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Abstract

We develop axiomatics of highest weight categories and quasi-hereditary alge-
bras in order to incorporate two semi-infinite situations which are in Ringel duality
with each other; the underlying posets are either upper finite or lower finite. We
also consider various more general sorts of stratified categories. In the upper finite
cases, we give an alternative characterization of these categories in terms of based
quasi-hereditary algebras and based stratified algebras, which are certain locally
unital algebras possessing triangular bases.
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CHAPTER 1

Introduction

Highest weight categories were introduced by Cline, Parshall and Scott [CPS1]
in order to provide an axiomatic framework encompassing a number of important
examples which had previously arisen in representation theory. In the first part of
this article, we give a detailed exposition of two semi-infinite variants, which we call
lower finite and upper finite highest weight categories. Lower finite highest weight
categories were already included in the original work of Cline, Parshall and Scott,
although they did not use this language. Well-known examples include the category
ReppGq of finite-dimensional rational representations of a (connected) reductive al-
gebraic group. On the other hand, the upper finite highest weight categories studied
here do not fit into the locally Artinian framework of [CPS1]. Nevertheless, there
are many examples of upper finite highest weight categories already in the litera-
ture, often of a diagrammatic nature, and an appropriate axiomatic framework was
sketched out by Elias and Losev in [ELos, §6.1.2]. There are plenty of subtleties,
so a full treatment seems desirable.

Then, in the next part, we extend Ringel duality to the semi-infinite setting:

"

lower finite
highest weight categories

*

Ringel duality
ÐÝÝÝÝÝÝÝÑ

"

upper finite
highest weight categories

*

.

Other approaches to “semi-infinite Ringel duality” exist in the literature, but these
typically require the existence of a Z-grading; e.g., see [Soe] (in a Lie algebra set-
ting) and also [Maz2]. We avoid this by working with finite-dimensional comodules
over a coalgebra in the lower finite case, and with locally finite-dimensional mod-
ules over a locally finite-dimensional locally unital algebra in the upper finite case.
Another approach to semi-infinite Ringel duality based around pseudo-compact
topological algebras was initiated by Marko and Zubkov [MZ]. However, their
theory requires some additional finiteness assumptions which are not satisfied in
important examples including all non-semisimple categories of the form ReppGq for
a reductive group G; see Corollary 4.28, Remark 4.31 and Remark 4.23.

Finally, as an application of semi-infinite Ringel duality, we give an elementary
algebraic characterization of upper finite highest weight categories, showing that
any such category is equivalent to the category of locally finite-dimensional modules
over an upper finite based quasi-hereditary algebra. This is an algebraic formulation
of the notion of object-adapted cellular category from [ELau, Def. 2.1], and a
generalization of the based quasi-hereditary algebras of [KM, Def. 2.4]. As well as
Ringel duality, the proof of this characterization uses a construction from [AST] to
construct bases for endomorphism algebras of tilting objects. The observation that
the bases arising from [AST] are object-adapted cellular bases was made already
by Elias and several others, and appears in recent work of Andersen [And].

1



2 1. INTRODUCTION

Throughout the article, we systematically develop the entire theory in the more
general setting of what we call ε-stratified categories. The idea of this definition
is due to Ágoston, Dlab and Lukács: in [ADL, Def. 1.3] one finds the notion of
a stratified algebra of type ε; the category of finite-dimensional left modules over
such a finite-dimensional algebra is an example of a ε-stratified category in our
sense. The various other generalizations of highest weight category that have been
considered in existing literature fit naturally into our ε-stratified framework.

To explain the contents of the paper in more detail, we start by explaining our
precise setup in the finite-dimensional case, since even here it does not seem to have
appeared explicitly elsewhere in the literature. Consider a finite Abelian category,
that is, a category R equivalent to the category A-modfd of finite-dimensional left
A-modules for some finite-dimensional algebra A over an algebraically closed field
k. A stratification of R is a quintuple pB, L, ρ,Λ,ďq consisting of a set B, a labelling
function L such that tLpbq | b P Bu is a full set of pairwise inequivalent irreducible
objects of R, and a stratification function ρ : B Ñ Λ for a poset pΛ,ďq.

Given a stratification, let P pbq (resp., Ipbq) be a projective cover (resp., injective
hull) of Lpbq. For λ P Λ, let Rďλ (resp., Răλ) be the Serre subcategory of R
generated by the irreducibles Lpbq for b P B with ρpbq ď λ (resp., ρpbq ă λ).
Define the stratum Rλ to be the Serre quotient Rďλ{Răλ with quotient functor
jλ : Rďλ Ñ Rλ. For b P Bλ :“ ρ´1pλq, let Lλpbq :“ jλLpbq. These give a full set
of pairwise inequivalent irreducible objects in Rλ. Still for b P Bλ, let Pλpbq (resp.,
Iλpbq) be a projective cover (resp., injective hull) of Lλpbq in Rλ.

The functor jλ has a left adjoint jλ! and a right adjoint jλ˚ . We refer to these
as the standardization and costandardization functors, respectively, following the
language of [LW, §2]. Then we introduce the standard, proper standard, costandard
and proper costandard objects of R for λ P Λ and b P Bλ:

∆pbq :“ jλ! Pλpbq, ∆̄pbq :“ jλ! Lλpbq, ∇pbq :“ jλ˚Iλpbq, ∇̄pbq :“ jλ˚Lλpbq.(1.1)

Equivalently, ∆pbq (resp., ∇pbq) is the largest quotient of P pbq (resp., the largest
subobject of Ipbq) that belongs to Rďλ, and ∆̄pbq (resp., ∇̄pbq) is the largest quotient
of ∆pbq (resp., the largest subobject of ∇pbq) such that all composition factors apart
from its irreducible head (resp., its irreducible socle) belong to Răλ.

Fix a sign function ε : Λ Ñ t˘u and define the ε-standard and ε-costandard
objects

∆εpbq :“

"

∆pbq if εpρpbqq “ `
∆̄pbq if εpρpbqq “ ´

, ∇εpbq :“

"

∇̄pbq if εpρpbqq “ `
∇pbq if εpρpbqq “ ´

.(1.2)

By a ∆ε-flag (resp., a ∇ε-flag) of an object of R, we mean a (necessarily finite)
filtration whose sections are of the form ∆εpbq (resp., ∇εpbq) for b P B. Then we
call R an ε-stratified category if one of the following equivalent properties holds:

(P∆ε) For every b P B, the projective object P pbq has a ∆ε-flag with sections
∆εpcq for c P B with ρpcq ě ρpbq.

(I∇ε) For every b P B, the injective object Ipbq has a ∇ε-flag with sections ∇εpcq
for c P B with ρpcq ě ρpbq.

The fact that these two properties are indeed equivalent was established in [ADL,
Th. 2.2] (under slightly more restrictive hypotheses than here), extending the earlier
work of Dlab [Dla1]. We give a self-contained proof in Theorem 3.5; see also §6.1
for some elementary examples. An equivalent statement is as follows.
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Theorem 1.1 (Dlab,. . . ). Let R be a finite Abelian category equipped with a
stratification pB, L, ρ,Λ,ďq and ε : Λ Ñ t˘u be a sign function. Then R is ε-
stratified if and only if Rop is p´εq-stratified.

If the stratification function ρ : B Ñ Λ is a bijection, i.e., each stratum Rλ has
a unique irreducible object (up to isomorphism), then we can use ρ to identify B
with Λ, and denote the various distinguished objects simply by Lpλq, P pλq,∆εpλq,
. . . for λ P Λ instead of by Lpbq, P pbq,∆εpbq, . . . for b P B. When (P∆ε)–(I∇ε) hold
in this situation, we instead call R an ε-highest weight category with weight poset
pΛ,ďq and labelling function L. The notion of ε-highest weight category generalizes
the original notion of highest weight category from [CPS1]: a (finite) highest weight
category in the sense of loc. cit. is an ε-stratified category in which each stratum
Rλ is actually simple, i.e., equivalent to Vecfd. This stronger assumption means not
only that ρ is a bijection but also that Lλpλq “ Pλpλq “ Iλpλq, hence, ∆pλq “ ∆̄pλq
and ∇pλq “ ∇̄pλq for each λ P Λ. Consequently, in highest weight categories, the
sign function ε plays no role and may be omitted entirely, and the above properties
simplify to the following:

(P∆) Each P pλq has a ∆-flag with sections ∆pµq for µ ě λ.
(I∇) Each Ipλq has a ∇-flag with sections ∇pµq for µ ě λ.

In fact, in this context, the equivalence of pP∆q and pI∇q was established already
in [CPS1]. Moreover, in loc. cit., it is shown that A-modfd is a highest weight
category if and only if A is a quasi-hereditary algebra.

The next important special cases arise when ε is the constant function ` or ´.
The idea of a `-stratified category originated in the work of Dlab [Dla1] already
mentioned, and in another work of Cline, Parshall and Scott [CPS2]. In partic-
ular, the “standardly stratified categories” of [CPS2, Def. 2.2.1] are `-stratified
categories.

Let R be a finite Abelian category equipped with a stratification pB, L, ρ,Λ,ďq.
We say that R is a fully stratified category if it is both a `-stratified category and
a ´-stratified category; in that case, it is ε-stratified for all choices of the sign
function ε : Λ Ñ t˘u. Such categories arise as categories of modules over the
fully stratified algebras introduced in a remark after [ADL, Def. 1.3]. In fact,
these sorts of algebras and categories have appeared several times elsewhere in the
literature but under different names: they are called “weakly properly stratified” in
[Fri1], “exactly properly stratified” in [CouZ], and “standardly stratified” in [LW].
The latter seems a particularly confusing choice since it clashes with the established
notion from [CPS2] but we completely agree with the sentiment of [LW, Rem. 2.2]:
fully stratified categories have a well-behaved structure theory. One reason for this
is that all of the standardization and costandardization functors in a fully stratified
category are exact. We note also that any ε-stratified category with duality is
automatically fully stratified; see Corollary 3.21 for a precise statement.

We use the language fibered highest weight category in place of fully stratified
category when the stratification function ρ is a bijection. Equivalently, a fibered
highest weight category is a category which is ε-highest weight for all choices of
the sign function ε. Such categories arise as the categories of finite-dimensional
modules over the properly stratified algebras introduced in [Dla2]. It is perhaps
worth pointing out that any finite Abelian category can be given the structure of
a fully stratified category in a trivial way taking the poset Λ to be a singleton.
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Finite-dimensional algebra A Finite Abelian category A-modfd

Quasi-hereditary algebra Highest weight category
ε-Quasi-hereditary algebra ε-Highest weight category
Properly stratified algebra Fibered highest weight category
ε-Stratified algebra ε-Stratified category
Stratified algebra Fully stratified category

Table 1.1. Dictionary between algebras and categories

Fibered highest weight categories are at the other extreme with Λ being as big as
possible.

Table 1.1 gives a dictionary between the various different types of finite Abelian
category R discussed so far and the language we adopt for the underlying finite-
dimensional algebras A such that R is equivalent to A-modfd. Some of this language
is non-standard; see Remark 3.8 for further discussion.

There are many classical examples of highest weight categories, including blocks
of the BGG category O for a semisimple Lie algebra, the classical Schur algebra
and Donkin’s generalized Schur algebras introduced in [Don2], and many more ex-
amples arising from categories of perverse sheaves with stratifications of geometric
origin [BBD]. Further examples of fully stratified categories and fibered highest
weight categories which are not highest weight arise in the context of categorifi-
cation. This includes the pioneering examples of categorified tensor products of
finite dimensional irreducible representations for the quantum group attached to
slk from [FKS] (in particular Remark 2.5 therein), and the categorified induced
cell modules for Hecke algebras from [MS, 6.5]. Building on these examples and the
subsequent work of Webster [Web1], [Web2], Losev and Webster [LW] formulated
the important axiomatic definition of a tensor product categorification. These are
fully stratified categories which have been used to give a categorical interpretation
of Lusztig’s construction of tensor product of based modules for a quantum group.

The device of incorporating the sign function ε into the definition of ε-stratified
or ε-highest weight category seems to be quite convenient as it streamlines many
of the subsequent definitions and proofs. It also leads to some interesting new
possibilities when it comes to the “tilting theory” which we discuss next.

Assume R is an ε-stratified category as above. An ε-tilting object is an object of
R which has both a ∆ε-flag and a ∇ε-flag. Isomorphism classes of indecomposable
ε-tilting objects are parametrized in a canonical way by the set B; see Theorem 4.2.
The construction of these objects is a non-trivial generalization of Ringel’s classi-
cal construction via iterated extensions of standard objects: in general one takes
a mixture of extensions of standard objects on the top for positive strata and ex-
tensions of costandard objects on the bottom for negative strata. We denote the
indecomposable ε-tilting objects by tTεpbq | b P Bu.

Now let T be an ε-tilting generator, i.e., an ε-tilting object in which every Tεpbq
appears at least once as a summand. If ε “ ` or ´ (the constant functions) then
T is a tilting or cotilting module, respectively, for the underlying finite-dimensional
algebra in the general sense of tilting theory; for more general ε, T is an example
of a Wakamatsu tilting module as defined in [Rei, §4.1]. The Ringel dual of R
relative to T is the category R1 :“ B-modfd where B :“ EndRpT q

op (so that T
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is a right B-module). The isomorphism classes of irreducible objects in R1 are in
natural bijection with the isomorphism classes of indecomposable summands of T ,
hence, they may be indexed by the same set B that labels the irreducibles in R.
We denote them by tL1pbq | b P Bu. Let

F :“ HomRpT, ?q : RÑ R1,
G :“ CohomRpT, ?q “ HomRp?, T q

˚ : RÑ R1.

These are the Ringel duality functors. The following theorem is well known for
highest weight categories (where it is due to Ringel [Rin] and Happel [Hap]) and for
`- and ´-stratified categories (where it is developed in the framework of standardly
stratified algebras in [AHLU]). We prove it for general ε-stratified categories in
Theorem 4.10.

Theorem 1.2 (Ringel, Happel, . . . ). Let R1 be the Ringel dual of R relative to
an ε-tilting generator T as above. Let ´ε : Λ Ñ t˘u be the negation of the original
sign function ε.

(1) The quintuple pB, L1, ρ,Λ,ěq is a stratification of R1 making it into a
p´εq-stratified category with weight poset pΛ,ěq, that is, the opposite of
the poset used for R. Moreover, each stratum R1λ :“ R1ěλ{R1ąλ of R1 is
equivalent to the corresponding stratum Rλ :“ Rďλ{Răλ of R.

(2) The functor F defines an equivalence of categories between the category of
∇ε-filtered objects in R and the category of ∆´ε-filtered objects in R1. It
sends ε-tilting objects (resp., injective objects) in R to projective objects
(resp., p´εq-tilting objects) in R1.

(3) The functor G defines an equivalence of categories between the category of
∆ε-filtered objects in R and the category of ∇´ε-filtered objects in R1. It
sends ε-tilting objects (resp., projective objects) in R to injective objects
(resp., p´εq-tilting objects) in R1.

(4) Assume that Rλ is of finite global dimension for all strata λ with εpλq “ ´
(resp., εpλq “ `). Then the total derived functor RF : DbpRq Ñ DbpR1q
(resp., LG : DbpRq Ñ DbpR1q) is an equivalence between the bounded
derived categories.

In the setup of the theorem, let P be a projective generator for R. Then T 1 :“
GP is a p´εq-tilting generator for R1 such that A :“ EndRpP q

op – EndR1pT
1qop.

Since R is equivalent to A-modfd, this shows that R is equivalent to the Ringel dual
pR1q1 of R1 relative to T 1. Thus, the original category R can be recovered from its
Ringel dual R1. This statement can be interpreted as a double centralizer property:
starting from R “ A-modfd so that T is an pA,Bq-bimodule, and taking the pro-
jective generator P to be the left regular A-module so that A – EndApP q

op, the
pB,Aq-bimodule T 1 “ GP is isomorphic to the dual T˚ of T . Now Theorem 1.2(3)
implies that A – EndBpT

˚qop.
We do not consider here derived equivalences in the case of infinite global di-

mension, but instead refer to [PS], where this and involved t-structures are treated
in detail by generalizing the classical theory of co(resolving) subcategories. This re-
quires the use of certain coderived and contraderived categories in place of ordinary
derived categories.
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Now we shift our attention to the semi-infinite case, which is really the main
topic of the article. Following [EGNO], a locally finite Abelian category is a cate-
gory that is equivalent to the category comodfd-C of finite-dimensional right comod-
ules over some coalgebra C. Let R be such a category. A lower finite stratification
of R is a quintuple pB, L, ρ,Λ,ďq consisting of a set B, a function L labelling a
full set tLpbq | b P Bu of pairwise inequivalent irreducible objects, a stratification
function ρ : B Ñ Λ required now to have finite fibers Bλ :“ ρ´1pλq, and a lower
finite poset pΛ,ďq (i.e., the intervals p´8, µs are finite for all µ P Λ). Fix also a
sign function ε : Λ Ñ t˘u. For any lower set (i.e., ideal of the poset) Λ� in Λ, we
can consider the Serre subcategory R� of R generated by the objects tLpbq |b P B�u

where B� :“ ρ´1pΛ�q. The restriction of the stratification of R gives a stratification
pB�, L, ρ,Λ,ďq of R�. We say that R is a lower finite ε-stratified category if R�

is a finite Abelian category that is ε-stratified in the earlier sense for every finite
lower set Λ� of Λ; cf. Definition 3.50. By the same procedure one also obtains
definitions of lower finite ε-highest weight, lower finite fully stratified, lower finite
fibered highest weight, and lower finite highest weight categories.

In a lower finite ε-stratified category R, there are ε-standard and ε-costandard
objects ∆εpbq and ∇εpbq; they are the same as the ε-standard and ε-costandard
objects of the Serre subcategory R� defined from any finite lower set Λ� containing
ρpbq. As well as (finite) ∆ε- and ∇ε-flags, one can consider certain infinite ∇ε-flags
in objects of the ind-competion IndpRq (which is the category comod-C of all right
C-comodules in the case that R “ comodfd-C). We refer to these as ascending
∇ε-flags; see Definition 3.52 for the precise formulation. Theorem 3.56 establishes
a homological criterion for an object to possess an ascending ∇ε-flag similar to
the well-known criterion for good filtrations in rational representations of reductive
groups [Jan1, Prop. II.4.16]. From this, it follows that the injective hull Ipbq of
Lpbq in IndpRq has an ascending ∇ε-flag. Moreover, the multiplicity of ∇εpcq as a
section of such a flag satisfies

pIpbq : ∇εpcqq “ r∆εpcq : Lpbqs,

generalizing BGG reciprocity. This leads to alternative “global” characterizations
of lower finite ε-stratified and fully stratified categories; see Theorems 3.60 and
3.63. The latter involves an Ext2-vanishing condition which first appeared in work
of Dlab and Ringel [DR].

In a lower finite ε-stratified category, there are also ε-tilting objects. Isomor-
phism classes of the indecomposable ones are labelled by B just like in the finite
case. In fact, for b P B the corresponding indecomposable ε-tilting object of R
is the same as the object Tεpbq of the Serre subcategory R� defined from any fi-
nite lower set Λ� containing ρpbq. By an ε-tilting generator for R, we now mean
an object T “

À

iPI Ti P IndpRq with a given decomposition as a direct sum of
ε-tilting objects Ti P R such that each Tεpbq appears at least once as a summand of
T . Then the Ringel dual R1 of R relative to T is the category A-modlfd of locally
finite-dimensional left modules over the locally finite-dimensional locally unital al-
gebra

A “
´

à

i,jPI

HomRpTi, Tjq
¯op

,

where the op denotes that multiplication in A is the opposite of composition in R;
see Definition 4.24. Saying that A is locally unital means that A “

À

i,jPI eiAej
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where tei | i P Iu are the mutually orthogonal idempotents defined by the identity
endomorphisms of each Ti, and locally finite-dimensional means that dim eiAej ă 8
for all i, j P I. A locally finite-dimensional module is an A-module V “

À

iPI eiV
with dim eiV ă 8 for each i. As eiAej “ HomRpTi, Tjq is finite-dimensional, each
left ideal Aej is a locally finite-dimensional projective module.

This brings us to the notion of an upper finite ε-stratified category, whose defini-
tion may be discovered by considering the nature of the categories R1 that can arise
as Ringel duals of lower finite ε-stratified categories. We refer to Definition 3.34
for the intrinsic formulation; there are also upper finite counterparts of ε-highest
weight, fully stratified, fibered highest weight and highest weight categories. Start-
ing from R that is a lower finite ε-stratified category as above, the Ringel dual R1
comes equipped with an upper finite stratification pB, L1, ρ,Λ,ěq making it into an
upper finite p´εq-stratified category; see Theorem 4.25 which extends parts (1) and
(2) of Theorem 1.2.

In general, in an upper finite ε-stratified category, the underlying poset is re-
quired to be upper finite, i.e., all of the intervals rλ,8q are finite. There are
ε-standard and ε-costandard objects, but now these can have infinite length (al-
though composition multiplicities in such objects are finite). On the other hand,
the indecomposable projectives and injectives do still have finite ∆ε-flags and ∇ε-
flags, exactly like in pP∆εq and pI∇εq. Perhaps the most interesting feature is
that one can still make sense of ε-tilting objects. These are objects possessing
certain infinite flags: both an ascending ∆ε-flag and a descending ∇ε-flag; see Def-
inition 3.35. This allows us to define the Ringel dual of an upper finite ε-stratified
category relative to an ε-tilting generator T : it is the category comodfd-C for the
coalgebra C :“ CoendRpT q that is the continuous dual of the opposite endomor-
phism algebra B :“ EndRpT q

op; see Theorem 4.27 which extends parts (1) and
(3) of Theorem 1.2. This makes sense because B is a pseudo-compact topological
algebra; see Lemma 2.10.

Again there are double centralizer properties. For R1 arising as the Ringel dual
of a lower finite ε-stratified category R relative to T “

À

iPI Ti, the indecomposable
p´εq-tilting objects in R1 are the images of the indecomposable injective objects of
R under

F :“
à

iPI

HomRpTi, ?q : RÑ R1

and, given a p´εq-tilting generator T 1 for R1, the Ringel dual pR1q1 of R1 relative
to T 1 is equivalent to the original category R; see Corollary 4.29 and also §6.2 for
an explicit example. Similarly, for R1 arising as the Ringel dual of an upper finite
ε-stratified category relative to T , the indecomposable p´εq-tilting objects of R1 are
the images of the indecomposable projective objects of R under G :“ CohomRpT, ?q
and, given a p´εq-tilting generator T 1 “

À

iPI T
1
i for R1, the Ringel dual pR1q1 of

R1 relative to T 1 is equivalent to R; see Corollary 4.30.

In §5.1, we apply semi-infinite Ringel duality together with arguments from
[AST] to give an elementary algebraic characterization of upper finite highest
weight categories in terms of upper finite based quasi-hereditary algebras. In the
finite-dimensional setting, these are the based quasi-hereditary algebras defined by
Kleshchev and Muth in [KM], who proved that their definition of based quasi-
hereditary algebra is equivalent to the original definition of quasi-hereditary alge-
bra from [CPS1]; we have streamlined the definition a little further here. Our
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more general algebras are locally finite-dimensional locally unital algebras rather
than unital algebras. Viewing them instead as finite-dimensional categories, that
is, small k-linear categories with finite-dimensional morphism spaces, the defini-
tion translates into something equivalent to the notion of an object-adapted cellular
category which was introduced already by Elias and Lauda [ELau, Def. 2.1]. (In
turn, the Elias-Lauda definition evolved from work of Westbury [Wes], who ex-
tended the definition of cellular algebra due to Graham and Lehrer [GL] from
finite-dimensional algebras to finite-dimensional categories.)

We say that a fully stratified category is tilting-rigid if there is a bijection
ν : B Ñ B such that T`pbq – T´pνpbqq for all b P B; see Definition 4.36. In the
finite case, R is tilting-rigid if and only if it is Gorenstein with strata that are
quasi-Frobenius (then ν encodes their Nakayama permutations); see Theorem 4.39
which generalizes [CM, Th. 2.2]. The situation is even better if in addition all of
the strata are symmetric, since in that case the tilting objects Tεpbq are isomorphic
for all choices of the sign function ε so that they may all be denoted by T pbq. Most
of the naturally-occurring examples of fully stratified categories are tilting-rigid
with symmetric strata, including the tensor product categorifications from [LW]
mentioned earlier. For us, the key point about the tilting-rigid hypothesis is that
the Ringel dual of a tilting-rigid fully stratified category is again a tilting-rigid fully
stratified category; see Theorem 4.42. This is important in §5.3, when we intro-
duce notions of based stratified algebras and based properly stratified algebras; see
Definitions 5.20 and 5.21. These have a similar flavor to the fibered object-adapted
cellular categories of [ELau, Def. 2.17]. We show that the category of locally
finite-dimensional modules over an upper finite based stratified algebra (resp., up-
per finite based properly stratified algebra) is an upper finite fully stratified (resp.,
fibered highest weight) category, and conversely any such category which is also
tilting-rigid with symmetric strata can be realized in this way.

The definition of an upper finite based stratified algebra A involves certain
basic finite-dimensional algebras Aλ pλ P Λq which provide explicit realizations of
the strata. Their direct sum

À

λPΛAλ is a locally unital algebra which plays the
role of “Cartan subalgebra”, although in general it is not a subalgebra of A. The
assumption that the algebras Aλ are basic can in fact be dropped entirely. On doing
that one obtains a weaker notion which we call an algebra with a triangular basis;
see Definition 5.26. Our understanding of this definition was influenced by the
recent preprint [GRS] in which the authors introduce the closely-related notion of
an algebra with a weak triangular decomposition; up to a choice of basis, this is the
same as an algebra with a triangular basis in our sense in which all distinguished
idempotents are special. It is still the case that the category of locally finite-
dimensional modules over such an algebra is an upper finite fully stratified category,
just like for based stratified algebras. This observation is due to Gao, Rui and Song
[GRS, Th. 3.5]; we give a slightly different proof in Theorem 5.28. Gao, Rui and
Song also discuss some interesting examples arising from cyclotomic quotients of
the affine Brauer and oriented Brauer categories and their q-analogs.

For many of the naturally occurring algebras A with a triangular basis, the up-
per and lower halves of the basis span a pair of opposite Borel subalgebras A5 and A7;
this includes all of the level one cyclotomic quotients from [GRS] but not the ones
of higher level. In Definition 5.31, we formalize this idea with the final notion of
an algebra with a triangular decomposition. The first author came upon essentially
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Upper finite highest
weight categories

Upper finite fully
stratified categories

Upper finite based
stratified algebras

Upper finite based
quasi-hereditary algebras

Algebras with an upper
finite triangular basis

Algebras with an upper finite
triangular decomposition

`highest weight strata (3.67)

(5.23)
`tilting-

rigid (5.25)
(5.11) (5.9)

`opposite

Borels
`B-free (5.34)

`basic semisimple

Cartan
`basic Cartan

(5.28)

`semisimple

Cartan (5.36)

(5.35)

`quasi-hereditary Cartan (5.29)

Table 1.2. Upper finite algebras and categories

this definition originally from considerations involving the oriented Brauer category
and its q-analog; see [Rey], [Bru] and also [RS], which applies a similar approach
in the context of the Brauer category. A closely related notion of triangular category
was developed independently by Sam and Snowden [SS] in order to study these and
other examples; see also [CouZ]. In the presence of a triangular decomposition, the
“Cartan subalgebra”

À

λPΛAλ may be identified with A˝ :“ A5XA7, so that now it
is actually a subalgebra of A, and the standardardization/costandardization func-
tors can be realized as parabolic induction/coinduction functors. In Theorem 5.35,
we explain a general construction to make any algebra with a triangular decom-
position into a based stratified algebra. If A˝ is semisimple, as is the case for the
examples arising from the (oriented) Brauer category in characteristic zero but not
in positive characteristic, this produces a based quasi-hereditary algebra. There
are other advantages to having a triangular decomposition rather than merely a
triangular basis, e.g., see [SS] where triangular decompositions are used to show
that many of the motivating examples are Noetherian.

Table 1.2 summarizes some of the connections established between these vari-
ous types of algebras and their module categories. In the main body of the text,
we also discuss a parallel situation involving essentially finite rather than upper
finite algebras and categories. For example, the finite-dimensional graded algebras
with a triangular decomposition studied in [HN], [BT] fit naturally into our more
general framework of algebras with an essentially finite triangular decomposition;
see Remark 5.33.

As we have already mentioned, the category R :“ ReppGq for a reductive group
G is the archetypical example of a lower finite highest weight category. Its Ringel
dual R1 is an upper finite highest weight category. This case has been studied in
particular by Donkin (e.g., see [Don2], [Don3]), but Donkin’s approach involves
truncating to a finite-dimensional algebra from the outset. The double centralizer
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property allowing R to be reconstructed from R1 in this case can be interpreted as a
shadow of the Tannakian formalism; see Theorem 6.11. Other important examples
of semi-infinite Ringel duality come from blocks of category O over an affine Lie
algebra: in negative levels one obtains lower finite highest weight categories, while
positive levels produce the upper finite ones which are their Ringel duals. These
and several other prominent examples are outlined in §§6.3–6.7.

We would finally like to remark that our semi-infinite versions of highest weight
categories should not be confused with the affine highest weight categories of [Kle],
and our based quasi-hereditary algebras are not affine quasi-hereditary algebras
in the sense of [Kle]. The latter are special examples of affine cellular algebras
introduced in [Xi], [KX]. They are not covered by out setup since we require that
strata can be realized by finite-dimensional algebras over an algebraically closed
field. To incorporate them, one would need to develop the theory here over more
general commutative ground rings as suggested in Remark 5.7.



CHAPTER 2

Some finiteness properties on Abelian categories

We fix an algebraically closed field k. All algebras, categories, functors, etc.
will be assumed to be linear over k. We write b for bk. The naive terms direct limit
and inverse limit will be used for small filtered colimits and limits, respectively. We
begin by introducing some language for Abelian categories with various finiteness
properties; see Table 2.1.

2.1. Finite and locally finite Abelian categories

According to [EGNO, Def. 1.8.5], a finite Abelian category is a category that is
equivalent to the category A-modfd of finite-dimensional (left) modules over some
finite-dimensional algebra A. We refer to a choice for the algebra A here as an
algebra realization of R. Note that the opposite category is also a finite Abelian
category as it is equivalent to the category Aop-modfd “ modfd-A due to the exis-
tence of the contravariant equivalence

(2.1) ?˚ : A-modfd Ñ modfd-A

taking a finite-dimensional left A-module to the linear dual viewed as a right A-
module in the natural way.

A finite Abelian category can also be characterized as a category which is
equivalent to the category comodfd-C of finite-dimensional (right) comodules over
some finite-dimensional coalgebra C. To explain this in more detail, recall that the
dual A :“ C˚ of a finite-dimensional coalgebra C has a natural algebra structure
with multiplication AbAÑ A that is the dual of the comultiplication C Ñ CbC;

Finite Abelian categories

Essentially finite
Abelian categories

Schurian
categories

Locally finite
Abelian categories

(2.21)

(2.20) (2.22)

(2.21) (2.21)

Table 2.1. Finiteness properties

11
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for this, one needs to use the canonical isomorphism

(2.2) C˚ b C˚ Ñ pC b Cq˚, f b g ÞÑ pv b w ÞÑ fpvqgpwqq

to identify C˚bC˚ with pCbCq˚. Then any right C-comodule can be viewed as a
left A-module with action defined from av :“

řn
i“1 apciqvi assuming here that the

structure map η : V Ñ V bC sends v ÞÑ
řn
i“1 vib ci. Conversely, the C-comodule

structure on V can be recovered uniquely from the action of A. Thus, the categories
comodfd-C and A-modfd are isomorphic.

A locally finite Abelian category is a category R that is equivalent to comodfd-C
for a (not necessarily finite-dimensional) coalgebra C. We refer to a choice of C as a
coalgebra realization of R. The following result of Takeuchi gives an intrinsic char-
acterization of locally finite Abelian categories; see [Tak] and [EGNO, Th. 1.9.15].
It is a version of [Gab, Th. IV.4] adapted to our situation. Note Takeuchi’s orig-
inal paper uses the language “locally finite Abelian” slightly differently (following
[Gab]) but his formulation of the result is equivalent to the one here (which follows
[EGNO, Def. 1.8.1]). In loc. cit. it is shown moreover that C can be chosen so
that it is pointed, i.e., all of its irreducible comodules are one-dimensional; in that
case, C is unique up to isomorphism.

Lemma 2.1. An essentially small category R is a locally finite Abelian category
if and only if it is Abelian, all of its objects are of finite length, and all of its
morphism spaces are finite-dimensional.

In view of Lemma 2.1, one could also define a locally finite Abelian category to
be a category that is equivalent to A-modfd for a (not necessarily finite-dimensional)
unital algebra A, but we prefer to work in terms of comodules since this language
facilitates the passage to the ind-completion. To explain this in more detail, consider
the locally finite Abelian category

R “ comodfd-C.

Fix a full set of pairwise inequivalent irreducible objects tLpbq | b P Bu in R. By
Schur’s Lemma, we have that EndRpLpbqq “ k for each b P B. Note that the
opposite category Rop is again a locally finite Abelian category, and a coalgebra
realization for it is given by the opposite coalgebra Ccop. This follows because there
is a contravariant equivalence

(2.3) ?˚ : comodfd-C Ñ C-comodfd

sending a finite-dimensional right comodule to the dual vector space viewed as a
left comodule in the natural way: if v1, . . . , vn is a basis for V , with dual basis
f1, . . . , fn for V ˚, and the structure map V Ñ V b C sends vj ÞÑ

řn
i“1 vi b ci,j

then the dual’s structure map V ˚ Ñ C b V ˚ sends fi ÞÑ
řn
i“1 ci,j b fj . Since

we have that C-comodfd – comodfd-Ccop, we deduce that Rop is equivalent to
comodfd-Ccop.

In general, R need not have enough injectives or projectives. To get injectives,
we pass to the ind-completion IndpRq; see e.g. [KS, §6.1]. For V,W P IndpRq,
we write ExtnRpV,W q, or sometimes ExtnCpV,W q, for ExtnIndpRqpV,W q; it may be
computed via an injective resolution of W in the ind-completion. This convention
is unambiguous due to [KS, Th. 15.3.1]; see also [Cou3, Th. 2.2.1]. One can also
consider the right derived functors RnF of a left exact functor F : IndpRq Ñ R1 to
an Abelian category R1.



2.1. FINITE AND LOCALLY FINITE ABELIAN CATEGORIES 13

Let comod-C be the category of all right C-comodules. Every comodule is the
union (hence, the direct limit) of its finite-dimensional subcomodules. Moreover, a
comodule V is compact, i.e., the functor HomCpV, ?q commutes with direct limits,
if and only if it is finite-dimensional. Using this, [KS, Cor. 6.3.5] implies that the
canonical functor IndpRq Ñ comod-C is an equivalence of categories. This means
that one can work with comod-C in place of IndpRq, as we do in the next few
paragraphs.

The category comod-C is a Grothendieck category: it is Abelian, it possesses all
small coproducts, direct colimits of monomorphisms are monomorphisms, and there
is a generator. A generating family may be obtained by choosing representatives
for the isomorphism classes of finite-dimensional C-comodules. By the general
theory of Grothendieck categories, every C-comodule has an injective hull. We use
the notation Ipbq to denote an injective hull of Lpbq. The right regular comodule
decomposes as

(2.4) C –
à

bPB

Ipbq‘ dimLpbq.

By Baer’s criterion for Grothendieck categories (e.g., see [KS, Prop. 8.4.7]), ar-
bitrary direct sums of injectives are injective. It follows that an injective hull of
V P comod-C comes from an injective hull of its socle: if soc V –

À

sPS Lpbsq then
À

sPS Ipbsq is an injective hull of V .
In any Abelian category, we write rV : Ls for the composition multiplicity of an

irreducible object L in an object V . By definition, this is the supremum of sizes of
the sets ti “ 1, . . . , n | Vi{Vi´1 – Lu over all finite filtrations 0 “ V0 ă V1 ă ¨ ¨ ¨ ă

Vn “ V ; possibly, rV : Ls “ 8. Composition multiplicity is additive on short exact
sequences. For any right C-comodule V , we have by Schur’s Lemma that

(2.5) rV : Lpbqs “ dim HomCpV, Ipbqq.

When C is infinite-dimensional, the map (2.2) is not an isomorphism, but one
can still use it to make the dual vector space B :“ C˚ into a unital algebra.
Since C is the union of its finite-dimensional subcoalgebras, the algebra B is the
inverse limit of its finite-dimensional quotients, i.e., the canonical homomorphism
B Ñ lim

ÐÝ
pB{Jq is an isomorphism where the limit is over all two-sided ideals J of

B of finite codimension. These two-sided ideals J form a base of neighborhoods of
0 making B into a pseudo-compact topological algebra; see [Gab, Ch. IV] or [Sim,
Def. 2.4]. We refer to the topology on B defined in this way as the profinite topology.
The coalgebra C can be recovered from B as the continuous dual

(2.6)

Bˇ :“
 

f P B˚
ˇ

ˇ f vanishes on some two-sided ideal J of finite codimension
(

.

It has a natural coalgebra structure dual to the algebra structure on B. This is
discussed further in [Sim, §3]; see also [EGNO, §1.12] where Bˇ is called the finite
dual. We note that any left ideal I of B of finite codimension contains a two-sided
ideal J of finite codimension, namely, J :“ AnnBpB{Iq. So, in the definition (2.6)
of continuous dual, “two-sided ideal J of finite codimension” can be replaced by
“left ideal I of finite codimension”. Similarly for right ideals.

Any right C-comodule V is naturally a left B-module by the same construction
as in the finite-dimensional case. We deduce that the category comod-C of all right
C-comodules is isomorphic to the full subcategory B-modds of B-mod consisting
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of all discrete left B-modules, that is, all B-modules which are the unions of their
finite-dimensional submodules. In particular, comodfd-C and B-modfd are identi-
fied under this construction. This means that any locally finite Abelian category
may be realized as the category of finite-dimensional modules over an algebra which
is pseudo-compact with respect to the profinite topology; see also [Sim, §3].

The definition of the left C-comodule structure on the linear dual V ˚ of a right
C-comodule V in (2.3) required V to be finite-dimensional in order for it to make
sense. If V is an infinite-dimensional right C-comodule, it can be viewed equiva-
lently as a discrete left module over the dual algebra B :“ C˚. Then its dual V ˚

is a pseudo-compact right B-module, that is, a B-module isomorphic to the inverse
limit of its finite-dimensional quotients. Viewing pseudo-compact modules as topo-
logical B-modules with respect to the profinite topology (i.e., submodules of finite
codimension form a basis of neighborhoods of 0), we obtain the category modpc-B
of all pseudo-compact right B-modules and continuous B-module homomorphisms.
The functor (2.3) extends to

(2.7) ?˚ : B-modds Ñ modpc-B.

This is a contravariant equivalence with quasi-inverse given by the functor

(2.8) ?ˇ : modpc-B Ñ B-modds

taking V P modpc-B to its continuous dual

V ˇ :“
 

f P V ˚
ˇ

ˇ f vanishes on some submodule of V of finite codimension
(

.

We are using subtlely different notation here (?˚ vs. ?ˇ), but confusion seldom
arises due to context.

We record one more basic lemma about comodules over a coalgebra.

Lemma 2.2. Suppose that C is a coalgebra and B :“ C˚ is its dual algebra.
For any right C-comodule V , composing with the counit ε : C Ñ k defines an
isomorphism of left B-modules αV : HomCpV,Cq

„
Ñ V ˚. When V “ C, the right

regular comodule, this map gives an algebra isomorphism EndCpCq
op – B.

Proof. Let η : V Ñ V b C be the comodule structure map. To show that
αV is an isomorphism, one checks that the map βV : V ˚ Ñ HomCpV,Cq, f ÞÑ
pfb̄ idq ˝ η is its two-sided inverse; cf. [Sim, Lem. 4.9]. It remains to show that

αC : EndCpCq
op „
Ñ B is an algebra homomorphism: for f, g P B we have that

αCpβCpgq ˝ βCpfqq “ ε ˝ pgb̄ idq ˝ η ˝ pfb̄ idq ˝ η

“ pgb̄ idq ˝ pidbεq ˝ η ˝ pfb̄ idq ˝ η “ g ˝ pfb̄ idq ˝ η “ fg.

�

2.2. Locally unital algebras

We are going to work with certain Abelian categories which are not locally
finite, but which nevertheless have some well-behaved finiteness properties. We
will define these in the next section. First we must review some basic notions
about locally unital algebras. These ideas originate in the work of Mitchell [Mit].

A locally unital algebra is an associative (but not necessarily unital) algebra A
equipped with a distinguished system tei |i P Iu of mutually orthogonal idempotents
such that

A “
à

i,jPI

eiAej .
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We say A is locally finite-dimensional if each subspace eiAej is finite-dimensional.
A locally unital homomorphism (resp., isomorphism) between two locally uni-

tal algebras A and B is an algebra homomorphism (resp., isomorphism) which
takes distinguished idempotents to distinguished idempotents. We say that A is
an idempotent contraction of B, or B is an idempotent expansion of A, if there is
an algebra isomorphism A

„
Ñ B sending each distinguished idempotent in A to a

sum of distinguished idempotents in B. Usually when we use this language it will
be the case that B “ A and the isomorphism AÑ B is the identity function; then
A “

À

i,jPÎ êiAêj is an idempotent expansion of A “
À

i,jPI eiAej if each of the

idempotents ei pi P Iq is a finite sum of the idempotents êj pj P Îq.
For a locally unital algebra A, an A-module means a left module V as usual

such that V “
À

iPI eiV . A vector v P V is homogeneous if v P eiV for some i P I.
A module V is

‚ locally finite-dimensional if dim eiV ă 8 for all i P I;
‚ finitely generated if V “ Av1`¨ ¨ ¨`Avn for vectors v1, . . . , vn P V (which

may be assumed to be homogeneous) or, equivalently, it is a quotient of the
finitely generated projective A-module Aei1 ‘ ¨ ¨ ¨ ‘Aein for i1, . . . , in P I
and n P N;

‚ finitely presented if there is an exact sequence

Aej1 ‘ ¨ ¨ ¨ ‘Aejm ÝÑ Aei1 ‘ ¨ ¨ ¨ ‘Aein ÝÑ V ÝÑ 0

for i1, . . . , in, j1, . . . , jm P I and m,n P N.

Let A-mod (resp., A-modlfd, resp., A-modfg, resp., A-modfp) be the category of all
A-modules (resp., the locally finite-dimensional ones, resp., the finitely generated
ones, resp., the finitely presented ones). Similarly, we define the categories mod-A,
modlfd-A, modfg-A and modfp-A of right modules.

Remark 2.3. Any locally unital algebra A “
À

i,jPI eiAej can be viewed as

a category with object set I and HomApj, iq “ eiAej , with the idempotent ei P A
corresponding to the identity endomorphism 1i P EndApiq. Conversely, any small
category A (k-linear, of course) gives rise to a corresponding locally unital algebra A
which we call the path algebra of A. In these terms, locally finite-dimensional locally
unital algebras correspond to finite-dimensional categories, that is, small categories
all of whose morphism spaces are finite-dimensional. The notion of idempotent
expansion of the algebra A becomes the notion of thickening of the category A,
which is a sort of “partial Karoubi envelope”. Also, a left A-module (resp., a
locally finite-dimensional left A-module) is the same as a k-linear functor from A
to the category Vec (resp., Vecfd) of vector spaces (resp., finite-dimensional vector
spaces); right A-modules are functors to Vecop.

Lemma 2.4. An essentially small category R is equivalent to A-mod for some
locally unital algebra A if and only if R is Abelian, it possesses all small coproducts,
and it has a projective generating family, i.e., there is a family pPiqiPI of compact
projective objects such that V ‰ 0 ñ HomRpPi, V q ‰ 0 for some i P I.

Proof. This is similar to [Fre, Ex. 5.F]. One shows that R is equivalent to
A-mod for the locally unital algebra A “

À

i,jPI eiAej defined by setting eiAej :“

HomRpPi, Pjq with multiplication that is the opposite of composition in R. The
canonical equivalence RÑ A-mod is given by the functor

À

iPI HomRpPi, ?q. �
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Lemma 2.5. Let A be a locally unital algebra. An A-module V is compact if and
only if it is finitely presented. Also, for projective modules, the notions of finitely
presented and finitely generated coincide.

Proof. This is well known for modules over a ring, and the usual proof in that
setting carries over almost unchanged to the locally unital case. �

Lemma 2.6. Let A be a locally unital algebra. Any A-module is isomorphic to
a direct limit of finitely presented A-modules.

Proof. As any A-module is the union of its finitely generated submodules, it
suffices to show that any finitely generated A-module V is isomorphic to a direct
limit of finitely presented modules. But then V is a quotient of P “ Aei1‘¨ ¨ ¨‘Aein
by a submodule. This submodule is the union of its finitely generated submodules
W , so we have that V – P { lim

ÝÑ
W – lim

ÝÑ
P {W . This is a direct limit of finitely

presented modules. �

The following lemma is fundamental. It is the analog of “adjointness of tensor
and hom” in the locally unital setting; see e.g. [BD1, §2.1] for a fuller discussion.

Lemma 2.7. Let A “
À

i,jPI eiAej and B “
À

i,jPJ fiBfj be locally unital

algebras, and let M “
À

iPI,jPJ eiMfj be an pA,Bq-bimodule.

(1) Functor MbB? : B-mod Ñ A-mod is left adjoint to
À

jPJ HomApMfj , ?q.

(2) Functor ?bAM : mod-AÑ mod-B is left adjoint to
À

iPI HomBpeiM, ?q.

For any locally unital algebra A, there is a contravariant equivalence

(2.9) ?f : A-modlfd Ñ modlfd-A

sending a left module V to V f :“
À

iPIpeiV q
˚, viewed as a right module in the

obvious way. The analogous functor ?f : modlfd-A Ñ A-modlfd gives a quasi-
inverse. The contravariant functor (2.9) also makes sense on arbitrary left (or
right) A-modules. It is no longer an equivalence, but we still have that

(2.10) HomApV,W
fq – HomApW,V

fq

for any V P A-mod and W P mod-A. To prove this, apply Lemma 2.7(1) to
the pk, Aq-bimodule W to show that HomApV,W

fq – pW bA V q˚, then apply
Lemma 2.7(2) to the pA,kq-bimodule V to show that pW bAV q

˚ – HomApW,V
fq.

Lemma 2.8. The dual V f of a projective (left or right) A-module is an injective
(right or left) A-module.

Proof. Just like in the classic treatment of duality for vector spaces from
[Mac, IV.2], (2.10) shows that the covariant functor ?f : A-mod Ñ pmod-Aqop is
left adjoint to the exact covariant functor ?f : pmod-Aqop Ñ A-mod. So it sends
projective left A-modules to projectives in pmod-Aqop, which are injective right
A-modules. �

Now we assume that A is a locally unital algebra and T P A-modlfd. We are
going to give a self-contained account of the construction of a coalgebra CoendApT q
which is the continuous dual of the endomorphism algebra EndApT q

op. This is the
coend construction which is an essential ingredient in the proof of Lemma 2.1 as
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discussed for example in [EGNO, §1.10], although as usual we are using the lan-
guage of algebras and modules rather than the language of categories and functors
used there. To start with, let

(2.11) B :“ EndApT q
op,

which is a unital algebra. Then T is an pA,Bq-bimodule and the dual Tf is a
pB,Aq-bimodule. Let Ti :“ eiT , so that T “

À

iPI Ti and Tf “
À

iPI T
˚
i .

Lemma 2.9. Suppose that T “
À

iPI Ti P A-modlfd and B :“ EndApT q
op are

as above. For any V P A-mod, there is a natural isomorphism of right B-modules

(2.12) HomApV, T q
„
Ñ pTf bA V q

˚, θ ÞÑ pf b v ÞÑ fpθpvqqq.

In particular, taking V “ T , we get that pTf bA T q
˚ – B as pB,Bq-bimodules.

Proof. By Lemma 2.7 applied to the pA,kq-bimodule Tf, the functor TfbA?
is left adjoint to

À

iPI HomkpT
˚
i , ?q. Hence,

pTf bA V q
˚ “ HomkpT

f bA V,kq – HomA

´

V,
à

iPI

HomkpT
˚
i ,kq

¯

– HomApV, T q.

This is the natural isomorphism in the statement of the lemma. We leave it to the
reader to check that it is a B-module homomorphism. �

Continuing with this setup, let

(2.13) C :“ Tf bA T.

There is a unique way to make this into a coalgebra so that the bimodule isomor-
phism B

„
Ñ C˚ from Lemma 2.9 is actually an algebra isomorphism (viewing the

dual C˚ of a coalgebra as an algebra as in the previous section). Explicitly, let

u
piq
1 , . . . , u

piq
dpiq be a basis for Ti and v

piq
1 , . . . , v

piq
dpiq be the dual basis for T˚i . Let

c
piq
r,s :“ v

piq
s b u

piq
r P C. Then the comultiplication δ : C Ñ C b C and counit

ε : C Ñ k satisfy

δ
`

cpiqr,s
˘

“

dpiq
ÿ

t“1

c
piq
r,t b c

piq
t,s, ε

`

cpiqr,s
˘

“ δr,s(2.14)

for each i P I and 1 ď r, s ď dpiq. For the next lemma, recall the definition of
continuous dual of a pseudo-compact topological algebra from (2.6).

Lemma 2.10. The endomorphism algebra B “ EndApT q
op of T P A-modlfd is

a pseudo-compact topological algebra with respect to the profinite topology, i.e., B
is isomorphic to lim

ÐÝ
B{J where the inverse limit is over all two-sided ideals J of

finite codimension. Moreover, the coalgebra C from (2.13) may be identified with
the continuous dual Bˇ.

Proof. This follows because B – C˚ as algebras. �

Thus, the coalgebra C defined by (2.13) is identified with the continuous dual

(2.15) CoendApT q :“ pEndApT q
opq

ˇ

of B. Explicitly, using the formula (2.12), the element c
piq
r,s “ v

piq
s b u

piq
r P C is

identified with the function sending θ P EndApT q to vspθpurqq.
Now consider the functor TfbA? : A-mod Ñ B-mod. Since T is locally finite-

dimensional, it takes finitely generated A-modules to finite-dimensional B-modules.
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Any A-module V is the union of its finitely generated submodules, and TfbA?
commutes with direct limits, so we see that Tf bA V is actually a discrete B-
module. Since B – C˚, the category B-modds is isomorphic to comod-C. So we
have constructed a functor

(2.16) TfbA? : A-mod Ñ comod-C.

For V P A-mod, the comodule structure map on TfbA V is given explicitly by the
formula

(2.17) η : Tf bA V Ñ Tf bA V b C, vpiqs b v ÞÑ

dpiq
ÿ

r“1

vpiqr b v b cpiqr,s.

Recall the definition of the functor ?ˇ from (2.8).

Lemma 2.11. Suppose that T “
À

iPI Ti P A-modlfd, B :“ EndApT q
op and

C – Bˇ are as above. The functor TfbA? just constructed is isomorphic to

(2.18) G “ CohomApT, ?q :“ HomAp?, T q
ˇ : A-mod Ñ comod-C,

and it is left adjoint to the functor

(2.19) G˚ “
à

iPI

HomCpT
˚
i , ?q : comod-C Ñ A-mod .

Thus, pG,G˚q is an adjoint pair.

Proof. The fact that (2.16) is left adjoint to (2.19) follows by Lemma 2.7.
To see that it is isomorphic to (2.18), take V P A-mod and consider the natural
isomorphism HomApV, T q – pT

f bA V q
˚ of right B-modules from Lemma 2.9. As

TfbAV is discrete, its dual is a pseudo-compact left B-module, hence, HomApV, T q
is pseudo-compact too. Then we apply ˇ, using that it is quasi-inverse to ˚, to get
that HomApV, T q

ˇ P B-modds is naturally isomorphic to Tf bA V . �

2.3. Schurian categories

By a Schurian category, we mean a category R that is equivalent to A-modlfd for
a locally finite-dimensional locally unital algebra A. This non-standard terminology
is considerably more restrictive than other usage of the same term elsewhere in
the literature, where “Schurian category” is typically used to indicate a k-linear
category in which the endomorphism algebras of the indecomposable objects are
one-dimensional1 (e.g., see work of Roiter).

By an algebra realization of a Schurian category R, we mean a locally finite-
dimensional locally unital algebra A (together with the set I indexing its distin-
guished idempotents) such that R is equivalent to A-modlfd. Now we assume that

R “ A-modlfd

and proceed to summarize some of the basic properties of such categories, referring
to [BD1, §2] for a more detailed treatment. Let tLpbq | b P Bu be a full set of

1Note also that the present usage is different from several recent papers of the first author: in

[BD1], the phrase “locally Schurian” was used to describe the categories we now call “Schurian”;
more precisely, in [BD1], a locally Schurian category referred to a category of the form A-mod

(rather than A-modlfd) for locally finite-dimensional locally unital algebras A. We could not use

the phrase “Schurian” in loc. cit. since that was reserved for a more restrictive notion defined
in [BLW, §2.1]; this more restrictive notion will be discussed in the next section, again using

different language.
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pairwise inequivalent irreducible objects of R. Schur’s Lemma holds: we have
that EndRpLpbqq “ k for each b P B. Note that the opposite category Rop is
also Schurian, and Aop gives an algebra realization for it. This follows because
Rop “ pA-modlfdq

op is equivalent to modlfd-A – pAopq-modlfd using (2.9).
Let Rc be the (not necessarily Abelian) full subcategory of R consisting of

all compact objects, and IndpRcq be its ind-completion. The canonical functor
IndpRcq Ñ A-mod is an equivalence of categories. To see this, we note that
all finitely generated A-modules are locally finite-dimensional as A itself is lo-
cally finite-dimensional. Hence, finitely presented A-modules are locally finite-
dimensional too, i.e, A-modfg is a subcategory of A-modlfd. In view of Lemma 2.5,
this is the category Rc. It just remains to apply [KS, Cor. 6.3.5], using Lemma 2.6
when checking the required hypotheses.

The category A-mod is a Grothendieck category. In particular, this means that
every A-module has an injective hull in A-mod. Since every A-module is a quotient
of a direct sum of projective A-modules of the form Aei, the category A-mod also
has enough projectives. It is not true that an arbitrary A-module has a projective
cover, but we will see in Lemma 2.14 below that finitely generated A-modules do.

Like we did in §2.1, we write ExtnRpV,W q, or sometimes ExtnApV,W q, in place
of ExtnIndpRcq

pV,W q for any V,W P IndpRcq. This can be computed either from a
projective resolution of V or from an injective resolution of W . We can also consider
both right derived functors RnF of a left exact functor F : IndpRcq Ñ R1 and left
derived functors LnG of a right exact functor G : IndpRcq Ñ R1. We provide an
elementary proof of the following, but note it also follows from [KS, Th. 15.3.1].

Lemma 2.12. For V,W P R and n ě 0, there is a natural isomorphism

ExtnRpV,W q – ExtnRoppW,V q.

Proof. Using (2.9), we must show that ExtnApV,W q – ExtnApW
f, V fq for

locally finite-dimensional A-modules V and W . To compute ExtnApV,W q, take a
projective resolution

¨ ¨ ¨ ÝÑ P1 ÝÑ P0 ÝÑ V ÝÑ 0

of V in A-mod. By Lemma 2.8, on applying the exact functor f, we get an injective
resolution

0 ÝÑ V f ÝÑ Pf0 ÝÑ Pf1 ÝÑ ¨ ¨ ¨

of V f in mod-A. Since W is locally finite-dimensional, we can use (2.10) to see that
HomApPi,W q – HomApW

f, Pfi q for each i. So ExtnApV,W q – ExtnApW
f, V fq. �

Let Ipbq be an injective hull of Lpbq in A-mod. The dual peiAq
f of the projective

right A-module eiA is injective in A-mod. Since EndAppeiAq
fqop – EndApeiAq –

eiAei, which is finite-dimensional, the injective module peiAq
f can be written as a fi-

nite direct sum of indecomposable injectives. To determine which ones, we compute
its socle: we have that HomApLpbq, peiAq

fq – HomApeiA,Lpbq
fq – pLpbqfqei “

peiLpbqq
˚, hence,

(2.20) peiAq
f –

à

bPB

Ipbq‘ dim eiLpbq,

with all but finitely many summands on the right hand side being zero. In par-
ticular, this shows for fixed i that dim eiLpbq “ 0 for all but finitely many b P B.
Conversely, for fixed b P B, we can always choose i P I so that eiLpbq ‰ 0, and
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deduce that Ipbq is a summand of peiAq
f. This means that each indecomposable

injective Ipbq is a locally finite-dimensional left A-module.
Let P pbq be the dual of the injective hull of the irreducible right A-module

Lpbqf. By dualizing the right module analog of the decomposition (2.20), we get
also that

(2.21) Aei –
à

bPB

P pbq‘ dim eiLpbq,

with all but finitely many summands being zero. In particular, P pbq is projective
in A-mod, hence, it is a projective cover of Lpbq in A-mod. The composition
multiplicities of any A-module satisfy

(2.22) rV : Lpbqs “ dim HomApV, Ipbqq “ dim HomApP pbq, V q.

Lemma 2.13. For A as above, left A-module V is locally finite-dimensional if
and only if rV : Lpbqs ă 8 for all b P B.

Proof. Note that V is locally finite-dimensional if and only if

dim HomApAei, V q ă 8

for each i P I. Using the decompositon (2.21), this is if and only if

dim HomApP pbq, V q ă 8

for each b P B. �

There is a little more to be said about finitely generated modules. Recall from
the previous section that a module is finitely generated if V “ Av1 ` ¨ ¨ ¨ `Avn for
homogeneous vectors v1, . . . , vn P V . We say that V is finitely cogenerated if its dual
is finitely generated. It is obvious from these definitions that HomApV,W q is finite-
dimensional either if V is finitely generated and W is locally finite-dimensional,
or if V is locally finite-dimensional and W is finitely cogenerated. The following
checks that our naive definitions are consistent with the usual notions of finitely
generated and cogenerated objects of Grothendieck categories.

Lemma 2.14. For V P A-mod, the following properties are equivalent:

(i) V is finitely generated;
(ii) the radical radV , i.e., the sum of its maximal proper submodules, is a

superfluous submodule and hd V :“ V {radV is of finite length;
(iii) V is a quotient of a finite direct sum of the modules P pbq for b P B.

Moreover, any finitely generated V has a projective cover.

Proof. We have already observed that P pbq is a projective cover of Lpbq. The
lemma follows by standard arguments given this and the decomposition (2.21). �

Corollary 2.15. For V P A-mod, the following properties are equivalent:

(i) V is finitely cogenerated;
(ii) soc V is an essential submodule of finite length;

(iii) V is isomorphic to a submodule of a finite direct sum of modules Ipbq for
b P B.

