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Abstract

We develop axiomatics of highest weight categories and quasi-hereditary alge-
bras in order to incorporate two semi-infinite situations which are in Ringel duality
with each other; the underlying posets are either upper finite or lower finite. We
also consider various more general sorts of stratified categories. In the upper finite
cases, we give an alternative characterization of these categories in terms of based
quasi-hereditary algebras and based stratified algebras, which are certain locally
unital algebras possessing triangular bases.
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CHAPTER 1

Introduction

Highest weight categories were introduced by Cline, Parshall and Scott [CPS1]
in order to provide an axiomatic framework encompassing a number of important
examples which had previously arisen in representation theory. In the first part of
this article, we give a detailed exposition of two semi-infinite variants, which we call
lower finite and upper finite highest weight categories. Lower finite highest weight
categories were already included in the original work of Cline, Parshall and Scott,
although they did not use this language. Well-known examples include the category
Rep(G) of finite-dimensional rational representations of a (connected) reductive al-
gebraic group. On the other hand, the upper finite highest weight categories studied
here do not fit into the locally Artinian framework of [CPS1]. Nevertheless, there
are many examples of upper finite highest weight categories already in the litera-
ture, often of a diagrammatic nature, and an appropriate axiomatic framework was
sketched out by Elias and Losev in [ELos, §6.1.2]. There are plenty of subtleties,
so a full treatment seems desirable.

Then, in the next part, we extend Ringel duality to the semi-infinite setting:

lower finite Ringel duality upper finite
highest weight categories highest weight categories |-

Other approaches to “semi-infinite Ringel duality” exist in the literature, but these
typically require the existence of a Z-grading; e.g., see [Soe] (in a Lie algebra set-
ting) and also [Maz2]. We avoid this by working with finite-dimensional comodules
over a coalgebra in the lower finite case, and with locally finite-dimensional mod-
ules over a locally finite-dimensional locally unital algebra in the upper finite case.
Another approach to semi-infinite Ringel duality based around pseudo-compact
topological algebras was initiated by Marko and Zubkov [MZ]. However, their
theory requires some additional finiteness assumptions which are not satisfied in
important examples including all non-semisimple categories of the form Rep(G) for
a reductive group G; see Corollary 4.28, Remark 4.31 and Remark 4.23.

Finally, as an application of semi-infinite Ringel duality, we give an elementary
algebraic characterization of upper finite highest weight categories, showing that
any such category is equivalent to the category of locally finite-dimensional modules
over an upper finite based quasi-hereditary algebra. This is an algebraic formulation
of the notion of object-adapted cellular category from [ELau, Def. 2.1], and a
generalization of the based quasi-hereditary algebras of [KM, Def. 2.4]. As well as
Ringel duality, the proof of this characterization uses a construction from [AST] to
construct bases for endomorphism algebras of tilting objects. The observation that
the bases arising from [AST] are object-adapted cellular bases was made already
by Elias and several others, and appears in recent work of Andersen [And].

1



2 1. INTRODUCTION

Throughout the article, we systematically develop the entire theory in the more
general setting of what we call e-stratified categories. The idea of this definition
is due to A,goston7 Dlab and Lukdcs: in [ADL, Def. 1.3] one finds the notion of
a stratified algebra of type ¢; the category of finite-dimensional left modules over
such a finite-dimensional algebra is an example of a e-stratified category in our
sense. The various other generalizations of highest weight category that have been
considered in existing literature fit naturally into our e-stratified framework.

To explain the contents of the paper in more detail, we start by explaining our
precise setup in the finite-dimensional case, since even here it does not seem to have
appeared explicitly elsewhere in the literature. Consider a finite Abelian category,
that is, a category R equivalent to the category A-modgq of finite-dimensional left
A-modules for some finite-dimensional algebra A over an algebraically closed field
k. A stratification of R is a quintuple (B, L, p, A, <) consisting of a set B, a labelling
function L such that {L(b) | b e B} is a full set of pairwise inequivalent irreducible
objects of R, and a stratification function p: B — A for a poset (A, <).

Given a stratification, let P(b) (resp., I(b)) be a projective cover (resp., injective
hull) of L(b). For A € A, let Ry (resp., R<)) be the Serre subcategory of R
generated by the irreducibles L(b) for b € B with p(b) < A (resp., p(b) < ).
Define the stratum Ry to be the Serre quotient R<y/R <) with quotient functor
7% i Rex — Ra. For be By 1= p~1()), let Ly(b) := j*L(b). These give a full set
of pairwise inequivalent irreducible objects in R . Still for b € By, let P\(b) (resp.,
I, (b)) be a projective cover (resp., injective hull) of Ly (b) in Ry.

The functor j* has a left adjoint j{ and a right adjoint j3. We refer to these
as the standardization and costandardization functors, respectively, following the
language of [LW, §2]. Then we introduce the standard, proper standard, costandard
and proper costandard objects of R for A e A and be By:

(L1)  A(b) == G Pa(b), A(b) := j}La(b), V(b) := jaIa(b), V(b) := jrLa(b).

Equivalently, A(b) (resp., V(b)) is the largest quotient of P(b) (resp., the largest
subobject of I(b)) that belongs to R<y, and A(b) (resp., V(b)) is the largest quotient
of A(b) (resp., the largest subobject of V(b)) such that all composition factors apart
from its irreducible head (resp., its irreducible socle) belong to R <.

Fix a sign function ¢ : A — {£} and define the e-standard and e-costandard
objects

[ AW ie(p) - + T ite(pb) - +
12 am={ 35 FG D Vo= { TG Hy <L

By a A.-flag (resp., a V.-flag) of an object of R, we mean a (necessarily finite)
filtration whose sections are of the form A.(b) (resp., V(b)) for b € B. Then we
call R an e-stratified category if one of the following equivalent properties holds:

(PA.) For every b € B, the projective object P(b) has a A.-flag with sections
A (c) for ¢ € B with p(c) = p(b).
(IV.) For every b € B, the injective object I(b) has a V.-flag with sections V.(c)
for c € B with p(c) = p(b).
The fact that these two properties are indeed equivalent was established in [ADL,
Th. 2.2] (under slightly more restrictive hypotheses than here), extending the earlier
work of Dlab [Dlal]. We give a self-contained proof in Theorem 3.5; see also §6.1
for some elementary examples. An equivalent statement is as follows.
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THEOREM 1.1 (Dlab,...). Let R be a finite Abelian category equipped with a
stratification (B, L,p,A,<) and € : A — {£} be a sign function. Then R is e-
stratified if and only if R°P is (—e)-stratified.

If the stratification function p : B — A is a bijection, i.e., each stratum R has
a unique irreducible object (up to isomorphism), then we can use p to identify B
with A, and denote the various distinguished objects simply by L(A), P(\), Ac(A),
...for A € A instead of by L(b), P(b), Ac(b), ...for be B. When (PA.)—(IV,) hold
in this situation, we instead call R an e-highest weight category with weight poset
(A, <) and labelling function L. The notion of e-highest weight category generalizes
the original notion of highest weight category from [CPS1]: a (finite) highest weight
category in the sense of loc. cit. is an e-stratified category in which each stratum
R is actually simple, i.e., equivalent to Vecgq. This stronger assumption means not
only that p is a bijection but also that Ly()\) = Pyx(A\) = Ix()\), hence, A(\) = A())
and V()\) = V() for each A\ € A. Consequently, in highest weight categories, the
sign function ¢ plays no role and may be omitted entirely, and the above properties
simplify to the following:

(PA) Each P(A) has a A-flag with sections A(u) for p = A.
(IV) Each I(\) has a V-flag with sections V(u) for p = A.

In fact, in this context, the equivalence of (PA) and (I'V) was established already
in [CPS1]. Moreover, in loc. cit., it is shown that A-modgg is a highest weight
category if and only if A is a quasi-hereditary algebra.

The next important special cases arise when ¢ is the constant function + or —.
The idea of a +-stratified category originated in the work of Dlab [Dlal] already
mentioned, and in another work of Cline, Parshall and Scott [CPS2]. In partic-
ular, the “standardly stratified categories” of [CPS2, Def. 2.2.1] are +-stratified
categories.

Let R be a finite Abelian category equipped with a stratification (B, L, p, A, <).
We say that R is a fully stratified category if it is both a +-stratified category and
a —-stratified category; in that case, it is e-stratified for all choices of the sign
function € : A — {+}. Such categories arise as categories of modules over the
fully stratified algebras introduced in a remark after [ADL, Def. 1.3]. In fact,
these sorts of algebras and categories have appeared several times elsewhere in the
literature but under different names: they are called “weakly properly stratified” in
[Fril], “exactly properly stratified” in [CouZ], and “standardly stratified” in [LW].
The latter seems a particularly confusing choice since it clashes with the established
notion from [CPS2] but we completely agree with the sentiment of [LW, Rem. 2.2]:
fully stratified categories have a well-behaved structure theory. One reason for this
is that all of the standardization and costandardization functors in a fully stratified
category are exact. We note also that any e-stratified category with duality is
automatically fully stratified; see Corollary 3.21 for a precise statement.

We use the language fibered highest weight category in place of fully stratified
category when the stratification function p is a bijection. Equivalently, a fibered
highest weight category is a category which is e-highest weight for all choices of
the sign function €. Such categories arise as the categories of finite-dimensional
modules over the properly stratified algebras introduced in [Dla2]. It is perhaps
worth pointing out that any finite Abelian category can be given the structure of
a fully stratified category in a trivial way taking the poset A to be a singleton.
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Finite-dimensional algebra A | Finite Abelian category A-modgq
Quasi-hereditary algebra Highest weight category
e-Quasi-hereditary algebra e-Highest weight category
Properly stratified algebra Fibered highest weight category
e-Stratified algebra e-Stratified category

Stratified algebra Fully stratified category

TABLE 1.1. Dictionary between algebras and categories

Fibered highest weight categories are at the other extreme with A being as big as
possible.

Table 1.1 gives a dictionary between the various different types of finite Abelian
category R discussed so far and the language we adopt for the underlying finite-
dimensional algebras A such that R is equivalent to A-mod¢q. Some of this language
is non-standard; see Remark 3.8 for further discussion.

There are many classical examples of highest weight categories, including blocks
of the BGG category O for a semisimple Lie algebra, the classical Schur algebra
and Donkin’s generalized Schur algebras introduced in [Don2], and many more ex-
amples arising from categories of perverse sheaves with stratifications of geometric
origin [BBD]. Further examples of fully stratified categories and fibered highest
weight categories which are not highest weight arise in the context of categorifi-
cation. This includes the pioneering examples of categorified tensor products of
finite dimensional irreducible representations for the quantum group attached to
sl from [FKS] (in particular Remark 2.5 therein), and the categorified induced
cell modules for Hecke algebras from [MS, 6.5]. Building on these examples and the
subsequent work of Webster [Web1], [Web2], Losev and Webster [LW] formulated
the important axiomatic definition of a tensor product categorification. These are
fully stratified categories which have been used to give a categorical interpretation
of Lusztig’s construction of tensor product of based modules for a quantum group.

The device of incorporating the sign function ¢ into the definition of e-stratified
or e-highest weight category seems to be quite convenient as it streamlines many
of the subsequent definitions and proofs. It also leads to some interesting new
possibilities when it comes to the “tilting theory” which we discuss next.

Assume R is an e-stratified category as above. An e-tilting object is an object of
R which has both a A.-flag and a V.-flag. Isomorphism classes of indecomposable
e-tilting objects are parametrized in a canonical way by the set B; see Theorem 4.2.
The construction of these objects is a non-trivial generalization of Ringel’s classi-
cal construction via iterated extensions of standard objects: in general one takes
a mixture of extensions of standard objects on the top for positive strata and ex-
tensions of costandard objects on the bottom for negative strata. We denote the
indecomposable e-tilting objects by {T.(b) | b € B}.

Now let T be an e-tilting generator, i.e., an e-tilting object in which every T.(b)
appears at least once as a summand. If € = + or — (the constant functions) then
T is a tilting or cotilting module, respectively, for the underlying finite-dimensional
algebra in the general sense of tilting theory; for more general €, T is an example
of a Wakamatsu tilting module as defined in [Rei, §4.1]. The Ringel dual of R
relative to T' is the category R’ := B-modgg where B := Endg(T)°P (so that T
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is a right B-module). The isomorphism classes of irreducible objects in R’ are in
natural bijection with the isomorphism classes of indecomposable summands of T,
hence, they may be indexed by the same set B that labels the irreducibles in R.
We denote them by {L'(b) | b € B}. Let

F := Homgz(T,?): R - R/,
G := Cohomg (T,?) = Homz (?,7)* : R > R'.

These are the Ringel duality functors. The following theorem is well known for
highest weight categories (where it is due to Ringel [Rin] and Happel [Hap]) and for
+- and —-stratified categories (where it is developed in the framework of standardly
stratified algebras in [AHLU]). We prove it for general e-stratified categories in
Theorem 4.10.

THEOREM 1.2 (Ringel, Happel, ...). Let R’ be the Ringel dual of R relative to
an e-tilting generator T as above. Let —e : A — {£} be the negation of the original
sign function €.

(1) The quintuple (B, L', p,\,>) is a stratification of R' making it into a
(—e)-stratified category with weight poset (A, =), that is, the opposite of
the poset used for R. Moreover, each stratum R\ := RL,/RL, of R is
equivalent to the corresponding stratum Ry := R<x/R<x of R.

(2) The functor F defines an equivalence of categories between the category of
V.-filtered objects in R and the category of A_.-filtered objects in R'. It
sends e-tilting objects (resp., injective objects) in R to projective objects
(resp., (—e)-tilting objects) in R'.

(3) The functor G defines an equivalence of categories between the category of
Ac-filtered objects in R and the category of V _.-filtered objects in R'. It
sends e-tilting objects (resp., projective objects) in R to injective objects
(resp., (—e)-tilting objects) in R’.

(4) Assume that Ry is of finite global dimension for all strata A with e(A) = —
(resp., €(A) = +). Then the total derived functor RF : D*(R) — DY(R')
(resp., LG : D*(R) — D®(R')) is an equivalence between the bounded
derived categories.

In the setup of the theorem, let P be a projective generator for R. Then T" :=
GP is a (—¢)-tilting generator for R’ such that A := Endg (P)°? = Endg/ (T")°P.
Since R is equivalent to A-modgq, this shows that R is equivalent to the Ringel dual
(R’)" of R’ relative to T'. Thus, the original category R can be recovered from its
Ringel dual R’. This statement can be interpreted as a double centralizer property:
starting from R = A-modgg so that T is an (A, B)-bimodule, and taking the pro-
jective generator P to be the left regular A-module so that A =~ End4(P)°P, the
(B, A)-bimodule T" = GP is isomorphic to the dual T* of T. Now Theorem 1.2(3)
implies that A >~ End g (T*)°P.

We do not consider here derived equivalences in the case of infinite global di-
mension, but instead refer to [PS], where this and involved t-structures are treated
in detail by generalizing the classical theory of co(resolving) subcategories. This re-
quires the use of certain coderived and contraderived categories in place of ordinary
derived categories.
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Now we shift our attention to the semi-infinite case, which is really the main
topic of the article. Following [EGNOJ, a locally finite Abelian category is a cate-
gory that is equivalent to the category comodg-C' of finite-dimensional right comod-
ules over some coalgebra C. Let R be such a category. A lower finite stratification
of R is a quintuple (B, L, p, A, <) consisting of a set B, a function L labelling a
full set {L(b) | b € B} of pairwise inequivalent irreducible objects, a stratification
function p : B — A required now to have finite fibers By := p~!(\), and a lower
finite poset (A, <) (i.e., the intervals (—oo, ] are finite for all u € A). Fix also a
sign function € : A — {+}. For any lower set (i.e., ideal of the poset) A* in A, we
can consider the Serre subcategory R* of R generated by the objects {L(b)|be B'}
where BY := p~1(A'). The restriction of the stratification of R gives a stratification
(BY,L,p, A, <) of RY. We say that R is a lower finite e-stratified category if R*
is a finite Abelian category that is e-stratified in the earlier sense for every finite
lower set A of A; cf. Definition 3.50. By the same procedure one also obtains
definitions of lower finite e-highest weight, lower finite fully stratified, lower finite
fibered highest weight, and lower finite highest weight categories.

In a lower finite e-stratified category R, there are e-standard and e-costandard
objects A (b) and V.(b); they are the same as the e-standard and e-costandard
objects of the Serre subcategory R' defined from any finite lower set A' containing
p(b). As well as (finite) A.- and V.-flags, one can consider certain infinite V.-flags
in objects of the ind-competion Ind(R) (which is the category comod-C of all right
C-comodules in the case that R = comodg-C). We refer to these as ascending
Ve-flags; see Definition 3.52 for the precise formulation. Theorem 3.56 establishes
a homological criterion for an object to possess an ascending V.-flag similar to
the well-known criterion for good filtrations in rational representations of reductive
groups [Janl, Prop. 11.4.16]. From this, it follows that the injective hull I(b) of
L(b) in Ind(R) has an ascending V.-flag. Moreover, the multiplicity of V.(c) as a
section of such a flag satisfies

(L(b) : V() = [Ac(c) : L(B)],

generalizing BGG reciprocity. This leads to alternative “global” characterizations
of lower finite e-stratified and fully stratified categories; see Theorems 3.60 and
3.63. The latter involves an Ext*-vanishing condition which first appeared in work
of Dlab and Ringel [DR].

In a lower finite e-stratified category, there are also e-tilting objects. Isomor-
phism classes of the indecomposable ones are labelled by B just like in the finite
case. In fact, for b € B the corresponding indecomposable e-tilting object of R
is the same as the object T.(b) of the Serre subcategory R' defined from any fi-
nite lower set A' containing p(b). By an e-tilting generator for R, we now mean
an object T = @,.; T; € Ind(R) with a given decomposition as a direct sum of
e-tilting objects T; € R such that each T.(b) appears at least once as a summand of
T. Then the Ringel dual R’ of R relative to T is the category A-modjgq of locally
finite-dimensional left modules over the locally finite-dimensional locally unital al-
gebra

op
A= ( @ HomR(Ti,Tj)) ,
i,5€l
where the op denotes that multiplication in A is the opposite of composition in R;

see Definition 4.24. Saying that A is locally unital means that A = @i,je[ e;Ae;
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where {e; | i € I'} are the mutually orthogonal idempotents defined by the identity
endomorphisms of each T3, and locally finite-dimensional means that dime; Ae; < oo
for all i,j € I. A locally finite-dimensional module is an A-module V' = @,_; e;V
with dime;V < oo for each i. As e;Ae; = Homg (T5,T}) is finite-dimensional, each
left ideal Ae; is a locally finite-dimensional projective module.

This brings us to the notion of an upper finite e-stratified category, whose defini-
tion may be discovered by considering the nature of the categories R’ that can arise
as Ringel duals of lower finite e-stratified categories. We refer to Definition 3.34
for the intrinsic formulation; there are also upper finite counterparts of e-highest
weight, fully stratified, fibered highest weight and highest weight categories. Start-
ing from R that is a lower finite e-stratified category as above, the Ringel dual R’
comes equipped with an upper finite stratification (B, L', p, A, >) making it into an
upper finite (—¢)-stratified category; see Theorem 4.25 which extends parts (1) and
(2) of Theorem 1.2.

In general, in an upper finite e-stratified category, the underlying poset is re-
quired to be upper finite, i.e., all of the intervals [\, 00) are finite. There are
e-standard and e-costandard objects, but now these can have infinite length (al-
though composition multiplicities in such objects are finite). On the other hand,
the indecomposable projectives and injectives do still have finite A.-flags and V-
flags, exactly like in (PA.) and (IV.). Perhaps the most interesting feature is
that one can still make sense of e-tilting objects. These are objects possessing
certain infinite flags: both an ascending A.-flag and a descending V.-flag; see Def-
inition 3.35. This allows us to define the Ringel dual of an upper finite e-stratified
category relative to an e-tilting generator T': it is the category comodg-C' for the
coalgebra C' := Coendg (T) that is the continuous dual of the opposite endomor-
phism algebra B := Endg(T)°P; see Theorem 4.27 which extends parts (1) and
(3) of Theorem 1.2. This makes sense because B is a pseudo-compact topological
algebra; see Lemma 2.10.

Again there are double centralizer properties. For R’ arising as the Ringel dual
of a lower finite e-stratified category R relative to T' = @, T, the indecomposable
(—e)-tilting objects in R’ are the images of the indecomposable injective objects of
R under

F:= P Homg(T;,?) : R > R’
iel
and, given a (—¢)-tilting generator T” for R’, the Ringel dual (R’)" of R’ relative
to T" is equivalent to the original category R; see Corollary 4.29 and also §6.2 for
an explicit example. Similarly, for R’ arising as the Ringel dual of an upper finite
e-stratified category relative to T, the indecomposable (—¢)-tilting objects of R’ are
the images of the indecomposable projective objects of R under G := Cohomg (T, ?)
and, given a (—e¢)-tilting generator 7" = @,_,; T} for R’, the Ringel dual (R')" of
R’ relative to T” is equivalent to R; see Corollary 4.30.

In §5.1, we apply semi-infinite Ringel duality together with arguments from
[AST] to give an elementary algebraic characterization of upper finite highest
weight categories in terms of upper finite based quasi-hereditary algebras. In the
finite-dimensional setting, these are the based quasi-hereditary algebras defined by
Kleshchev and Muth in [KM], who proved that their definition of based quasi-
hereditary algebra is equivalent to the original definition of quasi-hereditary alge-
bra from [CPS1]; we have streamlined the definition a little further here. Our
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more general algebras are locally finite-dimensional locally unital algebras rather
than unital algebras. Viewing them instead as finite-dimensional categories, that
is, small k-linear categories with finite-dimensional morphism spaces, the defini-
tion translates into something equivalent to the notion of an object-adapted cellular
category which was introduced already by Elias and Lauda [ELau, Def. 2.1]. (In
turn, the Elias-Lauda definition evolved from work of Westbury [Wes], who ex-
tended the definition of cellular algebra due to Graham and Lehrer [GL] from
finite-dimensional algebras to finite-dimensional categories.)

We say that a fully stratified category is tilting-rigid if there is a bijection
v : B — B such that T, (b) = T_(v(b)) for all b € B; see Definition 4.36. In the
finite case, R is tilting-rigid if and only if it is Gorenstein with strata that are
quasi-Frobenius (then v encodes their Nakayama permutations); see Theorem 4.39
which generalizes [CM, Th. 2.2]. The situation is even better if in addition all of
the strata are symmetric, since in that case the tilting objects T, (b) are isomorphic
for all choices of the sign function e so that they may all be denoted by T'(b). Most
of the naturally-occurring examples of fully stratified categories are tilting-rigid
with symmetric strata, including the tensor product categorifications from [LW]
mentioned earlier. For us, the key point about the tilting-rigid hypothesis is that
the Ringel dual of a tilting-rigid fully stratified category is again a tilting-rigid fully
stratified category; see Theorem 4.42. This is important in §5.3, when we intro-
duce notions of based stratified algebras and based properly stratified algebras; see
Definitions 5.20 and 5.21. These have a similar flavor to the fibered object-adapted
cellular categories of [ELau, Def. 2.17]. We show that the category of locally
finite-dimensional modules over an upper finite based stratified algebra (resp., up-
per finite based properly stratified algebra) is an upper finite fully stratified (resp.,
fibered highest weight) category, and conversely any such category which is also
tilting-rigid with symmetric strata can be realized in this way.

The definition of an upper finite based stratified algebra A involves certain
basic finite-dimensional algebras Ay (A € A) which provide explicit realizations of
the strata. Their direct sum @,., Ax is a locally unital algebra which plays the
role of “Cartan subalgebra”, although in general it is not a subalgebra of A. The
assumption that the algebras A are basic can in fact be dropped entirely. On doing
that one obtains a weaker notion which we call an algebra with a triangular basis;
see Definition 5.26. Our understanding of this definition was influenced by the
recent preprint [GRS] in which the authors introduce the closely-related notion of
an algebra with a weak triangular decomposition; up to a choice of basis, this is the
same as an algebra with a triangular basis in our sense in which all distinguished
idempotents are special. It is still the case that the category of locally finite-
dimensional modules over such an algebra is an upper finite fully stratified category,
just like for based stratified algebras. This observation is due to Gao, Rui and Song
[GRS, Th. 3.5]; we give a slightly different proof in Theorem 5.28. Gao, Rui and
Song also discuss some interesting examples arising from cyclotomic quotients of
the affine Brauer and oriented Brauer categories and their g-analogs.

For many of the naturally occurring algebras A with a triangular basis, the up-
per and lower halves of the basis span a pair of opposite Borel subalgebras A’ and A?;
this includes all of the level one cyclotomic quotients from [GRS] but not the ones
of higher level. In Definition 5.31, we formalize this idea with the final notion of
an algebra with a triangular decomposition. The first author came upon essentially
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+highest weight strata (3.67)

Upper finite highest -7 T Upper finite fully
weight categories stratified categories
K T
\\+quasi»hereditary Cartan (5.29) \\
AN (5.28) \

1

“~<_ [ Algebras with an upper |
finite triangular basis

i
+tilting-
(5.11) (5.9) .- =~ < (5.23) Ligid (5.25)
- AN 1
7 N 1
7 +basic semisimple f \ +basic Cartan /
s, Cartan ! \ \ /
/ | | \ i
! I | \ /
v | | EVANNEVE
Upper finite based ‘\ | L opposite Upper finite based
quasi-hereditary algebras | TB-free (5:34), I Borels stratified algebras
N \\ !
N N \ /
+semisimple N (5.35)

Cartan (5.36)  ~ . _ | Algebras with an upper finite
triangular decomposition

TABLE 1.2. Upper finite algebras and categories

this definition originally from considerations involving the oriented Brauer category
and its g-analog; see [Rey], [Bru] and also [RS], which applies a similar approach
in the context of the Brauer category. A closely related notion of triangular category
was developed independently by Sam and Snowden [SS] in order to study these and
other examples; see also [CouZ]. In the presence of a triangular decomposition, the
“Cartan subalgebra” @, , A\ may be identified with A° := A’ A A% so that now it
is actually a subalgebra of A, and the standardardization/costandardization func-
tors can be realized as parabolic induction/coinduction functors. In Theorem 5.35,
we explain a general construction to make any algebra with a triangular decom-
position into a based stratified algebra. If A° is semisimple, as is the case for the
examples arising from the (oriented) Brauer category in characteristic zero but not
in positive characteristic, this produces a based quasi-hereditary algebra. There
are other advantages to having a triangular decomposition rather than merely a
triangular basis, e.g., see [SS] where triangular decompositions are used to show
that many of the motivating examples are Noetherian.

Table 1.2 summarizes some of the connections established between these vari-
ous types of algebras and their module categories. In the main body of the text,
we also discuss a parallel situation involving essentially finite rather than upper
finite algebras and categories. For example, the finite-dimensional graded algebras
with a triangular decomposition studied in [HN], [BT] fit naturally into our more
general framework of algebras with an essentially finite triangular decomposition;
see Remark 5.33.

As we have already mentioned, the category R := Rep(G) for a reductive group
G is the archetypical example of a lower finite highest weight category. Its Ringel
dual R’ is an upper finite highest weight category. This case has been studied in
particular by Donkin (e.g., see [Don2], [Don3]), but Donkin’s approach involves
truncating to a finite-dimensional algebra from the outset. The double centralizer
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property allowing R to be reconstructed from R’ in this case can be interpreted as a
shadow of the Tannakian formalism; see Theorem 6.11. Other important examples
of semi-infinite Ringel duality come from blocks of category O over an affine Lie
algebra: in negative levels one obtains lower finite highest weight categories, while
positive levels produce the upper finite ones which are their Ringel duals. These
and several other prominent examples are outlined in §§6.3-6.7.

We would finally like to remark that our semi-infinite versions of highest weight
categories should not be confused with the affine highest weight categories of [Kle],
and our based quasi-hereditary algebras are not affine quasi-hereditary algebras
in the sense of [Kle]. The latter are special examples of affine cellular algebras
introduced in [Xi], [KX]. They are not covered by out setup since we require that
strata can be realized by finite-dimensional algebras over an algebraically closed
field. To incorporate them, one would need to develop the theory here over more
general commutative ground rings as suggested in Remark 5.7.



CHAPTER 2

Some finiteness properties on Abelian categories

We fix an algebraically closed field k. All algebras, categories, functors, etc.
will be assumed to be linear over k. We write ® for ®,. The naive terms direct limit
and inverse limit will be used for small filtered colimits and limits, respectively. We
begin by introducing some language for Abelian categories with various finiteness
properties; see Table 2.1.

2.1. Finite and locally finite Abelian categories

According to [EGNO, Def. 1.8.5], a finite Abelian category is a category that is
equivalent to the category A-modgq of finite-dimensional (left) modules over some
finite-dimensional algebra A. We refer to a choice for the algebra A here as an
algebra realization of R. Note that the opposite category is also a finite Abelian
category as it is equivalent to the category A°P-mod¢g = modgg-A due to the exis-
tence of the contravariant equivalence

(21) ?* : A—modfd — HlOdfd—A

taking a finite-dimensional left A-module to the linear dual viewed as a right A-
module in the natural way.

A finite Abelian category can also be characterized as a category which is
equivalent to the category comodgg-C' of finite-dimensional (right) comodules over
some finite-dimensional coalgebra C. To explain this in more detail, recall that the
dual A := C* of a finite-dimensional coalgebra C' has a natural algebra structure
with multiplication AQ A — A that is the dual of the comultiplication C — C® C;

[ Finite Abelian categories ]

(2.21)

Essentially finite (2:21)
Abelian categories
(2.20) (2.2\27\\
Locally finite "~~~y Schurian
Abelian categories categories

TABLE 2.1. Finiteness properties
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for this, one needs to use the canonical isomorphism
(2.2) C*RC* > (C®C)", fRgr (vew— f(v)g(w))

to identify C* @ C* with (C®C)*. Then any right C-comodule can be viewed as a
left A-module with action defined from av := " | a(c¢;)v; assuming here that the
structure map n: V — V®C sends v — >, | v; ® ¢;. Conversely, the C-comodule
structure on V' can be recovered uniquely from the action of A. Thus, the categories
comodgq-C and A-modgy are isomorphic.

A locally finite Abelian category is a category R that is equivalent to comodgy-C
for a (not necessarily finite-dimensional) coalgebra C'. We refer to a choice of C as a
coalgebra realization of R. The following result of Takeuchi gives an intrinsic char-
acterization of locally finite Abelian categories; see [Tak] and [EGNO, Th. 1.9.15].
It is a version of [Gab, Th. IV.4] adapted to our situation. Note Takeuchi’s orig-
inal paper uses the language “locally finite Abelian” slightly differently (following
[Gab]) but his formulation of the result is equivalent to the one here (which follows
[EGNO, Def. 1.8.1]). In loc. cit. it is shown moreover that C' can be chosen so
that it is pointed, i.e., all of its irreducible comodules are one-dimensional; in that
case, C' is unique up to isomorphism.

LEMMA 2.1. An essentially small category R is a locally finite Abelian category
if and only if it is Abelian, all of its objects are of finite length, and all of its
morphism spaces are finite-dimensional.

In view of Lemma 2.1, one could also define a locally finite Abelian category to
be a category that is equivalent to A-modgq for a (not necessarily finite-dimensional)
unital algebra A, but we prefer to work in terms of comodules since this language
facilitates the passage to the ind-completion. To explain this in more detail, consider
the locally finite Abelian category

R = comody-C.

Fix a full set of pairwise inequivalent irreducible objects {L(b) | b € B} in R. By
Schur’s Lemma, we have that Endg(L(b)) = k for each b € B. Note that the
opposite category R°P is again a locally finite Abelian category, and a coalgebra
realization for it is given by the opposite coalgebra C°°P. This follows because there
is a contravariant equivalence

(2.3) 7% . comodiq-C — C-comodgy

sending a finite-dimensional right comodule to the dual vector space viewed as a
left comodule in the natural way: if v1,...,v, is a basis for V, with dual basis
fis--., fn for V¥, and the structure map V — V ® C sends v; — >\ v ® ¢;
then the dual’s structure map V* — C ® V* sends f; — X, ;¢ ; ® fj. Since
we have that C-comodyy =~ comodig-C°°P, we deduce that R°P is equivalent to
comod¢g-C°P.

In general, R need not have enough injectives or projectives. To get injectives,
we pass to the ind-completion Ind(R); see e.g. [KS, §6.1]. For V,W € Ind(R),
we write Extz (V, W), or sometimes Ext¢,(V, W), for Extf, ) (V, W); it may be
computed via an injective resolution of W in the ind-completion. This convention
is unambiguous due to [KS, Th. 15.3.1]; see also [Cou3, Th. 2.2.1]. One can also
consider the right derived functors R™F of a left exact functor F : Ind(R) — R’ to
an Abelian category R’'.
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Let comod-C be the category of all right C-comodules. Every comodule is the
union (hence, the direct limit) of its finite-dimensional subcomodules. Moreover, a
comodule V' is compact, i.e., the functor Home(V,?) commutes with direct limits,
if and only if it is finite-dimensional. Using this, [KS, Cor. 6.3.5] implies that the
canonical functor Ind(R) — comod-C' is an equivalence of categories. This means
that one can work with comod-C' in place of Ind(R), as we do in the next few
paragraphs.

The category comod-C' is a Grothendieck category: it is Abelian, it possesses all
small coproducts, direct colimits of monomorphisms are monomorphisms, and there
is a generator. A generating family may be obtained by choosing representatives
for the isomorphism classes of finite-dimensional C-comodules. By the general
theory of Grothendieck categories, every C-comodule has an injective hull. We use
the notation I(b) to denote an injective hull of L(b). The right regular comodule
decomposes as

(2.4) C =@ I(b)®dimL®),

beB
By Baer’s criterion for Grothendieck categories (e.g., see [KS, Prop. 8.4.7]), ar-
bitrary direct sums of injectives are injective. It follows that an injective hull of
V € comod-C comes from an injective hull of its socle: if soc V' = @, g L(bs) then
@,es 1(bs) is an injective hull of V.

In any Abelian category, we write [V : L] for the composition multiplicity of an
irreducible object L in an object V. By definition, this is the supremum of sizes of
the sets {i = 1,...,n|V;/V;_1 = L} over all finite filtrations 0 = V) <V} < --- <
V,, = V; possibly, [V : L] = o0. Composition multiplicity is additive on short exact
sequences. For any right C-comodule V', we have by Schur’s Lemma that

(2.5) [V : L(b)] = dimHom¢(V, I(b)).

When C is infinite-dimensional, the map (2.2) is not an isomorphism, but one
can still use it to make the dual vector space B := C* into a unital algebra.
Since C is the union of its finite-dimensional subcoalgebras, the algebra B is the
inverse limit of its finite-dimensional quotients, i.e., the canonical homomorphism
B — lim(B/J) is an isomorphism where the limit is over all two-sided ideals .J of
B of finite codimension. These two-sided ideals J form a base of neighborhoods of
0 making B into a pseudo-compact topological algebra; see [Gab, Ch. IV] or [Sim,
Def. 2.4]. We refer to the topology on B defined in this way as the profinite topology.
The coalgebra C' can be recovered from B as the continuous dual

(2.6)
B* := { feDB* | f vanishes on some two-sided ideal J of finite codimension} .

It has a natural coalgebra structure dual to the algebra structure on B. This is
discussed further in [Sim, §3]; see also [EGNO, §1.12] where B* is called the finite
dual. We note that any left ideal I of B of finite codimension contains a two-sided
ideal J of finite codimension, namely, J := Annpg(B/I). So, in the definition (2.6)
of continuous dual, “two-sided ideal J of finite codimension” can be replaced by
“left ideal I of finite codimension”. Similarly for right ideals.

Any right C-comodule V is naturally a left B-module by the same construction
as in the finite-dimensional case. We deduce that the category comod-C of all right
C-comodules is isomorphic to the full subcategory B-modgs of B-mod consisting
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of all discrete left B-modules, that is, all B-modules which are the unions of their
finite-dimensional submodules. In particular, comods-C and B-modgy are identi-
fied under this construction. This means that any locally finite Abelian category
may be realized as the category of finite-dimensional modules over an algebra which
is pseudo-compact with respect to the profinite topology; see also [Sim, §3].

The definition of the left C-comodule structure on the linear dual V* of a right
C-comodule V in (2.3) required V to be finite-dimensional in order for it to make
sense. If V' is an infinite-dimensional right C-comodule, it can be viewed equiva-
lently as a discrete left module over the dual algebra B := C*. Then its dual V*
is a pseudo-compact right B-module, that is, a B-module isomorphic to the inverse
limit of its finite-dimensional quotients. Viewing pseudo-compact modules as topo-
logical B-modules with respect to the profinite topology (i.e., submodules of finite
codimension form a basis of neighborhoods of 0), we obtain the category mod.-B
of all pseudo-compact right B-modules and continuous B-module homomorphisms.
The functor (2.3) extends to

(2.7) ?* : B-modgs — modpc-B.
This is a contravariant equivalence with quasi-inverse given by the functor
(2.8) 7% : modpe-B — B-modgs

taking V € modc-B to its continuous dual
V* .= { fev* | f vanishes on some submodule of V' of finite codimension} .

We are using subtlely different notation here (?* vs. ?*), but confusion seldom
arises due to context.
We record one more basic lemma about comodules over a coalgebra.

LEMMA 2.2. Suppose that C is a coalgebra and B := C* is its dual algebra.
For any right C-comodule V', composing with the counit € : C — k defines an
isomorphism of left B-modules ay : Home(V,C) = V*. When V = C, the right
regular comodule, this map gives an algebra isomorphism Endo(C)°P ~ B.

PROOF. Let n : V. — V ® C be the comodule structure map. To show that
ay is an isomorphism, one checks that the map By : V* — Home(V,C), f —
(f®id) o n is its two-sided inverse; cf. [Sim, Lem. 4.9]. It remains to show that
ac : Ende(C)° 5 B is an algebra homomorphism: for f, g € B we have that

ac(Ba(g) o Bo(f)) = €0 (9®id) ono (f®id) on
= (9®id) o (id®e) oo (f®id) o = go (f@id) on = fg.
O

2.2. Locally unital algebras

We are going to work with certain Abelian categories which are not locally
finite, but which nevertheless have some well-behaved finiteness properties. We
will define these in the next section. First we must review some basic notions
about locally unital algebras. These ideas originate in the work of Mitchell [Mit].

A locally unital algebra is an associative (but not necessarily unital) algebra A
equipped with a distinguished system {e;|i € I'} of mutually orthogonal idempotents

such that
A= @ eiAej.

ijel
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We say A is locally finite-dimensional if each subspace e; Ae; is finite-dimensional.

A locally unital homomorphism (resp., isomorphism) between two locally uni-
tal algebras A and B is an algebra homomorphism (resp., isomorphism) which
takes distinguished idempotents to distinguished idempotents. We say that A is
an idempotent contraction of B, or B is an idempotent expansion of A, if there is
an algebra isomorphism A = B sending each distinguished idempotent in A to a
sum of distinguished idempotents in B. Usually when we use this language it will
be the case that B = A and the isomorphism A — B is the identity function; then
A = @D, jcj€iAé; is an idempotent expansion of A = P, ;.;e;Ae; if each of the
idempotents e; (i € I) is a finite sum of the idempotents é; (j € I).

For a locally unital algebra A, an A-module means a left module V' as usual

such that V = @,_;e;V. A vector v € V is homogeneous if v € e;V for some i € I.
A module V is

e locally finite-dimensional if dime;V < oo for all ¢ € I

e finitely generated if V.= Avy + - - - + Av, for vectors vy,...,v, € V (which
may be assumed to be homogeneous) or, equivalently, it is a quotient of the
finitely generated projective A-module Ae;, @ --- @ Ae;,, for iq,...,i, €
and n € N;

e finitely presented if there is an exact sequence

i,5€l

el

A€j1®~--@A€jm—>A€i1@~'~@A€in—>V—>O

for 41,...,%n,J1,--.,Jm € I and m,n e N.

Let A-mod (resp., A-modiq, resp., A-modg,, resp., A-mody,) be the category of all
A-modules (resp., the locally finite-dimensional ones, resp., the finitely generated
ones, resp., the finitely presented ones). Similarly, we define the categories mod-A,
modigg-A, modge-A and modg,-A of right modules.

REMARK 2.3. Any locally unital algebra A = (—Bme[ e;Ae; can be viewed as
a category with object set I and Hom 4(j,%) = e;Ae;, with the idempotent e; € A
corresponding to the identity endomorphism 1; € End 4(¢). Conversely, any small
category A (k-linear, of course) gives rise to a corresponding locally unital algebra A
which we call the path algebra of A. In these terms, locally finite-dimensional locally
unital algebras correspond to finite-dimensional categories, that is, small categories
all of whose morphism spaces are finite-dimensional. The notion of idempotent
expansion of the algebra A becomes the notion of thickening of the category A,
which is a sort of “partial Karoubi envelope”. Also, a left A-module (resp., a
locally finite-dimensional left A-module) is the same as a k-linear functor from A
to the category Vec (resp., Vectq) of vector spaces (resp., finite-dimensional vector
spaces); right A-modules are functors to Vec®P.

LEMMA 2.4. An essentially small category R is equivalent to A-mod for some
locally unital algebra A if and only if R is Abelian, it possesses all small coproducts,
and it has a projective generating family, i.e., there is a family (P;)ier of compact
projective objects such that V # 0 = Homg (P;, V) # 0 for some i€ I.

ProOF. This is similar to [Fre, Ex. 5.F]. One shows that R is equivalent to
A-mod for the locally unital algebra A = @), jel e;Ae; defined by setting e; Ae; :=
Homg (P;, P;) with multiplication that is the opposite of composition in R. The

canonical equivalence R — A-mod is given by the functor @, ; Homg (F;,?). O
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LEMMA 2.5. Let A be a locally unital algebra. An A-module V is compact if and
only if it is finitely presented. Also, for projective modules, the notions of finitely
presented and finitely generated coincide.

PROOF. This is well known for modules over a ring, and the usual proof in that
setting carries over almost unchanged to the locally unital case. O

LEMMA 2.6. Let A be a locally unital algebra. Any A-module is isomorphic to
a direct limit of finitely presented A-modules.

PRrROOF. As any A-module is the union of its finitely generated submodules, it
suffices to show that any finitely generated A-module V is isomorphic to a direct
limit of finitely presented modules. But then V is a quotient of P = Ae;, ®- - -®Ae;,
by a submodule. This submodule is the union of its finitely generated submodules
W, so we have that V' =~ P/lim W = lim P/W. This is a direct limit of finitely
presented modules. O

The following lemma is fundamental. It is the analog of “adjointness of tensor
and hom” in the locally unital setting; see e.g. [BD1, §2.1] for a fuller discussion.

LEMMA 2.7. Let A = @D, jcreidej and B = @, ;o; fiBf; be locally unital
algebras, and let M = @,y ;o y €M f; be an (A, B)-bimodule.

(1) Functor M®g? : B-mod — A-mod is left adjoint to @ ;. ; Homa (M f;,7).
(2) Functor 7®a M : mod-A — mod-B is left adjoint to @,.; Homp(e;M,?).

el
For any locally unital algebra A, there is a contravariant equivalence
(2.9) ?® : A—modlfd — modlfd—A

sending a left module V to V® := @,_;(e;V)*, viewed as a right module in the
obvious way. The analogous functor ?® : modyqq-A — A-modyqg gives a quasi-
inverse. The contravariant functor (2.9) also makes sense on arbitrary left (or
right) A-modules. It is no longer an equivalence, but we still have that

(2.10) Hom 4 (V, W®) = Hom4 (W, V®)

for any V € A-mod and W € mod-A. To prove this, apply Lemma 2.7(1) to
the (k, A)-bimodule W to show that Homa(V,W®) =~ (W ®4 V)*, then apply
Lemma 2.7(2) to the (A, k)-bimodule V to show that (W ®a V)* =~ Hom4 (W, V®).

LEMMA 2.8. The dual V® of a projective (left or right) A-module is an injective
(right or left) A-module.

PrOOF. Just like in the classic treatment of duality for vector spaces from
[Mac, IV.2], (2.10) shows that the covariant functor ?® : A-mod — (mod-A4)°P is
left adjoint to the exact covariant functor ?® : (mod-A)°°? — A-mod. So it sends
projective left A-modules to projectives in (mod-A)°P, which are injective right
A-modules. O

Now we assume that A is a locally unital algebra and T' € A-modtq. We are
going to give a self-contained account of the construction of a coalgebra Coend 4(T')
which is the continuous dual of the endomorphism algebra End 4 (T")°P. This is the
coend construction which is an essential ingredient in the proof of Lemma 2.1 as
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discussed for example in [EGNO, §1.10], although as usual we are using the lan-
guage of algebras and modules rather than the language of categories and functors
used there. To start with, let

(2.11) B := End4(T)°P,

which is a unital algebra. Then T is an (A, B)-bimodule and the dual T® is a
(B, A)-bimodule. Let T; := e;T, so that T = P,_; T; and T® = P, ; T}*.

LEMMA 2.9. Suppose that T = @, ; T; € A-moditq and B := Enda(T)°P are
as above. For any V € A-mod, there is a natural isomorphism of right B-modules

(2.12) Homa(V,T) > (T® @4 V)*, 0~ (f®v— f(0(v))).
In particular, taking V =T, we get that (T® ® 4 T)* =~ B as (B, B)-bimodules.

PRrROOF. By Lemma 2.7 applied to the (A4, k)-bimodule T®, the functor T®®4?

is left adjoint to @),.; Homy (77*,?). Hence,

(T® @4 V)* = Homy (T® @4 V, k) = Homu (v, D Homy (T, Jk)) ~ Hom(V, T).
iel

This is the natural isomorphism in the statement of the lemma. We leave it to the

reader to check that it is a B-module homomorphism. ([

Continuing with this setup, let
(2.13) C:=T®®,T.

There is a unique way to make this into a coalgebra so that the bimodule isomor-
phism B = C* from Lemma 2.9 is actually an algebra isomorphism (viewing the
dual C* of a coalgebra as an algebra as in the previous section). Explicitly, let
u§1)7 . ,ug()i) be a basis for T; and vgl), e 7”((11()1') be the dual basis for T;*. Let

cﬁ,l, = vgi) ®u£«i) € C. Then the comultiplication § : C — C ® C and counit
€ : C' — k satisfy
. d(z) ) . ‘
(2.14) 3(e) = > ®d, e(cli) = dv.s
t=1
for each 4 € T and 1 < 7,8 < d(¢). For the next lemma, recall the definition of
continuous dual of a pseudo-compact topological algebra from (2.6).

LEMMA 2.10. The endomorphism algebra B = End 4 (T)°P of T € A-modyzq is
a pseudo-compact topological algebra with respect to the profinite topology, i.e., B
is isomorphic to lim B/J where the inverse limit is over all two-sided ideals J of
finite codimension. Moreover, the coalgebra C from (2.13) may be identified with
the continuous dual B*.

ProoF. This follows because B =~ C* as algebras. O

Thus, the coalgebra C defined by (2.13) is identified with the continuous dual
(2.15) Coend 4 (T) := (End4(T)°")*
of B. Explicitly, using the formula (2.12), the element cm = v‘gi) ® ug) e Cis
identified with the function sending 6 € End4(T") to vs(0(uy)).

Now consider the functor T®®4? : A-mod — B-mod. Since T is locally finite-
dimensional, it takes finitely generated A-modules to finite-dimensional B-modules.
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Any A-module V is the union of its finitely generated submodules, and T®®4?
commutes with direct limits, so we see that T® ®4 V is actually a discrete B-
module. Since B =~ C*, the category B-modgs is isomorphic to comod-C. So we
have constructed a functor

(2.16) T®®4? : A-mod — comod-C.

For V € A-mod, the comodule structure map on T7® ® 4 V is given explicitly by the
formula

d(i)
(217) TPV -T®@a VR0 P eu— Y o @ued.
r=1

Recall the definition of the functor 7* from (2.8).

LEMMA 2.11. Suppose that T = @,.; T; € A-moditq, B := Enda(T)°® and
C = B* are as above. The functor T®®4? just constructed is isomorphic to

(2.18) G = Cohomy(T,?) := Homu (?7,7)* : A-mod — comod-C,
and it is left adjoint to the functor
(2.19) G« = @ Home (T}, ?) : comod-C — A-mod.

iel

Thus, (G,Gy) is an adjoint pair.

PROOF. The fact that (2.16) is left adjoint to (2.19) follows by Lemma 2.7.
To see that it is isomorphic to (2.18), take V € A-mod and consider the natural
isomorphism Hom4 (V,T) = (T® ®4 V)* of right B-modules from Lemma 2.9. As
T®®4V is discrete, its dual is a pseudo-compact left B-module, hence, Hom 4 (V, T')
is pseudo-compact too. Then we apply =, using that it is quasi-inverse to *, to get
that Hom4(V,T)* € B-modgs is naturally isomorphic to T® ®4 V. O

2.3. Schurian categories

By a Schurian category, we mean a category R that is equivalent to A-mod,gq for
a locally finite-dimensional locally unital algebra A. This non-standard terminology
is considerably more restrictive than other usage of the same term elsewhere in
the literature, where “Schurian category” is typically used to indicate a k-linear
category in which the endomorphism algebras of the indecomposable objects are
one-dimensional’ (e.g., see work of Roiter).

By an algebra realization of a Schurian category R, we mean a locally finite-
dimensional locally unital algebra A (together with the set I indexing its distin-
guished idempotents) such that R is equivalent to A-modjsq. Now we assume that

R = A—modlfd

and proceed to summarize some of the basic properties of such categories, referring
to [BD1, §2] for a more detailed treatment. Let {L(b) | b € B} be a full set of

INote also that the present usage is different from several recent papers of the first author: in
[BD1], the phrase “locally Schurian” was used to describe the categories we now call “Schurian”;
more precisely, in [BD1], a locally Schurian category referred to a category of the form A-mod
(rather than A-mod)¢q) for locally finite-dimensional locally unital algebras A. We could not use
the phrase “Schurian” in loc. cit. since that was reserved for a more restrictive notion defined
in [BLW, §2.1]; this more restrictive notion will be discussed in the next section, again using
different language.
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pairwise inequivalent irreducible objects of R. Schur’s Lemma holds: we have
that Endg(L(b)) = k for each b € B. Note that the opposite category R is
also Schurian, and A°P gives an algebra realization for it. This follows because
RP = (A-modyq)°P is equivalent to modjeq-A = (A°P)-modsq using (2.9).

Let R. be the (not necessarily Abelian) full subcategory of R consisting of
all compact objects, and Ind(R.) be its ind-completion. The canonical functor
Ind(R.) — A-mod is an equivalence of categories. To see this, we note that
all finitely generated A-modules are locally finite-dimensional as A itself is lo-
cally finite-dimensional. Hence, finitely presented A-modules are locally finite-
dimensional too, i.e, A-mody, is a subcategory of A-modjzg. In view of Lemma 2.5,
this is the category R.. It just remains to apply [KS, Cor. 6.3.5], using Lemma 2.6
when checking the required hypotheses.

The category A-mod is a Grothendieck category. In particular, this means that
every A-module has an injective hull in A-mod. Since every A-module is a quotient
of a direct sum of projective A-modules of the form Ae;, the category A-mod also
has enough projectives. It is not true that an arbitrary A-module has a projective
cover, but we will see in Lemma 2.14 below that finitely generated A-modules do.

Like we did in §2.1, we write Extk (V, W), or sometimes Ext’y (V, W), in place
of Extyqr,)(V; W) for any VW € Ind(R.). This can be computed either from a
projective resolution of V' or from an injective resolution of W. We can also consider
both right derived functors R™F' of a left exact functor F' : Ind(R.) — R’ and left
derived functors L,,G of a right exact functor G : Ind(R.) — R’. We provide an
elementary proof of the following, but note it also follows from [KS, Th. 15.3.1].

