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Abstract

We consider the category of Harish-Chandra bimodules for a semisimple complex Lie algebra.
We describe algebras of self-extensions of certain simple objects by showing that their blocks are
equivalent to module categories over complete intersections or Golod rings. Our main result is a
generalisation of Soergel’s structural description of the blocks of categdoya description of the
general integral blocks of Harish-Chandra bimodules.

0 2004 Elsevier Inc. All rights reserved.

Introduction

The motivation for this paper is the wish to umsiand the representation theory of com-
plex semisimple Lie groups like Sk, C) considered as a reel Lie group. In this context,
the categoryH of Harish-Chandra bimodules occurs in a natural way and plays a crucial
role (see [22,24,25]).

As our main result we prove a generalisation of Soergel’s Struktursatz. This implies a
ring theoretic description of the categdtproviding also a recipe for computing explicitly
quivers describing up to Morita-equivalence all the integral blockd of

E-mail addresscs@maths.gla.ac.uk.
1 Supported by DFG and CAALT.

0021-8693/$ — see front mattér 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgebra.2004.07.037



350 C. Stroppel / Journal of Algebra 282 (2004) 349-367

To describe extensions between simple objects seems to be a quite difficult problem.
Some patrtial results can be found for example in [4]. Beside our main result we consider
the easiest blocks ¢ff and describe the algebras of (self-)extensions of simple objects via
complete intersection and Golod rings.

To make these statements more precise we need some notatignbked complex
semisimple Lie algebra with universal enveloping algelra: /(g) and leth C g be a
fixed Cartan subalgebra. Thehis the full subcategory of the category of finitely generated
U-modules, where the objects are of finite length and locally finite for the adjoint action of
g (see [22]). The action of the centegof U/ gives a decomposition

H= P iH. (0.1)

w,AeMaxzZ

where the summands are indexed by pairs of maximal ideas(of of central characters)
and defined by O ’H,) ={X e H | A" X = Xu™ =0 form > 0}.

Using the Harish-Chandra isomorphism in the normalisation of [13, 3.4, 3.5], the max-
imal ideals of the centre are in bijection with the dominant weighd¢sh*, hence we can
also index the blocks?, by dominant weights. and . (Note that we call a weight
A € b* dominantif (A + p, &) > 0 for any simple corook, wherep denotes the half-sum
of positive roots.)

The simple objects of these categories are classified ([26], see also [5, Theorem 5.6],
[13, 6.29]). Unfortunately, these categories do not have enough projectives. Therefore it
makes sense to study (for any fixed positive integea ‘truncated’ version/j, of ,’H,,.

A very natural truncation is given by the following set of objects

Ob(LH}) ={X €1 H, | Xu" =0}.

This ensures enough projectives arid, is the limit of all this full subcategories. In par-
ticular, the structure of+,, is determined by homomorphisms between projective objects
in AVH™.

Fo;rLA, n € h* dominant and integral we consider an exact fundtoy 1), — Z ® 2-
mof which annihilates all simple modulegcept the one with maximal Gelfand—Kirillov
dimension in its block. This generalises Soergel’s combinatorial fud@ger mof-C. As
a corollary of our Theorem 4.1 we get the following structure theorem generalising [22,
Theorem 13].

Theorem 1. LetA, o € h* be dominant and integral. Le?, Q € ,H, be projective. Then
Vinduces an isomorphism

Homy (Q, P) =Homzgz(VQ, VP).

In particular, this gives a combinatorial description of the categories of Harish-Chandra
bimodules with generalised integral central character from both sides.
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In the casen = 1, Bernstein and Gelfand [5, Theorem 5.9] proved an equivalence of
categories

T 2 Hy, = O, (0.2)

when p is regular and dominant. (Hei® denotes the well-known category defined by
Bernstein, Gelfand and Gelfand in [6] for a semisimple Lie alggbnath a fixed Borelb
and Cartan subalgebta Its objects are finitely generatéf{g)-modules of finite length,
on whichbh acts diagonally ant/(b) locally nilpotent.) Forw singular, the functof,
is still faithful; its image is described in [5, 5.9], [13, 6.18].

The equivalence (0.2) implies that the extensions between simple oqu.‘kslllodire
given by Kazhdan-Lusztig theory, more precisely

dime EXtiO (L(x -A), L(y- )\.)) = Z Ax,w, )X (y,w,i—j)s (03)
weW, jeZ

wherepy y = Zj a(x,y, j)t/ is a certain Kazhdan—Lusztig polynomial (see, e.g., [8, The-
orems 1.1.3 and 2.12.6] or [23] for an explicit formula). This indicates that it should be
almost impossible to find a general formula for @Ext"@(L, L"), if L andL’ are simple
objects iny HJ, for arbitraryn > 1. Nevertheless we will give some answers for very spe-
cial cases, i.e. whefd, u) € {(—p, —p), (—p, 0), (0, —p)} andn is arbitrary by describing

»Hj, via a module category over a (generalised) ring of coinvariants. Our results, although
not as general as [10], are rather explicit.

