AFFINE QUIVER SCHUR ALGEBRAS AND p-ADIC GL,
VANESSA MIEMIETZ, CATHARINA STROPPEL

ABSTRACT. In this paper we consider the (affine) Schur algebra introduced
by Vignéras as the endomorphism algebra of certain permutation modules
for the lwahori-Matsumoto Hecke algebra. This algebra describes, for a
general linear group over a p-adic field, a large part of the unipotent block
over fields of characteristic different from p. We show that this Schur alge-
bra is, after a suitable completion, isomorphic to the quiver Schur algebra
attached to the cyclic quiver. The isomorphism is explicit, but nontrivial.
As a consequence, the completed (affine) Schur algebra inherits a grading.
As a byproduct we obtain a detailed description of the algebra with a basis
adapted to the geometric basis of quiver Schur algebras. We illustrate the
grading in the explicit example of GL2(Qs) in characteristic 3.
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This paper deals with affine Schur algebras for p-adic groups over fields of char-
acteristic different from p. Classical Schur algebras were introduced by Sandy
Green [Gre80] as an algebraic tool to study polynomial representations of the
general linear group GL,, over arbitrary fields and named after Schur because
they arise as the endomorphism ring of the sum of certain permutation modules
of the symmetric group S,,. Dipper and James [DJ89] introduced ¢-Schur alge-
bras over arbitrary fields to study the modular representation theory of the finite

1



2 VANESSA MIEMIETZ, CATHARINA STROPPEL

general linear groups GL;,(IF;) in non-describing characteristic. The Schur alge-
bras we consider in this paper are their analogues for the representation theory
of the p-adic group GL,,(E), where E is a finite extension of Q,, over a field of
characteristic different from p. As a main result, we show that (after a suitable
completion) this algebraically defined algebra has a geometric realization as a
convolution algebra with underlying vector space the equivariant cohomology of
some partial quiver flag varieties introduced in [SW11] under the name quiver
Schur algebras.

Let k be an algebraically closed field of characteristic £ # p, such that the
cardinality of the residue field of E is not congruent to 1 modulo £. We are
interested in the category of smooth representations of G = GL,,(F) over the
field k (or equivalently the category of nondegenerate representations of the
global Hecke algebra of locally constant compactly supported functions on G).
This is known to have a block decomposition by inertial classes of supercuspidal
support [B84], [Vig98], [SS14]. In this article, we are interested in the so-called
unipotent block B which contains the trivial representation.

As in the case of GL,,(F,), the Schur algebra will not describe the whole unipo-
tent block, but rather some subcategory B! which is the lowest layer in a finite
filtration B! C B2 C B3 C ... C B. Namely, let I C G be an lwahori subgroup
and let Z be the annihilator of the G-representation k[I\G] (inside the global
Hecke algebra). Then B C B is the full subcategory consisting of all represen-
tations annihilated by Z¢. The categories 3* are abelian. It is proved in [Vig03]
that the first layer B! is equivalent to the category of all modules for the affine
Schur algebra S,

B' =S — Mod, (1.1)

where S is defined as the endomorphism ring

S = Endypay (@k[PJ\G/1]> = Endy (@v JH>.

JCI JCI

Here H = k[I\G/I] is the (affine) Iwahori-Matsumoto Hecke algebra, [IM65],
and the sum is taken over all standard parahoric subgroups P’ attached to a
subset J of the set I of (finite) simple reflections, and v ;H is the corresponding
trivial representation induced to H. In particular, S contains H as an idempotent
subalgebra from setting J = (). Note however that Bl alias S — Mod, is in
general not equivalent to % — Mod, since B! contains in addition the cuspidal
representations, which are not included in the subcategory H—Mod of S—Mod.

We expect that B in fact only differs from B! by self-extensions depending on
the cuspidal support of the corresponding simple modules, and thus B! contains
quite detailed information about the unipotent block B.

Note that the classification of irreducible representations in B! (or equivalently
in the unipotent block B) is provided by [Vig98], [MS14], and a convenient
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labelling set for the irreducible modules is given by certain multisegments, ex-
tending the Bernstein-Zelevinsky classification of irreducible modules for the
Iwahori-Matsumoto Hecke algebras, [BZ76], [Zel80] in characteristic zero. The
block decomposition and classification in [Vig98] is via the local Langlands cor-
respondence for GL,, in characteristic £ # p, that is an extension of the local
Langlands correspondence over the complex numbers, [HTO01], [Har08], [Hen00],
[Scho13] (or [Wed08] for an overview). In particular, this gives the rank of the
Grothendieck group of B!,

In this article, we take this one step further by providing tools for a better under-
standing of extensions between simple modules and moreover of the structure
and the homological properties of the categories involved, as well as making
a connection with geometry. To do so, we compare the affine Schur algebras
to the quiver Schur algebras from [SW11] attached to the cyclic quiver with e
vertices (viewed as the oriented affine Dynkin diagram for sl.). These algebras
contain the so-called quiver Hecke algebras or KLR-algebras, originally intro-
duced in [KL09], [Rou08], see also [VV11]. Over k = C, their graded module
categories furthermore provide by [SW11] a categorification of the generic Hall
algebra (in the sense of [Schil2]) for the cyclic quiver with e vertices. Hereby e
is the multiplicative order modulo ¢ of the cardinality of the residue field of E
and e =00 if £ =0.

Given a fixed dimension vector d for the cyclic quiver on e vertices, one con-
siders the space of flagged nilpotent representations with dimension vector
d, that is, representations together with a filtration such that the associated
graded is semisimple. In contrast to the KLR-algebras we allow arbitrary par-
tial flags instead of full flags only. Fixing a sequence X of dimension vec-
tors for the successive quotients we denote this space Q(j\) Following the
ideas of Chriss and Ginzburg [CG10] we consider the “Steinberg type” vari-
ety Z(\, 1) = Q(A) XRepy Q(f2). The quiver Schur algebra Agq is then its
GL4(C)-equivariant Borel-Moore homology

Ag = HELL (2 (i, ),
(Ai)

equipped with the convolution product. By construction, this algebra comes

along with a Z-grading and with a faithful representation, see [SW11].

Crucial for us here is that via the faithful representation we see that the quiver
Schur algebra can be defined over any field, in particular over the field k.

Main result: Our main result (Theorem 9.7) is that the affine Schur algebra
and the quiver Schur algebra (both over k) are isomorphic as algebras after
suitable completions. More precisely, we construct a sequence of isomorphisms
of algebras

~ Proposition 9.1 Proposition 9.6 = Proposition 9.4 -~

Si ai Bi Ai,
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where the intermediate algebras are certain twisted versions of quiver Schur
algebras. This, in particular, implies that the category of representations M in
B! with fixed generalized central character (in the sense that each element in
M is annihilated by some power of this central character) inherits a grading.
This category, in particular, includes blocks of finite-length representations.

The existence of such a Z-grading seems to be quite unexpected and has no
explanation in the p-adic representation theory at the moment. Although the
modules are of infinite length, the graded pieces are finite dimensional and
so the grading allows us to consider Jordan-Holder multiplicities degree-wise
where they then, in fact, become finite and well-defined. Hence we can use
formal power series to express the graded multiplicities.

In small examples, our isomorphism allows us to give a complete and explicit
description of this category in terms of the path algebra of a quiver with gen-
erators and relations, an example is given in Section 10. In particular, it allows
us to compute extensions between simple modules in small examples. This pro-
vides a first step towards general results about the homological algebra of B!,
based on results on quiver Hecke algebras.

The proof of the main result relies on a very careful comparison of faithful
representations of all involved algebras. The final result is then an explicit
(non-trivial) isomorphism.

Besides the main theorem, the paper contains some fundamental results about
the algebras involved. For instance, we construct several generating sets for the
affine Schur algebras (see in particular Corollary 4.13 and Proposition 6.19), ex-
plicit faithful representations (in Section 4.1) and geometrically adapted bases
(in Section 4.4). The paper also contains (see Section 8.3) explicit formulae
for Demazure (divided difference) operators interacting with multiplication by
polynomials, which we believe should play an important role in a possible cat-
egorification result. They generalise crucial formulae from the categorification
of quantum groups, see e.g. [KL10], [KLMS12], and well-known formulae from
the geometry of flag varieties.

In characteristic zero and for generic g, the affine ¢-Schur algebra was studied in
detail by Richard Green [Gre99] who also realised it as a quotient of the quantum
group for ;i[n. In this case a complete presentation of the algebra is available,
[DGO7]. In our more general situation such a presentation does not exist yet,
but our faithful representations turn the problem of finding such a presentation
into a problem of linear algebra. Moreover our explicit formulae should make
it possible to generalise the geometric results for quiver Schur algebras defined
over k = C to the positive characteristic case with ¢ a root of unity.

We have tried to make this paper as self-contained as possible, in order to
make it accessible to readers both from a representation theoretic or a number
theoretic background.
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2. PRELIMINARIES

We fix a prime p and a natural number n > 2 and consider the general linear
group G = GL,,(E) for a finite extension E of Q, the field of p-adic numbers.
The field E has a local ring o of integers, whose quotient by its maximal ideal p
is a finite field of characteristic p. We let ¢ denote the cardinality of this residue
field. We furthermore fix an algebraically closed field k of characteristic £ > 0,
¢ = p and let e be the multiplicative order of ¢ in k. We assume ¢ # 1 mod /.

2.1. The extended affine Weyl group. We start by recalling the definition
and basic facts of the extended affine Weyl group attached to G. For more
details see e.g. [IM65] or [Gre02], [Lus83] for a description in terms of periodic
permutations.

The extended affine Weyl group associated to G is the group W generated by
a set Ip = {so,...,sn—1} of simple reflections of order two and an element 7
of infinite order, given by the following presentation:

2 — 1 = g
W = <7',Sz'70§i§n—1 T T SHT>. (2.1)

Si+15i%i11 = SiSir1Si
where i € {0,...,n — 1} with i =7 mod n.

Using the relation 7s; = s;—7 we can (in a unique way) write every element
w € W as 2717 for some x contained in the subgroup generated by Iy and j € Z.
Define the length of w = x77 as ¢(w) = £(z), where {(x) = r with » minimal

such that x = s;, - - - 5;, for some i; €0,...,n — 1.

We view W as a subgroup of G by choosing lifts of its elements as follows: For
i =1,...,n—1, we choose the corresponding permutation matrix interchanging
the ith and (i + 1)st rows and columns. For sy we take the matrix with entry
1 in position (j, ) for j =2,...,n— 1, the uniformizer w (a fixed generator of
p) in position (n,1) and its inverse o~ in position (1,n), and all other entries
being zero. Finally 7 has @ in position (n,1) and 1 in positions (j,j + 1) for
7 =1,....,n—1, with again all other entries being zero.

There is another presentation of W as semi-direct product & x X, where & is
the symmetric subgroup generated by I = {s1,...,s,-1} and X is a free abelian
(multiplicative) group generated by X1, ..., X, on which & acts by permuting
the generators. More specifically, a general element of X is a Laurent monomial
Xt X2 with a; € Z and s;X;8; = X;+1. A representative of X; in G can
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be chosen to be a matrix with 1's along the diagonal, except in position (i, 1)
where we put the uniformizer w.

Lemma 2.1. An isomorphism of groups W = & x X is given by
si — s (1=1,...,n—1),
So > Sp—1 "'525182...Sn,1X1X;1, (22)
T = Sn—l"'Sle-

Its inverse sends X1 to s1--- 8,17 and of course s; to s; for1 <i<n—1.

Proof. A direct computation shows that the assignments define group homo-
morphisms which are mutually inverse. O

From now on we will identify the two presentations (so that for instance the
equality (*) in the next formula makes sense).

Let b be the automorphism of W fixing generators s1,..., s, and sending X;
to Xi_1 fori =1,...,n. For convenience, we record that

b _ 1y
SO_Sn_l...Sl...Sn_le Xn_Sn_l...sl...Sn_lSOSn_l...Sl...Sn_l
Tb = STL—I"'SIX]__I = Sn_l...sl/r*lsn_l...sl'

Lemma 2.2. Let wp e W withw € & andp = X{*--- X2 € X.

i.) If a; > 0 for all i € {1,...,n}, then wp can be expressed in terms of
generators from 1 and T (involving only positive powers of T ).
i.) If a; < 0 for all i € {1,...,n}, then wp can be expressed in terms of

generators from 1 and 71 (involving only negative powers of T ).
Proof. This follows directly from the fact that X; = s;41 - Sp—1781...5;. U

2.2. Parabolic subgroups and shortest double coset representatives. For
a subset J C Iy, we denote by W; = (s; | s; € J) the parabolic subgroup
generated by J. Note that this is a finite group, isomorphic to the direct
product of some symmetric groups.

Let now J, K C I. Then each double coset in Wx\W /W ; contains a unique
shortest (i.e. minimal length) coset representative. We denote the set of short-
est double coset representatives by D ;. If moreover Ji, Jy are both sub-
sets of K C I, we denote the (finite) set of shortest coset representatives in
WJ1 \WK/WJQ by DJKLJQ-

Ford € Dk, j, the set dJNK is defined as the intersection of K with all elements
in W of the form dsjd~! for s; € J, ie. dJNK = {s € K | d'sd € J}.
Moreover we abbreviate dJ = dJ N 1.

For d € Dk, ; and any element w in WxdW , there exist unique elements
wrg € Wi, wy € Wy, and a € DZijfleJQ)' respectively b € Dé(de such that

w = wgda =bdwy; with (w) = l(wg)l(d)l(a) =1(b)(d)l(wy). (2.3)
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2.3. Another set of double coset representatives. Let J C I. A monomial
Xt Xf» € X is called J-dominant if a; > a; for all ¢ < j such that s; and
sj are conjugate in W;. It is called J-antidominant if a; < a; for all i < j
as above. We denote by %_; and ?J the set of J-dominant and the set of
J-antidominant elements respectively. Note that each W j-orbit in X contains
a unique J-dominant element and a unique J-antidominant element.

Proposition 2.3. Let J, K C 1. The sets
Agg = {dp |d e DHK,Jap € ¥d*1KﬂJ} and
F
Vig = {dP |d€ D j.p€ :{d—lKﬂJ}

both form a complete set of inequivalent coset representatives in W g \W /W ;.

Proof. We only prove the first claim, since the second one is analogous. We
first show that every double coset in Wi \W/W contains an element from
Ak, 7. We know it contains an element from Dg ;, so let y € Dk y and
write y = wf for w € &, f € X. Using (2.3), we can find d € DHKJ,wK €
Wrk,a € Dj—leJ,(i) such that w = wida. Then y = wid(afa=)a. Now let
t € Wy-1xgny such that p = tafa='t~! € X is J-dominant. Then dtd~! €
Wixnas € Wi and therefore y = widtd *dpa € W gdpW ; with d(afa™!) €
Af, as claimed.

Conversely, we need to show that the element dp is the unique element in
WdpW j with d € DHK’J and p € ?UHKQJ, so take an element widpwy €
WidpW j and write it as widpws = of with 0 € &, f € X. Note that nec-
essarily 0 = widws and f = w;lpwg. Assume o € DE{,J and f € X ;1
Then widws = d, so writing w1 = ab with a € Défde, b € Wyynk and thus
d = widwy = ad(d~'bd)wy with (d~1bd)ws € W, we have a presentation of
d of the form given in (2.3), from which we deduce a = 1 and (d~!bd)ws = 1,
in particular wo € Wy-1xn;. Hence y = dw;lpwg with wa € Wy—1,~;. Since
p is the unique d~'K N J-dominant element in its W -1 -orbit, it follows
that w;lpwg = p and hence y = dp. [l

3. THE HECKE ALGEBRA AND HECKE MODULES

The goal of this section is to define the lwahori-Matsumoto-Hecke algebra,
originally introduced in [IM65], and to construct a faithful representation. Most
of the statements can be found in [Lus89]. We collect some basic facts and give
detailed proofs for those for which we could not find an appropriate reference.

3.1. The Iwahori-Matsumoto Hecke algebra of G. We start with the fol-
lowing presentation of the Hecke algebra due to Bernstein:
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Definition 3.1. The Iwahori-Matsumoto Hecke algebra associated with G is
the unitary k-algebra H = #,, generated by T1,...,T},_1, and X;, ... XF!,
subject to the defining relations

H1) (T;—q(Ti+1)=0, fori1<i<n-—1,
(H-2) T,T; = T;T; if i —j]>1, forl1<i,j<n-1,
(H-3) T T = T TiTin for1<i<n-—2,
(H-4) XX '=1=Xx;'X; for1<i<n-—1,
(H—5) XZ‘X]' = Xin for 1 < 1 <n-— 1,
(H-6) ;X = X;T; ifli—j]>1, forl1<i,j<n-1,
(H—?) TZXZE = qu-l—l for 1 < 1 <n-— 2,

where ¢ is the cardinality of the residue field of E.

Note that in particular, fori =1,...,n —1,

(T~ )T = —(T,—q) and (T,+ )T =q(Ti+1).  (3.1)
Moreover, the T; are invertible with

T7'=q¢ 'Ti+ (¢ =1) and T = (¢ - 1)Ti +q. (3.2)

The following two sets are k-bases of #, [Lus89, Proposition 3.7]:
{X{* - Xin Ty |w € S,a; €2}, {TpX{* - Xom|weS,a;€Z} (3.3)

We denote by P = P, = ]k[Xlil, ..., X1 the subalgebra of H generated by
the Xl-il, wherei = 1,...,n. Note that the subalgebra in P given by symmetric
(Laurent) polynomials is central by (H-7).

The original definition of the Iwahori-Matsumoto Hecke algebra of G over the
field k is the convolution algebra k[I\G/I] of compactly supported I-bi-invariant
functions on G with values in k, where I is the Ilwahori subgroup. Any such
function can be written as >, cw GwXIwl With some a,, € k where 1,1 is the
characteristic function on the double coset Twl.