We say that a locally finite-dimensional locally unital algebra A “
À

i,jPI eiAej
is pointed if A is a basic algebra, i.e., all of its irreducible modules are one-
dimensional, and all of its distinguished idempotents tei | i P Iu are primitive.



2.4. ESSENTIALLY FINITE ABELIAN CATEGORIES 21

Lemma 2.16. Let A “
À

i,jPI eiAej be a locally finite-dimensional locally unital

algebra. Pick an idempotent expansion A “
À

i,jPÎ êiAêj such that for some subset

B Ď Î the set têb | b P Bu is a complete set of pairwise non-conjugate primitive
idempotents in A. Let B :“

À

a,bPB êaAêb. Then B is a pointed locally unital
algebra that is Morita equivalent to A, and any such pointed locally unital algebra
is isomorphic to B.

Proof. It is clear that B is pointed. To see that A and B are Morita equiv-
alent, note that the functor A-mod Ñ B-mod, V ÞÑ

À

bPB êbV is an equiva-

lence of categories with quasi-inverse given by the functor
`
À

bPBAêb
˘

bB?. Fi-
nally if B1 another pointed locally unital algebra that is Morita equivalent to A,
let F : A-mod Ñ B1-mod be an equivalence of categories. Then we have that
B1 “

À

bPBB
1
b for left ideals B1b – F pAêbq. So

B1 –

˜

à

a,bPB

HomB1pB
1
a, B

1
bq

¸op

–
à

a,bPB

HomApAêa, Aêbq “
à

a,bPB

êaAêb “ B.

This proves the uniqueness. �

Finally, we introduce some terminology which will not be neeeded until §5.5.

Definition 2.17. Let A “
À

i,jPI eiAej be a locally finite-dimensional locally
unital algebra. Let S Ď I be a subset. We say that a left A-module V is S-free if
there is a subset X “

Ů

sPSXpsq Ă V such that the following properties hold:

(LF1) V “
À

xPX Ax.
(LF2) The homomorphism Aes Ñ Ax, a ÞÑ ax is an isomorphism for x P Xpsq.

Equivalently, there is a K-submodule U of eV :“
À

sPS esV such that the mul-
tiplication map Ae bK U Ñ V is an isomorphism, where Ae :“

À

sPSAes and
K :“

À

sPS kes.

Lemma 2.18. Suppose that A “
À

i,jPI eiAej is a locally finite-dimensional

locally unital algebra and teb |b P Bu is a full set of pairwise non-conjugate primitive
idempotents in A for some subset B Ď I. Then every finitely generated projective
left A-module is B-free.

Proof. Any finitely generated projective left A-module V decomposes as a
finite direct direct sum of indecomposable projectives, and any indecomposable
projective is isomorphic to Aeb for some b P B. Hence, we can pick a finite subset
X “

Ů

bPBXpbq so that V “
À

xPX Ax with Ax – Aeb for x P Xpbq. �

There are obvious right module analogs of these notions.

2.4. Essentially finite Abelian categories

We say that a locally unital algebra A “
À

i,jPI eiAej is essentially finite-
dimensional if each right ideal eiA and each left ideal Aej is finite-dimensional. By
an essentially finite Abelian category, we mean a category R that is equivalent to
A-modfd for such an A. In that case, we refer to A as an algebra realization of
R. Note that R is essentially finite Abelian if and only if Rop is essentially finite
Abelian. Moreover, if A is an algebra realization for R then Aop is one for Rop by
the obvious contravariant equivalence ?˚ : A-modfd Ñ modfd-A.



22 2. SOME FINITENESS PROPERTIES ON ABELIAN CATEGORIES

Lemma 2.19. An essentially small category R is equivalent to A-modfd for a
locally unital algebra A “

À

i,jPI eiAej such that each left ideal Aej (resp., each

right ideal eiA) is finite-dimensional if and only if R is a locally finite Abelian
category with enough projectives (resp., enough injectives).

Proof. We just prove the result for left ideals and projectives; the parenthe-
sized statement for right ideals and injectives follows by replacing R and A with
Rop and Aop.

Suppose first that A “
À

i,jPI eiAej is a locally unital algebra such that each
left ideal Aej is finite-dimensional. Then A-modfd is a locally finite Abelian cate-
gory. It has enough projectives because the left ideals Aej are finite-dimensional.

Conversely, suppose R is a locally finite Abelian category with enough projec-
tives. Let tLpbq | b P Bu be a full set of pairwise inequivalent irreducible objects,
and P pbq P R a projective cover of Lpbq. Define A to be the locally unital algebra
A “

À

a,bPB eaAeb where eaAeb :“ HomRpP paq, P pbqq with multiplication that is
the opposite of composition in R. This is a pointed locally finite-dimensional locally
unital algebra. As in the proof of Lemma 2.4, the functor

À

bPB HomRpP pbq, ?q de-
fines an equivalence R Ñ A-modfd. It remains to note that the ideals Aeb are
finite-dimensional since they are the images under this functor of the projectives
P pbq, which are of finite length. �

Corollary 2.20. An essentially small category R is essentially finite Abelian
if and only if it is a locally finite Abelian category with enough injectives and pro-
jectives.

Essentially finite Abelian categories are almost as convenient to work with as
finite Abelian categories since one can perform all of the usual constructions of
homological algebra without needing to pass to the ind-completion.

Lemma 2.21. For a category R, the following are equivalent:

(i) R is a finite Abelian category;
(ii) R is a Schurian category with only finitely many isomorphism classes of

irreducible objects;
(iii) R is an essentially finite Abelian category with only finitely many isomor-

phism classes of irreducible objects;
(iv) R is a locally finite Abelian category with only finitely many isomorphism

classes of irreducible objects and either enough projectives or enough in-
jectives;

(v) R is both a locally finite Abelian category and a Schurian category.

Proof. Clearly, (i) implies (ii) and (iii). The implication (ii)ñ(i) follows on
considering a pointed algebra realization of R. The implication (iii)ñ(iv) follows
from Corollary 2.20. The implication (iv)ñ(i) follows from Lemma 2.19. Clearly (ii)
and (iv) together imply (v). Finally, to see that (v) implies (ii), it suffices to note
that a Schurian category with infinitely many isomorphism classes of irreducible
objects cannot be locally finite Abelian: the direct sum of infinitely many non-
isomorphic irreducibles is a well-defined object of R but it is not of finite length. �

Essentially finite Abelian categories with infinitely many isomorphism classes
of irreducible objects are not Schurian categories. However they are closely related
as we explain next.
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‚ If R is essentially finite Abelian, we define its Schurian envelope EnvpRq
to be the full subcategory of IndpRq consisting of all objects that have
finite composition multiplicities.

‚ If R is Schurian, let FinpRq be the full subcategory of R consisting of all
objects of finite length.

We say that a Schurian category R is Cartan-bounded if its Cartan matrix C has
only finitely many non-zero entries in every row and column, where by Cartan
matrix we mean the matrix

(2.23) pdim HomRpP paq, P pbqqa,bPB “ pdim HomRpIpaq, Ipbqqa,bPB ,

where B is labelling indecomposable projectives and injectives in the usual way.

Lemma 2.22. If R is an essentially finite Abelian category then EnvpRq is a
Cartan-finite Schurian category, and conversely if R is a Cartan-finite Schurian
category then FinpRq is an essentially finite Abelian category. Morever, Env and
Fin are inverses in the sense that FinpEnvpRqq is equivalent to R for any essentially
finite Abelian R, and EnvpFinpRqq is equivalent to R for any Cartan-finite Schurian
R:

ˆ

Essentially finite
Abelian categories

˙

Env
ÝÑ
ÐÝ
Fin

ˆ

Cartan-finite
Schurian categories

˙

.

Proof. If R “ A-modfd for an essentially finite-dimensional locally unital al-
gebra A then EnvpRq “ A-modlfd, so it is Schurian. Since the indecomposable
injectives and projectives in EnvpRq are the same as in R, they have finite length.
Conversely, using Lemma 2.16, we may assume that R “ A-modlfd for a pointed
locally finite-dimensional locally unital algebra, such that all of the indecomposable
injectives and projectives are of finite length. Since A is pointed, this means equiv-
alently that all of the left ideals Aei and right ideals eiA are finite-dimensional.
Hence, A is essentially finite-dimensional, and FinpRq “ A-modfd is essentially
finite Abelian. �

2.5. Recollement

We conclude the chapter with some reminders about “recollement” in our al-
gebraic setting; see [BBD, §1.4] or [CPS1, §2] for further background. We need
this here only for Abelian categories R satisfying finiteness properties as developed
above. The recollement formalism provides us with an adjoint triple of functors
pi˚, i, i!q associated to the inclusion i : R� Ñ R of a Serre subcategory, and an
adjoint triple of functors pj!, j, j˚q associated to the projection j : R Ñ R� onto a
Serre quotient category, with the image of i being the kernel of j. These functors
will play an essential role in all subsequent arguments.

First suppose that R is any Abelian category. Assume that we are given a full
set tLpbq | b P Bu of pairwise inequivalent irreducible objects. Let B� be a subset
of B and R� be the full subcategory of R consisting of all the objects V such that
rV : Lpbqs ‰ 0 ñ b P B�. This is a Serre subcategory of R with irreducible objects
tL�pbq | b P B�u defined by L�pbq :“ Lpbq.

Lemma 2.23. In the above setup, the inclusion functor i : R� Ñ R has a left
adjoint i˚ and a right adjoint i!:
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R� R.i

i!

i˚

The counit of one of these adjunctions and the unit of the other give isomorphisms:

i˚ ˝ i
„
Ñ IdR�

„
Ñ i! ˝ i.

In particular, i is fully faithful.

Proof. This is straightforward. Explicitly, i˚ (resp., i!) sends an object of R
to the largest quotient (resp., subobject) that belongs to R�. �

Now we are going to pass to the Serre quotient R� :“ R{R�. This is an
Abelian category equipped with an exact quotient functor j : R Ñ R� satisfying
the following universal property: if h : R Ñ C is any exact functor to an Abelian
category C with hLpbq “ 0 for all b P B�, then there is a unique functor h̄ : R� Ñ C
such that h “ h̄ ˝ j. The irreducible objects in R� are tL�pbq | b P B�u where
B� :“ BzB� and L�pbq :“ jLpbq. For a fuller discussion of these statements, see
e.g. [Gab].

The quotient functor j need not have a left or a right adjoint in general, so
we need to impose some additional hypotheses. We first assume that R is finite
Abelian, essentially finite Abelian or Schurian. Then one can understand j rather
explicitly as an idempotent truncation functor and it always has both a left and
right adjoint:

Lemma 2.24. Suppose that R is finite Abelian, essentially finite Abelian or
Schurian, B “ B� \B�, and i : R� Ñ R and j : R Ñ R� “ R{R� are as above.
Then R� and R� are of the same type (finite Abelian, essentially finite Abelian or
Schurian) as R. Moreover, the quotient functor j : R Ñ R� has a left adjoint j!
and a right adjoint j˚:

R R�.
j

j˚

j!

The counit of one of the adjunctions and the unit of the other give isomorphisms:

j ˝ j˚
„
Ñ IdR�

„
Ñ j ˝ j!.

In particular, j! and j˚ are fully faithful.

Proof. Fix a pointed algebra realization

A “
à

a,bPB

eaAeb

of R, so A is finite-dimensional, essentially finite-dimensional or locally finite-
dimensional according to whether R is finite Abelian, essentially finite Abelian
or Schurian. Let

A� “
à

a,bPB�

ēaA
�ēb :“ A

L

pec | c P B�q, A� :“
à

a,bPB�

eaAeb,

where x̄ denotes the canonical image of x P A under the quotient map A � A�.
Then it is clear that R� is equivalent to A�-modfd in the finite Abelian or essentially
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finite Abelian cases, and to A�-modlfd in the Schurian case. As A� satisfies the same
finiteness properties as A, we deduce that R� is of the same type as R.

The quotient category R� is realized by the algebra A�, and the quotient functor
j becomes the functor that sends an A-module V to

(2.24) jV :“
à

aPB�

eaV

with A� acting by restricting the action of A. We deduce that R� is again of the
same type as R. Since j is isomorphic to

À

bPB� HomApAeb,´q, it has the left
adjoint

(2.25) j! :“
´

à

bPB�

Aeb

¯

bA�? : A�-mod Ñ A-mod

thanks to Lemma 2.7(1). From this, it is clear that the unit of adjunction IdR� Ñ

j ˝ j! is an isomorphism. On the other hand, j is also isomorphic to the tensor
functor p

À

bPB� ebAqbA?, so Lemma 2.7(1) also gives that j has the right adjoint

(2.26) j˚ :“
à

aPB

HomA�

´

à

bPB�

ebAea, ?
¯

: A�-mod Ñ A-mod .

Again using this we see that the counit j ˝ j˚ Ñ IdR� is an isomorphism. �

The situation when R is locally finite Abelian is more complicated. Continuing
with the above notation, it follows immediately from Lemma 2.1 that the Serre
subcategory R� and the quotient category R� are locally Schurian too. The follow-
ing lemma explains how to obtain an explicit coalgebra realization of R� starting
from one for R.

Lemma 2.25. Suppose that R “ comodfd-C for a coalgebra C. Let C� be
the largest right coideal of C belonging to R�. Then C� is a subcoalgebra of C.
Moreover, R� consists of all V P comodfd-C such that the image of the structure
map η : V Ñ V b C is contained in V b C�, i.e., we have that R� “ comodfd-C�.

Proof. For a right comodule V with structure map η : V Ñ V b C, we can
consider V b C as a right comodule with structure map idbδ. The coassociative
and counit axioms imply that η is an injective homomorphism of right comodules.
We deduce that all irreducible subquotients of V belong to R� if and only if ηpV q Ď
V bC�. Applying this with V “ C� shows that C� is a subcoalgebra. Applying it
to V P R shows that V P R� if and only if ηpV q Ď V b C�. �

For locally finite Abelian R, the quotient category R� can also be realized
explicitly as a category of comodules: if R “ comodfd-C then R� “ comodfd-eCe
for an idempotent e P C˚ and the quotient functor j becomes the idempotent
truncation functor defined by e. This is reviewed in detail in [Nav]. It follows
that the extension j : IndpRq Ñ IndpR�q of j to the ind-completions always has a
right adjoint j˚ with j ˝ j˚ – IdIndpR�q. However, this adjoint does not necessarily

take objects of R� to objects of R, so that the original functor j : R Ñ R� need
not have a right adjoint itself. For left adjoints, the situation is even a bit worse
since one should really pass to the pro-completions. For our purposes, though, it
will always be sufficient to impose the stronger condition from (i) of the following
lemma; this ensures that both adjoints exist without any need to pass to ind- or
pro-completions.
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Lemma 2.26. Suppose that R is locally finite Abelian, and let B� Ď B and
j : RÑ R� be as above. Then the following are equivalent:

(i) Lpbq has an injective hull Ipbq and a projective cover P pbq in R for all
b P B�;

(ii) R� is essentially finite Abelian and the quotient functor j : R Ñ R� has
a left adjoint j! and a right adjoint j˚:

R R�.
j

j˚

j!

When these properties hold, there are isomorphisms j ˝ j˚ – IdR� – j ˝ j! just like
in Lemma 2.24.

Proof. (i)ñ(ii): Let j˚ : IndpR�q Ñ IndpRq be the right adjoint of j :
IndpRq Ñ IndpR�q as in [Nav]. For b P B�, let I�pbq be an injective hull of
L�pbq in IndpR�q. By adjunction properties, j˚I

�pbq is an injective hull of Lpbq
in IndpRq, hence, j˚I

�pbq – Ipbq which has finite length by assumption. From
j ˝j˚ – IdIndpR�q, we deduce that I�pbq – jIpbq is of finite length too, so I�pbq P R�

and R� has enough injectives. We have shown that j˚ takes I�pbq to Ipbq P R,
hence using left exactness we deduce that it takes any object of finite length to an
object of finite length. This means that the restriction j˚ : R� Ñ R is well-defined
and gives a right adjoint to j : R Ñ R�. The dual argument shows that R� has
enough projectives and that j : RÑ R� has a left adjoint j! : R� Ñ R. Finally we
deduce that R� is essentially finite Abelian due to Corollary 2.20.

(ii)ñ(i): We can take Ipbq :“ j˚I
�pbq and P pbq :“ j!P

�pbq where I�pbq is an injective
hull and P �pbq is a projective cover of L�pbq in R�. �

In the locally finite Abelian or Schurian cases, we may use the same nota-
tions i, i˚, i! for the natural extensions of these functors to the ind-completions
IndpRq, IndpR�q or IndpRcq, IndpR�

cq, respectively. Similarly, we will use the nota-
tions j, j˚, j! for the extensions of these to the appropriate ind-completions, assum-
ing the equivalent conditions from Lemma 2.26 hold in the locally finite Abelian
case.

Lemma 2.27. Continuing with the above setup, assume either that R is finite
Abelian, essentially finite Abelian, or Schurian, or that R is locally finite Abelian
and the equivalent conditions from Lemma 2.26 hold. For b P B�, let P pbq (resp.,
Ipbq) and P �pbq (resp., I�pbq) be a projective cover (resp., injective hull) of Lpbq in
R and a projective cover (resp., injective hull) of L�pbq in R�. Then we have that

jP pbq – P �pbq, jIpbq – I�pbq, j!P
�pbq – P pbq, j˚I

�pbq – Ipbq.

Moreover, the adjunction gives isomorphisms

HomRpP pbq, j˚V q – HomR�pP �pbq, V q, HomRpj!V, Ipbqq – HomR�pV, I�pbqq

(2.27)

for V P R�, hence, rV : L�pbqs “ rj˚V : Lpbqs “ rj!V : Lpbqs for all b P B�.

Proof. Take b P B�. By adjunction properties, j!P
�pbq is a projective cover of

Lpbq in R, so it is isomorphic to P pbq. Hence, jpj!P
�pbqq – P �pbq – jP pbq; similarly

for injectives. The remaining assertions follow. �



CHAPTER 3

Generalizations of highest weight categories

In this chapter, we define the various generalizations of highest weight cate-
gories and derive some of their fundamental properties in the four settings of finite
Abelian, essentially finite Abelian, Schurian, and locally finite Abelian categories.
The important definitions in the chapter are Definitions 3.7, 3.34 and 3.50. The
reader new to these ideas may find it helpful to assume initially that all of the strata
are simple in the sense of Lemma 3.4, when the definitions specialize to the notions
of finite, essentially finite, upper finite and lower finite highest weight categories,
respectively.

3.1. Stratifications and the associated standard and costandard objects

Let pΛ,ďq be a poset. It is interval finite (resp., upper finite, resp., lower
finite) if the interval rλ, µs :“ tν P Λ | λ ď ν ď µu (resp., rλ,8q :“ tν P Λ | λ ď νu,
resp., p´8, µs :“ tν P Λ | ν ď µu) is finite for all λ, µ P Λ. A lower set (resp.,
upper set) means a subset Λ� (resp., Λ�) such that µ ď λ P Λ� ñ µ P Λ� (resp.,
µ ě λ P Λ� ñ µ P Λ�).

A stratification function ρ : B Ñ Λ is a function from a set B to a poset pΛ,ďq
such that all of the fibers Bλ :“ ρ´1pλq are finite. We often use other obvious
notations like Bďλ :“

Ť

µďλ Bµ,Băλ :“
Ť

µăλ Bµ, etc..

A stratification of an Abelian category R is a quintuple pB, L, ρ,Λ,ďq consisting
of a set B, a function L labelling a full set tLpbq | b P Bu of pairwise inequivalent
irreducible objects in R, and a stratification function ρ : B Ñ Λ for the poset
pΛ,ďq. In the case that ρ is a bijection, one can use it to identify B with Λ, writing
Lpλq instead of Lpbq; similarly for all of the other families of objects indexed by the
set B to be introduced shortly.

Given a stratification pB, L, ρ,Λ,ďq of R and λ P Λ, let Rďλ and Răλ be the
Serre subcategories of R associated to the subsets Bďλ and Băλ of B, respectively.
We denote the inclusion functors by

(3.1) iďλ : Rďλ Ñ R, iăλ : Răλ Ñ R,
The left and right adjoints of iďλ are i˚

ďλ and i!ďλ as in Lemma 2.23. We say that
the stratification is

(F) a finite stratification if R is a finite Abelian category (so that B is a finite
set);

(EF) an essentially finite stratification if R is an essentially finite Abelian cat-
egory and the poset Λ is interval finite;

(LF) a lower finite stratification if R is a locally finite Abelian category and the
poset Λ is lower finite;

(UF) an upper finite stratification if R is a Schurian category and the poset Λ
is upper finite.

27
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In these four cases, the induced stratifications of the subcategories Răλ and Rďλ
are automatically of the same type.

By an admissible stratification, we mean a stratification of one of the above
four types such that the following axiom is satisfied when in type (LF) (it holds
automatically for the other types):

(A) The irreducible object Lpbq has both a projective cover and an injective
hull in Rďρpbq for all b P B.

This is a significant restriction on the sorts of lower finite Abelian categories that
can be considered; for example, the category ReppGaq of rational representations
of the additive group does not have this property. Using Lemma 2.21 together with
Lemma 2.26 in the lower finite case, we deduce for λ P Λ that the quotient category
Rλ :“ Rďλ{Răλ is finite Abelian in all cases. Let

(3.2) jλ : Rďλ Ñ Rλ

be the quotient functor. The objects

(3.3)
 

Lλpbq :“ jλLpbq
ˇ

ˇ b P Bλ

(

give a full set of pairwise inequivalent irreducible objects in Rλ. Moreover, we are
in a recollement situation as in Lemmas 2.23, 2.24 and 2.26:

(3.4) Răλ Rďλ
iăλ

i!ăλ

i˚
ăλ

Rλ.
jλ

jλ˚

jλ!

Let Pλpbq be a projective cover and Iλpbq be an injective hull of Lλpbq in Rλ.
By Lemma 2.27, these are isomorphic to the images of the projective cover and
injective hull of Lpbq in Rďλ, respectively. Finally, define standard, costandard,
proper standard and proper costandard objects ∆pbq,∇pbq, ∆̄pbq and ∇̄pbq according
to (1.1).

Lemma 3.1. Suppose we are given an admissible stratification pB, L, ρ,Λ,ďq of
R. Take b P B and set λ :“ ρpbq.

(1) The standard object ∆pbq is a projective cover of Lpbq in Rďλ. The proper
standard object ∆̄pbq is the largest quotient of ∆pbq such that all composi-
tion factors of rad ∆̄pbq are of the form Lpcq for c P Băλ.

(2) The costandard object ∇pbq is an injective hull of Lpbq in Rďλ. The
proper costandard object ∇̄pbq is the largest subobject of ∇pbq such that all
composition factors of ∇̄pbq{ soc ∇̄pbq are of the form Lpcq for c P Băλ.

Proof. We just check (1) since (2) is similar. We have that ∆pbq is a projective
cover of Lpbq in Rďλ by Lemma 2.27. It remains to prove the statement about ∆̄pbq.
Assume r∆̄pbq : Lpcqs ‰ 0. Since ∆̄pbq P Rďλ, we have ρpcq ď ρpbq. If ρpcq “ ρpbq
then

r∆̄pbq : Lpcqs “ rjλ∆̄pbq : jλLpcqs “ rLλpbq : Lλpcqs “ δb,c.

Thus, ∆̄pbq is such a quotient of ∆pbq. To show that it is the largest such quotient,
it suffices to show that the kernel K of ∆pbq� ∆̄pbq is finitely generated with head
that only involves irreducibles Lpcq with ρpcq “ ρpbq. To see this, apply the right

exact functor jλ! to a short exact sequence 0 Ñ pK Ñ Pλpbq Ñ Lλpbq Ñ 0 to get an

epimorphism jλ!
pK � K. Then observe that jλ!

pK is finitely generated as jλ! is a left
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adjoint, and its head only involves irreducibles Lpcq with ρpcq “ ρpbq. The latter

assertion follows because HomRpj
λ
!
pK,Lpcqq – HomRλp

pK, jλLpcqq for c P Bďλ. �

Corollary 3.2. We have that

dim HomRp∆pbq, ∇̄pcqq “ dim HomRp∆̄pbq,∇pcqq “ δb,c

for all b, c P B.

Lemma 3.3. Suppose that we are given an admissible stratification pB, L, ρ,Λ,ď
q of R, and in addition that R possesses a contravariant autoequivalence ?_ which
preserves isomorphism classes of irreducibles. Then we have that P pbq_ – Ipbq,
Ipbq_ – P pbq, ∆pbq_ – ∇pbq, ∆̄pbq_ – ∇̄pbq, ∇pbq_ – ∆pbq and ∇̄pbq_ – ∆̄pbq for
all b P B.

Proof. Since Lpbq_ – Lpbq, we have that Ipbq_ – P pbq and P pbq_ – Ipbq.
Then the statements about ∆pbq_, ∆̄pbq_, ∇̄pbq_ and ∇pbq_ follow using Lemma 3.1.

�

For λ P Λ, we say that Rλ is a simple stratum if it is equivalent to the category
Vecfd of finite-dimensional vector spaces.

Lemma 3.4. The following are equivalent:

(i) all of the strata are simple;
(ii) ρ is a bijection and ∆pλq “ ∆̄pλq for all λ P Λ;

(iii) ρ is a bijection and HomRp∆pλq,∇pλqq is one-dimensional;
(iv) ρ is a bijection and ∇pλq “ ∇̄pλq for all λ P Λ.

Proof. (i)ñ(ii): Take λ P Λ. As the stratum Rλ is simple, Bλ “ tbλu is a
singleton and Pλpbλq “ Lλpbλq. We deduce that ρ is a bijection and ∆pbλq “ ∆̄pbλq.

(ii)ñ(iii): This follows because ∇pλq is the injective hull of Lpλq in Rďλ.

(iii)ñ(iv): This follows because ∆pλq is the projective cover of Lpλq in Rďλ.

(iv)ñ(i): Take λ P Λ. Then Rλ has just one irreducible object (up to isomorphism),
namely, jλ∇̄pλq. Since this equals jλ∇pλq, it is also projective. Hence, Rλ is
simple. �

Given a sign function ε : Λ Ñ t˘u, we introduce the ε-standard and ε-
costandard objects ∆εpbq and ∇εpbq as in (1.2). Corollary 3.2 implies that

(3.5) dim HomRp∆εpbq,∇εpcqq “ δb,c

for b, c P B. A ∆ε-flag of V P R means a finite filtration 0 “ V0 ă V1 ă ¨ ¨ ¨ ă Vn “
V with sections Vm{Vm´1 – ∆εpbmq for bm P B. Similarly, we define ∇ε-flags. We
denote the exact subcategories of R consisting of all objects with a ∆ε-flag or a
∇ε-flag by ∆εpRq and ∇εpRq, respectively.

A ∆-flag (resp., ∇̄-flag) is a ∆ε-flag (resp., ∇ε-flag) in the special case that
ε “ `. A ∆̄-flag (resp., ∇-flag) is a ∆ε-flag (resp., ∇ε-flag) in the special case
that ε “ ´. We denote the exact subcategories of R consisting of all objects with a
∆-flag, a ∆̄-flag, a ∇-flag or a ∇̄-flag by ∆pRq, ∆̄pRq, ∇pRq and ∇̄pRq, respectively.
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3.2. Finite and essentially finite ε-stratified categories

Throughout this section, R is a finite or essentially finite Abelian category
equipped with a finite or essentially finite stratification pB, L, ρ,Λ,ďq. Also ε :
Λ Ñ t˘u denotes a sign function. Let P pbq and Ipbq be a projective cover and
an injective hull of Lpbq, respectively. We also need the objects from (1.1)–(1.2).
Consider the following two properties:

(yP∆ε) For each b P B, there exists a projective object Pb admitting a ∆ε-flag
with ∆εpbq at the top and other sections ∆εpcq for c P B with ρpcq ě ρpbq.

(xI∇ε) For each b P B, there exists an injective object Ib admitting a ∇ε-flag with
∇εpbq at the bottom and other sections ∇εpcq for c P B with ρpcq ě ρpbq.

It is trivial to see that the property pP∆εq formulated in the introduction implies

pyP∆εq, and similarly pI∇εq implies pxI∇εq. The seemingly weaker properties pyP∆εq–

pxI∇εq are often easier to check in concrete examples. The essence of the following
fundamental theorem appeared originally in [ADL], extending earlier work of Dlab
[Dla1].

Theorem 3.5. The four properties (yP∆ε), pxI∇ε), (P∆ε) and pI∇ε) are equiv-
alent. When these properties hold, the standardization functor jλ! is exact whenever
εpλq “ ´, and the costandardization functor jλ˚ is exact whenever εpλq “ `.

Remark 3.6. When all strata are simple, the properties pyP∆εq–pxI∇εq may be
written more succinctly as the following:

(yP∆) For each λ P Λ, there exists a projective object Pλ admitting a ∆-flag
with ∆pλq at the top and other sections of the form ∆pµq for µ P Λ with
µ ě λ.

(xI∇) For each λ P Λ, there exists an injective object Iλ admitting a ∇-flag with
∇pλq at the bottom and other sections of the form ∇pµq for µ P Λ with
µ ě λ.

Theorem 3.5 shows that these are equivalent to the properties pP∆q–pI∇q from the
introduction, as was explained originally by Cline, Parshall and Scott in [CPS1].

We postpone the proof of Theorem 3.5 until a little later in the the section. It
is important because it justifies the next key definition (εS) and its variations (FS),
(εHW), (FHW) and (HW).

Definition 3.7. Let R be an Abelian category equipped with a finite (resp.,
essentially finite) stratification pB, L, ρ,Λ,ďq.

(εS) We say that R is a finite (resp., essentially finite) ε-stratified category if

one of the equivalent properties pyP∆εq–pxI∇εq holds for a given choice of
sign function ε : Λ Ñ t˘u.

(FS) We say R is a finite (resp., essentially finite) fully stratified category if one
of these properties holds for all choices of sign function ε : Λ Ñ t˘u.

(εHW) We say R is a finite (resp., essentially finite) ε-highest weight category if
the stratification function ρ is a bijection, i.e., each stratum has a unique
irreducible object (up to isomorphism), and one of the equivalent proper-

ties pyP∆εq–pxI∇εq holds for a given choice of sign function ε : Λ Ñ t˘u.
(FHW) We say R is a finite (resp., essentially finite) fibered highest weight category

if the stratification function ρ is a bijection and one of these properties
holds for all choices of sign function.
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(HW) We say R is a finite (resp., essentially finite) highest weight category if
all of the strata are simple (cf. Lemma 3.4) and one of the equivalent

properties pyP∆q–pxI∇q holds.

Remark 3.8. The language “fibered highest weight” in Definition 3.7 is a de-
parture from the existing literature, where such categories are usually referred to
as properly stratified categories; this terminology goes back to the work of Dlab
[Dla2]. A recent exposition which takes a more traditional viewpoint than here
can be found in [CouZ]. In particular, in [CouZ, Def. 2.7.4], one finds five
types of finite-dimensional algebra A defined in terms of properties of the category
A-modfd, namely, standardly stratified algebras, exactly standardly stratified alge-
bras, strongly stratified algebras, properly stratified algebras, and quasi-hereditary
algebras. In our preferred language, these are `-stratified algebras, stratified alge-
bras, `-quasi-hereditary algebras, properly stratified algebras, and quasi-hereditary
algebras, respectively, as in Table 1.1 from the introduction. For further reference
to the original literature, [CouZ, §A.2] is helpful.

We can view tLpbq | b P Bu equivalently as a full set of pairwise inequivalent
irreducible objects in Rop. The stratification of R is also one of Rop. The indecom-
posable projectives and injectives in Rop are Ipbq and P pbq, while the p´εq-standard
and p´εq-costandard objects in Rop are ∇εpbq and ∆εpbq, respectively. So we can
reinterpret Theorem 3.5 as the following.

Theorem 3.9. R is ε-stratified, fully stratified, ε-highest weight, fibered highest
weight or highest weight if and only if Rop is p´εq-stratified, fully stratified, p´εq-
highest weight, fibered highest weight or highest weight, respectively.

Now we must prepare for the proof Theorem 3.5. The main step in the ar-
gument will be provided by the homological criterion for ∇ε-flags from the next
Theorem 3.11. In turn, the proof of this criterion reduces to the following lemma
which treats a key special case. The reader wanting to work fully through the proofs
should look also at this point at the lemmas in §3.4 below.

Lemma 3.10. Assume that R is an Abelian category equipped with a finite or
essentially finite stratification pB, L, ρ,Λ,ďq and sign function ε, such that property

pyP∆εq holds. Let λ be a maximal element of Λ with respect to the ordering ď, and
V P R be an object satisfying the following properties:

(i) Ext1
Rp∆εpbq, V q “ 0 for all b P B;

(ii) soc V – Lpb1q ‘ ¨ ¨ ¨ ‘ Lpbnq for b1, . . . , bn P Bλ.

Then V belongs to Rďλ (so that it makes sense to apply the functor jλ to it), and

(3.6) V –

#

jλ˚pj
λV q if εpλq “ `,

∇pb1q ‘ ¨ ¨ ¨ ‘∇pbnq if εpλq “ ´.

Moreover, in the case εpλq “ `, the functor jλ˚ is exact. Hence, in both cases, we
have that V P ∇εpRq.

Proof (assuming lemmas from §3.4 below). We first prove (3.6) in case
εpλq “ ´. Let W :“ ∇pb1q‘ ¨ ¨ ¨‘∇pbnq. By the maximality of λ and Lemma 3.46,
this is an injective hull of soc V . So there is a short exact sequence 0 Ñ V ÑW Ñ

W {V Ñ 0. For any a P B, we apply HomRp∆εpaq, ?q and use property (i) to get a
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short exact sequence
(3.7)

0 ÝÑ HomRp∆εpaq, V q
f
ÝÑ HomRp∆εpaq,W q ÝÑ HomRp∆εpaq,W {V q ÝÑ 0.

If ρpaq ‰ λ then HomRp∆εpaq,W q “ 0 as none of the composition factors of ∆εpaq
are constituents of soc W . If ρpaq “ λ then ∆εpaq “ ∆̄paq and any homomorphism
∆̄paq Ñ W must factor through the unique irreducible quotient Lpaq of ∆̄paq. So
its image is contained in soc W Ď V , showing that f is an isomorphism. These
arguments show that HomRp∆εpaq,W {V q “ 0 for all a P B. We deduce that
soc pW {V q “ 0, hence, W {V “ 0, which is what we needed.

Now consider (3.6) when εpλq “ `. By Lemma 3.46 again, the injective hull
of V is ∇pb1q ‘ ¨ ¨ ¨ ‘ ∇pbnq, which is an object of Rďλ. Hence, V P Rďλ. The
unit of adjunction gives us a morphism g : V Ñ W :“ jλ˚pj

λV q. Since g becomes
an isomorphism when we apply jλ, its kernel belongs to Răλ. In view of property
(2), we deduce that ker g “ 0, so g is a monomorphism. Hence, we can identify
V with a subobject of W . To show that g is an epimorphism as well, we apply
HomRp∆εpaq, ?q to 0 Ñ V ÑW ÑW {V Ñ 0 to get the short exact sequence (3.7).
By adjunction, the middle morphism space is isomorphic to HomRλ

pjλ∆εpaq, j
λV q,

which is zero if ρpaq ă λ. If ρpaq “ λ then ∆εpaq “ ∆paq is the projective cover
of Lpaq in R by Lemma 3.46, and jλ∆εpaq is the projective cover of Lλpaq in Rλ.
We deduce that both the first and second morphism spaces in (3.7) are of the same
dimension rV : Lpaqs “ rjλV : Lλpaqs, so f must be an isomorphism. Therefore
HomRp∆εpaq,W {V q “ 0 for all a P B, hence, V “W and (3.6) is proved.

To complete the proof, we must show that jλ˚ is exact when εpλq “ `. For
this, we use induction on composition length to show that jλ˚ is exact on any short
exact sequence 0 Ñ K Ñ X Ñ Q Ñ 0 in Rλ. For the induction step, suppose we
are given such an exact sequence with K,Q ‰ 0. By induction, jλ˚K and jλ˚Q both
have filtrations with sections ∇̄pbq for b P Bλ. Hence, by Lemma 3.48, we have that
ExtnRp∆εpbq, j

λ
˚Kq “ ExtnRp∆εpbq, j

λ
˚Qq “ 0 for all n ě 1 and b P B. As it is a right

adjoint, jλ˚ is left exact, so there is an exact sequence

(3.8) 0 ÝÑ jλ˚K ÝÑ jλ˚X ÝÑ jλ˚Q.

Let Y :“ jλ˚X{j
λ
˚K, so that there is a short exact sequence

(3.9) 0 ÝÑ jλ˚K ÝÑ jλ˚X ÝÑ Y ÝÑ 0.

To complete the argument, it suffices to show that Y – jλ˚Q. To establish this,
we show that Y satisfies both of the properties (i) and (ii); then, by the previous
paragraph and exactness of jλ, we get that Y – jλ˚pj

λY q – jλ˚pX{Kq – jλ˚Q, and
we are done. To see that Y satisfies (i), we apply HomRp∆εpbq, ?q to (3.9) to get
an exact sequence

Ext1
Rp∆εpbq, j

λ
˚Xq ÝÑ Ext1

Rp∆εpbq, Y q ÝÑ Ext2
Rp∆εpbq, j

λ
˚Kq.

The first Ext1 is zero by Lemma 3.47. Since we already know that the Ext2 term is
zero, Ext1

Rp∆εpbq, Y q “ 0. To see that Y satisfies (ii), note comparing (3.8)–(3.9)
that Y ãÑ jλ˚Q, and soc jλ˚Q is of the desired form by what we know about its
∇̄ε-flag. �

Theorem 3.11 (Homological criterion for ∆ε-flags). Assume that R is an
Abelian category equipped with a finite or essentially finite stratification and sign
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function as usual, such that property pyP∆εq holds. For V P R, the following prop-
erties are equivalent:

(i) V P ∇εpRq;
(ii) Ext1

Rp∆εpbq, V q “ 0 for all b P B;
(iii) ExtnRp∆εpbq, V q “ 0 for all b P B and n ě 1.

If these properties hold, the multiplicity pV : ∇εpbqq of ∇εpbq as a section of a
∇ε-flag of V is well-defined independent of the choice of flag as we have that

pV : ∇εpbq “ dim HomRp∆εpbq, V q.

Proof (assuming lemmas from §3.4 below). (iii)ñ(ii): Trivial.

(i)ñ(iii) and the final assertion of the lemma: These follow from Lemma 3.48.

(ii)ñ(i): Assume that V satisfies (ii). We prove that it has a ∇ε-flag by induction
on

dpV q :“
ÿ

bPB

dim HomRp∆εpbq, V q P N.

The base case when dpV q “ 0 is trivial as we have then that V “ 0. For the induc-
tion step, let λ P Λ be minimal such that HomRp∆εpbq, V q ‰ 0 for some b P B. The
Serre subcategory Rďλ with the induced (finite or essentially finite) stratification

also satisfies (yP∆ε) thanks to Lemma 3.45(2). Let W :“ i!ďλV . Because W is a
subobject of V , we have by the minimality of λ that HomRp∆εpbq,W q ‰ 0 only
if b P Bλ. Hence, soc W – Lpb1q ‘ ¨ ¨ ¨ ‘ Lpbnq for b1, . . . , bn P Bλ. Thus, W
satisfies the hypothesis (ii) from Lemma 3.10 (with V and R there replaced by W
and Rďλ).

Now let Q :“ V {W . Take any b P B and apply HomRp∆εpbq, ?q to the short
exact sequence 0 ÑW Ñ V Ñ QÑ 0 to get the exact sequence

0 ÝÑ HomRp∆εpbq,W q ÝÑ HomRp∆εpbq, V q ÝÑ HomRp∆εpbq, Qq

ÝÑ Ext1
Rp∆εpbq,W q ÝÑ 0 ÝÑ Ext1

Rp∆εpbq, Qq ÝÑ Ext2
Rp∆εpbq,W q.

By the definition of W , the socle of Q has no constituent Lpbq for b P Bďλ. So, for
b P Bďλ the space HomRp∆εpbq, Qq is zero, and we get that Ext1

Rďλp∆εpbq,W q –

Ext1
Rp∆εpbq,W q “ 0 for all such b. This verifies hypothesis (i) from Lemma 3.10. So

now we can appeal to the lemma to deduce that W P ∇εpRďλq. Hence, W P ∇εpRq.
In view of Lemma 3.48, we get that ExtnRp∆εpbq,W q “ 0 for all n ě 1 and

b P B. So, by the above exact sequence again, we get that Ext1
Rp∆εpbq, Qq “ 0

for all b P B, and moreover dpQq “ dpV q ´ dpW q ă dpV q. Finally we appeal to
the induction hypothesis to deduce that Q P ∆εpRq. Since we already know that
W P ∆εpRq, this shows that V P ∆εpRq. �

Corollary 3.12. In the setup of Theorem 3.11, multiplicities in a ∇ε-flag of
Ipbq satisfy pIpbq : ∇εpcqq “ r∆εpcq : Lpbqs.

Corollary 3.13. For R as in Theorem 3.11, let 0 Ñ U Ñ V Ñ W Ñ 0 be a
short exact sequence. If U and V have ∇ε-flags then so does W .

Proof of Theorem 3.5. Suppose that R satisfies (yP∆ε). Since V “ Ipbq is
injective, it satisfies the hypothesis of Theorem 3.11(ii). Hence, by that theorem,
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Ipbq has a ∇ε-flag and the multiplicity pIpbq : ∇εpcqq of ∇εpcq as a section of any
such flag is given by

pIpbq : ∇εpcqq “ dim HomRp∆εpcq, Ipbqq “ r∆εpcq : Lpbqs.

This is zero unless ρpbq ď ρpcq. Also the bottom section must be ∇εpbq since Ipbq has
socle Lpbq. Thus, we have verified that R satisfies (I∇ε). Moreover, Lemma 3.10
shows that jλ˚ is exact whenever εpλq “ `, giving half of final assertion made in
the statement of the theorem we are trying to prove.

Repeating the arguments in the previous paragraph but with R replaced by

Rop and ε replaced with ´ε show that pxI∇εq implies pP∆εq and that jλ! is exact

whenever εpλq “ ´. Since pP∆εq ñ pyP∆εq and pI∇εq ñ pxI∇εq, this completes
the proof. �

So now Theorem 3.5 is proved and Definition 3.7 is in place. In the remainder
of the section, we are going to develop some further fundamental properties of these
sorts of category. We start off in the most general setup with R being a finite or
essentially finite ε-stratified category. Again some of the proofs that follow invoke
parts of the lemmas from §3.4. From Lemma 3.44 and the dual statement, deduce
that

(3.10) Ext1
Rp∆εpbq,∆εpcqq “ Ext1

Rp∇εpcq,∇εpbqq “ 0

for b, c P B with ρpbq ę ρpcq. By “dual statement” here, we mean that one takes
Lemma 3.44 with R replaced by Rop and ε by ´ε, which we may do due to The-
orem 3.9 and Lemma 2.12, then applies the contravariant isomorphism between R
and Rop. In a similar way, the following theorem follows immediately as it is the
dual statement to Theorem 3.11.

Theorem 3.14 (Homological criterion for ∇ε-flags). Assume that R is a finite
or essentially finite ε-stratified category. For V P R, the following properties are
equivalent:

(i) V P ∆εpRq;
(ii) Ext1

RpV,∇εpbqq “ 0 for all b P B;
(iii) ExtnRpV,∇εpbqq “ 0 for all b P B and n ě 1.

Assuming that these properties hold, the multiplicity pV : ∆εpbqq of ∆εpbq as a
section of a ∆ε-flag of V is well-defined independent of the choice of flag, as it
equals dim HomRpV,∇εpbqq.

Corollary 3.15. pP pbq : ∆εpcqq “ r∇εpcq : Lpbqs.

Corollary 3.16. Let 0 Ñ U Ñ V Ñ W Ñ 0 be a short exact sequence in a
finite or essentially finite ε-stratified category. If V and W have ∆ε-flags then so
does U .

The following results about truncation to lower and upper sets are extremely
useful; some aspects of them were already used in the proof of Theorem 3.11.

Theorem 3.17 (Truncation to lower sets). Assume that R is a finite or es-
sentially finite ε-stratified category. Suppose that Λ� is a lower set in Λ. Let
B� :“ ρ´1pΛ�q and i : R� Ñ R be the corresponding Serre subcategory of R with
the induced stratification. Then R� is itself a finite or essentially finite ε-stratified
category according to whether Λ� is finite or infinite. Moreover:
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(1) The distinguished objects in R� satisfy L�pbq – Lpbq, P �pbq – i˚P pbq,
I�pbq – i!Ipbq, ∆�pbq – ∆pbq,∆̄�pbq – ∆̄pbq, ∇�pbq – ∇pbq and ∇̄�pbq –
∇̄pbq for b P B�.

(2) i˚ sends short exact sequences of objects in ∆εpRq to short exact sequences
of objects in ∆εpR�q, with i˚∆pbq – ∆�pbq and i˚∆̄pbq – ∆̄�pbq for b P B�

and i˚∆pbq “ i˚∆̄pbq “ 0 for b R B�.
(3) ExtnRpV, iW q – ExtnR�pi˚V,W q for V P ∆εpRq, W P R� and all n ě 0.
(4) i! sends short exact sequences of objects in ∇εpRq to short exact sequences

of objects in ∇εpR�q, with i!∇pbq – ∇�pbq and i!∇̄pbq – ∇̄�pbq for b P B�

and i!∇pbq “ i!∇̄pbq “ 0 for b R B�.
(5) ExtnRpiV,W q – ExtnR�pV, i!W q for V P R�,W P ∇εpRq and all n ě 0.
(6) ExtnRpiV, iW q – ExtnR�pV,W q for V,W P R� and n ě 0.

Proof. Apart from (6), this follows by Lemma 3.45 and its dual. To prove
(6), by the same argument as used to prove Lemma 3.45(4), it suffices to show that
pLni˚qV “ 0 for V P R� and n ě 1. Since any such V has finite length it suffices
to consider an irreducible object in R�, i.e., we must show that pLni˚qLpbq “ 0 for
b P B� and n ě 1. Take a short exact sequence 0 Ñ K Ñ ∆εpbq Ñ Lpbq Ñ 0 and
apply i˚ and Lemma 3.45(3) to get

0 ÝÑ pL1i
˚qLpbq ÝÑ i˚K ÝÑ i˚∆εpbq ÝÑ i˚Lpbq ÝÑ 0.

But K,∆εpbq and Lpbq all lie in R� so i˚ is the identity on them. We deduce that
pL1i

˚qLpbq “ 0. Degree shifting easily gives the result for n ą 1. �

Theorem 3.18 (Truncation to upper sets). Assume that R is a finite or es-
sentially finite ε-stratified category. Suppose that Λ� is an upper set in Λ. Let
B� :“ ρ´1pΛ�q and j : R Ñ R� be the corresponding Serre quotient category of
R with the induced stratification. Then R� is itself a finite or essentially finite
ε-stratified category according to whether Λ� is finite or infinite. Moreover:

(1) For b P B�, the distinguished objects L�pbq, P �pbq, I�pbq, ∆�pbq, ∆̄�pbq,
∇�pbq and ∇̄�pbq in R� are isomorphic to the images under j of the cor-
responding objects of R.

(2) We have that jLpbq “ j∆pbq “ j∆̄pbq “ j∇pbq “ j∇̄pbq “ 0 if b R B�.
(3) ExtnRpV, j˚W q – ExtnR�pjV,W q for V P R,W P ∇εpR�q and all n ě 0.
(4) j˚ sends short exact sequences of objects in ∇εpR�q to short exact se-

quences of objects in ∇εpRq, with j˚∇�pbq – ∇pbq, j˚∇̄�pbq – ∇̄pbq and
j˚I

�pbq – Ipbq for b P B�.
(5) ExtnRpj!V,W q – ExtnR�pV, jW q for V P ∆εpR�q, W P R and all n ě 0.
(6) j! sends short exact sequences of objects in ∆εpR�q to short exact se-

quences of objects in ∆εpRq, with j!∆
�pbq – ∆pbq, j!∆̄

�pbq – ∆̄pbq and
j!P

�pbq “ P pbq for b P B�.

Proof. Apart from (4) and (6), this follows from Lemma 3.49 and its dual.
For (4) and (6), it suffices to prove (4), since (6) is the equivalent dual statement.
The descriptions of j˚∇�pbq, j˚∇̄�pbq and j˚I

�pbq, follow from Lemma 3.49(1). It
remains to prove the exactness. We can actually show slightly more, namely, that
pRnj˚qV “ 0 for V P ∇εpR�q and n ě 1. Take V P ∇εpR�q. Consider a short exact
sequence 0 Ñ V Ñ I Ñ QÑ 0 in R� with I injective. Apply the left exact functor
j˚ and consider the resulting long exact sequence:

0 ÝÑ j˚V ÝÑ j˚I ÝÑ j˚Q ÝÑ pR1j˚qV ÝÑ 0.
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As V has a ∇ε-flag, we use (3) to see that HomRp∆εpbq, j˚V q – HomR�pj∆εpbq, V q
and Ext1

Rp∆εpbq, j˚V q – Ext1
R�pj∆εpbq, V q for every b P B. Hence, Theorem 3.11,

j˚V has a ∇ε-flag with

pj˚V : ∇εpbqq “ dim HomRpj∆εpbq, V q “

"

pV : ∇�
εpbqq if b P B�,

0 otherwise.

Both I and Q have ∇ε-flags too, so we get similar statements for j˚I and j˚Q. Since
pI : ∇�

εpbqq “ pV : ∇�
εpbqq ` pQ : ∇�

εpbqq by the exactness of the original sequence,
we deduce that 0 Ñ j˚V Ñ j˚I Ñ j˚Q Ñ 0 is exact. Hence, pR1j˚qV “ 0. This
proves the result for n “ 1. The result for n ą 1 follows by a degree shifting
argument. �

Corollary 3.19. Let notation be as in Theorem 3.18 and set B� :“ BzB�.

(1) For V P ∇εpRq, there is a short exact sequence 0 Ñ K Ñ V
γ
Ñ j˚pjV q Ñ

0 where γ comes from the unit of adjunction, j˚pjV q has a ∇ε-flag with
sections ∇εpbq for b P B�, and K has a ∇ε-flag with sections ∇εpcq for
c P B�.

(2) For V P ∆εpRq, there is a short exact sequence 0 Ñ j!pjV q
δ
Ñ V Ñ QÑ 0

where δ comes from the counit of adjunction, j!pjV q has a ∆ε-flag with
sections ∆εpbq for b P B� and Q has a ∆ε-flag with sections ∆εpcq for
c P B�.

Proof. We prove only (1), since (2) is just the dual statement. Using (3.10),
we can order the ∇ε-flag of V to get a short exact sequence 0 Ñ K Ñ V Ñ

Q Ñ 0 such that K has a ∇ε-flag with sections ∇εpbq for b P B� and Q has a
∇ε-flag with sections ∇εpcq for c P B�. For each b P B�, the unit of adjunction
∇εpbq Ñ j˚pj∇εpbqq is an isomorphism; this follows from Theorem 3.18(4) using
the observation that it becomes an isomorphism on applying j. Since j˚ sends short
exact sequences of objects in ∇εpR�q to short exact sequences, we deduce that the
the unit of adjunction QÑ j˚pjQq is an isomorphism too. It remains to note that
jV – jQ, hence, j˚pjV q – j˚pjQq. �

We proceed to discuss some of the additional features which show up when in
one of the more refined settings (FS), (εHW), (FHW) and (HW). By Theorem 3.9,
R is a fully stratified category (resp., fibered highest weight category) if and only
if so is Rop. The following lemma shows that fully stratified categories in our
terminology are the same as the “standardly stratified categories” defined by Losev
and Webster in [LW, §2].

Lemma 3.20. Given a stratification pB, L, ρ,Λ,ďq of R, the following are equiv-
alent:

(i) R is a fully stratified category;
(ii) R is ε-stratified for every choice of sign function ε : Λ Ñ t˘u;

(iii) R is ε-stratified and p´εq-stratified for some choice of sign function ε :
Λ Ñ t˘u;

(iv) R is ε-stratified for some ε : Λ Ñ t˘u and all of its standardization and
costandardization functors are exact;

(v) R is a `-stratified category and each ∆pbq has a ∆̄-flag with sections ∆̄pcq
for c with ρpcq “ ρpbq;



3.2. FINITE AND ESSENTIALLY FINITE ε-STRATIFIED CATEGORIES 37

(vi) R is a ´-stratified category and each ∇pbq has a ∇̄-flag with sections ∇̄pcq
for c with ρpcq “ ρpbq.

Proof. (i)ñ(ii)ñ(iii): Obvious.

(iii)ñ(iv): Take ε as in (iii) so that R is ε-stratified. The standardization functor jλ!
is exact when εpλq “ ´ by the last part of Theorem 3.5. Also R is p´εq-stratified,
so the same result gives that jλ! is exact when εpλq “ `. Similarly, all of the
costandardization functors are exact too.

(iv)ñ(v): Applying the exact standardization functor jλ! to a composition series of
Pλpbq, we deduce that ∆pbq has a ∆̄-flag with sections ∆̄pcq for c with ρpcq “ ρpbq.
Similarly, applying jλ˚ , we get that ∇pbq has a ∇̄-flag with sections ∇̄pcq for c with
ρpcq “ ρpbq.

To show that R is `-stratified, we check that each Ipbq has a ∇̄-flag with
sections ∇̄pcq for c with ρpcq ě ρpbq. This is immediate if εpbq “ ` since we are
assuming that R is ε-stratified. If εpbq “ ´ then Ipbq has a ∇-flag with sections
∇pcq for c with ρpcq ě ρpbq. Hence, by the previous paragraph, it also has the
required sort of ∇̄-flag.

(v)ñ(i): We just need to show that R is ´-stratified. We know that each P pbq has
a ∆-flag with sections ∆pcq for c with ρpcq ě ρpbq. Now use the given ∆̄-flags of
each ∆pcq to see that each P pbq also has the appropriate sort of ∆̄-flag.

(v)ô(vi): This follows from the above using the observation made earlier that R
is fully stratified if and only if Rop is fully stratified. �

Corollary 3.21. If R is an ε-stratified category with a contravariant autoe-
quivalence which preserves isomorphism classes of irreducible objects, then R is
fully stratified. Moreover, if R is an ε-highest weight category with a contravari-
ant autoequivalence preserving isomorphism classes of irreducible objects, then R
is fibered highest weight.

Proof. Since R is ε-stratified, Rop is p´εq-stratified. Using Lemma 3.3, we
deduce that R is p´εq-stratified. This verifies Lemma 3.20(iii) and the first claim
follows. The second is then obvious. �

Lemma 3.22. Suppose that R is a finite or essentially finite fully stratified
category. For b, c P B and n ě 0, we have that

ExtnRp∆̄pbq, ∇̄pcqq –
"

ExtnRλ
pLpbq, Lpcqq if λ “ µ

0 otherwise,

where λ :“ ρpbq and µ :“ ρpcq.

Proof. Choose ε so that εpλq “ ´, hence, ∆̄pbq “ ∆εpbq. By Lemma 3.20, R
is ε-stratified, so we can apply Theorem 3.17(4) with R� “ Rďµ to deduce that

ExtnRp∆̄pbq, ∇̄pcqq – ExtnRďµpi
˚
ďµ∆̄pbq, ∇̄pcqq.

This is zero unless λ ď µ. If λ ď µ it is ExtnRďµp∆̄pbq, ∇̄pcqq. Now we change ε

so that εpµq “ `, hence, ∇̄pcq “ ∇εpcq. Then by Theorem 3.18(3) with R “ Rďµ
and R� “ Rµ we get that ExtnRďµp∆̄pbq, ∇̄pcqq – ExtnRµ

pjµ∆̄pbq, Lpcqq. This is zero

unless λ “ µ, when jµ∆̄pbq “ Lpbq and we are done. �

The next results are concerned with global dimension.
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Lemma 3.23. Let R be a finite ε-stratified category.

(1) All V P ∆εpRq are of finite projective dimension if and only if all negative
strata1 have finite global dimension.

(2) All V P ∇εpRq are of finite injective dimension if and only if all positive
strata have finite global dimension.

Proof. As the two parts are dual statements, it suffices to prove (1). Replacing
Λ by the finite set ρpBq if necessary, we may assume that |Λ| ă 8.

First assume that all negative strata have finite global dimension. By [Wei,
Ex. 4.1.2], it suffices to show that pd ∆εpbq ă 8 for each b P B. We proceed by
downwards induction on the partial order on the finite poset Λ. Take any λ P Λ
and consider ∆εpbq for b P Bλ, assuming that pd ∆εpcq ă 8 for each c P Bąλ.
We first observe that there is a short exact sequence 0 Ñ Q Ñ P pbq Ñ ∆pbq Ñ 0
such that Q has a ∆ε-flag with sections ∆εpcq for c P Bąλ. If εpλq “ ` this
follows immediately from (P∆ε); if εpλq “ ´ one also needs to use (3.10) to see
that a ∆ε-flag in P pbq can be ordered so that the sections ∆̄pcq with c P Bλ

appear above the sections with c P Bąλ. By the induction hypothesis, Q has finite
projective dimension, hence, so does ∆pbq. This verifies the induction step in the
case that εpλq “ `. Instead, suppose that εpλq “ ´, i.e., ∆εpbq “ ∆̄pbq. Let
0 Ñ Pn Ñ ¨ ¨ ¨ Ñ P0 Ñ Lλpbq Ñ 0 be a finite projective resolution of Lλpbq in
the stratum Rλ. Applying jλ! , which is exact thanks to Theorem 3.5, we obtain
an exact sequence 0 Ñ Vn Ñ ¨ ¨ ¨ Ñ V0 Ñ ∆̄pbq Ñ 0 such that each Vm is a direct
sum of standard objects ∆pcq for c P Bλ. The result already established plus [Wei,
Ex. 4.1.3] implies that pdVm ă 8 for each m. Arguing like in the proof of [Wei,
Th. 4.3.1], we deduce that pd ∆̄pbq ă 8 too.

Conversely, suppose that pd ∆εpbq ă 8 for all b P B. Take λ P Λ with εpλq “ ´.
To show that Rλ has finite global dimension, it suffices to show that there is some
dpλq ě 0 such that ExtnRλ

pLλpbq,W q “ 0 for all n ą dpλq, b P Bλ and W P Rλ. By
Theorems 3.18(3) and 3.17(3), we have that

ExtnRλ
pLλpbq,W q – ExtnRďλp∆εpbq, j

λ
˚W q – ExtnRp∆εpbq, iďλpj

λ
˚W qq.

So we can take dpλq “ maxtpd ∆εpbq | b P Bλu. �

The case when all strata are positive (respectively negative) will be of great
importance.

Corollary 3.24. If R is a finite `-stratified (resp., ´-stratified) category then
all V P ∆pRq (resp., V P ∇pRq) are of finite projective (resp., injective) dimension.

