
NONLINEAR DISPERSIVE EQUATIONS

HERBERT KOCH

1. Introduction

Non-linearly interacting waves are often described by asymptotic equations. The
derivation typically involves an ansatz for an approximate solution where higher
order terms - the precise meaning of higher order term depends on the context and
the relevant scales - are neglected. Often a Taylor expansion of a Fourier multiplier
is part of that process.

There is an immediate consequence: This type of derivation leads to a huge
set of asymptotic equations, and one should search for a general understanding of
interacting nonlinear waves by asking for precise results for specific equations.

The most basic asymptotic equation is probably the nonlinear Schrödinger equa-
tion, which describes wave trains or frequency envelopes close to a given frequency,
and their self interactions. The Korteweg-de-Vries equation typically occurs as first
nonlinear asymptotic equation when the prior linear asymptotic equation is the
wave equation. It is one of the amazing facts that many generic asymptotic equa-
tions are integrable in the sense that there are many formulae for specific solutions,
conserved quantities, Lax-Pairs and BiHamiltonian structures.

This text will focus on adapted function spaces and their recent application
to a number of dispersive equations. They are build on functions of bounded p
variation, and their companion, the atomic space Up. Combined with stationary
phase resp. Strichartz estimates and bilinear refinements thereof they provide an
alternative to the Fourier restriction spaces Xs,b which is better suited for scaling
critical problems.

We discuss teh method of stationary phase and dispersive estimates in Section
2, the application to the nonlinear Schrödinger equation in Section 3, the spaces
Up and V p in section 4, bilinear estimates in Section 5 and application to nonlinear
dispersive equations in Section 6

In order to make these note reasonable self contained there are three appendix
on Young’s inequality, real and complex interpolation, on Bessel functions and on
the Fourier transform.

2. Stationary phase and dispersive estimates

We begin with the evaluations of several integrals. Let md be the d dimensional
Lebesgue measure and define

Id =

∫
Rd
e−|x|

2

dmd(x).

1
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Then, with Fubini,

Id1+d2
=

∫
Rd1×Rd2

e−|x1|2−|x2|2dmd1+d2(x)

=

∫
Rd1+d2

e−|x1|2e−|x2|2dmd1+d2(x)

=

∫
Rd1

e−|x1|2
∫
Rd2

e−|x2|2dmd2dmd1

=Id2

∫
Rd1

e−|x1|2dmd1

=Id1
Id2

hence

Id = Id1 .

Applying Fubini twice we get

Id =md+1({(x, t) : 0 < t < e−|x|
2

})

=

∫ 1

0

md({x : e−|x|
2

> t})dt

=

∫ 1

0

md(B(− ln(t))1/2(0))dt

=md(B1(0))

∫ 1

0

(− ln(t))d/2dt

=md(B1(0))

∫ ∞
0

sd/2e−sds

=md(B1(0))Γ(
d

2
+ 1)

and hence I2 = π, I1 =
√
π, Id = πd/2,

md(B1(0)) =
πd/2

Γ(d2 + 1)

and

Γ(
1

2
) = 2Γ(

3

2
) =
√
π.

We proceed with

I(τ) :=

∫ ∞
−∞

e−
τ
2 x

2

dx

for Re τ > 0. Then

d

dt

√
t+ isI(t+ is) =

1

2(t+ is)

√
t+ isI(t+ is)− 1

2

√
t+ is

∫ ∞
−∞

e−
t+is

2 x2

x2dx

=

√
t+ is

2(t+ is)

(
I(t+ is) +

∫ ∞
−∞

d

dx
e−

t+is
2 xdx

)
=

√
t+ is

2(t+ is)

(
I(t+ is)−

∫ ∞
−∞

e−
t+is

2 x2

dx

)
=0
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and similarly
d

ds

√
t+ isI(t+ is) = 0

Thus √
τI(τ) =

√
2I(2) =

√
2π

and hence

(2.1)

∫
e−

τ
2 x

2

dx =

√
2π

τ
.

Now we fix τ and study ∫
e−

τ
2 x

2

xkdx.

This vanishes when k is odd, since then the integrand is an odd function. Let

J(k) =

∫
e−

τ
2 x

2

x2kdx =
2k − 1

τ
J(k − 1)

=1 ∗ 3 ∗ · · · ∗ (2k − 1)τ−k
√

2π

τ

=
1

2kk!
(τ−1 d

2

dx
)kx2k

∣∣∣
x=0

√
2π

τ
.

Let p be a polynomial. It is a sum of monomials and hence∫
e−

τ
2 x

2

p(x)dx =

√
2π

τ

∞∑
k=0

1

2kk!
(τ−1 d

2

dx
)kp(x)

∣∣∣
x=0

The higher dimensional case is contained in the following lemma. Let A =
A0 + iA1 be a real symmetric d × d matrix with A0 positive definite. This is
equivalent to all eigenvalues λj being in {λ : Reλ > 0}. Let (aij) be the inverse.
By an abuse of notation we set

det(A)−1/2 =
∏

λ
−1/2
j

where the λj are the eigenvalues of A.

Lemma 2.1. Let p be a polynomial. Then

(2.2)

∫
e−

1
2x
TAxp(x) dx = (2π)d/2(detA)−1/2

∞∑
k=0

1

2kk!
(

d∑
i,j=1

aij∂
2
ij)

kp(x)
∣∣∣
x=0

.

The sum contains only finitely many non-vanishing terms.

Proof. We begin with a fact from linear algebra and claim that there exists a real
d× d matrix B and a diagonal matrix D such that

A = BDBT .

By the Schur decomposition there is an orthogonal matrix O and a diagonal matrix
D0 with non-negative entries such that

A0 = OD0O
T .

We set B0 = O
√
D0. Then

A0 + iA1 = B0(1 + iB−1
0 A1B

−T
0 )BT0
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Again by the Schur decomposition there is an orthogonal matrix U with and a
diagonal matrix D1 with

B−1
0 A1B

−T
0 = UD1U

T

hence
A0 + iA1 = B(1 + iD1)BT

with B = B0U . We set D = 1Rd + iD1.
We change coordinates to y = BTx. Then∫

e−
xTAx

2 p(x)dmd(x) = (detB)−1

∫
e−

yT (1+iD1)y
2 p(B−T y)dmd(y)

and by Fubini and the previous calculations∫
e−

yT (1+iD1)y
2 yαdmd(y) = 0

if one of the indices is odd, and otherwise, with dj the diagonal entries of D1,∫
e−

yTDy
2 y2αdmd(y) =(2π)d/2 det(D)−1/2 1

2|α|α!

∏
((1 + idj)

−1∂2
yjyj )

αjy
2αj
j

∣∣∣
y=0

=(2π)d/2 det(D)−1/2 1

2|α||α|!

[ d∑
j=1

(1 + idj)
−1∂2

j

]|α|
yα
∣∣∣
y=0

.

Thus, for any polynomial q,∫
e−

yTDy
2 q(y)dmd(y) = (2π)d/2 det(D)−1/2

∞∑
k=0

[ d∑
j=1

(1 + idj)
−1∂2

j

]k
q(y)

∣∣∣
y=0

.

We complete the calculation by

(detA)1/2 = (detD)1/2|detB|
and, by the chain rule,∑

aij∂
2
xixjp(x) =

[ d∑
j=1

(1 + idj)
−1∂2

j

]
p(B−T y).

�

Observe that the formulas on the right hand side have a limit as A tends to
a purely imaginary invertible matrix. We call the integral on the left hand side
oscillatory integral in that limit.

Oscillatory integrals play a crucial role when studying dispersive equations. We
consider

I =

∫
Rs
a(ξ)eiτφ(ξ)dξ.

where a and φ are smooth functions. The simplest result is

Lemma 2.2. Suppose that a ∈ C∞0 (Rd), φ ∈ C∞(Rd) with Imφ ≥ 0 and

|∇φ|+ Imφ > 0

on supp a. Given N > 0 there exists cN with

|I(τ)| ≤ cNτ−N .
The constant c depends only on N , the lower bound above, and derivatives up to
order N .
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Proof. By compactness there is κ > 0 such that

|∇φ|+ Imφ > κ

on supp a(ξ). Using a partition of unity we may restrict to the two cases:

(1) Imφ > κ/2 on supp a, in which case we get a bound Ce−κτ/2

(2) |∇φ| ≥ κ/2 on supp a, which we consider now.

We write ∫
a(ξ)eiτφ(ξ)dξ =(iτ)−1

∫
a(ξ)|∇φ|−2∇φ∇eiτφ(ξ)dξ

=− (iτ)−1

∫
(∇ · (a(ξ)∇φ

|∇φ|2
))eiτφ(ξ)dξ.

which is again an integral of the same type. Induction implies the full statement. �

In many cases these bounds hold even for non compactly supported a.

Lemma 2.3. Suppose that A = A0+iA1 be invertible with A0 positive semi-definite.
Let η ∈ C∞0 (Rd) be identically 1 in a ball of radius 1, and supported in B2(0), and
let a be a smooth function with uniformly bounded derivatives of order M > N

1−s
for some M,N > 0 and 0 < s < 1

2 . Then∣∣∣∣∫ e−
τ
2 x

TAxe−ε|x|
2

a(x)(1− η(xτ−s))dmd(x)

∣∣∣∣ ≤ cNτ−N
with cN depending only on N , the norm of A and its inverse, and derivatives up to
some order M of a, but not on ε > 0. The limit ε→ 0 exists.

We will use the formula with ε = 0.

Proof. We argue similarly to above. Each integration by parts gains as a factor τ ,
unless the derivative falls upon η. In that case the gain is only τ1−s and we also
loose a power of |x|−1. Otherwise we get a factor |x|−1 + |x|−2.

On the support of ∇η

τ−1|x|−2 + τs−1|x|−1 ≤ cτ2s−1.

and integrations by parts gain us τ2s−1. If no derivatives fall on η there remains
an integration over whole space, but we gain a factor bounded by constant times

|x|−1 the derivatives falls on a, and |x|−2 if the derivative falls on
Ax+2 ετ x

xtAx+2 ετ |x|2
. We

integrate by parts (and split the summands) until either

(1) M derivatives fall on a or
(2) N

1−2s + d derivatives fall on the other terms.

The integrand (after the integrations by parts) converges pointwise with a majorant
as above. This implies the statement on the limit as ε→ 0. �

Similar statements hold for more general phase functions if

|∇φ| ≥ c|x|δ for |x| ≥ R

and

|∂αφ| ≤ |x|−δ|∇φ| for |x| ≥ R
some R and δ, and |α| ≥ 2.
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Lemma 2.4. Let A be invertible, symmetric, with real part positive semi-definite,
and ψ ∈ C∞ with bounded derivatives of order ≥ M . Given N > 0 there exist
L > 0 and CN > 0 such that for τ > 0,∣∣∣∣∣∣

∫
e−

τ
2 x

TAxψ(x)dx− (2π)d/2τ−d/2(detA)−1/2
L∑
k=0

τ−k(
∑
ij

aij∂
2)kψ

∣∣∣
x=0

∣∣∣∣∣∣
≤ cNτ−N .

(2.3)

Proof. We subtract the Taylor expansion p of ψ at 0 up to some order L. We choose
0 < s < 1

2 and decompose the integral into∫
e−

1
2x
TAx

[
p(x) + η(xτ−s)(ψ(x)− p(x)) + [1− η(xτ−s)](ψ(x)− p(x))

]
dx.

The integral over the first summand has been evaluated in 2.1 The integral over
the third summand is small by Lemma 2.3, and the one over the second summand
is bounded by

τs(d−L)

by a direct estimate. �

Now we consider

I(τ) =

∫
eiτφ(x)ψ(x)dx

where ψ is compactly supported, 0 is the only point in the support where the
imaginary part of φ and ∇φ vanish, the imaginary part of φ is non-negative and
the Hessian of φ at 0 is invertible.

Lemma 2.5. Let 1
3 < s < 1

2 . Then, with η as above, ψ ∈ C∞0 and N > 0∣∣∣∣∫ eiτφ(x)(1− η(xτ−s))ψ(x)dx

∣∣∣∣ ≤ cNτ−N .
Proof. The proof is the same as for the quadratic phase. Again this formula the
compact support assumption on ψ can be weakened. �

We write

φ(x) = a0 +
i

2
xTAx+ ψ(x)

where A is invertible and ψ is smooth with ψ(x) = O(|x|3).

Theorem 2.6 (Stationary phase). Under the assumptions above, given N > 0
there exists cN such that for τ > 1∣∣∣∣∣
∫
eiτφa(x)dx− (2π)d/2τ−d/2(detA)−1/2eφ(0)

N∑
k=0

1

2kk!τk
(aij∂

2)k[eiτψ(x)a(x)]x=0

∣∣∣∣∣
≤ cNτ−d/2−

N+1
3 .

Proof. We assume that the real part of A is positive definite. The general statement
follows then by an obvious limit.

We choose M large and write eiτψψ = pM (x) + rM (x) where pM is the Taylor
polynomial of degree M , and rM is the remainder term. Clearly pM depends on τ
with typical terms of the type being polynomials in τxα where α is a multi-index
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of length at least 3, and xj . We write the term in the bracket as a sum of three
terms, ∫

eiτφψ(x)(1− η(xτs))dmd(x)∫
e−

τ
2 x

TAxpM (x)(1− η(xτs))dmd(x)

and ∫
η(xτs)

[
eiτφψ(x)− e− τ2 x

TAxpM (x)
]
dmd(x).

Lemma 2.3 and Lemma 2.5 control the first and the second term.
The integrand of the third term is bounded by

τ
M
3 τ−Ms

and hence the third term is bounded by a constant times

τ−ds+M( 1
3−s).

We choose s between 1
3 and 1

2 and M large. Finally we check the bound for the
sum from N + 1 to M term by term using Lemma 2.1. �

In the one dimensional setting the situation the Lemma of van der Corput pro-
vides an extremely useful and simple estimate.

Lemma 2.7. Suppose that d = 1, ψ is of bounded variation with support in [c, d],
φ ∈ Ck(R) with k ≥ 1, φ real, and φ(k)(ξ) ≥ τ for ξ ∈ [c, d]. If k = 1 we assume in
addition that φ′ is monotone. Then

I =

∣∣∣∣∫ ψ(x)eiφ(x)dx

∣∣∣∣ ≤ 3kτ−1/k

∫
|ψ′|dx.

Proof. We begin with k = 1, assuming that φ′ is monotone. It suffices to consider
the case when the support of a is a compact interval [c, d].∣∣∣∣∫ ψeiφdx

∣∣∣∣ =

∣∣∣∣∫ ψ/φ′
d

dx
eiφdx

∣∣∣∣
=

∣∣∣∣∫ eiφ
d

dx
(ψ/φ′)

∣∣∣∣
≤ sup |ψ|

∣∣∣∣ 1

φ′(d)
− 1

φ′(d)

∣∣∣∣+ τ−1

∫
|ψ′|

≤3

2
τ−1

∫
|ψ′|dx

We use induction on k on the inequality∣∣∣∣∫ ψ(x)eiφ(x)dx

∣∣∣∣ ≤ 2kτ−1/k (‖ψ‖sup + ‖ψ′‖L1) .

Suppose that the estimate holds for k−1 ≥ 1 and we want to prove it for k. Suppose
that there is point ξ0 with φ(k−1)(ξ0) = 0. We decompose the interval [c, d] into
[c, ξ0 − δ], [ξ0 − δ, ξ0 + δ] and [ξ0 + δ, d]. Then, by induction

|I| ≤ 2δ‖ψ‖sup + 2(k − 1)(δτ)−1/(k−1)(‖ψ‖sup + ‖ψ′‖L1).
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We choose δ = τ−
1
k . Then

|I| ≤ 2kτ−
1
k τ−

1
k (‖ψ‖sup + ‖ψ′‖L1)

which implies the desired inequality. The argument is easier if there is no such
point ξ0. �

2.1. Examples and dispersive estimates.

2.1.1. The Schrödinger equation. We consider the linear Schrödinger equation

i∂tu+ ∆u = 0

A Fourier transform (see next section, which we denote by Fx) gives

i∂tFxu− |ξ|2Fxu = 0

and hence the unique solution in the space of tempered distributions is given by its
Fourier transform

Fxu(t, ξ) = e−it|ξ|
2

Fxu(0, ξ)

Then
1

(2π)d/2

∫
e−it|ξ|

2

dξ =
1

√
2it

d
.

Moreover a change of coordinates shows that

(2.4)
1

(2π)d/2

∫
e−i(t|ξ|

2−xξ)dξ = ei
x2

4t

∫
eitξ

2

dξ =
1

√
2it

d
ei
x2

4t .

Again we suppress the approximation by a positive definite real part, and the
corresponding limit.

2.1.2. The Airy function and the Airy equation. We consider the Airy equation

ut + uxxx = 0.

The Fourier transform transforms the equation to

Fxut = (ik)3Fxu
and hence, as above

Fxu(t, ξ) = eitξ
3

Fxu(0)(ξ)

The Airy function is defined by

Ai(x) =
1

2π

∫
ei

1
3 ξ

3+ixξdξ

where the right hand side has to be understood (as usual) as

lim
ε→0

1

2π

∫
ei

1
3 ξ

3−ε|ξ|2+ixξdξ.

As above for the quadratic phase function we see that the limit exists at every
point.

The phase function is

φ(ξ) =
1

3
ξ3 + xξ

has as critical points the ξ which satisfy

ξ2 = −x.
If x is negative there are two real critical points.
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We choose ρ ∈ C∞(R), supported in [−1,∞) and identically 1 in [1,∞], with
ρ(ξ) + ρ(−ξ) = 1. Then Ai(x) is the real part of

1

2π

∫
ρ(ξ)ei(

1
3 ξ

3+xξ)dξ

There is no harm from the non-compact interval of integration and we to apply
the stationary phase, Theorem 2.6 for x → −∞. The Hessian at the stationary
points is 2τ := 2(−x)1/2 and we write

φ(ξ) = τφ0(ξ − (−x)1/2)

where

φ0(η) =
1

3τ
η3 +

1

2
η2

which satisfies

φ′0(0) = 0, φ′′0(0) = 1, φ′′′0 (0) = 2[−x]−1/2.

We write the integral as

1

2π
e−i

2
3 |x|

3
2

∫
ρ(η + (−x)1/2)eiτφ0(η)dη

The application of the stationary phase theorem, 2.6, gives∣∣∣∣Ai(x)− 1√
π
|x|−1/4 cos(

2

3
|x| 32 − π

4
)

∣∣∣∣ ≤ c|x|− 7
4

and there is even an asymptotic series. To see the error term we compute the next
term, the sixth derivative of eiφ0(η), evaluated at 0. It gives an additional factor
τ−3 = |x|− 3

2 .
For large positive x we need a different idea. For positive x there is fast decay

and we want to determine the leading term. In this case the two critical points are
purely imaginary real, and we shift the contour of integration to

ξ + i
√
x.

To be more precise we define

Aiσ(x) =
1

2π

∫
ei[

1
3 (ξ+iσ)3+x(ξ+iσ)]dξ.

We expand

i[
1

3
(ξ + iσ)3 + x(ξ + iσ) = i(

1

3
ξ3 + xξ − ξσ2)− σ(ξ2 + x− 1

3
σ2).

We calculate, using the Cauchy Riemann equations

d

dσ
Aiτ (x) =

1

2π
=

∫
i
∂

∂ξ
ei(

1
3 ξ

3+xξ−ξσ2)−σ(ξ2+x− 1
3σ

2)dξ = 0

and hence, with σ =
√
x,

Ai(x) =
1

2π

∫
ei

1
3 ξ

3−
√
xξ2− 2

3x
3
2 dξ

with the critical point ξ = 0, at which point the Hessian is 2
√
x. We argue as above

and obtain

(2.5)

∣∣∣∣Ai(x)− 1

2
√
π
|x|−1/4e−

2
3x

3
2

∣∣∣∣ ≤ c|x|− 7
4 e−

2
3x

3
2 .
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The lemma of van der Corput ensures that the function Ai is bounded. More
is true: About half a derivative of the Airy function is bounded in the following
sense:

Lemma 2.8. ∣∣∣∣∫ |ξ|1/2ei( 1
3 ξ

3+xξ)dξ

∣∣∣∣ ≤ C
This is left as an exercise.
The Airy function is the inverse Fourier transform of

Âi(ξ) = (2π)−1/2ei
1
3 ξ

3

Clearly

(ξ2 + i∂ξ)e
i 1

3 ξ
3

= 0

and hence

Ai′′+xAi = 0

This however implies

(∂t + ∂3
xxx)((t/3)−1/3 Ai(x(t/3)−1/3)) = 0

and (as oscillatory integral) ∫
Ai(x)dx = (2π)−1/2

The convolution be the Airy function gives a solution to the initial value problem

ut + uxxx = 0, u(0, x) = u0(x),

u(t, x) =

∫
(t/3)−1/3 Ai((x− y)(t/3)−1/3)u0(y)dy.

Again the equation defines unitary operators S(t) which satisfy

‖S(t)u0‖sup ≤ ct−1/3‖u0‖L1

and, in the sense of (2.8)

(2.6) ‖|D| 12S(t)u0‖sup ≤ ct−
1
2 ‖u0‖L1 .

2.1.3. Laplacian and related operators. Let d > 2. Then

|̂x|2−d =
1

2(d−4)/2Γ(d−2
2 )
|ξ|−2

and

−∆
(4π)d/2

Γ(d−2
2 )

∫
|x− y|2−df(y)dy = f(y).

The Fourier transform transforms higher partial derivatives into multiplication
by monomial functions. For example

F(u−∆u) = (1 + |ξ|2)û

and hence

û = (1 + |ξ|2)−1f̂

is the Fourier transform of a Schwartz function u (if f is a Schwartz function) which
satisfies

−∆u+ u = f.
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Here (1+ |ξ|2)−1 is a smooth function with bounded derivatives, but not a Schwartz
function. Its inverse Fourier transform k allows to define a solution for a given
function f by

u = (2π)d/2k ∗ f
We compute k in one space dimension

(2.7)

∫ ∞
−∞

eixξ(1 + ξ2)−1dξ = πe−|x|

using the residue theorem: The singular points are the zeroes of the polynomial
1 + ξ2, which are ±i. Consider the case x > 0 first. By the residue theorem∫

CR

eixξ(1 + ξ2)−1d~ξ = πe−|x|

where CR is the union of the path from −R to R and the upper semi circle. The
limit R→∞ implies the statement.

2.1.4. Gaussians, heat and Schrödinger equation.

Lemma 2.9. Let A = A0 + iA1 be an invertible symmetric matrix (A0 and A1

real) with A0 positive semi-definite. Then

Fe− 1
2x
TAx(ξ) = det(A)−1/2e−

1
2 ξ
TA−1ξ.

Proof. The formula is correct at ξ = 0 by Lemma 2.1 . We assume first that A0 is
positive definite. The general statement follows then by continuity of both sides.
By definition

∇e− 1
2x
TAx + e−

1
2x
TAxAx = 0

The Fourier transform g is a Schwarz function which then satisfies

gξ +A∇g = 0.

This is an ordinary differential equation on lines through the origin. There is a
unique solution with the given value at ξ = 0, which has to coincide with the
function on the right hand side. �

With A = 2t1Rd we obtain the formula for the fundamental solution to the heat

equation. The inverse Fourier transform of e−it|ξ|
2

is - as computed twice -

(2it)d/2e−
|x|2
4it

A solution to the Schrödinger equation

iut + ∆u = 0

with initial data u0 is given by

(2.8) u(t, x) =

∫
Rd

(4iπt)−d/2e−
|x−y|2

4it u0(y)dy

We denote the map u(0, .)→ u(t, .) by S(t). It is defined by the Fourier transform
by

Ŝ(t)u0 = e−it|ξ|
2

û0(ξ).

It is a unitary operator:

‖S(t)u0‖L2 = ‖Ŝ(t)u0‖L2 = ‖e−it|ξ|
2

û0‖L2 = ‖û0‖L2 = ‖u0‖L2
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and it satisfies the socalled dispersive estimate

‖S(t)u0‖sup ≤ |4πt|−d/2‖u0‖L1 .

2.1.5. The half-wave equation. The solution to the wave equation

utt −∆u = 0

with initial data

u(0, x) = u0(x), ut(0, x) = u1(x)

is given by Kirchhoff’s formula for d = 3:

u(t, x) =
1

4πt2

∫
∂Bt(x)

u0dH2 +
1

4πt

∫
∂Bt(x)

∂νu0dH2 +
1

4πt

∫
∂Bt(x)

u1dH2.

There are similar formulas in odd dimensions, and slightly more complicated ones
in even dimensions.

The Fourier transform transforms the PDE to the ODE

ûtt + |ξ|2û = 0

which factorizes into

(∂t − i|ξ|)(∂t + i|ξ|) = 0.

This motivated the study of the half wave equation

(i∂t + |ξ|)û(t, ξ) = 0

which can easily be solved in the form

û(t, ξ) = eit|ξ|û(0, ξ).

As above we restrict to t = 1. Since eit|ξ| is radial∫
ei(|ξ|+xξ)dξ = dmd(B1(0))|x|−

d−2
2

∫ ∞
0

rd/2eirJ d−2
2

(|x|r)dr

provided the integrals exist as oscillatory integrals. They do as we will see. By
Lemma 8.1 we can write

z
d−1

2 J(z) = Re(e−izφ(z))

for z ≥ 1, with φ satisfying

|φ(k)(z)| ≤ ckz−k.
We begin to consider |x| ≥ 2 We decompose the integral above into two parts with
a smooth cutoff function, one over r ≥ |x|−1, and one over 2|x|−1. In the first
integral we integrate by parts as often as we like:∫ ∞

0

(1− η(r|x|))eir(1±|x|)p(rx)dx =
i

1± x

∫ ∞
0

eir(1±|x|)(
d

dr
((1− η(r|x|))p(rx))dx

which gains a factor r in the integration, as well as a power |x|−1. We repeat this
as often as necessary. The second integral is bounded by |x|d.

The same arguments apply as for |x| 6= 1, given bounds which depend only on
|x| − 1. A careful calculation gives the first part of the following estimate
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Lemma 2.10. Suppose that |x| 6= 1 then∣∣∣∣∫ ei|ξ|+ixξdξ

∣∣∣∣ ≤ { cd|1− |x||−
d+1

2 if |x| ≤ 2
cd|x|−d if |x| ≥ 2 and d even

and ∣∣∣∣∫ |ξ|− d+1
2 ei|ξ|+ixξdξ − c ln |1− |x||

∣∣∣∣ ≤ cd

if |x| ≤ 2 and ∣∣∣∣∫ |ξ|− d+1
2 ei|ξ|+ixξdξ

∣∣∣∣ ≤ cd|x|− d−1
2 .

for |x| ≥ 2.

Proof. Only the second part remains to be shown. There is no difference in the
argument for |x| ≤ 2, unless |x| is close to 1. In that case we decompose the integral
into r ≤ 2, 1 ≤ r ≤ |x|−1 and r ≥ |x|−1. The last part is bounded by the previous
arguments. The first part is bounded because of the size r ≤ 1. The second part is∫ ||x|−1|

1

r−1dr = ln r

plus something bounded. �

There is an important difference compared to the previous two examples: the
group velocity depends only on the direction of ξ, not on the amplitude.

2.1.6. The Klein-Gordon half wave. Let

g(t, x) =

∫
eit
√

1+|ξ|2+ixξdξ.

As above we obtain

Lemma 2.11. The following estimates hold for t ≥ 1,

|g(t, x)| ≤ c


t−d/2(1− |x|/t)− d+1

2 if |x| < t

t−d(|x|/t− 1)−
d+1

2 if t < |x| ≤ 2t
1

|x|dtd−1 if |x| ≥ 2t

and if 0 < t < 1

|g(t, x)| ≤ c


t−d if |x| < t

t−d(|x|/t− 1)−
d+1

2 if t < |x| ≤ 2t
1

|x|dtd−1 if |x| ≥ 2t

Moreover

h =

∫
|ξ|−

d+1
2 eit

√
1+|ξ|2+ixξdξ

satisfies for t ≥ 1 and |x| ≥ 2t

|h(t, x)| ≤ C 1

|x| d−1
2 t

d
2−3∣∣∣h(t, x)− ct 1

2 | ln ||1− |x|/t||
∣∣∣ ≤ ct 1

2

for 1 ≤ t, |x| ≤ 2t. Finally, if 0 < t ≤ 1, then∣∣∣∣∫ |ξ|− d+1
2 eit|ξ|+ixξdξ − ct−

d−1
2 ln |1− |x||

∣∣∣∣ ≤ cdt− d−1
2
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if |x| ≤ 2t and ∣∣∣∣∫ |ξ|− d+1
2 ei|ξ|+ixξdξ

∣∣∣∣ ≤ cd 1

|x| d−1
2 t

d
2−3

.

for |x| ≥ 2.

2.1.7. The Kadomtsev-Petviashvili equation. The linear parts of the Kadomtsev-
Petviashvili equations are

ut + uxxx ± ∂−1
x uyy = 0

where + is the linear KP-II equation and − the linear KP-I equation. The equation
should be understood as

∂xut + uxxxx ± uyy = 0,

We denote the Fourier variables by ξ ( of x) and η ( of y). As above (for +, the
argument for − is very similar),

Fx,yu(t, ξ, η) = eit(ξ
3−ξ−1η2)Fx,yu(0, ξ, η)

and ∫
ei[(ξ

3−ξ−1η2)+xξ+yη]dξdη = (4π)−1/2

∫
(−iξ) 1

2 ei[ξ
3+ξx+ξy2/4]dξ.

