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BLOCKS OF THE CATEGORY OF CUSPIDAL sp2n-MODULES

VOLODYMYR MAZORCHUK AND CATHARINA STROPPEL

In this paper we show that every block of the category of cuspidal general-
ized weight modules with finite dimensional generalized weight spaces over
the Lie algebra sp2n(C) is equivalent to the category of finite dimensional
C[[t1, t2, . . . , tn]]-modules.

1. Introduction and description of the results

Fix the ground field to be the complex numbers. Fix n ∈ {2, 3, . . . } and consider
the symplectic Lie algebra sp2n =: g with a fixed Cartan subalgebra h and root
space decomposition

g= h⊕
⊕
α∈1

gα,

where 1 denotes the corresponding root system. For a g-module V and λ ∈ h∗ set

Vλ := {v ∈ V : h · v = λ(h)v for any h ∈ h},

V λ
:= {v ∈ V : (h− λ(h))k · v = 0 for any h ∈ h and k� 0}.

A g-module V is called

• a weight module provided that V =
⊕

λ∈h∗ Vλ;

• a generalized weight module provided that V =
⊕

λ∈h∗ V λ;

• a cuspidal module provided that for any α ∈ 1 the action of any nonzero
element from gα on V is bijective.

If V is a generalized weight module, then the set {λ ∈ h∗ : Vλ 6= 0} is called the
support of V and is denoted by supp(V ).

Denote by Ĉ the full subcategory in g-mod that consists of all cuspidal gen-
eralized weight modules with finite dimensional generalized weight spaces, and
by C the full subcategory of Ĉ consisting of all weight modules. Understanding
the categories C and Ĉ is a classical problem in the representation theory of Lie
algebras. The first major step towards the solution of this problem was made in
[Mathieu 2000], where all simple objects in Ĉ were classified. Britten et al. [2004]
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showed that the category C is semisimple, hence completely understood. The aim
of the present note is to describe the category Ĉ.

Apart from sp2n , cuspidal weight modules with finite dimensional weight spaces
exist only for the Lie algebra sln [Fernando 1990]. In the latter case, simple objects
in the corresponding category Ĉ are classified in [Mathieu 2000], the category C is
described in [Grantcharov and Serganova 2010] (see also [Mazorchuk and Stroppel
2011]), and the category Ĉ is described in [Mazorchuk and Stroppel 2011]. Taking
all these results into account, the present paper completes the study of cuspidal
generalized weight modules with finite dimensional generalized weight spaces over
semisimple finite dimensional Lie algebras.

Let U (g) be the universal enveloping algebra of g and Z(g) the center of U (g).
The action of Z(g) on any object from Ĉ is locally finite. Using this and the
standard support arguments gives the following block decomposition of Ĉ:

Ĉ∼=
⊕

χ :Z(g)→C
ξ∈h∗/Z1

Ĉχ,ξ ,

where Ĉχ,ξ consists of all V such that supp(V )⊂ ξ and (z−χ(z))k · v = 0 for all
v ∈ V , z ∈ Z(g) and k� 0. Set

Cχ,ξ := C∩ Ĉχ,ξ .

From [Mathieu 2000, Section 9] it follows that each nontrivial Ĉχ,ξ contains a
unique (up to isomorphism) simple object. In particular, Ĉχ,ξ is indecomposable,
hence a block. From this and [Britten et al. 2004] we thus get that every nontrivial
block Cχ,ξ is equivalent to the category of finite dimensional C-modules. Our main
result is the following:

Theorem 1. Every nontrivial block Ĉχ,ξ is equivalent to the category of finite di-
mensional C[[t1, t2, . . . , tn]]-modules.

