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Introduction

The connections between representation theory and geometry run far and deep.
In geometry we often consider the projective space P1(C) = C ⨿ {∞}. One way to

construct P1(C) is as the quotient GL2(C)/P where

P =
{(

a 0
b c

) ∣∣∣∣∣ a, c ∈ C∗, b ∈ C
}
.

More generally, we can take the group

P :=
{(

A1 0
∗ A2

) ∣∣∣∣∣ A1 ∈ GLk(C), A2 ∈ GLn−k(C)
}

in GLn(C) to obtain the classical Grassmannian of k-dimensional subspaces in Cn as the
quotient GLn(C)/P , which is a projective variety. Even more generally, for a reductive
group G over the complex numbers together with a parabolic subgroup P , one can observe
that the quotient G/P has the structure of a projective variety — called the partial
flag variety. These geometric objects are hugely important in representation theory. For
example, one can recover the irreducible rational representations of G as cohomology
groups of line bundles on a partial flag variety by the Borel–Weil–Bott Theorem, see
[Dem76].

The partial flag variety G/P has a standard decomposition into locally closed subsets
called the Schubert cells, which give standard bases of its cohomology ring. In the
example of Pn this is given by

Pn(C) = Cn ⨿ Cn−1 ⨿ · · · ⨿ {pt}.

The Schubert cells in partial flag varieties are always of the form Cn, but their closures
in G/P — the Schubert varieties — have rich geometric structure.

In this thesis, we consider an infinite-dimensional analogue of a partial flag variety,
called the Affine Grassmannian GrG. We consider the ring of Laurent series C((t)) and
the ring of power series C[[t]]. Then GrG(C) is given by G

(
C((t))

)
/G(C[[t]]). This object

has the structure of an ind-projective ind-variety, a notion that is very similar to that of
a projective variety, but which also captures the infinite-dimensionality of GrG. It turns
out the Affine Grassmannian has a decomposition into finite-dimensional subvarieties,
which we also call Schubert cells. Their closures, the Affine Grassmannian’s Schubert
varieties, are projective varieties. Unlike the classical case of partial flag varieties, the
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Schubert cells of the Affine Grassmannian have a much richer structure. It turns out
that these Schubert cells are bundles over partial flag varieties, see Theorem 2.3.15. In
particular, classical Grassmannians appear as Schubert cells in the Affine Grassmannian
of GLn for some n.

The Affine Grassmannian is linked to representation theory in two ways.
The Bĕılinson-Bernstein Localization Theorem [BB81], which links the geometry of

partial flag varieties with the representation theory of (finite-dimensional) Lie algebras,
has an analogue for the Affine Grassmannian. This result, due to Frenkel and Gaitsgory
[FG09], links the Affine Grassmannian to representations of affine Kac–Moody Lie
algebras.

We will however focus on the other central result: the Geometric Satake Equivalence.
This theorem states an equivalence of Tannakian categories between the representation
category of G∨, the Langlands dual group of G, and perverse sheaves on GrG.

We define the Langlands dual of G via the classification of complex reductive groups
in terms of their root datum, which is a purely combinatorial object. This notion comes
with an inherent duality and so G∨ is defined as the reductive group corresponding to
the dual root datum of G.

By the Tannakian Reconstruction Theorem we obtain G∨ from Rep(G∨) and thus the
Geometric Satake Equivalence recovers the group G∨ without making reference to the
classification of reductive groups via their root data.

A precursor of the Geometric Satake Equivalence was the Satake isomorphism, see
[Sat63] and [Mac68], which relates the center of the extended affine Hecke algebra
with the Grothendieck group of Rep(G∨). Geometric Satake can be thought of as a
categorification of this result. It also explains the name Geometric Satake Equivalence as
the word “geometric” means “sheaf-theoretic.”

Another step on the way to the Geometric Satake Equivalence was done by Lusztig in
[Lus83], where he observed a relationship between products of intersection complexes on
Schubert varieties in the Affine Grassmannian and representations of G∨.

Geometric Satake was first proven by Ginzburg for complex representations in [Gin95]
and later generalized by Mirković and Vilonen in [MV00].

Both proofs make use of the Tannakian formalism. One can construct a certain category
of perverse sheaves PΛ(GrG) on GrG and then endow this category with a monoidal
structure ⋆ as well as a fiber functor to the category of finite-dimensional vector spaces
to deduce that

(PΛ(GrG), ⋆) ∼= (Rep(G̃),⊗)

as Tannakian categories for some algebraic group G̃. Then one can show that G̃ ∼= G∨

by showing that G̃ is reductive and then calculating its root datum.
In this thesis, we will only give a brief sketch of the proof of Geometric Satake and

focus mainly on understanding the geometry of the Affine Grassmannian in the type A
cases GLn,SLn and PGLn.

The thesis is structured as follows: In Chapter 1 we first give a reminder on complex
reductive algebraic groups and their classification via root data. We also recall the
definition and basic properties of the projective linear group PGLn. Afterwards we
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Introduction

introduce ind-schemes, which are an essential tool to understand the natural structure
of the Affine Grassmannian. They can be thought of as formal colimits of schemes and
capture the infinite-dimensionality of GrG.

In Chapter 2 we begin by introducing lattices, which are in our context R[[t]]-
submodules of R((t))n subject to certain conditions, where R is a C-algebra. Using the
functor of points perspective, we then define the R-valued points of the Affine Grass-
mannian of GLn as the set of lattices in R((t))n. Our first proposition will be to recover
the C-points of GrGLn as

GrGLn(C) = GLn
(
C((t))

)
/GLn(C[[t]]).

Sticking with GLn, we show that GrGLn is an ind-projective ind-variety. Thereafter we
are able to define GrG for general reductive groups G and show the analogous statement
for GrG using the GLn-case. Subsequently, we construct the Schubert cell decomposition
in the cases GLn, SLn,PGLn explicitly. We state properties of the Schubert cells and
varieties, providing proofs in the aforementioned cases.

In Chapter 3 we give a short introduction to Verdier duality, a generalization of Poincaré
duality. Afterwards we define perverse sheaves on a space X and summarize well-known
facts about them and their category P(X). This category is an abelian subcategory of
Db(X), the derived category of sheaves on X. Perverse sheaves were first introduced in
[BBD82] and serve as a powerful tool in geometric representation theory. Notably, they
appear in the proof of the Kazhdan-Lusztig conjectures, see [BB81].

We finish the thesis by formulating the Geometric Satake Equivalence and briefly
sketching its proof.
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Chapter 1

Preliminaries

In this chapter we summarize preliminaries about the foundations of the thesis — the
classical theory of complex reductive algebraic groups and ind-schemes which is the
natural structure on the Affine Grassmannian.

Throughout the thesis all rings and algebras are assumed to be unital and commutative.

1.1 Reductive Algebraic Groups
We start by giving a brief reminder about complex reductive algebraic groups. We follow
mostly [Mil17] and [Hum75]. For the original treatment in arbitrary characteristic, see
[GR03].

Let GLn be the affine algebraic group(-scheme) over C. A linear algebraic group is a
closed subgroup(-scheme) of GLn, We write G(R) for the R-points of the linear algebraic
group G where R is a C-algebra.

Definition 1.1.1. We call a connected linear algebraic group G reductive, if the
category of rational representations Rep(G) of G is semi-simple.

The main examples of reductive groups are GLn and SLn. Another important example
of a reductive group is PGLn, which turns out to be the so-called Langlands dual group
of SLn. In order to define PGLn consider the canonical inclusion of algebraic groups
Gm = GL1 ↪→ GLn given by

Gm(R) = R∗ → GLn(R), r 7→

r . . .
r

 ,
which identifies Gm with the center Z(GLn) of GLn.

Definition 1.1.2. The group PGLn is defined as the quotient

PGLn := GLn/Gm

of algebraic groups.

1



Chapter 1 Preliminaries

The next two propositions summarize well-known algebraic properties of PGLn, after
which we analyze the representation theory of this group.
Proposition 1.1.3. The group PGLn is a connected linear algebraic group.

Note that the R-points PGLn(R) = (GLn/Gm)(R) are not necessarily equal to
GLn(R)/Gm(R). However, this equality does hold for all rings that we will ever consider
in this thesis (namely C,C((t)), and C[[t]]) by the following proposition.
Proposition 1.1.4. If Pic(R) = {1}, then

PGLn(R) = GLn(R)/Gm(R).

In particular, we have PGLn(R) = GLn(R)/Gm(R) if R is a field or even a local ring.

Proof. By [Mil17, Chapter 3.k] the exact sequence

0→ Gm → GLn → PGLn → 0

of algebraic groups yields an exact sequence

0→ Gm(R)→ GLn(R)→ PGLn(R)→ H1(R, (Gm)R),

which comes from the long exact cohomology sequence. Now recall that

H1(R, (Gm)R) = Pic(R),

c.f. [Sta21, Tag 09NU]. We therefore have

0→ Gm(R)→ GLn(R)→ PGLn(R)→ 0,

if Pic(R) is trivial.

Corollary 1.1.5. The composition

φ : SLn(C) ↪→ GLn(C) ↠ PGLn(C)

is surjective with kernel the group of n-th roots of unity.

Proof. It is clear that the kernel is given by
ξ . . .

ξ


∣∣∣∣∣∣∣ ξ is an n-th root of unity

 .
Now every element of PGLn(C) = GLn(C)/Gm(C) can be written as [A] with A ∈ GLn(C).
But because C is algebraically closed, detA ̸= 0 has an n-th root n

√
detA. Now the

matrix

A′ :=
(

n
√

detA
)−1
·A =


(

n
√

detA
)−1

. . . (
n
√

detA
)−1

 ·A ∈ SLn(C)

has image [A′] = [A] in PGLn(C) under φ.

2
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1.1 Reductive Algebraic Groups

Using this corollary we obtain a fully faithful functor

Rep(PGLn)→ Rep(SLn),

where a representation M of PGLn becomes a representation of SLn via

A ·m := [A] ·m for m ∈M and A ∈ SLn(C)

where [A] denotes the image of A in PGL(C).

Proposition 1.1.6. The functor Rep(PGLn)→ Rep(SLn) identifies Rep(PGLn) with

{M ∈ Rep(SLn) | ξ acts trivially on M for all n-th roots of unity ξ} .

Proof. The image of the fully-faithful functor Rep(PGLn)→ Rep(SLn) is precisely the
right-hand side as PGLn(C) = SLn(C)/{n-th roots of unity}.

From this proposition we conclude:

Corollary 1.1.7. The group PGLn is reductive.

Proof. The category Rep(PGLn) is a full subcategory of Rep(SLn) and closed under direct
summands in Rep(SLn). But Rep(SLn) is semi-simple and therefore also Rep(PGLn).

Remark 1.1.8. The notion of a connected group with semi-simple representation category
is not the correct notion for reductive groups in positive characteristic. For example
both GLn and SLn do not satisfy Definition 1.1.1 in positive characteristic for general n.
For the general notion of reductive groups, one needs to consider groups such that their
unipotent radical is trivial, see [Mil17, Chapter 6.h]. Then by [Mil17, Theorem 22.42],
the two definitions of reductive coincide for groups over a field of characteristic zero.

In the following, we will give the classification of reductive groups over C in terms of
their so-called root datum which is a generalization of root systems. The classification is
true in fact for all algebraically closed fields using the more general definition of reductive
from Remark 1.1.8.

First we define the root datum of a reductive group as well as abstract root data,
which will turn out to be equivalent notions by Theorem 1.1.17.

Definition 1.1.9 (Root Datum of a Reductive Algebraic Group). Let G be a reductive
group. Choose a maximal torus T ⊆ G, i.e. a group of the form Gn

m for some n. We
define

X∗(G,T ) := Hom(T,Gm),
X∗(G,T ) := Hom(Gm, T ).

We call X∗ = X∗(G,T ) the character lattice and X∗ = X∗(G,T ) the cocharacter lattice
of G. Note that the cocharacter lattice X∗ = (X∗)∨ := HomZ(X∗,Z) is the dual abelian
group of the character lattice X∗ using the perfect pairing

X∗ ×X∗ = Hom(T,Gm)×Hom(Gm, T )→ Hom(Gm,Gm) = Z,
(x, y) 7→ ⟨x, y⟩ := x ◦ y.

3



Chapter 1 Preliminaries

Importantly, there are subsets Φ ⊆ X∗ and Φ∨ ⊆ X∗ — of roots and coroots — defined
as the weights of the adjoint action of G on the Lie algebra g. Then the root datum is
defined as the quadruple

(X∗,Φ, X∗,Φ∨).

We follow this definition by gathering the root data for GLn, SLn, and PGLn, our most
important examples.

Example 1.1.10 (Root Datum of GLn). A maximal torus in GLn is given by the
diagonal matrices 

a1
. . .

an

 ∈ GLn(C)

 ∼= Gm(C) = (C∗)n.

Therefore we have X∗(GLn, T ) ∼= Zn. The roots are ei−ej for i ̸= j, where ei is the i-basis
vector in X∗ ∼= Zn. For the cocharacters we have by the perfect pairing X∗ = (X∗)∨ ∼= Zn
with dual basis (ε1, . . . , εn). The coroots are precisely εi − εj for i ̸= j. Hence, the root
datum is given by

(Zn, {ei − ej | i ̸= j},Zn, {εi − εj | i ̸= j}).

Note that neither the roots form a Z-spanning set of the character lattice, nor the coroots
of the cocharacter lattice.

Example 1.1.11 (Root Datum of SLn). A maximal torus in SLn is given by the diagonal
matrices 

a1
. . .

an

 ∈ SLn(C)

 ∼= Gn−1
m (C).

By embedding this torus into the diagonal matrices T ′ of GLn(C) we obtain a surjection
Zn ∼= X∗(GLn, T ) ↠ X∗(SLn, T ). This yields an identification

X∗(SLn, T ) = Zn/⟨e1 + · · ·+ en⟩.

The roots of SLn are precisely the images of the roots ei − ej of GLn, which we also
denote by ei − ej . The cocharacter lattice will be a subset of X∗(GLn, T ′). Explicitly, we
have

X∗(SLn, T ) =
{
y = (y1, . . . , yn) ∈ Zn = X∗(GLn, T ′)

∣∣∣∣∣
n∑
i=1

yi = 0
}
.

The coroots εi − εj of GLn are also the coroots of SLn. Hence, the root datum of SLn is
given by(

Zn/⟨e1 + · · ·+ en⟩, {ei − ej},

{
y = (y1, . . . , yn) ∈ Zn

∣∣∣∣∣
n∑

i=1
yi = 0

}
, {εi − εj}

)
.

4



1.1 Reductive Algebraic Groups

The case n = 2 specializes to

(Z, {±2},Z, {±1}).

where 2 = e1 − e2 and 1 = ε1 − ε2.

Example 1.1.12 (Root Datum of PGLn). A maximal torus T in PGLn = GLn/Gm is
given by the image of the diagonal matrices T ′ of GLn(C). Concretely, we have

T =


a1

. . .
an

 ∈ GLn(C)


/

a . . .
a


 ∼= Gn−1

m (C).

The homomorphism T ′ ↠ T induces maps

X∗(PGLn, T ) ↪→ X∗(GLn, T ′) and X∗(GLn, T ′) ↠ X∗(PGLn, T ).

Explicitly, we have

X∗(PGL, T ) =
{
x = (x1, . . . , xn) ∈ Zn

∣∣∣∣∣
n∑
i=1

xi = 0
}
,

X∗(PGLn, T ) = Zn/⟨ε1 + · · ·+ εn⟩.

The roots of GLn live in X∗(PGLn, T ) and are the roots of PGLn, and the coroots of
PGLn are precisely the images of the coroots of GLn. Hence, the root datum of PGLn is
given by({

x = (x1, . . . , xn) ∈ Zn

∣∣∣∣∣
n∑

i=1
xi = 0

}
, {ei − ej},Zn/⟨ε1 + · · ·+ εn⟩, {εi − εj}

)
.

The case n = 2 specializes to

(Z, {±1},Z, {±2}).

It will turn out the similarity between the root data for SLn and PGLn is an example
for a general duality of reductive algebraic groups see Definition 1.1.18.

Recall that semi-simple complex Lie algebras are classified by the their root systems
which can be defined axiomatically. The following definition is a refinement of the concept
of an abstract root system.

Definition 1.1.13 (Abstract Root Datum). An abstract root datum is an ordered
quadruple (X,Φ, X∨,Φ∨) where

• X,X∨ are finite free Z-modules in duality by a perfect pairing

⟨−,−⟩ : X ×X∨ → Z,

• Φ,Φ∨ are finite subsets of X and X∨ in bijection via α 7→ α∨, such that

5



Chapter 1 Preliminaries

(R1) ⟨α, α∨⟩ = 2,
(R2) sα(Φ) ⊆ Φ, sα∨(Φ∨) ⊆ Φ∨, where

sα(x) = x− ⟨x, α∨⟩α, for x ∈ X,α ∈ Φ,
sα∨(y) = y − ⟨α, y⟩α∨, for y ∈ X∨, α ∈ Φ.

We call Φ the roots and Φ∨ the coroots.

Proposition 1.1.14. The root datum of a reductive group is an abstract root datum.

Proof. This can be found in [Mil17, Corollary 21.21].

Remark 1.1.15. Note that these definitions are refinements of the definitions of root
system and abstract root system. Indeed, we can recover the root system of G from its
root datum (X∗,Φ, X∗,Φ∨) as (X∗ ⊗Z R,Φ).

Example 1.1.16. The root systems of PGLn and SLn are equal. Indeed, by Re-
mark 1.1.15 Example 1.1.12 the root system of PGLn is given by

(X∗(PGLn)⊗Z R,Φ(PGLn)) =
(
{x ∈ Rn |

∑
xi = 0}, {ei − ej}

)
and by Example 1.1.11 the root system of SLn is given by

(X∗(SLn)⊗Z R,Φ(SLn)) = (Rn/⟨e1 + · · ·+ en⟩R, {ei − ej}) .

The obvious homomorphism

X∗(PGLn)⊗Z R −→ X∗(SLn)⊗Z R
x 7−→ x+ ⟨e1 + · · ·+ en⟩R

is an injective map between vector spaces of the same dimension and therefore an isomorph-
ism. However, the corresponding map on the level of lattices X∗(PGLn)→ X∗(SLn) is
not surjective for n > 1.

One can show by hand that pgln, the complex Lie algebra of PGLn, is isomorphic
to sln. This also follows from the classification theorem for complex semi-simple Lie
algebras in terms of their root systems.

The next theorem is the classification theorem for reductive algebraic groups in terms
of abstract root data.

Theorem 1.1.17 (Chevalley, Demazure–Grothendieck). Reductive algebraic groups over
C are classified by their root data. To be precise, two reductive algebraic groups are
isomorphic if and only if they have the same root datum. Conversely, for every given
abstract root datum there exists a reductive group which has this root datum.

6



1.1 Reductive Algebraic Groups

This was first proven by Chevalley for complex algebraic groups over C. In [DG11]
Demazure extended this to the case of algebraically closed fields of arbitrary characteristic.

The next definition captures the duality we observed between the root data of SLn
and PGLn. One can go from one root datum to the other by switching the roles of
characters and cocharacters, roots and coroots. In general, for an abstract root datum
R = (X,Φ, X∨,Φ∨) we observe that R∨ = (X∨,Φ∨, X,Φ) is also an abstract root datum.
We call R∨ the Langlands dual root datum of R.

Definition 1.1.18 (Langlands Dual). Given a reductive group G with root datum
R, consider the Langlands dual root datum R∨. By Theorem 1.1.17 there is a (up to
ismorphism) unique reductive group G∨ with associated root datum R∨. This group G∨

is called the Langlands dual group of G.

The following is an immediate observation from this definition.

Corollary 1.1.19. If G is a reductive group with dual G∨, we have

(G∨)∨ ∼= G.

Proof. Let G have root datum (X,Φ, X∨,Φ∨). Then the root datum of G∨ will be
(X∨,Φ∨, X,Φ). Therefore the root datum of (G∨)∨ is equal to (X,Φ, X∨,Φ∨), the root
datum of G. By Theorem 1.1.17 we must have G ∼= (G∨)∨.

Example 1.1.20. By Example 1.1.10 the root datum of GLn is

(Zn, {ei − ej | i ̸= j},Zn, {εi − εj | i ̸= j}).

Observe that this is invariant under taking the Langlands dual. We therefore have
GL∨

n = GLn.
Example 1.1.21. By Example 1.1.11 the root datum of SLn is(

Zn/⟨e1 + · · ·+ en⟩, {ei − ej},

{
y = (y1, . . . , yn) ∈ Zn

∣∣∣∣∣
n∑

i=1
yi = 0

}
, {εi − εj}

)
,

while by Example 1.1.12 the root datum of PGLn is({
x = (x1, . . . , xn) ∈ Zn

∣∣∣∣∣
n∑

i=1
xi = 0

}
, {ei − ej},Zn/⟨ε1 + · · ·+ εn⟩, {εi − εj}

)
.

These root data are dual to each other and we obtain

(SLn)∨ = PGLn and (PGLn)∨ = SLn.

The classification theorem 1.1.17 tells us, that a reductive algebraic group is completely
determined by its root datum. We expect to be able to read off information about the
group from its root datum. The next theorem gives the celebrated classification of finite
dimensional simple representation of G in terms of the root datum. We fix a Borel
subgroup and a torus T ⊆ B ⊆ G. The choice of Borel yields a choice of positive roots
Φ+ ⊆ Φ.

7



Chapter 1 Preliminaries

Theorem 1.1.22. Let G be a reductive algebraic group with root datum (X∗,Φ, X∗,Φ∨).
Then there is one-to-one correspondence between the (isomorphism classes of) finite
dimensional simple representations of G and the set

(X∗)+ := {x ∈ X∗ | ⟨x, α∨⟩ ≥ 0 for all α ∈ Φ+}

of dominant integral weights.

For a reference see [Mil17, Theorem 22.2].

Example 1.1.23. For GLn we can choose Φ+ = {ei − ej | i < j}. The simple represent-
ations are then labeled by the set

{a ∈ Zn | ⟨a, εi − εj⟩ ≥ 0 ∀i > j} = {(a1, . . . , an) ∈ Zn | a1 ≥ a2 ≥ a3 ≥ · · · ≥ an}.

Example 1.1.24. For SLn we can choose Φ+ = {ei − ej | i < j}. The simple representa-
tions are labeled by the set

(X∗)+ = {(a1, . . . , an) ∈ Zn | a1 ≥ a2 ≥ · · · ≥ an}/{(a, a, . . . , a)}
= {(a1, . . . , an−1, 0) ∈ Zn | a1 ≥ a2 ≥ · · · ≥ 0}.

Example 1.1.25. For PGLn we can choose Φ+ = {ei − ej | i < j}. The simple
representations of PGLn are labeled by the set

(X∗)+ =
{

(a1, . . . , an) ∈ Zn
∣∣∣∣∣ a1 ≥ a2 ≥ · · · ≥ an and

n∑
i=1

ai = 0
}
.

Next we note that the dimensions of the simple representations can also be read off
from the root datum.

Theorem 1.1.26 (Weyl’s Dimension Formula). Let T ⊆ B ⊆ G be as above. Let LG(x)
be the simple representation with highest weight x ∈ (X∗)+. Then

dimLG(x) =
∏
α∈Φ+

⟨x+ ρ, α∨⟩
⟨ρ, α∨⟩

.

Here, ρ is defined as the half-sum of all positive roots.

Example 1.1.27. The simple representations of PGL2 are given by the set

{(a1, a2) ∈ Z2 |a1 ≥ a2, a1 + a2 = 0} = {(k,−k) | k ∈ N0}.

We obtain ρ = 1
2 · (1,−1) and therefore

dimLPGL2((k,−k)) =
⟨(k,−k) + (1

2 ,−
1
2), (1,−1)

⟨(1
2 ,

1
2), (1,−1)⟩

= 2k + 1.
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Alternatively, recall that by Proposition 1.1.6

Rep(PGL2) = {M ∈ Rep(SL2) | I and −I operate trivially},

where I denotes the unit matrix. Recall that the finite dimensional simple SL2 represena-
tions are given by C[x0, x1]d. Note that −I acts as (−1)d on this representation. We can
therefore identify LPGL2((k,−k)) with LSL2(2k), the unique simple SL2-representation
of dimension 2k + 1.

The next proposition allows us to study the geometry of G from its root datum.

