
CATEGORIFICATION OF TENSOR PRODUCT

REPRESENTATIONS OF slk AND CATEGORY O
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Abstract. We construct categorifications of tensor products of arbitrary finite-

dimensional irreducible representations of slk with subquotient categories of the
BGG category O, generalizing previous work of Sussan and Mazorchuk-Stroppel.
Using Lie theoretical methods, we prove in detail that they are tensor product

categorifications according to the recent definition of Losev and Webster. As
an application we deduce an equivalence of categories between certain versions
of category O and Webster’s tensor product categories. Finally we indicate how

the categorifications of tensor products of the natural representation of gl(1|1)
fir into this framework.

1. Introduction

Since the groundbreaking work of Khovanov [Kho00], substantial progress has been
made in the categorification of irreducible representations of Lie algebras and their
tensor products. Milestones were the introduction of the Khovanov-Lauda-Rouquier
algebras ([Rou08], [KL09], [KL11], [KL10]) and the establishment of existence and
uniqueness results ([CR08], [LW13]). In [LW13], Losev and Webster gave for the
first time a formal definition of tensor product categorification, with which they were
able to prove a strong uniqueness result. They also showed that for each finite tensor
product of finite dimensional irreducible representations of a complex semisimple Lie
algebra such a categorification exists, using Webster’s diagram algebras, [Web13].

In type A, a big role in categorification has always been played by the BGG category
O [BGG76]. Categorifications of tensor powers of the vector representation of sl2
using category O have been constructed by Bernstein, Frenkel, Khovanov [BFK99]
and Frenkel, Khovanov and the second author [FKS06]. Later, categorifications of
fundamental representations of slk for k ≥ 2 using parabolic subcategories of the
BGG category O(gln) have been constructed in [Sus07] and [MS09]. In the present
paper, we generalize their construction to arbitrary irreducible representations using
subquotient categories of O(gln). Moreover, we prove that this construction is a
tensor product categorification according to [LW13], and hence is equivalent to
Webster’s diagrammatic categorification.

We point out that it was already known to experts that subquotient categories of
O(gln) categorify arbitrary tensor products of slk–representations, although details
cannot be found in the literature. The existence of our construction is in fact
implied by Webster’s categorification [Web13]. Indeed, as Webster proved, the
category O(gln) is equivalent to the module category over his diagram algebra. Since
Webster’s categorification of arbitrary tensor products is obtained via idempotent
truncations and quotients of that diagram algebra, it follows via this equivalence
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that the same can be done with subquotient categories of O(gln) (see [Web13,
Proposition 8.8]). The advantage of the present paper, however, is that we identify
these categories explicitly inside O(gln), and we prove all details using only Lie
theory, without making use of the equivalence with Webster’s diagram algebra. We
hope that this on the one hand can provide a better understanding of the involved
subquotient categories of O and of the Lie theoretical categorification, and on the
other hand provides the possibility to better understand the established Lie theory
via the viewpoint of the diagram algebras.

We summarize the results of the paper in the following theorem (which should be
compaed with [Web13, Proposition 8.8]):

Theorem. Let λ = (λ(1), . . . , λ(m)) be a sequence of integral dominant weights for
slk, and let V (λ(i)) denote the finite-dimensional irreducible slk–representation with
highest weight λ(i). There exists a subquotient category QλI of O(gln) together with
endofunctors E, F and an action of the KLR 2-category which defines an slk–tensor
product categorification of V (λ) = V (λ(1))⊗ · · · ⊗ V (λ(m)). This can be lifted to a
graded Uq(slk)–categorification.

We should point out that, unfortunately, the Lie theoretical setting for categorifica-
tion becomes slightly less pleasant when we want to discuss graded categorifications
of Uq(slk)–representations, since we are still not able to prove that we have a graded
categorical action using only Lie theory. Indeed, we have a graded version of cate-
gory O (see [BGS96] and [Str03b]), which induces a grading also on the subquotient
categories, and we also have graded lifts of all the functors, but we still miss a
direct proof that the action of the degenerate affine Hecke algebra via natural
transformations on translation functors lifts to a graded action of the KLR-algebra,
expect for special cases treated in [BS11]. As Webster explains in [Web13, Section 8],
this can be deduced from the uniqueness of the Koszul grading. Appealing to this
fact, we will discuss the graded categorification at the end of the paper.

We remark that subquotient categories of O(gln) were introduced already in [FKM02],
where they were called generalized parabolic subcategories; regular blocks have
been used in [MS08a] to categorify induced Hecke modules, while regular and
singular blocks, but only in some special cases, have been used in [Sar14a] to
categorify representation of the general Lie superalgebra gl(1|1). In the present
construction, regular and singular blocks appear in full generality. We believe that
the categorification result of this paper provides a better understanding of such
categories, in particular thanks to the following direct consequence which provides
a diagrammatical description of these categories

Corollary 1.1. The category QλI categorifying V (λ) is equivalent to modules over
Webster’s tensor algebra, [Web13] attached to λ.

This result follows directly from our main theorem and the uniqueness result of
[LW13]. The same result was proved already in [Web13, Proposition 8.8] directly,
avoiding the power of the uniqueness result (with the distadvantage of having to
check many technical details).

Let A = An be the (graded) diagram algebra introduced in [Sar14a] and [Sar13]
such that the category C(n) of (graded) An-modules categorifies, in the weak sense,
the n-fold tensor products of the (quantized) natural representation of gl(1|1). Then
we obtain as a consequence of the main theorem:
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Corollary 1.2. The category C(n) is a Serre subquotient of the (graded) category
QλI which defines a (graded) slk–tensor product categorification of V (λ) = V (λ(1))⊗
· · · ⊗ V (λ(n)), where V (λ(i)) = V ($1), for 1 ≤ i ≤ n, is the first fundamental
representation of (quantum) slk.

Let us now briefly discuss the main idea of the construction of the categorifica-
tion, which is more or less implicit in [Web13, Section 8]. An easy but impor-
tant observation is that if $1, . . . , $r denote the fundamental weights of slk and
λ = a1$1 + · · ·+ak−1$k−1 for aj ∈ Z≥0 an integral dominant weight, then we have
an embedding of representations

(1.1) V (λ)
k−1⊗
r=1

V ($r)
⊗ar

∑
r arr⊗
l=1

V,

where V (λ) is the irreducible (finite-dimensional) slk–representation of highest
weight λ and V = V ($1) is the vector representation. If we consider λ as a partition
and let n = |λ| =

∑
r arr, then the categorification of (1.1) becomes

(1.2) QλI Oλ(gln)I O(gln)I ,

where Oλ(gln) denotes parabolic category O attached to the standard parabolic
subalgebra of type glλ1

⊕ · · · ⊕ glλ` . Here the subscript I = {1, . . . , k} denotes the
restriction to the blocks where (shifted) highest weights are sequences in In.

Now, if λ = (λ(1), . . . , λ(m)) is a sequence of integral dominant weights for slk, then

the outer tensor product Qλ
(1)

I � · · · � Qλ
(m)

I gives a categorification of V (λ) =

V (λ(1))⊗ · · · ⊗ V (λ(m)) as an sl⊕mk –categorification. In order to get an slk tensor
product categorification, we need to glue the blocks of this categorification together.
From a general and abstract point of view, it is a very interesting and challenging
problem how this gluing should work. In our setting, we have at our disposal all the
power of the BGG category O, and it turns out that the gluing procedure is given
by parabolic induction; in some special cases, this is already visible in [BFK99] and

[FKS06]. In detail, if ni =
∣∣λ(i)

∣∣ then Qλ
(1)

I � · · · � Qλ
(m)

I can be identified with a
subcategory of O(l), where l = gln1

⊕ · · · ⊕ glnm . The categorification of V (λ) is
then essentially the image of the parabolic induction ∆ = U(gln)⊗p • inside O(gln),
where n = n1 + · · · + nm and p ⊆ gln is the standard parabolic subalgebra with
Levi factor l. We believe that this construction can give a better insight into tensor
product categorifications from an abstract point of view.

Structure of the paper. In Section 2 we recall basic results on finite-dimensional
representation theory of slk and of its quantum enveloping algebra U(slk). Section 3
fixes our conventions for partitions and Young tableaux, while Section 4 is dedicated
to basic facts about Schurian categories, Serre subcategories, quotient categories
and standardly stratified categories. In Section 5, the technical heart of the paper,
we will define the relevant subquotient categories of O. We will also define the
standardization functor ∆ via parabolic induction, and we will prove that it defines
a standardly stratified structure. In Section 6 we will recall from [AS98] the action
of the degenerate affine Hecke algebra on translation functors of O and we will define
categorical slk–actions according to [Rou08] and [LW13]. Using all this machinery we
discuss finally in Sections 7 and 8 the categorification of simple slk–representations
and tensor products of simple representations, respectively. Finally, in order to lift
our categorification to an Uq(slk)–one, we recall in Section 9 the basics about graded
category O and discuss in Section 10 graded categorifications.
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2. Uq(slk) and its representations

Throughout the whole paper the base field is C and we fix a positive integer k and
set I = {1, . . . , k}. We denote by slk = slk(C) the simple Lie algebra of all traceless
k × k complex matrices.

2.1. Representation theory of slk. Let d̃ denote the diagonal matrices and
d = d̃ ∩ slk the traceless diagonal matrices. If δ̃1, . . . , δ̃k is the standard basis of d̃∗,
dual to the standard basis of monomial matrices of d̃, we denote by δ1, . . . , δk the
restrictions of δ̃1, . . . , δ̃k to d∗. (We use this special notation for slk because we want
to keep the usual notation for the Lie algebra gln, which will appear in Section 5.)

Let αi = δi − δi+1 for i = 1, . . . , k − 1. Let Π = {α1, . . . , αk−1} ⊂ d∗ be the set of
simple roots. Let (·, ·) denote the standard symmetric non-degenerate bilinear form
on d∗, with respect to which the δi are orthonormal. The simple roots satisfy

(2.1) (αi, αj) = aij =


2 if i = j,

−1 if |i− j| = 1,

0 if |i− j| > 1.

Let {$i | i = 1, . . . , k − 1} ⊂ d∗ be the dual basis to Π with respect to the bilinear

form. Let � =
⊕k−1

i=1 Z$i be the weight lattice and �+ =
⊕k−1

i=1 Z≥0$i be the
set of integral dominant weights. By definition, an integral dominant weight $ is
an integral combination $ = c1$1 + · · ·+ ck−1$k−1 of fundamental weights with
non-negative coefficients ci ∈ Z≥0.

As well-known, the category of finite-dimensional representations of slk is semisimple,
and the isomorphism classes of simple objects are in bijection with �+ by taking
highest weights. For λ ∈ �+ we denote by V (λ) the irreducible slk–module with
highest weight λ.

Example 2.1. The representation V = V ($1) = Ck is the vector representation
or natural representation and a special example of the fundamental representations

V ($i) ∼=
∧i

V ($1) for i = 1, . . . , k − 1 .

Given an arbitrary λ = c1$1 + · · ·+ ck−1$k−1 ∈ �+ set

(2.2) Ṽ (λ) =

k−1⊗
r=1

V ($r)
⊗cr .

