Annals of Pure and Applied Logic 25 (1983) 233-261 233
North-Holland

ON THE CONSISTENCY STRENGTH OF ‘ACCESSIBLE’
JONSSON CARDINALS AND OF THE WEAK CHANG
CONJECTURE

Hans-Dieter DONDER

Mathematisches Institut, Universitit Bonn, Beringstr. 6, 5300 Bonn, West Germany

Peter KOEPKE

Mathematisches Institut, Abt. fiir Math. Logik, Universitat Freiburg, 7800 Freiburg, West
Germany

Communicated by J.E. Fenstad
Received 18 December 1982; revised 8 July 1983

Using the core model K we determine better lower bounds for the consistency strength of
some combinatorial principles:

I. Assume that A is a Jonsson cardinal which is ‘accessible’ in the sense that at least one of
(1)~(4) holds: (1) A is a successor cardinal; (2) A =w, and £<<X; (3) A is singular of uncountable
cofinality; (4) A is a regular but not weakly hyper-Mahlo.Then 0 exists.

II. For A =p™* a successor cardinal we consider the weak Chang Conjecture, wCC(A), which is
a consequence of the Chang transfer property (A%, A) = (A, p).

TIL. If A =p* =w,, then wCC(A) implies the existence of 0.

IV. We can determine the consistency strength of wCClew,).

We include a relatively simple definition of the core model which together with the results of
Dodd and Jensen suffices for our proofs.

0. Introduction

The inner model L of constructible sets has been frequently used to investigate
the consistency strength of combinatorial principles. In our paper some of these
methods are adapted to the core model K to obtain stronger results.

The way in which we will apply the model K may be motivated by Kunen’s
proof that the existence of a Jonsson cardinal implies the existence of 0%. We
sketch the argument (a detailed account is in Jech [11, p. 396]):

A cardinal « is called Jonsson if every first-order structure of cardinality «
whose language is countable possesses a Jonsson substructure, i.e. a proper
elementary substructure of the same cardinality. So let X be a Jonsson substruc-
ture of (L, €). By the condensation lemma for the L,-hierarchy, X=L,_. The
inverse of the isomorphism is a nontrivial elementary embedding =:L — L,.
U={xcal|xeL and acm(x)} is an ultrafilter on B(a) "L where a is the first
ordinal moved by 7. A condensation argument shows that the ultrapower
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(*L NL)/U is well-founded. Hence there is a nontrivial elementary embedding
7:L — L, and by a theorem of Kunen, 0% exists.

The core model K was invented by Dodd and Jensen [6]. K is an ‘L-like’ inner
model of set theory which satisfies many of the combinatorial properties of L. But
compared with L, the core model admits ‘larger’ cardinals; for example there may
be Ramsey cardinals in K. Dodd and Jensen obtain the following Covering
Theorem for K which strengthens the Jensen Covering Theorem for L (see [6]):

If there is no inner model with a measurable cardinal, then K covers V, i.e. for
every set X <On there is some Ye K with X<Y and card(Y)<card(X) + w,.
The core model is also L-like in that it satisfies an analogue of Kunen’s theorem
about elementary embeddings of L into L:

If there is a nontrivial elementary map from K into K, then there is an inner
model with a measurable cardinal.

Hence, when Kunen’s argument about Jonsson cardinals can be carried over to
K, it yields an inner model with a measurable cardinal. We are able to do this
transfer for certain ‘accessible’ Jonsson cardinals and for a weak form of a
generalized Chang Conjecture. Actually we can strengthen this. Having obtained
an inner model with a measurable cardinal we can repeat Kunen’s argument with
some inner model L{U], U is a normal ultrafilter on a measurable cardinal a. We
obtain a nontrivial elementary embedding 7: L[U]— L[U] with its critical point
above a. This is equivalent to the existence of 0%, a set of Gédel numbers defined
by Solovay (see [15, p. 132]).

Our main theorems now are:

Theorem A. Let A be a Jonsson cardinal such that at least one of (1)-(4) holds:
(1) A=p",
(2) A =w; and E<A,
(3) w<cof(A)<A,
(4) A is regular but not weakly hyper-Mahlo.
Then 07 exists.

See Drake [10] for a definition of weak hyper-Mahlo cardinals.

Definition. Let A =p* be a successor cardinal. The weak Chang Conjecture for
A, wCC(A), is the assertion: Whenever U is a first-order structure with a countable
language and A* <%, then there is a <A such that for all B <A there is X<
with XNA < a and otp(XNA™)>B.

The weak Chang Conjecture for w; was, in an equivalent combinatorial form,
considered in Shelah [18, section 35]. wCC(A) is a trivial consequence of the

Chang two-cardinal property (A, A) > (A, p) (see Chang-Keisler [3, p. 450]).

Theorem B. Let A = p* =w, and assume wWCC(A). Then 0 exists.
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Corollary. If (w3, w,) > (w5, w,), then 07 exists.

Many more corollaries can be drawn from Theorem B, also taking into account
the various interdependences between the Chang properties (k, A) = (x’, A'),
(see 3)).

We determine the consistency strength of wCC(w;) in terms of partition
cardinals:

Definition. (1) Let f:[S]7* — V,S5<On. Assume that X<S§ is an infinite
homogeneous set for f. Then set:

tpf(X):<Yn lHYI" .. a’YnEX(’Yl<' : '<'Yn/\f(’Yl)' . -a'Yn):yn)7n<w>-

tps(X) is called the type of X (with respect to f).

A sequence (X, |a<7) is called homogeneous for f (of order =) iff for
a<B<r:X,c8; otp(X,)=w(l+a); X, is homogeneous for f; and tp(X,)=
tps(Xp).

(2) Let wr=1, T#0.

(a) Set kx — (<7)y« iff for all f:[«k]™® — A there is a homogeneous sequence

(X, |a<rT)for f.

(b} « is called almost <t-Erdés iff « is regular and k — (<7)5* for all A <«.

This type of properties has been studied in Baumgartner-Galvin [2]. The
property k — (<w;)>* implies the existence of 0% but is strictly weaker than
Kk — (@w1)5” (see Section 8).

Theorem C. Let M be a countable transitive model of ZFC and let k be almost
<w,-Erdos in M. Then there is a generic extension N of M such that NFwCC(w,).

Theorem D. Assume wCC(w,). Let k =w, and v=w¥. Then « is almost <7-
Erdos in K.

‘Accessible’ Jonsson cardinals have been considered before. It is easy to see
that no w, is Jonsson, (n<w). Under GCH no successor cardinal is Jonsson.
Shelah [19] gives a generalisation of this. Theorem A(3) strengthens results of
Mitchell and Silver. Mitchell [16] shows that a Jonsson cardinal is Ramsey in K.
Thus a singular Jonsson cardinal is regular in K and by the Covering Theorem for
K there is an inner model with a measurable cardinal. Even before the introduc-
tion of K, Silver had constructed an inner model with a measurable from the
assumption that w,, is Jonsson and 2¢ < ,, (see Kanamori-Magidor [12]). On the
other hand one can obtain singular Jonsson cardinals: A singular limit of
measurable cardinals is Jonsson; Prikry forcing produces a Jonsson cardinal of
confinality w (Prikry [17]).

Theorem B contrasts with results of Silver and the first author about the
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consistency strength of the Chang Conjecture (w,, w;) = (wy, w,). Silver con-
structed a model for the Chang Conjecture by forcing starting from a model for
k —> (w,)~* (Kanamori-Magidor [12] exhibit an easier version of this, starting
from a Ramsey cardinal). Donder has shown that if (w,, @;) = (w;, w,) is true in
the universe then, in K, k — (1)~ holds, where « = w, and A = @, [9]. An upper
bound for the consistency strength of (ws;, w,;) > (w,, w;) is given by a huge
cardinal: If the forcing in Kunen [14] is modified to yield an w;-saturated ideal on
wy, then, in the extension, (w,, w,) = (w,, ®;).holds (see the remark at the end of
[14].

As one might expect, Theorems C and D are descendants of the aforemen-
tioned results of Silver and Donder.

We strongly suppose that with the introduction of generalised core models
appropriate for inner models with several measurable cardinals the conclusion of
Theorems A and B can be considerably strengthened.

Kunen’s result on Jonsson cardinals rests heavily on the condensation proper-
ties of the constructible hierarchy, and the main point in the proofs of Theorems
A and B is to define a structure such that certain elementary substructures of it
‘condense’ nicely. We want the condensation map to determine an ultrafilter on
B(a) N K for some «. Hence the condensate has to contain P(a) N K. Lemma 2.6.
is the tool to show that the condensate contains enough sets.