Proposition 1.1.28 (Fundamental Group of G). The fundamental group of G can be
computed as

π1(G) = X∗(G,T )/⟨Φ∨⟩.

For a proof see [Mil17, Chapter 18].

Example 1.1.29. We can compute

• π1(GLn) = X∗(GLn, T )/⟨Φ∨⟩ = Zn/⟨εi − εj | i ̸= j⟩ ∼= Z,
• π1(SLn) = X∗(SLn, T )/⟨Φ∨⟩ = {a ∈ Zn | a1 + · · ·+ an = 0}/⟨εi − εj⟩ = {0},
• π1(PGLn) = X∗(PGLn, T )/⟨Φ∨⟩ = Zn/⟨ε1 + · · ·+ εn, εi − εj⟩ ∼= Z/n.

1.2 ind-Schemes
We begin with the definition of an ind-scheme, because our main object of study, the
Affine Grassmannian, will turn out to be such an object. We loosely follow [Ric19]. Recall
that any scheme X over a ring k (in our case k will always be the field of complex numbers,
but one can also take k = Z to recover the total situation) yields a corresponding functor
of points

X : k-Alg→ Sets, R 7→ X(R) := HomSch/k(Spec(R), X),

where k-Alg is the category of commutative k-algebras with 1.
Taking the functor of points is a functor

Y : Sch→ Setk-Alg.

Lemma 1.2.1. The functor Y is fully-faithful.

Proof. This is just the Yoneda lemma plus the glueing property for maps of schemes.

Example 1.2.2.

• If we take the affine scheme AI = Spec(k[xi | i ∈ I]) for some set I we obtain
R 7→ RI as its functor of points. Notice that for infinite I this does not coincide
with

A(I)(R) := R(I) := {(ri)i∈I ∈ RI | ri = 0 for all but finitely many i}.

9
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• The scheme PI := Proj(k[xi | i ∈ I]) represents the functor

R 7→
{
R(I) α

↠ L | L is an invertible R-module
}
/ ∼

where
α ∼ α′ :⇔ there exists some β : L ∼→ L′ such that α′ = β ◦ α.

If R is local, this degenerates to {(ri) ∈ RI | ri ∈ R∗ for at least one i}/R∗, see
[Sta21, Tag 01NA]. Notice that if I is infinite this is again quite different from the
functor

P(I)(R) :=
{
R(I) α

↠ L

∣∣∣∣∣ L is an invertible R-module and
α(ei) = 0 for all but finitely many i

}
/ ∼,

which for R local becomes
{

(ri) ∈ R(I) | ri ∈ R∗ for at least one i
}
/R∗.

Both functors A(N) and P(N) are not representable by schemes (see Proposition 1.2.15),
but rather have the structure of ind-schemes.

We now introduce ind-schemes.

Definition 1.2.3. We call a functor X : k-Alg → Set an ind-scheme, if X is an N-
filtered colimit of representable functors along closed immersions in the category Setk-Alg,
i.e. there is a diagram of schemes

X1 X2 X3 · · ·

where all transition maps are closed immersions, such that X(R) = lim−→Xi(R) in Set.
Morphisms of ind-schemes are natural transformations of functors.

What we call an ind-scheme is in the literature sometimes referred to as a strict
ind-scheme. These authors use the term ind-scheme also for colimits over general filtered
categories.

Example 1.2.4. The following are standard examples of ind-schemes.

• The functor A(N) can be written as the colimit of

A1 A2 A3 . . .

where the transition maps are the coordinate embeddings.
• The functor P(N) can be written as the colimit of

P1 P2 P3 · · ·

• Any scheme X has a trivial ind-scheme structure as the colimit of the diagram

X X X · · ·idX idX idX

10
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• There are schemes which have a non-trivial ind-scheme structure, such as ∐N{pt}.
It can be written as the colimit of

{pt} {pt} ⨿ {pt} {pt} ⨿ {pt} ⨿ {pt} · · ·

Remark 1.2.5. Giving a scheme the structure of an ind-scheme defines a functor

Sch→ ind-Sch.

This functor is in fact fully-faithful, because for two schemes S, T we have

Homind-Sch(S, T ) = HomSetk-Alg(S, T ) = HomSch(S, T ).

Definition 1.2.6. We call an ind-scheme ind-projective, ind-reduced, ind-finite type,
ind-quasi-compact, etc., if we can write X as the colimit of schemes which are projective,
reduced, finite type, quasi-compact, etc.

Example 1.2.7. The ind-schemes from Example 1.2.4 have the following ind-properties:

• The ind-scheme A(N) is ind-affine, ind-reduced, ind-finite type, ind-quasi-compact.
• The ind-scheme P(N) is ind-projective, ind-reduced, ind-finite type, ind-quasi-

compact.
• If X is a scheme with some property, then X has the ind-version of this property

as an ind-scheme, but the converse does not hold, by the next example.
• The ind-scheme lim−→

∐
1,...,n{pt} = ∐

N{pt} is ind-quasi-compact, ind-finite type and
ind-affine even though it is a scheme and neither quasi-compact, nor finite type,
nor affine.

In the following, we examine morphisms of ind-schemes.
If X = lim−→Xi is an ind-scheme and S is a scheme, the morphism of ind-schemes

Xi → X induces a map HomSch(S,Xi) → Homind-Sch(S,X) for i ∈ N. From these we
obtain a natural map lim−→Homind-Sch(S,Xi)→ Homind-Sch(S,X). It turns out that this
map is not far from being a bijection in general.

Proposition 1.2.8. The map lim−→Homind-Sch(S,Xi)→ Homind-Sch(S,X) is injective. If
S is additionally assumed to be quasi-compact, the map is bijective.

Proof. First let S be arbitrary. For every ring R the map Xi(R) → Xi+1(R) is in-
jective, because the morphisms of schemes Xi → Xi+1 are closed immersions. We
obtain that also Xi(R) → lim−→Xi(R) is injective. It follows that the morphism of
ind-schemes Xi → X is a monomorphism of functors and therefore a monomorphism
of ind-schemes. Thus Hom(S,Xi) → Hom(S,X) is injective and we conclude that
lim−→Hom(S,Xi)→ Hom(S,X) is injective, too.

Now let S be quasi-compact. We need to show that for every morphism α : S → X
there is an i0 ∈ N such that α factors through Xi0 → X. We have that S is a finite
union of affine schemes S = U1 ∪ · · · ∪ Ur with embeddings ιj : Uj ↪→ S. Note that

11
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if all morphisms α ◦ ιj : Uj → X factor through some Xij → X we also have that
α factors through Xmax(i1,...ir) → X. We can therefore assume S = SpecA to be
affine. Let α : SpecA → X be a natural transformation of functors. We want to
show that there is some i0 such that α factors as α : SpecA → Xi0 ↪→ X. Consider
idA ∈ HomRing(A,A) = Hom(SpecA,SpecA). This element gets mapped by αA to some
element in X(A) = ⋃

iXi(A), and thus αA(idA) ∈ Xi0(A) for some i0. We show that α
factors through Xi0 → X. Let f ∈ S(R) = Hom(SpecR,S) = Hom(A,R). The following
diagram commutes by naturality of α

Hom(A,A) lim−→Xi(A) = X(A)

Hom(A,R) lim−→Xi(R) = X(R)

αA

f∗ X(f)
αR

and so αR(f) = αR(f∗(idA)) = X(f)(αA(idA)) ∈ Xi0(R). It follows that α factors
through Xi0 .

Corollary 1.2.9. If S = SpecA is affine we have

X(A) = lim−→Xi(A) = Hom(SpecA,X).

In lieu of this corollary, we are able to write

X(S) := Homind-Sch(S,X)

without confusion.
Example 1.2.10. Let Xi = ∐

1,...,n{pt} and S = X = lim−→Xi = ∐
N{pt}. Then

lim−→Xi(S) ̸= X(S), because the identity on X = S does not factor through any Xi.
We see that the quasi-compactness assumption in Proposition 1.2.8 is indeed necessary.
Corollary 1.2.11. If X,Y are ind-schemes and Y = lim−→Yj is ind-quasi-compact with
Yj quasi-compact, we have

Hom(Y,X) = Hom(lim−→
j

Yj , lim−→
i

Xi)

= lim←−
j

Hom(Yj , lim−→
i

Xi)

= lim←−
j

lim−→
i

Hom(Yj , Xi). (Proposition 1.2.8)

Next, we define the underlying topological space of an ind-scheme, which generalizes
the notion of underlying topological space of a scheme.
Definition 1.2.12. We define the topological space |X| of an ind-scheme X = lim−→Xi as
the colimit

|X| := lim−→ (|X1| ↪→ |X2| ↪→ · · · )
in the category of topological spaces, where |Xi| denotes the underlying topological space
of the scheme Xi. This means that Z ⊆ |X| is closed, respectively open, if Z ∩ |Xi| is
closed, respectively open for all i.

12
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We will see that this definition is independent of the presentation of X as a specific
colimit of schemes in Lemma 1.2.14.

Example 1.2.13. Let k be a field. The underlying topological space of the ind-scheme
given by the colimit of the diagram

Spec k Spec k[t]/(t2) Spec k[t]/(t3) · · ·

has underlying topological space {pt}, because k[t]/(tn) only has a single prime ideal.
This ind-scheme is not (representable by) a scheme: If this ind-scheme was a scheme,

it follows that it is affine, because its underlying topological space is a singleton. But a
colimit of the above diagram exists in the category of affine schemes, namely Spec k[[t]]
which has two points. This kind of example is also referred to as a formal scheme, see
[Har77, Chapter II.9].

Lemma 1.2.14. We have
|X| = lim−→

Kfield
X(K).

We see that |X| is independent of a presentation as a diagram of schemes.

Proof. The statement is true for schemes by [Sta21, Tag 01J9] and we can exchange
colimits.

We are finally able to show that our first and most natural examples of ind-schemes —
namely A(N) and P(N) — are in fact not representable by schemes

Proposition 1.2.15. The ind-schemes A(N) and P(N) cannot be represented by schemes.

Proof. Assume A(N) was a scheme. Then there is an open affine subscheme S ⊆ A(N).
Since S is quasi-compact, the inclusion S ↪→ A(N) factors by Proposition 1.2.8 through
some An. The affine scheme S therefore has dimension n. It follows that S cannot be
open in An+1, which contradicts S ⊆ X open. Exactly the same argument also works for
P(N).

We would like to extend some constructions defined for schemes to ind-quasi-compact
ind-schemes. To guarantee independence from a chosen presentation of our ind-scheme,
we need the following technical lemma.

Lemma 1.2.16. Any functor F : Sch → C, where C is category which has N-filtered
colimits, induces a functor

F : {ind-quasi-compact ind-schemes} → C

via F (lim−→Xi) = lim−→F (Xi) for Xi quasi-compact.
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Proof. Given two presentations X = lim−→i
Xi = lim−→j

X ′
j by quasi-compact schemes, we ob-

tain two objects F (X) := lim−→i
F (Xi) and F (X)′ := lim−→j

F (X ′
j) in C. By Lemma 1.2.8, for

any i there exists an ji and a map Xi → X ′
ji

such that Xi → X factors as Xi → X ′
ji
→ X

and similar for j. We then obtain maps F (Xi) → F (X ′
ji

) → F (X)′ which induce
F (X) → F (X)′. Similarly, we obtain a map F (X)′ → F (X). The composition
F (X)→ F (X)′ → F (X) is the identity since F (Xi)→ F (X)′ → F (X) factors as(

F (Xi)→ F (X ′
ji)→ F (Xiji

)→ F (X)
)

= F (Xi)→ F (X).

Definition 1.2.17. For any quasi-compact ind-scheme X = lim−→Xi we can define its
global sections Γ(X,OX) as

Γ(X,OX) = lim←−
(
Γ(X1,OX1)← Γ(X2,OX2)← Γ(X3,OX3)← · · ·

)
If X is an ind-scheme over C, we denote this also by C[X] = lim←−C[Xi].

Remark 1.2.18. Definition 1.2.17 can also be applied to open sub-ind-schemes of
X in order to define a sheaf of rings on |X|. See [Ric19] for the definition of open
sub-ind-scheme, and the equivalence between open sub-ind-scheme and open subsets of
|X|.

Definition 1.2.19. For any ind-quasi-compact ind-scheme X = lim−→Xi we define its
reduction Xred as lim−→(Xi)red.

Definition 1.2.20. For any ind-finite type (so in particular ind-quasi-compact) ind-
scheme X = lim−→Xi over C we define its analytification Xan as lim−→Xan

i . Recall that the
analytification of a finite type scheme is defined as the set of C-points together with the
analytic topology.

Note that Xan = (Xred)an, because this also holds for schemes.
Recall that reduced finite type schemes over C (varieties) are completely determined

by their C-valued points since C is algebraically closed. The same will also hold for
ind-reduced ind-finite type ind-schemes (ind-varieties).

Proposition 1.2.21. If X is of ind-finite type and ind-reduced, its C-points are identified
with the closed points of |X|. Additionally, the set of closed points are very dense in |X|.
Recall that this means that the closed points of |X| that lie in a closed subset Z ⊆ |X|
are dense in Z. We also have

Hom(X,Y ) = lim←−
i

lim−→
j

Hom(Xi, Yj) = lim←−
i

lim−→
j

Hom(Xi(C), Yj(C))

where by Hom(Xi(C), Yj(C)) we mean the classically defined regular maps between algeb-
raic sets.
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Proof. A point x ∈ |X| = lim−→|Xi| is closed if and only if x ∈ |Xi| is closed. We obtain

{closed points of |X|} = lim−→{closed points in Xi}
= lim−→Xi(C)
= X(C).

Next, let Z ⊆ |X| be closed. Then Z ∩{closed points in |Xi|} is dense in |Xi|. Therefore,
Z ∩{closed points of |X|} is dense in |X| because |X| has the weak colimit topology.
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Chapter 2

The Affine Grassmannian

For a reductive algebraic group G over C we are interested in the infinite-dimensional
complex manifold GrG(C) := G(C((t)))/G(C[[t]]) called the Affine Grassmannian. This
space actually has the structure of an ind-projective ind-scheme and so we will begin
with the definition of its functor of points

GrG : C-Alg→ Sets.

Since we are interested in linear algebraic groups G ↪→ GLn and the construction will be
functorial, we start with the special case of G = GLn.

2.1 The Affine Grassmannian of GLn
For a ring R (commutative with 1) denote by R[[t]] the ring of formal power series with
coefficients in R and by R((t)) the ring of formal Laurent series.
Definition 2.1.1. A lattice L ⊆ R((t))n is a finite locally free R[[t]]-submodule of R((t))n
such that L⊗R[[t]] R((t))→ R((t))n ⊗R[[t]] R((t)) = R((t))n is an isomorphism.
Remark 2.1.2. Recall that a module M over a commutative ring R is locally free if
there are elements f1, . . . , fr ∈ R such that Mfi

:= M [f−1
i ] is a free Rfi

-module (where
Rfi

:= R[f−1
i ]) and the ideal generated by the ring elements fi is equal to R. Then the

following conditions are equivalent, see [Sta21, Tag 00NX].
• M is finite locally free, i.e. locally free and finitely generated.
• M is finitely generated and projective as an R-module.
• M is finitely presented and flat.

Finite locally free modules are also called vector bundles.
Example 2.1.3. The R[[t]]-module R[[t]]n ⊆ R((t))n is a lattice: It is locally free as a
free R[[t]]-module and the map

R[[t]]n ⊗R[[t]] R((t))→ R((t))n

is obviously an isomorphism.
We call this the standard lattice and also denote it by ΓR.
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Example 2.1.4. The R[[t]]-module ⟨t1e1, t
2e2⟩R[[t]] ⊆ R((t))2 is a lattice, which is free

with basis t1e1, t
2e2. More generally, any (k1, . . . , kn) ∈ Zn defines a free lattice in R((t))n

with basis (tk1e1, . . . , t
knen). Putting k1 = · · · = kn = 0 we recover the standard lattice.

Example 2.1.5. If L ⊆ R((t))n is a lattice, then tNL ⊆ R((t))n will also be a lat-
tice for any N ∈ Z. Indeed, L → tNL,m 7→ tNm is an isomorphism with inverse
tNL → L,m′ 7→ t−Nm′ and so tNL is finite locally free. Also note that if N ≥ 0 the
above map tNL⊗R[[t]] R((t))→ R(((t))n factors as

tNL⊗R[[t]] R((t))→ L⊗R[[t]] R((t))→ R((t))n,

where the first map is an isomorphism induced from the embedding tNL ↪→ L,m 7→ m.
If N < 0, we have the factorization

L⊗R[[t]] R((t))→ tNL⊗R[[t]] R((t))→ R((t))n

where the first map is an isomorphism induced from the embedding L ↪→ tNL,m 7→ m.

Example 2.1.6. Let R = R1 ×R2 be a commutative ring with disconnected spectrum
and corresponding orthogonal idempotents p1, p2. Then

L = R1t
−1 ⊕R[[t]] ⊆ R((t))1

is the R[[t]]-submodule of R((t)) generated by the elements p1t
−1, p2t

0. It is locally free
as an R[[t]]-module, because we can localize at the idempotents p1, p2 ∈ R ⊆ R[[t]] to
obtain

L⊗R[[t]] R[[t]]p1 = R1t
−1 ⊕R[[t]]p1 = t−1(R[[t]])p1

∼= (R[[t]])p1 ,

L⊗R[[t]] R[[t]]p2 = {0}t−1 ⊕R[[t]]p2
∼= (R[[t]])p2 .

It also satisfies

L⊗R[[t]] R((t)) = ⟨p1t
−1, p2t

0⟩R[[t]] ⊗R[[t]] R((t))
= ⟨p1t

−1, p2t
0⟩R((t))

= ⟨p1, p2⟩R((t))

= R((t))1.

Hence, L is a lattice in R((t))1.

The following proposition gives a useful criterion to check whether a locally free
R[[t]]-submodule of R((t))n is a lattice.

Proposition 2.1.7. For a finitely generated R[[t]]-submodule L of R((t))n, we have that
the condition L⊗R[[t]] R((t)) = R((t))n is equivalent to

tNR[[t]]n = tNΛR ⊆ L ⊆ t−NΛR for some N ∈ N0.

It follows that any lattice in R((t))n is of constant rank n.
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Proof. If L is finitely generated, we have L = ⟨l1, . . . , lr⟩R[[t]] ⊆ R((t))n. Now every
li ∈ R((t))n can be written as t−Ni l′i where l′i lies in R[[t]]n. Picking

N := max(N1, N2, . . . , Nr)

we always have L ⊆ t−NR[[t]] without any additional condition.
Now the condition tNR[[t]]n ⊆ L implies that

R((t))n = tNR[[t]]n ⊗R[[t]] R((t)) ⊆ L⊗R[[t]] R((t)) ⊆ R((t))n

and so L⊗R[[t]] R((t)) = R((t))n.
Conversely, let L⊗R[[t]] R((t)) = R((t))n. But from L = ⟨l1, . . . , lr⟩R[[t]] we obtain that

L⊗R[[t]] R((t)) = ⟨l1, . . . , lr⟩R((t)).

By the assumption, there are equations∑
i

ri,jli = ej

with ri,j ∈ R((t)) where ej is the j-th standard basis vector in R((t))n. Now write
ri,j = t−Ni,jr′

i,j with ri,j ∈ R[[t]] and set

N := max(Ni,j | i = 1, . . . , r, j = 1, . . . , n).

We get tNR[[t]]n ⊆ L.

The following example is a more general version of Example 2.1.6.
Example 2.1.8. Let M be a finite locally free R-module. By Remark 2.1.2 M is a
projective module and therefore a direct summand of some Rn = M ⊕ K. We write
M ↪→ Rn for the inclusion. Now consider the R[[t]]-module

L := Mt−1 ⊕R[[t]]n ⊆ R((t))n.

This is the R[[t]]-submodule of R((t))n generated by R[[t]]n and

Mt−1 ⊆ Rnt−1 ⊆ t−1R[[t]]n.

This module is a lattice: We immediately see that

t1R[[t]]n ⊆ R[[t]]n ⊆ L ⊆ t−1R[[t]]n.

To check that L is a lattice, it remains to show that L is a finite locally free R[[t]]-module.
For this, let f1, . . . , fr ∈ R be chosen as in Remark 2.1.2, such that Mfi

∼= Rni
fi

. Note
that the inclusion M ↪→ Rn splits and so Rni

f
∼= Mfi

↪→ Rnf is still the inclusion of a
direct summand with complement Kfi

in Rnfi
= Mfi

⊕Kfi
. By localizing further we can

assume that Kfi
is also free, i.e. Kfi

∼= Rn−ni . Then

L⊗R[[t]] R[[t]]fi
∼= Mfi

t−1 ⊕R[[t]]nfi

∼= Rni
fi
t−1 ⊕R[[t]]ni+(n−ni)

fi

∼= R[[t]]ni
fi
t−1 ⊕R[[t]]n−ni

fi

as R[[t]]fi
-submodules of R((t))nfi

.
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The following lemma states, that the local freeness of a lattice is never a too complicated
condition. We write Rf for the ring R[f−1] and Rf [[t]] for the power series ring of Rf .
Note that Rf [[t]] ̸= R[[t]]f since a general element in Rf [[t]] looks like ∑i≥0

ai
fni t

i with

ni ∈ N0 for all i, whereas a general element in R[[t]]f has the form
∑

i≥0 ait
i

fn for a single
n ∈ N0.

Lemma 2.1.9. Assume L is a lattice. Then there are elements f1, . . . , fr ∈ R such that:

• The elements f1, . . . , fr generate R as an ideal, i.e. there are elements ai ∈ R such
that a1f1 + · · ·+ arfr = 1.

• The Rfi
[[t]]-module L⊗R[[t]] Rfi

[[t]] is free for all i.

Proof. We follow [Gör10, Lemma 2.11]. By definition of locally free, there are elements
f̃1, . . . , f̃r ∈ R[[t]] generating the unit ideal such that

L[f̃i
−1] = L⊗R[[t]] R[[t]]

f̃i

is free as an R[[t]]
f̃i

-module. Plugging in t = 0 into an equation ∑r
i=1 aif̃i = 1 in R[[t]]

we see that the elements fi := f̃i(0) generate the unit ideal in R. Now observe that f̃i is
invertible in Rfi

[[t]] such that R[[t]]
f̃i
⊆ Rfi

[[t]]. We obtain

L⊗R[[t]] Rfi
[[t]] = L⊗R[[t]] R[[t]]

f̃i
⊗R[[t]]

f̃i

Rfi
[[t]]

∼= R[[t]]n
f̃i
⊗R[[t]]

f̃i

Rfi
[[t]] = Rfi

[[t]]n.

The following is a nice lemma giving us a condition for a lattice to be free.

Lemma 2.1.10. A lattice L ⊆ R((t))n is free as an R[[t]]-module if and only if L⊗R[[t]]R
is free as an R-module.

Proof. We only need to show that L is free if L⊗R[[t]] R is free.
We have a surjective map φ : L↠ L⊗R[[t]] R, because R is a quotient of R[[t]]. Let ej

be the standard basis vectors in L⊗R[[t]] R and choose elements ẽj ∈ L that map to ej
under φ.
Claim: The elements ẽj are R[[t]]-linearly independent.

Let ∑j rj ẽj = 0 with rj ∈ R[[t]] with some rj ̸= 0. We may assume that some
rj ∈ R[[t]] \ tR[[t]], because otherwise ∑j t

−1rj ẽj = 0 is another R[[t]]-linear dependence.
We apply φ to this equation and obtain ∑j rj(0)ej = 0 with rj(0) ̸= 0 for some j, which
contradicts the assumption that the ej are an R-basis.
Claim: The elements ẽj are an R[[t]]-spanning set of L.

Let l ∈ L. We can find r(0)
j ∈ R such that φ(l) = ∑

j r
(0)
j ej . The element l −∑j r

(0)
j ẽj

lies in the kernel of φ and must therefore be of the form

l −
∑
j

r
(0)
j ẽj = tl(1)
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with l(1) ∈ L. We next construct r(1)
j ∈ R such that l(1)−

∑
j r

(1)
j ẽj is a multiple of t. We

repeat this procedure to obtain sequences (r(i)
j )i in R such that

l −
∑
j

N∑
i=0

r
(i)
j ti ∈ tN+1L.

The elements r̃j := ∑∞
i=0 r

(i)
j ti therefore satisfy

l =
∑
j

r̃j ẽj .