Abbreviating T\, = x1wr1 gives us the following presentation, [IM65, Theorem
3.5], of k[I\G/I]: The algebra is generated by T, for i =0,...n — 1 and T
subject to relations (using notation as in (2.1)):

T821' = (q - 1)TS¢ +q, Tsst;.Tsi_Tl = TS;Tsst;a TTTSZ. = Tsi_—lTT (34)

The following isomorphism between k[I\G/I] and the Bernstein presentation
justifies the twofold use of the same notation:

Lemma 3.2. We have an isomorphism of k-algebras
©: kI\G/I] - H
T, — T, (i=1,...,n—1),
T = XX (T T Ty Tpon) ™,
T, = g "OPT - TiX

This isomorphism sends T* to X1 --- X,,.



AFFINE QUIVER SCHUR ALGEBRAS AND p-ADIC GL, 9

Proof. By definition the map preserves the first two relations in (3.4). For the
last one note that the assignment for T is precisely such that this relation holds
for ¢ = 1. Abbreviating z = T,,_1--- 17 and using the relation TiillTiTZ-,l =
TiTi,lT[I for 2 <4 < n—1 we deduce T[_llzXlTl- = zT[leTi. Hence it
remains only to check one case of the last relation namely that 7, T, T.~! maps
to T, _, which is done by computing the image of 72Ty, T.~2 and using the fact
that

(Tn1 - T1X1)% = Tyo1 Tn—2Tn1Tn3Tp—2Ty—aTs ... T T X1 T X1
=T 2T 1Ty 3Ty 2T 4Ty 3... TYT3 T T5T X111 X,
=qTn 2T 1Th 3T 2T 4Th 3... ToT5T1To X1 Xo,
which, setting T}, o1, 1T 3T oTh—4Th—3...T5T5TT5 = h, then gives
(Tn—l cee T1X1)2T1 (Tn—l s T1X1)72 = thXQTl(XlXQ)flhil
=hTyh ' =T, k™' =T, .
Hence we have a well-defined surjective algebra homomorphism. To see that
it is an isomorphism, recall that the T),, w € W =2 & x X form a basis of

k[I\G/I], and consider the (second) basis of # from (3.3). Then comparing ©
with Lemma 2.1 directly shows that © identifies the two bases. U

From now on we will freely identify the two presentations.

3.2. The ideals v ;H. For J C I with corresponding parabolic subgroup W of
W we denote by H; C H the (finite-dimensional) Hecke subalgebra generated
by {T; | s; € J} and define

vy = Z Ty, and V= Z (—q)*l(w)Tw. (3.5)
weW weWy

We often abbreviate v = vy and v = vy. Note that kv; and kv ; are the
1-dimensional trivial respectively sign (right) H j-modules via (3.1). They gen-
erate the following right ideals in H which play the role of permutation modules
in the representation theory of the symmetric group.

Lemma 3.3. The right ideals
H. = {heH|(T;—q)h=0 for all i such that s; € J},
Hly = {h€H|(Ti+1)h =0 forall i such that s; € J}
are principal right ideals in H, generated by v respectively V ;.
Proof. Clearly, v is contained in H{, . Now # is a by (3.3) a free left module
over H ;. Therefore, we obtain
His ={h € Hyj@u, H | (Ti — q)h = 0 for all i such that s; € J} = v, H

and the first claim follows. The second is similar. O
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Corollary 3.4. In case J C 1, a k-basis for v jH respectively ¥V ;H is given by
{TuX{ - Xor lwe D02}

Proof. This follows directly from Lemma 3.3 and (3.3). O

Note that the ideals v;H and Vv ;H have isomorphic endomorphism rings. To
pass between them we will later need the algebra automorphism § of H, which
is the g-analogue of b, defined on the generators by

T, = TP=q—1-T =—qT; ", (i=1,...,n—1),

3.6
X; = X]ﬂ.:X;1 (J=1,....n). (36)

Remark 3.5. If f € P is s;-invariant, then fTZ-ﬁ = Tiﬁf fori=1,...,n—1.

3.3. A completion of . Recall, [Lus89, Proposition 3.11], that the centre of
‘H is given by

ZH) = k(X ... XIS, (3.7)
Fora= (ai,...,ay) € (k*)" define the corresponding central character
Xa : Z(H) — k, by restriction from X; — a;.

Two characters y, and xa coincide if and only if a and a’ belong to the same
G-orbit. We can decompose any finite-dimensional representation M of H as
M = EBX M., where X runs over a set of representatives of & -orbits on k" and
M, consists of all elements of M which are annihilated by a sufficiently large
power of m, = ker x.

Conventions: For the following, the most interesting cases are those where the
components of a = (aq,...,a,) belong to the same multiplicative g-orbit; in
other words, where there is an a € k, such that for each j = 1,...n, we have
a; = ¢"a for some integer i;. We will therefore stick to these cases. Moreover,
our constructions in fact turn out to be independent of a, so without loss of

generality, we chose a = 1, i.e. a = (¢%,...,q¢") with i = (i1,...,i,) € Z",
and write x; for the central character ya,. If ¢ is an eth root of unity we usually
choose the exponents i; from the representatives 0, ...,e — 1 for Z/eZ.

Definition 3.6. From now on for the rest of this paper, we fix i € Z™, viewed
as an element of Z/eZ if e # 0.

Definition 3.7. Given a central character y = xj, we define the completion H;
of H with respect to powers of the ideal Z,,, of H generated by m = m,. We
have a decomposition

Hi= P Hieu (3.8)
uce6i
where
—~ —~ Vm € N3 N € N such that
Hi@u = {heHi vje{l’n}h(Xj_quj)Nekerm;’b } (39)
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The ey form a complete set of pairwise orthogonal idempotents in ;.

The following is a direct consequence of (3.3) and (3.7):
Lemma 3.8. The following sets
{TpX{' - Xireylu € S(in,...,in),w € S,a; € Z>p },
{Tp X7 Ximeylu € S(iq,...,in), w € S,a; € Z<o },
both form a basis of’i/{\i.

Since Treu — €5, ()T € @uesi k[[X1, ..., Xn]], induction on the length of w
shows that another topological k-basis of ﬁi is given by
{euTinll .- ‘XZ" | uc G(il, - ,z’n),w €6,a; € Zzo}

and similarly for the version with negative powers of the polynomial generators.

In 7/-l\i, we have for forr=1,...,n—1 the intertwining elements
o, = T, + Z ———— —eut Y, e (3.10)
Up1FUrp -X XT+1 Up41=Ur

Their properties were, for instance, studied in [BK09].

For each w € & we fix a reduced expression w = s;, - - - s;, and define @, =
®;, - ®; . We indicate by [w] that this does depend on the choice of reduced
expression. It follows then directly that another topological k-basis of #; is

given by
{eu(I)wX{ll s Xﬁ" | uc G(il, ey in), weE S, a; € ZZO} (3.11)
and similarly for the version with negative powers of the polynomial generators.

Then, similarly to Corollary 3.4, we obtain several topological bases of Vﬂ/'[\i:

Lemma 3.9. Any of the following sets is a topological k-basis of Vﬂ/-[\i :
{vie T Xt - X2 |u € S(ir,...,in),w € Dy,a; € Z>o},
{vieaTp X' -+ X0 |u € S(i,...,in),w € Dy,a;, € Z<o},
{viea@uX{t - X0 |u € &(iy, ... in),w € Dy,a; € Z>p},
{viea®y, X{* - X ju € S(ir,...,in),w € Dy, a; € Z<o} .

Analogously, we obtain bases for sz’-[i if we replace v by V.

3.4. A faithful representation of the Hecke algebra. We now construct a
faithful representation of H respectively ﬁi which allows us to realise either
algebra as a subalgebra of the endomorphisms of some Laurent polynomial
respectively power series ring.

Fix the left ideal U = (X 1<i<n—1 H(T; + 1)). We obtain the following slightly
sign-adapted version of a result in [Web13]:

Proposition 3.10 (Faithful representation of Hecke algebra ).
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i.) The natural action of H on H/U by left multiplication is faithful.

ii.) This representation is canonically isomorphic to k[X, ... X 1|, where
the generators Xii, 1<i<n,andT;+1,1<1i<n-—1 act just by left
multiplication respectively by

_ qXiy1 — X _
T +1 A2t 7 Xi e o (D)), 12
Ty = HEES s (312)
where s;(f) is the Laurent polynomial f with variables X;,1 and X; inter-

changed.

Proof. It is a straightforward calculation to verify that the assignments in (ii)
define a well-defined action, i.e. that relations (H-1)-(H-7) hold. Moreover, it
is clear that the basis (3.3) is mapped to linearly independent endomorphisms.
By (3.1) the canonial H-equivariant map p: H — k(X .. XF¥, 1 =¥
factors through U. By (3.3), H/U = P and p maps a basis to a basis. Hence
it is an isomorphism. Hence it remains to check the formula (3.12). If f is
s;-invariant, then both sides vanish by definition and (3.7). Assume f = Xg

i ; +1 +1 ; _ 9Xip1 =X
for some s;-invariant g € k[X7,...,X;'| and abbreviate h = S e ek

Then we have (T; + 1) fv = Ty X T T ' g¥ + Xigv = ¢X; 1T} 'gv + XigV =
Xit1(T; + 1)gv — (¢Xi41 — X;)gV. Now, by induction, the latter is equal to
Xi1X; —qX2 1+ Xi X1 — X?
Xip1h(f = si(f))v + 2Rt i 7 i T Riid “gv
Xiv1 — X
= MXif — Xiv15:(f))

and the claim follows. O

By twisting with the automorphism f from (3.6) we obtain:

Proposition 3.11 (Faithful representation of Hecke algebra II).

Let U =Y 1<jcn H(T; — q). Then there is a faithful representation of H on
H/U =k[XE . X,

Explicitly, the action is given by

(Ty — q)fv _44i T il

X, X, o sl (3.13)

Proof. This follows directly from the fact that H/U = #(H/U), the represen-
tation /U twisted by the automorphism £. O

We denote by P(H) respectively P(#) the faithful representations from (3.12)
and (3.13) respectively. The following is immediate.

Corollary 3.12. We have an isomorphism of H-modules

P(H) — *(P(H)) given by fv— f*¥.
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Completion gives us faithful representations of the completed algebra:

Corollary 3.13. i) There is a faithful representation of H; on

P(H); = Hy @n H/U = @ K[[X1, ..., Xnlleu®
uesi
by completing the representation fror/rl Proposition 3.10.
ii.) There is a faithful representation of H; on

P(H); = Hi on H/U = @D KX L., X, Weav
ucti
by completing the representation from Proposition 3.11.
The definitions directly imply the following connection:
Corollary 3.14. There is an isomorphism of’?/-[\i-modu/es
B(H), = HB(H),) via fv = [,

identifying kK[[X1,..., X V]eav with k[ X1, ..., X,]]e_u¥, where the minus
signs applies to all entries, i.e. —i = (—i1,...,—iy) and —u = (—uy, ..., —uy).

Proof. The first statement is clear. The identification follows directly from the
fact that Xf = X; ! for all i, Corollary 3.13 and the definition in (3.9). O

We finish this section with a few important explicit formulae for the action of
the intertwining elements from (3.10).

Lemma 3.15. For any idempotent ey as in Definition 3.7, the following equal-
ities hold. For1 <r <n —1, we have

Xr—qXr41 -
esu® ¥V = { XX, CsruV Uit 7 0, (3.14)
otherwise,
and
X, - X v If ,
es, a®r(Xyi1 — X, )V = (X711 = Xp)eo ¥ ifur 7 up (3.15)
2gXr+1 — Xp)eaV  ifUuppq = Uy
Proof. Since T,¥ = —¥, using the definition (3.10) of ®,, we obtain that
es,-u®rV equals —eg .4V + #ﬁr“esﬂﬁ = %esﬂﬁ if Upyp1 # up
and equals zero otherwise. This shows (3.14). On the other hand
TT’(XT+1 - Xr) = (Xr+1 + XT) - 2T X,

= (Xpy1— XT)TT - 2qu+1<qilTr + qil - 1)'
Hence T, (X, 41 — X, )¥v = (2¢ — 1) X, 41 — X,-. Therefore by (3.10) we obtain

(1 =) Xpt1 if up # upy,

€s,u T‘( r+1 T)V ( 4 ) T ' {Xr+1_Xr if up = upqg.

Hence the lemma follows. O
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Lemma 3.16. For any idempotent e, as in Definition 3.7, the following equal-
ities hold: For1 <r <n —1, we have

Xy41—qXy .
e ¢) vV = { X::rll—qu esr'uv IfuT+1 ;é Uy, (3 16)
spu¥rV = . .
(g+ 1es, .uv if Upy1 = Uy

and

N _ (qu - Xr—i—l)es,»uv ifur—f—l # Uy,
es,ul(Xrp1 — Xp)v = { (¢ — D)(Xpy1 + Xp)eav  ifupyr = uyp. (3.17)

Proof. This is proved analogously to Lemma 3.15. O

4. AFFINE SCHUR ALGEBRA

In this section we recall the (affine) Schur algebra in the version as introduced
in [Vig03] and construct a faithful representation for this algebra as well. We
describe in detail the basis used by Vignéras. These two tools allow us to give
an alternative basis together with a set of algebra generators more in the spirit
of the geometric basis of the quiver Schur algebra from [SW11]. This will then
finally allow us to connect the two algebras in the last section.

Definition 4.1. The (affine) Schur algebra S is defined as
S = Endgng (@ k[PJ\G/I]> ;
JCI

where P’ denotes the standard parahoric subalgebra (containing I) attached
to J, or alternatively, using the isomorphism from Lemma 3.2 as

S = Endy | PvsH . (4.1)
JCI

The product of two elements, f, f' in S is denoted by f o f" or just ff’.

We start our study of this algebra by recalling a basis of S from [Vig03, 4.2.13]:

Lemma 4.2. A basis of S is given by

{b% ;| J,K C1,d € Dk s}, (4.2)

where b}i(”] € Homy, (v H,vkH) is defined by
bcfi(,J(VJ) = Z Ty (43)

weWgdW s

Remark 4.3. Note that (4.3) is indeed well-defined, since > ,cwaw, Tw €
vikH by Lemma 3.3. Moreover, any element in Homy/(v;H,vkH), and in
particular bf(,(], is already uniquely determined by its image of v .
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Example 4.4. If, for instance, I = {s1,s2} and K = {s1}, J = {s2}, then
Dk j D DHK,J = {1, s9s1} and for these two shortest double coset representa-
tives and we have

b}(,J =1+Ty+T5+T15T7 and bi?sjl =TT +TV1T2Th
Note that we just sum over all basis elements from a fixed double coset.
Example 4.5. The special morphisms b}gj from (4.2) are easy to describe.

Assume J C K. Then we have b}QJVJ = Y wewg Lw = VK and blL]’KVK =
Ywewg Lw = VJ(Zd/eDK(D Tw). Hence bl ; is just the projection sending
J, )

vyh to vih and b}LK is the inclusion sending v h to VJ(Zd16D§® Ty )h, for
heH. ’

We like to point out that the labelling of the basis vector b%‘, involves a choice
d of a shortest double coset representative, although the basis element itself only
depends on the coset containing d. In particular the basis can be relabelled when
chosing different representatives. If, for instance, for K,J C ,bw € G,p € X
we define the element b}, € Homyy, (v H, viH) via

bqlﬂ(]i] (vs) = Z Ty,
veEWrwpW s

then by, = b ; for d € D ;N WxwpW;, and with the choice of double
coset representatives from Section 2.3 we directly obtain the following.

Lemma 4.6. Both sets
{032, | LK CLwe Dig jp € Xxs}, (4.4)
and
%
{b%I,)J ’ JKCLwe DHK,Jap € %dflKﬂJ} (45)
form the same basis of S as in (4.2), just labelled differently.

4.1. A faithful representation of S. To construct a faithful representation of
the Schur algebra we enlarge the space P(H).

For any parabolic subgroup W of W with K C T, let k[Xi, ..., XV«
denote the Wi -invariants under the usual permutation action. We set

PS)X = KXE,...,XF Wy,

where v(5) = v and the superscript (K) is just a formal index. We have the
following characterisation of invariants:

Lemma 4.7. Let fv e k[X;', ..., XF|v and K C 1. Then
fePS)® & (T, -qfv=0foralls; € K.
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Proof. A direct computation shows that, for s; € K,
(T —q)fv=Tifv—qfv

= (s + 0= DX g —ap) v

= (a6t = 1)+ la= DX 0 )
_ X —gX) (i) — f)
Xit1 — X; '
Hence (T; — q)fv =0 if and only if f = s;(f). O

The following is the main theorem of this section.

Theorem 4.8. There is a faithful representation p of S on
P(S) = P P(S)".
KCI
In this representation a basis element b% j of § acts via

ph NIV = ST T v, (4.6)

K
a€Dy renay

The proof will follow directly from the next three lemmas. The first of these
makes sure that the right hand-side of (4.6) is at least in the correct space.

Lemma 4.9. For J,K CT,d € Dg.y and f € kK[X{",..., X;F WY, we have

S Ty e PS)E. (4.7)

K
a€Dy rray

Proof. In view of Lemma 4.7, it suffices to check that for all s; € K

S (T - T v = 0. (4.8)
aEDgKﬁdJ

The left hand side equals
Yo (T Y (T - TuTaf v (4.9)

K K
€Dy ray a€Dy rray
, K ) K

$10€Dy pq; $i0E Dy 1y

Denote by S; and Sy the two summands in (4.9) respectively.