This paper is organized as follows:

Section 1 gives a brief introduction into the core model. The main properties of
K are stated without proof. We consider ‘iterable premice’, which allow us to
define K in a rather elementary way.

Section 2 develops the machinery for our condensation arguments with K..

In Section 3 we derive from the assumptions of Theorem A the existence of an
inner model with a measurable cardinal less than the Jonsson cardinal considered.
This is strengthened in Section 4 where we show:

Theorem A2. If « is a Jonsson cardinal and some ordinal <« is measurable in an
inner model, then 0 exists.

Section 5 gives an equivalence of wCC(A) which is better suited to the proofs of
Theorem B and C. The proof of Theorem B is, as the proof of Theorem A, split
into two steps.

Section 6 gets from wCC()A), A = p* = w,, that there is an inner model with a
measurable <A™, In Section 7 we prove:

Theorem B2. Assume wCC(A), A =p™, and that there is an inner model with a
measurable cardinal <\A*. Then 0" exists.

Sections 8 and 9 contain the proofs of Theorems C and Theorem D.
We presuppose an acquaintance with (relative) constructibility, basic knowledge
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of iterated ultrapowers and of course, in Section 8, of the forcing method.
Constructibility is done with the J_-hierarchy.
We use standard set-theoretical notation throughout.

1. The core model

Dodd and Jensen [6] introduce the core model K in order to generalise the
Jensen Covering Theorem for L.
1.1-1.6 state fundamental properties of K.

1.1. K is transitive, Onc K, and KFZFC+ V = K+ GCH.
K also satisfies various combinatorial principles which hold in L, like ©,[, . . ..

Definition. A covers B iff VX = On,
XeB3YecA (XY and card(Y) = card(X) + w,).

1.2 (The Covering Theorem for K). If there is no inner model with a measurable
cardinal, then K covers V.

1.3 (The Covering Theorem for K, extended). Assume 0' does not exist. Then one
of (1)~(3) holds:

(1) K covers V.

(2) LLU] covers V, for some U, such that

LIU]E“U is a normal ultrafilter on some ordinal”.
(3) L[U, C] covers V, for some U, C, such that
L[U]E“U is a normal ultrafilter on some ordinal”
and C is a Prikry-sequence for U over L[U].
(A normal ultrafilter is always understood to be non-trivial.)
1.4. Let 7w: K — M be elementary and let M be transitive. Then M =K.
1.5. Let w: K — K be nontrivial and elementary. Let a be the first ordinal moved by
7. Then there is an inner model with a measurable cardinal 8, such that
B=w, ifa<w, and B<a® ifa=w,.

Remark. Since this result is not explicitly proved in the published papers we
sketch a proof of Claim 1.5 referring mainly to the proof of Lemma 16.21 in [5].
We may assume that # is an ultrapower by U. We need the following fact (see [7,
Lemma 2.3])

(1) If cf{(ae™)®)>w, then a is measurable in an inner model.
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So we may assume that (a")* <a*. But then, if 7 is w,-iterable, we get the
conclusion as in [5]. So we may assume that 7 is not p-iterable (p <w,) as in the
main case of [5]. Let N,i<p, be defined as in that proof. A condensation
argument shows that |N;|<a™. Let C, C be defined as in [5] replacing 7 by On.
The proof shows

(2) (a) C is closed, sup(CNa*) =a™.

(b) Let v be a limit point of C and cf(y) > . Then v is measurable in an

inner model.

So the conclusion of Claim 1.5 follows immediately.

1.6. Assume L[U]JF“U is a normal ultrafilter on «”. Then P(k)NK=
B(x) N L[U]. This implies V, NK =V, NL[U], and further that K = (<. (LLUD;,
where (L[UY)); is the i-th iterated ultrapower of L[U].

1.6 indicates that the size of the core model depends on the large cardinal
situation of the universe. By 1.6, K does not allow measurable cardinals. But the
‘low part’ of K agrees with the ‘low part’ of L[U]: V,NK =V, NL[U]. Thus one
may think of the core model being an approximation to measurability from below.
This is reflected in the definition of K that we will use. K will be the union of L
together with the ‘low parts’ of certain ‘L[U]J-like’ structures which are called
‘iterable premice’. A premouse is a structure M =JY constructed from a filter U
over a cardinal k such that, in M, U is a normal ultrafilter on . M is called
iterable if the iterated ultrapowers of M by U are all well-founded.

The core model may be obtained in several different ways. Dodd and Jensen
define K as the inner model constructible from all ‘mice’. Even the definition of
mouse involves finestructure notions. A mouse possesses a particular,
finestructure-preserving ‘mouse-iteration’, which is adequate for the finestructure
investigations of K, leading up to the covering theorem.

Dodd and Jensen show that in ZF the original definition of K is equivalent to
the one given here. Our definition is not at all suited to prove 1.1-1.6, but it
suffices for our proofs.

Definition. A structure M =J" is a premouse at «, iff
ME“U is a normal ultrafilter on k > w”".

Note that the ‘measurable’ « of M is regular in M.
Let M=1JY be a fixed premouse at k.

Definition. The ultrapower M of M is defined by
f~g iff {p<k|f)=g}eU (fge*"MNM),
fi={gleg~f1 (fe"MNM),
IMi:={f| fe"MnM},
feg iff {v<«|f(r)eg}el,
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Yl

Since M satisfies Zy-separation and the Axiom of Choice, we can prove a
Kos-theorem for 3,-formulae:
1.7. Lemma. Let ¢ be 3, in the language for M, and fy,...,f, € “MNM. Then
MEd[fy,....f.] iff v<w«|MES[fi(v),...,f(TeU.
Definition. For x € M set ¢,:={x | v<«). Define my: M — M by my(x)=c,.

g

18 TYTamma, + A
LS. AR, Ty VI <y 1V

1.9. Lemma. 7/;M is &-cofinal in M, i.e. Yx € M3y € Mx& my(y).

Proof. Let =feM Set y=range(fleM. {v<«k|f(v)ey}=«, hence
fEmm(y). D

1.10 Lemma. my: M<s, M.

Proof. Let ¢ be 3, and x,...,x,€M. Assume MEIx d[my(xy), ..., md(x)]
By 1.9, there is xo€ M such that MF3x € my(xg) dlmr(x1), - .., m(x,)] By 1.8,
MFEIxexy Pixy,...,x,]. O

If M is well-founded, identify M with its transitive collapse.

1.11. Lemma. Assume M is well-founded, hence transitive. Then
(
AN

1 ~
iy

S

A=7TY for some . and M is a premouse at &= m(x)
va "(X JUI DUTIVC Ul, UL ive o wu ylclll«uldo(/ we n “M\'\}n

-

) 7TMIM<EIM, mu |k =1d, & = my,(x)> k.
(3) V.NM=V,NM and my | (V, NM)=id.
(4 f=mm(f)k), for fe"MNM.

(5) Bl)NM=R(x) " M.

(6) xeVUE)NM — (xe U k€ my(x)).

= hY

Mranmaware with narmal

o CUL,“.M.,J... (M (A Ja
AV § ulllal)UW\.«lD Wllll 11U 111al

mic O, -aicraicny. \<j, ), (
ultrafilters.
(3) We show by induction on 1 <k:

(%) m(x)=n — (xe Mo xeM) and (x e M — my(x) = x)).

Let m <k and assume () holds for £ <m. Let rn(x) =n and x € M. rn is uniformly

3,-definable over structures of the form J§ and over the universe (see [6], Lemma
2.2]. So MErn(x) =7, MEm(my(x)) =7, by (2), and rn(my(x))=n.

ma(x)={y € V| y e my(x)} ={y € V,NM | y € mps(x)}
={ye V,NM |y e m(x)} ={y € V, M | my,(y) € mrs(x)}
={yeV,NM|yex}=x.
Also x = my(x)e M.
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Conversely let x =fe M, r(x) =n. Then

x={y|yex}={ye M| my(y)ex}
={yeM|{r<k|yef(v)leu}

={ye L<J f) [{v<k|yef(v)}e U}eM. O
Definition. A premouse M is m-iterable (r=o) iff there is a system
(M, my, ki, Up)i<j<n such that for i<j<n:

(1) My=M.

(2) M, is a premouse at k; with measure U,

(3) mj: M, < M, m; =id M.

(4) The system mr; commutes.

(5) i+1<n>M. =M, mn= e

(6) k<m, Lim(k) — (M,, my) is the transitive direct limit of (M,, m;)i<j<«.

If this system exists it is uniquely determined and is called the n-iteration of M.
If M is w-iterable, we just call M iterable and we call the «-iteration of M the
iteration of M.

Iterating Lemma 1.11 we obtain:

1.12. Let M be n-iterable and let {M,, m;, ;, U, );<j<n be the n-iteration of M. Then
fori<j<m:

(1) i Mi<z, M, m; | =id, m;(k;) = K> ;.