We have now shown that (ẽj)j forms an R[[t]]-basis of L.

We now come to the definition of the Affine Grassmannian — our central object of
study.

Definition 2.1.11. The Affine Grassmannian of GLn is the functor

GrGLn : C-Alg −→ Sets
R 7−→ {lattices in R((t))n}

sending a ring R to the set of lattices in R((t))n.

We next compute the C-points of this functor. Later we will prove that GrGLn is
represented by an ind-projective ind-scheme and therefore we will be able to identify its
reduction with its C-points.

Proposition 2.1.12. The C-points of GrGLn are precisely

GrGLn(C) = GLn
(
C((t))

)
/GLn(C[[t]]).

Proof. As C[[t]] is a principal ideal domain, any finitely generated projective module is
automatically free. Any lattice in C((t))n is therefore given by n C[[t]]-linearly independent
vectors in C((t))n, which means that they are a basis of the vector space C((t))n. Hence
any lattice is given as the column span of an element of GLn

(
C((t))

)
. Two such matrices

yield the same lattice if and only if they differ by an element of GLn(C[[t]]).

Example 2.1.13. Consider the C[[t]]-module generated by the columns of the matrix

A =
(
t2 0
0 t−3

)
. This is a lattice. It is the same as the C[[t]]-module generated by the

columns of
(
t2 t3

0 t−3

)
= A ·

(
1 t
0 1

)
.
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Example 2.1.14. The C-points of GrGL1 are given by

GrGL1(C) = GL1
(
C((t))

)
/GL1(C[[t]])

= C((t))∗/C[[t]]∗

= (C((t)) \ {0})
/a =

∑
i≥0

ait
i ∈ C[[t]]

∣∣∣∣∣∣ a0 ̸= 0


= {[tn] | n ∈ Z}
= Z.

In the next example we compute the R points of GrGL1 for the ring R = C[x]/(x2).

Example 2.1.15. Consider C[ε] = C[x]/(x2). This is a local ring and so all locally free
modules are free. We write C[ε][[t]] for its ring of power series. We obtain

GrGL1(C[ε]) = {free rank 1 C[ε][[t]]-submodules of C[ε]((t))}
=
(
C[ε]((t))

)∗
/(C[ε][[t]])∗

Note that the invertible elements of C[ε]((t)) are precisely the preimage of the invertible
elements of C((t)) under

C[ε]((t))→ C((t))
mapping ε to 0. Therefore(

C[ε]((t))
)∗ =

(
C[ε]((t)) \ εC[ε]((t))

)
.

We observe that we can multiply an element

x = an−rεt
n−r + · · ·+ an−2εt

n−2 + an−1εt
n−1 + ant

n + · · · ∈ C[ε]((t))∗

with an ̸∈ εC[ε] by a unique element y ∈ C[[t]]∗ to obtain an element of the form

xy = a′
n−rε+ · · ·+ a′

n−2εt
n−2 + a′

n−1εt
n−1 + tn.

Therefore we have

GrGL1(C[ε]) =
(
C[ε]((t))

)∗
/(C[ε][[t]])∗

=
{

[an−rεt
n−r + · · ·+ an−1εt

n−1 + tn]
∣∣∣∣∣ n ∈ Z, r ∈ N0,

ai ∈ C

}
= C(∞) × Z,

where C(∞) = {(. . . , a−2, a−1, a0) ∈ C∞ | ai ̸= 0 finitely often}.

Theorem 2.1.16. The functor GrGLn is representable by an ind-projective ind-scheme,
which means that there are projective schemes Gr(N)

GLn
together with closed immersions

Gr(N)
GLn

↪→ Gr(N+1)
GLn

such that for all R ∈ C-Alg

GrGLn(R) = lim−→
N

Gr(N)
GLn

(R).
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Chapter 2 The Affine Grassmannian

We follow the proof explained in [Zhu16]. We begin the proof with the definition of
the Gr(N)

GLn
, which we abbreviate by Gr(N).

Definition 2.1.17. We define Gr(N) : C-Alg→ Sets via

Gr(N)(R) := {L ⊆ R((t))n | L is a lattice and tNR[[t]]n ⊆ L ⊆ t−NR[[t]]n},

together with embeddings of functors

Gr(N)(R) ↪→ Gr(N+1)(R), L 7→ L.

Example 2.1.18. In the case R = C, we have that any finite C[[t]]-submodule of C((t))n
is automatically free, since it is torsion free. And so

Gr(N)(C) = {C[[t]]-modules L such that tNC[[t]]n ⊆ L ⊆ t−NC[[t]]n}

=
{
L/tNC[[t]]n ⊆ t−NC[[t]]n/tNC[[t]]n ∼= C2Nn

}
⊆ Grass(2Nn)(C) = {linear subspaces of C2Nn}.

We can identify Gr(N)(C) with those subspaces of MC := t−NC[[t]]n/tnC[[t]]n ∼= C2Nn

which are stable under the action of the nilpotent endomorphism MC → MC given by
multiplication with t.

In the case GL1 we have

Gr(N)
GL1

(C) = {tkC[[t]] | −N ≤ k ≤ N}
= {vector subspaces of C2N with basis of the form ek, ek+1, . . . , eN−1}

where the (e−N , . . . , eN−1) denotes a fixed basis of C2N , which correspond to t−N , . . . , tN−1

under t−NC[[t]]/tNC[[t]] ∼= C2N . We see that

#Gr(N)
GL1

(C) = 2N + 1;

in particular GrGL1 is the colimit of zero dimensional schemes. In Example 2.1.15, we
saw that GrGL1(C[ε]) ̸= GrGL1(C). Therefore GrGL1 cannot be ind-reduced.

We write Grassd(n) for the classical Grassmannian of linear d-dimensional subspaces
of Cn. We write Grass(n) for the disjoint union of all Grassd(n) with d ≤ n.

Proof of Theorem 2.1.16. As defined these Gr(N) satisfy

GrGLn(R) = lim−→
N

Gr(N)(R)

by Proposition 2.1.7. If these subfunctors are represented by projective schemes, the trans-
ition maps Gr(N) ↪→ Gr(N+1) will be proper. These maps are injective on R-points and so
define proper monomorphisms of schemes. However, proper monomorphisms are closed im-
mersions by [Sta21, Tag 04XV]. So we now need to show that Gr(N) is in fact (represented
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2.1 The Affine Grassmannian of GLn

by) a projective scheme. For this, let MR := (t−NR[[t]]n)/(tNR[[t]]n) = MC⊗CR ∼= R2Nn.
Consider the map

Gr(N)(R) −→{U ⊆MR
∼= R2Nn | MR/U is a locally free R-module},

L 7−→L/(tNR[[t]]n).

To show this map is well-defined, we need to prove that MR/(L/tNR[[t]]n) ∼= t−NR[[t]]n/L
is a finite locally free R-module. By Lemma 2.1.9, we find f1, . . . , fr generating the unit
ideal in R such that L⊗R[[t]] Rfi

[[t]] is free. So, since we need to work locally on R, we
can just assume that L is free. Observe now that

R((t))n/L = L[t−1]/L ∼= R((t))n/R[[t]]n ∼=
⊕
i<0

tiRn

is a free R-module. Therefore we obtain the short exact sequence

0→ t−NR[[t]]n/L→ R((t))n/L→ R((t))/t−NR[[t]]n → 0.

Note that the term on the right is R-free and therefore projective. Thus, this sequence
splits and the term on the left is projective as a direct summand of the free middle term.
So this map is well-defined.

Notice that the codomain is precisely the functor represented by the classical Grass-
mannian Grass(2Nn), see [GW10, Chapter 8.4], which is a projective scheme. So we
need to show that this map identifies Gr(N) with a closed subscheme of the classical
Grassmannian of subspaces in C2Nn.

Notice how multiplication by t induces a nilpotent endomorphism on MR and that every
element in the image of the map Gr(N) → Grass(2Nn) will be fixed by this endomorphism.
It is the content of the next lemma that Gr(N)(R) gets identified with

Grass(2Nn)t(R) := {U ⊆MR | MR/U locally free, tU ⊆ U}.

This is a closed subscheme of Grass(2Nn) and we only need to show the lemma to
conclude the proof.

Lemma 2.1.19. The map

Gr(N)(R)→ Grass(2Nn)t(R), L 7→ L/tNR[[t]]n

is a natural bijection for all R and therefore gives an isomorphism of functors between
Gr(N) and a closed subscheme of the classical Grassmannian. In particular, we obtain
that the functor Gr(N) is represented by a projective scheme.

Proof. The map is clearly injective as tNR[[t]]n ⊆ L by assumption.
For surjectivity we reduce first to the Noetherian case. Let U ∈ Grass(2Nn)t(R). Then

U will be a direct summand of MR and so will be generated by finitely many elements of
the form ∑n

i=1 ai,jei finite. Now, U will already be defined over C[ai,j | i, j]. So we can
assume that R is Noetherian.
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Noetherianness implies that R[t]→ R[[t]] is a flat ring map (see [Sta21, Tag 00MB]).
Also observe that t−NR[t]n/tNR[t]n ∼= t−NR[[t]]n/tNR[[t]]n.
Now consider the composition

φ : t−NR[t]n → t−NR[t]n/tNR[t]n ∼= t−NR[[t]]n/tNR[[t]]n → t−NR[[t]]n/U

and set Lf := ker (φ). Then we get by the flatness of R[t]→ R[[t]] that(
Lf ⊗R[t] R[[t]]

)
/tNR[[t]]n = U.

So if we show that Lf is a finite locally free R[t]-module, we have found the required
preimage of U and we are done. Since we are in the Noetherian case, Lf is finitely
presented, so we only need to check that Lf is flat. Using [Sta21, Tag 00MH] we can
reduce this to the case where R is a field, and thus R[t] a principal ideal domain. However
in this case, since Lf ⊆ t−NR[[t]]n, it is torsion free and thus free.

We have proved on the way the following:

Corollary 2.1.20. For all rings R we have

GrGLn(R) =
{

finite locally free R[t]-submodules Lf ⊆ R[t, t−1]n
such that Lf [t−1] = R[t, t−1]n

}
.

We make this corollary explicit in the case R = C.

Example 2.1.21. Any lattice L ⊆ C((t))n is given as the column span of a mat-
rix A ∈ GLn

(
C((t))

)
, see Proposition 2.1.18. Now Corollary 2.1.20 translates to the

following: For any A ∈ GLn
(
C((t))

)
there is a matrix B ∈ GLn(C[[t]]) such that

AB ∈ GLn(C[t, t−1]), because we can identify the right hand side in the corollary with
GLn(C[t, t1−])/GLn(C[t]) as in Proposition 2.1.12. We can even choose B in such a
way that AB is obtained from A by deleting all terms of a high enough degree: Let
A ∈ GLn

(
C((t))

)
such that the smallest degree term appearing in any entry of A−1 is of

degree N , i.e. such that tNA−1 ∈ C[[t]]n×n. Write A = A0+tN+1Ã with A0 ∈ C[t, t−1]n×n

and Ã ∈ C[[t]]n×n. Let B = In − tN+1A−1Ã where In is denotes the unit matrix. By
construction, B lies in C[[t]]n×n and even in GLn(C[[t]]) as it is of the form In + tB̃. This
matrix satisfies

A ·B = A · (In − tN+1A−1Ã) = A− tN+1Ã = A0.

Example 2.1.22. Consider a matrix of the form

A =
(
tka b
tkc d

)
∈ GL2

(
C((t))

)

with k ≥ 0 and
(
a b
c d

)
=
(∑

i≥0 ait
i ∑

i≥0 bit
i∑

i≥0 cit
i ∑

i≥0 dit
i

)
∈ GL2(C[[t]]). The residue class

[A] ∈ GrGL2(C) = GL2
(
C((t))

)
/GL2(C[[t]]) lies in Gr(k)

GL2
(C) and gets identified with the
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2.2 The Affine Grassmannian of General Groups

subspace of C2·2k〈(
tka
tkc

)
,

(
b
d

)〉
C[[t]]

/
tkC[[t]]2 =

〈
ti
(
tka
tkc

)
, tj
(
b
d

) ∣∣∣∣∣ i, j ∈ N0

〉
C

/
tkC[[t]]2

=
〈
tj
(
b
d

) ∣∣∣∣∣ j = 0, . . . k − 1
〉

C

/
tkC[[t]]2

=
〈
k−1∑
i=0

biei+j,1 +
k−1∑
i=0

diei+j,2

∣∣∣∣∣ j = 0, . . . k − 1
〉

C

⊆ C2·2k = t−kC[[t]]2/tkC[[t]]2

with basis elements ei,j corresponding to tiej ∈ C((t))2.

2.2 The Affine Grassmannian of General Groups
Definition 2.2.1. Let G be a group scheme over R. We call a scheme E → SpecR
together with an operation of G on E a G-torsor, if G operates on E such that E is
fppf-locally trivial. Recall that fppf-local tirivality means that there is a faithfully flat
ring map of finite presentation R→ R′ such that after base change to R′

E ×SpecR SpecR′ ∼= G×SpecR SpecR′

and all involved maps are G-equivariant.

Remark 2.2.2. Assume that E is Zariski-locally trivial, meaning that there is an open
covering SpecR = ⋃

i Ui such that E ×SpecR Ui ∼= G ×SpecR Ui. It is automatically
fppf-locally trivial, since we can assume that all Ui = SpecRi are affine and that there
are finitely many of them. Then R→ R′ =×iRi is a fppf-local trivialization.

In the language of Grothendieck topologies, this is just to say that the fppf topology
is finer than the Zariski topology. Note that the concept does not refer literally to a
topology on some set, but rather to a certain family of covering morphisms in a category,
c.f. [Sta21, Tag 020K].

In order to generalize the definition of the Affine Grassmannian to other groups than
GLn we rewrite GLGLn(R) = {lattices in R((t))n} in terms of GLn-torsors. Recall that
a lattice is a vector bundle on R[[t]].

Lemma 2.2.3. The category of GLn-torsors on R is identified with vector bundles of
rank n on R.

Proof. Let V be a rank n vector bundle which is trivial on SpecRi ⊆ SpecR. V consists
of all elements {(xi)i | xi|Rij

φij7→ xj |Rij} where the φij satisfy the cocycle condition. On
the other hand, by [GR03, Exposé XI, Propositon 5.1] any GLn-torsor is Zariski-locally
trivial and so the elements of a GLn-torsor are given by matrices ψi ∈ GLn(Ri) such that
ψi|Rij

φij7→ ψj |Rij .
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Theorem 2.2.4. The functor C-Alg→ Sets sending a ring R to the set{
(E , β)

∣∣∣∣∣ E is a GLn-torsor on SpecR[[t]] such that
β : E ×R[[t]] SpecR((t)) ∼→ GLn(R[[t]])×R[[t]] SpecR((t))

}

is isomorphic to GrGLn.

Proof. This follows immediately from Lemma 2.2.3 as E gets identified with a finite
locally free R[[t]]-module L and β defines the embedding L ⊆ R((t))n.

We now finally come to the definition of the Affine Grassmannian for general groups.
Note that all affine algebraic groups over C are smooth.

Definition 2.2.5. For G an affine algebraic group over C we set

GrG(R) :=
{

(E , β)
∣∣∣∣∣ E is a GR[[t]]-torsor on SpecR[[t]] such that
β : E ×R[[t]] SpecR((t)) ∼→ G(R[[t]])×R[[t]] SpecR((t))

}
.

Proposition 2.2.6. If every GR[[t]]-torsor on SpecR[[t]] is trivial, then

GrG(R) = G
(
R((t))

)
/G(R[[t]]).

Proof. We have

GrG(R) = {GR((t))-equivariant automorphisms β : G
(
R((t))

)
→ G

(
R((t))

)
}/ ∼

where β ∼ β′ if they differ by an automorphism which lives on the level of G(R[[t]]), since
(E , β) = (E ′, β′) if there is an isomorphism α : E → E ′ such that

E ⊗R[[t]] R((t)) E ′ ⊗R[[t]] R((t))

E0.

α

β′β

By the equivariance, any automorphism of the trivial torsor is just given by a group
element. And so

GrG(R) = G
(
R((t))

)
/G([[t]])

as claimed.

The following subsumes Proposition 2.1.12.

Proposition 2.2.7. If G is an affine algebraic group over C then

GrG(C) = G
(
C((t))

)
/Gr(C[[t]]).

Proof. Since G is smooth, there is an étale cover SpecR′ → SpecR such that E becomes
trivial after base change to R′[[t]] by [Zhu16, Lemma 1.3.7]. But as C is separably closed
there are no non-trivial étale extensions C→ R′ and therefore any G-torsor on C[[t]] is
trivial and the assertion follows from Proposition 2.2.6.
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Note that the definition of the Affine Grassmannian is functorial in G. The next lemmas
allow us to deduce from this functorality that GrG is an ind-projective ind-scheme if G is
reductive.
Theorem 2.2.8. If G is reductive, then GrG is an ind-projective ind-scheme.

Proof. If G is reductive, G can be realized as a closed subgroup of GLn such that GLn/G
is affine by [Alp14, Corollary 9.7.7]. By the following lemma, GrG ↪→ GrGLn is a closed
immersion, but GrGLn is ind-projective and then so is GrG.

Lemma 2.2.9. If G ↪→ GLn is a closed immersion of affine group schemes such that
GLn/G is quasi-affine, then the induced map GrG → GrGLn is an immersion. If GLn/G
is affine, then GrG → GrGLn is a closed immersion.

The proof can be found in [Zhu16, Proposition 1.2.5].
Example 2.2.10. The group Ga is not reductive and so we do not expect GrGa to
be ind-projective. We can show that every Ga on an affine scheme is trivial, as by
[GR03, Exposé XI, Propositon 5.1] every Ga-torsor is Zariski-locally trivial. However,
every Zariski-locally trivial Ga-torsor on an affine scheme is already trivial, since Zariski-
locally trivial G-torsors on a scheme X for an abelian group G are classified by the first
sheaf cohomology group H1(X,G) of the abelian sheaf G by [Sta21, Tag 02FQ]. But
H1(SpecA,Ga) = 0 as Ga is quasi-coherent. Therefore,

GrGa(R) = Ga
(
R((t))

)
/Ga(R[[t]]) = (R((t)),+)/(R[[t]],+)

= {(a−1, a−2, . . . ) ∈ RN | only finitely many ai are non-zero}

= A(∞)
C (R).

We therefore obtain GrGa = A(N), which is not ind-projective.
Note that later on we will only work with the analytification of GrG. But the analyti-

fication factors through the reduction (GrG)red. We will therefore prefer to work with
(GrG)red over GrG.

As we now know that GrG is an ind-finite type ind-scheme over the algebraically closed
field C, we may identify its reduction with its C-valued points G

(
C((t))

)
/G(C[[t]]).

Proposition 2.2.11. For the product G = G1 ×G2 we have

(GrG)red = (GrG1)red × (GrG2)red.

Proof. We check this on C-valued points, which can be computed using Proposition 2.2.7.
We have

GrG(C) = G
(
C((t))

)
/G(C[[t]])

=
(
G1
(
C((t))

)
×G2

(
C((t))

))/(
G1
(
C[[t]]

)
×G2

(
C[[t]]

))
=
(
G1
(
C((t))

)
/G1(C[[t]])

)
×
(
G2
(
C((t))

)
/G2(C[[t]])

)
= GrG1(C)×GrG2(C).

The result for (GrG)red follows from Proposition 1.2.21.
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Example 2.2.12. If G = T = Gn
m is a torus, GrG(C) equals X∗(G) = Zn. Note that all

tori are split, as we are working over C.

We now consider what the functorality of the Affine Grassmannian does in type A.
We only look at C-points.

Recall that GrGL1(C) is a disjoint union of Z-many points. The determinant map
GLn → GL1 induces a surjective map GrGLn(C)→ Z, which maps a coset [A] ∈ GrGLn

to the unique integer νt(detA) satisfying

t−νt(detA) detA ∈ C[[t]]∗.

Proposition 2.2.13. The fibers of the map GrGLn(C)→ GrGL1(C) = Z are the connected
components of GrGLn(C).

Proof. Obviously, the fibers are open and closed. So we only need to show that they are
connected. Let [A] = AGLn(C[[t]]) ∈ GrGLn(C) be given. We show that there is a path
in Gr(C) from [A] to 


1

. . .
1

tνt(detA)


 .

We first show that any element can be moved to a diagonal element of the form
Diag(tk1 , . . . tkn). Indeed, for any A′ ∈ C[[t]]n×n there is a matrix B ∈ GLn(C[[t]])
such that A′B is upper triangular. So we apply this to A′ = tNA ∈ C[[t]]n×n for the
given A ∈ GLn

(
C((t))

)
. Now write A = T + C where T is an invertible diagonal matrix

and C is strictly upper diagonal. Then T + rC for r ∈ [0, 1] is a path from A to T in
GLn

(
C((t))

)
and thus from [A] to [T ] in GrGLn(C). But we can assume that T is of the

form T =

t
k1

. . .
tkn

 by multiplying with a diagonal matrix in GLn(C[[t]]). We

now show that there is a path in Gr between the 2× 2 matrices
(
tk 0
0 tl

)
and

(
1 0
0 tk+l

)
.

By concatenating paths like this we obtain a path from T to a matrix of the required
form.

There is a path r 7→
[(
tk + r2 r
rtl tl

)]
from

[(
tk 0
0 tl

)]
to
[(
tk + 1 1
tl tl

)]
in Gr. Notice
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that (tk + 1)−1 always lies in C[[t]]. We get[(
tk + 1 1
tl tl

)]
=
[(
tk + 1 1
tl tl

)
·
(

1 −(tk + 1)−1

0 1

)]

=
[(
tk + 1 0
tl (tk + 1)−1tk+l

)]

=
[(
tk + 1 0
tl (tk + 1)−1tk+l

)
·
(

(tk + 1)−1 0
0 tk + 1

)]

=
[(

1 0
∗ tk+l

)]
.

From this there is a path to
[(

1 0
0 tk+l

)]
.

Observe that multiplication from the left by t is an automorphism of GrGLn(C) which
induces an isomorphism between the i-th connected component and the (i+ n)-th one.
Therefore GrGLn is the infinite disjoint union of its first n components.

We now examine the 0-th component of GrGLn , after which we will consider the union
of the first n-components.

Theorem 2.2.14. The inclusion SLn ↪→ GLn induces an isomorphism between GrSLn

and the (reduction of the) 0-th component of GrGLn. In particular, GrSLn is connected.

Proof. We only need to look at the inclusion on the level of C-points

SLn
(
C((t))

)
/SLn(C[[t]]) ↪→ GLn

(
C((t))

)
/GLn(C[[t]]).

It is clear that GrSLn(C) maps injectively into the 0-th component of GrGLn , since for
A ∈ SLn

(
C((t))

)
we have νt(detA) = νt(1) = 0. But it is also clear that this map is

surjective as any A ∈ GLn
(
C((t))

)
with detA ∈ C[[t]]∗ can be multiplied with a fitting

matrix in GLn(C[[t]]) such that the product lies in SLn
(
C((t))

)
.

As before consider the multiplication by t map on GrGLn(C). We can let Z act on
GrGLn(C) via n.[A] = [tnA]. Consider the quotient space GrGLn(C)/Z.

Theorem 2.2.15. We have GrPGLn(C) ∼= GrGLn(C)/Z and the natural morphism
GLn ↠ PGLn induces the quotient map GrGLn(C) → GrGLn(C)/Z. This implies that
GrPGLn is the disjoint union of the first n-connected components of GrGLn.

Proof. Let π be the quotient map GLn → PGLn. We have the element

π(AGLn(C[[t]])) = π(A)PGLn(C[[t]])

is equal to π(A′GLn(C[[t]])) if and only if there is an element B ∈ PGLn(C[[t]]) such
that π(A)B = π(A′). This happens precisely if there is a matrix B ∈ GLn(C[[t]]) and an
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element a ∈ C((t))∗ such that A = A′ · a ·B. We can write a = tka′ with a′ ∈ C[[t]]∗ and
therefore assume that a = tk. So the map GrGLn(C)→ GrPGLn(C) identifies connected
components which differ by the index n.

The second statement follows as we have identified GrPGLn(C) with the connected
components 0 to n− 1.

Corollary 2.2.16. We have closed-open immersions

GrSLn(C) ↪→ GrPGLn(C) ↪→ GrGLn(C),

where the map GrSLn ↪→ GrPGLn is induced by the composition

SLn → GLn → PGLn.