Since the highest weight of Ṽ (λ) is λ, there is an embedding of V (λ) into Ṽ (λ).
Hence

(2.3) V (λ) ↪→ Ṽ (λ) ↪→ V ⊗
∑
r crr.

It follows in particular that each finite-dimensional slk–representation is a subrepre-
sentation of a tensor power of the vector representation.
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2.2. The quantum group Uq(slk). The quantum group Uq(slk) is the Hopf algebra

over C(q) generated by {Ei, Fi,Ki,K
−1
i | i = 1, . . . , k− 1} subject to some relations

which we do not want to recall here (see for example [KL10]).

We restrict ourselves to type I finite-dimensional representations of Uq(slk), that is
weight representations W =

⊕
Wµ with

(2.4) Wµ = {vµ ∈W | Kivµ = q(αi,µ)vµ for all i = 1, . . . , k − 1}.

Then the finite dimensional representation theory of Uq(slk) is analogous to the one
of slk. In particular, such finite-dimensional representations are semisimple with the
irreducible ones parametrized by their highest weights (see [Jan96] or [Lus10]). For
λ ∈ �+. We denote by Vq(λ) be the simple Uq(slk)–module of highest weight λ.

Example 2.2. The k–dimensional vector representation of Uq(slk) is the represen-
tation Vq = Vq($1). Explicitly, Vq has standard basis {v1, . . . , vk} over C(q), and
the action of Uq(slk) is given by

(2.5) Eivj = δi+1,jvi, Fivj = δijvi+1, K±1
i vj = q±(δij−δi+1,j)vj ,

where δij is the Kronecker function. Let
∧r
q Vq be the subspace of

⊗r
Vq on basis

(2.6) vj1 ∧ · · · ∧ vjr =
∑
σ∈Sr

(−1)sgn(σ)q`(σ)vjσ(1) ⊗ · · · ⊗ vjσ(r)

for k ≥ j1 ≥ · · · ≥ jr ≥ 1. One can check that the action of Uq(slk) on (2.6) is given
by the formulas

(2.7)

Ei(vj1 ∧ · · · ∧ vjr ) =

{
vj1 ∧ · · · ∧ vjh−1 ∧ · · · ∧ vjr if some jh = i+ 1

0 otherwise,

Fi(vj1 ∧ · · · ∧ vjr ) =

{
vj1 ∧ · · · ∧ vjh+1 ∧ · · · ∧ vjr if some jh = i

0 otherwise,

K±1
i (vj1 ∧ · · · ∧ vjr ) = q±

(∑r
h=1 δi,jh−δi+1,jh

)
vj1 ∧ · · · ∧ vjr ,

and hence
∧r
q Vq is a Uq(slk)–subrepresentation. It is irreducible and has highest

weight $r. Hence
∧r
q Vq is isomorphic to V ($r), and is called the r–th fundamental

representation of Uq(slk). (For the general definition of the exterior power in the
quantized setting, see for example [BZ08] or [CKM12].)

Given an arbitrary λ = c1$1 + · · ·+ ck−1$k−1 ∈ �+, analogously to (2.2), set

(2.8) Ṽq(λ) =

k−1⊗
r=1

Vq($r)
⊗cr .

As in the non-quantized case, there is an embedding Vq(λ) ↪→ Ṽq(λ) ↪→ V
⊗

∑
r crr

q .

3. Combinatorics of partitions and tableaux

3.1. Partitions and Young diagrams. A partition λ of n is a non-increasing
sequence (λ1, . . . , λ`) of positive numbers with λ1 + . . .+ λ` = n for some ` ≥ 0. We
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write |λ| = n. We denote by Part(n) the set of partitions of n. To a partition we
associate a Young diagram, which we also denote by λ, as in the following picture:

· · ·

λ1
λ2

λ`

For example, if λ = (4, 4, 2, 1, 1) then the corresponding Young diagram is

The transposed λT of a partition corresponds to the Young diagram reflected across
the anti-diagonal. For example, the transposed of (4, 4, 2, 1, 1) is (5, 3, 2, 2).

Remark 3.1. To match the combinatorics of the category O, our convention is
transposed to the usual one in the literature.

Given $ = c1$1+· · ·+ck−1$k−1 ∈ �+ we set λTj = cj+· · ·+ck−1 for j = 1, . . . , k−1
and so associate to $ a partition λ with at most k − 1 rows. Graphically:

...

c1

c2

ck−1

This defines a bijection between the set of integral dominant weights for slk and the
set of partitions with at most k − 1 rows. From now on, we will just identify them.

3.2. Tableaux. A tableau of shape λ is obtained by filling the boxes of a Young
diagram λ with integer numbers. A tableau is

• column-strict if the entries are strictly increasing along the columns,

• semi-standard if it is column-strict and the entries are non-decreasing along
the rows,

• standard if it is column-strict and the entries are strictly increasing along
the rows.

The (reversed column) reading word a attached to a tableau is obtained by reading
columnwise from the left and bottom. For example, by reading the tableau

(3.1)

3 6 7

2 5

1 4
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we obtain the sequence a = (1, 2, 3, 4, 5, 6, 7). Conversely, given a sequence a =
(a1, . . . , an) of integer numbers, we denote by Tλ(a) the tableau of shape λ obtained
by filling the boxes of λ with the numbers of a first along the columns and then
along the rows, starting from the bottom left corner. For example, if λ = (3, 3, 1)
and a = (1, 2, 3, 4, 5, 6, 7) then (3.1) is the tableau Tλ(a).

We denote by Stλ(I) the set of semi-standard tableaux with entries I. Recall the
following well-known fact (see e.g. [Kas95, Section 5] or [Ful97, Chapter 8]):

Lemma 3.2. The dimension of V (λ) is equal to the cardinality of Stλ(I).

Let λ be a partition of n and d = (d1, . . . , dn) a sequence of integers. A tableau of
shape λ and type d is a tableau Tλ(a), where a is a permutation of d. We denote

by Stλ(d) the set of semi-standard tableaux of shape λ and type d.

3.3. Multipartitions and multitableaux. A multipartition of n is a sequence
λ = (λ(1), . . . , λ(m)) of partitions with

∣∣λ(1)
∣∣ + · · · +

∣∣λ(m)
∣∣ = n. We denote by

Partm(n) the set of multipartitions of n with m parts. A multitableau of shape λ
is a sequence T = (T (1), . . . , T (m)) of tableaux such that T (j) is of shape λ(j). It
is called column-strict (respectively, semi-standard or standard) if all the T (j) are
column-strict (respectively, semi-standard or standard).

The (reversed column) reading word attached to a multitableau is the concatenation
of the reading words attached to the single tableaux. If λ is a multipartition then
we denote by Tλ(a) the multitableau of shape λ obtained by filling the boxes of the
partitions of λ with the entries of a, starting with the Young diagram of λ(1).

As before, Stλ(I) denotes the set of semi-standard multitableaux of shape λ filled
with entries from 1 to k. If d = (d1, . . . , dn) then a multitableau of shape λ and

type d is a tableau Tλ(a), where a is a permutation of d. We denote by Stλ(d) the
set of semi-standard multitableaux of shape λ and type d.

4. Preliminaries on category theory

We will mostly denote categories by calligraphic letters like A,B,A and functors by
capital letters in sans-serif, like F,G,T.

Let A be an abelian C–linear category. Then A is said to be finite if (i) the
homomorphism spaces are finite dimensional, (ii) all objects are of finite length, and
(iii) there are only finitely many simple objects up to isomorphism, each of which
has a projective cover. We always assume that the endomorphism algebras of simple
objects are one-dimensional. These requirement suffice ensure that A is equivalent
to the category of finite-dimensional modules over a finite-dimensional C–algebra.

All our categories will be direct sums of finite abelian categories, or in other words
their blocks will be finite abelian categories. The constructions and results of this
section, which we explain and state for finite abelian categories only, apply directly
to their direct sums by considering blocks.

We will denote by [A] the complexified Grothendieck group of A. In particular,
[Vect] ∼= Z for the category Vect of finite-dimensional complex vector spaces.
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4.1. Serre subcategories and Serre quotient categories. Let A be a finite
abelian category, and let {L(λ) | λ ∈ Λ} be (a complete set of representatives for
the isomorphism classes of) the simple objects of A. Let P (λ) be the projective
cover of L(λ), and let A = End

(⊕
λ∈Λ P (λ)

)
. Then A ∼= mod−A.

Given Γ ⊆ Λ, the Serre subcategory SΓ is the full subcategory of A consisting of
object with composition factors of the type L(γ) for γ ∈ Γ. For M ∈ A let ZΓ(M)
be the maximal quotient of M lying in SΓ. It is easy to show that this defines a
functor ZΓ : A→ SΓ, which we call Zuckerman functor. This is left adjoint to the
inclusion functor, and hence is right exact.

Let A/SΓ denote the Serre quotient (see [Gab62]). It is an abelian category and
comes with an exact quotient functor CΓ : A→ A/SΓ, which we call coapproximation
functor. We have CΓ(L(λ)) = 0 if and only if λ ∈ Γ, and {CΓL(λ) | λ ∈ Λ−Γ} gives
a full set of simple objects in A/SΓ up to isomorphism. We have an equivalence of
categories A/SΓ

∼= mod−End
(⊕

λ∈Λ−Γ P (λ)
)
, see [AM11, Proposition 33]. Notice

that End
(⊕

λ∈Λ−Γ P (λ)
)

is an idempotent truncation eAe of the algebra A =

End
(⊕

λ∈Λ P (λ)
)

for some idempotent e ∈ A, and the quotient or coapproximation
functor is given by HomA(eA, •).

Given a projective object P ∈ A we denote by Add(P ) the additive subcategory
of A additively generated by direct summands of P . An object M ∈ A is Add(P )–
presentable if it has a presentation P → Q � M with P,Q ∈ Add(P ). Then
the category A/SΓ can be identified with the full subcategory of A consisting of
Add

(⊕
λ∈Λ−Γ P (λ)

)
–presentable objects. The inclusion of A/SΓ in A is not exact,

but is right exact, since it is left adjoint to the coapproximation functor (see [MS05]).
Under the equivalence above, it is given by • ⊗eAe eA : mod−eAe −→ mod−A.

4.2. Standardly stratified categories. We recall the definition of a standardly
stratified category, following [LW13]. Let A be as above and let Ξ be a poset with
a map p : Λ → Ξ. For λ ∈ p−1(ξ) we denote by Lξ(λ) the simple object in A∼ξ
corresponding to λ and by P ξ(λ) its projective cover.

For ξ ∈ Ξ we denote by A4ξ the Serre subcategory SΓ where Γ = {λ | p(λ) 4 ξ}
and by A≺ξ the Serre subcategory SΓ′ with Γ′ = {λ | p(λ) ≺ ξ}. Moreover, we let
A∼ξ be the Serre quotient A4ξ/A≺ξ with quotient functor πξ : A4ξ → A∼ξ.