Let us for the moment consid@ﬂﬁp having only one simple objeL_,. The
Bernstein—Gelfand functor from (0.2) and Soergel's Endomorphism Theorem ([21, 2.2])
show thabep = mof-C, where mof€ denotes the category of finitely generated mod-
ules over the coinvariant algebfa= S(h)/((S(h)*)") defined by the Weyl group’ of g,
and whereS(h) denotes the algebra of regular functionshdnThe first result in the paper
follows then from the theory of complete intersection rings: There is an isomorphism

EXt;Hl,p (oL—p,0L—p) = Ext(C,C) = S(h)

as graded vector spaces (Theorem 1.3). The algebra structure can be described explicitly
by a theorem of Sjoedin (Theorem 1.4). These results have also an application to the rep-
resentation theory in positive characteristic (Theorem 1.6).

If we considery ", for arbitraryn > 1, then this category is no longer a category of
modules over a complete intersection ring (at leasgfgrsly), but nevertheless a category
of modules over a ‘generalised’ algebra of coinvariants (Theorem 2.2):

oH" , =mof-S@sw SV /@,
wherem is a certain maximal ideal of" . A description of the algebra of self-extensions

of the simple object inH", follows then from the theory of Golod rings (see, e.g., [2]).
In particular, the categories become asible via computer algebra software.
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The paper is organised as follows: The main part of the paper starts in Section 2 with the
definition of the structure functdy, its behaviour with translation functors and its faith-
fulness on projectives. The full structutgebrem will be proved in Section 4. Sections 1
and 2 contain explicit results in the case wh¥&reefines an equivalence of categories to
module categories over coinvariants and Golod rings. The remaining Section 3 contains a
warning, since we show that the BG-equivate does not generalise to ‘generalised sin-
gular’ blocks in the way one might expect.

1. Harish-Chandra bimodules

Let g be a semisimple complex Lie algebra with a fixed Borel subalgelarad a fixed
Cartan subalgebifa Letg=n"® b =n" & h $n be the corresponding triangular decom-
position. Let/ =U(g), U (b) andS = U (h) = S(h) be the universal enveloping algebras of
g, b andb, respectively. LetZ C U be the centre. Lep be the half-sum of positive roots.
We denote by the Weyl group and forany e h* let Wy, ={w e W | w(A+p) — p) = A}
be the stabiliser for the ‘dot-action’ defined@as A = w(A + p) — p.

We consider the categofy of Harish-Chandra bimodules. The objects are finitely gen-
erated/-bimodules of finite length which are locally finite for the adjoint actiory ¢§ee,
e.g., [13,22]). The morphisms are the morphism& dfimodules. Let MaXZ be the set of
maximal ideals inZ. The action ofZ gives the decompositio®(1) from the introduction.
The categoriesH], have enough projectives. More generally,letZ be an ideal of finite
codimension and denote By’ the full subcategory of{ given by all objects which are
annihilated byl from the right-hand side. The subcategpfy’ is given by objects with
generalised central character kgrfrom the left-hand side.

Theorem 1.1. The projective objects it/ are the direct summands of modules of the form
EQ®U/UI), whereE is a finite-dimensiongl-module with trivial rightg-action.

Proof. Mutatis mutandis [13, 6.14]. O

Let £:Z — S be the Harish-Chandra homomorphism, normalised such that it in-
duces a surjective malg* — MaxZ: 1 +— x;, which is constant on orbits of the Weyl
group action with fix point-p. In this note, we first consider blocksg<, for (A, u) €
{(—p,—p), (0, —p), (—p, 0)}. Each of these blocks has only one simple object [13, 6.23,
6.26]; we denoteitbyL, €, . We want to describe EZ‘H;; Ly, 2Ly) forsuch blocks

and arbitraryn. For any ringR we denote byR-mof (or mof-R) the category of finitely
generated left (or rightR-modules.

1.1. Harish-Chandra bimodules and coinvariants

Let us first consider the categqﬂftlp. Via the equivalence (0.2), the only indecompos-

able projective object igH ,» is mapped to the projective covefﬂ-o of the simple Verma
module inOg. Hence, by [21, Endomorphismensatz], we get equivalences of categories



C. Stroppel / Journal of Algebra 282 (2004) 349-367 353
oH!, = mof-End(P; ) = mof-C, (1.1)
whereC = S(b)/(S(b)XY) is the coinvariant algebra having the following nice properties:

Lemmal.2. LetC be the algebra of coinvariants for any semisimple complex Lie alggbra
(or more general” is an algebra of coinvariants for a finite pseudo reflection group acting
linearly on a finite dimensional complex vector spadehas the following properties

(1) Krull-dimC =0.

(2) C is acomplete intersection ring.

(3) C is Gorensteir(i.e. Ext..(C, C) = C for i = 0and=0for i # 0.)
(4) C is Cohen—Macaulagi.e.depthC = Krull-dimC).