The stationary points of the phase function satisfy

3ξ2 + x+ y2/4 = 0

with zeroes

ξ = ±
√
−(x+ y2/4)/3

provided

x < −1

4
y2.

The contribution from the Hessian compensates the factor (−iξ) 1
2 . A rigorous proof

uses a smooth partition of unity, which decomposes the integral into one around
ξ = 0, one over ξ ≥ 1 and one with ξ ≤ −1. The first integral is handled by the
lemma of van der Corput, and the other two by stationary phase.

Otherwise, by the non-degeneracy of the phase∣∣∣∣∫ ei[(ξ
3−ξ−1η2)+xξ+yη]dξdη

∣∣∣∣ ≤ ck|x+ y2/4|−k

The t dependence below is obtained by scaling

Lemma 2.12.∣∣∣∣∫ eit(ξ
3∓η2/ξ)+ixξdξdη

∣∣∣∣ ≤ ck|t|−1(1 + (
x

t
1
3

± y2

t
2
3

)+)−k.

There is an interesting interpretation:

• Waves move to left for Kadomtsev-Petviashvili II,
• and to both sides for Kadomtsev-Petviashvili I (with respect to x)

This makes the study of Kadomtsev-Petviashvili I considerably harder than the
study of Kadomtsev-Petviashvili II.

We define

ρ(x, y) = 2πF−1(ei(ξ
3−η2/ξ)).
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Since u(λ3t, λx, λ2y) satisfies the linear KP equation for λ > 0 if and only if u does
we obtain the representation

u(t, x, y) = gt ∗ u(0, ., .)(x, y)

where
gt(x, y) = t−1ρ(x/t1/3, y/t2/3).

Hence, with S(t) denoting the evolution operator,

‖S(t)u0‖L2 = ‖u0‖L2

and
‖S(t)u0‖sup ≤ c|t|−1‖u0‖L1(R2).

3. Strichartz estimates and small data for the Nonlinear
Schrödinger equation

3.1. Strichartz estimates for the Schrödinger equation. We return to the
linear Schrödinger equation

i∂tu+ ∆u = 0

and the unitary operators S(t) : u(0)→ u(t). They form a group: For s, t ∈ R
S(t+ s) = S(t)S(s).

We claim that for 2 ≤ p ≤ ∞ and p′ with 1
p + 1

p′ = 1

(3.1) ‖S(t)‖Lp ≤ (4π|t|)−
d
2 (1− 2

p )‖u0‖Lp′ ,
which follows by complex interpolation from

‖S(t)u0‖L2 = ‖u0‖L2

and the dispersive estimate

‖S(t)u0‖L∞ ≤ (4π|t|)− d2 ‖u0‖L1 .

Let us be more precise. We put p0 = q0 = 2 and p1 = 1, q1 = ∞, 2 < p̃ < ∞ and
determine λ so that

1− λ
2

=
1

p
,

resp.

λ = 1− 2

p
define

1− λ
2

+ λ =
1

q
.

We check easily
1

p
+

1

q
= 1,

and obtain by the complex interpolation theorem (7.6) of Riesz-Thorin (3.1).
The variation of constants formula resp. Duhamel’s formula

u(t) = −i
∫ t

−∞
S(t− s)f(s)ds

defines a solution to
i∂tu+ ∆u = f

at least for Schwartz functions f in d+ 1 variables.
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From the Lp
′

to Lp estimate (3.1) one obtains

‖u(t)‖Lp ≤ (4π)−
d
2 (1− 2

p )

∫ t

−∞
|t− s|

d
2−

d
p ‖f(s)‖Lp′ds.

The right hand side is a convolution h ∗ g where

h(t) =

{
0 if t ≥ 0

|4πt|−d( 1
2−

1
p ) if t < 0

and

g(t) = ‖f(t)‖Lp′ (Rd).

An immediate calculation gives |t|−1/r ∈ Lrw(R) and by the weak Young inequality
of Proposition 7.2

(3.2) ‖g ∗ h‖Lq(R) ≤ c‖g‖Lq′‖h‖Lrw
where

1

r
= d(

1

2
− 1

p
), r > 1.

and p and q are strict Strichartz pairs, i.e. numbers which satisfy

(3.3)
2

q
+
d

p
=
d

2
.

and 2 < q ≤ ∞, 2 ≤ p ≤ ∞. The left hand side of (3.2) controls

‖u‖LqtLpx :=
(∫
‖u(t)‖q

Lp(Rd)
dt
)1/q

with the obvious modification if q =∞ and we obtain

‖u‖LqtLpx ≤ c‖f‖Lq′t Lp
′
x

for all strict Strichartz pairs. Here LqtL
p
x consists of all equivalence classes of mea-

surable functions such that the integral expression for the norm is finite.
It is not hard to see that u measurable implies

t→ ‖u(t, .)‖Lp

is measurable, the expression for the norm actually defines a norm, and the space
is closed and hence a Banach space. The duality of the Lebesgue spaces extends to
duality of this mixed norm spaces: The map

Lp
′,q′ 3 f → (g →

∫
fgdmddt) ∈ (Lp,q)∗

is an isometry if 1 ≤ p, q ≤ ∞ and surjective if p, q < ∞. Complex interpolation
extends to the mixed norm spaces - this is quite evident from the definition.

We claim

Theorem 3.1. The variation of constants formula defines a function u which sat-
isfies

i∂tu+ ∆u = f, u(0) = u0

and let (q, p) be a strict Strichartz pair. Then

‖u‖Cb(R,L2) + ‖u‖LqLp ≤ c
(
‖u(0)‖L2 + ‖f‖Lq′Lp′

)
.



NONLINEAR DISPERSIVE EQUATIONS 17

We will later improve this statement in several directions. Denote by T ,

L2 3 v → Tv ∈ C([0,∞), L2)

the operator which maps the initial data to the solution. Let (p, q) be Strichartz
pairs. Then

‖T‖2
L(L2,Lq′Lp′ )

= ‖T ∗‖2L(Lq,p,L2) = ‖TT ∗‖L(Lq,p,Lq′,p′ )

and

TT ∗f(t) =

∫ ∞
0

S(t+ s)f(s)ds =

∫ 0

−∞
S(t− s)f(−s)ds

and the bound follows as above.

3.2. Strichartz estimates for the Airy equation. This section follows Kenig,
Ponce and Vega [14]. Scaling shows that the solution to the Airy equation satisfies

u(t, x) =
1

(t/3)1/3

∫
Ai((x− y)/(t/3)

1
3 )u(0, y)dy

and we obtain the estimates

‖u(t)‖L2 = ‖u0‖L2

‖u(t)‖L∞ ≤ ct−1/3‖u0‖L1

and

‖|D| 12u(t)‖L∞ ≤ ct−
1
2 ‖u0‖L1 .

The Strichartz estimate is more complicated. Here we use complex interpolation
to see for 2 < p ≤ ∞

(3.4) ‖D
1
2−

1
pS(t)v‖Lp ≤ c|t|

1
p−

1
2 ‖v‖Lp′

where Ds is defined through the Fourier multiplier. The multiplication on the
Fourier side commutes with the evolution, and hence this estimates is equivalent to

‖D
1
q S(t)v‖Lp(R) ≤ c|t|−

2
q ‖D−

1
q v‖Lp′ .

The Strichartz estimates take the form

Theorem 3.2. The variation of constants formula defines a function u which sat-
isfies

∂tu+ uxxx = f, u(0) = u0

and

‖u‖Cb(R,L2) + ‖|D|
1
q u‖LqLp ≤ c

(
‖u(0)‖L2 + ‖|D|−

1
q′ f‖Lq′Lp′

)
for all Strichartz pairs (q, p).

Proof. It remains to prove (3.4).
We claim that it follows from

(3.5)

∣∣∣∣∫ |ξ| 12 +iσeiξ
3+iξxdξ

∣∣∣∣ ≤ C(1 + |σ|)

uniformly in x - which has to be understood as oscillatory integral. We apply then
complex interpolation with the family of operators

T̂λu0 = eλ
2

|D|λ2 Ŝ(t)u0
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for which we easily see that

‖Tiσu0‖L2 = e−σ
2

‖u0‖L2

and

‖Ti+σu0‖L∞ ≤ ct−1/2(1 + |σ|)e−σ
2

‖u0‖L1 .

Now (3.4) follows by complex interpolation. We turn to (3.5).
There are three cases: |x| ≤ 10, x ≥ 10 and x ≤ −10. The last one is the hardest

since there are large critical points ±ξc =
√
−x/3 in the phase, and we restrict to

it. We split the integration into the intervals

(−∞,−ξc − |x|−1/4), (−ξc − |x|−1/4, ξc + |x|−1/4), (−ξc + |x|−1/4,−1), (−1, 1),

(1, ξc − |x|−1/4), (ξc − |x|−1/4, ξc + |x|−1/4), (ξc + |x|−1/4,∞)

The argument is immediate for the second, the fourth and the sixth integral, which

we estimate by 3ξ
1/2
c |x|−1/4. Now∫ −ξc−|x|−1/4

−∞
|ξ| 12 +iσeiξ

3+ixξdξ =i

∫ −ξc−|x|−1/4

−∞
eiξ

3+ixξ d

dξ

|ξ| 12 +iσ

3ξ2 + x
dξ

+
(ξc + |x|−1/4)

1
2 +iσ

3(ξc + |x|−1/4)2 + x
e−i(ξc+|x|

−1/4)3−i(ξc+|x|−1/4)x

and the direct estimate as for stationary phase gives the result. The largest term (in

terms of σ) occurs when the derivative falls on |ξ| 12 +iσ - all the others are estimates
as when σ = 0. We recall that

3(ξc + |x|−1/4)2 + x ∼ |x| 14 .

�

3.3. The Kadomtsev-Petviashvili equation. The symbol is ξ3 − η2/ξ, with
gradient (

3ξ2 + η2/ξ2

−2η/ξ

)
and Hessian matrix (

6ξ − 2η2/ξ3 2η/ξ2

2η/ξ2 −2/ξ

)
and Hessian determinant −12.

Lemma 3.3. The following Strichartz estimate holds

‖u‖L∞t L2
x

+ ‖u‖LptLqx ≤ c
(
‖u0‖L2 + ‖f‖

Lp
′
t L

q′
x

)
.

The proof is the same (since the same dispersive estimate holds) as for the
Schrödinger equation.
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3.4. The (half) wave equation and the Klein-Gordon equation. Here we
only state the result. The proof requires a sharpening of complex interpolation,
replacing L∞ by BMO. The estimates for the wave equation imply that

‖|D|−
d+1

2 S(t)v‖BMO ≤ ct−
d−1

2 ‖v‖L1(Rd)

which implies

‖|D|−
d+1

2 (1− 2
p )S(t)v‖Lp ≤ ct−

d−1
2 (1− 2

p )‖v‖Lp′
where the half wave evolution operator S(t) is defined by

S(t)v = F−1(eit|ξ|v̂).

As a consequence we obtain

Theorem 3.4. Let d ≥ 2. The variation of constants formula defines a function
u which satisfies

i∂tu+ |D|u = f, u(0) = u0

and

‖u‖Cb(R,L2) + ‖|D|−
d+1

4 (1− 2
p )u‖LqLp ≤ c‖u(0)‖L2 + ‖|D|

d+1
4 (1− 2

p )f‖Lq′Lp′ .
where q satisfies 2 < q <∞, 2 ≤ p ≤ ∞ and

1

q
+
d− 1

p
=
d− 1

2
.

3.5. The endpoint Strichartz estimate. We prove the endpoint Strichartz es-
timate for the Schrödinger equation

iut + ∆u = f u(0) = u0

for d ≥ 3. The argument is due to Keel and Tao [13] and it applies to much more
general situations.

Theorem 3.5. The solution defined by the variation of constants formula satisfies

(3.6) ‖u‖L∞t L2
x

+ ‖u‖
L2
tL

2d
d−2
≤ c

(
‖u0‖L2 + ‖f‖

L2
tL

2d
d+2
x

)
.

Before we prove the statement we need a robust estimate for integral operators.

Lemma 3.6 (Schur’s lemma). Let µ and ν be measures,

Tf(x) =

∫
K(x, y)f(y)dµ(y)

where K satisfies

sup
x

∫
|K(x, y)|dµ(y) ≤ Cx, sup

y

∫
|K(x, y))dν(y) ≤ Cy.

Then

‖Tf‖Lp(ν) ≤ C
1− 1

p
x C

1
p
y ‖f‖Lp(µ).

Proof. By duality the claim is equivalent to∣∣∣∣∫ f(x)g(y)K(x, y)dµ(y)dν(x)

∣∣∣∣ ≤ C1− 1
p

x C
1
p
y ‖f‖Lp′ (µ)‖g‖Lp(µ).

This is obvious for p = ∞ and p = 1. Hence the operator satisfies the desired
bounds on L1 and L∞. The claim follows by complex interpolation. �
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Proof. We denote by S(t) the Schrödinger group. We first prove

(3.7)

∣∣∣∣∫
s<t

〈S(−t)f(t), S(−s)g(s)〉
∣∣∣∣ ≤ c‖f‖L2

tL
2d
d−2
‖g‖

L2
tL

2d
d−2

which implies by duality

∥∥∥∫ t

−∞
S(t− s)f(s)

∥∥∥
L2L

2d
d−2
≤ c‖f‖

L2
tL

2d
d+2

and, by the TT ∗ argument the full statement.
We define

Tj =

∫
t−2j+1<s≤t−2j

〈S(−s)f(s), S(−t)g(t)〉dsdt

and claim

(3.8) |Tj | ≤ C2−jβ(p,p̃)‖f‖L2Lp′‖g‖L2Lp̃′

for j ∈ Z, p and p̃ in a neighborhood of 2d
d+2 and

β(p, p̃) =
d

2
− 1 +

d

2p
+

d

2p̃
.

It vanishes for p = p̃ = 2d
d−2 as it should.

We set t̃ = t2−j , s̃ = s2−j , x̃ = 2−j/2x and ỹ = 2−j/2y. This transformation of
coordinates (which reflects the symmetry) reduces the estimate to the case j = 0.

The estimate for j = 0

(3.9) |T0| ≤ C‖f‖L2Lp′‖g‖L2Lp̃′

holds for

(1) p = p̃ = 1 by the dispersive estimate
(2) p̃ = 2 and 2d

d+2 < p′ ≤ 2

(3) p = 2 and 2d
d+2 ≤ p̃

′ ≤ 2

Then the estimate (3.8) follows by complex interpolation and duality. It is conve-
nient to draw a diagram
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1/p̃

1/p

(1, 1)

1/2

1/2

d+2
2d

d+2
2d

Convex interpolation - this time for L2,p′ spaces gives the convex envelope which
contains the point (d+2

2d ,
d+2
2d ) in its interior.

For the first case (which corresponds to (1, 1)) observe that by the dispersive
estimate, if t− 2 < s < −1

|〈S(t− s)g(s), f(t)| ≤ C‖f(t)‖L1‖g(s)‖L1

Let hf (t) = ‖f(t)‖L1 and hg(t) = ‖g(t)‖L1 . Then

|T0(f, g)| ≤ C
∫ ∫

K(t, s)hg(s)dshf (t)dt

where K(t− s) = 1 if t− 2 < s < t− 1 and 0 otherwise. The first estimate follows
by Schur’s lemma.

For the second estimate (which corresponds to the horizontal line) we use nonend-
point Strichartz estimate and finally Hölder’s inequality to bound∣∣∣∣∫ s+2

s+1

〈f(t), S(t− s)g(s)〉dt
∣∣∣∣ ≤‖f‖Lq′p′ ([s+1,s+2]×Rd‖S(t− s)g(s)‖Lqp

≤C‖f‖L2,p′ ([s+1,s+2]×Rd‖g(s)‖L2 .

where (q, p) is a strict Strichartz pair.
Thus∣∣∣∣∣
∫ k+1

k

∫ t−1

t−2

〈S(−t)f(t), S(−s)g(s)〉dsdt

∣∣∣∣∣ ≤ c‖f‖L2,p′ ([k,k+1]×Rd)‖g‖L2,2([k−2,k]×Rd).

The statement follows by summation with respect to k, and the Cauchy-Schwartz
inequality with respect to k.

The third estimates follows by the same argument. This completes the estimate
(3.8) for (p, p̃) close to ( 2d

d−2 ,
2d
d−2 ).

To make use of the flexility we decompose f =
∑
fk, g =

∑
gk such that

fk(t, x) = ck(t)χt,k(x), gk(t, x))dk(t)χ̃t,k(x).
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We define the decomposition as follows. Given f : Rd → R we define its distribution
function

λ(s) = md{x : |f(x)| > s}.

It is monotonically decreasing and finite for f ∈ Lp. Let sk be the infimum of all s
so that λ(s) < 2k - we allow s = 0. We set ck = 2k/psk and

χk(x) = c−1
k

{
f if sk < |f | < sk+1

0 otherwise

Then

f =
∑

ckχk

and, for some C > 0

C−1‖f‖Lp ≤ ‖(ck)‖lp ≤ C‖f‖Lp

which can be seen by comparing to

‖f‖pLp = p

∫
md({|f | > s})sp−1ds.

By definition

md( supp χk) ≤ 2k |χk| ≤ 2k/p.

We apply this decomposition at every time t with p = 2d
d+2 . Then

f =
∑

fk

where at most one summand differs from 0.
We apply the first estimate (3.8):

|Tj(fk, gk′)| ≤c2−β(p,p̃)‖fk‖L2,p′‖gk′‖L2,p̃′

≤c2
−( d−2

2 + d
2p+ d

2p̃ )j+k
(

1
p′+

1
p−

d+2
d

)
‖fk‖

L
2, 2d
d+2
‖gk′‖

L
2, 2d
d+2

where the second inequality follows from

‖χt,k‖Lp ≤ c2k( 1
p−

2d
d+2 )

We optimize p and p̃. Thus

|Tj(fk, gk′)| . 2−ε(|k−jd/2|+|k
′−jd/2|)‖fk‖

L2L
2d
d+2
‖gk′‖

L2L
2d
d+2

for some ε > 0 and e sum with respect to j:∑
j

|Tj | ≤C
∑
k

∑
k′

(1 + |k − k′|)2−ε|k−k
′|‖fk‖

L2L
2d
d+2
‖gk‖

L2L
2
d d+2

.

≤C

(∑
k

‖fk‖2
L2L

2d
d+2

)1/2(∑
k

‖gk‖2
L2L

2d
d+2

)1/2

by Schur’s lemma. By Minkowski’s inequality
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∑
k

∫ (∫
Rd
|gk|

2d
d+2 dmd

) d+2
d

dt =

∫ ∑
k

(∫
Rd
|gk|

2d
d+2 dmd

) d+2
d

dt

≤
∫ (∫

Rd

∑
k

|gk|
2d
d+2 dmd

) d+2
2

dt

=‖g‖2
L

2, 2d
d+2

and hence we obtain (3.7).
�

3.6. Small data solutions to the nonlinear Schrödinger equation. Most of
this section can be found in [4].

We study the initial value problem for initial data u0 ∈ L2 for

(3.10) iut + ∆u = ±|u|σu

where 0 ≤ γ ≤ 4
d−2 . The case of the plus sign is called defocusing and case of the

minus sign is called focusing. At least formally

M =

∫
Rd
|u|2dx

called mass, and ∫
Rd
iu∂iūdx

called momentum

E =

∫
R

1

2
|∇u|2 ± 1

σ + 2
|u|σ+2dx

called energy are conserved. For most of this section there is no distinction between
the focusing and the defocusing case.

The argument will rely on the Strichartz estimates with p = q = 2(d+2)
d and

p′ = q′ = 2(d+2)
d+4 .

The sign of the coefficients is of almost no importance in this section, and we
choose + to cover both signs, indicating differences whenever necessary. This sec-
tion establishes basic schemes which will be used over and over again. Simulta-
neously it is a warm up the set up and the consequences of the key multilinear
estimate. Lateron we will restrict ourselves often to giving the estimates of the
nonlinearity, and stating the properties.

It provides also a play ground for stability estimates, qualitative properties,
criticality and subcriticality.

3.7. Initial data in L2. Our approach will be based on the Strichartz estimates

of Theorem 3.1 with p = q = (2(d+2)
d .

(3.11) ‖v‖
L

2(d+2)
d (R×Rd)

+‖v‖C(R;L2(Rd)) . ‖v(0)‖L2(Rd)+‖i∂tv+∆v‖
L

2(d+2)
d+4 (R×Rd)

In order to prepare for variants and improvements we assume that there is a
space X with

(3.12) X ⊂ C(R;L2(Rd)) ∩ L
2(d+2)
d (R× Rd)
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and

sup
t
‖v(t)‖L2 + ‖v‖

L
2(d+2)
d
≤ c‖v‖X

and

‖v‖X ≤ c
(
‖v(0)‖L2 + ‖i∂tv + ∆v‖

L
2(d+2)
d+4 (R×Rd)

)
.

Clearly such a space exists: We could define X as the intersection in (3.12), and
then the Strichartz estimates ensure that it has the desired properties. The choice
of the function space is an important and nontrivial part of studying solutions to
many different dispersive equations. Even though we do not need this flexibility
here, and even though it complicates the notation a bit we prefer to do it here to
indicate possible modifications later on.

In the sequel we denote by v the solution to the homogeneous equation

i∂tv + ∆v = 0, v(0) = u0

which we can write by the unitary Schrödinger group S(t) as

v(t) = S(t)u0.

To approach the question of existence and uniqueness we make the ansatz u =
v+w where v satisfies the linear Schrödinger equation with initial data u0 , and w
satisfies w(0) = 0 and

iwt + ∆w =χ(0,T )(t)|v + w|σ(v + w) in R× Rd

w(0, x) =0 in Rd
(3.13)

where T ∈ (0,∞] will be chosen later. We will construct a unique w in X by a fixed
point argument. It is obvious that u = v + w is the unique solution up to time T .
Then u = v + w is the searched for solution on the time interval (0, T ).

We rewrite the problem as a fixed point problem: Given w̃ we write w = J(w̃)
where J maps w̃ to the function w which satisfies

(3.14) iwt + ∆w = χ(0,T )(t)|v + w̃|σ(v + w̃), w(0) = 0.

Suppose first that 2(d+2)
d+4 (1 + σ) ≥ 2 and σ ≤ 4

d . By Hölder’s inquality

‖f‖1+σ

L
(1+σ)

2(d+2)
d+4 (Rd)

≤ ‖f‖
4−dσ

2

L2(Rd)
‖f‖

d+2
2 σ−1

L
2(d+2)
d (Rd)

Observe that the exponent of ‖f‖L2 is non-negative if σ < 4
d and it vanishes if

σ = 4
d .

If 0 < 2(d+2)
d+4 (1 + σ) ≤ 2 we estimate again by Hölder’s inequality

‖f‖1+σ
L(1+σ)2(Rd)

≤ ‖f‖1−
dσ
4

L2(Rd)
‖f‖(1+ d

4 )σ

L
2(d+2)
d (Rd)

.

In the first case we obtain the space-time estimate

(3.15) ‖χ(0,T )|u|1+σ‖
L

2(d+2)
d+4

≤ T 1− dσ4 ‖u‖
4−dσ

2

L∞L2‖u‖
d+2

2 σ−1

L
2(d+2)
d

and in the second case

(3.16) ‖χ(0,T )|v|1+σ‖L1
tL

2
x(Rd) ≤ T 1− dσ4 ‖u‖1−

dσ
4

L∞L2‖u‖
(1+ d

4 )σ

L
2(d+2)
d ([0,T ]×Rd)

.
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If σ < 4
d T carries a positive power and we call this situation L2 subcritical.

This power becomes zero if σ = 4
d , which we call L2 or mass critical.

In the both cases

‖J(w̃)‖X ≤ cT 1− dσ4 (‖w̃‖X + ‖v‖X)1+σ

which we complement by the similar estimate

‖J(w)− J(w̃)‖X ≤ cT 1− dσ4 (‖w̃‖X + ‖w‖X + ‖v‖X)σ‖w − w̃‖X .

We set up the problem for an application of the contraction mapping principle
Let R = ‖v‖X . If ‖w̃‖X ≤ R then, for some c > 0,

‖w‖X ≤ cT 1− dσ4 (2R)1+σ ≤ R

where the last inequality holds provided

T ≤ (2c(2R)σ)−
4

4−dσ := T0

which we assume in the sequel. Moreover, if w and w̃ have norm at most R then

‖J(w)− J(w̃)‖X ≤ cT 1− dσ4 Rσ‖w − w̃‖X
We obtain a contraction after decreasing T if necessary.

The critical case requires slightly different arguments, and it yields different
conclusions. This time we cannot gain a small power of T and the smallness must
have a different source.

In the mass critical case we assume that ‖χ(0,T )v‖
L

2(d+2
d L

2(d+2)
d
≤ ε for some

small ε.
This is true for all T by Lemma (3.11) if ‖u0‖L2 is sufficiently small. Moreover,

for all initial data u0 ∈ L2 we have by dominated convergence

(3.17) ‖χ(0,T )v‖LpLq → 0 as T → 0

for all Strichartz pairs with q <∞.
It is obvious from the argument above (where we replace

‖χ(0,T )v‖X by ‖χ(0,T )v‖
L

2(d+2)
2

for the mass critical case) that the iteration argument applies if ε is sufficiently
small. We obtain local existence under the smallness assumption, and hence global
existence provided the initial data are sufficiently small.

We collect the results in a theorem.

Theorem 3.7. There exists ε > 0 such that the following is true. Suppose that
0 < σ ≤ 4

d , u0 ∈ L2 and

T 1− dσ4 ‖χT v‖σX < ε.

resp. σ = 4
d and

‖χT v‖σ
L

2(d+2)
2d (R×Rd)

< ε.

Then there is a unique solution in X up to time T which satisfies

(3.18) ‖u− v‖X . T 1− dσ4 ‖v‖1+σ
X

resp, if σ = 4
d ,

(3.19) ‖u− v‖X . T 1− dσ4 ‖v‖1+σ

L
2(d+2)
d
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There is a unique global solution

u ∈ L
2(d+2)
d ((−T, T )× Rd) ∩ C((−T, T );L2(Rd))

for all T if either 0 ≤ σ < d
4 , or, if ‖u0‖L2 ≤ ε and σ = d

4 . In the last case we have
(3.19) with T =∞. If 0 ≤ k < 1 + σ then

(u0 → u) ∈ Ck(L2(Rd);X)

There is a stability estimate. Suppose that ũ ∈ X satisfies

T 1− dσ4 ‖ũ‖X < ε

‖ũ− u0‖L2 + ‖i∂tũ+ ∆ũ− |ũ|σũ‖
L

2(d+2)
d+4

< ε.

Then there exists a unique solution up to time T with

(3.20) ‖u− ũ‖X ≤ c
(
‖ũ− u0‖L2 + ‖i∂tũ+ ∆ũ− |ũ|σũ‖

L
2(d+2)
d+4

)
.

If σ = 4
d it suffices to require

‖χ(0,T )ũ‖
L

2(d+2)
d

< ε

Proof. Local existence in the subcritical case has been shown above. The fixed
point formulation leads to existence via the contraction mapping theorem on a
time interval whose length depends only on ‖u0‖L2 . We claim that the L2 norm
(mass) is conserved. Indeed, for sufficiently regular and decaying ũ = v + w̃ and
u = v + w we have

1

2
‖u(t)‖2L2 =

1

2
‖u0‖2L2 + reali

∫
(0,t)×Rd

|ũ|σũūdxdt

which remains true for general ũ and initial data by an approximation argument.
By then it also holds for the fixed point, for which the second term on the right
hand side is the real part of something purely imaginary.

Thus we can extend the solution to a global solution in the subcritical case.
It follows from the construction by the contraction mapping principle that the

solution depends Lipschitz continuously on the initial data.
The map

L
2(d+2)
d (R× Rd) 3 w → χ(0,T )|w|σw ∈ L

2(d+2)
d+4 (R× Rd)

is k times continuously differentiable for k < 1 + σ, and σ ≤ 4
d .

Thus J is k times continuously Frechet differentiable. Moreover, by the very same
estimates as for the contraction the derivative of J with respect to w̃ is invertible,
and by the implicit function theorem from the initial data to the solution is k times
continuously differentiable. Checking the norms implies the stability estimate.

�

We also have

lim
T→∞

‖χ(T,∞)v‖
L

2(d+2)
d (R×Rd)

= 0.

Suppose that u ∈ X is a solution for T =∞ and σ = 4
d . One can deduce that the

limit

lim
t→∞

S(−t)u(t)
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exists in L2. Let w0 be this limit, and w the solution to the homogeneous equation
with initial data w0. Then the convergence statement can be formulated as

lim
t→∞

‖u(t)− w(t)‖L2 = 0.

This is called scattering.

