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Abstract
In this thesis, we discuss noncommutative Gröbner bases and their algorithmic computa-
tion, providing concrete examples with the computer algebra system Singular.

It is not only possible to define Gröbner bases for the noncommutative polynomial
ring k〈X〉, but also more generally for k-algebras A with a multiplicative basis B and an
admissible order �, which we will study extensively. This then also includes the case of
path algebras kQ for a quiver Q. An important intuition for the meaning of Gröbner
bases is related to being able to perform a division with remainder. We will see that
such a division is possible to be computed algorithmically. What we also wish is to
algorithmically compute a Gröbner basis G for an ideal I ⊆ A given by a finite list of
generators. For this, we try to generalize the concepts that are known for k〈x1, . . . , xn〉,
namely obstructions and S-polynomials, after which we arrive at the algorithm to compute
Gröbner bases: Buchberger’s procedure. Finally, we will also briefly discuss these concepts
in G-algebras, which is a generalization of universal enveloping algebras U(g) for a Lie
algebra g, where the setting is similar to the one for commutative Gröbner bases.
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Introduction

The main concept which this thesis revolves around is the notion of a Gröbner basis.
Let us try to get an intuition behind what this is by looking at known settings that we
can later reframe into the theory of Gröbner bases.

In Euclidean domains, we have by definition the concept of a division with remainder.
Spelling it out, for the underlying commutative ring A, there exists a valuation function
` : A \ {0} → N0 such that for all p, q ∈ A we have `(q) ≤ `(pq), and there exist w, r ∈ A
such that p = wq + r such that either r = 0 or `(r) < `(q). This property leads to
the fact that A then also is a principal ideal domain, meaning that any ideal I can be
generated by a single element, the greatest common divisor. In general, this is not
unique, but unique up to unit, and often there is some kind of a canonical choice, which
is then denoted by gcd(I). We will see that what lies behind the fact that there always
exists a single element that generates a given ideal, is that N0 is well-ordered.

For a more intuitive approach to what a well order is, consider having two elements
a, b ∈ A for which we want to find the generator of the ideal generated by a and b. This
can be done algorithmically with the Euclidean algorithm: Assume that `(a) ≥ `(b).

1. Choose a representation a = wb+ r with r = 0 or `(r) < `(b).

2. If r 6= 0, we set a← b and b← r and return to step 1.

3. If otherwise r = 0, we terminate the algorithm and return b.

The reason that this algorithm must terminate, is that every time we have r 6= 0 in the
algorithm, `(r) keeps decreasing strictly, and due to the fact that N0 is well-ordered, this
cannot happen infinitely many times, meaning that r must eventually be 0. To compute
the greatest common divisor of an ideal given by a finite set of generators of any size, we
can successively compute the greatest common divisor for a pair of elements, reducing
the size of the set in each step, until only one element is left.

Let us see this in action with the integers Z. Here, ` : Z \ {0} → N0 is the map n 7→ |n|.
Let a = 261 and b = 48. We then perform the Euclidean algorithm.

• 261 = 5 · 48 + 21

• 48 = 2 · 21 + 6

• 21 = 3 · 6 + 3

• 6 = 2 · 3 + 0
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We conclude that 3 generates the ideal generated by 261 and 48. As noted before, the
greatest common divisor is unique up to unit, so in the case of the integers Z, we have
Z× = {1,−1}, so 3 and −3 are possible greatest common divisors. By convention, “the”
greatest common divisor is the positive one, so gcd(261, 48) = 3 in this case.

In this example in the integers Z, it is quite easy to compute the division with remainder
in each step of the Euclidean algorithm. In other settings, the computation of the division
with remainder might be a little more involved, as is the case for the polynomial ring in
one variable A = k[x], which we shall discuss now.

The valuation function in k[X] is just degree. As an example, we shall divide
p = 10x5 + 24x4 − 33x3 − 38x2 − 6x+ 44 by q = 5x3 + 2x2 − 3x− 6 by polynomial long
division.

(10x5+ 24x4− 33x3− 38x2− 6x+44 ) / (5x3 + 2x2 − 3x− 6) = 2x2 + 4x+ (−7)
− (10x5+ 4x4− 6x3− 12x2 ) rem. − 3x+ 2

20x4− 27x3− 26x2− 6x+44

− (20x4+ 8x3− 12x2− 24x )

− 35x3− 14x2+18x+44

− (35x3− 14x2+21x+42 )

− 3x+ 2

The way this algorithm loosely works, is that we keep looking at divisibility for the
leading terms, the biggest occurring monomials, in each successive step. More precisely:

1. We start by seeing if we can write the leading expression LM(p) of p, as a multiple
of the leading expression LM(q) of q, meaning LM(p) = w ·LM(q) for w some scalar
multiple of a monomial.

2. If this is possible, we subtract w · q from p, and go back to step one. In our case,
the first time we reach this step we have LM(p) = 10x3 = 2x2 · 5x3 = w · LM(q).

3. Otherwise, we terminate the algorithm, and return what is left after having sub-
tracted multiple times, which is the remainder r.

We get the representation p = wq + r = (
∑e

i=1wi)q + r, where the wi are scalar
multiples of monomials. In our case, we have e = 3, w1 = 2x2, w2 = 4x, w3 = −7 and
r := p3 = −3x+ 2.

We have a method to calculate the division with remainder, and we can therefore
also compute a greatest common divisor of a finite set of polynomials, with the same
procedure as for the integers Z, the Euclidean algorithm. As noted before, the greatest
common divisor is unique up to unit, and in k[X], there exists a unique monic one, called
“the” greatest common divisor. What we then also notice, is that for any ideal I, we have
a vector space complement k[x] = I ⊕ spank{xi | i < deg(gcd(I))}. This is again due to
the fact that we can uniquely decompose any element f ∈ k[x] as f = w · gcd(I) + r with
r = 0 or deg(r) < deg(gcd(I)).
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Let us summarize. For Euclidean domains, we have the following properties.

• A division with remainder: p = wq + r

• A representative of an ideal I, the greatest common divisor: I = (gcd(I)). This
can be algorithmically computed with the Euclidean algorithm if the ideal is given
by finitely many generators I = (f1, . . . , fr).

The k-algebra k[x] has even more structure, and we get even more useful properties.

• The division with remainder has the form p = wq + r = (
∑

iwi)q + r, where the
wi are monomials.

• The division with remainder can be algorithmically computed.

• We have a vector space complement k[x] = I + spank{xi | i < deg(gcd(I))} for any
ideal I.

Our goal is separate these properties from the setting of Euclidean domains, and try to
generalize the results and procedures for (noncommutative) associative unital k-algebras.

If we try to naively generalize the division algorithm to multivariate polynomial rings,
there is no canonical “biggest” monomial, there could be multiple different monomials of
same degree. This is where we find the need to introduce some kind of an order � on
these monomials. Just as the natural numbers are well-ordered when we think about
the valuation function for Euclidean domains, we also find it necessary to well-order the
set of monomials. As the valuation is compatible with the multiplication in Euclidean
domains, meaning `(q) ≤ `(pq), we also similarly want to have a � ab for monomials a
and b, where � is a well order.

What we will try to do is not only look at noncommutative polynomial rings, but also
see where we can find the same results for path algebras and the more general setting,
k-algebras with a multiplicative basis B and an admissible order �. The most
important concepts that we will come across are (reduced) Gröbner bases, generalizing
the greatest common divisor, and Buchberger’s procedure, generalizing the Euclidean
algorithm. With the help of the computer algebra system Singular, we can compute
Gröbner bases for noncommutative polynomial rings.

k[x] k-algebra with admissibly
ordered multiplicative basis B

monomial element of B
degree leading term

polynomial long division division with remainder
with remainder by multiple elements

greatest common (reduced) Gröbner basis
divisor

Euclidean algorithm Buchberger’s procedure
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Notation
• For the natural numbers, N0 shall denote the nonnegative integers, and

N>0 = N0 \ {0} shall denote the positive integers.

• [n] := {1, . . . , n} for n ∈ N0, in particular [0] = ∅.

• BA := {f : A→ B} denotes the set of all maps from the set A to the set B.

• k is a field of characteristic 0, with multiplicative units k× = k \ {0}.

• A “scalar” will refer to an element in k.

• If not specified otherwise, “k-algebra” means an associative unital k-algebra.

• If not stated otherwise, (X) is the two-sided ideal generated by a subset X of a
given k-algebra.

• If I is an ideal of a k-algebra A, we denote by a the residue class of a in A/I, and
if M ⊆ A is a set, we write M = {a ∈ A/I | a ∈M} for the set of all residue classes
of elements in M .
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1. General Gröbner basis theory

In this chapter, we will cover the basic abstract theory of Gröbner bases. Some aspects
of the motivation and intuition behind Gröbner bases might only be apparent after we
discuss the algorithmic computation of such, as that is where we take a closer look at
performing a division with remainder. This will be discussed in the next chapter.

If not stated otherwise, A is an associative unital k-algebra with unit 1.

1.1. Algebras with multiplicative basis
Definition 1.1 (multiplicative basis). A k-basis B ⊆ A is called a multiplicative
basis if B0 := B ∪ {0}, with the multiplicative structure of A, is a semigroup. In other
words, we have

b · b′ ∈ B or b · b′ = 0

for all b, b′ ∈ B. The elements in B are also called monomials (even if A is not a
polynomial ring). C

Definition 1.2 (compatible ideals, monomial ideals). Let A have multiplicative basis
B. A two-sided ideal I ⊆ A is called compatible with B if it is generated by elements of
the form b− b′ for b, b′ ∈ B0. If the ideal is generated by elements b ∈ B, that is b′ = 0
for every such generator, it is called a monomial ideal. C

Definition 1.3 (algebras generated by monoids). Let B be a monoid. We define the
associative k-algebra kB as having the underlying k-vector space

⊕
b∈B k · b with basis B,

and having the multiplicative structure of the k-linear extension of the monoid structure
on B. C

The k-algebra kB is indeed unital with unit 1A = 1B, and it has multiplicative basis B,
where we have the special situation that we never have b · b′ = 0 for b, b′ ∈ B.

Proposition 1.4. If I is a compatible ideal, then A/I has multiplicative basis B \ {0}.
If I is a monomial ideal, then A/I has multiplicative basis B \ I, and we furthermore
have a one to one correspondence between B \ I and B \ I. C

Proof (sketch). Firstly, B \ {0} generates A/I as B generates A. What is still to show
is that B \ {0} is linearly independent in A/I. The intuition behind why this is true
is that modding out elements of the form b − b′ just means that we identify b and b′

with each other, and by extension we identify any term that contains b somewhere with
the same term with b replaced by b′ in the term at that same position. Therefore basis
elements only get identified with other basis elements or zero, and for this reason linear

11



1. General Gröbner basis theory

independence gets inherited from B to B \ {0}. To formalize this argument, we can frame
these statements in a more categorical context, which is presented in the appendix in
Proposition A.4.

If I is a monomial ideal, the one to one correspondence then between B \ I and B \ I
follows from pure linear algebra: We are taking the quotient with respect to a linear
subspace I spanned by basis elements.

Example 1.5. 1. If X is a (finite) set, let B := 〈X〉 be the free monoid over X,
which is the set of all words over X with concatenation as the monoid structure,
and the unit is the empty word. This means that 〈X〉 =

⋃
n∈N0

X [n], where X [n]

are the words of length or degree n. Note that X [0] = {1} contains only the
empty word and X [1] = X.
Then kB = k〈X〉 is the non-commutative polynomial ring over k in the variables
X with multiplicative basis 〈X〉.

2. For X a (finite) set, let B := [X] be the free commutative monoid over X, which
consists of the set of all maps X → N0 with finite support, with pointwise addition
as the monoid structure and the zero map being the unit. For a ∈ [X], we call
`(a) := |a| =

∑
x∈X a(x) the degree of a. It is common to write an element a ∈ [X]

as
∏

x∈X xkx for uniquely determined exponents kx ∈ N0, namely kx = a(x).
We then get that kB = k[X] is the commutative polynomial ring over k in the
variables X with multiplicative basis [X].
In light of Proposition 1.4, we can also view the commutative polynomial ring as
the quotient of the non-commutative polynomial ring with a compatible ideal:

k[X] = k〈X〉/(xy − yx | x, y ∈ X) .

3. Consider the k-algebra k〈X〉 with multiplicative basis 〈X〉 and the monomial ideal
I = (M) generated by M = {m ∈ 〈X〉 | `(m) = d + 1}, the monomials of degree
d+ 1. Then k〈X〉/I = k〈X〉≤d is the ring of polynomials of degree at most d with
multiplicative basis {x ∈ 〈X〉 | `(x) ≤ d}.

C

Proposition 1.6. In a multiplicative basis B of a unital associative k-algebra, for each
b ∈ B there exist lb ∈ B and rb ∈ B such that lbb = b = brb. C

Proof. We will only do the proof for lb, as rb is completely analogous. As B is a basis,
we have 1 =

∑
j∈J λjbj for some finite set J and some λj ∈ k and bj ∈ B. We now have

b = 1 · b =
∑

j∈J λjbjb. As bjb ∈ B for all j ∈ J this then gives us

0 = b−
∑
j∈J

λjbjb = (1−
∑
bjb=b

λj)b+
∑

c∈B\{b}

(
∑
bjb=c

λj)c .

As B is a basis, we must have that
∑

bjb=c λj = 0 for all c ∈ B\{b} and that
∑

bjb=b λj = 1.
In particular, the sum is not empty, so there indeed exists a j′ ∈ J such that bj′b = b,
and we can choose lb = bj′ .

12



1.1. Algebras with multiplicative basis

Example 1.7. • If 1 ∈ B, then we have 1b = b1 = b for all b ∈ B. This is therefore
true for all k-algebras of the form kB for a monoid B, in particular for the k-algebra
k〈X〉 with multiplicative basis B = 〈X〉.

• Let A have multiplicative basis B and consider the k-algebra Ar for some
r ∈ N>0 with pointwise multiplication as the multiplicative structure (Ar is
also an A-algebra). We then have multiplicative basis B′ =

⋃
i∈[r] B · ei, where

ei = (0, . . . , 0, 1, 0, . . . , 0) with 1 at the i-th position. If then m′ ∈ B′, we must have
m′ = m · ei for some m ∈ B and some i ∈ [r], and we then have eim

′ = m′ei = m.
C

Definition 1.8 (quiver, path algebra). A (finite) quiver Q = (Q0, Q1, s, t) consists of
the following data.

• A nonempty finite set Q0, the vertices,

• a nonempty set Q1, the arrows,

• a map s : Q1 → Q0, the source, and

• a map t : Q1 → Q0, the target.

Consider k〈Q0∪̇Q1〉 as in Example 1.5.1, and consider the compatible ideal
I ⊆ k〈Q0∪̇Q1〉 generated by elements of the form

1. ab,

2. s(a)a− a, at(a)− a,

3. va, aw,

4. xx− x,

5. xy, and

6. 1−
∑

u∈Q0
u.

where a, b ∈ Q1 and v, w, x, y ∈ Q0 such that s(b) 6= t(a), v 6= s(a), w 6= t(a) and y 6= x.
Then kQ := k〈Q0∪̇Q1〉/I is the path algebra of the quiver Q. C

It is also possible to define a path algebra differently, which can be seen in Definition A.7.
That alternative definition requires a bit more work do define it, but once it is defined,
we immediately have a grading and a nice multiplicative basis. With the Definition 1.8,
we need to do a bit more work to get to these properties. The following proposition
allows us to characterize the multiplicative basis that gets inherited from k〈Q0∪̇Q1〉.

Proposition 1.9. Let Q be a quiver and define

Qd =

{
d∏

i=1

ai

∣∣∣∣∣ ∀i ∈ [d] : ai ∈ Q1 ,
∀j ∈ [d− 1] : t(aj) = s(aj+1)

}
⊆ k〈Q0∪̇Q1〉

13



1. General Gröbner basis theory

for d ≥ 2. Then the Qd for d ∈ N0 are pairwise disjoint, and the projection
π : k〈Q0∪̇Q1〉 � kQ maps

⋃
d∈N0

Qd injectively into kQ. Furthermore, this image
is a multiplicative basis of kQ. C

Proof (sketch). Let I ⊆ k〈Q0∪̇Q1〉 be the ideal as defined in Definition 1.8. In k〈Q0∪̇Q1〉,
the Qd are disjoint in k〈Q0∪̇Q1〉. What is also immediate by construction, is that none
of the Qd get mapped to 0.

Let f, g ∈
⋃

d∈N0
Qd, such that f − g ∈ I and assume towards a contradiction that

f 6= g. Let
∑

i aihibi = f − g, where ai, bi ∈ k〈Q0∪̇Q1〉 and hi are some generators ofI as
described in Definition 1.8, and assume that there is no redundancy, meaning no partial
sum adds up to 0. We will show that f =

∑
i aihibi + g will lead to a contradiction. We

can always rule out hi being of the form (6) in Definition 1.8 (we will not show this, this
is a bit tricky).

• Case 1: f ∈ Q0. None of the generators contain a monomial in k, and the only
generator that contains a monomial in Q0 is one of the form (4) in Definition 1.8,
so we must have hj = ff − f and aj = −1, bj = 1 (or similar) for some j, as
f 6= g and both are monomials. Since ff /∈

⋃
d∈N0

Qd and therefore g 6= ff , for∑
i aihibi + g = f to hold, we must cancel out ff without canceling out f , which

is not possible, leading to a contradiction.

• Case 2: f ∈ Q1. Since there are no monomials in k present in any of the generators,
we can restrict to looking at generators that contain f , and the only ones that
do are the ones of the form (2) in Definition 1.8, so there must be a j such that
hj = s(f)f − f or hj = ft(f) − f and aj = −1, bj = 1 (or similar). Since there
are no other generators that contain a monomial dividing s(f)f or ft(f) and we
assumed there to be no redundancy, there is only one hj corresponding to one of the
two proposed generators. Assume that hj = s(f)f − f . But then, since g 6= s(f)f
and no other generator contains a monomial that divides s(f)f , we cannot cancel
out s(f)f in the sum, leading to a contradiction. The case hj = ft(f) − f is
analogous.

• Case 3: f ∈ Qd for d ≥ 2. A generator of the form as described in (1) of
Definition 1.8 cannot divide f , as the targets and sources in f are always compatible,
via construction of Qd. The only generators that contain a monomial that divide f
are ones of the form s(c)c− c or ct(c)− c for c ∈ Q1. No matter which a(s(c)c− c)b
we choose such that −acb = f , there is no way to cancel out as(c)cb without also
canceling out −acb. Since furthermore s(a)a can’t divide g by construction of the
Qk, we have a contradiction.

We have now shown that π maps
⋃

d∈N0
Qd injectively into kQ.

Now let us show that
⋃

d∈N0
Qd\{0} = 〈Q0∪̇Q1〉\{0, 1}. Obviously, x ∈

⋃
d∈N0

Qd\{0}
for x ∈ Q0∪̇Q1 ⊆ 〈Q0∪̇Q1〉 a monomial of degree 1. Let f =

∏e
i=1 fi ∈ 〈Q0∪̇Q1〉 be

a monomial of degree e ≥ 2 such that f 6= 0. This necessarily implies that for each
j ∈ [e− 1], we have (exactly) one of the following cases.

14



1.1. Algebras with multiplicative basis

• fj , fj+1 ∈ Q0 and fj = fj+1,

• fj , fj+1 ∈ Q1 and t(fj) = s(fj+1),

• fj ∈ Q1, fj+1 ∈ Q0 and t(fj) = fj+1, or

• fj ∈ Q0, fj+1 ∈ Q1 and fj = s(fj+1).

Now define f ′ ∈ 〈Q0∪̇Q1〉 as the monomial (or word) obtained by removing all symbols
of Q0 occurring in f . Then f ′ ∈ Qd with d = #{i ∈ [e] | fi ∈ Q1}, and f ′ = f , concluding⋃

d∈N0
Qd \ {0} = 〈Q0∪̇Q1〉 \ {0, 1}.

