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Categorification of Wedderburn’s basis for C[Sn]

Volodymyr Mazorchuk and Catharina Stroppel

Abstract. M. Neunhöffer studies in [21] a certain basis of C[Sn] with the ori-
gins in [14] and shows that this basis is in fact Wedderburn’s basis, hence
decomposes the right regular representation of Sn into a direct sum of irre-
ducible representations (i.e. Specht or cell modules). In the present paper we
rediscover essentially the same basis with a categorical origin coming from
projective-injective modules in certain subcategories of the BGG-category O.
Inside each of these categories, there is a dominant projective module which
plays a crucial role in our arguments and will additionally be used to show
that Kostant’s problem ([10]) has a negative answer for some simple highest
weight module over the Lie algebra sl4. This disproves the general belief that
Kostant’s problem should have a positive answer for all simple highest weight
modules in type A.
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1. The main result. Let n be a positive integer and Sn the group of permutations
of the elements from {1, 2, . . . , n}. Denote by S the usual set of Coxeter generators
of Sn and by H = H(Sn,S) the associated (generic) Iwahori-Hecke algebra. The
algebra H is a free Z[v, v−1]-module with basis {Hw|w ∈ Sn} and multiplication
given by

HxHy = Hxy if l(x) + l(y) = l(xy) and H2
s = He + (v−1 − v)Hs for s ∈ S,

where l : Sn → Z denotes the length function with respect to S. Denote by
{Hw|w ∈ Sn} the Kazhdan-Lusztig basis (in the normalization of [25]). We
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also denote by {Ĥw|w ∈ Sn} the dual Kazhdan-Lusztig basis of H, defined via
τ(ĤvHw−1) = δv,w, where τ is the standard symmetrizing trace form.

The group algebra C[Sn] of Sn is obtained by specializing v to 1 in H, more
precisely: by extending first the scalars in H to C and then factoring out the
ideal generated by v − 1 we get an epimorphism of C-algebras, which we call the
evaluation map:

ev : C ⊗Z H proj� (C ⊗Z H) /(v − 1) ∼→ C[Sn], 1 ⊗ Hw �→ w.

The Robinson-Schensted correspondence (see e.g. [24, 3.1]) defines a bijection
between elements w ∈ Sn and pairs (a(w), b(w)) of standard tableaux with n
boxes, such that a(w) and b(w) are of the same shape. For every element w ∈ Sn

we denote by Rw = {x ∈ Sn | a(x) = a(w)} the right cell of Sn which contains
w. Let w denote the unique involution in Rw. Beside a(w) = a(w) the element
w satisfies (and is characterized by the property) a(w) = b(w). It is the Duflo
involution of Rw.

Our main result is the construction of a basis {fw|w ∈ Sn} of C[Sn] compatible
with its regular right Sn-module structure in the following way:

Theorem 1. For w ∈ Sn set fw = ev(ĤwHw). Then the following holds:

(a) The elements {fw|w ∈ Sn} form a basis of C[Sn].
(b) Let x ∈ Sn and consider the linear span S(x) of all fw, w ∈ Rx. Then S(x)

is invariant with respect to the right action of C[Sn] and isomorphic to the
(irreducible) cell module associated with Rx.

In other words, there is a decomposition of the right regular representation of Sn

into a direct sum of irreducible modules which is compatible with the basis {fw|w ∈
Sn}. In fact the theorem and its proof are valid over any field of characteristic
zero. As an example, for n = 3 let s and t be the simple reflections, then our basis
consists of the elements

fe = (e − s − t + st + ts − sts)e = e − s − t + st + ts − sts,

fs = (s − ts − st + sts)(s + e) = e + s − t − ts,

ft = (t − ts − st + sts)(t + e) = e + t − s − st,

fst = (s − ts − st + sts)(st + s + t + e) = s + st − ts − sts,

fts = (t − ts − st + sts)(ts + s + t + e) = t + ts − st − sts,

fsts = sts(e + t + s + st + ts + sts) = e + t + s + st + ts + sts.

