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Abstract. We use the theory of Uq-tilting modules to construct cellular bases for centralizer
algebras. Our methods are quite general and work for any quantum group Uq attached to a
Cartan matrix and include the non-semisimple cases for q being a root of unity and ground
fields of positive characteristic. Our approach also generalize to certain categories containing
infinite-dimensional modules. As applications, we give a new semisimplicty criterion for
centralizer algebras, and recover the cellularity of several known algebras (with partially new
cellular bases) which all fit into our general setup.
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1. Introduction

Fix a field K and set K∗ = K − {0,−1} if char(K) > 2 and K∗ = K − {0} otherwise. Let
Uq(g) be the quantum group for a fixed, arbitrary parameter q ∈ K∗ associated to a simple
Lie algebra g over any field K. The main result in this paper is the following.

Theorem. (Cellularity of endomorphism algebras.) Let T be a Uq(g)-tilting module.
Then EndUq(g)(T ) is a cellular algebra in the sense of Graham and Lehrer [38]. �

It is important to note that cellular bases are not unique. In particular, a single algebra
can have many cellular bases. As a concrete application, see Subsection 5.2, we construct
(several) new cellular bases for the Temperley-Lieb algebra depending on the ground field
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of Moduli Spaces (QGM)” from the “Danish National Research Foundation (DNRF)”. C.S. was supported by
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and the choice of deformation parameter. These bases differ therefore for instance from the
construction in [38, Section 6] of cellular bases for the Temperley-Lieb algebras. Moreover,
we also show that some of our bases for the Temperley-Lieb algebra can be equipped with a
Z-grading which is in contrast to Graham and Lehrer’s bases. Our bases also depend heavily
on the characteristic of K (and on q ∈ K∗). Hence, they see more of the characteristic (and
parameter) depended representation theory, but are also more difficult to construct explicitly.

We stress that the cellularity itself can be deduced from general theory. Namely, any
Uq(g)-tilting module T is a summand of a full Uq(g)-tilting module T̃ . By [72, Theorem 6]

EndUq(g)(T̃ ) is quasi-hereditary and comes equipped with an involution as we explain in Sub-
section 3.3. Thus, it is cellular, see [55]. By [55, Theorem 4.3] this induces the cellularity of
the idempotent truncation EndUq(g)(T ). In contrast, our approach provides the existence and
a method of construction of many cellular bases. It generalizes to the infinite-dimensional Lie
theory situation and has other nice consequences that we will explore in this paper. In partic-
ular, our results give a novel semisimplicity criterion for EndUq(g)(T ), see Theorem 4.13. This
together with Jantzen sum formula give rise to a new way to obtain semisimplicity criteria for
these algebras (we explain and explore this in [9] where we recover semisimplicity criteria for
several algebras using the results of this paper). Here a crucial fact is that the tensor product
of Uq-tilting modules is again a Uq-tilting module, see [68]. This implies that our results also
vastly generalize [94] to the non-semisimple cases (where our main theorem is non-trivial).

The framework. Given any simple, complex Lie algebra g, we can assign to it a quantum de-
formation Uv = Uv(g) of its universal enveloping algebra by deforming its Serre presentation.
(Here v is a generic parameter and Uv is an Q(v)-algebra.) The representation theory of Uv

shares many similarities with the one of g. In particular, the category1 Uv-Mod is semisimple.
But one can spice up the story drastically: the quantum group Uq = Uq(g) is obtained

by specializing v to an arbitrary q ∈ K∗. In particular, we can take q to be a root of unity2.
In this case Uq-Mod is not semisimple anymore, which makes the representation theory
much more interesting. It has many connections and applications in different directions, e.g.
the category has a neat combinatorics, is related to the corresponding almost-simple, simply
connected algebraic group G over K with char(K) prime, see for example [4] or [60], to the
representation theory of affine Kac-Moody algebras, see [49] or [87], and to (2+1)-TQFT’s
and the Witten-Reshetikhin-Turaev invariants of 3-manifolds, see for example [92].

Semisimplicity in light of our main result means the following. If we take K = C and q = ±1,
then our result says that the algebra EndUq(T ) is cellular for any Uq-module T ∈ Uq-Mod
because in this case all Uq-modules are Uq-tilting modules. This is no surprise: when T is a
direct sum of simple Uq-modules, then EndUq(T ) is a direct sum of matrix algebras Mn(K).
Likewise, for any K, if q ∈ K∗ − {1} is not a root of unity, then Uq-Mod is still semisimple
and our result is (almost) standard. But even in the semisimple case we can say more: we
get an Artin-Wedderburn basis as a cellular basis for EndUq(T ), i.e. a basis realizing the
decomposition of EndUq(T ) into its matrix components, see Subsection 5.1.

1For any algebra A we denote by A-Mod the category of finite-dimensional, left A-modules. If not stated
otherwise, all modules are assumed to be finite-dimensional, left modules.

2In our terminology: The two cases q = ±1 are special and do not count as roots of unity. Moreover, for
technical reasons, we always exclude q = −1 in case char(K) > 2.
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On the other hand, if q = 1 and char(K) > 0 or if q ∈ K∗ is a root of unity, then Uq-Mod
is far away from being semisimple and our result gives a bunch of interesting cellular algebras.

For example, if G = GL(V ) for some n-dimensional K-vector space V , then T = V ⊗d is a
G-tilting module for any d ∈ Z≥0. By Schur-Weyl duality we have

(1) ΦSW : K[Sd]� EndG(T ) and ΦSW : K[Sd]
∼=−→ EndG(T ), if n ≥ d,

where K[Sd] is the group algebra of the symmetric group Sd in d letters. We can realize this
as a special case in our framework by taking q = 1, n ≥ d and g = gln (although gln is not
a simple, complex Lie algebra, our approach works fine for it as well). On the other hand,
by taking q arbitrary in K∗ − {1} and n ≥ d, the group algebra K[Sd] is replaced by the
type Ad−1 Iwahori-Hecke algebra Hd(q) over K and our theorem gives cellular bases for this
algebra as well. Note that one underlying fact why (1) stays true in the non-semisimple case
is that dim(EndG(T )) is independent of the characteristic of K (and of the parameter q in the
quantum case), since T is a G-tilting module.

Of course, both K[Sd] and Hd(q) are known to be cellular (these cases were one of the main
motivations of Graham and Lehrer to introduce the notion of cellular algebras), but the point
we want to make is, that they fit into our more general framework. The following known
cellularity properties can also be recovered directly from our approach. And moreover: in
most of the examples we either have no or only some mild restrictions on K and q ∈ K∗.

• As sketched above: the algebras K[Sd] and Hd(q) and their quotients under ΦSW.
• The Temperley-Lieb algebras T Ld(δ) introduced in [88].
• Other less well-known endomorphism algebras for sl2-related tilting modules appearing

in more recent work, e.g. [5], [10] or [73].
• Spider algebras in the sense of Kuperberg [56].
• Quotients of the group algebras of Z/rZ o Sd and its quantum version Hd,r(q), the

Ariki-Koike algebras introduced in [12]. This includes the Ariki-Koike algebras them-
selves and thus, the Hecke algebras of type B. This also includes Martin and Saleur’s
blob algebras BLd(q,m) from [64] and (quantized) rook monoid algebras (also called
Solomon algebras) Rd(q) in the spirit of [85].
• Brauer algebras Bd(δ) introduced in the context of classical invariant theory [15] and

related algebras, e.g. the walled Brauer algebras Br,s(δ) as in [54] and [91], and the
Birman-Murakami-Wenzl algebras BMWd(δ), in the sense of [14] and [66].

Note that our methods also apply for some categories containing infinite-dimensional mod-
ules. For example, with a little bit more care, one could allow T to be a non-necessary
finite-dimensional Uq-tilting module. Moreover, our methods also include the BGG category
O, its parabolic subcategories Op and its quantum cousin Oq from [6]. For example, using
the “big projective tilting” in the principal block, we get a cellular basis for the coinvariant
algebra of the Weyl group associated to g. In fact, we get a vast generalization of this, e.g.
we can fit generalized Khovanov arc algebras (see e.g. [19]), sln-web algebras (see e.g. [62]),
cyclotomic Khovanov-Lauda and Rouquier algebras of type A (see [51] and [52] or [74]), for
which we obtain cellularity via the connection to cyclotomic quotients of the degenerate affine
Hecke algebra, see [16], cyclotomic

∨
d

∨
-algebras (see e.g. [33]) and cyclotomic quotients of

affine Hecke algebras Hs
K,d (see e.g. [75]) into our framework as well, see Subsection 5.1. How-

ever, we will for simplicity focus mostly on the finite-dimensional world. (Here we provide
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all necessary tools and arguments in great detail. Sometimes, for brevity, only in an extra
file [8]). See also Remark 1.1.

Following Graham and Lehrer’s approach, our cellular bases for EndUq(T ) provide also
EndUq(T )-cell modules, classification of simple EndUq(T )-modules etc. We give an interpre-
tation of this in our setting as well, see Section 4. For instance, we deduce a new criterion for
semisimplicity of EndUq(T ), see Theorem 4.13.

Remark 1.1. Instead of working with the infinite-dimensional algebra Uq, we could also work
with a finite-dimensional, quasi-hereditary algebra (with a suitable anti-involution). By using
results summarized in [30, Appendix], our constructions will go through very much in the same
spirit as for Uq. However, using Uq has some advantages. For example, we can construct an
abundance of cellular bases (for the explicit construction of our basis we need “weight spaces”
such that e.g. (2) or Lemma 3.4 work). Having several cellular bases is certainly an advantage,
although calculating these is in general a non-trivial task. (For example, getting an explicit
understanding of the endomorphisms giving rise to the cellular basis is a tough challenge. But
see [70] for some crucial steps in this direction.) As a direct consequence of the existence
of many cellular bases: most of the algebras appearing in our list of examples above can be
additionally equipped with a Z-grading. The basis elements from Theorem 3.9 can be chosen
such that our approach leads to a Z-graded cellular basis in the sense of [41]. We make this
more precise in case of the Temperley-Lieb algebras, but one could for instance also recover
the Z-graded cellular bases of the Brauer algebras from [34] from our approach. We stress that
in both cases the cellular bases in [38, Sections 4 and 6] are not Z-graded. To keep the paper
within reasonable boundaries, we do not treat the graded setup in this paper in detail. N

Acknowledgements. We like to thank Ben Cooper, Michael Ehrig, Matt Hogancamp, Jo-
hannes Kübel, Gus Lehrer, Paul Martin, Andrew Mathas, Volodymyr Mazorchuk, Steen
Ryom-Hansen and Paul Wedrich for helpful comments and discussions, and the referees for
further useful comments. H.H.A. would like to thank the Institut Mittag-Leffler for the hos-
pitality he enjoyed there during the final stages of this work. C.S. is very grateful to the
Max-Planck Institute in Bonn for the extraordinary support and excellent working conditions.
A large part of her research was worked out during her stay there. D.T. likes to thank the
dark Danish winter for very successfully limiting his non-work options and the Australian long
blacks for pushing him forward.

2. Quantum groups, their representations and tilting modules

We briefly recall some facts that we need in this paper. Details can be found e.g. in [7]
and [46], or [30] and [47]. For notations and arguments adopted to our situation see [8]. See
also [72] and [29] for the classical treatment of tilting modules (in the modular case). As in
the introduction, we fix a field K over which we work throughout.