In the first summand S7, the summands appear in pairs a, s;a. Since we have
(T; — q)(T,, + Ts,q) = 0, they cancel and so S = 0.

In the second summand S5, we have a € D(?Kmdj but s;a ¢ D(medJ. Then
Deodhar's Lemma, see e.g. [GP00, Lemma 2.1.2], shows that there exists
sj € K NdJ such that s;a = as;, and that, in particular, I(s;a) > [(a). In
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this case, (T; — q)T, = To(Tj — q). Again using Deodhar's Lemma, we see that
T;Ty = T,Ty for some s € d"'K N J, and thus

Sp € Y HI - Tufv) CHT, Y (T — ) fv) =0
s;eKndJ =y

by Lemma 4.7, since f € k[Xi!, ..., XF']W7. Hence we have proved (4.8). [

Lemma 4.10. The assignment (4.6) defines a representation of S on P(S).

Proof. It suffices to check that, for basis vectors as in (4.2),

P(deQ,K)P(b?(l,J) = P(de%Kb%,ﬂ- (4.10)

We start with some preparation. Using the basis (4.2) of S, we can write
b‘z%Kb%J = >deDy, cdde,J for some coefficients ¢4 € k. Then, on the one
hand, we have

d d
b7 by s (vy) = Z Cd Z Ty lq | V.
d€Dr,; V'EDF 4,

On the other hand, repeatedly using (2.3), we obtain

dg d1 (4_3) dg _ d2
b2 bl vy = bR Y Tw = bPveTy Y, T
weWgKdi Wy a€D’_,
a7 KN
(4.3)
D DI I DR
weWrda Wi aeD’_;
dy TKNJ,0
= > TBTuviTy > T,
L J
beD@vdﬂmL aEDdfleJ,(a
= Z Tb ng Z Tb/ le VjJ.
L J
beD@,dQKr‘uL blED@,Kﬂle

Therefore,

Z Tde2 Z Tb’Td1 — Z Cd Z Tb”Td

b eD, deDyr,;  b'eD/

beD 0,LNndJ

L J
0,do KNL 0,KNdy J

is contained in Yo c; H(T; — q). To verify formula (4.10), we now calculate

p(bPpdI NIV = pdP) Y Ty, v

K
€Dy kg, g

= > GTy Y TyTyfviHall)

L / K
beD@,dgKﬁL b eD(Z!,KmilJ
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where f € k[XT!, ..., XF W, and

ST ocap® N = 3 e > Ty Tufv®. (4.12)

deDy ; deDyp b”eDdLde

Taking the difference of (4.11) and (4.12) we obtain

(P(b%%K)P(b%,J)— Z Cdp(b%,J))fV(J)

deDL’J
= Z Tde2 Z Tb’Td1 — Z Cd Z Tb”Td fV(L)
L J
beD@,dQKﬁL blED@,Kmle de€DL, bHED@ LndJ

By the above, this is, however, contained in ;. c; H(T; — q)fvH) and hence
must be zero by Lemma 4.7, as f € k[X{!, ..., XF Wy, a

Lemma 4.11. The representation p from (4.6) is faithful.

Proof. Let JJK Cland Z =3 jkcr cq p(bK 7) with arbitrary ¢4 € k. Then
deDgk g

it is enough to show that Z = 0 implies 3 4cp, ; Cde,J = 0 for each pair
J, K C I. We start with the following observation. Given h € H and L C 1
then

hP(S)Y =0 implies h( > Tw> = 0. (4.13)

weWT,

Indeed, assume h P(S)% = 0. Since (T; — q) Ywew, Tw = 0 for any s; € L,
Lemma 4.7 yields that

Z ka[Xlilv tee ’szﬁ:l]v g ]k[Xlil? e 7XT:::1}WLV'
weW,

In particular,

B T )R SR ey 2,
wEWL

Together with the faithfulness of the representation of # on k[ X!, ..., X v
in Lemma 3.11, the claim in(4.13) follows.

Now suppose that Z = 0. Projecting onto the different summands of P(S)
gives that for any J, K C I we have

Z Cdp(b;l(,J)P(S)J = Z Cq Z TaTd ]P’(S)K:O.

deDk gy deDk, g aeDQ{ KndJ
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Observation (4.13) implies that

0= Y e ¥ Y% Y o ¥ o,

J J
deDk,y a€DY rras weW deDk. g a€D} ey
d
= Z Cde”]VJ.
dEDKJ

We conclude } 4ep, , cdb}l(J = 0 for every J, K C I, which completes the
proof. [l

Theorem 4.8 is proved.

4.2. Generators and (some) relations for S. In this section, we determine a
nice generating set for the algebra S. We start with a few technical tools.

Lemma 4.12. Let K1,Ky C1,d € Dk, i, and let J = K; Nd"'Ks. Then

b, ki = DPieyasPissblK,- (4.14)
Proof. We first note that for |.J| = |d.J| (which holds for .J as in the lemma),
ngJVJ = VdJTd Z Tb = VdJTd (4.15)
bEDjmJ,V)

and that, if J C K, then

b}(7dJVdJ = Z Tw = VK. (416)
weEWK1IW, s

We now apply the right hand side of (4.14) to vk, and deduce

1 d 11 o d
br, a/bi bk, (vk,) = brabia| D) Tw
wGWKI
1 d 1
= biyabis | v Y Ta = bigas | varly Y, T
K K
a€D; a€D
(4.16) J
= VKQTd Z Ta = bKQ,Kvil
Ky
aGDd—lKQOKl,(D
as desired. O

As a consequence we obtain the following.
Corollary 4.13. The Schur algebra S is generated (as an algebra) by
{bk ;b | JJK CLweW with |J| = |[wJ|}. (4.17)

Based on this, we will give another generating set in Proposition 6.19.
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4.3. The centre of S. In this section we determine the centre of the Schur
algebra. It turns out that the centre is just given by multiplication with elements
from the centre (3.7) of the Hecke algebra.

Lemma 4.14. The centre Z(S) of S equals Z(H) in the sense that

Z2(8)={zlz€Z(H)} C Endy(PvsH)=$5
JCI

Proof. For the inclusion D, it is clear that multiplication with z € Z(H) com-
mutes with any H-endomorphism of @ ;cyv,H and hence belongs to S. It
furthermore commutes with any element in S and hence belongs to Z(S).

For the inclusion C, let f € Z(S) and test with the generators given in (4.17).
For ngJ we see that

ng,J of (Z VK> = ng,J ( Z VLhL) = ng,J ( Z VL) hr,
KCI LeCl LeCl

415
(4.15) vasTahy

for some hy € H. On the other hand, since f is central,
d d (4.15)
bissof| D v | =fobls| Y vk | =" f(vasTa) = f(vas)Ta.
KCI KCI

By comparing the two formulae, f(v) € vgyH and thus f € 3~ ;o Endy (v H)
is a diagonal endomorphism. Therefore, for any K C 1,

f(ve) =vphr, and moreover hg;Ty = Tyhy, (4.18)

again by comparing the above two formulae.

Now we test with b}ﬂj for J C K and obtain

fobi (Z VL) = fobi ;(vJ) (419 f (Vi) 419§ hi.

LCI
Since f is central, this equals
1 (4.18) 1 _ 1 _
bK,.]Of ZVL = ZbK,J(VLhL)— Zbej(VL)hL—VKhJ‘
LCI LCI LCI
Since all J C T contain (), this yields, for all J, K C I, the equality
hy=hg =:h.
Using (4.18) we obtain Tyh = hT, forall T; € H, and thus f =-h € Z (H). O
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4.4. Another basis for S. The main goal of this section is to construct an
alternative basis of S which mimics the geometric basis of the quiver Schur
algebra defined in [SW11]. We start by investigating the sets D, g, further.

Lemma 4.15. Assume K C I and suppose v = wp with w € & and p =
X{t-- X e X witha; <0 fori=1,...n. Then T, = Y ,cs cuTup, for
some coefficients ¢, € k.

Proof. Note first that, using induction on the degree of p and commutativity
of X1,...,X,, it suffices to check this for p = Xl-_l. So suppose v = in_l.
Then by (2.2) v = ws;_18;_2- - 817 '8,_18n_2 - 5;, and thus v has a reduced
expression 07 's, 1 ---s; with some & € &. Thus T, = T57-'T;,_1---T; =
aTﬂTlTQ"'E_lXi_l where a is a power of ¢q. Writing a1l 11T - T;—1 =
> wes Ty, the claim follows. O

Lemma 4.16. Letd € Dk, ,, J = Ki1Nd 'Ky and write d = wp withw € &
andp € X. ThenwJ =dJ andp € XV,

Proof. We have d(K1Nd~'K3) = dK1N K> and thus for any i € (K1Nd ' K3),
ds;d~1 = s; for some j € dK1 N K>. On the other hand,

1

ds;d™ ! = wps;p lw™! = ws;w twsipsip~fw ™! = vh,

where v = ws;w™! € & and h = ws;ps;p 'w™! € X, hence v = sj,h =
1. Now ws;psip~'w™' = 1 if and only if s;ps;p~! = 1 if and only if p €
xWVrina1xy = XWs . Moreover, v = ws;w—t = s; implies wJ = dJ. O

Let d,w,p be asin Lemma 4.16 and let d’ € Dy ; be the shortest double coset
representative for the coset of w. Since p commutes with W, the (Wy;, W)-
double coset defined by d = wp is the same as the one defined by d'p. Hence,
by the previous paragraph, and (4.14), any basis element can be written as

d 1 d 1 1 dp 1.1
b, k. = b, k, = bk, asbas Pk, = Pk, asbas Pk, (4.19)
for J =d 1Ky N K;.
Keeping this notation, we next observe that, using Lemma 4.15,

dl
b1 (V) = VasTup = Vas (Z CuT“> p
ueS

= TprJ = (Z CuTu> bvy = <Z CuTu> vJjp

ues uesS

(4.20)

where, in the last equality, we have used that p € ¥V’ by Lemma 4.16. Hence

\2% (Z CuTu> = (Z CuTu> \7

ues ueS
meaning that left multiplication by (3" ,ce cuTv) is in Homy (v H, vasH).
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Using these relations, we will now give a different basis of S, which will be more
convenient to work with later on.

Proposition 4.17. Let K1, Ko C 1. Then the set

J=Ki N w_lKQ,

Bi, k6, = bk, b sbY b) =
2,151 Ko,wJ J IR T IP I K I
2w w 1 wEDKz’Kl,pE.}:J

} , (4.21)
is a basis of the space of homomorphisms Homy (v, H,Vk,H) and hence

BS = U Br, Kk, (4.22)
(K1,K2)

is a basis of the Schur algebra S.

Proof. We first compute the evaluation of these elements on vg,. We have

1 w P 1 _ 1 4
b, wibws by P K, (Vi) = bKQ,wJ(waJ,JVJ Z 14)
aGDfé

= bi,wi(Tw Yoo TIyvy > Ta)

J K
bEDG syt a€D;
1 _ 1
bKQ’wJ Z LyTwTyvi, - szywp’J(TwTP’vK1)7
J
beng,wJﬁwp’J

where p’ is the unique element in W ;pW ;N Dj j. Now, let d be the unique
element in Wg,wp'Wg, N Dk, k, and write wp’ = dv with v € Wg, and
l(dv) = 1(d) + 1(v).

We would like to show that

1 w p 1 _ d d
br, wiPws Py Pk, = Cab, K, + E carbk, 1, (4.23)
leDKQ,Kl ,d,>d

for some ¢y € k with ¢4 # 0. Then the Proposition follows from Lemma 4.2.

Claim 1: For any z,y € W we have T,T, = ¢*@9 T,y + (g — 1) Y ,ouy ¢ T:
for some ¢ € k and a(z,y) = 3(I(z) + l(y) — l(zy)).

Proof. This formula is deduced in the proof of [Mat99, Proposition 1.16] for
lengths instead of Bruhat orders and only for &. However, replacing the per-
mutation realisation of G by the realisation of W as permutations on Z (see
[Gre02]) to define the sets N(z) used in [Mat99, Proposition 1.16], the proof
generalises verbatim to our situation. O

Claim 2: Let u € W with u > wp’. Letting d,, denote the unique element in
Wi, uWgk, N Dk, k,, we have d,, > d.
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Proof. By definition u = asd a1 for some unique a; € K; and we can choose
a reduced expression of u compatible with this decomposition. Now wp’ < u
means wp’ can be obtained by deleting some of the simple reflections. In
particular, d < d,,. O

From Claim 1 we see that

b%(g,wagJ,Jb(Z},Jb}],Kl(VKI) = b}(z,wp/J(Tprvil)

= qab}(Q,wp/J ((Twp’VK1 +(@=1) Yy CzTZ)VK1)
for some ¢, € k and a = a(w,p’). Now Claim 2 implies that, when rewriting
this in the basis of the b%%Kl only basis elements indexed with d’ > d occur.

Moreover, the leading term T, contributes q2({(?)H®) 1) +() t5 the co-
efficient of b%(Q’Kl while any other T, that might contribute to the coefficient
has coefficient of the form ¢(q — 1) for some integer a and nonzero scalar ¢, so
the coefficient of b‘}QK1 is nonzero and (4.23) follows. We conclude that the
set given in (4.22) is indeed a basis for S. O

Remark 4.18. In the faithful representation p from Theorem 4.8, a basis el-
ement by, /bl ; /bl /bl as in Proposition 4.21 acts by sending fvED)
to

S Tu | Tugp | D) Ty | fYUER.

Ko K1
aEDQ),wJ bEDQ)J

where g, is defined in Lemma 4.19 below.

4.5. The subalgebra Q. We now construct an important commutative subal-
gebra Q of S. For this let J C I and recall the notation from Section 2.3.

—
Lemma 4.19. Forp € X and J C 1 we have
b§7J(V(]) = gpVy (4.24)
where gy, is a scalar multiple of the sum Y, cw , x(p) over all monomials in the

W j-orbit of p.

Proof. On the one hand, bgyJ(VJ) = > uew,pw, Tu- Noting that
WpW; = {vf | v € Wy, f = opo~or some 0 € Wy}

we see that bl ;v = > ,ew, prew,p Topr, Which, using Lemma 4.15 can be
expressed as Y ,cg 1y fo for some polynomials f,, all of whose monomial terms
are conjugate to p under W .

On the other hand, writing p = td = dt’ for d € D ;,t,t' € W, we have
b (vy) = ViTa(Xaeps , — Ta) = vy OTTy Y e py T,

d—linJg
=vi(a T Yaeps ,  To) =Via " pTeeps T
= VJA S VJHJ
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and similarly

bg’J(VJ) = Za’EDJ , Ta’TdVJ = q_l(t,) ZG/GD({JOJ Ta/Tth/VJ

—1 /
nJ Ta,TPVJ =4 * Za’GD&IJmJ Tapvy
= A/VJ € VJHJ-
Since Tyvy = v T; = qvy for all s; € J, moreover A, A’ € k[X{!,... XF].
Observing vy AT; = b]}’JV‘]Ti = A'v;T; = qA'v; for all s; € J, we furthermore
deduce, using Lemma 4.7, that A, A’ € k[Xi™!, ... X;F1W7 and hence A = A’
From the two preceding paragraphs, we see that
oY (vy) =vsA e vik(X, . XY

and all summands in A are W g-conjugate to p. Therefore bf; ;(v) is a scalar
multiple of g, v, as claimed. O

=
Proposition 4.20. The k-vector space spanned by the V', ;, for J C I, p € X,
forms a commutative subalgebra Q of S which contains the centre Z(S) of S.

Proof. This follows directly from Lemmas 4.19 and 4.14 via Remark 4.3. U

Remark 4.21. Note that by Lemma 4.19 and Lemma 4.7, the subalgebra Q
consists of precisely those elements in Homy (v ;H, v ;H) (for some J C I)
which are given by left multiplication with some f € P C H which satisfies
(T; —q)fv=0forallieJ.

Remark 4.22. The elements bgj, for J C1 pe€ .’f_} are in fact linearly
independent by Lemma 4.19, hence form a basis of Q. As an algebra, O
is a direct sum of algebras indexed by J C I with factors isomorphic to
K[XE L XEYWI . The centre Z(S) = k[XTL, ..., X718, see Lemma 4.14,
embeds diagonally.

Lemma 4.23. The k-vector space S carries the structure of a finitely generated
free Q-module on basis

S _ 1 w 1
B3 = {bKQ,wawJJbJ,Kl

K1, Ky Clw e Dy, g, .
J=K; ﬂ’wilKQ

(Note that we do not claim here that S is a free Q-module by restriction of the
regular action.)

Proof. We define the action of a basis element b%K € Q on a basis element
b}(z,wagJ,Jbg,Jb}L& € B‘é (for some K1, Ko C 1) by

1 w pp’ 1.1 : _
b2 bl b¥ . b’ bl _ ng,wawJ,JbJ,JbJ,Kl if J =K,
KK ®DPK, 0Py Py Pk, = .

’ ’ ’ ’ ’ 0 otherwise.

By Remark 4.22 this is a well-defined action of Q. Obviously, the module is
generated by Bg. Freeness then follows from Remark 4.22 and Proposition 4.17.
O
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4.6. The twisted faithful representation of the Schur algebra. The auto-
morphism f from (3.6) allows us to define the Schur algebra using Vv x# instead
of v H via the obvious isomorphism of algebras

S = Homy € ((vsH), (veH)F) = Homy P (VuH, ViH).
JKCI JKCI

Similarly to Section 3.4, we also have a faithful representation p of S on

P(S) = @k, xFWeg®), (4.25)
KCI

where again the superscript on ¥5) is just a book-keeping device, given by

poge ) e = 3 T e,

K
aED(D.,KﬁdJ

We also have the following analogue to Corollary 3.12

Corollary 4.24. We have an isomorphism of representation

P(S) 2 *P(S) given by v — fiv(E),

5. A COMPLETION OF S

Recall the character x = x; for our fixed i = (i1,...,1,) € Z™ from Defini-
tion 3.6, and the ideals m, and Z,,, in Z(H) respectively H from Section 3.3.
By Lemma 4.14, we can identify the centre of S with the centre of H. Define
S; to be the completion of S at the nested sequence of ideals

In = D Homy(H’,vkIn) (51)
JKCI

in S generated by the maximal ideal m, of Z(S).