To prove Theorem 1 we use and further develop the technique of extension of
the module structure from a Lie subalgebra, originally developed in [Mazorchuk
and Stroppel 2011] for the study of categories of singular and nonintegral cuspidal
generalized weight sln-modules. The proof of Theorem 1 is given in Section 4.
In Section 2 we recall the standard reduction to the case of the so-called simple
completely pointed modules (that is, simple weight cuspidal modules for which all
nontrivial weight spaces are one-dimensional) and a realization of such modules
using differential operators. In Section 3 we define a functor from the category of
finite dimensional C[[t1, t2, . . . , tn]]-modules to any block Ĉχ,ξ containing a simple
completely pointed module. In Section 4 we prove that this functor is an equiva-
lence of categories. In Section 5 we present some consequences of our main result.
In particular, we recover the main result of [Britten et al. 2004] stated above.
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2. Completely pointed simple cuspidal weight modules

A weight g-module V is called pointed provided that dim Vλ = 1 for some λ ∈ h∗.
If V is a pointed simple cuspidal weight g-module, then, obviously, all nontrivial
weight spaces of V are one-dimensional, in which case one says that V is com-
pletely pointed (see [Britten et al. 2004]). It is enough to consider blocks with
completely pointed simple modules because of the following:

Lemma 2. All nontrivial blocks of Ĉ are equivalent.

Proof. In the case of the category C, this is proved in [Britten et al. 2004, Lemma 2].
The same argument works in the case of the category Ĉ. �

We recall the explicit realization of completely pointed simple cuspidal mod-
ules from [Britten and Lemire 1987]. Denote by Wn the n-th Weyl algebra, that
is, the algebra of differential operators with polynomial coefficients in variables
x1, x2, . . . , xn . The algebra Wn is generated by xi and ∂/∂xi , i = 1, . . . , n, which
satisfy the relations [∂/∂xi , x j ] = δi, j . Let ε1, ε2, . . . , εn be the vectors of the
standard basis in Cn . Identify Cn with h∗ such that 1 becomes the following
standard root system of type Cn:

{±(εi ± ε j ) : 1≤ i < j ≤ n} ∪ {±2εi : 1≤ i ≤ n}.
Then

H = Hn = {2ε1, ε2− ε1, ε3− ε2, . . . , εn − εn−1}

is a basis of 1. Fix a basis of g of the form

C := {X±εi±ε j : 1≤ i < j ≤ n} ∪ {X±2εi : i = 1, 2, . . . , n} ∪ {Hα : α ∈ H}

such that the following map defines an injective Lie algebra homomorphism from
g to the Lie algebra associated with Wn:

(1)

Xεi−ε j 7→ xi
∂

∂x j
, 1≤ i 6= j ≤ n,

Xεi+ε j 7→ xi x j , i, j = 1, 2, . . . , n,

X−εi−ε j 7→
∂

∂xi

∂

∂x j
, i, j = 1, 2, . . . , n,

Hεi+1−εi 7→ xi+1
∂

∂xi+1
− xi

∂

∂xi
, i = 1, 2, . . . , n− 1,

H2ε1 7→
1
2

(
x1

∂

∂x1
+

∂

∂x1
x1

)
.

Set
B := {(b1, b2, . . . , bn) ∈ Zn

: b1+ b2+ · · ·+ bn ∈ 2Z}.

For a = (a1, a2, . . . , an) ∈ Cn define N (a) to be the linear span of

{xb
:= xa1+b1

1 xa2+b2
2 · · · xan+bn

n : b ∈ B}.
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First define an action of the elements from C on N (a) using the formulae from (1)
as follows:

(2)

Xεi−ε j x
b
= (a j + b j )xb+εi−ε j 1≤ i 6= j ≤ n,

Xεi+ε j x
b
= xb+εi+ε j i, j = 1, 2, . . . , n,

X−εi−ε j x
b
= (ai + bi )(a j + b j )xb−εi−ε j 1≤ i 6= j ≤ n,

X−2εi x
b
= (ai + bi )(ai + bi − 1)xb−2εi i = 1, 2, . . . , n,

Hεi+1−εi x
b
= (ai+1+ bi+1− ai − bi )xb i = 1, 2, . . . , n− 1,

H2ε1 xb
=

1
2(2a1+ 2b1+ 1)xb.

Theorem 3 [Britten and Lemire 1987]. (i) For every a ∈ Cn the formulae in (2)
define on N (a) the structure of a completely pointed weight g-module.

(ii) If ai 6∈ Z for all i = 1, . . . , n, then the module N (a) is simple and cuspidal.

(iii) Every completely pointed simple cuspidal g-module is isomorphic to N (a)
for some a ∈ Cn such that ai 6∈ Z, i = 1, . . . , n.