Proof. The map GrSLn(C) → GrGLn(C) is the inclusion of the zeroth connected com-
ponent of GrGLn(C) by Theorem 2.2.14 and the map GrPGLn(C) → GrGLn(C) is the
inclusion of the first n connected component by Theorem 2.2.15. It follows that we have
a closed-open immersion f : GrSLn(C) ↪→ GrPGLn(C). Now we show that this map f is
induced by the morphism SLn → GLn → PGLn. The composition

GrSLn(C) f→ GrPGLn(C) ↪→ GrGLn(C)

is the inclusion of the zeroth connected component and therefore induced by the map
SLn → GLn. This coincided with the composition

GrSLn(C)→ GrGLn(C)→ GrPGLn(C) ↪→ GrGLn(C),

where GrSLn(C) → GrGLn(C) and GrGLn(C) → GrPGLn(C) are the natural maps. As
the map GrPGLn(C) ↪→ GrGLn(C) is an immersion, it is in particular a monomorphism.
Therefore the map f coincides with the map induced by functorality.

Remark 2.2.17. For a complex reductive group G there is a general way to see how
many connected components GrG has. It follows from [Zhu16, Theorem 1.3.11] that
π0(GrG) = π1(G) = π1(G(C)). But the fundamental group can be read off from root
datum (X∗,Φ, X∗,Φ∨) of G as X∗/⟨Φ∨(G)⟩Z, by Proposition 1.1.28. Using this labeling
of the connected components, the element [tλ] lies in the component with the label
λ+ ⟨Φ∨(G)⟩Z. Indeed

π1(GLn) =X∗(GLn)/⟨Φ∨(GLn)⟩ = Zn/⟨εi − εj⟩
∼= Z = π0(GrGLn),

π1(SLn) =X∗(SLn)/⟨Φ∨(SLn)⟩ =
{
a ∈ Zn

∣∣∣ ∑
i
ai = 0

}/
⟨εi − εj⟩

∼= {0} = π0(GrSLn),
π1(PGLn) =X∗(SLn)/⟨Φ(SLn)⟩ =

(
Zn/⟨e1 + · · ·+ en⟩

)
/⟨ei − ej⟩

∼= Z/n = π0(GrPGLn).
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2.3 The Schubert Cells of Gr

In this section we want to find a cell decomposition of GrG. We rather work with its
reduction which is identified with GrG(C) = G

(
C((t))

)
/G(C[[t]]). This cell decomposition

is analogous to the classical Schubert cell decomposition of partial flag varieties. The
Schubert cells in Gr, however, will be more complicated than the affine cells in partial
flag varieties.
Warning. In this section, we will state the results for general reductive groups G, but the
proofs will be given only in the cases GLn, SLn, and PGLn.

We consider a reductive group G with fixed Borel and torus G ⊇ B ⊇ T and corres-
ponding root datum

(X∗(G,T ),Φ(G,T ), X∗(G,T ),Φ∨(G,T )) = (X∗,Φ, X∗,Φ∨).

Recall that X∗(G,T ) denotes the characters Hom(T,Gm) of G and X∗(G,T ) denotes
the cocharacters Hom(Gm, T ). We write

(X∗)+ := (X∗(G,T ))+ := {λ ∈ X∗ | ⟨α, λ⟩ ≥ 0 for all positive roots α ∈ Φ+}.

Notice that there is a natural left action of the group G(C[[t]]) on GrG(C) by left
multiplication. We obtain a decomposition of GrG(C) into its G(C[[t]])-orbits.

Theorem 2.3.1 (Cartan Decompostion). There is a bijection

X∗(G,T )+ {G(C[[t]])-orbits of GrG(C)},

λ G(C[[t]]).[tλ].

1:1

We think of this statement as a decomposition of the Affine Grassmannian into its
orbits

GrG(C) =
∐

λ∈X∗(G,T )+

G(C[[t]])[tλ].

Alternatively, the name decomposition can also refer to a matrix decomposition. Thinking
of G as a group of matrices, we obtain the following.

Theorem 2.3.2 (Cartan Decomposition — Matrix Version). For any group element
A ∈ G

(
C((t))

)
there is a unique λ ∈ X∗(G,T )+ and some elements X,Y ∈ G(C[[t]])

such that A = XtλY .

The equivalence of theses two formulations follows immediately from the equality
GrG(C) = G

(
C((t))

)
/G(C[[t]]), Proposition 2.2.7.

Definition 2.3.3. The G(C[[t]])-orbits of GrG(C) are called the Schubert cells. We
denote the Schubert cell corresponding to the element λ ∈ (X∗(G,T ))+ by GrλG.
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Remark 2.3.4. The finite-dimensional irreducible representations of G are labeled by

X∗
+ = {λ ∈ X∗ | ⟨λ, α∨⟩ ≥ 0 for all positive roots α ∈ Φ+}

and so (X∗)+ is in bijection with the irreducible representations of G∨, the Langlands
dual group of G, see Theorem 1.1.22 and Definition 1.1.18. We therefore have identified
irreducible representations of G∨ with G(C[[t]]) orbits on GrG(C). We can think of
Theorem 2.3.1 as a “set-theoretic” Satake equivalence, see also Example 4.1.4.

The general proof of Theorem 2.3.1 can be found in [Tit79]. We give elementary proofs
in the cases GLn,SLn, and PGLn. We need the following theorem form linear algebra,
known as the elementary divisor theorem, Gaussian elimination, or Smith normal form.

Theorem 2.3.5 (Smith Normal Form). Let R be a principal ideal domain and A ∈ Rn×n

a square matrix. Then there are matrices X,Y ∈ GLn(R) such that

XAY =


d1

d2
. . .

dn

 ,
where di+1 divides di. In addition, the di are uniquely determined up to unit in R.

Proof of Theorem 2.3.1, Case GLn. We are interested in the double cosets

GLn(C[[t]])\GrGLn(C) = GLn(C[[t]])\GLn
(
C((t))

)
/GLn(C[[t]]).

Let A ∈ GLn
(
C((t))

)
. Then there is an N ∈ N0 such that Ã := tNA has coefficients

in C[[t]]. We apply the Smith normal form to Ã ∈ C[[t]]n×n. We obtain matrices
X̃, Ỹ ∈ GLn(C[[t]]) such that X̃ÃỸ is diagonal with entries di and di+1 divides di. As
the determinant of Ã is not 0, all di are non-zero. We get that di = tλ̃iai with ai ∈ C[[t]]∗
and λ̃i ≥ λ̃i+1 ≥ 0. We can therefore find matrices X,Y ∈ GLn(C[[t]]) such that

XÃY =


tλ̃1

tλ̃2

. . .
tλ̃n

 .

Define λi := λ̃i −N . We obtain

XAY = Xt−N ÃY = t−NXÃY =


tλ1

tλ2

. . .
tλn

 .
with λ1 ≥ λ2 ≥ · · · ≥ λn ∈ Z.
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It is clear from the uniqueness properties of the Smith normal form that given two such
sequences λ1 ≥ · · ·λn and λ′

1 ≥ · · · ≥ λ′
n in Z there cannot be matrices X,Y ∈ GL(C[[t]])

such that

X


tλ1

tλ2

. . .
tλn

Y =


tλ

′
1

tλ
′
2

. . .
tλ

′
n


unless λi = λ′

i for all i. We therefore have shown that


tλ1

tλ2

. . .
tλn


∣∣∣∣∣∣∣∣∣∣
λ1 ≥ λ2 ≥ · · · ≥ λn ∈ Z


is a system of representatives of the double coset GLn(C[[t]])\GrGLn(C). However, the
root datum of GLn with the standard Borel and Cartan is

(Zn, {ei − ej | i ̸= j},Zn, {εi − εj | i ̸= j})

and positive roots ei − ej for i < j, see Example 1.1.10. And therefore

(X∗)+ = {λ ∈ Zn | ⟨ei − ej , λ⟩ ≥ 0 for all i > j}
= {(λ1, . . . , λn) ∈ Zn | λ1 ≥ λ2 ≥ · · · ≥ λn},

which is identified with GLn(C[[t]])\GrGLn(C) via λ 7→ [tλ].

Proof of Theorem 2.3.1, Case SLn. The argument in case SLn is very similar to the GLn
case. Just notice that the X and Y in the Smith normal form can be chosen to lie in
SLn(C[[t]]). We can see this by carefully going through the steps of Gaussian elimination
or by noticing that in C[[t]] any element in C[[t]]∗ has an n-th root by Hensel’s lemma
[Eis95, Theorem 7.3] and then multiplying X and Y with

(
n
√

detX
)−1

and n
√

detX,
respectively. In any rate, we see that for any A ∈ SLn

(
C((t))

)
there are matrices

X,Y ∈ SLn(C[[t]]) such that

XAY =


tλ1

tλ2

. . .
tλn


with λi ≥ λi+1 and the additional condition that ∑i λi = 0. As before it is clear that
such matrices form a system of representatives of the double coset SLn(C[[t]])\GrSLn(C).

The root datum of SLn with the standard Borel and Cartan is(
Zn/⟨e1 + · · ·+ en⟩, {ei − ej | i ̸= j},

{
λ ∈ Zn

∣∣∣∑
i
λi = 0

}
, {εi − εj | i ̸= j}

)
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with positive roots ei − ej for i < j, see Example 1.1.11. Therefore

(X∗)+ =
{
λ ∈ Zn

∣∣∣ ⟨ei − ej , λ⟩ ≥ for i > j and
∑

i
λi = 0

}
= {(λ1, . . . , λn) ∈ Zn | λ1 ≥ λ2 ≥ · · · ≥ λn, λ1 + · · ·+ λn = 0} .

We again have that λ 7→ [tλ] identifies (X∗)+ with SLn(C[[t]])\GrSLn(C).

Proof of Theorem 2.3.1, Case PGLn. We can deduce this from the already proven GLn
case. Notice that

PGLn
(
C[[t]]

)∖
GrPGLn(C) = PGLn

(
C[[t]]

)∖
PGLn

(
C((t))

)/
PGLn

(
C[[t]]

)
=
(
GLn

(
C[[t]]

)∖
GLn

(
C((t))

)/
GLn

(
C[[t]]

))/
C((t))∗

1:1↔ {λ ∈ Zn | λ1 ≥ · · · ≥ λn}/Z(1, . . . , 1)
= {λ ∈ Zn/Z(1, . . . , 1) | λ1 ≥ · · · ≥ λn}.

The root datum of PGLn with standard Borel and Cartan is({
a ∈ Zn

∣∣∣∑
i
ai = 0

}
, {ei − ej | i ̸= j},Zn/⟨ε1 + · · ·+ εn⟩, {εi − εj | i ̸= j}

)
with positive roots εi − εj for i < j, see Example 1.1.12. Therefore

(X∗)+ = {λ ∈ Zn/⟨e1 + · · ·+ en⟩ | ⟨ei − ej , λ⟩ ≥ 0}
= {λ ∈ Zn/Z(1, . . . , 1) | λ1 ≥ · · · ≥ λn}.

The following proposition shows that many statements about the Schubert cells
in GrPGLn(C) and GrSLn(C) can be deduced from the corresponding statements for
GrGLn(C).

Proposition 2.3.6. The embeddings GrSLn(C) ↪→ GrPGLn(C) ↪→ GrGLn(C) from Corol-
lary 2.2.16 induce bijections and therefore isomorphisms on Schubert cells.

Proof. It is clear that the map GrSLn(C) ↪→ GrPGLn injects any SLn(C[[t]])-orbit in
GrSLn(C) into a single PGLn(C[[t]])-orbit in GrPGLn(C), because this map is induced
by SLn → GLn → PGLn. Now note that the natural map SLn(C[[t]])→ PGLn(C[[t]]) is
surjective, because any element [A] ∈ PGLn(C[[t]]) = GLn(C[[t]])/Z(GLn(C[[t]])) can be
written as [A] =

[
A · ( n

√
detA)−1

]
, since any invertible element in C[[t]] has an n-th root.

It follows that the map GrSLn(C)→ GrPGLn(C) induces bijections on orbits.
Now note that the natural map GrGLn(C) ↠ GrPGLn(C) induces bijections on Schubert

cells, using Theorem 2.2.15. It follows that the same is true for GrPGLn(C) ↪→ GrGLn(C),
which on orbits is just the inverse.

Remark 2.3.7. On the level of (X∗)+ the first map is given by

(X∗(SLn))+ ∋ λ = (λ1, . . . λn) 7→ [(λ1, . . . , λn)] ∈ (X∗(PGLn))+.

The map GrGLn ↠ GrPGLn similarly corresponds to mapping λ ∈ (X∗(GLn))+ to
its residue class [λ] ∈ (X∗(PGLn))+. Its split GrPGLn ↪→ GrGLn sends the class
[λ] ∈ (X∗(PGLn))+ to the unique λ′ ∈ [λ] such that ∑i λ

′
i ∈ {0, 1, . . . , n− 1}.
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Recall from Remark 2.2.17 that the connected components of GrG are labeled by the
fundamental group π1(G) = X∗(G,T )/⟨Φ∨⟩Z.

Proposition 2.3.8. Let λ ∈ (X∗)+. The element [tλ] is contained in the connected
component with label λ+ ⟨Φ∨(G,T )⟩Z ∈ X∗(G,T )/⟨Φ∨(G,T )⟩Z = π1(G). It follows that
its G(C[[t]])-orbit GrλG must be completely contained in this component. We see that GrλG
and GrµG lie in the same connected component of GrG(C) if and only if we can write
λ− µ = ∑

i niαi for αi ∈ Φ∨(G) and ni ∈ Z.

Proof. We verify that [tλ] lies in the connected component with label λ+ ⟨Φ∨(G,T )⟩Z in
the case GLn. The cases SLn and PGLn work the same.

Indeed det(tλ) = t
∑

i
λi . But ∑i λi is precisely the image of λ ∈ X∗ = Zn in

X∗/⟨Φ∨(G,T )⟩Z = Zn/⟨ei − ej⟩Z ∼= Z.

Proposition 2.3.9. The sets Gr(N)
GLn

(C) as in Theorem 2.1.16 are GLn(C[[t]])-invariant
and so the Schubert cell GrλG will be completely contained in Gr(N)

G for N ≫ 0. Explicitly,
we can choose N such that N ≥ λ1 and λn ≥ −N .

Proof. The invariance follows from Lemma 2.1.19. With the choice of N as above, we
have [tλ] ∈ Gr(N)(C) and therefore GrλG ⊆ Gr(N)(C).

For any λ ∈ (X∗)+, let Pλ ⊆ G(C) be the parabolic subgroup corresponding to λ. It
can be defined as the group generated by T as well as those Uα ⊆ G such that ⟨α, λ⟩ ≤ 0.
Explicitly, for λ = (λ1, . . . , λn) ∈ (X∗(GLn, T ))+ consider the partition n = ∑l

i=1 ki such
that λ1 = λ2 = · · ·λk1 > λk1+1 = λk1+2 = · · · > λk1+···+kl−1+1 = · · · = λn. Then

Pλ =



 . . .

A1 0

A2

∗ Al


∈ GLn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Ai ∈ Cki×ki


= {A = (aij)ij ∈ GLn(C) | aij = 0 if λi > λj}.

Also consider the evaluation at zero map ev0 : C[[t]]→ C and its induced group homo-
morphism ev0 : G(C[[t]])→ G(C).

Lemma 2.3.10. The inverse image of Pλ ⊆ G(C) in G(C[[t]]) contains

P aff
λ := G(C[[t]]) ∩ tλG(C[[t]])t−λ

and ev−1
0 (Pλ)/P aff

λ
∼= Cl. If G = GLn we find

l =
∑
λi>λj

(λi − λj − 1).
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Note that while Pλ only depends on the underlying partition of λ, we can have
P aff
λ ̸= P aff

λ′ even if λ and λ′ have the same partition.

Proof. We focus only on the case G = GLn. The arguments for G = SLn and G = PGLn
are exactly the same.

It is clear that the inverse image of Pλ in GLn(C[[t]]) contains the elements of the form
A+ tB, where A ∈ Pλ and B ∈ C[[t]]n×n, i.e. elements (aij) of GLn(C[[t]]) such that the
constant term of aij is zero if λi < λj . Now notice that

GLn(C[[t]]) ∩ tλGLn(C[[t]])t−λ =
{
tλAt−λ ∈ C[[t]]n×n

∣∣∣ A = (aij)i,j ∈ GLn(C[[t]])
}

=
{

(tλi−λjaij)i,j ∈ C[[t]]n×n
∣∣∣ (aij)i,j ∈ GLn(C[[t]])

}
.

We see that the constant term of aij is only allowed to be non-zero if λi ≥ λj .
That the quotient has the form Cl for l = ∑

λi>λj
(λi − λj − 1) is now clear from the

above description of P aff
λ .

Remark 2.3.11. If G = GLn, notice that P aff
λ = ev−1

0 (Pλ) if and only if

λ = (l + 1, l + 1, . . . , l + 1, l, l . . . , l),

which are precisely those λ that are minuscule, i.e. λ− α∨ ̸∈ (X∗(G))+ for all positive
coroots α∨. The same holds for arbitrary G.

Now we compute what P aff
λ can look like for GL2 and GL3.

Example 2.3.12. Let λ ∈ (X∗(GL2))+. So λ = (k, l) ∈ Z2 with k ≥ l. We have that a
matrix A ∈ GL2(C[[t]]) lies in P aff

λ if and only if there is a matrix A′ ∈ GL2(C[[t]]) such
that tλA′t−λ = A. We have

tλ
(
a′ b′

c′ d′

)
t−λ =

(
a′ tk−lb′

t−(k−l)c′ d′

)
.

It follows that any A =
(
a b
c d

)
∈ GL2(C[[t]]) lies in P aff

λ if and only if b is divisible by

tk−l in C[[t]]; and so

P aff
λ =

{(
a b
c d

) ∣∣∣∣∣ tk−l divides b
}

=
{(

a tk−lb
c d

)}
.

Note that there is no condition on c because for every c ∈ C[[t]] there is a c′ ∈ C[[t]] such
that c = t−(k−l)c′.

• If k = l, we have Pλ = GL2(C) and P aff
λ = GL2(C[[t]]). Therefore ev−1

0 (Pλ) = P aff
λ .

• If k = l + 1, we have Pλ =
{(

a 0
c d

)
∈ GL2(C)

}
and

P aff
λ =

{(
a tb
c d

)}
= ev−1

0 (Pλ).

36



2.3 The Schubert Cells of Gr

• If k > l + 1, we again have Pλ =
{(

a 0
c d

)
∈ GL2(C)

}
which also satisfies

ev−1
0 (Pλ) =

{(
a tb
c d

)}
. However, now we have

P aff
λ =

{(
a tk−lb
c d

)}
⊊ ev−1

0 (Pλ) =
{(

a tb
c d

)}

with quotient
ev−1

0 (Pλ)/P aff
λ = C(k−l)−1.

Example 2.3.13. Let λ ∈ (X∗(GL3))+. So λ = (k1, k2, k3) ∈ Z3 with k1 ≥ k2 ≥ k3. We
have

tλ

b11 b12 b13
b21 b22 b23
b31 b32 b33

 t−λ =

 b11 tk1−k2b12 tk1−k3b13
tk2−k1b21 b22 tk2−k3b23
tk3−k1b31 tk3−k2b32 b33

 .
and thus

P aff
λ =


a11 a12 a13
a21 a22 a23
a31 a32 a33


∣∣∣∣∣∣∣ tk1−k2 |a12, t

k1−k3 |a13, and tk2−k3 |a23

 .
As in the previous example note that there is no condition on any entry on or below the
diagonal. We distinguish four cases for λ.

• If k1 = k2 = k3, we have Pλ = GL3(C), P aff
λ = GL3(C[[t]]), and

ev−1
0 (Pλ) = GL3(C[[t]]) = P aff

λ .

• If k1 > k2 = k3, we have Pλ =


a11 0 0
a21 a22 a23
a31 a32 a33

 ∈ GL3(C)

 and

ev−1
0 (Pλ) =


a11 ta12 ta13
a21 a22 a23
a31 a32 a33


 .

We also have

P aff
λ =


a11 tk1−k2a12 tk1−k3a13
a21 a22 a23
a31 a32 a33




and therefore ev−1
0 (Pλ)/P aff

λ
∼= Ck1−k2−1+k1−k3−1 = C2k1−2k2−2.
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• If k1 = k2 > k3, we have Pλ =


a11 a12 0
a21 a22 0
a31 a32 a33

 ∈ GL3(C)

 and

ev−1
0 (Pλ) =


a11 a12 ta13
a21 a22 ta23
a31 a32 a33


 .

We also have

P aff
λ =


a11 a12 tk1−k3a13
a21 a22 tk2−k3a23
a31 a32 a33




and therefore ev−1
0 (Pλ)/P aff

λ
∼= C(k1−k3−1)+(k2−k3−1) = C2k1−2k3−2.

• If k1 > k2 > k3, we have Pλ =


a11 0 0
a21 a22 0
a31 a32 a33

 ∈ GL3(C)

 and

ev−1
0 (Pλ) =


a11 ta12 ta13
a21 a22 ta23
a31 a32 a33


 .

We also have

P aff
λ =


a11 tk1−k2a12 tk1−k3a13
a21 a22 tk2−k3a23
a31 a32 a33




and therefore ev−1
0 (Pλ)/P aff

λ
∼= C(k1−k2−1)+(k1−k3−1)+(k2−k3−1).

Definition 2.3.14. An affine bundle on X is map p : Y → X of varieties such that for
some covering X = ⋃

i Ui we have p−1(Ui) ∼= Ak × Ui.

Typical examples of affine bundles are vector bundles. These concepts differ in that
there are no linearity assumption on transition maps.

Theorem 2.3.15. The Schubert cell GrλG is an affine bundle over the partial flag variety
G/Pλ with fibers ev−1

0 (Pλ)/P aff
λ . It follows that the Schubert cell is a smooth, quasi-

projective variety of dimension ⟨2ρ, λ⟩, where 2ρ is the sum of all positive roots in the
root datum of (G,B, T ).

Proof. We consider the natural map G(C[[t]]) ↠ GrλG, g 7→ [g.tλ], as GrλG is defined as
the G(C[[t]])-orbit of [tλ] ∈ GrG(C). We get an identification

GrλG = G(C[[t]])/{A ∈ G(C[[t]]) | [Atλ] = [tλ]}.
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We can calculate

G(C[[t]])[tλ] = {A ∈ G(C[[t]]) | [Atλ] = [tλ]}
= {A ∈ G(C[[t]]) | there is a B ∈ G(C[[t]]) such that Atλ = tλB}
= {A ∈ G(C[[t]]) | there is a B ∈ G(C[[t]]) such that A = tλBt−λ}
= G(C[[t]]) ∩ tλG(C[[t]])t−λ

= P aff
λ .

As by Lemma 2.3.10, we have P aff
λ ⊆ ev−1

0 (Pλ), we obtain a map

GrλG = G(C[[t]])/
(
G(C[[t]]) ∩ tλG(C[[t]])t−λ

)
−→ G(C[[t]])/ev−1

0 (Pλ) = G(C)/Pλ,

which endows GrλG with the structure of an affine bundle over G(C)/Pλ. We need to
check that this map is locally trivial. Indeed, the map π : G(C[[t]]) ev0→ G(C) π→ G(C)/Pλ
is a fiber bundle with fibers ev−1

0 (Pλ). Consider the diagram

G(C[[t]]) G(C)/Pλ

G(C[[t]])/P aff
λ .

π

κ φ

Now let U ⊆ G(C)/Pλ such that π−1(U) ∼= U × ev−1
0 (Pλ). Then

φ−1(U) = κ(π−1(U)) = κ(U × ev−1
0 (Pλ)) ∼= U × ev−1

0 /P aff
λ

and we have shown local triviality of GrλG ↠ G(C)/Pλ.
It follows that GrλG is smooth. It is quasi-projective, as any GrλG lies completely in

some finite-dimensional projective variety Gr(N)
G by Proposition 2.3.9.