Unfortunately, this method does not give a basis for the algebra H.

Theorem 1 turns out to be related to the paper [21], where a similar basis
was studied. Let {Ri : i ∈ I} be a set of right cells in Sn containing exactly
one representative of each two-sided sell. For each i ∈ I and (x, y) ∈ Ri × Ri set
hi

(x,y) = ev(Ĥx−1Hy). From [21] it follows that {hi
(x,y)|i ∈ I, (x, y) ∈ Ri × Ri} has

properties analogous to those of the basis {fw|w ∈ Sn} from Theorem 1. Moreover,
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in [21] it is even proved that a normalized version of {hi
(x,y)|i ∈ I, (x, y) ∈ Ri × Ri}

is in fact Wedderburn’s basis of C[Sn] (i.e. basis elements correspond to matrix
units in Wedderburn’s decomposition of C[Sn]). The origins of the basis {hi

(x,y)|i ∈
I, (x, y) ∈ Ri × Ri} go further back to [14]. There is an asymptotic version J of
the Hecke algebra, introduced by Lusztig in [14] together with a homomorphism
Ψ : H → Z[v, v−1]⊗Z J which becomes an isomorphism over Q(t). As pointed out
to us by Neunhöffer, the basis {hi

(x,y)|i ∈ I, (x, y) ∈ Ri × Ri} is exactly Lusztig’s
basis for J pulled back via the homomorphism Ψ to H. The connection to [21] is
the following:

Theorem 2. {fw|w ∈ Sn}={hi
(x,y)|i ∈ I, (x, y) ∈ Ri × Ri}.

The origins of Theorem 1, as well as the proof of Theorem 2, are categorical; and
this is absolutely crucial for our arguments. In particular, our setup is completely
different from the combinatorial approach of [21]. There are alternative combina-
torial approaches to the construction of a basis for C[Sn] and some related algebras
in which the regular representation decomposes into a direct sum of irreducibles,
see [22], [19], [20], [15], [16]. There are also alternative combinatorial constructions
(e.g. [11], [1], [2]) giving decompositions of the regular representation of Sn into
irreducible representations using an explicit basis, which lead only to filtrations
whose successive subquotients are irreducible.

2. Proof of Theorem 1. We prove Theorem 1 by giving an explicit categorical
interpretation of all ingredients, which is based on the categorification of cell mod-
ules as established in [18, Section 4] (the original idea of categorifying the Hecke
algebra goes back to [11] and [4]). The main players here are certain subquotient
categories of the famous BGG category O (for the latter see [5]).

Let O0 be the principal block of O for the simple complex Lie algebra sln with
its standard triangular decomposition. The simple objects in O0 are the L(w),
w ∈ Sn, the simple highest weight modules with the highest weight w(ρ)−ρ, where
ρ is the half-sum of all positive roots. Let ∆(w) and P (w) denote the Verma and the
indecomposable projective module with unique simple quotient isomorphic to L(w)
respectively. Further, denote by θw the indecomposable projective endofunctor of
O0 with the property θwP (e) ∼= θw∆(e) ∼= P (w) (see [4]). Finally, let [O0] denote
the complexified Grothendieck group of O0. For M ∈ O0 we denote by [M ] its
image in [O0].

There is a C-linear isomorphism ϕ : [O0] → C[Sn] with ϕ([∆(w)]) = w. The
Kazhdan-Lusztig conjecture ([11], proved in [3], [7]) implies that ϕ([P (w)]) =
ev(Hw) (for an overview see e.g. [18, Subsection 3.4]). The standard bilinear form
on C[Sn] is categorified via the bifunctor Ext∗(−, −) ([13, Section 5] or [18, Sub-
section 4.6]). Indecomposable projective and simple modules form dual bases with
respect to this form, and hence

ϕ([L(w)]) = ev(Ĥw).(2.1)
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The functors θw are exact and induce therefore C-linear endomorphisms [θw] of
[O0]. By [4, Theorem 3.4(iv)] and [25] (for a more adjusted reformulation see [18,
Subsection 3.4]) we have

