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Abstract

We consider the category of Harish-Chandra bimodules for a semisimple complex Lie al
We describe algebras of self-extensions of certain simple objects by showing that their blo
equivalent to module categories over complete intersections or Golod rings. Our main res
generalisation of Soergel’s structural description of the blocks of categoryO to a description of the
general integral blocks of Harish-Chandra bimodules.
 2004 Elsevier Inc. All rights reserved.

Introduction

The motivation for this paper is the wish to understand the representation theory of co
plex semisimple Lie groups like SL(n,C) considered as a reel Lie group. In this conte
the categoryH of Harish-Chandra bimodules occurs in a natural way and plays a cr
role (see [22,24,25]).

As our main result we prove a generalisation of Soergel’s Struktursatz. This imp
ring theoretic description of the categoryH providing also a recipe for computing explicit
quivers describing up to Morita-equivalence all the integral blocks ofH.
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To describe extensions between simple objects seems to be a quite difficult pr
Some partial results can be found for example in [4]. Beside our main result we co
the easiest blocks ofH and describe the algebras of (self-)extensions of simple objec
complete intersection and Golod rings.

To make these statements more precise we need some notation. Letg be a complex
semisimple Lie algebra with universal enveloping algebraU = U(g) and leth ⊂ g be a
fixed Cartan subalgebra. ThenH is the full subcategory of the category of finitely genera
U -modules, where the objects are of finite length and locally finite for the adjoint acti
g (see [22]). The action of the centreZ of U gives a decomposition

H =
⊕

µ,λ∈MaxZ
λHµ, (0.1)

where the summands are indexed by pairs of maximal ideals ofZ (or of central characters
and defined by Ob(λHµ) = {X ∈H | λmX = Xµm = 0 for m � 0}.

Using the Harish-Chandra isomorphism in the normalisation of [13, 3.4, 3.5], the
imal ideals of the centre are in bijection with the dominant weightsλ ∈ h�, hence we can
also index the blocksλHµ by dominant weightsλ and µ. (Note that we call a weigh
λ ∈ h∗ dominantif 〈λ + ρ, α̌〉 � 0 for any simple corooťα, whereρ denotes the half-sum
of positive roots.)

The simple objects of these categories are classified ([26], see also [5, Theore
[13, 6.29]). Unfortunately, these categories do not have enough projectives. There
makes sense to study (for any fixed positive integern) a ‘truncated’ versionλHn

µ of λHµ.
A very natural truncation is given by the following set of objects

Ob
(
λHn

µ

) = {X ∈ λHµ | Xµn = 0}.

This ensures enough projectives andλHµ is the limit of all this full subcategories. In pa
ticular, the structure ofλHµ is determined by homomorphisms between projective obj
in λHn

µ.
For λ, µ ∈ h∗ dominant and integral we consider an exact functorV : λHn

µ → Z ⊗ Z-
mof which annihilates all simple modulesexcept the one with maximal Gelfand–Kirillo
dimension in its block. This generalises Soergel’s combinatorial functorO0 → mof-C. As
a corollary of our Theorem 4.1 we get the following structure theorem generalising
Theorem 13].

Theorem 1. Let λ,µ ∈ h∗ be dominant and integral. LetP,Q ∈ λHn
µ be projective. Then

V induces an isomorphism

HomH(Q,P ) ∼= HomZ⊗Z(VQ,VP).

In particular, this gives a combinatorial description of the categories of Harish-Ch
bimodules with generalised integral central character from both sides.
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In the casen = 1, Bernstein and Gelfand [5, Theorem 5.9] proved an equivalenc
categories

T(λ,µ) : λH1
µ

∼−→ Oλ (0.2)

whenµ is regular and dominant. (HereO denotes the well-known category defined
Bernstein, Gelfand and Gelfand in [6] for a semisimple Lie algebrag with a fixed Borelb
and Cartan subalgebrah. Its objects are finitely generatedU(g)-modules of finite length
on whichh acts diagonally andU(b) locally nilpotent.) Forµ singular, the functorT(λ,µ)

is still faithful; its image is described in [5, 5.9], [13, 6.18].
The equivalence (0.2) implies that the extensions between simple objects ofλH1

µ are
given by Kazhdan–Lusztig theory, more precisely

dimC ExtiO
(
L(x · λ),L(y · λ)

) =
∑

w∈W,j∈Z

α(x,w,j)α(y,w,i−j), (0.3)

wherepx,y = ∑
j α(x, y, j)tj is a certain Kazhdan–Lusztig polynomial (see, e.g., [8, T

orems 1.1.3 and 2.12.6] or [23] for an explicit formula). This indicates that it shou
almost impossible to find a general formula for dimC ExtiO(L,L′), if L andL′ are simple
objects inλHn

µ for arbitraryn � 1. Nevertheless we will give some answers for very s
cial cases, i.e. when(λ,µ) ∈ {(−ρ,−ρ), (−ρ,0), (0,−ρ)} andn is arbitrary by describing
λHn

µ via a module category over a (generalised) ring of coinvariants. Our results, alt
not as general as [10], are rather explicit.

Let us for the moment consider0H1−ρ having only one simple object0L−ρ . The
Bernstein–Gelfand functor from (0.2) and Soergel’s Endomorphism Theorem ([21,
show that0H1−ρ

∼−→ mof-C, where mof-C denotes the category of finitely generated m
ules over the coinvariant algebraC = S(h)/((S(h)+)W ) defined by the Weyl groupW of g,
and whereS(h) denotes the algebra of regular functions onh∗. The first result in the pape
follows then from the theory of complete intersection rings: There is an isomorphism

Ext•
0H1−ρ

(0L−ρ, 0L−ρ) ∼= Ext•C(C,C) ∼= S(h)

as graded vector spaces (Theorem 1.3). The algebra structure can be described e
by a theorem of Sjoedin (Theorem 1.4). These results have also an application to t
resentation theory in positive characteristic (Theorem 1.6).