5.1. Compatibility with the completion of 7. The following gives an alter-
native definition of Sj, analogous to (4.1), using the completed Hecke algebras.

Proposition 5.1. There is an isomorphism of algebras

§i & Endﬁi <@ VJﬁi) .

JCI
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Proof. We have

Endﬁi <@ Vjﬁi> = @ Homﬁi (VJﬁi,VKﬁi)

JCI} JKCI

= @ Homﬁi (@VJH/IW@VK,H/I’?)

JKCI

D limHomg (lim v, H/ T, vicH/T)

JKCI

P limHomg (vyH /Ly, viH /L)
JKCI '

= @ Jim (HOIH,}’_Z.(VJ?‘[,VKH)/HOm,;L\(VJH,VKIm))
JKCI

= mS/ T = Si.
The proposition follows. O

12

12

Recall the idempotent decomposition of H; from (3.8). We would next like

to focus on the corresponding decomposition for S;. Our notation follows the
setup in [SW11] and [KL09].

5.2. Idempotent decomposition. Recall our fixed i = (i1,...,i,) € Z". Let
J CTand u=(up,...,u,) € &i. It will be convenient to encode the pair by
splitting the tuple u = (uy, ... u,) into blocks determined by J. More precisely,
we write

(w,J) = (ur-ugugpr vy | o gy, (5.2)
where t, = n, and a line is drawn between wuy, and uy11 if and only if £ ¢ J. In
particular, in the extreme cases we have (u,0) = (ui|ug|---|u,) and (u,I) =
(ug,ug, -, Up).

For (u,J) we denote uy = (u’,J), where u’ is the unique element in the

W j-orbit of u where the integers in the parts between the lines in (5.2) are
ascending, i.e.

uy <<, up g <o S, e, g <o S up(5.3)
Here, if ¢ is an e—th roots of unity, we order our chosen representatives 1,...,e
for Z/eZ as 1 < --- < e. For J C I, we denote by

UJ:{UJ|u€6i}

the set of such representatives of W j-orbits in Gi. Givenu € Giand J C K C 1
we call uy a refinement of ug.
Example 5.2. Let n =7 and J = {1,3,5} € K = {1,2,3,5,6}. With u =
(1,2,1,1,2,1,1) we have u; = (1,2|1,1/1,2|1) and ug = (1,1,1,2|1,1,2).
Then u; a refinement of ug. Note that indeed the additional vertical lines in
uy provide a refinement of the parts of ug.
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Attached to uy = (u,J) € U; we have the idempotent
buy = Y ew € (5.4)

uveW;-u
These idempotents have the following important property.

Lemma 5.3. For J C I and ujy € Uy, the elements guJ,VJ (in ??1) commute.

Proof. We may assume J # (), since vy = 1 and the claim is obvious in this
case. Suppose first that W; = & for some k and consider the subalgebra

-~ . : .+ Ty + 5 o+

Hji. Its identity element is ey, and we obtain Hj; = eu,Hsi = Hyicu,-
: + . .

In particular e,, commutes with v;. Note that in the extremal case J = I,

the element Jerul is just the identity element in 7/2]71. Otherwise, we can find a

proper decomposition J = J; U Jo C I such that Wy = W x Wj,. Then

+ + + . . Lt .
€u; = €uy €u,, and v; = vy v ,. By definition, v;, commutes with Cuy, if

., Lt :
i # j and also, by the extremal case treated above, with e, . Hence the claim
follows. (|

Lemma 5.3 directly implies

Corollary 5.4. There is an isomorphism of algebras
D Homz (vyHi, viHi)
JK {51,801}

~ + o1 =
o @ @ HOHl,}’_Zi(euJVJHi, eu/KvKHi).
JKC{s1,..;n—1} uy€U ,uf €Uk

5.3. Splits and merges in Vignéras’ basis. We now define certain split and
merge maps motivated by the construction in [SW11].

Let JC K CI, uy = (u,J) € Uy, which uniquely defines ux € Ug, of which
uy is a refinement. We use the notation from Section 5.2.

Definition 5.5. i.) We have Jéu‘,btlLKJéuK # 0, and this is called a split of

ug. If |[K\J| =1, we call J C K a simple inclusion, and JeruJb},,KJeruK is
called a simple split.
ii.) We have —guKb}(’J—guJ # 0, and this is called a merge of u;. Again, if
|K \ J| =1, itis called a simple merge of u;.
iii.) We denote by oy% € DX the unique element with oukuy = ug.
Note that any split (resp. merge) can be written as a sequence of simple splits
(respectively simple merges).

Example 5.6. In the setup of Example 5.2 we have a (non-simple) split of ug.

In this case o X = s3s256.



28 VANESSA MIEMIETZ, CATHARINA STROPPEL

5.4. Dimension matrix and dimension vectors. To (u, J) as in (5.2) we now
associate several combinatorial objects and groups of permutations.

Definition 5.7. The dimension matrix attached to (u,.J) is the e X r-matrix
D(u;) with entries in Z>( defined as

D(u,J) = (d(u,J])), 1<i<el<j<r (5.5)
where & = dl(u,J) = |{k | tj_1 +1 <k <tjup =i} withty=0.

Note that ¢/ counts precisely the number of occurrences of i in the jth block
of (u,J), whereas d; is the total number of 7, and d’ gives the size of the jth
block. For 1 < i < e fixed set D; = D;(u, J) = (d}(u, J),...,d!(u,J)), and for
fixed 1 < j<esetD) =D/(u,J) = (d(u,J),...,d(u,J)). The first encodes
the multiplicities how often a certain number appears in each part, the second
encodes for a fixed part the multiplicities of the numbers occurring in it.

Let dj = di(u,J) = Y- d}(u,J) and &/ = d’(u,J) = S5, dl(uy). We
call d = d(u,J) = (dy,da,...,d) the dimension vector and t = t(u,J) =
(d',d?,...,d") the type vector attached to (u,.J). Hence the dimension vector
encodes the multiplicities how often each number occurs in total, whereas the
type encodes the sizes of the parts ignoring which numbers occur. Note that
the dimension vector only depends in i and we thus also write d = d(i).

Example 5.8. In the setup of Example 5.2 the dimension matrix for u; is given
by di =d} =df =1 and d? =2, whereas d} = d3 =1 and d3 = d3 = 0. The
dimension vector is (5,2) and its type vector is (2,2,2,1). On the other hand,
for ug, we have for the values d} = 3 and d? = 2, and d} = d3 = 1. The
dimension vector is again (5,2), but the type vector is (4, 3).

Given (u,J) we have now several (sub)groups of permutations attached to it
(where we omit the (u,J) in the notation on the right hand side):

Sp,ug) = G X Gg2--- X Gar < gy, (5.6)
Gp,u,;) = ©Gp, X - xGp, <G, (5.7)
Spiu,y) = Gd{- X Gd%- X6y <Gy, (5.8)
Spus) = OGpi X=X Gp < 6. (5.9)

Note that choosing u; = (u,J) € U, has the nice effect that Gp, y,) =
W, N Stabgu is a standard parabolic subgroup. Note that Gp,(y,) = Sp,(u,).
since both groups precisely describe all permutations of u; such that the number
as well as the parts given by J are preserved.

Example 5.9. In the setup of Example 5.2 we have Gp,y,,) = 61 X G2 x &1 X
61X61X60X61X60 and GDt(uJ) = 61X61X62X60X61X61X61X60.

In the following we will often drop the dependence on (u,.J) in the notation,
if we have some fixed (u,J), and we will only ever consider the case where
(u,J) = uy for some uy € Uy. In this case, the groups (5.7) and (5.9)
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and then also the groups (5.6) and (5.8) are generated by certain standard
generators s; € © labeled by a subset of I. It will be convenient to use also
different labellings of the generators which reflect directly the respective product
decompositions.

Definition 5.10. For the group (5.7) the ath generator in the ith factor is

denoted s; 4, whereas for (5.9) the ath generator of the jth factor is denoted
)

s,
In this notation we can make the above isomorphism explicit:

Lemma 5.11. There is an isomorphism of groups

Cu_; : GDd(UJ) = 6Dt(uJ) Sia = Sl(t), (5.].0)

where t is such that S0t df < a <L dF andl=a+ i, dL.

Proof. Since the two groups define the same subgroup of &, it suffices to
compare their images there. But s;, corresponds to s, € &, where b = a +

(b ddy + (i) dL) whereas sgt) corresponds to s, € &, where b = ¢ +
(32E=1 d%). Hence the claim follows. O

Definition 5.12. In the following we will abbreviate the group in (5.10) by
Gy, but keep the two realisations in mind. Note that it is a standard parabolic
subgroup of & and we define I, by W[uJ = Gy,. Forl < i < e and
1 < a < d; we abbreviate

t—1 i—1
(i,a)u, = a+ (Z dk> + <Z d’,;) (5.11)
k=1 k=1
with ¢ such that YL dF <a <S4, b,

Note that (i,a),, is just the position where the ath number ¢ occurs in u.

uy

Example 5.13. Let us consider uy; = (1,1,2|1,1,1,2,2|1,1,2). Hence n =
11,r =3 and J = {81,52,84,85,86,87,89,810} with Wj; &2 G353 x 65 x G3. In
the usual generators of & we have &p, = (s1, S4, S5, S9) = G2 X &3 X S and
6[)2 = <S7> ~ 61 X 69 x 61 and then 6Dd = <81,S4,S5,S7,89> > Gy X 63 %
Ga X 61 X 63 x G5. It agrees with &p, as a subgroup of & (or W),

Now &p, = (51,1,51,3,514,51,6,522) and &p,(y,) = <8§1),8g2)73§2)75§2),5g3)>-

(3)
i i 1 2 2 2),s
The isomorphism (,,, sends 1.1, $1,3, 51,4, $1,6, 2,2 tO Sg ), sg )785 ),s( 317 e

spectively. The corresponding elements S(i,a)u, € S are sy, 84, S5, S9, S7.

5.5. Rings of invariants. We now consider invariant polynomials for (5.7) and
(5.9). Our different choices of generators come along with different labellings
of the variables.
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We attach, to our fixed i, the following polynomial rings
Ry =k[Y11,Y12,.., Y14, Y21, ., Yo 4, Yea,]
= k[Yl,l, e 7Y1,d1] QK k[Yle, e ,Y27d2] Rk - Ok k[KgJ, ceey }fe,de]'
and

_ -1 —1 —1 —1 —1 -1
Ro=Kk[Y LYY vt v Y

= k[YL_117 e vadll] QK k[Y{lla ces Yz,_dlz] Ok - - - Ok k[Ye,_llv T ’Ye,_dL]
in n variables. For each u; € U for some J C I, we fix the isomorphisms of
rings
Cimy: Ry 2 k[Xy,...,X,] and (., : Ro = k[X7hH. X0
sending Y;ia to X(f,a)uJ with the notation from Definition 5.12. Together with
Lemma 5.11 this also gives canonical identifications of invariants

Sp,(u Spy(u _ —
R—i—Dd( D= k[Xla...,Xn]GDtmﬂ, R_Dd( D= k[Xl 17'-'aXn I]GDt(uJ)
. . . . . Su 5
Again, we will often abbreviate these invariants as R, ™/ = k[X{,... , Xp] 0,
: Su - _
respectively R_" =k[X;',..., X, 1|4,

Let R+ and R_ be the completions of R, and R_ at the maximal ideals
generated by all the Y; ; respectively ijl We have isomorphisms

Cimy: Ry 2 K[[X1,..., X)) and ¢, RO = K[X7Y..., X0
induced by (4 u,-

Foruy = (u,J) € Uy, again with the notation from Definition 5.12, define the
k-linear inclusions

&t Ry = P kX1, Xl ew, (5.12)
weDé{,IuJ
Yvi,a = Z (X(i,a)w.u ew-u) ’
wGD@I,IuJ
g = P KX X ew, (5.13)
wED(Z)J,IuJ
-1 -1
Yia = Z (X(i,a)w.u Ew-u)-
weD;OI’IuJ

7 under &, respectively fﬁ. In the following,

- : - Gu
Denote by R4 ., the images of R
we will identify elements with their images, i.e. we will view elements of R,
alternatively as formal power series in the variables Y;, or as formal power

series of the form ZweD@’ fwew-u Where each fy, is a formal power series in
T

X1,...,X,, and similarly for elements of R_JJJ'
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5.6. The completion of Q. The goal of this subsection is to describe the
completion of the subalgebra Q, which will play a similar role to the completion
of the subalgebra P in H in giving rise to a completed faithful representation.
The completion @i of Q is spanned by the elements in Homﬁ. (vﬂ/-[\i,vﬂ/-[\i),
for J C I, which are equal to left multiplication with an element f € P such
that (7; )feu]vJ = 0, see Remark 4.21. Equivalently, Ql is, via the de-
composition 731 = Pucsi euP and Lemma 5.3, spanned by those elements
in Homﬁi(—guJVJHi,euJVJHi) for some J C I and uy = (u,J) € Uy,
which are equal to left multiplication with some f € @uew,.uewP such
that (T; — q)fJéuJVJ = 0. This last property can be rephrased, similarly to
Lemma 4.7, as follows.

Lemma 5.14. Let K C I and ux = (u, K) € Uk. Furthermore, assume that
€ @uepyx, KIXT', . X' ewu. Then
) UK

f € R_u, ifand only if (T, — q) féu,,vE) =0 forall i € K.

Proof. Assume that f € R_,uK and pick ¢ € K. We have to show that
(Ti — @) f Sweweuew V) = 0. It then suffices to verify, for any w € DéfKu
(T; = @) f (wu + ) V) =0
if s;w-u# w-uand (T; — q)few.uv(K) = 0 otherwise. Assume first s;w - u #
(T; — q)YJa1 (€wu + €s;wu) vE)
(Ti = @) (Xl 0w + X, 1>
= (-0 (X3h

(K)
((1) q+181) ( ca) L Ewu JFXS ((¢,a)w. )esiw-u) v

= Xs_i(l(c ). )esiw.uéew.u + X(C}a)w'uew.u@iesiw.u

—(g = Bi)(X (c @) WU + Xs:(l(c,a)w,u) 6sq;w-uV(K)

= (Xs_i(l(qa)w )Esiw-u + X(C a)w. ew~u)(q)i —q+ Bi) (ewu + esiwu) v
(3.10)

w - u. The, setting 3; = we have the equalities

(5.13) (K)

eSﬂU'U) v

S;w-u

(K)
w-u (’LU u) + Sq ((C (l)w u) Siw- ll) v

(K)

(X ety i + Xl w) (T = v

H-1
(H-1) 0.
Let now s;w-u =w-u. Then (w™!s;w)-u=u, hence t = wls;w € Wy,.. If
we view t € Gp,(y,,) via Definition 5.12, then by assumption f is t-invariant. On
the other hand, by our definitions, f being invariant under ¢ when written in the

_181
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Yc;ll is equivalent to f being invariant under s; when written in the Xj’l. But
now Lemma 4.7 implies (T; — q) fewuv'™ = epu(Ti — q¢)fvE) = 0. Hence
the “if" part of the statement follows.

Now assume that (7; — q)fJerqu(K) = 0 for all i € K. If Gy, is trivial,
then there is nothing to show. Otherwise let s, be a standard generator in
Suy., in particular spu = u. Let b = (¢,a)y. Then spu = u implies that
(c,a+1)y=b+1=(c,a)y + 1.

We can write f = chalJrlg + h for some unique g, h € R’ = R® and, noting
that ¢h(g) € K[[X7',..., X !]|*beqv for any g € R**, we have

0 = eu(Tb - Q)feuV(K)
= eu(Tb - Q)Y_l—s—lgeuv(K) + 6u(zjb - Q)heuv(K)

c,a

= eu(Ty — q)ijrllgeuv(K) +0 (since h € R®)

(H-7)

.eu(qu_lTb_1 — qu:_ll)geuV(K)

3.1 _ _
(1) eu(X, - qujl)geuV(K).

The latter is nonzero in case g # 0. Hence (Tj—q)fJéqu(K) = 0 implies g =0

and therefore f has to be invariant under sp, and then under all generators of
Gug- Thus fe Ry, . O

B e B (reeectively 5 ¢ £ .
For J C I, denote by X7 C X (respectlvely& C X ) the subset of monomials

= —
X X2 with a; > 0 for all ¢, and by X5 C X (respectively X5 C %)
the subset of monomials X' --- X% with a; < 0 for all i. Note that b from

Section 2.1 induces a bijection between X7 and X5 and between X7 and X7.

As a consequence we obtain a topological basis of Q;.

Proposition 5.15. The completion @i of Q has topological k-basis given by

A _ (e b

Bo {blseu, | JCLu; €Uy pe X} (5.14)
where B(I}Jérlu € Homﬁ.(—gquJ?'/-[\i, JeruJVJﬁi) is the homomorphism given by

‘ot +

bl},JeuJ(euJVJ) = Z w(p)ew-UJeuJVJ-

J
wED@JuJ

Proof. The fact that this set spans @i follows directly from the first paragraph
of this subsection reformulated using the equivalence from Lemma 5.14. It is
linearly independent as a direct consequence of (4.22). O
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5.7. A basis of S;. The main goal of this subsection is the following basis
theorem (with the notation from Proposition 5.15).

