
ADDITIONAL NOTES FOR THE PAPER “CELLULAR STRUCTURES

USING Uq-TILTING MODULES”

HENNING HAAHR ANDERSEN, CATHARINA STROPPEL, AND DANIEL TUBBENHAUER

This eprint contains additional notes for the paper [4]. In particular, we give some of the
in [4] omitted proofs as well as the following two sections which are partially not part of [4].

2. Quantum groups and their representations

In the present section we recall the definitions and results about quantum groups and their
representation theory in the semisimple and the non-semisimple case.

2.1. The quantum groups Uv and Uq. Let Φ be a finite root system in an Euclidean space
E. We fix a choice of positive roots Φ+ ⊂ Φ and simple roots Π ⊂ Φ+. We assume that we
have n simple roots that we denote by α1, . . . , αn. For each α ∈ Φ, we denote by α∨ ∈ Φ∨

the corresponding co-root and we let ρ = 1
2

∑
α∈Φ+ α be the half-sum of all positive roots. Let

aij = 〈αi, α∨j 〉 for i, j = 1, . . . , n. Then the matrix A = (aij)
n
i,j=1 is called the Cartan matrix.

As usual, we need to symmetrize A and we do so by choosing for i = 1, . . . , n minimal di ∈ N
such that (diaij)

n
i,j=1 is symmetric (the Cartan matrix A is already symmetric in most of our

examples and thus, di = 1 for all i = 1, . . . , n).
By the set of (integral) weights we understand X = {λ ∈ E | 〈λ, α∨i 〉 ∈ Z for all αi ∈ Π}.

The dominant (integral) weights X+ are those λ ∈ X such that 〈λ, α∨i 〉 ≥ 0 for all αi ∈ Π.
The fundamental weights, denoted by ωi ∈ X for i = 1, . . . , n, are characterized by

〈ωi, α∨j 〉 = δij for all j = 1, . . . , n.

Recall that there is a partial ordering on X given by µ ≤ λ iff λ − µ is an N-valued linear
combination of the simple roots, that is, λ− µ =

∑n
i=1 aiαi with ai ∈ N.

Example 2.1. One of the most important examples is the standard choice of Cartan datum
(A,Π,Φ,Φ+) associated with the Lie algebra g = sln+1 for n ≥ 1. Here E = Rn+1/(1, . . . , 1)
(which we identify with Rn in calculations) and Π = {αi = εi− εi+1 | i = 1, . . . , n}, where the
εi denote the standard basis of E. The positive roots are Φ+ = {εi − εj | 1 ≤ i < j ≤ n+ 1}
with maximal root α0 = ε1 − εn+1. Moreover,

ρ = 1
2

n+1∑
i=1

(n− 2(i− 1))εi =

n+1∑
i=1

(n− i+ 1)εi − 1
2(n, . . . , n)

(seen as a sln+1-weight, i.e. we can drop the 1
2(n, . . . , n)).

The set of fundamental weights is {ωi = ε1 + · · ·+ εi | 1 ≤ i ≤ n}. For explicit calculations
one often identifies

λ =
n∑
i=1

aiωi ∈ X+

1
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with the partition λ = (λ1 ≥ · · · ≥ λn ≥ 0) given by λk =
∑n

i=k ai for k = 1, . . . , n. N

We now assign a quantum group Uv = Uv(A) to a given Cartan matrix A. Abusing
notation, we also write Uv(g) etc. if no confusion can arise. Before giving the definition, we
point out that v in our notation always means a generic parameter, while q ∈ K∗ will always
mean a specialization.

Definition 2.2. (Quantum enveloping algebra) Given a Cartan matrix A, then the quan-
tum enveloping algebra Uv = Uv(A) associated to it is the associative, unital Q(v)-algebra
generated by K±1

1 , . . . ,K±1
n and E1, F1, . . . , En, Fn, where n is the size of A, subject to

KiKj = KjKi, KiK
−1
i = K−1

i Ki = 1, KiEj = vdiaijEjKi, KiFj = v−diaijFjKi,

EiFj − FjEi = δi,j
Ki −K−1

i

vdi − v−di
,∑

r+s=1−aij

(−1)s
[
1− aij
s

]
di

EriEjE
s
i = 0, if i 6= j,

∑
r+s=1−aij

(−1)s
[
1− aij
s

]
di

F ri FjF
s
i = 0, if i 6= j.

Here we use, as usual, the conventions that, for a ∈ Z and b, d ∈ N, [a]d denotes the a-quantum
integer (with [0]d = 0), [b]d! denotes the b-quantum factorial, that is,

[a]d =
vad − v−ad

vd − v−d
, [a] = [a]1 and [b]d! = [1]d · · · [b− 1]d[b]d, [b]! = [b]1!

(with [0]d! = 1 by convention) and[
a

b

]
d

=
[a]d[a− 1]d · · · [a− b+ 2]d[a− b+ 1]d

[b]d!
,

[
a

b

]
=

[
a

b

]
1

denotes the (a, b)-quantum binomial. Observe that [−a]d = −[a]d. N

It is worth noting that Uv is a Hopf algebra with coproduct ∆ given by

∆(Ei) = Ei ⊗ 1 +Ki ⊗ Ei, ∆(Fi) = Fi ⊗K−1
i + 1⊗ Fi and ∆(Ki) = Ki ⊗Ki.

The antipode S and the counit ε are given by

S(Ei) = −K−1
i Ei, S(Fi) = −FiKi, S(Ki) = K−1

i , ε(Ei) = ε(Fi) = 0 and ε(Ki) = 1.

We are interested in the root of unity case. Thus, we want to “specialize” the generic
parameter v of Uv to be, for example, a root of unity q ∈ K∗. In order to do so, we consider
Lusztig’s A-form UA = UA(A) introduced in [22]. To this end, let A = Z[v, v−1].

Definition 2.3. (Lusztig’s A-form UA) Define for all j ∈ N the j-th divided powers

E
(j)
i =

Eji
[j]di !

and F
(j)
i =

F ji
[j]di !

.

Then UA is defined as the A-subalgebra of Uv generated by Ki,K
−1
i , E

(j)
i and F

(j)
i for

i = 1, . . . , n and j ∈ N. N
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Lusztig’s A-form is designed to allow specializations. For this purpose, we fix a field K of
arbitrary characteristic and set K∗ = K−{0,−1} if char(K) > 2 and K∗ = K−{0} otherwise.

Definition 2.4. (Quantum enveloping algebras at roots of unity) Fix an arbitrary
element q ∈ K∗. Consider K as an A-module by specializing v to q. Define

Uq = Uq(A) = UA ⊗A K.

Abusing notation, we will usually abbreviate E
(j)
i ⊗ 1 ∈ Uq with E

(j)
i . Analogously for the

other generators of Uq. N

Example 2.5. In the sl2 case and the datum A as in Example 2.1 above, the Q(v)-algebra
Uv(sl2) = Uq(A) is generated by K and K−1 and E,F subject to the relations

KK−1 = K−1K = 1,

EF − FE =
K −K−1

v − v−1
,

KE = v2EK and KF = v−2FK.

We point out that Uv(sl2) already contains the divided powers since no quantum number
vanishes in Q(v). Let q be a complex, primitive third root of unity. Thus, q+ q−1 = [2] = −1,
q2 + 1 + q−2 = [3] = 0 and q3 + q1 + q−1 + q−3 = [4] = 1. More generally,

[a] = i ∈ {0,+1,−1}, i ≡ a mod 3.

Hence, Uq(sl2) is generated by K,K−1, E, F,E(3) and F (3) subject to the relations as above

(here E(3), F (3) are extra generators since E3 = [3]!E(3) = 0 because of [3] = 0). This is
precisely the convention used in [15, Chapter 1], but specialized at q. N

It is easy to check that UA is a Hopf subalgebra of Uv, see [20, Proposition 4.8]. Thus, Uq

inherits a Hopf algebra structure from Uv.
Moreover, it is known that all three algebras, that is, Uv, UA and Uq, have a triangular

decomposition

Uv = U−v U0
vU

+
v , UA = U−AU0

AU+
A, Uq = U−q U0

qU
+
q ,

where U−v ,U
−
A,U

−
q denote the subalgebras generated only by the Fi’s (or, in addition, the

divided powers for U−A and U−q ) and U+
v ,U

+
A,U

+
q denote the subalgebras generated only by

the Ei’s (or, in addition, the divided powers for U+
A and U+

q ). The Cartan part U0
v is as usual

generated by Ki,K
−1
i for i = 1, . . . , n. For the Cartan part U0

A one needs to be a little bit
more careful, since it is generated by

(1) K̃i,t =

[
Ki

t

]
=

t∏
s=1

Kiv
di(1−s) −K−1

i v−di(1−s)

vdis − v−dis

for i = 1, . . . , n and t ∈ N in addition to the usual generators Ki,K
−1
i . Similarly for U0

q .
Roughly: the triangular decomposition can be proven by ordering F ’s to the left and E’s
to the right using the relations from Definition 2.2 (the hard part here is to show linear
independence). Details can, for example, be found in [15, Chapter 4, Section 17] for the
generic case and in [22, Theorem 8.3(iii)] for the other cases.
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Note that, if q = 1, then Uq modulo the ideal generated by {Ki − 1 | i = 1, . . . , n} can be
identified with the hyperalgebra of the semisimple algebraic group G over K associated to the
Cartan matrix, see [16, Part I, Chapter 7.7].

2.2. Representation theory of Uv: the generic, semisimple case. Let λ ∈ X be a
Uv-weight. As usual, we identify λ with a character of U0

v (an algebra homomorphism to
Q(v)) via

λ : U0
v = Q(v)[K±1 , . . . ,K

±
n ]→ Q(v), K±i 7→ v±di〈λ,α

∨
i 〉, i = 1, . . . , n.

Abusing notation, we use the same symbols for the Uv-weights λ and the characters λ.
Moreover, if ε = (ε1, . . . , εn) ∈ {±1}n, then this can be viewed as a character of U0

v via

ε : U0
v = Q(v)[K±1 , . . . ,K

±
n ]→ Q(v), K±i 7→ ±εi, i = 1, . . . , n.

This extends to a character of Uv by setting ε(Ei) = ε(Fi) = 0.
Every finite-dimensional Uv-module M can be decomposed into

(2) M =
⊕
λ,ε

Mλ,ε,

where Mλ,ε = {m ∈ M | um = λ(u)ε(u)m,u ∈ U0
v} and the direct sum above runs over all

Uv-weights λ ∈ X and all ε ∈ {±1}n, see [15, Chapter 5, Section 2].
Set M1 =

⊕
λMλ,(1,...,1) and call a Uv-module M a Uv-module of type 1 if M1 = M .

Example 2.6. If g = sl2, then the Uv(sl2)-modules of type 1 are precisely those where K has
eigenvalues vk for k ∈ Z whereas type −1 means that K has eigenvalues −vk. N

Given a Uv-module M satisfying (2), we have M ∼=
⊕

εM1 ⊗ ε. Thus, morally it suffices
to study Uv-modules of type 1, which we will do in this paper. From now on, all appearing
modules are assumed to be of type 1 (and we suppress to mention this in the following).

Proposition 2.7. (Semisimplicity: the generic case) The category Uv-Mod consisting
of finite-dimensional Uv-modules is semisimple. �

Proof. This is [3, Corollary 7.7] or [15, Theorem 5.17]. �

The simple modules in Uv-Mod can be constructed as follows. For each λ ∈ X+ set

∇v(λ) = IndUv

U−v U0
v
Q(v)λ,

called the dual Weyl Uv-module associated to λ ∈ X+. Here Q(v)λ is the 1-dimensional
U−v U0

v-module determined by the character λ (and extended to U−v U0
v via λ(Fi) = 0) and

IndUv

U−v U0
v
(·) is the induction functor from [3, Section 2], i.e. the functor

IndUv

U−v U0
v

: U−v U0
v-Mod→ Uv-Mod, M ′ 7→ F(HomU−v U0

v
(Uv,M

′))

obtained by using the evident embedding of U−v U0
v into Uv. Here the functor F (as given

in [3, Subsection 2.2]) assigns to an arbitrary Uv-module M the Uv-module

F(M) =
{
m ∈

⊕
λ∈XMλ | E

(r)
i m = 0 = F

(r)
i m for all i ∈ N and for r � 0

}
(which thus, defines F(M) for M = HomU−v U0

v
(Uv,M

′)).
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It turns out that the ∇v(λ) for λ ∈ X+ form a complete set of non-isomorphic, simple
Uv-modules, see [15, Theorem 5.10]. For example, we see that the category Uv(g)-Mod is
equivalent to the well-studied category of finite-dimensional g-modules.