With Proposition 1.4, 〈Q0∪̇Q1〉 \ {0} is a multiplicative basis of kQ, and therefore
with what we just showed,

⋃
d∈N0

Qd \ {0} is linearly independent and it is closed
under multiplication for nonzero products. Since 1 ∈ spank(

⋃
d∈N0

Qd \ {0}) by (6) in
Definition 1.8, we also have that this is a multiplicative basis.

Corollary 1.10. A quiver algebra kQ admits a grading

kQ =
⊕
d≥0

(kQ)d

with (kQ)d = kQd = spank Qd. C

Definition 1.11 (length). We can write Qd instead of Qd, since we can view Qd ⊆ kQ
for d ∈ N0 with Proposition 1.9, and we call an element a ∈ Qd a path of length d.
We also define the map ` :

⋃
d∈N0

Qd → N0, mapping an element a ∈ Qd to its length
`(a) = d.

We furthermore introduce the notation Q≥n :=
⋃

d≥nQd for n ∈ N0. C

Convention 1.12. If we are given a quiver algebra kQ, then B = Q≥0 is the implied
multiplicative basis for a quiver algebra. C

Definition 1.13. We extend the definition of the source and the target from Q1 to all
of

⋃
d∈N0

Qd as follows. For v ∈ Q0, we define s(v) = t(v) = v. For w ∈ Q≥2, if we write
w =

∏d
i=1wi where wi ∈ Q1 and d = `(w), we define s(w) = s(w1) and t(w) = t(wd). C

Remark 1.14. For u,w ∈ Q≥0, we have uw 6= 0 if and only if t(u) = s(w). In
particular, if u ∈ Q≥0 and v ∈ Q0, then vu = u if and only of s(u) = v and we have
uv = u if and only if t(u) = v, which is an example of Proposition 1.6. C

Remark 1.15. The noncommutative polynomial ring in the variables X = {x1, . . . , xn}
is a special case of a path algebra. It is indeed the path algebra with Q0 = {v} a singleton,
which immediately determines s and t, and Q1 = X, and the notions of the length and
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1. General Gröbner basis theory

degree coincide. We furthermore have 1kQ = v.

v

xn

xn−1

x2

...

x1

C

1.2. Admissible orders
Definition 1.16 (order, well order). A partial order on a set M is a transitive relation
� on M that is antisymmetric, meaning a = b if and only if a � b and b � a for a, b ∈M .
We call (M,�) a partially ordered set, and sometimes just write M when � is implied.

We denote by �rev the reverse partial order of �, defined by a �rev b :⇐⇒ b � a,
and we write Mrev := (M,�rev).

For a partial order �, we write a ≺ b if a � b and a 6= b.
A partial well order is a partial order such that every nonempty subset S ⊆M has

a minimal element, meaning an element m ∈ S such that a � m implies a = m for any
a ∈ S.

A total order on M is a partial order � such that for all a, b ∈M we have a � b or
b � a. Total orders are sometimes also just referred to as orders.

A well order on M is a total order that is also a partial well order. C

Remark 1.17. A partial order � is a partial well order if and only if ≺ is a well-founded
relation. A relation ∼ on a set M is called well-founded if the only inductive subset of
M is M itself. For a subset S ⊆M , we call S inductive (with respect to (M,∼)) if the
following holds for every x ∈M : If y ∼ x for all y ∈ S, then x ∈ S. C

Proposition 1.18. Any subset S ⊆M of a well-ordered set M has a unique minimal
element. C

Proof. Let m,m′ ∈ S be two minimal elements. Since we have a total order, we must have
m � m′ or m′ � m, and in each of these cases it follows that m = m′ by minimality.

Proposition 1.19. Let � be a well order on a set M . Then each descending chain in
M stabilizes. This means that for a sequence (mn)n∈N0 ∈MN0 of elements in M such
that mn � mn+1 for all n ∈ N0, there exists d ∈ N0 such that mn = md for all n ≥ d. C

Proof. For S ⊆ M the set of all elements that occur in (mn)n∈N0 , there must exist a
minimal element s ∈ S. There then exists d ∈ N0 such that md = s. Let n ≥ d. By
minimality, we must have mn � md, but since we have a descending chain, we have
mn � md, so we have mn = md.
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1.2. Admissible orders

Example 1.20. 1. The vertices V of a cycleless directed graph admit a partial order
defined by v � w for v, w ∈ V if and only if w is reachable from v. This is in
general not a total order, even if it is connected.

2. The natural order for the natural numbers is a well order.

3. The natural order on the integers Z is not a well order, as for instance the whole
set itself doesn’t contain a minimal element.

4. If we consider Z∪̇Z, we have a partial order defined by z1 ≺ z2 if and only if z1 is
contained in the first (left) copy of Z and z2 is contained in the second (right) copy
of Z. This is a partial well order.

5. Any total order on a finite set is a well order.

6. If we view a natural number n ∈ N0 as a set in its von Neumann construction
n = {0, . . . , n − 1}, then the set N0 is a well-ordered set with the relation ⊆. In
the same way, [n] becomes a well-ordered set.

7. The usual order on the interval [0,∞) ⊆ R is not a well order, as the subset (0,∞)
has no minimal element.

8. Let C : J → S be a map such that J is totally ordered, and such that C(j) is totally
ordered for every j ∈ J . In other words, (Cj)j∈J = (C(j))j∈J is a collection of
totally ordered sets indexed by a totally ordered set J . Then M =

⋃̇
C =

⋃̇
j∈JCj

is totally ordered: If c ∈ Ci and d ∈ Cj , then the order ≺ on M defined by c ≺ d
if and only if i ≺J j or i = j and c ≺Ci d is a total order. If J and each Cj is
well-ordered, then M is well-ordered.

C

Definition 1.21 (lexicographic order). Let A be a well-ordered set and let B be a
totally ordered set. We define a total order �, the (left) lexicographic order, on BA

in the following way. Let f, g ∈ BA, and consider the set N = {a ∈ A | f(a) 6= g(a)} ⊆ A.
If N is nonempty, N has a minimal element m = minN , and we define

f ≺ g :⇐⇒ f(m) ≺B g(m) .

Since every subset of a totally ordered set is also totally ordered, together with
Example 1.20.8, we can also define a total order on×C =×j∈J Cj ⊆ (

⋃̇
j∈JCj)

J . This
is also called the lexicographic order.

For finite A and finite J , the reverse orders Arev = (A,�A,rev) and Jrev = (J,�J,rev)
are also well-ordered sets. If we define the lexicographic order with respect to the reverse
order of J and A, then we call this the reverse (or right) lexicographic order, which
we denote by×j∈Jrev Cj and BArev .

Consider for n ∈ N>0 the well-ordered set B[n]rev via the reverse lexicographic order.
For m,n ∈ N0 with m ≤ n we have an embedding B[m]rev ↪→ B[n]rev by appending n−m
entries of the minimal element min(B) in B to the end of the sequence. This diagram has
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1. General Gröbner basis theory

a colimit, whose underlying set we will call fseq(B), the finite sequences with values in
B. The order resulting from taking this colimit is called the reverse (or right) length
lexicographic order on fseq(B).

It is also possible to completely analogously define the reverse length lexicographic
order for indices in N0 instead of N>0. C

Remark 1.22. 1. The lexicographic order for BA and for C×J are indeed well-
defined total orders, but each not necessarily well orders, even if B and every Cj

are also well-ordered. If A and Cj are finite, we do in fact have a well-order in both
cases.

2. If B is a well-ordered set, the reverse length lexicographic order on the finite
sequences fseq(B) is well-ordered.

3. The set fseq(B) is in bijection with the set of all sequences a ∈ BN>0 such that
there exists d ∈ N>0 with an = min(B) for all n ≥ d.

4. If α and β are ordinal numbers, then the ordinal number α+ β defined via ordinal
arithmetic corresponds to A∪̇B in our construction, if A and B are the well-ordered
sets corresponding to α and β, respectively.

5. If α is an ordinal number and ω is the ordinal number corresponding to N0, then
αω defined via ordinal arithmetic corresponds to the reverse length lexicographic
order on fseq(B), if B is the underlying well-ordered set.

C

Example 1.23. 1. For [3]× [5] =×i∈[2]Ci with C1 = [3] and C2 = [5], we have

(1, 1) ≺ (1, 2) ≺ (1, 3) ≺ (1, 4) ≺ (1, 5)

≺ (2, 1) ≺ (2, 2) ≺ (2, 3) ≺ (2, 4) ≺ (2, 5)

≺ (3, 1) ≺ (3, 2) ≺ (3, 3) ≺ (3, 4) ≺ (3, 5) .

Note that it is indeed important to specify what well-ordered index set we take the
Cartesian product over, as the definition of the lexicographic order depends on it.
Implicitly, the written down order of the sets occurring in the expression [3]× [5]
can also dictate this, meaning the set on the left, [3], is regarded as being “first”,
and set on the right, [5], is regarded as being “second”.

2. The sets N[2]
0 and N0 × N0 =×i∈[2]Ci with C1 = C2 = N0 can be identified with

each other in the usual way, and both constructions of the lexicographic order in
Definition 1.21 lead to the same order.

(1, 1) ≺ (1, 2) ≺ (1, 3) ≺ · · ·
≺ (2, 1) ≺ (2, 2) ≺ (2, 3) ≺ · · ·
≺ (3, 1) ≺ (3, 2) ≺ (3, 3) ≺ · · ·

...
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1.2. Admissible orders

3. The lexicographic order for {1, 0}[8] corresponds to the order of the binary rep-
resentation of the numbers between 0 and 255 with leading zeroes, just like a
byte of data in a computer. This also works for any b-ary number system with
B = {b− 1, b− 2, . . . , 1, 0} and larger exponents.

4. For B = {9, 8, . . . , 1, 0}, the lexicographic order on BN>0 almost exactly corresponds
to the order for the decimal representation of real numbers between 0 and 1, except
for the edge cases where the sequence has repeating 9’s after a certain index. For
example, 0.19 = 0.2, but we have 19999 . . . ≺ 20000 . . . for the corresponding
sequences in BN>0 .
We also see how this is not a well order, since

1000 . . . � 0100 . . . � 0010 . . . � · · · ,

or in more familiar terms, 0.1 > 0.01 > 0.001 > · · · , is a nonstabilizing descending
sequence.

5. Consider fseq({9, 8 . . . , 1, 0}), ordered with the reverse lexicographic order.
Let x, y ∈ fseq({9, . . . , 0}), and consider these as sequences as described in Re-
mark 1.22.3, meaning there exist minimal d, e ∈ N>0 such that xn = 0 for all n ≥ d
and yn = 0 for all n ≥ e. Then there are elements x′ ∈ B[d]rev and y′ ∈ B[e]rev that
correspond to x and y in the colimit. We then have

x ≺ y ⇐⇒

{
d < e or
d = e and x′j < y′j for j = max{i ∈ [d] | x′i 6= y′i} .

This example illustrates how the decimal representation of the natural numbers are
ordered, but we must think of the sequence of digits to start on the right and go to
the left.
Interestingly, this is how one thinks about numbers in Arabic, which is where the
decimal numbers of the Western world come from. Here, the digits of a number
appear in the same way, but in the written language of Arabic, one reads from
right to left. This is also in line with the exponents of the b-adic representation of
natural numbers, we write x =

∑
n∈N>0

xnb
n−1, where xn ∈ {b− 1, b− 2 . . . , 1, 0}

(in our case b = 10) and there exists d ∈ N>0 such that xn = 0 for all n ≥ d.
A number like x = 69 then has the “first” digit x1 = 9 and the “second” digit x2 = 6.
This number can also be written as 069 or 0069 etc., or the sequence . . . 0000069.
In the above characterization of the reverse length lexicographic order, x′ and y′

are representatives such that they have no “trailing zeroes”, and d and e can be
thought of as the length of a and b. In the case of the decimal representation of
natural numbers, this terminology might be confusing, because the trailing zeroes
are on the left. We could also instead say “without leading zeroes”, but this is also
confusing since we said that the “first” digit is on the right.
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1. General Gröbner basis theory

Let us compare the decimal representations x = . . . 000069 and y = . . . 000420. We
then have x′ = 69 and y′ = 420, and see d = 2 and e = 3, therefore x ≺ y.
For a different example, let x = . . . 00012359, and y = . . . 0012409, so x′ = 12359
and y′ = 12409. We have d = e = 5, so then we check j = max{i ∈ [d] |x′i 6= y′i} = 3
and see x3 < y3, therefore x ≺ y. In other words, in the left most digit of where x
and y differ, that digit in x is smaller than that digit in y.
We have now seen that we have a bijection N0 ↔ fseq({9, . . . , 0}) that preserves
the order, and so we can convince ourselves that the reverse length lexicographic
order is a well order, since N0 is well-ordered.

C

Remark 1.24 (An excursion on the arithmetic of ordinals). The definition of the
exponentiation for ordinal numbers might at first seem like it wouldn’t translate to greater
ordinals, as we can’t reverse the order of transfinite ordinals to receive a transfinite ordinal,
but indeed it actually works. The underlying mechanism responsible for the quirk that
“the order of the indices is reversed” is that in the definition for arithmetic on ordinals,
addition and multiplication are based on transfinite induction on the second argument,
multiplication is based on the distributive law on the left, and the exponentiation is
based on expansion on the left. The aforementioned properties are formally the following
formulas.

• α+ succ(β) = succ(α+ β)

• α · succ(β) = α · β + α

• αsucc(β) = αβ · α

Working everything out, for an ordinal number α > 1, we have α2 = α · α and
α = α · 1 < α · α. This means α ∈ α · α, so we have α ⊆ α · α (actually “(”), and the
elements in α are the “smallest α many elements” in α · α. In terms of well ordered sets,
say A is the canonical von Neumann representative of α, we have α ∼= α× {0} ⊆ α× α.
All together, we have that any (a, 0) ∈ A × A is smaller then any (a, a′) ∈ A × A for
a′ > 0. Recursively, we can see that we have A × A is ordered according to A2rev , the
reverse (or right) lexicographic order. C

Definition 1.25 (admissible order). Let A be a k-algebra with multiplicative basis B.
We call a well order ≺ on B an admissible order if the following conditions hold for all
p, q, r, s ∈ B.

(O1a) pr 6= 0, qr 6= 0, p � q =⇒ pr � qr

(O1b) sp 6= 0, sq 6= 0, p � q =⇒ sp � sq

(O2) p = qr =⇒ q � p, r � p

C
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1.2. Admissible orders

Remark 1.26. For b, c, d ∈ B we have

b � bc and b � db ,

as in each case we have bc ∈ B and db ∈ B, respectively, and can apply (O2) to q = b,
r = c, and p = bc, and to q = d, r = b, and p = db, respectively. C

Proposition 1.27. Let A be a k-algebra with multiplicative basis B and an admissible
order �, and let I ⊆ A be a monomial ideal. Then the order �′ defined by

b �′ c :⇐⇒ b � c

for b, c 6= 0 is a well-defined admissible order on B \ {0} ⊆ A/I. C

Proof. Since I is a monomial ideal, with Proposition 1.4, B \ {0} can be identified with
B \ I, and we see that the order �′ on B is the same as the restriction of � to B \ I, so
�′ is a well-defined well order. It is also an admissible order, because a · b 6= 0 implies
a · b 6= 0, and then the axioms (O1a), (O1b), and (O2) transfer from A to A/I.

Definition 1.28 (lexicographic order). Let Q = (Q0, Q1, s, t) be a quiver, and assume
that we have equipped Q0 and Q1 each with well orders, such that Q≤1 = Q0 ∪ Q1 is
then also well-ordered, as described in Definition 1.21.

Any element a ∈ Q≥0, say a ∈ Qd, can be uniquely assigned a sequence ã ∈ (Q≤1)
N>0

such that for all i ∈ [d] we have ã(i) ∈ Q1 and for all r > d we have
∏r

i=1 ã(i) = a. This
necessarily implies that ã(i) = t(ã(d)) = t(a) =: t for all i > d. We write ai = ã(i), and
can by abuse of notation say

a = a1a2a3 . . . ad−1adttttt . . . .

What was done here can be seen as artificially extending a path such that when we do
comparisons between paths, we need not worry about their length being unequal.

With this assignment, we have formed an inclusion Q≥0 ⊆ (Q≤1)
N>0 . The left

lexicographic order �Lex on Q≥0 is then the restriction of the left lexicographic order
� of (Q≤1)

N>0 as described in Definition 1.21.
Consider the quiver algebra of Q′ = (Q0, Q1, t, s), which is just Q with reversed

arrows. kQ and kQ′ are isomorphic as k-algebras by reversing the path. Specifically,
the isomorphism sends v 7→ v′ := v for v ∈ Q0 and a 7→ a′ := ad . . . a1 for a ∈ Q≥1. We
define the right lexicographic order (lex) by

a′ �lex b′ :⇐⇒ a �Lex b .

C

Convention 1.29. When the elements of a set X are given a list of elements, it is
usually implied that they are listed in descending order. This means that if we for
instance write X = {x, y, z}, we imply the well order x � y � z.

C
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1. General Gröbner basis theory

Remark 1.30. • If X = {x1, x2, . . . , xn} is an enumerated set, we have, perhaps
confusingly, the implied order xi � xj ⇐⇒ i ≥ j.

• Let X = {a, b, c, . . . , x, y, z} (the alphabet) with the implied ordering

a � b � c � · · · � x � y � z .

Then “words” in the colloquial sense are words in our sense (non-commutative
monomials) in X. Let us consider consider Lex. If we arrange words in descending
order, the sequence would start with the longest words that start with the letter a,
and end with the shortest words that start with the letter z, which differs from the
sequence of words in a colloquial dictionary from front to back, which start with
the shortest words. If we take the subset of words of length d, then the words do
appear in the same order as in a colloquial dictionary.

• If we wanted to construct a scenario where an ordering would amount to the
ordering in a colloquial dictionary, we would start with X = {z, y, x, . . . , c, b, a}
(the alphabet), and order them as z � · · · � a. Then, if we put words in the
sequence of ascending order with respect to Lex, it would be the same as taking
the sequence of words in a colloquial dictionary from front to back.

C

Remark 1.31. The left and right lexicographic orders are well orders, but not ad-
missible orders on path algebras. As an example, if we again consider k〈X〉 and take
X = {x, y, z} with x � y � z, then x ≺Lex xz, but x · y �Lex xz · y violating (O1a). C

Definition 1.32 (weight extension). Let B be a multiplicative basis for a k-algebra A,
and let � be a well order. Let α : B → N0 be a weight function, meaning a map such
that for all b, b′ ∈ B with b · b′ 6= 0 we have α(b · b′) = α(b) + α(b′). We then define a new
order �α on B as follows.

We can partition our multiplicative basis into subsets B =
⋃

d∈N0
Bd, where

Bd := {b ∈ B | α(b) = d} are the basis elements of weight d. Each Bd ⊆ B is well-
ordered via �. Our new order �α on B =

⋃
d∈N0

Bd, the weight extension of � by α,
is then the one resulting from the construction (8) in Example 1.20.