Proof. Letm be the maximal ideal of and letp € m be a prime ideal. Sinc€ is a posi-
tively graded ring of finite dimension (see [15, 23.1] or [7, V, 5.2, Théoreme 1]), for each
x e mthereis au € N such thak” = 0 € p. Hencex € p, which impliesp = m. Therefore,

the Krull dimension ofC is zero. A noetherian local ringR, m, K) is acomplete intersec-

tion ring, sayR = S/1 for some regular ring, if and only if Krull-dimR = v(m) — v([),
wherev(e) denotes the cardinality of a minimal system of generators (see [9, Theorem
2.3.3]). Hence, it is enough to show that dimis equal to the minimal number of gener-
ators of (S(h)™)W). This is [7, V, 5.2, Théoréme 3]. For the remaining statements (1.2)
and (1.2), see [9, Proposition 3.1.20]0

We get our first result.

Theorem 1.3. There is an isomorphism of graded vector spaces
EXt;'Hip (OL—pa OL—p) = S(b)a

whereS(h) has the usual grading, such thsith) = .

Proof. Set E := Ext(')H£p(oL,p,oL,p). By equivalence (1.1)E = Extz.(C,C). Let

P@) = P(g(t) =Y iepdime ExtZ (C, C)¢" be the corresponding Poincaré series. The de-
viationse, € Z are uniquely defined by the equality

P(t) = l_[(1+ t2i—l)52i—1/l_[(1 _ t2i)62i
i=1

i=1

of power series. Since, by the previous lemifidgs a complete intersection ring,(R) =0

for n > 3 (see [1, Theorem 7.3.3]). Moreovet, = e = dimc b ([1, 7.1.5] and [7, V,

5.2, Théoreme 3]). Therefore, the Betti numbers for the trivial module are given by the
following formula:
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A4 (A4
T (-2 (1-ne

P() :(1+t+t2+...)62 (L+ 1)<z,

A

The coefficient oft” in A is the number of sequencésy, ay, ..., ae,) € Z;zo such that

Zfzzl a; =n. On the other hand, these sequences index a baSi$¥f given by the poly-
nomials]_[fil h?", where{h;}1<i<e, iS @ basis ofy. In particular, there is an isomorphism
of graded vector spaces BXIC,C) = S(h). O

The algebra structure is given by the following theorem.

Theorem 1.4 [18]. Let C = Clx1, ..., x,1/(f1,---., fu) be aring of coinvariants, with a
minimal setf1, ..., f, of generators for the ideal generated by the invariants without a
constant term. Lety; ; € Clxa, ..., x,] (for 1<, j <n) be defined by

fi= Z api, jXpX;.

1<h<i<n

Then there is an isomorphism of graded algebras

Exte(C, C) =Uz(p)
for some graded Lie algebiasuch that the following holds

(1) dimgp@ =n fori € {0, 1} and0 otherwise. In particularExte.(C, C) is generated by
its elements of degree at ma@st
(2) There is an ordered basi8; }1<;<, of p® such that

.
[6h, 6;] = — Zn(ahi,j)enﬂ forh <i and
j=1

.
[6i.61=—2) m(aii;)0ns; foralli,
j=1

wherern : C[x1, ..., x,] - C denotes the evaluation morphismQat

Corollary 1.5. Let g be a complex semisimple Lie algebra of rank 1 with correspond-
ing algebra of coinvariantg’. Then the algebr&xte. (C, C) is not commutative.

Proof. By the formulae above it is sufficient to show that in some minimal set of gen-
erators of the ideal generated by invariant polynomials without constant term, there is a
homogeneous element of degree two. If we assume the contrary therCéfin= (717

is greater then the number of elements of length two in the Weyl group (which is always

n(n+ 1)/2—1). This is a contradiction, since diC is given by the number of elements
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in the Weyl group of lengthy. (Note thatC is the cohomology ring of the corresponding
flag variety.) O

Theorem 1.4 can also be applied to the representation theory of Lie algebras over fields
with positive characteristic: Ldt be an algebraically closed field of characterigtie O.
Let G be a reductive algebraic group defined okewith simply connected commutator
subgroup. Lef(g, h) denote its Lie algebra with universal enveloping algalé(g). We
assume that the Killing form is not degenerated gry]. Let x € g* be regular nilpotent
and of Standard Levi form (see [11, Definition 3.1]). L&g), denote the corresponding
restricted universal eloping algebra, i.el4, (g) = U(g)/(x” — x!P1 — x(x)? | x € g),
wherex!?! denotes theth power ing. Let C denote the category @f, (g) modules as
defined in [3]. Then the following holds:

Theorem 1.6. Let A € h* such thati(h) — A(h!P) = x (h)? holds for allh € ). Assume.
to be regular. LetL, (1) =U(g)y ®ut, (v) ki denote the simple Baby—Verma module with
highest weight.. Then