(2) V,NM, =V, NM; and m; | (V,NM,)=id.

(3) Blx) N M, =B() N M,

@) xeB()NM, — (x € U, & «; € m;(x)).

(5) {k; | i <m} is closed in sup;, ; as a set of ordinals, and {x; | i <n} is cofinal
in every cardinal 6 such that card(M)<@=<n.

(6) k<m, Limk)— (xe U oTi<k{x |i<j<k}cx).

(7) Let 0 be a regular cardinal such that card(M)<8 <m. Then M=1J & for some
B, where F is the closed unbounded filter on 6.

1.12(7) allows us to ‘compare’ iterable premice:

1.13. Lemma. Let M, N be iterable premice and 8 a regular cardinal > card(M),
card(N). Then either M, € Ny or My = Ny or Ny € M,.

The structure of the iterates is present in the original premouse to a certain
extent:

1.14. Lemma. Let (M, m;, k;, U,)i<j<n be the m-iteration of M. Then for j<m:
(1) M, :{WOj(f)(Kil, cees Ki") | n<e,freg— Mo, i3<w-- <i,<j}.
(2) For ¢ a 3,-formula in the language for My, x € M,, and i;<:--<i,<j:



On the consistency strength of ‘accessible’ Jonsson cardinals 241

v an

M; F‘b[ﬂ'oi(x), Kis--os Ki,.] iff
EXE U()ﬂMo Vxl, e Xy GX (x1<' * ‘<xn —)Motd)[x, Xi5e0es xn]).
(3) {x; | i<j} is a set of Zy-indiscernibles for (M, (my;(x) | x € My)).
(1) and (2) are proved by simultaneous induction on j<<m. (3) is an immediate

consequence of (2).
1.14(1) and (3) yield a criterion for iterability:

1.15. Lemma. If M is w,-iterable, then it is iterable.

This implies the following absoluteness property:

1.16. Lemma. Let ZF ~ be the system ZF without the power-set and the replace-
ment axiom. Let A be a transitive model of ZF ~ and w,< A. Then an iterable
premouse in A is an iterable premouse in the universe.

Proof. Let n=ANOn, n=w,. Let M < A be an iterable premouse in A. ZF ™ is
strong enough to show that the iteration of M in A is the m-iteration of M in V.
Thus, by 1.15, M is «-jterable. [

Remark. Note that the argument above depends on our specific definition of
iterability. Since ZF ~ is a very weak set theory many definitions which are
equivalent in ZF are not equivalent in ZF .

1.17. Lemma. Let o:M<s M, where M is an m-iterable premouse and M is
transitive. Then M is a premouse and m-iterable.

This is [6, Lemma 3.24]. One obtains the iteration maps for M canonically
from o and the iteration maps for M.

Definition. For M a premouse at « set Ip(M):=MNV,. Ip(M) is called the low
part of M.

Note that Ip(M) is a class in M which is uniformly definable for all such M. By
1.12(2), Ip(M) is preserved under iterations of M.

Definition. The core model K is the class
K:=LUU{lp(M)| M is an iterable premouse}.

In ZF~, this definition yields the core model defined by Dodd and Jensen. So
KE“V=K", where “V =K" refers to our definition of K.
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2. Condensation

Definition. For A a cardinal in K set K, := HX =the set of sets hereditarily of
cardinality <A in K.

Recall that ZF ~ was ZF without the power-set and replacement axiom.

2.1. Lemma. Let A be an uncountable cardinal in K. Then K, F“V=K” and
K, FZF .

Proof. Work in K. Let x € K,. x € lp(M) for some iterable premouse M. Let X be
the smallest substructure of M such that TC({x}) < X. Let o: M =X <M, where M
is transitive. M is an iterable premouse by 1.17, and x €Ip(M). card(M) <\ and
for all i <A also card(M,)<A. Thus M e K,, M, e K, (i<A), and the A-iteration of
M is the iteration of M in the sense of K,. So K, F“xe K”. [

2.2. Lemma. Kktcard(K,)= A, since KEGCH.

2.3. Lemma. Let A = w, be a cardinal and assume there is no inner model with a
measurable cardinal <A. Then K, covers V,.

Proof. If 0" exists, then some countable ordinal is measurable in an inner model.
So 0' does not exist, and by the extended Covering Theorem, V is covered either
by K, or some L[U], or some L[U, C], as in 1.3. The measurable of that L[U] is
=X For a<i: Bla)NK=V(a) NL[U]=B(a)NL[U, C], and hence K, covers
V.. O

2.4. Lemma. Let A be an uncountable cardinal and let K, cover V,. Then

(1) If p<X is a singular cardinal, then p is singular in K, and (p")*=p™.

(2) Let p be regular, w,=p <A, a€(p, p*), and cof(a)<p. Then « is singular in
K,.

Proof. (1) Let p<A be a singular cardinal. Let X be a cofinal subset of p,
card(X) <p. Because K, covers V,, there is YeK,, XcYc<p and card(Y)=
card(X)+w,<p. Y is cofinal in p and otp(Y)<p. Hence K, F*“p is singular”.

Assume that £=(p")¥ <p*. Then cof(¢)<p. Let X be a cofinal subset of §
card(X) < p. There is Y € K, such that X< Y < ¢ and card(Y) = card(X) + @, <p.
Hence K, E“&£=p" is singular”. Contradiction!

(2) Let p<A be regular, w,=p<a<p", and cof(a)<p. Let X be a cofinal
subset of a, card(X)<p. There is Ye K,, XS Y € a and card(Y) = card(X) + w; <
p. Hence « is singular in K,. [

2.5. Lemma, Let A be a transitive model of ZF ~+ V=K, and let w; S A. Let A
be a cardinal =2A NOn. Then A € K,.
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Proof. Let xc A. If xe L, then xe L, = K,. So assume x¢ L, There is M€ A such
that, in A, M is an iterable premouse and x €lp(M). Let n=MNOn<A.

A Ecard(TC(x))<card(M) <.

Take fe€ A such that f: 1 — TC(x) is surjective. Again using that AF V = K, there
is Ne A such that, in A, N is an iterable premouse and x, TC(x), felp(N). By
1.16, N is an iterable premouse. Hence TC(x), x, f € K, and card®(TC(x)) =n <A.
SoxeK, O

The following lemma is the tool which allows us to imitate condensation
properties of L.

2.6. Lemma. Let A be a transitive model of ZF "+ V=K, and let o, < A. Let
M =JY be an iterable premouse at k, and assume that « is singular in A. Then
Ip(M)c A.

Proof. There is fe A such that f:y — « is cofinal and y <«k. Let (M, m;) be the
iteration of M.

Claim. f¢ L.

Proof. Assume feL,. Then feL,=M,, and, by 1.12(3), fe M. But, in M, « is
regular. Contradiction! [J(Claim)

Since AFV =K, there is Ne A, such that

AF“N is an iterable premouse and felp(N)”.

By Lemma 1.16, N is an iterable premouse and felp(N). Let (N, p;) be the
iteration of N, and let 8 be a sufficiently large regular cardinal. fe N, by 1.12(2).
f¢ M, as in the proof of the Claim. Then 1.13 implies M, € N,, and so

Ip(M)=V.NM= V.M, = V.\N,= V.\NcA. O

The following lemma brings this method into a form which we will use in the
investigation of ‘accessible’ Jonsson cardinals.

2.7. Lemma. Let A be a transitive model of ZF ~+ V=K, and let A\ = AN On be
a cardinal. Assume that for every C and every vy <X with the property, that C is

closed unbounded in every cardinal p € (v, A], there exists k € C which is singular in
A. Then A =K,.

Proof. By 2.5, AcK,, and we must show K, = A. Of course J, = A. So let
xeK,, x¢ L. By 2.1, there is an iterable premouse M € K, such that x e lp(M),
card(M) <A. Let (M, m;, k;, U;) be the iteration of M. {k; | i <A} is closed cofinal
in every cardinal p € (card(M), A]. By our hypothesis there is i <A such that «; is
singular in A. By 2.6, Ip(M,)<= A, and so xelp(M))c A. O
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2.8. Lemma. Let U be an ulirafilter on B(a) N K and let A be a cardinal such that
A>a and A = w,. Assume that the ultrapower (*KNK)/U is not well-founded.
Then there are f,, f,, ... € K, such that, for i<w:

{r<alfi(efteU.

