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Abstract. We define the affine VW supercategory s⩔, which arises from

studying the action of the periplectic Lie superalgebra p(n) on the tensor
product M ⊗ V ⊗a of an arbitrary representation M with several copies of

the vector representation V of p(n). It plays a role analogous to that of

the degenerate affine Hecke algebras in the context of representations of the
general linear group; the main obstacle was the lack of a quadratic Casimir

element in p(n)⊗p(n). When M is the trivial representation, the action factors

through the Brauer supercategory sBr . Our main result is an explicit basis
theorem for the morphism spaces of s⩔ and, as a consequence, of sBr . The

proof utilises the close connection with the representation theory of p(n). As
an application we explicitly describe the centre of all endomorphism algebras,

and show that it behaves well under the passage to the associated graded and

under deformation.
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Introduction

Classical and higher Schur-Weyl duality. Classical and higher Schur-Weyl
dualities are important tools in representation theory. Working over the fixed
ground field C, the classical Schur-Weyl duality for the general linear Lie alge-
bra gln refers to the double centralizer theorem applied to the commuting actions
of gln and the symmetric group Sa

gln ↷ V ⊗a
↶ Sa (0.1)
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2 THE AFFINE VW SUPERCATEGORY

on the tensor product of a copies of the vector representation V . By (higher)
Schur-Weyl duality (see [1], [7]) we mean the existence of commuting actions

gln ↷M ⊗ V ⊗a
↶Ha (0.2)

of gln and the degenerate affine Hecke algebra Ha on the tensor product of an
arbitrary gln-representation M with V ⊗a. The degenerate affine Hecke algebra Ha,
introduced by Drinfeld [18] and Lusztig [29], contains the group algebra C[Sa] and
the polynomial algebra C[y1, . . . , ya] as subalgebras, and is isomorphic as vector
space to C[Sa] ⊗C[y1, . . . , ya]. In particular it has a basis

B = {wyk11 ⋯ykaa ∣ w ∈ Sa, ki ∈ N0}.

The action of the symmetric group on M ⊗ V ⊗a is given by permuting the tensor
factors of V ⊗a. To get the action of the polynomial generators yi, one additionally
considers the Casimir element

Ωgln = ∑

1≤i,j≤n

Eij ⊗Eji ∈ gln ⊗ gln, (0.3)

labels the tensor factors of M ⊗ V ⊗a by 0,1, . . . , a, and then sets

yi =
i−1

∑

j=0

Ω
gln
ji , (0.4)

with Ωji denoting the action of Ω on the j-th and i-th tensor factors of M ⊗V ⊗a.
These operators satisfy yi+1 = siyisi+si for si = (i, i+1) ∈ Sa, and define an action of
Ha. When M is the trivial representation, this action factors through the quotient
Ha → C[Sa], and (0.2) reduces to (0.1). The quotient map Ha → C[Sa] sends
y1, . . . , ya to the Jucys-Murphy elements of C[Sa].

The existence of (0.1) and (0.2) allows one to pass knowledge about the
representation theory between the two sides of the duality, and can be used to
construct 2-Kac-Moody representations in the sense of Rouquier, [35].

Commuting actions for the periplectic Lie superalgebras p(n). We aim
to establish a duality analogous to (0.2) in a situation where gln is replaced by
the periplectic Lie superalgebra p(n). The family p(n), n ≥ 2, is the first family of
so-called “strange” Lie superalgebras in the classification of reductive Lie superal-
gebras [24]. The hope is to use a duality like (0.2) as a tool in understanding the
representation theory of p(n).

The superalgebra p(n) is defined as the subalgebra of the general linear su-
peralgebra gl(n∣n), consisting of all elements preserving a certain bilinear form β
on the vector representation V of gl(n∣n) (see Section 3 for the definition). The
duality analogous to (0.1) has been established in [31], where it was shown that the
centralizer algebra Endp(n)(V

⊗a
) is a certain Brauer superalgebra, a signed version

of the Brauer algebra. One would like to add polynomial generators y1, . . . , ya to
the Brauer superalgebra, and define their action on the tensor product M ⊗ V ⊗a

of an arbitrary p(n)-representation M with a copies of the vector representation
V using an analogue of (0.4) for some suitably defined element Ω ∈ p(n) ⊗ p(n),
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which centralizes the action of p(n) on tensor products. Unfortunately, such an
element Ω does not exist in p(n) ⊗ p(n).

The main idea is to instead consider a fake Casimir element (see also [3])

Ω = ∑

x∈X

x⊗ x∗ ∈ p(n) ⊗ gl(n∣n).

Here X is a basis of p(n), and {x∗ ∣ x ∈ X} is the dual basis with respect to the
supertrace form on gl(n∣n). This element does not act on a tensor product M ⊗N
of arbitrary p(n)-representations, but does act on the tensor product M ⊗ V of
an arbitrary p(n)-representation M and the vector representation V for gl(n∣n).
A formula analogous to (0.4) defines the action of commuting elements y1, . . . , ya
on M ⊗ V ⊗a, centralizing the p(n)-action. We thus obtain, see Proposition 22,
commuting actions

p(n) ↷M ⊗ V ⊗a
↶ s⩔a, (0.5)

of p(n) and a certain affine VW superalgebra s⩔a. More generally, we establish an
action of the affine VW supercategory s⩔, which we introduce in Section 1.4, on
the category of modules of the form M ⊗ V ⊗a obtained by varying a. Our main
result (Theorem 2) gives an explicit basis of all the morphism spaces in s⩔. The
linear independence is proved hereby using the duality (0.5) for a specific choice
for M , namely a Verma module of highest weight 0.

We verify that the PBW filtration on M is compatible with a filtration on
the algebras s⩔a, which we build to mimic the filtration by the degree of the
polynomials in C[y1, . . . , ya] in case (0.2). We explicitly describe the associated
graded algebra and deduce the basis theorem from there. As an application we give
a description of the centre of all endomorphism algebras involved. The arguments
involve the concept of PBW-deformations and (noncommutative) Rees algebras.

Links to other results of this type. A special feature of the periplectic Lie
superalgebras is that the s⩔a are superalgebras, since the involved endomorphism
algebra has odd generators. This does not occur in the context of higher Schur-
Weyl dualities of the classical Lie superalgebras (see e.g. [12], [41] for a general
treatment, [8], [20], [27] for different cases with M = C, and [9], [16], [19], [36], [37]
for higher dualities).

The superalgebra s⩔a is a super (or signed) version of the affine VW algebra,
defined in [33] and studied further in [19] in the context of higher Schur-Weyl
dualities for classical Lie algebras in type BCD. In other words, it is a super
version of the degenerate BMW algebras, see e.g. [16]. This means that, in addition
to involving superalgebras, the duality (0.5) also has flavours of type BCD. In
diagrammatic terms, this means working with dotted Brauer diagrams with height
moves involving signs.

A basis theorem for the endomorphism algebras of objects in s⩔ was obtained
independently in [11] by an algebraic method developed in [33], also using the fake
Casimir operator. The Brauer superalgebras recently appeared in the literature
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under the names odd Brauer algebras, marked Brauer algebras or periplectic Brauer
algebras, indicating the slightly different points of view on the subject.

Brauer supercategories can be realized as subcategories, as well as quotients,
of the VW supercategories. They are a super version of the classical Brauer cate-
gories as defined e.g. in [28]. As a direct consequence of our basis theorem we thus
obtain a basis theorem for the Brauer supercategories, and hence reprove results
from [6], [26] and [31]. Under this quotient, the elements y1, . . . , ya of the superal-
gebra s⩔a specialise to Jucys-Murphy elements in the Brauer superalgebras. This
allows one to apply the Cherednik [13] and Okounkov-Vershik [10], [34] approaches
in this context. First steps in this direction were already successfully taken in [3]
and [14] from different perspectives to determine the blocks and decomposition
numbers in the category of finite dimensional representations of p(n) and of the
Brauer superalgebra, and further developed in [15]. A thorough treatment of the
corresponding category O is so far missing and will be deferred to subsequent
work.

The roadmap of the paper. In Section 1 we define the Brauer supercategory
sBr , the VW supercategory s⩔, and their endomorphism algebras sBra and s⩔a,
and state the main results, Theorems 1 and 2. In particular, Theorem 2 gives
bases S●a,b of the endomorphism spaces of s⩔. In Section 2 we prove that S●a,b
are spanning sets using a topological argument. In Section 3 we discuss the Lie
superalgebra p(n) and its representations, the fake Casimir Ω, and prove the ex-
istence of the commuting action (0.5). In Section 4 we prove linear independence
of the sets S●a,b by finding large n and large enough p(n)-representations M , so

that the set S●a,b maps into a set of linearly independent operators on M ⊗ V ⊗a.
This proves Theorem 2, and Theorem 1 follows as a corollary. As an application,
in Section 5 we describe the presentation, the centre, and a certain deformation of
the endomorphism algebras s⩔a = Ends⩔(a).

Acknowledgements. We thank Gwyn Bellamy, Michael Ehrig, Stephen
Griffeth, Joanna Meinel, Travis Schedler and Anne Shepler for helpful discussions.
This project was started at the WINART workshop in Banff, and was developed
and finalised during several visits of some of the authors to the Hausdorff Center for
Mathematics (in particular to MPI and HIM) in Bonn. We thank these places for
the excellent working conditions. We are grateful to the referee for useful remarks.

1. Definitions and main results

In this section we define the Brauer supercategory sBr and the affine VW
supercategory s⩔ as monoidal supercategories, and state Theorems 1 and 2, which
give diagrammatic bases for the morphism spaces in these categories.

We fix C as the ground field for the whole paper.

1.1. Monoidal supercategories. We start by recalling some basic facts about
monoidal supercategories. For a thorough discussion, see e.g. [6].
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A superspace is a vector space V with a Z/2Z grading, V = V0 ⊕ V1. Ho-

mogeneous vectors v ∈ V0 are said to be even or of parity v = 0, and v ∈ V1 are

said to be odd or of parity v = 1. Linear maps between superspaces inherit the
grading; homogeneous linear maps are called even or odd, respectively, depending
on whether they preserve or change the parity of homogeneous vectors. Formulas
involving parity are usually written for homogeneous elements and extended lin-
early. A tensor product of superspaces is again a superspace. For f, g homogeneous
linear maps of superspaces, f ⊗ g is defined as

(f ⊗ g)(v ⊗w) = (−1)gvf(v) ⊗ g(w)

on homogeneous vectors v ⊗w. The following Koszul sign rule holds for composi-
tions

(f ⊗ g) ○ (h⊗ k) = (−1)gh(f ○ h) ⊗ (g ○ k). (1.1)

A supercategory is a category enriched in superspaces; this means all mor-
phism sets are superspaces, and composition preserves parity. A superfunctor be-
tween two supercategories is a functor enriched in superspaces, namely the corre-
sponding map on each morphism superspace is linear and even. We will be using
the usual string calculus for morphisms in strict monoidal supercategories, see e.g.
[25, Definition XI.2.1] (for instance, the object a ⊗ b is depicted by drawing b to
the right of a, and similar for morphisms f⊗g while keeping in mind formula (1.1)).

We will define strict monoidal supercategories (namely sBr and s⩔) using
generators and relations by

(i) specifying a set of generating objects; all objects in the category are ob-
tained as finite tensor products a1 ⊗ ⋯ ⊗ ar of generating objects ai (in-
cluding the empty tensor product, which is defined to be the unit object
1);

(ii) specifying a set of generating morphisms; all morphisms in the category
are then obtained as linear combinations of horizontal (using the tensor
product f ⊗ g) and vertical (using the composition f ○ g) stackings of
compatible generating morphisms and the identity morphisms. Diagram-
matically, f ⊗ g is presented as placing f to the left of g, whereas f ○ g
is presented as stacking f on top of g; in particular, morphisms are read
from bottom to top;

(iii) specifying a set of generating relations for morphisms; the full set of rela-
tions is obtained as the two sided tensor ideal generated by the specified
generating relations. This means that the relations can be applied locally
in a diagram. Implicitly, we also require the morphisms to respect the sign
rule (1.1); these are sometimes called the height moves in string calculus.

1.2. The Brauer supercategory sBr . The Brauer supercategory is the C-linear
strict monoidal supercategory sBr , generated as a monoidal supercategory by a
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single object ★ and morphisms

s = ∶ ★ ⊗ ★ Ð→ ★⊗ ★,

♭ = ∶ ★ ⊗ ★ Ð→ 1, and ♭
∗
= ∶ 1Ð→ ★⊗ ★,

with parities s = 0, ♭ = ♭∗ = 1, subject to the following defining relations:

(R1) The braid relations: = and = ,

(R2) The snake relations or adjunctions: = − and = ,

(R3) The untwisting relations: = and = − .

The supercategory structure means the height moves via (1.1) are also satisfied,

e.g. = ♭ ○ (1 ⊗ 1 ⊗ ♭) = ♭ ⊗ ♭ = or = ♭ ○ (♭ ⊗ 1 ⊗ 1) =

− ♭ ⊗ ♭ = − .
The objects of sBr are sometimes written as natural numbers N0, identifying

a ∈ N0 with ★
⊗a, where ★⊗0

= 1. A diagram is a finite composition (horizontally or
vertically) of generating morphisms and identity morphisms. It consists of lines,
connecting pairs of points among the bottom and top ones, which we call strings.
Call a diagram an (a, b)-diagram if it consists of strings connecting a points at the
bottom and b points at the top. Elements of HomsBr(a, b) are then equivalence
classes of linear combinations of (a, b)-diagrams modulo the relations (R1)-(R3).
For an (a, b)-diagram d we write ⟦d⟧ or just d ∈ HomsBr(a, b) for its equivalence
class in HomsBr(a, b).

