormal basis if and only if for any vector v ∈ V we have that v = 0 or
∃b ∈ B 〈v, b〉 6= 0 .

Proof. ⇐ Suppose that ∀v ∈ V we have either v = 0 or ∃b ∈ B 〈v, b〉 6= 0.
We must show that f is surjective. The image W = f (l2(B)) is a
subspace of V because f is linear and thus W is closed with respect
to the vector space operations (linear combinations of vectors). W is
also a closed subspace of V since f is an isometry. Let v ∈ V and let
w ∈ W be a vector such that ‖v−w‖ = infz∈W ‖v− z‖. Then we have
that ‖v − w‖ ⊥ z for all z ∈ W . Thus 〈v − w; b〉 = 0 for all vectors
b ∈ B. This means that v − w = 0 and thus v ∈ W as required

⇒ We leave this implication as an exercise.

1.4 The Hilbert spaces L2(R) and L2([0, 1])

In the last section we studied Hilbert spaces including the space l2(Z), that is
the space of sequences parameterized by Z which are square summable with

norm ‖α‖ =
(∑

m∈Z |α(m)|2
)1/2

. It is natural to ask whether one could define
a space of functions f on R which are square integrable in some sense and

whose norm is defined as an integral with norm
(∫

R |f(x)|2dx
)1/2

. However,
it turns out that in order to obtain a Hilbert space in this fashion, that is
in particular to obtain a complete metric space, one needs a rather general
class of “functions” f and a powerful notion of the integral, that we do not
have introduced yet. Here we put the word “functions” into quotation marks,
since the exact development of the theory requires objects other than naive
functions f : R → R in the literal sense. There are several approaches to
this task, one involving Lebesgue integration theory, which we do not delve
into now. Another approach is via martingale theory, which we will develop
here.

Definition 1.43. Let I be the set of dyadic subintervals of R of the form
[n2k, (n + 1)2k) with k, n ∈ Z. A martingale on R is a function F : I → R
with the property that

∀I ∈ I F (I) =
1

2
(F (Il) + F (Ir))

where Ir and Il are the left and right dyadic children of I i.e. Il, Ir ∈
I I = Il ∪ Ir and |Il| = |Ir| = |I|

2
. If I = [n2k, (n + 1)2k] then Il =[

2n2k−1, (2n+ 1)k−1
)

and Ir =
[
(2n+ 1)2k−1, (2n+ 2)2k−1

)
.
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Similarly we define martingales on [0, 1) by considering functions on the
collection I of dyadic intervals contained in [0, 1).
Locally integrable functions on the real line or on [0, 1) naturally define a
martingale on the respective sets. We restrict attention to functions f of
bounded variation. For each such f , the function F (I) = 1

|I|

∫
I
f(x)dx is a

martingale. To see this, note that I = Il ∪ Ir and |Ir| = |Il| = 1
2
|I| and hence

F (I) =
1

|I|

∫
I

f(x)dx =
1

2|Il|

∫
Il

f(x)dx+
1

2|Il|

∫
Il

f(x)dx =
1

2
(F (Il) + F (Ir)) .

Definition 1.44. The space L2(R) is the vector space

L2(R) =

F martingale on R : sup
k∈Z

∑
I∈I
|I|=2k

|F (I)|2|I| <∞

 .

The space L2 ([0, 1)) is the vector space

L2 ([0, 1)) =

F martingale on [0, 1) : sup
k∈Z

∑
I∈I
|I|=2k

|F (I)|2|I| <∞

 .

Note that in the first case the sums over intervals of fixed size are infinite
sum, while in the second case they are finite sums.
We define on these spaces given by

‖F‖L2 = sup
k∈Z

∑
I∈I
|I|=2k

|F (I)|2|I|

where by I we intend the set of dyadic subintervals of R or [0, 1) respectively.

These quantities can be verified to be norms and make these spaces into
actual Hilbert spaces. This will be done in more detail in the next lecture.
The expression

∑
|I|=2k |F (I)|2|I| is monotone as k → −∞ since a2 + b2 ≥

2
(
a+b

2

)2
. As a matter of fact notice that∑

|I|=2k

|F (I)|2|I| =
∑
|I|=2k

1

4
|F (Il) + F (Ir)|2 |I| ≤

∑
I=2k

1

2

(
|F (Il)|2 + |F (Ir)|2

)
|I| =

∑
|J |=2k−1

F (J)2|J |

Thus we can actually write that ‖F‖ = limk→−∞
∑
|I|=2k |F (I)|2|I|.
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End of lecture 5. April 23, 2015

We have defined the spaces L2(R) and L2([0, 1)) in terms of martingales.
We now verify that the expression ‖F‖L2 = supk

∑
|I|=2k |F (I)|2|I| =

limk→−∞
∑
|I|=2k |F (I)|2|I| is actually a Hilbert space norm. We check these

properties for L2 ([0, 1)), the slightly more involved case L2 (R), which re-
quires to handle infinite sums, is left as an exercise.

• ‖F‖L2 = 0 ⇒ F = 0 follows from the fact that for all I ∈ I we find
k with |I| = 2k and we have that |F (I)|2|I| ≤

∑
|I|=2k |F (I)|2|I| ≤

‖F‖L2 = 0 so F (I) = 0.

• To see ‖λF‖ = |λ|‖F‖ we note that for each k∑
|I|=2k

|λF (I)|2|I| = |λ|2
∑
|I|=2k

|F (I)|2|I| .

Applying the supremum over k gives the desired result.

• The triangle inequality: ‖F +G‖ ≤ ‖F‖+ ‖G‖. To show this we first
consider fixed length 2k. For F, G ∈ L2 ([0, 1)) and for any k we have∑

|I|=2k

|F (I) +G(I)|2|I|

1/2

≤ 2k/2

(
∑
|I|=2k

|F (I)|2)1/2 + (
∑
|I|=2k

|G(I)|2)1/2


=

∑
|I|=2k

|F (I)|2|I|

1/2

+

∑
|I|=2k

|G(I)|2|I|

1/2

.

Here we used the triangle inequality on the space l2
(
{I ∈ I, |I| = 2k}

)
.

Comparing with the supremum on the right hand side we obtain∑
|I|=2k

|F (I) +G(I)|2|I|

1/2

≤ ‖F‖+ ‖G‖

Since this holds for all k, we obtain

‖F +G‖2 ≤ ‖F‖+ ‖G‖

as required.
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• The procedure to prove the parallelogram identity is very similar. We
use that it holds in Euclidean spaces to conclude the corresponding
identity for square sums over intervals of fixed length. This time it is
crucial that the norm ‖·‖L2([0, 1)) is given not only by supremum over all

k of the expression
(∑

|I|=2k |F (I)|2|I|
)1/2

but by its limit as k → −∞.

This allows to show equality in the limit and thus the parallelogram
identity.

• Finally we need to check completeness of L2 ([0, 1)). This result is
given by the following theorem.

Theorem 1.45. The space of martingales L2 ([0, 1)) is complete.

The proof will show some similarities to the proof that l2(M) is complete.

Proof. Let Fn be a Cauchy sequence of martingales in L2 ([0, 1)). We have
for all n, n′ ∈ N that |Fn(I) − Fn′(I)| ≤ ‖Fn − Fn′‖ so for every dyadic
interval we have that Fn(I) is a Cauchy sequence. Set F (I) = limn Fn(I) for
every interval I ∈ I.
We must check that F thus defined is an element of L2 ([0, 1)).

• F is a martingale because

F (I) = lim
n→∞

Fn(I) = lim
n→∞

1

2
(Fn(Il) + Fn(Ir)) =

1

2
(F (Il) + F (Ir)) .

In words, since the martingale relationship is finite linear expression,
one may pass to the limit in this expression.

• ‖F‖L2 <∞. As a matter of fact for every k we have that the number of
addends in the sum

∑
|I|=2k |F (I)|2|I| is finite, thus

∑
|I|=2k |F (I)|2|I| =

limn→∞
∑
|I|=2k |Fn(I)|2|I| ≤ supn ‖Fn‖ < ∞ where the last inequality

holds since Fn is a Cauchy sequence and thus is bounded. This yields
that supk

∑
|I|=2k |F (I)|2|I| ≤ supn ‖Fn‖ <∞.

Now we need to show that limn→∞ Fn = F in the sense of L2 ([0, 1)) i.e. that
lim supn→∞ ‖Fn − F‖ = 0. The procedure is somewhat similar to the proof
of the completeness of l2(M). Let us define

EkF (I) =

{
F (I) if |I| ≥ 2k

F (J) with J ⊃ I and J = 2k if |I| < 2k
.
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This corresponds to truncating or stopping the martingale at length 2k. We
leave as an exercise to show that limk→−∞ ‖EkF − F‖ = 0. Let ε > 0 and
n ∈ N so that ∀n′ > n we have that ‖Fn′ − Fn‖ ≤ ε. Let m ∈ N, so that
for all k > m ‖EkF − F‖ < ε and ‖EkFn − Fn‖ < ε. Now select n′′ > n so
that for all n′′′ > n′′, ‖EkFn′′′ − EkF‖ < ε holds. This is possible since when
comparing EkF with the stopped martingales EkFn we are only considering
the norm at interval length 2k since then it stabilizes. This implies that for
all n′′′ > n′′ we have ‖Fn′′′ − F‖ ≤ 10ε.

So we have shown that L2 ([0, 1)) is a Hilbert space. The scalar product on
L2 ([0, 1)) can be deduced using the polarization formula and is given by

〈F, G〉 = lim
k→−∞

∑
I∈I
|I|=2k

F (I)G(I)|I|.

Let us provide an example of how martingales on intervals are related to
functions.
Let f : [0, 1) → R be a function of bounded variation. As seen in Anal-
ysis 1 this means that f can be represented as a difference of two positive
monotone functions. Then, as we have already mentioned, the expression
F (I) = 1

|I|

∫
I
f(x)dx defines a martingale.

We have already checked the martingale property previously. Let us check
that F ∈ L2 ([0, 1)). First suppose that f and g are positive, and monotone
increasing. For any k we have ∑

|I|=2k

f(l(I))g(l(I))|I|

∑
|I|=2k

F (I)G(I)|I| ≤
∑
|I|=2k

f(r(I))g(r(I))|I|

Here we denoted by l(I) and r(I) the left and right endpoints of I. Note
that on the left and on the right we see lower and upper Riemann sums of
the function fg on the interval [0, 1). Passing to the limit k → −∞ we see
that

lim
k→−∞

∑
|I|=2k

F (I)G(I)|I| =
∫ 1

0

f(x)g(x) dx

The latter identity first extends to g of bounded variation since such functions
are difference of two monotone increasing functions of bounded variation, and
then it extends to f of bounded variation as well. Finally, specializing f = g
we see that

lim
k→−∞

∑
|I|=2k

|F (I)|2|I| =
∫ 1

0

|f(x)|2 dx
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for any function f of bounded variation.
The natural question is whether the converse holds in some sense. Does
a martingale in L2 ([0, 1)) define a function. It is natural to assume that
if a martingale is defined by a function, then the function can be mostly
recovered by f(x) := lim|I|→0

I3x
F (I). However, beginning with a function f

bounded variation, then defining the martingale F by averaging over dyadic
intervals, and then returning to a function by passing to the above limit, one
does not necessarily recover f(x) at all points x as the limit need not exists
at all points. Only if F comes from a function that is both continuous and
of bounded variation then one can check that lim|I|→0

I3x
F (I) = f(x). at every

point (exercise). For arbitrary martingale (not necessarily in L2([0, 1))), this
limit does not need to exists for any x ∈ [0, 1). Using rather elaborate
arguments one can see that for martingales in L2([0, 1)) this limit exists at
many points, making such statement more precise requires the notion of
Lebesgue measure.

1.4.1 Orthonormal basis for L2 ([0, 1))

We will now pass to describing important orthonormal systems and bases for
L2 ([0, 1)).

Definition 1.46. A Haar function of a dyadic interval I ∈ I is a function
of bounded variation on I given by

hI(x) =

√
1

|I|
(1Il(x)− 1Ir(x)) .

The associated martingales are indicated by HI .

We can explicitly express HI :

HI(J) =



0 if J ⊇ I(
1

|I|

)1/2

if J ⊆ Il

−
(

1

|I|

)1/2

if J ⊆ Ir

The Haar function together with the constant function 1[0, 1) on [0, 1) (more
precisely the associated martingale) form an orthonormal basis of L2([0, 1)).
We prove this in the following two propositions. We will refer to the constant
function as 1 so 1 = 1[0, 1).
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Proposition 1.47. The Haar martingales HI of all the dyadic subintervals
I ∈ I and the martingale 1 form an orthonormal system.

Proof. Checking that ‖HI‖ = ‖1‖ = 1 is left as an exercise. First we show
that 〈HI , 1〉 = 0 for all I ∈ I. This follows from easily from the mean

0 property of Haar functions: 〈HI , 1〉 =
∫ 1

0
hI(x)dx = 0. Now suppose

I, J ∈ I, I 6= J ; we must show that 〈HI , HJ〉 = 0. As usual we use that
〈HI , HJ〉 =

∫
hI(x)hJ(x)dx.

• If I ∩ J = ∅ then hI and hJ have disjoint supports and the statement
follows immediately.

• If I ⊂ J and I 6= J then I ⊂ Jl or I ⊂ Jr. However hI has integral
0 and hJ is constant on Jl and Jr respectively so

∫ 1

0
hI(x)hJ(x)dx =

HJ(I)
∫
I
h(x)dx = 0.

• If I ⊃ J the reasoning is symmetric to the previous case.

Theorem 1.48. The set {1}∪{HI}I∈I forms an orthonormal basis of L2 ([0, 1)).

Proof. The set {1}∪{HI}I∈I is an orthonormal system as checked above. We
only need to check surjectivity of the associated isometry. Using the criterion
of orthogonality we must show that if V ∈ L2 ([0, 1)) such that V ⊥ HI for
all dyadic intervals I ∈ I and V ⊥ 1[0, 1) then V = 0 i.e. V (I) = 0 for all
dyadic intervals I ∈ I.
First of all 0 = 〈V, 1〉 = limk→−∞

∑
J=2k V (J)|J | =k=0 V ([0, 1)).

We proceed by induction on k, the length of the dyadic intervals. Suppose
that V (I) = 0 for all |I| = 2k. Let |I| = 2k−1, then there exists J ∈ I with
|J | = 2k such that I = Jl or I = Jr. Using the properties of the martingales
we have that V (Jl)+V (Jr) = 2V (J) while V (Jl)−V (Jr) = 〈V, HJ〉|J |−1/2 =
0 since V ⊥ HJ . This implies both that V (Jl) = 0 and V (Jr) = 0 and thus
that V (I) = 0. This concludes the proof.

Finally we turn attention to complex martingales, that is function F : I → C
with the martingale condition

2F (I) = F (Il) + F (Ir)

for all I ∈ I. The complex martingales satisfying

sup
k

∑
I∈I,|I|=2k

|F (I)|2|I|
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form a complex Hilbert space L2([0, 1)). This notation does not distinguish
real and complex Hilbert space, it will have to be clear from the context which
space is meant. One might write L2([0, 1),R) L2([0, 1),C)) if one wants to
distinguish the spaces explicitly.
The behavior of the complex Hilbert space is completely analogous to that
of the real Hilbert space. The scalar product is given by

〈F, G〉 = lim
k→−∞

∑
I∈I
|I|=2−k

F (I)G(I)|I|.

The Haar function together with 1 once again are an orthonormal basis.
However we have another important orthonormal system of functions. Let
fn(x) = e2πinx. These functions are continuous and of bounded variation
therefore the associated martingales Fn are elements of L2 ([0, 1)). The mar-
tingales Fn are orthogonal because∫ 1

0

fn(x)fm(x)dx =

∫ 1

0

e2πinxe−2πimxdx =

{
1 n = m

0 n 6= m
.

The scalar product is 0 when n 6= m because the exponential function is
e2πi(n−m)x has integral 0.

Theorem 1.49. The functions e2πi(n−m)x are an orthonormal basis of the
space of complex martingales L2 ([0, 1), C)

Proof. Once again we must only show surjectivity and to do so we use
the orthogonality criterion. Let V ⊥ Fn for all n ∈ Z. We must show
that V (I) = 0 for all I ∈ I. This follows from the fact that we can
approximate characteristic functions of dyadic intervals. Let I ∈ I and
ε > 0; set gI,ε(x) = supz∈[0,1) max{0, 1I(z) − ε−1|z − x|}. The functions
gI,ε(x) are of bounded variation, are bounded by 1 and are supported on
{z ∈ [0, 1) |Bε(z) ∩ I 6= ∅}. By the Theorem of Stone-Weirstrasse for any
ε > 0 there exists a trigonometric polynomial p i.e. a finite linear combina-
tion of the functions fn such that |p(x)− gI,ε(x)| < ε for all x ∈ [0, 1). Since
fn are of bounded variation and p is a trigonometric polynomial we have that
‖P−GI,ε‖2 =

∫ 1

0
|p(x)−gI,ε(x)|2dx ≤ ε2 and for a similar reason ‖GI,ε−1I‖2 <

2ε. Notice also that we have V (I) = 〈V, 1I〉 where in this case we intend by 1I
the martingale associated to the characteristic function of the interval I. But
this means that |V (I)| = |〈V, 1I〉| ≤ |〈V, P 〉|+ |〈V, P −GI,ε〉|+ |〈V, 1I−GI,ε〉|.
Applying Cauchy-Schwarz we obtain that |〈V, P −GI,ε〉| ≤ ‖V ‖‖P −GI,ε‖ ≤
ε‖V ‖ and |〈V, 1I − GI,ε〉| ≤ ‖V ‖‖1I − GI,ε‖ ≤ (2ε)1/2‖V ‖. By linearity
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〈V, P 〉 = 0 so we have that |V (I)| < ‖V ‖
(
ε+ (2ε)1/2

)
. Since ε > 0 can be

chosen arbitrarily small this implies that V (I) = 0 as required.

End of lecture 6. April 27, 2015

We have the following representation, analogous to the case of Rd.

Theorem 1.50. Let B be an orthonormal basis of a Hilbert space V . For
v ∈ V we have ∑

b∈B

〈v, b〉b = v.

The above sum should be interpreted in the following sense: for every ε > 0
there exists an M ⊂ B such that for all finite M ′ with B ⊃M ′ ⊃M ,

‖v −
∑
b∈M ′
〈v, b〉b‖ ≤ ε.

Proof. We already know that there exists a surjective map `2(B)→ V given
by α 7→

∑
b∈B α(b)b, such that

v =
∑
b∈B

α(b)b

in the above mentioned sense. Let now ε > 0 and M be as above. Let b0 ∈ B
and set M ′ := M ∪ {b0}. Then

|〈v, b0〉 − α(b0)| = |〈v, b0〉 −
∑
b∈M ′

α(b)〈b, b0〉|.

where we have used that the basis B is orthonormal and thus 〈b, b0〉 = 0 for
b 6= b0 and 〈b0, b0〉 = 1. The last display can be further rewritten as

|〈v −
∑
b∈M ′

α(b), b0〉|,

which is by the Cauchy-Schwarz inequality estimated by

‖v −
∑
b∈M ′

α(b)‖‖b0‖ = ‖v −
∑
b∈M ′

α(b)‖ ≤ ε.

Since ε was arbitrary, it follows 〈v, b0〉 = α(b0).
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We discuss an important application of this theorem. We already know that
bn(x) = e2πinx form an orthonormal basis of L2([0, 1),C). For all f of bounded
variation, for which we have learned how to write the inner product as an
integral, we define

〈f, bn〉 =

∫ 1

0

f(x)e−2πinxdx =: f̂(n)

The numbers f̂(n) are called the Fourier coefficients of f . By the last theorem
we have

f =
∑
n∈Z

f̂(n)e2πinx. (13)

The series on the right hand-side is called the Fourier series of f . We stress
once more that the sum in (13) should be interpreted in the sense described
above. In the present case this means that ∀ε > 0 ∃N : ∀n′ > N :

(∫ 1

0

|
n′∑

n=−n′
f̂(n)e2πinx − f(x)|2dx

)1/2

≤ ε.

For general functions of bounded variation, the equality (13) need not hold
pointwise at every point in the domain of f , in fact the series need not
converge for a given point x.
Since the mentioned surjective map `2(B)→ L2([0, 1],C) is an isometry, for
an f of bounded variation we have∫ 1

0

|f(x)|2dx =
∑
n∈Z

|f̂(n)|2.

2 Differentiation in Rn

In this chapter we shall examine differentiation of functions f : Rn → Rm.
In Linear Algebra I we have already met linear maps. An m× n matrix

A = (aij)1≤i≤m
1≤j≤n

defines a linear map f : Rn → Rm by setting

f(x) = Ax.

For 1 ≤ i ≤ n, the i-th component of f(x) is given by (f(x))i =
∑n

j=1 aijxj.
Conversely, if we fix respective bases of Rn and Rm, every linear map f :
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Rn → Rm can be represented by an m× n matrix. Recall that if n = 2 and
m = 1, the graph of f is a plane through the origin in R3.
More generally, a map of the form

f(x) = Ax+ b

where x → Ax is linear and b is a constant vector in Rm is called an affine
linear map. Note that if n = 2 and m = 1, the graph of f is a plane through
the the point (0, 0, b) in R3.

In all of the following Ω will be an open set of Rn. The next definition
generalizes the notion of differentiability from Analysis I to functions Rn →
Rm.

Definition 2.1. A function f : Ω → Rm is said to be totally differentiable
at x0 ∈ Ω, if there exists an affine linear map x 7→ Ax+ b such that

∀ε > 0 ∃δ > 0 : ∀x ∈ Bδ(x0) ∩ Ω : ‖f(x)− (Ax+ b)‖ < ε‖x− x0‖.

The role of the vector b in the above is less dominant, we can rephrase the
definition as follows:

Theorem 2.2. A function f : Ω → Rm is totally differentiable at x0 ∈ Ω if
and only if there is a linear map A such that

∀ε > 0∃δ > 0 : ∀‖h‖ < δ, x0 + h ∈ Ω : ‖f(x0 + h)− f(x0)− Ah‖ < ε‖h‖.
(14)

Proof. (⇒) The claim follows with A being the linear part of the affine map
from definition of total differentiability. We elaborate on details. Pick an
ε > 0. Then there is a δ > 0 and an affine map Ax+ b such that

‖f(x0)− (Ax0 + b)‖ ≤ ε‖x0 − x0‖ = 0.

Thus, f(x0) = Ax0 + b. Then for every ‖h‖ < δ with x0 + h ∈ Ω,

‖f(x0 + h)− f(x0)− Ah‖ = ‖f(x0 + h)− Ax0 − b− Ah‖
= ‖f(x0 + h)− (A(x0 + h) + b)‖
≤ ε‖x− x0‖ = ε‖h‖.

The last inequality again follows from Definition 2.1, since x0 + h ∈ Bδ(x0).

The direction (⇐) is left as an exercise.
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We would like to call the map A from the definition of differentiability or
the subsequent theorem the total derivative of f at x0. To do so, we need to
know uniqueness of this map, which is proved in the following theorem. This
is analogous to the known case n = m = 1.

Theorem 2.3. Let f : Ω→ Rm and x0 ∈ Ω. There exists at most one linear
map A such that (14) holds.

Proof. Assume there are two linear maps A1, A2 such that (14) is true. Let
ε > 0. Then

∃δ1 > 0 : ∀‖h‖ < δ1, x0 + h ∈ Ω : ‖f(x0 + h)− f(x0)− A1h‖ < ε‖h‖

and

∃δ2 > 0 : ∀‖h‖ < δ2, x0 + h ∈ Ω : ‖f(x0 + h)− f(x0)− A2h‖ < ε‖h‖.

Define δ := min(δ1, δ2) and let x0 + h ∈ Ω, ‖h‖ < δ. Then

‖A1h− A2h‖ =‖ − (f(x0 + h)− f(x0)− A1h) + f(x0 + h)− f(x0)− A2h‖
≤‖f(x0 + h)− f(x0)− A1h‖+ ‖f(x0 + h)− f(x0)− A2h‖
≤2ε‖h‖.

Thus, ‖(A1 − A2)h‖ ≤ 2ε‖h‖. We would like to show that the same holds if
we replace h with a general y ∈ Rn, which follows from the following scaling
argument. Let y ∈ Rn. Since Ω is open, we can choose λ > 0 such that
x0 + λy ∈ Ω, ‖λy‖ < δ. Set h := λy. Then by the above discussion

‖(A1 − A2)λy‖ ≤ ε‖λy‖

By linearity of A1 − A2 and of the norm, this is equivalent to

λ‖(A1 − A2)y‖ ≤ ελ‖y‖
⇔‖(A1 − A2)y‖ ≤ ε‖y‖

Since ε was arbitrary, for all y ∈ Rn we have (A1−A2)y = 0, hence A1−A2 =
0, i.e. A1 = A2.

Note that if f is linear, then it is its own total derivative at every x0 ∈ Ω.

Since Rn is an n−fold product of R, it is a natural question whether we can
characterize total differentiability of functions Rn → Rm with total differen-
tiability of functions mapping Rn → R or R→ Rm.
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For an f : Ω→ Rm we write

f(x) = (f1(x), . . . , fm(x)),

where for 1 ≤ i ≤ m, fi : Ω→ R are called component functions.

Theorem 2.4. A function f : Ω → Rm is totally differentiable at x0 if and
only for all 1 ≤ i ≤ m, the component functions fi are totally differentiable
at x0.

Proof. (⇐) Assume that all component functions are totally differentiable at
x0 ∈ Ω. Then for every 1 ≤ i ≤ m there exists a vector (aij)1≤j≤n ∈ Rn such
that ∀ε > 0∃δi > 0 : ∀‖h‖ < δi, x0 + h ∈ Ω,

|fi(x0 + h)− fi(x0)−
n∑
j=1

aijxj| ≤
ε√
m
‖h‖.

