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1. INTRODUCTION

Nonlinearly interacting waves are often described by asymptotic equations. The
derivation typically involves an Ansatz for an approximate solution where higher
order terms - the precise meaning of higher order term depends on the context and
the relevant scales - are neglected. Often a Taylor expansion of a Fourier multiplier
is part of that process.

There is an immediate consequence: This type of derivation leads to a huge
set of asymptotic equations, and one should search for a general understanding of
interacting nonlinear waves by asking for precise results for specific equations.

The most basic asymptotic equation is probably the nonlinear Schrédinger equa-
tion, which describes wave trains or frequency envelopes close to a given frequency,
and their self interactions. The Korteweg-de-Vries equation typically occurs as first
nonlinear asymptotic equation when the prior linear asymptotic equation is the
wave equation. It is one of the amazing facts that many generic asymptotic equa-
tions are integrable in the sense that there are many formulae for specific solutions,
conserved quantities, Lax-Pairs and BiHamiltonian structures.

Recent progress in the study of dispersive equations involves

(1) Adapted function spaces. This idea goes back to Bourgain, Klainerman
and Machedon, and Kenig, Ponce and Vega, it has been very successful,
and it has been developed to an art.

(2) Harmonic analysis. Key words are stationary phase, Strichartz estimates,
bilinear and multilinear estimates, Morawetz estimates and localization in
phase space.

(3) Normal form analysis. There are at least two directions: The analysis
of the flow near solitons and possible other special solutions, where the
term normal form would refer to equations describing modes like position,
velocity and scale of the soliton, and transformations leading to higher
powers in the nonlinear terms which can often be handled easier.

(4) Minimal blow up solutions and induction on energy, settling the question
of global existence for a number of defocusing equations, and also below
the ground state mass for some focusing equations.

This text will focus on a contribution to adapted function spaces and their recent
application to a number of dispersive equations.

1.1. Young’s inequality and interpolation. Young’s inequality bounds convo-
lutions in Lebesguespaces gives bounds for the convolution of two functions. It
is part of the statement that the integral exists for almost all arguments of the
convolution. Let m? denote the d dimensional Lebesgue measure.

Lemma 1.1. Let 1 < p,q,7r < oo satisfy
1 1 1

S+ -+==2
p oaq T

)

f S Lp(Rd)’ ge LQ(R"), he L(Rd>
Then
/}Rded f(@)g(z —y)h(y)dm?(z,y) < |fllzellgllze bl -
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We assume that the Lemma holds and choose f(z) = e~ 12 € L"(R?). It follows
by Fubini’s theorem that g(z — y)h(y) is integrable with respect to y for almost all
x. The estimate of the lemma shows that

PRY) 5 f ( h(y)g(a y)dmd<y>) F()dm(z) € R
Rd Rd

defines a linear form of norm < ||g||q||g|| L~ on L". Thus

g * Al Lo < llgllzallnllzr

for
1 1
S=1+-=
q T
Proof of Lemma 1.1, as in [20]. Set
1 1 1 1 1 1
—:1——7i: _777:1_7
4! P 72 q 73 r
Then 1 < v < o0,
L1 11,1 11 1 1
Y2 Y3 P m o3 4 m 2 T
and
1 1 1
—+—+—=1
Y1 Y2 3
Let
a(z,y) = |f (@) [P/ |g(x — )|, b(x, y) = |g(x — y)|97 [h(y)|"",
c(a,y) = | f(@)["/ 72 h(y)|2.
Then

[f(@)g(z —y)h(y)| = alz, y)b(z,y)c(z, y)
and, by applying Holder’s inequality twice

/|f(w)g($ = y)h()ldm** < lal| s [bllzn llel o> = 1 fllze lgllpallh]l -

O

There is an improvement: the weak Young inequality. Let (X, 1) be a measure
space. We will often supress space and measure in the notation. The weak L?
spaces are defined by the quasinorm

£ le, = supt (u({a: f @) > )

If 1 < p < oo then there is an equivalent norm on L?,

1/p
1£llg ~ supt ( / If(y)Idu(y)> |
t>0 {z:|f(x)|>t}

It is not hard to see the equivalence, and that the term on the right hand side
defines a norm.
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Proposition 1.2. Suppose that

1 1 1
1<paQ7T<OO77+7:1+7a
p q r

f€LP and g € LY. Then f(x)g(x —y) is integrable with respect to x for almost
all y and

1S * gl

This is a consequence of the Markinkiewicz interpolation theorem. We state and
prove the following version.

Let X and Y be normed linear spaces. We denote by L(X,Y) the normed space
of bounded linear operators from X to Y.

rr < cpgllfllzellgllzs, -

Lemma 1.3 (Markinciewicz interpolation). Let (X, 1) and (Y, v) be measure spaces.
Let 1<p1 <p2<00,1<q1,q2 <00, 1 #q2, 0 <A<,

1 A 1-—A 1 A 1=A
+ .

)

P op P ¢ @ ¢
Suppose that

T e L(LP (p), LYy (v)) O L(LP2 (), L (v)).
Then T € L(L2 (u), LY, (v)), and

A 1-X
TNz zt0.e800 < TNz Lo oy, L8 @ IT I Zr2 (), 222 0

and, if p < q, then T € L(LP(u), L4(v)) and

A 1-X
1Tl 2Lr(y.Lawy) < ATNL o g,z oI L Dr2 (0,222 0

with a constant ¢ depending only on the exponents.

Proof of proposition 1.2 . Let f € LP and Tg : LY — L™ be the convolution with g.
We interpolate the estimate with p; = 1 and ps = p’ and g1 = ¢ and g2 = oo to get
the estimate in weak spaces

fllze.

Now we fix g and consider T": f — f % g, and get

If*glley < llgllzs,

1 * gl < el fllzellglies,
by the second part of the Lemma. O

It is useful to generalize and sharpen the Markinciewiecz interpolation estimates
before proving them.

Definition 1.4 (Lorentz spaces). Let (A, ) be a measure space and 1 < p,q < co.

We define
e3¢} ad 1
1l zragey = (q / (s 11 (@) > 0)*/7e) f)

with the obvious modification for ¢ = oco. We denote by LP1(u) the set of all
measurable functions f for which || f||Lra(,) < oo.

/a

Properties:



NONLINEAR DISPERSIVE EQUATIONS, SUMMER TERM 2013 5

(1) Since

{z:[f(x) +g(@)| >t} C{z:|f(2x)] >t/2} U{z: |g(x)] > t/2}
it follows that

u({w: |f @)+ 9(@)] > ) < pfo: 1f@)] > 1/2}) + plfa : lg(@)| > /2})
and hence
1f +9llzea < c(fllLre + llgllzra) -
(2) For 1 < ¢
[fllzpaz < cl| fl[rar -

We begin the proof with
t

t
({1 = 1))t = g / u({If] > t})s71ds < g / u({If] > s})s7 " ds < || ]| %00
Now, if ¢1 < ¢o,
> dt _q - q
” / ({1 > )75 < | s < 2 f B
0 q1 q1

(3) If1<p<ooand%+i:%+%:1thereexistsc>0suchthat

/fgdu’ < cll fllzvallgll pora-
For the proof we define f* : (0,00) — RT to be the unique function with

m ({7 f*(r) > t}) = u({z : f(z) > t})
for all t > 0. Then, using Fubini several times (with the Lebesgue measure
p =m? for definiteness, but the argument holds for general measures)

/|fg|dmd =mT2({(z,5,t) ERI xR xR:0< s < |f(x)],0 <t <|g(z)|})
:/ me({z: |f(2)] > s} N {x: |g(x)| > t})dsdt
R+ xR+
S/ min{m?({|f(z)| > s}),m*({lg(x)| > t})}dsdt
Rt xR+
= [ @] > s 0] > t)dsde
R+ xR+
= [ rmg o
0
which we use below,
[ tain< [ g
= [ @y o

oo 1/q 00 1/q’
< </ t(q/p)l(f*)th) (/ t(q//p/)l(g*)q/dt>
0 0
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The last inequality is an application of Holder’s inequality. The proof of
the third part is completed by the equality

4™ a1 otdt— o [ (u(lF(x)] > s))9/PsT-1ds
(L1) p/o HaD=1 (5 (1)) dt—q/o (u(lf ()] > 5))1/PsTds.

in one dimensional calculus. We observe that
s—=m*({r: f*(1) > s})
is the inverse of f*. Both functions are monotonically decreasing.
Let f and f~! be inverse nonnegative mononically decreasing func-

tions, and g and h nonnegative monotonically increasing functions with
antiderivatives G and H with

HH)G o f(t) =0

ast — oo and t — 0. Then by an integration by parts and one substitution

/OOO hG o fdt == /OOOHgoff’dt— /OwHofl(s)g(s)ds'

This specializes to (1.1). Moreover, checking the inequalities shows that

1l e < esupd / fodp gll o < 13-

(4) This pairing defines a duality isomorphism if 1 < p < co and 1 < ¢ < co.
In particular all spaces LP? with 1 < p are Banach spaces.

D759 (F = [ fad) € (L1

To prove it we choose B to be a measurable set of positive finite measure.
There exists p > p so that LP(B) C LP4. If [ is a bounded linear functional
on LP4 then it defines a bounded linear functional on L? which is represented
by a function g € L (). The previous step gives a bound for ||gx 5|l pa
in terms of [.

We order the measurable subsets of A by inclusion up to sets of measure
zero. This defines a partial order on the subsets on which the duality
statement holds. Every chain has an upper bound, the union of the chain.
By the lemma of Zorn there is a maximal element. The procedure above
allows to show that the maximal set is necessarely the full space.

In particular duality allows to define an equivalent norm on LP4(u) for
1 <p<ooand 1 < g < oo Completeness of dual spaces is obvious.
Completeness of LP!(y) is left as an exercise.

Lemma 1.5. Suppose that 1 < p1,p2,q1,q2 < 00,
T € L(LP (), L™ (v)) 0 L(LP2 (n), L= (v)),

PL# P2, 1 # G2, 0<A<1and
1 1—A A
= + =

1—Xx A

1
2 TR A R
and 1 <r < .
Then the operator can be continuously extended to T € L(LP"(u), LI"(v)). More-

over
A 1-X\
Wz ooz < TN o o, 3 @ 1T 2 ), 252 0
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Proof. An easy calculation shows

S D)
(1.2) Pp —— _©
1-2 A

p1

This will be useful lateron. Let t > 0 and

O f@) i) <t
felz) = { @@ i |f@) >t

and ft! = f — f;. Then
f=h+r

and, if p; < p < pa, which we assume in the sequel,
_ L
I e < (p—po) /Pt o || £)1 78
and

_r 2
[fellzes < (2 — p) P05 11152

with obvious modifications if py = co.
Moreover, by the triangle inequality,

(ITf] >t} C {Tf* > /2y U{Tf, > t/2}.

Let
a; = HT”L Lp1, L) az = ||THL(LP2 Li2)
and
Q2 —q1
q2(1 — £) — fh(l — ﬁ) (1=MNg/q1 =1 Aq/qp—1
s=t D2 1 a, 1-p/P1 a21—p/p2 .

Step 1. The bound in weak LP space. We want to prove
W{ITf ()| >t} < ca a3
for || f||» = 1 with ¢ depending only on the exponents. Then
W{ITS > 1)) < ¢ (BT S| %y + 072 | Tf % )
e (U af | £ T + 12 ag | foll e

=c (tq—q15q1—q1p/p1 Hf||l£‘§/2"1 + tq—qzqu—qu/pz ”lezg/m)

_ <11(<12 a1) g—qa— 42(41)\1*@) (1-A) ar
[E N q(1—
—c a2 152 a1 +t a1 7=x T92 al ag

—c tql[q/ql 1=(a/q1—a/a2)A] 4 yazla/a2—1—(a/a2—a/a1) (1~ A)]) 9072 A

1)) ar
ca‘f( )q

This completes the proof of the weak type estimate.

Step 2: The endpoint L(LP!, L9') We assume that 1 < py,p2,q1,¢2 < oo which

can be achieved by the first step.
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By duality, with constant changing from line to line

IT||er <csupf / (TH)gdv : g o

:csup{/fT*ng: gl parr <1}

=c| f||Lra ||T*||L(Lq/’rl(V),Lp/’q/(/L))

and hence, for 1 < p < oo,

”T”L(LP”‘,L'F) < C||T*||L(Lq'r',Lp'r')-
We apply this with LP11 — L91® to see that

HT*|‘L(L11£1’LP,IL'OO) S CHT”L(LWI,L‘UW)
for i = 1,2. From Step 1

HT*HL(L«I’OO,LP/OO)

satisfies the desired bounds. Duality again gives the statement for r = 1.

Step 3: Interpolation in LP.
Suppose that T € L(L'(u), L*(v)) N L(L>(p), L> (1)) with norm < 1. Then

1/p
1
1T fllor) < <p—1> Il e )

We begin the proof with the observation
{ITf] >t} C{Tf >t/2} U{Tf" >t/2}.

The first set is empty by assumption on the norm of 7. Hence

p/u({\Tf| > t}tP dt Sp/l/({Tft > t/2)tP~Ldt
< [ Il
= [ [t = ase-2a
= [ [ et = shs

1
— p
1

Step4: Conclusion
We have proven the bounds for ||T'[|(zp.o ra.) and ||T'||(ze.1 za1)

Let
filz) = { fl@) 3 (@) > [f@))P)f )] <t

0 otherwise
and f' = f — f;. We assume that the bounds for T are 1/2 as above. Since

[ fellLe <t
we have
{ITf(2)| >t} C{ITf ()| > t/2}
Let
g'(s) = p({If*| > sH)Ps < u({If] > s})"/Ps
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We proceed as in Step 3.
O

1.2. Complex interpolation: The theorem of Riesz-Thorin. The Riesz-
Thorin interpolation theorem states the following.

Theorem 1.6. Let 1 < p1,p2,q1,q2 < 00. Let Th, 0 < ReX < 1 be an operator
from LY N L>® — L' + L>. Suppose that

)\—>/T)\fg

is continuous in 0 < Re X < 1, holomorphic inside the strip, for all f € L' N L>®
and g € L' N L*>. Suppose that

sSup HT)\HL(Lpo,qu) = Co
Re A=0

and
sup [T\ ||z(zrr,pay = C1.
Re A=1
Then
1T\l Lczr L0y < CyRerofer
if

1—ReXA Rel) 1
- 4 P

Po n p q0 q1 q
The proof relies on the three lines theorem in complex analysis:

1—ReA Rel 1
- 4 —

Lemma 1.7 (Three lines theorem). Suppose that v is a bounded holomorphic func-
tion on the strip C = {z = x + iy : 0 < x < 1} and that it is continuous on the
closure. Then

lv(z)| < (Sgplv(iy)\)l_z(sgplv(l +iy)])".

Proof. By the maximum principle of harmonic functions any harmonic function on
a bounded open set, which is continuous on the closure, assumes the maximum of
the modulus at the boundary. This is true for

e(z+iy)? 1

U =€ sup |u(1 + y)|) ™7 sup |u(iy)|)*~
Y Y

on C'N Bg(0) for every R. This function tends to 0 as y — oo hence
|ue (x +dy)| < max{sup [u(iy)[)' =", sup [u(1 +iy)|)"}
Y y
and € — 0 gives the result. O

Proof of Theorem 1.6. Let f € L'(u) N L*(u) and g € L' (v) N L>(v). Then, by
assumption

o) = [ Tasgdv
is a bounded analytic function. By the three lines theorem 1.7 we have

lv(A)] < sup max{lv(it)], [v(1 +it)[}

‘ / Ty fodv

and

<N Tt fll oo lgll oy < CollfllLrollgll oy -
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Similarly

’/TlJritfng <N Tayieflallgll o < CollFllzes gl Lo

thus

[ @ 11gdu] < maax{Co, 1) (17 em gl + 11 ol )

and we could derive that

HTHL(LPOOLN ,L904L91) < max{C’o, Cl}

but we will avoid this step. Let f € LP and g € L7, We want to prove

/ gINf

for f € LP and g € LY. The theorem follows then by an duality argument.
Moreover it suffices to consider a dense set of functions, which are measurabe,
bounded, and for which there is ¢ > 0 such that either the functions vanish at
a point, or else are at least of size e. Moreover we may restrict to f and g with

[fllze = llgllLe = 1.
Let

1-X

(1.3) 9||L<1’ sup ||TinLsz17Lq1) sup ||T1+iy||2(LP2,Lq2)'
Yy Yy

< [l fllze

£o(@) = F@/ @)1 (@) 5o

(1-2)L 29
g:(x) = g(x)/|g(x)||g(z)| "0 ~n
and

wa:/%@nﬁ@wwy

This is a bounded holomorphic map from the strip to L' N L> with values in C.
We claim that it is continuous on the closure of the strip at an arbitrary point A.
We write

o) o) = [or(T = Tfsdr+ [(0: = T fs + 0.Tef = )i
The first term tends to zero as z — A by assumption. Then

g.—gr—0 andg,—fr—0 asz— A

in L' N L>. Continuity follows by the uniform bound above.
We turn to complex differentiability at an abitrary point A in the interior. Indeed

v(z) —v(N) _ [ ox(T. — T frdv N / 9: =N b+ /ngz fe= i& v

zZ—A Z zZ—A —
The first term converges to a complex number by assumption. Moreover
9z — gx
z—A

converges to a function gj in L' N L as 2 — X. Let § be the difference between
the difference quotient and ¢}. Then

/g;_iszf)\duz/ngAfAdl/-‘r/gTzf)\dV+/g/(Tz = To) fadv.

The second term tends to zero since § tends to zero in L' N L> and the third one
by the continuity assumption as z — A. Similarly we deal with the last term.
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We turn to the behaviour at the boundary.

lu(it)] = /thfitgz'tdlf <\ Titll czro, Loyl fitll Lro || gitl Lao

and
1 £llzeo = A5 = 1= llgarll .y = gl
We apply the three lines theorem 1.7 to get

lv(z)] < sup 1oy |5 s pany SUP | Taiy [T (Lo Loz
y
We evaluate it at z = A, which gives inequality (1.3). O

1.3. Stationary phase and dispersive estimates. We begin with a number of

evaluations of integrals. Let
I; = / e““’lzdmd(m).
Rd

Then, with Fubini,
2 2
Id1+d2 :/ €_|m1| ~ a2l dmdl+d2(x)
R1 xR92

= e—\w1\26—|w2\2dmd1+d2(x)
Rd41+td2

a2 o2
:/ e~ 17l / e 172" gm®2 dm®
R41 Rd2

2
:Idz/ e~ 1Pl gmd
Ré1

=14, 14,

hence
I;=1%
Applying Fubini twice we get

Lo =m™ ({(w,t) 10 < t < e 1Y)
/m (o e > 1)t
- / (B 112 (0t
—m(B1(0) [ ' In(t)2ds
—m? (B, (0) /0 T 25
=m(By(O)F (5 +1)

and hence I, = 7, I} = /m, I; = 7%/

/2

m®(B1(0)) = m



12 HERBERT KOCH

and
r(3)=20(C) = vr.
We proceed with
I(7) :/oo e 2% dx

for Re7 > 0. Then

d 1 1 0t
%\/tJrisI(tJris) :m\/tJrisI(tJris) - 5\/t+is[m e T 12y

Vit+1is ) X d tyis
=" " [ I(t — d
30 +is) (+ZS)+/,Ode6 = xpdr

Vi+is ) © this 2
e —— I — —3 7
2t + is) (t+is) /_oo ¢ da

:0

and similarly
dii\/t +isI(t+is) =0
Thus
VTI(T) = V2I(2) = V2r

and hence

(1.4) /e_%”“jd;v: 27r.

Now we fix 7 and study
/e_%”zxkdx.