We suppose that the functor πξ has an exact left-adjoint functor, which we call
standardization functor and which we denote by ∆ξ. We set ∆(λ) = ∆ξ(P

ξ(λ))

and ∆(λ) = ∆ξ(L
ξ(λ)). These objects are called the standard and proper standard

module corresponding to λ, respectively.

Definition 4.1. The category A together with the poset Ξ and the map p : Λ→ Ξ
is called a standardly stratified category if for all λ there is an epimorphism
P (λ)� ∆(λ) whose kernel admits a filtration by objects ∆(µ) with p(µ) � p(λ).

If moreover A∼ξ is equivalent to the category of vector spaces for each ξ ∈ Ξ, then
A is quasi-hereditary. We will call grA =

⊕
ξ∈Ξ A∼ξ the associated graded category.

4.3. Outer tensor product of categories. Let A and B be finite abelian cate-
gories. According to [Del90, Section 5] (cf. also [EGNO, §1.46]), their outer tensor
product A � B is defined and comes along with a bifunctor � : A × B → A � B

which is exact in both variables and satisfies

(4.1) HomA(M1,M2)⊗HomB(N1, N2) ∼= HomA�B(M1 �N1,M2 �N2).
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If A = mod−A and B = mod−B where A and B are finite-dimensional C–algebras,
then A⊗B is also a finite-dimensional algebra and

(4.2) mod−A�mod−B ∼= mod−A⊗B.
This implies in particular that A�B is again a finite abelian category.

Observe that this also provides an isomorphism [mod−A]⊗ [mod−B] ∼= [mod−A�
mod−B] via [M ]⊗ [N ]→ [M ⊗N ], since the simple (A⊗B)–modules are precisely
the outer tensor products of a simple A–module and a simple B–module.

5. Category O and subquotient categories

Let us fix a positive integer n. Let gln = gln(C) be the general Lie algebra of
n × n matrices with the standard Cartan decomposition gln = n− ⊕ h ⊕ n+ into
strictly lower diagonal, diagonal and strictly upper diagonal matrices respectively.
Let b = h⊕ n+ be the standard Borel subalgebra. We let ε1, . . . , εn be the basis of
h∗ dual to the standard basis of monomial diagonal matrices, and set

(5.1) ρ = −ε2 − 2ε3 − · · · − (n− 1)εn.

Let P ⊂ h∗ denote the set of integral weights, and W = Sn the Weyl group of gln.

The choice of basis ε1, . . . , εn defines an isomorphism h∗ ∼= Cn, which restricts to a
bijection a1ε1 + . . .+ anεn 7→ (a1, a2, . . . , an) between P and Zn. From now on, we
will identify P with Zn and denote elements of P by bold roman letters, like a,b,d.

5.1. The category O. We recall now some basic facts on the BGG category O.
For more details see [Hum08].

Definition 5.1 ([BGG76]). The integral BGG category O = O(gln) = O(gln; b) is
the full subcategory of U(gln)–modules which are

(O1) finitely generated as U(gln)–modules,

(O2) weight modules for the action of h with integral weights, and

(O3) locally n+–finite.

We stress that we consider here only modules with integral weights. The category O

is Schurian (i.e. abelian, C–linear with enough projective and injective objects, such
that all objects are of finite length and the endomorphism algebras of irreducible
objects are one dimensional), and it is obviously closed under tensoring with finite
dimensional gln–modules.

For a ∈ P we denote by M(a) ∈ O the Verma module with highest weight a − ρ
(e.g. M(0, . . . , 0) is the most singular Verma module with highest weight −ρ). Let
L(a) its unique simple quotient and P (a) its projective cover. We let P+ = P+(gln)
be the set of (shifted) integral dominant weights:

(5.2) P+(gln) = {a = (a1, . . . , an) ∈ P | a1 > a2 > · · · > an}.
Recall that L(a) is finite dimensional if and only if a ∈ P+.

We denote by (w,a) 7→ wa the standard action of Sn on P = Zn by permutations.
Then for d ∈ P+, the Serre subcategory of O generated by L(wd) for w ∈W forms
a block of O which we denote by Od. Hence we have a block decomposition

(5.3) O =
⊕

d∈P+ Od.
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5.2. The parabolic category Oτ . Let now τ = (τ1, . . . , τm) be a composition
of n and pτ ⊆ gln the associated standard parabolic subalgebra with Levi factor
glτ = glτ1 × · · · × glτm and nilpotent part uτ , so that pτ = glτ ⊕ uτ .

Definition 5.2. The parabolic category Oτ = Opτ is the full subcategory of U(gln)–
modules which are

(Oτ1) finitely generated as U(gln)–modules,

(Oτ2) a direct sum of finite-dimensional simple modules as glτ–modules, with
integral weights, and

(Oτ3) locally uτ–finite.

It follows immediately that Oτ is a subcategory of O(gln). Moreover O(1n) = O(gln).
The block decomposition (5.3) of O induces a block decomposition Oτ =

⊕
d∈P+ Oτd.

Each block Oτd is a quasi-hereditary category, where the order on the set of weights
is the usual dominance order.

The simple object L(a) of O(gln) is in Oτ if and only if ai > ai+1 whenever i and
i+ 1 are in the same component of the composition τ , or in other words if and only
if a ∈ P+(glτ ), where P+(glτ ) ⊆ P denotes the set of integral dominant weights for
glτ . Indeed, Oτ is the Serre subcategory of O generated by such simple modules.
We will denote by P τ (a) the projective cover of L(a) in Oτ , which is the biggest
quotient of P τ (a) which lies in Oτ , that is, P τ (a) = ZτP (a), where Zτ : O→ Oτ is
the Zuckerman functor.Suppose that λ is a partition. Then L(a) ∈ Oλ if and only if
Tλ(a) is column-strict.

Example 5.3. Fix k = 4 and consider the partition λ = (3, 3, 2, 1). Consider the
weight a = (3, 2, 1, 4, 3, 2, 2, 1, 3). Then

Tλ(a) =

1 2 1 3

2 3 2

3 4

is column-strict, and indeed L(a) is a simple module in Oλ.

5.3. The category of presentable modules.

Definition 5.4. We define Qτ to be the full subcategory of Oτ consisting of all
objects M ∈ Oτ which have a presentation

(5.4) P1 −→ P2 −→M −→ 0,

where P1, P2 ∈ Oτ are prinjective, i.e. both, projective and injective, objects.

Let d ∈ P+(g) be a dominant weight. Then by definition the block Qτd is equiva-
lent to the category of finite-dimensional modules over the endomorphism algebra
Endg(Q), where Q is the sum of the indecomposable prinjective modules of Oτd up to
isomorphism. In particular, Qτ is a Serre quotient of Oτ (cf. §4.1), hence inherits an
abelian structure and is a Schurian category. Again, the block decomposition of Oτ

induces a decomposition Qτ =
⊕

d∈P+ Qτd, which we also call a block decomposition.

Let now λ ∈ Part(n) be a partition of n.

Lemma 5.5. The indecomposable projective module Pλ(a) of Oλ is also injective
(i.e. prinjective) if and only if the tableau Tλ(a) is semi-standard.
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Proof. First, consider the case of a regular weight a. Let d ∈ P+(gln) be such that
zd = a for z ∈ W . By [MS08b, Theorem 5.1], the projective module Pλ(wd) is
also injective if and only if w lies in the right cell of the longest element wλ of

the shortest left coset representatives
(
Sλ
∖Sn)short

. Let Ti(w) and Tr(w) denote the
insertion and the recording tableaux of the Robinson-Schensted correspondence,
respectively (see for example [Ful97, Chapter 4]). Then w lies in the right cell of
wλ if and only if Tr(w) = Tr(wλ), see [KL79]. One can easily notice that Ti(wλ) =
Tr(wλ) = Tλ(wλd). Moreover, one gets Ti(w) = Tλ(wd) and Tr(w) = Tλ(wλd) if
and only if Tλ(wd) is a standard tableau.
Now, if a is singular, then the claim follows using translation functors, which
are known to send prinjective modules to prinjective modules. In detail, let d
be the dominant weight in the same orbit of a, that is a = wd with w ∈ W
of minimal length. Let also Sd be the stabilizer of d and let wd be its longest
element. Let moreover r be a regular dominant weight. Denote by Td

r : Or → Od the
translation functor. Then Td

r (Pλ(wwdr)) contains, as a direct summand, Pλ(d),
while Tr

d(Pλ(d)) = Pλ(wwdr) (cf. [Hum08, Chapter 7]; the results in loc. cit. can
be easily adapted to the parabolic category Oτ by using Zuckerman functor, which
commute with translation functors). Now, by construction Tλ(b) is semi-standard
if and only if Tλ(wwdr) is standard, this happens if and only if Pλ(wwdr) is
prinjective, which is the case if and only if Pλ(b) is prinjective. �

It follows that the indecomposable projective modules of Qλ are, up to isomorphism,
the Pλ(a)’s for a ∈ P such that Tλ(a) is semi-standard. We will denote the unique
simple quotient of Pλ(a) in Qλ by Sλ(a). We chose the notation Sλ(a) (and not, for
example, Lλ(a)) in order to emphasize that Sλ(a) is not, in general, an irreducible
g–module.

5.4. Standardization functor. We fix a composition σ = (n1, . . . , nm) of n and
abbreviate l = lσ and u = uσ with corresponding Levi decomposition pl = l ⊕ ul.
We denote by Wl = Sn1 × · · · × Snm ⊂ W the Weyl group of l and by P both the
integral weights of g and of l (since they coincide). Let P+(g) ⊆ P+(l) ⊂ P be the
dominant weights of g and of l respectively.

Analogously as we did for gln, one can define the category O(l). Note that this
category can be identified with the outer tensor product O(gln1

)� · · ·� O(glnm).
The purpose of this subsection is to identify this outer tensor product category with
a subquotient category of O(gln).

Define the standardization functor ∆: O(l)→ O(g) by parabolic induction:

(5.5) ∆(M) = U(g)⊗U(pl) M = U(g)⊗pl
M ′.

where M ′ = M ⊗ Cγ is M twisted by the one-dimensional representation Cγ for
h (extended by zero to p), of weight γ = ρ(g) − ρ(l) (i.e. the difference of the ρ
attached to g as in (5.1) and the sums of ρ’s attached to the factors of l using the
analog of formula (5.1)). The following is an immediate standard result:

Lemma 5.6. The functor ∆ is well-defined and exact.

Proof. Obviously ∆(M) is an object of O(g). By the PBW Theorem U(g) is free as
a right U(pl)–module, hence ∆ is exact. �

Fix a dominant weight d ∈ P+(g) and consider the block Od. Let Ξ = Ξd denote
the quotient of Wd modulo the action of Wl, and let p = pd : Wd � Ξ be the
projection. An element ξ ∈ Ξ is the lateral class Wlξ̃ of a unique dominant weight
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ξ̃ ∈ P+(l). The dominance order ≤ on weights restricted to {ξ̃ | ξ ∈ Ξ} gives a
partial order 4 on Ξ. Via the map p, this induces a preorder 4 on Wd. In the
following, we will often write O(l)ξ instead of O(l)ξ̃.