If we consider0Hn−ρ for arbitraryn > 1, then this category is no longer a category
modules over a complete intersection ring (at least forg �= sl2), but nevertheless a catego
of modules over a ‘generalised’ algebra of coinvariants (Theorem 2.2):

0Hn−ρ
∼= mof -S ⊗SW SW

/
m̃n,

wherem̃ is a certain maximal ideal ofSW . A description of the algebra of self-extensio
of the simple object in0Hn−ρ follows then from the theory of Golod rings (see, e.g., [2
In particular, the categories become accessible via computer algebra software.
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The paper is organised as follows: The main part of the paper starts in Section 2 w
definition of the structure functorV, its behaviour with translation functors and its fai
fulness on projectives. The full structure theorem will be proved in Section 4. Sections
and 2 contain explicit results in the case whereV defines an equivalence of categories
module categories over coinvariants and Golod rings. The remaining Section 3 con
warning, since we show that the BG-equivalence does not generalise to ‘generalised s
gular’ blocks in the way one might expect.

1. Harish-Chandra bimodules

Let g be a semisimple complex Lie algebra with a fixed Borel subalgebrab and a fixed
Cartan subalgebrah. Letg = n− ⊕b = n− ⊕h⊕n be the corresponding triangular deco
position. LetU = U(g), U(b) andS = U(h) = S(h) be the universal enveloping algebras
g, b andh, respectively. LetZ ⊂ U be the centre. Letρ be the half-sum of positive root
We denote byW the Weyl group and for anyλ ∈ h∗ let Wλ = {w ∈ W | w(λ+ρ)−ρ) = λ}
be the stabiliser for the ‘dot-action’ defined asw · λ = w(λ + ρ) − ρ.

We consider the categoryH of Harish-Chandra bimodules. The objects are finitely g
eratedU -bimodules of finite length which are locally finite for the adjoint action ofg (see,
e.g., [13,22]). The morphisms are the morphisms ofU -bimodules. Let MaxZ be the set of
maximal ideals inZ. The action ofZ gives the decomposition (0.1) from the introduction
The categoriesλHn

µ have enough projectives. More generally, letI 
Z be an ideal of finite
codimension and denote byHI the full subcategory ofH given by all objects which ar
annihilated byI from the right-hand side. The subcategoryµHI is given by objects with
generalised central character kerχµ from the left-hand side.

Theorem 1.1. The projective objects inHI are the direct summands of modules of the fo
E ⊗ U/(UI), whereE is a finite-dimensionalg-module with trivial rightg-action.

Proof. Mutatis mutandis [13, 6.14]. �
Let ξ :Z → S be the Harish-Chandra homomorphism, normalised such that

duces a surjective maph∗ → MaxZ :λ �→ χλ, which is constant on orbits of the We
group action with fix point−ρ. In this note, we first consider blocksλHµ for (λ,µ) ∈
{(−ρ,−ρ), (0,−ρ), (−ρ,0)}. Each of these blocks has only one simple object [13, 6
6.26]; we denote it byλLµ ∈ λHµ. We want to describe Ext•

λHn
µ
(λLµ, λLµ) for such blocks

and arbitraryn. For any ringR we denote byR-mof (or mof-R) the category of finitely
generated left (or right)R-modules.

1.1. Harish-Chandra bimodules and coinvariants

Let us first consider the category0H1−ρ . Via the equivalence (0.2), the only indecomp
able projective object in0H1−ρ is mapped to the projective coverP 1

wo
of the simple Verma

module inO0. Hence, by [21, Endomorphismensatz], we get equivalences of catego
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whereC = S(h)/(S(h)W+ ) is the coinvariant algebra having the following nice propertie

Lemma 1.2. LetC be the algebra of coinvariants for any semisimple complex Lie algebg

(or more generalC is an algebra of coinvariants for a finite pseudo reflection group ac
linearly on a finite dimensional complex vector space). It has the following properties:

(1) Krull-dimC = 0.
(2) C is a complete intersection ring.
(3) C is Gorenstein(i.e. ExtiC(C,C) ∼= C for i = 0 and= 0 for i �= 0.)
(4) C is Cohen–Macaulay(i.e.depthC = Krull-dimC).

Proof. Let m be the maximal ideal ofC and letp ⊆ m be a prime ideal. SinceC is a posi-
tively graded ring of finite dimension (see [15, 23.1] or [7, V, 5.2, Théorème 1]), for
x ∈ m there is an ∈ N such thatxn = 0 ∈ p. Hencex ∈ p, which impliesp = m. Therefore,
the Krull dimension ofC is zero. A noetherian local ring(R,m,K) is acomplete intersec
tion ring, sayR ∼= S/I for some regular ringS, if and only if Krull-dimR = ν(m) − ν(I),
whereν(•) denotes the cardinality of a minimal system of generators (see [9, The
2.3.3]). Hence, it is enough to show that dimC h is equal to the minimal number of gene
ators of((S(h)+)W ). This is [7, V, 5.2, Théorème 3]. For the remaining statements (
and (1.2), see [9, Proposition 3.1.20].�

We get our first result.

Theorem 1.3. There is an isomorphism of graded vector spaces

Ext•
0H1−ρ

(0L−ρ, 0L−ρ) ∼= S(h),

whereS(h) has the usual grading, such thatS(h)1 = h.

Proof. Set E := Ext•
0H1−ρ

(0L−ρ, 0L−ρ). By equivalence (1.1),E ∼= Ext•C(C,C). Let

P(t) = PC
C

(t) := ∑∞
i=0 dimC ExtnC(C,C)tn be the corresponding Poincaré series. The

viationsεn ∈ Z are uniquely defined by the equality

P(t) =
∞∏
i=1

(
1+ t2i−1)ε2i−1

/ ∞∏
i=1

(
1− t2i

)ε2i

of power series. Since, by the previous lemma,C is a complete intersection ring,εn(R) = 0
for n � 3 (see [1, Theorem 7.3.3]). Moreover,ε1 = ε2 = dimC h ([1, 7.1.5] and [7, V,
5.2, Théorème 3]). Therefore, the Betti numbers for the trivial module are given b
following formula:
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P(t) = (1+ t)ε1

(1− t2)ε2
= (1+ t)ε1−ε2

(1− t)ε2
= (

1+ t + t2 + · · ·)ε2︸ ︷︷ ︸
A

(1+ t)ε1−ε2.

