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1. Introduction

Graham and Lehrer [GL96] first defined cellular algebras to understand the representation
theory of non-semisimple specializations of the Hecke algebra H ..= H (Sd ) of the sym-
metric group. They were inspired by the work of Kazhdan and Lusztig [KL79] on what is
now known as the Kazhdan–Lusztig basis {Hw | w ∈ Sd } of H (for a more accessible
introduction see [Soe97]).

In this chapter we recall some results from this theory that motivated the definition
of cellular algebras. Then we give an overview of another cellular basis of H , called the
Murphy basis, which will be discussed in more detail in Section 4.3. Here we describe its
history and some of its features we will discuss in this thesis. Afterwards we summarize the
structure of this thesis and state our main contributions.

1.1 Motivation and context

Kazhdan and Lusztig [KL79] were interested in the representation theory of H . They con-
structed representations of H that possess a special basis by introducing a basis of H ,
now known as the Kazhdan–Lusztig basis. To construct these representations they studied
the action of the standard generators of H on Kazhdan–Lusztig basis elements and certain
H -submodules of H connected to them. Here we give a brief description of some of their
ideas that will motivate the definition of cellular algebras below.

Relate two elements x ,y ∈ Sd , denoted by y
LR← x , if there exists an a ∈ H such that in

the expression of aHx or Hxa in terms of the Kazhdan–Lusztig basis, the

coefficient of Hy is non-zero. Moreover, set w
LR
≤ z for w, z ∈ Sd , if there exists a sequence

w = x1
LR← x2

LR← . . .
LR← xk = z. Finally, write w

LR∼ z if w
LR
≤ z

LR
≤ w and

w
LR
< z ifw

LR
≤ z but z

LR
≰ w .

Kazhdan and Lusztig understood their basis well enough to make sense of these rela-

tions. They proved that for all w ∈ Sd the submodules H (
LR
≤ w) and H (

LR
< w), spanned

by elements Hx with x
LR
≤ w and x

LR
< w respectively, form two sided H -submodules of H .

They called their quotients H (
LR
≤ w)/H (

LR
< w) cell representations. Note that a basis of

the cell representation is given by {Hx | x
LR∼ w }.

These relations also imply a partial order on partitions of size d if combined with the
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Robinson–Schensted correspondence, a one-to-one correspondence

Sd
1:1←→

{
Ordered pairs of standard tableaux 

of the same shape with d boxes

}
w 7−→ (P(w),Q(w))

named after Robinson [Rob38] and Schensted [Sch61]. For two partitions λ, µ ⊢ d set µ≤̃λ
if there exist x

LR
≤ y such that Shape(P(x)) = µ and Shape(P(y)) = λ. Note that we will

define another partial order on partitions of size d in Section 3.1.
By this correspondence there also exists a labeling of Kazhdan–Lusztig basis elements

by ordered pairs of standard tableaux. Hence, these basis elements can be clustered by the
shape of their indices and are thus assigned to an element in the poset of partitions of d .

By repeating the constructions from above there is a cell representation for each par-
tition λ of d . For an ordered pair of standard tableaux (S,T ) of shape λ, the basis element
HST is mapped to a basis element HST of that cell representation.

Graham and Lehrer defined cellular algebras to be finite dimensional algebras with prop-
erties similar to the described properties of the relabeled Kazhdan–Lusztig basis. Roughly,
a cellular algebra A is equipped with a special basis, called a cellular basis. The basis must
be labeled by an ordered pair of indices, which need to be related to some poset. The action

on this basis of A must follow the partial order, so A-submodules similar to H (
LR
≤ w) and

H (
LR
< w) can be defined. Their quotients, which are the cell representations in case of the

Kazhdan–Lusztig basis, are now called two-sided cell modules. For the exact definition of
cellular algebras given by Graham and Lehrer [GL96] see Definition 2.1.1.

One of the most important results in the theory of cellular algebras is a classification of
irreducible right modules for cellular algebras over fields (see Proposition 2.3.12). Because
of its generality it is often difficult to apply this result for concrete examples. However, if A
is semisimple it is easy to describe. In this case, every irreducible is a right A-submodule of
precisely one two-sided cell module (cf. [GL96, Theorem 3.8]).

The Kazhdan–Lusztig basis was the motivation of Graham and Lehrer and is indeed a
cellular basis, soH is a cellular algebra. The author of [Wil03] compiled all results necessary
to prove this result. We will see a short description of the cellular structure of the Kazhdan–
Lusztig basis and the Robinson–Schensted correspondence in Section 4.6.

There can be many cellular bases for a given algebra. Choosing a cellular basis to work
with depends on the problem the cellular structure is applied to.

In this thesis we are, for the most part, interested in the Murphy basis, another cellular
basis of H . It was introduced by Murphy [Mur92] and is based on work done by Dipper
and James [DJ86].

Dipper and James set out to study the representation theory of Hecke algebras over
fields of any characteristic and were in particular interested in results for fields of positive
characteristic. They approached this problem by generalizing several tools and construc-
tions from the representation theory of the symmetric group to the Hecke algebra. Then
they derived their results for the Hecke algebra by essentially repeating the classical theory.
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They defined, for example, generalizations of right permutation modules M µ for each
composition µ |= d . For a classical definition of permutation modules and their role in the
representation theory of Sd see [Sag01, Section 2.1]. They are generalized to H as right
submodules

M µ ..=mµH ⊂ H

generated by a single element mµ ∈ H , the construction of which is connected to the
subgroup Sµ < Sd . Specht modules are then defined as distinguished right submodules
S µ   ⊂ M µ for each µ, but do not need to be irreducible like they are in the classical theory.
They rather show that a certain quotient of S µ is either trivial or irreducible and that the non-
zero quotients are an exhaustive list of pairwise non-isomorphic irreducible right modules
of H (Sd ).

Although Dipper and James achieved their goal, the study of permutation modules,
Specht modules and their quotients require extensive calculations. Murphy [Mur92] sought
to remove a large part of difficult computations from the ideas of Dipper and James and later
presented a self-contained account of his approach in [Mur95].

He constructed the Murphy basis by transforming the generators mµ of permutation
modules into a basis labeled by pairs of standard tableaux with the same shape of size d .
Graham and Lehrer had not yet defined cellular algebras, butMurphy’s results show that his
basis is cellular anyway. He proceeds to discuss results fromDipper and James using this cel-
lular framework. For example, the Specht modules from Dipper and James are submodules
of two-sided cell modules of the Murphy basis. The classification coming from the cellular
structure is exactly the classification from Dipper and James
(cf. [Mat06, Theorem 3.43]).

Consistent with the initial ideas of Dipper and James, features of the representation
theory of symmetric groups can be generalized to the representation theory of H using
Murphy’s basis. We will see four of them in this thesis. Firstly, the action of general-
ized Jucys–Murphy elements, which were classically defined by Jucys [Juc74] and Murphy
[Mur81], on cell modules associate to the Murphy basis is well understood
(see Proposition 4.4.11).

Secondly, if H is semisimple the Murphy basis provides a basis of each irreducible rep-
resentation, as they are submodules of precisely one two-sided cell module. Using Jucys–
Murphy elements, this basis can be transformed into a special orthogonal basis, called
Young’s orthogonal form. It generalizes Young’s orthogonal form forC[Sd ], a classical result
which is, for example, proved in [Jam78].

Thirdly, decomposing irreducible representations ofSd into irreducible representations
of Sd−1 follows a branching rule (cf. [Mur81]). Young’s orthogonal form can be used to
generalize this result to all semisimple Hecke algebras H .

Lastly, the Schur algebra, an algebra arising in classical Schur–Weyl duality, is gener-
alized as homomorphisms between certain permutation modules. It is a cellular algebra
and one cellular basis, called the semistandard basis, is derived from the Murphy basis 
(cf. [Mat06, Chapter 4]).
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1.2 Structure of the thesis

The goal of this thesis is to study the different cellular structures connected to H (Sd )
mentioned above. Broadly, it can be split into three parts.

The first part is dedicated to preparations for our studies. In Chapter 2 we partially
recall the theory of cellular algebras from [GL96] and roughly follow [Mat06]. However,
our account of the proofs in this chapter are a bit more detailed and focused on certain
filtrations a cellular basis entails.

We start this chapter with the definition of cellular algebras from [GL96] and state many
examples. Afterwards, we construct the mentioned filtrations and study some of their prop-
erties. These are then used to prove the already mentioned classification of irreducible right
module due to Graham and Lehrer (see Proposition 2.3.12).

In Chapter 3 we recall the notions of compositions, partitions and tableaux from [Ful96],
[Sag01] and [Mat06]. As indicated above, these are important for both cellular bases of H ,
as well as the semistandard basis of the Schur algebra.

The second part of this thesis discusses the three cellular bases connected to H men-
tioned above. For the Murphy and semistandard basis we mainly follow [Mat06]. To de-
scribe the Kazhdan–Lusztig basis we use [Soe97] and [Sag01] and refer to [Wil03] for a more
detailed account.

We begin Chapter 4 by recalling the definition of Hecke algebras of type A. In Sec-
tion 4.3 we describe the Murphy basis of H and discuss its various features in subsequent
sections. In particular, Section 4.4 outlines the proof of a classification of irreducible right
H -modules, which uses the general classification result for cellular algebras.

Next, we state the cell datum associated to the Kazhdan–Lusztig basis in
Proposition 4.6.9 and construct the Robinson–Schensted correspondence in Proposition 4.6.2.

Afterwards, in Chapter 5, we recall the Schur algebra and see how to upgrade the
Murphy basis to the semistandard basis.

Detailed proofs for the Murphy and semistandard basis require some extensive calcula-
tions and can obfuscate the bigger picture. Proofs for the Kazhdan–Lusztig basis are even
more involved. Our main contribution is a clean description of their constructions, the mo-
tivations behind them, as well as illustrating the ideas with many examples.

In the last part of this thesis, Chapter 6, we provide three explicit examples of cellu-
lar bases: the Murphy and Kazhdan–Lusztig basis of H (S3) as well as the semistandard
basis of S (2, 3). We describe their constructions in full detail, state multiplication tables
and verify that these bases are cellular. Moreover, we calculate all irreducible right mod-
ules explicitly, calculate their dimensions and verify the general classification result for the
Murphy basis and the semistandard basis. These calculations are done for fields over any
characteristic, but we only consider the Kazhdan–Lusztig basis over algebraically closed
fields.
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2. Cellular algebras

Graham and Lehrer first defined cellular algebras in [GL96] to study non-semisimple spe-
cializations of Hecke algebras. As mentioned in the introduction, they were inspired by
the construction of cell representations using the Kazhdan–Lusztig. A finite dimensional
algebra is cellular if it has an exceptional basis, called a cellular basis. Vaguely, the right
action on elements in the cellular basis must follow an associated poset, which can be used
to generalize cell representations.

In this chapter we want to focus on the algebraic structure such basis entails, mainly the
many algebra filtrations it provides us with. Wewill see that these filtrations lead to abstract
results about the irreducible modules of a cellular algebra. However, applying these results
to a given algebra with cellular basis can be difficult. It requires, for example, that we know
certain coefficients appearing in the multiplication of two basis elements. Therefore, the
problem is not just finding a cellular basis for a given algebra, but rather finding a cellular
basis that is understood well enough to apply one of the general results.