Proposition 5.16. For fixed K1, Ko C 1, the set

de DK2 Ky
2 _ 1 d rp + 1
Bro iy = bl asbisnibyéublp | 7= K10 A7 'Ky,
uy € Uva € ¥[u

—~

is a topological k-basis for Hom 5 (v, Hi, v Ko Hi).

7

Proof. By Proposition 4.20 we have (with the notation from (5.1))
S(QNTn)S =8(QNSmMYS)S = S(QmyQ)S = SmY'S = Jn
where the third equality follows from my* C Z(H) C Q.

Now, as a Q-module, we have S = @xeBg Q ® x by Lemma 4.23 (with the

notation defined there). Since m, is central, the actions by left multiplication,
right multiplication, or the ®-action induced by m, C Q all coincide, so

S)Tm=8/SmI'= (P Qex)/(P omTex)= P (Q/9m7) ®x
xEBg xeBg xeBg

Thus we obtain

~

S = lmS/Tn = lim @ (Q/QmY") ® x = @LQ/Qm

xeBg xeBg,
= @ /Q\i ® X.
s
XEBQ

In particular 3‘1 is now free over Qi on basis BS, which, together with Proposi-
tion 5.15 and the definition of ® implies the desired basis for S;. ([

We have the following direct consequence.

Corollary 5.17. Let K1, Ky C I and moreover let uj; = (u', K1) € Uk, and
uy, = (W', K3) € Uk,. Then a basis ofHomﬁi(Jeru;(vilﬁi,Jeru%vKQﬁi) is
given by

de DK2 Ky

J =K Nd 1K,

%
¢ pPEXs , (5.15)
Ky

euu bK2 dedJJbJJeuJbJKl uy = (u,J) € Uy with

where we note that u} = uy, meansu’ € Wy, -u and similarly uf,, = (d-u)g,
means u” € W, - (d - u).
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5.8. A faithful representation of Si. In this subsection we will construct a
faithful representation of S similar to the construction in Theorem 4.8 .

For K C I and ug € Uk, define
———Uug — —ug ~ (

P(S); =R _u,v¥ and P(S); =R,V

where again, as in Theorem 4.8, the superscript in ¥5) is just a formal index.
Moreover set

D P PO ad PS=D P POS); (516
KClugeUg KClugeUg

These are the underlying spaces for two faithful representations:

Proposition 5.18. i) There is a faithful representation p of S; on P(S);
where the basis elements of S; as in (5.15) act via

(% 1 w P b o1 % K
p (e(w-u)K2ng,wawJ,JbJ,J“/’uJbJ,KI“/’uK1 fvED)

Py +
= Clwu)k, (ZaeD(ﬁJ Ta> Twipeu, (ZbeDé(}] Tb) fV(Kz)

for fv(EK1) ¢ IET(S\)?Kl, where gy, is as defined in (4.24) and ug = (u, K).
ii.) There is a faithful representation p of S; on P(S ); where basis elements of
S; as in (5.15) act via

+ ‘p + _
P (e(w‘u)Kzb}(z,waIwUJ,Jbg,JeuJblj,Kl euK1> fotin)
1 5 -
= bwwn (Soepms T Thghbu, (e TF) 909
——u
for f7KD € B(S), ", where g, is as defined in (4.24) and u = (u, K).

Proof. We prove (i), the proof of (ii) being analogous. We first claim that

o —

P(S); = S @5 P(S).

Indeed, using that

() ¢ k[XE, ..., XE v
P(S)K = v
(S) {fV (T} _q)va)—OforaIIZEK
we see that
R fV(K) c eu/]k[[Xl_ly--wX;l]]v(K)
—guKSi ®Rs P(S)K = fvO u’eVGV?MK
(T; — q) fvE) =0 for all i € K
- BO), "

by Lemma 5.14; hence the claim follows. Since we defined our action p to
coincide with p (cf. (4.6) and Remark 4.18) on elements of S, the fact that p
is a faithful representation follows immediately from Theorem 4.8. U
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Remark 5.19. Similarly to Corollary 3.14, we have an isomorphism of Si-
modules

—
—

P(S); = (P(S)_;) via fguKlv(K1) sy fﬁJ@r—uKlV(Kl).

—

6. THE ACTION OF (ALGEBRAIC) MERGES ON P(S);

In this section, we describe, explicitly and in detail, the action of a simple merge

on the twisted faithful representation @(S)i, as we will later use this to compare
S; to the quiver Schur algebra. In Proposition 6.19, we will deduce a generating
set for the Schur algebra which refines Corollary 4.13.

6.1. Basic formulae for algebraic merges. We start by describing some com-
binatorics of distinguished coset representatives in Dy ;, where J C I

Thus let J C T be fixed. Let u = (uy,us,...,u,) and consider (u,J) as in
(5.2). Then for a permutation w € & we have that

weDy; & wkj+1l) <wk;+2) < - <wk;+d), forl<j<r,
where k; = 3" i<; d’" (and d° = 0). That means the numbers inside each part
of J are kept increasing when applying the permutation w € &. When drawing

the corresponding permutation diagram, this means that two strands from the
same part given by J do not cross.

Lemma 6.1. Let J = I — {a} for some a € I and set b =n — a. Then Dy ;
consists precisely of the elements

(SeyScy+1 - Sn—1)(Scp_y -+ Sn—2) - (Scg - - Sat+1)(Se1Sc141 -+ - Sa),  (6.1)

where 1 < ¢ < cg < --- < ¢ and by convention (8ySy41---sg) = 1 ifr > k.

Proof. This is a standard fact, for a proof see for e.g. [Str05, Proposition

A.2]. O
Definition 6.2. For J C K C I, define the algebraic merges
mf= 3 w, and M= Y TE (6.2)
weDéfJ wEDQIfJ

We also write rhzgf)) instead of M, respectively qm’;gf)) instead of ;M.

Remark 6.3. Note that rhﬁ(:rhi’f and i = qrhi’f for any c if we interpret
the smaller symmetric group as a subgroup of the larger symmetric group. We
will use this fact tacitly in the following. Moreover, by definition and using
(H-7) and Remark 3.5, we have X f = f Il and ;M f = f,mY for any
W s-invariant polynomial.

Example 6.4. For instance, if J =1 — {a} for some a € I and K =1 ,then

m{f:mg,n,a is precisely the sum over all elements of the form (6.1).
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We first state a few easy properties of these algebraic merges.

Lemma 6.5 (Associativity). Assume n = 1+ (a — 1) + (b — 1) with each
summand in Z>o. Then

a+b—1 +.a,b—1 o a+b—1 o a+b—14+a—1b
rh(/‘L,bfl r‘hafl,l,bfl - rhafl,l,bfl - rhafl,b rhafl,l,bfl : (63)

The analogous formula holds for the 4 as well.

Proof. The middle term of (6.3) is precisely the sum of all permutations w
of 1,2,...,n such that the numbers stay increasing inside the parts of size
a—1,1,b— 1. But each such w can be written as a composition of the form
w = xy, where y € &, permutes the first a numbers, but keeps the first a — 1
increasing, followed by a permutation = which keeps the first a numbers y(i),
1 <7 < nin order and keeps the last b — 1 numbers increasing. Moreover, each
such xy gives rise to a unique w in the sum. This proves the first equality.
The second is similar starting with permuting the last b numbers instead. The
statement for ;M follows by the same arguments. ([

Lemma 6.6 (Splitting off a simple reflection). Let n = a + b with a,b € Z~y.
Then we have the following equalities

_ l,a+b—1 l,a+b—1

= mlab 1 51 Sat ml,afl,b (6.4)
o l,a+b—1 ya+1,b—1 1l,a+b—1 1l,a+b—1

= Mlap1 Maipo1 — Milas1p malb 1+ M1y - (65)

The analogous formulae hold for the 4h as well.

maer

Proof. Consider the set of elements from (6.1) and divide them into those which
contain s; (in the rightmost factor) and those which do not. This division
corresponds precisely to the two summands on the right hand side of (6.4).
Note that as a special case of (6.4) we obtain

1
Mott = il sisae e sat My = S8 sat Gy (6.6)
To verify (6.5), it suffices to show
l,a+b—1 ya+1,b—1 l,a+b—1 4 a,b - 1l,a+b—1
ml,a,bfl ma,l,bfl - ml,afl,b alb-1 — mlab 1 St 8q. (6.7)

However, thanks to (6.6), the left hand side equals

o 1,a+b—1 l,a+b—1 ya, b
LHS = m1ab 1 ( “Sat mla 1,1,b 1) hy’ a—1,b rh(1,1,1;—1
o 1,a+b—1 l,a+b—1,1,a—1,b 1,a+b—1 1 a,b
= Map1 St Sat M1y M 1101 — Mlat1p Ma1p1
o 1,a+b—1 l,a+b—1 l,a—1,b
= My ‘ab—1 S1°cSat ml,afl,b (ml,afl,l,bfl ma,l,b 1)
1,a+b—1

= mlab 1 51" Sa-

Here the second equality follows from (6.3), the third is clear and the last one
follows from the obvious fact that the expression inside the brackets is zero.
Hence the claim follows. Note that the same arguments work for ;i as well,
since we have not used the quadratic relation (H-1). O
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Definition 6.7. For 1 <i # j <n set

5

Yij

,B@j = qu — Xj and Yij = Xi - Xj and finally 91‘7]‘ = (68)

Lemma 6.8. The equa/ity 91729273 — 91729173 + 91739372 =q holds.

Proof. One easily checks that 823713 — 51,372,3 = (¢ — 1) X37v1,2. Thus, if we
set v = 72,3713, then

012(023 —bh3) =

Bz (,82,3_51,3) _ a=DXshe g g
gl

71,2 \ 72,3 71,3

On the other hand one checks easily that ¢v1372,3 + B130832 = (¢ — 1)b1,2
and thus

_oamanest+ BB (- 1) X361
q—0th3032 = 5 = 5 .

(6.10)

Subtracting (610) from (69) gives 9172(92’3 — 91’3) —q+ 91,39372 =0. ([
The action of simple merges on polynomials and rational functions in the X is
quite subtle, but produces interesting formulae.

Example 6.9. For instance we have rhil (012) = (1 + ¢). This is because
M1 (1) = (14 51)(612) = PP = (149,

More generally, we have the following equalities of rational functions in the Xj:

Lemma 6.10. Let 1 <c<n—1and0<a<n. Then the following holds

. , -1
i.) For any a: miic—l (HZIZH Oat1k) =D jm0q -

.. , -1
ii.) Fora > 1: Mg\ . 1 (01,041 Tiies2 i) = Thilaqs Ok + 3721 4"

The same formulae hold for the ;M as well.

Proof. Without loss of generality, we may assume a = 0 in (i) and a = 1 in
(i), since the general case then follows by just shifting the labels. We prove
both statements in parallel, using induction on c¢. The base case is ¢ = 2.
(For the extreme case ¢ = 1 we have th (01,2) respectively rhio (1) =1 by
convention.) For (i), the base case is Example 6.9, whereas for (ii) we need
to show (1 + 82)(91729273) = 01’29173 + g, or equivalently 9172(9273 — 0173) =
q — 01,3032. This, however, is Lemma 6.8. So assume now both, (i) and (ii),
are true for ¢ — 1.
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For (i) we abbreviate IT = 61 5 [[{L5 62 1 = 61211’ and obtain

. 6.4 o
Le—1 11 (@) (m%lle (1+s1 ))H

= I+ Tl (s1(012)IT)
= H+m%§cl (14+q—01)IT
= I+ (mﬁ cl 2 H/) - m%§;1—2 01,211

c c c—2

ind._hyp.

2P T 0+ (1 +Q)qu [ 6x—>D
k=2 r=0 k=2 r=1
c—1

= > q,
r=0
where in the penultimate line we have used the induction hypothesis for ¢ — 1,

namely (ii) for the first summand and (i) for the second summand. In the third
line we have also used the induction hypothesis for ¢ = 2 for (ii).

For (ii), we abbreviate Z = [[§_5 02 = 0232’ and obtain
M1 (0122)

(e ele s2) +1) (6122)
= 01272+ mH 761,2 (52(01,2023)2")
1

(6.4)

= 0127+ (012 1T, 91 32) (91 o M1ty 0232") +q (i1 Ly Z7).
Now we use the induction hypothesis for ¢ — 1, namely (ii) for the middle and
(i) for the last summand and obtain

c+1 c+1 c—2 c+1

c—2 c—2
(O [T O2n)+(J] Or) + (012> @)= (012 [ O2k) — (612> ")+ d
k=3 k=2 r=1 k=3 r=1 r=0

Hence, altogether we have

c+1 c+1

M5 et (6122) H91k+qzq = H91k+zq

This completes the proof. O

6.2. Algebraic merges in the faithful representation. In this subsection we
give explicit formulae for the action of the simple merges on the faithful repre-

sentation P(S); from (5.16).

Setup for the whole subsection: Assume that K = [, so ux = (u, K) with
u= (19,29 ed)and J =1\ {a}. Setb=n—a. Let uy € U,. Set
a; = d}(uy) and b; = d?(uy) in the notation of Definition 5.7. In particular,
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a; +b; =d; forall i = 1,... e. Then the action of the merge from (4.2) can
be expressed in the #-twisted versions as follows:

o —

Proposition 6.11. For P(S); and f € R, ., as in Proposition 5.18 (ii) we have

=~ 1 —(J di, do, ..,d
cap(bie )V = eug My 2y, s 0 H Helkf"
k=a+11=1

where oyX is as in Definition 5.5, explicitly

d d d
ug — (1 172 27'--76 6)
Ou; = U(lal,2a2,...,eae\1b1,...,ebe)' (6'11)

Remark 6.12. Note that by Lemma 5.14 the component at e, completely
determines the element in P(S);.

As a direct consequence from the definitions, (6.2), we obtain

Corollary 6.13. We have

cap(bl ) [V = ey (Z wolK ) [T II0ksa

k=a+11=1

where the sum runs over w € D with notation from Definition 5.12.

@a“K(luJ)

The proof of Proposition 6.11 is rather technical and occupies the rest of the
subsection, proceeding by induction on a + b, with the base case being trivial.
We start with some preparations.

Remark 6.14. Note that 0% in (6.11) factorizes as oy = 0102 where

_ ptiglagh e
O1 = O(q)a1,. eac|1b1—1 252, . cbe)
B (1911,292,... e®e 10171 202 ebe)
92 = O(qai|an, . cac|1|1b1-12b2,. ebe) . Sartl " Sa

Moreover, we have al‘l‘f = 0304051, where

o — (1]191—1 2d2 343 )
3 = Oiai-1e2  gar+l  cae|1br, gbe—1, .., ebe)
(101, ¢+l ee|1b1 . tbr—1  ebe)
04 = 0-(10«172042’ ...... , cae|t|1b1,..tbe=1 . ebe) = Say+az+-+at+1 """ Sa—15a,
(191...e% 101 .. ebe)
95 T Tar eacfeitr.ahi—ticbe) T S(atY T b)) Sat2Satls

By definition of the representation in Proposition 5.18 (ii) we have

euﬁ(b}{,J)fV(J) = €y qma—l—b fV =
Applying Lemma 6.6 to the right hand side we obtain

l,a+b—1 a+1,b—1 1,a+b—1
—eu( M e b1 ¢Ma, 151 T ml,afl,b<17 alb 1)fV
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Note that m“”{b | commutes past f by Remark 6.3, and therefore we have

a717b ¥ = 070 ° £9, using Lemma 6.1, (3.6) and Ti% = —¥ by (3.1).
AItogether we obtain

La+b—1 1,b— HLatb-1 _
= Cu leb 1 qu,Jrl laa 1,b Zq fV(J)- (6.12)

)

We can then rewrite the two summands, which we denote by and
respectively,as in the following two lemmas.

Lemma 6.15. The second summand in (6.12) equals

b—1 n a
2 _ s Ldi—1, do2, ...de ug . < (K)
- Zq ml,al71,()1,0,2,1)2,...,0,5,1)5 Ouy H Hejvk fV ’
s=1

k=a+1 j=2

where o % is as in (6.11).

Proof. First we analyse which idempotents e can appear to the right of the
merge for the result not to be annihilated by ey, i.e.

%a(:rbl %76 Zq fV(J) ?é 0.

+
Clearly, any such e must be a summand of € qjja1-1 905 cacip1,.. cac)- More-
(1]1d1—1 2d2  ede)

ug
over, note that o = U(1|1a1*1,2a2,...,eae|1bl,.,.,ebe)' Then
Latb—1 () _pldi—1, da,
eule,a—l,b f 1 a1—1 bl,az,bz, ae, fV
by the inductive hypothesis, since a +b—1 < a + b. O

Lemma 6.16. The first summand in (6.12) equals
Ldi—1, d2, ..de a1+1,b1—1,a2,b2,... ae,be
€u[ ml,al,bl—1,a2,b27...,ae,be O'1P mm, 1, b1—1,a2,b2,...,ae,be 02 H 91 a+1]fV

e
1,di—1, da, ...d,
+ eu[z ml,al*1,b17a2,b27--~7at+1,bt7 ac,be H 0i a+1]fv
t=2
where P = T[}_oso 1973 055, and Z = o3 PY; m‘“~~-v“t“’at+lv""“evb—l -
- k=a+2 ]:2 Jvk’ - 3 Jvk a1,...,at,l,at+1,...,ae,b—l 4-
The elements o are as in Remark 6.14.