The coefficient oftn in A is the number of sequences(α1, α2, . . . , αε2) ∈ Z
ε2
�0 such that∑ε2

i=1 αi = n. On the other hand, these sequences index a basis ofS(h)n given by the poly-
nomials

∏ε2
i=1 h

αi

i , where{hi}1�i�ε2 is a basis ofh. In particular, there is an isomorphis
of graded vector spaces Ext•

C(C,C) ∼= S(h). �
The algebra structure is given by the following theorem.

Theorem 1.4 [18]. Let C ∼= C[x1, . . . , xn]/(f1, . . . , fn) be a ring of coinvariants, with a
minimal setf1, . . . , fn of generators for the ideal generated by the invariants withou
constant term. Letahi,j ∈ C[x1, . . . , xn] ( for 1 � i, j � n) be defined by

fj =
∑

1�h�i�n

ahi,j xhxi.

Then there is an isomorphism of graded algebras

Ext•C(C,C) ∼= UZ(p)

for some graded Lie algebrap such that the following holds:

(1) dimC p(i) = n for i ∈ {0,1} and0 otherwise. In particular,Ext•C(C,C) is generated by
its elements of degree at most2.

(2) There is an ordered basis{θi}1�i�n of p(1) such that

[θh, θi] = −
r∑

j=1

π(ahi,j )θn+j for h < i and

[θi, θi] = −2
r∑

j=1

π(aii,j )θn+j for all i,

whereπ :C[x1, . . . , xn] � C denotes the evaluation morphism at0.

Corollary 1.5. Let g be a complex semisimple Lie algebra of rankn > 1 with correspond-
ing algebra of coinvariantsC. Then the algebraExt•C(C,C) is not commutative.

Proof. By the formulae above it is sufficient to show that in some minimal set of
erators of the ideal generated by invariant polynomials without constant term, the
homogeneous element of degree two. If we assume the contrary then dimC C(2) = (

n+1
n−1

)
is greater then the number of elements of length two in the Weyl group (which is a
n(n + 1)/2−1). This is a contradiction, since dimC Cj is given by the number of elemen
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Theorem 1.4 can also be applied to the representation theory of Lie algebras ove
with positive characteristic: Letk be an algebraically closed field of characteristicp > 0.
Let G be a reductive algebraic group defined overk with simply connected commutato
subgroup. Let(g,h) denote its Lie algebra with universal enveloping algebraU(g). We
assume that the Killing form is not degenerated on[g,g]. Let χ ∈ g∗ be regular nilpoten
and of Standard Levi form (see [11, Definition 3.1]). LetU(g)χ denote the correspondin
restricted universal enveloping algebra, i.e.Uχ (g) = U(g)/〈xp − x[p] − χ(x)p | x ∈ g〉,
wherex[p] denotes thepth power ing. Let C denote the category ofUχ (g) modules as
defined in [3]. Then the following holds:

Theorem 1.6. Let λ ∈ h∗ such thatλ(h) − λ(h[p]) = χ(h)p holds for allh ∈ h. Assumeλ
to be regular. LetLχ(λ) = U(g)χ ⊗Uχ (b) kλ denote the simple Baby–Verma module w
highest weightλ. Then

Ext•C
(
Lχ(λ),Lχ (λ)

) ∼= S(h)

as graded vector spaces. The multiplication is given by Theorem1.4.

Proof. SinceLχ(λ) is the unique simple object in its block (see [11, Theorem 2.4])
projective coverQχ(λ) is a projective generator of its block. According to [3, 19.8]
[14, 10.12]) there is a natural isomorphism Endg(Qχ(λ)) ∼= S(h)/((S(h)+)W ). Therefore
the theorem follows by Morita equivalence.�
Remark 1.7. The theorem of Friedlander and Parshall [11, Theorem 2.4] also say
the projective moduleQχ(λ) has length|W · λ|, whereW is the Weyl group ofG. This
module gives therefore an example of a self-extension ofLχ(λ) of length|W · λ|.

2. Module categories over Golod rings

Before considering0Hn−ρ for arbitraryn, let us first look at the ‘most singular’ case

Theorem 2.1. (1) There is an isomorphism of algebras

E := Ext•−ρHn−ρ
(−ρL−ρ,−ρL−ρ) ∼= ExtS/mn(C,C)

for some maximal idealm ⊂ S = S(h).
(2) As an algebra,E is finitely generated and finitely presentable. It is generated byEj

for j � 2.
(3) If dimC h = 1 andn > 1 thendimC Ei = 1 for all i ∈ N.
(4) If dimC h > 1 andn > 1 then{dimC Ei}i�0 is of exponential growth.
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Proof. (1) By Theorem 1.1,U/U(kerχn−ρ) is a (the only) indecomposable projective o
ject in −ρHn−ρ . Hence,−ρHn−ρ

∼= mof-EndH(U/U(kerχn−ρ)). On the other hand, there
an obvious isomorphism of rings

EndH
(
U/U(kerχ−ρ)n

) ∼= Z/(kerχ−ρ)n

φ �→ φ(1). (2.1)

Since the centre is a polynomial ring in dimC h variables, the first part of the theore
follows.

(2) SinceS/mn is a Golod ring (see [1, Theorem 5.2.4], [17] or [19]). The assert
are given by [19, Theorems 2 and 3].

(3) In the case whereg = sl2, S/mn is a hypersurface (i.e. codepthS/mn � 1), we can
compute an explicit periodic resolution:

· · · 1�→x−−−→ C[x]/(x)n
1�→xn−1−−−−−→ C[x]/(x)n

1�→x−−−→ C[x]/(x)n � C.