(Compare to [Dec+21, Chapter 7.9.2].)
C

Definition 1.33 (weighted lexicographic order). In the case of a path algebras, the
weight function α is uniquely determined by its weight vector v = α|Q1

∈ NQ1
0 . We

write (a(v),o) for the weight extension of the total order o by the weight vector v.
For the special cases of o = Lex and o = lex, we write Wp(v) and wp(v), respectively,
called the weighted left (resp. right) lexicographic order. If v = (1, . . . , 1), we
write Dp = Wp(v) and dp = wp(v), called the left, resp. right (or reverse) length
lexicographic order or degree lexicographic order. C

Remark 1.34. Let Q be a quiver and kQ its path algebra. Each element in
a ∈ Q≥0, say with `(a) = d can be uniquely assigned a sequence ã ∈ Qd+1

≤1 such that
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a =
∏d

i=0 ã(i), where ã(i) ∈ Q1 for i ∈ [d] and a0 = s(a). We have now formed an inclu-
sion Q≥0 ⊆ fseq(Q≤1). The reverse (or right) length lexicographic order on fseq(Q≤1) as
in Definition 1.21 restricted to Q≥0 then coincides with the right length lexicographic
order as in Definition 1.32. C

Proposition 1.35. Let Q be a quiver. If v ∈ (N>0)
Q1 is a strictly positive weight

vector, then �Wp(v)=�(a(v),Lex) and �wp(v)=�(a(v),lex) are admissible orders on kQ, in
particular �Dp and �dp. If v ∈ NQ1

0 is any weight vector, then �(a(v),o) is an admissible
order kQ for any admissible order o. C

Proof (sketch). Consider �:=�Wp(v) for a strictly positive weight vector v. For (O2), it
suffices to know that p = qr implies both w(p) ≥ w(q) and w(p) ≥ w(r), and that q �Lex p
and r �Lex p. It is apparent that for p, q, s ∈ Q≥0 with sp 6= 0 and sq 6= 0, we have that
p �Lex q implies sp �Lex sq, because Lex “checks from left to right”, and both paths start
with the same subpath s. This implies (O1b), since this covers the case where w(p) = w(q)
and therefore w(sp) = w(sr). Now let p, q, r ∈ Q≥0 such that pr 6= 0, qr 6= 0 and assume
p � q. If w(p) < w(q), then clearly w(pr) = w(p) + w(r) < w(q) + w(r) = w(qr), so
pr ≺ qr.

Now assume w(p) = w(q), in which case we must then have p �Lex q. This means that
w(pr) = w(qr), so we must now show that pr �Lex qr. Assume towards a contradiction
that pr �Lex qr. This means that we initially must have had p 6= q, so p ≺Lex q. The only
way that p ≺Lex q can be true while pr �Lex qr, is if p is a subpath of q, more specifically
q must be of the form q = ps for some nonempty path s. But if v is a nonzero weight
vector, then w(p) < w(p)+w(s) = w(q), so w(pr) = w(p)+w(r) < w(q)+w(r) = w(qr),
which means that pr ≺ qr, which is a contradiction.

The case for wp(v) is completely analogous (or can be proven by applying the case for
Wp(v) to kQ′, the path algebra with reversed arrows).

Example 1.36. • Consider k〈x, y, z〉 with x � y � z. We then have

1 degree 0

≺Dp z ≺Dp y ≺Dp x degree 1

≺Dp z2 ≺Dp zy ≺Dp zx ≺Dp yz ≺Dp y2 ≺Dp yx ≺Dp xz ≺Dp xy ≺Dp x2 , degree 2

and we have

1 length 0

≺dp z ≺dp y ≺dp x length 1

≺dp z2 ≺dp yz ≺dp xz ≺dp zy ≺dp y2 ≺dp xy ≺dp zx ≺dp yx ≺dp x2 . length 2
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1. General Gröbner basis theory

• Consider the quiver algebra kQ for the following quiver.

v1 v2 v3
x1

1

x3

3

x2

1

x4

1

Let Lex be the lexicographic ordering for x1 � x2 � x3 � x4 for and v1 � v2 � v3.
Let furthermore w be the weight defined by the weight vector (1, 1, 4, 1), meaning
w(x1) = 1, w(x2) = 1, x3 = 3, and w(x4) = 1, and consider �:=�(Wp(w),Lex), the
weight extension of Lex by w. We then have

v3 ≺ v2 ≺ v1 weight 0

≺ x4 ≺ x2 ≺ x1 weight 1

≺ x4x1 ≺ x2x4 ≺ x1x2 weight 2

≺ x4x1x2 ≺ x3 ≺ x2x4x1 ≺ x1x2x4 weight 3

≺ x4x3 ≺ x2x3 weight 4

≺ x3x4x1 ≺ x2x4x3 . weight 5

C

We now briefly discuss orders for the commutative polynomial ring, similar to how it
is discussed in [Mor94, p. 133].

Definition 1.37. Assume that a total order is given on the finite set X, so without
loss of generality X = {x1, . . . , xn} and x1 � · · · � xn. Then we can write each b ∈ [X]

(uniquely) as
∏n

i=1 x
αi
i for some α ∈ N[n]

0 . We now define an inclusion of vector spaces
∆: k[X]→ k〈X〉 by the linear extension of

∏n
i=1 x

αi
i 7→

∏n
i=1 x

αi
i = xα1

1 . . . xαn
n . C

For our previously defined admissible orders, we can define an admissible order for
k[X] by this inclusion.

Definition 1.38. For an order �o, with o being either Wp(w), wp(w) (in particular Dp
and dp), Lex, lex, (a(v),Dp), or (a(v),dp), we define

b �o b
′ :⇐⇒ ∆(b) �o ∆(b′)

for elements in our multiplicative basis b, b′ ∈ [X] ⊆ k[X]. C

Proposition 1.39. Definition 1.38 defines an admissible order for w strictly positive. C

Proof. Property (O2) is apparent, as the argument here is purely weight based. We
now want to prove (O1). Let u, u′, v ∈ [X], say u =

∏
i=1 nxαi , u′ =

∏
i=1 nxβi and

v =
∏

i=1 nxγi , let xj ∈ X for some j ∈ [n], and Assume that u � v. If `(u) ≺ `(v), the
argument is again purely weight based, so uxj � vxj . If `(u) = `(v), let s ∈ [n] be the
(unique) index such that αs < βs and ∀i < s : αi = βi. We then get αs + γs < βs + γs
and αi + γi = βi + γi for all i < s, and therefore uv � u′v.
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Remark 1.40. The orders Lex and lex are in general not admissible orders for path
algebras, as noted in Remark 1.31, but for the commutative case, they are. C

1.3. Noncommutative polynomials in Singular
Let us return to our example in Example 1.5.3, but let us now make it more concrete
with X = {x, y, z} and d = 6. This means that we have the algebra A = k〈x, y, z〉 with
multiplicative basis B = 〈x, y, z〉 and the monomial ideal I = (M) ⊆ A generated by
M = {m ∈ 〈X〉 | `(m) > d} ⊆ B, giving us A/I = k〈X〉≤6, the ring of polynomials of
degree at most 7. Let us choose �Dp as our admissible order for k〈x, y, z〉. Then k〈X〉≤6

also has admissible order �Dp by Proposition 1.27.
Let us see how we can define this in Singular ([Dec+21]). We first load the freegb

library. Then we initialize a commutative polynomial ring in the variables x, y and z,
with order Dp. Then with this data, we define our ring A = k〈x, y, z〉≤6 and set it.

> LIB "freegb.lib";
> ring R = 0,(x,y,z),Dp;
> def A = freeAlgebra(R,6);
> setring A;
> A;

// coefficients: QQ
// number of vars : 18
// block 1 : ordering Dp
// : names x y z x y z x y z x y z x y z x y z
// block 2 : ordering C
// letterplace ring (block size 3, ncgen count 0)

In Singular, we first start by defining the commutative polynomial ring before we
define our noncommutative polynomial ring. Singular lets us use the orderings Dp,
dp, Wp(w), wp(w), lp, rp and (a(v),o). The implementation of a noncommutative
polynomial ring in Singular is actually done in terms of commutative polynomials, and
such rings are called letterplace rings. This concept was introduced in [LL09], and is
described further in [Zei19, Chapter 4]. Let us briefly outline what is happening.

Assume we want to model k〈x1, . . . , xn〉≤d. We introduce the polynomial ring in m · d
variables, the variables of which we shall name xi,j for i ∈ [n] and j ∈ [d]. If we have
a monomial

∏e
k=1 xik ∈ k〈x1, . . . , xn〉≤d with e ≤ d, the corresponding commutative

polynomial then is
∏e

k=1 xik,k ∈ k[x1,1, . . . , xn,d]. The intuition behind this is that the
second index encodes the position of the variable, that is xi,j stands for “xi at the j-th
position”. For this reason, Singular lists 18 variables for our ring A. This way the order
of the xi,j doesn’t matter to encode the information of the non-commutative monomial.
The tricky part is where we perform operations in k[x1,1, . . . , xn,d] while still trying to
make statements in our original polynomial ring k〈x1, . . . , xn〉. The aforementioned map,
call it Φ: k〈x1, . . . , xn〉≤d → k[x1,1, . . . , xn,d], is an embedding of k-vector spaces, but it
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1. General Gröbner basis theory

is not surjective, as for instance any monomial that contains two variables xi1,j1 and xi2,j2
with j1 = j2 in its expression doesn’t have a corresponding monomial in k〈x1, . . . , xn〉≤d.

The map Φ is not compatible with the multiplication: For m ·m′ ∈ k〈x1, . . . , xn〉≤d,
we in general have Φ(m ·m′) 6= Φ(m) · Φ(m′) ∈ k[x1,1, . . . , xn,d] , so we need to consider
an alternate multiplication in k[x1,1, . . . , xn,d], where we must “shift” the variables. We
therefore define

(

e∏
k=1

xik,k)� (

e′∏
k=1

xi′k,k) := (

e∏
k=1

xik,k) · (
e′∏

k=1

xi′k,e+k)

for e+ e′ ≤ d.
For orders Wp(w) as in Definition 1.33, where x1 � · · · � xn, we choose the order on
{x1,1, . . . , xn,d} to be

x1,1 � x2,1 � · · · � xn,1 � x1,2 � x2,2 � · · · � xn,d−1 � xn,d .

If we are given an ordering Wp(w) on k〈x1, . . . , xn〉≤d for a weight vector w ∈ N[n]
>0,

consider the weight vector that just copies the weights onto all copies of the xi, meaning
w′ ∈ N[n]×[d]

>0 is defined by w′
i,j := wi. We then have

u �Wp(w) v ⇐⇒ Φ(u) �Wp(w') Φ(v) .

Staying in our example of n = 3 and d = 6, if we want to write down a polynomial in
the letterplace ring corresponding to A = k〈x, y, z〉≤6 in Singular, we have to write an
asterisk * between all variables. Every outputted polynomial entered will have its terms
in descending order.

> def a = 7x*y - 2x*y + 4z*x + x*y*z - y*z + 3y*x*z - 2y*z*x;
> a;

x*y*z+3*y*x*z-2*y*z*x+5*x*y-y*z+4*z*x

Let us define some other polynomials and perform some operations.

> def b = z*z*x + 2z*x;
> def c = 3x*y*x*z*z;
> a*b;

x*y*z*z*z*x+3*y*x*z*z*z*x-2*y*z*x*z*z*x+7*x*y*z*z*x+6*y*x*z*z*x
-4*y*z*x*z*x-y*z*z*z*x+4*z*x*z*z*x+10*x*y*z*x-2*y*z*z*x+8*z*x*z*x

> a+b;

x*y*z+3*y*x*z-2*y*z*x+z*z*x+5*x*y-y*z+6*z*x

> a*c;
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1.4. Gröbner bases

? degree bound of Letterplace ring is 6, but at least 8
is needed for this multiplication

? degree bound of Letterplace ring is 6, but at least 7
is needed for this multiplication

? error occurred in or before STDIN line 37: `b*c;`

Multiplications where the resulting polynomial would have degree higher than 6 will
result in an error. It is therefore not the case that the multiplication works as in
k〈x, y, z〉/{m ∈ 〈x, y, z〉 | degm > d}.

1.4. Gröbner bases

Having discussed admissible orders, we are now finally able to define what a Gröbner
basis is. In this section, A will denote a k-algebra with multiplicative basis B and an
admissible order �.

Definition 1.41 (leading term). Let 0 6= y ∈ A, which we can write uniquely as

y =

s∑
i=1

λibi , where λi ∈ k× with bi pairwise distinct, and

bi � bi+1 (descending order)

for all i ∈ [s− 1]. Let furthermore M ⊆ R be a set. We then define

• LT(y) := b1, the leading term,

• LC(y) := λ1, the leading coefficient,

• LM(y) := LC(y) LT(y) = λ1b1,

• LT{M} := {LT(f) | 0 6= f ∈M}, the leading term set,

• LT(M) = (LT{M}), the leading term ideal of M , and

• supp(y) = {bi | i ∈ [s]}, the support of y.

If LC(y) = λ1 = 1, we call y monic, and if the set M consists of only monic elements,
we call M monic.

C

Remark 1.42. The leading term ideal LT(M) for a set M ⊆ B is a monomial ideal,
and we have LT(M) = spank(LT{I}) for I = (M) the ideal generated by M . C

Proposition 1.43. Let A be a k-algebra with multiplicative basis B equipped with a well
order. For f, g ∈ A such that LT(f) · LT(g) 6= 0 we have LT(fg) = LT(f) · LT(g). C
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1. General Gröbner basis theory

Proof. This is just a direct result of (O1). If we multiply f · g for f =
∑r

i=1 λibi and
g =

∑s
j=1 µib

′
j , with the bi and b′j in descending order, then LT(f) ·LT(g) = b1 ·b′1 � bi ·b′j

for all i, j by (O1a) and (O1b). Since supp fg ⊆ {bib′j | i ∈ [r], j ∈ [s]}, we have
LT(fg) = LT(f) · LT(g).

Definition 1.44 (Gröbner basis). Let I ⊆ A be an ideal. We call a subset G ⊆ I a
Gröbner basis of I if

(G) = I and LT(G) = LT(I) .

If G is additionally fulfills

1. LT{G} is a minimal generating set of LT(G), and

2. g − LM(g) ∈ span(B \ LT{I}) for all g ∈ G,

we call G a reduced Gröbner basis. C

Proposition 1.45. Let G ⊆ I be a subset of an ideal I. Then G is a Gröbner basis
of I if and only if the semigroup in B0 generated by LT{G} is equal to LT{I} ∪ {0}, in
other words (B ·LT{G} · B) \ {0} = LT{I} (for every f ∈ I 6= {0} there exists g ∈ G such
that LT(g) | LT(f)). C

Proof. We first notice that LT(G) = LT(I) if and only if (B · LT{G} · B) \ {0} = LT{I}.
This means that we immediately have “ =⇒ ”, and for “⇐= ”, what is left to show is
that (B · LT{G} · B) \ {0} = LT{I} implies (G) = I.

We prove this by contraposition. Let (G) ( I. We choose f ∈ I \(G) such that LT(f) is
minimal, which exists because our admissible order is a well order. Let h ∈ A be an element
such that there exist b, b′ ∈ B with LT(f) = bLT(h)b′. We then have with Proposition 1.43
that LT(f) = LT(bhb′). By construction, we have LT(f − LC(f)

LC(h)bhb
′) ≺ LT(f), and by

minimality of LT(f), we must therefore have f − LC(f)
LC(h)bhb

′ ∈ (G), which then necessarily
implies h /∈ G (as otherwise we would conclude that f ∈ (G)). What we have just shown
is that there is no leading term LT(h) of an element h ∈ G that divides LT(f), which
means that (B · LT{G} · B) \ {0} ( LT{I}, concluding our contraposition.

(Compare to [Xiu12, Lem, 3.3.15].)

Example 1.46. 1. Consider the polynomial ring in one variable A = k[x] with
multiplicative basis [x] = {xi | i ∈ N0}. There is only one possible admissible order
on [x], namely 1 ≺ x ≺ x2 ≺ · · · .
For an ideal I ⊆ A, there always exists a polynomial gcd(I), the greatest common
divisor of I, such that I = (gcd(I)), because k[X] is Euclidean and therefore a
principal ideal domain. The set G = {gcd(I)} then is a reduced Gröbner basis of
I. If I = (f, g) is generated by two elements f, g ∈ I \ {0}, then G = {gcd(f, g)},
obtained by performing the euclidean algorithm on f and g, is a reduced Gröbner
basis of I.
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1.4. Gröbner bases

2. Let M ∈ km×n and b ∈ km. Finding solutions to the equation Ax = b corresponds
to solving a set of m linear equations in n variables, namely the linear equations
defined by fi := (

∑n
j=1 ai,jxj)− bi = 0 for i = 1, . . . ,m. This is the same as asking

what the vanishing locus of the ideal I = (f1, . . . , fm) ⊆ k[x1, . . . , xn] is.

Let A′ ∈ km×n and b′ ∈ km be the result of the Gaussian algorithm, such that the
matrix (A′ | b′) is in row echelon form. If the rank of (A′ | b′) is strictly greater than
that of A′, then I = k[x1, . . . , xn], and {1} is a reduced Gröbner basis of I, and
there are no solutions to Ax = b. Assume now that there are solutions, meaning
that the rank of (A′ | b′) and A′ are equal.

Let f ′
i := (

∑n
j=1 ai,jxj) − b′i for i = 1, . . . ,m be the linear polynomials obtained

from the equation A′x = b′. Then {f ′
1, . . . , f

′
m} is a Gröbner basis of I for any

admissible order on [x1, . . . , xn] such that x1 � x2 � · · · � xn. If (A′ | b′) is in
reduced row echelon form, then {f ′

1, . . . , f
′
m} \ {0} is a reduced Gröbner basis of I.

The same statements can be said about k〈X〉.

For now, we will not explain why we obtain a Gröbner basis in this way, but this
example illustrates how we “find” all occurring leading terms in I: If in a row of A′,
the leftmost nonzero entry is in the j-th column, then xj ∈ LT(I). The Gaussian
algorithm is a special case of Buchberger’s procedure, and transforming a matrix
in row echelon form into a matrix in reduced row echelon form is a special case of
tip reduction. Both of these concepts will be discussed later.

The polynomials {f ′
1, . . . , f

′
m} are in some sense a “nice” set of generators for I.

The solutions to Ax = b are an affine linear subspace of kn, and the way that the
f ′
i were found, we can then easily find the affine coordinates of this affine linear

subspace.

3. Consider A = k〈x, y〉 with multiplicative basis B = 〈x, y〉 and admissible order �Dp.
Define the ideal I := (f, g) for f = xy + y and g = x + y. The set G := {f, g} is
not a Gröbner basis of I, as h := y2 − y = g · y − f ∈ I, but LT(h) = y2 /∈ LT(G).
The set G′ := {g, h} also generates I, and the question is if it is a Gröbner basis
of I. It is at the moment not easy to find a convincing argument to prove that
something is a Gröbner basis, so we will for now only check some cases for leading
terms of polynomials in I.

Consider a := p1 · g · p′1 + p2 · h · p′2 ∈ I \ {0} for some p1, p
′
1, p2, p

′
2 ∈ A. If

LT(a) = LT(p1) · LT(g) · LT(p′1) or LT(a) = LT(p2) · LT(h) · LT(p′2), then clearly
LT(a) ∈ LT(G′).

Assume now that this is not the case. This is only possible if the leading terms
“cancel each other out”, that is we have LM(p1gp

′
1) = −LM(p2hp

′
2). This means

LT(p1) · LT(g) · LT(p′1) = LT(p1gp
′
1) = LT(p2hp

′
2) = LT(p2) · LT(h) · LT(p′2). Since

LT(g) = x and LT(h) = y2, we see that these leading terms do not “overlap”. We
will go more into detail on what this means later, but for now we can just observe
how they don’t contain any common subword. We therefore must have
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1. General Gröbner basis theory

• LT(p′1) = v · LT(h) · LT(p′2) and LT(p2) = LT(p1) · LT(g) · v, or
• LT(p1) = LT(p2) · LT(h) · v and LT(p′2) = v · LT(g) · LT(p′1)

for some v ∈ 〈x, y〉. In any case, we must then have LT(g) | LT(a) or LT(h) | LT(a),
so LT(a) ∈ LT(G′).
Consider now a = p1 · h · p′1 + p2 · h · p′2 ∈ I \ {0} for some p1, p

′
1, p2, p

′
2 ∈ A. Again,

assume that the leading terms of p1hp′1 and p2hp
′
2 in this sum cancel each other

out. As above, if LT(h) | LT(p) for p ∈ {p1, p′1, p2, p′2}, then LT(a) ∈ LT(G′). But
in this case, there are even more possibilities for the leading terms to cancel each
other out, so let’s cover all of them.
As we cancelled out the leading term, it must be the case that
LT(a) = LT(p1)y LT(p

′
1) or LT(a) = LT(p2)y LT(p

′
2). Let us assume the former case.