This vanishes when k is odd, since then the integrand is an odd function. Let

2k —1

J(k) :/67%x2x2kdx:
-
2
=134 % (2k— 1)k /2

pn

_ 1 —1d2 k,.2k 2m
T @) " LoV T

Let p be a polynomial. It is a sum of monomials and hence

a2 M~ 1 d?
[ ponts = Y S e
k=0

The higher dimensional case is contained in the following lemma. Let A =
Agp + iA; be a real symmetric d X d matrix with Ag positive definite. This is
equivalent to all eigenvalues A; being in {A : ReA > 0}. Let (a;;) be the inverse.
By an abuse of notation we set

det(A)712 =T A2

J(k —1)

=0
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Lemma 1.8. Let p be a polynomial. Then
d

(1.5) / em2 A% (2) dy = (2) " Y2(det A)*l/z%k!( > a0} ()

3,j=1

Proof. We begin with a fact from linear algebra and claim that there exists a real
d x d matrix B and a diagonal matrix D such that

A= BDBT.

By the Schur decomposition there is an orthogonal matrix O and a diagonal matrix
with nonnegative entries such that

Ay = OD,O.
We set By = Ov/D. Then
Ap+iAy = By(1 +iBy ' Ay ByT)BE

Again by the Schur decomposition there is an orthogonal matrix U with and a
diagonal matrix D; with

By'AB;T =UuD,U”
hence
Ay +iA; = B(1+iD;)BT
with B = BoU. We set D =1+ ¢D;.
We change coordinates to y = BTz. Then

yT i Yy
/eﬂTzAwP(x)dmd(w) = (detB)fl/ef S (B Ty dm (y)

and by Fubini and the previous calculations

T (144
/GJ S dmt(y) = 0

if one of the indices is odd, and otherwise, with d; the diagonal entries of Dy,

T p, 1 )
—¥ DY o0 diN d/2 —1/2 S aN=192  \aj, 29
/e Erypedm(y) =(2m) " det(D) 2 TT (L + id) 708, )|
:(27T)d/2 det(D)71/2 1 [D7162}|a\ya
2‘“”0&” y=0

Thus

/eJ 2 g(y)dm?(y) = (2m) Y2 det(D) /2 Z[D”@z]kq(y))

k=0 v=0

We complete the calculation by
(det A)Y/2 = (det D)'/?(det B)
and, by the chain rule,

> ai;d2,, p(x) = D' 2p(B~"y).
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Observe that the formulas on the right hand side have a limit as A tends to
a purely imaginary invertible matrix. We call the integral on the left hand side
oscillatory integral in that limit.

Oscillatory integrals play a crucial role when studying dispersive equations. We

consider
I:/ a(€)e™ @) de.

where a and ¢ are smooth functions. The simplest result is

Lemma 1.9. Suppose that a € C°(R?), ¢ € C(R?) with Im¢ > 0 and
[Vé| +Ime >0

on supp a. Given N > 0 there exists cy with
[I(7)] < eyt V.

The constant ¢ depends only on N, the lower bound above, and derivatives up to
order N.

Proof. By compactness there is £ > 0 such that
Vol +Ime > &

on supp a(€). Using a partition of unity we may restrict to the two cases:

(1) Im¢ > K/2 on supp a, in which case we get a bound Ce=*7/2

(2) [V¢| > £/2 on supp a, which we consider now.

We write
[a@em e ~r)t [a@Ivol 2vovesag
L Vo, ;
=(ir 1/ V- Cl(g) €ZT¢(£)CZ )
(i)™ [ (V- (g e e
Induction implies the full statement. (I

In many cases these bounds hold even for non compactly supported a.

Lemma 1.10. Suppose that A = Ag + 1A; be invertible with Ag positive semi-
definite. Let n € C5°(RY) be identically 1 in a ball of radius 1, and supported in
Bs(0), and let a a smooth function with uniformly bounded derivatives of order M
for some M >0 and 0 < s < % Then

/e*%wTAze*‘ElIIza(x)(l —n(zr )| <ent N

with ¢y depending only on N, the norm of A and its inverse, and derivatives up to
some order M(N) of a and n, but not on € > 0. The limit ¢ — 0 exists.

We will use the formula with € = 0.

Proof. We argue similarly to above. Each integration by parts gains as a factor 7,
unless the derivative falls upon 7. In that case the gain is only 7!~* and we also
loose a power of |z| 1. Otherwise we get a factor |z|~! + |z|72.
On the support
7'_1|.’1?|_2—|-TS_1|$‘_1 S CTQS_l.
and integrations by parts gain us 727!, If no derivatives fall on 7 there remains
an integration over whole space, but we gain a factor bounded by constant times
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|#| =1 + || =2 for each integration by parts. After K integrations by parts we can
bound the integrand (if no derivatives fall on 7)) by
PG (14 faf)Mfa] K

which for K > M + d gives

/ emmar Aremelel o () (1 — ) (a7 7)

<corUKG—1) / (1 + [2])M [z %
ja 27—

<oy K= Dts(K—d)

and we gain integrability uniform in €. If a derivative falls on e~¢ l=1* this gives
—Q:Ujsefsw

which is bounded by a constant times min{y/z,|z|~!}. The integrand (after the
integrations by parts) converges pointwise with a majorant as above. This gives
the limit as ¢ — 0. (]
Similar statements hold for more general phase functions if
V| > clz|° for |z| > R

and

0%¢| < [«|°|V|  for |z[ > R
some R and 4, and |a| > 2.
Lemma 1.11. Let A be invertible, symmetric, with real part positive semidefinite,
and a € C*° with bounded derivatives of order > M. Then
(1.6)

N
/efngA‘ra(x)dx — (2m)¥277%/2(det A)~1/? Z Tﬁk(z a;j0%)*a
ij

k=0

=0

< eyrN-1-d/2,

Proof. We subtract the Taylor expansion of a up to some order. We choose 0 <
s < % decompose the integral into

/ e 3 AT (r ) (a(x) — plx))da + / e 5 AL = ylar)](a(x) — p(x))da.

The first integral is small by Lemma 1.10, and the second is bounded by
Ts(dJerM)

where NN is the degree of the Taylorpolynomial, and M is the integer for which the
derivatives are bounded. g
Now we consider
I(r) = /eiW(m)a(x)dx

where a is compactly supported, O is the only point in the support where the
imaginary part of ¢ and V¢ vanish, the imaginary part of ¢ is nonnegative.

Lemma 1.12. Let % <s< % Then, with n and n as above, a € C§° and N > 0

‘/e‘w(x)n(am'_s)a(x)dx

< CNT_N.
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Proof. The proof is the same as for the quadratic phase. Again this formula often
holds without assuming compact support. ([

‘We write

o(x) =ag+ %wTAx + (x)

where 1 is smooth with ¥ (z) = O(|z|?).
Theorem 1.13 (Stationary phase). Under the assumptions above

N
|/ eiwa(:c)d:r - (27T)d/277d/2(det A)fl/ze‘l&(o) Z

k=0

1

Ik (‘11'1'32)}c [eiw(x)a(l")}mzo

< er—4/2=N+1/3,

Proof. We assume that the real part of A is positive definite. The general statement
follows then by an obvious limit.

We choose M large and write ei™%a = pys(z) + ras(z) where pys is the Taylor
polynomial of degree M, and 7, is the remainder term. Clearly py; depends on 7
with typical terms of the type being polynomials in 72 where « is a multiindex of
length at least 3, and x;. We write the term in the bracket as a sum of three terms,

/eiwa(m)(l —n(x7r?))dx

[ = @)1~ nar))ds
and
/17(307'3) {e”‘i’a(x) — e_ngAxpM(x)} )

Lemma 1.10 and Lemma 1.12 control the first and the second term.
The third term is bounded by

des+M(172s) )

We choose s between % and % and M large. Finally we check the bound for the
sum from N + 1 to M term by term using Lemma 1.8. (]

In the one dimensional setting the situation the Lemma of van der Corput pro-
vides an extremely useful and simple estimate.

Lemma 1.14. Suppose that d =1, a is of bounded variation with support in [c, d],

b € C*(R) with k > 1, ¢ real, and ¢ (&) > 1 for € € [¢,d] and supp a C [c,d]. If
k =1 we assume in addition that Re ¢’ is monotone. Then

I= ‘/a(m)ew("”)dx

§3k:7'_1/k/|a’|dx.
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Proof. We begin with k = 1, assuming that ¢’ is monotone. It suffices to consider
the case when the support of a is a compact interval [c, d].

‘/aeid’dx :‘/a/qb’ddxewdm

-|[ /)

<sup |al

R
I 9@

§§T*1 / la’|dx
2

We use induction in k& on the inequality

‘/ a(z)e' @ dy

Suppose that the estimate holds for k—1 > 1 and we want to prove it for k. Suppose
that there is point & with ¢*~1) (&) = 0. We decompose the interval [c, d] into
[e, &0 — 0], [€o — 6,&0 + d] and [§y + d,d]. Then, by induction

] < 25““”%1) +2(k — 1)(57)_1/(k_1)<||a||sup + ”a/HLl)'

ot [l

< QkTil/k (”aHsup + Ha,”L1) :

We choose § = 7~ %. Then
1 a1
1| < 2k %77 % ([lallsup + la[l 1)
which implies the desired inequality. O

1.4. Examples and dispersive estimates.

1.4.1. The Schrédinger equation. We consider the linear Schrodinger equation
0w+ Au =20
A Fourier transform (see next section) gives
10t Fpu — €2 Fpu =0

and hence the unique solution in the space of tempered distributions is given by its
Fourier transform

Fru(l) = e‘”lf‘z}}u.
Then

! /4\5\2 !
e sl de = .
(27-‘-)(1/2 Tth

Moreover a change of coordinates shows that

(1.7) 7/e—z(t|s| —x&)dgzezﬂ/eztg oo L gf
(2m)d/2 md

Again we supress the approximation by a positive definite real part, and the
corresponding limit.



18 HERBERT KOCH
1.4.2. The Airy function and the Airy equation. We consider the Airy equation

U + Uggz = 0.
The Fourier transform transforms the equation to
Foup = (ik)3 Fpu
and hence, as above
Fout,€) = Foe™ u(0)(¢)
The Airy function is defined by

1 21 3
Aj _ i5& +m§d
i(z) = 5 / e 3
where the right hand side has to be understood (as usual) as
1 1,3 2
: 1387 —e|€]“ +ixg
gl_I)r(l) 2m /e ’ dt.

As above for the quadratic phase function we see that the limit exists at every
point.
The phase function is
1
66) = 5€ +at
has the critical points
&= —z.
If x is negative there are two real critical points.
We choose a € C*(R), supported in [—1,00) and identically 1 in [1, 0c], with
n(&) + n(—&) = 1. Then Ai(x) is the real part of
1 (10
— [ petGE w0 ge
2T

There is no harm from the noncompact interval of integration and we to apply
the stationary phase, Theorem 1.13 for x — —oo. The Hessian at the stationary

points is 7 := 6(—z)'/? and we write

6(&) = 7(9o(§ — (—2)'/?)

where

Po(n) = {GT

1
ST a3 4 22
e @t 277
which satisfies
$0(0) = 0,¢5(0) = 1, ¢’ = [~6a] /.
After a shift we write the integral as

1. 3 )
122 /n(n+ (—)1/2)eiméo0(n) gy

2
The application of the stationary phase theorem, 1.13, gives
1 2
Ai(w) = —=fa] " cos(gal* - D] < clal 7

and there is even an asymptotic series. To see the error term we compute the next

term, the sixth derivative of €' (") evaluated at 0. It gives an additional factor
—3 _3

T8 = x| 2.
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For large positive x we need a different idea. For positive x there is fast decay
and we want to determine the leading term. In this case the two critical points are
purely imaginary real, and we shift the contour of integration to

£ +ivz.
To be more precise we define
Ai,(z) = 1 /ei[é(£+ia)3+z(£+ia)]
2T
We expand

i[é(f +i0)® + x(€ +io) = i(éé?’ +a2l—E0%) —o( +a— %oj)

We calculate using the Cauchy Riemann equations

d 1 O (p3 2 2 1 2
— Ai, = = = [ ;L i€ Fat—E0") (& Hr—307) g¢ —
do (z) 2w /Zafe ’ ¢

and hence .
Ai(z) = 1 /ei%£3—ﬂ£2—%r§)d§
2

with the critical point £ = 0, at which point the Hessian is /2. We argue as above
and obtain

3
2

7
1/467%x s

Nlw

_3
5T

(1.8) Ai(x) — < clz|" e

1 |
—|x
2/
The lemma of van der Corput ensures that the function Ai is bounded. More

is true: About half a derivative of the Airy function is bounded in the following
sense:

Lemma 1.15.

’/|€|1/26i(£3+r£)d€’ <C
This is left as an exercise.

1.4.3. Bessel functions. This was not part of the lecture. Nevertheless I want to
keep the material here.
The Bessel functions are confluent hypergeometric functions. They are solutions
to confluent hypergeometric differential equations. Here is a very brief introduction.
Consider a complex differential equation

with initial data
29 (20) =y
for j =1...n—1 and given complex numbers zo and y;. If the coefficients are holo-
mophic in a neighborhood of zy then there is a unique solution which is holomorphic
in z and the y;.
Consider the scalar equation
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The space of solutions is at most 1 dimensional. Formally a solution is given by
r = (2 — 29)", which, unless z is an integer, is only defined in a set C\(—o0, 2]
called slit domain. Similarly, if

A

zZ— 20

+ ¢(2))x

with a holomorphic function ¢ near zy there is a unique solution of the type

1+ Zak(z - zo)k]
k=1

again defined in the slit domain as above unless A is an integer. The number A
is called characteristic number. It is not hard to see that there is a unique such
solution, and the power series can be iteratively defined. The point 2 is called
a regular singular point. A point is called irregular singular point if the Laurent
series of the coefficients contains terms below (z — zo)~*

We call oo regular point resp. regular singular resp. irregular singular point for

=

(z — zo))‘

z=a(2)x

if, when we express z in terms of z~!, 0 is a regular resp. regular singular or
irregular singular point of

—2

i=—z"2a(z" Yz

We use the same notation for systems of equations. The eigenvalues of A in

A(z)x + f(2)x

j’;:

zZ— 20
are called characteristic values. They play a very similar role as for scaler equations.
Multiple characteristic values and or resonances ( a resonance denotes the situation
when eigen values of A are linearly dependend over the integers ) may lead to
logarithmic terms.
We are interested in second order scalar equations

a(2)d +b(z)x + c(z)x =0

with meromorphic functions a, b and ¢. We may rewrite them as a 2 x 2 sys-
tem, which we use to define the notion of a regular, regular singular, and irregular
singular term. The point zq is regular if b(z)/a(z) and ¢(z)/a(z) have a holomor-
phic extension near zy. It is a regular singular point if the Laurent expansion of
b(z)/a(z) begins with coz~! and the one of ¢(z)/a(z) begins with ¢1272 + coz7L.
The characteristic numbers can be calculated in terms of the Laurent series. If
there are independent over the integers then there are unique solutions of the type

vy 5
zgajz

where +y is one of the characteristic numbers.

Of particular importance is the case when there are only regular singular points.
In that case there are exactly three of them, and applying a Moebius transform
we may choose them to be 0, 1 and co. Moreover, multiplying by z*(1 — 2)* we
can ensure that one of the characteristic values at 0 and 1 is 0. These are the
hypergeometric differential equations

2

d d
z(lfz)@ij[c—(a+b+1)z]d—:l)—abw:0
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The characteristic numbers at z = 0 are 0 and 1 — ¢, the ones at z = 1 are 0 and
c—a — b, and the ones at infinity are —a and —b.

The regular solution near 0 is denoted by

oF1(a,b;¢; 2).
The Bessel differential equation is
220 + wi + (2% — v*)w = 0.

It has a regular singularity at z = 0 with indices +v, and an irregular singularity
at z = co. The Bessel function of the first kind is

1 oo

_ 1 (3"
T =52 kZ:O(_l)kk!F(:—kk—i—l)

We have unless v is negative integer

T (z) — (%z)”/F(V +1) = O(|2[*"*1) near 0

2 1 1
Ju(z) — 1/ - cos(z — V= 17?) + elm=lp(1)

for 2z — oo and v € R.

There is an integral representation for v > f%,

1Z v 1 .
JU(Z) :ﬂ_l/z(FQ(V)_'_;)/O (1 — t2)yii COS(Zt)dt
(lz)l’ T . 2v
:77T1/2F2(y+ é)/o cos(z cos()) sin(9)*¥ dt

and Schlafli-Sommerfeld, if the absolute value of the argument of z is bounded by
T,

2 1 oo+ it
Ju = zsinht—vt 5
(2) 2%2/ ¢

co—Tt

o (2) :%/O (1 — 2)"= cos(z)dt
(52)"

0+ 22 "
t— —)t7VTdt
omi /,OO exp(t = )

They satisfy

d " v v—m
(m> (CU Jy) =T Jl,fm.

See [24] for more information. We want to evaluate (with the Hausdorff measure
of dimension s denoted by #H?*

/ ei:pfdsz—l :/ sz—Q(Sd—Q) Sind—Z(g)ei\w\ cos(@)de
Sd-1 0

a1 1 a2
=Jaca ()% (5 al) =
This function is real and radial and we define - using stereographic coordinates

_{ 2un 2y2 —1+y|?
(21 2 n) <1+\y|2 T+|y[? T+Hy[?
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with Jacobian determinant
2d—1

(L+ Jy[?)*t
We choose a suitable smooth function 7 supported in [—1/2, 00), identically 1 in
[1,00) with n(—t) + n(t) = 1, and apply the area formula

[ et <ke [gaeieant
-1 2 it 9d-1
ZZRBu/' U( +¢y| ﬁf‘liiﬁmr dﬂ@d_l(y)
Rd—1

1+ [y|? (1 +[yl)*=t

and an application of stationary phase gives

Lemma 1.16. For all k € N

k
d —i L[y, ity 4 d—1
— T +Hyl2 —
(dr) { /RH”(H\yP)e AP ER

Proof: Exercise.

d—1
< ckr_T_k.

1.5. The Fourier transform. Let f be an integrable complex valued function.
We define its Fourier transform by

(1.9) 7€) = Gy [ € @)

1.5.1. The Fourier transform in L'. Properties are
1) The Fourier transform of an integrable function is a bounded continuous function
which converges to 0 as |[¢| — co. It satisfies

1 sup < @)= ¥2 ) fl| 11

The estimate is obvious, as is the continuity if f is compactly support. The limit
as r — oo follows by an integration by parts if the integrand is compactly sup-
ported and differentiable. Those functions are dense, and we obtain continuity and
vanishing of the limit for compactly supported functions. The limit

lim e~ S f(x)dm?(x)

R—o0 BR(O)
is uniform, and hence the Fourier transform is continuous and converges to 0 as
& — o0.
2) For all  and y in RY

(1.10) fle+n) =emay
and
(1.11) Fl+y) = e ().

This follows by an simple calculation.
3) For f,g € L'(R)

Fxg(6) = 2m)"2£(€)4(6).
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which follows by application of Fubini’s theorem:

W / e / FW)g(a — y)dm?(y)dm €)
B / / eV fy)e TV g(x — y)dm? (y)dm ()

= [ [ e g)am @dm )

=(2m)2 f(£)4(¢)
4) For f and g € L*

(1.12) /fgdm /fgdm

This is seen by applying Fubini to

/ / e~ f(y)e T Ve g(y)dm (y)dm (x).
5)
o—blal? — o 3Ie?
We calculate as above

(271')7(1/2/67iz§7%|m|2dmd($) _ (271-)*51/2/6*1'(90*“7)5*%(I*in)Qdmd(m)

for n € R™. We set n = £ and get
(27r)7d/267¥ em2lel gy = 67#.

1.5.2. The Fourier transform of Schwartz functions.

Definition 1.17. We say f € C>®(R?) is a Schwartz function and write f € S(R?)
if for all multiindices a and B

128 fllsup < 00
We say f; — f in S if for all multiinidices

9P f; — 20 f
uniformly.

We collect elementary properties.
1) f € S if and only if z29°f € S for all a and S3.
2) f € S implies f integrable.
3) f € S and g € C™ with bounded derivatives implies fg € S.
4) f € S and A an invertible d x d matrix implies fo A € S
5) f € S and x9 € RY implies f(. +x9) € S.
6) We say that a distribution 7" has compact support, if there exists a ball Br(0)
such that for all functions f in C§°(R?) with support disjoint from Br(0) T'f = 0.
We can easily extend such distributions to Schwartz functions (exercise).
We define the convolution with a Schwartz function by

Txf(x) =T(f(z—"))
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This is well defined and T * f is a Schwartz function whenever f is a Schwartz
function. To see this we recall that by the definition of a distribution there exist
C >0 and N > 0 such that (since f has compact support)

TP < enllfllex-
Taking difference quotients shows that x — T x f(x) is differentiable and

;T f=T=x0;f.
Recursively we see that T f € C'°°. Morever
1f(z = e~ Broy < e+ lz)~

for Schwartz functions, and hence T * f is a Schwartz function.
7) f,g € S implies f*g € S and

(1.13) Frg=(@m*fj

If f € S and S is a distribution with compact support then
Sx f(x) :=8(f(x—.)) €S.

