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Introduction

In this thesis we will study the type D arc algebras DΛ. These algebras describe in a quite ex-
plicit and elementary way important categories arising in classical and geometric representation
theory, as well as in 2-representation theory.
The algebras DΛ are a type D version of the type A arc algebras KΛ, which ultimately go back
to a construction by Khovanov [Kho]. The original algebras HΛ constructed by Khovanov are
of a topological nature; they were used to categorify the Jones polynomial.
The type A arc algebras KΛ are quasi-hereditary covers of the algebras HΛ. They were first
introduced in [CK], and in [S], it was shown that the category of finite-dimensional KΛ-modules
(for some datum Λ) is equivalent to the category of perverse sheaves (constructible with respect
to the Schubert stratification) on the Grassmannian Gr(m,m+ n) of m-dimensional subspaces
of an (m+n)-dimensional complex vector space. This category is known to be equivalent to the
principal block of the parabolic category Op

0(gl(m+ n)).
In a series of four articles, Brundan and Stroppel studied the algebras KΛ and their repres-
entation theory in detail. They directly proved some properties of these algebras that before
were only known via the connection to geometry: most notably the fact that the algebras KΛ

are Koszul [BS2, Theorem 5.6] in the sense of [BGS]. They also connect these algebras to the
representation theory of the general linear supergroups GL(m|n), see [BS4].
The type D arc algebras DΛ were introduced by Ehrig and Stroppel in [ES1]. The construction
is quite similar to the construction of the type A arc algebras as described in [BS1]. In [ES1,
Section 9], it is proven that the category of finite-dimensional DΛ-modules is equivalent to the
category of perverse sheaves on the isotropic Grassmannian of type Dn (constructible with re-
spect to the Schubert stratification). This category is also equivalent to the principal block of
the parabolic category Op

0(so(2n)), where p is a maximal parabolic subalgebra of type A.
Similar to the type A case, the algebras DΛ also describe the category of finite-dimensional
representations of the Lie supergroups OSp(m|2n); see [ES3], [CH] for more details.
The goal of this thesis is to explicitly study the algebras DΛ and their representation theory, in
a similar fashion to what Brundan and Stroppel did for the type A arc algebras in [BS1] and
[BS2]. Although our results are very similar to the type A case, the proofs are quite different at
several places.
One word of caution: the roles of the type A en type D arc algebras in 2-representation theory
are quite different. The type A arc algebras categorify modules for the type A quantum groups
Uq(sln), so they are cyclotomic quotients of the type A Khovanov-Lauda-Rouquier algebras,
which categorify U−q (sln); see [KhoLau] and [Web]. In contrast, the type D arc algebras DΛ do
not categorify modules for type D quantum groups Uq(so2n); they instead categorify modules
for certain coideal subalgebras of Uq(gl2n), also called quantum symmetric pairs, see [ES4] or
[BSWW]. In particular this means that our algebras DΛ are not related to type D KLR algebras.

An overview of the most important results of this thesis.
The main result of this thesis is the following theorem:

Theorem 4.3.3. The algebras DΛ are Koszul algebras in the sense of [BGS].

This result follows indirectly from the perverse sheaves description and [BGS, Theorem 1.4.2],
but we will give a direct combinatorial proof without passing through geometry. We will use
the fact that the algebras DΛ are graded quasi-hereditary, hence it suffices to prove that its
standard modules have linear projective resolutions. This Koszulity criterion (Theorem 3.2.2)
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was already proven in [ADL, Theorem 1.4], but we will provide a different proof which is easier
and better adapted to our graded framework.
A second major goal of this thesis is a combinatorial study of the so-called dual Kazhdan–
Lusztig polynomials pλ,µ(q) (λ, µ ∈ Λ) in type D. These are in fact very closely related to the
(geometric) Kazhdan–Lusztig polynomials associated to Grassmannians in the sense of [KL],
but we will just define them as the decomposition numbers of the Koszul dual algebra of DΛ.
Two explicit combinatorial formulas of the dual Kazhdan–Lusztig polynomials will be proved
(see below for an explanation of the notation used):

Theorem 5.2.8. The dual Kazhdan–Lusztig polynomial pλ,µ(q) can be computed by counting
paths from λ to µ, in the sense of Definition 5.2.4.

Theorem 5.3.4. The dual Kazhdan–Lusztig polynomial pλ,µ(q) can be computed by counting
λ-labellings of µµ, in the sense of Definition 5.3.1.

We note that this last theorem agrees with the closed formula for the Kazhdan–Lusztig poly-
nomials discovered by Lascoux and Schützenberger [LS]. Although the above theorems will be
proved independently, one can in fact directly construct a bijection{

paths from
λ to µ

}
1:1←→
{
λ-labellings

of µµ

}
.

This will be done in Subsection 5.4.
In the final part of this thesis, we will study an interesting subalgebra HΛ of DΛ, which is in
fact more closely related to Khovanov’s original construction. We will we explicitly show that
the algebras HΛ are symmetric by giving an explicit symmetric form (see Section 6 for a more
precise statement):

Theorem 6.2.5. One can explicitly define a symmetrizing form τ : HΛ → k on HΛ, making HΛ

into a symmetric algebra.

The contents of this thesis in a nutshell.
The first section is devoted to recalling the construction of the algebras DΛ, following [ES1].
Here Λ will a certain set (called block) of so-called combinatorial weights. To each such block,
one can associate a set BΛ of circle diagrams. The algebra DΛ is then the vector space spanned
by BΛ, together with a multiplication defined via certain surgery procedures.
In the second section, we recall the definitions and some properties of cellular and quasi-
hereditary algebras. We review the cellular and quasi-hereditary structure of DΛ, as discussed in
[ES1]. In particular, for each weight λ ∈ Λ, we have a simple module L(λ), a standard module
V (λ), and a projective module P (λ). These three classes of modules interact in a well-behaved
way. We also mention how to compute the decomposition numbers dλ,µ(q). Theses describe
the graded composition factors of the standard modules V (µ), as well as the subquotients in a
graded filtration of a projective module P (λ) by standard modules.
In the third section, we recall the notion of a Koszul algebra. The main result of this section is
the Koszulity criterion 3.2.2 mentioned before.
The fourth section is devoted to the proof of Theorems 4.3.2 and 4.3.3 (our main theorem).
Our proof is based on the proof for a similar result in type A, see [BS2, Theorem 5.6]. It will
make use of so-called geometric bimodules and projective functors. We note that the Koszulity
criterion from Theorem 3.2.2 will play an essential role in the proof.
In the fifth section we discuss the dual Kazhdan–Lusztig polynomials pλ,µ(q), where λ, µ ∈ Λ.
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These can be described as the decomposition numbers of the Koszul dual algebra of DΛ. They
also describe projective resolutions of standard modules. Various explicit combinatorial descrip-
tions of the dual Kazhdan–Lusztig polynomials are given (see above). As an application we give
a combinatorial classification of the so-called Kostant weights.
In the last section we turn our attention to the subalgebra HΛ of DΛ.The algebra HΛ is no longer
quasi-hereditary or Koszul, but it is still cellular. Moreover, HΛ is a symmetric algebra. We give
a prove of this fact by explicitly writing down a symmetrizing form.
Recently, Ehrig, Tubbenhauer and Wilbert [ETW] defined a sign-adjusted version of the type
D arc algebra, which we will denote by DΛ. Their construction of DΛ is based on a topological
approach using certain (singular) TQFTs. The sign-adjusted version can be easier in practice.
We discuss this sign-adjusted version in the appendix. In particular, we introduce the subalgebra
HΛ, and discuss its symmetric structure.
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many helpful comments and discussions. I would also like to thank Daniel Tubbenhauer for his
helpful comments and discussion. Finally, I would like to thank my parents for their interest
and support, even if I had difficulties explaining them what all of this is about.
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0 Notations and conventions

The set of non-negative integers will be denoted N = {0, 1, 2, . . .}. The positive integers will be
denoted by Z>0 = {1, 2, . . .}.
We will always work over a fixed base field k. For simplicity we will always assume k is algebra-
ically closed and of characteristic 0, although many of the results in this work are true for more
general base fields (or even rings).
We will often be working with positively graded algebras. For us, a positively graded algebra
is a Z-graded k-algebra A =

⊕
i∈ZAi such that Ai = 0 for i < 0, and A0 is semisimple. In

practice, we will always assume that A0
∼= k × k × . . . × k. If now A is a finite-dimensional

positively graded algebra, then the category of finite-dimensional graded left A-modules will be
denoted by A-gmod. For M =

⊕
i∈ZMi ∈ A-gmod and d ∈ Z, the degree shift M〈d〉 is defined

by M〈d〉i = Mi−d (i.e. we “shift upwards”). For M,N ∈ A-gmod, HomA(M,N) will denote
the space of degree-preserving homomorphisms. The graded A-module consisting of all degree-
homogeneous homomorphisms will be denoted by HOMA(M,N) =

⊕
i∈Z HomA(M〈i〉, N). (So

HOMA(M,N)i = HomA(M〈i〉, N).) Similar for the ext-groups ExtiA(M,N) and EXTi
A(M,N).
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1 Definition of the type D arc algebra

In this first section, we will introduce our main object of study: the type D arc algebras DΛ, as
defined in [ES1]. The elements of DΛ are linear combinations of circle diagrams. In Subsections
1.1 and 1.2, we will define these circle diagrams, and in Subsection 1.3 we will describe how to
define an algebra structure on the vector space DΛ spanned by a certain set of circle diagrams,
depending on the datum Λ.

1.1 Weights and blocks

Circle diagrams will be obtained by stacking a cup diagram, a weight, and a cap diagram. In
this subsection we will introduce weights, the next one will be devoted to cup and cap diagrams,
and circle diagrams. We will study the combinatorics of weights in quite some detail, because
we will need this later in Section 5. A lot of this subsection could be postponed until later; only
Definitions 1.1.1 and 1.1.2 and Lemma 1.1.4 will be essential for the definition of the algebra
DΛ.

Definition 1.1.1. • A weight is a finite sequence of the symbols ∧ (“up”) and ∨ (“down”);
the size of a weight is the number of symbols used.

• We define an equivalence relation on the set of all weights. The equivalence classes are
called blocks. By definition, two weights belong to the same block if and only if they have
the same size, and the parity of the number of ∨’s is the same.

Note that a block is uniquely defined by a pair (n, l) ∈ N × Z/2Z, where n is the size of all its
elements, and l ∈ {0, 1} = Z/2Z the parity of the number of ∨’s. We will denote this block by
Λln. A block whose elements have size n will be called an n-block.

Definition 1.1.2. We say that a weight µ is obtained from a weight λ by a Bruhat move, if one
of the following holds

• λ has a pair of neighbouring labels ∨∧ (say at positions i, i + 1), and µ is obtained by
replacing these by ∧∨. We will refer to this as a type A move, applied at position i.

• The first 2 labels of λ are ∧∧, and µ is obtained by replacing these by ∨∨. We will refer
to this as a type D move (necessarily applied at position 1).

So in an n-block, there are potentially n different Bruhat moves available: type A moves at
position 1, 2, . . . , n− 1, and a type D move at position 1.
We will write λ ≤ µ if there is a sequence of Bruhat moves starting in λ and ending in µ. Note
that λ ≤ µ implies that λ and µ belong to the same block.

Example 1.1.3. Let λ = ∧ ∧ ∧∧ and µ = ∧ ∨ ∧∨. Then λ, µ ∈ Λ0
4, and λ ≤ µ since there is a

sequence of Bruhat moves

∧ ∧ ∧∧ → ∨ ∨ ∧∧ → ∨ ∧ ∨∧ → ∨ ∧ ∧∨ → ∧ ∨ ∧ ∨ .

Lemma 1.1.4. The relation ≤ defines a partial order on every block Λ, called Bruhat order.
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Proof. Reflexivity and transitivity are immediate from the definition.
For symmetry: observe that if λ ≤ µ and µ ≤ λ, we get a sequence of Bruhat moves which
starts in λ, passes through µ, and ends in λ. But the only sequence of Bruhat moves from λ to
itself is the empty sequence: this is easily seen from the consideration that a Bruhat move will
always increase the number of ∨’s or move ∨’s to the right, and can never decrease the number
of ∨’s or move ∨’s to the left. So it must hold that λ = µ.

So λ ≤ µ means that µ has more ∨’s than λ, and that the ∨’s in µ are further to the right than
those in λ. We will make this more formal in what follows.

Definition 1.1.5. Let λ and µ be two weights, belonging the same n-block Λ. Suppose λ has
m symbols ∨ and µ has m+ 2k symbols ∨.
For i = 1, 2, · · · , n, we define

`i(λ, µ) :=2k + |{j ≤ i s.t. λj = ∨}| − |{j ≤ i s.t. µj = ∨}|
=|{j > i s.t. µj = ∨}| − |{j > i s.t. λj = ∨}|.

In particular: `n(λ, µ) = 0 and `0(λ, µ) := 2k.
The number `(λ, µ) :=

∑n
i=1 `i(λ, µ) will be called the distance from λ to µ. Note that this sum

does not contain `0(λ, µ).

The following lemma, which follows immediately from the definition, is quite useful when writing
down the numbers `i(λ, µ) in practice:

Lemma 1.1.6. For i = 1, 2, · · · , n, it holds that

`i(λ, µ)− `i−1(λ, µ) =


1, if λi = ∨ and µi = ∧,

0, if λi = µi,

−1, if λi = ∧ and µi = ∨.

Example 1.1.7. Let λ and µ be as in Example 1.1.3. Then `0(λ, µ) = 2 , `1(λ, µ) = 2,
`2(λ, µ) = 1, `3(λ, µ) = 1, `4(λ, µ) = 0. So `(λ, µ) = 2 + 1 + 1 + 0 = 4.

It is clear from the definition that applying a Bruhat move (of type A or D) to λ at position
i will decrease `i(λ, µ) by 1 and leave all other `j(λ, µ), j 6= i, j > 0 invariant. Since λ = µ if
and only if all `i(λ, µ) (i > 0) are 0, we deduce that if λ ≤ µ, it must hold that all `i(λ, µ) are
non-negative. (The converse also holds: see Proposition 1.1.8.)
Moreover, if λ ≤ µ, any sequence of Bruhat moves from λ to µ must contain, for each index
i > 0, exactly `i(λ, µ) moves applied at position i. In particular, the total number of moves in
such a sequence is `(λ, µ).
The moves applied at position 1 can be either of type A or of type D. Our sequence needs to
contain exactly k type D moves (where 2k = `0(λ, µ) is the difference in number of ∨’s in µ
and λ), hence exactly `1(λ, µ)− k type A moves applied at position 1. So a sequence of Bruhat
moves from λ to µ is unique up to a reordering of the moves.
We will now use the numbers `j(λ, µ) to formulate a criterion when λ ≤ µ:

Proposition 1.1.8. For two weights λ, µ belonging to the same block Λ, we have that λ ≤ µ if
and only if all numbers `i(λ, µ) (i > 0) are non-negative.
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Proof. The “only if” implication was already proven. So it suffices to prove that if all numbers
`i(λ, µ) are non-negative, there is a sequence of Bruhat moves from λ to µ. We will prove this
by induction on `(λ, µ).
If `(λ, µ) = 0, then for all i, `i(λ, µ) = 0, so λ = µ. So suppose `(λ, µ) > 0.
Let j be the rightmost index (if it exists) for which λj = ∨ and `j(λ, µ) > 0. Then λj+1 = ∧,
since if λj+1 = ∨, `j+1(λ, µ) − `j(λ, µ) ≥ 0 by definition of `j , so that `j+1(λ, µ) > 0 and we
get a contradiction with the maximality of j. Now we can apply a type A Bruhat move to λ at
position j to obtain a λ′ for which `j(λ

′, µ) = `j(λ, µ) − 1 and `i(λ
′, µ) = `i(λ, µ) for all i 6= j.

By the induction hypothesis there is a sequence of Bruhat moves from λ′ to µ and we are done.
We still have to deal with the case where an index j as above doesn’t exist. Note that in this
case `0(λ, µ) = 2k > 0:
Suppose on the contrary that `0(λ, µ) = 0, i.e. λ and µ have the same number of ∨’s. Then since
λ 6= µ, there is an index l for which λl = ∨ and µl = ∧. But then `l(λ, µ) = `l−1(λ, µ) + 1 > 0,
contradicting our assumption that there is no j with λj = ∨ and `j(λ, µ) > 0.
Since 2k > 0, in order for our assumption to hold, we must have that λ1 = λ2 = ∧. Moreover,
`1(λ, µ) > 0. So we can apply a type D Bruhat move to λ at position 1 to obtain a λ′ for which
`1(λ′, µ) = `1(λ, µ) − 1 and `i(λ

′, µ) = `i(λ, µ) for all i > 1. By the induction hypothesis there
is a sequence of Bruhat moves from λ′ to µ and we are done.

The above proof constructs a particular sequence of Bruhat moves from λ to µ, which we will call
the canonical sequence. Intuitively, the canonical sequence is obtained by applying successively
type A and type D moves as follows: If a type A move is possible then apply it to the rightmost
index where it can be applied and otherwise apply a type D move.
For example, the sequence from Example 1.1.3 is the canonical sequence from λ to µ.

1.2 Cup diagrams, cap diagrams, and circle diagrams

Denote by R− the semi-infinite strip R≥0 × [−1
2 , 0].

Definition 1.2.1. • A cup is a non-selfintersecting curve γ in R− whose endpoints are 2
distinct points on Z>0 × {0}, with all other points of γ lying in R≥0 × (−1

2 , 0).

• A ray is a non-selfintersecting curve γ in R− with one endpoint on Z>0 × {0}, the other
endpoint on R≥0 × {−1

2}, and all other points in R≥0 × (−1
2 , 0).

• An undecorated cup diagram c is a finite union of pairwise nonintersecting cups and rays,
such that c ∩ (R≥0 × {0}) = {1, 2, . . . , n} for some n ∈ N. This n will be called the size
of the cup diagram. Two undecorated cup diagrams are equal if their partitioning of the
vertices into subsets given by the incidence relation on cups and rays agree. (That is two
diagrams are the same if the cups connect the same points, regardless of the precise shape).

• A decorated cup diagram is an undecorated cup diagram c = γ1, · · · , γn, together with a
map (called decoration) from c to {0, 1}. Arcs that are mapped to 1 are called dotted, the
other arcs are called undotted.

• A decorated cup diagram is called admissible, if any point of every dotted arc can be
connected with the left boundary of R− by a path not intersecting any other arc.
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Example 1.2.2. The following figure shows two decorated cup diagrams of size 7, with one
dotted cup and 2 undotted cups. The left one is admissible, while the right one is not.

Remark 1.2.3. Observe that a decorated cup diagram is admissible if and only if the following
do not occur:

• A dotted cup nested inside another cup.

• A dotted cup or dotted ray to the right of a ray.

From now on, we will only consider admissible decorated cup diagrams. We will refer to them
simply as cup diagrams.

Definition 1.2.4. An oriented cup diagram cλ is a cup diagram c drawn under a weight λ of
the same size, such that every arc looks like one of the following figures:

(1.1)

A cup in an oriented cup diagram is called clockwise if the symbol at the right end is ∨, and
counterclockwise if the symbol at the right end is ∧. The degree of an oriented cup diagram is
the number of clockwise cups.

Proposition 1.2.5. • For every cup diagram c, there is a unique weight λ such that cλ is
an oriented cup diagram of degree 0.

• For any weight λ, there is a unique cup diagram, which we will denote by λ, such that λλ
is an oriented cup diagram of (minimal possible) degree 0.

Hence, there is a 1-1 correspondence

{weights} ←→ {cup diagrams},
λ 7−→ λ.

Proof. The first claim follows immediately from Definition 1.2.4: every ray has a unique possible
orientation, and every cup has a unique counterclockwise orientation.
For the second claim, given the weight λ, we define λ by the following procedure:

1. First connect neighboured vertices (ignoring already joint vertices) labelled ∨∧ successively
by an undotted cup as long as possible.

2. Attach to each remaining ∨ a vertical undotted ray.

3. Connect from left to right neighboured pairs ∧∧ by a dotted cup.

4. If a single ∧ remains, attach a vertical dotted ray.

10



It follows immediately from the construction that λ is an admissible cup diagram, and that λλ
is oriented of degree 0. To check uniqueness, we go through the above procedure again and see
that in every step we had no other choice:

1. If we have neighbours ∨∧ and we don’t connect them with a cup, then the ∨ has to be
either the left endpoint of a “bigger” cup, or the endpoint of an (undotted) ray. Then ∧
has to be the endpoint of a dotted cup or dotted ray, but then admissibility is violated.

2. Each remaining ∨ has to be either the left endpoint of an undotted cup, or the endpoint
of an undotted ray. But the first case is no longer possible.

3,4. Now there are only ∧’s remaining, and they all need to be connected via dotted cups or
rays. Clearly there is only one way to do this without violating admissibility.

If λµ is an oriented cup diagram, we write λ ⊂ µ. This is related to the Bruhat order in the
following way:

Lemma 1.2.6 ([ES1, Lemma 3.17]). If λ ⊂ µ, then λ ≤ µ in the Bruhat order.

Proof. If λ ⊂ µ, then µ is obtained from λµ is obtained from λλ by choosing some cups and
reversing their orientations from counterclockwise to clockwise. Since this will only create new
∨’s and/or move ∨’s to the right, it easily follows that λ ≤ µ.