We let 1a ∈ HomsBr(a, a) denote the identity morphism, and let

♭i = 1i−1 ⊗ ♭ ⊗ 1a−i+1 ∈ HomsBr(a + 2, a), ♭∗i = 1i−1 ⊗ ♭
∗
⊗ 1a−i+1 ∈ HomsBr(a, a + 2),

si = 1i−1 ⊗ s⊗ 1a−i−1 ∈ HomsBr(a, a)

denote the morphisms obtained by applying ♭, ♭∗ and s on the i-th and (i + 1)-st
tensor factors. The supercategory sBr can alternatively be generated as a supercat-
egory (as opposed to a monoidal supercategory) by vertically stacking compatible

♭i, ♭
∗
i , si.

1.3. Normal diagrams. We call a string with both ends at the top of the diagram
a cup, a string with both ends at the bottom of the diagram a cap, a string with
one end at the top and one at the bottom a through string, and a string with no
endpoints a loop.

Call an (a, b)-diagram d normal if all of the following hold:
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● any two strings intersect at most once;
● no string intersects itself;
● no two cups or caps are at the same height;
● all cups are above all caps;
● the height of caps decreases when the caps are ordered from left to right

with respect to their left ends;
● the height of cups increases when the cups are ordered from left to right

with respect to their left ends.

As a consequence, every string in a normal diagram has either one cup, or one
cap, or no cups and caps, and there are no closed loops. An (a, b)-diagram with
no loops has a+b

2
strings. In particular, if a + b is odd then this set is empty, and

then HomsBr(a, b) = {0}.
Each (a, b)-diagram d gives rise to a partition P (d) of the set of a + b points

into 2-element subsets given by the endpoints of the strings in d; which in fact
only depends on d ∈ HomsBr(a, b). We call such a partition a connector and let
Conn(a, b) denote the set of all such connectors; its size is (a + b − 1)!!. For each
connector c ∈ Conn(a, b), we pick a normal diagram dc ∈ P

−1
(c). Viewed as an

element in HomsBr(a, b), this choice is unique up to a sign, see Lemma 10.

Theorem 1. The set Sa,b = {⟦dc⟧ ∣ c ∈ Conn(a, b)} is a basis of HomsBr(a, b).

We show that it is a spanning set using topology in Section 2. Linear inde-
pendence can also be seen directly using topology, since the defining relations of
sBr do not change the underlying connector of a diagram. However, we obtain
it using representation theory in Section 4 as a direct consequence of the more
general Theorem 2. For the special case of a = b, this theorem appears as a basis
theorem for the algebra Aa in [31].

Let us also remark that the above choice of normal diagrams for basis vectors
is for convenience only. It is enough to choose one diagram d′c with no loops in every
fibre P −1

(c); the set {⟦d′c⟧ ∣ c ∈ Conn(a, b)} is then also a basis. This choice of basis
differs from Sa,b by signs only, meaning it is a subset of {±⟦dc⟧ ∣ c ∈ Conn(a, b)}
with exactly one choice of sign for each dc, see Proposition 11.

1.4. The affine VW supercategory s⩔. The affine VW supercategory, or affine
Nazarov-Wenzl supercategory, is the C-linear strict monoidal supercategory s⩔,

generated as a monoidal supercategory by a single object ★, morphisms s = ∶

★ ⊗ ★ Ð→ ★ ⊗ ★, ♭ = ∶ ★ ⊗ ★ Ð→ 1 and ♭
∗
= ∶ 1 Ð→ ★ ⊗ ★ as above, and

an additional morphism

y = ∶ ★ Ð→ ★

with parity y = 0, subject to relations (R1)-(R3) above, and additional relations
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(R4) The dot relations: = + + and = + .

The objects in s⩔ can be identified with integers a ∈ N0, and the mor-
phisms are linear combinations of dotted diagrams modulo the above relations.
The category can alternatively be generated by vertically stacking ♭i, ♭

∗
i , si and

yi = 1i−1 ⊗ y ⊗ 1a−i ∈ Homs⩔(a, a). It is a filtered category, in the sense that the
spaces Homs⩔(a, b) have a filtration with Homs⩔(a, b)≤k being the span of all
(equivalence classes of) dotted (a, b)-diagrams with at most k dots.

1.5. Normal dotted diagrams. Call a dotted diagram d normal if:

● the underlying diagram obtained by erasing the dots is normal;
● all dots on cups and caps are on the leftmost end, and all dots on the

through strings are at the bottom.

Let dS●a,b be the set of normal dotted (a, b)-diagrams obtained by taking

all normal (a, b)-diagrams dc as in Theorem 1 and adding dots to them in all
possible ways. Let dSka,b ⊂ dS

●
a,b and dS≤ka,b = ⋃

k
l=0 dS

l
a,b be the sets of such diagrams

with exactly k dots, respectively at most k dots. In particular, dS0
a,b = dS≤0

a,b =

{dc ∣ c ∈ Conn(a, b)}. Note that if a ≡ b mod 2 then the cardinality of dSka,b is

(

a+b
2 +k−1
k

) ⋅ (a + b − 1)!!, and if a /≡ b mod 2 then the cardinality of dSka,b is 0.
The main result of the paper states that the images of normal dotted diagrams

in s⩔ form a basis of the morphism spaces in s⩔:

Theorem 2 (Basis Theorem). The set S≤ka,b = {⟦d⟧ ∣ d ∈ dS≤ka,b} is a basis of

Homs⩔(a, b)≤k, and consequently S●a,b = {⟦d⟧ ∣ d ∈ dS●a,b} is a basis of Homs⩔(a, b).

The proof will be given in Sections 2 and 4. The identification Sa,b = S
0
a,b

defines an embedding of categories sBr Ð→ s⩔ and hence Theorem 2 directly
implies Theorem 1.

As an immediate consequence of Theorem 2 we obtain the following:

Corollary 3. For any a ∈ N0, the equivalence classes of (a, a)-diagrams without
dots span a supersubalgebra HomsBr(a, a) of the superalgebra Homs⩔(a, a). The
dotted diagrams whose underlying undotted diagram is the identity morphism 1a
give rise to a polynomial subalgebra C[y1, . . . , ya] of Homs⩔(a, a). The subalgebras
C[y1, . . . , ya] and HomsBr(a, a) together generate Homs⩔(a, a) as a superalgebra.

1.6. The affine VW superalgebra s⩔a. For any a ∈ N0, the endomorphism
space s⩔a = Homs⩔(a, a) has the structure of a superalgebra. It is the signed
version of the affine VW algebra (see [19, Section 2] for the setup we use), and
the affine version of the Brauer superalgebra HomsBr(a, a). These algebras have
an interesting structure, and allow an h̵-deformation. For more details, including
a presentation and a description of the centre, see Section 5.

One can also define cyclotomic quotients of the algebras s⩔a by mimicking
the constructions in [2] for affine VW algebras, see also [11]. We expect Lemma 8
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(the vanishing of loop values) to simplify the necessary admissibility conditions
from [2] and more explicitly [19] drastically, but do not pursue this here.

2. Spanning sets for sBr and s⩔

In this section we show that the sets Sa,b and S●a,b span the corresponding

morphism spaces in the categories sBr and s⩔ (Propositions 11 and 12).

2.1. Some diagrammatic relations. First, we establish some additional rela-
tions in these categories. Note that these relations are local and hold wherever they
are defined within a bigger expression. We indicate how the local diagram fits into
the larger one by specifying the position (i ∈ N) of a string (always counted from
the left).

The first lemma shows that in sBr (and consequently in s⩔), similar un-
twisting relations to (R3) hold for caps as they do for cups, and that any isolated
loops are zero.

Lemma 4 (Untwisting relations). The following equalities hold in sBr and s⩔:

(a) = (b) = (c) = 0

♭isi+1 = ♭i+1si ♭isi = ♭i ♭i♭
∗
i = 0

Proof. (a) Using the defining relations in sBr and (1.1), the morphism s equals

(R2)
= − = −

(R3)
= −

and therefore

= − =
(R2)
= .

(b) We use part (a), the relations in sBr and the Koszul sign rule to show

(R2)
=

(1.1)
= −

(R3)
= − =

(a)
= −

(R3)
=

(R2)
=
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(c) The equalities = and − = , imply finally the vanishing

of isolated loops =
1
2

+
1
2

=
1
2

−
1
2

= 0. �

The next lemma explains how a dot can be moved within a dotted diagram in
s⩔. In particular, it can slide through crossings and cups, modulo some diagrams
with a smaller number of dots.

Lemma 5 (Dot sliding relations). The following equalities hold in s⩔:

(a) = + − (b) = − − (c) = −

siyi+1 = yisi + 1 − ♭
∗
i ♭i siyi = yi+1si − 1 − ♭

∗
i ♭i yi+1♭

∗
i = yi♭

∗
i − ♭

∗
i

Proof. To obtain the equalities (a) and (b), we multiply the first relation in (R4)
by si on the left, respectively on the right, and then use the braid and untwisting
relations (R1), (R3) together with Lemma 4(b) to simplify. For (c) we compute:

(R2)
= − =

(R4)
= −

(R2)
= − . �

By induction, we obtain formulas for sliding multiple dots along cups or caps:

Lemma 6. The following equalities hold in s⩔ for any k ≥ 1.

(a) k =

k

∑

j=0

(
k

j
) j , (b) k =

k

∑

j=0

(−1)k+j(
k

j
) j ,

(c) k
=

k

∑

j=0

(
k

j
)

j , (d) k
=

k

∑

j=0

(−1)k+j(
k

j
)

j ,

where the integers attached to the dots indicate the number of dots on the strand.

The following dot sliding formulas can also be verified in a straightforward
way using induction, and should be compared with [2, Lemma 2.3].

Lemma 7 (Generalized dot sliding). For any k ∈ N0 we have the following equal-
ities in s⩔:

(a)
k

=

k
+

k−1

∑

j=0

⎛

⎜
⎜

⎝

k-1-j

j
−

k-1-j

j

⎞

⎟
⎟

⎠

(b)
k

=

k
−

k−1

∑

j=0

⎛

⎜
⎜

⎝

k-1-j

j
+

k-1-j

j ⎞

⎟
⎟

⎠
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Furthermore, as we show next, as a generalization of Lemma 4(c), isolated
loops in s⩔ with any number of dots are zero. All calculations with diagrams take
place inside s⩔.

Lemma 8 (Loop values). For any k, ` ∈ N0, the following equalities hold in s⩔:

k ` = 0, that is, ♭iy
k
i y
`
i+1♭

∗
i = 0 for any i ≥ 1.

Proof. Using Relation (R4) to consecutively slide dots from the right side of the
loop to the left, any loop with dots as above can be written as a linear combination
of loops with dots on the left only. Hence, without loss of generality, we can assume
` = 0. Applying Relation (R4) and Lemma 5(c), we can rewrite a loop with k+1 dots
on the left in two different ways (where the integers always indicate the number
of dots on the strand):

k + k = k = k+1 = k = k − k .

Subtracting k from both sides, we get 2
⎛

⎝

k
⎞

⎠

= 0. �

Example 9. Lemma 8 shows that all isolated loops, i.e. all loops (with or without
dots) that do not intersect any other strands, are equal to zero in s⩔. This does
not mean that all dotted diagrams involving (non-isolated) loops are equal to zero
in s⩔, as the following example shows.

d = = − − = − −

= − + = 0 + + = 2

The indicated diagram d has a loop and one dot, and the above calculation shows
that it can be rewritten (in s⩔) as a diagram with no dots. This is a general
phenomenon; resolving loops in a diagram with k dots will produce (in s⩔) a
linear combination of diagrams without loops which all have < k dots (see the
proof of Proposition 12).
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2.2. Spanning set. We now prove the first part of Theorems 1 and 2 - namely,
that the sets Sa,b and S≤ka,b span HomsBr(a, b) and Homs⩔(a, b)≤k, respectively.

Lemma 10. If d1, d2 are two normal (a, b)-diagrams with the same connector
P (d1) = P (d2), then ⟦d1⟧ = ⟦d2⟧ ∈ HomsBr(a, b).

Proof. As they are both normal, the diagrams d1 and d2 differ by at most the
order of the crossings, so by braid relations (R1), ⟦d1⟧ = ⟦d2⟧ in sBr . �

Proposition 11. For any diagram d its equivalence class ⟦d⟧ ∈ sBr is either equal
to zero (if it has loops) or (if it has no loops) equal to ±⟦dc⟧ ∈ Sa,b, where c = P (d)
is the connector corresponding to d. In particular, Sa,b spans HomsBr(a, b).

Proof. If the diagram d has any loops, we can use relations (R1) – (R3) together
with Lemma 4 to isolate the loops to one side, which shows ⟦d⟧ = 0.