If LT(p1) is of the form LT(p1) = vx for some v ∈ 〈x, y〉, then LT(g) = x | LT(a).
If LT(p1) is of the form LT(p1) = vy for some v ∈ 〈x, y〉, then LT(h) = y2 | LT(a).
If neither is the case, we must have p1 = 1. We can now use the same argument
for LT(p′1) = xv or LT(p′1) = yv for some v ∈ 〈x, y〉. One of these cases must be
true, since we cannot have p1 = p′1 = 1, as then we must also have p2 = p′2 = 1
which contradicts the assumption that a 6= 0. The case LT(a) = LT(p2)y LT(p

′
2)

is completely analogous, and so in summary, we must have LT(a) ∈ LT(G) in any
case.
We can similarly convince ourselves that for a = p1 · g · p′1 + p2 · g · p′2 ∈ I \ {0}
for some p1, p

′
1, p2, p

′
2 ∈ A, we have LT(a) ∈ LT(G). But what if a ∈ I \ {0} is of

a different form than the three cases that we covered? We will later see how to
ensure that we check everything.

C

We will see later that indeed every ideal has a unique monic reduced Gröbner basis.
The terminology is a bit confusing, since a Gröbner basis is not really a “basis” if we
compare it to other common uses of the term. Really, a Gröbner basis should be called a
Gröbner generating set, and a reduced Gröbner basis should be called a Gröbner basis.
As is usual with terminology in mathematics, we have to stick to the definitions that are
already in use.

Theorem 1.47 (Macaulay’s basis theorem). Let I ⊆ A be an ideal. We then have

A = I ⊕ spank(B \ LT{I})

as vector spaces. C

Proof. The vector subspaces I and spank(B \ LT{I}) have trivial intersection, as
f ∈ spank(B \ LT{I}) \ {0} implies LT(f) /∈ LT{I}, which in turn implies f /∈ I.
Now let us show that A = I + spank(B \ LT{I}).

Assume towards a contradiction that A ) I + spank(B \ LT{I}). Choose a nonzero
f ∈ A \ (I + spank(B \ LT{I})) with minimal LT(f), which is possible because � is a
well order.
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1.4. Gröbner bases

Assume first that LT(f) ∈ B \ LT{I}. Consider g := f − LM(f), for which we
have LT(g) ≺ LT(f) by construction. By minimality of LT(f), we must therefore have
g ∈ I + spank(B \ LT{I}), say of the form g = y + r with y ∈ I and
r ∈ spank(B\LT{I}). But then r+LM(f) ∈ spank(B\ I), which leads to a contradiction
because f = g + LM(f) = y + r + LM(f) ∈ I + spank(B \ LT{I}).

Assume now that LT(f) ∈ LT{I}, which means we can choose h ∈ I such that
LM(h) = LM(f). For g := f −h, we then have LT(g) ≺ LT(f) by construction. By mini-
mality of LT(f), we must then have g ∈ I + spank(B \ LT{I}), say
g = y + r with y ∈ I and r ∈ spank(B \ LT{I}). But with h + y ∈ I, we then have
f = h+ g = (h+ y) + r ∈ I + spank(B \ LT{I}), which is a contradiction.

(Compare to [Gre99, Theorem 2.1] and [Xiu12, Corollary 3.1.16].)

Remark 1.48. The multiplicative structure on A is irrelevant for Theorem 1.47, the
proof works for any vector space V with basis B and a well order � on B, and I ⊆ V is
any linear subspace. C

Definition 1.49 (normal form, remainder). In the situation of Theorem 1.47, for an
element y ∈ A, we can uniquely write

y = iy +N(y; I)

with iy ∈ I and N(y; I) ∈ spank(B \ LT{I}), and we call N(y; I) the normal form of y
for I, or the normal remainder of the division of y by I. We also say that y reduces
to r with respect to I. C

Lemma 1.50. Let I ⊆ A be a monomial ideal. Then I has a unique minimal monomial
generating set M ⊆ B of I. C

Proof. Define M := {f ∈ I ∩ B | g ∈ I ∩ B, g | f =⇒ g = f}. Choose any monomial
f ∈ I ∩B, and consider the set D(f) := {b′ ∈ I ∩B | b′ | f}. We have f | f and therefore
f ∈ D(f), so D(f) is nonempty. There exists a minimal such element d(f) ∈ D(f) with
respect to our order �, as it is a well order. But since our well order is also an admissible
order, for any monomial b′ ∈ I ∩ B with b′ | s, we must have b′ � d(f) by (O2), and by
minimality of f then b′ = d(f), so d(f) ∈M . This also shows that M is nonempty.

Now we show that M generates I. Notice that since I is a monomial ideal, I ∩ B
generates I, in fact I is just the k-span of I∩B. It therefore suffices to show that for every
h ∈ I∩B, there is an m ∈M that divides h. But this is already case for m = d(h) ∈ D(h)
by construction.

We now show that M is minimal. Let M ′ be another monomial generating set of I.
Then for m ∈M there must exist an m′ ∈M ′ such that m′ | m. But by definition of M ,
we must have m′ = m, so M ⊆M ′. This shows that M is the unique minimal monomial
generating set of I, concluding our proof.

(Compare to [Gre99, Prop. 2.5].)

Remark 1.51. Lemma 1.50 is really a statement about semirings, as for a monomial
ideal I generated by a set T ⊆ B , the ideal I is just the span of the subsemiring in B0
generated by T , which is I ∩ B, as noted in the proof. C
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Theorem 1.52. Let A be a k-algebra with multiplicative basis B with an admissible
order, and let I be an ideal in A. Let T be the minimal monic generating set of LT(I) as
in Lemma 1.50. Then

G = {t−N(t; I) | t ∈ T }

is the unique monic reduced Gröbner basis of I. C

Proof. Let us check the conditions in Definition 1.44.
For any t ∈ T , we have t−N(t; I) ∈ I, so we have LT(t−N(t; I)) ∈ LT{I}, and with

N(t;N) ∈ span(B \LT{I}), we get LT(t−N(t; I)) = t. We have now shown LT{G} = T ,
and LT{G} is a minimal generating set of LT(I) via construction of T , and we have also
shown that G is monic.

Let g ∈ G, so g = t−N(t; I) for some t ∈ T . We can then compute

g − LM(g) = g − LT(g)

= t−N(t; I)− LT(t−N(t; I))

= t−N(t; I)− t

= −N(t; I) ∈ span(B \ LT{I}) .

It remains to show (G) = I. Assume towards a contradiction that there exists
f ∈ I such that f /∈ (G), and choose such an f with minimal leading term LT(f). As
(T ) = LT(I), there exists t ∈ T such that t | LT(f), say LT(f) = btb′ for b, b′ ∈ B. Define
h := b · LC(f)(t − N(t; I)) · b′ ∈ (G) ⊆ I. By the above calculations in this proof, we
again have LT(t−N(t; I)) = t, and therefore also LT(h) = btb′, and we have f − h ∈ I.
If f = LC(f)(t−N(t; I)), we have a contradiction as h ∈ (G), but we assumed f /∈ (G).
If f 6= h, then by construction LT(f − h) ≺ LT(f). By minimality of LT(f) we must
then have f − h ∈ (G), but then f = f − h+ h ∈ (G), which is a contradiction to our
assumption f /∈ (G).

We have now shown that G is a monic reduced Grb̈ner basis, let us now show that
it is unique. Let H and H ′ be monic reduced Gröbner bases of I, and let h ∈ H. We
must have LT{H} = T = LT(H ′) by (1) in Definition 1.44. Therefore, for h ∈ H, there
is h′ ∈ H ′ such that LT(h) = LT(h′), and since they are both monic, we also have
LM(h) = LM(h′). Together with (2) in Definition 1.44, we then get

h− h′ = h− LM(h) + LM(h)− h′

= h− LM(h)− (h− LM(h′) ∈ span(B \ LT{I}) .

But since h− h′ ∈ I, and I ∩ span(B \ LT{I}) = {0}, we must have h = h′.
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So far, it is not really clear what Gröbner bases are there for. Algebras with a multi-
plicative basis are very common, but the introduction of an admissible order is not really
something that is seen outside of the theory of Gröbner bases. For the nature of the
algebra, the admissible order we choose itself as a structure is not really important, but
we will rather see that this is a necessary tool to generalize concepts we know from other
areas. In Definition 1.49 we defined a notion of a remainder, somehow implying that
there is some kind of division taking place. This is what will be discussed in this chapter.

Let us think about the intuition of “dividing” in conjunction with orders. In euclidean
domains, we have something similar to an order via the euclidean function. For the
example of the polynomial ring in one variable k[x], the euclidean function is just the
degree. This function restricted to the multiplicative basis B = {1, x1, x2, . . .} is the
canonical weight function (weight vector (1)), but in fact it doesn’t matter what weight
function we choose, any weight function and any prior total order as in Definition 1.32 will
lead to the same admissible order, and even without this construction we can easily come
to the realisation B has a unique admissible order, as was described in Example 1.46.1.
Now, with this admissible order, decomposing as in Definition 1.49 is the same as division
with remainder as defined in euclidean domains. So we see that the concepts talked about
in the previous chapter arise naturally for the special case of k[x]. In this chapter, our
goal is to now also generalize the algorithmic aspect of the division and the computation
of a greatest common divisor.

In this chapter, if not stated otherwise, A is a k-algebra with multiplicative basis B
and admissible order �.

2.1. Division with remainder

There is a subtlety when talking about ideals and divisibility. In commutative rings,
“a | b” is equivalent to b ∈ (a), but for noncommutative rings, this is not always the
case. For instance, consider R = k〈x, y〉, where we have xy + yx ∈ (x), but x - xy + yx.
Eventhough we use the same term “division” as in the commutative setting, we don’t
want to have “a | b”, but instead “a ∈ (b)” when we perform a division of b by a with
remainder 0 in the noncommutative setting. But what is a division with remainder then?
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Let F ⊆ A be a subset and let y ∈ A. We want to “divide” y by the polynomials in
F with remainder. A sensible definition for a division with remainder is the following.
For every f ∈ F , we choose nonnegative integers kf ∈ N0 and elements uf,j , vf,j ∈ A for
f ∈ F and i ∈ [kx], and an r ∈ A such that

• y =
∑

f∈F (
∑

j∈[kf ] uf,jfvf,j) + r,

• LC(uf,ifvf,i) � LC(y) for all f ∈ F and i ∈ [kf ], and

• for all b ∈ supp(r), LC(f) - b for all f ∈ F .

It is not clear that such a presentation always exists, but we will see that this is the case.
If we remember our procedure of the division in the polynomial ring in one variable k[x],
we want to decompose it even further by choosing our uf,j and vf,j to be in B up to a
scalar multiple, which is also possible here as B is a k-basis. So what we really want is
the following.

Definition 2.1 (division, remainder). Let A be a k-algebra with multiplicative basis B
and admissible order �. Let F ⊆ A be a subset of A and let y ∈ A. Assume that we can
find for every f ∈ F nonnegative integers kf ∈ N0, elements wf,j , w

′
f,j ∈ B and cf,j ∈ k×

for f ∈ F and i ∈ [kx], and an r ∈ A such that

1. y =
∑

f∈F (
∑

j∈[kf ] cf,jwf,jfw
′
f,j) + r,

2. LT(wf,jfw
′
f,j) � LT(y) for all f ∈ F and j ∈ [kf ], and

3. for all b ∈ supp(r) we have b 6∈ LT(F ).

We then call such a representation a division of y by F , and r is the remainder. We
also say that we can reduce y to r with respect to F .

(Compare to [Xiu12, p. 34].) C

Remark 2.2. 1. It follows from (2) in Definition 2.1 that we have LT(r) ≤ LT(y).

2. We must have either LT(y) = LT(r) or LT(y) = wf,jfw
′
f,j for some f ∈ F by the

previous remark and by (2) in Definition 2.1.

3. In (3) of Definition 2.1, as b ∈ B, this is equivalent to requiring LT(f) - b for all
f ∈ F .

C

Reducing y to r with respect to F , and calling r the remainder of the division by F as
in definition 2.1 is not necessarily the same as the normal form defined of y with respect
to (F ) as in definition 1.49. We will soon see that there is a connection between these
two definitions.

The division in definition 2.1 suggests that these wf,j , w
′
f,j , cf,j and r do exist, and

indeed, we can do this algorithmically. The algorithm works as follows (taken from
[Xiu12, Theorem 3.2.1]):
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2.1. Division with remainder

1. We initialise kf := 0 for f ∈ F and r := 0, z := y.

2. Find the first element of f ∈ F (assume that F is implemented as a list) such that
LT(f) divides LT(z), id est there exist w,w′ ∈ B such that LT(z) = w LT(f)w′. If
it exists, increase kf by one, set cf,kf := LC(v)/LC(f), wf,kf := w, wf,kf := w′

and replace z by z − LC(z)/LC(f)wfw′.

3. Repeat step 2 until no such f ∈ F exists anymore.

4. If z 6= 0, replace r by r+LT(z) and z by z−LT(z), and go back to step 2. If z = 0,
we are done.

Let us write this down in pseudo-code (compare with [Gre99, p. 38] [it very much looks
like the algorithm in this source is faulty/wrong/has errors]).

Proposition 2.3. The division algorithm (algorithm 1) terminates and yields a division
as in definition 2.1.

(Compare to [Gre99, p. 2.3.2] and [Xiu12, Theorem 3.2.1]) C

Algorithm 1 Division Algorithm
Input: finite set F ⊆ R, y ∈ A
Output: kf ∈ N0 for f ∈ F ; wf,j , w

′
f,j ∈ B and cf,j ∈ k for f ∈ F , j ∈ kf ; r ∈ A; such

that y =
∑

f∈F (
∑

j∈[kf ] cf,jwf,jfw
′
f,j) + r, LT(wf,jfw

′
f,j) � LT(y) for all f ∈ F and

j ∈ [kf ], and b 6∈ LT{F} for all b ∈ supp(r).

1: kf ← 0 for all f ∈ F
2: r ← 0
3: z ← y
4: while z 6= 0 do
5: if ∃f ∈ F, ∃w,w′ ∈ B : LT(z) = w LT(f)w′ then
6: kf ← kf + 1
7: cf,kf ← LC(z)/LC(f)
8: wf,kf ← w
9: w′

f,kf
← w′

10: z ← z − (LC(z)/LC(f))wfw′

11: else
12: r ← r + LM(z)
13: z ← z − LM(z)

Proof (sketch). In every iteration of the “while” loop, the leading coefficient of z gets
strictly decreased, and our admissible order is a well order, z must reach 0 eventually, so
the algorithm does terminate.

By the same argument, we also have that LT(y) � LT(z) = wf,kf LT(f)w
′
f,kf

after
every iteration where the if case is true. Note that after this iteration, kf is not the final
value of kf , rather this value goes through every value from 0 to the final value of kf .
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2. Algorithms For Gröbner Bases

Therefore we see that at the end of the algorithm, we have LT(wf,jfw
′
f,j) � LT(y) for

all f ∈ F and all j ∈ [kf ].
After every iteration of the “while” loop, by construction we clearly have

y = z+
∑

f∈F (
∑

j∈[kf ] cf,jwf,jfw
′
f,j)+ r, and since z = 0 after the last iteration, we have

y =
∑

f∈F (
∑

j∈[kf ] cf,jwf,jfw
′
f,j) + r.

Lastly since the else case only is true if for every f ∈ F the leading term LT(f) doesn’t
divide LT(z), we have LT(z) - LT(f) for all f ∈ F , which is equivalent to LT(z) /∈ LT{F}.
Since r is just a sum of all such LM(z), we have b /∈ LT{F} for all b ∈ supp(r).

The algorithm, as is, is not deterministic. In our if clause, it is not clear which f ∈ F
and which w,w′ ∈ B we should choose.

Algorithmically, a set F is usually implemented as some kind of a list F , so checking
the if condition is done in order of the enumeration of the set F . If we live in an ordered
field, for example k = R, it is also possible to find a total order on A, and we could check
the elements in F in descending or ascending order with respect to that total order.

After this, we then have to choose for a fixed f ∈ F a strategy for which w,w′ ∈ B that
fulfill the if condition. We can easily construct a well order on B × B, for example the
lexicographic order as in Definition 1.21, which gives us a strategy to check if w,w′ ∈ B
fulfill the if condition. Here, it is in general important that we choose a well order,
because our strategy would be to find the minimal w,w′ such that the if condition is
fulfilled, and the existence of such a minimal element is given by being well-ordered.

Abstractly, this is gives us a well-defined deterministic algorithm. But in practice, we
of course run into problems if this well-ordered set is not isomorphic to N0, because we
then can’t check all possibilities in ascending order. This for example would be the case if
we define our well order on B × B = B2 via the lexicographic order as in Definition 1.21.

But more specifically in practice, we work with quiver algebras or polynomial rings,
and there the set of possible w,w′ ∈ B in each step for a fixed f ∈ F is always finite,
which can be easily verified by degree arguments. Therefore, in this case, taking any
total order on B × B even works algorithmically.

Definition 2.4. Assume we implement F as list, so F = (f1, . . . , f|F |), and if we
have a deterministic method for choosing w and w′ such that LT(z) = w LT(f)w′, then
Proposition 2.3 is truly deterministic by having a fixed order for the checks to be executed.

We then have a well-defined map that maps an element y and an ordered list F to the
remainder r of the division of y by F and write N(y;F), which might be a slight abuse of
notation, since the result can vary according to how we choose F from F , so N(y, F ) is not
well-defined in general and we therefore cannot in general write N(y;F) = N(y; (F )). C

From now on, N(•; •) will refer to some fixed choice of a function as described in
Definition 2.4.

If we perform a division of an element y by a set F and we get remainder 0, then it
is clear that y ∈ (F ). But do we get remainder 0 if y ∈ (F )? The answer is no, not in
general.
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2.2. An example for different reduction strategies

Example 2.5. Consider A = k〈x, y〉, h = xy2, and the set G = {g1, g2} for g1 = x2−xy
and g2 = xyx. We have h = g1(x − y) − xg1 + g2, so h ∈ (G). Let us now perform a
division of h by G like in proposition 2.3.

• The first time we go through our “while” loop, the if-case won’t be fulfilled for
either g1 or g2.

• We set r = xy2 and z = 0.

• We are done as z = 0.

As we see, eventhough h ∈ (G), we have a division of h by G with a nonzero remainder.
We can also check this in Singular.

> LIB "freegb.lib";
> ring r = 0,(x,y),dp;
> def A = freeAlgebra(r,20);
> setring A;
> ideal G = x*x - x*y, x*y*x;
> reduce(x*y*y,G);

// ** G is no standard basis
x*y*y

Singular even helpfully informs us G is no standard basis, hinting the exact problem
we constructed: xy2 is in the ideal generated by G, but the normal remainder with respect
to G in the implementation of Singular is not 0. C

2.2. An example for different reduction strategies
In this example, we will construct examples where we see how different strategies lead to
different outcomes, and how Singular deals with this.

Consider k〈x, y〉 and the elements f = xy + x, g = x− y and h = xyx− x. We want
to reduce h with respect to f and g. Depending on the order of f and g, we should get
different results in the division algorithm. Let us go through the algorithm with the
enumeration F = (f, g), and the strategy of choosing the smallest w, in other words the
smallest (w,w′) ∈ B × B with respect to the left lexicographic order on B × B.

1. r = 0, z = h = xyx− x.

2. LT(f) | LT(z), and we set
• wf,1 = 1, w′

f,1 = x, cf,1 = 1, and

• z = xyx+ x− fx = −x2 + x.

3. LT(f) - LT(z), but we have LT(g) | LT(z), so we set
• wg,1 = 1, w′

g,1 = x, cg,1 = −1, and
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2. Algorithms For Gröbner Bases

• z = −x2 + x− (−gx) = −yx− x.

4. LT(f) - LT(z), but we have LT(g) | LT(z), so we set
• wg,2 = y, w′

g,2 = 1, cg,2 = −1, and

• z = −yx+ x− (−yg) = −y2 − x.