(4) See [1, (5.0.1)]. �
Concrete formulae can be found in [2, Lemma 6.6].
Letλ,µ ∈ h∗ be dominant and integral. We denote byλLλ ∈ µHλ the simple object with

maximal Gelfand–Kirillov dimension. LetµPn
λ ∈ µHn

λ be its projective cover and, mo
general, letµP I be its projective cover inµHI for any proper kerχλ-primary idealI 
 Z
of finite codimension. We denote such an idealI by I

λ
 Z. Let Ŝ = Ŝ(h) be the completion
of S at the ideal generated byh. For λ ∈ h∗ we denote byλ# the endomorphism ofS
induced via translation byλ. Given a maximal idealΛ = kerχλ of the centreZ ⊂ U , the
completion at this ideal defines an injective homomorphism

λ# ◦ ξ : ẐΛ → Ŝ (2.2)

for eachλ ∈ h∗, which is even an isomorphism ifλ is regular (since in this caseSW maps
surjectively ontoS/Λn). In any case the image iŝSWλ with maximal idealmλ. Let Î denote
the ideal induced byI λ
 Z. We abbreviatêSλ = ŜWλ . The following theorem describes th
blocks we are mainly interested in as module categories over Golod rings.

Theorem 2.2. Let (λ,µ) ∈ {(0,−ρ), (−ρ,0), (−ρ,−ρ)}. There is an equivalence of ca
egories

µHn
λ

∼= Ŝµ ⊗ŜW

(
Ŝλ/mn

λ

)
-mof .

To prove the theorem we need some preparation. LetV(λ,µ) be the exact functor

V(λ,µ) : λHµ → C-mof



C. Stroppel / Journal of Algebra 282 (2004) 349–367 357

.

ts

l
ft
s
e

l

which is defined (up to equivalence) by the properties dimC(λLµ) = 1 and dimC L′ = 0
for all other simple objectsL′: We choose projective coversλP

n
µ ∈ λHn

µ of λLµ and pro-
jectionspn,m : λP

n
µ � λP

m
µ for n � m such that(λP n

µ,pn,m) becomes a projective system
The functor is then given as

V(λ,µ)X := lim−→ HomH
(
λP

n
µ,X

)
for X ∈ λHµ. The action of the centre onX defines aZ ⊗ Z-bimodule structure on
V(λ,µ) X. Hence, by completion, we have a functor

V(λ,µ) : λHµ → Ŝλ ⊗ Ŝµ-mof

(Forλ = µ = 0, this functor is defined in [22].) Letλ′, µ′ be dominant and integral weigh

and let pr(µ,µ′) denote the projection ontoµHµ′ . Then thetranslation functorθ(µ,µ′)
(λ,λ′) is

defined as follows:

θ
(µ,µ′)
(λ,λ′) : λHλ′ → µHµ′

X �→ pr(µ,µ′)
(
X ⊗ E(µ − λ)l ⊗ E(µ′ − λ′)r

)
,

whereE(µ − λ) stands for the finite-dimensional, irreducibleg-module with extrema
weight (µ − λ). The upper indexl (or r) indicates thatE(µ − λ) is considered as a le
(or right)g-module and becomes aU(g)-bimodule with trivial right (or left) action. Let u
denote byθ l

s andθr
s the translation functors through thes-wall; more precisely: we choos

λ′ andµ′ ∈ h∗ such thatλ − λ′ andµ − µ′ are integral andWλ′ = Wµ′ = {1, s}. We set

θ l
s := θ

(λ,µ)

(λ′,µ)
◦ θ

(λ′,µ)

(λ,µ) : λHµ → λHµ and θr
s := θ

(λ,µ)

(λ,µ′) ◦ θ
(λ,µ′)
(λ,µ) : λHµ → λHµ.

(Up to equivalence, these functors do not depend on the choice ofλ′ andµ′. For details,
see [12,13].) Translation through the wall is ‘compatible’ withV in the following way.

Lemma 2.3. (1) Letλ, µ, ν be dominant and integral weights and let us assumeWµ ⊇ Wλ;
if I

ν
 Z then

θ
(λ,ν)
(µ,ν)

(
µP I

) ∼= λP
I .

(2) Let λ,µ, ν be dominant and integral weights, letWλ ⊆ Wµ. There is a natura
equivalence of functors(with res the functor restricting the scalars):

Vθ
(ν,λ)
(ν,µ)(•) ∼= (

Ŝν ⊗ Ŝλ
) ⊗Ŝν⊗Ŝµ V(•), (2.3)

Vθ
(λ,ν)
(µ,ν)(•) ∼= (

Ŝλ ⊗ Ŝν
) ⊗Ŝµ⊗Ŝν V(•). (2.4)

Vθ
(ν,µ)
(ν,λ) (•) ∼= res(Ŝ

ν⊗Ŝλ)

(Ŝν⊗Ŝµ)
V(•), (2.5)

Vθ
(µ,ν)

(•) ∼= res(Ŝ
λ⊗Ŝν)̂µ ̂ν V(•). (2.6)
(λ,ν) (S ⊗S )
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Proof. (1) The bimodule on the left-hand side is obviously projective inλHI by adjoint-
ness properties of translation functors. LetL′ be a simple object inλHI . The adjointness
properties of translation functors give

dimC HomH
(
θ

(λ,ν)
(µ,ν)µP I ,L′) = dimC HomH

(
µP I , θ

(µ,ν)
(λ,ν) L′) = 0

unlessL′ has maximal Gelfand–Kirillov dimension(see [13, 4.12(3), 9.1(3)]), in whic
caseθ(µ,ν)

(λ,ν) L′ ∼= µLν ; hence the space in question is one-dimensional.

(2) The formulae (2.4) and (2.6) are just reformulations of [22, Theorem 12 and P
sition 6] in the caseν is regular.