Choosing a cellular structure to work with might also be influenced by the context it is
applied in, as different cellular bases for a given algebra can possess different advantages. We
will see advantages of two different cellular bases for Hecke algebras of typeA in Chapter 4.

The material in this chapter is well-known and based on [Mat06] and [GL96]. Here
we present it with a clear focus on the algebraic structure induced by the cellular basis.
However, all results are still due to Graham and Lehrer.

We start this chapter with the definition of cellular algebras from [GL96] and give many
examples of such algebras. Then we construct special bimodule filtrations of cellular al-
gebras, which are interesting on their own, but also needed in the last and most important
part of this chapter: a classification of irreducible right modules involving the cellular struc-
ture (see Proposition 2.3.12). Additionally, we will describe how to construct new cellular
algebras from a given cellular algebra.

Although many examples are given throughout this chapter, more comprehensive ex-
amples with explicit computations follow in Chapter 6.

6



2.1. DEFINITION AND EXAMPLES OF CELLULAR ALGEBRAS 7

2.1 Definition and examples of cellular algebras

Definition 2.1.1. Let R be an integral domain andA an associative unital R-algebra. A cell
datum for A is a tuple ((Λ, ≤),T ,C, ∗), where

(Λ, ≤) is a finite poset,

T : Λ→ {finite sets } assigns to each λ ∈ Λ a finite indexing set T (λ),

C ..=
⨿

λ∈Λ C(λ) :
⨿

λ∈Λ T (λ)×T (λ) ↪→ A, (s, t) 7→ cλ
st

, which image forms a basis
of A, i.e.

im(C) =
{
cλ
st
∈ A | λ ∈ Λ, s, t ∈ T (λ)

}
is a R-basis of A, and

∗ : A→ A is the algebra anti-isomorphism determined by

(cλ
st
)∗ = cλ

ts

for all λ ∈ Λ and s, t ∈ T (λ),

such that the rightA-action on the basis elements has the cellular property, meaning that
for all a ∈ A, λ ∈ Λ and t, v ∈ T (λ) there exist coefficients r t,av ∈ R independent of s ∈ T (λ)
such that

cλ
st
a ≡

∑
v∈T (λ)

r t,av cλsv mod  Ǎλ , (C1)

where for λ ∈ Λ we define

Ǎλ ..= spanR
{
c
µ
uv | µ ∈ Λ,  µ > λ, u, v ∈ T (µ)

}
,

a right A-submodule of A. We call A a cellular algebra with cellular basis im(C).

In essence, all cellular basis elements belong to an element of a poset. The rightA-action
onto cellular basis elements respects the poset ordering and only move upwards. We can
associate a right quotient module, called a node of that algebra, to an element λ of the
poset. It is the submodule of A/Ǎλ spanned by the quotients of all cellular basis elements
associated to λ. The basis elements of each node are related to each other via an algebra
reflection map.

Note that by Definition 2.1.1, cellular algebras as defined by Graham and Lehrer [GL96]
are finite dimensional, because the poset is finite and each labeling set is finite. In [KX12]
the notion of cellular algebras has been generalized to an infinite dimensional setting and,
for example, has been applied to affine Hecke algebras. Another generalization to the in-
finite dimensional case has appeared in the study of generalized highest weight categories
(see [BS21] and the references therein).
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Example 2.1.2. A prototypical cellular algebra is the matrix ring Mn×n(R). We want to
define a cell datum for Mn×n(R). Let {Ei j | i, j = 1, 2, . . . ,n} be the standard basis of
Mn×n(R) with Ei j ..= (δikδ jl )k,l=1,2, ...,n . Let Λ = {1} be the poset with one element,
T (1) = {1, 2, . . . ,n} and C defined by assigning Ei j to the tuple (i, j), i.e. c1i j

..= Ei j for
some i, j ∈ {1, 2, . . . ,n}. Let ∗ be the usual matrix transposition.

Then acting with a matrix B = (bkl )k,l=1,2, ...,n onto a basis element Ei j yields
Ei jB =

∑n
k=1 bjkEik . Therefore, cellular property (C1) holds, because the resulting coef-

ficients bjk are independent of i . Matrix transposition is an algebra anti-isomorphism with
the property (c1i j)

∗ = E∗i j = Eji = c∗ji , so the above is indeed a cell datum for Mn×n(R).

Example 2.1.3. Another well-known example of cellular algebras, which was already men-
tioned in by Graham and Lehrer in [GL96], is the Temperley–Lieb algebra TLn(R,δ) for R
as above, n ∈ Z>0 and δ ∈ R. It is spanned, as a R-module, by crossingless matchings of n
points, meaning diagrams of two rows with n points, each point connected by non-crossing
strands to one other point. For example:

S1 = S2 =

Multiplication of two crossingless matchings c1 and c2 in TLn(R,δ) is defined in two steps.
First, concatenate the two diagrams, putting c1 at the top and c2 at the bottom. Then reduce
the result to another crossingless matching by connecting the strands and removing circles
that might have formed, creating a factor δ for each removed circle. For example:

S1 ◦ S2 = δ ·

Each basis element is now labeled with two cap diagrams of n points. These are diagrams
consisting of a single row with n points, some of them connected by non-crossing caps.
The other points have a dangling strand attached to them that do not cross the caps. For
example:

D1 = D2 =

Each crossingless matching can be split horizontally into a cap diagram at the bottom and
an inverted cap diagram at the top. Both have the same number of points connected via a
cap. A crossingless matching is labeled by an ordered pair of cap diagrams. The first one is
its top diagram, the second on is its bottom diagram.

Now we can define a cell datum for TLn(R,δ) that is associated to this basis.
Let Λ ..= {i | 0 ≤ i ≤ n, i even}, a poset with the usual ordering. For λ ∈ Λ let T (λ) be the
set of cap diagrams of n points with λ dots connected via a cap. For D1,D2 ∈ T (λ) let cλD1D2

be the crossingless matching with inverted D1 at the top and D2 at the bottom. Finally, let ∗
be the algebra anti-isomorphism reversing each basis element, meaning (cλD1D2

)∗ = cλD2D1
.
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c2D1D2
=

⇝

⇝

= D1

= D2

To check the cellular property, note that acting on a basis element from the right, so precon-
catinating it with another element, can not strictly reduce the number of points at the top
that are connected via cups. Furthermore, the amount of circles that have to be removed
in the action on such element does not depend on the top cap diagram. So the coefficient
appearing is independent from D1. It only depends on the bottom cap diagram D2, as well
as the element we are acting with.

Thus, TLn(R,δ) is a cellular algebra with the constructed cell datum. For more informa-
tion about the cellular structures and the representation theory of Temperley–Lieb algebras
see [Spe20].

Graham and Lehrer also considered a slightly different cell datum of TLn(R,δ)
in [GL96, Chapter 6]. More concretely, they introduce a different labeling of the basis ele-
ments and a different poset.

The basis described above is not the only cellular basis of of TLn(R,δ). In [AST18] the
authors construct another cellular basis of TLn(R,δ). Their construction is based on tilt-
ing modules and Schur–Weyl duality. Notably, their construction depends on a variety of
choices, so more precisely, they get a whole family of cellular bases for TLn(R,δ).

We want to highlight one difference between their bases and the basis described above.
Note that the construction above is independent of R and δ , as the basis elements are always
crossingless matchings. In particular, there is no difference in the construction of this basis
for semisimple and non-semisimple Temperley–Lieb algebras. The construction in [AST18]
depends on R and δ , so they can differentiate between their bases of the semisimple and
non-semisimple TLn(R,δ).

The authors of [AST18] provide a comprehensive comparison between their bases and
the basis above. For example, in [AST18, Proposition 5.3] and [AST18, Proposition 5.5] they
show that none of their bases are the basis described above, if n > 1.

Example 2.1.4. The Hecke algebra H (Sd )
..= HR,ν (Sd ) is also a cellular algebra. One

cellular basis of H (Sd ) is the famous Kazhdan–Lusztig basis, first introduced in [KL79]. A
sketch of the cell datum for H (S3) is pictured in Figure 2.1. The cell datum for H (Sd )will
be stated in Section 4.6. See [Wil03] for a full proof of the cellularity of this basis.

At this point it is only important to know that the cell datum will label elements Hs and
Hst with a common first label and Hts and Ht also with another common first label. The
anti-isomorphism maps Hw to Hw−1 for all w ∈ S3, so in Figure 2.1 it transposes elements
in each box along the diagonal from the top left to the bottom right.

Note that there is another cellular basis for H (Sd ), called the Murphy basis. We will
state its general cell datum in Chapter 4. It is distinct from the Kazhdan–Lusztig basis we
considered above.
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< <

I
II

III
H
e

H
s

H
st

H
t

H
ts

H
sts

Figure 2.1: Sketch of the cell datum associated to the Kazhdan–Lusztig basis of H (S3)

For H (S3) we will see that the Murphy basis has the following elements:

c IIIaa
..= ν−3Hsts + ν−2Hts + ν−2Hst + ν−1Ht + ν−1Hs + 1

c IIaa
..= ν−1Hs + 1 c IIba

..= ν−2Hts + ν−1Ht

c IIab
..= ν−2Hst + ν−1Ht c IIbb

..= ν−3Hsts + (ν−2 − 1)Ht + ν−2

c Iaa
..= 1

Here we used a slightly simplified cell datum associated to this basis. The poset is again
{I < II < III}, the labeling as indicated and the anti-automorphism is defined as in Defini-
tion 2.1.1.

We verify the cellular property for this example by hand in Section 6.1. Note that there
we will switch to another labeling of the Murphy basis that comes from the general con-
struction of this basis (see Section 4.3).

Example 2.1.5. In Examples 2.1.3 and 2.1.4 we have already seen that cellular algebras
can have different cellular bases. Choosing to work with one cellular basis over another
then depends on the problem one wants to solve. For example, if one wants to investigate
semisimplicity of Temperley–Lieb algebras from Example 2.1.3, onemight want to work with
a cellular basis that depends on semisimplicity.

Another, much easier example of an algebra with multiple cellular bases was given in
[KX99]. For R as above consider

A = R⟨x ,y⟩⧸⟨x2,y3,xyxy,yxyx ,xy2xy,yxy2x⟩ 

as a right R⟨x ,y⟩-module, where R⟨x ,y⟩ is the free R-algebra in two variables. One cell
datum for A is depicted in Figure 2.2. The set

Λ = {I, II, III, IV,Va,Vb}

is partially ordered by the roman numerals. Let

T (I) = T (II) = T (III) = T (Va) = T (Vb) = {1} and T (IV) = {1, 2, 3} .

C labels basis elements in each box of Figure 2.2 with its column as its first label and its row
as its second label. ∗ transpose the elements in each box along the diagonal from the top
left to the bottom right corner.
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1 y y2

x yx y2x

xy yxy y2xy

xy2 yxy2 y2xy2

xyx

xy2x

I II III

IV

Va

Vb

< < <

<

<

Figure 2.2: Sketch of a cellular basis of A from Example 2.1.5. Each box represents an element in the
poset and contains cellular basis elements corresponding to it, for example c IV12 = xy.

We only need to verify the cellular property (C1) for generators x and y acting on basis
elements. For x , note that acting on a basis element either yields 0 or a basis element
associated to a poset element strictly above the one we started with. Additionally for y, the
result can be a basis element associated to the same poset element. However, that element
is then also in the same column as the element we started with and has therefore the same
first label.