Proof. There are g;, g4, ...€*KNK such that, for i<ew, {v<a|g. (v)eg(@)}e
U. Take a cardinal u with {g; | i <w}< K,,. By 2.2, there is a function h € K which
maps p onto K,. Let M be an iterable premouse with h elp(M). Take X<M
such that aU{g |i <w}U{h}CX and card(X) = card(a) <A. Let o M=X<M,

whaore A i trangitive Qat £ — o L — ~—1(L\ 5 Yer X AL i an
WICTE vl 1S 1TaisSitive. ot i~ v \SI}, \L \w}’ n—u ‘U 'J, U \’J,}\I\. ivi 1D all

iterable premouse by 1.17, and so f,, h e K (i <w). TC(f.) S range(h), thus f, € K,
for i <w. Note that o}« =id. For i <w:

r<alfief@={r<alg.eglel. O

2.9. Lemma. Let A be a cardinal =w, and let w:K, — K, be elementary with
critical point a. Then there is an elementary map #: K — K with critical point «.

Proof. Set U:={xca|xcK and a e w(x)}. U is a normal ultrafilter on B(a)N

K.
8 (“KNK)/U is well-founded.

Proof. Assume not. According to 2.8, there are f, f,, . . . € K, such that, for i <w,
{v<a|fii(v)ef(v)}e U. Then

aen({v<a|f(efiW}={v<m(a)| 7(fiii(v)e 7(f)()}

So, for i<w, w(fi, Ha)enw(f)(a), an infinite descending e -chain.
Contradiction! [i(1)
Identify (*K N K)/UJ with its transitive ¢

ntify \K)/U with its transitive collaps

from K into (*KNK)/U is a map 7:K<M with critical point «. By 1.4,
M=K O

pse M. The canonical embeddin

2.10. Lemma. Let A be a cardinal =w,, and let m:K, — K, be a nontrivial
elementary embedding. Then there is an inner model with a measurab!e cardinal

<A.

Proof. 7 must move some ordinal since it moves the rank of some x € K,. By 2.9,

there is an elementary map 7 : K — K with critical point <A. By 1.5, there is an

isvnne mandal grith o meangiiva la ~raedinal ) m
NS mMoac: Wil a4 mcasSuiravi Cargiiiar <. LJ
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3. An inner model with a measurable cardinal

Theorem Al. Assume A is a Jonsson cardinal, and at least one of the following
holds

(1) A=p",

(2) A=w, and £<A,

(3) w<cof A <A,

(4) A is regular but not weakly hyper-Mahlo.
Then there is an inner model with a measurable cardinal <A.

The following proof is analogous to Kunen’s argument presented in the outset.
In order to build the structure to which the Jonsson property will be applied, we
have to assume that K, covers V,. By 2.3 this holds if there is no inner model
with a measurable cardinal <A. Thus we proceed by contradiction.

Proof of Theorem Al. Let A be as above but assume that there is no inner
model with a measurable cardinal <A. Then K, covers V, (2.3). By 2.10 we get a
contradiction if we prove:

Claim. There is a nontrivial elementary embedding m: K, — K,.

The rest of this paragraph is devoted to the proof of this Claim. Note that
A = w,. To demonstrate the main idea we consider the case (1), A = p™, separately
although it is a subcase of (2).

Case 1: A=p".

Case 1.1.: p is singular. By 2.4(1), (p")* =p~ =, and

1 Yac(p,A) K,F“a is singular”.
Let X be a Jonsson substructure of K,, i.e. X<K,, card(X)=A, X#K,. Let
m:A=X<K,, A transitive. Of course, 7 is not the identity. It suffices to show
A =K,. We use criterion 2.7. A is a transitive model of ZF "+ V=K, and
ANOn=A. Let C be closed unbounded in A. Take k € CN{p, A). w(k)e(p, A),
and by (1), K, F“m(x) is singular”’. Hence A F*“k is singular”’. [ (Case 1.1)

Case 1.2: p is regular. By 2.4(2),

(2) Vae(p,A) (cof(a)#p— K, E“a is singular”).

Choose g:p XA — A such that for all a <A with cof(a)=p the function B+—
g(B, @) maps p monotone cofinally into a. Let X be a Jonsson substructure of
(K,, g, p), where p is considered to be a constant. Let 7:(A, g, p)=X<(K,, g p),
A transitive. It suffices to show A =K,, and we use 2.7:

AFZF " +V=K and ANOn=A.
Let C be closed unbounded in A. Take k € CN({, A) such that cof(«) # cof(p). We
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can do this: since A = w, there exists at least two different cofinalities <A.

(A, g, p)E“the function B+ g(B, k) does not map p
monotone cofinally into «”.

By the elementarity of 7, the function 8 — g(B8, w(x)) does not map p monotone
cofinally into w(k). By construction, cof(m(k))# p, and w(k)e(p, A). By (2),
K, F“m(k) is singular”, and so AFk“k is singular’. O (Case 1.2)

Case 2: A =w, and §<A.

Define c:A — X by c(A)=card(A). Take g:A XA — A such that if « <A and
cof(a) = card(at), then the function 8+ g(B, @) maps card(a) monotone cofinally
into a. Let X be a Jonsson substructure of (K, g, ¢). Let m:{A, g c)=X<
(K,, g c), and A transitive. It suffices to show A=K,. We use 2.7:
AFZF "+ V=K and ANOn=A. Let C< A, y<A such that C is closed cofinal
in every cardinal w €(vy, A]. The set Z:={a <A | &(a) =a} is a closed subset of A
of ordertype =<¢. Take a regular cardinal g, such that o, <p, y<up, £€<p and
w=A:If A is a successor cardinal we can take w = A; if A is a limit cardinal, take
w =the first regular cardinal >w,,v,£& Z is bounded below u. Let 8=
max(Z Nw). Then 7(6) is a cardinal.

Case 2.1: w(8) is singular. Take « (8, w)NC. (k) =26, hence card(w(k))=
7(0), and wO)<w(K)<(w(@) <A By 2.4(1), (w(8))"=(w(6))**. Then
K, E“m(k) is singular”, and A F“k is singular”. 0O (Case 2.1)

Case 2.2: w(80) is regular. Take « €(6, ) N C such that cof(k) # cof(#). Since
W = w,, this is possible. é(k) =0, so w(k) e (w(0), (7(8))™M).

(A, g, ¢)E“the function B — (B, k) does not map 8 = &(k)
monotone cofinally into «”.

So B > g(B, m(k)) does not map 7(#) montone cofinally into m(x). By the choice
of g:cof(m(k))# m(0). By 2.4(2): K,E“m(x) is singular”. Hence AF‘“k is
singular”. [ (Case 2.2)

Case 3: o <<cof(A)<A.

There is D<A which is closed cofinal in A, and every k€D is a singular
cardinal.

(3) (K,, D)E“D is closed unbounded in the ordinals™.
Let X be a Jonsson substructure of (K,, D). Let m:(A, D)=X<(K,, D), A
transitive. It suffices to show A =K,, and we use 2.7: AFZF " +V =K, and
A NOn=A\. Let C be closed unbounded in A. By (3), D is closed unbounded in A.
Take ke CND. w(k)e D. By 2.4(1), K, F“m(x) is singular”, and so AF“k is
singular”. [ (Case 3)

Case 4: X is regular but not weakly hyper-Mahlo.
By Case 2 we may assume that A = w,, hence A is weakly inaccessible. For the
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moment, adjoin some distinguished set —1 as new least element to the ordinals.
For a € On define its (weak) Mahlo degree M(a)e[—1, a] by

M(a)=0 iff « is weakly inaccessible,
M(a)=8 iff for all y<p theset {§<a|M(8)=v}
is stationary in a, (8> 0).

Drake {10, p. 116}, calls an ordinal « with M(a)= g =0 weakly Mahlo of kind B.
o is weakly inaccesssible iff M(a)=0. a is weakly Mahlo ifipM(a)=1. a is
weakly hyper-Mahlo iffpM(a) = a. Hence 0 s M(A) <A.

For every a € On with 0< M(a)<a pick a closed unbounded set D, = a such
that: ye D, — v is a limit cardinal and M(y)<M(a). Define Dc A XX by
(v, a)e D vyeD,.

Let X be a Jonsson substructure of {K,, D, D,, M} A). (We can of course
assume that —1 is some element of K, like {{0}}.)

Let w:{(A, D, D,, M)=X<(K,, D, D,, M} A), A transitive. It suffices to show
that A =K, and we use 2.7 AFZF ~+ V=K and A NOn = A. By the elementar-
ity of 7 we get:

(4) D, is closed unbounded in A.

For a <A set D,:={y<a|(y,a)e D}.

(5) Assume 0<=M(a)<a<A. Then D, is closed unbounded in «, and if
v € D,, then M(y)<M(a) and 7 (y) is a limit cardinal.