If the diagram has no loops, we can use relations (R1) – (R3) and Lemma 4
to eliminate any self intersections, double intersections (two strings intersecting
twice), and change the height of cups and caps. The resulting normal diagram d′

will have the same connector as d, i.e. c ∶= P (d) = P (d′), and will differ in sBr
from d by possibly a sign, i.e. ⟦d⟧ = ±⟦d′⟧, and moreover will possibly differ from
dc (with ⟦dc⟧ ∈ Sa,b) by the order of the crossings, so by Lemma 10 it satisfies
⟦d′⟧ = ⟦dc⟧. Thus, ⟦d⟧ = ±⟦dc⟧. �

The situation is only slightly more involved for s⩔, as transforming a diagram
to an element of S●a,b can produce additional terms with fewer dots, in effect
replacing the diagram by a linear combination of elements of S●a,b. More precisely
we have:

Proposition 12. Given a dotted diagram d with ⟦d⟧ ∈ Homs⩔(a, b)≤k then ⟦d⟧
equals a linear combination of elements in S≤ka,b.

Proof. We argue by induction on k, with k = 0 given by Proposition 11. Assume
k ≥ 1, and let d be a diagram with k dots, so ⟦d⟧ ∈ Homs⩔(a, b)≤k for some a, b.
Consider now ⟦d⟧ and calculate in s⩔. If d contains loops, work with one loop at
a time to:

(i) slide all the dots on the loop so they are all to the left;
(ii) slide any dots on other strings away from the loop, so that no dots are in

the interior of the loop.

This is accomplished using (R4) and Lemma 5. At each step, we get a linear
combination of (the equivalence class of) one diagram with the same number of
dots, which are now in a better position, i.e. further away from the interior of a
loop or more to the left on a loop, and diagrams with fewer dots. Applying the
induction assumption to diagrams with fewer dots, it is enough to prove the claim
for the diagram with all the dots on loops moved all the way to the left, and no
dots in the interior of loops. For such a diagram, any loop can be moved away
from the other strings, so by Lemma 8 that diagram becomes equal to zero in s⩔.
This proves the claim for dotted diagrams with loops. In fact, it proves that for
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any diagram d with loops and with k dots, ⟦d⟧ ∈ s⩔ can be rewritten as a linear
combination of elements of S≤k−1

a,b .

Next, assume that d has no loops. We rewrite ⟦d⟧ ∈ s⩔ by working with one
string in d at a time,

(i) slide all the dots on through strings to the bottom.
(ii) slide the dots on cups and caps all the way to the left.

Again, this is done using (R4) and Lemma 5. At the end of this process, we have
replaced ⟦d⟧ by a linear combination of ⟦d′⟧ for a diagram d′ with k dots (which
are all the way on the bottom of through strings, and on the left of cups and
caps), plus equivalence classes of diagrams with fewer dots. Apply the induction
assumption to the diagrams with fewer dots; it remains to prove the claim for d′.

The position of dots on d′ means that ⟦d′⟧ is of the form ∏i y
ai
i ⟦d′′⟧∏j y

bj
j for

some ai, bj ∈ N0 and some undotted diagram d′′. Applying Proposition 11 to d′′

completes the proof for diagrams without loops. In fact, it proves that a diagram
d without loops and with k dots can be rewritten in s⩔ as a linear combination
of elements of S≤ka,b, so that the only term in this expansion with k dots is ±⟦d′⟧,

where d′ has the same underlying connector as d. �

2.3. A flipping functor ι ∶ s⩔ → s⩔op. We describe a functor between the
supercategory s⩔ and its opposite, which on the level of diagrams corresponds to
an upside-down flip, with some additional signs.

Proposition 13. There is an isomorphism of supercategories ι ∶ s⩔→ s⩔op, given
on objects by the identity and on morphisms by:

ι(si) = −si, ι(♭i) = ♭
∗
i , ι(♭

∗
i ) = −♭i, ι(yi) = −yi.

The inverse functor is given by ι3. It restricts to an anti-isomorphism on each
Ends⩔(a), a ∈ N (sending si, ei = ♭

∗
i ♭i, yi to minus themselves in the notation from

Section 5.1).

Proof. To see that ι respects the defining relations of s⩔, we note that (R1) and
the first part of (R4) are invariant under turning the diagrams upside-down, the
flips of (R3) and the second part of (R4) are a consequence of Lemmas 4 and 5,
and the first diagram of (R2) turns into the second after the flip, with the sign
changes being consistent as well. �

3. The periplectic Lie superalgebra p(n)

We recall some facts from the representation theory of the Lie superalgebra
p(n). For more details on Lie superalgebras see for instance [32], [40], and for p(n)
see also [3].

3.1. Definition and bases. From now on, let V = Cn∣n be the superspace of
superdimension n∣n, meaning V = V0 ⊕ V1 with V0 = Cn, V1 = Cn. Let v1, . . . , vn
be the standard basis of V0 and v1′ , . . . , vn′ be the standard basis of V1. We let
[n] ∶= {1, . . . , n}, [n′] ∶= {1′, . . . , n′} denote the sets of indices.
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The general linear Lie superalgebra gl(n∣n) is the Lie superalgebra of endo-
morphisms of V , with Z/2Z grading induced by V , and the Lie superbracket given
by the super commutator [x, y] = xy − (−1)xyyx. In terms of matrices,

gl(n∣n) = {(
A B
C D

) ∣ A,B,C,D ∈Mn,n(C)} ,

with

gl(n∣n)0 = {(
A 0
0 D

)} = gl(n) ⊕ gl(n) and gl(n∣n)1 = {(
0 B
C 0

)} .

We call V the vector representation of gl(n∣n). A basis of gl(n∣n) is given by the
matrix units Ers for r, s ∈ [n]∪[n′], which act on V as Ersvt = δstvr for t ∈ [n]∪[n′].
Let β ∶ V ⊗ V → C be the bilinear form given by

β∣V0⊗V0
= β∣V1⊗V1

= 0 and β(vi, vj′) = β(vj′ , vi) = δi,j for all i, j ∈ [n].

It is symmetric, odd, and non-degenerate on V . André Weil named such forms
periplectic by analogy with symplectic forms. The corresponding periplectic Lie
superalgebra p(n) is then defined as the Lie supersubalgebra of gl(n∣n) preserv-
ing β, i.e. it is spanned by all homogeneous elements x which satisfy β(xu, v) +
(−1)x̄ūβ(u,xv) = 0 for all u, v ∈ V . In terms of matrices,

p(n) = {(
A B
C −At

) ∈ gl(n∣n) ∣ B = Bt,C = −Ct} ,

with

p(n)0 = {(
A 0
0 −At

)} , p(n)1 = {(
0 B
C 0

)} .

Lemma 14. The set X = {A−
ij ∣ i, j ∈ [n]} ∪ {B+

ij ∣ i ≤ j ∈ [n]} ∪ {C−
ij ∣ i < j ∈ [n]}

is a basis for p(n), where A±
ij = Eij ±Ej′i′ , B

±
ij = Eij′ ±Eji′ , C

±
ij = Ei′j ±Ej′i, and

A±
ij = 0, B±

ij = C
±
ij = 1.

The universal enveloping superalgebra of a Lie superalgebra g is the quotient
of the tensor algebra T (g) by the ideal generated by elements of the form x⊗ y −
(−1)xyy ⊗ x − [x, y] for all homogeneous x, y ∈ g. Letting

g = p(n), g−1 = {(
0 0
C 0

) ∈ p(n)} , g0 = {(
A 0
0 −At

) ∈ p(n)} , g1 = {(
0 B
0 0

) ∈ p(n)} ,

the PBW theorem for p(n) states that multiplication gives an isomorphism of
vector superspaces

Λ(g1) ⊗ S(g0) ⊗Λ(g−1) → U(p(n)).

There is a supertrace form on gl(n∣n), given by

⟨x, y⟩ = str(xy), with str((
A B
C D

)) = tr(A) − tr(D). (3.1)
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It is bilinear, invariant in the sense ⟨[x, y], z⟩ = ⟨x, [y, z]⟩ for all x, y, z ∈ gl(n∣n),
and nondegenerate. The subalgebra p(n) is isotropic with respect to this form;
however, one can consider the dual space p(n)⊥ of p(n) in gl(n∣n) with respect to
this form, which satisfies gl(n∣n) = p(n) ⊕ p(n)⊥. The basis X of p(n) gives rise
to a dual basis X ∗

= {x∗ ∣ x ∈ X} for p(n)⊥, in the sense that ⟨x∗, y⟩ = δxy for all
y ∈ X . It is explicitly given as

(A−
ij)

∗
=

1

2
A+
ji, (B+

ij)
∗
= −

1

2
C+
ji, (B+

ii)
∗
= −

1

4
C+
ii, and (C−

ij)
∗
=

1

2
B−
ji.

3.2. The category p(n) −mod. We consider the monoidal (with respect to the
usual tensor product of representations) supercategory p(n) − mod of represen-
tations of p(n), with the set Homp(n)(M,N) of morphisms from M to N given
by linear combinations of homogeneous C-linear maps f from M to N such that

f(xm) = (−1)xfxf(m) for homogeneous elements m ∈ M , x ∈ p(n). We in par-
ticular allow morphisms to be odd (i.e. to change the parity of elements they are
applied to).

This supercategory is symmetric, with the braiding given by the superswap

σ ∶M ⊗N → N ⊗M, σ(m⊗ n) = (−1)mnn⊗m.

We call V the vector representation of p(n). The form β induces an (odd)
identification of V → V ∗ as p(n)-representations, given by v ↦ β(v,−). Similarly,
the bilinear form (β⊗β)○(1⊗σ⊗1) ∶ V ⊗4

→ C induces an identification (V ⊗V )
∗
→

V ⊗V . With that, the dual map to the form β can be thought of as β∗ ∶ C→ V ⊗V ;
it is given by

β∗(1) = ∑
i

(vi ⊗ vi′ − vi′ ⊗ vi).

Lemma 15. The following are maps of Lie superalgebra modules of degrees 1, 1,
and 0 respectively:

β ∈ Homp(n)(V ⊗ V,C), β∗ ∈ Homp(n)(C, V ⊗ V ), σ ∈ Homp(n)(V ⊗ V,V ⊗ V ).

3.3. A (fake) quadratic Casimir element. Because of the absence of the
Killing form on p(n), there is no Casimir element in U(p(n)), nor a quadratic
Casimir in p(n) ⊗ p(n). (In fact, the centre of U(p(n)) acts trivially, see [21].)
We can however use the supertrace form on gl(n∣n) to define a fake Casimir in
p(n) ⊗ gl(n∣n) as follows (see also [3]). Let

Ω = 2 ∑
x∈X

x⊗ x∗ ∈ p(n) ⊗ gl(n∣n);

explicitly,

Ω = ∑

i,j

A−
ij ⊗A

+
ji −

1

2
∑

i

B+
ii ⊗C

+
ii −∑

i<j

B+
ij ⊗C

+
ji +∑

i<j

C−
ij ⊗B

−
ji. (3.2)

This element does not act on an arbitrary tensor product M ⊗N of p(n)-
representations, but acts on M ⊗ V , for M any p(n)-representation, and V the
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above described vector representation. Its action gives a morphism in p(n) −mod
by the following proposition, first observed in [3, Lemma 4.1.4].

Proposition 16. The actions of Ω and p(n) on M ⊗ V commute, i.e. we have
that Ω ∈ Endp(n)(M ⊗ V ).

Proof. The Lie superalgebra p(n) acts on M ⊗V via the coproduct ∆ of U(p(n)),
given by ∆(y) = y⊗ 1+ 1⊗ y. For any homogeneous element y ∈ p(n) ⊂ gl(n∣n), we
have

[y ⊗ 1 + 1⊗ y, xi ⊗ x
∗
i ] = [y, xi] ⊗ x

∗
i + (−1)ȳx̄ixi ⊗ [y, x∗i ].

Furthermore, by expanding in the basis {xi}i ∪ {x∗i }i of gl(n∣n), we can see that

[y, xi] = ∑
j

⟨x∗j , [y, xi]⟩xj , and [y, x∗i ] = ∑
j

⟨[y, x∗i ], xj⟩x
∗
j .

Therefore, using the invariance of the supertrace form (3.1),

[∆(y),Ω] = [y ⊗ 1 + 1⊗ y,∑
i

xi ⊗ x
∗
i ] = ∑

i

[y, xi] ⊗ x
∗
i +∑

i

(−1)ȳx̄ixi ⊗ [y, x∗i ]

= ∑

i,j

⟨x∗j , [y, xi]⟩(xj ⊗ x
∗
i ) +∑

i,j

(−1)ȳx̄i
⟨[y, x∗i ], xj⟩(xi ⊗ x

∗
j )

= ∑

i,j

⟨x∗j , [y, xi]⟩(xj ⊗ x
∗
i ) −∑

i,j

⟨[x∗i , y], xj⟩(xi ⊗ x
∗
j )

= ∑

i,j

⟨x∗j , [y, xi]⟩(xj ⊗ x
∗
i ) −∑

i,j

⟨x∗i , [y, xj]⟩(xi ⊗ x
∗
j ) = 0. �

Remark 17. Note that Ω is even, Ω = 0, since from (3.2) we see that

Ω ∈ (gl(n∣n)1̄ ⊗ gl(n∣n)1̄) ⊕ (gl(n∣n)0̄ ⊗ gl(n∣n)0̄) ⊂ (gl(n∣n) ⊗ gl(n∣n))0̄.

We consider the special case when M = V , and calculate the action of Ω in
that case. (This might be compared with the classical case [19, Remark 2.6].)

Lemma 18. The action of Ω on V ⊗ V is explicitly given by σ + β∗β.

Proof. This is an explicit calculation in the basis {va ⊗ vb ∣ a, b ∈ [n] ∪ [n′]} of
V ⊗ V . We include the computation for the case a, b ∈ [n]. The remaining three
cases follow similarly.