Extq(Ly (1), Ly (1) = S(h)
as graded vector spaces. The multiplication is given by Theardm
Proof. SinceL, (1) is the unique simple object in its block (see [11, Theorem 2.4]), its
projective coverQ, (1) is a projective generator of its block. According to [3, 19.8] (or
[14, 10.12]) there is a natural isomorphism En@, (1)) = S(H)/(SHTHY). Therefore
the theorem follows by Morita equivalencer
Remark 1.7. The theorem of Friedlander and Parshall [11, Theorem 2.4] also says that
the projective modul&, (1) has lengthW - A|, whereW is the Weyl group oiG. This
module gives therefore an example of a self-extensian,gh) of length|W - A|.
2. Module categoriesover Golod rings

Before consideringt” , for arbitraryn, let us first look at the ‘most singular’ case

Theorem 2.1. (1) There is an isomorphism of algebras
E:=EXt 1 (~pL—p,—pL—p) = EXts/m:(C,C)

for some maximal ideah C S = S(h).

(2) As an algebraF is finitely generated and finitely presentable. It is generated by
for j <2

(3)If dimc h =1 andn > 1 thendimc Ef = 1forall i € N.

(4) If dim¢ b > 1Landn > 1then{dim¢ E”},;o is of exponential growth.
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Proof. (1) By Theorem 1.1%{/U(kerx” )) is a (the only) indecomposable projective ob-
jectin ,pH’Lp. Hence,,pH’Lp = mof-EndH(U/L{(kerxfp)). On the other hand, there is
an obvious isomorphism of rings

Endy (U/Ukerx—,)") = Z/(kerx—_p)"
¢ (D). (2.1)

Since the centre is a polynomial ring in dirh variables, the first part of the theorem
follows.

(2) SinceS/m”" is a Golod ring (see [1, Theorem 5.2.4], [17] or [19]). The assertions
are given by [19, Theorems 2 and 3].

(3) In the case wherg=slp, S/m" is a hypersurface (i.e. codeijim” < 1), we can
compute an explicit periodic resolution:

225 Oy 2 Cla/ ()" 25 /()" €.
(4) See[1, (5.0.1)]. O

Concrete formulae can be found in [2, Lemma 6.6].

LetA, u € h* be dominantand integral. We denotedy, €, H, the simple object with
maximal Gelfand—Kirillov dimension. Let P}’ € , 1’ be its projective cover and, more
general, IehP’ be its projective cover imH’ for any proper ke, -primary ideall < Z
of finite codimension. We denote such an idealy 7 4Z. Let§ = S/(;,\) be the completion
of S at the ideal generated Hy. For A € h* we denote byA* the endomorphism of
induced via translation by. Given a maximal ideall = kery; of the centreZ C U, the
completion at this ideal defines an injective homomorphism

AWot:Z,— S (2.2)
for eachx € h*, which is even an isomorphisrrl,l'fis regular (since in this casﬂe‘{’ maps
surjectively ontas/A™"). In any case the image " with maximal idealn; . Let / denote
the ideal induced by % Z. We abbreviat€” = §W. The following theorem describes the

blocks we are mainly interested in as module categories over Golod rings.

Theorem 2.2. Let (A, u) € {(0, —p), (—p, 0), (—p, —p)}. There is an equivalence of cat-
egories

W HE = 5% @gw (S*/mf)-mof.
To prove the theorem we need some preparationVigf,) be the exact functor

V(A,u) Z)L'Hu — C-mof
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which is defined (up to equivalence) by the propertieslini,,) = 1 and dim- L' =0
for all other simple object&’: We choose projective covest[; € AHZ of »L, and pro-
jectionspy, m Py Py for n > m such tha(APl’j, pn.m) becomes a projective system.
The functor is then given as

V()\’M)X = “L)T] HomH(,\P;j, X)

for X € ,H,. The action of the centre oX defines aZ ® Z-bimodule structure on
V., X. Hence, by completion, we have a functor

V(A,p,) :)LHM - §* ® S*-mof

(Forx = u =0, this functor is defined in [22].) Let, 1’ be dominant and integral weights
and let py, ., denote the projection ontgH, . Then thetranslation functorg ) is

. (A,A)
defined as follows:

9(()1:’)%) OH — MHM/

X pr,n(X®EwR—2'@Ew — X)),

where E(u — A) stands for the finite-dimensional, irreduciljemodule with extremal
weight (u — A). The upper index (or r) indicates thatE (« — 1) is considered as a left
(or right) g-module and becomed & g)-bimodule with trivial right (or left) action. Let us
denote bﬁf andg; the translation functors through thevall; more precisely: we choose
A andu’ € h* such that — A" andp — u” are integral andv,y = W,y = {1, s}. We set

. (A1) W, . . (A1) ).
GS = 9()\/’#) OG(A,M) -AH;/. — AH;/, and 9; = 9(%#’) o 9(1#) ')LHM — )LHM'

(Up to equivalence, these functors do not depend on the choitearfd’. For details,
see [12,13].) Translation through the wall is ‘compatible’ within the following way.