Set δ := min1≤i≤m δi. Let ‖h‖ < δ, x0 + h ∈ Ω. Define A by the matrix

(aij)1≤i≤m
1≤j≤n

.

Then we have

‖f(x0 + h)− f(x0)− Ah‖ =
( m∑
i=1

|fi(x0 + h)− fi(x)−
n∑
j=1

aijxj|2
)1/2

≤
√
m

ε√
m
‖h‖ = ε‖h‖.

Thus, f is totally differentiable at x0.
(⇒) Exercise.

This theorem gives an affirmative answer to the first question, that is, total
differentiability of functions Rn → Rm is equivalent to total differentiability
of all of its component functions, which map Rn → R. To examine the second
question we introduce the following definition.

Definition 2.5. Let v 6= 0 be a vector in Rn. A function f : Ω → Rm is
said to be differentiable in the direction of v at x0 if f ◦ g : I → Rm is totally
differentiable at 0, where I := {t ∈ R : x0 + tv ∈ Ω} and g : I → Rn is
defined by g(t) := x0 + tv. The total derivative of f ◦ g at 0 is called the
directional derivative along v.

Note that the set I is open. One often normalizes v to satisfy ‖v‖ = 1.
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Theorem 2.6. If f : Ω → Rm is totally differentiable at x0 ∈ Ω, then it is
differentiable in the direction of all v 6= 0 at x0 and the directional derivative
equals Av.

Proof. Let ε > 0. We know that ∃δ > 0 : ∀‖h‖ < δ, x0 + h ∈ Ω: ‖f(x0 +
h) − f(x0) − Ah‖ ≤ (ε/‖v‖)‖h‖ for some linear map A : Rn → Rm. Set
δ′ := δ/‖v‖, so that |t| < δ′ ⇒ ‖tv‖ < δ. Then for every |t| < δ′, x0 + tv ∈ Ω:

‖f(x0 + tv)− f(x0)− A(tv)‖ ≤ (ε/‖v‖)‖tv‖ = (ε/‖v‖)|t|‖v‖ = ε|t|.

Since A(tv) = tA(v) and t 7→ tAv is linear in t, this means that f ◦ g is
differentiable at 0 with the derivative Av.

However, the converse of this theorem does not hold in general.

Example. Let f : R2 → R be defined by

f(x1, x2) =

{
x31

x21+x22
; (x1, x2) 6= 0

0 ; (x1, x2) = 0

Then f is clearly differentiable at (x1, x2) 6= 0. At 0, f is continuous. We
claim that f has directional derivatives at 0 in the direction of all v 6= 0, but
f is not totally differentiable at 0.
Directional differentiability: Let v 6= 0 ∈ R2. Then

f ◦ g(t) = f(0 + tv) = f(tv1, tv2) = t
( v3

1

v2
1 + v2

2

)
,

i.e.

f(0 + tv)− f(0)− t
( v3

1

v2
1 + v2

2

)
= 0.

Since the map t 7→ t
v31

v21+v22
is linear in t, this means that f is differentiable

along each v 6= 0.
Total differentiability: If f were totally differentiable at 0, by the previous
theorem its total derivative would have to be

A(v1, v2) =
v3

1

v2
1 + v2

2

,

where A is given by A = (a1, a2). Thus, for all v 6= 0 we would have

a1v1 + a2v2 =
v3

1

v2
1 + v2

2

.

Inserting v = (1, 0) gives the condition a1 = 1. Inserting v = (0, 1) yields
a2 = 0. Thus, a1 + a2 = 1. Now, plugging in v = (1, 1) gives a1 + a2 = 1/2,
which is a contradiction. Hence f cannot be totally differentiable at 0.
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End of lecture 7. April 30, 2015

Let us recall the definition of total differentiability from the previous lecture.
Let Ω ⊂ Rn be an open set and let f : Ω → Rm; fix a point x ∈ Ω. The
function f is said to be totally differentiable in x if there exists a linear map
A : Rn → Rm such that ∀ε > 0 ∃δ > 0 such that for all vectors h such that
‖h‖ < δ and x + h ∈ Ω we have ‖f(x + h) − f(x) − Ah‖ ≤ ε‖h‖. If the
above holds we say that A = Df(x) i.e. A is the differential of f in x. Since
A : Rn → Rm is a linear map we know that it is represented by an m × n
matrix ai,j. In particular we have that (Ah)i =

∑n
j=1 ai,jhj. Let us recall

the Theorem from the last lecture that relates the total differentiability of
the components fi of an Rm-valued function with the total differentiability
of the function f itself.
Recall that a function f : Ω ⊂ Rn → Rm defined on an open set Ω ⊂ Rn

with f = (fi)i=1,...,m with fi : Ω → R is totally differentiable in x is an only
if all the functions fi are totally differentiable in x for all i ∈ {1, . . . ,m}.
It is easy to relate the total differentials D(fi) of the single components to
the total differential of Df . The proof from the previous lesson yields that
D(fi)h = (Dfh)i =

∑n
j=1Dfi,jhj so the differentials of fi are just the 1× n

matrixes that are the row vectors of Df .
A different and more complicated situation occurs when we try to study
the differentiability of a functions f when we look at the domain Rm as a
product space. One can already imagine that having directional derivatives
is not the same as having a total derivative as we will see happens in the
already mentioned counterexample.
However we will see that under appropriate continuity assumptions we can
deduce total differentiability from the differentiability along the single com-
ponents of Rn. We begin with an important definition. For ease of notation
we will suppose that the functions we are dealing with are R-valued. We
have seen that functions with values in Rm can be dealt simply by studying
their single components.

Definition 2.7. Let f : Ω ⊂ Rn → R. f is partially differentiable in x if for
every j ∈ {1, . . . , n} there exists aj ∈ R such that for every ε > 0 there exists
a δ > 0 such that for any |t| < δ one has |f(x+ tej)− f(x)− ajt| ≤ ε|t|
where ej is the jth basis vector ej = (0, . . . , 0, 1︸︷︷︸

jth

, 0, . . . , 0). In this case

we will write Djf(x) = aj to indicate the partial derivative of the function
f in direction j. In mathematical literature these quantities are sometimes
written as ∂jf or ∂f

xj
.
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Notice that similarly to standard derivatives, total derivatives and partial
derivatives if they exists are respectively unique.
Obviously total differentiability is a stronger notion than partial differentia-
bility.

Proposition 2.8. If f is totally differentiable in x then it is also partially
differentiable in x and one has Djf(x) = Df(x)ej. This is a special case of
directional differentiability along ej.

The interesting fact is that while it is generally not true that if all partial
derivatives exists in a point then the function is totally differentiable, one
can recover total differentiability if one has local continuity of the partial
derivatives.

Ω

x

ei

ej
ei

ej ei

ej

Figure 5: Partial derivatives must exist in an open set and be continuous in
x

Theorem 2.9. Let f : Ω ⊂ Rn → R and let x ∈ Ω. If all the partial
derivatives Djf exist in all points of Ω and are continuous functions on Ω
then f is totally differentiable in x and (Df)1,j = a1,j = ∂jf(x)

Proof. Let ε > 0 and let us choose a δ > 0 so that for any h ∈ Rn, ‖h‖ < δ
and for all j ∈ {1, . . . , n} one has if x+ h ∈ Ω then

|Djf(x+ h)−Djf(x)| ≤ ε

n

This can be done using the continuity assumption on the partial derivatives
we require continuity only in the point x.
We introduce the notation h(j) = (h1, . . . , hj−1, hj, 0, . . . , 0) =

∑j
l=1〈h; ej〉ej

to indicate the projection of h on the subspace spanned by the first j basis
vectors. Using a telescoping sum we can write

f(x+ h)− f(x) = f(x+ h(n))− f(x+ h(0)) =
n∑
j=1

f(x+ h(j))− f(x+ h(j−1))
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But for each addend we have the relation

f(x+ h(j))− f(x+ h(j−1)) = f(x+ h(j−1) + hjej)− f(x+ h(j−1))

so let us set g(t) = f(x + h(j−1) + tej) − f(x + h(j−1)). Notice that g′(t) =
Djf(x+ h(j−1) + tej) for all t so that x+ h(j−1) + tej ∈ Ω.
Applying the Lagrange Theorem on the derivative in an intermediate point
we have that g(hj) − g(0) = g′(tj)hj for some tj ∈ (0, hj). This holds since
g is differentiable for all for all t ∈ (0, hj) and continuous for t ∈ [0, hj].
Substituting these relations into the original identity for f we have that

f(x+ h)− f(x) =
n∑
j=1

Djf(x+ h(j−1) + tjej)hj.

We also have the following estimate on the norm of the displacement vector
that will allow us to use the continuity assumption on the partial derivatives
of f :

‖h(j−1) + tjej‖ ≤ ‖h‖ < δ so that∣∣Djf(x+ h(j−1) + tjej)−Djf(x))
∣∣ ≤ ε

n
.

The candidate for the full differential of f in x is the linear map h 7→∑n
j=1Djf(x)hj so we estimate∣∣∣∣∣f(x+ h)− f(x)−

n∑
j=1

Djf(x)hj

∣∣∣∣∣ ≤∣∣∣∣∣f(x+ h)− f(x)−
n∑
j=1

Djf(x+ h(j−1) + tjhj)

∣∣∣∣∣︸ ︷︷ ︸
=0 via telescoping

+

+
n∑
j=1

∣∣Djf(x+ h(j−1))−Djf(x)
∣∣ ‖h‖ ≤ ε‖h‖.

This concludes our proof.

The Theorem above gives us an insight that continuous differentiability plays
a crucial role in analysis in several variables.

Definition 2.10. A function f : Ω→ Rn is called continuously differentiable
if all partial derivatives Djfi exist and are continuous on Ω.
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Applying the above propositions it is clear that the full differential A(x) =
Df(x) = ai, j(x) is given by the expression ai, j(x) = Djfi(x) so the total
differential of f also exists and is continuous on Ω when intended as a map
Df : Ω → Rn × Rm = Mn×m(R) where Mn×m(R) are the n × m matrixes
with real entries.
Let us turn back to our example:

f(x, y) =


x3

x2 + y2
if (x, y) 6= 0

0 if (x, y) = 0

.

-1.0
-0.5

0.0
0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

Let us calculate the partial derivatives:

D1f(x, y) =
3x2(x2 + y2)− 2x4

(x2 + y2)2
when (x, y) 6= 0

D1f(0, 0) = 1 since f(x, 0) = x

D2f(x, y) =
−2x3y

(x2 + y2)2
when (x, y) 6= 0

D2f(0, 0) = 0 since f(0, y) = 0;

so D1f and D2f are not continuous in 0. For example we can check that
D2f(t, t) = −2t4

4t4
= −1

2
6= 0 = D2f(0, 0) and this contradicts continuity when

t→ 0.

Theorem 2.11 (Schwarz Theorem / Clairant Theorem). Let f : Ω→ R be a
twice continuously differentiable (i.e. Djf are all continuously differentiable)
then the partial derivatives commute i.e. DiDjf(x) = DjDif(x) for all i, j ∈
{1, . . . , n}.
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Proof. Let ε > 0 and choose δ > 0 using the continuity assumptions on the
second derivatives so that for all vectors ‖h‖ < δ with x+h ∈ Ω we have that
both |DiDjf(x+ h)−DiDjf(x)| ≤ ε

10
and |DjDif(x+ h)−DjDif(x)| ≤

ε
10

.

Ω

x+ σei + τej

x+ σei

x+ σ̃ei + τ̃ ej

x+ σei

x

x+ sei

x+ tej

x+ sei + tej

Figure 6: DjDif(x+ σei + τej) = DiDjf(x+ σ̃ei + τ̃ ej)

Consider the expression

f(x+ sei + tej)− f(x+ sei)− f(x+ tej) + f(x)

that approximates the double partial derivatives in the sense that it repre-
sents the increment along ej of the increment along ei and vice-versa. It is
precisely this symmetry that is the base idea of this proof.
Set g(s) = f(x+sei+ tej)−f(x+sei). We have that f(x+sei+ tej)−f(x+
sei)− f(x + tej) + f(x) = g(s)− g(0) = sg′(σ) for some σ ∈ (0, s) given by
the Lagrange Theorem about the derivative in the intermediate point. Here
we are using the condition on the differentiability of f . Since deriving g is
equivalent to taking the partial derivative in direction ei of f we have that

g(s)− g(0) = (Dif(x+ σei + tej)−Dif(x+ σei)) s = DjDif(x+ σei + τej)st

by once again applying the Lagrange Theorem now in the direction ej. Using
the same argument but inverting the order of the directions we get that

f(x+ sei + tej)− f(x+ sei)− f(x+ tej) + f(x) = DiDjf(x+ σ̃ei + τ̃ ej)st.

But this means that DjDif(x+σei+τej) = DiDjf(x+ σ̃ei+ τ̃ ej). Using the
continuity assumptions on both the second partial derivatives we get that

|DiDjf(x)−DjDif(x)| ≤ |DiDjf(x)−DiDjf(x+ σ̃ei + τ̃ ei)|+

|DjDif(x+ σei + τej)−DjDif(x)| ≤ 2
ε

10
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by choosing s, t small enough so that ‖sei + tej‖ < δ and thus both ‖σei +
τej‖ < δ and ‖σ̃ei + τ̃ ej‖ < δ.
Since the choice of ε > 0 was arbitrary we can conclude that DiDjf(x) =
DjDif(x) as required.

Going back once again to our example

f(x, y) =


x3

x2 + y2
if (x, y) 6= 0

0 if (x, y) = 0

we have that for (x, y) 6= (0, 0)

D2D1f(x, y) =
6x2y(x2 + y2)2 − 4(x4 + 3x2y2)(x2 + y2)y

(x2 + y2)4

D1D2f(x, y) =
−6x2y(x2 + y2)2 + 8x4y(x2 + y2)

(x2 + y2)4

By explicit computation one can see that the double partial derivatives co-
incide. However this is true by the theorem as long as we are away from the
point where the partial derivatives fail to be continuous i.e. (x, y) = (0, 0).

End of lecture 8. May 4, 2015

To deal with higher order partial derivatives we set up some convenient no-
tation. A (n-dimensional) multiindex is a n-tuple α = (α1, . . . , αn) ∈ Nn

≥0.
We write

Dαf := Dα1
1 Dα2

2 . . . Dαn
n = D1(. . . D1︸ ︷︷ ︸

α1

(D2(. . . D2︸ ︷︷ ︸
α2

(. . . (Dn(. . . Dn︸ ︷︷ ︸
αn

f)) . . . ))))

and note D0f = f . One also writes

Dαf :=
∂|α|

∂α1
x1 . . . ∂αnxn

f.

For instance,

D1D2f =
∂2

∂x1∂x2
f.

We denote the sum of the components of a multi-index α by |α| :=
∑n

i=1 αi.
The following theorem is a generalization of Theorem 2.11 by Schwarz.
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Theorem 2.12. Let α, β ∈ Nn
≥0 be multi-indices Let f : Ω→ R be (|α|+|β|)-

times continuously differentiable. Then

Dα(Dβf) = Dβ(Dαf) = Dα+βf.

Proof. We start with induction on |β|. If |β| = 0,

Dα(Dβf) = Dαf = Dβ(Dαf) = Dα+βf.

Now consider |β| = 1. Then β = (b1, . . . , bn) with bj = 1 for some 1 ≤ j ≤ n,
and bk = 0 for all k 6= j. Thus Dβ = D0

1D
0
2 . . . D

0
j−1D

1
jD

0
j+1 . . . D

0
n = Dj for

some 1 ≤ j ≤ n, and so Dα(Dβf) = Dα(Djf). Now we induct once more,
this time on |α|. The case |α| = 0 is clear as above. Consider |α| = 1, and so
Dα = Di for some 1 ≤ i ≤ n. By Theorem 2.11 we have the desired identity

Dα(Dβf) = DiDjf = DjDif = Dβ(Dαf). (15)

It remains to compute Dα+β. If i 6= j, the multi-index α + β has i-th and
j-th component equal to 1, while the other entries equal 0. Then, if i < j,
we have Dα+β = DiDj. If i > j, Dα+β = DjDi. If i = j, α + β has i-th
component equal to 2 and Dα+β = D2

i . Using (15), the claim follows.
We remain in the case |β| = 1 proceed with the induction step for α. Assume
that we already know the theorem for |α| = n and let |α| = n+ 1. Let k be
the highest index with αk 6= 0. We write Dαf = Dα′Dkf . Thus,

DαDβf = Dα′(Dk(Djf))

Since |α′|+ 1 = n, by the induction hypothesis this equals

Dj(D
α′(Dkf) = DjD

αf = DβDαf

which is the needed identity. To finish the proof it remains to perform the
induction step for |β|. This proceeds in a very similar way as the induction
step for |α| and we leave it as an exercise.

Recall that for v ∈ Rn and for a totally differentiable function f : Ω → R,
the derivative at x ∈ Ω in the direction v is defined as Dvf(x) := g′(0), where
g : I → R, I = {t ∈ R : x+ tv ∈ Ω}, is given by g(t) := f(x+ tv). From the
chain rule (which will be discussed in the following lecture) it follows

g′(t) =
n∑
j=1

Djf(x+ tv)vj.
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The right hand-side is the product of the 1 × n matrix Df(x) with the
n × 1 vector v. In particular we have Dvf(x) =

∑n
j=1 Djf(x)vj. Com-

puting Dvf̃(x) where f̃(x) := f(x + tv) we obtain2 Dvf(x + tv) = g′(t) =∑n
j=1 Djf(x + tv)vj. Now we consider higher order directional derivatives.

For v ∈ Rn we use the multi-index notation vα := vα1
1 . . . vαnn . We denote

α! :=
∏n

j=1(αj)!

Theorem 2.13. For a k-times continuously differentiable f : Ω→ R ,

Dk
vf(x+ tv)

(1)
= g(k)(t)

(2)
=

∑
α:|α|=k

k!

α!
Dαf(x+ tv)vα.

Proof. (1): By induction. Case k = 1 is discussed above. Assume that we
know (1) for some k and consider

Dk+1
v f(x+ tv) = Dv(D

k
vf)(x+ tv)

Denote f̃ := Dk
vf and g̃(t) := f̃(x+ tv). Using the result for k = 1 we have

Dv(D
k
vf)(x+ tv) = Dv(f̃)(x+ tv) = g̃′(t)

By the induction hypothesis g̃ = Dk
vf = g(k), so

g̃′(t) = (g(k))′(t) = g(k+1)(t).

Now we prove (2) by induction. Case k = 1 is the exercise above. Assuming
the claim for k we consider g(k+1)(t). By the induction hypothesis and part
(1) this equals

Dv

( ∑
|α|=k

k!

α!
(Dαf)(x+ tv)vα

)
=

n∑
j=1

Dj

( ∑
|α|=k

k!

α!
(Dαf)(x+ tv)vα

)
vj

For each 1 ≤ j ≤ n we move Dj under the sum, which we can do by linearity
of derivative. We can also move vj inside the bracket. Then

Dj(D
αf)(x+ tv)vαvj = (Dβf)(x+ tv)vβ

where β is the multi-index with βl = αl for all l 6= j, and the j−th component
is βj = αj + 1. Summing in j and reshuffling the sum we obtain∑

|β|=k+1

( n∑
j=1

∑
|α|=k

αl=βl,l 6=j
αj+1=βj

k!

α!

)
(Dβf)(x+ tv)vβ

2Be careful not to confuse Dvf(x + tv) with Dv f̃(x) where f̃(x) = f(x + tv). By
Dvf(x+ tv) we denote the derivative Dvf evaluated at x+ tv and more precisely it should
be written as (Dvf)(x+ tv).
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For a fixed β it remains to sum up the double sum in brackets. Note that
there is only one α such that |α| = k, αl = βl, l 6= j and αj + 1 = βj. Since
βj = αj + 1 = β!

α!
the expression in brackets equals

n∑
j=1

∑
|α|=k

αl=βl,l 6=j
αj+1=βj

k!βj
β!

=
n∑
j=1

k!βj
β!

=
k!|β|
β!

=
(k + 1)!

β!
.

This finishes the proof.

2.1 Taylor’s theorem in Rn

In Analysis I we showed the following. If f : I → R is (N + 1)−times
continuously differentiable, where I is an interval in R containing 0, for every
x ∈ I there exists ϑ ∈ I, 0 < |ϑ| < |x|, such that

f(x) =
N∑
k=0

1

k!
f (k)(0)xk +

1

(N + 1)!
f (N+1)(ϑ)xN+1 (16)

This statement is called Taylor’s theorem. It gives an approximation of f
with the N -th order polynomial

∑N
k=0

1
k!
f (k)(0)xk, which is called the Taylor

polynomial of f . Note that for N = 0, (16) is exactly the mean value theorem
for f on [0, x]: it yields existence of ϑ ∈ (0, x) such that

f ′(ϑ) =
f(x)− f(0)

x
.

The following generalizes Taylor’s theorem to functions f : Ω→ R.

Theorem 2.14. Let f : Ω→ R be (N + 1)-times continuously differentiable,
x ∈ Ω and x + v ∈ Bε(x) for some ball Bε(x) ⊂ Ω. Then there is ϑ ∈ [0, 1]
such that

f(x+ v) =
∑
|α|≤N

1

α!
Dαf(x)vα +

∑
|α|=N+1

1

α!
Dαf(x+ ϑv)vα

Proof. We apply Taylor’s theorem in one dimension (16) to the function
g(t) = f(x+ tv) at t = 1, which gives

f(x+ v) = g(1) =
N∑
k=0

1

k!
g(k)(0) +

1

(N + 1)!
g(N+1)(ϑ).

Then we use Theorem 2.13 (2) for g(k)(0) and g(N+1)(ϑ) to obtain the desired
identity.
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Now we estimate the error in the approximation of f with its Taylor poly-
nomial.3

Theorem 2.15. Let f : Ω → R be N-times continuously differentiable and
x ∈ Ω. Then for every ε > 0 there is a δ > 0 and Bδ(x) ⊂ Ω, such that for
x+ v ∈ Bδ(x) we have∣∣∣f(x+ v)−

∑
|α|≤N

1

α!
Dαf(x)vα

∣∣∣ ≤ ε‖v‖N

Proof. If N = 1, f is totally differentiable and the statement follows from
the definition of total differentiability:∣∣∣f(x+ v)−

(
f(x) +

n∑
j=1

Djf(x)vj

)
| ≤ ε‖v‖N .

For N > 1 we can apply Theorem 2.14 in the case N − 1: there exists
ϑ ∈ [0, 1] such that

f(x+ v) =
∑
|α|<N

1

α!
Dαf(x)vα +

∑
|α|=N

1

α!
Dαf(x+ ϑv)vα

which can be by adding and subtracting
∑
|α|=N

1
α!
Dαf(x)vα rewritten as

f(x+ v)−
∑
|α|≤N

1

α!
Dαf(x)vα =

∑
|α|=N

1

α!
(Dαf(x)−Dαf(x+ ϑv))vα

By continuity of Dαf there is a δ > 0 such that for all x + v ∈ Bδ(x) (in
particular, x+ ϑv ∈ Bδ(x)) we have∣∣∣ ∑

|α|=N

1

α!
(Dαf(x)−Dαf(x+ ϑv))vα

∣∣∣ ≤ ε‖v‖N

where we have estimated |vα| = |vα1
1 | · · · |vαnn | ≤ ‖v‖N .

2.2 Chain rule

The following theorem tells us how to express the derivative of the composi-
tion of two functions f, g in terms of the derivative of f and the derivative
of g.

3Compare this with the definition of derivative, which gives an approximation of a
function with a linear map. Also note that polynomials of first order (corresponding to
case N = 1) are linear.
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Theorem 2.16. Let U ⊂ Rn, V ⊂ Rn be open subsets. Let g : U → V ,
f : V → Rk be two maps such that g is differentiable at x ∈ U and f is
differentiable at g(x) ∈ V . Then f ◦ g : U → Rk is differentiable at x and

D(f ◦ g)(x) = Df(g(x)) ◦Dg(x)

Recall that (in the chosen bases) the linear map is represented by a matrix.
The composition of these maps on the right hand-side corresponds to the
matrix product of the respective matrices.

Proof. Exercise sheet 6, exercise 2.

End of lecture 9. May 7, 2015

f

f ′ = 0, but not a local extremum

local minimum

local maximum

Figure 7: Local extrema and points with vanishing derivatives.

Theorem 2.17. Let f : Ω ⊂ Rn → R be differentiable in x and let x be a
point of local maximum (or minimum) of f . Then Df = 0

Proof. We reason by contradiction: let Df(x) 6= 0 with Df(x) : Rn → R.
Then there exists a vector v ∈ Rn such that Df(x)v 6= 0. Let us consider
such a vector with ‖v‖ = 1 (it suffices to consider v

‖v‖) and by linearity (up to

multiplication by −1) we have that Df(x)v > 0. Let ε = Df(x)v
2

and choose
δ > 0 so that

1. ∀h, ‖h‖ < δ we have that x+ h ∈ Ω (Ω is open);

2. ∀h, ‖h‖ < δ we have that f(x+ h) ≤ f(x) (x is a local maximum);

3. ∀h, ‖h‖ < δ we have that ‖f(x+ h)− f(x)−Df(x)h‖ ≤ ε‖h‖.
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Now choose t ∈ (0, δ) so that we have t = ‖tv‖ < δ. We have that ‖f(x +
tv) − f(x) − Df(x)tv‖ < εt and thus Df(x)vt − (f(x+ tv)− f(x)) ≤ εt
so (Df(x)v − ε) t ≤ f(x + tv) − f(x) but this is a contradiction because
0 < 1

2
Df(x)tv ≤ (Df(x)v − ε) t ≤ f(x+ vt)− f(x) ≤ 0.

Now let us study what can happen in a critical point of a function. A critical
point is a point x ∈ Ω where Df(x) = 0.
Let f : Ω ⊂ Rn → R be twice differentiable i.e. let f have second derivatives
DiDjf(x) in a point x. The expression DiDjf(x), 1 ≤ i, j ≤ n defines a
symmetric n×n matrix. This matrix is symmetric by the Schwartz Theorem
as long as f has second partial derivatives in an open neighborhood of x that
are continuous in x.