Let a, b ∈ [n]. Then

(A−
ij ⊗A

+
ji)(va ⊗ vb) = A

−
ijva ⊗A

+
jivb = δajvi ⊗ δbivj = δajδbi(vb ⊗ va),

(B+
ij ⊗C

+
ji)(va ⊗ vb) = B

+
ijva ⊗C

+
jivb = 0, and

(C−
ij ⊗B

−
ji)(va ⊗ vb) = C

−
ijva ⊗B

−
jivb = 0,

and therefore Ω(va⊗vb) = ∑i,j δajδbivb⊗va+0+0+0 = vb⊗va = (σ+β∗β)(va⊗vb). �
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3.4. Jucys-Murphy type elements. Once we have the above fake Casimir op-
erator, we can define certain commuting elements of Endp(n)(M ⊗V ⊗a

). They are
intended to mimic the action of the polynomial generators of the degenerate affine
Hecke algebra in case of gl(n).

Label the tensor factors of M ⊗ V ⊗a by 0,1, . . . , a, and let Ωij denote the
operator acting as Ω applied to the i-th and j-th factor and the identity everywhere
else. For 1 ≤ j ≤ a, let

Yj =
j−1

∑

i=0

Ωij ∈ Endp(n)(M ⊗ V ⊗a
),

(see [3, Section 4.1]) The following result is then standard.

Proposition 19. The operators Y1, Y2, . . . , Ya pairwise commute.

Proof. Since Ω commutes with the coproduct ∆(y), y ∈ p(n), then Ω ⊗ 1 = Y1

commutes with

(∆⊗ 1)Ω = ∑

x∈X

∆(x) ⊗ x∗ = ∑
x∈X

(x⊗ 1⊗ x∗ + 1⊗ x⊗ x∗) = Y2.

As operators on M ⊗ V ⊗ V , this says that Y1 commutes with Y2. Using ∆j to
denote the iterated coproduct p(n) → p(n)⊗j , by induction we get that

Yj = (∆j
⊗ 1)Ω commutes with Yk =

k−1

∑

i=0

Ωi,k for k < j,

since ∆j
(x) for x ∈ X commutes with Ωi,k for i, k < j. �

Remark 20. There is a quotient map s⩔ → sBr , determined by y1 → 0, ♭i ↦ ♭i,

♭
∗
i ↦ ♭

∗
i , si ↦ si. Under this quotient map,

yj ↦
j−1

∑

i=1

⎛

⎜

⎝

+
⎞

⎟

⎠

ij

.

The (pairwise commuting) images of the yi in sBra are the analogues of Jucys-
Murphy elements for the symmetric group or the Brauer algebra, see [10] and [33,
Section 2]. As elements of the superalgebra sBra, they were independently defined
in [14, Section 6], and their eigenvalues are then used, following the approach of
[34], to study the representation theory of sBra and consequently p(n). In terms
of the action on M ⊗ V ⊗a, taking the cyclotomic quotient determined by y1 ↦ 0
corresponds to taking M to be the trivial module (see Lemma 18). This recovers
the action of sBr on V ⊗a from [31]. This might be compared with [33, Section 2],
[19, Example 2.12].

Remark 21. We have the following relation in Homp(n)(M⊗V ⊗a
), for any j such

that 1 ≤ j < a, which can be checked directly:

Ωi,j+1 = σj Ωij σj for i < j.
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3.5. The functor ΨM
n . The diagrammatically described supercategory s⩔ can be

related to p(n)−mod and used to study the representation theory of the periplectic
Lie superalgebra.

Analogous to the notation Ωji, we will denote by σi, βi and β∗i the operators
acting as σ,β and β∗ in the i-th and (i+1)-st positions of a tensor product M⊗V ⊗a,
and identity elsewhere. Here, M is considered as the 0-th factor.

Proposition 22. For any M ∈ p(n) −mod, there is a superfunctor ΨM
n ∶ s⩔ Ð→

p(n) −mod defined on objects by a↦M ⊗ V ⊗a and on morphisms by

si ↦ σi, ♭i ↦ βi, ♭
∗
i ↦ β∗i , yi ↦ Yi = ∑

0≤j<i

Ωji.

Proof. From Lemma 15 and Proposition 16, we know that β,β∗, σ, and Ω are
morphisms in p(n) −mod, hence so are the images of si, ♭i, ♭

∗
i , yi under ΨM

n . Fur-

thermore, ΨM
n preserves parity, since si = σi = 0, ♭i = βi = ♭

∗
i = β∗i = 1, and

yi = ∑0≤j<iΩji = 0, see Remark 17. It remains to check that the images of the
generating morphisms satisfy the defining relations of s⩔. In the calculations we
suppress the 0-th tensor factor M .

(R1) (a) σ2
i = 1. This follows from σ2

(v⊗w) = (−1)vwσ(w⊗v) = (−1)2vwv⊗w =

v ⊗w.
(b) σiσi+1σi = σi+1σiσi+1. It is enough to prove this for i = 1, a = 3:

(σ1σ2σ1)(u⊗ v ⊗w) = (−1)uv(σ1σ2)(v ⊗ u⊗w) = (−1)uv+uwσ1(v ⊗w ⊗ u)

= (−1)uv+uw+vww ⊗ v ⊗ u = (σ2σ1σ2)(u⊗ v ⊗w).

(R2) (a) βiβ
∗
i+1 = −1. It is enough to prove this for i = 1:

β1β
∗
2 (v) = (−1)vβ1(v ⊗ β

∗
(1)) = (−1)vβ1 (v ⊗ (

n

∑

i=1

vi ⊗ vi′ − vi′ ⊗ vi))

= (−1)v
n

∑

i=1

(β(v, vi)vi′ − β(v, vi′)vi) = −v.

The last equality is easily checked on every v = vj , j ∈ [n] ∪ [n′].
(b) βi+1β

∗
i = 1. Similar.

(R3) (a) σi+1β
∗
i = σiβ

∗
i+1. It is enough to prove this for i = 1:

σ2β
∗
1 (v) = σ2 (

n

∑

i=1

(vi ⊗ vi′ − vi′ ⊗ vi) ⊗ v) =

n

∑

i=1

((−1)vvi ⊗ v ⊗ vi′ − vi′ ⊗ v ⊗ vi),

σ1β
∗
2 (v) =

n

∑

i=1

((−1)vvi ⊗ v ⊗ vi′ − (−1)v+vvi′ ⊗ v ⊗ vi).

(b) σiβ
∗
i = −β∗i . This follows from the fact that β∗(1) is skew super-

symmetric. Note that this, together with the previous relations, also
implies that βiσi = βi and βiβ

∗
i = 0, which will be used in proving

(R4)(b).



THE AFFINE VW SUPERCATEGORY 19

(R4) (a) Yi+1 = σiYiσi + σi + β
∗
i βi. This formula follows via the following com-

putation, using Remarks 20 and 21, and Lemma 18

Yi+1 = ∑

0≤k<i+1

Ωk,i+1 = ∑

0≤k<i

Ωk,i+1 +Ωi,i+1 = ∑

0≤k<i

σiΩk,iσi +Ωi,i+1

= σi ( ∑
0≤k<i

Ωk,i)σi + σi + β
∗
i βi = σiYiσi + σi + β

∗
i βi

(b) β1(Y1 − Y2) = −β1. We have β ○ (x∗ ⊗ 1 − 1 ⊗ x∗) = 0 for any x∗ ∈

p(n)⊥, which can be checked directly on a basis of V ⊗ V , and hence
β1 ○ (Ω01 − Ω02) = 0. It follows that β1(Ω01 − Ω02 − Ω12) = −β1Ω12 =

−β1(σ1 + β
∗
1β1) = −β1σ1 + 0 = −β1. �

4. Linear independence of S●a,b

The purpose of this section is to prove linear independence of the sets Sa,b and
S●a,b, and thus prove Theorems 1 and 2. The idea is to exploit a close connection of

s⩔ and the representation theory of the periplectic Lie superalgebra p(n). Namely,
as explained in Proposition 22, for every n and every p(n)-representation M , the
functor ΨM

n ∶ s⩔→ p(n) −mod gives a way of interpreting (equivalence classes of)
diagrams ⟦d⟧ ∈ Homs⩔(a, b) as p(n)-homomorphisms ΨM

n (⟦d⟧) ∶M ⊗ V ⊗a
→M ⊗

V ⊗b. For given a, b, and k in N0, we will pick n and an appropriate M ∈ p(n)−mod
so that the corresponding functor Ψn = ΨM

n ∶ s⩔ → p(n) − mod maps S≤ka,b to a

linearly independent set in Homp(n)(M ⊗ V ⊗a,M ⊗ V ⊗b
).

The argument for linear independence is slightly easier in the associated
graded setting. For that purpose, we define an auxiliary category gs⩔ and auxil-
iary functors Φn, which will turn out to be the associated graded of s⩔ and Ψn.
This is analogous to the structure of the main proof in [5], where a close connec-
tion between the affine oriented Brauer category and W-algebras is exploited to
construct certain functors, which are then used to prove linear independence. We
start with some preliminaries about filtrations and gradings.

4.1. Graded and filtered supercategories. An N0-filtered superspace is a su-
perspace U with a filtration by subspaces {0} = U≤−1

⊆ U≤0
⊆ U≤1

⊆ ⋯ ⊆ U , and
U = ⋃k≥0U

≤k. A supercategory C such that for every M,N ∈ C, HomC(M,N) has
a fixed filtration compatible with composition of morphisms, HomC(M,N)

≤k
×

HomC(N,P )
≤`
→ HomC(M,P )

≤(k+`) is a supercategory C enriched in the category
of filtered superspaces (that is, in the category whose objects are filtered super-
spaces and morphisms are homogeneous linear maps of degree zero). We call such
a supercategory a filtered supercategory. A graded supercategory is a supercate-
gory enriched in graded superspaces; this means its morphism spaces are graded
superspaces, and composition is a homogeneous linear map of degree zero.

We say a functor F ∶ C → D between two filtered (respectively, graded)
supercategories C and D is filtered (respectively, graded) if it preserves the filtration
(respectively, grading) on the morphism spaces.
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Now assume we have a filtered supercategory C. Its associated graded su-
percategory grC is the graded supercategory with the same objects as C, and
morphism spaces the graded superspaces HomgrC(M,N) = gr(HomC(M,N)) =

⊕k≥0 HomgrC(M,N)
k, where HomgrC(M,N)

k
= HomC(M,N)

≤k
/HomC(M,N)

≤(k−1).
A filtered functor F ∶ C → D between two filtered supercategories induces a

graded functor gr(F ) ∶ grC → grD. The functor gr(F ) is equal to F on objects,
and takes the associated graded map of F on the morphism superspaces.

4.2. The supercategories C−fmod and C−gmod, and the functor G. Let
C−fmod be the supercategory with objects N0-filtered superspaces, and morphisms
given by the filtered superspaces HomC−fmod(M,N) = ⋃k∈N0

HomC−fmod(M,N)
≤k,

where HomC−fmod(M,N)
≤k

= {f ∶ M → N ∣ f linear, f(M≤i
) ⊆ N≤(i+k) for all i}.

This is an N0-filtered supercategory as above.
Similarly, let C−gmod denote the supercategory with objects N0-graded su-

perspaces, and with morphisms superspaces of linear maps equipped with the
grading coming from the objects, HomC−gmod(M,N) = ⊕k∈N0

HomC−gmod(M,N)
k,

where HomC−gmod(M,N)
k
= {f ∶ M → N ∣ f linear, f(M i

) ⊆ N (i+k) for all i}. It
is an N0-graded supercategory in the above sense.

In particular, we can consider the associated graded category gr(C−fmod)
described above. (Note that gr(C−fmod) and C−gmod are not the same categories;
objects of gr(C−fmod) are filtered while objects of C−gmod are graded vector
superspaces.)

There is a functor G ∶ gr(C−fmod) → C−gmod which associates to a fil-
tered superspace M = ⋃iM

≤i its associated graded superspace G(M) = gr(M) =

⊕iM
≤i
/M≤(i−1). On morphisms, for every M, N filtered superspaces, the functor

G ∶ HomC−fmod(M,N)
≤k

/HomC−fmod(M,N)
≤(k−1)

→ HomC−gmod(gr(M), gr(N))
k

is given on f ∈ HomC−fmod(M,N)
≤k and m ∈M≤i by

G(f +HomC−fmod(M,N)
≤(k−1)

)(m +M≤(i−1)
) = f(m) +N≤(k+i−1).

4.3. s⩔ as a filtered supercategory. The affine VW supercategory s⩔ can be
viewed as a filtered supercategory, with the filtration on the morphism spaces given
by the number of dots. Let gr(s⩔) be its associated graded supercategory, defined
as above. In particular, the following relations hold in gr(s⩔):

= ∈ Homgr(s⩔)(2,2)
1
= Homs⩔(2,2)≤1

/Homs⩔(2,2)≤0,

= ∈ Homgr(s⩔)(2,0)
1
= Homs⩔(2,0)≤1

/Homs⩔(2,0)≤0.

(grR-4)

It is however not a priori obvious that these, along with (R1)-(R3), are the
only defining relations for gr(s⩔). In general, given a filtered algebra or a category,
describing its associated graded by generators and relations is a nontrivial problem,
and the solution to this problem usually goes most of the way towards proving a
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basis theorem for the filtered version (as basis theorems for graded versions are
usually easier). With that in mind, we define another category gs⩔ by generators
and relations, and prove in Section 4.10 that gr(s⩔) and gs⩔ are indeed isomorphic
as graded supercategories.