8) All the operations above are continuous.

Theorem 1.18. If f € S then f € S, and vice verse,

m = _ia§jf
%fojf

and the Fourier inversion formula

£@) = (22 [ e feyamc)

and the Plancherel formula
[ faam() = [ rgamz)
hold. If A is a real invertible d X d matriz then
FoA(©) = (det|A) 7 f(477¢).
Proof. According to property (1)
0P feS
and hence %97 f is integrable. With the first calculation
2o(=if? f) = —i0°¢’ f

which is bounded by the second observation. Thus f € S. We calculate

F(@m) P73 f) = e f(g)

and, with 7 — oo
£0) = 2m) 2 [ fa.

Together with the formulas (1.11) we obtain the inversion formula

f(x) = (2m)~4/2 / 7€ f(€)de.
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The Plancherel formula follows by (1.12). The last formula follows from

(27T)_d/2/e_m'gf(Aa?)dmd(x) = (27m)"Y?| det A| ! /e_i(Afly)'éf(y)dmd(y).
O
1.5.3. Tempered distributions.
Definition 1.19. A tempered distribution T is a linear map
T:5—-C
which is continuous, i.e. f; — f € S implies
Tf —=1Tf

We denote the set of tempered distributions as S*. We say T; converges to T if
Tif =Tf forall f€S.

We list properties.
1) We call T bounded if there exists N such that

ITf|<C sup supl|z®dPf|.
lef+|BISN =

The linear T': S — C is bounded if and only if it is continuous.
2) Distributions with compact support are tempered distributions.
3) Let T € §* and ¢ € C°° with bounded derivatives. We define

T (f) =T(of).
4) The derivative of a tempered distribution 0;T is defined by
T (f) =—=T(9;f)
5) Let T € 8* and ¢ € S. Then
Tx¢e C®(RY),

where we define T * ¢ as for distributions with compact support.
6) Let T € 8* and S be a distribution with compact support. We define

SxT(f)=T(Sx f)

where S(f) = S(f), f(x) = f(—z). Then S+ T € S*.
7) Let g € LP for one 1 < p < oco. It defines a unique distribution by

7,(1) = [ gsam’.
The operations commute with this representation,
Tyy = o1,
and we identify LP with its image via the embedding.
8) We define the Fourier transform 7' € S* by
T(f) =T(f)
The inverse Fourier transform is defined similarly.
This is compatible with the interpretation for functions.
9)
o = (27T)d/2
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and
1= (27T)d/2(5()

Lemma 1.20. The following formula holds for all integrable radial functions which
we write by an abuse of notation f(|x|):

@m0 [ fal)amt(e) = )26l E [T e

0

In three dimensions the formula becomes particularly simple since

2sinz
(=) = \/; .

ent [ sabe 4w =217 [ sorsnirigar

The Euler relation

J

ol

Thus

x-Vf=mf
holds for every homogeneous function of degree m. We want to define homogeneous

distributions.

Definition 1.21. A tempered distribution is called homogeneous of degree m € C
if
T(§) = A"""T(H(A* ).

Let Rem > —d. Then |z|™ is tempered distribution. Its Fourier transform is
again a tempered distribution of homogeneity —d — m.
This can be seen from the Euler relation

z-Vf=mf
for every homogeneous function of degree m.

Lemma 1.22. Let 0 < Rem < d. The following identity holds

Rl 1 1

T [T = e T
2m/2T(m /2) 2(d—m)/2p(d=m)

Proof. We claim that the Fourier transform of a homogeneous distribution of degree
m € C is a homogeneous distribution of degree —d — m. We denote by T) the
distribution

Ta(f) = A""Tf(\)
Then
Ty(f) = Ta(f) = TOIF (V) = T(F(/A) = A" IT(f) = A7 11(f).
Let f be a homogeneous function of degree m such that T is a homogeneous
distribution. Let O be an orthogonal matrix with f o O = f. Then

Tf ] OT = ’ff
where the term on the left hand side is defined by the action on Schwartz functions.

In particular the Fourier transform of || =™ is radial in the sense that it is invariant
under the action of orthogonal matrices. This is equivalent to

rf =7 (W [ flele) w o)
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(a rigorous justification requires either an approximation, or a symmetrization ar-
gument). We denote the symmetrization operator by S.

Let T be a radial homogeneous distribution of degree m. We claim that We fix
a nonnegative function h with integral 1 with compact support and observe that

v =r( [ AT () a)h(n(3)d2 )
:T(/OOo A= 9=m=LG £ () |2 (I (/]| dA

:T(|x|d+mh(—1n|x)/ooo Ad=m=LG £ (N)dA

T (||~ n Ja])) / W™ F () dm(y)

for all f € S with 0 not in the support. This extends to Schwartz functions if
m > —d.
By the consideration above

i—m d
lz[=™ = c(n, m)|z[™

and we have to determine c¢(n,m). The Gaussian is its own Fourier transform. Let
T = |z|™ and denote by T' its Fourier transform. Then, by the definition
|| . HE
T(e= "3 ) = T(e™ ")
We calculate

/|x|mei%dmd(5€) :dmd(31(0))/ e 2 pd 1t m gy
0

=dm?(B;(0))2~ gl / ety
0
m d
—am(By ()2~ (L),
Comparison with the calculation for |x|~?~™ gives the formula. O

The formula extends to all m € C\(—o0, —d] U [0,00). This requires however a
proper definition of the homogeneous tempered distribution.

1.6. Examples of Fourier transforms.

1.6.1. Laplacian and related operators. Let d > 2. Then
1

e =N
2(d_4)/2F(dTQ)

for some explicit c¢g and

A [le =y )y = ).
I'(59)
The Fourier transform transforms derivatives into multiplication by polynomial
functions. For example
f=Af=Q1+[)f
and hence

a=(1+¢)7f
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is the Fourier transform of a Schwartz function u (if f is a Schwartz function) which
satisfies
—Au+u=f

Here (1+1£|?)~! is a smooth function with bounded derivatives, but not a Schwartz
function. Its inverse Fourier transform k allows to define a solution for a given
function f by
w= (2m) %k« f

We compute k for several space dimensions.

o0
(1.14) / e (1 4 £2)71de = e~ 1!

—0o0
using the residue theorem: The singular points are the zeroes of the polynomial
1+ &2, which are +i. Consider the case x > 0 first. By the residue theorem

Cr

where Cp is the union of the path from —R to R and the upper semi circle. The
limit R — oo implies the statement.
In three dimensions, by Lemma 1.20 the Fourier transform is given by

\/EKI‘1 /Om(l + r2) " Lsin(r|¢|)dr = w|z| el

1.6.2. Gaussians, heat and Schrédinger equation.

Lemma 1.23. Let A = Ag + iA; be an invertible symmetric matriz (Ag and A,
real) with Ag positiv semidefinit. Then

Fe~ 57 A2(g) = det(A) H/2e 54T,

Proof. The formula is correct at £ = 0. We assume first that Ag is positive definite.
The general statement follows then by continuity of both sides. By definition
Ve 37 A7 4 o=30 AT gy )
The Fourier transform g is a Schwarz function which then satisfies
gé+ AVg = 0.

This is an ordinary differential equation on lines through the origin. There is a
unique solution with the given value at ¢ = 0, which has to coincide with the
function on the right hand side. O

With A = 2t1gs we obtain the formula for the fundamental solution to the heat
. 2
equation. The inverse Fourier transform of e~ ®¢I” is - as computed twice -
|z|?
(2it)¥/2e~ T
A solution to the Schrodinger equation
iug + Au =20

with initial data ug is given by

lz—y|?

(1.15) u(t,z) = /Rd(éliwt)_d/Ze_Tfuo(y)dy
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We denote the map u(0,.) — u(t,.) by S(¢). It is defined by the Fourier transform
by
S(t)uo = e_itlélzﬁ()(f).
It is a unitary operator:
—_— . 2 “ R
IS()uollzz = 1S (#)uollcz = lle™ ™ ao| 2 = ||z = [[uoll 2
and it satisfies the socalled dispersive estimate
1S (t)uol|sup < [4mt| =2 ||uo]| -
1.6.3. The Airy equation. The Airy function is the inverse Fourier transform of
Ai(g) = (2m) 71215
Clearly
(&2 +i0)e'sE =0
and hence
Ai” +2Ai=0
This however implies
(0 + 02,0) ((£/3) 713 Ai(x(t/3) /%)) = 0

and (as oscillatory integral)

/Ai(x)dx = (2m)"1/2
The convolution be the Airy function gives a solution to the initial value problem

Ut + Ugzr = 0; U(O,(E) = UO(SU),

utt.o) = [ (4/3)7 Al ~ (/3 o)y,
Again the equation defines unitary operators S(t) which satisfy
1S () uollsup < et 2 |Jug| 11
1.6.4. The half-wave equation. The solution to the wave equation
Ut — Au = 0
with initial data
u(0, ) = up(x), ut (0, 2) = up (x)
is given by Kirchhoff’s formula for d = 3:
1 1 1
u(t,x) = —2/ ugdH? + — dyupdH? + — u dH2.
471't 331,(36) 47Tt aBt(x) 471't an,(x)
There are similar formulas in odd dimensions, and slightly more complicated ones
in even dimensions.
The Fourier transform tranforms the PDE to the ODE
e + €70 =0
which factorizes into
(0 — i€ (9 + 1€]) = 0.
This motivated the study of the half wave equation

(10, + [€])ult,€) = 0
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which can easily be solved in the form
a(t,€) = e"a(0, 6).

As above we restrict to ¢t = 1. Since el is radial
/eiﬂﬁlﬂé)dg = dmd(Bl(O))mrdzi/ rd/ze"J¥(|z|r)dr
0

provided the integrals exist as oscillatory integrals. They do as we will see. By
Lemma 1.16 we can write
27 J(2) = Re(e™"0(2)
for z > 1, with ¢ satisfying
6™ ()] < erz"

We begin to consider |z| > 2 We decompose the integral above into two parts with
a smooth cutoff function, one over r > |z|~!, and one over 2|x|~!. In the first
integral we integrate by parts as often as we like:

|t s = [ (0 olal) ot

which gains a factor r in the integration, as well as a power |z|~!. We repeat this
as often as necessary. The second integral is bounded by |x|?.

The same arguments apply as for |z| # 1, given bounds which depend only on
|z] — 1. A careful calculation gives the first part of the following estimate

Lemma 1.24. Suppose that |x| # 1 then

_at1
’/ei|5|+iw£d£’ <{ call = |z||= = if |zl <2

calr|=%  if || > 2 and d even

and
’ [ e — ey = )| < e
if x| <2 and
‘/lfﬂ“e“'*”ﬁdf‘ < cala| 7
for |z| > 2.

Proof. Only the second part remains to be shown. There is no difference in for
|z| < 2, unless |z| is close to 1. In that case we decompose the integral into r < 2,
1<r<|z|—1andr > |z|—1. The last part is bounded by the previous arguments.
The first part is bounded because of the size » < 1. The second part is

[lz| 1]
/ r~Ydr =Inr
1

plus something bounded. O

There is an important difference compared to the previous two examples: the
group velocity depends only on the direction of £, not on the amplitude.
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1.6.5. The Klein-Gordon half wave. Let
Ny P

As above we obtain
Lemma 1.25. The following estimates hold fort > 1,

t d/2<17|x\/t> S iffa| <t
gt x)| < e |zt - 1) ift < |a] < 2
mdtd T if |o| > 2t

\+

and if 0 <t <1
t=d  iflz| <t

1

lgt,2) <eq U al/t =175 i< o] <2
Tata—T if x| > 2t

Moreover

:/ g eVl g

satisfies for t > 1 and |z| > 2t
1
|h(t,z)| < Cf
|z| = t2
‘h(t,m) — et} |||l - |:U|/t||‘ <t}

for 1 <t, |z| <2t. Finally, if 0 <t <1, then

‘/ 13 kR eMElFmege _ o 1n|1 —z||| < et T
if |x] < 2t and
ES) 1
’/|£| z|§|+zx§d§’ <c¢q d—1 d .
|;[;|Tt§_3
for |x| > 2.
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1.6.6. The Kadomtsev-Petviashvili equation. The linear parts of the Kadomtsev-

Petviashvili equations are

Ut + Uz =+ a;luyy =0.

We denote the Fourier variables by £ and 1. As above (for 4, the argument for —

is very similar),
Foyult,&n) = "€ F, yu(0.€n)
and
/ei[(£3*§_1n2)+m£+yn]d€dn - /ei[§3+§z+5y2/4ld€_

The Lemma of van der Corput with &k = 3 ensures that the integral is bounded,

uniformly in x and y. More precisely

/ei[s3+sz+5y2/416s|s|2d§’ < e (e~ |11 = 20

The stationary points of the phase function satisfy
3¢ 4 +y*/4=0
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with zeroes
E=+v—-(z+y?/4)/3
provided
<_Lp
T < —=y°.
49
Otherwise, by the nondegeneracy of the phase

/ & =ET v et gedy| < oo+ y? /47K

Lemma 1.26.

’/eig%nz/ﬁ'mgdfdn‘ <cp(l+ (zxyH)y)"

There is an interesting interpretation:

e Waves move to left for Kadomtsev-Petviashvili IT,
e and to both sides for Kadomtsev-Petviashvili I (with respect to x)

This make the study of Kadomtsev-Petviashvili I considerably harder than the
study of Kadomtsev-Petviashvili II.
We define
plw,y) = 2mF~H (/€ =°19),
Since u(\3t, Az, \%y) satisfies the linear KP equation for A > 0 if and only if u does
we obtain the representation

u(t,z,y) = g * u(0,.,.)(z,y)
where
gi(w,y) =t p(a/t%,y /1),
Hence, with S(t) denoting the evolution operator,
1S(t)uollr> = lJuollz>
and
1S #yuollsup < elt] ™ ol 1 2).-
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2. STRICHARTZ ESTIMATES AND SMALL DATA FOR THE NONLINEAR
SCHRODINGER EQUATION

2.1. Strichartz estimates for the Schrédinger equation. We return to the
linear Schrodinger equation
0w+ Au =0
and the unitary operators S(t). They form a group: For s,t € R
S(t+s) = S(t)S(s).
We claim that for 2 < p < oo
_d(q_2
(2.1) ISOlze < (@rft) ™= 2 fuo | Lo,
which follows by complex interpolation from
[1S()uollre = l[uollre
and the dispersive estimate
_d
[S(B)uollee < (4mlt]) ™2 [[uol| s

Let us be more precise. We put pg = q =2 and py =1, ¢ = 00, 2 < p < o0 and
determine A so that

1-x 1
2 p
resp.
2
A=1—-—
p
define \
1-—
AN ==
2 q
We check easily
1 1
S+ =1,
p q

and obtain by complex interpolation
_xd
1S )uoll Lo < (4mft]) ™2 [luollz .

which is estimate (2.1).
The variation of constants formula

u(t) = —i [ S(t — ) f(s)ds

defines a solution to
10w+ Au = f

at least for Schwartz functions f in d + 1 variables.
From the dispersive estimate

_d_2
”u(t)”LD’ §(47T) g (1 p)/

t
d_d
|t —s[=277[|f(s)]|ods.

The right hand side is a convolution h * g where

0 ift>0
h(t) =
®) { l4mt] 2078 it <0
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and
9(@) = [If Ol Lo gay-
An immediate calculation gives |t|~/" € L’ (R) and by the weak Young inequality
Proposition 1.2
(2.2) g * hllLaw) < cllgllpa IRl
where p 5
Sa-H=1,r>1.
S ( p) r
and p and q are strict Strichartz pairs, i.e. numbers which satisfy
2 d d

¢ p 2
and 2 < ¢ < 00,2 < p < oco. The left hand side of (2.2) controls

1/q
fullzzaz = ([ 0Ol o)

wich the obvious modification if ¢ = co and we obtain
HU'”L?L?; < C”fHLjLI’LgI

for all strict Strichartz pairs. Here L{LP consists of all equivalence classes of mea-
surable functions such that the expression is finite.
It is not hard to see that u measurable implies

t— lult,.)| e

is measurable, the expression for the norm actually defines a norm, and the space
is closed and hence a Banach space. The duality of the Lebesgue spaces extends to
duality of this mixed norm spaces: The map

LY s f o (g — / Fgdmddt) € (LP9)*

is an isometry if 1 < p,q < oo and surjective if p,q < co. Complex interpolation
extends to the mixed norm spaces - this is quite evident from the definition.
We claim

Theorem 2.1. The variation of constants formula defines a function u which sat-
isfies
i0u + Au = f, u(0) = ug
and let (q,p) be a strict Strichartz pair. Then
[ullcy L2y + lullar < clu(0)lze + £l Lo o

We will later improve this estimate in several directions.
Now denote
L? 3 v — Tv € C(]0,00), L?)
which maps the initial data to the solution. Let (p,q) be Strichartz pairs. Then
||T||i(L27Lq/Lp’) = ”T*H%(qu,m) = HTT*HL(LQ’P,LQ’VP’)

and
oo 0
TT*f(t) = /0 S(t+s)f(s)ds = /_ S(t—s)f(—s)ds

and the bound follows as above.
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2.2. Strichartz estimates for the Airy equation. This section follows Kenig,
Ponce and Vega [14]. Scaling shows that the solution to the Airy equation satisfies

1 .
u(t.) = iy [ Aide = p)ul0,)dy

and we obtain the estimates

w2 = lluollz

[u(t)l| Lo < ct™3||ug| L2

and

1 _1

[1D12u(t) | < ct™ 2 ||uol|Ls-

The Strichartz estimate is more complicated. Here we use complex interpolation
to see for 2 < p < o0

1_1 1_1
(2.3) [1D=7%S(E)v]|re < cft]r™2|v]| 1

where D® is defined through the Fourier multiplier. The multiplication on the
Fourier side commutes with the evolution, and hence this estimates is equivalent to

1 _2, 1
D S(t)v|lrw) < clt|” @ [[D7 90|y
The Strichartz estimates take the form

Theorem 2.2. The variation of constants formula defines a function u which sat-
isfies
Ot + Ugzy = f, u(0) = ug
and
lellcye.c2) + 1D 7ull are < elu(0)] g2 + D] fll o -

Proof. Tt remains to prove (2.3). We claim that it follows from

(2.4) ‘ / €2 Fi7 € T G| < O (1 + |o])

uniformly in z - which has to be understood as oscillatory integral. We apply then
complex interpolation with the family of operators

Tauo = €| D|2 S(t)ug
for which we easily see that
2
|Tiouollrz = €™ [luo L2

and
|Tit ool Lo < ct™ /(1 +|o])e™ [luoll 1
Now (2.3) follows by complex interpolation. We turn to (2.4).
There are three cases: |z| < 10, > 10 and # < —10. The last one is the hardest

since there are large critical points +¢. = y/—x/3 in the phase, and we restrict to
it. We split the integration into the intervals

(=00, =& — [a| 7%, (=€ — o] T4, & + [T, (=60 + [z 74, <1), (<1,1),
(1’€C o |‘T|71/4), (gc - |x‘71/47£c + ‘$|71/4), (fc + |5L'|71/4; OO)
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The argument is immediate for the second, the fourth and the sixth integral, which

we estimate by 3§i/2|x|’1/4

_e _|g|—1/4 |z "L/ 1.,
Ee—|x| %+io’ i£3+ia:£d . Ec—|z| i£3+i1’£i |§‘ 5tio g
|§| € 5 =1 € 2 g
—0o0 — 00 df 35 +x
14\

(€ + || 11//?;“0 i€tz VA itz T e
3(Ee + |x[~14)? +
and the direct estimate as for stationary phase gives the result. The largest term (in
terms of o) occurs when the derivative falls on [£|27 - all the others are estimates

as when o = 0. We recall that
3(&e + ol ) @ ~ a5

. Now

+

U
2.3. The Kadomtsev-Petviashvili equation. The symbol is &3 — 7?/¢, with

gradient
(352 + 772/€2>
—2n/¢

<6€ —2m?/&? 277/€2>
2n/€ —2/¢

and Hessian matrix

and Hessian determinant —12.