By construction, the Uv-modules ∇v(λ) satisfy the Frobenius reciprocity, that is, we have

(3) HomUv(M,∇v(λ)) ∼= HomU−v U0
v
(M,Q(v)λ) for all M ∈ Uv-Mod.

Moreover, if we let ch(M) denote the (formal) character of M ∈ Uv-Mod, that is,

ch(M) =
∑
λ∈X

(dim(Mλ))eλ ∈ Z[X],

where Mλ = {m ∈ M | um = λ(u)m,u ∈ U0
v} (recall that the group algebra Z[X], where we

regard X to be the free abelian group generated by the dominant (integral) Uq-weights X+,
is known as the character ring). Then we have

(4) ch(∇v(λ)) = χ(λ) ∈ Z[X] for all λ ∈ X+.

Here χ(λ) is the so-called Weyl character (that is, the classical character obtained from Weyl’s
character formula in the non-quantum case). A proof of the equation from (4) can be found
in [3, Corollary 5.12 and the following remark], see also [15, Theorem 5.15].

In addition, we have a contravariant, character-preserving duality functor

(5) D : Uv-Mod→ Uv-Mod

that is defined on the Q(v)-vector space level via D(M) = M∗ (the Q(v)-linear dual of M)
and an action of Uv on D(M) is defined by

uf = m 7→ f(ω(S(u))m), m ∈M,u ∈ Uv, f ∈ D(M).

Here ω : Uv → Uv is the automorphism of Uv which interchanges Ei and Fi and interchanges
Ki and K−1

i (see for example [15, Lemma 4.6]). Note that the Uv-weights of M and D(M)
coincide. In particular, we have D(∇v(λ)) ∼= ∆v(λ), where the latter Uq-module is called
the Weyl Uv-module associated to λ ∈ X+. Thus, the Weyl and dual Weyl Uv-modules are
related by duality, since clearly D2 ∼= idUv-Mod.

Example 2.8. If we have g = sl2, then the dominant (integral) sl2-weights X+ can be
identified with N. Then the i-th Weyl module ∆v(i) is the i+1-dimensional Q(v)-vector space
with a basis given by m0, . . . ,mi and an Uv(sl2)-action defined by

(6) Kmk = vi−2kmk, E
(j)mk =

[
i− k + j

j

]
mk−j and F (j)mk =

[
k + j

j

]
mk+j ,

with the convention that m<0 = m>i = 0. For example, for i = 3 we can visualize ∆v(3) as

(7) m3

[1]
//

v−3

��
m2

[3]
oo

[2]
//

v−1

��
m1

[3]
//

[2]
oo

v+1

��
m0,

[1]
oo

v+3

��

where the action of E points to the right, the action of F to the left and K acts as a loop.
Note that the Uv(sl2)-action from (6) is already defined by the action of the generators

E,F,K±1. For Uq(sl2) the situation is different, see Example 2.12. N
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2.3. Representation theory of Uq: the non-semisimple case. As before in Subsec-
tion 2.1, we let q denote a fixed element of K∗.

Let λ ∈ X be a Uq-weight. As above, we can identify λ with a character of U0
A via

λ : U0
A → A, K±i 7→ v±di〈λ,α

∨
i 〉, K̃i,t 7→

[
〈λ, α∨i 〉

t

]
di

, i = 1, . . . , n, t ∈ N,

which then also gives a character of U0
q . Here we use the definition of K̃i,t from (1). Abusing

notation again, we use the same symbols for the Uq-weights λ and the characters λ.
It is still true that any finite-dimensional Uq-module M is a direct sum of its Uq-weight

spaces, see [3, Theorem 9.2]. Thus, if we denote by Uq-Mod the category of finite-dimensional
Uq-modules, then

M =
⊕
λ∈X

Mλ =
⊕
λ∈X
{m ∈M | um = λ(u)m,u ∈ U0

q} for M ∈ Uq-Mod.

Hence, in complete analogy to the generic case discussed in Subsection 2.2, we can define the
(formal) character χ(M) of M ∈ Uq-Mod and the (dual) Weyl Uq-module ∆q(λ) (or ∇q(λ))
associated to λ ∈ X+.

Using this notation, we arrive at the following which explains our main interest in the root
of unity case. Note that we do not have any restrictions on the characteristic of K here.

Proposition 2.9. (Semisimplicity: the specialized case) The category Uq-Mod con-
sisting of finite-dimensional Uq-modules is semisimple iff q ∈ K∗ − {1} is not a root of unity
or q = ±1 ∈ K with char(K) = 0. Moreover, if Uq-Mod is semisimple, then the ∇q(λ)’s for
λ ∈ X+ form a complete set of pairwise non-isomorphic, simple Uq-modules. �

Proof. For semisimplicity at non-roots of unity or q = ±1, char(K) = 0 see [3, Theorem 9.4]
(or [21, Section 33.2] for q = −1). To see the converse: at roots of unity or in positive
characteristic, most of the ∇q(λ)’s will not be semisimple (compare to Example 2.12). �

In particular, if K = C, q = 1 and the Cartan datum comes from a simple Lie algebra g,
then, U1-Mod is equivalent to the well-studied category of finite-dimensional g-modules.

Thus, Proposition 2.9 motivates the study of the case where q is a root of unity.

Assumption 2.10. If we want q to be a root of unity, then, to avoid technicalities, we assume
that q is a primitive root of unity of odd order l (a treatment of the even case, that can be used
to repeat everything in this paper in the case where l is even, can be found in [1]). Moreover,
if we are in type G2, then we, in addition, assume that l is prime to 3. N

In the root of unity case, by Proposition 2.9, our main category Uq-Mod under study is no
longer semisimple. In addition, the Uq-modules ∇q(λ) are in general not simple anymore, but
they have a unique simple socle that we denote by Lq(λ). By duality (note that the functor
D(·) from (5) carries over to Uq-Mod), these are also the unique simple heads of the ∆q(λ)’s.

Proposition 2.11. (Simple Uq-modules: the non-semisimple case) The socles Lq(λ) of
the ∇q(λ)’s are simple Uq-modules Lq(λ)’s for λ ∈ X+. They form a complete set of pairwise
non-isomorphic, simple Uq-modules in Uq-Mod. �

Proof. See [3, Corollary 6.2 and Proposition 6.3]. �
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Example 2.12. With the same notation as in Example 2.8 but for q being a complex, primitive
third root of unity, we have [3] = 0 and we can thus visualize ∆q(3) as

(8) m3

+1
//

q−3

��
m2

0
oo

−1
//

q−1

��
m1

0 //

−1
oo

q+1

��
m0,

+1
oo

q+3

��

77

+1

gg

where the action of E points to the right, the action of F to the left and K acts as a loop. In
contrast to Example 2.8, the picture in (8) also shows the actions of the divided powers E(3)

and F (3) as a long arrow connecting m0 and m3 (recall that these are additional generators
of Uq(sl2), see Example 2.5). Note also that, again in contrast to (7), some generators act on

these basis vectors as zero. We also have F (3)m1 = 0 and E(3)m2 = 0. Thus, the C-span of
{m1,m2} is now stable under the action of Uq(sl2).

In particular, Lq(3) is the Uq(sl2)-module obtained from ∆q(3) as in (8) by taking the
quotient of the C-span of the set {m1,m2}. The latter can be seen to be isomorphic to Lq(1).

We encourage the reader to work out its dual case ∇q(3) (note that the zero Uq-action
arrows from above turn around). It turns out that Lq(1) is a Uq-submodule of ∆q(3) and
Lq(3) is a Uq-submodule of ∇q(3) and these can be visualized as

Lq(1) ∼= m2

−1
//

q−1

��
m1

−1
oo

q+1

��
and Lq(3) ∼= m∗3

+1
//

q−3

��

m∗0,
+1
oo

q+3

��

where for Lq(3) the displayed actions are via E(3) (to the right) and F (3) (to the left) instead
of E,F as before. Note that Lq(1) and Lq(3) have both dimension 2. This has no analogon
in the generic sl2 case where all simple Uv-modules Lv(i) have different dimensions. N

A non-trivial fact (which relies on the q-version of the so-called Kempf’s vanishing theorem,
see [29, Theorem 5.5]) is that the characters of the ∇q(λ)’s are still given by Weyl’s character
formula as in (4) (by duality, similar for the ∆q(λ)’s). In particular, dim(∇q(λ)λ) = 1 and
dim(∇q(λ)µ) = 0 unless µ ≤ λ (again similar for the ∆q(λ)’s). On the other hand, the
characters of the simple modules Lq(λ) are only known if char(K) = 0 (and “big enough” l).
In that case, certain Kazhdan-Lusztig polynomials determine the character ch(Lq(λ)), see for
example [33, Theorem 6.4 and 7.1] and the references therein.

3. Tilting modules

In the present section we recall a few facts from the theory of Uq-tilting modules. In the
semisimple case all Uq-modules in Uq-Mod are Uq-tilting modules. Hence, the theory of
Uq-tilting modules is kind of redundant in this case. In the non semisimple case however
the theory of Uq-tilting modules is extremely rich and a source of neat combinatorics. For
brevity, we only provide proofs if we need the arguments of the proofs in what follows. For
more details see for example [11].

3.1. Uq-modules with a ∆q- and a ∇q-filtration. Recall that ∇q(λ) has a simple socle
and ∆q(λ) has a simple head, both isomorphic to Lq(λ). Thus, there is an (up to scalars)
unique Uq-homomorphism

(9) cλ : ∆q(λ)→ ∇q(λ)
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which sends the head to the socle. To see this, note that we have, by Frobenius reciprocity
from (3) (to be more precise, the q-version of it which can be found in [3, Proposition 2.12]),

HomUq(∆q(λ),∇q(λ)) ∼= HomU−q U0
q
(∆q(λ),Kλ)

which gives dim(HomUq(∆q(λ),∇q(λ))) = 1, since, by construction, ∆q(λ)λ ∼= K.
This gives us the following (we have to enlarge the category Uq-Mod by non-necessarily

finite-dimensional Uq-modules to have enough injectives such that the ExtiUq
-functors make

sense by using q-analogous arguments as in [16, Part I, Chapter 3]).

Theorem 3.1. (Ext-vanishing) We have for all λ, µ ∈ X+ that

ExtiUq
(∆q(λ),∇q(µ)) ∼=

{
Kcλ, if i = 0 and λ = µ,

0, else. �

Proof. Denote by C0 and C− the categories of integrable U0
q and U0

qU
−
q -modules respectively.

Then a U0
q-module M belongs to C0 iff M =

⊕
λ∈XMλ and a U0

qU
−
q -module N belongs to C−

iff N ∈ C0 and there exists for all n ∈ N some r ∈ N such that F
(r)
i n = 0 for all i = 1, . . . , n.

Moreover, let C denote the category of integrable Uq-modules1.
Below we shall need a certain induction functor. To this end, recall the functor F which to

an arbitrary U0
qU
−
q -module M ∈ C− assigns

F(M) = {m ∈
⊕
λ∈X

Mλ | F
(r)
i m = 0 for all i ∈ N and for r � 0},

see Subsection 2.2 in [3]. Then

(10) IndC−
C0 : C0 → C−, M 7→ F(HomC0(U0

qU
−
q ,M))

obtained by using the evident embedding of U0
q into U0

qU
−
q , see Subsection 2.4 in [3].

Recall from Subsection 2.11 in [3] that this functor is exact and that

IndC−
C0 (M) =

⊕
λ∈X

(Mλ ⊗K[U−q ]−λ).

Here K[U−q ] is the quantum coordinate algebra for U−q (see Subsection 1.8 in [3]). Note

in particular, that the weights λ ∈ X of K[U−q ] satisfy λ ≥ 0 with λ = 0 occurring with
multiplicity 1.

If λ ∈ X, then we denote by Kλ ∈ C0 the corresponding 1-dimensional U0
q-module. This

modules extends to U0
qU
−
q by letting all F

(r)
i ’s act trivially for r > 0 and we, by abuse of

notation, denote this U0
qU
−
q -module also by Kλ.

We claim that

(11) ExtiC−(K0,Kλ) ∼=

{
K, if i = 0 and λ = 0,

0, if i > 0 and λ 6< 0,

for all λ ∈ X.