4.4. The category gs⩔. Let gs⩔ be the C-linear strict monoidal supercategory

generated as a monoidal supercategory by a single object ★, morphisms s = ∶

★ ⊗ ★ Ð→ ★⊗ ★, ♭ = ∶ ★ ⊗ ★ Ð→ 1, ♭∗ = ∶ 1Ð→ ★⊗ ★ and y = ∶ ★ Ð→ ★,

subject to relations (R1)–(R3) and (grR-4). The Z/2Z parity is given by s = y = 0,

♭ = ♭
∗
= 1. The N0-grading is given by deg s = deg ♭ = deg ♭∗ = 0,deg y = 1. Note that

the imposed relations are N0-homogeneous and so the category is well-defined.
In other words, the objects of gs⩔ are nonnegative integers, the morphisms are
(equivalence classes of) linear combinations of dotted diagrams, and the N0-grading
is given by the number of dots on the diagram.

The following is analogous to Proposition 12, and proved in the same way.

Lemma 23. For any a, b, k ∈ N0, the set Ska,b is a spanning set for Homgs⩔(a, b)k.

4.5. The functor Θ ∶ gs⩔ → gr(s⩔). The tautological assignments Θ(⋆) = ⋆,
Θ(s) = s, Θ(♭) = ♭, Θ(♭

∗
) = ♭

∗, Θ(y) = y define a graded monoidal superfunctor
Θ ∶ gs⩔→ gr(s⩔). It is bijective on objects and full, i.e. surjective on morphisms.

4.6. The Verma module M(0) and the functor Ψn. For n ∈ N, let n+ denote
the Lie subalgebra of strictly upper triangular matrices, and b the Lie subalgebra of
lower triangular matrices in gl(n). They can be considered as subalgebras of gl(n) ≅
g0 ⊆ p(n) via the inclusion Eij ↦ A−

ij . Consider C as the trivial representation

of b ⊕ g−1 ⊆ p(n) by letting A−
ij with i ≥ j and C−

ij with i < j act on it by

0. Consider the p(n)-module M(0) = Ind
p(n)
b⊕g−1

C, the Verma module of highest
weight 0. Using the PBW theorem we can see that, as a vector superspace, this is
U(p(n)) ⊗U(b⊕g−1) C ≅ Λ(g1) ⊗ S(n+).

Consider the filtration on M(0) coming from the PBW theorem, i.e. given
by deg(B+

ij) = 1 for i ≤ j and deg(A−
ij) = 1 for i < j. In particular, M(0) ⊗ V ⊗a

inherits a filtration (by putting V in degree 0). In this way, M(0) ⊗ V ⊗a can be
considered, for any a ∈ N0, as an object in C−fmod.

Lemma 24. The superfunctor Ψ
M(0)
n ∶ s⩔→ p(n)−mod induces (by forgetting the

action of p(n) on the image of Ψ
M(0)
n ) a filtered superfunctor Ψn ∶ s⩔→ C−fmod.

Proof. The generators si, ♭i, ♭
∗
i of s⩔ have filtered degree 0, and map under the

functor Ψn to σi, βi, β
∗
i which only act on the i-th and (i + 1)-st tensor factors of

M(0) ⊗ V ⊗a, 1 ≤ i ≤ a − 1, thus do not change the filtered degree defined on the
0-th tensor factor M(0).
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The generator yk has filtered degree 1 in s⩔, and its image under Ψn is the
operator

Ψn(yk) =
k−1

∑

i=0

Ωik.

For i = 1, . . . , k − 1 the operator Ωik does not change the filtered degree. For i = 0,
the operator Ω0k acts on M(0) ⊗ V ⊗a as

Ω0k =
⎛

⎝
∑

i,j

A−
ij ⊗A

+
ji −

1

2
∑

i

B+
ii ⊗C

+
ii −∑

i<j

B+
ij ⊗C

+
ji +∑

i<j

C−
ij ⊗B

−
ji

⎞

⎠
0k

.

The summands with C−
ij , i < j and A−

ij , i ≥ j in the 0-th tensor factor preserve the
filtered degree. The summands with B+

ij , i ≤ j, and A−
ij , i < j in the 0-th tensor

factor increase the filtered degree by 1. Thus, Ψn(yk) acts by increasing the filtered
degree by 1. �

4.7. The functor Φn. Next, we define a certain graded superfunctor, which will
eventually turn out to be gr(Ψn).

Consider again the vector space Λ(g1) ⊗ S(n+), now as a graded superspace
with the grading given by deg(B+

ij) = deg(A−
ij) = 1. This gives a grading on

(Λ(g1) ⊗ S(n+)) ⊗ V
⊗a.

Define a functor Φn ∶ gs⩔→ C−gmod on objects by Φn(a) = (Λ(g1) ⊗ S(n+))⊗
V ⊗a. In the image, we again label Λ(g1) ⊗ S(n+) as the 0-th tensor factor, and
V ⊗ . . .⊗V as factors 1,2, . . . , a. With this convention, set Φn(si) = σi, Φn(♭i) = βi,
Φn(♭

∗
i ) = β

∗
i , and let

Φn(yk) =
⎛

⎝
∑

i<j

A−
ij ⊗A

+
ji −

1

2
∑

i

B+
ii ⊗C

+
ii −∑

i<j

B+
ij ⊗C

+
ji

⎞

⎠
0k

,

with the action of A−
ij ∈ n+ and of B+

ij ∈ g1 on Λ(g1)⊗S(n+) given by multiplication.

Lemma 25. Φn ∶ gs⩔→ C−gmod is a well-defined graded superfunctor.

Proof. This is a direct calculation analogous to Proposition 22 and Lemma 24. �

Lemma 26. With our fixed n ∈ N, the following square strictly commutes:

gs⩔

=Θ

��

Φn // C−gmod

gr(s⩔)
grΨn// gr(C−fmod)

G

OO

That is, G ○ grΨn ○Θ = Φn on all objects and morphisms.

Proof. It clearly strictly commutes on objects, and on the generating morphisms
si, ♭i, ♭

∗
i of degree 0, so it only remains to check it on yk of filtered degree 1. This

follows from the proof of Lemma 24 and from the definition of Φn. �
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Define a total ordering → on the set [n] ∪ [n′] by saying that i→ j if there is
an oriented path (of length at least one) from i to j in the graph

1→ 2→ . . .→ n→ n′ → (n − 1)′ → . . .→ 2′ → 1′. (4.1)

With this we have the following technical tool:

Lemma 27. Let 0 /= m ∈M(0), i1, . . . , ia ∈ [n] ∪ [n′], and 1 ≤ k ≤ a be arbitrary.
Then

Φn(yk)(m⊗ vi1 ⊗ vi2 ⊗ . . .⊗ via) = ∑

ik→j

mj ⊗ vi1 ⊗ . . .⊗ vik−1 ⊗ vj ⊗ vik+1 ⊗ . . .⊗ via

for some mj ∈M(0). Additionally, if ik ∈ [n − 1], then mik+1 = A
−
ik,ik+1m ≠ 0.

Proof. First note that by definition, Φn(yk)(m⊗ vi1 ⊗ vi2 ⊗ . . .⊗ via) equals

⎛

⎝
∑

i<j

A−
ij ⊗A

+
ji −

1

2
∑

i

B+
ii ⊗C

+
ii −∑

i<j

B+
ij ⊗C

+
ji

⎞

⎠
0k

(m⊗ vi1 ⊗ vi2 ⊗ . . .⊗ via) =

= ∑

i<j

A−
ijm⊗ vi1 ⊗ . . .⊗A

+
jivik ⊗ . . .⊗ via −

1

2
∑

i

B+
iim⊗ vi1 ⊗ . . .⊗C

+
iivik ⊗ . . .⊗ via−

−∑

i<j

B+
ijm⊗ vi1 ⊗ . . .⊗C

+
jivik ⊗ . . .⊗ via .

Thus, all summands are of the form mj ⊗ vi1 ⊗ . . .⊗ vj ⊗ . . .⊗ via for mj ∈M(0).
To determine the occurring vj , recall that A+

ji = Eji+Ei′j′ and C+
ji = Ej′i+Ei′j ,

and therefore we have

A+
jivl = δilvj , A+

jivl′ = δjlvi′ , for i < j and C+
jivl = δilvj′ + δjlvi′ , C+

ijvl′ = 0.
(4.2)

In either case, vj is (possibly a constant multiple of) another standard basis vector,
whose index appears strictly to the right of ik in (4.1), thus proving the first claim.
For the second, it follows from (4.2) that the only summand transforming vik to
vik+1 acts by A+

ik+1,ik
on the k-th tensor factor, and thus acts by A−

ik,ik+1 in the
0-th tensor factor, replacing m by A−

ik,ik+1m. �

4.8. The key construction. The following construction, associating two vectors
vd and wd to a dotted diagram d with ⟦d⟧ ∈ Homs⩔(a, b), is key to the proof of
Theorem 2 in Section 4.10. In the special case when d has no dots and has the
same number of cups and caps (i.e. ⟦d⟧ ∈ Homs⩔(a, a)≤0), it specialises to a certain
construction from [31, Section 4]; see Section 4.11 for details.

Given a dotted diagram d with ⟦d⟧ ∈ Homs⩔(a, b)≤k and n ≥
a+b
2
+ k, define

vd ∈ V
⊗a and wd ∈ V

⊗b by the following algorithm.

STEP 0. Put an ordering on the strings in d so that caps come first, ordered left
to right with respect to their left end; then through strings, ordered left
to right with respect to their bottom end; then cups, ordered right to left
with respect to their right end. (See for instance (4.3), where the strings are
ordered using the set { 1○, 2○, 3○, 4○, 5○, 6○, 7○} with the usual ordering.)
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STEP 1. Starting with the smallest cap label, and repeating along the order, label
its left end by the minimal i ∈ [n] which is bigger than all the labels already
assigned. If the cap has ` dots, label its right end by i + `.

STEP 2. Continue with the through strings in the assigned order, and for each,
label its bottom end by the minimal i ∈ [n] which is bigger than all the
labels already assigned. If the through string has ` dots, label its top end
by i + `.

STEP 3. For each cup in order, label its right end by the minimal element i of the
set [n] which is bigger than all the labels already assigned. If the cup has
` dots, label its left end by i + `.

STEP 4. For each cup and cap, change the right end label from i to i′.
STEP 5. Now we have assigned to the bottom of the diagram labels i1, i2, . . . , ia

and to the top j1, j2, . . . , jb for some i1, . . . , ia, j1, . . . , jb ∈ [n] ∪ [n′]. Set

vd = vi1 ⊗ vi2 ⊗ . . .⊗ via ∈ V
⊗a, and wd = vj1 ⊗ vj2 ⊗ . . .⊗ vjb ∈ V

⊗b.

Example 28. For instance, for d = y2
1s2s6♭

∗
3♭
∗
1s3s2♭1s2y

2
1y2y

2
4y6 ∈ Homs⩔(6,8)≤8,

d =

1

1○
3’4

2○

5

6

3○

8

9

4○

9

10

5○

1112’

6○
12 13’

7○
15

(4.3)

we get v = v1 ⊗ v4 ⊗ v3′ ⊗ v6 ⊗ v9 ⊗ v10 ∈ V
⊗6, and wd = v15 ⊗ v12 ⊗ v13′ ⊗ v12′ ⊗ v5 ⊗

v11 ⊗ v9 ⊗ v8 ∈ V
⊗8.

Remark 29. The largest label is always a+b
2
+ k. We require n ≥

a+b
2
+ k in order

to be able to realize v a+b
2 +k ∈ V = Cn∣n in STEP 5.

The ordering in STEP 0 could be changed, as long as all caps come first,
then all through strings, then all cups. This changes the vectors vd and wd, but
preserves the important features of the construction.

Observe also that if i′, j′ ∈ [n′] are labels with i′ at the bottom, j′ at the top,
then i < j.

4.9. The key lemma. The proof of linear independence relies on the observation
that the vectors vd and wd can be used to distinguish elements in Ska,b.
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Namely, the standard basis {vi, vi′}i∈[n] of V induces a standard basis Ba of
V ⊗a. For any vector z ∈ M(0) ⊗ V ⊗a and any standard basis vector w ∈ Ba we
denote by ⟨w ∣ z⟩ ∈M(0) the coefficient of z in this standard basis. In other words,
z = ∑w∈Ba

⟨w ∣ z⟩ ⊗w.

Lemma 30. Let a, b, k ∈ N0. For any ⟦d⟧, ⟦d′⟧ ∈ Ska,b we have ⟨wd ∣ Φn(⟦d
′
⟧)vd⟩ ≠ 0

if and only if d = d′.

Proof. For readability we will often not distinguish in this proof between a diagram
d and its equivalence class ⟦d⟧.

⇐ We repeatedly use the second part of Lemma 27.
Consider a cap with ` dots on it, and ends labelled i and (i+`)′. By Lemma 27,

applying the ` dots replaces vd by a linear combination of vectors which have the
tensor factor vi of vd replaced by some vj ’s with i→ j, such that the path in (4.1)
from i to j has length at least `. Exactly one such summand will give a non-zero
contribution when such a vj is paired with v(i+`)′ via β; namely, the one with
j = i + `. Applying this dotted cap transforms the 0-th tensor factor, say m, into
the factor A−

i,i+1A
−
i+1,i+2 . . .A

−
i+`−1,i+`m.