For the rest of the subsection we fix a ξ ∈ Ξ. Let O(g)4ξ (respectively, O(g)≺ξ) be
the Serre subcategory of O(g)d generated by the simple modules L(a) with p(a) 4 ξ
(respectively, p(a) ≺ ξ). For b ∈ P we denote also by O(g)≤b the full subcategory
consisting of all modules of O(g) with all weights smaller or equal to b.

Lemma 5.7. Considering ξ̃ as a weight for g, we have O(g)4ξ = O(g)d ∩ O(g)≤ξ̃.

Proof. Since both are Serre subcategories, it is enough to prove that they have the
same simple modules. Since the inclusion O(g)4ξ ⊆ O(g)d∩O(g)≤ξ̃ is clear, it remains

to prove the converse. Write ξ̃ = zd with z ∈ W and pick some L(wd) ∈ O(g)≤ξ̃
for w ∈W . Suppose that w and z are shortest right coset representatives for W

/
Sd,

where Sd is the stabilizer of d. Notice that since zd ∈ P+(l), the element z is also
a shortest left coset representative for Wl

∖
W . Then L(wd) ∈ O(g)≤ξ̃ implies that

w ≤ z in the Bruhat order. To prove that L(wd) ∈ O(g)4ξ it is enough to show that
p(wd) 4 ξ. Write w = xw′ with x ∈Wl and w′ a shortest left coset representative
for Wl

∖
W . Then it is enough to show that w′ ≤ z in the Bruhat order. This follows

from [BB05, Proposition 2.5.1]. �

Consequently, the functor ∆ has image in O(g)4ξ when restricted to O(l)ξ. Let
∆ξ : O(l)ξ → O(g)4ξ be the resulting functor. Define the functor πξ : O(g)4ξ → O(l)ξ

(5.6) πξ : O(g)4ξ ↪→ O(g)
F−→ Õ(l)� O(l)ξ

as the composition of inclusion O(g)4ξ ↪→ O(g), the functor F = Hompl
(U(l), resgpl

•)
and of the projection prξ : Õ(l)→ O(l)ξ. Here Õ(l) is the full subcategory of l–modules
which satisfy (O2) and (O3) and such that all weight spaces are finite dimensional.
It is the direct product of the blocks of O(l).

Remark 5.8. Note that an element of F(M) is uniquely determined by the image
of 1 ∈ U(l) in resgpl

M , which can be any vector of

(5.7) Mul = {v ∈M | ulv = 0}.

Since [l, ul] ⊆ ul, the vector space Mul is an l–subrepresentation of M . In fact,
Mul ∼= F(M) as l–representations, naturally in M . Since Mul is an l–submodule of
M , it is a h–weight module and locally n+

l –finite. Moreover, its weight spaces are

finite dimensional. It follows that Mul ∈ Õ(l). It is however not clear that Mul is

finitely generated as a U(l)–module: this is why we introduced the category Õ(l).

Lemma 5.9. The functor πξ : Qλ → Aλ is right adjoint to ∆ξ.

Proof. The functor ∆ is the composition of first extending the l-action trivially
to p and then apply the induction functor U(g)⊗U(pl) •. On the other hand, F is

the composition of the restriction functor res
gln
pl

and of the co-induction functor
Hompl

(U(l), •), which are the respective adjoint functors (cf. [Bro82]). Hence (∆ξ, πξ)
is an adjoint pair of functors. �

Lemma 5.10. We have πξ ◦∆ξ
∼= id.
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Proof. First, note that if N ∈ O(g)4ξ then πξ(N) can be identified, by Remark 5.8,
with an l–submodule of N . Now let M ∈ O(l)ξ. By the PBW Theorem, if {mβ} is
a basis of M and {xγ} is a monomial basis of u−l , then a basis of U(g) ⊗pl

M is
given by {xγ ⊗mβ}. Now, the center zl of l acts on O(l)ξ according to the (shifted)

weight ξ̃ restricted to zl. But unless xγ = 1, the action of zl on xγ ⊗mβ is given by a

(shifted) weight which is strictly smaller than ξ̃. Hence πξ(∆ξ(M)) is an l–submodule
of 1⊗M . On the other side, all vectors 1⊗m for m ∈M are ul–invariant. Hence
πξ(∆ξ(M)) = {1⊗m ∈ U(g)⊗pl

M} ∼= M . �

Lemma 5.11. The functor πξ is exact.

Proof. Since πξ is a right-adjoint functor, it is left exact. So we only need to prove
that πξ sends epimorphisms to epimorphisms. Let f : M � N be an epimorphism in
O(g)4ξ, and consider the restriction F(f) = f|Mul : Mul → Nul . Let v ∈ prξ(N

ul)
and choose a preimage v′ ∈ M such that f(v′) = v. Suppose, without loss of
generality, that all our vectors are weight vectors. Suppose that there exists a u ∈ ul
such that uv′ 6= 0. Then the weight of uv′ is not a weight of any object of O(g)4ξ,
and this cannot happen. Hence ulv

′ = 0 and πξ(f) is surjective. �

Proposition 5.12. The pair (O(l)ξ, πξ) is the quotient category O(g)4ξ/O(g)≺ξ.

Proof. We check that (O(l)ξ, πξ) satisfies the universal property of the Serre quotient
category. By Lemma 5.11, πξ is exact and, by definition, πξ vanishes on O(g)≺ξ (in
particular, the last functor in the composition (5.6) defining πξ kills O(g)≺ξ). Let
now A be any abelian category and G : O(g)4ξ → A an exact functor which vanishes
on O(g)≺ξ. Define Ḡ : O(l)ξ → A to be Ḡ = G ◦∆ξ. We shall prove that Ḡ ◦ πξ = G.

Consider the adjunction morphism ψ : ∆ξ ◦ πξ → id. For M ∈ O(g)4ξ the map
ψM : U(gln)⊗pl

prξ(M
ul)→M is simply ψM (x⊗ v) = xv. Let w =

∑
i xi ⊗ vi be

some weight vector in ker(ψM ), i.e. ψM (w) = 0. Using the PBW Theorem, write
each xi as xi = x′ix

′′
i with x′i ∈ U(u−l ) and x′′i ∈ U(pl). Then xi ⊗ vi = x′i ⊗ x′′i vi.

Since w is a weight vector, we can suppose that all xi’s are either 1 or in u−l U(u−l ).
In the first case we have w = 0, while in the second case the weight of w is not
Wl–linked to ξ̃. This shows that all weights of ker(ψM ) are strictly smaller than ξ̃

and not Wl–linked to ξ̃, and hence ker(ψM ) is an object of O(g)≺ξ.
Let us now consider the cokernel of ψM . Let {vα | α ∈ A} be generators of M as
an l–module. Of course they generate M as a g–module, and their images {v̄α} in

the quotient generate cokerψM . Suppose that vα has weight Wl–linked to ξ̃. Then
ulvα = 0 by weight considerations. Hence vα = ψ(1 ⊗ vα) and v̄α = 0. Therefore
cokerψM is an object of O(g)≺ξ, too.
It follows that for each M ∈ O(g)4ξ we have an exact sequence

(5.8) 0→ kerψM → ∆ξ ◦ πξ(M)→M → cokerψM → 0

with both kerψM and cokerψM in O(g)≺ξ. Since G is exact and vanishes on O(g)≺ξ,
applying G to (5.8) implies Ḡ ◦ πξ ∼= G as claimed. (Note that this proves at once
that Ḡ is uniquely determined up to isomorphism). �

Let q ⊆ l be a standard parabolic subalgebra and let q̂ = q + b ⊆ g. Then the
same results we just proved hold for the parabolic categories O(g)q̂ and O(l)q. In
particular, we have a pair (∆ξ, πξ) of adjoint functors

(5.9) O(g)q̂4ξ O(l)qξ .
πξ

∆ξ
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5.5. Generalized parabolic subcategories. Let now λ = (λ(1), . . . , λ(m)) ∈
Partm(n) be a multipartition of n with m parts. Let ni =

∣∣λ(i)
∣∣ for i = 1, . . . ,m, and

let as before l = gln1
⊕· · ·⊕glnm . The outer tensor product Aλ = Qλ

(1)

� · · ·�Qλ
(m)

(see §4.3) can be considered as a full subcategory of O(l).

Lemma 5.13. The category Aλ satisfies the following properties:

(i) it is stable under tensor product with finite-dimensional l–modules;

(ii) it decomposes into a direct sum of full subcategories, each equivalent to a
module category over a finite-dimensional self-injective associative algebra;

(iii) the action of the center of l on any object M ∈ Aλ is diagonalizable.

Proof. The properties hold for Aλ since they hold for each tensor factor. �

Using the terminology of [MS08a], the lemma implies that the category Aλ is
admissible. Following [FKM02], we can define generalized parabolic subcategories:

Definition 5.14. We let Qλ be the full subcategory of all gln–modules which are

(Qλ1) finitely generated as U(gln)–modules,

(Qλ2) as l–modules, a direct sum of objects of Aλ,

(Qλ3) locally ul–finite.

The three conditions imply immediately that Qλ is a full subcategory of O(gln).
Hence it inherits from the block decomposition of O(gln) a decomposition, which
we still call a block decomposition.

Lemma 5.15. The standardization functor ∆ restricted to Aλ has values in Qλ.

Proof. Let M ∈ O(l). It follows by the PBW Theorem that ∆(M) decomposes,
as an l–module, into a direct sum of modules isomorphic to M . In particular, if
M ∈ Aλ then (Qλ2) holds for ∆(M). �

We fix τ to be the composition

(5.10) τ = (λ
(1)
1 , λ

(1)
2 , . . . , λ

(2)
1 , λ

(2)
2 , . . . ).

We claim that Qλ is a Serre quotient of O(g)τ , i.e. a “subquotient category” of O(g):

Proposition 5.16. The category Qλ coincides with the category of Pλ–presentable
modules in O(g)τ , where Pλ is the additive category generated by the projective
modules P τ (a) for a ∈ P such that Tλ(a) is semi-standard.