Lemma 2.3. The following Strichartz estimate holds
lullazerz + ullzprs < e (Iollze + 1711y ) -

The proof is the same (since the same dispersive estimate holds) as for the
Schrédinger equation.

2.4. The (half) wave equation and the Klein-Gordon equation. Here we
only state the result. The proof requires a sharpening of complex interpolation,
replacing L> by BMO. The estimates for the wave equation imply that
_dtt _d=1
IDI= = S®)vlmo < ct™ = vl ey
which implies
_dtlq 2 _d—1y 2
1D~ 28 (tolle < et 02 o]l e
where the half wave evolution operator S(t) is defined by
Sty = F~L(etlElp).
As a consequence we obtain
Theorem 2.4. Let d > 2. The variation of constants formula defines a function
u which satisfies
i0yu + |D|u = f, u(0) = ug
and
_df1q 2 dtlg 2
lulley@.r2y + 11D~ D ul| pape < clu(0)|z2 + [1D] T 7 £l Lo o
where q satisfies 2 < g < 00, 2 <p < oo and
1 d-1 d-1

q D 2
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2.5. The endpoint Strichartz estimate. The argument for the endpoint Strichartz
estimate depends on a general idea, which we spell out only for the Schrodinger
equation

tu +Au=f u(0) = uy
for d > 3. Tt is due to Keel and Tao [13].

Theorem 2.5. The solution defined by the variation of constants formula satisfies
(2.5) gz + g, <c (nuoan " |f||L%L;f2) .

Before we prove the statement we need a robust estimate for integral operators.

Lemma 2.6 (Schur’s lemma). Let p and v be measures,
7f(a) = [ KG)fw)dnly)
where K satisfies
sup [ 1K()ldn(s) < €. sup [ [K(e.)ivty) < K.
T Y

Then
”Tf”LP(V) < C”f”Lp(#)

Proof. By duality the claim is equivalent to
[ @9 @ pduwiv)

This is obvious for p = oo and p = 1. Hence the operator satisfies the desired
bounds on L' and L>. The claim follows by complex interpolation. O

< Cllf o uyllgllo

Proof. We denote by S(t) the Schrodinger group. We first prove

[ (st=050.59u)]| <l

which implies by duality

t
1] SE=97O,,, o <elfl, 2

and, by the TT* argument the full statement.

(2.6) 2, 9

2d
LfL d—2 LfL d—2

We define
- [ (S(=5)£(5), S(~t)g(t))dsdt
t—20+1<s<t—27

and claim

(2.7) IT;] < O27j5(p’ﬁ)||fHL2Lp’ gl z2r

for j € Z, p and p in a neighborhood of % and

_ d d d
ﬁ(p7p)—§—1+%+27~)~

It vanishes for p = p = d%dz as it should.

We set t =277, § = s277, & = 279/2z and § = 279/2y. This transformation of
coordinates (which reflects the symmetry) reduces the estimate to the case j = 0.
The estimate for j =0
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(2.8) To| < Cllfll 2w 19l 2 Lo
holds for

(1) p=p =1 by the dispersive estimate
(2) p=2and 25 <p' <2
(3) p=2and 2% <’ <2
Then the estimate (2.7) follows by complex interpolation and duality. It is conve-

nient to draw a diagram

1/p (1(7)1)
2d
s T O
1/2 -
j | 1/p
1/2 Zs

Convex interpolation - this time for L%?" spaces gives the convex envelope which
contains the point (%, dz—_&) in its interior.
For the first case (which corresponds to (1,1)) observe that by the dispersive

estimate, if t —2 < s < —1

(St~ 8)g(s). SO < IO lg(s) | o
Let hy(t) = (1)l and hy(t) = g(t)]z:. Then

To(f,9)] < C / / K (1, 5)hy (s)dshy (t)dt

where K(t —s) =1ift —2 < s <t —1 and 0 otherwise. The first estimate follows
by Schur’s lemma.

For the second estimate (which corresponds to the horizontal line) we use nonend-
point Strichartz estimate and finally Holder’s inequality to bound

542
/+1 (f(t), St - 8)9(8)>dt’ Ul parw sy 1,042 xmalS(E = $)g()l| Lar

SCHf”LQfP'([s+1,s+2]><RdHg(S)HLz'

where (g, p) is a strict Strichartz pair.
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Thus

k+1 t—1
/k / S0, S(=s)g(s)dsdt) < el L ey 8] 22200
t7

The statement follows by summation with respect to k, and the Cauchy-Schwartz
inequality with respect to k.
The third estimates follows by the same argument. This completes the estimate

(2.7) for (p,p) close to (%’ %).

To make use of the flexility we decompose f = fx, g = >_ g such that

Te(t ) = cu(t)xek(2), gk (t, @) )di () Xtk ().

We define the decomposition as follows. Given f : R¢ — R we define its distribution
function

As) =mx : |f(x)] > s}.
It is monotonically decreasing and finite for f € LP. Let si be the infimum of all s
so that \(s) < 2¥ - we allow s = 0. We set ¢; = 2#/Ps), and

[ f sk <Ifl <sen
Xk() = ¢ { 0 otherwise

Then

F=Y"ckxn

CH fllze < ll(ew)lliw < Cll fllze

which can be seen by comparing to

17112, = p / ml({f] > 515"~ Lds.

and, for some C' > 0

By definition
m?(supp xx) <28 |l < 27

We apply this decomposition at every time ¢ with p = 2. Then

it+a
F=>f

where at most one summand differs from 0.
We apply the first estimate (2.7):

1T (fis g )| <27 PP fiell oot gier Nl 2.0

(2244 d '+k(i+l,ﬁ)
U TN I P

<c2
L2 d+2 LY d+2

where the second inequality follows from
IxtkllLe < 2" )

We optimize p and p. Thus
5 (fis gue)| S 2RI/ 20 ) |

L%%Hg’“’HL?L%
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for some £ > 0 and e sum with respect to j:

ST <O S k= KD Al o okl a3,
j kK

1/2 1/2
<C (2}6: ka”i%ﬁfz) <zk: ”gk“ierﬁfz>
by Schur’s lemma. By Minkowski’s inequality

a2 :
Z/ (/ |gk|d2fzdmd> dt:/Z </ |gk|ﬁ‘2dmd> dt
k Rd K \R?

d+2

S/(/ nglffzdmd> dt
R4 L

=llgl1%, s

L>d+

and hence we obtain (2.6).
|

2.6. Small data solutions to the nonlinear Schrédinger equation. Most of
this section can be found in [4].
We study the initial value problem for initial data ug € L? for

(2.9) iug + Au = £|ulu

where 0 < v < ﬁ. The case of the plus sign is called defocusing and case of the
minus sign is called focusing. At least formally

M = lu|?dx
R

/ uo;udx
Rd

1 1
E = / —|Vu|* £ ——|u|"?dx
R 2 (o) + 2

called mass, and

called momentum

called energy are conserved. For most of this section there is no distinction between
the focusing and the defocusing case.

The argument will rely on the Strichartz estimates with p = ¢ = Q(df;&) and
o 2(d42)
P =49 ="g1"

The sign of the coefficients is of almost no importance in this section, and we
choose + to cover both signs, indicating differences whenever necessary. This sec-
tion establishes basic schemes which will be used over and over again. Simulta-
neously it is a warm up the set up and the consequences of the key multilinear
estimate. Lateron we will restrict ourselves often to giving the estimates of the
nonlinearity, and stating the properties.

It provides also a play ground for stability estimates, qualitative properties,
criticality and subcriticality.
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2.7. Initial data in L2. Our approach will be based on the Strichartz estimates

of Theorem 2.1 with p = ¢ = (2(01%2)-

(2.10) ||U|\L2<d;r2> (RXW)HWHC(R;H(W» N ||U(0)|\L2(Rd)+||iatv+A’UHL%(Rde)

In order to prepare for variants and improvements we assume that there is a
space X with

(2.11) X CcCR; L*RY))NL

and

2(d+2)

(R x RY)

sup [[o(t)]| 22 + [|v]| | 22 < cf|vllx
t L4

(Rde))

Clearly such a space exists: We could define X as the intersection in (2.11), and
then the Strichartz estimates ensure that it has the desired properties. The choice
of the function space is an important and nontrivial part of studying solutions to
many different dispersive equations. Even though we do not need this flexibility
here, and even though it complicates the notation a bit we prefer to do it here to
indicate possible modifications lateron.

In the sequel we denote by v the solution to the homogeneous equation

i0yv + Av = 0, v(0) = ug

and

lollx < e (nv( e + ity + Aol s

which we can write by the unitary Schrédinger group S(t) as
'U(t) = S(t)U().

To approach the question of existence and uniqueness we make the Ansatz u =
v+ w where v satisfies the linear Schrodinger equation with initial data ug , and w

satisfies w(0) = 0 and
(2.12) iwy + Aw =x(o,1)(t)|[v + w|” (v + w) in R x R?
' w(0,z) =0  in RY

where T € (0, oo] will be chosen later. We will construct a unique w in X by a fixed
point argument. It is obvious that u = v + w is the unique solution up to time 7.
Then u = v + w is the searched for solution on the time interval (0,T).

We rewrite the problem as a fixed point problem: Given w we write w = J(0)
where J maps @ to the function w which satisfies

(2.13) iwg + Aw = xo,7)(t)|v +@0|7 (v + @), w(0)=0.

Suppose first that (dﬁ) (1+0)>2and o < é. By Holder’s inquality

A1

(1+0)

25—1

2(d+2) < ||fHL2(]Rd)||f|| 2(d+2)
a1 (R4)

(R)

Observe that the exponent of || f|| 2 is nonnegative if o < 4 and it vanishes if o = 2.

Ifo< ngf ) (14 o) <2 we estimate again by Holder’s inequality

A5 ey < £ Rd)llfll 2<d+2> -

In the first case we obtain the space-time estimate
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_do i-do 25
(2.14) o lul* 7l sgen < T4 F ull, 2l 3
and in the second case
do d
2.15 v 140 <T1—(fT" u 1-7 ” (1+%)o )
@15 Ixom e < T F RS

Ifo< % T carries a positive power and we call this situation L? subcritical.
This power becomes zero if o = %, which we call L? or mass critical.
In the both cases
- _da
[(@)llx < eI~ (@]l x + [Jollx) ™+

which we complement by the similar estimate

do

17 (w) = J(@)]|x < eI~ (]l x + wlx + vl x)7 llw - llx.

We set up the problem for an application of the contraction mapping principle
Let R = |[v||x. If ||@||x < R then, for some ¢ > 0,

[wlx < T~ F 2R < R
where the last inequality holds provided
T < (2¢(2R)°)" %@ =T,
which we assume in the sequel. Moreover, if w and % have norm at most R then
1 (w) = T (@) x < T % R |lw - @] x

We obtain a contraction after decreasing T if necessary.

The critical case requires slightly different arguments, and it yields different
conclusions. This time we cannot gain a small power of T" and the smallness must
have a different source.

In the mass critical case we assume that ||X(07T)'U||L2(d,+2L2(d,+2) < ¢ for some
d d

small .
This is true for all 7' by Lemma (2.10) if ||ug]| .2 is sufficiently small. Moreover,
for all initial data ug € L? we have by dominated convergence

(2.16) Ix0,mvllLrLe =0 asT — 0

for all Strichartz pairs with ¢ < co.
It is obvious from the argument above (where we replace ||xo,r)v| x by ”X(O’T)UHL 2(d+2)

2
for the mass critical case) that the iteration argument applies if ¢ is sufficiently

small. We obtain local existence under the smallness assumption, and hence global
existence provided the initial data are sufficiently small.
We collect the results in a theorem.

Theorem 2.7. There exists € > 0 such that the following is true. Suppose that
O<0§§, uo € L? and
T xrol§ < e
_ 4
resp. 0 = 5 and

o
< €.
||XT'U||L2<3;2> (ExR4) €

Then there is a unique solution in X up to time T which satisfies

_do o
(2.17) lu = vllx < T ollx*



NONLINEAR DISPERSIVE EQUATIONS, SUMMER TERM 2013 43

resp, if o = %,

_do
(2.18) Ju—vlx ST~ v 1;5((7[1;2)

There is a unique global solution

2(d+2)

we L™ a ((-T,T) xR nC((~T,T); L*(RY))

for all T if either 0 < o < 4, or, if ||ug||r2 < € and o = 4. In the last case we have

(2.18) with T =o0. If 0 <k <1+ o then

(ug — u) € CH(L*(RY); X)
There is a stability estimate. Suppose that 4 € X satisfies

T F |lal|x <e
@ — uo| 2 + ||i0ya + At — |a|°a||L% <e.
Then there exists a unique solution up to time T with
(219)  Ju—illx <o (|l - uollee + i + At — [al"a] aga ).
If o = % it suffices to require
||X(0,T)ﬂ||Lz<ddi+z> <e

Proof. Local existence in the subcritical case has been shown above. The fixed
point formulation leads to existence via the contraction mapping theorem on a
time interval whose length depends only on ||ug| ;2. We claim that the L? norm
(mass) is conserved. Indeed, for sufficiently regular and decaying @ = v + w and
u = v + w we have

1||u(t)||%2 = 1||u0||%2 + reali/ || uudxdt
2 2 (0,¢) xRe
which remains true for general @ and initial data by an approximation argument.
By then it also holds for the fixed point, for which the second term on the right
hand side is the real part of something purely imaginary.
Thus we can extend the solution to a global solution in the subcritical case.
It follows from the construction by the contraction mapping principle that the
solution depends Lipschitz continuously on the initial data.
The map

L2 (R xRY) 35w — x(o.1)|w| w e LE (R x RY)

is k times continuously differentiable for £k < 1+ o, and o < %.

Thus J is k times continuously Frechet differentiable. Moreover, by the very same
estimates as for the contraction the derivative of J with respect to w is invertible,
and by the implicit function theorem from the initial data to the solution is k times
continuously differentiable. Checking the norms implies the stability estimate.

O

We also have
li =
P ”X(T’O")U”Lz(df) (RxR4) 0
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Suppose that u € X is a solution for T'= oo and o = %. One can deduce that the
limit
tliglo S(—t)u(t)

exists in L2. Let wg be this limit, and w the solution to the homogeneous equation
with initial data wg. Then the convergence statement can be formulated as

Jim [u(t) — w(t) 2 = 0.
This is called scattering.

2.8. Initial data in H' for d > 3. Consider
(2.20) iug + Au = £|ulu

with initial data ug € H', by which we mean the space with the norm || [Vuo| || z2.
We want to use Strichartz spaces for the derivative and we define the function
spaces X by

lullx = sup [Vu(®)llz2 + [Vull 2pn
Then the Strichartz estimate 2.10 combined with Sobolev’s estimate gives
lullx < e (IVuollzz + VA1 2uin )
[ dt4

for a solution u to the inhomogeneous linear problem.

Then, if ¢ < ﬁ, by Hélder’s and Sobolev’s inequality

4=(

IVIFP AN 2wz S A
L ) LL

a1 (Rd

—1+4545

||Vf|| 2(d+2)
L d

d—

2

2d
7 (RY)
provided ¢ is not too small. For small ¢ we argue as for the case of L2. We obtain
in both cases

_(d—2)c 1+o
(2.21) T @)lx ST =7 (lollx + [lwllx),

(R?)

and, checking the same argument for differences,
(2.22)
1T(w?) = J(w")

(d—2)o

stasn + [|T(w?) = J(W)|[poerz ST (Jollx + flwtflx + [lw?]lx)”

I
x ([lw? - w1||L@ + [Jw? = w|| oo r2)

Theorem 2.8 (Local existence and uniqueness in energy space). Suppose that

0<o< ﬁ. There exists € > 0 such that the following is true. Let v be the

solution to the homogeneous linear Schroedinger equation. Suppose that

T o]% < e

Then there exists a unique solution u = v + w with

_ (d=2)
IVwllzors + IVl 2apn ST “Jollk

~

Again we may replace ||v]|x by ||X07TVUHL2(d+2) . In the defocusing case the solution
d

is global if 0 < d‘lj. In the energy critical case 0 = -2 there is global existence

d—2
for small data, and local existence for all data in H*.



NONLINEAR DISPERSIVE EQUATIONS, SUMMER TERM 2013 45

Proof. Again we characterize the solution as the fixed point of the same map as

above, but now with respect to the norm X. By (2.21) we obtain a map of a closed
ball in X to itself, but a contraction only in the metric of L% in a ball in X-

at least for large space dimensions and small 0. We change the space X slightly
by replacing C'(R; L?) by L*°(R; L?). We claim that sequences which are bounded
in X and converge in L% have a limit in X. There is a weak* converging
subsequence in X, and the limits have to coincide.

It is not hard to complete the argument for initial data additionally in L?(R9):
then v € L% 2), and this remains true for the fixed point map. In general we

define iteratively v;41 = J(v;). We claim that there exists j so that

2(d+2)

Vj+1 — V5 € L™ a (R X Rd)

The contraction argument then completes the proof. This argument gives unique-
ness in the set

(d+2)
v+ X NL5T (R x RY).
The proof of the claim is technical and omitted.
The remaining arguments are adaptations of similar arguments in Theorem 2.7.
O

2.9. Initial data in H'(R?). In this case we combine the arguments. We obtain
global wellposedness in the defocussing subcritical case o < %, local existence in
the subcritical and the critical case (o < %) and global existence in the critical case
o= % and small initial data.
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3. FUNCTIONS OF BOUNDED p VARIATION

The study of p variation of functions of one variable has a long history. Function
of bounded p variation have been studied by Wiener in [31]. The generalization
of the Riemann-Stieltjes integral to functions of bounded p variation against the
deriative of a function of bounded ¢ variation 1/p + 1/¢ > 1 is due to Young [32].
Much later Lyons developed his theory of rough path [21] and [22], building on
Young’s ideas, but going much further.

In parallel D. Tataru realized that the spaces of bounded p variation, and their
close relatives, the UP spaces, allow a powerful sharping of Bourgain’s technique
of function spaces adapted to the dispersive equation at hand. These ideas were
applied for the first time in the work of the author and D. Tataru in [16]. Since
then there has been a number of questions in dispersive equations where these
function spaces have been used. For example they play a crucial role in [17], but
there they could probably be replaced by Bourgain’s Fourier restriction spaces
X*® On the other hand, for wellposedness for the Kadomtsev-Petviashvili II in
a critical function space (see [10]) the X*° spaces seem to be insufficient. The
theory of the spaces UP and VP and some of their basic properties like duality
and logarithmic interpolation have been worked out for the first time in [10]. The
development in stochastic differential equations and dispersive equations has been
largely independent.

It is the purpose of this section to introduce the spaces UP and VP. We will show
that there is a very pleasant treatment of ODE’s

y=fly)z

if f is Lipschitz continuous and = € U? C V2 - the endpoint case of Lyons related
treatment of the case z € VP, p < 2 [21]. One may hope that a similar approach
works for differential equations with rough paths.
In later chapters we use UP and VP to study wellposedness questions for several
dispersive PDEs, where we select a number of relevant and representative problems.
In the sequel p € [1,00]. Unless explicitly stated otherwise we consider p €
(1, 00).

3.1. Bounded p variation.

Definition 3.1. Let I be an interval, X a Banach space, 1 <p < ocandf:I— X.
We define

n—1 1/p
o@D = s S o) —o@)% | €000
ti€l,t1<to<---<tpn i=1

There are obvious properties. The function ¢ — w,(v, [a,t)) is monotonically
increasing. The same is true if we consider closed or open intervals.

Lemma 3.2. Suppose that a < b < c. Then
wp(v,[a,1)) < wp(v,[a, ) < 2717 (wy (v, [a, ) + wp (v, b)) ).