We will use A combined with this cell datum as an example throughout this chapter.
The other cellular basis of A presented in [KX99] is depicted in Figure 2.3. Note that the

poset differs from the one above and even the nodes are completely different. We will see
below that the nodes for a cell datum are of particular interest to us. It is therefore crucial
to pick a cell datum that has nodes we understand well or can study effectively.

1 x
yx xyx

y xy

y2x xy2x

y2 xy2

yxy2 y2xy2

yxy y2xy

< < < <

I II
III IV V

Figure 2.3: Cellular basis of A from Example 2.1.5 distinct from the one depicted in Figure 2.2.

Example 2.1.6. Every finite dimensional, commutative algebra A over an algebraically
closed field k is a cellular algebra with ∗ = idA. We can argue via induction on the di-
mension of A.

If A = k it is easy to assign a cell datum to A. For example Λ = { I}, T (I) = {1} and
c I11 = 1.

If dim(A) > 1 we can fix a one-dimensional A-submodule N = spank {x } of A, as all
irreducible A-modules are one-dimensional. Then A/N is also a commutative algebra. By
induction, it is a cellular algebra with some cell datum ((Λ̃, ≤̃), T̃ , C̃, idA).
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To get a cell datum for A we augment Λ̃ by some µ to Λ ..= Λ̃∪̇{µ } and augment the
partial order on Λ̃ by µ > λ for all λ ∈ Λ. Set T ..= T̃ on Λ̃ and T (µ) = {1}. Now lift
cellular basis elements from A/N to A and let C label these elements like C̃ labeled the
basis elements before the lift. Finally, set C(µ) : T (µ) × T (µ) ↪→ A, (1, 1) 7→ x .

This defines a cell datum for A with ∗ = idA. Indeed, the cellular property (C1) holds
for x , because it spans an irreducible A-submodule. For ever other basis element it holds,
because these are lifts from cellular basis elements of A/N and the fact that x is associated
µ, an element related to and above all other poset elements.

Note that if we use this inductive approach to construct a cell datum for A, in this cell
datum we have |T (λ)| = 1 for all λ ∈ Λ. The poset is in fact totally ordered.

Let A be a fixed cellular algebra cell with datum ((Λ, ≤),T ,C, ∗) for the rest of this
chapter.

The first construction using cellular algebras is similar to the construction of Ǎλ in Defin-
ition 2.1.1. Extending Ǎλ by the elements of A associated to λ gives rise to another right
A-submodule of A denoted by

Aλ ..= spanR
{
c
µ
uv | µ ∈ Λ,  µ ≥ λ, u, v ∈ T (µ)

}
,

where we use cellular property (C1) once more.
Under the quotient map A → A/Ǎλ the image of the elements {cλ

st
| s, t ∈ T (λ)} of A

span the quotient module

Aλ
⧸Ǎλ = spanR

{
cλ
st
+ Ǎλ | s, t ∈ T (λ)

}
,

which we called the λ-node above. Note that the set {cλ
st
| s, t ∈ T (λ)} does not necessarily

span a rightA-submodule ofA. Of course, if the set {cλ
st
| s, t ∈ T (λ)} is a rightA-submodule

of A, then it is isomorphic to Aλ/Ǎλ .
The result of the right A-action on an element cλ

st
+ Ǎλ ∈ Aλ/Ǎλ encapsulates all the

information we have from the cellular property (C1) about the right A-action on cλ
st
.

The cellular structure of A manifests itself on Aλ/Ǎλ in two more ways. For any
s ∈ T (λ) there is a right R-submodule Cλ

s ⊂ Aλ/Ǎλ spanned by elements
{cλ
st
+ Ǎλ | t ∈ T (λ)}. This is also a well defined right A-submodule by the cellular property

(C1). Indeed, acting with a ∈ A from the right on cλ
st
+ Ǎλ ∈ Cλ

s yields

(cλ
st
+ Ǎλ)a

(C1)
=

∑
v∈T (λ)

r t,av (cλsv + Ǎλ) , (2.1)

which is also contained in Cλ
s , because it is a sum over elements with s as their first index.

Moreover, the coefficients appearing in (2.1) only depend on a  ∈ A and t, v ∈ T (λ).
Most importantly, they do not depend on s ∈ T (λ). Therefore, the rightA-module structure
of Cλ

s does not depend on the choice of s ∈ T (λ). In other words, for two s, s′ ∈ T (λ) the
map Cλ

s → Cλ
s′ defined by cλsv 7→ cλ

s′v for all v ∈ T (λ) is a right A-module isomorphism.
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There is a more abstract definition of this right A-module.

Definition 2.1.7. For λ ∈ Λ define the corresponding right cell module as the R-module

Cλ ..= spanR
{
cλ
t
| t ∈ T (λ)

}
.

Right cell modules are also right A-modules. The action is defined by

cλ
t
a ..=

∑
v∈T (λ)

r t,av cλv

for all a ∈ A and t ∈ T (λ), where the coefficients r t,av come from cellular property (C1).

Right cell modules are well defined rightA-modules by the same arguments we used for
Cλ
s above. For all s ∈ T (λ) the R-module isomorphism

Cλ ∼−−→Cλ
s ⊂ Aλ

⧸Ǎλ

cλ
t
7−→ cλ

st
+ Ǎλ

is also an A-module isomorphism, because acting with a ∈ A from the right produces the
same coefficients coming from (C1).

Example 2.1.8. To get familiar with the abstract definition of right cell modules, let’s con-
sider the algebra A of Example 2.1.5 together with its cellular basis depicted in Figure 2.2.

For λ , IV,Aλ/Ǎλ is spanned by one element, soCλ = Aλ/Ǎλ . All cellular basis elements
act by zero, except for 1 ∈ A, which acts by the identity.

For λ = IV the cell module is spanned by three elements and we denote them by
C IV = spanR {c IV1 , c IV2 , c IV3 }. It is isomorphic to spanR {x ,xy,xy2} ⊂ Aλ/Ǎλ , so 1,y,y2 ∈ A
act by

c IV1 · 1 = c IV1 c IV1 · y = c IV2 c IV1 · y2 = c IV3

c IV2 · 1 = c IV2 c IV2 · y = c IV3 c IV2 · y2 = 0

c IV3 · 1 = c IV3 c IV3 · y = 0 c IV3 · y2 = 0

.

and all other cellular basis elements of A act by zero.

In summary, the statement of (C1) is best understood in the context of quotient mod-
ules Aλ/Ǎλ for λ ∈ Λ. Firstly, it guarantees these quotient modules are well defined right
A-modules. Secondly, it presents us with |T (λ)| many right A-submodules of Aλ/Ǎλ we
denoted by Cλ

s for s ∈ T (λ). Lastly, it asserts that all these right A-submodules are in fact
isomorphic as right A-modules, leading us to the definition of right cell modules.

At this point it is worthwhile to emphasize that the same is not true if we just consider
Aλ on its own. Although it is also a rightA-submodule ofA, the rightA-submodules spanned
by elements {cλ

st
| t ∈ T (λ)} can differ for different s ∈ T (λ). , if we express cλ

st
a for some
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a ∈ A in the cellular basis, then the coefficients in front of elements from Ǎλ can differ for
different s ∈ T (λ).

An example of this can be found in Section 6.1, where the Murphy basis of H (S3) is
computed explicitly. The action on these basis elements is summarized in Figure 6.2 and the
mismatching coefficients in front of elements in Ǎλ is readily observed.

Remark 2.1.9. If (A, ·) is a cellular algebra, then so is (Aop, ◦).
Indeed, let ((Λ, ≤),T ,C, ∗) be a cell datum of A, then

cλ
st
◦ a ≡ acλ

st
≡ (cλ

ts
a∗)∗

(C1)≡ (
∑
v∈T (λ)

rs,a
∗

v cλ
tv
)∗
∗≡

∑
v∈T (λ)

rs,a
∗

v cλ
vt

mod Ǎλ . (C2)

for all a ∈ A, λ ∈ Λ and s, t ∈ T (λ). Furthermore, the coefficients rs,a
∗

v are independent
of t ∈ T (λ) by property (C1) of A. Thus, (Aop, ◦) has cell datum ((Λ, ≤),T ,Cop, ∗), where
Cop(s, t) ..= cλ

ts
for all s, t ∈ T (λ). In other words, the basis elements are the same as for

(A, ·), but the labels are swapped.
We denote the right cell module for (Aop, ◦) corresponding to λ ∈ Λ by

C∗λ ..= spanR {cλs | s ∈ T (λ)}

and have
cλs ◦ a =

∑
v∈T (λ)

rs,a
∗

v cλv

for all a ∈ A and s ∈ T (λ). We will sometimes regard right Aop-modules as left A-modules.

2.2 Filtrations of cellular algebras as bimodules

Combining the right A-module and right Aop-module structure of Aλ/Ǎλ discussed in the
previous section we can also give a complete description of Aλ/Ǎλ as an (A,A)-bimodule.
The map

Aλ
⧸Ǎλ � C∗λ ⊗R Cλ

cλ
st

7→ cλs ⊗ cλt
(2.2)

is an (A,A)-bimodule isomorphism, implying that for each node,A andAop cell modules are
just multiplicity spaces for each other (see Figure 2.4).

Example 2.2.1. We continue with the cellular basis in Example 2.1.4, the Kazhdan–Lusztig
basis of H ..= H (S3). This is a sketch of its (2, 1)-node H (2,1)/Ȟ (2,1):

Hst

Hs Hts

Ht
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c1 1

c1 2

c1 3

c1 4

cn 2

cn 3

cn 4

c1n

c2 1 c3 1 c4 1

c2n c3n c4n

cn 1

cn n

Figure 2.4: Decomposition of a node as a right A-module and as a right Aop-module. Here
T (λ) = {1, 2, ...,n}, the are elements ci j in Aλ/Ǎλ , elements connected by gen-
erate a right A-submodule of Aλ/Ǎλ and elements connected by generate a right
Aop-submodule of Aλ/Ǎλ . Moreover, all submodules are isomorphic and likewise all

submodules are isomorphic.

As a right H -module it decomposes into twomodules, that are both isomorphic to the right
cell module C(2,1). Similarly, as a right H op-module it decomposes into two cell modules
C∗(2,1). As a (H ,H )-bimodule, it does not decompose at all.

Decomposition as
right H -module

Decomposition as
right H op-module

Decomposition as
(H ,H )-bimodule

Characterization (2.2) of Aλ/Ǎλ already suggests that Λ provides many different right
A-module and right Aop-module filtrations of A with cell modules as subquotients. Our
approach is to first focus on certain (A,A)-bimodule filtrations of A involving so called
poset ideals. These filtrations, while interesting on their own, can then be refined to right
A-module and right Aop-module filtrations with the mentioned subquotients.

Before we proceed let’s recall that (Λ, ≤) is, per definition, a finite poset.

Definition 2.2.2. A subset Γ ⊂ Λ is called a poset ideal, if for all λ, µ ∈ Λ:

(µ ∈ Γ ∧ λ > µ)⇒ λ ∈ Γ .