Let C be closed unbounded in A. Do the following construction until it breaks
down: aq:=A, Bo:=MQ)<A. If a,, B, are constructed, put o, :=the wg ,,-st
element of CND,, and B, ,1:=M(a, ;).

Obviously, «; and B; exist. Because m(a;)eD,, B;=Ml(a;)<M(m(a))<
M(A) = B,. Hence

(6) cof(a;)= Wg 1~ Wg, 41

(7) Assume that a,, B, are constructed (n=1), cof(a,)> wg .1, and M(a,,)=0.
Then @, 1, B, exist, and cof(o, 1) >wg 1. Also B, .1 < B,

Proof. Because B,=M(a,)=0, D, is closed unbounded in a,. cof(a,)>
wg .1 =w;. Then CND,_ is closed unbounded in a,, and we find a,.,:=the
wg 1-st element of CND,. By (5), Bui1=M(a,,)<M(a,)=8, and so
cof(a, +1) = wg 1> wg, - (7)

Because the 3, form a decreasing sequence of ordinals, the construction must
stop. By (7), it only breaks down if 8,=—1. So there are «,, 3, with B8, =
M(a,)=-1, n=1. Set k=a,. ke CND,_ .. M(x)=—1 implies M(m(x)) = —1.
So m(«) is a singular limit cardinal <A, and by 2.4 (1), K, F“w (k) is singular”.
Then AF“k is singular”. O

4. Proof of Theorem A2

To obtain Theorem A from Theorem Al it is enough to prove:
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Theorem A2. Let A be a Jonsson cardinal and assume there is an inner model
with a measurable cardinal <A. Then 0" exists.

Proof. Let u <\ be the smallest ordinal measurable in an inner model. Let U be
a filter on p such that Ue L[U] and L[U]F“U is a normal ultrafilter on . Set
v:=card(n). Let f:y — p be surjective. Take g: w3 — w; such that for £ €(0, w,),
g"(w x{Z}) = ¢. (This function demonstrates that w; is not a Jonsson cardinal.)
Let X be a Jonsson substructure of (JU, f, g). Let m:{JC, f, )= X<, f, 2).
Set @ = ().
(1)  J9:«0 is a normal ultrafilter on .
A condensation argument shows that B(2) NL[Ul<J7. So
(2) L[UJF“U is a normal ultrafilter on g”.
By the minimality of w:

3 f=p
4 wpNX=u
Proof. Case 1: u<w;. Then p=f'wcX
Case 2: = w;.
p=m"Yw)={r Q] {eXNa}=0:.
Hence X N, is cofinal in w,, and

o =U{{|{eXVo}=U{g"ox{{D|{eXNw}c X

Case 3: p>w;. Assume that u N X# w. Then, since p =f"y, yNX#v. Let a
be the critical point of w. a <y. Let K, be the term

{x|xeLv3y, f, M (M is an iterable premouse A f: 20 TC(ExY),

A, f, TC({x}) € Ip(M))}.

(a) K, = (K*)J*U
Proof. By 1.6, K < L[U]. Hence K, < HYV'=J}/.

(<) Let x e K,. If x € L, then obviously x € (K,)". Otherwise there are v, f€ K,
such that f:y—=2°>TC({x}), and TC{x}eK,. Because K,FV =K, there is
MecK, such that M is an iterable premouse and v, f, TC({x})e Ip(M). Since
K, cJ, xe (K~

(2) Let x € (K,)’%. If x € L, then obviously x € K,. Otherwise there are v, f, M€
JY such that JYE“M is an iterable premouse and f: vy 5 TC({x}) and

v, f. TC({x}) € Ip(M)”. By absoluteness, in particular by 1.16, ““: - - holds in the
universe. Hence x, TC({x}), fe K, and xe HY=K,. O (a)
Analogously:

b) K =(K™
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Since K, is definable in J¥ and JY, by the same term,
(¢) =V K,:K, <K, with critical point a.
By 2.9, there is an elementary embedding 7 : K — K with critical point c.

By 1.5, there is an inner model with a measurable cardinal <w: if y=w;, 1.5
yields an inner model with a measurable <y <y, and if vy = w,, 1.5 yields an inner
model with a measurable <y =<p. This contradicts the minimality of w. [ (4)

5) wl+D=id
©6) U=U.
Proof.
U={xecJl |xeU}={xeJV | n(x)
=xeU}=UNJY.
Then JY=J{ and U=UNJ=U. O(6)
(7Y m:JY<JY  with some critical point o > .
Set D:={xcal|xeL[U] and «a € w(x)}. D is an ultrafilter on L(a) NL[U].
(8 (LLIUINL[U)N/D is well-founded.

Proof. Assume not. Then as in the proof of 2.8 we can show that there are
fo, fi,...€JY such that {v<a|fi(v)efi(¥)}eD for i<w. Then as in 2.9,
7 (fi1){(a)e w(f;)(a) for i <w. Contradiction! [ (8)

Hence the canonical embedding from L[U] into (*L[U]NL[{U])/D vyields an
elementary map #: L[U]— L[U] with critical point a>u. So 0" exists. [J

5. The weak Chang Conjecture

In this paragraph we give two equivalences of wCC(p™). One, wCC*(p™), will
be used in the proofs of Theorems B and D; wCC*(p™) is an apparent strengthen-
ing of wCC(p™) which does not seem interesting in itself. The other equivalence,
5.1(3), is a statement about the ranks of functions which was also considered by
Shelah [18]. The equivalence between wCC(p™) and 5.1(2) has already been
proved by Galvin (see [18], Section 35]).

Definition. Let A =p* be successor cardinal. Let wCC*(A) be the assertion: For
every transitive structure 2 =(A, ¢, ...) such that the language of U is countable
and A" < A < H, -, and for every £ <A there exists an elementary map : % — 2
with the properties:

(1) U is transitive.

(2) There is a€(& A) such that wla=id and =w(a)=A. (So «a is the critical
point of r.)
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(3) For every B<A there exists an elementary map 7 :8—% such that B is
transitive, A<B, 7' | B =, and BNOn> L.

So wCC*(A) is similar to wCC(A) but wCC*(A) demands that the various
substructures of ¥ required by wCC(A) grow nicely out of one elementary
substructure of %, namely out of #"%. Also the critical point of 7 can be
arbitrarily high below A.

Definition. Let A be a regular uncountable cardinal. For f, g: A — A define: f<*g
iff {v<A{f(v)<g(v)} contains a closed unbounded subset of A. <* is a well-
founded partial order. For f:A — A define the rank of f, ||f||, by

Ifll = sup{ligll+ 1| g <*f}eOn.

Theorem 5.1. Let A=p* be a successor cardinal. Then the following are
equivalent:

(1) wCC(r),

(2) Vf: A=Al <A™,

(3) wCC*(A).
Proof. (1) — (2). Assume there is f:A — A with ||f=A". It is well known that
there is a sequence {f; | i <A™) of functions from A into A such that i <j<A*—
fi <*f, <*f. For i<j<A™" there are closed unbounded sets C;, D; = A such that
veC; = fi(v)<fi(v) and ve D, — f,(v)<f(v). We code the f, C;, D; into rela-
tions on A*: Let

F={¢ v, i) fi(v)=¢},
C={(v,i,j)|i<jand ve G,
D={{,i)|veD}

Apply wCC(A) to the structure A=(r", €, f, F, C, D). So there is a <A such that
for all B<A there is X<¥U with XNAcea and otp(X)>B. Let B=
sup{f(») | v=a}<A, and take X< with XNAcea, otp(X)>B. Let a=
sup(X NA)=a. Since X<, we have that for i,je X, i <j: C; and D; are cofinal
in &, and so @ € C; and & € D;. Then i+ f;(&) is an order preserving map from X
into f(&). But this is impossible since otp(X)> g =f(a).

(2)—>(3). Let A=(A, <,...) be a transitive structure with a countable lan-
guage and A* <= A  H,.. We may also assume that card(A)=A"; let h:A™— A,
For every 7<<A" take a surjective map f,:A — +. Put these maps together in
FAXAY =A™, f(g,7)=f.(£). We may as well assume that h, F are already
functions of U, i.e. A=(A, e, h, F,...).

The following system of structures and embeddings is modelled after the one in
Ketonen [13]. Let

E:={r<A"|h"r is transitive and "7 <%
and (W"7)NOn=17}.
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) R 3.4 i At (Nntn that A I N\ TGar ac B cot NT QN L7
E is closed unbounded in A*. (Note that A S i+ O T€L 8CL © Al Ty
For 7€ E let

O oS A (B o o N and (h o F'aXNOn =— o)

e V=AU T R SRe aliu e Y gl o Ay

Every such C, is closed unbounded in A. Set AL=UA"[(h - fla), (1€ E, acC,).