With the assumptions of the lemma, letI
ν
 Z. Let X ∈ λHI . We have natural isomor

phisms

Vθ
(µ,ν)

(λ,ν) X ∼= HomH
(
µP I , θ

(µ,ν)

(λ,ν) X
) ∼= HomH

(
θ

(λ,ν)
(µ,ν)µP I ,X

) ∼= HomH
(
λP

I ,X
) = VX

of vector spaces. Let nowν′ ∈ h∗ be a dominant, integral and regular weight. LetJ
ν ′


Z be the annihilator ofθ(µ,ν ′)
(µ,ν) µP I as rightZ-module. Since HomH(θ

(µ,ν ′)
(µ,ν) µP I ,L) ∼=

HomH(µP I , θ
(µ,ν)

(µ,ν ′)L) ∼= C for L = µLν ′ and zero for any simple objectL ∈ µHν ′ hav-

ing non-maximal Gelfand–Kirillov dimension, there is a surjectionµPJ � θ
(µ,ν ′)
(µ,ν) µP I . It

induces an inclusion

HomH
(
θ

(µ,ν ′)
(µ,ν) µP I , θ

(µ,ν ′)
(µ,ν) X

)
↪→ HomH

(
µPJ , θ

(µ,ν ′)
(µ,ν) X

)
. (2.7)

LetM be the minimal bisubmodule ofX such thatX/M has not maximal Gelfand–Kirillov

dimension. Our definitions imply that the projective cover ofθ
(µ,ν ′)
(µ,ν) M ∈ µHJ is a direct

sum of copies ofµPJ . We get

dimC HomH
(
µPJ , θ

(µ,ν ′)
(µ,ν) X

) = dimC HomH
(
µPJ , θ

(µ,ν ′)
(µ,ν) M

) = [
θ

(µ,ν ′)
(µ,ν) M : µLν ′

]
= [

θ
(µ,ν ′)
(µ,ν) X : µLν ′

] = |Wν |[X : µLν]
= dimC HomH

(
µP I , θ

(µ,ν)

(µ,ν ′)θ
(µ,ν ′)
(µ,ν) X

)
= dimC HomH

(
θ

(µ,ν ′)
(µ,ν) µP I , θ

(µ,ν ′)
(µ,ν) X

)
.

This shows that (2.7) is in fact an isomorphism. We get the following natural isomorph
of left Ŝµ-modules:

Vθ
(µ,ν)
(λ,ν)

|Wν |⊕
i=1

X
(1)∼= HomH

(
µP I , θ

(µ,ν)
(λ,ν) θ

(λ,ν)

(λ,ν ′)θ
(λ,ν ′)
(λ,ν) X

) (2)∼= HomH
(
µP I , θ

(µ,ν)

(µ,ν ′)θ
(µ,ν ′)
(λ,ν ′) θ

(λ,ν ′)
(λ,ν) X

)
(3)∼= HomH

(
θ

(µ,ν ′)
µP I , θ

(µ,ν ′)
′ θ

(λ,ν ′)
X

) (4)∼= HomH
(
µPJ , θ

(µ,ν ′)
′ θ

(λ,ν ′)
X

)

(µ,ν) (λ,ν ) (λ,ν) (λ,ν ) (λ,ν)
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(5)∼= Vθ
(µ,ν ′)
(λ,ν ′) θ

(λ,ν ′)
(λ,ν) X

(6)∼= reŝS
λ

Ŝµ Vθ
(λ,ν ′)
(λ,ν) X

(7)∼= reŝS
λ

Ŝµ HomH
(
λP

J , θ
(λ,ν ′)
(λ,ν) X

)
(8)∼= reŝS

λ

Ŝµ HomH
(
θ

(λ,ν ′)
(λ,ν) λP

I , θ
(λ,ν ′)
(λ,ν) X

) (9)∼= reŝS
λ

Ŝµ V

|Wν |⊕
i=1

X.

(The well-known regular situation is given by(6). The isomorphisms(1) to (3)

and (9) follow from properties of translation functors;(4) and (8) are given by (2.7)
and (5), (7) hold just by definition.) The resulting isomorphism restricts to a
ural isomorphismVθ

(µ,ν)
(λ,ν) X ∼= reŝS

λ

Ŝµ VX of Ŝµ ⊗ Ŝν -modules as follows: We con

sider X as a submodule ofθ(λ,ν)

(λ,ν ′)θ
(λ,ν ′)
(λ,ν) X via the adjunction morphism. Thenf ∈

Vθ
(µ,ν)
(λ,ν) X = HomH(µP I , θ

(µ,ν)
(λ,ν) X) corresponds via the canonical isomorphism (2)

θ
(µ,ν ′)
(µ,ν) f ∈ HomH(θ

(µ,ν ′)
(µ,ν) µP I , θ

(µ,ν ′)
(λ,ν ′) θ

(λ,ν ′)
(λ,ν) X). Again, we have a canonical isomorphis

θ
(µ,ν ′)
(λ,ν ′) θ

(λ,ν ′)
(λ,ν)

∼= θ
(µ,ν ′)
(µ,ν) θ

(µ,ν)

(λ,ν) . Following the sequence of isomorphisms, we get thatf fi-

nally corresponds toθ(λ,ν ′)
(λ,ν) Φ(f ) ∈ reŝS

λ

Ŝµ HomH(θ
(λ,ν ′)
(λ,ν) λP

I , θ
(λ,ν ′)
(λ,ν) X), if Φ(f ) denotes

the image off under the complete sequence. This proves statement (2.6). The isomo
(2.4) can be proved in an analogous way. We omit the details. To prove the statemen
and (2.5) it is sufficient to interchange the left and rightU(g)-structure. �

In [22], W. Soergel proved the faithfulness ofV(0,0) on projectives in0Hn
0. We will

prove the corresponding statement for the blocks occurring in Theorem 2.2 and ded
equivalence of categories. The first step is the following result

Theorem 2.4. Letλ, µ be integral dominant weights andI λ
 Z. LetX ∈ µHI be projective.
Then, the socle ofX is a direct sum of modules of the formλLµ (i.e. copies of the simpl
object with maximal Gelfand–Kirillov dimension).

Proof. Note, that any simple object inµHλ is of the formL(M(λ),L(w · µ)) for some
w ∈ W . This object has maximal Gelfand–Kirillov dimension, if and only if so h
L(w · µ). The latter is exactly the case ifw · µ = wo · µ (see [13, 10.12, 8.15, and 9.1]).