LEMMA 2.12. For V,W € R and n = 0, there is a natural isomorphism
Ext (V,W) = Extgoe, (W, V).

ProoF. Using (2.9), we must show that Ext’(V,W) =~ Ext’(W®,V®) for
locally finite-dimensional A-modules V' and W. To compute Ext" (V, W), take a
projective resolution

> P1 —> PO I V —_—> 0

of V in A-mod. By Lemma 2.8, on applying the exact functor ®, we get an injective
resolution
0—V® -pP® P2 —...

of V® in mod-A. Since W is locally finite-dimensional, we can use (2.10) to see that
Hom 4 (P;, W) = Homa(W®, P®) for each i. So Ext’y(V,W) = Ext’}(W®,V®). O

Let I(b) be an injective hull of L(b) in A-mod. The dual (e; A)® of the projective
right A-module e;A is injective in A-mod. Since End4((e;A)®)°P =~ Enda(e;A) =
e;Ae;, which is finite-dimensional, the injective module (e; A)® can be written as a fi-
nite direct sum of indecomposable injectives. To determine which ones, we compute
its socle: we have that Hom 4 (L(b), (¢;A)®) =~ Homa(e; A, L(b)®) = (L(b)®)e; =
(e;L(D))*, hence,

(2.20) (e;4)® = @ I(b)®dmeil®)
beB

with all but finitely many summands on the right hand side being zero. In par-
ticular, this shows for fixed ¢ that dime;L(b) = 0 for all but finitely many b € B.
Conversely, for fixed b € B, we can always choose ¢ € I so that e;L(b) # 0, and
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deduce that I(b) is a summand of (e;A)®. This means that each indecomposable
injective I(b) is a locally finite-dimensional left A-module.

Let P(b) be the dual of the injective hull of the irreducible right A-module
L(b)®. By dualizing the right module analog of the decomposition (2.20), we get
also that
(2.21) Ae; = @ P(b)@dimeil®)

beB
with all but finitely many summands being zero. In particular, P(b) is projective
in A-mod, hence, it is a projective cover of L(b) in A-mod. The composition
multiplicities of any A-module satisfy

(2.22) [V : L(b)] = dimHomx (V, I(b)) = dim Hom4 (P(b), V).

LEMMA 2.13. For A as above, left A-module V is locally finite-dimensional if
and only if [V : L(b)] < «© for all be B.

ProOOF. Note that V is locally finite-dimensional if and only if
dim Hom 4 (4e;, V) < o0
for each i € I. Using the decompositon (2.21), this is if and only if
dim Hom 4 (P(b), V) < o0
for each b e B. d

There is a little more to be said about finitely generated modules. Recall from
the previous section that a module is finitely generated if V' = Avy + -+ + Av, for
homogeneous vectors vy, ...,v, € V. We say that V is finitely cogenerated if its dual
is finitely generated. It is obvious from these definitions that Hom 4 (V, W) is finite-
dimensional either if V' is finitely generated and W is locally finite-dimensional,
or if V is locally finite-dimensional and W is finitely cogenerated. The following
checks that our naive definitions are consistent with the usual notions of finitely
generated and cogenerated objects of Grothendieck categories.

LEMMA 2.14. For V € A-mod, the following properties are equivalent:
(i) V is finitely generated;
(ii) the radical radV, i.e., the sum of its mazimal proper submodules, is a
superfluous submodule and hd V := V /radV is of finite length;
(iii) V is a quotient of a finite direct sum of the modules P(b) for be B.

Moreover, any finitely generated V' has a projective cover.

PRrROOF. We have already observed that P(b) is a projective cover of L(b). The
lemma follows by standard arguments given this and the decomposition (2.21). O

COROLLARY 2.15. For V € A-mod, the following properties are equivalent:
(i) V is finitely cogenerated;
(i) soc V is an essential submodule of finite length;

(iii) V is isomorphic to a submodule of a finite direct sum of modules I(b) for
beB.

We say that a locally finite-dimensional locally unital algebra A = @, jel eiAe;
is pointed if A is a basic algebra, i.e., all of its irreducible modules are one-
dimensional, and all of its distinguished idempotents {e; | i € I} are primitive.
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LEMMA 2.16. Let A = (—Bme[ eiAe; be a locally finite-dimensional locally unital
algebra. Pick an idempotent expansion A = @, jei é;Aé; such that for some subset
B < I the set {éy | b € B} is a complete set of pairwise non-conjugate primitive
idempotents in A. Let B := C—Ba,beB éq,Aéy,. Then B is a pointed locally unital
algebra that is Morita equivalent to A, and any such pointed locally unital algebra

is 1isomorphic to B.

PRrROOF. It is clear that B is pointed. To see that A and B are Morita equiv-
alent, note that the functor A-mod — B-mod,V — @,.g6éV is an equiva-
lence of categories with quasi-inverse given by the functor (@beB Aéb)®3?. Fi-
nally if B’ another pointed locally unital algebra that is Morita equivalent to A,
let F : A-mod — B’-mod be an equivalence of categories. Then we have that
B' = @®,.g B, for left ideals B; ~ F(Aé,). So

op
B =~ (@ HomB,(B;,B;,)> ~ (P Homa(Aé,, A&) = P é,4é, = B.

a,beB a,beB a,beB

This proves the uniqueness. O
Finally, we introduce some terminology which will not be neeeded until §5.5.

DEFINITION 2.17. Let A = (D, ;s €iAe; be a locally finite-dimensional locally
unital algebra. Let S € I be a subset. We say that a left A-module V is S-free if
there is a subset X = | |._g X(s)  V such that the following properties hold:

(LF1) V =@, x Ax.
(LF2) The homomorphism Aes; — Az,a — ax is an isomorphism for z € X (s).

Equivalently, there is a K-submodule U of eV := @ _gesV such that the mul-
tiplication map Ae ®x U — V is an isomorphism, where Ae := @, g Aes and

K:= @, kes.

LEMMA 2.18. Suppose that A = ®ij61 e;Ae; is a locally finite-dimensional
locally unital algebra and {ey|b € B} is a full set of pairwise non-conjugate primitive
idempotents in A for some subset B € I. Then every finitely generated projective

left A-module is B-free.

PRrROOF. Any finitely generated projective left A-module V' decomposes as a
finite direct direct sum of indecomposable projectives, and any indecomposable
projective is isomorphic to Aep, for some b € B. Hence, we can pick a finite subset
X = | peg X (b) so that V = @,y Az with Az =~ Ae;, for z € X (b). O

There are obvious right module analogs of these notions.

2.4. Essentially finite Abelian categories

We say that a locally unital algebra A = (—DZ jel e;Ae; is essentially finite-
dimensional if each right ideal e; A and each left ideal Ae; is finite-dimensional. By
an essentially finite Abelian category, we mean a category R that is equivalent to
A-mod¢q for such an A. In that case, we refer to A as an algebra realization of
R. Note that R is essentially finite Abelian if and only if R°P is essentially finite
Abelian. Moreover, if A is an algebra realization for R then A°P is one for R°P by
the obvious contravariant equivalence 7* : A-mod¢g — modgq-A.
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LEMMA 2.19. An essentially small category R is equivalent to A-modg for a
locally unital algebra A = ®i,j61 eiAe; such that each left ideal Ae; (resp., each
right ideal e;A) is finite-dimensional if and only if R is a locally finite Abelian
category with enough projectives (resp., enough injectives).

PROOF. We just prove the result for left ideals and projectives; the parenthe-
sized statement for right ideals and injectives follows by replacing R and A with
R°P and A°P.

Suppose first that A = @i,jel e;Ae; is a locally unital algebra such that each
left ideal Ae; is finite-dimensional. Then A-mod¢q is a locally finite Abelian cate-
gory. It has enough projectives because the left ideals Ae; are finite-dimensional.

Conversely, suppose R is a locally finite Abelian category with enough projec-
tives. Let {L(b) | b € B} be a full set of pairwise inequivalent irreducible objects,
and P(b) € R a projective cover of L(b). Define A to be the locally unital algebra
A = @, peB €aAey, Where e, Ae, 1= Homg (P(a), P(b)) with multiplication that is
the opposite of composition in R. This is a pointed locally finite-dimensional locally
unital algebra. As in the proof of Lemma 2.4, the functor @, g Homgz (P(b),?) de-
fines an equivalence R — A-modg. It remains to note that the ideals Ae, are
finite-dimensional since they are the images under this functor of the projectives
P(b), which are of finite length. O

COROLLARY 2.20. An essentially small category R is essentially finite Abelian
if and only if it is a locally finite Abelian category with enough injectives and pro-
jectives.

Essentially finite Abelian categories are almost as convenient to work with as
finite Abelian categories since one can perform all of the usual constructions of
homological algebra without needing to pass to the ind-completion.

LEMMA 2.21. For a category R, the following are equivalent:
(i) R is a finite Abelian category;

(i) R is a Schurian category with only finitely many isomorphism classes of
1rreducible objects;

(iii) R is an essentially finite Abelian category with only finitely many isomor-
phism classes of irreducible objects;

(iv) R is a locally finite Abelian category with only finitely many isomorphism
classes of irreducible objects and either enough projectives or enough in-
jectives;

(v) R is both a locally finite Abelian category and a Schurian category.

ProOOF. Clearly, (i) implies (ii) and (iii). The implication (ii)=(i) follows on
considering a pointed algebra realization of R. The implication (iii)=(iv) follows
from Corollary 2.20. The implication (iv)=>(i) follows from Lemma 2.19. Clearly (ii)
and (iv) together imply (v). Finally, to see that (v) implies (ii), it suffices to note
that a Schurian category with infinitely many isomorphism classes of irreducible
objects cannot be locally finite Abelian: the direct sum of infinitely many non-
isomorphic irreducibles is a well-defined object of R but it is not of finite length. [

Essentially finite Abelian categories with infinitely many isomorphism classes
of irreducible objects are not Schurian categories. However they are closely related
as we explain next.



2.5. RECOLLEMENT 23

o If R is essentially finite Abelian, we define its Schurian envelope Env(R)
to be the full subcategory of Ind(R) consisting of all objects that have
finite composition multiplicities.

e If R is Schurian, let Fin(R) be the full subcategory of R consisting of all
objects of finite length.

We say that a Schurian category R is Cartan-bounded if its Cartan matrix C has
only finitely many non-zero entries in every row and column, where by Cartan
matrix we mean the matrix

(2.23) (dim Homg (P(a), P(b))a,beB = (dim Homg (I(a), 1(0)), pep »
where B is labelling indecomposable projectives and injectives in the usual way.

LEMMA 2.22. If R is an essentially finite Abelian category then Env(R) is a
Cartan-finite Schurian category, and conversely if R is a Cartan-finite Schurian
category then Fin(R) is an essentially finite Abelian category. Morever, Env and
Fin are inverses in the sense that Fin(Env(R)) is equivalent to R for any essentially
finite Abelian R, and Env(Fin(R)) is equivalent to R for any Cartan-finite Schurian
R:

Essentially finite Env 7 Cartan-finite
Abelian categories | 7, \ Schurian categories )

PrOOF. If R = A-modg for an essentially finite-dimensional locally unital al-
gebra A then Env(R) = A-modjq, so it is Schurian. Since the indecomposable
injectives and projectives in Env(R) are the same as in R, they have finite length.
Conversely, using Lemma 2.16, we may assume that R = A-modsq for a pointed
locally finite-dimensional locally unital algebra, such that all of the indecomposable
injectives and projectives are of finite length. Since A is pointed, this means equiv-
alently that all of the left ideals Ae; and right ideals e; A are finite-dimensional.
Hence, A is essentially finite-dimensional, and Fin(R) = A-mod¢q is essentially
finite Abelian. O

2.5. Recollement

We conclude the chapter with some reminders about “recollement” in our al-
gebraic setting; see [BBD, §1.4] or [CPS1, §2] for further background. We need
this here only for Abelian categories R satisfying finiteness properties as developed
above. The recollement formalism provides us with an adjoint triple of functors
(i*,1,i') associated to the inclusion i : R} — R of a Serre subcategory, and an
adjoint triple of functors (ji, j, j%) associated to the projection j: R — R onto a
Serre quotient category, with the image of ¢ being the kernel of j. These functors
will play an essential role in all subsequent arguments.

First suppose that R is any Abelian category. Assume that we are given a full
set {L(b) | b € B} of pairwise inequivalent irreducible objects. Let B* be a subset
of B and R* be the full subcategory of R consisting of all the objects V such that
[V : L(b)] # 0 = be B*. This is a Serre subcategory of R with irreducible objects
{L*(b) | be B} defined by L*(b) := L(b).

LEMMA 2.23. In the above setup, the inclusion functor i : RY — R has a left
adjoint i* and a right adjoint i':
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R* R.

-

¥

The counit of one of these adjunctions and the unit of the other give isomorphisms:
i*oi S5 Idrs > i od.
In particular, i is fully faithful.

PROOF. This is straightforward. Explicitly, i* (resp., i') sends an object of R
to the largest quotient (resp., subobject) that belongs to R*. (I

Now we are going to pass to the Serre quotient R' := R/R*. This is an
Abelian category equipped with an exact quotient functor j : R — R' satisfying
the following universal property: if A : R — C is any exact functor to an Abelian
category C with hL(b) = 0 for all b € B, then there is a unique functor h: R" — C
such that h = hoj. The irreducible objects in R' are {L'(b) | b € B'} where
B' := B\B!' and L'(b) := jL(b). For a fuller discussion of these statements, see
e.g. [Gab].

The quotient functor j need not have a left or a right adjoint in general, so
we need to impose some additional hypotheses. We first assume that R is finite
Abelian, essentially finite Abelian or Schurian. Then one can understand j rather
explicitly as an idempotent truncation functor and it always has both a left and
right adjoint:

LEMMA 2.24. Suppose that R is finite Abelian, essentially finite Abelian or
Schurian, B=B*uB', andi: R' - R and j : R —» R'" = R/R*' are as above.
Then RY and R" are of the same type (finite Abelian, essentially finite Abelian or
Schurian) as R. Moreover, the quotient functor j : R — R' has a left adjoint ji
and a right adjoint jy: ;

*
» N

J

*___—

Jt

R RT.

The counit of one of the adjunctions and the unit of the other give isomorphisms:
jojs = Idrt = joj.
In particular, j1 and jy are fully faithful.

PRroo¥r. Fix a pointed algebra realization
A= (—D eqAey
a,beB
of R, so A is finite-dimensional, essentially finite-dimensional or locally finite-
dimensional according to whether R is finite Abelian, essentially finite Abelian
or Schurian. Let
At = @ e A ey = A/(eC |ce B, AT = @ eq ey,
a,beB! a,beBT
where Z denotes the canonical image of z € A under the quotient map A — A'.
Then it is clear that R is equivalent to A*-modgq in the finite Abelian or essentially
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finite Abelian cases, and to A'-mody¢q in the Schurian case. As A' satisfies the same
finiteness properties as A, we deduce that R' is of the same type as R.

The quotient category R is realized by the algebra A", and the quotient functor
j becomes the functor that sends an A-module V to

(2.24) iVi= P eV
aeBT
with A" acting by restricting the action of A. We deduce that R' is again of the
same type as R. Since j is isomorphic to @, g Homa(Aey, —), it has the left
adjoint
(2.25) gi = ( @ Aeb)®AT? : A'-mod — A-mod
beBT

thanks to Lemma 2.7(1). From this, it is clear that the unit of adjunction Idg: —
j o4 is an isomorphism. On the other hand, j is also isomorphic to the tensor
functor (@, e»A) ®47, so Lemma 2.7(1) also gives that j has the right adjoint

(2.26) Jx 1= (—B Hom 41 ( (—B ebAea,?) : A"-mod — A-mod.
aeB beBT
Again using this we see that the counit j o j, — Idz1 is an isomorphism. O

The situation when R is locally finite Abelian is more complicated. Continuing
with the above notation, it follows immediately from Lemma 2.1 that the Serre
subcategory R* and the quotient category R' are locally Schurian too. The follow-
ing lemma explains how to obtain an explicit coalgebra realization of R*' starting
from one for R.

LEMMA 2.25. Suppose that R = comodiq-C for a coalgebra C. Let C* be
the largest right coideal of C belonging to R*. Then C' is a subcoalgebra of C.
Moreover, R* consists of all V € comodgg-C' such that the image of the structure
map n:V — V®C is contained in V ® C*, i.e., we have that R* = comodg-C*.

PROOF. For a right comodule V' with structure map n : V — V ® C, we can
consider V' ® C' as a right comodule with structure map id ®J. The coassociative
and counit axioms imply that 7 is an injective homomorphism of right comodules.
We deduce that all irreducible subquotients of V belong to R* if and only if (V) <
V ® C*. Applying this with V = C* shows that C! is a subcoalgebra. Applying it
to V € R shows that V € R* if and only if n(V) € V® C*. O

For locally finite Abelian R, the quotient category R' can also be realized
explicitly as a category of comodules: if R = comodg-C then R' = comodgg-eCe
for an idempotent e € C* and the quotient functor j becomes the idempotent
truncation functor defined by e. This is reviewed in detail in [Nav]. It follows
that the extension j : Ind(R) — Ind(R") of j to the ind-completions always has a
right adjoint j, with j o jyx = Idy,q(r1). However, this adjoint does not necessarily
take objects of R" to objects of R, so that the original functor j : R — R need
not have a right adjoint itself. For left adjoints, the situation is even a bit worse
since one should really pass to the pro-completions. For our purposes, though, it
will always be sufficient to impose the stronger condition from (i) of the following
lemma; this ensures that both adjoints exist without any need to pass to ind- or
pro-completions.



26 2. SOME FINITENESS PROPERTIES ON ABELIAN CATEGORIES

LEMMA 2.26. Suppose that R is locally finite Abelian, and let B € B and
j: R — R be as above. Then the following are equivalent:
(i) L(b) has an injective hull I(b) and a projective cover P(b) in R for all
beB';
(i) R' is essentially finite Abelian and the quotient functor j : R — R has
a left adjoint j and a right adjoint jy:
Jx

» N

J

“

g

R

RT.

When these properties hold, there are isomorphisms j o j, = Idgpt = j o ji just like
in Lemma 2.24.

PROOF. (i)=(ii): Let jx : Ind(R") — Ind(R) be the right adjoint of j :
Ind(R) — Ind(R") as in [Nav]. For b € B', let I'(b) be an injective hull of
L'(b) in Ind(R"). By adjunction properties, j,I'(b) is an injective hull of L(b)
in Ind(R), hence, j«I'(b) =~ I(b) which has finite length by assumption. From
jojs = Idmacrt), we deduce that I™(b) = jI(b) is of finite length too, so I (b) € R'
and R' has enough injectives. We have shown that j, takes I'(b) to I(b) € R,
hence using left exactness we deduce that it takes any object of finite length to an
object of finite length. This means that the restriction j4 : R' — R is well-defined
and gives a right adjoint to j : R — R'. The dual argument shows that R' has
enough projectives and that j : R — R' has a left adjoint j; : R" — R. Finally we
deduce that R' is essentially finite Abelian due to Corollary 2.20.

(i))=(i): We can take I(b) := j,I"(b) and P(b) := 5 P'(b) where I'(b) is an injective
hull and P'(b) is a projective cover of LT(b) in R'. O

In the locally finite Abelian or Schurian cases, we may use the same nota-
tions 4,i*,i' for the natural extensions of these functors to the ind-completions
Ind(R),Ind(R*') or Ind(R.),Ind(R}), respectively. Similarly, we will use the nota-
tions j, j«, ji for the extensions of these to the appropriate ind-completions, assum-
ing the equivalent conditions from Lemma 2.26 hold in the locally finite Abelian
case.

LEMMA 2.27. Continuing with the above setup, assume either that R is finite
Abelian, essentially finite Abelian, or Schurian, or that R is locally finite Abelian
and the equivalent conditions from Lemma 2.26 hold. For b e BT, let P(b) (resp.,
1(b)) and PT(b) (resp., IT(b)) be a projective cover (resp., injective hull) of L(b) in
R and a projective cover (resp., injective hull) of L' (b) in R'. Then we have that

jP®) = P'(b),  jI()=1I'(b),  HP'(b)=P(b),  jul'(b)=1(b).
Moreover, the adjunction gives isomorphisms
(2.27)

Homg (P(b), j+V) = Homg: (P'(b),V), Homg(jiV, (b)) =~ Homp:(V,I'(b))

)
for Ve R, hence, [V : LT(b)] = [§+V : L(b)] = [71V : L(b)] for all be B.
)

)
PRrROOF. Take b € B'. By adjunction properties, jiPT(b) is a projective cover of
L(b) in R, so it is isomorphic to P(b). Hence, (5P (b)) = P'(b) =~ jP(b); similarly
for injectives. The remaining assertions follow. ([



CHAPTER 3

Generalizations of highest weight categories

In this chapter, we define the various generalizations of highest weight cate-
gories and derive some of their fundamental properties in the four settings of finite
Abelian, essentially finite Abelian, Schurian, and locally finite Abelian categories.
The important definitions in the chapter are Definitions 3.7, 3.34 and 3.50. The
reader new to these ideas may find it helpful to assume initially that all of the strata
are simple in the sense of Lemma 3.4, when the definitions specialize to the notions
of finite, essentially finite, upper finite and lower finite highest weight categories,
respectively.

3.1. Stratifications and the associated standard and costandard objects

Let (A,<) be a poset. It is interval finite (resp., upper finite, resp., lower
finite) if the interval [\, u] := {r e A| A <v < u} (resp., [\, ) :={veA|X<v},
resp., (—oo,pu] := {v € A|v < p}) is finite for all A\, u € A. A lower set (resp.,
upper set) means a subset A' (resp., A7) such that p < A € A = € A (resp.,
u= e A = peAl).

A stratification function p : B — A is a function from a set B to a poset (A, <)
such that all of the fibers By := p~!()\) are finite. We often use other obvious
notations like B¢ := ng)\ B,,B., = U/K/\ B, etc..

A stratification of an Abelian category R is a quintuple (B, L, p, A, <) consisting
of a set B, a function L labelling a full set {L(b) | b € B} of pairwise inequivalent
irreducible objects in R, and a stratification function p : B — A for the poset
(A, <). In the case that p is a bijection, one can use it to identify B with A, writing
L(\) instead of L(b); similarly for all of the other families of objects indexed by the
set B to be introduced shortly.

Given a stratification (B, L, p, A, <) of R and A € A, let R<) and Ry be the
Serre subcategories of R associated to the subsets B<y and B of B, respectively.
We denote the inclusion functors by

(31) ’l:g)\ . Rg)\ — R, i<)\ : R<)\ — R,

The left and right adjoints of i<y are 7%, and i!@\ as in Lemma 2.23. We say that
the stratification is

(F) a finite stratification if R is a finite Abelian category (so that B is a finite

set);

(EF) an essentially finite stratification if R is an essentially finite Abelian cat-
egory and the poset A is interval finite;

(LF) a lower finite stratification if R is a locally finite Abelian category and the
poset A is lower finite;

(UF) an upper finite stratification if R is a Schurian category and the poset A
is upper finite.

27
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In these four cases, the induced stratifications of the subcategories R and R«
are automatically of the same type.

By an admissible stratification, we mean a stratification of one of the above
four types such that the following axiom is satisfied when in type (LF) (it holds
automatically for the other types):

(A) The irreducible object L(b) has both a projective cover and an injective

hull in R, for all b e B.

This is a significant restriction on the sorts of lower finite Abelian categories that
can be considered; for example, the category Rep(G,) of rational representations
of the additive group does not have this property. Using Lemma 2.21 together with
Lemma 2.26 in the lower finite case, we deduce for A € A that the quotient category
R := R<r/R<y is finite Abelian in all cases. Let

(3.2) jA :Re<x — R
be the quotient functor. The objects
(3.3) {LA(b) := 5 L(b) | be By}

give a full set of pairwise inequivalent irreducible objects in R. Moreover, we are
in a recollement situation as in Lemmas 2.23, 2.24 and 2.26:

! Y

iox T
»/Z.A\ XN
(3.4) Ry —— Ry —— R
- *_
ixy i

Let Py(b) be a projective cover and Ix(b) be an injective hull of Ly(b) in Riy.
By Lemma 2.27, these are isomorphic to the images of the projective cover and
injective hull of L(b) in Ry, respectively. Finally, define standard, costandard,
proper standard and proper costandard objects A(b), V(b), A(b) and V(b) according
to (1.1).

LEMMA 3.1. Suppose we are given an admissible stratification (B, L, p, A, <) of
R. Take be B and set A := p(b).
(1) The standard object A(b) is a projective cover of L(b) in R<x. The proper
standard object A(b) is the largest quotient of A(b) such that all composi-
tion factors of rad A(b) are of the form L(c) for c € B.y.
(2) The costandard object V(b) is an injective hull of L(b) in R<x. The
proper costandard object V(b) is the largest subobject of V(b) such that all
composition factors of V(b)/soc V(b) are of the form L(c) for c € B_y.

PROOF. We just check (1) since (2) is similar. We have that A(b) is a projective
cover of L(b) in R<y by Lemma 2.27. It remains to prove the statement about A(b).
Assume [A(b) : L(c)] # 0. Since A(b) € R<y, we have p(c) < p(b). If p(c) = p(b)
then

[A®) : L(e)] = [PAG) : L] = [La(b) : Lr(0)] = by
Thus, A(b) is such a quotient of A(b). To show that it is the largest such quotient,
it suffices to show that the kernel K of A(b) — A(b) is finitely generated with head
that only involves irreducibles L(c) with p(c) = p(b). To see this, apply the right
exact functor j{* to a short exact sequence 0 — K — Py(b) — Lx(b) — 0 to get an

epimorphism ],)‘I? — K. Then observe that j.)‘f? is finitely generated as j!)‘ is a left
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adjoint, and its head only involves irreducibles L(c) with p(c) = p(b). The latter
assertion follows because Hompg (j K, L(c)) = Hompg, (K, j*L(c)) for c€ B<y. O

COROLLARY 3.2. We have that
dim Homg (A(b), V(c)) = dim Homg (A(b), V(c)) = dp.c
for all b,c e B.

LEMMA 3.3. Suppose that we are given an admissible stratification (B, L, p, A, <
) of R, and in addition that R possesses a contravariant autoequivalence 7V which
preserves isomorphism classes of irreducibles. Then we have that P(b)Y =~ I(b),
I(b)Y = P(b), A(b)Y = V(b), A(b)Y = V(b), V(b)Y = A(b) and V(b)" = A(b) for
allbe B.

PROOF. Since L(b)Y = L(b), hav

~ we have that I(b)¥ = P(b) and P(b)" = I(b).
Then the statements about A(b)Y, A(b)V,V(b)V

and V(b)" follow using Lemma 3.1.
O

For A € A, we say that R is a simple stratum if it is equivalent to the category
Vecyq of finite-dimensional vector spaces.

LEMMA 3.4. The following are equivalent:

(i) all of the strata are simple;

(ii) p is a bijection and A(N) = A(X) for all X € A;
(iii) p is a bijection and Homg (A(X), V(X)) is one-dimensional;
(iv) p is a bijection and V(\) = V(A) for all X € A.

PROOF. (i)=(ii): Take A € A. As the stratum R, is simple, By = {b)\} is a
singleton and Py (by) = Lx(by). We deduce that p is a bijection and A(by) = A(by).

(ii)=(iii): This follows because V() is the injective hull of L(A) in R<x.
(iii)=>(iv): This follows because A(A) is the projective cover of L()) in Ry.
(iv)=(i): Take XA € A. Then R has just one irreducible object (up to isomorphism),

namely, jAV()). Since this equals jAV()\), it is also projective. Hence, R, is
simple. (I

Given a sign function € : A — {x}, we introduce the e-standard and e-
costandard objects A.(b) and V.(b) as in (1.2). Corollary 3.2 implies that

(3.5) dim Hompg (A (b), V:(€)) = ..

for b,ce B. A A.-flag of V € R means a finite filtration 0 = Vo <V} <--- <V, =
V with sections V,,,/V;—1 = Ac(by,) for by, € B. Similarly, we define V.-flags. We
denote the exact subcategories of R consisting of all objects with a A.-flag or a
V.-flag by A:(R) and V.(R), respectively.
A A-flag (vesp., V-flag) is a A.-flag (resp., V.-flag) in the special case that
= +. A A-flag (vesp., V-flag) is a A.-flag (vesp., V.-flag) in the special case
that e = —. We denote the exact subcategories of R consisting of all objects with a
A-flag, a A-flag, a V-flag or a V-flag by A(R), A(R), V(R) and V(R), respectively.
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3.2. Finite and essentially finite e-stratified categories

Throughout this section, R is a finite or essentially finite Abelian category
equipped with a finite or essentially finite stratification (B, L,p, A, <). Also ¢ :
A — {£} denotes a sign function. Let P(b) and I(b) be a projective cover and
an injective hull of L(b), respectively. We also need the objects from (1.1)—(1.2).
Consider the following two properties:

(I/DZE) For each b € B, there exists a projective object P, admitting a A.-flag
with A.(b) at the top and other sections A.(c) for ¢ € B with p(c) = p(b).

(ﬁg) For each b € B, there exists an injective object I, admitting a V .-flag with
V.(b) at the bottom and other sections V.(c) for ¢ € B with p(c) = p(b).

It is trivial to see that the property (PA.) formulated in the introduction implies
(P/’ZE), and similarly (I'V.) implies (ﬁ ). The seemingly weaker properties (]SZE)—
(ﬁ <) are often easier to check in concrete examples. The essence of the following

fundamental theorem appeared originally in [ADL], extending earlier work of Dlab
[Dlal].

THEOREM 3.5. The four properties (]SZE), (ﬁg), (PA;) and (IV.) are equiv-
alent. When these properties hold, the standardization functor j,)‘ is exact whenever
e(A) = —, and the costandardization functor j3 is ezact whenever e(\) = +.

REMARK 3.6. When all strata are simple, the properties (ﬁs)f(ﬁs) may be
written more succinctly as the following;:

(ISZ) For each A\ € A, there exists a projective object Py admitting a A-flag
with A(X) at the top and other sections of the form A(u) for u € A with
= A
(ﬁ) For each A € A, there exists an injective object I admitting a V-flag with
V(X) at the bottom and other sections of the form V(u) for p € A with
= A
Theorem 3.5 shows that these are equivalent to the properties (PA)—(IV) from the
introduction, as was explained originally by Cline, Parshall and Scott in [CPS1].

We postpone the proof of Theorem 3.5 until a little later in the the section. It
is important because it justifies the next key definition (¢S) and its variations (FS),
(HW), (FHW) and (HW).

DEFINITION 3.7. Let R be an Abelian category equipped with a finite (resp.,

essentially finite) stratification (B, L, p, A, <).

(eS) We say that R is a finite (resp., essentially finite) e-stratified category if
one of the equivalent properties (ﬁs)f(fv <) holds for a given choice of
sign function € : A — {+}.

(FS) We say R is a finite (resp., essentially finite) fully stratified category if one
of these properties holds for all choices of sign function € : A — {£}.

(eHW) We say R is a finite (resp., essentially finite) e-highest weight category if
the stratification function p is a bijection, i.e., each stratum has a unique
irreducible object (up to isomorphism), and one of the equivalent proper-
ties (ﬁa)f(ﬁa) holds for a given choice of sign function € : A — {£}.

(FHW) Wesay R is a finite (resp., essentially finite) fibered highest weight category
if the stratification function p is a bijection and one of these properties
holds for all choices of sign function.
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(HW) We say R is a finite (resp., essentially finite) highest weight category if
all of the strata are simple (cf. Lemma 3.4) and one of the equivalent
properties (PA)—(IV) holds.

REMARK 3.8. The language “fibered highest weight” in Definition 3.7 is a de-
parture from the existing literature, where such categories are usually referred to
as properly stratified categories; this terminology goes back to the work of Dlab
[Dla2]. A recent exposition which takes a more traditional viewpoint than here
can be found in [CouZ]. In particular, in [CouZ, Def. 2.7.4], one finds five
types of finite-dimensional algebra A defined in terms of properties of the category
A-modsq, namely, standardly stratified algebras, exactly standardly stratified alge-
bras, strongly stratified algebras, properly stratified algebras, and quasi-hereditary
algebras. In our preferred language, these are +-stratified algebras, stratified alge-
bras, +-quasi-hereditary algebras, properly stratified algebras, and quasi-hereditary
algebras, respectively, as in Table 1.1 from the introduction. For further reference
to the original literature, [CouZ, §A.2] is helpful.

We can view {L(b) | b € B} equivalently as a full set of pairwise inequivalent
irreducible objects in R°P. The stratification of R is also one of R°P. The indecom-
posable projectives and injectives in R°P are I(b) and P(b), while the (—&)-standard
and (—e)-costandard objects in R°P are V. (b) and A.(b), respectively. So we can
reinterpret Theorem 3.5 as the following.

THEOREM 3.9. R is e-stratified, fully stratified, e-highest weight, fibered highest
weight or highest weight if and only if R°P is (—¢)-stratified, fully stratified, (—¢)-
highest weight, fibered highest weight or highest weight, respectively.

Now we must prepare for the proof Theorem 3.5. The main step in the ar-
gument will be provided by the homological criterion for V.-flags from the next
Theorem 3.11. In turn, the proof of this criterion reduces to the following lemma
which treats a key special case. The reader wanting to work fully through the proofs
should look also at this point at the lemmas in §3.4 below.

LEMMA 3.10. Assume that R is an Abelian category equipped with a finite or
essentially finite stratification (B, L, p, A, <) and sign function e, such that property
(PA.) holds. Let A be a mazimal element of A with respect to the ordering <, and
V e R be an object satisfying the following properties:

(i) Exty(A(b),V) =0 for all be B;
(ii) soc V = L(by)@®---® L(by,) forby,...,b, € By.
Then V belongs to R<y (so that it makes sense to apply the functor j* to it), and

s {mm ife(N) =+,

(36) V(b) @ V(b)) ife(A) = —.

Moreover, in the case e(\) = +, the functor j;k\ s exact. Hence, in both cases, we
have that V € V.(R).

PROOF (ASSUMING LEMMAS FROM §3.4 BELOW). We first prove (3.6) in case
e(A) =—. Let W:=V(b1)®---®V(b,). By the maximality of A and Lemma 3.46,
this is an injective hull of soc V. So there is a short exact sequence 0 -V — W —
W /V — 0. For any a € B, we apply Homg (A.(a),?) and use property (i) to get a
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short exact sequence
(3.7)

0 — Homg (A (a),V) SR Hompg (A (a), W) — Homg (A (a), W/V) — 0.

If p(a) # A then Homg (A.(a), W) = 0 as none of the composition factors of A.(a)
are constituents of soc W. If p(a) = A then A.(a) = A(a) and any homomorphism
A(a) — W must factor through the unique irreducible quotient L(a) of A(a). So
its image is contained in soc W < V', showing that f is an isomorphism. These
arguments show that Homg (A (a), W/V) = 0 for all a € B. We deduce that
soc (W /V) =0, hence, W/V = 0, which is what we needed.

Now consider (3.6) when €(A) = +. By Lemma 3.46 again, the injective hull
of Vis V(b)) ®--- @® V(b,), which is an object of R¢x. Hence, V € R¢y. The
unit of adjunction gives us a morphism g : V. — W := j}(j*V). Since g becomes
an isomorphism when we apply j*, its kernel belongs to R-. In view of property
(2), we deduce that kerg = 0, so g is a monomorphism. Hence, we can identify
V with a subobject of W. To show that g is an epimorphism as well, we apply
Hompg (As(a),?)t00 >V - W — W/V — 0 to get the short exact sequence (3.7).
By adjunction, the middle morphism space is isomorphic to Homp, (j*A.(a), j2V),
which is zero if p(a) < A. If p(a) = A then A.(a) = A(a) is the projective cover
of L(a) in R by Lemma 3.46, and j*A_(a) is the projective cover of Ly(a) in Ry.
We deduce that both the first and second morphism spaces in (3.7) are of the same
dimension [V : L(a)] = [j*V : La(a)], so f must be an isomorphism. Therefore
Hompg (As(a), W/V) =0 for all a € B, hence, V =W and (3.6) is proved.

To complete the proof, we must show that j3 is exact when £(\) = +. For
this, we use induction on composition length to show that ji‘ is exact on any short
exact sequence 0 - K — X — @Q — 0 in R). For the induction step, suppose we
are given such an exact sequence with K,Q # 0. By induction, j2 K and j}Q both
have filtrations with sections V(b) for b € B,. Hence, by Lemma 3.48, we have that
Exth (AL (), 72 K) = Exth (A (b),j2Q) = 0 for all n > 1 and b € B. As it is a right
adjoint, j;k\ is left exact, so there is an exact sequence

(3.8) 0— joK — j2X — j2Q.
Let Y := j2 X/j2 K, so that there is a short exact sequence
(3.9) 0— joK — j2X — Y — 0.

To complete the argument, it suffices to show that ¥ =~ j2Q. To establish this,
we show that Y satisfies both of the properties (i) and (ii); then, by the previous
paragraph and exactness of j*, we get that Y =~ j2(jY) =~ j2(X/K) =~ j}Q, and
we are done. To see that Y satisfies (i), we apply Homg (AL (b),?) to (3.9) to get
an exact sequence

Extr (Ac(b), j2 X) — Ext (A (b),Y) — Extk (A (b), j2 K).
The first Ext® is zero by Lemma 3.47. Since we already know that the Ext? term is
zero, Extl, (A (b),Y) = 0. To see that Y satisfies (ii), note comparing (3.8)—(3.9)

that ¥V — ja@Q, and soc j2Q is of the desired form by what we know about its
V.-flag. 0

THEOREM 3.11 (Homological criterion for A.-flags). Assume that R is an
Abelian category equipped with a finite or essentially finite stratification and sign
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function as usual, such that property (P/’ZE) holds. For V € R, the following prop-
erties are equivalent:
(i) VeV (R);
(ii) Exty (AL(b),V) =0 for all be B;
(iii) Extkr (A:(b),V) =0 for allbe B andn > 1.
If these properties hold, the multiplicity (V : V(b)) of V(b) as a section of a
Ve-flag of V is well-defined independent of the choice of flag as we have that

(V : V.(b) = dimHomg (AL (b), V).

PROOF (ASSUMING LEMMAS FROM §3.4 BELOW). (iii)=>(ii): Trivial.
(i)=(iii) and the final assertion of the lemma: These follow from Lemma 3.48.

(ii)=(i): Assume that V satisfies (ii). We prove that it has a V.-flag by induction
on
d(V) := ) dim Homg (A(b),V) € N.
beB

The base case when d(V') = 0 is trivial as we have then that V' = 0. For the induc-
tion step, let A € A be minimal such that Homg (A, (b), V) # 0 for some b € B. The
Serre subcategory R« with the induced (finite or essentially finite) stratification
also satisfies (]/DZE) thanks to Lemma 3.45(2). Let W :=iL,V. Because W is a
subobject of V', we have by the minimality of A that Homg (A, (b), W) # 0 only
if b e By. Hence, soc W =~ L(by) ®--- @ L(by,) for by,...,b, € Byx. Thus, W
satisfies the hypothesis (ii) from Lemma 3.10 (with V' and R there replaced by W
and Rgy).

Now let @Q := V/W. Take any b € B and apply Homg (A(b),?) to the short
exact sequence 0 - W — V — @ — 0 to get the exact sequence

0 — Homg (AL (b), W) — Homg (A.(b), V) — Homg (A (b), Q)
— Exty (AL (b), W) — 0 — ExtR (A (b), Q) — Extx (A (b), W).

By the definition of W, the socle of @ has no constituent L(b) for b € B¢y. So, for
b € B¢, the space Homg (AL (), Q) is zero, and we get that Ext%sx(Ag(b), W) =
Extz, (A (b), W) = 0 for all such b. This verifies hypothesis (i) from Lemma 3.10. So
now we can appeal to the lemma to deduce that W e V.(R«)). Hence, W € V.(R).

In view of Lemma 3.48, we get that Extkz (A:(b),W) = 0 for all n > 1 and
b € B. So, by the above exact sequence again, we get that Extkh(A.(b),Q) = 0
for all b € B, and moreover d(Q) = d(V) — d(W) < d(V). Finally we appeal to
the induction hypothesis to deduce that @ € A.(R). Since we already know that
W e A.(R), this shows that V € A, (R). O

COROLLARY 3.12. In the setup of Theorem 3.11, multiplicities in a V.-flag of
I(b) satisfy (I(b): Ve(c)) = [Ac(c) : L(b)].

COROLLARY 3.13. For R as in Theorem 8.11, let0 - U -V —- W — 0 be a
short exact sequence. If U and V have V_-flags then so does W.

Proor orF THEOREM 3.5. Suppose that R satisfies (FZE) Since V' = I(b) is
injective, it satisfies the hypothesis of Theorem 3.11(ii). Hence, by that theorem,
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I1(b) has a V.-flag and the multiplicity (I(b) : V<(¢)) of V.(c¢) as a section of any
such flag is given by

(I(8) : V.(c)) = dim Homp (A (¢), I(b)) = [Ac(c) : L(B)].

This is zero unless p(b) < p(c). Also the bottom section must be V. (b) since I(b) has
socle L(b). Thus, we have verified that R satisfies (IV.). Moreover, Lemma 3.10
shows that j2 is exact whenever e(\) = +, giving half of final assertion made in
the statement of the theorem we are trying to prove.

Repeating the arguments in the previous paragraph but with R replaced by
R°P and e replaced with —e show that (ﬁ .) implies (PA.) and that j{* is exact
whenever e(\) = —. Since (PA;) = (1335) and (IV.) = (ﬁs), this completes
the proof. O

So now Theorem 3.5 is proved and Definition 3.7 is in place. In the remainder
of the section, we are going to develop some further fundamental properties of these
sorts of category. We start off in the most general setup with R being a finite or
essentially finite e-stratified category. Again some of the proofs that follow invoke
parts of the lemmas from §3.4. From Lemma 3.44 and the dual statement, deduce
that

(3.10) Exth (A (b), A(c)) = Extk (V.(c), V(b)) = 0

for b,c € B with p(b) € p(c). By “dual statement” here, we mean that one takes
Lemma 3.44 with R replaced by R°? and € by —e, which we may do due to The-
orem 3.9 and Lemma 2.12, then applies the contravariant isomorphism between R
and R°P. In a similar way, the following theorem follows immediately as it is the
dual statement to Theorem 3.11.

THEOREM 3.14 (Homological criterion for V.-flags). Assume that R is a finite
or essentially finite e-stratified category. For V € R, the following properties are
equivalent:

(i) VeA(R);
(ii) Exty (V, V(b)) = 0 for all be B;

(iii) Extkx (V, V(b)) =0 for allbe B andn > 1.

Assuming that these properties hold, the multiplicity (V : A (b)) of A(b) as a
section of a Aq-flag of V is well-defined independent of the choice of flag, as it
equals dim Homg (V, V< (b)).

COROLLARY 3.15. (P(b) : Ac(c)) = [Ve(c) : L(b)].

COROLLARY 3.16. Let 0 = U -V — W — 0 be a short exact sequence in a
finite or essentially finite e-stratified category. If V. and W have A.-flags then so
does U.

The following results about truncation to lower and upper sets are extremely
useful; some aspects of them were already used in the proof of Theorem 3.11.

THEOREM 3.17 (Truncation to lower sets). Assume that R is a finite or es-
sentially finite e-stratified category. Suppose that A is a lower set in A. Let
B! := p7Y(AY) and i : R* — R be the corresponding Serre subcategory of R with
the induced stratification. Then R' is itself a finite or essentially finite e-stratified
category according to whether At is finite or infinite. Moreover:
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(1) The distinguished objects in R* satisfy L*(b) = L(b), P*(b) = i*P(b),
1)~ 11, AL ~ AG)ALG) ~ AG) VL (0) £ V() and (1) <
V(b) for be B*.

(2) i* sends short exact sequences of objects in A.(R) to short exact sequences
of objects in A.(RY), with i*A(b) = A*(b) and i* A(b) = At (b) forbe B*
and i* A(b) = i*A(b) = 0 for b¢ Bt.

(3) Ext (V,iW) = Ext?, (i*V, W) for V e Ac(R), W e R* and all n > 0.

(4) i* sends short exact sequences of objects in V.(R) to short exact sequences
of objects in V-(R'), with i*'V(b) = V(b) and i'V(b) = V*(b) for be B!
and 'V (b) = i'V(b) = 0 for b ¢ B*.

(5) Exth (iV,W) = Ext, (V,i'W) for Ve R*, W € V.(R) and alln > 0.

(6) Ext (iV,iW) = Extyy (V,W) for V,W € R* and n > 0.

PROOF. Apart from (6), this follows by Lemma 3.45 and its dual. To prove
(6), by the same argument as used to prove Lemma 3.45(4), it suffices to show that
(L,i*)V =0 for V € R* and n > 1. Since any such V has finite length it suffices
to consider an irreducible object in R, i.e., we must show that (IL,,i*)L(b) = 0 for
be B! and n > 1. Take a short exact sequence 0 — K — A.(b) — L(b) — 0 and
apply i* and Lemma 3.45(3) to get

0 —> (Lyi*)L(b) — i*K — i*A-(b) — i*L(b) — 0.

But K, A.(b) and L(b) all lie in R* so ¢* is the identity on them. We deduce that
(Lyi*)L(b) = 0. Degree shifting easily gives the result for n > 1. O

THEOREM 3.18 (Truncation to upper sets). Assume that R is a finite or es-
sentially finite e-stratified category. Suppose that AV is an upper set in A. Let
B" := p71(A") and j : R — R' be the corresponding Serre quotient category of
R with the induced stratification. Then R is itself a finite or essentially finite
e-stratified category according to whether A" is finite or infinite. Moreover:

(1) For b € B, the distinguished objects L'(b), P'(b), I'(b), AT(b), AT(b),
VI(b) and V'(b) in R" are isomorphic to the images under j of the cor-
responding objects of R.

(2) We have that jL(b) = jA(b) = jA(b) = jV(b) = jV(b) =0 if b¢ B'.

(3) Exty (V,j:W) = Extiy: (jV, W) for Ve R,W € V.(R") and all n = 0.

(4) jx sends short exact sequences of objects in V<(R') to short exact se-
quences of objects in V<(R), with j.V'(b) = V(b), j+V'(b) = V(b) and
g1 (b) = I(b) for be BT.

(5) Ext (71 V, W) =~ Ext: (V,jW) for Ve A.(R"), WeR and alln >0

(6) ji sends short exact sequences of objects in A.(R') to short exact se-
quences of objects in A.(R), with HAT(b) =~ A(b), HAT(b) =~ A(b) and
7P (b) = P(b) forbe BT.

PRrROOF. Apart from (4) and (6), this follows from Lemma 3.49 and its dual.
For (4) and (6), it suffices to prove (4), since (6) is the equivalent dual statement.
The descriptions of j,V'(b), 7. V' (b) and j.I'(b), follow from Lemma 3.49(1). It
remains to prove the exactness. We can actually show slightly more, namely, that
(R"j4)V =0for VeV (R") and n > 1. Take V € V.(R"). Consider a short exact
sequence 0 — V — I — Q — 0in R" with I injective. Apply the left exact functor
js and consider the resulting long exact sequence:

00— sV — jsul — j:Q — (le*)v — 0.
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As V has a V-flag, we use (3) to see that Homg (Ac(b), j+V) =~ Homg: (jA: (), V)
and Extl, (A.(b),j4V) = Exty (jA.(b), V) for every b e B. Hence, Theorem 3.11,
j%V has a V_.-flag with

(V:VIi(b) ifbeB',

GV 92(0) = dim Houm (8.0 V) = | § oeB

Both I and @ have V.-flags too, so we get similar statements for j, I and j,@Q. Since
(I:VI(b)=(V:VLD)+(Q: V(b)) by the exactness of the original sequence,
we deduce that 0 — j,V — juI — j.Q — 0 is exact. Hence, (R'j,)V = 0. This
proves the result for n = 1. The result for n > 1 follows by a degree shifting
argument. ([l

COROLLARY 3.19. Let notation be as in Theorem 3.18 and set B* := B\B'.

(1) ForV e V.(R), there is a short exact sequence 0 — K — V 5 j, (jV) —
0 where v comes from the unit of adjunction, j«(jV) has a V.-flag with
sections Ve (b) for b € BT, and K has a V-flag with sections V(c) for
ce Bt

(2) ForV e A.(R), there is a short exact sequence 0 — ji(jV) LV 5Q-0
where & comes from the counit of adjunction, ji(jV) has a A.-flag with
sections Ac(b) for b € BT and Q has a A.-flag with sections A.(c) for
ce B'.

PrOOF. We prove only (1), since (2) is just the dual statement. Using (3.10),
we can order the V.-flag of V to get a short exact sequence 0 - K — V —
Q — 0 such that K has a V.-flag with sections V.(b) for b € BY and Q has a
V.-flag with sections V.(c) for ¢ € B'. For each b € B, the unit of adjunction
V(b) — j«(jVe(b)) is an isomorphism; this follows from Theorem 3.18(4) using
the observation that it becomes an isomorphism on applying j. Since j4 sends short
exact sequences of objects in V.(R") to short exact sequences, we deduce that the
the unit of adjunction Q — j4(jQ) is an isomorphism too. It remains to note that
JV = jQ, hence, jx(jV) = jx(jQ). O

We proceed to discuss some of the additional features which show up when in
one of the more refined settings (FS), (tHW), (FHW) and (HW). By Theorem 3.9,
R is a fully stratified category (resp., fibered highest weight category) if and only
if so is R°P. The following lemma shows that fully stratified categories in our
terminology are the same as the “standardly stratified categories” defined by Losev
and Webster in [LW, §2].

LEMMA 3.20. Given a stratification (B, L, p, A, <) of R, the following are equiv-
alent:

(i) R is a fully stratified category;
(i) R is e-stratified for every choice of sign function € : A — {x};
(iii) R is e-stratified and (—¢)-stratified for some choice of sign function € :
A — {£};
(v) R is e-stratified for some € : A — {£} and all of its standardization and
costandardization functors are exact;
(v) R is a +-stratified category and each A(b) has a A-flag with sections A(c)
for ¢ with p(c) = p(b);
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(vi) R is a —-stratified category and each V(b) has a V-flag with sections V(c)
for ¢ with p(c) = p(b).
PROOF. (i)=(ii)=>(iii): Obvious.
(iii)=>(iv): Take ¢ as in (iii) so that R is e-stratified. The standardization functor j{’
is exact when €(A) = — by the last part of Theorem 3.5. Also R is (—e¢)-stratified,

so the same result gives that j* is exact when £(\) = +. Similarly, all of the
costandardization functors are exact too.

(iv)=>(v): Applying the exact standardization functor j{* to a composition series of
Py (b), we deduce that A(b) has a A-flag with sections A(c) for ¢ with p(c) = p(b).
Similarly, applying 52, we get that V(b) has a V-flag with sections V(c) for ¢ with
o(c) = plb). ]

To show that R is +-stratified, we check that each I(b) has a V-flag with
sections V(c) for ¢ with p(c) = p(b). This is immediate if £(b) = + since we are
assuming that R is e-stratified. If €(b) = — then I(b) has a V-flag with sections
V(c) for ¢ with p(c) = p(b). Hence, by the previous paragraph, it also has the
required sort of V-flag.

(v)=>(i): We just need to show that R is —-stratified. We know that each P(b) has

a A-flag with sections A(c) for ¢ with p(c) > p(b). Now use the given A-flags of
each A(c) to see that each P(b) also has the appropriate sort of A-flag.

(v)<>(vi): This follows from the above using the observation made earlier that R
is fully stratified if and only if R°P is fully stratified. O

COROLLARY 3.21. If R is an e-stratified category with a contravariant autoe-
quivalence which preserves isomorphism classes of irreducible objects, then R is
fully stratified. Moreover, if R is an e-highest weight category with a contravari-
ant autoequivalence preserving isomorphism classes of irreducible objects, then R
is fibered highest weight.