3.8. Initial data in Ḣ1 for d ≥ 3. Consider

(3.21) iut + ∆u = ±|u|σu

with initial data u0 ∈ Ḣ1, by which we mean the space with the norm ‖ |∇u0| ‖L2 .
We want to use Strichartz spaces for the derivative and we define the function
spaces X by

‖u‖X := sup
t
‖∇u(t)‖L2 + ‖∇u‖

L
2(d+2)
d

.

Then the Strichartz estimate 3.11 combined with Sobolev’s estimate gives

‖u‖X ≤ c
(
‖∇u0‖L2 + ‖∇f‖

L
2(d+2)
d+4

)
for a solution u to the inhomogeneous linear problem.

Then, if σ ≤ 4
d−2 , by Hölder’s and Sobolev’s inequality

‖∇|f |σf‖
L

2(d+2)
d+4 (Rd)

. ‖f‖
4−(d−2)σ

2

LL
2d
d−2 (Rd)

‖∇f‖−1+ 4−d
2 σ

L
2(d+2)
d (Rd)

provided σ is not too small. For small σ we argue as for the case of L2. We obtain
in both cases

(3.22) ‖J(w)‖X . T 1− (d−2)σ
4 (‖v‖X + ‖w‖X)

1+σ
,

and, checking the same argument for differences,

‖J(w2)− J(w1)‖
L

2(d+2)
d

+ ‖J(w2)− J(w1)‖L∞L2

.T 1− (d−2)σ
4

(
‖v‖X + ‖w1‖X + ‖w2‖X

)σ
× (‖w2 − w1‖

L
2(d+2)
d

+ ‖w2 − w1‖L∞L2)

(3.23)

Theorem 3.8 (Local existence and uniqueness in energy space). Suppose that
0 < σ ≤ 4

d−2 . There exists ε > 0 such that the following is true. Let v be the
solution to the homogeneous linear Schroedinger equation. Suppose that

T 1− (d−2)σ
4 ‖v‖σX ≤ ε

Then there exists a unique solution u = v + w with

‖∇w‖L∞L2 + ‖∇w‖
L

2(d+2)
d
. T 1− (d−2)σ

4 ‖v‖1+σ
X .

Again we may replace ‖v‖X by ‖χ0,T∇v‖
L

2(d+2)
d

. In the defocusing case the solution

is global if σ < 4
d−2 . In the energy critical case σ = 4

d−2 there is global existence

for small data, and local existence for all data in Ḣ1.

Proof. Again we characterize the solution as the fixed point of the same map as
above, but now with respect to the norm X. By (3.22) we obtain a map of a closed

ball in X to itself, but a contraction only in the metric of L
2(d+2)
d in a ball in X-

at least for large space dimensions and small σ. We change the space X slightly
by replacing C(R;L2) by L∞(R;L2). We claim that sequences which are bounded
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in X and converge in L
2(d+2)
d have a limit in X. There is a weak* converging

subsequence in X, and the limits have to coincide.
It is not hard to complete the argument for initial data additionally in L2(Rd):

then v ∈ L
2(d+2)

2 , and this remains true for the fixed point map. In general we
define iteratively vj+1 = J(vj). We claim that there exists j so that

vj+1 − vj ∈ L
2(d+2)
d (R× Rd).

The contraction argument then completes the proof. This argument gives unique-
ness in the set

vj +X ∩ L
2(d+2)
d (R× Rd).

The proof of the claim is technical and omitted.
The remaining arguments are adaptations of similar arguments in Theorem 3.7.

�

3.9. Initial data in H1(Rd). In this case we combine the arguments. We obtain
global well-posedness in the defocussing subcritical case σ < d

4 , local existence in

the subcritical and the critical case (σ ≤ d
4 ) and global existence in the critical case

σ = d
4 and small initial data.

4. Functions of bounded p variation

The study of p variation of functions of one variable has a long history. Function
of bounded p variation have been studied by Wiener in [31]. The generalization
of the Riemann-Stieltjes integral to functions of bounded p variation against the
deriative of a function of bounded q variation 1/p + 1/q > 1 is due to Young [32].
Much later Lyons developed his theory of rough path [21] and [22], building on
Young’s ideas, but going much further.

In parallel D. Tataru realized that the spaces of bounded p variation, and their
close relatives, the Up spaces, allow a powerful sharping of Bourgain’s technique
of function spaces adapted to the dispersive equation at hand. These ideas were
applied for the first time in the work of the author and D. Tataru in [16]. Since
then there has been a number of questions in dispersive equations where these
function spaces have been used. For example they play a crucial role in [17], but
there they could probably be replaced by Bourgain’s Fourier restriction spaces
Xs,b. On the other hand, for well-posedness for the Kadomtsev-Petviashvili II in
a critical function space (see [10]) the Xs,b spaces seem to be insufficient. The
theory of the spaces Up and V p and some of their basic properties like duality
and logarithmic interpolation have been worked out for the first time in [10]. The
development in stochastic differential equations and dispersive equations has been
largely independent.

We will introduce and study functions from an interval (a, b) to R, Rn, a Hilbert
space or a Banach space X, and spaces of such functions which are invariant under
continuous monotone reparametrizations of the interval. For the most part of this
section there are no more than the obvious modifications when considering Banach
space valued functions. We allow a = −∞ and b =∞.

We call a function f ruled function if at every point (including the endpoints,
which may be ±∞) left and right limits exist. The set of ruled functions is closed
with respect to uniform convergence. We denote the Banach space of ruled functions
equipped with the supremum norm by R.
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A step function is a function f for which there exists a partition so that f is
constant on every interval (a, t1), (ti, ti+1) and (tn, b). We do not require that the
value at a point coincides with the limit from either side. Step functions are dense
in R (Aumann [1], Dieudonne [6]). We denote the set of step functions by S.

Let Rrc ⊂ R be the closed subspace of right continuous functions f with
limt→a f(t) = 0. Similarly, if A ⊂ R we denote by Arc the intersection with
Rrc.

Let X be a Banach space and X∗ its dual. We consider functions with values in
X resp X∗ and we denote the corresponding spaces by R(X) reps. S(X).

There is a bilinear map B from S(X)rc ×R(X∗) to R resp. C defined by

(4.1) B(u, v) =

n∑
i=1

v(ti)(u(ti)− u(ti−1))

where a = t0 < t1 < · · · < tn < b is the partition. In the sequel we will omit the
space X and X∗ from the notation unless there is some ambiguity. Similarly the
formula above defines a bilinear on R(X∗)× S(X).

It will be convenient to extend every function on [a, b) by zero to [a, b], i.e. we
will always set f(b) = 0, even if a = −∞ or b = ∞. Similarly we extend every
function by 0 to R whenever this is convenient.

Definition 4.1. For u ∈ R and a partition

τ = (t1, t2 . . . tn), a < t1 < t2 < t3 · · · < tn < b

we define (denoting the limit from the right by f(t+))

uτ (t) =


u(t) if t = tj for a j

u(a+) if a < t < t1
u(ti+) if ti < t < ti+1

u(tn+) if tn < t

We observe that fτ is a step function, and it is right continuous if f is right
continuous.

Lemma 4.2. Let u ∈ Rrc and v ∈ R. Then

B(uτ , v) = B(uτ , vτ ) = B(u, vτ )

If u, v ∈ Src then, with ti a partition containing all points of discontinuity of u and
v,

B(u, v) +B(v, u) =
∑
t

(v(ti)− v(ti−1)(u(ti)− u(ti−1)) + v(b)(u(b))

Proof. This follows immediately from the definitions. �

In particular, if there is no point where both u and w are discontinuous then the
only term on the right hand side is v(b)u(b).

4.1. Functions of bounded p variation and the spaces Up and V p. In the
sequel p ∈ [1,∞]. Unless explicitly stated otherwise we consider p ∈ (1,∞).

In later chapters we use Up and V p to study well-posedness questions for several
dispersive PDEs, where we select a number of relevant and representative problems.

A partition τ of (a, b) is a strictly increasing finite sequence

a < t1 < t2 < · · · < tn+1 < b

where we allow b =∞ and a = −∞.
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Definition 4.3. Let I be an interval, X a Banach space, 1 ≤ p <∞ and f : I → X.
We define

ωp(v, I) := sup
τ

(
n−1∑
i=1

‖v(ti+1)− v(ti)‖pX

)1/p

∈ [0,∞].

There are obvious properties. The function t → ωp(v, [a, t)) is monotonically
increasing. The same is true if we consider closed or open intervals.

Lemma 4.4. Suppose that a < b < c. Then

ωp(v, [a, b)) ≤ ωp(v, [a, c)) ≤ 21−1/p
(
ωp(v, [a, b]) + ωp(v, [b, c))

)
.

Proof. Consider a partition τ . If b is a point of τ then the p-th power of the τ
variation in the large interval is the sum of the p powers of the parts. If not we add
the point b. This increases the right hand side of the second inequality, and it may
decrease or increase the left hand side. The factor 21−1/p follows from

|a+ b|p ≤ 2p−1(|a|p + |b|p).
�

The p variation can sometimes be explicitly estimated.

Lemma 4.5. For bounded monotone functions we have

ωp(v, [a, b)) = sup v − inf v.

We denote by Ċs(I) the homogeneous Hölder norm:

‖f‖Ċs(I) = sup
t 6=τ

|u(t)− u(τ)|
|t− τ |s

.

Lemma 4.6. We have

ωp(v, (a, b)) ≤ ‖v‖Ċ1/p(b− a)1/p.

Suppose that

ωp(v, (a, b)) <∞.
Then v has left and right limits at every point. The expression is invariant with
respect to continuous monotone coordinate changes. Moreover

ωp(λv, (a, b)) = |λ|ωp(v, (a, b)),

ωp(v + w, (a, b)) ≤ ωp(v, (a, b)) + ωp(w, (a, b)).

Proof. Let t0 < t1 < . . . tN . Then∑
j

‖v(ti+1)− v(ti)‖pX ≤
∑
i

(ti+1 − ti)‖v‖Ċ1/p .

The other statement follow from a straightforward calculation. �

The p variation is continuous at points where v is continuous, provided the p
variation is finite.

Lemma 4.7. Suppose that ωp(v, [a, b)) <∞ and v is continuous at c ∈ [a, b). Then

lim
t→c

ωp(v, [a, t)) = ωp(v, [a, c]).
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Proof. Suppose that

lim
t→b, t>a

ω(v, (a, t))− ω(v, (a, b)) = 2δ > 0.

Then there is a sequence of points c < t1 < t2 . . . tn < b with∑
‖v(ti+1)− v(ti)‖pX ≥

δp

p‖v‖p−1
sup

.

Similarly there is such a sequence in (c, t1) and recursively we get an arbitrary large
number of such sequences. Putting N of them together we see that

ωp(v, (c, b)) ≥ Ncδ

which would bound N . This is a contradiction. Similarly we argue for the limit
from below. �

Definition 4.8. Let X be a Banach space , 1 ≤ p < ∞ and v : (a, b) → X. We
define

‖v‖V p((a,b),X) = max{‖v‖sup, ωp(v, (a, b))}.
Let V p = V p((a, b)) = V p(X) = V p((a, b);X) be the set of all functions for which
this expression is finite. We omit the interval and/or the Banach space in the
notation when this seems appropriate.

The interval will usually be of minor importance. The following properties are
immediate:

(1) V p(I) is closed with respect to this norm and hence V p(I) is a Banach
subspace of R. Moreover V prc(I) is a closed subspace.

(2) We set V∞ = R with ‖.‖V∞ = ‖.‖sup.
(3) If 1 ≤ p ≤ q ≤ ∞ then

‖v‖V q ≤ ‖v‖V p .

(4) Let Xi be Banach spaces, T : X1 ×X2 → X3 a bounded bilinear operator,
v ∈ V p(X1) and w ∈ V p(X2). Then T (v, w) ∈ V p(X3) and

‖T (v, w)‖V p(X3) ≤ 2‖T‖‖v‖V p(X1)‖w‖V p(X2).

(5) We embed V p((a, b)) into V p(R) by extending v by 0.
(6) The space V 1 has some additional structure: Every bounded monotone

function is in V 1, and functions in V 1 can be written as the difference of
two bounded monotone functions.

The space of bounded p variation is build on the sequence space lp. We may also
replace it by the weak space lpw, with

‖(aj)‖lpw = sup
λ>0

λ(#{j : |aj | > λ})
1
p .

This does not satisfy the triangle inequality, but if p > 1 there is an equivalent
norm, which makes lpw a Banach space. We set l∞w = l∞.

Definition 4.9. Let 1 ≤ p <∞. The weak V pw space consists of all functions such
that

‖v‖V pw = max{ sup
t1<···<tn

‖(v(ti+1)− v(ti))1≤i≤n−1‖lpw , ‖v‖sup}

is finite.
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By Tschebycheff’s inequality

‖v‖V pw ≤ ‖v‖V p .
The spaces of bounded p variation are of considerable importance in probability

and harmonic analysis. We shall see that V p is the dual space of a space Uq,
1/p + 1/q = 1, 1 < p < ∞, with a duality pairing closely related to the Stieltjes
integral, and its variant, the Young integral [32].

Definition 4.10. A p-atom a is a step function in Src,

a(t) =

n∑
i=1

φiχ[ti,ti+1)(t)

where τ = (t1 . . . tn) is a partition, tn+1 = b, with
∑
|φi|p ≤ 1. A p-atom a is called

a strict p atom if

max
i
‖φi‖X(#τ)1/p ≤ 1.

It is important that atoms are right continuous, zero in a neighborhood of a, but the
limit as t→ b may be different from 0.

Let aj be a sequence of atoms and let λj be a summable sequence. Then

u =
∑

λjaj

is a Up function. This is well defined since the right hand side converges in R. We
define Up as the set of function having such a representation and give it the norm

‖u‖Up := inf
{∑

|λj | : u =
∑

λjaj

}
.

The strict space Upstrict is defined in the same fashion using strict p atoms.

We collect a number of elementary properties.

(1) If a is a p-atom then ‖a‖Up ≤ 1. The norm of an atom may be less than 1.
Determining the norm of an atom is a difficult task.

(2) Functions in Up are continuous from the right. The limit as t→ a vanishes.
(3) The expression ‖.‖Up defines a norm on Up, and Up is closed with respect

to this norm. Moreover Up ⊂ Rrc is a subspace with ‖.‖sup ≤ ‖.‖Up .
(4) If p < q then Up ⊂ Uq and

‖u‖Uq ≤ ‖u‖Up
(5) If 1 ≤ p <∞ then for all u ∈ Up

‖u‖V p ≤ 21/p‖u‖Up
(6) Let Y be a Banach space, and let the linear operator T : Src → Y satisfy

(4.2) ‖Ta‖Y ≤ C
for every p atom. Then T has a unique extension to a bounded linear
operator from Up to Y which satisfies

(4.3) ‖Tf‖Y ≤ C‖f‖Up .
(7) Let Xi be Banach spaces, T : X1 ×X2 → X3 a bounded bilinear operator,

v ∈ Up(X1) and w ∈ Up(X2). Then T (v, w) ∈ Up(X3) and

‖T (v, w)‖Up(X3) ≤ 2‖T‖‖v‖Up(X1)‖w‖Up(X2).

(8) We consider Up([a, b)) in the same way as subspace of Up(R) as for V p.
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The following decomposition is crucial for most of the following. It is related to
Young’s generalization of the Stieltjes integral, and it deals with a crucial point in
the theory. We denote the number of points in a partition τ by #τ .

Lemma 4.11. There exists δ > 0 such that for v right continuous with ‖v‖V pw = δ
there are strict p atoms ai with

‖aj(t)‖sup ≤ 21−j and #τj ≤ 2jp

such that in the sense of uniform convergence

v =
∑

aj .

Proof. We set v0 = v, and we search for a recursive decomposition with

vj = aj + vj+1

such that

‖vj‖sup ≤ 2−j , ‖aj‖sup ≤ 2−j

and, with τj the partition related to aj

#τj ≤ 2pj .

Suppose we have constructed vi for i ≤ j and ai for i ≤ j − 1. We construct the
aj , which also defines vj+1. We choose the unique partition τ so that

sup
t
‖vj(t)‖X < 2−1−j in [a, t1), ‖vj(t1)‖X ≥ 2−1−j ,

‖vj(t)− vj(ti)‖X < 2−1−j in t ∈ [ti, ti+1)

and

‖vj(ti+1)− vj(ti)‖X ≥ 2−1−j .

We define aj as the step function adapted to the partition τj (recall Definition 4.1)

aj = (vj)τ

Then, by construction,

‖aj‖sup ≤ ‖vj‖sup ≤ 2−j ,

‖vj+1‖sup ≤ 2−1−j

and since either (tj , tj+1] contains no points of an earlier partition, in which case
we estimate the sum of these differences using the V pw norm of v, or it does, and
then we simply add the number of those terms, and iterate

#τj ≤2p‖v‖p
V pw

2jp +

j−1∑
i=0

#τi

≤2p‖v‖p
V pw

j∑
i=0

(j + 1− i)2ip

≤cp‖v‖pV pw2jp

(4.4)

We choose δ = c
−1/p
p . �

There are a number of simple interesting and useful consequences.
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Lemma 4.12. Let 1 < p < q <∞. There exists κ > 0, depending only on p and q,
such that for all v ∈ V pw,rc and M ≥ 1 there exist u ∈ Upstrict and w ∈ Uqstrict with

v = u+ w

and
κ

M
‖u‖upstrict + eM‖w‖Uqstrict ≤ ‖v‖V pw .

Observe that we may replace Upstrict by Up (since Upstrict ⊂ Up) and V pw by V p

(since V p ⊂ V pw).

Proof. Multiplying v by δ/‖v‖V pw,rc we may assume that ‖v‖V pw = δ as in Lemma

4.11 and setting ũ =
∑m
j=1 aj for some m to be chosen later we have

‖ũ‖Upstrict ≤ m.

By construction 2j(1−p/q)aj is a strict q atom and hence, with w̃ =
∑∞
j=m+1 aj ,

‖w̃‖Uqstrict ≤
∞∑

j=m+1

‖aj‖Uqstrict ≤ cp,q2
( pq−1)m.

hence, with u =
‖v‖V pw
δ ũ and w =

‖v‖V pw
δ w̃

u+ w = v

and, with δ = − ln 2(pq − 1) there exists c depending only on p and w with

1

m
‖u‖Up + eδm‖v‖Uq ≤ c‖v‖V prc

We choose m = (M + ln 2c)/δ and, for M ≥ ln 2c, κ = δ/2 to obtain the claimed
estimate. �

We obtain the following embedding

Lemma 4.13. Let 1 < p < q <∞. Then

V prc ⊂ V pw,rc ⊂ U
q
strict ⊂ U

q.

Proof. Apply Lemma 4.12 with M = 1. �

4.2. Duality and the Riemann-Stieltjes integral. The Riemann-Stieltjes in-
tegral defines ∫

fdg =

∫
fgtdt

for f ∈ R and g ∈ V 1. If f or g ∈ Src then, with the obvious partition,

(4.5)

∫
fgtdt =

∑
f(ti)(g(ti)− g(ti−1)).

This formula was the definition of the bilinear map B. We shall see that it uniquely
defines an ’integral’ for f ∈ V p and g ∈ Uq, for 1/p + 1/q = 1, q > 1. Results
become much cleaner when we use an equivalent norm in V p,

(4.6) ‖v‖V p = sup
a<t1...tn<b

n−1∑
j=1

|v(tj+1)− v(tj)|p + |v(tn)|p
1/p

which we do in the sequel. We also set v(b) = 0 and, for any partition, tn+1 = b.
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Theorem 4.14. The bilinear map B defines a unique continuous bilinear map

B : Uq(X)× V p(X∗)→ R

which satisfies (with t0 = a and u(t0) = 0)

B(u, v) =

n∑
i=1

v(ti)(u(ti)− u(ti−1))

for v ∈ V p and u ∈ Src with associated partition (t1, . . . tn) and v(ti)(.) the evalua-
tion of v(ti) ∈ X∗ on the argument in X. It satisfies

(4.7) |B(u, v)| ≤ ‖u‖Uq(X)‖v‖V p(X∗).

The map

V p(X∗) 3 v → (u→ B(u, v)) ∈ (Uq(X))∗

is a surjective isometry if 1 ≤ q <∞. Moreover

(4.8) ‖v‖V p(X∗) = sup
u∈Uq(X),‖u‖Uq(X)=1

B(u, v) = sup
a is a q−atom

B(a, v).

The same statements up to constants are true if we replace Up by Upstrict and V q

by V qw.

Proof. Let v ∈ V p. The expression

Fv(u) =

n∑
i=1

v(ti)(u(ti)− u(ti−1)) = −
n∑
i=1

(v(ti+1)− v(ti))u(ti)

is clearly defined for v ∈ V q and u ∈ Src with partition τ = (ti). The product is an
abuse of notation for the duality pairing between X and X∗ which we suppress in
the notation. The map is linear in v and u and satisfies for every atom (by Hölder’s
inequality, and using the right hand side of the equation for Fv(u))

|Fv(a)| ≤
n∑
i=1

‖v(ti+1)− v(ti)‖X∗‖a(ti)‖X

≤

(
n∑
i=1

‖v(ti+1)− v(ti)‖pX∗

)1/p( n∑
i=1

‖a(ti)‖qX

)1/q

The first factor is bounded by ‖v‖V p , and the second, by the definition of a q atom,
by 1.

Existence of a unique extension to Uq follows from this estimate and (4.3).
Linearity in v and estimate (4.7) are immediate consequences. Clearly B defines a
map from V p to the dual of Uq with norm at most 1. Let us prove that it defines
an isometry and choose v ∈ V p, ε > 0, and a partition t0 < t1 < · · · < tn with

‖v‖V p ≤

 n∑
j=1

‖v(tj+1)− v(tj)‖pX∗

1/p

+ ε.

Here we set again tn+1 = b and v(b) = 0. We choose xi ∈ X of norm 1 with

(v(ti+1)− v(ti))(xi) ≥ (1− ε)‖‖v(ti+1)− v(ti)‖X∗

and

φj := µ‖v(tj+1)− v(tj)‖p−1
X∗ xj
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where µ = ‖v‖1−pV p . Then

n∑
j=1

‖φj‖p
′

x ≤ µ−p
n∑
j=1

‖v(tj+1)− v(tj)‖pX∗ ≤ 1.

Thus the partition and the φj define an atom a, and

‖v‖V p ≥ B(a, v)− Cε.
The map is an isometry since ε is arbitrary. We turn to surjectivity. Let F ∈ (Uq)∗

and define the element v(t) ∈ X∗ by

v(t)(x) := F (xχ[t,∞)) for x ∈ X.
Let a be an atom. Then

F (a) =
∑
i

F (φiχ[ti,b))− F (φiχ[ti+1,b)) = −
∑

φi(v(ti+1)− v(ti))

=
∑

v(ti)(a(ti)− a(ti−1)) = B(a, v)

By the previous estimate

‖v‖V p ≤ ‖F‖(Uq)∗ .
Hence both sides coincide on Uq. The remaining claims are simple consequences.

�

The previous results show that Up ⊂ V prc, and both spaces are very close. They
are, however, not equal. The following example goes back to Young [32] with the
same intention, but in a slightly different context.

Lemma 4.15. Let φ be a smooth function with compact support, 1 < q <∞. Then

uq(t) = φ(x)

∞∑
j=1

2−j/q cos(2jt) ∈ V qrc

but not in Uq.

Proof. Let p be the Hölder dual exponent of q and

vNp (t) = φ

N∑
j=1

2−j/p sin(2jt).

where we allow N =∞. Then, with M = [ln2(|t− s|)], [ ] the Gauss bracket,

|vNp (t)− vNp (s)| ≤
M∑
j=1

2−j/p|φ(t) sin(2jt)− φ(s) sin(2js)|+ c1

N∑
j=M+1

2−j/p

≤c2

 M∑
j=1

2−j/p+j |t− s|+ 2−j/M


≤c3

(
2−M/p+M |t− s|+ 2−j/M

)
≤c4|t− s|

1
p

and hence, by Lemma 4.6

sup
N
‖vNp ‖V p <∞,
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and similarly uq ∈ V qrc. Now, assuming that uq ∈ Uq, with 1/p+ 1/q = 1, we claim

(4.9) ‖uq‖Up‖vNp ‖V q ≥
∣∣∣∣∫ (u∞q )′vNp dx

∣∣∣∣ = N/2

∫
φ2dx+O(1)

which is unbounded, hence a contradiction and V qrc 3 u∞q /∈ Uq. It remains to verify
(4.9). The first inequality is a consequence of the duality theorem. We expand both
factors in the integral and claim for j 6= l by stationary phase∣∣∣∣∫ φ(t)2−j/p−l/q cos(2jt)(φ(t) sin(2lt))′dt

∣∣∣∣ ≤ cM2−j |2j − 2l|−M

for every M ∈ N. Thus∑
j 6=l,l≤N

∣∣∣∣∫ ∫ φ(t)2−j/p−l/q cos(2jt)(φ(t) sin(2lt))′dt

∣∣∣∣ ≤ c ∞∑
j=1

2−j
N∑

l=1,l 6=j

2−l

which is bounded independent of N . Next∣∣∣∣∫ ∫ φ(t)2−j/p−j/q sin(2jt) cos(2jt)φ′(t))dt

∣∣∣∣ ≤ c12−j

and ∣∣∣∣∫ ∫ φ2(t)2−j/p−j/q+j cos2(2jt)dt

∣∣∣∣ =

∣∣∣∣∫ ∫ φ2(t)
1

2
(1 + cos(2j+1t))dt

∣∣∣∣
=

1

2

∫
φ2(t)dt+ c−j2 .

We expand (4.9). Only the diagonal terms contribute. This completes the proof.
�

4.3. Step functions are dense.

Lemma 4.16. For all v ∈ V p and all partitions τ we have (recall Definition 4.1)

(4.10) ‖vτ‖V p ≤ ‖v‖V p .
and for all u ∈ Up

(4.11) ‖uτ‖Up(I) ≤ ‖u‖Up(I).

For v ∈ V p and ε > 0 there is a partition τ so that

(4.12) ‖v − vτ‖V p < ε.

Given u ∈ Up and ε > 0 there exists τ with

(4.13) ‖u− uτ‖Up < ε.

In particular the step functions S are dense in V p and Src is dense in Up.

Proof. When we take the supremum over partitions for vτ we may restrict to subsets
of τ and the first statement becomes obvious. For Up it suffices to check p atoms
a,

‖aτ‖Up ≤ 1.

Density of step functions in Up follows from the atomic definition of the space: Let
u ∈ Up and ε > 0. By definition there exists a finite sum of atoms (which is a right
continuous step function ustep) such that

‖u− ustep‖Up < ε/2
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Let τ be the partition associated to ustep. Then

‖u− uτ‖Up ≤‖ustep − uτ‖Up + ‖u− ustep‖Up
<‖(ustep − u)τ‖Up + ε/2

<ε.

which is the claim for Up. Let Ṽ p be the closure of the step functions in V p.
Suppose there exists v ∈ V p with distance > 1 to Ṽ p, and ‖v‖V p < 1 + ε. Such

a function exists when Ṽ p is not V p. Let D ⊂ Uq be the subset such B(u, v) = 0

whenever u ∈ D and v ∈ Ṽ p. Since the dual space of D is naturally given by
D∗ = V p/Ṽ p, and since v defines an element in D∗ of norm > 1 there exists u ∈ D
with B(u, v) = 1, and a partition τ so that ‖u− uτ‖Up < ε. However

0 = B(u, vτ ) = B(uτ , v) = B(u, v) +B(uτ − u, v) ≥ 1− ε(1 + ε)

which is a contradiction if ε < 1
2 . Hence the step functions are dense in V p and,

given v ∈ V p and ε > 0 there is a step function vstep with ‖v − vstep‖V p < ε and
partition τ . Then

‖v − vτ‖V p ≤‖vstep − vτ‖V p + ‖v − vstep‖V p
<‖(vstep − v)τ‖V p + ε/2

<ε.

which is the density assertion. �

4.4. Convolution and regularization. Convolution by an L1 function defines a
bounded operator on Up and V p. Ruled functions are in L∞ and hence the product
of a function in Up or V p with an L1 function can be integrated. In particular the
convolution of a ruled function and an L1 function is well defined.

Lemma 4.17. Let a = −∞ and b =∞, v ∈ V p and φ ∈ L1. Then

‖v ∗ φ‖V p(X) ≤ ‖φ‖L1‖v‖V p(X)

and

‖u ∗ φ‖Up(X) ≤ ‖φ‖L1‖u‖Up(X).

Proof. Let τ be a partition. It suffices to consider φ non negative and with integral
1. Then, by convexity and Jensen’s inequality∑

|φ ∗ v(ti+1)− φ ∗ v(ti)|p ≤
∫
|φ(h)|

∑
i

|v(ti+1 + h)− v(ti + h)|pdh ≤ ‖v‖V p

The statement for Up follows by duality: We have

B(φ ∗ a, v) = B(a, φ̃ ∗ v)

with φ̃(t) = φ(−t). �

The first part of the next result it due to Hardy and Littlewood [11]. The Besov
spaces of the lemma will be explained in the proof. We include third statement for
completeness, but it will not be used later on.