5. LT(f),LT(g) - LT(z), so we set
• z = −x,
• and r = −y2.

6. LT(f) - LT(z), but we have LT(g) | LT(z), so we set
• wg,2 = 1, w′

g,2 = 1, cg,2 = 1, and
• z = −x− (−g) = −y.

7. LT(f),LT(g) - LT(z), so we set
• z = 0 and
• r = −y2 − x,

arriving at our final result.

Let’s see what happens when we input this into Singular.

> LIB "freegb.lib";
> ring r = 0,(x,y),Dp;
> def A = freeAlgebra(r,20);
> setring A;
> ideal F = x*y - x, x-y;
> reduce(x*y*x - x, F)

// ** F is no standard basis
y*y*y-y

So apparently Singular does not use this strategy. Let us try to use the strategy where
we take the smallest element with respect to the reverse lexicographic order.

1. Same as above.

2. Same as above.

3. LT(f) - LT(z), but we have LT(g) | LT(z), so we set
• wg,1 = x, w′

g,1 = 1, cg,1 = −1, and

• z = −x2 + x− (−xg) = −xy − x.

4. LT (f) | LT(z), so we set
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2.2. An example for different reduction strategies

• wf,2 = 1, w′
f,2 = 1, cf,2 = −1, and

• z = −xy − x− (−f) = 0,
arriving at our final result.

So in this case, we actually get remainder 0, so indeed we do have h ∈ (f, g), in particular
still not the strategy Singular uses.

Let us do one more try: We reverse the order of f and g, so we first start checking
g and then f , and for w and w′ we choose the smallest element with respect to the
lexicographic order.

1. r = 0, z = h = xyx− x

2. LT(g) | LT(z), so we set
• wg,1 = 1, w′

g,1 = yx, cg,1 = 1, and

• z = xyx− x− gyx = y2x− x.

3. LT(g) | LT(z), so we set
• wg,2 = y2, w′

g,2 = 1, cg,2 = 1, and

• z = y2x− x− y2g = y3 − x.

4. LT(g),LT(f) - LT(z), so we set
• z = −x
• and r = y3.

5. LT(g) | LT(z), so we set
• wg,3 = 1, w′

g,3 = 1, cg,3 = −1, and
• z = −x− (−g) = −y.

6. LT(g),LT(f) - LT(z), so we set
• z = 0

• and r = y3 − y,
arriving at our final result.

This is the same result as the one Singular produced above. We can also see that
Singular produces the same result if we change the order of the elements in the ideal,
which is also interesting.

> ideal F = x-y, x*y - x;
> reduce(x*y*x - x, F)

// ** F is no standard basis
y*y*y-y
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2. Algorithms For Gröbner Bases

We can construct a scenario in Singular where the order matters. Consider the
elements f = xy + x, g = xy + y and h = xyx+ x. We want to reduce h with respect to
f and g. Depending on the order of f and g, we will get different results in the division
algorithm. We can see this in Singular.

> LIB "freegb.lib";
> ring r = 0,(x,y),Dp;
> def R = freeAlgebra(r,20);
> setring R;
> ideal F = x*y + x, x*y + y;
> reduce(x*y*x + x, F);

// ** F is no standard basis
-y*x+x

> ideal F = x*y + y, x*y + x; // Change the order of the elements
> reduce(x*y*x + x, F);

// ** F is no standard basis
-x*x+x

With all that we tried above, we see that the strategy of reduce in Singular probably
does not correspond to choosing a fixed order for F. Singular probably reorders the
elements of F, probably by their leading term. If the elements in F all have the same
leading term, then it seems that Singular does not reorder them, as seen in this example.

2.3. Gröbner representations
So far, what we have defined a “division” does not feel quite right, because ideally we
want to have a division by a set that gives us remainder 0 if and only if an element be
expressed by a two-sided A-linear combination of that set.

As mentioned before, if we can reduce an element y ∈ A to 0 with respect to F , then
this means that y ∈ (F ). We actually have something stronger by our requirements in
definition 2.1 of the division. This motivates the following definition.

Definition 2.6 (Gröbner representation). For y ∈ A, we call a representation

y =
∑
i

ciwigiw
′
i

with ci ∈ k×, gi ∈ F , and wi, w
′
i ∈ B a Gröbner representation of y in terms of F if

LT(wigiw
′
i) � LT(y) for all i. C

Remark 2.7. If it wasn’t clear by the narrative, y has a Gröbner representation in
terms of F if and only if we can reduce y to 0 with respect to F . C
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2.3. Gröbner representations

What we want still is a well-defined reduction for any element in A, meaning a map
that gives us some specific remainder of a division. So far, Definition 2.1 doesn’t give us
uniqueness of the remainder, and indeed, as we have seen, we don’t have uniqueness in
general. This is where Gröbner bases come into play.

Proposition 2.8. In the context of Definition 2.1, if F is a Gröbner basis for I = (F ),
then the remainder r of the division of an element y ∈ A by F is unique. This also means
that in the context of Proposition 2.3, we have N(y;F) = N(y;F ′) for any enumerations
F ,F ′ of F , and we have r = N(y; I) (Definition 1.49). C

Proof. Let y = a + r with a =
∑

f∈F (
∑

j∈[kf ] uf,jfvf,j) be a division as described in
Definition 2.1. Since we have for all b ∈ supp(r) that LC(f) - b for all f ∈ F , we have
r ∈ span{B \ LT(I)}, precisely because G is a Gröbner basis of I. Since a ∈ I, we must
have a = iy and r = N(y; I) as in Theorem 1.47.

We have now shown that if G is a Gröbner basis for I = (G), in light of Proposition 2.8,
we can write N(y;G) = N(y; I). Now, finally, we can justify our notion of a division.

Proposition 2.9. The set G is a Gröbner basis for an ideal I if and only if every
f ∈ (G) \ {0} has a Gröbner representation in terms of G. C

Proof. Let G ⊆ I be a Gröbner basis of I, and let f ∈ I.
Let v0 := f , and recursively define vn+1 = 0 if vn = 0, and otherwise define

vn+1 := vn−cn+1wn+1gn+1w
′
n+1, where LT(vn) = wn+1 LT(gn+1)w

′
n+1 for some gn+1 ∈ G,

wn+1, w
′
n+1 ∈ B and cn+1 := LC(vn)/LC(gn+1). This is always possible, because G is

a Gröbner basis. We have LC(vn) � LC(vn+1) for every n ∈ N0 such that vn+1 6= 0,
and since our admissible order is a well order, vn = 0 after some large enough index
certain index. Let m ∈ N0 be the first index such that vn = 0 for all n ≥ m. Then by
construction we have f =

∑
i∈[m] ciwigiw

′
i and LT(f) � LT(wigiw

′
i) for all i ∈ [m], so f

has a Gröbner representation.
Assume that every nonzero f ∈ I has a Gröbner representation. Then clearly (G) = I.

If f =
∑

i ciwigiw
′
i is a Gröbner representation of f ∈ I \ {0}, then LT(f) = wj LT(gj)w

′
j

for some j because LT(f) � wi LT(gi)w
′
i for all i, and therefore LT(f) ∈ LT(G). Therefore

LT(I) = LT(G), making G a Gröbner basis of I.
(Compare to [Xiu12, Proposition 3.3.6])

Corollary 2.10. With Proposition 2.9 and Proposition 2.8, G is a Gröbner basis of I if
and only if N(f ;G) = 0 for some enumeration G of G, or equivalently for any enumeration
G of G. C

This is exactly what Gröbner bases do. We noted before that if we have generators
of an ideal, our notion of a division doesn’t give us a way to check if an element can
be expressed as an A-linear combination of these generators, as seen in Example 2.5. If
we pick special generators though, special here meaning we have a Gröbner basis, our
division does give us exactly that. This is one of the key intuitions behind Gröbner bases.
They are in some sense the best representatives of an ideal, the generators which give us
a good notion of a division.
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Corollary 2.11 (ideal membership). If G is a Gröbner basis for I = (G), then for all
y ∈ A we have

y ∈ I ⇐⇒ N(y;G) = 0 .

C

Let us sum up what we have learned so far.

• Admissible orders give us a notion of a division with remainder, which is algorith-
mically implementable, but this is in general not unique.

• An element having remainder 0 for a division by a set G implies that it is contained
in the ideal (G).

• If G is a Gröbner basis for (G), then the previous statement is an if and only if
statement.

• A Gröbner basis gives us a well-defined map for the remainder of the division by
G, and a way to algorithmically check if an element belongs to an ideal.

Corollary 2.11 is also the beginning of our quest to Buchberger’s procedure. If we have
generators of an ideal and can find elements that are contained in the ideal but are not
reduced to 0 after division by these generators, we can add that element to the set of
generators and check again. We want to do this until every element in the ideal has
remainder 0. But which elements in the ideal do we check? This is where we develop the
theory of obstructions and S-polynomials.

2.4. Obstructions and S-polynomials
In this section, we discuss the theory of obstructions and S-polynomials to compute
Gröbner bases as in [Xiu12, Chapter 3.4, Chapter 4.1], and we try to generalize this as
much as possible to k-algebras A with multiplicative basis B and admissible order �.

Definition 2.12 (syzygy). We define the A bimodule

FG := (A⊗A)G = {f : G→ A⊗A}

with basis elements εg for g ∈ G (such that εg(h) = δg,h⊗ δg,h). We define two evaluation
morphisms defined by

λ : FG → (G) εg 7→ g

Λ: FG → LT(G) εg 7→ LM(g) .

The (two-sided) syzygy of G and LM(G), respectively, are

Syz(G) := kerλ Syz(LM(G)) := kerΛ .

C
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Definition 2.13 (degree, leading form). Let G ⊆ A be a subset. Let m ∈ FG. If we
write m =

∑
g∈G µgugεgwg with We define the degree of m as

deg(m) := max
�

(supp(Λ(m))) ∈ B

if Λ(m) 6= 0, and deg(m) = 0 otherwise.
With this degree function, we can decompose FG =

⊕
b∈B0

(FG)b into its homogeneous
components, where (FG)b = spank{uεgw | g ∈ G, u,w ∈ B, uLT(g)w = b}. The
homogeneous component of degree degm, the leading form of m, is denoted by LF(m).

C

Definition 2.14 (obstruction). Let A be a k-algebra with multiplicative basis B and
an admissible order, and let G ⊆ A be a subset. We define for g, h ∈ G, v, v′, w, w′ ∈ A
elements

og,h(v, v
′;w,w′) :=

1

LC(g)
vεgv

′ − 1

LC(h)
wεhw

′ ∈ FG .

If v, v′, w, w′ ∈ B0 and og,h(v, v
′;w,w′) ∈ Syz(LT(G)), which means that

Λ(og,h(v, v
′;w,w′)) = 0 and therefore v LT(g)v′ = w LT(h)w′, we call og,h(v, v

′;w,w′)
an obstruction of g and h. If g = h, we call it a self obstruction.

The set of all such obstructions of g and h shall be denoted by o(g, h). The union of
all these are called obstructions of G and shall be denoted by o(G). C

Lemma 2.15. The set o(G) generates Syz(LM(G)) as an ideal, in fact even as a vector
space. C

Proof. Let m =
∑

g∈G
∑

i cg,iwg,iεgw
′
g,i ∈ Syz(LM(G)) with cg,i ∈ k× and wg,i, w

′
g,i be a

homogeneous syzygy of LM(G). If the degree is 0, we immediately have
wg,iεgw

′
g,i = wg,iεgw

′
g,i − 0 · εg · 0 ∈ o(g, g) for all i and g ∈ G.

Now assume the degree is nonzero and assume without loss of generality that all
terms wg,iεw

′
g,i are distinct. This, together with the fact that Λ(m) = 0 gives us

#supp(m) ≥ 2. Choose any two distinct index pairs (g, i) and (h, j), and we notice that
og,h(wg,i, w

′
g,i, wh,j , w

′
h,j) is an obstruction, as m is homogeneous. Then we see that for

m′ := m − cg,i LC(g)og,h(wg,i, w
′
g,i, wh,j , w

′
h,j) we have #supp(m′) < #supp(m). The

claim therefore follows by induction over #supp(m).
(Compare to [Xiu12, Lemma 3.4.8].)

Definition 2.16 (lifting). An element m ∈ Syz(LM(G)) has a lifting in Syz(G) if
there exists M ∈ Syz(G) such that LF(M) = m. C

Lemma 2.17. The set G is a Gröbner basis of (G) if and only if every obstruction of
G has a lifting in Syz(G). C

Proof. Let G be a Gröbner basis of I. Let m ∈ o(G), so Λ(m) = 0, and as m
is an obstruction, we also have LF(m) = m. If λ(m) = 0, then m is a lifting of
itself, so assume λ(m) = 0. By Proposition 2.9, λ(m) has a Gröbner representa-
tion, say λ(m) =

∑
i ciwigiw

′
i with ci ∈ k×, wi, w

′
i ∈ B and gi ∈ G, and we have

LT(λ(m)) � LT(wigiw
′
i) for all i.
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Consider h :=
∑

i ciwiεgiw
′
i, so clearly λ(m) = λ(h), which implies that m−h ∈ Syz(G).

By construction we have LT(λ(m)) = LT(λ(h)) = deg(h). As LF(m) = m ∈ Syz(LM(G)),
which means Λ(m) = 0, the leading terms in the resulting sum of λ(m) cancel each
other out. This means that we get deg(m) � LT(λ(m)) = LT(λ(h)) and therefore
deg(m) � deg(h), so LF(m− h) = LF(m) = m. This shows that m− h is a lifting of m.

Assume that every obstruction in o(G) has a lifting in Syz(G). Let f ∈ I, and choose
a representation f =

∑
i ciwigiw

′
i with ci ∈ k×, wi, w

′
i ∈ B and gi ∈ G for all i, such that

max{LT(wigiw
′
i)} is minimal, which is possible because � is a well order.

Assume towards a contradiction that max{LT(wigiw
′
i)} � LT(f), and let

m =
∑

i ciwkεgiw
′
i, which by construction is an m such that λ(m) = f with minimal

deg(m). Also by construction we have deg(m) � LT(f) = LT(λ(m)), which necessar-
ily implies LF(m) ∈ Syz(LM(G)). By Lemma 2.15, we can find dj ∈ k×, vj , v

′
j ∈ B

and mj ∈ o(G) such that LF(m) =
∑

j djwjmjw
′
j . Choose a lifting Mj ∈ Syz(G) for

each mj , so LF(Ml) = ml, which exist by assumption. As Ml ∈ Syz(G), we have
λ(m−

∑
j djvjMjv

′
j) = λ(m). But we also have

LF(m) =
∑
j

djvj LF(Mj)v
′
j = LF(

∑
i

cjvjMjv
′
j) ,

and therefore deg(m−
∑

j djvjMjv
′
j) ≺ deg(m), therefore contradicting the minimality

of deg(m).
So we must have max{LT(wigiw

′
i)} � LT(f), which means that

∑
i ciwigiw

′
i is a

Gröbner representation of f . With Proposition 2.9, we showed that G is a Gröbner basis
of I, concluding our proof.

(Compare to [Xiu12, Proposition 3.4.11].)

Definition 2.18 (S-polynomial). Let A be a k-algebra with multiplicative basis B and
an admissible order, and let G ⊆ R be a finite subset. Let og,h(v, v

′;w,w′) ∈ og,h be an
obstruction. We define the S-polynomial of o = og,h(v, v

′;w,w′) as

S(o) = Sg,h(v, v
′;w,w′) := λ(og,h(v, v

′;w,w′)) .

C

We now give an even better version of Proposition 2.9.

Proposition 2.19. A finite set G ⊆ A is a Gröbner basis of I = (G) if and only if for
every obstruction o ∈ o(G), the S-polynomial S(o) has a Gröbner representation in terms
of G. C

Proof. If G is a Gröbner basis, then Proposition 2.9 immediately gives us that every
S-polynomial S(o) ∈ I for an obstruction o ∈ o(G) has a Gröbner representation.

Assume now that every S-polynomial S(o) of an obstruction o ∈ o(G) has a Gröbner
representation. By Lemma 2.17, to show that G is a Gröbner basis of I, it suffices to
show that each obstruction in o(G) has a lifting in Syz(G). So let o = og,h(w,w

′, v, v′)
be an obstruction, and let S(o) =

∑
i ciwigiw

′
i be a Gröbner representation of S(o). Let
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2.5. Buchberger’s criterion

M = o−
∑

i ciwiεgiw
′
i. Since the leading terms of S(o) cancel each other out in the sum,

we must have LT(wjgjwj) ≺ LT(wgw′) = LT(vhv′) for all j. This means that we have
LF(M) = o, and furthermore M ∈ Syz(G) by construction, so M is a lifting of o in
Syz(G).

(Compare to [Xiu12, Proposition 4.1.2].)

Remark 2.20. In the setting of the commutative polynomial ring A = k[x1, . . . , xn],
there is only one S-polynomial we need to consider for a pair of polynomials. For
λ = (λ1, . . . , λn) ∈ N[n]

0 we write xλ := xλ1 . . . xλn . Let f, g ∈ A, we can then write
LT(f) = xα and LT(g) = xβ for some α, β ∈ N[n]

0 . Define ν ∈ N[n]
0 by νi := min{αi, βi},

and consider
S(f, g) :=

1

LC(f)
xβ−ν · f − 1

LC(g)
xα−ν · g ,

which is the S-polynomial S(o) of the obstruction of,g(x
β−ν , 1;xα−ν , 1). Every other

S-polynomial S(o′) of an obstruction o′ ∈ o(f, g) will then just be a multiple of S(f, g).
We conclude that S(f, g) reduces to zero with respect to some set G if and only the
S-polynomial S(o′) of every obstruction o′ ∈ o(f, g) reduces to zero with respect to G.
This is Buchberger’s criterion for commutative polynomials. C

We now almost have an algorithm to compute Gröbner bases. For a given set of
generators G of an ideal I, we can check if an S-polynomial reduces to 0 if we do the
division by G. If no such S-polynomial exists, then by Proposition 2.19 we already have
a Gröbner basis. But if S-polynomials exist that don’t reduce to 0, then we append
them to G, and let’s call that set G′. Obviously these S-polynomials and therefore all
S-polynomials S(o) for o ∈ o(G) for reduce to 0 with respect to G′. But this doesn’t
guarantee that G′ isn’t a Gröbner basis for I, because for Proposition 2.19 to work, we
now have to check the S-polynomials for o(G′). So we want to repeat the process until
all S-polynomials reduce to 0. This poses two challenges if we want to implement this
algorithmically.

1. We have infinitely many S-polynomials that we need to check, even if G is finite.

2. If we assume that we can somehow check all the S-polynomials and we additionally
assume that we only append finitely many new S-polynomials, we still have no
guarantee that the algorithm terminates.

In the following, we see that we can tackle problem 1. We know of examples where
an ideal generated by finitely many elements has an infinite reduced Gröbner basis, so
problem 2 cannot be eliminated by technique, but only by changing the circumstances,
id est placing restrictions on our multiplicative basis B.

2.5. Buchberger’s criterion
What we want to do in the end, is to reduce the amount of S-polynomials we need to
check in Proposition 2.19 in such a way that we can possibly algorithmically compute
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Gröbner bases. In Remark 2.20, we saw an example for how we can reduce the case of
many S-polynomials to a single specific S-polynomial, and we try to now do something
similar for the noncommutative case.

Lemma 2.21. Let o = og,h(u,w;u
′, w′) ∈ o(g, h) ⊆ o(G) such that its S-polynomial S(o)

has a Gröbner representation in therms of G. Then for any m,n ∈ B, the S-polynomial
S(o′) of o′ = og,h(mu,wn;mu′, w′n) ∈ o(g, h) also has a Gröbner representation in terms
of G. C

Proof. We note that o′ = mon, and therefore if o =
∑

i civigiv
′
i is a Gröbner representa-

tion, then o′ =
∑

i ci(mvi)gi(v
′
in) is a Gröbner representation.