PROOF. Since R is e-stratified, R°P is (—¢)-stratified. Using Lemma 3.3, we
deduce that R is (—¢)-stratified. This verifies Lemma 3.20(iii) and the first claim
follows. The second is then obvious. ]

LEMMA 3.22. Suppose that R is a finite or essentially finite fully stratified
category. For b,c€ B and n = 0, we have that

Ext2 (A(b), (c)) ~ { oA EOL L) A

where X := p(b) and p := p(c).

PROOF. Choose ¢ so that (A) = —, hence, A(b) = A.(b). By Lemma 3.20, R
is e-stratified, so we can apply Theorem 3.17(4) with R* = R, to deduce that

Extit (A(b), V(e)) = Extly_ (i%,A(b), V(c)).

This is zero unless A < p. If A < po it is Exty_ (A(b),V(c)). Now we change ¢
so that e(u) = +, hence, V(¢) = V.(c). Then by Theorem 3.18(3) with R = R,

and R" = R, we get that Extr_, (A(b), V(c)) = Exty, (7#A(b), L(c)). This is zero
unless A = p, when j#A(b) = L(b) and we are done. O

The next results are concerned with global dimension.
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LEMMA 3.23. Let R be a finite e-stratified category.

(1) AllV € A.(R) are of finite projective dimension if and only if all negative
strata' have finite global dimension.

(2) AllV € V(R) are of finite injective dimension if and only if all positive
strata have finite global dimension.

PROOF. As the two parts are dual statements, it suffices to prove (1). Replacing
A by the finite set p(B) if necessary, we may assume that |A| < oo.

First assume that all negative strata have finite global dimension. By [Wei,
Ex. 4.1.2], it suffices to show that pd A.(b) < o for each b € B. We proceed by
downwards induction on the partial order on the finite poset A. Take any A € A
and consider A.(b) for b € B, assuming that pd A.(¢) < o for each ¢ € B.j.
We first observe that there is a short exact sequence 0 — Q — P(b) — A(b) —» 0
such that @ has a A.-flag with sections A.(c) for ¢ € B.y. If ¢(A) = + this
follows immediately from (PA.); if ¢(A) = — one also needs to use (3.10) to see
that a A.-flag in P(b) can be ordered so that the sections A(c) with ¢ € By
appear above the sections with ¢ € B. ). By the induction hypothesis, @ has finite
projective dimension, hence, so does A(b). This verifies the induction step in the
case that £(\) = +. Instead, suppose that e(\) = —, i.e., A.(b) = A(b). Let
0—> P, > -+ > Py — Lx(b) — 0 be a finite projective resolution of L (b) in
the stratum Ry. Applying jﬁ, which is exact thanks to Theorem 3.5, we obtain
an exact sequence 0 — V,, — .-+ — V5 — A(b) — 0 such that each V,, is a direct
sum of standard objects A(c) for ¢ € By. The result already established plus [Wei,
Ex. 4.1.3] implies that pdV,, < oo for each m. Arguing like in the proof of [Wei,
Th. 4.3.1], we deduce that pd A(b) < o too.

Conversely, suppose that pd A.(b) < oo for all b € B. Take A € A withe(\) = —.
To show that R has finite global dimension, it suffices to show that there is some
d(\) = 0 such that Exty, (Lx(b), W) = 0 for all n > d(A),be By and W € Ry. By
Theorems 3.18(3) and 3.17(3), we have that

Extr, (La(b), W) = ExtR_, (Ac(b), 3 W) = Ext (Ac(b),i<a(53W)).
So we can take d(\) = max{pd A.(b) | be B,}. O

The case when all strata are positive (respectively negative) will be of great
importance.

COROLLARY 3.24. IfR is a finite +-stratified (resp., —-stratified) category then
allV e A(R) (resp., V € V(R)) are of finite projective (resp., injective) dimension.

COROLLARY 3.25. Suppose that R is a finite e-stratified category. If R is of
finite global dimension then all of its strata are of finite global dimension too.

PrROOF. Lemma 3.23(1) implies that all negative strata have finite global di-
mension, and Lemma 3.23(2) implies that all positive strata have finite global di-
mension. (]

COROLLARY 3.26. Suppose that R is either a finite +-stratified category or a
finite —-stratified category. If all of the strata are of finite global dimension then R
is of finite global dimension.

'We mean the strata Ry for A € A such that e(A) = —.
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PROOF. We just explain this in the case that R is —-stratified; the argument
in the +-stratified case is similar. Lemma 3.23(1) implies that A(b) is of finite
projective dimension for each b € B. Moreover, there is a short exact sequence
0 — K — A(b) — L(b) — 0 where all composition factors of K are of the form
L(e) for ¢ with p(c) < p(b). Ascending induction on the partial order on the finite
set p(B) € A implies that each L(b) has finite projective dimension. O

A special case of Corollary 3.26 recovers the following well-known result, see
e.g. [CPS1]. For further detailed remarks about the history of this, and the general
notion of highest weight category, we refer to [Don4, §A5] and [DR].

COROLLARY 3.27. Finite highest weight categories are of finite global dimen-
ston.

REMARK 3.28. In the fully stratified case, Lemma 3.22 can be used to give a
precise bound on the global dimension of R in Corollary 3.26. Assuming A is finite,
let

- max (gl. dim Ry, ,...,gl.dim Ry ) n=1M,...,\p €A
|A|'—S“p{ 2 T ith d < <A = A S

By mimicking the proof of [Don4, Prop. A2.3], one shows that Ext’ (L(b), L(c)) = 0
for b,c € B and any i > |p(b)| + |p(c)|. Hence, gl. dim R < 2max{|A| | A € A}. For
finite highest weight categories, this shows that gl.dimR < 2(n — 1) where n is
length of the longest chain of weights in the weight poset A.

REMARK 3.29. Outside of the highest weight case, finitistic dimension is used
as a replacement for global dimension. In particular, finite fibered highest weight
categories have finitistic dimension < 2(n — 1) where n is length of the longest
chain of weights in the weight poset A; this can be proved following the argument
of [AHLU, Cor. 2.7]. For finite fully stratified categories, it should be possible
to bound the finitistic dimension of R in terms of the finitistic dimensions of the
strata and chains in the poset like in the previous remark.

REMARK 3.30. Another remarkable result about global dimension of finite high-
est weight categories was obtained in [MO], [MP] proving conjectures formulated
in [CaeZ], [EP]: if R is a finite highest weight category with duality, i.e., possess-
ing a contravariant autoequivalence preserving isomorphism classes of irreducible
objects, then the global dimension of R is equal to twice the projective dimension
of a tilting generator (see Definition 4.9 below). More generally, Mazorchuk and
Ovsienko show that the finitisic dimension is equal to twice the projective dimen-
sion of a tilting generator in any finite fibered highest weight category with duality
which is also tilting-rigid in the sense of Definition 4.36 below. Recently, Cruz and
Marczinik [CM, Th. 2.2] (see also Corollary 4.40 below) have shown that a finite
fibered highest weight category R is tilting-rigid if and only if it is Gorenstein, in
which case the finitistic dimension of R coincides with its Gorenstein dimension
(e.g., see [Che, Lem. 2.3.2]).

3.3. Upper finite e-stratified categories

In this section we assume that R is a Schurian category equipped with an
upper finite stratification (B, L, p, A, <). Also € : A — {£} denotes a sign function.
Let I(b) and P(b) be an injective hull and a projective cover of L(b) in R. Recall



40 3. GENERALIZATIONS OF HIGHEST WEIGHT CATEGORIES

(1.1)—(1.2), the properties (PA;)—(IV.) and (PA)—(IV) from the introduction, and
the seemingly stronger properties (?Ag)f(ﬁ -) and (P/Z)f(ﬁ ) from the previous
section.

Before formulating the main definitions in the upper finite setting, we prove
an analog of the homological criterion for V.-flags from Theorem 3.11. The proof
depends on the lemmas proved in §3.4 below, which we used already in the previ-
ous section, together with the following two technical lemmas, which we prove by

truncating to finite Abelian quotients.

LEMMA 3.31. Suppose that R is Schurian with upper finite stratification and
sign function as usual, and assume that the property (}/DZE) holds in R. Let AT be
a finite upper set in A, B" := p~1(A"), and j : R — R be the corresponding Serre
quotient category with the induced stratification. The functor j. sends short exact
sequences of objects in V<(R") to short exact sequences of objects in V(R).

PROOF (ASSUMING LEMMAS IN §3.4 BELOW). Take a short exact sequence
0—K—X—Q—0

in R" such that K, X and Q have V.-flags. We must show that 0 — j. K — j. X —
J«@Q — 0 is exact with all objects belonging to V.(R). We proceed by induction
on the length of the V.-flag of j.(X), with the base case (length one) following
from Lemma 3.49(1). For the induction step, we may assume that K,Q # 0
and know by induction that j,K and j,Q have V.-flags. We must show that
0— j« K — 7. X — j:@Q — 0 is exact. Since jy is left exact, this follows if we can
show that

[+ X : L(b)] = [« K : L(D)] + [J«Q : L(b)]
for all b € B. To see this, let AT be the finite upper set generated by AT and b.
Let B := p~!(A"™) and k : R — R" be the corresponding Serre quotient. By
Lemma 2.27, we have that [j.X : L(b)] = [k(j:X) : kL(b)] = [k(5:X) : LT ()],
and similarly for K and Q. Since A" is an upper set in A", we can also view R’
as a quotient of R", and the quotient functor j factors as j = 7o k for another
quotient functor 7: R — R'. We have that ks o Js = jx, hence, applying k, we
get that 7, = koj,. It follows that [k(j.X) : LT (b)] = [7:X : L™ (b)], and similarly
for K and Q. We have now reduced the proof to showing that

[7::X : LT(0)] = [7:K : L™ (b)] + [7xQ : L (b)].

To see this, we note that R"" and R' are finite e-highest weight categories due to
Lemma 3.49(2) and Theorem 3.5. So we can apply Theorem 3.18(4) to see that the
sequence 0 — 7, K — 7, X — 7,Q — 0 is exact. (]

LEMMA 3.32. Suppose that R is Schurian with upper finite stratification and
sign function as usual, and assume that the property (ﬁze) holds in R. LetV e R
be a finitely cogenerated object such that Ext%z(AE(b), V) =0 for allbe B. Then
we have that V € V(b), and the multiplicity (V : V(b)) of V<(b) in any V.-flag
is equal to the dimension of Homg (AL (b),V).

PROOF (ASSUMING LEMMAS FROM §3.4 BELOW). Since V is finitely cogener-
ated, its injective hull is a finite direct sum of the indecomposable injective objects
I(b). This means that we can find a finite upper set A" and B := p~!(A") so that
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there is a short exact sequence

0—V— PIL® —Q—0
beBT
for some ny = 0. Let j : R — R be the corresponding Serre quotient. This is a
finite e-stratified category by Lemma 3.49(2) and Theorem 3.5.
Applying j to the above short exact sequence gives us a short exact sequence
in R". Then we take b € B! and apply the functor Homp+ (AL(b),?) to this using
also Lemma 3.49(1) to obtain the long exact sequence

0 —> Homp: (AL(b), jV) — Homp: (AL(), @yepr I'(5)°™)

From adjunction and Lemma 3.49(1) again, we get a commuting diagram
0—Homp: (AL(b), jV)—>Homg: (AL(D), Dyep: 1" (0)®")—Homp: (AL(D), jQ) — 0

l | |

0— Homg (A.(b),V) — Homg (A (b), Byeg: L(b)®™) — Homp (AL (b),Q) — 0.

The vertical maps are isomorphisms and the bottom row is exact because we have
that Ext%z(AE(b), V) = 0. Hence the top row is exact. Comparing with the pre-
viously displayed long exact sequence, it follows that Extz (Al(b),7V) = 0. Now
we can apply Theorem 3.11 in the finite e-stratified category R' to deduce that jV
has a V_-flag.

From Lemma 3.31, we deduce that j,.jV has a V.-flag. Moreover the mul-
tiplicity of V¢(b) in any V.-flag in j,7V is dim Homg (A(b),5+7V) thanks to
Lemma 3.48. To complete the proof, we show that the unit of adjunction f :
V — j4«jV is an isomorphism. We know from Lemma 3.49(1) that the unit of
adjunction is an isomorphism I(b) — 5,7I(b) for each b € B'. Since V embeds into
a direct sum of such I(b), it follows that f is injective. To show that it is surjective,
it suffices to show that

[7x3V : L(b)] = [V : L(D)]
for all b € B. To prove this, we fix a choice of b € B then define AT, B™, k: R — R"
and 7: R™ — R" as in the proof of Lemma 3.31. Since b € B", we have that
[V : L(b)] = [kV : LT (b)] and [jjV : L(b)] = [k(jxjV) : L'"(b)]. As in the proof
of Lemma 3.31, k(j.jV) = 7:(jV) = 7.73(kV). Thus, we are reduced to showing
that
[ (6V) : LT (B)] = [V 5 L7 (b)),

This follows because kV = 7,7(kV). To see this, we repeat the arguments in
the previous paragraph to show that kV € R™ has a V.-flag. Since the unit of
adjunction is an isomorphism V' (b) = 7,7V (b) for each b € B, we deduce using
the exactness from Theorem 3.18(4) that it gives an isomorphism kV = 7,7(kV)
too. (]

THEOREM 3.33. Theorem 8.5 holds in the upper finite setup too.

PRrROOF. This is almost the same as the proof of Theorem 3.5 given in the
previous section. One needs to use Lemma 3.32 in place of Theorem 3.11 to see
that I(b) has a V.-flag with the appropriate multiplicities. The exactness of j3 when
£()\) = + follows from Lemma 3.31 applied to the quotient functor j* : R<x — Ra.
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Note for this that R<) satisfies (IEZE) due to Lemma 3.45(2), and we have that
V:(RA) =Ry ase(A) = +. O

We are ready to proceed to the main definition.

DEFINITION 3.34. Let (B, L, p, A, <) be an upper finite stratification on R.

(eS) We say that R is an upper finite e-stratified category if one of the equivalent
properties (]st)f(ﬁ <) holds for a given choice of sign function € : A —
(£},

(FS) We say that R is an upper finite fully stratified category if one of these
properties holds for all choices of sign function € : A — {+}.

(eHW) We say that R is an upper finite e-highest weight category if the strat-
ification function p is a bijection, and one of the equivalent properties
(}/DZE)*(I/%E) holds for a given choice of sign function € : A — {#}.

(FHW) We say that R is an upper finite fibered highest weight category if the
stratification function is a bijection and one of these properties holds for
all choices of sign function.

(HW) We say that R is an upper finite highest weight category if all of the stata
are simple (cf. Lemma 3.4) and one of the equivalent properties (155)7
(IV) holds.

The Ext'-vanishing (3.10) and Theorem 3.9 both still hold in the same way as
before.

Next we are going to consider two (in fact dual) notions of ascending A.- and
descending V.-flags, generalizing the finite flags discussed already. One might be
tempted to say that an ascending A.-flag in V' is an ascending chain 0 = Vj < V; <
Va < -+ of subobjects of V with V =Y} _V,, such that V,,,/V,,—1 = A.(by,), and
a descending V.-flag is a descending chain V =V, > V3 > V5 > ... of subobjects
of V such that (), Ve = 0 and V,,,_1/V;,, = AL(by,), for b, € B. These would
be serviceable definitions when A is countable. In order to avoid this unnecessary
restriction, we will work instead with the following more general formulations.

DEFINITION 3.35. Suppose that R is an upper finite e-stratified category and
VeR.

(AA) An ascending A.-flag in V is the data of a directed set © with smallest
element 0 and a direct system (V,,),eq of subobjects of V such that Vy = 0,
Dwen Vo =V, and V,,/V,, € A, (R) for each w < v. Let A2°(R) be the
full subcategory of R consisting of all objects V' possessing such a flag.

(DV) A descending V.-flag in V is the data of a directed set Q with smallest
element 0 and an inverse system (V/V,,),eq of quotients of V' such that
Vo=V, Noeq Ve =0, and V,,/V,, € V.(R) for each w < v. Let VI¢(R)
be the full subcategory of R consisting of all objects V' possessing such a
flag.

We stress that A2¢(R) and VI¢(R) are subcategories of R: we have not passed
to the completion Ind(R.).
LEMMA 3.36. Suppose that R is an upper finite e-stratified category.
(1) ForV e A®(R), W € V¥¢(R) and n > 1, we have that Ext (V,W) = 0.
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(2) For V. e AZ°(R) the multiplicity of Ac(b) in a A.-flag may be defined

from
(V : Ac(b)) := dimHomg (V, V(b)) = sup {(V., : A.(b)) |w € Q} < o0,

where (Vy)weq is any choice of ascending Ac-flag.

(3) For V e V&¢(R), the multiplicity of V(b) in a V.-flag may be defined
from

(V : V(b)) := dim Homg (A (b), V) = sup {(V/V,, : V(b)) |w e Q} < o0,
where (V/V,)weq is any choice of descending V-flag.

PRrROOF. (1) We first prove this in the special case that W = V.(b). Let
(Vio)wea be an ascending A.-flag in V', so that V' =~ lim V,,. Since Ext% (V,,W) =0
by Lemma 3.48, it suffices to show that

Exty (V, W) = lim Extg (V,,, W).

To see this, like in [Wei, 3.5.10], we need to check a Mittag-Leffler condition. We
show that the natural map Ext ' (V,,, W) — Extly *(V,, W) is surjective for each
w < v in Q. Applying Homg (?, W) to the short exact sequence 0 — V,, —» V,, —
V,/Vi, — 0 gives an exact sequence

Ext%—l(vw W) — Ext%—l(vw W) — Ext’ (V,,/Vi,, W).

It remains to observe that Ext (V,,/V,,, W) = 0 by Lemma 3.48 again, since we
know from the definition of ascending A.-flag that V,,/V,, € A.(R).

The dual of the previous paragraph plus Lemma 2.12 gives that Exty (V, W) =
0forn>1,V =A.(b) and W € VI&¢(R). Then we can repeat the argument of
the previous paragraph yet again, using this assertion in place of Lemma 3.48, to
obtain the result we are after for general V € A®°(R) and W € VI¢(R).

(2) This follows from (1) and (3.5) because
Homp (V, V< (b)) = Homg (lim V,,, V(b)) = lim Homg (V,,, Ve(b)),
which is finite-dimensional as V. (b), hence, each V,,, is finitely cogenerated.
(3) Similarly to (2), we have that
Homg (Ac(b), V) = Homp (A (b), lim(V/V,,)) = lim Homg (A (b), V/V,,),

which is finite-dimensional as A (b) is finitely generated. Then we can apply (1)
and (3.5) once again. O

THEOREM 3.37 (Homological criterion for ascending A -flags). Assume that R
is an upper finite e-stratified category. For V € R, the following are equivalent:
(1) Ve AF(R);
(ii) Exty(V,V.(b)) =0 for allbe B;
(i11) Extg (V, V(b)) =0 for allbe B and n > 1.
Assuming these properties, we have that V. € A (R) if and only if it is finitely
generated.

PROOF. (iii)=(ii). Trivial.
(i)=>(iii). This follows from Lemma 3.36(1).

(ii)=>(i). Let Q be the directed set of finite upper sets in A. Take w € §; it is some
finite upper set A'. Let B" := p~!(A") and j : R — R' be the corresponding
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Serre quotient. By Lemma 3.49(3), Exty; (jV, V(b)) = 0 for all b € B'. Hence,
Vo = 51(jV) € A:(R) thanks to the dual of Lemma 3.31. Let f, : V,, — V be the
morphism induced by the counit of adjunction. We claim for any b € B' that the
map
fu(d) : Homgz (P(b),V,,) » Homg (P(b),V), 0 — f,00

is an isomorphism. To see this, we assume that R = A-modjq for a pointed
locally finite-dimensional locally unital algebra A = (—Ba’beB eqAley. Then RT =
eAe-modygq where e = Y i eq, and V,, = Ae ®cac €V. In these terms, the map
f., is the natural multiplication map. For b € BT, this multiplication map gives an
isomorphism e,V,, = e,V with inverse e,v +— e, ® epv. This proves the claim.

Now take v > w, i.e., another finite upper set A™ > A", and let k : R — R"
be the associated quotient. The quotient functor j : R — R factors as j = jok
for another quotient functor 7: R — R, and we have that

Vo= Gek)(Gek)V) =k(n(kV)), Vi =hk(kV).

By Corollary 3.19(2), there is a short exact sequence 0 — 7i(7(kV)) —» kV - Q — 0
such that both 7(7(kV)) and Q belong to A, (R"). Applying ki and using the
exactness from the dual of Lemma 3.31, we get an embedding fY : V, — V,
such that V,,/V, = kiQ € A (R). Since the morphisms all came from counits of
adjunction, we have that f, o f' = f..

Now we can show that each f,, is a monomorphism. It suffices to show that
fuw(b) : Homg (P(b),V,,) — Homg (P(b),V) is injective for all b € B. Choose v in
the previous paragraph to be sufficiently large so as to ensure that b € B". We
explained already that f,,(b) is an isomorphism. Since f, = f, o f¥ and f! is a
monomorphism, it follows that f,,(b) is injective too. Thus, identifying V,, with its
image under f,,, we have defined a direct system (V,,)weq of subobjects of V' such
that V,,/V,, € A (R) for each w < v. It remains to observe that Vi = 0 for a trivial
reason, and ), _, Vi, = V because we know for each b € B that f,(b) is surjective
for sufficiently large w.

Final part: If V e A.(R), it is obvious that it is finitely generated since each A.(b)
is finitely generated. Conversely, suppose that V is finitely generated and has an
ascending A.-flag. To see that it is actually a finite flag, it suffices to show that
Homg (V, V(b)) = 0 for all but finitely many b € B. Say hd V' =~ L(b1)®- - -®L(by).
If V — V.(b) is a non-zero homomorphism, we must have that p(b;) < p(b) for some

i =1,...,n. Hence, there are only finitely many choices for b as the poset is upper
finite. ([

COROLLARY 3.38. Let 0 > U —» V — W — 0 be a short exact sequence in R.

(1) If U and W belong to A2°(R) (resp., A:(R)) so does V.
(2) If V and W belong to A2°(R) (resp., Ac(R)) so does U.

THEOREM 3.39 (Homological criterion for descending V. -flags). Assume that
R is an upper finite e-stratified category. For V € R, the following are equivalent:
(i) V € VE(R);
(ii) Extr (AL(b),V) =0 for all be B;
(iii) Extg(A:(b),V) =0 for allbe B and n = 1.
Assuming these properties, V € V.(R) if and only if it is finitely cogenerated.

PRrROOF. This is the equivalent dual statement to Theorem 3.37. g
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COROLLARY 3.40. Let 0 > U -V — W — 0 be a short exact sequence in R.

(1) If U and W belong to VIC(R) (resp., V.(R)) so does V.
(2) If U and V belong to VI°(R) (resp., V<(R)) so does W.

The following is the upper finite analog of Theorem 3.17; we have dropped part
(6) since the proof of that required objects of R* to have finite length.

THEOREM 3.41 (Truncation to lower sets). Assume that R is an upper finite
e-stratified category. Suppose that A' is a lower set in A. Let BY := p~1(A')
and i : R*Y — R be the corresponding Serre subcategory of R with the induced
stratification. Then R' is an upper finite e-stratified category. Moreover:

(1) The distinguished objects in R* satisfy L*(b) =~ L(b), P*(b) =~ i*P(b),
IY(b) = i'1(b), AY(D) = A(b),A (b) = A(b), VH(b) = V(b) and V*(b) =
V(b) for be B*.

(2) i* sends short exact sequences of objects in A:(R) to short exact se-
quences, i*A(b) = A'(b) and i*A(b) = A(b) for b e BY, and i*A(b) =
i*A(b) =0 for b¢ B*.

(3) Exty (V,iW) =~ Exty, (i*V,W) for Ve A (R), W e R* and all n = 0.

(4) i* sends short exact sequences of objects in V.(R) to short exact sequences,
i'V(b) = V() and i'V(b) = V(b) for be B, and i'V(b) = i'V(b) = 0
for b¢ BY.

(5) Exth (iV,W) = Ext, (V,i'W) for Ve R*, W € V.(R) and alln > 0.

ProoOF. This follows from Lemma 3.45 and the dual statement. O
Next is the upper finite analog of Theorem 3.18.

THEOREM 3.42 (Truncation to upper sets). Assume that R is an upper finite
e-stratified category. Suppose that A" is an upper set in A. Let B' := p~1(A")
and j : R — R be the corresponding Serre quotient category of R with the induced
stratification. Then R’ is itself a finite or upper finite e-stratified category according
to whether AV is finite or infinite. Moreover:

(1) For b € B, the distinguished objects L' (b), P'(b), I'(b), AT(b), AT(b),
V1(b) and V'(b) in R" are isomorphic to the images under j of the cor-
responding objects of R.

(2) We have that jL(b) = jA(b) = jA(b) = jV(b) = jV(b) =0 if b ¢ B'.

(3) Extk(V,5:W) = Exth: (jV,W) for Ve R,W € VE(R") and all n > 0.

(4) jx sends short exact sequences of objects in V<(R") to short exact se-
quences, §: V' (b) = V(b), .V (b) = V(b) and j.I'(b) = I(b) for be B'.

(5) Exti (i V,W) = Extiy: (V, jW) for Ve A2(R"), W e R and all n > 0.

(6) 41 sends short exact sequences of objects in A.(R") to short exact se-
quences, HAT(b) = A(b), HAT(b) = A(b) and jiP'(b) = P(b) for be B'.

Proor. If A is finite, this is proved in just the same way as Theorem 3.18.
Assume instead that A" is infinite. Then the same arguments prove (1) and (2),
but the proofs of the remaining parts need some slight modifications. It suffices to
prove (3) and (4), since (5) and (6) are the same results for R°P.

For (3), the argument from the proof of Lemma 3.49(3) reduces to checking
that j sends projectives to objects that are acyclic for Homg+ (7, W). To see this,
it suffices to show that Ext; (jP(b), W) = 0 for n > 1 and b € B, which follows
from Lemma 3.36(1).
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Finally, for (4), the argument from the proof of Theorem 3.18(4) cannot be
used since it depends on R’ being essentially finite Abelian. So we provide an
alternate argument. Take a short exact sequence 0 - U — V — W — 0 in
V(R"). Applying j., we get 0 — .U — 5.V — 7, W, and just need to show
that the final morphism here is an epimorphism. This follows because, by (3) and
Theorem 3.39, j,.U, 7.V and j,W all have V.-flags such that (jV : V(b)) =
(jxU : V(D) + (jxW : V(b)) for all b e B. O

The reader should have no difficulty in transporting Lemma 3.20 and Corol-
lary 3.21 to the upper finite setting. Also, Lemma 3.23 remains valid when “finite
e-stratified category” is replaced by “upper finite e-stratified category”. To see
this, we just note that the argument by downwards induction on the partial order
explained in the proof works just as well when A is upper finite rather than finite.
The following is the upper finite analog of Corollary 3.24.

LEMMA 3.43. If R is an upper finite +-stratified (resp., —-stratified) category
then all Ve A(R) (resp., V € V(R)) are of finite projective (resp., injective)
dimension.

Proor. This follows from the upper finite analog of Lemma 3.23. (]

3.4. Shared lemmas for §§3.2—3.3

In this section, we prove a series of lemmas needed in both §3.2 and in §3.3.
Let R be an Abelian category equipped with a stratification (B, L, p, A, <) which
is either essentially finite (§3.2) or upper finite (§3.3). Also let ¢ : A — {£} be a

sign function. We assume throughout the section that the property (ZSZE) from
3.2 holds.

LEMMA 3.44. We have that Exty (A (b),A(c)) = 0 for b,c € B such that
p(b) £ p(c).

PRrROOF. Using the projective objects P, given by the assumed property (F/’ZE),
we can construct the first terms of a projective resolution of A.(b) in the form
(3.11) Q— P PP —P—A()—0

acB
p(a)=p(b)
for some n, = 0. Now apply Homg (?, A.(c)) to get that Exty (A.(b), Ac(c)) is the
homology of the complex

HomR(Pb,AE(c))—>HomR< P P?”“,Aa(c)) — Homg (Q, A(c)).

aeB
p(a)=p(b)

The middle term of this already vanishes as [Ac(c) : L(a)] # 0 = p(a) < p(c). O

LEMMA 3.45. Let A* be a lower set in A and BY := p~1(A). Leti:R* >R
be the corresponding Serre subcategory of R equipped with the induced stratification.

(1) The standard, proper standard and indecomposable projective objects of
R*' are the objects A(b), A(b) and i* P(b) for be B*.

(2) The object i* P, is zero unless b € BY, in which case it is a projective object
admitting a A.-flag with top section A.(b) and other sections of the form
A (c) for ¢ € B with p(c) = p(b). In particular, this shows that (]SZE)
holds in R*.
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(3) (L,i*)V =0 for VeA, (R) and n > 1.
(4) Exty (V,iW) = Exty, (i*V,W) for Ve A.(R), W e R* and n > 0.

PROOF. (1) For projectives, this follows from the usual adjunction properties.
This also shows that i* P, is projective, as needed for (2). For standard and proper
standard objects, just note that the standardization functors for R' are some of
the ones for R.

(2) Consider a A.-flag of P,. Using Lemma 3.44, we can rearrange this filtration if
necessary so that all of the sections A.(c) with ¢ € BY appear above the sections
A.(d) with d € B\B*. So there exists a short exact sequence 0 - K — P, —» Q — 0
in which @ has a finite filtration with sections A.(c) for ¢ € B* with p(c) = p(b),
and K has a finite filtration with sections A.(c) for ¢ € B\B'. It follows easily that
1* P, is isomorphic to @, so it has the appropriate filtration.

(3) It suffices to show that (L,i*)A.(b) = 0 for all b € B and n > 0. Take a short
exact sequence 0 —» K — P, — A.(b) — 0 such that K has a A.-flag with sections
A.(c) for ¢ with p(c) = p(b). Applying i*, we obtain the long exact sequence

0—> (Lyi*)AL(b) — i*K —> i*P, — i*A.(b) — 0

and isomorphisms (L, +1i*)A.(b) = (L,i*) K for n > 0. We claim (L;:*)A.(b) = 0.
We use Lemma 3.44 to order the A -flag of K so that it yields a short exact sequence
0> L —> K — @ — 0in which Q has a A.-flag with sections A.(c) for ¢ € B,
and L has a A.-flag with sections A.(c) for ¢ € B\B*'. It follows that i* K = @ and
there is a short exact sequence 0 — i*K — i* P, — A.(b) — 0. Comparing with the
long exact sequence, we deduce that (IL;7*)A.(b) = 0. Finally some degree shifting
using the isomorphisms (L, +1i*)A.(b) = (L,i*)K gives that (IL,i*)A.(b) = 0 for
n > 1 too.

(4) By the adjunction, we have that Homg (?,iW) = Homg.(?,W) o i*, i.e., the
result holds when n = 0. Also i* sends projectives to projectives as it is left adjoint
to an exact functor. Now the result for n > 0 follows by a standard Grothendieck
spectral sequence argument; the spectral sequence degenerates due to (3). (]

LEMMA 3.46. Suppose that A € A is mazimal and b € By. Then P(b) = A(b)
and 1(b) = V(b).

PROOF. Lemma 3.1 shows that A(b) = i%, P(b) and V(b) = il I(b).

To complete the proof for P(b), it remains to observe that P(b) belongs to R,
so i¥, P(b) = P(b). This follows from PA.: the object Py belongs to R<y due to
the maximality of A and P(b) is a summand of it.

The proof for I(b) needs a different approach. From V(b) = i, I(b), we deduce
that there is a short exact sequence 0 — V(b) — I(b) —» Q — 0 with z'IS)\Q =0,
and we must show that @ = 0. Take a € B and apply Homg (A.(a), ?) to this short
exact sequence to get an exact sequence

(3.12) Hompg (Ac(a), I(b)) — Homp (A.(a),Q) — 0
and isomorphisms
(3.13) Ext™ (A:(a), V() = Extx (A.(a), Q)

for n > 1. If p(a) = X then Homg(A.(a),Q) = 0 because iL,@ = 0. If
pla) # A, then in fact we have that p(a) 2 A by the assumed maximality of A,
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so [Az(a) : L(b)] = 0. Hence, Homg (A.(a),I(b)) = 0, implying in view of (3.12)
that Homg (Ac(a), @) = 0 again. Thus, we have shown that Homg (A (a),Q) =0
for all @ € B. This implies that soc @ = 0. In the essentially finite Abelian case, this
is all that is needed to deduce that @) = 0, completing the proof. In the Schurian
case, we need to argue a little further because ) need not be finitely cogenerated,
so can have zero socle even when it is itself non-zero. We have for any a € B that
Ext (As(a), V(b)) = 0 for n > 0. This follows using Lemma 3.45(4): it shows that
Ext% (Ac(a), V(b)) = ExtRk_, (i£,Ac(a), V(b)) which is zero as V(b) is injective in
R<x. Combining this with (3.13), we get that Ext:(A.(a),Q) = 0. Now we ob-
serve that the properties Homg (A.(a),Q) = 0 = Exth (A (a),Q) for all a € B do
imply that @ is zero. Indeed, we have that Homg (P,Q) = Exty(P,Q) = 0 for
any P € R with a A.-flag. This follows using induction on the length of the flag
plus the long exact sequence. Since P, has a A.-flag by the hypothesis (]SZE) and
P(b) is a summand of it, we deduce that Homg (P(b), Q) = 0 for all b € B, which
certainly implies that @ = 0. O

LEMMA 3.47. Assume that A € A is mazimal and e(\) = +. For any V € Ry
and b € B, we have that Exty (A (b), j2V) = 0.

ProOOF. If b € B, then A_.(b) is projective in R¢y by Lemma 3.46, so we
get the Ext!-vanishing in this case. For the remainder of the proof, suppose that
b ¢ By Let I be an injective hull of V in Ry. Applying j) to a short exact
sequence 0 — V — I — @ — 0, we get an exact sequence 0 — j2V — j M — j2
By properties of adjunctions, j3@ is finitely cogenerated and all constituents of its
socle are of the form L(c) for c € By. The same is true for j2I/j2V since it embeds
into j2Q. We deduce that Homg (A (b), 52 I/j2V) = 0.

Now take an extension 0 — j2V — E — A_(b) — 0. Since j}I is injective,
we can find morphisms f and g making the following diagram with exact rows
commute:

0 v 2 E A(b) —— 0
| 7| o
0 Qv —— A1)V 0.

The previous paragraph implies that g = 0. Hence, im f < im¢. Thus, f =to f for
some f: E — j2V. We deduce that f o s = id, i.e., the top short exact sequence

splits, proving that Ext} (A (b),j2V) = 0. d

LEMMA 3.48. For b,ce€ B and n = 0, we have that dim Extk (A:(b), Ve(c)) =
Jb,cén,o-

ProoOF. The case n = 0 follows from (3.5), so assume that n > 0. Suppose
that b e By and c € B,,. By Lemma 3.45(4), we have that

Ext7 (A (b), Ve(c)) = Extr_ (iZ,A:(b), Ve(c)).
If A € p then 4% A (b) = 0 and we get the desired vanishing. Now assume that
A < p, when we may identify i% A (b) = A-(b). If e(u) = — then V. (c) = V(c),
and the result follows since V(c) is injective in R, by Lemma 3.1(2). So we may

assume also that e(u) = +. If A = p then A(b) is projective in R, by the same
lemma, so again we are done. Finally, we are reduced to A < p and e(u) = +,
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and need to show that Exty_ (Ac(b),V(c)) = 0 for n > 0. If n = 1, we get
the desired conclusion from Lemma 3.47 applied in the subcategory R, (allowed
due to Lemma 3.45(2)). Then for n > 2 we use a degree shifting argument: let
P :=i%, Py. By Lemma 3.45(2), P is projective in R, and there is a short exact
sequence 0 - K — P — A_(b) — 0 such that K has a A.-flag with sections
Ac(a) for a € B<,. Applying Homg_, (7, V(c)) we obtain Extr_, (A:(b), V(e)) =
Ext;’{;(K , V(c)), which is zero by induction. O

LEMMA 3.49. Let A" be an upper set in A and B' := p~1(A"). Let j : R —
R' be the corresponding Serre quotient category of R equipped with the induced
stratification.

(1) Forbe BT, the objects PT(b), I'(b), AT(b), AT(b), V'(b) and V' (b) in R"
are the images under j of the corresponding objects of R. Moreover, we
have that ;AT (b) = A(b), HAT(b) = A(b), P (b) = P(b) and j V' (b) =

(2) For any b € B, the object jP, has a A.-flag with top section Al(b) and
other sections of the form Al(c) for c € BT with p(c) = p(b). In particular,
this show that (PA.) holds in R

(3) Exty (V,j:W) = Exty: (jV,W) for Ve R, W e V.(R") and n = 0.

PROOF. (1) By Lemma 2.27, P'(b) = jP(b) for each b€ B'. Now take b € B
for A € AT. Let j* : R<x — Ry be the quotient functor as usual, and denote the
analogous functor for R by k* : R; P R;. The universal property of quotient
category gives us an exact functor 7: Ry, — R; making the diagram

J
Rex > RT@

e

Ry —— R}
J

commute. In fact, 7 is an equivalence of categories because it sends the inde-
composable projective jAP(b) in Ry to the indecomposable projective k*PT(b)
in R; for each b € B). We deduce that there is an isomorphism of functors
jrokdoj=j}. Applying this to Py(b) and to Ly(b) gives that jiAT(b) = A(b)
and jiAT(b) = A(b). Also by adjunction properties we have that jiP'(b) = P(b).
Similarly, applying the isomorphism j o k3 07 = j2 to I,(b) and Ly (b) gives that
J«VT(b) = V(b) and j,.V'(b) = V(b). Also by adjunction properties we have that
jxI"(b) = I(b). It just remains to apply j to the isomorphisms constructed thus far
and use j o j, = Idrt = jo 7).

(2) This follows from (1) and the exactness of j, using also that jA.(b) = 0 if
b¢ B

(3) The adjunction gives an isomorphism Homg (?, j. W) = Homg+ (?, W) o j. This
proves the result when n = 0. For n > 0, the functor j is exact. In order to invoke
the usual degenerate Grothendieck spectral sequence argument, all that remains is
to check that j sends projectives to objects that are acyclic for Homg: (7, W). By
(2), the functor j sends projectives in R to objects with a A.-flag. It remains to
note that Extl (X, W) = 0 for X € A.(R"),W € V.(R"). This follows from the
analog of Lemma 3.48 for R', which is valid due to (2). O
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3.5. Lower finite e-stratified categories

In this section, R is a locally finite Abelian category equipped a lower finite
stratification (B, L, p, A, <) and € : A — {+} denotes a sign function. For b € B,
we use the notation I(b) to denote an injective hull of L(b) in Ind(R).

DEFINITION 3.50. Let (B, L, p, A, <) be a lower finite stratification of the locally
finite Abelian category R. For a finite lower set A' in A, let BY := p~}(A') and
R*Y be corresponding Serre subcategory of R. We say that R is a lower finite
e-stratified category (resp., lower finite fully stratified category, resp., lower finite
e-highest weight category, resp., lower finite fibered highest weight category, resp.,
lower finite highest weight category) if R* with its naturally induced stratification
is a finite e-stratified category (resp., finite fully stratified category, resp., finite
e-highest weight category, resp., finite fibered highest weight category, resp., finite
highest weight category) for every finite lower set A* < A.

REMARK 3.51. For a simple example, let @) be any quiver. The category R of
finite length nilpotent representations of ) can be realized naturally as the category
of finite-dimensional comodules over the path coalgebra of @) as in [Sim, (8.3)]. In
order for this to be a lower finite highest weight category, one must assume that
there are only finitely many different paths between any two vertices. In that case,
the path algebra k@ is locally finite-dimensional, and we have that R =~ k@Q-modgq
with irreducible objects labelled by the set A of vertices of ) in the usual way. We
claim now that R is a lower finite highest weight category with weight poset (A, <)
for any lower finite partial ordering < on A. To see this, the Serre subcategory
R* corresponding to a finite lower set A = A is kQ*-modgy where Q' is the full
subquiver Q' of @ generated by A!. It is well known that this is a hereditary
category, hence, it is a finite highest weight category (e.g., see [Mad, Th. 4.1]).

Let R be a lower finite e-stratified category. Since R<) is a finite Abelian
category, the admissibility axiom (A) from §3.1 holds, so we can introduce the
objects A(b), A(b), V(b) and V(b) as explained there, also adopting the shorthands
A.(b) and V.(b). These objects are of finite length. Note also that Theorem 3.9,
Lemma 3.20 and Corollary 3.21 carry over immediately to the lower finite setting.

Now we are going to consider another sort of infinite good filtration in objects
of Ind(R). Usually (e.g., if A is countable), it is sufficient to restrict attention to
filtrations given by an ascending chain of subobjects 0 = V) < V5 < V5 < --- such
that V =3 V. and V,/V,,—1 = V.(by,) for some b,, € B. Here is the general
definition which avoids this restriction.

DEFINITION 3.52. An ascending V.-flag in an object V' € Ind(R) is the data of
a direct system (V,,)ueq of subobjects of V' such that the following properties hold:

(AV1D) V=2 eq Vi
(AV2) each V,, has a V.-flag with V.(b) appearing with multiplicity denoted
(Vo : Ve(b)) € N;
(AV3) (V : V(b)) :=sup((V,, V(b)) |w e Q} < oo for each b e B.
Let V25¢(R) be the full subcategory of R consisting of all objects V' that possess an

ascending V.-flag. In the special case ¢ = + (resp., € = j), we call it an ascending
V-flag (resp., V-flag), denoting the category V.(R) by V(R) (resp., V(R)).
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The multiplicities (V,, : V(b)) and (V : V.(b)) appearing in this definition
depend a priori on the choice of flag. In fact, they do not, so that the notation is
unambiguous:

LEMMA 3.53. Assume R is a lower finite e-stratified category. ForV € V¥°(R),
the multiplicity (V : V(b)) of V() in the ascending V.-flag appearing in Defini-
tion 8.52 is equal to dim Homg (A (b), V). Hence, it is well-defined independent of
the particular choice for this flag.

Proor. By Theorem 3.14 applied in the Serre subcategory R* associated to a
finite lower set A* of A chosen so that V,, € R}, we have that

(Vo : V(b)) = dim Homg (A (D), V).
Also
Homg (A (b), V) = Homg (A (b), lim V,,) = lim Homg (Ac(b), V.,).
We deduce that
dim Homg (A (b), V) = max{(V,, : A(b)) |w € O},
which is the definition of the multiplicity (V : V(b)) from Definition 3.52. O

LEMMA 3.54. Assume that R is a lower finite e-stratified category. For V €
V25¢(R) and b € B, we have that Exty (AL (b),V) = 0.

PROOF. If V is of finite length then it belongs to the finite Abelian category
R* associated to some finite lower set A' of A, and the lemma follows from Theo-
rem 3.11. Now suppose that V' is not of finite length. Let (V,),eq be an ascending
V.-flag in V. Take an extension V < E — A.(b). We can find a subobject E; of
E of finite length such that V + E; = V + E; this follows easily by induction on
the length of A.(b) as explained at the start of the proof of [CPS1, Lem. 3.8(a)].
Since V n Ej is of finite length, there exists w € Q2 with V n E; € V,,. Then we
have that V n Ey =V, n E; and

Vo + BV 2BV, "By = E| )V AEy = (V+ E))V = (V+E)/V = A(b).

Thus, there is a short exact sequence 0 — V,, —» V,, + E; — A.(b) — 0. The first
sentence of the proof implies that Ext} (A (b),V.,) = 0, hence, this splits. Thus,
we can find a subobject Ea =~ A, () of V,, + E; such that V, + £y = V,,@® Es. Then
V+FE= V+E1 = V+Vw+E1 = V+VW+E2 = V+E2 = V@Eg, and our
original short exact sequence splits too. (Il

COROLLARY 3.55. Leti: RY — R be the inclusion of the Serre subcategory of R
associated to a finite lower set A* of A and i* be its right adjoint. For V e V3°(R),
we have that i'V € V(R*Y).

PRrOOF. Take a short exact sequence 0 — i'V — V — @ — 0. Note that
Homp, (As(b),i!V) ~ Hompg (A (D), V)

is finite-dimensional for each b € B'. Since R' is finite Abelian, it follows that
i'V € R' (rather than Ind(R')). Moreover, Homg (A (b),Q) = 0 for b € B'.
So, on applying Homg (A:(b),?) and considering the long exact sequence using
Lemma 3.54, we get that Extl, (A.(b),i'V) = Exty (A (b),'V) = 0 for all be B'.
Thus, by Theorem 3.11, we have that i'V € V_(R*'). O
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The following homological criterion for ascending V.-flags generalizes Theo-
rem 3.11.

THEOREM 3.56 (Homological criterion for ascending V -flags). Assume that R
is a lower finite e-stratified category. For V € Ind(R), the following are equivalent:
(1) Ve VE(R);
(ii) Exty (AL(b),V) =0 and dim Homg (A (b), V) < o for all be B;
(iii) Extk (A:(b),V) = 0 and dimHomg (AL (b),V) < o for all b € B and
n>=1.
Assuming these properties, we have that V € V(R) if and only if V € R.

PROOF. (ii)=>(i): Let Q be the directed set consisting of all finite lower sets in
A. Take w e Q. It is a finite lower set A € A, so we have associated the corre-
sponding finite e-stratified subcategory R*'. Letting i : R* — R be the inclusion,
we set V,, := i'V. By Corollary 3.55, we have that V,, € V.(R). So the subobject
V' i= 3 cq Vo of V has an ascending V.-flag.

Now we complete the proof by showing that V' = V’. Applying Homg (A, (b),?)
to the short exact sequence 0 - V' — V — V/V’ — 0 using Lemma 3.54, we get
a short exact sequence

0 — Homg (A (b), V') —> Homg (A.(b), V) —> Homg (A.(b), V/V') —> 0

for every b € B. But any homomorphism A.(b) — V has image contained in V,
for sufficiently large w, hence, also in V’. Thus, the first morphism in this short
exact sequence is an isomorphism, and Homg (A(b), V/V') = 0 for all b € B. This
implies that V/V’ = 0 as required.

(i)=>(ii): This follows by Lemmas 3.53 and 3.54.
(iii)=>(ii): Trivial.
(i)=(iii): This follows from Lemma 3.53 and Theorem 3.59(4). Since this is a

forward reference, we should note that the proof of Theorem 3.59 only depends on
(i)« (ii) from the present theorem. O

COROLLARY 3.57. In a lower finite e-stratified category, each indecomposable
injective object I(b) belongs to V2°(R) and (I(b) : V(c)) = [Ac(c) : L(b)] for each
b,ce B.

PROOF. The first part follows from the implication (ii)=>(i) in the theorem. For
the second part, we get from Lemma 3.53 that (I(b) : V.(c)) = dim Homg (A (c) :
L(b)). O

COROLLARY 3.58. Let 0 - U - V. — W — 0 be a short exact sequence
in a lower finite e-stratified category. If U,V € V2°(R) then W € V2°(R) too.
Moreover

(V1 V(b)) = (U : V(b)) + (W : V(D).

The following is the lower finite counterpart of Theorem 3.17.

THEOREM 3.59 (Truncation to lower sets). Suppose R is a lower finite e-
stratified category. Let A' be a lower set, BY := p~1(A'), and i : R* — R be
the corresponding Serre subcategory of R with the induced stratification. Then R*
is a finite or lower finite e-stratified category according to whether A' is finite or
infinite. Moreover:



3.5. LOWER FINITE e-STRATIFIED CATEGORIES 53

(1) The distinguished objects of R* are L*(b) = L(b), I*(b) = i'I(b), A+ (b) =
A(b), At(b) =~ A(b), VH(b) = V(b) and V'(b) = V(b) for be B*.

(2) (R"" )V =0 for n > 1 assuming either that V € V°(R) or that V € R*.

(3) i* takes short ezact sequences of objects in V2°(R) to short evact sequences
of objects in V2°(RY), with i*'V(b) = V*(b) and i'V (b) = V*(b) for b e B!
and 'V (b) = i'V(b) = 0 for b ¢ B*.

(4) Ext’ (iV,W) = Ext®, (V,i'W) for Ve R, W € V3(R) and all n > 0.

(5) Exty, (iV,iW) =~ Exty, (V,W) for V,W € R* and all n = 0.

PROOF. The fact that R' is itself a lower finite e-stratified follows immediately
from Definition 3.50. It is finite if and only if B* is finite. The identification of
objects as in (1) is straightforward. In particular, the objects V.(b) in R* are just
the same as the ones in R indexed by b € BY, while the indecomposable injectives
in Ind(R*') are the objects i'I(b) for b e B*.

To prove (2), assume first that V' € V2°(R). Let I be an injective hull of soc V'
in Ind(R). Note that I is of the form @, g I(a)®"= for

0 < ny < dimHomg (AL(a),V) = (V: V.(a)) < .
Hence, for b € B<), we have that

dim Homg (A-(b), 1) = Y| na[Ac(b) : L(a)] <

aeB <

too. We deduce that I € V2%°(R) using the implication (ii)=(i) of Theorem 3.56.
Now consider the short exact sequence 0 - V — I — @Q — 0. By Corollary 3.58,
we have that Q € V2°(R) too. Applying the left exact functor i' and considering
the long exact sequence, we see that to prove that (R'i')V = 0 it suffices to show
that the canonical map 7' — #'Q is an epimorphism. Once that has been proved
we can use degree shifting to establish the desired vanishing for all higher n; it is
important for the induction step that we have already established that @ € V25¢(R)
just like V.

To prove the surjectivity, look at 0 — 4'1/i'V — i'Q — C — 0. Both 'l
and 7'V have V_.-flags by Lemma 3.55. Hence, so does i'/i'V, and on applying
Homp. (AL(b),?) for b e B}, we get a short exact sequence

0 — Homg. (AL (b),i'1/i'V) — Homg. (AL (b),i'Q) — Homg. (AL (b),C) — 0.
The first space here has dimension
(i1 Ve(b) = (i'V : V(b)) = (I : V(b)) = (V = Ve(b))
= (Q:Ve(b) = (IQ : V(b))

which is the dimension of the second space. This shows that the first morphism
is an isomorphism. Hence, Homp, (A (b),C) = 0. This implies that C = 0 as
required.

Finally let V € R'. Then V is of finite length, so it suffices just to consider
the case that V = L(b) for b € B*. Then we consider the short exact sequence
0 — L(b) - V.(b) - Q — 0. Applying i' and using the vanishing established
so far gives 0 — i'L(b) — i'V.(b) — i'Q — (R'%')L(b) — 0 and isomorphisms
(R""Q = (R**1")L(b) for n > 1. But i' is the identity on L(b), V.(b) and Q, so
this immediately yields (R':')L(b) = 0, and then (R"i')L(b) = 0 for higher n by
degree shifting.
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Having proved (2), property (3) follows easily. Finally (4)—(5) follow by the
usual Grothendieck spectral sequence argument starting from the adjunction iso-
morphism Homp, (iV,?) = Homg (V,?) oi'. One just needs (2) and the observation
that 7' sends injectives to injectives. [

Our next result gives an alternative characterization of lower finite e-stratified
categories. Note for this that if R is a lower finite e-stratified category then the
hypotheses of the theorem are automatically satisfied taking I2°¢ := I(b); cf. Corol-
lary 3.57.

THEOREM 3.60 (Global characterization of lower finite e-stratified categories).
Let R be a locally finite Abelian category equipped with a lower finite stratification
(B,L,p, A\, <) and € : A — {+} be a sign function. Assume for each b € B that
L(b) has an injective hull in R<,w) so that we can introduce the objects V(b) in
the usual way?. Suppose that the following property holds:

(ﬁ:sc) For every b € B, there exists an injective object I, € Ind(R) with an
ascending V. -flag (V,,)weq in the sense of Definition 3.52 such that for
each w € ) the given V. -flag of V, has V.(b) at the bottom and all other
sections are of the form V.(c¢) for ¢ € B with p(c) = p(b).