2.1. The quantum group Uq. Let Φ be a finite root system in an Euclidean space E. We
fix a choice of positive roots Φ+ ⊂ Φ and simple roots Π ⊂ Φ+. We assume that we have
n simple roots that we denote by α1, . . . , αn. For each α ∈ Φ, we denote by α∨ ∈ Φ∨ the
corresponding coroot. Then A = (〈αi, α∨j 〉)ni,j=1 is called the Cartan matrix.
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By the set of (integral) weights we understand X = {λ ∈ E | 〈λ, α∨i 〉 ∈ Z for all αi ∈ Π}.
The dominant (integral) weights X+ are those λ ∈ X such that 〈λ, α∨i 〉 ≥ 0 for all αi ∈ Π.

Recall that there is a partial ordering on X given by µ ≤ λ iff λ−µ is an Z≥0-valued linear
combination of the simple roots, that is, λ− µ =

∑n
i=1 aiαi with ai ∈ Z≥0.

We denote by Uq = Uq(A) the quantum enveloping algebra attached to a Cartan matrix A
and specialized at q ∈ K∗, where we follow [7] with our conventions for these. Note that Uq

always means the quantum group over K defined via Lusztig’s divided power construction, see
e.g. [7]. (Thus, we have generators Ki, Ei and Fi for all i = 1, . . . , n as well as divided power
generators.) We have a decomposition Uq = U−q U0

qU
+
q , with subalgebras generated by F ’s,

K’s and E’s respectively (and some divided power generators, see e.g. [7, Section 1]). Note
that we can recover the generic case Uv = Uv(A) by choosing K = Q(v) and q = v.

It is worth noting that Uq is a Hopf algebra, so its module category is a monoidal category
with duals. We denote by Uq-Mod the category of finite-dimensional Uq-modules (of type 1,
see [7, Subsection 1.4]). We consider only such Uq-modules in what follows.

Recall that there is a contravariant, character-preserving duality functor D that is defined
on the K-vector space level via D(M) = M∗ (the K-linear dual of M) and an action of Uq on
D(M) is defined as follows. Let ω : Uq → Uq be the automorphism of Uq which interchanges

Ei and Fi and interchanges Ki and K−1
i (see e.g. [46, Lemma 4.6], which extends to our setup

without difficulties). Then define uf = m 7→ f(ω(S(u))m) for u ∈ Uq, f ∈ D(M),m ∈ M .
Given any Uq-homomorphism f between Uq-modules, we also write i(f) = D(f). This duality
gives rise to the involution in our cellular datum from Subsection 3.3.

Assumption 2.1. If q is a root of unity, then, to avoid technicalities, we assume that q is
a primitive root of unity of odd order l. A treatment of the even case, that can be used to
repeat everything in this paper in the case where l is even, can be found in [3]. Moreover, in
case of type G2 we additionally assume that l is prime to 3. N

For each λ ∈ X+ there is a Weyl Uq-module ∆q(λ) and a dual Weyl Uq-module ∇q(λ)
satisfying D(∆q(λ)) ∼= ∇q(λ). The Uq-module ∆q(λ) has a unique simple head Lq(λ) which is
the unique simple socle of ∇q(λ). Thus, there is a (up to scalars) unique Uq-homomorphism

(2) cλ : ∆q(λ)→ ∇q(λ) (mapping head to socle).

This relies on the fact that ∆q(λ) and ∇q(λ) both have one-dimensional λ-weight spaces. The
same fact implies that EndUq(Lq(λ)) ∼= K for all λ ∈ X+, see [7, Corollary 7.4]. This last
property fails for quasi-hereditary algebras in general when K is not algebraically closed.

Theorem 2.2. (Ext-vanishing.) We have for all λ, µ ∈ X+ that

ExtiUq
(∆q(λ),∇q(µ)) ∼=

{
Kcλ, if i = 0 and λ = µ,

0, else. �

We have to enlarge the category Uq-Mod by non-necessarily finite-dimensional Uq-modules

to have enough injectives such that the ExtiUq
-functors make sense by using q-analogous argu-

ments as in [47, Part I, Chapter 3]. However, Uq-Mod has enough injectives in characteristic
zero, see [1, Proposition 5.8] for a treatment of the non-semisimple cases.

Proof. Similar to the modular analogon treated in [47, Proposition II.4.13] (a proof in our
notation can be found in [8]). �
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2.2. Tilting modules and Ext-vanishing. We say that a Uq-module M has a ∆q-filtration
if there exists some k ∈ Z≥0 and a finite descending sequence of Uq-submodules

M = M0 ⊃M1 ⊃ · · · ⊃Mk′ ⊃ · · · ⊃Mk−1 ⊃Mk = 0,

such that Mk′/Mk′+1
∼= ∆q(λk′) for all k′ = 0, . . . , k−1 and some λk′ ∈ X+. A ∇q-filtration is

defined similarly, but using a finite ascending sequence of Uq-submodules and ∇q(λ)’s instead
of ∆q(λ)’s. We denote by (M : ∆q(λ)) and (N : ∇q(λ)) the corresponding multiplicities,
which are well-defined by Corollary 2.3. Note that a Uq-module M has a ∆q-filtration iff its
dual D(M) has a ∇q-filtration.

A corollary of the Ext-vanishing theorem is the following, whose proof is left to the reader
or can be found in [8]. (Note that the proof of Corollary 2.3 in [8] gives, in principle, a method
to find and construct bases of HomUq(M,∇q(λ)) and HomUq(∆q(λ), N) respectively.)

Corollary 2.3. Let M,N ∈ Uq-Mod and λ ∈ X+. Assume that M has a ∆q-filtration and
N has a ∇q-filtration. Then

dim(HomUq(M,∇q(λ))) = (M : ∆q(λ)) and dim(HomUq(∆q(λ), N)) = (N : ∇q(λ)).

In particular, (M : ∆q(λ)) and (N : ∇q(λ)) are independent of the choice of filtrations. �

Proposition 2.4. (Donkin’s Ext-criteria.) The following are equivalent.

(a) An M ∈ Uq-Mod has a ∆q-filtration (respectively N ∈ Uq-Mod has a ∇q-filtration).

(b) We have ExtiUq
(M,∇q(λ)) = 0 (respectively ExtiUq

(∆q(λ), N) = 0) for all λ ∈ X+

and all i > 0.
(c) We have Ext1

Uq
(M,∇q(λ)) = 0 (respectively Ext1

Uq
(∆q(λ), N) = 0) for all λ ∈ X+. �

Proof. As in [47, Proposition II.4.16]. A proof in our notation can be found in [8]. �

A Uq-module T which has both, a ∆q- and a ∇q-filtration, is called a Uq-tilting module.
Following Donkin [29], we are now ready to define the category of Uq-tilting modules that we
denote by T . This category is our main object of study.

Definition 2.5. (Category of Uq-tilting modules.) The category T is the full subcategory
of Uq-Mod whose objects are given by all Uq-tilting modules. N

From Proposition 2.4 we obtain directly an important statement.

Corollary 2.6. Let T ∈ Uq-Mod. Then

T ∈ T iff Ext1
Uq

(T,∇q(λ)) = 0 = Ext1
Uq

(∆q(λ), T ) for all λ ∈ X+.

When T ∈ T , the corresponding higher Ext-groups vanish as well. �

The indecomposable Uq-modules in T , that we denote by Tq(λ), are indexed by λ ∈ X+.
The Uq-tilting module Tq(λ) is determined by the property that it is indecomposable with λ
as its unique maximal weight. In fact, (Tq(λ) : ∆q(λ)) = 1, and (Tq(λ) : ∆q(µ)) 6= 0 only if
µ ≤ λ. (Dually for ∇q-filtrations.)

Note that the duality functor D from above restricts to T . Moreover, as a consequence
of the classification of indecomposable Uq-modules in T , we have D(T ) ∼= T for T ∈ T . In
particular, we have for all λ ∈ X+ that

(T : ∆q(λ)) = dim(HomUq(T,∇q(λ))) = dim(HomUq(∆q(λ), T )) = (T : ∇q(λ)).
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It is known that T is a Krull-Schmidt category, closed under finite direct sums, taking sum-
mands and finite tensor products (the latter is a non-trivial fact, see [68, Theorem 3.3]).

For a fixed λ ∈ X+ we have Uq-homomorphisms

∆q(λ) �
� ιλ // Tq(λ)

πλ // // ∇q(λ),

where ιλ is the inclusion of the first Uq-submodule in a ∆q-filtration of Tq(λ) and πλ is the
surjection onto the last quotient in a ∇q-filtration of Tq(λ). Note that these are only defined

up to scalars and we fix scalars in the following such that πλ ◦ ιλ = cλ (where cλ is again the
Uq-homomorphism from (2)).

Remark 2.7. Let T ∈ T . An easy argument (based on Theorem 2.2) shows the following
crucial fact:

(3) Ext1
Uq

(∆q(λ), T ) = 0 = Ext1
Uq

(T,∇q(λ))⇒ Ext1
Uq

(coker(ιλ), T ) = 0 = Ext1
Uq

(T, ker(πλ))

for all λ ∈ X+. Consequently, we see that any Uq-homomorphism g : ∆q(λ) → T extends to
a Uq-homomorphism g : Tq(λ) → T whereas any Uq-homomorphism f : T → ∇q(λ) factors

through Tq(λ) via some f : T → Tq(λ). N

Remark 2.8. In [8] it is described in detail how to compute (Tq(λ) : ∆q(µ)) for λ, µ ∈ X+.
This can be done algorithmically in case q is a complex, primitive l-th root of unity, i.e. one
can use Soergel’s version of the affine parabolic Kazhdan-Lusztig polynomials. For brevity, we
do not recall the definition of these polynomials here, but refer to [84, Section 3] where the
relevant polynomials are denoted ny,x (and where all the other relevant notions are defined).
The main point for us is the following theorem due to Soergel, see [81, Theorem 5.12] (see
also [84, Conjecture 7.1]): Suppose K = C and q is a complex, primitive l-th root of unity. For
each pair λ, µ ∈ X+ with λ being an l-regular Uq-weight (that is, Tq(λ) belongs to a regular
block of T ) we have (with nµλ equal to the relevant ny,x)

(Tq(λ) : ∆q(µ)) = nµλ(1) = (Tq(λ) : ∇q(µ)).

From this one obtains a method to find the indecomposable summands of Uq-tilting modules
with known characters (e.g. tensor products of minuscule representations). N

3. Cellular structures on endomorphism algebras

In this section we give our construction of cellular bases for endomorphism rings EndUq(T )
of Uq-tilting modules T and prove our main result, that is, Theorem 3.9.

The main tool is Theorem 3.1. The proof of the latter needs several ingredients which we
establish in form of separate lemmas collected in Subsection 3.2.

3.1. The basis theorem. As before, we consider the category Uq-Mod. Moreover, we fix
two Uq-modules M,N , where we assume that M has a ∆q-filtration and N has a ∇q-filtration.
Then, by Corollary 2.3, we have

(4) dim(HomUq(M,N)) =
∑
λ∈X+

(M : ∆q(λ))(N : ∇q(λ)).

We point out that the sum in (4) is actually finite since (M : ∆q(λ)) 6= 0 for only a finite
number of λ ∈ X+. (Dually, (N : ∇q(λ)) 6= 0 for only finitely many λ ∈ X+.)



8 HENNING HAAHR ANDERSEN, CATHARINA STROPPEL, AND DANIEL TUBBENHAUER

Given λ ∈ X+, we define for (N : ∇q(λ)) > 0 respectively for (M : ∆q(λ)) > 0 the two sets

Iλ = {1, . . . , (N : ∇q(λ))} and J λ = {1, . . . , (M : ∆q(λ))}.

By convention, Iλ = ∅ and J λ = ∅ if (N : ∇q(λ)) = 0 respectively if (M : ∆q(λ)) = 0.

We can fix a basis of HomUq(M,∇q(λ)) indexed by J λ. We denote this fixed basis by

F λ = {fλj : M → ∇q(λ) | j ∈ J λ}. By Proposition 2.4 and (3), we see that all elements of F λ

factor through the Uq-tilting module Tq(λ), i.e. we have commuting diagrams

M

fλj ""

∃ fλj
// Tq(λ)

πλ

����

∇q(λ).