Lemma2.3. (1) LetA, u, v be dominant and integral weights and let us assithe> W, ;
if 1 & Z then

00 (wP') =P,

(2) Let A, u, v be dominant and integral weights, &), < W,. There is a natural
equivalence of functor@vith resthe functor restricting the scalays

Vo0 (®) = (3" © 5*) @5ug5 V(o). 2.3)
Vo) ()= (3" © 5) @5ugs V(). (2.4)
VoL (o) = res3 %) V(). (2.5)
oy (o) = reg?,23) v(e). (2.6)
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Proof. (1) The bimodule on the left-hand side is obviously projectivg?t! by adjoint-
ness properties of translation functors. Iétbe a simple object in74!. The adjointness
properties of translation functors give

dimc HomH(e(%:z;MP’, L') = dim¢ Homyy (. P, GfﬁL”))L’) =0
unlessL’ has maximal Gelfand—Kirillov dimensiofsee [13, 4.12(3), 9.1(3)]), in which

case9((){"v"))L/ =, L,; hence the space in question is one-dimensional.

(2) The formulae (2.4) and (2.6) are just reformulations of [22, Theorem 12 and Propo-
sition 6] in the case is regular.

With the assumptions of the lemma, let Z. Let X € ,H!. We have natural isomor-
phisms

(1) v~ I () ~ Av) pI ~ I _
VO(A’V)X:HomH(MP 500 X):HomH(e(u’v)MP , X) ZHomy (L P', X) =VX

of vector spaces. Let now € h* be a dominant, integral and regular weight. et

Z be the annihilator 0"9((5’5)/)MP’ as right Z-module. Since Hom(e((l‘f”v“)/)MP’, L) =

Homy(, P!, 9((5,’5/))14) = C for L = ,L, and zero for any simple objeét € ,H,  hav-

ing non-maximal Gelfand—Kirillov dimension, there is a surjectig®’ — 9((5’5)/)MP1- It
induces an inclusion

(V) pI o) J gpv)
Homy(6,,,0) P, 60y X) = Homyy(u P7, 61"V X). 2.7)

Let M be the minimal bisubmodule &f such thatX /M has not maximal Gelfand—Kirillov
dimension. Our definitions imply that the projective coveﬂéj’uv))M € ,H’ is a direct
sum of copies of, P’. We get

i J gy i J o)y 1oV ar .
dime Homyy (. P, 6,7, X) = dimg Homyy ( P7, 6,70 M) = [6,/°)) M : i L]

= [0 X yLy] = Wol[X 1 Ly

T I () o,
= dimg Homy (. P*, 61,1000y X)

=dim¢ HomH(e((l’i’v”)),LP’, 9((5;5)))().
This shows that (2.7) is in fact an isomorphism. We get the following natural isomorphisms
of left S*-modules:

Wy (

Q) ’ 2) / ’
(1) < I ) f0uv) n V) gy 2 I ) () 5000
Vo) EBX = Homy (i, P!, 00000060 X) = Homyy (, P1,0(1) 0060 X)
i=1

3) ’ ’ ’ (4) 4 /
(3) V) pl o) (00 ~ J o) ()
= Homy (0, wP". 0y 0 ) X) = Homy (, P 6570,) X)
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—~
al
~

12

(") 5 (v (Av) J o)
VO 66 x< resi Vo )X resi Homy (, P7,6557,) X)

Wyl

S V) pl (V)
resg, Homy (635 P!, 6 X) resS V@X

—~
(e}
=

12

(The well-known regular situation is given b§6). The isomorphismg1) to (3)
and (9) follow from properties of translation functorg4) and (8) are given by (2.7);
and (5), (7) hold just by deﬂnmon) The resulting isomorphism restricts to a nat-
ural |somorph|smV9((fU”))X res5 VX of S* @ S'-modules as follows: We con-

sider X as a submodule ot9(A ”,))9((; :))X via the adjunction morphism. They <

Ve((fv”))x = HomH(,LP’,G((){‘V"))X) corresponds via the canonical isomorphism (2) to

(1,0 (1) pI o) o (1,0 i i i i
Oy [ € HomH(e(u wy 1Pl 06 )05y X). Again, we have a canonical isomorphism

V) g V) ~ g (V) o (1) ; :
6.0 06 =0 9., - Following the sequence of isomorphisms, we get thdi-

nally corresponds t<z9(A ”)qb(f) € res§ Homﬁ(e(A ), P, 9(A ”)X) if @(f) denotes

the image off under the complete sequence ThIS proves statement (2.6). The isomorphism
(2.4) can be proved in an analogous way. We omit the details. To prove the statements (2.3)
and (2.5) it is sufficient to interchange the left and rigtig)-structure. O

In [22], W. Soergel proved the faithfulness ®{o,0) on projectives ingHg. We will
prove the corresponding statement for the blocks occurring in Theorem 2.2 and deduce the
equivalence of categories. The first step is the following result