ϕ([θwM ]) = ϕ([θw][M ]) = ϕ([M ])ev(Hw).(2.2)

for all M in O0. Recall the right cells mentioned above and let ≤R be the right
preorder on Sn. Fix w ∈ W and set R̂w = {x ∈ Sn|x ≤R y for some y ∈ Rw}.
Associated with the right cell Rw of w we have the full subcategory OR̂w

0 of O0,
which consists of all modules M with all composition subquotients of the form
L(x) with x ∈ R̂w. Let ZR̂w : O0 → OR̂w

0 be the natural projection functor which
takes the maximal quotient that lies in OR̂w

0 . All this is built up such that we have

ZR̂wθx
∼= θxZR̂w(2.3)

for any x, w ∈ Sn, ([18, Lemma 19]). For x ∈ Sn we define P R̂w(x) = ZR̂wP (x),
and it follows that

P R̂w(x) �= 0 if and only if x ∈ R̂w.(2.4)

Moreover, the set {P R̂w(x)|x ∈ R̂w} constitutes a complete list of indecomposable
projective modules in OR̂w

0 .
The following provides a basis of C[Sn] with most of the desired properties:

Proposition 3. For w ∈ Sn define gw = ϕ([P R̂w(w)]) ∈ C[Sn]. Then the following
holds:

(a) {gw|w ∈ Sn} is a basis of C[Sn].
(b) For every x ∈ Sn the linear span of {gw|w ∈ Rx} is invariant with respect

to the right action of Sn and is isomorphic to the cell module associated
with Rx.

Proof. As |{gw|w ∈ Sn}| = |Sn| = dimC C[Sn], it is enough to show that the
elements from {gw|w ∈ Sn} are linearly independent. By definition of the category
OR̂x

0 , all the simple composition factors of P R̂x(w) are of the form L(z) where z
is smaller or equal to x in the right cell order. Therefore, when expressed in the
specialization {ev(Ĥz) | z ∈ Sn} of the dual Kazhdan-Lusztig basis, the element
gw is a linear combination of basis elements, corresponding to z ∈ R̂x (see (2.1)).
By induction on the right order, it is then enough to show that for any x ∈ Sn the
elements from {gw|w ∈ Rx} are linearly independent. By [13, Theorem 1] and [18,
Theorem 18], these elements form the Kazhdan-Lusztig basis in the cell module
associated with Rx. The cell module is a subquotient of C[Sn]. Hence these elements
are linearly independent already in C[Sn]. The first statement follows.

To prove the invariance it is enough to show, thanks to (2.2), that projective
functors preserve the additive subcategory A of OR̂x

0 generated by the indecom-
posable projective modules P R̂x(w), w ∈ Rx. Since H is generated by the Hs, where
s runs through S, it is enough to show that for any s ∈ S and w ∈ Rx the module
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θsP
R̂x(w) belongs to A. Now (2.3), [18, (4.1)] and (2.4) provide the following three

isomorphisms:

θsP
R̂x(w) = θsZR̂xθw∆(e) ∼= ZR̂xθsθw∆(e)

∼= ZR̂x
(⊕y≥Rwθmy

y ∆(e)
)

= ⊕y≥RRx
(ZR̂xP (y))⊕my

∼= ⊕y∈Rx
⊕my

i=1 P R̂w(y)

for some non-negative integers my. The claim about the invariance follows. The
claim about the cell module follows from [18, Theorem 16 and Theorem 18]. �

Now Theorem 1 follows from the following statement:

Proposition 4. We have fw = gw for all w ∈ Sn. In particular, Theorem 1 follows
from Proposition 3.

Proof. We already know that ϕ([L(w)]) = ev(Ĥw) for all w ∈ Sn. Thanks to (2.2)
and the definitions of fw and gw, the proposition is implied by the

Key statement: Let w ∈ Sn, then θwL(w) ∼= P R̂w(w),

which also explains the categorical meaning of the basis. In what follows we prove
this statement.