Analoguously to cup diagrams, we can also introduce cap diagrams:

Definition 1.2.7. • A cap diagram b is a diagram, contained in the semi-infinite strip R≥0×
[0, 1

2 ], obtained by reflecting a cup diagram a around the x-axis. In this case we write b = a∗

and a = b∗.

• An oriented cap diagram λb is a cap diagram b drawn over a weight λ of the same size,
such that b∗λ is an oriented cup diagram.

• The degree of an oriented cap diagram is defined by deg(λa∗) := deg(aλ).

In other words a diagram µb, with µ a weight and b a cap diagram, is an oriented cap diagram
if and only every cap and ray looks like one of the following:

(1.2)

A cap is called counterclockwise if its rightmost symbol is ∧, and clockwise if its rightmost
symbol is ∨. Then the degree of an oriented cap diagram is the number of clockwise caps. The
cap diagram µ∗ will be denoted by µ. As before, we have that µ is the unique cap diagram
making µµ into an oriented cap diagram of degree 0.
For the rest of this section, we fix a block Λ.

Definition 1.2.8. • An unoriented circle diagram belonging to Λ is a pair λν, with λ, ν ∈ Λ.

• An oriented circle diagram belonging to Λ is a triple λµν (λ, µ, ν ∈ Λ) such that λµ is an
oriented cup diagram and µν is an oriented cap diagram.
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• The degree of an oriented circle diagram is defined as deg(λµν) := deg(λµ) + deg(µν). In
other words, the degree is the number of clockwise cups plus the number of clockwise caps.

Example 1.2.9. The diagram

λµν = ∨ ∧ ∨ ∨

is an oriented circle diagram, with λ = ∧ ∨ ∧∧, µ = ∨ ∧ ∨∨, and ν = ∨ ∧ ∧∧.
The degree of λµν is 3.

Definition 1.2.10. • We will denote the set of oriented circle diagrams belonging to Λ by
BΛ. For fixed λ, ν ∈ Λ the subset of circle diagrams of the form λµν will be denoted by

λ(BΛ)ν .

• A closed arc in a circle diagram will be called a circle. For C a circle in some oriented circle
diagram λµν, the tag of C, denoted t(C), is the index of the rightmost symbol of µ lying
on the circle. If this symbol is ∧, we say that the circle C is oriented counterclockwise; if
it is ∨, C is oriented clockwise.

• A non-closed arc in a circle diagram (i.e. one that intersects the boundary of the strip
R× [−1

2 ,
1
2 ]) will be called a line. A line is called propagating is one endpoint is at the top

of the strip and the other is at the bottom.

Remark 1.2.11. For n ∈ N and l ∈ Z/2Z, we can define the closure map

cl : BΛln
→ BΛln+1

λµν 7→ cl(λ) cl(µ)cl(µ)

where for λ ∈ Λ, cl(λ) is obtained by adding a ∧ to the right of λ.
For example

∨ ∨ ∧
cl7−→ ∨ ∨ ∧ ∧

This closure map will “close”’ the rightmost line of λµν into a circle (or create a new line if λµν
has no lines), and leave all other arcs unchanged. Note also that cl preserves the degree.
By iterating, we get closure maps clk : BΛln

→ BΛln+k
. We can always find a k such that clk(λµν)

has only circles and no lines (for example k = n).

Note that a small circle (this is a circle consisting of only 1 cap and 1 cup) contributes 0 to the
degree if it’s oriented counterclockwise, and 2 if it’s oriented clockwise.
We can also describe how much larger circles contribute to the degree.

Proposition 1.2.12 ([ES1, Proposition 4.9]). Let C be a circle in some circle diagram λµν.
Clearly, there is an s ∈ N such that C contains s cups, s caps and 2s symbols of µ.

1. If C is oriented counterclockwise, it contains exactly s + 1 counterclockwise and s − 1
clockwise cups/caps. Hence the contribution of C to the degree of λµν is s− 1.
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2. If C is oriented clockwise, it contains exactly s − 1 counterclockwise and s + 1 clockwise
cups/caps. Hence the contribution of C to the degree of λµν is s+ 1.

We can make a similar statement about lines:

Proposition 1.2.13. Let L be a line in some circle diagram aµb. Let cups(L) resp. caps(L)
denote the number of cups resp. caps in L.

1. If L is propagating, cups(L) = caps(L), and the contribution of L to the degree of aµb
equals cups(L).

2. If L is not propagating and its 2 endpoints are in a, then caps(L) = cups(L) + 1, and the
contribution of L to the degree of aµb equals caps(L).

3. If L is not propagating and its 2 endpoints are in b, then cups(L) = caps(L) + 1, and the
contribution of L to the degree of aµb equals cups(L).

Proof. Apply the closure map clk from Remark 1.2.11 for some large enough k. Then L becomes
a counterclockwise circle cl(L), whose contribution to the degree is the same as that of L. If L
is propagating, then cl(L) has one more cup and one more cap than L. If L is not propagating
and its 2 endpoints are in a, then cl(L) has two more cups and one more cap than L. If L is
not propagating and its 2 endpoints are in b, then cl(L) has one more cup and two more caps
than L. In each case, the result follows from Proposition 1.2.12.

We say that an unoriented circle diagram λν (λ, ν ∈ Λ) is orientable if there is a µ ∈ Λ such
that λµν is an oriented circle diagram. In this case we call µ an orientation of λν.

Lemma 1.2.14 ([ES1, Proposition 4.8]). Let λ, ν ∈ Λ. Then the following holds:

1. The circle diagram λν is orientable if and only if the number of dots is even on each of its
circles and its propagating lines, and odd on each of its non-propagating lines.

2. In this case there are exactly 2c possible orientations, where c is the number of circles. They
are obtained by choosing for each of the circles one out of its two possible orientations and
for each ray the unique possible orientation.

Definition 1.2.15. We define DΛ to be the k-vector space with basis BΛ.

In the next section we will explain how to define a multiplication on DΛ, making it a positively
graded algebra.

1.3 The multiplication in DΛ

For the remainder of this section, unless stated otherwise, we will work with a fixed n-block Λ.
As before, let DΛ be the k-vector space with basis given by the set BΛ of oriented circle diagrams.
Then DΛ can be given the structure of a positively graded associative unital algebra. In this
subsection we will give a quick description how the multiplication in this algebra is defined; we
refer to [ES1] for more details and proofs.
The vector subspace of DΛ with basis λ(BΛ)ν will be denoted λ(DΛ)ν .
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Definition 1.3.1. Let λ, ν ∈ Λ and assume that the circle diagram λν can be oriented. Then
Iλν is defined to be the ideal in k[Xi|1 ≤ i ≤ n] generated by:

• X2
i for all 1 ≤ i ≤ n.

• Xi +Xj , if i, j are connected by an undotted cup or cap.

• Xi −Xj , if i, j are connected by a dotted cup or cap.

• Xi, if i is the endpoint of a ray.

Define the vector space M(λµ) := k[Xi|1 ≤ i ≤ n]/Iλν .

Proposition 1.3.2 ([ES1, Proposition 4.5]). There is an isomorphism of vector spaces

Ψλν : λ(DΛ)ν
∼−→ M(λν),

λµν 7−→
∏

C∈Cclock(λµν)

Xt(C),

where Cclock(λµν) is the set of clockwise oriented circles in λµν, and t(C) is the tag of C, as
defined in Definition 1.2.10.

By Proposition 1.3.2, one can think of M(λµ) as the vector space spanned by the possible
orientations of the unoriented circle diagram λµ.

Example 1.3.3. For the circle diagram

λµν = ∨ ∧ ∨ ∨

from Example 1.2.9, we have that

Ψλν(λµν) = X4 = X3 = −X2 = X1

Definition 1.3.4. Suppose we are given two circle diagrams ab and b∗c. We can draw the second
diagram above the first one, and remove all the dots on the rays of b and b∗ giving a stacked
circle diagram atc. (Here t is the crossingless matching obtained by drawing the cap diagram b
under the cup diagram b∗; see Definitions 4.1.1 and 4.1.3 for a precise definition of crossingless
matching and stacked circle diagram.) Applying a surgery to atc consists of replacing a matching
cup-cap pair in t by 2 vertical lines as in the following figure:

,

Note that the resulting stacked circle diagram at′c might no longer be admissible. (As before,
a crossingless matching t′ is called admissible if every dotted cup or cap in it can be connected
to the left side of the diagram by a path not intersecting any cups, caps, or lines. See also
Definition 4.1.1.)
A surgery will either decrease the number of connected components by 1, decrease it by 1, or
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keep it the same. We will refer to these respective cases as merge, split and reconnect. Note
that a reconnect can only happen if all components involved in the surgery are lines.
We now fix a surgery procedure from (ab, b∗c) to ac: this is a sequence of surgery moves starting
from atc and ending in aec, where e denotes the crossingless matching consisting of only vertical
lines. We require every intermediate diagram in our surgery procedure to be admissible.
We will now define a map χ′ : k[Xi|1 ≤ i ≤ n] ⊗ k[Xi|1 ≤ i ≤ n] → k[Xi|1 ≤ i ≤ n] associated
to our surgery procedure. To obtain the image of f ⊗ g ∈ k[Xi|1 ≤ i ≤ n] ⊗ k[Xi|1 ≤ i ≤ n],
apply the following inductive algorithm:

1. Start by putting y = f · g ∈ k[Xi|1 ≤ i ≤ n].

2. For each surgery in the surgery procedure, consult the following table:

Merge: leave y as it is,
Split: multiply y with

i j

(−1)i(Xj −Xi), if

i j

(−1)i(Xj +Xi), if

Reconnect: if the two lines (before the surgery) are
propagating, and the resulting diagram
is orientable, then leave y as it is.
Else multiply y by 0.

3. We define χ′(f ⊗ g) to be equal to the resulting y.

One can show (see [ES1, Section 5]) that this map χ′ : k[Xi|1 ≤ i ≤ n] ⊗ k[Xi|1 ≤ i ≤ n] →
k[Xi|1 ≤ i ≤ n] descends to a map χ :M(ab)⊗M(b∗c)→M(ac), and that this map χ doesn’t
depend on our chosen surgery procedure. We will from now on write χab,b∗c :M(ab)⊗M(b∗c)→
M(ac).

Now we are ready to define the multiplication on DΛ:

Definition 1.3.5. Consider the composition

Φλνν′ : λ(DΛ)ν ⊗ ν(DΛ)ν′
Ψλν⊗Ψ

νν′−−−−−−→M(λν)⊗M(νν ′)
χ
λν,νν′−−−−→M(λν ′)

(Ψ
λν′ )

−1

−−−−−−→ λ(DΛ)ν′

where the second map is the map defined above.
For two basis vectors λµν and λ′µ′ν ′ of DΛ, we define their product as follows:

(λµν) · (λ′µ′ν ′) =

{
Φλνν′((λµν)⊗ (λ′µ′ν ′)), if ν = λ′,

0, else.

Fact 1.3.6 ([ES1, Theorem 6.2]). Extending the above product bilinearly to DΛ equips DΛ with
the structure of an associative unital graded algebra, where the grading is the one defined in
Definition 1.2.10.
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Example 1.3.7. Suppose we want to compute the product (λµν) · (λ′µ′ν ′), where

λµν = ∨ ∧ ∨ ∨ and λ′µ′ν ′ = ∧ ∨ ∧ ∧

(Note that λ′ = ν.)
First we compute Ψλν(λµν) = X4 ∈M(λν) and Ψλ′ν′(λ

′µ′ν ′) = 1 ∈M(λ′ν ′).

Next we need to compute χ(X4 ⊗ 1). Using the following surgery procedure

Merge Split

·(−1)(X2−X1)

we find that χ(X4 ⊗ 1) = X4(X1 − X2) = X4(X4 + X3) = X3X4 ∈ M(λν ′). (Note that it is
not allowed to do perform the surgeries in a different order, since then the intermediate diagram
would not be admissible.)
Finally, we find that

(λµν) · (λ′µ′ν ′) = Ψ−1
λν′

(X3X4)

= ∨ ∨∧ ∨

= λµλ

Note that deg(λµν) = 3, deg(λ′µ′ν ′) = 1, and deg((λµν) · (λ′µ′ν ′)) = 4 = 3 + 1.

See [ES1, Section 6] for more examples.

Remark 1.3.8. Recently, Ehrig, Tubbenhauer and Wilbert [ETW] introduced a “sign-adjusted
version” of the multiplication rule. See Appendix A for a discussion of this sign-adjusted algebra.

1.4 Some properties of the algebra DΛ

Proposition 1.4.1. The degree 0 basis elements eλ := λλλ form a complete set of pairwise
orthogonal primitive idempotents for DΛ.
Moreover,

eλ′ · (λµν) =

{
λµν, if λ = λ′,

0, otherwise,
and (λµν) · eν′ =

{
λµν, if ν = ν ′,

0, otherwise.

Proof. Follows from the multiplication rules, see also [ES1, Theorem 6.2.].

Proposition 1.4.2. The assignment λµν 7→ νµλ on the basis BΛ defines a graded algebra
anti-automorphism ∗ : DΛ → Dop

Λ .
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Proof. It is trivial that ∗ is an isomorphism of graded vector spaces. The fact that it is an
algebra map follows easily from the definition of the multiplication. See also [ES1, Corollary
6.4].

Intuitively, the map ∗ applied to an oriented circle diagram aµb flips the unoriented circle diagram
ab upside down, while keeping the weight µ unchanged.
Recall that for every n ∈ N, there are two n-blocks Λ0

n and Λ1
n; namely Λ0

n (resp. Λ1
n) consists

of all weights of size n with an even (resp. odd) number of ∨’s. It turns out that the algebras
D

Λ0
k

and D
Λ1
k

are isomorphic:

Proposition 1.4.3. Let Λ be a block, and let Λ′ be the block whose elements have the same size
but opposite parity of ∨’s. Then there is an isomorphism of graded algebras f : DΛ → DΛ′, where
f(aλb) is the circle diagram obtained from aλb by flipping the first symbol of λ, and changing in
a and b the decoration of the cup/cap/ray incident with the first symbol.

Proof. It is easy to see that f is an isomorphism of vector spaces (note that the cup/cap/ray
incident with the first symbol of λ can always be connected to the left side of the diagram, so
that we don’t get any issues with admissibility), and that it preserves the grading. So we only
need to check that f is compatible with the multiplication.
For λ ∈ Λ, let λ′ ∈ Λ′ denote the weight obtained by flipping the first symbol. Note that λ′ is
obtained from λ by changing the decoration of the cap/ray incident with the first symbol.
Recalling Definition 1.3.1, there is an isomorphism of vector spaces g : M(λµ) → M(λ′µ′)
sending X1 to −X1 and Xi to Xi for all i > 1. Now we will check that in the following diagram,
all squares commute:

λ(DΛ)µ ⊗ µ(DΛ)ν M(λµ)⊗M(µν) M(λν) λ(DΛ)ν

λ′(DΛ)µ′ ⊗ µ′(DΛ)ν′ M(λ′µ′)⊗M(µ′ν ′) M(λ′ν ′) λ′(DΛ)ν′

Ψλµ⊗Ψµν

f⊗f

χλµ,µν

g⊗g

Ψ−1
λν

g f
Ψ
λ′µ′⊗Ψ

µ′ν′ χ
λ′µ′,µ′ν′ Ψ−1

λ′ν′

Indeed: To see that the first and last squares commute, just note that the first vertex can never
be the tag of any circle.
Now we need to check that the second square commutes. Start by writing p⊗q ∈M(λµ)⊗M(µν)
without any X1’s. We compute χ(p⊗ q) and χ(g(p)⊗ g(q)) using the same surgery procedure.
If no X1 shows up in the surgery procedure, then clearly g(χ(p ⊗ q)) = χ(g(p) ⊗ g(q)). Now
we note that a factor X1 only shows up in the procedure in case the surgery involving the first
vertex is a split, and in this case the signs of this factor X1 in χ(p⊗ q) and χ(g(p)⊗ g(q)) will
be different, since in the one case we have a dotted split and in the other case an undotted split.
So also in this case g(χ(p⊗ q)) = χ(g(p)⊗ g(q)).
So f is indeed compatible with the multiplication.

The following theorem will imply that DΛ is a cellular algebra, see Subsection 2.2.

Theorem 1.4.4 ([ES1, Theorem 7.1]). Let (aλb) and (cµd) be basis vectors of DΛ. Then

(aλb)(cµd) =


0, if b 6= c∗,
saλb(µ)(aµd) + (†), if b = c∗ and aµ is oriented,
(†), otherwise,

where
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1. (†) denotes a linear combination of basis vectors from BΛ of the form (aνd) for ν > µ.

2. The scalar saλb(µ) ∈ {0, 1,−1} depends on aλb and µ but not on d.

In particular, the above theorem will allow us to define naturally a family of DΛ-modules, called
cell modules or standard modules. The fact that saλb(µ) does not depend on d will be essential
for this.

Remark 1.4.5. As noted in [ES1, Remark 7.6], it holds that saλλ(λ) = 1. So we find that
(aλλ) · (λλd) = (aλd): the additional terms (†) vanish for degree reasons.

Corollary 1.4.6 ([ES1, Corollary 7.2]). A product (aλb)(cµd) of two basis vectors is a linear
combination of basis vectors (aνd) with λ ≤ ν ≥ µ (where ≤ is the Bruhat order).
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2 Quasi-heredity and cellularity

2.1 Quasi-hereditary algebras

In this subsection we will give a brief overview about quasi-hereditary algebras and highest
weight categories. An accessible introduction to the subject can be found in [KK, Section 1].
More about quasi-hereditary algebras can be found in for example [Do, Appendix], or in the
original article [CPS] by Cline, Parshall and Scott. Note however that in contrast to all these
references, we will be working in a graded setting.
For this subsection, let A =

⊕
i≤0Ai be a positively graded finite-dimensional algebra over a

field k. We will assume that A0
∼= k × · · · × k.

Let Λ be an indexing set for the pairwise orthogonal primitive idempotents eλ, λ ∈ Λ, and let ≤
be a partial order on Λ. If we denote P (λ) = P (λ) := Aeλ ∈ A-gmod, and L(λ) := Aeλ/A>0eλ ∈
A-gmod, then the set of simple modules in A-gmod is given by {L(λ)〈j〉|λ ∈ Λ, j ∈ Z}, and P (λ)
is the projective cover of L(λ). Note that each L(λ) is one-dimensional as a k-vector space, and
A/A>0

∼=
⊕

λ∈Λ L(λ) as graded left A-modules.
We will also need the algebra Aop; its simple, resp. projective, modules will be denoted by L◦(λ),
resp. P ◦(λ).
We start this section with two equivalent definitions of quasi-heredity. For a proof that the
definitions are indeed equivalent, see for example [KK, Proposition 1.2].

Definition 2.1.1 (Cline, Parshall, Scott). We say that (A,≤) is a positively graded quasi-
hereditary algebra if and only if for all λ ∈ Λ there exist a left module ∆(λ), called standard
module, such that:

1. There is a surjection ϕλ : ∆(λ)→ L(λ), and the composition factors L(µ)〈j〉 of the kernel
satisfy µ < λ (and j > 0).

2. There is a surjection ψλ : P (λ)→ ∆(λ) whose kernel is filtered by modules ∆(µ)〈j〉 with
µ > λ (and j > 0).

From now on, we will just write “quasi-hereditary algebra” instead of “positively graded quasi-
hereditary algebra”.
Recall the Nakayama functor (sometimes simply called “duality functor”) Homk( , k), which
gives a contravariant equivalence between the categories A-gmod and Aop-gmod. It satisfies
Homk(M〈d〉, k) ∼= Homk(M,k)〈−d〉, sends simple modules to simple modules, projectives to
injectives, and injectives to projectives. In particular, the A-module I(λ) := Homk(P

◦(λ), k)
is the injective hull of L(λ). Now we are ready to give the second equivalent definition of
quasi-heredity, which is dual to the first one:

Definition 2.1.2. We say that (A,≤) is a quasi-hereditary algebra if and only if for all λ ∈ Λ
there exist a left module ∇(λ), called costandard module, such that:

1. There is an injection ϕλ : L(λ) → ∇(λ), and the composition factors L(µ)〈j〉 of the
cokernel satisfy µ < λ (and j < 0).

2. There is an injection ψλ : ∇(λ)→ I(λ) whose cokernel is filtered by modules ∇(µ)〈j〉 with
µ > λ (and j < 0).
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In fact, for a quasi-hereditary algebra A, Aop is also quasi-hereditary. We will denote its standard
resp. costandard modules by ∆◦(λ) resp. ∇◦(λ). and it holds that ∇(λ) ∼= Homk(∆

◦(λ), k).

Remark 2.1.3. If A is a (positively graded) quasi-hereditary algebra, then A-gmod is called
a (positively graded) highest weight category. One can define highest weight categories in more
generality (see for example [CPS]), but we will not need this.

Remark 2.1.4. We can complete the partial order ≤ on Λ to a total order ≤′. If (A,≤) is
quasi-hereditary, then (A,≤′) is quasi hereditary as well: this follows immediately from the
definition, using that µ < λ implies µ <′ λ. So we can always assume that Λ = {1, . . . , n} with
the usual ordering. In this case we will write εi = ei+ei+1 + · · ·+en for 1 ≤ i ≤ n, and εn+1 = 0.

The following remark collects some basic facts about quasi-hereditary algebras:

Remark 2.1.5. Let (A,≤) be a quasi-hereditary algebra, with Λ, ≤ as in Remark 2.1.4.