For such a Γ denote by A(Γ) the two-sided A-submodule of A defined by

A(Γ) ..= spanR {cλst | λ ∈ Γ, s, t ∈ T (λ)} =
∑
λ∈Γ

Aλ

A chainΓ0 ⊂ Γ1 ⊂ · · · ⊂ Γk of poset ideals ismaximal, ifΓ0 = ∅,Γk = Λ and |Γi\Γi−1 | = 1
for all i = 1, 2, . . . ,k .
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A(Γ) is a well defined two-sided A-submodule by the cellular property (C1). Maximal
chains of poset ideals will be used in Proposition 2.2.5 to construct
(A,A)-bimodule filtrations of A. As a preparation we first gather some properties of such
maximal chains (see [Mat06, Lemma 2.14]).

Lemma 2.2.3. Let (Λ, ≤) be a finite poset, then:
(i) There exists a labeling Λ = { λ1, λ2, . . . , λk } of this finite poset such that λi > λj implies

j > i . Then Γi ..= {λ1, λ2, . . . , λi } for i = 0, 1, . . . ,k defines a maximal chain of poset
ideals.

(ii) Any poset ideal Γ ⊂ Λ is part of a maximal chain of poset ideals that has the labeling
property of (i).

(iii) For any maximal chain of poset ideals Γ0 ⊂ Γ1 ⊂ · · · ⊂ Γk there exists a labeling
Λ = Γk = { λ1, λ2, . . . , λk }, such that λi > λj implies j > i .

Proof. We call an element µ maximal in Λ if λ ≯ µ for all λ ∈ Λ.
(i) For λ ∈ Λ denote by ρ(λ) the maximal size of a totally ordered subset

{λ < η1 < η2 < · · · < ηl } ⊂ Λ

starting at λ. If λ > µ, then a maximal subset for λ can be extended to a totally
ordered subset starting at µ. Therefore, λ > µ implies ρ(µ) > ρ(λ). Also, λ and µ are
incomparable if ρ(λ) = ρ(µ) and µ is maximal if ρ(µ) = 0.

Now, starting with the maximal elements, label Λ increasingly by the values ρ(λ).
Then λi > λj ⇒ ρ(λj) > ρ(λi) ⇒ j > i because λi got labeled before λj . Moreover,
the Γi define a maximal chain of poset ideals, as for some λn ∈ Γi and λm > λn we
have ρ(λn) > ρ(λm)⇒ n > m ⇒ λm ∈ Γi .

(ii) Both Γ and Λ \ Γ are naturally posets, where the partial order agrees with the partial
order on Λ, so (i) can be applied to each of them. Denote the resulting chain of poset
ideals for Γ by Γi , where i = 0, 1, . . . , |Γ|, and the chain of poset ideals for Λ \ Γ by
ΓΛ\Γ
j , where j = 0, 1, . . . , |Λ \ Γ|. Then

∅ = Γ0 ⊂ Γ1 ⊂ · · · ⊂ Γ |Γ | ⊂
(
ΓΛ\Γ
1 ∪ Γ

)
⊂ · · · ⊂

(
ΓΛ\Γ
|Λ\Γ | ∪ Γ

)
= Λ (2.3)

is a chain of poset ideals of Λ, as the union of two poset ideals is again a poset ideal.
Additionally this chain is maximal, as Γi and ΓΛ\Γ

j each define a maximal chain of
poset ideals. Denote the chain in (2.3) by ΓΛ

i for i = 0, 1, . . . , |Λ| and label elements
in Λ such that ΓΛ

i = {λ1, λ2, . . . , λi }.
Finally, to show the labeling property consider λi > λj . If i, j ≤ |Γ| or i, j > |Γ| the
property follows because we applied (i) before. In all other cases wemust have λj < Γ,
because otherwise λi ∈ Γ as well and then i, j ≤ |Γ|. In conclusion we have i ≤ |Γ| < j.

(iii) For a given maximal chain of poset ideals we can apply (ii) iteratively to each poset.
Because the property of (i) holds in every step it will also hold for Λ.

□
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Example 2.2.4. The poset we associated to the Kazhdan–Lusztig basis of H (S3) in Ex-
ample 2.1.4 was Λ = {I < II < III}. For this poset the only maximal chain of poset ideals
is

∅ ⊂ { III} ⊂ {II, III } ⊂ Λ ,

so the labeling from Lemma 2.2.3(iii) is λ1 = III, λ2 = II and λ3 = I.

The following Proposition is from [Mat06, Lemma 2.14].

Proposition 2.2.5. Let A be a cellular algebra with labeling set Λ. For any maximal chain of
poset ideals Γ0 ⊂ Γ1 ⊂ · · · ⊂ Γk the corresponding (A,A)-bimodule filtration of A

{0} = A(Γ0) ⊂ A(Γ1) ⊂ · · · ⊂ A(Γk ) = A (2.4)

has subquotients
A(Γi)⧸A(Γi−1) �

Aλi
⧸Ǎλi � C∗λi ⊗R Cλi

for some λi ∈ Λ.

Proof. By Lemma 2.2.3(iii) there exists a labeling Λ  = {λ1, λ2, . . . , λk } such that
Γi = {λ1, λ2, . . . , λi } and λi > λj implies j > i . Using the definition of A(Γi) we get

A(Γi)⧸A(Γi−1) =

∑
λ∈Γi

Aλ
⧸

∑
λ∈Γi−1

Aλ
Γi=Γi−1 ∪{λi }

� Aλi
⧸
Aλi ∩

∑
λ∈Γi−1

Aλ . (2.5)

The labeling clearly implies Ǎλi ⊂ Aλi ∩∑
λ∈Γi−1 A

λ , but suppose for contradiction that the
inclusion is strict. Then, by definition of Aλi , there must exist some λj ∈ Γi−1 such that
λi ≥ λj . But λi , λj , because λi < Γi−1, and λi > λj implies j > i , which is a contradiction
to the labeling of Λ.

So Aλi ∩∑
λ∈Γi−1 A

λ = Ǎλi and by continuing (2.5) we get

A(Γi)⧸A(Γi−1) �
Aλi
⧸Ǎλi � C∗λi ⊗ Cλi ,

where the last isomorphism was already stated in (2.2). □

Example 2.2.6. Consider again the Kazhdan–Lusztig basis of H (S3) with poset
Λ = { I < II < III}. For the unique maximal chain of poset ideals in the poset associated to
H (S3), the (H (S3),H (S3))-bimodule filtration from Proposition 2.2.5 is:

∅ ⊂ spanR {Hsts }  ⊂ spanR {Hsts ,Hs ,Hst ,Ht ,Hts } ⊂ H (S3)

At the end of Section 2.3 we will come back to poset ideals and see how they can be used
to construct new cellular algebras from A.

To understand why (A,A)-bimodule filtrations like in equation (2.4) of A are so useful
in the theory of cellular algebras we first need to take a closer look at right A and Aop cell
modules.
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By Proposition 2.2.5, right A and Aop cell modules appear as multiplicity spaces in sub-
quotients of (A,A)-bimodule filtrations of A arising from maximal chains of poset ideals.
These can be refined to right A-module filtrations with right cell modules as subquotients.
In this way we could build composition series ofA as a rightA-module and as a rightAop by
combining composition series of right cell modules. A slight variation of this idea is used in
the next section.

However, we have not yet investigated the module structure of cell modules themself,
so we will need some preparation before we can combine such composition series. In the
next section we will define more concepts surrounding cell modules to better understand
this module structure.

Afterwards we will prove a classification result for irreducible right modules for cellular
algebras using the established structures, at least if the ground ring is a field. They are
labeled by a set that is connected to special submodules of right cell modules. This labeling
set can be hard to determine in concrete examples, although its definition is straightforward.

2.3 Classification of irreducible representations

Consider again a cellular algebra A over R with cell datum ((Λ, ≤),T ,C, ∗). Basic fea-
tures of the right A and Aop-module structures and the (A,A)-bimodule structure of A have
been described this chapter thus far. However, the cellular property of A also affects right
A-modules other than A itself. These influences will be studied in this section.

As indicated above, our analysis begins by revisiting right cell modules, which were
introduced in Definition 2.1.7. The main goal of this section is to classify all irreducible
right A-modules in case R is a field, an additional assumption we will make later on.

To achieve this goal we also need to readdress poset ideals. We are particularly interested
in quotient modules of A by two-sided A-submodules of A generated by poset ideals. These
quotient modules turn out to be cellular algebras as well, just with a smaller poset than A.

We begin our analysis of the A-module structure of right cell modules with a small
lemma. It identifies elements of A that have to act trivially on a given right cell module,
based on the cellular structure of A. Its statement is rather technical and unassuming, its
proof is not difficult and based on results of Section 2.1. However, it will simplify upcoming
proofs significantly. See also [Mat06, Lemma 2.7].

Lemma 2.3.1. Assume λ, µ ∈ Λ. Then:

λ ≱ µ ⇒ xa = 0 ∈ Cλ for all x ∈ Cλ and a ∈ Aµ

Proof. The statement follows by combining two facts discussed before. Firstly, recall the
(A,A)-bimodule isomorphism Aλ/Ǎλ � C∗λ ⊗R Cλ from (2.2). Using the definition of C∗λ

given in Remark 2.1.9 we thus also know there exists a decomposition

Aλ
⧸Ǎλ �

⊕
t∈T (λ)

Cλ (2.6)
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as a right A-module into |T (λ)| copies of Cλ . Secondly, as Aλ and Aµ are both two-sided
submodules of A and λ ≱ µ by assumption, we have Aλ · Aµ ⊂ Aλ ∩Aµ ⊂ Ǎλ . Thus

*.,
⊕
t∈T (λ)

Cλ+/- · Aµ (2.6)
�

(
Aλ · Aµ

)
⧸Ǎλ � {0}

and, in particular, Cλ · Aµ = {0}. □

The cellular property (C1) of A was central in defining right cell modules for A and,
subsequently, for Aop. Additionally, it provides us with a special right A-submodule of each
right cell module, which we will construct below.

Recall the cellular property (C1) for (A, ·) and the cellular property (C2) for (Aop, ◦) from
Section 2.1. Specifically, let’s consider some s, t, u, v ∈ T (λ) for some λ ∈ Λ. Then the
multiplication cλusc

λ
tv

can be computed with (C1) and with (C2) respectively:

cλusc
λ
tv
=

∑
m∈T (λ)

r
s,cλ
tv

m cλum mod  Ǎλ

cλusc
λ
tv
= cλ
tv
◦ cλus =

∑
n∈T (λ)

r
t,cλsu
n cλnv mod  Ǎλ

Because the image of C, i.e. the set
{
cλ
st
∈ A | λ ∈ Λ, s, t ∈ T (λ)

}
, forms a basis, the coeffi-

cients in both versions have to agree. So the only possible non-zero coefficient is r
s,cλ
tv

v = r
t,cλsu
u .

Moreover, by (C1) and (C2) this coefficient is independent of both u and v, which leads us
to the next proposition (see [Mat06, Proposition 2.9]).

Proposition 2.3.2. For every λ ∈ Λ there is a unique R-bilinear map

⟨.  , .⟩ : Cλ ×Cλ −→ R

such that
⟨cλs , cλt ⟩cλuv ≡ cλusc

λ
tv
mod  Ǎλ

for all s, t, u, v ∈ T (λ).
Basic properties of this bilinear form are:

(i) ⟨x ,y⟩ = ⟨y,x⟩ (symmetry)
(ii) ⟨xa,y⟩ = ⟨x ,ya∗⟩ (associativity)
(iii) xcλuv = ⟨x , cλu ⟩cλv

for all x ,y ∈ Cλ , a ∈ A and u, v ∈ T (λ).