Next, consider a through string with ` dots and labels i and i+`. It prescribes
the order of some superswaps of tensor factors of vd. After applying the ` dots,
vd is replaced by a linear combination of vectors which have the tensor factor vi
of vd replaced by some vj with i → j, for which the path in (4.1) from i to j has
length at least `. Reading off the coefficient of wd manifests itself in the tensor
factor corresponding to this string to reading off the coefficient of vi+`. The only
summand with a non-zero contribution is the one with j = i + `; in effect the 0-th
tensor factor got acted on by A−

i,i+1A
−
i+1,i+2 . . .A

−
i+`−1,i+`.

Finally, consider a cup with ` dots and labels i+` and i′. The β∗ corresponding
to this cup produced ∑j(vj⊗vj′ −vj′ ⊗vj); applying the ` dots on the left end of it
and reading off the coefficient of vi+` ⊗ vi′ (as prescribed by ⟨wd ∣ ⋅ ⟩) gives exactly
one summand with a non-zero contribution. The effect on the 0-th tensor factor is
action by A−

i,i+1A
−
i+1,i+2 . . .A

−
i+`−1,i+`. Thus, ⟨wd ∣ Φn(⟦d

′
⟧)vd⟩ is, up to a possible

sign, equal to

∏

i (i+`)’

A−
i,i+1 . . .A

−
i+`−1,i+` ⋅ ∏

i

i+`

A−
i,i+1 . . .A

−
i+`−1,i+` ⋅ ∏

i+` i’

A−
i,i+1 . . .A

−
i+`−1,i+` ≠ 0,

where the factors are given by the shape and the assigned labels of d.
⇒ Let ⟦d′⟧ ∈ Ska,b with d′ being any diagram for which ⟨wd ∣ Φn(⟦d

′
⟧)vd⟩ ≠ 0.

We first recover the underlying connector P (d′) from the labelling of d.
Consider any cap in d′. By Lemma 27 and the ordering →, the dots increase

indices i ∈ [n] or replace them by j′ ∈ [n′], and they decrease j′ ∈ [n′]. From that,
and the facts ⟨wd ∣ Φn(⟦d

′
⟧)vd⟩ ≠ 0 and β(vi, vj) = β(vi′ , vj′) = 0, β(vi, vj′) = δij ,

it follows that a cap in d′ can connect two points which are labelled in d by an
(unordered) pair of the form {i, j} or {i, j′} with i ≤ j.
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Next, consider any cup in d′. Note that β∗(1) = ∑i(vi ⊗ vi′ − vi′ ⊗ vi), and
that subsequent application of dots increases i ∈ [n] or replaces it by j′ ∈ [n′], and
decreases i′ ∈ [n′]. Hence ⟨wd ∣ Φn(⟦d

′
⟧)vd⟩ ≠ 0 implies that a cup in d′ can only

connect those pairs of points in d labelled by {i′, j′}, or by {i, j′} with i ≥ j.
Finally, consider any through string in d′. The possibilities for its labels (bot-

tom and top) are then, by Lemma 27 and ⟨wd ∣ Φn(⟦d
′
⟧)vd⟩ ≠ 0, given by ordered

pairs of the form (i, j′), or of the form (i, j) with i ≤ j, or of the form (i′, j′) with
i ≥ j. However, the last of these is not possible by Remark 29, so the remaining
possibilities for the bottom and top labels of a through string are (i, j′), and (i, j)
with i ≤ j.

For any diagram d′′, let ∩(d′′) denote the number of caps of d′′; ∪(d′′) the
number of cups, and t(d′′) the number of through strings. By the above analysis,
all labels i′ ∈ [n′] on the bottom are on caps in d′, so

∩(d′) ≥ # labels j′ ∈ [n′] at the bottom = ∩(d). (4.4)

As every cup in d′ has at least one label of type j′ ∈ [n′], we also see that

∪(d′) ≤ # labels j′ ∈ [n′] at the top = ∪(d). (4.5)

We get a sequence of inequalities

t(d′) = a − 2 ∩ (d′)
(4.4)
≤ a − 2 ∩ (d) = t(d) = b − 2 ∪ (d)

(4.5)
≤ b − 2 ∪ (d′) = t(d′).

This implies that (4.4) and (4.5) are equalities, and moreover

∩(d′) = ∩(d), ∪(d′) = ∪(d), t(d′) = t(d). (4.6)

So, d and d′ have the same number of cups, of caps and of through strings.
Next, we reconstruct the caps of d′. We saw in (4.4), (4.6) that any label

j′ ∈ [n′] on the bottom of the diagram d′ needs to be on a cap, and all caps have
exactly one label of type j′ ∈ [n′]. The other end of that cap is labelled by some
i ∈ [n] with i ≤ j. Starting from the smallest bottom label of type j′ ∈ [n′], there
is exactly one label at the bottom of type i ∈ [n] with i ≤ j, so these two labels
must be joined by a cap in d′. To get the non-vanishing of the action of the dots
composed with β prescribed by this cap, this cap needs by Lemma 27 to have at
most j− i dots in d′. (It has exactly j− i dots in d). Proceed with the next smallest
label of type j′ ∈ [n′], noticing that there is exactly one unpaired label i with i ≤ j,
and pair them. After doing this for all j′ ∈ [n′] on the bottom, we see that the
connectors P (d′) and P (d) have the same pairing of the points given by caps, and
every cap in d′ has at most as many dots as the corresponding cap in d.

Next, we recover the cups. By (4.5) and (4.6), every label of type j′ ∈ [n′]
needs to be on an end of a cup, whereas the other end is labelled by some i ∈ [n]
with j ≤ i, and which has at most i − j dots. By STEP 0 the cups come last, so
there is exactly one such pairing of points on the top. So, P (d′) and P (d) also have
the same pairing of the points given by cups, and every cup in d′ has at most as
many dots as the corresponding cup in d. Finally, all remaining unassigned labels
are of type i ∈ [n], and there is exactly one pairing such that the bottom label
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is smaller than the top label. So, the connectors P (d′) and P (d) have the same
pairing of the points given by through strings, and every through string in d′ has
at most as many dots as the corresponding through string in d.

Therefore, P (d) = P (d′). As the (equivalence classes of the) underlying un-
dotted diagrams of d and d′ are both in Sa,b, they are the same. Finally, as d′ has
at most as many dots as d on every string, and they have the same total number
of dots, we conclude that d′ = d. �

Example 31. For the diagram d from Example 28,

⟨wd ∣ Φn(⟦d⟧)vd⟩ = A
−
1,2A

−
2,3A

−
4,5A

−
6,7A

−
7,8A

−
10,11A

−
13,14A

−
14,15 ∈ U(n−) =M(0).

4.10. Proof of Theorem 2. We will finally prove the linear independence of S●a,b,
and thus establish Theorem 2. We start by proving it in the graded setting.

Lemma 32. Given a, b, k ∈ N0, and n ≥
a+b
2
+ k, the map

Φn ∶ Homgs⩔(a, b)k Ð→ HomC−gmod(M(0) ⊗ V ⊗a,M(0) ⊗ V ⊗b
)
k

maps the set Ska,b to a linearly independent set. Thus, Ska,b is linearly independent

in Homgs⩔(a, b)k, and Φn is injective on Homgs⩔(a, b)k.

Proof. Assume there are some αd′ ∈ C such that ∑⟦d′⟧∈Sk
a,b
αd′Φn(⟦d

′
⟧) = 0. For

any ⟦d⟧ ∈ Ska,b, applying both sides of the above equation to the vector vd, reading
off the coefficient of wd, and applying Lemma 30, we get αd = 0. So, the set
{Φn(⟦d⟧) ∣ ⟦d⟧ ∈ Ska,b} is linearly independent. From that it follows that Ska,b is

linearly independent in Homgs⩔(a, b)k. It is also a spanning set for Homgs⩔(a, b)k

by Lemma 25, so Φn is injective on Homgs⩔(a, b)k. �

Corollary 33. For all a, b ∈ N0, the set S●a,b is a basis of Homgs⩔(a, b).

Lemma 34. For all a, b ∈ N0, the set S●a,b is linearly independent in Homs⩔(a, b).

Proof. Assume there is a nontrivial relation among elements of S●a,b in Homs⩔(a, b).

As this is a filtered category, the highest order terms (of degree k) in this relation
give a nontrivial relation among the elements of Ska,b in Homgr(s⩔)(a, b). Thus, it

is enough to prove that the set Ska,b is linearly independent in Homgr(s⩔)(a, b) for
each k.

Set n =
a+b
2
+ k and consider the square

Homgs⩔(a, b)k

Θ
����

� � Φn // HomC−gmod(M(0) ⊗ V ⊗a,M(0) ⊗ V ⊗b
)
k

Homgr(s⩔)(a, b)
k grΨn // Homgr(C−fmod)(M(0) ⊗ V ⊗a,M(0) ⊗ V ⊗b

)
k

G

OO

The map Φn is injective by Lemma 32, and the diagram strictly commutes
by Lemma 26. Thus, Θ is injective. It is surjective by Section 4.5, so it is an
isomorphism of superspaces.
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In particular, Θ maps the basis Ska,b of Homgs⩔(a, b)k to a basis in the space

Homgr(s⩔)(a, b)
k which by construction is Ska,b. �

Corollary 35. The map Θ ∶ gs⩔→ gr(s⩔) is a graded isomorphism.

Corollary 36. For any a, b, k, and n ≥
a+b
2

+ k, the map Ψn is injective on

Homs⩔(a, b)≤k.

Theorem 2 now follows directly from Proposition 12 and Lemma 34.

4.11. A basis theorem for sBr as a special case. Theorem 1 then follows
immediately by realizing the supercategory sBr as the 0-th filtration piece of the
supercategory s⩔.

Proof of Theorem 1. Consider the functor I ∶ sBr → s⩔ which is the identity
on objects and interprets (equivalence classes of) undotted diagrams as dotted
diagrams with zero dots. For every a and b, I ∶ HomsBr(a, b) → Homs⩔(a, b) maps
the spanning set Sa,b to the set S0

a,b, which by Theorem 2 is a basis of Homs⩔(a, b)0.

Thus, the set Sa,b is a basis of HomsBr(a, b). �

Remark 37. The functor Ψn ○ I ∶ sBr → C−fmod can be decomposed as Ψn ○ I =
Jn ○ ΨC

n where ΨC
n ∶ sBr → SVect (the supercategory of vector superspaces and

linear maps) is given on objects by ΨC
n(a) = V

⊗a and the expected map on mor-
phisms, and Jn ∶ SVect→ C−fmod, is given by Jn(W ) =M(0)⊗W . The superfunc-
tor ΨC

n appears in [31]. It is shown there that when n ≥ a, ΨC
n ∶ HomsBr(a, a) →

Homp(n)(V
⊗a, V ⊗a

) maps Sa,a to a linearly independent set, thus proving that

Sa,a is a basis, and that ΨC
n is injective on HomsBr(a, a). It is also proved that ΨC

n

is surjective, so EndsBr(a) ≅ Endp(n)−mod(V
⊗a

) for a ≤ n (see [31, Theorem 4.5]).

Remark 38. ΨC
n might not be injective when n < a; for example, when 2n < a

it is not even injective when restricted to the symmetric group Sa. The question
of surjectivity of the functors ΨM

n for different modules M is interesting and so
far not understood. One would need to better understand the combinatorics of
decomposition numbers in p(n) − mod or category O(p(n)). To our knowledge,
only the decomposition numbers of the finite dimensional (thick and thin) Kac
modules are known, see [3]. Even in these cases, a precise surjectivity statement
is so far not available. Based on explicitly calculated examples, we expect a more
involved behaviour than in the gl(n∣n) case, see [9].

5. The affine VW superalgebra s⩔a and its centre

We fix a ≥ 2 in N for the whole section, and study the affine VW superalgebra
s⩔a = Ends⩔(a). The results from the previous section show that the algebra s⩔a

is a PBW deformation of the algebra gs⩔a, in the sense that s⩔a is a filtered
algebra, and gr(s⩔a) = gs⩔a. For h̵ a parameter, the Rees construction gives
an algebra Ah̵ over C[h̵] whose specialisations at h̵ = 0 and h̵ = 1 are precisely
A1 = s⩔a and A0 = gs⩔a. We will use Theorem 2 to describe the centre of the



THE AFFINE VW SUPERCATEGORY 29

C[h̵]-algebra Ah̵, and all its specialisations At for any t ∈ C; in particular we find
the centre of s⩔a and gs⩔a. We refer e.g. to [4], [22], [38], [42] for the general
theory.

5.1. The algebras Ah̵. We first define a C[h̵]-algebra Ah̵ and its specialisations
At at t ∈ C directly using generators and relations.

Definition 39. Let Ah̵ be the superalgebra over C[h̵] with generators

si, ei, yj 1 ≤ i ≤ a − 1, 1 ≤ j ≤ a

where si = ei = yj = 0, subject to the relations:

(VW1) Involutions: s2
i = 1 for 1 ≤ i < a.

(VW2) Commutation relations:
(i) siej = ejsi if ∣i − j∣ > 1,

(ii) eiej = ejei if ∣i − j∣ > 1,
(iii) eiyj = yjei if j ≠ i, i + 1,
(iv) yiyj = yjyi for 1 ≤ i, j ≤ a.

(VW3) Affine braid relations:
(i) sisj = sjsi if ∣i − j∣ > 1,

(ii) sisi+1si = si+1sisi+1

for 1 ≤ i ≤ a − 2,
(iii) siyj = yjsi if j ≠ i, i + 1.