Then R is a lower finite e-stratified category.

PROOF. We must verify the condition from Definition 3.50. Let A' be a finite
lower set, B* := p~1(A'), and R* be the corresponding Serre subcategory of R.
This is a locally finite Abelian category with irreducible objects labelled by the
finite set BY. We need to show it is a finite e-stratified category with respect to the
induced stratification.

Step 1: Exty(V.(a),V.(b)) = 0 for p(a) % p(b). Let (V,).eq be the given as-
cending V.-flag of I,. We have that V.(b) — I, and I,/V.(b) = > .o (V./V:(D)).
The socle of the latter object only involves constituents L(c) with p(c) = p(b). We
deduce that there is an injective resolution 0 — V. (b) > I, > J — -+ in Ind(R)
in which J is a direct sum of I, with p(c) = p(b). The Ext'-vanishing now follows
on applying Homg (V. (a),?) to this resolution and taking homology.

Step 2: For b € BY, the object I} = i'l, € Ind(R") has a V.-flag with V.(b) at
the bottom and other sections of the form V.(c) for ¢ € BY with p(c) = p(b). In
particular, Ié is of finite length. Take b € B and let (V,,)ueq be the given ascending
V.-flag in I. Since B' is finite, we can choose some sufficiently large w € Q so
that (V : V.(c)) = (V,, : Vc(c)) for all ¢ € BY; these multiplicities are the given
ones from Definition 3.52. Then we see that i'V,, = 'V, for all larger v, hence,
i'V = 4'V,,. In view of Step 1, we can rearrange the V.-flag of V, so that the
sections V(c) with ¢ € B appear below the other sections, with bottom section
V<(b). So there is a short exact sequence 0 — U, — V,, — W,, — 0 such that
U, € V-(R') and i'W,, = 0. Then we get that i'V = i'V,, = U, which has the
desired V. -flag.

Step 3: R' is a finite e-stratified category with respect to the induced stratification.
By adjunction properties, the object Ij € R' from Step 2 is injective and it has
L(b) in its socle. This shows that the locally finite Abelian category R' has enough
injectives, hence, it is a finite Abelian category by Lemma 2.21. Moreover, the

2We do not insist that L(b) has a projective cover in R<p(p) and do not need the objects Ac(d).
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objects I} (b € BY) satisfy the condition (IV.) from §3.2, so R* is a finite e-stratified
category according to Definition 3.7. ]

COROLLARY 3.61. Let R be a locally finite Abelian category, (A, <) be a lower
finite poset, and L : A — R be a function labelling a complete set of pairwise
inequivalent irreducible objects. Assume for all X\ € A that L(\) has an injective
hull V(X)) € Ry such that [V(N) : L(A)] = 1. Suppose that the following property
holds:

(ﬁasc) For every A € A there exists an injective object I € Ind(R) with an
ascending V-flag (V,,),eq such that for each w € Q the given V-flag of V,
has V(\) at the bottom and all other sections are of the form V(u) for
e N with > A

Then R is a lower finite highest weight category.

PrROOF. Apply the theorem taking B = A and p to be the identity function,
using also Lemma 3.4. (]

REMARK 3.62. Using Corollary 3.61, it follows that R is a lower finite highest
weight category with all intervals (), 0] in the weight poset being countable if and
only if Ind(R) is a highest weight category in the original sense of [CPS1, Def. 3.1]
with a weight poset that is lower finite. This is also mentioned in [Cou3|.

The following theorem gives a related characterization for lower finite fully
stratified categories. The proof is based on the well-known proof of the homolog-
ical criterion for good filtrations in the context of reductive algebra groups from
[Jan1, Prop. 11.4.16]. The Ext®-vanishing property needed for this is used as one
of the defining properties in [RW, Def. 2.1]; see also [Cou3, Def. 3.1.2(f)]. We
know already that lower finite fully stratified categories automatically satisfy the
conditions of this theorem.

THEOREM 3.63 (Homological characterization of lower finite fully stratfied cat-
egories). Suppose that R is a locally finite Abelian category equipped with a lower
finite stratification (B, L,p, A, <). Suppose that every L(b) has a projective cover
and an injective hull in R,y so that we can introduce standard and costandard
objects. Consider the following properties:

(1) Extr (A(b), V(c)) = Ext% (A(b),V(c)) = 0 for all b,c e B.

(2) Exti (A(D), V(c)) = Ext% (A(b),V(c)) = 0 for al b,c e B.
If (1) holds then R is a lower finite —-stratified category, and if (2) holds then R
is a lower finite +-stratified category. Hence, if both (1) and (2) hold then R is a

lower finite fully stratified category.

Proor. We will prove that (1) implies that R is a lower finite —-stratified
category. The fact that (2) implies that R is +-stratified then follows from this
assertion with R replaced by R°P. Hence, if both hold then R is fully stratified
thanks to Lemma 3.20(iii).

So now we just assume (1). Define ascending V-flags and the corresponding
full subcategory V#¢(R) by repeating the ¢ = — case of Definition 3.52. We first
establish two claims.

Claim 1: For V e V*°(R), we have that ExtL (A(b),V) = 0 for all b € B. More-
over, the multiplicity (V : V(b)) defined from a specific choice of ascending V-flag

in V is equal to dim Homg (A(b),V). For any ¢ € B, we have as always that
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dim Homg (A(b), V(c)) = 8., and moreover Exty(A(b),V(c)) = 0 by property
(1). Hence, Claim 1 holds when the V-flag is of finite length. Then it follows
for arbitrary V € V#¢(R) by the same arguments as used to prove Lemmas 3.53
and 3.54 above, using the special case just established in place of the references to
Theorems 3.11 and 3.14 made in those proofs.

Claim 2: If V e Ind(R) satisfies dim Homg (A(b), V) < 0 and Extyk (A(b),V) =0
for allb e B then V has an ascending V-flag (V,,)weq- Let © be the poset of finite
lower sets in A ordered by containment. For w = A' € Q, define V,, to be the
subobject 'V where i : R' — R is the inclusion of the Serre subcategory of R
associated to B := p~1(A'). This defines a direct system (V,,)weq of subobjects
of V. We prove the claim by establishing the following:

(a) Each V,, (w € Q) has a finite V-flag.
(b) V= ZweQ VW'
To check (a), take w = At € Q setting B* := p~1(A') once again. We show

that V,, has a finite V-flag by induction on n(V) := Y, 5, dim Homg (A(b), V). If
n(V) = 0 then V,, = 0 and there is nothing to do. If n(V) > 0, let A be minimal
such that dim Homp (A(b),V) # 0 for some b € By. Then Homg(L(c),V) = 0
for ¢ € By and Homg (L(b),V) # 0. By applying Homg(?,V) to the short
exact sequence 0 — K — A(c) — L(c) — 0, it follows that Exty (L(c),V) =
0 for all ¢ € B¢y. Then by applying Homg (?,V) to the short exact sequence
0 — L) - V(b) - Q — 0, it follows that the natural map Homg (V(d),V) —
Homg (L(b), V) is surjective. Since the right hand space is non-zero and soc V(b) =
L(b), it follows that there is an injective homomorphism f : V(b) — V. Let
U:=imf and W := V/U. Thus, U =~ V(b) and there is a short exact sequence
0 —>U -V - W — 0. Applying Homg(A(a),?) and using the hypotheses
Exty (A(a),U) = Extk(A(a), V) = Extk(A(a),U) = 0, we deduce that n(W) <
n(V) and Extk (A(a), W) = 0 for all @ € B. Thus we can apply induction to prove
that W, has a finite V-flag. Since V,, = W, /U it follows that V, does too, and (a)
is proved. To check (b), we let V' := 3 _ V., and show that V = V' by repeating
the argument from the proof of (ii)=(i) in Theorem 3.56 with A.(b) replaced by
A(b), using Claim 1 to get that Exty (A(b), V') = 0. Thus, we have proved Claim
2.

Now we complete the proof of the theorem. For b € B, let I, := I(b). Like in
the proof of Corollary 3.57, Claims 1 and 2 imply that I, has an ascending V-flag
(Vi))wea with (I : V(c)) = [A(e) : L(b)]. By passing to a subset of Q if necessary,
we may assume that all V,, are non-zero. It follows that the condition (ﬁ ibc) from
Theorem 3.60 is satisfied, and R is a lower finite —-stratified category. O

COROLLARY 3.64. Suppose that R is a locally finite Abelian category, (A, <) is
a lower finite poset, and L : A — R is a function labelling a complete set of pairwise
inequivalent irreducible objects. Assume L(X) has both an injective hull V(X) and
a projective cover A(X) in R<y. Suppose that the following properties hold for all
A e A:

(i) Homg (A(N),V(N)) is one-dimensional;
(i) Bxth (AN, V(1)) = Exti (AN, V(1) = 0.

Then R is a lower finite highest weight category.
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PROOF. Property (i) implies that all strata are simple; c¢f. Lemma 3.4. Now
apply the theorem. ([

Corollary 3.64 applies in particular to the category R = Rep(G) for a reductive
algebraic group Gj; see §6.4. The Ext-vanishing properties in the corollary are
consequences of Kempf’s vanishing theorem; see [Janl, Prop. 11.4.13].

3.6. Refining stratifications in fully stratified categories

We end the chapter by formulating a basic lemma about refinement of stratifi-
cations in fully stratified categories in any of the settings (finite, essentially finite,
upper finite or lower finite).

DEFINITION 3.65. Let (B, L, p, A, <) be a stratification of an Abelian category
R. A refinement of it means a stratification (B, L,0,T, <) of R with the same
underlying labelling function together with a surjective function ¢ : I' - A such
that the following properties hold:

(R1)) TnA=g2.

(R2) p=gqoo.

(R3) For B,y €T, we have that 8 <y = ¢(8) < q(y) and ¢(8) < q(v) = B < 7.

In the setup of Definition 3.65, if one of the stratifications is admissible of one
of our four types then the other one is automatically admissible of the same type.
Assuming this is the case, take v € T" and set A := ¢(y). We have the stratum
R = R<r/R<y with quotient functor 4 coming from the original stratification,
and the stratum R, := R« /R« with quotient functor j7 coming from the refined
stratification®. There is also an induced finite stratification (px, Ba, T, <, L)) on Ry
defined by setting py := p|g, and Ly (b) := j*L(b) for each b e By. We denote the
stratum of this labelled by v by Ry , with quotient functor (jx)” : Rx <y — R~
In fact, Ry 5 may naturally be identified with R~ so that j¥ = (jx)” Oj)‘|7g$7. Now
one can denote the standard and proper objects of R for the original stratification
by

{pA(b) := jPPA(b) | Ne A,be By}, {pA(b) := jPLA(b) | A e A,be By},
and the standard and proper standard objects of R for the refined stratification by
{oA®d) :=j)Py(b)|yeT,beB,}, {cA(b):=4Ly(b)|veT,beB,}.
The standard and proper standard objects of R for its induced stratification are
{AX(b) :== (jx)] Py(b) | be Useq-100 B}
{Ax(b) := (jr)] L, (D) | be U eq100) B,},

and for such b we have that cA(b) = jrA\(b), cA(b) = j}AN(b) since j| =
3t o (jx)]. We deduce for all b € B that

(3.14) pA(b) - o A(b), aA(b) — pA(b),
Similar notation can be introduced for the costandard objects, and one sees that
(3.15) pV(b) — aV(b), oV (b) = pV(b)

since ji = ji o (j2)3-

3The axiom (R1) is needed so that this notation is unambiguous.
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LEMMA 3.66. Let R be an Abelian category equipped with an admissible strat-
ification (B,L,p,A,<). Let (B,L,0,T',<) be a refinement of it in the sense of
Definition 3.65.

(1) If R is fully stratified with respect to the original stratification, and the
strata Ry are fully stratified with respect to their induced stratifications for
all A € A, then R is fully stratified with respect to the refined stratification.

(2) If R is fully stratified with respect to the refined stratification, and the
functors j}, 52 : Ry — Ren are exact for all A\ € A, then R is fully
stratified with respect to the original stratification.

PRrROOF. Due to the local nature of the definition of “fully stratified” in the
lower finite case, the proof reduces just to the finite, essentially finite and upper
finite cases. We assume we are in one of these three situations for the remainder of
the argument.

(1) Note that the functors j," and j{ are exact since they are compositions of exact
functors. In view of Lemma 3.20(iv), it remains to show that P(b) has a oA-
flag with cA(b) at the top and other sections of the form ocA(c) for ¢ € B with
o(c) > a(b). To see this, let A := p(b). As R is fully stratified with respect to the
original stratification, P(b) has a pA-flag with pA(b) at the top and other sections
of the form pA(c) for ¢ € B with p(c) > p(b). Moreover each pA(b) has a oA-
flag with o A(b) at the top and other sections of the form cA(c) for ¢ € By with
o(c) > o(b); this follows by applying the exact functor j to a Ax-flag in Py (b).

(2) To show that R is fully stratified with respect to the original stratification,
both j{ and j3 are exact by assumption, so it suffices to show that each P(b) has a
pA-flag. This follows because P(b) has a 0 A-flag and each 0 A(b) has a pA(b)-flag;
to see the latter assertion apply the exact functor j!)‘ to a composition series of
Ax(b). O

COROLLARY 3.67. Let R be fully stratified category with stratification denoted
(B,L,p, A, <). Assume that each stratum Ry (A € A) is a highest weight category
with weight poset (T'x, <)) and labelling function Ly. LetT :=| |, ,Tx, 0 : B >T
be the bijection such that j2L(b) = Ly(c(b)) for b€ By, and < be the partial order
on T' defined by o(b) < o(c) if and only if either p(b) < p(c), or A := p(b) = p(c)
and o(b) <) o(c). Then (B,L,0,T",<) is a refinement of the original stratification
which makes R into a highest weight category.

REMARK 3.68. It is also interesting to consider changing the underlying partial
order on the set A. For a fully stratified category R, one can always replace the given
order < by the minimal order <, that is, the partial order generated by the relation
that A\ < p if [V(b) : L(c)] + [A[b] : L(c)] # 0 for some b € By,c € B,,. Then R is
also fully stratified with respect to (B, L, p, A, <) with all the same strata, standard
objects, etc.. For highest weight categories, Coulembier [Cou2], [Cou3] has made
the following elegant observation: if R is a finite Abelian, locally finite Abelian or
Schurian category, {L(\) | A € A} is a full set of pairwise inequivalent irreducible
objects, and R possesses a contravariant autoequivalence preserving isomorphism
classes of irreducible objects, then all partial orders on A making R into a highest
weight category give rise to the same minimal order. There are examples showing
that this statement is false for essentially finite highest weight categories.



CHAPTER 4

Tilting modules and semi-infinite Ringel duality

We now develop the theory of tilting objects and Ringel duality. Even in the
finite case, we are not aware of a complete exposition of these results in the existing
literature in the general e-stratified setting.

4.1. Tilting objects in the finite and lower finite cases

In this section, R is a finite or locally finite Abelian category with a finite or
lower finite stratification (B, L,p, A, <), and € : A — {£} is a fixed sign function
with respect to which R is a finite or lower finite e-stratified category, respectively;
see Definitions 3.7 and 3.50. By an e-tilting object, we mean an object of the
following full subcategory of R:

(4.1) Tilt.(R) := A(R) n V.(R).
The following shows that the additive subcategory Tilt:(R) of R is Karoubian.
LEMMA 4.1. Direct summands of e-tilting objects are e-tilting objects.

Proor. This follows easily from the homological criteria from Theorems 3.11
and 3.14. In the lower finite case, one needs to pass first to a finite e-stratified
subcategory containing the object in question using Theorem 3.59. (]

The next goal is to construct and classify e-tilting objects. Our exposition of
this is based roughly on [Don4, Appendix], which in turn goes back to the work of
Ringel [Rin]. There are some additional complications in the e-stratified setting.

THEOREM 4.2 (Classification of e-tilting objects). Assume that R is a finite
or lower finite e-stratified category. For b € By there is an indecomposable object
T.(b) € Tilt-(R) satisfying the following properties:

(i) T-(b) has a A.-flag with bottom section isomorphic to Ac(b);
(ii) T-(b) has a V-flag with top section isomorphic to V< (b);
. Py(b) ife(A) =+

A - A

(iii) T.(b) € Rea and jT-(b) = { o) ife(\) = —

These properties determine T.(b) uniquely up to isomorphism: if U is any inde-
composable object of Tilt-(R) satisfying any one of the properties (i)-(iii) then
U =~ T.(b); hence, it satisfies the other two properties as well.

PROOF. By replacing R by the Serre subcategory associated to a sufficiently
large but finite lower set A* in A, chosen so as to contain A and (for the uniqueness
statement) all p(b) for b such that [T : L(b)] # 0, one reduces to the case that R is
a finite e-stratified category. This reduction depends only on Theorem 3.59. Thus,
we may assume henceforth that A is finite.

59
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Existence: The main step is to construct an indecomposable object T (b) € Tilt-(R)
such that (iii) holds. The argument for this proceeds by induction on |A|. If
A € A is minimal, we set T.(b) := A(b) if e(A) = + or V(b) if ¢(A\) = —. Since
A(b) = L(b) = V(b) by the minimality of A, this has both a A.- and a V.-flag. It
is indecomposable, and we get (iii) from Lemma 2.27.

For the induction step, suppose that A is not minimal and pick g < A that is
minimal. Let AT := A\{u},B" := p7!(A7), and j : R — R be the corresponding
Serre quotient. By induction, there is an indecomposable object T (b) € Tilt.(R")
satisfying the analog of (iii). Now there are two cases according to whether e(u) = +
or —.

Case e(u) = +: For any V € R, let di(V) := X g, dim Extk (A(c), V). We
recursively construct n = 0 and Tp,Ty,...,T, so that dy(Tp) > di(Th) > -+ >
d(T,) = 0 and the following properties hold for all m:

(1) Ty € AL(R).

(2) j T = Py(b) if e(\) = + or I\(b) if e(A) = —.

(3) Exti(Ac(a),Tn) = 0 for all a € B\B,,.
To start with, set Ty := 7. (b). This satisfies all of the above properties: (1)
follows from Theorem 3.18(6); (2) follows because j* factors through j and we
know that T (b) satisfies the analogous property; (3) follows by Theorem 3.18(5).
For the recursive step, assume that we are given T, satisfying (1), (2) and (3) and
d4+(T),) > 0. We can find c € B, and a non-split extension

(4.2) 0 — Ty — Tsr — A(c) — 0.

This constructs Ty, 41. We claim that di (Tpn41) < d4 (Trn) and that T, 41 satisfies
(1), (2) and (3) too. Part (1) is clear from the definition. For (2), we just apply
the exact functor j* to the exact sequence (4.2), noting that j*A(c) = 0. For (3),
take a € B\B,, and apply the functor Homg (A (a),?) to the short exact sequence
(4.2) to get

Exty (Ac(a), T,,) — Exth (Ac(a), Tini1) — Exth (AL (a), Ac)).

The first and last term are zero by hypothesis and (3.10), hence, so is the mid-
dle term. It remains to show d(Tyn41) < dy(T),). For a € B,, we have that
Exty (A(a), A(c)) = 0 by (3.10), so again we have an exact sequence

Homz (A(a), A(c)) -1 Exth (A(a), Tm) —> Extk (A(a), Tins1) — 0.

This shows that dim Exty (A(a), Tyy1) < dim Exty (A(a), Tr,), and we just need
to observe that the inequality is actually a strict one in the case a = ¢. To see this,
note that the first morphism f is non-zero in the case a = ¢ as f(ida()) # 0 due
to the fact that the original short exact sequence was not split. This completes
the proof of the claim. We have now defined an object T,, € A.(R) such that
G, = Py(b) if e(\) = + or I,(b) if (\) = —, and moreover Exty (A.(a),T},) = 0
for all @ € B. By Theorem 3.11, we deduce that T,, € V.(R<)) too, hence, it is an
e-tilting object. Decompose T}, into indecomposables T3, =T, 1 @ --- DT}, . Then
each T, ; is also an e-tilting object by Lemma 4.1. Since 4T, is indecomposable,
we must have that j*7T,, = j T}, ; for some unique i. Then we set T.(b) := T, ; for
this 4. This gives us the desired indecomposable e-tilting object.
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Casee(p) = —: Let d_(V) := ZCeB“ dim Extg (V, V(c)). This time, one recursively
constructs Ty := j T2 (b), T4, ..., T, so that d_(Tp) > -+ > d_(T,,) = 0 and

(1) T, € V(R).

(2) G M, = Py(b) if (A) = + or I)(b) if e(\) = —.

(3") Exti (T, Ve(a)) =0 for all a € B\B,,.

Since this is this is just the dual construction to the case e(u) = + already treated,
i.e., it is the same construction in the opposite category, we omit the details. Then,
at the end, one decomposes T}, into indecomposables T,, = T}, 1 ®--- ® T}, ,. By
Theorem 3.14 each T),; is an e-tilting object. Since j*T;, is indecomposable, we
must have that j 7T, = j*T}, ; for some unique i, and set T (b) := T}, ; for this i.

This completes the construction of T (b) in general. We have shown it satisfies
(iii). Let us show that it also satisfies (i) and (ii). For (i), we know by (iii) that
T.(b) belongs to R<y, and it has a A.-flag. By (3.10), we may order this flag so
that the sections A.(c) for ¢ € By appear at the bottom. Thus, there is a short
exact sequence 0 — K — T.(b) —» @Q — 0 such that K has a A.-flag with sections
A (c) for c € By and j*Q = 0. Then j*K = j*T.(b). If e(\) = +, this is P\ (b).
Since j* is exact and j*A(c) = Py(c) for each ¢ € By, we must have that K ~ A(b),
and (1) follows. Instead, if () = —, the bottom section of the V-flag of K must
be V(b) since jAK = I,(b) has irreducible socle Ly(b), giving (i) in this case too.
The proof of (ii) is similar.

Uniqueness: Let T := T.(b) and U be some other indecomposable object of Tilt.(R)
satisfying one of the properties (i)—(iii). We must prove that 7" =~ U. By the
argument from the previous paragaph, we may assume actually that U satisfies
either (i) or (ii). We just explain how to see this in the case that U satisfies (i); the
dual argument treats the case that U satisfies (ii). So there are short exact sequences

0> A0b) LU > Q —0and0 > A(b) 5T — Qs — 0 such that Q1, Qo
have A.-flags. Applying Homg (?,T) to the first and using Extz (Q1,T) = 0, we
get that Homg (U, T) — Homg (AL (b),T). Hence, g extends to a homomorphism
g : U — T. Similarly, f extends to f : T — U. We have constructed morphisms
making the triangles in the following diagram commute:

Since fogof = f, we deduce that fogis not nilpotent. Since U is indecomposable,
Fitting’s Lemma implies f o § is an isomorphism. Similarly, so is g o f. Hence,
UxT. O

REMARK 4.3. Let b € By. When ¢(\) = +, Theorem 4.2 implies that (7.(b) :
A (b)) =1 and (T:(b) : Ac(c)) = 0 for all other ¢ € By. Similarly, when e(\) = —,
we have that (T:(b) : V(b)) = 1 and (T.(b) : V<(c¢)) = 0 for all other ¢ € Bj.

The following corollaries show that e-tilting objects behave well with respect
to passage to lower and upper sets, extending Theorems 3.17, 3.59 and 3.18. This
follows easily from those theorems plus the characterization of tilting objects in
Theorem 4.2; the situation is just like [Don4, Lem. A4.5].
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COROLLARY 4.4. Let R be a finite or lower finite e-stratified category and R*
be the finite e-stratified subcategory associated to a finite lower set A* of A. For
be B':= p~Y(AY), the corresponding indecomposable e-tilting object of R* is Tr(b)
(the same as in R).

COROLLARY 4.5. Assume R is a finite e-stratified category and let AT be an
upper set in A with associated quotient j : R — R'. Let be B! := p~1(A"). The
corresponding indecomposable e-tilting object T (b) of R' satisfies TJ (b) = jT.(b).
Also jT.(b) =0 if b¢ B,

The next result is concerned with tilting resolutions.

DEFINITION 4.6. Assume that R is a finite or lower finite e-stratified category.
An e-tilting resolution d : Ty — V of V € R is the data of an exact sequence
RN R RN N

such that

(TR1) T, € Tilt.(R) for each m =0,1,...;

(TR2) imd,, € V<(R) for m » 0.
Similarly, an e-tilting coresolution d : V. — T* of V € R is the data of an exact
sequence

0—v- Lo & &

such that

(TC1) T™ € Tilt.(R) for m =0,1,...;

(TC2) coimd™ € A (R) for m » 0.
We say it is a finite resolution (resp., coresolution) if there is some n such that
Ty = 0 (resp., T = 0) for m > n. Note in the finite case that axioms (TR2) and
(TC2) are redundant since the zero object belongs to both V.(R) and A, (R).

LEMMA 4.7. Assume that R is a finite or lower finite e-stratified category.
(1) If d : Ty — V is an e-tilting resolution of V € R then imd,, € V.(R) for
all m = 0. In particular, V € V.(R).
(2) If d:V — T* is an e-tilting coresolution of V € R then coimd™ € A.(R)
for all m = 0. In particular, V € A (R).

PRrROOF. (1) It suffices to show for any exact sequence A 4, B % C in a finite
or lower finite e-stratified category that B € V.(R) and im f € V.(R) implies
img e V.(R). Since im f = ker g, there is a short exact sequence 0 — im f — B —
im g — 0. Now apply Corollary 3.13 (or Corollary 3.58).

(2) An e-tilting coresolution of V' in R is the same thing as a (—¢)-tilting resolution
of V' in R°P. Hence, this follows as it is the dual statement to (1). O

THEOREM 4.8 (Tilting resolutions and coresolutions). Let R be a finite or lower
finite e-stratified category and take V € R.
(1) V has an e-tilting resolution if and only if Ve V.(R).
(2) V has an e-tilting coresolution if and only if V € A(R).

PROOF. We just prove (1), since (2) is the equivalent dual statement. If V has
an e-tilting resolution, then we must have that V' € V.(R) thanks to Lemma 4.7(1).
For the converse, we claim for V' e V.(R) that there is a short exact sequence
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0> Sy > Ty >V - 0 with Sy € V.(R) and Ty € Tilt.(R). Given the
claim, one can construct an e-tilting resolution of V' by “Splicing” (e.g., see [Wei,
Fig. 2.1]), to complete the proof.

To prove the claim, we argue by induction on the length >, _g(V : V(b))
of a V.-flag of V. If this number is one, then V =~ V_(b) for some b € B, and
there is a short exact sequence 0 — Sy — Ty — V — 0 with Sy € V.(b) and
Ty := T:(b) due to Theorem 4.2(ii). If it is greater than one, then there is a short
exact sequence 0 - U — V — W — 0 such that U and W have strictly shorter
V.-flags. By induction, there are short exact sequences 0 — Sy — Ty - U — 0
and 0 - Sy — Tw — W — 0 with Sy, Sw € V.(R) and Ty, Tw € Tilt-(R).
It remains to show that these short exact sequences can be assembled to produce
the desired short exact sequence for V. The argument is like in the proof of the
Horseshoe Lemma in [Wei, Lem. 2.2.8].

0 0 0
| L
0 St Ty — s U 0
| L b
(4.3) 0 Sy Ty —1 >V 0
| 7
0 S Tw — s W 0
| |
0 0 0

Since Ext%z(TW,U) =0, we can lift k : Tyy — W to k : Tyy — V so that k = go k.
Let Ty := Ty @Tw and j : Ty, — V be diag(fi, k). This gives us a split short exact
sequence in the middle column in (4.3), such that the right hand squares commute.
Then we let Sy := ker j, and see that there are induced maps making the left hand
column and middle row into short exact sequences such that the left hand squares
commute too. (]

4.2. Finite Ringel duality

In this section, we review the theory of Ringel duality for finite e-stratified
categories. Our exposition is based in part on [Dond, Appendix], which gives a
self-contained treatment in the highest weight setting, and [AHLU], where the
+-highest weight case is considered assuming A = {1 < --- < n}; the survey in
[Rei, Ch. 3] is also helpful. Throughout, we assume that R is a finite e-stratified
category with the usual stratification (B, L, p, A, <).

DEFINITION 4.9. Let R be a finite e-stratified category. By an e-tilting gen-
erator T for R, we mean an object T € Tilt-(R) such that T has a summand
isomorphic to T:(b) for each b € B. Given such an object, we define the Ringel
dual of R relative to T to be the finite Abelian category R’ := B-modi where
B := Endg(T)°P. We also define the two (covariant) Ringel duality functors

(4.4) F := Homg(T,?) : R — R,
(4.5) G := Cohomg(T,?) = Homg (?,T)* : R —> R’
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Note for the second of these that Homg (V, T') is naturally a finite-dimensional right
B-module for V € R, hence, its dual is a left B-module.

THEOREM 4.10 (Finite Ringel duality). In the setup of Definition 4.9, the
Ringel dual R’ of R relative to T is a finite (—¢)-stratified category with stratifica-
tion (B, L', p, A, =) and distinguished objects

P'(b) = FT.(b), I'(b) = GT.(b),  L'(b) = hd P'(b) = soc I'(b),

A _(b) = FV.(b), V'_.(b)=GA.(b), T'.(b)=FI(b)=GP(b).
The restrictions F : Vo(R) = A_.(R') and G : A(R) — V_.(R') are equiva-
lences; in fact, they induce isomorphisms
(46) Ext%(Vl, ‘/2) = EthR/(Fvl, F‘/Q), EXt%(Wh WQ) = EXt%/(GWh GWQ),
for all V; e V.(R), W; € A.(R) and n = 0.

Before the proof, we give some applications.

COROLLARY 4.11 (Double centralizer property). Suppose that the finite e-
stratified category R in Theorem 4.10 is A-modsq for a finite-dimensional algebra
A, so that T is an (A, B)-bimodule. Let T' := T* be the dual (B, A)-bimodule.
Then the following holds.

(1) T" is a (—e)-tilting generator for R' = B-modsq and there is an algebra
isomorphism
(47) Y A = EndR/ (T/)Op

sending x € A to u(x) : T' — T',v — vx. So the Ringel dual of R’ relative
to T' is equivalent to the original category R.
(2) Denote the Ringel duality functors for R’ relative to T' now by
(48) x HOHIR/ (Tl, ?) : R/ - R,
F* := Cohomg/(T",7) = Homg/(?,7)* : R —> R.
We have that F* =~ T®p? and G = T'®4?, hence, (F*,F) and (G, Gy)
are adjoint pairs.

PRrROOF. (1) Note that GA is a (—¢)-tilting generator since GP(b) =~ T" _(b)
for b € B. Actually, GA = Homa(A,T)* =~ T* = T’. Thus, T’ is a (—e¢)-tilting
generator for R'. Its opposite endomorphism algebra is isomorphic to A as stated
since G defines an algebra isomorphism

A=~ Enda(A)° > Endp(GA)°P =~ Endp(T")°P.

(2) As F* is right exact and commutes with direct sums, a standard argument
using the Five Lemma shows that it is isomorphic to (F*B)®p? =~ T®pg?. Thus,
F* is left adjoint to F. Similarly, G = T'®47 is left adjoint to G. O

The next corollary describes the strata R of the Ringel dual category; see also
Lemma 4.41 below. For A € A, denote the quotient functor RL, — R by ("7,
and denote its left and right adjoints by (5'){* : R\ — RL, and ()2 : Ry — RL .
We also have the inclusion (i')>y : R, — R with left and right adjoints (i')%
and (i')L .

COROLLARY 4.12. For X € A, the strata Ry and R are equivalent. More
precisely:
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(1) If e(X) = + the functor Fy := (j')* o (i')5 0 Foicy0j3 : Ry — R is an
equivalence of categories taking LA(b) = j*L(b) to L (b) = (/) L' (b).
(2) If e(A) = — the functor Gy := (j')* o (i')% OGoz@\oy! Ry — R, is

an equivalence of categories taking Ly(b) = jAL(b) to L) (b) = () L'(b).

PRrROOF. We just prove (1), since (2) is similar. So assume that e(A\) = +. We
first note that F) is exact. Indeed, j:k\ is exact by Theorem 3.5, so it sends objects
of R to objects of Ry which have filtrations with sections V. (b) for b € By. Then
we apply the exact functor i<y followed by F', which takes short exact sequences
in V.(R) to short exact sequences in A.(R), to obtain an object of A__(RL,).
The functor (i')}, is the identity on this subcategory, and finally (j/)* is exact.
Adopting the setup of Corollary 4.11, we can also define

Ff =t oi%, o F*¥o ()50 ()1 : Ry — Ra.

A similar argument to before gives that this is exact too. We complete the proof
by showing that F and F} are quasi-inverse equivalences. Note that Fy is left
adjoint to Fy. The counit of adjunction gives us a natural transformation F} o F) —
Idz,. We claim this is an isomorphism. Since both functors are exact, it suffices
to prove this on irreducible objects: we have FY¥(F\Lx(b)) = FYL\(b) = Lx(b).
Similar argument shows that the unit of adjunction is an isomorphism in the other
direction. (]

COROLLARY 4.13. Let R be a finite e-stratified category.

(1) All'V € V.(R) have finite e-tilting resolutions if and only if all positive
strata are of finite global dimension.

(2) AllV € A(R) have finite e-tilting coresolutions if and only if all negative
strata are of finite global dimension.

PROOF. We just explain the proof of (1). By Theorem 4.10, all V € V.(R)
have finite e-tilting resolutions if and only if all V' € A_.(R’) have finite projective
resolutions. By Lemma 3.23(1), this is equivalent to all negative strata of the (—¢)-
stratified category R’ are of finite global dimension. Equivalently, by Corollary 4.12,
all positive strata of the e-stratified category R are of finite global dimension. O

COROLLARY 4.14. If R is a finite +-stratified (resp., —-stratified) category then
all Ve A(R) (resp., V € V(R)) have finite +-tilting coresolutions (resp., finite —-
tilting resolutions).

The next theorem follows as a consequence of Happel’s tilting theory for finite-
dimensional algebras. To prepare for this, we explain the connection between e-
tilting objects in our setting and the general notions of tilting and cotilting modules
from that theory; e.g., see [Hap|, [Rei]. Suppose that R = A-modgg is a finite
e-stratified algebra for a finite-dimensional algebra A, and let T" be an e-tilting
generator for R. If all negative strata are of finite global dimension (this assumption
being vacuous in the case ¢ = +) then T is a tilting module in the sense of tilting
theory; if all positive strata are of finite global dimension (this assumption being
vacuous in the case € = —) then T is a cotilting module. These assertions follow
using Theorem 3.11 to see that Extz, (T, T) = 0, Lemma 3.23 to see that pd T < oo
or idT < oo, and Corollary 4.13. Without assumptions on the global dimensions
of strata, T need not be tilting or cotilting, but Theorem 4.8 implies that it is still
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an example of a Wakamatsu tilting module' as defined in [BR, Ch. 3]; see also
[Rei, §4.1]. The WT-conjecture formulated in [BR, Ch. 3] is the assertion that any
Wakamatsu tilting module of finite projective (resp., injective) dimension is tilting
(resp., cotilting). This motivates the following conjecture in our special situation;
we will prove this assuming a mild additional hypothesis on strata in Lemma 4.38
below.

CONJECTURE 4.15 (eT-conjecture). Suppose that R is a finite fully stratified
category and € is a given sign function. For b e B, the e-tilting module T (b) is of
finite projective (resp., injective) dimension if and only if T.(b) belongs to Tilt,(R)
(resp., Tilt_(R)).

Let RF and LG be the total derived functors of the Ringel duality functors.
These are triangulated functors between the bounded derived categories D?(R) and
D(R").

THEOREM 4.16 (Derived equivalences). Let R’ be the Ringel dual of a finite
e-stratified category R. Assume that all negative strata (resp., all positive strata)
of R are of finite global dimension. Then RF : D*(R) — D®(R') (resp., LG :
DP(R) — D®(R')) is an equivalence of triangulated categories. Moreover, if R is
of finite global dimension, then so is R'.

PROOF. Assuming R has finite global dimension, this all follows by [Hap,
Lem. 2.9, Th. 2.10]; the hypotheses there hold thanks to Corollary 4.13. To get
the derived equivalence without assuming R has finite global dimension, we cite
instead Keller’s exposition of Happel’s result in [Kel, Th. 4.1}, since it assumes
slightly less; the hypotheses (a) and (c) there hold due to Corollary 4.13(2) and
Lemma 3.23(1). O

COROLLARY 4.17. If R is +-highest weight (resp., —-highest weight) and R’
is the Ringel dual relative to a +-tilting generator (resp., —tilting generator), then
RF : D*(R) — D*(R’) (resp., LG : D*(R) — D®(R’)) is an equivalence.

PrROOF OF THEOREM 4.10. This follows the same steps as in [Don4, pp.158—
160]. Assume without loss of generality that R = A-modsq for a finite-dimensional
algebra A. For each b € B, let f, € B = Endp(T)°? be an idempotent such that
Tfp, = T.(b). Then P'(b) := Bfy is an indecomposable projective B-module and
the modules

{L'(b) :=hd P'(b) ] be B}
give a full set of pairwise inequivalent irreducible left B-modules. Since R’ is a
finite Abelian category, it is immediate that (B, L, p, A, >) is a stratification of it.
Let A’ _(b) and V’__(b) be the (—¢)-standard and (—e)-costandard objects of R’
defined from this stratification. Set V'(b) := F'V(b).

Step 1: For b e B we have that P'(b) =~ FT.(b). This follows immediately from the
equality Hom (T, T) f, = Hom (T, T f3).

Step 2: The functor F sends short exact sequences of objects in V. (R) to short
ezact sequences in R'. This follows because Extk (T, V) = 0 for V € V.(R) by the
usual Extl—vanishing between A.- and V_-filtered objects.

With this in mind, the fact that the map (4.7) is an isomorphism could also be deduced from
[Wak, Cor. 2].
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Step 3: For a,b € B, we have that [V(b) : L'(a)] = (T:(a) : Ac(b)). The left hand
side is dim f,V(b) = dim f, Homu (T, V(b)) = dimHom4(7.(a), V(b)), which
equals the right hand side.

Step 4: V(b) is a non-zero quotient of P'(b), thus, hd V(b) = L'(b). By Theo-
rem 4.2(i), there is a short exact sequence 0 —> K — T.(b) — V.(b) — 0 with
K € V.(R). Hence, Step 2 implies that V(b) is quotient of P’(b). It is non-zero by
Step 3.

Step 5: We have that V(b) = A’ _(b). Let X\ := p(b). We treat the cases e(\) = +
and e(A) = — separately. If ¢(A\) = + we must show that V(b) is the largest
quotient of P’(b) with the property that [V (b) : L’'(a)] # 0 = p(a) = p(b). We have
already observed in Step 4 that V(b) is a quotient of P’(b). Also (T.(a) : A (b)) #
0 = p(b) < p(a) by Theorem 4.2(iii). Using Step 3, this imples that V' (b) has the
property [V(b) : L'(a)] # 0 = p(a) = p(b). It remains to show that any strictly
larger quotient of P’(b) fails this condition. To see this, since e(A) = +, a V.-flag in
T.(b) has V.(b) at the top and other sections V. (c) for ¢ with p(c) < p(b). In view
of Step 4, any strictly larger quotient of P’(b) than V' (b) therefore has an additional
composition factor L’(¢) arising from the head of V'(¢) for some ¢ with p(c) < p(b).
Instead, if e(\) = —, we use the characterization of A’ _(b) from Lemma 3.1(1):
we must show that V(b ) is the largest quotient of P’(b) with the property that
[radV(b) : L'(a)] # 0 = p(a) > p(b). Since ¢(\) = —, we have that (7.(b) :
V(b)) =1and (T:(b) : Vo(a)) # 0 = p(a) < p(b) for a # b. Hence, using Step 3
again, the quotient V' (b) of P’(b) has the required properties. A V.-flag in T.(b)
has V. (b) at the top and other sections V. (c) for ¢ with p(c) < p(b). So any strictly
larger quotient of P’(b) than V' (b) has a composition factor L'(¢) arising from the
head of V(c¢) for ¢ with p(c) < p(b). In case ¢ = b, this violates the requirement
that the quotient has L'(b) appearing with multiplicity one; otherwise, it violates
the requirement that all other composition factors of the quotient are of the form
L'(a) with p(a) > p(b).
Step 6: R’ is a finite (—e)-stratified category. In view of Step 5, it suffices to show
that P’(b) has a filtration with sectons V'(¢) for ¢ with p(c) < p(b). Since T (b) has
a V.-flag with sections V. (c) for ¢ with p(c) < p(b), this follows using Steps 1 and
2.

Step 7: For any U € Tilt:(R) and V € R, the linear map f : Homa(U,V) —
Homp(FU, FV) induced by F is an isomorphism. It suffices to prove this when
U =T, so that the right hand space is Homp (B, FV) and FV = Homx (T, V). This
special case follows because f is the inverse of the isomorphism Hompg(B, FV) —
FV,0 — 6(1).

Step 8: For any V,W € V.(R) and n = 0, the functor F induces a linear isomor-
phism Extf (V,W) 5 Extf, (FV,FW). Take an e-tilting resolution d : T, — V
in the sense of Definition 4.6, which exists thanks to Theorem 4.8. The functor F'
takes this resolution to a complex

o — Ty — FTy — FV — 0.
In fact, this complex is exact. To see this, take m > 0 and consider the short

exact sequence 0 — kerd,, — T,, — imd,, — 0. All of kerd,,, T}, and imd,,
have V.-flags due to Lemma 4.7(1). Hence, thanks to Step 2, we get a short exact
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sequence
0 — F(kerd,,) — FT,, %> F(imd,,) — 0

on applying F. Since F' is left exact, the canonical map F(imd,,) — FT,,—1 is
a monomorphism. Its image is all § : T — T,,_1 with image contained in im d,,.
As p is an epimorphism, any such 6 can be written as d,, o ¢ for ¢ : T — T,,,
ie., 0 € im(Fd,,). Thus, F(imd,,) =~ im(Fd,,), and 0 — ker(Fd,,) — FT,, —
im(Fd,,) — 0 is exact, as required. In view of Step 1, we have constructed a
projective resolution of F'V in R’:

-— FT) — FTy — FV — 0.

Next, we use this projective resolution to compute Ext%, (F'V, FI) for any in-
jective I € R. We have a commutative diagram

0 — Homg(V, 1) —— Homg (Tp, I) —— Homg (T}, I) —— ---

s [ |1

O—»HomR/(FV7FI) Emd HOIHR/(FT(),FI) E— HOHIR/(FTl,FI) —_

with vertical maps induced by F. The maps fq, f1,... are isomorphisms due to
Step 7. Also the top row is exact as [ is injective. We deduce that the bottom
row is exact at the positions Homg: (FT,,, FI) for all m > 1. Tt is exact at posi-
tions Homg (FV, FI) and Homg/ (FTy, FI) as Homg/ (7, FI) is left exact. Thus,
the bottom row is exact everywhere. So the map f is an isomorphism too and
Ext, (FV,FI) =0 for n > 0.

Finally, take a short exact sequence 0 - W — [ — @ — 0 in R with [
injective. We have that @ € V.(R) by Corollary 3.13. Hence, using Step 2 and the
previous paragraph, there is a commutative diagram

Homg (V, W) ——— Homg (V, I) ——— Homg (V, Q) ——— Extk (V, W)

lfl lb lfs lf4

Homg/ (FV, FW) — Homg/(FV, FI) —— Homg/ (FV, FQ) — Extg, (FV, FW)

with exact rows. As fo is an isomorphism, we get that f; is injective. Since this
is proved for all W, this means that fs is injective too. Then a diagram chase
gives that f; is surjective, hence, f3 is surjective and fy is an isomorphism. Degree
shifting now gives the isomorphisms Ext% (V, W) = Ext%, (FV, FW) for n > 2 as
well.

Step 9: We have that T” _(b) = FI(b). By Steps 5 and 8, we get that
Extr, (A _(a), F1(b)) = Exty (V(a),I(b)) =0

for all @ € B. Hence, by the homological criterion for V_.-flags in the (—¢)-stratified
category R’, the A-module FI(b) has a V_.-flag. It also has a A__-flag with bottom
section isomorphism to A’ _(b) due to Steps 2 and 5. So FI(b) € Tilt_.(R'). It is
indecomposable as Endg: (FI(b)) = Endg (I(b)) by Step 8, which is local. Therefore
FI(b) =T _(b) due to Theorem 4.2(i).

Step 10: The restriction F : V.(R) — A_.(R') is an equivalence of categories.
It is full and faithful by Step 8. It remains to show that it is dense, i.e., for any
V' e A_.(R') there exists V € V.(R) with F'V =~ V’. The proof of this goes by
induction on the length of a A_.-flag of V’. If this length is one, we are done
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by Step 5. For the induction step, consider V’ fitting into a short exact sequence
0—->U — V' — W — 0 for shorter U', W’ € A_.(R'). By induction there are
U, W € V.(R) such that FU =~ U’ and FIWW =~ W’. Then we use the isomorphism
Exty, (FW, FU) = Extg (W,U) from Step 8 to see that there is an extension V of
U and W in R such that FV >~ V",

Step 11: The dual right A-module T* to T is a (—¢)-tilting generator for R°P =
modgq-A such that End 4 (T*)°P = B°P. Moreover, letting F°P := Homu (T*,7) :
mod¢g-A — modg-B be the corresponding Ringel duality functor, we have that
G ~7* o F°Po?*. The first statement is clear from Theorem 3.9, observing that
Ends(T#)°P = End(T) since # : A-modgg — modgg-A is a contravariant equiva-
lence. It remains to observe that o F°P o = Hom4 (T*,7*)* =~ Homyu(?,T7)* = G.

Step 12: The restriction G : A (R) — V_.(R’) is an equivalence of categories
inducing isomorphisms as in (4.6), such that GT.(b) = I'(b), GA.(b) = V’__(b)
and GP(b) = T’ _(b). This follows using Step 11 and the analogs for F°P of the
statements about F' establishd thus far. O

4.3. Tilting objects in the upper finite and essentially finite cases

Throughout the section, R will be either be an upper finite or an essentially
finite e-stratified category with the usual stratification (B, L, p, A, <). It is still
possible to make sense of e-tilting objects but now the iterative procedure used to
construct the indecomposable ones in the proof of Theorem 4.2 does not terminate
after finitely many steps. Consequently, we must allow for tilting objects which have
infinite A.- and V. -flags; see (6.6) below for a baby example of this phenomenon.

Suppose to start with that R is an upper finite e-stratified category. Using the
notions of ascending A.-flags and descending V.-flags introdued in Definition 3.35,
we set

(4.10) Tilte(R) := A®(R) n VI¢(R).

We emphasize that objects of Tilt.(R) are in particular objects of R, so all of their
composition multiplicities are finite. Like in Lemma 4.1, Tilt.(R) is an additive
Karoubian subcategory of R.

THEOREM 4.18 (Classification of tilting objects in the upper finite case). As-
sume that R is an upper finite e-stratified category. For b € By, there is an inde-
composable object T.(b) € Tilt.(R) satisfying the following properties:

(i) T.(b) has an ascending A.-flag with bottom section?® isomorphic to A.(b);
(ii) T.(b) has a descending V.-flag with top section® isomorphic to V. (b);
. Py(b) ife(\) =+

A - A

(iii) Tc(b) € Rex and j7Tc(b) = { o) e\ = —

These properties determine T.(b) uniquely up to isomorphism: if T is any inde-
composable object of Tilt.(R) satisfying any one of the properties (i)—(iii) then
T =~ T.(b); hence, it satisfies the other two properties as well.

ProoF. Existence: Replacing R by R« if necessary and using Theorem 3.41,
we reduce to the special case that A is the largest element of the poset A. Assuming

2We mean that there is an ascending A.-flag (Vi )weq in which  has a smallest non-zero element
1 such that V7 =~ A (b).
3Similarly, we mean that V/V; = Ve (b).
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this, the first step in the construction of T;(b) is to define a direct system (V,,)weq of
objects of R. This is indexed by the directed set €2 of all finite upper sets in A. Let
Vz := 0. Then take @ # w € Q and denote it instead by A". Letting j : R — R
be the corresponding finite e-stratified quotient of R, we set V,, := 5T (b). By
Theorem 3.42(6), this has a A.-flag. Given also w < v € , i.e., another upper set
AT containing A", let k: R — R™ be the corresponding quotient. Then j factors
as j = jJok for an induced quotient functor 7: R™ — R'. Since 777 (b) =~ T (b) by
Corollary 4.5, we deduce from Corollary 3.19(2) that there is a short exact sequence

0— 3T (b) — T () — Q — 0

)
such that @ has a A.-flag with sections Al (c) for ¢ with p(c) € AT™\AT. Applying
ky and using the exactness from Theorem 3.42(6) again, we deduce that there is an
embedding fY : V,, — V,, with coker f¥ € A.(R). Thus, we have a direct system
(Vi)we. Now let T.(b) := limV,, € Ind(R.). Using the induced embeddings
fuw : Vo — T(b), we identify each V,, with a subobject of T,(b). We have shown
for w < v that V,,/V,, € A.(R) and, moreover, jV, = jV,, where j : R — R is the
quotient associated to w.

In this paragraph, we show that T.(b) actually lies in R rather than Ind(R.),
i.e., all of the composition multiplicities [T:(b) : L(c)] are finite. To see this, take
ce B. Let w = AT € Q be some fixed finite upper set such that p(c) € AT, and
j: R — R" be the quotient functor as usual. Then for any v > w we have that

Vo : L(e)] =[5V : LT (0)] = [jVeo : LT ()] = [Vio : L(e)].

Hence, [T:(b) : L(c)] = [V, : L(c)] < 0.

So now we have defined T:(b) € R together with an ascending A -flag (V,,)ueq-
The smallest non-empty element of Q is w := {A}, and V,, = j?P\(b) = A.(b) if
e(N) = +, or jPI\(b) if e(A) = —. Since jL(b) = j*V,,, we deduce that (iii)
holds. Also by construction T.(b) has an ascending A.-flag. To see that it has a
descending V.-flag, take any a € B. Let w = AT €  be such that p(a) € AT. Then
Ac(a) = 4Al(a) and jT.(b) = jV,, = T1(b), so by Theorem 3.42(5) we get that

Exth (A.(a), T-(b)) = Extk, (Al(a), T (b)) = 0.

By Theorem 3.39, this shows that T.(b) € VI¢(R).

Note finally that 7. (b) is indecomposable. This follows because j7.(b) is inde-
composable for every j : R — R' (adopting the usual notation). Indeed, by the
construction we have that j7.(b) =~ T.(b) This completes the construction of the
indecomposable object T.(b) € Tilt:(R). We have shown that it satisfies (iii), and
it follows easily that it also satisfies (i) and (ii).

Uniqueness: Since (iii) implies (i) and (ii), it suffices to show that any indecompos-
able U € Tilt.(R) satisfying either (i) or (ii) is isomorphic to the object T := T.(b)
just constructed. We explain this just in the case of (i), since the argument for
(ii) is similar. We take a short exact sequence 0 — A (b) - T — @ — 0 with
Q@ € A»°(R). Using the Ext-vanishing from Lemma 3.36, we deduce like in the
proof of Theorem 4.2 that the inclusion f : A (b) < T extends to f: U — T. In
fact, f is an isomorphism. To see this, take a finite upper set A" containing A and
consider the quotient j : R — R' as usual. Both jU and jT are isomorphic to
T.(b) by the uniqueness in Theorem 4.2. The proof there implies that any homo-
morphism j7 — jU which restricts to an isomorphism on the subobject Al(b) is
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an isomorphism. We deduce that j f is an isomorphism. Since holds for all choices
of AT, it follows that f itself is an isomorphism. ([

COROLLARY 4.19. Any object of Tilt-(R) is isomorphic to @y.g Te(b)®™ for
unique multiplicities ny, € N. Conversely, any such direct sum belongs to Tilt.(R).