Lemma 4.18. Let I = R, h > 0 and v ∈ V p. Then

(4.14) ‖v(.+ h)− v(.)‖Lp ≤ (2h)1/p‖v‖V p .
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In particular, if 1 < p <∞,

‖v‖
Ḃ

1/p,p
∞

≤ c‖v‖V p

and

‖u‖Up ≤ c‖u‖Ḃ1
p,1

Proof. Let Ij = [jh, (j + 1)h] where

|v(t+ h)− v(t)| ≤ max{ sup
[jh,(j+1)h]

v− inf
[(j+1)h,(j+2)h]

v, sup
[(j+1)h,(j+2)h]

v− inf
[jh,(j+1)h]

v}.

For ε > 0 there exist two points tj,0 ∈ Ij and tj,1 ∈ Ij+1 with

sup
t∈Ij
|v(t+ h)− v(t)| ≤ (1− ε)|v(tj+1)− v(tj)|.

For simplicity we assume that v is continuous, in which case we may choose ε = 0,
which is the only use we will make of the continuity assumption. Hence∫
|v(t+ h)− v(t)|pdx ≤h

(∑
i

|v(t2i+1,1)− v(t2i+1,0)|p +
∑
i

|v(t2i,1)− v(t2i,0)|p
)

≤2h‖v‖pV p .

All partial sums on the right hand side are bounded by 2h‖v‖pV p and hence the
same is true for the sum. There are many equivalent norms on the homogeneous
Besov space, one of them being

‖v‖
Ḃ

1/p
p,∞

= sup
h>0

h−1/p‖v(.+ h)− v‖Lp

and the bound follows from the estimate for the difference. The last statement
follows by duality: The bilinear map

Ḃ
1
p
p,∞ × Ḃ

1− 1
p

p
p−1 ,1

3 (f, g)→
∫
fdg

defines an isomorphism Ḃ
1
p
p,∞ → (Ḃ

1− 1
p

p
p−1 ,1

)∗. Here for 0 < s < 1 and 1 ≤ q <∞

‖v‖Ḃsp,q =

(∫ ∞
0

(h−1‖v(.+ h)− v‖Lp)q
dh

h

)1/q

.

See Triebel [30] for the theory of these spaces. �

Let φ ∈ C∞0 with
∫
φ = 0. Then it is an immediate consequence that

‖v ∗ φ‖Lp =‖
∫

(v(t+ h)− v(t))φ(h)dh‖Lp

≤ sup
h
h−1/p‖v(t+ h)− v(t)‖Lp

∫
h1/p|φ(h)|dh

≤ c‖v‖V p

(4.15)
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and, by duality, for φ ∈ C∞0 ,

‖u ∗ φ‖Up ≤ sup
‖v‖V q≤1

B(φ ∗ u, v)

= sup
‖v‖V q≤1

∫
φ′ ∗ uvdt

= sup
‖v‖V q≤1

∫
uφ̃′vdt

≤ sup
‖v‖V q≤1

‖u‖Lp‖φ′ ∗ v‖Lq

≤C‖u‖Lp

(4.16)

Clearly C∞0 ⊂ V 1
rc. Let Ṽ p ⊂ V p be the closed subspace of functions with

f(t) = 1
2 (limh→0(f(t + h) + f(t − h))). We consider functions on R. If v ∈ V p is

continuous then
B(φh ∗ a, v)→ B(a, v) as h→ 0

for all atoms a. Here φ ∈ L1 with
∫
φdx = 1 and φh(x) = h−1φ(x/h). If moreover

φ is symmetric then
φh ∗ v → v

pointwise for all v ∈ Ṽ p and B(φh ∗ u, v) = B(u, φh ∗ v) for all u ∈ Uq and v ∈ V p.
Lemma 4.19. We have

B(φh ∗ u, v)→ B(u, v)

for u ∈ Up(R) and v ∈ V q ∩ C and

φh ∗ v → v

in the weak ∗ topology for v ∈ Ṽ p(R) for 1 ≤ p <∞.

Proof. Only the last statement needs a proof. By definition and the pointwise
convergence B(u, φh ∗ v)→ B(u, v) for all u ∈ Rrc. This implies weak star conver-
gence. �

4.5. More duality. The space Uq ∩ C(X) is a closed subspace of Uq.

Lemma 4.20. The bilinear map B defines a surjective isometry

Ṽ p(X∗)rc → (Uq ∩ C(X))∗,
1

p
+

1

q
= 1, 1 < p, q <∞.

Proof. The kernel of the duality map composed with the inclusion (Up ∩ C) ⊂ Up

consists exactly of those elements of V q which are nonzero at most at countably
many points. We claim that the duality map is an isometry. Let v ∈ Ṽ p, and let a
be an atom so that

‖v‖V p ≤ (1 + ε)B(a, v)

If φh is a symmetric mollifier then, if h is sufficiently small

B(a, φh ∗ v) = B(φh ∗ a, v)

which shows that the duality map is an isometry.
It remains to prove surjectivity. Let L : Up∩C(X)→ R be linear and continuous.

By the theorem of Hahn-Banach there is a extension with the same norm to Up,
and by duality there is v ∈ V q with ‖v‖V q = ‖L‖ and L(u) = B(u, v) for all u ∈ Up.
Changing v at a countable set does not change the image in (Up ∩ C(X))∗, hence
we may choose v ∈ V prc. �
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In the sequel we identify u(a) resp. u(b) with the limit from the right resp. the
left.

Lemma 4.21. Let u ∈ Uq and v ∈ Up, 1/p+ 1/q = 1 and let (tj)j→1 be the points
where both v and u have jumps, and denote the size of the jumps by ∆u(tj). Then

(4.17) B(u, v) +B(v, u) =
∑
j

∆u(tj)∆v(tj) + u(b)v(b)

Proof. The right hand side of (4.17) is continuous with respect to u ∈ V q and
v ∈ V p, with the jump understood as the difference between the limit from the
right and the left - the sum over the jumps to the power p is bounded by the V p

norm. The left hand side is continuous with respect to u ∈ Uq and v ∈ V p, and
it suffices to verify the formula for u, v ∈ Src with joint partition (where we add
t0 = a) a = t0 < t1 . . . tN < b. Then the statement follows from Lemma 4.2. �

Lemma 4.22. Test functions C∞0 are weak* dense in V p.

Proof. Step functions are dense in V p, and it suffices to verify that step functions
can be approximated by C∞0 functions in the weak∗ sense. Moreover it suffices
to consider test functions with a partition consisting of a single point, which we
choose to be 0. Hence we reduce the problem to a proof for three functions. We
fix φ ∈ C∞0 (R), identically 1 in [−1, 1], and η ∈ C∞(R) supported in (0,∞) and
identically 1 for t ≥ 1. Then for u ∈ Src checking the definition shows

B(u, φ(t/j))→ B(u, 1)

and with v(t) = 0 for t 6= 0 and v(0) = 1

B(u, φ(jt)→ B(u, v)

and, with v(t) = 0 for t ≤ 0 and 1 for t > 0

B(u, φ(t/j)η(jt))→ B(u, v)

with j →∞. �

We define

(4.18) V qC = {v ∈ V q ∩ C, v(b) = 0}.

Lemma 4.23. The map

Up(X∗)→ (V qC(X))∗,

u→ (v → B(u, v))

is a surjective isometry.

Proof. By the duality estimates the duality map is defined, and it is an isometry
since the space V qC is weak star dense in V q. Let L : V qC → R by linear and
continuous. By Hahn Banach L can be extended to continuous linear form on
L̃ ∈ (V q)∗. Since Uq ⊂ V qrc by an abuse of notation L ∈ (Uq)∗ and there exists
ũ ∈ V p such that

B(w,−ũ) = L̃(w)

for all w ∈ Uq. We define (with t± the limit from the left resp. the right)

u(t) = ũ(t+)− ũ(a).
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Then u ∈ ∩p̃>pU p̃ and by Lemma 4.21 below, for all v ∈ V pC ,

L(v) =L(v − v(a)) + v(a)L(1)

=B(v − v(a), ũ) + v(a) lim
t→a

L(χ(t,b))

=B(v − v(a), u)− (v(b−)− v(a))ũ(a) + v(a)ũ(a)

=B(u, v − v(a)) + (ũ(b)− ũ(a))v(a)

=B(u, v)

where we used that v(b) = 0 and that v is continuous.
For every partition we have uτ ∈ Up, with

‖uτ‖Up ≤ sup
v∈V pC ,‖v‖V p≤1

B(v, uτ ) = sup
‖vτ‖V p=1

L(vτ )

Since u ∈ V prc there is a sequence of partitions τi so that uτi → u ∈ V p and hence
the sequence converges uniformly. Thus for every step function v

B(uτi , v)→ B(u, v).

Since step functions are dense in V q even

B(uτi , v) = B(u, vτi)→ B(u, v)

For all v ∈ V q. Let Up∗∗ be the bidual space of Up , which we consider as isometric
closed subspace of X∗∗. By an abuse of notation we consider u as element of Up∗∗.
Then

B(uτi , v)→ u(v)

for all v ∈ V q and the distance between u and Up in Up∗∗ is zero, and hence
u ∈ Up. �

Corollary 4.24. We have

‖u‖Up(X) = sup{B(u, v) : v ∈ C∞0 (X), ‖v‖V q(X∗) = 1}.
and

‖v‖V prc(X) = sup{B(u, v) : u ∈ C∞0 , ‖u‖Uq(X∗)} = 1}.

Proof. Clearly C∞0 is weak dense in V p(X∗). This implies the first statement.
Given ε > 0 there exists a q atom in Uq(X∗) with

B(a, v) ≥ ‖v‖V p − ε
Since

B(xχ[t,b), v)→ 0

as t → a we may assume that a(b) = 0. A standard regularization implies the full
statement. �

4.6. Consequences of Minkowski’s inequality. For a Banach space Y we de-
note by Lp(Y ) the weakly measurable maps with values in Y ; for which the norm
is p integrable.

Lemma 4.25. We have for 1 < p ≤ q <∞
(4.19) ‖u‖Lqx(Up) ≤ ‖u‖Up(Lqx)

and

(4.20) ‖v‖V p(Lqx) ≤ ‖v‖Lqx(V p).
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Proof. It suffices to verify the first inequality for a p atom

a(t, x) =
∑

χ[ti,ti+1)(t)Φi(x)

with values in Lq. This is a function of x and t. Then t→ ax(t) is a step function.
Let

f(x) =

(∑
i

|Φi(x)|p
)1/p

Then

‖a‖Lqx(Up) =

(∫
f(x)qdx

)1/q

=

∫
∑

j

|Φj(x)|p
q/p


1/q

≤

∑
j

‖Φj‖pLq

1/p

≤1

where we use Minkowski’s inequality for the first inequality. The argument for the
V p space is similar. �

The argument works the same way if we consider Banach space valued functions
in UpLq etc.

4.7. The bilinear form as integral. Here we consider scalar valued functions.

Definition 4.26. Let v ∈ V p(a, c) and u ∈ Uq(a, c). We define for a ≤ s < t ≤ b

(4.21)

∫ t

s

vdu := B(s,t)(u− u(s), v) + (u(t)− u(t−))v(t)

and

∫ t

s

udv :=−
∫ t

s

vdu+
∑
j

(u(tj)− u(tj−))(v(tj)− v(tj−))

+ u(t−)v(t−)− u(s)v(s+) + u(t)(v(t+)− v(t−)) + v(t)(u(t)− u(t−))

(4.22)

with the sum over all joined jumps in (s, t).

The second definition is partly motivated by

(1) The integration by parts formula (4.17). It should reduce to integration by
parts if v ∈ Uq, and if there are no jumps at t

(2) The desire to have a certain symmetry with time reversion if v is continuous
the left and u is continuous from the right.

(3) We want the integral to be additive in the interval.

Lemma 4.27. For u ∈ Uq and v ∈ V p, 1/p+ 1/q = 1 we have∫ c

a

vdu =

∫ b

a

vdu+

∫ c

b

vdu
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and ∫ c

a

udv =

∫ b

a

udv +

∫ c

b

udv.

With the obvious notation,

(4.23)
∥∥∥∫ t

a

udv
∥∥∥
V p
≤ ‖u‖Uq‖v‖V p

and

(4.24)
∥∥∥∫ t

a

vdu
∥∥∥
Uq
≤ ‖u‖Uq‖v‖V p .

Proof. It suffices to check the first formula for atoms u. Suppose that tj < b ≤ tj+1.
On both sides we have a sum over

v(tj+1)(u(tj+1)− u(tj)).

For the second formula we see from the definition∫ c

a

udv =

∫ b

a

udv +

∫ c

b

udv

where we have to check the contribution at t = b.
Formally, for smooth functions

B(

∫ t

a

vdu,w) =

∫ b

a

w(t)v(t)u′(t)dt

=B(u, vw)

≤‖vw‖V q‖u‖Up
≤2|v‖V q‖w‖V q‖u‖Up

(4.25)

which formally implies (4.24).
For a rigorous proof we verify the formula in the case when u is a atom, and v

and w are step function with a common partition all functions. Then
∫ t
a
vdu is a

right continuous step function and∑
j

(v(tj)(u(tj)− u(tj−1))w(tj) =
∑
j

[v(tj+1)w(tj+1)− v(tj)w(tj)]u(tj)

where we neglect the boundary terms. We apply Hölder’s inequality to bound the
expression by(∑

|v(tj+1)w(tj+1)− v(tj)w(tj)|q
)1/q (∑

|u(tj)|p
)1/p

.

Again formally for smooth functions

B(w,

∫ t

a

udv) =−
∫ b

a

vwu′dt+ (w(b)− w(a))

∫ b

a

uv′dt

=

∫ b

a

v(uw)′dt− (w(b)− w(a))

∫ b

a

vu′dt

− u(b)v(b)w(b) + u(a)v(a)w(a)

+ (w(b)− w(a))(u(b)v(b)− u(a)v(a))

=B(uw, v)− (w(b)− w(a))B(v, u)

(4.26)
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if u(a) = w(a) = 0. This implies formally (4.24). For a rigorous proof we apply
integration by parts several times. First∫ t+

t−
udv =(u(t)− u(t−))(v(t)− v(t−)) + u(t)v(t+)− u(t−)v(t−)

− v(t)(u(t)− u(t−))

=u(t)(v(t+)− v(t−))

and ∫ t+

t

udv = u(t)(v(t+)− v(t))

and hence lp sum over the jumps is bounded. Thus the bound reduces to the bound
for

B(w,

∫ t

a

vdu)

and by the same token to

B(

∫ t

a

vdu,w)

which we have proven above. �

Sometimes it is convenient to have a notation for spaces of derivatives of functions
in Up resp. V p.

Definition 4.28. We define dUp as the space of all distributions f for which there
exists an antiderivative in Up, equipped with the norm in Up. Similarly, let dV p be
the space of all distributions which have an antiderivative in Ṽ prc, equipped with the
obvious norm.

4.8. Differential equations with rough paths. This type of study was initiated
by Lyons [21]. We will only scratch on the surface. We observe that the duality
mapping extends the Young integral.

We consider the differential equation

ẏ = F (y, x)ẋ, y(0) = y0

where x ∈ U2 and F is a bounded Lipschitz function continuously Frechet differ-
entiable with respect to y, and dyF is uniformly Lipschitz continuous. We denote
by an abuse of notation the bound for F by ‖F‖sup, the Lipschitz bound with
respect to y by ‖DY F‖sup, and the homogeneous Hölder bound with respect to y
by ‖F‖Cs(Y ).

Suppose that y is a solution, i.e

y(t) = y(a) +

∫ t

a

F (y, x)dx

Then, by (4.24)

‖y(t)− y(a)‖U2 ≤‖F (y, x)‖V 2‖x‖U2

≤(‖F‖sup + ‖DyF‖sup‖y‖V 2) + ‖DxF‖sup‖x‖V 2)‖x‖U2

(4.27)

It is trivial that there is a unique solution if x is a step function in Src - for that we
consider a finite number of differences. We shall construct a solution to the initial
value problem for ‖x‖Up small. This implies existence of a unique solution since we
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may first approximate x by a step function, and then solve the differential equation
on each of the intervals of the step function.

We want to construct a solution as fixed point of

y(t) = y0 +

∫ t

0

F (y(s), x(s))ẋds.

We claim that there is a unique solution y with y − y(a) ∈ U2 provided

‖x‖U2 < ε

with ε sufficiently small. Let

y(t) = y0 +

∫ t

0

F (ỹ(s), x(s))ẋds.

Now, by (4.27),

‖y − y(a)‖U2 ≤ (‖F‖sup + ‖DyF‖sup‖ỹ‖V 2 + ‖DxF‖sup‖x‖V 2)‖x‖U2

and we obtain a uniform bound R on the iteration provided ‖DyF‖sup‖x‖U2 ≤ 1
2 .

If ỹ1, ỹ2 ∈ U2 and yi is defined by the Young integral above we get- we consider
scalar valued functions to simplify the notation -

‖y2 − y1‖U2 ≤2‖F (ỹ2, x)− F (ỹ1, x)‖V 2‖x‖U2

≤
(
‖DyF‖sup‖ỹ2 − ỹ1‖V 2 + ‖D2

yyF‖sup‖ỹ2 − ỹ1‖sup‖ỹ2 − ỹ1‖V 2

+ ‖D2
yxF‖sup‖ỹ1 − ỹ1‖sup‖x‖U2

)
‖x‖U2

We easily construct a unique solution by a standard contraction argument provided(
‖DyF‖sup + ‖D2

yyF‖sup‖R+ ‖D2
xy‖x‖U2

)
‖x‖U2 <

1

2
.

where R is the uniform bound from above.
The modifications for Up, p < 2 are as follows. The differentiability requirements

on F are weaker: Let 1 < p < 2 and 1
p + 1

q = 1. The apriori estimate requires few

changes and we concentrate on the contraction, for which we consider

‖F (ỹ2, x)− F (ỹ1, x)‖V q ≤‖DyF‖sup‖ỹ2 − ỹ1‖V q + ‖DyF‖Cp/q (‖y2 − ỹ1‖p/qV p

+ ‖x‖p/qV p )‖ỹ2 − ỹ1‖sup.

We recall that p− 1 = p/q. We obtain the contraction as above.

Theorem 4.29. Let 1 < p ≤ 2, F : X × Y → Y be bounded, uniformly Lips-
chitz continuous, Frechet differentiable with respect to X and Y , and dF is Hölder
continuous with respect to y with Hölder exponent p− 1. We study

dy = F (x, y)dx, y(a) = y0

Then there exists a unique solution y ∈ Up(Y ) if x ∈ Up if 1 ≤ p ≤ 2 and y ∈ V p
if x ∈ V p and dF is Hölder continuous with exponent s > p− 1.
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4.9. The Brownian motion. The Brownian motion is almost surely in V p for
p > 2. We denote by Bt(ω) the path of the Brownian motion as a function of t
and the element of the probability space ω. If the Brownian motion would be in
U2 with positive probability we could solve stochastic differential equations in a
pointwise sense. The 2-variation however is almost certainly infinite.

The regularity of the Brownian motion is characterized by the following fairly
sharp result of Taylor [29] , see also [7].

Theorem 4.30. Let

ψ2,1(h) =

{
h2 for h ≥ e−e
h2

ln ln(1/h) if h < e−e

There exists η > 0 so that

E(exp(
η

T
‖B‖2ψ2,1;[0,T ]) <∞

where

‖B‖ψ2,1;[0,T ] = inf{M > 0 : sup
τ

∑
ψ2,1(|Bti+1

−Bti |/M) ≤ 1}.

Moreover, if
h2

ψ(h) ln ln(1/h)
→ 0 as h→ 0

then

sup
τT

∑
ψ(|Bti+1

−Bti |) =∞.

See Theorem 13.15 and Theorem 13.69 in [7]. This result deviates from the V p

spaces by an iterated logarithm.
Let (Ω, µ) be a probability space with a filtration µt, t ∈ R, f ∈ Lp and ft =

E(f, µt). Then

(4.28) ‖ft‖Lp(Ω,V 2
w) ≤ cp‖f‖Lp

is a consequence of Doob’s oscillation lemma for martingals [23], see also Bour-
gain’s proof of p-variation estimate [2]. A weaker version is due to Lepingle [19].

For the Brownian motion Bt we obtain

Theorem 4.31.

‖Bt‖Lp(Ω,V 2
w([0,1))) ≤ cp.

This has been a motivation to introduce V pw .

4.10. Adapted function spaces. Given distribution T want to construct an ele-
ment in Up or V p which has T as derivative. This is the done in the next lemma.
Again 1

p + 1
q = 1.

Lemma 4.32. Suppose that T is a distribution supported in [0,∞) so that

sup{T (φ) : φ ∈ C∞0 , ‖v‖Uq ≤ 1} = C1 <∞

then there exists a unique v ∈ V prc with

T (φ) = B(v, φ),

C1 ≤ ‖v‖V p ≤ 2C1
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and vt = T in the sense of distributions. Suppose that T is a distribution supported
in [0,∞) so that

sup{T (φ) : φ ∈ C∞0 , ‖v‖V q ≤ 1} = C1 <∞
then there exists a unique u ∈ Up with

T (φ) = B(u, φ),

‖u‖Up = C1

and ut = T in the sense of distributions.

Proof. There exists a unique distribution V supported in [0,∞) with ∂tV = T
which is defined as follows. We fix a function η ∈ C∞ supported in [−2,∞) and
identically 1 in [−1,∞). Then

V (φ) := T (η

∫ ∞
t

φ)

which does not depend on the choice of η. Then

V (∂tφ) = T (ηφ) = T (φ)

by definition. The difference of two such distributions has zero derivative, hence it
is constant, and by the assumption on the support it is unique.

Next we choose a function ψ ∈ C∞0 (R) supported in (−1, 1) with
∫
ψdx = 1 and

define for h > 0 and s ∈ R

φ(t) = η(t)h−1

∫ ∞
t

ψ((t− s)/h)dt.

Then by the support property,

V (h−1ψ((t− s)/h)) = −V (∂tφ) = T (φ)

and, since, for suitably choosen ψ

‖φ‖Uq ≤ 1

and hence

|V (h−1ψ((t− s)/h)| ≤ C,
which implies

sup
t
|V ∗ h−1ψ(./h)| ≤ C

and thus there exists a bounded and measurable function v with

V (φ) =

∫
vφdt

and moreover v is supported in [t0,∞). At Lebesgue points

|V (h−1ψ((t− s)/h))| = h−1

∫
v(t)ψ((t− s)/h)dt→ v(s)

as h → 0. Similarly, if τ is partition for which all points are Lebesgue points, and
arguing as for duality we see that(∑

|v(tj)− v(tj−1)|p
) 1
p ≤ C

In particular left and right limits at t ∈ R exist if we restrict the approach to
Lebesgue points. Hence we may assume that v is a right continuous ruled function,
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supported in [t0,∞). But then the very same argument shows (since we have to
include the supremum in the norm) that

‖v‖V prc ≤ 2C.

By construction the weak derivative of v is T . We conclude that T defines an
element of (Uq)∗ which is represented by same function which has to coincide with
v. This completes the argument in this case.

In the second part we construct the function u as above. Then

T (φ) = −
∫
u∂tφ = −B(φ, u) = B(u, φ).

In particular, for every partition, since C∞0 is weak star dense,

‖uτ‖Up ≤ C
We conclude as for the duality that

‖u‖Up ≤ C.
�

we observe that there are not more than obvious changes if we consider Hilbert
spaces valued functions, and if we replace the product by the inner product.

We briefly survey constructions going back to Bourgain, which have become
standard. The following situation will be of particular interest. Let t → S(t) be a
continuous unitary group on a Hilbert space H. We define UpS and V pS by

‖v‖V pS (H) = ‖S(−t)v(t)‖V p(H),

or, to put it differently, we say that u ∈ V pS if and only if S(−t)v ∈ V p. Similarly we
define UpS . Alternatively we could define UpS by UpS atoms. Such an atom is given
by a partition t1 < t2ṫn and n elements φj ∈ H, with

∑
‖φj‖p ≤ 1, and a(t) = 0

if t < t1, and a(t) = S(t − tj)φj if tj ≤ t < tj+1, with the obvious modification if
t ≥ tn.

By Stone’s theorem unitary groups are in one-one correspondence with self-
adjoint operators, in the sense that

i∂tu = AU

with a self adjoint operator defines unitary group S(t) and vice versa. At least
formally

i∂t(S(−t)u(t)) = S(−t)(i∂tu−Au)

and hence the duality assertion is

‖u‖UqS = sup
‖v‖V p

S
≤1

B(S(−t)u(t), S(−t)v(t)).

Now suppose that - again formally -

i∂tu+Au = f

then, if we choose by Duhamel’s formula the solution

u(t) =

∫ t

−∞
S(t− s)f(s)ds.

A related construction goes back to Bourgain. He defines

(4.29) ‖u‖X0,b
S

= ‖S(−t)u(t)‖HbL2
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where the Sobolev space Hb is defined by the Fourier transform,

‖f‖Hb = ‖(1 + |τ |2)b/2f̂‖L2

Clearly

X0,b
S ⊂ X0,b′

S

whenever b ≥ b′. We may use a Besov refinement of the right hand side of (4.29),
i.e.

‖u‖Ẋs,b,q =

(∑
N∈2Z

Nsq‖uN‖qHb(L2)

)1/q

where we choose a disjoint partition AN = {(τ, ξ) : 2N ≤ |τ + φ(ξ)| ≤ 21+N} and
define uN by the Fourier multiplication by the characteristic function of AN .

Then

Ẋ
0, 12 ,1

S ⊂ U2
S ⊂ V 2

S,rc ⊂ Ẋ0, 12 ,∞

follows from Lemma 4.18.
There is an obvious generalization to the case of time dependent operators A(t).

Definitions are simple, but this often leads to technical questions.
Now

Ft,x(S(−t)u)(τ, ξ) = Fte−itφ(ξ)û(t, ξ) = Ft,xu(τ − tφ(ξ), ξ)

and hence by the formula of Plancherel and a translation in τ variable

‖u‖X0,b = ‖(1 + τ2)b/2Ft,x(u)(τ − tφ(ξ), ξ)‖L2 = ‖(1 + (τ + φ(ξ))2)b/2Ft,x(u)‖L2 .

4.10.1. Strichartz estimates. We want to use this construction for dispersive equa-
tions. There A is often defined by a Fourier multiplier, most often even by a partial
differential operator with constant coefficients.

We consider the Schrödinger equation

i∂tu+ ∆u = 0 in [0,∞)

u(0) = u0 on Rd

Let u(t) = 0 for t < 0 and the solution otherwise. Then

‖u‖U1
S

= ‖u0‖L2(Rd).

One of the Strichartz estimates states

(4.30) ‖u‖LptLqx ≤ ‖u0‖L2

whenever
2

p
+
d

q
=
d

2
, 2 ≤ p, q, (p, q, d) 6= (2,∞, 2).

We claim that this implies
‖u‖LptLqx ≤ c‖u‖Up .

It suffices to verify this if S(−t)u is an atom with partition (t1, t2 . . . tn). Then,
with tn+1 =∞, by the Strichartz estimate

‖u‖Lpt (tj ,tj+1);Lqx) ≤ c‖u(tj)‖L2 .

We raise this to the pth power, and add over j. Then

‖u‖LpLq ≤ c
(∑

‖u(tj)‖pL2

)1/p

≤ c

since S(−t)u is a p atom.
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Consider v(t) =
∫ t
−∞ S(t− s)f(s)ds and let τ = (tj) be a partition. Then

v(tj)− S(tj − tj−1)v(tj−1) =

∫ tj

tj−1

S(tj − t)f(t)dt

and by the Strichartz estimate

‖S(−tj)v(tj)− S(−tj−1)v(tj−1)‖L2 ≤ c‖f‖
Lp
′
t L

q′
x

and
t→ S(−t)v(t)

is continuous.
We take the power p′ and sum over j to reach the conclusion

‖v‖
V p
′

S

≤ c‖f‖Lp′Lq′

This implies the dual estimate to (4.30). If p > 2 we may combine the estimates
with an embedding to obtain the full Strichartz estimate. In particular we arrive
at the non symmetric improvement for the Strichartz estimate

‖u‖L∞(L2) + ‖u‖Lq0,p0 ≤ c
(
‖u0‖L2 + ‖f‖

Lq
′
1p
′
1

)
if both (q1, p1) and (q0, p0) are Strichartz pairs, but not necessarily the same ones.

We prove this estimate over the interval (0,∞) and extend u by 0 to negative t.
Then

‖u‖L∞(L2) + ‖u‖Lp0,q0 ≤ c‖u‖Up0 ≤ c‖u‖
V p
′
1
≤ c‖u0‖L2 + ‖f‖

Lp
′
1,q
′
1
.

Lemma 4.33. The following estimates hold for Strichartz pairs

‖u‖Lp,q ≤ c‖u‖Up
and ∥∥∥∥S(t)u0 +

∫ t

0

S(t− s)f(s)ds

∥∥∥∥
V p′
≤ c(‖u0‖L2 + ‖f‖Lp′,q′ ).

4.10.2. Estimates by duality. We return to duality questions and calculate formally

‖u‖UqS = sup
‖v‖V p

S
≤1

|B(S(−t)u(t), S(−t)v(t))|

= sup
‖v‖V p

S
≤1

∣∣∣∣∫
R
〈∂tS(−t)u(t), S(−t)v(t)〉dt

∣∣∣∣
= sup
‖v‖V p

S
≤1

|−i〈S(−t)(i∂tu−Au), S(−t)v〉dt|

= sup
‖v‖V p

S
≤1

∫
R
〈f, v〉dt

(4.31)

with a similar statement for V pS . This observation will be crucial for nonlinear
dispersive equations.

