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ABSTRACT. We develop axiomatics of highest weight categories and quasi-hereditary
algebras in order to incorporate two semi-infinite situations which are in Ringel
duality with each other; the underlying posets are either upper finite or lower finite.
We also consider various more general sorts of signed highest weight categories and
stratified categories. In the upper finite cases, we give an alternative characterization
of these categories in terms of quasi-hereditary and stratified algebras equipped with
idempotent-adapted cellular bases. Finally, we explain a general construction which
produces many explicit examples of such algebras starting from naturally-occurring
locally unital algebras which admit Cartan or triangular decompositions.
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1. INTRODUCTION

Highest weight categories were introduced by Cline, Parshall and Scott in
order to provide an axiomatic framework encompassing a number of important examples
which had previously arisen in representation theory. In the first part of this article,
we give a detailed exposition of two semi-infinite generalizations, which we call lower
finite and upper finite highest weight categories. Lower finite highest weight categories
were already included in the original work of Cline, Parshall and Scott (although our
terminology is different). Well-known examples include the category Rep(G) of finite-
dimensional rational representations of a connected reductive algebraic group. Upper
finite highest weight categories have also appeared in the literature in many examples,
and an appropriate axiomatic framework was sketched out by Elias and Losev in [ELos|
§6.1.2]. However there are plenty of subtleties, so a full treatment seems desirable.

Then, in the next part, we extend Ringel duality to the semi-infinite setting:

lower finite Ringel duality upper finite
highest weight categories highest weight categories |

Other approaches to “semi-infinite Ringel duality” exist in the literature, but these
typically require the existence of a Z-grading; e.g., see [Soe] (in a Lie algebra setting)
and also [Maz2]. We avoid this by working with finite-dimensional comodules over a
coalgebra in the lower finite case, and with locally finite-dimensional modules over a
locally finite-dimensional locally unital algebra in the upper finite case.

This article is based upon work done while the authors were in residence at the Mathematical Sciences
Research Institute in Berkeley, California during the Spring 2018 semester. It was supported by the
National Science Foundation under grant DMS-1440140 and by the HCM in Bonn.
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Finally, as an application semi-infinite Ringel duality, we give an elementary alge-
braic characterization of upper finite highest weight categories, showing that any such
category is equivalent to the category of locally finite-dimensional modules over an up-
per finite based quasi-hereditary algebra. This is an algebraic formulation of the notion
of object-adapted cellular category from [ELaul Definition 2.1], and a generalization of
the based quasi-hereditary algebras of [KM) Definition 2.4]. As well as Ringel duality,
the proof of this characterization uses a construction from [AST] to construct bases for
endomorphism algebras of tilting objects. The observation that the bases arising from
[AST] are object-adapted cellular bases was made already by Elias and several others,
and appears in recent work of Andersen [And].

Throughout the article, we systematically develop the entire theory in the more gen-
eral setting of what we call e-stratified categories. The idea of this definition is due to
Agoston, Dlab and Lukécs: in [ADL] Definition 1.3] one finds the notion of a stratified
algebra of type e; the category of finite-dimensional left modules over such a finite-
dimensional algebra is an example of a e-stratified category in our sense. The various
other generalizations of highest weight category that have been considered in existing
iterature fit naturally into our e-stratified framework.

To explain the contents of the paper in more detail, we start by explaining our precise
setup in the finite-dimensional case, since even here it does not seem to have appeared
explicitly elsewhere in the literature. Consider a finite Abelian category, that is, a cat-
egory R equivalent to the category A-modgy of finite-dimensional left A-modules for
some finite-dimensional k-algebra A. Let B be a finite set indexing a full set of pairwise
inequivalent irreducible objects {L(b) | b € B}. Let P(b) (resp., I(b)) be a projective
cover (resp., injective hull) of L(b).

A stratification of R is the data of a function p : B — A for some poset (A, <). For
A€ A, let Rey (resp., R<y) be the Serre subcategory of R generated by the irreducibles
L(b) for b € B with p(b) < A (resp., p(b) < A). Define the stratum Ry to be the Serre
quotient R<y/R<x with quotient functor j* : Re<yx — Ra. For b e By := p~1()), let
Ly(b) := j L(b). These give a full set of pairwise inequivalent irreducible objects in R.
Let Py (b) (resp., Ix(b)) be a projective cover (resp., an injective hull) of Ly (b) in R .

The functor j* has a left adjoint j{* and a right adjoint j3; see Lemma We refer
to these as the standardization and costandardization functors, respectively, following
the language of [LW| §2]. Then we introduce the standard, proper standard, costandard
and proper costandard objects of R for A€ A and b e Bj:

A(b) == jrPA(b),  A(b) = j}LA(b), V() :=jpIx(b), V(b):=jyLa(b). (1.1)

Equivalently, A(b) (resp., V(b)) is the largest quotient of P(b) (resp., the largest subob-
ject of I(b)) that belongs to R<y, and A(b) (resp., V(b)) is the largest quotient of A(b)
(resp., the largest subobject of V(b)) such that all composition factors apart from its
irreducible head (resp., its irreducible socle) belong to R <.

Fix a sign function € : A — {+} and define the e-standard and e-costandard objects

ALD) ::{ AD) (et =+ g ::{ V0) ie(pl) =+ gy

A(b) if =(p(b) = ~ V(b) if =(p(b)) = ~

By a A.-flag (resp., a V-flag) of an object of R, we mean a (necessarily finite) filtration

whose sections are of the form A.(b) (resp., V(b)) for b € B. Then we call R an

e-stratified category if one of the following equivalent properties holds:

(PA.) For every b € B, the projective object P(b) has a A.-flag with sections A.(c)
for ¢ € B with p(c) = p(b).

(IV.) For every b € B, the injective object I(b) has a V.-flag with sections V.(c) for
c € B with p(c) = p(b).

The fact that these two properties are indeed equivalent was established in [ADL The-

orem 2.2] (under slightly more restrictive hypotheses than here), extending the earlier
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work of Dlab [Dlal]. We give a self-contained proof in Theorem below; see also
for some elementary examples. An equivalent statement is as follows.

Theorem 1.1 (Dlab,...). Let R be a finite Abelian category equipped with a stratifica-
tion p: B — A and e : A — {£} be a sign function as above. Then R is e-stratified if
and only if R°P is (—¢)-stratified.

If the stratification function p : B — A is a bijection, i.e., each statum R, has a
unique irreducible object (up to isomorphism), then we can use p to identify B with A,
and denote the various distinguished objects simply by L(A), P(A\), Ac(A\), ...for A€ A
instead of by L(b), P(b),A:(b), ...for b € B. Then, instead of “c-stratified category,”
we call R an e-highest weight category.

The notion of e-highest weight category generalizes the original notion of highest
weight category from [CPSI]: a highest weight category in the sense of loc. cit. is an
e-stratified category in which each stratum R, is actually simple (cf. Definition .
This stronger assumption means not only that R has a unique irreducible object Ly ()
(up to isomorphism), but also that Ly(\) = Py(\) = Ix(\), hence, A(\) = A()) and
V()\) = V(X) for each A € A. Consequently, the sign function € plays no role and may
be omitted entirely, and the above properties simplify to the following:

(PA) Each P()) has a A-flag with sections A(u) for p = .
(IV) Each I()\) has a V-flag with sections V(i) for p = A.

In fact, in this context, the equivalence of (PA) and (IV) was established already in
[CPS1]. Moreover, in loc. cit., it is shown that A-modgq is a highest weight category if
and only if A is a quasi-hereditary algebra.

The next most important special cases arise when ¢ is the constant function + or
—. The idea of a +-stratified category originated in the work of Dlab [Dlal] already
mentioned, and in another work of Cline, Parshall and Scott [CPS2]. In particular, the
“standardly stratified categories” of [CPS2] Definition 2.2.1] are +-stratified categories.

We say that a finite Abelian category R equipped with a stratification p: B — A is
a fully stratified category if it is both a +-stratified category and a —-stratified category;
in that case, it is e-stratified for all choices of the sign function € : A — {£}. Such
categories arise as categories of modules over the fully stratified algebras introduced in
a remark after [ADIl Definition 1.3]. In fact, these sorts of algebras and categories have
appeared several times elsewhere in the literature but under different names: they are
called “weakly properly stratified” in [ETil], “exactly properly stratified” in [CZ], and
“standardly stratified” in [LW]. The latter seems a particularly confusing choice since
it clashes with the established notion from [CPS2] but we completely agree with the
sentiment of [LW], Remark 2.2]: fully stratified categories have a well-behaved structure
theory. One reason for this is that all of the standardization and costandardization
functors in a fully stratified category are exact. We note also that any e-stratified
category with a duality is fully stratified; see Corollary

We use the language signed highest weight category in place of fully stratified category
when the stratification function p is a bijection. Such categories are e-highest weight for
all choices of the sign function e.

There are many classical examples of highest weight categories, including blocks of the
BGG category O for a semisimple Lie algebra, the classical Schur algebra, and Donkin’s
generalized Schur algebras introduced in [Don2]. Further examples of fully stratified
categories and signed highest weight categories which are not highest weight arise in
the context of categorification. This includes the pioneering examples of categorified
tensor products of finite dimensional irreducible representations for the quantum group
attached to sl from [FKS| (in particular Remark 2.5 therein), and the categorified
induced cell modules for Hecke algebras from [MS], 6.5]. Building on these examples and
the subsequent work of Webster [Webl], [Web2], Losev and Webster [LW] formulated
the important axiomatic definition of a tensor product categorification. These are fully
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stratified categories which have been used to give a categorical interpretation of Lusztig’s
construction of tensor product of based modules for a quantum group.

The device of incorporating the sign function € into the definition of e-stratified or e-
highest weight category is our invention. It seems to be quite convenient as it streamlines
many of the subsequent definitions and proofs. It also leads to some interesting new
possibilities when it comes to the “tilting theory” which we discuss next.

Assume R is an e-stratified category as above. An e-tilting object is an object of
R which has both a A.-flag and a V.-flag. Isomorphism classes of indecomposable
e-tilting objects are parametrized in a canonical way by the set B; see Theorem
The construction of these objects is a non-trivial generalization of Ringel’s classical
construction via iterated extensions of standard objects: in general we take a mixture of
extensions of standard objects at the top for positive strata and extensions of costandard
objects at the bottom for negative strata. We denote the indecomposable e-tilting
objects by {T.(b) | b € B}.

Now let T be an e-tilting generator, i.e., an e-tilting object in which every T.(b)
appears at least once as a summand. The Ringel dual of R relative to T is the category
R := A-modgq where A := Endg (T)°P (so that T is a right A-module). The isomorphism
classes of irreducible objects in R are in natural bijection with the isomorphism classes
of indecomposable summands of T, hence, they are also indexed by the same set B that
indexes the irreducibles in R. Let

F := Homg (T,—): R — R.

This is the Ringel duality functor. The following theorem is well known for highest
weight categories (where it is due to Ringel [Rin] and Happel [Hap]) and for +- and
—-stratified categories (where it is developed in the framework of standardly stratified
algebras in [AHLU]). We prove it for general e-stratified categories in Theorem

Theorem 1.2 (Ringel, Happel, ...). For R as above, let R be the Ringel dual of R
relative to an e-tilting generator T. Let A°P be the opposite poset and —e : A°P — {£}
be the negation of the original sign function .

(1) The function p : B — A°P defines a stmtzﬁcatzon ofR making it into a (—¢)-
stratified category. Moreover, each stratum R,\ of R is equivalent to the corre-
sponding stratum Ry of R.

(2) The functor F defines an equivalence of categories between the category of V-
filtered objects in R and the category of A_.-filtered objects in R. It sends
e-tilting objects (resp., injective objects) in R to projective objects (resp., (—¢)-
tilting objects) in R.

(8) If Ry is of finite global dimension for each A such that e(\) = — then the total
derived functor RF : D"(R) — DP(R) is an equivalence between the bounded
derived categories.

The original category R can be recovered from its Ringel dual R. Indeed, if we let I
be an injective cogenerator in R, then T:=Flisa (—e)-tilting generator in R such that
B := Endg (I )Op = Endj (T )Op Since R is equivalent to B-modsq, it is equivalent to the
Ringel dual of R relative to 7. By Theorem |1 . ), if Ry is of finite global dimension
for each A with (\) = + then the Ringel duality functor F := Homﬁ(i —) in the other
direction induces an equivalence RE : D*(R) — D*(R)

We do not consider here derived equivalences in the case of infinite global dimension,
but instead refer to [PS], where this and involved t-structures are treated in detail by
generalizing the classical theory of co(resolving) subcategories. This requires the use of
certain coderived and contraderived categories in place of ordinary derived categories.
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Now we shift our attention to the semi-infinite case, which is really the main topic
of the article. Following [EGNOQ], a locally finite Abelian category is a category that is
equivalent to the category comodg-C' of finite-dimensional right comodules over some
coalgebra C. Let R be such a category and {L(b) | b € B} be a full set of pairwise
inequivalent irreducible objects. Fix also a poset A that is lower finite, i.e., the intervals
(—o0, ] are finite for all u € A, a stratification function p : B — A with finite fibers,
and a sign function € : A — {+}. For any lower set (i.e., ideal of the poset) A’ in A,
we can consider the Serre subcategory R* of R generated by the objects {L(b) |be B}
where Bt := p~1(A'). We say that R is a lower finite e-stratified category if, for every
finite lower set A* of A, the Serre subcategory R* defined in this way is a finite Abelian
category which is e-stratified by the restriction of p; cf. Theorem[3.63] We call it a lower
finite e-highest weight category if in addition the stratification function is a bijection.

In a lower finite e-stratified category, there are e-standard and e-costandard objects
A.(b) and V.(b); they are the same as the e-standard and e-costandard objects of the
Serre subcategory R* defined from any finite lower set A containing p(b). As well as
(finite) A.- and V.-flags, one can consider certain infinite V.-flags in objects of the ind-
competion Ind(R) (which is the category comod-C' of all right C-comodules in the case
that R = comodgy-C). We refer to these as ascending Ve-flags; see Definition for
the precise formulation. Theorem [3:59 establishes a homological criterion for an object
to possess an ascending V.-flag, generalizing the well-known criterion for good filtrations
in rational representations of reductive groups [Janll, Proposition 11.4.16]. From this, it
follows that the injective hull I(b) of L(b) in Ind(R) has an ascending V.-flag. Moreover,
the multiplicity of V.(c) as a section of such a flag satisfies

(I() : Ve(e)) = [Ac(e) : LD)],

generalizing BGG reciprocity. This leads to an alternative “global” characterization of
lower finite e-stratified categories; see Definition |[3.53

In a lower finite e-stratified category, there are also e-tilting objects. Isomorphism
classes of the indecomposable ones are labelled by B just like in the finite case. In fact,
for b € B the corresponding indecomposable e-tilting object of R is the same as the object
T-(b) of the Serre subcategory R* defined from any finite lower set A* containing p(b).
Let (T})ser be an e-tilting generating family in R. Then we can define the Ringel dual R
of R relative to T := @,; T; (an object in the ind-completion of R): it is the category
of A-modjeq locally finite-dimensional left modules over the locally finite-dimensional
locally unital algebra

op
A= ( P HomR(TivTj)) ;
ijel
where the op denotes that multiplication in A is the opposite of composition in R.
Saying that A is locally unital means that A = @, ;.;eiAe; where {e; [ i € I} are
the mutually orthogonal idempotents defined by the identity endomorphisms of each
T;, and it is locally finite-dimensional if dime;Ae; < oo for all 4,5 € I. A locally
finite-dimensional module is an A-module V' = @,_, e;V with dime;V < oo for each
i. As e;Ae; = Homg (T3, T;) is finite-dimensional, each left ideal Ae; is a locally finite-
dimensional module.

This brings us to the notion of an upper finite e-stratified category, whose definition
may be discovered by considering the nature of the categories R that can arise as Ringel
duals of lower finite e-stratified categories as just defined. We refer to Definition [3.36
for the intrinsic formulation. In fact, starting from R that is a lower finite e-stratified
category, the Ringel dual R is an upper finite (—¢)-stratified category with stratification
defined by reversing the partial order on the poset A; see Theorem [4.20] which extends
parts (1) and (2) of Theorem [1.2]
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In general, in an upper finite e-stratified category, the underlying poset is required
to be upper finite, i.e., all of the intervals [\, o) are finite. There are e-standard and
e-costandard objects, but now these can have infinite length (although composition mul-
tiplicities in such objects are finite). On the other hand, the indecomposable projectives
and injectives do still have finite A.-flags and V.-flags, exactly like in (PA;) and (IV.).
Perhaps the most interesting feature is that one can still make sense of e-tilting objects.
These are objects possessing certain infinite flags: both an ascending A.-flag and a de-
scending V.-flag; see Definition [3:37] This allows to define the Ringel dual of an upper
finite e-stratified category; see Definition |4.21] and Theorem [4.22

For R arising as the Ringel dual of a lower finite e-stratified category R, the indecom-
posable (—¢)-tilting objects in R are the images of the indecomposable injective objects
of R under the Ringel duality functor

F := @Homg(T;,—) : R — R.
el

Moreover, the Ringel dual of R is equivalent to the original category R. The proof of
this relies on the following elementary observation: if U is any locally finite-dimensional
module over a locally unital algebra A then the endomorphism algebra End 4 (U)°P is
the linear dual C* of a coalgebra C; see Lemma m Taking U to be a full (—e)-
tilting object in ﬁ, this produces a coalgebra C such that the original category R is
equivalent to comod¢g-C. See for an explicit example illustrating the semi-infinite
Ringel duality construction.

An upper finite (resp., lower finite) highest weight category is an upper finite (resp.,
lower finite) e-stratified category all of whose strata are simple. In we apply semi-
infinite Ringel duality together with arguments from [AST] to give an elementary alge-
braic characterization of upper finite highest weight categories in terms of the notion of
an upper finite based quasi-hereditary algebra. In the finite-dimensional setting, these are
based quasi-hereditary algebras as defined by Kleshchev and Muth in [KM], who proved
that their definition of based quasi-hereditary algebra is equivalent to the original def-
inition of quasi-hereditary algebra from [CPS1]. Our more general algebras are locally
finite-dimensional locally unital algebras rather than unital algebras. Viewing them in-
stead as finite-dimensional categories, that is, k-linear categories with finite-dimensional
morphism spaces, the definition translates into the notion of an object-adapted cellular
category which was introduced already by Elias and Lauda [ELaul Definition 2.1]. In
turn, the Elias-Lauda definition evolved from work of Westbury [Wes|, who extended
the definition of cellular algebra due to Graham and Lehrer [GL] from finite-dimensional
algebras to finite-dimensional categories.

In we also introduce upper finite based e-stratified algebras and upper finite based
e-quasi-hereditary algebras, which are the precise algebraic counterparts of upper finite
e-stratified categories and upper finite e-highest weight categories, respectively.

We say that a fully stratified category is tilting-rigid if T (b) =~ T_(b) for all b € B.
Equivalently, the tilting objects T.(b) are isomorphic for all choices of the sign function
g, so that they may all be denoted simply by T'(b), as is done for classical highest
weight categories. The property of being tilting-rigid is quite strong, for example, it
implies that all of the strata are equivalent to categories of finite-dimensional modules
over weakly symmetric Frobenius algebras. Many of the naturally-occurring examples of
fully stratified categories are tilting-rigid, including the tensor product categorifications
from [LW] mentioned earlier. For us, the key point about the tilting-rigid hypothesis
is that the Ringel dual of a fully stratified category that is tilting-rigid is again a fully
stratified category that is tilting-rigid. This is important in when we introduce the
final basic notions of based stratified algebras and fibered quasi-hereditary algebras. These
definitions have a similar flavor to the fibered object-adapted cellular categories of [ELaul
Definition 2.17]. We show that the category of locally finite-dimensional modules over
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an upper finite based stratified algebra (resp., an upper finite fibered quasi-hereditary
algebra) is an upper finite fully stratified (resp., signed highest weight) category, and
conversely any upper finite fully stratified (resp., signed highest weight) category which
is also tilting-rigid can be realized in this way.

We also provide another source of naturally-occurring examples of based stratified
algebras: any locally unital algebra admitting a triangular decomposition in the sense of
Definition[5.24] can be endowed with such a structure. The proof of this goes via a related
notion of a locally unital algebra with a Cartan decomposition; see Definition [5.23] The
latter is quite a versatile framework which provides a bridge between based stratified
algebras and algebras with triangular decompositions.

The following summarizes some of the connections established between these various
types of algebras and their module categories:

Upper finite highest Upper finite fully
weight categories stratified categories
|
T |+tilting-rigid
N3
Upper finite based Upper finite based
quasi-hereditary algebras stratified algebras

r K
+semisimple Cartan” \\\‘ / ’—I—split Cartan
N g

Locally unital algebras with an
upper finite Cartan decomposition

:—l—opposite Borel subalgebras
|

~
Locally unital algebras with an
upper finite triangular decomposition

In the main body of the text, we also discuss a parallel situation involving essentially fi-
nite rather than upper finite algebras and categories. For example, the finite-dimensional
graded algebras with a triangular decomposition studied in [HNL [BT] fit naturally into
our more general framework of locally unital algebras with an essentially finite triangular
decomposition; see Remark

As we have already mentioned, the category Rep(G) for a reductive group G is the
archetypical example of a lower finite highest weight category. Its Ringel dual is an upper
finite highest weight category. This case has been studied in particular by Donkin (e.g.,
see [Don2], [Dond]), but Donkin’s approach involves truncating to a finite-dimensional
algebra from the outset. Other important examples come from blocks of category O over
an affine Lie algebra: in negative level one obtains lower finite highest weight categories,
while positive level produces upper finite ones. These and several other prominent
examples are outlined in §§6.3}6.7] This includes various Deligne categories which are
diagrammatic in nature and come equipped with an evident triangular decomposition,
hence, their module categories are upper finite highest weight categories.
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2. SOME FINITENESS PROPERTIES ON ABELIAN CATEGORIES

We fix an algebraically closed field k. All algebras, categories, functors, etc. will
be assumed to be linear over k. We write ® for ®x. The naive terms direct limit and
inverse limit will be used for small filtered colimits and limits, respectively. We begin
by introducing some language for Abelian categories with various finiteness properties:

Finite Abelian categories
Lemm‘a 21a

Lemma 2 l L 5171
Essentially finite emma 11

Abelian categorles

cOrov/ Lemma E.T8

Locally finite 7 Schurian categories

Abelian categories

2.1. Finite and locally finite Abelian categories. According to [EGNO| Definition
1.8.5], a finite Abelian category is a category that is equivalent to the category A-modgq of
finite-dimensional (left) modules over some finite-dimensional algebra A. Equivalently,
a finite Abelian category is a category equivalent to the category comodgg-C' of finite-
dimensional (right) comodules over some finite-dimensional coalgebra C. To explain
this in more detail, recall that the dual A := C* of a finite-dimensional coalgebra C
has a natural algebra structure with multiplication A ® A — A that is the dual of the
comultiplication C' — C ® C; for this, one needs to use the canonical isomorphism

C*RC* = (C®0O)*,  fe®g— (veuw— f(v)g(w)) (2.1)
to identify C* ® C* with (C® C)*. Then any right C-comodule can be viewed as a left
A-module with action defined from av := >} | a(c;)v; assuming here that the structure
mapn:V —> V®C sends v — Y, v; ® ¢;. Conversely, the C-comodule structure on
V' can be recovered uniquely from the action of A. Thus, the categories comodg-C and
A-modgq are isomorphic.

A locally finite Abelian category is a category R that is equivalent to comodgg-C' for a
(not necessarily finite-dimensional) coalgebra C. We refer to a choice of C' as a coalgebra
realization of R. The following result of Takeuchi gives an intrinsic characterization of
locally finite Abelian categories; see [Tak] and [EGNO] Theorem 1.9.15]. It is a version of
[Gabl, IV, Theorem 4] adapted to our situation. Note Takeuchi’s original paper uses the
language “locally finite Abelian” slightly differently (following [Gabl) but his formulation
is equivalent to the one here (which follows [EGNO| Definition 1.8.1]). In loc. cit. it
is shown moreover that C' can be chosen so that it is pointed, i.e., all of its irreducible
comodules are one-dimensional; in that case, C' is unique up to isomorphism.

Lemma 2.1. An essentially small category R is a locally finite Abelian category if and
only if it is Abelian, all of its objects are of finite length, and all of its morphism spaces
are finite-dimensional.

Now we summarize the main properties of the locally finite Abelian category
R = comody-C.

Fix a full set of pairwise inequivalent irreducible objects {L(b) |b € B} in R. By Schur’s
Lemma, we have that Endg (L(b)) = k for each b € B.

The opposite category R°P is also a locally finite Abelian category. Moreover, a
coalgebra realization for it is given by the opposite coalgebra C°P. To see this, note that
there is a contravariant equivalence

% : comodgg-C — C-comodgq (2.2)
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sending a finite-dimensional right comodule to the dual vector space viewed as a left
comodule in the natural way: if vy,...,v, is a basis for V, with dual basis fi,..., fn
for V*, and the structure map V — V ® C sends v; — Z?:l v; @ ¢;; then the dual’s
structure map V¥ — C®V* sends f; — Y., ¢; ;® f;. Since we have that C-comodgq =
comodgq-C°P, we deduce that R°P is equivalent to comodgg-C°P.

In general, R need not have enough injectives or projectives. To get injectives, we
pass to the ind-completion Ind(R); see e.g. [KS| §6.1]. For V,W € Ind(R), we write
Ext (V, W), or sometimes Extg (V, W), for Extﬁld(n)(V, W); it may be computed via an
injective resolution of W in the ind-completion. This convention is unambiguous due to
[KSL Theorem 15.3.1]. More generally, we can consider the right derived functors R™F
of any left exact functor F' : Ind(R) — S.

Let comod-C' be the category of all right C-comodules. Every comodule is the union
(hence, the direct limit) of its finite-dimensional subcomodules. Moreover, a comodule
V' is compact, i.e., the functor Home(V, —) commutes with direct limits, if and only
if it is finite-dimensional. Using this, [KSl Corollary 6.3.5] implies that the canonical
functor Ind(R) — comod-C' is an equivalence of categories. This means that one can
work simply with comod-C in place of Ind(R), as we do in the next few paragraphs.

The category comod-C' is a Grothendieck category: it is Abelian, it possesses all
small coproducts, direct colimits of monomorphisms are monomorphisms, and there
is a generator. A generating family may be obtained by choosing representatives for
the isomorphism classes of finite-dimensional C'-comodules. By the general theory of
Grothendieck categories, every C-comodule has an injective hull. We use the notation
I(b) to denote an injective hull of L(b). The right regular comodule decomposes as

C =@ I(p)®dmL®), (2.3)
beB
By Baer’s criterion for Grothendieck categories (e.g., see [KS, Proposition 8.4.7]), ar-
bitrary direct sums of injectives are injective. It follows that an injective hull of V €
comod-C comes from an injective hull of its socle: if soc V' = P g L(bs) then @, ¢ I(bs)
is an injective hull of V.

In any Abelian category, we write [V : L] for the composition multiplicity of an
irreducible object L in an object V. By definition, this is the supremum of the sizes of
thesets {i = 1,...,n|V;/V;_; = L} over all finite filtrations 0 = Vo <V < --- <V, = V;
possibly, [V : L] = c0. Composition multiplicity is additive on short exact sequences.
For any right C-comodule V', we have by Schur’s Lemma that

[V : L(b)] = dim Home (V, I(b)). (2.4)
When C is infinite-dimensional, the map (2.1]) is not an isomorphism, but one can
still use it to make the dual vector space B := C* into a unital algebra. Since C is

the union of its finite-dimensional subcoalgebras, the algebra B is the inverse limit of
its finite-dimensional quotients, i.e., the canonical homomorphism B — LLH(B /J) is an
isomorphism where the limit is over all two-sided ideals J of B of finite codimension.
These two-sided ideals J form a basis of neighborhoods of 0 making B into a pseudo-
compact topological algebra; see [Gabl Ch. IV] or [Sim| Definition 2.4]. We refer to the
topology on B defined in this way as the profinite topology. The coalgebra C' can be
recovered from B as the continuous dual

B* := {f e B* ‘ [ vanishes on some two-sided ideal J of finite codimension}. (2.5)

It has a natural coalgebra structure dual to the algebra structure on B. This is discussed
further in [Siml §3]; see also [EGNOL §1.12] where B* is called the finite dual. We
note that any left ideal I of B of finite codimension contains a two-sided ideal J of
finite codimension, namely, J := Anng(B/I). So, in the definition of continuous
dual, “two-sided ideal J of finite codimension” can be replaced by “left ideal I of finite
codimension.” Similarly for right ideals.
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Any right C-comodule V' is naturally a left B-module by the same construction as
in the finite-dimensional case. We deduce that the category comod-C' of all right C-
comodules is isomorphic to the full subcategory B-modgqs of B-mod consisting of all
discrete left B-modules, that is, all B-modules which are the unions of their finite-
dimensional submodules. In particular, comod-C and B-modgq are identified under
this construction. This means that any locally finite Abelian category may be realized
as the category of finite-dimensional modules over an algebra which is pseudocompact
with respect to the profinite topology; see also [Siml §3].

The definition of the left C-comodule structure on the linear dual V* of a right C-
comodule V in required V to be finite-dimensional in order for it to make sense. If
V is an infinite-dimensional right C'-comodule, it can be viewed equivalently as a discrete
left module over the dual algebra B := C*. Then its dual V* is a pseudocompact right
B-module, that is, a B-module isomorphic to the inverse limit of its finite-dimensional
quotients. Viewing pseudocompact modules as topological B-modules with respect to
the profinite topology (i.e., submodules of finite codimension form a basis of neighbor-
hoods of 0), we obtain the category modp-B of all pseudocompact right B-modules and
continuous B-module homomorphisms. The duality functor extends to

# 1 B-modgs — modpc-B. (2.6)
This is a contravariant equivalence with quasi-inverse given by the functor
% : modpe-B — B-modgs (2.7)

taking V € mod¢-B to its continuous dual
V*:={f € V*| f vanishes on some submodule of V' of finite codimension} .

Lemma 2.2. Suppose that C is a coalgebra and B := C* is its dual algebra. For any
right C-comodule V', composing with the counit € : C' — k defines an isomorphism of
left B-modules ay : Home(V,C) = V*. When V = C, this map gives an algebra
isomorphism Ende(C)°P = B.

Proof. Let n : V. — V ® C be the comodule structure map. To show that ay is an
isomorphism, one checks that the map 8y : V* — Hom¢(V,C), f — (f®id) o7 is its
two-sided inverse; cf. [Siml Lemma 4.9]. It remains to show that a¢ : Ende(C)°P = B
is an algebra homomorphism: for f, g € B we have that

ac(Belg) o Be(f)) = eo (g@id) ono (f&id) on
= (9®id) o (i[d®e) ono (f®id)on = go (f®id)on = fg. O

2.2. Locally unital algebras. We are going to work with certain Abelian categories
which are not locally finite, but which nevertheless have some well-behaved finiteness
properties. We will define these in the next subsection. First we must review some basic
notions about locally unital algebras. These ideas originate in the work of Mitchell [Mit].

A locally unital algebrais an associative (but not necessarily unital) algebra A equipped
with a distinguished system {e; | i € I} of mutually orthogonal idempotents such that

A= @ eiAej.
ijel
We say A is locally finite-dimensional if each subspace e; Ae; is finite-dimensional.

A locally unital homomorphism (resp. isomorphism) between two locally unital alge-
bras is an algebra homomorphism (resp. isomorphism) which takes distinguished idem-
potents to distinguished idempotents. Also, we say that A is an idempotent contraction
of B, or B is an idempotent expansion of A, if there is an algebra isomorphism 4 = B
sending each distinguished idempotent in A to a sum of distinguished idempotents in
B. For example, one needs to pass to an idempotent expansion in order to define blocks
of a locally finite-dimensional locally unital algebra; see [BD1l (L9)—(L10)].
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For a locally unital algebra A, an A-module means a left module V' as usual such that
V =@, eV. A vector veV is homogeneous if v € e;V for some i € I. A module V' is

e locally finite-dimensional if dime;V < oo for all i € I;

e finitely generated if V. = Avy + -+ + Auv,, for vectors v1,...,v, € V (which may
be assumed to be homogeneous) or, equivalently, it is a quotient of the finitely
generated projective A-module Ae;, @ --- @ Ae;,, for iq,...,i, € [l and ne N;

e finitely presented if there is an exact sequence

Aejl @---@Aejm —>A€i1 ®~-~®Aein —>V—>O
for 41,...,%n, 1, .-, Jm € I and m,n € N.
Let A-mod (resp., A-modi, resp., A-modg,, resp., A-mods,) be the category of all A-
modules (resp., the locally finite-dimensional ones, resp., the finitely generated ones,

resp., the finitely presented ones). Similarly, we define the categories mod-A, modgg-A,
modg,-A and mody-A of right modules.

Remark 2.3. Any locally unital algebra A = @), ;¢;
with object set I and Hom4(j,i) = e;Ae;, with the idempotent e; € A corresponding
to the identity endomorphism 1; € End4(¢). Conversely, any small category A (k-
linear, of course) gives rise to a corresponding locally unital algebra A, which may
be called the path algebra of A. In these terms, locally finite-dimensional locally unital
algebras correspond to finite-dimensional categories, that is, small categories all of whose
morphism spaces are finite-dimensional. The notion of idempotent expansion of the
algebra A becomes the notion of thickening of the category A, which is a sort of “partial
Karoubi envelope.” Also, a left A-module (resp., a locally finite-dimensional left A-
module) is the same as a k-linear functor from A to the category Vec (resp., Veceq) of
vector spaces (resp., finite-dimensional vector spaces). Similarly, right A-modules are
functors from the opposite category A°P.

e;Ae; can be viewed as a category

Lemma 2.4. An essentially small category R is equivalent to A-mod for some locally
unital algebra A if and only if R is Abelian, it possesses all small coproducts, and it has
a projective generating family, i.e., there is a family (P;)ier of compact projective objects
such that V # 0 = Homg (P;, V) # 0 for some i€ I.

Proof. This is similar to [Fre, Exercise 5.F]. One shows that R is equivalent to A-mod for
the locally unital algebra A = (—Di’jel e;Ae; defined by setting e; Ae; := Homg (P}, Pj)
with multiplication that is the opposite of composition in R. The canonical equivalence
R — A-mod is given by the functor @,_; Homg (P;, —). O

i€l
Lemma 2.5. Let A be a locally unital algebra. An A-module V is compact if and only

if it is finitely presented. Also, for projective modules, the notions of finitely presented
and finitely generated coincide.

Proof. This is well known for modules over a ring, and the usual proof in that setting
carries over almost unchanged to the locally unital case. O

Lemma 2.6. Let A be a locally unital algebra. Any A-module is isomorphic to a direct
limit of finitely presented A-modules.

Proof. As any A-module is the union of its finitely generated submodules, it suffices
to show that any finitely generated A-module V is finitely presented. But then V is a
quotient of P = Ae;, @ --- @ Ae;, by a submodule. This submodule is the union of its
finitely generated submodules W, so we have that V' =~ P/lim W =~ lim P/W. This is a
direct limit of finitely presented modules. O

The following lemma is fundamental. It is the analog of “adjointness of tensor and
hom” in the locally unital setting; see e.g. [BD1], §2.1] for a fuller discussion.
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Lemma 2.7. Let A = P, ;.reidej and B = @, jc; fiBf; be locally unital algebras,

and let M = @;c; jeyeiM f; be an (A, B)-bimodule.
(1) The functor M ®p — : B-mod — A-mod is left adjoint to ;. ; Homa (M f;, ).
(2) The functor —®a M : mod-A — mod-B is left adjoint to P,.; Homp(e; M, —).

For any locally unital algebra A, there is a contravariant equivalence
®: A—modlfd i mOdlfd-A (28)

sending a left module V to V® := @,_;(e;V)*, viewed as a right module in the obvious
way. The analogous duality functor ® : modtq-A — A-mod¢q gives a quasi-inverse. The
contravariant functor (2.8)) also makes sense on arbitrary left (or right) A-modules. It is
no longer an equivalence, but we still have that

Hom 4 (V, W®) = Hom, (W, V®) (2.9)

for any V € A-mod and W € mod-A. To prove this, apply Lemma 1) to the (k, A)-
bimodule W to show that Hom(V,W®) =~ (W ®4 V)*, then apply Lemma 2) to
the (A, k)-bimodule V to show that (W ®4 V)* = Hom (W, V®).

Lemma 2.8. The dual V® of a projective (left or right) A-module is an injective (right
or left) A-module.

Proof. Just like in the classic treatment of duality for vector spaces from [Macl IV.2],
shows that the covariant functor ® : A-mod — (mod-A)°P is left adjoint to the
exact covariant functor & : (mod-A)°? — A-mod. So it sends projective left A-modules
to projectives in (mod-A)°P, which are injective right A-modules. O

Now we assume that A is a locally unital algebra and U € A-modgq. Let
B := EndA(U)Op,

which is a unital algebra. Then U is an (A, B)-bimodule and the dual U® is a (B, A)-
bimodule. Let U; := e;U, so that U = @,.; U; and U® = @i UF.

Lemma 2.9. Suppose that U = @, ; U; € A-modigq and B := End4(U)° are as above.
For any V € A-mod, there is a natural isomorphism of right B-modules

HomA(V,U);(U®®A V)*, 0— (fQ®uw— f(O(v))).
In particular, taking V = U, we get that (U® ®4 U)* =~ B as (B, B)-bimodules.