• All subalgebras εlAεl are quasi-hereditary as well, w.r.t. the induced ordering of the idem-
potents, see [Do, Proposition A3.11] or [KK, Corollary 1.3]. (Note that this is not true for
arbitrary idempotents.)

• The standard module ∆(i) is isomorphic to Aei/Aεi+1Aei [DK, Definition A.1.1].

• A has finite global dimension, see [Do, Theorem A2.3] or [KK, Theorem 1.4].

Since A is a graded algebra, the Grothendieck group [A-gmod] becomes a (free) Z[q±1]-module
when we define qd[M ] := [M〈d〉] for M ∈ A-gmod, d ∈ Z. It’s not hard to see that all of
{[L(λ)]|λ ∈ Λ}, {[∆(λ)]|λ ∈ Λ}, {[∇(λ)]|λ ∈ Λ}, and {[P (λ)]|λ ∈ Λ} are bases of [A-gmod]. We
define elements (P (λ) : ∆(µ)) (q) ∈ Z[q±1] by

[P (λ)] =
∑
µ∈Λ

(
P (λ) : ∆(µ)

)
(q) · [∆(µ)].

So (P (λ) : ∆(µ)) (q) is the graded multiplicity of ∆(µ) in any filtration of P (λ) by standard
modules (such a filtration exists by Definition 2.1.1 of quasi-heredity). Note that this in partic-
ular implies that in each filtration of P (λ) by standard modules, the graded multiplicities of the
subquotients ∆(µ) are the same.
For X ∈ A-gmod, we will write

[X : L(λ)](q) :=
∑
i∈Z

[X : L(λ)〈i〉]qi,

where [X : L(λ)〈i〉] denotes the Jordan-Hölder multiplicity of L(λ)〈i〉 in a composition series
of X. So [X : L(λ)](q) is the graded multiplicity of L(λ) in a filtration of P (µ) by standard
modules, and we have

[X] =
∑
λ∈Λ

[X : L(λ)](q) · [L(λ)].

For a proof of the following fact, see for example [Do, Proposition A2.2] or [DK, Corollary
A.3.10].

Fact 2.1.6 (Bernstein-Gelfand-Gelfand reciprocity). For A a quasi-hereditary algebra, it holds
that (

P (λ) : ∆(µ)
)

(q) = [∇(µ) : L(λ)](q−1)
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Remark 2.1.7. Suppose A is equipped with an isomorphism ∗ : A → Aop such that e∗λ = eλ
for all λ ∈ Λ. Together with the Nakayama functor, this gives us a contravariant equivalence
(“duality”) D : A-gmod → (A-gmod)op satisfying D(M〈d〉) ∼= D(M)〈−d〉. For every λ ∈ Λ, it
holds that sends D(L(λ)) ∼= L(λ), D(P (λ)) ∼= I(λ), and D(∆(λ)) ∼= ∇(λ). We call A a quasi-
hereditary algebra with duality.
In particular we get that [∇(µ) : L(λ)](q−1) = [∆(µ) : L(λ)](q), so that our BGG reciprocity
becomes (

P (λ) : ∆(µ)
)

(q) = [∆(µ) : L(λ)](q).

From now on we will write dλ,µ(q) := [∆(µ) : L(λ)](q) = (P (λ) : ∆(µ)) (q), and call these
polynomials dλ,µ(q) decomposition numbers. An immediate corollary of our BGG reciprocity is
that

[P (λ) : L(ν)](q) =
∑
µ∈Λ

(
P (λ) : ∆(µ)

)
(q) · [∆(µ), L(ν)](q) =

∑
µ∈Λ

dλ,µ(q) · dν,µ(q).

If we introduce the Cartan matrix

C(q) =
(

[P (λ) : L(µ)](q)
)
λ,µ∈Λ

and the decomposition matrix

D(q) =
(
dλ,µ(q)

)
λ,µ∈Λ

we obtain

C(q) = D(q)D(q)T .

2.2 Cellular algebras

The notion of a cellular algebra was originally introduced by Graham and Lehrer [GL]. Our
algebra DΛ will turn out to be both cellular and quasi-hereditary; the proof of quasi-heredity of
DΛ relies on the cellularity of DΛ. Later we will also study some subalgebras HΛ of DΛ which
are no longer quasi-hereditary, but still cellular.
We begin by giving the original definition of cellularity.

Definition 2.2.1 (Graham, Lehrer). An associative k-algebra A is called a cellular algebra with
cell datum (Λ,M,C, ∗) if the following conditions are satisfied:

1. Λ is a finite poset, and for each λ ∈ Λ we are given a finite set M(λ). The algebra A has
a k-basis Cλαβ, where (α, β) runs through the set M(λ)×M(λ) for all λ ∈ Λ.

2. ∗ is a k-linear involutive anti-automorphism of A, sending Cλαβ to Cλβα.

3. For x ∈ A, µ ∈ Λ, and γ, δ ∈M(µ), the product xCµγδ can be written as

xCµγδ =
∑

γ′∈M(µ)

rx(γ′, γ)Cµγ′δ + r′

where rx(γ′, γ) ∈ k does not depend on δ, and r′ ∈ A is a linear combination of basis
elements Cνγ′′δ′′ for which ν > µ.
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In the above definition, we didn’t assume A to be graded. One can in fact extend the theory of
cellular algebras to our graded setting, see [HM, Section 2]:

Definition 2.2.2. A graded k-algebra A is called a graded cellular algebra with graded cell
datum (Λ,M,C, ∗, deg) if:

1. A is a cellular algebra with cell datum (Λ,M,C, ∗).

2. The elements Cλαβ are homogeneous.

3. We have deg :
∐
λ∈ΛM(λ)→ Z such that deg(Cλαβ) = deg(α)+deg(β) for all α, β ∈M(λ).

Let A be a cellular algebra with cell datum (Λ,M,C, ∗). For every λ ∈ Λ, we define the cell
module W (λ) with k-basis {Cγ |γ ∈M(λ)} and A-module structure given by

xCγ =
∑
γ′∈Λ

rx(γ, γ′)Cγ′ .

In general, for A a cellular algebra, the simple A-modules (and their projective covers) are
indexed by a subset Λ0 of Λ. See [GL, Section 3] for more details.

Remark 2.2.3. The results from Remark 2.1.7 also hold for positively graded cellular algebras:
we still have that P (µ) , µ ∈ Λ0 is filtered by standard modules, so the graded multiplicity of
W (λ), λ ∈ Λ in such a filtration is given by (P (λ) : ∆(µ)) (q). We also still have a version of
BGG reciprocity [HM, Theorem 2.17]:

(P (λ) : ∆(µ)) (q) = [∆(µ) : L(λ)](q) =: dλ,µ(q).

If we define the (graded) Cartan matrix

C(q) = ([P (µ) : L(ν)](q))µ,ν∈Λ0

and the decomposition matrix (which is not necessarily a square matrix)

D(q) = (dλ,µ)λ∈Λ,µ∈Λ0

then it still holds that
C(q) = D(q)D(q)T .

Proposition 2.2.4 ([GL, Remark 3.10]). A cellular algebra A is quasi-hereditary (with duality)
if and only if Λ0 = Λ. In this case the cell modules W (λ) coincide with the standard modules
∆(λ).

2.3 Cellularity and quasi-heredity of DΛ

From Theorem 1.4.4, it easily follows that DΛ is a cellular algebra:

Theorem 2.3.1. The algebra DΛ is a graded cellular algebra with cell datum (Λ,M,C, ∗,deg),
where

• For λ ∈ Λ, M(λ) is the set {α ∈ Λ|α ⊂ λ}. (Recall that α ⊂ λ by definition means that
αλ is an oriented cup diagram.)
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• For λ ∈ Λ and α, β ∈M(λ), Cλαβ = (αλβ).

• ∗ is the anti-automorphism from Proposition 1.4.2.

• For α ∈M(λ), deg(α) equals the degree of the oriented cup diagram αλ.

Proof. Corollary of Theorem 1.4.4, see [ES1, Corollary 7.3] for the details.

We can describe the projective, cell and simple modules explicitly:

Definition 2.3.2. We have, for each λ ∈ Λ,

• The indecomposable projective module

P (λ) = DΛeλ = 〈{νµλ|ν, µ ∈ Λ s.t. ν ⊂ µ ⊃ λ}〉 .

• The cell module, or standard module, V (λ) := P (λ)/U(λ), where U(λ) ⊆ P (λ) is the
submodule with basis {νµλ|ν, µ ∈ Λ s.t. ν ⊂ µ ⊃ λ and µ 6= λ}. (Note that by Corollary
1.4.6, U(λ) is indeed a submodule.)

• The simple module L(λ) := P (λ)/D+
Λeλ, where D+

Λ is the sum of all components of strictly
positive degree. In other words: L(λ) is the 1-dimensional module, concentrated in degree
0, on which eλ acts by the identity and all other basis elements act trivially.

Now from Proposition 2.2.4 we can immediately deduce:

Theorem 2.3.3. DΛ is a quasi-hereditary algebra.

Using Theorem 1.4.4, one can deduce the following (see [ES1, Theorem 8.3, Theorem 8.4] and
[BS1, Theorem 5.1, Theorem 5.2]):

Theorem 2.3.4. 1. For λ ∈ Λ, P (λ) has a filtration (as graded DΛ-module) with subquotients
V (µ)〈deg(µλ)〉, where µ runs over the set {µ ∈ Λ|µ ⊃ λ}.

2. For µ ∈ Λ, V (µ) has a filtration with subquotients L(λ)〈deg(λµ)〉, where λ runs over the
set {λ ∈ Λ|λ ⊂ µ}.

In fact, in [BS1] and [ES1], quasi-heredity is deduced from the above result, without needing to
use Proposition 2.2.4.
Theorem 2.3.4 means that the decomposition numbers dλ,µ(q) (sometimes also called Kazhdan–
Lusztig polynomials) are given by dλ,µ(q) = qdeg(λµ).

Example 2.3.5. Let Λ be the block containing λ = ∧ ∧ ∨∨. The module P (λ) = DΛeλ has a
basis given by the following 7 diagrams:

∧ ∧ ∨ ∨ ∧ ∧ ∨ ∨ ∧ ∧ ∨ ∨ ∧ ∧ ∨ ∨

∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨
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The three diagrams on the bottom row form a submodule isomorphic with V (µ)〈1〉, where
µ = ∨ ∨ ∨∨. Quotienting out this submodule gives the module V (λ), with basis given by the
four diagrams on the top row. Hence, in the Grothendieck group [DΛ-gmod], we have that

[P (λ)] = [V (λ)] + q[V (µ)].

Note that this is consistent with

[P (λ)] =
∑
ν⊃λ

q(deg λν)[V (ν)].

From the basis of V (λ), it is clear that we have

[V (λ)] = [L(λ)] + q[L(∧ ∧ ∧∧)] + q[L(∧ ∨ ∧∨)] + q2[L(∨ ∨ ∧∧)]

which agrees with

[V (λ)] =
∑
ν⊂λ

q(deg νλ)[L(ν)].
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3 Koszul algebras

In this section, we first recall the notion of a Koszul algebra, in the sense of [BGS]. Most of this
section is devoted to prove a criterion (Theorem 3.2.2) which is extremely useful for proving that
a given quasi-hereditary algebra is Koszul. In the next section, this criterion will be applied to
deduce the main result of this thesis: the type D arc algebra DΛ is Koszul.
The criterion has already been proven by Ágoston, Dlab en Lukácz [ADL] in the more general
framework of ungraded algebras. In our graded algebra setting, it is possible to provide a proof
which is significantly easier.

3.1 Koszul algebras

Let A be a finite-dimensional positively graded k-algebra (recall that A0 is assumed to be
semisimple). With “A-module” we will always mean “finite-dimensional graded left A-module”
unless stated otherwise.
We know that any A-module M admits a minimal projective resolution, which is the unique (up
to isomorphism) projective resolution

· · · d2−→ P 2 d1−→ P 1 d0−→ P 0 �M

for which diP
i+1 ⊆ A>0P

i for all i ∈ N.

Definition 3.1.1. 1. For d ∈ Z, let M be a graded A-module generated by its degree d
component (i.e. M = AMd). A linear projective resolution of M is a graded projective
resolution

· · · → P 2 → P 1 → P 0 �M

such that P i is generated by its degree i + d component. (In other words, the indecom-
posable summands of P i are of the form P (λ)〈i+ d〉 for some λ ∈ Λ.)
Note that a linear projective resolution is necessarily minimal.
The subcategory of left (resp. right) A-modules whose minimal projective resolution is
linear will be denoted by CA (resp. C◦A).

2. A is a Koszul algebra if every simple A-module has a linear projective resolution, i.e. if
CA = A-gmod.
(Note that this is equivalent to asking that the left A-module A/A>0, which we will simply
denote by A0, has a linear projective resolution.)

Remark 3.1.2. Let us briefly recall some properties of Koszul algebras. For more details and
background about Koszul algebras, we refer to [BGS].

• A positively graded algebra A is Koszul if and only if for every k ∈ Z it holds that
ExttA(A0, A0〈k〉) = 0 unless t = k [BGS, Proposition 2.1.3]. (Morally speaking, this means
that A is as close to semisimple as a positively graded algebra can possibly be.)

• A Koszul algebra A is quadratic [BGS, Proposition 2.3.3], i.e. A ∼= TA0(A1)/(R) for some
R ⊆ A1 ⊗A0 A1.

• If A is Koszul, then the quadratic dual A! of A is also Koszul [BGS, Proposition 2.9.2],
and there is an isomorphism (A!)op = EXTA(A0, A0) [BGS, Theorem 2.10.1]. The algebra
EXTA(A0, A0) is called the Koszul dual of A. We can relate the representation theory of
a Koszul algebra with that of its Koszul dual, see [BGS, Theorem 2.12.1].
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3.2 Standard Koszul algebras

Definition 3.2.1. A positively graded algebra A is called standard Koszul, if the following
conditions are satisfied:

• A is a (graded) quasi-hereditary algebra.

• A is generated by its degree 0 and 1 parts. In other words, A is generated by A1 as an
A0-algebra.

• The left and right standard modules ∆(λ) and ∆◦(λ) belong to CA and C◦A, respectively.

The goal of this section is to prove the following theorem:

Theorem 3.2.2 (Koszulity criterion). If A is standard Koszul, then A is Koszul.

In other words: for a quasi-hereditary algebra, in order to prove that every simple module has
a linear projective resolution, it suffices to check this for the standard modules instead.
This theorem was already proven by Ágoston, Dlab and Lukács: see [ADL, Theorem 1.4]. We
give here a new proof, in more modern language, adapted to our special situation of positively
graded algebras with semisimple part A0

∼= k × · · · × k. Our proof is based on the proof from
[ADL], but simplifies drastically in our framework.
For the rest of this subsection, we will always assume A0

∼= k × k × . . .× k. We will need some
preparatory lemmas. By Remark 2.1.4 we can assume that Λ = {1, 2, . . . n} with the usual
ordering, and we write εi = ei + ei+1 + · · ·+ en for i ≤ n.
The proof uses induction on the number of idempotents n. Our first goal will be to show that
if A is standard Koszul, so is the subalgebra ε2Aε2. This will be Corollary 3.2.5. Since ε2Aε2

has {e2, . . . , en} as complete set of pairwise orthogonal primitive idempotents, this will allow us
to apply the induction hypothesis to ε2Aε2.

Lemma 3.2.3. If A is standard Koszul, εiA>1εi ⊆ εiA>0εiA>0εi for 1 ≤ i ≤ n. In particular,
the algebra εiAεi is generated by its degree 0 and 1 parts.

Proof. It suffices to prove that eiA>1ej ⊆ eiA>0εmin(i,j)A>0ej for all 1 ≤ i, j ≤ n. Let x ∈
eiA>1ej . Without loss of generality, we can assume that j ≤ i. (If i > j, apply the proof to
the quasi-hereditary algebra Aop, whose left standard modules correspond to the right standard
modules ∆◦(λ) of A.)
Note that x ∈ P (j). We first claim that the surjection ψj : P (j)→ ∆(j) maps x to 0. If i > j,
this is clear, since ∆(j) = Aej/Aεj+1Aej . So we can suppose i = j, in other words x = ejxej .
Then ψj(x) ∈ ∆(j) is of degree greater than 0, so in the kernel K of ϕj : ∆(j) → L(j). By
definition of quasi-heredity, the composition factors of K are isomorphic to L(p)〈d〉, for p < j.
From this it easily seen that ejK = 0. But since ψj(x) = ψj(ejx) = ejψj(x), this implies that
ψj(x) = 0, proving our claim.
Now let

· · · →
⊕
r

P (lr)〈1〉
f−→ P (j) � ∆(j)

be a (minimal) linear projective resolution of ∆(j). Since A is quasi-hereditary, lr > j for every
r. On the summand P (lr)〈1〉, the map f is given by right multiplication by some ar ∈ elrA1ej .
By the claim above, x is in the image of f , i.e. x is a linear combination of elements eibrelrarej .
Since ar ∈ A1 and x ∈ A>1, every br must be in A>0. So x ∈ eiA>0εjA>0ej .
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Lemma 3.2.4. Suppose A is standard Koszul, and let X ∈ CA such that ExttA(X,L(1)〈k〉) = 0
for all t ≥ 0, k ∈ Z. Then ε2X ∈ Cε2Aε2.

Proof. Without loss of generality, we suppose that X = AX0. Consider the minimal projective
resolution of X, which is linear by assumption (i.e. P i is generated in degree i):

· · · → P t → · · · → P 1 → P 0 � X .

The assumption ExttA(X,L(1)〈k〉) = 0 means that none of the P t have a summand isomorphic
to P (1)〈k〉.
For X,Y ∈ A-gmod, let HOMA(X,Y ) =

⊕
i∈Z HomA(X〈i〉, Y ) ∈ A-gmod.

Then HOMA(Aε2,−) : A-gmod → ε2Aε2-gmod is an exact functor (since Aε2 is projective).
Applying it to the above resolution yields the exact sequence of graded ε2Aε2-modules

· · · → ε2P
t → · · · → ε2P

1 → ε2P
0 � ε2X .

Since all summands of P t are (up to degree shift) isomorphic to P (i) for i > 1, ε2P
t is a

projective ε2Aε2-module generated in degree t. So ε2X has a linear projective resolution, i.e.
ε2X ∈ Cε2Aε2 .

Corollary 3.2.5. If A is standard Koszul, then so is the subalgebra ε2Aε2 of A.

Proof. It is trivial that ε2Aε2 is again a positively graded algebra. It is generated in degree 0
and 1 by Lemma 3.2.3, and quasi-hereditary by Remark 2.1.5.
Note that the left and right standard modules of ε2Aε2 are given by ε2∆(i) and ∆(i)◦ε2 for 2 ≤
i ≤ n, respectively. We need to show that they are contained in Cε2Aε2 and C◦ε2Aε2 , respectively.
This follows from Lemma 3.2.4, where the assumption ExttA(∆(i), L(1)〈k〉) = 0 is satisfied
because A is quasi-hereditary.

Definition 3.2.6. Let X ∈ A-gmod, and suppose X = AXd. The module X is called L(1)-
Koszul, if ExttA(X,L(1)〈k〉) = 0 unless t = k − d.

Note that X is L(1)-Koszul if and only if in the minimal projective resolution
· · · → P t → P t−1 → · · · of X, every summand of P t that is of the form P (1)〈k〉 has t = k − d.

Definition 3.2.7. Let κ be the subclass of A-gmod consisting of modules X that satisfy the
following properties:

• X = AXd for some d ∈ Z (i.e. X is generated in degree d).

• Aε2X is also generated in degree d, i.e. Aε2X = Aε2Xd.

• X is L(1)-Koszul.

• ε2X ∈ ε2Aε2-gmod has a linear projective resolution.

Now to prove Theorem 3.2.2, we will first prove that every module in κ has a linear projective
resolution, and then conclude by showing that all the simple modules L(i) are in fact in κ.

Lemma 3.2.8. Every module in κ has a linear projective resolution.
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Proof. To every X ∈ κ, we attach the following integers:

eX := dimk

 ⊕
t≥0,k∈Z

ExttA (X,L(1)〈t〉)

 and pX = pdim(X)

(Note that both these numbers are finite since A has finite global dimension.) We order the pairs
(eX , pX) lexicographically, i.e. (eY , pY ) ≤ (eX , pX) if and only if either eY < eX , or eY = eX
and pY ≤ pX . We will prove the theorem by induction w.r.t. this well-ordering.
Note that if X satisfies (eX , pX) = (0, 0), there is nothing to prove. So suppose we have proven
the lemma already for all Y ∈ κ satisfying (eY , pY ) < (eX , pX). We want to show that then X
has a linear projective resolution as well.
We distinguish two cases: first we suppose that Aε2X 6= X.

Claim 3.2.9. Aε2X ∈ κ, and (eAε2X , pAε2X) < (eX , pX).

The proof of the claim will be given later.
Since A is quasi-hereditary, it holds that A>0 ⊆ Aε2A. (Indeed: else we would find an element
e1ae1 ∈ A1, but then the kernel of P (1) 7→ ∆(1) ∼= L(1) would have a ∆(1)〈1〉 in its standard
filtration, contradicting quasi-heredity.) So A>0X ⊆ Aε2X. This means that the quotient
X/Aε2X is concentrated in degree d, hence of the form

⊕
L(1)〈d〉. So we have a short exact

sequence

0→ Aε2X → X →
⊕

L(1)〈d〉 → 0.