Proof. Consider a partition 7. If b is a point of 7 then the p-th power of the 7
variation in the large interval is the sum of the p powers of the parts. If not we add
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the point b. This increases the right hand side of the second inequality, and it may
decrease or increase the left hand side. The factor 21=1/? follows from

ja+ b7 < 2771 (|af” + [b]7).

The p variation can sometimes be explicitly estimated.
Lemma 3.3. For bounded monotone functions we have
[lv|lve = supv — inf v.

We denote by C*(I) the homogeneous Hélder norm:

ju(t) = u(r)|

fllesry = sup
|| ||C (I) totr |t—7’|s

Lemma 3.4. We have
wp(v, (@,0)) < 0]l gsn (b= a)'/P.
Suppose that
wp (v, (a,b)) < oo.
Then v has left and right limits at every point. The expression is invariant with
respect to continuous monotone coordinate changes. Moreover

wp()\'l), (av b)) = |)‘|(“)P(U7 (CL, b))v
wp(v 4w, (a,0)) < wylv, (a,0)) + wy(w, (a,b)).
Proof. Let tg <t; <...ty. Then

D lottizn) —v(E)lx <D (i — t)l[vllgass-
7 i

The other statement follow from a straightforward calculation. O

The p variation is continuous at points where v is continuous, provided the p
variation is finite.

Lemma 3.5. Suppose that w,(v, [a,b)) < oo and v is continuous at ¢ € [a,b). Then
}g%‘*@(vv [a,t)) = Wp(”? la, c]).

Proof. Suppose that
lim  w(v,(a,t)) —w(v,(a,b)) = 2§ > 0.

t—b, t>a
Then there is a sequence of points ¢ < t1 < ty...t, < b with
P o”
S loltisn) vt > ——r.
pllvllsup
Similarly there is such a sequence in (¢, t1) and recursively we get an arbitrary large
number of such sequences. Putting N of them together we see that

wp(v, (¢,b)) > Ncé

which would bound N. This is a contradiction. Similarly we argue for the limit
from below. O
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3.2. Generalities. We introduce and study functions from an interval [a, b) to R,
R™, a Hilbert space or a Banach space X, and spaces of such functions which are
invariant under continuous monotone reparametrizations of the interval. For the
most part of this section there are no more than the obvious modifications when
considering Banach space valued functions.

We call a function f ruled function if at every point (including the endpoints,
which may be +00) left and right limits exist. The set of ruled functions is closed
with respect to uniform convergence. We denote the Banach space of ruled functions
equipped with the supremum norm by R.

A partition 7 of [a,b) is a strictly increasing finite sequence

a<t1<t2<-~-<tn+1<b

where we allow b = co and a = —oo. A step function is a function f for which
there exists a partition so that f is constant on every interval (a,t1), (;,t;+1) and
(tn,b). We do not require that the value at a point coincides with the limit from
either side. Step functions are dense in R (Aumann [1], Dieudonne [6]). We denote
the set of step functions by S.

Let R, be the closed subset of R of right continuous functions f with lim;_,, f(¢) =
0. Similarly, if A C R we denote by A,. the intersection with R..

The step functions

fi= X[t,b)
satisfy
1 ifs#t
@ e i

We will study Banach spaces A most of which contain the right continuous step
functions S,., and which embed into R. Moreover we will always have

(3-2) L<Ife = fslla <2

and hence none of those spaces is separable.
It will be convenient to extend every function on [a,b) by zero to [a,b], i.e. we
will always set f(b) =0, even if a = —00 or b = 0.

Definition 3.6. For f € R and a partition

T=(t1,ta...tn), a<t;<ta<tz - <t,<b
we define (denoting the limit from the right by f(t+))

f&) ift=t; foraj
(1) = fla+) dfa<t<ty
T fltit)  ift; <t <tipa
fltnt) ift, <t
We observe that f, is a step function, and it is right continuous if f is right

continuous.

3.3. The spaces VP and UP. In this subsection we consider functions on (a,b)
where we allow the cases a = —oo and b = oo.

Definition 3.7. Let X be a Banach space , 1 < p < oo and v : (a,b) = X. We
define

[0llve((a.).x) = max{[[v]|sup, wp(v, (a, D))}
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Let VP = VP((a,b)) = VP(X) = VP((a,b); X) be the set of all functions for which
this expression is finite. We omit the interval and/or the Banach space in the
notation when this seems appropriate.

The interval will usually be of minor importance. The following properties are
immediate:
(1) VP(I) is closed with respect to this norm and hence V?(I) is a Banach
subspace of R. Moreover V2 (I) is a closed subspace.
(2) We set V° =R with ||.[[vee = ||.||sup-
(3) If 1 < p < g < oo then

[vllve < [lo]lv.

(4) Let X; be Banach spaces, T : X; x Xa — X3 a bounded bilinear operator,
v e VP(Xy) and w € VP(X3). Then T(v,w) € VP(X3) and

1T (v, w)llvexg) < 20T H[vllve ) lwllvex,)-

(5) We embed V?((a,b)) into VP(R) by extending v by 0.

(6) The space V! has some additional structure: Every bounded monotone
function is in V', and functions in V! can be written as the difference of
two bounded monotone functions.

The space of bounded p variation is build on the sequence space [P. We may also
replace it by the weak space [?, with

(a) |l = sup A(#{5 : |aj| > A})7.
A>0

This does not satisfy the triangle inequality, but if p > 1 there is an equivalent
norm, which makes [? a Banach space. We set [y = [*°.

Definition 3.8. Let 1 < p < oo. The weak V space consists of all functions such
that

[ollvg = max{ sup |[(v(tis1) = v(t:)r<icn—1lli,, [[0]lsup}
ty <<ty

is finite.

By Tschebycheff’s inequality

ve < lollve.

[ollve <

The spaces of bounded p variation are of considerable importance in probability
and harmonic analysis. We shall see that VP is the dual space of a space U¥Y,
1/p+1/g=1,1 < p < oo, with a duality pairing closely related to the Stieltjes

integral, and its variant, the Young integral [32].

Definition 3.9. A p-atom a is a step function in S,
n
a(t) = Z¢ix[ti7ti+1)(t)
i=1

where 7 = (t1...t,) is a partition, t,4+1 = b, with > |¢;|? < 1. A p-atom a is called
a strict p atom if

max [ x (#7) VP < 1.
It is important that atoms are right continuous, zero in a neighborhood of a, but the
limit as t — b may be different from 0.
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Let a; be a sequence of atoms and \; a summable sequence. Then

u = ZA]'CLJ'

is a UP function. This is well defined sind the right hand side converges in R. We

define
[ E——: { S nlu=Y" Ajaj}.

The strict space UY, .., is defined in the same fashion using strict p atoms.

We collect a number of elementary properties.
(1) If a is a p-atom then |ja]jyr < 1. In general the norm of an atom is less
than 1. Determining the norm of an atom is propably a difficult task.
(2) Functions in U? are continuous from the right. The limit as t — a vanishes.
(3) The expression ||.||yr defines a norm on UP, and U? is closed with respect
to this norm. Moreover UP C R, is a subspace with ||.||sup < [|-||ur-
(4) If p < q then UP C U? and
[ulle < fJullo
(5) If 1 < p < oo then for all u € UP
lullve < 2Y/[ully
(6) Let Y be a Banach space, and let the linear operator T : S,.. — Y satisfy
(3-3) | Tally <C

for every p atom. Then T has a unique extension to a bounded linear
operator from UP to Y which satisfies

(3.4) ITflly < Cllfllue.
(7) Let X; be Banach spaces, T : X; x Xa — X3 a bounded bilinear operator,
v € UP(X;) and w € UP(X3). Then T(v,w) € UP(X3) and
1T (0, w)llor(xs) < 20T vllor o llwllorx)-
(8) We consider UP([a,b)) in the same way as subspace of UP(R) as for VP.
3.4. A decomposition and logarithmic interpolation. The following decom-
position is crucial for most of the following. It is related to Young’s generalization

of the Stieltjes integral, and it deals with a crucial point in the theory. We denote
the number of points in a partition 7 by #7.

Lemma 3.10. There exists § > 0 such that for v right continuous with ||v|yr =
there are strict p atoms a; with

Haj(t)Hsup <2t and #7; < 2JP

such that (in the sense of uniform convergence )

v = E aj.
Proof. We set vg = v, and we search for a recursive decomposition with
Uj = a5+ U
such that

V3 llsup < 277, lagllsup <277



NONLINEAR DISPERSIVE EQUATIONS, SUMMER TERM 2013 51

and, with 7; the partition related to a;,
#Tj S /€2pj.
Suppose we have constructed v; for ¢ < j and a; for i < j — 1. We construct the
a;, which also defines v;41. We choose the unique partition 7 so that
lo;lx <2777 inaty),  fut)llx 22707,
loj(t) = v;(t)llx <2777 it € [ti,tiga)
and
[ (tir1) = vi(ta)llx = 27177
We define a; as the step function adapted to the partition 7; (recall Definition 3.6)
aj = (vj)r
Then, by construction,
i llsup < flvjllsup <277,
[vj41llsup < 27+
and since either (¢;,¢;41] contains no points of an earlier partition, in which case

we estimate the sum of these differences using the V2 norm of v, or it does, and
then we simply add the number of those terms, and iterate

Jj—1
#7; <||ollf, 277 + Y #7
=0

(3.5) . .
<Jollfe > (G +1-14)27
i=0

<epllvllf 277
We choose § = c;””. O

There are a number of simple interesting and useful consequences.

Lemma 3.11. Let 1 < p < q < co. There exists k > 0, depending only on p and q,
such that for allv € VP . and M > 1 there exist u € UY, ... and w € U, .., with

w,rc

v=uU+w

and

VI TN lwllus, < llollvg-

strict

llul
—||u
M
Observe that we may replace U?, .., by U? (since UY, .., C UP) and VE by VP
(since VP C VD).

Proof. Multiplying v by a constant we may assume that ||v[|y» = 0 for some £ > 0

to be chosen below. Using the notation of Lemma 3.10 and setting u = Y.'" . a;

j=jo I
we have
Hu”Usptm‘ct < m.

o0

By construction 2/(17P/@gq; is a strict ¢ atom and hence, with w = D imma

aj,
)

p_
ve < Z HajHUSth?(“ Hm,

lwlos,.
j=m+1
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Given M we choose m so that

M<(W2)(1-2)ym+2m2—ns<M+2
q

Then
lullys,  <m<(1- §>>-1<M +2)

and
< 6e_M/4.

[wllos

strict

The assertion follows if we choose

_ Py
(1= )3

O
We obtain the following embedding
Lemma 3.12. Let 1 <p < g < oo. Then
Vie CVive C Ui C U
Proof. Apply Lemma 3.11 with M = 1. |

3.5. Duality and the Riemann-Stieltjes integral. The Riemann-Stieltjes in-

tegral defines
[ tda= [ roa:

for f € R and g € VL. If f or g € S,. then, with the obvious partition,

(3.6) /fgtdt = ft)(g(t:) — g(ti-n)).

We take this formula as our starting point for a similar integral for f € VP and
ge Ul for1/p+1/q =1, g > 1. Results become much cleaner when we use an
equivalent norm in VP,

1/p

n—1
lollve = sup | D [oltjer) = o(E)IP + [o(ta)]?
a<ty...tn<b J=1

which we do in the sequel. We also set v(b) = 0 and, for any partition, t,,+1 = b.

Theorem 3.13. There is a unique continuous bilinear map
B:UYX)xVP(X") =R
which satisfies (with to = a and u(ty) =0)

n

B(u,v) = » o(t;)(u(t;) —u(ti-1))

i=1
for v € VP with associated partition (t1,...t,) and v(t;)(.) the evaluation of v(t;) €
X* on the argument in X, and
(3.7) 1B(u, )| < [lullysx)llollvex-)-
The map
VP(X*) 2 v — (u— B(u,v)) € (UL(X))*
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is a surjective isometry if 1 < g < co. Moreover

(3.8) lvllvex+) = sup B(u,v) = sup B(a,v).

weU(X),||ullva(x)y=1 a is a g—atom
; p
The same statements are true if we replace UP by UL, .., and V7 by V2.

Proof. Let v € VP, The expression

n n

Fy(u) = (u(ts) —ultin))o(t) = =Y u(ti) (v(tirr) — v(ts))
i=1 1=1
is clearly defined for v € V? and u € S,. with partition 7 = (¢;) - recall that
u(a) = v(b) = 0. The product is an abuse of notation for the duality pairing
between X and X* which we supress in the notation. The map is linear in v and u
and satisfies for every atom (by Holder’s inequality, and using the right hand side
of the equation for F,(u))
Fo(a)] < o]y

Existence of a unique extension to U? follows from this estimate and (3.4). Linearity
in v and estimate (3.7) are immediate consequences. Clearly B defines a map from
VP to the dual of U? with norm at most 1. Let us prove that it defines an isometry
and choose v € VP, ¢ > 0, and a partition ty < t; < --- < t,, with

1/p

n
lollve < | D loltin) — o)k | +e
j=1

Here we set again t,+1 = b and v(b) = 0. We choose z; € X of norm 1 with
(v(titr) —v(ta)) (i) = (1= e)lllv(tivr) — v(ts)l| x-

and
;= pllo(ty) — v(ty) 5 2
where i = |Jv||y,". Then

S llilE < uP > llvtie) — o)k < 1L
j=1 j=1

Thus the partition and the ¢; define an atom a, and

[lv|lve > B(a,v) — Ce.
Thus the map is an isometry. We turn to surjectivity. Let F' € (U?)* and define
the element v(t) € X* by

v(t)(x) == F(2X}t,00)) for z € X.
Let a be an atom. Then
Fa) =Y F(bixw) = F(biXitr ) = — Y 6i(0(tiyr) —v(ts)).
By the previous estimate
[ollve < I1Fll@wa)-
and
B(a,v) = F(a)

for all atoms a. Hence both sides coincide on U9. The remaining claims are simple
consequences. [
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The previous results show that UP C V2, and both spaces are very close. They
are, however, not equal. The following example goes back to Young [32] with the
same intention, but in a slightly different context.

Lemma 3.14. Let ¢ be a smooth function with compact support, 1 < q < co. Then
uglt) = 9() D2 279/ cos(291) € Vi
j=1

but not in UY.
Proof. Let p ne the Holder dual exponent of g and
N . .
vzj,v(t) = (bz 279/P 5in(27¢).
j=1
where we allow N = co. Then, with M = [Ina(|¢t — s|)], [ ] the Gauss bracket,

M N
op (£) = v ()] < 279/P|6(t) sin(27t) — (s)sin(2s)| + 1y 27977

j=1 j=M+1

M
<cy Z 2—j/p+j|t _ s| + 9—i/M
=1

<cs (Q*M/P+M|t — s+ 2*j/M>
1
<cqlt — s|?
and hence, by Lemma 3.4

sup [VN lve < oc.
N

Thus uq € V4, for the Holder dual exponent ¢ with 1% + é = 1. Now, assuming that
uq € U4, we claim

(3.9) g lloe 02 [[ve > ’/(ugo)/vgdx :N/2/¢2dx+0(1)

which is unbounded, hence a contradiction and V,% > ug® ¢ U9. Hence it remains

to verify (3.9). We expand both factors in the integral and claim for j # [ by
stationary phase

‘ / B(t)277/P=H 9 cos(278) (4(t) sin(2lt))’dt’ <epy27920 — 2™

for every M € N. Thus

> ’//¢(t)2_j/”_l/qCOS(2jt)(¢(t)sin(2lt))’dt‘ gciz—j i o

JELISN Jj=1 I=1,1#]

which is bounded independent of N. Next

‘/ / o277 sin(271) cos<2jt)¢’<t>>dt] <2
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and
‘/ / ()2 Cosz@jﬂdt‘ V / 92(1)5 1+ cos(2 1))

1 s
=5 /¢2(t)dt +cy7.

We expand (3.9). Only the diagonal terms contribute. This completes the proof.
O

3.6. Step functions are dense.

Lemma 3.15. For all v € VP and all partitions T we have (recall Definition 3.6)
(3.10) [orllve < [Jv]lve.

and for all u € UP

(3.11) lurllvery < llullue .-

Forv e VP and € > 0 there is a partition T so that

(3.12) lv — v llve <e.

Given u € UP and € > 0 there exists T with

(3.13) lu —urllur <e.

In particular the step functions S are dense in VP and S, is dense in UP.

Proof. When we take the supremum over partitions for v, we may restrict to subsets
of 7 and the first statement becomes obvious. For UP? it suffices to check p atoms

a,

||a7-||Up § 1.

Density of step functions in UP follows from the atomic definition of the space: Let
u € UP and € > 0. By definition there exists a finite sum of atoms (which is a right
continuous step function wssep,) such that

||U — ustepHUp < 6/2
Let 7 be the partition associated to wgzep. Then

[u—urllur <lustep — urllur + [l — ustep|lor
<||(ustep - ’U,).,—HUP + 6/2
<E.

which is the claim for UP. Let VP be the closure of the step functions in V7.
Suppose there exists v € V? with distance > 1 to V?, and |v[ly» < 1 +¢. Such
a function exists when V? is not V?. Let D C UY be the subset such B(u,v) = 0
whenever u € D and v € VP. Since the dual space of D, D* = V”/Vp, and since v
defines an element in D* of norm > 1 there exists v € D with B(u,v) = 1, and a
partition 7 so that ||u — u,||yr < e. However

0 = B(u,v;) = B(ur,v) = B(u,v) + Blu; —u,v) >1—¢(1+¢)
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which is a contradiction if ¢ < % Hence the step functions are dense in VP and,
given v € V? and € > 0 there is a step function vsep With ||[v — vgep|lve < € and
partition 7. Then

v —vrllve SHvstep —vrllve + flv— UstepHV”
<|[(vstep — v)rlve +€/2
<e.

which is the density assertion. O

3.7. Convolution and regularization. Convolution by an L' function defines a
bounded operator on UP and VP Ruled functions are in L> and hence the product
of a function in UP or V? with an L' function can be integrated.

Lemma 3.16. Let a = —oco0 and b= 00, v € VP and ¢ € L'. Then
v @llvexy < M@l llvflvex)

and
[ dlluexy < @l lulloe(x)-

Proof. Let T be a partition. It suffices to consider ¢ non negative and with integral
1. Then, by convexity and Jensens inequality

S 10 oltirn) = 6ot < [ 6] Y loltisr + 1) — ot + 1P < o

The statement for U? follows by duality: We have
B(¢ *a,v) = Bla, § *v)
with @(t) = p(—t). O

The first part of the next result it due to Hardy and Littlewood [11]. The Besov
spaces of the lemma will be explained in the proof. We include third statement for
completeness, but it will not be used lateron.

Lemma 3.17. Let h > 0 and f € VP. Then
(3.14) [o(- + k) = v()llze < (20)P]0]|vs.
In particular, if 1 < p < o0,
[oll gagor < cllvllve
and
[ullor < ellull g |
Proof. Let I; = [jh, (j + 1)h] where

[v(t+h)—v(t)] <max{ sup v

— inf v, sup v—
Gh,GG+1)h]  [GFDRGH2R] [(i4+1)h,(j+2)h]

inf v}
[ih,(j+1)h]

For € > 0 there exist two points ¢;¢ € I; and t;; € ;4 with

sup [v(t+h) —v(®)] < (1 = )lo(tjr) — v(t;)]
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For simplicity we assume that v is continuous, in which case we may choose ¢ = 0,
which is the only use we will make of the continuity assumption. Hence

/ [v(t + h) —v(t)[Pdz Sh( Z [v(t2i+1,1) — v(t2it1,0)[” + Z [v(t2i) — v(t%,o)\p)

<2h[lv|V»-

All partial sums on the right hand side are bounded by 2h|v||7,, and hence the
same is true for the sum. There are many equivalent norms on the homogeneous
Besov space, one of them being

vl o = sup h™ P |Ju(. + ) — v]|L»
p,e0 h>0

and the bound follows from the estimate for the difference. The last statement
follows by duality: The bilinear map

s .11
Biowx Bty 3 (f0) [ fdg
-

.1 L1—1
defines an isomorphism By o — (B _,”)*. Here for 0 < s <land 1 <g<oo

< dh
Iollsy, = [ Bt ) = o) S

See Triebel [30] for the theory of these spaces. O
Let ¢ € C§° with [¢ = 0. Then it is an immediate consequence that
[o% @lle =[l(v(t +h) —v(t))p(h)dt] Lr
(3.15) <sup h™YP||u(t + h) — v(t)| L /hl/p\¢(h)|dh
< cllollys
and, by duality, for ¢ € C§°,

lux@llvr < sup B¢ *u,v)
lvllve<1

= sup /¢’*uvdt

lvllve<i

= sup / ud/vdt

lvllva<1

(3.16)

< sup ullze[|¢'v] e
lollvast

<Clluf r

Clearly C5° € VL. Let VP C VP be the closed subspace of functions with
f(t) = $(limp—o(f(t + h) + f(t — h))). We consider functions on R. If v € VP is
continuous then

B(¢p * a,v) — B(a,v) as h — 0
for all atoms a. Here ¢ € L' with [ ¢dz =1 and ¢p,(z) = h~'¢(z/h). If moreover
¢ is symmetric then
Op*v =V

pointwise for all v € V? and B(¢y, * u,v) = B(u, ¢p, *v) for all u € U? and v € V7.
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Lemma 3.18. We have
B(¢p * u,v) — B(u,v)
foru e UP(R) and v € VINC and
Gp *V — v

in the weak * topology for v € VP(R) for1 <p<oo.