1We need to go to the categories of integrable modules due to the fact that the injective modules we use
are usually infinite-dimensional. Furthermore, we take U0

qU
−
q here instead of U−q U

0
q as in Subsection 2.2 of [4]

since we want to consider U0
qU
−
q as a left U0

q-module for the induction functor.
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The i = 0 part of this claim is clear. To check the i > 0 part, we construct an injective
resolution of Kλ as follows.

We set I0(λ) = IndC−
C0 (Kλ). Note that Kλ is a U0

qU
−
q -submodule of I0(λ). Thus, we may

define the quotient Q1(λ) = I0(λ)/Q0(λ) by setting Q0(λ) = Kλ.
This pattern can be repeated: define for k > 0 recursively

Ik(λ) = IndC−
C0 (Qk(λ)), with Qk(λ) = Ik−1(λ)/Qk−1(λ)

and obtain

(12) 0 ↪→ Kλ ↪→ I0(λ) −→ I1(λ) −→ · · · .
All U0

q-modules in C0 are clearly injective and the induction functor from (10) takes injective

U0
q-modules to injective U0

qU
−
q -modules (see Corollary 2.13 in [3]). Thus, (12) is an injective

resolution of Kλ in C−. Moreover, by the above observation on the weights of K[U−q ], we get

I0(λ)µ = 0 for all µ 6≥ 0

and

Ik(λ)µ = 0 for all µ 6> 0, k > 0.

It follows that HomC−(K0, Ik(λ)) = 0 for k > 0 which shows the second line in (11).
Note now that

(13) ExtiC−(Kµ,Kλ) ∼= ExtiC−(K0,Kλ−µ)

for all i ∈ N and all λ, µ ∈ X.
Let M ∈ C− be finite-dimensional such that no weight of M is strictly bigger than λ ∈ X.

Then (11) and (13) imply

(14) ExtiC−(M,Kλ) = 0 for all k > 0.

We are now aiming to prove the Ext-vanishing theorem. Recall that ∇q(λ) = IndC
C−Kλ.

From the q-version of Kempf’s vanishing theorem (see Theorem 5.5 in [29]) we get

(15) ExtiC(∆q(λ),∇q(µ)) ∼= ExtiC−(∆q(λ),Kµ).

Thus, the Ext-vanishing follows for µ 6< λ from (14). So let µ < λ. Recall from Subsection
2.2 of [4] that the character-preserving duality functor D(·) satisfies D(∇q(λ)) ∼= ∆q(λ) and
D(∆q(λ)) ∼= ∇q(λ) for all λ ∈ X+. This gives

ExtiC(∆q(λ),∇q(µ)) ∼= ExtiC(∆q(µ),∇q(λ)).

Thus, we can conclude as before, since now λ 6< µ. Finally, if i = 0, then we get from (15)
that

HomC(∆q(λ),∇q(µ)) ∼= HomC−(∆q(λ),Kµ) =

{
K, if λ = µ,

0, µ 6≤ λ.
If µ < λ, then we apply D as before which finally shows that

HomC(∆q(λ),∇q(µ)) ∼=

{
Kcλ, λ = µ,

0, else,

for all λ, µ ∈ X+. This proves the statement since Uq-Mod is a full subcategory of C. �
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Definition 3.2. (∆q- and ∇q-filtration) We say that a Uq-module M has a ∆q-filtration if
there exists some k ∈ N and a descending sequence of Uq-submodules

M = M0 ⊃M1 ⊃ · · · ⊃Mk′ ⊃ · · · ⊃Mk−1 ⊃Mk = 0,

such that for all k′ = 0, . . . , k − 1 we have Mk′/Mk′+1
∼= ∆q(λk′) for some λk′ ∈ X+.

A ∇q-filtration is defined similarly, but using ∇q(λ) instead of ∆q(λ) and an ascending
sequence of Uq-submodules, that is,

0 = M0 ⊂M1 ⊂ · · · ⊂Mk′ ⊂ · · · ⊂Mk−1 ⊂Mk = M,

such that for all k′ = 0, . . . , k − 1 we have Mk′+1/Mk′
∼= ∇q(λk′) for some λk′ ∈ X+. N

Clearly a Uq-module M has a ∆q-filtration iff its dual D(M) has a ∇q-filtration.

Example 3.3. The simple Uq-module Lq(λ) has a ∆q-filtration iff Lq(λ) ∼= ∆q(λ). In that
case we have also Lq(λ) ∼= ∇q(λ) and thus, Lq(λ) has a ∇q-filtration as well. N

A corollary of the Ext-vanishing theorem is the following.

Corollary 3.4. Let M,N ∈ Uq-Mod and λ ∈ X+. Assume that M has a ∆q-filtration and
N has a ∇q-filtration.

(a) We have dim(HomUq(M,∇q(λ))) = (M : ∆q(λ)) = |{k′ | λk′ = λ}|.
(b) We have dim(HomUq(∆q(λ), N)) = (N : ∇q(λ)) = |{k′ | λk′ = λ}|.

Here the Uq-weights λk′ are as in Definition 3.2. In particular, the multiplicities (M : ∆q(λ))
and (N : ∇q(λ)) are independent of the choice of filtration. �

Note that the proof of Corollary 3.4 below gives a method to find and construct bases of
HomUq(M,∇q(λ)) and HomUq(∆q(λ), N) respectively.

Proof. Let k be the length of the ∆q-filtration of M . If k = 1, then

(16) dim(HomUq(M,∇q(λ))) = (M : ∆q(λ))

follows from the uniqueness of cλ from (9). Otherwise, we take the short exact sequence

0 // M ′ �
�

// M // // ∆q(µ) // 0

for some µ ∈ X+. Since both sides of (16) are additive with respect to short exact sequences
by Theorem 3.1, the claim in (a) follows by induction. Similarly for (b) by duality. �

In fact, following Donkin [10] who obtained the result below in the modular case, we can
state two useful consequences of the Ext-vanishing theorem. These are very useful criteria to
determine if given Uq-modules M or N have a ∆q- or ∇q-filtration respectively.

Proposition 3.5. (Ext-criteria) Let M,N ∈ Uq-Mod. Then the following are equivalent.

(a) The Uq-module M has a ∆q-filtration (respectively N has a ∇q-filtration).

(b) We have ExtiUq
(M,∇q(λ)) = 0 (respectively ExtiUq

(∆q(λ), N) = 0) for all λ ∈ X+

and all i > 0.
(c) We have Ext1

Uq
(M,∇q(λ)) = 0 (respectively Ext1

Uq
(∆q(λ), N) = 0) for all λ ∈ X+. �
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Proof. As usual: we are lazy and only show the statement about the ∆q-filtrations and leave
the other to the reader.

Suppose the Uq-module M has a ∆q-filtration. Then, by the results from Theorem 3.1,

ExtiUq
(M,∇q(λ)) = 0 for all λ ∈ X+ and all i > 0 (which shows that (a) implies (b)).

Since (b) clearly implies (c), we only need to show that (c) implies (a).
To this end, suppose the Uq-module M satisfies Ext1

Uq
(M,∇q(λ)) = 0 for all λ ∈ X+. We

inductively, with respect to the filtration (by simples Lq(λ)) length `(M) of M , construct the
∆q-filtration for M .

So, by Proposition 2.11 in [4], we can assume that M = Lq(λ) for some λ ∈ X+.
Consider the short exact sequence

(17) 0 // ker(proλ) �
�

// ∆q(λ)
proλ
// // Lq(λ) // 0.

By Theorem 3.1 we get from (17) a short exact sequence

0 HomUq(ker(proλ),∇q(µ))oo HomUq(∆q(λ),∇q(µ))oooo HomUq(Lq(λ),∇q(µ))? _oo 0oo

for all µ ∈ X+. Note that, by Theorem 3.1 again, HomUq(∆q(λ),∇q(µ)) is zero if µ 6= λ and
1-dimensional if µ = λ. Moreover, by construction, HomUq(Lq(λ),∇q(λ)) is 1-dimensional.

Thus, HomUq(ker(proλ),∇q(µ)) = 0 for all µ ∈ X+ showing that ker(proλ) = 0. This, by (17),
implies ∆q(λ) ∼= Lq(λ).

Now assume that `(M) > 1. Choose λ ∈ X+ minimal such that HomUq(M,Lq(λ)) 6= 0.

As before in (17), we consider the canonical projection proλ : ∆q(λ) � Lq(λ) and its kernel

ker(proλ).
Note now that Ext1

Uq
(M,∇q(λ)) = 0 implies Ext1

Uq
(M, ker(proλ)) = 0:

Assume the contradiction. Then we can find a composition factor Lq(µ) for µ < λ of

ker(proλ) such that Ext1
Uq

(M,Lq(µ)) 6= 0. Then the exact sequence

HomUq(M,∇q(µ)/Lq(µ)) // Ext1
Uq

(M,Lq(µ)) 6= 0 // Ext1
Uq

(M,∇q(µ)) = 0

implies that HomUq(M,∇q(µ)/Lq(µ)) 6= 0. Since µ < λ, this gives a contradiction to the
minimality of λ.

Hence, any non-zero Uq-homomorphism pro ∈ HomUq(M,Lq(λ)) lifts to a surjection

pro: M � ∆q(λ).

By assumption and Theorem 3.1 we have Ext1
Uq

(M,∇q(µ)) = 0 = Ext1
Uq

(∆q(λ),∇q(µ)) for

all µ ∈ X+. Thus, we have Ext1
Uq

(ker(pro),∇q(µ)) = 0 for all µ ∈ X+ and we can proceed by

induction (since `(ker(pro)) < `(M), by construction). �

Example 3.6. Let us come back to our favorite example, i.e. q being a complex, primitive
third root of unity for Uq(sl2). The simple Uq-module Lq(3) does neither have a ∆q- nor a
∇q-filtration (compare Example 2.12 with Example 3.3). This can also be seen with Propo-
sition 3.5, because Ext1

Uq
(Lq(3), Lq(1)) is not trivial: by Example 2.12 from above we have

∆q(1) ∼= Lq(1) ∼= ∇q(1), but

0 // Lq(1) �
�

// ∆q(3) // // Lq(3) // 0
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does not split. Analogously, Ext1
Uq

(Lq(1), Lq(3)) 6= 0 by duality. N

3.2. Uq-tilting modules. Following Donkin [10], we are now ready to define the category of
Uq-tilting modules that we denote by T . This category is our main object of study.

Definition 3.7. (Category of Uq-tilting modules) The category T is the full subcategory
of Uq-Mod whose objects are all Uq-tilting modules, that is, Uq-modules T which have both,
a ∆q- and a ∇q-filtration. N

From Proposition 3.5 we obtain directly an important statement.

Corollary 3.8. Let T ∈ Uq-Mod. Then

T ∈ T iff Ext1
Uq

(T,∇q(λ)) = 0 = Ext1
Uq

(∆q(λ), T ) for all λ ∈ X+.

Moreover, the corresponding higher Ext-groups vanish as well. �

Recall the contravariant, character preserving functor D : Uq-Mod → Uq-Mod from (5).
Clearly, by Corollary 3.8, T ∈ T iff D(T ) ∈ T . Thus, D(·) restricts to a functor D : T → T . In
fact, we show below in Corollary 3.13, that the functor D(·) restricts to (a functor isomorphic
to) the identity functor on objects of T .

Example 3.9. The Lq(λ) are Uq-tilting modules iff ∆q(λ) ∼= Lq(λ) ∼= ∇q(λ).
Coming back to our favourite example, that is the case g = sl2 and q is a complex, primitive

third root of unity: a direct computation using similar reasoning as in Example 2.12 (that is,
the appearance of some actions equals zero as in (8)) shows that Lq(i) is a Uq-tilting module
iff i = 0, 1 or i ≡ −1 mod 3. More general: if q is a complex, primitive l-th root of unity, then
Lq(i) is a Uq-tilting module iff i = 0, . . . , l − 1 or i ≡ −1 mod l. N

Proposition 3.10. T is a Krull-Schmidt category, closed under duality D(·) and under finite
direct sums. Furthermore, T is closed under finite tensor products. �

Proof. That T is Krull-Schmidt is immediate. By Corollary 3.8 in [4] we see that T is closed
under duality D(·) and under finite direct sums.

Only that T is closed under finite tensor products remains to be proven. By duality, this
reduces to show the statement that, given M,N ∈ Uq-Mod where both have a ∇q-filtration,
then M ⊗N has a ∇q-filtration. In addition, this reduces further to the statement

(18) ∇q(λ)⊗∇q(µ) has a ∇q-filtration for all λ, µ ∈ X+.