Corollary 3.25. Suppose that R is a finite ε-stratified category. If R is of
finite global dimension then all of its strata are of finite global dimension too.

Proof. Lemma 3.23(1) implies that all negative strata have finite global di-
mension, and Lemma 3.23(2) implies that all positive strata have finite global di-
mension. �

Corollary 3.26. Suppose that R is either a finite `-stratified category or a
finite ´-stratified category. If all of the strata are of finite global dimension then R
is of finite global dimension.

1We mean the strata Rλ for λ P Λ such that εpλq “ ´.
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Proof. We just explain this in the case that R is ´-stratified; the argument
in the `-stratified case is similar. Lemma 3.23(1) implies that ∆̄pbq is of finite
projective dimension for each b P B. Moreover, there is a short exact sequence
0 Ñ K Ñ ∆̄pbq Ñ Lpbq Ñ 0 where all composition factors of K are of the form
Lpcq for c with ρpcq ă ρpbq. Ascending induction on the partial order on the finite
set ρpBq Ď Λ implies that each Lpbq has finite projective dimension. �

A special case of Corollary 3.26 recovers the following well-known result, see
e.g. [CPS1]. For further detailed remarks about the history of this, and the general
notion of highest weight category, we refer to [Don4, §A5] and [DR].

Corollary 3.27. Finite highest weight categories are of finite global dimen-
sion.

Remark 3.28. In the fully stratified case, Lemma 3.22 can be used to give a
precise bound on the global dimension of R in Corollary 3.26. Assuming Λ is finite,
let

|λ| :“ sup

"

max pgl.dimRλ1 , . . . , gl.dimRλnq

2
` n´ 1

ˇ

ˇ

ˇ

ˇ

n ě 1, λ1, . . . , λn P Λ
with λ1 ă ¨ ¨ ¨ ă λn “ λ

*

.

By mimicking the proof of [Don4, Prop. A2.3], one shows that ExtiRpLpbq, Lpcqq “ 0
for b, c P B and any i ą |ρpbq| ` |ρpcq|. Hence, gl.dimR ď 2 maxt|λ| | λ P Λu. For
finite highest weight categories, this shows that gl.dimR ď 2pn ´ 1q where n is
length of the longest chain of weights in the weight poset Λ.

Remark 3.29. Outside of the highest weight case, finitistic dimension is used
as a replacement for global dimension. In particular, finite fibered highest weight
categories have finitistic dimension ď 2pn ´ 1q where n is length of the longest
chain of weights in the weight poset Λ; this can be proved following the argument
of [AHLU, Cor. 2.7]. For finite fully stratified categories, it should be possible
to bound the finitistic dimension of R in terms of the finitistic dimensions of the
strata and chains in the poset like in the previous remark.

Remark 3.30. Another remarkable result about global dimension of finite high-
est weight categories was obtained in [MO], [MP] proving conjectures formulated
in [CaeZ], [EP]: if R is a finite highest weight category with duality, i.e., possess-
ing a contravariant autoequivalence preserving isomorphism classes of irreducible
objects, then the global dimension of R is equal to twice the projective dimension
of a tilting generator (see Definition 4.9 below). More generally, Mazorchuk and
Ovsienko show that the finitisic dimension is equal to twice the projective dimen-
sion of a tilting generator in any finite fibered highest weight category with duality
which is also tilting-rigid in the sense of Definition 4.36 below. Recently, Cruz and
Marczinik [CM, Th. 2.2] (see also Corollary 4.40 below) have shown that a finite
fibered highest weight category R is tilting-rigid if and only if it is Gorenstein, in
which case the finitistic dimension of R coincides with its Gorenstein dimension
(e.g., see [Che, Lem. 2.3.2]).

3.3. Upper finite ε-stratified categories

In this section we assume that R is a Schurian category equipped with an
upper finite stratification pB, L, ρ,Λ,ďq. Also ε : Λ Ñ t˘u denotes a sign function.
Let Ipbq and P pbq be an injective hull and a projective cover of Lpbq in R. Recall
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(1.1)–(1.2), the properties pP∆εq–pI∇εq and pP∆q–pI∇q from the introduction, and

the seemingly stronger properties pyP∆εq–pxI∇εq and pyP∆q–pxI∇q from the previous
section.

Before formulating the main definitions in the upper finite setting, we prove
an analog of the homological criterion for ∇ε-flags from Theorem 3.11. The proof
depends on the lemmas proved in §3.4 below, which we used already in the previ-
ous section, together with the following two technical lemmas, which we prove by
truncating to finite Abelian quotients.

Lemma 3.31. Suppose that R is Schurian with upper finite stratification and

sign function as usual, and assume that the property pyP∆εq holds in R. Let Λ� be
a finite upper set in Λ, B� :“ ρ´1pΛ�q, and j : RÑ R� be the corresponding Serre
quotient category with the induced stratification. The functor j˚ sends short exact
sequences of objects in ∇εpR�q to short exact sequences of objects in ∇εpRq.

Proof (assuming lemmas in §3.4 below). Take a short exact sequence

0 ÝÑ K ÝÑ X ÝÑ Q ÝÑ 0

in R� such that K,X and Q have ∇ε-flags. We must show that 0 Ñ j˚K Ñ j˚X Ñ

j˚Q Ñ 0 is exact with all objects belonging to ∇εpRq. We proceed by induction
on the length of the ∇ε-flag of j˚pXq, with the base case (length one) following
from Lemma 3.49(1). For the induction step, we may assume that K,Q ‰ 0
and know by induction that j˚K and j˚Q have ∇ε-flags. We must show that
0 Ñ j˚K Ñ j˚X Ñ j˚QÑ 0 is exact. Since j˚ is left exact, this follows if we can
show that

rj˚X : Lpbqs “ rj˚K : Lpbqs ` rj˚Q : Lpbqs

for all b P B. To see this, let Λ�� be the finite upper set generated by Λ� and b.
Let B�� :“ ρ´1pΛ��q and k : R Ñ R�� be the corresponding Serre quotient. By
Lemma 2.27, we have that rj˚X : Lpbqs “ rkpj˚Xq : kLpbqs “ rkpj˚Xq : L��pbqs,
and similarly for K and Q. Since Λ� is an upper set in Λ��, we can also view R�

as a quotient of R��, and the quotient functor j factors as j “ ̄ ˝ k for another
quotient functor ̄ : R�� Ñ R�. We have that k˚ ˝ ̄˚ – j˚, hence, applying k, we
get that ̄˚ – k˝j˚. It follows that rkpj˚Xq : L��pbqs “ r̄˚X : L��pbqs, and similarly
for K and Q. We have now reduced the proof to showing that

r̄˚X : L��pbqs “ r̄˚K : L��pbqs ` r̄˚Q : L��pbqs.

To see this, we note that R�� and R� are finite ε-highest weight categories due to
Lemma 3.49(2) and Theorem 3.5. So we can apply Theorem 3.18(4) to see that the
sequence 0 Ñ ̄˚K Ñ ̄˚X Ñ ̄˚QÑ 0 is exact. �

Lemma 3.32. Suppose that R is Schurian with upper finite stratification and

sign function as usual, and assume that the property pyP∆εq holds in R. Let V P R
be a finitely cogenerated object such that Ext1

Rp∆εpbq, V q “ 0 for all b P B. Then
we have that V P ∇εpbq, and the multiplicity pV : ∇εpbqq of ∇εpbq in any ∇ε-flag
is equal to the dimension of HomRp∆εpbq, V q.

Proof (assuming lemmas from §3.4 below). Since V is finitely cogener-
ated, its injective hull is a finite direct sum of the indecomposable injective objects
Ipbq. This means that we can find a finite upper set Λ� and B� :“ ρ´1pΛ�q so that



3.3. UPPER FINITE ε-STRATIFIED CATEGORIES 41

there is a short exact sequence

0 ÝÑ V ÝÑ
à

bPB�

Ipbq‘nb ÝÑ Q ÝÑ 0

for some nb ě 0. Let j : R Ñ R� be the corresponding Serre quotient. This is a
finite ε-stratified category by Lemma 3.49(2) and Theorem 3.5.

Applying j to the above short exact sequence gives us a short exact sequence
in R�. Then we take b P B� and apply the functor HomR�p∆�

εpbq, ?q to this using
also Lemma 3.49(1) to obtain the long exact sequence

0 ÝÑ HomR�p∆�
εpbq, jV q ÝÑ HomR�

´

∆�
εpbq,

À

bPB� I�pbq‘nb
¯

ÝÑ HomR�p∆�
εpbq, jQq ÝÑ Ext1

R�p∆�
εpbq, jV q ÝÑ 0.

From adjunction and Lemma 3.49(1) again, we get a commuting diagram

0ÑHomR�p∆�
εpbq, jV qÑHomR�p∆�

εpbq,
À

bPB� I�pbq‘nbqÑHomR�p∆�
εpbq, jQqÑ 0

§

§

đ

§

§

đ

§

§

đ

0Ñ HomRp∆εpbq, V q Ñ HomRp∆εpbq,
À

bPB� Ipbq‘nbq Ñ HomRp∆εpbq, Qq Ñ 0.

The vertical maps are isomorphisms and the bottom row is exact because we have
that Ext1

Rp∆εpbq, V q “ 0. Hence the top row is exact. Comparing with the pre-
viously displayed long exact sequence, it follows that Ext1

R�p∆�
εpbq, jV q “ 0. Now

we can apply Theorem 3.11 in the finite ε-stratified category R� to deduce that jV
has a ∇ε-flag.

From Lemma 3.31, we deduce that j˚jV has a ∇ε-flag. Moreover the mul-
tiplicity of ∇εpbq in any ∇ε-flag in j˚jV is dim HomRp∆εpbq, j˚jV q thanks to
Lemma 3.48. To complete the proof, we show that the unit of adjunction f :
V Ñ j˚jV is an isomorphism. We know from Lemma 3.49(1) that the unit of
adjunction is an isomorphism Ipbq Ñ j˚jIpbq for each b P B�. Since V embeds into
a direct sum of such Ipbq, it follows that f is injective. To show that it is surjective,
it suffices to show that

rj˚jV : Lpbqs “ rV : Lpbqs

for all b P B. To prove this, we fix a choice of b P B then define Λ��, B��, k : RÑ R��

and ̄ : R�� Ñ R� as in the proof of Lemma 3.31. Since b P B��, we have that
rV : Lpbqs “ rkV : L��pbqs and rj˚jV : Lpbqs “ rkpj˚jV q : L��pbqs. As in the proof
of Lemma 3.31, kpj˚jV q – ̄˚pjV q – ̄˚̄pkV q. Thus, we are reduced to showing
that

r̄˚̄pkV q : L��pbqs “ rkV : L��pbqs.

This follows because kV – ̄˚̄pkV q. To see this, we repeat the arguments in
the previous paragraph to show that kV P R�� has a ∇ε-flag. Since the unit of
adjunction is an isomorphism ∇��

ε pbq
„
Ñ ̄˚̄∇��

ε pbq for each b P B��, we deduce using

the exactness from Theorem 3.18(4) that it gives an isomorphism kV
„
Ñ ̄˚̄pkV q

too. �

Theorem 3.33. Theorem 3.5 holds in the upper finite setup too.

Proof. This is almost the same as the proof of Theorem 3.5 given in the
previous section. One needs to use Lemma 3.32 in place of Theorem 3.11 to see
that Ipbq has a ∇ε-flag with the appropriate multiplicities. The exactness of jλ˚ when
εpλq “ ` follows from Lemma 3.31 applied to the quotient functor jλ : Rďλ Ñ Rλ.
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Note for this that Rďλ satisfies pyP∆εq due to Lemma 3.45(2), and we have that
∇εpRλq “ Rλ as εpλq “ `. �

We are ready to proceed to the main definition.

Definition 3.34. Let pB, L, ρ,Λ,ďq be an upper finite stratification on R.

(εS) We say that R is an upper finite ε-stratified category if one of the equivalent

properties pyP∆εq–pxI∇εq holds for a given choice of sign function ε : Λ Ñ
t˘u.

(FS) We say that R is an upper finite fully stratified category if one of these
properties holds for all choices of sign function ε : Λ Ñ t˘u.

(εHW) We say that R is an upper finite ε-highest weight category if the strat-
ification function ρ is a bijection, and one of the equivalent properties

pyP∆εq–pxI∇εq holds for a given choice of sign function ε : Λ Ñ t˘u.
(FHW) We say that R is an upper finite fibered highest weight category if the

stratification function is a bijection and one of these properties holds for
all choices of sign function.

(HW) We say that R is an upper finite highest weight category if all of the stata

are simple (cf. Lemma 3.4) and one of the equivalent properties pyP∆q–

pxI∇q holds.

The Ext1-vanishing (3.10) and Theorem 3.9 both still hold in the same way as
before.

Next we are going to consider two (in fact dual) notions of ascending ∆ε- and
descending ∇ε-flags, generalizing the finite flags discussed already. One might be
tempted to say that an ascending ∆ε-flag in V is an ascending chain 0 “ V0 ă V1 ă

V2 ă ¨ ¨ ¨ of subobjects of V with V “
ř

nPN Vn such that Vm{Vm´1 – ∆εpbmq, and
a descending ∇ε-flag is a descending chain V “ V0 ą V1 ą V2 ą ¨ ¨ ¨ of subobjects
of V such that

Ş

nPN Vn “ 0 and Vm´1{Vm – ∆εpbmq, for bm P B. These would
be serviceable definitions when Λ is countable. In order to avoid this unnecessary
restriction, we will work instead with the following more general formulations.

Definition 3.35. Suppose that R is an upper finite ε-stratified category and
V P R.

pA∆q An ascending ∆ε-flag in V is the data of a directed set Ω with smallest
element 0 and a direct system pVωqωPΩ of subobjects of V such that V0 “ 0,
ř

ωPΩ Vω “ V , and Vυ{Vω P ∆εpRq for each ω ă υ. Let ∆asc
ε pRq be the

full subcategory of R consisting of all objects V possessing such a flag.
pD∇q A descending ∇ε-flag in V is the data of a directed set Ω with smallest

element 0 and an inverse system pV {VωqωPΩ of quotients of V such that
V0 “ V ,

Ş

ωPΩ Vω “ 0, and Vω{Vυ P ∇εpRq for each ω ă υ. Let ∇dsc
ε pRq

be the full subcategory of R consisting of all objects V possessing such a
flag.

We stress that ∆asc
ε pRq and ∇dsc

ε pRq are subcategories of R: we have not passed
to the completion IndpRcq.

Lemma 3.36. Suppose that R is an upper finite ε-stratified category.

(1) For V P ∆asc
ε pRq, W P ∇dsc

ε pRq and n ě 1, we have that ExtnRpV,W q “ 0.
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(2) For V P ∆asc
ε pRq the multiplicity of ∆εpbq in a ∆ε-flag may be defined

from

pV : ∆εpbqq :“ dim HomRpV,∇εpbqq “ sup
 

pVω : ∆εpbqq
ˇ

ˇ ω P Ω
(

ă 8,

where pVωqωPΩ is any choice of ascending ∆ε-flag.
(3) For V P ∇dsc

ε pRq, the multiplicity of ∇εpbq in a ∇ε-flag may be defined
from

pV : ∇εpbqq :“ dim HomRp∆εpbq, V q “ sup
 

pV {Vω : ∇εpbqq
ˇ

ˇ ω P Ω
(

ă 8,

where pV {VωqωPΩ is any choice of descending ∇ε-flag.

Proof. (1) We first prove this in the special case that W “ ∇εpbq. Let
pVωqωPΩ be an ascending ∆ε-flag in V , so that V – lim

ÝÑ
Vω. Since ExtnRpVω,W q “ 0

by Lemma 3.48, it suffices to show that

ExtnRpV,W q – lim
ÐÝ

ExtnRpVω,W q.

To see this, like in [Wei, 3.5.10], we need to check a Mittag-Leffler condition. We
show that the natural map Extn´1

R pVυ,W q Ñ Extn´1
R pVω,W q is surjective for each

ω ă υ in Ω. Applying HomRp?,W q to the short exact sequence 0 Ñ Vω Ñ Vυ Ñ
Vυ{Vω Ñ 0 gives an exact sequence

Extn´1
R pVυ,W q ÝÑ Extn´1

R pVω,W q ÝÑ ExtnRpVυ{Vω,W q.

It remains to observe that ExtnRpVυ{Vω,W q “ 0 by Lemma 3.48 again, since we
know from the definition of ascending ∆ε-flag that Vυ{Vω P ∆εpRq.

The dual of the previous paragraph plus Lemma 2.12 gives that ExtnRpV,W q “
0 for n ě 1, V “ ∆εpbq and W P ∇dsc

ε pRq. Then we can repeat the argument of
the previous paragraph yet again, using this assertion in place of Lemma 3.48, to
obtain the result we are after for general V P ∆asc

ε pRq and W P ∇dsc
ε pRq.

(2) This follows from (1) and (3.5) because

HomRpV,∇εpbqq – HomRplimÝÑVω,∇εpbqq – lim
ÐÝ

HomRpVω,∇εpbqq,

which is finite-dimensional as ∇εpbq, hence, each Vω, is finitely cogenerated.

(3) Similarly to (2), we have that

HomRp∆εpbq, V q – HomRp∆εpbq, limÐÝpV {Vωqq – lim
ÐÝ

HomRp∆εpbq, V {Vωq,

which is finite-dimensional as ∆εpbq is finitely generated. Then we can apply (1)
and (3.5) once again. �

Theorem 3.37 (Homological criterion for ascending ∆ε-flags). Assume that R
is an upper finite ε-stratified category. For V P R, the following are equivalent:

(i) V P ∆asc
ε pRq;

(ii) Ext1
RpV,∇εpbqq “ 0 for all b P B;

(iii) ExtnRpV,∇εpbqq “ 0 for all b P B and n ě 1.

Assuming these properties, we have that V P ∆εpRq if and only if it is finitely
generated.

Proof. (iii)ñ(ii). Trivial.

(i)ñ(iii). This follows from Lemma 3.36(1).

(ii)ñ(i). Let Ω be the directed set of finite upper sets in Λ. Take ω P Ω; it is some
finite upper set Λ�. Let B� :“ ρ´1pΛ�q and j : R Ñ R� be the corresponding
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Serre quotient. By Lemma 3.49(3), Ext1
R�pjV,∇εpbqq “ 0 for all b P B�. Hence,

Vω :“ j!pjV q P ∆εpRq thanks to the dual of Lemma 3.31. Let fω : Vω Ñ V be the
morphism induced by the counit of adjunction. We claim for any b P B� that the
map

fωpbq : HomRpP pbq, Vωq Ñ HomRpP pbq, V q, θ ÞÑ fω ˝ θ

is an isomorphism. To see this, we assume that R “ A-modlfd for a pointed
locally finite-dimensional locally unital algebra A “

À

a,bPB eaAeb. Then R� “

eAe-modlfd where e “
ř

aPB� ea, and Vω “ Ae beAe eV . In these terms, the map
fω is the natural multiplication map. For b P B�, this multiplication map gives an
isomorphism ebVω

„
Ñ ebV with inverse ebv ÞÑ eb b ebv. This proves the claim.

Now take υ ą ω, i.e., another finite upper set Λ�� Ą Λ�, and let k : R Ñ R��

be the associated quotient. The quotient functor j : R Ñ R� factors as j “ ̄ ˝ k
for another quotient functor ̄ : R�� Ñ R�, and we have that

Vω “ p̄ ˝ kq!pp̄ ˝ kqV q – k!p̄!p̄pkV qqq, Vυ “ k!pkV q.

By Corollary 3.19(2), there is a short exact sequence 0 Ñ ̄!p̄pkV qq Ñ kV Ñ QÑ 0
such that both ̄!p̄pkV qq and Q belong to ∆εpR��q. Applying k! and using the
exactness from the dual of Lemma 3.31, we get an embedding fυω : Vω ãÑ Vυ
such that Vυ{Vω – k!Q P ∆εpRq. Since the morphisms all came from counits of
adjunction, we have that fυ ˝ f

υ
ω “ fω.

Now we can show that each fω is a monomorphism. It suffices to show that
fωpbq : HomRpP pbq, Vωq Ñ HomRpP pbq, V q is injective for all b P B. Choose υ in
the previous paragraph to be sufficiently large so as to ensure that b P B��. We
explained already that fυpbq is an isomorphism. Since fω “ fυ ˝ f

υ
ω and fυω is a

monomorphism, it follows that fωpbq is injective too. Thus, identifying Vω with its
image under fω, we have defined a direct system pVωqωPΩ of subobjects of V such
that Vυ{Vω P ∆εpRq for each ω ă υ. It remains to observe that V∅ “ 0 for a trivial
reason, and

ř

ωPΩ Vω “ V because we know for each b P B that fωpbq is surjective
for sufficiently large ω.

Final part: If V P ∆εpRq, it is obvious that it is finitely generated since each ∆εpbq
is finitely generated. Conversely, suppose that V is finitely generated and has an
ascending ∆ε-flag. To see that it is actually a finite flag, it suffices to show that
HomRpV,∇εpbqq “ 0 for all but finitely many b P B. Say hd V – Lpb1q‘¨ ¨ ¨‘Lpbnq.
If V Ñ ∇εpbq is a non-zero homomorphism, we must have that ρpbiq ď ρpbq for some
i “ 1, . . . , n. Hence, there are only finitely many choices for b as the poset is upper
finite. �

Corollary 3.38. Let 0 Ñ U Ñ V ÑW Ñ 0 be a short exact sequence in R.

(1) If U and W belong to ∆asc
ε pRq (resp., ∆εpRq) so does V .

(2) If V and W belong to ∆asc
ε pRq (resp., ∆εpRq) so does U .

Theorem 3.39 (Homological criterion for descending ∇ε-flags). Assume that
R is an upper finite ε-stratified category. For V P R, the following are equivalent:

(i) V P ∇dsc
ε pRq;

(ii) Ext1
Rp∆εpbq, V q “ 0 for all b P B;

(iii) ExtnRp∆εpbq, V q “ 0 for all b P B and n ě 1.

Assuming these properties, V P ∇εpRq if and only if it is finitely cogenerated.

Proof. This is the equivalent dual statement to Theorem 3.37. �
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Corollary 3.40. Let 0 Ñ U Ñ V ÑW Ñ 0 be a short exact sequence in R.

(1) If U and W belong to ∇dsc
ε pRq (resp., ∇εpRq) so does V .

(2) If U and V belong to ∇dsc
ε pRq (resp., ∇εpRq) so does W .

The following is the upper finite analog of Theorem 3.17; we have dropped part
(6) since the proof of that required objects of R� to have finite length.

Theorem 3.41 (Truncation to lower sets). Assume that R is an upper finite
ε-stratified category. Suppose that Λ� is a lower set in Λ. Let B� :“ ρ´1pΛ�q

and i : R� Ñ R be the corresponding Serre subcategory of R with the induced
stratification. Then R� is an upper finite ε-stratified category. Moreover:

(1) The distinguished objects in R� satisfy L�pbq – Lpbq, P �pbq – i˚P pbq,
I�pbq – i!Ipbq, ∆�pbq – ∆pbq,∆̄�pbq – ∆̄pbq, ∇�pbq – ∇pbq and ∇̄�pbq –
∇̄pbq for b P B�.

(2) i˚ sends short exact sequences of objects in ∆εpRq to short exact se-
quences, i˚∆pbq – ∆�pbq and i˚∆̄pbq – ∆̄�pbq for b P B�, and i˚∆pbq “
i˚∆̄pbq “ 0 for b R B�.

(3) ExtnRpV, iW q – ExtnR�pi˚V,W q for V P ∆εpRq, W P R� and all n ě 0.
(4) i! sends short exact sequences of objects in ∇εpRq to short exact sequences,

i!∇pbq – ∇�pbq and i!∇̄pbq – ∇̄�pbq for b P B�, and i!∇pbq “ i!∇̄pbq “ 0
for b R B�.

(5) ExtnRpiV,W q – ExtnR�pV, i!W q for V P R�,W P ∇εpRq and all n ě 0.

Proof. This follows from Lemma 3.45 and the dual statement. �

Next is the upper finite analog of Theorem 3.18.

Theorem 3.42 (Truncation to upper sets). Assume that R is an upper finite
ε-stratified category. Suppose that Λ� is an upper set in Λ. Let B� :“ ρ´1pΛ�q

and j : RÑ R� be the corresponding Serre quotient category of R with the induced
stratification. Then R� is itself a finite or upper finite ε-stratified category according
to whether Λ� is finite or infinite. Moreover:

(1) For b P B�, the distinguished objects L�pbq, P �pbq, I�pbq, ∆�pbq, ∆̄�pbq,
∇�pbq and ∇̄�pbq in R� are isomorphic to the images under j of the cor-
responding objects of R.

(2) We have that jLpbq “ j∆pbq “ j∆̄pbq “ j∇pbq “ j∇̄pbq “ 0 if b R B�.
(3) ExtnRpV, j˚W q – ExtnR�pjV,W q for V P R,W P ∇dsc

ε pR�q and all n ě 0.
(4) j˚ sends short exact sequences of objects in ∇εpR�q to short exact se-

quences, j˚∇�pbq – ∇pbq, j˚∇̄�pbq – ∇̄pbq and j˚I
�pbq – Ipbq for b P B�.

(5) ExtnRpj!V,W q – ExtnR�pV, jW q for V P ∆asc
ε pR�q, W P R and all n ě 0.

(6) j! sends short exact sequences of objects in ∆εpR�q to short exact se-
quences, j!∆

�pbq – ∆pbq, j!∆̄
�pbq – ∆̄pbq and j!P

�pbq “ P pbq for b P B�.

Proof. If Λ� is finite, this is proved in just the same way as Theorem 3.18.
Assume instead that Λ� is infinite. Then the same arguments prove (1) and (2),
but the proofs of the remaining parts need some slight modifications. It suffices to
prove (3) and (4), since (5) and (6) are the same results for Rop.

For (3), the argument from the proof of Lemma 3.49(3) reduces to checking
that j sends projectives to objects that are acyclic for HomR�p?,W q. To see this,
it suffices to show that ExtnR�pjP pbq,W q “ 0 for n ě 1 and b P B, which follows
from Lemma 3.36(1).
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Finally, for (4), the argument from the proof of Theorem 3.18(4) cannot be
used since it depends on R� being essentially finite Abelian. So we provide an
alternate argument. Take a short exact sequence 0 Ñ U Ñ V Ñ W Ñ 0 in
∇εpR�q. Applying j˚, we get 0 Ñ j˚U Ñ j˚V Ñ j˚W , and just need to show
that the final morphism here is an epimorphism. This follows because, by (3) and
Theorem 3.39, j˚U , j˚V and j˚W all have ∇ε-flags such that pj˚V : ∇εpbqq “
pj˚U : ∇εpbqq ` pj˚W : ∇εpbqq for all b P B. �

The reader should have no difficulty in transporting Lemma 3.20 and Corol-
lary 3.21 to the upper finite setting. Also, Lemma 3.23 remains valid when “finite
ε-stratified category” is replaced by “upper finite ε-stratified category”. To see
this, we just note that the argument by downwards induction on the partial order
explained in the proof works just as well when Λ is upper finite rather than finite.
The following is the upper finite analog of Corollary 3.24.

Lemma 3.43. If R is an upper finite `-stratified (resp., ´-stratified) category
then all V P ∆pRq (resp., V P ∇pRq) are of finite projective (resp., injective)
dimension.

Proof. This follows from the upper finite analog of Lemma 3.23. �

3.4. Shared lemmas for §§3.2–3.3

In this section, we prove a series of lemmas needed in both §3.2 and in §3.3.
Let R be an Abelian category equipped with a stratification pB, L, ρ,Λ,ďq which
is either essentially finite (§3.2) or upper finite (§3.3). Also let ε : Λ Ñ t˘u be a

sign function. We assume throughout the section that the property (yP∆ε) from
§3.2 holds.

Lemma 3.44. We have that Ext1
Rp∆εpbq,∆εpcqq “ 0 for b, c P B such that

ρpbq ę ρpcq.

Proof. Using the projective objects Pb given by the assumed property (yP∆ε),
we can construct the first terms of a projective resolution of ∆εpbq in the form

(3.11) Q ÝÑ
à

aPB
ρpaqěρpbq

P‘naa ÝÑ Pb ÝÑ ∆εpbq ÝÑ 0

for some na ě 0. Now apply HomRp?,∆εpcqq to get that Ext1
Rp∆εpbq,∆εpcqq is the

homology of the complex

HomRpPb,∆εpcqq ÝÑ HomR

´

à

aPB
ρpaqěρpbq

P‘naa ,∆εpcq
¯

ÝÑ HomRpQ,∆εpcqq.

The middle term of this already vanishes as r∆εpcq : Lpaqs ‰ 0 ñ ρpaq ď ρpcq. �

Lemma 3.45. Let Λ� be a lower set in Λ and B� :“ ρ´1pΛ�q. Let i : R� Ñ R
be the corresponding Serre subcategory of R equipped with the induced stratification.

(1) The standard, proper standard and indecomposable projective objects of
R� are the objects ∆pbq, ∆̄pbq and i˚P pbq for b P B�.

(2) The object i˚Pb is zero unless b P B�, in which case it is a projective object
admitting a ∆ε-flag with top section ∆εpbq and other sections of the form

∆εpcq for c P B� with ρpcq ě ρpbq. In particular, this shows that pyP∆εq

holds in R�.
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(3) pLni˚qV “ 0 for V P ∆εpRq and n ě 1.
(4) ExtnRpV, iW q – ExtnR�pi˚V,W q for V P ∆εpRq, W P R� and n ě 0.

Proof. (1) For projectives, this follows from the usual adjunction properties.
This also shows that i˚Pb is projective, as needed for (2). For standard and proper
standard objects, just note that the standardization functors for R� are some of
the ones for R.

(2) Consider a ∆ε-flag of Pb. Using Lemma 3.44, we can rearrange this filtration if
necessary so that all of the sections ∆εpcq with c P B� appear above the sections
∆εpdq with d P BzB�. So there exists a short exact sequence 0 Ñ K Ñ Pb Ñ QÑ 0
in which Q has a finite filtration with sections ∆εpcq for c P B� with ρpcq ě ρpbq,
and K has a finite filtration with sections ∆εpcq for c P BzB�. It follows easily that
i˚Pb is isomorphic to Q, so it has the appropriate filtration.

(3) It suffices to show that pLni˚q∆εpbq “ 0 for all b P B and n ą 0. Take a short
exact sequence 0 Ñ K Ñ Pb Ñ ∆εpbq Ñ 0 such that K has a ∆ε-flag with sections
∆εpcq for c with ρpcq ě ρpbq. Applying i˚, we obtain the long exact sequence

0 ÝÑ pL1i
˚q∆εpbq ÝÑ i˚K ÝÑ i˚Pb ÝÑ i˚∆εpbq ÝÑ 0

and isomorphisms pLn`1i
˚q∆εpbq – pLni˚qK for n ą 0. We claim pL1i

˚q∆εpbq “ 0.
We use Lemma 3.44 to order the ∆ε-flag of K so that it yields a short exact sequence
0 Ñ L Ñ K Ñ Q Ñ 0 in which Q has a ∆ε-flag with sections ∆εpcq for c P B�,
and L has a ∆ε-flag with sections ∆εpcq for c P BzB�. It follows that i˚K “ Q and
there is a short exact sequence 0 Ñ i˚K Ñ i˚Pb Ñ ∆εpbq Ñ 0. Comparing with the
long exact sequence, we deduce that pL1i

˚q∆εpbq “ 0. Finally some degree shifting
using the isomorphisms pLn`1i

˚q∆εpbq – pLni˚qK gives that pLni˚q∆εpbq “ 0 for
n ą 1 too.

(4) By the adjunction, we have that HomRp?, iW q – HomR�p?,W q ˝ i˚, i.e., the
result holds when n “ 0. Also i˚ sends projectives to projectives as it is left adjoint
to an exact functor. Now the result for n ą 0 follows by a standard Grothendieck
spectral sequence argument; the spectral sequence degenerates due to (3). �

Lemma 3.46. Suppose that λ P Λ is maximal and b P Bλ. Then P pbq – ∆pbq
and Ipbq – ∇pbq.

Proof. Lemma 3.1 shows that ∆pbq – i˚
ďλP pbq and ∇pbq – i!ďλIpbq.

To complete the proof for P pbq, it remains to observe that P pbq belongs to Rďλ,

so i˚
ďλP pbq “ P pbq. This follows from yP∆ε: the object Pb belongs to Rďλ due to

the maximality of λ and P pbq is a summand of it.
The proof for Ipbq needs a different approach. From ∇pbq – i!ďλIpbq, we deduce

that there is a short exact sequence 0 Ñ ∇pbq Ñ Ipbq Ñ Q Ñ 0 with i!ďλQ “ 0,
and we must show that Q “ 0. Take a P B and apply HomRp∆εpaq, ?q to this short
exact sequence to get an exact sequence

(3.12) HomRp∆εpaq, Ipbqq ÝÑ HomRp∆εpaq, Qq ÝÑ 0

and isomorphisms

(3.13) Extn`1
R p∆εpaq,∇pbqq – ExtnRp∆εpaq, Qq

for n ě 1. If ρpaq “ λ then HomRp∆εpaq, Qq “ 0 because i!ďλQ “ 0. If
ρpaq ‰ λ, then in fact we have that ρpaq ğ λ by the assumed maximality of λ,
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so r∆εpaq : Lpbqs “ 0. Hence, HomRp∆εpaq, Ipbqq “ 0, implying in view of (3.12)
that HomRp∆εpaq, Qq “ 0 again. Thus, we have shown that HomRp∆εpaq, Qq “ 0
for all a P B. This implies that soc Q “ 0. In the essentially finite Abelian case, this
is all that is needed to deduce that Q “ 0, completing the proof. In the Schurian
case, we need to argue a little further because Q need not be finitely cogenerated,
so can have zero socle even when it is itself non-zero. We have for any a P B that
ExtnRp∆εpaq,∇pbqq “ 0 for n ą 0. This follows using Lemma 3.45(4): it shows that
ExtnRp∆εpaq,∇pbqq – ExtnRďλpi

˚
ďλ∆εpaq,∇pbqq which is zero as ∇pbq is injective in

Rďλ. Combining this with (3.13), we get that Ext1
Rp∆εpaq, Qq “ 0. Now we ob-

serve that the properties HomRp∆εpaq, Qq “ 0 “ Ext1
Rp∆εpaq, Qq for all a P B do

imply that Q is zero. Indeed, we have that HomRpP,Qq “ Ext1
RpP,Qq “ 0 for

any P P R with a ∆ε-flag. This follows using induction on the length of the flag

plus the long exact sequence. Since Pb has a ∆ε-flag by the hypothesis pyP∆εq and
P pbq is a summand of it, we deduce that HomRpP pbq, Qq “ 0 for all b P B, which
certainly implies that Q “ 0. �

Lemma 3.47. Assume that λ P Λ is maximal and εpλq “ `. For any V P Rλ

and b P B, we have that Ext1
Rp∆εpbq, j

λ
˚V q “ 0.

Proof. If b P Bλ then ∆εpbq is projective in Rďλ by Lemma 3.46, so we
get the Ext1-vanishing in this case. For the remainder of the proof, suppose that
b R Bλ. Let I be an injective hull of V in Rλ. Applying jλ˚ to a short exact
sequence 0 Ñ V Ñ I Ñ QÑ 0, we get an exact sequence 0 Ñ jλ˚V Ñ jλ˚I Ñ jλ˚Q.
By properties of adjunctions, jλ˚Q is finitely cogenerated and all constituents of its
socle are of the form Lpcq for c P Bλ. The same is true for jλ˚I{j

λ
˚V since it embeds

into jλ˚Q. We deduce that HomRp∆εpbq, j
λ
˚I{j

λ
˚V q “ 0.

Now take an extension 0 Ñ jλ˚V Ñ E Ñ ∆εpbq Ñ 0. Since jλ˚I is injective,
we can find morphisms f and g making the following diagram with exact rows
commute:

0 ÝÝÝÝÑ jλ˚V
s

ÝÝÝÝÑ E ÝÝÝÝÑ ∆εpbq ÝÝÝÝÑ 0
›

›

›

f

§

§

đ

§

§

đ

g

0 ÝÝÝÝÑ jλ˚V
t

ÝÝÝÝÑ jλ˚I ÝÝÝÝÑ jλ˚I{j
λ
˚V ÝÝÝÝÑ 0.

The previous paragraph implies that g “ 0. Hence, im f Ď im t. Thus, f “ t ˝ f̄ for
some f̄ : E Ñ jλ˚V . We deduce that f̄ ˝ s “ id, i.e., the top short exact sequence

splits, proving that Ext1
Rp∆εpbq, j

λ
˚V q “ 0. �

Lemma 3.48. For b, c P B and n ě 0, we have that dim ExtnRp∆εpbq,∇εpcqq “
δb,cδn,0.

Proof. The case n “ 0 follows from (3.5), so assume that n ą 0. Suppose
that b P Bλ and c P Bµ. By Lemma 3.45(4), we have that

ExtnRp∆εpbq,∇εpcqq – ExtnRďµpi
˚
ďµ∆εpbq,∇εpcqq.

If λ ę µ then i˚ďµ∆εpbq “ 0 and we get the desired vanishing. Now assume that
λ ď µ, when we may identify i˚ďµ∆εpbq “ ∆εpbq. If εpµq “ ´ then ∇εpcq “ ∇pcq,
and the result follows since ∇pcq is injective in Rďµ by Lemma 3.1(2). So we may
assume also that εpµq “ `. If λ “ µ then ∆pbq is projective in Rďµ by the same
lemma, so again we are done. Finally, we are reduced to λ ă µ and εpµq “ `,
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and need to show that ExtnRďµp∆εpbq, ∇̄pcqq “ 0 for n ą 0. If n “ 1, we get

the desired conclusion from Lemma 3.47 applied in the subcategory Rďµ (allowed
due to Lemma 3.45(2)). Then for n ě 2 we use a degree shifting argument: let
P :“ i˚ďµPb. By Lemma 3.45(2), P is projective in Rďµ, and there is a short exact
sequence 0 Ñ K Ñ P Ñ ∆εpbq Ñ 0 such that K has a ∆ε-flag with sections
∆εpaq for a P Bďµ. Applying HomRďµp?, ∇̄pcqq we obtain ExtnRďµp∆εpbq, ∇̄pcqq –
Extn´1

RďµpK, ∇̄pcqq, which is zero by induction. �

Lemma 3.49. Let Λ� be an upper set in Λ and B� :“ ρ´1pΛ�q. Let j : R Ñ

R� be the corresponding Serre quotient category of R equipped with the induced
stratification.

(1) For b P B�, the objects P �pbq, I�pbq, ∆�pbq, ∆̄�pbq, ∇�pbq and ∇̄�pbq in R�

are the images under j of the corresponding objects of R. Moreover, we
have that j!∆

�pbq – ∆pbq, j!∆̄
�pbq – ∆̄pbq, j!P

�pbq – P pbq and j˚∇�pbq –
∇pbq, j˚∇̄�pbq – ∇̄pbq, j˚I�pbq – Ipbq.

(2) For any b P B, the object jPb has a ∆ε-flag with top section ∆�
εpbq and

other sections of the form ∆�
εpcq for c P B� with ρpcq ě ρpbq. In particular,

this show that (yP∆ε) holds in R�.
(3) ExtnRpV, j˚W q – ExtnR�pjV,W q for V P R, W P ∇εpR�q and n ě 0.

Proof. (1) By Lemma 2.27, P �pbq “ jP pbq for each b P B�. Now take b P Bλ

for λ P Λ�. Let jλ : Rďλ Ñ Rλ be the quotient functor as usual, and denote the
analogous functor for R� by kλ : R�

ďλ Ñ R�
λ. The universal property of quotient

category gives us an exact functor ̄ : Rλ Ñ R�
λ making the diagram

Rďλ
j

ÝÝÝÝÑ R�
ďλ

jλ
§

§

đ

§

§

đkλ

Rλ ÝÝÝÝÑ
̄

R�
λ

commute. In fact, ̄ is an equivalence of categories because it sends the inde-
composable projective jλP pbq in Rλ to the indecomposable projective kλP �pbq
in R�

λ for each b P Bλ. We deduce that there is an isomorphism of functors

j! ˝ k
λ
! ˝ ̄ – jλ! . Applying this to Pλpbq and to Lλpbq gives that j!∆

�pbq – ∆pbq
and j!∆̄

�pbq – ∆̄pbq. Also by adjunction properties we have that j!P
�pbq – P pbq.

Similarly, applying the isomorphism j˚ ˝ k
λ
˚ ˝ ̄ – jλ˚ to Iλpbq and Lλpbq gives that

j˚∇�pbq – ∇pbq and j˚∇̄�pbq – ∇̄pbq. Also by adjunction properties we have that
j˚I

�pbq – Ipbq. It just remains to apply j to the isomorphisms constructed thus far
and use j ˝ j˚ – IdR� – j ˝ j!.

(2) This follows from (1) and the exactness of j, using also that j∆εpbq “ 0 if
b R B�.

(3) The adjunction gives an isomorphism HomRp?, j˚W q – HomR�p?,W q ˝ j. This
proves the result when n “ 0. For n ą 0, the functor j is exact. In order to invoke
the usual degenerate Grothendieck spectral sequence argument, all that remains is
to check that j sends projectives to objects that are acyclic for HomR�p?,W q. By
(2), the functor j sends projectives in R to objects with a ∆ε-flag. It remains to
note that Ext1

R�pX,W q “ 0 for X P ∆εpR�q,W P ∇εpR�q. This follows from the
analog of Lemma 3.48 for R�, which is valid due to (2). �
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3.5. Lower finite ε-stratified categories

In this section, R is a locally finite Abelian category equipped a lower finite
stratification pB, L, ρ,Λ,ďq and ε : Λ Ñ t˘u denotes a sign function. For b P B,
we use the notation Ipbq to denote an injective hull of Lpbq in IndpRq.

Definition 3.50. Let pB, L, ρ,Λ,ďq be a lower finite stratification of the locally
finite Abelian category R. For a finite lower set Λ� in Λ, let B� :“ ρ´1pΛ�q and
R� be corresponding Serre subcategory of R. We say that R is a lower finite
ε-stratified category (resp., lower finite fully stratified category, resp., lower finite
ε-highest weight category, resp., lower finite fibered highest weight category, resp.,
lower finite highest weight category) if R� with its naturally induced stratification
is a finite ε-stratified category (resp., finite fully stratified category, resp., finite
ε-highest weight category, resp., finite fibered highest weight category, resp., finite
highest weight category) for every finite lower set Λ� Ď Λ.

Remark 3.51. For a simple example, let Q be any quiver. The category R of
finite length nilpotent representations of Q can be realized naturally as the category
of finite-dimensional comodules over the path coalgebra of Q as in [Sim, (8.3)]. In
order for this to be a lower finite highest weight category, one must assume that
there are only finitely many different paths between any two vertices. In that case,
the path algebra kQ is locally finite-dimensional, and we have that R – kQ-modfd

with irreducible objects labelled by the set Λ of vertices of Q in the usual way. We
claim now that R is a lower finite highest weight category with weight poset pΛ,ďq
for any lower finite partial ordering ď on Λ. To see this, the Serre subcategory
R� corresponding to a finite lower set Λ� Ă Λ is kQ�-modfd where Q� is the full
subquiver Q� of Q generated by Λ�. It is well known that this is a hereditary
category, hence, it is a finite highest weight category (e.g., see [Mad, Th. 4.1]).

Let R be a lower finite ε-stratified category. Since Rďλ is a finite Abelian
category, the admissibility axiom (A) from §3.1 holds, so we can introduce the
objects ∆pbq, ∆̄pbq, ∇̄pbq and ∇pbq as explained there, also adopting the shorthands
∆εpbq and ∇εpbq. These objects are of finite length. Note also that Theorem 3.9,
Lemma 3.20 and Corollary 3.21 carry over immediately to the lower finite setting.

Now we are going to consider another sort of infinite good filtration in objects
of IndpRq. Usually (e.g., if Λ is countable), it is sufficient to restrict attention to
filtrations given by an ascending chain of subobjects 0 “ V0 ă V1 ă V2 ă ¨ ¨ ¨ such
that V “

ř

nPN Vn and Vm{Vm´1 – ∇εpbmq for some bm P B. Here is the general
definition which avoids this restriction.

Definition 3.52. An ascending ∇ε-flag in an object V P IndpRq is the data of
a direct system pVωqωPΩ of subobjects of V such that the following properties hold:

(A∇1) V “
ř

ωPΩ Vω;
(A∇2) each Vω has a ∇ε-flag with ∇εpbq appearing with multiplicity denoted

pVω : ∇εpbqq P N;
(A∇3) pV : ∇εpbqq :“ supppVω,∇εpbqq | ω P Ωu ă 8 for each b P B.

Let ∇asc
ε pRq be the full subcategory of R consisting of all objects V that possess an

ascending ∇ε-flag. In the special case ε “ ` (resp., ε “ ´), we call it an ascending
∇̄-flag (resp., ∇-flag), denoting the category ∇εpRq by ∇̄pRq (resp., ∇pRq).
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The multiplicities pVω : ∇εpbqq and pV : ∇εpbqq appearing in this definition
depend a priori on the choice of flag. In fact, they do not, so that the notation is
unambiguous:

Lemma 3.53. Assume R is a lower finite ε-stratified category. For V P ∇asc
ε pRq,

the multiplicity pV : ∇εpbqq of ∇εpbq in the ascending ∇ε-flag appearing in Defini-
tion 3.52 is equal to dim HomRp∆εpbq, V q. Hence, it is well-defined independent of
the particular choice for this flag.

Proof. By Theorem 3.14 applied in the Serre subcategory R� associated to a
finite lower set Λ� of Λ chosen so that Vω P R�, we have that

pVω : ∇εpbqq “ dim HomRp∆εpbq, Vωq.

Also

HomRp∆εpbq, V q “ HomRp∆εpbq, limÝÑVωq – lim
ÝÑ

HomRp∆εpbq, Vωq.

We deduce that

dim HomRp∆εpbq, V q “ maxtpVω : ∆εpbqq | ω P Ωu,

which is the definition of the multiplicity pV : ∇εpbqq from Definition 3.52. �

Lemma 3.54. Assume that R is a lower finite ε-stratified category. For V P

∇asc
ε pRq and b P B, we have that Ext1

Rp∆εpbq, V q “ 0.

Proof. If V is of finite length then it belongs to the finite Abelian category
R� associated to some finite lower set Λ� of Λ, and the lemma follows from Theo-
rem 3.11. Now suppose that V is not of finite length. Let pVωqωPΩ be an ascending
∇ε-flag in V . Take an extension V ãÑ E � ∆εpbq. We can find a subobject E1 of
E of finite length such that V ` E1 “ V ` E; this follows easily by induction on
the length of ∆εpbq as explained at the start of the proof of [CPS1, Lem. 3.8(a)].
Since V X E1 is of finite length, there exists ω P Ω with V X E1 Ď Vω. Then we
have that V X E1 “ Vω X E1 and

pVω ` E1q{Vω – E1{Vω X E1 “ E1{V X E1 – pV ` E1q{V “ pV ` Eq{V – ∆εpbq.

Thus, there is a short exact sequence 0 Ñ Vω Ñ Vω ` E1 Ñ ∆εpbq Ñ 0. The first
sentence of the proof implies that Ext1

Rp∆εpbq, Vωq “ 0, hence, this splits. Thus,
we can find a subobject E2 – ∆εpbq of Vω`E1 such that Vω`E1 “ Vω‘E2. Then
V ` E “ V ` E1 “ V ` Vω ` E1 “ V ` Vω ` E2 “ V ` E2 “ V ‘ E2, and our
original short exact sequence splits too. �

Corollary 3.55. Let i : R� Ñ R be the inclusion of the Serre subcategory of R
associated to a finite lower set Λ� of Λ and i! be its right adjoint. For V P ∇asc

ε pRq,
we have that i!V P ∇εpR�q.

Proof. Take a short exact sequence 0 Ñ i!V Ñ V Ñ QÑ 0. Note that

HomR�p∆εpbq, i
!V q – HomRp∆εpbq, V q

is finite-dimensional for each b P B�. Since R� is finite Abelian, it follows that
i!V P R� (rather than IndpR�q). Moreover, HomRp∆εpbq, Qq “ 0 for b P B�.
So, on applying HomRp∆εpbq, ?q and considering the long exact sequence using
Lemma 3.54, we get that Ext1

R�p∆εpbq, i
!V q “ Ext1

Rp∆εpbq, i
!V q “ 0 for all b P B�.

Thus, by Theorem 3.11, we have that i!V P ∇εpR�q. �
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The following homological criterion for ascending ∇ε-flags generalizes Theo-
rem 3.11.

Theorem 3.56 (Homological criterion for ascending ∇ε-flags). Assume that R
is a lower finite ε-stratified category. For V P IndpRq, the following are equivalent:

(i) V P ∇asc
ε pRq;

(ii) Ext1
Rp∆εpbq, V q “ 0 and dim HomRp∆εpbq, V q ă 8 for all b P B;

(iii) ExtnRp∆εpbq, V q “ 0 and dim HomRp∆εpbq, V q ă 8 for all b P B and
n ě 1.

Assuming these properties, we have that V P ∇εpRq if and only if V P R.

Proof. (ii)ñ(i): Let Ω be the directed set consisting of all finite lower sets in
Λ. Take ω P Ω. It is a finite lower set Λ� Ď Λ, so we have associated the corre-
sponding finite ε-stratified subcategory R�. Letting i : R� Ñ R be the inclusion,
we set Vω :“ i!V . By Corollary 3.55, we have that Vω P ∇εpRq. So the subobject
V 1 :“

ř

ωPΩ Vω of V has an ascending ∇ε-flag.
Now we complete the proof by showing that V “ V 1. Applying HomRp∆εpbq, ?q

to the short exact sequence 0 Ñ V 1 Ñ V Ñ V {V 1 Ñ 0 using Lemma 3.54, we get
a short exact sequence

0 ÝÑ HomRp∆εpbq, V
1q ÝÑ HomRp∆εpbq, V q ÝÑ HomRp∆εpbq, V {V

1q ÝÑ 0

for every b P B. But any homomorphism ∆εpbq Ñ V has image contained in Vω
for sufficiently large ω, hence, also in V 1. Thus, the first morphism in this short
exact sequence is an isomorphism, and HomRp∆pbq, V {V

1q “ 0 for all b P B. This
implies that V {V 1 “ 0 as required.

(i)ñ(ii): This follows by Lemmas 3.53 and 3.54.

(iii)ñ(ii): Trivial.

(i)ñ(iii): This follows from Lemma 3.53 and Theorem 3.59(4). Since this is a
forward reference, we should note that the proof of Theorem 3.59 only depends on
(i)ô(ii) from the present theorem. �

Corollary 3.57. In a lower finite ε-stratified category, each indecomposable
injective object Ipbq belongs to ∇asc

ε pRq and pIpbq : ∇εpcqq “ r∆εpcq : Lpbqs for each
b, c P B.

Proof. The first part follows from the implication (ii)ñ(i) in the theorem. For
the second part, we get from Lemma 3.53 that pIpbq : ∇εpcqq “ dim HomRp∆εpcq :
Lpbqq. �

Corollary 3.58. Let 0 Ñ U Ñ V Ñ W Ñ 0 be a short exact sequence
in a lower finite ε-stratified category. If U, V P ∇asc

ε pRq then W P ∇asc
ε pRq too.

Moreover
pV : ∇εpbqq “ pU : ∇εpbqq ` pW : ∇εpbqq.

The following is the lower finite counterpart of Theorem 3.17.

Theorem 3.59 (Truncation to lower sets). Suppose R is a lower finite ε-
stratified category. Let Λ� be a lower set, B� :“ ρ´1pΛ�q, and i : R� Ñ R be
the corresponding Serre subcategory of R with the induced stratification. Then R�

is a finite or lower finite ε-stratified category according to whether Λ� is finite or
infinite. Moreover:
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(1) The distinguished objects of R� are L�pbq – Lpbq, I�pbq – i!Ipbq, ∆�pbq –
∆pbq, ∆̄�pbq – ∆̄pbq, ∇�pbq – ∇pbq and ∇̄�pbq – ∇̄pbq for b P B�.

(2) pRni!qV “ 0 for n ě 1 assuming either that V P ∇asc
ε pRq or that V P R�.

(3) i! takes short exact sequences of objects in ∇asc
ε pRq to short exact sequences

of objects in ∇asc
ε pR�q, with i!∇pbq – ∇�pbq and i!∇̄pbq – ∇̄�pbq for b P B�

and i!∇pbq “ i!∇̄pbq “ 0 for b R B�.
(4) ExtnRpiV,W q – ExtnR�pV, i!W q for V P R�,W P ∇asc

ε pRq and all n ě 0.
(5) ExtnRpiV, iW q – ExtnR�pV,W q for V,W P R� and all n ě 0.

Proof. The fact that R� is itself a lower finite ε-stratified follows immediately
from Definition 3.50. It is finite if and only if B� is finite. The identification of
objects as in (1) is straightforward. In particular, the objects ∇εpbq in R� are just
the same as the ones in R indexed by b P B�, while the indecomposable injectives
in IndpR�q are the objects i!Ipbq for b P B�.

To prove (2), assume first that V P ∇asc
ε pRq. Let I be an injective hull of soc V

in IndpRq. Note that I is of the form
À

aPB Ipaq
‘na for

0 ď na ď dim HomRp∆εpaq, V q “ pV : ∇εpaqq ă 8.

Hence, for b P Bďλ, we have that

dim HomRp∆εpbq, Iq “
ÿ

aPBďλ

nar∆εpbq : Lpaqs ă 8

too. We deduce that I P ∇asc
ε pRq using the implication (ii)ñ(i) of Theorem 3.56.

Now consider the short exact sequence 0 Ñ V Ñ I Ñ Q Ñ 0. By Corollary 3.58,
we have that Q P ∇asc

ε pRq too. Applying the left exact functor i! and considering
the long exact sequence, we see that to prove that pR1i!qV “ 0 it suffices to show
that the canonical map i!I Ñ i!Q is an epimorphism. Once that has been proved
we can use degree shifting to establish the desired vanishing for all higher n; it is
important for the induction step that we have already established that Q P ∇asc

ε pRq
just like V .

To prove the surjectivity, look at 0 Ñ i!I{i!V Ñ i!Q Ñ C Ñ 0. Both i!I
and i!V have ∇ε-flags by Lemma 3.55. Hence, so does i!I{i!V , and on applying
HomR�p∆εpbq, ?q for b P B�, we get a short exact sequence

0 ÝÑ HomR�p∆εpbq, i
!I{i!V q ÝÑ HomR�p∆εpbq, i

!Qq ÝÑ HomR�p∆εpbq, Cq ÝÑ 0.

The first space here has dimension

pi!I : ∇εpbqq ´ pi
!V : ∇εpbqq “ pI : ∇εpbqq ´ pV : ∇εpbqq

“ pQ : ∇εpbqq “ pi
!Q : ∇εpbqq,

which is the dimension of the second space. This shows that the first morphism
is an isomorphism. Hence, HomR�p∆εpbq, Cq “ 0. This implies that C “ 0 as
required.

Finally let V P R�. Then V is of finite length, so it suffices just to consider
the case that V “ Lpbq for b P B�. Then we consider the short exact sequence
0 Ñ Lpbq Ñ ∇εpbq Ñ Q Ñ 0. Applying i! and using the vanishing established
so far gives 0 Ñ i!Lpbq Ñ i!∇εpbq Ñ i!Q Ñ pR1i!qLpbq Ñ 0 and isomorphisms
pRni!qQ – pRn`1i!qLpbq for n ě 1. But i! is the identity on Lpbq,∇εpbq and Q, so
this immediately yields pR1i!qLpbq “ 0, and then pRni!qLpbq “ 0 for higher n by
degree shifting.
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Having proved (2), property (3) follows easily. Finally (4)–(5) follow by the
usual Grothendieck spectral sequence argument starting from the adjunction iso-
morphism HomR�piV, ?q – HomRpV, ?q ˝ i

!. One just needs (2) and the observation
that i! sends injectives to injectives. �

Our next result gives an alternative characterization of lower finite ε-stratified
categories. Note for this that if R is a lower finite ε-stratified category then the
hypotheses of the theorem are automatically satisfied taking Iasc

b :“ Ipbq; cf. Corol-
lary 3.57.

Theorem 3.60 (Global characterization of lower finite ε-stratified categories).
Let R be a locally finite Abelian category equipped with a lower finite stratification
pB, L, ρ,Λ,ďq and ε : Λ Ñ t˘u be a sign function. Assume for each b P B that
Lpbq has an injective hull in Rďρpbq so that we can introduce the objects ∇εpbq in

the usual way2. Suppose that the following property holds:

(xI∇
asc

ε ) For every b P B, there exists an injective object Ib P IndpRq with an
ascending ∇ε-flag pVωqωPΩ in the sense of Definition 3.52 such that for
each ω P Ω the given ∇ε-flag of Vω has ∇εpbq at the bottom and all other
sections are of the form ∇εpcq for c P B with ρpcq ě ρpbq.

Then R is a lower finite ε-stratified category.

Proof. We must verify the condition from Definition 3.50. Let Λ� be a finite
lower set, B� :“ ρ´1pΛ�q, and R� be the corresponding Serre subcategory of R.
This is a locally finite Abelian category with irreducible objects labelled by the
finite set B�. We need to show it is a finite ε-stratified category with respect to the
induced stratification.

Step 1: Ext1
Rp∇εpaq,∇εpbqq “ 0 for ρpaq ğ ρpbq. Let pVωqωPΩ be the given as-

cending ∇ε-flag of Ib. We have that ∇εpbq ãÑ Ib and Ib{∇εpbq “
ř

ωPΩpVω{∇εpbqq.
The socle of the latter object only involves constituents Lpcq with ρpcq ě ρpbq. We
deduce that there is an injective resolution 0 Ñ ∇εpbq Ñ Ib Ñ J Ñ ¨ ¨ ¨ in IndpRq
in which J is a direct sum of Ic with ρpcq ě ρpbq. The Ext1-vanishing now follows
on applying HomRp∇εpaq, ?q to this resolution and taking homology.

Step 2: For b P B�, the object I�
b :“ i!Ib P IndpR�q has a ∇ε-flag with ∇εpbq at

the bottom and other sections of the form ∇εpcq for c P B� with ρpcq ě ρpbq. In
particular, I�

b is of finite length. Take b P B� and let pVωqωPΩ be the given ascending
∇ε-flag in Ib. Since B� is finite, we can choose some sufficiently large ω P Ω so
that pV : ∇εpcqq “ pVω : ∇εpcqq for all c P B�; these multiplicities are the given
ones from Definition 3.52. Then we see that i!Vυ “ i!Vω for all larger υ, hence,
i!V “ i!Vω. In view of Step 1, we can rearrange the ∇ε-flag of Vω so that the
sections ∇εpcq with c P B� appear below the other sections, with bottom section
∇εpbq. So there is a short exact sequence 0 Ñ Uω Ñ Vω Ñ Wω Ñ 0 such that
Uω P ∇εpR�q and i!Wω “ 0. Then we get that i!V “ i!Vω “ Uω, which has the
desired ∇ε-flag.