We call f
λ
j a lift of fλj . (Note that a lift f

λ
j is not unique.) Dually, we can choose a basis of

HomUq(∆q(λ), N) as Gλ = {gλi : ∆q(λ) → N | i ∈ Iλ}, which extends to give (a non-unique)

lifts gλi : Tq(λ)→ N such that gλi ◦ ιλ = gλi for all i ∈ Iλ.
We can use this setup to define a basis for HomUq(M,N) which, when M = N , turns out

to be a cellular basis, see Theorem 3.9. For each λ ∈ X+ and all i ∈ Iλ, j ∈ J λ set

cλij = gλi ◦ f
λ
j ∈ HomUq(M,N).

Our main result here is now the following.

Theorem 3.1. (Basis theorem.) For any choice of F λ and Gλ as above and any choice of
lifts of the fλj ’s and the gλi ’s (for all λ ∈ X+), the set

GF = {cλij | λ ∈ X+, i ∈ Iλ, j ∈ J λ}

is a basis of HomUq(M,N). �

Proof. This follows from Proposition 3.3 combined with Lemmas 3.6 and 3.7 from below. �

The basis GF for HomUq(M,N) can be illustrated in a commuting diagram as

∆q(λ)
� _

ιλ

��

gλi

""

M
f
λ
j
//

fλj ""

Tq(λ)

πλ
����

gλi

// N

∇q(λ)

.

Since Uq-tilting modules have both a ∆q- and a ∇q-filtration, we get as an immediate conse-
quence a key result for our purposes.

Corollary 3.2. Let T ∈ T . Then GF is, for any choices involved, a basis of EndUq(T ). �
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3.2. Proof of the basis theorem. We first show that, given lifts f
λ
j , there is a consistent

choice of lifts gλi such that GF is a basis of HomUq(M,N).

Proposition 3.3. (Basis theorem - dependent version.) For any choice of F λ and any
choice of lifts of the fλj ’s (for all λ ∈ X+) there exist a choice of a basis Gλ and a choice of

lifts of the gλi ’s such that GF = {cλij | λ ∈ X+, i ∈ Iλ, j ∈ J λ} is a basis of HomUq(M,N).�

The corresponding statement with the roles of f ’s and g’s swapped clearly holds as well.

Proof. We will construct GF inductively. For this purpose, let

0 = N0 ⊂ N1 ⊂ · · · ⊂ Nk−1 ⊂ Nk = N

be a ∇q-filtration of N , i.e. Nk′+1/Nk′
∼= ∇q(λk′) for some λk′ ∈ X+ and all k′ = 0, . . . , k− 1.

Let k = 1 and λ1 = λ. Then N1 = ∇q(λ) and {cλ : ∆q(λ) → ∇q(λ)} gives a basis of

HomUq(∆q(λ),∇q(λ)), where cλ is again the Uq-homomorphism chosen in (2). Set gλ1 = cλ

and observe that gλ1 = πλ satisfies gλ1 ◦ ιλ = gλ1 . Thus, we have a basis and a corresponding
lift. This clearly gives a basis of HomUq(M,N1), since, by assumption, we have that F λ gives

a basis of HomUq(M,∇q(λ)) and πλ ◦ fλj = fλj .
Hence, it remains to consider the case k > 1. Set λk = λ and observe that we have a short

exact sequence of the form

(5) 0 // Nk−1
� � inc // Nk

pro
// // ∇q(λ) // 0.

By Theorem 2.2 (and the usual implication as in (3)) this leads to a short exact sequence

(6) 0 // HomUq(M,Nk−1) �
� inc∗ // HomUq(M,Nk)

pro∗// // HomUq(M,∇q(λ)) // 0.

By induction, we get from (6) for all µ ∈ X+ a basis of HomUq(∆q(µ), Nk−1) consisting of
gµi ’s with lifts gµi such that

{cµij = gµi ◦ f
µ
j | µ ∈ X+, i ∈ Iµk−1, j ∈ J

µ}(7)

is a basis of HomUq(M,Nk−1) (here we use Iµk−1 = {1, . . . , (Nk−1 : ∇q(µ))}). We define

gµi (Nk) = inc ◦ gµi and gµi (Nk) = inc ◦ gµi for each µ ∈ X+ and each i ∈ Iµk−1.
We now have to consider two cases, namely λ 6= µ and λ = µ. In the first case we see that

HomUq(∆q(µ),∇q(λ)) = 0, so that, by using (5) and the usual implication from (3),

HomUq(∆q(µ), Nk−1) ∼= HomUq(∆q(µ), Nk).

Thus, our basis from (7) gives a basis of HomUq(∆q(µ), Nk) and also gives the corresponding
lifts. On the other hand, if λ = µ, then (Nk : ∇q(λ)) = (Nk−1 : ∇q(λ)) + 1. By Theorem 2.2

(and the corresponding implication as in (3)), we can choose gλ : ∆q(λ) → Nk such that

pro ◦ gλ = cλ. Then any choice of a lift gλ of gλ will satisfy pro ◦ gλ = πλ.
Adjoining gλ to the basis from (7) gives a basis of HomUq(∆q(λ), Nk) which satisfies the

lifting property. Note that we know from the case k = 1 that

{pro ◦ gλ ◦ fλj = πλ ◦ fλj | j ∈ J λ}
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is a basis of HomUq(M,∇q(λ)). Combining everything: we have that

{cλij = gλi (Nk) ◦ f
λ
j | λ ∈ X+, i ∈ Iλ, j ∈ J λ}

is a basis of HomUq(M,Nk) (by enumerating gλ(N :∇q(λ))(Nk) = gλ in the λ = µ case). �

We assume in the following that we have fixed some choices as in Proposition 3.3.
Let λ ∈ X+. Given ϕ ∈ HomUq(M,N), we denote by ϕλ ∈ HomU0

q
(Mλ, Nλ) the induced

U0
q-homomorphism (that is, K-linear maps) between the λ-weight spaces Mλ and Nλ. In

addition, we denote by HomK(Mλ, Nλ) the K-linear maps between these λ-weight spaces.

Lemma 3.4. For any λ ∈ X+ the induced set {(cλij)λ | cλij ∈ GF} is a linearly independent

subset of HomK(Mλ, Nλ). �

Proof. We proceed as in the proof of Proposition 3.3.

If N = ∇q(λ) (this was k = 1 above), then cλ1j = πλ ◦ fλj = fλj and the cλ1j ’s form a basis of

HomUq(M,∇q(λ)). By the q-Frobenius reciprocity from [7, Proposition 1.17] we have

HomUq(M,∇q(λ)) ∼= HomU−q U0
q
(M,Kλ) ⊂ HomU0

q
(M,Kλ) = HomK(Mλ,K).

Hence, because Nλ = K in this case, we have the base of the induction.
Assume now k > 1. The construction of {cµij(Nk)}µ,i,j in the proof of Proposition 3.3 shows

that this set consists of two separate parts: one being the bases from (7) coming from a basis
for HomUq(M,Nk−1) and the second part (which only occurs when λ = µ) mapping to a basis
of HomUq(M,∇q(λ)) (the case k = 1).

By (6) there is a short exact sequence

0 // HomK(Mλ, (Nk−1)λ) �
� inc∗ // HomK(Mλ, (Nk)λ)

pro∗ // // HomK(Mλ,K) // 0.

Thus, we can proceed as in the proof of Proposition 3.3. �

We need another piece of notation: we define for each λ ∈ X+

HomUq(M,N)≤λ = {ϕ ∈ HomUq(M,N) | ϕµ = 0 unless µ ≤ λ}.

In words: a Uq-homomorphism ϕ ∈ HomUq(M,N) belongs to HomUq(M,N)≤λ iff ϕ vanishes
on all Uq-weight spaces Mµ with µ 6≤ λ. In addition to the notation above, we use the evident

notation HomUq(M,N)<λ. We arrive at the following.

Lemma 3.5. For any fixed λ ∈ X+ the sets

{cµij | c
µ
ij ∈ GF, µ ≤ λ} and {cµij | c

µ
ij ∈ GF, µ < λ}

are bases of HomUq(M,N)≤λ and HomUq(M,N)<λ respectively. �

Proof. As cµij factors through Tq(µ) and Tq(µ)ν = 0 unless ν ≤ µ (which follows using the

classification of indecomposable Uq-tilting modules), we see that (cµij)ν = 0 unless ν ≤ µ.

Moreover, by Lemma 3.4, each (cµij)µ is non-zero. Thus, cµij ∈ HomUq(M,N)≤λ iff µ ≤ λ.

Now choose any ϕ ∈ HomUq(M,N)≤λ. By Proposition 3.3 we may write

(8) ϕ =
∑
µ,i,j

aµijc
µ
ij , aµij ∈ K.
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Choose µ ∈ X+ maximal with the property that there exist i ∈ Iλ, j ∈ J λ such that aµij 6= 0.

We claim that aνij(c
ν
ij)µ = 0 whenever ν 6= µ. This is true because, as observed above,

(cνij)µ = 0 unless µ ≤ ν, and for µ < ν we have aνij = 0 by the maximality of µ. We conclude

ϕµ =
∑

i,j a
µ
ij(c

µ
ij)µ and thus, ϕµ 6= 0 by Lemma 3.4. Hence, µ ≤ λ, which gives by (8) that

ϕ ∈ spanK{c
µ
ij | c

µ
ij ∈ GF, µ ≤ λ} as desired. This shows that {cµij | c

µ
ij ∈ GF, µ ≤ λ} spans

HomUq(M,N)≤λ. Since it is clearly a linear independent set, it is a basis.
The second statement follows analogously, and therefore the details are omitted. �

We need the following two lemmas to prove that all choices in Proposition 3.3 lead to bases
of HomUq(M,N). As before we assume that we have, as in Proposition 3.3, constructed

{gλi , i ∈ Iλ} and the corresponding lifts gλi for all λ ∈ X+.

Lemma 3.6. Suppose that we have other Uq-homomorphisms g̃λi : Tq(λ) → N such that

g̃λi ◦ ιλ = gλi . Then the following set is also a basis of HomUq(M,N):

{c̃λij = g̃λi ◦ f
λ
j | λ ∈ X+, i ∈ Iλ, j ∈ J λ}. �

Proof. As (gλi − g̃λi ) ◦ ιλ = 0, we see that gλi − g̃λi ∈ HomUq(Tq(λ), N)<λ. Hence, we have

cλij − c̃λij ∈ HomUq(M,N)<λ. Thus, by Lemma 3.5, there is a unitriangular change-of-basis

matrix between {cλij}λ,i,j and {c̃λij}λ,i,j . �

Now assume that we have chosen another basis {hλi | i ∈ Iλ} of the spaces HomUq(∆q(λ), N)

for each λ ∈ X+ and the corresponding lifts h
λ
i as well.

Lemma 3.7. The following set is also a basis of HomUq(M,N):

{dλij = h
λ
i ◦ f

λ
j | λ ∈ X+, i ∈ Iλ, j ∈ J λ}. �

Proof. Write gλi =
∑(N :∇q(λ))

k=1 bλikh
λ
k with bλik ∈ K and set g̃λi =

∑(N :∇q(λ))
k=1 bλikh

λ
k . Then the g̃λi ’s

are lifts of the gλi ’s. Hence, by Lemma 3.6, the elements g̃λi ◦f
λ
j form a basis of HomUq(M,N).

Thus, this proves the lemma, since, by construction, {dλij}λ,i,j is related to this basis by the

invertible change-of-basis matrix (bλik)
(N :∇q(λ))

i,k=1;λ∈X+ . �

In total, we established Proposition 3.3.