In this note we give a proof of (18) in type A where it is true that ωi is minuscule for all
i = 1, . . . , n. The idea of the proof goes back to [34]. As we point out, this case (and the
arguments used here) are enough for most of the examples considered in [4]. For the general
case the only known proofs of (18) rely on crystal bases, see Theorem 3.3 in [25] or alternatively
Corollary 1.9 in [18].

Proof of (18) in types A: we claim that is suffices2 to show

(19) ∇q(λ)⊗∇q(ωi) has a ∇q-filtration for all λ ∈ X+ and all i = 1, . . . , n.

To see that (19) implies (18) we shall work with the the Q≥0-version of the partial ordering ≤
on X given by µ ≤Q λ iff λ − µ is a Q≥0-valued linear combination of the simple roots, that

2Note that our proof of the fact that (19) implies (18) works in all types.
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is, λ−µ =
∑n

i=1 aiαi with ai ∈ Q≥0. Clearly µ ≤Q λ implies µ ≤ λ. Note that 0 ≤Q ωi for all
i = 1, . . . , n which means that 0 is the unique minimal Uq-weight in X+ with respect to ≤Q.

Assume now that (19) holds. We shall prove (18) by induction with respect to ≤Q. For
λ = 0 we have ∇q(λ) ∼= K and there is nothing to prove.

So let λ ∈ X+ − {0} and assume that (18) holds for all µ <Q λ. Note that there exists a
fundamental Uq-weight ω such that µ = λ − ω. This means that, by (19), we have a short
exact sequence of the form

(20) 0 // M �
�

// ∇q(µ)⊗∇q(ω) // // ∇q(λ) // 0.

Here the Uq-module M has a ∇q-filtration. By induction, ∇q(λ′)⊗∇q(µ) has a ∇q-filtration
for all λ′ ∈ X+ and so, by (19), has ∇q(λ′)⊗∇q(µ)⊗∇q(ω). Moreover, the ∇q-factors of M
have the form ∇q(ν) for ν <Q λ. Hence, by the induction hypothesis, we have that ∇q(λ′)⊗M
has a ∇q-filtration for all λ′ ∈ X+. Thus, tensoring (20) with ∇q(λ′) from the left gives a
∇q-filtration for the two leftmost terms. Therefore, also the third has a ∇q-filtration (by
Proposition 3.5). This shows that (19) implies (18).

From now we have to assume that the fundamental Uq-weights are minuscule. By the
above, it remains to show (19). For this purpose, recall that

∇v(λ) = IndUv

U−v U0
v
Kλ.

By the tensor identity (see Proposition 2.16 in [3]) this implies

∇q(λ)⊗∇q(ωi) ∼= IndUv

U−v U0
v
(Kλ ⊗∇q(ωi))

for all i = 1, . . . , n. Now take a filtration of Kλ ⊗∇q(ωi) of the form

(21) 0 = M0 ⊂M1 ⊂ · · · ⊂Mk′ ⊂ · · · ⊂Mk−1 ⊂Mk = Kλ ⊗∇q(ωi),
such that for all k′ = 0, . . . , k − 1 we have Mk′+1/Mk′

∼= Kλk′+1
for some λk′ ∈ X+. Thus,

the set {λk′ | k′ = 1, . . . , k} is the set of Uq-weights of Kλ ⊗ ∇q(ωi). But the Uq-weights of
∇q(ωi) are of the form {w(ωi) | w ∈W} where W is the Weyl group associated to Uq. Hence,
λk′ = λ+ wk′(ωi) for some wk′ ∈W . We get3

〈λk′ , α∨j 〉 = 〈λ, α∨j 〉+ 〈ωi, w−1
k′ (α∨j )〉 ≥ 0 + (−1) = −1

for all j = 1, . . . , n. Said otherwise, λk′ + ρ ∈ X+. Hence, the q-version of Kempf’s vanishing
theorem (see Theorem 5.5 in [29]) shows that we can apply the functor IndUv

U−v U0
v
(·) to (21) to

obtain a ∇q-filtration of ∇q(λ)⊗∇q(ωi). Thus, we obtain (19). �

In particular, for g of type A, the proof of Proposition 3.10 gives us the special case that
T = ∆q(ωi1) ⊗ · · · ⊗ ∆q(ωid) is a Uq-tilting module for any ik ∈ {1, . . . , n}. Moreover, the
proof of Proposition 3.10 generalizes: using similar arguments, one can prove that, given the
vector representation V = ∆q(ω1) and g of type A, C or D, then T = V ⊗d is a Uq-tilting
module. Even more general, the arguments also generalize to show that, given the Uq-module

V = ∆q(λ) with λ ∈ X+ minuscule, then T = V ⊗d is a Uq-tilting module.
The indecomposable Uq-modules in T , that we denote by Tq(λ), are indexed by the domi-

nant (integral) Uq-weights λ ∈ X+ (see Proposition 3.11 below). The Uq-tilting module Tq(λ)

3Here we need that the ωi are minuscule because we need that 〈ωi, w−1
k′ (α∨j )〉 ≥ −1.
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is determined by the property that it is indecomposable with λ as its unique maximal weight.
Then λ appears in fact with multiplicity 1.

The following classification is, in the modular case, due to Ringel [28] and Donkin [10].

Proposition 3.11. (Classification of the indecomposable Uq-tilting modules) For
each λ ∈ X+ there exists an indecomposable Uq-tilting module, that we denote by Tq(λ),
with Uq-weight spaces Tq(λ)µ = 0 unless µ ≤ λ. Moreover, Tq(λ)λ ∼= K. In addition, given
any indecomposable Uq-tilting module T ∈ T , then there exists λ ∈ X+ such that T ∼= Tq(λ).

Thus, the Tq(λ)’s form a complete set of non-isomorphic indecomposables of T and all
indecomposable Uq-tilting modules Tq(λ) are uniquely determined by their maximal weight
λ ∈ X+, that is,

{indecomposable Uq-tilting modules} 1:1←→ X+. �

Proof. We start by constructing Tq(λ) for a given, fixed λ ∈ X+.
If the Weyl Uq-module ∆q(λ) is a Uq-tilting module, then we simply define Tq(λ) = ∆q(λ).
Otherwise, by Theorem 3.1, we can choose a Uq-weight µ2 ∈ X+ minimal such that

dim(Ext1
Uq

(∆q(µ2),∆q(λ))) = m2 6= 0 (note that all appearing Ext’s are finite-dimensional).

Then there is a non-splitting extension

0 // ∆q(λ) = M1
� � // M2

// // ∆q(µ2)⊕m2 // 0.

Note the important fact that necessarily µ2 < λ. This follows from the universal property of
∆q(λ) saying that

HomUq(∆q(λ),M) = {m ∈Mλ | E
(r)
i m = 0 for all i = 1, . . . , n, r ∈ N}

for any Uq-module M (here Mλ again denotes the λ-weight space of M). This is the dual of
the (q-version of the) Frobenius reciprocity, i.e. the dual of equation (4) in [4].

If M2 is a Uq-tilting module, then we set Tq(λ) = M2. Otherwise, by Theorem 3.1 again, we
can choose µ3 ∈ X+ minimal with dim(Ext1

Uq
(∆q(µ3),M2)) = m3 6= 0 and we get a non-split

extension

0 // M2
� � // M3

// // ∆q(µ3)⊕m3 // 0.

Again µ3 < λ and also µ3 < µ2.
And hence, we can continue as above and obtain a filtration of the form

(22) · · · ⊃M3 ⊃M2 ⊃M1 ⊃M0 = 0

which is a “∆q-filtration” by construction, since we have Mk′+1/Mk′
∼= ∆q(µk′+1)⊕mk′+1 for

all k′ = 0, 1, 2, . . . , where we use µ1 = λ and m1 = 1.
Thus, because there are only finitely many µ < λ (with µ ∈ X+), this process stops at some

point giving a Uq-module Mk. The Uq-module Mk has a ∇q-filtration, since otherwise there
would, by Proposition 3.5, exist a µk+1 ∈ X+ with Ext1

Uq
(∆q(µk+1),Mk) 6= 0. Moreover, we

have constructed a “∆q-filtration” for Mk in (22) which shows that Mk is a Uq-tilting module.
By construction, the Uq-tilting module Mk has a unique indecomposable summand Tq(λ)

with Tq(λ)λ = (Mk)λ ∼= K. This is the indecomposable Uq-tilting module we were looking for,
since by the Krull-Schmidt property, Tq(λ) is a Uq-tilting module.

Now let us suppose that T ∈ T is indecomposable. Choose any maximal Uq-weight λ of T .
Then we have HomU−v U0

v
(T,Kλ) 6= 0. By the Frobenius reciprocity (or, to be more precise, the
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q-version of it) from equation (4) in [4], we get a non-zero Uq-homomorphism f : T → ∇q(λ).
By duality, we also get a non-zero Uq-homomorphism g : ∆q(λ)→ T with f ◦ g 6= 0. Consider
now the diagram

(23)

∆q(λ) �
� ιλ //

g

$$

Tq(λ)
πλ // // ∇q(λ)

T

f

::

where ιλ is the inclusion of the first Uq-submodule in a ∆q-filtration of Tq(λ) and πλ is
the surjection onto the last quotient of in a ∇q-filtration of Tq(λ). Since both path in the
diagram (23) are non-zero, we can scale everything by some non-zero scalars in K such that (23)
commutes (which we assume in the following)4.

As in the proof of Proposition 3.5 (see also (12) in [4]), we see that

(24) Ext1
Uq

(∆q(λ), T ) = 0 = Ext1
Uq

(T,∇q(λ))⇒ Ext1
Uq

(coker(ιλ), T ) = 0 = Ext1
Uq

(T, ker(πλ))

holds. Here ker(πλ) and coker(ιλ) are the corresponding kernel and co-kernel respectively.
Thus, we see that the Uq-homomorphism g extends to an Uq-homomorphism g : Tq(λ)→ T

whereas f factors through T via f : T → Tq(λ). Then the composition f ◦g is an isomorphism
since it is so on Tq(λ)λ. Hence, Tq(λ) is a summand of T which shows T ∼= Tq(λ) since we
have assumed that T is indecomposable.

The other statements are direct consequences of the first two which finishes the proof. �

Remark 3.12. For a fixed λ ∈ X+ we have Uq-homomorphisms

∆q(λ) �
� ιλ // Tq(λ)

πλ // // ∇q(λ)

where ιλ is the inclusion of the first Uq-submodule in a ∆q-filtration of Tq(λ) and πλ is the
surjection onto the last quotient in a ∇q-filtration of Tq(λ). Note that these are only defined

up to scalars and we fix scalars in the following such that πλ ◦ ιλ = cλ (where cλ is again the
Uq-homomorphism from (9)).

Take any Uq-tilting module T ∈ T . An easy argument shows (see also the proof of Propo-
sition 3.5) the following crucial fact:

Ext1
Uq

(∆q(λ), T ) = 0 = Ext1
Uq

(T,∇q(λ))⇒ Ext1
Uq

(coker(ιλ), T ) = 0 = Ext1
Uq

(T, ker(πλ))

for all λ ∈ X+. Hence, we see that any Uq-homomorphism g : ∆q(λ)→ T extends to an Uq-
homomorphism g : Tq(λ)→ T whereas any Uq-homomorphism f : T → ∇q(λ) factors through

Tq(λ) via f : T → Tq(λ). N

Corollary 3.13. We have D(T ) ∼= T for T ∈ T , that is, all Uq-tilting modules T are self-dual.
In particular, we have for all λ ∈ X+ that

(T : ∆q(λ)) = dim(HomUq(T,∇q(λ))) = dim(HomUq(∆q(λ), T )) = (T : ∇q(λ)). �

4To see this, recall that there is an (up to scalars) unique Uq-homomorphism cλ : ∆q(λ)→ ∇q(λ).
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Proof. By the Krull-Schmidt property it suffices to show the statement for the indecomposable
Uq-tilting modules Tq(λ). Since D preserves characters, we see that D(Tq(λ)) has λ as unique
maximal weight, therefore D(Tq(λ)) ∼= Tq(λ) by Proposition 3.11. Moreover, the leftmost and
the rightmost equalities follow directly from Corollary 3.4. Finally

(Tq(λ) : ∆q(λ)) = (D(Tq(λ)) : D(∆q(λ))) = (D(Tq(λ)) : ∇q(λ)) = (Tq(λ) : ∇q(λ))

by definition and D(Tq(λ)) ∼= Tq(λ) from above, which settles also the middle equality. �

Example 3.14. Let us go back to the sl2 case again. Then we obtain the family (Tq(i))i∈N
of indecomposable Uq-tilting modules as follows.