By the above claim and the induction hypothesis, Aε2X has a linear projective resolution. By
assumption, L(1) ∼= ∆(1) has a linear projective resolution. Then applying the horseshoe lemma
[Wei, Lemma 2.2.8] yields a linear projective resolution for X.
Now we turn to the case X = Aε2X. For simplicity, we suppose d = 0 (i.e. X = AX0).
We have a short exact sequence

0→ Ω→ P → X → 0,

where P is the projective cover of X, and Ω is the first syzygy. Note that by our assumption
X = Aε2X, P has no summands of the form P (1)〈k〉.

Claim 3.2.10. Ω ∈ κ, and (eΩ, pΩ) < (eX , pX).

The proof of this claim will be postponed as well.
Now Ω has a linear projective resolution by the induction hypothesis. Since Ω is generated in
degree 1 (see below), it follows that X has a linear projective resolution.

We still need to provide proofs for the two claims we made:

Proof of Claim 3.2.9. We first check the four properties of the definition of κ: The first 2 prop-
erties are trivial (note that Aε2Aε2X = Aε2X). To see that Aε2X is L(1)-Koszul, note that the
short exact sequence

0→ Aε2X → X →
⊕

L(1)〈d〉 → 0

induces the long exact sequence

· · · →ExttA(
⊕

L(1)〈d〉, L(1)〈k〉)→ ExttA(X,L(1)〈k〉)→ ExttA(Aε2X,L(1)〈k〉)→

Extt+1
A (

⊕
L(1)〈d〉, L(1)〈k〉)→ · · · .
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Since A is quasi-hereditary, ExttA(L(1)〈l〉, L(1)〈k〉) = 0 for all t ≥ 0 (this follows from [Do,
Proposition A.2.2(ii)]). Together with the assumption that X is L(1)-Koszul, it follows that
most terms in the above long exact sequence vanish, so that also Aε2X is Koszul.
The last property is trivial, since ε2Aε2X = ε2X.
To see that (eAε2X , pAε2X) < (eX , pX), note that the long exact sequence above yields an iso-
morphism ExttA(X,L(1)〈k〉) ∼= ExttA(Aε2X,L(1)〈k〉) for every t ≥ 1.
Since HomA(Aε2X,L(1)〈k〉) = 0 while HomA(X,L(1)〈k〉) 6= 0, we find that eAε2X < eX .

Proof of Claim 3.2.10. To see that (eΩ, pΩ) < (eX , pX), we simply note that eΩ = eX and
pΩ < pX .
Next, we check the four properties of the definition of κ:

• ε2Ω has a linear projective resolution: applying HOMA(Aε2,−) to the short exact sequence
0→ Ω→ P → X → 0 yields the short exact sequence

0→ ε2Ω→ ε2P → ε2X → 0,

where ε2P is projective by our assumption X = Aε2X. So ε2Ω is the first syzygy of ε2X.
Since ε2X has a linear projective resolution, so does ε2Ω.

• Note that the above also implies that ε2Ω is generated in degree 1. So Aε2Ω is generated
in degree 1.

• Ω is generated in degree 1: consider the projective cover P ′ → Ω, then we need to show
that every summand of P ′ is generated in degree 1. For the summands of the from P (i)〈k〉
with i ≥ 2, this follows from the fact that Aε2Ω is generated in degree 1. For the summands
of the from P (1)〈k〉, it follows from L(1)-koszulity of X.

• Ω is L(1)-Koszul: this follows from the L(1)-koszulity of X, using that Ω is generated in
degree 1.

This establishes Lemma 3.2.8. Now we will finish the proof of the main theorem of this section.

Proof of Theorem 3.2.2. We use induction on the number n of idempotents. If n = 1, there is
nothing to prove, so suppose n > 1. By Lemma 3.2.5 and the induction hypothesis, the subal-
gebra ε2Aε2 is Koszul.
By Lemma 3.2.8, it suffices to show that A0 ∈ κ.
A0 and Aε2A0 are obviously generated in degree 0, and ε2A0 ∈ ε2Aε2-gmod has a linear project-
ive resolution since ε2Aε2 is Koszul. So the only thing left to check is that A0 is L(1)-Koszul.
By assumption, the simple right module L(1)◦ ∈ gmod -A has a linear projective resolution. This
implies that for every simple module L(i)◦, ExttAop(L(1)◦, L(i)◦〈k〉) = 0 unless t = k. Applying
the dualizing functor Homk(−, k) : gmod -A → A-gmod, we get that ExttA(L(i)〈−k〉, L(1)) = 0
unless t = k. Since A0 is the direct sum of all simple modules, it follows that ExttA(A0, L(1)〈k〉) =
0 unless t = k. So A0 is L(1)-Koszul.

Corollary 3.2.11. By Corollary 3.2.5, we find that if A is standard Koszul, every subalgebra
εiAεi is Koszul.
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4 Koszulity of DΛ

The goal of this section is to give a proof that the algebra DΛ is Koszul in the sense of the previous
section. Brundan and Stroppel proved this for the type A arc algebra (see [BS2, Theorem 5.6]);
our proof for type D is inspired by their methods.
We first need to define geometric bimodules and projective functors. For 2 fixed blocks Λ and Γ,
we will construct geometric DΛ-DΓ-bimodules Kt

ΛΓ. The elements of Kt
ΛΓ will be called stacked

circle diagrams, and the actions of Λ and Γ on Kt
ΛΓ will be a generalization of the multiplication

law from Subsection 1.3. Given a geometric bimodule Kt
ΛΓ ∈ DΛ-gmod-DΓ, we can define the

projective functor GtΛΓ : DΓ-gmod→ DΛ-gmod by taking the tensor product with Kt
ΛΓ.

The proof of Koszulity of DΛ will go by induction on the size of the block Λ: using the projective
functor GtΛΓ, we will be able to deduce Koszulity of DΛ from the Koszulity of DΓ, where Γ is
some block of shorter size. The criterion from the previous section (Theorem 3.2.2) will play an
essential role in our proof.

4.1 Geometric bimodules

In this section, we will define the so-called geometric bimodules for our algebra DΛ. Geometric
bimodules for the type A arc algebra were introduced by Khovanov in [Kho], and play a prom-
inent role in [BS2], in particular, in the proof that the type A arc algebra is Koszul. This is
precisely our reason for defining geometric bimodules in type D: we will need them in our proof
that DΛ is Koszul.
For this subsection we will fix an n-block Λ and an m-block Γ (for some n,m ∈ N).

Definition 4.1.1. A crossingless matching t is a a diagram obtained by drawing a cap diagram
c under a cup diagram d with the same number of rays, and connecting the rays of c with
the rays of d with line segments via an order-preserving bijection. We will assume that every
line segment has at most one dot. A crossingless matching t is called admissible if c and d are
admissible. From now on we assume that all occurring crossingless matchings are admissible,
unless stated otherwise.
A crossingless matching where the bottom line has n endpoints and the top line has m endpoints
will be referred to as an n-m-matching.

Example 4.1.2. The following figure shows a 4-8-matching obtained by drawing a cap diagram
of size 4 under a cup diagram of size 8.

Definition 4.1.3. • An oriented ΛΓ-matching λtµ consists of a crossingless matching t
whose bottom line resp. top line are decorated with weights λ ∈ Λ resp. µ ∈ Γ, such
that all cups and caps are oriented as in an oriented cup/cap diagram (see Subsection 1.2,
Figures (1.1) and (1.2)), and all line segments are oriented as in

∧

∧

∨

∨
∧
∨

∨

∧
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(An intuitive way to think about this is that at a dot, the orientation of an arc reverses.)

• An unoriented stacked circle diagram is a diagram atb obtained by stacking a cup diagram
a with n endpoints, an n-m-matching t, and a cap diagram with m endpoints.

• An oriented stacked circle diagram is a diagram aλtµb, with λ ∈ Λ, µ ∈ Γ, and unoriented
stacked circle diagram, such that aλ is an oriented cup diagram, λtµ is an oriented ΛΓ-
matching, and µb is an oriented cap diagram.
In this case we call (λ, µ) an orientation of the unoriented stacked circle diagram atb.

• The degree deg(λtµ) of an oriented ΛΓ-matching λtµ is given by the number of clockwise
cups plus the number of clockwise caps. The degree of an oriented stacked circle diagram
aλtµb is defined by deg(aλtµb) = deg(aλ) + deg(λtµ) + deg(µb), which is just the total
number of clockwise cups and caps in the diagram.

Remark 4.1.4. More generally, one can define stacked circle diagrams of height k by stacking
a cup diagram a, k crossingless matchings t1, . . . , tk, and a cap diagram b. With “stacked circle
diagram” we will always mean a stacked circle diagram of height 1, unless stated otherwise.

For stacked circle diagrams, we can define circles, lines and propagating lines as we did for circle
diagrams. A circle (resp. line) that does not intersect the lower number line will be called an
upper circle (resp. upper line).
We also have the analogue of Lemma 1.2.14:

Lemma 4.1.5. Let atb be an unoriented stacked circle diagram. Then the following holds:

1. The diagram atb has an orientation if and only if the number of dots is even on each of
its circles and its propagating lines, and odd on each of its non-propagating lines.

2. In this case there are exactly 2c possible orientations, where c is the number of circles. They
are obtained by choosing for each of the circles one out of its two possible orientations and
for each line the unique possible orientation.

Proof. The proof is similar to the proof of Lemma 1.2.14 and will be omitted. See also [ES1,
Proposition 4.8].

For C a circle in a stacked circle diagram aλtµb, the rightmost symbol of C contained in λ and
the rightmost symbol of C contained in µ are connected by an undotted line, so they are the
same. So also in stacked circle diagrams it makes sense to talk about counterclockwise (right-
most symbols are ∧) and clockwise (rightmost symbols are ∨) circles.
Similar to Propositions 1.2.12 and 1.2.13, we can describe the contribution of a connected com-
ponent (circle or line) to the degree of an oriented stacked circle diagram.

Proposition 4.1.6. For C a connected component of some circle diagram aλtµb, let cups(C)
resp. caps(C) denote the number of cups resp. caps in C.

1. If C is a counterclockwise circle, then caps(C) = cups(C), and the contribution of C to
the degree of aλtµb equals caps(C)− 1.

2. If C is a clockwise circle, then caps(C) = cups(C), and the contribution of C to the degree
of aλtµb equals caps(C) + 1.
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3. If L is a propagating line, then caps(L) = cups(L), and the contribution of L to the degree
of aλtµb equals caps(L).

4. If L is a nonpropagating line and its 2 endpoints are in a, then caps(L) = cups(L) + 1,
and the contribution of L to the degree of aλtµb equals caps(L).

5. If L is nonpropagating line and its 2 endpoints are in b, then cups(L) = caps(L) + 1, and
the contribution of L to the degree of aλtµb equals cups(L).

Proof. Similar to the proof of [ES1, Proposition 4.9].

Definition 4.1.7. Let t be a crossingless n-m-matching. We define Kt
ΛΓ to be the graded vector

space with basis

{aλtµb|λ ∈ Λ, µ ∈ Γ, aλtµb is an oriented stacked circle diagram}.

The vector space Kt
ΛΓ can be given the structure of a graded DΛ-DΓ-bimodule. The action of

DΛ is similar to the multiplication of circle diagrams: to multiply aλb ∈ DΛ with cµtνd ∈ Kt
ΛΓ,

we draw the first diagram under the second one and perform surgeries. We will make this more
precise in what follows.

Definition 4.1.8. Let t be a crossingless ΛΓ-matching, and µ ∈ Γ. We can consider the diagram
tµ obtained by drawing µ on top of t. The upper reduction red(tµ) of the diagram tµ, is a cap
diagram (of size n) obtained in the following way:
Start with the diagram tµ, and remove the upper number line. Next, remove all connected
components that don’t touch the lower number line. Finally, remove from every component an
even number of dots, so that in the end every cap and every ray has at most one dot.
We define the upper reduction of an unoriented stacked circle diagram by red(atb) = a red(tb)
(this is an unoriented circle diagram). The upper reduction of an oriented stacked circle diagram
is red(aλtµb) = aλ red(tb) (an oriented circle diagram).

Example 4.1.9. The upper reduction of the diagram

is the diagram

.

We can now define the left action of DΛ on Kt
ΛΓ.
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Definition 4.1.10. Let aλb ∈ DΛ and cµtνd ∈ Kt
ΛΓ. If c 6= b∗, the product (aλb) · (cµtνd) is

defined to be 0. So suppose c = b∗.
Compute the product (aλb) · red(cµtνd) =

∑
i±(aλid) in DΛ. Then (aλb) · (cµtνd) is defined to

be the sum
∑

i±(aλitνid), where the weight νi ∈ Γ is defined as follows:
The symbols of νi lying on components that touch the bottom number line are uniquely de-
termined by λi. The symbols that lie on a component not touching the bottom number line are
defined to be the same as in ν.

Example 4.1.11. Suppose we want to compute the product (aλb) · (cµtνd), where

aλb = ∨ ∧ ∨ ∨ and cµtνd =

∧ ∨ ∧ ∧ ∨ ∧ ∨ ∧

∧ ∨ ∧ ∧

.

We find that

red(cµtνd) = ∧ ∨ ∧ ∧ .

Now we compute the product (see Example 1.3.7)

(aλb) · red(cµtνd) = ∨ ∨∧ ∨

and conclude that

(aλb) · (cµtνd) =

∨ ∨ ∧ ∧ ∨ ∨ ∧ ∨

∨ ∧ ∨ ∨

.

The right action of DΓ on Kt
ΛΓ can be defined similarly to the above. Alternatively, we can use

the anti-automorphism ∗ : DΓ → Dop
Γ from Proposition 1.4.2:

Definition 4.1.12. Let aµtνb ∈ Kt
ΛΓ and cλd ∈ DΓ.

We define (aµtνb) · (cλd) = ((cλd)∗ · (aµtνb)∗)∗. (Here (aµtνb)∗ := b∗νt∗µa∗ ∈ Kt∗
ΓΛ, where t∗ is

the m-n-matching obtained by vertically reflecting t.)

Proposition 4.1.13. The above actions give Kt
ΛΓ the structure of a graded DΛ-DΓ-bimodule.
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Proof. Follows from the definition and the associativity of DΛ.

We have the analogue of Theorem 1.4.4 for geometric bimodules.

Theorem 4.1.14. Let (aλb) ∈ DΛ and (cµtνd) ∈ Kt
ΛΓ. Then,

(aλb)(cµtνd) =


0, if b 6= c∗,
saλb(µ)(aµtνd) + (†), if b = c∗ and aµ is oriented,
(†), otherwise,

where

1. (†) denotes a linear combination of basis vectors from BΛ of the form (aµ′tν ′d) for µ′ > µ.

2. The scalar saλb(µ) ∈ {0, 1,−1} is the same as in Theorem 1.4.4.

Proposition 4.1.15. The left action of DΛ has the following properties:

• eγ(γµtνd) = γµtνd.

• (aλb)(bµtνd) is a linear combination of basis vectors aµ′tν ′d (for varying µ′ and ν ′).
Moreover, these µ′ and ν ′ satisfy λ ≤ µ′ ≥ µ and ν ′ ≥ ν.

• (aγγ)(γγtνd) = (aγtνd).

Similar statements hold for the right action.

Proof. The first statement follows immediately from the definition of the action of DΛ. The
second statement is a corollary of Theorem 4.1.14, and the third statement follows from Remark
1.4.5.

Remark 4.1.16. If Λ = Γ and t is the Λ-Γ-matching containing only vertical lines, then it is
easily seen that Kt

ΛΓ
∼= DΛ as DΛ-bimodules.

4.2 Projective functors

As in the previous subsection, fix an n-block Λ and an m-block Γ. For a crossingless n-m-
matching t, let caps(t) resp. cups(t) denote the number of caps resp. cups in the diagram.

Definition 4.2.1. For t a crossingless n-m-matching, we define the projective functor

GtΛΓ := Kt
ΛΓ〈− caps(t)〉 ⊗DΓ

: DΓ-gmod→ DΛ-gmod .

Let R be the graded k-vector space k[x]/(x2), with 1 in degree −1 and x in degree 1.
The next result is similar to [BS2, Theorem 4.2]. It describes how GtΛΓ acts on the projective
Γ-modules P (γ), γ ∈ Γ.

Theorem 4.2.2. 1. GtΛΓP (γ) ∼= Kt
ΛΓeγ〈− caps(t)〉 (as left DΛ-modules).

2. If in tγ there is an upper line with an even number of dots, or an upper circle with an odd
number of dots, GtΛΓP (γ) = 0. (Recall that an upper line, resp. upper circle, is a line,
resp. circle, that does not cross the lower number line.)
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3. If every upper line (resp. upper circle) in tγ has an odd (resp. even) number of dots, define
λ ∈ Λ by declaring that λ = red(tγ) (the upper reduction of tγ), and let k be the number
of upper circles removed in the reduction process. Then

GtΛΓP (γ) ∼= P (λ)⊗k R⊗k〈cups(t)− caps(t)〉.

Proof. Note that

GtΛΓP (γ) = Kt
ΛΓ〈− caps(t)〉 ⊗DΛ

P (γ)

= Kt
ΛΓ ⊗DΛ

DΛeγ〈− caps(t)〉
∼= Kt

ΛΓeγ〈− caps(t)〉 .

Note that Kt
ΛΓeγ〈− caps(t)〉 has a basis given by the diagrams in Kt

ΛΓ of the form aµtνγ. So
GtΛΓP (γ) has a basis given by the diagrams in Kt

ΛΓ ⊗DΛ
DΛ of the form (aµtνγ)⊗ eγ .

Suppose tγ has an upper line with an even number of dots. Since all diagrams atγ contain a
non-propagating line with an even number of dots, none of them can be oriented (see Lemma
4.1.5). Hence GtΛΓP (γ) = 0. A similar argument proves that if tγ has an upper circle with an
odd number of dots, GtΛΓP (γ) = 0.
Now suppose every upper line (resp. circle) in tγ has an odd (resp. even) number of dots.
Enumerate the k upper circles in the diagram tγ in some fixed order. Consider the map

f : Kt
ΛΓeγ → DΛeλ ⊗R⊗k : (aµtνγ) 7→ (aµλ)⊗ x1 ⊗ · · · ⊗ xk

where xi is 1 if the ith upper circle of tγ is counterclockwise in aµtνγ, and x if this circle is
clockwise. It follows from the definition of Kt

ΛΓ that f is a morphism of ungraded left DΛ-
modules. Using Lemmas 1.2.14 and 4.1.5, we see that giving an orientation of atγ corresponds
to giving an orientation of aλ together with an orientation of the k circles that that were removed
in the reduction process. Therefore f is in fact an isomorphism of left (ungraded) DΛ-modules.
We will now check that f is homogeneous of degree (− cups(t)). By Proposition 4.1.6 an upper
line in aµtνγ containing s cups will always contribute exactly s to the degree of aµtνγ. The
ith upper circle in aµtνγ containing s cups will, depending on its orientation, contribute s + 1
or s− 1 to the degree of aµtνγ. The corresponding factor xi in f(aµtνγ) will contribute +1 or
−1 to the degree of f(aµtνγ), depending on the orientation of the ith upper circle. Let C be a
component of aµtνγ which is not an upper line or circle, and C ′ the corresponding component of
aµλ. C and C ′ have the same orientation, and using Proposition 4.1.6, we see that the difference
in degree is precisely the number of cups of t contained in C.
Putting all this together, we find that deg(f(aµtνγ)) = deg(aµtνγ)−cups(t). Since P (λ) = DΛeλ
and GtΛΓP (γ) ∼= Kt

ΛΓeγ〈− caps(t)〉, our theorem is proven.

Corollary 4.2.3. Kt
ΛΓ is projective both as a left DΛ-module and as a right DΓ-module.

Hence GtΛΓ is an exact functor.

Proof. We have that Kt
ΛΓ
∼=
⊕

γ∈ΓK
t
ΛΓeγ as left DΛ-modules. By Theorem 4.2.2, every sum-

mand is projective; hence Kt
ΛΓ is projective as a left DΛ-module. By the same argument, Kt∗

ΓΛ

is projective as a left DΓ-module. Twisting with the anti-automorphism ∗ : DΓ → Dop
Γ , we

find that Kt
ΛΓ is projective as a right DΓ-module. Now it immediately follows that the functor

GtΛΓ := Kt
ΛΓ〈− caps(t)〉 ⊗DΓ

is exact.

The next theorem is similar to [BS2, Theorem 4.5] and will be crucial in our proof that DΛ is a
Koszul algebra. It describes how GtΛΓ acts on the standard Γ-modules V (γ):
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Theorem 4.2.4. GtΛΓV (γ) has a filtration

{0} = M(0) ⊂M(1) ⊂ · · · ⊂M(m) = GtΛΓV (γ)

such that M(i)/M(i − 1) ∼= V (µi)〈deg(µitγ) − caps(t)〉 for each i. Here {µ1, · · · , µm} = {µ ∈
Λ|µtγ oriented}, ordered so that µi > µj (in the Bruhat order) implies i < j.