Lemma 4.34. Let φ ∈ C∞(Rd) be a real polynomial and let S be the unitary group
defined by the Fourier multiplier eitφ(ξ). Let 1 < p, q <∞ and 1

p + 1
q = 1. Let T be

a tempered distribution in (a, b)× Rd which satisfies

sup{|T (ū)| : u ∈ C∞0 ((a, b)× Rd), ‖u‖UpS ≤ 1} = C1 <∞
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Then there is a unique v ∈ V qS,rc(a, b) with

T (u) =

∫
viut + φ(D)udxdt

and ‖v‖V q = C1. Let T be a distribution in space time which satisfies

sup{|T (v̄)| : v ∈ C∞0 (R× Rd), ‖v‖V pS } = C2 <∞

Then there is a unique u ∈ UqS with

T (v̄) =

∫
uivt + φ(D)vdxdt

and ‖u‖Uq = C2.

Proof. Fourier multiplication commutes with the evolution. We convolve T with
the inverse Fourier transform of a non-negative function with compact support. To
this we apply Lemma 4.22. But this gives the full statement. �

The theorem implies existence of a weak solution to

i∂tu+ φ(D)u = f, u(a) = 0,

together with an estimate for u.

4.10.3. High modulation estimates. We denote by f(D) the Fourier multiplier de-
fined by a function f . Let

f = 1− χ(τ/Λ)

where τ is the Fourier variable corresponding to t and χ is an approximate char-
acteristic function, i.e. χ is supported on a ball of radius 2, and identically 1 on a
ball of radius 1.

Lemma 4.35. The following estimate holds.

‖f(D)v‖L2 ≤ cΛ−1/2‖v‖V 2

Suppose the group S(t) is defined by the Fourier multiplier eitφ(ξ) then, with

f(D) = 1− χ(τ + φ(ξ))

‖f(D)u‖L2 ≤ cΛ−1/2‖v‖V 2
S

Proof. We have
Ft(e−itφ(ξ)û(t, ξ)) = Fx,tu(τ − φ(ξ), ξ)

and the second claim follows from the first one. Let

g = F−1χ(ξ/Λ).

Then
g(t) = Λ−1(F−1χ)(Λξ)

and∥∥∥∥∫ (v(t+ h)− v(t))g(h)dh

∥∥∥∥
L2

≤ sup
h
|h|−1/2‖v(t+ h)− v(t)‖L2

∫
|h|1/2Λ−1/2|F−1χ(hΛ)|dh

≤c‖u‖V 2Λ−1/2

∫
|h|1/2|F−1χ|dh.

�
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5. Convolution of measures on hyper surfaces, bilinear estimates
and local smoothing

The contents of this section developed in discussions with S. Herr, T. Schottdorf
and J. Li. The bilinear estimates for the Kadomtsev-Petviashvili equation have
been influenced by the careful work of M. Hadac. Bilinear estimates are standard
tools in dispersive equations. Here we attempt to streamline arguments and sharpen
the results. In particular the bilinear estimates for the KP-II seem to be new.

The transformation formula for a diffeomorphism φ : U → V U, V ⊂ Rd, states∫
V

fdmd =

∫
U

f ◦ φ|detDφ|dmd.

Its relative, the area formula for n ≥ d,

φ : U → S ⊂ Rn,

φ continuously differentiable and injective reads as∫
S

fdHd =

∫
U

f ◦ φ(detDφTDφ)1/2dmd.

where Hd denotes the Hausdorff measure. The coarea formula deals with the op-
posite situation d ≥ n and

φ : U → V ⊂ Rn

surjective. It states for f : U → R measurable∫
V

∫
φ−1(y)

fdHd−ndmn(y) =

∫
U

f det(DφDφT )1/2dmd.

Often it is useful to write it in the form

(5.1)

∫
V

∫
φ−1(y)

det(Dφ(x)DφT (x))−1/2f(x)dHd−n(x)dmn(y) =

∫
U

fdmd.

The Fourier transform transforms a product into a convolution, and vice verse.
Let Σ1 and Σ2 be two d − 1 dimensional hyper surfaces in Rd such that for all
xi ∈ Σi the tangent spaces of Σi at xi are transversal, for i = 1, 2.

Let Σ1 and Σ2 be non degenerate level sets of functions φ1 and φ2. Let h be a
continuous function. Then, by the coarea formula∫

Rd
f(x)h ◦ φ1(x)dmd(x) =

∫
R
h(s)

∫
φ−1

1 (s)

f(x)|∇φ1|−1(x)dHd−1(x)ds.

This motivates the notation

δφ = |∇φ|−1dHd−1
∣∣∣
φ=0

.

We study the convolution of two measures supported on the hyper surfaces Σ1

and Σ2.

Theorem 5.1. Let Σi ⊂ Rd hyper surfaces and φi as above, and fi square integrable
functions on Σi with respect to δφi . Then

‖f1δφ1
∗ f2δφ2

‖L2(Rd) ≤ L‖f1|∇φ1|−1/2‖L2(Σ1)‖f2|∇φ2|−1/2‖L2(Σ2)

where with Σ(x, y) = {y + Γ1} ∩ {x+ Γ2}
L = sup

x∈Σ1,y∈Σ2

L(x, y),
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and where L(x, y) is the square root of∫
Σ(x,y)

[
|∇φ1(z − y)|2|∇φ2(z − x)|2 − 〈∇φ1(z − x),∇φ2(z − y)〉2

]−1/2
dHd−2.

Proof. Let fi be measurable functions in a neighborhood of Σi, let h be continuous
and non negative, and gi = h ◦ φi. Then, by Cauchy Schwartz and Fubini,

‖f1g1 ∗ f2g2‖2L2

=

∫
Rd

(∫
Rd
f1(x)g

1
2
1 (x)g

1
2
2 (z − x)f2(z − x)g

1
2
1 (x)g

1
2
2 (z − x)dmd(x)

)2

dmd(z)

≤
∫
Rd

∫
Rd

|f1(x)|2g1(x)g2(z − x)dmd(x)

∫
Rd

|f2(y)|2g2(y)g1(z − y)dmd(y)dmd(z)

=

∫
R2d

|f1(x)|2g1(x)|f2(y)|2g2(y)

∫
g2(z − x)g1(z − y)dmd(z)dm2d(x, y).

By the coarea formula∫
g2(z − x)g1(z − y)dmd =

∫
R2

h(s)h(t)I(s, t)dsdt

where, with

Σs,t = {z : φ1(y + z) = s, φ2(x+ z) = t}

and

ρ(s, t, z) =
∣∣|∇φ1(z − y)|2|∇φ2(z − x)|2 − (∇φ1(z − y) · ∇φ2(z − x))2

∣∣−1/2

I(s, t) =

∫
Σs,t

ρ(s, t, z)dHd−2(z).

Here we suppress the dependence on x and y, but we set

γ(x, y) = I(0, 0).

Again by the coarea formula∫
Rd
|f1(x)|2g1(x)dmd(x) =

∫
R
h(s)

∫
φ−1

1 (s)

|f1(x)|2 |∇φ1(x)|−1dHd−1(x)ds.

There is a similar formula for the second integral. We assume that fi is continu-
ous and choose a Dirac sequence for h to obtain the estimate. The statement for
measurable functions on the surfaces follows by a standard approximation argu-
ment. �

Using the coarea formula we obtain a more explicit formula for the convolution:

f1h ◦ φ1 ∗ f2h ◦ φ2(z) =

∫
(f1h ◦ φ1)(z − y)(f2h ◦ φ2)(y)dmd(y)

=

∫
R

∫
R

h(s)h(t)

∫
Σ(s,t)

f1(z − y)f2(y)ρ(s, t, z)dHd−2(y)dsdt.
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hence

f1δφ1 ∗ f2δφ2(x) =∫
Γ1∩(x−Γ2)

∣∣|∇φ1(y)|2|∇φ2(x− y)|2 − (∇φ1(y) · ∇φ2(x− y))2
∣∣−1/2

dHd−2(y).

(5.2)

There is a trivial and useful improvement of the convolution estimate of Theorem
5.1 ∥∥∥∫

Γ1∩(z−Γ2)

γ−1/2(x, y)ρ(0, 0, z)f1(x)f2(y)dHd−2
∥∥∥
L2

≤‖f1‖L2(Σ1,δφ1
)‖f2‖L2(Σ2,δφ2

).

(5.3)

It follows from the same brief as Theorem 5.1. Here L2(Σi, δφi) denotes the space
of square integrable functions on the hyper surface with respect to the measure δφi .

We use the convolution estimate to bound products of solutions to dispersive
equations. Consider

iut − ψ(D)u = 0

where the operator ψ(D) is defined as the multiplication of the Fourier transform
by the real function ψ. The characteristic surface Σ is defined as the surface in
Rd+1 defined by the zero level set of the function

φ(τ, ξ) = τ − ψ(ξ).

Let u be the solution with initial data u0. Then

Fxu(t, ξ) = eitψ(ξ)Fxu0(ξ)

and, for any Schwartz function f ∈ S(Rd+1) with Fourier transform g, by Plancherel∫
R×Rd

ufdmd+1(t, x) =

∫
R

∫
Rd
Fxu(t, ξ)Fxf(t, ξ)dmd(ξ)dt

=

∫
R

∫
Rd
eitψ(ξ)û0(ξ)Fxf(t, ξ)dmd(ξ)dt

=

∫
Rd
û0(ξ)

∫
e−itψ(ξ)Fxf(t, ξ)dtdmd(ξ)

=
√

2π

∫
Rd
û0(ξ)g(ψ(ξ), ξ)dξ

=
√

2π

∫
τ=ψ(ξ)

|∇τ,ξφ(τ, ξ)|−1u0(ξ)ḡ(τ, ξ)dHd(τ, ξ)

=:
√

2π

∫
ḡ(τ, ξ)û0(ξ)δφ.

This calculation implies the following lemma.

Lemma 5.2. Let Fxu(t, x) = eitψFxu0. Then the space time Fourier transform of

u is the the measure
√

2πû0δφ.

Let ψ1 and ψ2 be real smooth functions and, as above,

φ1(τ, ξ) = τ − ψ1(ξ) resp. φ2(τ, ξ) = τ − ψ1(ξ).

The product uv of two solution of the linear equations

iut − ψ1(D)u = 0, ivt − ψ2(D)v = 0
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is the convolutions of the Fourier transforms in Lemma 5.2, which in turn can be
estimated by Theorem 5.1. We identify the terms occurring in Theorem 5.1.

The set of integration for given ξj is

M = {(τ, ξ) : τ = ψ2(ξ2) + ψ1(ξ − ξ2) = ψ1(ξ1) + ψ2(ξ − ξ1)}.
The most important case will be ψi = ψ. We express the integrand in terms of ∇ψi
using

|∇τ,ξφ1|2|∇τ,ξφ2|2 − (∇τ,ξφ1 · ∇τ,ξφ2)2

=|∇ψ1 −∇ψ2|2 + |∇ψ1|2|∇ψ2|2 − (∇ψ1 · ∇ψ2)2.
(5.4)

The first term is the square of the distance of the gradients, and the second is the
square of product of length multiplied by sin2 of the angle between them. Here we
did suppress the arguments. With them the integrand reads as[

|∇ψ1(ξ − ξ2)−∇ψ2(ξ − ξ1)|2 + |∇ψ1(ξ − ξ2)|2|∇ψ2(ξ − ξ1)|2

− (∇ψ1(ξ − ξ2) · ∇ψ2(ξ − ξ1))2
]− 1

2

.

(5.5)

The proof of bilinear estimates reduces to bounding the integral over this expression
over M .

We first consider one space dimension where the second term of (5.4) vanishes.
The set x+Σ1∩y+Σ2 consists generically of a discrete set of points and we obtain
a sum of |ψ′1(z − x) − ψ′2(z − y)|−1 over the points of the intersection. Often the
intersection consists of one point as for the Schrödinger equation or up to two points
as for the Airy equation. We consider the more general case of ψ(ξ) = ξN for an
even integer N . Then the equation

ξN1 + (ξ − ξ1)N = ξN2 + (ξ − ξ2)N

has the obvious and unique solution ξ = ξ2 + ξ1 unless ξ1 = ξ2. If N is odd there
are the exactly two solutions ξ = ξ1 + ξ2 and ξ = 0, unless ξ2 = ξ1.

At these points

|ψ′(ξ − ξ1)− ψ′(ξ − ξ2)| = |ψ′(ξ1)− ψ′(ξ2)|
and we obtain from inequality (5.3):

Theorem 5.3. With the notation introduced above∥∥∥ ∫ |N [(ξ − η)N−1 − ηN−1]|1/2eit(ξ−η)N+itηN û0(ξ − η)û1(η)dη
∥∥∥
L2(Rt×Rξ)

≤2π‖u0‖L2(R)‖u1‖L2(R)

(5.6)

if N is even and if N is odd

∥∥∥∫ |N [(ξ − η)
N−1

2 − η
N−1

2 ]|1/2eit(ξ−η)N+itηN û0(ξ − η)û1(η)dη
∥∥∥
L2(Rt×Rξ)

≤
√

2 2π‖u0‖L2(R)‖u1‖L2(R).

(5.7)

We will use this estimate often via the following corollary. Given λ ∈ (0,∞) we
define

u>λ = F−1(χ|ξ|>λû)

and similarly u<λ.
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Corollary 5.4. Let 0 < µ < λ and u(t, x) = S(t)u0(x), v(t, x) = S(t)v0(x) where
S is the unitary group defined by φ = ξN . Then

‖u<µv>λ‖L2(R2) ≤
4π[

N |λN−1 − µN−1|
] 1

2

‖u0‖L2(R)‖v0‖L2(R)

and

‖(u>λv>λ)>µ‖L2 ≤ 4π[
N |λN−1 − (λ− µ)N−1|

] 1
2

‖u0‖L2(R)‖v0‖L2(R).

There is an interesting special case of the bilinear estimate: Local smoothing
corresponds to Σ1 = {(ξN , ξ)} and Σ0 is given by τ = 0.

Theorem 5.5. Let ψ(ξ) = ξN be as above. Then

‖|NDN−1|1/2S(t)u0‖L∞x L2
t
≤ 4π2‖u0‖L2(R).

if N is odd and if N is even

‖|NDN−1|1/2S(t)u0‖L∞x L2
t
≤
√

2 4π2‖u‖L2(R).

Proof. We apply the convolution estimate with ψ1(ξ) = ξN and ψ0 = 0. The set
M is given by

τ = (ξ − ξ0)N = ξN1
which has the unique solution ξ = ξ1 − ξ0 if N is odd, and ξ = ξ0 ± ξ1 if N is even
and the integrand is

|ψ′(ξ − ξ0)|−1 = N |ξ1|1−N .
Thus, if N is odd

√
N

∫
|(|D|

N−1
2 S(t)u0)v(x)|2dxdt ≤ 2π‖u0‖2L2(R)‖v‖

2
L2(R)

and we choose v so that |v|2 is a Dirac sequence. There are not more than obvious
adaptations if N is even. �

In particular, if u satisfies the Airy equation then

(5.8) ‖∂xu‖L∞x L2
t (R) ≤ 2π‖u0‖L2

and u has locally square integrable derivatives for almost all t.

We continue with a case by case study of several linear dispersive equations in
several space dimensions. The first is the Schrödinger equation in higher space
dimension. Here the characteristic set Σ is a standard parabola. The set

{(τ1, ξ1) + Σ} ∩ (τ2, ξ2) + Σ}
is the intersection of two paraboloids, and hence a paraboloid of dimension d − 1.
It is given by the equations

τ = |ξ1|2 + |ξ − ξ1|2 = |ξ2|2 + |ξ − ξ2|2.
The first equality determines τ , which is of minor importance, and the second is

equivalent to
〈ξ, ξ2 − ξ1〉 = |ξ2|2 − |ξ1|2

resp.

(5.9) 〈ξ − (ξ2 + ξ1), ξ2 − ξ1〉 = 0
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which is a hyper plane with normal ξ2 − ξ1, if ξ2 6= ξ1. We restrict to this non
degenerate situation. This suffices for the estimate.

Let w be the closest point of the hyper plane defined by (5.9) to ξ1 resp. ξ2.
With this notation the intersection is given by

(5.10) {(τ, w+v) : τ = ξ2
1 + |w− ξ1|2 + |v|2 = ξ2

2 + |w− ξ2|2 + |v|2, 〈v, ξ2− ξ1〉 = 0}

If we integrate with respect to v we obtain by the coarea formula an integral∫
. . .
√

1 + 4|v|2dv

At ξ = w + v

∇|ξ − ξ1|2 = 2v + 2(w − ξ1)

and similarly

∇|ξ − ξ2|2 = 2v + 2(w − ξ2)

Thus the square of the difference is given by

4|ξ2 − ξ1|2

and

(|v|2 + |w − ξ1|2)(|v|2 + |w − ξ2|2)− (|v|2 + (w − ξ1)(w − ξ2))2 = |v|2|ξ2 − ξ1|2

and the integrand is

(|ξ2 − ξ1|
√

4 + 4|v|2)−1.

We will choose Σ1 to be the part of the parabola above |ξ| ≥ λ and Σ2 the part
of the parabola above the ball of radius µ.

Lemma 5.6 (Schrödinger, d dimensions). Let d ≥ 2, u(t, x) = S(t)u0, v(t) =
S(t)v0 where S denotes the Schrödinger group. Let µ ≤ 1

2λ. Then

‖u>λv<µ‖L2 ≤ cdµ
d−1

2 λ−1/2‖uλ(0)‖L2‖vµ(0)‖L2

and

‖(uv)<µ‖L2(R2) ≤ cdµ
d−2

2 ‖uλ(0)‖L2(Rd)‖vλ(0)‖L2(Rd).

Proof. In the first case |ξ2 − ξ1| ≥ λ/2, and we integrate over a ball of radius µ.
The factor from the area formula cancels the one from the integrant, hence the first
estimate. It is not difficult to determine the constant cd.

The second estimate could probably be proven with the arguments here. We
derive it from the Strichartz estimate

‖u‖
L4
tL

2d
d−1
x

≤ c‖u0‖L2(Rd).

We combine it with Bernstein’s inequality for p ≤ q

‖v<µ‖Lq ≤ cµ
d
p−

d
q ‖v<µ‖Lp .

With a smooth truncation (instead of the Fourier multiplication by a characteristic
function) we obtain for fixed t

‖(uv)<µ(t)‖L2(Rd) ≤ cµ
d−2

2 ‖uv‖
L

d
d−1
≤ cµ

d−2
2 ‖u‖

L
2d
d−1 (Rd)

‖v‖
L

2d
d−1 (Rd)

and we complete the argument by taking the L2 norm with respect to t. �
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The case of the Kadomtsev-Petviashvili-II equation is considerably more intri-
cate. We study

ut + uxxx + ∂−1
x uyy = 0.

The symbol resp. Fourier multiplier is

ψ(ξ, η) = ξ3 − η2/ξ.

Here the formal notation ∂−1
x has to be understood as Fourier multiplier. Here is it

useful to first apply Fubinis theorem for the integration over M , or more precisely
in its derivation, and to integrate first with respect to ξ.

For fixed ξ the intersection consists of at most to points η and the considerations
in one space dimensions show that the integrand for the integration with respect
to ξ is the following to the power −1/2:∣∣∂η[(ξ − ξ1)3 − (η − η1)2/(ξ − ξ1)− (ξ − ξ2)3 − (η − η2)2/(ξ − ξ2)]

∣∣
=2

∣∣∣∣η − η1

ξ − ξ1
− η − η2

ξ − ξ2

∣∣∣∣ .(5.11)

The curve of integration is described by the equations

τ = ξ3
1 −

η2
1

ξ1
+ τ − ξ3

1 + (ξ − ξ1)3 − (η − η1)2

ξ − ξ1
= ξ3

2 −
η2

2

ξ2
+ (ξ − ξ2)3 − (η − η2)2

ξ − ξ2
.

We reorganize the second identity to

ξ3
1 −

η2
1

ξ1
+

[
(ξ2 − ξ1)3 − (η2 − η1)2

ξ2 − ξ1

]
− ξ3

2 +
η2

2

ξ2
=[

(ξ − ξ2)3 − (η − η2)2

ξ − ξ2

]
+

[
(ξ2 − ξ1)3 − (η2 − η1)2

ξ2 − ξ1

]
−
[
(ξ − ξ1)3 − (η − η1)2

ξ − ξ1

]
and use the algebraic resonance relation
(5.12)

(ξ1 +ξ2)3− (η1 + η2)2

ξ1 + ξ2
−(ξ3

1−η2
1/ξ1)−(ξ3

2−η2
2/ξ2) = ξ1ξ2(ξ1 +ξ2)

3 +

∣∣∣η1

ξ1
− η2

ξ2

∣∣∣2
|ξ1 + ξ2|2


to arrive at

ω :=ξ1ξ2(ξ1 − ξ2)

3 +

∣∣∣η1

ξ1
− η2

ξ2

∣∣∣2
(ξ2 − ξ1)2


=(ξ − ξ2)(ξ − ξ1)(ξ1 − ξ2)

3 +

∣∣∣η−η1

ξ−ξ1 −
η−η2

ξ−ξ2

∣∣∣2
|ξ2 − ξ1|2


(5.13)

Here we used the elementary identities which express a high degree of symmetry∣∣∣η1

ξ1
− η2

ξ2

∣∣∣2
|ξ1 + ξ2|2

=
|ξ1η2 − ξ2η1|2

(ξ1ξ2(ξ1 + ξ2))2
=
|(ξ1 + ξ2)η2 − ξ2(η1 + η2)|2

(ξ1ξ2(ξ1 + ξ2))2
=

∣∣∣η1+η2

ξ1+ξ2
− η2

ξ2

∣∣∣2
|ξ1|2

.

The left hand side of (5.13) is the called modulation of the input. Assuming
neither ξ1 = 0 nor ξ2 = 0 nor ξ1 = ξ2 there is only a solution if ξ1ξ2 as the same
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sign as (ξ − ξ2)(ξ − ξ1). Below we neglect the question whether there is a solution
and we rewrite the identity as

(5.14)

∣∣∣∣η − η1

ξ − ξ1
− η − η2

ξ − ξ2

∣∣∣∣2 =
ξ2 − ξ1

(ξ − ξ1)(ξ − ξ2)
(ω−3(ξ−ξ1)(ξ−ξ2)(ξ2−ξ1)) = f(ξ)

which is useful to determine η as a function of ξ. The left hand side coincides with
(5.11) and allows us to determine the integrand as a function of ξ.

Algebraic manipulation allow a fairly explicite determination of the solutions to
the polynomial equation (5.13) is a polynomial equation. To shorten the notation

we write ξ̃ = ξ2 − ξ1 in the sequel. Then
(5.15)

0 = 3ξ̃2(ξ− ξ1)2(ξ− ξ2)2 +
(
(η− η1)(ξ− ξ2)− (η− η2)(ξ− ξ1)

)2
+ωξ̃(ξ− ξ1)(ξ− ξ2)

which we rewrite using in terms of

ξ̂ = ξ − 1

2
(ξ1 + ξ2)

and

η̂ =(η − η1)(ξ − ξ2)− (η − η2)(ξ − ξ1)

=η(ξ1 − ξ2) + ξ(η2 − η1) + η1ξ2 − η2ξ1.

We observe that

(5.16) f(ξ) =
η̂2

ξ̂2 − 1
4 ξ̃

2

since

(ξ − ξ1)(ξ − ξ2) = ξ̂2 −
(
ξ1 − ξ2

2

)2

we obtain

(5.17) 3ξ̃2
(
ξ̂2 − 1

4
ξ̃2
)2

+ ωξ̃
(
ξ̂2 − 1

4
ξ̃2
)

+ η̂2 = 0.

We arrive at

(5.18)
[√

3ξ̃(ξ̂2 − 1

4
ξ̃2) +

ω

2
√

3

]2
+ η̂2 =

ω2

12
.

It remains to partly undo and interpret the formulas and transformations. For
simplicity we assume ξ1 < ξ2. All solutions of the polynomial equation satisfy∣∣∣∣√3ξ̃(ξ̂2 − 1

4
ξ̃2) +

ω

2
√

3

∣∣∣∣ ≤ |ω|2
√

3
resp.

(5.19)
1

6
(ω − |ω|) ≤ (ξ2 − ξ1)(ξ − ξ1)(ξ − ξ2) ≤ 1

6
(ω + |ω|)

which we could have read from (5.13). Clearly

|ξ1 − ξ2|(ξ1 − ξ)(ξ − ξ2) ≤ 1

4
|ξ1 − ξ2|3

with equality if ρ = 0 resp. ξ = ξ1+ξ2
2 . This set always contains the points ξ = ξ1,

η = η1 and ξ = ξ2, η = η2. We list the geometric cases. For simplicity we assume
that ξ1 ≤ ξ2.
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(1) If ξ1ξ2 > 0 then (5.13) and (5.19) describes two intervals. The set is a union
of two topological circles contained in {ξ ≤ ξ1} ∪ {ξ ≥ ξ2}. The size of the
circles is given by ω.

(2) If ξ1ξ2 < 0 and

|ω| < 4

3
|ξ1 − ξ2|3

then there are again two topological circles, but this time contained in
{ξ1 ≤ ξ < ξ2+ξ1

2 } and { ξ2−ξ12 < ξ ≤ ξ2}.
(3) If ξ1ξ2 > 0 and

|ω| = 4

3
|ξ1 − ξ2|3

then the intersection is a topological 8 contained in ξ1 ≤ ξ ≤ ξ2. The center
of the figure eight is at ξ = ξ1+ξ2

2 and η = η1+η2

2 .

(4) If |ω| > 4
3 |ξ1− ξ2|

3 then the intersection is a topological sphere in ξ1 < ξ <
ξ2. In this case

f(ξ) ∼ ξ2 − ξ1
(ξ − ξ1)(ξ − ξ2)

ω

The set expressed with respect to η̂ and ξ is always symmetric with respect to
the reflection at ξ1+ξ2

2 and η̂ = 0. We choose various subsets of the characteristic
surface. Let µ ≤ λ, Σ1 = Σ ∩ {µ/2 ≤ |ξ| ≤ µ} and Σ2 = Σ ∩ {λ ≤ |ξ|}.

If µ ≤ λ/10 then we obtain only the parts of the curves with |ξ2 − ξ| ∼ µ and

η ∼ η2. In particular we stay away from ξ = ξ1+ξ2
2 . If

∣∣∣η1

ξ1
− η2

ξ2

∣∣∣ ≥ 5λ then |f | ≥ ω
µ ,

the ξ integral is over an interval of length µ and

(5.20)

∫
I

|f |− 1
2 dξ ∼ µ

3
2

√
ω
.

If µ ∼ λ and
∣∣∣η1

ξ1
− η2

ξ2

∣∣∣ ≤ 5λ we apply the L4 Strichartz estimate. In the opposite

case we argue as above.
Let

Aµ,Λ,k =
{

(ξ, η) : µ ≤ |ξ| ≤ 2µ, kµ− Λ

µ
≤ η

ξ
< kµ+

Λ

µ

}
We use the Strichartz estimate for µ ∼ λ.

Theorem 5.7. The following estimate holds with suggestive notation and, if µ ≤ λ,
(5.21)∥∥∥∥∥∥
∫ ∣∣∣(3 +

∣∣η1

ξ1
− η2

ξ2

∣∣2
|ξ1 − ξ2|2

)∣∣∣1/4û<µ(t, ξ1)v̂>λ(t, ξ2)

∥∥∥∥∥∥
L2

≤ c
(µ
λ

) 1
2 ‖vµ(0)‖L2‖uλ(0)‖L2

where the inner integral is a two dimensional integral with respect to ξ1 and η1, and
ξ2 = ξ − ξ1 resp η2 = η − η1. Similarly
(5.22)∥∥∥∥∥∥
∫ ∣∣∣(3 +

∣∣η1

ξ1
− η2

ξ2

∣∣2
|ξ1 − ξ2|2

)∣∣∣1/2ûAµ,Λ,k(t, ξ1)v̂>λ(t, ξ2)

∥∥∥∥∥∥
L2

≤ c
√

Λ

λ
‖vµ(0)‖L2‖u>λ(0)‖L2 .

Proof. The first estimate follows from the previous estimates.
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Only the second estimate remains to be shown. We prove the estimate first for
k = 0. The curve described by (5.18) lies on one side of ξ1 resp. ξ2, and hence it is
vertical there. Assuming η1 = 0 (related to k = 0) we expand equation (5.18) to

3(ξ2 − ξ1)2(ξ − ξ1)2(ξ − ξ2)2 + ω(ξ2 − ξ1)(ξ − ξ1)(ξ − ξ2)

+ η2(ξ2 − ξ1)2 − 2ηη2(ξ − ξ1)(ξ − ξ2) + η2
2(ξ − ξ1)2

We consider the situation where Λ ≤ µ
1
2ω

1
2 - in the complementary case estimate

(5.21) is stronger.
The dominant terms are the second and the third term and hence in that range

(5.23) |ξ − ξ1| ≤ C
η2

ω
.