Proof. Only the last statement needs a proof. By definition and the pointwise
convergence B(u, ¢p *v) = B(u,v) for all u € R,.. This implies weak star conver-
gence. O

3.8. Density of test functions and duality.
Lemma 3.19. Test functions C° are weak™ dense in V?.

Proof. Step functions are dense in VP, and it suffices to verify that step functions
can be approximated by C§° functions in the weak+ sense. Moreover it suffices
to consider test functions with a partition consisting of a single point, which we
choose to be 0. Hence we reduce the problem to a proof for three functions. We
fix ¢ € C§°(R), identically 1 in [—1,1], and n € C*°(R) supported in (0,00) and
identically 1 for t > 1. Then for u € S,.. checking the definition shows

B(u, ¢(t/j)) = B(u,1)
and with v(t) = 0 for ¢t # 0 and v(0) =1

B(u, ¢(jt) = B(u,v)
and, with v(¢t) =0 for t <0 and 1 for ¢t > 0

B(u, ¢(t/j)n(jt)) — B(u,v)
with j — oo. ([
Corollary 3.20. We have
lullr(xy = sup{B(u,v) : v € C5°, ||[v]|va(x+) = 1}.

Lemma 3.21. The bilinear map B defines a surjective isometry

- 1 1
VAXT) = (UInCX)), 4 o =L1<pg<oo

Proof. The kernel of the duality map composed composed with the inclusion (U? N
C) C UP consists exactly of those elements of V¢ which are nonzero at most at
countably many points. We claim that the duality map is an isometry. Let v € V?,
and let a be an atom so that

[ollve < (1+€)B(a,v)
If ¢y, is a symmetric mollifier then, if A is sufficiently small
B((l,(bh*’l)) = B(¢h *a,'U)
which shows that the dualtiy map is an isometry.

It remains to prove surjectivity. Let L : UPNC(X) — R be linear and continuous.
By the theorem of Hahn-Banach there is a extension with the same norm to UP,
and by duality there is v € V¢ with ||v||ve = ||L|| and L(u) = B(u,v) for all u € UP.
Changing v at a countable set does not change the image in (U? N C(X))*, hence
we may choose v € VP, O
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In the sequel we identify u(a) resp. w(b) with the limit from the right resp. the
left.

Lemma 3.22. Letu € U? andv € UP, 1/p+1/q =1 and let (t;);1 be the points
where both v and w have jumps, and denote the size of the jumps by Au(t;). Then

(3.17) B(u,v) + B(v,u) ZAu i) +u(b)v(b)

Proof. The right hand side of (3.17) is continuous with respect to u € V9 and
v € VP, with the jump understood as the difference between the limit from the
right and the left - the sum over the jumps to the power p is bounded by the V?
norm. The left hand side is continuous with respect to u € U? and v € VP, and
it suffices to verify the formula for u,v € S,. with joint partition (where we add
t():a) a=ty<ty...ty <b. Then

N
B(u,v) + B(v,u) = ZU(%’)(U(%) —o(tj—1) + (ulty) — ultj—1)v(t;)
N "
= Z u(t;)(v(t;) —v(tj-1)) — ultj—1)(v(t;) — v(tj—1) + u(b)v(b) — u(to)v(to)
O
We define
(3.18) Vi ={veVinC,v(b) =0}.

Lemma 3.23. The map
Ur(xr) — (Vé),
u— (v — B(u,v))
s a surjective isometry.
Proof. By the duality estimates the duality map is defined, and it is an isometry
since the space VJ is weak star dense in V7. Let L : V& — R by linear and
continuous. By Hahn Banach L can be extended to continuous linear form on
L € (V9)*. Since U? C V4 by an abuse of notation L € (U9)* and there exists
% € VP such that
B(w, —t) = L(w)
for all w € U%. We define (with ¢+ the limit from the left resp. the right)
u(t) = a(t+) — a(a).
Then u € Np>,U? and by Lemma 3.22 below, for all v € Ve,
L(v) =L(v = v(a)) + v(a)L(1)
=B(v —wv(a), @) +v(a) lim L(x(p)
B(v —v(a),u) — (v(b=) — v(a))i(a) + v(a)i(a)
B(u,v —wv(a)) + (a(b) — a(a))v(a)
B(u,v)

where we used that v(b) = 0 and that v is continuous.

(
(
(
(
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For every partition we have u, € UP, with

|url|or < sup B(v,u;)= sup L(v;)
veVE lvllve <1 [lvrlve=1

Since u € V2, there is a sequence of partitions 7; so that u,, = «u € V? and hence
the sequence converges uniformly. Thus for every step function v
B(us,,v) = B(u,v).
Since step functions are dense in V¢ even
B(ur,;,v) = B(u,vs;) = B(u,v)

For all v € V9. Let UP** be the bidual space of UP , which we consider as isometric
closed subspace of X**. By an abuse of notation we consider u as element of UP**.
Then

B(uq,,v) = u(v)
for all v € V7 and the distance between uw and UP in UP** is zero, and hence
u e UP. O

3.9. Consequences of Minkowski’s inequality. For a Banach space Y we de-
note by LP(Y) the weakly measurable maps with values in Y’; for which the norm
is p integrable.

Lemma 3.24. We have for 1 <p < g < >

(3.19) lull 2@y < llulloe e
and
(3.20) [vllvesy < vllzave)-

Proof. 1t suffices to verify the first inequality for a p atom

a(t7 JJ) = Z Xt tig1) (t)q)l(x)

with values in L?. This is a function of « and ¢. Then ¢t — a,(t) is a step function.

Let y
ﬂm=<§]@uw)

1/q
wummz(/ﬂ@mo

[ X @r

1/p

Then

a/p\ /9

IA

> 25l
j
<1

where we use Minkowski’s inequality for the first inequality. The argument for the
VP space is similar. [



NONLINEAR DISPERSIVE EQUATIONS, SUMMER TERM 2013 61

The argument works the same way if we consider Banach space valued functions
in UPLY etc.

3.10. The bilinear form as integral. Here we consider scalar valued functions.

Definition 3.25. Let v € VP(a,c) and u € U%(a,c). We define fora <s<t<b

(3.21) / vdu := B gy (u —u(s),v) + (u(t) —u(t—))v(t)

and
(3.22)

[ wdvi= [ odu tatty) - ulty-)(w(ts) - ot;-)

+u(t—)v(t—) —u(s)v(s+) + u(t)(v(t+) —v(t=)) + v(t)(u(t) — u(t—))
with the sum over all joined jumps in (s,t).

The second definition is partly motivated by

(1) The integration by parts formula (3.17). It should reduce to integration by
parts if v € U?, and if there are no jumps at ¢

(2) The desire to have a certain symmetry with time reversion if v is continuous
the left and w is continuous from the right.

(3) We want the integral to be additive in the interval.

Lemma 3.26. Foru e U? andv € VP, 1/p+1/qg=1 we have

c b c
/ Udu:/ vdu—i—/ vdu
a a b
c b c
/ udv:/ udv—I—/ udv.
a a b

and

With the obvious notation,

t
(3.23) H/ ude < lulluslvllv
a ve
and
t
(3.21) | [ va],, < ol
a U1

Proof. 1t suffices to check the first formula for atoms u. Suppose that t; < b <t;44.
On both sides we have a sum over

v(tj1) (ultj+1) — u(ty)).

For the second formula we see from the definition

c b c
/ udv = / udv + / udv
a a b

where we have to check the contribution at t = b.
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Formally, for smooth functions

B(/at vdu, w) :/abw(t)v(t)u’(t)dt

(3.25) =B(u, vw)
<[lvw|[val[ullur

<2v[lvafwllvellufoe

which formally implies (3.24).

For a rigorous proof we verify the formula in the case when u is a atom, and v
and w are step function with a common partition all functions. Then f; vdu is a
right continuous step function and

D wlty) (ulty) = ulti—))w(ty) = D [o(te1)w(tser) — o(t)w(t;)]ult;)
J J
where we neglect the boundary terms. We apply Holder’s inequality to bound the
expression by

(X lottsenuttyen) — vt we)) (X )

Again formally for smooth functions

B(w,/at udv) = — /ab vwu'dt + (w(b) — w(a)) /ab uv'dt

b b
(3.26) z/ v(uw)'dt — (w(b) — w(a))/ vu'dt

—u(D)v(b)w(b) + u(a)v(a)w(a)
+ (w(b) — w(a))(u(d)v(b) — u(a)v(a))
=B(uw,v) — (w(b) — w(a))B(v,u)
(

if u(a) = w(a) = 0. This implies formally (3.24). For a rigorous proof we apply
integration by parts several times. First

t+
/t, wdv =(u(t) — u(t=))(v(t) — v(t=)) + u(t)o(t+) — u(t=)o(t-)

—o(t)(u(t) —u(t-))
=u(t)(v(t+) —v(t-))
and

t+
/f wdv = u(t) (v(t+) — v(t))

and hence [P sum over the jumps is bounded. Thus the bounded reduces to the
bound for

B(w, /at vdu)

and by the same token to

B(/at vdu, w)
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which we have proven above. ([

Sometimes it is convenient to have a notation for spaces of derivatives of functions
in UP resp. VP.

Definition 3.27. We define dUP as the space of all distributions f with ffoo fe
UP, equipped with the norm in UP. Similarly, let dV'? be the space of all distributions
which have an antiderivative in VP, equipped with the obvious norm.

rc’

1

ioc and that all one sided limits

In particular we require the integrals to be in L
exist,.

3.11. Differential equations with rough paths. This type of study was ini-
tiated by Lyons [21]. We will only scratch on the surface. We observe that the
duality mapping extends the Young integral.

We consider the differential equation

Y= F(y,x)m', y(O) =Y

where x € U? and F is a bounded Lipschitz function continuously Frechet differ-
entiable with respect to Y, and dy F' is uniformly Lipschitz continuous. We denote
the bound for F' by Cjy, the Lipschitz bound by Lg, the bound for dy F' by C7, and
the Lipschitz bound for dy F' by L.

Suppose that y is a solution, i.e

Then, by (3.24)

ly(®) —y(a)llv= <[IF(y, x)llv2]]lo

(3.27)
<(Co + Lo(llyllv2) + lzllv2) =]l

It is trivial that there is a unique solution if x is a step function in S, - for that we
consider a finite number of differences. We shall construct a solution to the initial
value problem for ||z||y» small. This implies existence of a unique solution since we
may first approximate x by a step function, and then solve the differential equation
on each of the intervals of the step function.

We want to construct a solution as fixed point of

y(t) = yo +/ F(y(s), z(s))ids.

0

We claim that there is a unique solution in U? provided
zll <e

with e sufficiently small. Let

y(t) = yo + /0 F(g(s),z(s))ids.
Now, by (3.27),

ly —y(a)llv= < (Co+eLo + Lo([lgllv))llzllv>
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and we obtain a uniform bound on the iteration provided Lo|z[p= < 3. If
¥1,72 € U? and y; is defined by the Young integral above we get

ly2 — yilloe <2 F (g2, 2) — F (g1, 2)|lvz ||z

F(ja,2) = Fi2)
<2l =T gy — )y o
Y2 — 1
F(Q?al‘) —F<:lj1,$) ~ ~
<2 (I =2 sl — Gl
Y2 — U
F(@Qvl') _F(glax) ~ ~
1=l — Gl ) s
Y2—UN

S2Li (1 + 1172 = tallve + llzllv2)llg2 — dallv2 |2 o=

We easily construct a unique solution by a standard contraction argument. The
modifications for UP? p < 2 are as follows. The differentiability requirements on
F are weaker: Let 1 < p < 2 and % + % = 1. The apriori estimate requires few
changes and we concentrate on the contraction, for which we consider (with L/,
the p/q Holder exponent of the derivative of F)

| F (G2, 2) — F (g1, 2)|lva =sup (Z [(F(Ga(tis1), a(tir1)) — F(Ga(t), 2(t:)))
- (Bt alten) - P ew))")

< sup [( Z |F(G2(tiv1), x(ti)) — F(g2(t:), z(t:))

E (), 2(0) —~ FG (1), ae)7)
+ (X IE @), atin) = F(@altin). 2(t)

1/q
— (F(r(tin) a(tisn)) = F(Gn(tisa), o)) |

<sup (LE172 = 9112 (152 = 5115 + 1210) )
!

We obtain the contraction as above.

Theorem 3.28. Let 1 < p < 2, F: X xY — Y be bounded, uniformly Lips-
chitz continuous, Frechet differentiable with respect to X and Y, and dF is Hélder
continuous with respect to y with Hélder exponent p — 1. We study

dy = F(z,y)dx,y(a) = yo

Then there exists a unique solution y € UP(Y) ifx € UP if 1 <p <2 andy € VP
if t € VP and dF is Holder continuous with exponent s > p — 1.

3.12. The Brownian motion. The Brownian motion is almost surely in V? for
p > 2. We denote by B;(w) the path of the Brownian motion as a function of ¢
and the element of the probability space w. If the Brownian motion would be in
U? with positive probability we could solve stochastic differential equations in a
pointwise sense. The 2-variation however is almost certainly infinite.

The regularity of the Brownian motion is characterized by the following fairly
sharp result of Taylor [29] , see also [7].
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Theorem 3.29. Let
o () h? for h > e ¢
2,1 = 2 . —e
lnlnhil/h) th <e
There exists n > 0 so that
n
E(exp(2L1BI2, o) < o0
where
1Bl 1s0.m1 = nf{M > 0:sup Y ¢ho1(|By,y — Bil /M) <1}
Moreover, if
h2
Y(h)Inln(1/h)

—0ash—0

then
SuprOBtiJA - Bti|) = 0.
TT

See Theorem 13.15 and Theorem 13.69 in [7]. This result deviates from the V?
spaces by an iterated logarithm.

Let (2, 1) be a probability space with a filtration y;, t € R, f € LP and f; =
E(f, ut). Then

(3.28) I fellr,vzy < cpll fllLe

is a consequence of Doob’s oscillation lemma for martingals [23], see also Bour-
gain’s proof of p-variation estimate [2]. A weaker version is due to Lepingle [19].
For the Brownian motion B; we obtain

Theorem 3.30.
[ Btll e 2.v2(10,1))) < Cp-

This has been a motivation to introduce V7.

3.13. Adapted function spaces. We want to bound the norm in U? or V? by
integrating against smooth functions. This is the contents of the next lemma.

Lemma 3.31. Suppose that T is a distribution so that
sup{T'(v¢) : v € C§°, ||v|lve <1} =C1 < 0
then there exists a unique u € UP with
T(v:) = —B(u,v)
and
[ulle = Ci1.
Suppose that T is a distribution so that
sup{T'(u¢) : u € C3°, ||ullys <1} = Cy < x0
then there exists a unique V € VE with
T(us) = B(u,v)
and
|lul|e = Cs.
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Proof. Let n; be a Dirac sequence and
U; = T * n; € Ok
Then u; — uj(a) € UP(a,b) for all @ and b and hence by duality
l[uj —wj(a)llurap < C1
In particular for t > a
|u;(t) = uja)| < C
and since a and b are arbitrary
[ (t) = wj(a)llsup < Co

and we may assume that
T(’Ut) = /fwtdt

for a measurable function @ which satisfying
[@llsup < C1

It defines a bounded linear form on V2. We choose v to be suitable atoms, and
obtain uniform bounds of u; in V?, and hence, after modification on a set of measure
0 also w € VP. As for the duality argument we see that u € VP, and, as there

i — u(a) € UP((a,b)

for all @ and b.
As for VP one sees that C§° is weak™ dense in UP. So

o = v(B) v = Sup{/ vusdt :u € C, uflps = 1}

A time reversal and a repetition of the arguments above implies the full assertion.
O

we observe that there are not more than obvious changes if we consider Hilbert
spaces valued functions, and if we replace the product by the inner product.

We briefly survey constructions going back to Bourgain, which have become
standard. The following situation will be of particular interest. Let ¢ — S(t) be a
continuous unitary group on a Hilbert space H. We define U§ and VZ by

lullz = [IS(=t)u(®)l[ue ).
By Stone’s theorem unitary groups are in one-one correspondence with selfadjoint
operators, in the sense that

with a self adjoint operator defines a unitary group S(t) and vice versa. At least
formally
10:(S(—t)u(t)) = S(—t)(i0u — Au)
and hence the duality assertion is
lullyg = sup  B(S(=t)u(t), S(—t)v(t)).

Ivollyz <1
Now suppose that - again formally -

1O+ Au = f
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then, if we choose by Duhamel’s formula the solution

t
u(t) = / S(t—s)f(s)ds.
A related construction goes back to Bourgain. He defines
(3.29) [ull xor = [1S(=t)u(®)| o2
where the Sobolev space H? is defined by the Fourier transform,

1£llze = 1L+ |71%)*2 fl 2
Clearly
X% c x%
whenever b > /. We may use a Besov refinement of the right hand side of (3.29),
ie.

1/q
[ull 5500 = <Z qulluNII‘}{b(m))
Ne2?
where we choose a disjoint partition A4; = {(7,€) : 2V < |7 + ¢(¢)] < 21V} and
define un by the Fourier multiplication by the characteristic function of Ay.
Then

X3

1
5,1

CUZCV2c X0
follows from Lemma 3.17.

There is an obvious generalization to the case of time dependent operators A(t).
Definitions are simple, but this often leads to technical questions.

Now

Fra(S(—t)u)(r,€) = Fre O a(t, &) = Fyou(r — th(£),€)

and hence by the formula of Plancherel and a translation in 7 variable
[ull o = [[(1 4+ 72)"2 Fpu () (r = t9(€), )2 = (1 + (7 + $(£))*)** Firoo (w)| 2

3.13.1. Strichartz estimates. We want to use this construction for dispersive equa-
tions. There A is often defined by a Fourier multiplier, most often even by a partial
differential operator with constant coefficients.