Take a filtration ofZ-modules

Z/I = M0 ⊃ M1 ⊃ Mr ⊃ Mr+1 = {0} (2.8)

with maximal possible semisimple subquotients. The universal enveloping algebra is
Z-module, even a free leftZ ⊗ U(n−)-module (see [16, Lemma 5.7]). Applying the (e
act) functorU ⊗Z • to the filtration above gives rise to a filtration ofU ⊗Z Z/I = U/UI

with Mr := U ⊗Z Mr
∼= ⊕

U/U(kerχλ), where the direct sum has dimC(Mr) many sum-
mands. Moreover, by construction, this submodule contains all elements annihila
kerχλ. In particular, it contains the socle ofU/UI . Obviously,M ∈ λH1

λ. This category
is equivalent to a certain subcategory ofO (via the functorT(λ,λ) from the introduc-
tion) such thatM corresponds to a direct sum of Verma modulesM(λ). Hence, the socle
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of M, and therefore also ofU ⊗Z Z/I , consists only of simple modules with max
mal Gelfand–Kirillov dimension. Since this property is still valid after tensoring w
some finite-dimensionalg-moduleE (see [13, 8.13]) and taking direct summands,
statement of the theorem follows by the previous description of the projective o
(Lemma 1.1). �

The following statement holds, in particular, forX1, X2 ∈ µHn
λ.

Corollary 2.5. Let λ, µ be integral dominant weights. LetI
λ
 Z. Let X1, X2 ∈ µHI and

X2 be projective. ThenV = V(µ,λ) induces an inclusion

HomH(X1,X2) ↪→ HomŜµ⊗Ŝλ(VX1,VX2).

Proof. The socle of any projective object contains only simple composition factors w
are not annihilated byV and imVf ∼= V imf for anyf ∈ HomH(X1,X2). �
Lemma 2.6. For λ, µ dominant integral weights andI λ
 Z. The following holds:

(1) There is an isomorphism ofZ-bimodules

V(U/UI) ∼−→ Z/I

and via completion

V(U/UI)
∼−→ Ŝλ/Î .

(2) VµP I ∼= Ŝµ ⊗ŜW Ŝλ/Î . In particular,VµPn
λ

∼= Ŝµ ⊗ŜW Ŝλ/mn
λ for anyn ∈ N+.

Proof. The subquotients of the filtration (2.8) are isomorphic toU ⊗Z Mi/Mi+1 and
therefore contained inλH1

λ. Moreover,T(λ,λ)(U ⊗Z Mi/Mi+1) ∼= ⊕m
j=1 M(λ), where

M(λ) ∈ O is the Verma module of highest weightλ, the functorT(λ,λ) denotes the BG
equivalence betweenλH1

λ and a certain subcategory ofOλ, and m = dimC Mi/Mi+1.
Therefore,

dimC HomH
(
λP

I ,U/UI
) = [U/UI : λLλ] =

n∑
i=0

dimC(Mi/Mi+1) = dimC Z/I.

We claim that there is an inclusion ofZ-bimodules

Z/I ↪→ HomH
(
λP

I ,U/UI
)
. (2.9)

Since

[
(U ⊗Z Z/I)/(U ⊗Z m/I) : λLλ

] = 1,
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there exists a (unique up to a scalar) morphismf ∈ HomH
(
λP

I , U/UI) such that
imf �⊆ U ⊗Z m/I . On the other hand,z.f = f.z �= 0 for any z ∈ Z/I . That means
z �→ z.f defines the required inclusion. The first part of the lemma follows sinceVU/UI ∼=
Homg(λP

I ,U/UI).
To prove the second statement, we firstshow that there is an isomorphism ofU -

bimodules

−ρP I ∼= θ
(−ρ,λ)

(λ,λ)
U/UI. (2.10)

If N ∈ −ρHI then θ
(λ,λ)
(−ρ,λ) N ∈ λHI . Therefore,θ(−ρ,λ)

(λ,λ) U/UI ∈ −ρHI is projective by

the projectivity ofU/UI ∈ λHI and by adjointness properties of translation funct
The category−ρHI has up to isomorphism only one simple object, namely−ρLλ, hence

θ
(−ρ,λ)
(λ,λ) U/UI is a direct sum of copies of−ρP I , the projective cover of−ρLλ. On the other

hand,

dimC HomH
(
θ

(−ρ,λ)

(λ,λ) U/UI,−ρLλ

) = dimC Hom
(
U/UI, θ

(λ,λ)
(−ρ,λ)−ρLλ

)
= [

θ
(λ,λ)
(−ρ,λ)−ρLλ :L(

M(λ),L(λ)
)]

, (2.11)

whereL(M(λ),L(λ)) denotes the simple head ofU/UI (or of U/U(kerχλ)).
Sinceθ

(λ,λ)
(−ρ,λ) −ρLλ ∈ λH1

λ, the multiplicity (2.11) above is equal to

[
θλ−ρL(−ρ) : L(λ)

] = [
P(wo · λ) : L(λ)

] = (
P(wo · λ) : M(λ)

) = 1.

(Here,L(µ) ∈ O denotes the simple module with highest weightµ ∈ h∗ and projective
coverP(µ).) This proves the isomorphism (2.10). Combining it with Lemma 2.3 and
first part of the lemma, we get the following isomorphisms:

VλP
I ∼= Vθ

(µ,λ)

(−ρ,λ)θ
(−ρ,λ)

(λ,λ) U/UI ∼= (
Ŝµ ⊗ Ŝλ

) ⊗(Ŝ−ρ⊗Ŝλ) reŝS
λ⊗Ŝλ

Ŝ−ρ⊗Ŝλ VU/UI

∼= Ŝµ ⊗ŜW Ŝλ/Î .