Start by setting Tq(0) ∼= ∆q(0) ∼= Lq(0) ∼= ∇q(0) and Tq(1) ∼= ∆q(1) ∼= Lq(1) ∼= ∇q(1).
Then we denote by m0 ∈ Tq(1) any eigenvector for K with eigenvalue q. For each i > 1
we define Tq(i) to be the indecomposable summand of Tq(1)⊗i which contains the vector
m0 ⊗ · · · ⊗m0 ∈ Tq(1)⊗i. The Uq(sl2)-tilting module Tq(1)⊗i is not indecomposable if i > 1:
by Proposition 3.11 we have (Tq(1)⊗i : ∆q(i)) = 1 and

Tq(1)⊗i ∼= Tq(i)⊕
⊕
k<i

Tq(k)⊕multk for some multk ∈ N.

In the case l = 3, we have for instance Tq(1)⊗2 ∼= Tq(2) ⊕ Tq(0) since the tensor product
Tq(1)⊗ Tq(1) looks as follows (abbreviation mij = mi ⊗mj):

⊗ m1
1 //

q−1

��
m0

1
oo

q+1

��

m1

1

��

q−1
33

m11
1 //

1

��

q−2

//
m01

1
oo

1

��

+

q0
oo

m0

1

OO

q+1
33

m10
1 //

1

OO

q0
//

m00
1
oo

1

OO

q+2

oo

.

By construction, the indecomposable Uq(sl2)-module Tq(2) contains m00 and therefore has to
be the C-span of {m00, q

−1m10 + m01,m11} as indicated above. The remaining summand is
the 1-dimensional Uq-tilting module Tq(0) ∼= Lq(0) from before. N

The following is interesting in its own right.

Corollary 3.15. Let µ ∈ X+ be a minuscule Uq-weight. Then T = ∆q(µ)⊗d is a Uq-tilting
module for any d ∈ N and dim(EndUq(T )) is independent of the field K and of q ∈ K∗ and
are given by

dim(HomUq(M,N)) =
∑
λ∈X+

(M : ∆q(λ))(N : ∇q(λ)).

In particular, this holds for ∆q(ω1) being the vector representation of Uq = Uq(g) for g of
type A, C or D. �

Proof. Since µ ∈ X+ is minuscule: ∆q(µ) ∼= Lq(µ) is a simple Uq-tilting module for any field
K and any q ∈ K∗. Thus, by Proposition 3.10 we see that T is a Uq-tilting module for any
d ∈ N. Hence, by Corollaries 3.4 and 3.13, we have dim(EndUq(T )) =

∑
λ∈X+(T : ∆q(λ))2.

Now use the fact that χ(∆q(µ)) is as in the classical case which implies the statement. �
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3.3. The characters of indecomposable Uq-tilting modules. In this subsection we de-
scribe how to compute (Tq(λ) : ∆q(µ)) for all λ, µ ∈ X+ (which can be done algorithmically
in the case where q is a complex, primitive l-th root of unity). As an application, we illustrate
how to decompose tensor products of Uq-tilting modules. This shows that, in principle, our
cellular basis for endomorphism rings EndUq(T ) of Uq-tilting modules T (that we introduce
in [4, Section 4], arXiv version) can be made completely explicit.

Given an abelian category AB, we denote its Grothendieck group by K0(AB) and its split
Grothendieck group by K⊕0 (AB). We point out that the notation of the split Grothendieck
group also makes sense for a given additive category AD that satisfies the Krull-Schmidt
property where we use the same notation (we refer the reader unfamiliar with these and the
notation we use to [24, Section 1.2]).

By Propositions 2.9 and 2.11, a Z-basis of the Grothendieck group K0(Uq-Mod) is given
by isomorphism classes {[∆q(λ)] | λ ∈ X+}.

On the other hand, T is not abelian (see Example 3.9), but additive and satisfies the Krull-
Schmidt property. A Z-basis of K⊕0 (T ) is, by Proposition 3.11, spanned by isomorphism
classes {[Tq(λ)]⊕ | λ ∈ X+}.

Since both Uq-Mod and T are closed under tensor products, K0(Uq-Mod) and K⊕0 (T )
get an (in fact isomorphic) induced ring structure.

Corollary 3.16. The inclusion of categories ι : T → Uq-Mod induces an isomorphism

[ι] : K⊕0 (T )→ K0(Uq-Mod), [Tq(λ)]⊕ 7→ [Tq(λ)], λ ∈ X+

of rings. �

Proof. The set B = {[Tq(λ)] | λ ∈ X+} forms a Z-basis of K⊕0 (T ) by Proposition 3.11 and it
is clear that [ι] is a well-defined ring homomorphism.

Moreover, we have

(25) [Tq(λ)] = [∆q(λ)] +
∑

µ<λ∈X+

(Tq(µ) : ∆q(µ))[∆q(µ)] ∈ K0(Uq-Mod)

with Tq(0) ∼= ∆q(0) by Proposition 3.11. Hence, [ι](B) is also a Z-basis of K0(Uq-Mod) since
the ∆q(λ)’s form a Z-basis and the claim follows. �

Recall that Z[X] carries an action of the Weyl group W associated to the Cartan datum
(see below). Thus, we can look at the invariant part of this action, denoted by Z[X]W , which
is known as Weyl’s character ring.

We obtain the following (known) categorification result.

Corollary 3.17. The tilting category T (naively) categorifies Weyl’s character ring, that is,

K⊕0 (T ) ∼= Z[X]W as rings. �

Proof. It is known that there is an isomorphism K0(g-Mod)
∼=−→ Z[X]W given by sending

finite-dimensional g-modules to their characters (which can be regarded as elements in Z[X]W ).
Now the characters χ(∆q(λ)) of the ∆q(λ)’s are (as mentioned below Example 2.12) the

same as in the classical case. Thus, we can adopt the isomorphism from K0(g-Mod) to Z[X]W

from above (non-quantized!). Details can, for example, be found in [6, Chapter VIII, §7.7].
Then the statement follows from Corollary 3.16. �
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For each simple root αi ∈ Π let si be the reflection

si(λ) = λ− 〈λ, α∨i 〉αi, for λ ∈ E,

in the hyperplane Hα∨i
orthogonal to αi. These reflections si generate a group W , called Weyl

group, associated to our Cartan datum.
For any fixed l ∈ N, the affine Weyl group Wl

∼= W n lZΠ is the group generated by the
reflections sβ,r in the affine hyperplanes Hβ∨,r = {x ∈ E | 〈x, β∨〉 = lr} for β ∈ Φ and r ∈ Z.
Note that, if l = 0, then W0

∼= W .
For β ∈ Φ there exists w ∈ W such that β = w(αi) for some i = 1, . . . , n. We set lβ = li

where li = l
gcd(l,di)

. Using this, we have the dot-action of Wl on the Uq-weight lattice X via

sβ,r.λ = sβ(λ+ ρ)− ρ+ lβrβ.

Note that the case l = 1 recovers the usual action of the affine Weyl group W1 on X.

Definition 3.18. (Alcove combinatorics) The fundamental alcove A0 is

(26) A0 = {λ ∈ X | 0 < 〈λ+ ρ, α∨〉 < l, for all α ∈ Φ+} ⊂ X+.

Its closure A0 is given by

(27) A0 = {λ ∈ X | 0 ≤ 〈λ+ ρ, α∨〉 ≤ l, for all α ∈ Φ+} ⊂ X+ − ρ.

The non-affine walls of A0 are

∂̌Ai0 = A0 ∩ (Hα∨i ,0
− ρ), i = 1, . . . , n, ∂̌A0 =

n⋃
i=1

∂̌Ai0.

The set

∂̂A0 = A0 ∩ (Hα∨0 ,1
− ρ)

is called the affine wall of A0. Here α0 is the maximal short root. We call the union of all
these walls the boundary ∂A0 of A0. More generally, an alcove A is a connected component
of

E −
⋃

r∈Z,β∈Φ

(Hβ∨,r − ρ).

We denote the set of alcoves by AL. N

Note that the affine Weyl group Wl acts simply transitively on AL. Thus, we can associate
1 ∈Wl 7→ A(1) = A0 ∈ AL and in general w ∈Wl 7→ A(w) ∈ AL.

Example 3.19. In the case g = sl2 we have ρ = ω1 = 1. Consider for instance again l = 3.
Then k ∈ N = X+ is contained in the fundamental alcove A0 iff 0 < k + 1 < 3.

Moreover, −ρ ∈ ∂̌A0 and 2 ∈ ∂̂A0 are on the walls. Thus, A0 can be visualized as

• •
−ρ 0 1 2

where the affine wall on the right is indicated in red and the non-affine wall on the left is
indicated in green. N
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Example 3.20. Let us leave our running sl2 example for a second and do another example
which is graphically more interesting.

In the case g = sl3 we have ρ = α1 + α2 = ω1 + ω2 ∈ X+ and α0 = α1 + α2. Now consider
again l = 3. The condition (26) means that A0 consists of those λ = λ1ω1 + λ2ω2 for which

0 < 〈λ1ω1 + λ2ω2 + ω1 + ω2, α
∨
i 〉 < 3 for i = 1, 2, 0.

Thus, 0 < λ1 + 1 < 3, 0 < λ2 + 1 < 3 and 0 < λ1 +λ2 + 2 < 3. Hence, only the Uq(sl3)-weight
λ = (0, 0) ∈ X+ is in A0. In addition, we have by condition (27) that

∂̌A0 = {−ρ,−ω1,−ω2, ω1 − ω2, ω2 − ω1}, ∂̂A0 = {ω1, ω2, 2ω1 − ω2, 2ω2 − ω1}.
Hence, A0 can be visualized as (displayed without the −ρ shift on the left)

(1, 1)

•

• •

• •

0

ω2 ω1

2ω2+ω1 2ω1+ω2

α1α2

• •

• •

2ω12ω2

3ω13ω2

(0, 0)

•

• •

• •

−ρ

−ω1 −ω2

ω2 ω1

• •

• •

ω1−ω2ω2−ω1

2ω1−ω22ω2−ω1

where, as before, the affine wall at the top is indicated in red, the hyperplane orthogonal to
α1 on the left in green and the hyperplane orthogonal to α2 on the right in blue. N

We say λ ∈ X+ − ρ is linked to µ ∈ X+ if there exists w ∈ Wl such that w.λ = µ.
We note the following theorem, called the linkage principle, where we, by convention, set
Tq(λ) = ∆q(λ) = ∇q(λ) = Lq(λ) = 0 for λ ∈ ∂̌A0.

Theorem 3.21. (The linkage principle) All composition factors of Tq(λ) have maximal

weights µ linked to λ. Moreover, Tq(λ) is a simple Uq-module if λ ∈ A0.
If λ is linked to an element of A0, then Tq(λ) is a simple Uq-module iff λ ∈ A0. �

Proof. This is a slight reformulation of [1, Corollaries 4.4 and 4.6]. �

The linkage principle gives us now a decomposition into a direct sum of categories

T ∼=
⊕
λ∈A0

T λ ⊕
⊕
λ∈∂A0

T λ,

where each T λ consists of all T ∈ T whose indecomposable summands are all of the form Tq(µ)
for µ ∈ X+ lying in the Wl-dot-orbit of λ ∈ A0 (or of λ ∈ ∂A0). We call these categories blocks
to stress that they are homologically unconnected (although they might be decomposable).
Moreover, if λ ∈ A0, then we call T λ an l-regular block, while the T λ’s with λ ∈ ∂A0 are
called l-singular blocks (we say for short just regular and singular blocks in what follows).

In fact, by Proposition 3.11, the Uq-weights labelling the indecomposable Uq-tilting mod-
ules are only the dominant (integral) weights λ ∈ X+. Let DC = {x ∈ E | 〈x, β∨〉 ≥ 0, β ∈ Φ}.
Then these Uq-weights correspond blockwise precisely to the alcoves

AL+ = AL ∩ DC,
contained in the dominant chamber DC. That is, they correspond to the set of coset repre-
sentatives of minimal length in {wW0 | w ∈W1}. In formulas,

(28) Tq(w.λ) ∈ T λ! A(w) ∈ AL+ ! wW0 ⊂W1,

for all λ ∈ A0.
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Example 3.22. In our pet example with g = sl2 and l = 3 we have, by Theorem 3.21 and
Example 3.19 a block decomposition

T ∼= T −1 ⊕ T 0 ⊕ T 1 ⊕ T 2.