Proof. By above, the element ⟨cλs , cλt ⟩ is well defined and thus such a unique bilinear form
exists. The other proofs are rather short and done in [Mat06, Proposition 2.9]. □
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The R-bilinear map ⟨.  , .⟩ captures, per construction, essential information about the
module structure of right cell modules. Due to its elegant definition and property (iii) from
Proposition 2.3.2 it plays a central role in the construction of irreducible A-modules and in
the following definition.

Definition 2.3.3. For λ ∈ Λ let the radical of Cλ be defined as the A-submodule

radCλ ..=
{
x ∈ Cλ | ⟨x ,y⟩ = 0 for all y ∈ Cλ

}
  ⊂  Cλ .

Denote the corresponding quotient module by

Dλ ..= Cλ
⧸radCλ ,

which also induces the labeling set

Λ0
..=

{
λ ∈ Λ | Dλ , {0}

}
.

Indeed, the radical radCλ is a right A-submodule by Proposition 2.3.2(iii).

Remark 2.3.4. Note that radCλ · Aλ = {0} by Proposition 2.3.2(iii), so the radical is also
a right A/Aλ-module.

Example 2.3.5. Consider once again algebra A of Example 2.1.5. For λ , I, the result of
multiplying two basis elements of A associated to λ is always in Ǎλ . Therefore ⟨.  , .⟩ ≡ 0
and radCλ = Cλ . For λ = I the bilinear form is completely determined by 1 · 1 = 1, so
radC I = { 0 }. It follows that Λ0 = {I} in this example.

The labeling set Λ0 has an important role in the theory of cellular algebras, but in many
cases it is hard to control. However, by the next proposition we know that it is always
non-empty. The proof is from [Mat06, Lemma 2.15].

Proposition 2.3.6. If λ is minimal in Λ, i.e. η , λ ⇒ λ ≱ η for all η ∈ Λ, then Cλ = Dλ .

Proof. We need to show x ∈ radCλ ⇒ x = 0. Write 1 ∈ A as a linear combination of
cellular basis elements

1 =
∑

s, t∈T (λ)

rstc
λ
st
+ a ,

where a ∈ ∑
η,λ A

η . As λ is assumed to be minimal we know λ ≱ η and can apply
Lemma 2.3.1. Therefore, xa = 0 ∈ Cλ and we finish our proof by observing

x = x · 1 2.3.1
= x ·

∑
s, t∈T (λ)

rstc
λ
st

2.3.2(iii)
=

∑
s, t∈T (λ)

rst ⟨x , cλs ⟩︸ ︷︷ ︸
=0, since
x ∈radCλ

cλ
t
= 0 .

□
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Remark 2.3.7. For some cellular algebras it is possible to construct cell data that are inde-
pendent of their ground ring R. Thus, for any choice of R there will be the same amount of
right cell modules. One example of such cell datum is associated to the Murphy basis for
the Hecke algebra. We will discuss this basis in detail in Section 4.3. Another example of
such algebra is the Temperley–Lieb algebra from Example 2.1.3.

Even the bilinear form on right cell modules of such cellular algebras can be independent
of R. However, R can influence whether the bilinear form is degenerate or not. Thus, the
choice ofR affects the radicals and can, for example, change their dimensions. Consequently,
Λ0 can also depend on the choice of R.

In Proposition 6.1.1 we will see this in explicit computations for the Murphy basis of
H (S3) over a field R. There, Λ0 depends in part on the characteristic of R.

The main result of this section is that if R is a field, then Λ0 labels the irreducible right
A-modules, clarifying its importance. There is still some preparation needed before we can
prove this statement. We begin with some properties of the quotient modules defined in
Definition 2.3.3 if we work over a field (see [Mat06, Proposition 2.11, Corollary 2.13]).

Proposition 2.3.8. Let R be a field and λ, µ ∈ Λ0.

(i) Dλ is an irreducible right A-module.

(ii) If Dλ � Dµ then λ = µ.

Proof. (i) By the assumption on λ we have Dλ , {0} and can therefore show the equi-
valent statement

(i ′) radCλ is the unique maximal, strict submodule of Cλ ,

which in turn follows from

(i ′′) xAλ = Cλ for all x ∈ Cλ \ radCλ .

For such x ∈ Cλ \ radCλ there exists, by definition of the radical, an element y ∈ Cλ

such that ⟨x ,y⟩ , 0. By Definition 2.1.7

Cλ = spanR
{
cλv | v ∈ T (λ)

}
.

Hence, there even exists a u ∈ T (λ) such that ⟨x , cλu ⟩ , 0, which is invertible because
R is assumed to be a field. Applying property (iii) of ⟨.  , .⟩ from Proposition 2.3.2 we
get

⟨x , cλu ⟩cλv = xcλuv ∈ xAλ for all v ∈ T (λ) .

So cλv = ⟨x , cλu ⟩−1xcλuv ∈ xAλ for all v ∈ T (λ), proving (i ′′) and (i), because this is a
basis of Cλ .

(ii) We only prove µ ≥ λ. Then simply reversing the roles of µ and λ proves (ii), because
≤ is antisymmetric.
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Take x ∈ Cλ \ radCλ like in the proof of (i), which exists because λ ∈ Λ0, and extend
the given isomorphism Dλ � Dµ to a A-module homomorphism θ : Cλ ↠ Dλ � Dµ .
Using (i ′′) we see that θ produces a special generating element of Dµ :

Dµ = θ(Cλ)
(i′′)
= θ(x)Aλ . (2.7)

Now, let θ(x) ∈ Cµ be a lift of θ(x). Then θ(x)Aλ ⊂ Cµ must be non-trivial by (2.7).
Hence, µ ≥ λ follows from Lemma 2.3.1.

□

If we work over a field the quotient modules associated to elements in Λ0 are pairwise
non-isomorphic right A-modules by Proposition 2.3.8. In fact, the main result of the theory
of cellular algebras we will state in this section is, that all irreducible right A-modules are
such quotient modules.

We need one final lemma to state a proof of this result. The idea is to reduce the problem
for A to a problem for a cellular algebra with fewer elements in its poset. Then we use an
inductive argument to finish the proof.

Poset ideals and the associated two-sidedA-submodules ofA, which were introduced in
Definition 2.2.2, are exactly the right notions to construct such cellular algebras.

Lemma 2.3.9. Let A be a cellular algebra with labeling set Λ.

(i) The quotient A/A(Γ) is a cellular algebra for any poset ideal Γ ⊂ Λ. Its labeling poset is
given by ΛΓ ..= Λ \ Γ  ⊂ Λ, where the partial order agrees with the partial order on Λ.

(ii) Let λ ∈ ΛΓ, then the cell module of A/A(Γ) corresponding to λ is, as a R-module, iso-
morphic to the cell module ofA corresponding to λ. Moreover, the radical is the same for
both algebras, so

ΛΓ
0 ⊂ Λ0 .

Proof. (i) We need to define a cell datum for A/A(Γ). Consider

ΛΓ ..= Λ \ Γ ⊂ Λ, partially ordered by restricting the partial order on Λ to ΛΓ,

T Γ : ΛΓ → {finite sets} defined as the restriction of T to ΛΓ,

CΓ :
⨿

λ∈ΛΓ T Γ(λ) × T Γ(λ) ↪→ A/A(Γ), (s, t) 7→ cλ
st
+A(Γ) and

∗ the algebra anti-automorphism of A/A(Γ) determined by
(cλ
st
+A(Γ))∗ = cλ

ts
+A(Γ) .

Then ((ΛΓ, ≤),T Γ,CΓ, ∗) is a cell datum forA/A(Γ) if we can verify cellular property

(C1). Note,
(

ˇA/A(Γ)
)λ

= Ǎλ/A(Γ) as right A-modules, so for λ ∈ ΛΓ we have

(cλ
st
+A(Γ))(a +A(Γ)) ≡ *.,

∑
v∈T Γ(λ)

r t,av (cλsv +A(Γ))+/- mod
(

ˇA/A(Γ)
)λ

for all λ ∈ ΛΓ, t ∈ T Γ(λ) and (a +A(Γ)) ∈ A/A(Γ).
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The coefficients r t,av come from the cellular basis of A and are therefore independent
of s. Moreover, the coefficients are independent of the coset representative, because if
a1 = a2 + x for some x ∈ A(Γ), then cλ

st
a1 = cλ

st
a2 + cλ

st
x with cλ

st
x ∈ A(Γ) ∩Aλ ⊂ Ǎλ .

(ii) We decorate right cell modules of A/A(Γ) by ∼ to differentiate them from right cell
modules of A.

For λ ∈ ΛΓ we have C̃λ = spanR {c̃λt | t ∈ T Γ(λ)}. This basis is labeled exactly like
the basis of Cλ , because T Γ(λ) = T (λ). Additionally, the bilinear forms on C̃λ and
Cλ agree in the following way: by the proof of (i) and construction of ⟨.  , .⟩ we have

⟨c̃λs , c̃λt ⟩ = r
s,cλ
tv

v = r
t,cλsu
u = ⟨cλs , cλt ⟩

for all s, t, u, v ∈ T Γ(λ). Therefore, radCλ � rad C̃λ as R-modules. In particular,
D̃λ , {0} ⇒ Dλ , {0}, where D̃λ denotes the quotient module for A/A(Γ). .

□

Example 2.3.10. Γλ
..= {µ ∈ Λ | µ ≥ λ} defines a poset ideal for all λ ∈ Λ. Its corresponding

(A,A)-submodule is A(Γλ) = Aλ , so A/Aλ is a cellular algebra by Lemma 2.3.9.

Figure 2.5: Let the dots depict elements of a poset Λ that is part of a cell datum for a cellular algebra
A. Assume a ≤ b for a,b ∈ λ if and only if there is a directed path from a to b. Let the
circled dots be the elements Λ0 ⊂ Λ.
Now assume Γ ⊂ Λ is the subset of all dots contained in the gray area. Then Γ is a poset
ideal. The poset associated to A/A(Γ) is the set of all dots outside of the gray area and
denoted by ΛΓ. Circled dots outside of the gray area are also in ΛΓ

0 . They label non-zero
quotients of right cell modules of A/A(Γ).

Remark 2.3.11. Note that, using the decomposition

Aλ
⧸Ǎλ �

⊕
t∈T (λ)

Cλ (2.8)

of right A-modules from (2.6), the (A,A)-bimodule filtration (2.4) of A, induced by a max-
imal chain of poset ideals, can be refined to a right A-module filtration with subquotients
isomorphic to cell modules Cλ for some λ ∈ Λ.
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By Lemma 2.3.9(i) we can also apply this observation to A/A(Γ). This provides a filtra-
tion ofA/A(Γ) as a rightA-module with subquotients isomorphic, as a R-modules, toCλ for
some λ ∈ ΛΓ, by applying Lemma 2.3.9(ii). We will see a similar result for the radical be-
low that allows us to extract information about composition series of Cλ from the quotient
A/A(Γ).