This bounds the interval of integration in (5.20) and implies the estimates.
The bound (5.23) follows from our discussion above - which controls the global

geometry - and a continuity argument from ξ = ξ1 and η = η1:

3(ξ2−ξ1)2(ξ−ξ1)2(ξ−ξ2)2 =

(
(ξ2 − ξ1)(ξ − ξ1)(ξ − ξ2)

ω

)
ω(ξ2−ξ1)(ξ−ξ1)(ξ−ξ2)

where the bracket is small compared to the next term provided |ξ − ξ1| << µ|ω|.
Similarly

η2
2(ξ − ξ1)2 =

(
η2

2(ξ − ξ1)

ω(ξ2 − ξ1)(ξ − ξ2)

)
ω(ξ2 − ξ1)(ξ − ξ1)(ξ − ξ2)

is small by a continuity argument. The restriction k = 0 resp. η1 = 0 is possible
due to the Galilean symmetry,

(t, x, y)→ (t, x− c2t− cy, y + 2ct)

which is a symmetry of the linear and nonlinear KP − II equation, and it respects
the bilinear estimate. On the Fourier side this corresponds to

(τ, η, ξ)→ (τ − 2cη − c2ξ, η + cξ, ξ).

If we neglect τ then the lines through the origin in the (ξ, η) are mapped to such
lines, and the lines ξ = d are preserved.

The center of the figure 8 never plays a role unless µ ∼ λ and |η1

ξ1
− η2

ξ2
| ≤ λ but

then its contribution is not hard to control.
�

We conclude this section by explaining the relation to U2 spaces. Let as above
uA resp. uB be the projection on the Fourier side to sets A resp. B.

Theorem 5.8. Suppose that

‖S(t)u0,AS(t)v0,B‖L2 ≤ cA,B‖u0,A‖L2‖u0,B‖L2

Then we have we the same constant

‖uAvB‖L2 ≤ cA,B‖uA‖U2
S
‖uB‖U2

S
.

Proof. As for the Strichartz estimates the assertion reduces to the assuption and a
summation for 2 atoms. We first write the second term as a sum of atoms to obtain
the statement of the first factor is a an atom, and the second factor is in U2, and
then we expand the first factor to obtain the full statement. �
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6. Well-posedness for nonlinear dispersive equations

In this section we will study local and global well-posedness for a number of
different equations where the techniques developed so far are relevant. The first
example describes the interaction of three waves of different velocities. It is elemen-
tary and displays the role of adapted function spaces on an elementary level. The
limitations of our current understanding become obvious as well: The result should
remain true under small perturbations of the system, but I have no idea how to
approach perturbed equations.

Next we turn to generalized KdV equations and establish global well-posedness
and scattering in a large scale invariant Besov space for the quartic and the quintic

equation, and local existence for modified KdV and KdV in the spaces B
1
4
2,∞ and

B
− 3

4
2,∞ using the U2-V 2 spaces, bilinear estimates, Strichartz estimates and, for KdV,

modulation arguments. This is basically well known, but for KdV and mKdV

slightly stronger than available results in the literature. Going from H−
3
4 to B

− 3
4

2,∞
for the initial data for Korteweg de-Vries requires a new technique, which also allows
to treat low frequencies similarly to high frequencies.

Next we turn to higher dimensional non resonant derivative Schrödinger equa-
tions, following the dissertation of T. Schottdorf, and conclude with a discussion of
the two dimensional Kadomtsev-Petviashvili II equation.

6.1. Adapted function spaces approach for a model problem. To motivate
the relevance of adapted function spaces we begin with a self contained study of a
simple toy problem, where a nonstandard choice of adapted function spaces leads to
global well-posedness for small data in L2, and where I know of no other technique
which allows to prove this result. Consider the three wave interaction

ut + ux =vw

vt + vy =uw

wt =− 2uv.

(6.1)

It is easy to solve the linear equation for given initial data. We define the
evolution operator

S(t)[u0, v0, w0](x, y) = [u0(x− t, y), v0(x, y − t), w(x, y)]

and the operator adapted function space

‖[u, v, w]‖X = max
{
‖ sup

t
|u(t, x+ t, y)|‖L2(R2), ‖ sup

t
|v(t, x, y + t)|‖L2(R2),

‖ sup
t
|w(t, x, y)|‖L2(R2)

}
or, written differently with an equivalent norm,

‖[u, v, w]‖X ∼ ‖ sup
t
S(−t)[u(t, x, y), v(t, x, y), w(t, x, y)]‖L2(R2 .

Theorem 6.1. There exists ε > 0 so that, if

max{‖u0‖L2 , ‖v0‖L2 , ‖w0‖L2} ≤ 1

4

there exists a unique global solution [u, v, w] ∈ X which satisfies

‖[u, v, w]− S(t)[u0, v0, w0]‖X ≤ 2 max{‖u0‖L2 , ‖v0‖L2 , ‖w0‖L2}2.
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Proof. The assertion follows by an easy duality argument from the trilinear estimate
(6.2)∣∣∣∣∫ uvw dx dy dt

∣∣∣∣ ≤ ‖ sup
t
|u(t, x+t, y)|‖L2‖ sup

t
|v(t, x+y+t)|‖L2‖ sup

t
|w(t, x, y)|‖L2

To prove this estimate we denote

ũ(x, y) = sup
t
|u(t, x+ t, y)|, ṽ = sup

t
|v(t, x+ y + t)|, w̃(x, y) = sup

t
|w(t, x, y)|.

Then∫
|uvw|dxdydt ≤

∫
ũ(x− t, y)ṽ(x, y − t)w̃(x, y)dtdxdy ≤ ‖ũ‖L2‖ṽ‖L2‖w̃‖L2

by a multiple application of the Cauchy Schwartz inequality.
It is not difficult to set up an iteration argument to construct a global solution

for small data, which depends analytically on the initial data. �

6.2. The (generalized) KdV equation. For integers p ≥ 1 we consider the
initial value problems

(6.3) ut + uxxx + (upu)x = 0

(6.4) u(0) = u0

- the case p = 1 is the Korteweg-de-Vries equation, and p = 2 the modified
Korteweg-de-Vries equation, and

(6.5) ut + uxxx + (|u|pu)x = 0

(6.6) u(0) = u0

for positive real p.
Both equations have soliton solutions

u(x, t) = c
1
pQ(c1/2(x− ct))

with

Qp =

(
p+ 1

2

)2/p

cosh2/p(
2

p
x).

The equation is invariant with respect to scaling: λ2/pu(λx, λ3t) is a solution if u
satisfies the equation. The mass

∫
u2dx and energy

∫
1
2u

2
x− 1

p+2u
p+2 are conserved.

The energy however is not bounded from below.

The space Ḣ
1
2−

2
p ( with norm ‖u‖Ḣs = ‖|ξ|sû‖L2) is invariant with respect to

scaling and it is not hard to see that the generalized KdV equation is globally well
posed in H1 if p < 4. For p ≥ 4 one expects blow-up. This has been proven in
series of seminal papers by Martel, Merle and Martel, Merle and Raphael.

Using the Fourier transform we see that

vt + vxxx = 0 v(0, x) = v0(x)

defines a unitary group on L2. We denote

S(t)v0 = v(t)

for t ≥ 0 and v(t) = 0 otherwise and define the adapted function spaces by

‖u‖UpKdV = ‖S(−t)u(t)‖Up , ‖u‖V pKdV = ‖S(−t)u(t)‖V p .
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The Strichartz estimates are

(6.7) ‖u‖LptLqx ≤ c‖|D|
−1/pu0‖L2

for
2

p
+

1

q
=

1

2
.

We have seen they imply the embedding estimates

(6.8) ‖|D|1/pu‖LptLqx ≤ c‖u‖UpKdV
in the same range.

For λ > 0 we denote
uλ = χλ≤|ξ|≤1.01λ(D)u

the projection of the Fourier transform. Then the Strichartz embedding applied to

g(D)u, g(ξ) = |ξ|−
1
p gives

(6.9) ‖uλ‖LptLqx ≤ cλ
−1/p‖u‖UpKdV

- checking atoms one sees that Fourier multipliers act nicely on Up and V p.
The bilinear estimates for µ ≤ 9

10λ

‖S(t)u0,λS(t)v0,µ‖L2 ≤ cλ−1‖u0,λ‖L2‖v0,µ‖L2

are a direct consequence of the bilinear estimate of the last section. Hence

(6.10) ‖uλvµ‖L2 ≤ cλ−1‖uλ‖U2
KdV
‖vµ‖U2

KdV
.

After these preparations we turn to the cases p = 4 and p = 3. There is a number
of aspects which are the same for both cases, and also for many other equations.
We discuss them in detail for the case p = 4 and only sketch them at later on.

We begin with the L2 critical case

(6.11) ut + uxxx + u5
x = 0.

and choose the norm
‖u0‖Ḃ0

2,∞
= sup
λ∈1.01Z

‖u0,λ‖L2(R)

for the initial data, and, with I = [0, T ), T ∈ (0,∞],

‖u‖X = sup
λ∈1.01Z

‖uλ‖V 2
KdV (I).

We will usually suppress I in the notation.

Theorem 6.2. There exists ε > 0 such that if

‖u0‖Ḃ0
2,∞

< ε

there is a unique global weak solution u in X with

‖u− S(t)u0‖X ≤ c‖u0‖5Ḃ0
2,∞

.

We need Bernstein’s inequality for the proof. For q ≥ p

(6.12) ‖uλ‖Lq(R) ≤ λ
1
p−

1
q ‖uλ‖Lp(R).

Bernstein’s inequality is easy to prove. Scaling reduces to question to λ = 1. So
we consider u with Fourier transform supported in [−2, 2]. We choose a Schwartz
function η with η̂(ξ) = 1 for |ξ| ≤ 2. Then

η ∗ u1 = u1
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and Young’s inequality gives the bound.

Proof of Theorem 6.2. We claim that the assertion follows from the estimate

(6.13)

∫
u1u2u3u4u5vdxdt ≤ c

5∏
i=1

‖ui‖X‖v‖V 2
KdV

.

Suppose that this estimate is true. We search a solution u = S(t)u0 + w where

wt + wxxx + (S(t)u0 + w)4
x = 0

with initial values w(0) = 0, which we formulate as fixed point problem of the map
w → w̃ where

w̃t + w̃xxx = −(S(t)u0 + w)5
x.

This equation has to be understood as follows: w̃λ satisfies

w̃λ,t + w̃λ,xxx = (−(S(t)u0 + w)5
x)λ

in the sense of Lemma 4.34 with a = 0 and b = ∞. The derivative can be replace
by the multiplication by λ after the frequency localization.

By Lemma 4.34 there exists a unique such w̃λ ∈ U2
KdV with

‖w̃λ‖U2
KdV
≤ c‖S(t)u0 + w‖5X

and, for the difference for two different data

‖w̃2
λ − w̃1

λ‖U2
KdV
≤ c
(
‖S(t)u0 + w1‖X + ‖S(t)u0 + w2‖X

)4‖w2 − w1‖X .
We take the supremum with respect to λ and arrive at, denoting the map from w
to w̃ by J ,

‖J(w)‖X ≤ c(‖w‖X + ‖u0‖Ḃ0
2,∞

)5

‖J(w2)− J(w1)‖X ≤ c(‖w2‖X + ‖w1‖X + ‖u0‖Ḃ0
2,∞

)4‖w2 − w1‖X .
Thus J maps a ball of radius R to a ball of radius

c(R+ ‖u0‖Ḃ0
2,∞

)4 < R

provided

max{R3, ‖u0‖3Ḃ0
2,∞
} < 1

16c
.

Then

‖J(w2)− J(w1)‖X ≤
1

2
‖w2 − w1‖X

provided ‖wj‖X ≤ R, ‖u0‖ < c1/3

10 and R < 1
10c1/3 . We choose R = δ = 1

10c1/3 .
Then J defines a contraction on the closed ball of radius R in X. The contraction
mapping theorem implies existence of a unique fixed point, which by Lemma 4.34 is
the unique weak solution in X. The map J is a polynomial, and hence analytic. The
map J is a contraction, and this implies that its derivative is invertible. Now the
analytic implicit function theorem in Banach spaces implies an analytic dependence
on the initial data.

These arguments make little difference between most dispersive equations, some
wave equations, parabolic equations and even ordinary differential equations.

It remains to prove (6.13). We expand the terms and claim

(6.14)

∫ 6∏
i=1

ui,λidxdt ≤ cλ
−1+ 1

10
6 λ

1
2−

1
10

1 (λ3λ4λ5)−
1
6

∏
‖ui,λi‖V 2

KdV
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for λ1 ≤ λ2 ≤ λ3 ≤ λ4 ≤ λ5 ≤ λ6.
Let us check that this gives the summation. We break the sum up depending

on the relative size of λ compared to λi. We begin with the case λ = λ6. Then
necessarily λ6 ∼ λ5 otherwise the frequencies cannot add up to 0, and it remains
to sum - taking account that the derivative contributes a factor λ -∑

λ1≤λ2≤λ3≤λ4≤λ

λ
1
2−

1
10

1 λ
− 1

6
3 λ

− 1
6

4 λ−
1
6 + 1

10

and to verify that this is uniformly bound. This is done by summing first over λ1,
then λ2, λ3 and λ4.

Next consider λ = λ4, which leads to the sum∑
λ1≤λ2≤λ3≤λ≤λ6

λ
1
2−

1
10

1 λ
− 1

6
3 λ

5
6λ
− 7

6 + 1
10

6 .

We obtain a uniform bound by first summing with respect to λ1, then λ2, λ3 and
λ5 ∼ λ6.

If λ = λ3 we are led to ∑
λ1≤λ2≤λ≤λ4≤λ6

λ
1
2−

1
10

1 λ
5
6λ
− 1

6
4 λ

− 7
6 + 1

10
6 ,

if λ = λ2 we get ∑
λ1≤λ≤λ3≤λ4≤λ6

λ
1
2−

1
10

1 λλ
− 1

6
3 λ

− 1
6

4 λ
− 7

6 + 1
10

6 ,

and finally, if λ = λ1, ∑
λ≤λ2≤λ3≤λ4≤λ6

λ
3
2−

1
10

1 λ
− 1

6
3 λ

− 1
6

4 λ
− 7

6 + 1
10

6 .

None of the summation poses difficulties. We observe that λ ∼ λ6 has been the
most difficult, and in later proofs we often name the most difficult case, and neglect
the others. This has to be done with care.

We turn to the proof of (6.14). The Strichartz estimate gives∫ 6∏
j=1

uj,λjdxdt ≤
∏

λ
−1/6
j ‖uj,λj‖U6

KdV
.

The product
∏6
j=1 λ

1/6
j compensates for the derivative if the output frequency

is λ1, which is in particular the case if all frequencies are of the same size.
Now suppose that λ1 is much smaller than λ. Then the integral vanishes unless

λ6 − λ2 ≥
1

5
λ6

since otherwise no frequencies in the Fourier supports can add up to zero. We
assume that this inequality holds and estimate using Bernstein’s inequality on the
first factor∫ 6∏

j=1

uj,λjdxdt ≤‖u2,λ2
u6,λ6

‖L2‖u1‖L∞
5∏
j=3

‖uj,λj‖L6

≤ λ1/2
1 (λ3λ4λ5)−1/6λ−1‖u2,λ2

‖U2
KdV
‖u6,λ6

‖U2
KdV
‖u1,λ1

‖V∞KdV
5∏
j=3

‖uj,λj‖U6
KdV

.
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We recall the embedding Up ⊂ V 2
rc if p > 2. This is almost good enough, upon

replacing U2 by V 2. Let µ ≤ 9
10λ. Then

‖S(t)u0,µS(t)v0,λ‖ 25
12
≤c‖S(t)u0,µS(t)v0,λ‖

21
25

L2‖S(t)u0,µ‖
4
25

L6‖S(t)v0,λ‖
3
25

L6

≤cλ− 21
25λ−

2
75µ−

2
75 ‖u0,µ‖L2‖v0,λ‖L2

and hence, if µ ≤ 9
10λ

(6.15) ‖uµvλ‖
L

25
12
≤ cλ− 61

75µ−
2
75 ‖uµ‖V 2

KdV
‖vλ‖V 2

KdV

and hence

∫ 6∏
j=1

uj,λjdxdt ≤‖u2,λ2
u6,λ6

‖
L

25
12
‖u1‖L50

5∏
j=3

‖uj,λj‖L6

≤ λ
22
50
1 ‖u1‖

L50
t L

50
23 x

λ
− 61

75
6 λ

− 2
75

2 (λ3λ4λ5)−1/6
6∏
i=2

‖ui,λi‖V 2
KdV

≤ λ
21
50
1 λ
− 2

75
2 λ

− 61
75

6 (λ3λ4λ5)−1/6
6∏
i=1

‖ui,λi‖V 2
KdV

This is slightly stronger than the claimed estimate. It completes the proof. �

A variant yields local existence. There are two key observations. First we may
expand ∏

(S(t)u0 + w)λj =
∏

(S(t)u0)λj + ..+
∏

wλj

there is one term without w, a term linear in w, and higher order terms in w. If w
is small than the higher order terms are even smaller. So we need some smallness
of the first and the second term. We do not want to assume that the initial data
are small, but we are willing to choose a small time.

Theorem 6.3. There exist δ > 0 such that, if R > 0

‖u0‖Ḃ0
2,∞
≤ R

and with v = S(t)u0

(6.16) (1 +R3) sup
λ
λ−

1
6 ‖vλ‖L6([0,T ]×R) ≤ δ

then there is a unique solution u to

ut + uxxx + ∂x(χ[0,T ](t)u
5) = 0

with initial data u0 which satisfies

‖u− S(t)u0‖X ≤ cR3 sup
λ
λ−

1
6 ‖vλ‖2L6([0,T ]×R)

and which depends analytically on the initial data.

Proof. By the discussion above it suffices to consider integrals∫ T

0

∫
R

(S(t)u0)5vdxdt.
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and ∫ T

0

∫
R

(S(t)u0)4wvdxdt.

We observe that here we may always estimate two S(t)u0 factors in L6. Thus

‖w‖X ≤ cR3δ2

which is small provided δ is sufficiently small. The rest of the proof works with
virtually no change in the argument. �

Assumptions and statement of Theorem 6.3 are uniform with respect to T . Here
T = ∞ is allowed even for large initial data. In that case the solution is in U2

KdV

and hence

wλ = limS(−t)uλ(t)

exists - since all one sided limits exists. Equivalently

uλ(t)− S(t)wλ → 0

in L2 and the solution to the nonlinear equation is for large t close to a solution to
the linear equation. This is called scattering.

Suppose that

(6.17) lim
λ→∞

‖u0,λ‖L2 = 0.

Since by dominated convergence

lim
T→0

λ−1/6‖vλ‖L6([0,T ]×R) = 0

whenever vλ ∈ L6 there exists T such that

sup
λ≥1

λ−1/6‖vλ‖L6([0,T ]×R) < δ.

Trivially

‖vλ‖L6([0,T ];L2) ≤ cT 1/6‖u0,λ‖L2

and, together with Bernstein’s inequality

‖vλ‖L6([0,T ]×R) ≤ λ
1
2T

1
6 (λ−

1
6 ‖u0,λ‖L2 ,

which is much stronger than needed to ensure the smallness assumption (6.16)
for sufficiently small time. As a consequence we obtain existence of unique local
solutions provided (6.17) is satisfied.

Since there are solitons in general solutions are not in L6 of space-time. Solitons
clearly do not scatter. This version of well-posedness has been proven by Strunk
[26]. The result in L2 is due to Kenig, Ponce and Vega.

We turn to

(6.18) ut + uxxx + u4
x = 0.

Here Ḣ−1/6 is the critical Sobolev space. We choose a slightly larger space

‖u‖X = sup
λ∈1.01Z

λ−1/6‖uλ‖V 2
KdV (0,∞)

for the solution and

‖u0‖Ḃ−1/6
2,∞

= sup
λ∈1.01Z

λ−1/6‖u0,λ‖L2 .
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Then

sup
λ
λ−1/6‖S(t)u0,λ‖V 2

KdV
∼ sup

λ
λ−1/6‖u0,λ‖L2

Theorem 6.4. There exists δ > 0 such that for all u0 with

‖u0‖
Ḃ
− 1

6
2,∞

< δ.

there is a unique global solution u which satisfies

‖u− S(t)u0‖X ≤ c‖u0‖4Ḃ−1/6
2,∞

which depends analytically on the initial data.

Proof. We claim

(6.19)

∣∣∣∣∫ u1u2u3u4vλdxdt

∣∣∣∣ ≤ λ− 5
6

∏
‖ui‖X‖vλ‖V 2 .

The theorem follows from this estimate in the same fashion as for p = 4. As there
(6.19) follows from

(6.20)

∣∣∣∣∫ u1u2u3u4vλdxdt

∣∣∣∣ ≤ λ− 5
6

∏
‖ui‖X‖vλ‖V 2 .

To prove it we expand the left hand side into a dyadic sum and we try to bound

I =

∣∣∣∣∣
∫ 5∏

i=1

ui,λidxdt

∣∣∣∣∣
where (by symmetry) λ1 ≤ λ2 ≤ λ3 ≤ λ4 ≤ λ5. We claim

(6.21)

∣∣∣∣∣
∫ 5∏

i=1

ui,λidxdt

∣∣∣∣∣ ≤ cελ−1
5 (λ2λ3λ4)−1/6(λ5/λ1)ε

∏
‖ui,λi‖V 2 .

We assume that (6.21) holds. The integral with respect to x vanishes unless there
are frequencies in the support of the Fourier transform which add up to zero. Since,
if |ξ1| ≤ |ξ2| ≤ . . . |ξ5| the frequencies can only add up to zero, ξ1+ξ2+ξ3+ξ4+ξ5 = 0
if |ξ5| − |ξ1| ≥ 1

10 |ξ5|, which we restrict to in the sequel. We observe that we may
restrict to λ4 ≥ λ5/8 - otherwise the integral vanishes. The summations is done as
for p = 4.

It remains to prove (6.21). We recall have seen that we may assume that λ1 ≤
4λ5/5 and λ4 ≥ λ5/8 The first attempt is

I ≤‖u1,λ1u5,λ5‖L2

4∏
j=2

‖uj,λj‖L6

≤(λ2λ3λ4)−1/6λ−1
5 ‖u1,λ1

‖U2
KdV
‖u5,λ5

‖U2
KdV

4∏
j=2

‖uj,λj‖U6
KdV

(6.22)

where we used Hölder’s inequality for the first inequality, the bilinear estimate for
the first factor, and the L6 Strichartz embedding for the remaining factors. This is
almost what we need - we still have to replace the norm U2

KdV by V 2
KdV .

The Strichartz estimates imply

‖S(t)u0,λS(t)u0,µ‖L3 ≤ c(λµ)−1/6‖u0,µ‖L2‖u0,λ‖L2
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and the bilinear estimate is - for µ ≤ λ/1.03

‖S(t)u0,λS(t)u0,µ‖L2 ≤ cλ−1‖u0,µ‖L2‖u0,λ‖L2 .

Thus, for 2 ≤ p ≤ 3

‖S(t)u0,λS(t)u0,µ‖Lp ≤ cλ−6( 1
p−

1
3 )(λµ)−( 1

2−
1
p )‖u0,µ‖L2‖u0,λ‖L2

and hence, by Hölder’s inequality

‖uλuµ‖Lp ≤ cλ2− 5
pµ

1
p−

1
2 ‖uµ‖UpKdV ‖uλ‖UpKdV

With this argument we may replace the U2 by V 2 norms - but now the remaining
terms are not square integrable anymore. We use this modified bilinear estimate
twice if there are two pairs of λi with quotient at least ≥ 1.012. Oversimplifying
slightly this leaves us with λ2 = λ3 · · · = λ5 and λ1 = λ2 = λ3 = λ4 and λ5 ∼ 3λ1.
The second case is easier, and we focus on the first. We again turn our attention to

ξ1 + ξ2 + ξ3 + ξ4 + ξ5 = 0

assuming |ξ1| ≤ |ξ2| ≤ |ξ3| ≤ |ξ4| ≤ |ξ5|. We have already seen that |ξ1| ≤ 0.9|ξ5|.
We compose the set {ξ : λj ≤ |ξ| < 1.01λj} for 2 ≤ j ≤ 5 into symmetric unions
of intervals of length λ1/100. We label this intervals by µij with 2 ≤ i ≤ 5 and
j ≤ λ5/λ1 and expand the sums in∣∣∣∣∫ u1,λ1

u2,λ5
u3,λ5

u4,λ5
u5,λ5

dxdt

∣∣∣∣ =
∑

90≤|
5∑
j=2

µj |≤110

∫
u1,λ1

u2,µ2
u3,µ3

u4,µ4
u5,µ5

dxdt

there are at most ∼ (λ5/λ1)4 terms. We fix µj and assume that they are ordered.
Then µ5 − µ2 ≥ 2 and we estimate∫

u1,λ1
u2,µ2

u3,µ3
u4,µ4

u5,µ5
dxdt ≤ ‖uλ1

u4,µ4
‖Lp‖uµ2

uµ5
‖Lq‖uλ3

‖L6

and hence (changing indices if necessary, or summing over similar terms)
(6.23)∣∣∣∣∫ u1,λ1

u2,µ2
u3,µ3

u4,µ4
u5,µ5

dxdt

∣∣∣∣ ≤ cλ−1
5 (λ2λ3λ4)−1/6(λ5/λ1)

∏
‖ui,λi‖Up

since p is the smallest exponent. This is almost good - but (λ5/λ1)5 is too big.
We recall Lemma 4.12 which allows us to write for given M

u = v + w

with
κ

M
‖w‖U2

KdV
+ eM‖v‖UpKdV ≤ ‖u‖V 2

KdV
.

We expand all the ui. This yields by (6.22)∣∣∣∣∫ v1,λ1
v2,µ2

v3,µ3
v4,µ4

v5,µ5
dxdt

∣∣∣∣ ≤ cM5λ−1
5 (λ2λ3λ4)−

1
6

∏
‖ui,λi‖V 2

KdV
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and ∣∣∣∣∫ w1,λ1
v2,λ2

v3,λ3
v4,λ4

v5,λ5
dxdt

∣∣∣∣
≤cλ−1

5 (λ2λ3λ4)−1/6(λ5/λ1)5‖w1,λ1‖upKdV
5∏
i=2

‖vi,λi‖UpKdV

≤e−Mλ−1
5 (λ2λ3λ4)−1/6(λ5/λ1)5

∏
‖ui,λi‖V 2

KdV

Similarly we estimate all the other terms in the expansion. Then∣∣∣∣∫ u1,λ1
u2,µ2

u3,µ3
u4,µ4

u5,µ5
dxdt

∣∣∣∣ ≤c(M5 + e−M (λ5/λ1)5)λ−1
5 (λ2λ3λ4)−1/6

×
∏
‖ui,λi‖V 2

KdV
.

≤ c ln(1 + (λ5/λ1))5λ−1
5 (λ2λ3λ4)−1/6

∏
‖ui,λi‖V 2

KdV
.

if we choose M = 5 ln(λ5/λ1). This completes the proof of estimate (6.19), and
hence the proof of the theorem. �

Again there are similar refinements as for the critical gKdV equation. Well-
posedness in a slightly smaller spaces has been proven by Grünrock [9] and Tao [28]
based on a modification of the Fourier restriction spaces of Bourgain at the critical
level.

Statement and proof are based on [18], where it was one step to prove stability

of the soliton in Ḃ
−1/6
2,∞ , and scattering, which is probably the first stability result

of solitons for gKdV which is not based on Weinstein’s convexity argument.

Next we turn to the modified KdV equation

(6.24) ut + uxxx + u3
x = 0.

The space Ḣ−1/2 is scaling invariant, but we are not able the reach the critical
space. Instead we construct global in time solutions to

ut + uxxx + ∂x(χ[0,T ]u
3) = 0

for given initial data u0 and T > 0. We aim for a scale invariant formulation. Given
T > 0 we define the equivalent norm on B

1
4 2,∞,

‖u0‖E = max{T 1
6 ‖u

0,<T−
1
3
‖L2 , sup

λ≥T−
1
3

(λT )
1
4 ‖u0,λ‖L2

and

‖u‖E = max{T 1
6 ‖u

<T−
1
3
‖V 2

KdV
, sup
λ≥T−

1
3

(λT )
1
4 ‖uλ‖V 2

KdV

Well-posedness by different arguments has been shown by [15] in a slightly
smaller space of initial data.

Theorem 6.5. There exists ε > 0 such that for u0 ∈ B
1
4
2,∞ with

‖u0‖E ≤ ε
there is a unique weak solution u ∈ X with

‖u− S(t)u0‖X ≤ c‖u0‖3E .
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Proof. We want to construct a fixed point of

v =

∫ t

0

S(t− s)χ[0,T ](s)∂x(w + v)3ds

The key estimate ( for small data) is

(6.25) λ
1
4

∣∣∣∣∫
R×R

χ[0,T ]u1u2u3∂xvλdxdt

∣∣∣∣ ≤ c 3∏
j=1

‖uj‖X‖vλ‖V 2 .