The Wl-dot-orbit of 0 ∈ A0 respectively 1 ∈ A0 can be visualized as

• • • • • •0 4 6 10 121 3 7 9 13 · · · · · ·dead end r = 1 r = 2 r = 3 r = 4 r = 5

Compare also to [5, (2.4.1)].
It turns out that, for K = C, both singular blocks T −1 and T 2 are semisimple (in particular,

these blocks decompose further), see Example 3.27 or [5, Lemma 2.25]. N

Example 3.23. In the sl3 case with l = 3 we have the block decomposition

T ∼= T −ρ ⊕ T −ω2 ⊕ T −ω1 ⊕ T ω1−ω2 ⊕ T ω2−ω1 ⊕ T (0,0) ⊕ T 2ω1−ω2 ⊕ T ω1 ⊕ T ω2 ⊕ T 2ω2−ω1

(note that the singular blocks are not necessarily semisimple anymore, even when K = C).
The Wl-dot-orbit in AC+ of the regular block T (0,0) looks as follows.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

r = 1

r = 2

r = 3

r = 1

r = 2

r = 1

r = 2

α1α2

 

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

(0, 0)

(1, 1)
(0, 3) (3, 0)

(1, 4) (4, 1)
(0, 6) (6, 0)(3, 3)

sα∨
0
,2

Here we reflect either in a red (that is, α0 = (1, 1)), green (that is, α1 = (2,−1)) or blue (that
is, α2 = (−1, 2)) hyperplane, and the r measures the hyperplane-distance from the origin
(both indicated in the left picture above). In the right picture we have indicated the linkage
(we have also displayed one of the dot-reflections).

Theorem 3.21 means now that Tq((1, 1)) satisfies

(Tq((1, 1)) : ∆q(µ)) 6= 0 ⇒ µ ∈ {(0, 0), (1, 1)}
and Tq((3, 3)) satisfies

(Tq((3, 3)) : ∆q(µ)) 6= 0 ⇒ µ ∈ {(0, 0), (1, 1), (3, 0), (0, 3), (4, 1), (1, 4), (3, 3)}.
We calculate the precise values later in Example 3.25. N

In order to get our hands on the multiplicities, we need Soergel’s version of the (affine)
parabolic Kazhdan-Lusztig polynomials, which we denote by

(29) nµλ(t) ∈ Z[v, v−1], λ, µ ∈ X+ − ρ.
For brevity, we do not recall the definition of these polynomials (which can be computed
algorithmically) here, but refer to [31, Section 3] where the relevant polynomial is denoted
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ny,x for x, y ∈ Wl (which translates by (28) to our notation). The main point for us is the
following theorem due to Soergel.

Theorem 3.24. (Multiplicity formula) Suppose K = C and q is a complex, primitive l-th
root of unity. For each pair λ, µ ∈ X+ with λ being an l-regular Uq-weight (that is, Tq(λ)
belongs to a regular block of T ) we have

(Tq(λ) : ∆q(µ)) = (Tq(λ) : ∇q(µ)) = nµλ(1).

In particular, if λ, µ ∈ X+ are not linked, then nµλ(v) = 0. �

Proof. This follows from [30, Theorem 5.12] (see also [31, Conjecture 7.1]). �

In addition to Theorem 3.24, we are going to describe now an algorithmic way to compute
(Tq(λ) : ∆q(µ)) for all Tq(λ) lying in a singular blocks of T . We point out that Theorem 3.26
below is valid for q ∈ K being a primitive l-th root of unity (where K is, in contrast to
Theorem 3.24, an arbitrary field).

Assume in the following that λ ∈ X+ is not l-regular. Set Wλ = {w ∈ Wl | w.λ = λ}.
Then we can find a unique l-regular Uq-weight λ ∈ Wl.0 such that λ is in the closure of the

alcove containing λ and λ is maximal in Wλ.λ. Similarly, we find a can find a unique l-regular
Uq-weight λ ∈ Wl.0 such that λ is in the closure of the alcove containing λ and λ is minimal

in Wλ.λ. Some examples in the g = sl3 case are

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

•λ
•
λ•λ

•µ
•
µ •µ

•ν

•ν

•
ν

0

We stress that, in the µ case above, Theorem 3.26 is not valid: recall that in those cases
Tq(µ) = ∆q(µ) = Lq(µ) = ∇q(µ) = 0 and thus, we do not have to worry about these in the
following.

Example 3.25. Back to Example 3.23: for ν = ω1 + ω2 = (1, 1) we have nνν(v) = 1 and
nν(0,0)(v) = v as shown in the left picture below. Similarly, for ξ = 3ω1 + 3ω2 = (3, 3) the only
non-zero parabolic Kazhdan-Lusztig polynomials are nξξ(v) = 1, nξ(1,4)(v) = v = nξ(4,1)(v),
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nξ(0,3)(v) = v2 = nξ(3,0)(v) and nξν(v) = v3 as illustrated on the right below.

ν :

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

v

1

ξ :

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

v3
v2 v2

v v
1

Therefore, we have, by Theorem 3.24, that (Tq(ν) : ∆q(µ)) = 1 if µ ∈ {(0, 0), (1, 1)} and
(Tq(ν) : ∆q(µ)) = 0 if µ /∈ {(0, 0), (1, 1)}. We encourage the reader to work out (Tq(ξ) : ∆q(µ))
by using the above patterns and Example 3.23. For all patterns in rank 2 see [32]. N

We are aiming to show the following Theorem (compare to Remark 3.26 in [4]).

Theorem 3.26. (Multiplicity formula - singular case) We have

(Tq(λ) : ∆q(µ)) = (Tq(λ) : ∆q(µ))

for all µ ∈Wl.λ ∩X+.

We consider the translation functors T ξ
′

ξ : T ξ → T ξ′ for various ξ, ξ′ ∈ X+ in the proof.

The reader unfamiliar with these and their basic properties can for example consider Part II,

Chapter 7 in [16]. We only stress here that T ξ
′

ξ : T ξ → T ξ′ is the biadjoint of T ξξ′ : T ξ′ → T ξ.

Proof. In order to prove Theorem 3.26, we have to show some intermediate steps. We start
with the following two claims.

(30) We have [∆q(λ
′) : Lq(λ)] = 1 for all λ′ ∈Wλ.λ.

Moreover, for all λ′ ∈Wλ.λ:

(31) there is a unique ϕ ∈ HomUq(∆q(λ
′),∆q(λ)) with [Im(ϕ) : Lq(λ)] = 1.

Here uniqueness is meant up to scalars.
Proof of (30): we have T λ

λ
(∆q(λ

′)) ∼= ∆q(λ). In addition, for any λ′′ ∈Wl.λ∩X+, we have

T λ
λ

(Lq(λ
′′)) ∼= Lq(λ) iff λ′′ = λ ∈ X+. This proves (30).

Proof of (31): we use descending induction. If λ′ = λ, then (31) is clear. So assume
λ′ < λ and denote by A′ the alcove containing λ′. Choose an upper wall H of A′ such that
the corresponding reflection sH belongs to Wλ. Then λ′′ = sH .λ

′ > λ′. Thus, by induction,
there exists an (up to scalars) unique non-zero Uq-homomorphism ψ : ∆q(λ

′′) → ∆q(λ) with

[Im(ψ) : Lq(λ)] = 1. We claim now that for all λ′ ∈Wλ.λ:

(32) there exists a unique ϕ̃ ∈ HomUq(∆q(λ
′),∆q(λ

′′)) with [Im(ϕ̃) : Lq(λ)] = 1.

Again uniqueness is meant up to scalars.
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Because (32) implies that ϕ = ψ◦ϕ̃ is the (up to scalars) unique non-zero Uq-homomorphism
we are looking for, it remains to show (32). To this end, choose ν ∈ H. Then we have a short
exact sequence

0 // ∆q(λ
′′) �
�

// T λν ∆q(ν) // // ∆q(λ
′) // 0.

This sequence does not split since T λν ∆q(ν) has simple head equal to Lq(λ
′). Therefore, the

inclusion

HomUq(∆q(λ
′),∆q(λ

′′)) ↪→ HomUq(∆q(λ
′), T λν ∆q(ν))

∼= HomUq(T νλ ∆q(λ
′),∆q(ν))

∼= EndUq(∆q(ν)) ∼= K

is an equality. So we can pick any non-zero Uq-homomorphism ϕ̃ ∈ HomUq(∆q(λ
′),∆q(λ

′′))
which will be unique up to scalars. Then Lq(λ

′) is a composition factor of Im(ϕ̃). This implies
that T ν

λ
ϕ̃ ∈ EndUq(∆q(ν)) is non-zero and thus, an isomorphism. In particular, Lq(λ) is a

composition factor of Im(ϕ̃), because T ν
λ
Lq(λ

′) 6= 0. Hence, (32) follows and thus, (31) holds.

We keep the notation from before.

(33) We have (Tq(λ) : ∆q(λ
′)) = 1 for all λ′ ∈Wλ.λ.

Proof of (33): by (31) we have HomUq(∆q(λ
′),∆q(λ)) ∼= K. This together with

HomUq(∆q(λ
′), Tq(λ)) ⊃ HomUq(∆q(λ

′),∆q(λ)) ∼= K
implies (33).

(34) We have T λλ Tq(λ) = Tq(λ).

Proof of (34): we have T λλ Tq(λ) = Tq(λ) ⊕ rest where rest is some Uq-tilting module with

Uq-weights < λ. However, applying T λ
λ

(·), we get

Tq(λ)⊕|Wλ| ∼= T λ
λ
Tq(λ)⊕ T λ

λ
(rest).

However, by (33), we also have

T λ
λ
Tq(λ) ∼= Tq(λ)⊕|Wλ|.

Hence, T λ
λ

(rest) = 0 which implies rest = 0: suppose otherwise. Then there exists λ̃ ∈ X+

with

0 6= HomUq(Lq(λ̃), rest) ⊂ HomUq(Lq(λ̃), T λλ Tq(λ)) ∼= HomUq(T λλ Lq(λ̃), Tq(λ)).

But then 0 6= T λ
λ
Lq(λ̃) ⊂ T λ

λ
(rest). This is a contradiction, hence, (34) follows.

We are now ready to prove the theorem itself. For this purpose, note that we get

(Tq(λ) : ∆q(w.λ)) = (Tq(λ) : ∆q(w.λ))) for all w ∈Wl with w.λ ∈ X+.

from (34). This in turn implies the statement of the theorem by the linkage principle, see
Theorem 3.21 in [4]. �

Since the polynomials from (29) can be computed inductively, we can use Theorems 3.24
and 3.26 in the case K = C to explicitly calculate the decomposition of a tensor product of
Uq-tilting modules T = Tq(λ1)⊗ · · · ⊗ Tq(λd) into its indecomposable summands:
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• Calculate, by using Theorems 3.24 and 3.26, (Tq(λi) : ∆q(µ)) for i = 1, . . . , d.
• This gives the multiplicities of T , by the Corollary 3.16 and the fact that χ(∆q(λ))

are as in the classical case.
• Use (25) to recursively compute the decomposition of T (starting with any maximal

Uq-weight of T ).

Example 3.27. Let us come back to our favourite case, that is, g = sl2, K = C and l = 3.
In the regular cases we have Tq(k) ∼= ∆q(k) for k = 0, 1 and the parabolic Kazhdan-Lusztig
polynomials are

njk(v) =


1, if j = k,

v, if j < k are separated by precisely one wall,

0, else,

for k > 1. By the above we obtain Tq(k) ∼= ∆q(k) for k ∈ N singular, hence, the two singular
blocks T −1 and T 2 are semisimple.

In Example 3.14 we have already calculated Tq(1)⊗Tq(1) ∼= Tq(2)⊕Tq(0). Let us go one step
further now: Tq(1)⊗ Tq(1)⊗ Tq(1) has only (Tq(1)⊗3 : ∆q(3)) = 1 and (Tq(1)⊗3 : ∆q(1)) = 2
as non-zero multiplicities. This means that Tq(3) is a summand of Tq(1)⊗Tq(1)⊗Tq(1). Since
Tq(3) has only (Tq(3) : ∆q(3)) = 1 and (Tq(3) : ∆q(1)) = 1 as non-zero multiplicities (by the
calculation of the periodic Kazhdan-Lusztig polynomials), we have

(35) Tq(1)⊗ Tq(1)⊗ Tq(1) ∼= Tq(3)⊕ Tq(1) ∈ T 1.