3.3. Cellular structures on endomorphism algebras of Uq-tilting modules. This sub-
section finally contains the statement and proof of our main theorem. We keep on working
over a field K instead of a ring as for example Graham and Lehrer [38] do. (This avoids
technicalities, e.g. the theory of indecomposable Uq-tilting modules over rings is much more
subtle than over fields. See e.g. [29, Remark 1.7].)

Definition 3.8. (Cellular algebras.) Suppose A is a finite-dimensional K-algebra. A cell
datum is an ordered quadruple (P, I, C, i), where (P,≤) is a finite poset, Iλ is a finite set for
all λ ∈ P, i is a K-linear anti-involution of A and C is an injection

C :
∐
λ∈P
Iλ × Iλ → A, (i, j) 7→ cλij .
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The whole data should be such that the cλij ’s form a basis of A with i(cλij) = cλji for all λ ∈ P
and all i, j ∈ Iλ. Moreover, for all a ∈ A and all λ ∈ P we have

acλij =
∑
k∈Iλ

rik(a)cλkj (mod A<λ) for all i, j ∈ Iλ.(9)

Here A<λ is the subspace of A spanned by the set {cµij | µ < λ and i, j ∈ I(µ)} and the scalars

rik(a) ∈ K are supposed to be independent of j.
An algebra A with such a quadruple is called a cellular algebra and the cλij are called a

cellular basis of A (with respect to the K-linear anti-involution i). N

Let us fix T ∈ T in the following. We will now construct cellular bases of EndUq(T ) in the
semisimple as well as in the non-semisimple case.

To this end, we need to specify the cell datum. Set

(P,≤) = ({λ ∈ X+ | (T : ∇q(λ)) = (T : ∆q(λ)) 6= 0},≤),

where ≤ is the usual partial ordering on X+, see at the beginning of Subsection 2.1. Note
that P is finite since T is finite-dimensional. Moreover, motivated by Theorem 3.1, for each
λ ∈ P define Iλ = {1, . . . , (T : ∇q(λ))} = {1, . . . , (T : ∆q(λ))} = J λ.

Recalling that we write i(·) = D(·) (for D being the duality functor from Subsection 2.1 that
exchanges Weyl and dual Weyl Uq-modules and fixes all Uq-tilting modules), the assignment
i : EndUq(T ) → EndUq(T ), φ 7→ D(φ) is clearly a K-linear anti-involution. Choose any basis

Gλ of HomUq(∆q(λ), T ) as above and any lifts gλi . Then i(Gλ) is a basis of HomUq(T,∇q(λ))

and i(gλi ) is a lift of i(gλi ). By Corollary 3.2 we see that

{cλij = gλi ◦ i(gλj ) = gλi ◦ f
λ
j | λ ∈ P, i, j ∈ Iλ}

is a basis of EndUq(T ). Finally let C : Iλ × Iλ → EndUq(T ) be given by (i, j) 7→ cλij .
Now we are ready to state and prove our main theorem.

Theorem 3.9. (A cellular basis for EndUq(T ).) The quadruple (P, I, C, i) defined above
is a cell datum for EndUq(T ). �

Proof. As mentioned above, the sets P and Iλ are finite for all λ ∈ P. Moreover, i is a K-linear
anti-involution of EndUq(T ) and the cλij ’s form a basis of EndUq(T ) by Corollary 3.2. Because

the functor D(·) is contravariant, we see that i(cλij) = i(gλi ◦ i(gλj )) = gλj ◦ i(gλi ) = cλji.

Thus, only the condition (9) remains to be proven. For this purpose, let ϕ ∈ EndUq(T ).

Since ϕ ◦ gλi ◦ ιλ = ϕ ◦ gλi ∈ HomUq(∆q(λ), T ), we have coefficients rλik(ϕ) ∈ K such that

(10) ϕ ◦ gλi =
∑
k∈Iλ

rλik(ϕ)gλk ,

because we know that the gλi ’s form a basis of HomUq(∆q(λ), T ). But this implies then that

ϕ ◦ gλi −
∑

k∈Iλ r
λ
ik(ϕ)gλk ∈ HomUq(Tq(λ), T )<λ, so that

ϕ ◦ gλi ◦ f
λ
j −

∑
k∈Iλ

rλik(ϕ)gλk ◦ f
λ
j ∈ HomUq(T, T )<λ = EndUq(T )<λ,

which proves (9). The theorem follows. �
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4. The cellular structure and EndUq(T )-Mod

The goal of this section is to present the representation theory of cellular algebras for
EndUq(T ) from the viewpoint of Uq-tilting theory. In fact, most of the results in this sec-
tion are not new and have been proved for general cellular algebras, see e.g. [38, Section 3].
However, they take a nice and easy form in our setup. The last theorem, the semisimplicity
criterion from Theorem 4.13, is new and has potentially many applications, see for example [9].

4.1. Cell modules for EndUq(T ). We study now the representation theory for EndUq(T ) via
the cellular structure we have found for it. We denote its module category by EndUq(T )-Mod.

Definition 4.1. (Cell modules.) Let λ ∈ P. The cell module associated to λ is the left
EndUq(T )-module given by C(λ) = HomUq(∆q(λ), T ). The right EndUq(T )-module given by
C(λ)∗ = HomUq(T,∇q(λ)) is called the dual cell module associated to λ. N

The link to the definition of cell modules from [38, Definition 2.1] is given via our choice of
basis {gλi }i∈Iλ . In this basis the action of EndUq(T ) on C(λ) is given by

(11) ϕ ◦ gλi =
∑
k∈Iλ

rλik(ϕ)gλk , ϕ ∈ EndUq(T ),

see (10). Here the coefficients are the same as those appearing when we consider the left action
of EndUq(T ) on itself in terms of the cellular basis {cλij}λ∈Pi,j∈Iλ , that is,

(12) ϕ ◦ cλij =
∑
k∈Iλ

rλik(ϕ)cλkj (mod EndUq(T )<λ), ϕ ∈ EndUq(T ).

In a completely similar fashion: the dual cell module C(λ)∗ has a basis consisting of {fλj }j∈Iλ
with fλj = i(gλj ). In this basis the right action of EndUq(T ) is given via

(13) fλj ◦ ϕ =
∑
k∈Iλ

rλkj(i(ϕ))fλk , ϕ ∈ EndUq(T ).

We can use the unique Uq-homomorphism from (2) and the duality functor D(·) to define
the cellular pairing in the spirit of Graham and Lehrer [38, Definition 2.3].

Definition 4.2. (Cellular pairing.) Let λ ∈ P. Then we denote by ϑλ the K-bilinear form
ϑλ : C(λ)⊗ C(λ)→ K determined by the property

i(h) ◦ g = ϑλ(g, h)cλ, g, h ∈ C(λ) = HomUq(∆q(λ), T ).

We call ϑλ the cellular pairing associated to λ ∈ P. N

Lemma 4.3. The cellular pairing ϑλ is well-defined, symmetric and contravariant. �

Proof. That ϑλ is well-defined follows directly from the uniqueness of cλ.
Applying i to the defining equation of ϑλ gives

ϑλ(g, h)i(cλ) = i(ϑλ(g, h)cλ) = i(i(h) ◦ g) = i(g) ◦ h = ϑλ(h, g)cλ,

and thus, ϑλ(g, h) = ϑλ(h, g) because cλ = i(cλ). (Recall that cλ : ∆q(λ) → ∇q(λ) is unique

up to scalars. Hence, we can fix scalars accordingly such that cλ = i(cλ).) Similarly, con-
travariance of D(·) gives

ϑλ(ϕ ◦ g, h) = ϑλ(g, i(ϕ) ◦ h), ϕ ∈ EndUq(T ), g, h ∈ C(λ),
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which shows contravariance of the cellular pairing. �

Proposition 4.4. Let λ ∈ P. Then Tq(λ) is a summand of T iff ϑλ 6= 0. �

Proof. (See also [2, Proposition 1.5].) Assume T ∼= Tq(λ)⊕ rest. We denote by g : Tq(λ)→ T

and by f : T → Tq(λ) the corresponding inclusion and projection respectively. As usual, set

g = g ◦ ιλ and f = πλ ◦ f . Then we have f ◦ g : ∆q(λ) ↪→ Tq(λ) ↪→ T � Tq(λ)� ∇q(λ) = cλ

(mapping head to socle), giving ϑλ(g, i(f)) = 1. This shows that ϑλ 6= 0.
Conversely, assume that there exist g, h ∈ C(λ) with ϑλ(g, h) 6= 0. Then the commuting

“bow tie diagram”, i.e.

∆q(λ)
g

!!

� _

ιλ

��

Tq(λ)
g
// T

i(h)
//

i(h) !!

Tq(λ),

πλ

����

∇q(λ)

shows that i(h) ◦ g is non-zero on the λ-weight space of Tq(λ), because i(h) ◦ g = ϑλ(g, h)cλ.

Thus, i(h) ◦ g must be an isomorphism (because Tq(λ) is indecomposable and has therefore
only invertible or nilpotent elements in EndUq(Tq(λ))) showing that T ∼= Tq(λ)⊕ rest. �

In view of Proposition 4.4, it makes sense to study the set

(14) P0 = {λ ∈ P | ϑλ 6= 0} ⊂ P.
Hence, if λ ∈ P0, then we have T ∼= Tq(λ)⊕ rest for some Uq-tilting module called rest. Note
also that EndUq(T ) is quasi-hereditary iff P = P0, see e.g. [38, Remark 3.10].

4.2. The structure of EndUq(T ) and its cell modules. Recall that, for any λ ∈ P, we have

that EndUq(T )≤λ and EndUq(T )<λ are two-sided ideals in EndUq(T ) (this follows from (9)
and its right-handed version obtained by applying i), as in any cellular algebra. In our case
we can also see this as follows. If ϕ ∈ EndUq(T )≤λ, then ϕµ = 0 unless µ ≤ λ. Hence, for any
ϕ,ψ ∈ EndUq(T ) we have (ϕ ◦ ψ)µ = ϕµ ◦ ψµ = 0 = ψµ ◦ ϕµ = (ψ ◦ ϕ)µ unless µ ≤ λ. As a

consequence, EndUq(T )λ = EndUq(T )≤λ/EndUq(T )<λ is an EndUq(T )-bimodule.
Recall that, for any g ∈ C(λ) and any f ∈ C(λ)∗, we denote by g : Tq(λ) → T and

f : T → Tq(λ) a choice of lifts which satisfy g ◦ ιλ = g and πλ ◦ f = f , respectively.

Lemma 4.5. Let λ ∈ P. Then the pairing map

〈·, ·〉λ : C(λ)⊗ C(λ)∗ → EndUq(T )λ, 〈g, f〉λ = g ◦ f + EndUq(T )<λ, g ∈ C(λ), f ∈ C(λ)∗

is an isomorphism of EndUq(T )-bimodules. �

Proof. First we note that g ◦f + EndUq(T )<λ does not depend on the choices for the lifts f, g,
because the change-of-basis matrix from Lemma 3.6 is unitriangular (and works for swapped
roles of f ’s and g’s as well). This makes the pairing well-defined.

Note that the pairing 〈·, ·〉λ takes, by birth, the basis (gλi ⊗ fλj )i,j∈Iλ of C(λ)⊗C(λ)∗ to the

basis {cλij + EndUq(T )<λ}i,j∈Iλ of EndUq(T )λ (where the latter is a basis by Lemma 3.5).
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So we only need to check that 〈ϕ ◦ gλi , fλj ◦ ψ〉λ = ϕ ◦ cλij ◦ ψ (mod EndUq(T )<λ) for any

ϕ,ψ ∈ EndUq(T ). But this is a direct consequence of (11), (12) and (13). �

The next lemma is straightforward by Lemma 4.5. Details are left to the reader.