Step 3: R� is a finite ε-stratified category with respect to the induced stratification.
By adjunction properties, the object I�

b P R� from Step 2 is injective and it has
Lpbq in its socle. This shows that the locally finite Abelian category R� has enough
injectives, hence, it is a finite Abelian category by Lemma 2.21. Moreover, the

2We do not insist that Lpbq has a projective cover in Rďρpbq and do not need the objects ∆εpbq.
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objects I�
b pb P B�q satisfy the condition pxI∇εq from §3.2, so R� is a finite ε-stratified

category according to Definition 3.7. �

Corollary 3.61. Let R be a locally finite Abelian category, pΛ,ďq be a lower
finite poset, and L : Λ Ñ R be a function labelling a complete set of pairwise
inequivalent irreducible objects. Assume for all λ P Λ that Lpλq has an injective
hull ∇pλq P Rďλ such that r∇pλq : Lpλqs “ 1. Suppose that the following property
holds:

(xI∇
asc

) For every λ P Λ there exists an injective object Iλ P IndpRq with an
ascending ∇-flag pVωqωPΩ such that for each ω P Ω the given ∇-flag of Vω
has ∇pλq at the bottom and all other sections are of the form ∇pµq for
µ P Λ with µ ě λ

Then R is a lower finite highest weight category.

Proof. Apply the theorem taking B “ Λ and ρ to be the identity function,
using also Lemma 3.4. �

Remark 3.62. Using Corollary 3.61, it follows that R is a lower finite highest
weight category with all intervals pλ,8s in the weight poset being countable if and
only if IndpRq is a highest weight category in the original sense of [CPS1, Def. 3.1]
with a weight poset that is lower finite. This is also mentioned in [Cou3].

The following theorem gives a related characterization for lower finite fully
stratified categories. The proof is based on the well-known proof of the homolog-
ical criterion for good filtrations in the context of reductive algebra groups from
[Jan1, Prop. II.4.16]. The Ext2-vanishing property needed for this is used as one
of the defining properties in [RW, Def. 2.1]; see also [Cou3, Def. 3.1.2(:)]. We
know already that lower finite fully stratified categories automatically satisfy the
conditions of this theorem.

Theorem 3.63 (Homological characterization of lower finite fully stratfied cat-
egories). Suppose that R is a locally finite Abelian category equipped with a lower
finite stratification pB, L, ρ,Λ,ďq. Suppose that every Lpbq has a projective cover
and an injective hull in Rďρpbq so that we can introduce standard and costandard
objects. Consider the following properties:

(1) Ext1
Rp∆̄pbq,∇pcqq “ Ext2

Rp∆̄pbq,∇pcqq “ 0 for all b, c P B.
(2) Ext1

Rp∆pbq, ∇̄pcqq “ Ext2
Rp∆pbq, ∇̄pcqq “ 0 for al b, c P B.

If (1) holds then R is a lower finite ´-stratified category, and if (2) holds then R
is a lower finite `-stratified category. Hence, if both (1) and (2) hold then R is a
lower finite fully stratified category.

Proof. We will prove that (1) implies that R is a lower finite ´-stratified
category. The fact that (2) implies that R is `-stratified then follows from this
assertion with R replaced by Rop. Hence, if both hold then R is fully stratified
thanks to Lemma 3.20(iii).

So now we just assume (1). Define ascending ∇-flags and the corresponding
full subcategory ∇ascpRq by repeating the ε “ ´ case of Definition 3.52. We first
establish two claims.

Claim 1: For V P ∇ascpRq, we have that Ext1
Rp∆̄pbq, V q “ 0 for all b P B. More-

over, the multiplicity pV : ∇pbqq defined from a specific choice of ascending ∇-flag
in V is equal to dim HomRp∆̄pbq, V q. For any c P B, we have as always that
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dim HomRp∆̄pbq,∇pcqq “ δb,c, and moreover Ext1
Rp∆̄pbq,∇pcqq “ 0 by property

(1). Hence, Claim 1 holds when the ∇-flag is of finite length. Then it follows
for arbitrary V P ∇ascpRq by the same arguments as used to prove Lemmas 3.53
and 3.54 above, using the special case just established in place of the references to
Theorems 3.11 and 3.14 made in those proofs.

Claim 2: If V P IndpRq satisfies dim HomRp∆̄pbq, V q ă 8 and Ext1
Rp∆̄pbq, V q “ 0

for all b P B then V has an ascending ∇-flag pVωqωPΩ. Let Ω be the poset of finite
lower sets in Λ ordered by containment. For ω “ Λ� P Ω, define Vω to be the
subobject i!V where i : R� Ñ R is the inclusion of the Serre subcategory of R
associated to B� :“ ρ´1pΛ�q. This defines a direct system pVωqωPΩ of subobjects
of V . We prove the claim by establishing the following:

(a) Each Vω pω P Ωq has a finite ∇-flag.
(b) V “

ř

ωPΩ Vω.

To check (a), take ω “ Λ� P Ω setting B� :“ ρ´1pΛ�q once again. We show
that Vω has a finite ∇-flag by induction on npV q :“

ř

bPB� dim HomRp∆̄pbq, V q. If
npV q “ 0 then Vω “ 0 and there is nothing to do. If npV q ą 0, let λ be minimal
such that dim HomRp∆̄pbq, V q ‰ 0 for some b P Bλ. Then HomRpLpcq, V q “ 0
for c P Băλ and HomRpLpbq, V q ‰ 0. By applying HomRp?, V q to the short
exact sequence 0 Ñ K Ñ ∆̄pcq Ñ Lpcq Ñ 0, it follows that Ext1

RpLpcq, V q “
0 for all c P Bďλ. Then by applying HomRp?, V q to the short exact sequence
0 Ñ Lpbq Ñ ∇pbq Ñ Q Ñ 0, it follows that the natural map HomRp∇pbq, V q Ñ
HomRpLpbq, V q is surjective. Since the right hand space is non-zero and soc ∇pbq “
Lpbq, it follows that there is an injective homomorphism f : ∇pbq Ñ V . Let
U :“ im f and W :“ V {U . Thus, U – ∇pbq and there is a short exact sequence
0 Ñ U Ñ V Ñ W Ñ 0. Applying HomRp∆̄paq, ?q and using the hypotheses
Ext1

Rp∆̄paq, Uq “ Ext1
Rp∆̄paq, V q “ Ext2

Rp∆̄paq, Uq “ 0, we deduce that npW q ă
npV q and Ext1

Rp∆̄paq,W q “ 0 for all a P B. Thus we can apply induction to prove
that Wω has a finite ∇-flag. Since Vω “Wω{U it follows that Vω does too, and (a)
is proved. To check (b), we let V 1 :“

ř

ωPΩ Vω and show that V “ V 1 by repeating
the argument from the proof of (ii)ñ(i) in Theorem 3.56 with ∆εpbq replaced by
∆̄pbq, using Claim 1 to get that Ext1

Rp∆̄pbq, V
1q “ 0. Thus, we have proved Claim

2.

Now we complete the proof of the theorem. For b P B, let Ib :“ Ipbq. Like in
the proof of Corollary 3.57, Claims 1 and 2 imply that Ib has an ascending ∇-flag
pVωqωPΩ with pIb : ∇pcqq “ r∆̄pcq : Lpbqs. By passing to a subset of Ω if necessary,

we may assume that all Vω are non-zero. It follows that the condition (xI∇
asc

´ ) from
Theorem 3.60 is satisfied, and R is a lower finite ´-stratified category. �

Corollary 3.64. Suppose that R is a locally finite Abelian category, pΛ,ďq is
a lower finite poset, and L : Λ Ñ R is a function labelling a complete set of pairwise
inequivalent irreducible objects. Assume Lpλq has both an injective hull ∇pλq and
a projective cover ∆pλq in Rďλ. Suppose that the following properties hold for all
λ, µ P Λ:

(i) HomRp∆pλq,∇pλqq is one-dimensional;
(ii) Ext1

Rp∆pλq,∇pµqq “ Ext2
Rp∆pλq,∇pµqq “ 0.

Then R is a lower finite highest weight category.
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Proof. Property (i) implies that all strata are simple; cf. Lemma 3.4. Now
apply the theorem. �

Corollary 3.64 applies in particular to the category R “ ReppGq for a reductive
algebraic group G; see §6.4. The Ext-vanishing properties in the corollary are
consequences of Kempf’s vanishing theorem; see [Jan1, Prop. II.4.13].

3.6. Refining stratifications in fully stratified categories

We end the chapter by formulating a basic lemma about refinement of stratifi-
cations in fully stratified categories in any of the settings (finite, essentially finite,
upper finite or lower finite).

Definition 3.65. Let pB, L, ρ,Λ,ďq be a stratification of an Abelian category
R. A refinement of it means a stratification pB, L, σ,Γ,ĺq of R with the same
underlying labelling function together with a surjective function q : Γ � Λ such
that the following properties hold:

(R1) ΓX Λ “ ∅.
(R2) ρ “ q ˝ σ.
(R3) For β, γ P Γ, we have that β ĺ γ ñ qpβq ď qpγq and qpβq ă qpγq ñ β ă γ.

In the setup of Definition 3.65, if one of the stratifications is admissible of one
of our four types then the other one is automatically admissible of the same type.
Assuming this is the case, take γ P Γ and set λ :“ qpγq. We have the stratum
Rλ :“ Rďλ{Răλ with quotient functor jλ coming from the original stratification,
and the stratum Rγ :“ Rĺγ{Răγ with quotient functor jγ coming from the refined
stratification3. There is also an induced finite stratification pρλ,Bλ,Γ,ĺ, Lλq on Rλ

defined by setting ρλ :“ ρ|Bλ and Lλpbq :“ jλLpbq for each b P Bλ. We denote the
stratum of this labelled by γ by Rλ,γ with quotient functor pjλq

γ : Rλ,ĺγ Ñ Rλ,γ .
In fact, Rλ,γ may naturally be identified with Rγ so that jγ “ pjλq

γ ˝ jλ|Rĺγ
. Now

one can denote the standard and proper objects of R for the original stratification
by

 

ρ∆pbq :“ jλ! Pλpbq
ˇ

ˇ λ P Λ, b P Bλ

(

,
 

ρ∆̄pbq :“ jλ! Lλpbq
ˇ

ˇ λ P Λ, b P Bλ

(

,

and the standard and proper standard objects of R for the refined stratification by
 

σ∆pbq :“ jγ! Pγpbq
ˇ

ˇ γ P Γ, b P Bγ

(

,
 

σ∆̄pbq :“ jγ! Lγpbq
ˇ

ˇ γ P Γ, b P Bγ

(

.

The standard and proper standard objects of Rλ for its induced stratification are
 

∆λpbq :“ pjλq
γ
! Pγpbq

ˇ

ˇ b P
Ť

γPq´1pλqBγ

(

,
 

∆̄λpbq :“ pjλq
γ
! Lγpbq

ˇ

ˇ b P
Ť

γPq´1pλqBγ

(

,

and for such b we have that σ∆pbq “ jλ! ∆λpbq, σ∆̄pbq “ jλ! ∆̄λpbq since jγ! “

jλ! ˝ pjλq
γ
! . We deduce for all b P B that

ρ∆pbq� σ∆pbq, σ∆̄pbq� ρ∆̄pbq,(3.14)

Similar notation can be introduced for the costandard objects, and one sees that

ρ∇̄pbq ãÑ σ∇̄pbq, σ∇pbq ãÑ ρ∇pbq(3.15)

since jγ˚ “ jλ˚ ˝ pjλq
γ
˚.

3The axiom (R1) is needed so that this notation is unambiguous.
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Lemma 3.66. Let R be an Abelian category equipped with an admissible strat-
ification pB, L, ρ,Λ,ďq. Let pB, L, σ,Γ,ĺq be a refinement of it in the sense of
Definition 3.65.

(1) If R is fully stratified with respect to the original stratification, and the
strata Rλ are fully stratified with respect to their induced stratifications for
all λ P Λ, then R is fully stratified with respect to the refined stratification.

(2) If R is fully stratified with respect to the refined stratification, and the
functors jλ! , j

λ
˚ : Rλ Ñ Rďλ are exact for all λ P Λ, then R is fully

stratified with respect to the original stratification.

Proof. Due to the local nature of the definition of “fully stratified” in the
lower finite case, the proof reduces just to the finite, essentially finite and upper
finite cases. We assume we are in one of these three situations for the remainder of
the argument.

(1) Note that the functors jγ! and jγ˚ are exact since they are compositions of exact
functors. In view of Lemma 3.20(iv), it remains to show that P pbq has a σ∆-
flag with σ∆pbq at the top and other sections of the form σ∆pcq for c P B with
σpcq ą σpbq. To see this, let λ :“ ρpbq. As R is fully stratified with respect to the
original stratification, P pbq has a ρ∆-flag with ρ∆pbq at the top and other sections
of the form ρ∆pcq for c P B with ρpcq ą ρpbq. Moreover each ρ∆pbq has a σ∆-
flag with σ∆pbq at the top and other sections of the form σ∆pcq for c P Bλ with
σpcq ą σpbq; this follows by applying the exact functor jλ! to a ∆λ-flag in Pλpbq.

(2) To show that R is fully stratified with respect to the original stratification,
both jλ! and jλ˚ are exact by assumption, so it suffices to show that each P pbq has a
ρ∆̄-flag. This follows because P pbq has a σ∆̄-flag and each σ∆̄pbq has a ρ∆̄pbq-flag;
to see the latter assertion apply the exact functor jλ! to a composition series of
∆̄λpbq. �

Corollary 3.67. Let R be fully stratified category with stratification denoted
pB, L, ρ,Λ,ďq. Assume that each stratum Rλ pλ P Λq is a highest weight category

with weight poset pΓλ,ĺλq and labelling function Lλ. Let Γ :“
Ů

λPΛ Γλ, σ : B
„
Ñ Γ

be the bijection such that jλLpbq – Lλpσpbqq for b P Bλ, and ĺ be the partial order
on Γ defined by σpbq ĺ σpcq if and only if either ρpbq ă ρpcq, or λ :“ ρpbq “ ρpcq
and σpbq ĺλ σpcq. Then pB, L, σ,Γ,ĺq is a refinement of the original stratification
which makes R into a highest weight category.

Remark 3.68. It is also interesting to consider changing the underlying partial
order on the set Λ. For a fully stratified category R, one can always replace the given
order ď by the minimal order ĺ, that is, the partial order generated by the relation
that λ ă µ if r∇pbq : Lpcqs ` r∆̄rbs : Lpcqs ‰ 0 for some b P Bλ, c P Bµ. Then R is
also fully stratified with respect to pB, L, ρ,Λ,ĺq with all the same strata, standard
objects, etc.. For highest weight categories, Coulembier [Cou2], [Cou3] has made
the following elegant observation: if R is a finite Abelian, locally finite Abelian or
Schurian category, tLpλq | λ P Λu is a full set of pairwise inequivalent irreducible
objects, and R possesses a contravariant autoequivalence preserving isomorphism
classes of irreducible objects, then all partial orders on Λ making R into a highest
weight category give rise to the same minimal order. There are examples showing
that this statement is false for essentially finite highest weight categories.



CHAPTER 4

Tilting modules and semi-infinite Ringel duality

We now develop the theory of tilting objects and Ringel duality. Even in the
finite case, we are not aware of a complete exposition of these results in the existing
literature in the general ε-stratified setting.

4.1. Tilting objects in the finite and lower finite cases

In this section, R is a finite or locally finite Abelian category with a finite or
lower finite stratification pB, L, ρ,Λ,ďq, and ε : Λ Ñ t˘u is a fixed sign function
with respect to which R is a finite or lower finite ε-stratified category, respectively;
see Definitions 3.7 and 3.50. By an ε-tilting object, we mean an object of the
following full subcategory of R:

(4.1) T iltεpRq :“ ∆εpRq X∇εpRq.

The following shows that the additive subcategory T iltεpRq of R is Karoubian.

Lemma 4.1. Direct summands of ε-tilting objects are ε-tilting objects.

Proof. This follows easily from the homological criteria from Theorems 3.11
and 3.14. In the lower finite case, one needs to pass first to a finite ε-stratified
subcategory containing the object in question using Theorem 3.59. �

The next goal is to construct and classify ε-tilting objects. Our exposition of
this is based roughly on [Don4, Appendix], which in turn goes back to the work of
Ringel [Rin]. There are some additional complications in the ε-stratified setting.

Theorem 4.2 (Classification of ε-tilting objects). Assume that R is a finite
or lower finite ε-stratified category. For b P Bλ there is an indecomposable object
Tεpbq P T iltεpRq satisfying the following properties:

(i) Tεpbq has a ∆ε-flag with bottom section isomorphic to ∆εpbq;
(ii) Tεpbq has a ∇ε-flag with top section isomorphic to ∇εpbq;

(iii) Tεpbq P Rďλ and jλTεpbq –

"

Pλpbq if εpλq “ `
Iλpbq if εpλq “ ´

.

These properties determine Tεpbq uniquely up to isomorphism: if U is any inde-
composable object of T iltεpRq satisfying any one of the properties (i)–(iii) then
U – Tεpbq; hence, it satisfies the other two properties as well.

Proof. By replacing R by the Serre subcategory associated to a sufficiently
large but finite lower set Λ� in Λ, chosen so as to contain λ and (for the uniqueness
statement) all ρpbq for b such that rT : Lpbqs ‰ 0, one reduces to the case that R is
a finite ε-stratified category. This reduction depends only on Theorem 3.59. Thus,
we may assume henceforth that Λ is finite.

59



60 4. TILTING MODULES AND SEMI-INFINITE RINGEL DUALITY

Existence: The main step is to construct an indecomposable object Tεpbq P T iltεpRq
such that (iii) holds. The argument for this proceeds by induction on |Λ|. If
λ P Λ is minimal, we set Tεpbq :“ ∆pbq if εpλq “ ` or ∇pbq if εpλq “ ´. Since
∆̄pbq “ Lpbq “ ∇̄pbq by the minimality of λ, this has both a ∆ε- and a ∇ε-flag. It
is indecomposable, and we get (iii) from Lemma 2.27.

For the induction step, suppose that λ is not minimal and pick µ ă λ that is
minimal. Let Λ� :“ Λztµu,B� :“ ρ´1pΛ�q, and j : R Ñ R� be the corresponding
Serre quotient. By induction, there is an indecomposable object T �

ε pbq P T iltεpR�q

satisfying the analog of (iii). Now there are two cases according to whether εpµq “ `
or ´.

Case εpµq “ `: For any V P R, let d`pV q :“
ř

cPBµ
dim Ext1

Rp∆pcq, V q. We

recursively construct n ě 0 and T0, T1, . . . , Tn so that d`pT0q ą d`pT1q ą ¨ ¨ ¨ ą

d`pTnq “ 0 and the following properties hold for all m:

(1) Tm P ∆εpRq.
(2) jλTm – Pλpbq if εpλq “ ` or Iλpbq if εpλq “ ´.
(3) Ext1

Rp∆εpaq, Tmq “ 0 for all a P BzBµ.

To start with, set T0 :“ j!T
�
ε pbq. This satisfies all of the above properties: (1)

follows from Theorem 3.18(6); (2) follows because jλ factors through j and we
know that T �

ε pbq satisfies the analogous property; (3) follows by Theorem 3.18(5).
For the recursive step, assume that we are given Tm satisfying (1), (2) and (3) and
d`pTmq ą 0. We can find c P Bµ and a non-split extension

(4.2) 0 ÝÑ Tm ÝÑ Tm`1 ÝÑ ∆pcq ÝÑ 0.

This constructs Tm`1. We claim that d`pTm`1q ă d`pTmq and that Tm`1 satisfies
(1), (2) and (3) too. Part (1) is clear from the definition. For (2), we just apply
the exact functor jλ to the exact sequence (4.2), noting that jλ∆pcq “ 0. For (3),
take a P BzBµ and apply the functor HomRp∆εpaq, ?q to the short exact sequence
(4.2) to get

Ext1
Rp∆εpaq, Tmq ÝÑ Ext1

Rp∆εpaq, Tm`1q ÝÑ Ext1
Rp∆εpaq,∆pcqq.

The first and last term are zero by hypothesis and (3.10), hence, so is the mid-
dle term. It remains to show d`pTm`1q ă d`pTmq. For a P Bµ, we have that

Ext1
Rp∆paq,∆pcqq “ 0 by (3.10), so again we have an exact sequence

HomRp∆paq,∆pcqq
f
ÝÑ Ext1

Rp∆paq, Tmq ÝÑ Ext1
Rp∆paq, Tm`1q ÝÑ 0.

This shows that dim Ext1
Rp∆paq, Tm`1q ď dim Ext1

Rp∆paq, Tmq, and we just need
to observe that the inequality is actually a strict one in the case a “ c. To see this,
note that the first morphism f is non-zero in the case a “ c as fpid∆pcqq ‰ 0 due
to the fact that the original short exact sequence was not split. This completes
the proof of the claim. We have now defined an object Tn P ∆εpRq such that
jλTn – Pλpbq if εpλq “ ` or Iλpbq if εpλq “ ´, and moreover Ext1

Rp∆εpaq, Tnq “ 0
for all a P B. By Theorem 3.11, we deduce that Tn P ∇εpRďλq too, hence, it is an
ε-tilting object. Decompose Tn into indecomposables Tn “ Tn,1 ‘ ¨ ¨ ¨ ‘ Tn,r. Then
each Tn,i is also an ε-tilting object by Lemma 4.1. Since jλTn is indecomposable,
we must have that jλTn “ jλTn,i for some unique i. Then we set Tεpbq :“ Tn,i for
this i. This gives us the desired indecomposable ε-tilting object.
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Case εpµq “ ´: Let d´pV q :“
ř

cPBµ
dim Ext1

RpV,∇pcqq. This time, one recursively

constructs T0 :“ j˚T
�
ε pbq, T1, . . . , Tn so that d´pT0q ą ¨ ¨ ¨ ą d´pTnq “ 0 and

(11) Tm P ∇εpRq.
(21) jλTm – Pλpbq if εpλq “ ` or Iλpbq if εpλq “ ´.
(31) Ext1

RpTm,∇εpaqq “ 0 for all a P BzBµ.

Since this is this is just the dual construction to the case εpµq “ ` already treated,
i.e., it is the same construction in the opposite category, we omit the details. Then,
at the end, one decomposes Tn into indecomposables Tn “ Tn,1 ‘ ¨ ¨ ¨ ‘ Tn,r. By
Theorem 3.14 each Tn,i is an ε-tilting object. Since jλTn is indecomposable, we
must have that jλTn “ jλTn,i for some unique i, and set Tεpbq :“ Tn,i for this i.

This completes the construction of Tεpbq in general. We have shown it satisfies
(iii). Let us show that it also satisfies (i) and (ii). For (i), we know by (iii) that
Tεpbq belongs to Rďλ, and it has a ∆ε-flag. By (3.10), we may order this flag so
that the sections ∆εpcq for c P Bλ appear at the bottom. Thus, there is a short
exact sequence 0 Ñ K Ñ Tεpbq Ñ QÑ 0 such that K has a ∆ε-flag with sections
∆εpcq for c P Bλ and jλQ “ 0. Then jλK – jλTεpbq. If εpλq “ `, this is Pλpbq.
Since jλ is exact and jλ∆pcq “ Pλpcq for each c P Bλ, we must have that K – ∆pbq,
and (1) follows. Instead, if εpλq “ ´, the bottom section of the ∇̄-flag of K must
be ∇̄pbq since jλK – Iλpbq has irreducible socle Lλpbq, giving (i) in this case too.
The proof of (ii) is similar.

Uniqueness: Let T :“ Tεpbq and U be some other indecomposable object of T iltεpRq
satisfying one of the properties (i)–(iii). We must prove that T – U . By the
argument from the previous paragaph, we may assume actually that U satisfies
either (i) or (ii). We just explain how to see this in the case that U satisfies (i); the
dual argument treats the case that U satisfies (ii). So there are short exact sequences

0 Ñ ∆εpbq
f
Ñ U Ñ Q1 Ñ 0 and 0 Ñ ∆εpbq

g
Ñ T Ñ Q2 Ñ 0 such that Q1, Q2

have ∆ε-flags. Applying HomRp?, T q to the first and using Ext1
RpQ1, T q “ 0, we

get that HomRpU, T q � HomRp∆εpbq, T q. Hence, g extends to a homomorphism
ḡ : U Ñ T . Similarly, f extends to f̄ : T Ñ U . We have constructed morphisms
making the triangles in the following diagram commute:

U

∆εpbq

T

ḡ

f

g

f̄

Since f̄ ˝ ḡ˝f “ f , we deduce that f̄ ˝ ḡ is not nilpotent. Since U is indecomposable,
Fitting’s Lemma implies f̄ ˝ ḡ is an isomorphism. Similarly, so is ḡ ˝ f̄ . Hence,
U – T . �

Remark 4.3. Let b P Bλ. When εpλq “ `, Theorem 4.2 implies that pTεpbq :
∆εpbqq “ 1 and pTεpbq : ∆εpcqq “ 0 for all other c P Bλ. Similarly, when εpλq “ ´,
we have that pTεpbq : ∇εpbqq “ 1 and pTεpbq : ∇εpcqq “ 0 for all other c P Bλ.

The following corollaries show that ε-tilting objects behave well with respect
to passage to lower and upper sets, extending Theorems 3.17, 3.59 and 3.18. This
follows easily from those theorems plus the characterization of tilting objects in
Theorem 4.2; the situation is just like [Don4, Lem. A4.5].
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Corollary 4.4. Let R be a finite or lower finite ε-stratified category and R�

be the finite ε-stratified subcategory associated to a finite lower set Λ� of Λ. For
b P B� :“ ρ´1pΛ�q, the corresponding indecomposable ε-tilting object of R� is Tεpbq
(the same as in R).

Corollary 4.5. Assume R is a finite ε-stratified category and let Λ� be an
upper set in Λ with associated quotient j : R Ñ R�. Let b P B� :“ ρ´1pΛ�q. The
corresponding indecomposable ε-tilting object T �

ε pbq of R� satisfies T �
ε pbq – jTεpbq.

Also jTεpbq “ 0 if b R B�.

The next result is concerned with tilting resolutions.

Definition 4.6. Assume that R is a finite or lower finite ε-stratified category.
An ε-tilting resolution d : T‚ Ñ V of V P R is the data of an exact sequence

¨ ¨ ¨
d2
ÝÑ T1

d1
ÝÑ T0

d0
ÝÑ V ÝÑ 0

such that

(TR1) Tm P T iltεpRq for each m “ 0, 1, . . . ;
(TR2) im dm P ∇εpRq for m " 0.

Similarly, an ε-tilting coresolution d : V Ñ T ‚ of V P R is the data of an exact
sequence

0 ÝÑ V
d0

ÝÑ T 0 d1

ÝÑ T 1 d2

ÝÑ ¨ ¨ ¨

such that

(TC1) Tm P T iltεpRq for m “ 0, 1, . . . ;
(TC2) coim dm P ∆εpRq for m " 0.

We say it is a finite resolution (resp., coresolution) if there is some n such that
Tm “ 0 (resp., Tm “ 0) for m ą n. Note in the finite case that axioms (TR2) and
(TC2) are redundant since the zero object belongs to both ∇εpRq and ∆εpRq.

Lemma 4.7. Assume that R is a finite or lower finite ε-stratified category.

(1) If d : T‚ Ñ V is an ε-tilting resolution of V P R then im dm P ∇εpRq for
all m ě 0. In particular, V P ∇εpRq.

(2) If d : V Ñ T ‚ is an ε-tilting coresolution of V P R then coim dm P ∆εpRq
for all m ě 0. In particular, V P ∆εpRq.

Proof. (1) It suffices to show for any exact sequence A
f
Ñ B

g
Ñ C in a finite

or lower finite ε-stratified category that B P ∇εpRq and im f P ∇εpRq implies
im g P ∇εpRq. Since im f “ ker g, there is a short exact sequence 0 Ñ im f Ñ B Ñ
im g Ñ 0. Now apply Corollary 3.13 (or Corollary 3.58).

(2) An ε-tilting coresolution of V in R is the same thing as a p´εq-tilting resolution
of V in Rop. Hence, this follows as it is the dual statement to (1). �

Theorem 4.8 (Tilting resolutions and coresolutions). Let R be a finite or lower
finite ε-stratified category and take V P R.

(1) V has an ε-tilting resolution if and only if V P ∇εpRq.
(2) V has an ε-tilting coresolution if and only if V P ∆εpRq.

Proof. We just prove (1), since (2) is the equivalent dual statement. If V has
an ε-tilting resolution, then we must have that V P ∇εpRq thanks to Lemma 4.7(1).
For the converse, we claim for V P ∇εpRq that there is a short exact sequence
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0 Ñ SV Ñ TV Ñ V Ñ 0 with SV P ∇εpRq and TV P T iltεpRq. Given the
claim, one can construct an ε-tilting resolution of V by “Splicing” (e.g., see [Wei,
Fig. 2.1]), to complete the proof.

To prove the claim, we argue by induction on the length
ř

bPBpV : ∇εpbqq
of a ∇ε-flag of V . If this number is one, then V – ∇εpbq for some b P B, and
there is a short exact sequence 0 Ñ SV Ñ TV Ñ V Ñ 0 with SV P ∇εpbq and
TV :“ Tεpbq due to Theorem 4.2(ii). If it is greater than one, then there is a short
exact sequence 0 Ñ U Ñ V Ñ W Ñ 0 such that U and W have strictly shorter
∇ε-flags. By induction, there are short exact sequences 0 Ñ SU Ñ TU Ñ U Ñ 0
and 0 Ñ SW Ñ TW Ñ W Ñ 0 with SU , SW P ∇εpRq and TU , TW P T iltεpRq.
It remains to show that these short exact sequences can be assembled to produce
the desired short exact sequence for V . The argument is like in the proof of the
Horseshoe Lemma in [Wei, Lem. 2.2.8].

(4.3)

0 0 0

0 SU TU U 0

0 SV TV V 0

0 SW TW W 0

0 0 0

i

f

j

gk̂

k

Since Ext1
RpTW , Uq “ 0, we can lift k : TW ÑW to k̂ : TW Ñ V so that k “ g ˝ k̂.

Let TV :“ TU ‘TW and j : TV Ñ V be diagpfi, k̂q. This gives us a split short exact
sequence in the middle column in (4.3), such that the right hand squares commute.
Then we let SV :“ ker j, and see that there are induced maps making the left hand
column and middle row into short exact sequences such that the left hand squares
commute too. �

4.2. Finite Ringel duality

In this section, we review the theory of Ringel duality for finite ε-stratified
categories. Our exposition is based in part on [Don4, Appendix], which gives a
self-contained treatment in the highest weight setting, and [AHLU], where the
`-highest weight case is considered assuming Λ “ t1 ă ¨ ¨ ¨ ă nu; the survey in
[Rei, Ch. 3] is also helpful. Throughout, we assume that R is a finite ε-stratified
category with the usual stratification pB, L, ρ,Λ,ďq.

Definition 4.9. Let R be a finite ε-stratified category. By an ε-tilting gen-
erator T for R, we mean an object T P T iltεpRq such that T has a summand
isomorphic to Tεpbq for each b P B. Given such an object, we define the Ringel
dual of R relative to T to be the finite Abelian category R1 :“ B-modfd where
B :“ EndRpT q

op. We also define the two (covariant) Ringel duality functors

F :“ HomRpT, ?q : RÑ R1,(4.4)

G :“ CohomRpT, ?q “ HomRp?, T q
˚ : RÑ R1.(4.5)
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Note for the second of these that HomRpV, T q is naturally a finite-dimensional right
B-module for V P R, hence, its dual is a left B-module.

Theorem 4.10 (Finite Ringel duality). In the setup of Definition 4.9, the
Ringel dual R1 of R relative to T is a finite p´εq-stratified category with stratifica-
tion pB, L1, ρ,Λ,ěq and distinguished objects

P 1pbq “ FTεpbq, I 1pbq “ GTεpbq, L1pbq “ hd P 1pbq – soc I 1pbq,

∆1´εpbq “ F∇εpbq, ∇1´εpbq “ G∆εpbq, T 1´εpbq “ FIpbq – GP pbq.

The restrictions F : ∇εpRq Ñ ∆´εpR1q and G : ∆εpRq Ñ ∇´εpR1q are equiva-
lences; in fact, they induce isomorphisms

ExtnRpV1, V2q – ExtnR1pFV1, FV2q, ExtnRpW1,W2q – ExtnR1pGW1, GW2q,(4.6)

for all Vi P ∇εpRq, Wi P ∆εpRq and n ě 0.

Before the proof, we give some applications.

Corollary 4.11 (Double centralizer property). Suppose that the finite ε-
stratified category R in Theorem 4.10 is A-modfd for a finite-dimensional algebra
A, so that T is an pA,Bq-bimodule. Let T 1 :“ T˚ be the dual pB,Aq-bimodule.
Then the following holds.

(1) T 1 is a p´εq-tilting generator for R1 “ B-modfd and there is an algebra
isomorphism

(4.7) µ : A
„
Ñ EndR1pT

1qop

sending x P A to µpxq : T 1 Ñ T 1, v ÞÑ vx. So the Ringel dual of R1 relative
to T 1 is equivalent to the original category R.

(2) Denote the Ringel duality functors for R1 relative to T 1 now by

G˚ :“ HomR1pT
1, ?q : R1 Ñ R,(4.8)

F˚ :“ CohomR1pT
1, ?q “ HomR1p?, T

1q˚ : R1 Ñ R.(4.9)

We have that F˚ – TbB? and G – T 1bA?, hence, pF˚, F q and pG,G˚q
are adjoint pairs.

Proof. (1) Note that GA is a p´εq-tilting generator since GP pbq – T 1´εpbq
for b P B. Actually, GA “ HomApA, T q

˚ – T˚ “ T 1. Thus, T 1 is a p´εq-tilting
generator for R1. Its opposite endomorphism algebra is isomorphic to A as stated
since G defines an algebra isomorphism

A – EndApAq
op „
Ñ EndBpGAq

op – EndBpT
1qop.

(2) As F˚ is right exact and commutes with direct sums, a standard argument
using the Five Lemma shows that it is isomorphic to pF˚BqbB? – TbB?. Thus,
F˚ is left adjoint to F . Similarly, G – T 1bA? is left adjoint to G˚. �

The next corollary describes the strata R1λ of the Ringel dual category; see also
Lemma 4.41 below. For λ P Λ, denote the quotient functor R1ěλ Ñ R1λ by pj1qλ,

and denote its left and right adjoints by pj1qλ! : R1λ Ñ R1ěλ and pj1qλ˚ : R1λ Ñ R1ěλ.
We also have the inclusion pi1qěλ : R1ěλ Ñ R1 with left and right adjoints pi1q˚

ěλ

and pi1q!ěλ.

Corollary 4.12. For λ P Λ, the strata Rλ and R1λ are equivalent. More
precisely:
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(1) If εpλq “ ` the functor Fλ :“ pj1qλ ˝ pi1q!ěλ ˝F ˝ iďλ ˝ j
λ
˚ : Rλ Ñ R1λ is an

equivalence of categories taking Lλpbq “ jλLpbq to L1λpbq “ pj
1qλL1pbq.

(2) If εpλq “ ´ the functor Gλ :“ pj1qλ ˝ pi1q˚
ěλ ˝ G ˝ iďλ ˝ j

λ
! : Rλ Ñ R1λ is

an equivalence of categories taking Lλpbq “ jλLpbq to L1λpbq “ pj
1qλL1pbq.

Proof. We just prove (1), since (2) is similar. So assume that εpλq “ `. We
first note that Fλ is exact. Indeed, jλ˚ is exact by Theorem 3.5, so it sends objects
of Rλ to objects of Rďλ which have filtrations with sections ∇εpbq for b P Bλ. Then
we apply the exact functor iďλ followed by F , which takes short exact sequences
in ∇εpRq to short exact sequences in ∆εpRq, to obtain an object of ∆´εpR1ěλq.
The functor pi1q!ěλ is the identity on this subcategory, and finally pj1qλ is exact.
Adopting the setup of Corollary 4.11, we can also define

F˚λ :“ jλ ˝ i˚ďλ ˝ F
˚ ˝ pi1qěλ ˝ pj

1qλ! : R1λ Ñ Rλ.

A similar argument to before gives that this is exact too. We complete the proof
by showing that Fλ and F˚λ are quasi-inverse equivalences. Note that F˚λ is left
adjoint to Fλ. The counit of adjunction gives us a natural transformation F˚λ ˝Fλ Ñ
IdRλ

. We claim this is an isomorphism. Since both functors are exact, it suffices
to prove this on irreducible objects: we have F˚λ pFλLλpbqq – F˚λL

1
λpbq – Lλpbq.

Similar argument shows that the unit of adjunction is an isomorphism in the other
direction. �

Corollary 4.13. Let R be a finite ε-stratified category.

(1) All V P ∇εpRq have finite ε-tilting resolutions if and only if all positive
strata are of finite global dimension.

(2) All V P ∆εpRq have finite ε-tilting coresolutions if and only if all negative
strata are of finite global dimension.

Proof. We just explain the proof of (1). By Theorem 4.10, all V P ∇εpRq
have finite ε-tilting resolutions if and only if all V 1 P ∆´εpR1q have finite projective
resolutions. By Lemma 3.23(1), this is equivalent to all negative strata of the p´εq-
stratified category R1 are of finite global dimension. Equivalently, by Corollary 4.12,
all positive strata of the ε-stratified category R are of finite global dimension. �

Corollary 4.14. If R is a finite `-stratified (resp., ´-stratified) category then
all V P ∆pRq (resp., V P ∇pRq) have finite `-tilting coresolutions (resp., finite ´-
tilting resolutions).

The next theorem follows as a consequence of Happel’s tilting theory for finite-
dimensional algebras. To prepare for this, we explain the connection between ε-
tilting objects in our setting and the general notions of tilting and cotilting modules
from that theory; e.g., see [Hap], [Rei]. Suppose that R “ A-modfd is a finite
ε-stratified algebra for a finite-dimensional algebra A, and let T be an ε-tilting
generator for R. If all negative strata are of finite global dimension (this assumption
being vacuous in the case ε “ `) then T is a tilting module in the sense of tilting
theory; if all positive strata are of finite global dimension (this assumption being
vacuous in the case ε “ ´) then T is a cotilting module. These assertions follow
using Theorem 3.11 to see that Ext1

RpT, T q “ 0, Lemma 3.23 to see that pdT ă 8
or idT ă 8, and Corollary 4.13. Without assumptions on the global dimensions
of strata, T need not be tilting or cotilting, but Theorem 4.8 implies that it is still
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an example of a Wakamatsu tilting module1 as defined in [BR, Ch. 3]; see also
[Rei, §4.1]. The WT-conjecture formulated in [BR, Ch. 3] is the assertion that any
Wakamatsu tilting module of finite projective (resp., injective) dimension is tilting
(resp., cotilting). This motivates the following conjecture in our special situation;
we will prove this assuming a mild additional hypothesis on strata in Lemma 4.38
below.

Conjecture 4.15 (εT-conjecture). Suppose that R is a finite fully stratified
category and ε is a given sign function. For b P B, the ε-tilting module Tεpbq is of
finite projective (resp., injective) dimension if and only if Tεpbq belongs to T ilt`pRq
(resp., T ilt´pRq).

Let RF and LG be the total derived functors of the Ringel duality functors.
These are triangulated functors between the bounded derived categories DbpRq and
DbpR1q.

Theorem 4.16 (Derived equivalences). Let R1 be the Ringel dual of a finite
ε-stratified category R. Assume that all negative strata (resp., all positive strata)
of R are of finite global dimension. Then RF : DbpRq Ñ DbpR1q (resp., LG :
DbpRq Ñ DbpR1q) is an equivalence of triangulated categories. Moreover, if R is
of finite global dimension, then so is R1.

Proof. Assuming R has finite global dimension, this all follows by [Hap,
Lem. 2.9, Th. 2.10]; the hypotheses there hold thanks to Corollary 4.13. To get
the derived equivalence without assuming R has finite global dimension, we cite
instead Keller’s exposition of Happel’s result in [Kel, Th. 4.1], since it assumes
slightly less; the hypotheses (a) and (c) there hold due to Corollary 4.13(2) and
Lemma 3.23(1). �

Corollary 4.17. If R is `-highest weight (resp., ´-highest weight) and R1
is the Ringel dual relative to a `-tilting generator (resp., ´tilting generator), then
RF : DbpRq Ñ DbpR1q (resp., LG : DbpRq Ñ DbpR1q) is an equivalence.

Proof of Theorem 4.10. This follows the same steps as in [Don4, pp.158–
160]. Assume without loss of generality that R “ A-modfd for a finite-dimensional
algebra A. For each b P B, let fb P B “ EndBpT q

op be an idempotent such that
Tfb – Tεpbq. Then P 1pbq :“ Bfb is an indecomposable projective B-module and
the modules

 

L1pbq :“ hd P 1pbq
ˇ

ˇ b P B
(

give a full set of pairwise inequivalent irreducible left B-modules. Since R1 is a
finite Abelian category, it is immediate that pB, L1, ρ,Λ,ěq is a stratification of it.
Let ∆1´εpbq and ∇1´εpbq be the p´εq-standard and p´εq-costandard objects of R1
defined from this stratification. Set V pbq :“ F∇εpbq.

Step 1: For b P B we have that P 1pbq – FTεpbq. This follows immediately from the
equality HomApT, T qfb “ HomApT, Tfbq.

Step 2: The functor F sends short exact sequences of objects in ∇εpRq to short
exact sequences in R1. This follows because Ext1

RpT, V q “ 0 for V P ∇εpRq by the
usual Ext1-vanishing between ∆ε- and ∇ε-filtered objects.

1With this in mind, the fact that the map (4.7) is an isomorphism could also be deduced from
[Wak, Cor. 2].
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Step 3: For a, b P B, we have that rV pbq : L1paqs “ pTεpaq : ∆εpbqq. The left hand
side is dim faV pbq “ dim fa HomApT,∇εpbqq – dim HomApTεpaq,∇εpbqq, which
equals the right hand side.

Step 4: V pbq is a non-zero quotient of P 1pbq, thus, hd V pbq “ L1pbq. By Theo-
rem 4.2(i), there is a short exact sequence 0 Ñ K Ñ Tεpbq Ñ ∇εpbq Ñ 0 with
K P ∇εpRq. Hence, Step 2 implies that V pbq is quotient of P 1pbq. It is non-zero by
Step 3.

Step 5: We have that V pbq – ∆1´εpbq. Let λ :“ ρpbq. We treat the cases εpλq “ `
and εpλq “ ´ separately. If εpλq “ ` we must show that V pbq is the largest
quotient of P 1pbq with the property that rV pbq : L1paqs ‰ 0 ñ ρpaq ě ρpbq. We have
already observed in Step 4 that V pbq is a quotient of P 1pbq. Also pTεpaq : ∆εpbqq ‰
0 ñ ρpbq ď ρpaq by Theorem 4.2(iii). Using Step 3, this imples that V pbq has the
property rV pbq : L1paqs ‰ 0 ñ ρpaq ě ρpbq. It remains to show that any strictly
larger quotient of P 1pbq fails this condition. To see this, since εpλq “ `, a ∇ε-flag in
Tεpbq has ∇εpbq at the top and other sections ∇εpcq for c with ρpcq ă ρpbq. In view
of Step 4, any strictly larger quotient of P 1pbq than V pbq therefore has an additional
composition factor L1pcq arising from the head of V pcq for some c with ρpcq ă ρpbq.

Instead, if εpλq “ ´, we use the characterization of ∆1´εpbq from Lemma 3.1(1):
we must show that V pbq is the largest quotient of P 1pbq with the property that
rradV pbq : L1paqs ‰ 0 ñ ρpaq ą ρpbq. Since εpλq “ ´, we have that pTεpbq :
∇εpbqq “ 1 and pTεpbq : ∇εpaqq ‰ 0 ñ ρpaq ă ρpbq for a ‰ b. Hence, using Step 3
again, the quotient V pbq of P 1pbq has the required properties. A ∇ε-flag in Tεpbq
has ∇εpbq at the top and other sections ∇εpcq for c with ρpcq ď ρpbq. So any strictly
larger quotient of P 1pbq than V pbq has a composition factor L1pcq arising from the
head of V pcq for c with ρpcq ď ρpbq. In case c “ b, this violates the requirement
that the quotient has L1pbq appearing with multiplicity one; otherwise, it violates
the requirement that all other composition factors of the quotient are of the form
L1paq with ρpaq ą ρpbq.

Step 6: R1 is a finite p´εq-stratified category. In view of Step 5, it suffices to show
that P 1pbq has a filtration with sectons V pcq for c with ρpcq ď ρpbq. Since Tεpbq has
a ∇ε-flag with sections ∇εpcq for c with ρpcq ď ρpbq, this follows using Steps 1 and
2.

Step 7: For any U P T iltεpRq and V P R, the linear map f : HomApU, V q Ñ
HomBpFU,FV q induced by F is an isomorphism. It suffices to prove this when
U “ T , so that the right hand space is HomBpB,FV q and FV “ HomApT, V q. This
special case follows because f is the inverse of the isomorphism HomBpB,FV q Ñ
FV, θ ÞÑ θp1q.

Step 8: For any V,W P ∇εpRq and n ě 0, the functor F induces a linear isomor-

phism ExtnRpV,W q
„
Ñ ExtnR1pFV, FW q. Take an ε-tilting resolution d : T‚ Ñ V

in the sense of Definition 4.6, which exists thanks to Theorem 4.8. The functor F
takes this resolution to a complex

¨ ¨ ¨ ÝÑ FT1 ÝÑ FT0 ÝÑ FV ÝÑ 0.

In fact, this complex is exact. To see this, take m ě 0 and consider the short
exact sequence 0 Ñ ker dm Ñ Tm Ñ im dm Ñ 0. All of ker dm, Tm and im dm
have ∇ε-flags due to Lemma 4.7(1). Hence, thanks to Step 2, we get a short exact
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sequence

0 ÝÑ F pker dmq
i
ÝÑ FTm

p
ÝÑ F pim dmq ÝÑ 0

on applying F . Since F is left exact, the canonical map F pim dmq Ñ FTm´1 is
a monomorphism. Its image is all θ : T Ñ Tm´1 with image contained in im dm.
As p is an epimorphism, any such θ can be written as dm ˝ φ for φ : T Ñ Tm,
i.e., θ P impFdmq. Thus, F pim dmq – impFdmq, and 0 Ñ kerpFdmq ÝÑ FTm Ñ

impFdmq Ñ 0 is exact, as required. In view of Step 1, we have constructed a
projective resolution of FV in R1:

¨ ¨ ¨ ÝÑ FT1 ÝÑ FT0 ÝÑ FV ÝÑ 0.

Next, we use this projective resolution to compute ExtnR1pFV, FIq for any in-
jective I P R. We have a commutative diagram

0 Ñ HomRpV, Iq HomRpT0, Iq HomRpT1, Iq ¨ ¨ ¨

0 Ñ HomR1pFV, FIq HomR1pFT0, F Iq HomR1pFT1, F Iq ¨ ¨ ¨

f f0 f1

with vertical maps induced by F . The maps f0, f1, . . . are isomorphisms due to
Step 7. Also the top row is exact as I is injective. We deduce that the bottom
row is exact at the positions HomR1pFTm, F Iq for all m ě 1. It is exact at posi-
tions HomR1pFV, FIq and HomR1pFT0, F Iq as HomR1p?, F Iq is left exact. Thus,
the bottom row is exact everywhere. So the map f is an isomorphism too and
ExtnR1pFV, FIq “ 0 for n ą 0.

Finally, take a short exact sequence 0 Ñ W Ñ I Ñ Q Ñ 0 in R with I
injective. We have that Q P ∇εpRq by Corollary 3.13. Hence, using Step 2 and the
previous paragraph, there is a commutative diagram

HomRpV,W q HomRpV, Iq HomRpV,Qq Ext1
RpV,W q

HomR1pFV, FW q HomR1pFV, FIq HomR1pFV, FQq Ext1
R1pFV, FW q

f1 f2 f3 f4

with exact rows. As f2 is an isomorphism, we get that f1 is injective. Since this
is proved for all W , this means that f3 is injective too. Then a diagram chase
gives that f1 is surjective, hence, f3 is surjective and f4 is an isomorphism. Degree
shifting now gives the isomorphisms ExtnRpV,W q

„
Ñ ExtnR1pFV, FW q for n ě 2 as

well.

Step 9: We have that T 1´εpbq – FIpbq. By Steps 5 and 8, we get that

Ext1
R1p∆

1
´εpaq, F Ipbqq – Ext1

Rp∇εpaq, Ipbqq “ 0

for all a P B. Hence, by the homological criterion for ∇´ε-flags in the p´εq-stratified
category R1, the A-module FIpbq has a ∇´ε-flag. It also has a ∆´ε-flag with bottom
section isomorphism to ∆1´εpbq due to Steps 2 and 5. So FIpbq P T ilt´εpR1q. It is
indecomposable as EndR1pFIpbqq – EndRpIpbqq by Step 8, which is local. Therefore
FIpbq – T 1´εpbq due to Theorem 4.2(i).

Step 10: The restriction F : ∇εpRq Ñ ∆´εpR1q is an equivalence of categories.
It is full and faithful by Step 8. It remains to show that it is dense, i.e., for any
V 1 P ∆´εpR1q there exists V P ∇εpRq with FV – V 1. The proof of this goes by
induction on the length of a ∆´ε-flag of V 1. If this length is one, we are done
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by Step 5. For the induction step, consider V 1 fitting into a short exact sequence
0 Ñ U 1 Ñ V 1 Ñ W 1 Ñ 0 for shorter U 1,W 1 P ∆´εpR1q. By induction there are
U,W P ∇εpRq such that FU – U 1 and FW – W 1. Then we use the isomorphism
Ext1

R1pFW,FUq – Ext1
RpW,Uq from Step 8 to see that there is an extension V of

U and W in R such that FV – V 1.

Step 11: The dual right A-module T˚ to T is a p´εq-tilting generator for Rop “

modfd-A such that EndApT
˚qop “ Bop. Moreover, letting F op :“ HomApT

˚, ?q :
modfd-A Ñ modfd-B be the corresponding Ringel duality functor, we have that
G –?˚ ˝ F op˝?˚. The first statement is clear from Theorem 3.9, observing that
EndApT

˚qop – EndApT q since ˚ : A-modfd Ñ modfd-A is a contravariant equiva-
lence. It remains to observe that ˚˝F op ˝˚ – HomApT

˚, ?˚q˚ – HomAp?, T q
˚ “ G.

Step 12: The restriction G : ∆εpRq Ñ ∇´εpR1q is an equivalence of categories
inducing isomorphisms as in (4.6), such that GTεpbq – I 1pbq, G∆εpbq – ∇1´εpbq
and GP pbq – T 1´εpbq. This follows using Step 11 and the analogs for F op of the
statements about F establishd thus far. �

4.3. Tilting objects in the upper finite and essentially finite cases

Throughout the section, R will be either be an upper finite or an essentially
finite ε-stratified category with the usual stratification pB, L, ρ,Λ,ďq. It is still
possible to make sense of ε-tilting objects but now the iterative procedure used to
construct the indecomposable ones in the proof of Theorem 4.2 does not terminate
after finitely many steps. Consequently, we must allow for tilting objects which have
infinite ∆ε- and ∇ε-flags; see (6.6) below for a baby example of this phenomenon.

Suppose to start with that R is an upper finite ε-stratified category. Using the
notions of ascending ∆ε-flags and descending ∇ε-flags introdued in Definition 3.35,
we set

(4.10) T iltεpRq :“ ∆asc
ε pRq X∇dsc

ε pRq.
We emphasize that objects of T iltεpRq are in particular objects of R, so all of their
composition multiplicities are finite. Like in Lemma 4.1, T iltεpRq is an additive
Karoubian subcategory of R.

Theorem 4.18 (Classification of tilting objects in the upper finite case). As-
sume that R is an upper finite ε-stratified category. For b P Bλ, there is an inde-
composable object Tεpbq P T iltεpRq satisfying the following properties:

(i) Tεpbq has an ascending ∆ε-flag with bottom section2 isomorphic to ∆εpbq;
(ii) Tεpbq has a descending ∇ε-flag with top section3 isomorphic to ∇εpbq;

(iii) Tεpbq P Rďλ and jλTεpbq –

"

Pλpbq if εpλq “ `
Iλpbq if εpλq “ ´

.

These properties determine Tεpbq uniquely up to isomorphism: if T is any inde-
composable object of T iltεpRq satisfying any one of the properties (i)–(iii) then
T – Tεpbq; hence, it satisfies the other two properties as well.

Proof. Existence: Replacing R by Rďλ if necessary and using Theorem 3.41,
we reduce to the special case that λ is the largest element of the poset Λ. Assuming

2We mean that there is an ascending ∆ε-flag pVωqωPΩ in which Ω has a smallest non-zero element

1 such that V1 – ∆εpbq.
3Similarly, we mean that V {V1 – ∇εpbq.
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this, the first step in the construction of Tεpbq is to define a direct system pVωqωPΩ of
objects of R. This is indexed by the directed set Ω of all finite upper sets in Λ. Let
V∅ :“ 0. Then take ∅ ‰ ω P Ω and denote it instead by Λ�. Letting j : R Ñ R�

be the corresponding finite ε-stratified quotient of R, we set Vω :“ j!T
�
ε pbq. By

Theorem 3.42(6), this has a ∆ε-flag. Given also ω ă υ P Ω, i.e., another upper set
Λ�� containing Λ�, let k : R Ñ R�� be the corresponding quotient. Then j factors
as j “ ̄ ˝k for an induced quotient functor ̄ : R�� Ñ R�. Since ̄T ��

ε pbq – T �
ε pbq by

Corollary 4.5, we deduce from Corollary 3.19(2) that there is a short exact sequence

0 ÝÑ ̄!T
�
ε pbq ÝÑ T ��

ε pbq ÝÑ Q ÝÑ 0

such that Q has a ∆ε-flag with sections ∆��
ε pcq for c with ρpcq P Λ��zΛ�. Applying

k! and using the exactness from Theorem 3.42(6) again, we deduce that there is an
embedding fυω : Vω ãÑ Vυ with coker fυω P ∆εpRq. Thus, we have a direct system
pVωqωPΩ. Now let Tεpbq :“ lim

ÝÑ
Vω P IndpRcq. Using the induced embeddings

fω : Vω ãÑ Tεpbq, we identify each Vω with a subobject of Tεpbq. We have shown
for ω ă υ that Vυ{Vω P ∆εpRq and, moreover, jVυ “ jVω where j : RÑ R� is the
quotient associated to ω.

In this paragraph, we show that Tεpbq actually lies in R rather than IndpRcq,
i.e., all of the composition multiplicities rTεpbq : Lpcqs are finite. To see this, take
c P B. Let ω “ Λ� P Ω be some fixed finite upper set such that ρpcq P Λ�, and
j : RÑ R� be the quotient functor as usual. Then for any υ ě ω we have that

rVυ : Lpcqs “ rjVυ : L�pcqs “ rjVω : L�pcqs “ rVω : Lpcqs.

Hence, rTεpbq : Lpcqs “ rVω : Lpcqs ă 8.
So now we have defined Tεpbq P R together with an ascending ∆ε-flag pVωqωPΩ.

The smallest non-empty element of Ω is ω :“ tλu, and Vω “ jλ! Pλpbq “ ∆εpbq if
εpλq “ `, or jλ! Iλpbq if εpλq “ ´. Since jλTεpbq “ jλVω, we deduce that (iii)
holds. Also by construction Tεpbq has an ascending ∆ε-flag. To see that it has a
descending ∇ε-flag, take any a P B. Let ω “ Λ� P Ω be such that ρpaq P Λ�. Then
∆εpaq “ j!∆

�
εpaq and jTεpbq “ jVω “ T �

ε pbq, so by Theorem 3.42(5) we get that

Ext1
Rp∆εpaq, Tεpbqq – Ext1

R�p∆�
εpaq, T

�
ε pbqq “ 0.

By Theorem 3.39, this shows that Tεpbq P ∇dsc
ε pRq.

Note finally that Tεpbq is indecomposable. This follows because jTεpbq is inde-
composable for every j : R Ñ R� (adopting the usual notation). Indeed, by the
construction we have that jTεpbq – T �

ε pbq This completes the construction of the
indecomposable object Tεpbq P T iltεpRq. We have shown that it satisfies (iii), and
it follows easily that it also satisfies (i) and (ii).

Uniqueness: Since (iii) implies (i) and (ii), it suffices to show that any indecompos-
able U P T iltεpRq satisfying either (i) or (ii) is isomorphic to the object T :“ Tεpbq
just constructed. We explain this just in the case of (i), since the argument for
(ii) is similar. We take a short exact sequence 0 Ñ ∆εpbq Ñ T Ñ Q Ñ 0 with
Q P ∆asc

ε pRq. Using the Ext-vanishing from Lemma 3.36, we deduce like in the
proof of Theorem 4.2 that the inclusion f : ∆εpbq ãÑ T extends to f̄ : U Ñ T . In
fact, f̄ is an isomorphism. To see this, take a finite upper set Λ� containing λ and
consider the quotient j : R Ñ R� as usual. Both jU and jT are isomorphic to
T �
ε pbq by the uniqueness in Theorem 4.2. The proof there implies that any homo-

morphism jT Ñ jU which restricts to an isomorphism on the subobject ∆�
εpbq is



4.3. TILTING OBJECTS IN THE UPPER FINITE AND ESSENTIALLY FINITE CASES 71

an isomorphism. We deduce that jf̄ is an isomorphism. Since holds for all choices
of Λ�, it follows that f̄ itself is an isomorphism. �

Corollary 4.19. Any object of T iltεpRq is isomorphic to
À

bPB Tεpbq
‘nb for

unique multiplicities nb P N. Conversely, any such direct sum belongs to T iltεpRq.