Definition 2.18. A matrix A = (ai,j) ∈ Rn×n is called symmetric if for
all i, j ∈ {1, . . . , n} one has ai,j = aj,i. A symmetric matrix (ai,j) is called
positive definite if for all v ∈ Rn with v 6= 0 one has

∑n
i,j=1 ai,jvivj > 0. If we

allow equality even for non-zero vectors, i.e.
∑n

i,j=1 ai,jvivj ≥ 0 the matrix
(ai,j) is said to be positive semi-definite.

An example of a positive definite matrix is δi,j =

{
1 i = j

0 i 6= j
. This can be

checked simply:
∑n

i,j=1 δi,jvivj =
∑n

i=1 v
2
i > 0 if v 6= 0.

Theorem 2.19. A matrix (ai,j) ∈ Rn×n is positive definite if and only if
there exists an ε > 0 such that ∀v ∈ Rn, v 6= 0 we have that

∑n
i,j=1 ai,jvivj ≥

ε‖v‖2 > 0.

Proof. Set S = {v ∈ Rn | ‖v‖ = 1}; S is a bounded and closed subset of Rn

so it is compact.

xi
xo

Figure 8: The unit circle S.

Now choose a sequence vk in S such that limk→∞
∑n

i,j=1 ai,jv
k
i v

k
j =

infw∈S
∑n

i,j=1 ai,jwiwj. This sequence admits a subsequence converging to
some v since S is compact and we have that v ∈ S since S is closed. Passing
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to the limit in the previous equality we get that

lim
k→∞

n∑
i,j=1

ai,jv
k
i v

k
j =

n∑
i,j=1

ai,jvivj︸ ︷︷ ︸
=ε

> 0

where the last inequality holds because the matrix is positive definite. But
ε = limk→∞

∑n
i,j=1 ai,jv

k
i v

k
j = infw∈S

∑n
i,j=1 ai,jwiwj so

∑n
i,j=1 ai,jwiwj ≥ ε

for all w ∈ S. If w /∈ S consider the vector w′ = w
‖w‖ ∈ S. Applying the

obtained bound to w′ we get that 1
‖w‖2

∑n
i,j=1 ai,jwiwj ≥ ε as required.

Theorem 2.20. Let f : Ω ⊂ Rn → R twice continuously differentiable in
a point x ∈ Ω i.e. f has second partial derivatives in an open neighborhood
containing x and they are continuous in the point x. If Df(x) = 0 and
the matrix (DiDjf(x)), called the Hessian, is positive definite then f has a
(strict) local minimum in the point x.

Proof. Let ε > 0 so that 10ε ≤ infw∈S
∑n

i,j=1DiDjf(x)wiwj. Such an ε exists
due to the previous theorem. Using the Taylor expansion we get that there
exists a δ > 0 such that ∀v with ‖v‖ < δ we have that x+ v ∈ Ω and∣∣∣f(x+ v)− f(x)−Df(x)v︸ ︷︷ ︸

=0

−
∑
|α|=2

1

α!
Dαf(x)vα︸ ︷︷ ︸

1
2

∑n
i,j=1DiDjf(x)vivj

∣∣∣ ≤ ε‖v‖2.

However, since the second differential is positive definite we have that

1

2

n∑
i,j=1

DiDjf(x)vivj > 5ε‖v‖2

f(x+ v)− f(x)− 1

2

n∑
i,j=1

DiDjf(x)vivj ≥ −ε‖v‖2

⇒ f(x+ v)− f(x) ≥ 4ε‖v‖2.

Moreover we have proven that the maximum is strict in the sense that ∀v
with ‖v‖ < δ and v 6= 0 then the inequality is strict: f(x+ v) > f(x).

A combinatorial comment is due about the above application of the multi-
variable Taylor expansion. Let us consider the expressions that appears in
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the Taylor expansion:

∑
|α|=2

1

α!
Dαfvα =

α=(0,...,0,

i︷︸︸︷
1 ,0,...,0,

j︷︸︸︷
1 ,0,...,0)︷ ︸︸ ︷∑

i<j

1

1!1!
DiDjfvivj +

α=(0,...,0,

i︷︸︸︷
2 ,0...,0)︷ ︸︸ ︷∑

i=j

1

2!
DiDifvivi =

1

2

n∑
i,j=1

DiDjf vivj.

Further generalizations are just combinatorial induction arguments. For ex-
ample ∑

|α|=3

1

α!
Dαfvα =

1

3!

n∑
i,j,k=1

DiDjDkf vivjvk.

Theorem 2.21 (Sylvester criterion).

Let A =

[
An−1 v
vt a

]
be an n × n symmetric matrix. Then A is positive

definite if and only if An−1 is positive definite and det(A) > 0.

Proof. ⇐ First of all one can check that A = St
[
An−1 0

0 b

]
S where the

matrix S is given by S =

[
In−1 A−1

n−1v
0 1

]
and b = a−vtA−1

n−1v. Notice

that a positive definite matrix is necessarily invertible so A−1
n−1 is well

defined. The matrix St is the transposed matrix of S: Sti,j = Sj,i. As a
matter of fact  An−1 v

vt vtA−1
n−1v + b

︷ ︸︸ ︷[
In−1 0
vtA−1

n−1 1

] [
An−1 0

0 b

] [
In−1 A−1

n−1v
0 1

]
︸ ︷︷ ︸ An−1 v

0 b


= A.

We thus have that
∑n

i,j=1 Ai,jvivj = vtAv = vtSt
[
An−1 0

0 b

]
Sv =

(Sv)t
[
An−1 0

0 b

]
Sv. Notice that S is invertible so A is positive def-

inite if and only if

[
An−1 0

0 b

]
is positive definite. Let us show this
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last fact via computation. Choose any w ∈ Rn with w 6= 0:

[
wtn−1 wn

] [ An−1 0
0 b

] [
wn−1

wn

]
= wtn−1An−1wn−1 + w2

nb.

We require that the left hand side be positive. Since An−1 is positive
definite the term wtn−1An−1wn−1 is always non-negative. Taking in

account that detA = detSt det

[
An−1 0

0 b

]
detS but detS = detSt =

1 so we have that detA = det

[
An−1 0

0 b

]
. The determinant of a block

matrix is given by det

[
An−1 0

0 b

]
= b detAn−1. So the condition

detA > 0 implies b > 0 and thus det

[
An−1 0

0 b

]
is positive definite.

⇒ The inverse implication can be shown reasoning by contradiction. Testing
with vectors w ∈ Rn with wn yields that An−1 has to be positive definite
and thus invertible. Then one applies the same decomposition as before.

An induction argument suggests to introduce the following notions. A prin-
ciple minor [A]I,I of an n × n matrix A is a matrix determined by a subset
of indexes I ⊂ {1, . . . , n} such that ([A]I,I)i,j = Aki,kj where ki and kj are

respectively the ith and jth elements in order of I. A leading principle minor
(of order m) is the principle minor [A]{1,...,m},{1,...,m}

Theorem 2.22. A symmetric matrix A is positive definite if and only if all
the principle determinants are positive. Furthermore the same is true if one
considers only the leading principle determinants.

An example of the application of the above theorems is the function on R2

given by f(x, y) = x2 + y2. We have that Df(0) = 0 while (DiDjf(x)) =[
2 0
0 2

]
for all x ∈ Rn. This matrix is definite. We can thus deduce that f

has a local minimum in (0, 0). Something completely different happens for

the function f(x, y) = x2 − y2. We have that DiDjf(x) =

[
2 0
0 −2

]
Differently from the one-dimensional case even if a critical point x is such
that Df(x) = 0 and D2f(x) is non-degenerate this still is not sufficient to
conclude the presence of a local extremum. The behavior of the function f
can be different in different directions.
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End of lectures 10. May 11, 2015

Lectures 11 and 12 were held by Roland Donninger.

2.3 Banach fixed point theorem

Let X be a metric space. Throughout this section we shall assume that the
metric is induced by a norm, although all of the following holds if we replace
‖ · ‖ by a general metric.
A map φ : X → X is called a contraction, if there exists α ∈ (0, 1) such that
for all x, y ∈ X we have

‖φ(x)− φ(y)‖ ≤ α‖x− y‖.

Theorem 2.23 (Banach fixed point theorem). Let X 6= ∅ be a complete
metric space and let φ : X → X be a contraction. Then there exists a unique
fixed point of φ, that is, a unique point x ∈ X such that φ(x) = x.

Proof. Let x0 ∈ X. Define a sequence (xn) in X via the recursive relation
xn := φ(xn−1) for n ∈ N. First we show that (xn) converges. Let n, k ∈ N.
Then

‖xn+k − xn‖ = ‖φ(xn−1+k)− φ(xn−1)‖ ≤ α‖xn−1+k − xn−1‖,

where in the last inequality we used that φ is a contraction. We can again
write ‖xn−1+k − xn−1‖ = ‖φ(xn−2+k) − φ(xn−2)‖ and apply the contraction
property to obtain

‖xn+k − xn‖ ≤ α2‖xn−2+k − xn−2‖.

Performing this step n times we arrive to

‖xn+k − xn‖ ≤ αn‖xk − x0‖. (17)

Now consider the right hand-side of (17). By the triangle inequality we have

‖xk − x0‖ = ‖xk − x1 + x1 − x0‖ ≤‖xk − x1‖+ ‖x1 − x0‖
≤‖xk − x2‖+ ‖x2 − x1‖+ ‖x1 − x0‖

Iterating we obtain

‖xk − x0‖ ≤
k−1∑
j=0

‖xj+1 − xj‖ ≤
k−1∑
j=0

αj‖x1 − x0‖.
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Altogether we have for (17) that for each k, n ∈ N

‖xn+k − xn‖ ≤ αn
k−1∑
j=0

αj‖x1 − x0‖

= αn‖x1 − x0‖
k−1∑
j=0

αj

≤ αn‖x1 − x0‖
∞∑
j=0

αj =
αn

1− α
‖x1 − x0‖.

In the last step we used that α < 1, so
∑∞

j=0 α
j is a convergent geometric

series. Now, α ∈ (0, 1) implies that αn → 0 as n→∞, so the sequence (xn)
is a Cauchy sequence in X. Since X is complete, (xn) converges. That is,
there exists a ∈ X such that xn → a.
We claim that the limit a is the fixed point of φ. To see this we consider

‖φ(a)− a‖ ≤ ‖φ(a)− φ(xn)‖+ ‖φ(xn)− a‖ ≤ α‖a− xn‖+ ‖xn+1 − a‖.

Since xn → a as n→∞, we that α‖a− xn‖+ ‖xn+1 − a‖ → 0 as n tends to
∞. Thus, ‖φ(a) − a‖ = 0 which is equivalent to φ(a) = a. So a is really a
fixed point of φ.
It remains to show uniqueness. Assume there is another fixed point b of φ.
That is, there is b ∈ X such that φ(b) = b. Then

‖a− b‖ = ‖φ(a)− φ(b)‖ ≤ α‖a− b‖.

This implies (1− α)‖a− b‖ ≤ 0. Since α < 1, we have (1− α) > 0. A norm
is always non-negative, so we must have ‖a− b‖ = 0, i.e. a = b.

Remark. From the proof it follows that the sequence xn = φ(xn−1) converges
to the unique fixed point of φ for an arbitrary initial value x0 ∈ X.

Example. Let X = [1, 2] ⊂ R. This is a complete metric space with norm
being the absolute value. For x ∈ X consider

φ(x) :=
x+ 2

x+ 1

We show that φ satisfies the assumptions of the Banach fixed point theorem.

• The function φ maps X to itself, i.e. φ : X → X:
This holds since 1 ≤ x ≤ 2 implies the bounds

φ(x) ≥ x+ 2

x+ 2
= 1
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and

φ(x) ≤ 2 + 2

x+ 1
≤ 4

2
= 2.

Thus, 1 ≤ φ(x) ≤ 2.

• φ is a contraction:

φ(x)− φ(y) =
x+ 2

x+ 1
− y + 2

y + 1
=

y − x
(x+ 1)(y + 1)

Bounding x from above and below gives

|φ(x)− φ(y)| ≤ 1

4
|x− y|.

Thus, the sequence xn = φ(xn−1) converges to the fixed point x∗ = φ(x∗) for
an arbitrary initial value x0. The fixed point satisfies

x∗ =
x∗ + 2

x∗ + 1
⇒ x2

∗ = 2 ⇒ x∗ =
√

2 ∈ [1, 2].

This example yields explicit approximations of
√

2.

2.4 Inverse function theorem

From Analysis I we recall the following fact. Let f : R→ R be continuously
differentiable with f ′(x0) 6= 0 for some x0 ∈ R. Then there exists an interval
I = (x0−ε, x0+ε) such that f is monotone on I. In particular, f |I : I → f(I)
is bijective, so there is a local inverse4 f−1 : f(I) → I. Moreover, f−1 is
differentiable in f(x0) and by the chain rule we have

(f−1)′(f(x0)) =
1

f ′(x0)
.

The following theorem generalizes this fact to functions f : Rn → Rn.

Theorem 2.24 (Inverse function theorem). Let U ⊂ Rn be open and let
f : U → Rn be continuously differentiable. Let a ∈ U and let the matrix
Df(a) be invertible. Then there exists an open set V ⊂ U with a ∈ V and
an open set W ⊂ Rn with b := f(a) ∈ W such that f is a bijection from V
to W . The inverse mapping g := (f |V )−1 is differentiable in b and5

Dg(f(a)) = Df(a)−1.
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U

V W

f

f−1

Figure 9: Inverse function theorem

Corollary 2.25. If f is k-times continuously differentiable, so is g.

Before proving Theorem 2.24 we state the following lemma, which can be
seen as a converse of Theorem 2.24.

Lemma 2.26. Let U ⊂ Rn be open and V ⊂ Rk open. Let f : U → V be
bijective and let both f and f−1 be continuously differentiable. Then Df(x) :
Rn → Rk is at each x ∈ U non-singular (invertible). In particular, k = n.

A bijective map f such that both f and f−1 are continuously differentiable
is called a C1−diffeomorphism.

Proof of Lemma 2.26. We have idU = f ◦ f−1. Applying the chain rule we
obtain that I = Df−1(f(x))Df(x) for each x ∈ U .

Remark. A natural question is whether one still has k = n if one weakens
the assumption of f and f−1 being continuously differentiable to just being
continuous. The answer is yes. If f : U → V is bijective and both f
and f−1 are continuous, then necessarily k = n. Such a map f is called
a homeomorphism. This result is much harder to prove and the proof uses
tools from algebraic topology.

Let us now discuss the idea of proof of Theorem 2.24, which will be integrated
into a detailed proof afterwards. Assume that a = b = 0, that is, f(0) = 0.
Assume also Df(0) = I. So near 0, f is approximately the identity map.
Consider

f(x) = x+ h(x)

where for small ‖x‖, the functions h is small. We also have Dh(0) = Df(0)−
I = 0. Therefore we should expect that for small x, y we have ‖h(x)−h(y)‖ ≤

4For the inverse one should more precisely write (f |I)−1.
5Df(a)−1 is the matrix inverse of Df(a)
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1
2
‖x − y‖, so h is a contraction. (If n = 1, this would follow from the mean

value theorem |h(x)− h(y)| = |h′(ξ)|(x− y)| ≤ 1
2
|x− y| as h′(ξ) is small for

ξ near 0.) Let z be fixed and small and define a perturbation of h by

φ(x) := z − h(x).

Since h is a contraction, φ is a contraction and ‖h(x) − h(0)‖ ≤ 1
2
‖x − 0‖.

Using h(0) = 0 we get ‖h(x)‖ ≤ 1
2
‖x‖. Thus for small z and small x the

function φ(x) is small, i.e. it maps a ball around zero into itself. Applying
the Banach fixed point theorem we find a unique a in a neighborhood of zero
such that φ(a) = a = z − h(a). That is, a unique a such that z = f(a). So
near 0, the function f is invertible.

Proof of Theorem 2.24 . First we make the simplifications which we already
assumed in the above discussion. Let us show that we may assume a = b = 0.
Set f̃(x) := f(x) − b. Then for each x ∈ U we have Df̃(x) = Df(x).

Assuming f̃−1 exists, we have f−1(y) = f̃−1(y− b). Indeed, this follows from

f−1(f(x)) = f̃−1(f(x)− b) = f̃−1(f̃(x)) = x

f(f−1(x)) = f(f̃−1(y − b)) = f̃(f̃−1(y − b)) + b = y.

Thus, it suffices to prove the theorem for f̃ . Since f̃(a) = f(a)− b, we may

then assume b = 0. Similarly, we can consider the function f̃(x) = f(x + a)
to see that we may suppose a = 0. So our assumptions for now are that
f(0) = 0 and Df(0) is invertible. Without loss of generality we may then
suppose Df(0) = I, as otherwise we replace f(x) by Df−1(0)f(x).

Define now h(x) := f(x) − x. Our goal is to show that h is a contraction.
We have h(0) = 0 and Dh(0) = Df(0) − I = 0. This implies that all
partial derivatives of h at 0 are 0, i.e. Djh(0) = 0 for each j = 1, . . . , n.

Since h is continuously differentiable, there exists a ball Br(0) ⊂ U such
that ‖Djh(x)‖ ≤ 1

2n2 for each x ∈ Br(0). Let now x ∈ Br(0) and v ∈ Rn.
Consider the directional derivative Dvh and estimate

‖Dvh(x)‖ =
∥∥∥ n∑
j=1

vjDjh(x)
∥∥∥ ≤ n∑

j=1

|vj|‖Djh(x)‖ ≤
n∑
j=1

‖v‖ 1

2n2
≤ ‖v‖ 1

2n
.

By the fundamental theorem of calculus we have

h(y)− h(x) =

∫ 1

0

d

dt
h(x+ t(y − x))dt =

∫ 1

0

Dy−xh(x+ t(y − x))dt.
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The integral on the right hand side is an integral of the vector valued function
Dy−xh(x + t(y − x)). (Just as an reminder, in each component it equals
d
dt
hj(x + t(y − x)) = 〈Dhj(x + t(y − x)), y − x〉.) One understands such

integrals of vector valued continuous functions ϕ : [0, 1] → Rn component-
wise. That is,∫ 1

0

ϕ(t)dt =

∫ 1

0

(ϕ1(t), ϕ2(t), . . . , ϕn(t))dt

:= (

∫ 1

0

ϕ1(t)dt,

∫ 1

0

ϕ2(t)dt, . . . ,

∫ 1

0

ϕn(t)dt) =
n∑
j=1

∫ 1

0

ϕj(t)dt ej

where ej are the standard unit vectors e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . ,
en = (0, . . . , 0, 1). Therefore,∥∥∥∫ 1

0

ϕ(t)dt
∥∥∥ =

∥∥∥ n∑
j=1

∫ 1

0

ϕj(t)dt ej

∥∥∥
≤

n∑
j=1

∥∥∥∫ 1

0

ϕj(t)dt ej

∥∥∥
=

n∑
j=1

∣∣∣ ∫ 1

0

ϕj(t)dt
∣∣∣‖ej‖

≤
n∑
j=1

∫ 1

0

|ϕj(t)|dt ≤
n∑
j=1

∫ 1

0

‖ϕ(t)‖dt ≤ n

∫ 1

0

‖ϕ(t)‖dt.

Applying this to ϕ(t) = Dy−xh(x+ t(y − x)) we obtain

‖h(y)− h(x)‖ =
∥∥∥∫ 1

0

Dy−xh(x+ t(y − x))dt
∥∥∥

(∗)
≤ n

∫ 1

0

‖Dy−xh(x+ t(y − x))‖dt ≤ n
1

2n
‖y − x‖ =

1

2
‖y − x‖,

where in (∗) we used our previously established bound on ‖Dvh‖. This shows
that h is indeed a contraction.

Now we show the following two claims.
a) f is injective on Br(0).
b)Br/2(0) ⊂ f(Br(0)).
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Proof of a). Take x, y ∈ Br(0) such that f(x) = f(y). We need to show that
x = y. This follows from the reverse triangle inequality and the fact that h
is a contraction:

0 = ‖f(x)− f(y)‖ = ‖x− y − (h(y)− h(x))‖
≥ ‖x− y‖ − ‖h(y)− h(x)‖

≥ ‖x− y‖ − 1

2
‖x− y‖ =

1

2
‖x− y‖

So ‖x− y‖ ≤ 0, which implies x = y.

Proof of b). Let z ∈ Br/2(0) and set φ(x) := z−h(x). For x ∈ Br(0) we have

‖φ(x)‖ ≤ ‖z‖+ ‖h(x)‖ ≤ r

2
+ ‖h(x)− h(0)‖ ≤ r

2
+

1

2
‖x− 0‖ ≤ r

2
+
r

2
= r.

This shows that φ maps Br(0) to itself. Moreover, since h is a contraction,
for every x, y ∈ Br(0) we have

‖φ(x)− φ(y)‖ = ‖h(x)− h(y)‖ ≤ 1

2
‖x− y‖

Thus φ is a contraction on the complete metric space Br(0). By the Banach
fixed-point theorem, there exists a unique a ∈ Br(0) such that a = φ(a) =
z − h(a). That is, z = a + h(a) = f(a). Since z was arbitrary, for each
z ∈ Br/2(0) there exists a unique a ∈ Br(0) such that f(a) = z, which im-

plies Br/2(0) ⊂ f(Br(0)).

Set now W := Br/2(0) and V := f−1(Br/2(0)). Since f is continuous and

f(0) = 0, V is an open neighborhood of 0. Also, Br/2(0) ⊂ f(Br(0)) implies

V = f−1(Br/2(0)) ⊂ Br(0). From a) and b) it follows that f : V → W is
bijective, thus it is invertible.

It remains to show differentiability of f . We know that Df(0) = I. If f−1 is
differentiable in 0, by the chain rule necessarily Df−1(0) = I. So we need to
show that for each ε > 0 there is a δ > 0 such that for all ‖k‖ < δ, k ∈ W
we have

‖f−1(k)− f−1(0)−Df−1(0)k‖ ≤ ε‖k‖,

i.e
‖f−1(k)− k‖ ≤ ε‖k‖.

65



Let ε > 0. By differentiability of f , there exists a δ′ > 0 such that for all
‖k′‖ < δ′, k′ ∈ V we have ‖k′ − f(k′)‖ ≤ ε

2
‖k′‖. Let ‖k‖ < δ′

2
, k ∈ W . We

have f−1(k) ∈ V . Moreover, for each x ∈ Br(0) ⊃ V we have

‖f(x)‖ = ‖x− (−h(x))‖ ≥ ‖x‖ − ‖h(x)‖
(∗)
≥ 1

2
‖x‖

where in (∗) we used that h is a contraction. Applying this with x = f−1(k)
we obtain

‖f−1(k)‖ ≤ 2‖k‖ < δ′.

Set now k′ := f−1(k). Since ‖k′‖ < δ′, k′ ∈ V , by differentiability of f

‖f−1(k)− k‖ = ‖k′ − f(k′)‖ ≤ ε

2
‖k′‖ ≤ ε‖k‖,

so f−1 is differentiable at 0. This finishes the proof.

Example. (Polar coordinates)
Let f : {(x, y) ∈ R2 : x > 0} → R2 be given by

f(x, y) = (
√
x2 + y2, atan

y

x
) = (f1, f2).

We compute the partial derivatives of f :

D1f1(x, y) =
∂

∂x

√
x2 + y2 =

x√
x2 + y2

, D2f1(x, y) =
∂

∂y

√
x2 + y2 =

y√
x2 + y2

D1f2(x, y) =
∂

∂x
atan

y

x
= − y

x2 + y2
, D2f2(x, y) =

∂

∂y
atan

y

x
=

x

x2 + y2

The Jacobian of f then equals

Df(x, y) =

(
x√
x2+y2

y√
x2+y2

− y
x2+y2

x
x2+y2

)
and has the determinant

detDf(x, y) =
x2

(x2 + y2)3/2
+

y2

(x2 + y2)3/2
=

1√
x2 + y2

> 0.

Thus, at every point (x, y), x > 0, the function f is locally invertible.

We remark that local invertibility at every point does not imply global in-
vertibility. Nevertheless, the function from this example is globally invertible
with the inverse f−1 : (0,∞)× (−π

2
,−π

2
)→ {(x, y) ∈ R2 : x > 0} given by

f−1(r, ϕ) = (r cosϕ, r sinϕ).
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Remark. From the existence of the local inverse it does not follow that one
can explicitly ”write it down”. For instance, consider f : (0,∞) → (0,∞)
given by f(x) = xex. For each x > 0 we have f ′(x) = (1 + x)ex > 0, so f
is at locally invertible each point. Moreover, f is even globally invertible, as
it is strictly monotone. The inverse function of f is called the Lambert W
function and it cannot be expressed in terms of elementary functions.

2.5 Implicit function theorem

Suppose we are given an equation F (x, y) = 0 for some function F : R2 → R.
Question: Is there a (unique) g : R → R such that for each x we have
y = g(x), i.e. F (x, g(x)) = 0? In other words, can one ”solve” the equation
for y? If the answer is yes, one says that g is given implicitly through F .

Example. Let F (x, y) = x + y. From F (x, y) = 0 it follows y = −x, so
g(x) = −x.

Example. Let F (x, y) = x2 + y2 − 1. From F (x, y) = 0 it follows y =
±
√

1− x2. If |x| > 1, the equation F (x, y) = 0 has no solutions. On the
other hand, if |x| < 1, the equation has two different solutions. If one restricts
oneself to the region y > 0, |x| < 1, the solution is unique. This example
shows that one should consider this problem locally.