(VW4) Snake relations:
(i) ei+1eiei+1 = −ei+1,

(ii) eiei+1ei = −ei
for 1 ≤ i ≤ a − 2.

(VW5) Tangle and untwisting relations:
(i) eisi = ei and siei = −ei

for 1 ≤ i ≤ a − 1,

(ii) siei+1ei = si+1ei,
(iii) si+1eiei+1 = −siei+1,
(iv) ei+1eisi+1 = ei+1si,
(v) eiei+1si = −eisi+1

for 1 ≤ i ≤ a − 2.
(VW6) Idempotent relations:

e2
i = 0 for 1 ≤ i ≤ a − 1.

(VW7) Skein relations:
(i) siyi − yi+1si = −h̵ei − h̵,

(ii) yisi − siyi+1 = h̵ei − h̵
for 1 ≤ i ≤ a − 1.

(VW8) Unwrapping relations:
e1y

k
1e1 = 0 for k ∈ N.

(VW9) (Anti)-Symmetry relations:
(i) ei(yi+1 − yi) = h̵ei,

(ii) (yi+1 − yi)ei = −h̵ei
for 1 ≤ i ≤ a − 1.

For any t ∈ C, let At be the quotient of Ah̵ by the ideal generated by h̵ − t.

Remark 40. The above set of relations is not minimal. For instance, relations
(VW6) and (VW8) can be deduced from (VW5)(i) and (VW9).

As a C[h̵]-algebra, Ah̵ is filtered by deg(yi) = 1, deg(si) = deg(ei) = 0. Con-
sidered as a C-algebra, Ah̵ can be given a grading by setting deg(yi) = deg(h̵) = 1,
deg(si) = deg(ei) = 0. Interpreting si, ei = ♭

∗
i ♭i, yi as diagrams as in Section 1, the

elements of Ah̵ and At can be written as (equivalence classes of) linear combina-
tions of dotted diagrams with a bottom points and a top points.

Lemma 41. The set S●a,a is a spanning set for Ah̵ and At for any t ∈ C.

Proof. Using the braid, snake and untwisting relations (analogous to (R1)-(R4))
in Ah̵ or At we see that every element of S●a,a gives rise to a well-defined element
of Ah̵, respectively At. Then we can repeat the proof in Proposition 12 that S●a,a
spans s⩔a for these algebras. �
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Proposition 42. (a) The assignments ϕ1(yi) = yi, ϕ1(si) = si and ϕ1(ei) =

♭
∗
i ♭i define an isomorphism of algebras ϕ1 ∶ A1 → s⩔a.

(b) The assignments ϕ0(yi) = yi, ϕ0(si) = si and ϕ0(ei) = ♭
∗
i ♭i define an

isomorphism of algebras ϕ0 ∶ A0 → gs⩔a.
(c) For any t ≠ 0, the assignments ψt(yi) = tyi, ψt(si) = si and ψt(ei) = ei

define an isomorphism of algebras ψt ∶ At → A1.
(d) The set S●a,a is a C-basis of At for any t, and a C[h̵]-basis of Ah̵.

Proof. (a) One checks directly that ϕ1 can be extended to an algebra ho-
momorphism by checking that all relations from Definition 39 hold in
s⩔a. To see surjectivity, consider an arbitrary element c of s⩔a, and
let us construct its preimage. Assume without loss of generality that
c = p(y1, . . . , ya) ⟦d⟧ q(y1, . . . , ya) for some monomials p, q, and some un-
dotted diagram d. If d has k cups, then it also has k caps, and can be
written in the form d = ±σ1(♭

∗
1♭1)(♭

∗
2♭2) . . . (♭

∗
k♭k)σ2 for some permutations

σ1, σ2. Thus, c = ±pσ1(♭
∗
1♭1)(♭

∗
2♭2) . . . (♭

∗
k♭k)σ2q = ϕ1(±pσ1e1e2 . . . ekσ2q).

So, using Lemma 41 and Theorem 2, ϕ1 is a surjective homomorphism
mapping a spanning set to a basis, so it is an isomorphism.

(b) Analogous to (a).
(c) A direct check of the relations shows that the assignment ψt extends to

an algebra homomorphism for any t ∈ C. For t ≠ 0, the inverse is given by
ψ−1
t (yi) =

1
t
yi, ψ

−1
t (si) = si and ψ−1

t (ei) = ei.
(d) For any t ≠ 0, S●a,a is a basis of s⩔a by Theorem 2, so by (a) and (c) above

it is also a basis of At ≅ A1 ≅ s⩔a. For t = 0, S●a,a is a basis of gs⩔a ≅ A0

by Corollary 33. Assume there is a relation among the elements of S●a,a in
Ah̵, with coefficients in C[h̵]. Evaluating at some t ∈ C for which not all
coefficients vanish, we get a relation in At, which is impossible. So, S●a,a is
also a basis of Ah̵. �

5.2. The Rees construction. LetB = ⋃k≥0B
≤k be a filtered C-algebra. The Rees

algebra of B is the C[h̵]-algebra Rees(B), given as a C-vector space by Rees(B) =

⊕k≥0B
≤kh̵k, with multiplication and the h̵-action both given by (ah̵i)(bh̵j) =

(ab)h̵i+j for a ∈ B≤i, b ∈ B≤j , and ab ∈ B≤i+j the product in B. It is graded as a
C-algebra by the powers of h̵.

Lemma 43. Let ⋃i≥0Bi be a basis of B compatible with the filtration, in the sense
that the Bi’s are pairwise disjoint, and ⋃ki=0Bi is a basis of B≤k. Then ⋃i≥0Bih̵

i

is a C[h̵]-basis of Rees(B).

Proof. The set ⋃ki=0Bi is a C-basis of B≤k, so ⋃ki=0Bih̵
k is a C-basis of B≤kh̵k, and

then ⋃k≥0⋃
k
i=0Bih̵

k is a C-basis of Rees(B). On the other hand, ⋃k≥0⋃
k
i=0Bih̵

k
=

⋃i≥0⋃k≥iBih̵
k
= ⋃i≥0⋃j≥0Bih̵

i+j
= ⋃j≥0 h̵

j
(⋃i≥0Bih̵

i
). Thus, the set ⋃i≥0Bih̵

i is
a C[h̵]-basis of Rees(B). �

For any algebra B, let Z(B) denote the centre of B.

Lemma 44. Z(Rees(B)) = Rees(Z(B)).
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Proof. The centre of B inherits the filtration of B, and Rees(Z(B)) embeds nat-
urally into Rees(B), with the image contained in Z(Rees(B)). To see the other
inclusion, assume c is central in Rees(B). Without loss of generality c is of ho-
mogeneous graded degree i, so c = bh̵i for some b ∈ B≤i. This shows b is a central
element in B, proving the claim. �

Lemma 45. There is an isomorphism of C[h̵]-algebras Rees(A1) ≅ Ah̵.

Proof. The map Ah̵ → Rees(A1) given on generators by yi ↦ h̵yi, si ↦ si, ei ↦ ei
is a morphism of algebras, which can be verified by directly comparing relations.
It is an isomorphism as it maps the basis S●a,a to the basis S●a,a (up to scaling). �

5.3. The centre is a subalgebra of the symmetric polynomials. We now
start computing the centre of Ah̵, and show that Z(Ah̵) ⊆ C[h̵][y1, . . . , ya]

Sa .

Lemma 46. For f ∈ Ah̵, the following are equivalent:

(a) fyi = yif for all i ∈ [a];
(b) f ∈ C[h̵][y1, . . . , ya].

Proof. Because of relation (VW2) (iv), only (a) ⇒ (b) requires proof.
Assume that f ∉ C[h̵][y1, . . . , ya]. That means that the expansion of f in the

basis S●a,a contains at least one basis vector whose underlying undotted diagram
is not the identity 1a.

Assume that this expansion of f in the basis S●a,a contains at least one basis
vector whose underlying dotted diagram contains a cup. Label the top and bottom
endpoints of strings 1, . . . , a from left to right. Among all diagrams with a cup,
choose d with a maximal number of dots on a cup; say that this cup is connecting
i and j, and has k dots on it. Then yif , written in the basis S●a,a, contains at least
one basis vector whose underlying diagram has a cup and k+1 dots on it (namely,
yid). On the other hand, fyi contains no basis vectors corresponding to diagrams
with k + 1 dots on a cup, so yif ≠ fyi.

Now assume that the expansion of f in the basis S●a,a contains no basis vector
corresponding to diagrams with cups, and consequently no diagrams with caps.
Then it contains at least one basis vector corresponding to a dotted diagram with
a through strand connecting differently labelled points at the top and the bottom.
Among all such diagrams and all such strings, choose d with a maximal number
of dots on such a string; say the string is connecting i at the top of the diagram
and j at the bottom, i ≠ j, and it has k dots on it. Then yif , written in the basis
S●a,a, contains at least one basis vector corresponding to a diagram with a string
connecting i and j and with k + 1 dots on it, while fyi contains no such diagrams
as i ≠ j. So, yif ≠ fyi. �

In particular, Z(Ah̵) ⊆ C[h̵][y1, . . . , ya]. The following lemma shows that
Z(Ah̵) is in fact a subalgebra of the symmetric polynomials C[h̵][y1, . . . , ya]

Sa .

Lemma 47. Let f ∈ C[h̵][y1, . . . , ya] ⊆ Ah̵ and 1 ≤ i ≤ a − 1.

(a) If fsi = sif , then f(y1, . . . , yi, yi+1, . . . , ya) = f(y1, . . . , yi+1, yi, . . . , ya).
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(b) For the value h̵ = 0, the converse also holds: if f(y1, . . . , yi, yi+1, . . . , ya) =
f(y1, . . . , yi+1, yi, . . . , ya), then fsi = sif in A0.

Proof. It is enough to prove this for a = 2.

(a) By Lemma 7, the expansion of fs1 in the basis S●a,a is

f(y1, y2)s1 = s1f(y2, y1) + h̵∑
i,j

(αijy
i
1y
j
2 + βijy

i
1e1y

j
1) (5.1)

for some αij , βij ∈ C. On the other hand, s1f is already a linear combina-
tion of basis vectors. If fs1 = s1f , then using that S●a,a is a basis and read-
ing off the terms corresponding to basis vectors whose underlying undotted
diagram is s1, we get s1f(y2, y1) = s1f(y1, y2), and so f(y2, y1) = f(y1, y2).

(b) For h̵ = 0 and f symmetric in y1, y2, equation (5.1) turns into the equalities
f(y1, y2)s1 = s1f(y2, y1) = s1f(y1, y2), thus fs1 = s1f . �

5.4. Some central elements. Consider the following elements in C[h̵][y1, . . . , ya]:

zij = (yi − yj)
2, for 1 ≤ i /= j ≤ a and Dh̵ = ∏

1≤i<j≤a

(zij − h̵
2
). (5.2)

Notice that the deformed squared Vandermonde determinant Dh̵ is symmetric,
Dh̵ ∈ C[h̵][y1, . . . , ya]

Sa . We will use these to produce central elements in Ah̵.

Lemma 48. For any 1 ≤ i ≤ a − 1, we have in Ah̵ the equality

ei ⋅ (zi,i+1 − h̵
2
) = (zi,i+1 − h̵

2
) ⋅ ei = 0,

and consequently Dh̵ei = eiDh̵ = 0.

Proof. Using (VW9) (i), we get ei ⋅ (zi,i+1 − h̵
2
) = ei(yi+1 − yi)

2
− h̵2ei = h̵ei(yi+1 −

yi) − h̵
2ei = h̵

2ei − h̵
2ei = 0, which implies eiDh̵ = 0. The claim Dh̵ei = 0 is proved

analogously. �

Lemma 49. For any 1 ≤ k ≤ a − 1, we have Dh̵sk = skDh̵.

Proof. We analyse the commutation of sk with different factors (zij − h̵
2
) of Dh̵

separately.
Assume i, j ∉ {k, k + 1}. Then (VW3)(iii) says that yi and yj commute with

sk. Therefore,

(zij − h̵
2
)sk = sk(zij − h̵

2
). (5.3)

Now assume i = k, j = k + 1. We claim that

(zk,k+1 − h̵
2
)sk = sk(zk,k+1 − h̵

2
). (5.4)

To prove it, use (VW7) to calculate (yk − yk+1)sk = sk(yk+1 − yk) − 2h̵, and then

(yk − yk+1)
2sk = (yk − yk+1)sk(yk+1 − yk) − 2h̵(yk − yk+1)

= (sk(yk+1 − yk) − 2h̵)(yk+1 − yk) − 2h̵(yk − yk+1) = sk(yk − yk+1)
2.
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The remaining factors of Dh̵ contain zij with exactly one of i, j in {k, k + 1}.
Since zij = zji, it suffices to consider j ≠ k, k + 1. We claim that

(zk,k+1 − h̵
2
) ((zk,j − h̵

2
)(zk+1,j − h̵

2
)sk)

= (zk,k+1 − h̵
2
) (sk(zk,j − h̵

2
)(zk+1,j − h̵

2
)) . (5.5)

To prove (5.5), let us first calculate

zk,jsk = (yk − yj)
2sk = (yk − yj)sk(yk+1 − yj) + h̵(yk − yj)(ek − 1)

= skzk+1,j + h̵(ek − 1)(yk+1 − yj) + h̵(yk − yj)(ek − 1).