Proof. By Lemma (1) applied to the (A, k)-bimodule U®, the functor U® ®4 — is
left adjoint to @,.; Homy (U;*, —). Hence,

(U ®4 V)* = Homy (U® ®4 V, k) = Hom (V, P Homy (U, k)) = Homy (V, U).

i€l
This is the natural isomorphism in the statement of the lemma. We leave it to the reader
to check that it is a B-module homomorphism. O
Continuing with this setup, let
C:=U®®,U. (2.10)

There is a unique way to make C' into a coalgebra so that the bimodule isomorphism
B 5 C* from Lemma is actually an algebra isomorphism (viewing the dual C* of a

coalgebra as an algebra as in the previous subsection). Explicitly, let ygi), . ,yf(fi) be a

basis for U; and xgi), e ,ng) be the dual basis for U}. Let cSl = x&i) ®ysi) € C. Then
the comultiplication § : C' — C' ® C' and counit € : C' — k satisfy

ng . . )
3y = @l e(c) =6, (2.11)
t=1

for each i € T and 1 < r,s < n;. For the next lemma, we recall the definition of
continuous dual of a pseudocompact topological algebra from ([2.5]).
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Lemma 2.10. The endomorphism algebra B = End4(U)°P of U € A-modyzq is a pseu-
docompact topological algebra with respect to the profinite topology, i.e., B is isomorphic
to LiI_nB/J where the inverse limit is over all two-sided ideals J of finite codimension.

Moreover, the coalgebra C from may be identified with the continuous dual B*.
Proof. This follows because B =~ C* as algebras. 0

Now consider the functor U® ® 4 — : A-mod — B-mod. Since U is locally finite-
dimensional, it takes finitely generated A-modules to finite-dimensional B-modules. Any
A-module V is the direct union of its finitely generated submodules, and U® ®4 —
commutes with direct limits, so we see that U® ® 4 V is actually a discrete B-module.
This shows that we have a well-defined functor

U®P®4 — : A-mod — B-modys . (2.12)

Since B =~ C*, the category B-modgs is isomorphic to comod-C. Consequently, for
V € A-mod, we can view U® ®4 V instead as a right C-comodule. Its structure map
n: VPRV - U®P®,4V ®C is given explicitly by the formula
n(z® @v) = Z 2 v cgf)s (2.13)
r=1

Recall the definition of the functor « from (2.7)).

Lemma 2.11. Suppose that U = @,.;U; € A-modiq and B := Enda(U)°? are as
above. The functor U® @4 — just constructed is isomorphic to

»oHomg(—,U) : A-mod — B-modgs (2.14)
and left adjoint to the functor
@ Homp (U, —) : B-modgs — A-mod.. (2.15)
i€l

Proof. The fact that (2.12)) is left adjoint to (2.15) follows by Lemma To see
|

that it is isomorphic to (2.14), take V' € A-mod and consider the natural isomorphism
Homyu (V,U) = (UB®4V)* of right B-modules from Lemma[2.9] As UP®,V is discrete,
its dual is a pseudocompact left B-module, hence, Hom4(V,U) is pseudocompact too.
Then we apply *, using that it is quasi-inverse to #, to get that Hom 4 (V, U)* € B-modgs
is naturally isomorphic to U® ®4 V. O

2.3. Schurian categories. By a Schurian category, we mean a category R that is
equivalent to A-modjgq for a locally finite-dimensional locally unital algebra A. This
language is new. In fact, this usage of the term “Schurian” is a slight departure from
several recent papers of the first author: in [BDI], the phrase “locally Schurian” was
used to describe such categories; more precisely, in [BDI], a locally Schurian category
referred to a category of the form A-mod (rather than A-mod¢) for such locally unital
algebras A. We could not use the phrase “Schurian” in loc. cit. since that was reserved
for a more restrictive notion introduced in [BLWJ, §2.1]; this more restrictive notion will
be discussed in the next subsection, again using different language.

By an algebra realization of a Schurian category R, we mean any locally finite-
dimensional locally unital algebra A (together with the set I indexing its distinguished
idempotents) such that R is equivalent to A-modjq. We say that A is pointed if its set
{e;|i € I} of distinguished idempotents coincides with the set of all primitive idempotents
in A. This implies in particular that A is a basic algebra, i.e., all of its irreducible mod-
ules are one-dimensional. Any Schurian category R has a unique (up to isomorphism)
pointed algebra realization. We justify this assertion later on; see (2.19).

Let us summarize some of the basic properties of Schurian categories, referring to
[BD1L §2] for a more detailed treatment. Assume that A is a locally finite-dimensional
locally unital algebra and let

R = A-modlfd .
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Let {L(b) | b € B} be a full set of pairwise inequivalent irreducible objects of R. Schur’s
Lemma holds: we have that Endg (L(b)) =k for each b € B.

The opposite category R°P is also Schurian, and A°P gives an algebra realization for
it. This follows because R°P = (A-modis)°P is equivalent to modjeg-A = (A°P)-modigg
using the duality .

Let R be the (not necessarily Abelian) full subcategory of R consisting of all compact
objects, and Ind(R.) be its ind-completion. The canonical functor Ind(R.) — A-mod is
an equivalence of categories. To see this, we note that all finitely generated A-modules
are locally finite-dimensional as A itself is locally finite-dimensional. Hence, finitely
presented A-modules are locally finite-dimensional too, i.e, A-mods, is a subcategory of
A-modjgg. In view of Lemma this is the category R.. It just remains to apply [KS|
Corollary 6.3.5], using Lemm when checking the required hypotheses.

The category A-mod is a Grothendieck category. In particular, this means that every
A-module has an injective hull in A-mod. Since every A-module is a quotient of a direct
sum of projective A-modules of the form Ae;, the category A-mod also has enough
projectives. It is not true that an arbitrary A-module has a projective cover, but we will
see in Lemma below that finitely generated A-modules do.

Like we did in we write simply Ext (V, W), or sometimes Ext" (V, W), in place
of Extfqr.)(V.:W) for any VW € Ind(R.). This can be computed either from a
projective resolution of V' or from an injective resolution of W. We can also consider
both right derived functors R" F' of a left exact functor F' : Ind(R.) — S and left derived
functors IL,,G of a right exact functor G : Ind(R.) — S. We provide an elementary proof
of the following, but note it also follows from [KS| Theorem 15.3.1].

Lemma 2.12. For V,W € R and n = 0, there is a natural isomorphism
Exty (V,W) = Extho, (W, V).

Proof. Using (2.8), we must show that Ext’; (V, W) =~ Ext’; (W®, V®) for locally finite-
dimensional A-modules V' and W. To compute Ext"; (V, W), take a projective resolution

—>P1—>P0‘>V—>O

of V in A-mod. By Lemma [2.8] on applying the exact functor ®, we get an injective
resolution

0—V® PP > p® ...
of V® in mod-A. Since W is locally finite-dimensional, we can use to see that
Hom 4 (P;, W) = Homa(W®, P®) for each i. So Ext’y(V, W) = Ext’s (W®,V®). O

Let I(b) be an injective hull of L(b) in A-mod. The dual (e;A)® of the projective
right A-module e; A is injective in A-mod. Since End4((e;4)®)°P =~ Enda(e;A) = e; Ae;,
which is finite-dimensional, the injective module (e;A)® can be written as a finite direct

sum of indecomposable injectives. To determine which ones, we compute its socle: we
have that Hom 4 (L(b), (e;A)®) =~ Homa(e; A, L(b)®) = (L(b)®)e; = (e;L(b))*, hence,

(e;4)® = (P I(b)@dimeL®), (2.16)
beB
with all but finitely many summands on the right hand side being zero. In particular,
this shows for fixed ¢ that dime;L(b) = 0 for all but finitely many b € B. Conversely,
for fixed b € B, we can always choose i € I so that e;L(b) # 0, and deduce that I(b) is
a summand of (e; A)®. This means that each indecomposable injective I(b) is a locally
finite-dimensional left A-module.

Let P(b) be the dual of the injective hull of the irreducible right A-module L(b)®. By

dualizing the right module analog of the decomposition , we get also that
Ae; = @ P(b)@dimeil®), (2.17)

beB
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with all but finitely many summands being zero. In particular, P(b) is projective in
A-mod, hence, it is a projective cover of L(b) in A-mod.
The composition multiplicities of any A-module satisfy

[V : L(b)] = dimHom4 (V, I(b)) = dim Hom 4 (P(b), V). (2.18)

Moreover, V is locally finite-dimensional if and only if [V : L(b)] < oo for all b € B. To
see this, note that V is locally finite-dimensional if and only if dim Hom 4 (Ae;, V) < oo for
each i € I. Using the decompositon (2.17)), this is if and only if dim Hom 4 (P(b), V) < o0
for each b € B, as claimed.

There is a little more to be said about finitely generated modules. Recall from the
previous subsection that a module is finitely generated if V = Av; + --- + Av, for
homogeneous vectors vy, ...,v, € V. We say that V is finitely cogenerated if its dual
is finitely generated. It is obvious from these definitions that Hom4(V, W) is finite-
dimensional either if V' is finitely generated and W is locally finite-dimensional, or if V'
is locally finite-dimensional and W is finitely cogenerated. The following checks that
our naive definitions are consistent with the usual notions of finitely generated and
cogenerated objects of Grothendieck categories.

Lemma 2.13. For V € A-mod, the following properties are equivalent:
(i) V is finitely generated;
(ii) the radicalrad 'V, i.e., the sum of its mazimal proper submodules, is a superfluous
submodule and hd V :=V /rad V is of finite length;
(iti) V is a quotient of a finite direct sum of the modules P(b) for b e B.

Moreover, any finitely generated V' has a projective cover.

Proof. We have already observed that P(b) is a projective cover of L(b). The lemma
follows by standard arguments given this and the decomposition (2.17)). O

Corollary 2.14. For V € A-mod, the following properties are equivalent:
(i) V is finitely cogenerated;
(i) soc V is an essential submodule of finite length;
(iti) V is isomorphic to a submodule of a finite direct sum of modules I1(b) for b e B.

Let us explain why any locally finite-dimensional locally unital algebra is Morita
equivalent to a pointed locally finite-dimensional locally unital algebra, as asserted ear-
lier. For b € B, pick i(b) € I such that e;;)L(b) # 0. In view of (2.17)), we find a primitive
idempotent ey, € ey Ae;(py such that Ae, = P(b). Then A is Morita equivalent to

B= P e,Ae, (2.19)
a,beB

which is pointed. For an explicit equivalence A-mod — B-mod, consider the functor
sending an A-module V' to @, g e,V . In the case that A is pointed, its distinguished
idempotents may be indexed by the same set B as is used to index the isomorphism
classes of irreducible objects, so that P(b) = Ae;, and I(b) = (e, A)®. It is also easy to
see that if A and B are pointed locally finite-dimensional locally unital algebras which
are Morita equivalent, then they are actually isomorphic as locally unital algebras.

2.4. Essentially finite Abelian categories. We say that a locally unital algebra A =
@i’ jel e;Ae; is essentially finite-dimensional if each right ideal e; A and each left ideal
Ae; is finite-dimensional. By an essentially finite Abelian category, we mean a category
that is equivalent to A-mod¢q for such an A.

Lemma 2.15. An essentially small category R is equivalent to A-modgg for a locally
unital algebra A = (—Bmel e;Aej such that each left ideal Ae; (resp., each right ideal e; A)
is finite-dimensional if and only if R is a locally finite Abelian category with enough
projectives (resp., enough injectives).
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Proof. We just prove the result for left ideals and projectives; the parenthesized state-
ment for right ideals and injectives follows by replacing R and A with R°P and A°P.

Suppose first that A = @—)l jer €iAej is a locally unital algebra such that each left
ideal Ae; is finite-dimensional. Then A-modyq is a locally finite Abelian category. It has
enough projectives because the left ideals Ae; are finite-dimensional.

Conversely, suppose R is a locally finite Abelian category with enough projectives.
Let {L(b) | b € B} be a full set of pairwise inequivalent irreducible objects, and P(b) € R
a projective cover of L(b). Define A to be the locally unital algebra A = @, jcp €aden
where e, Ae, := Hompg(P(a), P(b)) with multiplication that is the opposite of com-
position in R. This is a pointed locally finite-dimensional locally unital algebra. As
in the proof of Lemma the functor @,z Homg (P(b),—) defines an equivalence
R — A-modgg. It remains to note that the ideals Ae;, are finite-dimensional since they
are the images under this functor of the projectives P(b), which are of finite length. O

Corollary 2.16. An essentially small category R is an essentially finite Abelian category
if and only if it is a locally finite Abelian category with enough injectives and projectives.

Note that R is essentially finite Abelian if and only if R°P is essentially finite Abelian.
Moreover, if A is an algebra realization for R then A°P is one for R°P by the obvious
duality * : A-mod¢g — modgg-A.

Essentially finite Abelian categories are almost as convenient to work with as finite
Abelian categories since one can perform all of the usual constructions of homological
algebra without needing to pass to the ind-completion.

Lemma 2.17. For a category R, the following are equivalent:

(i) R is a finite Abelian category;

(ii) R is a Schurian category with only finitely many isomorphism classes of irre-
ducible objects;

(11i) R is an essentially finite Abelian category with only finitely many isomorphism
classes of irreducible objects;

(iv) R is a locally finite Abelian category with only finitely many isomorphism classes
of irreducible objects and either enough projectives or enough injectives;

(v) R is both a locally finite Abelian category and a Schurian category.

Proof. Clearly, (i) implies (ii) and (iii). The implication (ii)=>(i) follows on considering a
pointed algebra realization of R. The implication (iii)=(iv) follows from Corollary [2.16]
The implication (iv)=(i) follows from Lemma[2.15] Clearly (ii) and (iv) together imply
(v). Finally, to see that (v) implies (ii), it suffices to note that a Schurian category
with infinitely many isomorphism classes of irreducible objects cannot be locally finite
Abelian: the direct sum of infinitely many non-isomorphic irreducibles is a well-defined
object of R but it is not of finite length. g

Essentially finite Abelian categories with infinitely many isomorphism classes of ir-
reducible objects are mot Schurian categories. However they are closely related as we
explain next.

e If R is essentially finite Abelian, we define its Schurian envelope Env(R) to be the
full subcategory of Ind(R) consisting of all objects that have finite composition
multiplicities.

e If R is Schurian, let Fin(R) be the full subcategory of R consisting of all objects
of finite length.

Lemma 2.18. Env and Fin define maps

Essentially finite Env (- Schurian categories all of whose indecomposable
Abelian categories | 7, | injectives and projectives are of finite length ’
These are quasi-inverses in the sense that Env(Fin(R)) is equivalent to R for R in the
left hand set, and Fin(Env(R)) is equivalent to R for R in the right hand set.
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Proof. This is easy to see in terms of an algebra realization: if R = A-modg for an
essentially finite-dimensional locally unital algebra A then Env(R) = A-modigq, so it is
Schurian. Since the indecomposable injectives and projectives in Env(R) are the same
as in R, they have finite length. Conversely, suppose that R = A-modygq for a pointed
locally finite-dimensional locally unital algebra, such that all of the indecomposable
injectives and projectives are of finite length. Since A is pointed, this means equivalently
that all of the left ideals Ae; and right ideals e; A are finite-dimensional. Hence, A is
essentially finite-dimensional, and Fin(R) = A-modyq is essentially finite Abelian. O

2.5. Recollement. We conclude the section with some reminders about “recollement”
in our algebraic setting; see [BBD| §1.4] or [CPSIl §2] for further background. We
need this here only for Abelian categories R satisfying finiteness properties as developed
above. The recollement formalism provides us with an adjoint triple of functors (i*,14, ')
associated to the inclusion i : R* — R of a Serre subcategory, and an adjoint triple
of functors (41,7, jx) associated to the projection j : R — R' onto a Serre quotient
category, with the image of i being the kernel of j. These functors will play an essential
role in all subsequent arguments.

First suppose that R is a finite Abelian, locally finite Abelian, essentially finite
Abelian or Schurian category. Assume that we are given a full set {L(b) | b € B} of
pairwise inequivalent irreducible objects. Let B* be a subset of B and R* be the full
subcategory of R consisting of all the objects V' such that [V : L(b)] # 0 = b € Bt.
This is a Serre subcategory of R with irreducible objects {L'(b) | b € B*} defined by
L*(b) := L(b).

Lemma 2.19. In the above setup, the inclusion functor i : R* — R has a left adjoint

i* and a right adjoint i':

|
K3

»/i\
x____~

¥

R R.

The counit of one of these adjunctions and the unit of the other give isomorphisms:
i*o0i > Idp, =it oi.
In particular, i is fully faithful.

*

Proof. This is straightforward. Explicitly, i* (resp., i') sends an object of R to the
largest quotient (resp., subobject) that belongs to R*. O

We will use the same notation 4, i* and ' for the natural extensions of these functors
to the appropriate ind-completions. In the case that R is locally finite Abelian, the Serre
subcategory R*' is locally finite Abelian too, as is clear from Lemma We also have
the following lemma which explains how to construct an explicit coalgebra realization
of R* starting from one for R.

Lemma 2.20. Continuing with the above setup, suppose that R = comodg-C for a
coalgebra C. Let Ct be the largest right coideal of C belonging to R*. Then C' is a
subcoalgebra of C. Moreover, R consists of all V € comodiq-C such that the image of the
structure mapn : V. — VC is contained in VRC*, i.e., we have that R* = comodgg-C*.

Proof. For a right comodule V' with structure map n : V. — V ® C, we can consider
V ® C as a right comodule with structure map id ® §. The coassociative and counit
axioms imply that 7 is an injective homomorphism of right comodules. We deduce that
all irreducible subquotients of V belong to R* if and only if (V) € V ® C*. Applying
this with V' = C' shows that C' is a subcoalgebra. Applying it to V € R shows that
Ve RYifand only if n(V) =V ® CY. O
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For the remainder of the subsection, we exclude the locally finite Abelian case. So
now R is finite Abelian, essentially finite Abelian or Schurian only, and {L(b)|b € B} is a
full set of pairwise inequivalent irreducible objects. We claim that the Serre subcategory
R*Y of R associated to B* < B is of the same type as R again. To explain this, we fix a
pointed algebra realization

A= P e.dey (2.20)
a,beB
of R, so A is finite-dimensional, essentially finite-dimensional or locally finite-dimensional
according to whether R is finite Abelian, essentially finite Abelian or Schurian. Let
B' := B\B' and

At = @ e,A'e, = A/(e.|ceB), A= P e de, (2.21)

a,beB! a,beBT

where Z denotes the canonical image of z € A under the quotient map A —» A‘. Then
it is clear that R' is equivalent to A*-modgq in the finite Abelian or essentially finite
Abelian cases, and to A'-modigg in the Schurian case. Moreover, A' satsifies the same
finiteness properties as A. This proves the claim.

Now we are going to pass to the Serre quotient R' := R/R*'. This is an Abelian
category equipped with an exact quotient functor j : R — R satisfying the following
universal property: if h : R — C is any exact functor to an Abelian category C with
hL(b) = 0 for all b € B*, then there is a unique functor h: R" — C such that h = ho j.
The irreducible objects in R" are {LT(b)|b € BT} where BT := B\B* and L' (b) := jL(b).
For a fuller discussion of these statements, see e.g. [Gab].

Fixing a pointed algebra realization of R as in , the quotient category R’
is realized by the algebra A" from 7 and the quotient functor j is the obvious
“idempotent truncation functor” sending an A-module V' to

iVi= @ eV (2.22)
acBT

with AT acting by restricting the action of A. In particular, it follows that R' is of the
same type (finite Abelian, essentially finite Abelian or Schurian) as R.

Lemma 2.21. In the above setup, the quotient functor j: R — R' has a left adjoint j
and and a right adjoint jy: ,
%
» N

J

*___—

Jt

R RT.

The counit of one of these adjunctions and the unit of the other give isomorphisms:
Jjojs = Idrt = joji.
In particular, ji and jy are fully faithful.

Proof. We again work in terms of the algebra realizations (2.20)—(2.21)), so that j
is the idempotent truncation functor (2.22)). This is isomorphic to the hom functor
@Dyt Hom 4 (Aey, —), which has the left adjoint

Jri= ( P Aeb> ®a1 — : A'-mod — A-mod (2.23)
beBT
by Lemma [2.7(1). From this, it is clear that the unit of adjunction Idg: — j o ji
is an isomorphism. On the other hand, j is also isomorphic to the tensor functor
(Byept €6A4) ®4 —, so Lemma 1) also gives that j has the right adjoint

Jx 1= (—B Hom 4+ ( @ epAeg, —) : A"-mod — A-mod. (2.24)
aeB beB?

Again using this we see that the counit j o j, — Idz+ is an isomorphism. O
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As we did for 4, i* and ', in the Schurian case, we will use the same notation 7, ji and
jx for the natural extensions of these functors to the ind-completions, i.e., the categories
A-mod and A'-mod. The following lemma describes the effect of these functors on
indecomposable projective and injective objects.

Lemma 2.22. Continuing with the above setup, let P(b) (resp., (b)) and P'(b) (resp.,
17(b)) be a projective cover (resp., an injective hull) of L(b) in R and a projective cover
(resp., an injective hull) of L'(b) in R'. For be B', we have that
GP(b) = P'(b),  jI(b)=1"(b),  HP'(b)=P(b),  jsl'(b) = I(b).

Moreover, the adjunction gives isomorphisms

Homg (P(b),jxV) = Homz: (P (b), V), Homg (iV, 1(b)) = Hom: (V. I' (b)) (2.25)
for Ve R, hence, [V : L(b)] = [j«V : L(b)] = [#1V : L(b)] for all be B'.
Proof. The first part can be checked directly using the explicit realizations 1’
of these functors. We just go through the argument needed to establish the isomorphism
JsI"(b) = I(b). We have that I"(b) = (e, A")® and I(b) = (e, A)®, so using (2.9) we get
that

JsI'(b) = (—B Hom 4+ ( <—D epAeg, (ebAT)®) > (—D Hom 4+ (ebAT, ( (—B ebAea)®)

aeB beBT aeB beBT

P (epAeq)* = (e, A)® = I(b).

acB

lle

The second part is immediate given the first part. O

3. GENERALIZATIONS OF HIGHEST WEIGHT CATEGORIES

In this section, we define the various generalizations of highest weight categories
and derive some of their fundamental properties in the four settings of finite Abelian,
essentially finite Abelian, Schurian, and locally finite Abelian categories. The big four
definitions in the section are Definitions and The reader new to these
ideas may find it helpful to assume initially that all of the strata are simple in the sense
of Lemma [3.6] when the definitions specialize to the notions of finite, essentially finite,
upper finite and lower finite highest weight categories.

3.1. Stratifications and the associated standard and costandard objects. Let
(A, <) be a poset. It is interval finite (vesp., upper finite, resp., lower finite) if the
interval [A, ] :={ve A| X <v < p} (resp., [\, 0) :={veA| X< v}, resp., (—o0, u] :=
{ve Alv < p}) is finite for all A, € A. A lower set (resp., upper set) means a subset
AY (resp., A") such that y < Ae AV = e A (resp., u=>Ae AT = pe A).

Definition 3.1. Let R be an Abelian category of one of the four types discussed in the
previous section. A stratification p : B — A of R consists of the following data:

(p1) An interval finite poset (A, <).

(p2) A set B indexing representatives {L(b) | b € B} for the isomorphism classes of

irreducible objects in R.

(p3) A function p : B — A with finite fibers By := p~1()).
For each A € A, let R<) and R.) be the Serre subcategories of R associated to the
subsets B¢y = {b € B | p(b) < A} and B, := {b € B | p(b) < A}, respectively. We
impose the following axiom:

(p4) Each of the Abelian subcategories R« has enough projectives and injectives.

In case p is a bijection, one can use it to identify B with A, and may simply write L(\)
instead of L(b), and similarly for all of the other families of objects introduced below.
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Remark 3.2. If R is finite Abelian, essentially finite Abelian or Schurian then the axiom
(p4) holds automatically. However, it rules out many situations in which R is merely
locally finite Abelian. For example, the category Rep(G,) of finite-dimensional rational
representations of the additive group does not admit a stratification in the above sense.

Given a stratification of R, we write i<y : R<x — R and i<y : R<y — R for the
inclusion functors. Using Corollary and (p4) in the locally finite Abelian case, we
see that R« and R~ are finite Abelian if R is finite Abelian, essentially finite Abelian
if R is locally finite Abelian or essentially finite Abelian, and Schurian if R is Schurian.
Let Ry be the quotient category R<y/R<x and R R<x — Ry be the quotient functor.
We are in a recollement situation as in Lemmas [2.19] and 221t

! 5y

iox Tk
R<a - R R- (3.1)

As we said already in the introduction, we call j* and j3 the standardization and co-
standardization functors, respectively. The objects

{LA(b) := 5 L(b) | be By}

give a full set of pairwise inequivalent irreducible objects in Ry. Since the set B is
finite, Lemma implies that R, is a finite Abelian category. Let Py(b) and I,(b)
be a projective cover and an injective hull of Ly(b) in Ry, respectively. Finally, define
standard, costandard, proper standard and proper costandard objects A(b), V(b), A(b)
and V(b) according to (1.1)).

Lemma 3.3. For b € By, A(b) is a projective cover and V(b) is an injective hull of
L(b) in Rex. Also, A(b) is the largest quotient of A(b) such that [A(b) : L(b)] = 1 and
all other composition factors are of the form L(c) for c € B_y. Similarly, V(b) is the
largest subobject of V(b) such that [V(b) : L(b)] = 1 and all other composition factors

are of the form L(c) for c € B.y.

Proof. The first assertion follows by Lemma To prove the statement about A(b),
assume [A(b) : L(c)] # 0. Since A(b) € Ry, we have p(c) < p(b). If p(c) = p(b) then
[A) : L()] = [PAG) : La(@)] = [Lal) : La(e)] = by

Thus, A(b) is such a quotient of A(b). To show that it is the largest such quotient, it
suffices to show that the kernel K of A(b) — A(b) is finitely generated with head that
only involves irreducibles L(c) with p(c) = p(b). To see this, apply the right exact functor
Jji* to a short exact sequence 0 — K — Py(b) — Lx(b) — 0 to get an epimorphism
jﬁf( —» K. Then observe that j.)‘]? is finitely generated as j{* is a left adjoint, and
its head only involves irreducibles L(c) with p(c) = p(b). The latter assertion follows
because HomR(jf‘IA(,L(c)) ~ Hompg, (K,j*L(c)) for ¢ € B<y. The statement about
V(b) may be proved similarly. O

Corollary 3.4. We have that dim Homg (A(b), V(c)) = dim Homg (A(b), V(c)) = ..
for all b,c e B.

Definition 3.5. Suppose we are given a stratification p : B — A of R. For A € A,
we say that the stratum R, is simple if it is equivalent to the category Veceq of finite-
dimensional vector spaces.

Lemma 3.6. For a stratification p: B — A of R, the following are equivalent:
(i) all of the strata are simple;

(ii) p is a bijection and A(N) = A(

(i1i) p is a bijection and V() = V/(

) for all X e A;

A
A) for all A e A.
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Proof. (i)=>(ii): Take A € A. As the stratum R is simple, By = {by} is a singleton and

Py (by) = Lx(by). We deduce that p is a bijection and A(by) = A(by).

(ii)=(i): Take A € A. Then Ry has just one irreducible object (up to isomorphism),
namely, 7*A()). Since this equals j2A()), it is also projective. Hence, Ry is simple.

(i)<>(iii): Similar. O

Given a sign function € : A — {£}, we introduce the e-standard and e-costandard
objects A.(b) and V. (b) as in (1.2). Corollary implies that

dim Homg (A (b), Ve(c)) = 0pc (3.2)

for b,c € B. A A.-flag of V € R means a finite filtration 0 = Vy < Vi < --- <V, =V
with sections V,,,/Vy—1 = A (by,) for b, € B. Similarly, we define V.-flags. We denote
the exact subcategories of R consisting of all objects with a A.-flag or a V.-flag by
A.(R) and V. (R), respectively.

A A-flag (resp., a V-flag) is a A.-flag (resp., a V.-flag) in the special case that ¢ = +.
A A-flag (resp., a V-flag) is a A.-flag (resp., a V.-flag) in the special case that ¢ = —.
We denote the exact subcategories of R consisting of all objects with a A-flag, a A-flag,
a V-flag or a V-flag by A(R), A(R), V(R) and V(R), respectively.

3.2. Finite and essentially finite e-stratified categories. Throughout this subsec-
tion, R is an essentially finite Abelian category equipped with a stratification p : B — A,
and e : A — {+} is a sign function. The most important case is when R is a finite Abelian
category, i.e., the index set B is finite. In this, the “classical case,” all of the results in
this section are well known, but even here our approach incorporating the sign function
€ is not covered fully in the literature.
Let P(b) and I(b) be a projective cover and an injective hull of L(b), respectively. We
also need the objects from f. Consider the following two properties:
(ﬁg) For each b € B, there exists a projective object P, admitting a A.-flag with
A, () at the top and other sections A.(c) for ¢ € B with p(c) = p(b).
(ﬁg) For each b € B, there exists an injective object I, admitting a V.-flag with V. (b)
at the bottom and other sections V.(c) for ¢ € B with p(c) = p(b).
It is easy to see that the property (PA.) formulated in the introduction implies (JSZE),
and similarly (I'V.) implies (ﬁ <)- The seemingly weaker properties (ﬁs)f(ﬁ c) are
often easier to check in concrete examples. The essence of the following fundamental
theorem appeared originally in [ADI], extending earlier work of Dlab [Dlall.

Theorem 3.7. In the above setup, the four properties (]/DZE), (ﬁs), (PA.) and (IV.)
are equivalent. When these properties hold, the standardization functor j!’\ is exact when-
ever e(\) = —, and the costandardization functor j) is ezact whenever e(\) = +.

Remark 3.8. When all strata are simple, the properties (I/DZE)*(I/%E) may be written
more succinctly as the following:
(ISZ) For each A € A, there exists a projective object Py admitting a A-flag with A(\)
at the top and other sections of the form A(u) for pe A with p > .
(ﬁ) For each A € A, there exists an injective object I admitting a V-flag with V(\)
at the bottom and other sections of the form V(u) for pe A with p > A.
Theorem shows that these are equivalent to the properties (PA)—(IV) from the
introduction, as was used originally by Cline, Parshall and Scott in [CPSI].

We postpone the proof of Theorem until a little later in the the subsection. It
is important because it justifies the next key definition (eS) and its variations (FS),
(eHW), (SHW) and (HW).
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Definition 3.9. Let R be a finite Abelian category (resp., an essentially finite Abelian
category) and p : B — A be a stratification in the sense of Definition
(eS) We say that R is a finite (resp., an essentially finite) e-stratified category if one
of the equivalent properties (]st)f(ﬁ <) holds for some given choice of sign
function € : A — {£}.
(FS) We say R is a finite (resp., an essentially finite) fully stratified category if one of
these properties holds for all choices of sign function € : A — {#£}.

(eHW) We say R is a finite (resp., an essentially finite) e-highest weight category if the
stratification function p is a bijection, i.e., each stratum has a unique irreducible
object (up to isomorphism), and one of the equivalent properties (ﬁs)f(ﬁ )
holds for some given choice of sign function e : A — {£}.

(SHW) We say R is a finite (resp., an essentially finite) signed highest weight category if
the stratification function p is a bijection and one of these properties holds for
all choices of sign function.

(HW) We say R is a finite (resp., an essentially finite) highest weight category if all
of the strata are simple (cf. Lemma and one of the equivalent properties
(PA)~(IV) holds.

Remark 3.10. The language “c-quasi-hereditary” and “signed quasi-hereditary” in
Definition[3.9]is a significant departure from the existing literature, where such categories
would be referred to as some form of properly stratified category; this terminology goes
back to the work of Dlab [Dla2]. A recent exposition which takes a more traditional
viewpoint than here can be found in [CZ]. In particular, in [CZ, Definition 2.7.4], one
finds five types of finite-dimensional algebra A defined in terms of properties of the
category A-modsq, namely, standardly stratified algebras, exactly standardly stratified
algebras, strongly stratified algebras, properly stratified algebras, and quasi-hereditary
algebras. To compare this to our language in Definition [3.9] the category A-mod¢q in
these five cases is +-stratified, fully stratified, +-highest weight, signed highest weight,
and highest weight, respectively. The equivalence of definitions can be seen easily using
Lemma below. For further reference to the original literature, [CZ, Appendix A.2]
is also helpful.

In the setup of (¢S), we can view {L(b) | b € B} equivalently as a full set of pairwise
inequivalent irreducible objects in R°P. The stratification of R is also one of R°P. The
indecomposable projectives and injectives in R°P are I(b) and P(b), while the (—¢)-
standard and (—e)-costandard objects in R°P are V. (b) and A.(b), respectively. So we
can reinterpret Theorem as the following; this is an extension of Theorem from
the introduction since we are now including essentially finite Abelian as well as finite
Abelian categories.

Theorem 3.11. R is e-stratified (resp., e-highest weight) if and only if R°P is (—¢)-
stratified (resp., (—¢)-highest weight).

Now we must prepare for the proof Theorem [3:7] The main step in the argument
will be provided by the homological criterion for V. -flags from the next Theorem [3.13]
In turn, the proof of this criterion reduces to the following lemma which treats a key
special case. The reader wanting to work fully through the proofs should look also at
this point at the lemmas in below.

Lemma 3.12. Assume that R is an essentially finite Abelian category equipped with
a stratification p and sign function €, such that property (]SZE) holds. Let X € A be
maximal and V € R be an object satisfying the following properties:

(1) Exty (AL(b),V) =0 for all be B;

(2) socV =~ L(by)®--®L(by) forby,...,b, € By.
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Then V belongs to R<y (so that it makes sense to apply the functor j* to it), and

L [ ife(\) = +,
S VD@ @Vb) i) =

Moreover, in the case €(A) = +, the functor ji‘ is exact. Hence, in both cases, we have
that V e V.(R).

Proof (assuming lemmas from below). We first prove in case e(\) = —. Let
W :=V(b))® - @®V(b,). By the maximality of A and Lemma [3.47] this is an injective
hull of soc V. So there is a short exact sequence 0 >V — W — W /V — 0. For any
a € B, we apply Homg (A.(a), —) and use property (1) to get a short exact sequence

(3.3)

0 — Homgp (Ac(a),V) SR Homg (Ac(a), W) — Homg (Ac(a), W/V) — 0. (3.4)

If p(a) # A then Homg(As(a),W) = 0 as none of the composition factors of A (a)
are constituents of soc W. If p(a) = X then A.(a) = A(a) and any homomorphism
A(a) — W must factor through the unique irreducible quotient L(a) of A(a). So its
image is contained in soc W < V| showing that f is an isomorphism. These arguments
show that Homg (A.(a), W/V) = 0 for all a € B. We deduce that soc (W/V) = 0,
hence, W/V = 0, which is what we needed.

Now consider when £(\) = +. By Lemma again, the injective hull of V is
V(b1)®---@®V(by), which is an object of R<y. Hence, V € R<y. The unit of adjunction
gives us a morphism g : V. — W := j2(j*V). Since g becomes an isomorphism when we
apply 77, its kernel belongs to R~y. In view of property (2), we deduce that ker g = 0, so
g is a monomorphism. Hence, we can identify V with a subobject of W. To show that g is
an epimorphism as well, we apply Homgz (A.(a),—) to 0 >V > W — W/V — 0 to get
the short exact sequence . By adjunction, the middle morphism space is isomorphic
to Homp, (j*Ac(a),j*V), which is zero if p(a) < A\. If p(a) = X then A (a) = A(a) is
the projective cover of L(a) in R by Lemma and j*A.(a) is the projective cover
of Ly(a) in Ry. We deduce that both the first and second morphism spaces in
are of the same dimension [V : L(a)] = [j*V : Lx(a)], so f must be an isomorphism.
Therefore Homg (A (a), W/V) =0 for all a € B, hence, V = W and is proved.

To complete the proof, we must show that ji‘ is exact when £(\) = +. For this, we use
induction on composition length to show that j} is exact on any short exact sequence
0> K—> X — @ — 0in R,. For the induction step, suppose we are given such an
exact sequence with K,Q # 0. By induction, joK and j2Q both have filtrations with
sections V(b) for b € By. Hence, by Lemma we have that Ext (A.(b),j2K) =
Exth (A-(b),72Q) = 0 for all n > 1 and b € B. As it is a right adjoint, 5 is left exact,
so there is an exact sequence

Let Y := j2X/j2 K, so that there is a short exact sequence
0— jpK — joX — Y — 0. (3.6)

To complete the argument, it suffices to show that Y =~ j2Q. To establish this, we show
that Y satisfies both of the properties (1) and (2); then, by the previous paragraph and
exactness of j*, we get that Y =~ j}(j*Y) =~ j2(X/K) = j2Q, and we are done. To see
that Y satisfies (1), we apply Homg (A (b),—) to to get an exact sequence

Extr (A:(b), j3X) — Extr(A:(0),Y) — Ext (A (b), 2 K).

The first Ext! is zero by Lemma Since we already know that the Ext® term is
zero, Exty (A (b),Y) = 0. To see that Y satisfies (2), note comparing (3.5)(3.6) that

Y < j2@Q, and soc j2Q is of the desired form by what we know about its V.-flag. O
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Theorem 3.13. Assume that R is an essentially finite Abelian category equipped with
a stratification p and sign function €, such that property (ISZE) holds. For V € R, the
following properties are equivalent:
(i) V€ Ve(R);

(ii) Exty (AL(b),V) =0 for all be B;

(11i) Extm(Ac(b),V) =0 forallbe B and n > 1.
If these properties hold, the multiplicity (V : V(b)) of V.(b) as a section of a V.-flag
of V' is well-defined independent of the choice of flag, as it equals dim Homp (A (b), V).