We make the following observation. If F (x, g(x)) = 0 and all functions
involved are sufficiently differentiable, then it follows from the chain rule

0 =
d

dx
F (x, g(x)) = D1F (x, g(x))1 +D2F (x, g(x))g′(x)

and so

g′(x) = −D1F (x, g(x))

D2F (x, g(x))
.

Thus, if we want g to be differentiable, the condition D2F (x, y) 6= 0 is nec-
essary. In the following theorem we will see that it is also sufficient.

Let us set up some notation. Let F : Rk × Rm → Rm. Define

F 1
y (x) := F (x, y) and F 2

x (y) := F (x, y).

For every y ∈ Rm we have F 1
y : Rk → Rm and for every x ∈ Rk we have

F 2
x : Rm → Rm. If F is differentiable in (x, y) ∈ Rk × Rm, then we write

D1F (x, y) := DF 1
y (x) and D2F (x, y) := DF 2

x (y).
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Theorem 2.27 (Implicit function theorem). Let U ⊂ Rk × Rm be open
and F : U → Rm continuously differentiable. Let (a, b) ∈ U be such that
F (a, b) = 0 and such that D2F (a, b) is invertible. Then there is an open
neighborhood V1 of a and an open neighborhood V2 of b with V1 × V2 ⊂ U ,
and a continuously differentiable map g : V1 → V2, such that F (x, g(x)) = 0
for each x ∈ V1. If (x, y) ∈ V1 × V2 is such that F (x, y) = 0, then y = g(x).
Moreover,

Dg(x) = −D2F (x, y)−1D1F (x, y).

End of lectures 11 and 12. May 18 and May 21, 2015

3 Integration in Rd

3.1 Integrals depending on parameters

We well now approach the question of evaluating integrals of functions that
depend on parameters. We will see that a particularly relevant property of
the domain of definition of a function that intervenes in studying parameter-
dependent expressions is compactness. When working on a compact domain
it is possible to deduce some sort of uniformity of continuity estimates on
the whole domain. This is necessary, for example, to be able to pass to the
limit in expressions involving values of a function on the full domain like the
integral.
Let us recall that a subset of Rd is compact if and only if it is bounded and
closed via Heine-Borel’s Theorem. Let K ⊂ Rd be a compact set, we define
C(K) = {f : K → R | f is a continuous function defined on K}. Continuity
is as usual expressed as ∀x ∈ K ∀ε > 0∃δ > 0 such that for any y ∈ K with
‖x − y‖ < δ one has |f(x) − f(y)| < ε. A uniform notion of continuity is
obtained if we require that the choice of δ be uniform, or independent, of
the point x ∈ K where we are studying continuity. Thus a function f is
uniformly continuous if ∀ε > 0∃δ > 0 such that ∀x ∈ K and ∀y ∈ K with
‖x− y‖ < δ one has |f(x)− f(y)| < ε.

Theorem 3.1. A continuous function f ∈ C(K) on a compact domain K is
uniformly continuous.

Proof. We reason by contradiction. Suppose that the statement is false, then
there exists an ε > 0 such that for any choice of δ > 0 we can find a pair of
points x, y ∈ K such that ‖x−y‖ < δ but |f(x)−f(y)| ≥ ε. Let us fix such an
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xn1

xn2xn3

xn4

xn5

xn6

yn1

yn2

yn3

yn4

yn5 yn6

Figure 10: A compact domain K and jumps of a continuous function.

ε and for n ∈ N let us construct sequences xn, yn given by the contradiction
statement with δn = 1

n
so that ‖xn − yn‖ < 1

n
and ‖f(xn)− f(yn)‖ ≥ ε.

Since K is compact we can select a subsequence xnk so that it converges to
a point x ∈ K. We will now show that the continuity of f contradicts the
assumption on xn and yn close to this point. Continuity of f in x allows
us to select δ > 0 so that for all z ∈ K we have ‖x − z‖ < δ implies
‖f(x)−f(z)‖ < ε

3
. Also choose k > 0 sufficiently large so that ‖x−xnk‖ < δ

3

and such that 1
nk
< δ

3
so that ‖x− ynk‖ ≤ ‖x− xnk‖+ ‖xnk − ynk‖ < 2δ

3
. We

get a contradiction from

ε ≤ |f(ynk)− f(xnk)|︸ ︷︷ ︸
contradiction hypothesis

≤

continuity of f in x︷ ︸︸ ︷
|f(ynk)− f(x)|+ |f(x)− f(xnk)| ≤

ε

3
+
ε

3
.

Notice that C(K) is naturally a normed (and thus metric) space with the
norm given by the supremum norm ‖f‖∞ = supx∈K |f(x)|. The distance is
thus as usual given by (f, g) 7→ ‖f − g‖∞.

Lemma 3.2. Let K ⊂ Rd be a compact set and a, b ∈ R with a < b then
[a, b] × K ⊂ Rd+1 is also compact. Recall that [a, b] × K = {(x, y) |x ∈
[a, b], y ∈ K}.
Furthermore let f : [a, b]×K → R be a continuous function. Let us defined
F : K → C ([a, b]) given by F (y)(·) = f(·, y). F is a continuous map from
K to C ([a, b]) endowed with ‖ · ‖∞ as a normed vector space i.e. ∀y ∈ K
and ∀ε > 0 there exists a δ > 0 such that if y′ ∈ K with ‖y′ − y‖ < δ then
‖F (y′)(·)− F (y)(·)‖∞ < ε.
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x

y

K

a b

F (y, ·)

Figure 11: The function F (y)(·) = f(·, y).

Proof. To begin with notice that [a, b] × K ⊂ Rd+1 is both bounded and
closed so the first part of the Lemma follows.
We now check that F is continuous. We write M = [a, b] × K. Let ε >
0 be given; since M is compact then the continuity of f implies uniform
continuity: there exists a δ > 0 so that ∀(x, y), (x′, y′) ∈ M we have that
‖(x, y) − (x′, y′)‖ < δ implies |f(x, y) − f(x′, y′)| < ε. By setting x = x′ for
any x ∈ K and rewriting the above inequality we see that

|F (y)(x)− F (y′)(x)| = |(F (y)− F (y′)) (x)| < ε so ‖F (y)− F (y′)‖∞ < ε.

This is precisely the statement of continuity of F as a map from K to C([a, b])
because we have obtained that for any ε > 0 there exists a δ > 0 such that
for any y, y′ ∈ K such that ‖y − y′‖ < δ one has ‖F (y)− F (y′)‖∞ < ε.

Let us consider the example of a function on R2 given by (x, y) 7→ f(x, y) =
eixy so that F (y)(x) = f(x, y). We have that (F (y)− F (y′)) (x) = eixy −
eixy

′
= eixy(1−eix(y′−y)). But if x is an arbitrary point of R we have that this

quantity can be large even if y − y′ is small; for example take x = π
y′−y . In

particular we have that ‖F (y)−F (y′)‖∞ = 2 for any y 6= y′ and this implies
that F is NOT continuous. However if x were to be allowed to assume values
only in a bounded set then the above function would, as a matter of fact, be
continuous.
Now let us consider integrals depending on parameters and integrals over in
more than one variables. Let f ∈ C([a, b]) and set

If =

∫ b

a

f(x)dx = lim
n→∞

b− a
n

n∑
k=1

f

(
a+

b− a
n

k

)
.

The map I : (f) 7→ If is continuous as a map I : C([a, b]) → R. It suffices
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to see that ∣∣∣∣∫ b

a

f(x)dx−
∫ b

a

g(x)dx

∣∣∣∣ =

∣∣∣∣∫ b

a

(f(x)− g(x)) dx

∣∣∣∣
≤
∫ b

a

|f(x)− g(x)| dx ≤ (b− a)‖f − g‖∞

Theorem 3.3. Let [a, b] ⊂ R and let K ⊂ Rd be a compact set. Given a

continuous function f : [a, b] ×K → R let us define φ(y) =
∫ b
a
f(x, y)dx for

every y ∈ K. We then have that φ : K → R is continuous.

Proof. It suffices to see that setting F (y)(·) = f(·, y) we have that φ = I ◦F .
Since F : K → C([a, b]) and I : C([a, b]) → R are both continuous, their
composition φ is also continuous.

Now let K = [c, d] so that
∫ d
c

(∫ b
a
f(x, y)dx

)
dy =

∫ d
c
φ(y)dy.

Lemma 3.4. Set [a, b], [c, d] two compact intervals and let f : [a, b]× [c, d]→
R be a continuous function. Suppose also that D2f exists and is continuous
in all points of the domain. Let y0 ∈ [c, d]. Consider the function g : [a, b]×
[c, d]→ R given by

g(x, y) =


f(x, y)− f(x, y0)

y − y0

y 6= y0

D2f(x, y0) y = y0

.

Then g is a continuous function on [a, b]× [c, d].

Proof. Choose any (x, y) ∈ [a, b] × [c, d]; we must show that g is continuous
in (x, y). The case in which y 6= y0 is left as an exercise. Suppose y = y0. Let
ε > 0 and choose δ > 0 so that ∀(x′, y′) such that ‖(x′, y′)− (x, y0)‖ < δ one
has |D2f(x′, y′) − D2f(x, y0)| < ε. For any such (x′, y′) choose y′′ ∈ (y, y′)

so that g(x′, y′) = f(x′,y′)−f(x′,y0)
y′−y0 = D2f(x′, y′′) via the Lagrange Theorem

in one dimension. We then have that |g(x′, y′) − g(x, y0)| = |D2f(x′, y′′) −
D2f(x, y0)| < ε where the last bound comes from continuity of D2f and the
fact that |y′′ − y0| < |y′ − y0|.

Theorem 3.5. Let f : [a, b] × [c, d] → R be a continuous function such
that D2f exists and is continuous. Consider φ : [c, d] → R to be φ(y) =∫ b
a
f(x, y)dx. Then φ is differentiable with φ′(y) =

∫ b
a
D2f(x, y)dx.
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Proof. Let g as in Lemma 3.4 be continuous so that
∫ b
a
g(x, y)dx is also contin-

uous. This allows us to state that ∀ε > 0 there exists a δ > 0 such that for all
points y′ so that |y0−y′| < δ we have that

∣∣∣∫ ba g(x, y′)dx−
∫ b
a
D2f(x, y0)dx

∣∣∣ <
ε. Thus ∣∣∣∣∣

∫ b
a
f(x, y′)dx−

∫ b
a
f(x, y0)dx

y′ − y
−
∫ b

a

D2f(x, y0)dx

∣∣∣∣∣ < ε.

This means that limy′→y0

∫ b
a f(x,y′)dx−

∫ b
a f(x,y0)dx

y′−y =
∫ b
a
D2f(x, y0)dx and thus

the derivative of φ(y) exists and is given by φ′(y) =
∫ b
a
D2f(x, y)dx.

Theorem 3.6. Let f : [a, b] × [c, d] → R be a continuous function then we
have that ∫ d

c

(∫ b

a

f(x, y)dx

)
dy =

∫ b

a

(∫ d

c

f(x, y)dy

)
dx.

End of lecture 13. June 01, 2015

Theorem (3.6) follows from the following result.

Theorem 3.7. Let f : [a, b]× [c, d]→ R be continuous. Then∫ d

c

(∫ b

a

f(x, y)dx

)
dy

= lim
N→∞

N∑
i=1

N∑
j=1

(b− a)(d− c)
N2

f
(
a+

j

N
(b− a), c+

i

N
(d− c)

)
. (18)

The expression on the right hand-side of (18) is a two-dimensional Riemann
sum.

Proof. Denote the left hand-side of (18) by L and the double sum on the
right hand-side by R. First we show that for every ε > 0 there is N0 such
that for all N > N0:

L ≤ R + ε.

Let ε > 0. Since f is uniformly continuous on [a, b]× [c, d], there exists δ > 0
such that for all (x, y), (x′, y′) ∈ [a, b]× [c, d]:

|(x, y)− (x′, y′)| < δ ⇒ |f(x, y)− f(x′, y′)| < ε

(b− a)(d− c)
.
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b−a
N

d−c
N

a+ j
N

(b− a), c+ i
N

(d− c)
j = 4, i = 4

a b

c

d

Figure 12: Discretization, N = 5.

Denote N0 :=

√
(b−a)(d−c)

δ
and let N > N0. Then for all x ∈ [a + j−1

N
(b −

a), a+ j
N

(b− a)], y ∈ [c+ i−1
N

(d− c), c+ i
N

(d− c)],

f(x, y) ≤ f
(
a+

j

N
(b− a), c+

i

N
(d− c)

)
+

ε

(b− a)(d− c)
. (19)

By the definition of the integral (
∫ b
a
f(x, y)dx as the infimum of upper sums

of f(·, y) over all partitions of [a, b]) and by (19), for all y ∈ [c + i−1
N

(d −
c), c+ i

N
(d− c)] we have∫ b

a

f(x, y)dx ≤
N∑
j=1

f
(
a+

j

N
(b− a), c+

i

N
(d− c)

)
+

ε

d− c
.

The same argument in the y-direction gives∫ d

c

(∫ b

a

f(x, y)dx
)
dy ≤

N∑
i=1

N∑
j=1

f
(
a+

j

N
(b− a), c+

i

N
(d− c)

)
+ ε,

which establishes L ≤ R + ε. We leave it as an exercise to show the reverse
inequality L ≥ R− ε, which then finishes the proof.

Note that we could have evaluated f at any point of the rectangle [a+ j−1
N

(b−
a), a+ j

N
(b− a)]× [c+ i−1

N
(d− c), c+ i

N
(d− c)], not necessarily at its upper

right corner.

The following theorem generalizes Theorem (3.6) to Rd. Its proof is a
straightforward generalization of the proof for d = 2.
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Theorem 3.8. Let Q = [a1, b1]× · · · × [ad, bd] ⊂ Rd and f : Q→ R contin-
uous. We define∫

Q

f(x)dx :=

∫ b1

a1

(
. . .

(∫ bd

ad

f(x1, . . . , xd)dxd

)
. . .

)
dx1

Then for any bijection (permutation) σ : {1, . . . , d} → {1, . . . , d},∫
Q

f(x)dx =

∫ bσ(1)

aσ(1)

(
. . .

(∫ bσ(d)

aσ(d)

f(x1, . . . , xd)dxσ(d)

)
. . .

)
dxσ(1).

3.2 Abstract characterization of the integral

First let us state some definitions.

The support of a function f : Rd → R is defined as

supp(f) := {x : f(x) 6= 0}

That is, the closure of the set of all points in Rd where f is non-zero. The
support is by definition closed.

support support

Figure 13: Compact and non-compact support, respectively.

We denote

Cc(Rd) := {f : Rd → R continuous, supp(f) compact}

Note that if f ∈ Cc(Rd), then there exists a box Q such that supp(f) ⊂ Q.
We write 6 ∫

Rd
f(x)dx :=

∫
Q

f(x)dx.

We leave it as an exercise to show that this definition does not depend on
the choice of Q.

6Note that in the notation
∫
Rd f(x)dx all the information is encoded in f .
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Q

f

Figure 14: An interval Q containing supp(f).

Theorem 3.9. The map J : Cc(Rd)→ R defined by

J(f) :=

∫
Rd
f(x)dx

is

1. linear: J(λf + g) = λJ(f) + J(g) for all f, g ∈ Cc(Rd), λ ∈ R

2. positive: ∀x : f(x) ≥ 0⇒ J(f) ≥ 0

3. translation invariant: J(τyf) = J(f) for all f ∈ Cc(Rd), y ∈ Rd, where
τy : Cc(Rd)→ Cc(Rd) is defined by τyf(x) = f(x− y)

Note that τy translates the above mentioned boxes Q as well and that τy(y) =
f(y− y) = f(0). Moreover, note that positivity and linearity imply h ≤ k ⇒
I(k) ≥ I(h). To see this last fact, k − h ≥ 0 ⇒ I(k) − I(h) = I(k − h) ≥
0⇒ I(k) ≥ I(h).

y

Figure 15: Translation for y ∈ R.

Proof. 1.-3. follow from iterative applications of the same properties for the
one-dimensional integral. In case of 3., this is

∫ b
a
f(x)dx =

∫ b+y
a+y

f(x + y)dy.
We leave the details as an exercise.

For a map satisfying 1.-3. we have the following uniqueness result, which
gives an abstract (axiomatic) characterization of the integral.

Theorem 3.10. If I : Cc(Rd) → R is any map satisfying the properties
1.− 3., there exists c ≥ 0 such that I = c J.
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A map I : Cc(Rd)→ R is called a functional on Cc(Rd). The statement of the
last theorem can be rephrased such that any positive translation invariant
linear functional on Cc(Rd) is a non-zero constant multiple of the integral.
Before we start with the proof we need some preparation.

Lemma 3.11. Let I be a positive linear functional on Cc(Rd). Let fn be
a sequence of functions whose support lies in a compact set K. Suppose
that fn converges uniformly (that is, in ‖ · ‖∞ norm) to a function f . Then
f ∈ Cc(Rd) and limn→∞ I(fn) = I(f).

Proof. Since f is the uniform limit of a sequence of continuous functions
supported in K, f is continuous and its support lies in K.
It remains to see limn→∞ I(fn) = I(f). Choose a function g ∈ Cc(R) such
that g|K = 1, g ≥ 0. If d = 1 and [a, b] we take g to be (see Figure 16)

h[a,b](x) :=


0 x < a

x− (a− 1) a− 1 ≤ x < a
1 x ∈ [a, b)

−x+ (b+ 1) b ≤ x < b+ 1
0 b+ 1 ≤ x

for some interval [a, b] containing K.

a ba− 1 b+ 1K

Figure 16: Function h[a,b] for some [a, b] ⊃ K.

If d > 1, we take g(x) := h[a,b](x1)h[a,b](x2) · · ·h[a,b](xd), for some [a, b] such
that K ⊂ [a, b]d.
Let ε > 0. Choose N large enough such that for all n > N , ‖fn − f‖∞ < ε.
Since g|K = 1, on K we have |fn − f | < ε = εg. On Kc we have |fn − f | =
0 < εg. Thus, on Rd we have

−εg ≤ fn − f ≤ εg.

By the remark after Theorem 3.9, −εI(g) ≤ I(fn − f) ≤ εI(g). By linearity
of I we obtain

−εI(g) ≤ I(fn)− I(f) ≤ εI(g)

and hence
|I(fn)− I(f)| ≤ εI(g).

Since I(g) is independent of n, this finishes the proof.
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Lemma 3.12. Let F : Rd × Rd → R be continuous with compact support.
Denote by IxF the action of I on the function F (·, y) (for a fixed y). Then
IxF ∈ Cc(Rd) and ∫

Rd
IxF (y)dy = I

(∫
Rd
F (·, y)dy

)
.

This lemma states that we can ”interchange” I and
∫

. If I =
∫

, we obtain
Theorem 3.6.

Proof. The idea of the proof is to approximate
∫

with Riemann sums and
use linearity of I to interchange it with

∑
. We use uniform continuity of F

and the previous lemma. Assuming the support of F is contained in the box
[−a, a]2d, the Riemann sums one considers are

RNF (x) =
N∑
j1=1

· · ·
N∑
jd=1

F
(
x,−a+

j1

N
2a, . . . ,−a+

jd
N

2a
)(2a

N

)d
.

The details are left as an exercise.

Definition 3.13. The convolution f ∗ g of functions f, g ∈ Cc(Rd) is the
function

f ∗ g(x) :=

∫
Rd
f(y)g(x− y)dy

We have f ∗ g = g ∗ f , i.e. the convolution product is commutative. This
fact follows from the change of variables

f ∗ g(x) =

∫
Rd
f(y)g(x− y)dy

=

∫
Rd
f(x+ y)g(−y)dy =

∫
Rd
f(x− y)g(y)dy = g ∗ f(x).

Proof of Theorem 3.10. Let f ∈ Cc(Rd). Let g ∈ Cc(Rd) such that
∫
g > 0.

Then

I(g)

∫
Rd
f(y)dy=

∫
Rd
I(g)f(y)dy

(1)
=

∫
Rd
I(τyg)f(y)dy

(2)
=I

(∫
Rd
f(y)τygdy

)
(3)
=I(f ∗ g)

=I(g ∗ f)

(4)
=I(f)

∫
Rd
g(y)dy.
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Explanation of steps: (1) translation invariance of I. (2) Lemma 3.12. Note
that τyg is a function of x and y. (3) Note that the integral in the bracket
equals

∫
Rd f(y)g(x− y). (4) Repeating the steps backwards.

Therefore, we have obtained

I(f) =
I(g)∫

Rd g(x)dx︸ ︷︷ ︸
=:c

∫
Rd
f(y)dy.

End of lecture 14. June 8, 2015

3.3 Change of variables formula

For a function f ∈ Cc(Rd) we have defined the integral I(f) =
∫
Rd f(x)dx.

The functional I has an abstract characterization. I : Cc(Rd)→ R is

1. Linear: I(f + cg) = I(f) + cI(g)

2. Positive: if f ≥ 0 then I(f) ≥ 0

3. Translation invariant: I(τyf) = I(f) where τyf(x) = f(x− y)

We have showed that if J : Cc(Rd) → R is linear, positive and translation
invariant, then there exists a constant c ∈ R+ such that J = cI.

This characterization of the integral will allow us to determine the behavior
of integrals with respect to changes of variables. We begin by studying the
simplest case when the change of variables is linear i.e. it is given by a matrix.

Theorem 3.14. Let A ∈ Rd×d be an invertible matrix, then for all f ∈
Cc(Rd) we have that

∫
Rd f(Ax)dx = |detA|−1 ∫

Rd f(x)dx.

Proof. The proof consists of two parts. Initially we will prove that
∫
Rd f(Ax)dx

is up to a constant the integral of f . This is done using the axiomatic char-
acterization of the integral. Subsequently, to determine the constant we will
need several intermediate results.
Let us set J(f) :=

∫
Rd f(Ax)dx. J is a functional that possesses the three

defining properties of the integral: linearity, positivity, and translation in-
variance. As a matter of fact (f + cg)(Ax) = f(Ax) + cg(Ax) so linearity
of J follows from the linearity of the integral. Positivity is also conserved
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under composition with the linear operator A: if f ≥ 0 then f ◦ A ≥ 0.
Finally, for translation invariance we have that (τyf) ◦ A(x) = f(Ax− y) =
f (A(x− A−1y)) = τA−1y (f ◦ A) (x) so J(τyf) =

∫
Rd τA−1y (f ◦ A) (x)dx =∫

Rd τA−1y (f ◦ A) (x)dx =
∫
Rd f(Ax)dx = J(f). Here we used that A is in-

vertible.
By the previous theorem we can state that J(f) = CAI(f) for some constant
CA ≥ 0. We now need to determine CA and show that CA = |detA|−1 to
conclude the proof.

We first determine CA for special classes of matrixes.

Definition 3.15. A matrix O ∈ Rd×d is called orthogonal if ∀x ∈ Rd one
has ‖Ox‖ = ‖x‖.

Figure 17: An orthogonal transformation.

Let us define f(x) =

{
1− ‖x‖ if ‖x‖ < 1

0 otherwise
. If O is orthogonal we use that

‖Ox‖ = ‖x‖ to obtain∫
Rd
f(Ox)dx =

∫
‖Ox‖<1

(1− ‖Ox‖) dx =

∫
‖x‖<1

(1− ‖x‖) dx =

∫
Rd
f(x)dx

So CO = 1. Notice that the determinant of orthogonal matrix satisfies
detO ∈ {±1} since orthogonality is equivalent to OtO = I and thus 1 =
det(OtO) = det(Ot) det(O) = (detO)2. So, as a matter of fact CO = 1 =
|detO|−1.
The second case we consider is that of lower triangular matrixes.

Definition 3.16. A matrix A ∈ Rd×d is lower triangular if ai,j = 0 for j > i.
For a lower triangular matrix one has (Ax)i =

∑i
j=1 ai,jxj.

A =


a1,1

a2,1 a2,2 0
· · · · · · . . .

· · · · · · · · · ad−1,d−1

· · · · · · · · · ad,d−1 ad,d
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We now evaluate J(f) for A a lower triangular matrix.

∫
Rd
f(Ax) =

∫
R

[
. . .

[∫
R
f(a11x1, a2,1x1 + a2,2x2, . . .

. . . , ad,1x1 + · · ·+ ad,dxd) dxd

]
. . .

]
dx1.

Now notice that the innermost integral is a one-dimensional integral over
the domain R. Fixing x1 . . . xd−1 as parameters we can apply theorems on
changes of variables in one dimension to get that∫

Rd
f (Ax) =

∫
Rd
f
(
A(d−1)x(d−1), ad,dxd

)
dx =∫

Rd−1

∫
R
f
(
A(d−1)x(d−1)

)
dxddx

(d−1) = |ad,d|−1

∫
Rd−1

f̃ (d−1)
(
A(d−1)x(d−1)

)
where x(d−1) ∈ Rd−1 is the vector of the first d − 1 coordinates of x so that
x(d−1) = (x1, . . . , xd−1), A(d−1) ∈ Rd−1,d−1 is the principal leading (d − 1) ×
(d − 1) minor of A i.e. A

(d−1)
i,j = Ai,j for i, j ∈ {1, . . . , d − 1}. We write

f̃ (d−1)(x(d−1)) =
∫
R f(x(d−1), xd)dxd and the above equality holds because

we are integrating over the whole R in xd independently of the translation
induced by ad,1x1 + · · · + ad,d−1xd−1. Applying this reasoning inductively

we can show that
∫
Rd f(Ax)dx =

∏d
i=1 |aj,j|−1

∫
Rd f(x)dx. Since for lower

triangular matrixes detA =
∏d

i=1 ai,i we have effectively shown that for lower

triangular matrixes A we have that CA =
∏d

j=1 |aj,j|−1 = |detA|−1.
We now want to describe any matrix in terms of these simpler matrixes.
Notice that given any two invertible matrixes A,B ∈ Rd×d the matrix AB is
also invertible and we have that CAB = CACB since setting g(y) = f(Ay) we
have ∫

Rd
f(ABx)dx︸ ︷︷ ︸

CAB
∫
Rd f(x)dx

=

∫
Rd
g(Bx)dx = CB

∫
Rd
g(x)dx =

CB

∫
Rd
f(Ax)dx = CBCA

∫
Rd
f(x)dx

Theorem 3.17. Any invertible matrix A ∈ Rd×d can be represented as A =
OR with O an orthogonal matrix and R a lower triangular matrix.