Proof. Let us first show that any direct sum U :“
À

bPB Tεpbq
‘nb belongs

to T iltεpRq. The only issue is to see that U actually belongs to R rather than
IndpRcq, i.e., it has finite composition multiplicities. But for a given c P B, the
multiplicity rTεpbq : Lpcqs is zero unless ρpcq ď ρpbq. There are only finitely many
such b P B, so rU : Lpcqs “

ř

bPB nbrTεpbq : Lpcqs ă 8.
Now take any U P T iltεpRq. Let Ω be the directed set of all finite upper

sets in Λ. Take ω “ Λ� P Ω. Let j : R Ñ R� be the quotient functor as usual.
Then we have that jU P T iltεpR�q, so it decomposes as a finite direct sum as
jU –

À

bPB� T �
ε pbq

‘nbpωq for nbpωq P N. There is a corresponding direct summand

Tω –
À

bPB� Tεpbq
‘nbpωq of U . Then T “ lim

ÝÑ
Tω. Moreover, for b P B�, the

multiplicities nbpωq are stable in the sense that nbpυq “ nbpωq for all υ ą ω. We
deduce that U –

À

bPB Tεpbq
‘nb where nb :“ nbpωq for any sufficiently large ω. �

It remains to discuss tilting objects in the essentially finite case. So now
we assume that R is an essentially finite ε-stratified category with stratification
pB, L, ρ,Λ,ďq. Since Λ is interval finite, finite unions of lower sets of the form
p´8, λs are upper finite. If R� is the Serre subcategory of R associated to such an
upper finite lower set then its Schurian envelope EnvpR�q in the sense of Lemma 2.22
is a Cartan-bounded upper finite ε-stratified category which is naturally embedded
into EnvpRq. This follows from Theorem 3.17. For b P B, we define the correspond-
ing ε-tilting object Tεpbq P EnvpRq as follows: pick any upper finite lower set Λ�

such that ρpbq P Λ�, let R� be the corresponding Serre subcategory of R, then let
Tεpbq be the ε-tilting object in EnvpR�q from Theorem 4.18. This is well-defined
independent of the choice of Λ� by the uniqueness part of Theorem 4.18. Thus, we
have defined the indecomposable ε-tilting objects tTεpbq | b P Bu in the essentially
finite case too, although these may be of infinite length, i.e., in general they belong
to EnvpRq rather than to R itself.

Definition 4.20. Suppose that R is a lower finite, upper finite or essentially
finite ε-stratified category with the usual stratification. We say that it is tilting-
bounded if the matrix

(4.11) pdim HomRpTεpaq, Tεpbqqa,bPB

has finitely many non-zero entries in each row and each column.

The matrix (4.11) is analogous to the Cartan matrix (2.23) with projective (or
injective) objects replaced by ε-tilting objects. In the lower finite case, all entries
of this matrix are obviously ă 8, but in the upper finite or essentially finite cases
it is possible that some of these dimensions are 8. However they are all finite in
the tilting-bounded case:

Lemma 4.21. If R is tilting-bounded then the spaces HomRpTεpaq, Tεpbqq are
finite-dimensional for all a, b P B.

Proof. In the lower finite case, the indecomposable tilting objects are of finite
length, so these spaces are finite-dimensional even without the assumption that R
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is tilting-bounded. In the remaining upper finite or essentially finite cases, we have
that

(4.12) dim HomRpTεpaq, Tεpbqq “
ÿ

cPB

pTεpaq : ∇εpcqqpTεpbq : ∆εpcqq P NY t8u.

All of the multiplicities pTεpaq : ∇εpcqq and pTεpbq : ∆εpcqq are finite. Moreover,
if pTεpaq : ∆εpcqq ‰ 0 then HomRpTεpaq, Tεpcqq ‰ 0. Hence, assuming the tilting-
bounded hypothesis, only finitely many of the terms in the sum on the right hand
side are non-zero. �

Assuming R is an essentially finite ε-stratified category once again, assume that
R is also tilting-bounded. Then the ε-tilting objects Tεpbq actually belong to

(4.13) T iltεpRq :“ ∆εpRq X∇εpRq,

i.e., they belong to R rather than to EnvpRq of R. Thus, we are in a similar
situation to (4.1). Theorem 4.2 carries over easily, to show that tTεpbq | b P Bu
gives a full set of the indecomposable objects in the additive Karoubian category
T iltεpRq. The construction of Theorem 4.8 also carries over unchanged. So all
objects of ∇εpRq have ε-tilting resolutions and all objects of ∆εpRq have ε-cotilting
resolutions.

Remark 4.22. Most of the interesting examples of essentially finite highest
weight categories which arise “in nature” seem to satisfy the tilting-bounded hy-
pothesis, although there is no reason for this to be the case from the recursive
construction of Theorem 4.18. We refer the reader to Remark 6.2 for an example
which is not tilting-bounded.

Remark 4.23. The tilting-bounded hypothesis is also interesting in the lower
finite case; see Corollary 4.28 below. Using (4.12), it is easy to see in the lower
finite case that R is tilting-bounded if and only if for each b P B the multiplicities
pTεpaq : ∆εpbqq and pTεpaq : ∇εpbqq are zero for all but finitely many a P B.
Natural examples of lower finite highest weight categories which are definitely not
tilting-bounded include the categories ReppGq for reductive groups G (unless this
is actually a semisimple category), as follows from the results in [Cou1, §5]. In
situations involving quantum groups at roots of unity, tilting-boundedness can be
checked combinatorially by considering properties of Kazhdan-Lusztig polynomials;
e.g., see [Soe], [Str].

4.4. Semi-infinite Ringel duality

Now we extend Ringel duality to lower finite and upper finite ε-stratified cate-
gories. The situation is not as symmetric as in the finite case and demands different
constructions when going from lower finite to upper finite or from upper finite to
lower finite. If we start with a lower finite ε-stratified category, the Ringel dual is
an upper finite p´εq-stratified category:

Definition 4.24. Let R be a lower finite ε-stratified category with the usual
stratification pB, L, ρ,Λ,ďq. An ε-tilting generator for R is an object T “

À

iPI Ti P
IndpRq with a given decomposition as a direct sum of objects Ti P T iltεpRq such
that each Tεpbq is isomorphic to a summand of T . Define the Ringel dual of R
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relative to T “
À

iPI Ti to be the Schurian category R1 :“ A-modlfd where

A :“

˜

à

i,jPI

HomRpTi, Tjq

¸op

.

Identifying IndpR1cq with A-mod as explained in (2.3), we have the Ringel duality
functor

F :“
à

iPI

HomRpTi, ?q : IndpRq Ñ IndpR1cq.(4.14)

This functor takes objects of R to objects of R1.

Theorem 4.25 (Lower to upper semi-infinite Ringel duality). In the setup
of Definition 4.24, R1 is an upper finite p´εq-stratified category with stratification
pB, L1, ρ,Λ,ěq and distinguished objects

P 1pbq – FTεpbq, L1pbq – hd P 1pbq,

∆1´εpbq – F∇εpbq, T 1´εpbq – FIpbq.

The restriction F : ∇asc
ε pRq Ñ ∆asc

´ε pR1q is an equivalence of categories.

The proof will be explained later in the section.
In the other direction, if we start from an upper finite ε-stratified category, the

Ringel dual is a lower finite p´εq-stratified category:

Definition 4.26. Let R be an upper finite ε-stratified category with the usual
stratification pB, L, ρ,Λ,ďq. An ε-tilting generator is an object T P T iltεpRq such
that Tεpbq is isomorphic to a summand of T for every b P B. Let C :“ CoendRpT q
be the coalgebra that is the continuous dual of the pseudo-compact topological
algebra B :“ EndRpT q

op; see Lemma 2.10. Then the Ringel dual of R relative to
T is the category R1 :“ comodfd-C “ B-modfd. Recalling Lemma 2.11, the Ringel
duality functor is

G :“ CohomRpT, ?q “ HomRp?, T q
ˇ : IndpRcq Ñ IndpR1q,(4.15)

which sends finitely generated objects of R to objects of R1.

Theorem 4.27 (Upper to lower semi-infinite Ringel duality). In the setup
of Definition 4.26, R1 is a lower finite p´εq-stratified category with stratification
pB, L1, ρ,Λ,ěq and distinguished objects

I 1pbq “ GTεpbq, L1pbq “ soc I 1pbq,

∇1´εpbq “ G∆εpbq, T 1´εpbq “ GP pbq.

The restriction G : ∆asc
ε pRq Ñ ∇asc

´ε pR1q is an equivalence of categories.

Again the proof will be explained later.
We proceed to formulate several consequences of Theorems 4.25 and 4.27. The

first is concerned with a special case. Recall the definition of Cartan-bounded from
just before Lemma 2.22, and the definition of tilting-bounded from Definition 4.20.

Corollary 4.28. The Ringel dual of a tilting-bounded lower finite ε-stratified
category is a Cartan-bounded upper finite p´εq-stratified category. Conversely, the
Ringel dual of a Cartan-bounded upper finite ε-stratified category is a tilting-bounded
lower finite p´εq-stratified category.
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Proof. From either Theorem 4.25 or Theorem 4.27, it follows that the Cartan
matrix (2.23) for the upper finite category is equal to the matrix (4.11) for the lower
finite category. �

The next two corollaries give the analogs of the double centralizer property
from Corollary 4.11 in the semi-infinite setting.

Corollary 4.29 (Lower to upper double centralizer property). Let notation
be as in Definition 4.24. Assume in addition that R “ comodfd-C for a coalgebra
C. Let B :“ C˚ be the dual algebra, so that T is a pB,Aq-bimodule. Let T 1 :“ Tf

be the dual pA,Bq-bimodule.

(1) T 1 is a p´εq-tilting generator for R1 and there is an algebra isomorphism

(4.16) µ : B
„
Ñ EndR1pT

1qop

sending y P B to µpyq : T 1 Ñ T 1, v ÞÑ vy. Equivalently, there is a coalgebra
isomorphism

(4.17) µˇ : CoendR1pT
1q
„
Ñ C, cpiqr,s ÞÑ c̃piqr,s

where c
piq
r,s is the element of CoendR1pT

1q corresponding to v
piq
s bu

piq
r P Tib

T˚i according to (2.13) for dual bases v
piq
1 , . . . , v

piq
dpiq for Ti and u

piq
1 , . . . , u

piq
dpiq

for T˚i , and c̃
piq
r,s P C is defined so that the structure map of the right C-

comodule Ti sends v
piq
s ÞÑ

řdpiq
r“1 v

piq
r bc̃

piq
r,s. So the Ringel dual of R1 relative

to T 1 in the sense of Definition 4.26 is equivalent to the original category
R.

(2) Denote the Ringel duality functor for R1 relative to T 1 now by

(4.18) F˚ :“ CohomR1pT
1, ?q “ HomR1p?, T

1qˇ : IndpR1cq Ñ IndpRq.

Then F˚ – TbA?, hence, pF˚, F q is an adjoint pair; cf. Lemma 2.11.

Proof. By Lemma 2.2, we have natural isomorphisms HomCpTi, Cq – T˚i as
right B-modules, hence, FC – T 1 as an pA,Bq-bimodule. Since every Ipbq appears
as a summand of the regular comodule, and FIpbq – T 1´εpbq by Theorem 4.25, we
deduce that T 1 is a p´εq-tilting generator for R1. To see that B – EndApT

1qop, we
use the fact that F is an equivalence on ∇-filtered objects to deduce that

EndApT
1qop – EndApFCq

op – EndCpCq
op – B,

using Lemma 2.2 again for the final algebra isomorphism. This produces the iso-

morphism µ. To deduce (4.17), we need to show that µˇpc
piq
r,sq and c̃

piq
r,s take the

same value on y P B. The left hand side gives c
piq
r,spµpyqq “ v

piq
s pu

piq
s bq. For the right

hand side, we have that yv
piq
s “

řdpiq
r“1 c̃

piq
r,spyqv

piq
r , so c

piq
r,spyq “ pyv

piq
s qu

piq
r . These are

equal. This establishes (1). Then (2) follows from Lemma 2.11. �

Corollary 4.30 (Upper to lower double centralizer property). Let notation be
as in Definition 4.26, and assume in addition that R “ A-modlfd for a locally finite-
dimensional locally unital algebra A “

À

i,jPI eiAej. Let Ti “ eiT and T 1i :“ T˚i ,

so that T 1 :“
À

iPI T
1
i “ Tf. This is a pB,Aq-bimodule.
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(1) T 1 “
À

iPI T
1
i is a p´εq-tilting generator for R1 and there is an algebra

isomorphism

(4.19) µ : A
„
Ñ

˜

à

i,jPI

HomR1pT
1
i , T

1
jq

¸op

sending a P eiAej to µpaq : T 1i Ñ T 1j , v ÞÑ va. So the Ringel dual of R1
relative to T 1 in the sense of Definition 4.24 is equivalent to the original
category R.

(2) Denote the Ringel duality functor for R1 relative to T 1 now by

(4.20) G˚ :“
à

iPI

HomR1pT
1
i , ?q : IndpR1q Ñ IndpRcq.

We have that G – T 1bA?, hence, pG,G˚q is an adjoint pair.

Proof. Note that GpAeiq “ HomApAei, T q
˚ “ peiT q

˚ “ Ti. So Theorem 4.27
implies that T “

À

iPI Ti is a p´εq-tilting generator for R1. Moreover,

HomR1pTi, Tjq “ HomR1pGpAeiq, GpAejqq – HomRpAei, Aejq “ eiAej .

This proves (1) and then (2) follows from Lemma 2.11. �

Remark 4.31. Combining Corollary 4.28 with the double centralizer properties
just explained, one obtains a restricted version of semi-infinite Ringel duality giving
a correspondence
$

&

%

Tilting-bounded
lower finite

highest weight categories

,

.

-

Ringel duality
ÐÝÝÝÝÝÝÝÑ

$

&

%

Cartan-bounded
upper finite

highest weight categories

,

.

-

.

In the upper finite to lower finite direction, this appeared already in the work of
Marko and Zubkov [MZ]. In more detail, if R is the category of finite-dimensional
modules over a descending quasi-hereditary pseudo-compact algebra in the sense
of [MZ, Def. 3.19] and the indecomposable projectives in R are of finite length as
assumed in [MZ, §4], then R is an essentially finite highest weight category with
upper finite weight poset, hence, EnvpRq is a Cartan-bounded upper finite highest
weight category. In this case, the indecomposable tilting modules T pλq P EnvpRq
were constructed already in [MZ, §4], and the appropriate (lower finite) Ringel dual
category appears in [MZ, §6]. Also [MZ, Lem. 6.5] establishes a double centralizer
property which is equivalent to Corollary 4.30(1) for such categories.

In the setup of Definition 4.24, one can also define a functor

(4.21) G :“ CohomRpT, ?q “ HomRp?, T q
f : ∆εpRq Ñ ∇´εpR1q.

Theorem 4.25 plus an argument with duality like in Steps 11–12 of the proof of
Theorem 4.10 shows that G is an equivalence of categories such that G∆εpbq –
∇1´εpbq and GTεpbq – I 1pbq for all b P B. Likewise, in the setup of Definition 4.26,
one can also define

(4.22) F :“ HomRpT, ?q : ∆εpRq Ñ ∇´εpR1q.
Theorem 4.27 plus an argument involving duality shows that F is an equivalence
of categories such that FIpbq – T 1´εpbq and F∇εpbq – ∆1´εpbq for all b P B. These
functors are needed to formulate the following, which is the semi-infinite counterpart
of Corollary 4.12. The proof is similar to the finite case; see also Lemma 4.41 below.
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Corollary 4.32. If R is a lower finite or an upper finite ε-stratified category
and R1 is the Ringel dual category relative to some ε-tilting generator as above, the
strata Rλ and R1λ are equivalent for all λ P Λ. More precisely:

(1) If εpλq “ ` the functor Fλ :“ pj1qλ ˝ pi1q!ěλ ˝F ˝ iďλ ˝ j
λ
˚ : Rλ Ñ R1λ is an

equivalence of categories taking Lλpbq “ jλLpbq to L1λpbq “ pj
1qλL1pbq.

(2) If εpλq “ ´ the functor Gλ :“ pj1qλ ˝ pi1q˚
ěλ ˝ G ˝ iďλ ˝ j

λ
! : Rλ Ñ R1λ is

an equivalence of categories taking Lλpbq “ jλLpbq to L1λpbq “ pj
1qλL1pbq.

In view of Corollary 4.4, Corollary 4.13 can be applied also in any lower finite
ε-stratified category (without any need to appeal to semi-infinite Ringel duality).
In particular, if R is a lower finite `-stratified (resp., ´-stratified) category then all
V P ∇pRq (resp., V P ∆pRq) have finite ´-tilting resolutions (resp., finite `-tilting
coresolutions). Using Theorem 4.25, one sees that this assertion is equivalent to
Lemma 3.43.

We have not investigated derived equivalences or any analog of Theorem 4.16
in the semi-infinite setting.

Proof of Theorem 4.25. We may assume that R “ comodfd-C for a coalge-
bra C. Let B :“ C˚ be the dual algebra, so that R is identified also with B-modfd.
We can replace the ε-tilting generator T “

À

iPI Ti with any other. This just has
the effect of transforming A into a Morita equivalent locally unital algebra. Conse-
quently, without loss of generality, we may assume that I “ B and T “

À

bPB Tεpbq.
Then

A “

˜

à

a,bPB

HomRpTεpaq, Tεpbq

¸op

is a pointed locally finite-dimensional locally unital algebra with (primitive) distin-
guished idempotents teb | b P Bu. Let P 1pbq :“ Aeb and L1pbq :“ hd P 1pbq. Then
R1 “ A-modlfd is a Schurian category, the A-modules tL1pbq | b P Bu give a full set
of pairwise inequivalent irreducible objects, and P 1pbq is a projective cover of L1pbq
in IndpR1cq “ A-mod. It is immediate that pB, L1, ρ,Λ,ěq is a stratification of R1.
Let ∆1´εpbq and ∇1´εpbq be its p´εq-standard and p´εq-costandard objects. Also let
V pbq :“ F∇εpbq. Now one checks that Steps 1–6 from the proof of Theorem 4.10
carry over to the present situation with very minor modifications. We will not
rewrite these steps here, but cite them freely below. In particular, Step 6 estab-
lishes that R1 is an upper finite p´εq-stratified category. Also, F∇εpbq – ∆1´εpbq
by Step 5. It just remains to show:

‚ F restricts to an equivalence of categories between ∇asc
ε pRq and ∆asc

´ε pR1q.
‚ FIpbq – T 1´εpbq, the indecomposable p´εq-tilting object of R1 labelled by
b P B.

This requires some different arguments compared to the ones from Steps 7–10 in
the proof of Theorem 4.10.

Let Ω be the directed poset consisting of all finite lower sets in Λ. Take ω “
Λ� P Ω. Let ∇εpR, ωq be the full subcategory of ∇εpRq consisting of the ∇ε-
filtered objects with sections ∇εpbq for b P B� :“ ρ´1pΛ�q. Similarly, we define the
subcategory ∆´εpR1, ωq of ∆´εpR1q. By Steps 2 and 5, F restricts to a well-defined
functor

(4.23) F : ∇εpR, ωq Ñ ∆´εpR1, ωq.
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We claim that this is an equivalence of categories. To prove it, let i : R� Ñ R be
the finite ε-stratified subcategory of R associated to Λ�. Let e :“

ř

bPB� eb P A.
Then T � :“

À

bPB� Tεpbq is an ε-tilting generator for R�. As EndR�pT �qop “

eAe, the Ringel dual pR�q1 of R� relative to T � is identified with the quotient
category pR1q� :“ eAe-modfd of R1. Let F � :“ HomRpT

�, ?q : R� Ñ pR1q� be the
corresponding Ringel duality functor. We also know from Theorem 3.42 that pR1q�
is the finite p´εq-stratified quotient of R1 associated to Λ� (which is a finite upper
set in pΛ,ěq). Let j1 : R1 Ñ pR1q� be the quotient functor, i.e., the functor defined
by multiplication by the idempotent e. For a right C-comodule V , we have that

F �pi!V q –
à

bPB�

HomRpTεpbq, i
!V q – e

à

bPB

HomRpTεpbq, V q – j1pFV q.

This shows that

(4.24) F � ˝ i! – j1 ˝ F,

so in particular following diagram commutes up to a natural isomorphism:

R R1

R� pR�q1 ” pR1q�.

F

i! j1

F�

By Theorem 4.10, F � restricts to an equivalence ∇εpR�q Ñ ∆´εppR1q�q. Also
the restrictions i! : ∇εpR, ωq Ñ ∇εpR�q and j1 : ∆´εpR1, ωq Ñ ∆´εppR1q�q are
equivalences. This is clear for i!. To see it for j1, one shows using Theorem 3.42
that the left adjoint pj1q! gives a quasi-inverse equivalence. Putting these things
together, we deduce that (4.23) is an equivalence as claimed.

Now we can show that F defines an equivalence F : ∇asc
ε pRq Ñ ∆asc

´ε pR1q.
Take V P ∇asc

ε pRq. Then V has a distinguished ascending ∇ε-flag pVωqωPΩ indexed
by the set Ω of finite lower sets in Λ. This is defined by setting Vω :“ i!V in
the notation of the previous paragraph; see the proof of Theorem 3.56. As each
comodule Tεpbq is finite-dimensional, hence, compact, the functor F commutes
with direct limits. Hence, FV – lim

ÝÑ
pFVωq. In fact, pFVωqωPΩ is the data of

an ascending ∆´ε-flag in FV P R1. To see this, we have that FVω P ∆´εpR1q
by the previous paragraph. For ω ă υ the quotient Vυ{Vω has a ∇ε-flag thanks to
Corollary 3.58, so FVυ{FVω – F pVυ{Vωq has a ∆´ε-flag. We still need to show that
FV is locally finite-dimensional. For this, we prove that dim HomApFV, I

1pbqq ă 8
for each b P B. Since I 1pbq has a finite ∇´ε-flag, this reduces to checking that
dim HomApFV,∇1´εpbqq ă 8 for each b. To see this, pick a finite lower set ω
containing ρpbq. Then for υ ą ω, FVυ{FVω has a ∇´ε-flag with all sections different
from ∇1´εpbq, so HomApFVυ{FVω,∇1´εpbqq “ Ext1

ApFVυ{FVω,∇1´εpbqq “ 0. It
follows that HomApFVυ,∇1´εpbqq – HomApFVω,∇1´εpbqq and

HomApFV,∇1´εpbqq “ HomAplimÝÑpFVυq,∇
1
´εpbqq – HomApFVω,∇1´εpbqq,

which is finite-dimensional.
At this point, we have proved that F induces a well-defined functor

F : ∇asc
ε pRq Ñ ∆asc

´ε pR1q.
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We prove that this is an equivalence by showing that the left adjoint F˚ :“ TbA?
to F gives a quasi-inverse. The left mate of (4.24) gives an isomorphism

(4.25) i ˝ pF �q˚ – F˚ ˝ pj1q!.

Combining this with Corollary 4.11, we deduce that F˚ restricts to a quasi-inverse
of the equivalence (4.23) for each ω P Ω. Also, F˚ commutes with direct limits, and
again any V 1 P ∆asc

´ε pR1q has a distinguished ascending ∆´ε-flag pV 1ωqωPΩ as we saw
in the proof of Theorem 3.37. These facts are enough to show that F˚ restricts to
a well-defined functor F˚ : ∆asc

´ε pR1q Ñ ∇asc
ε pRq which is quasi-inverse to F .

Finally, we check that FIpbq – T 1´εpbq. Let V :“ Ipbq and pVωqωPΩ be its
distinguished ascending ∇ε-flag indexed by the set Ω of finite lower sets in Λ as
above. Using the same notation as above, for ω “ Λ� P Ω such that ρpbq P Λ�, we
know that Vω is an injective hull of Lpbq in R�. Hence, by Theorem 4.10, F �Vω is the
indecomposable p´εq-tilting object of R� labelled by b. From this, we see that the
ascending ∆´ε-flag pFVωqωPΩ in FIpbq coincides with the distinguished ascending
∆´ε-flag in T 1´εpbq from the construction from the proof of Theorem 4.18. �

Proof of Theorem 4.27. We may assume that R “ A-modlfd for a pointed
locally finite-dimensional locally unital algebra A “

À

a,bPB eaAeb, so that T is

a locally finite-dimensional left A-module. Let C :“ Tf bA T viewed as a coal-
gebra according to (2.14). By Lemma 2.10 this coalgebra is the continuous dual
of B “ EndApT q

op, and we may identify R with the locally finite Abelian cat-
egory comodfd-C. Applying Lemma 2.11, the Ringel duality functor G becomes
the functor TfbA? : A-mod Ñ comod-C, with the comodule structure map of
GV :“ Tf bA V being defined as in (2.17). Let

(4.26) I 1pbq :“ GTεpbq, L1pbq :“ soc I 1pbq, ∇1´εpbq :“ G∆εpbq.

Each I 1pbq is an indecomposable injective right C-comodule, and tL1pbq | b P Bu is
a full set of pairwise inequivalent irreducible C-comodules. To show that R1 is a
lower finite p´εq-stratified category, we must show for each finite upper set Λ� in
Λ that the Serre subcategory pR1q� of R1 generated by tL1pbq | b P B� :“ ρ´1pΛ�qu

is a finite p´εq-stratified category for the induced stratification pB�, L1, ρ,Λ,ěq.
The functor G sends short exact sequences of objects in ∆asc

ε pRq to short exact
sequences in IndpR1q. This follows because HomRp?, T q has this property thanks
to the Ext1-vanishing from Lemma 3.36. Since ∆εpbq ãÑ Tεpbq, we deduce that that
∇1´εpbq ãÑ I 1pbq. Thus, we have that L1pbq “ soc ∇1´εpbq.

Now let R� be the Serre quotient of R associated to some finite upper set
Λ� Ď Λ and let j : R Ñ R� be the quotient functor. This is a finite ε-stratified
category thanks to Theorem 3.42. In fact, R� “ A�-modfd where A� :“ eAe for
e :“

ř

bPB� eb; the quotient functor j is the idempotent truncation functor defined
by multiplying by e. By the upper finite analog of Corollary 4.5, T � :“ eT is
an ε-tilting generator for R�. Let B� :“ EndA�pT �qop be its (finite-dimensional)
endomorphism algebra. Then pR�q1 :“ B�-modfd is the Ringel dual of R� relative to
T �. By the finite Ringel duality from Theorem 4.10, pR�q1 is a finite p´εq-stratified
category. Let G� :“ CohomRpT

�, ?q “ HomRp?, T
�q˚ : R� Ñ pR�q1 be its Ringel

duality functor. The functor j defines an algebra homomorphism π : B Ñ B�,
hence, we get a functor π˚ : pR�q1 Ñ R1. We claim that this gives an isomorphism
identifying pR�q1 with the subcategory pR1q� of R1. This will be proved in the next
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paragraph. Moreover, making this identification, we have that

(4.27) i1 ˝G� – G ˝ j!.,

i.e., the following diagram commutes up to natural isomorphism:

R� pR�q1 ” pR1q�

R R1.

G�

j! i1

G

This follows because the northeast composition is the functor TfebeAe? while the
southwest composition is Tf bA AebeAe?, and Tfe – Tf bA Ae as bimodules.
Since we already know that pR�q1 is a finite p´εq-category, it follows that pR1q� one
too, with costandard objects

i1pG�∆εpbqq – Gpj!∆
�
εpbqq – G∆εpbq “ ∇1´εpbq

thanks again to Theorem 4.10 plus Theorem 3.42(6).
To prove the claim, let C� :“ pB�q˚ be the (finite-dimensional) dual coalgebra

so that pR�q1 “ comodfd-C�. Consider the short exact sequence

0 ÝÑ AebeAe eT ÝÑ T ÝÑ Q ÝÑ 0

which comes from the upper finite counterpart of Lemma 3.19(2); thus, Q P ∆asc
ε pRq

and all of its sections are of the form ∆εpbq for b R B�, while AebeAe eT P ∆εpRq
has sections of the form ∆εpbq for b P B�. Applying G and using the exactness
noted in the second paragraph of the proof, we get a short exact sequence

0 ÝÑ C� ÝÑ C Ñ GQÑ 0.

The first map C� Ñ C here is dual to the algebra homomorphism π : B Ñ B�, so it
is a coalgebra homomorphism. It identifies pR�q1 with the the Abelian subcategory
comodfd-C� of R1 “ comodfd-C. Note also that the irreducible objects of R1 are
tL1pbq | b P B1u. To complete the proof of the claim, it suffices using Lemma 2.25
to show that the socle of GQ only has constituents of the for L1pbq for b R B�. Fix
an ascending ∆ε-flag pVωqωPΩ in Q. As G commutes with direct limits, we deduce
that GQ “ lim

ÝÑ
pGVωq. The sections in a ∆ε-flag in Vω are ∆εpbq for b R B�, hence,

GVω has a ∇´ε-flag with sections ∇1´εpbq for b R B�. It follows that soc pGVωq is
of the desired form for each ω, hence, the socle of GQ is too.

We can now complete the proof of the theorem. We have shown already that
R1 is a lower finite p´εq-stratified category. Theorem 4.10 plus Corollary 4.4 shows
for Λ� chosen to contain ρpbq that

T 1´εpbq – G�pjP pbqq – Gpj!pjP pbqqq – GP pbq.

Also, for a, b P B�, we have that

HomR1pT
1
´εpaq, T

1
´εpbqq – HompR1q�pT

1
´εpaq, T

1
´εpbqq

– HomA�pA�ea, A
�ebq – eaAeb.

These things are true for all choices of Λ�, so we see that the Ringel dual of R1
relative to

À

bPB T
1
´εpbq is the original category R “ A-modlfd. This puts us in

the situation of Corollary 4.29, and finally we invoke that corollary (whose proof
did not depend on Theorem 4.27) to establish that G : ∆asc

ε pRq Ñ ∇asc
´ε pR1q is an

equivalence. �
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4.5. Essentially finite Ringel duality

To complete our account of infinite versions of Ringel duality, it remains to dis-
cuss the essentially finite case. For this, we impose the tilting-bounded assumption
from Definition 4.20.

Definition 4.33. Assume R is an essentially finite ε-stratified category with
stratification pB, L, ρ,Λ,ďq. Assume in addition that R is tilting-bounded. An
ε-tilting generator for R means an object T “

À

jPJ Tj P EnvpRq with a given

decomposition as a direct sum of objects Tj P T iltεpRq such that each Tεpbq appears
as an indecomposable summand of T with multiplicity that is non-zero and finite.
Then we define the Ringel dual of R relative to T to be the category R1 :“ B-modfd

where

B :“

˜

à

i,jPJ

HomRpTi, Tjq

¸op

.

We denote the system of distinguished idempotents of B arising from the identity
endomorphisms of each Tj by tfj | j P Ju. Also define the two Ringel duality
functors

F :“
à

jPJ

HomRpTj , ?q : RÑ R1,(4.28)

G :“ CohomRpT, ?q “ HomRp?, T q
˚ : RÑ R1.(4.29)

Theorem 4.34 (Essentially finite Ringel duality). In the same setup as Defi-
nition 4.33, the Ringel dual category R1 is a tilting-bounded essentially finite p´εq-
stratified category with stratification pB, L1, ρ,Λ,ěq and distinguished objects

P 1pbq “ FTεpbq, I 1pbq “ GTεpbq, L1pbq “ hd P 1pbq – soc I 1pbq,

∆1´εpbq “ F∇εpbq, ∇1´εpbq “ G∆εpbq, T 1´εpbq “ FIpbq – GP pbq.

The restrictions F : ∇εpRq Ñ ∆´εpR1q and G : ∆εpRq Ñ ∇´εpR1q are equiva-
lences.

Proof. We may assume that R “ A-modfd for an essentially finite-dimensional
pointed locally unital algebra A “

À

i,jPI eiAej . Replacing the ε-tilting genera-

tor T “
À

jPJ Tj by any other changes B to a Morita equivalent algebra, so we

may as well assume simply that J “ B and T “
À

bPB Tεpbq. Then the algebra
B “

À

a,bPB faBfb is a pointed locally unital algebra. The assumption that R is
tilting-bounded implies that

ÿ

aPB

dim HomRpTεpaq, Tεpbqq ă 8,
ÿ

bPB

dim HomRpTεpaq, Tεpbqq ă 8

for each a, b P B. Thus, B is essentially finite-dimensional, i.e., R1 is essentially
finite Abelian. The module P 1pbq :“ Afb is an indecomposable projective A-module,
and

 

L1pbq :“ hd P 1pbq
ˇ

ˇ b P B
(

is a full set of pairwise inequivalent irreducibles. Now pB, L1, ρ,Λ,ěq defines a
stratification of R1. One checks that Steps 1–12 from the proof of Theorem 4.10
all go through essentially unchanged in the present setting. This completes the
proof except for one point: we must observe finally that R1 is tilting-bounded.
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This follows because the relevant matrix from Definition 4.20 (with each Tεpbq now
being replaced by T 1´εpbq) is the Cartan matrix

`

dim HomApP paq, P pbqq
˘

a,bPB

of A. Its rows and columns have only finitely many non-zero entries as A is essen-
tially finite-dimensional. �

Corollary 4.35 (Essentially finite double centralizer property). Continuing
in the general setup of Definition 4.33, suppose that the ε-stratified category R
is the category A-modfd for an essentially finite-dimensional locally unital algebra
A “

À

i,jPI eiAej, so that T “
À

jPJ Tj is an pA,Bq-bimodule. For i P I, let

T 1i :“ peiT q
˚ P B-modfd, so that T 1 :“

À

iPI T
1
i is a pB,Aq-bimodule.

(1) The module T 1 “
À

iPI T
1
i is a p´εq-tilting generator for R1 “ B-modfd

and there is an algebra isomorphism

(4.30) µ : A
„
Ñ

˜

à

i,jPI

HomR1pT
1
i , T

1
jq

¸op

sending a P eiAej to µpaq : T 1i Ñ T 1j , t ÞÑ ta. So the Ringel dual of R1
relative to T 1 “

À

iPI T
1
i is equivalent to the original category R.

(2) Denote the Ringel duality functors from R1 to R by

G˚ :“
à

iPI

HomR1pT
1
i , ?q : R1 Ñ R,(4.31)

F˚ :“ CohomRpT
1, ?q “ HomRp?, T

1q˚ : R1 Ñ R.(4.32)

respectively. We have that F˚ – TbB? and G – T 1bA?, hence, pF˚, F q
and pG,G˚q are adjoint pairs.

Proof. For (1), note that
À

iPI GpAeiq is a p´εq-tilting generator for R1 since
GP pbq – T 1´εpbq for b P B. Actually, GpAeiq “ HomApAei, T q

˚ – peiT q
˚ “ T 1i .

Thus, T 1 “
À

iPI T
1
i is a p´εq-tilting generator for R1. To obtain the isomorphism

between A and the locally finite endomorphism algebra of T 1, apply the functor G

to the canonical isomorphism A –
´

À

i,jPI HomApAei, Aejq
¯op

. To prove (2), we

note first that F˚pBfjq – T bB Bfj . It then follows that F˚pV q – T bB V on any
finite-dimensional B-module V by taking a resolution P2 Ñ P1 Ñ V Ñ 0 in which
P1, P2 are direct sums of modules of the form Bfj , then using the Five Lemma.
The argument for G is similar. �

We leave it to the reader to adapt Corollary 4.12 to the essentially finite setting.

4.6. Tilting-rigidity

We begin by recalling some well-known definitions:

(QF) A finite Abelian category R is quasi-Frobenius if all projective objects
are injective. In that case, there is a unique bijection ν : B Ñ B, the
Nakayama permutation, such that

P pbq – Ipνpbqq

for each b P B, where P pbq and Ipbq are projective covers and injective
hulls of of the irreducible objects tLpbq | b P Bu.
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(WS) A finite Abelian category R is weakly symmetric if it is quasi-Frobenius
with Nakayama permutation being the identity function. Equivalently,
P pbq – Ipbq for all b P B.

(S) A finite Abelian category R is symmetric if there is a natural isomorphism
of vector spaces

(4.33) HomRpP, V q – HomRpV, P q
˚

for all P, V P R with P projective.

These are equivalent to saying that all algebra realizations A of R are quasi-
Frobenius, Frobenius, or symmetric, respectively; see [GHK, §4.4], [Ric, Th. 3.1].
Of course, (QF) ñ (WS) ñ (S). We are going to investigate some properties of
fully stratified categories which involve the properties (QF), (WS) and (S) at the
level of strata.

We assume from now on that R is a fully stratified category, by which we mean
a fully stratified category of any one of the four types, finite, essentially finite, upper
finite or lower finite. We use the usual notation pB, L, ρ,Λ,ďq for its stratification.

Definition 4.36. Let R be a fully stratified category. We say that R is tilting-
rigid if

T ilt`pRq “ T ilt´pRq.
For this to make sense in the essentially finite case, it is necessary to assume im-
plicitly that R is tilting-bounded in the sense of Definition 4.20 for some choice
(equivalently, all choices) of sign function ε.

Highest weight categories are automatically tilting-rigid for trivial reasons, so
that Definition 4.36 is not needed when working just with highest weight categories.
The importance of tilting-rigidity first became apparent in the context of fibered
highest weight categories in [MO], [FM], where it is formulated as the property
“tilting “ cotilting”. The following lemma shows in a tilting-rigid category that
the subcategories T iltεpRq coincide for all choices of ε, so that we can denote them
all simply by T iltpRq.

Theorem 4.37 (Tilting-rigid categories have quasi-Frobenius strata). Let R
be a tilting-rigid fully stratified category. There is a unique bijection ν : B Ñ B
such that

T`pbq – T´pνpbqq.

For λ P Λ, this function leaves Bλ Ď B invariant, and the stratum Rλ is quasi-
Frobenius with Nakayama permutation ν|Bλ . Moreover, for any sign function ε :
Λ Ñ t˘u, we have that

(4.34) Tεpbq –

"

T`pbq if εpλq “ `,
T`pν

´1pbqq if εpλq “ ´.

Proof. There is obviously a unique function ν : B Ñ B such that T`pbq –
T´pνpbqq. This function is injective and leaves each of the finite subsets Bλ in-
variant, hence, it is actually a bijection. To see that Rλ is quasi-Frobenius with
ν|Bλ as its Nakayama permutation, we must show that Pλpbq – Iλpνpbqq for each
b P Bλ. This follows using T`pbq – T´pνpbqq together with Theorem 4.2(3) or
Theorem 4.18(3) (which one depends on the particular setting we are in). Finally,
take b P Bλ and a sign function ε. Then T`pbq – T´pνpbqq has both a ∆-flag and
a ∇-flag, hence, it has a ∆ε-flag and a ∇ε-flag. It follows that it is isomorphic to
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Tεpb
1q for a unique b1 P Bλ. Applying jλ and using Theorems 4.2 or 4.18 again gives

that b1 “ b if εpλq “ ` or b1 “ νpbq if εpλq “ ´, and the formula (4.34) follows. �

The argument used to prove the next lemma is based on the proof of [CM,
Th. 2.2]. Note this proves Conjecture 4.15 assuming an additional hypothesis on
the strata.

Lemma 4.38. Suppose that R is a finite fully stratified category and ε : Λ Ñ t˘u

is some given sign function.

(1) Assume that Lλpaq is isomorphic to a subobject of a projective object in
Rλ for all a P Bλ and λ P Λ with εpλq “ `. Then for b P B, Tεpbq has
finite injective dimension if and only if Tεpbq P T ilt´pRq.

(2) Assume that Lλpaq is isomorphic to a quotient of an injective object in
Rλ for all a P Bλ and λ P Λ with εpλq “ ´. Then for b P B, Tεpbq has
finite projective dimension if and only if Tεpbq P T ilt`pRq.

Proof. We just prove (1), (2) being the equivalent dual statement. If Tεpbq P
T ilt´pRq then Tεpbq has a ∇-flag, so it has finite injective dimension thanks to
Corollary 3.24. Conversely, suppose that Tεpbq has finite injective dimension. Since
Tεpbq P T iltεpbq, it has both a ∆ε-flag and a ∇ε-flag. Hence, as R is fully stratified,
it has both a ∆̄-flag and a ∇̄-flag. To show that Tεpbq P T ilt´pRq, it remains to show
that Tεpbq has a ∇-flag. This follows from the homological criterion (Theorem 3.11)
if we can show that Ext1

Rp∆̄pcq, Tεpbqq “ 0 for all c P B. By assumption, Tεpbq has

finite injective dimension, so there is a greatest d such that ExtdRp∆̄paq, Tεpbqq ‰ 0
for some a P B. Now the goal is to show that d “ 0.

Suppose for a contradiction that d ‰ 0. Since ExtdRp∆εpaq, Tεpbqq “ 0, we
must have that a P Bλ for λ with εpλq “ `. By the assumption on strata, there
exists a1 P Bλ such that Lλpaq ãÑ Pλpa

1q. Let 0 “ V0 ă ¨ ¨ ¨ ă Vn “ ∆pa1q be
the ∆̄-flag for ∆pa1q obtained by applying the exact functor jλ! to a composition
series for Pλpa

1q chosen so that its bottom section is isomorphic to Lλpaq. For each
r “ 1, . . . , n we have that Vr{Vr´1 – ∆̄parq for some ar P Bλ with a1 “ a. Applying
HomRp?, Tεpbqq to the short exact sequence 0 Ñ Vr´1 Ñ Vr Ñ ∆̄parq Ñ 0 and using

Extd`1
R p∆̄parq, Tεpbqq “ 0 gives a surjection ExtdRpVr, Tεpbqq � ExtdRpVr´1, Tεpbqq.

Since ExtdRpV1, Tεpbqq ‰ 0 by the choice of a, we deduce that ExtdRpVr, Tεpbqq ‰ 0 for

all r “ 1, . . . , n. Taking r “ n gives ExtdRp∆pa
1q, Tεpbqq ‰ 0. This is a contradiction

since Tεpbq has a ∇̄-flag. �

The following extends [CM, Th. 2.2] from fibered highest weight categories to
fully stratified categories; cf. Remark 3.30.

Theorem 4.39 (Homological criterion for tilting-rigidity). For a finite fully
stratified category R, the following properties are equivalent:

(i) R is tilting-rigid;
(ii) R is Gorenstein4 and all of its strata are quasi-Frobenius;

(iii) R is Gorenstein and for each λ P Λ and b P Bλ the irreducible object
Lλpbq appears in the socle of some projective in Rλ;

(iii1) R is Gorenstein and for each λ P Λ and b P Bλ the irreducible object
Lλpbq appears in the head of some injective in Rλ.

4All projectives have finite injective dimension and all injectives have finite projective dimension.
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Proof. We may assume that R “ A-modfd for a finite-dimensional algebra A.

(i)ñ(ii). All strata are quasi-Frobenius by Theorem 4.37. The injective left A-
module A˚ has a finite ´-tilting resolution 0 Ñ Tn Ñ ¨ ¨ ¨ Ñ T1 Ñ T0 Ñ A˚ Ñ 0 by
Corollary 4.14. As R is tilting-rigid, this is also a finite `-tilting-resolution, so each
Ti has a ∆-flag. Using Corollary 3.24, it follows that each Ti has finite projective
dimension. We deduce that A˚ has finite projective dimension by arguing as in the
proof of [Wei, Th. 4.3.1]; cf. the proof of (2)ñ(1) from [CM, Th. 2.2]. The dual
argument gives that A has finite injective dimension. Hence, A is Gorenstein.

(ii)ñ(iii), (iii1). This follows immediately since Pλpbq – Iλpνpbqq for all b P Bλ,
where ν is the Nakayama permutation.

(iii)ñ(i). It suffices to show that each T`pbq belongs to T ilt´pRq. As
À

bPB T`pbq
is tilting in the general sense of tilting theory (cf. the discussion before Conjec-
ture 4.15), the assumption that A is Gorenstein together with [HU, Lem. 1.3]
implies that

À

bPB T`pbq is cotilting. Hence, it has finite injective dimension, so
each T`pbq has finite injective dimension. Then we apply Lemma 4.38(1) with
ε “ `.

(iii1)ñ(i). This follows by the dual argument to the proof of (iii)ñ(i). �

Corollary 4.40. If R is a finite fibered highest weight category, it is tilting-
rigid if and only if it is Gorenstein.

Proof. In a fibered highest weight category each stratum has a unique irre-
ducible object (up to isomorphism). Therefore the second parts of (iii) and (iii1) in
Theorem 4.39 hold automatically. �

Now we are going to consider the Ringel dual R1 of a tilting-rigid fully stratified
category R as in Definitions 4.9, 4.24, 4.26 or 4.33 (depending on the setting).
These definitions all involve the choice of a sign function ε and the choice of an
ε-tilting generator T . By (4.34), an ε-tilting generator for some choice of ε is an
ε-tilting generator for all ε, so it makes sense to drop the prefix ε, referring to T
simply as a tilting generator. Fixing such a choice, let R1 be the corresponding
Ringel dual category, and let F and G be the Ringel duality functors from those
definitions together with (4.21) and (4.22) in the lower finite and upper finite cases,
respectively. Note these functors only depend on the choice of tilting generator,
not on the choice of sign function ε, i.e., they are the same functors for all ε. For
each λ P Λ, there are now two equivalences of categories

Fλ “ pj
1qλ ˝ pi1q!ěλ ˝ F ˝ iďλ ˝ j

λ
˚ : Rλ Ñ R1λ,(4.35)

Gλ “ pj
1qλ ˝ pi1q˚ěλ ˝G ˝ iďλ ˝ j

λ
! : Rλ Ñ R1λ(4.36)

between strata; see Corollary 4.12 (which also holds in the essentially finite case)
and Corollary 4.32. The following lemma gives a more explicit description of these
functors.

Lemma 4.41. Let R be a finite, tilting-bounded essentially finite, upper finite or
lower finite ε-stratified category with the usual stratification pL,B, ρ,Λ,ďq. Suppose
that R1 is the Ringel dual of R with respect to some given tilting generator T “
À

iPI Ti such that the index set I contains B and Tb pb P Bq is a direct sum of Tεpbq
and copies of Tεpcq for c P B with ρpcq ă ρpbq. For λ P Λ, let Tλ :“

À

bPBλ
Tb P
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Rďλ. There is an algebra isomorphism

φλ : Aλ
„
Ñ EndRλ

pjλTλq
op

between the natural algebra realization Aλ for the stratum R1λ and the endomorphism
algebra of jλTλ P Rλ. Moreover:

(1) If εpλq “ ` then Fλ – HomRλ
pjλTλ, ?q : Rλ Ñ Aλ-modfd with the action

of Aλ defined via φλ.
(2) If εpλq “ ´ then Gλ – HomRλ

p?, jλTλq
˚ : Rλ Ñ Aλ-modfd with the

action of Aλ defined via φλ.

Proof. We just explain the argument in detail if R is a finite ε-stratified
category; the other cases are similar but there are minor notational differences.
We have that R1 “ A-modfd for A :“ EndRpT q

op. The functors F and G are
HomRpT, ?q and HomRp?, T q

˚, respectively. Let eb P A be the projection of T
onto Tεpbq and set eλ :“

ř

bPBλ
eb. Let Aěλ be the quotient of A by the two-sided

ideal generated by the idempotents teµ | µ P Λ with µ ğ λu. This is the natural
realization of the Serre subcategory R1ěλ of R1. Then the stratum R1λ is realized
by the basic finite-dimensional algebra Aλ :“ ēλAěλēλ, where we write x̄ for the
canonical image of x P A under the quotient map A � Aěλ. The idempotents
tēb | b P Bλu are representatives for the conjugacy classes of primitive idempotents
in Aλ.

By Theorem 4.2(3), jλTλ is a minimal projective generator for Rλ if εpλq “ ` or
a minimal injective cogenerator for Rλ if εpλq “ ´. In either case, EndRλ

pjλTλq
op

is the basic algebra realizing the stratum Rλ. Since Rλ and R1λ are equivalent, it
follows that Aλ – EndRλ

pjλTλq
op. However, the argument so far does not produce

the desired explicit isomorphism φλ between these algebras. To obtain this, since
we have already seen that the dimensions agree, it suffices to construct a surjective
algebra homomorphism φλ : Aλ � EndRλ

pjλTλq
op.

Let Rěλ be the Serre quotient of R associated to the upper set pλ,8s, so
that Rěλ has irreducible objects labelled by Běλ. Denote the quotient functor by
jěλ : RÑ Rěλ. The functor jěλ defines an algebra homomorphism

(4.37) A “ EndRpT q
op Ñ EndRěλpj

ěλT qop.

This homomorphism is surjective. To see this, Corollary 3.19(2) gives a short exact

sequence 0 Ñ jěλ! jěλT Ñ T Ñ Q Ñ 0 in which Q has a ∆ε-flag. Applying
HomRp?, T q to this gives surjectivity of the first map below:

HomRpT, T q� HomRpj
ěλ
! jěλT, T q

„
Ñ HomRěλpj

ěλT, jěλT q.

The second map comes from the adjunction. The composite is the map (4.37), so
indeed it is surjective. Now we note that this map sends each eµ for µ ğ λ to zero, so
it factors through the quotient A� Aěλ to give a surjective homomorphism Aěλ �
EndRěλpj

ěλT qop. Then we restrict to ēλAěλēλ to obtain the homomorphism φλ.
It just remains to prove (1) and (2). The universal property of Serre quotients

produces a unique fully faithful functor iλ making the following diagram of functors
commute:

R Rěλ

Rďλ Rλ.

jěλ

iďλ

jλ

iλ
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Thus, jěλ ˝ iďλ – iλ ˝ j
λ. Composing on the left with jěλ˚ and on the right with

jλ˚ , using that jλ ˝ jλ˚ – Id and jěλ˚ ˝ jěλ – Id on objects in the image of iďλ ˝ j
λ
˚ ,

we deduce that

(4.38) jěλ˚ ˝ iλ – iďλ ˝ j
λ
˚ .

Using this, we have that

Fλ – pj
1qλppi1q!ěλ HomRpT, j

ěλ
˚ piλ?qqq

– ēλ HomRěλpj
ěλT, iλ?q “ HomRλ

pjλTλ, ?q,

proving (1). The proof of (2) is similar, using the isomorphism jěλ! ˝ iλ – iďλ ˝ j
λ
!

in place of (4.38). �

Returning to the setup before the lemma, so R is a tilting-rigid fully stratified
category and R1 is its Ringel dual relative to some tilting generator T , we next
discuss the labelling of irreducible objects in R1. In the general tilting-rigid setting,
this depends on a choice of sign function ε, since one needs to fix a specific labelling
tTεpbq | b P Bu of the isomorphism classes of indecomposable summands of T .
Put another way, the labelling of irreducible objects in R1 depends on a labelling
tL1bpλq | b P Bλu of irreducible objects in each of the strata R1λ, which we do given
a choice of ε by declaring that

(4.39) L1λpbq :“

"

FλLλpbq if εpλq “ `,
GλLλpbq if εpλq “ ´.

In the next theorem, we see for the first time the advantage of assuming that all
of the strata of R are symmetric, or at least weakly symmetric, since then the
labelling of irreducibles in R1 does not depend on the choice of ε here.

Theorem 4.42 (Ringel duality for tilting-rigid fully stratified categories). Let
R be a tilting-rigid fully stratified category. The Ringel dual R1 of R with respect to
some tilting generator is again tilting-rigid. Moreover, the following hold for λ P Λ:

(1) Rλ is weakly symmetric if and only if FλLλpbq – GλLλpbq for all b P Bλ.
(2) Rλ is symmetric if and only if Fλ – Gλ.

Proof. Taking ε “ ` in the appropriate Ringel duality theorem (one of The-
orems 4.10, 4.25, 4.27 or 4.34) gives that R1 is ´-stratified with indecomposable
´-tilting objects tFIpbq | b P Bu in the finite, lower finite or essentially finite
cases and tGP pbq | b P Bu in the finite, upper finite or essentially finite cases.
Taking ε “ ´ gives that R1 is `-stratified with indecomposable `-tilting objects
tFIpbq|b P Bu in the finite, lower finite or essentially finite cases and tGP pbq|b P Bu
in the finite, upper finite or essentially finite cases. It follows R1 is fully stratified
and its indecomposable ´-tilting objects and `-tilting objects are the same, i.e.,
T ilt`pR1q “ T ilt´pR1q and R1 is tilting-rigid.

To prove (1) and (2), let ε be any sign function. We may assume that the tilting
generator is T “

À

bPB Tεpbq. Let Tλ :“
À

bPBλ
Tεpbq and Aλ – EndRλ

pjλTλq
op be

as in Lemma 4.41. Using the explicit descriptions of Fλ and Gλ from Lemma 4.41,
we deduce that FλLλpbq – GλLλpbq if and only if

HomRλ
pjλTλ, Lλpbqq – HomRλ

pLλpbq, j
λTλq

˚

as left Aλ-modules (notation as in Lemma 4.41). The left hand side is the irreducible
Aλ-module associated to the primitive idempotent that is the projection of jλTλ
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onto the summand isomorphic to Pλpbq, and the right hand side is the irreducible
Aλ-module associated to the primitive idempotent that is the projection of jλTλ
onto the summand isomorphic to Iλpbq. Thus, these modules are isomorphic for all
b P Bλ if and only if Pλpbq – Iλpbq for all b P Bλ, i.e., the Nakayama permutation
of Rλ is the identity, and Rλ is weakly symmetric. This proves (1).

To prove (2), using Lemma 4.41 again, we have that Fλ – Gλ if and only if
there is a natural isomorphism of left Aλ-modules

HomRλ
pjλTλ, V q – HomRλ

pV, jλTλq
˚

for V P Rλ. Since jλTλ is a projective generator for Rλ and Aλ “ EndRλ
pjλTλq

op,
there is such an Aλ-module isomorphism if and only if there is a natural vector
space isomorphism as in (4.33) for all P, V P Rλ with P projective, i.e., Rλ is
symmetric according to the definition we gave earlier. �

In the sequel, we will only consider tilting-rigid fully stratified categories with
the additional property that all strata are weakly symmetric. By Theorem 4.37, a
tilting-rigid fully stratified category has this property if and only if ν “ id. Thus, a
fully stratified category is tilting-rigid with weakly symmetric strata if and only if

(4.40) T`pbq – T´pbq

for all b P B. In that case, T`pbq – Tεpbq for all sign functions ε, so that one can
simply write T pbq in place of Tεpbq. Moreover, if R1 is the Ringel dual category to
R with respect to some tilting generator, the irreducible objects of R1 are labelled
unambiguously by the set B; the induced labelling of irreducible objects of the
stratum R1λ satisfies

(4.41) L1λpbq – FλLλpbq – GλLλpbq

for all λ P Λ and b P Bλ.

4.7. Bases for morphism spaces between ∆- and ∇-filtered objects

In this section, we explain how to extend the construction of [AST, Th. 3.1]
first to ε-stratified and then to fully stratified categories. These results will be
used in the next chapter to construct triangular bases for endomorphism algebras
of tilting generators.

Theorem 4.43. Let R be a finite, lower finite or tilting-bounded essentially
finite ε-stratified category with stratification pB, L, ρ,Λ,ďq. Suppose for each b P B
that we are given Tb P T iltεpRq such that Tb is a direct sum of Tεpbq and copies of
Tεpcq for c with ρpcq ă ρpbq. Take M P ∆εpRq and N P ∇εpRq. For each b P B,
choose an embedding ιb : ∆εpbq ãÑ Tb, a projection πb : Tb � ∇εpbq, and subsets

Yb Ă HomRpM,Tbq, Xb Ă HomRpTb, Nq
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so
 

ȳ :“ πb ˝ y
ˇ

ˇ y P Yb
(

is a basis for HomRpM,∇εpbqq and
 

x̄ :“ x ˝ ιb
ˇ

ˇ x P Xb

(

is a basis for HomRp∆εpbq, Nq, as illustrated by the diagram:

(4.42)

∆εpbq� _

ιb

��

x

""

M
y
//

y
""

Tb

πb
����

x
// N

∇εpbq

.

Then the morphisms x˝y for all py, xq P
Ť

bPB YbˆXb give a basis for HomRpM,Nq.

Proof. We proceed by induction on `∆ε
pMq ` `∇εpNq where `∆ε

pMq :“
ř

bPBpM : ∆εpbqq and `∇εpNq :“
ř

bPBpN : ∇εpbqq. The base case is this num-
ber is zero, hence, M “ N “ 0 too, which is trivial. For the induction step, we can
replace R by the Serre subcategory of R associated to the lower set of Λ generated
by all tλ | pM : ∆εpbqq `N : ∇εpbqq ‰ 0 for some b P Bλu to assume that there is
some maximal element λ P Λ such that such that pM : ∆εpbqq ` pN : ∇εpbqq ‰ 0
for some b P Bλ. Then we let Λ� :“ Λztλu, B� :“ ρ´1pΛ�q, and i : R� Ñ R be the
natural inclusion of the corresponding Serre subcategory of R. Let j : RÑ Rλ be
the quotient functor.

In this paragraph, we treat the special case N P R�. Let M� :“ i˚M . Note
by the choice of λ that `∆ε

pM�q ` `∇εpNq| ă `∆ε
pMq ` `∇εpNq. By (3.10) and

Theorem 3.17(2), we have that M� P ∆εpR�q, and there is a short exact sequence
0 Ñ K Ñ M Ñ M� Ñ 0 where K has a ∆ε-flag with sections of the form ∆εpbq
for b P Bλ. It follows that the natural inclusion HomRpM

�, Nq ãÑ HomRpM,Nq
is an isomorphism. For b P B�, all of the morphisms ty : M Ñ Tb | y P Ybu factor
through M� too. Hence, we can apply the induction hypothesis to deduce that the
morphisms x ˝ y for all py, xq P

Ť

bPB� Yb ˆ Xb give a basis for HomRpM
�, Nq “

HomRpM,Nq. Since Xb “ ∅ for b P Bλ, we have that
Ť

bPB Yb ˆXb “
Ť

bPB� Yb ˆ
Xb, so this is just what is needed.

Now suppose that N R R� and let N� :“ i!N P R�. We again have that
`∆ε
pM�q ` `∇εpNq| ă `∆ε

pMq ` `∇εpNq. By (3.10) and Theorem 3.17(4), we have

that N� P ∇εpR�q, and there is a short exact sequence 0 Ñ N� Ñ N
π
Ñ Q Ñ 0

where Q has a ∇ε-flag with sections of the form ∇εpbq for b P Bλ. Applying
HomRpM, ?q to this and using Theorem 3.14 gives a short exact sequence

0 Ñ HomRpM,N�q Ñ HomRpM,Nq Ñ HomRpM,Qq Ñ 0.