Moreover, we have (as we, as usual, encourage the reader to work out)

Tq(1)⊗ Tq(1)⊗ Tq(1)⊗ Tq(1) ∼= (Tq(4)⊕ Tq(0))⊕ (Tq(2)⊕ Tq(2)⊕ Tq(2)) ∈ T 0 ⊕ T 2.

To illustrate how this decomposition depends on l: assume now that l > 3. Then, which
can be verified similarly as in Example 3.19, the Uq-tilting module Tq(3) is in the fundamental
alcove A0. Thus, by Theorem 3.21, Tq(3) is simple as in the “classical” case. Said otherwise,
we have Tq(3) ∼= ∆q(3). Hence, in the same spirit as above, we obtain (as in the generic case)

(36) Tq(1)⊗ Tq(1)⊗ Tq(1) ∼= Tq(3)⊕ (Tq(1)⊕ Tq(1)) ∈ T 3 ⊕ T 1

in contrast to the decomposition in (35). N

5. Cellular structures: examples and applications

5.2. (Graded) cellular structures and the Temperley-Lieb algebras: a comparison.
Finally we want to present one explicit example, the Temperley-Lieb algebras, which is of par-
ticular interest in low-dimensional topology and categorification. Our main goal is to construct
new (graded) cellular bases, and use our approach to establish semisimplicity conditions, and
construct and compute the dimensions of its simple modules in new ways.

Fix δ = q + q−1 for q ∈ K∗.5 Recall that the Temperley-Lieb algebra T Ld(δ) in d strands
with parameter δ is the free diagram algebra over K with basis consisting of all possible

5The sl2 case works with any q ∈ K∗, including even roots of unity, see e.g. [5, Definition 2.3].
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non-intersecting tangle diagrams with d bottom and top boundary points modulo boundary
preserving isotopy and the local relation for evaluating circles given by the parameter6 δ:

= δ = q + q−1 ∈ K.

The algebra T Ld(δ) is locally generated by

1 =

1 i− 1 i i+ 1i+ 2 d

1 i− 1 i i+ 1i+ 2 d

· · · · · · , Ui =

1 i− 1 i i+ 1i+ 2 d

1 i− 1 i i+ 1i+ 2 d

· · · · · ·

for i = 1, . . . , d − 1 called identity 1 and cap-cup Ui (which takes place between the strand i
and i+ 1). For simplicity, we suppress the boundary labels in the following.

The multiplication y ◦ x is giving by stacking diagram y on top of diagram x. For example

◦ = ◦ = = ∈ T L3(δ).

Recall from [4, 5.1.3] (whose notation we use now) that, by quantum Schur-Weyl duality, we
can use [4, Theorem 3.9] to obtain a cellular basis of T Ld(δ). The aim now is to compare our
cellular bases to the one given by Graham and Lehrer in [12, Theorem 6.7], where we point out
that we do not obtain their cellular basis: our cellular basis depends for instance on whether
T Ld(δ) is semisimple or not. In the non-semisimple case, at least for K = C, we obtain a
non-trivially Z-graded cellular basis in the sense of [13, Definition 2.1], see Proposition 5.17.

We want to compare our cell datum (P, I, C, i) to the one of Graham and Lehrer (indicated
by a subscript GL) from [12, Section 6]. To this end, let us recall Graham and Lehrer’s cell
datum (PGL, IGL, CGL, iGL). The K-linear anti-involution iGL is given by “turning pictures
upside down”. For example

iGL7−→

For the insistent reader: more formally, the K-linear anti-involution iGL is the unique K-linear
anti-involution which fixes all Ui’s for i = 1, . . . , d− 1.

The data PGL and IGL are given combinatorially: PGL is the set Λ+(2, d) of all Young
diagrams with d nodes and at most two rows. For example, the elements of Λ+(2, 3) are

(37) λ = , µ = ,

6We point out that there are two different conventions about circle evaluations in the literature: evaluating
to δ or to −δ. We use the first convention because we want to stay close to the cited literature.
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where we point out that we use the English notation for Young diagrams. Now IλGL is the
set of all standard tableaux of shape λ, denoted by Std(λ), that is, all fillings of λ with non-
repeating numbers 1, . . . , d such that the entries strictly increase along rows and columns. For
example, the elements of Std(µ) for µ as in (37) are

(38) t1 = 1 3
2

, t2 = 1 2
3

.

The set PGL is a poset where the order ≤ is the so-called dominance order on Young
diagrams. In the “at most two rows case” this is µ ≤ λ iff µ has fewer columns (an example
is (37) with the same notation).

The only thing missing is thus the parametrization of the cellular basis. This works as
follows: fix λ ∈ Λ+(2, d) and assign to each t ∈ Std(λ) a “half diagram” xt via the rule that
one “caps off” the strands whose numbers appear in the second row with the biggest possible
candidate to the left of the corresponding number (going from left to right in the second row).
Note that this is well-defined due to planarity. For example,

(39) s = 1 2 3 6
4 5

 xs = , t = 1 3 4 5
2 6

 xt =

Then one obtains cλst by “turning xs upside down and stacking it on top of xt”. For example,

cλst = iGL(xs) ◦ xt = ◦ =

for λ ∈ Λ+(2, 6) and s, t ∈ Std(λ) as in (39). The map CGL sends (s, t) ∈ IλGL × IλGL to cλst.

Theorem 5.1. (Cellular basis for T Ld(δ) - the first) The quadruple (PGL, IGL, CGL, iGL)
is a cell datum for T Ld(δ). �

Proof. This is [12, Theorem 6.7]. �

Example 5.2. For T L3(δ) we have five basis elements, namely

cλcc = , cµt1t1 = , cµt1t2 = , cµt2t1 = , cµt2t2 =

where we use the notation from (37) and (38) (and the “canonical” filling c for λ). N

Before stating our cellular basis, we provide a criterion which tells precisely whether T Ld(δ)
is semisimple or not. Recall that there is a known criteria for which Weyl modules ∆q(i) are
simple, see e.g. [5, Proposition 2.7].

Proposition 5.3. (Semisimplicity criterion for T Ld(δ)) We have the following.

(a) Let δ 6= 0. Then T Ld(δ) is semisimple iff [i] = q1−i + · · ·+ qi−1 6= 0 for all i = 1, . . . , d
iff q is not a root of unity with d < l = ord(q2), or q = 1 and char(K) > d.

(b) Let char(K) = 0. Then T Ld(0) is semisimple iff d is odd (or d = 0).
(c) Let char(K) = p > 0. Then T Ld(0) is semisimple iff d ∈ {0, 1, 3, 5, . . . , 2p− 1}. �
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Proof. (a): We want to show that T = V ⊗d decomposes into simple Uq-modules iff d < l, or
q = 1 and char(K) > d, which is clearly equivalent to the non-vanishing of the [i]’s.

Assume that d < l. Since the maximal Uq-weight of V ⊗d is d and since all Weyl Uq-modules

∆q(i) for i < l are simple, we see that all indecomposable summands of V ⊗d are simple.
Otherwise, if l ≤ d, then Tq(d) (or Tq(d − 2) in the case d ≡ −1 mod l) is a non-simple,

indecomposable summand of V ⊗d (note that this arguments fails if l = 2, i.e. δ = 0).
The case q = 1 works similar, and we can now use [4, Theorem 4.13] to finish the proof of

(a).
(b): Since δ = 0 iff q = ± 2

√
−1, we can use the linkage from e.g. [5, Theorem 2.23] in the

case l = 2 to see that T = V ⊗d decomposes into a direct sum of simple Uq-modules iff d is odd
(or d = 0). This implies that T Ld(0) is semisimple iff d is odd (or d = 0) by [4, Theorem 4.13].

(c): If char(K) = p > 0 and δ = 0 (for p = 2 this is equivalent to q = 1), then we
have ∆q(i) ∼= Lq(i) iff i = 0 or i ∈ {2apn − 1 | n ∈ Z≥0, 1 ≤ a < p}. In particular,
this means that for d ≥ 2 we have that either Tq(d) or Tq(d − 2) is a simple Uq-module iff

d ∈ {3, 5, . . . , 2p − 1}. Hence, using the same reasoning as above, we see that T = V ⊗d is
semisimple iff d ∈ {0, 1, 3, 5, . . . , 2p−1}. By [4, Theorem 4.13] we see that T Ld(0) is semisimple
iff d ∈ {0, 1, 3, 5, . . . , 2p− 1}. �

Example 5.4. We have that [k] 6= 0 for all k = 1, 2, 3 is satisfied iff q is not a forth or a sixth
root of unity. By Proposition 5.3 we see that T L3(δ) is semisimple as long as q is not one of
these values from above. The other way around is only true for q being a sixth root of unity
(the conclusion from semisimplicity to non-vanishing of the quantum numbers above does not
work in the case q = ± 2

√
−1). N

Remark 5.5. The semisimplicity criterion for T Ld(δ) was already already found, using quite
different methods, in [36, Section 5] in the case δ 6= 0, and in the case δ = 0 in [23, Chapter 7]
or [27, above Proposition 4.9]. For us it is an easy application of [4, Theorem 4.13]. N

A direct consequence of Proposition 5.3 is that the Temperley-Lieb algebra T Ld(δ) for
q ∈ K∗ − {1} not a root of unity is semisimple (or q = ±1 and char(K) = 0), regardless of d.

5.2.1. Temperley-Lieb algebra: the semisimple case. Assume that q ∈ K∗ − {1} is not a root
of unity (or q = ±1 and char(K) = 0). Thus, we are in the semisimple case.

Let us first compare the cell datum of Graham and Lehrer with our cell datum. We have
the poset PGL consisting of all λ ∈ Λ+(2, d) in Graham and Lehrer’s case and the poset P
consisting of all λ ∈ X+ such that ∆q(λ) is a factor of T in our case.

The two sets are the same: an element λ = (λ1, λ2) ∈ PGL corresponds to λ1 − λ2 ∈ P.
This is clearly an injection of sets. Moreover, ∆q(i)⊗∆q(1) ∼= ∆q(i+ 1)⊕∆q(i− 1) for i > 0
shows surjectivity. Two easy examples are

λ = (λ1, λ2) = (3, 0) = ∈ PGL  λ1 − λ2 = 3 ∈ P,

and

µ = (µ1, µ2) = (2, 1) = ∈ PGL  µ1 − µ2 = 1 ∈ P ,

which fits to the decomposition as in (36).
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Similarly, an inductive reasoning shows that there is a factor ∆q(i) of T for any standard
filling for the Young diagram that gives rise to i under the identification from above. Thus,
IGL is also the same as our I.

As an example, we encourage the reader to compare (37) and (38) with (36).
To see that the K-linear anti-involution iGL is also our involution i, we note that we build

our basis from a “top” part gλi and a “bottom” part fλj and i switches top and bottom similarly
as the K-linear anti-involution iGL.

Thus, except for C and CGL, the cell data agree.
In order to state how our cellular basis for T Ld(δ) looks like, recall the following definition

of the (generalized) Jones-Wenzl projectors.

Definition 5.6. (Jones-Wenzl projectors) The d-th Jones-Wenzl projectors, which we
denote by JWd ∈ T Ld(δ), is recursively defined via the recursion rule

· · ·

· · ·

JWd =

· · ·

· · ·

JWd−1 − [d− 1]

[d]

· · ·

· · ·

JWd−1

JWd−1

where we assume that JW1 is the identity diagram in one strand. N

Note that the projector JWd can be identified with the projection of T = V ⊗d onto its
maximal weight summand. These projectors were introduced by Jones in [17] and then further
studied by Wenzl in [35]. In fact, they can be generalized as follows.

Definition 5.7. (Generalized Jones-Wenzl projectors) Given any d-tuple (with d > 0) of

the form ~ε = (ε1, . . . , εd) ∈ {±1}d such that
∑k

j=1 εj ≥ 0 for all k = 1, . . . , d. Set i =
∑d

j=1 εj .
We define recursively two certain “half-diagrams” t(ε1,...,εd,±1) via

t(ε1,...,εd,+1) = · · ·

· · ·

· · ·

tε

JWi+1

, t(ε1,...,εd,−1) = · · ·

· · ·

· · ·

tε

JWi−1

where t(+1) ∈ T L1(δ) is defined to be the identity element. By convention, t(ε1,...,εd,−1) = 0
if i − 1 < 0. Note that t(ε1,...,εd,±1) has always d + 1 bottom boundary points, but i ± 1 top
boundary points.