Proof. We apply the exact functor GtΛΓ to the short exact sequence 0 → U(γ) → P (γ) →
V (γ) → 0, with U(γ) as in Definition 2.3.2. From Theorem 4.2.2 we know that GtΛΓP (γ) has
basis given by all diagrams (aµtνγ) ⊗ eγ , and using Proposition 4.1.15, we can see that the
submodule GtΛΓU(γ) has basis given by those diagrams (aµtνγ)⊗ eγ for which ν > γ (just write
(aµtνγ)⊗ eγ = (aµtνν)⊗ (ννγ)). So GtΛΓV (γ) has basis given by all diagrams (aµtγγ)⊗ eγ .
Now we define M(0) := {0}, and for i = 1, . . . ,m let M(i) be the subspace of GtΛΓV (γ) generated
by M(i− 1) and the vectors

{(aµitγγ)⊗ eγ for all oriented cup diagrams aµi}.

By Proposition 4.1.15, each M(i) is a DΛ-submodule of GtΛΓV (γ). So the M(i) define a filtration
of GtΛΓV (γ). The subquotient M(i)/M(i− 1) has basis given by the images of the vectors

{(aµitγγ)⊗ eγ for all oriented cup diagrams aµi}.

Now it remains to check that the map

g : M(i)/M(i− 1)→ V (µi)〈deg(µitγ)− caps(t)〉 : [aµitγγ] 7→ [aµiµi]

is an isomorphism of graded DΛ-modules.
Clearly g is an isomorphism of graded vector spaces. For aλb ∈ DΛ and [cµitγγ] ∈M(i)/M(i−1)
we have by Theorem 4.1.14 that

(aλb) · [cµitγγ] =

{
saλb(µi)[aµitγγ], if b = c∗ and aµ is oriented,
0, otherwise.

Comparing with Theorem 1.4.4, we see that g is compatible with the action of DΛ.

4.3 Proof of Koszulity

In this subsection we will take the viewpoint that a projective resolution of a module M is a chain
complex P • of projectives, concentrated in positive homological degrees, such that H0(P •) ∼= M ,
and Hi(P

•) = 0 for i 6= 0. For later use, we recall the following result from homological algebra:

Proposition 4.3.1. Let 0→ A
f−→ B → C → 0 be a short exact sequence in an abelian category

A. Suppose the chain complexes P • and Q• are projective resolutions of A resp. B. Then f
induces a map f̃ : P • → Q• on chain complexes, and the mapping cone Cone(f̃)• (as defined in
[Wei, 1.5.1]) is a projective resolution of C.

Proof. Cone(f̃) is a complex of projectives by definition of the mapping cone (recall that
Cone(f̃)i = P i−1 ⊕Qi). From the long exact sequence (see [Wei, 1.5.2])

· · · → H1(Cone(f̃)•)→ H0(P •)
f−→ H0(Q•)→ H0(Cone(f̃)•)→ H−1(P •)→ · · ·

it follows that Cone(f̃) is a projective resolution of C.
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Fix a block Λ. We will now use the projective functors introduced in the last subsection to prove
that every standard DΛ-module V (λ) has a linear projective resolution. Then it will follow from
Theorem 3.2.2 that DΛ is a Koszul algebra.

Theorem 4.3.2. For λ ∈ Λ, the standard module V (λ) has a projective resolution

· · · d1−→ P 1(λ)
d0−→ P 0(λ)

ε−→ V (λ)→ 0,

where P k(λ) is generated by its degree k part, for every k ≥ 0. In other words: there are integers

p
(k)
λ,µ such that P k(λ) :=

⊕
µ∈Λ p

(k)
λ,µP (µ)〈k〉.

Proof. We will use two nested inductions: first of all we use induction on the size n of the block
Λ. Note that if n = 0, 1 there is nothing to prove, since if n = 0 then DΛ

∼= 0 and if n = 1 then
DΛ
∼= k. From now on we will fix an n-block Λ with n > 1, and we assume that the theorem is

already proven for all n′-blocks with n′ < n.
Next we use induction on the Bruhat order: note that if λ is maximal w.r.t. the Bruhat order
on Λ, then V (λ) = P (λ) by definition, so that the minimal projective resolution of V (λ) has
P 0(λ) = P (λ), and P i(λ) = 0 for i > 0. So our theorem is true for λ maximal w.r.t. the Bruhat
order. From now on we will fix λ ∈ Λ not maximal w.r.t. the Bruhat order, and assume that
the theorem is proven for all λ′ ∈ Λ with λ′ > λ.
Since we assumed λ to be not maximal w.r.t. the Bruhat order, it is possible to apply a Bruhat
move to it. Say that the weight λ′ ∈ Λ is obtained by applying a Bruhat move B to λ at position
i. Furthermore, let γ be the weight obtained from λ by removing the i’th and (i+ 1)’th symbol.
Then γ belongs to a smaller block (of size (n − 2)) which we will call Γ. Now we let t be the
n-(n− 2)-matching as in the following figure:

· · · · · ·

1 i i+ 1 n

if B is a type A move.

· · ·

1 2 n

if B is a type D move (hence i = 1).

We now use Theorem 4.2.4 to describe GtΛΓV (λ′): by the construction of t, there are only 2
weights µ ∈ Λ so that µtγ is an oriented matching: namely µ = λ (corresponds to orienting the
cap in t counterclockwise), and µ = λ′ (corresponds to orienting the cap in t clockwise). Since
λ < λ′, it follows from Theorem 4.2.4 that there is a short exact sequence

0→ V (λ′)
f−→ GtΛΓV (γ)→ V (λ)〈−1〉 → 0. (4.1)
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By the induction hypothesis we have already constructed a projective resolution P (λ′)• of V (λ′),

and a projective resolution P (γ)• of V (γ), with P k(λ′) =
⊕

µ∈Λ p
(k)
λ′,µP (µ)〈k〉 and P k(γ) =⊕

ξ∈Γ p
(k)
γ,ξP (ξ)〈k〉. Applying the exact functor GtΛΓ to P (γ)• yields a projective resolution

GtΛΓ(P (γ))• of GtΛΓV (γ), with GtΛΓ(P (γ))k ∼=
⊕

ξ∈Γ p
(k)
γ,ξG

t
ΛΓP (ξ)〈k〉.

By Theorem 4.2.2, GtΛΓP (ξ) ∼= P (ν)〈−1〉, where:

• ν ∈ Λ is obtained from ξ by inserting ∨∧ after the i− 1’th position, in the case where our
fixed Bruhat move B is a type A move applied at position i.

• ν ∈ Λ is obtained from ξ by inserting ∧∧ before the first position, in the case where our
fixed Bruhat move B is a type D move applied at position 1.

Let ΛB ⊆ Λ consist of all weights υ ∈ Λ to which the Bruhat move B can be applied. In other
words, if B is the type A move applied at position i, ΛB consists of all weights υ with υi = ∨
and υi+1 = ∧; if B is the type D move applied at position 1, ΛB consists of all weights υ with
υ1 = υ2 = ∧. For υ ∈ ΛB, we will write ∂i(υ) ∈ Γ for the weight obtained by deleting the i’th
and i+ 1’th symbol (where i is the position corresponding to the Bruhat move B).

Then from the above considerations it follows that GtΛΓ(P (γ))k ∼=
⊕

ν∈ΛB
p

(k)
γ,∂i(ν)P (ν)〈k − 1〉.

Recalling the short exact sequence (4.1), let f̃ be the induced map P (λ′)• → GtΛΓ(P (γ))•. Then
by Proposition 4.3.1 it follows that the mapping cone Cone(f̃)• is a projective resolution of
V (λ)〈−1〉. Now note that

Cone(f̃)k = P (λ′)k−1 ⊕GtΛΓ(P (γ))k =
⊕
µ∈Λ

p
(k−1)
λ′,µ P (µ)〈k − 1〉 ⊕

⊕
ν∈ΛB

p
(k)
γ,∂i(ν)P (ν)〈k − 1〉.

We can therefore conclude that Cone(f̃)•〈1〉 is a projective resolution of V (λ) of the desired
form.

Theorem 4.3.3. DΛ is a Koszul algebra.

Proof. By Theorem 3.2.2, it suffices to show that DΛ is a standard Koszul algebra. We already
know that DΛ is quasi-hereditary (Theorem 2.3.3). The fact that DΛ is generated by its degree 0
and 1 parts is proven in [ES1, Theorem 6.10]. Theorem 4.3.2 precisely says that every standard
left DΛ-module has a linear projective resolution. Using the anti-automorphism ∗ : DΛ → Dop

Λ

from Proposition 1.4.2, we see that every standard right DΛ-module has a linear projective
resolution. So Theorem 3.2.2 applies, and DΛ is a Koszul algebra.

Corollary 4.3.4. For k ∈ N, let DkΛ ⊆ DΛ be the subalgebra spanned by all circle diagrams
containing at most k cups and at most k caps. Then DkΛ is Koszul.

Proof. Let Λk ⊆ Λ consist of all weights λ for which λ contains at most k cups. Write ek =∑
λ∈Λk eλ. Then DkΛ = ekDΛek.

Now note that if λ ∈ Λk and λ ≤ µ in the Bruhat order, then µ ∈ Λk. This implies that the
Bruhat order on Λ can be refined to a total order, such that ek = εl for some l ∈ Z>0 in the
sense of Remark 2.1.4. Then we are done by Corollary 3.2.11.
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In the next section we will try to understand the coefficients p
(k)
λ,µ appearing in Theorem 4.3.2,

which describe the projective resolution of a standard module. We will group them together as
the coefficients of polynomials

pλ,µ(q) =
∑
k∈N

p
(k)
λ,µq

k, (4.2)

which will be called dual Kazhdan–Lusztig polynomials. Note that these are actual polynomials:

p
(k)
λ,µ = 0 for k large enough. This is clear since the quasi-hereditary algebra DΛ has finite global

dimension; it also follows more explicitly from our inductive construction of the linear projective
resolutions in the proof of Theorem 4.3.2.

From the proof of 4.3.2, we get an inductive procedure to compute the coefficients p
(k)
λ,µ: if λ ∈ Λ

is maximal w.r.t. the Bruhat order, then p
(k)
λ,µ = 0 unless µ = λ and k = 0, in which case we get

p
(0)
λ,λ = 1. For λ not maximal we need to pick a Bruhat move B which can be applied to λ, and

we get

p
(k)
λ,µ =

{
p

(k−1)
λ′,µ , if µ /∈ ΛB,

p
(k−1)
λ′,µ + p

(k)
γ,∂i(µ), if µ ∈ ΛB,

(4.3)

where ΛB, λ′, γ and ∂i(µ) are as in the proof of Theorem 4.3.2.

Using (4.3), one can check that for λ � µ, it holds that p
(k)
λ,µ = 0 for all k, and that for all λ ∈ Λ,

we have that p
(k)
λ,λ = 0 for k 6= 0 and p

(0)
λ,λ = 1.

The following result is similar to [BS2, Corollary 5.5]:

Corollary 4.3.5. For λ, µ ∈ Λ,k ∈ N, the graded vector space EXTk
DΛ

(V (λ), L(µ)) is concen-
trated in degree −k, and

dim EXTk
DΛ

(V (λ), L(µ)) = p
(k)
λ,µ.

Proof. We compute EXTk
DΛ

(V (λ), L(µ)) by applying the functor HOMDΛ
( , L(µ)) to the pro-

jective resolution of V (λ) from Theorem 4.3.2. EXTk
DΛ

(V (λ), L(µ)) is given by the k’th cohomo-
logy of the complex

0→ HOMDΛ
(P 0(λ), L(µ))→ HOMDΛ

(P 1(λ), L(µ))→ · · · .

Since P k(λ) =
⊕

µ∈Λ p
(k)
λ,µP (µ)〈k〉, it follows that HOMDΛ

(P k(λ), L(µ)) is concentrated in degree

−k, and dim HOMDΛ
(P k(λ), L(µ)) = p

(k)
λ,µ. It follows that all differentials in the above complex

are 0. So EXTk
DΛ

(V (λ), L(µ)) ∼= HOMDΛ
(P k(λ), L(µ)) and we are done.

Define the matrix

PΛ(q) := (pλ,µ(q))λ,µ∈Λ ,

where pλ,µ(q) are the dual Kazhdan–Lusztig polynomials from (4.2).

Corollary 4.3.6. The matrix PΛ(−q) is inverse to the decomposition matrix
DΛ(q) = (dλ,µ(q))λ,µ∈Λ =

(
qdeg(λµ)

)
λ,µ∈Λ

.
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Proof. From the long exact sequence in Theorem 4.3.2, it follows that in the Grothendieck group
[DΛ-gmod], we have that

[V (λ)] =
∑
k∈N

(−1)k[P k(λ)]

=
∑
k∈N
µ∈Λ

(−1)kqkp
(k)
λ,µ[P (µ)]

=
∑
µ∈Λ

pλ,µ(−q)[P (µ)].

Since P (λ) =
∑

µ∈Λ dλ,µ(q)[V (µ)], our theorem is proven.

Remark 4.3.7. The previous corollary implies that the dual Kazhdan–Lusztig polynomials give
the decomposition numbers for the Koszul dual algebra D!

Λ.
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5 Combinatorics of dual Kazhdan–Lusztig polynomials

In this section, we will give two explicit combinatorial descriptions of the Kazhdan–Lusztig
polynomials. The first one (Theorem 5.2.8) is based on [CHR]: one can compute pλ,µ(q) by
counting so-called paths from λ to µ. The second description goes back to a beautiful closed
formula discovered by Lascoux and Schützenberger [LS]. In our language (see [BS2, Section 5]
for the type A case) we get a way of computing pλ,µ(q) by counting λ-labellings of µµ (Theorem
5.3.4). We will connect our two descriptions by giving an explicit bijection between paths and
labellings (Theorem 5.4.7). As an application of Theorem 5.3.4, we give an easy combinatorial
description of the so-called Kostant weights (Theorem 5.5.4).
For this whole section, we will be working in a fixed block Λ.

5.1 Inductive definition of the dual Kazhdan–Lusztig polynomials

We start this section by fixing some notation:

• If λ̃ is obtained from λ by deleting positions i, i+ 1, we write λ̃ = ∂i(λ) (note that λ and
∂i(λ) don’t belong to the same block).

• B(λ) will always mean the weight obtained by applying some Bruhat move B to the weight
λ. Of course this only makes sense if the Bruhat move B can actually be applied to λ.

• If we want to specify the Bruhat move, we will write B = Ai for a type A move at position
i, and B = D1 for a type D move.

• If we write Bi(λ) this means that Bi is a Bruhat move at position i, but we don’t specify
whether it’s type A or type D. In other words: if i > 1, Bi(λ) will always mean Ai(λ).
B1(λ) can either mean A1(λ) or D1(λ) (note that it can’t happen that both A1 and D1

can be applied to λ, so the notation B1(λ) is unambiguous).

• For B a Bruhat move, we let ΛB be the set of weights in Λ to which B can be applied (see
also the proof of Theorem 4.3.2).

Definition 5.1.1. We define the dual Kazhdan–Lusztig polynomials pλ,µ(q) (for λ, µ ∈ Λ) in-
ductively as follows:

1. If λ = µ, then pλ,µ(q) = 1 and if λ � µ then pλ,µ(q) = 0.

2. If λ < µ, let Bi be a Bruhat move that can be applied to λ. We distinguish 2 cases:

pλ,µ(q) =

{
p∂i(λ),∂i(µ)(q) + qpBi(λ),µ(q), if µ ∈ ΛB,

qpBi(λ),µ(q), if µ /∈ ΛB.

Note that in the above definition we had to choose a Bruhat move. So we need to check that
the resulting polynomials are well-defined.
Comparing with (4.3), we find that the degree d coefficients of pλ,µ(q) are precisely the numbers

p
(d)
λ,µ which describe the projective resolution of the DΛ-module V (λ) (see Theorem 4.3.2), so

this definition agrees with (4.2). Since linear projective resolutions are unique, this shows that
pλ,µ(q) is well-defined.
We find it noteworthy that this fact can be proved purely combinatorially:
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Proposition 5.1.2. The polynomial pλ,µ(q) is well-defined, i.e. doesn’t depend on the choice of
the Bruhat move Bi.

Proof. Suppose both Bi and Bj are 2 Bruhat moves that can be applied to λ. We can assume
i + 1 < j. Depending on which of the 2 Bruhat moves Bi,Bj can be applied to µ, we need to
distinguish 4 cases.

1. If both Bi and Bj can be applied to λ, then the first way of computing pλ,µ(q) yields

pλ,µ(q) =p∂i(λ),∂i(µ)(q) + qpBi(λ),µ(q)

=p∂j−2(∂i(λ)),∂j−2(∂i(µ))(q) + qpBj−2(∂i(λ)),∂i(µ)(q)

+ qp∂j(Bi(λ)),∂j(µ)(q) + q2pBj(Bi(λ)),µ(q)

and the second way yields

pλ,µ(q) =p∂j(λ),∂j(µ)(q) + qpBj(λ),µ(q)

=p∂i(∂j(λ)),∂i(∂j(µ))(q) + qpBi(∂j(λ)),∂j(µ)(q)

+ qp∂i(Bj(λ)),∂i(µ)(q) + q2pBi(Bj(λ)),µ(q).

These are clearly equal, proving the independence of choice of index.

2. If Bi can be applied to µ, but Bj cannot, then the first way of computing pλ,µ(q) yields

pλ,µ(q) = p∂i(λ),∂i(µ)(q) + qpBi(λ),µ(q) = qpBj−2(∂i(λ)),∂i(µ)(q) + q2pBj(Bi(λ)),µ(q)

and the second way yields

pλ,µ(q) = qpBj(λ),µ(q) = qp∂i(Bj(λ)),∂i(µ)(q) + q2pBi(Bj(λ)),µ(q).

3. If Bj can be applied to µ, but Bi cannot, then the first way of computing pλ,µ(q) yields

pλ,µ(q) = qpBi(λ),µ(q) = qp∂j(Bi(λ)),∂j(µ)(q) + q2pBj(Bi(λ)),µ(q)

and the second way yields

pλ,µ(q) = p∂j(λ),∂j(µ)(q) + qpBj(λ),µ(q) = qpBi(∂j(λ)),∂j(µ)(q) + q2pBi(Bj(λ)),µ(q).

4. If neither Bi nor Bj can be applied to µ, then the first way of computing pλ,µ(q) yields

pλ,µ(q) = qpBi(λ),µ(q) = q2pBj(Bi(λ)),µ(q)

and the second way yields

pλ,µ(q) = qpBj(λ),µ(q) = q2pBi(Bj(λ)),µ(q).

Example 5.1.3. For sake of readability, we will write the dual Kazhdan–Lusztig polynomial
pλ,µ(q) as p

(
µ
λ

)
.
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1. The dual Kazhdan–Lusztig polynomial p
(∧∨∧∨
∨∧∨∧

)
can be computed in 2 ways:

p

(
∧ ∨ ∧∨
∨∧ ∨ ∧

)
= q · p

(
∧ ∨ ∧∨
∧ ∨ ∨∧

)
= q2 · p

(
∧ ∨ ∧∨
∧ ∨ ∧∨

)
= q2,

or

p

(
∧ ∨ ∧∨
∨ ∧ ∨∧

)
= q · p

(
∧ ∨ ∧∨
∨∧ ∧ ∨

)
= q2 · p

(
∧ ∨ ∧∨
∧ ∨ ∧∨

)
= q2.

2. The Kazhdan–Lusztig polynomial p
(∧∨∧∨
∧∧∧∧

)
can be computed as follows:

p

(
∧ ∨ ∧∨
∧∧ ∧ ∧

)
= q · p

(
∧ ∨ ∧∨
∨∨∧∧

)
= q · p

(
∧∨
∨∧

)
+ q2 · p

(
∧ ∨ ∧∨
∨ ∧ ∨∧

)
= q2 + q4.

5.2 Description via paths

In this subsection we give a different description of the dual Kazhdan–Lusztig polynomials. This
will be the type D analogue of the description in [CHR, Section 2.7]

Definition 5.2.1. A labelled weight is a weight λ ∈ Λ together with a bijection between the
set of symbols ∨ in λ, and the set {1, 2, . . . ,m}, where m ∈ N is the number of symbols ∨ in λ.
These labelled symbols will be denoted ∨1,∨2, · · · ,∨m.
Let λ be a labelled weight. Suppose the symbol at position i is a ∨k, and that it is the left end
of an (undotted) cap γ in λ. Then the right move Ri is defined by exchanging ∨k with the ∧ at
the other end of γ. We say that the move Ri deplaces the symbol ∨k.
Suppose the symbol at position i is an ∧, and that it is the left end of a (dotted) cap γ in λ.
Then the flip move Fi is defined as follows: replace the 2 ∧’s marking the endpoints of γ by
∨m+2 and ∨m+1 in that order. We say that the move Fi creates the symbols ∨m+1 and ∨m+2.

Note that every type A Bruhat move that can be applied to λ is a right move, and every type D
Bruhat move is a flip move. So we can think of right and flip moves as generalizations of Bruhat
moves: a Bruhat move is the same as a right move or a flip move in which the 2 symbols of λ
that change are consecutive.
The following lemma describes the effect of a right move or a flip move to the numbers `i(λ, µ)
(see Definition 1.1.5):

Lemma 5.2.2. Let λ, µ ∈ Λ, and suppose M is a right move or a flip move that can be applied
to λ. Write λ′ = M(λ).

• If M is a right move that switches the ∨ at at position i with the ∧ at position j > i,
then `k(λ

′, µ) = `k(λ, µ) − 1 for i ≤ k < j, and `k(λ
′, µ) = `k(λ, µ) for all other k. So

`(λ′, µ) = `(λ, µ)− (j − i).