(a) leto,7e E,acC,NC, and o c .
Then AT =AT NA°,

ove

Proof. Let xc¥UZ. x=heof(£) for some ¢<a. x is definable in A from the
parameters ¢ and o. & oe¥] and AL<U. Hence x ;. Conversely, let xe
A-NA°. x=h(n) for some n<o. ATEIE<A n=1,(&), and since U NA =«
there is £ <a with n=£,(£). Then x=h £, (£§)eAI. O (a)
In the situation of (a), A is an €-initial segment of A7, since A is transitive.
1~ T.NT T T W axrbe e WT S0 tsmimoiéicrn o]

For 'TL—_D, ut:\,.,., 181 Ty U Su<a <4, where Ay is transitive. Byt

following the proof of (a), we get immediately:

F N an (T
<,

oo
al 1p, alili U Ty

Then #7 | A = %2 and AT < A

1 /0%

Of course, card(¥7) = card(a)<A. So for every 7€ E we can define a function
g.:A— A by

(T ~ Pal
_J¥8,MN0n, Hacl,
g (a)=
0, else
VRN re . ] - 21 3
{c) Ifo,7eE a<r, then g, <%g.

Proof. o =hof (v) for some v<A. C:=(C,NC,)—(v+1) is closed unbounded

- ) ~ = paree N MY tlans ) i T~z Taey {2 o () = oytad Y late T Ve
in A, @ UIpHcs ulat & i,. Lnceri, Uy \a), B Q) = 0P\t Iumy <<

otpIzNOn)=g (). T(c)

(dy For every g: X — X there is 7€ E such that
{acC, |gla)<g. (a)}is stationary in A.
Proof. ot, then 1€ E— g <*g Then, by (c), lig]l=A". Contradicting our

Now fix er. Define g: C, —> (A +1) by
g(a)=sup{AzNOn|acC, and o c AT} =<A.
(e) gla)=A for cofinally many a <A.

Proof. Assume not. By (d), there is 7te€E, o<t such that
S:={aeC,NC, | gla)<g.(a)} is stationary in A. Take a €S such that o e9.
Then g.(a) =ATNOn=<g(a)<g (a). Contradiction! [I (e)
Now let £ <A be given; we check wCC*(A) for ¥ and & By (e), take a > ¢ such
3

that o(tv\ = A. We show that the elementarv man ¢ QTUAQT catichiag wCF (A OF

..... vwo SNIOW Uial inc C}omonary map w7, < SalISnes Wl LU "iagy, U

course 7 | @ =id and w(a) = A. If B <A is given then, since g(a) = A, we find 1€ E
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with a € 9 and o €7 such that A2NOn>B. «7:AL—Y is elementary, and by
(b), m, M AT =7e, A<AT.
(3)— (1) is trivial. O

6. Proof of Theorem Bl

Theorem Bl. Let A = p* =w, be a successor cardinal and assume WCC(A). Then
there is an inner model with a measurable cardinal <A™.

Proof. Assume not. Then, by 2.3, K, covers V,.. Take G:A X A" — A" such that
if 7<<A* and cof(t) = A, then the function £~ G(¢, 7) maps A monotone cofinally
into 7. Let A :=(K,+, G). By 2.4(2),
Te(M, AT) > AE“E—> G(§ 1) does not map A monotone
cofinally into — 7 is singular”.

Let (%)=(*), be the property: For every £<A there is an elementary map
m: K — K, - such that:

(1) K is transitive.

(2) There is a (£ A) such that 7} a =id and w(a)= A.

(3) For every iterable premouse M with card(M)<<A there is an elementary
map 7' : K — K,- such that K<K', w=='1 K, and Ip(M) < K".

Claim. (=), holds.

Proof. Let ¢ <A and apply wCC*(A) to (K, +, G) and & So there is an elemen-
tary embedding :(K, G)—(K,-, G) such that (1)-(3) in the definition of
wCC*(A) hold.

Let a € (& A) be the critical point of 7. Let M be an iterable premouse with
card(M)<A. For i<w let M, at k; be the i-th iterate of M. Without loss of
generality assume that ko€ (o, A). Put B =k,,. Since A =w, we have 8 <A. Apply
(3) of the definition of wCC*(A) with this 8: There is 7' :(K', G') = (K,+, G) such
that

(K,G)<(K',G">, a=7'}K and K'NOn>p.
Choose either Rf=k,, M=M, or k= Koo M =M, making sure that
cof(k) # cof(a). Then
(K', GHE“E—> G'(& ) does not map «
monotone cofinally into k.
(K,-, GYE“E— G(§ 7'(K)) does not map A montone
cofinally into 7'(k)”.
' (R)e (A, A™) and so (K-, GYE“w'(k) is singular”. Then (K’, G")F“k is singular”
and by 2.6, Ip(M)<lp(M)< K'. O (Claim)
Theorem B1 follows immediately from:

Lemma 6.1. (*),, A >, implies that there is an inner model with a measurable
cardinal <A.
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Note that this does not mean that we can yet strengthen the conclusion of
Theorem B1 to ‘‘there is an inner model with a measurable <A, since in the
proof of (*) we needed that K, covers V,-. The proof of Lemma 6.1 is similar to
the proof of Ketonen’s theorem that a non-regular ultrafilter over w, implies the
existence of 07. (See e.g. Jech [11, p. 489].)

Proof of Lemma 6.1. If A is inaccessible in K, put £ =0. Otherwise let £ be the
cardinal in K such that A = (£")¥. Apply (*)=(*), to the structure K, and £ Let
m:K — K, - be an elementary map satisfying (1)-(3) of (). Let a (&, A) be the
critical point of .

(a) A is inaccessible in K.

Proof. Otherwise A =(£")*. Let M be an iterable premouse with card(M)<<A
such that Ip(M) contains a surjective map f: £ — a. By (*) there is an elementary
map 7' : K' — K, - such that K’ is transitive, K<K', w=#'| K, and felp(M)< K.
But then #'(f) is a map from £ onto A, contrary to A being a cardinal. [ (a)

b) KcKk

Proof. Let xeK. If xeLNK= (L)X, then xeK. So assume x¢ (L)X. Since
KEV =K, there is Me K such that

K¥“M is an iterable premouse and x €lp(M)”.

K,-F“m(M) is an iterable premouse”, and by 1.16, 7r(M) is an iterable premouse in
the universe. 7 | M: M — (M) is an elementary map. By 1.17, M is an iterable
premouse. Hence xe K. [ (b)

0 PBa@nKek

Proof. By (a) there exists an iterable premouse M with card(M)<A such that
B(a)NKelp(M). By () there is an elementary #':K — K, - such that K’ is
transitive, K<K’, w=='| K and Ba)NKelp(M)cK’'. As in (b) we have
K'csK Bla)NK=PB()*, and K'F“B(a) exists”. Then KF“P(a) exists”,
B(@) = (B(a))*, and B(a) NK =R(@)*eK. O (c)

It follows from (c) that U:={xca|xeK and acw(x)} is an ultrafilter on
Bla)NK.

(d) (*KNK)/U is well-founded.

Proof. Assume not. By 2.8 there are f,f;,...€K, such that for i<w:
{r<a|fi1(v)efi(w)}e U. Let M be an iterable premouse such that fosf1s-..€
Ip(M) and card(M)<A. By (*), there is 7': K’ — K,- such that K’ is transitive,
K<K', m=#'1 K, and Ip(M)< K'. For i <w:

acm({realfi@efiMD={r<r|w'(F. )@ enF)@)}

So 7' (fo)(a) 3 7'(fi)(a) 3+ - - Contradiction! O (d)

The canonical embedding from K into (*K NK)/U yields an elementary map
7: K — K with critical point a(see 1.4). By 1.5, there is an inner model with a
measurable cardinal <A. [J
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We remark that for A = w, the proof of Lemma 6.1 goes through unchanged
with the exception of the last sentence. Hence 1.5 yields that there is an inner
model with a measurable cardinal <A = ;.

Lemma 6.2. If (*),, holds, then there is an inner model with a measurable cardinal

S(l)l.

This will be used in the next section.

7. Proof of Theorem B
To prove Theorem B, it is now, by Section 6, enough to show:

Theorem B2. Assume A =p* is a successor cardinal and wCC(A) holds. Assume
further that there is an inner model with a measurable cardinal <A*. Then 0"
exists.

Proof. Let p be the smallest ordinal which is measurable in an inner model. Take
U such that L{U]E“U is a normal ultrafilter on w” and Ue L[U].

@ (<A

Proof. Assume (p ) Y1=A". By 1.6, B(n) N K =R(p) NL[U], and so (u )MV =
()X =A". Hence

(i) 7e(u, A") = K, +F*“1 is singular”.