Combining some of the preceding preparations, Graham and Lehrer [GL96] first proved
the main result of this section: a classification of irreducible modules using the cellular
structure of A (cf. [GL96, Theorem 3.4]). The proof below closely follows the proof of
[Mat06, Theorem 2.16], which is still largely based on the ideas of Graham and Lehrer.

Proposition 2.3.12 (Classification of irreducible representations). Let R be a field. Then:

Ψ : Λ0
1:1←→

{
Irreducible right A-modules 

up to isomorphism

}
λ 7−→ Dλ

Proof. We already know that Ψ is a well defined, injective map by Proposition 2.3.8(i), (ii),
so we only need to show surjectivity.

Every irreducible right module of a cellular algebra already appears as a composition
factor of a right cell module, reducing the problem of surjectivity significantly. Indeed, let

{0} = A0 ⊂ A1 ⊂ · · · ⊂ Ak = A

be the right A-module filtration introduced in Remark 2.3.11, having subquotients
Ai/Ai−1 � Cλi for some λi ∈ Λ. Any irreducible right A-module is a quotient of A and,
in particular, of Ai/Ai−1 for some i = 1, 2, . . . ,k , proving the stated reduction. Therefore,
to prove the theorem it is enough to show that composition factors of right cell modules are
isomorphic to some Dµ .

We use induction on |Λ| and in each induction step we consider all λ ∈ Λ individually.
If |Λ| = 1 then λ is minimal and Cλ = Dλ by Proposition 2.3.6. If |Λ| > 1 we differentiate
between two cases. For minimal λ we again use Proposition 2.3.6. If λ is not minimal and
Cλ = Dλ there is nothing to show. Otherwise radCλ , {0} and we need to show that its
composition factors are of the wanted form. Consider the poset ideal Γ ..= {η ∈ Λ | λ ≯ η}.
ThenA/A(Γ) is a cellular algebrawith posetΛΓ by Lemma 2.3.9(i). Recall that, by definition,
ΛΓ = {η ∈ Λ | λ > η} , ∅ and |ΛΓ | < |Λ|. Moreover, by Lemma 2.3.1 and Remark 2.3.4 we
have

radCλ · A(Γ) = radCλ ·
∑
λ≯η

Aη 2.3.1
= radCλ · Aλ 2.3.4

= {0} .

Hence, radCλ is also a right A/A(Γ)-module and, by induction, has composition factors
isomorphic to some D̃µ , µ ∈ ΛΓ. By Lemma 2.3.9(ii) these are also composition factors for
radCλ as a right A-module, finishing the induction step and the proof. □
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We applied Lemma 2.3.1 at two important points in this proof. The base case of the
induction is basically a corollary of Lemma 2.3.1 andwe used it to reduce to a slightly smaller
cellular algebra in the induction step.

Remark 2.3.13. In general it is not possible to determineΛ0 only from the cellular structure
of an algebra. To apply the classification result of Proposition 2.3.12 to a specific algebra in a
meaningful way, one needs to first establish a cellular basis for this algebra and then develop
enough theory to study right cell modules and their radicals. In this case it might even be
possible to control their dimensions and thus the dimension of the irreducible modules.
Only then one can hope to relabel Λ0 and get a useful classification of the irreducibles for
this algebra.

By Remark 2.3.7, Λ0 might depend on the choice of R and, in particular, on the charac-
teristic of R. Therefore, such further relabeling might also depend on the ground ring. This
occurs, for example, for the Murphy basis of the Hecke algebra, which will be discussed in
Section 4.3. There, the notion of e-restrictedness is partially based on the characteristic of
R and can be used to decide which elements in Λ are in Λ0.

Remark 2.3.14. Although it might be difficult to control Λ0 in general, for very explicit
examples, say the Hecke algebra H (S3), we only need to calculate the radicals of the right
cell modules. Therefore, a cellular basis provides a straightforward way of calculating the
irreducibles and their dimension in explicit examples. This is a valuable aspect of the theory
of cellular algebras.

For a general cellular algebra we a priori only know that minimal λ ∈ Λ are contained
in Λ0 by Proposition 2.3.6, possibly |Λ0 | = 1. An example where this occurs is shown in
Example 2.3.15 below. Still, Λ0 = Λ is a possibility, as we will see for Schur algebras over
fields in Section 5. More generally, we have Λ0 = Λ for a cellular algebra over a field, if and
only if it is quasi-hereditary (cf. [Mat06, Corollary 2.23]).

Example 2.3.15. Let k be an algebraically closed field and

A ..= k[x1,x2, . . . ,xd ]⧸I

finite dimensional with homogeneous I . Then A is a cellular algebra by Example 2.1.6. Pick
a cell datum of A and let Λ be its poset. As A is local, there exists only one irreducible A-
module. Therefore, by the classification in Proposition 2.3.12, we have |Λ0 | = 1 for this
algebra.

Note that if we construct a cell datum for A using the inductive approach described in
Example 2.1.6, then each cell module is one-dimensional. Nevertheless, because |Λ0 | = 1,
all cell modules except one must have trivial bilinear form, because the radical is the whole
cell module. This means the basis element associated to such cell module must have non-
zero degree, as multiplication with itself is not contained in its span. The one cell module
without trivial bilinear form must be the cell module associated to a basis element that has
1 ∈ A in its span.
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Definition 2.3.16. For η ∈ Λ0 and λ ∈ Λ let dλη ..= [Cλ : Dη ] be the multiplicity of Dη

appearing as a subquotient of a Jordan-Hölder filtration of Cλ . Then D  ..=
(
dλη

)
λ∈Λ, η∈Λ0

is called the decomposition matrix of A.

Example 2.3.17. The decomposition matrix of A from Example 2.1.5 is

D =

I

*........,

+////////-

1 I
1 II
1 III
3 IV
1 Va
1 Vb

which is of course simply the dimension of each cell module because the only simple module
is one dimensional by Example 2.3.15. Alternatively one can see the filtration

∅ ⊂ spanR
{
c IV1

}
⊂ spanR

{
c IV1 , c

IV
2

}
⊂ spanR

{
c IV1 , c

IV
2 , c

IV
3

}
= C IV

of C IV in Example 2.1.8, which is a composition series as each subquotient is clearly iso-
morphic to DI.

Remark 2.3.18. The proof of Proposition 2.3.12 showsdλη = 0 for all η ≰ λ and additionally
dλλ = 1 if λ ∈ Λ0. Indeed, in case of {0}  , radCλ , Cλ the radical contributes to the
composition series of Cλ . It is shown that radCλ is also a right module over a cellular
algebra with poset ΛΓ = {η ∈ Λ | λ > η}, so composition factors can only come from ΛΓ.

Apart from the classification of irreducibles in Proposition 2.3.12, another major result
of the theory of cellular algebras is concerned with the Cartan matrix. Here we will only
state this result and refer to [GL96, Theorem 3.7] or [Mat06, Theorem 2.20] for the proof.

Recall that for each irreducible right module Dλ there exists a principal indecompos-
able right A-module Pλ with top Dλ . We are interested in composition series of Pλ as a
right A-module and denote by cλµ the multiplicity of Dµ as a subquotient of a composition
series of Pλ . Then the Cartan matrix is defined as C ..= (cλµ)λ,µ ∈Λ0 .

Proposition 2.3.19. If R is a field then C = DtD, where Dt is the transposed of D.

In particular, the Cartan matrix of a cellular algebra over a field is symmetric. Thus, for
λ, µ ∈ Λ0, the multiplicity of Dµ in a composition series of Pλ is the same as the multiplicity
of Dλ in a composition series of P µ .
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Example 2.3.20. Continuing with Example 2.3.17, the cellular algebraA from Example 2.1.5
has Cartan matrix

C =
I

( )14 I

according to Proposition 2.3.19. Indeed, there is only one irreducible module, so A itself is
its corresponding principal indecomposable right module. Moreover, the irreducible module
is one-dimensional and A has dimension 14, so we have verified Proposition 2.3.19 for this
example.



3. Tableaux

We want to study the two cellular bases of Hecke algebras of the symmetric group and the
one cellular basis of Schur algebras mentioned in Chapter 1. By design, Murphy’s basis
generalizes ideas from the representation theory of the symmetric group. Irreducible rep-
resentations of the symmetric group are labeled by certain tableaux, so it can be expected
that they also appear in the discussion of the Murphy basis. The semistandard basis of
Schur algebras is based on the Murphy basis and thus also related to tableaux. Finally,
to state a cell datum for the Kazhdan–Lusztig basis the basis elements are relabeled via
the Robinson–Schensted correspondence. The new labels are pairs of tableaux. Hence, the
Kazhdan–Lusztig basis is related to tableaux as well.

The goal of this chapter is to fix notations for the symmetric group, for compositions
and tableaux, so we can use these concepts in subsequent chapters without much more
explanations. We also recall basic results that will be needed later on.

A good reference for the representation theory of the symmetric group and tableaux in
general is [Sag01]. There is also [Ful96]. We will mainly follow [Mat06], where the author
already collected all results from this theory relevant for a cellular basis of Hecke algebras.

We begin with the definition of the symmetric group, then move to compositions and
partitions of a natural number and end this chapter with a discussion of different kinds of
tableaux. In particular, the interaction between tableaux and compositions is highlighted.

3.1 Symmetric group and compositions

The symmetric group Sd of d ≥ 1 elements consists of all permutations of {1, 2, . . . ,d }.
Transposing two elements i , j ∈ {1, 2, . . . ,d } defines an element (i, j) inSd . The simple
transpositions si ..= (i, i + 1) for i = 1, 2,   . . . ,d − 1 generateSd as a group and relate to
each other via braid relations:

sisj = sjsi for all i, j = 1, 2, . . . ,d − 1 s.t. |i − j | ≥ 2
sisi+1si = si+1sisi+1 for all i = 1, 2, . . . ,d − 2 . (3.1)

As simple transpositions generateSd we find an expression w = si1si2 . . . sik for each
w ∈ Sd . A subexpression of si1si2 . . . sik is an expression si j1si j2 . . . si jl for some
1 ≤ j1 < j2 < · · · < jl ≤ k . If no strict subexpression of w = si1si2 . . . sik is again an
expression of w it is called a reduced expression. By Matsumoto’s theorem, all reduced

28
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expressions w = si1si2 . . . sik of w ∈ Sd are of the same length ℓ(w). Moreover, the the-
orem proves the existence of a well defined partial order onSd . For elements x ,y ∈ Sd it is
defined by

x ≥ y
def.⇔ Some reduced expression of y is a

subexpression of some reduced expression of x

and called the Bruhat order onSd .

A sequence µ = (µ1, µ2, . . . ) of non-negative integers such that
∑
µi = d is called a

composition of d with parts µi . It is denoted by µ |= d . If µl = 0 for all l > k we also write
µ = (µ1, µ2, . . . , µk ). If λ |= d and λi ≥ λi+1 for all i = 1, 2, . . . we call λ a partition of d
and write λ ⊢ d .

Example 3.1.1. The compositions (d) and (1)d ..=

d−times︷        ︸︸        ︷
(1, 1, . . . , 1) are partitions for any d . For

d = 3 the composition (1, 0, 2) is not a partition.