For b P B�, the morphisms tx : Tb Ñ N | x P Xbu have image contained in N� and
are lifts of a basis for HomR�p∆εpbq, N

�q. By induction, we get that HomRpM,N�q

has basis given by the compositions x˝y for all py, xq P
Ť

bPB� YbˆXb. In view of this
and the above short exact sequence, we are therefore reduced to showing that the
morphisms π˝x˝y for py, xq P

Ť

bPBλ
YbˆXb give a basis for HomRpM,Qq. We have

that Q – j˚jQ by Corollary 3.19(1), hence, the exact quotient functor j defines

isomorphisms HomRpM,Qq
„
Ñ HomRλ

pjM, jQq. Similarly, HomRpM,∇εpbqq
„
Ñ

HomRλ
pjM, j∇εpbqq and HomRp∆εpbq, Nq

„
Ñ HomRλ

pj∆εpbq, jNq for b P Bλ.
Moreover, jπ : jN Ñ jQ is an isomorphism. Thus, we are reduced to show-
ing that the morphisms jx ˝ jy give a basis for HomRλ

pjM, jNq for all py, xq P
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Ť

bPBλ
Yb ˆ Xb. The sets of morphisms Ȳb :“ tjy : jM Ñ jTb | y P Ybu and

X̄b :“ tjx : jTb Ñ jN | x P Xbu appearing here are characterized equivalently as
lifts of bases for HomRλ

pjM, j∇εpbqq and HomRλ
pj∆εpbq, jNq, respectively. Let

M̄ :“ jM and N̄ :“ jN .
To complete the proof, we consider the two cases εpλq “ ` and εpλq “ ´

separately. The arguments are similar, so we just explain the former. In this
case, for b P Bλ, we have that j∇εpbq – Lλpbq and j∆εpbq – Pλpbq – jTb by
Theorem 4.2(3). The module M̄ is projective in Rλ. We are trying to show that
the morphisms x̄ ˝ ȳ for all pȳ, x̄q P

Ť

bPBλ
Ȳb ˆ X̄b give a basis for HomRλ

pM̄, N̄q
where:

‚ Ȳb Ă HomRλ
pM̄, Pλpbqq is a set lifting a basis of HomRλ

pM̄, Lλpbqq;
‚ X̄b is a basis of HomRλ

pPλpbq, N̄q.

Since M̄ is projective, the proof reduces to the case that M̄ “ Pλpbq, when the
assertion is clear. �

The following restatement in the special case of a highest weight categories
recovers [AST, Th. 3.1].

Corollary 4.44. Let R be a finite, lower finite or tilting-bounded essentially
finite highest weight category with poset pΛ,ďq and labelling function L. Suppose
for each λ P Λ that we are given Tλ P T iltpRq such that Tλ is a direct sum of T pλq
and copies of T pµq for µ ă λ. Take M P ∆pRq and N P ∇pRq. For each λ P Λ,
choose an embedding ιλ : ∆pλq ãÑ Tλ, a projection πλ : Tλ � ∇pλq, and subsets

Yλ Ă HomRpM,Tλq, Xλ Ă HomRpTλ, Nq

so that
 

ȳ :“ πλ ˝ y
ˇ

ˇ y P Yλ
(

is a basis HomRpM,∇pλqq and
 

x̄ :“ x ˝ ιb
ˇ

ˇ x P Xb

(

is a basis for HomRp∆pλq, Nq. Then the morphisms x˝y for all py, xq P
Ť

λPΛ Yλˆ
Xλ give a basis for HomRpM,Nq.

For tilting-rigid fully stratified categories, there is a more refined version of
Theorem 4.43.

Theorem 4.45. Let R be a finite, lower finite or essentially finite fully stratified
category with stratification pB, L, ρ,Λ,ďq such that R is tilting-rigid with weakly
symmetric strata. Suppose for each b P B that we are given Tb P T iltpRq such that
Tb is a direct sum of T pbq and copies of T pcq for c with ρpcq ă ρpbq. Take M P ∆pRq
and N P ∇pRq. For a, b P B, choose embeddings ιa : ∆paq ãÑ Ta, ῑb : ∆̄pbq ãÑ Tb,
projections π̄a : Ta � ∇̄paq, πb : Tb � ∇pbq, and subsets

Ya Ă HomRpM,Taq, Hpa, bq Ă HomRpTa, Tbq, Xb Ă HomRpTb, Nq

so that
 

ȳ :“ π̄a ˝ y
ˇ

ˇ y P Ya
(

is a basis for HomRpM, ∇̄paqq,
 

h̄ :“ πb ˝ h ˝ ιa
ˇ

ˇ h P

Hpa, bq
(

is a basis for HomRp∆paq,∇pbqq, and
 

x̄ :“ x ˝ ῑb
ˇ

ˇ x P Xb

(

is a basis for
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HomRp∆̄pbq, Nq, as illustrated by the diagram:

(4.43)

∆paq� _

ιa

��

h̄ // ∇pbq

M
y
//

y !!

Ta

π̄a
����

h
// Tb

πb

OOOO

x // N

∇̄paq ∆̄pbq

x

==

?�

ῑb

OO
.

Then the morphisms x˝h˝y for all py, h, xq P
Ť

a,bPB YaˆHpa, bqˆXb give a basis

for HomRpM,Nq.

Proof. This follows by the same strategy as was used in the proof of The-
orem 4.43. The only substantial difference is in the final paragraph of the proof.
By that point, we have reduced to showing for projective and injective objects
M̄, N̄ P Rλ, respectively, that the morphisms x̄˝ h̄˝ ȳ for all pȳ, h̄, x̄q P

Ť

a,bPBλ
Ȳaˆ

H̄pa, bq ˆ X̄b give a basis for HomRλ
pM̄, N̄q where:

‚ Ȳa Ă HomRλ
pM̄, Pλpaqq is a set lifting a basis of HomRλ

pM̄, Lλpaqq;
‚ H̄pa, bq is a basis for HomRλ

pPλpaq, Iλpbqq;
‚ X̄b Ă HomRλ

pIλpbq, N̄q is a set lifting a basis of HomRλ
pLλpbq, N̄q.

Using that M̄ is projective and N̄ is injective, the proof of this reduces to the case
that M̄ “ Pλpaq and N̄ “ Iλpbq, when the assertion is clear. �

4.8. Chevalley dualities

Finally, in this chapter we discuss some further aspects of Ringel duality. These
results will be used in the next chapter to construct symmetric triangular bases for
endomorphism algebras of tilting generators. Like in §4.6, the phrase “fully strat-
ified category” means a fully stratified category R that is either finite, essentially
finite, upper finite or lower finite.

Given a finite-dimensional algebra A and an algebra anti-automorphism σ :
AÑ A, there is a contravariant autoequivalence

(4.44) ?©σ : A-modfd Ñ A-modfd

taking V to its linear dual V ˚ viewed as a left module by restricting the natural right
action along σ. If R is a finite Abelian category and ?_ : RÑ R is a contravariant
autoequivalence, we call a pair pA, σq consisting of a finite-dimensional algebra A
and an anti-automorphism σ a realization of pR, ?_q if there is an equivalence of
categories F : RÑ A-modfd such that F˝?_ –?©σ ˝F . The following lemma shows
that any contravariant autoequivalence of R admits a realization in this sense.
In fact, we will only ever consider contravariant autoequivalences that preserve
isomorphism classes of irreducible objects, in which case we can say a little more
about σ as explained at the end of the lemma.

Lemma 4.46. Let A be a finite-dimensional algebra. Suppose that ?_ is a con-
travariant autoequivalence of A-modfd. There exists an algebra anti-automorphism
σ : A Ñ A such that ?_ –?©σ . Moreover, if ?_ preserves isomorphism classes of
irreducible A-modules, then σ can be chosen so that it fixes each of a given set
tei | i P Iu of mutually orthogonal idempotents in A.
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Proof. Consider the functor F :“?˚˝?_ : A-modfd Ñ Aop-modfd. Since this
is right exact and preserves direct sums, we have that F – FAbA? where FA is
the pAop, Aq-bimodule obtained by applying F to the regular pA,Aq-bimodule A.
Note that the right action of x P A on FA here is defined by applying F to the left
A-module homomorphism rx : AÑ A, a ÞÑ ax.

Viewing A as a left Aop-module with action x ¨ y :“ yx, we claim that FA –
A as left Aop-modules. To see this, let tLpbq | b P Bu be a full set of pairwise
inequivalent irreducible left A-modules. Then A –

À

bPB P pbq
‘ dimLpbq as left A-

modules, where P pbq is the projective cover of Lpbq. Let B Ñ B, b ÞÑ b1 be the
bijection defined from Lpbq_ – Lpb1q. Then P pbq_ – Ipb1q, the injective hull of
Lpb1q. Hence FP pbq – Ipb1q˚ as left Aop-modules. Here, Ipbq˚ is the projective
cover of the left Aop-module Lpbq˚. Using that dimLpbq “ dimLpb1q˚, we deduce
that

FA –
à

bPB

pIpb1q˚q
À

dimLpbq –
à

bPB

pIpbq˚q
À

dimLpbq˚ – A

as left Aop-modules. This proves the claim. Similarly, under the additional hy-
pothesis that ?_ preserves isomorphism classes of irreducible objects and we are
given mutually orthogonal idempotents tei | i P Iu, we get that F pAeiq – eiA as
left Aop-modules for each i P I.

Now we let φ : FA
„
Ñ A be some choice of a left Aop-module isomorphism.

When the additional hypothesis holds, we may pick this so that it restricts to
isomorphisms F pAeiq

„
Ñ eiA for each i P I. Transporting the right A-module

structure on FA through φ, we make the left Aop-module A into an pAop, Aq-
bimodule, which we will denote by Aσ´1 . Explicitly, left action of x P Aop on
y P Aσ´1 is given by x ¨ y :“ yx as in the previous paragraph, while the new right
action of x P A is by y ¨ x :“ pφ ˝ pprxq

_q˚ ˝ φ´1qpyq. Since EndAoppAq – A, this
right action of x can be written as left multiplication by a unique element x1 P A.
The resulting map AÑ A, x ÞÑ x1 is an algebra anti-automorphism. Let σ : AÑ A
be the inverse anti-automorphism. Note then that the right action of x P A on
y P Aσ´1 is by y ¨ x “ σ´1pxqy, explaining our earlier choice of notation. When the
additional hypothesis holds, the choice of φ ensures that peiq

1 “ ei for i P I, hence,
σpeiq “ ei for each i P I.

For a left A-module V , let σV be V viewed instead as a left Aop-module by
restricting along σ. Then σA is an pAop, Aq-bimodule which is isomorphic via

σ : Aσ´1
„
Ñ σA to the pAop, Aq-bimodule Aσ´1 – FA from the previous paragraph.

Thus, we have shown that F – Aσ´1bA? – σAbA? – σ? : A-modfd Ñ Aop-modfd.
Applying ?˚ gives finally that ?_ –?©σ . �

Remark 4.47. In the setup of Lemma 4.46, assume that ?_ preserves iso-
morphism classes of irreducible A-modules. Then we can take the set of mutually
orthogonal idempotents at the end of the lemma to be a mutually orthognal set
teb | b P Bu of representatives for the conjugacy classes of primitive idempotents in
A. Then the lemma shows that we can choose the anti-automorphism σ so that
σpebq “ eb for all b P B. Conversely, if σ : A Ñ A is an anti-automorphism fixing
such a set of reprentatives for the conjugacy classes of primitive idempotents on
A, it is obvious that the contravariant autoequivalence ?©σ preserves isomorphism
classes of irreducible A-modules.
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To adapt the above from finite Abelian categories to essentially finite Abelian
categories, Schurian categories or locally finite Abelian categories, we need the
following definitions:

‚ If A “
À

i,jPI eiAej is an essentially or locally finite-dimensional locally
unital algebra, a locally unital algebra anti-automorphism σ : AÑ A gives
rise to a contravariant autoequivalence ?©σ of the categories A-modfd or
A-modlfd, respectively. This is defined by first applying the usual duality
from left modules to right modules, either ?˚ : A-modfd Ñ modfd-A or
?f : A-modlfd Ñ modlfd-A depending on the case, and then converting
right modules back to left modules by restricting along σ.

‚ If A is a pseudo-compact topological algebra, that is, A – C˚ for a coal-
gebra C, an algebra anti-automorphism σ : A Ñ A gives rise to a con-
travariant autoequivalence ?©σ of A-modfd – comodfd-C. Note in this case
that σ is necessarily continuous so that it is the dual of a coalgebra anti-
automorphism σˇ : C Ñ C; the definition of the duality ?©σ could also be
formulated in terms of comodules using σˇ.

Then given an essentially finite Abelian category, a Schurian category, or a locally
finite Abelian category R with a contravariant autoequivalence ?_, a realization of
pR, ?_q means a pair pA, σq consisting of an algebra A and an anti-automorphism
σ : A Ñ A of the appropriate type such that ?©σ ˝ F – F˝?_ for some equivalence
F from R to A-modfd, A-modlfd or A-modfd, respectively. The following lemmas
are analogs of Lemma 4.46 in each of these new settings.

Lemma 4.48. Suppose that A “
À

i,jPI eiAej is either an essentially or a locally
finite-dimensional locally unital algebra. Let ?_ be a contravariant autoequivalence
of A-modfd or A-modlfd, respectively, which preserves isomorphism classes of irre-
ducible objects. There exists a locally unital algebra anti-automorphism σ : AÑ A
such that ?_ –?©σ .

Proof. In the locally finite-dimensional case, let F :“?f˝?_ : A-modlfd Ñ

Aop-modlfd. Viewing
À

iPI F pAeiq as an pAop, Aq-bimodule in the natural way, we
have tat F – p

À

iPI F pAeiqqbA?. Then we observe for each i P I that F pAeiq – eiA
as left Aop-modules as ?_ preserves isomorphism classes of irreducibles. Now argue
as in proof of Lemma 4.46. The essentially finite-dimensional case is similar. �

Lemma 4.49. Suppose that A is a pseudo-compact topological algebra. Let ?_

be a contravariant autoequivalence of A-modfd which preserves isomorphism classes
of irreducible objects. Then there exists an algebra anti-automorphism σ : A Ñ A
such that ?_ –?©σ . Moreover, given a family tei | i P Iu of mutually orthogonal
idempotents in A, σ can be chosen so that σpeiq “ ei for all i P I.

Proof. The functor ?_ : A-modfd Ñ A-modfd extends to ?_ : A-modpc Ñ

A-modds with plim
ÐÝ

Vωq
_ :“ lim

ÝÑ
pV _ω q, taking limits over finite-dimensional submod-

ules Vω ď V . Composing with ?˚ gives an equivalence F :“?˚˝?_ : A-modpc Ñ

Aop-modpc. Moreover, for each i P I we have that F pAeiq – eiA as a pAop, Aq-
bimodule as ?_ preserves isomorphism classes of irreducibles. Then we argue as in
Lemma 4.46 to obtain an algebra anti-automorphism σ : AÑ A with σpeiq “ ei for
each i P I such that F is isomorphic to the functor A-modpc Ñ Aop-modpc defined
by restriction along σ. The lemma follows on composing with ?ˇ then restricting
to A-modfd. �
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With these preliminaries in place, we can now prove a result which explains
how to transfer a contravariant autoequivalence on a fully stratified category to its
Ringel dual.

Theorem 4.50 (Dualities commute with Ringel duality). Suppose that R is a
fully stratified category with stratification pB, L, ρ,Λ,ďq such that R is tilting-rigid
with weakly symmetric strata, i.e., (4.40) holds. Assume also that R possesses a
contravariant autoequivalence ?_ which preserves isomorphism classes of irreducible
objects. Then we have that T pbq_ – T pbq for all b P B. Moreover, letting R1 be the
Ringel dual category with respect to some choice of tilting generator and F,G be the
usual Ringel duality functors, there is an induced contravariant autoequivalence ?^

on R1 preserving isomorphism classes of irreducible objects such that

(4.45) F˝?_ – ?^ ˝G, G˝?_ – ?^ ˝ F

whenever these functors make sense (e.g., these isomorphisms always hold on ∆εpRq
and on ∇εpRq, respectively, for any choice of ε).

Proof. We just explain the proof in the case that R is a finite fully stratified
category, leaving the minor modifications needed in the other three cases to the
reader. By Lemma 4.46, we may assume that R “ A-modfd for a finite-dimensional
algebra A and that ?_ : RÑ R is the functor ?©σ taking a left A-module V to the
dual right A-module viewed as a left module by restricting the natural right action
along some given anti-automorphism σ : A

„
Ñ A. (In the other three cases, one

needs to use Lemmas 4.48–4.49 here in place of Lemma 4.46.)
Since T`pbq has a ∆-flag with ∆pbq at the bottom, and also a ∇̄-flag, we see

using Lemma 3.3 that T`pbq
_ has a ∇-flag with ∇pbq at the top, and also a ∆̄-flag.

So it is isomorphic to T´pbq. As R is tilting-rigid, T pbq :“ T`pbq – T´pbq, so we
have shown that T pbq_ – T pbq for all b P B.

We are given some full tilting module T defining the Ringel dual category R1,
i.e., R1 “ B-modfd for B “ EndApT q

op. From the previous paragraph, we get that

T – T_. Let φ : T
„
Ñ T_ be an isomorphism of left A-modules. Equivalently, φ

is the data of a non-degenerate pairing x¨, ¨y : T ˆ T Ñ k with xv, wy :“ φpvqpwq,
and we have that xxv,wy “ xv, σpxqwy for v, w P T , x P A. Let τ : B Ñ B be the
anti-automorphism of B defined so that xvy, wy “ xv, wτpyqy for v, w P T , y P B.
It follows that φ is also an isomorphism of right B-modules for the right B-module
structure on T_ obtained by restricting its natural left action on T˚ along τ . Now
we can define the contravariant autoequivalence ?^ : B-modfd Ñ B-modfd to be
?©τ .

In this paragraph, we check (4.45). We just prove the first of these isomor-
phisms; the latter follows from former (with the roles of A and B reversed) on
taking adjoints. Take V P R. Then we have natural left B-module isomorphisms

pGV q^ – HomApV, T q – HomApT
_, V _q – HomApT, V

_q “ F pV _q,

as required. (On the space HomApV, T q here, the left B-module structure is defined
by restricting the natural right action along τ .)

It remains to check that ?^ preserves isomorphism classes of irreducible objects
in R1. Since the strata are weakly symmetric, we have that

∇1pbq^ – pG∆pbqq^ – F p∆pbq_q – F∇pbq – ∆1pbq.

This implies that L1pbq^ – L1pbq. �
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In examples coming from Lie theory, highest weight categories usually come
equipped with dualities arising from anti-involutions which restrict to the identity
on the Cartan part. The material in the rest of the section is an attempt to
axiomatize the essential features of such dualities in the more general setting of
fully stratified categories. We start with a definition which will be relevant at the
level of strata.

Definition 4.51. Let A be a finite-dimensional algebra and σ : AÑ A be an
anti-involution. We say that A is σ-symmetric if the following hold:

(σS1) There is a set teb | b P Bu of representatives for the conjugacy classes of
primitive idempotents in A such that σpebq “ eb for all b P B.

(σS2) There is a non-degenerate associative symmetric bilinear form p¨, ¨q : Aˆ
AÑ k such that px, yq “ pσpxq, σpyqq for all x, y P A.

If A is σ-symmetric in the sense of Definition 4.51 then it is a symmetric algebra
in the usual sense. Moreover, every finitely generated projective left A-module
P possesses a non-degenerate symmetric bilinear form x¨, ¨y such that xxv,wy “
xv, σpxqwy for v, w P P, x P A; in particular, P – P©σ . To see this, we may assume
without loss of generality that P is indecomposable and that P “ Ae for a σ-
invariant primitive idempotent e. Then the form x¨, ¨y : P ˆP Ñ k defined in terms
of the given σ-symmetric form p¨, ¨q on A by xv, wy :“ pσpvq, wq for v, w P P has
these properties; it is non-degenerate because by associativity

(4.46) A “ eAe‘ reAp1´ eq ` p1´ eqAes ‘ p1´ eqAp1´ eq

is an orthogonal decomposition of A with respect to p¨, ¨q and the subspaces eAp1´eq
and p1´ eqAe are isotropic.

The following lemma shows that σ-symmetry is preserved by Morita equiva-
lence. The basic point underlying this is that if A is σ-symmetric and e P A is a
σ-invariant idempotent, then σ restricts to an anti-involution of eAe. Moreover a
σ-symmetric form p¨, ¨q on A restricts to such a form on eAe so that eAe is also
σ-symmetric; the non-degeneracy of this restriction follows from the orthogonal
decomposition (4.46).

Lemma 4.52. Let A be a finite-dimensional algebra which is σ-symmetric for
some anti-involution σ. Let B be another finite-dimensional algebra that is Morita
equivalent to A, so that there is an equivalence of categories F : B-modfd Ñ

A-modfd. Then B possesses an anti-involution τ : B Ñ B such that ?©σ ˝F – F˝?©τ ,
and B is τ -symmetric for any such anti-involution τ . Moreover, τ can be chosen
in such a way that it fixes each of some given set tfi | i P Iu of mutually orthogonal
idempotents in B.

Proof. Let teb | b P Bu be a set of mutually orthogonal representatives for
the conjugacy classes of primitive idempotents in A with σpebq “ eb for all b.
Let e :“

ř

bPB eb. Then eAe is the basic algebra that is Morita equivalent to A,
and it is σ-symmetric too. The functors ?©σ on A-modfd and eAe-modfd obviously
commute with the idempotent truncation functor giving an equivalence A-modfd Ñ

eAe-modfd. All of this means that we can replace A with eAe if necessary to assume
that A itself is basic with 1 “

ř

bPB eb being a decomposition of its identity element
into mutually orthogonal σ-invariant primitive idempotents.

Now suppose that B is Morita equivalent to A via some given F : B-modfd Ñ

A-modfd. Let P :“ FB be the pA,Bq-bimodule obtained by applying F to the
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regular pB,Bq-bimodule. Note that P “
À

iPI Pfi where tfi | i P Iu is the given set
of mutually orthogonal idempotents in B; we are assuming here that

ř

iPI fi “ 1B
which we can clearly do by adding one more idempotent to this set if necessary.

As an A-module, we have for each i P I that Pfi –
À

bPBAe
‘dipbq
b for integers

dipbq ą 0; the numbers dpbq “
ř

iPI dipbq are the dimensions of the irreducible
B-modules. Moreover, eiBej – EndApPei, P ejq

op. Fixing such isomorphisms, we

may assume simply that P “
À

iPI Pfi with Pfi “
À

bPBAe
‘dipbq
b , B “ EndApP q

op

with fi being the projection of P onto the i-th summand Pfi, and F “ PbB?.
Next we observe that B “ EndApP q

op is isomorphic to an algebra of block
matrices, with blocks indexed by the set IˆB, and the block in the row indexed by
pi, aq and column indexed by pj, bq being a dipaqˆdjpbqmatrix with entries in eaAeb.
The multiplication is just matrix multiplication combined with multiplication in A.
From this description, it is clear that B possesses an anti-involution τ defined by
taking the transpose of a matrix and applying σ to all of the entries of the result.
For i P I, b P B and 1 ď r ď dipbq, let fi,b;r P B be the matrix with all entries equal
to zero except for the r-th entry in its pi, bq-th diagonal block, which is equal to eb.
This is a primitive idempotent in B, and it is fixed by τ . This verifies the axiom
(σS1) for this particular anti-involution τ of B. Next we check that the axiom
(σS2) is satisfied. Let tr : A Ñ k, x ÞÑ p1A, xq be the trace function associated to
a σ-symmetric form on A. Define tr1 : B Ñ k by mapping a matrix in B to the
sum of the scalars obtained by applying tr to each of its diagonal entries. Then let
p¨, ¨q1 : B ˆ B Ñ k be the bilinear form defined from px, yq1 :“ tr1pxyq. This is a
non-degenerate symmetric bilinear form on B with pτpxq, τpyqq1 “ px, yq1.

It is clear that F˝?©τ –?©σ˝F since F is isomorphic to the idempotent truncation
functor defined by f :“

ř

fi,b;1 summing over all i P I, b P B such that dipbq ‰ 0.

We also have that fi “
ř

bPB

řdipbq
r“1 fi,b;r, so τpfiq “ fi for each i P I. So we have

now proved the existence of an anti-involution τ with all of the desired properties. It
remains to note given another other anti-involution ω : B Ñ B with F˝?©ω –?©σ ˝F
that ?©ω˝?©τ – Id, hence, we have that ω ˝ τ “ γ for some inner automorphism
γ : B Ñ B, x ÞÑ uxu´1; equivalently, ω “ γ ˝ τ . If that is the case, then B is also
ω-symmetric since the bilinear form p¨, ¨q1 constructed in the previous paragraph
also satisfies

pωpxq, ωpyqq1 “ puτpxqu´1, uτpyqu´1q “ pτpxq, τpyqq “ px, yq1

for x, y P A. �

Definition 4.53. Let R be a fully stratified category with the usual stratifi-
cation. We say that a contravariant autoequivalence ?_ of R is a Chevalley duality
if there is a realization pA, σq of pR, ?_q in which σ is a Chevalley anti-involution,
meaning that σ2 “ id and the following two properties hold:

(Ch1) There exists a set tea | a P Bu of mutually orthogonal σ-invariant idem-
potents in A such that dim eaLpbq “ δa,b for all b P B with ρpbq ą ρpaq;
here, Lpbq is the irreducible A-module labelled by b P B.

(Ch2) Let Aďλ be the quotient of A by the two-sided ideal generated by the
idempotents tea | a P B with ρpaq ę λu and Aλ :“

À

a,bPBλ
ēaAďλēb. For

each λ P Λ, we require that Aλ possesses a non-degenerate associative
symmetric bilinear form p¨, ¨qλ such that pσλpxq, σλpyqqλ “ px, yqλ for all
x, y P Aλ, where σλ : Aλ Ñ Aλ is the anti-involution induced by σ.
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In view of the following lemma, axiom (Ch2) is vacuous in the case that R is
a highest weight category, since then we have that Aλ “ k and σλ “ id.

Lemma 4.54. Suppose that pA, σq is a realization of pR, ?_q in which σ is a
Chevalley involution as in Definition 4.53. The algebra Aλ from (Ch2) is the basic
algebra realizing the stratum Rλ, and it is σλ-symmetric in the sense of Defini-
tion 4.51. We also have that Lpbq_ – Lpbq for all b P B, i.e., Chevalley dualities
preserve isomorphism classes of irreducible objects.

Proof. Let I be the two-sided ideal of A generated by tea |a P B with ρpaq ę
λu. We claim that Rďλ is the full subcategory of R consisting of all objects V such
that IV “ 0. To see this, if IV “ 0 then eaV “ 0 for all a P B with ρpaq ę λ then
rV : Lpaqs “ 0 for all such a thanks to axiom (Ch1). So we have that V P Rďλ.
Conversely, if V P Rďλ and ρpaq ę λ then the idempotent ea is zero on every
irreducible subquotient of V by (Ch1), hence, eaV “ 0. This implies that IV “ 0.

By the claim, the algebra Aďλ “ A{I gives a realization of Rďλ. Let ēb denote
the image of eb in Aďλ. For b P Bλ, we have that ēbLpcq “ δb,c for all c P Bλ.
This shows that the mutually orthogonal idempotents tēb | b P Bλu are primitive
in Aďλ. Hence, Aλ “

À

a,bPBλ
ēaAďλēb is the basic algebra realizing the stratum

Rλ. It is immediate from the axioms (Ch1)–(Ch2) and the definition that Aλ is
σλ-symmetric.

Finally to show that Lpbq©σ – Lpbq for all b P B, suppose that b P Bλ. We have
that eaLpbq

©σ – peaLpbqq
˚ “ 0 for all a with ρpaq ę λ, so Lpbq©σ P Rďλ. Moreover,

ebLpbq
©σ – pebLpbqq

˚ is one-dimensional. Since ēb is primitive in Aďλ this implies
that Lpbq©σ – Lpbq. �

Theorem 4.55 (Chevalley dualities commute with Ringel duality). Let R be a
fully stratified category with stratification pB, L, ρ,Λ,ďq. Assume that R possesses
a Chevalley duality ?_. Fix also a realization pA, σq of pR, ?_q in which σ is a
Chevalley involution, and let T pbq denote the left A-module corresponding to T`pbq P
R.

(1) If R is tilting-rigid and char k ‰ 2 then for each b P B there exists a
non-degenerate symmetric bilinear form x¨, ¨y : T pbq ˆ T pbq Ñ k satisfying
the following σ-adjunction property:

(4.47) xxv,wy “ xv, σpxqwy

for v, w P T pbq and x P A.
(2) Suppose that we are given objects of R corresponding to A-modules tTb |b P

Bu such that each Tb is a direct sum of T pbq and copies of T pcq for c P
B with ρpcq ă ρpbq. Assume moreover that each Tb is equipped with a
non-degenerate symmetric bilinear form x¨, ¨y satisfying the σ-adjunction
property. Then, R is tilting-rigid with symmetric strata, and there is an
induced Chevalley duality ?^ on the Ringel dual R1 of R satisfying (4.45).

Proof. (1) Suppose that b P Bλ for some λ P Λ. For the purpose of proving
(1) for T pbq, we can replace R by Rďλ and the algebra A realizing R by the corre-
sponding quotient algebra to assume without loss of generality that R “ Rďλ. So
now R is either finite or upper finite, and the chosen algebra A is either a finite-
dimensional algebra or a locally finite-dimensional locally unital algebra, respec-
tively. Let tea | a P Bu be the mutually orthogonal σ-invariant idempotents given
by the axiom (Ch1). Let eλ :“

ř

bPBλ
eb and Aλ :“ eλAeλ. By Lemma 4.54, this is
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the basic finite-dimensional algebra realizing the top stratum Rλ, and teb | b P Bλu

is a set of representatives for the conjugacy classes of primitive idempotents in Aλ.
The anti-involution σ of A restricts to an anti-involution σλ of Aλ. Also eλT pbq is
isomorphic to the indecomposable projective Aλ-module Aλeb.

Claim 1: Let ψ : T pbq Ñ T pbq be an A-module homomorphism and ψ̄ : eλT pbq Ñ
eλT pbq be its restriction, which is an Aλ-module homomorphism. Then ψ is an
isomorphism if and only if ψ̄ is an isomorphism. The forward implication is clear.
For the converse, let E :“ EndApT pbqq

op and Eλ :“ EndAλpeλT pbqq
op. As eλT pbq is

an indecomposable Aλ-module, the algebra Eλ is a finite-dimensional local algebra,
so its Jacobson radical is of codimension one and any non-unit is nilpotent. The
algebra E is also a finite-dimensional local algebra in the finite case, while in the
upper finite case it is a pseudo-compact topological algebra with Jacobson radical
JpEq having codimension one. In either case, any element of E is either a unit or
it belongs to JpEq. Let Ē be the image of E under the homomorphism E Ñ Eλ
defined by restriction. The Jacobson radical of Ē is the image of JpEq, so it is
again of codimension one5 in Ē. We are given ψ P E such that ψ̄ is a unit in Eλ.
This means that ψ̄ is not nilpotent, hence, it is also a unit in Ē. It follows that
ψ̄ R JpĒq so ψ R JpEq. This shows that ψ is a unit in E, i.e., it is an isomorphism
as required.

Claim 2: Let x¨, ¨y be a bilinear form on T pbq with the σ-adjunction property.
Then x¨, ¨y is non-degenerate if and only if its restriction x¨, ¨yλ to eλT pbq is non-
degenerate. To see this, observe that the form x¨, ¨y induces an A-module homomor-
phism θ : T pbq Ñ T pbq©σ with θpvqpwq “ xv, wy, and the form is non-degenerate if
and only if this induced homomorphism is an isomorphism. Similarly, the restric-
tion x¨, ¨yλ induces an Aλ-module homomorphism θ̄ : eλT pbq Ñ peλT pbqq

©σ , and the
restricted form is non-degenerate if and only if θ̄ is an isomorphism. If we iden-
tify peλT pbqq

©σ with eλpT pbq
©σq in the natural way, we see that θ̄ is the restriction

of θ. We are given that R is tilting-rigid, and its strata are σλ-symmetric which
implies that they are weakly symmetric, so there is an A-module isomorphism
φ : T pbq©σ

„
Ñ T pbq according to Theorem 4.50. This restricts to an Aλ-module

isomorphism φ̄ : eλpT pbq
©σq Ñ eλT pbq. Now Claim 2 is reduced to showing that the

A-module homomorphism φ ˝ θ : T pbq Ñ T pbq is an isomorphism if and only if its
restriction φ̄ ˝ θ̄ : eλT pbq Ñ eλT pbq is an isomorphism. This follows from Claim 1.

Claim 3: The socle of Aλeb is irreducible, and any non-zero vector zb P soc pAλebq
satisfies σλpzbq “ zb. By (Ch2), there is a non-degenerate associative symmetric
bilinear form p¨, ¨qλ on Aλ with pσλpxq, σλpyqqλ “ px, yqλ for all x, y P Aλ. By
the discussion before Lemma 4.52, Aλeb is self-dual, so it has irreducible socle
isomorphic to its head. Moreover, p¨, ¨qλ restricts to a non-degenerate associative
symmetric bilinear form on ebAλeb. This is a local symmetric algebra, so its Jacob-
son radical J is a two-sided ideal of codimension one and JK is a two-sided ideal of
dimension one. Let zb be a non-zero vector in JK. We must have that peb, zbqλ ‰ 0
by the non-degeneracy of the form. Moreover, zb also spans the socle of Aλeb. It
remains to show that σλpzbq “ zb. Since σλ leaves JK invariant we certainly have
that σλpzbq “ czb for c P k. Now we use the σλ-symmetry of the form:

peb, zbqλ “ pσλpebq, σλpzbqqλ “ peb, czbqλ.

5In fact, one can show that Ē “ Eλ but we do not need to use this here.
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Since peb, zbqλ ‰ 0, this implies that c “ 1.

Claim 4: Suppose that x¨, ¨yλ is a bilinear form on Aλeb with the σλ-adjunction
property, i.e., the analog of (4.47) with σ replaced by σλ holds for all x P Aλ.
This form is non-degenerate if and only if xeb, zbyλ ‰ 0 for zb as in Claim 3.
Suppose first that xeb, zbyλ ‰ 0. Take any 0 ‰ x P Aλeb. Since the socle of Aλeb
is one-dimensional, there exists y P Aλ such that yx “ zb. Then xeb, yxyλ ‰ 0
so xσpyqeb, xyλ ‰ 0. This shows that the function Aλeb Ñ pAλebq

˚, x ÞÑ x?, xyλ is
injective, hence, the form is non-degenerate. Conversely, suppose that xeb, zbyλ “ 0.
Then the Aλ-submodule tx P Aλeb |xx, zbyλ “ 0u contains eb, hence, it is all of Aλeb.
So the form is degenerate.

Now we can complete the proof of (1). As noted in the proof of Claim 2, T pbq –
T pbq©σ . Let r¨, ¨s be the bilinear form on T pbq corresponding to such an isomorphism.
This form is non-degenerate and has the σ-adjunction property. However, it is not
necessarily symmetric, so we symmetrize by letting x¨, ¨y be the form on T pbq defined
from

xv, wy :“ rv, ws ` rw, vs.

Using that σ is an involution, it is easy to check that this new form still has the
σ-adjunction property, and now it is symmetric, but we do not yet know that it is
non-degenerate. To see this, let ι : Aλeb

„
Ñ eλT pbq be an Aλ-module isomorphism.

Let r¨, ¨sλ and x¨, ¨yλ be the bilinear forms on Aλeb defined from rx, ysλ :“ rιpxq, ιpyqs
and xx, yyλ :“ xιpxq, ιpyqy. Applying Claim 2, we see that the form r¨, ¨sλ is non-
degenerate, and the goal is to show that x¨, ¨yλ is non-degenerate. Applying Claim
4, we have that reb, zbsλ ‰ 0 and we need to show that xeb, zbyλ ‰ 0. This follows
since

xeb, zbyλ “ reb, zbsλ ` rzb, ebsλ “ reb, zbsλ ` reb, σλpzbqsλ “ 2reb, zbsλ ‰ 0,

using that σλpzbq “ zb by Claim 3 together with the hypothesis that char k ‰ 2.

(2) We are given non-degenerate symmetric bilinear forms x¨, ¨y on each Tb satisfying
the σ-adjunction property. It follows that Tb – T©σ

b . Since T`pbq
_ – T´pbq for each

b P B, this is enough to deduce that R is tilting-rigid. Also the assumption that
?_ is a Chevalley duality implies that the basic algebra Aλ realizing Rλ is σλ-
symmetric, hence, Rλ is symmetric.

Now the argument proceeds in a similar way to the proof of Theorem 4.50. We
just explain the details in the finite case; the other three cases are similar but there
are slight notational differences. We may assume that the tilting generator used
to define the Ringel dual category is T “

À

bPB Tb. Then R1 “ B-modfd for B :“
EndApT q

op. The given forms on each Tb give us a non-degenerate symmetric bilinear
form x¨, ¨y on T satisfying (4.47), with the summands Tb being mutually orthogonal.
Define an anti-automorphism τ of B from the equation xvy, wy “ xv, wτpyqy for
v, w P T and y P B. This gives us a contravariant autoequivalence ?_ :“?©τ on R1,
and we get the isomorphisms (4.45) like in the proof of Theorem 4.50.

As x¨, ¨y is symmetric and T is a faithful B-module, the following calculation
implies that τ2 “ id:

xvy, wy “ xv, wτpyqy “ xwτpyq, vy “ xw, vτ2pyqy “ xvτ2pyq, wy.

For each b P B, let fb P B be the idempotent projecting T onto the summand
Tb. Using that the restriction of the form x¨, ¨y to this summand is non-degenerate,
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it follows that τpfbq “ fb. So tfb | b P Bu is a set of mutually orthogonal τ -
invariant idempotents in B. The idempotent fb is equal to the primitive idempotent
projecting Tb onto its summand T pbq plus other orthogonal primitive idempotents
which project onto summands T paq for a P Băρpbq. Bearing in mind we are using
the opposite ordering on Λ on the Ringel dual side, this is just what we need for
the property (Ch1).

Finally, to see that property (Ch2) holds, let Bλ be the algebra obtained from
B according to the construction of (Ch2) and τλ : Bλ Ñ Bλ be the anti-involution
induced by τ . The pair pBλ, τλq is a realization of pR1λ, ?^q, where ?^ here is the
contravariant autoequivalence of R1λ induced by the one on R1. We also have the
pair pAλ, σλq realizing Rλ with its contravariant autoequivalence induced by ?_.
We know already by Lemma 4.54 that Aλ is σλ-symmetric, and (Ch2) follows if
we can show that Bλ is τλ-symmetric. This follows from Lemma 4.52 since the
functor Fλ : Aλ-modfd Ñ Bλ-modfd is an equivalence satisfying Fλ˝?

_ –?^ ˝ Fλ.
Indeed, Theorem 4.42(2) gives that Fλ – Gλ, while (4.45) and the definitions
(4.35)–(4.36) give that the dualities ?_ : Rλ Ñ Rλ and ?^ : R1λ Ñ R1λ satisfy
Gλ˝?

_ –?^ ˝ Fλ. �





CHAPTER 5

Generalizations of quasi-hereditary algebras

Now we give some applications of semi-infinite Ringel duality. First, we use it
to show that any upper finite highest weight category can be realized as A-modlfd

for an upper finite based quasi-hereditary algebra A. The latter notion, which is
Definition 5.1, already exists in the literature in some equivalent forms. When A
is finite-dimensional, it gives an alternative algebraic characterization of the usual
notion of quasi-hereditary algebra. Then, in §5.2, we introduce further notions
of based ε-stratified algebras and based ε-quasi-hereditary algebras, which corre-
spond to ε-stratified categories and ε-highest weight categories, respectively. In
§5.3, we introduce based stratified algebras and based properly stratified algebras
corresponding to fully stratified and fibered highest weight categories, respectively.
Finally, in §§5.4–5.5, we discuss the related notions of triangular bases and a trian-
gular decompositions.

5.1. Based quasi-hereditary algebras

The following definition is a simplified version of [ELau, Def. 2.1] translated
from the framework of k-linear categories to that of locally unital algebras. Also,
for finite-dimensional algebras, it is equivalent to [KM, Def. 2.4]. These assertions
will be explained in more detail in Remarks 5.7–5.8 below.

Definition 5.1. A finite (resp., upper finite, resp., essentially finite) based
quasi-hereditary algebra is a finite-dimensional (resp., locally finite-dimensional,
resp., essentially finite-dimensional) locally unital algebra A “

À

i,jPI eiAej with
the following additional data:

(QH1) A subset Λ Ď I indexing special idempotents teλ | λ P Λu.
(QH2) A partial order ď making the set Λ into a poset which is upper finite in

the upper finite case and interval finite in the essentially finite case.
(QH3) Sets Y pi, λq Ă eiAeλ, Xpλ, jq Ă eλAej for λ P Λ, i, j P I.

Let Y pλq :“
Ť

iPI Y pi, λq and Xpλq :“
Ť

jPI Xpλ, jq. We impose the following
axioms:

(QH4) The products yx for py, xq P
Ť

λPΛ Y pλq ˆXpλq are a basis for A.
(QH5) For λ, µ P Λ, the sets Y pµ, λq and Xpλ, µq are empty unless µ ď λ.
(QH6) We have that Y pλ, λq “ Xpλ, λq “ teλu for each λ P Λ.

We say that A is symmetrically based if there is also some given algebra anti-
involution σ : AÑ A with σpeiq “ ei and Y pi, λq “ σpXpλ, iqq for all i P I, λ P Λ.

We refer to the given basis for A from (QH4) as the triangular basis; it is cer-
tainly not unique since one can replace any Y pi, λq or Xpλ, jq by another basis that
spans the same subspace up to “higher terms”. If A is symmetrically based rather
than merely based, this basis is a cellular basis in the general sense of [GL], [Wes].
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However, Definition 5.1 is considerably more restrictive than the general notions of
cellular algebra or category introduced in loc. cit.. In fact, for finite-dimensional
algebras, Definition 5.1 is equivalent to the usual notion of quasi-hereditary algebra,
as we will explain more fully below.

Remark 5.2. It is clear from (QH4) that A “
ř

λPΛAeλA. Hence, A is Morita
equivalent to the idempotent truncation

À

λ,µPΛ eλAeµ. This means that if one
is prepared to pass to a Morita equivalent algebra then one can assume without
loss of generality that the sets Λ and I in Definition 5.1 are actually equal, i.e., all
distinguished idempotents are special. However, in naturally-occurring examples,
one often encounters situations in which the set I is strictly larger than Λ.

Remark 5.3. A well-known example of a finite symmetrically based quasi-
hereditary algebra is the Schur algebra Spn, rq with its basis of codeterminants
ξi,`pλqξ`pλq,j as constructed by Green in [Gre]; one definitely needs I Ľ Λ in this
example.

Remark 5.4. For a well-known infinite-dimensional example, consider the path
algebra A of the Temperley-Lieb category T Lpδq for any value of its parameter
δ P k. The natural diagram basis gives a triangular basis making A into an upper
finite symmetrically based quasi-hereditary algebra. For this, one takes I “ Λ “ N
ordered by the opposite of the natural ordering. The set Y pλq (resp., Xpλq) consists
of all cap-free Temperley-Lieb diagrams with λ strings at the bottom (resp., all cup-
free Temperley-Lieb diagrams with λ strings at the top). The anti-automorphism
σ is defined by reflecting diagrams in a horizontal axis.

Lemma 5.5. Let A be a finite, essentially finite or upper finite based quasi-
hereditary algebra. For λ P Λ, any element f of the two-sided ideal AeλA can be
written as a linear combination of elements of the form yx for y P Y pµq, x P Xpµq
and µ ě λ.

Proof. We first consider the upper finite case. By considering the triangular
basis, we may assume that f “ y1x1y2x2 for y1 P Y pµ1q, x1 P Xpµ1, λq, y2 P

Y pλ, µ2q, x2 P Xpµ2q and µ1, µ2 ě λ. If µ1 “ µ2 “ λ then x1 “ eλ “ y2 and
f “ y1x2, as required. This finished the proof for λ maximal. If µr ą λ for some
r P t1, 2u, then we have that f P AeµrA for this r, and are done by downward
induction on the partial order on Λ.

The finite and essentially finite cases are similar. Now, assuming that f P eiAej
for i, j P I, there are only finitely many µ P Λ such that eiAeµ ‰ 0 or eµAej ‰ 0.
Letting Λ1 be the finite set of all such µ, we can then again proceed by downward
induction on the partial order on Λ1. �

Corollary 5.6. Let Λ� be an upper set in Λ. The two-sided ideal JΛ� of A
generated by teλ | λ P Λ�u has basis

 

yx
ˇ

ˇ py, xq P
Ť

λPΛ� Y pλq ˆXpλq
(

.

Proof. Let J be the subspace of A with basis given by the products yx for
y P Y pλq, x P Xpλq and λ P Λ�. For any such element yx P J , we have that
yx “ yeλx, hence, yx P JΛ� . This shows that J Ď JΛ� . Conversely, any element of
JΛ� is a linear combination of elements of AeλA for λ P Λ�. In turn, Lemma 5.5
shows that any element of AeλA for λ P Λ� is a linear combination of elements yx
for y P Y pµq, x P Xpµq and µ ě λ. All of these elements yx belong to J because Λ�

is an upper set; thus JΛ� Ď J . �
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Remark 5.7. We have formulated Definition 5.1 only for algebras over our
usual ground field k, but the definition makes sense with k replaced by some more
general commutative ground ring R (“finite-dimensional” being interpreted as “free
of finite rank”). Then, in the symmetrically based upper finite case, Definition 5.1
is equivalent to the notion of an object-adapted cellular category from [ELau,
Def. 2.1]. This can be seen from Corollary 5.6 and [ELau, Lemmas 2.6-2.8]. Elias
and Lauda also note in loc. cit. that the diagrammatic Hecke category HBSpW,Sq
of [EW] associated to a Coxeter system pW,Sq is an example of an object-adapted
cellular category. In our language, the path algebra H of HBSpW,Sq is an upper
finite symmetrically based quasi-hereditary algebra defined over the ground ring
R “ Qrhs, that is, the ring of regular functions arising from a realization h of
pW,Sq. A cellular basis is given by the double light leaves basis. (One needs some
assumptions on the realization as in [EW] for this basis to be defined.)

Remark 5.8. In the finite case, Definition 5.1 is equivalent to the notion of
based quasi-hereditary algebra from [KM, Def. 2.4]. To see this, one takes the set Λ
indexing the special idempotents in our setup to be the set I from loc. cit. (which
indexes mutually orthogonal idempotents ei P A according to [KM, Lem. 2.8]).
Then we take our set I to be the set Λ \ t0u, i.e., we add one more element
indexing one more idempotent e0 :“ 1A´

ř

λPΛ eλ. Kleshchev and Muth established
the equivalence of their notion of based quasi-hereditary algebra with the original
notion of quasi-hereditary algebra from [CPS1] (providing the partial order on Λ
is actually a total order); for ground fields, we will reprove this equivalence in a
different way below. See also [DuR] which established a similar result using a
related notion of standardly based algebra.

Let A be a based quasi-hereditary algebra as in Definition 5.1. For λ P Λ, let
Aďλ be the quotient of A by the two-sided ideal generated by the idempotents eµ for
µ ę λ. For x P A, we often write simply x̄ for the image of x in Aďλ. Corollary 5.6
implies that

(5.1) Aďλ “
à

i,jPI

ēiAďλēj

is based quasi-hereditary in its own right, with special idempotents indexed by
elements of the lower set p´8, λs and basis given by the products ȳx̄ for y P
Y pµq, x P Xpµq and µ P p´8, λs. Define the standard and costandard modules
associated to λ P Λ by

∆pλq :“ Aďλēλ ∇pλq “ pēλAďλqf.(5.2)

These are left A-modules which are projective and injective as Aďλ-modules, re-
spectively. In the finite or essentially finite case, ēλAďλ is finite-dimensional and
one could just take the full linear dual in (5.2), but in general in the upper fi-
nite case ∆pλq and ∇pλq are only locally finite-dimensional. The modules ∆pλq
may also be called cell modules and the modules ∇pλq dual cell modules. The
vectors tyēλ | y P Y pλqu give the standard basis for ∆pλq. Similarly, the vectors
tēλx | x P Xpλqu are a basis for the right A-module ēλA; the dual basis to this is
the costandard basis for ∇pλq.
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Theorem 5.9 (Highest weight categories from based quasi-hereditary alge-
bras). Let A be a finite (resp., upper finite, resp., essentially finite) based quasi-
hereditary algebra. The modules

tLpλq :“ hd ∆pλq – soc ∇pλq | λ P Λu

give a complete set of pairwise inequivalent irreducible left A-modules. Moreover,
the category R :“ A-modfd (resp., R :“ A-modlfd, resp., R :“ A-modfd) is a
finite (resp., upper finite, resp., essentially finite) highest weight category with the
given weight poset pΛ,ďq. Its standard and costandard objects ∆pλq and ∇pλq
are as defined by (5.2). If A is symmetrically based with anti-involution σ then
?©σ : RÑ R is Chevalley duality of R in the sense of Definition 4.53.

Proof. For λ P Λ, let Pλ be the left ideal Aeλ. We start by establishing
the claim that Pλ has a ∆-flag with ∆pλq at the top and other sections of the
form ∆pµq for µ ą λ. To prove this, fix some λ and set P :“ Pλ for short. This
module has basis

 

yx
ˇ

ˇ py, xq P
Ť

µěλ Y pµq ˆ Xpµ, λq
(

. Let tµ1, . . . , µnu be the

finite set tµ P rλ,8q |Xpµ, λq ‰ ∅u ordered so that µr ď µs ñ r ď s; in particular,
µ1 “ λ. For 1 ď r ď n let Pr be the subspace of P spanned by

 

yx
ˇ

ˇ py, xq P
Ťn
s“r`1 Y pµsq ˆXpµs, λq

(

. They define a filtration P “: P0 ą P1 ą ¨ ¨ ¨ ą Pn “ 0,
since each Pr is a A-submodule of P . Moreover, there is, for each 0 ď r ď n an
A-module isomorphism

(5.3) θr :
à

xPXpµr,λq

∆pµrq
„
Ñ Pr´1{Pr

which in case r ě 1 sends the basis vector yēµr py P Y pµrqq in the xth copy of
∆pµrq to yx` Pr P Pr´1{Pr. This defines clearly a linear isomorphism, so we just
need to check that it is an A-module homomorphism. For this take y P Y pj, µrq
and u P eiAej . Expand uy in terms of the triangular basis as

ř

p cpyp `
ř

q c
1
qy
1
qx
1
q

for scalars cp, c
1
q, yp P Y pi, µrq, y

1
q P Y pi, νqq, x

1
q P Xpνq, µrq and νq ą µr. Then we

have that uyēµr “
ř

p cpypēµr and uyx ` Pr “
ř

p cpypx ` Pr, since the “higher

terms” y1qx
1
q act as zero on both ēµr and x`Pr. This shows that θr intertwines the

actions of u and so the claim follows, since P0{P1 – ∆pλq by construction.
Now we can classify the irreducible A-modules. The first step for this is to

show that ∆pλq has a unique irreducible quotient. To see this, note that the “weight
space” eλ∆pλq is one-dimensional with basis ēλ, due to the fact that Y pλ, λq “ teλu.
This is a cyclic vector, so any proper submodule of ∆pλq must intersect eλ∆pλq
trivially. It follows that the sum of all proper submodules is proper, so ∆pλq has a
unique irreducible quotient Lpλq. Since eλLpλq is one-dimensional and all other µ
with eµLpλq ‰ 0 satisfy µ ă λ, the modules tLpλq|λ P Λu are pairwise inequivalent.
To see that they give a full set of irreducible A-modules, let L be any irreducible
A-module. In view of Remark 5.2, there exists λ P Λ such that eλL ‰ 0. Then L
is a quotient of Pλ “ Aeλ. By the claim we proved already, it follows that L is a
quotient of ∆pµq for some µ ě λ, i.e., L – Lpµq.

Thus, we have shown that the modules tLpλq |λ P Λu give a full set of pairwise
inequivalent irreducible left A-modules. Now consider the stratification of R arising
from the given partial order on the index set Λ. In the recollement situation of
(3.4), the Serre subcategory Rďλ (resp., Răλ) may be identified with Aďλ-modlfd

(resp., Aďλ-modfd), and the Serre quotient Rλ “ Rďλ{Răλ is Aλ-modfd where
Aλ :“ ēλAďλēλ. The algebra Aλ has basis ēλ, i.e., it is a copy of the ground field
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k. This shows that all strata are simple in the sense of Lemma 3.4. Moreover,
the standard and costandard objects in the general sense of (1.1) are obtained by
applying the standardization functor jλ! :“ AďλēλbAλ? and the costandardization
functor jλ˚ :“

À

iPI HomAλpēλAďλēi, ?q to the irreducible Aλ-module Aλ “ kēλ.
Clearly, the resulting modules are isomorphic to ∆pλq and ∇pλq as defined by

(5.2). The axiom pyP∆q follows from the claim.
For the final statement about Chevalley duality, the observations made earlier

in the proof establish property (Ch1) from Definition 4.53, and (Ch2) is vacuous as
we are in the highest weight setting. Hence, σ is a Chevalley anti-involution. �

Finally in this section we are going to prove a converse to Theorem 5.9. This will
be deduced from the next theorem together with an application of Ringel duality.
In fact, the next theorem is a reformulation of the main result of [AST].

Theorem 5.10 (Based quasi-hereditary algebras from highest weight cate-
gories). Let R be a finite (resp., lower finite, resp., tilting-bounded essentially finite)
highest weight category with weight poset pΛ,ďq and labelling function L. Suppose
we are given Λ Ď I and a tilting generator T “

À

iPI Ti for R such that each
Tλ pλ P Λq is a direct sum of T pλq and other T pµq for µ ă λ. Let

A :“

˜

à

i,jPI

HomRpTi, Tjq

¸op

.

(1) For i, j P I and λ P Λ, pick morphisms

Y pi, λq Ă HomRpTi, Tλq, Xpλ, jq Ă HomRpTλ, Tjq

lifting bases for HomRpTi,∇pλqq and HomRp∆pλq, Tjq as was done in
Corollary 4.44, such that Y pλ, λq “ Xpλ, λq “ tidTλu. Then

 

yx
ˇ

ˇ py, xq P
ď

i,jPI

ď

λPΛ

Y pi, λq ˆXpλ, jq
(

is a triangular basis making A into a finite (resp., upper finite, resp., es-
sentially finite) based quasi-hereditary algebra with respect to the opposite
poset pΛ,ěq.

(2) If in addition R has a Chevalley duality ?_ and, in a suitable realization,
the modules corresponding to each Ti possess non-degenerate symmetric
bilinear forms satisfying the adjunction property as in (4.47), then the
triangular basis in (1) can be chosen so that A is symmetrically based.

Proof. (1) We have all of the necessary data in place to have a based quasi-
hereditary algebra, taking ei :“ idTi in the obvious way. To check the axioms,
Corollary 4.44 checks (QH4), and we have chosen the lifts so that Y pλ, λq “ teλu “
Xpλ, λq as in (QH6). For (QH5), note that Y pµ, λq and Xpλ, µq are empty unless
µ ě λ because HomRpTµ,∇pλqq and HomRp∆pλq, Tµq are zero unless λ ď µ.

(2) Suppose that we are working in a particular algebra realization pB, τq of pR, ?_q
in which τ is a Chevalley anti-involution and each Ti admits a non-degenerate
symmetric bilinear form with the τ -adjunction property. Let T :“

À

iPI Ti and
x¨, ¨y : T ˆ T Ñ k be the orthogonal sum of the given forms. Then we obtain an
algebra anti-involution σ : A Ñ A such that xvx,wy “ xc, wσpxqy for all v, w P T ,
x P A; cf. the proof of Theorem 4.55(2). This fixes each of the idempotents ei P A.

The bilinear form on Ti induces a B-module isomorphism φi : Ti
„
Ñ T©τ

i . Also
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let πλ : Tλ � ∇pλq be some choice of epimorphism for each λ P Λ as needed for
Corollary 4.44. Then define the embeddings ιλ : ∆pλq ãÑ Tλ there so that there are

induced isomorphisms ∆pλq
„
Ñ ∇pλq©τ making the following diagrams commute for

all λ P Λ:

∆pλq ∇pλq©τ

Tλ T©τ
λ .

„

ιλ π˚λ

φλ

Now we pick the sets Xpλ, iq lifting bases for HomBp∆pλq, Tjq as in Corollary 4.44.

Then define Y pi, λq :“ tφ´1
λ ˝ x˚ ˝ φi | x P Xpλ, iqu. This set lifts a basis for

HomBpTi,∇pλqq as stipulated in Corollary 4.44. Using these choices, the construc-
tion from the previous paragraph makes A into a based quasi-hereditary algebra.
Moreover, we now have that Y pi, λq “ σpXpλ, iqq for all i, λ, so A is symmetrically
based with the underlying anti-involution σ. �

Corollary 5.11 (Quasi-hereditary algebras are based quasi-hereditary). Let

A “
à

i,jPI

eiAej

be an algebra realization of a finite (resp., upper finite, resp., tilting-bounded es-
sentially finite) highest weight category R, with weight poset pΛ,ďq and labelling
function L.

(1) There is an idempotent expansion A “
À

i,jPÎ êiAêj of A with Λ Ď Î, and
subsets

Y pi, λq Ă êiAêλ, Xpλ, jq Ă êλAêj

for all λ P Λ and i, j P Î making A into a finite (resp., upper finite, resp.,
essentially finite) based quasi-hereditary algebra with respect to the given
ordering on Λ.

(2) If char k ‰ 2 and R has a Chevalley duality ?_ then the choices in (1) can
be made so that A is symmetrically based with anti-involution σ realizing
?_.

Proof. (1) Let A “
À

i,jPÎ êiAêj be an idempotent expansion indexed by a

set Î chosen so that Λ Ď Î and hd pAêλq – Lpλq for each λ P Λ. We are going to
apply the Ringel duality from Definition 4.9 (resp., Definition 4.26, resp., Definition
4.33). In the finite or upper finite cases, we fix a choice of tilting generator T for
R and let B :“ EndRpT q

op. In the essentially finite case, we fix a tilting generator

T “
À

jPJ Tj for R then let B :“
´

À

i,jPJ HomRpTi, Tjq
¯op

. Then in all cases the

category R1 :“ B-modfd is the Ringel dual of the original category. It is a finite
(resp., lower finite, resp., tilting-bounded essentially finite) highest weight category
with irreducible objects denoted tL1pλq | λ P Λu and weight poset pΛ,ěq. Let
T 1i :“ pêiT q

˚ P R1. By Corollary 4.11 (resp., Corollary 4.30, resp., Corollary 4.35),
T 1 “

À

iPÎ T
1
i is a tilting generator for R1 such that the original algebra A “

À

i,jPÎ êiAêj is isomorphic as a locally unital algebra to
´

À

i,jPÎ HomR1pT
1
i , T

1
jq

¯op

.

Moreover, T 1λ is the indecomposable tilting module T 1pλq for each λ P Λ. To make
A into a based quasi-hereditary algebra, it remains to apply Theorem 5.10(1) with
R, pΛ,ďq and Ti replaced by R1, pΛ,ěq and T 1i in the present setup.
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(2) Assume that R has a Chevalley duality ?_. Then the category R1 admits a
Chevalley duality ?^ such that the Ringel duality functors intertwine ?_ and ?^

as in (4.45). This follows by Theorem 4.55, using the assumption that chark ‰ 2
and part (1) of the theorem to establish the existence of suitable bilinear forms as
in part (2). Hence, R1 has a realization pB, τq with τ being a Chevalley involution
realizing ?^. Then we can appeal to Theorem 5.10(2), again using Theorem 4.55(1)
to obtain suitable bilinear forms on each T 1i , to deduce that the triangular basis
can be chosen so that A is symmetrically based. In particular, this gives an anti-
involution σ : A Ñ A fixing each êi. It remains to note that ?©σ realizes ?_. It
suffices to check this on finitely generated projectives when it follows from (4.45)
(applied twice since we have used Ringel duality twice). �

In the finite case, Corollary 5.11 recovers [KM, Prop. 3.5] (but note that the
result in loc. cit. is also valid over more general ground rings).