(i) (#),, as defined in Section 6, holds.

Proof. Let £€<A. We apply wCC*(A\) to K,- and & Let m:K— K,+ be an
elementary map satisfying (1)-(3) of wCC*(A). Let a € (£, A) be the critical point
of w. Let g =7 (). We show (3) of (*),:Let M be an iterable premouse with
card(M)<A. Let k be the measurable of M. Without loss of generality assume
that & <k <A. By (3) of wCC*(A) there is 7’ : K’ — K, + such that K’ is transitive,
m=a' K, and K'NOn>«. K,-E“w is the greatest cardinal”’. Hence K'F“f is
the greatest cardinal”, and K'E“k is singular”. By 2.6, Ip(M)< K'. O (i)

By Lemma 6.1 and Lemma 6.2 there is an inner model with a measurable
cardinal <A. Hence p =A.

Apply wCC(A) to the structure K,-: There is & <A such for all B <A there is
X<K,- with XNAca and otp(XNAT)>B. Choose B=(a™)*. Since p is
measurable in L[U] it is inaccessible in K; hence 8 <A. There is X<K,+ with
XNAica and otp(XNAT)>B. Let m:K=X<K,., where K is transitive.
7 '(A)<a and KNOn>B. The proof of (b) in the proof of Lemma 6.1 goes
through word by word, and so K < K. Since 8 is regular in K, KE“B is regular”.
So K,-F“m(B) is regular”, and A <(B8)<A™. This contradicts (i) above. [1(a)

By (a), Ue L,-[U]. Pick £<A such that £>p, if w <A, and such that £>n if
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L, [UJE“A =77 and 7 is a cardinal”. Apply wCC*(A) to L,-[U] and £: There is
an elementary embedding 7: A — L,-[U] such that (1)-(3) of wCC*(A) hold. Let
a € (& M) be the critical point of 7. The condensation lemma for relative construc-
tibility shows that A = L,[U] for some 6, where U =="1(U).

(b) w<A.

Proof. Assume p=X. Let g=7n'(u). @<p, and by the minimality of
w:L[UJE“U is not a normal ultrafilter on ”. A condensiationiargument for the
L,[Ul-hierarchy shows that already for some 8 <A: Lg[U]E*“U is not a normal

ultrafilter on &”°. By (3) of wCC*(/\) there is an elementary map =': A'— L,-[U]
such that A’ is transitive, rfrl<A' m=7x'}L ,.ffﬂ and A’NOn>R. Another

LIidal LEANISIREV "‘UL all Fa V0 0100 Lw

condensation argument shows that A’=L,[U] for some 6'>p. Since 6'>B,
Lg[U]E“U is not a normal ultrafilter on 3. 7' is elementary, and L,.[JUJE“U is
not a normal ultrafilter on u”’. Contradiction! [J (b)

By (b), a>¢>u. So g =p and 7w =id} u. Moreover L,[U]=L,[U].

e

{© A is inaccessible in L[U].

Proof. Assume not. There is n such that 7 is a cardinal in L[U] and A = (n )tV
Since n<a <A, L{UJF“a is singular.” Take B<<A such that Lg{UJF“a is
singular”. By (3) of wCC*(A) there is an elementary map 7':Ly[U]— L, [U]
such that Ly[U]<Ly[U], =o'} L,[U] and 6'>B. L,[U]E“« is singular’, and

since 7' is elementary, L,-JU]E“A is singular”. Contradiction! [ (¢)
(d PB(a)NL[UJe Ly[U]

Proof. By (¢), B(a) NL[U]e L4[U] for some B <A. By (3) of wCC*(A) there is
7' :Le[U]— L, [U] with Lo[U]<Ly[U] and R(a)NL[U]eLy[U]. But then
Bla)NL[U]eL,[U]. O

Let D={x<a|xeL[U] and a € w(x)}. By (d), D is an ultrafilter on B(a)N
LI[U].

(e) (“LIU]INL[U]/D is well-founded.

Proof. Assume not. Then there is a sequence fg, fi, ..., which is descending in
(*L[UINL[U])/D. Using condensation arguments similar to those in the proof of
2.8, we may assume that f, fy,...€ Lg[U] for some 8 <A. By (3) of wCC*(A),
there is an elementary embedding =': Lg[U]— L,-[U] such that L,[U]<L,[U],
m=m"l Le[U], and 6'>B. fo, f1, ...€ Le[U]. {v<a | fs1(») e f.(»)} e D, for i < w.

uu

aem{r<al|fi(efiMh=r(r<a|fia®)efi(»)}
={v<r| 7 D@ e ),

for i <w. In other words - - - € w'(f)(a) € 7' (fy)(a). Contradiction! [ (e)
Now the canonical embedding of L{U] into its ultrapower by D yields a

nontrivial clculcuuuy culucuuulg 01 LLUJ inio LLU_[ with critical pOlnt )[.L So U
exists. [
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8. Proof of Theorem C

We first give another definition concerning the partition relation defined in the
introduction.

Definition. Let wr =17, 7#0. « is called <r-Erdos iff for all regressive functions
f:[CT=® — k, C club in «, there is a homogeneous sequence (X, | a <T).

It is well known that for limit ordinals « the least k which satisfies k — (a)5“ is
a-Erdds. On the other hand Baumgartner and Galvin have shown (see [2]) that
the least « which satisfies k — (<w,)3* is singular. A straightforward generaliza-
tion of their argument shows, that the least « which is almost <w;-Erdos is not
Mahlo. But it is easy to see that every <<r-Erdos cardinal is Mahlo.

Silver proved the consistency of Chang’s conjecture starting with an ®,-Erdos
cardinal. A rather straightforward adaption of his method gives the consistency of
wCC(w,) starting with a <<w,-Erdos cardinal. For the sharper result presented
below we have to be slightly more careful.

We first mention two simple facts.

Fact 1. Let k be almost <t-Erdds. Then k is strongly inaccessible.

Fact 2. For 0<v<w, let g, map w; onto v and let g,=@. Define f,: v, — o, by
f.(a) =otp(gla). Let f:w, — On. Then
Ifl=w, iff forallv<e,: f,<*f.

A proof of Fact 2 can be found in [1].

Theorem C. Let M be a countable transitive model of ZFC and let « be almost
<w,-Erdos in M. Then there is a generic extension N of M such that NFwCC(w,).

Proof. By standard methods one can show that x remains almost <7-Erdos
(7 = oY) in any generic extension obtained by a set of conditions Q s.t. |Q| <. So
we may assume w.l.o.g. that MA , is true in M. We work in M from now on. Let
P be the Silver collapse for making k to @,. So the elements of P are functions
p:A—k st

() Acw Xk pla,B)<B,
() KB |3ala, Bycdom p}{<w,,
(iii)  sup{a |3B{a, BYedom p}<wy,

and we have p=<gq iff p2q.
For Bk set

P(B)={peP|dompcw; xB}.
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Clearly P is w;-closed and it is known that P satisfies the x-a.c. We show that
wCC(w,) is forced to be true. We verify the equivalent version given in Theorem
5.1(2).

So it suffices to show:

Claim. Let pl-“f:w, — « and ||[f|=«”. Then there is some £ <w, and q<p
such that ql+f(¢) = w,.

Let G=(g, |v<k) be the ‘canonical’ generic sequence of collapsing maps
adjoined by P. Since P satisfies the «-a.c. there is some p<k such that
fe M[G | p]. We may assume that p € P(p), too.

Now define f,: 0, — w; by f.(a) =otp(g’a). So we have f, e M[8,].

In M define h,: w, X P— o, by h,(a, q) = otp{q(B, ») | B <a}. We clearly have

1 qlf(@=h(e q).
Applying Fact 2 we get

2  phVv <o, f,<*{
We now strengthen this to
(3)  pVv <w, MIG|pU{p}IES, <*f.

Proof. Assume not. So let G be P-generic over M such that pe G and the
statement is false in M[G]. Let f,, f denote the G-interpretation of f,, f. So there
is some v <w, S.t.

E={a <o, |fla)=<f,(a)}

is stationary in M[GlpU{p}]. Set A=pU{v}. So we have M[G]=
M[G} A G<«k— A]. By the product theorem G | k — A is P(k — A)-generic over
M,=M[G} A). But P(x — A) is w,-closed in M,, since M and M, have the same
w-sequences from P(k—A). So by a well-known fact E remains stationary in
M,[G| k—A]=M[G]. This contradicts (2). O (3)

So there is a sequence (C, | v<«) such that C,e M[G | p U{v}] and

4 pI-Vy <w, (C, club in @; and Va € C, f, (o) < f(a)).
Hence we especially have
(5) Let v<k and a <w;. Set

D={geP(pU{r})|Ty >aqltyeC}.
Then D is dense in P(p U{v}) below p.