Proof (assuming lemmas from below). (iii)=>(ii): Trivial.
(i)=(iii) and the final assertion of the lemma: These follow directly from Lemma [3.49]
(ii)=(i): Assume that V satisfies (ii). We prove that it has a V.-flag by induction on

d(V) := > dimHomg (A(b), V).
beB

The base case when d(V) = 0 is trivial as we have then that V' = 0. For the induction
step, let A € A be minimal such that Homg (A-(b),V) # 0 for some b € B. The
Serre subcategory R« is an essentially finite Abelian or Schurian category which also
satisfies (F/’ZE) thanks to Lemma M(Q) Let W :=i_,V. Because W is a subobject
of V, we have by the minimality of A that Homg (A.(b), W) s 0 only if b € B,. Hence,
soc W =~ L(by))®---@® L(by,) for by,...,b, € Bx. Thus, W satisfies the hypothesis (2)
from Lemma [3.12] (with V and R there replaced by W and R<,). To see that it satisfies
hypothesis (1), we apply Homg (A-(b),—) to a short exact sequence 0 - W — V —
@ — 0 to get an exact sequence

0 — Homg (AL (b), W) — Homg (A.(b),V) — Homg (A (D), Q)
— Extr (Ac(b), W) — 0 — Extk (AL (b), Q) — Extx (A-(b), W).
By the definition of W, the socle of @ has no constituent L(b) for b € B¢y. So for
b € B¢ the space Homp (AL (), @) is zero, and we get that Ext%a@(As(b), W) =0. So
now we can apply Lemma to deduce that W e V. (R<y). Hence, W e V. (R).
In view of Lemma we get that Ext, (A (b),W) =0 foralln > 1 and b € B.
So, by the above exact sequence again, we have that Exty (A-(b), Q) = 0 and d(Q) =

d(V) —d(W) < d(V). Finally we appeal to the induction hypothesis to deduce that
Q € A.(R). Since we already know that W € A_(R), this shows that V € A_,(R). O

Corollary 3.14. In the setup of Theorem multiplicities in a V-flag of I(b) satisfy
(I(b) : Ve(c)) = [Ac(c) : L(b)].

Corollary 3.15. For R as in Theorem[3.13, let0 > U — V — W — 0 be a short exact
sequence. If U and V' have V. -flags then so does W.

Proof of Theorem[3.7 Suppose that R satisfies (ﬁzg) Since V' = I(b) is injective, it

satisfies the hypothesis of Theorem [3.13(ii). Hence, by that theorem, I(b) has a V.-flag

and the multiplicity (I(b) : V<(¢)) of V<(¢) as a section of any such flag is given by
(I(b) : V.(c)) = dimHomg (A.(c), I(b)) = [A(c) : L(b)].

This is zero unless p(b) < p(c). Thus, we have verified that R satisfies (IV.). Moreover,

Lemma shows that j3 is exact whenever e(\) = +, giving half of final assertion

made in the statement of the theorem we are trying to prove.

Repeating the arguments in the previous paragraph but with R replaced by R°P and ¢
replaced with —e show that (ﬁs) implies (PA.) and that j{ is exact whenever e(\) = —.
As we have already observed, it is obvious that (PA.) = (ﬁg) and (IV,) = (IV.),
so this completes the proof. O
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So now Theorem is proved and Definition [3.9]is in place. In the remainder of the
subsection, we are going to develop some further fundamental properties of these sorts
of category. We start off in the most general setup with R being a finite or essentially
finite e-stratified category. Note some of the proofs that follow also invoke parts of the
lemmas from as we will point out along the way. In particular, from Lemma [3.45
and the dual statement, deduce that

Extr (AL (b), Ac(c)) = Extr (V.(c), V(b)) =0 (3.7)

for b,c € B with p(b) € p(c). By “dual statement” here, we mean that one takes
Lemma[3.45| with R replaced by R°P and e by —¢, which we may do due to Theorem[3.11
and Lemma then applies the contravariant isomorphism between R and R°P that
is the identity on objects and morphisms. In a similar way, the following theorem follows
immediately as it is the dual statement to Theorem

Theorem 3.16. Assume that R is a finite or essentially finite e-stratified category. For
V e R, the following properties are equivalent:
(i) V € Ac(R);

(ii) Exty(V, V(b)) =0 for all be B;

(11i) Extm(V, V(b)) =0 for allbe B and n > 1.
Assuming that these properties hold, the multiplicity (V : Ac(D)) of As(b) as a sec-
tion of a Ac-flag of V' is well-defined independent of the choice of flag, as it equals
dim Homg (V, V< (b)).

Corollary 3.17. (P(b) : A:(c)) = [Ve(c) : L(D)].

Corollary 3.18. Let 0 > U - V — W — 0 be a short exact sequence in a finite or
essentially finite e-stratified category. If V and W have A.-flags then so does U.

The following results about truncation to lower and upper sets are extremely useful;
some aspects of them were already used in the proof of Theorem [3.13

Theorem 3.19. Assume that R is a finite or essentially finite e-stratified category.
Suppose that A* is a lower set in A. Let BY := p~1(AY) and i : R*¥ — R be the
corresponding Serre subcategory of R with the induced stratification. Then R' is itself
a finite or essentially finite c-stratified category according to whether AY is finite or
infinite. Moreover:
(1) The distinguished objects in R* satisfy L*(b) =~ L(b),
i'I(b), At (b) = A(b),A(b) = A(b), VH(b) = V(b) and
(2) i* is exaci(ﬂ on A (R) with i* A(b) =~ A'(b) and i*A(b) ~ A
i*A(b) = i*A(b) = 0 for b¢ B'.
(3) Extlh (V,iW) =~ Exty, (i*V, W) for Ve A (R), W € R* and all n = 0.
(4) i* is exact on V.(R) with i'V(b) = V*(b) and i'V(b) = V*(b) for b e B*; also
i'V(b) =i'V(b) = 0 for b ¢ B'.
(5) Extl (iV,W) = Ext, (V,i'W) for Ve R*, W € V.(R) and alln > 0.
(6) Exty (iV,iW) = Exty, (V,W) for V,W e R* and n = 0.
Proof. Apart from (6), this follows by Lemma and its dual. To prove (6), by the
same argument as used to prove Lemma([3.46[(4), it suffices to show that (L,i*)V = 0 for
V € R*. Since any such V has finite length it suffices to consider an irreducible object
in RY, i.e., we must show that (IL,,i*)L(b) = 0 for b € B*. Take a short exact sequence
0— K — A.(b) — L(b) — 0 and apply ¢* and Lemma [3.46(3) to get
0—> (Lyi*)L(b) — i*K — i* A (b) — i*L(b) — 0.
But K,A.(b) and L(b) all lie in R* so i* is the identity on them. We deduce that
(Lyi*)L(b) = 0. Degree shifting easily gives the result for n > 1. O

i*P(b), I'(b) =~
V(b) for be B*.
(b) for be BY; also

We mean that it sends short exact sequences of objects with A.-flags to short exact sequences.
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Theorem 3.20. Assume that R is a finite or essentially finite e-stratified category.
Suppose that A" is an upper set in A. Let B" := p~Y(A") and j : R — R be the
corresponding Serre quotient category of R with the induced stratification. Then R' is
itself a finite or essentially finite e-stratified category according to whether AV is finite
or infinite. Moreover:
(1) For b e B', the distinguished objects L' (b), PT(b), I'(b), AT(b), AT(b), V'(b)
and V'(b) in R' are isomorphic to the images under j of the corresponding
objects of R.
(2) We have that jL(b) = jA(b) = jA(b) = jV(b) = jV(b) =0 if b ¢ B'.
(3) Extg (V,j:W) = Extr; (JV,W) for Ve R,W e V (RT) and all n = 0.
(4) js is exact on VE(RT) with j,V'1(b) = V(b), 5.V (b) = V(b) and j.I'(b) = I(b)
forbe B,
(5) Extp (7 V,W) = Exty: (V,jW) for Ve A(R"), W e R and all n > 0.
(6) ji is exact on A (R") with jiAT(b) = A(b), jHAT(b) = A(b) and jiP'(b) = P(b)
forbe BT,

Proof. Apart from (4) and (6), this follows from Lemma and its dual. For (4) and
(6), it suffices to prove (4), since (6) is the equivalent dual statement. The descriptions
of 7.V (b), jxV1(b) and j,I'(b), follow from Lemma [3.50(1). It remains to prove the
exactness. We can actually show slightly more, namely, that (R"j.)V = 0 for V €
V(R") and n > 1. Take V € V.(R"). Consider a short exact sequence 0 -V — [ —
Q@ — 0in R" with I injective. Apply the left exact functor j, and consider the resulting
long exact sequence:

0= jxV = jul = juQ — (R'j,)V — 0.
As V has a V.-flag, we can use (3) to see that Homg (A (b), j«V) = Homg: (jA:(b),V)
and Extl (AL (b), 7+ V) = Exth: (jAL(b),V) for every b e B. Hence, Theorem [3.13] j,V
has a V. -flag with
(V:VL()) ifbeBT,

(4xV : V(b)) = dimHomg (A (D), V) = { 0 otherwise.

Both I and @ have V.-flags too, so we get similar statements for j.I and j.@Q. Since
(I:VIb) = (V:VLb))+(Q: VL)) by the exactness of the original sequence, we
deduce that 0 — 7,V — juI — j.Q — 0 is exact. Hence, (R'j,)V = 0. This proves the
result for n = 1. The result for n > 1 follows by a degree shifting argument. O

Corollary 3.21. Let notation be as in Theorem[3.2(] and set B! := B\B'.

(1) For V e V.(R), there is a short eract sequence 0 — K — V 5 (V) — 0
where v comes from the unit of adjunction, j«(jV) has a Vc-flag with sections
V:(b) for be BT, and K has a V.-flag with sections V(c) for c € B

(2) For V e A.(R), there is a short exact sequence 0 — 7 (jV) SV Q-0
where § comes from the counit of adjunction, 5(jV) has a A.-flag with sections
A.(b) for be B' and Q has a A.-flag with sections A.(c) for c € BY.

Proof. We prove only (1), since (2) is just the dual statement. Using , we can
order the V.-flag of V to get a short exact sequence 0 - K — V — @ — 0 such
that K has a V.-flag with sections V. (b) for b € B* and Q has a V.-flag with sections
Ve(c) for ¢ € B'. For each b € B', the unit of adjunction V.(b) — j4(jV(b)) is an
isomorphism thanks to Theorem [3.20[4) since it becomes an isomorphism on applying
j. Since j4 is exact on V. (R'), we deduce that the the unit of adjunction Q@ — j4(5Q)
is an isomorphism too. It remains to note that jV =~ j@Q, hence, j.(jV) = j.(jQ). O

Now we proceed to discuss some of the additional features which show up when in
one of the more refined settings (FS), ((HW), (SHW) and (HW). By Theorem R is
a fully stratified category (resp., a signed highest weight category) if and only if R°P is a
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fully stratified category (resp., a signed highest weight category). The following lemma
shows that fully stratified categories in our terminology are the same as the “standardly
stratified categories” defined by Losev and Webster in [LW] §2].

Lemma 3.22. The following are equivalent:
(i) R is a fully stratified category;
(i) R is e-stratified for every choice of sign function e : A — {£};
(iii) R is e-stratified and (—¢)-stratified for some choice of sign functione : A — {t};
(iv) R is e-stratified for some € : A — {+} and all of its standardization and costan-
dardization functors are exact;
(v) R is a +-stratified category and each A(b) has a A-flag with sections A(c) for c
with p(c) = p(b);
(vi) R is a —-stratified category and each V(b) has a V-flag with sections V(c) for c

with p(c) = p(b).
Proof. (1)=>(ii)=>(iii): Obvious.
(iii)=(iv): Take € as in (iii) so that R is e-stratified. The standardization functor j{* is
exact when €(A\) = — by the last part of Theorem Also R is (—¢)-stratified, so the

same result gives that jI)‘ is exact when e(\) = +. Similarly, all of the costandardization
functors are exact too.

(iv)=(v): Applying the exact standardization functor j{* to a composition series of Py (b),
we deduce that A(b) has a A-flag with sections A(c) for ¢ with p(c) = p(b). Similarly,
applying j2, we get that V(b) has a V-flag with sections V(c) for ¢ with p(c) = p(b).
To show that R is +-stratified, we check that each I(b) has a V-flag with sections V(c)
for ¢ with p(c) = p(b). This is immediate if £(b) = + since we are assuming that R is
e-stratified. If £(b) = — then I(b) has a V-flag with sections V(¢) for ¢ with p(c) = p(b).
Hence, by the previous paragraph, it also has the required sort of V-flag.
(v)=>(i): We just need to show that R is —-stratified. We know that each P(b) has a

A-flag with sections A(c) for ¢ with p(c) > p(b). Now use the given A-flags of each A(c)
to see that each P(b) also has the appropriate sort of A-flag.

(v)<(vi): This follows from the above using the observation made earlier that R is fully
stratified if and only if R°P is fully stratified. O

Corollary 3.23. Suppose that R is a finite or essentially finite e-stratified category
admitting a duality compatible with the stratification, i.e., there is a contravariant equiv-
alence # : R — R such that L(b)# =~ L(c) implies p(b) = p(c) for b,ce B. Then R is a
fully stratified category.

Proof. Since R is e-stratified, R°P is (—¢)-stratified. Using the duality, we deduce that
R is also (—e)-stratified. This verifies Lemma 3). O

Corollary 3.24. Suppose that R is a finite or essentially finite e-highest weight category
admitting a duality # fizing isomorphism classes of irreducible objects. Then R is a
signed highest weight category.

Lemma 3.25. Suppose that R is a finite or essentially finite fully stratified category.
For b,ce B and n = 0, we have that

Extg (A(b),V(c)) = { gthRA (L0, L) Z;/j\ejwﬁse,
where X := p(b) and p := p(c).

Proof. Choose € so that e(A\) = —, hence, A(b) = A.(b). By Lemma R is e-
stratified, so we can apply Theorem 4) with R* = R, to deduce that

Extiy (A(b), V(c)) = Extl_ (i%,A(), V(c)).
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This is zero unless A < p. If A < p, it is simply Extz _ (A(b)7 V(c)). Now we change €
so that e(p) = +, hence, V(c) = Vc(c). Then by Thoorcm 3) with R = R, and
R" = R, we get that EX‘C%@(A(Z)),V( ¢)) = Exty, (j*A(b ) L(c)). This is zero unless

A = u, when j#A(b) = L(b) and we are done. O

The following elementary observation also exploits the fully stratified hypothesis. For
example, this implies that if R is fully stratified and each stratum is itself highest weight
then the stratification can be refined to make R into a highest weight category.

Lemma 3.26. Suppose that R is fully stratified with stratification p : B — A and
that we are gwen another poset (A, <) and a finer stratification p : B — A, de., we
have that p(a) < p(b) = pla) < p(b). Assume the restrictions py : By — A deﬁne
stratifications making all of the original strata Ry into fully stratified categories with
standard and costandard objects denoted Ax(b) and Vx(b) for b € Bx. Then R is also
fully stratified with respect to the stmtiﬁcation p:B— A, and the corresponding standard
and costandard objects are A(b) = 5} Ax(b) and V(b) = j2VA(b) forbe B and X := p(b).

Proof. Take A\ € A and set A= p(A). The assumption on p implies that the quotient
functor j* : R — R factors through j* : R — Ra. Since both R and R, are fully
stratified, their standardlzatlon and costandardization functors are exact, hence so are
], and j; since they are compositions of exact functors. Similarly, it follows that the
standard and costandard objects of R with respect to the stratification p are as stated
in the lemma. Using the criterion from Lemma iv), it remains to show that each
P(a) has a filtration with subquotients A(b) for b € B satisfying p(b) = p(a). As Ry is
fully stratified, Py(a) has a Ay-flag. Hence, applying the exact functor j, we see that
A(a) has a A-flag. Since P(a) has a A-flag, the result follows. O

The next results are concerned with global dimension.

Lemma 3.27. Let R be a finite e-stratified category.

(1) AllV € A (R) are of finite projective dimension if and only if all negative stmt(ﬂ
have finite global dimension.

(2) AV € V.(R) are of finite injective dimension if and only if all positive strata
have finite global dimension.

Proof. It suffices to prove (1). Assume that all negative strata have finite global dimen-
sion. By [Wel, Exercise 4.1.2], it suffices to show that pd A.(b) < oo for each b€ B. We
proceed by downwards induction on the partial order. For the induction step, consider
A (b) for b € By, assuming that pd A.(¢) < o for each ¢ with p(c) > A. We show
first that pd A(b) < 0. Using with €(A) = —, we see that there is a short exact
sequence 0 — Q — P(b) — A(b) — 0 such that @ has a A.-flag with sections A.(c) for ¢
with p(c) > A. By the induction hypothesis, @ has finite projective dimension, hence, so
does A(b). This verifies the induction step in the case that () = +. Instead, suppose
that E(/\) = —, ie, Ag(b) = A(b) Let 0 > P, —» -+ > Py — Lk(b) — 0 be a finite
projective resolution of Ly(b) in the stratum Ry. Applying ji*, which is exact thanks
to Theorem we obtain an exact sequence 0 — V;, — --- — Vi — A(b) — 0 such
that each V, is a direct sum of standard objects A(c) for ¢ € By. The result already
established plus [Weil Exercise 4.1.3] implies that pd V,,, < oo for each m. Arguing like
in the proof of [Wei, Theorem 4.3.1], we deduce that pd A(b) < o0 too.

Conversely, suppose that pd A.(b) < o for all b € B. Take A € A with ¢(\) = —.
Suppose first that \ is maximal. Applying the exact functor j* to finite projective
resolutions of A(b) for each b € B, we obtain finite projective resolutions of Ly(b) in
R, showing that the stratum R is of finite global dimension. Finally, when A is not
maximal, we let A* := A\(\, ) and i : R* — R be the corresponding e-stratified Serre

2We mean the strata R for A € A such that e(\) = —
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subcategory of R. Given b € B, take a finite projective resolution 0 —» P, — -+ —
Py — A (b) = 0 of A (b) in R. Applying i*, we obtain an exact sequence 0 — i*P,, —

- — *Py — A.(b) — 0 in R*. This sequence is exact due to Theorem 2); to see
this one also needs to use Corollary [3.18|to break the sequence into short exact sequences
in A.(R). Since A is maximal in A', we are reduced to the case already discussed. [

Corollary 3.28. Suppose that R is a finite e-stratified category. If R is of finite global
dimension then all of its strata are of finite global dimension too.

Corollary 3.29. Suppose that R is either a finite +-stratified category or a finite —-
stratified category. If all of the strata are of finite global dimension then R is of finite
global dimension.

Proof. We just explain this in the case that R is —-stratified; the argument in +-stratified
case is similar. Lemma (1) implies that A(b) is of finite projective dimension for each
b € B. Moreover, there is a short exact sequence 0 — K — A(b) — L(b) — 0 where all
composition factors of K are of the form L(c) for ¢ with p(c) < p(b). Ascending induction
on the partial order implies that each L(b) has finite projective dimension. O

Remark 3.30. In the fully stratified case, Lemma |3.25 can be used to give a precise
bound on the global dimension of R in Corollary Let
A = su max (gl dim Ry, ..., gl dimRy,) |7 >0and X, Ay, A € A
P 2 with Ag <A1 <~ <Ay = A"
By mimicking the proof of [Dond, Proposition A2.3], one shows that Ext% (L(b), L(c)) =
0 for b,c € B and any n > |p(b)| + |p(c)|. Hence, gl. dim R < 2max{|A| | A € A}.

In particular, Corollary recovers the following well-known result, see e.g. [CPSI].
For further detailed remarks about the history of this, and the general notion of highest
weight category, we refer to [Dondl, §A5] and [DR].

Corollary 3.31. Finite highest weight categories are of finite global dimension.

Remark 3.32. With regard to highest weight categories again, Coulembier [Cou| has
recently made the following elegant observation: in a finite highest weight category with
duality, the partial order on A is essentially unique (up to replacing it by a coarser or-
dering). Tt would be interesting to extend this result to signed highest weight categories.

3.3. Upper finite e-stratified categories. In this subsection we assume that R is a
Schurian category in the sense of and p : B — A is a stratification such that the
poset A is upper finite. Also € : A — {£} is a fixed sign function. Let I(b) and P(b) be
an injective hull and a projective cover of L(b) in R. Recall f, the properties
(PA.)—(IV.) and (PA)—(IV) from the introduction, and the seemingly stronger prop-
erties (P/’Zg)f(ﬁ c) and (F/’Z)f(ﬁ ) from the previous subsection. Before formulating
the main definitions in the upper finite setting, we prove an analog of the homological
criterion for V.-flags from Theorem [3.13] The proof depends on the lemmas proved
in below, which we used already in the essentially finite Abelian case, together
with the following two technical lemmas, which we prove by truncating to finite Abelian
quotients.

Lemma 3.33. Suppose that R is Schurian with a stratification p and sign function €,
and assume that the property (]/DZE) holds in R. Let A" be a finite upper set in A,
B' := p7Y(A"), and j : R — R be the corresponding Serre quotient category with the
induced stratification. The functor jy is exact on V<(R"), and it takes objects of V.(B™)
to objects of V.(B).

Proof (assuming lemmas in below). We proceed by induction on the length of the
V.-flag. The base case, length one, follows from Lemma 1). For the induction step,
consider a short exact sequence 0 - K — X — Q — 0 in R'" such that K, X and Q
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have V.-flags with K,Q # 0. We may assume by induction that j. K and j,Q have
V-flags, and must show that 0 — j. K — j. X — j.Q — 0 is exact. Since it is left
exact, this follows if we can show that
[+ X : L(b)] = [4« K : L(b)] + [J«Q : L(D)]
for all b € B. To see this, let A™ be the finite upper set generated by A" and b. Let
B :=p71(A") and k: R — R" be the corresponding Serre quotient. By Lemma
we have that [jX : L(b)] = [k(jsX) : kKL(b)] = [k(jxX) : L™(b)], and similarly for K
and Q. Since AT is an upper set in AT, we can also view R' as a quotient of R", and
the quotient functor j factors as j = jo k for another quotient functor 7: R" — R™.
We have that ky o J, =~ js, hence, applying k, we get that 7, =~ k o j,. It follows that
[k(j«X) : LT (b)] = [7+X : L™(b)], and similarly for K and Q. It remains to observe
that
[ X L7 (0)] = [k LT (0)] + [72Q : LT (B)].

To see this, we note that R™ and R' are finite e-highest weight categories due to
Lemma 2) and Theorem So we can apply Theorem 4) to see that the
sequence 0 — 7, K — 7. X — 7,Q — 0 is exact. O

Lemma 3.34. Suppose that R is Schurian with a stratification p and sign function €,
and assume that the property (FZE) holds in R. Let V € R be a finitely cogenerated
object such that Exty (AL(b),V) = 0 for all b € B. Then we have that V € V.(b),
and the multiplicity (V : V(b)) of Ve(b) in any V-flag is equal to the dimension of
Homg (A (D), V).

Proof (assuming lemmas from below). Since V is finitely cogenerated, its injective
hull is a finite direct sum of the indecomposable injective objects I(b). This means that
we can find a finite upper set A’ and B := p~!(A") so that there is a short exact
sequence
0>V - P Ib® -Q—0
beB1

for some ny, > 0. Let j : R — R be the corresponding Serre quotient. This is a finite
e-stratified category by Lemma 2) and Theorem

Applying j to the above short exact sequence gives us a short exact sequence in R'.
Then we apply the functor Homp+ (Al (), —) to this using also Lemma 1) to obtain
the long exact sequence

0 — Homg: (AL(b), jV) — Hompg: (A;(b), Prent IT(b)®”b> — Homg1 (AL(b), jQ)
— Exty: (AL(b),jV) — 0.
From adjunction and Lemma 1) again, we get a commuting diagram

0 —»Homyp: (AL(b), jV)—>Homgzg: (Ag(b), Pien: IT(b)@"b>—>HomRT (AL(D),jQ)— 0

| J |

0 — Homp(Ac(b),V) — Hom (Ac(b), Bpepr 1)) — Homr (A (5),Q) — 0.

The vertical maps are isomorphisms and the bottom row is exact since Extg, (A, (b), V) =
0. Hence the top row is exact. Comparing with the previously displayed long exact
sequence, it follows that Extz (Al(b), V) = 0. Now we can apply Theorem in the
finite e-stratified category R' to deduce that jV has a V.-flag.

From Lemma we deduce that j,jV has a V.-flag. Moreover the multiplicity
of V.(b) in any V.-flag in j,jV is dim Homg (A.(b), j«jV) thanks to Lemmam To
complete the proof, we show that the unit of adjunction f : V' — j,jV is an isomorphism.
We know from Lemma [3.50(1) that the unit of adjunction is an isomorphism I(b) —
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JxjI(b) for each b € B'. Since V embeds into a direct sum of such I(b), it follows that
f is injective. To show that it is surjective, it suffices to show that

[xgV : L(b)] = [V : L(b)]
for all b € B. To prove this, we fix a choice of b € B then define AT, B, k : R —
R and 7: R" — R as in the proof of Lemma Since b € B™ we have that
[V : L(b)] = [kV : LT (b)] and [jjV : L(b)] = [k(jsjV) : L (b)]. As in the proof of
Lemma k(jsjV) = 75(5V) = 747(kV). Thus, we are reduced to showing that

[7:7(kV) « LT (b)] = [V : LT (B)]-

This follows because kV = 7,7(kV). To see this, we repeat the arguments in the previous
paragraph to show that &V € R™ has a V.-flag. Since the unit of adjunction is an
isomorphism VI (b) = 7,7VI(b) for each b € B, we deduce using the exactness from
Theorem 4) that it gives an isomorphism kV = 7,7(kV) too. O

We are ready to proceed to the main definition.
Theorem 3.35. Theorem[3.7 holds in the present setup too.

Proof. This is almost the same as the proof of Theorem given in the previous sub-
section. One needs to use Lemma in place of Theorem to see that I(b) has
a V.-flag with the appropriate multiplicities. For the assertion about exactness of jg
when e(\) = +, apply Lemma working in the category R<y, which satisfies (]SZE)
due to Lemma 2). O

Definition 3.36. Let R be a Schurian category and p : B — A be a stratification in

the sense of Definition such that the poset A is upper finite.

(eS) We say that R is an upper finite e-stratified category if one of the equivalent
properties (ﬁe)—(ﬁg) for some given choice of sign function € : A — {+}.

(FS) We say that R is an upper finite fully stratified category if one of these properties
holds for all choices of sign function € : A — {£}.

(eHW) We say that R is an upper finite e-highest weight category if the stratification
function p is a bijection, and one of the equivalent properties (]Szg)f(ﬁg) holds
for some given choice of sign function € : A — {+}.

(SHW) We say that R is an upper finite signed highest weight category if the stratification
function is a bijection and one of these properties holds for all choices of sign
function.

(HW) We say that R is an upper finite highest weight category if all of the stata are
simple (cf. Lemma and one of the equivalent properties (ﬁ),(ﬁ ) holds.

Theorem and still hold in the same way as before.

Next, we are going to consider two (in fact dual) notions of ascending A.- and de-
scending V.-flags, generalizing the finite flags discussed already. One might be tempted
to say that an ascending A.-flag in V' is an ascending chain 0 = Vp < V; < Vo < ---
of subobjects of V with V' = > 'V, such that V,,,/V,,_1 = A.(by,), and a descending
V.-flag is a descending chain V = V5 > V; > V5 > ... of subobjects of V' such that
Mpen Voo = 0 and V,,,—1/Vy, = AL (b)), for by, € B. These would be serviceable defini-
tions when A is countable. In order to avoid this unnecessary restriction, we will work
instead with the following more general formulations.

Definition 3.37. Suppose that R is an upper finite e-stratified category and V € R.

(A2%°) An ascending As-flagin V is the data of a directed set  with smallest element 0
and a direct system (V,,),eq of subobjects of V' such that Vo =0, >, Vi, =V,

and V,,/V,, € A (R) for each w < v. Let A2%°(R) be the exact subcategory of R
consisting of all objects V' possessing such a flag.
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(Vds¢) A descending V.-flagin V is the data of a directed set  with smallest element 0
and an inverse system (V/V,,)weq of quotients of V' such that Vo = V, (N cq Vi =
0, and V,,/V,, € V.(R) for each w < v. Let V¥5¢(R) be the exact subcategory of
‘R consisting of all objects V' possessing such a flag.

We stress that A%¢(R) and VI¢(R) are subcategories of R: we have not passed to the
completion Ind(R.).
Lemma 3.38. Suppose that R is an upper finite e-stratified category.
(1) For Ve A®(R), W € VI¢(R) and n = 1, we have that Ext% (V, W) = 0.
(2) ForV e A2°(R) the multiplicity of V(b) in a Ac-flag may be defined from
(V : AL(b)) := dim Homg (V, V(b)) = sup {(Vi, : Ac(b)) |w € Q} < o0,
where (Vi,)weq is any choice of ascending Ac-flag.
(3) For Ve VI¢(R), the multiplicity of A.(b) in a V.-flag may be defined from
(V : V(b)) := dimHomg (A (b), V) = sup {(V/V,, : V(b)) |w € Q} < o0,
where (V/V,)weq is any choice of descending V-flag.
Proof. (1) We first prove this in the special case that W = V.(b). Let (V,,)ueq be an
ascending A.-flag in V, so that V = lim V,,. Since Extg (V,,, W) = 0 by Lemma it
suffices to show that
Extf (V, W) = lim Ext} (V,, W),
To see this, like in [Wei, Application 3.5.10], we need to check a Mittag-Leffler condition.
We show simply that the natural map Ext%_l(Vv, W) — Ext%_l(voJ7 W) is surjective
for each w < v in Q. Applying Homg (—, W) to the short exact sequence 0 — V,, —
Vo — Vo, /Vi, — 0 gives an exact sequence
Extfy ' (Vy, W) — Extiy ' (Vio, W) — Extig (Vo / Vi, W).

It remains to observe that Exty (V,,/V,, W) = 0 by Lemma again, since we know
from the definition of ascending A.-flag that V,,/V,, € A.(R).

The dual of the previous paragraph plus Lemma gives that Ext’ (V, W) = 0 for
n>1,V =A.(b) and W € VI¢(R). Then we can repeat the argument of the previous
paragraph yet again, using this assertion in place of Lemma to obtain the result
we are after for general V € A2¢(R) and W € VI¢(R).

(2) This follows from (1) and because
Homg (V, V(b)) = Homp (lim V,,, V< (b)) = lim Homg (V,,, V< (b)),
which is finite-dimensional as V. (b), hence, each V,,, is finitely cogenerated.
(3) Similarly to (2), we have that
Homg (A (b), V) = Homg (A (b), lim(V/V,,)) = lim Homg (A (b), V/VL,),
which is finite-dimensional as A.(b) is finitely generated. Then we can apply (1) and

(3-2) once again. O

Theorem 3.39. Assume that R is an upper finite e-stratified category. For V € R, the
following are equivalent:
(1) Ve AF(R);
(ii) Extl (V, V(b)) = 0 for all be B;
(11i) Extm(V,V:(b)) =0 for allbe B andn > 1.
Assuming these properties, we have that V € A (R) if and only if it is finitely generated.
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Proof. (iii)=>(ii). Trivial.
(i)=(iii). This follows from Lemma [3.38]

(if)=(i). Let Q be the directed set of finite upper sets in A. Take w € Q; it is some
finite upper set A'. Let B := p~}(A") and j : R — R' be the corresponding Serre
quotient. Let V,, := 5(jV). By Lemma M(3), Extl (jV, V(b)) = 0 for all b € BT.
Hence, V,, := ji(jV) € A.(R) thanks to the dual of Lemma Let f, :V, > V be
the morphism induced by the counit of adjunction. We claim for any b € B' that the
map
fuw(b) : Homgz (P(b),V,,) —» Homg (P(b),V), 6 — f, 00

is an isomorphism. To see this, we assume that R = A-modjsq for a pointed locally
finite-dimensional locally unital algebra A = @a’beB eqAey. Then R' = eAe-modigyg
where e = ZaEBT eq, and V,, = Ae ®ca. €V. In these terms, the map f, is the natural
multiplication map. For b € BT, this gives an isomorphism eV, = e,V with inverse
epv — e, ® epv. This proves the claim.

Now take v > w, i.e., another finite upper set A" > A", and let £ : R — R" be the
associated quotient. The quotient functor j : R — R' factors as j = 70 k for another
quotient functor 7: R™ — R, and we have that

Vo = Gok)((GobV) = kGGHV)), Ve = k(kV).

By Corollary 2), there is a short exact sequence 0 — 7(3(kV)) - kV — Q — 0
such that both 71(7(kV)) and @ belong to A.(R'™). Applying k; and using the exactness
from the dual of Lemma we get an embedding fY : V,, — V,, such that V,,/V,, =
kQ € A.(R). Since the morphisms all came from counits of adjunction, we have that
Jvo f:j = fu-

Now we can show that each f,, is a monomorphism. It suffices to show that f,(b) :
Homg (P(b),V,,) — Homg (P(b),V) is injective for all b € B. Choose v in the previous
paragraph to be sufficiently large so as to ensure that b € B™. We explained already
that f,(b) is an isomorphism. Since f,, = f, o f4 and fU is a monorphism, it follows that
fw(b) is injective too. Thus, identifying V,, with its image under f,,, we have defined a
direct system (V,,),eq of subobjects of V' such that V,,/V,, € A.(R) for each w < v. It
remains to observe that Vy = 0 for a trivial reason, and Zwegz V., = V because we know
for each b € B that f,,(b) is surjective for sufficiently large w.

Final part: If V e A.(R), it is obvious that it is finitely generated since each A.(d) is
finitely generated. Conversely, suppose that V is finitely generated and has an ascending
A.-flag. To see that it is actually a finite flag, it suffices to show that Homg (V, V(b)) =
0 for all but finitely many b € B. Say hd V = L(b;) ®--- @ L(b,). HV — V.(b) is a
non-zero homomorphism, we must have that p(b;) < p(b) for some i = 1,...,n. Hence,
there are only finitely many choices for b as the poset is upper finite. O

Corollary 3.40. Let0 > U -V — W — 0 be a short exact sequence in R. If V and
W belong to A-(R) (resp., to A2(R)) so does U.

Theorem 3.41. Assume that R is an upper finite e-stratified category. For V € R, the
following are equivalent:
(i) V e VE(R);
(ii) Exty (A-(b),V) =0 for all be B;
(11i) Extm(Ac(b),V) =0 forallbe B and n > 1.
With these properties we have that V € V(R) if and only if it is finitely cogenerated.

Proof. This is the equivalent dual statement to Theorem [3.39] O

Corollary 3.42. Let0 > U -V — W — 0 be a short exact sequence in R. If U and
V belong to V.(R) (resp., to VI*(R)) so does W .
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The following is the upper finite analog of Theorem we have dropped part (6)
since the proof of that required objects of R* to have finite length.

Theorem 3.43. Assume that R is an upper finite e-stratified category. Suppose that
A is a lower set in A. Let BY := p~1(A%) and i : R* — R be the corresponding Serre
subcategory of R with the induced stratification. Then R' is an upper finite c-stratified
category. Moreover:
(1) The distinguished objects in R* satisfy L*(b) = L(b), P*(
i'I(b), AL (b) = A(b),AY(b) = A(b), V¥(b) = V(b) and V*(
(2) i* is exact on A (R) with i* A(b) = A*(b) and i*
i*A(b) = i*A(b) = 0 for b¢ BY.
(3) Exty (V,iW) =~ Exty, (i*V,W) for Ve A (R), W e R* and all n = 0.
(4) i* is exact on V.(R) with i'V(b) = V*(b) and i'V(b) = V*(b) for b e Bt; also
i'V(b) =i'V(b) = 0 for b¢ B
(5) Exth (iV,W) = Ext, (V,i'W) for Ve R*, W € V.(R) and alln > 0.

Proof. This follows from Lemma [3.46] and the dual statement. O

~ *P(b), I'(b) =~
>~ V(b) for be B*.

Next is the upper finite analog of Theorem [3.20

Theorem 3.44. Assume that R is an upper finite e-stratified category. Suppose that
A" is an upper set in A. Let B" := p=Y(A") and j : R — R be the corresponding Serre
quotient category of R with the induced stratification. Then R is itself a finite or upper
finite e-stratified category according to whether AT is finite or infinite. Moreover:
(1) For b e B', the distinguished objects L'(b), PT(b), IT(b), AT(b), AT(b), V'(b)
and V'(b) in R' are isomorphic to the images under j of the corresponding
objects of R.
(2) We have that jL(b) = jA(b) = jA(b) = jV(b) = jV(b) =0 if b¢ B,
(3) Exth (V, W) = Exth: (jV, W) for Ve R,W € V&(R") and all n > 0.
(4) j« is evact on Vo (R") with .V (b) = V(b), 7. V' (b) = V(b) and j.I'(b) = I(b)
forbe BT,
(5) Extl (jiV,W) = Ext, (V, jW) for V e AB(R"), W e R and all n > 0.
(6) ji is exact on A (R") with jiAT(b) = A(b), HAT(b) = A(b) and jiP'(b) = P(b)
forbe BT.

Proof. If A" is finite, this is proved in just the same way as Theorem Assume
instead that A" is infinite. Then the same arguments prove (1) and (2), but the proofs
of the remaining parts need some slight modifications. It suffices to prove (3) and (4),
since (5) and (6) are the same results for R°P.

For (3), the argument from the proof of Lemma 3) reduces to checking that j
sends projectives to objects that are acyclic for Homp: (—, W). To see this, it suffices to
show that Ext%; (jP(b), W) = 0 for n = 1 and b € B, which follows from Lemma 1).