Proof. To have euqm}g;i‘ll‘éul,a,b_l # 0 we need uy 4,1 to be of the form
(t]...) for some t € {1,2,...,e}. We distinguish two cases, namely

rhl at+b—1 + ma-i-lb 1+
ugllygp—1 €(1]191.. ce|1br1-12b2 _ebe) ¢Mg 1 p—1 €(101,.. ee|1]1b1-1 262, . ebe)

and

l,a+b—1 + a+1,b—1 +
€u qml,a,b—l € (t]191...eve|1b1 . .the =1, ebe) qmalb 1 C(1o1,. eve|t|101,.. the—1, . ebe)"
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for t = 2,...,e. Then the claim follows directly from the definition of the
permutations ¢ in Remark 6.14 and the induction hypothesis. O

Lemma 6.17. The second summand in Lemma 6.16, which we denote by,
equals
e
1,d1—1, d2,..., di, dit1, de (K
€u Z ml,alfl,bl,a2,b27-~7at,17bt*1,az+1~--,ae,be o304P H 9i,a+1fV( )' (6-13)
i=1
Proof. We first rewrite the term Z appearing in Lemma 6.16 as

al, 50t+1,at41,...,0e,0—1 _ a1,...,at+1,a441,...,ae,0—1
o3P m saty 1y agg1,eae,b—1 94 = 03 malw-,au 1, at41,..,0e,0—
a1,b1,..,at+1,bt—1,at41,bt41,...,a0e,be
a1,b1,...,at,1,bt—1,at41,bt41, ..., Ge,be

o304 P

where for the first equality we have used that P = [[;_, .o H?i% 01 is 04-
invariant and Remark 6.3. For the second equality one checks that o3 from
Remark 6.14 commutes with g " ZITZEZZZ: Then the claim follows by
substituting this into the formula from Lemma 6.16 and using the associativity

of merges. O

Lemma 6.18. The first summand in Lemma 6.16, which we denote by ,
equals

1,d1—1,d Y} 1,d1—1 a2,ba,...,a
? . ,d1 sa2, sde »a1 s 2,b2,...,a¢,be uK
= €U[ ml,dl—l,ag,bg,...,ae,beml,al—l,l,bl—l a2,b2,.. ae,be O P
Ldi—1, da, ..de
+ mlﬂl:bl*17a27b27~--aa57be(8182 T 8a1 0 H H (93 k] H 0; a+1fV
k=a+2 j=1 i=1

We first use the special case (6.6) of Lemma 6.6 to write

a1+1,b1—Laz2,b2,....ae;0e  _ Las, bi1—1,a2,b2,...,ae;be
a1, 1, b1—1,a2,b2,...,ae,be l,a1—1,1,b1—1,a2,ba,...,a¢,be +S81 Say (614)

This element obviously commutes with P = [[7_, ., H?i% 6 by (H-7). The

same holds for o5. Hence equals

1,d1—1, d2, ..,de a1+1,b1—1,a2,ba,...,ac,be
6._1[ l,a1,b1—1,a2,b2,...,a¢,be 1P mal, 1, b1 —1,a2,b2,...,a¢,be 02]w
_ Ldi—1, d2, ..de La1, b1—1,a2,bz,...,ae,be ]
= Vbt - tanbanebe O MU 1160 Lasbarae e 02P + Ps1-+ sq]w
_ 1,di—1, dg2, ..de 1,a1, —1,a2,b2,...,a¢,be
- eu[ La1,b1—1,a9,b2,...,0¢,bc C m1 alfl,l,bl 1,a2,b2,...,a¢,be oo P (6-15)
d d d - 2
17 1_17 2, eyle
+ ml,al,bl—1,a2,b2,-~~7ae7be 0181 Sa H H 0j7k]w (6'16)

k=a+2j=1

where we have abbreviated w = []{; 9i7a+1fV(K), and, for the last equality,
used that sj - -- s, maps the set {1,2,...,a} to {2,3,...,a+ 1}.
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Laq, b1—1,a2,ba,...,ac,be

Var 1,101 1.3 barac e cOmmute. Therefore,

Next, observe that o7 and rh

1,di—1, d2, ...de ml,ah b1—1,a2,b2,...,ac,be
Lai,bi—Lag,ba,.ae,be 1 Ma1—1,1,b1—1,a2,b2,...,ac,be

1,d1—1, da, ...de ug
1,a1—1,1,b1 —1,a2,b2,...,a¢,be O-UJ

_ 1,di—1,d2, ..., de 1,d1—1, a2,b2,...,0e,be _ug
= N0 Lan b aebe M1 — 11,01~ Lasbo.sassbe Tty (6.17)

by the associativity property for merges and the factorisation from Remark 6.14
for the first equality and again associativity for the last equality. Hence the claim
follows by substituting the result (6.17) into (6.16) and, furthermore, using the
equality 0181+ -84 = 8182+ - - salaﬁf.

Let us summarise what we have so far. The left hand side of the asserted
formula in Proposition 6.11 equals

eup(ble )V = [Tia]+ 2]+

= ea Ty od oy T 10/, (6.18)

1,d1—1,a2,b2,...,ae,be

k=a+1j=2
where Y is given by
a
1,d1—1, a2,b2,...,ae,be _up
mLal*1,1,b171,a2,b2,...,ae,be our 01,041 H Oa+1.k (6.19)
k=a-+2
b n
1,d1—1, aa,ba,...,ae,b
N by S anbeaub, T151° " Sa IT 6k (6.20)
k=a+1
e b a
1,d1—].7 (1,27132,...7 Qe ,0e
+ Zml,a1fl,bl,ag,bz,...,at,l,btfl,at_,_l..‘,ae,be 030491,a+1 H 00+1,k (621)
t=2 k=a+2
= d b b
s 1,d1—1, a2,b2,...,ae,be
- (D4 N ar— b1 ambm e b - (6.22)
s=1

Note that Y is just what is left over after we pull out the common parts of all
three summands.
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We now rewrite (6.21). We have

e
1,d1—1, az2,b2,..., Qe ,be
Z 1,a1—1,b1,a2,b2,...,at,1,bt—1,at+1...,ae,be 0304
t=2
1,a1—1,b1,a2,b2,...,at,bt,...,ac,be

_ ladl_l ug
- ml,al—l,bl Z l,a1—1,b1,a2,b2,...,a¢,1,bt—1,...,ac,be UUJ 05
t=2

e
_ 1,d1—1 ux a+bi+-+-by—1,bt,b—b1—-—by
Lai—1,b; Tuy Z Mty +-by 1 bt — 1, (b - by) O
t=2

e bt—l
_ 17d1_1 ug . o
= Mt our D D Sat Tt b Sary Ty, Sat2Satl
t=2 [=0

b—1
i ldi—1 g
= i 1, Ouy D Ss Sat
l=b1
_ 1,d1—1 ug (A, a,b1,b—b1
= m1,a171,b1 Ouy (ma,l,bfl - ma,l,blfl,b7b1)7 (6.23)

where for the first equality we have used Remark 6.14 and rewritten the merge
as a product of two (non-interacting) merges, for the second equality the com-
mutativity of o3 with the respective merges, for the third equality Lemma 6.1
and the definition of o5, and finally for the last equality formula (6.6).

On the other hand, by Lemma 6.10 we have

n b—1 n
mZ:lib_l 91’(1_;,_1 H 9a+l,k — qu = H 917k. (6.24)
k=a+2 s=1 k=a+1

which simplifies (6.21)4(6.22) further. Altogether we obtain

n
_ 17d1_17 a27b27---aae7be ug
Yy = ml,a1—1717171—1,a27b2,---7ae,be Ouy O1,0+1 H 9a+1»k (6'25)
k=a+2

n
1,d1—1
4 M di—1,  az,b2,...,ae,be $189 - Salo_llllé( H 017’6 (626)

1,a1,b1—1,a2,b2,...,a¢,be

k=a+1
d b b e
1, 1_17 a2,02,...,ae,0e ug
+ m17a1—1,bl7a27b27---,ae,be Tuy H 01,1 (6.27)
k=a+1
d b1,b—b e
1,d1—-1 ug +~a,b1,b—b1
- ml,al—l,bl Ouy ma,l,l;l—l,b—bl 91,a+1 H 9a+1,k' (6-28)
k=a+2
: ug Aa,b1,0—b1 _ 4a1,br ug _ ALai—1b1 ug
Since oy’ mml’brl,Hl = rhal’l’blil ouk = rﬁLarl’l’blil ouk, the terms

(6.25) and (6.28) cancel each other. Applying Lemma 6.6 to (6.26)+(6.27)
gives

n
Y = mdl, a2,b2,...,ac,be O_UJK H el,k" (629)

a1,b1,a2,b2;...,ae,be 71
k=a+1
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Substituting this back into (6.18), we obtain
60Kﬁ(b%(,J)fV(J)

di—1,dz, ..,de 4di, a2,b2,...,ac,be uK
Cug md1,a2,b2,~~qae,be mahbl,az,bm saebe @ H H ej ka
k=a+1j=1

The associativity property of merges gives finally the desired formula from
Proposition 6.11. This finishes the proof of Proposition 6.11.

6.3. A refined generating set of the affine Schur algebra S. In this section,
we improve on our generating set for the algebra & from Corollary 4.13.

Proposition 6.19. The algebra S is generated by
{b}Q,wapJ,J ’ Ki,K2 Clpe ¥IUJ}- (6.30)

In other words, the algebra is generated by the subalgebra Q from Proposi-
tion 4.20 and the splits and merges b, .

Proof. By Proposition 4.17 the proposed generating set together with ngJ,
where d € DK2 Ky J = K1 Nd~ 'Ky generate the algebra S. Hence it suffices
to show that the deJ are redundant. First note that d € Dy s, since for any
i € J we have I(ds;d1d) = I(ds;) > I(d;), because J C K; and d € Dk, k, -
Therefore d permutes the blocks in J without changing the order inside the
blocks. Moreover, d € Dgy ; implies that bgjﬂ](v(]) = vgyTy by (4.15). This
also implies that without loss of generality we may assume that d only swaps two
neighbouring parts of J, as an arbitrary permutation of parts can be written as
a composition of swapping neighbouring ones. Since the arguments are all local
we can even assume that J contains only two parts, i.e. J =1\a. Setb=n—a.
Note that in this case d € Dy s is then the shortest coset representative of the
longest element in &. Hence Tf is the summand corresponding to the longest

element d = d%b appearing in mg};b. Define
I = et - TF, (6.31)
By Example 6.4 we have (,23")#v, = (;m23"v,)# = bl ;(v;). Hence it

suffices to show that ma+b#vj can be expressed in terms of simple splits and
merges applied to v. We argue by induction on a + b = n. The base case
a=0b=1,son =2, is obvious. For the general case we first rewrite (6.31)
using (6.5), namely

a+b l,a+b—1 4a+1,b—1 1l,a+b—1 # 1,a+b—1
m qrhl,a,bfl qma,l,bfl 7Qm1,a71,b qmalb 1 Td Jrqml,mfl,b : (632)
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On the other hand if we abbreviate d; = d%’gzi_ll and dy = dgtlb’ﬁ_ll and set
Dy = ij and Dy = sz, then we obtain

l,a+b—1 4a+1,b—1
qml,a,b—l qma,l,b—l

T,a+b—1 1,0—1
:(quZIfl +D1)(qm2j,b—1 +D2)

T Tadb=1  aadip—1 ) Tatb—1
=M b1 aMarp-1 +Dighyip1 +aMiap1 D2+ D1Dso

1atb—1 15-1 Tatb—1 1b-1 Tatb—1 1h-1
= oMabot afansot T aMapt aMarior —aMapr aMaigo1 +DiDo

Lab—1 ¢ Lab—1 aMg16—1 Lab—1 q"g16—1
. . a4 la+b-1 l,a+b—1
where for the last line we used the equalities D; = rhl’a’bil =My b1 and

the analogous one for Ds.

By Lemma 6.1 we have d; = (Sp—18p- - Sn—1)(53S4 -+ Sq+1)(S283 - -+ $4) and
dy = 5182+ Sq—1, in particular d = dyds with I(d) = I(dy) + [(d2). But this
implies then Tf = D1D; and therefore we obtain from (6.32) and (6.3) the
following equality

at+b l,a+b—1 a+1,b—1 1l,a+b—1 a+1,b—1 1l,a+b—1 a+1,b—1
gy = qml,a,bfl qma,l,bfl +qml,a,b71 qma,l,bfl _qml,a,bfl qma,l,bfl
l,a+b—1 La,b 1l,a+b—1
—¢Mia—1p qma,l,bfl +qm1,a71,b .

Applying # to the whole equation and using the inductive hypothesis, the right
hand side of the equation is in the subalgebra generated by our proposed gen-
erating set, hence so is the left hand side as desired. O

7. QUIVER HECKE ALGEBRAS AND THE ISOMORPHISM THEOREM

In this section, we finally connect the constructions developed so far with the
so-called quiver Hecke algebras originally introduced by Khovanov-Lauda [KL09]
using diagrammatics and by Rouquier [Rou08] using algebraic and categorical
constructions, and later connected to flagged quiver representations in [VV11].
The quiver Schur algebra treated in the next section is a generalisation of the
quiver Hecke algebra introduced in [SW11] using flagged quiver representations
where, generalising [VV11], partial flags are used instead of full flags only.

7.1. The quiver Hecke algebra. We identify the fixed representatives 1,... e
of Z/eZ with the vertices in the affine Dynkin diagram I" = I, attached to the
affine Kac-Moody Lie algebra sl, with the vertices numbered clockwise from
1 to e, and encode the fixed ordering on the representatives by a clockwise
orientation of the diagram. Recall our i € Z™ from Definition 3.6.

Definition 7.1. We denote by R; the quiver Hecke algebra associated to i.
This is the unital k-algebra generated by elements

{e(w) |ue S U, .., Pn1}U{z1,... 20}
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subject to relations

e(u)e(u’) = by we(u); Z e(u) =1;
uc6i
xre(u) = 6(11).1}; Tﬂr@(u) = 6(57" ) u)wr; LTrTs = Tsly;
Urhs = Psihy if |7’ - S| > 1;
Yrxs = Ty if s#rr+1;
¢Tmr+le(u) = (xr¢r + 5UT,UT+1)€(U); $r+1¢r€(u) = (¢T‘xr + 5“7‘7”7‘4»1)6(11);

0 if Upr = Up41,
e(u) if upp1 # up + 1, u,,
Yle(n) = (Tr41 — zr)e(u) if upr1 =ur +1,e # 2,
(xr_xr—i—l) ( ) if Upr+1 =u — e #2;
(g1 — z)(Tr — Tpy1)e(u) i upp1 = —up, e =2
(Yr10rrp1 + De(u)  if urgo = up = w1 — 1,6 # 2,
wrwr—klwre(u) _ (¢r+1¢r¢r+1 - 1)6(11) 'f Upt2 = Up = Upy1 + 1,6 £ 2,
(T) if upio = up = —upy1,e =2,
Urp1Urhry1e(u) otherwise.

where (1) = (Yr 1900011 — 2 — Tpg2 + 22041)e(n).

The commutative subalgebra of R; generated by {e(u) | u € Gi}U{z1,...,2,}
is denoted by P;.

The following can be found in [KL09] or [Rou08] and can be easily verified.

Lemma 7.2. The algebra R; has a faithful representation on
F; = @ e(wklzy,...x,] - 1
ucsi

where the action of Py is the regular action and

0 if up = Upq1,
Yre(u) -1 = (xp — zpp1)e(sg-u) - 1 ifuppr =up + 1, (7.1)
e(sg-u)-1 if Upg1 # Up,up + 1.

Again, we complete our algebra, this time at the sequence of ideals J,, =
R;I"™R; where I is the ideal in k[x1, ... x,] generated by all z;,i =1...n. We
denote the completed algebra by ﬁi, its polynomial subalgebra generated by
{e(u)lu € Gi} U {z1,...,2,} by P; and complete our faithful representation
to obtain F\i = ﬁi QR; F;.

7.2. The isomorphism ’ﬁi = f{i. In this sAection,lve provide an explicit iso-
morphism between the completed algebras H; and R;. A similar result can be
found in [Web13]. Note that our approach differs from that used in [Web13],
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in that we do not use exponentials, but rather an affine shift following the ideas
of [BK09].

First observe that there is an isomorphism
v P — P : (X — ¢")ew — —q“xie(u) (7.2)

which induces an isomorphism

— n

P(H); — F;: H XlieyV — H Y1 —x))%e(u)

=1
between the restrictions of the respective faithful representations to the subal-
gebras P respectively P;.

Theorem 7.3. The /somorph/sm v from (7.2) can be extended to an isomor-
phism of algebras v : H; — Rj, via v(es, u®r) = Apre(u) where

1—q—xr + qxri1 if Upy1 = Uy,
u _ —9q __ [ =
Ar = (1—g—zr11+qzr) ifursy = up + 1,

g"r 1 (1=a,) =g+ (1=z,41)
¢ (I—ar1) -+ (I—er)

if Upg1 7 Up,up + 1

Proof. Since symmetric formal power series in the X; respectively the x; com-
mute with the @, from (3.10) respectively the generators v, it suffices to check
the following two types of equalities

V(s - en®, V) = Alre(u)-1, (7.3)
Y(es,u®r(Xrp1 — Xp)V) = Aloy((Xps1 — Xy )ew) - 1, (7.4)

for any possible choices of  and u. We start with the equalities (7.3).

i.) If upr1 = u,, then the right hand side of (7.3) is zero by (7.1) whereas
the left hand side is zero by (3.14).
ii.) In case u,41 # u,, we obtain from (3.16) and the definition in (7.2) that
_ Xr —qXr11 _
a® = —————€s,.
Y (esr u rV) i < Xr—i—l X, €s,-u
Ur+1(] — _ ur+l 1—
_ q ( xT) q ( xT-H) 6(87» . u) 1. (75)
q"r(1 = zpp1) — g+ (1 — )
a.) If up41 = u, + 1, we can simplify (7.5) to

— ¢t — ) — ¢ (1 — 2 y)
a® = cu) -1
esru®r¥) q"r (1 = zpq1) — gt (1 —zr) elsr-u)
QUT+1($T+1 - xr)
q"r (1 —q — 241 + qy)
= q(@ri1 — ) e(sr cu) -1
(1 —¢q—zrs1 +qoy)

e(sp-u)-1
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On the other hand, in this case A¥e(u)-1 = A (2 —zri1)e(sy-u)-1,
so our choice of A® = m again means that (7.3) holds.
b.) If urt1 # ur, up + 1 then Apre(u) - 1 = Ale(s, - u) - 1, we see that

. . Uy —)— ur+1 —x,
(7.3) indeed holds if we set A® = qqujzl(l_xﬂr)l)fquTJrgl(l_J)l).