Proof. Let us denote by (Pλ)pres the category of Pλ–presentable modules. We
start with the inclusion (Pλ)pres ⊆ Qλ. Let a ∈ P be a weight such that Tλ(a)
is semi-standard. Choose b maximal in the W–orbit of a such that Tλ(b) is also
semi-standard. Let P τl (b) ∈ O(l)τ be the projective cover of the simple module
Ll(b) ∈ O(l)τ . Then ∆(P τl (b)) ∈ O(g)τ is projective (since b is in the same Wl–orbit
of a g–dominant weight), and ∆τ (b) is the parabolic Verma module with minimal
weight appearing in a Verma filtration of it. Hence, being indecomposable, we have
∆(P τl (b)) = P τ (b). Since P τl (b) ∈ Aλ, by Lemma 5.15 we have that P τ (b) ∈ Qλ.
By tensoring P τ (b) with finite-dimensional modules we can generate P τ (a) as a
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direct summand, and since Qλ is closed under tensoring with finite-dimensional
modules, we have P τ (a) ∈ Qλ. Now, if M ∈ (Pλ)pres, let P → Q � M be a
Pλ–presentation. Consider this as a sequence of l–modules: P and Q decompose
into a direct sum of objects from Aλ and so M decomposes into a direct sum of
l–modules which have a presentation via objects from Aλ, hence M ∈ Qλ.
For the converse, let M ∈ Qλ. It follows immediately from the property (Qλ2) that
M ∈ O(g)τ . As an l–module, M is generated by vectors of (shifted) weight a such
that Tλ(a) is semi-standard. Of course, this is also true as g–module. Hence the
projective cover Q of M in O(g)τ is an element of Pλ. Let K = ker(Q � M) in
O(g)τ . Consider the exact sequence K ↪→ Q � M of l–modules. Up to taking
direct summands, we may suppose that this is a sequence of finitely generated
U(l)–modules, with M ∈ Aλ and, by the other inclusion proved in the previous
paragraph, also Q ∈ Aλ. Write Q = QM ⊕ Q′, where QM is the projective cover
of M , and K = Q′ ⊕ ker(QM � M). Since M ∈ Aλ, we have a presentation
PM → QM � M with PM prinjective in O(l)τ , hence we have a surjective map
PM � ker(QM �M) and therefore a surjective map P ′ � K with P ′ = Q′ ⊕ PM .
Notice that P ′ is also a prinjective object of O(l)τ . Hence it is generated by vectors
of (shifted) weight a such that Tλ(a) is semi-standard. The same holds obviously
for K. Hence its projective cover P is in Pλ and M has a presentation P → Q�M
with P,Q ∈ Pλ. Hence (Pλ)pres ⊇ Qλ. �

Remark 5.17. Proposition 5.16 and its proof generalize [Sar14a, Proposition 5.3.2].

Let d ∈ P+(g) be a dominant weight and Pd a generator of Pλ
d. Then we have an

equivalence of categories Qλ
d
∼= mod−Endg(Pd) and obtain immediately:

Corollary 5.18. The category Qλ, identified with the category of Pλ–presentable
modules in Oτ (g), is a Schurian category.

Hence the indecomposable projective modules of Qλ are the P τ (a) for a ∈ P such
that Tλ(a) is semi-standard. We will write Pλ(a) for P τ (a) when we consider it as
an object of Qλ. Let Sλ(a) be the unique simple quotient of Pλ(a) in Qλ. (Note that
Sλ(a) is not, in general, an irreducible g–module!) Then the Sλ(a)’s for a ∈ P such
that Tλ(a) is semi-standard give the set of simple objects of Qλ up to isomorphism.

5.6. Standardly stratified structure. As before, we fix a multipartition λ of n.

Let d ∈ P+(g) be a dominant weight, and fix a block Qλ
d. Consider Stλ(d), the set

of semi-standard multitableaux of shape λ and type d. We can view Stλ(d) ⊆Wd.

In particular, the map p : Wd→ Ξ from §5.4 restricts to a map p : Stλ(d)� Ξ and

induces a preorder 4 also on Stλ(d). As we did for O(l), we set Aλ
ξ = Aλ

ξ̃
.

For ξ ∈ Ξ let Qλ
4ξ (respectively, Qλ

≺ξ) be the Serre subcategory of Qλ generated by

the simple objects Sλ(a) for p(a) 4 ξ (respectively, p(a) < ξ). Let also Qλ
∼ξ be the

Serre quotient Qλ
4ξ/Q

λ
≺ξ.

Note that the category Qλ
4ξ is the full category of all modules of Qλ

d which have

weights smaller than or equal to ξ̃, that is Qλ
4ξ = Qλ

d ∩ O(g)≤ξ̃, cf. Lemma 5.7. (If

Sξ(a) denotes the simple module of Aλ
ξ corresponding to a then Sλ(a) is a quotient

of ∆(Sξ(a)), hence an object of O(g)≤ξ.)

Let a be a weight such that Tλ(a) is semi-standard, and let ξ = p(a). We denote

by P ξl (a) the indecomposable projective object corresponding to a in Aλ
ξ , and we
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let ∆λ(a) = ∆ξ(P
ξ(a)). As well known, P ξl (a) is generated by one element v of

(shifted) weight a. Then ∆λ(a) is generated by 1⊗ v, which has also (shifted) weight
a. Therefore there is an epimorphism Pλ(a)� ∆λ(a).

Proposition 5.19 ([FKM02]). The kernel of this epimorphism Pλ(a) � ∆λ(a)
admits a filtration by standard modules ∆(b) with p(b) � p(a).

The proof is based on the fact that for h large enough the module

(5.11) U(g)⊗p

(
U(ul)/U(ul)u

h
l ⊗ P ξ(a)

)
is projective in Qλ, contains Pλ(a) as a direct summand and has the required
standard filtration. For more details see [FKM02, Theorem 3]. It is also possible to
prove the result mimicking the corresponding result for the BGG category O, see
[Hum08, Chapter 3], although the combinatorics gets quite tricky.

Lemma 5.20. The functor πξ, restricted to Qλ
4ξ, has image in Aλ

ξ and is right

adjoint to ∆ξ : Aλ
ξ → Qλ

4ξ.

By a slight abuse of notation, we will denote by πξ both the functor defined on
O(g)τ4ξ and its restriction to Qλ

4ξ, but we will always specify which functor we will
be considering.

Proof. Let τ be the composition (5.10). The proof is based on the exactness of
the functor πξ : O(g)τ4ξ → Oτ (l)ξ. Since Qλ

4ξ, although being a full subcategory of

O(g)τ4ξ, does not inherit the abelian structure of the latter (and the same for Aλ
ξ ),

we have to be careful.
Let M ∈ Qλ

4ξ. Then M has a presentation P → Q � M with P,Q ∈ Pλ. In

general, P and Q will not be objects of O(g)τ4ξ. We apply the right-exact Zuckerman

functor Z4ξ : O(g)τ → O(g)τ4ξ and get a presentation Z4ξP → Z4ξQ�M . Now, it
follows from Proposition 5.19 above that Z4ξP and Z4ξQ are filtered, as g–modules,
by standard modules ∆λ(a). Since πξ ◦ ∆ξ

∼= id and πξ is exact, it follows that
πξ(Z4ξP ), πξ(Z4ξQ) ∈ Aλ, and they are projective. Again, since πξ is exact, we
have a presentation πξ(Z4ξP )→ πξ(Z4ξQ)� πξ(M), hence πξ(M) ∈ Aλ

ξ . �

Proposition 5.21. The pair (Aλ
ξ , πξ) is the Serre quotient of Qλ

4ξ modulo Qλ
≺ξ.

Proof. We check that (Aλ
ξ , πξ) satisfies the universal property of the Serre quotient

category. The proof is analogous to the proof of Proposition 5.12, but again, we
need to be a bit more careful since the abelian structure of our categories is not
induced by the abelian structure on the category of g–modules. First, we observe
that the functor πξ : Qλ

4ξ → Aλ
ξ is exact. Indeed, since it is a right adjoint it is

automatically left exact. On the other side, πξ is the composition of the following
three functors: (i) the inclusion of Qλ

4ξ into O(g)τ4ξ, which is right exact, (ii) the

functor πξ : O(g)τ4ξ → O(l)τξ , which is exact, and (iii) the coapproximation functor

O(l)τξ → Aλ
ξ , which is also exact. Hence πξ is right exact, too.

We prove now that (Aλ
ξ , πξ) satisfies the universal property of the Serre quotient. Let

A be any abelian category and let G : Qλ
4ξ → A be an exact functor which vanishes

on Qλ
<ξ. Define Ḡ : Aλ

ξ → A as Ḡ = G ◦∆ξ. We need to show that Ḡ ◦ πξ ∼= G.

Consider the adjunction morphism ψ : ∆ ◦ξ πξ → id. For each M ∈ Qλ
4ξ we have

from (5.8) an exact sequence of g–modules

(5.12) 0→ kerψM → ∆ ◦ πξ(M)→M → cokerψM → 0
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with both kerψM and cokerψM in O(g)≺ξ. In general, we cannot say that kerψM and
cokerψM are objects of Qλ, but can apply the coapproximation functor C : O(g)τ →
Qλ to (5.12) to obtain

(5.13) 0→ C(kerψM )→ ∆ ◦ πξ(X)→ X → C(cokerψM )→ 0

By Lemma 5.22 below, C(kerψM ),C(cokerψM ) ∈ Qλ
≺ξ. Since G is exact and vanishes

on Qλ
≺ξ we have Ḡ ◦ πξ ∼= G, and we are done. �

Lemma 5.22. The functor C : O(g)τ → Qλ restricts to a functor O(g)τ≺ξ → Qλ
≺ξ.

Proof. We have to show that C sends O(g)τ≺ξ to Qλ
≺ξ. Since C is exact, it suffices to

prove the claim for simple modules. This is however obvious, since

(5.14) C(L(a)) ∼=

{
Sλ(a) if Tλ(a) is semi-standard,

0 otherwise.

�

Altogether we obtain:

Theorem 5.23. Let λ be a multipartition. Each block Qλ
d of the category Qλ is a

standardly stratified category.

6. Categorical slk–action

We recall in this section the categorical slk–action on O(gln).

6.1. The degenerate affine Hecke algebra. First, we recall the definition of the
degenerate affine Hecke algebra.

Definition 6.1 ([Dri86]). The degenerate affine Hecke algebra Haff
r is the unital

C–algebra on generators x1, . . . , xr and t1, . . . , tr−1 subject to the following relations:

(a) xi 7→ xi defines an inclusion of the polynomial ring C[x1, . . . , xn] into Haff
r ;

(b) si 7→ ti defines an inclusion of the group algebra C[Sn] of the symmetric
group into Haff

r ;

(c) finally, the following commutation relations hold:

tjxi − xitj = 0, if |i− j| > 1,(6.1)

tjxj − xj+1tj = 1, tjxj+1 − xjtj = −1.(6.2)

Let O = O(gln) and M ∈ O(gln). There is a well-known action ofHaff
r on M⊗(Cn)⊗r,

which we recall briefly. Let Xbc ∈ gln for b, c = 1, . . . , n be the matrix units. Let

(6.3) Ω =

n∑
b,c=1

Xbc ⊗Xcb ∈ U(gln)⊗ U(gln),

be the Casimir operator and C = m(Ω) the Casimir element of U(gln), where
m : U(gln)⊗ U(gln)→ U(gln) is the multiplication. Define for 0 ≤ h < l ≤ r

(6.4) Ωhl =

n∑
b,c=1

1⊗ · · · ⊗ 1⊗Xbc ⊗ 1⊗ · · · ⊗ 1⊗Xcb ⊗ 1⊗ · · · ⊗ 1,

where Xbc resp. Xcb are the h–th and l–th tensor factor, starting with position 0.
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Let σ : Cn⊗Cn → Cn⊗Cn be the map v⊗w 7→ w⊗v. Then we obtain the following

Proposition 6.2 ([AS98]). For any M ∈ O, the assignments

(6.5) th 7→ id⊗ id⊗(h−1) ⊗ σ ⊗ id⊗(r−h−1), xh 7→
∑

0≤l<h Ωlh

define an algebra homomorphism ΨM,r : Haff
r → EndO(M ⊗ (Cn)⊗r). This map is

natural in M , i.e. if M ′ ∈ O and f ∈ HomO(M,M ′) then

(6.6) ΨM ′,r(z) ◦ (f ⊗ id⊗r) = (f ⊗ id⊗r) ◦ΨM,r(z)

for all z ∈ Haff
r .