Finally, for (4), the argument from the proof of Theorem 4) cannot be used since
it depends on R being essentially finite Abelian. So we provide an alternate argument.
Take a short exact sequence 0 - U — V — W — 0 in V.(R"). Applying j., we get
0 — j:U — 5.V — j7.W, and just need to show that the final morphism here is an
epimorphism. This follows because, by (3) and Theorem [3.41} .U, 7V and j,W all
have V.-flags such that (j.V : V(b)) = (j«U : V(b)) + (4« W : V(b)) forallbe B. O

The reader should have no difficulty in transporting Lemma|3.22|and Corollaries[3.23
to the upper finite setting.

3.4. Shared lemmas for §§3.243.3] In this subsection, we prove a series of lemmas
needed in both and in Let R be a category which is either essentially finite
Abelian (§3.2) or Schurian (§3.3). Alsolet p: B — A be a stratification, and e : A — {4}
be a sign function. In the Schurian case, we assume that the poset A is upper finite. In
both cases, we assume that property (P/’ZE) holds.
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Lemma 3.45. We have that Exty (AL (b), Ac(c)) = 0 for b,c € B such that p(b) € p(c).

Proof. Using the projective modules P, given by the assumed property (1555), we can
construct the first terms of a projective resolution of A.(b) in the form

Q — (—D PO . P, — A_(b) — 0 (3.8)
acB
p(a)=p(b)
for some n, = 0. Now apply Homg(—, A.(c)) to get that Extl (A.(b),A.(c)) is the
homology of the complex

Hompg (Py, Ac(c)) — Homp ( @ pore, Ag(c)) — Homg (Q, Ac(c)).
PEEAG

The middle term of this already vanishes as [A.(c) : L(a)] # 0 = p(a) < p(c). O

Lemma 3.46. Let A* be a lower set in A and B* := p~1(A'). Leti: RY — R be the
corresponding Serre subcategory of R equipped with the induced stratification.

(1) The standard, proper standard and indecomposable projective objects of R* are
the objects A(b), A(b) and i* P(b) for b e B'.

(2) The object i* P, is zero unless b € BY, in which case it is a projective object
admitting a A.-flag with top section A (b) and other sections of the form Ac(c)
for ¢ BY with p(c) = p(b). In particular, this shows that (PA.) holds in R*.

(3) (L,i*)V =0 forVeA.,(R) andn > 1.

(4) Exty (V,iW) =~ Exty, (i*V, W) for Ve A(R), W e R* andn > 0.

Proof. (1) For projectives, this follows from the usual adjunction properties. This also
shows that i* P, is projective, as needed for (2). For standard and proper standard
objects, just note that the standardization functors for R* are some of the ones for R.

(2) Consider a A.-flag of P,. Using Lemma we can rearrange this filtration if
necessary so that all of the sections A.(c) with ¢ € B* appear above the sections A.(d)
with d € B\B'. So there exists a short exact sequence 0 - K — B, —» Q — 0 in
which @Q has a finite filtration with sections A.(c) for ¢ € BY with p(c) = p(b), and K
has a finite filtration with sections A (c) for ¢ € B\B*. It follows easily that i*P, is
isomorphic to @, so it has the appropriate filtration.

(3) Tt suffices to show that (L,i*)A.(b) = 0 for all b€ B and n > 0. Take a short exact
sequence 0 > K — P, —> A.(b) — 0 and apply i* to obtain a long exact sequence

0 —> (Lyi*)Ac(b) — i* K —> i* P, — i*A.(b) — 0

and isomorphisms (L, 41i*)A.(b) = (L,i*)K for n > 0. We claim that (L1i*)A-(b) =
0. We know that K has a A_.-flag with sections A.(c) for ¢ with p(c) = p(b). We
use Lemma to order the A.-flag of K so that it yields a short exact sequence
0> L — K — @Q — 0in which @ has a A.-flag with sections A.(c) for ¢ € B*, and
L has a A.-flag with sections A.(c) for ¢ € B\B'. It follows that i¥* K = Q and there
is a short exact sequence 0 — i*K — i*P, — A.(b) — 0. Comparing with the long
exact sequence, we deduce that (L17*)A.(b) = 0. Finally some degree shifting using the
isomorphisms (L, +1i*)A (b)) = (L,i*)K gives that (L,i*)A.(b) = 0 for n > 1 too.

(4) By the adjunction, we have that Homg (—, W) =~ Homp.(—, W) 0i*, i.e., the result
holds when n = 0. Also i* sends projectives to projectives as it is left adjoint to an

exact functor. Now the result for n > 0 follows by a standard Grothendieck spectral
sequence argument; the spectral sequence degenerates due to (3). O

Lemma 3.47. Suppose that X\ € A is mazimal and b € By. Then P(b) =~ A(b) and
I1(b) = V(b).
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Proof. Lemma shows that A(b) = i*, P(b) and V(b) = iL,I(b). To complete the
proof for P(b), it remains to observe that P(b) belongs to R<x, so iX, P(b) = P(b). This
follows from ]/DZE: the object P, belongs to R<y due to the maximality of A and P(b)
is a summand of it.

The proof for I(b) needs a different approach. From V(b) = i, I(b), we deduce that
there is a short exact sequence

0—->V(®) —-Ib)—>Q—0 (3.9)
with i!st = 0. Now we must show that Q = 0. Take any a € B. We have that
Ext% (Ac(a), V(b)) =0 (3.10)

for n > 0. This follows using Lemma [3.46(4): it shows that Extl(A.(a), V(b)) =
Exti_, (i£5Ac(a), V(b)) which is zero as V(b) is injective in R<y. Using this with
n = 1, we see on applying the functor Homg (A (a),—) to that we get an exact
sequence
Homp (Ac(a), I(b)) — Homg (A (a),Q) — 0.

If p(a) # A then the first term of this is zero due to the maximality of A, showing
that Homg (Ac(a), Q) = 0. If p(a) = X then we get that Homg (AL (a), Q) = 0 instead
because i!g)\Q = 0. Thus, we have shown that Homg (A.(a),Q) = 0. This completes
the proof in the essentially finite Abelian case because it implies that soc @ = 0.

In the Schurian case, we need to argue a little further because @) need not be finitely
cogenerated, so can have zero socle even when it is itself non-zero. Considering the long
exact obtained by applying Homg (A.(a),—) to and using with n = 2, we
get that Exty (A.(a),Q) = 0. Now we observe that the properties Homg (A.(a), Q) =
0= Ext%z(AE(a),Q) for all @ € B do imply that V is zero. Indeed, we have that
Homg (P, Q) = Ext%z(P,Q) = 0 for any P € R with a A_-flag. This follows using
induction on the length of the flag plus the long exact sequence. Since P, has a A.-flag by
the hypothesis (ﬁa) and P(b) is a summand of it, we deduce that Homg (P(b), Q) = 0
for all b € B, which certainly implies that @ = 0. U

Lemma 3.48. Assume that A € A is mazimal and €(\) = +. For any V € Ry and
be B, we have that Exty (AL (b),j2V) = 0.

Proof. It b € By then A.(b) is projective in R<y by Lemma so we get the Ext!-
vanishing in this case. For the remainder of the proof, suppose that b ¢ B,. Let I be an
injective hull of V in Ry. Applying j3 to a short exact sequence 0 — V — I — Q — 0,
we get an exact sequence 0 — j2V — jAI — j2Q. By properties of adjunctions, j2Q is
finitely cogenerated and all constituents of its socle are L(c) for ¢ € By. The same is true
for j21/j2V since it embeds into j2Q. We deduce that Homg (AL (b), jal/j2V) = 0.

Now take an extension 0 — j2V — E — A.(b) — 0. Since j31 is injective, we can
find morphisms f and g making the following diagram with exact rows commute:

0 % E A(b) —— 0
| 4! ls
0 iV gl BRIV 0.
The previous paragraph implies that ¢ = 0. Hence, im f < j;\V. Thus, f splits the top
short exact sequence, and we have shown that Extz, (A.(b),2V) = 0. O

Lemma 3.49. For b,c € B and n > 0, we have that dim Extk (A:(b), V:(¢)) = b.c0n0-

Proof. The case n = 0 follows from (3.2), so assume that n > 0. Suppose that b € By
and c € B,,. By Lemma [3.46(4), we have that

Extg (A (0), Ve(c)) = Exty_, (12,A:(b), Ve(0)).
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If A € p then iiMAg(b) = 0 and we get the desired vanishing. Now assume that A\ < p,
when we may identify i%,A-(b) = A-(b). If e(u) = — then V.(c) = V(c), and the
result follows since V(c) is injective in R<, by Lemma So we may assume also
that e(u) = +. If A = p then A(b) is projective in R, by the same lemma, so again
we are done. Finally, we are reduced to A < p and () = +, and need to show that
Extr_, (Ac(b),V(c)) = 0 for n > 0. If n = 1, we get the desired conclusion from
Lemma applied in the subcategory R<,, (allowed due to Lemma 2)). Then for
n > 2 we use a standard degree shifting argument: let P :=iZ P,. By Lemma 2),
P is projective in R, and there is a short exact sequence 0 - K — P — A_(b) — 0
such that K has a A -flag with sections A.(a) for a with A < p(a) < p. Applying
Homg_, (—, V(c)) we obtain Extr_, (A:(b), V(e)) = Ext;’{;(K, V(e)), which is zero by
induction. ) O

Lemma 3.50. Let A" be an upper set in A and B' := p=Y(A"). Let j: R — R be the
corresponding Serre quotient category of R equipped with the induced stratification.

(1) For b € B', the objects P'(b), I'(b), AT(b), AT(b), V'(b) and V'(b) in R
are the images under j of the corresponding objects of R. Moreover, we have
that AT (b) = A(b), #AT(b) = A(b), H#PT(b) = P(b) and j:V'(b) = V(b),
3« V1 (b) = V(b), jI"(b) = I(b).

(2) For any b € B, the object jP, has a A.-flag with top section AL(b) and other
sections of the form Al(c) for c € BT with p(c) = p(b). In particular, this show
that (PA.) holds in R

(3) Exth (V,jW) = Ext; (jV,W) for VeR, W e V(R") and n = 0.

Proof. (1) By Lemma [2.22] P'(b) = jP(b) for each b e B'. Now take b€ B for A e A'.
Let j* : R<x — R be the quotient functor as usual, and denote the analogous functor
for R by k* : R;)\ — ’R; The universal property of quotient category gives us an
exact functor j: Ry — R} making the diagram

J
Ray —— RL,

e

Ry —— RI
J

commute. In fact, 7 is an equivalence of categories because it sends the indecomposable
projective j* P(b) in R to the indecomposable projective k* PT(b) in R for each b € B.
We deduce that there is an isomorphism of functors ji o k{* 0 7 =~ j. Applying this to
Py(b) and to Ly (b) gives that jiAT(b) = A(b) and 5 AT(b) = A(b). Also by adjunction
properties we have that jiPT(b) =~ P(b). Similarly, applying it to I,(b) and to Lx(b)
gives that j,V'(b) = V(b) and j,V'(b) = V(b). Also by adjunction properties we have
that 5,17 (b) = I(b). It just remains to apply j to the isomorphisms constructed thus far
and use j o ju = Idrt = jo 7).

(2) This follows from (1) and the exactness of j, using also that jA.(b) = 0 if b ¢ BT.

(3) The adjunction gives an isomorphism Hompg(—,j.W) =~ Homg:(—, W) o j. This
proves the result when n = 0. For n > 0, the functor j is exact, so all that remains
is to check that j sends projectives to objects that are acyclic for Homgz1(—, W). By
(2), the functor j sends projectives in R to objects with a A.-flag. It remains to note
that Extz (X, W) = 0 for X € A.(R"),W € V.(R"). This follows from the analog of
Lemma for RT, which is valid due to (2). O

3.5. Lower finite e-stratified categories. In this subsection, A is a lower finite poset,
R is a locally finite Abelian category equipped with a stratification p : B — A, and we
fix a sign function e : A — {+}. For b e B, define A(b), A(b), V(b) and V(b) as in ,
and recall the notation (L.2). Also let I(b) be an injective hull of L(b) in Ind(R).
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Lemma 3.51. For any b € B, the objects A(b), A(b), V(b) and V(b) are of finite length,
as is i\ I(b) for any X € A.

Proof. For A € A, the set By is finite. Given this, Lemma[2.17] together with axiom (p4)
from Definition imply that R<, is a finite Abelian category. Since A(b), A(b), V(b)
and V(b) are objects in R<y for A := p(b), they have finite length. Also, by properties
of adjunctions, iL,I(b) is zero unless b € By, and it is an injective hull of L(b) in R<x
if be B¢y, So it is also of finite length. O

We need to consider another sort of infinite good filtration in objects of Ind(R),
which we call ascending V.-flag. Usually (e.g., if A is countable), it is sufficient to
restrict attention to ascending V.-flags that are given simply by a chain of subobjects
0=V <Vi <V, <--suchthat V=3 V,and V,,/V,,_1 = V.(b,) for some
b, € B. Here is the general definition which avoids this restriction.

Definition 3.52. An ascending V.-flag in an object V' € Ind(R) is the data of a direct
system (V,,)weq of subobjects of V' such that V' = 3] _, Vi, and each V,, has a V.-flag.
An ascending V-flag (resp., V-flag) means an ascending V.-flag in the special case that
€ = — (resp., € = +).

Now we can formulate the main definition in the lower finite setting. The way we are
about to formulate this is different from the way it was explained in the introduction;
the equivalence of the two formulations is established in Theorem [3.63] below. In the
definition, we will refer to the following two properties.

(I/V\SSC) For every b € B, there exists a finitely cogenerated injective object I; € Ind(R)
admitting an ascending V.-flag (V,,)weq in which every V,, has a V.-flag with
V. (b) at the bottom and other sections V.(c) for ¢ € B with p(c) = p(b).

(ﬁ as¢) For every A € A, there exists a finitely cogenerated injective object Iy, € Ind(R)
admitting an ascending V-flag (V,,)ueq in which every V,, has a V-flag with
V(A) at the bottom and other sections V(u) for p e A with p = A.

Definition 3.53. Let R be a finite Abelian category equipped with a stratification
p:B — A as in Definition [3.1] such that the poset A is lower finite.

(eS) We say that R is a lower finite e-stratified category if property (I/V\?SC) holds for
some given choice of sign function € : A — {+}.

(FS) We say that R is a lower finite fully stratified category if property (I/\ngC) holds
for all choices of sign function € : A — {+}.

(eHW) We say that R is a lower finite e-highest weight category if the stratification
function p is a bijection and the property (I/V\g"sc) holds for some given choice
of sign function e : A — {#£}.

(SHW) We say that R is a lower finite signed highest weight category if the stratification
function p is a bijection and the property (I/V\SSC) holds for all choices of sign
function.

(HW) We say that R is a lower finite highest weight category if all strata are simple
(cf. Lemma and the property (IV asc) holds.

Our next goal is adapt Theorem [3.19] to such categories.

Lemma 3.54. Suppose R is a lower finite e-stratified category and take b,c € B with
p(b) € p(c). Then we have that Then Extl (V. (c), V(b)) = 0.

Proof. Since I has L(b) in its socle, there is an injective resolution 0 — V.(b) — I, —
J — - in Ind(R). Let (V,,)weq be an ascending V.-flag in I, in which every V,, has
a V.-flag with V.(b) at the bottom and other sections V.(a) for a with p(a) = p(b).
Then V. (b) — I too. Moreover, I;/V.(b) = > .o(Vi/V<(b)), so its socle only involves
constituents L(a) with p(a) = p(b). So J is a direct sum of I, with p(a) > p(b). The
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Ext'-vanishing now follows on applying Homg (V.(c), —) to the resolution and taking
homology. O

Here is the first half of the analog of Theorem [3.19]

Theorem 3.55. Suppose R is a lower finite e-stratified category. Let A' be a finite
lower set, BY := p~1(AY), and i : R* — R be the corresponding Serre subcategory of R
with the induced stratification. Then R* is a finite e-stratified category with distinguished
objects L*(b) = L(b), I*(b) = i'I(b), A‘(D) = A(b), At(b) = A(b), V'(b) = V(b) and
V(b)) =~ V(b) for be B*.

Proof. The identification of the distinguished objects of R is straightforward. In par-
ticular, the objects V.(b) in R* are just the same as the ones in R indexed by b € B,
while the indecomposable injectives in Ind(R*') are the objects i'I(b) for b € B*. To
complete the proof, we need to prove the following for each b € B*:

(1) 4'I, has finite length, i.e., it actually lies in R};

(2) i'I, satisfies the property (ﬁg)
The first of these implies that R' is a locally finite Abelian category with finitely many
isomorphism classes of irreducible objects and with enough injectives. Hence, R' is a
finite Abelian category by the discussion after Corollary Then (2) checks that it
is e-stratified as in Definition [3.9]

Since I, is finitely cogenerated, it is a finite direct sum of indecomposable injectives,
so Lemma implies that z'g I has finite length. This proves (1).

For (2), take b € B*. Let (V,)weq be an ascending V.-flag in I, as in Definition m
and fix also a V.-flag in each V,, with bottom section V.(b) and other sections V.(c) for
c with p(c) = p(b). For A € A*, let m()\,w) be the sum of the multiplicities of the objects
V<(c) (c € By) as sections of the V.-flag of V,,. Let m(\) := sup{m(\,w) |w € }. We
claim that m(\) < o0. To see this, suppose for a contradiction that it is not the case.
Choose A minimal so that m(\) = co. Then for any n € N, we can find w € Q such that
the sum of the multiplicities of the objects V.(c) (c € By) as sections of the V. -flag of
V., is greater than n. Using Lemma and the minimality of A\, we can rearrange this
flag if necessary so that the only other sections appearing below these ones are of the
form V.(d) for d € B.). Then we deduce that ZCGBA[i!S)\VW : L(c)] > n. Since n can
be chosen to be arbitrarily large, this contradicts (1).

Then, using Lemma [3.54] again, we rearrange the V.-flag in each V,, if necessary to
deduce that there are short exact sequences 0 — V/ — V,, — V7 — 0 such that V,
has a V-flag with sections V.(c) for ¢ with p(b) < p(c) € A' and V has a V.-flag
with sections V.(d) for d with p(d) ¢ A*. Moreover, the finiteness property established
in the previous paragraph means that the length of the V.-flag of V/ is bounded by
D xeat M(A) independent of w € 2. Consequently, we can find some sufficiently large w
in the directed set Q so that V! = V/ for all v > w. Then i'l, = V for this w. This
proves (2). O

Corollary 3.56. In a lower finite e-stratified category R, we have for each b,c € B that
Extr (AL (b), V.(c)) = 0.
Proof. Given b, c, let A* be the finite lower set of A that they generate. Let R' be

the corresponding finite e-stratified subcategory of R. Since Extf(A.(b),Ve(c)) =
Extr, (A-(b), V.(c)), it is zero thanks to Theorem O

Suppose that V' € Ind(R) has an ascending V.-flag (V,,),eq. Corollary implies
as usual that the multiplicity (V,, : V(b)) of V.(b) as a section of an V.-flag of V, is
well-defined for every w. Since A.(b) is finitely generated, we have that

Homp (A (b), lim V) = lim Homg (A (b), V).
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We deduce that
(V : V(b)) :=sup {(Vi, : V(b)) |w € Q} = dim Homg (A.(b),V) e NU {00}, (3.11)

which is independent of the particular choice of V. -flag. Having made sense of these
multiplicities, we let V2°(R) be the exact subcategory consisting of all objects V' that
possess an ascending V.-flag such that (V : V(b)) < oo for all b € B. For example, the
object I, from Definition belongs to V2%¢(R) since soc I}, is of finite length.

Corollary 3.57. Assume that R is a lower finite e-stratified category. For V € V2¢(R)
and b € B, we have that Ext, (A (b),V) = 0.

Proof. Let (V,,)weq be an ascending V. -flag in V. Take an extension V < E — A (b).
We can find a subobject Ey of E of finite length such that V + E; = V + E; this follows
easily by induction on the length of A.(b) as explained at the start of the proof of [CPST],
Lemma 3.8(a)]. Since V n F is of finite length, there exists w € Q with V. n E; € V,,.
Then we have that V n E; =V, n E; and

(Vo + E))/Vy = E\/Vyy nEy = BE1)V A Ey = (V + E)/V = (V + E)/V = A(b).

Thus, there is a short exact sequence 0 — V,, —» V,+ E; — A.(b) — 0. By Corollary
this splits, so we can find a subobject Fy =~ A_(b) of V,,+ E; such that V,+ Ey = V,,®F>.
Then V+ E=V+E =V+V,+E,=V+V,+E, =V + Ey =V ® FE>, and our
original short exact sequence splits. O

Corollary 3.58. In the notation of Theorem if Ve V3(R) then i'V € V.(RY).
Proof. Take a short exact sequence 0 — 'V — V — Q — 0. Note that
Homg: (AL (b),i'V) = Homg (A (b), V)

is finite-dimensional for cach b € B'. Since R*' is finite Abelian, it follows that 'V € R*
(rather than Ind(R*')). Moreover, Homg (A (b),Q) = 0 for b € B*. So, on applying
Homp (AL (b), —) and considering the long exact sequence using Corollary we get
that Exth| (A.(b),i'V) = Exth (A.(b),i'V) = 0 for all b€ B*. Thus, by Theorem
we have that i'V € V. (R'). O

The following homological criterion for ascending V.-flags is similar to the homolog-
ical criterion for good filtrations from [Janll Proposition 11.4.16]. It generalizes Theo-
rem

Theorem 3.59. Assume that R is a lower finite e-stratified category. For V € Ind(R)
such that dim Hompg (A (b),V) < o for all b e B, the following are equivalent:
(i) V has an ascending V-flag;
(ii) Extr (AL(b),V) = 0) for all be B;
(111) Extg (Ac(b),V) =0) for allbe B and n > 1.

Proof. (ii)=>(i): Let Q be the directed set consisting of all finite lower sets in A. Take
w € Q. Tt is a finite lower set A' = A, so we can associate a corresponding finite &-
stratified subcategory R' as in Theorem Letting 7 : R* — R be the inclusion, we
set V,, := i'V. By Corollary we have that V,, € V.(R). So we have the required
data (V,,)weq of an ascending V.-flag in V. Finally, we let V' := > _ V,, and complete
the proof by showing that V' = V’. To see this, apply Homg (A.(b),—) to the short
exact sequence 0 > V' — V — V/V’ — 0 using Corollary to deduce that there is
a short exact sequence

0 — Homg (AL (b), V') — Homg (A (b),V) — Homp (A (b),V/V') — 0
for every b € B. But any homomorphism A.(b) — V has image contained in V,, for
sufficiently large w, hence, also in V’. Thus, the first morphism in this short exact

sequence is an isomorphism, and Homg (A(b), V/V') = 0 for all b € B. This implies that
V/V' =0 as required.
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(i)=>(ii): This is Corollary

(iii)=>(ii): Trivial.

(i)=>(iii): This follows from Theorem ). The forward reference causes no issues
since we will only appeal to the equivalence of (i) and (ii) prior to that point. O

Corollary 3.60. In a lower finite e-stratified category, each indecomposable injective
object I(b) belongs to V2¢(R) and (I(b) : V(c)) = [Ac(c) : L(b)] for each b,c € B.

Proof. The first part is immediate from the homological criterion of Theorem [3.59] For
the second part, we get from (3.11)) that (I(b) : V.(¢)) = dim Homg (A.(c) : L(b). O

Corollary 3.61. Let 0 > U — V — W — 0 be a short exact sequence in a lower finite
e-stratified category. If U,V € V¥°(R) then W € V2°(R) too. Moreover

(V1 V(b)) = (U :Ve(b) + (W : V(b))
The second half of our analog of Theorem [3.1Y|is as follows.

Theorem 3.62. Suppose R is a lower finite e-stratified category. Let A be a finite
lower set, BY := p=Y(A), and i : R* — R be the inclusion of the corresponding finite
e-stratified subcategory of R as in Theorem [3.55

(1) (R""V =0 for n =1 and either V € V3¢(R) or V e R*.

(2) Exth (iV,W) = Extl, (V,i'W) for Ve R*, W € V&(R) and all n > 0.

(3) Ext (iV,iW) = Exty, (V,W) for V,W € R* and all n > 0.

Proof. (1) Assume first that V' € V2%°(R). Let I be an injective hull of soc V. Note
that I is of the form @, g I(a)®" for 0 < n, < (V : V.(a)) < o0. It has an ascending
V.-flag by Corollary [3.60] Moreover, dim Homg (A(b), 1) = 3,c5 na[A(b) : L(a)] < o0,
hence, I € V¥¢(R).

Now consider the short exact sequence 0 - V — I — @ — 0. By Corollary we
have that Q € V2¢(R) too. Applying i' and considering the long exact sequence, we see
that to prove that (R'i')V = 0 it suffices to show that the last morphism in the exact
sequence 0 — i'V — i'T — 4'Q is an epimorphism. Once that has been proved we can
use degree shifting to establish the desired vanishing for all higher n; it is important for
the induction step that we have already established that @ € V2*°(R) just like V.

To prove the surjectivity, look at 0 — '1/i'V — i'Q — C — 0. Both i'I and 'V have
V.-flags by Corollary [3.58 Hence, so does i'I/i'V, and on applying Homp. (A, (b), —)
for b € BY, we get a short exact sequence

0 — Homg. (AL (b),i'1/i'V) — Hompg. (AL (b),i'Q) — Homp. (AL (b),C) —> 0.
The first space here has dimension

(G'T:V.(D) — 'V : V(b)) = (I: V(b)) = (V:V.(b) = (Q:V.(b) = (i'Q : V.(b)),
which is the dimension of the second space. This shows that the first morphism is an
isomorphism. Hence, Homp. (A, (b), C') = 0. This implies that C' = 0 as required.

Finally let V € R*. Then V is of finite length, so it suffices just to consider the case
that V = L(b) for b € B*. Then we consider the short exact sequence 0 — L(b) —
V.(b) - Q — 0. Applying i' and using the vanishing established so far gives 0 —
i'L(b) — i'V.(b) — i'Q — (R'')L(b) — 0 and isomorphisms (R"i')Q = (R"*+1i')L(b)
for n > 1. But 4' is the identity on L(b),V.(b) and Q, so this immediately yields
(RY'")L(b) = 0, and then (R"i')L(b) = 0 for higher n by degree shifting.

(2), (3) These follow by the usual Grothendieck spectral sequence argument starting
from the adjunction isomorphism Homg: (iV, —) = Homg (V, —) oi'. One just needs (1)
and the observation that ' sends injectives to injectives. O

The following is an alternate characterization of “lower finite e-stratified category.”
In the introduction, we used this as the definition.
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Theorem 3.63. Let R be a locally finite Abelian category. Suppose we are given a
set B indexing representatives {L(b) | b € B} for the isomorphism classes of irreducible
objects in R, a lower finite poset A, a function p : B — A with finite fibers, and a sign
function € : A — {x}. This is the data of a lower finite e-stratified (resp., e-highest
weight) category in the sense of Deﬁnition if and only if the Serre subcategory R*
of R associated to BY := p~1(A') is a finite e-stratified (resp., e-highest weight) category
with respect to the induced stratification for each finite lower set A < A.

Proof. (=): This is the content of Theorem [3.55

(«): We have the data of a stratification as in Definition with the axiom (p4)
holding since we are given in particular that R<y is a finite Abelian category for each
A € A. Then we can repeat the proof of the implication (ii)=>(i) of Theorem in
the given category R; the arguments given above only actually used the conclusions of
Theorem [3.55] (which we are assuming) rather than Definition Since I(b) satisfies
the homological criterion of Theorem ii), we deduce that I(b) € V2%¢(R). Moreover,
(I(d) : V(c)) = [Ac(c) : L(b)] which is zero unless p(¢) = p(b). Hence, R is a lower
finite e-stratified category. O

Corollary 3.64. R is a lower finite e-stratified category if and only if R°P is a lower
finite (—e)-stratified category.

Proof. This follows from Theorem [3.63| plus Theorem [3.11 g

Corollary 3.65. Let R be a locally finite Abelian category equipped with a stratification
p : B — A such that the poset A is lower finite. It is a lower finite fully stratified
category if and only if each I(b) has an ascending V-flag involving sections V(c) for ¢
with p(c) = p(b) and each V(b) has a V-flag with sections V(c) for p(c) = p(b).

Proof. Use Theorem and Lemma [3.22 O

Remark 3.66. The category R is a lower finite highest weight category in the sense of
Definition if and only if Ind(R) is a highest weight category in the original sense of
[CPST] with a weight poset that is lower finite.

4. TILTING MODULES AND SEMI-INFINITE RINGEL DUALITY

We now develop the theory of tilting objects and Ringel duality. Even in the finite
case, we are not aware of a complete exposition of these results in the existing literature
in the general e-stratified setting.

4.1. Tilting objects in the finite and lower finite cases. In this subsection, R
will be a finite or lower finite e-stratified category; see Definitions and By an
e-tilting object, we mean an object of the following full subcategory of R:

Tilt-(R) := A(R) n V(R). (4.1)
The following shows that the additive subcategory Tilt.(R) of R is a Karoubian sub-
category.

Lemma 4.1. Direct summands of e-tilting objects are -tilting objects.

Proof. This follows easily from the homological criteria from Theorems and In
the lower finite case, one needs to pass first to a finite e-stratified subcategory containing
the object in question using Theorem [3.55 O

The next goal is to construct and classify e-tilting objects. Our exposition of this
is based roughly on [Dondl Appendix], which in turn goes back to the work of Ringel
[Rin|. There are some additional complications in the e-stratified setting.
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Theorem 4.2. Assume that R is a finite or lower finite e-stratified category. For be B
with p(b) = X, there is an indecomposable object T.(b) € Tilt.(R) satisfying the following
properties:

(i) T-(b) has a A.-flag with bottom section isomorphic to A.(b);

(ii) T.(b) has a V-flag with top section isomorphic to V.(b);

(iii) To(b) € R and jMTo(b) ~ { ﬁ((zf)) ngig -t
These properties determine T.(b) uniquely up to isomorphism: if U is any indecompos-
able object of Tilt.(R) satisfying any one of the properties (i)-(iii) then U = T.(b);
hence, it satisfies the other two properties as well.

Proof. By replacing R by the Serre subcategory associated to a sufficiently large but
finite lower set A' in A, chosen so as to contain A and (for the uniqueness statement)
all p(b) for b such that [T : L(b)] # 0, one reduces to the case that R is a finite
e-stratified category. This reduction depends only on Theorem [3.55] Thus, we may
assume henceforth that A is finite.

Existence: The main step is to construct an indecomposable object T.(b) € Tilt.(R)
such that (iii) holds. The argument for this proceeds by induction on |A|. If A € A is
minimal, we set T.(b) := A(b) if e(\) = + or V(b) if e(A) = —. Since A(b) = L(b) = V(b)
by the minimality of A, this has both a A.- and a V.-flag. It is indecomposable, and we

get (iii) from Lemma

For the induction step, suppose that A is not minimal and pick g < A that is min-
imal. Let A" := A\{u},B" := p7}(A"), and j : R — R be the corresponding Serre
quotient. By induction, there is an indecomposable object 11 (b) € Tilt.(R") satisfying
the analogue of (iii). Now there are two cases according to whether e(u) = + or —.

Case e(u) = +: Forany Ve R, let d. (V) := ZceB# dim Ext% (A(c), V). We recursively
construct n = 0 and Ty, 11, . .., T, so that dy (To) > do(T1) > -+ > d(T,,) = 0 and the
following properties hold for all m:

(1) Tin € Ac(R);

(2) jATm = Pa(b) if e(A) = + or I\(b) if e(A) = —;

(3) Extr(Ac(a),Trn) = 0 for all a € B\B,,.
To start with, set Ty := jiTJ (b). This satisfies all of the above properties: (1) follows
from Theorem 6); (2) follows because j* factors through j and we know that T (b)
satisfies the analogous property; (3) follows by Theorem (5) For the recursive step,
assume that we are given Ty, satisfying (1), (2) and (3) and d(T},) > 0. We can find
c € B, and a non-split extension

0— T, — Te1 — Alc) — 0. (4.2)

This constructs T,,,+1. We claim that di (T),+1) < d+(T},) and that T, 41 satisfies (1),
(2) and (3) too. Part (1) is clear from the definition. For (2), we just apply the exact
functor j* to the exact sequence (4.2), noting that j*A(c) = 0. For (3), take a € B\B,,
and apply the functor Homg (A (a), —) to the short exact sequence to get

Ext%z(Ag(a),Tm) — Ext%z(AE(a),TmH) — Ext%z(Aa(a), A(c)).

The first and last term are zero by hypothesis and (3.7)), implying Ext} (T;, 11, V< (a)
0. Tt remains to show dy (Tyn41) < d+(T)). For a € B, we have Exty (A(a), A(c))
by (3.7), so again we have an exact sequence

):
=0

Homg (A(a), A(c)) IR Extz (A(a), Tpn) — Exth (A(a), Tpy1) — O.

This shows that dim Ext} (A(a), Thni1) < dimExt(A(a), Tr,), and we just need to
observe that the inequality is actually a strict one in the case a = c¢. To see this, note
that the first morphism f is non-zero in the case a = c as f(ida()) # 0 due to the
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fact that the original short exact sequence was not split. This completes the claim. We
have now defined an object T}, € A_(R) such that j T, = Py(b) if e(A) = + or I,(b)
if £(\) = —, and moreover Exts(A.(a),T},) = 0 for all a € B. By Theorem m we
deduce that T;, € V.(R<)) too, hence, it is an e-tilting object. Decompose T, into
indecomposables T;, = T, 1 @ - - @ T}, . Then each T, ; is also an e-tilting object. Since
4 T, is indecomposable, we must have that jAT,, = j)‘Tn}i for some unique i. Then we
set T.(b) := T,,; for this ¢. This gives us the desired indecomposable e-tilting object.

Case e(u) = —: Let d_(V) := ZceB“ dim Extg (V, V(c)). This time, one recursively
constructs Ty :=:= j, T (b), T, ..., Ty so that d_(Tp) > --- > d_(T,,) = 0 and

(1) T,y € V.(R);

(2) 2T, = Py(b) if e(N) = + or I, (b) if e(A) = —;

(3") Exty (T, Ve(a)) = 0 for all a € B\B,.

Since this is this is just the dual construction to the case e(u) = + already treated, i.e., it
is the same construction in the opposite category, we omit the details. Then, we the end,
we decompose T;, into indecomposables Ty, = T, 1®- - -®T, . By Theoremeach iy
is an e-tilting object. Since jT), is indecomposable, we must have that j*7T,, = j*T),
for some unique ¢, and finally set 7. (b) := T, ; for this i.

This completes the construction of T.(b) in general. We have shown it satisfies (iii).
Let us show that it also satisfies (i) and (ii). For (i), we know by (iii) that T.(b)
belongs to R<y, and it has a A.-flag. By (3.7), we may order this flag so that the
sections A (c) for ¢ € By appear at the bottom. Thus, there is a short exact sequence
0 - K — T.(b) - @ — 0 such that K has a A.-flag with sections A.(c) for ¢ € By
and j*Q = 0. Then j*K = jAT.(b). If e(\) = +, this is Py(b). Since j* is exact and
j*A(e) = Py(c) for each ¢ € By, we must have that K =~ A(b), and (1) follows. Instead,
if £(\) = —, the bottom section of the V-flag of K must be V(b) since j*K = I, (b) has
irreducible socle Ly (b), giving (i) in this case too. The proof of (ii) is similar.

Uniqueness: Let T := T.(b) and U be some other indecomposable object of Tilt.(R)
satisfying one of the properties (i)—(iii). We must prove that 7' = U. By the argument
from the previous paragaph, we may assume actually that U satisfies either (i) or (ii). We
just explain how to see this in the case that U satisfies (i); the dual argument treats the

case that U satisfies (ii). So there are short exact sequences 0 — A, (b) Lu- Q1 —0
and 0 — A_(b) 9 T — Qs — 0 such that Qq, Q- have A.-flags. Applying Homg(—,T)
to the first and using Extk (Q1,T) = 0, we get that Homg (U, T) — Homz (AL (b),T).
Hence, g extends to a homomorphism g : U — T. Similarly, f extendsto f: T — U. We
have constructed morphisms making the triangles in the following diagram commute:

Since fogo f = f, we deduce that f o g is not nilpotent. Since U is indecomposable,
Fitting’s Lemma implies fog is an isomorphism. Similarly, so is gof. Hence, U ~T. O

Remark 4.3. Let b € By. When e(\) = +, Theorem [4.2]implies that (7. (b) : A.(b)) = 1
and (T:(b) : A(c)) = 0 for all other ¢ € By. Similarly, when £(\) = —, we have that
(T-(b) : V(b)) =1 and (T () : V(c)) = 0 for all other ¢ € B.

The following corollaries show that e-tilting objects behave well with respect to pas-
sage to lower and upper sets, extending Theorems[3.19] [3.55|and [3.20] Really, this follows
easily from those theorems plus the characterization of tilting objects in Theorem
the situation is just like [Dond] Lemma A4.5].
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Corollary 4.4. Let R be a finite or lower finite e-stratified category and R* the finite
e-stratified subcategory associated to a finite lower set A* of A. For be BY := p~1(A}),
the corresponding indecomposable e-tilting object of R* is T.(b) (the same as in R).

Corollary 4.5. Assume R is a finite e-stratified category and let AT be an upper set in
A with quotient j : R — R'. Letbe B! := p~Y(A"). The corresponding indecomposable
e-tilting object T) (b) of R" satisfies T (b) =~ jT.(b). Also jT-(b) =0 if b¢ BT.

The next result is concerned with tilting resolutions.

Definition 4.6. Assume that R is a finite or lower finite e-stratified category. An
e-tilting resolution d : Ty — V of V € R is the data of an exact sequence

d d d
~—2>T1—1>T0—°>V—>0

such that

(TR1) T, € Tilt.(R) for each m =0,1,...;

(TR2) imd,, € V.(R) for m » 0.