• If M is a flip move that flips the ∧’s at positions i and j (i < j), then `k(λ
′, µ) = `k(λ, µ)−2

for k < i, `k(λ
′, µ) = `k(λ, µ) − 1 for i ≤ k < j, and `k(λ

′, µ) = `k(λ, µ) for j ≤ k. So
`(λ′, µ) = `(λ, µ)− (i+ j − 2).

In particular, if M is a Bruhat move then `(λ′, µ) = `(λ, µ)−1; if M is not a Bruhat move then
`(λ′, µ) < `(λ, µ)− 1.
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Proof. Follows immediately from the definitions.

Example 5.2.3. Let λ = ∧ ∨2 ∧ ∧ ∨1. Then

∧ ∨ ∧ ∧ ∨λλ =
2 1

.

So there are 2 moves that can be applied to λ: the right move R2 would turn λ into ∧∧∨2∧∨1,
and the flip move F1 would turn λ into ∨4 ∨2 ∧ ∨3 ∨1.

Definition 5.2.4. Let λ ∈ Λ. We can label λ in a canonical way by numbering the ∨’s from
right to left in ascending order. The resulting labelled weight will also be denoted by λ.
A path P starting at λ is a sequence

M1,M2, . . . ,Mr

where Mk is either a right move or a flip move, for which the following four conditions hold:

• For every 1 ≤ k ≤ r, the move Mk can be applied to the weight (Mk−1 ◦ · · · ◦M2 ◦M1)(λ).

• For 1 ≤ k ≤ l ≤ r, if Mk and Ml are both right moves: say Mk deplaces ∨α and Ml

deplaces ∨β. Then α ≤ β.

• For 1 ≤ k ≤ l ≤ r, if Mk is a flip move and Ml is a right move: say Mk creates ∨α+1,∨α
and Ml deplaces ∨β. Then α ≤ β.

• For 1 ≤ k ≤ l ≤ r, if Mk and Ml are both flip moves: say Mk = Fi and Ml = Fj (i.e. Mk

is at position i, and Ml at position j), then i < j.

The first condition ensures that µ := (Mr ◦ · · ·M2 ◦M1)(λ) is a well-defined weight in Λ. We
call µ the endpoint of the path, and say that P is a path from λ to µ.
The length `(P ) of a path is the number of moves it consists of.

Remark 5.2.5. The second and third conditions in the definition of a path mean that a path
does the following to λ:
First we put ∨1 in its final position using a number of right moves. Then similarly we put ∨2,
∨3, . . . , ∨m in their final positions.
Now we create 2 new ∨-symbols (∨m+1 and ∨m+2) with a flip move, and put them in their final
positions using right moves (first ∨m+1, then ∨m+2). This process of creating 2 new ∨-symbols
and deplacing them is repeated until we reach the weight µ.
The fourth condition ensures that, whenever we do a flip move at position i, no further moves
will be done to the left of i.

Proposition 5.2.6. If λ ≤ µ, there is a unique path from λ to µ that consists of Bruhat moves
only. This path is the unique path from λ to µ of maximal length. We will call it the trivial
path from λ to µ.

44



Proof. Since λ ≤ µ, there is a sequence of Bruhat moves from λ to µ. We claim that the
“canonical sequence”, introduced in the proof of Proposition 1.1.8, is the only sequence of Bruhat
moves from λ to µ which is also a path. Recall that this canonical sequence is constructed by at
each step applying to λ′ a type A Bruhat move at the rightmost index it can be applied to (i.e.
to the largest i for which λ′i = ∨ and `i(λ

′, µ) > 0), or a type D move if no type A move can be
applied to λ′. Note that in each intermediate step, the labels of the ∨’s are in descending order.
This ensures that the second and third condition in the definition of a path are satisfied. Since
a type D Bruhat move is always applied to the first index, the fourth condition is satisfied as
well.
Now let P be any sequence of Bruhat moves from λ to µ which is also a path, and suppose P is
not the canonical sequence. Look at the first move where P differs from the canonical sequence.
Before applying a Bruhat move there, it holds that the labels in λ′ are in descending order. Let
i be the largest index for which λ′i = ∨ and `i(λ

′, µ) > 0; write λ′i = ∨α. Then the next Bruhat
move is not at position i. This means that it either it is a type A move applied to a ∨β with a
label β > α, or it is a type D move. In both cases the definition of a path implies that no further
Bruhat moves can be made at index i. But since `i(λ

′, µ) > 0, this gives a contradiction. So the
only sequence of Bruhat moves from λ to µ which is also a path is the canonical sequence.
For P any path from λ to µ, it follows from Lemma 5.2.2 that every move M will decrease the
value of `(λ′, µ) by exactly 1 if M is a Bruhat move, and by strictly more than 1 if M is not
a Bruhat move. So the trivial path has length `(λ, µ), and any other path has strictly smaller
length.

Example 5.2.7. Let λ = ∧ ∧ ∧∧ and µ = ∧ ∨ ∧∨. Then there are 2 paths from λ to µ: the
trivial path

P1 : ∧ ∧ ∧∧ F1−→ ∨2 ∨1 ∧∧
R2−−→ ∨2 ∧ ∨1∧

R3−−→ ∨2 ∧ ∧∨1
R1−−→ ∧ ∨2 ∧∨1

which has length 4, and the path

P2 : ∧ ∧ ∧∧ F1−→ ∨2 ∨1 ∧∧
R1−−→ ∧ ∨1 ∧∨2

of length 2.
Note that for example the following sequence of moves

∧ ∧ ∧∧ F1−→ ∨2 ∨1 ∧∧
R2−−→ ∨2 ∧ ∨1∧

R1−−→ ∧ ∨2 ∨1∧
R3−−→ ∧ ∨2 ∧∨1

is NOT a valid path, since we are not allowed to deplace any ∨1 after ∨2 has been deplaced.

Theorem 5.2.8. The dual Kazhdan–Lusztig polynomial pλ,µ(q) can be computed as

pλ,µ(q) =
∑

P path from λ to µ

q`(P ).

Proof. If λ � µ there is no path from λ to µ, and if λ = µ there is exactly one path, of length 0.
We can suppose that λ < µ, and that the last symbol of λ is an ∧ (since if λ ends with l ∨’s, so
does µ, and we can throughout the whole proof ignore the last l symbols).
We will assume by induction that the theorem is already proven for all smaller blocks, and for
all λ′ ∈ Λ with λ′ > λ. If λ contains no symbols ∨, we distinguish 2 cases:
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1. µ /∈ ΛD1 (i.e. µ does not start with ∧∧.)
Then pλ,µ(q) = qpD1(λ),µ(q). Note that every path from λ to µ has to start with F1. (Else
we can’t change the first 2 symbols anymore.) So applying the induction hypothesis we
find

pλ,µ(q) =qpD1(λ),µ(q)

=
∑

P ′′ path from D1(λ) to µ

q`(P
′′)+1

=
∑

P path from λ to µ

q`(P ).

2. µ ∈ ΛD1 (i.e. µ starts with ∧∧.)
Then pλ,µ(q) = p∂1(λ),∂1(µ)(q) + qpD1(λ),µ(q). Now

{paths from λ to µ} ={paths from λ to µ starting with F1}
t {paths from λ to µ starting with Fi for some i > 1}.

By the fourth condition in Definition 5.2.4, the second set is in bijection with the set of
paths from ∂1(λ) to ∂1(µ). The first one is in bijection with the set of paths from D1(λ)
to µ. So

pλ,µ(q) =p∂1(λ),∂1(µ)(q) + qpD1(λ),µ(q)

=
∑

P ′ path from ∂1(λ) to ∂1(µ)

q`(P
′) +

∑
P ′′ path from D1(λ) to µ

q`(P
′′)+1

=
∑

P path from λ to µ

q`(P ).

If λ contains at least 1 symbol ∨, suppose the rightmost one (∨1) is at position i. We distinguish
2 cases:

1. µ /∈ ΛAi

Then pλ,µ(q) = qpAi(λ),µ(q). Note that all paths from λ to µ have to start with Ri: if
a path does not start with Ri, the symbols at positions i, i + 1 will stay ∨∧ throughout
the whole procedure. But then the resulting weight cannot equal µ by our assumption
µ /∈ ΛAi . So

pλ,µ(q) =qpAi(λ),µ(q)

=
∑

P ′′ path from Ai(λ) to µ

q`(P
′′)+1

=
∑

P path from λ to µ

q`(P ).

2. µ ∈ ΛAi

Then pλ,µ(q) = p∂i(λ),∂i(µ)(q) + qpAi(λ),µ(q). Now

{paths from λ to µ} ={paths from λ to µ starting with Ri}
t {paths from λ to µ not starting with Ri}.
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Recalling the second and third conditions in Definition 5.2.4, we find that the second set
is in bijection with the set of paths from ∂i(λ) to ∂i(µ). The first one is in bijection with
the set of paths from Ai(λ) to µ. So

pλ,µ(q) =p∂i(λ),∂i(µ)(q) + qpAi(λ),µ(q)

=
∑

P ′ path from ∂i(λ) to ∂i(µ)

q`(P
′) +

∑
P ′′ path from Ai(λ) to µ

q`(P
′′)+1

=
∑

P path from λ to µ

q`(P ).

Example 5.2.9. From Example 5.2.7 it follows that p
(∧∨∧∨
∧∧∧∧

)
= q4 + q2. Note that this agrees

with Example 5.1.3.

5.3 Description via labelled diagrams

Lascoux and Schützenberger [LS] discovered a beautiful closed formula for the computing the
dual Kazhdan–Lusztig polynomials of the type A arc algebra. In [BS2, Section 5], Brundan and
Stroppel reformulate this formula in terms of so-called labelled cap diagrams. In this section we
will discuss a version of this formula for our type D arc algebra DΛ.

Definition 5.3.1. For a cap diagram µ, we say that a cap γ is D-nested inside a cap γ, if either
γ lies under γ′, or γ′ is dotted and γ lies to the left of γ′.
Now let λ ≤ µ be 2 weights in Λ; suppose λ has m symbols ∨ and µ has m + 2k symbols ∨
(so `0(λ, µ) = 2k). Consider the oriented cap diagram µµ. A λ-labelling C of this oriented cap
diagram consists of assigning to every cap a natural number, such that the following properties
are satisfied:

1. If the left end of an undotted cap is at position i, its label is at most `i(λ, µ).

2. The label of any dotted cap is even and at most `0(λ, µ).

3. If a cap γ is D-nested inside another cap γ′, the label of γ is greater than or equal to the
label of γ′.

4. A cap may only have an odd label if there is some other cap above it or to the left of it
which has a strictly smaller label, or if there is a ray to the left of it.

Denote the set of λ-labellings of µµ by D(λ, µ). The value of a labelling C ∈ D(λ, µ), denoted
|C|, is defined to be the sum of the labels in C.

Note that the “0-labelling”, in which each cap gets label 0, is always a valid λ-labelling of µµ.

Example 5.3.2. Let λ = ∧ ∧ ∧∧ and µ = ∧ ∨ ∧∨. We want to find the λ-labellings of µµ. For
this it will be helpful to draw the following figure:

∧ ∨ ∧ ∨

∧ ∧ ∧ ∧λ =

`i(λ, µ) =

µ =
µ =

2 1 1 0
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From the definition, we see that µµ has exactly 2 λ-labellings: one labelling C1 in which the
unique cap of µµ has label 0, and the labelling C2 where this cap has label 1.

Example 5.3.3. Let’s try to find D(λ, µ), with λ and µ as in the following figure:

∧ ∧ ∨ ∧ ∧ ∧ ∨ ∨

∧ ∧ ∧ ∧ ∨ ∧ ∧ ∧λ =

`i(λ, µ) =

µ =
µ =

2 2 1 1 2 2 1 0

We will write a labelling

∧ ∧ ∨ ∧ ∧ ∧ ∨ ∨

x1 x2 x3

of µµ simply as (x1, x2, x3).
The first 2 conditions in Definition 5.3.1 imply that x1 can only be 0 or 2, x2 can only be 0 or
1, and x3 can only be 0 or 2. Since the second cap is D-nested inside the third one, and x2 is
at most 1, it must hold that x3 = 0 (third condition in Definition 5.3.1). This leaves us with
4 possible labellings: (0, 0, 0), (0, 1, 0), (2, 0, 0) and (2, 1, 0). The first three are valid labellings,
but the fourth one is not: the fourth condition in Definition 5.3.1 is violated.
So we conclude that µµ has exactly three λ-labellings: C1 = (0, 0, 0), C2 = (0, 1, 0), and C3 =
(2, 0, 0). We have |C1| = 0, |C2| = 1, and |C3| = 2.

Theorem 5.3.4. For λ ≤ µ, the dual Kazhdan–Lusztig polynomial pλ,µ(q) can be computed as

pλ,µ(q) = q`(λ,µ)
∑

C∈D(λ,µ)

q−2|C|.

Proof. If λ = µ then is exactly one λ-labelling of µµ, of value 0.
We can suppose that λ < µ, and that the last symbol of λ is an ∧ (since if λ ends with l ∨’s, so
does µ, and we can throughout the whole proof ignore the last l symbols).
We will use induction: suppose the theorem has been proven for all smaller blocks, and for all
λ′ ∈ Λ for which λ < λ′ ≤ µ.
If λ contains no symbols ∨, we distinguish 2 cases:

1. µ ∈ ΛD1 (i.e. µ starts with ∧∧.)
Then pλ,µ(q) = p∂1(λ),∂1(µ)(q) + qpD1(λ),µ(q). Let γ be the dotted cap in µ which connects
the first 2 symbols. Now

D(λ, µ) ={C ∈ D(λ, µ)|γ has label < `0(λ, µ)}
t {C ∈ D(λ, µ)|γ has label `0(λ, µ)}.

We claim that {C ∈ D(λ, µ)|γ has label < `0(λ, µ)} = D(D1(λ), µ). This follows immedi-
ately from the observation that `0(D1(λ), µ) = `0(λ, µ)− 2, and `i(D1(λ), µ) = `i(λ, µ) for
i > 1.
Next, we claim that there is a bijection

D(∂1(λ), ∂1(µ))↔ {C ∈ D(λ, µ)|γ has label `0(λ, µ)},
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constructed in the following (obvious) way: from a ∂1(λ)-labelling of ∂1(µ)∂1(µ) we ob-
tain a λ-labelling of µµ by labelling the first cap `0(λ, µ). We need to check that the
properties (1-4) in Definition 5.3.1 are preserved under our bijection. For this, note that
`i(∂1(λ), ∂1(µ)) = `i+2(λ, µ) for all i > 0, so that property 1 is preserved. Property 2 is
preserved since `0(∂1(λ), ∂1(µ)) = `0(λ, µ). Property 3 is preserved since if γ is D-nested
inside some other cap γ′, then γ′ is dotted hence its label is at most 2k. To check that
property 4 is preserved, note that, since λ has no symbols ∨, all occurring `i(λ, µ)’s are at
most `0(λ, µ), so no odd label with value > `0(λ, µ) can occur in C ∈ D(λ, µ).
We find by induction that

pλ,µ(q) =p∂1(λ),∂1(µ)(q) + qpD1(λ),µ(q)

=q`(∂1(λ),∂1(µ))
∑

C∈D(∂1(λ),∂1(µ))

q−2|C| + q`(D1(λ),µ)+1
∑

C∈D(D1(λ),µ)

q−2|C|

=q`(λ,µ)−2`0(λ,µ)
∑

C∈D(λ,µ)
γ has label `0(λ,µ)

q−2(|C|−`0(λ,µ)) + q`(λ,µ)
∑

C∈D(λ,µ)
γ has label <`0(λ,µ)

q−2|C|

=q`(λ,µ)
∑

C∈D(λ,µ)

q−2|C|.

2. µ /∈ ΛD (i.e. µ does not start with ∧∧.)
Then pλ,µ(q) = qpD1(λ),µ(q). We will prove that D(D1(λ), µ) = D(λ, µ). Note that
`1(D1(λ), µ) = `1(λ, µ) − 1 and `i(D1(λ), µ) = `i(λ, µ) for i > 1. So it suffices to show
that for no λ-labelling of µµ, the cap γ that starts at position 1 (if it exists) is undot-
ted and has label `1(λ, µ). If µ starts with ∨ this follows from property 4 (note that
`1(λ, µ) = `0(λ, µ)− 1 is odd), and if µ starts with ∧∨ then γ is a dotted cap.
Now

pλ,µ(q) =qpD1(λ),µ(q)

=q`(D1(λ),µ)+1
∑

C∈D(D1(λ),µ)

q−2|C|

=q`(λ,µ)
∑

C∈D(λ,µ)

q−2|C|.

If λ contains at least 1 symbol ∨, suppose the rightmost one is at position i. We distinguish 2
cases:

1. µ /∈ ΛAi

Then pλ,µ(q) = qpAi(λ),µ(q). We will prove that D(Ai(λ), µ) = D(λ, µ). Note that
`i(Ai(λ), µ) = `i(λ, µ) − 1 and `j(Ai(λ), µ) = `j(λ, µ) for j 6= i. So it suffices to show
that for no λ-labelling of µµ, the cap γ that starts at position i (if it exists) is undotted
and has label `i(λ, µ). If µ has ∨ at position i, then γ contains a cap starting at i+1 whose
label is at most `i+1(λ, µ) = `i(λ, µ)− 1, so γ has label at most `i(λ, µ)− 1 by property 3.
If µ has ∧ at position i then γ is a dotted cap.
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Now

pλ,µ(q) =qpAi(λ),µ(q)

=q`(Ai(λ),µ)+1
∑

C∈D(Ai(λ),µ)

q−2|C|

=q`(λ,µ)
∑

C∈D(λ,µ)

q−2|C|.

2. µ ∈ ΛAi

Then pλ,µ(q) = p∂i(λ),∂i(µ)(q) + qpAi(λ),µ(q). Let γ be the dotted cap in µ which connects
i and i+ 1. Now

D(λ, µ) ={C ∈ D(λ, µ)|γ has label < `i(λ, µ)}
t {C ∈ D(λ, µ)|γ has label `i(λ, µ)}.

We claim that {C ∈ D(λ, µ)|γ has label < `i(λ, µ)} = D(Ai(λ), µ). This follows immedi-
ately from the observation that `i(Ai(λ), µ) = `i(λ, µ)− 1, and `j(Ai(λ), µ) = `j(λ, µ) for
j 6= i.
Next, we claim that there is a bijection

D(∂i(λ), ∂i(µ))↔ {C ∈ D(λ, µ)|γ has label `i(λ, µ)},

constructed in the following (obvious) way: from a ∂i(λ)-labelling of ∂i(µ)∂i(µ) we obtain
a λ-labelling of µµ by giving γ the label `i(λ, µ). We need to check that the properties (1-4)
in Definition 5.3.1 are preserved under our bijection. Suppose we have C ∈ D(∂i(λ), ∂i(µ)).
We need to show that, if we extend C to C ′ ∈ D(λ, µ) by giving γ label `i(λ, µ), C ′ satisfies
the properties (1-4). 1 and 2 are trivial.
To check 3, we need to show that if γ is D-nested inside a cap β, it can’t happen that β
has label > `i(λ, µ). For this, look at the closest ∨ in µ to the left of i, and denote its
position by j. j is either the left end of β, or the left end of another cap D-nested in β.
Since `j(λ, µ) ≤ `i(λ, µ), and by using that C satisfies property 3 it follows that β has label
at most `i(λ, µ). This argument fails in the case that the leftmost ∨ in µ is at position i,
but in this case β is a dotted cap and `i(λ, µ) ≥ `0(λ, µ) so we’re also done.
To check property 4: suppose `i(λ, µ) is odd. We need to check that in C, there is a cap
lying above or to the left of γ, whose label is strictly smaller than `i(λ, µ). If i is not the
leftmost ∨ in µ, let the closest ∨ in µ to the left of i be at position j. By the arguments
from above, its corresponding cap has label at most `i(λ, µ), and we are done by applying
that C satisfies property 4. If i is the the leftmost ∨ in µ, then `i(λ, µ) > `0(λ, µ) (recall
that `i(λ, µ) is odd), and to the left of i there is either a dotted ray, or a dotted cap with
label at most `0(λ, µ).
We find by induction that

pλ,µ(q) =p∂i(λ),∂i(µ)(q) + qpAi(λ),µ(q)

=q`(∂i(λ),∂i(µ))
∑

C∈D(∂i(λ),∂i(µ))

q−2|C| + q`(Ai(λ),µ)+1
∑

C∈D(Ai(λ),µ)

q−2|C|

=q`(λ,µ)−2`i(λ,µ)
∑

C∈D(λ,µ)
γ has label `i(λ,µ)

q−2(|C|−`i(λ,µ)) + q`(λ,µ)
∑

C∈D(λ,µ)
γ has label <2`i(λ,µ)

q−2|C|

=q`(λ,µ)
∑

C∈D(λ,µ)

q−2|C|.
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From this description of the dual Kazhdan–Lusztig polynomials, it immediately follows that

p
(k)
λ,µ = 0 unless k ≡ `(λ, µ) (mod 2).

Example 5.3.5. 1. From Example 5.3.2, it follows that p
(∧∨∧∨
∧∧∧∧

)
= q4(1 + q−2) = q4 + q2.

Note that this is consistent with Example 5.1.3.