PROOF. Let us first show that any direct sum U := @, g T=(b)®™ belongs
to Tilt.(R). The only issue is to see that U actually belongs to R rather than
Ind(R.), i.e., it has finite composition multiplicities. But for a given ¢ € B, the
multiplicity [T.(b) : L(c)] is zero unless p(c) < p(b). There are only finitely many
such be B, so [U : L(c)] = > eg mo[T:(b) : L(c)] < 0.

Now take any U € Tilt-(R). Let © be the directed set of all finite upper
sets in A. Take w = AT € Q. Let j : R — R be the quotient functor as usual.
Then we have that jU € Tilt-(R"), so it decomposes as a finite direct sum as
JU = @yt T2 (0)®™(@) for ny(w) € N. There is a corresponding direct summand
T, = @pepr Te(0)@@) of U. Then T = lim 7;,. Moreover, for b € B', the
multiplicities ny(w) are stable in the sense that ny(v) = ny(w) for all v > w. We
deduce that U =~ @,_g T (b)®™ where n;, := ny(w) for any sufficiently large w. O

It remains to discuss tilting objects in the essentially finite case. So now
we assume that R is an essentially finite e-stratified category with stratification
(B,L,p,A,<). Since A is interval finite, finite unions of lower sets of the form
(—o0, A] are upper finite. If R* is the Serre subcategory of R associated to such an
upper finite lower set then its Schurian envelope Env(R*') in the sense of Lemma 2.22
is a Cartan-bounded upper finite e-stratified category which is naturally embedded
into Env(R). This follows from Theorem 3.17. For b € B, we define the correspond-
ing e-tilting object T.(b) € Env(R) as follows: pick any upper finite lower set A
such that p(b) € A, let R* be the corresponding Serre subcategory of R, then let
T-(b) be the e-tilting object in Env(R*') from Theorem 4.18. This is well-defined
independent of the choice of A' by the uniqueness part of Theorem 4.18. Thus, we
have defined the indecomposable e-tilting objects {1.(b) | b € B} in the essentially
finite case too, although these may be of infinite length, i.e., in general they belong
to Env(R) rather than to R itself.

DEFINITION 4.20. Suppose that R is a lower finite, upper finite or essentially
finite e-stratified category with the usual stratification. We say that it is tilting-
bounded if the matrix

(4.11) (dim Homg (7% (a), 7= (b)) , peB
has finitely many non-zero entries in each row and each column.

The matrix (4.11) is analogous to the Cartan matrix (2.23) with projective (or
injective) objects replaced by e-tilting objects. In the lower finite case, all entries
of this matrix are obviously < oo, but in the upper finite or essentially finite cases
it is possible that some of these dimensions are co. However they are all finite in
the tilting-bounded case:

LEMMA 4.21. If R is tilting-bounded then the spaces Homg (T:(a),T:(b)) are
finite-dimensional for all a,b e B.

PrOOF. In the lower finite case, the indecomposable tilting objects are of finite
length, so these spaces are finite-dimensional even without the assumption that R
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is tilting-bounded. In the remaining upper finite or essentially finite cases, we have
that

(4.12) dimHomg (T:(a),T-(b)) = Z (Te(a) : V() (Te(b) : Ac(e)) e NuU {0}

All of the multiplicities (T¢(a) : V<(c)) and (T:(b) : Ac(c)) are finite. Moreover,
if (Tz(a) : Ac(c)) # 0 then Homg (T:(a),T:(c)) # 0. Hence, assuming the tilting-
bounded hypothesis, only finitely many of the terms in the sum on the right hand
side are non-zero. ]

Assuming R is an essentially finite e-stratified category once again, assume that
R is also tilting-bounded. Then the e-tilting objects T.(b) actually belong to

(4.13) Tilt.(R) := Ac(R) A Vo(R),

i.e., they belong to R rather than to Env(R) of R. Thus, we are in a similar
situation to (4.1). Theorem 4.2 carries over easily, to show that {7.(b) | b € B}
gives a full set of the indecomposable objects in the additive Karoubian category
Tilt-(R). The construction of Theorem 4.8 also carries over unchanged. So all
objects of V¢(R) have e-tilting resolutions and all objects of A (R) have e-cotilting
resolutions.

REMARK 4.22. Most of the interesting examples of essentially finite highest
weight categories which arise “in nature” seem to satisfy the tilting-bounded hy-
pothesis, although there is no reason for this to be the case from the recursive
construction of Theorem 4.18. We refer the reader to Remark 6.2 for an example
which is not tilting-bounded.

REMARK 4.23. The tilting-bounded hypothesis is also interesting in the lower
finite case; see Corollary 4.28 below. Using (4.12), it is easy to see in the lower
finite case that R is tilting-bounded if and only if for each b € B the multiplicities
(Te(a) + Ag(b)) and (T(a) : V(b)) are zero for all but finitely many a € B.
Natural examples of lower finite highest weight categories which are definitely not
tilting-bounded include the categories Rep(G) for reductive groups G (unless this
is actually a semisimple category), as follows from the results in [Coul, §5]. In
situations involving quantum groups at roots of unity, tilting-boundedness can be
checked combinatorially by considering properties of Kazhdan-Lusztig polynomials;
e.g., see [Soe], [Str].

4.4. Semi-infinite Ringel duality

Now we extend Ringel duality to lower finite and upper finite e-stratified cate-
gories. The situation is not as symmetric as in the finite case and demands different
constructions when going from lower finite to upper finite or from upper finite to
lower finite. If we start with a lower finite e-stratified category, the Ringel dual is
an upper finite (—¢)-stratified category:

DEFINITION 4.24. Let R be a lower finite e-stratified category with the usual
stratification (B, L, p, A, <). An e-tilting generator for R is an object T = @,_,; T; €
Ind(R) with a given decomposition as a direct sum of objects T; € Tilt-(R) such
that each T.(b) is isomorphic to a summand of T. Define the Ringel dual of R
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relative to T' = @,.; T; to be the Schurian category R’ := A-modjq where

A= ((—D HOHlR(Ti,Tj)> .

i,j€l
Identifying Ind(R.) with A-mod as explained in (2.3), we have the Ringel duality
functor

(4.14) F = (—DHomR(TZ—, ?) : Ind(R) — Ind(R..).
iel
This functor takes objects of R to objects of R'.

THEOREM 4.25 (Lower to upper semi-infinite Ringel duality). In the setup
of Definition 4.24, R' is an upper finite (—e)-stratified category with stratification
(B, L', p,A,>) and distinguished objects

P'(b) =~ FT.(b), L'(b) =~ hd P'(b),
A _(b) = FV_(b), T _(b) = FI(b).
The restriction F : V¥¢(R) — A*S(R’) is an equivalence of categories.

The proof will be explained later in the section.
In the other direction, if we start from an upper finite e-stratified category, the
Ringel dual is a lower finite (—¢)-stratified category:

DEFINITION 4.26. Let R be an upper finite e-stratified category with the usual
stratification (B, L, p, A, <). An e-tilting generator is an object T € Tilt.(R) such
that T.(b) is isomorphic to a summand of T for every b € B. Let C := Coendg (T)
be the coalgebra that is the continuous dual of the pseudo-compact topological
algebra B := Endg (T)°P; see Lemma 2.10. Then the Ringel dual of R relative to
T is the category R’ := comody-C = B-modg. Recalling Lemma 2.11, the Ringel
duality functor is

(4.15) G := Cohomg (T,?) = Homg (?,T7)* : Ind(R.) — Ind(R’),
which sends finitely generated objects of R to objects of R/.

THEOREM 4.27 (Upper to lower semi-infinite Ringel duality). In the setup
of Definition 4.26, R' is a lower finite (—e)-stratified category with stratification
(B, L', p,A, =) and distinguished objects

I'(b) = GT.(b), L' (b) = soc I'(b),
VL. (b) = GAL(b), T' _(b) = GP(b).
The restriction G : A2°(R) — V*¢(R) is an equivalence of categories.
Again the proof will be explained later.
We proceed to formulate several consequences of Theorems 4.25 and 4.27. The

first is concerned with a special case. Recall the definition of Cartan-bounded from
just before Lemma 2.22, and the definition of tilting-bounded from Definition 4.20.

COROLLARY 4.28. The Ringel dual of a tilting-bounded lower finite e-stratified
category is a Cartan-bounded upper finite (—e)-stratified category. Conversely, the
Ringel dual of a Cartan-bounded upper finite e-stratified category is a tilting-bounded
lower finite (—e¢)-stratified category.
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PROOF. From either Theorem 4.25 or Theorem 4.27, it follows that the Cartan
matrix (2.23) for the upper finite category is equal to the matrix (4.11) for the lower
finite category. O

The next two corollaries give the analogs of the double centralizer property
from Corollary 4.11 in the semi-infinite setting.

COROLLARY 4.29 (Lower to upper double centralizer property). Let notation
be as in Definition 4.24. Assume in addition that R = comodg-C for a coalgebra
C. Let B := C* be the dual algebra, so that T is a (B, A)-bimodule. Let T := T®
be the dual (A, B)-bimodule.

(1) T" is a (—e)-tilting generator for R’ and there is an algebra isomorphism

(416) O B = EHdR/ (T/)Op
sendingy € B to u(y) : T' — T',v — vy. Equivalently, there is a coalgebra
isomorphism

(4.17) p* : Coendr/ (T) 5 C, ) > &)

where cg; is the element of Coendg:(T") corresponding to vgi) ®u£i) eT;®

T according to (2.13) for dual bases UY), e ,v((;()i) forT; and ugi), el u((;()i)

for TF, and érf)s € C is defined so that the structure map of the right C-
comodule T; sends vsz) — Zf(:l)l vﬁ')@)é%, So the Ringel dual of R’ relative
to T' in the sense of Definition 4.26 is equivalent to the original category
R.

(2) Denote the Ringel duality functor for R’ relative to T' now by

(4.18) F* := Cohomg/(T",?) = Homg/(?,7")* : Ind(R.) — Ind(R).
Then F* =~ T®4?, hence, (F*, F) is an adjoint pair; cf. Lemma 2.11.

PrROOF. By Lemma 2.2, we have natural isomorphisms Hom¢ (T, C) = T as
right B-modules, hence, FC =~ T" as an (A, B)-bimodule. Since every I(b) appears
as a summand of the regular comodule, and FI(b) = T” _(b) by Theorem 4.25, we
deduce that T” is a (—e)-tilting generator for R’. To see that B =~ End 4(7")°P, we
use the fact that F' is an equivalence on V-filtered objects to deduce that

End4(T')° = End4(FC)° =~ Ende(C)® =~ B,

using Lemma 2.2 again for the final algebra isomorphism. This produces the iso-
morphism g. To deduce (4.17), we need to show that ,u*(c%) and E% take the

same value on y € B. The left hand side gives cgzl(u(y)) = o) (ugl)b) For the right
hand side, we have that yo!” = Z‘:(:Z)l 652 (y)vﬁl), SO cwq (y) = (yvgl))ug). These are

equal. This establishes (1). Then (2) follows from Lemma 2.11. O

COROLLARY 4.30 (Upper to lower double centralizer property). Let notation be
as in Definition 4.26, and assume in addition that R = A-modyy for a locally finite-
dimensional locally unital algebra A = @i,jel eidej. Let T; = e;T and T} := T},
so that T' := @,; T] = T®. This is a (B, A)-bimodule.
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(1) T" = @,; T} is a (—e)-tilting generator for R' and there is an algebra
isomorphism

op
(4.19) p:AS ((—D HomR/(Ti’,TJ’-)>

i,5€l
sending a € e;Ae; to p(a) : T) — Tj,v = va. So the Ringel dual of R’
relative to T' in the sense of Definition 4.24 is equivalent to the original

category R.
(2) Denote the Ringel duality functor for R’ relative to T' now by
(4.20) Gy = @HomR/(Ti’, ?) : Ind(R’) — Ind(R.).

il
We have that G =~ T'®4?, hence, (G,Gy) is an adjoint pair.
ProoF. Note that G(Ae;) = Homa(Ae;, T)* = (e;,7)* = T;. So Theorem 4.27
implies that T' = @,.; T; is a (—¢)-tilting generator for R'. Moreover,
Homng/ (T;,T;) = Homg/ (G(Ae;), G(Ae;)) = Homp (Ae;, Ae;) = e;Ae;.
This proves (1) and then (2) follows from Lemma 2.11. O
REMARK 4.31. Combining Corollary 4.28 with the double centralizer properties

just explained, one obtains a restricted version of semi-infinite Ringel duality giving
a correspondence

Tilting-bounded Rinsel dualit Cartan-bounded
lower finite e cue T, upper finite
highest weight categories highest weight categories

In the upper finite to lower finite direction, this appeared already in the work of
Marko and Zubkov [MZ]. In more detail, if R is the category of finite-dimensional
modules over a descending quasi-hereditary pseudo-compact algebra in the sense
of [MZ, Def. 3.19] and the indecomposable projectives in R are of finite length as
assumed in [MZ, §4], then R is an essentially finite highest weight category with
upper finite weight poset, hence, Env(R) is a Cartan-bounded upper finite highest
weight category. In this case, the indecomposable tilting modules T'(A) € Env(R)
were constructed already in [MZ, §4], and the appropriate (lower finite) Ringel dual
category appears in [MZ, §6]. Also [MZ, Lem. 6.5] establishes a double centralizer
property which is equivalent to Corollary 4.30(1) for such categories.

In the setup of Definition 4.24, one can also define a functor
(4.21) G := Cohomg (T,?) = Homg (?,T)® : A.(R) — V_.(R)).

Theorem 4.25 plus an argument with duality like in Steps 11-12 of the proof of
Theorem 4.10 shows that G is an equivalence of categories such that GA (b) =
V. .(b) and GT.(b) = I'(b) for all b € B. Likewise, in the setup of Definition 4.26,
one can also define

(4.22) F := Homg(T,?) : A-(R) — V_o(R).

Theorem 4.27 plus an argument involving duality shows that F' is an equivalence
of categories such that FI(b) =~ T” _(b) and FV.(b) = A’ _(b) for all b € B. These
functors are needed to formulate the following, which is the semi-infinite counterpart
of Corollary 4.12. The proof is similar to the finite case; see also Lemma 4.41 below.
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COROLLARY 4.32. If R is a lower finite or an upper finite e-stratified category
and R’ is the Ringel dual category relative to some e-tilting generator as above, the
strata Ry and R\ are equivalent for all A € A. More precisely:

(1) If e(X) = + the functor Fy := (j')* o (i')5, 0 Foicy0j3 : Ry — R is an
equivalence of categories taking L>\( ) = jAL(b) to LA\ (b) = () ML/ (b).

(2) If e(A) = — the functor Gy := (j)* o (i')%, 0 Goicx0j} : Ry — R is
an equivalence of categories taking Ly(b) = jAL(b) to L) (b) = () L'(b).

In view of Corollary 4.4, Corollary 4.13 can be applied also in any lower finite
e-stratified category (without any need to appeal to semi-infinite Ringel duality).
In particular, if R is a lower finite +-stratified (resp., —-stratified) category then all
V e V(R) (resp., V € A(R)) have finite —-tilting resolutions (resp., finite +-tilting
coresolutions). Using Theorem 4.25, one sees that this assertion is equivalent to
Lemma 3.43.

We have not investigated derived equivalences or any analog of Theorem 4.16
in the semi-infinite setting.

PrOOF OF THEOREM 4.25. We may assume that R = comodgy-C for a coalge-
bra C. Let B := C* be the dual algebra, so that R is identified also with B-modgq.
We can replace the e-tilting generator T' = @,_; T; with any other. This just has
the effect of transforming A into a Morita equivalent locally unital algebra. Conse-
quently, without loss of generality, we may assume that I = B and T' = @, g T-(b).
Then

op
= ((—D HomR(TE(a),Tg(b)>
a,beB
is a pointed locally finite-dimensional locally unital algebra with (primitive) distin-
guished idempotents {e;, | b € B}. Let P’(b) := Ae, and L'(b) := hd P’(b). Then
R’ = A-modjgq is a Schurian category, the A-modules {L'(b) | b € B} give a full set
of pairwise inequivalent irreducible objects, and P’(b) is a projective cover of L'(b)
in Ind(R.) = A-mod. It is immediate that (B, L', p, A, >) is a stratification of R’'.
Let A’ _(b) and V'__(b) be its (—¢)-standard and (—¢)-costandard objects. Also let
V(b) := FV.(b). Now one checks that Steps 1-6 from the proof of Theorem 4.10
carry over to the present situation with very minor modifications. We will not
rewrite these steps here, but cite them freely below. In particular, Step 6 estab-
lishes that R’ is an upper finite (—¢)-stratified category. Also, FV.(b) = A’ _(b)
by Step 5. It just remains to show:

e F restricts to an equivalence of categories between V25¢(R) and A**¢(R/).
o FI(b) =T’ _(b), the indecomposable (—¢)-tilting object of R’ labelled by
be B.

This requires some different arguments compared to the ones from Steps 7-10 in
the proof of Theorem 4.10.

Let Q be the directed poset consisting of all finite lower sets in A. Take w =
At e Q. Let V.(R,w) be the full subcategory of V.(R) consisting of the V.-
filtered objects with sections V.(b) for b € B := p~1(A'). Similarly, we define the
subcategory A_.(R’,w) of A__(R’). By Steps 2 and 5, F restricts to a well-defined
functor

(4.23) F:V.(R,w) = A_(R,w).



4.4. SEMI-INFINITE RINGEL DUALITY 7

We claim that this is an equivalence of categories. To prove it, let i : R* — R be
the finite e-stratified subcategory of R associated to A*. Let e := Y, g, ey € A.
Then TV = @,.g. T-(b) is an e-tilting generator for R*. As Endg.(T")P =
eAe, the Ringel dual (R')" of R' relative to T is identified with the quotient
category (R')* := eAe-modgg of R'. Let F* := Homg (T*,?) : R* — (R’)* be the
corresponding Ringel duality functor. We also know from Theorem 3.42 that (R’)*
is the finite (—e)-stratified quotient of R’ associated to A (which is a finite upper
set in (A, >)). Let 7/ : R' — (R’)* be the quotient functor, i.e., the functor defined
by multiplication by the idempotent e. For a right C-comodule V', we have that

FHi'V) = @ Homg(T-(b),i'V) = e P Homg (T-(b), V) = j/(FV).
beB! beB

This shows that
(4.24) Floi'~j' oF,
so in particular following diagram commutes up to a natural isomorphism:

R—F R

1

R EL (RYY = (R

By Theorem 4.10, F* restricts to an equivalence V. (R') — A__((R')'). Also
the restrictions i' : V.(R,w) — V.(R') and j' : A_(R,w) — A_((R")}) are
equivalences. This is clear for i*. To see it for j’, one shows using Theorem 3.42
that the left adjoint (j'); gives a quasi-inverse equivalence. Putting these things
together, we deduce that (4.23) is an equivalence as claimed.

Now we can show that F' defines an equivalence F' : V¥°(R) — A*»(R').
Take V € V2*¢(R). Then V has a distinguished ascending V.-flag (V,,),eq indexed
by the set Q of finite lower sets in A. This is defined by setting V,, := 'V in
the notation of the previous paragraph; see the proof of Theorem 3.56. As each
comodule T.(b) is finite-dimensional, hence, compact, the functor F' commutes
with direct limits. Hence, FV = h_r)n(FVw). In fact, (FV,)ueq is the data of
an ascending A_.-flag in FV € R’. To see this, we have that FV,, € A_.(R')
by the previous paragraph. For w < v the quotient V,,/V,, has a V.-flag thanks to
Corollary 3.58, so F'V,,/FV,, = F(V,,/V,,) has a A__-flag. We still need to show that
FV is locally finite-dimensional. For this, we prove that dim Hom 4 (F'V, I’(b)) < o0
for each b € B. Since I'(b) has a finite V_.-flag, this reduces to checking that
dim Hom4 (FV, V' _(b)) < oo for each b. To see this, pick a finite lower set w
containing p(b). Then for v > w, FV,/FV,, has a V_.-flag with all sections different
from V’__(b), so Homa(FV,/FV,,V'__(b) = Exty(FV,/FV,, V' (b)) = 0. It
follows that Homa (FV,, V" (b)) = Hom(FV,, V__(b)) and

Hom(FV, V(b)) = Homa(lim(FV,,), V. (b)) = Hom 4 (FV,,, V' (b)),

which is finite-dimensional.
At this point, we have proved that F' induces a well-defined functor

F: V3¢(R) — A™S(R)).
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We prove that this is an equivalence by showing that the left adjoint F* := T®7?
to F gives a quasi-inverse. The left mate of (4.24) gives an isomorphism

(4.25) io(FY)* =~ F*o (j').

Combining this with Corollary 4.11, we deduce that F'* restricts to a quasi-inverse
of the equivalence (4.23) for each w € Q. Also, F* commutes with direct limits, and
again any V' € A**¢(R’) has a distinguished ascending A_.-flag (V),eq as we saw
in the proof of Theorem 3.37. These facts are enough to show that F* restricts to
a well-defined functor F* : A»¢(R’) — V2¢(R) which is quasi-inverse to F.
Finally, we check that FI(b) = T’ _(b). Let V := I(b) and (V,)weq be its
distinguished ascending V.-flag indexed by the set € of finite lower sets in A as
above. Using the same notation as above, for w = A' € Q such that p(b) € AY, we
know that V,, is an injective hull of L(b) in R*. Hence, by Theorem 4.10, F*V,, is the
indecomposable (—¢)-tilting object of R* labelled by b. From this, we see that the
ascending A_.-flag (FV,,)ueq in FI(b) coincides with the distinguished ascending
A_.flag in T7 _(b) from the construction from the proof of Theorem 4.18. O

PRrROOF OF THEOREM 4.27. We may assume that R = A-modygq for a pointed
locally finite-dimensional locally unital algebra A = ®a,beB eqAep, so that T is
a locally finite-dimensional left A-module. Let C := T® ®4 T viewed as a coal-
gebra according to (2.14). By Lemma 2.10 this coalgebra is the continuous dual
of B = End4(T)°P, and we may identify R with the locally finite Abelian cat-
egory comodgy-C. Applying Lemma 2.11, the Ringel duality functor G becomes
the functor T®®,4? : A-mod — comod-C, with the comodule structure map of
GV 1= T® ®4 V being defined as in (2.17). Let

(4.26) I'(b) := GT(b), L' (b) := soc I'(b), V' (b) := GA.(b).

Each I'(b) is an indecomposable injective right C-comodule, and {L’/(b) | b € B} is
a full set of pairwise inequivalent irreducible C-comodules. To show that R’ is a
lower finite (—&)-stratified category, we must show for each finite upper set A" in
A that the Serre subcategory (R')! of R’ generated by {L/(b) |be BT := p~1(A")}
is a finite (—¢)-stratified category for the induced stratification (BT, L', p, A, >).

The functor G sends short exact sequences of objects in A2%¢(R) to short exact
sequences in Ind(R’). This follows because Homyg (?,T) has this property thanks
to the Ext'-vanishing from Lemma 3.36. Since A, (b) < T%(b), we deduce that that
V' _(b) < I'(b). Thus, we have that L'(b) = soc V'__(b).

Now let R' be the Serre quotient of R associated to some finite upper set
AT < Aand let j : R — R" be the quotient functor. This is a finite e-stratified
category thanks to Theorem 3.42. In fact, R'" = A'-modsq where AT := eAe for
e:= Y uep €; the quotient functor j is the idempotent truncation functor defined
by multiplying by e. By the upper finite analog of Corollary 4.5, TT := €T is
an e-tilting generator for R'. Let B' := End s+ (T")°P be its (finite-dimensional)
endomorphism algebra. Then (R")" := B'-modgq is the Ringel dual of R' relative to
T'. By the finite Ringel duality from Theorem 4.10, (R")’ is a finite (—¢)-stratified
category. Let GT := Cohomg (T",?) = Homg (?,7")* : R — (R'")’ be its Ringel
duality functor. The functor j defines an algebra homomorphism 7 : B — BT,
hence, we get a functor 7* : (R")" — R’. We claim that this gives an isomorphism
identifying (R") with the subcategory (R’)" of R’. This will be proved in the next
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paragraph. Moreover, making this identification, we have that
(4.27) i'oG' =~ Goj.,

i.e., the following diagram commutes up to natural isomorphism:
T
R S, (RYY = (R')!

j!l li’

R—% LR
This follows because the northeast composition is the functor 7®e®e4.? while the
southwest composition is 7® ®4 Ae®c4.?, and T®e ~ T® @4 Ae as bimodules.
Since we already know that (R1)’ is a finite (—¢)-category, it follows that (R')" one
too, with costandard objects

7(GTAL(0) = GGIALE) = GAL(b) = V', (b)

thanks again to Theorem 4.10 plus Theorem 3.42(6).
To prove the claim, let C" := (B")* be the (finite-dimensional) dual coalgebra
so that (R") = comodgg-C". Consider the short exact sequence

0— AeQepe €T — T — Q — 0

which comes from the upper finite counterpart of Lemma 3.19(2); thus, @ € A25°(R)
and all of its sections are of the form A.(b) for b ¢ BT, while Ae ®ca. €T € A (R)
has sections of the form A.(b) for b € B'. Applying G and using the exactness
noted in the second paragraph of the proof, we get a short exact sequence

0—C'—C—->GQ—0.

The first map C' — C here is dual to the algebra homomorphism 7 : B — B', so it
is a coalgebra homomorphism. It identifies (R")’ with the the Abelian subcategory
comodgg-CT of R’ = comodiy-C. Note also that the irreducible objects of R’ are
{L'(b) | b € B'}. To complete the proof of the claim, it suffices using Lemma 2.25
to show that the socle of GQ only has constituents of the for L'(b) for b ¢ BT. Fix
an ascending A.-flag (V,,)weq in Q. As G commutes with direct limits, we deduce
that GQ = lim(GV,,). The sections in a A.-flag in V,, are A.(b) for b ¢ B', hence,
GV, has a V_.-flag with sections V'__(b) for b ¢ BT. It follows that soc (GV,,) is
of the desired form for each w, hence, the socle of GQ is too.

We can now complete the proof of the theorem. We have shown already that
R’ is a lower finite (—¢)-stratified category. Theorem 4.10 plus Corollary 4.4 shows
for AT chosen to contain p(b) that

T.(b) = G'(jP() = GGi(jP(b)) = GP(b).
Also, for a,b € BT, we have that
Homg/ (T (a), T" (b)) = Hom /)i (T (a), T (b))
=~ Homy: (A'e,, Aley) = e, Aey,.
These things are true for all choices of AT, so we see that the Ringel dual of R’
relative to @,.g 7" .(b) is the original category R = A-modiq. This puts us in
the situation of Corollary 4.29, and finally we invoke that corollary (whose proof

did not depend on Theorem 4.27) to establish that G : A25°(R) — V2¢(R’) is an
equivalence. (I
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4.5. Essentially finite Ringel duality

To complete our account of infinite versions of Ringel duality, it remains to dis-
cuss the essentially finite case. For this, we impose the tilting-bounded assumption
from Definition 4.20.

DEFINITION 4.33. Assume R is an essentially finite e-stratified category with
stratification (B, L, p, A, <). Assume in addition that R is tilting-bounded. An
e-tilting generator for R means an object T = (—DjEJ T; € Env(R) with a given
decomposition as a direct sum of objects T; € Tilt.(R) such that each T, (b) appears
as an indecomposable summand of T with multiplicity that is non-zero and finite.
Then we define the Ringel dual of R relative to T' to be the category R’ := B-modgq
where

op
B:= <<—D HomR(Ti,Tj)> .
i,j€J

We denote the system of distinguished idempotents of B arising from the identity
endomorphisms of each T by {f; | j € J}. Also define the two Ringel duality
functors

(4.28) F := @ Homg(T},?): R - R/,

jeJ
(4.29) G := Cohomg(7T,?) = Homg (?,7)* : R -> R'.

THEOREM 4.34 (Essentially finite Ringel duality). In the same setup as Defi-
nition 4.33, the Ringel dual category R’ is a tilting-bounded essentially finite (—¢)-
stratified category with stratification (B, L', p, A, =) and distinguished objects

P'(b) = FT.(b), I'(b) = GT.(b),  L'(b) =hd P'(b) = soc I'(b),
A _(b) = FV.(b), V__(b)=GA(b), T _(b)=FI(b)=GP(b).
The restrictions F : V.(R) > A_.(R') and G : A,(R) — V_.(R') are equiva-

lences.

PrOOF. We may assume that R = A-modgq for an essentially finite-dimensional
pointed locally unital algebra A = (—Bm-e ;€iAej. Replacing the e-tilting genera-
tor T = @je ;T; by any other changes B to a Morita equivalent algebra, so we
may as well assume simply that J = B and T = @,.g T-(b). Then the algebra
B = (—Ba,beB faBfp is a pointed locally unital algebra. The assumption that R is
tilting-bounded implies that

> dim Homp (T.(a), (b)) < o0, Y. dim Homp (T.(a), T. (b)) < o
aeB beB

for each a,b € B. Thus, B is essentially finite-dimensional, i.e., R is essentially
finite Abelian. The module P’(b) := Af; is an indecomposable projective A-module,
and

{L'(b) := hd P'(b) | be B}

is a full set of pairwise inequivalent irreducibles. Now (B,L’,p, A, >) defines a
stratification of R'. One checks that Steps 1-12 from the proof of Theorem 4.10
all go through essentially unchanged in the present setting. This completes the
proof except for one point: we must observe finally that R’ is tilting-bounded.
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This follows because the relevant matrix from Definition 4.20 (with each T¢(b) now
being replaced by T” (b)) is the Cartan matrix

(dim Hom 4 (P(a), P(b)))a,beB

of A. Its rows and columns have only finitely many non-zero entries as A is essen-
tially finite-dimensional. U

COROLLARY 4.35 (Essentially finite double centralizer property). Continuing
in the general setup of Definition 4.33, suppose that the e-stratified category R
is the category A-modgq for an essentially finite-dimensional locally unital algebra
A = @, jescidej, so that T = @;c; Ty is an (A, B)-bimodule. For i € I, let
T} := (e;T)* € B-modq, so that T" := @, T} is a (B, A)-bimodule.
(1) The module T' = @, ; T} is a (—¢)-tilting generator for R' = B-modgq
and there is an algebra isomorphism

op
(4.30) piAS (@ Hompg/ T{,Tj))
i,jel
sending a € e;Aej to p(a) : T) — T},t +— ta. So the Ringel dual of R’
relative to T' = @,; T} is equivalent to the original category R.
(2) Denote the Ringel duality functors from R’ to R by

(4.31) Gy = @ Homg/(T},7) : R' > R,
iel
(4.32) F* := Cohomp (T",?) = Homg (?,T7)* : R’ —> R.
respectively. We have that F* ~ T®pg? and G =~ T'®4?, hence, (F*, F)
and (G, Gy) are adjoint pairs.

PROOF. For (1), note that @, ; G(Ae;) is a (—¢)-tilting generator for R’ since
GP(b) = T’ _(b) for b € B. Actually, G(Ae;) = Homy(Ae;, T)* = (e,T7)* = T.
Thus, T" = @,.; T} is a (—¢)-tilting generator for R'. To obtain the isomorphism
between A and the locally finite endomorphism algebra of T”, apply the functor G

op
to the canonical isomorphism A = (@i,je[ Hom 4 (Ae;, Aej)> . To prove (2), we
note first that F*(Bf;) = T ®p Bf;. It then follows that F*(V) ~ T ®p V on any
finite-dimensional B-module V' by taking a resolution P, — P; — V — 0 in which
Py, P, are direct sums of modules of the form Bf;, then using the Five Lemma.
The argument for G is similar. O

We leave it to the reader to adapt Corollary 4.12 to the essentially finite setting.

4.6. Tilting-rigidity
We begin by recalling some well-known definitions:

(QF) A finite Abelian category R is quasi-Frobenius if all projective objects
are injective. In that case, there is a unique bijection v : B — B, the
Nakayama permutation, such that

P(b) = I(v(b))

for each b € B, where P(b) and I(b) are projective covers and injective
hulls of of the 1rredu01b1e objects {L(b) | b e B}.
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(WS) A finite Abelian category R is weakly symmetric if it is quasi-Frobenius
with Nakayama permutation being the identity function. Equivalently,
P(b) =~ I(b) for all b e B.
(S) A finite Abelian category R is symmetric if there is a natural isomorphism
of vector spaces

(4.33) Homg (P, V) =~ Homg (V, P)*
for all P,V € R with P projective.

These are equivalent to saying that all algebra realizations A of R are quasi-
Frobenius, Frobenius, or symmetric, respectively; see [GHK, §4.4], [Ric, Th. 3.1].
Of course, (QF) = (WS) = (S). We are going to investigate some properties of
fully stratified categories which involve the properties (QF), (WS) and (S) at the
level of strata.

We assume from now on that R is a fully stratified category, by which we mean
a fully stratified category of any one of the four types, finite, essentially finite, upper
finite or lower finite. We use the usual notation (B, L, p, A, <) for its stratification.

DEFINITION 4.36. Let R be a fully stratified category. We say that R is tilting-
rigid if
Tilt+ (R) = Tilt_(R).
For this to make sense in the essentially finite case, it is necessary to assume im-
plicitly that R is tilting-bounded in the sense of Definition 4.20 for some choice
(equivalently, all choices) of sign function e.

Highest weight categories are automatically tilting-rigid for trivial reasons, so
that Definition 4.36 is not needed when working just with highest weight categories.
The importance of tilting-rigidity first became apparent in the context of fibered
highest weight categories in [MO], [FM], where it is formulated as the property
“tilting = cotilting”. The following lemma shows in a tilting-rigid category that
the subcategories Tilt.(R) coincide for all choices of €, so that we can denote them
all simply by Tilt(R).

THEOREM 4.37 (Tilting-rigid categories have quasi-Frobenius strata). Let R
be a tilting-rigid fully stratified category. There is a unique bijection v : B — B
such that
T, (b) = T_(v(b)).
For A € A, this function leaves By € B invariant, and the stratum Ry is quasi-
Frobenius with Nakayama permutation v|g,. Moreover, for any sign function ¢ :
A — {+}, we have that

) ife(A) =+,
(4.34) 1) = { T B) i) =~

PROOF. There is obviously a unique function v : B — B such that T, (b) =
T_(v(b)). This function is injective and leaves each of the finite subsets B in-
variant, hence, it is actually a bijection. To see that R, is quasi-Frobenius with
v|B, as its Nakayama permutation, we must show that Py(b) =~ I,(v(b)) for each
b € By. This follows using T (b) = T_(v(b)) together with Theorem 4.2(3) or
Theorem 4.18(3) (which one depends on the particular setting we are in). Finally,
take b € By and a sign function e. Then T (b) = T_(v(b)) has both a A-flag and
a V-flag, hence, it has a A.-flag and a V_-flag. It follows that it is isomorphic to
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T.(b'") for a unique b’ € By. Applying j* and using Theorems 4.2 or 4.18 again gives
that o' = bif e(A\) = + or ¥/ = v(b) if e(A) = —, and the formula (4.34) follows. O

The argument used to prove the next lemma is based on the proof of [CM,
Th. 2.2]. Note this proves Conjecture 4.15 assuming an additional hypothesis on
the strata.

LEMMA 4.38. Suppose that R is a finite fully stratified category ande : A — {+}
is some given sign function.

(1) Assume that Ly(a) is isomorphic to a subobject of a projective object in
R for all a € By and A € A with ¢(X\) = +. Then for b € B, T.(b) has
finite injective dimension if and only if T.(b) € Tilt_(R).

(2) Assume that Ly(a) is isomorphic to a quotient of an injective object in
R for all a € By and X\ € A with e(A) = —. Then for b e B, T.(b) has
finite projective dimension if and only if To(b) € Tilt, (R).

PROOF. We just prove (1), (2) being the equivalent dual statement. If T.(b) €
Tilt—(R) then T.(b) has a V-flag, so it has finite injective dimension thanks to
Corollary 3.24. Conversely, suppose that T (b) has finite injective dimension. Since
T.(b) € Tilt-(b), it has both a A -flag and a V.-flag. Hence, as R is fully stratified,
it has both a A-flag and a V-flag. To show that T.(b) € Tilt_(R), it remains to show
that T.(b) has a V-flag. This follows from the homological criterion (Theorem 3.11)
if we can show that Extz, (A(c), T.(b)) = 0 for all ¢ € B. By assumption, T.(b) has
finite injective dimension, so there is a greatest d such that Ext% (A(a), To(b)) # 0
for some a € B. Now the goal is to show that d = 0.

Suppose for a contradiction that d # 0. Since Ext%(A.(a), To(b)) = 0, we
must have that a € By for A with ¢(\) = +. By the assumption on strata, there
exists a’ € By such that Ly(a) — Py(a’). Let 0 = Vj < --- < V,, = A(d’) be
the A-flag for A(a’) obtained by applying the exact functor j} to a composition
series for Py (a’) chosen so that its bottom section is isomorphic to Ly (a). For each
r =1,...,n we have that V,./V,_; =~ A(a,) for some a, € By with a; = a. Applying
Hompg(?, T-(b)) to the short exact sequence 0 — V,._; — V,. — A(a,) — 0 and using
ExtL (A(ay), To (b)) = 0 gives a surjection Ext% (V,., T.(b)) — Ext® (Ve_1, T(b)).
Since Ext% (Vi, T.(b)) # 0 by the choice of a, we deduce that Ext% (V;., T.(b)) # 0 for
allr = 1,...,n. Taking r = n gives Ext% (A(a’), To(b)) # 0. This is a contradiction
since 7. (b) has a V-flag. O

The following extends [CM, Th. 2.2] from fibered highest weight categories to
fully stratified categories; cf. Remark 3.30.

THEOREM 4.39 (Homological criterion for tilting-rigidity). For a finite fully
stratified category R, the following properties are equivalent:
(i) R is tilting-rigid;
(ii) R is Gorenstein® and all of its strata are quasi-Frobenius;
(iii) R is Gorenstein and for each A € A and b € By the irreducible object
L (b) appears in the socle of some projective in Ry;
(@) R is Gorenstein and for each X € A and b € By the irreducible object
L (b) appears in the head of some injective in R y.

4A1l projectives have finite injective dimension and all injectives have finite projective dimension.
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PrOOF. We may assume that R = A-modg for a finite-dimensional algebra A.

(i)=(i). All strata are quasi-Frobenius by Theorem 4.37. The injective left A-
module A* has a finite —-tilting resolution 0 - T,, — --- —> T} — Ty — A* — 0 by
Corollary 4.14. As R is tilting-rigid, this is also a finite +-tilting-resolution, so each
T; has a A-flag. Using Corollary 3.24, it follows that each T; has finite projective
dimension. We deduce that A* has finite projective dimension by arguing as in the
proof of [Wei, Th. 4.3.1]; cf. the proof of (2)=(1) from [CM, Th. 2.2]. The dual
argument gives that A has finite injective dimension. Hence, A is Gorenstein.

(ii)=(iii), (iii’). This follows immediately since Py(b) = I)(v(b)) for all b € By,
where v is the Nakayama permutation.

(ili)=(i). It suffices to show that each 1" (b) belongs to Tilt_(R). As @5 T+ (D)
is tilting in the general sense of tilting theory (cf. the discussion before Conjec-
ture 4.15), the assumption that A is Gorenstein together with [HU, Lem. 1.3]
implies that @,.g T+(b) is cotilting. Hence, it has finite injective dimension, so
each Ty (b) has finite injective dimension. Then we apply Lemma 4.38(1) with
€= .

(iii")=>(1). This follows by the dual argument to the proof of (iii)=>(i). O

COROLLARY 4.40. If R is a finite fibered highest weight category, it is tilting-
rigid if and only if it is Gorenstein.

PROOF. In a fibered highest weight category each stratum has a unique irre-
ducible object (up to isomorphism). Therefore the second parts of (iii) and (iii’) in
Theorem 4.39 hold automatically. ]

Now we are going to consider the Ringel dual R’ of a tilting-rigid fully stratified
category R as in Definitions 4.9, 4.24, 4.26 or 4.33 (depending on the setting).
These definitions all involve the choice of a sign function € and the choice of an
e-tilting generator T. By (4.34), an e-tilting generator for some choice of ¢ is an
e-tilting generator for all €, so it makes sense to drop the prefix ¢, referring to T
simply as a tilting generator. Fixing such a choice, let R’ be the corresponding
Ringel dual category, and let F and G be the Ringel duality functors from those
definitions together with (4.21) and (4.22) in the lower finite and upper finite cases,
respectively. Note these functors only depend on the choice of tilting generator,
not on the choice of sign function ¢, i.e., they are the same functors for all . For
each \ € A, there are now two equivalences of categories

(4.35) Fy= ()0 ()oy0Foicyojy: Ry — Rh,
(4.36) Gr= (i) o ()i 0Goicroji : Ry — R

between strata; see Corollary 4.12 (which also holds in the essentially finite case)
and Corollary 4.32. The following lemma gives a more explicit description of these
functors.

LEMMA 4.41. Let R be a finite, tilting-bounded essentially finite, upper finite or
lower finite e-stratified category with the usual stratification (L, B, p, A, <). Suppose
that R’ is the Ringel dual of R with respect to some given tilting generator T =
@,c; Ti such that the index set I contains B and Ty, (b € B) is a direct sum of T (D)
and copies of Te(c) for c € B with p(c) < p(b). For A € A, let T\ := @yep, Tb €
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R<x- There is an algebra isomorphism
bx - Ay > Endg, (j2Ty)P

between the natural algebra realization Ay for the stratum R\ and the endomorphism
algebra of jAT\ € Rx. Moreover:
(1) Ife(\) = + then F\ =~ Homg, (j2Th,?) : Ry — Ax-modsq with the action
of Ay defined via ¢y.
(2) If e(\) = — then Gy = Homg, (?,;7T))* : Ry — Ax-modyq with the
action of Ay defined via ¢y.

PRrROOF. We just explain the argument in detail if R is a finite e-stratified
category; the other cases are similar but there are minor notational differences.
We have that R’ = A-mods for A := Endg(T)°?. The functors F' and G are
Homg (T,?7) and Homg(?,T)*, respectively. Let e, € A be the projection of T
onto T.(b) and set ey := ZbeBA ep. Let Asy be the quotient of A by the two-sided
ideal generated by the idempotents {e, | © € A with ¢ 3 X}. This is the natural
realization of the Serre subcategory RL, of R'. Then the stratum R/ is realized
by the basic finite-dimensional algebra Ay := €yAsxéy, where we write T for the
canonical image of z € A under the quotient map A — As,. The idempotents
{€y | b € B} are representatives for the conjugacy classes of primitive idempotents
in A)\.

By Theorem 4.2(3), j T} is a minimal projective generator for Ry if () = + or
a minimal injective cogenerator for Ry if e(\) = —. In either case, Endg, (T )P
is the basic algebra realizing the stratum Ry. Since Ry and R are equivalent, it
follows that A, =~ Endg, (3 7T3)°P. However, the argument so far does not produce
the desired explicit isomorphism ¢y between these algebras. To obtain this, since
we have already seen that the dimensions agree, it suffices to construct a surjective
algebra homomorphism ¢y : Ay — Endg, (j2T)°P.

Let R-) be the Serre quotient of R associated to the upper set (A, 0], so
that R~ has irreducible objects labelled by Bs . Denote the quotient functor by
jZ* : R — R=». The functor j* defines an algebra homomorphism

(4.37) A = Endg(T)°P — Endg_, (ZT)°P.

This homomorphism is surjective. To see this, Corollary 3.19(2) gives a short exact
sequence 0 — j!ZAj>/\T — T — @ — 0 in which @ has a A.-flag. Applying
Hompg (7, T) to this gives surjectivity of the first map below:

Homp (7, T) — Homg (77T, T) = Homr.,, (77T, j7T).

The second map comes from the adjunction. The composite is the map (4.37), so
indeed it is surjective. Now we note that this map sends each e, for i 2 X to zero, so
it factors through the quotient A — As y to give a surjective homomorphism Ay —»
Endg._, (22T)°P. Then we restrict to €y A=x€x to obtain the homomorphism ¢y.

It just remains to prove (1) and (2). The universal property of Serre quotients
produces a unique fully faithful functor ¢, making the following diagram of functors
commute:

=2
J
R 25 Roy
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Thus, j>* oicy = iy 0 j*. Composing on the left with j,,?)‘ and on the right with
42, using that j* o j2 =~ Id and jz* 0 j2* = Id on objects in the image of i< 04,
we deduce that

(4.38) JZr oy =iy 043
Using this, we have that
Fy = ()N(i)5 ) Home (T, 532 (0a7)))

>~ ey I‘IOIHRZA (jz)\T7 Z)\7) = I‘IOHIRA (j)\T)\, 7),

12

proving (1). The proof of (2) is similar, using the isomorphism j?A 0y i<y 0}
in place of (4.38). O

Returning to the setup before the lemma, so R is a tilting-rigid fully stratified
category and R’ is its Ringel dual relative to some tilting generator T', we next
discuss the labelling of irreducible objects in R’. In the general tilting-rigid setting,
this depends on a choice of sign function ¢, since one needs to fix a specific labelling
{T.(b) | b € B} of the isomorphism classes of indecomposable summands of T
Put another way, the labelling of irreducible objects in R’ depends on a labelling
{L;,(X\) | b e By} of irreducible objects in each of the strata R/, which we do given
a choice of € by declaring that

Y B0 ={ 00 -

In the next theorem, we see for the first time the advantage of assuming that all
of the strata of R are symmetric, or at least weakly symmetric, since then the
labelling of irreducibles in R’ does not depend on the choice of ¢ here.

THEOREM 4.42 (Ringel duality for tilting-rigid fully stratified categories). Let
R be a tilting-rigid fully stratified category. The Ringel dual R’ of R with respect to
some tilting generator is again tilting-rigid. Moreover, the following hold for A € A:
(1) Ry is weakly symmetric if and only if FALx(b) = GA\Lx(b) for all b€ By.

(2) Ry is symmetric if and only if F\ =~ G,.

Proor. Taking e = + in the appropriate Ringel duality theorem (one of The-
orems 4.10, 4.25, 4.27 or 4.34) gives that R’ is —-stratified with indecomposable
—-tilting objects {FI(b) | b € B} in the finite, lower finite or essentially finite
cases and {GP(b) | b € B} in the finite, upper finite or essentially finite cases.
Taking e = — gives that R’ is +-stratified with indecomposable +-tilting objects
{F'I(b)|b € B} in the finite, lower finite or essentially finite cases and {GP(b)|b € B}
in the finite, upper finite or essentially finite cases. It follows R’ is fully stratified
and its indecomposable —-tilting objects and +-tilting objects are the same, i.e.,
Tilt(R') = Tilt_(R') and R’ is tilting-rigid.

To prove (1) and (2), let £ be any sign function. We may assume that the tilting
generator is T' = @ycg T=(b). Let Ty := Djep, T:(b) and Ay = Endg, (FAT\)°P be
as in Lemma 4.41. Using the explicit descriptions of F\ and G from Lemma 4.41,
we deduce that F\Ly(b) =~ G5 Ly(b) if and only if

Homp, (j*T, L(b)) = Homg, (Lx(b), ;2 T))*

as left Ay-modules (notation as in Lemma 4.41). The left hand side is the irreducible
Ayx-module associated to the primitive idempotent that is the projection of j Ty
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onto the summand isomorphic to Py (b), and the right hand side is the irreducible
Ayx-module associated to the primitive idempotent that is the projection of j Ty
onto the summand isomorphic to I, (b). Thus, these modules are isomorphic for all
b€ B, if and only if Py\(b) = I,,(b) for all b € B,, i.e., the Nakayama permutation
of R is the identity, and Ry is weakly symmetric. This proves (1).

To prove (2), using Lemma 4.41 again, we have that F)\ =~ G, if and only if
there is a natural isomorphism of left Ay-modules

HOIIIR)\ (jAT)\, V) = HOHIR)\ (V,j)\T)\)*

for V € Ry. Since j T} is a projective generator for Ry and Ay = Endg, (3 T3)°P,
there is such an Aj-module isomorphism if and only if there is a natural vector
space isomorphism as in (4.33) for all P,V € R, with P projective, i.e., Ry is
symmetric according to the definition we gave earlier. O

In the sequel, we will only consider tilting-rigid fully stratified categories with
the additional property that all strata are weakly symmetric. By Theorem 4.37, a
tilting-rigid fully stratified category has this property if and only if v = id. Thus, a
fully stratified category is tilting-rigid with weakly symmetric strata if and only if

(4.40) T, (b) = T_(b)

for all b € B. In that case, T4 (b) = T.(b) for all sign functions &, so that one can
simply write T'(b) in place of T (b). Moreover, if R’ is the Ringel dual category to
R with respect to some tilting generator, the irreducible objects of R’ are labelled
unambiguously by the set B; the induced labelling of irreducible objects of the
stratum R, satisfies

(4.41) L4 (b) = FALy(b) = GrLx(b)

for all Ae A and b € B,.

4.7. Bases for morphism spaces between A- and V-filtered objects

In this section, we explain how to extend the construction of [AST, Th. 3.1]
first to e-stratified and then to fully stratified categories. These results will be
used in the next chapter to construct triangular bases for endomorphism algebras
of tilting generators.

THEOREM 4.43. Let R be a finite, lower finite or tilting-bounded essentially
finite e-stratified category with stratification (B, L, p, A, <). Suppose for each b€ B
that we are given Ty € Tilt.(R) such that Ty is a direct sum of T.(b) and copies of
T.(c) for ¢ with p(c) < p(b). Take M € A;(R) and N € V.(R). For each b € B,
choose an embedding vy, : Ae(b) — Ty, a projection mp, : Ty — V(b), and subsets

Y, € Homg (M, Ty), X, € Homg (Ty,, N)
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50 {7] =T oy } Y€ Yb} is a basis for Homg (M, V(b)) and {5: 1=z oy } T € Xb}
is a basis for Homg (A (b), N), as illustrated by the diagram:

A (b)
(4.42) M\y T, > N
V. (b)

Then the morphisms xoy for all (y,x) € J,eg Yo X Xy give a basis for Homg (M, N).

PrOOF. We proceed by induction on fa_ (M) + v (N) where a_ (M) :=
DM AL(b)) and by (N) 1= > cg(IN : Vo(b)). The base case is this num-
ber is zero, hence, M = N = 0 too, which is trivial. For the induction step, we can
replace R by the Serre subcategory of R associated to the lower set of A generated
by all {\| (M : A.(b)) + N : V(b)) # 0 for some b € By} to assume that there is
some maximal element A € A such that such that (M : A.(b)) + (N : V(b)) # 0
for some b € By. Then we let A* := A\{)\}, B* := p71(A!), and i : R* — R be the
natural inclusion of the corresponding Serre subcategory of R. Let j: R — R, be
the quotient functor.

In this paragraph, we treat the special case N € R*. Let M*' := i*M. Note
by the choice of X that la_(M*') + by_(N)| < €a.(M) + fg_.(N). By (3.10) and
Theorem 3.17(2), we have that M* € A.(R'), and there is a short exact sequence
0> K—> M — M'"— 0 where K has a A.-flag with sections of the form A.(b)
for b € By. It follows that the natural inclusion Homg (M*, N) — Homg (M, N)
is an isomorphism. For b € BY, all of the morphisms {y : M — T, |y € Y3} factor
through M* too. Hence, we can apply the induction hypothesis to deduce that the
morphisms z oy for all (y,z) € J,cg: Y5 X Xp give a basis for Homg (M*, N) =
Homg (M, N). Since X;, = @ for b e By, we have that | J,cg Y5 X Xt = Upeg: Yo X
X3, so this is just what is needed.