Lemma 4.6. We have the following.

(a) There is an isomorphism of K-vector spaces EndUq(T ) ∼=
⊕

λ∈P EndUq(T )λ.

(b) If ϕ ∈ EndUq(T )≤λ, then we have rµik(ϕ) = 0 for all µ 6≤ λ, i, k ∈ I(µ). Equivalently,

EndUq(T )≤λC(µ) = 0 unless µ ≤ λ. �

In the following we assume that λ ∈ P0 as in (14). Define mλ via

(15) T ∼= Tq(λ)⊕mλ ⊕ T ′,

where T ′ is a Uq-tilting module containing no summands isomorphic to Tq(λ).

Choose now a basis of C(λ) = HomUq(∆q(λ), T ) as follows. Let gλi for i = 1, . . . ,mλ

be the inclusion of Tq(λ) into the i-th summand of Tq(λ)⊕mλ and set gλi = gλi ◦ ιλ. Then

extend {gλ1 , . . . , gλmλ} to a basis of the cell module C(λ) by adding an arbitrary basis of

HomUq(∆q(λ), T ′). Thus, in our usual notation, we have cλij = gλi ◦ f
λ
j with f

λ
j = i(gλj ).

In particular, f
λ
j projects onto the j-th summand in Tq(λ)⊕mλ for j = 1, . . . ,mλ. Thus, the

cλii’s for i ≤ mλ are idempotents in EndUq(T ) corresponding to the i-th summand in Tq(λ)⊕mλ .

Since λ ∈ P0 (which implies 1 ≤ mλ), cλ11 is always such an idempotent. This is crucial for
the following lemma, which will play an important role in the proof of Proposition 4.8.

Lemma 4.7. In the above notation:

(a) We have cλi1 ◦ gλ1 = gλi for all i ∈ Iλ.
(b) We have cλij ◦ gλ1 = 0 for all i, j ∈ Iλ with j 6= 1. �

Proof. We have f
λ
1 ◦ gλ1 = f

λ
1 ◦ gλ1 ◦ ιλ = ιλ. This implies cλi1 ◦ gλ1 = gλi ◦ ιλ = gλi . Next, if j 6= 1,

then f
λ
j ◦ gλ1 = 0, since f

λ
j is zero on Tq(λ). Thus, cλij ◦ gλ1 = 0 for all i, j ∈ Iλ with j 6= 1. �

Proposition 4.8. (Homomorphism criterion.) Let λ ∈ P0 and fix M ∈ EndUq(T )-Mod.
Then there is an isomorphism of K-vector spaces

HomEndUq (T )(C(λ),M) ∼= {m ∈M | EndUq(T )<λm = 0 and cλ11m = m}. �(16)

Proof. Let ψ ∈ HomEndUq (T )(C(λ),M). Then ψ(gλ1 ) belongs to the right-hand side, because,

by (b) of Lemma 4.6, we get EndUq(T )<λC(λ) = 0, and we have cλ11 ◦ gλ1 = gλ1 by (a) of
Lemma 4.7. Conversely, if m ∈M belongs to the right-hand side in (16), then we may define
ψ ∈ HomEndUq (T )(C(λ),M) by ψ(gλi ) = cλi1m, i ∈ Iλ. Moreover, the fact that this definition

gives an EndUq(T )-homomorphism follows from (10), (11) and (12) via a direct computation,

since EndUq(T )<λm = 0. Clearly these two operations are mutually inverses. �

Corollary 4.9. Let λ ∈ P0. Then C(λ) has a unique simple head, denoted by L(λ). �

Proof. Set Rad(λ) = {g ∈ C(λ) | ϑλ(g, C(λ)) = 0}. As the cellular pairing ϑλ from Defini-
tion 4.2 is contravariant by Lemma 4.3, we see that Rad(λ) is an EndUq(T )-submodule of
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C(λ). Since ϑλ 6= 0 for λ ∈ P0, we have Rad(λ) ( C(λ). We claim that Rad(λ) is the unique
maximal proper EndUq(T )-submodule of C(λ).

Let g ∈ C(λ) − Rad(λ). Moreover, choose h ∈ C(λ) with ϑλ(g, h) = 1. Then i(h) ◦ g = cλ

so that i(h) ◦ g = ιλ (mod EndUq(T )<λ). Therefore, g′ = g′ ◦ i(h) ◦ g (mod EndUq(T )<λ) for

all g′ ∈ C(λ). This implies C(λ) = EndUq(T )≤λg. Thus, any proper EndUq(T )-submodule of
C(λ) is contained in Rad(λ) which implies the desired statement. �

Corollary 4.10. Let λ ∈ P0, µ ∈ P and assume that HomEndUq (T )(C(λ),M) 6= 0 for some

EndUq(T )-module M isomorphic to a subquotient of C(µ). Then we have µ ≤ λ. In particular,
all composition factors L(λ) of C(µ) satisfy µ ≤ λ. �

Proof. By Proposition 4.8 the assumption in the corollary implies the existence of an element
m ∈M with cλ11m = m. But if µ 6≤ λ, then cλ11 vanishes on the Uq-weight space Tµ and hence,

cλ11g kills the highest weight vector in ∆q(µ) for all g ∈ C(µ). This makes the existence of
such an m ∈M impossible unless µ ≤ λ. �

4.3. Simple EndUq(T )-modules and semisimplicity of EndUq(T ). Let λ ∈ P0. Note that
Corollary 4.9 shows that C(λ) has a unique simple head L(λ). We then arrive at the following
classification of all simple modules in EndUq(T )-Mod.

Theorem 4.11. (Classification of simple EndUq(T )-modules.) The set {L(λ) | λ ∈ P0}
forms a complete set of pairwise non-isomorphic, simple EndUq(T )-modules. �

Proof. We have to show three statements, namely that the L(λ)’s are simple, that they are
pairwise non-isomorphic and that every simple EndUq(T )-module is one of the L(λ)’s.

Since the first statement follows directly from the definition of L(λ) (see Corollary 4.9), we
start by showing the second. Thus, assume that L(λ) ∼= L(µ) for some λ, µ ∈ P0. Then

HomEndUq (T )(C(λ), C(µ)/Rad(µ)) 6= 0 6= HomEndUq (T )(C(µ), C(λ)/Rad(λ)).

By Corollary 4.10, we get µ ≤ λ and λ ≤ µ from the left and right-hand side. Thus, λ = µ.
Suppose that L ∈ EndUq(T )-Mod is simple. Then we can choose λ ∈ P minimal such that

(recall that EndUq(T )≤λ is a two-sided ideal)

(17) EndUq(T )<λL = 0 and EndUq(T )≤λL = L.

We claim that λ ∈ P0. Indeed, if not, then, by Proposition 4.4, we see that Tq(λ) is not a

summand of T . Hence, in our usual notation, all f
λ
j ◦ gλi′ vanish on the λ-weight space. It

follows that cλijc
λ
i′j′ also vanish on the λ-weight space for all i, j, i′, j′ ∈ Iλ. This means that

we have EndUq(T )≤λEndUq(T )≤λ ⊂ EndUq(T )<λ making (17) impossible.
For λ ∈ P0 we see by Lemma 4.7 that

(18) cλi1c
λ
1j = cλij (mod EndUq(T )<λ).

Hence, by (17), there exist i, j ∈ Iλ such that cλijL 6= 0. By (18) we also have cλi1L 6= 0 6= cλ1jL.

This in turn (again by (18)) ensures that cλ11L 6= 0. Take then m ∈ cλ11L − {0} and observe
that cλ11m = m. Hence, by Proposition 4.8, there is a non-zero EndUq(T )-homomorphism
C(λ)→ L. The conclusion follows now from Corollary 4.9. �
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Recall from Subsection 4.2 the notation mλ (the multiplicity of Tq(λ) in T ) and the choice
of basis for C(λ) (in the paragraphs before Lemma 4.7). Then we get the following connection
between the decomposition of T as in (15) and the simple EndUq(T )-modules L(λ).

Theorem 4.12. (Dimension formula.) If λ ∈ P0, then dim(L(λ)) = mλ. �

Note that this result is implicit in [38] and has also been observed in e.g. [37] and [82].

Proof. We use the notation from Subsection 4.2. Since T ′ has no summands isomorphic to
Tq(λ), we see that HomUq(∆q(λ), T ′) ⊂ Rad(λ) (see the proof of Corollary 4.9). On the other

hand, gλi /∈ Rad(λ) for 1 ≤ i ≤ mλ because for these i we have fλi ◦ gλi = cλ by construction.
Thus, the statement follows. �

Theorem 4.13. (Semisimplicity criterion for EndUq(T ).) The cellular algebra EndUq(T )
is semisimple iff T is a semisimple Uq-module. �

Proof. Note that the Tq(λ)’s are simple iff Tq(λ) ∼= ∆q(λ) ∼= Lq(λ) ∼= ∇q(λ). Hence, T is
semisimple as a Uq-module iff T =

⊕
λ∈P0

∆q(λ)⊕mλ with mλ as above.
Thus, we see that, if T decomposes into simple Uq-modules, then EndUq(T ) is semisimple

by the Artin-Wedderburn theorem (since EndUq(T ) will decompose into a direct sum of matrix
algebras in this case).

On the other hand, if EndUq(T ) is semisimple, then we know, by Corollary 4.9, that the
cell modules C(λ) are simple, i.e. C(λ) = L(λ) for all λ ∈ P0. Then we have

(19) T ∼=
⊕
λ∈P0

Tq(λ)⊕mλ , mλ = dim(L(λ)) = dim(C(λ)) = dim(HomUq(∆q(λ), T ))

by Theorem 4.12. Assume now that there exists a summand Tq(λ
′) of T as in (19) with

Tq(λ
′) 6∼= ∆q(λ

′) and choose λ′ ∈ P0 minimal with this property.
Then there exists a µ < λ′ such that HomUq(∆q(µ), Tq(λ

′)) 6= 0. Choose also µ minimal
among those. By our usual construction this then gives in turn a non-zero Uq-homomorphism

g ◦ f : Tq(λ
′)→ Tq(µ)→ Tq(λ

′). By (19), we can extend g ◦ f to an element of EndUq(T ) by
defining it to be zero on all other summands.

Clearly, by construction, (g ◦ f)C(µ′) = 0 for µ′ ∈ P0 with µ′ 6= λ′ and µ′ 6≤ µ. If µ′ ≤ µ,
then consider ϕ ∈ C(µ′). Then (g ◦ f) ◦ ϕ = 0 unless ϕ has some non-zero component
ϕ′ : ∆q(µ

′) → Tq(λ
′). This forces µ′ = µ by minimality of µ. But since ∆q(µ

′) ∼= Tq(µ
′), by

minimality of λ′, we conclude that f ◦ϕ = 0 (otherwise Tq(µ
′) would be a summand of Tq(λ

′)).

Hence, the non-zero element g ◦ f ∈ EndUq(T ) kills all C(µ′) for µ′ ∈ P0. This contradicts
the semisimplicity of EndUq(T ): as noted above, C(λ) = L(λ) for all λ ∈ P0 which implies

EndUq(T ) ∼=
⊕

λ∈P0
C(λ)⊕kλ for some kλ ∈ Z≥0. �

5. Cellular structures: examples and applications

In this section we provide many examples of cellular algebras arising from our main theorem.
This includes several renowned examples where cellularity is known (but usually proved case
by case spread over the literature and with cellular bases which differ in general from ours),
and also new ones. In the first subsection we give a full treatment of the semisimple case
and describe how to obtain all the examples from the introduction using our methods. In
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the second subsection we focus on the Temperley-Lieb algebras T Ld(δ) and give a detailed
account how to apply our results to these.