(Compare to [Xiu12, Lemma 4.1.6].)

With this, our goal is to modify our characterization in Proposition 2.19 in such a way
that we only need to check all obstructions of the form

1. og,h(1, w;u, 1) a “right obstruction in o(g, h)”,

2. og,h(u, 1; 1, w), a “left obstruction in o(g, h)”,

3. og,h(1, 1;u,w), an “inner center obstruction in o(g, h)”, and

4. og,h(u,w; 1, 1), an “outer center obstruction in o(g, h)”.

There is a bit of a problem in this notation, as 1 is not necessarily an element of B. We
could just allow 1, or alternatively, we can choose some lLT(g), rLT(g), lLT(h) or rLT(h)

instead of 1, as described in Proposition 1.6. We will stick to just writing 1, as in the
end it won’t make a difference, and it is both more pleasing to the eye as well as more
similar to the literature.

If B is infinite, which for instance is the case for path algebras, there are still in-
finitely many of these obstructions. As an example, for any b ∈ B, we have that
og,h(1, bLT(h); LT(g)b, 1) is an obstruction. Luckily, among these we don’t need to check
all of them for arbitrary b ∈ B: We can “trim off” b, meaning we set b = 1, and
then if that S-polynomial og,h(1,LT(h); LT(g), 1) reduces to 0, then all S-polynomials
of the form og,h(1, bLT(g); LT(h)b, 1) for arbitrary b ∈ B reduce to 0 by applying
Lemma 2.21 again. But it obviously doesn’t suffice to only check og,h(1,LT(h); LT(g), 1)
and og,h(LT(h), 1; 1,LT(g)) as left and right obstructions, we definitely need to check
more. Essentially, we can think of what we need to additionally check as “trimming
off” even more off of LT(g) and LT(h). This inspires the following definition, which is
described in [Gre99, Definition 2.7].

Definition 2.22 (overlap, non-trivial obstruction). Let b, c ∈ B. We say b and c
overlap if there exist u,w ∈ B such that one of the following conditions hold.

1. bw = uc 6= 0 and b - u and c - w, “b overlaps on the right with c”.

2. ub = cw 6= 0 and b - w and c - u, “b overlaps on the left with c”.
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2.5. Buchberger’s criterion

3. b = ucw, meaning c divides b,

4. ubw = c, meaning b divides b.

Cases 3 and 4 imply c | b and b | c, respectively.
Let g, h ∈ G and assume that LT(g) and LT(h) overlap. Then consider the obstruction

o ∈ o(g, h) as the following for each of the four cases.

1. o = og,h(1, w;u, 1), a “right obstruction in o(g, h)”

2. o = og,h(u, 1; 1, w), a “left obstruction in o(g, h)”

3. o = og,h(1, 1;u,w), an “inner center obstruction in o(g, h)”

4. o = og,h(u,w; 1, 1), an “outer center obstruction in o(g, h)”

The set of all such obstructions in o(g, h), aside from og,h(1, 1; 1, 1) if g = h, is denoted
by O(g, h), and the union of all these for g, h ∈ G is denoted by O(G), and we call them
non-trivial obstructions of G.

If we have an obstruction of G of the form og,h(mu,wn; pu′, w′q) for a non-trivial
obstruction og,h(u,w;u

′w′) of G and for m,n, p, q ∈ B, we say it has an overlap.
C

Remark 2.23. Let A be a path algebra. Definition 2.22 is equivalent to the following.
Let b, c ∈ B. Then b and c overlap at v ∈ B if there exist u,w ∈ Q≥1 such that one of
the following conditions hold.

1. b = uv and c = vw, “b overlaps in v on the right with c”.

2. b = vw and c = uv, “b overlaps in v on the left with c”.

3. b = uvw and c = v, “b is contains b”.

4. b = v and c = uvw, “b is lies inside of c”.

u v
v w

u v w
v

Figure 2.1.: A visualization for overlaps.

In this context, the term “overlap” is a bit more intuitive. C

Example 2.24. Consider k〈x, y〉 and the monomials x3y2x2 and x2y2x. We have the
following overlaps.

xxxyyxx xxxyyxx xxxyyxx xxxyyxx
xxyyx xxyyx xxyyx xxyyx

center right right left

C
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2. Algorithms For Gröbner Bases

The question now is if for our characterization in Proposition 2.19 it suffices to check
only S-polynomials s(o) for non-trivial obstruction o ∈ O(G). For path algebras this is
exactly the case. Overlaps exactly describe the smallest “building blocks” from which we
“construct” all other obstructions that have an overlap (via Lemma 2.21).

We now restrict ourselves to path algebras, so in the following, Q is a quiver and kQ
its path algebra. The following results rely on an important lemma that is not necessarily
generalizable.

Lemma 2.25. Let a, b, v ∈ Q≥0 such that av = vb. We can then find x, y ∈ Q≥0 and
n ∈ N0 such that a = xy, b = yx and w = (xy)n. C

Proof. If one of the a, b or v are in Q0, then it is clear. Assume therefore that
a, b, v ∈ Q≥1. Observe that we must have `(a) = `(b). Now consider `(v) = n `(a) + r,
where n ∈ N0 and r < `(a). By induction over n we have v = anx with `(x) = r. With
`(x) = r < `(a) = `(b), we have b = yx for some y ∈ B. Then, since
anax = av = vb = anxyx, we must have ax = xyx, and therefore a = xy. This
concludes the proof.

(Compare to [Coh08, Lemma 1.2].)

a v
v b

→ a a
a b

→ · · · → a a … a a x
a a … a x b

Figure 2.2.: A visualization for the induction in the proof of Lemma 2.25.

Lemma 2.26. Let g, h ∈ kQ and assume that LT(g) and LT(h) have no overlap. Then
the S-polynomial S(o) for any obstruction o ∈ o(g, h) has a Gröbner representation. C

Proof. In path algebras, an obstruction o ∈ o(g, h) that has no overlap must be ei-
ther of the form og,h(u, v LT(h)w;uLT(g)v, w) or og,h(uLT(h)v, w;u, v LT(g)w) for some
w, v, u ∈ Q≥0 for some w, v, u ∈ Q≥0, and for symmetry reasons it suffices to only consider
the former. Furthermore, it also suffices to just check og,h(1, v LT(h); LT(g)v, 1), since if
we can show it for this case, Lemma 2.21 guarantees us the general case.

Without loss of generality, we can assume that LC(g) = LC(h) = 1. We calculate a
representation of S(o) in terms of g and h as follows. Let g = LT(g) +

∑
j∈J λjaj and

h = LT(h) +
∑

k∈K µkbk for λj , µk ∈ k× and aj , bk ∈ B for all j ∈ J and k ∈ K, and
for g and h respectively, all basis elements occurring in their expressions are pairwise
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2.5. Buchberger’s criterion

distinct. We then have

S(o) = gv LT(h)− LT(g)vh

= gv(h−
∑
k∈K

µkbk)− (g −
∑
j∈J

λjaj)vh

=
∑
k∈K

µkgvbk −
∑
j∈J

λjajvh

=
∑
k∈K′

µkgvbk −
∑
j∈J ′

λjajvh ,

where J ′ ⊆ J are the indices such that ajv LT(h) 6= 0, and analogously for K ′ ⊆ K.
To show that this is in fact a Gröbner representation, by definition, we must show

that LT(S(o)) � LT (gvbk) = LT(g)vbk and LT(S(o)) � LT(ajvh) = ajv LT(h) for
all k ∈ K ′ and all j ∈ J ′. Let j′ ∈ J ′ and k′ ∈ K ′ be the indices such that
LT(

∑
j∈J λjajvh) = aj′v LT(h) and LT(

∑
k∈K µkgvbk) = LT(g)vbk′ . Then to show that

our representation is a Gröbner representation is to show that either
LT(S(o)) = aj′v LT(h) or LT(S(o)) = LT(g)vbk′ . This in turn is the case if and only if
λj′aj′v LT(h) 6= µk′ LT(g)vbk′ .

Assume towards a contradiction that we have equality, so λj′ = µk′ and
aj′v LT(h) = LT(g)vbk′ . Since aj′ ≺ LT(g) and bk′ ≺ LT(h) (as is true for all aj and bk
since they are in the support of g and h, respectively), we must have LT(g) = aj′u and
LT(h) = wbk′ for some u,w ∈ Q≥q. But we then also see that
aj′vwbk′ = aj′v LT(h) = LT(g)vbk′ = aj′uvbk′ , and therefore we must have uv = vw. By
Lemma 2.25, we can find x, y ∈ B such that u = xy and w = yx. Since u,w ∈ Q≥1, we
must have xy, yx ∈ Q≥1, so LT(g) and LT(h) must overlap nontrivially at y if y ∈ Q≥1,
and they overlap nontrivially at x if y ∈ Q0, in which case u = w = x ∈ Q≥1. But we
assumed that LT(g) and LT(h) do not overlap, so we have a contradiction. Therefore we
must have λj′aj′v LT(h) 6= µk′ LT(g)vbk′ , so we do in fact have a Gröbner representation.

(Compare to [Coh08, p. 1.3]).

aj′ v LT(h)
aj′ u w bk′

LT(h) v bk′

Figure 2.3.: A visualization for part of the proof of Lemma 2.26.

Now still left are those obstructions of g and h without overlap, but where LT(g) and
LT(h) do have an overlap. Without some modifications, this case seems to not be easily
covered, even for path algebras. So we now restrict to the case of the non-commutative
polynomial ring A = k〈X〉. In [Xiu12, Lemma 4.1.10], there is a reference to both [Mor94,
Lemma 5.4] and to [Coh08, Lemma 1.3], the latter of which also references [Mor94].
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Lemma 2.27. If for g, h ∈ A = k〈X〉 all non-trivial obstructions are Gröbner repre-
sentable, then so are all obstructions in o(g, h). C

Proof. See [Coh08, Lemma 1.3]. This proof is rather elaborate and makes use of
Lemma 2.26 and Lemma 2.25. One shows that if LT(g) and LT(h) have an overlap, then
every obstruction of g and h with no overlap can be reduced to the case of an obstruction
of g and h with an overlap, which by assumption and together with lemma 2.21 is Gröbner
representable.

We have now covered all cases for S-polynomials, which means that we can simplify
Proposition 2.19 to a much simpler version.

Theorem 2.28 (Buchberger’s criterion). A set G ⊆ A = k〈X〉 is a Gröbner basis for
(G) if and only for every non-trivial obstruction o ∈ O(G) its S-polynomial S(o) reduces
to 0 with respect to G. C

Proof. This is just a result of Proposition 2.19, Lemma 2.26 and Lemma 2.27.

This is especially helpful, because for a finite set G, the set of non-trivial obstructions
is finite. With the division algorithm, we therefore now have a way to algorithmically
determine if a set of generators of an ideal is a Gröbner basis or not.

2.6. Buchberger’s procedure and interreduction
We now finally arrive at the final form of our algorithm, which is Buchberger’s procedure.

Theorem 2.29 (Buchberger’s procedure). Let A = k〈X〉 with an admissible order, and
let G ⊆ A be a finite subset. If Buchberger’s procedure terminates with output G′,
then G′ is a Gröbner basis of I = (G). Furthermore, if I has a finite Gröbner basis, then
the procedure terminates. C

Algorithm 2 Buchberger’s procedure
Input: G ⊆ A
Output: G′ ⊆ A a Gröbner basis of (G)

1: G′ ← G
2: FINISH ← False

3: while FINISH = False do
4: FINISH ← True
5: for o ∈ O(G′) do
6: if N(S(o);G′) 6= 0 then
7: G′ ← G′ ∪ {S(o)}
8: FINISH ← False
9: return G′
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Proof. The correctness of the algorithm assuming that it terminates is just an immediate
result of Buchberger’s criterion (Theorem 2.28). Still to show is that it terminates if
there exists a finite Gröbner basis G̃ of I.

Enumerate G = {g1, . . . , gr}, and define gn = S(o) for n > r successively in the
order that we perform the step G′ ← G′ ∪ {S(o)}, and consider Gk = {g1, . . . , gk} and
G∞ = {gn | n ∈ N 0}. The set G∞ is a Gröbner basis of I by Buchberger’s criterion: If
o ∈ O(G∞) is an obstruction, then there exists a k ∈ N>0 such that o ∈ O(Gk), and if
S(o) doesn’t reduce to zero with respect to Gk, then it reduces to zero with respect to
Gk+1 = Gk ∪ {S(o)}, in particular with respect to G∞.

Since G∞ is a Gröbner basis, we can find for each g ∈ G̃ a k′ ∈ N>0 and wg, w
′
g ∈ B

such that LT(g) = wg LT(gk′)w
′
g. Since G̃ is finite, we have a maximal such k′. Therefore

LT(Gk′) = LT(G̃), so Gk′ is a Gröbner basis, and the algorithm terminates once G′ = Gk′ .
(Compare to [Xiu12, Theorem 4.1.4, 4.1.14])

Remark 2.30. In Buchberger’s procedure (Theorem 2.29), it is also possible to add a
break instruction at the end of the if case, but then one has to take care of the order
in which the elements o ∈ O(G′) are checked. They have to be checked in such a way
that every possible S-polynomial of obstructions in O(G′) gets checked eventually in the
algorithm This is not automatically given, as O(G′), though finite, grows in size every
time we append an S-polynomial to G′. C

One desire left is that in the end we would like to have a reduced Gröbner basis. Given
a Gröbner basis, it is indeed possible to remove some kind of a redundancy, while still
retaining the property of being a Gröbner basis, and the idea is that we do this until it is
no longer possible, after which we retrieve a Gröbner basis. We follow along the lines of
[Xiu12, p. 38f], but we can actually generalize to general algebras A.

Definition 2.31 (interreduced). A set G ⊆ A is called interreduced if for all g ∈ G,
no element in supp(g) is a member of LT(G \ {g}). C

Proposition 2.32. A Gröbner basis G ⊆ A of an ideal I is reduced if and only if it is
interreduced. C

Proof. Let G be a reduced Gröbner basis, and let g ∈ G. Because we have
g − LT(g) ∈ span(B \ LT{I}) ((2) in Definition 1.44), any element in supp(g) \ {LT(g)}
is not a member of spank(LT{I}) = LT(G) (Remark 1.42), in particular not a member
of LT(G \ {g}). But LT(g) is also not a member of LT(G \ {g}), otherwise LT{G} would
not be a minimal generating set for LT(G) ((1) in Definition 1.44). This shows that G is
interreduced.

Let G be an interreduced Gröbner basis. We must have that LT{G} is a minimal
generating set for LT(G), because if it weren’t, there would be g, h ∈ G such that
LT(g) = w LT(h)w′, which would mean that LT(g) ∈ LT(G \ {g}), contradicting that G
was assumed to be interreduced. For g ∈ G, we have by assumption that no element of
supp(g) is a member of LT(G \ {g}). As all elements in supp(g) that are not LT(g) are
strictly smaller with respect to �, we must have that all elements in supp(g−LT(g)) are
not a member of LT(G), in other words g − LT(g) ∈ span(B \ LT{I}).
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So in order to modify a Gröbner basis into a reduced Gröbner basis, we would like to
somehow “interreduce” it.

Lemma 2.33. Let G ⊆ A \ {0} be a set, and let g′ be the remainder of a division
by G \ {g} for some g ∈ G as in Definition 2.1. Then G′ := (G \ {g}) ∪ {g′} generates
I = (G), and furthermore LT(G′) = LT(G). C

Proof. From the definition of a division (Definition 2.1), we see that (G′) = (G) and
LT(g′) ∈ LT(G), so still to show is LT(g) ∈ LT(G′). If LT(g) = LT(g′), then clearly
LT(G) = LT(G′), so let us now assume LT(g) 6= LT(g′). We then have LT(g) = uLT(h)u′

for some h ∈ G \ {g} by Remark 2.2 item 2, and therefore LT(g) ∈ LT(G′).

Now we present the interreduction algorithm as described in [Xiu12, Theorem 3.2.8].

Proposition 2.34. The interreduction algorithm takes a finite set G and terminates
with output G′, an interreduced generating set of I = (G) such that LT(G) = LT(G′).

C

Algorithm 3 interreduction algorithm
Input: finite list G = (g1, . . . , gs) of elements in A \ {0}
Output: finite list G′ of elements in A such that the underlying set G′ is interreduced,

and such that (G) = (G′) and LT(G) = LT(G′) for the underlying set G of G

1: finish ← False

2: while finish = False do
3: for i ∈ [s] do
4: g′i ← N(gi;G \ {0, gi})
5: if g′i = 0 then
6: gi ← 0 . removes a redundant generator
7: else if g′i 6= gi then . i.e. if supp(gi) ∩ LT(G \ {gi}) 6= ∅
8: gi ← g′i
9: break . i.e. restart the “for” loop at i = 1

10: else if i = s then
11: finish ← True
12: G′ ← G \ {0}
13: return G′

Proof. We want to show by induction that if for k ∈ [s], the iteration for i = k of the
“for” loop gets reached, then eventually, i = k + 1 will be reached in the “for” loop if
i < s. By this induction, i = s will be eventually reached. Then we show that once i = s
is reached, we can guarantee that the last “else if” statement will be reached eventually.

Note that LT(g′i) � LT(gi) if g′i 6= 0 at any point of the algorithm. Let k ∈ [s], and
consider that we are in the “for” loop at the iteration i = 1. Assume that g′k 6= 0 and
g′k 6= gk, as otherwise i = k + 1 will be reached immediately, completing the induction
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step. This means that we arrive at the break instruction, and we restart the “for” loop
at i = 1 before i can increase again.

Assume the case that LT(g′k) ≺ LT(gk). By our induction hypothesis, i = k will be
reached again (not necessarily in the next “for” loop, but eventually). Therefore if again
g′k = 0 or g′k = gk (note that these are new gk and g′k), either case we will result in
reaching i = k + 1, completing the induction step. So let’s again assume g′k 6= 0 and
g′k 6= gk, meaning we again have LT(g′k) ≺ LT(gk). We now reached the same situation
as the one we started with. Since we have a well order, the sequence of cases leading up
to this situation can only repeat finitely many times until we eventually get to the case
LT(g′k) = LT(gk).

Assume now the case that LT(g′k) = LT(gk). As we are currently in the case that
i = k, it must be that for all j ∈ [k − 1], either gj = 0 or N(gj ;G \ {0, gj}) = gj . But as
LT(g′k) = LT(gk), we must also have gj = 0 or N(gj ; (G \ {0, gj , gk}) ∪ {g′k}) = gj for all
j ∈ [k − 1]. As we assumed that g′k 6= 0 and g′k 6= gk, we set gk ← g′k, and we break and
restart the “for” loop at i = 1. With what we just showed, in this next “for” loop, for the
iterations i ∈ [k− 1], the case g′i 6= 0 and g′i 6= gi will not be fulfilled. Therefore we arrive
at iteration i = k again, but with none of the gj for j ∈ [k − 1] being different from what
they were at the previous time we considered the iteration at i = k. The only thing that
changed is gk, and therefore we now have the case g′k = N(gk;G \ {0, gk}) = gk. If k = s,
the algorithm terminates, and otherwise we reach the next iteration i = k + 1.

The algorithm returns an interreduced set since for all g ∈ G′ we have
N(g;G′) = g by construction of the algorithm, and by Lemma 2.33 we have (G) = (G′) and
LT(G) = LT(G′) as desired.

Corollary 2.35. If G is a finite Gröbner basis of an ideal I ⊆ A, the interreduction
algorithm then returns a finite reduced Gröbner basis G′ of I. C

Example 2.36. 1. In this example, we will demonstrate how in the noncommutative
case, even a principal ideal might not have a finite Gröbner basis.

Consider A = k〈x, y〉 with admissible order �=�Dp and the ideal I = (G) for
G = {x2 − xy}. The set G is not a Gröbner basis of I: We have
f = (x2 − xy)(y − x) + x(x2 − xy) = xyx − xy2 ∈ I, but LT(f) = xyx /∈ LT(G).
Let us compute a Gröbner basis in Singular.