Then we assign to any such ~ε a generalized Jones-Wenzl “projector” JW~ε ∈ T Ld(δ) via

JW~ε = i(t~ε) ◦ t~ε,
where i is, as above, the K-linear anti-involution that “turns pictures upside down”. N

Example 5.8. We point out again that the t~ε are “half-diagrams”. For example, we have

t(+1) = , t(+1,+1) = − 1

[2]
, t(+1,−1) = , t(+1,−1,+1) =
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where we can read off the top boundary points by summing the εi’s. N

Note that Jones-Wenzl projectors are special cases of the construction in Definition 5.7, i.e.
JWd = JW(1,...,1). Moreover, while we think about the Jones-Wenzl projectors as projecting

to the maximal weight summand of T = V ⊗d, the generalized Jones-Wenzl projectors JW~ε

project to the summands of T = V ⊗d of the form ∆q(i) where i is as above i =
∑d

j=1 εj . To
be more precise, we have the following.

Proposition 5.9. (Diagrammatic projectors) There exists non-zero scalars a~ε ∈ K such
that JW ′~ε = a~εJW~ε are well-defined idempotents forming a complete set of mutually orthogo-
nal, commuting, primitive idempotents in T Ld(δ). �

Proof. That they are well-defined follows from the fact that no quantum numbers vanish if
q ∈ K∗ − {1} is not a root of unity.

The other statements can be proven as in [9, Proposition 2.19 and Theorem 2.20] (beware
that they call these projectors higher Jones-Wenzl projectors). �

Example 5.10. Recall from Example 3.27 that we have the following decompositions.

(40) V ⊗1 = ∆q(1), V ⊗2 ∼= ∆q(2)⊕∆q(0), V ⊗3 ∼= ∆q(3)⊕∆q(1)⊕∆q(1).

Moreover, there are the following ~ε vectors. We have ~ε1 = (+1) and

~ε2 = (+1,+1), ~ε3 = (+1,−1), ~ε4 = (+1,+1,+1), ~ε5 = (+1,+1,−1), ~ε6 = (+1,−1,+1).

We point out that (+1,−1,−1) does not satisfy the sum property from Definition 5.7 and
thus, does not count.

By construction, JW~ε1 is the identity strand in one variable and hence, is the projector on
the unique factor in (40). Moreover, we have

JW2 = JW~ε2 = − 1

[2]
, JW~ε3 =

where JW~ε2 and JW~ε3 are the (up to scalars) projectors onto the ∆q(2) and the ∆q(0) sum-
mand in (40) respectively. Furthermore, we have

JW3 = JW~ε4 = − [2]

[3]

(
+

)
+

1

[3]

(
+

)
is the projection to the ∆q(3) summand in (40). The other two projectors are (up to scalars)

JW~ε5 = − 1

[2]

(
+

)
+

1

[2]2
, JW~ε6 =

as we invite the reader to check. N

Proposition 5.11. ((New) cellular bases) The datum given by the quadruple (P, I, C, i)
for T Ld(δ) ∼= EndUq(T ) is a cell datum for T Ld(δ). Moreover, C 6= CGL for all d > 1 and
all choices involved in the definition of im(C). In particular, there is a choice such that all
generalized Jones-Wenzl projectors are part of im(C). �
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Proof. That we get a cell datum as stated follows from [4, Theorem 4.13] and the discussion
above.

That our cellular basis C will never be CGL for d > 1 is due to the fact that Graham and
Lehrer’s cellular basis always contains the identity (which corresponds to the unique standard
filling of the Young diagram associated to λ = (d, 0)).

In contrast, let λk = (d− k, k) for 0 ≤ k ≤ bd2c. Then

(41) T = V ⊗d ∼= ∆q(d)⊕
⊕

0<k≤b d
2
c

∆q(d− 2k)⊕mλk

for some multiplicities mλk ∈ Z>0, we see that for d > 1 the identity is never part of any of

our bases: all the ∆q(i)’s are simple Uq-modules and each ckij factors only through ∆q(k). In

particular, the basis element cλ11 for λ = λd has to be (a scalar multiple) of JW(1,...,1).
As in [4, 5.1.1] we can choose for C an Artin-Wedderburn basis of EndUq(T ) ∼= T Ld(δ).
By our construction, all basis elements ckij are block matrices of the form

Md 0 · · · 0
0 Md−2 · · · 0
...

...
. . .

...
0 0 · · · Mε


with ε = 0 if d is even and ε = 1 if d is odd (where we regard V as decomposed as in (41),
the indices should indicate the summands and Md−2k is of size mk ×mk).

Clearly, the block matrices of the form Ek
ii for i = 1, . . . ,mk with only non-zero entry in the

i-th column and row of Mk form a set of mutually orthogonal, commuting, primitive idem-
potents. Hence, by Proposition 5.9, these have to be the generalized Jones-Wenzl projectors

JWε for k =
∑k

j=1 εj . �

Example 5.12. Let us consider T L3(δ) as in Example 5.2 for any q ∈ K∗ − {1,± 2
√
−1} that

is not a critical value as in Example 5.4. Then T L3(δ) is semisimple by Proposition 5.3.
In particular, we have a decomposition of V ⊗3 as in (40). Fix the same order as in (40).

Then we can choose five basis elements as

cλcc = E11, cµt1t1 = E22, cµt1t2 = E23, cµt2t1 = E32, cµt2t2 = E33,

where we use the notation from (37) and (38) (and the “canonical” filling c for λ) again.
Note that cλcc corresponds to the Jones-Wenzl projector JW3 = JW(+1+1+1), c

µ
t1t1

corre-

sponds to JW(+1+1−1) and cµt2t2 corresponds to JW(+1−1+1). Compare to Example 5.10. N

Note the following classification result (see for example [27, Corollary 5.2] for K = C).

Corollary 5.13. We have a complete set of pairwise non-isomorphic, simple T Ld(δ)-modules
L(λ) for λ being a length-two partition of d with dim(L(λ)) = |Std(λ)|, where Std(λ) is the
set of all standard tableaux of shape λ. �

Proof. Directly from Proposition 5.11 and [4, Theorems 4.11 and 4.12] because mλ = |Std(λ)|
(with the notation from [4, Theorem 4.12]). �
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Example 5.14. The Temperley-Lieb algebra T L3(δ) in the semisimple case has

dim
(
L
( ))

= 1, dim

(
L

( ))
= 2.

Compare to (38). N

5.2.2. Temperley-Lieb algebra: the non-semisimple case. Let us assume that we have fixed
q ∈ K∗ − {1,± 2

√
−1} to be a critical value such that [k] = 0 for some k = 1, . . . , d. Then, by

Proposition 5.3, the algebra T Ld(δ) is no longer semisimple. In particular, to the best of our
knowledge, there is no diagrammatic analogon of the Jones-Wenzl projectors in general.

Proposition 5.15. ((New) cellular basis - the second) The datum (P, I, C, i) with C as
in [4, Theorem 3.9] for T Ld(δ) ∼= EndUq(T ) is a cell datum for T Ld(δ). Moreover, C 6= CGL

for all d > 1 and all choices involved in the definition of our basis. Thus, there is a choice such
that all generalized, non-semisimple Jones-Wenzl projectors are part of im(C). �

Proof. As in the proof of Proposition 5.11 and left to the reader. �

Note that we can do better: as in Example 3.22 one gets a decomposition

(42) T ∼= T −1 ⊕ T 0 ⊕ T 1 ⊕ · · · ⊕ T l−3 ⊕ T l−2 ⊕ T l−1,

where the blocks T −1 and T l−1 are semisimple if K = C. Compare also to [5, Lemma 2.25].
If we fix K = C: as explained in [5, Section 3.5] each block in the decomposition (42) can

be equipped with a non-trivial Z-grading coming from Khovanov and Seidel’s quiver algebra
from [19]. Hence, we have the following.

Lemma 5.16. The C-algebra EndUq(T ) can be equipped with a non-trivial Z-grading. Thus,
T Ld(δ) over C can be equipped with a non-trivial Z-grading. �

Proof. The second statement follows directly from the first using quantum Schur-Weyl duality.
Hence, we only need to show the first.

Note that T = V ⊗d decomposes as in (41), we can order this decomposition by blocks. Each
block carries a Z-grading coming from Khovanov and Seidel’s quiver algebra (as explained in
details in [5, Section 3]). In particular, we can choose the basis elements cλij in such a way

that we get the Z-graded basis obtained in [5, Corollary 4.23]. Since there is no interaction
between different blocks, the statement follows. �

Recall from [13, Definition 2.1] that a Z-graded cell datum of a Z-graded algebra is a cell
datum for the algebra together with an additional degree function deg :

∐
λ∈P Iλ → Z, such

that deg(cλij) = deg(i) + deg(j). For us the choice of deg(·) is as follows.

If λ ∈ P is in one of the semisimple blocks, then we simply set deg(i) = 0 for all i ∈ Iλ.
Assume that λ ∈ P is not in the semisimple blocks. It is known that every Tq(λ) has

precisely two Weyl factors. The gλi that map ∆q(λ) into a higher Tq(µ) should be indexed by

a 1-colored i whereas the gλi mapping ∆q(λ) into Tq(λ) should have 0-colored i. Similarly for

the fλj ’s. Then the degree of the elements i ∈ Iλ should be the corresponding color. We get

the following. (Here C is as in [4, Theorem 3.9].)

Proposition 5.17. (Graded cellular basis) The datum (P, I, C, i) supplemented with the
function deg(·) from above is a Z-graded cell datum for the C-algebra T Ld(δ) ∼= EndUq(T ).�
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Proof. The hardest part is cellularity which directly follows from [4, Theorem 3.9]. That the
quintuple (P, I, C, i,deg) gives a Z-graded cell datum follows from the construction. �

Example 5.18. Let us consider T L3(δ) as in Example 5.12, namely q being a complex,
primitive third root of unity. Then T L3(δ) is non-semisimple by Proposition 5.3. In particular,
we have a decomposition of V ⊗3 different from (40), namely as in (35). In this case P = {1, 3},
I3 = {1, 3} and I1 = {1}. By our choice from above

deg(i) =

{
0, if i = 1 ∈ I1 or i = 3 ∈ I3,

1, if i = 1 ∈ I3.

As in Example 5.12 (if we use the ordering induced by the decomposition from (35)), we can
choose basis elements as

cλcc = E11, cµt1t1 = E22, cµt1t2 = E21, cµt2t1 = E12, cµt2t2 = E33,

where we use the notation from (37) and (38) (and the “canonical” filling c for λ) again.
These are of degrees 0, 1, 1, 2 and 0 respectively. We also note the difference to the basis in
the semisimple case from Example 5.12. N

Remark 5.19. Our grading and the one found by Plaza and Ryom-Hansen in [26] agree (up
to a shift of the indecomposable summands). To see this, note that our algebra is isomorphic
to the algebra K1,n studied in [7] which is by [7, (4.8)] and [8, Theorem 6.3] a quotient of
some particular cyclotomic KL-R algebra (the compatibility of the grading follows for example
from [14, Corollary B.6]). The same holds, by construction, for the grading in [26]. N

Corollary 5.20. Let K = C. We have a complete set of pairwise non-isomorphic, simple
T Ld(δ)-modules L(λ) for λ ∈ Λ+(2, d) such that Tq(λ) is a summand of T = V ⊗d with

dim(L(λ)) = mλ, where mλ is the multiplicity of Tq(λ) as a summand of T = V ⊗d. �

Proof. As in Corollary 5.13. �

Example 5.21. If q is a complex, primitive third root of unity, then T L3(δ) has

dim
(
L
( ))

= 1, dim

(
L

( ))
= 1.

Note the contrast to the semisimple case from Example 5.14. N

Remark 5.22. In the case K = C we can give a dimension formula, namely

dim(L(λ)) = mλ =

{
|Std(λ)|, if λ1 − λ2 ≡ −1 mod l,∑

µ=w.λ,µ≥λ∈Λ+(2,d)(−1)`(w)|Std(µ)|, if λ1 − λ2 6≡ −1 mod l,

where w ∈ Wl is the affine Weyl group and `(w) is the length of a reduced word w ∈ Wl.
This matches the formulas from, for example, [2, Proposition 6.7] or [27, Corollary 5.2]. In
the case where char(K) > 0 one can in principle also obtain a formula. But this time we do
not encourage the reader to work out the (rather complicated) formula. N
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