5.1. Cellular structures using Uq-tilting modules: several examples. In the following
let ωi for i = 1, . . . , n denote the fundamental weights (of the corresponding type).

5.1.1. The semisimple case. Suppose the category Uq-Mod is semisimple, that is, q is not a
root of unity in K∗ − {1} or q = ±1 ∈ K with char(K) = 0.

In this case T = Uq-Mod and any T ∈ T has a decomposition T ∼=
⊕

λ∈X+ ∆q(λ)⊕mλ

with the multiplicities mλ = (T : ∆q(λ)). This induces an Artin-Wedderburn decomposition

(20) EndUq(T ) ∼=
⊕
λ∈X+

Mmλ(K)

into matrix algebras. A natural choice of basis for HomUq(∆q(λ), T ) is

Gλ = {gλ1 , . . . , gλmλ | g
λ
i : ∆q(λ) ↪→ T is the inclusion into the i-th summand}.

Then our cellular basis consisting of the cλij ’s as in Subsection 3.3 (no lifting is needed in

this case) is an Artin-Wedderburn basis, that is, a basis of EndUq(T ) that realizes the de-

composition as in (20) in the following sense. The basis element cλij is the matrix Eλ
ij (in

the λ-summand on the right hand side in (20)) which has all entries zero except one entry
equals 1 in the i-th row and j-th column. Note that, as expected in this case, EndUq(T ) has,
by the Theorems 4.11 and 4.12, one simple EndUq(T )-module L(λ) of dimension mλ for all
summands ∆q(λ) of T .

5.1.2. The symmetric group and the Iwahori-Hecke algebra. Let us fix d ∈ Z≥0 and let us
denote by Sd the symmetric group in d letters and by Hd(q) its associated Iwahori-Hecke
algebra. We note that K[Sd] ∼= Hd(1). Moreover, let Uq = Uq(gln). The vector representation
of Uq, which we denote by V = Kn = ∆q(ω1), is a Uq-tilting module (since ω1 is minimal

in X+). Set T = V ⊗d, which is again a Uq-tilting module. Quantum Schur-Weyl duality
(see [32, Theorem 6.3] for surjectivity and use Ext-vanishing for the fact that dim(EndUq(T ))

is obtained via base change from Z[v, v−1] to K for all K and q ∈ K∗) states that

(21) ΦqSW : Hd(q)� EndUq(T ) and ΦqSW : Hd(q)
∼=−→ EndUq(T ), if n ≥ d.

Thus, our main result implies that Hd(q), and in particular K[Sd], are cellular for any q ∈ K∗
and any field K (by taking n ≥ d).

In this case the cell modules for EndUq(T ) are usually called Specht modules SλK and our
Theorem 4.12 gives the following (see also [37]).

• If q = 1 and char(K) = 0, then the dimension dim(SλK) is equal to the multiplicity of

the simple U1-module ∆1(λ) ∼= L1(λ) in V ⊗d for all λ ∈ P0. These numbers are given
by known formulas (e.g. the hook length formula).
• If q = 1 and char(K) > 0, then the dimension of the simple head of SλK, usually denoted

Dλ
K, is the multiplicity with which T1(λ) occurs as a summand in V ⊗d for all λ ∈ P0.

It is a wide open problem to determine these numbers. (See however [70].)
• If q is a complex, primitive root of unity, then we can compute the dimension of the

simple Hd(q)-modules by using the algorithm as in [8]. In particular, this connects
with the LLT algorithm from [57].



CELLULAR STRUCTURES USING Uq-TILTING MODULES 19

• If q is a root of unity and K is arbitrary, then not much is known. Still, our methods
apply and we get a way to calculate the dimensions of the simple Hd(q)-modules, if
we can decompose T into its indecomposable summands.

5.1.3. The Temperley-Lieb algebra and other sl2-related algebras. Let Uq = Uq(sl2) and let
T be as in 5.1.2 with n = 2. For any d ∈ Z≥0 we have T Ld(δ) ∼= EndUq(T ) by Schur-Weyl

duality, where T Ld(δ) is the Temperley-Lieb algebra in d-strands with parameter δ = q+ q−1.
This works for all K and all q ∈ K∗ (this can be deduced from, for example, [32, Theorem 6.3]).
Hence, T Ld(δ) is always cellular. We discuss this case in more detail in Subsection 5.2.

Furthermore, if we are in the semisimple case, then ∆q(i) is a Uq-tilting module for all
i ∈ Z≥0 and so is T = ∆q(i1)⊗ · · · ⊗∆q(id). Thus, we obtain that EndUq(T ) is cellular.

The algebra EndUq(T ) is known to give a diagrammatic presentation of the full category of
Uq-modules, gives rise to colored Jones-polynomials (see for example [73] and the references
therein) and was studied3 from a diagrammatical point of view in [73].

If q ∈ K is a root of unity and l is the order of q2, then, for any 0 ≤ i < l, ∆q(i) is

a Uq-tilting module (since its simple) and so is T = ∆q(i)
⊗d. The endomorphism algebra

EndUq(T ) is cellular. This reproves parts of [5, Theorem 1.1] using our general approach.
In characteristic 0: Another family of Uq-tilting modules was studied in [10]. That is, for

any d ∈ Z≥0, fix any λ0 ∈ {0, . . . , l − 2} and consider T = Tq(λ0) ⊕ · · · ⊕ Tq(λd) where λk is
the unique integer λk ∈ {kl, . . . , (k + 1)l − 2} linked to λ0. We again obtain that EndUq(T )
is cellular. Note that EndUq(T ) can be identified with Khovanov-Seidel’s algebra so-called
(type A) zig-zag algebra Ad, see [10, Proposition 3.9], introduced in [53] in their study of
Floer homology. These algebras are naturally graded making EndUq(T ) into a graded cellular
algebra in the sense of [41] and are special examples arising from the family of generalized
Khovanov arc algebras whose cellularity is studied in [19].

5.1.4. Spider algebras. Let Uq = Uq(sln) (or, alternatively, Uq(gln)). One has for any q ∈ K∗
that all Uq-representations ∆q(ωi) are Uq-tilting modules (because the ωi’s are minimal in
X+). Hence, for any ki ∈ {1, . . . , n − 1}, T = ∆q(ωk1) ⊗ · · · ⊗ ∆q(ωkd) is a Uq-tilting
module. Thus, EndUq(T ) is cellular. These algebras are related to type An−1 spider algebras
introduced in [56], are connected to the Reshetikhin-Turaev sln-link polynomials and give a
diagrammatic description of the representation theory of sln, see [23], providing a link from
our work to low-dimensional topology and diagrammatic algebra. Note that cellular bases
(which, in this case, coincide with our cellular bases) of these, in the semisimple cases, were
found in [36, Theorem 2.57].

More general: In any type we have that ∆q(λ) are Uq(g)-tilting modules for minuscule
λ ∈ X+, see [47, Part II, Chapter 2, Section 15]. Moreover, if q is a root of unity “of order
l big enough” (ensuring that the ωi’s are in the closure of the fundamental alcove), then the
∆q(ωi) are Uq(g)-tilting modules by the linkage principle (see [3, Corollaries 4.4 and 4.6]). So
in these cases we can generalize the above results to other types.

Still more general: we may take (for any type and any q ∈ K∗) arbitrary λj ∈ X+ (for
j = 1, . . . , d) and obtain a cellular structure on EndUq(T ) for T = Tq(λ1)⊗ · · · ⊗ Tq(λd).

3As a category instead of an algebra. We abuse language here and also for some of the other algebras below.
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5.1.5. The Ariki-Koike algebra and related algebras. Take g = glm1
⊕ · · ·⊕ glmr (which can be

easily fit into our context) with m1 + · · · + mr = m and let V be the vector representation
of U1(glm) restricted to U1 = U1(g). This is again a U1-tilting module and so is T = V ⊗d.
Then we have a cyclotomic analogon of (21), namely

(22) Φcl : C[Z/rZ o Sd]� EndU1(T ) and Φcl : C[Z/rZ o Sd]
∼=−→ EndU1(T ), if m ≥ d,

where C[Z/rZoSd] is the group algebra of the complex reflection group Z/rZoSd ∼= (Z/rZ)doSd,
see [65, Theorem 9]. Thus, we can apply our main theorem and obtain a cellular basis for these
quotients of C[Z/rZ oSd]. If m ≥ d, then (22) is an isomorphism (see [65, Lemma 11]) and we
obtain that C[Z/rZ oSd] itself is a cellular algebra for all r, d. In the extremal case m1 = m−1
and m2 = 1, the resulting quotient of (22) is known as Solomon’s algebra introduced in [85]
(also called algebra of the inverse semigroup or rook monoid algebra) and we obtain that
Solomon’s algebra is cellular. In the extremal case m1 = m2 = 1, the resulting quotient is a
specialization of the blob algebra BLd(1, 2) (in the notation used in [77]). To see this, note
that both algebras are quotients of C[Z/rZ o Sd]. The kernel of the quotient to BLd(1, 2) is
described explicitly by Ryom-Hansen in [77, (1)] and is by [65, Lemma 11] contained in the
kernel of Φcl from (22). Since both algebras have the same dimensions, they are isomorphic.

Let Uq = Uq(g). We get in the quantized case (for q ∈ C− {0} not a root of unity)

(23) Φqcl : Hd,r(q)� EndUq(T ) and Φqcl : Hd,r(q)
∼=−→ EndUq(T ), if m ≥ d,

where Hd,r(q) is the Ariki-Koike algebra introduced in [12]. A proof of (23) can for example
be found in [78, Theorem 4.1]. Thus, as before, our main theorem applies and we obtain: the
Ariki-Koike algebra Hd,r(q) is cellular (by taking m ≥ d), the quantized rook monoid algebra
Rd(q) from [39] is cellular and the blob algebra BLd(q,m) is cellular (which follows as above).
Note that the cellularity of Hd,r(q) was obtained in [28], the cellularity of the quantum rook
monoid algebras and of the blob algebra can be found in [67] and in [76] respectively.

In fact, (23) is still true in the non-semisimple cases, see [43, Theorem 1.10 and Lemma 2.12]
as long as K satisfies a certain separation condition (which implies that the algebra in question
has the right dimension, see [11]). Again, our main theorem applies.

5.1.6. The Brauer algebras and related algebras. Consider Uq = Uq(g) where g is either an
orthogonal g = o2n and g = o2n+1 or the symplectic g = sp2n Lie algebra. Let V = ∆q(ω1)
be the quantized version of the corresponding vector representation. In both cases, V is a
Uq-tilting module (for type B and q = 1 this requires char(K) 6= 2, see [45, Page 20]) and

hence, so is T = V ⊗d. We first take q = 1 and set δ = 2n in case g = o2n, and δ = 2n + 1
in case g = o2n+1 and δ = −2n in case g = sp2n respectively. Then (see [26, Theorem 1.4]
and [31, Theorem 1.2] for infinite K, or [35, Theorem 5.5] for K = C)

(24) ΦBr : Bd(δ)� EndU1(T ) and ΦBr : Bd(δ)
∼=−→ EndU1(T ), if n > d,

where Bd(δ) is the Brauer algebra in d strands (for g 6= o2n the isomorphism in (24) already
holds for n = d). Thus, we get cellularity of Bd(δ) by observing that in characteristic p we
can always assume that n is large because Bd(δ) = Bd(δ + p).

Similarly, let Uq = Uq(gln), q ∈ K∗ be arbitrary and set T = ∆q(ω1)⊗r ⊗ ∆q(ωn−1)⊗s.
By [27, Theorem 7.1 and Corollary 7.2] we have

(25) ΦwBr : Bnr,s([n])� EndUq(T ) and ΦwBr : Bnr,s([n])
∼=−→ EndUq(T ), if n ≥ r + s.
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Here Bnr,s([n]) the quantized walled Brauer algebra for [n] = q1−n + · · · + qn−1. Since T is a
Uq-tilting module, we get from (25) cellularity of Bnr,s([n]) and of its quotients under ΦwBr.