This proves the lemma.�
Proof of Theorem 2.2. In the situation of the theorem, there is up to isomorphism o
one simple object, namelyµLλ, in µHn

λ. Its projective cover is therefore a minim
projective generator. By Corollary 2.5, it is sufficient to show that dimC EndH(µPn

λ ) =
dimC End̂Sµ⊗Ŝλ (VµPn

λ ).
The definition ofV and Lemma 2.6 give the equalities

dimC EndH
(
µPn

λ

) = dimC

(
VµPn

λ

) = dimC

(
Ŝµ ⊗ŜW Ŝλ/mn

λ

)
= |W/Wµ| · dimC

(
Ŝλ/(mλ)

n
)
,

sinceŜλ is a freeŜW module of rank|W/Wµ|. On the other hand,
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End̂Sµ⊗Ŝλ

(
Ŝµ ⊗

ŜW Ŝλ/(mλ)
n
) ∼= HomŜW ⊗Ŝλ

(
Ŝλ, Ŝµ ⊗ŜW Ŝλ/(mλ)

n
)

∼= Hommod−Ŝλ

(
Ŝλ, Ŝµ ⊗ŜW Ŝλ/(mλ)

n
)

∼=
|W/Wµ |⊕

i=1

End̂Sλ

(
Ŝλ/(mλ)

n
)
.

The theorem follows. �

3. The Bernstein–Gelfand equivalence: an obvious generalisation?

Recall the equivalence of categories (0.2) with its generalisation to the singular ca
this section we deal with the question whether it can directly be generalised to an
alence of categories betweenλHn

µ and a subcategory of projectively presentable object
in the ‘thick’ categoryOn. This is a full subcategory of the category ofU(g)-modules.
A U(g)-moduleM is an object ofOn if it satisfies the following conditions:

(1) M is a finitely generatedU(g)-module;
(2) M = ⊕

λ∈h∗ Mn
λ , whereMn

λ = {m ∈ M | (h − λ(h))nm = 0}; and
(3) M is locallyU(b)-finite, i.e. dimC U(b)m < ∞ for all m ∈ M.

Note that forn = 1 this is just the categoryO of [5]. The action of the centre gives
decomposition

On =
⊕
µ

On
µ,

whereµ runs through a system of dominant orbit representatives ofh∗/W ·. This is in
bijection to the maximal ideals of the centre ofU by the Harish-Chandra isomorphism
(For more details, see [20,22]). LetLw0 ∈ On

0 be the simple Verma module (with highe
weightwo · 0). LetPn

w0
be its projective cover inOn

0. For λ ∈ h∗ andn ∈ Z>0, we define
the ‘deformed’ Verma module

Mn(λ) = U(g) ⊗U(b) S/(kerλ)n,

whereS becomes aU(b)-module via the canonical surjectionb � h. Note that forn = 1
this is the usual Verma module with highest weightλ. Forλ dominant,Mn(λ) ∈ On

λ.
The following theorem is due to Soergel.

Theorem 3.1. There are isomorphisms of algebras

EndH
(
0P

n
0

) ∼= EndOn

(
Pn

w0

) ∼= S ⊗SW S/(h)n.
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Proof. The equivalence of categories [20, Proposition 1] sends0P
n
0 to Pn

w0
and gives the

first isomorphism. For the second isomorphism we considerPn
w0

as the(h)n-specialisation
of the ‘deformationP0 of the antidominant projectiveP(w0 · 0) ∈ O0’ [22, Theorem 7].
Since specialisation is compatible with morphism spaces in the sense of [22, Theorem
the Endomorphism Theorem forP0 [22, Theorem 9] implies

EndOn

(
Pn

w0

) ∼= T ⊗T W T /(h)n,

whereT is the localisation ofT at the maximal ideal generated byh. Let f , g ∈ S and
g(0) �= 0. Then

f

g
= f

∏
w∈W,w �=e gw∏
w∈W gw

,

with invariant denominator, henceT ⊗T W T /(h)n = S ⊗SW S/(h)n. This proves the theo
rem. �

A moduleM ∈ On is calledPn
w0

-presentable, if there is an exact sequence of the fo
P1 → P2 → M → 0, whereP1 andP2 are finite direct sums ofPn

w0
. In [5], it was proved

that the functor• ⊗U M(−ρ) defines an equivalence of categories between0H1−ρ and the

full subcategory ofO0 given byP 1
w0

-presentable objects. The following negative res
seems to be important enough to state it.

Corollary 3.2. In general, the category0Hn−ρ is not equivalent to the full subcategoryPn

of On
0 defined by thePn

w0
-presentable objects.

Proof. By Theorem 3.1, EndOn (P n
w0

) ∼= S ⊗SW S/(h)n, hence the subcategoryPn in
question is equivalent to the category of finitely generatedS ⊗SW S/(h)n-modules. Let
g = sl2 andn � 2. ThenS ⊗SW S/(h)n ∼= C[x] ⊗(x2) C[x]/(xn). It is easy to check tha
the mapx �→ 1 ⊗ x and y �→ x ⊗ 1 defines an isomorphismC[x, y]/〈xn, x2 + y2〉 ∼=
C[x] ⊗(x2) C[x]/(xn). We claim that there exists an isomorphism of graded algebras

C[x, y]/〈
xn, x2 + y2〉 ∼= C[x, y]/((

C[x, y]+)Dn
)
, (3.1)

whereDn denotes the dihedral group of order 2n. In fact, the groupDn is generated by th
maps

(x, y) �→ (
cos(2π/n)x + sin(2π/n)y,cos(2π/n)y − sin(2π/n)x

)
and

(x, y) �→ (x,−y).

Direct calculations show thatx2 + y2 is an invariant polynomial. A second generator
the invariants can be therefore chosen homogeneous of degreen (see [15, 17.4]), wher
y occurs only with even exponents. This implies thatxn is contained in the ideal gen
erated by the invariants. Comparing the dimensions yields the required isomorphi
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particular Ext•S⊗
SW S/(h)n

∼= C[x, y] as a graded vector space (see proof of Theorem

On the other hand,̂S ⊗ŜW ŜW /mn−ρ
∼= C[x]/(x2n), hence Ext•

0Hn−ρ
(0L−ρ, 0L−ρ) ∼=

Ext•
C[x]/(x2n)

(C,C) ∼= C[x] as graded vector spaces. In particular, the categories in que
are not equivalent. �

4. The combinatorics of Harish-Chandra bimodules

In this section we prove the following general result.