We will need the set of all compositions of d , the set of all partitions of d , as well as the
sets only containing compositions/partitions where the last possibly non-zero part is the
n-th part:

Λ(d) ..=
{
µ = (µ1, µ2, . . . ) | µ |= d

}
Λ+(d) ..=

{
λ = (λ1, λ2, . . . ) | λ ⊢ d

}
Λ(n,d) ..=

{
µ = (µ1, µ2, . . . , µn) | µ |= d

}
Λ+(n,d) ..=

{
λ = (λ1, λ2, . . . , λn) | λ ⊢ d

}
.

(3.2)

Let’s now combine the previous two paragraphs. If we identifyS0 with ∅ and consider
µ = (µ1, µ2, . . . , µk ) |= d we can define the Young subgroup associated to µ as

Sµ
..= Sµ1 ×Sµ2 × · · · ×Sµk < Sd .

More precisely, if di ..=
∑

j<i µ j thenSµi is the subgroup ofSd generated by simple trans-
positions sdi , sdi+1 , . . . , sdi+µi−1.

There also exists a well defined partial order ▷ on all compositions, which we will mostly
use to compare compositions of a given d . Relate two compositions µ and η by

µ ▷ η
def⇔

i∑
j=1

µ j ≥
i∑

j=1

ηj for all i ≥ 1 ,

which defines a partial order on the set of all compositions, called the dominance order-
ing. This partial order can also be restricted to subsets of compositions, for example to a
dominance ordering on partitions.

Example 3.1.2. For d = 3 the dominance order on partitions is

(3) ▷ (2, 1) ▷ (1, 1, 1) = (1)3 .

For more information about the dominance ordering see [Sag01, Section 2.2].
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3.2 Standard tableaux

The notion of compositions is expanded by diagrams and tableaux. Formally, a diagram of
µ |= d is the subset

[µ] ..=
{
(i, j) | i ≥ 1, 1 ≤ j ≤ µi

} ⊂ N × N
and a µ-tableau is a bijection t : [µ] −→ {1, 2, . . . ,d }. We also call µ the shape of a
µ-tableau t and write µ = Shape(t).

One way to visualize diagrams is as stacked boxes, one box for each (i, j) ∈ [µ].
A µ-tableau is then a labeling of these boxes. We use a fixed notation for stacking boxes,
known as the English notation, which is demonstrated in Example 3.2.1.

Example 3.2.1. The following is an example of a (1, 0, 2)-tableau:

1

2 3

Notice that the 0-part of the composition is indicated by a dot.

A tableau is called row-standard, if the labels increase from left to right in each row.
For each µ |= d there is a row-standard µ-tableau tµ , labeling boxes increasingly from left
to right and top to bottom. Moreover, for λ ⊢ d a row-standard tableaux with columns
increasing from top to bottom is called a standard tableau. The set of standard tableaux
with shape λ is denoted by Std(λ).

Example 3.2.2. The following tableaux are all standard tableaux for d = 3:

(3): 1 2 3

(2, 1): 1 2

3

1 3

2

(1)3:
1

2

3

An example for a non-standard row-standard tableau is

2

1

3 ,

because its first column is strictly decreasing.
These are the tableaux tµ for all µ |= 3:

t
(3) = 1 2 3 , t(2,1) =

1 2

3
, t(1,2) =

2

1

3
, t(1)

3
=

1

2

3



3.2. STANDARD TABLEAUX 31

There exists a well defined partial order ⊵ on the set of all standard tableaux of a given
size d , which is also called dominance ordering. For m ≤ d and a standard tableau t of
size d , let t ↓m be the standard tableaux carved out of t by removing all boxes labeled with
integers greater thanm. Now, if s is also a standard tableaux of size d then

s ⊵ t
def⇔ Shape(s ↓m) ⊵ Shape(t ↓m) for allm ≤ d .

Note that we use the dominance ordering on compositions to compare the shapes of s ↓m
and t ↓m.

Example 3.2.3. To check if and how 1 2

3 and 1 3

2 are related in the dominance ordering
on standard tableaux of size 3 we need to compare three diagrams:

t

1 2

3

1 3

2

Shape(t ↓ 3)
=

Shape(t ↓ 2)
▷

Shape(t ↓ 1)

=

We see that these two tableaux are related in the dominance ordering and that

1 2

3
▷ 1 3

2
.

For more information about this partial ordering see [Sag01, Section 2.2].

Compositions of d are in bijection with diagrams of d boxes by identifying
µ = (µ1, µ2 . . . , µn) |= d with the diagram having µi boxes in row i for i = 1, 2, . . . ,n.
However, there can be several µ-tableaux for each µ |= d .

Recall that compositions also correspond to Young subgroups of Sd . We now describe
the connection of Young subgroups to tableaux.

The symmetric group Sd acts from the right on tableaux, which shapes correspond to
a composition of d . Let µ |= d , t a µ-tableaux and w ∈ Sd , then t.w is defined to be the
µ-tableaux

t.w : [µ]
t−→ {1, 2, . . . ,d } .w

−1
−→ {1, 2, . . . ,d } ,

where Sd acts on {1, 2, . . . ,d } by applying the permutation. In other words, the right ac-
tion on tableaux permutes the labels of boxes in the diagram of the tableaux. For every
µ-tableau t there exists a uniquew(t) ∈ Sd such that t = tµ .w(t), so there is a bijection{

µ − tableaux
} 1:1↔ Sd
t 7→ w(t)

. (3.3)



3.2. STANDARD TABLEAUX 32

Example 3.2.4. Assume, as we will for many examples below, that d = 3 and the simple
transpositions ofS3 are denoted by s ..= (1, 2) and t ..= (2, 3).

Let µ = (2, 1), then the correspondence of (3.3) is:

1 2

3
↔ e 1 3

2
↔ t 2 3

1
↔ ts

2 1

3
↔ s 3 1

2
↔ st 3 2

1
↔ sts

The Young subgroupSµ < Sd is exactly the set of elements that only permute labels in
each row of tµ . While their corresponding tableaux from (3.3) are not of special interest to
us, their cosets will be important.

Proposition 3.2.5. For µ |= d the set

Dµ
..= {w ∈ Sd | tµ .w is row-standard tableau}

is a complete set of minimal length right coset representatives of Sµ < Sd , so if w ∈ Sµ and
x ∈ Dµ then ℓ(wx) = ℓ(w) + ℓ(x).

Proof. We only sketch the idea of the proof of Proposition 3.2.5. For a full proof
see [Mat06, Proposition 3.3].

As Sµ reorders labels in rows, these elements must be in different cosets. It is com-
plete, because the rows of any tableau can be reordered such that it becomes row-standard.
Minimality follows from the idea that ordered rows produce the lowest number of inver-
sions. □

Example 3.2.6. Only tableaux in the first row of 3.2.4 are row-standard, so:

D(2,1) = {e, t , ts}

Tableaux of a given shape µ |= d can be interpreted as Sd -orbits of the composition µ
via the action on tµ . By Proposition 3.2.5 this action enables us to study Young subgroups
Sµ < Sd and their cosets.

However, this is not an orbit in the set of compositions, as the shape of a tableau does
not change under the action. We therefore consider an action of compositions on tableaux
in the next section to study compositions in this context.
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3.3 Semistandard tableaux

The notion of µ-tableau for some µ |= d is generalized by relaxing the restrictions on labels
of the underlying diagram.

Let η = (η1,η2, . . . ,ηn) |= d such that ηm = 0 for all m > n for a given n  ∈ N,
so η ∈ Λ(n,d). Then a µ-tableau of type η is a not necessarily bijective map

T : [µ] −→ {1, 2, . . . ,n}

such that ηi = #{x ∈ [µ] | T (x) = i } for all i ≥ 1. Put simply, these are diagrams with labels
ranging from 1 to n, where label i appears exactly ηi -times.

Similarly to the normal tableaux from before we call a µ-tableau T of type η row-
semistandard, if labels in each row are non-decreasing. If additionally µ ⊢ d and the
columns of T are strictly increasing we call T semistandard and we use the notation

T0(µ,η) ..=
{
semistandard µ -tableaux of type η

}
.

Example 3.3.1. For partitions (3) and (2, 1) of d = 3 the semistandard tableaux are:

1 1 1 ∈ T0 ( , )

1 1 2 ∈ T0
(

,
)

1 1

2
∈ T0

(
,

)
1 2 2 ∈ T0

(
,

)
1 2

2
∈ T0

(
,

)
2 2 2 ∈ T0

(
,

)
In this example there is at most one element in each T0(µ,η). This is not true in general
and thus misleading. However, we will continue the example below and this circumstance
makes it easier to keep track of all semistandard tableaux, because we can label them by
their combination of µ and η.

Note that in a µ-tableau of type (1d ) each label from 1 to d appears exactly once, so
introducing types generalized the normal µ-tableaux from before. We can also generate a
µ-tableaux of type η from a normal µ-tableaux t by replacing a label i by the row it appears
in tη . Put simply, we replace labels 1, 2, . . . ,η1 in t by 1, we replace η1 + 1,η1 + 2 . . . ,η2 by
2 and so on. Hence, we get a µ-tableau of type η, which is denoted by η(t).

There are three important features of this construction. Firstly, notice that replacing
labels i < j either keeps the ordering intact or they get replaced by the same label. Thus
row-standard tableaux t generate row-semistandard tableaux η(t), but standard tableaux do
not have to generate semistandard tableaux.

Secondly, for any normal µ-tableau t from Section 3.2 and any η , (1d ) the µ-tableau
η(t) will not be a normal µ-tableau. Hence, the orbits of normal µ-tableaux under the action
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of compositions can not be interpreted as orbits in the set of tableaux. In this sense it is
similar to theSd action on the diagram [µ] via the row-standard µ-tableau tµ . Its orbits can
not be interpreted as orbits in the set of diagrams and must instead be seen as orbits in the
set of tableaux.

Thirdly, acting with η on two different µ-tableaux can yield the same µ-tableau of type
η. Therefore, in contrast to the bijection (3.3) for normal tableaux, there is no sensible way
to assign an element ofSd to each µ-tableau of type η.

Example 3.3.2. If η = (1, 2), then:

η *, 1 2

3
+- =

1 2

2
= η *, 1 3

2
+-

Note that both actions generate the same semistandard tableau.
Now let η = (3), then:

η
*..,

1

2

3

+//- =
1

1

1

Note that in this example the action on a standard tableau produced a non-semistandard
tableau.

We can rectify the last feature for our purposes, as we will again only be interested
in row-semistandard tableaux. The action on row-standard µ-tableaux gives orbits in row-
semistandard µ-tableaux. By generalizing Proposition 3.2.5 we can identify these elements
with certain elements of Dµ ⊂ Sd . In fact, these turn out to be some kind of minimal coset
representatives as well, but we will not discuss it in detail.

Proposition 3.3.3. For µ,η |= d there is a bijection

Dµη
..= Dµ ∩D−1η

1:1↔ {
row-semistandard µ -tableaux of type η}

w 7→ η(tµ .w)
.

A proof of this result can be found in [Mat06, Proposition 4.4]. We see that the
action of η on row-standard tableaux gets translated to intersecting with D−1η .
For η = (1d ) Proposition 3.3.3 reduces to Proposition 3.2.5.

This finishes our recap of the symmetric group, compositions and tableaux. We are now
ready to defineHecke algebras associated to a symmetric group, construct cell data for it and
discuss their implications. The concepts introduced in this chapter will appear throughout
this discussion.