Now we compute the dimension in the case G = GLn: We have shown that GrλGLn

is a bundle on G(C)/Pλ with fibers isomorphic to Cl with l = ∑
λi>λj

(λi − λj − 1)
by Lemma 2.3.10. However, we know that G(C)/Pλ is a smooth projective variety of
dimension #{(i, j) ∈ {1, . . . , n}2 | λi > λj}. Therefore

dim GrλGLn
= l + #{(i, j) ∈ {1, . . . , n}2 | λi > λj}

=
∑
λi>λj

(λi − λj − 1) + #{(i, j) ∈ {1, . . . , n}2 | λi > λj}

=
∑
λi>λj

(λi − λj) =
∑
i>j

(λi − λj) =
∑
i>j

⟨ei − ej , λ⟩

= ⟨2ρ, λ⟩.

Remark 2.3.16. In [Zhu16, Proposition 2.1.5] a different argument for the dimension
count is given, which works for arbitrary G. There the tangent space at [tλ] in GrλG is
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computed as

g(C[[t]])/
(
g(C[[t]]) ∩ tλg(C[[t]])t−λ

)
=

⊕
roots α

gα(C[[t]])/
(
gα(C[[t]]) ∩ tλg(C[[t]])t−λ

)
=

⊕
positive roots α

gα(C[[t]])/t⟨α,λ⟩gα(C[[[t]]).

which is a ∑α∈Φ+⟨α, λ⟩ = ⟨2ρ, λ⟩ dimensional vector space, since gα is one dimensional.

We now take some corollaries from Theorem 2.3.15.

Corollary 2.3.17. The Schubert cells are irreducible.

Proof. By Theorem 2.3.15 we have π0(GrλG) = π0(G(C)/Pλ). However, the partial
partial flag variety G(C)/Pλ is connected. Now, GrλG is smooth connected, and therefore
irreducible.

Corollary 2.3.18. The Schubert cells GrλG are simply-connected.

Proof. By Theorem 2.3.15 we have π1(GrλG) = π1(G(C)/Pλ). However, G(C)/Pλ is
simply-connected, because the classical Schubert cells of G(C)/Pλ give G(C)/Pλ the
structure of a CW-complex, where all cells appear in even dimension, since these classical
Schubert cells have the form Ck.

Note that in the classical case of Schubert cells in partial flag varieties both of these
corollaries are trivial, as the classical Schubert cells are always of the form Ck for some k.

Corollary 2.3.19. The Schubert cell GrλG is projective if and only if λ is minuscule,
i.e. λ− α∨ ̸∈ (X∗(G,T ))+ for all positive coroots α∨.

Proof. The cell GrλG is an affine bundle of rank dim ev−1
0 (Pλ)/P aff

λ over the projective
variety G(C)/Pλ and is therefore projective if and only if P aff

λ = ev−1
0 (Pλ). This is

equivalent to λ minuscule by Remark 2.3.11.

Remark 2.3.20. In the case of partial flag varieties, the only projective Schubert cell is
the singleton. This is precisely the Schubert cell labeled by the minimal element 1.

The following corollary gives us a condition for the Schubert cell to not just be
projective, but a point.

Corollary 2.3.21. The following are equivalent:

(1) The Schubert cell GrλG is a singleton.
(2) We have P aff

λ = G(C[[t]]).
(3) We have Pλ = G(C).
(4) We have ⟨α, λ⟩ = 0 for all roots α ∈ Φ.
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Proof. We show (1)⇔ (2)⇒ (3)⇔ (4)⇒ (2).
We begin with the equivalence of (1) and (2). We have that the Schubert cell GrλG is a

singleton if and only if G(C[[t]]) acts trivially on the element

[tλ] ∈ GrG(C) = G
(
C((t))

)
/G(C[[t]]).

This is the case if and only if for every A ∈ G(C[[t]]) there is a matrix B ∈ G(C[[t]])
such that AtλB = tλ, i.e. such that A = tλB−1t−λ. But this is now equivalent to
P aff
λ = G(C[[t]]) ∩ tλG(C[[t]])t−λ being equal to G(C[[t]]).
The equivalence of (3) and (4) is classical and follows from [Mil17, Corollary 21.92].
For (2) implies (3) recall that P aff

λ ⊆ ev−1
0 (Pλ) by Lemma 2.3.10. We deduce

Pλ = ev0(ev−1
0 (Pλ)) ⊇ ev0(P aff

λ ) = ev0(G(C[[t]])) = G(C).

For (4) implies (2), note that we have ⟨α, λ⟩ = 0 for all α ∈ Φ. This implies that λ is
minuscule, because ⟨α, λ− α∨⟩ < 0 for all simple coroots α∨. Hence, GrλG is projective
by Corollary 2.3.19. But by Theorem 2.3.15 we know that GrλG is an affine bundle over
G(C)/Pλ with fibers ev−1

0 (Pλ)/P aff
λ . However, an affine bundle can never be projective

unless it has trivial fibers. We therefore have

P aff
λ = ev−1

0 (Pλ) = ev−1
0 (G(C)) = G(C[[t]]).

Example 2.3.22. In the case G = GL1 we have that Pλ = GL1(C) is the only possible
parabolic subgroup of GL1(C). Therefore every Schubert cell is a singleton, which again
shows that GrGL1(C) = Z, as we have already seen in Example 2.1.14.

Proposition 2.3.23. The Schubert cell corresponding to

λ = (1, . . . , 1︸ ︷︷ ︸
r many

, 0, . . . 0) ∈ X∗(GLn, T )+

is the classical Grassmannian Grassr(n)(C) of r-dimensional subspaces in Cn.

Proof. We have Pλ =
{(

A 0
C D

)
∈ GLn(C) where A ∈ GLr(C)

}
and so

G(C)/Pλ = Grassr(n)(C).

The map GrλGLn
↠ Grassr(n)(C) has fibers ev−1

0 (Pλ)/P aff
λ , but

ev−1
0 (Pλ) =

{(
A tB

C D

)
∈ GLn(C[[t]]) where A ∈ GLr(C[[t]])

}
= P aff

λ .

Next we will give a description of the Schubert cells in the Affine Grassmannian of
GL2. There are two possibilities for Pλ:

• If λ = (k, k) we have Pλ = GL2(C) and so G(C)/Pλ = {pt}. In fact all such GrλGL2
are isomorphic to each other and are equal to {pt}.
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• If k > l, we have that Pλ = B− =
{(

a 0
c d

)
∈ GL2(C)

}
and GL2(C)/B− = P1(C).

To give a description of GrλGL2 in the second case, we need the following definition:

Definition 2.3.24. Let X be a scheme of finite type over C. The k-th jet-scheme Jk(X)
of X represents the functor

Jk(X) : C-Alg→ Sets, A 7→ Hom
(
SpecA[t]/(tk+1), X

)
.

Remark 2.3.25. If X = Spec (C[x1, . . . , xr]/(f1, . . . , fk)) is affine, one can check that
Jk(X) is representable by an affine scheme of finite type over C. If X is arbitrary the
representability of Jk(X) follows from the affine case by [GW10, Theorem 8.9].

Example 2.3.26. Notice that J0(X) = X and J1(X) = TX/C is the tangent bundle on
X.

Example 2.3.27. We want to compute Jk(P1
C). To do so, we cover take the standard

cover P1
C = A1

C ∪ A1
C and obtain

Jk(P1
C) = Jk(A1

C) ∪ Jk(A1
C).

We therefore begin by computing Jk(A1
C) and Jk(A1

C \ {0}).

Jk(A1
C)(R) = Hom(SpecR[t]/(tk+1),A1

C) = Hom(C[x], R[t]/(tk+1))
= R[t]/(tk+1) = Rk+1

= Ak+1
C (R)

and therefore Jk(A1
C) = Ak+1

C . We also have

Jk(A1
C \ {0})(R) = Jk(SpecC[x, y]/(xy − 1))(R)

= Hom(SpecR[t]/(tk+1), SpecC[x, y]/(xy − 1))
= Hom(C[x, y]/(xy − 1), R[t]/(tk+1)

=
{

(α, β) ∈
(
R[t]/(tk+1)

)2
∣∣∣∣ α · β = 1

}
=
{
α = α0 + α1t+ · · ·+ αkt

k
∣∣∣ α0 ∈ R∗

}
=
(
(A1 \ {0})× Ak

)
(R)

and therefore Jk(A1
C\{0}) ∼= (A1

C\{0})×AkC with the embedding into Jk(A1
C) the obvious

map. It follows that Jk(P1
C) consists of two affine open subsets Ak+1

C , glued along{
(α, β) ∈

(
R[t]/(tk+1)

)2
∣∣∣∣ α · β = 1

}

{
α ∈ R[t]/(tk+1)

} {
β ∈ R[t]/(tk+1)

}
.
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We have introduced the jet schemes because they describe the Schubert cells in GrGL2 .

Proposition 2.3.28. If λ = (k, l) with k > l then GrλGL2
∼= Jk−l−1(P1

C).

Proof. As GrλGL2
∼= Grλ−(1,1)

GL2
, we can assume that k > l = 0. The elements of the

Schubert cell GrλGL2 are of the form(
a b
c d

)
·
[(
tk 0
0 tl

)]
=
[(
tka tlb
tkc tld

)]
=
[(
tka b
tkc d

)]
,

where A =
(
a b
c d

)
∈ GL2(C[[t]]) and we write [B] for the residue class of a matrix

B ∈ GL2
(
C((t))

)
in GrGL2(C) = GL2

(
C((t))

)
/GL2(C[[t]]). Let b0 and d0 in C be the

constant term of the elements b and d in C[[t]]. We must have b0 ̸= 0 or d0 ̸= 0, as the
matrix A would otherwise not be invertible. Write U0 := {b0 ̸= 0} and U1 := {d0 ̸= 0}.
These are Zariski-open subsets of GrλGL2 by Example 2.1.22. We therefore have a cover
GrλGL2 = U0 ∪ U1.

Let A ·
[(
tk 0
0 1

)]
=
[(
tka b
tkc d

)]
∈ U0. Then

[(
tka b
tkc d

)]
=
[(
tka b
tkc d

)
·
(

1 0
−tkb−1a 1

)]

=
[(

0 b
−tkb−1 det(A) d

)]
=
[(

0 b
−tkb−1 det(A) d

)
·
(
bdet(A)−1 0

0 b−1

)]

=
[(

0 1
−tk b−1d

)]
=
[(

0 1
−tk b−1d

)
·
(

1 ∗
0 1

)]

=
[(

0 1
−tk β0 + β1t+ · · ·+ βk−1t

k−1

)]
.

Notice that matrices of this form form a system of representatives, because[(
0 1
−tk β0 + β1t+ · · ·+ βk−1t

k−1

)]
=
[(

0 1
−tk β′

0 + β′
1t+ · · ·+ β′

k−1t
k−1

)]

if and only if the product(
0 1
−tk β0 + . . .

)−1

·
(

0 1
−tk β′

0 + . . .

)
=
(
β0t

−k + . . . βk−1t
−1 −t−k

1 0

)
·
(

0 1
−tk β′

0 + · · ·

)
=
(

1 (β0 − β′
0)t−k + · · ·+ (βk−1 − β′

k−1)t−1

0 1

)
lies in GL2(C[[t]]). This only happens if β = β′. We therefore have

U0 =
{[(

0 1
−tk β0 + . . . βk−1t

k−1

)] ∣∣∣∣∣ βi ∈ C
}
∼= Ck.
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Now consider A ·
[(
tk 0
0 1

)]
=
[(
tka b
tkc d

)]
∈ U1, that is d0 ̸= 0. Then

[(
tka b
tkc d

)]
=
[(
tka b
tkc d

)
·
(

1 0
−tkd−1c 1

)]

=
[(
tkd−1 det(A) b

0 d

)]
=
[(
tkd−1 det(A) b

0 d

)
·
(
ddet(A)−1 0

0 d−1

)]

=
[(
tk bd−1

0 1

)]
=
[(
tk bd−1

0 1

)
·
(

1 ∗
0 1

)]

=
[(
tk α0 + α1t+ · · ·+ αk−1t

k−1

0 1

)]
.

Similarly as for U0 we have[(
tk α0 + α1t+ · · ·+ αk−1t

k−1

0 1

)]
=
[(
tk α′

0 + α′
1t+ · · ·+ α′

k−1t
k−1

0 1

)]

if and only if the matrix(
tk α0 + . . .
0 1

)−1

·
(
tk α′

0 + . . .
0 1

)
=
(
t−k −α0t

−k − . . .
0 1

)
·
(
tk α′

0 + . . .
0 1

)

=
(

1 (α′
0 − α0)t−k + . . .

0 1

)

lies in GL2(C[[t]]). This only happens if α = α′. We therefore have

U1 =
{[(

tk α0 + . . . αk−1t
k−1

0 1

)] ∣∣∣∣∣ αi ∈ C
}
∼= Ck.

We now calculate U0∩U1. Notice from the calculations above that β = β0 + · · ·+βk−1t
k−1

can be seen as the image of b−1d in the ring C[[t]]/(tk) = C[t]/(tk) and α as bd−1

in C[t]/(tk). Therefore U0 = Ck and U1 = Ck are glued along the open subset
C∗ × Ck−1 = U0 ∩ U1. The transition map is given by

U0 ∩ U1 = {α0 ̸= 0} ∋ α 7−→ α−1 ∈ {β0 ̸= 0},

seen as an elements in C[t]/(tk).
We thus recognize GrλGL2 as Jk−1(P1

C) from Example 2.3.27.

Let OP1
C
(n)→ P1

C be (the total space of) the line bundle OP1
C
(1)⊗n.

Corollary 2.3.29. If λ = (l + 2, l), we have GrλGL2
∼= OP1

C
(2).
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Proof. We have

Gr(l+2,l)
GL2

∼= J1(P1
C) = TP1

C/C
=
(
Ω1
P1
C/C

)∨
=
( 1∧

Ω1
P1
C/C

)∨

= ω∨
P1
C/C

∼= OP1
C
(−1− 1)∨ = OP1

C
(2),

where Ω1
X/C is the sheaf of Kähler differentials and ωX/C = ∧dimX Ω1

X/C is the canonical
sheaf of a smooth X, see [Har77, Chapter II.8].

Example 2.3.30. We glue Ck \ {x0 = 0} = (C[t]/(tk+1))∗ We can calculate the inverse
β of an invertible α ∈ C[t]/(tk+1) inductively using the formulas α0β0 = 1 and

l∑
j=0

αl−jβj = 0

which is equivalent to βl = −α−1
0
∑l−1
j=0 αl−jβj . We therefore have that the gluing map in

Gr(l+2,l)
GL2

= J1(P1
C) is given by

C∗ × C ∋ α0 + α1t 7→ α−1
0 +

(
−α1
α2

0

)
t ∈ C∗ × C.

However, for Gr(l+3,l)
GL2

= J2(P1
C) we have the following transition map

C∗ × C2 ∋ α0 + α1t+ α2t
2 7→ α−1

0 +
(
−α1
α2

0

)
t+

(
−α2
α2

0
+ α1
α3

)
t2 ∈ C∗ × C.

As we expect from Theorem 2.3.15, this is indeed an affine bundle on P1
C, but in fact not

a vector bundle. The same thing happens for all higher Jk(P1
C).

2.4 The Schubert Varieties
We now examine the closures of the Schubert cells in the Affine Grassmannian. In the
case of partial flag varieties, the closures of classical Schubert cells were called Schubert
varieties. These were irreducible projective varieties with a nice decomposition into
Schubert cells.

The closures of the Schubert cells in the Affine Grassmannian have analogous structure.
It turns out that they are also interesting projective varieties with a decomposition into
Schubert cells. We will therefore refer to these as Schubert varieties as well:

Definition 2.4.1. The closure GrλG of the Schubert cell GrλG is called the Schubert
variety of λ ∈ (X∗(G))+.

The following proposition captures the properties of the Schubert varieties that follow
immediately from our earlier discussion of Schubert cells in the Affine Grassmannian.
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Proposition 2.4.2. The Schubert variety GrλG of λ is an irreducible projective variety
of dimension ⟨2ρ, λ⟩.

Proof. The Schubert cell Grλ lies completely in some Gr(N)(C) by Proposition 2.3.6.
Therefore the Schubert variety Grλ will be projective as a closed subvariety of the
projective Gr(N)(C). The Schubert cell is irreducible by Corollary 2.3.17 and therefore
the Schubert variety must be irreducible, too. Now, by Theorem 2.3.15 we have

dim GrλG = dim GrλG = ⟨2ρ, λ⟩.

Proposition 2.4.3. We have GrλG = GrλG if and only if λ is minuscule.

Proof. Immediate from Proposition 2.4.2 and Corollary 2.3.19.

Remark 2.4.4. In the case of partial flag varieties, we have that a classical Schubert
cell equals its own closure if and only if it is projective, which happens only if the cell is
a single point, i.e. the cell is labeled with 1.

Before we come to the aforementioned decomposition of the Schubert variety, we make
an observation about how the Schubert varieties of in the case SLn,PGLn, and GLn
relate to each other.

Proposition 2.4.5. The embeddings

GrSLn(C) ↪→ GrPGLn(C) ↪→ GrGLn(C)

from Corollary 2.2.16 induce isomorphisms on Schubert varieties.

Proof. By Proposition 2.3.6 these embeddings induce isomorphisms on Schubert cells.
But these maps are closed-open immersions and so induce isomorphisms on the closures
of Schubert cells as well.

Recall that a classical Schubert cell in a partial flag variety is a finite union of Schubert
cells and that the cells appearing in a Schubert variety are given by some combinatorially
defined partial order. Something similar will be true for the Schubert varieties in the
Affine Grassmannian. First we need to define the partial order.

Definition 2.4.6. We write λ ≥ µ if λ− µ can be written as an N0-linear combination
of simple coroots α∨ ∈ Φ(G)∨.

With this partial order, the Schubert varieties decompose in the following way.

Theorem 2.4.7. The Schubert variety is the union

GrλG =
∐
µ≤λ

GrµG.
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We only prove the case G = GLn, but in light of Proposition 2.4.5 the cases G = SLn
and G = PGLn follow immediately. For the case of arbitrary G, confer [Zhu16, Proposition
2.1.5], which takes a different approach with an alternative definition of the Schubert
cells.

Before we prove Theorem 2.4.7, we need the following lemma, explaining how the
Schubert cells of GrGLn(C) fit into the ind-scheme structure of GrGLn .

Lemma 2.4.8. Let N ∈ N0 be such that GrλGLn
⊆ Gr(N)

GLn
(C) as in Proposition 2.3.9.

Recall the map

Gr(N)
GLn

(C) ∼−→ {t-invariant subspaces of t−NC[[t]]n/tNC[[t]]n ∼= C2Nn},

[A] 7→
〈
A−,1, tA−,1, . . . , t

N−1A−,1, A−,2, . . . , t
N−1A−,2, . . . , t

N−1A−,n
〉
C
.

from Lemma 2.1.19. The image of GrλGLn
under this map is{

V ⊆ t−NC[[t]]n/tNC[[t]]n
∣∣∣∣∣ V is t-invariant and

dim(tiV ) = ∑
j:N−i>λj

(N − λj − i) for i ≥ 0

}
.

Proof. The image of [Atλ] with A ∈ GLn(C[[t]]) is

V :=
〈
tλ1A−,1, t

λ1+1A−,1, . . . , t
N−1A−,1, t

λ2A−,2, . . . , t
N−1A−,2, . . . , t

N−1A−,n
〉
C
.

The generating set
tλ1+iA−,1, . . . t

N−1A−,1, . . . t
N−1A−,n

of tiV , where we ignore any tjA−,i if j ≥ N , is in fact a basis. Indeed, given a C-linear
dependence of these vectors, we obtain a C[[t]]-linear dependence between the columns
A−,i of A ∈ GLn(C[[t]]). It follows that tiV has the required dimension.

Conversely, let V be a t-invariant subspace of t−NC[[t]]n/tNC[[t]]n such that the above
dimension conditions are satisfied. Taking the generalized eigenspace decomposition of V
with respect to the linear endomorphism t gives us a basis of the required form.

We can now come back to Theorem 2.4.7.

Proof of Theorem 2.4.7. Observe that the set

X :=

V ⊆ t−NC[[t]]n/tNC[[t]]n
∣∣∣∣∣∣∣
V is t-invariant and
dim(V ) = ∑n

j=1 (N − λj) and
dim(tiV ) ≤∑j:N−i>λj

(N − λj − i) for i ≥ 0


is a closed subset of Grass(2Nn)td(C) for d = ∑

j(N − λj). We can therefore identify X
with a closed subset of Gr(N)

GLn
(C). But X contains GrλGLn

by Lemma 2.4.8 and so X also
contains the Schubert variety GrλGLn

.
Claim: We have X ⊆ ∐µ≤λ GrµGLn

.
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Let V ∈ X. The vector space V will lie in some GrµGLn
for µ = (µ1, . . . , µn) ∈ (X∗(G))+ as

GrGLn(C) = ⋃
µ GrµGLn

. Therefore V is the vector space generated by the columns of Atµ
for some A ∈ GLn(C[[t]]). If µ ̸= λ, let i be minimal such that dim(tiV ) <∑(N −λj− i).
This corresponds to a µj < λj and µk = λk for k < j. But ∑j µk = nN −dimV = ∑

j λj .
Therefore there must be some j′ > j such that λj′ < µj′ . Adding εj − εj′ to µ, we
obtain a µ(1) such that µ(1) > µ and the columns of Atµ(1) still lie in X. Repeating this
argument, we obtain a sequence µ < µ(1) < µ(2) < . . . which approximates λ and we
must therefore have λ = µ(m) > µ for some m≫ 0. The claim follows.
Claim: We have GrµGLn

⊆ GrλGLn
for µ ≤ λ.

To simplify the notation, we only work in the case n = 2, but the case of general n is
exactly the same.

Let λ = (k, l) with k ≥ l + 2. Consider
[(
tk tl + atl+1

0 tl

)]
∈ Gr(k,l)

GL2
with a ∈ C.

Elements of this type form a subvariety of GrλGL2 isomorphic to A1
C, see the proof of

Proposition 2.3.28. We have for a ̸= 0[(
tk tl + atl+1

0 tl

)]
=
[(
tk tl + atl+1

0 tl

)
·
(

1 0
−a−1tk−l−1 1

)]

=
[(
−a−1tk−1 tl + atl+1

−a−1tk−1 tl

)]

=
[(
−a−1tk−1 tl + atl+1

−a−1tk−1 tl

)
·
(
a 0
0 a−1

)]

=
[(
−tk−1 a−1tl + tl+1

−tk−1 a−1tl

)]
a→∞−→

[(
−tk−1 tl+1

−tk−1 0

)]
.

Note that the limit must exist in GrλGL2 as this is a projective variety. Therefore the

element
[(

tk−1 tl+1

−tk−1 0

)]
∈ Gr(k−1,l+1)

GL2
lies in Gr(k,l)

GL2
and so also Gr(k−1,l+1)

GL2
⊆ Gr(k,l)

GL2
.

By the same argument for GLn it follows that GrµGLn
⊆ GrλGLn

if λ − µ is a simple
coroot. By iteration we deduce GrµGLn

⊆ GrλGLn
if µ ≤ λ.

Summing up, we have shown that∐
µ≤λ

GrµGLn
⊆ GrλGLn

⊆ X ⊆
∐
µ≤λ

GrµGLn
.

The theorem follows.

The following is an easy corollary of Theorem 2.4.7.

48



2.4 The Schubert Varieties

Corollary 2.4.9. If the Schubert cell GrµG lies in the Schubert variety GrλG, then

dim GrµG ≡ dim GrλG mod 2.

Proof. By Theorem 2.3.15 we have dim GrλG = dim GrλG = ⟨2ρ, λ⟩ and therefore

dim GrλG − dim GrµG = ⟨2ρ, λ− µ⟩.

Now by Theorem 2.4.7 we have the GrµG ⊆ GrλG if and only if λ− µ is a sum of simple
coroots. But ⟨ρ, α∨⟩ ∈ Z for all coroots α∨ ∈ Φ∨. Hence, dim GrλG − dim GrµG ∈ 2Z.

The remainder of this chapter is dedicated to calculations in GL2.

Example 2.4.10. The Schubert variety Gr(k,l)
GL2

has the decomposition

Gr(k,l)
GL2

=

 Gr(k,l)
GL2
⨿Gr(k−1,l+1)

GL2
⨿ · · · ⨿Gr(

k−l
2 , k−l

2 )
GL2

, if k − l is even;
Gr(k,l)

GL2
⨿Gr(k−1,l+1)

GL2
⨿ · · · ⨿Gr(

k−l−1
2 +1, k−l−1

2 )
GL2

, if k − l is odd.