From this and Lemma 48, we get the following two equalities

(zk,k+1 − h̵
2
)(zk,j − h̵

2
)sk = (zk,k+1 − h̵

2
) (sk(zk+1,j − h̵

2
) − h̵(yk + yk+1 − 2yj)) .

(zk,k+1 − h̵
2
)(zk+1,j − h̵

2
)sk = (zk,k+1 − h̵

2
) (sk(zk,j − h̵

2
) + h̵(yk + yk+1 − 2yj)) .

From these we obtain (5.5), since (zk,k+1 − h̵
2
) ((zk,j − h̵

2
)(zk+1,j − h̵

2
)sk) equals

(zk,k+1 − h̵
2
) multiplied by

[sk(zk,j − h̵
2
)(zk+1,j − h̵

2
) + (h̵(yk + yk+1 − 2yj) − h̵(yk + yk+1 − 2yj))(zk,j − h̵

2
)]

which is however the same as (zk,k+1 − h̵
2
) (sk(zk,j − h̵

2
)(zk+1,j − h̵

2
)). Thus (5.5)

holds. Finally, (5.3), (5.4) and (5.5) imply Dh̵sk = skDh̵. �

Lemma 50. Let 1 ≤ i ≤ a−1, and let f̃ ∈ C[h̵][y1, . . . , ya] be symmetric in yi, yi+1.
Then there exist polynomials pj = pj(y1, . . . , ya) ∈ C[h̵][y1, . . . , ya] such that

f̃ si = sif̃ +
deg f̃−1

∑

j=0

yji ⋅ ei ⋅ pj .

Proof. Analogues of the formulas in Lemma 6 and 7 imply that for any k,

(yki + y
k
i+1)si = si(y

k
i + y

k
i+1) + h̵

k−1

∑

j=0

(yk−1−j
i eiy

j
i+1 + y

j
i+1eiy

k−1−j
i )

= si(y
k
i + y

k
i+1) + h̵

k−1

∑

j=0

yk−1−j
i eiy

j
i+1 +

k−1

∑

j=0

j

∑

`=0

(
j

l
)h̵1+j−`

(−1)j+`y`ieiy
k−1−j
i .

Thus, the claim holds for f̃ = yki +y
k
i+1. It also trivially holds for f̃ = yj if j ≠ i, i+1,

as such yj commute with si. Finally, note that if the claim holds for f̃1 and f̃2,

it also holds for f̃1f̃2 and f̃1 + f̃2. On the other hand, the algebra of polynomials
symmetric in yi, yi+1 is generated by the yki + y

k
i+1, k ≥ 1, and yj ’s with j ≠ i, i + 1,

and the claim follows. �

Lemma 51. Let f̃ ∈ C[h̵][y1, . . . , ya]
Sa be an arbitrary symmetric polynomial,

and c a constant. Then f =Dh̵f̃ + c lies in the centre of Ah̵.
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Proof. The element f is in C[h̵][y1, . . . , ya] so it commutes with yi for all i. By
Lemma 48,

fei = f̃Dh̵ei + cei = cei = eiDh̵f̃ + cei = eif.

Using Lemma 50, and then Lemmas 49 and 48 we get

fsi =Dh̵f̃ si + csi =Dh̵

⎛

⎝

sif̃ +∑
j

yji ⋅ ej ⋅ pj
⎞

⎠

+ csi = siDh̵f̃ + sic = sif. �

5.5. The centre of s⩔a and of Ah̵.

Proposition 52. The centre Z(A0) of the graded VW superalgebra gs⩔a consists

of all f ∈ C[y1, . . . , ya] of the form f = D0f̃ + c, for f̃ ∈ C[y1, . . . , ya]
Sa , c ∈ C and

D0 as in (5.2).

Proof. We showed in Lemmas 46 and 47 that Z(A0) ⊆ C[y1, . . . , ya]
Sa , and that

any symmetric polynomial commutes with si for 1 ≤ i ≤ a−1 and yj for 1 ≤ j ≤ a. It
remains to check which symmetric polynomials commute with ei for all 1 ≤ i ≤ a−1.
To this end, fix f ∈ Z(A0). We will compute a condition on commutation with e1;
then the symmetry of f will complete the proof.

Expanding fe1 in the normal dotted diagram basis, the terms appearing with
nonzero coefficient all have underlying (undotted) diagrams equal to e1; i.e. fe1 is
a linear combination of terms of the form yk1e1pk with pk ∈ C[y3, . . . , ya]. Similarly,
e1f is a linear combination of terms of the form e1y

k
1pk. Comparing, we get pk = 0

for k > 0, and that fe1 = p0(y3, . . . , ya)e1. Using the presentation of A0 given in
Definition 39, we have that a polynomial in the yi’s is annihilated by e1 if any only
if it is a multiple of (y1 − y2) (see (VW9), specialising to h̵ = 0). Thus

f = (y1 − y2)g + p0, with g ∈ C[y1, . . . , ya] and p0 ∈ C[y3, . . . , ya].

We claim that p0 ∈ C, which will follow from the symmetry of f . For this
let byλ3

3 ⋯yλa
a be a non-zero summand of p0, and write yλ = yλ4

4 ⋯yλa
a for short. If

λ3 ≥ 1, then symmetry implies byλ3

1 yλ is a term in f , so that byλ3−1
1 yλ is a term in

g. So −byλ3−1
1 y2y

λ, and therefore −by2y
λ3−1
3 yλ, are summands in f . Going back to

g, we get that byλ3−1
3 yλ is a summand there, so that by1y

λ3−1
3 yλ is a summand of

f . But comparing the coefficient to that of y2y
λ3−1
3 yλ, we see that this contradicts

the symmetry of f . Therefore λ3 = 0 for all non-zero summands of p0, and thus by
symmetry, p0 ∈ C as claimed.

Next, since f is symmetric (specifically in y1 and y2), we have that g is
antisymmetric in y1 and y2. Thus g itself is a multiple of (y1 − y2), i.e. f − p0 is a
multiple of (y1−y2)

2. But now, since f −p0 is symmetric, it must also be a multiple
of D0 = ∏1≤i<j≤a(yi − yj)

2. So finally, f is of the form

f = ∏

1≤i<j≤a

(yi − yj)
2
⋅ f̃ + c =D0f̃ + c,

for some symmetric polynomial f̃ ∈ C[y1, . . . , ya]
Sa and constant c ∈ C. �
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5.6. The centre of s⩔a. The main result of this section, Theorem 53, describes
the centre of s⩔a. To do that, we use the fact that the algebra s⩔a is a PBW
deformation of the algebra gs⩔a, determine the centre of gs⩔a and find a lift of
the appropriate basis elements to s⩔a. This approach differs from the common
arguments for diagram algebras, where often the centre is realized as a subring of
invariant polynomials satisfying certain cancellation properties, [17]. In our situa-
tion the cancellation properties did not appear very manageable, and we therefore
omitted them. It would however be nice to know if an explicit result as The-
orem 53 could be achieved for instance for affine VW algebras as in [33], [20],
BMW-algebras, see e.g. [17], or walled Brauer algebras, see e.g. [23], [37]. Com-
pare also with [14], where the centre of the Brauer superalgebra sBra is described
in a similar way.

Theorem 53. The centre Z(s⩔a) of the VW superalgebra s⩔a = A1 consists of

all f ∈ C[y1, . . . , yn] of the form f = D1f̃ + c, for f̃ ∈ C[y1, . . . , ya]
Sa an arbitrary

symmetric polynomial and c ∈ C.

Proof. For any filtered algebra B there exists a canonical injective algebra homo-
morphism ϕ ∶ grZ(B) ↪ Z(gr(B)), given for f ∈ Z(B)

≤k by ϕ(f + Z(B)
≤(k−1)

) =

f +B≤(k−1), see [30, 6.13, 6.14]. For B = s⩔a and gr(B) = gs⩔a = A0, by Propo-

sition 52 the centre of A0 consists of elements of the form f = D0f̃ + c for f̃
a symmetric polynomial and c a constant. By Lemma 51, D1f̃ + c lies in the
centre of s⩔a. We have ϕ(c) = c, and for f̃ symmetric and homogeneous of

degree k, ϕ(D1f̃ + Z(s⩔a)
≤a(a−1)+k−1

) = D0f̃ + s⩔≤a(a−1)+k−1
a . Using Proposi-

tion 52, we see that every f ∈ Z(gs⩔a) is in the image of ϕ, so ϕ is an iso-
morphism. This shows that gr(Z(s⩔a)) is spanned by constants and elements of

the form D1f̃ + s⩔≤a(a−1)+k−1
a for f̃ symmetric polynomials of degree k. Conse-

quently, Z(s⩔a) is spanned by constants and elements of the form D1f̃ , and the
claim follows. �

Remark 54. It is interesting to compare the description of the centre of s⩔a with
[39, Theorem 4.8]. It is shown there that the centre of U(p(n))/I, where I is the
Jacobson radical of U(p(n)), is isomorphic to the subring in the polynomial ring
C[z1, . . . zn] of the form C⊕C[z1, . . . , zn]

SnΘ, where Θ = ∏i<j(zi − zj)
2. In other

words, this centre is isomorphic to Z(s⩔a) when a = n.

Theorem 55. The centre Z(Ah̵) of the superalgebra Ah̵ consists of polynomials

f ∈ C[h̵][y1, . . . , yn], of the form f =Dh̵f̃+c, for f̃ ∈ C[h̵][y1, . . . , ya]
Sa an arbitrary

symmetric polynomial and c ∈ C[h̵].

Proof. The centre Z(Ah̵) is by Lemma 45 isomorphic to Z(Rees(A1)), which is
by Lemma 44 isomorphic to Rees(Z(A1)). The centre Z(A1) consists by Theo-

rem 53 of elements of the form f = D1f̃ + c, with f̃ ∈ C[y1, . . . , ya]
Sa and c ∈ C.

Assume f̃ is homogeneous of degree k. Then D1f̃ ∈ A
≤a(a−1)+k
1 , which gives an

element D1f̃ h̵
a(a−1)+k of Rees(Z(A1)) ≅ Z(Rees(A1)). Using Lemma 45, we see
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that Z(Ah̵) is spanned by constants and the preimages under the isomorphism

Ah̵ ≅ Rees(A1) of elements D1f̃ h̵
a(a−1)+k, which are equal to Dh̵f̃ . �
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[4] A. Braverman and D. Gaitsgory, Poincaré-Birkhoff-Witt theorem for quadratic algebras of
Koszul type, J. Algebra 181 no. 2, 315–328 (1996)

[5] J. Brundan, J. Comes, D. Nash and A. Reynolds, A basis theorem for the affine oriented

Brauer category and its cyclotomic quotients, Quantum Topol. 8, 75–112 (2017)
[6] J. Brundan and A. Ellis, Monoidal supercategories, Comm. Math. Phys. 351, 1045–1089

(2017)
[7] J. Brundan and A. Kleshchev, Schur-Weyl duality for higher levels, Selecta Math. (N.S.) 14

no. 1, 1–57 (2008)

[8] J. Brundan and C. Stroppel, Gradings on walled Brauer algebras and Khovanov’s arc algebra,
Adv. Math. 231 no. 2, 709–773 (2012)

[9] J. Brundan and C. Stroppel, Highest weight categories arising from Khovanov’s diagram

algebra IV: the general linear supergroup, J. Eur. Math. Soc. (JEMS) 14 no. 2, 373–419 (2012)
[10] T. Ceccherini-Silberstein, F. Scarabotti and F. Tolli, Representation theory of the sym-

metric groups: The Okounkov-Vershik approach, character formulas, and partition algebras,

Cambridge Studies in Advanced Mathematics 121, Cambridge Univ. Press (2010)
[11] C. W. Chen and Y.N. Peng, Affine periplectic Brauer algebras, J. Algebra 501, 345–372,

(2018)

[12] S-J. Cheng and W. Wang, Dualities and representations of Lie superalgebras, Graduate
Studies in Mathematics 144, AMS, Providence USA (2012)

[13] I. Cherednik, A new interpretation of Gel’fand-Tzetlin bases, Duke Math. J., 54 no. 2,
563–577, (1987)

[14] K. Coulembier, The periplectic Brauer algebra, Proc. Lond. Math. Soc. (3) 117 no. 3, 441–

482, (2018)
[15] K. Coulembier and M. Ehrig, The periplectic Brauer algebra II: decomposition multiplicities,

J. Comb. Algebra 2 no. 1, 19–46, (2018)

[16] Z. Daugherty, A. Ram and R. Virk, Affine and degenerate affine BMW algebras: actions
on tensor space, Selecta Math. (N.S.) 19 no. 2, 611–653 (2013)

[17] Z. Daugherty, A. Ram and R. Virk, Affine and degenerate affine BMW algebras: the center,

Osaka J. Math. 51 no. 1, 257–283, (2014)
[18] V. Drinfeld, Degenerate affine Hecke algebras and Yangians, Funct. Anal. Appl. 20, 56–58

(1986)

[19] M. Ehrig and C. Stroppel, Nazarov-Wenzl algebras, coideal subalgebras and categorified skew
Howe duality, Adv. Math. 331, 58–142, (2018)

[20] M. Ehrig and C. Stroppel, Schur-Weyl duality for the Brauer algebra and the ortho-
symplectic Lie superalgebra, Math. Z. 284 no. 1-2, 595–613 (2016)

[21] M. Gorelik, The center of a simple p-type Lie superalgebra, J. Algebra 246, 414–428 (2001)
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