Proof. The proof is based on the Gram Schmidt algorithm. Let a1, . . . , ad be
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the column vectors of A i.e. (aj)i = Ai,j so that

A =




...
a1
...




...
a2
...

 · · ·


...
ad
...


 .

Since A is invertible, these vectors are linearly independent. We now apply
the Gram-Schmidt formula starting from the last vector to the first one:

ed =
ad
‖ad‖

ed−1 =
ad−1 − 〈ad−1; ed〉ed
‖ad−1 − 〈ad−1; ed〉ed‖

ed−2 =
ad−2 − 〈ad−2; ed−1〉ed−1 − 〈ad−2; ed〉ed

‖ad−2 − . . . ‖
...

e1 =
a1 − . . .
‖a1 − . . . ‖

The system of vectors (e1, . . . , ed) thus obtained is an orthonormal basis that
together form a matrix

O =




...
e1
...




...
e2
...

 · · ·


...
ed
...




that is also orthonormal. We leave checking this as an exercise.
Now let us construct the matrix R that represents the Gram Schmidt algo-
rithm. We set

rd =


0
...
...
0
‖ad‖

 rd−1 =


0
...
0

‖ad−1 − 〈ad−1; ed〉ed‖
〈ad−1; ed〉


and so on. The matrix

R =




...
r1
...

 · · ·


...

rd−1
...




...
rd
...
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is clearly lower triangular and it is left as an exercise to see that A = OR.

The above decomposition property together with the property that CAB =
CACB and det(AB) = det(A) detB allows us to conclude from the fact that
CA = |detA|−1 for all orthogonal and lower triangular matrixes that CA =
|detA|−1 for any invertible matrix A. This concludes the proof of Theorem
3.14
Notice that the determinant function det : Rd×d → R is a polynomial in the
entries of the matrix. In particular one has that

detA =
∑

σ permutation
of {1,...,d}

sign(σ)

j∏
i=1

ai,σ(i)

where sign(σ) ∈ {±1} is the sign of the permutation σ, a combinatorial
quantity. In particular this means that the determinant is a polynomial
function on Rd×d and thus it is C∞. The function A 7→ | detA|−1 is thus also
smooth away from the set of matrixes A that are not invertible i.e. where
detA = 0. Notice that for a linear map g(x) = Ax we have the property
that it is equal to it’s differential i.e. Dg = DA = A. It is thus possible to
rewrite the formula for the change of variables as∫

Rd
f ◦ g(x)dx =

∫
Rd
|det (Dg(x))|−1 f(x)dx

as long as g is a linear map invertible map (i.e. it is given by an invertible
matrix). The fact smoothness of the map A 7→ | detA|−1 actually guarantees
that even if the function g is non linear but just continuously differentiable
then both sides of the above equality are well defined. We will show next
time that the equality continues to hold extending the formula for changes
of variable to non-linear maps g.

Definition 3.18. Let U ⊂ Rd be an open set in Rd. We define

Cc(U) = {f ∈ Cc(Rd)| supp f ⊂ U}
Ck
c (U) = {f ∈ Cc(Rd)| supp f ⊂ U and f is k times continuously differentiable}

C∞c (U) =
∞⋂
k=1

Ck
c (U) = {f ∈ Cc(Rd)| supp f ⊂ U and f is infinitely continuously differentiable}

Theorem 3.19. Let f ∈ Cc(U), then there is a sequence fi ∈ C∞c (U) so that
lim supi→∞ ‖f − fi‖∞ = 0
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To show this result we must recall the definition and some properties of
convolution:

f ∗ g(x) =

∫
Rd
f(y)g(x− y)dy on Rd

f ∗ g(x) =
∑
y∈Z

f(y)g(x− y) on Z

On Z we have the important functions δn that are defined by

δn(z) =

{
δn(n) = 1

δn(z) = 0 z 6= n.

These functions are called Dirac deltas and have the property that they form
a group under convolution: δn ∗ δm = δn+m. More in general we have that
f ∗ δn(z) = f(z − n) and thus if n = 0 we have that f ∗ δ0(z) = f(z) so δ0

acts as the identity operator via convolution. The above holds, as noted, for
functions on Z. The problem is that on R and Rn there are no functions in
the standard sense that play a role of Dirac deltas. The function δ0 would
have to be supported on x = 0 and be zero everywhere else. We thus chose to
substitute these elements by Dirac sequences i.e. sequences that approximate
Dirac deltas in an appropriate sense. Heuristically, a Dirac sequence will be a
sequence of non-negative functions that are supported on small balls around
0 and all have integral 1.

Figure 18: A Dirac sequence.

To construct a smooth Dirac sequence on R we can take a C∞c (B1(0)) func-
tion φ ≥ 0 with suppφ ⊂ {|x| < 1} and with

∫
R φ = 1 and by setting

φε(x) = ε−1φ
(
x
ε

)
. If we want to construct a smooth Dirac sequence on Rd it

is sufficient to set ψε(x) =
∏d

i=1 φε(xi) = ε−d
∏d

i=1 φ
(
xi
ε

)
.

83



We will show that given any function f ∈ Cc(Rd) we have that ‖f∗ψε−f‖∞ →
0 as ε→ 0 and by properties of convolution each function f ∗ ψε ∈ C∞c (Rd).
Before proceeding to that we will explicitly construct a smooth compactly
supported function on R. Our candidate is going to be the function η : R→ R
given by

η(x) =

{
0 x ≤ 0

e−
1
x x > 0

A special property is that for x > 0 we have that(
e−

1
x

)′
=

1

x2
e−

1
x

(
e−

1
x

)′′
=

1

x2
e−

1
x(

e−
1
x

)(n)

= Pn

(
1

x

)
e−

1
x

where Pn is some polynomial. This can be prove by induction and is left as
an exercise. Trivially, for x < 0 we have that η(x) = 0 and thus η(n) = 0.
The fact that η(n)(0) = 0 and that η ∈ C∞ follows from the fact that for any
n ∈ N we have that limy→+∞ y

ne−y = 0. As a matter of fact using the series
expansion of the exponential we have that ey =

∑∞
k=0

1
k!
yk and in particular

ey > 1
(n+1)!

yn+1 so limy→+∞
ey

yn
=∞ as required. The conclusion follows and

is left as an exercise.
Finally setting ρ(x) = η(x+ 1)η(1− x) we obtain that ρ ∈ C∞c (B1(0)) thus

setting φ(x) = ρ(x)
(∫

R ρ(y)dy
)−1

gives a function that is in C∞c (B1(0)) and
with

∫
R φ(x)dx = 1.

−1 1

η(x+ 1) = e−
1
x+1η(−x+ 1) = e−

1
−x+1 ρ(x) = η(x+ 1)η(−x+ 1)

Figure 19: A C∞c (B1(0)) function.

End of lecture 15. June 15, 2015
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We are set to establish a more general change of variables formula (transfor-
mation formula). The first step towards it is to prove Theorem 3.19, which
says that C∞c (U) is dense in Cc(U) in the supremum norm. Note that The-
orem 3.19 could also be seen as a variant of the Stone-Weierstrass theorem
from Analysis 1.

We remark that infinitely continuously differentiable functions (i.e. belong-
ing to C∞) are called smooth.

Before proceeding with the proof of Theorem 3.19 we need the following
lemma.

Lemma 3.20. Let K := supp(f). Then there is ε > 0 such that Bε(x) ⊂ U
for all x ∈ K.

Proof. The proof relies on a compactness argument. Since U is open, for all
x ∈ K there exists εx > 0 such that B2εx(x) ⊂ U . We write εx to stress that
it depends on the point x. What we need to show is that we can choose an
epsilon, universal for all x, such that for each x ∈ K we have Bε(x) ⊂ U .
Consider the set

{Bεx(x) : x ∈ K}.

This is an open covering of K, i.e. K ⊂ ∪x∈KBεx(x). By compactness of K
there exists a finite subcovering, i.e. there is N ≥ 0 such that

K ⊂
N⋃
i=1

Bεxi
(xi).

Set
ε := min

i=1,...,N
εxi > 0.

We claim that ∀x ∈ K : Bε(x) ⊂ U . Let x ∈ K. Then x ∈ Bεxi
(xi) for

some i. It suffices to show Bε(x) ⊂ B2εxi
(xi), which follows from the triangle

inequality. Indeed, let z ∈ Bε(x), i.e. ‖z − x‖ < ε. Then ‖z − xi‖ ≤
‖z − x‖+ ‖x− xi‖ ≤ ε+ εxi ≤ 2εxi as desired.

Observe that without compactness of K we could define ε only as the infimum
of all εx. However, then possibly ε = 0.

Proof of Theorem 3.19. Choose a function ϕ ∈ C∞c (B1(0)) with ϕ ≥ 0 and∫
Rd ϕ(x)dx = 1. We have constructed such a function in the previous lecture.

Define ϕε(x) := ε−dϕ(ε−1x) and note supp(ϕε) ⊂ Bε(0) and
∫
Rd ϕε(x)dx = 1.

The last fact can be seen from the change of variables formula for constant
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matrices, as the transformation matrix is in this case a diagonal matrix, with
diagonal entries equal to ε−1.

Claim: For ε as in Lemma 3.20, supp(f ∗ ϕ ε
2
) ⊂ U .

To see this we need to show that for all x ∈ U c and all y ∈ B ε
2
(x): f ∗ϕ ε

2
= 0.

Suppose the opposite, i.e.∫
Rd
f(y − z)ϕ ε

2
(z)dz 6= 0.

Then there is z such that f(y−z) 6= 0, ϕ ε
2
(z) 6= 0. By the information on the

support of ϕ ε
2

we have ‖z‖ < ε
2
. Since y ∈ B ε

2
(x), this implies x ∈ Bε(y− z).

By the support of f we have y− z ∈ K. By the previous lemma then x ∈ U ,
which is a contradiction.

The functions f ∗ϕε are smooth. Now we show that f ∗ϕε converge uniformly
(i.e. in the ∞-norm) to f . Let δ > 0. To show is that there is ε > 0 such
that ‖f ∗ϕε− f‖∞ < δ. Since f is uniformly continuous, there is ε > 0 such
that for all x, y: ‖x− y‖ < ε implies |f(x)− f(y)| < δ. If necessary make ε
smaller such that by the above claim supp(f ∗ ϕε) ⊂ U . We have

|(f ∗ ϕε − f)(x)| =
∣∣∣ ∫

Rd
f(x− y)ϕε(y)dy − f(x)

∣∣∣
(1)
=
∣∣∣ ∫

Rd
(f(x− y)− f(x))ϕε(y)dy

∣∣∣
(2)

≤
∫
Bε(0)

|f(x− y)− f(x)|ϕε(y)dy

(3)

≤
∫
Bε(0)

δϕε(y)dy = δ.

Explanation: (1):
∫
Rd ϕε(y)dy = 1. (2): triangle inequality, ϕ ≥ 0 and

supp(ϕε) ⊂ Bε(0). (3): Uniform continuity of f , as ‖x−y−x‖ = ‖y‖ < ε.

Now we are ready to state the transformation formula.

Theorem 3.21. Let U, V be open in Rd, η : U → V invertible and con-
tinuously differentiable and η−1 continuously differentiable. Let f ∈ Cc(V ).
Then ∫

U

f(η(x))| detDη(x)|dx =

∫
V

f(y)dy.

We remark that detDη is also called the Jacobi determinant. In case d = 1
this is simply η′.
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Proof. Let ϕ ∈ C∞c (B1(0)) with ϕ ≥ 0,
∫
Rd ϕ(x)dx = 1. Denote ϕj(x) :=

jdϕ(jx). Consider

|ϕj(x)− ϕj(x′)| = jd|ϕ(jx)− ϕ(jx′)|
(∗)
≤ jd‖Dϕ‖∞‖jx− jx′‖
≤ jd+1‖Dϕ‖∞‖x− x′‖,

the inequality (∗) following from the mean value theorem. We write∫
U

(f ∗ ϕj)(η(x))| detDη(x)|dx =

∫
Rd

∫
Rd
f(y)ϕj(η(x)− y)| detDη(x)|dydx

=

∫
V

f(y)hj(y)dy,

where hj(y) :=
∫
Rd ϕj(η(x) − y)| detDη(x)|dx. As j → ∞, f ∗ ϕj → f

uniformly, so for the left hand-side we have convergence∫
U

(f ∗ ϕj)(η(x))| detDη(x)|dx −→
∫
U

f(η(x))| detDη(x)|dx.

Thus it remains to show that ‖hj − 1‖L∞(K) → 0, where K = supp(f). Let
ε > 0. We need to show that there is j such that ‖hj − 1‖L∞(K) < ε. For
y ∈ V let z be such that η(z) = y. Choose δ small enough such that for
‖x− z‖ < δ we have

1. (by differentiability of η) ‖η(x)− η(z)−Dη(z)(x− z)‖ < ε‖x− z‖

2. (by continuity of detDη) | det(Dη(x))− det(Dη(z))| < ε.

Choose C0 large enough (depending on ϕ, η), such that for j = C0δ
−1,

ϕj(η(x) − η(z)) 6= 0 or ϕj(Dη(z)(x − z)) 6= 0 imply ‖x − z‖ < δ. Now,
for y ∈ K,

hj(y)− 1 = hj(η(z))− 1

=

∫
B 1
j

(0)

ϕj(η(x)− η(z)) detDη(x)dx− 1

We split the integral whether detDη(x) ≥ 0 or detDη(x) ≥ 0, both parts
are treated similarly. So assume for simplicity detDη(x) ≥ 0 for all x ∈ U .
Since Dη(z) is constant in x, by 1 =

∫
Rd ϕ(y)dy and by the transformation

formula for linear maps the last display equals∫
B 1
j

(0)

ϕj(η(x)− η(z)) detDη(x)dx−
∫
B 1
j

(0)

ϕj(Dη(z)(x− z)) detDη(z)dx.
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The remaining part of the proof consists of using linearity of the integral,
writing the difference of the involved products in the way aB − bA = (a −
A)B − (b − B)A, applying the triangle inequality and using 1. and 2. The
details are left as an exercise.

Our (abstract) definition of the integral is valid only for functions Cc(U). For
now we extend the definition to the following two cases:

• (Non-vanishing at the boundary.) Let K ⊂ U , K compact, U ⊂ Rd

open, f ∈ C(U), f ≥ 0. We define∫
K

f(x)dx := inf
h∈Cc(U)
h≥1K

∫
U

f(x)h(x)dx,

where 1K is the characteristic function of the set K.

• (Non-compact support.) Let U ⊂ Rd open, f ∈ C(U), f ≥ 0. Define∫
U

f(x)dx = sup
K⊂U

K compact

∫
K

f(x)dx.

If we do not have f ≥ 0, we split f into positive and negative parts and use
these definitions on each of the parts separately.

End of lecture 16. June 18, 2015

4 Curves in Rn and path integrals

We have so far worked on functions in several variables and most of the
theorems we have obtained are valid for general functions f : Rn → Rm. A
particularly important class of functions is given by paths or curves: functions
defined on one-dimensional domains like γ : R→ Rd or γ : [a, b]→ R.

Definition 4.1. A curve (or path) is a map γ : [a, b]→ Rd. We restrict our
attention to curves that are at least continuous C

(
[a, b];Rd

)
but most of the

time we will concentrate on continuously differentiable curves C1
(
[a, b];Rd

)
.

The derivative of a C1 curve γ in a point t ∈ [a, b] is given by the vector

γ′(t) =


γ′1(t)
γ′2(t)

...
γ′d(t)

 .
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γ′ is also a curve called the curve of tangent vectors since the vector γ′(t) is
tangent to the curve γ in the point γ(t).

γ(t1)

γ′(t1)

γ(t2)
γ′(t2)

Figure 20: A curve γ and its tangent γ′.

Lemma 4.2. Let x0, x1, . . . , xn ∈ Rd then there exists a C1 curve γ : [0, n]→
Rd such that γ(i) = xi for i ∈ {0, . . . , n} and such that it is given by a linear
segment on [xi, xi+1] for i ∈ {0, . . . , n− 1}.

x0

x1

x2

Figure 21: A piecewise linear C1 curve

Proof. Define γ(t) = xi+
1
2

(xi+1 − xi) (1− cos ((t− i)π)) for t ∈ [i, i+1], i ∈
{0, . . . , n− 1}. This functions is well defined at integer times with γ(i) = xi
and it is C1 since close to the right and to the left of the integer point
i ∈ {0, . . . , n−1} the derivative γ′ is continuous and γ′(i) = 0 as can be seen
explicitly.

Let γ : [a, b] → Rd ∈ C1 be a continuously differentiable curve and let
f : Rd → R ∈ C1 be a scalar-valued function, then f ◦ γ : [a, b] → R is
a scalar function of one real variable and it is also C1). In particular, the
Fundamental Theorem of Calculus holds for this function and so we have
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that

f ◦ γ(b)− f ◦ γ(a) =

∫ b

a

(f ◦ γ)′ (t)dt =

∫ b

a

d∑
i=1

∇f(γ(t))︷ ︸︸ ︷
Dif (γ(t)) γ′i(t)dt =

∫ b

a

∇f(γ(t)) · γ′(t)dt.

We call the vector

∇f(x) =


D1f(x)
D2f(x)

...
Ddf(x)


the gradient vector of the scalar-valued function f . This is a functions defined
on Rd (or an open subset of thereof) with values in Rd, provided that f is
sufficiently regular i.e. f ∈ C1

(
Rd;R

)
. Similarly γ′(t) ∈ Rd so via a slight

abuse of notation we write the product notation ∇f · γ := 〈∇f ; γ′〉Rd when
we are actually dealing with the scalar product of the two vectors ∇f and γ′

on Rd endowed with its structure of the Euclidean space.
Thus if f ∈ C1

(
Rd;R

)
then ∇f : Rd → Rd and it is continuous. This

consideration warrants the following definition.

Definition 4.3. A function F : U ⊂ Rd → Rd with U some open set is called
a vector field on U . Given a continuous vector field F ∈ C

(
Ω ⊂ Rd;Rd

)
and

a C1 path γ : [a, b]→ Ω ⊂ Rd we define the integral of F along γ as∫
γ

F :=

∫ b

a

F (γ(t)) · γ′(t)dt.

An alternative notation is given by
∫
γ
F ≡

∫
Fdγ.

It is noteworthy that the definition of a path carries in itself not only the
information on its support i.e. the set {x ∈ Rd | ∃t ∈ [a, b] with γ(t) = x} but
also the actual parameterization with the segment [a, b]. However two curves
differ by a reparameterization and thus in some sense describe the same
support have many important properties. The way we approach studying
the properties of curves is via their action, or pairing via the integral, on
vector fields.
Let F : U ⊂ Rd → Rd be a C-vector field and let γ : [a, b] → U be a
C1-curve. Let φ : [c, d] → [a, b] be an invertible C1 function with C1 in-
verse φ−1 : [a, b] → [c, d] that we call a reparameterization. We also require
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that φ be orientation conserving i.e. (monotone) increasing. Given a repa-
rameterization one can associate to it a new curve γ̃ : [c, d] → U given by
γ̃(s) = (γ ◦ φ) (s) = γ (φ(s)). It is clear that the two curves are closely
related. In particular we have the following property:∫ b

a

F (γ(t))γ′(t)dt =

∫ d

c

F (γ̃(s))γ̃′(s)ds

That can be written concisely as∫
γ

F =

∫
γ◦φ

F =

∫
γ̃

F

Notice that this statement holds for any vector field. While the statement is
trivial for vector fields F = ∇f that are gradients of C1 functions since the
above quantities depend only on the beginning and end points of γ and γ̃,
the invariance with respect to reparameterization is true for general F .
The proof of this fact is based on the properties of change of variables in one
dimension. As a matter of fact applying the chain rule to differentiation and
the changing variable t = φ(s) yields∫ d

c

F (γ̃(t)) · γ̃′(t)dt =

∫ d

c

F (γ (φ(s))) · γ′(φ(s))φ′(s)ds =

∫ b

a

F (γ (t)) · γ′(t)dt

as required.

Exercise 4.4. The monotonicity of a reparameterization map φ follows di-
rectly from the condition on invertibility, however without the condition on
φ being increasing a change of sign (or orientation) may happen. Consider
φ : [0, 1] → [0, 1] given by φ(s) = 1 − s and let γ̃(s) = γ ◦ φ(s) = γ(1 − s).
One can show that in this case

∫
γ̃
F = −

∫
γ
F .

Definition 4.5. A vector field F : U ⊂ Rd → Rd is called conservative if
there exists f : U → R ∈ C1 such that F = ∇f .

Theorem 4.6. Let F : U ⊂ Rd → Rd be a conservative vector field and
γ, γ̃ : [a, b] → U two C1 curves with the same start and end points: γ(a) =
γ̃(a), γ(b) = γ̃(b). Then∫

γ

F =

∫ b

a

F (γ(t)) · γ′(t)dt =

∫ b

a

F (γ̃(t)) · γ̃′(t)dt =

∫
γ̃

F

The proof of this statement has been given at the beginning of this lesson
and relies on the Fundamental Theorem of Calculus in one dimension. An
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example of this can be imagined by considering a f : R2 → R to be the
function that assigns the altitude of the terrain of some map. The gradient
field F = ∇f will thus be a vector that indicates the direction of steepest
climb and its norm characterizes the “steepness”. A curve γ : [a, b] → R2

can be thought of as a time-dependent parameterization of a path taken so
that γ′(t) is the speed at time t and F (γ(t)) · γ′(t) becomes the rate of climb
(up the hill/mountain). At this point the integral∫

γ

F =

∫ b

a

F (γ(t)) · γ′(t)dt

represent nothing else than the gain in altitude from time a to time b. It is
clear that this gain depends only on the starting point γ(a) and the end point
of the journey γ(b) and doesn’t actually depend on the path that has been
undertaken. Notice that in general the definition of a conservative vector
field is non-trivial: there exist non-conservative vector fields.
We now pass to some properties of open sets, also called open domains, that
are relevant to the properties of vector fields and paths.

Definition 4.7. An open set U ⊂ Rd is said to be path-wise connected if
for any two points x0, x1 ∈ U there is a continuous curve γ : [a, b]→ U such
that γ(a) = x0, γ(b) = x1.

Definition 4.8. An open set U ⊂ Rd is said to be connected if given a
splitting U = V ∪W with V and W disjoint open sets i.e. with V ∩W = ∅,
then either V = ∅ or W = ∅.

Theorem 4.9. An open set U ⊂ Rd is connected if and only if it is path-wise
connected.

Proof.

⇐ Let us reason by contradiction: let U be path-wise connected and let U =
V ∩W with V, W non-empty open sets. Choose x0 ∈ V , x1 ∈ W and
let γ : [a, b] → U be given by assumption of path-wise connectedness.
Let t = sup{s ∈ [a, b] | γ(s) ∈ V }. Now we distinguish two cases: either
γ(t) ∈ V or γ(t) ∈ W , but we will see that both of these situations lead
to a contradiction. If γ(t) ∈ V then t < b because γ(b) = x1 ∈ W and,
since V is open, there exists an ε > 0 such that Bε (γ(t)) ⊂ V . Since
γ is continuous there exists a δ > 0 such that for all t ≤ s ≤ t + δ < b
we have that ‖γ(s) − γ(t)‖ < ε so γ(s) ∈ V and this contradicts the
maximality of the choice of t.
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If γ(t) ∈ W we reach a contradiction by a similar argument. Clearly
t > a since γ(a) ∈ V . Since W is open there exists an ε > 0 such that
Bε (γ(t)) ⊂ W and by continuity of γ in t we have that there exists a
δ such that for all t− δ < s < t one has ‖γ(s)− γ(t)‖ < ε so γ(s) ∈ W
for all t− δ < s and this contradicts that t is the least upper bound.

⇒ Let U be connected non-empty set and let x0 ∈ U . Define the set V to be
the set of points of U reachable from x0 via a continuous path contained
in U : V = {x1 ∈ U | ∃γ : [a, b]→ U with γ(a) = x0, γ(b) = x1}. The
set V is open: as a matter of fact take x1 ∈ V ; since V U is open there
exists a ball Bε(x1) of Rd for some ε > 0 such that Bε(x1) ⊂ U . for any
point y ∈ Bε(x1) one can construct a continuous path γ̃ that connects
x and y. Suppose that γ : [a, b] → U connects x0 to x1 and setting
γ̃ : [a, b+1]→ U with γ̃(t) = γ(t) for t ∈ [a, b] and γ̃(t) = (y−x1)(t−b)
for t ∈ [b, b+ 1]. γ̃ thus defined is continuous.

However the set W = U \ V is also open for a similar reason. By
contradiction let x1 not be reachable by any curve γ starting from
x0 and consider a ball of Rd such that Bε(x1) ⊂ U . If any point
of y ∈ Bε(x1) were reachable from x0 we would have a contradiction
similarly to before.

So, since U is connected and V and W are both open and disjoint then
V = ∅ or W = ∅ but x0 ∈ V so W = ∅ and thus V = U and this is
exactly what was required.

End of lecture 17. June 2, 2015

We have defined the integral of a vector field F : Rd → Rd along a curve
γ : [a, b]→ Rd by ∫

γ

F :=

∫ b

a

F (γ(t))γ′(t)dt.