Now suppose that N ¢ R' and let N* := i'N € R'. We again have that
Ia (MY) + by (N)| < la. (M) + ly_(N). By (3.10) and Theorem 3.17(4), we have
that N* € V.(R'), and there is a short exact sequence 0 — N* — N 5 Q — 0
where @ has a V.-flag with sections of the form V.(b) for b € B). Applying
Hompg (M, ?) to this and using Theorem 3.14 gives a short exact sequence

0 — Hompg (M, N*) — Homg (M, N) — Homg (M, Q) — 0.

For b € BY, the morphisms {z : T, — N | z € X;} have image contained in N* and
are lifts of a basis for Homg.: (A, (b), N*). By induction, we get that Homg (M, N*)
has basis given by the compositions zoy for all (y, z) € Jyeg: Y» x Xp. In view of this
and the above short exact sequence, we are therefore reduced to showing that the
morphisms mozoy for (y, ) € Uy, Y» x Xp give a basis for Homg (M, Q). We have
that Q =~ j,j@Q by Corollary 3.19(1), hence, the exact quotient functor j defines
isomorphisms Homg (M, Q) = Homg, (jM,jQ). Similarly, Homg (M, V(b)) =
Homg, (M, jV<(b)) and Homg(A.(b),N) = Homg, (jA:(b),jN) for b € B,.
Moreover, jm : jN — j@ is an isomorphism. Thus, we are reduced to show-
ing that the morphisms jz o jy give a basis for Homg, (M, N) for all (y,z) €
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Uses, Yo x Xp. The sets of morphisms Y, := {jy : iM — jT, |y € Y3} and
Xy := {jx : jT, — jN |z € X,} appearing here are characterized equivalently as
lifts of bases for Homg, (M, jV.(b)) and Homg, (jA.(b),jN), respectively. Let
M :=jM and N := jN.

To complete the proof, we consider the two cases €(A) = + and ¢(\) = —
separately. The arguments are similar, so we just explain the former. In this
case, for b € By, we have that jV.(b) =~ Lx(b) and jA.(b) =~ Py(b) =~ jT} by
Theorem 4.2(3). The module M is projective in Ry. We are trying to show that
the morphisms z o y for all (7,%) € e, Y, x X, give a basis for Homg, (M, N)
where:

e YV, © Homg, (M, Py(b)) is a set lifting a basis of Homg, (M, Lx(b));
e X, is a basis of Homg, (Py (), N).

Since M is projective, the proof reduces to the case that M = Py(b), when the
assertion is clear. (]

The following restatement in the special case of a highest weight categories
recovers [AST, Th. 3.1].

COROLLARY 4.44. Let R be a finite, lower finite or tilting-bounded essentially
finite highest weight category with poset (A, <) and labelling function L. Suppose
for each X € A that we are given Ty € Tilt(R) such that Ty is a direct sum of T(X)
and copies of T(u) for p < A. Take M € A(R) and N € V(R). For each X € A,
choose an embedding vy : A(X) — Ty, a projection wy : Tx — V(A), and subsets

Y\ € Homg (M, T)), X € Homgz(Ty, N)

so that {§ := myxoy|y € Y} is a basis Homg (M, V(N)) and {Z := z o1, |2 € X, }
is a basis for Homg (A(X), N). Then the morphisms xoy for all (y,x) € | Jycp Ya ¥
X give a basis for Homg (M, N).

For tilting-rigid fully stratified categories, there is a more refined version of
Theorem 4.43.

THEOREM 4.45. Let R be a finite, lower finite or essentially finite fully stratified
category with stratification (B, L, p, A, <) such that R is tilting-rigid with weakly
symmetric strata. Suppose for each b € B that we are given Ty, € Tilt(R) such that
Ty is a direct sum of T'(b) and copies of T'(c) for ¢ with p(c) < p(b). Take M € A(R)
and N € V(R). For a,b € B, choose embeddings i, : Ala) < Ty, iy : A(b) — Ty,
projections o : Ty — V(a),m : Ty — V(b), and subsets

Y, € Homgz (M, T,), H(a,b) € Homg (T, Ty), X, € Homg (Tp, N)

so that {gj =g 0y } TS Ya} is a basis for Homg (M, V(a)), {i_z i=mpohou, ’ he
H(a,b)} is a basis for Homg (A(a),V(b)), and {Z := z o1, | € X} is a basis for
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Homp (A(b), N), as illustrated by the dz'agmm:

Ala) ——V(b)
f Tﬂ
(4.43) Y T,
V(a) A(b)
Then the morphisms xohoy for all (y,h,z) € U, yep Yo X H(a,b) x Xy give a basis

for Homg (M, N).

PRrROOF. This follows by the same strategy as was used in the proof of The-
orem 4.43. The only substantial difference is in the final paragraph of the proof.
By that point, we have reduced to showing for projective and injective objects
M, N € Ry, respectively, that the morphisms Zohog for all (3, h, Z) € Ua.teB, Y, x

H(a,b) x X, give a basis for Homg, (M, N) where:
e Y, c Homg, (M, Py(a)) is a set lifting a basis of Homp, (M, Ly(a));
e H(a,b) is a basis for Homg, (Py(a), Ix(b));
e X, c Homp, (I,(b), N) is a set lifting a basis of Homg, (Lx(b), N).
Using that M is projective and N is injective, the proof of this reduces to the case
that M = Py(a) and N = I,(b), when the assertion is clear. O

4.8. Chevalley dualities

Finally, in this chapter we discuss some further aspects of Ringel duality. These
results will be used in the next chapter to construct symmetric triangular bases for
endomorphism algebras of tilting generators. Like in §4.6, the phrase “fully strat-
ified category” means a fully stratified category R that is either finite, essentially
finite, upper finite or lower finite.

Given a finite-dimensional algebra A and an algebra anti-automorphism o :
A — A, there is a contravariant autoequivalence

(444) 7@ A—modfd — A—mOdfd

taking V to its linear dual V* viewed as a left module by restricting the natural right
action along o. If R is a finite Abelian category and 7Y : R — R is a contravariant
autoequivalence, we call a pair (4, o) consisting of a finite-dimensional algebra A
and an anti-automorphism o a realization of (R,?") if there is an equivalence of
categories F': R — A-modgq such that Fo?Y ~7@o F. The following lemma shows
that any contravariant autoequivalence of R admits a realization in this sense.
In fact, we will only ever consider contravariant autoequivalences that preserve
isomorphism classes of irreducible objects, in which case we can say a little more
about o as explained at the end of the lemma.

LEMMA 4.46. Let A be a finite-dimensional algebra. Suppose that 7V is a con-
travariant autoequivalence of A-modsq. There exists an algebra anti-automorphism
o: A — A such that 7V =7®. Moreover, if 7V preserves isomorphism classes of
wrreducible A-modules, then o can be chosen so that it fizes each of a given set
{e; | i € I} of mutually orthogonal idempotents in A.
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PRrRoOOF. Consider the functor F :=7*0?" : A-modsg — A°P-modgy. Since this
is right exact and preserves direct sums, we have that F' >~ FFA® 4?7 where F A is
the (A°P, A)-bimodule obtained by applying F' to the regular (A, A)-bimodule A.
Note that the right action of x € A on F'A here is defined by applying F to the left
A-module homomorphism 7, : A — A,a — ax.

Viewing A as a left A°P-module with action z -y := yx, we claim that F'A =~
A as left A°P-modules. To see this, let {L(b) | b € B} be a full set of pairwise
inequivalent irreducible left A-modules. Then A =~ @, P(b)@4™L®) as left A-
modules, where P(b) is the projective cover of L(b). Let B — B,b — V' be the
bijection defined from L(b)Y =~ L(b'). Then P(b)Y =~ I(V'), the injective hull of
L(V). Hence FP(b) = I(V')* as left A°°-modules. Here, I(b)* is the projective
cover of the left A°"-module L(b)*. Using that dim L(b) = dim L(b')*, we deduce
that

FA~ @(I(b/)*)®dimL(b) ~ @(I(b)*)@dimL(b)* ~ A

beB beB

as left A°°-modules. This proves the claim. Similarly, under the additional hy-
pothesis that 7V preserves isomorphism classes of irreducible objects and we are
given mutually orthogonal idempotents {e; | i € I}, we get that F(Ae;) =~ e;A as
left A°P-modules for each i € I.

Now we let ¢ : FA 5 A be some choice of a left A°P-module isomorphism.
When the additional hypothesis holds, we may pick this so that it restricts to
isomorphisms F(Ae;) — e;A for each i € I. Transporting the right A-module
structure on F'A through ¢, we make the left A°°-module A into an (A°P, A)-
bimodule, which we will denote by A,-1. Explicitly, left action of x € A°P on
y € Ay-1 is given by = -y := yx as in the previous paragraph, while the new right
action of z € Aisby y-a := (¢ o ((ry)¥)* o~ 1)(y). Since Endaor(A) = A, this
right action of x can be written as left multiplication by a unique element z’ € A.
The resulting map A — A,z — z’ is an algebra anti-automorphism. Let 0 : A — A
be the inverse anti-automorphism. Note then that the right action of x € A on
ye A, 1 is by y-x = 0~ 1(x)y, explaining our earlier choice of notation. When the
additional hypothesis holds, the choice of ¢ ensures that (e;)’ = e; for i € I, hence,
o(e;) = e; for each i € I.

For a left A-module V, let ,V be V viewed instead as a left A°P-module by
restricting along o. Then ,A is an (A°P, A)-bimodule which is isomorphic via
o:Ay-1 > 5 A to the (A°P, A)-bimodule A,-1 =~ F'A from the previous paragraph.
Thus, we have shown that F' >~ A,-1®47 =~ ;AQ®47 =~ ,7 : A-modsg — A°P-modgy.
Applying 7* gives finally that 7V 7@, O

REMARK 4.47. In the setup of Lemma 4.46, assume that ?V preserves iso-
morphism classes of irreducible A-modules. Then we can take the set of mutually
orthogonal idempotents at the end of the lemma to be a mutually orthognal set
{ep | b € B} of representatives for the conjugacy classes of primitive idempotents in
A. Then the lemma shows that we can choose the anti-automorphism o so that
o(ep) = ep for all b € B. Conversely, if 0 : A — A is an anti-automorphism fixing
such a set of reprentatives for the conjugacy classes of primitive idempotents on
A, it is obvious that the contravariant autoequivalence 7@ preserves isomorphism
classes of irreducible A-modules.
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To adapt the above from finite Abelian categories to essentially finite Abelian
categories, Schurian categories or locally finite Abelian categories, we need the
following definitions:

o If A= (—Bl jel e;Ae; is an essentially or locally finite-dimensional locally
unital algebra, a locally unital algebra anti-automorphism o : A — A gives
rise to a contravariant autoequivalence 7@ of the categories A-modg or
A-modjgq, respectively. This is defined by first applying the usual duality
from left modules to right modules, either 7* : A-modgg — modg-A or
?® . A-modjq — mody-A depending on the case, and then converting
right modules back to left modules by restricting along o.

o If A is a pseudo-compact topological algebra, that is, A =~ C* for a coal-
gebra C', an algebra anti-automorphism o : A — A gives rise to a con-
travariant autoequivalence 7@ of A-modsq =~ comodsg-C'. Note in this case
that o is necessarily continuous so that it is the dual of a coalgebra anti-
automorphism ¢* : C' — C; the definition of the duality 7@ could also be
formulated in terms of comodules using o*.

Then given an essentially finite Abelian category, a Schurian category, or a locally
finite Abelian category R with a contravariant autoequivalence 7Y, a realization of
(R,?") means a pair (A4, 0) consisting of an algebra A and an anti-automorphism
o : A — A of the appropriate type such that 7@ o F' =~ Fo?V for some equivalence
F from R to A-modgq, A-modjsq or A-modgq, respectively. The following lemmas
are analogs of Lemma 4.46 in each of these new settings.

LEMMA 4.48. Suppose that A = @i,jd e;Ae; is either an essentially or a locally
finite-dimensional locally unital algebra. Let 7Y be a contravariant autoequivalence
of A-modgq or A-modyy, respectively, which preserves isomorphism classes of irre-
ducible objects. There exists a locally unital algebra anti-automorphism o : A — A
such that 7V ~7@.

PROOF. In the locally finite-dimensional case, let F :=?®0?Y : A-modjyq —
A°P-modygg. Viewing @, ; F(Ae;) as an (A°P, A)-bimodule in the natural way, we
have tat F' = (P,.; F(Ae;)) ®a?. Then we observe for each i € I that F'(Ae;) = e; A
as left A°P-modules as 7V preserves isomorphism classes of irreducibles. Now argue
as in proof of Lemma 4.46. The essentially finite-dimensional case is similar. (]

LEMMA 4.49. Suppose that A is a pseudo-compact topological algebra. Let 7V
be a contravariant autoequivalence of A-modgq which preserves isomorphism classes
of irreducible objects. Then there exists an algebra anti-automorphism o : A — A
such that ?¥ =?®. Moreover, given a family {e; |i € I} of mutually orthogonal
idempotents in A, o can be chosen so that o(e;) = e; for allie I.

Proor. The functor ?v : A-modsg — A-modsq extends to 7Y : A-mod,. —
A-modgs with (lim V,,)¥ := lim(V,}"), taking limits over finite-dimensional submod-
ules V,, < V. Composing with ?* gives an equivalence F' :=7*0?v : A-mod,. —
A°P-modp.. Moreover, for each i € I we have that F(Ae;) = e;A as a (A°P, A)-
bimodule as 7V preserves isomorphism classes of irreducibles. Then we argue as in
Lemma 4.46 to obtain an algebra anti-automorphism o : A — A with o(e;) = e; for
each ¢ € I such that F' is isomorphic to the functor A-mody. — A°P-mody. defined
by restriction along o. The lemma follows on composing with 7* then restricting
to A-modgy. O
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With these preliminaries in place, we can now prove a result which explains
how to transfer a contravariant autoequivalence on a fully stratified category to its
Ringel dual.

THEOREM 4.50 (Dualities commute with Ringel duality). Suppose that R is a
fully stratified category with stratification (B, L, p, A, <) such that R is tilting-rigid
with weakly symmetric strata, i.e., (4.40) holds. Assume also that R possesses a
contravariant autoequivalence 7V which preserves isomorphism classes of irreducible
objects. Then we have that T'(b)Y = T(b) for all b€ B. Moreover, letting R’ be the
Ringel dual category with respect to some choice of tilting generator and F, G be the
usual Ringel duality functors, there is an induced contravariant autoequivalence 7"
on R’ preserving isomorphism classes of irreducible objects such that

(4.45) Fo?" 27" oG, Go?Y =7 o F

whenever these functors make sense (e.g., these isomorphisms always hold on A (R)
and on V (R), respectively, for any choice of €).

PROOF. We just explain the proof in the case that R is a finite fully stratified
category, leaving the minor modifications needed in the other three cases to the
reader. By Lemma 4.46, we may assume that R = A-modg for a finite-dimensional
algebra A and that 7v : R — R is the functor 7@ taking a left A-module V' to the
dual right A-module viewed as a left module by restricting the natural right action
along some given anti-automorphism o : A = A. (In the other three cases, one
needs to use Lemmas 4.48-4.49 here in place of Lemma 4.46.)

Since Ty (b) has a A-flag with A(b) at the bottom, and also a V-flag, we see
using Lemma 3.3 that T (b)" has a V-flag with V(b) at the top, and also a A-flag.
So it is isomorphic to T_(b). As R is tilting-rigid, T'(b) := T4 (b) = T_(b), so we
have shown that T'(b)Y = T'(b) for all b € B.

We are given some full tilting module 7" defining the Ringel dual category R’,
i.e., R = B-modgg for B = End4(T)°P. From the previous paragraph, we get that
T >TV. Let ¢ : T = TV be an isomorphism of left A-modules. Equivalently, ¢
is the data of a non-degenerate pairing (-, : T x T' — k with (v, w) := ¢(v)(w),
and we have that (zv,w) = (v,o(z)w) for v,w e T, x € A. Let 7: B — B be the
anti-automorphism of B defined so that {(vy,w) = {v,wr(y)) for v,w € T, y € B.
It follows that ¢ is also an isomorphism of right B-modules for the right B-module
structure on TV obtained by restricting its natural left action on T* along 7. Now
we can define the contravariant autoequivalence 7" : B-modg — B-modgq to be
2@

In this paragraph, we check (4.45). We just prove the first of these isomor-
phisms; the latter follows from former (with the roles of A and B reversed) on
taking adjoints. Take V' € R. Then we have natural left B-module isomorphisms

(GV)" 2 Homu(V,T) =~ Homa(TV,VY) =~ Homus (T, V") = F(VV),

as required. (On the space Hom 4(V, T) here, the left B-module structure is defined
by restricting the natural right action along 7.)

It remains to check that 7" preserves isomorphism classes of irreducible objects
in R’. Since the strata are weakly symmetric, we have that

V'(b)" = (GA(b)" = F(A(b)Y) = FV(b) = A'(b).
This implies that L'(b)" =~ L'(b). O
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In examples coming from Lie theory, highest weight categories usually come
equipped with dualities arising from anti-involutions which restrict to the identity
on the Cartan part. The material in the rest of the section is an attempt to
axiomatize the essential features of such dualities in the more general setting of
fully stratified categories. We start with a definition which will be relevant at the
level of strata.

DEFINITION 4.51. Let A be a finite-dimensional algebra and o : A — A be an
anti-involution. We say that A is o-symmetric if the following hold:

(oS1) There is a set {e, | b € B} of representatives for the conjugacy classes of
primitive idempotents in A such that o(ep) = e for all b e B.

(0S2) There is a non-degenerate associative symmetric bilinear form (-,-) : A x
A — k such that (z,y) = (o(z),0(y)) for all x,y € A.

If A is o-symmetric in the sense of Definition 4.51 then it is a symmetric algebra
in the usual sense. Moreover, every finitely generated projective left A-module
P possesses a non-degenerate symmetric bilinear form {-,-) such that (axv,w) =
(v, o(z)w) for v,w € P,x € A; in particular, P =~ P®. To see this, we may assume
without loss of generality that P is indecomposable and that P = Ae for a o-
invariant primitive idempotent e. Then the form (-,-) : P x P — k defined in terms

of the given o-symmetric form (-,-) on A by (v, w) := (o(v),w) for v,w € P has
these properties; it is non-degenerate because by associativity
(4.46) A=cAe@[eA(l—e)+ (1 —e)Ae]® (1 —e)A(l—¢)

is an orthogonal decomposition of A with respect to (-, -) and the subspaces e A(1—e)
and (1 — e)Ae are isotropic.

The following lemma shows that o-symmetry is preserved by Morita equiva-
lence. The basic point underlying this is that if A is o-symmetric and e € A is a
o-invariant idempotent, then o restricts to an anti-involution of eAe. Moreover a
o-symmetric form (-,-) on A restricts to such a form on eAe so that ede is also
o-symmetric; the non-degeneracy of this restriction follows from the orthogonal
decomposition (4.46).

LEMMA 4.52. Let A be a finite-dimensional algebra which is o-symmetric for
some anti-involution o. Let B be another finite-dimensional algebra that is Morita
equivalent to A, so that there is an equivalence of categories F' : B-mody —
A-modsq. Then B possesses an anti-involution 7 : B — B such that 7®oF ~ Fo?7?®,
and B is T-symmetric for any such anti-involution 7. Moreover, T can be chosen
in such a way that it fizes each of some given set {f;|i € I} of mutually orthogonal
idempotents in B.

PROOF. Let {e, | b € B} be a set of mutually orthogonal representatives for
the conjugacy classes of primitive idempotents in A with o(ey) = e for all b.
Let e := >, .5 . Then eAe is the basic algebra that is Morita equivalent to A,
and it is o-symmetric too. The functors 7© on A-modsq and eAe-modsq obviously
commute with the idempotent truncation functor giving an equivalence A-modgq —
eAe-modgq. All of this means that we can replace A with eAe if necessary to assume
that A itself is basic with 1 = Y}, _g e, being a decomposition of its identity element
into mutually orthogonal o-invariant primitive idempotents.

Now suppose that B is Morita equivalent to A via some given F': B-modg —
A-modgy. Let P := FB be the (A, B)-bimodule obtained by applying F' to the
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regular (B, B)-bimodule. Note that P = @, ; Pf; where {f;|i € I} is the given set
of mutually orthogonal idempotents in B; we are assuming here that >}, fi = 1p
which we can clearly do by adding one more idempotent to this set if necessary.
As an A-module, we have for each i € I that Pf; ~ @, Ae?di(b) for integers
d;(b) > 0; the numbers d(b) = >, ;d;(b) are the dimensions of the irreducible
B-modules. Moreover, e;Be; = End4(Pe;, Pe;)°P. Fixing such isomorphisms, we
may assume simply that P = @,_; Pf; with Pf; = @,.g Ae?di(b), B = End4(P)°P
with f; being the projection of P onto the i-th summand Pf;, and F' = PRpg?.

Next we observe that B = End4(P)°P is isomorphic to an algebra of block
matrices, with blocks indexed by the set I x B, and the block in the row indexed by
(i, a) and column indexed by (j, b) being a d;(a) x d;(b) matrix with entries in e, Aey,.
The multiplication is just matrix multiplication combined with multiplication in A.
From this description, it is clear that B possesses an anti-involution 7 defined by
taking the transpose of a matrix and applying o to all of the entries of the result.
Forie I,be B and 1 <r < d;(b), let f; . € B be the matrix with all entries equal
to zero except for the r-th entry in its (4,b)-th diagonal block, which is equal to ep.
This is a primitive idempotent in B, and it is fixed by 7. This verifies the axiom
(0S1) for this particular anti-involution 7 of B. Next we check that the axiom
(0S2) is satisfied. Let tr: A — k,x — (14,) be the trace function associated to
a o-symmetric form on A. Define tr' : B — k by mapping a matrix in B to the
sum of the scalars obtained by applying tr to each of its diagonal entries. Then let
(-,-) : B x B — k be the bilinear form defined from (x,y)" := tr’(zy). This is a
non-degenerate symmetric bilinear form on B with (7(z),7(y)) = (z,y)’.

It is clear that F'o?® ~7@c F since F is isomorphic to the idempotent truncation
functor defined by f := 3 f; ;1 summing over all i € I,b € B such that d;(b) # 0.

We also have that f; = >}, g Zfiﬁf) i bsrs S0 T(fi) = fi for each i € I. So we have
now proved the existence of an anti-involution 7 with all of the desired properties. It
remains to note given another other anti-involution w : B — B with Fo?7® ~7@0o F'
that 7©0?® =~ Id, hence, we have that w o 7 = « for some inner automorphism
~v: B — B,z — uzu~!; equivalently, w = v o 7. If that is the case, then B is also
w-symmetric since the bilinear form (-,-)" constructed in the previous paragraph
also satisfies

(w(@),wy) = (ur(@)u™ ur(y)u™) = (1(x),7(y)) = (z,y)’
for z,y € A. O

DEFINITION 4.53. Let R be a fully stratified category with the usual stratifi-
cation. We say that a contravariant autoequivalence 7V of R is a Chevalley duality
if there is a realization (A,0) of (R,?Y) in which o is a Chevalley anti-involution,
meaning that 02 = id and the following two properties hold:

(Chl) There exists a set {e, | a € B} of mutually orthogonal o-invariant idem-
potents in A such that dime,L(b) = 04, for all b € B with p(b) + p(a);
here, L(b) is the irreducible A-module labelled by b € B.

(Ch2) Let Ag¢y be the quotient of A by the two-sided ideal generated by the
idempotents {e, | a € B with p(a) £ A} and Ay := D, 4, €aA<rép. For
each A € A, we require that A) possesses a non-degenerate associative
symmetric bilinear form (-, -)y such that (ox(x),0x(y))x = (z,y)x for all
x,y € Ay, where o) : Ay — A, is the anti-involution induced by o.
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In view of the following lemma, axiom (Ch2) is vacuous in the case that R is
a highest weight category, since then we have that Ay =k and o) = id.

LEMMA 4.54. Suppose that (A,0) is a realization of (R,?7Y) in which o is a
Chevalley involution as in Definition 4.53. The algebra Ay from (Ch2) is the basic
algebra realizing the stratum Ry, and it is oy-symmetric in the sense of Defini-
tion 4.51. We also have that L(b)¥ =~ L(b) for all b € B, i.e., Chevalley dualities
preserve isomorphism classes of irreducible objects.

PROOF. Let I be the two-sided ideal of A generated by {e, |a € B with p(a) £
A}. We claim that R« is the full subcategory of R consisting of all objects V' such
that IV = 0. To see this, if IV = 0 then e,V = 0 for all a € B with p(a) € A then
[V : L(a)] = 0 for all such a thanks to axiom (Chl). So we have that V € Rgy.
Conversely, if V € R<y and p(a) € A then the idempotent e, is zero on every
irreducible subquotient of V' by (Chl), hence, e,V = 0. This implies that IV = 0.

By the claim, the algebra A<y = A/I gives a realization of R¢y. Let &, denote
the image of e, in A<y. For b € By, we have that &,L(c) = 0, for all ¢ € B,.
This shows that the mutually orthogonal idempotents {e;, | b € B)} are primitive
in Ac). Hence, Ay = @%beBA eqa A< €y is the basic algebra realizing the stratum
Rx. It is immediate from the axioms (Chl)—(Ch2) and the definition that Ay is
o \-symmetric.

Finally to show that L(b)® = L(b) for all b € B, suppose that b € By. We have
that e, L(b)® = (e, L(b))* = 0 for all a with p(a) € A, so L(b)® € R<y. Moreover,
epL(b)@ = (epL(D))* is one-dimensional. Since &, is primitive in A<y this implies
that L(b)@ =~ L(b). O

THEOREM 4.55 (Chevalley dualities commute with Ringel duality). Let R be a
fully stratified category with stratification (B, L, p, A, <). Assume that R possesses
a Chevalley duality 7. Fiz also a realization (A,o0) of (R,?Y) in which o is a
Chevalley involution, and let T (b) denote the left A-module corresponding to T, (b) €
R.

(1) If R is tilting-rigid and chark # 2 then for each b € B there exists a
non-degenerate symmetric bilinear form {-,-) : T(b) x T'(b) — k satisfying
the following o-adjunction property:

(4.47) {xv,w)y = (v, o(x)w)

forv,weT(b) and z € A.

(2) Suppose that we are given objects of R corresponding to A-modules {T}|b €
B} such that each Ty, is a direct sum of T'(b) and copies of T(c) for c €
B with p(c) < p(b). Assume moreover that each Ty is equipped with a
non-degenerate symmetric bilinear form {-,-) satisfying the o-adjunction

property. Then, R is tilting-rigid with symmetric strata, and there is an
induced Chevalley duality 7" on the Ringel dual R’ of R satisfying (4.45).

PRrOOF. (1) Suppose that b € By for some A € A. For the purpose of proving
(1) for T'(b), we can replace R by R« and the algebra A realizing R by the corre-
sponding quotient algebra to assume without loss of generality that R = R<y. So
now R is either finite or upper finite, and the chosen algebra A is either a finite-
dimensional algebra or a locally finite-dimensional locally unital algebra, respec-
tively. Let {e, | a € B} be the mutually orthogonal o-invariant idempotents given
by the axiom (Chl). Let ey := ZbeBA ey and Ay := ey Aey. By Lemma 4.54, this is
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the basic finite-dimensional algebra realizing the top stratum R, and {e; |b € By}
is a set of representatives for the conjugacy classes of primitive idempotents in A,.
The anti-involution o of A restricts to an anti-involution oy of Ayx. Also e T'(b) is
isomorphic to the indecomposable projective Ay-module Ajep.

Claim 1: Let ¢ : T(b) — T(b) be an A-module homomorphism and ¥ : exT'(b) —
exT'(b) be its restriction, which is an Ax-module homomorphism. Then 1 is an
isomorphism if and only if ¥ is an isomorphism. The forward implication is clear.
For the converse, let E := End4(T'(b))°? and E) := Enda, (exT'())°P. As e T'(b) is
an indecomposable Ay-module, the algebra FE is a finite-dimensional local algebra,
so its Jacobson radical is of codimension one and any non-unit is nilpotent. The
algebra E is also a finite-dimensional local algebra in the finite case, while in the
upper finite case it is a pseudo-compact topological algebra with Jacobson radical
J(E) having codimension one. In either case, any element of E' is either a unit or
it belongs to J(E). Let E be the image of E under the homomorphism E — E)
defined by restriction. The Jacobson radical of E is the image of J(E), so it is
again of codimension one® in E. We are given ¢ € E such that ¢ is a unit in E}.
This means that ¢ is not nilpotent, hence, it is also a unit in E. It follows that
Y ¢ J(E) so ¢ J(E). This shows that ¢ is a unit in E, i.e., it is an isomorphism
as required.

Claim 2: Let {-,-) be a bilinear form on T(b) with the o-adjunction property.
Then {-,-y is non-degenerate if and only if its restriction {-,-yx to exT'(b) is non-
degenerate. To see this, observe that the form (-, -) induces an A-module homomor-
phism 6 : T'(b) — T(b)® with 6(v)(w) = (v, w), and the form is non-degenerate if
and only if this induced homomorphism is an isomorphism. Similarly, the restric-
tion (-, )y induces an Ay-module homomorphism 6 : exT'(b) — (exT'(b))®, and the
restricted form is non-degenerate if and only if @ is an isomorphism. If we iden-
tify (exT'(b))® with e)(T(b)®) in the natural way, we see that 6 is the restriction
of . We are given that R is tilting-rigid, and its strata are o)-symmetric which
implies that they are weakly symmetric, so there is an A-module isomorphism
¢ : T(b)® = T(b) according to Theorem 4.50. This restricts to an Ay-module
isomorphism ¢ : ex(T(b)®) — exT'(b). Now Claim 2 is reduced to showing that the
A-module homomorphism ¢ o 0 : T'(b) — T'(b) is an isomorphism if and only if its
restriction ¢ o 0 : exT'(b) — e T (b) is an isomorphism. This follows from Claim 1.

Claim 3: The socle of Axeyp is irreducible, and any non-zero vector z, € soc (Axeyp)
satisfies ox(zp) = zp. By (Ch2), there is a non-degenerate associative symmetric
bilinear form (-,-)y on Ay with (ox(z),0A(y))x = (x,y)x for all z,y € A\. By
the discussion before Lemma 4.52, Ajep is self-dual, so it has irreducible socle
isomorphic to its head. Moreover, (-,-)) restricts to a non-degenerate associative
symmetric bilinear form on ey Ayep. This is a local symmetric algebra, so its Jacob-
son radical J is a two-sided ideal of codimension one and J* is a two-sided ideal of
dimension one. Let 2z, be a non-zero vector in J+. We must have that (ev, zp)x # 0
by the non-degeneracy of the form. Moreover, z;, also spans the socle of Ayep. It
remains to show that o)(25) = 2. Since o) leaves J L invariant we certainly have
that ox(zp) = czp for ¢ € k. Now we use the oy-symmetry of the form:

(ens 20)x = (ox(ep), on(26))x = (ep, c2p)x-

5In fact, one can show that £ = E, but we do not need to use this here.
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Since (ep, 2p) # 0, this implies that ¢ = 1.

Claim 4: Suppose that {-,-)x is a bilinear form on Axe, with the ox-adjunction
property, i.e., the analog of (4.47) with o replaced by oy holds for all x € Ajy.
This form is non-degenerate if and only if {ep,zp)x # 0 for zy as in Claim 3.
Suppose first that {ep, zpyn # 0. Take any 0 # x € Ayep. Since the socle of Ayey,
is one-dimensional, there exists y € Ay such that yz = 2,. Then {ep,yz)x # 0
so {o(y)ep, zy)x # 0. This shows that the function Axe, — (Axep)*,x — (7, 2)y is
injective, hence, the form is non-degenerate. Conversely, suppose that {ep, zpyx = 0.
Then the Ay-submodule {z € Ayep|{x, z5)5 = 0} contains ey, hence, it is all of Ayey.
So the form is degenerate.

Now we can complete the proof of (1). As noted in the proof of Claim 2, T'(b) =~
T(b)@. Let [, -] be the bilinear form on T'(b) corresponding to such an isomorphism.
This form is non-degenerate and has the g-adjunction property. However, it is not
necessarily symmetric, so we symmetrize by letting (-, -) be the form on T'(b) defined
from

v, wy = [v,w] + [w,v].

Using that o is an involution, it is easy to check that this new form still has the
o-adjunction property, and now it is symmetric, but we do not yet know that it is
non-degenerate. To see this, let ¢ : Axep — exT'(b) be an Ay-module isomorphism.
Let [, -]x and (-, -)x be the bilinear forms on Ajye, defined from [z, y]x = [¢(2), t(y)]
and {(x,yyx := {(x),(y)). Applying Claim 2, we see that the form [-,-]) is non-
degenerate, and the goal is to show that (-, ), is non-degenerate. Applying Claim
4, we have that [ep, zp]x # 0 and we need to show that {ep, zpyx # 0. This follows
since

Cevs zb)x = [€n, 26]x + [26, €b]x = [en, zp]x + [en, ox(2p) |1 = 2[ep, 2p]x # O,
using that o (2p) = 2 by Claim 3 together with the hypothesis that chark # 2.

(2) We are given non-degenerate symmetric bilinear forms (-, -) on each T}, satisfying
the o-adjunction property. It follows that Tj, = T,®. Since T (b)Y = T (b) for each
b € B, this is enough to deduce that R is tilting-rigid. Also the assumption that
7V is a Chevalley duality implies that the basic algebra Ay realizing Ry is o-
symmetric, hence, R is symmetric.

Now the argument proceeds in a similar way to the proof of Theorem 4.50. We
just explain the details in the finite case; the other three cases are similar but there
are slight notational differences. We may assume that the tilting generator used
to define the Ringel dual category is T = @, g Tp. Then R’ = B-mody for B :=
End 4 (T)°P. The given forms on each T} give us a non-degenerate symmetric bilinear
form ¢-,-) on T satisfying (4.47), with the summands T} being mutually orthogonal.
Define an anti-automorphism 7 of B from the equation (vy,w) = (v, w7(y)) for
v,w € T and y € B. This gives us a contravariant autoequivalence 7V :=7® on R/,
and we get the isomorphisms (4.45) like in the proof of Theorem 4.50.

As (-,-) is symmetric and T is a faithful B-module, the following calculation
implies that 72 = id:

(vy,wy = (v, wr(y)) = (wr(y),v) = (w,vr?(y)) = (vr*(y), w).

For each b € B, let f, € B be the idempotent projecting 7" onto the summand
Ty. Using that the restriction of the form (-, -) to this summand is non-degenerate,
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it follows that 7(fp) = fo. So {f» | b € B} is a set of mutually orthogonal 7-
invariant idempotents in B. The idempotent f; is equal to the primitive idempotent
projecting T}, onto its summand 7'(b) plus other orthogonal primitive idempotents
which project onto summands T'(a) for a € B_,(;). Bearing in mind we are using
the opposite ordering on A on the Ringel dual side, this is just what we need for
the property (Chl).

Finally, to see that property (Ch2) holds, let By be the algebra obtained from
B according to the construction of (Ch2) and 7y : By — Bj be the anti-involution
induced by 7. The pair (B, 7)) is a realization of (R),?”), where ?” here is the
contravariant autoequivalence of R/, induced by the one on R’. We also have the
pair (Ay, o) realizing R with its contravariant autoequivalence induced by ?V.
We know already by Lemma 4.54 that Ay is oy-symmetric, and (Ch2) follows if
we can show that B) is 7h-symmetric. This follows from Lemma 4.52 since the
functor F) : Ay-modiqg — By-modgq is an equivalence satisfying Fo?Y ~7" o F).
Indeed, Theorem 4.42(2) gives that F) = G, while (4.45) and the definitions
(4.35)—(4.36) give that the dualities 7Y : Ry — Ry and 7" : R} — R/ satisfy
GAO?V ~7n o F). ([l






CHAPTER 5

Generalizations of quasi-hereditary algebras

Now we give some applications of semi-infinite Ringel duality. First, we use it
to show that any upper finite highest weight category can be realized as A-modjgq
for an upper finite based quasi-hereditary algebra A. The latter notion, which is
Definition 5.1, already exists in the literature in some equivalent forms. When A
is finite-dimensional, it gives an alternative algebraic characterization of the usual
notion of quasi-hereditary algebra. Then, in §5.2, we introduce further notions
of based e-stratified algebras and based e-quasi-hereditary algebras, which corre-
spond to e-stratified categories and e-highest weight categories, respectively. In
§5.3, we introduce based stratified algebras and based properly stratified algebras
corresponding to fully stratified and fibered highest weight categories, respectively.
Finally, in §§5.4-5.5, we discuss the related notions of triangular bases and a trian-
gular decompositions.

5.1. Based quasi-hereditary algebras

The following definition is a simplified version of [ELau, Def. 2.1] translated
from the framework of k-linear categories to that of locally unital algebras. Also,
for finite-dimensional algebras, it is equivalent to [KM, Def. 2.4]. These assertions
will be explained in more detail in Remarks 5.7-5.8 below.

DEFINITION 5.1. A finite (resp., upper finite, resp., essentially finite) based
quasi-hereditary algebra is a finite-dimensional (resp., locally finite-dimensional,
resp., essentially finite-dimensional) locally unital algebra A = @ e;Ae; with
the following additional data:

(QH1) A subset A < I indexing special idempotents {ex | A € A}.
(QH2) A partial order < making the set A into a poset which is upper finite in
the upper finite case and interval finite in the essentially finite case.
(QH3) Sets Y (i,A) < e;Aex, X(X,j) c exAe; for Xe A,i,jel.
Let Y(A) t= U;e; Y (i, A) and X(A) := U,y X(A,5). We impose the following
axioms:
(QH4) The products yx for (y,z) € (Jycp Y (A) X X(A) are a basis for A.
(QH5) For A\, e A, the sets Y(u, \) and X (A, 1) are empty unless p < .
(QH6) We have that Y (A, \) = X (A, \) = {ex} for each A € A.
We say that A is symmetrically based if there is also some given algebra anti-
involution o : A — A with o(e;) = e; and Y (i,\) = 0(X(A,4)) for all i e I, A e A.

ijel

iel

We refer to the given basis for A from (QH4) as the triangular basis; it is cer-
tainly not unique since one can replace any Y (i, \) or X (), j) by another basis that
spans the same subspace up to “higher terms”. If A is symmetrically based rather
than merely based, this basis is a cellular basis in the general sense of [GL], [Wes].
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However, Definition 5.1 is considerably more restrictive than the general notions of
cellular algebra or category introduced in loc. cit.. In fact, for finite-dimensional
algebras, Definition 5.1 is equivalent to the usual notion of quasi-hereditary algebra,
as we will explain more fully below.

REMARK 5.2. It is clear from (QH4) that A = >}, _, AexA. Hence, A is Morita
equivalent to the idempotent truncation ®>\,ue arexAe,. This means that if one
is prepared to pass to a Morita equivalent algebra then one can assume without
loss of generality that the sets A and I in Definition 5.1 are actually equal, i.e., all
distinguished idempotents are special. However, in naturally-occurring examples,
one often encounters situations in which the set [ is strictly larger than A.

REMARK 5.3. A well-known example of a finite symmetrically based quasi-
hereditary algebra is the Schur algebra S(n,r) with its basis of codeterminants
&ien€e(n),; as constructed by Green in [Grel; one definitely needs I 2 A in this
example.

REMARK 5.4. For a well-known infinite-dimensional example, consider the path
algebra A of the Temperley-Lieb category 7 L(J) for any value of its parameter
0 € k. The natural diagram basis gives a triangular basis making A into an upper
finite symmetrically based quasi-hereditary algebra. For this, one takes I = A = N
ordered by the opposite of the natural ordering. The set Y'(\) (resp., X (\)) consists
of all cap-free Temperley-Lieb diagrams with A strings at the bottom (resp., all cup-
free Temperley-Lieb diagrams with A strings at the top). The anti-automorphism
o is defined by reflecting diagrams in a horizontal axis.

LEMMA 5.5. Let A be a finite, essentially finite or upper finite based quasi-
hereditary algebra. For X\ € A, any element f of the two-sided ideal Aeyx A can be
written as a linear combination of elements of the form yx for y e Y(u), v € X(u)
and = .

PrOOF. We first consider the upper finite case. By considering the triangular
basis, we may assume that f = yixi1ysa2 for y1 € Y(u1),21 € X(u1, ), y2 €
Y (A po), 0 € X(p2) and py,pe = A If pg = po = A then 1 = ey = y2 and
f = y1x2, as required. This finished the proof for A maximal. If p,. > X for some
r € {1,2}, then we have that f € Ae, A for this r, and are done by downward
induction on the partial order on A.

The finite and essentially finite cases are similar. Now, assuming that f € e; Ae;
for 4,j € I, there are only finitely many p € A such that e;Ae, # 0 or e, Ae; # 0.
Letting A’ be the finite set of all such u, we can then again proceed by downward
induction on the partial order on A’. |

COROLLARY 5.6. Let AT be an upper set in A. The two-sided ideal Jp+ of A
generated by {ex | X € AT} has basis {yz | (y,z) € Uyep: Y(A) x X(N)}.

ProOF. Let J be the subspace of A with basis given by the products yz for
y € Y(A),z € X(A\) and A € AT. For any such element yz € J, we have that
yxr = ye,x, hence, yxr € Jy+. This shows that J < Jy+. Conversely, any element of
Jat is a linear combination of elements of AeyA for A € AT, In turn, Lemma 5.5
shows that any element of AeyA for A € AT is a linear combination of elements yx
for y € Y(u),x € X(u) and o = A. All of these elements yx belong to J because A’
is an upper set; thus Jyr+ < J. O
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REMARK 5.7. We have formulated Definition 5.1 only for algebras over our
usual ground field k, but the definition makes sense with k replaced by some more
general commutative ground ring R ( “finite-dimensional” being interpreted as “free
of finite rank”). Then, in the symmetrically based upper finite case, Definition 5.1
is equivalent to the notion of an object-adapted cellular category from [ELau,
Def. 2.1]. This can be seen from Corollary 5.6 and [ELau, Lemmas 2.6-2.8]. Elias
and Lauda also note in loc. cit. that the diagrammatic Hecke category Hps(W,S)
of [EW] associated to a Coxeter system (W, S) is an example of an object-adapted
cellular category. In our language, the path algebra H of Hps(W,S) is an upper
finite symmetrically based quasi-hereditary algebra defined over the ground ring
R = Q[b], that is, the ring of regular functions arising from a realization b of
(W,S). A cellular basis is given by the double light leaves basis. (One needs some
assumptions on the realization as in [EW] for this basis to be defined.)

REMARK 5.8. In the finite case, Definition 5.1 is equivalent to the notion of
based quasi-hereditary algebra from [KM, Def. 2.4]. To see this, one takes the set A
indexing the special idempotents in our setup to be the set I from loc. cit. (which
indexes mutually orthogonal idempotents e; € A according to [KM, Lem. 2.8]).
Then we take our set I to be the set A u {0}, i.e., we add one more element
indexing one more idempotent eg := 14— sen €x- Kleshchev and Muth established
the equivalence of their notion of based quasi-hereditary algebra with the original
notion of quasi-hereditary algebra from [CPS1] (providing the partial order on A
is actually a total order); for ground fields, we will reprove this equivalence in a
different way below. See also [DuR] which established a similar result using a
related notion of standardly based algebra.

Let A be a based quasi-hereditary algebra as in Definition 5.1. For A € A, let
A<y be the quotient of A by the two-sided ideal generated by the idempotents e,, for
1 £ A For x € A, we often write simply Z for the image of z in A¢y. Corollary 5.6
implies that

(51) AsA = @ éyAg)\éj

ijel

is based quasi-hereditary in its own right, with special idempotents indexed by
elements of the lower set (—oo,A] and basis given by the products §Z for y €
Y(pu),x € X(p) and p € (—o0,A]. Define the standard and costandard modules
associated to A\ € A by

(5:2) A(N) == Acxen V(A = (@x4<)®.

These are left A-modules which are projective and injective as A<y-modules, re-
spectively. In the finite or essentially finite case, €y A<y is finite-dimensional and
one could just take the full linear dual in (5.2), but in general in the upper fi-
nite case A(A) and V(A) are only locally finite-dimensional. The modules A(X)
may also be called cell modules and the modules V(\) dual cell modules. The
vectors {yéy |y € Y(N\)} give the standard basis for A(N). Similarly, the vectors
{éxx |z € X (M)} are a basis for the right A-module €)A; the dual basis to this is
the costandard basis for V(X).
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THEOREM 5.9 (Highest weight categories from based quasi-hereditary alge-
bras). Let A be a finite (resp., upper finite, resp., essentially finite) based quasi-
hereditary algebra. The modules

{L(\) := hd A()) = soc V(\) | A e A}

give a complete set of pairwise inequivalent irreducible left A-modules. Moreover,
the category R := A-modg (resp., R := A-modjq, resp., R := A-mods) is a
finite (resp., upper finite, resp., essentially finite) highest weight category with the
given weight poset (A, <). Its standard and costandard objects A(N\) and V(X)
are as defined by (5.2). If A is symmetrically based with anti-involution o then
7@ : R — R is Chevalley duality of R in the sense of Definition 4.53.

PrOOF. For A € A, let Py be the left ideal Aey. We start by establishing
the claim that P, has a A-flag with A(A) at the top and other sections of the
form A(u) for u > A. To prove this, fix some A and set P := Py for short. This
module has basis {yz | (y,z) € Uza Y () x X(p,A)}. Let {u1,..., 1} be the
finite set {p € [A, 0) | X (u, A) # @} ordered so that u, < us = r < s; in particular,
p1 = A For 1 < r < n let P. be the subspace of P spanned by {ym ! (y,x) €
Ui, Yi(us) ¥ X(,us,)\)}. They define a filtration P =: Py > P > --- > P, = 0,
since each P, is a A-submodule of P. Moreover, there is, for each 0 < r < n an
A-module isomorphism

(5.3) 0.: P Alw) > P1/Pr

z€X (fr,\)

which in case r > 1 sends the basis vector ye,. (y € Y(u,)) in the xth copy of
A(py) to yx + P, € P._1/P,.. This defines clearly a linear isomorphism, so we just
need to check that it is an A-module homomorphism. For this take y € Y (4, u.)
and u € ¢;Aej. Expand uy in terms of the triangular basis as >} cpyp + 5, coyg@g
for scalars ¢, ¢, yp € Y (4, pr), yg € Y (i,14), vy € X(vg, ptrr) and vy > 1. Then we
have that uye,, = >, cpypeu, and uyz + P, = > cpypzr + Pr, since the “higher
terms” y;x'q act as zero on both €,, and x + P,. This shows that ¢, intertwines the
actions of u and so the claim follows, since Py/P; =~ A(\) by construction.

Now we can classify the irreducible A-modules. The first step for this is to
show that A()) has a unique irreducible quotient. To see this, note that the “weight
space” exA(A) is one-dimensional with basis €y, due to the fact that Y (A, A) = {ex}.
This is a cyclic vector, so any proper submodule of A()\) must intersect eyA(\)
trivially. It follows that the sum of all proper submodules is proper, so A(X) has a
unique irreducible quotient L(A). Since eyL(\) is one-dimensional and all other p
with e, L(\) # 0 satisfy p < A, the modules {L(X) |\ € A} are pairwise inequivalent.
To see that they give a full set of irreducible A-modules, let L be any irreducible
A-module. In view of Remark 5.2, there exists A € A such that eyL # 0. Then L
is a quotient of Py = Aey. By the claim we proved already, it follows that L is a
quotient of A(u) for some p > A, ie., L =~ L(u).

Thus, we have shown that the modules {L(\) | A € A} give a full set of pairwise
inequivalent irreducible left A-modules. Now consider the stratification of R arising
from the given partial order on the index set A. In the recollement situation of
(3.4), the Serre subcategory R« (resp., R<)) may be identified with A¢y-modyeq
(resp., A<yx-modsq), and the Serre quotient Ry = R<r/R<y is Ax-modsq where
Ay = exAcréxn. The algebra Ay has basis €y, i.e., it is a copy of the ground field
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k. This shows that all strata are simple in the sense of Lemma 3.4. Moreover,
the standard and costandard objects in the general sense of (1.1) are obtained by
applying the standardization functor j; := A< € ®4,? and the costandardization
functor j3 = @,y Homay, (ExA<r€;,?) to the irreducible Ay-module Ay = ke,.
Clearly, the resulting modules are isomorphic to A(A) and V(A) as defined by
(5.2). The axiom (ISZ) follows from the claim.

For the final statement about Chevalley duality, the observations made earlier
in the proof establish property (Chl) from Definition 4.53, and (Ch2) is vacuous as
we are in the highest weight setting. Hence, o is a Chevalley anti-involution. [

Finally in this section we are going to prove a converse to Theorem 5.9. This will
be deduced from the next theorem together with an application of Ringel duality.
In fact, the next theorem is a reformulation of the main result of [AST].

THEOREM 5.10 (Based quasi-hereditary algebras from highest weight cate-
gories). Let R be a finite (resp., lower finite, resp., tilting-bounded essentially finite)
highest weight category with weight poset (A, <) and labelling function L. Suppose
we are given A < I and a tilting generator T = @,.; T; for R such that each
T\ (A€ A) is a direct sum of T(X) and other T'(u) for p < A. Let

A= ((—D HomR(Ti,Tj)> .

i,j€l
(1) Fori,je I and A € A, pick morphisms
Y (i, A\) € Homg (T;,T)), X (N, j) € Homg (T, Tj)

lifting bases for Homg (T;, V(X)) and Homg (A(XN),T;) as was done in
Corollary 4.44, such that Y (A\,\) = X(\, ) = {idp, }. Then

{yz | (y,z) € U U Y(i,A) x X(X,5)}
i,j€I AeA
is a triangular basis making A into a finite (resp., upper finite, resp., es-
sentially finite) based quasi-hereditary algebra with respect to the opposite
poset (A, =).

(2) If in addition R has a Chevalley duality 7V and, in a suitable realization,
the modules corresponding to each T; possess non-degenerate symmetric
bilinear forms satisfying the adjunction property as in (4.47), then the
triangular basis in (1) can be chosen so that A is symmetrically based.

PRrOOF. (1) We have all of the necessary data in place to have a based quasi-
hereditary algebra, taking e; := idy, in the obvious way. To check the axioms,
Corollary 4.44 checks (QH4), and we have chosen the lifts so that Y/(A\, ) = {e)} =
X (M) as in (QHG6). For (QH5), note that Y (u, ) and X (A, p) are empty unless
i = A because Homp (T, V(X)) and Homg (A(N),T),) are zero unless A < f.

(2) Suppose that we are working in a particular algebra realization (B, 7) of (R,?V)
in which 7 is a Chevalley anti-involution and each T; admits a non-degenerate
symmetric bilinear form with the 7-adjunction property. Let T := @,.;T; and
{(,+y : T x T — k be the orthogonal sum of the given forms. Then we obtain an
algebra anti-involution o : A — A such that (vz,w) = {¢,wo(x)) for all v,w € T,
x € A; cf. the proof of Theorem 4.55(2). This fixes each of the idempotents e; € A.
The bilinear form on 7} induces a B-module isomorphism ¢; : T; — T¢®- Also
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let ) : Th — V(A) be some choice of epimorphism for each A\ € A as needed for
Corollary 4.44. Then define the embeddings ¢ : A(X) < T) there so that there are

~

induced isomorphisms A(A) — V(A)® making the following diagrams commute for
all A e A:
A(N) ——= V(N)®

j“ jﬂ;k

T, —2 5 T2,
Now we pick the sets X (), ¢) lifting bases for Homp(A()\), T;) as in Corollary 4.44.
Then define Y(i,\) := {¢5' oa* o ¢; | € X()\,i)}. This set lifts a basis for
Homp(T;, V()N)) as stipulated in Corollary 4.44. Using these choices, the construc-
tion from the previous paragraph makes A into a based quasi-hereditary algebra.
Moreover, we now have that Y (i, A) = (X (A, 1)) for all i, \, so A is symmetrically
based with the underlying anti-involution o. (]

COROLLARY 5.11 (Quasi-hereditary algebras are based quasi-hereditary). Let
A= (—D eiAej
i,5€l
be an algebra realization of a finite (resp., upper finite, resp., tilting-bounded es-

sentially finite) highest weight category R, with weight poset (A, <) and labelling
function L.