5.2. Based ε-stratified and ε-quasi-hereditary algebras

In this section, we upgrade the results of §5.1 (excluding any that involve
Chevalley duality) to ε-stratified and ε-highest weight categories. The main new
definition is as follows.

Definition 5.12. By a finite (resp., upper finite, resp., essentially finite) based
ε-stratified algebra, we mean a finite-dimensional (resp., locally finite-dimensional,
resp., essentially finite-dimensional) locally unital algebra A “

À

i,jPI eiAej with
the following additional data:

(εS1) A subset B Ď I indexing the special idempotents teb | b P Bu.
(εS2) A poset pΛ,ďq which is upper finite in the upper finite case and interval

finite in the essentially finite case, such that ΛX I “ ∅.
(εS3) A sign function ε : Λ Ñ t˘u.
(εS4) A function ρ : B Ñ Λ with finite fibers Bλ :“ ρ´1pλq.
(εS5) Sets Y pi, bq Ă eiAeb and Xpb, jq Ă ebAej for all b P B and i, j P I.

Let Y pbq :“
Ť

iPI Y pi, bq and Xpbq :“
Ť

jPI Xpb, jq. There are then four axioms,
the first three of which are as follows:

(εS6) The products yx for py, xq P
Ť

bPB Y pbq ˆXpbq are a basis for A.
(εS7) For a, b P B, the sets Y pb, aq and Xpa, bq are empty unless ρpbq ď ρpaq.
(εS8) The following hold for all λ P Λ and a, b P Bλ:

– if εpλq “ ´ then Y pa, aq “ teau and Y pa, bq “ ∅ for a ‰ b;
– if εpλq “ ` then Xpa, aq “ teau and Xpa, bq “ ∅ for a ‰ b.

To formulate the fourth axiom, let eλ :“
ř

bPBλ
eb for short1 let Aďλ be the quotient

of A by the two-sided ideal generated by teµ |µ ę λu, and set Aλ :“ ēλAďλēλ (where
x̄ P Aďλ denotes the image of x P A as usual). Then:

(εS9) For each λ P Λ, the finite-dimensional algebra Aλ is basic and ēλ “
ř

bPB ēb is a decomposition of its identity element into mutually orthogonal
primitive idempotents.

Definition 5.12 in the special case that the stratification function ρ is a bijection
deserves its own name:

1This notation is unambiguous due to the assumption ΛX I “ ∅.
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Definition 5.13. A finite (resp., upper finite, resp., essentially finite) based
ε-quasi-hereditary algebra is a finite-dimensional (resp., locally finite-dimensional,
resp., essentially finite-dimensional) locally unital algebra A “

À

i,jPI eiAej with
the following additional data:

(εQH1) A subset Λ Ď I indexing the special idempotents teλ | λ P Λu.
(εQH2) A partial order ď making the set Λ into a poset which is interval finite in

the essentially finite case and upper finite in the upper finite case.
εQH3) A sign function ε : Λ Ñ t˘u.

(εQH4) Sets Y pi, λq Ă eiAeλ, Xpλ, jq Ă eλAej for i, j P I and λ P Λ.

Let Y pλq :“
Ť

iPI Y pi, λq and Xpλq :“
Ť

jPI Xpλ, jq. The axioms are as follows:

(εQH5) The products yx for py, xq P
Ť

λPΛ Y pλq ˆXpλq are a basis for A.
(εQH6) For λ, µ P Λ, the sets Y pµ, λq and Xpλ, µq are empty unless µ ď λ.
(εQH7) If εpλq “ ´ then Y pλ, λq “ teλu, and if εpλq “ ` then Xpλ, λq “ teλu.

(εQH8) For each λ P Λ, the finite-dimensional algebra Aλ as defined in Defini-
tion 5.12 is basic and local.

From now on, we just formulate the results for based ε-stratified algebras, since
based ε-quasi-hereditary algebras are a special case. The development below paral-
lels the treatment in the previous section, but there are some additional subtleties.

Remark 5.2 remains true: one can always pass to a Morita equivalent algebra
in which all of the distinguished idempotents are special. The analog of Lemma 5.5
is as follows.

Lemma 5.14. Let A be a finite, essentially finite or upper finite based ε-stratified
algebra. For λ P Λ, any element f of the two-sided ideal AeλA can be written as a
linear combination of elements of the form yx for y P Y paq, x P Xpaq and a P Běλ.

Proof. This is similar to the proof of Lemma 5.5. We just explain in the
upper finite case. We may assume that f “ y1x1y2x2 for y1 P Y pa1q, x1 P Xpa1, bq,
y2 P Y pb, a2q, x2 P Xpa2q, b P Bλ and a1, a2 P Běλ. If a1 P Bąλ or a2 P Bąλ, we
are done by induction. If a1, a2 P Bλ, there are two cases according to whether
εpλq “ ` or εpλq “ ´. The arguments for these are similar, so we just go through
the former case when εpλq “ `. Then we have that a1 “ b and x1 “ eb. Hence
f “ y1y2x2. Then we use the basis again to expand y1y2 as a linear combination
of terms y3x3 for y3 P Y pa3q, x3 P Xpa3, a2q and a3 P Běλ. If a3 P Bλ then we get
that a3 “ a2 and x3 “ ea2

, so y3x3x2 “ y3x2 as required. If a3 P Bąλ, we can then
rewrite y3x3x2 in the desired form by induction. �

Corollary 5.15. Let Λ� be an upper set in Λ and B� :“ ρ´1pΛ�q. The two-
sided ideal JΛ� of A generated by teλ |λ P Λ�u has basis

 

yx
ˇ

ˇ py, xq P
Ť

bPB� Y pbqˆ

Xpbq
(

.

Let A be a based ε-stratified algebra as in Definition 5.12. For λ P Λ, Corol-
lary 5.15 implies that Aďλ has basis

 

ȳx̄
ˇ

ˇ y P Y pbq, x P Xpbq and b P Bďλ
(

. Hence,
the basic algebra Aλ “ ēλAďλēλ has basis
 

ȳ
ˇ

ˇ y P
Ť

a,bPBλ
Y pa, bq

(

if εpλq “ `,
 

x̄
ˇ

ˇ x P
Ť

a,bPBλ
Xpa, bq

(

if εpλq “ ´.

Let jλ : Aďλ-modlfd Ñ Aλ-modfd, V ÞÑ ēλV be the quotient functor V ÞÑ ēλV ,
then define the standardization and costandardization functors

jλ! :“ AďλēλbAλ?, jλ˚ :“
à

iPI

HomAλpēλAďλēi, ?q,(5.4)
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which are left and right adjoints of jλ, respectively.

Lemma 5.16. If λ P Λ has εpλq “ ´ then the standardization functor jλ! is
exact.

Proof. There is an isomorphism of right Aλ-modules
À

aPBλ

À

yPY paq ēaAλ
„
Ñ

Aďλēλ sending the vector ēa in the yth copy of ēaAλ to ȳ P Aďλēλ. To see this, note
as εpλq “ ´ that the projective Aλ-module ēaAλ has basis

 

x̄
ˇ

ˇ x P
Ť

bPBλ
Xpa, bq

(

,

and Aďλēλ has basis
 

ȳx̄
ˇ

ˇ py, xq P
Ť

a,bPBλ
Y paq ˆ Xpa, bq

(

. Hence, Aďλēλ is a
projective right Aλ-module, and the exactness follows. �

Continuing with A being a based ε-stratified algebra, we let

Pλpbq :“ Aλēb, Iλpbq :“ pēbAλq
f, Lλpbq :“ hd Pλpbq – soc Iλpbq(5.5)

for b P Bλ. These give full sets of indecomposable projective, indecomposable in-
jective, and irreducible Aλ-modules, respectively. Then we define standard, proper
standard, costandard and proper costandard modules

∆pbq :“ Aďλēb – jλ! Pλpbq, ∆̄pbq :“ jλ! Lλpbq,(5.6)

∇pbq :“ pēbAďλq
f – jλ˚Iλpbq, ∇̄pbq :“ jλ˚Lλpbq,(5.7)

cf. (1.1). Adopt the shorthands ∆εpbq and ∇εpbq from (1.2) too. The module
∆εpbq has a standard basis indexed by the set Y pbq. In the case that εpλq “ `,
when ∆εpbq “ ∆pbq, this basis is tyēb | y P Y pbqu. In the case that εpλq “ ´,
when ∆εpbq “ ∆̄pbq, let ẽb be the canonical image of ēb under the natural quotient
map ∆pbq � ∆̄pbq. Then the basis is tyẽb | y P Y pbqu. (One can also construct a
costandard basis for ∇εpbq indexed by Xpbq by taking a certain dual basis, but we
will not need this here.)

Theorem 5.17 (ε-Highest weight categories from based ε-stratified algebras).
Let A be a finite (resp., upper finite, resp., essentially finite) based ε-stratified al-
gebra as above. The modules

tLpbq :“ hd ∆εpbq – soc ∇εpbq | b P Bu

give a complete set of pairwise inequivalent irreducible left A-modules. Moreover,
R :“ A-modfd (resp., R :“ A-modlfd, resp., R :“ A-modfd) is a finite (resp., upper
finite, resp., essentially finite) ε-stratified category with stratification pB, L, ρ,Λ,ďq.
Its strata may be identified with the categories Rλ :“ Aλ-modfd with standardard-
ization and costandardization functors as in (5.4).

Proof. For b P B, let Pb be the left ideal Aeb. We claim that Pb has a ∆ε-
flag with ∆εpbq at the top and other sections of the form ∆εpaq for a P B with
ρpaq ě ρpbq. To prove this, suppose that b P Bλ and set P :“ Pb for short. Note P
has basis

 

yx
ˇ

ˇ py, xq P
Ť

aPBěλ
Y paq ˆXpa, bq

(

. Let tµ1, . . . , µnu be the finite set
 

µ P rλ,8q
ˇ

ˇ

Ť

aPBµ
Xpa, bq ‰ ∅

(

ordered so that µr ď µs ñ r ď s; in particular, µ1 “ λ. Let Pr be the subspace
of P spanned by

 

yx
ˇ

ˇ py, xq P
Ťn
s“r`1

Ť

aPBµs
Y paq ˆ Xpa, bq

(

. This defines a

filtration P “ P0 ą P1 ą ¨ ¨ ¨ ą Pn “ 0 in which the section Pr´1{Pr has basis
 

yx` Pr
ˇ

ˇ py, xq P
Ť

aPBµr
Y paq ˆXpa, bq

(

. Now we show that each Pr´1{Pr has a

∆ε-flag with sections of the form ∆εpaq for a P Bµr . There are two cases:
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Case 1: εpµrq “ `. In this case, there is an A-module isomorphism

θ :
à

aPBµr

à

xPXpa,bq

∆paq
„
Ñ Pr´1{Pr

sending the basis vector yēapy P Y paqq in the xth copy of ∆paq to yx`Pr P Pr´1{Pr.
This follows from properties of the basis and is similar to the proof of (5.3).

Case 2: εpµrq “ ´. Note that Pr´1{Pr is naturally an Aďµr -module. Let Qr :“
ēµr pPr´1{Prq. This is an Aµr -module with basis tx`Pr |x P Xpa, bq, a P Bµru. We
claim that the natural multiplication map

Aďµr ēµr bAµr Qr Ñ Pr´1{Pr, yēµr b px` Prq ÞÑ yx` Pr

is an isomorphism. This follows because the module on the left hand side is spanned
by the vectors

 

yēµr bpx`Prq
ˇ

ˇ py, xq P
Ť

aPBµr
Y paqˆXpa, bq

(

, and the images of

these vectors under multiplication are a basis for the module on the right. Hence,
Pr´1{Pr – jµr! Qr. We deduce that it has a ∆ε-flag with sections of the form
∆̄paq pa P Bµr q on applying the standardization functor to a composition series for
Qr, using the exactness from Lemma 5.16.

We can now complete the proof of the claim. The only thing left is to check that the
top section of the ∆ε-flag we have constructed so far is isomorphic to ∆εpbq. This
follows from the constructions just explained: in the case εpλq “ ` we showed that
P0{P1 – ∆pbq “ ∆εpbq, while if εpλq “ ´ then the top section is jλ! Lλpbq “ ∆εpbq.

Using the claim just established, we can now classify the irreducible A-modules.
For b P Bλ, the proper standard module ∆εpbq has irreducible head denoted
Lpbq. This follows by the usual properties of adjunctions and the quotient functor
jλ : Aďλ-modlfd Ñ Aλ-modfd, V ÞÑ ēλV . Moreover, Lpbq is the unique (up to iso-
morphism) irreducible Aďλ-module such that jλLpbq – Lλpbq, hence, the modules
tLpbq|b P Bu are pairwise inequivalent. To see that they give a full set of irreducible
A-modules, let L be any irreducible A-module. By the analog of Remark 5.2, there
exists b P B such that ebL ‰ 0. Then L is a quotient of Pb “ Aeb. Finally, using
the claim, we deduce that L is a quotient of ∆εpaq for some a P B with ρpaq ě ρpbq
and thus L is isomorphic to Lpaq.

Having classified the irreducible A-modules tLpbq|b P Bu, pB, L, ρ,Λ,ďq defines
a stratification of R. We are in the recollement situation of (3.4), with Rλ identified
with Aλ-modfd. Since (5.6)–(5.7) agrees with (1.1), the standard, proper standard,
costandard and proper costandard modules are the correct objects. Moreover, the

claim established at the start of the proof verifies the property pyP∆εq. �

The goal in the remainder of the section is to prove a converse to Theorem 5.17.

Theorem 5.18 (Based ε-stratified algebras from ε-highest weight categories).
Let R be a finite (resp., lower finite, resp., tilting-bounded essentially finite) ε-
stratified category with stratification pB, L, ρ,Λ,ďq. Suppose we are given B Ď I
disjoint from Λ and an ε-tilting generator T “

À

iPI Ti such that each Tb pb P Bq is
a direct sum of Tεpbq and other Tεpcq for c with ρpcq ă ρpbq. Let

A :“

˜

à

i,jPI

HomRpTi, Tjq

¸op

For i, j P I and b P B, pick morphisms

Y pi, bq Ă HomRpTi, Tbq, Xpb, jq Ă HomRpTb, Tjq
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lifting bases for HomRpTi,∇εpbqq and HomRp∆εpbq, Tjq as in Theorem 4.43 such
that Y pb, bq “ tidTbu when εpbq “ ` and Xpb, bq “ tidTbu when εpbq “ ´. These
choices make A into a finite (resp., upper finite, resp., essentially finite) based
p´εq-stratified algebra with respect to the poset pΛ,ěq (the opposite ordering on Λ
compared to R).

Proof. We need to check the axioms (εS6)–(εS9). Theorem 4.43 checks the
first one. The axioms (εS7)–(εS8) also hold. For example, if εpλq “ ` and b P Bλ,
we have that Y pb, bq “ tebu by the choice of lifts, and HomRpTb,∇εpaqq is zero
unless a “ b or ρpaq ă ρpbq (remembering we are checking these axioms for ´ε not
ε). It remains to check the final axiom (εS9). The algebra Aλ in the statement of
the axiom (remembering that we are working now with the opposite ordering) is
the same as the algebra Aλ in Lemma 4.41. By that lemma, there is an algebra
isomorphism

(5.8) φλ : Aλ
„
Ñ EndRλ

pjλTλq
op,

where Tλ :“
À

bPBλ
Tb. If εpλq “ ` then jλTλ is a minimal projective generator

for Rλ thanks to Theorem 4.2(3), so the algebra on the right hand side of (5.8)
is basic and ēλ “

ř

bPBλ
ēb is a decomposition of its identity element as a sum of

mutually orthogonal primitive idempotents. If εpλq “ ´, we have instead that jλTλ
is a minimal injective cogenerator for Rλ and the conclusion follows similarly. �

Corollary 5.19. Let R be a finite (resp., upper finite, resp., tilting-bounded
essentially finite) ε-stratified category with the usual stratification pB, L, ρ,Λ,ďq.
Let A “

À

i,jPI eiAej be an algebra realization of R. There is an idempotent

expansion A “
À

i,jPÎ êiAêj with B Ď Î, and finite sets Y pi, bq Ă êiAêb, Xpb, jq Ă

êbAêj for all i, j P Î and b P B, making A into a finite (resp., upper finite, resp.,
essentially finite) based ε-stratified algebra with ρ as its stratification function.

Proof. This follows from Theorem 5.18 in the same way as Corollary 5.11 was
deduced from Theorem 5.10. �

5.3. Based stratified and properly stratified algebras

In this section, we consider modified versions of Definitions 5.12 and 5.13 which
involve bases which do not depend on the sign function ε. These definitions, which
were inspired in part by [ELau, Def. 2.17], are relevant when studying fully strat-
ified rather than merely ε-stratified categories.

Definition 5.20. A finite (resp., upper finite, resp., essentially finite) based
stratified algebra is a finite-dimensional (resp., locally finite-dimensional, resp., es-
sentially finite-dimensional) locally unital algebra A “

À

i,jPI eiAej with the fol-
lowing additional data:

(S1) A subset B Ď I indexing special idempotents teb | b P Bu.
(S2) A poset pΛ,ďq which is upper finite in the upper finite case and interval

finite in the essentially finite case, such that ΛX I “ ∅.
(S3) A function ρ : B Ñ Λ with finite fibers Bλ :“ ρ´1pλq.
(S4) Sets Y pi, aq Ă eiAea, Hpa, bq Ă eaAeb, Xpb, jq Ă ebAej for i, j P I and

a, b P B.

Let Y paq :“
Ť

iPI Y pi, aq and Xpbq :“
Ť

jPI Xpb, jq. The axioms are as follows:
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(S5) The products yhx for py, h, xq P
Ť

a,bPB Y paq ˆHpa, bq ˆXpbq are a basis
for A.

(S6) For a, b P B with a ‰ b, the set Hpa, bq is empty unless ρpaq “ ρpbq,
the sets Y pb, aq and Xpa, bq are empty unless ρpbq ă ρpaq, and Y pa, aq “
Xpa, aq “ teau.

(S7) The finite-dimensional algebra Aλ defined as in Definition 5.12 is basic
and ēλ “

ř

bPBλ
ēb is a decomposition of its identity element as a sum of

mutually orthogonal primitive idempotents.

We say that A is symmetrically based if there is also some given algebra anti-
involution σ : A Ñ A with σpeiq “ ei and Y pi, bq “ σpXpb, iqq for all i P I, b P
B, such that each of the algebras Aλ pλ P Λq is σλ-symmetric in the sense of
Definition 4.51, where σλ here is the anti-involution of Aλ induced by σ.

Here is the same definition rewritten in the special case that the stratification
function ρ is a bijection.

Definition 5.21. A finite (resp., upper finite, resp., essentially finite) based
properly stratified algebra is a finite-dimensional (resp., locally finite-dimensional,
resp., essentially finite-dimensional) locally unital algebra A “

À

i,jPI eiAej with
the following additional data:

(PS1) A subset Λ Ď I indexing special idempotents teλ | λ P Λu.
(PS2) A poset pΛ,ďq upper finite in the upper finite case and interval finite in

the essentially finite case.
(PS3) Sets Y pi, λq Ă eiAeλ, Hpλq Ă eλAeλ, Xpλ, iq Ă eλAei for λ P Λ, i P I.

Let Y pλq :“
Ť

iPI Y pi, λq and Xpλq :“
Ť

iPI Xpλ, iq. The axioms are as follows.

(PS4) The products yhx for py, h, xq P
Ť

λPΛ Y pλqˆHpλqˆXpλq are a basis for
A.

(PS5) For λ, µ P Λ, the sets Y pµ, λq and Xpλ, µq are empty unless µ ď λ, and
Y pλ, λq “ Xpλ, λq “ teλu.

(PS6) The finite-dimensional algebra Aλ defined as in Definition 5.13 is basic
and local.

We say that A is symmetrically based if there is also some given algebra anti-
involution σ : A Ñ A with σpeiq “ ei and Y pi, λq “ σpXpλ, iqq for all i P I, λ P Λ,
such that each of the algebras Aλ pλ P Λq is σλ-symmetric, where σλ here is the
anti-involution of Aλ induced by σ.

In the remainder of the section, we just explain the results for based stratified
algebras, since based properly stratified algebras are a special case. For the next
lemma, we adopt the shorthands

Y Hpi, bq :“
 

yh
ˇ

ˇ py, hq P
Ť

aPB Y pi, aq ˆHpa, bq
(

,(5.9)

HXpb, jq :“
 

hx
ˇ

ˇ ph, xq P
Ť

aPBHpb, aq ˆXpa, jq
(

.(5.10)

Also set Y Hpbq :“
Ť

iPI Y Hpi, bq and HXpbq :“
Ť

jPI HXpb, jq.

Lemma 5.22. Suppose that A is a based stratified algebra as in Definition 5.20.
Also let ε : Λ Ñ t˘u be any choice of sign function. Then A is a based ε-stratified
algebra in the sense of Definition 5.12 with the required sets Y pi, bq and Xpb, jq for
that being the sets Y Hpi, bq and Xpb, jq in the present setup if εpρpbqq “ `, or the
sets Y pi, bq and HXpb, jq in the present setup if εpρpbqq “ ´.
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Proof. This follows on comparing Definitions 5.12 and 5.20. �

This means that the results from the previous section apply to based stratified
algebras too. In particular, we define the standard, proper standard, costandard
and proper costandard modules as in (5.6)–(5.7). The modules ∆pbq and ∆̄pbq have
standard bases tyēb | y P Y Hpbqu and tyẽb | y P Y pbqu, respectively. Similarly, one
can introduce costandard bases for ∇pbq and ∇̄pbq indexed by the sets HXpbq and
Xpbq, respectively. Note also that the basic algebra

Aλ “
à

a,bPBλ

ēaAλēb

has basis
 

h̄
ˇ

ˇ h P
Ť

a,bPBλ
Hpa, bq

(

.

Theorem 5.23 (Fully stratified categories from based stratified algebras). Let
A be a finite (resp., upper finite, resp., essentially finite) based stratified algebra as
above. The modules

tLpbq :“ hd ∆pbq – hd ∆̄pbq – soc ∇̄pbq – soc ∇pbq | b P Bu

give a full set of pairwise inequivalent irreducible left A-modules. Moreover, R :“
A-modfd (resp., R :“ A-modlfd, resp., R :“ A-modfd) is a finite (resp., upper finite,
resp., essentially finite) fully stratified category with stratification pB, L, ρ,Λ,ďq
with strata Rλ :“ Aλ-modfd. If A is symmetrically based with anti-involution σ
then ?©σ : RÑ R is a Chevalley duality of R in the sense of Definition 4.53.

Proof. Using Lemma 5.22, the first part follows from Theorem 5.17 applied
twice, once with ε “ ` and once with ε “ ´. For the final part about Chevalley
duality, axiom (Ch1) from Definition 4.53 is established in the course of the proof
of Theorem 5.17, and (Ch2) follows from the definition of symmetrically based
stratified algebra. �

For the converse recall the definition of tilting-rigid from Definition 4.36.

Theorem 5.24 (Based stratified algebras from fully stratified categories). Let
R be a finite (resp., lower finite, resp., essentially finite) fully stratified category with
stratification pB, L, ρ,Λ,ďq. Assume that R is tilting-rigid with weakly symmetric
strata. Suppose we are given B Ď I disjoint from Λ and a tilting generator T “
À

iPI Ti such that each Tb pb P Bq is a direct sum of T pbq and other T pcq for c with
ρpcq ă ρpbq. Let

A :“

˜

à

i,jPI

HomRpTi, Tjq

¸op

(1) For i, j P I and a, b P B, pick morphisms

Y pi, aq Ă HomRpTi, Taq, Hpa, bq Ă HomRpTa, Tbq, Xpb, jq Ă HomRpTb, Tjq

lifting bases for HomRpTi, ∇̄paq, HomRp∆paq,∇pbqq and HomRp∆̄pbq, Tjq
as in Theorem 4.45 such that Y pb, bq “ Xpb, bq “ tidTbu. These choices
give a triangular basis making into a finite (resp., upper finite, resp., es-
sentially finite) based stratified algebra with respect to the poset pΛ,ěq (the
opposite ordering on Λ compared to R).
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(2) If in addition R has a Chevalley duality ?_ and, in a suitable realization,
the modules corresponding to each Ti possess non-degenerate symmetric
bilinear forms satisfying the adjunction property as in (4.47), then the
triangular basis in (1) can be chosen so that A is symmetrically based.

Proof. Part (1) is similar to the proof of Theorem 5.18, using Theorem 4.45
in place of Theorem 4.43. Part (2) follows in the same way as in the proof of
Theorem 5.11(2). �

Corollary 5.25. Let R be a finite (resp., upper finite, resp., essentially finite)
fully stratified category with stratification pB, L, ρ,Λ,ďq. Let A “

À

i,jPI eiAej be
an algebra realization of R.

(1) Assume that R is tilting-rigid with weakly symmetric strata. Then there

is an idempotent expansion A “
À

i,jPÎ êiAêj with B Ď Î, and finite sets

Y pi, aq Ă êiAêa, Hpa, bq Ă êaAêb, Xpb, jq Ă êbAêj

for all i, j P Î and a, b P B, making A into an upper finite (resp., essen-
tially finite) based stratified algebra.

(2) Assume that R is tilting-rigid with a Chevalley duality ?_ and char k ‰ 2.
Then the choices in (1) can be made so that A is symmetrically based with
anti-involution σ realizing ?_.

Proof. This follows from Theorem 5.24 in the same way as Corollary 5.11 was
deduced from Theorem 5.10. One also needs to use the fact that the Ringel dual
R1 of R is tilting-rigid by Theorem 4.42. �

5.4. Algebras with a triangular basis

The final axiom (S7) of Definition 5.20, namely, that the algebra Aλ is basic,
is quite restrictive. However, this assumption is not essential, as we will explain
in this section. The following simply repeats Definition 5.20 with the final axiom
dropped, but at the same time we switch to using the notation B : S Ñ Λ where we
had ρ : B Ñ Λ before.

Definition 5.26. Let A “
À

i,jPI eiAej be a finite-dimensional (resp., locally

finite-dimensional, resp., essentially finite-dimensional) locally unital algebra. We
say that A has a triangular basis if we are given the following additional data:

(TB1) A subset S Ď I indexing special idempotents tes | s P Su.
(TB2) A poset pΛ,ďq which is upper finite in the locally finite-dimensional case

and interval finite in the essentially finite-dimensional case, such that ΛX
I “ ∅.

(TB3) A function B : S Ñ Λ with finite fibers Sλ :“ B´1pλq.
(TB4) Sets Y pi, sq Ă eiAes, Hps, tq Ă esAet, Xpt, jq Ă etAej for i, j P I and

s, t P S.

Let Y psq :“
Ť

iPI Y pi, sq and Xptq :“
Ť

jPI Xpt, jq. The axioms are as follows:

(TB5) The products yhx for py, h, xq P
Ť

s,tPS Y psq ˆHps, tq ˆXptq are a basis
for A.

(TB6) For s, t P S with s ‰ t, the set Hps, tq is empty unless Bpsq “ Bptq, the sets
Y pt, sq and Xps, tq are empty unless Bptq ă Bpsq, and Y ps, sq “ Xps, sq “
tesu.
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Suppose that A has a triangular basis as in Definition 5.26. We define algebras
Aλ “ ēλAďλēλ for each λ P Λ like at the end of Definition 5.12. Thus, we let
eλ :“

ř

sPSλ
es, then set Aλ :“ ēλAďλēλ where Aďλ is the quotient of A by the

two-sided ideal generated by teµ | µ ę λu. Corollary 5.15 carries over to show
that Aďλ has basis ȳh̄x̄ for all y P Y psq, h P Hps, tq, x P Xptq and s, t P S with
Bpsq, Bptq ď λ. Hence, Aλ has basis

 

h̄
ˇ

ˇ h P
Ť

s,tPSλ
Hps, tq

(

. Let jλ : Aďλ-mod Ñ

Aλ-mod, V ÞÑ ēλV be the quotient functor and define jλ! and jλ˚ analogously to
(5.4).

Lemma 5.27. The functors jλ! and jλ˚ are exact.

Proof. By the argument from the proof of Lemma 5.16, there is an isomor-
phism of right Aλ-modules

À

sPSλ

À

yPY psq ēsAλ
„
Ñ Aďλēλ sending the vector ēs

in the yth copy of ēsAλ to ȳ P Aďλēλ. So the right Aλ-module Aďλēλ is projec-
tive, which implies the exactness of jλ! . Similarly, the left Aλ-module ēλAďλ is
projective, which implies the exactness of jλ˚ . �

The following theorem is essentially [GRS, Th. 3.5], although we give a self-
contained proof since our notation is different enough. See Remark 5.30 for further
historical discussion.

Theorem 5.28 (Fully stratified categories from algebras with triangular bases).
Let A be a finite-dimensional (resp., locally finite-dimensional, resp. essentially
finite-dimensional algebra with a triangular basis as above. Let ρ : B Ñ Λ be a
function whose fibers Bλ :“ ρ´1pλq label a full set tLλpbq | b P Bλu of pairwise
inequivalent irreducible left Aλ-modules. Let ∆̄pbq :“ jλ! Lλpbq and ∇̄pbq :“ jλ˚Lλpbq
for b P Bλ. Then the modules

tLpbq :“ hd ∆̄pbq – soc ∇̄pbq | b P Bu

give a full set of pairwise inequivalent irreducible left A-modules. Moreover, R :“
A-modfd (resp., R :“ A-modlfd, resp., R :“ A-modfd) is a finite (resp., upper finite,
resp., essentially finite) fully stratified category with stratification pB, L, ρ,Λ,ďq. Its
strata are the categories Rλ :“ Aλ-modfd, with standardization and costandardiza-
tion functors as in (5.4).

Proof. Take u P Sλ and any b P Bλ such that ēuLλpbq ‰ 0. We claim that
Aeu has a ∆̄-flag with ∆̄pbq at the top and other sections of the form ∆̄pcq for c
with ρpcq ě λ. To see this, let P :“ Aeu for short. Note P has basis

 

yhx
ˇ

ˇ py, h, xq P
Ť

µěλ

Ť

s,tPSµ
Y psq ˆHps, tq ˆXpt, uq

(

.

Let tµ1, . . . , µnu be the finite set
 

µ P rλ,8q
ˇ

ˇ

Ť

tPSµ
Xpt, uq ‰ ∅

(

enumerated in

some order refining ď. There is a filtration P “ P0 ą P1 ą ¨ ¨ ¨ ą Pn “ 0 in
which the section Pr´1{Pr has basis

 

yhx`Pr
ˇ

ˇ py, h, xq P
Ť

s,tPSµr
Y psqˆHps, tqˆ

Xpt, uq
(

. Moreover, Pr´1{Pr – jµr! Qr where Qr :“ ēµr pPr´1{Prq. This follows by
a similar argument to the Case 2 in the proof of Theorem 5.17. Since jµr! is exact
by Lemma 5.27, it follows that Pr´1{Pr has a ∆̄-flag with sections ∆̄pcq for c P Bµr .
So we have proved that P has a ∆̄-flag with sections ∆̄pcq for c P B with ρpcq ě λ.
Moreover, P0{P1 – jλ! pAλēuq. Since Aλēu has Lλpbq in its head, it follows that the
∆̄-flag can be chosen so that it has ∆̄pbq at its top.

Now we can classify the irreducible left A-modules. As in the penultimate
paragraph of the proof of Theorem 5.17, the modules tLpbq :“ hd ∆̄pbq | b P Bu are
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pairwise inequivalent irreducible A-modules. It remains to show that any irreducible
left A-module L is isomorphic to some such module. There exists u P S such that
euL ‰ 0. Hence, L is a quotient of Aeu. By considering the filtration of Aeu from
the previous paragraph we deduce that L is a quotient of ∆̄pcq for some c P B, i.e.,
L – Lpcq.

At this point, we have in hand the data of a stratification of R with strata
Rλ :“ Aλ-modfd and standardization and costandardization functors as in (5.4).
For each b P Bλ, choose u P Sλ such that ēuLλpbq ‰ 0 then set Pb :“ Aeu. The
claim established in the first paragraph of the proof checks that these modules

satisfy the property pyP∆´q, hence, R is an upper finite (resp., essentially finite)
´-stratified category. Finally we deduce that it is fully stratified using the criterion
from Lemma 3.20(iv) plus Lemma 5.27. �

Corollary 5.29. Let A be as above. If each of the finite-dimensional algebras
Aλ is quasi-hereditary (e.g., they could all be semisimple), then the stratification
can be refined to make the category R from Theorem 5.28 into a highest weight
category.

Proof. Combine Theorem 5.28 and Corollary 3.67. �

Remark 5.30. We did not fully appeciate the utility of Definition 5.26 be-
fore seeing [GRS], in which Gao, Rui and Song introduce a notion of an alge-
bra with a weak triangular decomposition and give a (slightly different) proof of
Theorem 5.28 for such algebras. They justify their definition by constructing sev-
eral interesting families of examples, namely, cyclotomic quotients of the affine
oriented Brauer and HOMFLY-PT skein categories and of the affine Brauer and
Kauffman skein categories. In the special case that I “ S, i.e., all distinguished
idempotents are special, our notion of an algebra with a triangular basis is ex-
actly equivalent to the notion of an algebra with a weak triangular decomposi-
tion. More precisely, a weak triangular decomposition is the data of subspaces
A´ “

À

i,jPI eiA
´ej , A

˝ “
À

i,jPI eiA
˝ej , A

` “
À

i,jPI eiA
`ej for i, j P I sub-

ject to certain axioms. Picking homogeneous bases Y pi, jq, Hpi, jq and Xpi, jq for
eiA

´ej , eiA
˝ej and eiA

`ej , respectively, produces a triangular basis in the sense of
Definition 5.26. Conversely given a triangular basis one obtains a weak triangular
decomposition by replacing the bases by the subspaces that they span.

5.5. Algebras with a triangular decomposition

Let A be an algebra with a triangular basis as in Definition 5.26 and assume
in addition that I “ S, i.e., all of the distinguished idempotents are special. Let
A5 and A7 be the subspaces spanned by

 

yh
ˇ

ˇ py, hq P
Ť

i,jPI Y piq ˆ Hpi, jq
(

and
 

hx
ˇ

ˇph, xq P
Ť

i,jPI Hpi, jqˆXpjq
(

, respectively. If it happens that these subspaces

are locally unital subalgebras2 of A then A has a triangular decomposition in the
following sense.

Definition 5.31. Let A “
À

i,jPI eiAej be a finite-dimensional (resp., locally

finite-dimensional, resp., essentially finite-dimensional) locally unital algebra. A
triangular decomposition of A is the following additional data:

2Locally unital subalgebra means subspace closed under multiplication and containing all of the
distinguished idempotents.
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(TD1) A poset pΛ,ďq which is upper finite in the locally finite-dimensional case
or interval finite in the essentially finite-dimensional case.

(TD2) A function B : I Ñ Λ with finite fibers Iλ :“ B´1pλq.
(TD3) Locally unital subalgebras A5 and A7.

We call A5 and A7 the negative and positive Borel subalgebra. Let A˝ :“ A5 X A7.
This is also a locally unital subalgebra called the Cartan subalgebra. The following
axioms are required to hold:

(TD4) A5 is a projective right A˝-module and A7 is a projective left A˝-module.
(TD5) The natural multiplication map A5 bA˝ A

7 Ñ A is a linear isomorphism.
(TD6) For i, j P I, ejA

5ei and eiA
7ej are zero unless Bpjq ď Bpiq, and eiA

5ej “
eiA

7ej when Bpiq “ Bpjq.

Remark 5.32. Our formulation of Definition 5.31 has been influenced by the
definition of a triangular category from a recent preprint of Sam and Snowden
[SS]; these are finite-dimensional categories satisfying equivalent axioms to algebras
with an upper finite triangular decomposition in the above sense in which the
Cartan subalgebra is semisimple. In an earlier draft, we had formulated a slightly
more restrictive notion which we now refer to a split triangular decomposition,
as follows. Let A “

À

i,jPI eiAej be a finite-dimensional (resp., locally finite-

dimensional, resp., essentially finite-dimensional) locally unital algebra. We say
that A has a split triangular decomposition if we have the additional data:

(STD1) A poset pΛ,ďq which is upper finite in the locally finite-dimensional case
and interval finite in the essentially finite-dimensional case.

(STD2) A function B : I Ñ Λ with finite fibers Iλ :“ B´1pλq.
(STD3) Locally unital subalgebras A´, A˝ and A`.

Letting K :“
À

iPI kei, the axioms are:

(STD4) The subspaces A5 :“ A´A0 and A7 :“ A0A` are subalgebras.
(STD5) The natural multiplication map A´bKA

˝bKA
` Ñ A is a linear isomor-

phism.
(STD6) For i, j P I with i ‰ j, eiA

˝ej is zero unless Bpiq “ Bpjq, ejA
´ei and

eiA
`ej are zero unless Bpjq ă Bpiq, and eiA

5ei “ eiA
7ei “ kei for all i P I.

The axiom (STD5) implies that A5 – A´ bK A
˝ and A7 – A˝ bK A

7. Hence, by
associativity of tensor product we have that

A5 bA˝ A
7 – A´ bK A

˝ bA˝ A
˝ bK A

` – A´ bK A
˝ bK A

` – A,

proving (TD5). Moreover, the isomorphisms A5 – A´ bK A
˝ and A7 – A˝ bK

A7 show that A5 and A7 are I-free in the sense of Definition 2.17 as right and
left A˝-modules, respectively, which implies (TD4). Axiom (TD6) is also easily
deduced from (STD6). When they hold, the axioms (STD4)–(STD6) are easier
to check than (TD4)–(TD6), so this gives a practical way to obtain triangular
decompsitions. In fact, most of the examples of triangular decompositions arising
from diagrammatic monoidal categories considered in [SS] and elsewhere are split
triangular decompositions, so the split formulation is useful.

Remark 5.33. In [HN], Holmes and Nakano introduced a notion of a Z-graded
algebra with a triangular decomposition. To explain the connection to our setup,
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suppose we are given a unital Z-graded algebra Ã “
À

λPZ Ãλ. There is an associ-

ated locally unital algebra A “
À

λ,µPZ eλAeµ with eλAeµ :“ Ãλ´µ and multiplica-

tion induced by multiplication in Ã in the natural way. Moreover, any Z-graded left
Ã-module V “

À

λPZ Vλ can be viewed as a left A-module with eλV :“ Vλ; this de-

fines an isomorphism from the usual category Ã-grmod of Z-graded Ã-modules and
degree-preserving morphisms to the category A-mod of locally unital A-modules. If
we start with Ã that is a finite-dimensional Z-graded algebra with a triangular de-
composition pÃ´, Ã˝, Ã`q as in [HN] (see also [BT, Def. 3.1]) then the essentially
finite-dimensional locally unital algebra A and the subalgebras A˝, A´ and A` ob-
tained via this construction has a split triangular decomposition, with I “ Λ “ Z
ordered in the natural way.

To make the connection with Definition 5.26, suppose that A has a triangular
decomposition. For λ P Λ, let 1λ :“

ř

iPIλ
ei. The axioms imply that eiA

˝ej “ 0

unless Bpiq “ Bpjq, so 1λA
˝1µ “ 0 for λ ‰ µ. It follows that t1λ |λ P Λu are mutually

orthogonal central idempotents in A˝, and the Cartan subalgebra has the “block”
decomposition

(5.11) A˝ “
à

λPΛ

A˝λ where A˝λ :“ 1λA
˝ “ A˝1λ.

Lemma 5.34. Let A be as in Definition 5.31 with ΛX I “ ∅. Suppose we are
given S Ď I such that all eiA

5 and A7ej are S-free as right and left A˝-modules,

respectively. For i, j P I, s, t P S, one can choose subsets Y pi, sq Ă eiA
5es, Xpt, jq Ă

etA
7ej so that

(i) eiA
5 “

À

sPS

À

yPY pi,sq yA
˝ with yA˝ – esA

˝ for y P Y pi, sq;

(ii) A7ej “
À

tPS

À

xPXpt,jqA
˝x with A˝x – A˝et for x P Xpt, jq;

(iii) Y pt, tq “ Xpt, tq “ tetu for all t P S.

Also let Hps, tq be a basis for esA
˝et. This makes A “

À

i,jPÎ eiAej into an algebra
with a triangular basis in the sense of Definition 5.26 with B : S Ñ Λ being the
restriction of the given function B : I Ñ Λ. For λ P Λ and eλ :“

ř

sPSλ
es,

the subquotient Aλ “ ēλAďλēλ defined after Definition 5.26 is isomorphic to the
subalgebra eλA

˝
λeλ of A˝λ. Moreover, we have that A˝λ “ A˝λeλA

˝
λ so Aλ is Morita

equivalent to A˝λ.

Proof. By the definition of S-free, there are subsets Y pi, sq Ă eiA
5es as in (i).

Since eiA
5es is zero unless Bpiq ď Bpsq, we have that Y pi, sq “ ∅ unless Bpiq ď Bpsq.

Suppose that t P Sλ :“ SX Iλ. By (TD6), we have that

etA
51λ “ etA

˝
λ “

à

sPSλ

à

yPY pt,sq

yA˝λ,

i.e., the sets Y pt, sq for s P Sλ come from an S-free decomposition of etA
˝
λ. This

means we can choose them so that Y pt, tq “ tetu as in (iii), in which case Y pt, sq “ ∅
for s P Sλ with s ‰ t. Hence, for s, t P S with s ‰ t, we have that Y pt, sq “ ∅ unless
Bptq ă Bpsq. Similarly, we choose subsets Xpt, jq Ă etA

7ej according to (ii) and (iii),
and then for s, t P S with s ‰ t we have that Xps, tq “ ∅ unless Bptq ă Bpsq. Note
also that Hps, tq “ ∅ unless Bpsq “ Bptq due to (5.11). Thus we have the required
data from (TB1)–(TB4), and the conditions of (TB6) are satisfied.

In this paragraph, we check (TB5). Let Y psq “
Ť

iPI Y pi, sq and Xptq “
Ť

jPI Xpt, jq. We have seen already that A5 “
À

sPS

À

yPY psq yA
˝ and A7 “
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À

tPS

À

xPXptqA
˝x. Tensoring these together, we deduce that

A5 bA˝ A
7 “

à

s,tPS

à

yPY psq,xPXptq

yA˝ bA˝ A
˝x.

Each summand yA˝ bA˝ A
˝x here is isomorphic to esA

˝ bA˝ A
˝et – esA

˝et. We
deduce that A5bA˝A

7 has basis
 

yhbx “ ybhx
ˇ

ˇpy, h, xq P
Ť

s,tPS Y psqˆHps, tqˆ

Xptq
(

. Then we use (TD5) to see that the axiom (TB5) is satisfied.
Finally we must identify the algebra Aλ. The quotient map A� Aďλ restricts

to a homomorphism φ : A˝ Ñ Aďλ which further restricts to

(5.12) φλ : eλA
˝
λeλ

„
Ñ Aλ.

The subalgebra A˝λ has basis

tyhx | py, h, xq P
ď

i,jPIλ,s,tPSλ

Y pi, sq ˆHps, tq ˆXpt, jqu.

Hence, A˝λ “ A˝λeλA
˝
λ. The subalgebra Aλ of eλA

˝
λeλ has basis

Ť

s,tPSλ
Hps, tq. It

follows that φλ sends a basis to a basis, so it is an isomorphism. �

The freeness assumption in Lemma 5.34 may seem restrictive, but one can
always pass to an idempotent expansion so that this is the case. In fact, we can do
this in such a way that the algebras Aλ are basic, thereby giving A the structure of
a based stratified algebra rather than merely an algebra with a triangular basis:

Theorem 5.35 (Based stratified algebras from triangular decompositions).
Suppose that A has a triangular decomposition as in Definition 5.31. Let A˝ “
À

i,jPÎ êiA
˝êj be an idempotent expansion of A˝ “

À

i,jPI eiA
˝ej such that

(i) Î X Λ “ ∅;

(ii) Î contains a subset B indexing a full set têb | b P Bu of pairwise non-
conjugate primitive idempotents in A˝;

(iii) there is a function q : Î Ñ I with |q´1piq| ă 8 and ei “
ř

jPq´1piq êj for

i P I.

Then A “
À

i,jPÎ êiAêj has a triangular decomposition with the given Borel subal-

gebras, taking the function from (TD2) now to be ρ :“ B ˝ q : Î Ñ Λ. Moreover,
êiA

5 and A7êj are B-free as right and left A˝-modules, respectively. Hence, we
can apply the construction of Lemma 5.34 to A “

À

i,jPÎ êiAêj to make A into a
based stratified algebra in the sense of Definition 5.26 with ρ : B Ñ Λ defined by
restriction.

Proof. The fact that we have in hand a triangular decomposition of A “
À

i,jPÎ êiAêj is immediately clear from the nature of Definition 5.31. Since 1λA
7êj

is a finite-dimensional projective left A˝λ, Lemma 2.18 implies that it is B-free as a
left Aλ-module. Hence A7êj “

À

λPΛ 1λA
7êj is B-free as a left module. Similarly,

we get that êiA
5 is B-free as a right module. So now Lemma 5.34 can be applied

and we obtain a triangular basis such that Aλ – êλA
˝
λêλ for êλ :“

ř

bPBλ
êb. By the

choice of the idempotents têb | b P Bu, êλA
˝
λêλ is the basic algebra that is Morita

equivalent to A˝λ, checking the remaining axiom (S7) needed in order to have a
based stratified algebra. �
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Corollary 5.36. If A has a triangular decomposition in which the Cartan sub-
algebra A˝ is semisimple, then there is an idempotent refinement A “

À

i,jPÎ eiAej
of A with the structure of a based quasi-hereditary algebra in the sense of Defini-
tion 5.1.

Proof. The construction in the theorem produces an idempotent refinement
of A that is a based stratified algebra with stratification function ρ : B Ñ Λ.
Let Γ :“ B with partial order ĺ on Γ defined by a ĺ b if and only if a “ b or
ρpaq ă ρpbq. Since Aλ is basic and semisimple, we have for a, b P Bλ that Hpa, bq
is empty unless a “ b and Hpa, aq may be chosen to be têau. It follows that A is
actually a based quasi-hereditary algebra with weight poset pΓ,ĺq and the basis
which we have constructed. �

Remark 5.37. The construction used to prove Theorem 5.35 suggests yet an-
other variation on all of these definitions, which is weaker than having a triangular
decomposition but stronger than having a triangular basis. For A like in Def-
inition 5.31 we say that it has a Cartan decomposition if there is the following
additional data:

(CD1) A poset pΛ,ďq which is upper finite in the locally finite-dimensional case
and interval finite in the essentially finite-dimensional case.

(CD2) A function B : I Ñ Λ with finite fibers Iλ :“ B´1pλq.
(CD3) A locally unital subalgebra A˝ and pA˝, A˝q-subbimodules A5 and A7 of

A.

The axioms are:

(CD4) A5 is a projective right A˝-module and A7 is a projective left A˝-module.
(CD5) The natural multiplication map A5 bA˝ A

7 Ñ A is a linear isomorphism.
(CD6) For i, j P I, eiA

˝ej is zero unless Bpiq “ Bpjq, eiA
5ej and ejA

7ei are zero

unless Bpiq ď Bpjq, and eiA
5ej “ eiA

˝ej “ eiA
7ej when Bpiq “ Bpjq.

The proof of Theorem 5.35 carry over to such algebras essentially unchanged. How-
ever we do not know of any compelling examples, whereas as we noted in Re-
marks 5.30, 5.33 and 5.32 there are plenty of important examples of algebras with
triangular bases and with triangular decompositions, justifying both of those defi-
nitions.

If A is a finite-dimensional (resp., locally finite-dimensional, resp. essentially
finite-dimensional) algebra with a triangular decomposition, then we can apply
Theorems 5.35 and 5.23 to deduce that A-modfd (resp., A-modlfd, resp., A-modfd)
is a finite (resp., upper finite, resp., essentially finite) fully stratified category. We
end the chapter by making this structure more explicit. We first define some global
standardization and costandardization functors.

‚ The axioms imply that A is a projective right A7-module and that there
is a locally unital projection homomorphism A7 � A˝. Let

(5.13) j! : A˝-modfd Ñ A-mod

be the exact functor defined by inflating along this projection homorphism
and then applying the exact induction functor AbA7? : A7-mod Ñ A-mod.
The fact that it takes finite-dimensional modules to finite-dimensional or
locally finite-dimensional modules (as appropriate for the case) follows
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because as functors to A5-mod we have that AbA7? – A5bA˝? due to
(TD5).

‚ The axioms imply that A is a projective left A5-module and that there is
a locally unital projection homomorphism A5 � A˝. Let

(5.14) j˚ : A˝-modfd Ñ A-mod

be the exact functor defined by inflating along A5 � A˝ then applying
the exact coinduction functor

À

iPI HomA5 pAei,´q : A5-mod Ñ A-mod.
It takes finite-dimensional modules to finite-dimensional or locally finite-
dimensional modules (as appropriate for the case) follows because as a
functor to A7-mod it is isomorphic to

À

iPI HomA˝
`

A7ei, ?
˘

.

The following theorem can be proved by mimicking standard arguments from Lie
theory; see [CouZ] noting that pA5, A˝q and pA˝, A7q are Borelic pairs in the sense
defined there. We will deduce it instead from the work already done in Theo-
rems 5.35 and 5.23.

Theorem 5.38 (Fully stratified categories from algebras with a triangular de-
composition). Suppose that A has a triangular decomposition of one of the three
types as above. Let tL˝pbq|b P Bu be a full set of pairwise inequivalent irreducible left
A˝-modules. Let ρ : B Ñ Λ be the function sending b P B to the unique λ P Λ such
that L˝pbq is an irreducible A˝λ-module. Let ∆̄pbq :“ j!L

˝pbq and ∇̄pbq :“ j˚L
˝pbq;

cf. (5.13)–(5.14). Then
 

Lpbq :“ hd ∆̄pbq – soc ∇̄pbq
ˇ

ˇ b P B
(

is a complete set of pairwise inequivalent irreducible left A-modules. Moreover, the
category R :“ A-modfd (resp., A-modlfd, resp., A-modfd) is a finite (resp., upper fi-
nite, resp., essentially finite) fully stratified category with stratification pB, L, ρ,Λ,ď
q. Its strata may be identified with the categories A˝λ-modfd pλ P Λq with stan-
dardization and costandardization functors defined by the restrictions of j! and j˚,
respectively.

Proof. As explained by Theorem 5.35, we can pass to an idempotent refine-
ment if necessary to assume without loss of generality that the set I indexing the
distinguished idempotents is disjoint from Λ and contains B as a subset in such a
way that L˝pbq – hd pA˝ebq for each b P B. The function ρ : B Ñ Λ is then the
restriction of B : I Ñ Λ. Now Theorem 5.35 gives bases making A into a based
stratified algebra. We we deduce that R is a finite (resp., upper finite, resp., essen-
tially finite) fully stratified category with stratification pB, L, ρ,Λ,ďq by applying
Theorem 5.23. However for this the strata and the labelling function L are pro-
duced in a different way to the formulation here, so we need to argue a little further
to see that the standardization and costandardization functors here and the ones
from earlier may be identified. Using the isomorphism (5.12), the quotient functor
jλ : Aďλ-mod Ñ Aλ-mod in the setup of (5.4) may be identified with the functor
j : Aďλ-mod Ñ eλA

˝
λeλ-mod obtained by restriction to A˝ then multiplication by

the idempotent eλ. Since A˝λ and eλA
˝
λeλ are Morita equivalent, we can instead use

the algebra A˝λ to realize the stratum, and then this quotient functor gets replaced
by the functor obtained by restriction to A˝ then multiplication by 1λ. It remains
to observe that the restrictions of j! and j˚ to A˝λ-mod are left and right adjoint to
this functor, respectively. �
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Corollary 5.39. Suppose that A has a triangular decomposition of one of the
three types and that its Cartan subalgebra A˝ is semisimple. Let tL˝pγq | γ P Γu be
a full set of pairwise inequivalent irreducible left A˝-modules. Let ρ : Γ Ñ Λ be the
function sending γ to the unique λ such that L˝pγq is an irreducible A˝λ-module.
Then R :“ A-modfd (resp., A-modlfd, resp. A-modfd) is a finite (resp., upper
finite, resp., essentially finite) highest weight category with weight poset pΓ,ĺq for
ĺ defined by β ĺ γ if either β “ γ or ρpβq ă ρpγq. Its standard and costandard
modules are ∆pγq :“ j!L

˝pγq and ∇pγq :“ j˚L
˝pγq for γ P Γ.

Proof. This follows from the theorem and Corollary 5.36. �

Remark 5.40. We end by mentioning one last variation on the definitions in
this section. We say that a triangular decomposition of A as in Definition 5.31 is
a symmetric triangular decomposition if in addition there is given a locally unital
algebra anti-involution σ : A Ñ A which leaves A˝ invariant and interchanges A7

and A5, such that for each λ P Λ the subalgebras eλA
λeλ are σλ-symmetric in the

sense of Definition 4.51, where σλ denotes the restriction of σ. Then there is an
enhanced version of Theorem 5.35 making A into a symmetrically based stratified
algebra, and an enhanced version of Theorem 5.38 making R into a fully stratified
category with a Chevalley duality ?©σ . We omit the details.



CHAPTER 6

Examples

In this chapter, we explain several examples. For the ones in §§6.5–6.7 we give
very few details but have tried to indicate the relevant ingredients from the existing
literature.

6.1. A finite-dimensional example via quiver and relations

Let A and B be the basic finite-dimensional algebras equal to the path algebras
of the following quivers:

A p1 ą 2q : 1s
$$ y

// 2 t
zz

with relations s2 “ 0, t2 “ 0, ty “ 0,

B p1 ă 2q : 1z
$$

u
((
2

v

hh with relations z2 “ 0, uv “ 0, vuzv “ 0.

The algebra A has basis e1, s; e2, t; y, ys and B has basis e1, z, vu, vuz, zvu, zvuz;
e2, uzv; v, zv; u, uz, uzvu, uzvuz. The irreducible A- and B-modules are indexed
by the set t1, 2u. We are going to consider A-modfd and B-modfd with the strati-
fications defined by the orders 1 ą 2 and 1 ă 2, respectively.

We first look at A-modfd. As usual, we denote its irreducibles by Lpiq, inde-
composable projectives by P piq, standards by ∆piq, etc.. The indecomposable pro-
jectives and injectives look as follows (where we abbreviate the irreducible module
Lpiq just by i):

P p1q “

1
s y

1
y

2

2

, P p2q “
2
t

2

, Ip1q “
1
s

1

, Ip2q “

1

2 1

s

2
t y

.

It follows easily that A-modfd is a fibered highest weight category in the sense of
Definition 3.7 with the structure of the standards and costandards as follows:

∆p1q “ P p1q, ∆̄p1q “
1
y

2

, ∆p2q “ P p2q, ∆̄p2q “ Lp2q,

∇p1q “ Ip1q, ∇̄p1q “ Lp1q, ∇p2q “
2
t

2

, ∇̄p2q “ Lp2q.

This can also be seen from Theorem 5.23 on noting that A is a based properly
stratified algebra in the sense of Definition 5.21 with Y p2, 1q “ tyu, Xp1, 2q “ ∅
and Hp1q “ te1, su, Hp2q “ te2, tu. The basic local algebras realizing the strata

123
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are krss{ps2q and krts{pt2q. Next we look at the tilting modules in A-modfd. If one
takes the sign function ε “ pε1, ε2q to be either p`,`q or p´,`q then one finds that
the indecomposable ε-tilting modules are:

T`p1q “ P p1q “

∆̄p1q

∆̄p1q

“

∇p1q

∇̄p2q ∇̄p2q
, T`p2q “ P p2q “ ∆p2q “

∇̄p2q

∇̄p2q
.

These cases are not very interesting since the Ringel dual category is just A-modfd

again. Assume henceforth that ε “ p´,´q or p`,´q. Then the indecomposable
ε-tilting modules are:

T´p1q “

1
s y

2
t

1
y

2 2
t

2

“

∆̄p2q ∆̄p2q

∆p1q

“

∇p1q

∇p2q ∇p2q
, T´p2q “ P p2q.

To see this, one just has to check that these modules are indecomposable with the
appropriate ∆ε- and ∇ε-flags. This analysis reveals that A-modfd is not tilting-
rigid.

The minimal projective resolution of T´p1q takes the form

¨ ¨ ¨ ÝÑ P p2q ‘ P p2q ÝÑ P p2q ‘ P p2q ÝÑ P p1q ‘ P p2q ‘ P p2q ÝÑ T´p1q ÝÑ 0.

In particular, it is not of finite projective dimension, as follows also from Lemma 4.38
since T´p1q fl T`p1q. Observe also that there is a non-split short exact sequence
0 Ñ X Ñ T´p1q Ñ X Ñ 0 where

X “
1
y

2
t

2
.

Now let T :“ T´p1q ‘ T´p2q. We claim that EndApT q
op is the algebra B

defined above. To prove this, one takes z : T´p1q Ñ T´p1q to be an endomorphism
whose image and kernel is the submodule X of T´p1q, u : T´p2q Ñ T´p1q to
be a homomorphism which includes T´p2q as a submodule of X Ď T´p1q, and
v : T´p1q Ñ T´p2q to be a homomorphism with kernel containing X and image
Lp2q Ď T´p2q. Hence, B-modfd is the Ringel dual of A-modfd relative to T . Note
also that the algebra B is based p`,`q- and p´,`q-quasi-hereditary but it is not
based p`,´q- or p´,´q-quasi-hereditary (cf. Definition 5.13).
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One can also analyze B-modfd directly. Its projective modules have the follow-
ing structure:

P 1p1q “

1
u z

2
v

1
u

1
z

2
v

1
u

1
z

2 1
u

2

, P 1p2q “

2
y

1
z

1
u

2

,

Continuing with ε “ p´,´q or ε “ p`,´q, it is easy to check directly from this that
B-modfd is p´εq-highest weight, as we knew already due to Theorem 4.10. However,
it is not ε-highest weight for either of these choices of ε, so it is not fibered highest
weight.

We leave it to the reader to compute explicitly the indecomposable p´εq-tilting
modules T 1`p1q and T 1`p2q in B-modfd. Their structure reflects the structure of
the injectives Ip1q and Ip2q in A-modfd. Let T 1 :“ T 1`p1q ‘ T 1`p2q – T˚. By the
double centralizer property from Corollary 4.11, we have that A “ EndBpT

1qop,
as may also be checked directly. By Theorem 4.16, the functor RHomBpT

1, ?q :
DbpB-modfdq Ñ DbpA-modfdq is an equivalence. Note though that RHomApT, ?q :
DbpA-modfdq Ñ DbpB-modfdq is not one; this follows using [Kel, Th. 4.1] since
T´p1q does not have finite projective dimension.