The theorem follows from it by repeating the arguments for the L2 critical case.
To prove (6.25) we expand the left hand side into a dyadic sum. The pieces are

estimated by

(6.26)

∣∣∣∣∣∣
∫ T

0

∫
R

4∏
j=1

ui,λidxdt

∣∣∣∣∣∣ ≤ cT 1
2

4∏
j=1

λ
−1/8
j ‖uj,λj‖U8

KdV

if λ1 ≥ 2 using the Strichartz embedding

‖uj,λj‖L8
tL

4
x
≤ cλ−1/8

j ‖uj,λj‖U8
KdV

.

This is good enough if λ1 ∼ λ4 and λ1 ≥ 2. If µ ≤ λ/4 there is the bilinear estimate

‖S(t)u0,µS(t)v0,λ‖
L

8
3
t L

2
x

≤‖S(t)u0,µS(t)v0,λ‖
1
2

L4
tL

2
x
‖S(t)u0,µS(t)v0,λ‖

1
2

L2
tL

2
x

≤cλ− 9
8µ−

1
16 ‖u0,µ‖L2‖v0,λ‖L2

and hence if λ1 ≤ λ3/4 and λ2 ≤ λ4/4∣∣∣∣∣∣
∫ T

0

∫ 4∏
j=1

ui,λidxdt

∣∣∣∣∣∣ ≤cT 1
4 ‖u1,λ1

u3,λ3
‖
L

8
3
,2‖u2,λ2

u4,λ4
‖
L

8
3
,2

≤cT 1
4λ
− 9

8
4 λ

− 1
16

1 λ
− 1

16
2

∏
j

‖uj,λj‖V 2
KdV

.

(6.27)

If λ4 ≤ 2T
1
3 we estimate∫ T

0

∫
R

4∏
i=1

ui,λidxdt ≤T‖u1,λ1
‖L∞‖u2,λ2

‖L∞‖u3,λ3
‖L∞L2‖u4,λ4

‖L∞L2

≤c
∏
‖ui,λi‖V∞KdV .

Checking the support we see that the integral vanishes unless either λ1 ≥ λ4/16 or
λ1 ≤ λ3/4 and λ2 ≤ λ4/4 or λ ≤ 16.

We turn to the summation.

(1) λ > λ4/16, λ4 ≥ 16T−
1
3 The sum can be bounded using (6.26) for λ1 ≥

λ4/16 and (6.27) for λ1 ≤ λ4/16 and λ4 ≥ 16 where the sum takes the form( ∑
1≤λ1≤λ2≤λ4/4

(T
1
3λ1)−

5
16 (T

1
3λ2)−

5
16 (T

1
3λ4)−

1
8

× (Tλ1)
1
4 ‖u1,λ1‖V 2

KdV
(Tλ2)

1
4 )‖u2,λ2‖V 2

KdV

)
‖u4,λ4‖V 2

KdV
‖vλ‖V 2

KdV
.

The bound is obvious.
(2) max{T− 1

3 , λ} ≤ λ4/16. Here we use (6.27). The uniform bound for the
sum is immediate.
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(3) λ4 ≤ 16T−1/3. Now the estimate follows from the last estimate.

The proof is complete. �

The proof could easily be simplified by first rescaling to T = 1. The advantage of
the current proof is that it makes the behavior of all terms with respect to scaling
transparent.

Finally we study the Korteweg de-Vries equation

ut + uxxx + u2
x = 0.

The well-posedness result in H−
3
4 is due to Christ, Colliander and Tao [5] who also

prove that below − 3
4 some sort of ill-posedness must occur. Despite this there are

uniform global apriori estimates in H−1, see [3]. Uniqueness between − 3
4 and −1

is entirely open.
We search a solution u to

ut + uxxx + ∂x(χ[0, 1](t)u2) = 0

with the given initial data. We again make the ansatz

u = v + w

where v = S(t)u0 and

wt + wxxx + ∂x(χ(t)(v + w)2) = 0.

The identity

(ξ1 + ξ2)3 − ξ3
1 − ξ3

2 = 3ξ1ξ2(ξ1 + ξ2)

describes the vertical distance of the sum of two points (τj , ξj) from the characteris-
tic set. We will make use of this property through ’high modulation’ L2 estimates.
For this purpose we fix a smooth function φ supported in [−2, 2], identically 1 in
[−1, 1] and define uΛ(t) by the Fourier multiplier 1−φ(τ/Λ). The Fourier multiplier
φ(τ/Λ) defines a convolution. Let ψ be the inverse Fourier transform. Then up to

a power of
√

2π,

(1− φ(τ/Λ))u = u− Λψ(Λt)u

and hence

‖uΛ‖Up ≤ c‖u‖Up
‖uΛ‖V p ≤ c‖u‖V p

Moreover, for Λ = 1

u1(t) = u(t)−
∫
ψ(t− s)u(s)ds =

∫
(u(t)− u(s))ψ(t− s)ds

and hence

‖u1‖L2 ≤ c‖u‖V 2 .

Rescaling gives

‖uΛ‖L2 ≤ cΛ−1/2‖u‖V 2

since the right hand side is invariant with respect to rescaling.
We consider solutions in a space defined by

‖u‖X =
(
‖u<0‖2X0

+
∑
λ∈2N

λ−
3
2 ‖uλ‖2U2

KdV

) 1
2

.
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Theorem 6.6. There exists δ > 0 such that for all initial data

‖u0‖
H−

3
4
< δ

there is a unique function u ∈ X with

‖χTu− S(t)u‖X ≤ c‖u‖2
B
− 3

4
2,∞

which satisfies the equation up to time 1. It depends analytically on the initial data.

Proof. We define the sets

A(0) = {(τ, ξ)||ξ| ≤ 1, |τ − ξ3| ≤ 1}

A(λ) = {(τ, ξ)|λ ≤ |ξ| ≤ 2λ, |τ − ξ3| ≤ λ3}
B(λ) = {(τ, ξ)||ξ| ≤ λ, 1 ≤ |τ − |ξ|3| ≤ |ξ|λ2}.

Then∥∥∥|Dx|
1
2

∫
S(t− s)ρ(s)∂x(uA(λ)uA(λ))dtB(λ)

∥∥∥
L2
≤λ−2‖|Dx|

1
2uA(λ)uA(λ)‖L2

≤λ− 5
2 ‖uA(λ)‖2U2

KdV

which is scale invariant. Alternatively we may estimate∥∥∥|Dx|−
1
2

∫
S(t− s)ρ(s)∂x(uA(λ)uA(λ))dtµ,B(λ)

∥∥∥
L2

≤λ−1
∥∥∥∫ S(t− s)ρ(s)uA(λ)uA(λ)dsµ,B(λ)

∥∥∥
V 2
KdV

≤λ−2‖uA(λ)‖U2
KdV
‖uA(λ)‖U2

KdV

Observe that the two terms are of the same size for µ = λ−1/2.
More precisely the L2 norm is of unit size.∥∥∥∫ S(t− s)ρ(s)∂x(uA(λ)uA(λ))λ−1/2,B(λ)

∥∥∥
L2
≤ cλ− 3

4 (λ−
3
4 ‖uA(λ)‖U2

KdV
)2

There is nothing to loose, and hence we need to control uA(λ) in U2
KdV . Similarly∥∥∥∫ S(t− s)ρ(s)∂x(uA(λ)uB(λ))A(λ)ds

∥∥∥
V 2
KdV

≤ cλ 1
2 ‖uA(λ)‖U2

KdV
‖|Dx|−

1
2uB(λ)‖L2

and∥∥∥∫ S(t− s)ρ(s)∂x(uA(λ)uµ,B(λ))A(λ)ds
∥∥∥
U2
KdV

≤ c‖uA(λ)‖U2
KdV
‖|Dx|

1
2uµ,B(λ)‖L2 .

This is the only place which does not allow us to go beyond B
− 3

4
2,∞.

We only consider the most important term. The remaining estimates are tedious,
and we do not work them out.

�

The interest in this setup is twofold: It shows how to go beyond H−
3
4 . Then

X is not a subset of L∞(R;B−
3
4 2,∞) and one has to use energy estimates to see

that the solution is bounded and weakly continuous as a map to B−
3
4 2,∞. This

difficulty is related to the classical ill-posedness results: The flow map does not
extend to a differentiable map from the initial data to u(t) ∈ S below − 3

4 .
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6.3. The derivative nonlinear Schrödinger equation. We consider

(6.28) iut + ∆u = ū∂1ū.

This equation has no significance from applications as far as I know. The choice of
the non-linearity is crucial. If u satisfies (6.28) then the same is true for

λu(λ2t, λx)

and critical space is Ḣ
d−2

2 .
The Strichartz with 2

4 + d
p = d

2 and Bernstein, gives for d ≥ 2

(6.29) ‖uλ‖L4(R×Rd) ≤ λ
d−2

4 ‖ui,λi‖L4,p(Rd) ≤ λ
d−2

4 ‖ui,λi‖U4 .

The bilinear estimates are

(6.30) ‖uλvµ‖L2 ≤ cµ
d−1

2 λ−1/2‖uλ‖U2
i∆
‖vµ‖U2

i∆

and
‖(uλvλ)µ‖L2 ≤ cµ

d−2
2 ‖uλ‖U2

i∆
‖vλ‖U2

i∆
.

if µ < λ/4. We may improve the second estimate by Bernstein and Strichartz
(using a smooth Fourier projection for µ)

‖(uλvλ)µ‖L2 ≤cµ
d−2

2 ‖uλvλ‖
L2
tL

p
2
x

≤cµ
d−2

2 ‖uλ‖L4,p‖vµ‖L4,p

≤cµ
d−2

2 ‖uλ‖U4
i∆
‖vλ‖U4

i∆
.

(6.31)

This time we need the complex inner product. The modulation relation is

ξ2
1 + ξ2

2 + (−ξ1 − ξ2)2 ≥ ξ2
1 + ξ2

2

which is a particularly pleasant situation.
The dyadic estimates become for λ1 << λ2 ∼ λ3

(6.32)

∣∣∣∣∫ uhλ1
uλ2uλ3dx dt

∣∣∣∣ ≤ cλ−1
3 λ

d−2
2

1 ‖u1,λ1‖V 2
i∆
‖u2,λ2‖V 2

i∆
‖u3,λ3‖V 2

i∆

and

(6.33)

∣∣∣∣∫ uλ1
uhλ2

uλ3
dx dt

∣∣∣∣ ≤ cλ− 3
2

3 λ
d−1

2
1 ‖u1,λ1

‖U2
i∆
‖u2,λ2

‖V 2
i∆
‖u3,λ3

‖U2
i∆

and hence∣∣∣∣∫ ∏u1,λ1
uh2,λ2

u3,λ3
dxdt

∣∣∣∣ ≤ cλ− 3
2

3 λ
d−1

2
1 (λ3/λ1)ε

3∏
i=1

‖ui,λi‖V 2
iδ

Theorem 6.7. Let d = 2. There exists ε > 0 so that if

‖u0‖L2 < ε

then there is a unique solution to

iut + ∆u = ū∂x1
ū

with

‖u‖X :=

(∑
λ∈2Z

‖uλ‖2U2
KdV

)1/2

≤ c‖u0‖L2 .



NONLINEAR DISPERSIVE EQUATIONS 77

If d ≥ 3 there exists ε > 0 so that if

‖u0‖
Ḃ
d−2

2
2,1

=
∑
λ

λ
d+2

2 ‖u0,λ‖L2 < ε

then there is a unique weak solution with

‖u‖X :=
∑
λ

λ
d−2

2 ‖uλ‖U2 ≤ c‖u0‖
Ḃ
d−2

2
2,1

Proof. The key estimates are again∣∣∣∣∫
R×Rd

(∂x1
ū1)ū2v̄dxdt

∣∣∣∣ ≤ ‖u1‖X‖u2‖X

(∑
λ

‖vλ‖2V 2
KdV

)1/2

resp. ∣∣∣∣∫
R×Rd

(∂x1 ū1)ū2v̄dxdt

∣∣∣∣ ≤ ‖u1‖X‖u2‖X sup
λ
λ−

d−2
2 ‖vλ‖V 2

KdV

if d ≥ 3. We abuse the notation and set λ2 = λ3 = λ and compute for d = 2∑
µ<λ

λ

∣∣∣∣∫ ūhµū2,λv̄λdxdt

∣∣∣∣ ≤∑
µ≤λ

λ‖uhµ‖L2‖(u2,λvλ)µ‖L2

≤

∑
µ≤λ

‖u1,µ‖V 2
i∆

)2

1/2

‖uλvλ‖L2(R2)

≤‖u1‖X‖uλ‖U4
i∆
‖vλ‖U4

i∆

The factor λ−1 compensates for the derivative. The summation with respect to
λ is trivial. The estimate is easier if the high modulation falls on other terms.

∑
µ<λ

λ
∣∣∣ ∫ ūµū

h
2,λv̄λdxdt

∣∣∣ ≤∑
µ≤λ

λ‖uh2,λ‖L2‖u1,µvλ‖L2

≤µ1/2‖u1,µ‖V 2
i∆
λ−1/2‖u1,µ‖U2

i∆
‖vλ‖U2

i∆

By logarithmic interpolation

∑
µ<λ

λ

∣∣∣∣∫ ūµū
h
2,λv̄λdxdt

∣∣∣∣ ≤∑
µ≤λ

λ‖uh2,λ‖L2‖u1,µvλ‖L2

≤
∑
µ≤λ

(µ/λ)
1
2−ε‖u1,µ‖V 2

i∆
λ−1/2‖u1,µ‖V 2

i∆
‖vλ‖V 2

i∆

and the summation is straight forward.
The modification for d ≥ 3 is simply: We give up orthogonality and sum for the

first estimate

∑
µ<λ

λ

∣∣∣∣∫ ūhµū2,λv̄λdxdt

∣∣∣∣ ≤∑
µ≤λ

λ‖uhµ‖L2‖(u2,λvλ)µ‖L2

≤
∑
µ≤λ

µ
d−2

2 ‖u1,µ‖V 2
i∆
‖uλ‖V 2

i∆
‖vλ‖V 2

i∆

For the second estimate we put in powers of µ resp. λ.
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�

6.4. The Kadomtsev-Petviashvili II equation. The Kadomtsev-Petviashvili-
II (KP-II) equation

∂x(∂tu+ ∂3
xu+ u∂xu) + ∂2

yu = 0 in (0,∞)× R2

u(0, x, y) = u0(x, y) (x, y) ∈ R2
(6.34)

has been introduced by B.B. Kadomtsev and V.I. Petviashvili [12] to describe
weakly transverse water waves in the long wave regime with small surface tension.
It generalizes the Korteweg - de Vries equation, which is spatially one dimensional
and thus neglects transversal effects. The KP-II equation has a remarkably rich
structure.

Here we describe a setup leading to global well-posedness and scattering for small
data. The Hilbert space will be denoted by Ḣ−1/2,0 which is defined by through
the norm

‖u0‖Ḣ−1/2 = ‖|ξ|−1/2û0‖L2 .

where ξ is the Fourier multiplier with respect to x. The Fourier multiplier |ξ|−1/2

defines an isomorphism from L2 to Ḣ−1/2.
For λ > 0 we write define the projection to the 1 ≤ |ξ|/λ < 2

F(uλ) = χλ≤|ξ|≤2λFu

where F denotes the Fourier transform. Usually we choose λ ∈ 2Z, the set of integer
powers of 2.

Let u(t) = S(t)u0. The Strichartz estimate is

‖u‖L4(R3) ≤ c‖u(0)‖L2

which implies the embedding U4
KP ⊂ L4(R3) and

(6.35) ‖u‖L4(R3) ≤ c‖u‖U4
KP
≤ c‖u‖V 2

KP
.

There is the bilinear improvement

(6.36) ‖uλvµ‖L2 ≤ c(λ/µ)1/2‖uλ(0)‖L2‖vµ(0)‖L2 .

which implies

(6.37) ‖uλvµ‖L2 ≤ c(µ/λ)1/2‖uλ‖U2
KP
‖vµ‖U2

KP
.

and together with the logarithmic interpolation

(6.38) ‖uλvµ‖L2 ≤ c(µ/λ)1/2(ln(2 + λ/µ))2‖uλ‖V 2
KP
‖vµ‖V 2

KP
.

Formally the L2 norm is constant.
We use the norm

‖u‖X =

(∑
λ∈2Z

‖uλ‖2V 2
KP

)1/2

Theorem 6.8. There exists ε > 0 such that for u0 ∈ Ḣ−1/2,0(R2) there exists a
unique solution u ∈ X with

‖u‖X ≤ c‖u0‖H−1/2,0(R2).

If u0 ∈ L2 then there is a unique solution in C(R;L2) with

‖χ[k,k+1](t)u‖U2
KP

< C(‖u0‖L2)
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Proof. By definition

‖S(t)u0‖X ≤ c‖u0‖Ḣ−1/2

We claim

(6.39) ‖
∫ t

0

S(t− s)∂x(uv)ds‖X ≤ c‖u‖X‖v‖X .

With this information we set the fixed point argument and obtain a unique fixed
point which is the solution. By duality (see ) (6.39) follows from

(6.40)

∣∣∣∣∫ uvwdxdydt

∣∣∣∣ ≤ c‖u‖X‖v‖X‖w‖X .
We expand all factors and consider∫

uλ1vλ2wλ3dxdydt

The integral is symmetric with respect to the factors and we may assume that
λ1 ≤ λ2 ≤ λ3. If there are no λ1 ≤ |ξ1| ≤ 2λ1, λ2 ≤ |ξ2| ≤ 2λ2 and λ3 ≤ |ξ3| ≤ 2λ3

which add up to zero then the integral vanishes. Thus

λ3 ≤ 4λ2

The integral vanishes unless there are such ξi, ηi and τi which add up to zero.
Now

ξ3
1 + ξ3

2 + ξ3
3 −

η2
1

ξ1
− η2

2

ξ2
− η2

3

ξ3
= 3ξ1ξ2ξ3

(
1 +
|η1ξ2 − η2ξ1|2

ξ1ξ2ξ3

)
.

We define QH by the Fourier multiplier χ|τ−ξ3+η2/ξ|>|ξ1||ξ2||ξ1+xi2|/10 and QL =
1−QH . Then by the consideration of the supports∫

QLuλ1
QLvλ2

QLwλ3
dxdydt = 0.

It follows from the embedding (4.18) that

‖QHu‖L2 ≤ c(|ξ1||ξ2||ξ1 + ξ2|)−1/2‖u‖V 2
KP

and

‖QHu‖V 2
KP
≤ c‖u‖V 2

KP
.

We estimate∣∣∣∣∫ (uλ1)vλ2QHwλ3dxdydt

∣∣∣∣
≤‖uλ1

vλ2
‖L2‖QHwλ3

‖L2

≤c
(
λmin
λmax

)1/2

(1 + ln(λ2/λ1))2λ−1
maxλ

−1/2
min ‖vλ1‖V 2

KP
‖vλ2‖V 2

KP
‖wλ3‖V 2

KP

≤c
(
λmin
λmax

)1/2

(1 + ln(λ2/λ1))‖vλ1‖X‖vλ2‖X‖wλ3‖X

This is easy to sum with respect to all indices. Th case with QHuλ1 is different
since we don’t gain a factor for the summation over the small frequencies. Here we
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need some orthogonality:∣∣∣∣∣ ∑
λ1<λ2

∫
QHuλ1

uλ2
wλ3

dxdydt

∣∣∣∣∣ ≤
( ∑
λ1<λ2

‖QHuλ1
‖2L2

)1/2

‖vλ2
wλ3
‖L2

≤
(∑

λ−1
1 ‖uλ1

‖V 2
KP

) 1
2

λ−1
max‖vλ2

‖V 2
KP
‖wλ3

‖V 2
KP

which can be summed.
Now consider data in u0 ∈ L2 with ‖u0‖L2 ≤ 1. Let v be the solution to linear

KP with initial data u0. We search a solution in the form u = v+w. We need two
estimates:

‖χ[0,1]

∫ t

0

S(t− s)∂x(uv)ds‖U2 ≤ c‖u>1‖U2
KP
‖v>1‖U2

KP

and

‖χ[0,1]

∫ t

0

S(t− s)∂x(u<1v>1)ds‖U2 ≤ c‖u‖U2
KP
‖v‖U2

KP
.

�

7. Appendix A: Young’s inequality and interpolation

Young’s inequality bounds convolutions in Lebesgue spaces gives bounds for the
convolution of two functions. It is part of the statement that the integral exists for
almost all arguments of the convolution. Let md denote the d dimensional Lebesgue
measure.

Lemma 7.1. Let 1 ≤ p, q, r ≤ ∞ satisfy

1

p
+

1

q
+

1

r
= 2,

f ∈ Lp(Rd), g ∈ Lq(Rn), h ∈ L(Rd).

Then ∫
Rd×Rd

f(x)g(x− y)h(y)dm2d(x, y) ≤ ‖f‖Lp‖g‖Lq‖h‖Lr .

We assume that the Lemma holds and choose f(x) = e−|x|
2 ∈ Lr(Rd). It follows

by Fubini’s theorem that g(x− y)h(y) is integrable with respect to y for almost all
x. The estimate of the lemma shows that

Lp(Rd) 3 f →
∫
Rd

(∫
Rd
h(y)g(x− y)dmd(y)

)
f(x)dmd(x) ∈ R

defines a linear form of norm ≤ ‖g‖Lq‖g‖Lr on Lr. Thus

‖g ∗ h‖Lp′ ≤ ‖g‖Lq‖h‖Lr

for
1

q
+

1

r
= 1 +

1

p′
.
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Proof of Lemma 7.1, as in [20]. Set

1

γ1
= 1− 1

p
,

1

γ2
= 1− 1

q
,

1

γ3
= 1− 1

r
.

Then 1 ≤ γ1 ≤ ∞,

1

γ2
+

1

γ3
=

1

p
,

1

γ1
+

1

γ3
=

1

q
,

1

γ1
+

1

γ2
=

1

r

and
1

γ1
+

1

γ2
+

1

γ3
= 1.

Let

a(x, y) = |f(x)|p/γ3 |g(x− y)|q/γ3 , b(x, y) = |g(x− y)|q/γ1 |h(y)|r/γ1 ,

c(x, y) = |f(x)|p/γ2 |h(y)|r/γ2 .

Then

|f(x)g(x− y)h(y)| = a(x, y)b(x, y)c(x, y)

and, by applying Hölder’s inequality twice∫
|f(x)g(x− y)h(y)|dm2d ≤ ‖a‖Lγ3 ‖b‖Lγ1 ‖c‖Lγ2 = ‖f‖Lp‖g‖Lq‖h‖Lr .

�

There is an improvement: the weak Young inequality. Let (X,µ) be a measure
space. We will often suppress space and measure in the notation. The weak Lp

spaces are defined by the quasi-norm

‖f‖Lpw = sup
t>0

t (µ({x : |f(x)| > t}))1/p
.

If 1 < p <∞ then there is an equivalent norm on Lpw,

‖f‖Lpw ∼ sup
t>0

t

(∫
{x:|f(x)|>t}

|f(y)|dµ(y)

)1/p

.

It is not hard to see the equivalence, and that the term on the right hand side
defines a norm.

Proposition 7.2. Suppose that

1 < p, q, r <∞, 1

p
+

1

q
= 1 +

1

r
,

f ∈ Lp and g ∈ Lqw. Then f(x)g(x − y) is integrable with respect to x for almost
all y and

‖f ∗ g‖Lr ≤ cp,q‖f‖Lp‖g‖Lqw .

This is a consequence of the Markinkiewicz interpolation theorem. We state and
prove the following version.

Let X and Y be normed linear spaces. We denote by L(X,Y ) the normed space
of bounded linear operators from X to Y .
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Lemma 7.3 (Markinciewicz interpolation). Let (X,µ) and (Y, ν) be measure spaces
and 1 ≤ p1 < p2 ≤ ∞, 1 ≤ q1, q2 ≤ ∞, q1 6= q2, 0 < λ < 1,

1

p
=

λ

p1
+

1− λ
p2

,
1

q
=

λ

q1
+

1− λ
q2

.

Suppose that

T ∈ L(Lp1(µ), Lq1w (ν)) ∩ L(Lp2(µ), Lq2w (ν)).

Then T ∈ L(Lpw(µ), Lqw(ν)), and

‖T‖L(Lpw(µ),Lqw(ν)) ≤ c‖T‖λL(Lp1 (µ),L
q1
w (ν))

‖T‖1−λ
L(Lp2 (µ),L

q2
w (ν))

and, if p ≤ q, then T ∈ L(Lp(µ), Lq(ν)) and

‖T‖L(Lp(µ),Lq(ν)) ≤ c‖T‖λL(Lp1 (µ),L
q1
w (ν))

‖T‖1−λ
L(Lp2 (µ),L

q2
w (ν))

with a constant c depending only on the exponents.

Proof of proposition 7.2 . Let f ∈ Lp and Tg : Lq → Lr be the convolution with g.
We interpolate the estimate with p1 = 1 and p2 = p′ and q1 = q and q2 =∞ to get
the estimate in weak spaces

‖f ∗ g‖Lrw ≤ ‖g‖Lqw‖f‖Lp .

Now we fix g and consider T : f → f ∗ g, and get

‖f ∗ g‖Lr ≤ c‖f‖Lp‖g‖Lqw
by the second part of the Lemma. �

It is useful to generalize and sharpen the Markinciewiecz interpolation estimates
before proving them.

Definition 7.4 (Lorentz spaces). Let (A,µ) be a measure space and 1 ≤ p, q ≤ ∞.
We define

‖f‖Lp,q(µ) =

(
q

∫ ∞
0

(
µ({x : |f(x)| > t)1/pt

)q dt
t

)1/q

with the obvious modification for q = ∞. We denote by Lpq(µ) the set of all
measurable functions f for which ‖f‖Lpq(µ) <∞.

Properties:

(1) Since

{x : |f(x) + g(x)| > t} ⊂ {x : |f(x)| > t/2} ∪ {x : |g(x)| > t/2}

it follows that

µ({x : |f(x) + g(x)| > t}) ≤ µ({x : |f(x)| > t/2}) + µ({x : |g(x)| > t/2})

and hence

‖f + g‖Lpq ≤ c (‖f‖Lpq + ‖g‖Lpq ) .
(2) For q1 ≤ q2

‖f‖Lpq2 ≤ c‖f‖Lpq1 .
We begin the proof with

µ({|f | ≥ t})tq = q

∫ t

0

µ({|f | ≥ t})sq−1ds ≤ q
∫ t

0

µ({|f | ≥ s})sq−1ds ≤ ‖f‖qLpq .
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Now, if q1 < q2,

q2

∫ ∞
0

[µ({|f | ≥ t})1/pt]q2
dt

t
≤ q2

q1
‖f‖q2−q1Lp,∞ ‖f‖

q1
Lp,q1 ≤

q2

q1
‖f‖q2Lp,q1 .

(3) If 1 < p <∞ and 1
p + 1

p′ = 1
q + 1

q′ = 1 there exists c > 0 such that∣∣∣∣∫ fgdµ

∣∣∣∣ ≤ c‖f‖Lpq‖g‖Lp′q′ .
For the proof we define f∗ : (0,∞)→ R+ to be the unique function with

m1({τ : f∗(τ) > t}) = µ({x : f(x) > t})

for all t > 0. Then, using Fubini several times (with the Lebesgue measure
µ = md for definiteness, but the argument holds for general measures)

∫
|fg|dmd =md+2({(x, s, t) ∈ Rd × R× R : 0 < s < |f(x)|, 0 < t < |g(x)|})

=

∫
R+×R+

md({x : |f(x)| > s} ∩ {x : |g(x)| > t})dsdt

≤
∫
R+×R+

min{md({|f(x)| > s}),md({|g(x)| > t})}dsdt

=

∫
R+×R+

m1({|f∗(x)| > s} ∩ {|∗g(y)| > t})dsdt

=

∫ ∞
0

f∗(τ)g∗(τ)dτ

which we use below,

∫
fgdµ ≤

∫ ∞
0

f∗(t)g∗(t)dt

=

∫ ∞
0

(t1/pf∗)(t1/p
′
g∗(t))dt/t

≤
(∫ ∞

0

t(q/p)−1(f∗)qdt

)1/q (∫ ∞
0

t(q
′/p′)−1(g∗)q

′
dt

)1/q′

.

The last inequality is an application of Hölder’s inequality. The proof of
the third part is completed by the equality

(7.1)
q

p

∫ ∞
0

t(q/p)−1(f∗(t))qdt = q

∫ ∞
0

(µ(|f(x)| > s))q/psq−1ds.

in one dimensional calculus. We observe that

s→ m1({τ : f∗(τ) > s})

is the inverse of f∗. Both functions are monotonically decreasing.
Let f and f−1 be inverse non-negative monotonically decreasing func-

tions, and g and h non-negative monotonically increasing functions with
antiderivatives G and H with

H(t)G ◦ f(t)→ 0
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as t→∞ and t→ 0. Then by an integration by parts and one substitution∫ ∞
0

hG ◦ fdt == −
∫ ∞

0

Hg ◦ ff ′dt =

∫ ∞
0

H ◦ f−1(s)g(s)ds.