Theorem 2.4. Let A, u be integral dominant weights and: Z. LetX e ,LH’ be projective.
Then, the socle aX is a direct sum of modules of the fogm,, (i.e. copies of the simple
object with maximal Gelfand—Kirillov dimensipn

Proof. Note, that any simple object ipH, is of the formL(M (), L(w - u)) for some

w € W. This object has maximal Gelfand—Kirillov dimension, if and only if so has

L(w - ). The latter is exactly the caseuf- u = w, - u (see [13, 10.12, 8.15, and 9.1]).
Take a filtration ofZ-modules

Z/I=Mo>M1>M, > M,1={0} (2.8)

with maximal possible semisimple subquotients. The universal enveloping algebra s a free
Z-module, even a free leff ® U (n_)-module (see [16, Lemma 5.7]). Applying the (ex-
act) functoi/ ® = e to the filtration above gives rise to a filtration@f® = Z/1 =U/UI

with M, :=U ® 2z M, = P U /U (kerx,), where the direct sum has diniM, ) many sum-
mands. Moreover, by construction, this submodule contains all elements annihilated by
kery;. In particular, it contains the socle of/U/1. Obviously,M e AH%. This category

is equivalent to a certain subcategory @f (via the functorZ, ,, from the introduc-

tion) such thatM corresponds to a direct sum of Verma moduléér). Hence, the socle
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of M, and therefore also dif ® z Z/1, consists only of simple modules with maxi-
mal Gelfand—Kirillov dimension. Since this property is still valid after tensoring with
some finite-dimensionagi-module E (see [13, 8.13]) and taking direct summands, the
statement of the theorem follows by the previous description of the projective objects
(Lemmal.1). O

The following statement holds, in particular, &, X, € , H}.

Corollary 2.5. Let A, u be integral dominant weights. Lét4 Z. Let X1, X, € MH’ and
X> be projective. TheW =V, ;) induces an inclusion

Homy (X1, X2) = Homgg5: (VX1, VX2).

Proof. The socle of any projective object contains only simple composition factors which
are not annihilated by and imV f =Vim f for any f € Homy (X1, X2). O

Lemma 2.6. For A, u dominant integral weights anti% 2. The following holds
(1) There is an isomorphism &f-bimodules

VUUI) = Z]1

and via completion

VU /UI) = /1.
(2) VP! = 8" @zw $*/1. In particular, V,, P!' = S* @zw $*/m!! for anyn € N
Proof. The subquotients of the filtration (2.8) are isomorphidt® = M;/M;1 and
therefore contained imH%. Moreover, 7o U @z M;/M;y1) = ;’?le()L), where
M) € O is the Verma module of highest weight the functorZ, ,, denotes the BG-

equivalence betweemﬁ and a certain subcategory @1,, andm = dim¢c M; /M ;1.
Therefore,

n
dime Homy, (o P!, U/UT) = [U/UIT 5 L] =) dime(M;/Miy1) = dime Z/1.
i=0

We claim that there is an inclusion &f-bimodules
Z/I < Homy ( P',U/UIT). (2.9)
Since

(U ®z Z/D/USzm/D) L] =1,
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there exists a (unique up to a scalar) morphigne Homy (AP’, U/UI) such that
imf ZU ®z m/I. On the other hand;. f = f.z # 0 for anyz € Z/1. That means,
z > z.f defines the required inclusion. The first part of the lemma follows sia¢g/1 =
Homg . P!, U/UI).

To prove the second statement, we fisbiow that there is an isomorphism &f
bimodules

PT =0l Ul (2.10)
If N e_,H! then eéfﬁ)k)N e vH. Therefore,@&fik)u/bﬂ e _,H! is projective by

the projectivity ofi//UI € ,H! and by adjointness properties of translation functors.
The categor)LpH’ has up to isomorphism only one simple object, namely., , hence

O&fx’f)l/l/ul is a direct sum of copies of, P/, the projective cover of , L, . On the other

hand,

dim¢ HomH(e((;f)’“u/Z/{I, _pLy) =dimc Hom(U /U1, G(Q’[i)k)_pLA)

= [0 o La L(MG). LMV)].  (2.11)

whereL(M (1), L(1)) denotes the simple head@fi/ I (or of U /U (kerx,)).

Sincee((f’[i)k) _p Ly € 1}, the multiplicity (2.11) above is equal to

(62 ,L(=p) : LO)] =[P(wo - 1) : LAW] = (P(wo - 1) : M(3)) = 1.
(Here, L(n) € O denotes the simple module with highest weight h* and projective

cover P(u).) This proves the isomorphism (2.10). Combining it with Lemma 2.3 and the
first part of the lemma, we get the following isomorphisms:

I ~yph) p(=p,h) ~ (I o A o o St @8
ViPT =V 06 5 UM = (5" © §4) ®G-ngsi 108L_oas, VUUT
= 5" @sw S*/1.
This proves the lemma.O
Proof of Theorem 2.2. In the situation of the theorem, there is up to isomorphism only
one simple object, namelyL,, in ,H}. Its projective cover is therefore a minimal
projective generator. By Corollary 2.5, it is sufficient to show that @Emdy (., P)}) =
dimc Endg.g3: (V, P)).
The definition ofV and Lemma 2.6 give the equalities
dime Endy(, Py') = dimg (V. PJ') = dimg (S* ®gw $*/m})
= |W/W,|-dimc($*/(my)"),

sinceS* is a freeS" module of rank W/ W,,|. On the other hand,
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Endgu g (5 ®gw §*/(m)") = Homgw gz (5%, 5% @3w $*/(my)")
= Homyoq_5 (87, S ®@gw §*/(mp)")
W/ Wyl
~ @ Endg: (S*/(m;)").

i=1

The theorem follows. O

3. The Bernstein—Gelfand equivalence: an obvious generalisation?

Recall the equivalence of categories (0.2) with its generalisation to the singular case. In
this section we deal with the question whether it can directly be generalised to an equiv-
alence of categories betwegh(j, and a subcategory of projéatly presentable objects
in the ‘thick’ category®”". This is a full subcategory of the category@tg)-modules.

A U(g)-moduleM is an object of0" if it satisfies the following conditions:

(1) M is afinitely generatetf (g)-module;
2) M= @Aeh* M}, whereM) ={m e M | (h — L(h))"m =0}, and
(3) M is locally(b)-finite, i.e. dimc U (b)m < oo forallm e M.

Note that forn = 1 this is just the categorg) of [5]. The action of the centre gives a
decomposition

Onzea@n’
n

where u runs through a system of dominant orbit representativeg* o -. This is in
bijection to the maximal ideals of the centreléfby the Harish-Chandra isomorphism.
(For more details, see [20,22]). L&t,, € O be the simple Verma module (with highest
weightw, - 0). Let P be its projective cover iil0g. Fori € h* andn € Z-o, we define
the ‘deformed’ Verma module

M"(x) =U(9) ®up) S/ (kerr)",
whereS becomes & (b)-module via the canonical surjectidn— . Note that form = 1
this is the usual Verma module with highest weighFor A dominant,M" (1) € Of.
The following theorem is due to Soergel.

Theorem 3.1. There are isomorphisms of algebras

Endy(oPg) = Endon (Pp) = S ®@gw S/(H)".
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Proof. The equivalence of categories [20, Proposition 1] sgiitfsto P, and gives the
firstisomorphism. For the second isomorphism we consitferas the(h)"-specialisation

of the ‘deformationPy of the antidominant projectiv® (wo - 0) € Og’ [22, Theorem 7].
Since specialisation is compatible with rphism spaces in the sense of [22, Theorem 5],
the Endomorphism Theorem f@% [22, Theorem 9] implies

Endon (Py,) =T 7w T/(h)",

whereT is the localisation ofl’ at the maximal ideal generated byLet f, ¢ € S and
g(0)£0. Then

9

i _ fl—lweW, w#e gw
8 Hwewgw

with invariant denominator, hen@®®;w T/(h)" = S @gw S/(h)". This proves the theo-
rem. O

A moduleM € O" is called P, -presentableif there is an exact sequence of the form
P1— P, — M — 0, whereP; and P, are finite direct sums oP{;O. In [5], it was proved

that the functoe ®;; M (—p) defines an equivalence of categories betwﬂéhp and the

full subcategory of®Og given by Puﬁo-presentable objects. The following negative result
seems to be important enough to state it.

Corollary 3.2. In general, the categoryH” , is not equivalent to the full subcategoRy
of Og defined by the?;, -presentable objects.

Proof. By Theorem 3.1, End: (P )) = S ®gw S/(h)", hence the subcatego" in
question is equivalent to the category of finitely generaiegigw S/(h)"-modules. Let
g=slz andn > 2. ThenS @gw S/(h)" = Clx] ® 2, C[x]/(x"). It is easy to check that
the mapx — 1® x andy — x ® 1 defines an isomorphis@[x, y]/(x", x% + y2) =
Clx] ®2) Clx]l/(x"). We claim that there exists an isomorphism of graded algebras

Clx, y1/{x", x2 + y?) = Clx, y1/((Clx, y17)™), (3.1)

whereD,, denotes the dihedral group of order. 2n fact, the grouD,, is generated by the
maps

(x,y)—~ (COS(Zn/n)x +sin(2r/n)y, cos2r/n)y — Sin(2n/n)x) and
(-x7 y) = (xa _y)

Direct calculations show that® + y? is an invariant polynomial. A second generator of
the invariants can be therefore chosen homogeneous of dedsse [15, 17.4]), where

y occurs only with even exponents. This implies thétis contained in the ideal gen-
erated by the invariants. Comparing the dimensions yields the required isomorphism. In
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particular EX§®SWS/(h)" = C[x, y] as a graded vector space (see proof of Theorem 1.3).
On the other handS ®gsw S%/m" , = C[x]/(x?"), hence Extn (0L—p,ol—p) =

-pP
Ext' e 2n)((C C) = C[x] as graded vector spaces. In particular, the categories in question
are not equivalent. O
4. The combinatoricsof Harish-Chandra bimodules

In this section we prove the following general result.