Theorem 4.1. Let λ,µ ∈ h∗ be dominant and integral andI λ
 Z. Let P,Q ∈ µHI be
projective. ThenV induces an isomorphism

αQ,P : HomH(Q,P ) ∼= HomŜµ⊗Ŝλ (VQ,VP).

We start with some preparatory lemmata.

Lemma 4.2. Let λ ∈ h∗ be an integral and dominant weight. LetI
λ
 Z and letP ∈ µHI

be projective. There exists an exact sequence of the form

0−→ P −→
m1⊕
i=1

µP I −→
m2⊕
i=1

µP I

for somem1,m2 ∈ N.

Proof. Let first µ = λ. Let L ∈ λHI be simple of non-maximal Gelfand–Kirillov dimen
sion. We claim that

Ext1
λHI (L,U/UI) = 0. (4.1)

For any simple reflections, the adjunction morphism gives (Theorem 2.4) a short e
sequence of the form

U/UI ↪→ θ l
s U/UI � Ks (4.2)

for someKs ∈ λHI . The bimoduleU/UI has a filtration with subquotients isomorphic
U/U kerχλ. SinceT(λ,λ)U/U kerχλ

∼= M(λ) andT(λ,λ)θ
l
s
∼= θsT(λ,λ), the exactness ofθ l

s

implies HomH(L,Ks) = 0. (Here,θs denotes the translation through the wall in categ
O.) We chooses such thatθ l

sL = 0. From (4.2) we get an exact sequence

HomH(L,Ks) → Ext1 I (L,U/UI) → Ext1 I

(
L,θl

sU/UI
)
,

λH λH



C. Stroppel / Journal of Algebra 282 (2004) 349–367 365

c-

cate-

f
ors
where the outer terms are zero, hence (4.1) holds. SetF = θ
(λ,λ)
(−ρ,λ)θ

(−ρ,λ)

(λ,λ) . The adjunction
morphismU/UI ↪→ FU/UI is injective (by Theorem 2.4). LetK be the cokernel. From
the exactness of

0 = HomH(L,F U/UI) → HomH(L,K) → Ext1
λHI (L,U/UI)

it follows HomH(L,K) = 0. HenceK ↪→ FK via the adjunction morphism. By adjun
tion, Ext1

λHI (FK,L) = 0 if L �= λLλ. ForL = λLλ, we have an exact sequence

0 → HomH(FK,L) → HomH(F2U/UI,L) → HomH(FU/UI,L)

→ Ext1
λHI (FK,L) → Ext1

λHI (F2U/UI,L) → ·· ·

The last term is zero, sinceU/UI ∈ λHI is projective; HomH(FU/UI,L) = C (see (2.10)
and Lemma 2.3) and dim HomH(F2U/UI,L) = |Wλ| [5, 4.2c]. On the other hand,U/UI

surjects ontoU/(kerχλ)U , henceF(K) surjects onto

Q :=F
(
coker

(
(U/kerχλ) → F(U/kerχλ)

))
,

i.e. F applied to the cokernel of the adjunction morphism. Standard arguments in
gory O give Q ∼= ⊕|Wλ|−1

i=1 λP
1
λ . Therefore, dim HomH(FK,L) � |Wλ| − 1 and hence

Ext1
λHI (FK,L) = 0 for any simple objectL ∈ H. In particular,FK is projective and by

adjointness properties ofF it follows thatFK is a direct sum of copies ofλP
I . Altogether,

we get the existence of an exact sequence as in the lemma in the caseµ = λ andP = U/UI .
The general statement follows from Theorem 1.1 using translation functors.�
Lemma 4.3. If P , Q ∈ µHI are projective andP = µP I , thenαQ,P is an isomorphism.

Proof. By Corollary 2.5, we only have to compare the dimensions. Sinceθ
(−ρ,λ)
(µ,λ) Q ∈

−ρHI is projective,θ(−ρ,λ)

(µ,λ) Q ∼= ⊕r
i=1 −ρP I where

r = [Q : λLλ]
[−ρP I : −ρLλ] = [Q : λLλ]

[U/UI : λLλ] = [Q : λLλ]
dimZ/I

.

Note that we used Lemma 2.6 for the last equality. On the other hand,

HomŜµ⊗Ŝλ

(
VQ,VλP

I
) ∼= HomŜµ⊗Ŝλ

(
VQ, Ŝµ ⊗ŜW Ŝλ/Î

) ∼= HomŜW ⊗Ŝλ

(
VQ, Ŝλ/Î

)
.

SinceQ is projective, Theorem 1.1 and Lemma 2.3 imply thatVQ is a direct summand o
someGVU/UI , whereG is given by a composition of induction and restriction funct
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as in Lemma 2.3. In particular, Hom̂SW ⊗Ŝλ (VQ, Ŝλ/Î ) = Hommod-Ŝλ (VQ, Ŝλ/Î ). More-

over,VQ is a direct summand of a free rightŜλ/Î -module, hence itself projective, an
therefore also free (sincêSλ is a local ring). The rank ofVQ is equal to

dimVQ

dim Ŝλ/Î
.

Comparison with the formula above gives the desired result.�
Proof of Theorem 4.1. Let P , Q be as in the theorem. LetP

j
↪→ P1 → P2 be an exac

sequence as in Lemma 4.2. This provides a commutative diagram with exact rows

0 HomH(Q,P )

αQ,P

HomH(Q,P1)

αQ,P1

HomH(Q,P2)

αQ,P2

HomŜµ⊗Ŝλ(VQ,VP)
φ:=Vj◦

HomŜµ⊗Ŝλ(VQ,VP1) HomŜµ⊗Ŝλ(VQ,VP2).

Sincej is injective andV is exact,Vj is injective and henceφ as well. The Lemma 4.3
implies the theorem forP,Q ∈ µHI projective. ForQ arbitrary one takes a projectiv
resolution. The full statement follows then easily using the five lemma.�
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