We consider the Schrédinger equation

10+ Au =0 in [0, c0)
u(0) = ug on R?
Let u(t) = 0 for ¢ < 0 and the solution otherwise. Then
||U||U; = ||U0||L2(Rd)-
One of the Strichartz estimates states
(3.30) lullzrry < lluollz2

whenever i 4
2
+7:77 2§p7q7 Pa(Ld 7& 270072'
o= (1,0,d) # (2,00,2)

We claim that this implies

||u||LfL§ < cllully».
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It suffices to verify this if S(—t)u is an atom with partition (¢1,¢s...t,). Then,
with t,11 = 00, by the Strichartz estimate

||uHLf(tj,tj+1);L%) S C||u(t])||L2'

We raise this to the pth power, and add over j. Then

1/p
lullzoze < e (D)) <e
since S(—t)u is a p atom.
Consider v(t) = ffoo S(t —s)f(s)ds and let 7 = (¢;) be a partition. Then

'U(tj) - S(t] - tjfl)v(tjfl) = v S(tj - t)f(t)dt

tj71

and by the Strichartz estimate
15(=t5)v(t;) = S(=tj-1)o(tj-1)llez < ellfllp
and
t — S(—t)v(t)
is continuous.
We take the power p’ and sum over j to reach the conclusion

[vllye < ellfll o o

This implies the dual estimate to (3.30). If p > 2 we may combine the estimates
with an embedding to obtain the full Strichartz estimate. In particular we arrive
at the non symmetric improvement for the Strichartz estimate

el 22y + el zaom < ¢ (Jluollzz + 111 gt )

if both (q1,p1) and (qo, po) are Strichartz pairs, but not necessarely the same ones.
We prove this estimate over the interval (0, 00) and extend u by 0 to negative t.
Then

[ull Lo (z2) + [[ullLro-a0 < clluflure < ellully,m < clluollzz + || fIl o0 -
Lemma 3.32. The following estimates hold for Strichartz pairs
[ullzra < cllullur
and

t
[t + [ ste=s)sts1as| < clluollzs + 11000

3.13.2. Estimates by duality. We return to duality questions and calculate formally

lullvg = sup  [B(S(=t)u(t), S(—=t)v(t))|

ollyp<t
= sup
ollyp<t
= sup |—i{S(—t)(i0u — Au), S(—t)v)dt|

v <1
lollyz <

= sup /R<f,v>dt

lellyp <1

/R (005 (—t)u(t), S(~t)u(t))dt
(3.31)
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with a similar statement for Vé’ . This observation will be crucial for nonlinear
dispersive equations.

Lemma 3.33. Let ¢ € C°(R?) be a real polynomial and let S be the unitary group
defined by the Fourier multiplier e*®&) . Let 1 < p,q < oo and %—I—% =1. Let T be

a tempered distribution in (a,b) x R which satisfies
sup{|T'(a)] : u € C5°((a,b) x RY), Julyz <1} = C1 < o0
Then there is a unique v € V¢, (a,b) with
T(u) = /vmdxdt
and ||v|lve = C1. Let T be a distribution in space time which satisfies
Sup{|T(0)] : v € CF(R x RY), o]y} = C3 < o0

Then there is a unique u € U with
T(v) = /uivt + ¢(D)vdzdt

and ||ullye = Cs.

Proof. Fourier multiplication commutes with the evolution. We convolve T' with
the inverse Fourier transform of a nonnegative function with compact support. To
this we apply Lemma 3.19. But this gives the full statement. (]

The theorem implies existence of a weak solution to
i0u+ ¢(D)u = f, wu(a) =0,
together with an estimate for u.

3.13.3. High modulation estimates. We denote by f(D) the Fourier multiplier de-
fined by a function f. Let

f=1=x(r/A)
where 7 is the Fourier variable corresponding to ¢t and x is an approximate char-
acteristic function, i.e. x is supported on a ball of radius 2, and identically 1 on a
ball of radius 1.
Lemma 3.34. The following estimate holds.
I £(D)]lLz < A2 o]y
Suppose the group S(t) is defined by the Fourier multiplier ¢™*%(€) then, with
f(D)=1=x(r+¢(£)
£ (DYull Lz < A2 [Jv]lye
Proof. We have
File"Oa(t,€)) = Fopulr — 6(€),€)
and the second claim follows from the first one. Let
g=F""x(&/N).
Then
g(t) = A"H(FIX)(A)
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and

/(v(t +h)—w(t))g(h)dh

L2

gs%p|h|‘1/2||v(t+ h) = v(t)] L2 / B[} 2ATY2IF T  (RA) | dh

chuHVaA*l/Q/\h|1/2|]-"*1x|dh.



NONLINEAR DISPERSIVE EQUATIONS, SUMMER TERM 2013 71

4. CONVOLUTION OF MEASURES ON HYPERSURFACES, BILINEAR ESTIMATES AND
LOCAL SMOOTHING

We recall the transformation formula for U,V C R%, ¢ : U — V a diffeomor-
phism,

/ fdm® = / f o ¢| det D¢p|dm?
v U
and its relative, the area formula for

¢o:U— S CR",

¢ differentiable and bijective,
/ fdHt = / f o ¢(det DT D@)/2dm?,
s U
The coarea formula deals with

p:U—=V CR"

surjective and n < d. Then the coarea formula states
/ / fAHIT dm™ (y) = / f det(DpD™T Y 2dm4.
V /e 1 (y) U

The Fourier transform transforms a product into a convolution, and vice versa.
Let 3, and ¥ be two d— 1 dimensional hypersurfaces in R? such that for all 2; € ¥;
the tangent spaces are transversal.

We assume that ¥ and Yo are nondegenerate level sets of functions ¢ and ¢s.

Let h be a continuous function. Then, by the coarea formula

[ o n@im'a) = [ b /¢ o, TV @ @

This motivates the notation

5p = |Vp|"rdH?

1
4.1. A convolution estimate.

Theorem 4.1. Let ¥; C RY hypersurfaces and ¢; as above, and f; square integrable
functions on ;. Then

11106, * f200,ll12ray < CIAIVOL T2 2o | f2| V2 ™ 2| Lo(sy)
where with X(z,y) = {y+T1} N{x + T}
C= sup C(z,y),

TEX,YyEX2
and where C(z,y) is the square oot of

—1/2

(IVo1(z = 9)IPIVoa(z — 2)]* = (Vi (2 — @), Va(2 = ))?] "~ dH"2.

E(z,y)



72 HERBERT KOCH

Proof. Let f; be measurable functions in a neighborhood of ¥;, let h be countinuous
and nonnegative, and g; = h o ¢;. Then, by Fubini,

||f191 * f292|\2Lz

< / / 11(2) 21 (2)g2(z — 2)dm () / |2 Poay)ga (= — y)dme (y)dme(2)

Rd Rd
= /de [[1(2) P91 ()] f2 ()92 () /92(2 — 2)g1(z — y)dm?(2)dm (z, y).

By the coarea formula

/92(2 —x)g1(z —y)dm? = /]R? h(s)h(t)I(s,t)dsdt

where, with
Yse={2:01(y+2)=s¢2(x+2) = (1)}

and
—1

p(s,t.2) = [[Voi(z = )P |Véa(z — 2)* = (Vi (2 — y) - Vo (2 — 2))?]

I(s,t) :/ p(s,t, 2)dHY 2 (2).
St
Here we suppress the dependence on x and y, but we set

v(z,y) = 1(0,0).

Again by the coarea formula
[ h@Pa@int@ = [ 1) [ | 1A@P Fé @] ant - w)s.
R4 R o (s)

There is a similar formula for the second integral. We assume that f; is continu-
ous and choose a Dirac sequence for h to obtain the estimate. The statement for
measurable functions on the surfaces follows by a standard approximation argu-
ment. O

Using the coarea formula we obtain a more explicit formula for the convolution:
fiho 61 x fah o 6a(2) = [ (fiho 61)(z = v)(f2h 0 02)(5)dm (1)
= [ [Hen®) [ 5= ettt st
3(s,t)
R R

There is a trivial improvement

-1/ B
(41) H/IHQ(Z—FQ)’Y ' Q(Ivy)p(o,o,Z)fl(x)f2(y)d7_[d 2‘ ;

<Ifillzzs 6,0 12l L2 (22,64, )-

Here L?(X;,84,) denotes the space of square integrable functions on the hypersur-
face with respect to the measure g, .
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4.2. Application to bilinear estimates for dispersive equations. We use
the convolution estimate to bound products of solutions to dispersive equations.
Consider

iug —(D)u = 0.
The characteristic surface ¥ is a surface in R%*! defined by the function

¢(Tv 5) =T ¢(§)
The solution defines the measure

o ()0
Let 11 and 9 be real smooth functions and, as above,
¢1(7,§) =7 —1(§)  resp. ga(T,§) =T — Y1 ().
The set of integration is
{78 :F=n+1(l—&) =7 +(§ — &)}

for 7; = 1;(&;). We rewrite it with £ = é— SLand T=7T— 1 as

M ={(7,€) 1 ¥2(&) —1(§ = (& — &) = ¥2(&2) — 1 (& — (& — &), 7 = ¥2(O}
The most important case will be ¥; = 1. Then, with & = & — &1,

(4.2) M ={(1,€) : (&) + (£ =€) — (&) = (&) +¥(&2 — &) —¥(&2), T = ¥(§)}-
The expression
Y(&1) + (&) — (& + &)
is called modulation function.
We express the integrand in terms of Vi);:
(4.3) [V [2[Val* = (Vo1 -Va)? = Vi1 = Vibo > + Vb1 |* Vo] = (Vibr - Vo).

The first term is the square of the distance of the gradients, and the second is the
square of product of length multiplied by sin? of the angle between them.
As a function of £ this becomes

(V1 (€ — &) — Vo ()* + [Vp1 (€ — PV (E)? — (Vi (€ — £) - Ve ().

4.3. One space dimension. In one space dimension the second term vanishes.
The set 4 31 Ny + Yo consists generically of a discrete set of points and we obtain
a sum of |} (z —x) — 14 (z — y)| over the intersection points. Often the intersection
consists of one (Schrédinger) or up to two points (Airy). If (£) = ¢V for an even
integer N then the equation

V- (G-a)V =g -¢&
has the obvious and unique solution £ = &. If N is odd there are the exactly two

solutions & = &5 and £ = —&; unless & = —¢&;.
Then

ft(/ [0/(& =) — o ()| P ETITHVD 1 (€ — ) () dg) (7)
= > 7 H2(&m)p(0,0, )it (m)an (€ — n)
(o,m)eX1n{(7,§) -2}

and its L? norm is bounded by 1 (if N is even) and v/2 ( if N is odd) times
l[uoll 2 [lua [ 2
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Theorem 4.2. With the notation introduced above

44 H / [ (& —n) — ¢i(n)|1/26it¢0(§*77)+it¢1(77)“0(5 _ U)Ul(ﬁ)dﬁ‘

<V2rluol L2 w1l L2 (w)

L2(R; xR¢)

(

if N is even and if N is odd

(4.5)
H / W) (€ — n) — ] () |}/ 2etteoEmmFitonimy, (¢ — n)U1(n)d77‘
L2(Ry xRg)

<V2V2r||uol| 2wy lual| 2 r)-

There is an interesting special case: Local smoothing corresponds to ¥; =
{(£N7§)} and ¥ is given by 7 = 0.

Theorem 4.3. Let 1) be as above. Then

114/ (D)2 S (#)uol| Lo 2 < V2r||uo| 2
if N is odd and if N is even

%' (D)2S (tyuol| oo 12 < V2 2r|[u| 2.

Proof. We apply the convolution estimate with 11(¢) = ¢V and 9 = 0. The
equation

(€—&)" =-&
has the unique solution £ = £y — &1 if NV is odd, and £ = £y £ &; if NV is even. Thus,
if N is odd

N-—1
\/ﬁ/|(\D\Ts(t)w)v(w)|2d$dtS Vol 01172 (2

and we choose v so that |v|? is a Dirac sequence. There are only obvious adaptations
if NV is even. U

In particular, if u satisfies the Airy equation then
0zul| oo p2(m) < V27 luo 2

and u has square integrable derivatives for almost all ¢.

4.4. The Schrodinger equation with higher space dimension. The charac-
teristic set X is a standard parabola.
The set

{(r1,61) +E} N (72,62) + X}

is the intersection of two paraboloids. It is paraboloid of dimension d — 1, the
intersection of the paraboloids. The intersection is given by the equations

=gl =l-al? TP = - &)
and hence
T=alP +1E-al? =& + ¢ - &
The first equality determines 7, which is of minor importance, and the second is
equivalent to

(4.6) (€& &) =& —laf
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which is a hyperplane with normal & — &7, if & # &1, which we assume for the
moment. It contains the point £; 4+ &1, and every point can be written as & +&; +v
with v perpendicular to & — &;. Let

e —&),
YT e —ap ©

(€2,62 — &1)
|62 — &1]?

&1
then

&1 + o+ & = & + &) — |wf® + v+ w? = cw + v+ w]?
and the area formula

/M f(r,&)dHit = /]Rd 1 flew + v+ w2, & + & +v)/1 + 4)v + w|2dv.
The integrand is determined by
JA=(E &~ (E-)P+IE-&PlE - & — (- &, - &)%)
=l& — &P + v+ &P lv+ &P + (v + &, 0+ &)
=& —&*(1+ v +wl?).
We will choose ¥ to be the part of the parabola above the annulus of radii A and

2], and X, the part of the parabola above the ball of radius u, with 4p < .
The integrand has size

(A2 4+ (1+ M\~ 1/2
and

C(é1,6) < po'A

Similarly we consider two solutions with the Fourier transform with respect to £
support in an anulus of size A, and consider only output of size u, which corresponds
to restricting |&; + & < p.

The integral is then bounded by A~'u?~!. We obtain the following bilinear
estimate

Lemma 4.4 (Schrodinger, d dimensions). Let d > 2 and p << A.
-1 _ _
lurvallze < 07 A2 un(0) |22 10, (0) ) 2
d—2
[(wrva)ullpz < w2 [ux(0)[ L2 {loa(0)]| >

Here (), is defined by the characteristic function of the ball of radius p as Fourier
multiplier, and (), is the Fourier projection to {£ : |£] > A}.
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5. WELLPOSEDNESS FOR NONLINEAR DISPERSIVE EQUATIONS

In this section we will construct local and global solutions to several dispersive
equations. The structure of the arguments is always similar.
We study
i0pu = ¢(D)u = f(u)
where ¢(D) is defined by the real Fourier multiplier ¢(£), and f is typically a
polynomial in u and its derivatives without constant or linear terms. We denote

the linear evolution by S(t) and the adapted UP and VP spaces simply by UP resp.
VP,

5.1. The (generalized) KdV equation. For integers p > 1 we consider the
initial value problems

(5.1) Ut + Upge + (upu)x =0

(5.2) u(0) = ug

- the case p = 1 is the Korteweg-de-Vries equation, and p = 2 the modified
Korteweg-de-Vries equation, and

(53) Ut + Ugzx + (‘ulpu)w =0

(5.4) u(0) = ug

for positive real p.
Both equations have soliton solutions

u(z,t) = C%Q(cl/Q(x —ct))

2/p
p+1 2/p 2
Q, = () cosh“/P(=x).

The equation is invariant with respect to scaling: (A%/Pu(\z, \%t) is a solution if u

satisfies the equation. The mass [ u?dz and energy [ u2 — —15uP™? are conserved.

pt
The energy however is not bounded from below.

with

The space H? » ( with norm |[jul| . = |||¢|°@||z2) is invariant with respect to
scaling and it is not hard to see that the generalized KdV equation is globally
wellposed in H' if p < 4. For p > 4 one expects blow-up. This has been proven in
series of seminal papers by Martel, Merle and Martel, Merle and Raphael.

Using the Fourier transform we see that

Ut + Vaze =0 0(0,2) = vo(2)
defines a unitary group on L?. We denote
S(t)vg = v(t)
and define the adapted function spaces by

lullor, ., = I1S(=t)u®)llor,  lullve,, = I1S(=t)u)llve,
[fllavs,, = ISOfOllave 1 fllavg,, = [S(=tu®)]ave

The Strichartz estimates are

(5.5) lullprps < elll DI~ Puo|l 2
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for
2 1 1

poq 2
We have seen they imply the embedding estimates
(5.6) 11D Pul| g < ellullos,,
in the same range.
For A > 0 we denote

ux = Xa<e|<2a(D)u
the projection of the Fourier transform. Then the Strichartz embedding applied to
9(D)u, g(€) = €] 7 gives

(5.7) luxllzprs < A™VPlullyr,,,

- checking atoms one sees that Fourier multipliers act nicely on UP and VP.
The bilinear estimates for 4\ <

ISt uo St vo ullze < ™ lluoall L2 vo,ull 2

are a direct consequence of the bilinear estimate of the last section. As for the
Strichartz estimate we easily see

llaxS(#)vo,ullze < A~ voullze,

thus
[uaS(t)vo,pullze < A" ualluz, llvo,pullze,
luragllre <A™ ualloz,,
and
(5.8) luxvullze < A" Hualloz, loalloz

5.1.1. The case p = 3. We study
Up + Ugpz + ui =0.
Here H~1/6 is the critical Sobolev space. We choose a slightly larger space

lJullx = Sup A urlluz,, 0,000

for the solution and
luoll 176 = sup A™YC|fug |l 22
2,00 )\627‘

Then
1/6

[[uo.ll 2

KdV

sup A9 S (H)ug ||z, ~ sup A~

A A
There is an ambiguity: By definition u € U%,,,(0,00) implies u(0) = 0. On the
other hand we may extend u(t) by zero for negative t. Then S(¢)ug for ¢ > 0 and
0 for t < 0 is a multiple of an atom. We avoid this ambiguity in the formulation of
the theorem, but we allow it in its proof.
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Theorem 5.1. There exists § > 0 such that for all ug with
31)1\p A (ug) a2 < 0.
there is a unique global solution u which satisfies
[lu = S(t)uollx < clluoll g-1/0
2,00
which depends analytically on the initial data.

Proof. We claim

(5.9) <A lluallx lloallve-

Suppose that this estimate is true. We search a solution u = S(¢)ug + w where

with initial values w(0) = 0, which we formulate as fixed point problem of the map
w — w where

/U1UQU3’LL4’U)\d$dt

Wy + Waze = —(S(t)up +w)i.
This equation has to be understood as follows: w, satisfies
"D/\,t + ﬁ}A,xzz = (_(S(t)uo + w)i))\
in the sense of Lemma 3.33 with a = 0 and b = co. The derivative can be replace

by the multiplication by A after the frequency localization.
By Lemma 3.33 there exists a unique such wy € Uf{dv with

A wallz,, < ellS(tuo +w|k

and, for the difference for two different data
A0 w} = willyz,, < elS(Euo +w'||x + [|S(H)uo + w?| x)*|w? — w | x.
We take the supremum with respect to A and arrive at, denoting the map from w
to w by J,
[ (w)llx < e(llw]lx + [[uoll)*
1 (w?) = J(wh) | x < e(l|w?|lx + [lw' | x + [Juol)?[lw? — w'[|x-
Thus J maps a ball of radius R to a ball of radius
C(R+ HUOHB—1/6)4 <R
2,00
provided
1
R3, 3 et < —.
max (R, Juol,_1ye} < 7o
Then 1
17 (w?) = T(wh]x < S llw* = w'lx

provided ||w?|x < R, |Juo| < Ci(/; and R < 15h75. We choose R = § = 5h7s.
Then J defines a contraction on the closed ball of radius R in X. The contraction
mapping theorem implies existence of a unique fixed point, which by Lemma 3.33 is
the unique weak solution in X. The map J is a polynom, and hence analytic. The
same arguments imply that its derivative is invertible. Now the analytic implicit
function theorem in Banach spaces implies an analytic dependence on the initial
data.

It remains to prove the estimate
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(5.10) ’/uluzmuz;wdxdt‘ < A7 [T uwillx loallv=-

We expand the left hand side into a dyadic sum and we try to bound

5
/Hui,,\idxdt
i=1

where (by symmetry) Ay < Ay < A3 < My < A5, We claim

5
(5.11) ‘/Hui7,\idazdt

I =

<Ay (AoAsha) O /AT [ i, llve-

i=1

We assume that (5.11) holds.

The integral with respect to x vanishes unless there are frequencies in the support
of the Fourier transform which add up to zero. Since, if |&1] < |&2| < ...|&5| the
frequencies can only add up to zero, &1 +&+&5+&4+E&5 = 01if |&5]— &1 ] > 1—10|§5|. We
replace the decomposition and sum by a finer decomposition ), o1z and dyadic
decomposition into {£ : A < & < 1.01A}. This does change neither the spaces, nor
the estimates, up to constants. We observe that Ay > \5/8 - otherwise the integral
vanishes. We have to sum over the indices.

(1) XA > A5/10. Then the factor A5 ' is eaten up to the derivative and for all A4
fixed, the iterated geometric series gives
S AT <

A1<A2<A3<Ay

which gives the desired bound in this case.
(2) A= A3. Then we sum

Z )\1/6—5)\2/6)\51/3-&-6 < C/\l/G
A1 A2 <A< A~ A
(3) A=)y and A = )\ is similar.