Now define a relation R< PXw; Xk by
(g, ¢, v)eR iff qltacC,.

Choose some Ack s.t. V. =L [A]and let U=(L.[A], €, A, {p, p}, P, R). Note
that 9 has definable Skolem functions. Since « is almost <w,-Erdds we im-
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mediately get

(6) There is a sequence {I, | @ <w,) such that
(i) Lek—p, otpl,=w(l+a),
(ii) for all o, B<w; H, N(P(p)Uw,;)=Hz N(P(p)Uw,) where H, =
the Skolem hull of I, in %
An easy argument shows that we also may assume w.l.o.g. that
(iii) for all a<B<w, I NIg=9.
Now set Q,=H,N{qeP(pUL)|q=<p} and Q=Q,NP(p). Note that Q=

Q, NP(p) for all « <w, by (6) (iii). Let Q be the closure of | J, <., Q. under finite
unions of compatible elements. We clearly have

¢ Let D < Q, be predense in Q,. Then D is predense in Q.
A simple A-system argument yields
(8) Q satisfies the countable antichain condition.

Now let ¢ = w; NHy. So £ <w,; and we have £ =w, NH, for all a <w, by (6) (ii).
Obviously, we have

(99 ForallgeQ domgcéxk.

Now let £ =sup, &, where §, <& For n<w and T, set
D(n,7)={qeQ,|Iycé-&, qlbyeC}
It follows from (5) that
(10) Let n<w, 7€, Then D(n, 7) is dense in Q, (hence predense in Q by
(7).
For 7,7el, <, set D(7, 7)={qe Q. |3y q(y, 7)=7}. Clearly, D(7, 7) is dense
in Q,, hence predense in Q. Now let

F={D(n, )| n<o, re LYU{DGE )| 5 rel, 7<t}

By MA,, there is some filter G = Q which meets all D e %. Eventually, we set
q= G. Then g€ P, since |q|<w, and dom q = & X k by (9). We now show that q
satisfies our crucial claim. Clearly, g <<p. So it suffices to show:

1) qlFf(®)=w,.

Proof. Let Te L, for some a <w;. Since G meets D(n, ) for all n <w we get by
(4) that qlF£e C,. So by the other part of (4) we only have to show that for all
8 <w, there is some 7€lJ <, L, such that q'Hf.(£)=8. So let §<w;. Let
§<a<w, and choose Tel, such that otp(I, N\7)=8. Since G meets all the
D7, 7) (eI, N1) we have h (£ q)=8. But then ql+£.(§)=6 by (1). O
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9, Proof of Theorem D

The fundamental result about the relationship between partition cardinals and
K is Jensen’s indiscernibles lemma (see [9]). To state this we first need a
definition.

Definition. (a) Let A =(L.[A], €, A,...) where A<« and set % =U| Lg[A] for
B <k. Ick is a good set of indiscernibles for U (or good for %) iff for all ye I:
(G1) U, <Y,
(G2) I—v is a set of indiscernibles for (U, (&)s<,)-
(b) Let A=(L [A], €,A,B,,...,B,)where Ack and B, L [A]. Then ¥ is
amenable iff B,NxeL [A] for all xe L, [A] and i=n.

Jensen’s Indiscernibles Lemma. Let N be amenable such that AV =K. Let I be
good for U such that cf(otp(I)) > w. Then there is I' € K such that I' is good for U
and IcTI'.

Actually, in [9] slightly stronger assumptions about U are made. Namely it is
stated that A =(K,...). But the proof given there shows that only AF V=K is
needed. As an easy consequence we get that for cf(r)>w,; every <r-Erdos
cardinal is <t-Erdo6s in K. But the interesting case for us is 7 = w,. Here Jensen
helped us by showing: Let k be <w,-Erdos. Set T = »¥. Then « is <7-Erdos in K.

Of course, by the remarks made in the last section this does not immediately
give the analogous result for almost <w;-Erd6s cardinals. But the proof below
shows that it is true.

Theorem D. Assume wCC(w,). Let k =w, and t=w¥. Then k is almost <1-
Erdés in K.

Proof. We distinguish two cases.

Case 1: (*),, holds.

Set p=w;. By Lemma 6.2 there is an inner model with a measurable cardinal
<p. But then every cardinal bigger than (p")* is measurable in an inner model.
But the arguments of Section 6, implicitly contain a proof that x is inaccessible in
K (since wCC(w;) holds). So « is measurable in an inner model. Hence « is even
Ramsey in K. [0 (Case 1)

Case 2: (*),, does not hold.

We first show:

Claim 1: Let ge K such that g:[«]"® — n where n <k. Then there exists a
sequence (X, | « <w,) (in V) which is homogeneous for g.

Proof. Let £ <, such that (*),, fails for & Let A =(K,, €, g {m}). By Theorem
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5.1, wCC*(w,) holds. So there is some elementary map o:% — % such that

(i) ¥ is transitive (and countable).

(i) There is a € (&, w,) such that o(a) =w,, ocla=idl a.

(iii) For every B <w; there exists an elementary map og:8; — U such that B,
is transitive, A<By, o 1 =0, and Bz NOn>B.

Let o(1j) =n and B, = (B, €, gs, {71} for B <w,. Since (*),, fails for &, there is
some countable iterable premouse M such that Ip(M) & B, for all B <w,. Clearly
we may assume w.lo.g. that M is a premouse at a y>7. Now let
(M, 7y, Vi, U)izj<a, be the os-iteration of M, hence w,=suply, |i<w}. For
i<, set & =g, | [v.]". We first show:

¢)) g e M.

Proof. Set y =1+, § =g, M=M,, & =a,. By considering & we see that g%, and
B, FV =K. Hence there is some Ne%®B, such that g<Ip(N) and B,F“N is an
iterable premouse”. Applying & again we see that N is really iterable. So by the
results in Section 1 we only have to show that N, ngl. But this is clear since
otherwise we would get M,, = N,,, hence Ip(M)c N=B,. O (1)

Now by 1.14(1) for each j < w, there are some x; € M, and §; €{y; | i <j}~* such
that g = mo;(x;)(;). By Fodor there is some stationary E <, such that for all
jeE (x; p;) is constant, say (x, p). Now set C; ={v; | i <j, v, >max g}. By 1.14(3)
we get

(2) There is a sequence (8, |n<w), 8,<, such that VjeE Vn<
o ZIGT =1{8.}.
Now set Y; =a”.C; and 8, =0(5,). Note that by (iii) 8, =as(5,) for all B <w;.
Hence (Y; | j € E) essentially gives us Claim 1. [ (Claim 1)

We now show that « is almost <7-Erdds in K. Clearly « is regular in K. Now
let f e K such that f:[k]<® — A where A <« is regular in K. We have to show that
there is a sequence (X, | @ <7)< K which is homogeneous. Consider the amena-
ble structure A =(K,, e, D, f) where Dc«k is such that K,=L,[D] for all
K-cardinals p=<«. By Claim 1 we get:

(3)  There is a sequence (I, | @ <w,;) such that otp(l,) = w(1+a) and
(i) I, is a set of indiscernibles for U,
(i) if ye[L 1" 8l ]", <A, then
AEH(P, ) d(p, &) for all formulae ¢.

Now choose the sequence (I, | @ <) such that min I, is minimal for sequences
with the above properties. Then standard indiscernibility arguments show that we
also have

(iii) I, —v is a set of indiscernibles for (X, (&)¢<,),

(iv)y yel, — v is inaccessible in .

The sequence (I, | @ <w;) is clearly homogeneous for f. So let a=tps(lp). It
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suffices to show:
4) ackK.

To see this, we apply a well-known argument due to Silver. Namely, there is a
sequence (R, | @ <7=¥)e K such that the statement *“‘f has a homogeneous set
X of order type a such that tp;(X)=a” is equivalent to “R, is well-founded”.

So it remains to prove (4). For this let 9, be the Skolem hull of A U I, in ¥ and
let %, =%, NL, [D], where p,=supl,. Then let K, = K, where %, is
transitive. As a consequence of (3) (i)-(iv) we get:

&) (a) a<B— ., is an initial segment of mwzl,,
b) a<B—>H, <,

Solet A=(K, e, D, f)=Ua<w, &, and I =1, <, m2L,. Then we get:
(©) oA is amenable, ALV =K, otp(I) =y,
and T is a good set of indiscernibles for .

So we can apply Jensen’s indiscernibles lemma. Hence there is some I' € K such
that I'=2 T and I' is good for A. So we have tpf(I') € K. But since 7, A =id| A we
have a =tps(Ip) =tpr(D) =tp(I"). O
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