This settles (7.3), and we proceed to (7.4). The left hand side equals
Y Xrp1 — Xi)ew) = (¢ (1 —zp41) — ¢ (1 — 27))e(u).
If u,y1 # u, then, using (3.15), we obtain the equalities
LHS = y(es,u®r(Xrt1 — Xp)V)
= Y(qXp41 — )esr-uv)
(@ (1= 2p41) — ¢ (1 —z)e(su) -1 (7.6)
On the other hand, in this case, the right hand side equals
RHS = AfYy((Xpp1 — Xr)eu) - 1
= APe(¢" (1 = arg1) =g (1= zp))e(u) - 1
= AN¢" (=) = g™ (1 = 241))¢re(u) - 1
= AN (1) — (L= Bpy)e(sr W) 1 (7.7)
i) If upp1 # up,up + 1, then AN = “Zfiﬁl(lf;j;zzfzﬁggf)r) gives (7.4).
ii.) If up41 = u, + 1, then the desired equation simplifies via (7.1) to
U (@ = @pgar))e(s, - u) - 1

- Au (q —1—qx, + xr-&-l))(@’r - $r+1)€(8r . u) - 1.

(¢

Hence (7.4) holds if we set A} = ———~1——.
L q qTr+Tri1
iii.) If up41 = uy, then, using (3.15) we have
LHS = ~(es, u®(Xr41 — X,)¥)

= 7(2(gXr1 = Xp))e(u) - 1)
= 2(¢"H (1~ zpp1) = ¢ (1 - zp))e(u) - 1)
= 2¢"(q(1 = zp41) — (1 — 2r))e(u) - 1)

for the left hand side of our formula (7.4), while the right hand side becomes

RHS = A (¢ (1 —2pp1) — ¢ (1 —zp))e(u) - 1
= A:"IQ;Z)T(QUT (557“ - xr-i—lr)e(u) 1= _QQUTA?G(U) -1

Therefore, setting AY = (1 —x,) —q(1 —2p41) = 1 — ¢ — xp + qrr41
implies that (7.4) also holds in this final case.

Hence the theorem is proved. O
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8. QUIVER SCHUR ALGEBRAS

In this section we establish our main isomorphism theorem by connecting the
affine Schur algebra (defined by Vignéras) with the quiver Schur algebra from
[SW11]. We do this via an auxiliary modified quiver Schur algebra which we
now introduce.

8.1. The modified quiver Schur algebra. Recall i from Definition 3.6. For
J €1, and

ujy = (u17 T 7ut1’ut1+17 e 7ut2‘ o ‘utrfl-‘rla e 7utr) S UJ
with dimension vector d = d(i) = d(u, J) = (d1,da, ..., d.) we define

_ S
AUJ - k[yl,b e Y1,dirY2,15 - - -5 Y2.dos - - - aye,de} wJ

A= @ Ay, .

JCI
uyeU;

and set

Definition 8.1. Let 1 < i < e. For 1 <k < r let c(k); = Y5, &/, using
Definition 5.7 and ¢(0); = 0. Then the total reversed Euler class attached to
uy is
e r—1 c(s)s dit1
Ew, = H H H H (Yij — Yiv1,k)- (8.1)
1=1s=1 j=c(s—1);+1 k=c(s)i+1+1
with Ey, := 1. The total symmetriser is defined as as
e r—1 c(s)i d;
su, = [III I I wij—vix) (8.2)
i=15=1 j=c(s—1);+1 k=c(s);+1
with Sy, := 1. More generally, assume J C K and let ux € Ug be a merge of
uy. Then their relative reversed Euler class respectively the relative symmetriser
are defined as
Ey = E:; respectively ~ SyX = Su.’ (8.3)
In particular, the special case K = I gives the total reversed Euler class re-
spectively the total symmetriser. Note that the relative Euler class and relative
symmetriser are again polynomials.

Example 8.2. Note that E;jo) = y1,1 — y2,1, and Eg;;) = 1 if e > 2 whereas
Eegpn)y = y2,1 —¥11 if e=2 and Eqp) = 1. Moreover, S)2) = S = 1,
whereas E(1j1) = y1,1 — Y1,2-

Example 8.3. Let for instance uy = (1,2|1,1|1,2[1), ug = (1,2/1,1,1,2|1).
Then for e > 3 we have Ey;, = (y171 — yg,g)(ylg — y272)(y173 - ygyg) =: F and
Eugr = (Y1,1 — y2,2) and therefore EYX = (y12 — y2.2)(¥1,3 — y2,2), whereas for
e=2wehaveEy, = E(y21—v1,2)(¥2,1—v1,3)(¥2,1—y1,4) (¥2,1—v1,5) (y2,2—¥1,5)
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but again EjX = (y12 — ¥2.2)(¥1,3 — ¥2,2). On the other hand, for any e > 2,
we have SU¥ = (y12 — y1,4)(y1,3 — Y1.4)-

Definition 8.4. We define the modified quiver Schur algebra C; as the subal-
gebra of Endy(A) generated by the following endomorphisms:

e the idempotents: e(uy) for uy € Uy for any J,
defined as the projection onto the summand Ay,

e the polynomial: e(uy)pe(uy) for uy € Uy for any J, and p € Ay,
defined as multiplication by p on the summand Ay, .

o the splits: Y7 for J C K, u; = (u,J) € Uy, thus defining ug € Ug
sending any element f € Ay, to f € Ay, and any f € Au;(/ with
u), # uk to zero. In other words, a split is just the embedding of the
summand Ay, into the summand Ay, .

o the merges: \,* for any J C K u; = (u,J) € Uy, thus defining
ug € Ug, defined on an element f € Au/ﬂ by

f oo A(EEI; ) € Ay, if uJ:uf,/, (8.4)
0 otherwise.

L Iu
where A = AKX sends an element f to the total invariant th; * ( JK) .
uy SUJ

Using a reformulation in terms of Demazure operators, see Proposition 8.13, it

Iy . . .
follows that rh]uf <SJK> is indeed again a polynomial.
uy

Example 8.5. Consider for instance u; = (1|1) and ug = (11). Then for

f € Auy = Kly11,91,2) we have AuK(f) = A(yl’lfylﬂz) — 2f5, where f =

fi+ (y1,1 — y1.2) f2 with (uniquely determined) fi, fo € Ay, .

Example 8.6. Let us describe the merge endomorphism explicitly in the simplest

case where uy = (1%1,2%, ... e%|1b1 202 . ¢P) has only two parts, hence
ug = (19,29 e%) with d; = a; + b;. Then our formulae give
e a; dit1
ITIT II s —wiern)
ug _ di, d2, ..de i=1j=1k=aiy1+1
A(EUJ ) - mal,bl ,a27b2,...,ae,bg f

e a; d;
ITIT IT (wis—win)

i=1j=1 k=a;+1

We denote by C; the completion of C; at the ideal generated by all e(uy)pe(uy)

forall J C L,buy € Uy and all p € Ay, with zero constant term. Then C; has
a faithful representation on

A= D Au,
JCI
U
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where /A\uj denotes the completion of A, at the ideal of all polynomials with
zero constant term.

8.2. The quiver Schur algebra. Here we recall the definition of the quiver
Schur algebra Aj;, introduced by the second author and Webster in [SW11]. For
J el and

uy = (ulv"' aut1|ut1+17"' 7ut2‘ |utT71+17"' 7utr) S UJ

with dimension vector d = d(i) = d(u, J) = (d1, d, . .., d.) we define

AuJ = ]k[le, s Bl R2,Ly e 3 B2y - - e Zeﬁe]GuJ (85)

and set
A= @ A,

JCI
uy;eU;y

Definition 8.7. Let 1 < i <e. For1l <k < r let ¢(k); = Z?Zld{, using
Definition 5.7, and ¢(0); = 0. Then the total Euler class and the symmetriser
for uy are defined as

e r—1 c(8)it1 d;

E.,, = [[]] (Zig1,5 — Zik)-

i=1s=1 j:c(s—l)i+1+l k‘:C(S)Z-‘rl
(notice that this is Gy, ,-invariant), respectively

e r—1 d;

c(s)i
Su, = IIII 11 T (zij—zik)

i=1s=1 j=c(s—1);+1 k=c(s);+1

(Note that §uJ is the same as Sy, only written in variables z; ; instead of y; ;.)

More generally, assume J C K and let ug € Ug be a merge of uy. Then their
relative Euler class respectively the relative symmetriser are defined as

trio

EUK _ u SuJ

uy;

respectively Suf¥ = =
109°¢ SUK

trio

The following was introduced in [SW11].

Definition 8.8. The quiver Schur algebra A; is the subalgebra of End]k(/oX)
generated by the following endomorphisms:

e the idempotents: e(uy) for uy € Uy for any J,
defined as the projection onto the summand [O\uJ,

e the polynomial: e(uy)pe(uy) for any J and p € /O\uJ,
defined as multiplication by p on the summand /o\uJ.
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e the splits: YE; forany J C K and uy = (u,J) € Uy,
defined on an element f with f € lo\ule by

FER E“KfeAuJ if uy = ug,
0 otherwise.

In other words, a split is just the embedding of the summand ./OXuK into
the summand Ay, followed by multiplication with EU .

- g
e the merges: \,,, forany J C K and u; = (u,J) € Uy,
defined on an element f € Jo\uiﬂ by

Foe A(f) € Ay if ), = uy, (8.6)
0 otherwise.
where A = Agf sends an element f to the total invariant
A Iy f
Ay = e (SUK) . (87)
uy

Note that again the translation into Demazure operators from Proposition 8.13
ensures that A(f) is in fact a polynomial.

Again we have Slmp|e splits and merges: In case |IK\J|=1andu; = (u,J) €
U, we call Y a simple split and A a simple merge. If K = 1 and

o ,b
J = K \ {a}, we also denote these by Yab respectively A;rb' where a; = d}
and b; = d? with the notation from Definition 5.7.

Remark 8.9. In [SW11], the quiver Schur algebra was only defined over the
complex numbers, since the involved geometry would require more advanced
tools. However one can easily verify that the faithful representation defined in
[SW11] makes sense over any field and so we just define the quiver Schur algebra
over an arbitrary field as in Definition 8.8. In characteristic zero it agrees with
the one defined in [SW11] by Remark 8.11 below.

u
(191,292 e%|1b1, 2b2 . ebe) and K =1, hence ug = (14,2%, ...,
the formula (8.6) simplifies to

Ao, () = A, () =AW

Example 8.10. Note that in the case of a simple merge Auf of the form u;
ode

),

dlv---vde f

ai,b1,a2,b2,...,ae,be e a; a;+d;

ITIL 1T Gig— =)

i=1j=1k=a;+1




AFFINE QUIVER SCHUR ALGEBRAS AND p-ADIC GL, 53

with the relative Euler class
e Ci+1 di+c;

EE? = H H H (Zi—i-l,k: - Zi,j)~

i=1k=1j=c;+1
This, indeed, corresponds to the formulae given in [SW11].
Remark 8.11. Assume K = I and J = K \ {a} and uy = (u,J) € Uy.

Let (a,b) be the dimension vector of u, where a; = d} and b; = d? with the
notation from Definition 5.7. Write Sa1p for WIuK and S, for WIuJ. In

. . ¢ atb . .
[SW11], the action of a simple merge A, on the faithful representation (8.5)
is defined as sending f to

. w( H (215 — #ik) H (i — Zi,k))

1 1<j<k<a; a;<j<k<a;+b;
> VD] o
g Qo T  Gij—zw

1<j<k<a;+b;

WESatb

Note that, in contrast to formula (8.6), this expression does not make sense in
positive characteristic in general. In characteristic zero however, this expression
coincides with (8.6), since we have

e
1 <h<a; (Zig = Zik) [as<j<h<astv; (Zig — %,
Z w(f)H w (HlSK’“S (i k) [ai<jch<aitn: (Zig k))

WE St i 0ilbd! [li<jck<as+b, (Zij — Zik)
e
1 1
= Y W] w( S )
WESmit o aaltbl T TRt (205 — #ik)
e
1
- ¥ wmnw( S )
o1 Lo TR (zig — i)

Tug
wEDm,I“‘]

= 1
Z ‘ <f£[1 [T wthi (2 — Zi,k))

Tupe =1 k=a;+1
wEDQ)JuJ
- 1
ma1+b1,a2+b2,...,as+be f H
ai, biaz, b2,...;ac, be a; a;+b; - ]
i=1 Hj:l Hk?:ai+1(zl~,] — Zik)

as desired.

8.3. Demazure or Bernstein-Gelfand-Gelfand difference operators. In this
subsection we connect our merging formulae to the classical difference operators.
For 1 < i < n —1, the ith Demazure operator or divided difference operator
from [Dem74] or [BGG73] is the endomorphism

Ai : k[Xl,Xg,...,Xn_ﬂ %k[Xl,XQ,...,Xn_l]
defined as

Ay = =20
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For f,g € k[X1,Xa,..., Xn-1], we have A;(fg) = Ai(f)g + si(f)Ai(g), in
particular A;(fg) = fAi(g) if f is si-invariant, and A? = 0. Moreover, for a
reduced expression w = $;,S;, - - - S;,., the operator A, = Ag, Ag, -+ Ag, s
independent of the chosen reduced expression.

8ip Dsig Sip

Lemma 8.12. Let wy = wo(n) € & be the longest element, then
Ao (X7IXD72 X2 0 X)) = 1

In particular if wy is the longest element of some parabolic subgroup Wi in
S, then there exists some polynomial h such that A, (h) = 1.

Proof. If n =1 then A(X;) = % = 1 and so the claim holds. Assuming

the formula holds for n, we deduce it for n+1 by writing first wo(n+1) = dwy(n)
with d = s1s9 -+ s, via Lemma 6.1, and then compute

Auomay XTI XF 72 Xp1) = Aa(Ayym) (XTI XF72- X))
= Ad(AwO(n>(X{“2X§‘3 o X)Xt Xnl1)) = Ag(Xy - X))
= Agsys, 1 (X1 X Xp2Ap_1(Xpn-1))
= Ay, (X1 Xo-- X 0) = -0 = Ay (X)) =1

Hence the lemma follows. O

There exists in fact a closed formula for A,,,, namely
1 " 1
Auy = 22 )Ww=3 w, (8:8)
wesS weS

where A = [[1<j<j<n(Xi—Xj). The first equality can, for example, be found in
[Ful97, Lemma 12], the second equality is an elementary calculation observing
that a simple transposition changes the sign of A by —1.

The merges from (8.7) can then be rephrased in terms of Demazure operators

as follows (explaining the notations A and A)

Proposition 8.13. Assume we are in the setup from (8.7) and abbreviate J' =
Iy, and K' = I, using Definition 5.12. Then we have the equality

i (S?J:I{) = A (8.9)

on Ay, where df]( € D‘If,/ is of maximal length (i.e. the representative of the
longest element in Wy C Wi ).

Proof. Let f € Ay, and let w; be the longest element in Wy C Wik and wg
the longest element in Wy+. Then

Ad? (f) - AdJK (f ) 1) - Adf]{ (f : AwJ (h>) - Ad?(AwJ (fh)) = Awo(fh)
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with i as in Lemma 8.12. Here, for the penultimate equality, we have used that
f is Wj-invariant and for the last equality that dw; = wg. With the explicit
formula from (8.8), we obtain

Ay (fh) = % S (1) ™w(fh)
wEW e/
S DA <Z <—1>l<w>w<h>>,
deD?l weW 5

where the denominator is the Vandermonde determinant

A = H H (Zi,j_zi,k:)

i=11<j<k<d;

e r—1 c(8)s d;
= <H I 1II (2ij — Zi,kz))
+1

i=15=1 j=c(s—1);+1 k=c(s);

e r—1
: <H I1 11 (25 — Zi,k))
(S)i

1=1s=1¢(s—1);+1<j<k<c

Hence, using (8.8), we obtain A, (fh) = m% <SULK) Ay, (h). Now the propo-
uy
sition follows with the definition of A. (]

8.4. The shifted quiver Schur algebra B;. We now define the shifted quiver
Schur algebra B; in almost the same way, except that the Euler class moves
from the split to the merge. More precisely, define B; as the subalgebra of

o

Endy(A) generated by the following endomorphisms:

e the idempotents: e(uy) for uy € Uy for any J,
defined as the projection onto the summand f\u,,,

e the polynomial: e(uy)pe(uy) for any J and p € lo\uJ,
defined as multiplication by p on the summand /O\uJ.

e the splits: YEIJ( forany J C K and uy = (u,J) € Uy,
defined on an element f with f € f\u;(/ by

FER fEJOXuJ if uf, = ug,
0 otherwise.

In other words, a split is just the embedding of the summand Ay, into

the summand jo\uj.

UK
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—SUK
e the merges: \,, forany JC K and u; = (u,J) € Uy,
defined on an element f € Zo\uf]/ by

P AESK f) € Ay, if Uy = uy,
0 otherwise.

Note that this algebra is again defined for any field.