Recall that P R̂w(w) ∼= θwP R̂w(e) by (2.3). To prove the key statement we have
to study the dominant projective module P R̂w(e) in OR̂w

0 in more detail.

Lemma 5. Let x ∈ Rw be such that x �= w. Then [P R̂w(e) : L(x)] = 0.

Proof. Recall that the functor θx is both left and right adjoint to the functor θx−1 .
Hence we have

[P R̂w(e) : L(x)] = dim HomO(P R̂w(x), P R̂w(e))

= dim HomO(θxP R̂w(e), P R̂w(e))

= dim HomO(P R̂w(e), θx−1P R̂w(e)).

As x �= w, we have x �= x−1, and hence, using [24, Theorem 3.6.6], we
have a(x−1) = b(x) �= a(x). Thus x−1 �∈ Rw. Since a(x−1) and a(x) still have
the same shape, it follows that x−1 �∈ R̂w ([6, Exercise 10, p. 198]). There-
fore θx−1P R̂w(e) = θx−1ZR̂w∆(e) ∼= ZR̂wθx−1∆(e) ∼= ZR̂wP (x−1) = 0 and thus
dim HomO(P R̂w(e), θx−1P R̂w(e)) = 0 as well. �

Lemma 6. For any x ∈ Rw and y ∈ R̂w \ Rw we have θxL(y) = 0. In particular,
[P R̂w(e) : L(w)] > 0.
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Proof. As P R̂w(y) � L(y) and θx is exact, we have θxP R̂w(y) � θxL(y).
Applying (2.3) we even have that θxL(y) is a homomorphic image of the mod-
ule ZR̂wθxθy∆(e).

Note that θxL(y) ∈ OR̂y

0 , in particular, all simple subquotients of θxL(y) have
the form L(z), z ∈ R̂y.

On the other hand, it follows from [18, (4.1)] that θxθy is a direct sum of
functors of the form θz, where z ≥L x. Hence, by (2.4), all simple quotients of the
module ZR̂wθxθy∆(e) have the form L(x). As x �∈ R̂y by our choice of y, we must
have θxL(y) = 0.

We know that P R̂w(w) = θwP R̂w(e) �= 0. By Lemma 5 and the above, L(w) is
the only subquotient of P R̂w(e) which has the chance not to be annihilated by θw.
Altogether we must have [P R̂w(e) : L(w)] > 0 �

Lemma 7. [P R̂w(e) : L(w)] = 1.

Proof. Assume for a moment that Rw contains an element of the form w′
0w0,

where w0 is the longest element of Sn and w′
0 is the longest element of some

parabolic (Young) subgroup W of Sn. Let S be the set of simple reflections in
W . Then the modules P R̂w(x), x ∈ Rw, are exactly the indecomposable projective-
injective modules in the parabolic subcategory OS

0 (in the sense of [23]) of O0
([18, Remark 14]). Amongst the indecomposable projective-injective modules in
OS

0 there is, due to [8, 3.1], a special one which is obtained as a translation of
some simple projective module (out of possibly several walls). Since translation to
walls maps simple modules to simples or zero, the special module, call it P , is thus
obtained as a translation of some L(x) for some x ∈ Rw.

From [13, Theorem 1] it further follows that translating P and taking
appropriate direct summands, we will finally get all P R̂w(x), x ∈ Rw. This implies
the existence of an indecomposable projective functor θy such that the module
θyL(w) contains P R̂w(w) as a direct summand (see [18, 5.1]). By [18, Theorem 18],
the above restriction that the right cell should contain w′

0w0 is in fact superfluous.
Moreover, from [18, Theorem 18] it also follows that the module P R̂w(w) is an
injective object in OR̂w (and so the same holds for any P R̂w(x), x ∈ Rw).