93



We mention that one can also write it in the form∫
γ

F =

∫ b

a

d∑
j=1

Fj(γ(t))γ′j(t)dt

=

∫
γ

d∑
j=1

Fj(x)dxj

=

∫
γ

F1(x)dx1 + F2(x)dx2 + · · ·+ Fd(x)dxd, (20)

where the second equality can be seen by substituting γ(t) = x. The expres-
sion (20) is also called 1-form.

Remark. The trace of a curve γ : [a, b]→ Rd is defined by

tr(γ) := {γ(t) : t ∈ [a, b]}

Assume that now γ ∈ C1 and divide the interval [a, b] into a := a0 < a1 <
· · · < an := b. Assume that tr(γ|[ak,ak+1]) is a line segment from xk to xk+1

for k = 0, . . . , n− 1.7 Then we have∫
γ

F =
n−1∑
k=0

∫ ak+1

ak

F (γ(t)) · γ′(t)dt

=
n−1∑
k=0

∫ 1

0

F (xk + s(xk+1 − xk)) · (xk+1 − xk)ds (21)

The parametrization in (21) is called the natural parametrization. Each line
segment is parametrized by its length.

To see (21) we may assume xk = 0 and xk+1 = e1. Then tr(γ|[ak,ak+1]) =
{αe1 : α ∈ [0, 1]} and γ(t) · ej = 0 for j = 2, . . . , d. Define s = γ(t) · e1. Then∫ ak+1

ak

F (γ(t)) · γ′(t)dt

=

∫ ak+1

ak

F (γ(t)) · e1(γ′(t) · e1)dt

=

∫ 1

0

F (se1) · e1ds

7In the previous lecture we saw that there exists a C1 parametrisation of a piecewise
linear curve.

94



Given a natural parametrisation of a piecewise linear curve, we can thus
define a path integral along that curve by defining it on each [ak, ak+1] sepa-
rately and then sum the pieces together.

The statement of the following theorem includes Theorem 4.6 from the pre-
vious lecture and its converse.

Theorem 4.10. Let U ⊂ Rd be open and connected. Let F : U → Rd be a
continuous vector field. The following are equivalent:

1. F is conservative, that is, there exists f : U → R ∈ C1 such that
F = ∇f (i.e. Fi = Dif for i = 1, . . . , d.)

2. If γ : [a, b] → U , γ̃ : [a, b] → U are C1 with γ(a) = γ̃(a) and γ(b) =
γ̃(b), then ∫

γ

F =

∫
γ̃

F.

3. If γ is closed (γ(a) = γ(b)), then
∫
γ
F = 0.

In 1., the function f is called the potential of F .

Proof. The implication 1. ⇒ 2. has already been observed in Lecture 17.
We briefly repeat the argument, which relies on the fundamental theorem of
calculus: for F = ∇f we have∫

γ

F =

∫ b

a

∇f(γ(t))γ′(t)dt =

∫ b

a

(f ◦ γ)′(t)dt

= f ◦ γ(b)− f ◦ γ(a) = f ◦ γ̃(b)− f ◦ γ̃(a)

= · · · =
∫ b

a

∇f(γ̃(t))γ̃′(t)dt =

∫
γ̃

F.

We now prove 2. ⇒ 1. Choose x0 ∈ U . Since U is connected and therefore
path-wise connected, for x1 ∈ U there is a continuous curve η : [a, b] → U
with η(a) = x0, η(b) = x1. We would like to set f(x1) :=

∫
η
F . The problem

is that η may not be differentiable, which is required to define
∫
η
F .

We shall circumvent this problem by finding a piecewise linear curve between
x0 and x1, which lies in U . By Lemma 4.2 we may then pick a C1 parametri-
sation of the curve.

Existence of the desired curve between x0 and x1 can be seen by the following
compactness argument. For simplicity of notation suppose that [a, b] = [0, 1].
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Since U is open, for each t ∈ [0, 1] there is εt such that B2εt(η(t)) ⊂ U . Balls
with half the radii cover the trace of η, i.e. tr(η) ⊂ ∪t∈[0,1]Bεt(η(t)). The
trace of η is compact as it is the image of a compact set under a continuous
map8. Thus, there exist t0 := 0 < t1 < · · · < tn := 1 such that

tr(η) ⊂ ∪nj=0Bεtj
(η(tj)).

By uniform continuity of η there is N ∈ N such that for all k = 0, . . . , N ,

‖η(
k + 1

N
)− η(

k

N
)‖ ≤ min

j
εtj .

Since η( k
N

) ∈ Bεtj
(η(tj)) for some tj, this implies that the line segment be-

tween η( k
N

) and η(k+1
N

) lies in U .

By γ denote (a C1 parametrization of) the constructed piecewise linear curve
between x0 and x1. Define f(x1) :=

∫
γ
F . Now we show that f is differen-

tiable and Djf(x1) = Fj(x1). Denote by γ̃ the piecewise linear curve between
x0 and x1 + sej, s > 0. We do not know how to compare γ and γ̃. For that

we choose another curve ˜̃γ between x0 and x1 + sej such that tr(˜̃γ) agrees
with tr(γ) between x0 and x1. Consider now

f(x1 + sej)− f(x1) =

∫
γ̃

F −
∫
γ

F =

∫
˜̃γ F −

∫
γ

F,

where the last equality follows by the path independence (assumption 2.).
Using (21), all terms but one vanish and we obtain∫ s

0

F (x1 + tej) · ejdt =

∫ s

0

Fj(x1 + tej)dt.

The last display equals

Fj(x1)s+

∫ s

0

(Fj(x1 + tej)− F (x1))dt.

By continuity of Fj, for every ε > 0 there is δ > 0 such that for s < δ,∣∣∣ ∫ s

0

(Fj(x1 + tej)− F (x1))dt
∣∣∣ ≤ sε.

Thus,

f(x1 + sej)− f(x1)

s
= Fj(x1) + error

8We leave the proof of this fact to the reader.
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where |error| < ε. Altogether we obtain

lim
s→0

f(x1 + sej − f(x1))

s
= Fj(x1).

This finishes the proof of 2.⇒ 1.
The equivalence 2.⇔ 3. is left to the reader.

We observe that if F ∈ C1 is conservative, for all i, j ∈ {1, . . . , d} we have

DiFj = DjFi.

This follows from the theorem of Schwartz. Indeed, let F = ∇f . Then
Fi = Dif and DiDjf = DjDif .

Definition 4.11. A C1 vector field F is called irrotational, if DiFj = DjFi
for all i, j ∈ {1, . . . , d}.

Now we can summarize the preceding discussion as follows.

Theorem 4.12. If a vector field F ∈ C1 is conservative, then it is irrota-
tional.

It is naturally to ask whether the converse of this theorem holds. That is, is
every irrotational C1 vector field conservative? As we proceed we shall see
that there is a partial converse. However, in general, the answer is negative.
This can be seen by the following example.

Example. Let U = R2 \ {(0, 0)} and F : U → R2 given by

F (x, y) =
( −y
x2 + y2

,
x

x2 + y2

)
We compute

(D1F2 −D2F1)(x, y) =
x2 + y2 − 2x2

(x2 + y2)2
+
x2 + y2 − 2y2

(x2 + y2)2
= 0,

so F is irrotational.9

9The quantity D1F2 −D2F1 is called the curl of F , denoted curl(F ). An irrotational
vector field is also called curl free.
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But F is not conservative. This can be seen by considering the curve γ :
[0, 2π]→ U , γ(t) = (cos t, sin t). Then∫

γ

F =

∫
γ

F1dx+ F2dy

=

∫ 2π

0

− sin t

cos2 t+ sin2 t
(− sin t) +

cos t

cos2 t+ sin2 t
(cos t)dt

=

∫ 2π

0

1 = 2π 6= 0.

If F were conservative, this would contradict 3. from Theorem 4.10.
More generally, if F = ∇f and γ : [0, s]→ R2, then

∫
γ
F = f(γ(s))−f(γ(0)).

Let γ be given by γ(t) = (cos t, sin t). By the same calculation as above,

f(cos s, sin s)− f(1, 0) =

∫ s

0

F (γ(t)) · γ′(t)dt =

∫ s

0

dt = s

Suppose f(1, 0) = 0. Then at a point (cos s, sin s), the function f describes
the angle of the vector of that point with the x-axis. In R2 \ {(0, 0)}, the
angle cannot be defined continuously - starting at 0 and going around the
circle once, the angle approaches 2π.
However, F is conservative if we change the domain U to exclude such paths
which wind around the origin. For instance, if we restrict ourselves to the
upper half plane

{(x, y) : y > 0}

or if we consider
R2 \ {(x, 0) : x > 0}.

We shall elaborate on this in the following lecture.
Recall that for x > 0 we have defined the polar angle of (x, y) as atan( y

x
)

(see the example from Lecture 12). One can check that F is the gradient of
atan( y

x
). In the upper half plane, this is a continuous function.

End of lecture 18. June 25, 2015

We proceed with the question when is an irrotational C1 vector field conser-
vative. We consider the following example.

Example. Let U be an open neighbourhood of the unit square Q = [0, 1]×
[0, 1]. Assume F : U → R2 ∈ C1 is irrotational. Let γ : [0, 4] → U be given
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by

γ|[0,1](t) = (t, 0), γ|[1,2](t) = (1, t− 1)

γ|[2,3](t) = (3− t, 1), γ|[3,4](t) = (0, 4− t)

This parametrisation is piecewise C1, which suffices to define the integral∑4
j=1

∫ j
j−1

F (γ(t)) · γ′(t)dt. (If one closely follows our definition of the path

integral, one should first pick a C1 parametrization γ̃, which can be done as
the path is piecewise linear. Then one considers

∫
γ̃
F , restricts it to each of

the segments and reparametrizes each segment by the restriction of γ to the
appropriate interval. This is exactly what has been done in (21).)
We reparametrize each of the pieces such that (see Figure (22))∫ 1

0

F1(t, 0)dt−
∫ 3

2

F1(3− t, 1)dt+

∫ 2

1

F2(1, t− 1)dt−
∫ 4

3

F2(0, 4− t)dt

=

∫ 1

0

F1(t, 0)dt−
∫ 1

0

F1(t, 1)dt+

∫ 1

0

F2(1, t)dt−
∫ 1

0

F2(0, t)dt

γ|[0,1]

γ|[2,3]

γ|[1,2]γ|[3,4]

γ̃1

γ̃3

γ̃2γ̃4

Figure 22: Parametrization γ and piecewise reparametrization.
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Then we have

4∑
j=1

∫ j

j−1

F (γ(t)) · γ′(t)dt

=

∫ 1

0

F1(t, 0)dt−
∫ 1

0

F1(t, 1)dt+

∫ 1

0

F2(1, t)dt−
∫ 1

0

F2(0, t)dt

(1)
= −

∫ 1

0

∫ 1

0

D2F1(t, s)dsdt+

∫ 1

0

∫ 1

0

D1F2(s, t)dsdt

(2)
=

∫ 1

0

∫ 1

0

(D1F2 −D2F1)(t, s)dsdt

(3)
=0

where (1) follows by the fundamental theorem of calculus, in (2) we inter-
change the integration in s and t, (3) is true by F being irrotational. Thus,
the integral along the closed curve γ is 0.
We remark that the derived formula∫

γ

F =

∫ 1

0

∫ 1

0

(D1F2 −D2F1)(t, s)dsdt

is an instance of the so-called Stokes theorem.

We proceed in a more general way. Let Q = [0, 1] × [0, 1] and ϕ : Q →
U ⊂ Rd ∈ C1.10 Let F : U → Rd be irrotational and let γi : [0, 1] → Rd,
i = 1, . . . , 4 be given by

γ1(t) = ϕ(t, 0), γ2(t) = ϕ(1, t)

γ3(t) = ϕ(t, 1), γ4(t) = ϕ(0, t).

Consider ∫
γ1

F −
∫
γ3

F +

∫
γ2

F −
∫
γ4

F

=

∫ 1

0

F (ϕ(t, 0)) ·D1ϕ(t, 0)dt−
∫ 1

0

F (ϕ(t, 1)) ·D1ϕ(t, 1)dt

+

∫ 1

0

F (ϕ(1, t)) ·D2ϕ(1, t)dt+

∫ 1

0

F (ϕ(0, t)) ·D2ϕ(0, t)dt

10The square Q is closed, but one can still define a C1 map on it - one defines partial
derivatives at the boundary such that they point in the perpendicular direction towards
the interior of Q.
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(which holds as γ′1(t) = D1ϕ(t, 0) etc.) Using

F (ϕ(s, t)) ·Djϕ(s, t) =
d∑
i=1

Fi(ϕ(s, t))Djϕi(s, t),

the fundamental theorem of calculus and the chain rule, this equals

−
∫ 1

0

∫ 1

0

d∑
i=1

d∑
j=1

DjFi(ϕ(t, s))D2ϕj(t, s)D1ϕi(t, s)

−
d∑
i=1

Fi(ϕ(t, s))D2D1ϕi(t, s)dsdt

+

∫ 1

0

∫ 1

0

d∑
i=1

d∑
j=1

DjFi(ϕ(s, t))D1ϕj(s, t)D2ϕi(s, t)

+
d∑
i=1

Fi(ϕ(s, t))D1D2ϕi(s, t)dsdt

By the theorem of Schwarz, the second and the fourth line sum up to zero.
In the third line we interchange the order of integration and the order of
summation. This gives∫ 1

0

∫ 1

0

d∑
i=1

d∑
j=1

(DiFj −DjFi)(ϕ(t, s))D1ϕi(t, s)D2ϕj(t, s)dtds = 0,

since F is irrotational and hence DiFj −DjFi = 0 for all i, j.

This shows that there is no such map from [0, 1]× [0, 1]→ R2 \{(0, 0)} which
would map the boundary of the square to the unit circle. More precisely, we
have just shown the following theorem.

Theorem 4.13. There is no C1 map ϕ : [0, 1] × [0, 1] → R2 \ {(0, 0)} such
that for each t ∈ [0, 1],

ϕ(t, 0) =
(

cos
πt

2
, sin

πt

2

)
ϕ(1, t) =

(
cos

π(t+ 1)

2
, sin

π(t+ 1)

2

)
ϕ(1− t, 1) =

(
cos

π(t+ 2)

2
, sin

π(t+ 2)

2

)
ϕ(0, 1− t) =

(
cos

π(t+ 3)

2
, sin

π(t+ 3)

2

)
.
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Definition 4.14. Two C1 paths γ, γ̃ : [0, 1] → U ⊂ Rd are said to be
homotopic in U , if γ(0) = γ̃(0), γ(1) = γ̃(1) and there exists a C1 map
(called homotopy) ϕ : [0, 1]× [0, 1]→ U such that for each t ∈ [0, 1] we have
ϕ(t, 0) = γ(t), ϕ(t, 1) = γ̃(t) and ϕ(0, t) = γ(0), ϕ(1, t) = γ(1)

Intuitively, two maps are homotopic if they have the same starting and ending
point and one can be continuously deformed into the other.

Theorem 4.15. If F : U → Rd is irrotational and γ, γ̃ : [0, 1] → U are
homotopic in U , then ∫

γ

F =

∫
γ̃

F.

The proof is an immediate consequence of the above calculation.

Theorem 4.16. If γ, γ̃ : [0, 1] → Rd with γ(0) = γ̃(0), γ(1) = γ̃(1), then γ
and γ̃ are homotopic.

Proof. The map ϕ : [0, 1]× [0, 1]→ Rd given by

ϕ(t, s) = sγ(t) + (1− s)γ̃(t)

is a homotopy.

Now we are ready to state a partial converse of Theorem 4.12.

Theorem 4.17. Let F : Rd → Rd ∈ C1 be irrotational. Then is F conser-
vative.

The important part of the theorem is that F maps from Rd. The theorem
holds as any two paths γ, γ̃ in Rd are homotopic (by the previous theorem).

More generally, the the same fact holds for convex domains. A subset U ⊂
Rd is called convex, if for all x0, x1 ∈ U and all s ∈ [0, 1] we have that
sx0 + (1 − s)x1 ∈ U . From the definition of convexity it is clear that it
suffices to define a homotopy between any two paths in U . Thus, we have
the following stronger version of the previous theorem.11.

11Not part of the lecture: There is an even stronger version. The fact that being
irrotational implies being conservative is true on all simply connected domains (pathwise
connected domains on which any two continuous paths with the same start- and endpoint
are homotopic (with a continuous homotopy)). The class of simply connected domains
includes convex domains, but it is larger. For instance, star domains are also examples
of simply connected domains. Another instance of such is Rd \ {(x, 0) : x > 0} from the
example from the previous lecture. Intuitively, simply connected domains ”have no holes”.
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Theorem 4.18. Let U ⊂ Rd be convex and F : U → Rd ∈ C1 irrotational.
Then F is conservative.

We conclude by returning to F (x, y) =
(
−y

x2+y2
, x
x2+y2

)
. Theorem 4.18 implies

that F is conservative in the upper half plane U = {(x, y) : x > 0}.

5 Complex analysis

We consider functions F : C → C. We would like to develop differentiation
and integration theory for such functions in the same way as for functions
mapping R to R. Recall that f : R → R is differentiable at x0 ∈ R if there
exists a derivative a := f ′(x0) ∈ R such that ∀ε > 0∃δ > 0 : ∀|h| < δ,
|f(x0 + h) − f(x0) − ah| ≤ ε|h|. In the complex case we would like to
proceed in the same way: we would like to say that a function F is complex
differentiable at z ∈ C if there exists α ∈ C (which would be called the
complex derivative F ′(z)) such that an analogous condition to the one in the
real case holds.
One way would be to define complex differentiability in the same way as for
real-valued maps and then look at some properties of complex differentiable
functions. However, we rather take the following approach. As C is identified
with R2, F : C → C is identified with a vector field. We shall restrict our
attention to C1 vector fields. We already know how to differentiate such
maps - the differential is a 2 × 2 matrix. However, there is only a two-
dimensional vector subspace of linear maps R2 → R2 of the form (x, y) 7→
(a1x−a2y, a1y+a2x)12 In other words, only a few complex derivatives would
be of the desired form z 7→ αz for α ∈ C. Thus, we should impose an
additional condition on DF .13

Definition 5.1. A map F : C → C ∈ C1 is called complex differentiable at
z ∈ C, if the derivative DF (z) exists and is given via the complex multipli-
cation DF (z)(z̃) = az̃ for some a ∈ C.

Recall that complex multiplication is nothing else but the usual multiplica-
tion using the identification i2 = −1, so that (a + ib)(x + iy) = (ax− by) +
i(ay + bx). We can write this equation in the following matrix form:(

a −b
b a

)(
x
y

)
=

(
ax− by
bx+ ay

)
12This corresponds to complex multiplication of (a1, a2) and (x, y).
13From now on we shall always identify F : C→ C with maps R2 → R2 without further

mention. Thus, DF will mean the differential of F as a map R2 → R2, as well F ∈ C1

etc.
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Since for F ∈ C1 we have

DF =

(
D1F1 D2F1

D1F2 D2F2

)
,

it follows that F ∈ C1 is complex differentiable in z if

D1F1(z) = D2F2(z)

D1F2(z) = −D2F1(z).

This system of equations is also called the Cauchy-Riemann system of dif-
ferential equations. Note that the Cauchy-Riemann system implies that the
vector fields (F1,−F2) and (F2, F1) are irrotational. Thus, if U is convex,
they are conservative, i.e. gradient fields. So there exist f, g ∈ C1 such that

D1f = F1, D1g = F2

D2f = −F2, D2g = F1

In other words, F has a complex antiderivative (f, g) : U → C in the sense

D(f, g)(z)(z̃) = (F1, F2)(z)(z̃).

5.1 Complex path integrals

Let U ⊂ C, F : U → C ∈ C1, γ : [a, b] → U . We define the integral of F
along γ by ∫

γ

F :=

∫ b

a

F (γ(t))γ′(t)dt (22)

The multiplication in (22) is now the complex multiplication and not the
scalar product in R2, so this is not the same as the usual path integral.
However, we can transfer it to the know path integrals. Indeed, expanding
the definition we obtain for (22) the vector of the path integrals( ∫ b

a
(F1(γ(t)),−F2(γ(t))) · (γ′1(t), γ′2(t))dt∫ b
a
(F2(γ(t)), F1(γ(t))) · (γ′1(t), γ′2(t))dt

)
Notice the appearance of the vector fields (F1,−F2) and (F2, F1), which are
by the Cauchy-Riemann system irrotational. Thus, if U is convex, then we
have path independence of (22). Equivalently, the integral of F along a closed
curve is 0. This fact is also called the Cauchy integral theorem.

End of lecture 19. June 29, 2015
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6 Rough paths

Recall that a function of bounded variation f : [a, c] → R can always be
represented as a difference between two monotone functions. Vice versa let
g, h : [a, b] → R≥0 be two positive monotone increasing functions and as
such, functions of bounded variation. Setting f = g − h we obtain that f is
of bounded variation. We thus obtain a precise characterization of functions
of bounded variation.

Theorem 6.1. A real-valued function f : [a, b]→ R can be represented as a
difference of two positive monotone increasing functions if and only if

‖f‖V 1 := sup
N,a≤t0<t1<···<tN≤b

N∑
n=1

|f(tn)− f(tn−1)| <∞.

Proof.

=⇒: Let f = g − h with g and h monotone increasing positive functions.
Then

N∑
n=1

|f(tn)− f(tn−1)| ≤
N∑
n=1

|g(tn)− g(tn−1)|+
N∑
n=1

|h(tn)− h(tn−1)| =

N∑
n=1

g(tn)− g(tn−1) + h(tn)− h(tn−1)

= g(tN) + h(tN)− g(t0)− h(t0) ≤ g(b) + h(b) <∞

⇐=: Suppose that ‖f‖V 1 <∞ and suppose without loss of generality that
f(a) = 0. Let us define g : [a, b]→ R≥0 by setting

g(t) = sup
N,a≤t0<t1<···<tN≤t

N∑
n=1

|f(tn)− f(tn−1)|

i.e. g is the total variation of f up to time t. g is monotone non-
decreasing, g(a) = 0 and g(b) = ‖f‖V 1 . We claim that h := g − f
is also monotone non-decreasing and h ≥ 0. It is easy to check that
h(a) = 0 and h(b) = ‖f‖V 1 − f(b). We must show that given a ≤
t < s ≤ b we have h(t) ≤ h(s). But this is the same as showing that
g(t)− f(t) ≤ g(s)− f(s) i.e. that f(s)− f(t) ≤ g(s)− g(t). We have
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that

|f(s)− f(t)| ≤ sup
a≤t0<t1<···<tN−1<tN≤s

tN−1=t, tN=s

N∑
n=1

|f(tn)− f(tn−1)|

︸ ︷︷ ︸
≤g(s)

−

sup
a≤t0<···<tN−1=t

N−1∑
n=1

|f(tn)− f(tn−1)|︸ ︷︷ ︸
=g(t)

≤ g(t)− g(s)

The above characterization is relevant for real-valued functions. Only for
such functions can one talk about monotonicity and positivity. On the other
hand the notion of the variation norm ‖·‖V 1 is more robust and can be easily
extended to vector-valued functions as long as the domain of definition is one
dimensional (and thus ordered).

Definition 6.2. A curve γ : [a, b]→ Rd is called rectifiable if

‖γ‖V 1 := sup
a≤t0<···<tN≤b

N∑
n−1

‖γ(tn)− γ(tn−1)‖ <∞

Given a rectifiable curve we call ‖γ‖V 1 the length of γ.

Theorem 6.3. A continuous curve γ ∈ C
(
[a, b];Rd

)
is rectifiable if and only

if all the components γi for i ∈ {1, . . . , d} are of bounded variation.

Proof.

=⇒: Suppose that γ is of bounded variation. For any partition a ≤ t0 <
· · · < tN ≤ b we trivially have

N∑
n=1

|γi(tn)− γi(tn−1)| ≤
N∑
n=1

‖γ(tn)− γ(tn−1)‖.

⇐=: Using the fact that ‖γ(tn) − γ(tn−1)‖ ≤ d
∑d

i=1 |γi(tn) − γi(tn−1)| one
can conclude the proof. This is left as an exercise.
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The variation norm V 1 and is a general concept that does not require differ-
entiability of a path. It is useful however to relate this quantity to differential
quantities of a path if it happens to be sufficiently smooth.

Theorem 6.4. Let γ : [a, b] → Rd be continuously differentiable (C1), then

‖γ‖V 1 =
∫ b
a
‖γ′(t)‖dt.

To prove this theorem we first introduce the following Lemma that states
that when considering the V 1 norm of a path we can restrict ourselves to
looking only at time partitions that are very fine i.e. we can impose that
ti − ti−1 be arbitrarily small.

Lemma 6.5. For any ε > 0 we have that

‖γ‖V 1 = sup
N, a≤t0<···<tN≤b
∀n |tn−tn−1|<ε

N∑
n=1

‖γ(tn)− γ(tn−1)‖.

Proof. Adding the condition that ∀n ∈ {1, . . . , N} tn− tn−1 < ε restricts the
set of competitors for the sup and thus makes the right hand side smaller so
we trivially have

‖γ‖V 1 ≥ sup
N, a≤t0<···<tN≤b
∀n |tn−tn−1|<ε

N∑
n=1

‖γ(tn)− γ(tn−1)‖.

Now let us prove that ‖γ‖V 1 ≤ supN, a≤t0<···<tN≤b
∀n |tn−tn−1|<ε

∑N
n=1 ‖γ(tn) − γ(tn−1)‖.