In particular,
Gr(1,−1)

GL2
= Gr(1,−1)

GL2
⨿Gr(0,0)

GL2
= Gr(1,−1)

GL2
⨿ {pt}.

We have seen in Proposition 2.3.28 that Gr(k,l)
GL2

is isomorphic to the (k − l − 1)-th jet
bundle on P1

C and in particular that Gr(l+2,l)
GL2

is the tangent bundle of P1
C.

Proposition 2.4.11. The Schubert variety of (k + 2, k) in GrGL2 has the form

Gr(k+2,k)
GL2

∼= P(1, 1, 2),

where P(1, 1, 2) is the weighted projective space of weight (1, 1, 2).

For a general definition of weighted projective space see for instance [GW10, Exercise
13.1]. We do not recall it here, as we give a description of the Schubert variety in terms
of affine open subsets and transition maps and recognize this afterwards as P(1, 1, 2).

Proof. We have Gr(k+2,k)
GL2

∼= Gr(1,−1)
GL2

= Gr(1,−1)
GL2

⨿Gr(0,0)
GL2

= Gr(1,−1)
GL2

⨿{pt}. By the proof
of Proposition 2.3.28 Gr(1,−1)

GL2
= OP1

C
(2) = U0 ∪ U1 is glued from the affine spaces

U0 =
{[(

0 t−1

−t at−1 + b

)]}
∼= C2,

U1 =
{[(

t ct−1 + d
0 t−1

)]}
∼= C2

along the transition map

U0 ⊇ {a ̸= 0} {c ̸= 0} ⊆ U1.
(a,b) 7→(a−1,− b

a2 )
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Chapter 2 The Affine Grassmannian

The spaces U0, U1 are open in Gr(1,−1)
GL2

⨿ {pt} and so we only need to produce a third
open subset which contains the point of Gr(0,0)

GL2
.

We see that {b = 0} ∪ {d = 0} is a closed subset of U0 ∪ U1. It is isomorphic to P1
C(C)

as we glue two copies of C1 along C \ {0} ∋ x 7→ x−1 ∈ C \ {0}. As this subset is a
projective variety, it is closed even in Gr(1,−1)

GL2
. Let its complement in the Schubert variety

be U2. This open subset of Gr(1,−1)
GL2

can be written as

U2 = {pt} ∪ (U0 ∩ {b ̸= 0}) ∪ (U1 ∩ {d ̸= 0}).

An element in U0 ∩ {b ̸= 0} is of the form[(
0 t−1

−t at−1 + b

)]
=
[(

0 t−1

−t at−1 + b

)
·
(

1 0
b−1t 1

)]

=
[(

b−1 t−1

ab−1 at−1 + b

)]
=
[(

b−1 t−1

ab−1 at−1 + b

)
·
(
b 0
0 b−1

)]

=
[(

1 b−1t−1

a ab−1t−1 + 1

)]
=
[(

1 b−1t−1

a ab−1t−1 + 1

)
·
(

1 0
−a 1

)]

=
[(
−ab−1t−1 + 1 b−1t−1

−a2b−1t−1 ab−1t−1 + 1

)]

=
[(
−ab−1t−1 + 1 b−1t−1

−a2b−1t−1 ab−1t−1 + 1

)
·
(

0 1
−1 0

)]

=
[(

−b−1t−1 −ab−1t−1 + 1
−ab−1t−1 − 1 −a2b−1t−1

)]
.

An element in U1 ∩ {d ̸= 0} is of the form[(
t ct−1 + d
0 t−1

)]
=
[(

t ct−1 + d
0 t−1

)
·
(

1 0
−d−1t 1

)]

=
[(
−cd−1 ct−1 + d
−d−1 t−1

)]
=
[(
−cd−1 ct−1 + d
−d−1 t−1

)
·
(
d 0
0 d−1

)]

=
[(
−c cd−1t−1 + 1
−1 d−1t−1

)]
=
[(
−c cd−1t−1 + 1
−1 d−1t−1

)
·
(

1 0
c 1

)]

=
[(

c2d−1t−1 cd−1t−1 + 1
cd−1t−1 − 1 d−1t−1

)]
.

We can also write
[(

1 0
0 1

)]
=
[(

0 1
−1 0

)]
. Therefore all the elements of U2 are of the

form [(
xt−1 yt−1 + 1

yt−1 − 1 zt−1

)]
,
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2.4 The Schubert Varieties

with xz = y2.

Now observe that if
[(

xt−1 yt−1 + 1
yt−1 − 1 zt−1

)]
=
[(

x′t−1 y′t−1 + 1
y′t−1 − 1 z′t−1

)]
, then

(
z′t−1 −y′t−1 − 1

−y′t−1 + 1 x′t−1

)
·
(

xt−1 yt−1 + 1
yt−1 − 1 zt−1

)

=
(

(xz′ − yy′)t−2 + (y′ − y)t−1 + 1 (yz′ − y′z)t−2 + (z′ − z)t−1

(x′y − xy′)t−2 + (x− x′)t−1 (x′z − yy′)t−2 + (y − y′)t−1 + 1

)
∈ C[[t]]2×2,

i.e. (x, y, z) = (x′, y′, z′). We have therefore found

U2 ∼= {(x, y, z) ∈ C3 | xz = y2}.

All together we have Gr1 ⨿Gr1 = U0 ∪ U1 ∪ U2 where

U0 ∼= C2, U1 ∼= C2, U2 ∼= SpecC[x, y, z]/(xz − y2) ∼= SpecC[x2, xy, y2],

with intersections

U0 ∩ U1 ∼= C∗ × C, U0 ∩ U2 ∼= C× C∗, U1 ∩ U2 ∼= C× C∗

and transition functions

U0 ⊇ U0 ∩ U1 ∼= C∗ × C C∗ × C ∼= U0 ∩ U1 ⊆ U1

(a, b) (a−1,−a−2b),

U0 ⊇ U0 ∩ U2 ∼= C× C∗ C× C∗ ∼= U0 ∩ U2 ⊆ U2

(a, b) (−b−1,−ab−1),

U1 ⊇ U1 ∩ U2 ∼= C× C∗ C∗ × C ∼= U1 ∩ U2 ⊆ U2

(c, d) (cd−1, d−1).

∼

∼

∼

We can recognize this as the weighted projective space P(1, 1, 2).
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Chapter 3

Perverse Sheaves

We give a very quick introduction to Verdier duality and perverse sheaves without many
proofs. Our main reference for perverse sheaves is [BBD82]. For Verdier duality see the
original paper [Ver95]. Also confer [GM03, Chapter III.8] for generalities on sheaves.

Given a sheaf F on the space X, we denote by H i(X,F) the i-th sheaf cohomology
group of F for i ≥ 0. Recall that this is defined as Ri(Γ(X,−))(F) where Γ(X,F)
denotes the global sections of F . For a complex F• ∈ Db(X) we write Hi(F•) for the
i-th cohomology sheaf, with i ∈ Z.

3.1 Local Systems

For now, let X be (the complex points of) a finite-dimensional complex variety. All
sheaves will be sheaves with respect to the complex-analytic topology, whereas closed,
open, and locally closed subsets will almost always refer to subsets in the Zariski topology.
Note that X has nice topological properties: X is Hausdorff, locally path connected, has
only finitely many connected components, etc.

We will generalize this afterwards to ind-varieties.

Definition 3.1.1. The constant sheaf AX of an abelian group A on X is the sheafification
of the constant presheaf on X, which is given by X ⊇ U 7→ A. That means that

AX(U) = {A-valued locally constant functions on U}.

Proposition 3.1.2. The constant sheaf AX is given by X ⊇ U 7→ Aπ0(U) and the stalk
at x ∈ X is given by (AX)x = A.

It follows from this proposition that any map between abelian groups A→ B defines a
map between the constant sheaves AX → BX , via AX(U) = Aπ0(U) → Bπ0(U) = BX(U).
It turns out that a map between abelian groups is the same as a map between the
corresponding constant sheaves.
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3.1 Local Systems

Proposition 3.1.3. The map

Hom(A,B) HomSh(X)(AX , BX),

f
(
fπ0(U) : AX(U) = Aπ0(U) → Bπ0(U) = BX(U)

)
is a bijection.

The following needs some weak topological conditions on X, which are satisfied in the
context of varieties.

Proposition 3.1.4. If we apply the sheaf cohomology functors to the constant sheaf AX
on X we obtain the classically defined singular cohomology groups

H i(X,AX) = H i
sing(X;A).

We denote this from now on by H i(X;A).

Proof. See for example [Bre97, Theorem 3.1.1].

From now on, let k be a field.

Definition 3.1.5. A sheaf L is a local system if there is an open cover X = ⋃
i Ui such

that L|Ui is a constant sheaf and all stalks are finite-dimensional k-vector spaces. We
denote the the full subcategory of Sh(X) of local systems by Locf (X; k).

Definition 3.1.6. Let A be an abelian category. We call a full subcategory B a weak
Serre subcategory, if it is closed under kernels, cokernels and extensions.

Proposition 3.1.7. The full subcategory B ⊆ A is weak Serre if and only if for every
exact sequence

X1 → X2 → X → X3 → X4

in A such that Xi lies in B for i = 1, . . . , 4 also X lies in B.

Proof. It is clear that a category satisfying the second condition is closed under kernels,
cokernels, and extensions.

Conversely, let B be a weak Serre subcategory of A and let

X1
φ→ X2

α→ X
β→ X3

ψ→ X4

be an exact sequence in A with Xi ∈ B. We can rewrite X as the extension

0→ ker(β)→ X → im(β)→ 0,

with ker(β) = im(α) = X2/ ker(α) = X2/ im(φ) ∈ B and im(β) = ker(ψ) ∈ B. So X lies
in B as an extension of objects in B.
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Chapter 3 Perverse Sheaves

Proposition 3.1.8. The category Locf (X; k) is a weak Serre subcategory of Sh(X, k).
We give a proof of this to indicate how one reduces statements about local systems to

statements about constant sheaves and finite-dimensional vector spaces.

Proof. Kernels and cokernels of a map AX → BX between constant sheaves can be
computed as ker(A → B)X and coker(A → B)X , respectively. It follows that kernels
and cokernels between locally constant sheaves are also locally constant. The finiteness
condition on stalks follows from the fact that k is Noetherian as a field. We now show the
closure under extensions. Let 0→ L′ ↪→ L → L′′ → 0 be an exact sequence in Sh(X; k)
such that L′ and L′′ are local systems. We can find a common trivialization of L′ and
L′′ and consider the exact sequence

0→ L′|U → L|U → L′′|U → 0

of sheaves on U ⊆ X. We may therefore assume that L′ and L′′ are constant sheaves on
X.

For a connected open subset U ⊆ X consider the long exact cohomology sequence

0→ L′(U)→ L(U)→ L′′(U)→ H1(U,L′|U )→ · · ·

We have that L′(U) and L′′(U) are finite-dimensional vector spaces, because they are
local systems and U is connected. It follows that L(U) must also be finite-dimensional
for every connected U ⊆ X.

Next, we localize and obtain for every x ∈ X the exact sequence

0→ L′
x → Lx → L′′

x → 0.

But
Lx = lim−→

x∈U
L(U) = lim−→

x∈U
U connected

L(U),

and so, by properties of direct limits of finite-dimensional vector spaces, there must be
some connected open Ux containing x such that L(Ux)→ Lx is an isomorphism. As L′

and L′′ are constant, we have L′(Ux) = L′
x and L′′(Ux) = L′′

x. We therefore have

0→ L′(Ux)→ L(Ux)→ L′′(Ux)→ 0

is exact.
The constant sheaf (L(Ux))Ux on Ux fits into an exact sequence

0→ L′|Ux → (L(Ux))Ux → L′′|Ux → 0.

Now we can construct a map from the constant sheaf (L(Ux))Ux to L|Ux . For a connected
U ⊆ Ux we define (L(Ux))(U) = L(Ux) → L(U) as the restriction map of the sheaf L
from Ux to U . This is fits into the diagram

0 L′|Ux (L(Ux))Ux L′′|Ux 0

0 L′|Ux L|Ux L′′|Ux 0.
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By the five-lemma, the middle arrow is an isomorphism and L is constant on Ux with
finite fibers. As X = ⋃

x∈X Ux, L is locally constant and we have shown that the extension
of local systems is a local system.

Theorem 3.1.9. If X is connected and x0 ∈ X, there is an equivalence of categories

Locf (X; k) ≃ Repk(π1(X,x0))

between the category of local systems on X and the finite-dimensional k-linear represent-
ations of the fundamental group of X.

Proof. For a full proof see [Sza09, Theorem 2.5.14].
We will only sketch the construction of the functor Locf (X; k) → Repk(π1(X,x0)).

For a local system L we take the vector space Lx0 and endowing it with an action of
π1(X,x0) in the following way: Take a loop α in X from x0 to itself and a trivializing
open cover of X for L. This covers the image of α in X, which is compact and we may
therefore assume the cover to be finite. Then we obtain isomorphisms

Lx0 = L(U0)→ L(U1)→ · · · → L(U0) = Lx0 ,

the composition of which is independent of the chosen cover and the chosen representative
of the homotopy class [α] ∈ π1(X,x0). This defines the action of the fundamental group
π1(X,x0) on Lx0 .

One can leave out the assumption that X is connected, by replacing the fundamental
group of X with its fundamental groupoid.

It follows that Locf (X; k) is an abelian category.

Corollary 3.1.10. If X is connected and simply-connected, Locf (X; k) is equivalent to
Vectk, the category of finite-dimensional k-vector spaces, via the functor L 7→ Lx0, and
so knX are the only local systems.

A nice independent observation is the following:

Corollary 3.1.11. Simply-connected manifolds are orientable.

Proof. The orientation sheaf is a local system. It must however already be constant, as
all local systems are constant on a simply-connected space. Now a space is orientable if
its orientation sheaf is constant.

3.2 Verdier Duality and Constructible Complexes
Let f : X → Y be a morphism. On the level of sheaves we obtain the direct image
f∗ : Sh(X; k) → Sh(Y ; k) by f∗F(V ) = F(f−1(V )) for V ⊆ Y and the inverse image
functor f∗ : Sh(Y ; k)→ Sh(X; k) by sheafifying the mapping

U 7→ lim−→
V⊇f(U)

G(V ).
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Chapter 3 Perverse Sheaves

These functors form an adjoint pair (f∗, f∗). What is more, we have that f∗ is both left
and right exact, while f∗ is in general only left exact. Note that our inverse image is called
f−1 by [Har77], while he uses f∗ for a morphism between categories of OX -modules.

We also have a functor f! : Sh(X; k)→ Sh(Y ; k) given by

f!F(V ) =
{
σ ∈ f∗F(V ) = F(f−1(V ))

∣∣∣ suppσ → f−1(V )→ V is a proper morphism
}

where proper means that the inverse image of any compact set is compact.
We give a description of f! in the cases f is proper and f = j is an open immersion.

Proposition 3.2.1. If f is proper, f∗ = f!.

Proof. This is immediate from the definition as for all sheaves F , open subsets V ⊆ X,
and sections σ ∈ F(V ) the composition suppσ → f−1(V )→ V is proper.

If j : U ↪→ X is an open embedding and F ∈ Sh(U), then j!F coincides with the
extension by zero functor defined in [Har77, II, Ex.1.19b] as the sheafification of the
presheaf jpre! F defined by

jpre! F(V ) :=
{
F(V ), V ⊆ U
0, otherwise.

One can see this by calculating the stalks and then using the fact that for every sheaf
F on U there is a unique sheaf G on X with the property that G|U = F and Gx = 0 for
x ̸∈ U , see [Har77]. The following is now immediate.

Proposition 3.2.2. If j : U → X is an open embedding, then the functor j∗ is right
adjoint to j!.

Proof. We have

HomSh(X)(j!F ,G) = HomPreSh(X)(jpre! F ,G) = HomSh(U)(F , G|U︸︷︷︸
=j∗G

).

Recall that Sh({pt}) = Vectk.

Proposition 3.2.3. Every complex in Db({pt}; k) is the direct sum of its cohomology
sheaves.

Proof. The category Sh({pt}) = Vectk is semi-simple and so every object is projective.
But every bounded complex of projective objects is quasi-isomorphic to its cohomology
groups.

We consider now the constant map p : X → {pt}. We can recover from p the global
sections functor as

p∗(F) = Γ(X,F) = F(X)

56
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and also define the functor of global sections with compact support

p!F = {σ ∈ F(X) | suppσ ↪→ X is proper} =: Γc(X,F).

We write H i
c(X; k) for cohomology with compact support, which is defined as the right

derived functor of the left exact Γc(X,−).
Unlike f∗, the functor f! does not have an adjointness properties on the level of sheaves

in general. However there is a functor f ! : Db(Y ; k)→ Db(X; k) which is right adjoint to
the derived version of f!, which will be the statement of the next proposition.

From now on the functors f∗, f
∗, f! refer to the derived versions of the above defined

functors, unless specified otherwise.

Proposition 3.2.4 ([Ver95]). If f : X → Y is a morphism, the functor

f! : Db(X; k)→ Db(Y ; k)

has a right adjoint f !.

Proof. This was first proven in [Ver95]. For an English reference, see [GM03, Theorem
III.8.16].

Definition 3.2.5. The dualizing sheaf or dualizing complex ωX of X is defined as
p!(k{pt}) where p : X → {pt} is the constant map. We define the Verdier duality functor
as

D : Db(X; k)op → Db(X; k), F• 7→ Hom(F•, ωX).
Here Hom denotes the internal Hom-functor in Db(X; k).

The following statement is a version of Poincaré duality. We will explain the connection
to the classical Poincaré duality statement after the full statement of Verdier duality 3.2.23.

Proposition 3.2.6. If X is smooth connected of dimension n, the dualizing complex ωX
is just the shifted stalk complex kX [2n].

Proof. See [GM03, Corollary III.8.27].

Note that 2n is the real dimension of the complex variety X.

Example 3.2.7. If X = {pt}, we have that p : {pt} → {pt} is the equality and so
p! = p∗ = p∗ = p! is the identity functor on Db({pt}; k). We see that

ω{pt} = p!(k{pt}) = k{pt}

and therefore D = Hom(−, k{pt}). By Proposition 3.2.3 it suffices to determine what D
does on (shifted) stalk complexes to completely describe D. We compute for a sheaf
F ∈ Sh({pt}; k) corresponding to the vector space V = F({pt})

D(F [i]) = Hom(F [i], k{pt}) = Hom(F , k{pt})[−i]
= Hom(F({pt}), k)[−i]
= V ∨[−i],

which is just the vector space dual.
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Next we define constructible sheaves with respect to some stratification of the complex
variety X. First we recall the definition of stratifications.

Definition 3.2.8. A stratification of X is a finite disjoint union decomposition

X =
∐
λ∈Λ

Xλ

into locally closed subspaces such that each Xλ is a smooth connected variety and such
that the closure Xλ of any stratum is a (finite) union of strata. We write iλ : Xλ ↪→ X
for the inclusion of the stratum Xλ.

Note that smoothness means that each Xλ has the structure of a manifold. Additionally,
it guarantees finite global dimension of Sh(Xλ) which is important in order for all the
derived functors to send bounded complexes to bounded complexes.

Remark 3.2.9. Setting µ ≤ λ if Xµ ⊆ Xλ defines a partial order on Λ. Strata which
are minimal with respect to ≤ are closed and strata which are maximal with respect to
≤ are open.

Example 3.2.10. If X is a smooth connected variety, then we have the trivial stratifica-
tion X = Xλ.

Example 3.2.11. If X is a singular connected variety such that its singular points
Sing(X) form a smooth connected variety, then

X = Sing(X)⨿ (X \ Sing(X))

is a stratification.

Example 3.2.12. The decomposition

Pn(C) = Cn ⨿ Cn−1 ⨿ · · · ⨿ {pt}

is a stratification.

Example 3.2.13. The classically defined Schubert cells are a stratification of the partial
flag variety.

In fact, a stratification exists for all varieties X, see for example [Kal05].

Definition 3.2.14. A sheaf F is called constructible with respect to the stratification
X = ∐

λ∈ΛXλ if the sheaf F|Xλ
:= i∗λF is a local system for all λ ∈ Λ. We call

an object F• ∈ Db(X; k) constructible with respect to Λ if all cohomology sheaves are
constructible with respect to Λ and we write Db

Λ(X; k) for the full subcategory of Db(X; k)
of constructible complexes. We write Db

cb(X; k) for the full subcategory of Db(X; k) of
objects which are constructible with respect to some stratification, which contains all
Db

Λ(X; k) ⊆ Db
cb(X; k).
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Proposition 3.2.15. The category of constructible sheaves forms a weak Serre subcategory
of Sh(X; k).

Proof. Let F1 → F2 → F → F3 → F4 be an exact sequence such that Fi is constructible
for i = 1, . . . , 4. We can apply the exact functor i∗λ to obtain the exact sequence

i∗λF1 → i∗λF2 → i∗λF → i∗λF3 → i∗λF4.

Now i∗λFi is a local system, but then so must be i∗λF , since Locf (X; k) is a weak Serre
subcategory of Sh(X; k) by Proposition 3.1.8.

Proposition 3.2.16. Consider the derived categories D∗(A) for ∗ ∈ {∅,+,−, b}. If
B ⊆ A is a weak Serre subcategory, then the category

D∗
B(A) :=

{
X• ∈ D∗(A)

∣∣∣ H i(X•) ∈ B
}

is closed under extensions and therefore a triangulated subcategory of D∗(A).

Proof. If X ′• → X• → X ′′• → X ′•[1] is a distinguished triangle in D∗(A) such that X ′•

and X ′′• lie in D∗
B(A), then we obtain the exact sequence

H i−1(X ′′•)→ H i(X ′•)→ H i(X•)→ H i(X ′′•)→ H i+1(X ′•).

As B is a weak Serre subcategory, H i(X•) lies in B by Proposition 3.1.7 and so
X• ∈ D∗

B(A).

Corollary 3.2.17. The extension of constructible complexes of sheaves is constructible
and so Db

Λ(X; k) is a triangulated subcategory of Db(X; k). The same follows also for
Db
cb(X; k), because this can be thought of as the union of all Db

Λ(X; k) ⊆ Db(X; k).

Proof. By Proposition 3.1.8 the category of constructible sheaves is a weak Serre subcat-
egory of Sh(X; k). Now the assertion follows from Proposition 3.2.16. The statement for
Db
cb(X; k) follows from the fact that any two stratifications have a common refinement.

Example 3.2.18. If we choose the trivial stratification X = X, we obtain

Db
{X}(X; k) = Db

const(X; k),

where Db
const(X; k) := Db

Locf (X;k)(Sh(X; k)) denotes the category of complexes whose
cohomology sheaves are local systems.

We now come to the question of when the functors f∗, f!, f
∗, f ! preserve constructible

complexes. A main source for constructibility results in our context is [BS84]. For a more
general discussion about conditions that guarantee constructibility see [Sch03, Chapter
4].
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Proposition 3.2.19. If we have a fixed stratification X = ∐
λ∈ΛXλ and a subset

Z = ∐
λ∈Λ′ Xλ which is a union of strata for some Λ′ ⊆ Λ with inclusion i : Z ↪→ X, then

the functors i∗ and i! preserve constructibility

Db
Λ′(Z; k) Db

Λ(X; k).

i!

i∗

It follows that i! and i∗ are also functors between Db
cb(Z; k) and Db

cb(X; k). Additionally,
the derived internal Hom-functor Hom(−,−) also preserve constructibility.

Proof. The non-derived versions of i∗ and i! are exact and map constructible sheaves to
constructible sheaves. For a proof of constructibility of Hom(−,−), see [BS84, Theorem
8.6].

Unfortunately, to guarantee that i∗ and i! also preserve constructibility, we need the
following additional technical assumption on our stratification.

Definition 3.2.20 ([Whi65]). Let X = ∐
λ∈ΛXλ be stratified. Let x ∈ Xµ ⊆ X. We say

x satisfies the Whitney condition, if for all λ such that x ∈ Xµ ⊆ Xλ and all sequences
(xn) ⊆ Xµ and (yn) ⊆ Xλ converging to x the secant lines between xn and yn converge
to some v ∈ TxXµ. We say X satisfies the Whitney condition, if all x ∈ X satisfy the
Whitney condition.

Observe that the set of points in X satisfying the Whitney condition are fixed by
automorphisms of X that restrict to automorphisms on all Xλ.

Any stratification can be refined to a Whitney stratification, see [Whi65].