Similarly, an e-tilting coresolution d : V — T* of V € R is the data of an exact sequence

0 1 2
0>y L, o d, 1 4

such that
(TC1) T™ € Tilt-(R) for m =0,1,...;
(TC2) coimd™ € A (R) for m » 0.

We say it is a finite resolution (resp., coresolution) if there is some n such that T,, = 0
(resp., T™ = 0) for m > n. Note in the finite case that the second axiom is redundant.

Lemma 4.7. Ifd: T, —> V is an e-tilting resolution of V € R then imd,, € V:(R) for
all m = 0. In particular, V € V.(R).

Proof. Tt suffices to show that for any exact sequence A 4, B % ¢ in a finite or lower
finite e-stratified category B € V.(R) and im f € V. (R) implies img € V.(R). Since
im f = kerg, there is a short exact sequence 0 — im f — B — img — 0. Now apply

Corollary (or Corollary [3.61)). O

Corollary 4.8. Ifd:V — T* is an e-tilting coresolution of V € R then imd™ € A.(R)
for all m = 0. In particular, V € A (R).

Proof. An e-tilting coresolution of V' in R is the same thing as a (—¢)-tilting resolution
of V in R°P. Hence, the corollary is the equivalent dual statement to Lemma O

Theorem 4.9. Let R be a finite or lower finite e-stratified category and take V € R.

(1) V' has an e-tilting resolution if and only if V € V(R).
(2) V' has an e-tilting coresolution if and only if Ve A (R).

Proof. We just prove (1), since (2) is the equivalent dual statement. If V' has an e-tilting
resolution, then we must have that V' € V_(R) thanks to Lemma For the converse,
we claim for V' € V. (R) that there is a short exact sequence 0 — Sy — Ty — V — 0
with Sy € V.(R) and Ty € Tilt.(R). Given the claim, one can construct an e-tilting
resolution of V' by “Splicing” (e.g., see [Wel, Figure 2.1]), to complete the proof.

To prove the claim, we argue by induction on the length >}, .5(V : V.(b)) of a V.-
flag of V. If this number is one, then V = V.(b) for some b € B, and there is a
short exact sequence 0 — Sy — Ty — V — 0 with Sy € V. (b) and Ty := T.(b)
due to Theorem (ii). If it is greater than one, then there is a short exact sequence
0—-U —V — W — 0such that U and W have strictly shorter V.-flags. By induction,
there are short exact sequences 0 - Sy > Ty > U - 0and 0 > Sy > Tw > W — 0
with Sy, Sw € Ve(R) and Ty, Tw € Tilt-(R). It remains to show that these short
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exact sequences can be assembled to produce the desired short exact sequence for V.
The argument is like in the proof of the Horseshoe Lemma in [Wei Lemma 2.2.8].

0 0 0
| |

0 Sy Ty —> U 0
Ll

0 Sv Ty 1% 0 (4.3)
| LA

0 Sy Tw —Fs W 0
| |
0 0 0

Since Exth (Tyw,U) = 0, we can lift k : Tyy — W to k : Ty — V so that k = g o k. Let
Ty :=Ty®Tw and j : Ty — V be diag(fi, 12:) This gives us a split short exact sequence
in the middle column in , such that the right hand squares commute. Then we let
Sy := kerj, and see that there are induced maps making the left hand column and
middle row into short exact sequences such that the left hand squares commute too. [

4.2. Finite Ringel duality. In this subsection, we review the theory of Ringel duality
for finite e-stratified categories. Our exposition is based in part on [Dond, Appendix],
which gives a self-contained treatment in the highest weight setting, and [AHLU], where
the +-highest weight case is considered assuming A = {1 < --- < n}. Throughout, we
assume that R is a finite e-stratified category with the usual stratification p : B — A,
and A°P denotes A viewed as a poset with the opposite partial order.

Definition 4.10. Let R be a finite e-stratified category with stratification p : B — A.
By an e-tilting generator in R, we mean T € Tilt.(R) such that T" has a summand
isomorphic to T (b) for each b € B. Given such an object, we define the Ringel dual of
R relative to T' to be the finite Abelian category R = A-modggq where A := Endg (T)°P.

We also define the two (covariant) Ringel duality functors
F := Homg (T,—): R — R, (4.4)
G := xoHomp(—,T) : R - R. (4.5)
Note for the second of these that Homg (V,T) is naturally a finite-dimensional right
A-module for V € R, hence, its dual is a left A-module.

Theorem 4.11. In the setup of Definition the Ringel dual R of R relative to
T is a finite (—¢)-stratified category with stratification defined from p : B — A°P and
distinguished objects satisfying

~ ~

P(b) =~ FT.(b), I(b) = GT.(b), L(b) = hd P(b) = soc I(b),
A_.(b) = FV.(b), V_o(b) = GA(b), T_.(b) = FI(b) =~ GP(b).

The restrictions F : V.(R) — A_.(R) and G : A,(R) — V_.(R) are equivalences; in
fact, they induce isomorphisms

Exty (V1,V2) = Extnﬁ(FVh FVy), Exty (W1, Ws) = EXt%(GWl, GWs), (4.6)
for all V; e V.(R), Wy e A(R) and n > 0.

Before the proof, we give some applications. The first is a double centralizer property.
It implies that our situation fits into the setup from [Wakl, (A1), (A2)], and T is an
example of a Wakamatsu module.
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Corollary 4.12. Suppose that the e-stratified category R in Theorem[].11]is the category
B-modgq for a finite-dimensional algebra B, so that T is a (B, A)-bimodule. Let T:=T*
be the dual (A, B)-bimodule. Then the following holds.
(1) T is a (—¢)-tilting generator in R such that B =~ End,(T)°P. Hence, the Ringel
dual ofR relative to T is zsomorphzc to the omgmal category R.
(2) Denote the ngel dualzty functors F and G for R relative to T instead by
Gy :=Homy (T, —) : R — R and F* := « o Homp (—, T): R — R, respectively.
We have that F* ~ T Q@4 — and G ~ T ®p —. Hence, (F*,F) and (G, Gy) are
adjoint pairs.

Proof. (1) Note that GB is a (—¢)-tilting generator since GP(b) =~ T_.(b) for b € B.
Actually, GB = Homp(B,T)* =~ T* = T. Thus, T is a (—¢)-tilting generator in R. Its
opposite endomorphism algebra is B since G defines an algebra isomorphism

B = Endg(B)°® > End(GB)°P =~ End 4 (T)°P

(2) As F* is right exact and commutes with direct sums, a standard argument using
the Five Lemma shows that it is isomorphic to F*(A)®4 — = T ®4 —. Thus, F* is left
adjoint to F'. Similarly, G = T ®p — is left adjoint to G. O

The next corollary describes the strata ﬁ,A of the Ringel dual category. Let j!)‘ 'R A=
R=» and j) : Ry — Rx) be its standardization and costandardization functors.

Corollary 4.13. For A € A, the strata Ry and ﬁ,)\ are equivalent. More precisely:
(1) Ife(N\) = + the functor Fy := 7} oFoj} : Ry — Ry is a well-defined equivalence.
(2) Ife(A\) = — the functor Gy := PoGoji : Ry — Ry is a well-defined equivalence.

Proof. We just prove (1), since (2) is similar. So assume that €(A) = +. Note that the
definition of F makes sense: j is exact by Theorem so it sends objects of R to
objects of R which have filtrations with sections V.(b) for b € B). Then F sends such
objects into A,E(ﬁz ), on which 7" is defined. This shows moreover that F) is exact.
Adopting the setup of Corollary we can also define
Ffi= 2o F*oj) : Ry — Ra,

and get that I is well-defined by similar arguments. We complete the proof by showing
that F and Fy are quasi-inverse equivalences. Note that F* is left adjoint to F. The
counit of adjunction gives us a natural transformation F o F) — Idg,. We claim this
is an isomorphism. Since both functors are exact, it suffices to prove this on irreducible
objects: we have F}(Fy\Lx(b)) = F;“zk(b) =~ Ly(b). Similar argument shows that the
unit of adjunction is an isomorphism in the other direction. O

Corollary 4.14. Let R be a finite e-stratified category.
(1) All'V € V.(R) have finite e-tilting resolutions if and only if all positive strata
are of finite global dimension.
(2) ALV € A.(R) have finite e-tilting coresolutions if and only if all negative strata
are of finite global dimension.

Proof. We just explain the proof of (1). By Theorem all V e V.(R) have finite

e-tilting resolutlons if and only if all Ve A_(R ) have ﬁmte projective resolutions. By

Lemma ( ), this is equivalent to all negative strata of the (—e¢)-stratified category
R are of finite global dimension. Equivalently, by Corollary , all positive strata of
the e-stratified category R are of finite global dimension. O

For the final application, let RF and LG be the total derived functors of F' respectively
G. These give triangulated functors between the bounded derived categories D*(R) and
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Db(ﬁ). The following theorem is a consequence of Happel’s general tilting theory for
finite dimensional algebras from [Hap].

Theorem 4.15. Let R be the Ringel dual of a finite e-stratified category R. Assume that
all negative strata (resp., all positive strata) of R are of finite global dimension. Then

RF : D*(R) — D*(R) (resp., LG : D*(R) — D*(R)) is an equivalence of triangulated

categories. Moreover, if R is of finite global dimension, then so is R.

Proof. Assuming R has finite global dimension, this all follows by [Hapl Lemma 2.9,
Theorem 2.10]; the hypotheses there hold thanks to Corollary To get the derived
equivalence without assuming R has finite global dimension, we cite instead Keller’s
exposition of Happel’s result in [Kell Theorem 4.1], since it assumes slightly less; the
hypotheses (a) and (c) there hold due to Corollary [£.14(2) and Lemma 1). O

Corollary 4.16. If R is +-highest weight (resp., —-highest weight) and R is the Ringel
dual relative to a +-tilting generator (resp., a —tilting generator), then RF : D¥(R) —
D*(R) (resp., LG : D*(R) — D®(R)) is an equivalence.

Proof of Theorem[{.11} This follows the same steps as in [Dond, pp.158-160]. Assume
without loss of generality that R = B-modgg for a finite-dimensional algebra B. For
each b € B, let ¢, € A = End4(T)°P be an idempotent such that Te, =~ T.(b). Then

]5(17) := Aey is an indecomposable projective A-module and the modules
{L(b) :=hd P(b) | be B}

give a full set of pairwise inequivalent irreducible A-modules. Since R is a finite Abelian
category, it is immediate that p : B — A°P defines a stratification of it. Let E,E(b)
and V_.(b) be the (—¢)-standard and (—¢)-costandard objects of R defined from this
stratification. Set V (b) := FV.(b).

Step 1: For b € B we have that P(b) =~ FT.(b). This follows immediately from the
equality Homp (T, T)e, = Homp (T, Tep).

Step 2: The functor F is ezact on V.(R). This is the usual Ext'-vanishing between A.-
and V_.-filtered objects.

Step 3: For a,b € B, we have that [V (b) : L(a)] = (T(a) : Ac(b)). The left hand side
is dime,V(b) = dime, Homp(T, V(b)) =~ dimHomp(T.(a), V:(b)), which equals the
right hand side.

Step 4: V/(b) is a non-zero quotient of P(b), thus, hd V(b) = L(b). By Theorem i),
V.(b) is a quotient of T, (), hence V' (b) is quotient of P(b) by Step 2. It is non-zero by
Step 3.

Step 5: We have that V(b) =~ A__(b). Let A := p(b). We treat the cases £(\) = + and
g(\) = — separately. If £(\) = + we must show that V (b) is the largest quotient of P(b)
with the property that [V(b) : L(a)] # 0 = p(a) > p(b). We have already observed
in Step 4 that V(b) is a quotient of P(b). Also (T(a) : A-(b)) # 0 = p(b) < p(a) by
Theorem iii). Using Step 3, this imples that V(b) has the property [V (b) : L(a)] #
0 = p(a) = p(b). It remains to show that any strictly larger quotient of Jg(b) fails this
condition. To see this, since ¢(\) = +, a V-flag in T, (b) has V.(b) at the top and other
sections V¢(¢) for ¢ with p(c) < p(b). In view of Step 4, any strictly larger quotient
of P(b) than V (b) therefore has an additional composition factor L(c) arising from the
head of V(¢) for some ¢ with p(c) < p(b).

Instead, if £(\) = —, we use the characterization of A_.(b) from Lemma we must
show that V/(b) is the largest quotient of P(b) with the property that [V(b) : L(b)] = 1
and [V(b) : L(a)] # 0 = p(a) > p(b) for a # b. Since £(A\) = —, we have that
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(To(b) : V(b)) =1 and (T.(b) : Ve(a)) # 0 = p(a) < p(b) for a # b. Hence, using
Step 3 again, the quotient V' (b) of Is(b) has the required properties. A V.-flag in T.(b)
has V.(b) at the top and other sections V.(c) for ¢ with p(c) < p(b). So any strictly
larger quotient of P(b) than V (b) has a composition factor L(c) arising from the head
of V(c) for ¢ with p(c) < p(b). In case ¢ = b, this violates the requirement that the
quotient has E(b) appearing with multiplicity one; otherwise, it violates the requirement
that all other composition factors of the quotient are of the form L(a) with p(a) > p(b).

Step 6: R is a finite (—e)-stratified category. In view of Step 5, it suffices to show that
P(b) has a filtration with sectons V'(¢) for ¢ with p(c) < p(b). Since T¢(b) has a V.-flag
with sections V. (c) for ¢ with p(c) < p(b), this follows using Steps 1 and 2.

Step 7: For any U € Tilt.(R) and V € R, the map f : Hompg(U,V) — Homu (FU, FV)
induced by F' is an isomorphism. It suffices to prove this when U = T, so that the right
hand space is Hom (A4, FV) and F'V = Homp(T, V). This special case follows because
f is the inverse of the isomorphism Homy (A, FV) — FV,0 — 6(1).

Step 8: For any V,W € V.(R) and n = 0, the functor F induces a linear isomorphism
Extg (V,W) = Ext (FV, FW). Take an e-tilting resolution d : T, — V' in the sense of
Definition [4 Wthh exists thanks to Theorem [4.9] The functor F takes this resolution
to a complex
-— FT1 - FTy - FV — 0.

In fact, this complex is exact. To see this, take m > 0 and consider the short exact
sequence 0 — kerd,, — T,, — imd,, — 0. All of kerd,,, T,, and imd,, have V_-flags
due to Lemma|4.7] Hence, thanks to Step 2, we get a short exact sequence

0 —> F(kerd,,) — FT,, 2, F(imd,,) — 0

on applying F. Since F' is left exact, the canonical map F(imd,,) — FT,,—1 is a
monomorphism. Its image is all 6 : T' — T,,,_1 with image contained in imd,,. As p is
an epimorphism, any such 6 can be written as d,, o ¢ for ¢ : T — T, i.e., 0 € im(Fd,,).
Thus, F(imd,,) =~ im(Fd,,), and 0 — ker(Fd,,) — FT,, — im(Fd,,) — 0 is exact, as
required. In view of Step 1, we have constructed a projective resolution of F'V in R:

.~ FTy —> FTy —> FV — 0.

Next, we use the projective resolution just constructed to compute Ext%(F V, FI) for
any injective I € R. We have a commutative diagram

0 — Homg (V,I) ——— Homg(Ty,I) —— Homg (T}, 1) —— - --

Js 5 I

0 —— Homy (FV, FI) —— Homg (FTy, FI) —— Homg (FT1, FI) ——

with vertical maps induced by F. The maps fo, f1,... are isomorphisms due to Step 7.
Also the top row is exact as [ is injective. We deduce that the bottom row is exact at
the positions Homg (F'T5,, FI) for all m > 1. Tt is exact at positions Homg (FV, FI)
and Hom. (FTO,FI ) as Homp(—, FI) is left exact. Thus, the bottom row is exact
everywhere So the map f is an 1somorphisrn too and Ext%s (FV, FI) = 0 for n > 0.

Finally, take a short exact sequence 0 - W — [ — @) — 0 in R with [ injective.
We have that Q € V.(R) by Corollary Hence, using Step 2 and the previous
paragraph, there is a commutative diagram

Hompg (V, W) —— Homg (V, I) —— Homg (V, Q) —— Extk (V, W)

Js s I Jn

Homg (FV, FW) < Homg (FV, FI) —— Homg (FV, FQ) — Extk (FV, FW)



50 J. BRUNDAN AND C. STROPPEL

with exact rows. As fo is an isomorphism, we get that f; is injective. Since this is
proved for all W, this means that fs is injective too. Then a diagram chase gives that
f1 is surjective, hence, f3 is surjective and f, is an isomorphism. Degree shifting now
gives the isomorphisms Ext% (V, W) = Extx (FV, FW) for n > 2 as well.

Step 9: We have that T_.(b) = FI(b). By Steps 5 and 8, we get that

Extk (A_.(a), FI(b)) = Exty (Ve(a), I(b) =0
for all @ € B. Hence, by the homological criterion for V_.-flags in the (—¢)-stratified
category R, the A-module FI(b) has a V_.-flag. It also has a A_.-flag with bottom
section isomorphism to A_.(b) due to Steps 2 and 5. So FI(b) € Tilt_.(R). It is
indecomposable as Ends (FI(b)) = Endg(I(b)) by Step 8, which is local. Therefore
FI(b) =~ T_.(b) due to Theorem i).

Step 10: The restriction F : V.(R) — A_g(ﬁ) is an equivalence of categories. It is full
and faithful by Step 8. It remains to show that it is dense, i.e., for any V € A_g(ﬁ)
there exists V' € V.(R) with FV’' =~ V. The proof of this goes by induction on the
length of a A_.-flag of V. If this length is one, we are done by Step 5. For the induction
step, consider V fitting into a short exact sequence 0 - U — V — W — 0 for shorter
UW e A_.(R'). By induction there are U', W' € V.(R) such that FU' =~ U and
FW’ = W. Then we use the isomorphism Ext%(FW’,FU’) ~ Exty (W', U’) from
Step 8 to see that there is an extension V' of U’ and W’ in R such that FV' = V.

Step 11: The dual right B-module T* to T is a (—e¢)-tilting generator in R°P = mod¢y-B
such that Endg(T*)°P = A°P. Moreover, letting F°P := Homp(T™*, —) : modg-B —
modg¢g-A be the corresponding Ringel duality functor, we have that G =~ % o F°P o =,
The first statement is clear from Theorem [3.11] observing that Endp(T*)°P =~ Endp(T)
since # : B-mod¢g — mod-B is a contravariant equivalence. It remains to observe that
%0 F°P o % ~ % o Homp(T*, (—)*) =~ * c Homp(—,T) = G.

Step 12: The restriction G : A (R) — V,E(ﬁ) is an equivalence of categories inducing
isomorphisms as in @, such that GT.(b) = I(b), GA.(b) =~ V_.(b) and GP(b) =~
T,E(b), This follows from Step 11 together with the analogs of Steps 1, 5, 8, 9 and 10
with R°P = modfd—B,ﬁ"p = mod¢-A and F°P replacing R = B—modfd77~€ = A-modgy
and F, respectively. O

4.3. Tilting objects in the upper finite case. Throughout the subsection, R will
be an upper finite e-stratified category. We are going to extend the definition of tilting
objects to this situation. Using the notions of ascending A.-flags and descending V.-
flags from Definition we set

Tilt.(R) := A®(R) n VEC(R). (4.7)
We emphasize that objects of Tilt.(R) are in particular objects of R, so all of their
composition multiplicities are finite. Like in Lemma Tilt-(R) is a Karoubian sub-
category of R. In general, in the upper finite setting, an e-tilting object in R has both

an infinite ascending A.-flag and an infinite descending V.-flag. For a baby example of
this phenomenon, see (6.11)) below.

Theorem 4.17. Assume that R is an upper finite e-stratified category. For b € B with
p(b) = A, there is an indecomposable object T.(b) € Tilt.(R) satisfying the following
properties:

(i) T-(b) has an ascending A.-flag with bottom sectiorﬂ isomorphic to A (b);

(i) T=(b) has a descending V.-flag with top sectimﬂ isomorphic to V(b);

3We mean that there is an ascending Ac.-flag (V,)weq in which © has a smallest non-zero element 1
such that Vi = A (b).
4Similarly, we mean that V/Vi = V. (b).
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Py(b) ife(A) =+

INb)  ife(N)=— "

These properties determine T, (b) uniquely up to isomorphism: if T is any indecomposable
object of Tilt-(R) satisfying any one of the properties (i)—(iii) then T = T.(b); hence,
it satisfies the other two properties as well.

(iii) T.(b) € Ry and jAT.(b) = {

Proof. Existence: Replacing R by R« if necessary and using Theorem we reduce
to the special case that A is the largest element of the poset A. Assuming this, the first
step in the construction of T.(b) is to define a direct system (V,,),eq of objects of R.
This is indexed by the directed set €2 of all finite upper sets in A. Let Vi := 0. Then take
@ # w € Q and denote it instead by AT. Letting j : R — R' be the corresponding finite
e-stratified quotient of R, we set V,, := 5T/ (b). By Theorem @ 6), this has a A -flag.
Given also w < v € Q, i.e., another upper set AT containing AT, let k : R — R™ be
the corresponding quotient. Then j factors as j = jo k for an induced quotient functor
7:R"™ — R'. Since 71" (b) =~ T/ (b) by Corollary we deduce from Corollary [3.212)
that there is a short exact sequence

0— 3TI(b) — TI'(h) — Q —0

such that @ has a A -flag with sections A" (¢) for ¢ with p(c¢) € AT\A'. Applying ki and
using the exactness from Theorem 6) again, we deduce that there is an embedding
fl .V, = V,, with coker fU € A.(R). Thus, we have a direct system (V,,),eq. Now let
T:(b) :=lim V,, € Ind(R.). Using the induced embeddings f,, : V,, < T.(b), we identify
each V,, with a subobject of T.(b). We have shown for w < v that V,,/V,, € A.(R) and,
moreover, jV, = jV,, where j : R — R' is the quotient associated to w.

In this paragraph, we show that 7.(b) actually lies in R rather than Ind(R.), i.e., all
of the composition multiplicities [T.(b) : L(c)] are finite. To see this, take ¢ € B. Let
w = A" €  be some fixed finite upper set such that p(c) € AT, and j : R — R be the
quotient functor as usual. Then for any v > w we have that

Vi : L] = [V s L'(0)] = [1Va : L(9)] = [Va : L(O)]
Hence, [T:(b) : L(c)] = [V, : L(¢)] < o0.

So now we have defined T, (b) € R together with an ascending A.-flag (V,,)weq. The
smallest non-empty element of Q is w := {A}, and V,, = j}Py(b) = A () if e(N) = +,
or jPIN(b) if e(A) = —. Since j ML(b) = j V., we deduce that (iii) holds. Also by
construction T (b) has an ascending A -flag. To see that it has a descending V.-flag,
take any a € B. Let w = AT € Q be such that p(a) € AT. Then A.(a) = jiAl(a) and
JjT:(b) = jV,, = T1(b), so by Theorem 5) we get that

Extr (Ac(a), T-(b)) = Exty: (Al(a), T (b)) = 0.

By Theorem this shows that T.(b) € V¢(R).

Note finally that 7. (b) is indecomposable. This follows because jT.(b) is indecompos-
able for every j : R — R (adopting the usual notation). Indeed, by the construction we
have that j7.(b) =~ T (b) This completes the construction of the indecomposable object
T.(b) € Tilt:(R). We have shown that it satisfies (iii), and it follows easily that it also
satisfies (i) and (ii).

Uniqueness: Since (iii) implies (i) and (ii), it suffices to show that any indecomposable
U € Tilt.(R) satisfying either (i) or (ii) is isomorphic to the object T := T.(b) just
constructed. We explain this just in the case of (i), since the argument for (ii) is similar.
We take a short exact sequence 0 - A (b) > T — Q — 0 with @ € A2°°(R). Using the
Ext-vanishing from Lemma [3.38] we deduce like in the proof of Theorem that the
inclusion f : A.(b) < T extends to f : U — T. In fact, f is an isomorphism. To see
this, take a finite upper set AT containing A\ and consider the quotient j : R — R' as
usual. Both jU and jT are isomorphic to T (b) by the uniqueness in Theorem The
proof there implies that any homomorphism j7T — jU which restricts to an isomorphism
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on the subobject Al(b) is an isomorphism. We deduce that j f is an isomorphism. Since
holds for all choices of AT, it follows that f itself is an isomorphism. O

Corollary 4.18. Any object of Tilt-(R) is isomorphic to P, g T- ()" for unique
multiplicities ny € N. Conversely, any such direct sum belongs to Tilt.(R).

Proof. Let us first show that any direct sum U := @, g T (b)®"* belongs to Tzlt (R).
The only issue is to see that U actually belongs to R rather than Ind(R.), i.e., it has
finite composition multiplicities. But for a given ¢ € B, the multiplicity [T.(b ) L(c)]
is zero unless p(c) < p(b). There are only finitely many such b € B, so [U : L(c)] =
ZbeB nb[Ts(b) : L(C)] < ©.

Now take any U € Tilt-(R). Let Q be the directed set of all finite upper sets in
A. Take w € Q, say it is the finite upper set AT. Let j : R — R be the quotient
functor as usual. Then we have that jU € Tilt.(R"), so it decomposes as a finite
direct sum as jU =~ @, g+ T (b)®’”’ for ny(w) € N. There is a corresponding direct
summand T, = @yt e (b)®”b of U. Then T = lim T,,. Moreover, for b € B, the
multiplicities ny(w) are stable in the sense that ny(v) = nb( ) for all v > w. We deduce
that U = @,.g 1= (b)®™ where n;, := ny(w) for any sufficiently large w. O

There are also obvious analogs of Corollaries [£.4] and [£.5] in the upper finite setting.

4.4. Semi-infinite Ringel duality. Throughout the subsection, A will be a lower finite
poset and € : A — {+£} is a sign function. The opposite poset A°P is upper finite. The
goal is to extend Ringel duality to include stratifications indexed by A or A°P. The
situation is not as symmetric as in the finite case and demands different constructions
when going from lower finite to upper finite or from upper finite to lower finite. If we start
with a lower finite e-stratified category, the Ringel dual is an upper finite (—¢)-stratified
category:
Definition 4.19. Let R be a lower finite e-stratified category with stratification p :
B — A. An e-tilting generating family is a family (T});e; of e-tilting objects in R such
that every T.(b) is isomorphic to a summand of T; for some ¢ € I. Define the Ringel
dual of R relative to T := @,.; T; € Ind(R) to be the Schurian category R := A-modi,
where A = @i,je s €:Ae; is the locally finite-dimensional locally unital algebra with
e;Ae; := Homg (T;,T;) and multiplication that is the opposite of composition in R.
Identifying Ind(R.) with A-mod as explained in 1 , we have the Ringel duality functor

F := @ Homg (T}, —) : Ind(R) — Ind(R.). (4.8)

iel
Theorem 4.20. In the setup of Definition R is an upper finite (—e)-stratified
category with stratification defined from p : B — A°P. Its distinguished objects satisfy
P(b) ~ FT.(b), L(b) =~ hd P(b),
A_.(b) = FV.(b), T .(b) = FI(b).

The restriction F : V3¢(R) — A™S(R) is an equivalence of categories.

The proof will be explained later. In the other direction, if we start from an upper
finite (—¢)-stratified category, the Ringel dual is a lower finite e-stratified category:

Definition 4.21. Let R be an upper finite (—e¢)-stratified category with stratification
p: B — AP A (—¢)-tilling generator is an object T € Tilt_.(R) such that T_.(b) is

a summand of T for every b € B. By Lemma the algebra B := End (T )Op is a
pseudocompact topological algebra with respect to the profinite topology; let C be the
coalgebra that is its continuous dual. Then the Ringel dual of R relative to T is the
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category R := B-modgq =~ comodgy-C. Recalling the continuous duality functor # from
(2.7) and the definition of the functor (2.14)), we define the Ringel duality functor
F* := x o Homg (—,T) : Ind(R.) — Ind(R). (4.9)
Theorem 4.22. In the setup of Definition[{.21], R is a lower finite e-stratified category
with stratification defined from p: B — A. Its distinguished objects satisfy
I(b) =~ F*T__(b), L(b) =~ soc 1(b),
V.(b) = F*A__(b), T.(b) =~ F*P(b).

~

The restriction F* : A»S(R) — V2°(R) is an equivalence of categories.

Remark 4.23. In Definitions and we have only defined an analog of the
functor F' from when going from lower finite to upper finite, and an analog of
the functor G from when going from upper finite to lower finite. In order to
define precise analogs of F' and G in the other directions, one would need to work
systematically everywhere with pro-completions rather than ind-completions, which we
have assiduously avoided.

The following two corollaries give the analogs of the double centralizer property from
Corollary [£.12)in the semi-infinite setting.

Corollary 4.24. Let notation be as in Definition [[.19 Assume in addition that R =
comodg-C' for a coalgebra C. Let B := C* be the dual algebra, so that T is a (B, A)-
bimodule. Let T := T® be the dual (A, B)-bimodule.
(1) T is a (—¢)-tilting generator in R such that B =~ Endﬁ(f)"p. Thus, the Ringel
dual ofﬁ relative to T is isomorphic to the original category R.
(2) The functor F* from @ is isomorphic to the functor T ®4 — defined as in
. Moreover, (F*, F) is an adjoint pair thanks to Lemma [2.11]

Proof. By Lemma we have that Home(T;,C) = T;* as right B-modules, hence,
FC ~T as an (A, B)-bimodule. Since every I(b) appears as a summand of the regular
comodule, and FI(b) =~ T_.(b) by Theorem [4.20| we deduce that T is a (—e)-tilting

~

generator in R. To see that B = End4(T)°P, we use the fact that F is an equivalence
on V-filtered objects to deduce that

End(T)°P =~ End, (FC)°P = End(C)® =~ B,

using Lemma again for the final algebra isomorphism. This establishes (1). For (2),
we get that F* = x o Homa(—,T) @ T ®4 —. Lemma now implies that F* is left
adjoint to F. O

Corollary 4.25. Let notation be as in Definition and assume in addition that
R = A-modyq for a locally finite-dimensional locally unital algebra A = E}—)Me[ eiAe;.
Let T := T®, which is a (B, A)-bimodule. Set T; := Te; € B-modsq. Then (T;)ier is
op
HomR(Ti,Tj)> . Thus, the

an e-tilting generating family in R such that A =~ <@i,jel

Ringel dual of R relative to T is isomorphic to the category R.

Proof. Note that T; = F*(Ae;). So Theorem implies that (T})er is an e-tilting
generating family in R. Moreover,

Hompg (T;,T;) = Homg (F*(Ae;), F*(Ae;)) = Homy (Ae;, Aej).
The corollary now follows. O

Corollary carries over to the semi-infinite case. We leave this to the reader. We
have not investigated derived equivalences or any analog of Theorem [£.15|in this setting.
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Proof of Theorem[}.20, We may assume that R = comod-C' for a coalgebra C. Let
B := C* be the dual algebra, so that R is identified also with B-modg. We can replace
the e-tilting generating family (7});e; with any other such family. This just has the
effect of transforming A into a Morita equivalent locally unital algebra. Consequently,
without loss of generality, we may assume that I = B and (7;)ier = (T=(b))sen. Then

A= @ Homp(T.(a),T:(b))

a,beB

is a pointed locally finite-dimensional locally unital algebra, with primitive idempotents
{es | b € B}. Let P(b) := Aey and L(b) := hd P(b). Then R = A-mody¢q is a Schurian
category, the A-modules {L(b) | b € B} give a full set of pairwise inequivalent irreducible
objects in R, and P(b) is a projective cover of L(b ) in Ind(R.) = A-mod. It is immediate
that p : B — AP gives a stratification of R. Let A_(b) and V_.(b) be its (—¢)-standard
and (—e)-costandard objects. Also let V(b) := FV.(b). Now one checks that Steps 1-6
from the proof of Theorem carry over to the present situation with very minor
modifications. We will not rewrite these steps here, but cite them freely below. In
particular, Step 6 establishes that R is an upper finite (—e¢)-stratified category. Also,
FV.(b) = A_.(b) by Step 5. It just remains to show that

e F restricts to an equivalence of categories between V3¢(R) and A*¢(R);

o FI(b) = T_.(b).
This requires some different arguments compared to the ones from Steps 7-10 in the
proof of Theorem [4.11]

Let Q be the directed poset consisting of all finite lower sets in A. Take w € Q, say
it is the lower set A'. Let V.(R,w) be the full subcategory of V.(R) consisting of
the V.-filtered objects with sections V. (b) for b e B! := p~}(A'). Similarly, we define
the subcategory A_.(R,w) of A_.(R). By Steps 2 and 5, F restricts to a well-defined
functor N

F:V.(R,w) > A_.(R,w). (4.10)
We claim that this is an equivalence of categories. To prove it, let i : R* — R be the
finite e-stratified subcategory of R associated to A'. Let e := >, g, e, € A. Then
bi= @peps Te(b) is an e-tilting generator in R*. As Endg.(T")°P = eAe, the Ringel
dual of R* relative to T* is the quotient category R' := eAe-modsq of K. Let F* :=
Home (T, —) be the corresponding Ringel duality functor. We also know that R* is the
finite (—¢)-stratified quotient of R associated to A* (which is a finite upper set in A°P).
Let 7: R — R' be the quotient functor, i.e., the functor defined by multiplication by
the idempotent e. For a right C-comodule V', we have that
FHi'V) = @ Home(Tw(b),i'V) = e P Home(T.(b), V) = j(FV).
beB! beB
This shows that
Ftoi'~joF. (4.11)
By Theorem [4.11, F* gives an equivalence V.(R') — A_.(R'). Also i' : V.(R,w) —
V.(RY and 7: A_.(R,w) — A_.(R") are equivalences. This is clear for i'. To see it for
J, one shows using Theorem [3.44] that the left adjoint ji gives a quasi-inverse equivalence.
Putting these things together, we deduce that is an equivalence as claimed.

Now we can show that F restricts to an equivalence F : V3¢(R) — A%C(R). Take
V e V2°(R). Then V has a distinguished ascending V.-flag (V,,)weq indexed by the
set Q of finite lower sets in A. This is defined by setting V., := 'V in the notation
of the previous paragraph; see the proof of Theorem As each comodule T.(b) is
finite-dimensional, hence, compact, the functor F' commutes with direct limits. Hence,
FV ~ li_r)n(FVw). In fact, (F'V,)weq is the data of an ascending A_.-flag in FV € R.

To see this, we have that F'V,, € A_s(ﬁ) by the previous paragraph. For w < v the
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quotient V,,/V,, has a V.-flag thanks to Corollary so FV,/FV,, = F(V,/V,) has a
A_-flag. We still need to show that F'V is locally finite-dimensional. For this, we prove
that dim Hom(FV,I(b)) < oo for cach b € B. Since I(b) has a finite V_.-flag, this
reduces to checking that dim Hom 4 (FV,V_.(b)) < oo for each b, which holds because
the multiplicities (V, : V(b)) are bounded by the definition of the category V2¢(R).

At this point, we have proved that F restricts to a well-defined functor
F:VZ(R) - A®(R).
We prove that this is an equivalence by showing that the left adjoint F'* := T ®4 — to
F gives a quasi-inverse. The left mate of (4.11)) gives an isomorphism
io(FY)* = F*oj. (4.12)

Combining this with Corollary we deduce that F'* restricts to a quasi-inverse of
the equivalence for each w € . Also, F'* commutes with direct limits, and again
any V € A*S(R) has a distinguished ascending A_.-flag (V,,)ueq as we saw in the proof
of Theorem [3.39] These facts are enough to show that F* restricts to a well-defined
functor F* : Aﬁ?(ﬁ) — V2¢(R) which is quasi-inverse to F'.

Finally, we check that FI(b) =~ T_.(b). Let V := I(b) and (V,,)ueq be its distinguished
ascending V -flag indexed by the set ) of finite lower sets in A. Using the same notation
as above, for w that is a lower set A* satisfying p(b) € A*, we know that V,, is an injective
hull of L(b) in R*. Hence, by Theorem F'V, =~ T*_(b) € R*. From this, we see
that the ascending A_.-flag (FV,,) in FI(b) coincides with the distinsguished ascending

A_.-flag in fls(b) from the construction from the proof of Theorem g

Proof of Theorem[].22. We may assume that R = A-modygg for a pointed locally finite-
dimensional locally unital algebra A = @a,beB eqAey, so that T is a locally finite-
dimensional left A-module. Let T := T7® and C := T ®4 T®, which we view as a
coalgebra according to . By Lemma this coalgebra is the continuous dual of
B = EndA(T)Op. We may identify R with comodg-C, which is a locally finite Abelian
category. Applying Lemma [2.11] we can also identify the Ringel duality functor F'* with

the functor T®4 — : A-mod — comod-C, the comodule structure map of T®4 V being
defined as in (2.13]). Let

I(b) := F*T__(b),  Ve(b):= F*A__(b),  L(b) :=soc I(b). (4.13)
Each I(b) is an indecomposable injective right C-comodule, and {L(b)|b € B} is a full set
of pairwise inequivalent irreducible comodules. Since A_.(b) — T_.(b), and F* is exact
on A®¢(R) by the original definition of F* and the Ext!-vanishing from Lemma ﬂ,
we see that V.(b) — I(b). Thus, we also have that L(b) = soc V.(b).

Now let A* be a finite lower set in A. Set B := p~1(A'), and let j: R — R* be
the corresponding Serre quotient of R. Since A is a finite upper set in A°P, this is a
finite (—e)-stratified category thanks to Theorem In fact, R* = eAe-modzq where
e = >,cp! €, and j is the functor defined by multiplying by e. By the upper finite
analog of Corollary eT is a (—¢)-tilting generator in R*. Let B' := End,a(eT)P
be its (finite-dimensional) endomorphism algebra. Then R* := B'-modyq is the Ringel
dual of R* relative to eT'. By the finite Ringel duality from Theorem@ R*' is a finite
e-stratified category. Let (F4)* : R* — R' be its Ringel duality functor.