It remains to prove (5.11) and we have seen that we may assume that A\; < 4X5/5.
The first attempt then is

4

1 S||’LL1,)\1U5,>\5 ”L2 H ”uj,/\j ||L6
j=2

(5.12)

4
<(MaAsAa) VO N n, oz, s xs lloz,, TT e llos,,
=2

where we used Holder’s inequality for the first inequality, the bilinear estimate for
the first factor, and the L8 Strichartz embedding for the remaining factors. This is
almost what we need - we still have to replace the norm U% ;,, by V-

The Strichartz estimates imply

1S (#)uoS (H)uoullzs < e(Aw) ™8 lug pll 2 o x| L2
and the bilinear estimate is - for u < A/1.03

ISt uorS(t)uoullrz < X uoull2lluoll e
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provided p < A\/(1.01)2. Thus, for 2 <p <3

1S (£ oS () e < A5 (M) =78 |lug [ 2] o x

|2

and hence, by Holder’s inequality

25 1_1
lurwplle < A2 pr =2 uullor, llullo,,

With this argument we may replace the U2 by V2 norms - but now the remaining
terms are not square integrable anymore. We use this modified bilinear estimate
twice if there are two pairs of )\; with quotient at least > 1.012. Oversimplifying
slightly this leaves us with Ao = A3=A5 and A\; = A\a = A3 = A4 and A5 ~ 3A;. The
second case is easier, and we focus on the first. We again turn our attention to

E1+86+8+86+86=0

assuming [&1] < [&2] < €3] < €| < |€5|. We have already seen that |&1] < 0.9]&5].
We compose the set {& : A; < |¢] < 1.01\;} for 2 < j < 5 into symmetric unions
of intervals of length A;/100. We label this intervals by p;; with 2 < ¢ < 5 and
7 < As/A1 and expand the sums in

/umlUz,x5US,A5U4,A5U5,A5d$dt’ =

E : /U17>\1u27u2U37“3’UJ47H4U57mu5dl‘dt
90< |2 +p3+pa+ps|<110

there are at most (A5/A1)? terms in the sum- We fix u; and assume that they are
ordered. Then us — puo > 2 and we estimate

/u1,>\1u2,#2u3,#3u47#4u57#5dxdt < Juny wa, g | e (|00 s || Lol || 2o

and hence (changing indices if necessary, or summing over similar terms)
(5.13)

Vuulu2,uzu3,ugu4,u4u5,usd$dt < edy (Madsha) O s /M) [T i, [l

since p is the smallest exponent. This is almost good - but (A\5/A1)® is too big.
We recall Lemma 3.11 which allows us to write for given M

U=v-+w
with
K
a7 vlloz,, +eMollur, <llullvz,, -

We expand all the w;. This yields by (5.12)

2
VKdV

_ _1
‘/’UL,\l'UQ’#QU3’#3U4’#4U5’#5d1}dt‘ < CM5>\5 1()\2)\3)\4) 6 H ||’LL1'7)\1.

and

/wl,Alwz,mws,usw&;mw&usdﬂ?dt‘ < A5t (AaAs ) O (s /A0)° T [ lwi, llue

<e ™M (AoAsA0) "0 (s /A0 T lwin,

2
VKdV



NONLINEAR DISPERSIVE EQUATIONS, SUMMER TERM 2013 81

Similarly we estimate all the other terms in the expansion. Then

<c(M® + e M (A5/A1)")A5 (AaAghg)~1/6

x H Hui’)‘i Viav'
< eln(1+ (As/A1))°A5 (A2 dsha) 7O T Iluwan,

if we choose M = 5In(A5/\1). This completes the proof of estimate (5.9), and
hence the proof of the estimate. ([l

/ UL, 2 U2, 05U, g Ud,ug WS, pus dxdt

2 .
VKdV

A variant yields local existence. There are two key oberservations. First we may
expand

[IS®uo +w)s, = [ (Stuo)s, + -+ [ wa,

there is one term without w, a term linear in w, and higher order terms in w. If w
is small than the higher order terms are even smaller. So we need some smallness
of the first and the second term. We do not want to assume that the initial data
are small, but we are willing to choose a small time.

Theorem 5.2. Let R > 0 there exists 6 > 0 so that if
o <
Juoll g0 < R

and T > 0 with
Sup |S(t)uollLe <0

then there is a unique solution u to
e+ Ugga + Ox(X[o,1)()u’) = 0
with initial data ug which satisfies
|lu — S(t)ugllx < cR?*S?
and which depends analytically on the initial data.

Proof. By the discussion above it suffices to consider integrals

/0 ! /R (S(£)uo) vdadt.

/0 ' /R (S(#)uo)Pwvdadt.

We observe that we may always estimate one S(¢)ug factor in LS. Thus
lwllx < cR%S

which is small provided ¢ is sufficiently small. a

and

Here we may have T' = oo even for large initial data. In that case the solution
is in U%,;, and hence
wy = lm S(—t)ux(t)
exists - since all one sided limits exists. Equivalently
’LL)\(t) — S(t)U})\ — 0

in L? and the solution to the nonlinear equation is for large t close to a solution to
the linear equation. This is called scattering.
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Trivially
X0,y (8)S(B)uo Al 2 < T2
and a simple modification of the scheme above gives local existence for data in L2,
or subcritical Sobolev spaces. Since the L? norm is conserved - which needs a proof
- there are global solutions for initial data in L*(R).

Existence of solitons shows that in general solutions are not in LS of space-time.
Solitons clearly do not scatter.

Wellposedness in a slightly smaller spaces has been proven by Griinrock [9] and
Tao [28] based on a modification of the Fourier restriction spaces of Bourgain at
the critical level.

Statement and proof are based on [18], where it was one step to prove stability

of the soliton in Bag/ 6’2, and scattering, which is probably the first stability result
of solitons for gKdV which is not based on Weinstein’s convexity argument.

5.1.2. The case p = 4. We consider
(5.14) Ut + Upze + ui =0.
This is the L? critical case. We choose

luollzg . = sup fluxllz2

and

lellx = sup f[uxlloz,, -

Theorem 5.3. There exists € > 0 such that if
luollg _ <=
there is a unique global weak solution u in X with
llw = S(B)uollx < clliollpg
This time we need an additional inequality called Bernstein’s inequality: For
qz=p
(5.15) lully < A7~ fus | oo

Bernstein’s inequality is easy to prove. Scaling reduces to question to A = 1. So
we consider u with Fourier transform supported in [-2,2]. We choosea Schwartz
function n with 7(§) = 1 for |¢] < 2. Then

N* U = Uy

and Youngs inequality gives the bound.

Of Theorem 5.18. Again the assertion follows from the estimate
5

/u1u2u3U4usv,\dxdt < CH llwi |l x ||v

i=1

vz
Viav

in the same fashion as above. We expand the terms and claim

6
/H windrdt < A5 T (s hads) 8.
i=1
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The Strichartz estimate gives
6
-1/6
/H i, dadt < TIA Y g, los.
j=1

The product H?Zl /\;/ 6 compensates for the derivative if the output frequency
is A1, in particular if all frequencies are of the same size.

If \¢g — Ao > %)\6 - which is the case if A\; is much smaller than \g, as in the
previous case - we estimate

6 5

/ 11 win, dwdt <[luzn,uexgllzzlluallzes T s, llze

Jj=1 Jj=3
5

1/2 — _
<02 (adads) 70N ugaolloz o s x|z lunx v TT s, lloe

Jj=3

This is almost good enough, upon replacing U2 by V2. For p > 2 but close to 2,
and % + é ++=1

6 5
/H o, dadt <|Jug n,u6 x| o [ua ll oo llusl oo ] lluja, llze
j=1 j=4

<A (s hads) YOG (e /A1)°

5
X [luz,ng s, e s oz, Turallve,, TT uiaglvs,,-
j=3

This is the claimed estimate which completes the proof. (I

This version of wellposedness has been proven by Strunk [26]. The result in L?
is due to Kenig, Ponce and Vega.
5.1.3. The mKdV equation, p = 2. Here we consider
(5.16) Up + Ugge + U = 0.

The space H~1/2 is scaling invariant, but we are not able the reach the critical
space. This time we consider an inhomogeneous space and hence we use a dyadic
decomposition with A € 2810} and we define

ux = X[(-1,11(D)u

for A =1.
This problem is subcritical, and by scaling it suffices to consider small initial
data. Wellposedness by different arguments has been shown by [15].

1
Theorem 5.4. There exists € > 0 such that for ug € By, with
<
Juoll pyrs <
there is a unique weak solution u € X with
lu = S(t)uollx < clluoll /s
2,00

up to time 1.
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Since the problem is subcritical with respect to B;/fo we can rescale large initial

data to small initial data, and we obtain local existence for initial data in B;/; (R).
We will construct global in time solutions to

U + Ugze + awX[O,T]u3 =0

Proof. We want to construct a fixed point of

¢
u= / S(t— S)X[Oyl](s)aacugds
0
The key estimate ( for small data) is
(5.17) [lIx0,1u1u2u30 vxdzdt] < H llwi || x A4 o]l ve.

We expand into a dyadic sum. The pieces are estimated by

8
UKdV

1 4
(5.18) / / H u; z, dedt| < H )\i—l/SHUi,)\i
0 R -
Jj=1

by the Strichartz embedding

—1/8
i llszs < A lluinllos.,,

which we use if Ay ~ A4 and A\; > 1

1 4
(5.19) / / TT windzdt| < exp204/20) T il
o J o '

if Ay « Ay and 1 < A4. The bilinear estimate gives

1 4
| [ TLwindade) <2 T i,
T ,
Jj=1

and we use the previous estimate and Lemma 3.11 to arrive at (5.19). If Ay < 2 we
estimate

1 4
/ / T vt < e i, ng o s g e o e 2
0 JR =1

<c [ luinllves,,
We turn to the summation.

(1) 4 > X > A\y/2. This follows using the last estimate.
(2) A= X\4/2 > 2 a simple summation gives.

Z /Hui,Aid:cdt <A XY H ([T

A1 A2 <A3<Ag=A

2
VKdV

The same argument works for A > A4/100.
(3) A4 = Ag or Ay = Ay. This is easier.

The proof is complete. O



NONLINEAR DISPERSIVE EQUATIONS, SUMMER TERM 2013 85

5.1.4. The case p = 2: the KdV equation. Here we consider
U + Uggr + ui =0.

The well-posedness result in H~# is due to Christ, Colliander and Tao [5] who also
prove that below —i some sort of illposedness must occur. Despite this there are

uniform global apriori estimates in H~!, see [3]. Uniqueness between —% and —1

is entirely open. Here we have to use an inhomogeneous [? Besov summation, and
U? instead of V2, i.e

1/2

_3

lullx = (Z AT luallge + IIU<1(75,:E)|X0> :
Ae2n

where the low frequency part has a a complicated structure. It can be written

as a sum
u<1:uO+Zu)‘

A>1

A

where for p1 <1 the Fourier transform of the Fourier projection uj,

1< €] < 2p and

is supported in

|7+ & = uA?/100,
i.e. it is of high modulation with respect to the frequency .
1/2

. _1
Jucallx, = inf & [ulloz,, + 30 (S Hadlzs, | + A F0wulve,,
A \p<1

with the infimum taken over all decompositions of that type.
Theorem 5.5. There exists § > 0 such that for all initial data ug € H~1 with
3
luoll, 5 = (1 + €)= R 1
there is a unique solution v € X with
[ullx < clluoll -2
up to time 1. It depends analytically on the initial data.
Proof. The key estimate is
1
/ /ulugaxwdxdt‘ < clfunlxuallx (3 A2 fly2)172.
0

xe2n

(5.20)

By duality it allows to set up the fixed point problem. We again expand in the
inhomogeneous dyadic frequency ranges. We proceed as above and expand the
factors. This times we need a new element, the modulation. We return to the
identity

§1+&+8=0
and

T+ T+713=0
Since

E4+6 — (&1 4 &) = -366(6 + &)
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the sum of two points on the characteristic set has a distance to the characteristic
set described by the modulation function. Given \; > 1 we define the modulation
as
A = A1 )3/100
and we decompose
u=u" + !
where
ut = Xjr+¢3|<A(Deaz)u
with a smoothed characteristic function x.
Then the high modulation estimate is

h —1/2
a2 < A= 2[ullyz, .

Moreover S(—t)u! is the convolution of S(—t)u with rescaled Schwartz function,
and hence

lu* o, < cllullo

HulHV” < C”uHVp Kav Kdv'

KdV Kdv’
The crucial observation is

A —
/ulj)\luQ,/\zus,,\zdxdt =0

since there are no terms in the Fourier support which add up to 0. So at least one
term is necessarely of high modulation.
The pair (1/12,1/3) is a Strichartz pair and hence (for 2 < A\; < Ag < A3

(5.21) [,
and thus

—1/12
L1213 <\ / [|ul|grz

(5.22)

12 .
UKdV

1
/ /U)\lu,\2U)\3dl' dt‘ S C()\l)\g)\g)_l/u H ||'U/i,)\i
0

As above we see that A\; < %/\3 - at least if we refine the dyadic decomposition.

1
1
623 [ [ TTudedt 35 oz, leaallvas, sz,
J

by the bilinear estimate. We may also use the decomposition into high and low
modulation. Then the most difficult case is

[ st dade] <[l (s
R

(5.24) <e(MAads) 2 (A Ag) /2

< llva,, Tz sallos,, s sz,

We recall that Ao ~ A3. Replacing U2 by V2 for the integration over [0, 1] costs
111(1 + )\3/)\1)2.
The estimate

(5.25)

/2 gz, U 2 U5y dadt] <[Juk 2l (1, 2,00 ) x|l 22
R

<e(Adodg) AT us g vz, l[uz,x, [l

l[u1 e lluz oy

KdV
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is stronger. We continue to neglect the case \; = 1 for a moment. The estimate

(5.26) \ / Xloagn 2 xuf y drdt) < eGP /X0 [ llwi v

suffices for the summation if A = A3, since Ay ~ A3:

>

1<A1<A3

/X[o,t]UL,\luz,,\Svf\lexdt‘
R2

—1_
<e A TN (o x rallvz, loxsllvz,,

and
2\ 1/2
> luzad vz, Iotambaallvz,, < Clluzllx (3O loallvz,, %)
A>2

We consider A = A\; > 2. The case of high modulation on the high frequency yields
a factor (u/A\)~1/2¢ and we restrict to

S| [ [ ud:cdt] horlve, A S0l s

<cllutllxluzl x A" lvallvz,,

u>A

The A\~! compensates the derivative, and

1/2

Z lollvz,, < > ey

3
AE1.01N(A1 [|uy

This completes the summation if Ay > 1- since

Ix0,mullve < lullye

KdV KdV
and similarly with UP.
It remains to consider A = 1. We expand v = }_ ., v,. The estimates are
stronger with easy summation if the high modulation falls on ug » or us . We set

=S80 o))

which by the argument above satisfies

[l < clluallx llus|lx

Kdv

If it falls on ’Uh we use either the high modulation estimate which yields

(5.27)

lus alloz,, lvullvz,,

V), Pty AU3 Adxdt’ <cA\™ H ||u2 )‘”U?wv

if N2> 1. Alternatively

1
(5.28) ‘/ /8xUZU27)\U37)\d£Edt' < epA ™ Hug a2
0

2 lusalluz, loulloe
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which yields for fixed A a contribution

t h
ut = </ S(t— S)X[O,l](s)az(UQ,AUS,A)<1>
0
which satisfies
1/2
1. _
> luplZe +Sl,ip(M2) Hupllvz,, <A™ luaallvz,, lusallvz,, -

pu<l

Altogether, using the embeddings, since the case A =1 is obvious,

(5.29) [u<illxo < clluzg||x|usllx-

1
/ /u<1v,\u3,,\daﬂdt‘.
0

and we decompose u«1 according to the definition. A bilinear estimate gives

‘We consider

A

1
A / /'LLO’U)\’U,;;’)\d.’IJdt‘ SAHUOUS’A”LQHUA”LOQLQ
0
<cllu’llz,, lusalluz,, loallve,,

and the summation with respect to A poses no difficulty. We fix X and estimate

1 -
/ /u)‘mu?,’)\dxdt’.
0

Again the easy part is if the high modulation falls on vy or us x, which we leave
to the reader. If the high modulation falls on u* then its modulation is at least
pmax{A2, A2} .

Again the hardest part is the one when the high modulation falls on the first
factor. We may ignore the high modulation and use the bilinear estimate for uﬁUQ’ X
which yields

A

A

KdV KdV

1 ~ .
/ / (uiL)huz,mdxdt\ < ez unllus, ollvz
0

or alternatively

1 . ) .
[ <u2>hu2,mdazdt\ < e(max{ 0, NP2 vz luanllos loalloz

and by logarithmic interpolation

A

KdV KdV KdV

1 . 3 .
/0 / <uz>hu2,AvAdxdt\<c(max{A,A}W?u)f-wuanz luzallus - lloallyz

We want to use the second estimate if y > min{)\_l/2, 5\_1/2, and the second

part of the norm if p < A~1/2_ This leads to an easy summation. ([
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5.2. The derivative nonlinear Schrédinger equation. We consider
(5.30) iug + Au = udra.
This equation has no significance from applications as far as I know. The choice of
the nonlinearity is crucial. If u satisfies (5.30) then the same is true for
(N2, Ax)
and critical space is H <2,
The Strichartz with % + % = % and Bernstein, gives for d > 2

d—2 d—2
(5.31) lullLs@xray < AT [Jugn [ Lap@ay S AT [luga, [los-
The bilinear estimates are
d—1
(5.32) lusvullze < e A2 sz, [lvallvz,
and

d=2
[(uron)ullze < cp = [lualloz, lloalloz, -
if p < A/4. We may improve the second estimate by Bernstein and Strichartz
(using a smooth Fourier projection for ,,)

d—2
ICuxvn)ullze <cp™="llusvall , 2

(5-33) <cp™= [|us ]| pas |vall s

)
<cp 7 |luallps [[oallus, -

This time we need the complex inner product. The modulation relation is
G+E+ (-6 -6’ 26+8
which is a particularly pleasant situation.
The dyadic estimates become for A\ << Ay ~ A3

d—2
(5.34) \ / u’;luhuxgdxdt\ < AT AT Jun vz Nz vz, s vz,
and
_3 d—1
s || uxlu’gu&dxdt\ < A AT Juw o, Jumnallv, s rsllo,

and hence

b 8 d-1 . 3
/Huu\luz)\?u&)\sdmdt <erg2A 2 (As/Aq) H||ul>\
i=1

2
Vis

Theorem 5.6. Let d = 2. There exists € > 0 so that if
luollz2 <€
then there is a unique solution to
tup + Au = udy, u
with

1/2
Jullx = (Z |uA||2U;W> < clluol| 2.

Ae2z
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If d > 3 there exists € > 0 so that if
d+2

ol aa = S A fugllze < e

B2,1 by
then there is a unique weak solution with
d—2
lullx =Y A= [lualluz < clfuol| a2
A BQ,I

Proof. The key estimates are again

1/2
/R Rd(azlul)uzvdwdt’ < Juallx fJuzllx <Z ||UA|%/;W>
X

A

resp.

d—2
| (@ mandsdt] < Jualx sl sup A= F sl
RxRd A
if d > 3. We abuse the notation and set Ao = A3 = A and compute for d = 2
3 / @y atadzdt] < 37 At 2 (o, p0n) 22
H<A p<A
1/2
< D M pllve,)? luavall 22
n<A

<fullxlluallvs, loxllos,

The factor A~ compensates for the derivative. The summation with respect to
A is trivial. The estimate is easier if the high modulation falls on other terms.

S| [t yordodt| < 37 N sl s a1

H<A n<A
<2 unllva A2 [ oz, loalloz,
By logarithmic interpolation

oA \ / mé,mdxdt’ <D Mgl 2 flu a2

H<A p<A
1 _

< /2w llva, AP e llvz, loallvz,
59\

and the summation is straight forward.
The modification for d > 3 is simply: We give up orthogonality and sum for the
first estimate

> ‘/uﬁuz,mdmdt‘ <Y Al |2 | (w2 avx) I 2

p<A H<A

d—2
SZN 2 [lug g

n<A

vz luallvz lloallva,

For the second estimate we put in powers of y resp. A.
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