This specializes to (7.1). Moreover, checking the inequalities shows that

‖f‖Lpq ≤ c sup{
∫
fgdµ : ‖g‖Lp′q′ ≤ 1}.

(4) This pairing defines a duality isomorphism if 1 < p < ∞ and 1 ≤ q < ∞.
In particular all spaces Lpq with 1 < p are Banach spaces.

Lp
′q′ 3 g → (f →

∫
fgdµ) ∈ (Lpq)∗

To prove it we choose B to be a measurable set of positive finite measure.
There exists p̃ > p so that Lp̃(B) ⊂ Lpq. If l is a bounded linear functional
on Lpq then it defines a bounded linear functional on Lp̃ which is represented
by a function g ∈ Lp̃′(µ). The previous step gives a bound for ‖gχB‖Lp′q′
in terms of l.

We order the measurable subsets of A by inclusion up to sets of measure
zero. This defines a partial order on the subsets on which the duality
statement holds. Every chain has an upper bound, the union of the chain.
By the lemma of Zorn there is a maximal element. The procedure above
allows to show that the maximal set is necessarily the full space.

In particular duality allows to define an equivalent norm on Lpq(µ) for
1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞. Completeness of dual spaces is obvious.
Completeness of Lp1(µ) is left as an exercise.

Lemma 7.5. Suppose that 1 ≤ p1, p2, q1, q2 ≤ ∞,

T ∈ L(Lp11(µ), Lq1∞(ν)) ∩ L(Lp21(µ), Lq2∞(ν)),

p1 6= p2, q1 6= q2, 0 < λ < 1 and

1

p
=

1− λ
p1

+
λ

p2
,

1

q
=

1− λ
q1

+
λ

q2

and 1 ≤ r ≤ ∞.
Then the operator can be continuously extended to T ∈ L(Lpr(µ), Lqr(ν)). More-

over
‖T‖L(Lpr(µ),Lqr(ν)) ≤ c‖T‖λL(Lp1 (µ),L

q1
w (ν))

‖T‖1−λ
L(Lp2 (µ),L

q2
w (ν))

.

Proof. An easy calculation shows

(7.2)
1− p

p2

1− p
p1

=
1− λ
λ

This will be useful later on. Let t > 0 and

ft(x) =

{
f(x) if |f(x)| ≤ t

tf(x)/|f(x)| if |f(x)| > t

and f t = f − ft. Then
f = ft + f t

and, if p1 < p < p2, which we assume in the sequel,

‖f t‖Lp1 ≤ (p− p1)1/p1t1−
p
p1 ‖f‖

p
p 1

Lpw
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and

‖ft‖Lp2 ≤ (p2 − p)1/p2t1−
p
p2 ‖f‖

p
p 2

Lpw

with obvious modifications if p2 =∞.
Moreover, by the triangle inequality,

{|Tf | > t} ⊂ {Tfs > t/2} ∪ {Tfs > t/2}.
Let

a1 = ‖T‖L(Lp1 ,L
q1
w ) a2 = ‖T‖L(Lp2 ,L

q2
w )

and

s = t

q2 − q1

q2(1− p

p2
)− q1(1− p

p1
)
a

(1−λ)q/q1−1

1−p/p1
1 a

λq/q2−1

1−p/p2
2 .

Step 1. The bound in weak Lp space. We want to prove

λν({|Tf(x)| > t})1/q ≤ ca1−λ
1 aλ2

for ‖f‖Lpw = 1 with c depending only on the exponents. Then

λqµ({|Tf | > t}) ≤ c
(
tq−q1‖Tfs‖q1

L
q1
w

+ tq−q2‖Tfs‖q2Lq2w
)

≤c
(
tq−q1aq11 ‖fs‖

q1
Lp1 + tq−q2aq22 ‖fs‖

q2
Lp2

)
=c
(
tq−q1sq1−q1p/p1‖f‖pq1/p1

Lpw
+ tq−q2sq2−q2p/p2‖f‖pq2/p2

Lpw

)
=c

(
t
q−q1− q1(q2−q1)

q2
1−λ
λ

+q1 + t
q−q2− q2(q1−q2)

q1
λ

1−λ+q2

)
a
q(1−λ)
1 aqλ2

=c
(
tq1[q/q1−1−(q/q1−q/q2)λ] + tq2[q/q2−1−(q/q2−q/q1)(1−λ)]

)
a
q(1−λ)
1 aqλ2

=ca
q(1−λ)
1 aqλ2 .

This completes the proof of the weak type estimate.
Step 2: The endpoints L(Lp1, Lq1) and L(Lp∞, Lq∞. We assume that 1 <
p1, p2, q1, q2 <∞ which can be achieved by the first step.

By duality, with constant changing from line to line

‖Tf‖Lqr ≤c sup{
∫

(Tf)gdν : ‖g‖Lq′r′

=c sup{
∫
fT ∗gdν : ‖g‖Lq′r′ ≤ 1}

=c‖f‖Lpq‖T ∗‖L(Lq′,r′ (ν),Lp′,q′ (µ))

and hence, for 1 < p <∞,

‖T‖L(Lpr,Lqr) ≤ c‖T ∗‖L(Lq′r′ ,Lp′r′ ).

We apply this with Lp11 → Lq1∞ to see that

‖T ∗‖
L(Lq

′
i
1,Lp

′
i
∞)
≤ c‖T‖L(Lpi1,Lqi∞)

for i = 1, 2. From Step 1

‖T ∗‖L(Lq′∞,Lp′∞)

satisfies the desired bounds. Duality again gives the statement for r = 1.
Step 3: Interpolation in Lp.



86 HERBERT KOCH

Suppose that T ∈ L(L1(µ), L1(ν)) ∩ L(L∞(µ), L∞(µ)) with norm ≤ 1
2 . Then

‖Tf‖Lp(ν) ≤
(

p

p− 1

)1/p

‖f‖Lp(µ)

We begin the proof with the observation

{|Tf | > t} ⊂ {Tft > t/2} ∪ {Tf t > t/2}.
The first set is empty by assumption on the norm of T . Hence

p

∫
ν({|Tf | > t})tp−1dt ≤p

∫
ν({Tf t > t/2)tp−1dt

≤p
∫ ∞

0

‖f t‖L1tp−2dt

=p

∫ ∞
0

∫ ∞
t

µ({|f | ≥ s})dstp−2dt

=p

∫ ∞
0

∫ s

0

tp−2dtµ({|f | ≥ s})ds

=
p

p− 1
‖f‖pLp

Step 4: Conclusion
We have proven the bounds for ‖T‖L(Lp,∞,Lq,∞) and ‖T‖L(Lp,1,Lq,1)

Let

ft(x) =

{
f(x) if µ{y : |f(y)| > |f(x)|)1/p|f(x)|} ≤ t

0 otherwise

and f t = f − ft. We assume that the bounds for T are 1/2 as above. Since

‖ft‖Lp,∞ ≤ t
we have

{|Tf(x)| ≥ t} ⊂ {|Tf t(x)| ≥ t/2}
Let

gt(s) = µ({|f t| > s})1/ps ≤ µ({|f | > s})1/ps

We proceed as in Step 3.
�

7.1. Complex interpolation: The theorem of Riesz-Thorin. The Riesz-
Thorin interpolation theorem states the following.

Theorem 7.6. Let 1 ≤ p1, p2, q1, q2 ≤ ∞. Let Tλ, 0 ≤ Reλ ≤ 1 be an operator
from L1 ∩ L∞ → L1 + L∞. Suppose that

λ→
∫
Tλfg

is continuous in 0 ≤ Reλ ≤ 1, holomorphic inside the strip, for all f ∈ L1 ∩ L∞
and g ∈ L1 ∩ L∞. Suppose that

sup
Reλ=0

‖Tλ‖L(Lp0 ,Lq0 ) = C0

and

sup
Reλ=1

‖Tλ‖L(Lp1 ,Lq1 ) = C1.
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Then
‖Tλ‖L(Lp,Lq) ≤ C1−Reλ

0 CReλ
1

if
1− Reλ

p0
+

Reλ

p1
=

1

p

1− Reλ

q0
+

Reλ

q1
=

1

q

The proof relies on the three lines theorem in complex analysis:

Lemma 7.7 (Three lines theorem). Suppose that v is a bounded holomorphic func-
tion on the strip C = {z = x + iy : 0 < x < 1} and that it is continuous on the
closure. Then

|v(x)| ≤ (sup
y
|v(iy)|)1−x(sup

y
|v(1 + iy)|)x.

Proof. By the maximum principle of harmonic functions any harmonic function on
a bounded open set, which is continuous on the closure, assumes the maximum of
the modulus at the boundary. This is true for

uε(x, y) = eε(x+iy)2

u(x, y)

on C ∩BR(0) for every R. This function tends to 0 as y →∞ hence

|uε(x+ iy)| ≤ max{sup
y
|u(iy)|)1−x, sup

y
|u(1 + iy)|)x}

and ε→ 0 gives the result. �

Proof of Theorem 7.6. Let f ∈ L1(µ) ∩ L∞(µ) and g ∈ L1(ν) ∩ L∞(ν). Then, by
assumption

v(λ) =

∫
Tλfgdν

is a bounded analytic function. By the three lines theorem 7.7 we have

|v(λ)| ≤ sup
t

max{|v(it)|, |v(1 + it)|}

and ∣∣∣∣∫ Titfgdν

∣∣∣∣ ≤ ‖Titf‖Lq0‖g‖Lq′0 ≤ C0‖f‖Lp0 ‖g‖
Lq
′
0
.

Similarly ∣∣∣∣∫ T1+itfgdν

∣∣∣∣ ≤ ‖T1+itf‖Lq1 ‖g‖Lq′1 ≤ C0‖f‖Lp1 ‖g‖
Lq
′
1
,

thus ∣∣∣∣∫ (Tλf)gdµ

∣∣∣∣ ≤ max{C0, C1}
(
‖f‖Lp0‖g‖

Lq
′
0

+ ‖f‖Lp1 ‖g‖
Lq
′
1

)
and we could derive that

‖T‖L(Lp0∩Lp1 ,Lq0+Lq1 ) ≤ max{C0, C1}

but we will avoid this step. Let f ∈ Lp and g ∈ Lq′ . We want to prove

(7.3)

∣∣∣∣∫ gTλf

∣∣∣∣ ≤ ‖f‖Lp‖g‖Lq′ sup
y
‖Tiy‖1−λL(Lp1 ,Lq1 ) sup

y
‖T1+iy‖λL(Lp2 ,Lq2 ).

for f ∈ Lp and g ∈ Lq
′
. The theorem follows then by an duality argument.

Moreover it suffices to consider a dense set of functions, which are measurable,
bounded, and for which there is ε > 0 such that either the functions vanish at



88 HERBERT KOCH

a point, or else are at least of size ε. Moreover we may restrict to f and g with
‖f‖Lp = ‖g‖Lq′ = 1.

Let

fz(x) =
f(x)

|f(x)|
|f(x)|(1−z)

p
p 0

+z pp 1 ,

gz(x) =
g(x)

|g(x)|
|g(x)|(1−z)

q′
q′0

+z q
′
q′1

and

v(z) =

∫
gz(y)Tzfz(y)dν(y).

This is a bounded holomorphic map from the strip to L1 ∩ L∞ with values in C.
We claim that it is continuous on the closure of the strip at an arbitrary point λ.
We write

v(z)− v(λ) =

∫
gλ(Tz − Tλ)fλdν +

∫
(gz − gλ)Tzfλ + gzTz(fz − fλ)dν.

The first term tends to zero as z → λ by assumption. Then

gz − gλ → 0 and gz − fλ → 0 as z → λ

in L1 ∩ L∞. Continuity follows by the uniform bound above.
We turn to complex differentiability at an arbitrary point λ in the interior.

Indeed

v(z)− v(λ)

z − λ
=

∫
gλ(Tz − Tλ)fλdν

z − λ
+

∫
gz − gλ
z − λ

Tzfλdν +

∫
gzTz

fz − fλ
z − λ

dν

The first term converges to a complex number by assumption. Moreover

gz − gλ
z − λ

converges to a function g′λ in L1 ∩ L∞ as z → λ. Let g̃ be the difference between
the difference quotient and g′λ. Then∫

gz − gλ
z − λ

Tzfλdν =

∫
g′Tλfλdν +

∫
g̃Tzfλdν +

∫
g′(Tz − Tλ)fλdν.

The second term tends to zero since g̃ tends to zero in L1 ∩ L∞ and the third one
by the continuity assumption as z → λ. Similarly we deal with the last term.

We turn to the behavior at the boundary.

|v(it)| =
∫
Titfitgitdν ≤ ‖Tit‖L(Lp0 ,Lp1 )‖fit‖Lp0‖git‖Lq0

and

‖f‖Lp0 = ‖f‖p0/p
Lp = 1 = ‖git‖Lq′0 = ‖g‖q

′
0/q
′

Lq′
.

We apply the three lines theorem 7.7. Thus

|v(z)| ≤ sup
y
‖Tiy‖1−xL(Lp1 ,Lq1 ) sup

y
‖T1+iy‖xL(Lp2 ;Lq2 ).

We evaluate it at z = λ, which gives inequality (7.3). �



NONLINEAR DISPERSIVE EQUATIONS 89

8. Appendix B: Bessel functions

8.0.1. Bessel functions. The Bessel functions are confluent hypergeometric func-
tions. They are solutions to confluent hypergeometric differential equations. Here
is a very brief introduction. Consider a complex differential equation

x(n) =

n−1∑
j=0

aj(z)z
(j)

with initial data

x(j)(z0) = yj

for j = 1 . . . n − 1 and given complex numbers z0 and yj . If the coefficients are
holomorphic in a neighborhood of z0 then there is a unique solution which is holo-
morphic in z and the yj .

Consider the scalar equation

ẋ =
λ

z − z0
x

The space of solutions is at most 1 dimensional. Formally a solution is given by
x = (z − z0)λ, which, unless z is an integer, is only defined in a set of the type
C\(−∞, z0] called slit domain. Similarly, if

ẋ = (
λ

z − z0
+ φ(z))x

with a holomorphic function φ near z0 there is a unique solution of the type

(z − z0)λ

[
1 +

∞∑
k=1

ak(z − z0)k

]
again defined in the slit domain as above unless λ is an integer. The number λ
is called characteristic number. It is not hard to see that there is a unique such
solution, and the power series can be iteratively defined. The point z0 is called
a regular singular point. A point is called irregular singular point if the Laurent
series of the coefficients contains terms below (z − z0)−1

We call ∞ regular point resp. regular singular resp. irregular singular point for

ẋ = a(z)x

if, when we express z in terms of z−1, 0 is a regular resp. regular singular or
irregular singular point of

ẋ = −z−2a(z−1)x

We use the same notation for systems of equations. The eigenvalues of A in

ẋ =
1

z − z0
A(z)x+ f(z)x

are called characteristic values. They play a very similar role as for scalar equa-
tions. Multiple characteristic values and/or resonances (a resonance denotes the
situation when eigen values of A are linearly dependent over the integers) may lead
to logarithmic terms.

We are interested in second order scalar equations

a(z)ẍ+ b(z)ẋ+ c(z)x = 0
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with meromorphic functions a, b and c. We may rewrite them as a 2 × 2 sys-
tem, which we use to define the notion of a regular, regular singular, and irregular
singular term. The point z0 is regular if b(z)/a(z) and c(z)/a(z) have a holomor-
phic extension near z0. It is a regular singular point if the Laurent expansion of
b(z)/a(z) begins with c0z

−1 and the one of c(z)/a(z) begins with c1z
−2 + c2z

−1.
The characteristic numbers can be calculated in terms of the Laurent series. If they
are independent over the integers then there are unique solutions of the type

zλ
∑

ajz
j

where γ is one of the characteristic numbers.
Of particular importance is the case when there are only regular singular points.

In that case there are exactly three of them, and applying a Moebius transform
we may choose them to be 0, 1 and ∞. Moreover, multiplying by zλ(1 − z)µ we
can ensure that one of the characteristic values at 0 and 1 is 0. These are the
hypergeometric differential equations

z(1− z) d
2

dz2
w + [c− (a+ b+ 1)z]

dw

dz
− abw = 0

The characteristic numbers at z = 0 are 0 and 1 − c, the ones at z = 1 are 0 and
c− a− b, and the ones at infinity are −a and −b.

The regular solution near 0 with value 1 at zero is the hypergeometric function

2F1(a, b; c; z).

The Bessel differential equation is

z2ẅ + wẇ + (z2 − ν2)w = 0.

It has a regular singularity at z = 0 with indices ±ν, and an irregular singularity
at z =∞. The Bessel function of the first kind is

Jν = (
1

2
z)ν

∞∑
k=0

(−1)k
(

1
4z

2
)k

k!Γ(ν + k + 1)

We have, unless ν is negative integer,

Jν(z)− (
1

2
z)ν/Γ(ν + 1) = O(|z|Re ν+1) near 0

Jν(z)−
√

2

πz
cos(z − 1

2
νπ − 1

4
π) + e| Im z|o(1)

for z →∞ and ν ∈ R.
There are integral representation for ν > − 1

2 ,

Jν(z) =
2( 1

2z)
ν

π1/2Γ(ν + 1
2 )

∫ 1

0

(1− t2)ν−
1
2 cos(zt)dt

=
( 1

2z)
ν

π1/2Γ(ν + 1
2 )

∫ π

0

cos(z cos(θ)) sin(θ)2νdt

and if the absolute value of the argument of z is bounded by 1
2π, the Schläfli-

Sommerfeld formula

Jν(z) =
1

2πi

∫ ∞+πi

−∞−πi
ez sinh t−νtdt
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Jν(z) =
2( 1

2z)
ν

π1/2Γ(ν + 1
2 )

∫ 1

0

(1− t2)ν−
1
2 cos(zt)dt

=
( 1

2z)
ν

2πi

∫ 0+

−∞
exp(t− z2

4t
)t−ν+1dt

The Bessel functions satisfy(
d

xdx

)m
(xνJν) = xν−mJν−m.

See [24] for more information. We want to evaluate (with the Hausdorff measure
of dimension s denoted by Hs

H(ξ) =

∫
Sd−1

eixξdHd−1 =

∫ π

0

Hd−2(Sd−2) sind−2(θ)ei|x| cos(θ)dθ

=J d−2
2

(|x|)π
d−1

2 (
1

2
|x|)−

d−2
2

which is seen by a substitution reducing the one dimensional integral to the formula
of Schläfli-Sommerfeld. This function is real and radial. We choose a real function
η ∈ C∞(R), supported in [− 1

2 ,∞), with η(x) + η(−x) = 1. Then H(ξ) is the real
part of ∫ π

−π
Hd−2(Sd−2)η(cos θ) sind−2(θ)ei|x| cos(θ)dθ

An application of stationary phase gives

Lemma 8.1. For all H(r) is the real part of a function e−irφ which satisfies∣∣∣( d
dr

)k
φ
∣∣∣ ≤ ckr− d−1

2 −k.

Proof: Exercise.

9. Appendic C: The Fourier transform

Let f be an integrable complex valued function. We define its Fourier transform
by

(9.1) f̂(ξ) =
1

(2π)d/2

∫
e−ix·ξf(x)dmd(x).

9.0.2. The Fourier transform in L1. Properties are
1) The Fourier transform of an integrable function is a bounded continuous function
which converges to 0 as |ξ| → ∞. It satisfies

‖f̂‖sup ≤ (2π)−d/2‖f‖L1 .

The estimate is obvious, as is the continuity if f is compactly support. The limit
as x → ∞ follows by an integration by parts if the integrand is compactly sup-
ported and differentiable. Those functions are dense, and we obtain continuity and
vanishing of the limit for compactly supported functions. The limit

lim
R→∞

∫
BR(0)

e−ix·ξf(x)dmd(x)

is uniform, and hence the Fourier transform is continuous and converges to 0 as
ξ →∞.
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2) For all η and y in Rd

(9.2) f̂(ξ + η) = ̂e−iη·xf

and

(9.3) ̂f(.+ y) = eiyξ f̂(ξ).

This follows by an simple calculation.
3) For f, g ∈ L1(R)

f̂ ∗ g(ξ) = (2π)n/2f̂(ξ)ĝ(ξ).

which follows by application of Fubini’s theorem:

1

(2π)d/2

∫
e−ixξ

∫
f(y)g(x− y)dmd(y)dmd(ξ)

=

∫ ∫
e−iyξf(y)e−i(x−y)ξg(x− y)dmd(y)dmd(x)

=

∫ ∫
e−iyξf(y)e−izξg(z)dmd(z)dmd(y)

=(2π)d/2f̂(ξ)ĝ(ξ)

4) For f and g ∈ L1

(9.4)

∫
fĝdmd(x) =

∫
f̂gdmd

This is seen by applying Fubini to∫ ∫
e−iyξf(y)e−i(x−y)ξg(y)dmd(y)dmd(x).

5)

ê−
1
2 |x|2 = e−

1
2 |ξ|

2

We calculate as above

(2π)−d/2
∫
e−ixξ−

1
2 |x|

2

dmd(x) = (2π)−d/2
∫
e−i(x−iη)ξ− 1

2 (x−iη)2

dmd(x)

for η ∈ Rn. We set η = ξ and get

(2π)−d/2e−
|ξ|2

2

∫
e−

1
2 |x|

2

dx = e−
|ξ|2

2 .

9.0.3. The Fourier transform of Schwartz functions.

Definition 9.1. We say f ∈ C∞(Rd) is a Schwartz function and write f ∈ S(Rd)
if for all multi-indices α and β

‖xα∂βf‖sup <∞

We say fj → f in S if for all multi-inidices

xα∂βfj → xα∂βf

uniformly.
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We collect elementary properties.
1) f ∈ S if and only if xα∂βf ∈ S for all α and β.
2) f ∈ S implies f integrable.
3) f ∈ S and g ∈ C∞ with bounded derivatives implies fg ∈ S.
4) f ∈ S and A an invertible d× d matrix implies f ◦A ∈ S
5) f ∈ S and x0 ∈ Rd implies f(.+ x0) ∈ S.
6) We say that a distribution T has compact support, if there exists a ball BR(0)
such that for all functions f in C∞0 (Rd) with support disjoint from BR(0) Tf = 0.
We can easily extend such distributions to Schwartz functions (exercise).

We define the convolution with a Schwartz function by

T ∗ f(x) = T (f(x− .))

This is well defined and T ∗ f is a Schwartz function whenever f is a Schwartz
function. To see this we recall that by the definition of a distribution there exist
C > 0 and N > 0 such that (since f has compact support)

|T (f)| ≤ cN‖f‖CN .

Taking difference quotients shows that x→ T ∗ f(x) is differentiable and

∂iT ∗ f = T ∗ ∂if.

Recursively we see that Tf ∈ C∞. Morever

‖f(x− .)‖CN (BR(0)) ≤ cM (1 + |x|)−M

for Schwartz functions, and hence T ∗ f is a Schwartz function.
7) f, g ∈ S implies f ∗ g ∈ S and

(9.5) f̂ ∗ g = (2π)d/2f̂ ĝ

If f ∈ S and S is a distribution with compact support then

S ∗ f(x) := S(f(x− .)) ∈ S.

8) All the operations above are continuous.

Theorem 9.2. If f ∈ S then f̂ ∈ S, and vice verse,

x̂jf = −i∂ξj f̂

−̂i∂xjf = ξj f̂

and the Fourier inversion formula

f(x) = (2π)−d/2
∫
eixξ f̂(ξ)dmd(ξ)

and the Plancherel formula∫
f̂ ĝdmd(ξ) =

∫
fgdmd(x)

hold. If A is a real invertible d× d matrix then

f̂ ◦A(ξ) = (det |A|)−1f̂(A−T ξ).
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Proof. According to property (1)

xα∂βf ∈ S
and hence xα∂βf is integrable. With the first calculation

F(xα(−iββf)) = −i∂αξβ f̂

which is bounded by the second observation. Thus f̂ ∈ S. We calculate

F((2π)−d/2τd/2e−
τ
2 x

2

∗ f) = e−
1
2τ ξ

2

f̂(ξ)

and, with τ →∞

f(0) = (2π)−d/2
∫
f̂dξ.

Together with the formulas (9.3) we obtain the inversion formula

f(x) = (2π)−d/2
∫
eixξ f̂(ξ)dξ.

The Plancherel formula follows by (9.4). The last formula follows from

(2π)−d/2
∫
e−ix·ξf(Ax)dmd(x) = (2π)−d/2|detA|−1

∫
e−i(A

−1y)·ξf(y)dmd(y).

�

9.0.4. Tempered distributions.

Definition 9.3. A tempered distribution T is a linear map

T : S → C
which is continuous, i.e. fj → f ∈ S implies

Tfj → Tf

We denote the set of tempered distributions as S∗. We say Tj converges to T if
Tjf → Tf for all f ∈ S.

We list properties.
1) We call T bounded if there exists N such that

|Tf | ≤ C sup
|α|+|β|≤N

sup
x
|xα∂βxf |.

The linear T : S → C is bounded if and only if it is continuous.
2) Distributions with compact support are tempered distributions.
3) Let T ∈ S∗ and φ ∈ C∞ with bounded derivatives. We define

φT (f) = T (φf).

4) The derivative of a tempered distribution ∂jT is defined by

∂jT (f) = −T (∂jf)

5) Let T ∈ S∗ and φ ∈ S. Then

T ∗ φ ∈ C∞(Rd),
where we define T ∗ φ as for distributions with compact support.

6) Let T ∈ S∗ and S be a distribution with compact support. We define

S ∗ T (f) = T (S̃ ∗ f)
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where S̃(f) = S(f̃), f̃(x) = f(−x). Then S ∗ T ∈ S∗.
7) Let g ∈ Lp for one 1 ≤ p ≤ ∞. It defines a unique distribution by

Tg(f) =

∫
gfdmd.

The operations commute with this representation,

Tφg = φTg

and we identify Lp with its image via the embedding.
8) We define the Fourier transform T̂ ∈ S∗ by

T̂ (f) = T (f̂)

The inverse Fourier transform is defined similarly.
This is compatible with the interpretation for functions.

9)

δ̂0 = (2π)d/2

and

1̂ = (2π)d/2δ0

The Euler relation

x · ∇f = mf

holds for every homogeneous function of degree m. We want to define homogeneous
distributions.

Definition 9.4. A tempered distribution is called homogeneous of degree m ∈ C if

T (φ) = λ−d−mT (φ(λ ∗ .)).

Let Rem > −d. Then |x|m is tempered distribution. Its Fourier transform is
again a tempered distribution of homogeneity −d−m.

This can be seen from the Euler relation

x · ∇f = mf

for every homogeneous function of degree m.

Lemma 9.5. Let 0 < Rem < d. The following identity holds

F(
1

2m/2Γ(m/2)
|x|m−d) =

1

2(d−m)/2Γ(d−m2 )
|x|−m.

Proof. We claim that the Fourier transform of a homogeneous distribution of degree
m ∈ C is a homogeneous distribution of degree −d − m. We denote by Tλ the
distribution

Tλ(f) = λ−dTf(λ.)

Then

T̂λ(f) = Tλ(f̂) = T (λ−df̂(λ.)) = T (f̂(./λ)) = λ−m−dT (f̂) = λ−m−dT̂ (f).

Let f be a homogeneous function of degree m such that Tf is a homogeneous
distribution. Let O be an orthogonal matrix with f ◦O = f . Then

T̂f ◦OT = T̂f
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where the term on the left hand side is defined by the action on Schwartz functions.
In particular the Fourier transform of |x|−m is radial in the sense that it is invariant
under the action of orthogonal matrices. This is equivalent to

Tf = T

(
Hd−1(Sd−1)−1

∫
Sd−1

f(|x|σ)Hd−1(σ))

)
(a rigorous justification requires either an approximation, or a symmetrization ar-
gument). We denote the symmetrization operator by S.

Let T be a radial homogeneous distribution of degree m. We claim that We fix
a non-negative function h with integral 1 with compact support and observe that

T (f) =T
(∫ ∞

0

λ−d−m−1(Sf)(λx)h(ln(λ))dλ
)

=T (

∫ ∞
0

λ−d−m−1Sf(λ)|x|d+mh(ln(λ/|x|))dλ

=T (|x|d+mh(− ln |x|)
∫ ∞

0

λ−d−m−1Sf(λ)dλ

=T
(
|x|d+mh(− ln |x|)

) ∫
|y|mf(y)dmd(y)

for all f ∈ S with 0 not in the support. This extends to Schwartz functions if
m > −d.

By the consideration above

|̂x|−m = c(n,m)|x|m−d

and we have to determine c(n,m). The Gaussian is its own Fourier transform. Let

T = |x|m and denote by T̂ its Fourier transform. Then, by the definition

T (e−
|x|2

2 ) = T̂ (e−
|ξ|2

2 )

We calculate∫
|x|me−

|x|2
2 dmd(x) =dmd(B1(0))

∫ ∞
0

e−r
2/2rd−1+mdr

=dmd(B1(0))2−
d+m

2 −1

∫ ∞
0

t
d+m

2 −1e−tdt

=dmd(B1(0))2−
d+m

2 −1Γ(
d+m

2
).

Comparison with the calculation for |x|−d−m gives the formula. �

The formula extends to all m ∈ C\(−∞,−d] ∪ [0,∞). This requires however a
proper definition of the homogeneous tempered distribution.
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