2. For λ, µ as in Example 5.3.3, we get that pλ,µ(q) = q11(1 + q−2 + q−4) = q11 + q9 + q7.

5.4 Connection between paths and labellings

If we compare Theorems 5.2.8 and 5.3.4, it follows that there must be a bijection{
paths from
λ to µ

}
1:1←→
{
λ-labellings

of µµ

}
= D(λ, µ),

where C ∈ D(λ, µ) corresponds to a path of length `(λ, µ) − 2|C|. The goal of this subsection
is to explicitly construct such a bijection. From now on, we will denote the set op paths from λ
to µ by P (λ, µ).
The bijection we want, can be defined as follows:

Definition 5.4.1. For λ and µ two weights, we define a map χ : P (λ, µ)→ D(λ, µ) as follows:
For a path P , we get a λ-labelling of µµ by the following procedure:

• Start with labelling every cap of µ with 0.

• For every right move Ri in P , if it deplaces a ∨ from i to j, increase the label of every cap
in µµ that lies strictly between i and j by 1.

• For every flip move Fi in P , if it makes a ∨ appear at positions i < j, increase the label of
every cap in µµ that lies strictly to the left of i by 2, and the label of every cap strictly in
between i and j by 1.

Remark 5.4.2. Note that at the moment we make a right move Ri that deplaces a ∨ from i
to j, the intermediate diagram λ′ has to agree with µ between i and j. In particular, since in λ′

i and j are connected by a cap, the portion of µ that lies strictly between i and j consists only
of caps. We can make a similar observation for flip moves.

The procedure we just described assigns a label to every cap of µµ. We need to check that this
assignment actually is a λ-labelling in the sense of Definition 5.3.1:

Theorem 5.4.3. The map χ is well-defined, i.e. the above procedure really gives a λ-labelling
of µµ.

Proof. We check that the labelling χ(P ) satisfies the four conditions of Definition 5.3.1:

1. Suppose λ has x ∨’s strictly to the right of position i. If the cap starting at i has label `,
this implies that µ has at least x+` ∨’s strictly to the right of position i. By the definition
of `i(λ, µ), it follows that ` ≤ `i(λ, µ).

2. This is clear since the label of a dotted cup can only increase if an F -move is made to the
right of it, and the total number of F -moves made is equal to k.
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3. By construction, when we increase the label of a cap, the label of every cap lying under
it is also increased. When we increase the label of a dotted cap, this happens by applying
an F -move to the right of it, hence every label to the left is also increased.

4. Suppose the cap γ of µ that starts at position i has odd label. This means that there is
x < i < y such that there is a certain move M of P which is either a right move deplacing
a ∨ from x to y, or a flip move creating ∨’s at x and y. Note that in both cases, after M
no further moves can be applied strictly between x and y. Now look at the position x in
µµ. If there is a ray at that position we are done. If it is the end of a cap β, we claim that
β has a strictly smaller label than γ. Indeed: after the move M , β has label 0 and γ has
label at least 1, and every subsequent move that increases the label of β also increases the
label of γ.

To prove that χ is a bijection, we will need to introduce the auxiliary notion of a vertex num-
bering :

Definition 5.4.4. Fix a weight λ ∈ Λ.

1. A vertex numbering of λ is an assignment of a natural number to each position in λ. We
will denote the set of vertex numberings of λ by N(λ). If y is a vertex numbering, |y| will
denote the sum

∑
i y(i).

2. We define a map Φ : {Paths starting at λ} → N(λ) as follows: given a path P , we assign
to the i’th position of λ the number of moves that takes place at position i (i.e. the number
of moves Mk in the path P = M1, . . . ,Mr such that Mk = Ri or Mk = Fi).

3. For µ another weight, we define a map Ψ : D(λ, µ) → N(λ) as follows: given a labelling
C, we assign to the i’th position of λ the number `i(λ, µ)−xi, where xi is the label (in C)
of the cap that ends in i (and xi = 0 if a ray ends in i).

Remark 5.4.5. We have that |Φ(P )| is equal to the length of the path P , and |Ψ(C)| =
`(λ, µ)− 2|C|.

The idea is that the inverse map to χ : P (λ, µ) → D(λ, µ) can be computed as the following
composition:

D(λ, µ)
Ψ−→ N(λ)

Φ−1

−−→ P (λ, µ).

Note that Φ can never be a bijection. However we will see that Φ is an injection with im Φ =
im(Ψ), so that the above composition makes sense.
To make this precise, we prove the following lemma:

Lemma 5.4.6. 1. The map Φ is injective.

2. The following diagram commutes:

P (λ, µ) D(λ, µ)

N(λ)

χ

Φ

Ψ

Proof. To prove the first statement: Suppose we are given a vertex numbering y of λ which is
in the image of Φ. We will describe an algorithm for finding an inverse image of y, and then
argue that every inverse image of y has to be given by this algorithm.
The algorithm is the following:
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• If all numbers of the vertex numbering y are 0, stop.

• If there is a ∨ so that the corresponding number is not 0, consider the rightmost one (say
it is at position i), and apply the right move Ri to it. Then decrease the number y(i) by
1.

• If for every ∨ the corresponding number is 0, pick the leftmost ∧ whose label is not 0 (say
it is at position i), and apply the flip move Fi to it. Then decrease the number y(i) by 1.

We note that this algorithm is a generalization of the procedure described in the proof of
Proposition 1.1.8: if we start from the vertex numbering yi = `i(λ, µ), the algorithm will produce
the trivial path/canonical sequence from λ to µ.
Now let P be any path such that Φ(P ) = y. Suppose we have already proven that the first k
steps of the above algorithm correspond to the first k moves of P . Consider the situation after
k steps of the algorithm.
If there is a ∨ so that the corresponding number is not 0, consider the rightmost one (say it is
at position i). Then strictly less then y(i) moves have been applied to position i in the first k
moves of P , so P needs to contain another move at i. But by the definition of a path, if the next
move is not at i, no moves will be applied to this ∨ again, and we get a contradiction. Hence
the k + 1’th move in P is an R-move at position i.
If for every ∨ the corresponding number is 0, pick the leftmost ∧ whose label is not 0 (say it is
at position i). Then strictly less then y(i) moves have been applied to position i in the first k
moves of P , so P needs to contain another move at i. But by the definition of a path, if the next
move is not at i, no moves will be applied to this ∧ again, and we get a contradiction. Hence
the k + 1’th move in P is an F -move at position i.
To prove the second statement: let P ∈ P (λ, µ) be a path, and write Φ(P ) = y. Then y(i) is
the number of moves in P that is made at position i. Note that the moves of P need to increase
the number of symbols ∨ in λ that lie strictly to the right of i by `i(λ, µ). Since every move at
i will increase this number by 1, we get that `i(λ, µ) = y(i) + ci, where ci is the contribution
of right moves that deplace a ∨ from strictly to the left of i to strictly to the right of i, and of
flip moves not applied at i that create one or two ∨’s strictly to the right of i. Now it suffices
to show that ci = xi, where xi is the number appearing in the definition of Ψ (see Definition
5.4.4). But this follows easily from Definition 5.4.1.

Now our desired result easily follows:

Theorem 5.4.7. 1. The map χ defined in Definition 5.4.1 is a bijection.

2. For C ∈ D(λ, µ), its inverse image χ−1(C) cap be computed as Φ−1(Ψ(C)).

3. The bijection χ is compatible with path length and value of labellings in the following sense:
for P ∈ P (λ, µ), the length of P is equal to `(λ, µ)− 2|χ(P )|.

Proof. Applying Lemma 5.4.6, we find that χ is injective since Φ is. By Theorems 5.2.8 and
5.3.4, P (λ, µ) and D(λ, µ) have the same cardinality. So χ is a bijection.
The second statement now follows immediately from Lemma 5.4.6, and the last one follows from
Remark 5.4.5.

Note that the proof of the first part of Lemma 5.4.6 provides us with an explicit algorithm to
compute χ−1(C) = Φ−1(Ψ(C)).

53



Example 5.4.8. As in Examples 5.2.7 and 5.3.2, let λ = ∧ ∧ ∧∧ and µ = ∧ ∨ ∧∨. Then
P (λ, µ) consists of the two paths P1 and P2 from Example 5.2.7, and D(λ, µ) consists of the two
labellings C1 and C2 from Example 5.3.2. We find that χ(Pi) = Ci for i ∈ {1, 2}. Note that the
equation `(Pi) = `(λ, µ) − 2|Ci| holds for i ∈ {1, 2}. We can also compute the corresponding
vertex numberings: we get that Φ(P1) = Ψ(C1) = ∧2∧1∧1∧0, and Φ(P2) = Ψ(C2) = ∧2∧0∧0∧0.

5.5 Kostant weights

Definition 5.5.1. A weight µ ∈ Λ is called a Kostant weight, if∑
k≥0

dim EXTk
DΛ

(V (λ), L(µ)) ≤ 1

for all λ ∈ Λ.

In other words, µ is a Kostant weight if and only for every weight λ, the linear projective
resolution of V (λ) contains at most one term Pk(λ) which has a summand P (µ)〈k〉.

Proposition 5.5.2. µ ∈ Λ is a Kostant weight if and only if pλ,µ(q) = q`(λ,µ) for all λ ≤ µ.

Proof. This follows immediately from Corollary 4.3.5, since we know that for λ ≤ µ, pλ,µ(q) will
always have a term q`(λ,µ).

Similar to [BS2, Lemma 7.2], we will now give an explicit combinatorial description of the
Kostant weights. Our proof will use the description of dual Kazhdan–Lusztig polynomials via
labelled diagrams (see Subsection 5.3).

Definition 5.5.3. Let χ be a sequence of ∧’s and ∨’s. We say that a weight µ ∈ Λ is χ-avoiding,
if the symbols of χ don’t occur in Λ as a subsequence.
For example, µ is ∧ ∨ ∧∨-avoiding if we can’t find vertices i < j < k < l whose labels in µ are
∧, ∨, ∧, ∨, respectively.

Theorem 5.5.4. For a weight µ ∈ Λ, the following are equivalent:

1. µ is a Kostant weight.

2. µ is ∧ ∨ ∧∨-avoiding, ∧ ∧ ∨∨-avoiding, ∨ ∨ ∧∨-avoiding and ∨ ∧ ∨∨-avoiding.

Proof. Suppose that the second condition is satisfied. Let λ ≤ µ. We need to prove that there
is only one λ-labelling of µµ, namely the one where all labels are 0. So let C ∈ D(λ, µ). Note
that it suffices to prove that every small cap of µµ has label 0 (by small cap we mean a cap for
which no other cap is D-nested inside of it, see Definition 5.3.1). So let i, i+ 1 be vertices which
are the endpoints of a small cap γ in µ.
We first consider the case where γ is undotted; then µi = ∨ and µi+1 = ∧. If in µ all symbols to
the right of i+ 1 are ∧’s, then since λ ≤ µ, also in λ all symbols to the right of i+ 1 (including
i + 1 itself) are ∧’s, so that `i(λ, µ) = 0, and γ has label 0. If in µ there is a ∨ to the right of
i+ 1, then by our hypothesis, i = 1 and µ looks like ∨∧· · ·∨ · · · , where the dots mean a number
of ∧’s. Since µ has only 2 ∨’s and λ ≤ µ, λ has either exactly 2 ∨’s, or none at all. In the former
case, we find that `1(λ, µ) = 0, so that γ has label 0. In the latter case we have λ = ∧ ∧ · · · ∧,
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and `1(λ, µ) = 1. Now use use condition 4 from Definition 5.3.1: since there no no other ray or
cap above or to the left of γ, it can’t have an odd label, so γ has label 0.
Now consider the case where γ is dotted, so that i and i + 1 have label ∧. Since γ is a small
cap, we have i = 1. By our hypothesis, µ has at most one symbol ∨. Since λ ≤ µ, λ must have
the same number (0 or 1) of symbols ∨, so that all dotted caps are labelled 0.
For the other direction, suppose µ contains one of the sequences ∧∨∧∨, ∨∨∧∨, ∨∧∨∨, ∧∧∨∨.
We need to find a λ ≤ µ and a λ-labelling C ∈ D(λ, µ) such that C has at least one non-zero
label.
First suppose µ contains ∧∨∧∨. Clearly it’s possible to find i < j < j+ 1 < l such that µi = ∧,
µj = ∨, µj+1 = ∧ and µl = ∨. We pick i, j, l with this property such that l − i is minimal. Let
λ be the weight obtained from µ by interchanging the labels on the ith and lth vertices. Then
`j(λ, µ) = 1, and µ has a small cap γ with endpoints j, j + 1. We claim that labelling this cap
1 and every other cap 0 gives a valid λ-labelling of µµ: the first three conditions are clearly
satisfied; for the fourth one note that i is either the endpoint of a ray, or the endpoint of a cap
with label 0.
Now suppose µ contains ∨ ∨ ∧∨. As before, pick i < j < j + 1 < l with these labels, such that
l − i is minimal with this property. Let λ be the weight obtained from µ by replacing the ∨’s
on vertices i and l by ∧’s. Then `j(λ, µ) = 1, and µ has a small cap γ with endpoints j, j + 1.
As before, labelling this cap 1 and every other cap 0 gives a λ-labelling of µµ as desired.
Next, suppose µ contains ∨ ∧ ∨∨. Pick i < i+ 1 < j < l with these labels. Let λ be the weight
obtained from µ by replacing the ∨’s on vertices j and l by ∧’s. Then `i(λ, µ) = 2, and µ has a
small cap γ with endpoints i, i + 1. Labelling this cap 2 and every other cap 0 clearly gives a
λ-labelling of µµ as desired.
Finally, suppose µ contains ∧ ∧ ∨∨. We can suppose the first 2 symbols of µ are ∧’s, since else
µ also contains ∨ ∧ ∨∨ and we are done by the above. Let λ be the weight obtained from µ by
replacing the ∨’s on vertices 1 and 2 by ∧’s. Then µ has a small (dotted) cap γ with endpoints
1, 2. Labelling this cap 2 and every other cap 0 clearly gives a λ-labelling of µµ as desired.

Remark 5.5.5. If µ is a Kostant weight, we can imitate [BS2, Theorem 7.3] to obtain a so-called
BGG-resolution

· · · → V2 → V1 → V0 → L(µ)→ 0

of L(µ), where

Vk :=
⊕
λ≤µ

`(λ,µ)=k

V (λ)〈k〉.

This construction goes back to Bernstein, Gelfand and Gelfand [BGG] and Lepowsky [L].
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6 The subalgebra HΛ

6.1 Definition of HΛ

Let Λ be an n-block, and let Λ◦ ⊆ Λ be the subset of all weights λ for which λ has at most
one ray (i.e. in the case that n is even λ has no rays, in the case that n is odd λ has exactly
one ray). Define the idempotent e0 :=

∑
λ∈Λ◦ eλ ∈ DΛ. The algebra HΛ is defined to be the

idempotent truncation e0DΛe0. Explicitly, it is the subalgebra HΛ ⊆ DΛ with basis given by
{µλν|µ, ν ∈ Λ◦, λ ∈ Λ, µ ⊂ λ ⊃ ν}.
HΛ is the type D analogue of Khovanov’s original arc algebra (see for example [BS1]). It arises
for example when studying type D Springer fibers, see [ES2].
HΛ can also be described in the following way:

Fact 6.1.1 ([ES1, Corollary 9.3]). Let Λ = Λ0
n. Then the algebra HΛ is the endomorphism

algebra of the sum of all indecomposable projective-injective DΛ-modules.

From the definition of HΛ, we immediately deduce:

Proposition 6.1.2 ([ES1, Corollary 7.5]). HΛ is a cellular algebra.

Proof. Since HΛ is an idempotent truncation of the cellular algebra DΛ, this follows from [KX,
Proposition 4.3].

In the language of section 2.2, it holds that the cell modules of HΛ are indexed by Λ, while the
simple and projective modules are indexed by Λ0. In particular, for n > 1, HΛ is no longer a
quasi-hereditary algebra (see Proposition 2.2.4).
From now on, we will for sake of simplicity assume that Λ is an n-block with n even; we will
write n = 2k. Note that this means that all appearing circle diagrams consist of circles only
(and no lines).

6.2 Symmetric algebra structure

In this section we will prove that the algebra HΛ can be given the structure of a symmetric
algebra. Let us first recall the definition:

Definition 6.2.1. A symmetric algebra (or symmetric Frobenius algebra) is a finite-dimensional
k-algebra A together with a linear functional τ : A → k such that the induced bilinear form
β : A⊗A→ k : a⊗ b 7→ τ(ab) is nondegenerate and symmetric.

For a basis vector aλb ∈ HΛ, let (aλb)# denote the basis vector of HΛ whose diagram is obtained
by reversing the orientation of every circle in the diagram b∗λa∗. Note that the top degree
component of HΛ lives in degree n, and has basis {e#

λ |λ ∈ Λ◦}.
In the following lemma, we want to compute the product (aλb)(aλb)#. It is not hard to see
that, up to a sign, this product equals aµa∗ (where µ is the unique weight such that all circles in
aµa∗ are clockwise). To write down what this sign precisely is, we need the following auxiliary
definitions:
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Definition 6.2.2. Let b be a cap diagram with no rays. For γ a cap in b, we will write i(γ)
resp. j(γ) for its left resp. right endpoint. Define sgn(b) :=

∏
γ∈caps(b) (−1)i(γ).

For ab a circle diagram, define T (ab) ⊆ {1, · · · , n} to be the set of indices i such that if we walk
from i to t(Ci) along cups and caps, we use an even number of cups/caps. (Here Ci is the circle
in ab to which i belongs, and t(C) is the tag of C, as defined in Definition 1.2.10.)
Furthermore, we define T ′(ab) ⊆ T (ab) to be the elements of T (ab) which are the left end of an
undotted cap.
Finally, we define

Sgn(ab) :=

( ∏
C circle in ab

(−1)t(C)−1

)
(−1)|T

′(ab)|(−1)|T
′(b∗a∗)|.

It follows immediately from the definition that Sgn(ab) = Sgn(b∗a∗).

Lemma 6.2.3. Let aλb be a basis vector of HΛ. Then

(aλb)(aλb)# = sgn(b) Sgn(ab)(aµa∗)

where µ is the unique weight such that every circle in aµa∗ is oriented clockwise.

Proof. Recalling Definition 1.3.5, we first need to compute

y := χab,b∗a∗
(

Ψab(aλb)⊗Ψb∗a∗((aλb)
#)
)
∈M(aa∗).

First note that

Ψab(aλb) ·Ψb∗a∗((aλb)
#) =

∏
C circle in ab

Xt(C).

(This follows directly from the definition of (aλb)#.)
Now we need to compute y ∈ M(aa∗) using some surgery procedure (see Definition 1.3.4).
Suppose ab has m circles. We consider the surgery procedure where we write ab under b∗a∗ and
then always glue the rightmost cup/cap pair that hasn’t been glued already (with “rightmost
cup/cap” we mean more precisely the cup/cap with the rightmost right end). It’s easy to see
this is a well-defined surgery procedure (i.e. all intermediate steps are admissible diagrams).
For every circle in ab, the first surgery that involves this circle is necessarily a merge. So of our
k surgeries, there are at least m merges. Since at the start we have 2m circles and at the end
we have k circles, the remaining k −m surgeries are necessarily splits.
For a cap γ, let i(γ) resp. j(γ) denote its left end resp. right end. Let X be the set of caps γ in
b for which j(γ) 6= t(Cγ) (where Cγ is the circle where γ belongs to). Then we have that

y =

( ∏
C circle in ab

Xt(C)

)∏
γ∈X

(
(−1)i(γ)(Xj(γ) ±Xi(γ))

) ,

where the signs depend on whether or not γ is dotted. Now note that

sgn(b) =
∏

γ∈caps(b)

(−1)i(γ) =

∏
γ∈X

(−1)i(γ)

( ∏
C circle in ab

(−1)t(C)−1

)
.
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(Here we used the obvious observation that, for every cap γ, i(γ) and j(γ) have different parity.)
So this becomes

y = sgn(b)

( ∏
C circle in ab

(−1)t(C)−1

)( ∏
C circle in ab

Xt(C)

)∏
γ∈X

(
Xj(γ) ±Xi(γ)

) .

If we expand the product (
∏
C circle in abXt(C)) · (

∏
γ∈X (Xj(γ) ±Xi(γ))), we find that exactly one

term survives, which equals (−1)|T
′(ab)|∏

i∈T (ab)Xi. So we get

y = sgn(b)(−1)|T
′(ab)|

( ∏
C circle in ab

(−1)t(C)−1

) ∏
i∈T (ab)

Xi

 .

Finally, we note that

∏
i∈T (ab)

Xi = (−1)|T
′(b∗a∗)|

 ∏
i right end of a cap in a∗

Xi

 ∈M(aa∗)

so that

y = sgn(b)

( ∏
C circle in ab

(−1)t(C)−1

)
(−1)|T

′(ab)|(−1)|T
′(b∗a∗)|

 ∏
i right end of a cap in a∗

Xi


= sgn(b) Sgn(ab)

 ∏
i right end of a cap in a∗

Xi

 .

Now we can compute that

(aλb)(aλb)# = Ψ−1
aa∗(y)

= sgn(b) Sgn(ab)Ψ−1
aa∗

 ∏
i right end of a cap in a∗

Xi


= sgn(b) Sgn(ab)(aµa∗),

where µ is the unique weight such that every circle in aµa∗ is oriented clockwise.

Example 6.2.4. Consider the diagram

aλb = ∨ ∧ ∨ ∨ .