The functor j defines an algebra homomorphism

7: B — B (4.14)
We claim that 7 is surjective. To prove this, consider the short exact sequence
0— Ae@cpc el — T — Q —> 0 (4.15)
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which comes from the upper finite counterpart of Lemma (2); thus, Q € A*Y(R)
and all of its sections are of the form ﬁ,g(b) for b ¢ BY. Applying the functor
Homyu(—,T) and using that Ext}(Q,T) = 0, we deduce that the natural restriction
map HomA(T T) Hom 4 (Ae ®cae eIN“, T) is surjective. Since Hom 4 (Ae ®c ¢ ef, IN“) >
Hom, 4, (eT eT) this proves the claim.

From the claim, we see that the functor i : R* — R defined by restriction through
the epimorphism 7 includes R*' as an Abelian subcategory of R. We claim moreover
that that

io(Fl)* ~ F* o3j. (4.16)
This can be proved in the same way as above, but the following alternative
argument is more convenient in the present setting: consider the finite-dimensional dual
coalgebra

Ct = (BY)*.

The dual map 7* to (4.14]) defines a coalgebra homomorphism C* — C. Moreover, if
we identify C' with Te ®c4e T like i in Lemma, [2.9| then 7* corresponds to the 0bv10u5
coalgebra homomorphism Te ®¢4e el > T ® A T induced by the inclusion Te ® eT <>
T®T. Since 7 is surjective, the dual map 7* is injective, so it identifies C'* with a
subcoalgebra of C. Now the functor (F*)* is Te ®cae — : eAe-mod — comod-C*, and
we get (4.16)) since T ®4 Ae Qese V = Te ®cae V for any eAe-module V.

From and Theorem 6), we see that e-costandard objects of R are the
comodules {V(b)|b € B'} defined by . Representatives for the isomorphism classes
of irreducible objects in R* are given by the socles {L(b) | b € B'} of these costandard
objects. In fact, R' is the Serre subcategory of R generated by {L(b) | b € B*}. To
prove this, by Lemma it suffices to show that C' is the largest right coideal of C
such that all of its irreducible subquotients are of the form {L(b) | b € B*}. Apply F*
to , using the exactness noted before, to get a short exact sequence

0—> Te®cne €l — TR4T — F*Q —> 0.

Since C* = Te ®oa0 €T and C = T ®4 T, this shows that C/CY ~ F*Q. To finish the
argument we show that all irreducible constituents of soc (F*@Q) are of the form L(b) for
b ¢ B'. Fix an ascending A_.-flag (V,,)weq in Q. As F* commutes with direct limits
and is exact on A__-flags, we deduce that F*Q is the union of subobjects of the form
F*V,. Now the sections in a A.-flag in V, are ﬁ_s(b) for b ¢ B, hence, F'*V,, has a
V.-flag with sections V.(b) for b ¢ B'. It follows that soc (F*V,,) is of the desired form
for each w, hence, the socle of F*Q is too.

We can now complete the proof of the theorem. Theorem |3.63] implies that R is a
lower finite e-stratified category. Theorem once again shows for any choice of A'
that the e-tilting object of R* indexed by b € B is

T!(b) := F*' (FP(b)) = F*(ji(FP(b))) = F*P(b).
This is also the e-tilting object T (b) of R due to Corollary Also, for a,b € B, we
have that
Home(Tx(a), T (b)) = Home: (T (a), T (b)) = Homepe(eP(a), eP(b)) = eq A€y,

These things are true for all choices of A', so we see that the Ringel dual of R rela-
tive to @,.g T-(b) is the original category A-modjsq. This puts us in the situation of
Corollary [4.24] and finally we invoke that Corollary (whose proof did not depend on
Theorem D to establish that F* : A®¢(R) — V¢(R) is an equivalence. O
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4.5. The essentially finite case. In this subsection, we let R be an essentially finite
e-stratified category with stratification p : B — A. As usual, A°? denotes the opposite
poset. Since A is interval finite, unions of lower sets of the form (—oo, A] are upper finite.
If R is the Serre subcategory of R associated to such an upper finite lower set then
its Schurian envelope Env(R*') in the sense of Lemma is an upper finite e-stratified
category. This follows from Theorem [3.19

For b € B, we define the corresponding e-tilting object T.(b) € Env(R) as follows:
pick any upper finite lower set A* such that p(b) € A}, let R be the corresponding Serre
subcategory of R, then let T.(b) be the e-tilting object in Env(R*') from Theorem m
This is well-defined independent of the choice of A* by the uniqueness part of Theo-
rem We will only consider Ringel duality in the essentially finite case under the
hypothesis that R is e-tilting-bounded, meaning that the matrix

(dim Homg (T.(a), T.(b))) (4.17)

a,beB
has only finitely many non-zero entries in every row and in every column. This condition
implies in particular that each T.(b) is of finite length, i.e., it belongs to R rather than
Env(R).

Remark 4.26. Most of the interesting examples of essentially finite highest weight cat-
egories which arise “in nature” seem to satisfy the tilting-bounded hypothesis, although
there is no reason for this to be the case from the recursive construction of Theorem .17
We refer the reader to Remark [6.2] for an explicit essentially finite example which is not
tilting-bounded.

Assuming R is e-tilting-bounded, we define
Tilte(R) := Ac(R) n V(R) (4.18)

just like in (4.1). Theorem [4.2 carries over easily, to show that {T.(b) | b € B} gives
a full set of the indecomposable objects in the Karoubian category Tilt.(R). The
construction of Theorem also carries over unchanged. So all objects of V. (R) have
e-tilting resolutions and all objects of A.(R) have e-cotilting resolutions.

Definition 4.27. Assume R is an essentially finite e-stratified category with strati-
fication p : B — A. Assume in addition that R is e-tilting bounded. An e-tilting
generating family in R means a family (7;);e; of objects T; € R such that each T; is
a direct sum of the objects T.(b) and every T.(b) appears as a summand of at least
one and at most finitely many different 7;. Given such a family, we define the Ringel
dual of R relative to T := @,_,; T; € Env(R) to be the category R := A-modgy where

O

A= (@mel Homxg (T3, Tj)) ", Also define the two Ringel duality functors

el

F:= @Homg(T;,~): R — R, (4.19)
el
G := x o Homp(—,T) : R - R. (4.20)

Theorem 4.28. In the setup of Deﬁnition R is an essentially finite (—e)-stratified
category with stratification defined from p : B — A°P. Moreover, R is (—¢)-tilting-
bounded. Its distinguished objects satisfy

P(b) ~ FT.(b), I(b) =~ GT.(b), L(b) =~ hd P(b) = soc I(b),
A_.(b) =~ FV_.(b), V_e(b) = GA(b), T_.(b) =~ FI(b) = GP(b).
The restrictions F : V.(R) — A_.(R) and G : A(R) — V_.(R) are equivalences.

Proof. We may assume that R = B-modgg for an essentially finite-dimensional locally
unital algebra B = @, ,.; fxBfi. The assumption that R is e-tilting-bounded implies
that >, ; dimHomg (7;,7;) < o and Zjel dim Homg (T3,T;) < oo for each i,j € I.

el
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Thus, the locally unital algebra A is also essentially finite-dimensional, i.e., R is essen-
tially finite Abelian. For b € B, pick i(b) € I and a primitive idempotent e, € e;() Ae;r)
such that Tjyep = T2(b). Then ]5(6) := Aey is an indecomposable projective A-module,
and
{L(b) := hd P(b) | be B}

is a full set of pairwise inequivalent irreducibles. It is immediate that p : B — A°P defines
a stratification of R. One checks that Steps (1)-(12) from the proof of Theorem m
all go through essentially unchanged in the present setting. This completes the proof
but for one point: we must observe finally that R is (—e)-tilting-bounded. This follows
because the analog of the matrix for R is the Cartan matrix

( dim Hompg (P(a), P(b)))a,beB

of R. Its rows and columns have only finitely many non-zero entries as B is essentially
finite-dimensional. g

Corollary 4.29. Suppose that the e-stratified category R in Theorem is B-modgq
for an essentially finite-dimensional locally unital algebra B = (—Bk’lek, fxBfi, so that
T = @y [T is a (B, A)-bimodule. Let T := T®, which is an (A, B)-bimodule. Then
the following holds.

(1) The modules (Tk = Tfk;)kej constitute a (—e)-tilting generating family in R
~ o~ \OP ~
such that B =~ (E}—)k 1eJ HomA(Tk,Tl)> . Hence, the Ringel dual of R relative

to T is isomorphic to the original ccitegory;/z. N R

(2) Denote the Ringel duality functors F' and G for R with respect to T instead by
Gy = @peyHoma(Ti,—) : R - R and F* = x oHomu(—,T) : R - R,
respectively. We have that F* ~T®4 — and G = T®p —. Hence, (F*,F) and
(G, Gy) are adjoint pairs.

Proof. For (1), note that (G(B fk))kes is a (—¢)-tilting generating family since GP(b) =
T_.(b) for b € B. Actually, G(Bfy) = Homp(Bfi, T)* = (f,T)* = Tfx = Ty. Thus,
(Ti)kes is a (—e)-tilting generating family in R. To obtain the isomorphism between
B and the locally finite endomorphism algebra of @, Tk, apply the functor G to the

[¢}

p
canonical isomorphism B = (@D, ;. ; Homp (B fk, Bfl)) . The proof of (2) is the same
as in the proof of Corollary d

We leave it to the reader to adapt Corollary to the present setting.

5. GENERALIZATIONS OF QUASI-HEREDITARY ALGEBRAS

In this section, we give some applications of semi-infinite Ringel duality. First, we use
it to show that any upper finite highest weight category can be realized as A-mod¢q for an
upper finite based quasi-hereditary algebra A. The latter notion, which is Definition [5.1
already exists in the literature in some equivalent forms. When A is finite-dimensional,
it gives an alternative algebraic characterization of the usual notion of quasi-hereditary
algebra. Then, in §5.2] we introduce further notions of based e-stratified algebras and
based e-quasi-hereditary algebras, which correspond to e-stratified categories and e-
highest weight categories, respectively. In we introduce based stratified algebras
and fibered quasi-hereditary algebras, which are related to the notions of fully stratified
and signed highest weight categories, respectively. Finally, in §5.4] we relate based
stratified algebras to locally unital algebras with Cartan decompositions (a new idea) and
triangular decompositions (which have already appeared in some form in the literature).
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5.1. Based quasi-hereditary algebras. The following definition is a translation of
[ELaul, Definition 2.1] from the framework of k-linear categories to that of locally unital
algebras. Also, for finite-dimensional algebras, it is equivalent to [KM| Definition 2.4].
These assertions will be explained in more detail in Remark below.

Definition 5.1. An upper finite (resp., essentially finite) based quasi-hereditary algebra
is a locally finite-dimensional (resp., essentially finite-dimensional) locally unital algebra
A =@, jes eiAe; with the following additional data:

(QH1) A subset A < I indexing the special idempotents {ex | X\ € A};

(QH2) A partial order < on the set A which is upper finite (resp., interval finite);
(QH3) Sets Y (i,A) < e;Aex, X(N,j) € exAe; for Xe A,i,jel.

Let Y(A) := U,e; Y (4, A) and X (A) := ;e X (A, j). We impose the following axioms:
(QH4) The products yz for all (y,z) € | J,cp Y (A) x X(X) give a basis for A.

(QH5) For A\, € A, the sets Y(A\, 1) and X (p, A) are empty unless A < p.

(QH6) We have that (A, \) = X (A, \) = {ex} for each A € A.

We say simply that A is a locally unital based quasi-hereditary algebra if it is either an
upper finite or an essentially finite based quasi-hereditary algebra.

The archetypical example of a (unital) based quasi-hereditary algebra as in Defini-
tion is of course the classical Schur algebra S(n,r) with its basis of codeterminants
as constructed by Green in [Gre]. In general, we refer to the basis for A from (QH4) as
the idempotent-adapted cellular basis. In the presence of an additional anti-involution
interchanging the sets X (\) and Y (), it is a cellular basis in the general sense of [GL],
[Wes|, but Definition is considerably more restrictive than the general notion of cel-
lular algebra/category, hence, the additional “idempotent-adapted” in our terminology
(which mirrors the “object-adapted” from [ELaul Definition 2.1]). In fact, as we will
explain more fully below, for finite-dimensional algebras, Definition [5.1]is equivalent to
the usual notion of quasi-hereditary algebra. Also note that the idempotent-adapted
cellular basis for A is far from being unique, indeed, one can replace any Y (i, \) or
X (), j) by another basis that spans the same subspace up to “higher terms.”

Remark 5.2. It is clear from (QH4) that A = @,_, AexA. Hence, A is Morita equiva-
lent to the idempotent truncation (—B/\#EA exAe,. This means that if one is prepared to
pass to a Morita equivalent algebra then one can assume without loss of generality that
the sets A and I in Definition [5.1] are actually equal, i.e., all distinguished idempotents
are special. However, in naturally-occurring examples, one often encounters situations
in which the set I is strictly larger than A.

Lemma 5.3. Let A be a locally unital based quasi-hereditary algebra. For A € A, any
element f of the two-sided ideal Aeyx A can be written as a linear combination of elements
of the form yx forye Y (u), x € X(u) and p = A.

Proof. We first consider the upper finite case. We proceed by downward induction on the
partial order on A. By considering the cellular basis, we may assume that f = y; 21922
for 1 € Y(.ul)vxl € X(:U’la)‘)v Y2 € Y()‘aNQ)aI'Q € X(.UQ) and P,y 2 = A If Hr > A for
some 7 € {1,2}, then we have that f € Ae, A for this r, and get done by induction. If
u1 = p2 = A then z1 = ey = yo and f = yjx9, as required.

The essentially finite case is similar. Assuming that f € e;Ae; for 7,5 € I, the
assumption that A is essentially finite-dimensional implies that there are only finitely
many i € A such that e;Ae, # 0 or e, Ae; # 0. Letting A’ be the finite set of all such
1, we can then proceed by downward induction on the partial order on A’ as in the
previous paragraph. O

Corollary 5.4. Let A" be an upper set in A. The two-sided ideal Jo+ of A generated
by {ex | A€ AT} has basis {yz | (y,2) € Usear Y(A) x X(A)}.



60 J. BRUNDAN AND C. STROPPEL

Proof. Let J be the subspace of A with basis given by the products yx for y € Y (\),z €
X () and X € AT. For any such element yx € J, we have that yx = ye x, hence, yx € Jy:.
This shows that J € Jyr. Conversely, any element of Jy1 is a linear combination of
elements of AeyA for A € AT. In turn, Lemma shows that any element of AeyA for
A € A" is a linear combination of elements yz for y € Y (), € X(u) and p > A. Since
A" is an upper set, all of these elements yx belong to .J, hence, Jy+ < J. O

Remark 5.5. In the upper finite case, Definition [5.1] is equivalent to the notion of
object-adapted cellular categoryﬂ from [ELaul, Definition 2.1]. This can be seen from
Corollary and [ELaul, Lemmas 2.6-2.8]; we have imposed the additional assumption
that the underlying categories are finite-dimensional. When A is a finite-dimensional
algebra, i.e., A is unital rather than locally unital, Definition [5.1] is equivalent to the
notion of based quasi-hereditary algebra from [KM| Definition 2.4]. To see this, one
takes our set A indexing the special idempotents to be the set I from [KM]; this set
indexes mutually orthogonal idempotents e; € A according to [KM, Lemma 2.8]. Then
we take our set I to be the set A L1 {0}, i.e., we add one more element indexing one more
idempotent eg := 14— rea €x- Kleshchev and Muth established the equivalence of their
notion of based quasi-hereditary algebra with the original notion of quasi-hereditary
algebra from [CPSI] (providing the partial order on A is actually a total order); we will
reprove this equivalence in a different way below. See also [DuR] which established a
similar result using a related notion of standardly based algebra.

Let A be a locally unital based quasi-hereditary algebra. For A € A, let A<y be the
quotient of A by the two-sided ideal generated by the idempotents e, for p € A. For
y € A, we often write simply 7 for the image of y in A<y. Corollary [5.4] implies that

A<y = P &Acig; (5.1)
i,5el
is an upper finite based quasi-hereditary algebra in its own right, with special idem-
potents indexed by elements of the lower set (—o0, A\] and idempotent-adapted cellular
basis given by the products gz for y € Y (i,u),z € X (1, 5), 4,5 € I and p € (—oo, A
Define the standard and costandard modules associated to A € A from
A()\) = Ag)\é)\ V()\) = (é)\Ag)\)®. (52)
These are left A-modules which are projective and injective as A<y-modules, respec-
tively. The modules A(\) may also be called cell modules and the modules V(\) dual
cell modules. The vectors {yey |y € Y(A)} give the standard basis for A(X). Similarly,
the vectors {€xx | x € X(\)} give a basis for the right A-module €)A4; the dual basis
to this is the costandard basis {(éxx)Y | x € X(A)} for V(A). In the essentially finite
case A(\) and V() are finite-dimensional, but in the upper finite case they are merely
locally finite-dimensional.

Theorem 5.6. Let A be an upper finite (resp., an essentially finite) based quasi-
hereditary algebra as above. For \ € A, the standard module A(\) has a unique ir-
reducible quotient denoted L(X\). The modules {L(\) | A € A} give a complete set of
pairwise inequivalent irreducible A-modules. Moreover, the category R = A-modjgg
(resp., R = A-modyq ) is an upper finite (resp., an essentially finite) highest weight cat-
egory. Its standard and costandard objects A(X) and V(\) are as defined by , with
the partial order on A being the given one.

Proof. For X\ € A, let Py be the left ideal Aey. We claim that P, has a A-flag with
A()N) at the top and other sections of the form A(u) for u > X. To prove this, fix
some A and set P := P, for short. This module has basis yx for p = A\, y € Y () and
x € X(u,N\). Let {u1,...,u,} be the finite set {p € [\, 00) | X (1, A) # @} ordered so

5Strictly speaking, the notion in [ELau| corresponds to what we would call an upper finite based quasi-
hereditary algebra with duality, since it assumes the presence of an additional symmetry.
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that p, < ps = r < s; in particular, u; = A. Let P, be the subspace of P spanned by
all yr for s=r+1,...,n,y € Y(us) and x € X(us, ). In fact, each P, is a submodule
of P, and this defines a filtration P = Py > P, > --- > P, = 0. Moreover, there is an
A-module isomorphism

0 : (—D A(pr) = Pr_1/P (5.3)

z€X (fr,\)

sending the basis vector ye,, (y € Y (ur)) in the zth copy of A(p,) to yz+ P, € Pr_1/P;.
To prove this, 0 is clearly a linear isomorphism, so we just need to check that it is an
A-module homomorphism. Take y € Y (j, i) and u € e;Ae;. Expand uy in terms of the
cellular basis as >} cpyp + 2., cyyqey for scalars ¢p, cp, yp € Y (i, pir), yg € Y (i, 14), 27 €
X(vg,pr) and v > pr. Then we have that uye,, = > cpype,, and uyzr + P =
2.y CpYp® + Pr, since the “higher terms” y;ay act as zero on both ¢, and = + P,. This
is all that is needed to prove that € intertwines the actions of u on A(u,.) and P._1/P;.
Since Py/P; = A()), the claim is now proved.

Now we can classify the irreducible A-modules. The first step for this is to show that
A(A) has a unique irreducible quotient. To see this, note that the “weight space” exA(A)
is one-dimensional with basis €y, due to the fact that Y (A, A\) = {e,}. This is a cyclic
vector, so any proper submodule of A(\) must intersect ey A(\) trivially. It follows that
the sum of all proper submodules is proper, so A(A) has a unique irreducible quotient
L(X). Since exL(\) is one-dimensional and all other u with e, L(\) # 0 satisfy p < A,
the modules {L(A) | A € A} are pairwise inequivalent. To see that they give a full set
of irreducible A-modules, let L be any irreducible A-module. In view of Remark
there exists A € A such that ey L # 0. Then L is a quotient of Py = Aey. By the claim
established in the previous paragraph, it follows that L is a quotient of A(u) for some
w= A\ ie, L= L(p).

Thus, we have shown that the modules {L(\) | A € A} give a full set of pairwise
inequivalent irreducible A-modules. Now consider the stratification of R arising from
the partial order on the index set A. In the recollement situation of , the Serre
subcategory 7%9\ may be identified with A<y-modigg (resp., A<y-modyq), and the Serre
quotient 754 = 7~2<,\/7§<A is Ay-modgq where Ay := exAcyéy. The algebra Ay has basis
€y, 1.e., it is a copy of the ground field k. This shows that all strata are simple in the
sense of Lemma[3.6] Moreover, the standard and costandard objects in the general sense
of are obtained by applying the standardization functor j{ := A< é) ® 4, — and
the costandardization functor j3 := @,.; Homy, (éxA<x&;, —) to the irreducible Aj,-
module Ay. Clearly, the resulting modules are isomorphic to A(A) and V(\) as defined
by . To complete the proof, it remains to observe that the axiom (ﬁ) follows from
the claim established in the opening paragraph of the proof. O

The following theorem gives a converse to Theorem[5.6] The proof is an application of
Ringel duality together with the general construction of cellular bases for endomorphism
algebras of tilting modules explained in [AST]. We will give a self-contained proof of
the latter result in the next subsection, when we generalize it to e-stratified categories.

Theorem 5.7. Let R be an upper finite (resp., essentially finite) highest weight category
with weight poset A, and let A = @), jer eiAe; be an algebra realization of it. In the es-

sentially finite case, assume in addition that R is tilting-bounded. There is an idempotent
expansion A = @ijefeiAej with A € I, and subsets Y (i, ) < e;Aex, X (A, j) < erAe;
forall N e A and i,j € f, making A into an upper finite (resp., an essentially finite)
based quasi-hereditary algebra with respect to the given ordering on A.

Proof. Since we are allowed to pass to an idempotent expansion of A, i.e., to refine
the given set distinguished idempotents, we may as well assume that the idempotents
e; (i € I) given initially are all primitive. Then for each A\ € A, there exists some i(\) € I
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such that the left ideal Ae;() corresponds under the equivalence between A-modigq
(resp., A-modgy) and R to the projective cover P()) of the irreducible object L()) € R.
In this way, we obtain an embedding 7 : A — I. Henceforth, we will identify the set A
with a subset of I via the map thus chosen.

In the language of Deﬁnition (resp., Deﬁnition, let R be the Ringel dual of R
with respect to some choice of T. The weight poset for R is A°P, i.e., the poset A with the
opposite ordering, which is lower finite. Then let T; := (eif)*. By Corollary (resp.,
Corollary applied with the roles of R and B interchanged with R and A), (T)ier is

a (—e)-tilting generating family for R such that the original algebra A = @ e;Ae;
op

igel
is isomorphic as a locally unital algebra to ((—BZ jer Homp (T3, T;)

Now we need to produce the finite sets Y (i,A\) € Homg(T;,Ty) and X (A, j) <
Homg (Th,T;). We want Y/(\, ) and X (A, A) to consist just of the identity endomor-
phism ey € Endz (7)), Y (A, 1) and X (i, \) to be empty if A € p, and the morphisms
{zoylyeY(i,N),xz e X(X j), A e A} should give a basis for Homg (T;,T;). But all of
this follows by an application of [AST], Theorem 3.1]: to obtain bases of this form we
just have to choose Y (i, A) to be any lift of a basis of Homg (T}, V(A)) and X (), j) to
be any lift of a basis of Homg (A(X),T;); see below for the helpful picture. We
can clearly choose these lifts so that (A, ) = {ex} = X (A, A). Moreover, Y'(\, 1) and
X (p, \) are empty when A € g because Homg (T'(A), V(1)) and Homg (A(N), T'()) are
zero for such A, p (remembering that for R we are working with the opposite ordering
on A). We refer to loc. cit. (or Lemma below) for further explanations. O

Remark 5.8. In particular, Theorems [5.6| show that any finite highest weight cat-
egory can be realized as A-modgq for a unital based quasi-hereditary algebra A, and
conversely all such module categories are finite highest weight categories. This recovers
a special case of [KM], Proposition 3.5]. It is only a special case because Kleshchev and
Muth work over more general ground rings than u&ﬁ

5.2. Based e-stratified and e-quasi-hereditary algebras. In this subsection, we
upgrade the results of §5.1] to e-stratified and e-highest weight categories. The main
new definition is as follows.

Definition 5.9. An upper finite (resp., essentially finite) based e-stratified algebra is
a locally finite-dimensional (resp., essentially finite-dimensional) locally unital algebra
A =@, jer eiAe; with the following additional data:

(eS1) A subset B < I indexing the special idempotents {e; | b € B}.
(eS2) An upper finite (resp., interval finite) poset (A, <) and sign function e : A — {£}.
(6S3) A stratification function p : B — A with finite fibers By := p~1()).
(eS4) Sets Y (i,b) < e;Aep and X (b, j) < epAej for allbe B and i, j € 1.
Let Y(b) := ;s Y (i,b) and X (b) := {J;c; X (b, j). There are then four axioms, the first
three of which are as follows:
(€S5) The products yx for all (y,z) € J,eg Y (b) x X (b) give a basis for A.
(eS6) For a,b € B, the sets Y (a,b) and X (b, a) are empty unless p(a) < p(b).
(eS7) The following hold for all A € A and a,b € Bj:
— if e(A) = — then Y(a,b) = {e,} when a = b and Y (a,b) = & otherwise;
— if e(A) = + then X (a,b) = {e,} when a = b and X (a,b) = & otherwise.
To formulate the fourth axiom, let ey := ZbeBA ep for short. Let A<y be the quotient of
A by the two-sided ideal generated by {e, | u £ A} and A, := é\A<\é\ (where §j € A<y
denotes the image of y € A as usual). Then:

6They also consider graded analogs (both Z- and Z/2—). These can be fitted into our general approach
by the general construction explained in Remark below.



SEMI-INFINITE HIGHEST WEIGHT CATEGORIES 63

(¢S8) For each A € A, the finite-dimensional algebra A, is a basic algebra, and its set
of primitive idempotents is {&; | b € B}.

We also have the following, which is nothing more than Definition rewritten in
the special case that the stratification function p is a bijection.

Definition 5.10. An upper finite (resp., essentially finite) based e-quasi-hereditary al-
gebra is a locally finite-dimensional (resp., essentially finite-dimensional) locally unital
algebra A = @i’jd e;Ae; with the following additional data:

(eQH1) A subset A € I indexing the special idempotents {ex | A € A}.

(eQH2) An partial order < on A which is upper finite (resp., interval finite) and a sign
function € : A — {£}.

(eQH3) Sets Y(i,A) < e;Aex, X(\,j) < exdej for e A, i,j el

Let Y(A) := U, Y (4, A) and X (A) 1= s X(/\ j) The axioms are as follows:

)
(A)
€QH4) The products yz for all (y,z) € (o Y (A) x X(A) give a basis for A.
eQH5) For A\, € A, the sets Y (A, ) and X (i, )\) are empty unless A < p.

eQH6) If e(\) = — then Y (a,b) = {e,}, and if e(A) = + then X(a,b) = {e,}.

£QHT7) The finite-dimensional algebra Ay defined as in Deﬁnition is basic and local.

A~ N N N

From now on, we just formulate the results for based e-stratified algebras, since based
e-quasi-hereditary algebras are a special case. In fact, the development below parallels
the treatment in the previous subsection, but there are some additional subtleties. Re-
mark remains true: one can always pass to a Morita equivalent algebra in which all
of the distinguished idempotents are special. The analog of Lemma is as follows.

Lemma 5.11. Let A be a locally unital based e-stratified algebra. For A € A, any element
f of the two-sided ideal Aeyx A can be written as a linear combination of elements of the
form yx for y e Y(a),z € X(a) and a € B with p(a) > A

Proof. This is similar to the proof of Lemma [5.3] We just explain in the upper finite
case. We may assume that f = y;x1y225 for y; € Y(al), x1 € X(ay,b), y2 € Y(b,az),22 €
X(az), b€ By and aq,as € B with p(a1), p(az) = X. If p(a;) > A or p(az) > A, we are
done by induction. If p(a1) = p(az) = A, there are two cases according to whether
g(A) = + or ¢(A\) = —. The arguments for these are similar, so we just go through the
former case when e(\) = +. Then we have that a; = b and z1 = ¢;,. Hence f = y1y222.
Then we use the basis again to expand y,y2 as a linear combination of terms ysxs for
y3 € Y(as),x3 € X(as,as) and ag € B with p(az) = A. If p(az) > A, we can then rewrite
Y332 in the desired form by induction. If p(az) = A then we get that a3 = as and
T3 = €q,, SO Y3T3T2 = Y3T2 as required. O

Corollary 5.12. Let AT be an upper set in A. The two-sided ideal Jy+ of A generated
by {ex| A€ A"} has basis {yx | (y,z) € Ubep-1(an) Y (b) x X(b)}.

Let A be a locally unital based e-stratified algebra. Take A € A and consider the
basic algebra A, = €)A<yéx from Definition It has basis {gj ’ Y€ UaybeB% Y (a, b)}
if e(A) = + or {Z|z €U, pen, X(a,b)} if e(A) = —. For be By, let

P)\(b) = A)\éb, I)\(b) = (ébzzl)\)®, L)\(b) :=hd P)\(b) =~ S0C I)\(b) (54)

Then we define standard, proper standard, costandard and proper costandard modules:

A(b) = Acxey = G PA(D), A(b) == jiLa(b), (5-5)
V(b) := (e A<x)® = G (D), V(b) := R LA (D), (5.6)
where now the standardization functor j is defined from j} := A< é\ ® 4, — and the

costandardization functor j3 is @, ; Homz, (€xA<x&;, —). Adopt the shorthands A, (b)
and V. (b) from (1.2) too. The module A.(b) has a standard basis indexed by the set
Y (b). In the case that e(\) = 4+, when A.(b) = A(b), this basis is {y&, |y € Y(b)}. In
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the case that e(A) = —, when A.(b) = A(b), let &, be the canonical image of &, under
the natural quotient map A(b) — A(b). Then the basis is {yé, | y € Y(b)}. (One can
also construct a costandard basis for V.(b) indexed by X (b) by taking a certain dual
basis, but we will not need this here.)

Lemma 5.13. If e(\) = — then the standardization functor j{\ s exact.

Proof. 1t suffices to show that Acyéy is projective as a right Ay-module. This follows
because there is an isomorphism of right Ay-modules
@ edy S Acen
aeBy,yeY (a)
sending the vector €, in the yth copy of ,4) to § € A<yéx. To see this, the module
A<xéy has basis given by products 7 for y € Y (a),z € X(a,b) and a,b € By. Ase()) =
—, the projective right Ay-module e, Ay has basis Z for x € X(a,b) and b € Bj. O

Theorem 5.14. Let A be an upper finite (resp., essentially finite) based e-stratified
algebra as above. For b € B, the standard module A(b) has a unique irreducible quotient
denoted L(b). The modules {L(b) | b € B} give a complete set of pairwise inequivalent
irreducible A-modules. Moreover, R = A-modyq (resp., R = A-modyq) is an upper
finite (resp., essentially finite) e-stratified category with stratification p : B — A. Its
standard, proper standard, costandard and proper costandard objects are as defined by

6 ED).

Proof. For b € B, let P, be the left ideal Ae,. We claim that P, has a A.-flag with
A, (b) at the top and other sections of the form A.(a) for a € B with p(a) = p(b). To
prove this, suppose that b € By and set P := P, for short. Let {u1,...,u,} be the set
{pwe [N\owo)|Y(u,\) # @} ordered so that p, < ps = r < s; in particular, p; = A.
Let P, be the subspace of P with basis given by all ya for y € Y(a),z € X(a,b) and
ae B, u---uB,, . This defines a filtration P = Py > P > --- > P, = 0. Now
we show that each P._;/P, has a A.-flag with sections of the form A.(a) for a € B, .
There are two cases:

Case one: () = +. In this case, there is an A-module isomorphism

0 : @ @ A(a) > P._1/P-
aEBHT IEX(CL,I))
sending the basis vector yé, (y € Y (a)) in the xzth copy of A(a) to yz + P- € P._1/P;.
This follows from properties of the idempotent-adapted cellular basis and is similar to

the proof of (|5.3)).

Case two: () = —. Note that P._;/P, is naturally an Ag,, -module. Let @ :=
€u,(Pr—1/P;). This is an A, -module with basis {Z + P, |a € B, ,z € X(a,b)}. We
claim that the natural multiplication map

Aép,ré,u,r ®A,,LT Q_)Prfl/Pra yé#r®(x+Pr)'_’yx+Pr

is an isomorphism. This follows because the module on the left is spanned by the vectors
g (x+ P.) forae B, ,y € Y(a),z € X(a,b), and the images of these vectors under the
multiplication map give a basis for the module on the right. Hence, P,_1/P, = j{" Q.
We deduce that it has a A -flag with sections of the form A(a) (a € B,,,) on applying
the standardization functor to a composition series for @), using the exactness from
Lemma

We can now complete the proof of the claim. The only thing left is to check that the
top section of the A.-flag we have constructed so far is isomorphic to A.(b). For this,
note that Py/P; = A(b), which is A.(b) if e(A) = +. If (\) = — then A(b) = jP\(b),
which has a A.-flag with top section A.(b) = j*Lx(b) by the exactness of j}.
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Using the claim just established, we can now classify the irreducible A-modules. For
b € By, the standard module A(b) is ji* Py (b), which has irreducible head L(b). This fol-
lows by the usual properties of adjunctions and the quotient functor j* : A<y-modjzqg —
Ay-modgg, V +> €,V. This argument shows that L(b) is the unique (up to isomorphism)
irreducible A<y-module such that j2L(b) = Ly (b). From this description, it is clear that
the modules {L(b) | b € B} are pairwise inequivalent. To see that they give a full set of
irreducible A-modules, let L be any irreducible A-module. By the analog of Remark [5.2]
there exists b € B such that e, L # 0. Then L is a quotient of P, = Aep. Finally, using
the claim, we deduce that L is a quotient of A(a) for some a € B with p(a) = p(b).

Now we can complete the proof of the theorem. Consider the stratification p : B — A
of R. We are in the recollement situation of 1) with ﬁg)\ = Ac)x-modyy (resp.,
7%@\ = Acy-modg) and Ry = Ay-modgg. Since f agrees with , the
standard, proper standard, costandard and proper costandard modules are the correct
objects. Moreover, the claim established at the start of the proof verifies the property
(PA.) as required by Definition m (resp., Definition . O

The goal in the remainder of the subsection is to prove a converse to Theorem [5.14]
The proof relies on the following, which extends the construction of [AST, Theorem 3.1]
to e-stratified categories.

Lemma 5.15. Let R be a lower finite (resp., an essentially finite) e-stratified category
with stratification p : B — A. In the essentially finite case, assume in addition that it
is e-tilting-bounded. Fix an embedding v, : Ac(b) — T.(b) and a projection m, : T-(b) —
V(b) for each be B. Take M € A (R) and N € V.(R). Choose

Y, € Homg (M, T. (b)), X € Homg (T:(b), N)

so that {§ :=m,oy|yeY,} is a basis for Homg (M, V(b)) and {Z =z ou, |z e X}
is a basis for Hompg (A (b), N), as illustrated by the diagram:

Ac(b)

23

<
3
&

Then the morphisms x oy for all (y,x) € yeg Yo X Xp give a basis for Homg (M, N).

Proof. We proceed by induction on the size of the finite set
A(M,N) := {X € A|there exists b€ By with [M : L(b)] # 0 or [N : L(b)] # 0}.

The base case is when |A(M, N)| = 0, which is trivial since then M = N = 0. For the
induction step, let A € A(M, N) be maximal. Replacing R by the Serre subcategory
of R associated to the lower set of A generated by A(M, N), we may assume that X is
actually maximal in A. Then we let Let A* := A\{\}, B! := p71(A'), and i : R* > R
be the natural inclusion of the corresponding Serre subcategory of R. Let j : R — R
be the quotient functor.

In this paragraph, we treat the special case N € R'. Let M*' := i* M. Note by the
choice of X that [A(M*, N)| < |A(M,N)|. By and Theorem 2), we have that
M*' € A.(R'), and there is a short exact sequence 0 - K — M — M* — 0 where K
has a A.-flag with sections of the form A.(b) for b € By. It follows that the natural
inclusion Homg (MY, N) < Homg (M, N) is an isomorphism. For b € B', all of the
morphisms {y : M — T.(b) | y € Y3} factor through M* too. Hence, we can apply the
induction hypothesis to deduce that the morphisms x oy for all (y,z) € peg: Yo X Xp
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give a basis for Homg (M*, N) = Homg (M, N). Since X, = @ for b € B, this is just
what is needed.

Now suppose that N ¢ R' and let N* := i'N € R*. We have that |A(M,N')| <
|A(M,N)|. By and Theorem 3), we have that N* € V.(R'), and there is a
short exact sequence 0 — N* - N 5 Q — 0 where Q has a V.-flag with sections of
the form V.(b) for b € B,. Applying Homg (M, —) to this and using Theorem [3.16{2)
gives a short exact sequence

0 — Homg (M, N*') — Homg (M, N) — Homg (M, Q) — 0.