In particular, if

(6.7) F : O→ O, M 7→M ⊗ Cn

denotes the standard translation functor, then we have:

Corollary 6.3. The maps Ψ•,r define a homomorphism of algebras

(6.8) Ψr : Haff
r → End(Fr).

We also define the functor

(6.9) E : O→ O, M →M ⊗ (Cn)∗.

Note that E and F are biadjoint. We recall the following standard result, which is a
direct consequence of the tensor identity (see [Kna88, Prop. 6.5]).

Lemma 6.4. In the Grothendieck group [O] we have

(6.10) [FM(a)] =

n∑
l=1

[M(a + εl)], [EM(a)] =

n∑
l=1

[M(a− εl)].

6.2. Combinatorics of weights. Recall that I = {1, . . . , k}. The set In can be
identified with a subset of the weights P = Zn of gln. The weight from In are called
k–bounded. We define a map ϕ from In to the set of weights of slk by

(6.11) ϕ : a = (a1, . . . , an) 7−→ δa1 + · · ·+ δan .

Notice that ϕ is constant on the orbits of the action of the symmetric group W = Sn
on In. In particular, ϕ−1(ϕ(a)) = Wa (this statement is a bit less obvious than
it seems, since δa1 + · · · + δan is a weight for slk and not for glk). We state the
following result, whose easy proof follows directly from the definition:

Lemma 6.5. Let a ∈ In and pick 1 ≤ l ≤ n. Set i = (a, εl). If i < k then
ϕ(a + εl) = ϕ(a)− αi.

For d ∈ In dominant we let (+i)d denote the unique dominant weight with
ϕ((+i)d) = ϕ(d)− αi. Moreover, we let (−i)d denote the unique dominant weight
with ϕ((−i)d) = ϕ(d) + αi. Of course such weights do not always exist. If (+i)d is
not defined then we just set O(+i)d = 0, and similarly for (−i)d. We denote by OI
the sum of all the blocks Od with d ∈ In a dominant weight.

Let us define Fi : Od → O(+i)d by Fi = pr(+i)d ◦F, where pr(+i)d : O → O(+i)d is
the projection. Analogously, let us define Ei : Od → O(−i)d by Ei = pr(−i)d ◦E. We
denote also by Fi and Ei the functors

(6.12) Fi =
⊕
d∈I

Fi : OI −→ OI , Ei =
⊕
d∈I

Ei : OI −→ OI .
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The following result appeared already at several places in the literature (see [CR08,
§7.4], [BK08, §4.4]). For convenience we give a complete proof in our setup.

Lemma 6.6. The subfunctor Fi is the generalized i–eigenspace of x acting on F.
That is, for all M ∈ OI we have

(6.13) FiM = {v ∈ (M ⊗ Cn) | (Ω− i)Nv = 0 for some N � 0}.

Proof. The action of x on FM is the action of the Casimir operator Ω on M ⊗ Cn.
Since O has enough projective modules, and since each projective module has a
Verma filtration, it is enough to consider the case M = M(a). We have

(6.14) Ω =
1

2

(
∆(C)− C ⊗ 1− 1⊗ C

)
.

The action of C on the Verma module M(a) of highest weight a − ρ is given by
(a− ρ,a + ρ) (cf. [Hum78, Exercise 23.3.4]), hence the generalized eigenvalues of Ω
acting on M(a)⊗ Cn are

(6.15)
1

2

(
(a + εl − ρ,a + εl + ρ)− (a− ρ,a + ρ)− (ε1, ε1 + 2ρ)

)
= (a, εl)

where l = 1, . . . , n. Now, givenM(a) ∈ Od, by Lemma 6.5 we haveM(a+εl) ∈ O(+i)d

if and only if (a, εl) = i. The claim follows. �

6.3. Categorical slk–actions. We recall the definition of an slk–categorification:

Definition 6.7 ([BLW13, Definition 2.6], cf. also [Rou08, Definition 5.29]). An slk–
categorification is a Schurian category A together with a pair of adjoint endofunctors
(F,E) and natural transformations x ∈ End(F), t ∈ End(F2) such that:

(SL1) We have F =
⊕k−1

i=1 Fi, where Fi is the generalized i–eigenspace of x.

(SL2) For all d ≥ 0 the endomorphisms xj = Fd−jxFj−1 and tk = Fd−k−1tFk−1 of
Fd satisfy the relations of the degenerate affine Hecke algebra.

(SL3) The functor F is isomorphic to a right adjoint of E.

(SL4) The endomorphisms fi and ei of [A] induced by Fi and Ei, respectively,
turn [A] into an integrable representation of slk. Moreover, the classes of
the indecomposable projective objects are weight vectors.

If the Grothendieck group [A] is isomorphic, as a slk–representation, to V , we say also
that A is an slk–categorification of V . If V =

⊕
ν∈� Vν is the weight decomposition

of V , then by [Rou08] A decomposes as A =
⊕

ν∈� Aν where Aν = {M ∈ A | [M ] ∈
Vν}. We will also say that Aν is the weight ν subcategory.

Proposition 6.8. The data of the two exact functors E,F on OI and of the natural
transformations x ∈ End(F) and t ∈ End(F2) define an slk–categorification of V ⊗n.

Proof. We need to check the conditions (SL1)–(SL4) above. Condition (SL1) follows
directly from Lemma 6.6. The action on Fn of xj and tk induces an action of the
degenerate affine Hecke algebra by Proposition 6.2, hence we have (SL2). The pair
of functors E and F are biadjoint, hence (SL3) is also true. From Lemma 6.4 it
follows that the endomorphisms fi and ei induced by Fi and Ei, respectively, make
[OI ] into a representation of slk isomorphic to V ⊗n. Any projective module P (a)
has a filtration with Verma modules M(wa) for w ∈ Sn. Since the isomorphism
[OI ]→ V ⊗n sends all these Verma modules to standard basis vectors in the same
weight space, it follows that [P (a)] is a weight vector, granting (SL4). �
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We need the notion of a sl⊕rk –categorification, (cf. [Rou08], [LW13]):

Definition 6.9. An sl⊕rk –categorification is a category A which has m structures
of an slk–categorification with functors jF, jE, for j = 1, . . . , r. These structures
commute with each other, in the sense that we have natural isomorphisms jF hF

∼=
hF jF for all j, h = 1, . . . , r which commute with the 2–morphisms x and t of jF.

The following result is straightforward.

Proposition 6.10. The outer tensor product A1 �A2 of two slk–categorifications
is an sl⊕2

k –categorification.

7. Categorification of simple representations

Following [Rou08] and [LW13] we define the categorification of a finite-dimensional
irreducible slk–representation:

Definition 7.1. Let V (λ) be the finite-dimensional irreducible slk–representation of
highest weight λ. An slk–categorification of V (λ) is an slk–categorification A such
that its weight λ subcategory Aλ is equivalent to Vect and the slk–representation
[A] is isomorphic to V (λ).

According to [LW13], a categorification of V (λ) exists and is unique up to strongly
equivariant equivalence. We present now a construction using the BGG category O.

7.1. Categorification of V . We define the categorification C(V ) of V to be data

of the category O
(1)
I , the endofunctor F of O

(1)
I together with its right-adjoint functor

E, and the natural transformations x ∈ End(F) and t ∈ End(F2).

Lemma 7.2. This defines an slk–categorification of V .

Proof. We already know by Proposition 6.8 that C(V ) is an slk–categorification.

Notice that V = V ($1) and the subcategory of highest weight O
(1)
$1 is O

(1)
1 , which is

equivalent to Vect. Hence we only need to observe that the slk–representation [O
(1)
I ]

is isomorphic to V , which is obvious. �

7.2. Categorification of V ($r). For r = 1, . . . , k−1 we define the categorification

C(V ($r)) of V ($r) to be data of the category O
(r)
I , the endofunctor F of O

(r)
I together

with its right-adjoint E and the natural transformations x ∈ End(F) and t ∈ End(F2).

Lemma 7.3. This defines an slk–categorification of V ($r).

Proof. Let O = O(glr). Notice first that the endofunctors F and E of O restrict
to O(r) by definition of the parabolic category O. Now, C(V ($r)) satisfies (SL1)–
(SL3) automatically since O(r) is a full subcategory of O. Since it is actually a
Serre subcategory, its Grothendieck group is naturally a subgroup of [O], and

the endomorphisms fi and ei induced on [O
(r)
I ] are just the restrictions of the

endomorphisms fi and ei induced on [OI ]. Hence they satisfy the relations of U(slk)

and turn [O
(r)
I ] into a slk–subrepresentation of [OI ], and (SL4) follows as well.

Since the simple object L(a) of OI belongs to O
(r)
I if and only if a ∈ P+(glr), that is

if and only if a is a strictly decreasing sequence, we have that the weight spaces of
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[O
(r)
I ] correspond to the weight spaces of V ($r), hence these two slk–representations

have to be isomorphic.

Finally, note that the subcategory of highest weight O
(r)
$r is just O

(r)
(r,r−1,...,1), which is

equivalent to Vect. (Actually, all blocks of O(r) are equivalent to Vect, or trivial.) �

7.3. Categorification of V (λ). Given an arbitrary weight λ for slk, we define the
categorification C(V (λ)) of V (λ) to be data of the category QλI , the endofunctor F
of QλI together with its right-adjoint E, and the natural transformations x ∈ End(F)
and t ∈ End(F2).

If λ is a fundamental weight $r the definition coincides with the previous one.

Proposition 7.4. The data C(V (λ)) defines an slk–categorification of V (λ).

Proof. Let O = O(gln), where λ is a partition of n. We first point out again that
the endofunctors F and E of O restrict to Qλ by definition. The properties (SL1)–
(SL3) are satisfied, since Qλ is a full subcategory of O. By definition, Qλ is also
a full subcategory of Oλ. Since the latter is a Serre subcategory of O, it follows
as in the proof of Lemma 7.3 that [OλI ] is an slk–representation. The classes of
the indecomposable projective modules P (a), where a is such that Tλ(a) is a
column-strict tableau, form a basis of its Grothendieck group. The indecomposable
prinjective objects are the P (a)’s, where a is such that Tλ(a) is semi-standard,
and they generate an additive subcategory which is stable under the action of
F and E. Moreover, their classes give a basis of [QλI ]. It follows that [QλI ] is an
slk–subrepresentation of [OλI ], and hence (SL4) holds. Its highest weight corresponds
to the semi-standard tableau T high = Tλ(ahigh) with the smallest possible entries;
in T high, the entry 1 appears once in each column, the entry 2 appears once in each
column with at least two boxes, and so on. Hence it is easy to see that ϕ(ahigh) = λ.
Since the dimension of [QλI ] equals the number of semi-standard tableaux of shape λ,
hence coincides by Lemma 3.2 with the dimension of V (λ), they must be isomorphic.
Finally, since ahigh is unique in its W–orbit such that the corresponding tableau of
shape λ is column-strict, the summand of QλI corresponding to the highest weight λ
is equivalent to Vect. �

8. Categorification of tensor products

We fix a sequence λ = (λ(1), . . . , λ(m)) of integral dominant weights λ(l) ∈ �+ and
consider the (ordered) tensor product

(8.1) V (λ) = V (λ(1))⊗ · · · ⊗ V (λ(m)).