(1) There is an idempotent expansion A = (—Bm.ef é;Ae; of A with A < I, and
subsets
Y(i, /\) c éiAé)\, X()\,j) @ é,\Aéj

forallNe A and i, je I making A into a finite (resp., upper finite, resp.,
essentially finite) based quasi-hereditary algebra with respect to the given
ordering on A.

(2) If chark # 2 and R has a Chevalley duality 7V then the choices in (1) can

be made so that A is symmetrically based with anti-involution o realizing

v
ProoF. (1) Let A = P, ,.;€iAé; be an idempotent expansion indexed by a
set I chosen so that A < I and hd (A4éy) =~ L()) for each A € A. We are going to
apply the Ringel duality from Definition 4.9 (resp., Definition 4.26, resp., Definition
4.33). In the finite or upper finite cases, we fix a choice of tilting generator T for
R and let B := Endg (7)°P. In the essentially finite case, we fix a tilting generator

op
T = @,.;T; for R then let B := (@ HomR(ﬂ,Tj)) . Then in all cases the

category R’ := B-mody is the Ringel dual of the original category. It is a finite
(resp., lower finite, resp., tilting-bounded essentially finite) highest weight category
with irreducible objects denoted {L'(A\) | A € A} and weight poset (A,>=). Let
T! .= (&;T)* € R'. By Corollary 4.11 (resp., Corollary 4.30, resp., Corollary 4.35),

T = @,; T} is a tilting generator for R’ such that the original algebra A =
op

ijeJ

@, jei €iA€; is isomorphic as a locally unital algebra to ((—Dz jer Homzp/ (17, T;))
Moreover, T} is the indecomposable tilting module T"(\) for each A € A. To make
A into a based quasi-hereditary algebra, it remains to apply Theorem 5.10(1) with

R, (A, <) and T; replaced by R/, (A, =) and T/ in the present setup.
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(2) Assume that R has a Chevalley duality ?¥. Then the category R’ admits a
Chevalley duality ?* such that the Ringel duality functors intertwine 7 and 7"
as in (4.45). This follows by Theorem 4.55, using the assumption that chark # 2
and part (1) of the theorem to establish the existence of suitable bilinear forms as
in part (2). Hence, R’ has a realization (B, 7) with 7 being a Chevalley involution
realizing 7”. Then we can appeal to Theorem 5.10(2), again using Theorem 4.55(1)
to obtain suitable bilinear forms on each 7T}, to deduce that the triangular basis
can be chosen so that A is symmetrically based. In particular, this gives an anti-
involution o : A — A fixing each é;. It remains to note that 7® realizes 7. It
suffices to check this on finitely generated projectives when it follows from (4.45)
(applied twice since we have used Ringel duality twice). O

In the finite case, Corollary 5.11 recovers [KM, Prop. 3.5] (but note that the
result in loc. cit. is also valid over more general ground rings).

5.2. Based c-stratified and e-quasi-hereditary algebras

In this section, we upgrade the results of §5.1 (excluding any that involve
Chevalley duality) to e-stratified and e-highest weight categories. The main new
definition is as follows.

DEFINITION 5.12. By a finite (resp., upper finite, resp., essentially finite) based
e-stratified algebra, we mean a finite-dimensional (resp., locally finite-dimensional,
resp., essentially finite-dimensional) locally unital algebra A = @ e;Ae; with
the following additional data:

(eS1) A subset B < I indexing the special idempotents {ey | b € B}.
(eS2) A poset (A, <) which is upper finite in the upper finite case and interval
finite in the essentially finite case, such that A n [ = &.
(€S3) A sign function € : A — {£}.
(eS4) A function p : B — A with finite fibers By := p~1(\).
(eS5) Sets Y (i,b) < e;Aep and X (b, j) < epAej for allbe B and 4, j € 1.
Let Y(b) := U;er Y (4,0) and X(b) := J;c; X(b,5). There are then four axioms,
the first three of which are as follows:
(eS6) The products yz for (y,z) € | J,eg Y (b) x X (b) are a basis for A.
(eS7) For a,b € B, the sets Y (b,a) and X (a,b) are empty unless p(b) < p(a).
(eS8) The following hold for all A € A and a,b € Bjy:
— if e(A\) = — then Y (a,a) = {e,} and Y (a,b) = @ for a # b;
— if e(X) = + then X (a,a) = {e,} and X (a,b) = @ for a # b.
To formulate the fourth axiom, let ey := ZbeBA ey for short! let A<y be the quotient
of A by the two-sided ideal generated by {e, | € A}, and set Ay := €xA<yéy (where
Z € A<, denotes the image of x € A as usual). Then:

i,5€l

(eS9) For each A € A, the finite-dimensional algebra Ay is basic and €\ =
D bep €b 1s a decomposition of its identity element into mutually orthogonal
primitive idempotents.

Definition 5.12 in the special case that the stratification function p is a bijection
deserves its own name:

LThis notation is unambiguous due to the assumption A n I = @.
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DEFINITION 5.13. A finite (vesp., upper finite, resp., essentially finite) based
e-quasi-hereditary algebra is a finite-dimensional (resp., locally finite-dimensional,
resp., essentially finite-dimensional) locally unital algebra A = P e;Ae; with
the following additional data:

(eQH1) A subset A € I indexing the special idempotents {ex | A € A}.
(eQH2) A partial order < making the set A into a poset which is interval finite in
the essentially finite case and upper finite in the upper finite case.
eQH3) A sign function € : A — {£}.
(eQH4) Sets Y (i,A) < e;Aey, X()\,j) c exAej fori,j el and A€ A.
Let Y(A) := U,y Y (4, ) and X(X) := UJeIX /\ ,7). The axioms are as follows:

(eQH5) The products yz for (y,x) € J,cp Y(A) x X(A) are a basis for A.
(eQHG6) For A, € A, the sets Y(u, A) and X()\ w) are empty unless pu < A.
(eQHT) If e(A) = — then Y (A, \) = {en}, and if e(A) = + then X (A, \) = {ex}.
(eQHS)

i,5€l

For each A € A, the finite-dimensional algebra A, as defined in Defini-
tion 5.12 is basic and local.

From now on, we just formulate the results for based e-stratified algebras, since
based e-quasi-hereditary algebras are a special case. The development below paral-
lels the treatment in the previous section, but there are some additional subtleties.

Remark 5.2 remains true: one can always pass to a Morita equivalent algebra
in which all of the distinguished idempotents are special. The analog of Lemma 5.5
is as follows.

LEMMA 5.14. Let A be a finite, essentially finite or upper finite based e-stratified
algebra. For A € A, any element f of the two-sided ideal Aeyx A can be written as a
linear combination of elements of the form yx for y € Y(a),z € X(a) and a € Bs .

PROOF. This is similar to the proof of Lemma 5.5. We just explain in the
upper finite case. We may assume that f = yyz1y222 for y; € Y(a1), 21 € X (aq,b),
ya € Y(b,az), 29 € X(az), b€ By and ay,as € Bx). If a; € B.) or ag € B=y, we
are done by induction. If a1,as € B, there are two cases according to whether
g(A) = + or €(A) = —. The arguments for these are similar, so we just go through
the former case when e(\) = +. Then we have that a; = b and z; = e;,. Hence
f = y1yawa. Then we use the basis again to expand y;y2 as a linear combination
of terms ysx3 for y3 € Y(a3), x5 € X(as,as) and az € B> . If ag € By then we get
that ag = ag and x5 = e,,, 50 ysT3x2 = Yysx2 as required. If ag € B. ), we can then
rewrite ysx3rs in the desired form by induction. [l

COROLLARY 5.15. Let A" be an upper set in A and B' := p~1(A"). The two-
sided ideal Jy+ of A generated by {ex| A € AT} has basis {yz | (y,z) € Upeg: Y (b) X
X(b)}.

Let A be a based e-stratified algebra as in Definition 5.12. For A € A, Corol-
lary 5.15 implies that A<y has basis {§Z |y € Y (b),z € X(b) and b € B<,}. Hence,
the basic algebra Ay = €)A<)éy has basis

{719 €Uqgpen, Y(a,0)} ife(N) =+, {Z|2eU,pen, X(a,b)} ife(N) = —.
Let j)‘ i Acy-modyyg — Ax-modeg, V — é)V be the quotient functor V — eV,
then define the standardization and costandardization functors

(5.4) it = Acxer®a, 7, ja = @@ Homa, (exA<rE;, ?),

el
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which are left and right adjoints of j*, respectively.

LEMMA 5.16. If A € A has e(\) = — then the standardization functor j is
exact.

PrROOF. There is an isomorphism of right Ay-modules @aeBA @er(a) Ealdr >
Ac,éy sending the vector €, in the yth copy of €, 4 to ¥ € A<yéx. To see this, note
as £(\) = — that the projective Ay-module &,Ay has basis {Z |z € g, X(a,b)},
and Ac,éx has basis {§z | (y,2) € Ua.ben, Y (@) x X(a,b)}. Hence, Acyé, is a
projective right A-module, and the exactness follows. O

Continuing with A being a based e-stratified algebra, we let
(5.5)  Py(b):= Axey,  In(b) := (A42)®,  La(b) := hd Py(b) = soc Iy (b)

for b € By. These give full sets of indecomposable projective, indecomposable in-
jective, and irreducible Ay-modules, respectively. Then we define standard, proper
standard, costandard and proper costandard modules

(5.6) A(b) := A&, = ji Pr(b), A(b) := jPLa(b),
(5.7) V(b) := (epAcr)® = j2 I\ (D), V(b) := j2La(b),

cf. (1.1). Adopt the shorthands A.(b) and V.(b) from (1.2) too. The module
A.(b) has a standard basis indexed by the set Y (b). In the case that £(\) = +,
when A (b) = A(b), this basis is {y&, | y € Y (b)}. In the case that e(\) = —,
when A, (b) = A(b), let &, be the canonical image of &, under the natural quotient
map A(b) - A(b). Then the basis is {yé&, |y € Y(b)}. (One can also construct a
costandard basis for V.(b) indexed by X (b) by taking a certain dual basis, but we
will not need this here.)

THEOREM 5.17 (e-Highest weight categories from based e-stratified algebras).
Let A be a finite (resp., upper finite, resp., essentially finite) based e-stratified al-
gebra as above. The modules

{L(b) :=hd A,(b) =soc V.(b)|be B}

give a complete set of pairwise inequivalent irreducible left A-modules. Moreover,
R := A-modg (resp., R := A-modygq, resp., R := A-modyq ) is a finite (resp., upper
finite, resp., essentially finite) e-stratified category with stratification (B, L, p, A, <).
Its strata may be identified with the categories Ry := Ax-modsq with standardard-
ization and costandardization functors as in (5.4).

PROOF. For b € B, let P, be the left ideal Ae,. We claim that P, has a A.-
flag with A.(b) at the top and other sections of the form A.(a) for a € B with
p(a) = p(b). To prove this, suppose that b € By and set P := P, for short. Note P
has basis {yz | (y,z) € |J Y(a) x X(a,b)}. Let {u1,..., uy} be the finite set

a€Bx )
{neXo) | Usen, X(a,b) # o}

ordered so that p, < pus = r < s; in particular, 41 = A. Let P, be the subspace
of P spanned by {yz | (y,z) € U._, 4 Usen, Y (a) x X(a,b)}. This defines a

filtration P = Py > P; > --- > P, = 0 in which the section P._;/P, has basis
{yz + P, | (y,2) € UaeB”‘ Y (a) x X(a,b)}. Now we show that each P,_;/P, has a

A.-flag with sections of the form A.(a) for a € B,,,. There are two cases:
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Case 1: e(u,) = +. In this case, there is an A-module isomorphism

0 : 6—) @ A(a) > P._1/P,
a€B,,, zeX (a,b)
sending the basis vector yé, (y € Y (a)) in the zth copy of A(a) to yx+ P, € P._1/P,.
This follows from properties of the basis and is similar to the proof of (5.3).

Case 2: (u,) = —. Note that P._;/P, is naturally an A<, -module. Let Q, :=
€u, (Pr—1/P;). This is an A, -module with basis { + P, |z € X(a,b),a € B, }. We
claim that the natural multiplication map

AS#ré,ur ®Am~ Qr - rfl/Pru yéur®(‘r+Pr) '_)y‘r+Pr

is an isomorphism. This follows because the module on the left hand side is spanned
by the vectors {ye,, @ (z+ P.)| (y,z) € Usen,, Y(a) x X(a,b)}, and the images of
these vectors under multiplication are a basis for the module on the right. Hence,
P,_1/P. = ji'"@Q,. We deduce that it has a A.-flag with sections of the form
A(a) (a € B,,) on applying the standardization functor to a composition series for
@, using the exactness from Lemma 5.16.

We can now complete the proof of the claim. The only thing left is to check that the
top section of the A.-flag we have constructed so far is isomorphic to A.(b). This
follows from the constructions just explained: in the case £(\) = + we showed that
Py/Py =~ A(b) = A.(b), while if e(A\) = — then the top section is j* Ly (b) = A.(b).

Using the claim just established, we can now classify the irreducible A-modules.
For b € B,, the proper standard module A.(b) has irreducible head denoted
L(b). This follows by the usual properties of adjunctions and the quotient functor
j*  Acx-modjrg — Ax-modyq, V — €,V. Moreover, L(b) is the unique (up to iso-
morphism) irreducible A<y-module such that j*L(b) = Ly (b), hence, the modules
{L(b)|b € B} are pairwise inequivalent. To see that they give a full set of irreducible
A-modules, let L be any irreducible A-module. By the analog of Remark 5.2, there
exists b € B such that e, L # 0. Then L is a quotient of P, = Aep. Finally, using
the claim, we deduce that L is a quotient of A, (a) for some a € B with p(a) = p(b)
and thus L is isomorphic to L(a).

Having classified the irreducible A-modules {L(b)|b € B}, (B, L, p, A, <) defines
a stratification of R. We are in the recollement situation of (3.4), with R identified
with Ax-mod¢q. Since (5.6)—(5.7) agrees with (1.1), the standard, proper standard,
costandard and proper costandard modules are the correct objects. Moreover, the
claim established at the start of the proof verifies the property (I/’ZE) O

The goal in the remainder of the section is to prove a converse to Theorem 5.17.

THEOREM 5.18 (Based e-stratified algebras from e-highest weight categories).
Let R be a finite (resp., lower finite, resp., tilting-bounded essentially finite) e-
stratified category with stratification (B, L, p,A,<). Suppose we are given B = I
disjoint from A and an e-tilting generator T = @,.; T; such that each Ty, (b€ B) is
a direct sum of Te(b) and other T.(c) for ¢ with p(c) < p(b). Let

A= (@ HomR(Ti,Tj)>

i,jel
Fori,j €l and b e B, pick morphisms
Y (i,b) € Homg (T}, Tp), X(b,5) € Homg (Ty, Tj)
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lifting bases for Homg (T3, V(b)) and Homg (AL (b),T;) as in Theorem 4.43 such
that Y (b,b) = {idr,} when £(b) = + and X (b,b) = {idr,} when e(b) = —. These
choices make A into a finite (resp., upper finite, resp., essentially finite) based
(—e)-stratified algebra with respect to the poset (A,=) (the opposite ordering on A
compared to R ).

PrROOF. We need to check the axioms (£56)—(£S9). Theorem 4.43 checks the
first one. The axioms (£S7)—(£S8) also hold. For example, if e(A\) = + and b € By,
we have that Y (b,b) = {ey} by the choice of lifts, and Homg (T}, V.(a)) is zero
unless a = b or p(a) < p(b) (remembering we are checking these axioms for —e not
e). It remains to check the final axiom (£S9). The algebra A, in the statement of
the axiom (remembering that we are working now with the opposite ordering) is
the same as the algebra A, in Lemma 4.41. By that lemma, there is an algebra
isomorphism

(5.8) éx : Ay S Endg, (j3)°P,

where Ty := @cp, To- If (A) = + then 4 Ty is a minimal projective generator
for R thanks to Theorem 4.2(3), so the algebra on the right hand side of (5.8)
is basic and ey = ZbeBA €y is a decomposition of its identity element as a sum of
mutually orthogonal primitive idempotents. If £(\) = —, we have instead that j Ty
is a minimal injective cogenerator for R and the conclusion follows similarly. [

COROLLARY 5.19. Let R be a finite (resp., upper finite, resp., tilting-bounded
essentially finite) e-stratified category with the usual stratification (B, L, p, A, <).
Let A = @, jel eiAe; be an algebra realization of R. There is an idempotent

expansion A = @, jei é;Aé; with B I, and finite sets Y (i,b) < é;Aép, X (b,5) <
épAé; for alli,j e I and b € B, making A into a finite (resp., upper finite, resp.,
essentially finite) based e-stratified algebra with p as its stratification function.

Proor. This follows from Theorem 5.18 in the same way as Corollary 5.11 was
deduced from Theorem 5.10. ]

5.3. Based stratified and properly stratified algebras

In this section, we consider modified versions of Definitions 5.12 and 5.13 which
involve bases which do not depend on the sign function €. These definitions, which
were inspired in part by [ELau, Def. 2.17], are relevant when studying fully strat-
ified rather than merely e-stratified categories.

DEFINITION 5.20. A finite (rvesp., upper finite, resp., essentially finite) based
stratified algebra is a finite-dimensional (resp., locally finite-dimensional, resp., es-
sentially finite-dimensional) locally unital algebra A = @ e;Ae; with the fol-
lowing additional data:

i,5€l

(S1) A subset B < I indexing special idempotents {e; | b € B}.
(S2) A poset (A, <) which is upper finite in the upper finite case and interval
finite in the essentially finite case, such that A n I = @.
(S3) A function p: B — A with finite fibers By := p~1(\).
(S4) Sets Y (i,a) < e;Aeq, H(a,b) < eqAey, X(b,j) < epAej for i,j € I and
a,be B.
Let Y(a) := U;er Y (i, a) and X (b) := [ e; X (b, ). The axioms are as follows:
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(S5) The products yha for (y, h,x) € J, pep Y (@) x H(a,b) x X(b) are a basis
for A.

(S6) For a,b € B with a # b, the set H(a,b) is empty unless p(a) = p(b),
the sets Y'(b,a) and X(a,b) are empty unless p(b) < p(a), and Y (a,a) =
X(a,a) = {e,}.

(S7) The finite-dimensional algebra A, defined as in Definition 5.12 is basic
and €y = ZbGBA €y is a decomposition of its identity element as a sum of
mutually orthogonal primitive idempotents.

We say that A is symmetrically based if there is also some given algebra anti-
involution o : A — A with o(e;) = e; and Y (i,b) = o(X(b,i)) for all i € I,b €
B, such that each of the algebras Ay (A € A) is ox-symmetric in the sense of
Definition 4.51, where oy here is the anti-involution of A induced by o.

Here is the same definition rewritten in the special case that the stratification
function p is a bijection.

DEFINITION 5.21. A finite (vesp., upper finite, resp., essentially finite) based
properly stratified algebra is a finite-dimensional (resp., locally finite-dimensional,
resp., essentially finite-dimensional) locally unital algebra A = @ e;Ae; with
the following additional data:

(PS1) A subset A < I indexing special idempotents {ex | A € A}.

(PS2) A poset (A, <) upper finite in the upper finite case and interval finite in
the essentially finite case.

(PS3) Sets Y(i,\) c e;Aey, H(A) < exAey, X (N, i) c eyAe; for N\e A, i€ .

Let Y(A) := U;e; Y (4, A) and X(A) := [J,o; X (A, 7). The axioms are as follows.

(PS4) The products yha for (y, h,x) € [ Jycp Y (A) X H(X) x X (\) are a basis for
A.

(PS5) For A, € A, the sets Y (u,A) and X (\, ) are empty unless p < A, and
Y(AA) =X(A\A) = {ex}

(PS6) The finite-dimensional algebra A, defined as in Definition 5.13 is basic
and local.

ijel

We say that A is symmetrically based if there is also some given algebra anti-
involution ¢ : A — A with o(e;) = e; and Y (i,\) = o(X (), 7)) for all i € I, X € A,
such that each of the algebras Ay (A € A) is ox-symmetric, where oy here is the
anti-involution of Ay induced by o.

In the remainder of the section, we just explain the results for based stratified
algebras, since based properly stratified algebras are a special case. For the next
lemma, we adopt the shorthands

(5.9) YH(i,b) := {yh | (y,h) € Upep Y (i,a) x H(a,b)},
(5.10) HX(b,j) := {hz | (h,z) € J,ep H(b,a) x X(a,j)}.
Also set YH(b) 1= U,e; YH(i,0) and HX(b) := U ;e; HX (D, 7).

LEMMA 5.22. Suppose that A is a based stratified algebra as in Definition 5.20.
Also let € : A — {£} be any choice of sign function. Then A is a based e-stratified
algebra in the sense of Definition 5.12 with the required sets Y (i,b) and X (b, j) for
that being the sets Y H(i,b) and X (b,j) in the present setup if e(p(b)) = +, or the
sets Y (i,b) and HX (b, j) in the present setup if e(p(b)) = —.
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Proor. This follows on comparing Definitions 5.12 and 5.20. (]

This means that the results from the previous section apply to based stratified
algebras too. In particular, we define the standard, proper standard, costandard
and proper costandard modules as in (5.6)-(5.7). The modules A(b) and A(b) have
standard bases {ye, |y € YH(b)} and {yé, | y € Y(b)}, respectively. Similarly, one
can introduce costandard bases for V(b) and V(b) indexed by the sets HX (b) and
X (b), respectively. Note also that the basic algebra

Ay = G—) eaAxeEp

a,bEB)\
has basis {h | h € U, pep, H(a,0)}.

THEOREM 5.23 (Fully stratified categories from based stratified algebras). Let
A be a finite (resp., upper finite, resp., essentially finite) based stratified algebra as
above. The modules

{L(b) := hd A(b) = hd A(b) = soc V(b) = soc V(b) | be B}

give a full set of pairwise inequivalent irreducible left A-modules. Moreover, R :=
A-modyq (resp., R := A-modjsq, resp., R := A-modsq ) is a finite (resp., upper finite,
resp., essentially finite) fully stratified category with stratification (B, L,p, A, <)
with strata Ry := Ax-modgg. If A is symmetrically based with anti-involution o
then 7® : R — R is a Chevalley duality of R in the sense of Definition 4.53.

PRrROOF. Using Lemma 5.22, the first part follows from Theorem 5.17 applied
twice, once with ¢ = + and once with ¢ = —. For the final part about Chevalley
duality, axiom (Chl) from Definition 4.53 is established in the course of the proof
of Theorem 5.17, and (Ch2) follows from the definition of symmetrically based
stratified algebra. O

For the converse recall the definition of tilting-rigid from Definition 4.36.

THEOREM 5.24 (Based stratified algebras from fully stratified categories). Let
R be a finite (resp., lower finite, resp., essentially finite) fully stratified category with
stratification (B, L, p, A, <). Assume that R is tilting-rigid with weakly symmetric
strata. Suppose we are given B < I disjoint from A and a tilting generator T' =
@,e; Ti such that each Ty, (b € B) is a direct sum of T'(b) and other T'(c) for ¢ with

p(c) < p(b). Let

A= (@ HomR(T,;,Tj)>

i,jel
(1) Fori,je I and a,be B, pick morphisms
Y (i,a) €« Homg (T}, T,), H(a,b) € Homg (T, Tp), X(b,7) < Homg (T, T)

lifting bases for Homg (T}, V(a), Homg (A(a), V(b)) and Homg (A(b), T})
as in Theorem 4.45 such that Y (b,b) = X (b,b) = {idr,}. These choices
give a triangular basis making into a finite (resp., upper finite, resp., es-
sentially finite) based stratified algebra with respect to the poset (A, =) (the
opposite ordering on A compared to R).
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(2) If in addition R has a Chevalley duality 7V and, in a suitable realization,
the modules corresponding to each T; possess non-degenerate symmetric
bilinear forms satisfying the adjunction property as in (4.47), then the
triangular basis in (1) can be chosen so that A is symmetrically based.

PROOF. Part (1) is similar to the proof of Theorem 5.18, using Theorem 4.45
in place of Theorem 4.43. Part (2) follows in the same way as in the proof of
Theorem 5.11(2). O

COROLLARY 5.25. Let R be a finite (resp., upper finite, resp., essentially finite)
fully stratified category with stratification (B, L,p,A,<). Let A = P e;Ae; be
an algebra realization of R.

ijel

(1) Assume that R is tilting-rigid with weakly symmetric strata. Then there

is an idempotent expansion A = @), jei é;Aé; with B < f, and finite sets

Y (i,a) © é;Aé,, H(a,b) C é4Aéy, X(b,j) < é,A¢;

foralli,je I and a,b € B, making A into an upper finite (resp., essen-
tially finite) based stratified algebra.

(2) Assume that R is tilting-rigid with a Chevalley duality 7V and chark # 2.
Then the choices in (1) can be made so that A is symmetrically based with
anti-involution o realizing 7" .

PROOF. This follows from Theorem 5.24 in the same way as Corollary 5.11 was
deduced from Theorem 5.10. One also needs to use the fact that the Ringel dual
R’ of R is tilting-rigid by Theorem 4.42. O

5.4. Algebras with a triangular basis

The final axiom (S7) of Definition 5.20, namely, that the algebra A) is basic,
is quite restrictive. However, this assumption is not essential, as we will explain
in this section. The following simply repeats Definition 5.20 with the final axiom
dropped, but at the same time we switch to using the notation 0 : S — A where we

had p : B — A before.

DEFINITION 5.26. Let A = @, jc;
finite-dimensional, resp., essentially finite-dimensional) locally unital algebra. We
say that A has a triangular basis if we are given the following additional data:

(TB1) A subset S € I indexing special idempotents {es | s € S}.

(TB2) A poset (A, <) which is upper finite in the locally finite-dimensional case
and interval finite in the essentially finite-dimensional case, such that A n
I =0.

(TB3) A function @ : S — A with finite fibers Sy := 071(\).

(TB4) Sets Y (i,5) < e;Aes, H(s,t) < esAe,, X(t,j) < e Ae; for 4,5 € I and
s, teS.

Let Y (s) := U;e; Y (4,8) and X (¢) := J;c; X (¢, 7). The axioms are as follows:

(TB5) The products yhx for (y,h,x) € |, s Y () x H(s,t) x X(t) are a basis
for A.

(TB6) For s,t € S with s # t, the set H(s,t) is empty unless d(s) = d(t), the sets
Y (t,s) and X (s,t) are empty unless 0(t) < d(s), and Y (s,s) = X(s,s) =
{es}.

e;Ae; be a finite-dimensional (resp., locally
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Suppose that A has a triangular basis as in Definition 5.26. We define algebras
Ay = eyAcyey for each A € A like at the end of Definition 5.12. Thus, we let
ey 1= ZsesA es, then set Ay := é)yA<réy where Ag) is the quotient of A by the
two-sided ideal generated by {e, | p € A}. Corollary 5.15 carries over to show
that A<y has basis yhz for all y € Y(s),h € H(s,t),z € X(t) and s,t € S with
d(s),d(t) < A. Hence, Ay has basis {h|h € Us tes, H(s,t)}. Let j* : A<y-mod —
Ax-mod,V — &,V be the quotient functor and define j} and j3 analogously to
(5.4).

LEMMA 5.27. The functors j,)‘ and j,,é are ezract.

PrOOF. By the argument from the proof of Lemma 5.16, there is an isomor-
phism of right Ay-modules @,cg, ey (s) €A 5 Acyéy sending the vector &
in the yth copy of eé;Ay to § € A<yéx. So the right Ay-module Agyéy is projec-
tive, which implies the exactness of j{. Similarly, the left Ay-module é\A<) is
projective, which implies the exactness of jj. ([

The following theorem is essentially [GRS, Th. 3.5], although we give a self-
contained proof since our notation is different enough. See Remark 5.30 for further
historical discussion.

THEOREM 5.28 (Fully stratified categories from algebras with triangular bases).
Let A be a finite-dimensional (resp., locally finite-dimensional, resp. essentially
finite-dimensional algebra with a triangular basis as above. Let p : B — A be a
function whose fibers By := p~1()\) label a full set {Lx(b) | b € By} of pairwise
inequivalent irreducible left Ax-modules. Let A(b) := jrLx(b) and V(b) := 52 L (b)
for be By. Then the modules

{L(b) := hd A(b) =~ soc V(b) | b e B}

giwe a full set of pairwise inequivalent irreducible left A-modules. Moreover, R :=
A-modyq (resp., R := A-modjsq, resp., R := A-modsq) is a finite (resp., upper finite,
resp., essentially finite) fully stratified category with stratification (B, L, p, A, <). Its
strata are the categories Ry := Ax-modsq, with standardization and costandardiza-
tion functors as in (5.4).

PrOOF. Take u € Sy and any b € By such that €,Lx(b) # 0. We claim that
Ae,, has a A-flag with A(b) at the top and other sections of the form A(c) for ¢
with p(c) = A. To see this, let P := Ae,, for short. Note P has basis

{yhx ‘ (y,h,z) € U;LZA Us,tesﬂ Y(s) x H(s,t) x X(Lu)}.

Let {u1,...,pn} be the finite set {4 € [A, o) | Utesu X(t,u) # @} enumerated in
some order refining <. There is a filtration P = Py > P, > --- > P, = 0 in
which the section P,._1/P, has basis {yhx + P, | (y,h,z) € Us,tesw Y (s) x H(s,t) x
X(t,u)}. Moreover, P,_1/P, = j{'"Q, where Q, := €, (P-_1/P,). This follows by
a similar argument to the Case 2 in the proof of Theorem 5.17. Since ji" is exact
by Lemma 5.27, it follows that P,_1/P, has a A-flag with sections A(c) for ce B,,, .
So we have proved that P has a A-flag with sections A(c) for ¢ € B with p(c) = A.
Moreover, Py/Py = j}(Axéy). Since Axé, has Ly(b) in its head, it follows that the
A-flag can be chosen so that it has A(b) at its top.

Now we can classify the irreducible left A-modules. As in the penultimate
paragraph of the proof of Theorem 5.17, the modules {L(b) := hd A(b) | b e B} are
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pairwise inequivalent irreducible A-modules. It remains to show that any irreducible
left A-module L is isomorphic to some such module. There exists u € S such that
eywL # 0. Hence, L is a quotient of Ae,. By considering the filtration of Ae, from
the previous paragraph we deduce that L is a quotient of A(c) for some c € B, i.e.,

L = L(c).
At this point, we have in hand the data of a stratification of R with strata
Ry := Ay-modgy and standardization and costandardization functors as in (5.4).

For each b € By, choose u € Sy such that é,L)(b) # 0 then set P, := Ae,. The
claim established in the first paragraph of the proof checks that these modules
satisfy the property (I/DZ,), hence, R is an upper finite (resp., essentially finite)
—-stratified category. Finally we deduce that it is fully stratified using the criterion
from Lemma 3.20(iv) plus Lemma 5.27. O

COROLLARY 5.29. Let A be as above. If each of the finite-dimensional algebras
Ay is quasi-hereditary (e.g., they could all be semisimple), then the stratification
can be refined to make the category R from Theorem 5.28 into a highest weight
category.

ProOF. Combine Theorem 5.28 and Corollary 3.67. (]

REMARK 5.30. We did not fully appeciate the utility of Definition 5.26 be-
fore seeing [GRS], in which Gao, Rui and Song introduce a notion of an alge-
bra with a weak triangular decomposition and give a (slightly different) proof of
Theorem 5.28 for such algebras. They justify their definition by constructing sev-
eral interesting families of examples, namely, cyclotomic quotients of the affine
oriented Brauer and HOMFLY-PT skein categories and of the affine Brauer and
Kauffman skein categories. In the special case that I = S, i.e., all distinguished
idempotents are special, our notion of an algebra with a triangular basis is ex-
actly equivalent to the notion of an algebra with a weak triangular decomposi-
tion. More precisely, a weak triangular decomposition is the data of subspaces
AT = @ jereidTe, A° = @, jepeiA’e;, AT = @, e eidTe; for i, j € I sub-
ject to certain axioms. Picking homogeneous bases Y (4, 7), H(¢,75) and X(i,7) for
e;A7ej,e;A%; and e; AT e;, respectively, produces a triangular basis in the sense of
Definition 5.26. Conversely given a triangular basis one obtains a weak triangular
decomposition by replacing the bases by the subspaces that they span.

5.5. Algebras with a triangular decomposition

Let A be an algebra with a triangular basis as in Definition 5.26 and assume
in addition that I = S, i.e., all of the distinguished idempotents are special. Let
A* and AF be the subspaces spanned by {yh | (y,h) € Ui jer Y (0) x H(i,j)} and
{h:z: ’ (h,z) € Um.el H(i,j) % X(j)}, respectively. If it happens that these subspaces
are locally unital subalgebras? of A then A has a triangular decomposition in the
following sense.

DEFINITION 5.31. Let A = @L jer €iAe; be a finite-dimensional (resp., locally
finite-dimensional, resp., essentially finite-dimensional) locally unital algebra. A
triangular decomposition of A is the following additional data:

2Locally unital subalgebra means subspace closed under multiplication and containing all of the
distinguished idempotents.
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(TD1) A poset (A, <) which is upper finite in the locally finite-dimensional case
or interval finite in the essentially finite-dimensional case.

(TD2) A function 0 : I — A with finite fibers Iy := d71(})).

(TD3) Locally unital subalgebras A” and Af.

We call A” and A* the negative and positive Borel subalgebra. Let A° := A® n AP,
This is also a locally unital subalgebra called the Cartan subalgebra. The following
axioms are required to hold:

(TD4) AP is a projective right A°-module and A* is a projective left A°-module.

(TD5) The natural multiplication map A’ @40 A* — A is a linear isomorphism.

(TD6) For i,j € I, ejA’e; and e; Afe; are zero unless d(j) < (i), and e;A’e; =
e;Afe; when (i) = 0(j).

REMARK 5.32. Our formulation of Definition 5.31 has been influenced by the
definition of a triangular category from a recent preprint of Sam and Snowden
[SS]; these are finite-dimensional categories satisfying equivalent axioms to algebras
with an upper finite triangular decomposition in the above sense in which the
Cartan subalgebra is semisimple. In an earlier draft, we had formulated a slightly
more restrictive notion which we now refer to a split triangular decomposition,
as follows. Let A = (—BZ jer €iAe; be a finite-dimensional (resp., locally finite-
dimensional, resp., essentially finite-dimensional) locally unital algebra. We say
that A has a split triangular decomposition if we have the additional data:

(STD1) A poset (A, <) which is upper finite in the locally finite-dimensional case
and interval finite in the essentially finite-dimensional case.

(STD2) A function ¢ : I — A with finite fibers Iy := 07 1(\).

(STD3) Locally unital subalgebras A=, A° and A™.

Letting K := @,

(STD4) The subspaces A” := A~ A? and A% := A°A* are subalgebras.

(STD5) The natural multiplication map A~ ®x A° ®k AT — A is a linear isomor-
phism.

(STD6) For i,j € I with i # j, e;A%; is zero unless d(i) = 0(j), e;jAe; and
e; At e; are zero unless 0(j) < (i), and e;Ae; = e; Afe; = ke; for alli e I.

The axiom (STD5) implies that A" ~ A~ ®g A° and Af ~ A° ®x A". Hence, by
associativity of tensor product we have that

ke;, the axioms are:

A" @0 AP > A~ Qx A° Qa0 A° @k AT > A” @k A° @k AT =~ A,

proving (TD5). Moreover, the isomorphisms A’ ~ A~ ®g A° and A? =~ A° ®x
A! show that A° and A! are I-free in the sense of Definition 2.17 as right and
left A°-modules, respectively, which implies (TD4). Axiom (TD6) is also easily
deduced from (STD6). When they hold, the axioms (STD4)—-(STD6) are easier
to check than (TD4)-(TD6), so this gives a practical way to obtain triangular
decompsitions. In fact, most of the examples of triangular decompositions arising
from diagrammatic monoidal categories considered in [SS] and elsewhere are split
triangular decompositions, so the split formulation is useful.

REMARK 5.33. In [HN], Holmes and Nakano introduced a notion of a Z-graded
algebra with a triangular decomposition. To explain the connection to our setup,
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suppose we are given a unital Z-graded algebra A = Dz Ay. There is an associ-
ated locally unital algebra A = @—)/\)Mez exAe, with ey Ae,, = fl,\_u and multiplica-
tion induced by multiplication in A in the natural way. Moreover, any Z-graded left
A-module V = @ ,cz V) can be viewed as a left A-module with exV' := V; this de-
fines an isomorphism from the usual category A-grmod of Z-graded A-modules and
degree-preserving morphisms to the category A-mod of locally unital A-modules. If
we start with A that is a finite-dimensional Z-graded algebra with a triangular de-
composition (A=, A°, A*) as in [HN] (see also [BT, Def. 3.1]) then the essentially
finite-dimensional locally unital algebra A and the subalgebras A°, A~ and A" ob-
tained via this construction has a split triangular decomposition, with I = A = Z
ordered in the natural way.

To make the connection with Definition 5.26, suppose that A has a triangular
decomposition. For A € A, let 1, := Zieh e;. The axioms imply that e;A°e; = 0
unless 0(i) = 0(j), so 1yA°1, = 0 for X\ # p. It follows that {1,|X € A} are mutually
orthogonal central idempotents in A°, and the Cartan subalgebra has the “block”
decomposition
(5.11) A° = P 45 where S 1= 1,A° = A°1,.

AeA

LEMMA 5.34. Let A be as in Definition 5.31 with A n I = &. Suppose we are
given S < T such that all e; A’ and Anej are S-free as right and left A°-modules,
respectively. Fori,j € I, s,t €8S, one can choose subsets Y (i,s) e; Aley, X(t,j) c
etAﬁej so that

(i) e A’ = @,g Dyey (i,5) YA with yA° = e;A° for y e Y (i,s);
(i) Afej = Pies Daex ) A°w with Az = A%, for v € X(t,]);

(iii) Y (t,t) = X(t, t) = {e;} for allt € S.

Also let H(s,t) be a basis for e;A°e,. This makes A = @), ,_; e;Ae; into an algebra

i,jel
with a triangular basis in the sense of Definition 5.26 with ¢ : S — A being the
restriction of the given function ¢ : I — A. For A € A and ey := ZSESA es,

the subquotient Ay = €xA<a€y defined after Definition 5.26 is isomorphic to the
subalgebra exASey of AS. Moreover, we have that A = ASexA3 so Ay is Morita
equivalent to AS.

PROOF. By the definition of S-free, there are subsets Y (i, s) < e;A’e, as in (i).
Since e; A’e, is zero unless d(i) < 0(s), we have that Y (i, s) = @ unless d(i) < (s).
Suppose that t € Sy := S n I. By (TD6), we have that

e, A1y = etAS = (—B (—B yAS,
s€S\ yeY (t,s)

i.e., the sets Y (¢,s) for s € Sy come from an S-free decomposition of e;AS. This
means we can choose them so that Y (¢,t) = {e;} as in (iii), in which case Y (¢, s) = @
for s € Sy with s # t. Hence, for s,t € S with s # ¢, we have that Y (¢, s) = & unless
d(t) < d(s). Similarly, we choose subsets X (¢, j) < e; Afe; according to (i) and (iii),
and then for s,t € S with s # t we have that X (s,t) = @ unless 0(t) < d(s). Note
also that H(s,t) = @ unless d(s) = 0(t) due to (5.11). Thus we have the required
data from (TB1)-(TB4), and the conditions of (TB6) are satisfied.

In this paragraph, we check (TB5). Let Y(s) = (J,c; Y (4,5) and X(¢t) =
Ujer X(t,5). We have seen already that A = @, Dyey (s YA° and AF =
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Dres Drex () A’x. Tensoring these together, we deduce that

AeuAl=F @ yA A

5,t€S yeY (s),zeX (t)

Each summand yA° ® 40 A°x here is isomorphic to e;A° @40 A°e; =~ esA%e;. We
deduce that A”®4- A* has basis {yh®z = yQhz|(y,h, z) € Us tes Y (5) x H(s, 1) x
X(t)}. Then we use (TD5) to see that the axiom (TB5) is satisfied.

Finally we must identify the algebra Ay. The quotient map A — A restricts
to a homomorphism ¢ : A° — A¢, which further restricts to

(512) gf))\ : e)\Aie)\ 5 A)\.
The subalgebra A5 has basis

{yhz | (y,h,z) € U Y(i,8) x H(s,t) x X(t,7)}.

i,j€I,5,t€S

Hence, A5 = ASexAS. The subalgebra Ay of eyxASey has basis Us,tES)\ H(s,t). Tt
follows that ¢, sends a basis to a basis, so it is an isomorphism. [l

The freeness assumption in Lemma 5.34 may seem restrictive, but one can
always pass to an idempotent expansion so that this is the case. In fact, we can do
this in such a way that the algebras Ay are basic, thereby giving A the structure of
a based stratified algebra rather than merely an algebra with a triangular basis:

THEOREM 5.35 (Based stratified algebras from triangular decompositions).
Suppose that A has a triangular decomposition as in Definition 5.31. Let A° =
@, jei €iA%€; be an idempotent expansion of A° = P e;A%; such that

(i) InA=w;
(ii) I contains a subset B indexing a full set {é, | b € B} of pairwise non-
conjugate primitive idempotents in A°;

(4ii) zlfhe;e is a function q : I — I with |¢7'(i)| < o0 and e; = 2ijeq-1(i) €5 for

iel.

i,5€l

Then A = (—Di’jd é;Aé; has a triangular decomposition with the given Borel subal-
gebras, taking the function from (TD2) now to be p := doq : I — A. Moreover,
& A and Aﬁéj are B-free as right and left A°-modules, respectively. Hence, we
can apply the construction of Lemma 5.34 to A = @Mei é;Aé; to make A into a
based stratified algebra in the sense of Definition 5.26 with p : B — A defined by
restriction.

PROOF. The fact that we have in hand a triangular decomposition of A =
@i,jef é;Aé; is immediately clear from the nature of Definition 5.31. Since 1,\Aﬁéj
is a finite-dimensional projective left A3, Lemma 2.18 implies that it is B-free as a
left Ay-module. Hence Auéj = @D, en 1,\Auéj is B-free as a left module. Similarly,
we get that é;A” is B-free as a right module. So now Lemma 5.34 can be applied
and we obtain a triangular basis such that Ay = éyA3é, for éy := ZbeBA ép. By the
choice of the idempotents {é, | b € B}, éyASé, is the basic algebra that is Morita
equivalent to AY, checking the remaining axiom (S7) needed in order to have a
based stratified algebra. O
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COROLLARY 5.36. If A has a triangular decomposition in which the Cartan sub-
algebra A° is semisimple, then there is an idempotent refinement A = @), jei eiAe;
of A with the structure of a based quasi-hereditary algebra in the sense of Defini-
tion 5.1.

PROOF. The construction in the theorem produces an idempotent refinement
of A that is a based stratified algebra with stratification function p : B — A.
Let I' := B with partial order < on I' defined by a < b if and only if @ = b or
p(a) < p(b). Since Ay is basic and semisimple, we have for a,b € By that H(a,b)
is empty unless a = b and H(a,a) may be chosen to be {é,}. It follows that A is
actually a based quasi-hereditary algebra with weight poset (I', <) and the basis
which we have constructed. (I

REMARK 5.37. The construction used to prove Theorem 5.35 suggests yet an-
other variation on all of these definitions, which is weaker than having a triangular
decomposition but stronger than having a triangular basis. For A like in Def-
inition 5.31 we say that it has a Cartan decomposition if there is the following
additional data:

(CD1) A poset (A, <) which is upper finite in the locally finite-dimensional case
and interval finite in the essentially finite-dimensional case.

(CD2) A function 0 : I — A with finite fibers Iy := 0=1()\).

(CD3) A locally unital subalgebra A° and (A°, A°)-subbimodules A” and A of
A.

The axioms are:

(CD4) AP is a projective right A°-module and A* is a projective left A°-module.
(CD5) The natural multiplication map A® ®40 A — A is a linear isomorphism.
(CD6) For i,j € I, e;A°; is zero unless d(i) = 0(j), e;A’¢; and e;Afe; are zero
unless 0(i) < 8(j), and e;A’¢; = e;A%; = e; Abe; when 0(i) = 0(j).
The proof of Theorem 5.35 carry over to such algebras essentially unchanged. How-
ever we do not know of any compelling examples, whereas as we noted in Re-
marks 5.30, 5.33 and 5.32 there are plenty of important examples of algebras with
triangular bases and with triangular decompositions, justifying both of those defi-
nitions.

If A is a finite-dimensional (resp., locally finite-dimensional, resp. essentially
finite-dimensional) algebra with a triangular decomposition, then we can apply
Theorems 5.35 and 5.23 to deduce that A-modgq (resp., A-modisq, resp., A-modgq)
is a finite (resp., upper finite, resp., essentially finite) fully stratified category. We
end the chapter by making this structure more explicit. We first define some global
standardization and costandardization functors.

e The axioms imply that A is a projective right Af-module and that there
is a locally unital projection homomorphism A# — A°. Let

(5.13) 1+ A°-modgq — A-mod

be the exact functor defined by inflating along this projection homorphism
and then applying the exact induction functor A® 4:? : Af-mod — A-mod.
The fact that it takes finite-dimensional modules to finite-dimensional or
locally finite-dimensional modules (as appropriate for the case) follows
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because as functors to A’-mod we have that A® sl = A’® 40?7 due to
(TD5).

e The axioms imply that A is a projective left A’-module and that there is
a locally unital projection homomorphism A’ — A°. Let

(514) j* : Ao—modfd — A-mod

be the exact functor defined by inflating along A’ — A° then applying
the exact coinduction functor (®,.; Hom 4» (Ae;, —) : A”-mod — A-mod.
It takes finite-dimensional modules to finite-dimensional or locally finite-
dimensional modules (as appropriate for the case) follows because as a
functor to A*-mod it is isomorphic to @,_, Hom 4o (Aﬁel-, ?).
The following theorem can be proved by mimicking standard arguments from Lie
theory; see [CouZ] noting that (A”, A°) and (A°, A*) are Borelic pairs in the sense
defined there. We will deduce it instead from the work already done in Theo-
rems 5.35 and 5.23.

iel

THEOREM 5.38 (Fully stratified categories from algebras with a triangular de-
composition). Suppose that A has a triangular decomposition of one of the three
types as above. Let {L°(b)|b € B} be a full set of pairwise inequivalent irreducible left
A°-modules. Let p: B — A be the function sending b € B to the unique A € A such
that L°(b) is an irreducible AS-module. Let A(b) := 5 L°(b) and V(b) := j,L°(b);
cf. (5.13)-(5.14). Then

{L(b) := hd A(b) = soc V(b) | be B}

is a complete set of pairwise inequivalent irreducible left A-modules. Moreover, the
category R := A-modsq (resp., A-modigq, resp., A-modsq) is a finite (resp., upper fi-
nite, resp., essentially finite) fully stratified category with stratification (B, L, p, A, <
). Its strata may be identified with the categories A3-modeq (A € A) with stan-
dardization and costandardization functors defined by the restrictions of ji and js,
respectively.

PrOOF. As explained by Theorem 5.35, we can pass to an idempotent refine-
ment if necessary to assume without loss of generality that the set I indexing the
distinguished idempotents is disjoint from A and contains B as a subset in such a
way that L°(b) =~ hd (A°ep) for each b € B. The function p : B — A is then the
restriction of 0 : I — A. Now Theorem 5.35 gives bases making A into a based
stratified algebra. We we deduce that R is a finite (resp., upper finite, resp., essen-
tially finite) fully stratified category with stratification (B, L, p, A, <) by applying
Theorem 5.23. However for this the strata and the labelling function L are pro-
duced in a different way to the formulation here, so we need to argue a little further
to see that the standardization and costandardization functors here and the ones
from earlier may be identified. Using the isomorphism (5.12), the quotient functor
j* : Acx-mod — Ay-mod in the setup of (5.4) may be identified with the functor
j : A<x-mod — ey ASex-mod obtained by restriction to A° then multiplication by
the idempotent ey. Since A and ey ASey are Morita equivalent, we can instead use
the algebra AS to realize the stratum, and then this quotient functor gets replaced
by the functor obtained by restriction to A° then multiplication by 1. It remains
to observe that the restrictions of ji and j4 to A3-mod are left and right adjoint to
this functor, respectively. ([l
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COROLLARY 5.39. Suppose that A has a triangular decomposition of one of the
three types and that its Cartan subalgebra A° is semisimple. Let {L°(7) |~y € T’} be
a full set of pairwise inequivalent irreducible left A°-modules. Let p: T' — A be the
function sending vy to the unique X\ such that L°(7y) is an irreducible AS-module.
Then R := A-modsq (resp., A-modjtq, resp. A-modeq) is a finite (resp., upper
finite, resp., essentially finite) highest weight category with weight poset (I', <) for
< defined by B < v if either B = v or p(B) < p(v). Its standard and costandard
modules are A(y) := j1L°(y) and V() := jL°(7y) for veT.

PRrROOF. This follows from the theorem and Corollary 5.36. O

REMARK 5.40. We end by mentioning one last variation on the definitions in
this section. We say that a triangular decomposition of A as in Definition 5.31 is
a symmetric triangular decomposition if in addition there is given a locally unital
algebra anti-involution o : A — A which leaves A° invariant and interchanges A®
and A, such that for each A € A the subalgebras ey A*ey are oy-symmetric in the
sense of Definition 4.51, where o) denotes the restriction of ¢. Then there is an
enhanced version of Theorem 5.35 making A into a symmetrically based stratified
algebra, and an enhanced version of Theorem 5.38 making R into a fully stratified
category with a Chevalley duality 7®. We omit the details.



CHAPTER 6

Examples

In this chapter, we explain several examples. For the ones in §56.5-6.7 we give
very few details but have tried to indicate the relevant ingredients from the existing
literature.

6.1. A finite-dimensional example via quiver and relations

Let A and B be the basic finite-dimensional algebras equal to the path algebras
of the following quivers:

A(1>2): 8C1L23t with relations s = 0,12 = 0,ty = 0,
u
B (1<2): = C 1 C 2 with relations z* = 0,uv = 0, vuzv = 0.

The algebra A has basis ey, s;eq, t;y,ys and B has basis ey, z, vu, vuz, zvu, 20Uz;
€2, UZV; U, 2V; U, uz, uzvu, uzvuz. The irreducible A- and B-modules are indexed
by the set {1,2}. We are going to consider A-modgg and B-modgq with the strati-
fications defined by the orders 1 > 2 and 1 < 2, respectively.

We first look at A-modgq. As usual, we denote its irreducibles by L(7), inde-
composable projectives by P(i), standards by A(7), etc.. The indecomposable pro-
jectives and injectives look as follows (where we abbreviate the irreducible module
L(%) just by 4):

1 1
FaR 2 1 b
P(1)= 1 2, P2)= 1|, I1)= 4L, I2= 2 1.
Y 2 1 N4
2 2

It follows easily that A-modgq is a fibered highest weight category in the sense of
Definition 3.7 with the structure of the standards and costandards as follows:

1
A(l)=P(), Al)= 4 , A@2)=P(2), A(2)=L(2),
2

This can also be seen from Theorem 5.23 on noting that A is a based properly
stratified algebra in the sense of Definition 5.21 with Y'(2,1) = {y}, X(1,2) = @
and H(1) = {e1, s}, H(2) = {ea,t}. The basic local algebras realizing the strata

123
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are k[s]/(s?) and k[t]/(t?). Next we look at the tilting modules in A-mod¢q. If one
takes the sign function € = (€1, €2) to be either (+,+) or (—, +) then one finds that
the indecomposable e-tilting modules are:

A1) V(1) V@)
= Nl . Ty =P@2)=A@2) =
A1) V(2) v(2) ve)

These cases are not very interesting since the Ringel dual category is just A-modgq
again. Assume henceforth that ¢ = (—,—) or (+,—). Then the indecomposable
e-tilting modules are:

1 _
AN
1

A
2 2= N = U s T-2=P@2).
) 2) v

N Al V( (2)

To see this, one just has to check that these modules are indecomposable with the
appropriate A.- and V.-flags. This analysis reveals that A-modg is not tilting-
rigid.