For b € BY, the morphisms {z : T.(b) — N |z € X}} have image contained in N* and
are lifts of a basis for Homp: (A-(b), N*). By induction, we get that Homg (M, N*)
has basis given by the compositions = oy for all (y,z) € Jyegi Y» X Xp. In view of
this and the above short exact sequence, we are therefore reduced to showing that
the morphisms m o x oy for (y,2) € Jyep, ¥» x Xi give a basis for Homg (M, Q).
The exact quotient functor j defines isomorphisms Homg (M, Q) = Homg, (M, jQ),
Homp (M, V(b)) > Homg, (M, jV.(b)) and Homg (A.(b), N) > Homg, (jA.(b),jN)
for b € B). Moreover, jr : jN — j@Q is an isomorphism. Thus, we are reduced to showing
that the morphisms jzojy give a basis for Homg, (M, jN) for all (y, z) € Upep, Yo % Xo.
Note the morphisms {jy | y € Y3} and {jx | x € X},} appearing here are lifts of bases for
Homg, (M, jV.(b)) and Hompg, (jA-(b),jN), respectively.

To complete the proof, we need to separate into the two cases e(\) = + and e(\) = —.
The arguments are similar (in fact, dual), so we just explain the former. In this case, for
b e By, we have that jV.(b) = L(b) and jA.(b) = Py(b) = jT.(b) by Theorem [£.2|3).
The module M’ := jM is projective in Ry. Also let N’ := jN. We are trying to show
that the morphisms 2’0y’ for all (y',2') € g, Yy X X}, give a basis for Homg, (M’, N'),
where Y, < Homg, (M’, Px(b)) is a set lifting a basis of Homg, (M’, Lx(b)) and X] is a
basis of Homg, (Px(b), N'). Since M’ is projective, the proof of this reduces to the case
that M’ = P,(b), when the assertion is clear. O

Theorem 5.16. Let R be an upper finite (resp., an essentially finite) e-stratified cat-
egory with the usual stratification p : B — A. In the essentially finite case, assume in
addition that it is e-tilting bounded. Let A = @), .., eiAe; be an algebm realization of

R. There is an idempotent expansion A = @

i,5€l
ijel elAe] with B < I and finite sets

Y (i,b) < e;Aey, X (b, j) < epAe; for allbe B and i,j € I, making A into an upper finite
(resp., essentially finite) based e-stratified algebra with p as its stratification function.

Proof. As in the first paragraph of the proof of Theorem we may assume that
B < I and that Ae, (b € B) corresponds under the equivalence between A-modigq
(resp., A-modg) and R to the indecomposable projective object P(b) € R. Let R be
the Ringel dual of R with respect to some choice of T. The stratification for R is
p: B — A°P where A°P is the poset A with the opposite ordering, and its sig functlon
is —e. Let T; := F*(Ae;) = (e;T)* € R for each i € I. By Corollary [4.25| (resp.,
Corollary , the original algebra A = @ e;Ae; is isomorphic as a locally unital
algebra to ((—Bm.e[ HomR(ﬂ,Tj)) '

Noting that T, =~ T_.(b) for each b € B, we apply Lemma to the objects
M = T,,N = T, of R to produce finite sets Y(i,b) < HomR(ﬂ,Tb) and X(b,j) c
Homng (T3, T}) such that the compositions z o y for all (y,z) € J,cg Y (4,0) x X (b, )
give a basis for Homg (T;,T;). We can certainly choose these lifts so that ey, the iden-
tity endomorphism of Ty, belongs to Y(b,b) and X (b,b) for each b € B. The axioms
(€S5)—(eS7) from Definition are satisfied. For example, to check (£S7) in the case
that e(A) = —, we have for a,b € By that dim Homg (T_.(a), V_c(b)) = &4, thanks to
Remark 3]

i,7€l
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It just remains to check the final axiom (¢S8). Take A € A. The set Agy is a
lower set in A, hence, an upper set in A°?. Let B<y := p~'(Acy) and j5* : R —
R<x be the corresponding Serre quotient, i.e., it is the quotient of R by the Serre
subcategory generated by all L(b) with p(b) £ A\. Applying the quotient functor < to
the isomorphism A = 6_)2'7 jer Homg (T;,T}) produces a surjective homomorphism from
A to D, jes Homg_, (jS*T;, jSM;). We claim that this factors through the quotient
algebra A<y to induce an isomorphism

Ay S P Homg_, (5, 75T).

To see this, note that all e, for u € A are sent to zero, so we certainly have an in-
duced homomorphism from A¢y. Then we just need to compare bases: the proof of
Lemma which depends just on the first three axioms already established, shows
that A<y has basis yz for all (y,z) € U#@\ Ua,beB“ Y, x X,. The corresponding mor-

phisms jS*z 0 jSMy are linearly independent thanks to the analog of Lemma in the
category R<y. This proves the claim. Finally, from the claim and letting Ry be the
Serre subcategory of R<y generated by the irreducible objects jS*L(b) for b € By, we
truncate by the idempotent €, and its image to see that

o
Ay = Bndg, ( @ ) g (5.8)
beB
If e(A) = + then jSML(b) is the injective hull Iy(b) of L(b) in Ry, thanks to Theo-
rem [£.2|3) (remembering that for R the sign function is —¢). So the algebra on the
right hand side of is basic with the given set of primitive idempotents. If e(\) = —,
use instead that jS*T.(b) is the projective cover Py(b) of L(b) in Ry. O

5.3. Based stratified algebras and fibered quasi-hereditary algebras. In this
subsection, we introduce more symmetric notions of based algebras which are similar to
Definitions and but remove the dependency of the bases on the sign function
g. These definitions were inspired by [ELaul Definition 2.17] (which also introduced
the terminology “fibered” in an analogous setting with locally unital algebras replaced
by categories). We then prove analogs of the two theorems in the previous subsection
for this more symmetric notion; the proof of the second one requires the additional
assumption of tilting-rigidity, which is interesting in its own right.

Definition 5.17. An upper finite (resp., essentially finite) based stratified algebra is
a locally finite-dimensional (resp., essentially finite-dimensional) locally unital algebra
A =@, jes e:Ae; with the following additional data:

(BS1) A subset B ¢ I indexing the special idempotents {e}, | b € B}.

(BS2) An upper finite (resp., interval finite) poset (A, <).

(BS3) A stratification function p : B — A with finite fibers By := p~1(\).

(BS4) Sets Y (i,a) < e;Aeq, H(a,b) < e Aep, X(b,j) < epAej for X € A, a,b € By,
ijel.

Let Y(a) := U;e; Y (4,a) and X (b) := (J;c; X (b, j). The axioms are as follows:

(BS5) The products yhz for all (y,h,z) € Uyep Uapen, Y (a) X H(a,b) x X(b) give a
basis for A.

(BS6) For a,b € B, the sets Y(a,b) and X (b,a) are empty unless p(a) < p(b).

(BST) For a,b € By, we have that Y(a,b) = X(a,b) = {e,} when a = b and Y (a,b) =
X(a,b) = @ otherwise.

(BS8) The same final axiom (¢S8) as in Definition

Here is the same definition rewritten in the special case that the stratification function
p is a bijection.
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Definition 5.18. An upper finite (resp., essentially finite) fibered quasi-hereditary al-

gebra is a locally finite-dimensional (resp., essentially finite-dimensional) locally unital

algebra A = C_Bi, jer €iAe; with the following additional data:

(FQH1) A subset A € I indexing the special idempotents {ey | A € A}.

(FQH2) An upper finite (resp., interval finite) partial order < on the set A.

(FQH3) Sets Y(i,A) C e;Aen, H(X) C exAex, X (N, j) cexAej for Ae A, i,jel.

Let Y(A) := U,e; Y (4, A) and X (A) := {J;e; X (A, j). The axioms are as follows.

(FQH4) The products yhz for all (y,h,z) € J,cp Y (A) x H(A) x X () give a basis for
A.

(FQH5) For A, p € A, the sets Y (A, 1) and X (i, A) are empty unless A < p.

(FQH6) We have that Y (A, \) = X(A, ) = {ex}.

(FQHT7) The finite-dimensional algebra Ay defined as in Definition is basic and local.

In the remainder of the subsection, we just explain the results for based stratified
algebras, since fibered quasi-hereditary algebras are a special case. For the next lemma,
we adopt the shorthands

YH(i,b) :={yh|aeB,u,yeY(ia),he H(a,b)}, (5.9)
HX(b,j) :=1{hx|ceB,u),he H(bc),ze X(cj)} (5.10)
Also set YH(b) 1= U,y YH (4, 0) and HX(b) := J,;e; HX (D, 7).

Lemma 5.19. Suppose that A is a locally unital based stratified algebra as in Defini-
tion . Also lete : A — {£} be any choice of sign function. Then A is a locally unital
based e-stratified algebra with the required sets Y (i,b) and X (b,j) from Definition
being the sets Y H(i,b) and X (b,j) in the present setup if €(A) = +, or the sets Y (i,b)
and HX (b, j) in the present setup if e(\) = —.

Proof. This follows on comparing Definitions [5.9] and O

This means that the results from the previous subsection apply to based stratified
algebras too. In particular, we define the standard, proper standard, costandard and
proper costandard modules in the same way as ((5.5)—(5.6). The module A(b) has basis
{yey |y € YH(b)} and the module A(b) has standard basis {yé, |y € Y (b)}. Similarly,
one can introduce costandard bases for V(b) and V(b) indexed by the sets HX (b) and
X (b), respectively. Note also that the algebra Ay has basis {h | h € |, yep, H(a;b)}.

Theorem 5.20. Let A be an upper finite (resp., essentially finite) based stratified algebra
as in Definition . For b € B, the standard module A(b) has a unique irreducible
quotient denoted L(b). The modules {L(b) | b € B} give a complete set of pairwise
inequivalent irreducible A-modules. Moreover, R := A-modjq (resp., R := A-modgq)
is an upper finite (resp., essentially finite) fully stratified category with stratification
p:B — A. Its standard, proper standard, costandard and proper costandard objects are

as defined by ,

Proof. Given Lemma this follows from Theorem applied twice, once with
€ = + and once with ¢ = —. O

Recall from the introduction that a fully stratified category R is called tilting-rigid
if T(b) := T4 (b) =~ T_(b) for all b € B. The definition makes sense in any of our
usual settings (finite, essentially finite, upper finite or lower finite). The module T'(b)
then has a A.-flag and a V_-flag for all choices of the sign function ¢ : A — {£},
hence, T'(b) = T.(b) for all €, as was asserted already in the introduction. Moreover, by
Theorem [4.2|(3) or Theorem [£.17(3) (depending on the particular setting we are in), we
deduce that
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for all A € A and b € By). Consequently, if Ay is a finite-dimensional algebra giving
a realization of the stratum Ry, then Ay is a weakly symmetric Frobenius algebra; see
[GHK] Theorem 4.4.5]. Also, the Ringel dual Rof R (in the appropriate sense depending
on the setting) can be defined either taking e = + or € = —, with either choice producing
the same Ringel dual category due to the tilting-rigid assumption. Using properties of
the Ringel duality functor, which is the same functor in both cases € = + and € = —, it
follows that R is again a fully stratified category which is tilting-rigid.

In the remainder of the subsection, we are going to prove a converse to Theorem [5.20
As in the previous two subsections, our argument depends on Ringel duality. First, we
need to upgrade Lemma [5.15; note for this we need to assume tilting-rigidity.

Lemma 5.21. Let R be a lower finite (resp., essentially finite) fully stratified category
with stratification p : B — A. Assume also that R is tilting-rigid (resp., tilting-rigid and
tilting-bounded). Fiz embeddings 1, : A(a) — T(a), & : A(b) < T'(b) and projections
7o : T(a) - V(a),m : T(b) - V(b) for a,b € B. Take M € A(R) and N € V(R).
Choose
Y, € Homg (M, T(a)), H(a,b) € Homg(T(a),T(b)), X» < Homg (T'(b), N)

so that {gj = ﬁaoy’y € Ya} is a basis for Homg (M, V(a)), {i_L = m,ohOLa|h € H(a,b)}
is a basis for Homg (A(a), V(b)), and {Z := zoiy|x € X, } is a basis for Homg (A(b), N),
as illustrated by the diagram:

Ala) —" v (b)

La£ Tp

Y

M\T(a) . T(b)"c/']\]. (5.12)
V(a) A(b)

Then the morphisms x o h oy for all (y,h,z) € Uyep Uapen, Yo x H(a,b) x Xy give a
basis for Homg (M, N).

Proof. This follows by the same strategy as was used in the proof of Lemma [5.15
The only substantial difference is in the final paragraph of the proof. By that point,
we have reduced to showing for projective and injective objects M', N’ € R, respec-
tively, that the morphisms 2’ o b’ oy’ for all (y',h',2") € |, e, Ya X H'(a,0) x X}
give a basis for Homg, (M’, N’), where Y, < Homg, (M’, Px(a)) is a set lifting a
basis of Homg, (M’, Lx(a)), H'(a,b) is a basis for Homg, (Px(a), Ix(b)), and X] <
Hompg, (Ir(b), N') is a set lifting a basis of Homg, (L (b), N'). Using that M’ is pro-
jective and N’ is injective, the proof of this reduces to the case that M’ = Py(a) and
N’ = I,(b), when the assertion is clear. O

Theorem 5.22. Let R be an upper finite (resp., essentially finite) fully stratified cate-
gory with stratification p : B — A. Assume that R is tilting-rigid (resp., tilting-rigid and
tilting-bounded). Let A = (—DME[ e;Ae; be an algebra realization of R. There is an idem-

potent expansion A = @, jel eiAe; with B < f, and finite sets Y (i,a)  e;Aeq, H(a,b)
eqAep, X (b, j) < epAe;j for alla,be B andi,j € f, making A into an upper finite (resp.,
essentially finite) based stratified algebra.

Proof. This is similar to the proof of Theorem [5.16] using Lemma [5.21] in place of
Lemma plus the observation that the Ringel dual R of R is also tilting-rigid. O
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5.4. Cartan and triangular decompositions. Theorems5.7] and [5.22] give gen-
eral theoretical tools for constructing based stratified algebras or quasi-hereditary alge-
bras of various types. However, in practice, it can be difficult to construct an appropriate
idempotent-adapted cellular basis explicitly. One reason that this is difficult is due to the
insistence from the final axioms of Definitions [6.10] [5.17 and [5.18] that the algebra
Ay is basic. In this subsection, we consider two more related concepts which are more
flexible in practice. First we have locally unital algebras with Cartan decompositions:

Definition 5.23. Let A = @
sition of A is the data of a subset I' € I and a triple (Ab7 A°, AY) consisting of subspaces
A = Dicr ver e e, AF = Drer jer e, Afe; (not subalgebras!) and a locally unital
subalgebra A° = @, . e4 A%, such that the following axioms hold:

(CD1) A°AP € A" = A°A°, A°AF = AF D AfA°.

(CD2) The natural multiplication map A’ ® 4o A — A is a linear isomorphism.

(CD3) AP is projective as a right A°-module and A? is projective as a left A°~-module.
(

(

i.jer €iAe; be alocally unital algebra. A Cartan decompo-

CD4) We have that @, eqAey, = D er eqAfe, = A°.

CD5) There is a partial order < on I' such that egAbe,y = e,YAﬁeg = 0 unless 8 < 7.
We call it an upper finite Cartan decomposition if A is locally finite-dimensional and
the poset (I', <) is upper finite, and an essentially finite Cartan decomposition if A is
essentially finite-dimensional and the poset is interval finite.

Note in the setup of Definition that the algebra A = (—BME[ e;Ae; is Morita
equivalent to P B~el egAe. If we replace A by this Morita equivalent algebra, we obtain
a locally unital algebra with a Cartan decomposition in the sense of Definition [5.23] in
which the sets I and I' are actually equal. This equality is assumed from the outset in
the next definition of locally unital algebra with a triangular decomposition:

Definition 5.24. Let A = (—BB’%F egAe, be a locally unital algebra. A triangular
decomposition of A is the data of a triple (A~, A°, A™) consisting of locally unital subal-
gebras A™ = @4 crepATey, AT = Dp repAte, and A° = @, e, A%, such that
the axioms (TD1)~(TD4) below hold. To write the axioms down, let K := P, . ke,.

(TD1) The subspaces A” := A~ A°, A% := A°A™ are locally unital subalgebras of A.
(TD2) The natural multiplication map A~ ®x A° ®k AT — A is a linear isomorphism.
(TD3) We have that P cpeyA7ey = @ cresdTe, =K

(TD4) There is a partial order < on I' such that egA"e, = e;ATeg = 0 unless 5 < 7.

We call it an upper finite triangular decomposition if A is locally finite-dimensional and
the poset (I, <) is upper finite, and an essentially finite triangular decomposition if A
is essentially finite-dimensional and the poset is interval finite.

Remark 5.25. A special case of Definition[5.24]is related to work of Holmes and Nakano
[HN] on Z-graded algebras with a triangular decomposition. To explain the connection,

given a unital algebra A = G—DWEF fl,y graded by an Abelian group I', there is an associ-

ated locally unital algebra A = @Bn/eF egAey with egAey := 1215_7 and multiplication
induced by multiplication in A in the natural way. Moreover, any left A-module V can
be viewed as a left A-module with e,V := V;; this defines an isomorphism from the usual
category A-grmod of I-graded A-modules and grading-preserving morphisms to the cat-
egory A-mod of locally unital A-modules. If we start with A that is a finite-dimensional
Z-graded algebra with a triangular decomposition (A=, A°, A*) as in [HN] (see also [BT},
Definition 3.1]) then the locally unital algebra A and the triple (A~, A°, A%) of subal-
gebras obtained from this construction give a locally unital algebra with an essentially
finite triangular decomposition in the sense of Definition with T' := Z ordered in
the natural way.
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Having a triangular decomposition is stronger than having a Cartan decomposition:

Lemma 5.26. Suppose that A has a triangular decomposition as in Definition [5.2]}
Viewing the subalgebras A° := A~ A° and A := A°A* merely as subspaces, we obtain
the data of a Cartan decomposition as in Definition |5.25 with [ =T.

Proof. This is obvious on comparing the definitions. O

There are many naturally-occurring examples of locally unital algebras with trian-
gular decompositions. We have already mentioned in Remark [5.25] the essentially finite
examples of a periodic nature from [HNL [BT]. Another source of examples admitting
upper finite triangular decompositions involves various families of diagram algebras; see
[CZ, §8] and below. Note also if A is any locally unital algebra with an upper finite
triangular decomposition, then the pair (A%, A°) is (the locally unital analog of) a left
Borelic pair in the sense of [CZ, Definition 4.1.2]; similarly, (A°, A°) is a right Borelic
pair. Borelic pairs are related to the older notion of exact Borel subalgebra introduced
by Konig; see [Konl [KKO]. In turn, Konig’s work was motivated by Green’s introduction
of positive and negative Borel subalgebras of the classical Schur algebra S(n,r) in [Gre].
However, S(n,r) does not fit into the precise framework of Definition one first has
to pass to a Morita equivalent algebra whose distinguished idempotents are labelled just
by partitions rather than all compositions in order to see such a structure.

The discussion so far justifies the significance of the notion of a triangular decom-
position. The weaker notion of Cartan decomposition seems to be useful too. In fact,
there is a tight connection between based stratified algebras and algebras with a Cartan
decomposition. To pass from a based stratified algebra to an algebra with a Cartan
decomposition, one needs the based stratified structure to be split in the following sense.

Lemma 5.27. Let A be an upper finite (resp., essentially finite) based stratified algebra
as in Definition [5.17 Recall in the context of that definition that ey = ZbeBA ep € A.
Assume that the based stratified structure is split, by which we mean that the following
properties hold for all A € A:
(i) The subspace Ay of exAey spanned by | J, yep, H(a,b) is a subalgebra.
(ii) The subspace A’ey of Aey spanned by {yh | a,b € By,y € Y(a),h € H(a,b)}
satisfies AxA%ey = exAley.
(i) The subspace exA* of exA spanned by {hz | a,b € By,h € H(a,b),r € X(b)}
satisfies ey AP Ay = ey Aley.
Then A admits an upper finite (resp., an essentially finite) Cartan decomposition in
the sense of Deﬁm’tion with T := A, A° := @,p Ar, A = @Dyop A€x and
AP = @), exA®. Moreover, the Cartan subalgebra A° is basic and {e;, | b € B} is its
complete set of primitive idempotents.

Remark 5.28. When the condition (i) from Lemma holds, the natural quotient
map A — Ag¢y) maps the subalgebra Ay of A from the lemma isomorphically onto the
subalgebra Ay = €y A<yéy of A<y. Thus, under the splitting hypothesis, the subalgebra
Ay of Ay is lifted to a subalgebra of A.

Proof of Lemma[5-27 It is clear that we have the required data and A° is basic as
claimed since each Ay ~ A, is basic according to (BS8); this uses Remark It just
remains to check the axioms (CD1)-(CD5). Tt is clear from (i) that A°A° = A", while
the fact that A°A” < A® follows by (ii). Making similar arguments with A” replaced by
A¥ completes the check of (CD1). By considering the explicit bases from (BS5), we see
that A" (resp. A") is projective as a right (resp., left) A°-module as required for (CD3).
Then (CD2) holds due to (BS5) again and the isomorphism e, Ay ®4, Axep = eqAres.
Finally, (CD4)-(CD5) follow from (BS6)—(BS7). O
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Corollary 5.29. Suppose that A is an upper finite (resp., essentially finite) based quasi-
hereditary algebra in the sense of Definition . Then A admits an upper finite (resp.,
essentially finite) Cartan decomposition in the sense of Definition with Cartan
subalgebra A° = @, 5 key that is basic and semisimple.

It remains to explain how to pass from a locally unital algebra with an upper finite
or essentially finite Cartan decomposition to a based statified algebra. This depends
on an elementary general construction which involves making some additional choices
in order to replace the given Cartan subalgebra A° by a basic algebra. How explicitly
these choices can be made in practice of course depends on the particular situation. The
situation is particularly straightforward if A° = C—B'yef‘ ke,; cf. Corollary For A as
in Definition the required choices are as follows:

e Let B be a set which parametrizes a complete set of pairwise inequivalent ir-
reducible left A°-modules {L°(b) | b € B}. Since A° = @ e,A%,, the set
B decomposes as B = | | . B[v] for finite sets B[y] such that L°(b) is an
irreducible e, A°e,-module for each b e B[v].

e Let A be a set which parametrizes the blocks of A°. This means that there is
a function p : B — A such that the irreducible modules L°(a), L°(b) (a,b € B)
belong to the same block of A° if and only if p(a) = p(b). The set A decomposes
as A = | | cp A[7] where A[y] := p(B[7]).

e Let < be the partial order on A defined so that A < p if either A = u or
A€ A[B], p € Aly] for B, € T with 8 < . We now have in hand a poset (A, <),
upper finite or interval finite according to the case, and a stratification function
p:B — A Set By :=p~'(}) as usual, so that B[y] = || ca[,) Ba-

e Choose aset {e@,, |beB,1<r < dimL°(b)} of mutually orthogonal primitive
idempotents in A° such that e, ,L°(b) # 0 for each r. In other words, for b € B,
ey := e(p,1y is an idempotent such that P°(b) := A°e, is a projective cover of
L°(b), and {e(,ry |1 < r < dim L°(b)} are mutually orthogonal conjugates of ep.
For each v € I, these idempotents give a decomposition of e,, the identity ele-
ment in the finite-dimensional algebra e, A°e,, as a sum of mutually orthogonal
primitive idempotents:

dim L° (b)

= > D e (5.13)

beB[~] r=1
We now have new idempotents e; defined for all elements 7 of the set
I:=(\T)uBuU{(br)|beB,2<r<dimL(b)}.
In view of li we have that A = (—Bm.efeiAej and this is an idempotent

expansion of the original decomposition A = (—Bmd e;Ae;.

e For A\e A, let ey := ZbeBA ep. The algebra Ay := ey A°e, is basic with primitive
idempotents {e; | b € By}, and A° is Morita equivalent to @, Ax. An explicit
equivalence A°-mod — @, ., Ax-mod is given by sending V' — @, exV, with
quasi-inverse defined by the functor @, , A°ex®a, —. Similarly, one can write
explicit equivalences between the categories of right modules.

e For a,be B, let H(a,b) := & if p(a) # p(b), and let H(a,b) be a basis for e, Axep

if A:=p(a) = p(b). The set |, jcp, H(a,d) is a basis for A.

e Foriel and any vy €I, eiAbeV makes sense and is a summand of Abey thanks
to (CD1). It is a projective right e, A°e,-module by (CD3). Hence, for A € A[v],
e;A’ey is a finitely generated projective right Ay-module. Therefore, for each
A € A, it is possible to choose finite subsets Y (i,a) e;A’e, for each i e f, a€ By
such that

e; A%y = @ yAx (5.14)

aeB,yeY (i,a)



SEMI-INFINITE HIGHEST WEIGHT CATEGORIES 73

and yAy = e, Ay for each y € Y(4,a). Since eVAbe7 = e, A%, thanks to (CD4),
we have that e,A’eyx = e, Ay, so we may assume that Y(a,a) = {e,} and
Y(a,b) = @ for a # b with p(a) = p(b).

e Similarly to the previous point, we can choose finite subsets X (b, j) < ebAjjej
for each j € I,b € B such that

exA’e; = @ Ayz (5.15)
beB,zeX (b,j)

and Ayx =~ Ayep as left Ay-modules for each x € X (b, j). Again, we may assume
that X (a,a) = {e,} and X(a,b) = @ for a # b with p(a) = p(b).

Theorem 5.30. Suppose that A is a locally unital algebra with an upper finite (resp.,
essentially finite) Cartan decomposition as in Definition . Apply the construction
just explained to obtain the idempotent expansion A = C—Di,jef e;Aej, the subset B < f,
and all of the other data required by (BS1)-(BS4) from Definition [5.1% This data
satisfies the axioms (BS5)-(BS8), hence, we have given A the structure of an upper
finite (resp., essentially finite) based stratified algebra which is split in the general sense

of Lemma[5.27 Moreover:
(1) It is an upper finite (resp., essentially finite) based quasi-hereditary algebra in
the sense of Definition if A° is semisimple.
(2) It is an upper finite (resp., essentially finite) fibered quasi-hereditary algebra in
the sense of Definition if A° is quasi-local, i.e., there are no extensions
between non-isomorphic irreducible A°-modules.

Proof. By (CD2), multiplication defines an isomorphism A’ ® 4o A* 5 A. Note also for
i,j € I that left multiplication by e; (resp., right multiplication by e;) leaves A® (resp.,
AF) invariant thanks to (CD1). Hence, we have that ;A" ®4. Afe; ~ e;Ae;. By the
Morita equivalences discussed above, we have that @, , e;A%ey ®a, erA° = e; A as
right A°-modules and (—B“EA A%, ®a, eﬂAﬁej ~ Aﬁej as left A°-modules. Tensoring
these isomorphisms together, we deduce that
C—D e; A’ey ®a, exA° ®a0 A€ @an eﬂAﬁej ~ e; A" @ 40 Aﬁej = e; Ae;.
A HEA
Since eyA° @40 A°e, = eyA°e,, which is zero if A # p and Ay if A = p, this shows that
the natural multiplication map gives an isomorphism
@ eiA’e\ ®a, exAfe; S e;Ae;.
AeA
From this and 7, we deduce that multiplication gives an isomorphism
(—B @ @ yA,\ ®Ax AAx;eiAej.
AeA aeB,yeY (i,a) beBy,ze X (b,5)
For y € Y(i,a) and « € X(b,7), we have that yAy ®a, Axx = e Ay ®a, Arep =
eaAxep, which has basis H(a,b). We deduce that the products yhx for all (y,h,z) €
Usea Uaes, Y (isa) x H(a,b) x X (b, j) give a basis for e;Ae;. This checks (BS5).

Consider (BS6)—(BS7); we just explain for Y (b, a). Suppose that Y (b,a) # & for a €
B[] and b € B[y]. Let A := p(b). From , we deduce that e, A’e, = e, (eg A%, )ex
is non-zero. Hence, egAbe,y # 0 and 8 < 7 by (CD5). Since we know already from the
construction that Y (a,a) = {e,} and Y (a,b) = @ for a # b with p(a) = p(b), this proves
(BS6)—(BS7).

Consider (BS8). As noted in Remark the algebra A, from Definition is
isomorphic to the subalgebra Ay of A in the present setup. As we noted during the
construction, Ay is basic and {ep | b € By} is its set of its primitive idempotents. This
checks (BS8). Also the based stratified structure is split thanks to (CD1).
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Finally, to check (1)—(2), note by the definition of A that the stratification function
p is a bijection if and only if each block Ay has a unique irreducible module (up to
isomorphism), i.e., A° is quasi-local. Moreover, we have that Ay ~ k for all A € A if and
only if A° is semisimple. d

Corollary 5.31. Let A be a locally unital algebra with an upper finite (resp., essen-
tially finite) Cartan decomposition and fix the choices made before Theorem . Then
A-modygq (resp., A-modgq) is an upper finite (resp., essentially finite) fully stratified
category with stratification p : B — A. Moreover:

(1) This category is highest weight if A° is semisimple.

(2) This category is signed highest weight if A° is quasi-local.

Proof. Apply Theorems [5.20] and [5.6] O

Remark 5.32. When A has a triangular decomposition rather than merely a Cartan
decomposition, Corollary can be proved more directly, starting from the construc-
tion of standard modules as modules induced from irreducible Af-modules. This is the
standard argument in the framework of Borelic pairs.

6. EXAMPLES

In this section, we explain several examples. For the ones in §§6.4] we give very
few details but have tried to indicate the relevant ingredients from the existing literature.

6.1. A finite-dimensional example via quiver and relations. Let A and B be the
basic finite-dimensional algebras defined by the following quivers:

u
A(1<2): = C 1 C 2 with relations 22 = 0,uv = 0, vuzv = 0,
v

B (1>2): SC1$23t with relations s? = 0,t? = 0,ty = 0.

The algebra A has basis {eq, z, vu, vuz, zvu, 2VUZ; €2, UZV; V, 2V; U, UZ, UZVU, uzZVUZ} and
B has basis {e1, s; ea,t;y,ys}. The irreducible A- and B-modules are indexed by the set
{1,2}. We are going to consider A-mod¢g and B-modgq with the stratifications defined
by the orders 1 < 2 and 1 > 2, respectively.

We first look at B-modgq. As usual, we denote its irreducibles by L(%), indecompos-
able projectives by P(i), standards by A(i), etc.. The indecomposable projectives and
injectives look as follows (where we abbreviate the simple module L(4) just by 4):

1
T
2

—_

P(1) =
y
2 2
It follows easily that B-modgq is a signed highest weight category in the sense of Defini-
tion 3.9l with the structure of the standards and costandards as follows:

1
A1) =P1), A1)= § . A@2)=P(2), A@2)=L(2),
2

This can also be seen from Theorem on noting that B is a (split) fibered quasi-
hereditary algebra in the sense of Definition with Y(2,1) = {y}, X(1,2) = & and
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H(1) = {e1,s}, H(2) = {ea,t}. The basic local algebras realizing the strata are k[s]/(s?)
and k[t]/(t?). Next we look at the tilting modules in B-mod. If one takes the sign
function € = (g1, e3) to be either (+, +) or (—, +) then one finds that the indecomposable
e-tilting modules are P(1) and P(2) with filtrations

A(1) (

\Y/ V(2)
rpl)= | = 7
2)

1)
N PR =AQ) = | . (6.3)
v(2) v(2)

A(1) V(

These cases are not very interesting since the Ringel dual category is just B-modgg
again. Assume henceforth that e = (—, —) or (+, —). Then the indecomposable e-tilting
modules have the following structure:

o/ A AR v
12N T e
5

A(1) v(

(1)
O, T2 =P@2). (64)
V(2)

To see this, one just has to check that these modules are indecomposable with the
appropriate A.- and V.-flags. This analysis reveals that B-modq is not tilting-rigid.
The minimal projective resolution of T(1) takes the form

e P(2)@P(2) — P(Q)@P(Q) —>P(1)@P(2)@P(2) —>T(1) — 0,

in particular, it is not of finite projective dimension. Observe also that there is a non-split
short exact sequence 0 - X — T'(1) - X — 0 where

Now let T :=T(1) ®T(2). We claim that Endp(T")°P is the algebra A defined above.
To prove this, one takes z : T(1) — T'(1) to be an endomorphism whose image and kernel
is the submodule X of T'(1), v : T'(2) — T'(1) to be a homomorphism which includes T'(2)
as a submodule of X € T'(1), and v : T(1) — T(2) to be a homomorphism with kernel
containing X and image L(2) € T(2). Hence, A-modyq is the Ringel dual of B-modg
relative to T. Note also that the algebra A is based (+, +)- and (—, +)-quasi-hereditary
but it is not based (+,—)- or (—, —)-quasi-hereditary (cf. Definition [5.10).

One can also analyze A-modg directly. Its projective modules have the following
structure:

1

f/ \Z\

e
—
[a—y
N}
Il
DO £— = e = —a— N
el
—~
S
S~—
Il
DN —£— = e = =S N
—~
=
[
S~—

DN —8— = e = e N B

Continuing with ¢ = (—,—) or € = (4, —), it is easy to check directly from this that
A-modyq is (—e)-highest weight, as we knew already due to Theorem However, it
is not e-highest weight for either choice of ¢, so it is not signed highest weight.
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We leave it to the reader to compute explicitly the indecomposable (—¢)-tilting mod-
ules T'(1) and T'(2) in B-modgq. Their structure reflects the structure of the injectives
I(1) and I(2) in A-modgg. Let T := T(1) @ T(2) =~ T*. By the double centralizer
property from Corollary 4 - we have that B = Endy4 (T)Op, as may also be checked
directly. By Theorem the functor R Hom 4 (T 7—) : D*(A-modgq) — DP(B-modq)
is an equivalence. Note though that R Homp(T, —) : D?(B-modgq) — D?(A-modgy) is
not one; this follows using [Kel, Theorem 4.1] since T'(1) does not have finite projective
dimension.

6.2. An explicit semi-infinite example. In this subsection, we give a baby example
involving a lower finite highest weight category. Let C' be the coalgebra with basis

()i, j.tezZ,0>1i,5 >0}
counit defined by e(c; @ ) = 08;00;¢, and comultiplication § : C' — C ® C defined by

(2) i k k
OR Z (k®c(3) Z k®01(”)‘7 CE,])'_) Z (J)+ Z () g;’
iéj(2) 1(2) ﬁéJ( ) k—J(Q)
(13) (k) (é) (L’) (k)
) @)+ 2 Z kZO kZ
i#12) ki) J#6(2) h=t(2)

for i,7 = 0, £ > max(i,j). We will show that R := comodgy-C is a lower finite highest
weight category with weight poset A := N ordered in the natural way. Then we will
determine the costandard, standard and indecomposable injective and tilting objects ex-
plicitly, and describe the Ringel dual category R. To do this, we mimic some arguments
for reductive groups which we learnt from [Jani].

We will need comodule induction functors, which we review briefly. For any coalgebra
C with comultiplication 4, a right C-comodule V' with structure map ng : V - V& C,
and a left C-comodule W with structure map n; : W — C ® W, the cotensor product
V Oc W is the subspace of the vector space V® W that is the equalizer of the diagram

nrid
VoW — VRCRW.
1d®"7L

In particular, ng : V — V ® C is an isomorphism from V to the subspace V O¢ C,
and similarly nz, : W = C O¢ W. Now suppose that # : C — C’ is a coalgebra
homomorphism and V is a right C’-comodule. Viewing C' as a left C’-comodule with
structure map 47, := (7 ®id) 06 : C — C' ® C, we define the induced comodule to be

ind%, V :=V Oe C.

This is a subcomodule of the right C-comodule V ® C' (with structure map id ® §). In
fact, indg, : comod-C’ — comod-C' defines a functor which is right adjoint to the exact
restriction functor resg,, so it is left exact and sends injectives to injectives.
Now let C' be the coalgebra defined above, and consider the natural quotient maps
. C - C" and 7t : C — C*, where C” and C* are the quotients of C' by the
coideals spanned by {CEEJ) | {>j } or {CEZJ) ‘ l > i}, respectively. Thebe coalgebras have
bases denoted {c;; := nb(cg’j}) |0 < i< j}and {c;; := 7*(c |z > j = 0}, and
comultiplications 6” and 6* satisfying

j i

8 (ciy) = cii ®cij + Z Cie ® Cryr 0%(ciy) =Cij ®cjj + Z cik ®ckyj, (6.6)
k=it1 k=j+1
k=3 (2) k=i(2)
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respectively. Also let C° = P,k be the semisimple coalgebra with basis {c; [ i > 0}
and comultiplication 8° : ¢; — ¢ ® ¢;. Note C° is a quotient of both C” and C* via
the obvious maps sending c; ; — 9; jc;; hence, it is also a quotient of C. It may also be
identified with a subcoalgebra of both C” and C* via the maps sending ¢; — Cii-

Let L°(%) be the one-dimensional irreducible right C°-comodule spanned by ¢; ;. Since
C° is semisimple with these as its irreducible comodules, any irreducible right C°-
comodule V' decomposes as V' = @, ; Vi with the “weight spaces” V; being a direct
sum of copies of L°(4). Similarly, any left C°-comodule V' decomposes as V' = @,_; V.
This applies in particular to left and right C”,C* or C-comodules, since these may be
viewed as C°-comoodules by restriction.

Since C° is a subcoalgebra of C”, the irreducible comodule L°(7) may also be viewed as
an irreducible right C”-comodule. We denote this instead by L’(i); it is the subcomodule
of C* spanned by the vector ¢; ;. For i = 0, let I(i) := ;C = indS. L°(i), let V(i) be
the subcomodule of I(i) spanned by the vectors {cglj) |0 < j < i}, and let L(i) be the
()

one-dimensional irreducible subcomodule of V(i) spanned by the vector ¢;;. Now we

proceed in several steps.