We want to construct a categorification C(V (λ)) of the ordered tensor product in
the sense of [LW13, Definition 3.2]:

Definition 8.1. A categorification of the ordered tensor product V (λ) is the data
of an slk–categorification A with endofunctors F, E and natural transformations
x ∈ End(F), t ∈ End(F2) and A has the structure of a standardly stratified category
with poset Ξ. These data must satisfy the following conditions:

(TPC1) The poset Ξ is the set of m–tuples ν = (ν1, . . . , νm), where νl is a weight
of V (λ(l)). The preorder is given by the inverse dominance order:

(8.2) ν 4 ν′ if

{∑m
l=1 νi =

∑m
l=1 ν

′
i and∑h

l=1 νl ≥ ν′l for all h.
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(TPC2) The associated graded category grA is an sl⊕mk –categorification such that
the subcategory of weight ν is precisely the subquotient A�ν/A≺ν , and
Aλ
∼= Vect.

(TPC3) For each M ∈ Aν the objects Fi∆ν(M) and Ei∆ν(M) admit filtrations
with successive quotients being ∆(jFiM) and ∆(jEiM), respectively, for
j = 1, . . . ,m.

Set Qλ
I =

⊕
d Qλ

d, where d runs over all dominant weights d ∈ In for gln. Let ΞI =

tdΞd and let p : Stλ(I)→ ΞI be the disjoint union of the maps pd : Stλ(d)→ Ξd.

We define C(V (λ)) to be the data of the standardly stratified category Qλ
I with poset

ΞI , endofunctor F with right-adjoint E, and morphisms x ∈ End(F) and t ∈ End(F2).

Theorem 8.2. The data C(V (λ)) is a categorification of the tensor product V (λ)
according to Definition 8.1.

Proof. We need to check the three axioms (TPC1)–(TPC3).

We start with (TPC1). The simple objects of Qλ
I are indexed by the set Stλ(I). The

poset ΞI can be identified with the set Z of k–bounded dominant weights for l, where
l = gln1

⊕ · · · ⊕ glnm . Via m copies ϕl : P(glnl) → � for l = 1, . . . ,m of the map
ϕ, this can be further identified with the set of m–tuples ν = (ν1, . . . , νm) where

νl is a weight of V (λ(l)). The order on ΞI is given by restricting the dominance
order on each W–orbit of Z ⊂ P+(l). Since this is generated by simple reflections
s1, . . . , sn−1 ∈W it is enough to consider the case of some a ∈ P(l) with sha ≤ a,
i.e. ah ≥ ah+1. If both the h–th and the (h + 1)–th entries of a belong to the
same component of the multipartition λ, then by definition ϕl(a) = ϕl(sha) for
all l. Otherwise, there is an index l such that ϕl(sha) = ϕl(a) − δah + δah+1

and
ϕl+1(sha) = πl+1(a)− δah+1

+ δah , while ϕl′(sha) = ϕl′(a) for all l′ 6= l, l+ 1. Since
ah ≥ ah+1, we have ϕl(sha) ≥ ϕl(a), proving the claim.
To verify (TPC2) note that by Proposition 5.21 the associated graded category is

(8.3) grQλ
I
∼=
⊕

ξ∈ΞI
Aλ
ξ ,

which is the outer product of the categories Aλ
(1)

I � · · ·�Aλ
(m)

I and hence carries

the structure of an sl⊕mk –categorification of V (λ) by Proposition 6.10.
Finally, we check (TPC3). By the tensor identity we have

(8.4) Cn ⊗∆(M) ∼= ∆(Cn ⊗M),

where on the left we have a tensor product of gln–representations and on the right
a tensor product of pl–representations. As a pl–representation, Cn is filtered by

(8.5) {0} = C0 ⊆ Cn1 ⊆ Cn1+n2 ⊆ · · · ⊆ Cn.

This induces a filtration on ∆(Cn ⊗M), and hence on Cn ⊗∆(M). By projecting
onto Qλ

I , this gives a filtration on F(∆(M)) with successive subquotients being
∆(jF(M)) for j = 1, . . . ,m, where jF denotes the functor (6.7) on the j–th factor

Aλ
(j)

of the outer tensor product Aλ. By projecting onto the right blocks, we get
the wanted filtration for Fi. Analogously we get the required filtration for Ei. �

Note that the theorem implies Corollary 1.1 from the introduction using the unique-
ness result of [LW13] and the fact from [LW13] that the Webster algebras give rise
to a tensor product categorification as well.
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9. Graded category O

In order to lift the categorifications we constructed so far to Uq(slk)–categorifications,
we need to recall some basic facts about the graded version of the category O.

9.1. Soergel’s functor. The key-tool to construct a graded lift of the category O is
Soergel’s functor V from [Soe90]. Fix l = gln1

⊕· · ·⊕glnr , and let n = n1+· · ·+nr. Let
Wl ⊆ Sn be the Weyl group of l. For all d ∈ P+(l) we let Rd = C[x1(d), . . . , xn(d)],
where we add the symbol d to the variable xh in order to stress that xh(d) belongs
to Rd. Let Sd ⊆Wl denote the stabilizer of d (notice that this depends not only on
d, but also on l) and let

(9.1) Cl,d =
(
Rd/(R

+
d )WlRd

)Sd
denote the invariants for Sd inside the algebra of the coinvariants. As usual,
(R+

d )WlRd is the ideal generated by polynomials with zero constant term which
are symmetric in the variables xnh+1(d), · · · , xnh+1

(d) for all h = 1, · · · , r. Let wl,0

denote the longest element of Wl. Soergel’s Endomorphismensatz [Soe90] provides a
canonical identification

(9.2) Endl(P (wl,0d)) = Cl,d.

We denote by

(9.3) Vl,d = Homl(P (wl,0d), •) : O(l)d → Cl,d−mod

Soergel’s functor, and set

(9.4) Cl =
⊕

d∈P+(l)

Cl,d and Vl =
⊕

d∈P+(l)

Vl,d : O(l)→ Cl−mod.

By Soergel’s Struktursatz [Soe90], Vl is fully faithful on projective objects.

9.2. Graded category O. Let us denote by Pl,d a minimal projective generator of
O(l)d, and let Al,d = EndCl,d

(VlPl,d). Then since Endl(Pl,d) ∼= EndCl,d
(VlPl,d) we

have O(l)d ∼= mod−Al,d. Moreover Al :=
⊕

d∈P+(l)Al,d is a locally unital algebra

and

(9.5) O(l) ∼= mod−Al.

The algebra Al admits a natural grading (see [Str03b, Section 2] and [BGS96]). As
a consequence, one defines the graded category O(l) to be

(9.6) ZO(l) = gmod−Al.

The algebra Al is a positively graded locally unital algebra, and the grading is
the unique Koszul grading [BGS96]. The primitive idempotents projecting onto
the indecomposable modules are homogeneous of degree 0. It follows that Serre
subcategories and Serre quotients of gmod−Al inherit a natural grading. In this
way we define graded versions ZOλ and ZQλ of Oλ and Qλ, respectively.

9.3. Graded lifts of functors. Let G : O(g) → O(g′) be a right-exact functor,
which is compatible with direct sums. Then under the equivalence of categories
(9.5), (cf. [Str03b, Lemma 3.4] and [Bas68, 2.2]), we have that G is isomorphic to
the tensor product functor • ⊗Ag

HomAg′ (Ag′ ,GAg)

Suppose now that G sends projectives to projectives, and suppose moreover that we
have an isomorphism of functors Vg′G ∼= G′Vg′ , where G′ is a functor Cg−mod→
Cg′−mod. Then by Soergel’s theorem we have

HomAg′ (Ag′ ,GAg) ∼= HomCg′ (Vg′Ag′ ,Vg′GAg) ∼= HomCg′ (Vg′Ag′ ,G′VgAg).
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It follows that if G′ admits a graded lift G̃′ : Cg−gmod→ Cg′−gmod then G as well.

9.4. Graded translation functors. Let now g = gln. Recall that for all i ∈ Z
we have adjoint functors Fi,Ei : O(g) → O(g). Their restrictions to single blocks
Fi : O(g)d → O(g)(+i)d and Ei : O(g)d → O(g)(−i)d satisfy the following properties:

Lemma 9.1. The functors Fi : O(g)d → O(g)(+i)d and Ei : O(g)d → O(g)(−i)d are
indecomposable exact functors. Hence a graded lift is unique up to isomorphism and
overall grading shift.

Proof. The functors are exact by definition. The uniqueness follows then from the
indecomposability by standard arguments, see e.g. [Str05, Proposition 3.11]. For
the indecomposability it is enough to show that the Verma module with maximal
possible weight in the block is sent to an indecomposable projective object P , [Str05,
Theorem 3.1]. By Lemma 6.4 P has a Verma filtration such that every Verma module
appears at most once. Hence the socle of P must be simple by [Str03b, Theorem
8.1] und so P is indecomposable. �

Fix d ∈ P+(g), and let d′ = (+i)d. Notice that the sequences d and d′ differ at
most in one place, and that (−i)d′ = d. Let

(9.7) (+i)Cg,d = (Rd/(R
+
d )WgRd)Sd∩Sd′ .

If we define in an analogous way (−i)Cg,d′ , then we have an obvious isomorphism
(+i)Cg,d

∼= (−i)Cg,d′ given by renaming the variables xi(d) 7→ xi(d
′). We have

natural inclusions Cg,d, Cg,d′ ↪→ (+i)Cg,d which turn (+i)Cg,d into a (Cg,d′ , Cg,d)–

bimodule and (−i)Cg,d′ into a (Cg,d, Cg,d′)–bimodule. By summing up we get

Cg–bimodules (+i)Cg =
⊕

d∈P+(g)
(+i)Cg,d and (−i)Cg =

⊕
d∈P+(g)

(−i)Cg,d.

Proposition 9.2. We have isomorphisms of functors

(9.8) VgFi ∼= (+i)Cg ⊗Cg
Vg and VgEi ∼= (−i)Cg ⊗Cg

Vg

Proof. Let us prove the first isomorphism, the second one being analogous. Of course
it is sufficient to check that for each d ∈ P+(g) we have

(9.9) Vg,d′Fi|O(g)d
∼= Cg,d′ ⊗Cg,d′

(+i)Cg,d ⊗Cg,d
Vg,d.

Let Tb
d : O(g)d → O(g)b be the usual translation functor. Fix d ∈ Zn≥, and let

d′ = (+i)d. Let also b ∈ Zn≥ be an integral dominant weight with stabilizer Sd ∩Sd′ .