Consider now θyP R̂w(e) ∼= P R̂w(y). As P R̂w(w) is both projective and injective,
from Lemma 6 it follows that P R̂w(w) must be a direct summand of P R̂w(y).
As P R̂w(y) is indecomposable, this forces P R̂w(y) ∼= P R̂w(w), y = w, and finally
[P R̂w(e) : L(w)] = 1. �

From Lemma 6 and Lemma 7 it follows that for any x ∈ Rw we have θxP R̂w(e) ∼=
θxL(w). This finally proves the key statement and at the same time completes the
proof of Proposition 4 and Theorem 1. �
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Remark 8. Let w ∈ Sn be such that the right cell Rw contains the element w′
0w0

for some Young subgroup W ′ of Sn. Then OR̂w
0 is the regular block of the parabolic

category O (in the sense of [23]) associated with W ′. The elements fx, x �≤R w,
form a basis of a submodule N of C[Sn]. The quotient C[Sn]/N is isomorphic
to the induced sign module C[Sn] ⊗C[W ] sign (see [18, 6.2.1] for details) with the
classes of the elements fx, x ≤R w forming a basis. Alternatively, the elements fx,
x ≤R w, form a basis of a submodule of C[Sn] which is isomorphic to the induced
sign module.

3. Proof of Theorem 2. Using (2.1) and (2.2) we interpret hi
(x,y) = ϕ([θyL(x−1)])

for each i ∈ I and (x, y) ∈ Ri × Ri. Let i ∈ I be fixed. Because of Proposition 4
and the definition of gw’s, to prove Theorem 2 it is enough to show that every
θyL(x−1) is a projective-injective module in OR̂x−1

0 . In the case x = y this follows
from the Key statement of Section 2.

Let now x ∈ Ri be arbitrary. As x and y belong to the same right cell, the
elements x−1 and y belong to the same left cell. Let A and B denote the additive
categories of projective-injective modules in OR̂y

0 and OR̂x−1
0 respectively. In [18,

Section 5] it was shown that there exists an equivalence F : A → B which
commutes with projective functors and satisfies F(P R̂y (y)) = P R̂x−1 (x−1).

Let A and B denote the full subcategories of respectively OR̂y

0 and OR̂x−1
0

which consist of all modules X having a two step presentation M1 → M0 →
X → 0, where M1, M0 ∈ A or M1, M0 ∈ B respectively. Then F extends, in
the obvious way, to an equivalence F : A → B which commutes with projective
functors.

Let L(y) denote the quotient of P R̂y (y) modulo the trace of all modules from
A in the radical of P R̂y (y). Define L(x−1) analogously. Then L(y) has simple
top L(y) and all other subquotients of L(y) are of the form L(z), where z <R y.
Analogously L(x−1) has simple top L(x−1) and all other subquotients of L(x−1)
are of the form L(z), where z <R x−1. From the above construction we have
F(L(y)) = L(x−1). Further θyL(y) = θyL(y) by Lemma 6. Analogous arguments
imply θyL(x−1) = θyL(x−1). Adding everything up we have

θyL(x−1) = θyL(x−1) = θyF(L(y)) = F(θyL(y)) = F(θyL(y)) = F(θyL(y)).

Hence θyL(x−1) = F(θyL(y)) is a projective-injective module in OR̂x−1
0 . The claim

follows.

4. An application to Kostant’s problem. The core object ∆R̂w(e) of our study in
Section 2 has an unexpected application to the so-called Kostant’s problem from
[10]; see also [9, Kapitel 6].

Let g be a complex reductive finite-dimensional Lie algebra. For every g-module
M we have the bimodule L (M, M) of all C-linear endomorphisms of M on which
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the adjoint action of the universal enveloping algebra U(g) is locally finite. (That
means any vector f ∈ L (M, M) lies inside a finite dimensional subspace which is
stable under the adjoint action defined as x.f(m) = x(f(m)) − f(xm) for x ∈ g,
m ∈ M). Initiated by [10], Kostant’s problem became the standard terminology
for the following question concerning an arbitrary g-module M :

Is the natural injection U(g)/Ann(M) ↪→ L (M, M) surjective?