Theorem 4.1. Let A, u € h* be dominant and integral and 4Z. LetPp, Qe  H' be
projective. TherV induces an isomorphism

ag p.Homy(Q, P) = H0m’§,4®§x WVQo,VP).
We start with some preparatory lemmata.

Lemma 4.2. Let A € h* be an integral and dominant weight. L& Z and letP e WH!
be projective. There exists an exact sequence of the form

mi mp
0— P—>@MPI —>@MPI
i=1 i=1

for somem1, mo € N.

Proof. Let firstu = A. Let L € ; H! be simple of non-maximal Gelfand—Kirillov dimen-
sion. We claim that

Ext’y, (L,U/UT) =0. (4.1)

For any simple reflection, the adjunction morphism gives (Theorem 2.4) a short exact
sequence of the form

UJUT — 0LUUT — K (4.2)

for somek; € ; H!. The bimodulé//i/1 has a filtration with subguotients isomorphic to
U/UKery,,. SinceTy yU /Ukery, = ML) and T, A)G = 60,7(,.,5), the exactness o’ﬂ
implies Homy (L, K;) = 0. (Here 6, denotes the translation through the wall in category
0.) We choose such thaﬂS’L 0. From (4.2) we get an exact sequence

Homy( (L, K) — Extly (L, UUT) — Extly (L, 6;U/UT),
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where the outer terms are zero, hence (4.1) hoIdsFSeP((fﬁ)k)e(;f)’”. The adjunction
morphismd /UT — FU/UI is injective (by Theorem 2.4). L&k be the cokernel. From
the exactness of

0= Homy (L, FU/UI) — Homy (L, K) — ExtiH, (L,UUI)

it follows Homy (L, K) = 0. HenceK — FK via the adjunction morphism. By adjunc-
tion, Ext?H, (FK,L)=0if L #,L,.ForL=,L,,we have an exact sequence

0 — Homy (FK, L) — Homy (F2U/UI, L) — Homy (FUJUI, L)
— Extl, (FK, L) — Extl, , (FUUIL L) — -

The last term is zero, sinéé/i/1 < , H! is projective; Homy (FU /U1, L) = C (see (2.10)
and Lemma 2.3) and dim Hog(F2U /U1, L) = |W; | [5, 4.2c]. On the other hangf,/i/ I
surjects ontd{/(ker x,)U, henceF (K) surjects onto

Q = F(coke((U/ kerx,) — FU/kerx,))).

i.e. F applied to the cokernel of the adjunction morphism. Standard arguments in cate-
gory O give 0 = @l'.‘fl‘_lkPkl. Therefore, dim Homy (FK, L) > |W,| — 1 and hence
ExtiH, (FK, L) =0 for any simple objecL € H. In particular, FK is projective and by

adjointness properties & it follows that F K is a direct sum of copies gfP’. Altogether,
we get the existence of an exact sequence as in the lemma in the easandP = U /U1.
The general statement follows from Tdrem 1.1 using translation functorso

Lemma4.3.1f P, Q € ,H! are projective and® = , P/, thena p is an isomorphism.

Proof. By Corollary 2.5, we only have to compare the dimensions. S'Hﬁ/(j%k)Q €
oM is projectivep{ 7 0 = @, , P! where

.o [Q: L] [Q:nLi]  [Q:aL]
T Pl _,L MU L] dimZ/T

Note that we used Lemma 2.6 for the last equality. On the other hand,
Homg, g3 (VO, Vi PT) = Homgu g5 (VO, S @gw §*/1) = Homgw o3 (VQ, S*/1).

SinceQ is projective, Theorem 1.1 and Lemma 2.3 imply tN&® is a direct summand of
someG VU /U1, whereG is given by a composition of induction and restriction functors
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as in Lemma 2.3. In particular, Hogi 3. (VQ, §* /1) = Homy,oq-5: (VQ, S*/1). More-
over,VQ is a direct surpmand of a free riglit-//-module, hence itself projective, and
therefore also free (sincg is a local ring). The rank o¥ Q is equal to

dimVQ
dim3S*/f

Comparison with the formula above gives the desired resuit.

Proof of Theorem 4.1. Let P, Q be as in the theorem. L&t <ls P, — P, be an exact
sequence as in Lemma 4.2. This provides a commutative diagram with exact rows

0 —= Homy(Q, P) Homy (Q, P1) ——— Homy(Q, P2)

=Vjo
Homg, o5 (V0. VP) 2= Homg, y5: (VO VPL) —> Homg, gz (VO, V Pp).

Sincej is injective andV is exact,V is injective and hence as well. The Lemma 4.3
implies the theorem foP, Q € ,H! projective. ForQ arbitrary one takes a projective
resolution. The full statement follows then easily using the five lemnma.
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