3. The functor F

This section is similar to [Mazorchuk and Stroppel 2011, Section 3.1]. Fix a ∈
Cn such that ai 6∈ Z, i = 1, . . . , n. Let Ĉa denote the block of Ĉ containing
N (a). The category Ĉa is closed under extensions. Denote the category of fi-
nite dimensional C[[t1, t2, . . . , tn]]-modules by C[[t1, t2, . . . , tn]]-mod. For V ∈
C[[t1, t2, . . . , tn]]-mod denote by Ti the linear operator describing the action of ti
on V . Set 0= (0, 0, . . . , 0) ∈ B.

For b ∈ B consider a copy V b of V . Define

FV :=
⊕
b∈B

V b.

Define the action of elements from C on the vector space FV in the following way:
for v ∈ V b set

(3)



Xεi−ε jv = (T j + (a j + b j ) IdV )v ∈ V b+εi−ε j ,

Xεi+ε jv = v ∈ V b+εi+ε j ,

X−εi−ε jv = (Ti + (ai + bi ) IdV )(T j + (a j + b j ) IdV )v ∈ V b−εi−ε j ,

X2εiv = (Ti + (ai + bi ) IdV )(Ti + (ai + bi − 1) IdV )v ∈ V b−2εi ,

Hεi+1−εiv = (Ti+1− Ti + (ai+1+ bi+1− ai − bi ) IdV )v ∈ V b,

H2ε1v =
1
2(2T1+ (2a1+ 2b1+ 1) IdV )v ∈ V b,
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where i and j are as in the respective row of (2). For a homomorphism f : V→W
of C[[t1, t2, . . . , tn]]-modules denote by F f the diagonally extended linear map
from FV to FW , that is, for every b ∈ B and v ∈ V b, set

(4) F f (v)= f (v) ∈W b.

Proposition 4. (i) The formulae of (3) define on FV the structure of a g-module.

(ii) Every V b is a generalized weight space of FV . Moreover, for b 6= b′ the
weights of V b and V b′ are different.

(iii) The module FV belongs to Ĉa.

(iv) Formulae (3) and (4) turn F into a functor

F : C[[t1, t2, . . . , tn]]-mod→ Ĉa.

(v) The functor F is exact, faithful and full.

Proof. Consider the g-module N (a) for a as above. Then, for every b, the defin-
ing relations of g (in terms of elements from C) applied to xb can be written as
some polynomial equations in the ai . Since (2) defines a g-module for any a by
Theorem 3(i), these equations hold for any a, that is, they are actually formal
identities in the ai . Now write

T j + (a j + b j ) IdV = A j + B j ,

a sum of matrices, where A j = T j + a j IdV and B j = b j IdV . All Ai and B j

commute with each other and with all the Tl . For a fixed b, the defining relations
for g on FV reduce to our formal identities (in the Ai ) and hence are satisfied. This
proves claim (i). Claim (ii) follows from the last two lines in (3) and the fact that
all the Ti are nilpotent (hence zero is the only eigenvalue).

As f commutes with all Ti , the map F f commutes with the action of all elements
from C and hence defines a homomorphism of g-modules. By construction we also
have F( f ◦ f ′)= F f ◦F f ′, which implies claim (iv).

By construction, F is exact and faithful. It sends the simple one-dimensional
C[[t1, t2, . . . , tn]]-module to N (a) (as in this case all Ti =0 and hence (3) gives (2)),
which is an object of the category Ĉa closed under extensions. Claim (iii) follows.

To complete the proof of claim (v) we are left to show that F is full. Let
ϕ : FV → FW be a g-homomorphism. Then ϕ commutes with the action of all
elements from h. Using claim (ii), we get that ϕ induces, by restriction, a linear map
f : V = V 0

→ W 0
= W . As ϕ commutes with all Hεi+1−εi , the map f commutes

with all operators Ti+1 − Ti . As ϕ commutes with H2ε1 , the map f commutes
with T1. It follows that f is a homomorphism of C[[t1, t2, . . . , tn]]-modules. This
yields ϕ = F f and thus the functor F is full. This completes the proof of claim (v)
and of the whole proposition. �
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4. Proof of Theorem 1

Because of Lemma 2 it is enough to fix one particular block and show there that F
is an equivalence. Thus, we may assume that ai +a j 6∈ Z for all i, j (in particular,
ai 6∈ Z for all i). According to Proposition 4, we are only left to show that F is
dense (that is, essentially surjective). We establish the density of F by induction
on n. We first prove the induction step and then the basis of the induction, which
is the case n = 2.