Proposition 3.2.21. Let X = ∐
λ∈ΛXλ be stratified and Z ⊆ X be a union of strata

with inclusion i : Z ↪→ X. If X satisfies the Whitney condition and, then i∗, i
∗, i!, and i!

preserve constructibility.

Proof. See for example [Sch03, Proposition 4.0.2].

Proposition 3.2.22. The duality functor D preserves Db
Λ(X; k) if Λ is a Whitney

stratification and so it also preserves Db
cb(X; k).

Proof. See for example [BS84, Proposition 8.3].

We are now finally ready to formulate the Verdier duality theorem which justifies the
name “duality functor” for D.

Theorem 3.2.23 (Verdier Duality). The contravariant functor D : Db
cb(X; k)→ Db

cb(X; k)
satisfies the following natural isomorphisms:

(1) D2 = id.
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3.3 Constructible Sheaves for ind-Varieties

(2) For any f : X → Y we have f∗DX = DY f! and f∗DY = DXf !. (The same
statements with !’s and ∗’s swapped follow immediately.)

(3) If X is smooth connected of dimension n and L is a local system on X, then we
have DL = Hom(L, kX)[2n].

Proof. This is mostly a consequence of Proposition 3.2.4. For the proof see [BS84,
Theorem 8.10].

The last statement is just a reformulation of Proposition 3.2.6.

Corollary 3.2.24 (Poincaré Duality). If X is a smooth connected complex variety of
(complex) dimension n we obtain an isomorphism

H i(X; k)∗ ∼= H2n−i
c (X; k).

If additionally X is projective, this simplifies further to H i(X; k)∗ ∼= H2n−i(X; k).

Proof. Consider p∗kX in Db({pt}; k) = Db(Vectk). By Proposition 3.2.3 this com-
plex is just the direct sum of its cohomology groups. We have seen in Example 3.2.7
D{pt}(−) = (−)∗ is the vector space dual. We get that the i-th cohomology group of
D(p∗kX) is just the dual of the (−i)-th cohomology group of p∗kX by Example 3.2.7.
Equivalently, H i(X; k)∗ ∼= H−i(Dp∗kX) and therefore

H i(X; k)∗ ∼= H−i(D{pt}(p∗kX))
∼= H−i(p!(DXkX)) (Theorem 3.2.23(2))
∼= H−i(p!kX [2n]) (Theorem 3.2.23(3))
= H2n−i(p!kX)
∼= H2n−i

c (X; k). (Definition H i
c)

If X is projective, p is proper and p∗ = p! by Proposition 3.2.1. In this case the
global sections and the global sections with compact support coincide, and we obtain
H i
c(X; k) = H i(X; k).

Remark 3.2.25. The theory of Verdier and Poincaré duality is formally very similar to
that of classical Grothendieck and Serre duality; there we also have a dualizing sheaf which
induces a duality. The difference however is that we are working with constructible and
locally constant sheaves in the complex-analytic topology, whereas classical Grothendieck
and Serre duality are statements about coherent sheaves in the Zariski topology on X.

3.3 Constructible Sheaves for ind-Varieties
We would like to claim that the Cartan Decomposition 2.3.1

GrG(C) =
∐

λ∈(X∗)+

GrλG
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is a stratification. However thus far, we have only defined finite stratifications for varieties,
while GrG(C) is an ind-variety.

If i : Z ↪→ X is a closed embedding, Proposition 3.2.19 guarantees that i∗ = i! maps
constructible sheaves to constructible sheaves. However, the image of this functor turns
out to have a explicit description in terms of sheaves that are supported on Z. The
support of a complex of sheaves is defined as the union of the supports of its cohomology
sheaves.

Lemma 3.3.1. The non-derived functor i∗ is an equivalence of categories between
constructible sheaves on Z and constructible sheaves on X which are supported on Z.
Therefore the derived version of the functor i∗ is an equivalence between Db

cb(Z; k) and
{F• ∈ Db

cb(X; k) | suppF ⊆ Z}. Given a fixed stratification of X = ∐
λ∈ΛXλ and a

closed subset Z ⊆ X which is a union of strata Z = ∐
λ∈Λ′ Xλ for Λ′ ⊆ Λ, we even have

an equivalence between Db
Λ′(Z; k) and {F• ∈ Db

Λ(X; k) | suppF• ⊆ Z}.

Proof. One can easily check that i∗i∗ = id as functors on Sh(Z). For G ∈ Sh(X), one
considers the adjunction unit G → i∗i

∗G which induces an isomorphism on stalks in Z.
However, if G is supported on Z, this map is an isomorphism of sheaves. The statements
for constructible sheaves and constructible complexes of sheaves follow.

Remark 3.3.2. The Riemann–Hilbert correspondence, see [HTT08, Chapter 7], gives
an equivalence of categories between Db

cb(X; k) and a certain subcategory of the bounded
derived category of D-modules on X. Under this equivalence, the above lemma gets
translated to Kashiwara’s theorem, see [HTT08, Chapter 1.6]. It is surprising that the
above lemma is almost trivial, while Kashiwara’s theorem has a very difficult proof.

Let now X = ⋃
N X

(N) be an ind-variety where X(N) ↪→ X(n+1) is a closed embedding
of (finite-dimensional) complex varieties. We consider sheaves with respect to the analytic
topology on X.

Definition 3.3.3. A stratification of X is a family of stratifications X(N) = ∐
λ∈Λ(N) X

(N)
λ

such that the embedding X(N) ↪→ X(N+1) induces an isomorphism as varieties between
X

(N)
λ and some X(N+1)

λ′ . We can interpret Λ(N) as a subset of Λ(N+1) and may therefore
write Λ = ⋃

N Λ(N) and X = ∐
Xλ where Xλ = X

(N)
λ for N such that λ ∈ Λ(N).

Write i(N) for the inclusion X(N) ↪→ X.

Definition 3.3.4. We say that a stratification X = ∐
Xλ of an ind-variety X = lim−→X(N)

satisfies the Whitney condition, if all stratifications X(N) = ∐
λ∈Λ(N) X

(N)
λ satisfy the

Whitney condition 3.2.20.

Definition 3.3.5. For a stratified ind-variety X = ⋃
N X

(N) = ∐
λXλ we call a sheaf

F ∈ Sh(X) constructible with respect to Λ if F = i
(N)
∗ G for a sheaf G which is constructible

with respect to Λ(N). We write Db
Λ(X; k) for the full subcategory of Db(X; k) of complexes

with constructible cohomology.
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It follows from Lemma 3.3.1 that we have embeddings of categories

Db
Λ(1)(X(1); k) ↪→ Db

Λ(2)(X(2); k) ↪→ · · · ↪→ Db
Λ(N)(X(N); k) ↪→ · · · ↪→ Db

Λ(X; k)

and that Db
Λ(X; k) is the direct limit of this system. In particular, we have that every

object in Db
Λ(X; k) can be thought of as an element of Db

Λ(X(N); k) for some N .

Corollary 3.3.6. A sheaf F on X is constructible with respect to Λ if and only if i∗λF is
a local system for all λ ∈ Λ and zero for all but finitely many λ.

Note also that for the inclusion iN : X(N) → X(N+1) the Verdier duality functor satisfies

DX(N+1) ◦ (iN )∗ = (iN )∗ ◦ DX(N) .

We deduce that we also have Verdier duality for Db
cb(X; k) for an ind-variety X.

Now we verify that the decomposition GrG = ∐
λ GrλG is a Whitney stratification.

Proposition 3.3.7. The Cartan Decomposition from Theorem 2.3.1

GrG(C) =
∐

λ∈(X∗)+

GrλG

is a stratification satisfying the Whitney condition.

Proof. By Proposition 2.3.9 the Cartan Decomposition of the Affine Grassmannian
restricts to a decomposition

Gr(N)
G (C) =

∐
λ∈Λ(N)

GrλG

for some finite subsets Λ(N) ⊆ (X∗)+. By Theorem 2.3.15 all Schubert cells are smooth
connected varieties and so Gr(N)

G (C) is stratified.
Next we verify the Whitney condition. This argument is taken from [Sch11, Section

3.12]. Note that the set of points in GrG(C) satisfying the Whitney condition is G(C[[t]])-
invariant, because the multiplication by an element of G(C[[t]]) is an automorphism of
GrG(C) which restricts to all GrλG. Then the set of points that do not satisfy the Whitney
condition is also G(C[[t]])-invariant. However, by [Kal05, Theorem 2], the subset of points
in GrλG, which do not satisfy the Whitney condition, is a locally closed subset of strictly
smaller dimension. This subset is therefore a proper G(C[[t]])-invariant subset of a single
orbit and thus empty.

All of this allows us to define constructible sheaves on GrG(C).

3.4 t-Structures
In this section we introduce the necessary homological algebra, in the form of t-structures,
in order to define perverse sheaves. These form a certain abelian subcategory of Db

cb(X; k).
Hence, we need a systematic way to construct abelian subcategories of triangulated
categories.
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Chapter 3 Perverse Sheaves

Definition 3.4.1. A t-structure (short for truncation structure) on a triangulated
category T (such as Db(X; k) or Db

cb(X; k)) is a pair of full additive subcategories
(T ≤0, T ≥0) such that for T ≤n := T ≤0[−n] and T ≥n := T ≥0[−n] we have

• T ≤0 is closed under taking [1] and T ≥0 is closed under taking [−1], or equivalently
T ≤n ⊆ T ≤n+1 and T ≥n ⊇ T ≥n+1.

• If T1 ∈ T ≤0 and T2 ∈ T ≥1, we have HomT (T1, T2) = 0.

• For any T ∈ T there is a distinguished triangle

T ′ → T → T ′′ → T ′[1]

with T ′ ∈ T ≤0 and T ′′ ∈ T ≥1.

The heart T ♡ of a t-structure is the intersection T ≤0 ∩ T ≥0 ⊆ T .
If the intersections ⋂n T ≤n and ⋂

n T ≥n are trivial, we call the t-structure non-
degenerate.

Example 3.4.2. If T is a triangulated category, we have two trivial t-structures, (T , 0)
and (0, T ). For (T , 0) we see that T is closed under [1] and 0 is closed under [−1], we
have HomT (T1, T2) = 0 if T2 = 0, and for every T ∈ T we have a distinguished triangle
T → T → 0→ T [1]. The argument for (0, T ) works the same. These t-structure are not
non-degenerate and their heart is 0.

Example 3.4.3. Let A be an abelian category with weak Serre subcategory B ⊆ A
and DB(A) its derived or bounded derived category with cohomology in B. Recall that
DB(A) is triangulated by Proposition 3.2.16. Let

D≤0
B (A) = {F• ∈ DB(A) | H i(F•) = 0 for i > 0},

D≥0
B (A) = {F• ∈ DB(A) | H i(F•) = 0 for i < 0}.

This is a t-structure, called the standard t-structure. We have functors τ≤0 and τ≥0,
which truncate our complexes given by

F• : · · · F−1 F0 F1 · · ·

τ≤0F• : · · · F−1 ker
(
F0 → F1) 0 · · ·

τ≥0F• : · · · 0 F0/ im
(
F−1 → F0) F1 · · ·

The heart of the standard t-structure is precisely B. Indeed, let F• ∈ D≤0(A) ∩D≥0(A).
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Then F• has cohomology only in degree 0 and we have quasi-ismorphisms

F• τ≤0F• τ≥0τ≤0F•

...
...

...

F−1 F−1 0

F0 ker
(
F0 → F1) H0(F•)

F1 0 0

...
...

...

∼ ∼

In particular, the heart of the standard t-structure on D(A) = DA(A) is A.
We could also have considered (D≤n

B (A), D≥n
B (A)) for n ∈ Z. The heart of this

t-structure is B[−n].

The truncation functors exist for general t-structures by the following proposition.

Proposition 3.4.4. The embedding T ≤n → T has a right adjoint, denoted τ≤n, and
T ≥n → T has a left adoint, denoted τ≥n. If T ∈ T and

T ′ → T → T ′′ → T ′[1]

is a distinguished triangle with T ′ ∈ T ≤0 and T ′′ ∈ T ≥1, then we have T ′ = τ≤0T and
T ′′ = τ≥1T . In particular, the distinguished triangle from the definition of a t-structure is
unique up to isomorphism. It follows that T ∈ T ≤0 if and only if τ≥1T = 0, and T ∈ T ≥1

if and only if τ≤0T = 0.

Proof. See [BBD82, Chapter 1.3].

Proposition 3.4.5. The categories T ≤0 and T ≥0 are closed under extensions. This
means that if T ′ → T → T ′′ → T ′[1] is a distinguished triangle in T such that both
T ′, T ′′ ∈ T ≤0 lie in T ≤0 respectively T ≥0, then T ∈ T ≤0, respectively T ∈ T ≥0.

Proof. See [BBD82, Chapter 1.3].

Definition 3.4.6. We call functor T → T ♡ given by the composition of τ≤0 with τ≥0
the zeroth t-cohomology tH0.

In Example 3.4.3 the zeroth t-cohomology is given by the zeroth cohomology functor,
which motivates the name.
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Example 3.4.7. Let A = Vectk. Every complex V • ∈ Db(A) is the direct sum of its
cohomology groups by Proposition 3.2.3. Every such cohomology group is of the form
kn for some n ≥ 0. Let (T ≤0, T ≥0) be some t-structure on T = Db(Vectk). Each simple
object k[i] has to lie either in T ≤0 or T ≥1, since the categories T ≤0 and T ≥1 are closed
under summands. It follows that the only non-degenerate t-structures on Db(Vectk) are
shifts of the standard t-structure.

If A is semi-simple with more than one simple object, we find that the set of non-
degenerate t-structures on Db(A) is given by functions from Irr(A) to Z, since for any
X ∈ Irr(A) we have to choose an integer f(X) such that X ∈ T ≤f(X) \ T ≤f(X)−1. The
heart of such a t-structure will be the category generated by X[−f(X)] for X ∈ Irr(A).

Remark 3.4.8. If A → B is an equivalence of abelian categories, we obtain an equivalence
of the derived categories D(A)→ D(B) which preserves the standard t-structure. If we
have some other derived equivalence D(A)→ D(B), for example given by the right or
left derived of some half-exact functor, we cannot expect this to preserve the standard
t-structure.

In the case of the Riemann–Hilbert correspondence, we have an equivalence of derived
categories and the heart of the standard t-structure on the side of D-modules is identified
with a category of perverse sheaves.

The following theorem concludes our study of t-structures in general.

Theorem 3.4.9. For any t-structure (T ≤0, T ≥0) on a triangulated category T , the
heart T ♡ := T ≤0 ∩ T ≥0 is an abelian category and the functor τ≤0τ≥0 : T → T ♡ maps
distinguished triangles

T ′ → T → T ′′ → T ′[1]
to long exact sequences

· · · τ≤0τ≥0T [−1] τ≤0τ≥0T
′′[−1]

τ≤0τ≥0T
′ τ≤0τ≥0T τ≤0τ≥0T

′′

τ≤0τ≥0T
′[1] τ≤0τ≥0T [1] · · ·

Additionally, two maps T ′ → T and T → T ′′ between the objects in the abelian category
T ♡ form an exact sequence

0→ T ′ → T → T ′′ → 0
if and only if there is a morphism T ′′ → T [1] such that

T ′ → T → T ′′ → T ′[1]

is a distinguished triangle in T .

Proof. See [BBD82, Théorème 1.3.6].
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3.5 Recollement and Perverse Sheaves
We return to geometry and sheaf-theory. Let X be an ind-variety. Consider a closed
sub-ind-variety Z ⊆ X with open complement U ⊆ X and corresponding embeddings
i : Z ↪→ X and j : U ↪→ X.

Theorem 3.5.1 (Recollement). We have a diagram of functors

Db(Z; k) Db(X; k) Db(U ; k).i∗=i! j∗=j!

i∗

i!

j!

j∗

These satisfy the following:

(1) j∗i∗ = 0, i∗j! = 0, and i!j∗ = 0.
(2) (i∗, i∗ = i!, i

!) and (j!, j! = j∗, j∗) are adjoint triples.
(3) i∗ = i!, j∗, and j! are fully faithful and so the following maps are natural isomorph-

isms: i∗i∗F• → F• → i!i!F• for F• ∈ Db(Z; k) as well as j∗j∗G• → G• → j!j!G•

for G ∈ Db(U ; k).
(4) The other adjunction maps define distinguished triangles in Db(X; k) for any
F• ∈ Db(X; k):

j!j
!F• F• i∗i

∗F• j!j
!F•[1],

i!i
!F• F• j∗j

∗F• i!i
!F•[1].

Everything also holds for the categories of constructible complexes.

We can use t-structure on Db(Z; k) and Db(U ; k) to define a t-structure on Db(X; k).

Theorem 3.5.2. Let (D≤0
Z , D≥0

Z ) be a t-structure on Db(Z; k) and (D≤0
U , D≥0

U ) a t-
structure on Db(U ; k). Then

D≤0
X := {F• ∈ Db(X; k) | i∗F• ∈ D≤0

Z and j∗F• ∈ D≤0
U }

D≥0
X := {F• ∈ Db(X; k) | i!F• ∈ D≥0

Z and j!F• ∈ D≥0
U }

define a t-structure on Db(X; k).

Proof. The proof is purely formal and can be deduced for any triple of triangulated
categories satisfying the Recollement Theorem 3.5.1, see [BBD82, Théorème 1.4.10]. We
only give the argument that Hom(F•

1 ,F•
2 ) vanishes for F•

1 ∈ D
≤0
X and F•

2 ∈ D
≥1
X . We

consider the distinguished triangle

j!j
!F•

1 → F•
1 → i∗i

∗F•
1 → i∗i

∗F•
1 [1]
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from Theorem 3.5.1(4). Applying Hom(−,F•
2 ) to this triangle, we obtain the exact

sequence
Hom(i∗i∗F•

1 ,F•
2 )→ Hom(F•

1 ,F•
2 )→ Hom(j!j!F•

1 ,F•
2 ).

But we have

Hom(i∗i∗F•
1 ,F•

2 ) =Theorem 3.5.1(2)= Hom(i∗F•
1 , i

!F•
2 ) t-structure on Z= 0

and

Hom(j!j!F•
1 ,F•

2 ) Theorem 3.5.1(2)= Hom(j!F•
1 , j

∗F•
2 ) t-structure on U= 0.

We therefore have an exact sequence 0→ Hom(F•
1 ,F•

2 )→ 0 and so

Hom(F•
1 ,F•

2 ) = 0.

Example 3.5.3. If X = X1 ⨿X2 is the disjoint union of two open and closed subsets,
any complex of sheaves F• has a canonical decomposition F• = F•

1 ⊕ F•
2 where F•

1 is
seen as a sheaf on X1 and F•

2 as a sheaf on X2. We find that

D≤0
X = {F•

1 ⊕F•
2 | F•

1 ∈ D
≤0
X1
,F•

2 ∈ D
≤0
X2
},

D≥0
X = {F•

1 ⊕F•
2 | F•

1 ∈ D
≥0
X1
,F•

2 ∈ D
≥0
X2
}.

In particular, we see that the heart of this t-structure is just the direct sum of the hearts
of the t-structures on X1 and X2.

We now come back to the situation of a stratified space X. We want to endow Db
Λ(X; k)

with a t-structure whose heart is fixed by Verdier duality. If X has the trivial stratification
X = X, the next proposition shows that a shifted version of the standard t-structure on
Db

Λ(X; k) does the trick.

Proposition 3.5.4. Let X be a smooth connected variety of dimension d. Consider the
category Db

const(X; k) of complexes with locally constant cohomology (this is the same as
Db

Λ(X; k) where #Λ = 1). The heart of the standard t-structure shifted by d is fixed by
Verdier duality.

Proof. Verdier duality maps a local system L to Hom(L, kX)[2d]. And so

D(L[d]) = Hom(L[d], kX)[2d] = Hom(L, kX)[d],

where Hom(L, kX) is a local system.

Remark 3.5.5. It turns out that more is true: On a smooth connected variety, the
Verdier duality functor switches the categories D≤−n

X and D≥−n
X . This follows from

computing Hom(F•, kX) degreewise and then shifting for F• ∈ Db
const(X; k).

We are now finally able to give the definition of perverse sheaves.
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Definition 3.5.6. Let X = ∐
λ∈ΛXλ be a stratified ind-variety and let iλ : Xλ ↪→ X be

the inclusions. Let (D≤0
Xλ
, D≥0

Xλ
) be the shifted standard t-structure on Db

const(Xλ; k) as
in Proposition 3.5.4. Then we define the subcategories of Db

Λ(X; k)

D≤0
Λ := {F• ∈ Db

Λ(X; k) | i∗λF• ∈ D≤0
Xλ

for all λ ∈ Λ},
D≥0

Λ := {F• ∈ Db
Λ(X; k) | i!λF• ∈ D≥0

Xλ
for all λ ∈ Λ}.

We call a complex F• ∈ Db
Λ(X; k) a perverse sheaf on X with respect to Λ if it lies

in the intersection D≤0
Λ ∩D

≥0
Λ . We denote the category of perverse sheaves on X with

respect to Λ by PΛ(X; k) := D≤0
Λ ∩D

≥0
Λ . The zeroth t-cohomology with respect to this

t-structure is denoted by pH0.

Proposition 3.5.7. The pair (D≤0
Λ , D≥0

Λ ) defines a t-structure on Db
Λ(X; k) and so

PΛ(X; k) is an abelian category by Theorem 3.4.9.

Proof. It suffices to consider the case where X is a (finite-dimensional) variety with a
finite stratification, as any tuple of complexes will be supported on a finite-dimensional
closed subvariety.

Now the statement follows by induction on the number of strata: If there is a single
stratum, there is nothing. If there are more than one strata, we can pick an open stratum
Xλ0 ⊆ X and apply Theorem 3.5.2 to X \Xλ0 ⊆ X ⊇ Xλ0 .

Note that we obtain a canonical fully faithful functor PΛ(X; k)→ PΛ′(X; k) whenever
Λ′ is a finer stratification than Λ. We can therefore define the category P(X; k) of all
perverse sheaves as the union of all PΛ(X; k).

Example 3.5.8. The category of perverse sheaves on a smooth connected variety X of
dimension d with respect to the trivial stratification is given as the intersection of

D≤0 = {F• ∈ Db
Λ(X; k) | Hi(F) = 0 for i > −d}

with
D≥0 = {F• ∈ Db

Λ(X; k) | Hi(F) = 0 for i < −d}.

Note that in this case Db
Λ(X; k) = Db

const(X; k) by Example 3.2.18 and so it follows from
Example 3.4.3 that

PΛ(X; k) = Locf (X; k)[−d] ⊆ Db
const(X; k).

Recall that by Theorem 3.1.9 we have Locf (X; k) ≃ Repk(π1(X)).

Example 3.5.9. There is a unique stratification on the point. The category of perverse
sheaves on {pt} is by the above example therefore just the category of local systems
on the point. But Locx({pt}; k) ∼= Vectk by Corollary 3.1.10. If X is a finite disjoint
union of points, there is also only one stratification, since the strata were assumed to be
connected. It follows from Example 3.5.3 that P(X; k) = ⊕x∈XP({x}; k) = ⊕x∈XVectk.
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Example 3.5.10. If X is a countably infinite disjoint union of points the conclusion of
Example 3.5.9 holds as well. We consider some presentation of X with n1 < n2 < . . .

{x1, . . . , xn1} ↪→ {x1, . . . , xn2} ↪→ {x1, . . . , xn3} ↪→ · · · ↪→ X = {x1, x2, . . . }.

Then we obtain fully faithful functors

P({x1 . . . , xn1}; k) ↪→ P({x1, . . . , xn2}; k) ↪→ P({x1, . . . , xn3}; k) ↪→ · · · ,

which under the identification P({x1, . . . , xnl
}; k) = ⊕nl

i=1 Vectk become the coordinate
embeddings sending the nl simple objects of ⊕nl

i=1 Vectk to the first nl simple objects of⊕nl+1
i=1 Vectk.
It follows that for all (countable) X the abelian category P (X; k) is equivalent to the

category of X-graded vector spaces.

Proposition 3.5.11. Verdier duality exchanges D≤0
Λ and D≥0

Λ . Therefore D restricts to
a duality on PΛ(X; k).

Proof. If F• ∈ D≤0
Λ , we have that i∗λF ∈ D

≤0
Xλ

. It follows that

i!λ(DF•) = D(i∗λF•︸ ︷︷ ︸
∈D≤0

Xλ

) ∈ D≥0
Xλ

by Remark 3.5.5.