We find that T (ab) = {2, 4}, T ′(ab) = ∅, and T ′(b∗a∗) = {2}. So we get sgn(b) = (−1)1 · (−1)3 =
+1, and Sgn(ab) = (−1)4−1 · (−1)0 · (−1)1 = +1.
So (aλb)(aλb)# = aµa∗, where µ = ∨∧∨∨ is the unique weight such that all circles in aµa∗ are
clockwise. Note that this is precisely the product we computed in Example 1.3.7.

We will introduce one more notation: write S̃gn(ab) := sgn(a∗) sgn(b) Sgn(ab). Note that

S̃gn(ab) = S̃gn(b∗a∗).
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Theorem 6.2.5. Define τ : HΛ → k to be the linear map sending every basis vector (aµa∗) of
degree n to sgn(a∗), and every other basis vector to 0. Then

τ((aλb)(cµd)) =

{
S̃gn(ab), if (cµd) = (aλb)#,

0, else.

Since S̃gn(ab) = S̃gn(b∗a∗), this implies that the induced bilinear form β : HΛ ⊗ HΛ → k is
nondegenerate and symmetric. Hence τ is a symmetrizing form making HΛ into a symmetric
algebra.

Proof. It’s clear that τ((aλb)(cµd)) = 0 unless d = a∗ and c = b∗. If a circle in aλb and
its corresponding circle in b∗µa∗ are both clockwise oriented, the product will be 0. On the
other hand, if a circle in aλb and its corresponding circle in b∗µa∗ are both counterclockwise
oriented, the product will not have maximal degree. So we conclude that τ((aλb)(cµd)) = 0
unless (cµd) = (aλb)#.
By Lemma 6.2.3, we find that

τ((aλb)(aλb)#) = sgn(b) Sgn(ab)τ(aµa) = sgn(b) Sgn(ab) sgn(a∗) = S̃gn(ab),

so our proof is finished.

Remark 6.2.6. The fact that HΛ is a symmetric algebra was already known: it follows from
[MS, Theorem 5.4(1)] (see also [HL]), taking into account Fact 6.1.1 and the isomorphism DΛ

∼=
Op

0(so(2n)) mentioned in the introduction. However, our proof is much more explicit, and
provides us with an explicit symmetrizing form.

6.3 The comultiplication

Let A be a symmetric algebra, with symmetrizing form τ and pairing β. The requirement that β
is nondegenerate can be equivalently formulated as the existence of a linear map γ : k → A⊗A
such that the composition

A
γ⊗id−−−→ A⊗A⊗A id⊗β−−−→ A (6.1)

is the identity. (To verify this: note that clearly such a γ cannot exist if β is degenerate. If β is
nondegenerate, we can find an orthonormal basis {vi|i ∈ I} for A, and define γ by mapping 1
to
∑
vi ⊗ vi.)

We can use this to define the comultiplication map ∆ : A→ A⊗A as the composition

∆ : A
γ⊗id−−−→ A⊗A⊗A id⊗µ−−−→ A⊗A. (6.2)

(Here µ : A ⊗ A → A is the multiplication map.) The maps µ and ∆ satisfy the so-called
Frobenius relation: the following diagram commutes:

A⊗A A

A⊗A⊗A A⊗A

µ

∆⊗id ∆

id⊗µ
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Remark 6.3.1. All of the above can be generalized to arbitrary Frobenius algebras. These are
algebras A equipped with an associative nondegenerate pairing β, which doesn’t need to be
symmetric. See [Ko] for more about Frobenius algebras, including a connection 2-dimensional
TQFTs.

We will now explicitly describe the comultiplication map for our case A = HΛ.
We first need to find the map γ : k → HΛ ⊗HΛ satisfying (6.1).

Claim 6.3.2. The linear map γ : k → HΛ ⊗HΛ defined by sending 1 to∑
cµd∈HΛ

S̃gn(cd)(cµd)⊗ (cµd)#

satisfies (6.1).

Proof. This follows from Theorem 6.2.5: for aλb ∈ HΛ, we have that∑
cµd∈HΛ

S̃gn(cd)(cµd)τ
(

(cµd)#(aλb)
)

= aλb.

Now we can explicitly write down the comultiplication as in (6.2): we get that

∆(xνy) =
∑

cµd∈HΛ

S̃gn(cd)(cµd)⊗
(

(cµd)#(xνy)
)

.

This can be rewritten as follows:

∆(xνy) =
∑

aλb∈HΛ

S̃gn(ab)(aλb)# ⊗
(

(aλb)(xνy)
)

=
∑

aλb∈HΛ
cµd∈HΛ

S̃gn(cd) S̃gn(ab)(aλb)# ⊗ (cµd)#τ
(

(cµd)(aλb)(xνy)
)

=
∑

aλb,cµd∈HΛ

(cµd)(aλb)=(xνy)#

S̃gn(xy) S̃gn(cd) S̃gn(ab)(aλb)# ⊗ (cµd)#

=
∑

aλb,cµd∈HΛ

(cµd)(aλb)=(xνy)#

Sgn(cb) Sgn(ca∗) Sgn(ab)(aλb)# ⊗ (cµd)#.

We note that deg (∆(xνy)) = deg(xνy) + n.
In the appendix we will describe the comultiplication for the sign-adjusted version of HΛ, as
defined by Ehrig, Tubbenhauer and Wilbert [ETW]. The formula will look a lot nicer since no
signs will show up.
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Outlook and further questions

There is a connection between type D arc algebras, and the representation theory of the or-
thosymplectic Lie supergroup OSp(r|2n). In [ES3], it is shown that the blocks of the category
of finite-dimensional representations of OSp(r|2n) can be described by certain algebras AB,
which can be described as a subquotient of a certain limit of type D arc algebras DΛ. One can
think of AB as an infinite-dimensional version of the type D arc algebra, where the occurring
weights are infinite sequences (indexed by Z>0) of ∧’s and ∨’s, and the occurring cup and cap
diagrams are infinite, but with a fixed (finite) number of cups/caps. As one can explicitly check
in small examples, AB- mod is not a highest weight category.
It was conjectured in [ES3, Conjecture D] that the algebras AB are Koszul. A similar result is
true in the type A case: here the category of finite-dimensional representations of GL(m|n) is
described by certain infinite-dimensional type A arc algebras [BS4], and it was already proven
in [BS2, Corollary 5.13] that these are Koszul. The proof essentially follows from describing
the infinite-dimensional algebra as a limit of finite-dimensional ones, for which Koszulity has
already been proven. However, the methods from [BS2] do not seem to suffice to show that our
type D algebras AB are Koszul.
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A Connection to the sign-adjusted algebra

A.1 The sign-adjusted multiplication rule

In [ETW, 5.2], an alternative multiplication rule is introduced, leading to a sign-adjusted version
DΛ of our algebra. The multiplication rule in DΛ is the same as the one for DΛ, and there
is an isomorphism DΛ

∼= DΛ of algebras ([ETW, Proposition 5.11]). In practice, the sign-
adjusted version is often more convenient to work with since there are fewer minus-signs during
computations. Perhaps more importantly, DΛ has a topological interpretation in terms of certain
TQFTs (see [ETW]).
We will now describe how one can define the sign-adjusted multiplication. The definition will
be very similar to the one for the ordinary multiplication, see Subsection 1.3.

Definition A.1.1. Let λ, ν ∈ Λ and assume that the circle diagram λν can be oriented. Then
Ĩλν is defined to be the ideal in k[Xi|1 ≤ i ≤ n] generated by:

• X2
i for all 1 ≤ i ≤ n.

• Xi −Xj if i, j are connected by an undotted cup or cap.

• Xi +Xj if i, j are connected by a dotted cup or cap.

• Xi if i is the endpoint of a ray.

Define the vector space M̃(λµ) := k[Xi|1 ≤ i ≤ n]/Ĩλν .

Similar to Proposition 1.3.2, we have:

Proposition A.1.2. There is an isomorphism of vector spaces

Ψλν : λ(DΛ)ν −→ M̃(λν),

λµν 7−→
∏

C∈Cclock(λµν)

Xt(C)

where Cclock(λµν) is the set of clockwise oriented circles in λµν.

Definition A.1.3. Suppose we are given two circle diagrams ab and b∗c. As before, we stack
them on top of each other yielding a stacked circle diagram atc, and we fix a surgery procedure
from atc to aec.
In contrast to the ordinary multiplication rule, we don’t require every intermediate diagram to
be admissible. (It turns out every sequence of surgery moves will give the same result, even if
some of the intermediate diagrams are not admissible.)
Recall that every surgery move was either a split, a merge, or a reconnect. We will need to
distinguish between so-called nested splits and non-nested splits. We know that in a split one
connected component is split in two. In the case where both of these resulting components are
circles one of which is contained in the other one, the split is called a nested split (and else it is
non-nested).
As before, we define a map χ̃′ : k[Xi|1 ≤ i ≤ n]⊗ k[Xi|1 ≤ i ≤ n]→ k[Xi|1 ≤ i ≤ n] associated
to our surgery procedure. To obtain the image of f ⊗ g ∈ k[Xi|1 ≤ i ≤ n] ⊗ k[Xi|1 ≤ i ≤ n],
apply the following algorithm:
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1. Start by putting y = f · g ∈ k[Xi|1 ≤ i ≤ n].

2. For each surgery in the surgery procedure, consult the following table:

Merge: leave y as it is,
Split: multiply y with

i j

(Xj +Xi) if

i j

(Xj +Xi) if and the split is not nested

i j

(Xj −Xi) if and the split is nested
with i on the outer circle

i j

(−Xj +Xi) if and the split is nested
with j on the outer circle

Reconnect: if the two lines (before the surgery) are
propagating, and the resulting diagram
is orientable, leave y as it is.
Else multiply y by 0.

3. We define χ̃′(f ⊗ g) to be equal to the resulting y.

One can show that this map χ̃′ : k[Xi|1 ≤ i ≤ n]⊗ k[Xi|1 ≤ i ≤ n]→ k[Xi|1 ≤ i ≤ n] descends
to a map χ̃ : M̃(ab) ⊗ M̃(b∗c) → M̃(ac), and that this map χ̃ doesn’t depend on our chosen
surgery procedure. we will from now on write χ̃ab,b∗c : M̃(ab)⊗ M̃(b∗c)→ M̃(ac).

Now the sign-adjusted multiplication is defined in exactly the same way as the ordinary multi-
plication:

Definition A.1.4. Consider the composition

Φλνν′ : λ(DΛ)ν ⊗ ν(DΛ)ν′
Ψλν⊗Ψ

νν′−−−−−−→ M̃(λν)⊗ M̃(νν ′)
χ̃
λν,νν′−−−−→ M̃(λν ′)

(Ψ
λν′ )

−1

−−−−−−→ λ(DΛ)ν′ ,

where the second map is the map defined above.
For two basis vectors λµν and λ′µ′ν ′ of DΛ, we define their product as follows:

(λµν) · (λ′µ′ν ′) =

{
Φλνν′((λµν)⊗ (λ′µ′ν ′)), if ν = λ′,

0, else.

Fact A.1.5. [ETW, Proposition 5.11] Extending the above product bilinearly to DΛ equips DΛ

with the structure of an associative unital graded algebra, where the grading is the one defined
in Definition 1.2.10. We will denote the algebra with this sign-adjusted multiplication by DΛ.
Moreover, there is an isomorphism of algebras

DΛ
∼=−→ DΛ
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given by linearly extending the map

sign : BΛ −→ BΛ,

(aλb) 7−→

 ∏
C clockwise
circle in (aλb)

(−1)t(C)+1

 (aλb).

Example A.1.6. We again compute the product (λµν) · (λ′µ′ν ′), where

λµν = ∨ ∧ ∨ ∨ and λ′µ′ν ′ = ∧ ∨ ∧ ∧

but now using the sign-adjusted multiplication rule.
First we compute Ψλν(λµν) = X1 ∈ M̃(λν) and Ψλ′ν′(λ

′µ′ν ′) = 1 ∈ M̃(λ′ν ′).

Next we need to compute χ̃(X4 ⊗ 1). Using the following surgery procedure

Merge Split

·(X2+X1)

we find that χ̃(X4 ⊗ 1) = X4(X2 +X1) = X4(X3 −X4) = X3X4 ∈ M̃(λν ′).
Finally, we find that

(λµν) · (λ′µ′ν ′) = Ψ−1
λν′

(X3X4)

= ∨ ∧ ∨ ∨

= λµλ.

If we would have chosen the other possible surgery procedure

Merge Split

·(−X4+X3)

we would have gotten the same result.
We will now check that at least in this example, the isomorphism sign is compatible with our
two multiplication rules. We find that

sign(λµν) = (−1)4+1(λµν) = −(λµν)

sign(λ′µ′ν ′) = (λ′µ′ν ′)

sign(λµλ) = (−1)3+1(−1)4+1(λµλ) = −(λµλ).
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Now, comparing this example with Example 1.3.7, we see that

sign
(
(λµν) ·DΛ

(λ′µ′ν ′)
)

= sign(λµλ)

= −(λµλ)

= −(λµν) ·DΛ
(λ′µ′ν ′)

= sign(λµν) ·DΛ
sign(λ′µ′ν ′)

as desired.

Remark A.1.7. The sign-adjusted version has some advantages: In the original multiplication
rule, some surgery moves give rise to signs that depend on the whole diagram. This non-locality
makes some of the proofs in [ES1] (for example the proof that DΛ is an associative algebra)
significantly more complicated. This non-locality is no longer an issue in the sign-adjusted
algebra DΛ. Also in explicit computations in DΛ, fewer signs tend to show up. For example if
there are no dotted cups or caps there will be no minus signs at all.
On the other hand, the original arc algebra DΛ is more closely related to our original motivation
of studying these algebras in the first place: for example the equivalence DΛ- mod ∼= Op

0(so(2k))
is clearer when we use the original multiplication rule instead of the sign-adjusted one.

A.2 Symmetric algebra structure of the sign-adjusted algebra

We repeat Section 6 for the sign-adjusted multiplication rule.
As before, let Λ◦ ⊆ Λ be the subset of all weights λ for which λ has at most one ray. Define the
idempotent e0 :=

∑
λ∈Λ◦ eλ ∈ DΛ. The algebra HΛ is defined to be the idempotent truncation

e0DΛe0. Explicitly, it is the subalgebra HΛ ⊆ DΛ with basis given by {µλν|µ, ν ∈ Λ◦, λ ∈ Λ, µ ⊂
λ ⊃ ν}.
As in Section 6, we find that HΛ is a cellular algebra. In fact, the isomorphism DΛ

∼= DΛ from
Fact A.1.5 restricts to an isomorphism HΛ

∼= HΛ.
From now on, we will for sake of simplicity assume that Λ is an n-block with n even; we will
write n = 2k. Note that this means that all appearing circle diagrams consist of circles only
(and no lines).
For a basis vector aλb ∈ HΛ, let (aλb)# denote the basis vector of HΛ whose diagram is obtained
by reversing the orientation of every circle in the diagram b∗λa∗. Note that the top degree
component of HΛ lives in degree n, and has basis {e#

λ |λ ∈ Λ◦}.
In the following lemma, we want to compute the product (aλb)(aλb)#. It is not hard to see
that, up to a sign, this product equals aµa∗ (where µ is the unique weight such that all circles in
aµa∗ are clockwise). If we would be using the ordinary multiplication of DΛ, this sign would be
rather complicated to write down. However, in the sign-adjusted algebra DΛ the sign is always
positive, as we will now prove.
During this section, whenever we have a cup or cap γ, we will denote its left end resp. right end
with i(γ) resp. j(γ).
We start with some auxiliary definitions.

Definition A.2.1. For ab a circle diagram, define T (ab) ⊆ {1, · · · , n} to be the set of indices i
such that if we walk from i to t(Ci) along cups and caps, we use an even number of cups/caps.
(Here Ci is the circle in ab to which i belongs.)

Note that i ∈ T (ab) if and only if i ≡ t(Ci) (mod 2).
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Definition A.2.2. Let ab be a circle diagram (without rays). To every point x in the semi-
infinite strip R := R≥0× [−1

2 ,
1
2 ] that does not belong to a a cup or cap, the degree of nestedness

of x is defined to be the number of circles C in ab for which x is contained in the interior of x.

We can use this topological notion to prove the following auxiliary lemma (of which we will only
need the 3rd part):

Lemma A.2.3. Let ab be a circle diagram.

1. Let x ∈ [0, n] \ Z ⊂ R. Then the degree of nestedness of x is even whenever bxc is even,
and odd whenever bxc is odd.

2. Let C be a circle that is not contained in the interior of another circle. Then t(C) is even.

3. Let γ be a cup in a that is not nested inside another cup. Then j(γ) ∈ T (ab) and i(γ) /∈
T (ab).

Proof. The first part follows from the observation that passing through an arc will increase or
decrease the degree of nestedness by 1.
For the second part: if t(C) is odd, the points directly to the right of t(C) will have an odd
degree of nestedness, i.e. they are contained in at least one circle (necessarily different from C),
hence C is contained in the interior of another circle.
For the third part: it is easy to see that i(γ) is odd and j(γ) is even. So we are done by the
second part.

Theorem A.2.4. Let aλb be a basis vector of HΛ. Then

(aλb)(aλb)# = (aµa∗)

where µ is the unique weight such that every circle in aµa∗ is oriented clockwise.

Proof. Recalling Definition A.1.4, we first need to compute

y := χ̃ab,b∗a∗
(

Ψab(aλb)⊗Ψb∗a∗((aλb)
#)
)
∈M(aa∗).

First note that
Ψab(aλb)⊗Ψb∗a∗

(
(aλb)#

)
=

∏
C circle in ab

Xt(C)

(This follows directly from the definition of (aλb)#.)
Now we need to compute y ∈ M̃(aa∗) using some surgery procedure. Suppose ab has m circles.
Now consider the surgery procedure where we write ab under b∗a∗ and then always glue the
rightmost cup/cap pair that hasn’t been glued already (with “rightmost cup/cap” we mean
more precisely the cup/cap with the rightmost right end).
For every circle in ab, the first surgery that involves this circle is necessarily a merge. So of our
k surgeries, there are at least m merges. Since at the start we have 2m circles and at the end
we have k circles, the remaining k −m surgeries are necessarily splits.
Let X be the set of caps γ in b for which j(γ) 6= t(Cγ) (where Cγ is the circle where γ belongs
to). Then we have that

y =

( ∏
C circle in ab

Xt(C)

)∏
γ∈X

(±Xj(γ) ±Xi(γ))

 , (A.1)
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where the signs are always positive, except for the case of a dotted nested split.
The product (aλb)(aλb)# is just equal to Ψ−1

aa∗(y).
We now need the following auxiliary lemma, whose proof will be postponed:

Lemma A.2.5. In the expression (A.1), any term Xi with i ∈ T (ab) has a positive sign.

If we expand the product (
∏
C circle in abXt(C)) · (

∏
γ∈X (±Xj(γ) ±Xi(γ))), we find that exactly

one term survives, which equals
∏
i∈T (ab)Xi, where the sign is positive because of Lemma A.2.5.

Now we can compute that

(aλb)(aλb)# = Ψ−1
aa∗(y)

= Ψ−1
aa∗

(
∏

C circle in ab

Xt(C))
∏
γ∈X

(±Xj(γ) ±Xi(γ))


= Ψ−1

aa∗

 ∏
i∈T (ab)

Xi

 .

The above product contains one factor Xγ for every cup γ in a, where Xγ is either Xi(γ) or
Xj(γ). By Lemma A.2.3, for any dotted cup γ we have Xγ = Xj(γ). For an undotted cup γ, it
holds that Xj(γ) = Xi(γ) = Xγ . So we find

(aλb)(aλb)# = Ψ−1
aa∗

 ∏
i∈T (ab)

Xi


= Ψ−1

aa∗

 ∏
i right end of a cup in a

Xi


= (aµa∗),

where µ is the unique weight such that every circle in aµa∗ is oriented clockwise.

We still need to prove Lemma A.2.5:

Proof of Lemma A.2.5. We give a proof by contradiction:
First case: suppose we get a factor Xj(γ) −Xi(γ) in the expression A.1, with i(γ) ∈ T (ab). This
would in particular imply that γ is a dotted cap, contradicting Lemma A.2.3.
Second case: suppose we get a factor −Xj(γ) + Xi(γ) in the expression A.1, with j(γ) ∈ T (ab).
This would in particular imply that the surgery applied to γ is a nested split, where i(γ) belongs
to the inner circle and j(γ) belongs to the outer circle. But since we are performing our surgeries
from right to left and γ is a dotted cap, this cannot happen.

Theorem A.2.6. Let τ̃ : HΛ → k be the linear map sending every basis vector (aµa∗) of degree
n to 1, and every other basis vector to 0.
Then

τ̃((aλb)(cµd)) =

{
τ̃((cµd)(aλb)) = 1, if (cµd) = (aλb)#,

0, else.

Hence τ̃ is a symmetrizing form, making HΛ a symmetric algebra.
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Proof. The proof that τ̃((aλb)(cµd)) = 0 unless (cµd) = (aλb)# is exactly the same as in
Theorem 6.2.5.
By Theorem A.2.4, we find that τ̃((aλb)(aλb)#) = 1 = τ̃((aλb)#(aλb)), so the proof is finished.

We can now also write down the comultiplication, as in Subsection 6.3. The arguments are
exactly the same, except there are no signs showing up. So in the end we get

∆̃(xνy) =
∑

aλb,cµd∈HΛ

(cµd)(aλb)=(xνy)#

(aλb)# ⊗ (cµd)#.
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