The minimal projective resolution of T_(1) takes the form

- — P2)®P(2) — P(2)® P(2) — P(1)® P(2) ® P(2) — T_(1) —> 0.

In particular, it is not of finite projective dimension, as follows also from Lemma 4.38
since T_(1) # T4 (1). Observe also that there is a non-split short exact sequence
0— X —T_(1) > X — 0 where

Now let T := T_(1) ® T_(2). We claim that End4(7)°P is the algebra B
defined above. To prove this, one takes z : T_(1) — T_(1) to be an endomorphism
whose image and kernel is the submodule X of T_(1), u : T_(2) — T_(1) to
be a homomorphism which includes T (2) as a submodule of X < T_(1), and
v:T_(1) > T-(2) to be a homomorphism with kernel containing X and image
L(2) € T_(2). Hence, B-modgq is the Ringel dual of A-modgq relative to 7. Note
also that the algebra B is based (+, +)- and (—, +)-quasi-hereditary but it is not
based (+, —)- or (—, —)-quasi-hereditary (cf. Definition 5.13).
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One can also analyze B-modsy directly. Its projective modules have the follow-
ing structure:

1

s

)
<
—
—
N
I
D £ = = = e N
/-:
[\)
-
Il
DO S 1 e e N

DO 8 = e S D -8

Continuing with e = (—, —) or e = (+, —), it is easy to check directly from this that
B-modyy is (—e)-highest weight, as we knew already due to Theorem 4.10. However,
it is not e-highest weight for either of these choices of €, so it is not fibered highest
weight.

We leave it to the reader to compute explicitly the indecomposable (—e¢)-tilting
modules 7% (1) and 7% (2) in B-mod¢g. Their structure reflects the structure of
the injectives I(1) and I(2) in A-modsq. Let 77 := T (1) @ T". (2) = T*. By the
double centralizer property from Corollary 4.11, we have that A = Endpg(T")°P,
as may also be checked directly. By Theorem 4.16, the functor R Hompg(7",7?) :
DP(B-modgq) — D?(A-modyq) is an equivalence. Note though that R Hom 4 (T, ?) :
DP(A-modgg) — DP®(B-modyq) is mot one; this follows using [Kel, Th. 4.1] since
T_(1) does not have finite projective dimension.

6.2. An explicit semi-infinite example

In this section, we give a baby example involving a lower finite highest weight
category. Let C be the coalgebra with basis

{9i,j.tez,0<i,j <1},

counit defined by €(c (Z)) = 0;,00;,¢, and comultiplication 6 : C — C ® C defined by

1,_, Z (z) (J) Z cf ®C§€]fj)7

iiéj(?) (2)
cl(,J) s Z C(z) (J) + Z C(k) 213,
iij@) (2)
J
CEJ) ®ce)+2 c(zk®ck]+2 c,k ®c,(€2+2 cEQ@cg;—I—Z o (k)
k= k=0
z$=‘€(2) k—é(Q) J#EL(2) k= 5(2)

for i,7 > 0 and ¢ > max(i,7). We will show that R := comodg-C is a lower
finite highest weight category with weight poset A := N ordered in the natural way.
Then we will determine the costandard, standard and indecomposable injective and
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tilting objects explicitly, and describe the Ringel dual category R’. To do this, we
mimic some arguments for reductive groups which we learnt from [Jan1].

We will need comodule induction functors, which we review briefly. For any
coalgebra C' with comultiplication §, a right C-comodule V with structure map
nr:V - V®C, and a left C-comodule W with structure map ny, : W - CQ W,
the cotensor product V Oc W is the subspace of the vector space V ® W that is the
equalizer of the diagram

id
VeWw _®) VRCeW.
id@n ®nL
In particular, ng : V. — V ® C is an isomorphism from V to the subspace V O¢ C,
and similarly nz : W = C O¢ W. Now suppose that 7 : C — (' is a coalgebra
homomorphism and V is a right C’-comodule. Viewing C as a left C’-comodule
with structure map 07, := (7®id)od : C — C'®C, we define the induced comodule
to be

ind%, vV := V Oe C.

This is a subcomodule of the right C-comodule V ® C (with structure map id ®J).
In fact, indg, : comod-C’ — comod-C' defines a functor which is right adjoint to the
exact restriction functor resg,, so it is left exact and sends injectives to injectives.

Now let C' be the coalgebra defined above, and consider the natural quotient
maps 7’ : C' — C” and 7 : ¢ — C*, where C” and C* are the quotients of C' by the
coideals spanned by {cg? | ¢ > j} or {cz(zj) | ¢ > i}, respectively. Thebe coalgebras

have bases denoted {c; ; := wb(cz(.g)) |0 <i<j}and {c;; :=7¥Cc |z > j = 0},
and comultiplications 8’ and 6% satisfying
(6.1)
J i
8(cig) =cii®cij+ Y, Cr®chj, 0Mcij) =cij®cj+ Y. ik ®cky,
k=i+1 k=j+1
k=3 (2) k=i(2)

respectively. Alsolet C° = @, k be the semisimple coalgebra with basis {c;|i > 0}
and comultiplication 6° : ¢; — ¢; ® ¢;. Note C° is a quotient of both C” and C* via
the obvious maps sending c; ; — d; jc;; hence, it is also a quotient of C'. It may also
be identified with a subcoalgebra of both C* and C* via the maps sending ¢; — ¢; i

Let L°(7) be the one-dimensional irreducible right C°-comodule spanned by ¢; ;.
Since C° is semisimple with these as its irreducible comodules, any irreducible right
C°-comodule V' decomposes as V' = @, ; V; with the “weight spaces” V; being a
direct sum of copies of L°(¢). Similarly, any left C°-comodule V' decomposes as
V = @,.; V. This applies in particular to left and right C*,C* or C-comodules,
since these may be viewed as C'°-comoodules by restriction.

Since C° is a subcoalgebra of C? the irreducible comodule L°(i) may also
be viewed as an irreducible right C’-comodule. We denote this instead by L(i);
it is the subcomodule of C” spanned by the vector ¢;;. For i = 0, let I(i) :=
C =~ ndco L° (i), let V(i) be the subcomodule of I(i) spanned by the vectors
{c;7]0 < i}, and let L(7) be the one-dimensional irreducible subcomodule of

(4

(4)
Z
V(i) bpanned by the vector ¢; ) Now we proceed in several steps.
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Claim 1: Viewed as a functor to vector spaces, the induction functor indgb 18
isomorphic to the functor V. — V Ogo CF x~ @i>0% ® ;C*. Hence, this functor

is exact. To prove this, let dpg = (7rb®7ru) 08:C — C"Oce C. As (5LR(C§?) =

¢iy ® cg; and these vectors for all £ > max(é, j) give a basis for C” Oce C*, this
map is a linear isomorphism. Moreover, the following diagram commutes:

c -, C'®C
6LRJ lid®6LR

c’ Oce CH Cb®Cb Oce CH.

5 ®id

The vertical maps are isomorphisms. Using the definition of indgb, it follows for
any right C”-comodule V with structure map n that the induced module indgb \%
is isomorphic as a vector space (indeed, as a right C*-comodule) to the equalizer of
the diagram

n@id @ id

VeC e Cf = VeC'®C Oc C*.

id ®3°®id
Since indgt V >~ V, this is naturally isomorphic to V Oce Ct. As Cf ~ Di=o ,CF,
we get finally that V Oce CF = @, Vi ® :C*.

Claim 2: For i > 0, the right C”-comodule ;C" = indgz L°(i) has an exhaustive
ascending filtration 0 < Vo < Vi < --- such that Vy = Lb(i) and Vi)V, =
LP(i+2r —1)®L°(i+2r) forr = 1. Also, the modules {L°(i)|i = 0} give a full set
of pairwise inequivalent irreducible right C”-comodules. The first statement follows
from (6.1), defining V; to be the subspace spanned by ¢; ;, and V, is spanned by
Ciit2r—1, Ci,i+2r- 10 prove the second statement, take any irreducible C’-comodule
L. Take a non-zero homomorphism rengL — L°(i) for some i. Then use adjoint-

ness of resgz and indgz to obtain an embedding L < ;C”. Hence, L =~ L"(i) as a
C"-comodule.

Claim 3: We have that V(i) = indS, L’(i) and it is uniserial with composition
factors L(i), L(i — 2),L(i — 4),...,L(a), L(b), - L(i — 3),L(i — 1), where (a,b) €
{(0,1),(1,0)} depending on parity of i, in order from bottom to top:

i—1
|
1—3
(6.2) V(i) =
17— 2

The restriction of 67, : C — C” ® C to V(i) gives an embedding of V(i) into
indgb L’(i). This embedding is an isomorphism since we know indgb L’(i) has
the same dimension (i + 1) as V(¢) thanks to Claim 1. The determinaton of the
subcomodule structure is straightforward using the definition of § (CEZ)) for0 < j <.
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Claim 4: The injective C-comodule I(i) has an exhaustive filtration 0 < Iy < I; <
- such that In = V(i) and I,/I,_1 = V(i+2r —1)@® V(i + 2r) forr > 1:

V(i+3) V(i+4)
- | |
(6.3) 1@ V(i+1) V(i+2)
~
V(i)

This follows from Claims 1, 2 and 3.

Claim 5: The C-comodules {L(i) | i = 0} give a full set of pairwise inequivalent
irreducibles. Moreover, 1(i) is the injective hull of L(i). By Claim 3, the last part
of Claim 2, and an adjunction argument, any irreducible C'-comodule embeds into
V(i) for some i, hence, it is isomorphic to L(i). The comodule I(i) is injective,
and it has irreducible socle L(7) by another adjunction argument. Hence, it is the
injective hull of L(7).

Claim 6: The category R := comodgy-C is a lower finite highest weight category
with costandard objects V(i) (i = 0). It also possesses a Chevalley duality. We
use the criterion from Corollary 3.61. From Claim 4, it follows that the largest
submodule of I(i) that belongs to R«; is V(i), which is finite-dimensional. This
shows that R«; has enough injectives with the injective hull of L(i) being V(7).
We also know already that [V(¢) : L(¢)] = 1, and the property (ﬁ aSC) follows from
Claim 4. Hence, R is a lower finite highest weight category. Finally, the Chevalley

duality is defined using the evident coalgebra antiautomorphism of C' which maps
(0) (0)

Cij ™ G

Claim 7: The indecomposable tilting comodule T(i) is equal to L(i) = A(i) = V(i)
if i = 0, and there are non-split short exact sequences

0 A®G)>T@{E) —Ali—1) >0, 0—V(i—1)—T()—V(i)—0

fori>0.

This is immediate in the case ¢ = 0. Now for ¢ > 0, let T'(¢) be the non-split
extension of V(i — 1) by V(i) that is the subcomodule of I(¢ — 1) spanned by
the vectors {ng_—llj)’cgz_)l 10 <j<i—10<k <i}. Then one checks that this
submodule is self-dual. Since it has a V-flag it therefore also has a A-flag, so it
must be the desired tilting object by Theorem 4.2.

Claim 8: The Ringel dual category R’ is the category A-modyq of locally finite-
dimensional left modules over the locally unital algebra A defined as the path algebra
of the following quiver:

Yo Y1
JEARN . .
A:0 C 1 "2 with relations y;+1y; = T;T;11 = x;y; = 0.
o Ty

We need to find an isomorphism of algebras

45 (@ Homc(T(i),T(j)))op.

1,5 =0
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For this, we consider T'(¢) (i = 0,1,2,3,...) with the V-flags:

2
|
1 0
| |
0 0 1
Yo ‘ Y1 ‘ Y2 ‘ REN
(6.4) 0 1 2 3
H : ﬂ) ‘ i H ‘ H o : ‘ | xr3
0 0 1
| |
1 0
|

We will describe the images, also called e;, z;, y;, of the generators of A. We
send e; to the identity endomorphism of T'(i), ; to the morphism T'(i) — T'(i + 1)
sending the quotient V(i) of T'(i) to the subcomodule V(i) of T'( + 1) and y; to the
morphism T(i + 1) — T'(i) sending the quotient A(i) of T'(i + 1) to the submodule
A(7) of T(i). The relations are easy to check (remembering the op, e.g., one must
verify that yo o 9 = 0 # x5 0 y2). Since the algebra A is very easy to understand,
one also sees that this homomorphism is injective, then it is an isomorphism by
dimension considerations.

REMARK 6.1. The above analysis of comod¢y-C' relies ultimately on the obser-
vation that the coalgebra C has a triangular decomposition in a precise sense which
is the analog for coalgebras of Definition 5.31. There are also coalgebra analogs of
the other definitions from the previous chapter, which we intend to develop in more
detail in a sequel to this article. The coalgebra analog of Definition 5.1 is the notion
of a based quasi-hereditary coalgebra. The dual of such a coalgebra whose weight
poset is finitely generated and good in the sense of [MZ, Def. 3.9] is an ascending
quasi-hereditary pseudo-compact algebra as defined in [MZ, Def. 3.11].

One can argue in the opposite direction too, starting from the algebra A just
defined and computing its Ringel dual to recover the coalgebra C' (in fact, this
is how we discovered the coalgebra C in the first place). Note for this that A
is an upper finite based quasi-hereditary algebra with the given basis. In fact, it
has an upper finite split triangular decomposition in the sense of Remark 5.32 with
A° = @,y kei, AT = @,y (ke;Bky;) and A~ = P, (ke;Bka;). Hence, A-modisg
is an upper finite highest weight category. Its standard and costandard modules
have the structure

1 1+ 1
(6.5) A= V(@)= 4
1+ 1 7

Using the characterization from Theorem 4.18(i), it follows that the indecomposable
tilting modules for A have a similar structure to 77(0), which is as follows (to get
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T'(7) in general one just has to add 4 to all of the labels):
(6.6)

5 3 1
WA A
T'(0) = 6 4 2 2 4 6
N N
1 3

5

This diagram demonstrates that 77(0) has both an infinite ascending A-flag with
A’(0) at the bottom and subquotients as indicated by the straight lines, and an
infinite descending V-flag with V’(0) at the top and subquotients indicated by the
wiggly lines; cf. Claim 4 above. Given the indecomposable tilting modules T"(7)
for A, one can now compute the coalgebra C' arising from the tilting generator
T" := @;=0 T'(i) according to the general recipe from Definition 4.26. We leave

this to the reader, but display below the homomorphisms fi(? :T'(i) = T'(j) in

the endomorphism algebra B := End4(7")°P which are dual to the basis elements
O]

¢; ; of the coalgebra C'= B* as above.

The map fi(’? : T'(i) — T'(i) is the identity endomorphism, and fi(? :T'(i) —
T'(j) for £ > max(i, j) has irreducible image and coimage isomorphic to L'(¢), i.e.,
it sends the (unique) irreducible copy of L'(¢) in the head of T"(4) to the irreducible
L'(¢) in the socle of T"(j). The remaining maps fi(z-), fl-(? 2 T'(3) > T'(j) for i # 5
are depicted below:

j+1

<

G .
79
i#5(2)

fi(,J]") .
iEj(Q)

(@) .
1

?y
i#5(2)

i=5(2)
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REMARK 6.2. The above example can be changed slightly to obtain an es-
sentially finite example with weight poset A := Z ordered by the opposite of the
natural ordering. To do this, let D be the essentially finite-dimensional locally
unital algebra defined as the path algebra of the following quiver:

Y-1 Yo Y1
—— . .
D:...—1 %0 e 1272 with relations y;+1y; = ixit1 = ziy; = 0.
T_1 Zo ZT1

Like for A, this algebra has a triangular decomposition, so D-modgq is an essentially
finite highest weight category. Since the construction of tilting modules in the
essentially finite case from §4.5 involves passing to an upper finite truncation, the
indecomposable tilting module T'(0) for D has the same structure as for A; see (6.6)
and is infinite-dimensional; thus D-modygq is not tilting-bounded. Note also that D
can be obtained from the general construction from Remark 5.33, starting from the
obvious triangular decomposition of the Z-graded algebra A = k{x,y | 2? = y* =
0,2y = 0) with = in degree 1 and y in degree —1; cf. [BT, Ex. 5.12].

6.3. Category O for affine Lie algebras

Perhaps the first naturally-occurring examples of finite highest weight cate-
gories came from the blocks of the BGG category O for a semisimple Lie algebra.
This context also provides natural examples of finite fibered highest weight cate-
gories; see [Mazl] for a survey. To get examples of semi-infinite highest weight
categories, one can consider instead blocks of the category O for an affine Kac-
Moody Lie algebra. We briefly recall the setup referring to [Kac], [Car] for more
details.

Let § be a finite-dimensional semisimple Lie algebra over C and

g:=9 ®cC[t,t '] ®Cc@Cd

be the corresponding affine Kac-Moody algebra. Fix also a Cartan subalgebra 6

contained in a Borel subalgebra b of g. There are corresponding subalgebras h and
b of g, namely,

h:=h ®Cc®Cd, b= (E ®cC[t]+ § ®Ct(C[t]) ®Ce® Cd.

Let {a; |i € I} < b* and {h; |7 € I} < h be the simple roots and coroots of g
and (:|-) be the normalized invariant form on h*, all as in [Kac, Ch. 7-8]. The
basic imaginary root § € h* is the positive root corresponding to the canonical
central element ¢ € h under (-|-). The linear automorphisms of h* defined by
si + A= X — A(h;)a; generate the Weyl group W of g. Let p € h* be the element
satisfying p(h;) = 1 for all i € I and p(d) = 0. Then define the shifted action of W
on h* by w- A =w(A+p) —pfor we W, X e bh*.

We define the level of A € h* to be (A + p)(c) € C. It is critical if it equals
the level of A\ = —p, i.e., it is zero'. We usually restrict our attention to integral
weights A, that is, weights A € §* such that A(h;) € Z for all i € I. The level of an
integral weight is either positive, negative or critical (= zero). For any A € h*, we
define

(6.7) Ni=—\—2p.

1Many authors define the level to be A(c), in which case the critical level is —h, where h is the
dual Coxeter number.
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Since w- (—A —2p) = —w - A — 2p, weights A and p are in the same orbit under the
shifted action of W if and only if so are A’ and y/. Note also that the level of X is
positive (resp., critical) if and only if the level of ) is negative (resp., critical). A
crucial fact is that the orbit W - X of an integral weight A of positive level contains a
unique weight Apax such that Apax + p is dominant; e.g., see [Kum, Ex. 13.1.E8a,
Prop. 1.4.2]. By [Kum, Cor. 1.3.22], this weight is maximal in its orbit with respect
to the usual dominance ordering < on weights, i.e., p < AN if A—pe @, ; No;. If A
is integral of negative level, we deduce from this dlscussmn that its orbit contains
a unique minimal weight Apin.

For A € b*, let A()\) be the Verma module with highest weight A and L())
be its unique irreducible quotient. Although Verma modules need not be of finite
length, the composition multiplicities [A(A) : L(p)] are always finite. There is
also the dual Verma module V() which is the restricted dual A(\)# of A()), i.e
the sum of the duals of the weight spaces of A(X) with the g-action twisted by
the Chevalley antiautomorphism. All of the modules just introduced are objects
in the category O consisting of all g-modules M which are semisimple over h with
finite-dimensional weight spaces and such that the set of weights of M is contained
in the lower set generated by a finite subset of h*; see [Kum, §2.1]. There is also a
larger category O consisting of the g-modules M which are semisimple over h and
locally finite-dimensional over b.

Let ~ be the equivalence relation on h* generated by A ~ pu if there exists a
positive root v and n € Z such that 2()\ + ply) = n(yly) and A — u = ny. For a
~-equivalence class A, let Oy (resp., OA) be the full subcategory of O (resp., (’))
consisting of all M € O (resp., M € (’)) such that [M : L(A)] # 0= X e A. In
view of the linkage principle from [KK, Th. 2], these subcategories may be called
the blocks of O and of (5, respectively. In particular, by [DGK, Th. 4.2], any
M e O decomposes uniquely as a direct sum M = @Aeh*/~ My with My € Oy.
Note though that O is not the coproduct of its blocks in the strict sense since it is
possible to find M € O such that M, is non-zero for infinitely many different A.
The situation is more satisfactory for O: O is the product of its blocks since by
[Soe, Th. 6.1] the functor

(6.8) [] 0xr—0, (Mp)peys/n = P My

Aeh* /~ Aeh* /~
is an equivalence of categories. Note also that [A(A) : L(p)] # 0 implies that the
level of A equals that of p, since the scalars by which ¢ acts on L(XA) and L(u) must
agree. Consequently, we can talk simply about the level of a block.

A general combinatorial description of the ~-equivalence classses A can be
found for instance in [Fie3, Lem. 3.9]. For simplicity, we restrict ourselves from
now on to integral blocks. In non-critical levels, one gets exactly the W-orbits W - A
of the integral weights of non-critical level. In critical level, one needs to incorporate
also the translates by Z§. From this description, it follows that the poset (A, <)
underlying an integral block Oy is upper finite with unique maximal element A,
if Oy is of positive level, and lower finite with unique minimal element Ay, if Op
is of negative level. In case of the critical level, the poset is neither upper finite nor
lower finite, but it is always interval finite.

EXAMPLE 6.3. Here we give some explicit examples of posets which can occur
for g = sly, the Kac-Moody algebra for the Cartan matrix (_22 _22 ) The labelling
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set for the principal block is W -0 = {Ag, ux | & = 0} where A\, 1= —1k(k +
Dao — $k(k — 1)ay and py, := —3k(k — 1)ap — 3k(k + 1)a;. This is a block of
positive level with maximal element Ao = po = 0. Applying the map (6.7), we
deduce that W - (—2p) = {\., ) | £ = 0}. This is the labelling set for a block
of negative level with minimal element A\, = p; = —2p. Finally, we have that
W (ag—p)uW - (a1 —p) = { A\, fir. | k € Z} where A, := (k + 1)ag + kag — p and
ik = kaog + (k+ 1)a; — p. This is the labelling set for a block of critical level, and
it is neither upper nor lower finite.s

0 No iz 13 A3

N sl s | [
T A1 A1 H1 Xy 7
S0 ‘ S1 5_‘:>< ‘6 S0 ‘ ‘ S1
A2 pe Ao Ro I A

. [ s[5 |8 o\ e
13 A3 Al —2p
Positive level Critical level Negative level

Recall the definitions of upper finite and lower finite highest weight categories
from Definitions 3.34 and 3.50, respectively.

THEOREM 6.4. Let Op be an integral block of O of non-critical level. Then it
is an upper finite or lower finite highest weight category according to whether the
level is positive or negative, respectively. In both cases, the standard and costandard
objects are the Verma modules A(X) and the dual Verma modules V(X), respectively,
for A€ A. The partial order < on A is the dominance order.

PROOF. First, we prove the result for an integral block O, of positive level.
As explained above, the poset A is upper finite in this case. Let An. be its unique
maximal weight.

Claim 1: In the positive level case, Oy is the full subcategory of @A consisting
of all modules M such that [M : L(\)] < o for all A € A. To prove this, given
M € Oy, it is obvious that all of its composition multiplicities are finite since M has
finite-dimensional weight spaces. Conversely, suppose that all of the composition
multiplicities of M € (5,\ are finite. All weights of M lie in the lower set generated
by Amax. Moreover, for A < Apax, the dimension of the A\-weight space of M is

dim My = > [M : L(p)] dim L(p).x.
HEA
Since the poset is upper finite, there are only finitely many © € A such that the
A-weight space L(u)y is non-zero, and these weight spaces are finite-dimensional,
so we deduce that dim M) < co. This proves the claim.
Now we observe that the Verma module M (Apax) with maximal possible highest
weight is projective in Q. From this and a standard argument involving translation

functors through walls (see e.g. [Nei]) and the combinatorics from [Fiel, §4] (see
also the introduction of [Fie2]), it follows that there are projective modules Py €
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O, with (finite) A-flags as in the axiom (]SZ) Since each A()) belongs to Oy,
we actually have that Py € Op. All that is left to complete the proof of the
theorem in the positive level case is to show that Oy is a Schurian category. Let
A= (@), en Homg(Py, ) ", Since the multiplicities [P, : L())] are finite, A
is a locally finite-dimensional locally unital algebra. Using Lemma 2.4, we deduce
that @A is equivalent to the category A-mod of all left A-modules. As explained
in the discussion after (2.22), A-mody¢q is the full subcategory of A-mod consisting
of all modules with finite composition multiplicities. Combining this with Claim 1,
we deduce that the equivalence between @A and A-mod restricts to an equivalence
between O and A-modsq. Hence, O, is a Schurian category.

We turn our attention to an integral block Oy of negative level. We know here
already that the poset A is lower finite with a unique minimal element Ay, .

Claim 2: In the negative level case, the category Oy is the full subcategory of @A
consisting of all modules of finite length. For this, it is obvious that any module in
@A of finite length belongs to Op. Conversely, any object in O, is of finite length
thanks to the formula [Kum, 2.1.11(1)], taking A therein to be Apin.

From Claim 2 and Lemma 2.1, it follows that R := O, is a locally finite Abelian
category. By [Fiel, Th. 2.7] the Serre subcategory R* of R associated to A' is a
finite highest weight category for each finite lower set A of A. We deduce that R
is a lower finite highest weight category according to Definition 3.50. O

Let Op be an integral block of non-critical level. The following assertions about
projective and injective modules follow from Theorem 6.4 and the general theory
from §§2.1-2.3; see also [Soe, Rem. 6.5].

e In the positive level case, when Oy is a Schurian category, (5,\ has enough
projectives and injectives. Moreover, the projective covers of the ir-
reducible modules are the modules {P()\) | A € A} constructed in the
proof of Theorem 6.4, and these belong to Oy. Their restricted duals
I()\) := P(\)# are the indecomposable injective modules in Oy, and also
belong to O,.

e The situation is completely different in the negative level case, as we
need to pass to @A, the ind-completion of the finite Abelian category Oy,
before we can talk about injective modules. In @A, the irreducible module
L(A) (A € A) has an injective hull I(\) in O, which possesses a (possibly
infinite) ascending V-flag in the sense of Definition 3.52. However, @A
usually does not have any projectives at all (although one could construct
such modules in the pro-completion of Oy as done e.g. in [Fie2]).

The following results about tilting modules are consequences of the general theory
developed in §4.1 and §4.3. They already appeared in an equivalent form in [Soe].

e In the negative level case, tilting modules are objects in Op admitting
both a (finite) A-flag and a (finite) V-flag. The isomorphism classes of
indecomposable tilting modules in Oy are parametrized by their highest
weights. They may also be constructed by applying translation functors
to the Verma module A(Apin)-
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e In the positive level case, tilting modules are objects in Oy which admit
both a (possibly infinite) ascending A-flag and a (possibly infinite) de-
scending V-flag in the sense of Definition 3.35. Again, the isomorphism
classes of indecomposable tilting modules are parametrized by their high-
est weights.

In both cases, our characterization of the indecomposable tilting module T'(A) of
highest weight A is slightly different from the one given in [Soe, Def. 6.3]. From
our definition, one sees immediately that T(\)# =~ T()).

REMARK 6.5. In the literature dealing with positive level, it is common to pass
to a different category of modules, e.g., to the Whittaker category in [BY] or to
truncated versions of O in [SVV, §3], before contemplating tilting modules.

Our next result is concerned with the Ringel duality between integral blocks
of positive and negative level. This depends crucially on a special case of the
Arkhipov-Soergel equivalence from [Ark], [Soe]. Let S be Arkhipov’s semi-regular
bimodule, which is the bimodule S, of [Soe] with y := 2p as in [Soe, Lem. 7.1]. For
A€ b*, let T'(X\) be the indecomposable tilting module from [Soe, Def. 6.3] (which
is the same as in the previous paragraph for integral A of positive or negative level).
Also let P(X) be a projective cover of L(\) in O whenever such an object exists; cf.
[Soe, Rem. 6.5(2)].

THEOREM 6.6 (Arkhipov-Soergel equivalence). Tensoring with the semi-reqular
bimodule defines an equivalence S®y ()7 : A(O) — V(O) between the exact subcate-
gories of O consisting of objects with (finite) A- and V-flags, respectively. Moreover
the following holds (assuming for the second isomorphism P()\) exists):

S®u(g) AN) = V(X)) and S ®u(g P(N) = T(N)

COROLLARY 6.7. Assume that Op is an integral block of negative level. Let
O be the Ringel dual of Op relative to some choice of T = @,.; T; as in Def-
inition 4.24, and let F be the Ringel duality functor from (4.14). Also let ' :=
{N'| X e A}. Then there is an equivalence of categories E : Oy — O+ such that
EoF : V(Op) — A(Oyp) is a quasi-inverse to the Arkhipov-Soergel equivalence
S®U(g)? : A(OA/> — V(OA)

PRrROOF. Note to start with that O,/ is an integral block of positive level. More-
over, the map (A, >) — (A, <),\ — X is an order isomorphism. Choose a quasi-
inverse D to S®y(g)? : A(Oxr) — V(On), and set P; := DT;. By Theorem 6.6(2),
(Pi)ier is a projective generating family for Oy/. Moreover, recalling that O) is the
category A-modtq where

A= ((—B Hom@A(Ti,Tj)> ,

ijel

the functor D induces an isomorphism via which we can identify A with

(@ HomoA,(Pi,Pj)> .

i,jel
As explained in the proof of Theorem 6.4, the functor
H .= EBHOIH@A,(PZ-7 ?): Op — A-modigq

el
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is an equivalence of categories. Moreover, we have that

HoD = @Hom@A, (P;, D?) ~ @Hom@A(S ®u(g) P,?) ~ @HomoA(Ti,?) =F.

iel iel iel

Letting F be a quasi-inverse equivalence to H, it follows that F o F' =~ D. (Il

REMARK 6.8. In the setup of Corollary 6.7, the Arkhipov-Soergel equivalence
extends to an equivalence S®g g7 : A*(Oar) — V*¢(O,), which is a quasi-
inverse to Eo F : V3¢(0,) — A?¢(Oy/). These functors interchange the indecom-

~

posable injectives in Oy with the indecomposable tiltings in Oy:.

Finally we discuss the situation for an integral critical block Oj. As we have
already explained, in this case the poset A is neither upper nor lower finite. In
fact, these blocks do not fit into the framework of this article at all, since the
Verma modules have infinite length and there are no projectives. One sees this
already for the Verma module A(—p) for g = 5:[2, which has composition factors
L(—p — md) for m = 0, each appearing with multiplicity equal to the number of
partitions of m; see e.g. [AF1, Th. 4.9(1)]. However, there is an autoequivalence
Y :=L(O)®?: Op — @A, which makes it possible to pass to the restricted category
(55\65, which we define next.

Let A,, be the vector space of natural transformations 3" — Id. This gives rise
to a graded algebra A := @, ., An. Then the restricted category @f\es is the full
subcategory of @A consisting of all modules which are annihilated by the induced
action of A4, for n # 0; cf. [AF1, §4.3]. The irreducible modules in the restricted

category are the same as in Oy itself. There are also the restricted Verma modules

(6.9) AN = A(A)/ D im (nagy : ZPAQ) - A(N))

nEA Lo

from [AF1, §4.4]. In other words, A(A\)™ is the largest quotient of A()) that
belongs to the restricted category. Similarly, the restricted dual Verma module
V(M)*es is the largest submodule of V() that belongs to the restricted category.

The restricted category O "% is no longer indecomposable: by [AF2, Th. 5.1]
it decomposes further as

(6.10) O = [] O

ReA/W
where A/W denotes the orbits of W under the dot action. For instance, the poset A
for the critical level displayed in Example 6.3 splits into two orbits W (ap — p) and
W - (a1 — p) (i.e., one removes the edges labelled by ¢). In the most singular case,
@rfz is a product of simple blocks; in particular, A™(—p) = L(—p) = V" (—p).

CONJECTURE 6.9 (Critical block conjecture). Let @%s be a regular integral

critical block in the sense of [AF2]. Let (’)%s := Fin (@%es) be the full subcategory
consisting of all modules of finite length. Then (’)rxes s an essentially finite highest

weight category with standard and costandard objects A(N)*** and V(A" for X € A.
Moreover, the indecomposable projective modules in (’)%es are also its indecomposable
tilting modules, and therefore O%S is tilting-bounded and Ringel self-dual.
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This conjecture is true for the basic example of a critical block from Example 6.3
thanks to [Fie3, Th. 6.6]; the same category arises as the principal block of category
O for gly};(C) discussed in §6.7 below. The conjecture is also consistent with the
so-called Feigin-Frenkel conjecture [AF1, Conj. 4.7], which says that composition
multiplicities of restricted Verma modules are related to the periodic Kazhdan-
Lusztig polynomials from [Lus] (and Jantzen’s generic decomposition patterns from
[Jan2]). These polynomials depend on the relative position of the given pair of
weights and, when not too close to walls, they vanish for weights that are far apart.
This is consistent with the conjectured existence of indecomposable projectives of
finite length in regular blocks of the restricted category.

REMARK 6.10. It seems to us that the Feigin-Frenkel conjecture might have
an explanation in terms of a sequence of equivalences of categories similar to [FG,
(7)]. Ultimately this should connect OF* with representations of the quantum
group analog of Jantzen’s thickened Frobenius kernel G1T. Assuming that ¢ (the
order of the root of unity) is odd and bigger than or equal to the Coxeter number,
the latter are known by [AJS, §17] to be essentially finite highest weight categories
controlled by the periodic Kazhdan-Lusztig polynomials. Also, in these categories,
tilting modules are projective, hence, the Ringel self-duality would be an obvious
consequence.

6.4. Rational representations

As we noted in Remark 3.62, the definition of lower finite highest weight cat-
egory originated in the work of Cline, Parshall and Scott [CPS1]. As well as the
BGG category O already mentioned, their work was motivated by the representa-
tion theory of a reductive algebra group G in positive characteristic, as developed
for example in [Jan1]: the symmetric tensor? category Rep(G) of finite-dimensional
rational representations of G is a lower finite highest weight category. Tilting mod-
ules for G were studied in [Don3], although our formulation of semi-infinite Ringel
duality from §4.4 is not mentioned explicitly there: Donkin instead took the ap-
proach pioneered in [Don2] of truncating to a finite lower set before taking Ringel
duals. In fact, now, there is monoidal structure in play and the story is even richer.

To give more details, we fix a maximal torus T contained in an opposite pair
of Borel subgroups Bt and B~ of G. Then the weight poset A is the set X+ (T)
of dominant characters of T' with respect to BT. We denote the natural duality on
Rep(G) by V — V* (with action defined via g — g~!). The costandard objects
are the induced modules H°()\) := H°(G/B~, L)) and the standard objects are the
Weyl modules V(X) := H°(G/B™, L¥)*. For the partial order <, one can use the
usual dominance ordering on X (T'), or the more refined Bruhat order of [Janl,
§I1.6.4]. This makes Rep(G) into a lower finite highest weight category by [Janl,
Prop. I1.4.18] and [Jan1, Prop. I1.6.13]. In fact, in the case of Rep(G), all of the
general results about ascending V-flags found in §3.5 were known already before
the time of [CPS1], e.g., they are discussed in Donkin’s book [Donl] (and called
there good filtrations).

Let T4lt(G) be the full subcategory of Rep(G) consisting of all tilting modules.
A key theorem in this setting is that tensor products of tilting modules are tilting;
this is the Donkin-Mathieu-Wang theorem [Donl], [Mat], [Wan|. Thus, Tilt(G)

2Locally finite Abelian, monoidal, rigid, End(1) = k.
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is a symmetric pseudo-tensor® category. Let (T});c; be a monoidal generator for
Tilt(G), i.e., each T; is a tilting module and every indecomposable tilting module is
isomorphic to a summand of a tensor product T; := T;, ®- - -QT;, for some n > 0 and
i = (i1,...,4,) € I". Then define A to be the category with objects I :=| | 1"
and morphisms defined from Hom 4(j,%) := Homg(T3,T}), composition being in-
duced by the opposite of composition in Rep(G). The category A is naturally a
strict symmetric monoidal category, with the tensor product of objects being by
concatenation of sequences. The evident monoidal functor A — Tilt(G)°P extends
to the Karoubi envelope of A, and the resulting functor Kar(A) — Tilt(G)°P is a
symmetric monoidal equivalence.

Forgetting the monoidal structure, one can think instead in terms of the locally
finite-dimensional locally unital algebra A = (P, .y eiAe; that is the path algebra
of A in the sense of Remark 2.3. It becomes convenient to identify 7' = @, ; T;
and T® = @,_; T with the tensor algebras
(6.11) T=T7(V), T®=T(V*)  where V:=@PT.

iel
Note that T is naturally a right A-module and T® is a left A-module. Since T is a
tilting generator for Rep(G) in the sense of Definition 4.24, A-mod)¢ is the Ringel
dual of Rep(G) with respect to T'. Theorem 4.25 implies that A-mod,sq is an upper
finite highest weight category with poset (X *(T'), >). Moreover, by Corollary 4.29,
T® is a tilting generator for A-modgq with Coend 4 (T®) = k[G] as coalgebras.

At this point, the monoidal structure on the category A comes back into the
picture since the A-module T' comes from a faithful symmetric monoidal functor
(“fiber functor”) T : A — (Vectq)°P. Consequently, by classical arguments of Tan-
naka duality, see e.g. [DM, §2] and [EGNO, §5.4], Coend 4(T®) can be endowed
with the structure of a commutative Hopf algebra which reconstructs the coordi-
nate algebra of G. To explain this in more detail, we use the setup of (2.13), so
now we are identifying the coalgebra Coend 4 (T®) with

(6.12) C:=TRsT® =T (V)@ T(V*).

Then the algebra structure on C' is induced by the natural multiplication on the
tensor product of algebras T(V) ® T(V*), that is,

(6.13) (v@u)- (v @u):=(v®)® (u®u')
for v,v" € T(V) and u,w € T(V*). If we pick a basis v%i), . ,v((j()i) for each T; and
let ugi)7 ... ,ug()i) be the dual basis for T;*, then the elements
(6.14) {c) =0 @ul |iel,1 <rs<d(i)}

generate C' as an algebra. The coalgebra structure satisfies
(6.15) Bl = Y e @, e(ef)) = brs.
t=1

Now the reconstruction theorem can be formulated as follows.

THEOREM 6.11 (Tannakian reconstruction). The above construction makes the
coalgebra C = Coend 4 (T®) into a commutative Hopf algebra. Moreover, it is iso-
morphic (as a Hopf algebra) to the coordinate algebra k[G] via the unique algebra

3 Additive Karoubian, monoidal, rigid, End(1) = k.
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homomorphism sending crf% € C to the matriz coefficient function éﬁfl € k[G] de-

fined by gv,gi) = Zd(i)l Eg«l)s(g v for ge G.

Proor. For ¢ = (i1,...,i,) € I" and r = (r1,...,7),8 = (S1,...,8,) € Z"
with 1 < rg, sg < d(ix) for each k, let c,(f)s = (vﬁil)@) . ~®v§i’"‘))®(u£?)®~ . ~®u£in”)) €
C'. These are the elements in the formula (4.17), and they span C. The coalgebra
isomorphism C' > k[G] from Corollary 4.29(i) sends cgf)s e C to 6%1,)51 55’”)5 €
k[G]. So to be an algebra isomorphism, we must have that chl)s = 05211)81 e cﬁiﬁin,
which is exactly the definition of multiplication given above. O

Theorem 6.11 recovers a classical result: it is a special case of [DM, Th. 2.11],
which implies that k[G] is isomorphic to Coend(F) where F : Rep(G) — Veciq
is the forgetful functor. To deduce Theorem 6.11 from this statement, one also
needs to observe that Coend(F') =~ Coend4(T); this holds because the algebraic
group G is isomorphic to its image in its representation on V = @,_; T; by weight
considerations.

iel

REMARK 6.12. To get a full set of relations between the generators (6.14) of
C, one just needs to take the equations vz @ u = v ® zu for x : ¢ — j running over
a system of monoidal generators for A and all v e T;,u € T;‘.

REMARK 6.13. Theorem 5.10 can often be applied in this context to give A
(or some idempotent expansion of A) the structure of an upper finite (perhaps
symmetrically) based quasi-hereditary algebra.

The first example comes from G = SLy. For this, we may take I := {|}
and let 7] be the natural two-dimensional representation V' of G with its standard
basis v1,v2; we also use ui,us to denote the dual basis of V*. The module V
is a monoidal generator for Tilt(G) by weight considerations. Note also that V'
possesses an invariant symplectic form such that (vy,v9) = 1, hence, V = V*. The
object set I = {|®" | n e N} in the above setup may be identified with N. Hence,
T = @,50Tn is the tensor algebra T(V) = @,,5oT"(V) and T® is T(V*). As is
well known, the monoidal category A in this case is the Temperley-Lieb category
TL(—2); see e.g. [GW]. It is easy to verify that

C = T(V) ®a T(V*) =~ k[CLl, C1,2,C21, 62’2]/((316‘5 —1)

where ¢, s = vsQu, as above and det = ¢ 1¢22 — ¢2,1¢1,2. Of course this is k[SLs].

This example becomes more interesting if we replace the Temperley-Lieb cat-
egory TL(—2) with its g-analog TL(—q — ¢~ ') for ¢ € k*. Recall that this is
generated as a strictly pivotal monoidal category by one object | and two mor-
phisms \_ : 0 —> 2 and (") : 2 — 0 subject to O = —q — ¢~ '. Assuming ¢ has a
square root ¢'/2 € k, it is braided with braiding defined by

(6.16) X = g\/? +q71/2m, X _ Ve

As mentioned in Remark 5.4, the natural diagram basis makes the path algebra
A of A:= TL(—q— ¢~ ") into an upper finite based quasi-hereditary algebra with
weight poset (N, >). Hence, A-modjgq is an upper finite highest weight category.
Next let V' be a two-dimensional vector space with basis vy,vy and (-,-) :
V x V — k be the bilinear form with (v1,v2) = 1, (v2,v1) = —¢~ ! and (vy,v1) =

‘ +qY 2H.
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(v2,v2) = 0. A relation check shows that there is a monoidal functor T : A —
(Vectq )P such that T'(]) = V and
(
(

6.17) T(U):V@V%k, v; @ vj — (v;,v5),
6.18) T(MN):k—>VRYV, 1= v ®v1 — qu1 @ va.

Equivalently, the tensor algebra T = T'(V) is a right A-module, and its dual 7® =
T(V*) is a left A-module. Then we define C' as in (6.12). The coend construction
makes C' into a cobraided Hopf algebra, hence, comodg-C is a braided tensor
category. Now one can check directly using the homological criterion for V-flags
from Theorem 3.39 that T® is a tilting generator for A-mod;rq. Hence, comodq-C
is the Ringel dual of the upper finite highest weight category A-mody, so it is a
lower finite highest weight category thanks to Theorem 4.27.

To obtain explicit generators and relations for C in our setup, let ui,us be
the basis for V* dual to v1,v2. Then C is generated by as an algebra {c, s :=
vs @ u, | 7,5 = 1,2}, and the comultiplication and counit are defined by d(c, s) =
cr1®c1 s+ cra®cas, €(Crs) = 0rs. By Remark 6.12, the following equations give
a full set of relations for the algebra C'

(i@ \U)®1l=(u:ev)e (\U1),
M) ®(ui®u;) =1 ((Mui ®uy).

To expand these, note that the left A-module T® = T'(V*) comes from the monoidal
functor T® : A — Vecyq defined by T®(|) = V* and

(6.19) T® (M) :V*eV* >k, u; @uj — (vj,v;) 7,
(6.20) T®(U):k—>V*®V*, 1w Qua—q ‘us ® us.
Using this, the relations become ¢y ;c2; — qilcz,iclyj = (v;,v;) and ¢2ci1 —

qciicj2 = (v;,v;)71, hence, we get

C2.2 —qcCi1,2 C1,1 C1,2 _ C1,1 C12 C2.2 —qci2 \ I
-1 = -1 = .
—q "C21 C1,1 C21 C22 C21 C22 —q "C21 C1,1

So C'is generated by c1.1,¢1,2, 2,1, c2,2 subject to the relations needed to ensure

-1
(6.21) €11 C1,2 _ 0_21,2 —qcC1,2 )
2,1 C2.2 —q “C21 C1,1
Equivalently, C' is generated by ¢ 1,c¢1,2, 2,1, 2,2 subject to the relations

C;i,2Ci1 = 4C; 1G4 2, C2,5C1,5 = 4C1,5C2 5,
-1
C1,2C21 = C2,1C1,2, C2,2C11 = C1,1C22 + (q —q )01,282,17

and dety 1= c1 1022 — q_lclgcm = 1. Thus, we have reconstructed the well-known
quantized coordinate algebra k,[SLs], and comody-C is the category of rational
representations of quantum SLs.

When at a root of unity over the ground field is C, the indecomposable pro-
jectives and injectives in the category of rational representations of quantum SLo
(or indeed the quantum group corresponding to a reductive group) are all finite-
dimensional, i.e., the category is essentially finite Abelian. Tiltings are also finite-
dimensional, indeed, the category is tilting-bounded in the sense of Definition 4.20.
The structure of the principal block can be worked out explicitly (e.g., see [AT,
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Th. 3.12, Def. 3.3]): it is Morita equivalent to the locally unital algebra that is the
path algebra of the quiver

To Ty T2
—
07 17 7?2 3
—— % —
Yo Y1 Y2

-+ with relations z;412; = yi¥i+1 = Ti¥Yi—Yi+1%Tit1 = 0.

The appropriate partial order on the weight poset N is the natural order 0 < 1 < - - -.
The indecomposable projectives have the following structure:

1 2 3
v v v
0 2, P2)=1 3, P(3)=2 4
W 4 4
1 3

PRI

;
P(0) = i , P(1) =
0

The tilting objects are T'(0) := L(0) and T'(n) := P(n—1) for n = 1. From this, it is
easy to see that the Ringel dual is described by the same quiver with one additional
relation, namely, that yoxg = 0 (and of course the partial order is reversed).

6.5. Tensor product categorifications

Until quite recently, most of the naturally-occurring examples were highest
weight categories (like the ones described in the previous two sections). But the
work of Webster [Webl], [Web2] and Losev and Webster [LW] has brought to
prominence a very general source of examples that are fully stratified, but seldom
highest weight.

Fundamental amongst these new examples are the categorifications of tensor
products of irreducible highest weight modules of symmetrizable Kac-Moody Lie
algebras. Rather than attempting to repeat the definition of these here, we refer the
reader to [LW]. All of these examples are finite fully stratified categories possessing
a Chevalley duality. They are also tilting-rigid; the proof of this depends on an
argument involving translation/projective functors. Consequently, the Ringel dual
is again a finite fully stratified category that is tilting-rigid. In fact, the Ringel
dual category is always another tensor product categorification? (reverse the order
of the tensor product). In the earlier article [Web2], Webster also wrote down
explicit finite-dimensional algebras which give realization of these categories. In
view of Theorem 5.25, all of Webster’s algebras admit bases making them into
symmetrically based stratified algebras, although these bases are usually hard to
construct explicitly.

In [Webl], Webster also introduced some more general tensor product cate-
gorifications, including ones which categorify the tensor product of an integrable
lowest weight module tensored with an integrable highest weight module. The lat-
ter are particularly important since they may be realized as generalized cyclotomic
quotients of the Kac-Moody 2-category. They are upper finite fully stratified cate-
gories. In type A, they can also be realized as generalized cyclotomic quotients of
the (degenerate or quantum) Heisenberg category; see [BSW, Th. B]. In the latter
realization, they should possess explicit triangular bases, generalizing the ones for
the cyclotomic quotients of central charge zero discussed in [GRS].

4This was noted in Remark 3.10 of the arxiv version of [LW] but the authors removed this remark
in the published version.
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6.6. Deligne categories

Another source of upper finite highest weight categories comes from various
Deligne categories. The definition of these categories is diagrammatic in nature.
For example, in characteristic zero, the Deligne category Rep(GLs) is the Karoubi
envelope of the oriented Brauer category OB(d). This case was studied in the
PhD thesis of Reynolds [Rey]| based on the observation that it admits a symmetric
split triangular decomposition; see also [Bru] which treats the HOMFLY-PT skein
category at the same time. Rui and Song [RS] have analysed the Brauer category
and the Kauffman skein category by similar techniques. Similar ideas have been
developed independently by Sam and Snowden [SS], who also consider other types
of Deligne category.

The category of locally finite-dimensional representations of the Deligne cat-
egory Rep(GLjs) can also be interpreted as a special case of the lowest weight
tensored highest weight tensor product categorifications discussed in the previous
section; see the introduction of [Bru]. The Ringel dual in this example is equivalent
to the Abelian envelope Rep®(GLs) of Deligne’s category constructed by Entova,
Hinich and Serganova [EHS], which is a monoidal lower finite highest weight cate-
gory. In [Ent], it is shown that Rep®®(GLs) categorifies a highest weight tensored
lowest weight representation, which is the dual result to the one from [Bru]. This
example will be discussed further in the sequel to this article, where we give an
explicit description of the blocks of Rep®(G'Ls) via Khovanov’s arc coalgebra (an
interesting explicit example of a based quasi-hereditary coalgebra), thereby proving
a conjecture formulated in the introduction of [BS2].

These and the other classical families of Deligne categories Rep(Os), Rep(P)
and Rep(Q) are being investigated actively along similar lines by several groups
of authors and there has been considerable recent progress; e.g., see [Coud], [SS].
There are also many interesting connections here with rational representations of
the corresponding families of classical supergroups.

6.7. Representations of Lie superalgebras

Finally, we mention briefly an interesting source of essentially finite highest
weight categories: the analogs of the BGG category O for classical Lie superal-
gebras. A detailed account in the case of the Lie superalgebra gl,,,(C) can be
found in [BLW]. Its category O gives an essentially finite highest weight category
which is neither lower finite nor upper finite. Moreover, it is tilting-bounded as in
Definition 4.20, so that the Ringel dual category is also an essentially finite highest
weight category.

There is one very easy special case: the principal block of category O for gly|; (©)
is equivalent to the category of finite-dimensional modules over the essentially finite-
dimensional locally unital algebra which is the path algebra of the following quiver:

T—1 xQ
— . .
=1 *0 w 1. with relations x;112; = Yi¥i+1 = Ti¥i — Yi+12i+1 = 0,
Y-1 Yo

see e.g. [BS1, p. 380]. This is very similar to the U,(slz)-example from §6.4,
but now the poset Z (ordered naturally) is neither lower nor upper finite. From
the category O perspective, this example is rather misleading since its projective,
injective and tilting objects coincide, hence, it is Ringel self-dual.
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One gets similar examples from osp,, |5, (C), as discussed for example in [BW]
and [ES]. The simplest non-trivial case of 0sp35(C) produces the path algebra of
a Dy, quiver (replacing than the A, quiver above); see [ES, §II]. The “strange”
families p,,(C) and q,,(C) also exhibit similar structures. The former has not yet
been investigated systematically (although basic aspects of the finite-dimensional
finite-dimensional representations and category O were recently studied in [B+9]
and [CC], respectively). It is an interesting example of a naturally-occurring high-
est weight category which does not admit a Chevalley duality. For g, (C), we refer
to [BD2] and the references therein. In fact, the integral blocks for g, (C) are
fibered highest weight categories; this observation is due to Frisk [Fri2].
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