9. THE MAIN RESULT: THE ISOMORPHISM THEOREM

The goal of this section is to prove the main Isomorphism Theorem 9.7 between
the completed affine Schur algebra and the quiver Schur algebra using the
auxiliary algebras in between.

9.1. The isomorphism S; = Gi. We now compare the faithful representation
of the modified quiver Schur algebra C; with the faithful representation of the
completed affine Schur algebra S;.

The following isomorphism of vector spaces
T :k[yl,b--'ayl,’ypﬂ-yye,%] — R+ :k[Yl,h'"7Y1,717"‘71/;,We]
Yej +— 1-— q_cifc,j

induces an isomorphism of vector spaces

——ug

Tug :/A\uK - P(S); :R+,UKV(K)
s (v
and thus a total isomorphism
T= P T A-P©S), (9.1)
KCI
ug€eUg

From now on we will identify these two vector spaces via our chosen isomor-
phism. With this identification we can compare our endomorphism algebras:

Proposition 9.1. The isomorphism T can be extended to an algebra isomor-
phism T : C; — S; which

o identifies the subalgebra of C; generated by all e(uy)pe(uy) for all
J Clbuy €Uy and p € Ay, with the algebra Q; from Section 5.6,

e identifies splits in the sense that, for any J C K C anduy = (u,J) €

. + +
U, it maps Yﬁi{ to eu, bl xCu,

e identifies merges in the sense that, in case J C K,

J|=|K| -1 and
u; = (u,J) € Uy, the generator A\ maps to JeruKb}( JJeruv,P_1 for
an invertible power series P.
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From our identification of local and global indices in (5.10), it is immediate that
T extends the isomorphism (7.2) given in Section 7.2.

Proof. It follows immediately from Proposition 5.18 and Lemma 4.19 that the
action of the algebra @i coincides with the action of the subalgebra of Gi
generated by all e(u)pe(u ;) under the identification 771. Hence the first claim
holds. It is also clear from Example 4.5 that for J C K and uy = (u,J) € Uy,
the action of eu]bJKguK on IP’(S)i translates directly to the action of Y/
under 771, Hence the second assertion holds as well. We now claim that
for J C K, |J| = |K| -1 and ugy = (u/,K) € Ug a simple merge of
u; = (u,J) € Uy, the action of JeruKb}(yJJéuJ on P(S); translates into the
action of AEIJ‘ P for an invertible power series P. Again, to ease terminology, we
check this in the case of K = T and uy = (191,292 ... %101, 2b2 ... ¢be),
Since the calculations are local this is sufficient. Recall from Proposition 6.11
that for f € ]:Lr,uJ

=1 —(J dy, ... da, ...
eu/p(bK,J)fv( ) = G mai,bl,az,iz, ae,be H H 0] kfv
k a+1j=1

Translating this into the variables Y; ;, notice that o becomes superfluous as
it is precisely the element mapping (i, j)u, from Definition 5.12 to (i,j)u/K and
is hence the identity on the variable Y; ;. We obtain

e a; ds
~ —(J di, .. da, qYi, k
eu/p(b}(,J)fV( ) = ey’ ma17b17a27b22, ae,b H H H H Z;_ Ysk

i=1s5=1j=1k=as+1

-1 inh 1 € e a; ds in,jfys,k
Under 777, multiplication by T[7_; [T5—; IT;51 [Txla.+1 Yoy, translates to

multiplication by

IR gt yl,]) q°(1 — yS,k)
HHH T Yij) = (1 = Ys)

i=1s=1j=1k=as+1 q

i d; d;
_ ﬁ f—[ I L—q+quij — Yik ﬁl —q(Yij — Yir1,k) R
=121 \ kmay 1 Yij — Yik b1 L T4 Yig T @ik

z+1

1Yij5 — Yi+1,k
= (1] e P.
i=1j=1 Hk a;+1 Yijg — Yik
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where we abbreviated

ds ;
R — ﬁ ¢ —yig) = ¢*(1 — ysp)
s=1 k=as+1 ql(l - yi,j) - qs(l - ys,k’)
s#iit1
e a; dl di+l _q
P = HH( H (1—q+qyij — vir) H T ———
i=1j=1 k=a;+1 k=a;i1+1 q—Yij T 4qYi+1,k

Note that P is an invertible power series in Ay, . Hence the third assertion holds
as well. By definition of the modified quiver Schur algebra we have mapped all
generators to the corresponding elements in S; by identifying their action on the
faithful representations. This implies that 7 is injective. By Proposition 6.19,
the image of T contains a generating set for S;, so T is also surjective and hence
an isomorphism. O

9.2. The isomorphism B; = A; of (shifted) quiver Schur algebras. We
next show that the shifted quiver Schur algebra is isomorphic to the ordinary
quiver Schur algebra. We start with some preparation. First, we again identify
the vector spaces underlying the faithful representations.

For uy € Uy, set i[o\uJ = Eu‘,joXuJ and YA = D Ja iA/DXUJ. Fix the vector
. . u;eU;
space isomorphism
pu,  he, o A,

f = Euf

and the induced vector space isomorphism

J

k= P ku, A —*A
JCI
uy;eUy
Lemma 9.2. Endowing YA with a representation of B via k, the induced action
is given by the same formulae as the action of A; on A, i.e.

e the idempotents e(uy), foruy € U for any J,
act as the projection onto the summand ilo\uk,,

e the polynomials e(uy)pe(uy), for any J and p € HO\UJ,
act as multiplication by p on the summand WOXUJ.

e the split VEZ{ for any J C K anduy = (u,J) € Uy,
acts on an element f with f € i/OXu/K, by

f oo EUf f e tAy, ifufy = ug,
0 otherwise.
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SUK
e the merge \,, forany J C K andu; = (u,J) € Uy,
act on an element f € /o\u/J/ by

P {A(f) €Ay, ifuy =uy,

0 otherwise.

Proof. The actions of idempotents and polynomials are immediate. In order to
compare the actions of splits, consider the diagram

o Eu .
AUK = \LAUK
; l

o Eu .
Ay, Ay 5

Then the third claim of the lemma is equivalent to the commutativity of the
required diagram, which is equivalent to the fact that the induced action of

—Uuy

Y, ON YA is indeed given by multiplication with Ey, /Ey, = EGX.
TUK . .
For a merge AuJ , consider the diagram

By

Aug Ay
A —>T T

. Eu R

AuJ ‘LAUJ.

Again we need to verify commutativity, which again stems from the fact that
—-u o
the action of Auj{ on YA is given by

fr Eu AESFESLf) = Eu A(EGL £).

.. o . Iu . . o .
Noticing that Ey,, commutes with ;' by &y, -invariance of E the claim
uy

ug
follows. U

Lemma 9.3. The representation of B; on YA is faithful. Moreover, the action
of A; restricted to *A is equal to the action of B;.

Proof. Directly from the proof of the Lemma 9.2, we see that the action of A;
on A when restricted to *A is equal to the action of B;. Since the representation
of A; on A was faithful, the representation of B; on YA is faithful as well. The
second statement follows from the commutative diagrams above. O

We claim that the canonical embedding ¢ : A A f — f induces an
isomorphism of algebras as follows.

Proposition 9.4. The algebras A; and By are isomorphic.
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Proof. Since the action of A; restricted to YA is equal to the action of B; by
Lemma 9.3, we see that YA is a faithful subrepresentation of A for A;. The
algebra A; is therefore completely defined by its action on YA, and we obtain
the desired isomorphism A; = B; from Lemma 9.2. O

9.3. The isomorphism C; = B;. In order to prove that §i and A; are isomor-
phic, it now remains to show that C; and B; are isomorphic.

In order to do this, we define a bijection

- : UUJ — UUJ:

Jcl JcI
uy — ﬁj

where for uy = (uy, -+, wg [Ugy 41, s Uty| - Uty 41,7, Uz, ), We Set
ujy = (utr—1+17 T 7ut7-|utr—2+17 T 7ut7‘—1‘ T |U1, T 7ut1)'
We further define the inner automorphism of &,, which is given by conjugation

with the longest element wy of Dy ; and notice that this interchanges &, and
GUNJ. It induces the isomorphism 6 of vector spaces

k[yl,l) e Yld s Y2,15 -5 Y2.dos - - - ,?/e,de] Ye,j
el I
k[zl,lu s 721,(117 Z2,17 cee 7z2,d27 e 7ze,de} Zc,wg(j) = _ZC,dC+1fj

which restricts to an isomorphism 6 of vector spaces

0: Ay, 5 o
,2,2,3/1,2,3|1,1,2,3,3),

Example 9.5. Consider for instance uy = (1,1,1,1
1,2,2,3) and W] = 67X63X64

then we have uy = (1,1, 2,3,3,]1,2,3|1,1,1,
and

Gu, = (64 x G2 x {1}) x ({1} x {1} x {1}) x (&2 x {1} x &2).
Under conjugation by w@] this is sent to

(G2 x {1} x Gg) x ({1} x {1} x {1}) x (64 x G2 x {1}) =S~

uy°

Proposition 9.6. There is an isomorphism of algebras

Ci — Bi
e(uy) — e(uy)
pelus) > Op)e(iiy)

— Y

- UK

l

Y
A

J
K ug
K
J

uy
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Proof. We check that the isomorphism 6 : A — A intertwines the actions of C;
and B; with respect to the isomorphism given in the proposition. It is obvious
that this is true for the idempotents and the polynomials, as well as the splits.
. . . . . In
Looking at the action of merges, the fact that conjugation with wg sends K
uy
I~
to ;"X we see that, in order to prove the proposition, it suffices to show that
uy

Q(EuJ) = EHNJ and H(SuJ> = éu";

Now notice that the term y; ; — y;4+1 % appears in Ey, (and thus the term
Zig1,disi+1—k — Zidi+1—j appears in 6(Ey,)) if and only if the jth appearance of
7 in uy is in an earlier segment than the kth appearance of ¢+ 1. Since applying
~ to uy reverses segments, this is equivalent to the (d; + 1 — j)th appearance
of i in u; being in a later segment than the (d; 41 + 1 — k)th appearance of i.
The latter is equivalent to the term z;41,4, 11k — Zid;+1—; appearing in Es-
The claim that §(Su,) = S is checked analogously. O

9.4. The main theorem. We are now prepared to prove our main result:

Theorem 9.7 (Isomorphism Theorem). There is an isomorphism of algebras

~ —~

S = A,
Via this isomorphism Ki inherits a grading from S;.
Proof. Composing the isomorphism from Proposition 9.1 with the completions

of the respective isomorphisms in Propositions 9.6 and 9.4 provides the required
isomorphism. In formulae, the composition

~ Proposition 9.1 e~ Proposition 9.6 = Proposition 9.4 -~
Si C; B; A;.
is an isomorphism of algebras. O

10. THE EXAMPLE GL2(Q5) IN CHARACTERISTIC 3

We finish with an explicit example, namely we consider the unipotent block
B (that is the block containing the trivial representation) of the category of
smooth representations for GL2(Q5) over an algebraically closed field k of char-
acteristic 3, so e = 2.

10.1. The (completed) quiver Schur algebra. Let B! as in (1.1) and B}
the full subcategory of B! consisting of representations with generalized central
character xa where a = (q,q?). Equivalently, B! is the full subcategory of
S — Mod of all representations with generalized central character x,.

Theorem 10.1. Letn = 2 = e. Then the quiver Schur algebra A; fori= (1,2)
is (as graded algebra) isomorphic to the path algebra B of the following quiver
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x1716(1‘2) AE}E; 11716(1,2) Y(Q‘l) CE1718(2

—
~—

(1,
(1[2) (1,2) (2[1) (10.1)
x2,1€(1]2) Y(172) z2,1€(1,2) A<211) z2,1€(2]1)

with grading given by putting the horizontal arrows in degree 1 and the loops
in degree 2 modulo the (homogeneous) relations

(12) (1

Y A = (w21 —211)e((12)),
) (1]2)

(2|1)( 2)

Y A= (w1 —z20)e((2[1)),
) (2]1)

(12) (112) (12) (2]1)

A Y = - A Y (211 — 221)el(1,2)),

(112) ( (211) (
uy

sa Y = Yo foric {L2hus e {(2) 20
(12) (12)
(12) (12)

xlA = Axl fori € {1,2},uy € {(1]2), (2]1)}.
uy uy

(Recall that the path algebra of this quiver is the k-algebra with basis all possible
paths obtained by concatenating the arrows, including the three paths of length
zero corresponding to the vertices of the graph. The multiplication of two paths
is the path obtained by concatenation if this makes sense and zero otherwise.)

Remark 10.2. Note that, since the algebra is non-negatively graded and 3-
dimensional in degree zero, the three idempotents e(1|2), e(2]1), and e(1,2)
must be primitive.

Proof. By Remark 10.2, the given three idempotent are primitive and by defini-
tion pairwise orthogonal, hence the quiver has three vertices. The idempotents
together with the elements corresponding to the arrows generate the quiver
Schur algebra by Definition 8.8. The relations are easily verified on the faithful
representation from Definition 8.8. The fact that these are all the relations can

be checked again by a direct calculation, or follows from the basis theorem in
[SW11]. O
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Remark 10.3. Note that the elements e(1]2), e(2[1), xii1e(1|2), z;1e(1]2)

o : ey L@l | (1,2) a2 L312) 4 (1,2)
with i = 1,2 together with X(1|2) = Y(1,2) A(1\2) and I(m) = Y(L?) A(2|1)
generate a graded subalgebra of B = A; isomorphic to the quiver Hecke or
KLR algebra attached in in [KLO9] and [Rou08] to the cyclic quiver and the
sequence i = (1,2).

From our main theorem we get the following consequence.

Corollary 10.4. Let G = GL2(Qs5) and assume ¢ = 3, hence e = 2. Then the
category BL of representations in B! with generalised central character xa is
equivalent to the category of B-modules, where B is the completion of B at
the maximal ideal (z11,221) of k[z11,221] C B.

Proof. By Theorem 9.7 and Theorem 10.1, Bis isomorphic to the completed
affine Schur algebra from Proposition 5.1. Hence it is isomorphic to the com-
pletion of the endomorphism ring of a projective progenerator of B! by (1.1),
the module category over which gives precisely the category of objects in B!
with the given generalised central character. O

Remark 10.5. Since every irreducible representation in B is smooth and there-
fore admissible (see e.g. [BI11, Theorem 4.42] or [BZ76, Theorem 3.25]), it
has a central character by Schur's Lemma. The category of objects in B! with
some generalised central character thus includes blocks of finite length objects
in BL.

Note that Endp(Be) = k[x1, z2], generated by ex; e and ez e for any e €
{e(1]2),e(2]1),e(12)}. Moreover, Homp(Be, Be') 2 k[z1, x2] as vector spaces
for any pair (e, e’) of these idempotents. It is free as a left Endz(Be)-module
and as a right Endp(Be’)-module of rank 1 with basis the minimal degree
morphism in Hompg(Be, Be'). Hence B can be viewed as a k[x1, z5]-algebra.
As such it is quadratic, that is, generated in degree one (by the morphisms
corresponding to the arrows given by simple merges and splits) with relations in
degree two.

10.2. Indecomposable projectives. The indecomposable projective B-modules
P((1]2)), P((2|1)) and P((1,2)) look as in the pictures below, where the num-
bers stand for the corresponding simple object and the lines for a basis vector
in Ext!.

The part indicated by the non-dashed lines should be extended to infinity at
the bottom and then the whole resulting part is copied infinitely many times
(indicated by the dashed lines), once for each power of (z11 + 221). The
structure of P((2|1)) is similar to that of P((1]2)), just with (1]2) and (2|1)
swapped.
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P((12)) P(,2))

a2
‘ (1,2)
w2) ‘ \
‘ \ (2[1) (112)
(112) (2[1) (12) ‘

‘ (1,2) (1,2)

/
/(1,2) (1,2) / ‘ \

/
, ‘ \ /@) ai2) el ae)
/ [ /
AN ap @ ap) S \

. ‘
[ /
// / \ ‘ o /7 1,2) (1,2)
/ / 4 /
Lo /) (1,2) / s
/ / / / / /
/
/

/ / /
/ / (1) (112) (/1) (112)
/ / / / /
/ / . . /
e (12) /) (12) A / ‘
, / / , / /
, / , / / .
, ;
/ / / /2)
/ / / / / /
/ / /0 (1,2) / / /
/ / / / / ;
/ / / / / /
; / , / /
/ / / /
/ / /
/ /
/ /

10.3. The corresponding irreducible representations. The labelling of the
primitive idempotents in (10.1) corresponds to a labelling of the three simple
modules in B. Explicitly, we have

e (1]2) (corresponding to the trivial representation),

e (2|1) (corresponding to the composition of the valuation on Q5 and the
determinant), and

e (1,2) (corresponding to the cuspidal representation).

To verify this, note that the first two idempotents are contained in the quiver
Hecke algebra (see Remark 10.3), hence correspond to the two simple represen-
tations which are not cuspidal. For these two the identification is a matter of
conventions.

10.4. The Extquiver of B.
Corollary 10.6. /n the situation from above, the Ext-quiver of B is

ze(12) Agé; ze(1,2) Ygg; ze(2|1)

L~ 1 O
(112) (1,2) (2[1) (10.2)
'\_/ ~_

12 12)
Y,) i)
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and the relations are that z = ze(1|2) + ze(2|1) + ze(1,2) is central and

(12) (1]2) (12) (2]1)
A Y =-AY
(112) (12) (21) (12)

Proof. This follows directly from the theorem by setting z = x1,1 + 22,1. O

In this example one can in fact verify our general expectation that B only differs
from B! by self-extensions of the simple cuspidal representation, and thus B!
contains more or less all information about the unipotent block B.
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