Denote by λ the weight of x0
∈ N (a) (see Proposition 4(ii)). Let M ∈ Ĉa. Set

V := Mλ and denote by M ′ the a-module U (a)V .

4.1. Reduction to the case n = 2. The main result of this section is the following:

Proposition 5. If the functor F is dense for n = 2, then it is dense for any n ≥ 2.

Proof. Assume that n > 2 and that the functor F is dense in the case of the alge-
bra sp2n−2. Realize sp2n−2 as the subalgebra a of g corresponding to the subset
Hn−1 ⊂ H of simple roots.

Let Y1, Y2,. . . , Yn be the linear operators representing the action of the elements
H2ε1, Hε2−ε1 , Hε3−ε2 ,. . . , Hεn−εn−1 on V , respectively. Set

(5)

T1 := Y1−
1
2(2a1+ 1) IdV ,

T2 := Y2+ T1− (a2− a1) IdV ,

T3 := Y3+ T2− (a3− a2) IdV ,
...

Tn := Yn + Tn−1− (an − an−1) IdV .

The Ti are obviously pairwise commuting nilpotent linear operators.
The module M ′ is a cuspidal generalized weight a-module with finite dimen-

sional weight spaces. Moreover, as all composition subquotients of M are of the
form N (a), all composition subquotients of M ′ are of the form N (a)′, the latter
being a completely pointed simple cuspidal a-module. By our inductive assump-
tion, the functor F is dense in the case of the algebra a. Hence M ′∼= N ′ :=

⊕
bV b,

where b ∈ B is such that bn = 0, and the action of a on N ′ is given by (3).

Lemma 6. There is a unique (up to isomorphism) g-module Q ∈ Ĉa such that
Q′ = N ′ and which gives the linear operator Tn when computed using (5).

Proof. The existence statement is clear, so we need only to show uniqueness.
Assume that Q ∈ Ĉa is such that Q′ = N ′ and the formulae in (5) applied to Q
produce the linear operator Tn . Since an 6∈Z, the endomorphism Tn+(an+bn) IdV

is invertible for all bn ∈ Z. As the action of Xεn−εn−1 on Q is bijective, we can
fix a weight basis in Q such that both the a-action on Q′ = N ′ and the action
of Xεn−εn−1 on the whole Q is given by (3). As n> 2, the elements X±2ε1 commute
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with Xεn−εn−1 and hence their action extends uniquely to the whole of Q using this
commutativity. This holds similarly for all elements X±(εi−εi−1), i < n−1, and for
the element Xεn−2−εn−1 . This leaves us with the elements Xεn−1−εn−2 and Xεn−1−εn .
The simple roots εn−1−εn−2 and εn−εn−1 corresponding to the elements Xεn−1−εn−2

and Xεn−εn−1 generate a root system of type A2 (this corresponds to the alge-
bra sl3). Lemmas 21 and 22 of [Mazorchuk and Stroppel 2011] prove that the
actions of Xεn−1−εn−2 and Xεn−1−εn extend uniquely to Q. This completes the proof
of Lemma 6. �

The module FV obviously satisfies (FV )′= N ′ and defines the linear operator Tn

when computed using (5). Hence Lemma 6 implies M ∼= FV . Since M ∈ Ĉa was
arbitrary, the functor F is dense, completing the proof of Proposition 5. �

4.2. Base of the induction: some sl2-theory as preparation. In this section we
will recall (and slightly improve) some classical sl2-theory. For details see [Ma-
zorchuk 2010]. Consider the Lie algebra sl2 = sl2(C) with standard basis

e :=
(

0 1
0 0

)
, f :=

(
0 0
1 0

)
, h :=

(
1 0
0 −1

)
.