3.6 Formal Properties of PΛ(X; k)
In this section we collect some properties of the abelian category of perverse sheaves.

We saw in Example 3.5.8 that every perverse sheaf on a smooth connected variety of
dimension d has cohomology only in degree −d. The next proposition generalizes this
statement.

Proposition 3.6.1. Let F• be a perverse sheaf on X. Then its cohomology sheaves
Hi(F•) vanish unless −dimX ≤ i ≤ 0. Moreover, we have

dim suppHi(F•) ≤ −i.

Proof. We first show that
dim suppHi(F•) ≤ −i

and Hi(F•) = 0 for i > 0 for all F• ∈ D≤0
Λ (X). As F• has finite-dimensional support,

we may assume that X is a variety with finite stratification. Take an open stratum
Xλ ⊆ X and let i′ : X ′ := X \Xλ ↪→ X be the closed immersion of the complement. By
Theorem 3.5.1(4) there is a distinguished triangle

(iλ)!i
!
λF• → F• → i′∗i

′∗F• → (iλ)!i
!
λF•[1].
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We obtain the exact sequence

Hi((iλ)!i
!
λF•)→ Hi(F•)→ Hi(i′∗i′∗F•).

Therefore it suffices to verify the assertion for the left and right sheaf in this sequence.
Note that the non-derived functor j! and i∗ are exact for j an open embedding and i∗

a closed embedding. We therefore have

Hi((iλ)!i
!
λF•) = (iλ)!Hi(i!λF•) and Hi(i′∗i′∗F•) = i′∗Hi(i′∗F•).

Next note that i!λF• = i∗λF• lies in D≤0(Xλ) and i′∗F• lies in D≤0(X ′). Recall that
D≤0(Xλ) = {G ∈ Db

const(Xλ; k) | HiG• = 0 for i > − dimXλ} and soHi(i!λF) contributes
only in degrees ≤ −dimXλ. The assertion now follows for Hi(i′∗F•) by induction on
the number of strata and we are done.

One can show in the same way that HiF• = 0 for i < −dimX for F• ∈ D≥0
Λ .

We saw in Theorem 3.4.9 that PΛ(X; k) is abelian, however, more is true.

Proposition 3.6.2. The category PΛ(X; k) is an abelian category of finite length.

Proof. See [BBD82, Théorème 4.3.1].

We now give the classification of the simple objects in PΛ(X; k) following [CG97,
Chapter 8.4]. For the proofs see [BBD82].

Proposition 3.6.3. For any stratum Xλ of complex dimension dλ and any local system
L on Xλ, there is a unique object IC(Xλ,L) in PΛ(X; k) such that

(1) i∗λH−dλIC(Xλ,L) = L,
(2) dim suppHiIC(Xλ,L) < −i, for −dλ < i,
(3) dim suppHi(DX(IC(Xλ,L))) < −i, for −dλ < i.

Proposition 3.6.4. The object IC(Xλ,L) satisfies the following:

(1) The cohomology sheaves HiIC(Xλ,L) vanish unless −dλ ≤ i ≤ 0,
(2) H−dλIC(Xλ,L) = H0((iλ)∗L),
(3) IC(Xλ,L∨) = DX(IC(Xλ,L)).

Example 3.6.5. If X is smooth of dimension d with the trivial stratification, we have
IC(X,L) = L[−dimX].

Example 3.6.6. If X is stratified and there is a stratum Xλ = {x0}, we have

IC({x0}, k{x0}) : · · · 0 (ix0)∗k{x} 0 · · ·

Proposition 3.6.7. The simple objects of PΛ(X; k) are precisely the IC(Xλ,L) for simple
local systems L, where we run through all λ ∈ Λ.
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Corollary 3.6.8. If X = ∐
λ∈ΛXλ such that all Xλ are simply-connected, we have that

the simple perverse sheaves are in 1:1-correspondence with Λ under

Λ→ Irr(PΛ(X; k)), λ 7→ IC(Xλ, kXλ
).

Proof. If Xλ is simply-connected, we have that Locf (Xλ; k) is equivalent to Vectk by
Corollary 3.1.10. Therefore, there is only one simple local system on every Xλ, namely
the constant sheaf kXλ

. We conclude by the previous Proposition 3.6.7.

Example 3.6.9. If X is a discrete space, we have seen in Example 3.5.10 that the
category of perverse sheaves on X is equivalent to the category of X-graded vector spaces.
The simple objects of P(X; k) are in 1:1-correspondence with the points of X and are
explicitly given as the degree zero stalk complex

IC({x}, k{x}) : · · · 0 (ix)∗k{x} 0 · · · ,

where x runs through all x ∈ X and ix denotes the inclusion {x} ↪→ X.

We know now that that PΛ(X; k) is a finite length abelian category with a specified set
of simples, so we next are interested in extensions of perverse sheaves. Of course we have

ExtiPΛ(X;k)(F ,G) = HomDb(PΛ(X;k)(F ,G[i]).

Note that the right hand side is in general not the same as HomDb(X;k)(F ,G[i]). However,
for i = 0, 1 there turns out to be an isomorphism. The inclusion PΛ(X; k)→ Db(X; k)
induces a functor

Db(PΛ(X; k)→ Db(X; k),
which in turn yields a map

HomDb(PΛ(X;k)(F ,G[i])→ HomDb(X;k)(F ,G[i]).

Proposition 3.6.10. For F ,G ∈ PΛ(X; k) and we have that the map

ExtiPΛ(X;k)(F ,G) = HomDb(PΛ(X;k)(F ,G[i]) −→ HomDb(X;k)(F ,G[i]),

is an isomorphism if i = 0 or i = 1.

Proof. The case i = 0 is clear and i = 1 follows from the description of short exact
sequences in the heart of a t-structure in Theorem 3.4.9 and the fact that PΛ(X; k) is
closed under extensions in Db

Λ(X; k).

The following theorem is a deep result whose original proof required techniques in
positive characteristics and the Weil conjectures, see [BBD82, Théorème 6.2.5].

Theorem 3.6.11 (Decomposition Theorem). Let k be of characteristic zero. For a
proper morphism f : X → Y of algebraic varieties, the complex of sheaves f∗IC(Xλ,L) is
a finite direct sum of shifts of simple perverse sheaves on Y , i.e. a direct sum of shifts of
IC(Yµ,L) for Yµ ⊆ Y smooth locally closed subsets.
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Geometric Satake Equivalence

In this chapter we finally state the Geometric Satake Equivalence as proven by Ginzburg
[Gin95] and sketch the proof as presented in [BR18].

4.1 The Statement of Geometric Satake

Recall the Cartan Decomposition 2.3.1

GrG(C) =
∐

λ∈X∗(G,T )+

GrλG.

of the Affine Grassmannian GrG(C). Here we consider the space GrG(C) with the analytic
topology.

In Proposition 3.3.7 we proved that this decomposition is a stratification satisfying
the Whitney condition. This allows us to consider perverse sheaves on GrG(C), see
Chapter 3.

Definition 4.1.1. We denote the category of perverse sheaves on GrG with respect to
the stratification defined by the Cartan Decomposition by

SatG := PX∗(G,T )+(GrG(C);C).

The Geometric Satake Equivalence concerns this category of perverse sheaves and can
be formulated as follows.

Theorem 4.1.2 (Geometric Satake Equivalence, [Gin95]). The category SatG of perverse
sheaves on GrG(C) with respect to the Cartan Decomposition is equivalent to the category
RepC(G∨) of complex representations of the Langlands dual group of G as Tannakian
categories.

We recall the notion of Tannakian categories after Theorem 4.2.2. Essentially, a
Tannakian category is an abelian category together with a monoidal structure and an
underlying vector space for every object, such that the monoidal product behaves like
the usual tensor product of representations and vector spaces.
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Chapter 4 Geometric Satake Equivalence

Remark 4.1.3. Usually, the equivalence is stated as an equivalence between the Rep(G∨)
and the category PG[[t]](GrG(C);C) of G[[t]]-equivariant perverse sheaves. However, there
is a Tannakian equivalence

PG[[t]](GrG(C));C) −→ PX∗(G,T )+(GrG(C);C) = SatG,

see [BR18, Corollary 4.8].

Example 4.1.4. By Corollary 2.3.18 the strata of GrG(C) are simply-connected and so
by Corollary 3.6.8 the simple objects of SatG are of the form

ICλ := IC(GrλG,CGrλ
G

), λ ∈ X∗(G,T )+.

On the other hand, the simples of Rep(G∨) are also labeled by X∗(G∨, T∨)+ = X∗(G,T )+
by Theorem 1.1.22. We see that we have the same labeling set for simples in both
categories. We therefore recover the Cartan Decomposition 2.3.1 as a kind of “set-
theoretic” version of the Geometric Satake Equivalence.

Example 4.1.5. The Affine Grassmannian of GL1 = Gm is just an infinite disjoint union
of points GrGL1(C) = Z by Example 2.1.18. Therefore the category SatGL1 is equivalent
to the category of finite-dimensional Z-graded vector spaces. This is also equivalent to
Rep(GL1) and by 1.1.20 we indeed have GL1 = GL∨

1 .

Example 4.1.6. If G = GL1 ×GL1 we have by Proposition 2.2.11

GrG(C) = GrGL1(C)×GrGL1(C) = Z2.

It follows that SatG is equivalent to the category of finite-dimensional Z2-graded vector
spaces by Example 3.5.10 with simple objects IC(n,m). Indeed,

(GL1 ×GL1)∨ = GL1 ×GL1.

Example 4.1.7. By Corollary 2.2.16 and Proposition 2.3.6 we have closed-open embed-
dings

GrSLn(C) ↪→ GrPGLn(C) ↪→ GrGLn(C),
which are compatible with the stratifications. Therefore by Example 3.5.3 we obtain
fully faithful exact functors

SatSLn ↪→ SatPGLn ↪→ SatGLn .

Under Geometric Satake these correspond to functors

Rep( SL∨
n︸︷︷︸

1.1.21= PGLn

) ↪→ Rep( PGL∨
n︸ ︷︷ ︸

1.1.21= SLn

) ↪→ Rep( GL∨
n︸ ︷︷ ︸

1.1.20= GLn

).

It turns out, the first functor is the one defined in Proposition 1.1.6 and the second is
given by the identification

Rep(SLn) = {M ∈ Rep(GLn) | the matrix A acts trivially on M , if A ∈ Z(GLn(C))} .
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4.2 The Proof of Geometric Satake

4.2 The Proof of Geometric Satake

We mainly follow the notes [BR18]. The proof of Geometric Satake 4.1.2 has two main
steps. First one needs to define a monoidal structure on SatG and a fiber functor

SatG → VectC,

which make SatG a Tannakian category.
However, before we investigate the tensor structure, we sketch the argument that SatG

is a semi-simple. This will help us to prove that SatG is the category of representations
of a reductive group.

Proposition 4.2.1. The category SatG is semi-simple.

Sketch of Proof. The simple objects of SatG are ICλ with λ ∈ X∗(G,T )+ by Corol-
lary 3.6.8 and Corollary 2.3.18. Therefore it suffices to compute that

Ext1(ICλ, ICµ) = 0

for all λ, µ ∈ X∗(G,T )+. This can be shown by using the theory of so-called parity
sheaves, see [JMW14, Definition 2.4]. It turns out that ICλ is an even, respectively
an odd parity sheaf, if dim GrλG = ⟨2ρ, λ⟩ is even, respectively odd, see [Ach21, Lema
9.3.8]. Notably, this step requires us to work in characteristic zero. This is related to
Corollary 2.4.9 which states that the dimensions of all Schubert cells appearing in a
Schubert variety have the same parity.

By [JMW14, Proposition 2.6], it follows that

Ext1(ICλ, ICµ) = 0

if ICλ and ICµ are either both even or both odd.
The mixed case

Ext1(ICλ, ICµ) = 0,

where either ICλ is even and ICµ is odd, or ICλ is odd and ICµ is even, follows from the
fact that ICλ and ICµ are supported on different connected components of GrG(C).

We now come to the first main step of the proof of Geometric Satake.

4.2.1 SatG is Tannakian

This subsection is all about the proof of the following theorem.

Theorem 4.2.2. The category SatG is Tannakian.

We have seen in Theorem 3.4.9 that SatG is abelian. To show that SatG has the
structure of a Tannakian category, one needs to do the following:
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• Construct a monoidal structure, called convolution,

⋆ : SatG × SatG −→ SatG.

In particular, ⋆ needs to be associative with a monoidal unit 1 ∈ SatG.
• Show that SatG is symmetric monoidal.
• Define a faithful exact functor F : SatG → VectC, called the fiber functor, which

satisfies
F (F ⋆ G) = F (F)⊗C F (G), F (1) ∼= C

and is compatible with the unity, associativity, and commuativity constraints.
• Show that for every F such that dimF (F) = 1 there is an element F−1 satisfying

F ⋆ F−1 = 1.

This condition guarantees the existence of duals in SatG.

Construction of Monoidal Structure. For more details see [Gin95], or [BR18, Section
I.6.2].

One defines the space

G
(
C((t))

)
×G(C[[t]]) GrG(C) :=

(
G
(
C((t))

)
×GrG(C)

)
/ ∼,

where (A, [B]) ∼ (A′, [B′]) if and only if there is a C ∈ G(C[[t]]) such that

(A, [B]) = (A′C, [C−1B′]).

Then one considers the natural maps

G
(
C((t))

)
×GrG(C) p−→ GrG(C)×GrG(C),

G
(
C((t))

)
×GrG(C) q−→ G

(
C((t))

)
×G(C[[t]]) GrG(C) m−→ GrG(C).

Here p and q are the obvious quotient maps and m is the multiplication given by

m([A, [B]]) = [AB].

One easily checks that m is in fact well-defined.
For F ,G ∈ SatG we can consider

F ⊠ G ∈ Db(GrG(C)×GrG(C))

and show that there is a unique object

F ⊠̃ G ∈ Db
(
G
(
C((t))

)
×G(C[[t]]) GrG(C)

)
such that

q∗(F ⊠̃ G) = p∗(F ⊠ G).
We then define the convolution product of F and G as

F ⋆ G := m∗(F ⊠̃ G).
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For a proof that ⋆ is associative and commutative, see [BR18, Chapter I.6 and 7].

Proposition 4.2.3. The convolution ICλ⋆ICµ of the simple perverse sheaves ICλ and ICµ

is supported on Grλ+µ
G and the restriction to the open cell Grλ+µ

G is CGrλ+µ
G

[dim Grλ+µ
G ].

Sketch of Proof. The idea is to restrict and corestrict the maps p, q,m to closed subsets.
We write G

(
C((t))

)≤λ for the inverse image of GrλG = ∐
µ≤λ GrµG under the quotient map.

We can restrict and corestrict the map p to a function

p : G
(
C((t))

)≤λ ×GrµG −→ GrλG ×GrµG.

Note that applying m ◦ q to an element in G
(
C((t))

)≤λ×GrµG gives an element in Grλ+µ
G .

So, restricting q to G
(
C((t))

)≤λ ×GrµG, we can corestrict m to Grλ+µ
G . For more details

see [BR18, Chapter I.6].

Corollary 4.2.4. The product ICλ ⋆ ICµ has the “upper triangular” decomposition

ICλ ⋆ ICµ
∼= ICλ+µ ⊕

⊕
ν<λ+µ

ICnλ,µ
ν
ν

for some nλ,µν ∈ N0.

Proof. The perverse sheaf ICλ ⋆ ICµ has a direct sum decomposition into IC-sheaves,
because SatG is semi-simple by Proposition 4.2.1. By the first part of Proposition 4.2.3
we must have

ICλ ⋆ ICµ
∼=

⊕
ν≤λ+µ

ICnλ,µ
ν
ν ,

because those are the only IC-sheaves supported on Grλ+µ
G = ∐

ν≤λ+µ Grλ+µ
G . By the

second part of Proposition 4.2.3 we must have nλ,µλ+µ = 1, as ICλ+µ is the only appearing
sheaf supported on Grλ+µ

G .

Corollary 4.2.5. If GrλG and GrµG are points (see Corollary 2.3.21) we have

ICλ ⋆ ICµ
∼= ICλ+µ.

Proof. By Corollary 2.3.21 we deduce that Grλ+µ
G is a singleton if GrλG and GrµG are.

Therefore,
{ν ∈ (X∗)+ | ν < λ+ µ} = ∅

and we conclude by Corollary 4.2.4.

Remark 4.2.6. It follows from Geometric Satake that in fact

ICλ ⋆ ICµ
∼= ICλ+µ

even if only one of the two GrλG, GrµG is a singleton.
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Example 4.2.7. In the case G = GL1 the simple objects are of the form ICn for n ∈ Z.
These satisfy

ICn ⋆ ICm = ICn+m.

This is precisely what we expect for representations of GL∨
1 = GL1.

Proposition 4.2.8. The IC-sheaf IC0 is the unit 1 of the monoidal functor ⋆.

Proof. See [BR18, Chapter I.9].

We now define the fiber functor

F : SatG → VectC.

Definition 4.2.9. We set

F (F) :=
⊕
k

Hk(GrG(C),F),

where Hk(X,−) is the sheaf cohomology functor.

This functor is additive and therefore exact, because SatG is semi-simple by Proposi-
tion 4.2.1.

Proposition 4.2.10. The functor F preserves the monoidal unit, i.e. F (IC0) = C.

Proof. By Example 3.6.6 IC0 is the complex

IC0 : · · · 0 (i{pt})∗C{pt} 0 · · ·

Therefore, we have

F (IC0) =
⊕
k

Hk(GrG, IC0)

=
⊕
k

Hk
(
GrG, (i{pt})∗C{pt}

)
=
⊕
k

Hk({pt},C{pt})

=
⊕
k

Hk({pt};C)

= C.

Proposition 4.2.11. The functor F is faithful.

Proof. Faithfulness follows if F (F) ̸= 0 for all simple objects in SatG by semi-simplicity.
The simple objects are all of the form ICλ and so it suffices to show that F (ICλ) ̸= 0.
This can be found in [BR18, Theorem 5.9].

Proposition 4.2.12. The fiber functor F is compatible with the monoidal product ⋆.
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Proof. See [BR18, Chapter I.8].

We need the following lemma for the subsequent proposition.

Lemma 4.2.13. We have dimF (ICλ) = 1 if and only if GrλG = {pt}.

Proof. See [BR18, Theorem 5.13].

Proposition 4.2.14. For every F ∈ SatG with dimF (F) = 1, there is an F−1 ∈ SatG
satisfying

F ⋆ F−1 = IC0.

Proof. By Proposition 4.2.1 we know that F is a direct sum of IC-sheaves. But since
F is faithful, we have that dimF (F) = 1 only if F is already a simple object ICλ. By
Proposition 4.2.13 we deduce that GrλG = {pt}. Setting F−1 := IC−λ, we obtain by
Corollary 4.2.5

F ⋆ F−1 = ICλ ⋆ IC−λ = ICλ−λ = IC0.

This is the monoidal unit of SatG.

All of these propositions and constructions together show that SatG is a Tannakian
category.

4.2.2 Reconstructing G∨

In this subsection we use the Tannakian Reconstruction Theorem, see [Saa72], to proof
Geometric Satake.

Theorem 4.2.15 (Tannakian Reconstruction). If the category C together with a monoidal
functor ⊗ and a fiber functor F : C → Vect is Tannakian, there is an equivalence of
Tannakian categories

C ≃ Rep(G̃)

for some affine group scheme G̃.

The following corollary is Tannakian Reconstruction applied to the Tannakian category
SatG.

Corollary 4.2.16. The category SatG is equivalent to Rep(G̃) as Tannakian categories
for some affine group scheme G̃.

The second step of the proof of Geometric Satake is to show that G̃ ∼= G∨. To do this
we first show that G̃ is reductive and then compute the root datum. Showing that the
root datum of the reductive group G̃ is the dual root datum of G implies that G̃ ∼= G∨

by Definition 1.1.18 and concludes the proof.
The next three propositions are all statements about the group scheme G̃ which have

equivalent formulations as properties about the category Rep(G̃). So we learn about the
group G̃ by investigating its representation category Rep(G̃).
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Proposition 4.2.17. The group scheme G̃ is algebraic.

Proof. This proof is taken from [BR18, Lemma 9.2].
The group G̃ is algebraic if and only if there exists a representation M ∈ Rep(G̃) such

that M generates Rep(G̃) by taking direct sums,tensor products, duals, and subquotients,
see [BR18, Proposition 2.11.1].

Take a finite set of elements λ1, . . . , λl ∈ (X∗)+ such that every element λ ∈ (X∗)+
can be written as a finite sum of λi’s. Set F := ICλ1 ⊕ · · · ⊕ ICλl

. This F generates
SatG = Rep(G̃). Indeed let λ ∈ (X∗)+. By assumption on the λi’s, we may write

λ = k1λ1 + · · ·+ klλl.

Then F⋆(k1+···+kl) contains ICλ as a direct summand: Indeed, it contains

IC⋆k1
λ1

⋆ · · · ⋆ IC⋆kl
λl

as a direct summand. But this contains ICλ as a direct summand by Proposition 4.2.3
and induction.

Therefore every simple object of the semi-simple category SatG is contained in the
subcategory generated by F . Hence, the representation F ∈ Rep(G̃) generates and we
conclude that G̃ is algebraic.

Proposition 4.2.18. The affine algebraic group G̃ is connected.

Proof. This proof is taken from [BR18, Lemma 9.3].
The affine algebraic group G̃ is not connected if and only if there is a non-trivial

representation M in Rep(G̃) such that the category generated from M by taking direct
sums and subquotients is stable under ⋆, see [BR18, Proposition 2.11.2].

If we take some non-trivial F ∈ SatG, then every object arising from F by taking
subquotients and direct sums will be supported only on the support of F . However, the
support of F is a finite union of strata. Now take a simple direct summand ICλ of F ,
with λ ̸= 0. The powers IC⋆n

λ satisfy

supp IC⋆n
λ ⊇ Grn·λ

G

by Proposition 4.2.3. We have nλ ̸= n′λ for n ≠ n′, since λ ̸= 0. Therefore the combined
support of tensor powers of ICλ contains infinitely many strata. We conclude that the
category generated by F cannot be ⋆-stable and therefore G̃ must be connected.

Proposition 4.2.19. The connected affine algebraic group G̃ is reductive.

Proof. We have seen in Proposition 4.2.1 that Rep(G̃) = SatG is semi-simple. But a
connected affine algebraic group with semi-simple representation category is reductive by
definition.

We now know that SatG ≃ Rep(G̃) for a reductive algebraic group. What is left to
show is that G̃ has the same root datum as G∨.
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Proposition 4.2.20. The root datum of the reductive group G̃ is dual to the root datum
of G.

Proof. To do this one first needs to construct a torus and then compute the roots and
coroots. This is done in [BR18, Chapter 9.2 and 9.3].

With this proposition it follows that G̃ ∼= G∨ by definition of the Langlands dual
Definiton 1.1.18. This finishes our sketch of the proof of the Geometric Satake Equivalence.

4.3 Geometric Satake with General Coefficients
We have discussed the Geometric Satake equivalence as proven by Ginzburg, [Gin95].
However, Mirković and Vilonen have given a generalization of Ginzburg’s Geometric
Satake to admit more general coefficients.

They still consider the Affine Grassmannian GrG(C) for a complex reductive group G
with the analytic topology. Next they look at P(X∗)+(GrG(C); k) where k is a Noetherian
ring of finite global dimension. Ginzburg’s result is the case k = C.

Theorem 4.3.1 (Geometric Satake Equivalence, Mirković–Vilonen). There is an equi-
valence of Tannakian categories

P(X∗)+(GrG(C); k) −→ Repk(G∨
k ).

Here G∨
k denotes the split-reductive group defined over k with the dual root datum of

the complex reductive group G. This group was defined by Demazure, see [DG11].
The proof of Mirković–Vilonen is quite similar to the one sketched above. They, too,

begin by constructing the monoidal functor ⋆ on P(X∗)+(GrG(C); k) and show that this
is indeed symmetric. However, this category is no longer semi-simple and therefore more
work needed to be put into constructing G̃. To remedy this, they introduced a weight
decomposition on the fiber functor

F : P(X∗)+(GrG(C); k)→ k-mod

which models the weight decomposition one expects to have on representations. For an
exposition of this proof see [BR18, Part II].
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