Consider any sequence of times a ≤ t0 < · · · < tN ≤ b, we now refine the
partition t0, . . . , tn by choosing M ∈ N and points a ≤ s0 < · · · < sM = b
so that for any m ≤ M we have sm − sm−1 < ε and ∀n ≤ N there exists
mn ≤M so that smn = tm. Then

N∑
n=1

‖γ(tn)− γ(tn−1)‖ ≤
N∑
n=1

∑
tn−1≤sm<tn

‖γ(sn)− γ(sn−1)‖

=
M∑
m=1

‖γ(sm)− γ(sm−1)‖

This shows that

sup
N, a≤t0<···<tN≤b
∀n |tn−tn−1|<ε

N∑
n=1

‖γ(tn)− γ(tn−1)‖ ≥ sup
N, a≤t0<···<tN≤b

N∑
n=1

‖γ(tn)− γ(tn−1)‖

as required.
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We now proceed to the proof of the Theorem

Proof. Let us fix some δ > 0 and choose an ε > 0 so that |t− s| < ε implies
that ‖γ′(t)− γ′(s)‖ ≤ δ via uniform continuity of the derivative of γ on the
compact interval [a, b].
We will show that for any sequence of times a ≤ t0 < · · · < tN ≤ b with
|tn − tn−1| < ε for all n ∈ {1, . . . , n} the following holds.∣∣∣∣∣

N∑
n=1

‖γ(tn)− γ(tn−1)‖ −
∫ b

a

‖γ′(t)‖dt

∣∣∣∣∣ ≤ 4δd|b− a|

Since δ > 0 can be chosen to be arbitrarily small we obtain the needed result.
To show the above bound it is sufficient to show that for all n we have∣∣∣∣‖γ(tn)− γ(tn−1)‖ −

∫ tn

tn−1

‖γ′(t)‖dt
∣∣∣∣ ≤ 4δd|tn − tn−1|

Since γ(tn) − γ(tn−1) =
∫ tn
tn−1

γ′(t)dt we need to bound
∥∥∥∫ tntn−1

γ′(t)dt
∥∥∥ −∫ tn

tn−1
‖γ′(t)‖dt but since for all t ∈ [tn−1, tn) we have that ‖γ′(t)−γ(tn−1)‖ < δ

we obtain by the triangle inequality∥∥∥∥∫ tn

tn−1

γ′(t)dt

∥∥∥∥ = |tn − tn−1|‖γ′(tn−1)‖+

∥∥∥∥∫ tn

tn−1

(γ(t)− γ(tn−1)) dt

∥∥∥∥∫ tn

tn−1

‖γ′(t)‖ dt = |tn − tn−1|‖γ′(tn−1)‖+

∫ tn

tn−1

(‖γ(t)‖ − ‖γ(tn−1)‖) dt

=⇒
∥∥∥∥∫ tn

tn−1

γ′(t)dt

∥∥∥∥− ∫ tn

tn−1

‖γ′(t)‖dt < 4δd|tn − tn−1|

as required.

Since we have naturally generalized the concept of length from C1 curves to
more general rectifiable ones the next step consists of understanding if one
can give a meaning to path integrals for paths of lower regularity. Recall
that we have defined the path integral of a vector field F via∫

γ

F =

∫ b

a

F (γ(t)) · γ′(t)dt.

While the expression on the left hand side contains a derivative that is not
necessarily defined for generic rectifiable γ we can avoid this pitfall in a way
similar to the one we used to define length.

108



Theorem 6.6. Let F be a continuous function on U ⊂ Rd and let γ : [a, b]→
U be a continuous and rectifiable path. Then ∀δ > 0 ∃ε > 0 so that for any
N,M and time sequences a ≤ t0 < · · · < tN ≤ b and a ≤ s0 < · · · < sM ≤ b
with |tn − tn−1| < ε and |sm − sm−1| < ε we have∣∣∣∣∣

M∑
m=1

F (γ(sm−1)) (γ(sm − sm−1))−
N∑
n=1

F (γ(tn−1)) (γ(tn − tn−1))

∣∣∣∣∣ < δ

In particular this means if for every k ∈ N we choose a sequence of time
partitions a ≤ t

(k)
0 < t

(k)
1 < · · · < t

(k)
Nk−1 < t

(k)
Nk
≤ b with Nk → ∞ and

|tn − tn−1| < 1
2k

for all n ∈ {1, . . . , Nk} then the limit

lim
k→∞

Nk∑
n=1

F (γ(t
(k)
n−1))

(
γ(t(k)

n − t
(k)
n−1)

)
exists and is independent of the sequence of time-partitions

(
t
(k)
n

)
.

Given the Theorem above, using the same notation we define∫
γ

F := lim
k→∞

Nk∑
n=1

F (γ(t
(k)
n−1))

(
γ(t(k)

n − t
(k)
n−1)

)
for rectifiable paths γ. We will later show that this definition coincides with
the one we have given for C1 paths if γ happens to be also C1. First however
we proceed to the proof of the above Theorem.

Proof. Without loss of generality we can suppose that the partition (sm) is
a refinement of the partition tn i.e. suppose that ∀n∃m such that sm = tn.
This is true because given any two partitions (tn) and (t′n′) with |tn−tn−1| < ε
and |t′n′ − t′n′−1| < ε we can find a common refinement (sm) of both and then
the statement would follow by a triangle inequality.
F ◦ γ is continuous and thus uniformly continuous on the interval [a, b]. For
any fixed δ > 0 let us choose ε > 0 so that |x − y| < ε implies ‖F (γ(y)) −
F (γ(x))‖ < δ. Let tn be such that for any n we have that tn− tn−1 < ε then
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for any tn−1 < sm ≤ tn we also have that sm − tn−1 < ε so∣∣∣∣∣∣
∑

tn−1<sm≤tn

F (γ(sm−1)) · (γ(sm)− γ(sm−1))− F (γ(tn−1)) · (γ(tn)− γ(tn−1))

∣∣∣∣∣∣
< δ‖γ(tn)− γ(tn−1)‖

⇒

∣∣∣∣∣
M∑
m=1

F (γ(sm−1)) · (γ(sm)− γ(sm−1))−
N∑
n=1

F (γ(tn−1)) · (γ(tn)− γ(tn−1))

∣∣∣∣∣
<

N∑
n

δ‖γ(tn)− γ(tn−1)‖ ≤ δ‖γ‖V 1 .

Applying this statement with δ′ = δ
‖γ‖V 1

yields the required result. The

second part of the Theorem is left as an exercise and follows by noticing that

limk→∞
∑Nk

n=1 F (γ(t
(k)
n−1))

(
γ(t

(k)
n − t(k)

n−1)
)

is a Cauchy sequence in R.

The candidate for the definition of a path integral along non C1 paths of
bounded variation effectively extends the notion we introduced for C1 paths.
This is due to the following theorem that states that the two notions coincide
if γ is a more regular path.

Theorem 6.7. Let γ ∈ C1 ([a, b]; U) and F ∈ C
(
U ; Rd

)
with U ⊂ Rd then

∀δ > 0 there exists ε > 0 so that if for a sequence of times a ≤ t0 < t1 <
· · · < tN ≤ b one has |tn − tn−1| < ε for all n ∈ {1, . . . , N} then∣∣∣∣∣∣∣∣∣∣∣

∫
γ F :=︷ ︸︸ ︷∫

F (γ(t)) γ′(t)dt−
N∑
n=1

F (γ(tn−1)) (γ(tn)− γ(tn−1))︸ ︷︷ ︸
defined since ‖γ‖V 1<∞

∣∣∣∣∣∣∣∣∣∣∣
< δ.

Proof. We leave the proof of this Theorem as an exercise as it is similar to
the proof that the length ‖γ‖V 1 of a C1 path is given by

∫ b
a
‖γ′(t)‖dt.

Our interest now is to further extend the definition a path integrals to allow
for even less regular paths. This will be done by requiring possibly greater
regularity on the vector field F . Let us recall the definition of variation norms
for p ∈ [1, ∞).

Definition 6.8. Let γ : [a, b]→ U ⊂ Rd be a continuous path. We say that
γ is a V p path if its V p norm given by

‖γ‖V p := sup
N, a≤t0<···<tN≤b

(
N∑
n=1

‖γ(tn)− γ(tn−1)‖p
) 1

p
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is finite.

Let us consider as an example the path γ : [0, 2π]→ R2 that winds M times
around the origin. Set

γ(t) = A

(
cos(Mt)
sin(Mt)

)
with some M ∈ N that we consider large and A ∈ R+ that will be chosen
small. Let us estimate the V p norm of the path γ. First we estimate ‖γ‖V p
from above. Let 0 ≤ t0 < · · · < tN ≤ 2π be some sequence of times so we
can subdivide them based on which “turn” around 0 ∈ R2 we are making.
We have

N∑
n=1

‖γ(tn)− γ(tn−1)‖p =

M∑
m=1

 ∑
2πm−1

M
≤tn−1<tn<2π m

M

‖γ(tn)− γ(tn−1)‖p +
∑

tn−1<2π m
M
≤tn

‖γ(tn)− γ(tn−1)‖p
 ≤

M∑
m=1

 ∑
2πm−1

M
≤tn−1<tn<2π m

M

‖γ(tn)− γ(tn−1)‖(2A)p−1

+ (2A)p

 ≤
M∑
m=1

 ∑
2πm−1

M
≤tn−1<tn<2π m

M

‖γ′‖∞ (tn − tn−1) (2A)p−1

+ (2A)p

 ≤
M∑
m=1

(
2π

M
‖γ′‖∞(2A)p−1 + (2A)p

)
and since ‖γ′‖ = AM we have by taking the power 1

p
of the above expression

that ‖γ‖V p ≤ CM
1
pA. On the other hand we have a lower bound given by

2M∑
m=1

∥∥∥∥γ ( m

2M

)
− γ

(
m− 1

2M

)∥∥∥∥p =
2M∑
m=1

(2A)p = 2M(2A)p ≤ ‖γ‖V p

so 1
C
M

1
pA ≤ ‖γ‖V p ≤ CM

1
pA for some constant C > 1. Let us set A := M− 1

r

so that ‖γ‖V p ≈M
1
p
− 1
r . We have that

‖γ‖V p →

{
∞ if p < r

0 if p > r
as M →∞
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while if p = r the ‖γ‖V p remains bounded. Now let us take the vector field

on R2 given by F (x, y) =

(
−y
x

)
so that

∫
γ

F =

∫ 2π

0

F (γ(t))γ′(t)dt =∫ 2π

0

A

(
− sin(Mt)
cos(Mt)

)
· AM

(
− sin(Mt)
cos(Mt)

)
dt =

∫ 2π

0

A2Mdt = 2πA2M

With our previous choice of normalization A = M− 1
r we have that

∫
γ

F = 2πM− 2
rM →


0 if r < 2

2π if r = 2

∞ if r > 2

as M →∞

Geometrically the graph of the path γ converges to the trivial path γ(t) = 0 so
we would expect that for sufficiently regular paths the integral

∫
γ
F → 0. The

heuristic is that if γ → 0 in V p norm then we should expect that
∫
γ
F → 0

From the above example it becomes clear that if p > 2 we can choose 2 <
r < p and we would have tat γ → 0 in V p but

∫
γ
F 6→ 0. Thus the “critical”

regularity is that of V 2.
First, however we would want to illustrate a property about counting th
jumps of a V p function.

Lemma 6.9. Let γ : [a, b] → U ⊂ Rd be continuous and let ‖γ‖V p < ∞.
For ε > 0 let us define t0 = a and tn = inf {t > tn−1 | ‖γ(tn)− γ(tn−1)‖ ≥ ε}
if such a t exists and tn = b otherwise and set N = n− 1 for the first n for
which tn = b. Since γ is continuous we have that ‖γ(tn) − γ(tn−1)‖ = ε so∑N

n=1 ‖γ(tn)− γ(tn−1)‖p = Nεp ≤ ‖γ‖pV p and thus N ≤ ‖γ‖p
V p

εp
.

Theorem 6.10. Define

Iε :=
N∑
n=1

F (γ(tn−1)) · (γ(tn)− γ(tn−1))

with a = t0 < t1 < · · · < tN ≤ b a sequence of times chosen as in the previous
Lemma.
Let F ∈ C1(U ;Rd) and let γ : [a, b] → U ⊂ Rd with ‖γ‖V p < ∞ for some
p < 2 then the limit limε→0 Iε exists. This limit defines the expression∫

γ

F =

∫ b

a

F (γ(t)) · γ′(t)dt := lim
ε→0

Iε.
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Proof. Let ε0 be sufficiently small so that ∀x, y ∈ im(γ) with ‖x − y‖ < ε0
we have that ∥∥∥∥∥F (y)− F (x)−

d∑
j=1

DjF (x) (yj − xj)

∥∥∥∥∥ ≤ ‖x− y‖
=⇒ ‖F (y)− F (x)‖ ≤ (1 + ‖∇F‖∞) ‖x− y‖.

Such an ε0 exists because im(γ) is compact. Let ε < ε0 and ε
2
< ε′ < ε

and let t0, . . . , tN , N ∈ N and t′0, . . . , t
′
N ′ , N

′ ∈ N be two sequences of times
corresponding to ε and ε′ as in the previous Lemma.
Let us refine the two partitions to obtain a third partition a = s0 < s1 < · · · <
sM ≤ b with {sm} = {tn}∪{t′n} and M ≤ N+N ′ ≤ C

(
1
εp

+ 1
(ε′)p

)
≤ C ′ 1

(ε′)−p
.

The two last inequalities come from the consideration in the previous Lemma.

N∑
n=1

F (γ(tn−1)) (γ(tn)− γ(tn−1)) =
N∑
n=1

∑
tn−1<sm≤tn

F (γ(tn−1)) (γ(sm)− γ(sm−1))

so

N∑
n=1

F (γ(tn−1)) (γ(tn)− γ(tn−1))−
M∑
m=1

F (γ(sm−1)) (γ(sm)− γ(sm−1)) =

N∑
n=1

∑
tn−1<sm≤tn

F (γ(tn−1)) (γ(sm)− γ(sm−1))−
M∑
m=1

F (γ(sm−1)) (γ(sm)− γ(sm−1)) =

N∑
n=1

∑
tn−1<sm≤tn

[
F (γ(tn−1))− F (γ(sm−1))

]
(γ(sm)− γ(sm−1))

and thus∥∥∥∥∥
N∑
n=1

F (γ(tn−1)) (γ(tn)− γ(tn−1))−
M∑
m=1

F (γ(sm−1)) (γ(sm)− γ(sm−1))

∥∥∥∥∥ ≤
N∑
n=1

∑
tn−1<sm≤tn

(‖∇F‖∞ + 1) ‖γ(tn−1)− γ(sm−1)‖ ‖γ(sm)− γ(sm−1)‖ ≤

N∑
n=1

∑
tn−1<sm≤tn

(‖∇F‖∞ + 1) ε2 ≤ CFMε2 ≤ CF ε
2−p.
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Applying the same procedure to the sequence (t′n) we obtain via the triangle
inequality that

|Iε − Iε′ | ≤ C̃F ε
2−p ε

2
≤ ε′ ≤ ε.

By a geometric series trick this implies that we can prove the same for close-
ness result for any any ε′ < ε < ε0. As a matter of fact let us write down the
geometric sequence ε, ε

2
, ε

4
. . . ε

2k0−1 > ε′ ≥ ε
2k0

. The expression |Iε − Iε′| can
be rewritten as a telescoping sum to obtain

|Iε − Iε′ | ≤
k0∑
k=1

∣∣∣I ε

2k−1
− I ε

2k

∣∣∣+
∣∣∣I ε

2k0
− Iε′

∣∣∣ ≤ k0∑
k=1

C̃F ε
2−p2−k(2−p) ≤ CpC̃F ε

2−p

as required.

The above proof relies on using an approximation of increments of F with its
derivative to “compensate” the fact that the path γ is not regular enough,
i.e. that γ ∈ V p for some p ∈ [1, 2) but γ is not necessarily in V 1. To be able
to offer a similar definition of path integrals for γ ∈ V p with p ∈ [2, 3) or even
higher one requires that F be even more regular. To prove a Theorem similar
to the one above we would need to expand F to the second or further orders.
However a second order Taylor expansion of F would involve a term that
looks like

∑d
i,j=1D

2
i,jF (tn−1) (γi(tn)− γi(tn−1)) (γj(tn)− γj(tn−1)). Taking

progressively finer partitions (tn) for γ ∈ V p with p ≥ 2 we would encounter a
problem accounting for the bilinear quantity (γi(tn)− γi(tn−1)) (γj(tn)− γj(tn−1)).
Let us try to understand what this quantity looks and what algebraic prop-
erties it possesses for smooth paths γ. Let γ ∈ C1

(
[a, b]; Rd

)
and let

Ai,j(c, d) =

∫ d

c

(γj(t)− γj(c)) γ′i(t)dt.

We have that

Ai,j(a, d) = Ai,j(a, c) + Ai,j(c, d) +

∫ d

c

(γj(c)− γj(a)) γ′i(t)dt.

This is not a linear quantity in time but has the above non-trivial algebraic
structure. This consideration warrants the following definition.

Definition 6.11. Let 2 ≤ p < 3, a rough path is a pair (γ,A) consisting
of a path γ : [a, b] → Rd with ‖γ‖V p < ∞ and and a matrix-value function
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A : [a, b]× [a, b]→ Rd×Rd i.e. Ai,j : [a, b]× [a, b]→ R for all i, j ∈ {1, . . . , d}
that satisfies

Ai,j(a, d) = Ai,j(a, c) + Ai,j(c, d) +

∫ d

c

(γj(c)− γj(a)) γ′i(t)dt.

and

sup
N, a≤t0<...,tN=b

(∑
|Ai,j(tn−1, tn)|

p
2

) 2
p
<∞.

We define

Iε :=
N∑
n=1

F (γ(tn−1)) (γ(tn)− γ(tn−1)) +
d∑

i,j=1

DjFj(tn−1)Ai,j(tn−1, tn) (γi(tn)− γi(tn−1))

Theorem 6.12. If F is a C2 vector field then limε→0 Iε exists and defines∫
γ
F for a rough path γ.

End of lecture 20 & 21. July 02, 2015 & July 06, 2015

7 Hairy ball theorem

Definition 7.1. The unit sphere in Rn+1 is the set

Sn := {x ∈ Rn+1 : ‖x‖ = 1}.

A vector field on Sn is a continuous map φ : Sn → Rn+1 such that φ(x) is
tangent to Sn for each x ∈ Sn, i.e. 〈φ(x), x〉 = 0 for every x ∈ Sn.

Note that Sn is bounded. It is also closed, as it is the boundary of the unit
ball Sn = ∂B(0, 1) ⊂ Rn+1. Thus, Sn is compact.

Figure 23: S1 and S2.
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Theorem 7.2 (Hairy ball theorem14). If n is even, there does not exist a
vector field on Sn which is everywhere non-zero.

This theorem can be interpreted in the following way: one cannot comb a
hairy ball flat without creating a cowlick. Alternatively, at all times there
must be at least one point on the surface of the Earth where there is no wind
at all.

Remark. It is easily seen that the theorem fails for odd n. Consider first
the case n = 1 and the vector field F : S1 → R2 given by

F (x, y) = (−y, x).

Note that this is the map (x, y) 7→ (− y
r2
, x
r2

), r2 = x2 + y2, restricted to the
unit sphere S1 on which r = 1. We have already met this vector field in
Lecture 18. Clearly, the vector field F has no zeroes.

Figure 24: Vector field F (x, y) = (−y, x) on S1.

For general odd n we define φ : Sn → Rn+1 by

φ(x1, x2, . . . , xn, xn+1) = (−x2, x1, . . . ,−xn+1, xn)

Note that since n + 1 is even, we are able to group x1, x2 and x3, x4, . . . ,
xn, xn+1, and for each pair we reproduce the example from the case n = 1.
The map φ is continuous (it is even C∞) and 〈φ(x), x〉 = x1(−x2) + x2x1 +
· · ·+xn(−xn+1) +xn+1xn = 0. Moreover, φ is an isometry: ‖φ(x)‖ = ‖x‖ for
all x ∈ Sn. In particular, ‖φ(x)‖ = 1 for all x ∈ Sn, and so φ has no zeroes.

Definition 7.3. A vector field φ : Sn → Rn+1 is called continuously differen-
tiable (C1) if there exists a neighborhood U ⊂ Rn+1 of Sn and a C1 function
f : U → Rn+1 such that f |Sn = φ.

14dt. Satz vom Igel.
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7.1 Proof of Theorem 7.2

The proof is by contradiction. Let n be even and assume that φ is an every-
where non-zero vector field on Sn. We proceed in three steps.

(1) Reduction to the smooth case
The purpose of this step is to show that it suffices to prove the theorem for
φ ∈ C1. The reader may skip this technical part at first and return to it at
the end of the lecture.
Let φ : Sn → Rn be a continuous nowhere vanishing vector field. Let

m := inf
x∈Sn
‖φ(x)‖ = min

x∈Sn
φ(x).

By a generalization of the Stone-Weierstrass theorem, we can find a polyno-
mial mapping P : Sn → Rn+1 such that

‖P (x)− φ(x)‖ < m

2

for every x ∈ Sn. (Alternatively, one could approximate φ with smooth
functions by convolving it with the elements of a Dirac sequence.) Define
w : Sn → Rn+1 by

w(x) = P (x)− 〈P (x), x〉x.

This is a C1 vector field on Sn, since

〈w(x), x〉 =〈〈P (x), x〉x, x〉
=〈P (x), x〉 − 〈P (x), x〉 〈x, x〉︸ ︷︷ ︸

‖x‖2=1

= 0

for all x ∈ Sn. We claim that w has no zeroes. To see this we first compute

‖w(x)− P (x)‖ =|〈P (x), x〉| ‖x‖︸︷︷︸
=1

=|〈P (x), x〉 − 〈φ(x), x〉|
=|〈P (x)− φ(x), x〉|
(∗)
≤‖P (x)− φ(x)‖ < m

2
,

where in (∗) we used the Cauchy-Schwarz inequality. Assume that w(x0) = 0.
Then ‖P (x0)‖ < m

2
. Also, the triangle inequality implies

‖φ(x0)‖ − ‖P (x0)‖ ≤ ‖P (x0)− w(x0)‖ < m

2
.
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Hence
‖φ(x0)‖ < m

2
+ ‖P (x0)‖ < m,

which is in contradiction to the definition of m.
The map φ̃ : Sn → Rn+1, φ̃ = w(x)

‖w(x)‖ , is then a C1 (even C∞) vector field on
Sn without zeroes.
Thus it suffices to proceed with the proof assuming φ ∈ C1.

(2) Two preparatory lemmata
Let V ⊂ Rn+1 be open and K ⊂ V compact. (For instance, we might
take K = Sn and V = {x ∈ Rn+1 : a < ‖x‖ < b} for 0 < a < 1 < b.)
Let F : V → Rn+1 be C1. For t > 0 we define a C1-perturbation of the
identity φt : V → Rn+1 which is given by φt(x) = x + tF (x). We have
φt ∈ C1(V ;Rn+1) and Dφt(x) = (In+1 + tDF )(x), where In+1 denotes the
(x+ 1)× (n+ 1) identity matrix. As an example, for n = 1 we have

Dφt(x) =

(
1 0
0 1

)
+ t

(
∂xF1 ∂yF1

∂xF2 ∂yF2

)
=

(
1 + t∂xF1 t∂yF1

t∂xF2 1 + t∂yF2

)
The Jacobian determinant is15

det(Dφt(x)) = 1 + (∂xF1 + ∂yF2)︸ ︷︷ ︸
div(F)

t+ ((∂xF1)(∂yF2)− (∂yF1)(∂xF2))︸ ︷︷ ︸
det(DF )

t2,

which is a polynomial in t with the constant term 1. For general n we obtain
a polynomial

det(Dφt(x)) = p0(x)︸ ︷︷ ︸
=1

+p1(x)t+ · · ·+ pn+1(x)tn+1

for certain coefficients pj(x), j = 1, . . . , n+1. Note that, for sufficiently small
t, one has det(Dφt(x)) > 0.

Lemma 7.4. There exists δ > 0 such that for 0 < t < δ

1. The map φt : K → φt(K) is bijective and its inverse is C1.

2. The map t 7→ vol(φt(K)) is a polynomial in t.

Proof. 1. Since F ∈ C1(V ;Rn+1), the mapping DF restricted to the compact
set K is bounded. This implies that there exists L > 0 such that ‖F (x) −

15 div(F ) = ∇·F = ∂F1

∂x1
+· · ·+ ∂Fn

∂xn
is called the divergence of a vector field F : Rn → Rn.
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F (y)‖ ≤ L‖x − y‖ for all x, y ∈ K. The reader may verify this claim as an
exercise. Then, for x, y ∈ K, we have that

‖φt(x)− φt(y)‖ =‖(x− y) + t(F (x)− F (y))‖
≥‖x− y‖ − t‖F (x)− F (y)‖
≥‖x− y‖ − tL‖x− y‖
=(1− tL)‖x− y‖.

This shows that for t < 1
L

, ‖φt(x) − φt(y)‖ = 0 implies ‖x − y‖ = 0, i.e. φt
is injective. Continuous differentiability of the inverse map follows from the
inverse mapping theorem, since det(Dφt(x)) > 0 for t small enough, i.e., the
Jacobi matrix is invertible at each point.

2. By the change of variables formula, we have

vol(φt(K)) =

∫
K

|det(Dφt(x))|dx.

For t > 0 sufficiently small, it then follows that

vol(φt(K)) =

∫
K

det(Dφt(x))dx

=

∫
K

(1 + p1(x)t+ · · ·+ pn+1(x)tn+1) dx

=vol(K) +
(∫

K

p1(x)dx
)
t+ · · ·+

(∫
K

pn+1(x)dx
)
tn+1.

For r > 0, we denote by r · Sn the dilation of Sn by r, i.e., set of all vectors
in x ∈ Rn+1 with ‖x‖ = r.