Claim 1: Viewed as a functor to vector spaces, the induction functor indgb is isomorphic
to the functor V — V Qg CF =~ @i=o Vi ® ;C*. Hence, this functor is exact. To prove
this, let 6pp := (7’®nf) 06 : C — C* Qo Ct. As (SLR(CE?) = ¢i¢ ® cg; and these
vectors for all £ > max(i, j) give a basis for C” Ogo C¥, this map is a linear isomorphism.
Moreover, the following diagram commutes:

c c®C
LR l l id®dLr
C’Oee Cf —— C"®@C" O CL.
5 ®id
The vertical maps are isomorphisms. Using the definition of indgb, it follows for any right
C’-comodule V with structure map 7 that the induced module indgb V' is isomorphic as

a vector space (indeed, as a right C’u—comodule) to the equalizer of the diagram
b N®id®id b b
VRC'OeCfF == VRC"®C" Oc. CF.
id®s’®id
Since indgt V =~ V, this is naturally isomorphic to V Oce C*. As C¥ ~ @z;oicﬁv we
get finally that V Oco C* ~ @i>0 V; ®,CH.

Claim 2: Fori > 0, the right C*-comodule ;C* ~ indgi L°(i) has an exhaustive ascending
filtration 0 < Vo < Vi < -+ such that Vo = L (i) and V,./V,_y = L*(i+2r—1)@®L°(i+2r)
for = 1. Also, the modules {L°(i) | i = 0} give a complete set of pairwise inequivalent
irreducible C°-comodules. The first statement follows from , defining Vj to be
the subspace spanned by c¢;;, and V. is spanned by ¢; ii2r—1,¢iit2r. To prove the
second statement, take any irreducible C’-comodule L. Take a non-zero homomorphism
resgiL — L°(i) for some i. Then use adjointness of resgi and indgz to obtain an
embedding L < ;C”. Hence, L = L°(i) as a C”-comodule.

Claim 3: We have that V(i) = ind$, L?(i) and it is uniserial with composition factors
L(Z)a L(l - 2)3 L(Z - 4)7 ceey L(a)vL(b)’ e L(Z - 3)7 L(Z - 1) (fOT’ (a7b) € {(0’ 1)7 (L O)}
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depending on parity of i) in order from bottom to top:

i—1
|
i—3

V(i) = (6.7)
i—2

|

T
The restriction of 6z, : C' — C*® C to V(i) gives an embedding of V(i) into indS, L’ ().
This embedding is an isomorphism since we know ind%, L’(i) has the same dimension
(1 4+ 1) as V(i) thanks to Claim 1. The determinaton of the subcomodule structure is

straightforward using the definition of 6(052])) for0 < j <.

Claim 4: The injective C-comodule 1(i) has an exhaustive filtration 0 < Iy < I; < ---
such that In = V(i) and I./I,_1 = V(i+2r — 1) ® V(i + 2r) forr > 1:

V(i ‘+ 3) V(i ‘+ 4)
1) = V(i + 1) V(i +2) (6.8)
. 7
V(i)

This follows from Claims 1, 2 and 3.

Claim 5: The drreducible C-comodules {L(i) | i = 0} give a complete set of pairwise
inequivalent irreducibles. Moreover, I(i) is the injective hull of L(i), and the natural
order on N defines a stratification of R := comod-C in the sense of Definition [3.]]
By Claim 3, the last part of Claim 2, and an adjunction argument, any irreducible C-
comodule embeds into V(%) for some i, hence, it is isomorphic to L(¢). The module I(7)
is injective, and it has irreducible socle L(i) by another adjunction argument. Hence,
it is the injective hull of L(7). To see that we have a stratification, it remains to check
that for each k = 0 that the largest submodule of I(i) all of whose composition factors
are of the form L(j) for j < k is finite-dimensional. This follows on considering from
the filtration from Claim 4 using the fact that V(j) has irreducible socle L(j).

Claim 6: The category R := comodiy-C' is a lower finite highest weight category with
costandard objects V(i) (i = 0). It also possesses a duality interchanging V(i) and A(i).
It is clear that V(i) is the largest subcomodule of I(7) all of whose composition factors
are of the form L(j) for j < i, hence, this is the costandard object. Then to show
that R is a lower finite highest weight category, it just remains to check the property

(IV), which follows from Claim 4. The duality is defined using the evident coalgebra

antiautomorphism of C' which maps cz(éj) — cﬁ) .
Claim 7: The indecomposable tilting comodule T(i) is equal to L(i) = A1) = V(i) if
i =0, and there are non-split short exact sequences 0 — A(i) —» T(i) > A(i—1) - 0
and 0 — V(i — 1) — T(i) — V(i) — 0 if i > 0.

This is immediate in the case ¢ = 0. Now for ¢ > 0, let T'(i) be the non-split exten-
sion of V(i — 1) by V(¢) that is the subcomodule of I(i — 1) spanned by the vectors
{cgfl%])-,cz(-i)l’k |0 < j <i—1,0<k < i}. Then one checks that this submodule is
self-dual. Since it has a V-flag it therefore also has a A-flag, so it must be the desired
tilting object by Theorem
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Claim 8: The Ringel dual category R is the category A-modygq of locally finite-dimensional
left modules over the locally unital algebra A defined by the following quiver:

Yo Y1
s . .
A:0 C 12 72 with relations y;+1y; = T;T;11 = x;y; = 0.
o ]

o
We need to find an isomorphism of algebras A = (@i,]}o Homc(T(i),T(j))) *. For
this, we consider the T'(i) (i = 0,1,2,3,...) with their V-flags:

2

|

1 0

| |

0 0 1
vo | R R S S

0 1 2 3 (6.9)

_To, ‘ g ‘ N ‘ N

‘0‘ 0 1

| |

1 0

|

.2.

We will describe the images, also called e;, x;, y;, of the generators of A. We send e; to the
identity endomorphism of T'(¢), x; to the morphism 7T'(i) — T'(i+ 1) sending the quotient
V(i) of T'(4) to the subcomodule V(i) of T'(+1) and y; to the morphism T'(i+1) — T'(i)
sending the quotient A(7) of T'(i + 1) to the submodule A(%) of T'(¢). The relations are
easy to check (remembering the op, e.g., one must verify that ys o x9 = 0 # 2 0 ys).
Since the algebra A is very easy to understand, one also sees that this homomorphism
is injective, then it is an isomorphism by dimension considerations.

Remark 6.1. The above analysis of comodq-C relies ultimately on the observation that
the coalgebra C has a triangular decomposition in a precise sense which is the analog for
coalgebras of Definition [5.24] There are also coalgebra analogs of the other definitions
from the previous section, e.g., the coalgebra analog of Definition [5.1] is the notion of
a (lower finite) based quasi-hereditary coalgebra. This will be developed in a sequel to
this article.

One can argue in the opposite direction too, starting from the algebra A just defined,
and computing its Ringel dual to recover the coalgebra C (in fact, this is how we discov-
ered the coalgebra C in the first place). Note for this that A has an upper finite triangular
decomposition in the sense of Definition with A° = @), kei, A’ = {e;,y: | i € N}
and A" = {e;, 2;|i € N}. By Lemma and Corollary A-modjgq is an upper finite
highest weight category. Its standard and costandard modules have the structure

N [ N i+1
A= 4§ Vi) = § . (6.10)
i+1 i

Using the characterization from Theorem i), it follows that the indecomposable
tilting modules for A have a similar structure to 7'(0), which is as follows (to get T'(4)



80 J. BRUNDAN AND C. STROPPEL

in general one just has to add i to all of the labels):

5 3 1
) AN
TO) = ... 6 4 2 2 4 6 .- (6.11)
\y\ f/ \y\ f \y\ f
1 3 5
This diagram demonstrates that 7°(0) has both an infinite ascending A-flag with A(0) at
the bottom and subquotients as indicated by the straight lines, and an infinite descending
V-flag with %(O) at the top and subquotients indicated by the wiggly lines; c¢f. Claim 4
above. Given the indecomposable tilting modules T (1) for A, one can now compute

the coalgebra C' arising from the tilting generator T = @0 T'(i) according to the
general recipe from Definition We leave this to the reader, but display below the
homomorphisms fi(? : T(i) — T(j) in the endomorphism algebra B := End(T)°P
which are “dual” to the basis elements cge]) of the coalgebra C' = B* as above.

The map fi(’? : T(z) — f(z) is the identity endomorphism, and fi(’? : f(z) — YN“(]) for
¢ > max(i, j) has irreducible image and coimage isomorphic to L(£), i.e., it sends the
(unique) irreducible copy of L(¢) in the head of T'(i) to the irreducible L(¢) in the socle
of T(j) The remaining maps fi(,ij)7 fl-(yjj.-) : f(z) — f(]) for i # j are depicted below:

Z+]. ...j+1
,_ N >
9 / @ - @, J+2
i#5(2) N NS
i+1 - j4+1
i+1 J+1
, / S
9 42 @) j4+2

i=j(2) \\

i 2 @

i#j (/‘2) .

1+ 1
i+ 1
. 7N
o i 2 )
i=5(2)

i+l JEI

Remark 6.2. The above example can be changed slightly to obtain an essentially finite
example with poset A := Z with the ordering reversed to the natural ordering: Let D be
the essentially finite-dimensional locally unital algebra defined by the following quiver:

Y-1 Yo Y1

D:...—1 2 0 C 1 C 2-..  with relations ;1Y = ;211 = x5 = 0,

xTr—1 o ]
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Like for A, this algebra has a triangular decomposition, so D-mod¢q is an essentially
finite highest weight category. Recalling that the construction of tilting modules in the
essentially finite case explained in §1.5]is by passing to an upper finite truncation, the
indecomposable tilting module T'(0) for D has the same structure as for A; see .
This module is infinite-dimensional; thus D-modgq is not tilting-bounded. Note also that
this algebra D can be obtained from the general construction from Remark[5.25] starting
from the obvious triangular decomposition of the Z-graded algebra A = k{z,y | 2% =
y? = 0,2y = 0) with x in degree 1 and y in degree —1; cf. [BT, Example 5.12].

6.3. Category O for affine Lie algebras. Perhaps the first naturally-occurring ex-
amples of finite highest weight categories came from the blocks of the BGG category
O for a semisimple Lie algebra. This context also provides natural examples of finite
e-highest weight categories; see [Mazl] for a survey. To get examples of semi-infinite
highest weight categories, one can consider instead blocks of the category O for an affine
Kac-Moody Lie algebra. We briefly recall the setup referring to [Kac], [Car] for more
details.

Let § be a finite-dimensional semisimple Lie algebra over C and

g:=9 ®cC[t,t '] ®Cec@Cd

be the corresponding affine Kac-Moody algebra. Fix also a Cartan subalgebra f; con-

tained in a Borel subalgebra b of . There are corresponding subalgebras h and b of g,
namely,

h:=h@CcOC, b= (5 ®ClH]+ § ActC[t]) ®CeD T,

Let {a;|i € I} < b* and {h;|i € I} < b be the simple roots and coroots of g and (-|-) be
the normalized invariant form on h*, all as in [Kacl Ch. 7-8]. The basic imaginary root
0 € bh* is the positive root corresponding to the canonical central element ¢ € h under
(+|-). The linear automorphisms of h* defined by s; : A — A — A(h;); generate the Weyl
group W of g. Let p € b* be the element satisfying p(h;) = 1 for all i € I and p(d) = 0.
Then define the shifted action of W on h* by w - A = w(A + p) — p for w e W, X\ € h*.

We define the level of X € h* to be (A + p)(c) € C. It is critical if it equals the level of
A= —p, ie,itis zerﬂ We usually restrict our attention to integral weights A, that is,
weights A € b* such that A(h;) € Z for all i € I. The level of an integral weight is either
positive, negative or critical (= zero). For any A € h*, we define

A= =\ —2p. (6.12)
Since w- (—A—2p) = —w-A—2p, weights A and p are in the same orbit under the shifted
action of W if and only if so are A and ji. Note also that the level of ) is positive (resp.,
critical) if and only if the level of X is negative (resp., critical). A crucial fact is that the
orbit W - X\ of an integral weight A of positive level contains a unique weight Ap.x such
that Apmax + p is dominant; e.g., see [Kuml, Exercise 13.1.E8a and Proposition 1.4.2]. By
[Kum| Corollary 1.3.22], this weight is maximal in its orbit with respect to the usual
dominance ordering < on weights, i.e., p < X if A — p € @,.; Nay. If A is integral of
negative level, we deduce from this discussion that its orbit contains a unique minimal
weight Amin.

For A € h*, let A(X) be the Verma module with highest weight A and L(\) be its
unique irreducible quotient. Although Verma modules need not be of finite length, the
composition multiplicities [A(\) : L(u)] are always finite. There is also the dual Verma
module V() which is the restricted dual A(A)# of A()), i.e., the sum of the duals of the
weight spaces of A()\) with the g-action twisted by the Chevalley antiautomorphism. All
of the modules just introduced are objects in the category O consisting of all g-modules
M which are semisimple over h with finite-dimensional weight spaces and such that the

7Many authors define the level to be A(c), in which case the critical level is —h, where h is the dual
Coxeter number.
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set of weights of M is contained in the lower set generated by a finite subset of h*; see
[Kuml Section 2.1]. There is also a larger category 0 consisting of the g-modules M
which are semisimple over §h and locally finite-dimensional over b.

Let ~ be the equivalence relation on h* generated by A ~ p if there exists a positive
root v and n € Z such that 2(A+p|y) = n(vy|y) and A—p = ny. For a ~-equivalence class
A, let Op (resp., @A) be the full subcategory of O (resp., (5) consisting of all M € O
(resp., M € O) such that [M : L(A\)] # 0 = A € A. In view of the linkage principle
from [KK| Theorem 2], these subcategories may be called the blocks of O and of @,
respectively. In particular, by [DGK], Theorem 4.2], any M € O decomposes uniquely
as a direct sum M = @Aen*/~ My with Mj € Op. Note though that O is not the
coproduct of its blocks in the strict sense since it is possible to find M € O such that
M is non-zero for infinitely many different A. The situation is more satisfactory for O:
O is the product of its blocks since by [Soel Theorem 6.1] the functor

[T Os—=0.,  (Mi)rcprsn — D My (6.13)
Aeh* /~ Aeb* /~
is an equivalence of categories. Note also that [A(M) : L(u)] # 0 implies that the level
of X\ equals that of p, since the scalars by which ¢ acts on L(\) and L(p) must agree.
Consequently, we can talk simply about the level of a block.

A general combinatorial description of the ~-equivalence classses A can be found
for instance in [Fie3l Lemma 3.9]. For simplicity, we restrict ourselves from now on
to integral blocks. In non-critical levels, one gets exactly the W-orbits W - A of the
integral weights of non-critical level. In critical level, one needs to incorporate also the
translates by Zd. From this description, it follows that the poset (A, <) underlying an
integral block O, is upper finite with unique maximal element A\« if Oy is of positive
level, and lower finite with unique minimal element An;, if Oy is of negative level. In
case of the critical level, the poset is neither upper finite nor lower finite, but it is always
interval finite.

Example 6.3. Here we give some explicit examples of posets which can occur for
g = sly, the Kac-Moody algebra for the Cartan matrix (_2 ~2). The labelling set for
the principal block is W -0 = {\, ux | k = 0} where Ay := —3k(k + 1)ag — 2k(k — 1)y
and puy, := —3k(k — 1)ag — $k(k + 1)oy. This is a block of positive level with maximal
element A\g = po = 0. Applying the map , we deduce that W - (=2p) = {S\k,ﬁk |
k = 0}. This is the labelling set for a block of negative level with minimal element
Ao = jiop = —2p. Finally, we have that W - (ag — p) U W - (a1 — p) = { e, i | k € Z}
where \j, := (k + 1)ag + kay — p and i, := kag + (k + 1)a; — p. This is the labelling
set for a block of critical level, and it is neither upper nor lower finite. The following
pictures illustrate these three situations:

0 A2 - o 3 A3
S/ \50 5 ‘::)>< ‘ 5 S1 ‘ S0
1 A1 A P A2 2
S0 ‘ S1 4 ‘: ‘ 1 S0 ‘ s1
)\2 H2 ’ 5\2 ﬂO ) ﬁl )\1
50
S1 ‘ S0 (j ‘ s>< ‘ k) 81\ Ao
M3 A3 Al B —2p

Recall the definitions of upper finite and lower finite highest weight categories from

Definitions and respectively.
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Theorem 6.4. Let O be an integral block of O of non-critical level. Then it is an upper
finite or lower finite highest weight category according to whether the level is positive or
negative, respectively. In both cases, the standard and costandard objects are the Verma
modules A(N\) and the dual Verma modules V(X), respectively, for A € A. The partial
order < on A is the dominance order.

Proof. First, we prove the result for an integral block O, of positive level. As explained
above, the poset A is upper finite in this case. Let Apax be its unique maximal weight.

Claim 1: In the positive level case, Op is the full subcategory of @A consisting of all
modules M such that [M : L(\)] < o for all A € A. To prove this, given M € Oy, it is
obvious that all of its composition multiplicities are finite since M has finite-dimensional
weight spaces. Conversely, suppose that all of the composition multiplicities of M € @A
are finite. All weights of M lie in the lower set generated by Apax. Moreover, for
A < Amax, the dimension of the A-weight space of M is

dim My = > [M : L(p)] dim L(p) .
HeA
Since the poset is upper finite, there are only finitely many p € A such that the A-weight
space L(u)y is non-zero, and these weight spaces are finite-dimensional, so we deduce
that dim M) < co. This proves the claim.

Now we observe that the Verma module M (Aax) with maximal possible highest weight
is projective in @A. From this and a standard argument involving translation functors
through walls (see e.g. |Nei]) and the combinatorics from [Fiell, §4] (see also the in-
troduction of [Fie2]), it follows that each of the irreducible modules L(A) (A € A) has
a projective cover P(\) in Oy. Moreover, these projective covers have (finite) A-flags
as in the axiom (PA). In particular, this shows that each P(\) actually belongs to
Op. All that is left to complete the proof of the theorem in the positive level case is to

op
show that O, is a Schurian category. Let A := ((—B/\#e/\ Homg(P(A),P(u))) . Since

the multiplicities [P() : L(A)] are finite, A is a locally finite-dimensional locally unital
algebra. Using Lemma we deduce that O, is equivalent to the category A-mod
of all left A-modules. As explained in the discussion after (2.18)), A-modg is the full
subcategory of A-mod consisting of all modules with finite composition multiplicities.
Combining this with Claim 1, we deduce that the equivalence between @A and A-mod
restricts to an equivalence between Oy and A-modjtq. Hence, O, is a Schurian category.

We turn our attention to an integral block Oy of negative level. In this case, we know
already that the poset A is lower finite with a unique minimal element Ay, .

Claim 2: In the negative level case, the category Oy is the full subcategory of @A con-
sisting of all modules of finite length. For this, it is obvious that any module in Ox of
finite length belongs to Op. Conversely, any object in Oy is of finite length thanks to
the formula [Kuml 2.1.11 (1)], taking A therein to be Anpin.

From Claim 2 and Lemma it follows that R := O, is a locally finite Abelian
category. By [Fiell Theorem 2.7] the Serre subcategory R*' of R associated to A is a
finite highest weight category for each finite lower set A* of A. We deduce that R is a
lower finite highest weight category using Theorem O

Let Op be an integral block of non-critical level. The following assertions about
projective and injective modules follow from Theorem and the general theory from

§42.1] see also [Soel Remark 6.5].

e In the positive level case, when O, is a Schurian category, @A has enough projec-
tives and injectives. Moreover, the projective covers of the irreducible modules
are the modules {P()\) | A € A} constructed in the proof of Theorem and
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these belong to 0. Their restricted duals I()\) := P(\)# are the indecompos-
able injective modules in @A, and also belong to Oy.

e The situation is completely different in the negative level case, as we need to
pass to (5,\, which is the ind-completion of the finite Abelian category Oj,
before we can talk about injective modules. In @A, the irreducible module
L()\) (A € A) has an injective hull I(\) in O, which possesses a (possibly
infinite) ascending V-flag in the sense of Definition However, @A usually
does not have any projectives at all (although one could construct such modules
in the pro-completion of Oy as done e.g. in [Fie2]).

The following results about tilting modules are consequences of the general theory de-
veloped in and They already appeared in an equivalent form in [Soe].

e In the negative level case, tilting modules are objects in Oy admitting both a
(finite) A-flag and a (finite) V-flag. The isomorphism classes of indecomposable
tilting modules in O, are parametrized by their highest weights. They may also
be constructed by applying translation functors to the Verma module A(Apin)-

e In the positive level case, tilting modules are objects in Op which admit both a
(possibly infinite) ascending A-flag and a (possibly infinite) descending V-flag in
the sense of Definition Again, the isomorphism classes of indecomposable
tilting modules are parametrized by their highest weights.

In both cases, our characterization of the indecomposable tilting module T'(X) of highest
weight A is slightly different from the one given in [Soe, Definition 6.3]. From our
definition, one sees immediately that T'(\)* = T'()).

Remark 6.5. Elsewhere in the literature dealing with positive level, it is common to
pass to a different category of modules, e.g., to the Whittaker category in [BY] or to
truncated versions of O in [SVV] Section 3], before contemplating tilting modules.

Our next result is concerned with the Ringel duality between integral blocks of positive
and negative level. This depends crucially on a special case of the Arkhipov-Soergel
equivalence from [Ark], [Soe]. Let S be Arkhipov’s semi-regular bimodule, which is the
bimodule S, of [Soe] with v := 2p as in [So€, Lemma 7.1]. For X € h*, let T'(\) be the
indecomposable tilting module from [Soel Definition 6.3]. Also let P()A) be a projective
cover of L(A) in O whenever such an object exists; cf. [Soel Remark 6.5(2)].

Theorem 6.6 (Arkhipov, Soergel). Tensoring with the semi-reqular bimodule defines
an equivalence Sy () — : A(O) — V(O) between the exact subcategories of O consisting
of objects with (finite) A- and V-flags, respectively, such that

(1) S v AN) = V(3);

(2) S®ug) P(A) = T(X\) (assuming P(N\) exists).

Corollary 6.7. Assume that Oy is an integral block of negative level. Let R be the
Ringel dual of R := Oy relative to some choice of T = @,.; T; as in Deﬁnitz’on
and let F be the Ringel duality functor from . Also let A = {\ |\ € A}. Then there
is an equivalence of categories E : R — Oz such that Eo F : V(Oy) — A(OR) is a
quasi-inverse to the Arkhipov-Soergel equivalence S @y gy — : A(Of) — V(Oa).

Proof. Note to start with that O3 is an integral block of positive level. Moreover, the
map A°P — IN\, A — ) is an order isomorphism.

Choose a quasi-inverse D to S ®p(g) — : A(Oz) — V(Oa), and set P; := DT;. By
Theorem .(2), (P;)ier is a projective generating family for (57\. Moreover, recalling that
R is the category A-mod¢q where A := (—Bme[
isomorphism via which we can identify A with ®, ;.; Homo, (P, P;).

Homo, (T;,T};), the functor D induces an
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As explained in the proof of Theorem [6.4] the functor
H := @ Homp, (P, —) : 05 — A-modiq

el

is an equivalence of categories Moreover, we have that

HoD:(—BHomo (P;, D(— (—BHomoA(S@)U );@Hom@A(Ti,f)zF.
iel iel iel
Letting E be a quasi-inverse equivalence to H, it follows that F o F' =~ D. O

Remark 6.8. In the setup of Corollary [6.7, the Arkhipov-Soergel equivalence extends
to an equivalence S @y (g) — : A*(O05) — V**¢(O,), which is a quasi-inverse to Eo F :
Va¢(Op) — A*¢(O5). These functors interchange the indecomposable injectives in On
with the indecomposable tiltings in O3.

Finally we discuss the situation for an integral critical block Oy. As we have already
explained, in this case the poset A is neither upper nor lower finite. In fact, these blocks
do not fit into the framework of this article at all, since the Verma modules have infinite
length and there are no projectives. One sees this already for the Verma module A(—p)
for g = 5A[27 which has composition factors L(—p — md) for m > 0, each appearing with
multiplicity equal to the number of partitions of m; see e.g. [AF1, Theorem 4.9(1)].
However, there is an auto-equivalence ¥ := L(§) ® — : Op — (’)A, which makes it
possible to pass to the restricted category Ores which we define next.

Let A, be the vector space of natural transformatlons 3™ — Id. This gives rise to a
graded algebra A := @), An. Then the restricted category Ores is the full subcategory
of On consisting of all modules which are annihilated by the induced action of A,, for
n # 0; cf. [AF1l §4.3]. The irreducible modules in the restricted category are the same
as in @A itself. There are also the restricted Verma modules

AN = A / D1 im (nagy : ZPAN) - A(N)) (6.14)
nEAxo
from [AF1l §4.4]. In other words, A(A)™* is the largest quotient of A(X) that belongs
to the restricted category. Similarly, the restricted dual Verma module V(A)™* is the
largest submodule of V() that belongs to the restricted category.
The restricted category Ores is no longer indecomposable: by [AF2, Theorem 5.1] it
decomposes further as
O = [[ O= (6.15)
AeAN/W
where A/W denotes the orbits of W under the dot action. For instance, the poset A
for the critical level displayed in Example splits into two orbits W - (ag — p) and
W - (a1 — p) (i-e., one removes the edges labelled by §). In the most singular case, @T;
is a product of simple blocks; in particular, A™(—p) = L(—p) = V' (—p).

Conjecture 6.9. Let (’A)%eg be a regular (in the sense of [AF2]) integral critical block.

Let O%es := Fin (@%b) be the full subcategory consisting of all modules of finite length.
Then OrKes is an essentially finite highest weight category with standard and costandard
objects A(A)**® and V()™ for A € A. Moreover, the indecomposable projective modules
in O%’S are also its indecomposable tilting modules, and therefore O%S is tilting-bounded
and Ringel self-dual.

This conjecture is true for the basic example of a critical block from Example
thanks to [Fied, Theorem 6.6]; the same category arises as the principal block of cate-
gory O for g[1|1((C) discussed in below. The conjecture is also consistent with the

so-called Feigin-Frenkel conjecture [AF1, Conjecture 4.7], which says that composition
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multiplicities of restricted Verma modules are related to the periodic Kazhdan-Lusztig
polynomials from [Lus] (and Jantzen’s generic decomposition patterns from [Jan2]).
These polynomials depend on the relative position of the given pair of weights and,
when not too close to walls, they vanish for weights that are far apart. This is con-
sistent with the conjectured existence of indecomposable projectives of finite length in
regular blocks of the restricted category.

Remark 6.10. It seems to us that the Feigin-Frenkel conjecture might have a geometric
explanation in terms of a sequence of equivalences of categories similar to [FGl, (7)].
Ultimately this should connect (’)%es with representations of the quantum group analog
of Jantzen’s thickened Frobenius kernel G1T. The latter are already known by [AJS| §17)
to be essentially finite highest weight categories controlledﬁ by the periodic Kazhdan-
Lusztig polynomials. Also, in these categories, tilting modules are projective, hence, the
Ringel self-duality would be an obvious consequence.

6.4. Rational representations. As we noted in Remark [3.66 the definition of lower
finite highest weight category originated in the work of Cline, Parshall and Scott [CPSI1].
As well as the BGG category O already mentioned, their work was motivated by the rep-
resentation theory of a connected reductive algebraic group G in positive characteristic,
as developed for example in [Janl]: the rigid symmetric monoidal category Rep(G) of
finite-dimensional rational representations of G is a lower finite highest weight category.
Tilting modules for G were studied in [Don3|, although our formulation of semi-infinite
Ringel duality from §4.4] is not mentioned explicitly there: Donkin instead took the
approach pioneered in [Don2] of truncating to a finite lower set before taking Ringel
duals.

To give more details, we fix a maximal torus 7" contained in a Borel subgroup B of G.
Then the weight poset A is the set X (T') of dominant characters of T' with respect to B;
Jantzen’s convention is that the roots of B are negative. The costandard objects V(A)
are the induced modules H°(G/B, Ly). For the partial order <, one can use the usual
dominance ordering on X *(7'), or the more refined Bruhat order of [Janll §II.6.4]. This
makes Rep(G) into a lower finite highest weight category by [Janll, Proposition 11.4.18]
and [Janll Proposition I1.6.13]. In fact, in the case of Rep(G), all of the general results
about ascending V-flags found in were known already before the time of [CPSI],
e.g., they are discussed in Donkin’s book [Donl] (and called there good filtrations).

Let Tilt(G) be the full subcategory of Rep(G) consisting of all tilting modules. A
key theorem in this setting is that tensor products of tilting modules are tilting; this is
the Donkin-Mathieu-Wang theorem [Donl], [Mat], [Wan]. Thus, 7ilt(G) is a Karoubian
rigid symmetric monoidal category. Let (T};);er, be a monoidal tilting generating family
for Tilt(G), that is, a family of tilting modules such that every indecomposable tilting
module is isomorphic to a summand of a tensor product T; := T3, ®- - -®T;, for some finite
(possibly empty) sequence ¢ = (i1, ...,%,) of elements of Iy. Let I denote the set of all
such sequences. Then define A to be the category with objects I, morphisms defined from
Hom4(¢,j) := Homg(T;,T;), composition being induced by composition in Rep(G).
The category A is naturally a strict monoidal category, with the tensor product of
objects being by concatenation of sequences. The evident monoidal functor A — Tilt(G)
extends to the Karoubi envelope of A, and the resulting functor Kar(A) — Tilt(G) is a
monoidal equivalence.

Forgetting the monoidal structure, one can think instead in terms of the locally finite-
dimensional locally unital algebra A = E}—)MGI e;Aej that is the path algebra of A°P in
the sense of Remark Then the Ringel dual of Rep(G) relative to (T;)ier in the general
sense of Definition [£.19is the category A-moditq. It is naturally an upper finite highest
weight category. Theorem [5.7]shows moreover that there is an idempotent expansion of
A making A into a based quasi-hereditary algebra in the sense of Definition [5.1

80ne needs to assume that the root of unity £ is odd and bigger than or equal to the Coxeter number.
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The simplest interesting example comes from G = SL,. For this, we may take
Iy := {1}, so that I = N, and T} to be the natural two-dimensional representation. The
strict monoidal category A in this case has an explicit diagrammatical description: it
is the the Temperley-Lieb category TL(J) at parameter ¢ := 2; see e.g. [GW]. The
Temperley category comes with a natural diagrammatic basis, hence, we get bases for
morphism spaces in A which turns out already to be an object-adapted cellular basis in
the sense of [ELau]. Equivalently, the natural basis is an idempotent-adapted cellular
basis for the path algebra A of A°P making A into an upper finite based quasi-hereditary
algebra in the sense of Definition In this based quasi-hereditary structure, the upper
finite poset is I = N ordered by the opposite of the natural ordering, and for A € I the
set Y () (resp., X(\)) consists of all cap-free Temperley-Lieb diagrams with A strings
at the bottom (resp., all cup-free Temperley-Lieb diagrams with A strings at the top).
This example is somewhat misleading in its simplicity, for example, one does not need
to pass to any sort of idempotent expansion.

The case that G = GL,, is also quite classical. If one assumes that p := char k is
either 0 or satisfies p > n, then one can take Iy := {1, 1}, T} to be the natural G-module
V, and T to be its dual V*. By a reformulation of Schur-Weyl duality, the resulting
strict monoidal category A is isomorphic to a quotient of the so-called oriented Brauer
category OB(9) at parameter ¢ := n by an explicitly described tensor ideal; see [Brul
Theorem 1.10]. Theorem implies that there is an idempotent expansion of the path
algebra A of A°P which is an upper finite based quasi-hereditary algebra. We expect
that an explicit idempotent-adapted cellular basis for A could be constructed using the
methods of [EL.

The general principles outlined so far are valid also when G is replaced by the corre-
sponding quantum group U, (g), possibly at a root of unity (taking the Lusztig form).
When at a root of unity over the ground field is C, it turns out that the indecompos-
able projectives and injectives in the category of rational representations of U,(g) are
all finite-dimensional, i.e., the category is essentially finite Abelian. Tiltings are also
finite-dimensional, indeed, the category is tilting-bounded in the sense of The first
example of this nature comes from U, (sly) at a root of unity over C. In this case, see

g. [AT] Theorem 3.12, Definition 3.3], the principal block is Morita equivalent to the
locally unital algebra A defined as the path algebra of the quiver
) x1 xo
— — % — T
Yo Y1 Y2

with relations ;112 = yiyi+1 = Tiyi — Yit1Tip1 = 0.

The appropriate partial order on the weight poset N is the natural order 0 < 1 < ---.
The indecomposable projectives have the following structure:

3
§ @/ \T\ @/ k&\ RS
P0O)= 1, PQ)= , P(2) = . P(3)= 2 4, ...
! \z\ v *« v S

The tilting objects are T'(0) := L(0) and T(n) := P(n — 1) for n > 1. From this, it
is easy to see that the Ringel dual is described by the same quiver with one additional
relation, namely, that bpag = 0 (and of course the order is reversed).

6.5. Tensor product categorifications. Until quite recently, most of the naturally-
occurring examples were highest weight categories (like the ones described in the previous
two subsections). But the work of Webster [Webl], [Web2] and Losev and Webster [LW]
has brought to prominence a very general source of examples that are fully stratified
but seldom highest weight.
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Fundamental amongst these new examples are the categorifications of tensor products
of irreducible highest weight modules of symmetrizable Kac-Moody Lie algebras. Rather
than attempting to repeat the definition of these here, we refer the reader to [LW].
All of these examples are finite fully stratified categories possessing a duality as in
Corollary They are also tilting-rigid; the proof of this depends on an argument
involving translation/projective functors. Consequently, the Ringel dual is again a finite
fully signed category that is tilting-rigid. In fact, the Ringel dual category is always
another tensor product categoriﬁcatiorﬂ (reverse the order of the tensor product). In
the earlier article [Web2], Webster also wrote down explicit finite-dimensional algebras
which give realization of these categories. In view of Theorem all of Webster’s
algebras admit bases making them into based stratified algebras, but explicit such bases
have only been found in a few examples in type A which are actually highest weight.

In [Webl], Webster also introduced some more general tensor product categorifica-
tions, including ones which categorify the tensor product of an integrable lowest weight
module tensored with an integrable highest weight module; see also [BD1l, Construction
4.13]. The latter are particularly important since they may be realized as generalized
cyclotomic quotients of the Kac-Moody 2-category. They are upper finite fully stratified
categories.

6.6. Deligne categories. Another source of upper finite highest weight categories
comes from various Deligne categories. The definition of these categories is diagram-
matic in nature. For example, in characteristic zero, the Deligne category Rep(GLs) is
the Karoubi envelope of the oriented Brauer category OB(J) mentioned earlier. This
case was studied in the PhD thesis of Reynolds |[Rey] based on the observation that it
admits a triangular decomposition in the sense of Definition see also [Bru]. This
was also noticed independently by Coulembier and Zhang [CZ, §8], who also extended it
to the other types of Deligne category (and several other families of diagram algebras).

The category of locally finite-dimensional representations of the Deligne category
Rep(GLs) can also be interpreted as a special case of the lowest weight tensored highest
weight tensor product categorifications discussed in the previous subsection; see [Brul
Theorem 1.11]. The Ringel dual in this example is equivalent to the Abelian envelope
Rep?(GLs) of Deligne’s category constructed by Entova, Hinich and Serganova [EHS],
which is a monoidal lower finite highest weight category. In [Ent], it is shown that
Rep®(GLs) categorifies a highest weight tensored lowest weight representation, which
is the dual result to that of [Bru|. This example will be discussed further in the sequel
to this article, where we give an explicit description of the blocks of Rep®(GLs) via
Khovanov’s arc coalgebra (an interesting explicit example of a based quasi-hereditary
coalgebra), thereby proving a conjecture formulated in the introduction of [BS2].

The other classical families of Deligne categories Rep(Os), Rep(P) and Rep(Q) are
also being investigated actively along similar lines by several groups of authors, and
there has been considerable recent progress. There are many interesting connections
here with rational representations of the corresponding families of classical supergroups.

6.7. Representations of Lie superalgebras. Finally, we mention briefly an inter-
esting source of essentially finite highest weight categories: the analogs of the BGG
category O for classical Lie superalgebras. A detailed account in the case of the Lie
superalgebra gl,,,,(C) can be found in [BLW]. Its category O gives an essentially finite
highest weight category which is neither lower finite nor upper finite. Moreover, it is
tilting-bounded as in 4.5 so that the Ringel dual category is also an essentially finite
highest weight category.

9This was noted in Remark 3.10 of the arxiv version of [LW] but the authors removed this remark in
the published version (along with Remark 2.7 which was misleading).
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There is one very easy special case: the principal block of category O for g[1|1((C)
is equivalent to the category of finite-dimensional modules over the essentially finite-
dimensional locally unital algebra which is the path algebra of the following quiver:

T—1 xo 1

s . .
=1 2 0 C 12 "2 with relations ;117 = Yi¥i+1 = Ti¥i—Yit1Tit1 = 0,
Y-1 Yo Y1

see e.g. [BSI) p. 380]. This is very similar to the Uy(slz)-example from but now
the poset Z (ordered naturally) is neither lower nor upper finite. From the category O
perspective, this example is rather misleading since its projective, injective and tilting
objects coincide, hence, it is Ringel self-dual.

One gets similar examples from osp,,5,(C), as discussed for example in [BW] and
[ES]. The simplest non-trivial case of ospy,(C) produces the path algebra of a Dy,
quiver (replacing than the Ay quiver above); see [ES| §IT]. The “strange” families p,,(C)
and g, (C) also exhibit similar structures. The former has not yet been investigated
systematically (although basic aspects of the finite-dimensional finite-dimensional rep-
resentations and category O were recently studied in [B+9] and [CC], respectively). It is
an interesting example of a naturally-occurring highest weight category which does not
admit a duality. For g, (C), we refer to [BD2|] and the references therein. In fact, the
integral blocks for q,,(C) are signed highest weight categories; this observation is due to
Frisk [Fri2].
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