Let V be a finite dimensional vector space and A and B be two commuting linear
operators on V . For i ∈Z denote by V (i) a copy of V and consider the vector space
V :=

⊕
i∈Z V (i) (a direct sum of copies of V indexed by i). Define the actions of

e, f and h on V as follows: for v ∈ V (i) set

(6)

v := (P − i IdV )v ∈ V (i+1),

v := (Q+ i IdV )v ∈ V (i−1),

v := (Q− P + 2i IdV )v ∈ V (i).

This can be depicted as follows (here right arrows represent the action of e, left
arrows represent the action of f and loops represent the action of h):

. . .
P+2 IdV

,,
V (−1)

P+IdV
,,

Q−IdV

kk

Q−P−2 IdV

VV V (0)

Q
ll

P
,,

Q−P

VV V (1)
P−IdV

++

Q+IdV

ll

Q−P+2 IdV

VV
. . .

Q+2 IdV

ll

Proposition 7. (i) The formulae in (6) define on V the structure of a generalized
weight sl2-module with finite dimensional generalized weight spaces.

(ii) Every cuspidal generalized weight sl2-module with finite dimensional gener-
alized weight spaces is isomorphic to V for some V with P and Q as above.

(iii) The action of the Casimir element c := (h+ 1)2+ 4 f e on V is given by the
linear operator (P + Q+ IdV )

2.
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(iv) Let C2 denote the natural sl2-module (the unique two-dimensional simple sl2-
module). Then the linear operator (c− (P + Q + 2 IdV )

2)(c− (P + Q)2)
annihilates the sl2-module C2

⊗ V .

(v) Let C3 denote the unique three-dimensional simple sl2-module. Then the lin-
ear operator (c−(P+Q+3 IdV )

2)(c−(P+Q+IdV )
2)(c−(P+Q−IdV )

2)

annihilates the sl2-module C3
⊗ V .

Proof. The fact that V is an sl2-module is checked by a direct computation. That V
is a generalized weight module follows from the fact that the action of h on V pre-
serves (by (6)) each V i and hence is locally finite. Since the category of generalized
weight modules is closed under extensions, to prove that V has finite dimensional
generalized weight spaces it is enough to consider the case when h has a unique
eigenvalue on V (0), say λ. However, in this case h has a unique eigenvalue on V i ,
namely λ+2i , which implies that V

λ
= V is finite dimensional. Claim (i) follows.

To prove Claim (iii) we observe that the action of c on V i is given by

(Q− P + (2i + 1) IdV )
2
+ 4(Q+ (i + 1) IdV )(P − i IdV )= (P + Q+ IdV )

2.

Claim (ii) can be found with all details in [Mazorchuk 2010, Chapter 3].
To prove claim (iv) choose a basis {v1, . . . , vk} in V , which gives rise to a

basis {v(i)1 , . . . , v
(i)
k , i ∈ Z} in V . Choose the standard basis {e1, e2} in C2. Since

he1 = e1, he2 =−e2 and h acts by Q− P + 2i IdV on V (i), we obtain that h acts
by Q− P + (2i + 1) IdV on the vector space W (i) with basis

{ e1⊗ v
(i)
1 , . . . , e1⊗ v

(i)
1 , e2⊗ v

(i+1)
1 , . . . , e2⊗ v

(i+1)
1 }.

We have C2
⊗V ∼=

⊕
i∈Z W (i) and one easily computes that in the above basis the

actions of e and f on C2
⊗ V are given by the following picture:

. . . ,,
W (−1)

(
P+Id Id

0 P

)
,,

kk W (0)( Q 0
Id Q+Id

)ll

(
P Id
0 P−Id

)
,,
W (1) ++( Q+Id 0

Id Q+2 Id

)ll . . .ll

The action of c on W (0) is now easily computed to be given by the linear operator

G :=
(
(Q−P+2 Id)2+4(Q+Id)P 4(Q+Id)

4P (Q−P+2 Id)2+4(Q+2 Id)(P−Id)+4 Id

)
.

The characteristic polynomial of G is

χG(λ)= (λ− (P + Q+ 2 Id)2)(λ− (P + Q)2).