> LIB "freegb.lib";
> ring r = 0,(x,y),Dp;
> def A = freeAlgebra(r,4);
> setring A;
> ideal I = x*x - x*y;
> std(I);

_[1]=x*x-x*y
_[2]=x*y*x-x*y*y
_[3]=x*y*y*x-x*y*y*y
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We notice that the outputted set, call it F , is actually not a Gröbner basis for I:
For g := (x2 − xy)(y2 − yx) + (xy)(x2 − xy) = xy3x − xy4 ∈ I, we clearly have
LT(g) = xy3x /∈ LT(F ). The polynomial g is of degree 5, but we chose 4 as our
degree bound, so Singular only computed elements of the Gröbner basis up to
degree 4. Let us increase the degree bound.
> def A = freeAlgebra(r,20);
> setring A;
> ideal I = x*x - x*y;
> std(I);

_[1]=x*x-x*y
_[2]=x*y*x-x*y*y
_[3]=x*y*y*x-x*y*y*y
_[4]=x*y*y*y*x-x*y*y*y*y
_[5]=x*y*y*y*y*x-x*y*y*y*y*y
_[6]=x*y*y*y*y*y*x-x*y*y*y*y*y*y
_[7]=x*y*y*y*y*y*y*x-x*y*y*y*y*y*y*y
_[8]=x*y*y*y*y*y*y*y*x-x*y*y*y*y*y*y*y*y
_[9]=x*y*y*y*y*y*y*y*y*x-x*y*y*y*y*y*y*y*y*y
_[10]=x*y*y*y*y*y*y*y*y*y*x-x*y*y*y*y*y*y*y*y*y*y
_[11]=x*y*y*y*y*y*y*y*y*y*y*x-x*y*y*y*y*y*y*y*y*y*y*y
_[12]=x*y*y*y*y*y*y*y*y*y*y*y*x-x*y*y*y*y*y*y*y*y*y*y*y*y
_[13]=x*y*y*y*y*y*y*y*y*y*y*y*y*x-x*y*y*y*y*y*y*y*y*y*y*y*y*y
_[14]=x*y*y*y*y*y*y*y*y*y*y*y*y*y*x-x*y*y*y*y*y*y*y*y*y*y*y*y
*y*y
_[15]=x*y*y*y*y*y*y*y*y*y*y*y*y*y*y*x-x*y*y*y*y*y*y*y*y*y*y*y
*y*y*y*y
_[16]=x*y*y*y*y*y*y*y*y*y*y*y*y*y*y*y*x-x*y*y*y*y*y*y*y*y*y*y
*y*y*y*y*y*y
_[17]=x*y*y*y*y*y*y*y*y*y*y*y*y*y*y*y*y*x-x*y*y*y*y*y*y*y*y*y
*y*y*y*y*y*y*y*y
_[18]=x*y*y*y*y*y*y*y*y*y*y*y*y*y*y*y*y*y*x-x*y*y*y*y*y*y*y*y
*y*y*y*y*y*y*y*y*y*y
_[19]=x*y*y*y*y*y*y*y*y*y*y*y*y*y*y*y*y*y*y*x-x*y*y*y*y*y*y*y
*y*y*y*y*y*y*y*y*y*y*y*y

We notice a pattern, and it seems like {xyix− xyi+1 | i ∈ N0} is a Gröbner basis
of I. It indeed can be shown that this is the reduced Gröbner basis of I, which is
proven in [GMU98, Proposition 3.1].

2. We will now present a computation of a reduced Gröbner basis, step by step, while
having Singular take care of the division.
Consider A = k〈x, y〉 with admissible order �Dp, and the ideal I = (x2y+x, yx+y).
> LIB "freegb.lib";

54



2.6. Buchberger’s procedure and interreduction

> ring r = 0,(x,y),Dp;
> def A = freeAlgebra(r,20);
> setring A;
> ideal I = x*x*y + x, y*x +y;
> I;

I[1]=x*x*y+x
I[2]=y*x+y

Let us now reduce all nontrivial S-polynomials with respect to I.
> reduce(y*I[1] - I[2]*x*y,I);
> reduce(I[1]*x - x*x*I[2],I);

y*y-y
x*x+x

We now append these remainders.
> I = I, y*y-y, x*x+x;;
> I;

I[1]=x*x*y+x
I[2]=y*x+y
I[3]=y*y-y
I[4]=x*x+x

Nontrivial obstructions of I[1] and I[2] have already been checked in the previous
step, and by having the remainders added to our list of generators of I, these
S-polynomials will now reduce to 0. We also notice that I[3] and I[4] don’t have
a nontrivial obstruction. We therefore now have to check the ones of I[1] and
I[3], of I[1] and I[4], of I[2] and I[3], and of I[2] and I[4].
> reduce(I[1]*y - x*x*I[3],I);
> reduce(I[1] - I[4]*y,I);
> reduce(x*I[1] - I[4]*x*y,I);
> reduce(y*I[2] - I[3]*x,I);
> reduce(I[2]*x - y*I[3],I);
> reduce(I[2]*x - y*I[4],I);

0
-x*y+x
x*y-x
0
0
0

> I = I, x*y-x;;
> I;
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I[1]=x*x*y+x
I[2]=y*x+y
I[3]=y*y-y
I[4]=x*x+x
I[5]=x*y-x

As −xy + x and xy − x are scalar multiples of each other, we only added xy − x
to our list of generators. Let us again check all nontrivial S-polynomials that we
haven’t checked yet.
> reduce(I[1]-x*I[5],I);
> reduce(I[2]*y-y*I[5],I);
> reduce(x*I[2]-I[5]*x,I);
> reduce(x*I[3]-I[5]*y,I);
> reduce(I[4]*y-x*I[5],I);

0
0
0
0
0

By Buchberger’s criterion (Theorem 2.28), the resulting set we computed
{x2y + x, yx+ y, y2 − y, x2 + x, xy − x} is a Gröbner basis of I.
Let us now modify this set into an interreduced set of generators as in Proposi-
tion 2.34, turning it into a reduced Gröbner basis.
> ideal J = I[2],I[3],I[4],I[5];
> reduce(I[1],J);

0

> I[1] = 0;
> ideal J = I[1],I[3],I[4],I[5];
> reduce(I[2],J);

y*x+y

> ideal J = I[1],I[2],I[4],I[5];
> reduce(I[3],J);

y*y-y

> ideal J = I[1],I[2],I[3],I[5];
> reduce(I[4],J);

x*x+x

> ideal J = I[1],I[2],I[3],I[4];
> reduce(I[5],J);
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x*y-x

In the first step, we had I[1]′ = 0, so we set I[1] = 0 and continue. In every other
step, for each i = 2, 3, 4, 5, we have I[i]′ = I[i], so we do nothing and continue
in each step. We then reach the end of the loop, so we are done, and our result is
that G′ = {yx + y, y2 − y, x2 + x, xy − x} is an interreduced set, and therefore a
reduced Gröbner basis. In this case, none of the polynomials get modified, only the
first polynomial gets removed. Let us now check what the implemented function
std in Singular computes as a reduced Gröbner basis, which should give us the
same result if we did everything correctly.
> ideal I = x*x*y + x, y*x +y;
> std(I);

_[1]=y*y-y
_[2]=x*y-x
_[3]=y*x+y
_[4]=x*x+x

So we indeed performed our calculation for the Gröbner basis correctly.

3. Let us now see an example of a Gröbner basis that is not a reduced Gröbner
basis, where finding the reduced Gröbner basis consists of more than just removing
redundant generators from the nonreduced Gröbner basis.
Let again A = k〈x, y〉 with admissible order �=�Dp, and consider the ideal J
generated by the set {x2 + xy, xy + y2, y2x+ y3}.
> ring r = 0,(x,y),Dp;
> def A = freeAlgebra(r,20);
> setring A;
> ideal J = x*x + x*y, x*y + y*y, y*y*x+y*y*y;
> J;

J[1]=x*x+x*y
J[2]=x*y+y*y
J[3]=y*y*x+y*y*y

Let us first convince ourselves that this is a Gröbner basis, by again checking that
all nontrivial S-polynomials reduce to 0.
> reduce(J[1]*y - x*J[2],J);
> reduce(y*y*J[1] - J[3]*x,J);
> reduce(y*y*J[2] - J[3]*y,J);
> reduce(J[2]*y*x - x*J[3],J);

0
0
0
0
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We can already see that we have xy ∈ supp(J[1]) and xy ∈ LT(G \ {J[1]}), as
LT(J[2]) = xy. Let us now perform the interreduction algorithm by hand as in
Proposition 2.34.

> ideal K = J[2],J[3];
> reduce(J[1],K);

x*x-y*y

This is not equal to J[1], so we replace J[1] by x2 − y2 and start again.

> J[1] = x*x-y*y;
> J;

J[1]=x*x-y*y
J[2]=x*y+y*y
J[3]=y*y*x+y*y*y

> ideal K = J[2],J[3];
> reduce(J[1],K);

x*x-y*y

> ideal K = J[1],J[3];
> reduce(J[2],K);

x*y+y*y

> ideal K = J[1],J[2];
> reduce(J[3],K);

y*y*x+y*y*y

For every i = 1, 2, 3 we computed J[i]′ = J[i], which means that we are done
and get an interreduced Gröbner basis, meaning {x2 − y2, xy + y2, y2x+ y3} is the
reduced Gröbner basis of J . Let us again check if Singular agrees with us.

> ideal J = x*x + x*y, x*y + y*y, y*y*x+y*y*y;
> std(J);

_[1]=x*y+y*y
_[2]=x*x-y*y
_[3]=y*y*x+y*y*y

This confirms that we did everything correctly.

4. In this example, we shall see how choosing different orderings can lead to dif-
ferent Gröbner bases. Consider A = k〈x, y, z〉, and the ideal I generated by
{xz2 + x, zyx − 2x2 + y}. Let us compute a Gröbner basis with respect to the
ordering Dp.
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> LIB "freegb.lib";
> ring r = 0,(x,y,z),Dp;
> def A = freeAlgebra(r,40);
> setring A;
> ideal I = x*z*z + x, z*y*x - 2x*x+y;
> std(I);

_[1]=z*y*x-2*x*x+y
_[2]=y*z*z+y
_[3]=x*z*z+x
_[4]=2*y*z*x*x+y*y*x-y*z*y
_[5]=2*x*z*x*x+x*y*x-x*z*y

Now let us see what happens when we calculate the Gröbner basis of the same
ideal I, but with order Wp(1,4,2), meaning x has weight 1, y has weight 4, and z
has weight 2.
> ring r = 0,(x,y,z),Wp(1,4,2);
> def A = freeAlgebra(r,40);
> setring A;
> ideal I = x*z*z + x, z*y*x - 2x*x+y;
> std(I);

_[1]=x*z*z+x
_[2]=z*y*x+y-2*x*x
_[3]=x*z*y-x*y*x-2*x*z*x*x
_[4]=x*y*x*x+2*x*z*x*x*x+x*y-2*x*x*x
_[5]=y*z*z+y
_[6]=y*z*y-y*y*x-2*y*z*x*x
_[7]=y*y*x*x+2*y*z*x*x*x+y*y-2*y*x*x

As we can see, not only are the generators different, but also the number of
generators.

C

2.7. Further considerations for the general case
One step to make things simpler that [Gre99] does, is assure that the leading terms are
pairwise not divisible by one another, so no center obstructions will exist. If this is not
the case, we can modify our generators in such a way that no center obstructions exist,
but they still generate the same ideal.

Definition 2.37 (tip reduced). A set G ⊆ A is called tip reduced if for all g, h ∈ G
with g 6= h we have LT(g) - LT(h). C

Proposition 2.38 (tip reduction). Let G ⊆ A be a finite set. If there exist g, h ∈ G
such that LT(g) | LT(h), say via uLT(g)w = LT(h), consider the set where we replace
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in G the element h by h′ = h− LT(h)
LT(g)ugw, meaning G′ = (G \ {h}) ∪ {h′}. Repeat this

process until no two such elements can be found. This process will always terminate after
finitely many steps and yield a generating set for I = (G) that is tip reduced.

Algorithm 4 tip reduction
Input: G ⊆ A finite
Output: G′ ⊆ A tip reduced such that (G′) = (G)

1: OCCUR ← True
2: while OCCUR do
3: OCCUR ← False
4: for g ∈ G′ do
5: for h ∈ G′ do
6: if ∃u,w ∈ B : uLT(g)w = LT(h) then
7: OCCUR ← True
8: G′ ← (G′ \ {h}) ∪ {h− LT(h)

LT(g)ugw}
9: break

10: if OCCUR then
11: break
12: return G′

C

Proof (sketch). That G′ generates I = (G) is clear, so after repeating this finitely many
times, the resulting set will also generate I. The process must terminate, as our admissible
order is a well-order and we have h′ ≺ h.

(Compare to [Gre99, p. 41].)

There is a version of Buchberger’s criterion that applies to any algebra A with multi-
plicative basis and an admissible order. We shall briefly discuss these scenarios, following
along the lines of [Gre99, chapter 2.3]. For this, we must introduce the concept of
uniformity.

Definition 2.39 (uniformity). An element r ∈ A is called left uniform if for all c ∈ B
we either have c · b = 0 for all b ∈ supp(r) or c · b 6= 0 for all b ∈ supp(r). C

Let f =
∑

i λibi be an element in a path algebra with λi ∈ k× and pairwise distinct
bi ∈ B. Then f is left uniform if and only if s(bi) = s(bj) for all i and j. We can write
any such element as a sum of uniform elements, namely

f = 1 · f =
∑
v∈Q0

vf =
∑
v∈Q0

∑
s(bi)=v

λibi .

Since each of the vf is in the ideal generated by f , any ideal can be generated by uniform
elements.

We then have the following version of Buchberger’s criterion, which is proven for path
algebras in [Gre99, Theorem 2.3].
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Theorem 2.40. A uniform and tip reduced set G ⊆ A = k〈X〉 is a Gröbner basis for
(G) if and only for every non-trivial obstruction o ∈ O(G) its S-polynomial S(o) reduces
to 0 with respect to G. C
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3. G-Algebras
In our discussion of noncommutative Gröbner bases, our main hindrance was that our
k-algebra was not Noetherian in general, meaning that ideals are not necessarily always
finitely generated, and even if they are, we cannot guarantee a finite Gröbner basis. There
are examples of noncommutative k-algebras that are Noetherian, for example universal
enveloping algebras U(g) of finite dimensional Lie algebras g, where we have the following
nice properties.

• The Poincaré-Birkhoff-Witt (PBW) theorem: For a basis {x1, . . . , xn} of g, the set
{xλ1

1 . . . xλn
n | λi ∈ N0} is a k-basis of U(g).

• It is “close to commutative”: For i < j we have xj · xi = xi · xj − [xi, xj ] due to
[xi, xj ] = xi · xj − xj · xi as per definition. Furthermore [xi, xj ] has degree 1 and
xjxi and xixj have degree 2 in k〈x1, . . . , xn〉.

• U(g) is left and right Noetherian.
We can define a notion of algebras that have these properties and generalize universal
enveloping algebras. These algebras are called G-algebras, and it is possible to develop
Gröbner basis theory in such algebras. This was first comprehensively introduced in
[Lev05b], and these concepts were also implemented in Singular. We will briefly go
over the main results and check some examples.

3.1. Gröbner bases and the non-degeneracy conditions
Definition 3.1 (G-algebra, non-degeneracy conditions). Consider A = k〈x1, . . . , xn〉
and let di,j ∈ A and ci,j ∈ k× for 0 ≤ i < j ≤ n. We now define the polynomials

fj,i = xjxi − (ci,j · xixj + di,j) ,

and F as the set of all fj,i. We furthermore define the non-degeneracy conditions

NDCi,j,k = ci,kcj,k · di,jxk−xkdi,j

+ cj,k · xjdi,k− ci,j · di,kxj
+ dj,kxi− ci,jci,k · xidj,k

for 0 ≤ i < j < k ≤ n.
Let furthermore � be an admissible order on k〈x1, . . . , xn〉 such that

LT(fj,i) = xjxi and LT(di,j) ≺ xixj for all 0 ≤ i < j ≤ n .

If then N(NDCi,j,k;F ) = 0 for all 0 ≤ i < j < k ≤ n, then we call R = A/(F ) a
G-algebra. C
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Remark 3.2. Studying k〈x1, . . . , xn〉/(F ), we can without loss of generality assume
that the di,j ∈ spank{x

i1
1 . . . xinn | i1, . . . , in ∈ N0}: If xkxl occurs in supp(di,j) such that

k > l, we can then substitute it by cj,kxlxk + dl,k. Doing this over and over, this process
must terminate, as our admissible order is a well order. C

Let g be a finite dimensional Lie algebra. If {x1, . . . , xn} ⊆ g is a k-basis of g, then
the universal enveloping algebra U(g) of g is given by

U(g) = k〈x1, . . . , xn〉/([xi, xj ]− (xixj − xjxi) | i, j ∈ [n]) .

We then have

[xi, xj ] = xixj − xjxi , and therefore
xjxi = xixj − [xi, xj ]

in U(g) for all i, j ∈ [n], in particular for all 1 ≤ i < j ≤ n. Looking at Definition 3.1, we
can define fj,i := xjxi − (ci,jxixj + di,j) for 1 ≤ i ≤ j ≤ n with

ci,j = 1

di,j = −[xi, xj ] ,

and we notice that U(g) ∼= k〈x1, . . . , xn〉/(F ), where F is the set of all fj,i. The non-
degeneracy conditions are fulfilled as a result of the Jacobian identity, so in some sense
the non-degeneracy conditions are a generalization of the Jacobian identity. It is then
not surprising that PBW basis theorem generalizes to G-algebras, which is the following
theorem.

Theorem 3.3. In the setting of Definition 3.1, the following are equivalent.

1. The set F is a Gröbner basis for (F ).

2. For all 0 ≤ i < j < k ≤ n we have N(NDCi,j,k;F ) = 0 (for any normal remainder).

3. The k-algebra k〈x1, . . . , xn〉/(F ) has a PBW basis

C

Proof. See [Lev05b, Theorem 2.3].

Remark 3.4. Once we fix an order for the generating variables x1 ≺ · · · ≺ xn, it doesn’t
matter what admissible order we choose on k〈x1, . . . , xn〉 that fulfills the requirements in
Definition 3.1, the resulting PBW basis will always be the same. C

3.2. Checking the non-degeneracy conditions in Singular
Let us now look at U(sl2), which we want to define and work with in Singular.
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Example 3.5. The universal enveloping algebra U(sl2) of sl2 is defined by the relations

f2,1 = fe− (ef − h)

f3,1 = he− (eh+ 2e)

f3,2 = hf − (fh− 2f)

in k〈e, f, h〉, where we named the polynomials as in Definition 3.1. We also know that
this is a Gröbner basis for the ideal it generates, as the non-degeneracy conditions hold.

We now have the following values for our ci,j and di,j .

c1,2 = c1,3 = c2,3 = 1

d1,2 = −h
d1,3 = 2e

d2,3 = −2f

As mentioned in Remark 3.2, the di,j can be chosen to be in {xλ1
1 · · · · · xλn

n | λi ∈ N0}.
Indeed, internally, Singular requires the elements di,j to be in k[x1, . . . , xn]. For
universal enveloping algebras, and therefore in our example, this is not a problem as the
di,j are of degree 1.

To define a G-algebra, we can input these into matrices C and D.

> ring r = 0,(e,f,h),Dp;
> setring r;
> matrix D[3][3]; // initialize a 3x3 matrix
> D[1,2]=-h; D[1,3]=2e; D[2,3]=-2f; // input values

We can now define our G-algebra with the function nc_algebra, where we must input
our matrices C and D. The function nc_algebra will only consider the strict upper entries,
and if we input a value instead of a matrix, Singular will use that value for every entry
it expects. This means that to define our G-algebra and work with it, we can now input
the following.