The walled Brauer algebra Bnr,s(δ) over K = C for arbitrary parameter δ ∈ Z appears as

centralizer Endgl(m|n)(T ) for T = V ⊗r ⊗ (V ∗)⊗s where V is the vector representation of the
superalgebra gl(m|n) with δ = m− n. That is, we have

(26) Φs : Bnr,s(δ)� Endgl(m|n)(T ) and Φs : Bnr,s(δ)
∼=−→ Endgl(m|n)(T ), if (m+1)(n+1) ≥ r+s,

see [18, Theorem 7.8]. It can be shown that T is a gl(m|n)-tilting module and thus, our main
theorem applies and hence, by (26), Bnr,s(δ) is cellular. Similarly for the quantized version.

Quantizing the Brauer case, taking q ∈ K∗, g, V = ∆q(ω1) and T as before (without the
restriction char(K) 6= 2 for type B) gives us a cellular structure on EndUq(T ). The algebra
EndUq(T ) is a quotient of the Birman-Murakami-Wenzl algebra BMWd(δ) (for appropriate
parameters), see [58, (9.6)] for the orthogonal case (which works for any q ∈ C − {0,±1})
and [40, Theorem 1.5] for the symplectic case (which works for any q ∈ K∗ − {1} and infinite
K). Again, taking n ≥ d (or n > d), we recover the cellularity of BMWd(δ).

5.1.7. Infinite-dimensional modules - highest weight categories. Observe that our main theo-
rem does not use the specific properties of Uq-Mod, but works for any EndA-Mod(T ) where
T is an A-tilting module for some finite-dimensional, quasi-hereditary algebra A over K or
T ∈ C for some highest weight category C in the sense of [24]. For the explicit construction of
our basis we however need a notion like “weight spaces” such that Lemma 3.4 makes sense.

The most famous example of such a category is the BGG category O = O(g) attached
to a complex semisimple or reductive Lie algebra g with a corresponding Cartan h and fixed
Borel subalgebra b. We denote by ∆(λ) ∈ O the Verma module attached to λ ∈ h∗. In the
same vein, pick a parabolic p ⊃ b and denote for any p-dominant weight λ the corresponding
parabolic Verma module by ∆p(λ). It is the unique quotient of the Verma module ∆(λ) which
is locally p-finite, i.e. contained in the parabolic category Op = Op(g) ⊂ O (see e.g. [44]).

There is a contravariant, character preserving duality functor ∨ : Op → Op which allows us
to set ∇p(λ) = ∆p(λ)∨. Hence, we can play the same game again since the O-tilting theory
works in a very similar fashion as for Uq-Mod (see [44, Chapter 11] and the references therein).
In particular, we have indecomposable O-tilting modules T (λ) for any λ ∈ h∗. Similarly for
Op giving an indecomposable Op-tilting module T (λ) for any p-dominant λ ∈ h∗.

We shall give a few examples where our approach leads to cellular structures on interesting
algebras. For this purpose, let p = b and λ = 0. Then T (0) has Verma factors of the form
∆(w.0) (for w ∈ W , where W is the Weyl group associated to g). Each of these appears
with multiplicity 1. Hence, dim(EndO(T (0))) = |W | by the analogon of (4). Then we have
EndO(T (0)) ∼= S(h∗)/SW+ . The algebra S(h∗)/SW+ is called coinvariant algebra. (For the no-
tation, the conventions and the result see [83] - this is Soergel’s famous Endomorphismensatz.)
Hence, our main theorem implies that S(h∗)/SW+ is cellular, which is no big surprise since all
finite-dimensional, commutative algebras are cellular, see [55, Proposition 3.5].

There is also a quantum version of this result: replace O by its quantum cousin Oq from [6]
(which is the analogon of O for Uq(g)). This works over any field K with char(K) = 0
and any q ∈ K∗ − {1} (which can be deduced from [6, Section 6]). There is furthermore a
characteristic p version of this result: consider the G-tilting module T (pρ) in the category of
finite-dimensional G-modules (here G is an almost simple, simply connected algebraic group
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over K with char(K) = p). Its endomorphism algebra is isomorphic to for the corresponding
coinvariant algebra over K, see [4, Proposition 19.8].

Returning to K = C: the example of the coinvariant algebra can be generalized. To this
end, note that, if T is an Op-tilting module, then so is T ⊗ M for any finite-dimensional
g-module M , see [44, Proposition 11.1 and Section 11.8] (and the references therein). Thus,
EndOp(T ⊗M) is cellular by our main theorem.

A special case is: g is of classical type, T = ∆p(λ) is simple (hence, Op-tilting), V is
the vector representation of g and M = V ⊗d. Let first g = gln with standard Borel b and
parabolic p of block size (n1, . . . , n`). Then one can find a certain p-dominant weight λI,
called Irving-weight, such that T = ∆p(λI) is Op-tilting. Moreover, EndOp(T ⊗ V ⊗d) is
isomorphic to a sum of blocks of cyclotomic quotients of the degenerate affine Hecke algebra
Hd/Π`

i=1(xi−ni), see [17, Theorem 5.13]. In the special case of level ` = 2, these algebras can
be explicitly described in terms of generalizations of Khovanov’s arc algebra (which Khovanov
introduced in [50] to give an algebraic structure underlying Khovanov homology and which
categorifies the Temperley-Lieb algebra T Ld(δ)) and have an interesting representation theory,
see [19], [20], [21] and [22]. A consequence of this is: using the results from [79, Theorem 6.9]
and [80, Theorem 1.1], one can realize the walled Brauer algebra from 5.1.6 for arbitrary
parameter δ ∈ Z as endomorphism algebras of some Op-tilting module and hence, using our
main theorem, deduce cellularity again.

If g is of another classical type, then the role of the (cyclotomic quotients of the) degenerate
affine Hecke algebra is played by (cyclotomic quotients of) degenerate BMW algebras or so-
called (cyclotomic quotients of)

∨
d

∨
-algebras (also called Nazarov-Wenzl algebras). These are

still poorly understood and technically quite involved, see [13]. In [33] special examples of level
` = 2 quotients were studied and realized as endomorphism algebras of some Op(so2n)-tilting
module ∆p(δ) ⊗ V ∈ Op(so2n) where V is the vector representation of so2n, δ = δ

2

∑n
i=1 εi

and p is a maximal parabolic subalgebra of type A (see [33, Theorem B]). Hence, our theorem
implies cellularity of these algebras. Soergel’s theorem is therefore just a shadow of a rich
world of endomorphism algebras whose cellularity can be obtained from our approach.

Our methods also apply to (parabolic) category Op(ĝ) attached to an affine Kac-Moody
algebra ĝ over K and related categories. In particular, one can consider a (level-dependent)
quotient ĝκ of U(ĝ) and a category, denoted by Oν,κ

K,τ , attached to it (we refer the reader

to [75, Subsections 5.2 and 5.3] for the details). Then there is a subcategory Aν,κ
K,τ ⊂ Oν,κ

K,τ and

a Aν,κ
K,τ -tilting module TK,d defined in [75, Subsection 5.5] such that

Φaff : Hs
K,d → EndAν,κ

K,τ
(TK,d) and Φaff : Hs

K,d
∼=−→ EndAν,κ

K,τ
(TK,d), if νp ≥ d, p = 1, . . . N,

see [75, Theorem 5.37 and Proposition 8.1]. Here Hs
K,d denotes an appropriate cyclotomic

quotient of the affine Hecke algebra. Again, our main theorem applies for Hs
K,d in case νp ≥ d.

5.1.8. Graded cellular structures. A striking property which arises in the context of (parabolic)
category O (or Op) is that all the endomorphism algebras from 5.1.7 can be equipped with a
Z-grading as in [86] arising from the Koszul grading of category O (or of Op). We might choose
our cellular basis compatible with this grading and obtain a grading on the endomorphism
algebras turning them into graded cellular algebras in the sense of [41, Definition 2.1].
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For the cyclotomic quotients this grading is non-trivial and in fact is the type A KL-R
grading in the spirit of Khovanov and Lauda and independently Rouquier (see [51] and [52]
or [74]), which can be seen as a grading on cyclotomic quotients of degenerate affine Hecke
algebras, see [16]. See [21] for level ` = 2 and [42] for all levels where the authors construct
explicit graded cellular basis. For gradings on (cyclotomic quotients of)

∨
d

∨
-algebras see

Section 5 in [33] and for gradings on Brauer algebras see [34] or [59].
In the same spirit, it should be possible to obtain the higher level analoga of the generaliza-

tions of Khovanov’s arc algebra, known as sln-web (or, alternatively, gln-web) algebras (see [62]
and [61]), from our setup as well using the connections from cyclotomic KL-R algebras to these
algebras in [89] and [90]. Although details still need to be worked out, this can be seen as
the categorification of the connections to the spider algebras from 5.1.4: the spiders provide
the setup to study the corresponding Reshetikhin-Turaev sln-link polynomials; the sln-web
algebras provide the algebraic setup to study the Khovanov-Rozansky sln-link homologies.
This would emphasize the connection between our work and low-dimensional topology.

5.2. (Graded) cellular structures and the Temperley-Lieb algebras: a comparison.
Finally we want to present one explicit example, the Temperley-Lieb algebras, which is of par-
ticular interest in low-dimensional topology and categorification. Our main goal is to construct
new (graded) cellular bases, and use our approach to establish semisimplicity conditions, and
construct and compute the dimensions of its simple modules in new ways.

We start by briefly recalling the necessary definitions. The reader unfamiliar with these
algebras might consider for example [38, Section 6] (or [8], where we recall the basics in detail
using the usual Temperley-Lieb diagrams and our notation).

Fix δ = q + q−1 for q ∈ K∗.4 Recall that the Temperley-Lieb algebra T Ld(δ) in d strands
with parameter δ is the free diagram algebra over K with basis consisting of all possible
non-intersecting tangle diagrams with d bottom and top boundary points modulo boundary
preserving isotopy and the local relation for evaluating circles given by the parameter5 δ.

Recall from 5.1.3 (whose notation we use now) that, by quantum Schur-Weyl duality, we
can use Theorem 3.9 to obtain cellular bases of T Ld(δ) ∼= EndUq(T ) (we fix the isomorphism
coming from quantum Schur-Weyl duality from now on). The aim now is to compare our
cellular bases to the one given by Graham and Lehrer in [38, Theorem 6.7], where we point
out that we do not obtain their cellular basis: our cellular basis depends for instance on whether
T Ld(δ) is semisimple or not. In the non-semisimple case, at least for K = C, we obtain a
non-trivially Z-graded cellular basis in the sense of [41, Definition 2.1], see Proposition 5.9.

Before stating our cellular basis, we provide a criterion which tells precisely whether T Ld(δ)
is semisimple or not. Recall that there is a known criteria for which Weyl modules ∆q(i) are
simple, see e.g. [10, Proposition 2.7].

Proposition 5.1. (Semisimplicity criterion for T Ld(δ).) We have the following.

(a) Let δ 6= 0. Then T Ld(δ) is semisimple iff [i] = q1−i + · · ·+ qi−1 6= 0 for all i = 1, . . . , d
iff q is not a root of unity with d < l = ord(q2), or q = 1 and char(K) > d.

(b) Let char(K) = 0. Then T Ld(0) is semisimple iff d is odd (or d = 0).