Claim (iv) now follows from the Cayley–Hamilton theorem.
We have an isomorphism of sl2-modules as follows: C2

⊗C2 ∼= C3
⊕C (here

C is the trivial module), and hence claim (v) follows applying claim (iv) twice.
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Alternatively, one could do a direct calculation, similar to the proof of (iii). The
proposition follows. �

The statement of Proposition 7(ii) is a special case of a more general result
of Gabriel and Drozd describing blocks of the category of (generalized) weight
sl2-modules, in particular, simple weight sl2-modules (see [Drozd 1983; Dixmier
1996, 7.8.16]). The statements of Proposition 7(iv) and (v) are sl2-refinements of a
theorem of Kostant [1975, Theorem 5.1] describing possible (generalized) central
characters of the tensor product of a finite dimensional module with an infinite
dimensional module.

4.3. The case n = 2. Assume now that n = 2. We have a1, a2, a1+ a2 6∈ Z. Let a

denote the Lie subalgebra of g generated by X±(ε2−ε1). The algebra a is isomorphic
to sl2.

Let M ∈ Ĉa. Denote by λ the weight of x0
∈ N (a) and set V := Mλ. Let Y1

and Y2 be the linear operators representing the actions of the elements Hε2−ε1 and
C := (Hε2−ε1 + 1)2 + 4Xε1−ε2 Xε2−ε1 on V . The element C is a Casimir element
for a. In particular, the operators Y1 and Y2 commute. Our first observation is the
following:

Lemma 8. The action of C on V is invertible and hence has a square root.

Proof. From (2) we have that C acts on x0 by

(a2− a1+ 1)2+ 4(a2+ 1)a1 = (a1+ a2+ 1)2.

Since a1 + a2 6∈ Z by our assumptions, x0 is an eigenvector of C with a nonzero
eigenvalue. As the module M has a composition series with subquotients isomor-
phic to N (a), the complex number (a1+ a2+ 1)2 6= 0 is the only eigenvalue of C
on V . The claim follows. �

Consider the a-module M ′ := U (a)Mλ. Let Y ′2 denote any square root of Y2,
which is a polynomial in Y2 (it exists by Lemma 8). So Y ′2 commutes with Y1. Set

T1 :=
Y ′2− Y1− IdV

2
− a1 IdV , T2 :=

Y ′2+ Y1− IdV

2
− a2 IdV .

Then T1 and T2 are two commuting nilpotent linear operators (it is easy to check
that 0 is the unique eigenvalue for both T1 and T2), hence define on V the structure
of a C[[t1, t2]]-module. The aim of this section is to establish an isomorphism
FV ∼= M , which would complete the proof of Theorem 1.

Set R′ :=U (a)(FV )λ. A direct computation using (3) shows that Hε2−ε1 and C
act on (FV )λ= V 0 as the linear operators Y1 and Y2, respectively. As any cuspidal
generalized weight a-module is uniquely determined by the actions of Hε2−ε1 and C
(see [Drozd 1983; Mazorchuk 2010, 3.7] for full details), it follows that M ′ ∼= R′.
The isomorphism FV ∼= M now follows from the next proposition:
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Proposition 9. There is at most one (up to isomorphism) g-module R ∈ Ĉa such
that U (a)Rλ = R′.

Proof. Let R ∈ Ĉa be such that U (a)Rλ = R′. Choose a weight basis in R such
that the action of a on R′ and the action of X2ε1 on R is given by (3) (in other
words these actions coincide with the corresponding actions on FV ). Since Xε1−ε2

commutes with X2ε1 , it follows that the action of Xε1−ε2 on R is also given by (3).
It is left to show that the action of Xε2−ε1 extends uniquely from R′ to R and

then that there is a unique way to define the action of X−2ε1 . This will be done in
the Lemmata 10 and 11 below. �

Lemma 10. There is a unique way to extend the action of Xε2−ε1 from R′ to R.

Proof. We first show that for every k ∈ {1, 2, . . . }, the action of Xε2−ε1 extends
uniquely from X k−1

2ε1
R′ to X k

2ε1
R′ (here X0

2ε1
R′ = R′).

Consider the following picture:

(7)

•

X
**f _ X
•

Q

ii

•

1

II

P+1
**
•

1

II

Q

ii
P

**
•

Q+1

ii

Here bullets are weight spaces with some fixed bases. The lower row is a part of
X k−1

2ε1
R′ where the a-action is already known by induction. The bases in the weight

spaces in the lower row are chosen such that the action of a in the lower row is given
by (3). The upper row is a part of X k

2ε1
R′ where the a-action is to be determined.