6.2. An explicit semi-infinite example

In this section, we give a baby example involving a lower finite highest weight
category. Let C be the coalgebra with basis

 

c
p`q
i,j

ˇ

ˇi, j, ` P Z, 0 ď i, j ď `
(

,

counit defined by εpc
p`q
i,j q :“ δi,`δj,`, and comultiplication δ : C Ñ C bC defined by

c
piq
i,j ÞÑ

j
ÿ

k“0
iıjp2q

c
piq
i,k b c

pjq
k,j `

i
ÿ

k“j
k”ip2q

c
piq
i,k b c

pkq
k,j ,

c
pjq
i,j ÞÑ

i
ÿ

k“0
iıjp2q

c
piq
i,k b c

pjq
k,j `

j
ÿ

k“i
k”jp2q

c
pkq
i,k b c

pjq
k,j ,

c
p`q
i,j ÞÑ c

p`q
i,` b c

p`q
`,j `

i
ÿ

k“0
iı`p2q

c
piq
i,k b c

p`q
k,j `

`´1
ÿ

k“i
k”`p2q

c
pkq
i,k b c

p`q
k,j `

j
ÿ

k“0
jı`p2q

c
p`q
i,k b c

pjq
k,j `

`´1
ÿ

k“j
k”`p2q

c
p`q
i,k b c

pkq
k,j

for i, j ě 0 and ` ą maxpi, jq. We will show that R :“ comodfd-C is a lower
finite highest weight category with weight poset Λ :“ N ordered in the natural way.
Then we will determine the costandard, standard and indecomposable injective and
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tilting objects explicitly, and describe the Ringel dual category R1. To do this, we
mimic some arguments for reductive groups which we learnt from [Jan1].

We will need comodule induction functors, which we review briefly. For any
coalgebra C with comultiplication δ, a right C-comodule V with structure map
ηR : V Ñ V b C, and a left C-comodule W with structure map ηL : W Ñ C bW ,
the cotensor product V �CW is the subspace of the vector space V bW that is the
equalizer of the diagram

V bW
ηRbid
ÝÑ
ÝÑ

idbηL

V b C bW.

In particular, ηR : V Ñ V bC is an isomorphism from V to the subspace V �C C,
and similarly ηL : W

„
Ñ C �C W . Now suppose that π : C Ñ C 1 is a coalgebra

homomorphism and V is a right C 1-comodule. Viewing C as a left C 1-comodule
with structure map δL :“ pπb idq˝δ : C Ñ C 1bC, we define the induced comodule
to be

indCC1 V :“ V �C1 C.

This is a subcomodule of the right C-comodule V bC (with structure map idbδ).

In fact, indCC1 : comod-C 1 Ñ comod-C defines a functor which is right adjoint to the
exact restriction functor resCC1 , so it is left exact and sends injectives to injectives.

Now let C be the coalgebra defined above, and consider the natural quotient
maps π5 : C � C5 and π7 : C � C7, where C5 and C7 are the quotients of C by the

coideals spanned by
 

c
p`q
i,j

ˇ

ˇ ` ą j
(

or
 

c
p`q
i,j

ˇ

ˇ ` ą i
(

, respectively. These coalgebras

have bases denoted
 

ci,j :“ π5pc
pjq
i,j q

ˇ

ˇ 0 ď i ď j
(

and
 

ci,j :“ π7pc
piq
i,jq

ˇ

ˇ i ě j ě 0
(

,

and comultiplications δ5 and δ7 satisfying

δ5pci,jq “ ci,i b ci,j `
j
ÿ

k“i`1
k”jp2q

ci,k b ck,j , δ7pci,jq “ci,j b cj,j `
i
ÿ

k“j`1
k”ip2q

ci,k b ck,j ,

(6.1)

respectively. Also let C˝ –
À

iě0 k be the semisimple coalgebra with basis tci|i ě 0u

and comultiplication δ˝ : ci ÞÑ cib ci. Note C˝ is a quotient of both C5 and C7 via
the obvious maps sending ci,j ÞÑ δi,jci; hence, it is also a quotient of C. It may also

be identified with a subcoalgebra of both C5 and C7 via the maps sending ci ÞÑ ci,i.
Let L˝piq be the one-dimensional irreducible right C˝-comodule spanned by ci,i.

Since C˝ is semisimple with these as its irreducible comodules, any irreducible right
C˝-comodule V decomposes as V “

À

iPI Vi with the “weight spaces” Vi being a
direct sum of copies of L˝piq. Similarly, any left C˝-comodule V decomposes as
V “

À

iPI iV . This applies in particular to left and right C5, C7 or C-comodules,
since these may be viewed as C˝-comoodules by restriction.

Since C˝ is a subcoalgebra of C5, the irreducible comodule L˝piq may also
be viewed as an irreducible right C5-comodule. We denote this instead by L5piq;
it is the subcomodule of C5 spanned by the vector ci,i. For i ě 0, let Ipiq :“

iC – indCC˝ L
˝piq, let ∇piq be the subcomodule of Ipiq spanned by the vectors

tc
piq
i,j | 0 ď j ď iu, and let Lpiq be the one-dimensional irreducible subcomodule of

∇piq spanned by the vector c
piq
i,i . Now we proceed in several steps.
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Claim 1: Viewed as a functor to vector spaces, the induction functor indCC5 is
isomorphic to the functor V ÞÑ V �C˝ C

7 –
À

iě0 Vi b iC
7. Hence, this functor

is exact. To prove this, let δLR :“ pπ5b̄π7q ˝ δ : C Ñ C5 �C˝ C
7. As δLRpc

p`q
i,j q “

ci,` b c`,j and these vectors for all ` ě maxpi, jq give a basis for C5 �C˝ C
7, this

map is a linear isomorphism. Moreover, the following diagram commutes:

C
δL

ÝÝÝÝÑ C5 b C

δLR

§

§

đ

§

§

đ

idbδLR

C5 �C˝ C
7 ÝÝÝÝÑ

δ5bid
C5 b C5 �C˝ C

7.

The vertical maps are isomorphisms. Using the definition of indCC5 , it follows for

any right C5-comodule V with structure map η that the induced module indCC5 V
is isomorphic as a vector space (indeed, as a right C7-comodule) to the equalizer of
the diagram

V b C5 �C˝ C
7
ηbidb id
ÝÑ
ÝÑ

idbδ5bid

V b C5 b C5 �C˝ C
7.

Since indC
5

C5 V – V , this is naturally isomorphic to V �C˝ C
7. As C7 –

À

iě0 iC
7,

we get finally that V �C˝ C
7 –

À

iě0 Vi b iC
7.

Claim 2: For i ě 0, the right C5-comodule iC
5 – indC

5

C˝ L
˝piq has an exhaustive

ascending filtration 0 ă V0 ă V1 ă ¨ ¨ ¨ such that V0 – L5piq and Vr{Vr´1 –

L5pi` 2r´ 1q‘L5pi` 2rq for r ě 1. Also, the modules tL5piq | i ě 0u give a full set
of pairwise inequivalent irreducible right C5-comodules. The first statement follows
from (6.1), defining V0 to be the subspace spanned by ci,i, and Vr is spanned by

ci,i`2r´1, ci,i`2r. To prove the second statement, take any irreducible C5-comodule

L. Take a non-zero homomorphism resC
5

C˝L Ñ L˝piq for some i. Then use adjoint-

ness of resC
5

C˝ and indC
5

C˝ to obtain an embedding L ãÑ iC
5. Hence, L – L5piq as a

C5-comodule.

Claim 3: We have that ∇piq – indCC5 L
5piq and it is uniserial with composition

factors Lpiq, Lpi ´ 2q, Lpi ´ 4q, . . . , Lpaq, Lpbq, ¨ ¨ ¨Lpi ´ 3q, Lpi ´ 1q, where pa, bq P
tp0, 1q, p1, 0qu depending on parity of i, in order from bottom to top:

(6.2) ∇piq “

i´ 1

i´ 3

i´ 2

i

The restriction of δL : C Ñ C5 b C to ∇piq gives an embedding of ∇piq into

indCC5 L
5piq. This embedding is an isomorphism since we know indCC5 L

5piq has
the same dimension pi ` 1q as ∇piq thanks to Claim 1. The determinaton of the

subcomodule structure is straightforward using the definition of δpc
piq
i,jq for 0 ď j ď i.
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Claim 4: The injective C-comodule Ipiq has an exhaustive filtration 0 ă I0 ă I1 ă
¨ ¨ ¨ such that I0 – ∇piq and Ir{Ir´1 – ∇pi` 2r ´ 1q ‘∇pi` 2rq for r ě 1:

(6.3) Ipiq “

∇pi` 3q ∇pi` 4q

∇pi` 1q ∇pi` 2q

∇piq

This follows from Claims 1, 2 and 3.

Claim 5: The C-comodules tLpiq | i ě 0u give a full set of pairwise inequivalent
irreducibles. Moreover, Ipiq is the injective hull of Lpiq. By Claim 3, the last part
of Claim 2, and an adjunction argument, any irreducible C-comodule embeds into
∇piq for some i, hence, it is isomorphic to Lpiq. The comodule Ipiq is injective,
and it has irreducible socle Lpiq by another adjunction argument. Hence, it is the
injective hull of Lpiq.

Claim 6: The category R :“ comodfd-C is a lower finite highest weight category
with costandard objects ∇piq pi ě 0q. It also possesses a Chevalley duality. We
use the criterion from Corollary 3.61. From Claim 4, it follows that the largest
submodule of Ipiq that belongs to Rďi is ∇piq, which is finite-dimensional. This
shows that Rďi has enough injectives with the injective hull of Lpiq being ∇piq.
We also know already that r∇piq : Lpiqs “ 1, and the property pxI∇

asc
q follows from

Claim 4. Hence, R is a lower finite highest weight category. Finally, the Chevalley
duality is defined using the evident coalgebra antiautomorphism of C which maps

c
p`q
i,j ÞÑ c

p`q
j,i .

Claim 7: The indecomposable tilting comodule T piq is equal to Lpiq “ ∆piq “ ∇piq
if i “ 0, and there are non-split short exact sequences

0 Ñ ∆piq Ñ T piq Ñ ∆pi´ 1q Ñ 0, 0 Ñ ∇pi´ 1q Ñ T piq Ñ ∇piq Ñ 0

for i ą 0.
This is immediate in the case i “ 0. Now for i ą 0, let T piq be the non-split
extension of ∇pi ´ 1q by ∇piq that is the subcomodule of Ipi ´ 1q spanned by

the vectors tc
pi´1q
i´1,j , c

piq
i´1,k | 0 ď j ď i ´ 1, 0 ď k ď iu. Then one checks that this

submodule is self-dual. Since it has a ∇-flag it therefore also has a ∆-flag, so it
must be the desired tilting object by Theorem 4.2.

Claim 8: The Ringel dual category R1 is the category A-modlfd of locally finite-
dimensional left modules over the locally unital algebra A defined as the path algebra
of the following quiver:

A : 0

y0
((
1

x0

hh

y1
,,
2 ¨ ¨ ¨

x1

ii with relations yi`1yi “ xixi`1 “ xiyi “ 0.

We need to find an isomorphism of algebras

A
„
Ñ

´

à

i,jě0

HomCpT piq, T pjqq
¯op

.



6.2. AN EXPLICIT SEMI-INFINITE EXAMPLE 129

For this, we consider T piq pi “ 0, 1, 2, 3, . . . q with the ∇-flags:

(6.4) 0 x0
ÝÑ

y0
ÐÝ

0

1

0

x1
ÝÑ

y1
ÐÝ

1

0

2

0

1

x2
ÝÑ

y2
ÐÝ

2

0

1

3

1

0

2

y3
ÐÝ
x3
ÝÑ

¨ ¨ ¨

We will describe the images, also called ei, xi, yi, of the generators of A. We
send ei to the identity endomorphism of T piq, xi to the morphism T piq Ñ T pi` 1q
sending the quotient ∇piq of T piq to the subcomodule ∇piq of T pi`1q and yi to the
morphism T pi` 1q Ñ T piq sending the quotient ∆piq of T pi` 1q to the submodule
∆piq of T piq. The relations are easy to check (remembering the op, e.g., one must
verify that y2 ˝ x2 “ 0 ‰ x2 ˝ y2). Since the algebra A is very easy to understand,
one also sees that this homomorphism is injective, then it is an isomorphism by
dimension considerations.

Remark 6.1. The above analysis of comodfd-C relies ultimately on the obser-
vation that the coalgebra C has a triangular decomposition in a precise sense which
is the analog for coalgebras of Definition 5.31. There are also coalgebra analogs of
the other definitions from the previous chapter, which we intend to develop in more
detail in a sequel to this article. The coalgebra analog of Definition 5.1 is the notion
of a based quasi-hereditary coalgebra. The dual of such a coalgebra whose weight
poset is finitely generated and good in the sense of [MZ, Def. 3.9] is an ascending
quasi-hereditary pseudo-compact algebra as defined in [MZ, Def. 3.11].

One can argue in the opposite direction too, starting from the algebra A just
defined and computing its Ringel dual to recover the coalgebra C (in fact, this
is how we discovered the coalgebra C in the first place). Note for this that A
is an upper finite based quasi-hereditary algebra with the given basis. In fact, it
has an upper finite split triangular decomposition in the sense of Remark 5.32 with
A˝ “

À

iPN kei, A` “
À

iPNpkei‘kyiq and A´ “
À

iPNpkei‘kxiq. Hence, A-modlfd

is an upper finite highest weight category. Its standard and costandard modules
have the structure

∆1piq “
i
y

i` 1

, ∇1piq “
i` 1
x

i

.(6.5)

Using the characterization from Theorem 4.18(i), it follows that the indecomposable
tilting modules for A have a similar structure to T 1p0q, which is as follows (to get
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T 1piq in general one just has to add i to all of the labels):
(6.6)

T 1p0q “

5
xy

3
y x

1
y x

¨ ¨ ¨ 6 4 2 0
y

2
yx

4
yx

6
x

¨ ¨ ¨

1 3 5

This diagram demonstrates that T 1p0q has both an infinite ascending ∆-flag with
∆1p0q at the bottom and subquotients as indicated by the straight lines, and an
infinite descending ∇-flag with ∇1p0q at the top and subquotients indicated by the
wiggly lines; cf. Claim 4 above. Given the indecomposable tilting modules T 1piq
for A, one can now compute the coalgebra C arising from the tilting generator
T 1 :“

À

iě0 T
1piq according to the general recipe from Definition 4.26. We leave

this to the reader, but display below the homomorphisms f
p`q
i,j : T 1piq Ñ T 1pjq in

the endomorphism algebra B :“ EndApT
1qop which are dual to the basis elements

c
p`q
i,j of the coalgebra C “ Bˇ as above.

The map f
piq
i,i : T 1piq Ñ T 1piq is the identity endomorphism, and f

p`q
i,j : T 1piq Ñ

T 1pjq for ` ą maxpi, jq has irreducible image and coimage isomorphic to L1p`q, i.e.,
it sends the (unique) irreducible copy of L1p`q in the head of T 1piq to the irreducible

L1p`q in the socle of T 1pjq. The remaining maps f
piq
i,j , f

pjq
i,j : T 1piq Ñ T 1pjq for i ‰ j

are depicted below:

f
pjq
i,j

iıjp2q

:

j

¨ ¨ ¨ j ` 1 ¨ ¨ ¨

i` 1

i

i` 1 ¨ ¨ ¨

ÞÑ

¨ ¨ ¨ j ` 1

j j ` 2 ¨ ¨ ¨

j ` 1

f
pjq
i,j

i”jp2q

: j

j ` 1 ¨ ¨ ¨

i` 1

¨ ¨ ¨ i` 2 i

¨ ¨ ¨

ÞÑ

¨ ¨ ¨ j ` 1

j j ` 2 ¨ ¨ ¨

j ` 1

f
piq
i,j

iıjp2q

:

i` 1

¨ ¨ ¨ i` 2 i

i` 1 ¨ ¨ ¨

ÞÑ ¨ ¨ ¨ i` 1 ¨ ¨ ¨

i

¨ ¨ ¨ j ` 1

j

j ` 1

f
piq
i,j

i”jp2q

:

i` 1

¨ ¨ ¨ i` 2 i

i` 1 ¨ ¨ ¨

ÞÑ

¨ ¨ ¨ i` 1

i

¨ ¨ ¨ j ` 1

j

j ` 1 ¨ ¨ ¨
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Remark 6.2. The above example can be changed slightly to obtain an es-
sentially finite example with weight poset Λ :“ Z ordered by the opposite of the
natural ordering. To do this, let D be the essentially finite-dimensional locally
unital algebra defined as the path algebra of the following quiver:

D : ¨ ¨ ¨ ´1

y´1

))
0

y0
((

x´1

mm 1
x0

hh

y1
++
2 ¨ ¨ ¨

x1

hh with relations yi`1yi “ xixi`1 “ xiyi “ 0.

Like for A, this algebra has a triangular decomposition, so D-modfd is an essentially
finite highest weight category. Since the construction of tilting modules in the
essentially finite case from §4.5 involves passing to an upper finite truncation, the
indecomposable tilting module T p0q for D has the same structure as for A; see (6.6)
and is infinite-dimensional; thus D-modfd is not tilting-bounded. Note also that D
can be obtained from the general construction from Remark 5.33, starting from the
obvious triangular decomposition of the Z-graded algebra Ā “ kxx, y | x2 “ y2 “

0, xy “ 0y with x in degree 1 and y in degree ´1; cf. [BT, Ex. 5.12].

6.3. Category O for affine Lie algebras

Perhaps the first naturally-occurring examples of finite highest weight cate-
gories came from the blocks of the BGG category O for a semisimple Lie algebra.
This context also provides natural examples of finite fibered highest weight cate-
gories; see [Maz1] for a survey. To get examples of semi-infinite highest weight
categories, one can consider instead blocks of the category O for an affine Kac-
Moody Lie algebra. We briefly recall the setup referring to [Kac], [Car] for more
details.

Let
˝

g be a finite-dimensional semisimple Lie algebra over C and

g :“
˝

g bCCrt, t´1s ‘ Cc‘ Cd

be the corresponding affine Kac-Moody algebra. Fix also a Cartan subalgebra
˝

h

contained in a Borel subalgebra
˝

b of
˝

g. There are corresponding subalgebras h and
b of g, namely,

h :“
˝

h ‘Cc‘ Cd, b :“
´

˝

b bCCrts`
˝

g bCtCrts
¯

‘ Cc‘ Cd.

Let tαi | i P Iu Ă h˚ and thi | i P Iu Ă h be the simple roots and coroots of g
and p¨|¨q be the normalized invariant form on h˚, all as in [Kac, Ch. 7–8]. The
basic imaginary root δ P h˚ is the positive root corresponding to the canonical
central element c P h under p¨|¨q. The linear automorphisms of h˚ defined by
si : λ ÞÑ λ ´ λphiqαi generate the Weyl group W of g. Let ρ P h˚ be the element
satisfying ρphiq “ 1 for all i P I and ρpdq “ 0. Then define the shifted action of W
on h˚ by w ¨ λ “ wpλ` ρq ´ ρ for w PW , λ P h˚.

We define the level of λ P h˚ to be pλ ` ρqpcq P C. It is critical if it equals
the level of λ “ ´ρ, i.e., it is zero1. We usually restrict our attention to integral
weights λ, that is, weights λ P h˚ such that λphiq P Z for all i P I. The level of an
integral weight is either positive, negative or critical (“ zero). For any λ P h˚, we
define

(6.7) λ1 :“ ´λ´ 2ρ.

1Many authors define the level to be λpcq, in which case the critical level is ´ȟ, where ȟ is the
dual Coxeter number.
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Since w ¨ p´λ´ 2ρq “ ´w ¨ λ´ 2ρ, weights λ and µ are in the same orbit under the
shifted action of W if and only if so are λ1 and µ1. Note also that the level of λ is
positive (resp., critical) if and only if the level of λ1 is negative (resp., critical). A
crucial fact is that the orbit W ¨λ of an integral weight λ of positive level contains a
unique weight λmax such that λmax ` ρ is dominant; e.g., see [Kum, Ex. 13.1.E8a,
Prop. 1.4.2]. By [Kum, Cor. 1.3.22], this weight is maximal in its orbit with respect
to the usual dominance ordering ď on weights, i.e., µ ď λ if λ´µ P

À

iPI Nαi. If λ
is integral of negative level, we deduce from this discussion that its orbit contains
a unique minimal weight λmin.

For λ P h˚, let ∆pλq be the Verma module with highest weight λ and Lpλq
be its unique irreducible quotient. Although Verma modules need not be of finite
length, the composition multiplicities r∆pλq : Lpµqs are always finite. There is
also the dual Verma module ∇pλq which is the restricted dual ∆pλq# of ∆pλq, i.e.,
the sum of the duals of the weight spaces of ∆pλq with the g-action twisted by
the Chevalley antiautomorphism. All of the modules just introduced are objects
in the category O consisting of all g-modules M which are semisimple over h with
finite-dimensional weight spaces and such that the set of weights of M is contained
in the lower set generated by a finite subset of h˚; see [Kum, §2.1]. There is also a

larger category pO consisting of the g-modules M which are semisimple over h and
locally finite-dimensional over b.

Let „ be the equivalence relation on h˚ generated by λ „ µ if there exists a
positive root γ and n P Z such that 2pλ ` ρ|γq “ npγ|γq and λ ´ µ “ nγ. For a

„-equivalence class Λ, let OΛ (resp., pOΛ) be the full subcategory of O (resp., pO)

consisting of all M P O (resp., M P pO) such that rM : Lpλqs ‰ 0 ñ λ P Λ. In
view of the linkage principle from [KK, Th. 2], these subcategories may be called

the blocks of O and of pO, respectively. In particular, by [DGK, Th. 4.2], any
M P O decomposes uniquely as a direct sum M “

À

ΛPh˚{„MΛ with MΛ P OΛ.

Note though that O is not the coproduct of its blocks in the strict sense since it is
possible to find M P O such that MΛ is non-zero for infinitely many different Λ.

The situation is more satisfactory for pO: pO is the product of its blocks since by
[Soe, Th. 6.1] the functor

ź

ΛPh˚{„

pOΛ Ñ pO, pMΛqΛPh˚{„ ÞÑ
à

ΛPh˚{„

MΛ(6.8)

is an equivalence of categories. Note also that r∆pλq : Lpµqs ‰ 0 implies that the
level of λ equals that of µ, since the scalars by which c acts on Lpλq and Lpµq must
agree. Consequently, we can talk simply about the level of a block.

A general combinatorial description of the „-equivalence classses Λ can be
found for instance in [Fie3, Lem. 3.9]. For simplicity, we restrict ourselves from
now on to integral blocks. In non-critical levels, one gets exactly the W -orbits W ¨λ
of the integral weights of non-critical level. In critical level, one needs to incorporate
also the translates by Zδ. From this description, it follows that the poset pΛ,ďq
underlying an integral block OΛ is upper finite with unique maximal element λmax

if OΛ is of positive level, and lower finite with unique minimal element λmin if OΛ

is of negative level. In case of the critical level, the poset is neither upper finite nor
lower finite, but it is always interval finite.

Example 6.3. Here we give some explicit examples of posets which can occur
for g “ ŝl2, the Kac-Moody algebra for the Cartan matrix

`

2 ´2
´2 2

˘

. The labelling
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set for the principal block is W ¨ 0 “ tλk, µk | k ě 0u where λk :“ ´ 1
2kpk `

1qα0 ´
1
2kpk ´ 1qα1 and µk :“ ´ 1

2kpk ´ 1qα0 ´
1
2kpk ` 1qα1. This is a block of

positive level with maximal element λ0 “ µ0 “ 0. Applying the map (6.7), we
deduce that W ¨ p´2ρq “ tλ1k, µ

1
k | k ě 0u. This is the labelling set for a block

of negative level with minimal element λ10 “ µ10 “ ´2ρ. Finally, we have that
W ¨ pα0 ´ ρq \W ¨ pα1 ´ ρq “ tλ̄k, µ̄k | k P Zu where λ̄k :“ pk` 1qα0 ` kα1 ´ ρ and
µ̄k :“ kα0 ` pk` 1qα1 ´ ρ. This is the labelling set for a block of critical level, and
it is neither upper nor lower finite.s

0
s1 s0

λ̄2

δ
s1

µ̄2

δ
s0

µ13 λ13

µ1

s0

λ1

s1

λ̄1

δ
s1

µ̄1
s0

δ

λ12

s1

µ12

s0

λ2

s1

µ2

s0

, λ̄0

s1
δ

µ̄0

δ
s0

, µ11

s0

λ11

s1

.

µ3 λ3 λ̄´1 µ̄´1 ´2ρ
s1 s0

Positive level Critical level Negative level

Recall the definitions of upper finite and lower finite highest weight categories
from Definitions 3.34 and 3.50, respectively.

Theorem 6.4. Let OΛ be an integral block of O of non-critical level. Then it
is an upper finite or lower finite highest weight category according to whether the
level is positive or negative, respectively. In both cases, the standard and costandard
objects are the Verma modules ∆pλq and the dual Verma modules ∇pλq, respectively,
for λ P Λ. The partial order ď on Λ is the dominance order.

Proof. First, we prove the result for an integral block OΛ of positive level.
As explained above, the poset Λ is upper finite in this case. Let λmax be its unique
maximal weight.

Claim 1: In the positive level case, OΛ is the full subcategory of pOΛ consisting
of all modules M such that rM : Lpλqs ă 8 for all λ P Λ. To prove this, given
M P OΛ, it is obvious that all of its composition multiplicities are finite since M has
finite-dimensional weight spaces. Conversely, suppose that all of the composition

multiplicities of M P pOΛ are finite. All weights of M lie in the lower set generated
by λmax. Moreover, for λ ď λmax, the dimension of the λ-weight space of M is

dimMλ “
ÿ

µPΛ

rM : LpµqsdimLpµqλ.

Since the poset is upper finite, there are only finitely many µ P Λ such that the
λ-weight space Lpµqλ is non-zero, and these weight spaces are finite-dimensional,
so we deduce that dimMλ ă 8. This proves the claim.

Now we observe that the Verma module Mpλmaxq with maximal possible highest

weight is projective in pOΛ. From this and a standard argument involving translation
functors through walls (see e.g. [Nei]) and the combinatorics from [Fie1, §4] (see
also the introduction of [Fie2]), it follows that there are projective modules Pλ P
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pOΛ with (finite) ∆-flags as in the axiom (yP∆). Since each ∆pλq belongs to OΛ,
we actually have that Pλ P OΛ. All that is left to complete the proof of the
theorem in the positive level case is to show that OΛ is a Schurian category. Let

A :“
´

À

λ,µPΛ HomgpPλ, Pµq
¯op

. Since the multiplicities rPµ : Lpλqs are finite, A

is a locally finite-dimensional locally unital algebra. Using Lemma 2.4, we deduce

that pOΛ is equivalent to the category A-mod of all left A-modules. As explained
in the discussion after (2.22), A-modlfd is the full subcategory of A-mod consisting
of all modules with finite composition multiplicities. Combining this with Claim 1,

we deduce that the equivalence between pOΛ and A-mod restricts to an equivalence
between OΛ and A-modlfd. Hence, OΛ is a Schurian category.

We turn our attention to an integral block OΛ of negative level. We know here
already that the poset Λ is lower finite with a unique minimal element λmin.

Claim 2: In the negative level case, the category OΛ is the full subcategory of pOΛ

consisting of all modules of finite length. For this, it is obvious that any module in
pOΛ of finite length belongs to OΛ. Conversely, any object in OΛ is of finite length
thanks to the formula [Kum, 2.1.11(1)], taking λ therein to be λmin.

From Claim 2 and Lemma 2.1, it follows that R :“ OΛ is a locally finite Abelian
category. By [Fie1, Th. 2.7] the Serre subcategory R� of R associated to Λ� is a
finite highest weight category for each finite lower set Λ� of Λ. We deduce that R
is a lower finite highest weight category according to Definition 3.50. �

Let OΛ be an integral block of non-critical level. The following assertions about
projective and injective modules follow from Theorem 6.4 and the general theory
from §§2.1–2.3; see also [Soe, Rem. 6.5].

‚ In the positive level case, when OΛ is a Schurian category, pOΛ has enough
projectives and injectives. Moreover, the projective covers of the ir-
reducible modules are the modules tP pλq | λ P Λu constructed in the
proof of Theorem 6.4, and these belong to OΛ. Their restricted duals

Ipλq :“ P pλq# are the indecomposable injective modules in pOΛ, and also
belong to OΛ.

‚ The situation is completely different in the negative level case, as we

need to pass to pOΛ, the ind-completion of the finite Abelian category OΛ,

before we can talk about injective modules. In pOΛ, the irreducible module

Lpλq pλ P Λq has an injective hull Ipλq in pOΛ, which possesses a (possibly

infinite) ascending ∇-flag in the sense of Definition 3.52. However, pOΛ

usually does not have any projectives at all (although one could construct
such modules in the pro-completion of OΛ as done e.g. in [Fie2]).

The following results about tilting modules are consequences of the general theory
developed in §4.1 and §4.3. They already appeared in an equivalent form in [Soe].

‚ In the negative level case, tilting modules are objects in OΛ admitting
both a (finite) ∆-flag and a (finite) ∇-flag. The isomorphism classes of
indecomposable tilting modules in OΛ are parametrized by their highest
weights. They may also be constructed by applying translation functors
to the Verma module ∆pλminq.
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‚ In the positive level case, tilting modules are objects in OΛ which admit
both a (possibly infinite) ascending ∆-flag and a (possibly infinite) de-
scending ∇-flag in the sense of Definition 3.35. Again, the isomorphism
classes of indecomposable tilting modules are parametrized by their high-
est weights.

In both cases, our characterization of the indecomposable tilting module T pλq of
highest weight λ is slightly different from the one given in [Soe, Def. 6.3]. From
our definition, one sees immediately that T pλq# – T pλq.

Remark 6.5. In the literature dealing with positive level, it is common to pass
to a different category of modules, e.g., to the Whittaker category in [BY] or to
truncated versions of O in [SVV, §3], before contemplating tilting modules.

Our next result is concerned with the Ringel duality between integral blocks
of positive and negative level. This depends crucially on a special case of the
Arkhipov-Soergel equivalence from [Ark], [Soe]. Let S be Arkhipov’s semi-regular
bimodule, which is the bimodule Sγ of [Soe] with γ :“ 2ρ as in [Soe, Lem. 7.1]. For
λ P h˚, let T pλq be the indecomposable tilting module from [Soe, Def. 6.3] (which
is the same as in the previous paragraph for integral λ of positive or negative level).

Also let P pλq be a projective cover of Lpλq in pO whenever such an object exists; cf.
[Soe, Rem. 6.5(2)].

Theorem 6.6 (Arkhipov-Soergel equivalence). Tensoring with the semi-regular
bimodule defines an equivalence SbUpgq? : ∆pOq Ñ ∇pOq between the exact subcate-
gories of O consisting of objects with (finite) ∆- and ∇-flags, respectively. Moreover
the following holds (assuming for the second isomorphism P pλq exists):

S bUpgq ∆pλq – ∇pλ1q and S bUpgq P pλq – T pλ1q

Corollary 6.7. Assume that OΛ is an integral block of negative level. Let
O1Λ be the Ringel dual of OΛ relative to some choice of T “

À

iPI Ti as in Def-
inition 4.24, and let F be the Ringel duality functor from (4.14). Also let Λ1 :“
tλ1 | λ P Λu. Then there is an equivalence of categories E : O1Λ Ñ OΛ1 such that
E ˝ F : ∇pOΛq Ñ ∆pOΛ1q is a quasi-inverse to the Arkhipov-Soergel equivalence
SbUpgq? : ∆pOΛ1q Ñ ∇pOΛq.

Proof. Note to start with that OΛ1 is an integral block of positive level. More-
over, the map pΛ,ěq Ñ pΛ1,ďq, λ ÞÑ λ1 is an order isomorphism. Choose a quasi-
inverse D to SbUpgq? : ∆pOΛ1q Ñ ∇pOΛq, and set Pi :“ DTi. By Theorem 6.6(2),
pPiqiPI is a projective generating family for OΛ1 . Moreover, recalling that O1Λ is the
category A-modlfd where

A :“

˜

à

i,jPI

HomOΛ
pTi, Tjq

¸op

,

the functor D induces an isomorphism via which we can identify A with
˜

à

i,jPI

HomOΛ1
pPi, Pjq

¸op

.

As explained in the proof of Theorem 6.4, the functor

H :“
à

iPI

HomOΛ1
pPi, ?q : OΛ1 Ñ A-modlfd
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is an equivalence of categories. Moreover, we have that

H ˝D “
à

iPI

HomOΛ1
pPi, D?q –

à

iPI

HomOΛpS bUpgq Pi, ?q –
à

iPI

HomOΛpTi, ?q “ F.

Letting E be a quasi-inverse equivalence to H, it follows that E ˝ F – D. �

Remark 6.8. In the setup of Corollary 6.7, the Arkhipov-Soergel equivalence
extends to an equivalence SbUpgq? : ∆ascpOΛ1q Ñ ∇ascpOΛq, which is a quasi-
inverse to E ˝F : ∇ascpOΛq Ñ ∆ascpOΛ1q. These functors interchange the indecom-

posable injectives in pOΛ with the indecomposable tiltings in OΛ1 .

Finally we discuss the situation for an integral critical block OΛ. As we have
already explained, in this case the poset Λ is neither upper nor lower finite. In
fact, these blocks do not fit into the framework of this article at all, since the
Verma modules have infinite length and there are no projectives. One sees this

already for the Verma module ∆p´ρq for g “ psl2, which has composition factors
Lp´ρ ´mδq for m ě 0, each appearing with multiplicity equal to the number of
partitions of m; see e.g. [AF1, Th. 4.9(1)]. However, there is an autoequivalence

Σ :“ Lpδqb? : pOΛ Ñ pOΛ, which makes it possible to pass to the restricted category
pOres

Λ , which we define next.
Let An be the vector space of natural transformations Σn Ñ Id. This gives rise

to a graded algebra A :“
À

nPZAn. Then the restricted category pOres
Λ is the full

subcategory of pOΛ consisting of all modules which are annihilated by the induced
action of An for n ‰ 0; cf. [AF1, §4.3]. The irreducible modules in the restricted

category are the same as in pOΛ itself. There are also the restricted Verma modules

(6.9) ∆pλqres :“ ∆pλq

N

ÿ

ηPA‰0

im
`

η∆pλq : Σn∆pλq Ñ ∆pλq
˘

from [AF1, §4.4]. In other words, ∆pλqres is the largest quotient of ∆pλq that
belongs to the restricted category. Similarly, the restricted dual Verma module
∇pλqres is the largest submodule of ∇pλq that belongs to the restricted category.

The restricted category pOres
Λ is no longer indecomposable: by [AF2, Th. 5.1]

it decomposes further as

(6.10) pOres
Λ “

ź

ΛPΛ{W

pOres
Λ

where Λ{W denotes the orbits of W under the dot action. For instance, the poset Λ
for the critical level displayed in Example 6.3 splits into two orbits W ¨ pα0´ρq and
W ¨ pα1 ´ ρq (i.e., one removes the edges labelled by δ). In the most singular case,
pOres
´ρ is a product of simple blocks; in particular, ∆resp´ρq “ Lp´ρq “ ∇resp´ρq.

Conjecture 6.9 (Critical block conjecture). Let pOres
Λ

be a regular integral

critical block in the sense of [AF2]. Let Ores
Λ

:“ Fin
´

pOres
Λ

¯

be the full subcategory

consisting of all modules of finite length. Then Ores
Λ

is an essentially finite highest

weight category with standard and costandard objects ∆pλqres and ∇pλqres for λ P Λ.
Moreover, the indecomposable projective modules in Ores

Λ
are also its indecomposable

tilting modules, and therefore Ores
Λ

is tilting-bounded and Ringel self-dual.



6.4. RATIONAL REPRESENTATIONS 137

This conjecture is true for the basic example of a critical block from Example 6.3
thanks to [Fie3, Th. 6.6]; the same category arises as the principal block of category
O for gl1|1pCq discussed in §6.7 below. The conjecture is also consistent with the

so-called Feigin-Frenkel conjecture [AF1, Conj. 4.7], which says that composition
multiplicities of restricted Verma modules are related to the periodic Kazhdan-
Lusztig polynomials from [Lus] (and Jantzen’s generic decomposition patterns from
[Jan2]). These polynomials depend on the relative position of the given pair of
weights and, when not too close to walls, they vanish for weights that are far apart.
This is consistent with the conjectured existence of indecomposable projectives of
finite length in regular blocks of the restricted category.

Remark 6.10. It seems to us that the Feigin-Frenkel conjecture might have
an explanation in terms of a sequence of equivalences of categories similar to [FG,
(7)]. Ultimately this should connect Ores

Λ
with representations of the quantum

group analog of Jantzen’s thickened Frobenius kernel G1T . Assuming that ` (the
order of the root of unity) is odd and bigger than or equal to the Coxeter number,
the latter are known by [AJS, §17] to be essentially finite highest weight categories
controlled by the periodic Kazhdan-Lusztig polynomials. Also, in these categories,
tilting modules are projective, hence, the Ringel self-duality would be an obvious
consequence.

6.4. Rational representations

As we noted in Remark 3.62, the definition of lower finite highest weight cat-
egory originated in the work of Cline, Parshall and Scott [CPS1]. As well as the
BGG category O already mentioned, their work was motivated by the representa-
tion theory of a reductive algebra group G in positive characteristic, as developed
for example in [Jan1]: the symmetric tensor2 category ReppGq of finite-dimensional
rational representations of G is a lower finite highest weight category. Tilting mod-
ules for G were studied in [Don3], although our formulation of semi-infinite Ringel
duality from §4.4 is not mentioned explicitly there: Donkin instead took the ap-
proach pioneered in [Don2] of truncating to a finite lower set before taking Ringel
duals. In fact, now, there is monoidal structure in play and the story is even richer.

To give more details, we fix a maximal torus T contained in an opposite pair
of Borel subgroups B` and B´ of G. Then the weight poset Λ is the set X`pT q
of dominant characters of T with respect to B`. We denote the natural duality on
ReppGq by V ÞÑ V ˚ (with action defined via g ÞÑ g´1). The costandard objects
are the induced modules H0pλq :“ H0pG{B´,Lλq and the standard objects are the
Weyl modules V pλq :“ H0pG{B`,L˚λq˚. For the partial order ď, one can use the
usual dominance ordering on X`pT q, or the more refined Bruhat order of [Jan1,
§II.6.4]. This makes ReppGq into a lower finite highest weight category by [Jan1,
Prop. II.4.18] and [Jan1, Prop. II.6.13]. In fact, in the case of ReppGq, all of the
general results about ascending ∇-flags found in §3.5 were known already before
the time of [CPS1], e.g., they are discussed in Donkin’s book [Don1] (and called
there good filtrations).

Let T iltpGq be the full subcategory of ReppGq consisting of all tilting modules.
A key theorem in this setting is that tensor products of tilting modules are tilting;
this is the Donkin-Mathieu-Wang theorem [Don1], [Mat], [Wan]. Thus, T iltpGq

2Locally finite Abelian, monoidal, rigid, Endp1q “ k.
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is a symmetric pseudo-tensor3 category. Let pTiqiPI be a monoidal generator for
T iltpGq, i.e., each Ti is a tilting module and every indecomposable tilting module is
isomorphic to a summand of a tensor product Ti :“ Ti1b¨ ¨ ¨bTin for some n ě 0 and
i “ pi1, . . . , inq P I

n. Then define A to be the category with objects I :“
Ů

ně0 I
n

and morphisms defined from HomApj, iq :“ HomGpTi, Tjq, composition being in-
duced by the opposite of composition in ReppGq. The category A is naturally a
strict symmetric monoidal category, with the tensor product of objects being by
concatenation of sequences. The evident monoidal functor AÑ T iltpGqop extends
to the Karoubi envelope of A, and the resulting functor KarpAq Ñ T iltpGqop is a
symmetric monoidal equivalence.

Forgetting the monoidal structure, one can think instead in terms of the locally
finite-dimensional locally unital algebra A “

À

i,jPI eiAej that is the path algebra

of A in the sense of Remark 2.3. It becomes convenient to identify T “
À

iPI Ti
and Tf “

À

iPI T
˚
i with the tensor algebras

(6.11) T “ T pV q, Tf “ T pV ˚q where V :“
à

iPI

Ti.

Note that T is naturally a right A-module and Tf is a left A-module. Since T is a
tilting generator for ReppGq in the sense of Definition 4.24, A-modlfd is the Ringel
dual of ReppGq with respect to T . Theorem 4.25 implies that A-modlfd is an upper
finite highest weight category with poset pX`pT q,ěq. Moreover, by Corollary 4.29,
Tf is a tilting generator for A-modlfd with CoendApT

fq – krGs as coalgebras.
At this point, the monoidal structure on the category A comes back into the

picture since the A-module T comes from a faithful symmetric monoidal functor
(“fiber functor”) T : AÑ pVecfdqop. Consequently, by classical arguments of Tan-
naka duality, see e.g. [DM, §2] and [EGNO, §5.4], CoendApT

fq can be endowed
with the structure of a commutative Hopf algebra which reconstructs the coordi-
nate algebra of G. To explain this in more detail, we use the setup of (2.13), so
now we are identifying the coalgebra CoendApT

fq with

(6.12) C :“ T bA T
f “ T pV q bA T pV

˚q.

Then the algebra structure on C is induced by the natural multiplication on the
tensor product of algebras T pV q b T pV ˚q, that is,

(6.13) pv b uq ¨ pv1 b u1q :“ pv b v1q b pub u1q

for v, v1 P T pV q and u, u1 P T pV ˚q. If we pick a basis v
piq
1 , . . . , v

piq
dpiq for each Ti and

let u
piq
1 , . . . , u

piq
dpiq be the dual basis for T˚i , then the elements

(6.14)
 

cpiqr,s :“ vpiqs b upiqr
ˇ

ˇ i P I, 1 ď r, s ď dpiq
(

generate C as an algebra. The coalgebra structure satisfies

δpcpiqr,sq “

dpiq
ÿ

t“1

c
piq
r,t b c

piq
t,s, εpcpiqr,sq “ δr,s.(6.15)

Now the reconstruction theorem can be formulated as follows.

Theorem 6.11 (Tannakian reconstruction). The above construction makes the
coalgebra C “ CoendApT

fq into a commutative Hopf algebra. Moreover, it is iso-
morphic (as a Hopf algebra) to the coordinate algebra krGs via the unique algebra

3Additive Karoubian, monoidal, rigid, Endp1q “ k.
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homomorphism sending c
piq
r,s P C to the matrix coefficient function c̃

piq
r,s P krGs de-

fined by gv
piq
s “

řdpiq
r“1 c̃

piq
r,spgqv

piq
r for g P G.

Proof. For i “ pi1, . . . , inq P In and r “ pr1, . . . , rnq, s “ ps1, . . . , snq P Zn

with 1 ď rk, sk ď dpikq for each k, let c
piq
r,s :“ pv

pi1q
r1 b¨ ¨ ¨bv

pinq
rn qbpu

pi1q
r1 b¨ ¨ ¨bu

pinq
rn q P

C. These are the elements in the formula (4.17), and they span C. The coalgebra

isomorphism C
„
Ñ krGs from Corollary 4.29(i) sends c

piq
r,s P C to c̃

pi1q
r1,s1 ¨ ¨ ¨ c̃

pinq
rn,sn P

krGs. So to be an algebra isomorphism, we must have that c
piq
r,s “ c

pi1q
r1,s1 ¨ ¨ ¨ c

pinq
rn,sn ,

which is exactly the definition of multiplication given above. �

Theorem 6.11 recovers a classical result: it is a special case of [DM, Th. 2.11],
which implies that krGs is isomorphic to CoendpF q where F : ReppGq Ñ Vecfd
is the forgetful functor. To deduce Theorem 6.11 from this statement, one also
needs to observe that CoendpF q – CoendApT q; this holds because the algebraic
group G is isomorphic to its image in its representation on V “

À

iPI Ti by weight
considerations.

Remark 6.12. To get a full set of relations between the generators (6.14) of
C, one just needs to take the equations vxb u “ vb xu for x : iÑ j running over
a system of monoidal generators for A and all v P Ti, u P T

˚
j .

Remark 6.13. Theorem 5.10 can often be applied in this context to give A
(or some idempotent expansion of A) the structure of an upper finite (perhaps
symmetrically) based quasi-hereditary algebra.

The first example comes from G “ SL2. For this, we may take I :“ t|u

and let T| be the natural two-dimensional representation V of G with its standard
basis v1, v2; we also use u1, u2 to denote the dual basis of V ˚. The module V
is a monoidal generator for T iltpGq by weight considerations. Note also that V
possesses an invariant symplectic form such that pv1, v2q “ 1, hence, V – V ˚. The
object set I “ t|bn | n P Nu in the above setup may be identified with N. Hence,
T “

À

ně0 Tn is the tensor algebra T pV q “
À

ně0 T
npV q and Tf is T pV ˚q. As is

well known, the monoidal category A in this case is the Temperley-Lieb category
T Lp´2q; see e.g. [GW]. It is easy to verify that

C “ T pV q bA T pV
˚q – krc1,1, c1,2, c2,1, c2,2s{pdet´1q

where cr,s “ vsbur as above and det “ c1,1c2,2´ c2,1c1,2. Of course this is krSL2s.
This example becomes more interesting if we replace the Temperley-Lieb cat-

egory T Lp´2q with its q-analog T Lp´q ´ q´1q for q P kˆ. Recall that this is
generated as a strictly pivotal monoidal category by one object | and two mor-
phisms : 0 Ñ 2 and : 2 Ñ 0 subject to “ ´q ´ q´1. Assuming q has a

square root q1{2 P k, it is braided with braiding defined by

:“ q1{2 ` q´1{2 , “ q´1{2 ` q1{2 .(6.16)

As mentioned in Remark 5.4, the natural diagram basis makes the path algebra
A of A :“ T Lp´q ´ q´1q into an upper finite based quasi-hereditary algebra with
weight poset pN,ěq. Hence, A-modlfd is an upper finite highest weight category.

Next let V be a two-dimensional vector space with basis v1, v2 and p¨, ¨q :
V ˆ V Ñ k be the bilinear form with pv1, v2q “ 1, pv2, v1q “ ´q

´1 and pv1, v1q “
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pv2, v2q “ 0. A relation check shows that there is a monoidal functor T : A Ñ

pVecfdqop such that T p|q “ V and

T
` ˘

: V b V Ñ k, vi b vj ÞÑ pvi, vjq,(6.17)

T p q : kÑ V b V, 1 ÞÑ v2 b v1 ´ qv1 b v2.(6.18)

Equivalently, the tensor algebra T “ T pV q is a right A-module, and its dual Tf “
T pV ˚q is a left A-module. Then we define C as in (6.12). The coend construction
makes C into a cobraided Hopf algebra, hence, comodfd-C is a braided tensor
category. Now one can check directly using the homological criterion for ∇-flags
from Theorem 3.39 that Tf is a tilting generator for A-modlfd. Hence, comodfd-C
is the Ringel dual of the upper finite highest weight category A-modlfd, so it is a
lower finite highest weight category thanks to Theorem 4.27.

To obtain explicit generators and relations for C in our setup, let u1, u2 be
the basis for V ˚ dual to v1, v2. Then C is generated by as an algebra tcr,s :“
vs b ur | r, s “ 1, 2u, and the comultiplication and counit are defined by δpcr,sq “
cr,1 b c1,s ` cr,2 b c2,s, εpcr,sq “ δr,s. By Remark 6.12, the following equations give
a full set of relations for the algebra C:

`

vi b vj
˘

b 1 “ pvi b vjq b
`

1
˘

,

p1 q b pui b ujq “ 1b p ui b ujq .

To expand these, note that the left A-module Tf “ T pV ˚q comes from the monoidal
functor Tf : AÑ Vecfd defined by Tfp|q “ V ˚ and

Tf p q : V ˚ b V ˚ Ñ k, ui b uj ÞÑ pvj , viq
´1,(6.19)

Tf
` ˘

: kÑ V ˚ b V ˚, 1 ÞÑ u1 b u2 ´ q
´1u2 b u1.(6.20)

Using this, the relations become c1,ic2,j ´ q´1c2,ic1,j “ pvi, vjq and ci,2cj,1 ´
qci,1cj,2 “ pvj , viq

´1, hence, we get
ˆ

c2,2 ´qc1,2
´q´1c2,1 c1,1

˙ˆ

c1,1 c1,2
c2,1 c2,2

˙

“

ˆ

c1,1 c1,2
c2,1 c2,2

˙ˆ

c2,2 ´qc1,2
´q´1c2,1 c1,1

˙

“ I2.

So C is generated by c1,1, c1,2, c2,1, c2,2 subject to the relations needed to ensure

(6.21)

ˆ

c1,1 c1,2
c2,1 c2,2

˙´1

“

ˆ

c2,2 ´qc1,2
´q´1c2,1 c1,1

˙

.

Equivalently, C is generated by c1,1, c1,2, c2,1, c2,2 subject to the relations

ci,2ci,1 “ qci,1ci,2, c2,jc1,j “ qc1,jc2,j ,

c1,2c2,1 “ c2,1c1,2, c2,2c1,1 “ c1,1c2,2 ` pq ´ q
´1qc1,2c2,1,

and detq :“ c1,1c2,2 ´ q
´1c1,2c2,1 “ 1. Thus, we have reconstructed the well-known

quantized coordinate algebra kqrSL2s, and comodfd-C is the category of rational
representations of quantum SL2.

When at a root of unity over the ground field is C, the indecomposable pro-
jectives and injectives in the category of rational representations of quantum SL2

(or indeed the quantum group corresponding to a reductive group) are all finite-
dimensional, i.e., the category is essentially finite Abelian. Tiltings are also finite-
dimensional, indeed, the category is tilting-bounded in the sense of Definition 4.20.
The structure of the principal block can be worked out explicitly (e.g., see [AT,



6.5. TENSOR PRODUCT CATEGORIFICATIONS 141

Th. 3.12, Def. 3.3]): it is Morita equivalent to the locally unital algebra that is the
path algebra of the quiver

0

x0
((
1

y0

hh

x1
((
2

x2
++

y1

hh 3 ¨ ¨ ¨
y2

hh with relations xi`1xi “ yiyi`1 “ xiyi´yi`1xi`1 “ 0.

The appropriate partial order on the weight poset N is the natural order 0 ă 1 ă ¨ ¨ ¨ .
The indecomposable projectives have the following structure:

P p0q “

0
x

1
y

0

, P p1q “

1
y x

0
x

2
y

1

, P p2q “

2
y x

1
x

3
y

2

, P p3q “

3
y x

2
x

4
y

3

, . . .

The tilting objects are T p0q :“ Lp0q and T pnq :“ P pn´1q for n ě 1. From this, it is
easy to see that the Ringel dual is described by the same quiver with one additional
relation, namely, that y0x0 “ 0 (and of course the partial order is reversed).

6.5. Tensor product categorifications

Until quite recently, most of the naturally-occurring examples were highest
weight categories (like the ones described in the previous two sections). But the
work of Webster [Web1], [Web2] and Losev and Webster [LW] has brought to
prominence a very general source of examples that are fully stratified, but seldom
highest weight.

Fundamental amongst these new examples are the categorifications of tensor
products of irreducible highest weight modules of symmetrizable Kac-Moody Lie
algebras. Rather than attempting to repeat the definition of these here, we refer the
reader to [LW]. All of these examples are finite fully stratified categories possessing
a Chevalley duality. They are also tilting-rigid; the proof of this depends on an
argument involving translation/projective functors. Consequently, the Ringel dual
is again a finite fully stratified category that is tilting-rigid. In fact, the Ringel
dual category is always another tensor product categorification4 (reverse the order
of the tensor product). In the earlier article [Web2], Webster also wrote down
explicit finite-dimensional algebras which give realization of these categories. In
view of Theorem 5.25, all of Webster’s algebras admit bases making them into
symmetrically based stratified algebras, although these bases are usually hard to
construct explicitly.

In [Web1], Webster also introduced some more general tensor product cate-
gorifications, including ones which categorify the tensor product of an integrable
lowest weight module tensored with an integrable highest weight module. The lat-
ter are particularly important since they may be realized as generalized cyclotomic
quotients of the Kac-Moody 2-category. They are upper finite fully stratified cate-
gories. In type A, they can also be realized as generalized cyclotomic quotients of
the (degenerate or quantum) Heisenberg category; see [BSW, Th. B]. In the latter
realization, they should possess explicit triangular bases, generalizing the ones for
the cyclotomic quotients of central charge zero discussed in [GRS].

4This was noted in Remark 3.10 of the arxiv version of [LW] but the authors removed this remark
in the published version.
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6.6. Deligne categories

Another source of upper finite highest weight categories comes from various
Deligne categories. The definition of these categories is diagrammatic in nature.
For example, in characteristic zero, the Deligne category ReppGLδq is the Karoubi
envelope of the oriented Brauer category OBpδq. This case was studied in the
PhD thesis of Reynolds [Rey] based on the observation that it admits a symmetric
split triangular decomposition; see also [Bru] which treats the HOMFLY-PT skein
category at the same time. Rui and Song [RS] have analysed the Brauer category
and the Kauffman skein category by similar techniques. Similar ideas have been
developed independently by Sam and Snowden [SS], who also consider other types
of Deligne category.

The category of locally finite-dimensional representations of the Deligne cat-
egory ReppGLδq can also be interpreted as a special case of the lowest weight
tensored highest weight tensor product categorifications discussed in the previous
section; see the introduction of [Bru]. The Ringel dual in this example is equivalent
to the Abelian envelope RepabpGLδq of Deligne’s category constructed by Entova,
Hinich and Serganova [EHS], which is a monoidal lower finite highest weight cate-
gory. In [Ent], it is shown that RepabpGLδq categorifies a highest weight tensored
lowest weight representation, which is the dual result to the one from [Bru]. This
example will be discussed further in the sequel to this article, where we give an
explicit description of the blocks of RepabpGLδq via Khovanov’s arc coalgebra (an
interesting explicit example of a based quasi-hereditary coalgebra), thereby proving
a conjecture formulated in the introduction of [BS2].

These and the other classical families of Deligne categories ReppOδq, ReppP q
and ReppQq are being investigated actively along similar lines by several groups
of authors and there has been considerable recent progress; e.g., see [Cou4], [SS].
There are also many interesting connections here with rational representations of
the corresponding families of classical supergroups.

6.7. Representations of Lie superalgebras

Finally, we mention briefly an interesting source of essentially finite highest
weight categories: the analogs of the BGG category O for classical Lie superal-
gebras. A detailed account in the case of the Lie superalgebra glm|npCq can be

found in [BLW]. Its category O gives an essentially finite highest weight category
which is neither lower finite nor upper finite. Moreover, it is tilting-bounded as in
Definition 4.20, so that the Ringel dual category is also an essentially finite highest
weight category.

There is one very easy special case: the principal block of category O for gl1|1pCq
is equivalent to the category of finite-dimensional modules over the essentially finite-
dimensional locally unital algebra which is the path algebra of the following quiver:

¨ ¨ ¨ ´1

x´1

))
0

x0
++

y´1

mm 1 ¨ ¨ ¨
y0

hh with relations xi`1xi “ yiyi`1 “ xiyi ´ yi`1xi`1 “ 0,

see e.g. [BS1, p. 380]. This is very similar to the Uqpsl2q-example from §6.4,
but now the poset Z (ordered naturally) is neither lower nor upper finite. From
the category O perspective, this example is rather misleading since its projective,
injective and tilting objects coincide, hence, it is Ringel self-dual.
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One gets similar examples from ospm|2npCq, as discussed for example in [BW]

and [ES]. The simplest non-trivial case of osp3|2pCq produces the path algebra of

a D8 quiver (replacing than the A8 quiver above); see [ES, §II]. The “strange”
families pnpCq and qnpCq also exhibit similar structures. The former has not yet
been investigated systematically (although basic aspects of the finite-dimensional
finite-dimensional representations and category O were recently studied in [B+9]
and [CC], respectively). It is an interesting example of a naturally-occurring high-
est weight category which does not admit a Chevalley duality. For qnpCq, we refer
to [BD2] and the references therein. In fact, the integral blocks for qnpCq are
fibered highest weight categories; this observation is due to Frisk [Fri2].
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[LW] I. Losev and B. Webster, On uniqueness of tensor products of irreducible categorifica-
tions, Selecta Math. 21 (2015), 345–377.

[Lus] G. Lusztig, Hecke algebras and Jantzen’s generic decomposition patterns, Adv. Math.

37 (1980), 121–164.
[Mac] S. Mac Lane, Categories for the Working Mathematician, MR1712872 Reviewed Mac

Lane, Saunders Categories for the working mathematician. Second edition. Graduate
Texts in Mathematics, 5, Springer, 1998.

[Mad] D. Madsen, Quasi-hereditary algebras and the category of modules with standard filtra-
tion, São Paulo J. Math. Sci. 11 (2017), 68–80.

[MZ] F. Marko and A. Zubkov, Pseudocompact algebras and highest weight categories, Algebr.
Represent. Theor. 16 (2013), 689–728.

[Mat] O. Mathieu, Filtrations of G-modules, Ann. Sci. ENS 23 (1990), 625–644.



148 BIBLIOGRAPHY

[Maz1] V. Mazorchuk, Stratified algebras arising in Lie theory, in: “Representations of Finite

Dimensional Algebras and Related Topics in Lie Theory and Geometry”, pp. 245–260,

Fields Inst. Commun. 40, Amer. Math. Soc., Providence, RI, 2004.
[Maz2] , Koszul duality for stratified algebras II, J. Aust. Math. Soc. 89 (2010), 23—49.

[MO] V. Mazorchuk and S. Ovsienko, Finitistic dimension of properly stratified algebras, Adv.

Math. 186 (2004), 251–265.
[MP] V. Mazorchuk and A. Parker, On the relation between finitistic and good filtration

dimensions, Comm. Algebra 32 (2004), 1903–1916.

[MS] V. Mazorchuk and C. Stroppel, Categorification of (induced) cell modules and the rough
structure of generalised Verma modules, Adv. Math. 219 (2008), 1363–1426.

[Mit] B. Mitchell, Rings with several objects, Adv. Math. 8 (1972), 1–161.

[Nav] G. Navarro, Simple comodules and localization in coalgebras, in: “New techniques in
Hopf algebras and graded ring theory”, pp. 141–164, KVAB, Brussels, 2007.

[Nei] W. Neidhardt, Translation to and fro over Kac-Moody algebras, Pacific J. Math. 139
(1989), 107–153.
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