> LIB "freegb.lib";
> def A = nc_algebra(1,D);
> setring A;
> A;

// coefficients: QQ
// number of vars : 3
// block 1 : ordering Dp
// : names e f h
// block 2 : ordering C
// noncommutative relations:
// fe=ef-h
// he=eh+2e
// hf=fh-2f
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There is one tricky detail with Singular that should be pointed out. So far, we have
only typed in data of elements in k[e, f, h], as is expected by Singular. When we work
in the G-algebra A, we must write * between variables. For instance, if we have the
element hfe, hfe will be treated as residing in k[e, f, h], so we shall type in h*f*e. The
output will always be displayed in k[e, f, h].

> hfe;
efh
> h*f*e;
efh-h2

What the * operation does is replace xjxi by xixj +di,j if i < j. With the same argument
as in Remark 3.2, as di,j is strictly smaller than xjxi, this process will stop after finitely
many steps, since we have an admissible order. After this process has ended, the final
output will be presented in terms of {xλ1

1 · · · · · xλn
n | λi ∈ N0}. Via the PBW theorem

this is a basis, meaning that this operation must be associative by uniqueness.

> f*f*e*h;
ef2h-2fh2+2fh
> e*f*e*h;
e2fh-eh2
> f*f*e*h*e*f*e*h;
e3f3h2+2e3f3h-7e2f2h3-8e2f2h2+10efh4+12e2f2h+14efh3-2h5-12efh2-6h4-4h3
> (ef2h-2fh2+2fh)*(e2fh-eh2);
e3f3h2+2e3f3h-7e2f2h3-8e2f2h2+10efh4+12e2f2h+14efh3-2h5-12efh2-6h4-4h3
> f*f*e*(eh+2e)*f*e*h;
e3f3h2+2e3f3h-7e2f2h3-8e2f2h2+10efh4+12e2f2h+14efh3-2h5-12efh2-6h4-4h3

C

Let us see another example, a Weyl algebra.

Example 3.6 (Weyl Algebra). We shall present the example of the Weyl algebra.
The Weyl algebra is important in physics, especially in quantum mechanics, where it
describes the space of linear operators on the Hilbert space of L2 generated by the
position operators and momentum operators. We fix n ∈ N>0 and for each i ∈ [n] we
have generators xi and ∂i, subject to the following relations:

• ∂ixi = xi∂i + 1, the chain rule,

• ∂i∂j = ∂j∂i, Schwarz’s theorem, and

• xixj = xjxi, commutativity.

If we order our elements x1 ≺ · · · ≺ xn ≺ ∂1 ≺ · · · ≺ ∂n and then choose the left degree
lexicographic order on k〈x1, . . . , xn, ∂x1 , . . . , ∂xn〉, defining the fj,i according to those
equations fulfills our requirements.
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Let us implement this in Singular with n = 3, and check if the non-degeneracy
conditions hold. We have the values ci,j = 1 for all i, j, d1,4 = d2,5 = d3,6 = 1, and
di,j = 0 for all other i, j. We can now input our data into Singular.

> LIB "freegb.lib";
> ring r = 0,(x,y,z,dx,dy,dz),dp;
> setring r;
> matrix D[6][6];
> D[1,4] = 1; D[2,5] = 1; D[3,6] = 1;
> def A = nc_algebra(1,D);
> setring A;
> A;

// coefficients: QQ
// number of vars : 6
// block 1 : ordering Dp
// : names x y z dx dy dz
// block 2 : ordering C
// noncommutative relations:
// dxx=x*dx+1
// dyy=y*dy+1
// dzz=z*dz+1

The function nc_algebra expects two matrices. The first argument is the matrix C
obtained from the ci,j and the second argument is the matrix obtained from the di,j , and
the function only regards values for i < j, Note that when we initialize the matrix D, all
values are 0. Singular has the function ndcond() which checks if the non-degeneracy
conditions hold.

> printlevel = 1; // verbose output
> ndcond();

Processing degree : 1
1 . 2 . 3 .
1 . 2 . 4 .
1 . 2 . 5 .
1 . 2 . 6 .
1 . 3 . 4 .
1 . 3 . 5 .
1 . 3 . 6 .
1 . 4 . 5 .
1 . 4 . 6 .
1 . 5 . 6 .
2 . 3 . 4 .
2 . 3 . 5 .
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2 . 3 . 6 .
2 . 4 . 5 .
2 . 4 . 6 .
2 . 5 . 6 .
3 . 4 . 5 .
3 . 4 . 6 .
3 . 5 . 6 .
4 . 5 . 6 .
done
_[1]=0

So we indeed have a G-algebra. The output indicates which non-degeneracy condition
NDCi,j,k it is checking.

If we change our relations, we can see an example that isn’t a G-algebra, and Singular
will inform which non-degeneracy condition NDCi,j,k is not fulfilled.

ring r = 0,(x,y,z,dx,dy,dz),Dp;
setring r;
matrix D[6][6];
D[1,4] = dz*z+x; D[2,5] = 1; D[3,6] = 1;
def A = nc_algebra(1,D);
setring A;
A;

// coefficients: QQ
// number of vars : 6
// block 1 : ordering Dp
// : names x y z dx dy dz
// block 2 : ordering C
// noncommutative relations:
// dxx=x*dx+z*dz+x
// dyy=y*dy+1
// dzz=z*dz+1

> ndcond();

Processing degree : 1
1 . 2 . 3 .
1 . 2 . 4 .
1 . 2 . 5 .
1 . 2 . 6 .
1 . 3 . 4 .
failed: -z
1 . 3 . 5 .
1 . 3 . 6 .
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1 . 4 . 5 .
1 . 4 . 6 .
failed: -dz
1 . 5 . 6 .
2 . 3 . 4 .
2 . 3 . 5 .
2 . 3 . 6 .
2 . 4 . 5 .
2 . 4 . 6 .
2 . 5 . 6 .
3 . 4 . 5 .
3 . 4 . 6 .
3 . 5 . 6 .
4 . 5 . 6 .
done
_[1]=-z
_[2]=-dz

We also see in this example how the associativity of * can go wrong when we don’t
have a PBW basis. Different orders in which we perform the operation as described in
Remark 3.2 can lead to different results.

> (dz*dx)*x;
> dz*(dx*x);

x*dx*dz+z*dz^2+x*dz
x*dx*dz+z*dz^2+x*dz+dz

C

3.3. Gröbner bases in G-algebras
The PBW basis for a G-algebra is not a multiplicative basis, so we cannot apply our
theory of Gröbner bases from before to them as is. Still, it is indeed possible to also
develop a theory of Gröbner bases for G-algebras, which resembles the theory o Gröbner
bases in commutative k-algebras. We will briefly discuss what is possible. In the following,
A will denote a G-algebra presented as k〈x1, . . . , xn〉/(F ) as in Definition 3.1 with PBW
basis {xλ1

1 · · · · ·xλn
n |λi ∈ N0}. An ideal I ⊆ A will refer to a left ideal in A, and we write

A(M) for the left ideal generated by M in A. Let furthermore � be an admissible order
on 〈x1, . . . , xn〉 ⊆ k[x1, . . . , xn]. The set B will refer to the PBW basis of A.

The underlying vector spaces of A and k[x1, . . . , xn] are the same, and B = [x1, . . . , xn]
as sets, so � is a well order on B, but we can’t call quite it an admissible order, since in
A, the set B ∪ {0} is not closed under multiplication.

We will now define alternate versions of the terminology in Gröbner basis theory for
G-algebras, as is described in [Lev05a, Definition 1.8].

69



3. G-Algebras

Definition 3.7. Let G ⊆ A be a subset, I ⊆ A be a left ideal, and let f, g ∈ G.

• We define LT(f), LC(f), LM(f) to be just as in Definition 1.41, where we view
f ∈ k[x1, . . . , xn] to be a commutative polynomial. We also define LT{G} and
LT(F ) by viewing F ⊆ k[x1, . . . , xn].

• We call G a left Gröbner basis of I if A(G) = I and if LT(G) = LT(I), in
other words, by Proposition 1.45, for every f ∈ I there exists g ∈ G such that
LT(g) | LT(f) in k[x1, . . . , xn].

• We define the S-polynomial S(f, g) ∈ A as in Remark 2.20.

• We call N(•;G) : A→ A a left normal form with respect to G, if

– N(y;G) = 0 for y = 0

– N(y;G) 6= 0 =⇒ LT(N(y;G)) /∈ LT(G), and

– y −N(y;G) ∈ A(G) .

for all y ∈ A.

• A representation y =
∑

g∈G ag · g for ag ∈ A is called a standard left represen-
tation of f with respect to G if LT(y) ≥ LT(agg) for all g ∈ G.

(Compare to [Lev05a, Definition 1.8].) C

There indeed always is a normal form with respect to G, which is presented in [Lev05a,
Algorithm 1.1, p.51]. We now present a version of Buchberger’s criterion for G-algebras.

Theorem 3.8. Let I ⊆ A be a left ideal, and let G ⊆ A. For any left normal form
N(•;G) with respect to G, the following are equivalent.

• G is a left Gröbner basis of I.

• N(f ;G) = 0 for all f ∈ I.

• Every f ∈ I has a standard representation with respect to G.

• N(S(f, g);G) = 0 for all f, g ∈ G.

C

Proof. See [Lev05a, Theorem 1.16].

With this, we also have a version of Buchberger’s procedure. Since G-algebras are
Noetherian, just like in commutative polynomial rings, this procedure always terminates.

Let us see this in Singular, where std() is implemented in the “plural” module for
the computation of left Gröbner bases in G-algebras.
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Algorithm 5
Input: G ⊆ A finite
Output: A left Gröbner basis G′ ⊆ A of A(G)

1: G′ ← G
2: FINISH ← False

3: while FINISH = False do
4: FINISH ← True
5: for g, h ∈ G′ do
6: if N(S(g, h);G′) 6= 0 then
7: G′ ← G′ ∪ {S(g, h)}
8: FINISH ← False
9: return G′

Example 3.9. Let us again work in the setting of U(sl2).

> LIB "freegb.lib";
> ring r = 0,(e,f,h),Dp;
> setring r;
> matrix D[3][3];
> D[1,2]=-h; D[1,3]=2e; D[2,3]=-2f;
> def A = nc_algebra(1,D);
> setring A;

To compute Gröbner bases, we proceed analogously to how we computed Gröbner bases
with letterplace rings in Singular.

> ideal I = f*e*e*h + 2e*f*f*e, h*f+ 2h*h*e;
> I;

I[1]=2e2f2+e2fh-4efh-2eh2+4ef-2eh
I[2]=2eh2+8eh+fh+8e-2f

> std(I);

_[1]=e
_[2]=h2-2h
_[3]=127fh+8e-254f

Note that an expression like h2 refers to h2.

> ideal J = ef + h + f, h3+f, e2f;
> J;

J[1]=ef+f+h
J[2]=h3+f
J[3]=e2f
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> std(J);

_[1]=h
_[2]=1105f-3948h

C
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A.1. Multiplicative bases and semigroups with zero element

Definition A.1 (semigroup with zero element). Let S be a semigroup. We call an
element d ∈ S a zero element or an absorbing element if for all s ∈ S we have
ds = sd = d, and we call S a semigroup with zero element. C

Remark A.2. A zero element in a semigroup is unique. C

Example A.3. For any ring R, the underlying semigroup with the multiplication in
R as the semigroup operation is a semigroup with zero element. Specifically, neutral
element of the underlying abelian group, 0, is the zero element.

In particular (Z, ·) is a semigroup with zero element 0 ∈ Z. C

Proposition A.4. If I is a compatible ideal, then A/I has multiplicative basis
B \ {0}. C

Proof (sketch). We clearly have that B \ {0} generates A/I as B generates A, and we
now want to show that B \ {0} is linearly independet in A/I. Let us outline the proof,
leaving out a few categorical details.

• To a semigroup S with zero element d, we can assign a (not necessarily unital)
associative k-algebra k(S), which is defined as the associative k-algebra with basis
elements S, modulo the ideal (d), so that d corresponds to 0 ∈ kS. This assignment
is a functor from the category of semigroups with zero element to the category
of associative unital k-algebras. The k-algebra k(S) then has multiplicative basis
S \ {0}.

k(•) : SemGrp0 → k−Alg , S 7→ k(S)

This functor is left adjoint to the forgetful functor k−Alg→ SemGrp0.

• For C ∈ k−Alg and J ⊆ C an ideal, there exists a quotient π : C � C/J , charec-
tarized by following universal property. We have π(J) = 0, and any morphism
f : C → D with f(J) = 0 factorizes uniquely through π.

C D

C/J

f(J)=0

π
∃!
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• For S ∈ SemGrp0, and a collection of elements bl, b
′
l ∈ S for l ∈ L, there exists

a quotient π̃ : S � S/idealbl ∼ b′ll ∈ L, characterized by the following universal
property. We have π̃(bl) = π̃(b′l) for all l ∈ L, and any morphism g : S → T with
g(bl) = g(b′l) for all l ∈ L factorizes uniquely through π̃.

S T

S/(bl ∼ b′l | l ∈ L)

∀l∈L : g(bl)=g(b′l)

π̃ ∃!

• Claim: For S ∈ SemGrp0 and a collection of elements bl, b
′
l ∈ S for l ∈ L, we have

k(S/(bl ∼ b′l | l ∈ L)) ∼= k(S)/(bl − b′l | l ∈ L).
Let D ∈ k−Alg. We then have via our adjunction and our universal properties the
following isometries of sets, natural in D.

Homk−Alg(k(S/(bl ∼ b′l | l ∈ L)), D)
∼=HomSemGrp0(S/(bl ∼ b′l | l ∈ L), D)
∼={g ∈ HomSemGrp0(S,D) | ∀l ∈ L : g(bl) = g(b′l)}
∼={f ∈ Homk−Alg(k(S), D) | ∀l ∈ L : f(bl) = f(b′l)}
∼={f ∈ Homk−Alg(k(S), D) | ∀l ∈ L : f(bl − b′l) = 0}
∼=Homk−Alg(k(S)/(bl − b′l | l ∈ L), D)

By the Yoneda Lemma, we conclude the claim.

• Let D ∈ k−Alg, and let S ⊆ D be a subset that is a semigroup with zero element 0
with the multiplicative structure of D. We then notice that S\{0} is a multiplicative
basis of D if and only if k(S)→ D (obtained from S → D via our adjunction) is
an isomorphism.

• For our given multiplicative basis B ⊆ A, we notice that B0 = B∪{0} is a semigroup
with zero element 0. Furthermore, B0 ⊆ A/I is a semigroup with zero element 0
that generates A/I.

• As I is a compatible ideal, there is a collection of elements am, a′m ∈ B0 for m ∈M
such that I = (am − a′m |m ∈ M). We then have an isomorphism of semigroups
with zero element B0/(am ∼ a′m |m ∈M) ∼= B0.

• We have A ∼= k(B0).

• We conclude

A/I ∼= k(B0)/I
∼= k(B0)/(am − a′m |m ∈M)
∼= k(B0/(am ∼ a′m |m ∈M))

∼= k(B0) .
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Therefore B0 is a multiplicative basis of A/I.

A.2. Path algebras
We here present a definition of path algebras different from the one in Definition 1.8.
It is here more quickly apparent what the multiplicative basis looks like, and how the
grading arises. (See also [DWZ08, Definition 2.1])

Definition A.5. Let M be a nonempty set. We denote by k(M) the set of all functions
f : M → k with finite support, meaning #{m ∈ M | f(m) 6= 0} ∈ N0. We equip this
with a commutative associative k-algebra structure by defining the additive structure
by pointwise addition and the multiplicative structure by pointwise multiplication. The
constant zero map is then the additive neutral element. C

Lemma A.6. For a nonempty set M , the commutative associative k-algebra k(M) is
unital if and only if M is finite. C

Proof. Let M be finite. Then k(M) = kM because all maps have finite support for finite
M . In particular, we have 1M ∈ k(M), the map with constant value 1, which then is the
desired unit.

For the converse case, we see that the unit must have value 1 everywhere on M , and
for this map to be in k(M), the set M must be finite.

Definition A.7 (quiver, path algebra). A (finite) quiver Q = (Q0, Q1, s, t) consists of
the following data.

• A nonempty set Q0, the vertices,

• a nonempty set Q1, the arrows,

• a map s : Q1 → Q0, the source, and

• a map t : Q1 → Q0, the target.

For this data, we shall furthermore define the commutative k-algebras R = k(Q0) and
A = k(Q1) as defined in Definition A.5. Furthermore A is an R-bimodule via the action
of the pullbacks r.a.r′ = t∗(r) · a · s∗(r′) = (r ◦ r) · a · (r′ ◦ s) for r, r′ ∈ R and a ∈ A. We
now define the path algebra of Q = (Q0, Q1, s, t) as the graded tensor algebra of A over
R, so

kQ :=TR(A) , with homogeneous decomposition kQ =
⊕
d≥0

(kQ)d , where

(kQ)d =TR(A)d = A⊗Rd .

This is also a graded algebra over k with the same grading, with the important detail
that the grade 0 component is in general not equal to k. As the multiplication is the
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tensor product, we write “·” or simply nothing instead of “⊗R” for the multiplication.
This algebra is generated as an R-algebra by the elements of degree 1, and as a k-algebra
by the elements of degree 0 and 1. As is usual with tensor algebras, for a k-basis B1

of A = (kQ)1, the algebra is generated as an R-algebra by B1, and if B0 is a k-basis
for R = (kQ)0, then kQ is generated as a k-algebra by B0 ∪ B1. The canonical choice
of bases here is B0 = {1v | v ∈ Q0} ⊆ R and B1 = {1a | a ∈ Q1} ⊆ A, and we identify
Q0 = B0 and Q1 = B1.

We denote by Q≥0 the set of all nonzero products of elements in B0 and B1, and call
such elements paths. We furthermore define Qd := Q≥0 ∩ (kQ)d, where d is called the
length of a path v ∈ Qd.1 For d = 0 and d = 1, this is consistent with our identification
Q0 = B0 and Q1 = B1. This means that we write 1v = v for v ∈ Q0 and 1a = a for
a ∈ Q1. A path of length 0, say the path 1v = v where v ∈ Q0, is called the empty path
at v. C

Remark A.8. • kQ is a unital algebra if and only if Q0 is finite, since then
R = k(Q0) = kQ0 is unital with unit 1R = 1Q0 ∈ R by Lemma A.6, and we then
have 1kQ = 1R ∈ R ⊆ kQ.

• We have spank Qd = (kQ)d.

• Let v, w ∈ Q0 and a, b ∈ Q1. Note that we have ab 6= 0 if and only if t(a) = s(b)
and also note that va = a if and only if s(a) = v and av = a if and only if t(a) = v,
resulting in zero otherwise, and finally observe that vw = δv,w. We arrive at the
fact that we can uniquely write any element x ∈ Q≥0 as

x = v0a1v1a2v2 . . . vd−1advd ,

where vi ∈ Q0 and ai ∈ Q1 such that s(ai) = vi−1 and t(ai) = vi, where indeed d is
the length of x. This is in line with a different definition of the path algebra, where
paths are defined as words of such form and where the multiplication is defined by
specific concatenation rules.

• We can extend the source and target functions s and t to all of Q≥0, in fact to
nonzero scalar multiples of such elements, by defining s(y) = v0 and t(y) = vd for
y = λ · x with λ ∈ k× and x = v0a1v1a2v2 . . . vd−1arvd ∈ Q≥0 presented as above.
We call s(y) the source of y and t(y) the target of y. With this, we have for y
and z of this form that y · z 6= 0 if and only if t(y) = s(z).

• It is also common to write 1v = 1v for v ∈ Q0, which is also used in context of the
fact that these are idempotents. For v, w ∈ Q0 we have that kQv,w := 1v ·kQ ·1w =
spank(Qv,w), where Qv,w is the set of all paths that have source v and target w.
For u, v, w, x ∈ Q0 we notice spank(kQu,v · kQw,x) = δv,w · kQu,x, and also see that
kQ =

⊕
v,w∈Q0

kQv,w.
C

1Analogously we define Q≥d = Q≥0 ∩ (kQ)≥d.
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