Although there are several classes of modules for which the answer is known to
be positive (see [10], [17], [18] and references therein), a complete answer to this
problem seems to be far away - the problem is not even solved for simple highest
weight modules. In [10, 9.5] an example of a simple highest weight module in type
B2, for which the answer is negative is mentioned (for details see [18, 11.5]). In
this section we use the module ∆R̂xw(e) to construct another example in type A3,
which disproves a general belief that the answer to Kostant’s problem is positive
for simple highest weight modules in type A (this belief was based on [10, 9.1] and
further strengthened by [18, Theorem 60]).

Let n = 4 and r = (12), s = (23), t = (34) be the standard Coxeter generators
of S4. Consider w = rt = w. In this case we have Rw = {rt, rts} and R̂w =
{rt, rts, t, ts, tsr, r, rs, rst, e}. We consider the graded version of O as worked out
in [26]. Using [27, Appendix] one computes that the module N = ∆R̂w(e) has the
following graded filtration (resp. socle or radical filtration), where we abbreviate
L(x) simply by x:

e
N = r t

rt

Lemma 9. Ann(L(rt)) = Ann(N)

Proof. Let Yr and Yt denote some non-zero elements from the negative root spaces
corresponding to r and t respectively. Let further U ′ be the localization of U(sl4)
with respect to the multiplicative set {Y i

r Y j
t |i, j ≥ 0}. As rt > r and rt > t with

respect to the Bruhat order, both Yr and Yt act injectively on L(rt). Hence L(rt)
will be the simple socle of the sl4-module N ′ = U ′ ⊗U(sl4) L(rt). As t > e it is
further easy to see (for example using the results of [12, Section 4]) that N is a
submodule of N ′. Hence the statement of the lemma would follow if we would
prove that Ann(L(rt)) = Ann(N ′). In fact, as L(rt) ⊂ N ′, we have only to prove
that Ann(L(rt)) ⊂ Ann(N ′). This however, follows from the following statement:

Lemma 10. Let g be a semi-simple finite-dimensional Lie algebra, 0 �= x ∈ g some
root vector, and M a g-module on which x acts injectively. Let U ′ be the localization
of U(g) with respect to the powers of X. Then Ann(M) ⊂ Ann(M ′), where M ′ =
U ′ ⊗U(g) M .
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Proof. The set X := {xi | i ≥ 0} is an Ore set in U(g) with X ∩ Ann(M) = ∅
by hypothesis. So U ′Ann(M) = Ann(M)U ′ is a proper ideal in U ′. This means
Ann(M)M ′ = Ann(M)U ′M = U ′Ann(M)M = {0}. This completes the proof. �

The proof of Lemma 9 is now complete. �
Lemma 11. (a) The module θtθsθrN has the following graded filtration:

rst
rs rt
rst tsr trs r

rt

(b) The module θtθsθrL(rt) is a submodule of the module θtθsθrN and has the
following graded filtration:

rt
tsr trs r

rt

Proof. This is verified by direct computations. �
Theorem 12. Kostant’s problem has a negative answer for L(rt).

Proof. As N is a quotient of the dominant Verma module, Kostant’s problem
has a positive solution for N by [9, 6.9]. Hence L (N, N) = U(sl4)/Ann(N).
By Lemma 9, we have Ann(N) = Ann(L(rt)) and hence we also have
U(sl4)/Ann(N) = U(sl4)/Ann(L(rt)). From Lemma 11(a) we obtain that
dim HomO(N, θtθsθrN) = 0 (as for the top L(e) of N we have [θtθsθrN :
L(e)] = 0), while dim HomO(L(rt), θtθsθrL(rt)) �= 0 by Lemma 11(b) (as
L(rt) obviously occurs in the socle of θtθsθrL(rt)). This implies L (N, N) �=
L (L(rt), L(rt)), which, in turn, yields L (L(rt), L(rt)) �= U(sl4)/Ann(L(rt)). The
claim follows. �

Acknowledgement. We thank Ken Brown for suggestions, Meinolf Geck for infor-
mation about [21], and Michael Rapoport for helpful discussions. We also thank
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