It follows then from the classification of projective functors that Fi|O(g)d
∼= Td′

b ◦Tb
d.

But Td′

b is a translation functor onto a wall, while Tb
d is a translation functor out of

a wall. Then (9.9) follows from [Soe90, Theorem 10]. �

We fix graded shifts ZFi and ZEi of Fi and Ei by setting

ZFi|O(g)d = • ⊗Ag,d
HomCg,d

(VgAg,d,
(+i)Cg,d ⊗Cg,d

Vg,dAg,d〈−cd,i〉)(9.10)

ZEi|O(g)d = • ⊗Ag,d
HomCg,d

(VgAg,d,
(−i)Cg,d ⊗Cg,d

Vg,dAg,d〈−cd,i+1〉)(9.11)

where

(9.12) cd,i = #{h | dh = i}.

Proposition 9.3. We have a graded adjunction

(9.13) ZFi|O(g)d a
ZEi|O(g)(+i)d〈cd,i − cd,i+1 + 1〉.
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Proof. With the notation from the proof of Proposition 9.2, one can fix graded lifts of

the translation functors so that we have Fi|O(g)d
∼= ZTd′

b ◦
ZTb

d and Ei|O(g)(+i)d
∼= ZTd

b◦
ZTb

d′ (see [Sar14a, §4.4]). We have graded adjunctions (see [Sar14a, Lemma 4.4.1],
which is a consequence of the classification theorem of projective functors)

(9.14) ZTb
d a

ZTd
b〈cd,i〉 and ZTd′

b a
ZTb

d′〈−cd′,i+1〉.

Now d′ = (+i)d and cd′,i+1 = cd,i+1 + 1. Hence ZTd′

b ◦
ZTb

d a
ZTd

b ◦
ZTb

d′〈cd,i −
cd′,i+1 − 1〉, which is our claim. �

9.5. Graded standardization functor. As before let l = gln1
⊕ · · · ⊕ glnr be a

standard Levi subalgebra in g. Let d ∈ P+(g) and Ξ = Ξd and p = pd as in §5.4.

Lemma 9.4. Let ξ ∈ Ξ. The functor ∆ξ : O(l)ξ → O(g)4ξ is gradable. A graded

lift is determined uniquely by fixing the degree shift on ∆ξ(M(ξ̃)), where M(ξ̃) is
the dominant Verma module of O(l)ξ.

Proof. By Proposition 5.12, O(l)ξ is equivalent to the Serre quotient O(g)4ξ/O(g)≺ξ.
Under this equivalence ∆ξ, being left adjoint to πξ, becomes the inclusion functor of
the Serre quotient category in O(g)4ξ. In particular, if B is the endomorphism algebra
of a minimal projective generator of O(g)4ξ and e is the idempotent projecting
onto the indecomposable projective modules which are not in O(g)≺ξ, then ∆ξ

corresponds to • ⊗eBe eB : mod−eBe→ mod−B (see §4.1). It is then clear, see the
proof of Lemma 9.1, that the indecomposable bimodule eB admits a graded lift,
unique up to a shift. The shift is uniquely determined by an object which is not
killed by ∆ξ, for example M(ξ̃). �

We fix the graded lift Z∆ so that Z∆ξ(M(ξ̃)) = M(ξ̃). Notice that it follows also

that the functor ∆ξ restricted to Aλ
ξ is gradable. It follows also that each block of

Qλ is graded standardly stratified, with standardization functor Z∆.

10. Graded categorification

We are going now to construct graded lifts of our categorifications to categorifications
of Uq(slk)–representations. Notice that we already know by abstract reasons (see
[LW13, Corollary 6.3]) that such graded lift exist. Our goal here is to realize them
explicitly (up to some extent) in the Lie theoretical setting.

In order to modify Definition 6.7 for obtaining Uq(slk)–categorifications, we need to
replace the action of the degenerate affine Hecke algebra with a graded action of a
quiver Hecke algebra. In the ungraded setting, it is equivalent to require an action
of the degenerate affine Hecke algebra or of the quiver Hecke algebra: this follows
from the remarkable isomorphism between cyclotomic quotients of the two algebras
proved in [BK09]. Now, the degenerate affine Hecke algebra does not come with any
natural grading, while the quiver Hecke algebra does. Hence it is natural, for an
Uq(slk)–categorification, to require a graded action of the quiver Hecke algebra on
the functors.

We do not want to enter into details, which are explained in [BLW13, Section 2],
neither we will define the quiver Hecke algebra. All the reader needs to know is that
such an algebra exists and admits a natural grading, and that in Definition 6.7 one
could equivalently replace (SL2) by the requirement of an (ungraded) action of the
quiver Hecke algebra.



26 ANTONIO SARTORI AND CATHARINA STROPPEL

We recall that a graded category is a category A with an autoequivalence 〈1〉 : A→
A, which we will also denote by q. A graded category A is called acyclic if q`L 6= L
for all ` 6= 0 and L ∈ A irreducible.

Definition 10.1 ([BLW13, Definition 5.5]). An Uq(slk)–categorification is an
acyclic graded Schurian category A together with graded endofunctors Fi, Ei, Ki
and K−1

i for i = 1, . . . , k−1, an adjunction making qEiKi into a right adjoint to Fi,
and homogeneous natural transformations ξ ∈ End(Fi)2, τ ∈ Hom(FjFi,FiFj)−i·j
for each i, j = 1, . . . , k − 1 such that:

(GSL1) There is a decomposition A =
⊕

ν∈P Aν such that Ki|Aν
∼= q(ν,αi) and

K−1
i |Aν

∼= q−(ν,αi).

(GSL2) The natural transformations ξ and τ define an action of the quiver Hecke
algebra.

(GSL3) Each functor qFiK
−1
i is isomorphic to a right adjoint of Ei.

(GSL4) The endomorphisms Fi and Ei of [A] induced by Fi and Ei, respectively,
make [A] into an integrable representation of Uq(slk).

We recall the following useful result:

Lemma 10.2 ([BLW13, Lemma 5.7]). Let A be an slk–categorification with functors
Fi, Ei. For each ν ∈ P let Aν be the full subcategory of A consisting of all objects
M such that [M ] lies in the ν–weight space of the slk–module [A]. Suppose that we
are given the following additional data:

(1) a graded lift Aν of each Aν ;

(2) graded functors Ki and K−1
i satisfying (GSL1);

(3) graded lifts Fi and Ei of the functors Fi and Ei together with an adjunction
making qEiKi into a right adjoint to Fi;

(4) a graded lift of the action of the quiver Hecke algebra.

Then A is an Uq(slk)–categorification.

By §9.2, the category ZO(gln)I is a graded lift of O(gln)I . We define on ZO(gln)
functors ZKi and ZK−1

i by

(10.1) ZKi|O(g)a = 〈ca,i − ca,i+1〉 and ZK−1
i |O(g)a = 〈ca,i+1 − ca,i〉,

where ca,i was defined in (9.12). Of course ZK−1
i ◦

ZKi
∼= ZKi ◦

ZK−1
i
∼= id, and

obviously ZKi and ZK−1
i satisfy (GSL1). By §9.4, moreover, we have graded lifts ZF

and ZE of the endofunctors F and E of O, which by Proposition 9.3 satisfy the graded
adjunction of (3) above. If we prove that (4) is also satisfied, then by Lemma 10.2
we have an Uq(slk)–categorification.

Condition (4) amounts to say that the action of the quiver Hecke algebra on the
functors ZFi and ZEi is homogeneous. Unfortunately, as far as the authors know,
there is no direct proof of this fact yet. Nevertheless, it is possible to conclude
that (4) holds by an indirect argument. Indeed, by the uniqueness result [LW13,
Theorem 6.1]) the categorification O(gln)I with its structure is strongly equivariantly
equivalent to Webster’s diagrammatic categorification by Corollary [?]. The latter
admits an explicit graded lift such that the corresponding graded algebra is Koszul
([Web13, Proposition 8.11]). By the uniqueness of the Koszul grading, it follows that
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the equivalence lifts to an equivalence between ZO(gln)I and Webster’s diagrammatic
category. Actually, one can also deduce that the graded lifts ZFi and ZFi correspond
to Webster’s graded diagrammatic functors (see [Web13, Corollary 8.12]). Hence
the action of the quiver Hecke algebra of the categorification O(gln)I does admit a
graded lift. Hence we obtain the following result:

Proposition 10.3. For all n ≥ 0 the category ZO(gln)I together with the endo-
functors ZFi,

ZEi,
ZKi and ZK−1

i and the graded action of the quiver Hecke algebra
is an Uq(slk)–categorification.

Let now λ be a sequence of integral dominant weights for slk. As the category Qλ
I

is a full subcategory of O(gln)I , the graded lift ZQλ
I is naturally a subcategory of

ZO(gln)I . The endofunctors ZFi,
ZEi,

ZKi and ZK−1
i of ZO(gln)I restrict to graded

endofunctors of ZQλI , and the graded action of the quiver Hecke algebra on the
former gives a graded action on the latter. As a consequence, the following graded
version of Proposition 7.4 follows immediately:

Proposition 10.4. Let λ ∈ �+. Then the data of the graded category ZQλI , of the

endofunctors ZFi,
ZEi,

ZKi and ZK−1
i and of the graded action of the quiver Hecke

algebra defines an Uq(slk)–categorification of Vq(λ).

We obtain the following graded version of Theorem 8.2:

Theorem 10.5. Let λ be a sequence of integral dominant weights for slk. The data
of the graded category ZQλ

I , of the endofunctors ZFi,
ZEi,

ZKi and ZK−1
i and of

the graded action of the quiver Hecke algebra defines an Uq(slk)–categorification of
Vq(λ), which is a graded lift of the categorification C(V (λ)).

Now Corollary 1.2 follows directly from Theorem 10.5, since the graded category
C(n) is by definition, see [Sar14a], [Sar13], a subquotient category of Vq(λ), with

λ(i) = V ($1) for 1 ≤ i ≤ n.

Remark 10.6. It is possible to define an Uq(slk)–categorification of a tensor product,
generalizing [BLW13, Definition 5.8], essentially by replacing (TPC2) and (TPC3)
in Definition 8.1 with the following graded versions:

(GTPC2) The associated category grA is an Uq(sl
⊕r
k )–categorification such that the

subcategory of weight ν is precisely the subquotient A�ν/A≺ν . Moreover
Aλ
∼= C−gmod.

(GTPC3) For each M ∈ Aν the objects Fi∆ν(M) and Ei∆ν(M) admit a filtration
with successive quotients being graded shifts of ∆(jFiM) and ∆(jEiM),
respectively, for j = 1, . . . , r.

It follows by the uniqueness result [LW13, Corollary 6.3] (see also [BLW13, Theo-
rem 5.10]) that an Uq(slk)–categorification which is a graded lift of a tensor product
categorification is equivalent to Webster’s diagrammatic categorification. Since the
latter satisfies (GTPC2) and (GTPC3), the former also does. We remark that it is

easy to prove (GTPC2) for ZQλ
I exactly as in the non-graded setting. We hoewever

do not know an easy argument to check (GTPC3) explicitly for ZQλ
I .
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