Arrows pointing up indicate the action of X2ε1 . The bases of the weight spaces in
the upper row are chosen such that the action of X2ε1 is given by the operator IdV

(as in (3)). Left arrows indicate the action of Xε1−ε2 . The latter commutes with
the action of X2ε1 and hence is given by the same linear operator in each column.
Right arrows indicate the action of Xε2−ε1 (which is known for X k−1

2ε1
R′ and is to be

determined for X k
2ε1

R′). The part to be determined is given by the dashed arrow.
Labels P and Q represent coefficients (which are linear operators on V ) appearing
in the corresponding parts of formulae (3). Note that P and Q commute. The
action of Xε2−ε1 on X k

2ε1
R′ which is to be determined is given by some unknown

linear operator X .
From Hε2−ε1 = [Xε2−ε1, Xε1−ε2] we see that the action of Hε2−ε1 on the middle

weight space in the lower row is given by Q− P . Using [Hε2−ε1, X2ε1] = −2X2ε1

we get that Hε2−ε1 acts on the right dot of the upper row via Q − P − 2. Using
[Hε2−ε1, Xε1−ε2]=−2Xε1−ε2 we get that Hε2−ε1 acts on the left dot of the upper row
via Q−P−4. So the action of C on the upper row is given by (Q−P−3)2+4X Q.
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The action of C on the lower row is given by (Q − P − 1)2 + 4(P + 1)Q =
(Q+ P + 1)2.

The elements X2ε1 , X2ε2 and Xε1+ε1 form a weight basis of a simple three-
dimensional a-module C3 with respect to the adjoint action of a. Hence the upper
row of our picture is a subquotient of the tensor product of the lower row and C3.
Therefore, from Proposition 7(v) we obtain that the linear operator

(C − (Q+ P − 1)2)(C − (Q+ P + 1)2)(C − (Q+ P + 3)2)

annihilates the upper row. A direct computation using (3) shows that the action
of the operators C − (Q + P − 1)2 and C − (Q + P + 1)2 on the part X k

2ε1
N (a)′

of the module N (a) is invertible. As the g-module we are working with must
have a composition series with subquotients N (a), it follows that the action of
both C − (Q + P − 1)2 and C − (Q + P + 1)2 on X k

2ε1
R′ is invertible. Hence

C − (Q+ P + 3)2 annihilates X k
2ε1

R′, which gives us the equation

(Q− P − 3)2+ 4X Q = (Q+ P + 3)2.

This equation has a unique solution, namely X = Q+ 3, which gives the required
extension.

Similarly one shows that for k ∈ {−1,−2, . . . }, the action of Xε2−ε1 extends
uniquely from X k+1

2ε1
R′ to X k

2ε1
R′ (here again X0

2ε1
R′ = R′). �

Lemma 11. There is a unique way to define the action of X−2ε1 on N.

Proof. To determine this action of X−2ε1 on N we consider the following extension
of the picture (7) with the same notation as in the proof of Lemma 10:
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Here all right arrows, representing the action of Xε2−ε1 , are now determined by
Lemma 10 and we have to figure out the down arrows, representing the action of
X−2ε1 . The two dotted arrows will be used later on in the proof.

Consider the sl2-subalgebra c of g generated by e := X2ε1 and f := X−2ε1 . Set
h := [e, f ]. Denote by Z the action of h in the leftmost weight space of the middle
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row. Then Z = x−u. The element h commutes with both h and Hε2−ε1 . Therefore,
by (3), the operator Z commutes with both T1 and T2 and hence with both P and Q.

The algebra c has the quadratic Casimir element Cc, whose action on the c-
module given by the leftmost column of our picture is given by x+ f (Z), where f
is some polynomial of degree two. From (3) it follows that the unique eigenvalue
of this action is nonzero, in particular, x + f (Z) is invertible. Let x ′ be a fixed
square root x + f (Z), which is a polynomial in x + f (Z).