4The sl2 case works with any q ∈ K∗, including even roots of unity, see e.g. [10, Definition 2.3].
5We point out that there are two different conventions about circle evaluations in the literature: evaluating

to δ or to −δ. We use the first convention because we want to stay close to the cited literature.
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(c) Let char(K) = p > 0. Then T Ld(0) is semisimple iff d ∈ {0, 1, 3, 5, . . . , 2p− 1}. �

Proof. (a): We want to show that T = V ⊗d decomposes into simple Uq-modules iff d < l, or
q = 1 and char(K) > d, which is clearly equivalent to the non-vanishing of the [i]’s.

Assume that d < l. Since the maximal Uq-weight of V ⊗d is d and since all Weyl Uq-modules

∆q(i) for i < l are simple, we see that all indecomposable summands of V ⊗d are simple.
Otherwise, if l ≤ d, then Tq(d) (or Tq(d − 2) in the case d ≡ −1 mod l) is a non-simple,

indecomposable summand of V ⊗d (note that this arguments fails if l = 2, i.e. δ = 0).
The case q = 1 works similar, and we can now use Theorem 4.13 to finish the proof of (a).
(b): Since δ = 0 iff q = ± 2

√
−1, we can use the linkage from e.g. [10, Theorem 2.23] in the

case l = 2 to see that T = V ⊗d decomposes into a direct sum of simple Uq-modules iff d is odd
(or d = 0). This implies that T Ld(0) is semisimple iff d is odd (or d = 0) by Theorem 4.13.

(c): If char(K) = p > 0 and δ = 0 (for p = 2 this is equivalent to q = 1), then we
have ∆q(i) ∼= Lq(i) iff i = 0 or i ∈ {2apn − 1 | n ∈ Z≥0, 1 ≤ a < p}. In particular,
this means that for d ≥ 2 we have that either Tq(d) or Tq(d − 2) is a simple Uq-module iff

d ∈ {3, 5, . . . , 2p − 1}. Hence, using the same reasoning as above, we see that T = V ⊗d is
semisimple iff d ∈ {0, 1, 3, 5, . . . , 2p− 1}. By Theorem 4.13 we see that T Ld(0) is semisimple
iff d ∈ {0, 1, 3, 5, . . . , 2p− 1}. �

Example 5.2. We have that [k] 6= 0 for all k = 1, 2, 3 is satisfied iff q is not a forth or a sixth
root of unity. By Proposition 5.1 we see that T L3(δ) is semisimple as long as q is not one of
these values from above. The other way around is only true for q being a sixth root of unity
(the conclusion from semisimplicity to non-vanishing of the quantum numbers above does not
work in the case q = ± 2

√
−1). N

Remark 5.3. The semisimplicity criterion for T Ld(δ) was already already found, using quite
different methods, in [95, Section 5] in the case δ 6= 0, and in the case δ = 0 in [63, Chapter 7]
or [71, above Proposition 4.9]. For us it is an easy application of Theorem 4.13. N

A direct consequence of Proposition 5.1 is that the Temperley-Lieb algebra T Ld(δ) for
q ∈ K∗ − {1} not a root of unity is semisimple (or q = ±1 and char(K) = 0), regardless of d.

5.2.1. Temperley-Lieb algebra: the semisimple case. Assume that q ∈ K∗ − {1} is not a root
of unity (or q = ±1 and char(K) = 0). Thus, we are in the semisimple case.

Let us compare our cell datum (P, I, C, i) to the one of Graham and Lehrer (indicated by
a subscript GL) from [38, Section 6]. They have the poset PGL consisting of all length-two
partitions of d, and we have the poset P consisting of all λ ∈ X+ such that ∆q(λ) is a factor
of T . The two sets are clearly the same: an element λ = (λ1, λ2) ∈ PGL corresponds to
λ1−λ2 ∈ P. Similarly, an inductive reasoning shows that IGL (standard fillings of the Young
diagram associated to λ) is also the same as our I (to see this one can use the facts listed
in [10, Section 2]). One directly checks that the K-linear anti-involution iGL (turning diagrams
upside-down) is also our involution i. Thus, except for C and CGL, the cell data agree.

In order to state how our cellular bases for T Ld(δ) look like, recall that the so-called
generalized Jones-Wenzl projectors JW~ε are indexed by d-tuples (with d > 0) of the form

~ε = (ε1, . . . , εd) ∈ {±1}d such that
∑k

j=1 εj ≥ 0 for all k = 1, . . . , d, see e.g. [25, Section 2]. In

case ~ε = (1, . . . , 1), one recovers the usual Jones-Wenzl projectors introduced by Jones in [48]
and then further studied by Wenzl in [93].
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Now, in [25, Proposition 2.19 and Theorem 2.20] it is shown that there exists non-zero
scalars a~ε ∈ K such that JW ′~ε = a~εJW~ε are well-defined idempotents forming a complete set
of mutually orthogonal, primitive idempotents in T Ld(δ). (The authors of [25] work over C,
but as long as q ∈ K∗ − {1} is not a root of unity their arguments work in our setup as well.)

These project to the summands of T = V ⊗d of the form ∆q(i) for i =
∑k

j=1 εj . In particular,

the usual Jones-Wenzl projectors project to the highest weight summand ∆q(d) of T = V ⊗d.

Proposition 5.4. ((New) cellular bases.) The datum given by the quadruple (P, I, C, i)
for T Ld(δ) ∼= EndUq(T ) is a cell datum for T Ld(δ). Moreover, C 6= CGL for all d > 1 and
all choices involved in the definition of im(C). In particular, there is a choice such that all
generalized Jones-Wenzl projectors JW ′~ε are part of im(C). �

Proof. That we get a cell datum as stated follows from Theorem 3.9 and the discussion above.
That our cellular basis C will never be CGL for d > 1 is due to the fact that Graham and

Lehrer’s cellular basis always contains the identity (which corresponds to the unique standard
filling of the Young diagram associated to λ = (d, 0)).

In contrast, let λk = (d− k, k) for 0 ≤ k ≤ bd2c. Then

(27) T = V ⊗d ∼= ∆q(d)⊕
⊕

0<k≤b d
2
c

∆q(d− 2k)⊕mλk

for some multiplicities mλk ∈ Z>0, we see that for d > 1 the identity is never part of any of

our bases: all the ∆q(i)’s are simple Uq-modules and each ckij factors only through ∆q(k). In

particular, the basis element cλ11 for λ = λd has to be (a scalar multiple) of JW(1,...,1).
As in 5.1.1 we can choose for C an Artin-Wedderburn basis of T Ld(δ) ∼= EndUq(T ). Hence,

by the above, the corresponding basis consists of the projectors JW~ε. �

Note the following classification result (see for example [71, Corollary 5.2] for K = C).

Corollary 5.5. We have a complete set of pairwise non-isomorphic, simple T Ld(δ)-modules
L(λ), where λ = (λ1, λ2) is a length-two partition of d. Moreover, dim(L(λ)) = |Std(λ)|,
where Std(λ) is the set of all standard tableaux of shape λ. �

Proof. Directly from Proposition 5.4 and Theorems 4.11 and 4.12 because mλ = |Std(λ)|. �

5.2.2. Temperley-Lieb algebra: the non-semisimple case. Let us assume that we have fixed
q ∈ K∗ − {1,± 2

√
−1} to be a critical value such that [k] = 0 for some k = 1, . . . , d. Then, by

Proposition 5.1, the algebra T Ld(δ) is no longer semisimple. In particular, to the best of our
knowledge, there is no diagrammatic analogon of the Jones-Wenzl projectors in general.

Proposition 5.6. ((New) cellular basis - the second.) The datum (P, I, C, i) with C as
in Theorem 3.9 for T Ld(δ) ∼= EndUq(T ) is a cell datum for T Ld(δ). Moreover, C 6= CGL for
all d > 1 and all choices involved in the definition of our basis. Thus, there is a choice such
that all generalized, non-semisimple Jones-Wenzl projectors are part of im(C). �

Proof. As in the proof of Proposition 5.4 and left to the reader. �

Hence, directly from Proposition 5.6 and Theorems 4.11 and 4.12, we obtain:
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Corollary 5.7. We have a complete set of pairwise non-isomorphic, simple T Ld(δ)-modules
L(λ), where λ = (λ1, λ2) is a length-two partition of d. Moreover, dim(L(λ)) = mλ, where mλ

is the multiplicity of Tq(λ1 − λ2) as a summand of T = V ⊗d. �

Note that we can do better: one gets a decompositions

(28) T ∼= T −1 ⊕ T 0 ⊕ T 1 ⊕ · · · ⊕ T l−3 ⊕ T l−2 ⊕ T l−1,

where the blocks T −1 and T l−1 are semisimple if K = C. (This follows from the linkage
principle. For notation and the statement see [10, Section 2].)

Fix K = C. As explained in [10, Section 3.5] each block in the decomposition (28) can be
equipped with a non-trivial Z-grading coming from Khovanov and Seidel’s algebra from [53].
Hence, we have the following.

Lemma 5.8. The C-algebra EndUq(T ) can be equipped with a non-trivial Z-grading. Thus,
T Ld(δ) over C can be equipped with a non-trivial Z-grading. �

Proof. The second statement follows directly from the first using quantum Schur-Weyl duality.
Hence, we only need to show the first.

Note that T = V ⊗d decomposes as in (27), but with Tq(k)’s instead of ∆q(k)’s, and we can
order this decomposition by blocks. Each block carries a Z-grading coming from Khovanov
and Seidel’s algebra (as explained in [10, Section 3]). In particular, we can choose the basis
elements cλij in such a way that we get the Z-graded basis obtained in [10, Corollary 4.23].
Since there is no interaction between different blocks, the statement follows. �

Recall from [41, Definition 2.1] that a Z-graded cell datum of a Z-graded algebra is a cell
datum for the algebra together with an additional degree function deg :

∐
λ∈P Iλ → Z, such

that deg(cλij) = deg(i) + deg(j). For us the choice of deg(·) is as follows.

If λ ∈ P is in one of the semisimple blocks, then we simply set deg(i) = 0 for all i ∈ Iλ.
Assume that λ ∈ P is not in the semisimple blocks. It is known that every Tq(λ) has

precisely two Weyl factors. The gλi that map ∆q(λ) into a higher Tq(µ) should be indexed by

a 1-colored i whereas the gλi mapping ∆q(λ) into Tq(λ) should have 0-colored i. Similarly for

the fλj ’s. Then the degree of the elements i ∈ Iλ should be the corresponding color. We get

the following. (Here C is as in Theorem 3.9.)

Proposition 5.9. (Graded cellular basis.) The datum (P, I, C, i) supplemented with the
function deg(·) from above is a Z-graded cell datum for the C-algebra T Ld(δ) ∼= EndUq(T ).�

Proof. The hardest part is cellularity which directly follows from Theorem 3.9. That the
quintuple (P, I, C, i,deg) gives a Z-graded cell datum follows from the construction. �

Remark 5.10. Our grading and the one found by Plaza and Ryom-Hansen in [69] agree (up
to a shift of the indecomposable summands). To see this, note that our algebra is isomorphic
to the algebra K1,n studied in [19] which is by [19, (4.8)] and [21, Theorem 6.3] a quotient of
some particular cyclotomic KL-R algebra (the compatibility of the grading follows for example
from [42, Corollary B.6]). The same holds, by construction, for the grading in [69]. N
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doi:10.1016/S0012-9593(97)89924-7.

[3] H.H. Andersen. The strong linkage principle for quantum groups at roots of 1. J. Algebra, 260(1):2–15,
2003. doi:10.1016/S0021-8693(02)00618-X.

[4] H.H. Andersen, J.C. Jantzen, and W. Soergel. Representations of quantum groups at a pth root of unity
and of semisimple groups in characteristic p: independence of p. Astérisque, (220):321, 1994.
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