Figure 25: The unit sphere S2 and the sphere r · S2 for some r > 1.
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Lemma 7.5. Let φ : Sn → Rn+1 be a C1 vector field with ‖φ(x)‖ = 1 for
every x ∈ Sn. The map

w(x) = ‖x‖φ
( x

‖x‖

)
extends φ to a vector field on S(a, b) := {x ∈ Rn+1 : a < ‖x‖ < b} for 0 <
a < 1 < b. Then, for small t > 0 and a < r < b, the map φt(x) := x+ tw(x)
maps the sphere r · Sn onto the sphere r

√
1 + t2 · Sn bijectively.

Proof. The function w : S(a, b) → Rn+1 is continuously differentiable, since
it is the product of the C1 maps x 7→ φ( x

‖x‖) and x 7→ ‖x‖ (note that ‖x‖ 6= 0

and ∇‖x‖ = x
‖x‖ for x 6= 0). For x ∈ S(a, b), w(x) is orthogonal to x. Also,

‖w(x)‖ = ‖x‖ by our assumption on φ. Thus

‖φt(x)‖2 =〈x+ tw(x), x+ tw(x)〉
=‖x‖2 + 2t〈x,w(x)〉+ t2‖w(x)‖2

=‖x‖2(1 + t2),

i.e. φt(x) = ‖x‖
√

1 + t2. This implies that φt(r · Sn) ⊆ r
√

1 + t2 · Sn.
It remains to show that the map φt : r ·Sn → r

√
1 + t2 ·Sn is surjective. One

possible approach relies on the Banach fixed point theorem, and we leave it
to the reader as a nice exercise. We shall instead prove surjectivity using
connectedness of the sphere. We know that Dφt = I + tDw is invertible
on S(a, b) for sufficiently small t. From the inverse function theorem, it
follows that φt(S(a, b)) is an open subset of Rn+1. Indeed, for simplicity of
notation, denote U = S(a, b), V = φt(S(a, b)) and H := φ−1

t : V → U . We
know that H exists, is continuous on V and φt(U) = H−1(U). It is known
that the pre-image of an open set under a continuous map is open, and so
φt(S(a, b)) ⊂ Rn+1 is open. Thus,

φt(r · Sn) = φt(S(a, b)) ∩ r
√

1 + t2 · Sn

is an open subset of r
√

1 + t2 · Sn. But φt(r · Sn) is also closed, since it is
compact as the image of a compact set under a continuous map. The sphere
r
√

1 + t2 · Sn is pathwise connected and therefore connected. Since φt(r · Sn)
is non-empty, we must have16 φt(r · Sn) = r

√
1 + t2 · Sn. This establishes

surjectivity.

(3) Concluding the proof
Let n be even and φ : Sn → Rn+1 a nowhere vanishing C1 vector field. Then

16In a connected metric space, a non-empty subset which is both closed and open must
equal the whole space.
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x 7→ ‖φ(x)‖ is a C1 map on Sn and φ̃ : Sn → Rn+1, φ̃(x) = φ(x)
‖φ(x)‖ , is a C1

vector field with norm 1. Thus, by replacing φ with φ̃, we may assume that
‖φ(x)‖ = 1 for every x ∈ Sn.

Let 0 < a < 1 < b <∞ and

K = K(a, b) := {x ∈ Rn+1 : a ≤ ‖x‖ ≤ b},

which is closed and bounded and therefore compact. Let t be so small
that Lemma 7.4 and Lemma 7.5 hold for F : K → Rn+1 given by F (x) =
‖x‖φ( x

‖x‖) and φt(x) = x+ tF (x). By Lemma 7.5 we have

φt(K) =
√

1 + t2 ·K.

Then

vol(φt(K)) = vol(
√

1 + t2 ·K) = (1 + t2)
n+1
2 vol(K).

The last identity holds due to the fact that vol(λ · A) = λdvol(A) for λ > 0
and A ⊂ Rd, where λ · A := {λx : x ∈ A}.
Now, since n is even, (1+ t2)

n+1
2 is not a polynomial in t. This can be seen by

noting that none of the derivatives of the function t 7→ (1 + t2)
n+1
2 vanishes.

However, in view of Lemma 7.4, vol(φt(K)) is a polynomial in t. This is a
contradiction, which finishes the proof of the hairy ball theorem.

End of lecture 22. July 9, 2015

8 Ordinary Differential Equations

Let φ : [a, b]→ Rd, φ′ : [a, b]→ Rd. The expression φ′ ◦ φ−1 defines a vector
field on the image of the path φ. One can interpret a differential equation
as, given a vector field F : U ⊂ Rd → Rd, the problem of finding a path
φ so that on imφ the vector field F coincides with the tangent vector field
φ′ ◦ φ−1.

Definition 8.1. A path φ : [a, b]→ U , φ ∈ C1 ([a, b];U) is called an integral
curve of the vector field F : U ⊂ Rd → Rd if for all times x ∈ [a, b] one has
φ′(x) = F (φ(x)).
The integral curve solves the initial value problem with initial value φ(x0) =
y0 with some given x0 ∈ [a, b] and y0 ∈ U .
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Such a construction motivates the definition of a flow of a vector field.

Definition 8.2. Given a vector field F : U ⊂ Rd → Rd we say Φ : [a, b]×V ⊂
R× U → U is its flow if

Φ(x0, y0) = y0 ∀y0 ∈ V
D1Φ(x, y0) = F (Φ(x, y0)) ∀x ∈ [a, b]

We can reformulate the above setting for time dependent vector fields. Let
F : [a, b]×U ⊂ R×Rd → Rd. An integral curve of F is a path φ : [a, b]→ U
such that

φ′(x) = F (x, φ(x)).

We call the above equation a explicit system of ordinary differential equations
of first order. The term differential equation is due to the fact that we are
trying to find a path φ that satisfies an equality with derivatives falling on
the unknown φ. The equation is actually a system of equations since we have
an equation for each coordinate:

φ′1(x) = F1(x, φ(x))

...

φ′1(x) = F1(x, φ(x)).

The differential equation is ordinary (as opposed to being a partial differential
equation) is related to the fact that φ depends only on one real variable x ∈
[a, b] thus there exists only one directional derivative. A partial differential
equation would involve a function φ̃ : Ω ⊂ RN → Rd and would be given by
an expression involving partial derivatives of φ̃: D1φ̃, . . . , DN φ̃.
The property of being first order refers the fact that there are only derivatives
of first order (there are no second or further derivatives). An nth order
equation would be given by

φ(n)(x) = F
(
x, φ(x), φ(2)(x), . . . , φ(n−1)(x)

)
with φ : [a, b] → U , the derivatives φ(k) : [a, b] → Rd for all k ∈ {1, . . . , n}
and F : [a, b]×Rd × · · · × Rd︸ ︷︷ ︸

n times

→ Rd. A nth order ODE (ordinary differential

equation) can be transformed naturally into a first order equation by setting

ψ : [a, b]→ U × R(n−1)d

ψ(x) :=


φ(x)
φ′(x)

...
φ(n−1)(x)
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so that ψ satisfies the system of equations

ψ′0(x) = ψ1(x)

ψ′1(x) = ψ2(x)

...

ψ′n−2(x) = ψn−1(x)

ψ′n−1(x) = F (x, ψ0(x), . . . , ψn−1(x))

where each ψk : [a, b] → Rd is the kth component of ψ and it is the kth

derivative of φ. Notice that the to formulate the corresponding IVP we have
to specify initial data ψ(x0) = y0 ∈ U ×R(n−1)d this means we are specifying
the first initial values of φ and of its first n− 1 derivatives.
Finally we say that the ODE is explicit because the equation expresses de-
pendence of the highest order derivative term explicitly in terms of all the
remaining ones:

φ′(x) = F (x, φ(x)) .

An non-explicit ODE would have the form

G(x, φ(x), φ′(x)) = 0

where one would require some non-degeneracy of G in its third argument to
be able to reasonably expect such a problem to have a solution.
When solving an ODE

y′(x) = F (x, y(x))

it is important to specify in what “set” or space we are looking for solutions.
As a first approach it is reasonable to require that y ∈ C1

(
[a, b];Rd

)
so that

the expression y′(x) is well defined everywhere on [a, b] and is a continuous
function. We also require that F be a continuous functions. For such a
setting it is necessary that F also be defined on [a, b]×Rd so that F (x, y(x))
is necessarily defined for all admissible y and all times x ∈ [a, b].
As an example we can consider the ODE on Rd defined by the function
F (x, y) = y so that equation becomes

y′(x) = y(x).

Two solutions to this equation are given by y(x) = ±ex.

Theorem 8.3. Now let F : [a, b]×U → Rd be a continuous function and let
φ ∈ C1 ([a, b];U) be a solution to the initial value problem (IVP){

φ′(x) = F (x, φ(x))

φ(x0) = y0

.
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Consider also the integral equation (INT)

φ(x) = y0 +

∫ x

x0

F (t, φ(t)) dt x ∈ [a, b].

A C1([a, b];U) function φ solves (IVP) if and only if it satisfies (INT).

Proof.

(IVP) =⇒ (INT) We use the fact that φ(x) − φ(x0) =
∫ x
x0
φ′(t)dt (or

−
∫ x0
x
φ(t)dt if x < x0) for all x ∈ [a, b]. Substituting (IVP) we have

that

φ(x0) = 0

φ′(t) = F (t, φ(t))

and this yields the required result.

(INT) =⇒ (IVP) If (INT) holds then just setting x = x0 we get that
φ(x0) = y0. Since F is a continuous function on [a, b]×U and φ is also
continuous from [a, b] → U we have that [a, b] 3 t → F (t, φ(t)) is a
continuous function and so we can apply the Fundamental Theorem of
Calculus to get that

d

dx

∫ x

x0

F (t, φ(t))dt = F (x, φ(x)).

We can derive the right and left sides of equation (INT) (since φ is C1

and F is continuous) to obtain

φ′(x) =
d

dx

∫ x

x0

F (t, φ(t))dt = F (x, φ(x))

as required.

8.1 Picard-Lindelöf theorem

We will now use the above crucial consideration of the equivalence of finding
a solution to (IVP) and a function satisfying the integral equation (INT) to
state a theorem that allows us to construct a solution via a Banach fixed
point argument.
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Theorem 8.4 (Picard-Lindelöf). Let F : [a, b] × U ⊂ R × Rd → Rd be a
continuous function and suppose that it is uniformly Lipschitz in the second
variable i.e. there exists L > 0 such that ∀y1, y2 ∈ U one has ‖F (x, y1) −
F (x, y2)‖ ≤ L‖y1−y2‖ for all times x ∈ [a, b]. The first part of the condition
is called Lipschitz continuity with constant L > 0 while uniformity is given
by the fact that a common L > 0 can be chosen for all points x ∈ [a, b].
If the above conditions on F hold then for 0 < ε < 1

L
the map T : C ([x0, x0 + ε])→

C ([x0, x0 + ε]) given by

T (φ)(x) = y0 +

∫ x

x0

F (t, φ(t))dt

is a strict contraction map. The space C
(
[x0, x0 + ε];Rd

)
is endowed with

its natural ‖ · ‖∞ norm.

Proof. T is a strict contraction map if

‖T (φ)− T (ψ)‖∞ = sup
x∈[x0,x0+ε]

‖T (φ)(x)− T (ψ)(x)‖ < C‖φ− ψ‖∞

for some C < 1 (notice the strict inequality). Substituting the definition of
T we have

‖T (φ)− T (ψ)‖∞ = sup
x∈[x0,x0+ε]

∥∥∥∥∫ x

x0

(F (t, φ(t))− F (t, ψ(t))) dt

∥∥∥∥ total variation bound︷︸︸︷
≤

sup
x∈[x0,x0+ε]

∫ x

x0

‖F (t, φ(t))− F (t, ψ(t))‖ dt ≤︸︷︷︸
Lip. condition

sup
x∈[x0,x0+ε]

∫ x

x0

L‖φ(t)− ψ(t)‖dt ≤ sup
x∈[x0,x0+ε]

∫ x

x0

L‖φ− ψ‖∞dt ≤ Lε︸︷︷︸
<1

‖φ− ψ‖∞

and this concludes the proof.

We can now apply the Banach Fixed Point Theorem to this problem: there
exists a unique φ ∈ C ([x0, x0 + ε];U) that is a fixed point of the map T i.e.
T (φ) = φ. We can rewrite the fixed point condition as

φ(x) = T (φ)(x) = y0 +

∫ x

x0

F (t, φ(t))dt

so that the fixed point satisfies the integral equation (INT). Furthermore,
since φ and F are continuous so that F (t, φ(t)) is also continuous we have that
T (φ) = y0+

∫ x
x0
F (t, φ(t))dt is continuously differentiable via the Fundamental

Theorem of Calculus, thus φ ∈ C1 ([a, b];U) and thus, using the equivalence
between (IVP) and (INT) we can conclude that φ solves (IVP).
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Theorem 8.5 (Picard-Lindelöf). Let F : [a, b] × U ⊂ R × Rd → Rd be a
continuous function that is uniformly Lipschitz in the second variable with
constant L. Let [x0, x0 + ε] ⊂ [a, b] and let y0 ∈ Rd then there exists a unique
map φ : [x0, x0 + ε]→ Rd that solves the IVP{

φ′(x) = F (x, φ(x)) ∀x ∈ [x0, ε]

φ(x0) = y0

Let us study some examples. A particularly important class of ODEs is given
by linear homogeneous and inhomogeneous equations:

y′(x) = A(x)y(x) homogeneous

y′(x) = A(x)y(x) + b(x) inhomogeneous.

Both these equations satisfy the Lipschitz condition given reasonable assump-
tions on A. We have that F (x, y) = A(x)y + b(x) so that

‖F (x, y1)− F (x, y2)‖ = ‖A(x)y1 − A(x)y2‖ ≤ ‖A(x)‖‖y1 − y2‖

so we require that ‖A(x)‖∞ be finite.

End of lecture 23. July 13, 2015

Let everything be as in the previous theorem. We consider the IVP with the
initial data y0 {

φ′(x) = F (x, φ(x))

φ(x0) = y0

(23)

and another IVP with the initial data y1{
φ̃′(x) = F (x, φ̃(x))

φ̃(x0) = y1.
(24)

We would like to show that if ‖y0−y1‖ is small, the solutions of the considered
initial value problems are close to each other. In other words, we want to
show that solutions of (23) depend continuously on the initial data y0. The
reader may make the notions ”small” and ”close” precise.
Let T, T̃ be given by

Tφ(x) = y0 +

∫ x

x0

F (t, φ(t))dt

T̃ φ̃(x) = y1 +

∫ x

x0

F (t, φ̃(t))dt.
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In the previous lecture we showed that T, T̃ are strict contractions from
C([x0, x0 + ε],Rd) to itself. Denote by φ the unique fixed points of T , which
is the unique solution of the IVP (23). To obtain the solution of (24) we

start the Banach iteration with φ. We have that ‖T̃ φ− φ‖ is small since

‖T̃ φ− φ‖ = ‖T̃ φ− Tφ‖ = ‖y1 − y0‖.

For k ∈ N denote T̃ (k)φ := T̃ (T̃ (. . . (T̃︸ ︷︷ ︸
k−times

φ). Then, for any k ∈ N we have

‖T̃ (k)φ− φ‖ ≤
k∑
j=1

‖T̃ (j)φ− T̃ (j−1)φ‖ (25)

≤
( k∑
j=1

qj−1
)
‖T̃ φ− φ‖ ≤ C‖T̃ φ− φ‖. (26)

By φ̃ we denote φ̃ = limk→∞ T̃
(k)φ, which is the unique fixed point of T̃ given

by the Banach iteration. The calculation (25) shows us that

‖φ̃− φ‖

is small.

8.2 Cauchy-Kovalevskaya theorem

In this section we discuss a local existence and uniqueness theorem which ap-
plies to initial value problems with analytic coefficients. For now we restrict
our attention to d = 1.

Suppose that F : [a, b] × R1 → R1 is n−times differentiable and assume we
are given a differentiable function φ satisfying

φ′(x) = F (x, φ(x)). (27)

We differentiate the right hand-side, which gives

D1F (x, φ(x)) +D2F (x, φ(x))φ′(x).

This implies that the left hand-side of (31) is differentiable and

φ′′(x) = D1F (x, φ(x)) +D2F (x, φ(x))φ′(x).
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Since now we know that φ′ is differentiable, we can derive the right hand-side
of the last expression to obtain

D2
1F (x, φ(x)) +D2D1F (x, φ(x))φ′(x)

+D1D2F (x, φ(x))φ′(x) +D2
2F (x, φ(x))(φ′(x))2 +D2F (x, φ(x))φ′′(x)

As above we conclude that the last display equals φ′′′(x). Iterating we see
that if F is n-times differentiable, then φ is (n + 1)-times differentiable and
its (n+ 1)−th derivative is given by

Dn[F (x, φ(x))] =∑
0≤α1,α2,β1,...,βn,γ1,γn≤n

Cα1,...,γnD
α1
1 Dα2

2 F (x, φ(x))
n∏
j=1

(φ(βj)(x))γj (28)

for some non-negative constants Cα1,α2,β1,...,βn,γ1,γn . One can prove this last
fact by induction.

The idea of the existence theorem presented in this chapter is that in order
to solve17

φ′(x) = F (x, φ(x)), φ(0) = 0,

we use (28) to determine all the derivatives of the solution φ at 0. Then we
construct the Taylor series of the solution. To assure convergence of the Tay-
lor series around the origin, it is required that F is real analytic around (0, 0).

In Analysis I we have already met real analytic function on R. Recall that a
C∞ function is not necessarily real analytic. An example is the function which
equals e−1/x for x > 0 and is 0 for x ≤ 0. The following definition generalizes
the definition of real analyticity from Analysis 1 to two dimensions.

Definition 8.6. A function F : R2 → R is called real analytic around (0, 0)
if there exists r > 0 and anm with |anm| < Cr−n−m, such that for all |x| <
r, |y| < r we have

F (x, y) =
∞∑

n,m=0

anmx
nym. (29)

17For simplicity of notation we consider only initial data φ(0) = 0. One proceeds
similarly if φ(x0) = y0 for (x0, y0) 6= (0, 0).
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The condition |anm| < Cr−n−m implies that the series (29) converges abso-
lutely as for |x|, |y| < r we have

N∑
n,m=0

|anmxnym| ≤ C

N∑
n,m=0

∣∣∣(x
r

)n(y
r

)m∣∣∣ ≤ C
N∑
n=0

∣∣∣x
r

∣∣∣n N∑
m=0

∣∣∣y
r

∣∣∣m ≤ C ′

independently of N .
A two-dimensional analytic18 function is infinitely differentiable and in par-
ticular continuous. We deduce this fact from the one-dimensional theory as
follows. For a fixed y, F (x, y) is real analytic around 0. Indeed, since we
know that the series for F converges absolutely, we can rewrite it as∑

n

(∑
m

anmy
m
)
xn ≤ C

∑
n

(∑
m

r−n
(y
r

)m)
xn ≤ C ′

∑
n

r−nxn.

The expression
∑

n r
−nxn defines another power series convergent for |x| < r

and thus it is real analytic around 0. Therefore, for a fixed y, F (x, y) is
infinitely differentiable in a neighbourhood of 0. Its first derivative is given
by the first formal derivative of the power series

D1F (x, y) =
∑
n,m

anmnx
n−1ym

and similarly for higher derivatives.19 In particular, all partial derivatives by
the first variable are continuous. A similar conclusion can be derived with the
roles of x and y interchanged. Thus, for each n ∈ N, n-th partial derivatives
of F (x, y) exist and are continuous. Hence n-th total derivative of F exists
and is given by the n-th formal derivative of the power series (29). Moreover,
for real analytic functions, (29) equals its Taylor series.

Claim. If F is real analytic around (0, 0) and φ is real analytic around 0
with φ(0) = 0, then F (x, φ(x)) is real analytic around 0.

Proof. First note that it suffices to consider the case when the convergence
radii of ϕ and F are 1. Otherwise we rescale, i.e. replace φ(x) by φ̃(x) =

φ(rx) and F (x, φ(x)) by F̃ (x, φ̃(x)) := rF (rx, rφ(rx)). Note that

F (x, y) ≤
∑
m,n

C|xmyn| and φ(x) ≤
∑
n

C ′|xn|.

18Sometimes we shall shorten ”real analytic” to ”analytic”. We do not discuss complex
analyticity here.

19Recall that ”deriving under the
∑

sign” is allowed due to uniform convergence of the
series on each [−ρ, ρ] for 0 < ρ < r. For higher derivatives one needs to note that for any
ε > 0 we have nr−n ≤ Cε(r − ε)−n, so D1F (x, y) is another real analytic function at 0.
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This gives a hint that one should be able to rather work with the functions

G(x, y) :=
∞∑

m,n=0

Cxmyn and ψ(x) :=
∞∑
n=1

C ′xn.

They are real analytic and easy to handle as they can be explicitly computed.
The idea is now to compare the functions F and φ with G and ψ, respectively,
and use analyticity of the composition G(x, ψ(x)) to conclude the claim.
Observe that ψ(0) = 0 and

G(x, y) = C
1

1− x
1

1− y
, ψ(x) = C ′

( 1

1− x
− 1
)
.

The composition

G(x, ψ(x)) = C
1

1− x
1

1− C ′( 1
1−x − 1)

is a rational function without a pole at 0 and is thus real analytic around 0.
Write f(x) := F (x, φ(x)) and g(x) := G(x, ψ(x)). To deduce analyticity of
f at 0 it suffices to show that for each x ∈ [−1/2, 1/2] and all n ∈ N 20

|Dnf(x)| ≤ Dng(x).

If this is true, then real analyticity of g around 0 implies real analyticity of
f around zero.
We show the required bound for x = 0, the general case is left to the reader.
Since F (x, y) equals its Taylor series around (0, 0), we have

|Dα1Dα2F (0, 0)| = |anm|α1!α2! ≤ Cα1!α2! = Dα1Dα2G(0, 0).

Note that Dα1Dα2G(0, 0) ≥ 0. Similarly one sees that |φ(βj)(0)| ≤ ψ(βj)(0)
and ψ(βj)(0) ≥ 0. We use (28) and estimate

|Dnf(0)| ≤
∑

α1,...,γn

Cα1,...,γn︸ ︷︷ ︸
≥0

|Dα1
1 Dα2

2 F (0, 0)
n∏
j=1

(φ(βj)(0))γj |

≤
∑

α1,...,γn

Cα1,...,γnD
α1
1 Dα2

2 G(0, 0))
n∏
j=1

(ψ(βj)(0))γj

= Dng(0).

20We keep the notation Dnf although f is now a one-dimensional function, so that we
remember that it equals Dn[F (x, φ(x))].
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To deduce the last line it was crucial that all the quantities are non-negative,
so that it was allowed to omit the absolute values. This is the required esti-
mate at x = 0.

Now we return to the initial value problem{
φ′(x) = F (x, φ(x))

φ(0) = 0

for F analytic around (0, 0). We are set to construct a local analytic solution
to this problem. Inductively define the sequence φn by

φ0 := 0

φn+1 :=
∑

α1,...,γn

Cα1,...,γnCD
α1
1 Dα2

2 F (0, 0)
n∏
j=1

(φβj)
γj . (30)

Now we again consider the function

G(x, y) =
∞∑

n,m=1

Cxnym = C
1

1− x
1

1− y

and the IVP {
ψ′(x) = G(x, φ(x))

ψ(0) = 0.

This last IVP can easily be solved explicitly. If we write y := y(x) := ψ(x),
then we can rewrite the ODE as

y′ = C
1

1− x
1

1− y
. (31)

Observe the simple form of this equation: the variables x and y on the right
hand-side ”split”. We can solve this ODE by the so-called separation of
variables. Multiplying the equation by (1− y) yields

y′(1− y) = C
1

1− x
The left hand-side of the last display equals −1

2
((1 − y)2 − 1)′. Integrating

in x and using y(0) = 0 we obtain for x near 0

−1

2
((1− y)2 − 1) = −C log(1− x)

⇔ ψ(x) = y = 1−
√

1− 2C log(1− x).
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Note that all the derivatives of ψ at 0 are positive, which can be seen by
induction using (30). Inductively we also see that for each n ∈ N

|φn| ≤ ψ(n)(0).

The function ψ is real analytic around zero. Therefore, the series

φ(x) :=
∞∑
n=0

1

n!
φnx

n

converges in a positive radius around zero. By construction,

φ′(x) =
∞∑
n=0

1

n!
φn+1x

n =
∞∑
n=0

1

n!
Dnf(0)xn = F (x, φ(x)).

The last equality follows by our claim as f(x) = F (x, φ(x)) is real analytic.
Thus, φ is a solution to the IVP.
We summarize this discussion in the following theorem, which is a special
case of a more general theorem by Cauchy and Kovalevskaja.

Theorem 8.7 (Cauchy-Kovalevskaya). Let F : [−a, a] × Rd → Rd be real
analytic around (0, 0). Then there exists ε > 0 and a unique real analytic
function φ : [−ε, ε]→ Rd with

Dφ(x) = F (x, φ(x))

φ(0) = (0, . . . , 0) (32)

for all x ∈ [−ε, ε].

Existence for d = 1 has just been shown. The IVP (32) uniquely determines
derivatives of all orders at 0 of the solution and hence the Taylor series of
the solution. This implies uniqueness.

We briefly comment on the case d > 1. Analiticity in Rd+1 is defined analo-
gously as in R2. In (28), the products need to be replaced by matrix products.
Instead of 31 one now considers the system of differential equations

y′j = Gj(x, y1, . . . , yd) = C
1

1− x
1

1− y1

. . .
1

1− yd
, yj(0) = 0

for j = 1, . . . , d. Since the system is completely symmetric with respect to
y1, . . . , yd, we make the following ansatz for the solution

y1 = y2 = · · · = yd =: y.
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This reduces the system to only one equation

y′ = C
1

1− x
1

1− yd
, y(0) = 0,

which can again be solved by a separation of variables. Its solution is

y = 1− d+1
√

1− C log(1− x).

The rest of the proof proceeds analogously as in the case d = 1.

End of lecture 24. July 16, 2015
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