The elements Xε2−ε1 and Xε2+ε1 form a basis of a simple two-dimensional c-
module with respect to the adjoint action. Using Proposition 7(iv) and arguments
similar to those used in the proof of Lemma 10, we get that Cc − (x ′ + 1)2 or
Cc − (x ′ − 1)2 annihilates the middle column (the sign depends on the original
choice of x ′). The middle column equals Xε2−ε1 applied to the leftmost column.

Similarly, the elements Xε1−ε2 and X−ε2−ε1 form a basis of a simple two-dimen-
sional c-module with respect to the adjoint action. Applying the same arguments
as in the previous paragraph we get that Cc − (x ′)2 annihilates any vector of the
form Xε1−ε2 Xε2−ε1v, where v is from the leftmost column. This implies that the
actions of Cc and Xε1−ε2 Xε2−ε1 and thus the actions of Cc and C on the leftmost
column commute. As the action of H commutes with the action of C , we thus
obtain that x commutes with the action of C . This implies that x commutes with
T1+T2. As it obviously commutes with T1−T2, we get that x commutes with both
T1 and T2 and hence with both P and Q.

Similarly one shows that y, u, v and w commute with both P and Q. From the
commutativity of Xε2−ε1 and X−2ε1 we get the conditions

y(P + 1)= (P − 1)x, V (P + 3)= (P + 1)u, w(P + 2)(P + 3)= P(P + 1)u.

Here everything commutes by the above and P+1, P+2 and P+3 are invertible
(as Xε2−ε1 acts bijectively). Therefore

y=(P−1)(P+1)−1x, v=(P+1)(P+3)−1u, w= P(P+1)(P+3)−1(P+2)−1u.

This implies that y, v and w are uniquely determined by x and u.
Since the actions of both Xε2−ε1 and X2ε1 are completely determined, we can

compute the action of X2ε2 and see that it is given (similarly to the action of X2ε1)
by IdV (this is depicted by the dotted arrows in the picture). As X−2ε2 and X2ε2

commute, we obtain that w = x , that is,

(8) x = P(P + 1)(P + 3)−1(P + 2)−1u.

Therefore the only parameter left for now is u.
On the one hand, the action of the element h on the middle dot of the second

row is given by y − v = (P − 1)(P + 1)−1x − (P + 1)(P + 3)−1u. On the other
hand, from [h, Xε2−ε1]= 4Xε2−ε1 we have that this action equals Z+4= x−u+4.
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This gives us the equation

(9) (P − 1)(P + 1)−1x − (P + 1)(P + 3)−1u = x − u+ 4.

Using (9) and (8) we get the equation

P(P−1)
(P+2)(P+3)

u+ P+1
P+3

u = P(P+1)
(P+2)(P+3)

u− u+ 4.

This is a linear equation with nonzero coefficients and thus it has a unique solution,
namely u = (P+3)(P+2). Hence u is uniquely defined. The claim of the lemma
follows. �

5. Consequences

Corollary 12. Let a ∈ Cn be such that ai 6∈ Z and ai + a j 6∈ Z for all i and j . Let
M ∈ Ĉ and λ ∈ supp(M). Denote by U0 the centralizer of h in U (g). Then for any
A, B ∈U0 the actions of A and B on Mλ commute.

Proof. By Proposition 4, we may assume that M ∼= FV . For the module FV the
claim follows from the formulae in (3). �

Corollary 13. For any simple weight cuspidal g-module L with finite dimensional
weight spaces we have dim Ext1g(L , L)= n.

Proof. This follows from Theorem 1 and the observation that a similar equality is
true for the unique simple C[[t1, t2, . . . , tn]]-module. �

We also recover the main result of [Britten et al. 2004]:

Corollary 14. The category of all weight cuspidal g-modules is semisimple.

Proof. By [Britten et al. 2004, Lemma 2], all blocks of the category of weight
cuspidal g-modules are equivalent. Hence it is enough to prove the claim for the
block containing N (a) for some a∈Cn such that ai+a j 6∈Z for all i, j . From (3) it
follows that the module FV is weight if and only if all operators Ti are semisimple,
hence zero. Therefore from Theorem 1 we get that the block of the category of
weight cuspidal modules is equivalent to the category of finite dimensional modules
over C[[t1, t2, . . . , tn]]/(t1− 0, t2− 0, . . . , tn − 0)∼= C. The claim follows. �
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