4. Cellular bases for Hecke algebras
of type A

The definition of cellular algebras in [GL96] was motivated by the Kazhdan–Lusztig basis
of Hecke algebras H of symmetric groups, also known as Hecke algebras of type A. The
authors also briefly describe a cell datum associated to that basis. A much more extensive
exploration of this cell datum can be found in [Wil03].

However, this is not the only cellular basis of Hecke algebras of type A. Murphy intro-
duced another basis, now called the Murphy basis, in [Mur92]. His goal was to simplify
the approach of Dipper and James in [DJ86], but still referred to some of their results. They
were interested in the representation theory of Hecke algebras over fields of arbitrary char-
acteristic and constructed all irreducible representations. In [Mur95], Murphy presented a
self contained version of his approach. Although cellular algebras were not yet defined, his
techniques are very similar to the techniques that Graham and Lehrer used. He labels his
basis by ordered pairs of standard tableaux of a given size, orders them via the dominance
ordering on their shapes and proves that the action on these elements satisfies a cellular
property. He continues to construct one-sided cell representations, defines a bilinear form
on them and uses this form to classify all irreducible representations of the Hecke algebra.
There is a cell datum associated to the Murphy basis that formally puts Murphy’s results
into the cellular context. A detailed description of the Murphy basis as a cellular basis is
given in [Mat06].

One goal of this chapter is to give an overview over the constructions of both cellu-
lar bases of Hecke algebras of type A mentioned above. We introduce all relevant notions
needed to define the cell data, give many examples and state the complete cell data, but will
only give a few proofs and intuitions.

Proving the cellular property for the Murphy basis requires some careful induction
(cf. [Mur95, Theorem 4.18]). We also refer to [Mat06] for a complete discussion of the
Murphy basis, which we will partially follow here. In [Mat06] there is also a description of
the role of the Murphy basis in the construction of a cellular basis for Schur algebras.

Proving the cellular property for the Kazhdan–Lusztig basis is much more involved and
we refer to [Wil03] for details, where all results needed to prove cellularity are presented and
collected. Compared to the definitions from Chapter 2, the author uses a slightly different,
but equivalent, definition of cellular algebras. If we cite this reference we will still be using
the definitions from Chapter 2.

35
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The Murphy basis was build around the ideas of Dipper and James [DJ86] to generalize
an approach to the classification of irreducible representations of the symmetric group to
Hecke algebras. One advantage of the Murphy basis is that it can also be used to generalize
other constructions from the representation theory of Sd to the representation theory of
H . The other goal of this chapter is to describe a few of these generalizations.

Murphy already used generalized Jucys–Murphy elements in his classification of irre-
ducible H -modules, so this will be the first generalization we will discuss in Section 4.4.
If H is semisimple, the Murphy basis also defines a basis for each irreducible module. In
combination with Jucys–Murphy elements, this basis can be transformed into a generaliza-
tion of Young’s orthogonal form, a special orthogonal basis we will see in Section 4.5. This
result can then be used to describe the decomposition of restrictions of irreducible modules,
classically known as the Branching theorem.

For C[Sd ], these results can be found, for example, in [CST10] and [VO05]. References
for these constructions for Hecke algebras of type A are [Mur81], [Mat06] and [Soe97]. We
will closely follow their presentations in this chapter.

This chapter is organized as follows. First we recall the definition of Hecke algebras of
typeA. Then we study special modules, called permutation modules, in Section 4.2, that are
needed to define the Murphy basis and will also be used in Chapter 5, where we consider
the Schur algebra. Finally, we state the full cell datum associated to the Murphy basis in
Section 4.3. In these sections we mainly follow [Mat06] and provide additional examples for
all constructions.

In Section 4.4 we describe Murphy’s approach to the classification of irreducible
H -modules using Jucys–Murphy elements. Afterwards we construct Young’s orthogonal
form for each irreducible representation in Section 4.5, if H is semisimple, and use it to de-
rive the Branching theorem for H . References for the classical case are [Sag01] and [VO05],
part of the general case is also described in [Mur81].

To close this chapter we then recall the Kazhdan–Lusztig basis mentioned above and
state its full cell datum, partially following [Wil03]. We are particularly interested in the
labeling of this basis, which is done via a one-to-one correspondence between Sd and the
set of ordered pairs of standard tableaux of the same shape and of size d , called Robinson–
Schensted correspondence.

4.1 Definitions and notations

Let R be an integral domain. Additionally, let ν ∈ R be invertible and d ∈ Z>0.

Definition 4.1.1. The associative, unital R-algebra generated by elements
H1,H2, . . . ,Hd−1 such that

HiHj = HjHi for all i, j = 1, 2, . . . ,d − 1 s.t. |i − j | ≥ 2
HiHi+1Hi = Hi+1HiHi+1 for all i = 1, 2, . . . ,d − 2

0 = (Hi − ν−1)(Hi + ν) for all i = 1, 2, . . . ,d − 1
(4.1)

is called the Hecke algebra HR,ν (Sd ) the symmetric groupSd .
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When we fix R, ν and d we will often simply write H for the associated Hecke algebra.
The connection of H to Sd is hidden in Definition 4.1.1. A more elaborate notation

for the generating elements Hi is Hsi , where si = (i, i + 1) ∈ Sd the i-th simple transpos-
ition. Then the first two lines of (4.1) mimic the braid relations of corresponding simple
transpositions inSd . We will use these notations interchangeably.

Expanding on this idea we would like to associated to each w ∈ Sd an element in H
such that some structure ofSd is carried over to H .

Letw = si1si2 . . . sik , e be a reduced expression forw ∈ Sd , then define

Hw
..= Hi1Hi2 . . .Hik ∈ H (4.2)

and He
..= 1. By Matsumoto’s theorem, the element Hw ∈ H does not depend on the

reduced expression and is thus well defined.

Proposition 4.1.2. The set of elements {Hw | w ∈ Sd } is a R-module basis of H , called the
standard basis of H . Acting with a generator onto this basis yields

HwHsi =

{
Hwsi if l(wsi) > l(w)
Hwsi + (ν−1 − ν)Hw if l(wsi) < l(w)

See [Mat06, Theorem 1.13] for a proof of this proposition.
By Proposition 4.1.2, Hs is invertible for any simple transposition s ∈ Sd with inverse

H−1s = Hs − (ν − ν−1) .

Therefore, any standard basis element Hw ,w ∈ Sd is invertible with inverse

H−1w = H−1ik H
−1
ik−1 . . .H

−1
i1 .

Hence, there exists a well defined algebra anti-isomorphism

∗ : H −→H ,

Hw 7→ Hw−1

which is part of both cell data for H we consider in this chapter.
Note that Proposition 4.1.2, in combination with (4.2), completely describes the

multiplication between standard basis elements.

Remark 4.1.3. Because standard basis elements are well defined by (4.2), we can associ-
ate to each Hw the length ℓ(w) and use this to construct two, possibly isomorphic, one-
dimensional representations of H . In the sign representation, each Hw acts by (−ν)ℓ(w).
In the trivial representation, each Hw acts by ν−ℓ(w). We will take another look at these
representations for the explicit example H (S3) in Section 6.1.

Finally, we can associate to each Young subgroup Sµ < Sd a subalgebra of H (Sd ).
Indeed, let H (Sµ) ⊂ H (Sd ) be the R-submodule spanned by Hs for all simple reflections
s ∈ Sµ . Then H (Sµ) is also a subalgebra of H (Sd ) by Proposition 4.1.2.
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Remark 4.1.4. Suppose R = C and ν = 1, then there exists an algebra isomorphism
HC,1(Sd ) � C[Sd ] that identifies Hi ∈ HC,1(Sd ) with the simple transposition
(i, i + 1) ∈ C[Sd ] for all i = 1, 2, . . . ,d − 1. We are able to identify Hi with a transpos-
ition that has braid relations because of the three relations in (4.1). The Hecke algebra is
said to be a one-parameter deformation of the group algebra of the symmetric group.

Remark 4.1.5. There exists another, almost equivalent definition of the Hecke algebra that
is used in many of our references.

For R as above and q ∈ R they define H̃R,q(Sd ) as the unital R-algebra generated by
elements T1,T2, . . . ,Td−1 and the following relations:

TiTj = TjTi for all i, j = 1, 2, . . . ,d − 1 s.t. |i − j | ≥ 2
TiTi+1Ti = Ti+1TiTi+1 for all i = 1, 2, . . . ,d − 2

0 = (Ti − q)(Ti + 1) for all i = 1, 2, . . . ,d − 1

The two definitions are equivalent if q is invertible and q−
1
2 exists, for example in the case of

R = Z[q
1
2 ,q−

1
2 ]. Indeed, we can transition between the definitions by identifying ν = q−

1
2

and Hi = νTi for all i = 1, 2, . . . ,d − 1.
We will continue with the Hecke algebra from Definition 4.1.1 and translate results from

our references into this convention if necessary. For another short introduction to Hecke
algebras as defined in Definition 4.1.1, see the beginning of [Soe97, Section 2].

4.2 Permutation modules

One possible definition of permutation modules for the Hecke algebra is as an induced rep-
resentations. Recall the Young subgroupSµ < Sd associated to µ |= d from Section 3.1 and
let H (Sµ) ⊂ H (Sd ) be the corresponding subalgebra. Denote by 1H (Sµ ) the one dimen-
sional trivial representation of H (Sµ) from Remark 4.1.3. Then the permutation module
associated to µ is defined to be the right H (Sd )-module

M µ ..= 1H (Sµ ) ⊗H (Sµ ) H (Sd ) .

In the classical case of C[Sd ], permutation modules were used to determine all irre-
ducible representations. More precisely, these are found as submodules of permutation
modules. See [Sag01] or [Jam78] for a complete discussion.

Here we are interested in two applications of permutation modules. Firstly, the Hecke
algebra itself is the permutation module for the composition (1)d |= d . After defining the
Murphy basis of the Hecke algebra it can be generalized to bases for all permutation mod-
ules. Secondly, it is possible to define the Schur algebra using permutation modules, as we
will see in Chapter 5. There are other, equivalent definitions of the Schur algebra, even in
the classical case. The advantage of defining it via permutation modules is, that we can use
the generalized bases of permutation modules to build a cellular basis for the Schur algebra.

One reference for this algebra is [Don98]. For its mentioned basis stemming from per-
mutation modules see [Mat06].
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Note that the construction of permutation modules from above can be generalized even
further. Young subgroups of the symmetric group can be replaced by parabolic subgroups of
Coxeter groups. It is also possible to consider induction of the one-dimensional sign repres-
entation from Remark 4.1.3, instead of the trivial representation. Modules constructed via
these methods are called parabolic Hecke modules. We refer to [Soe97] for more informa-
tion. There the author constructs, for example, a Kazhdan–Lusztig basis of parabolic Hecke
modules. An even more detailed account of this theory can be found in [Str20].

We begin this section with a redefinition of permutation modules as submodules of
H (Sd ) generated by a single element. In Lemma 4.2.2 we see that both definitions are
equivalent. Afterwards we use these generators to construct the Murphy basis of H (Sd ).
This basis is then generalized to bases for all permutation modules.

4.2.1 Definition and row-standard basis

We continue with the setup of Section 4.1, so R is an integral domain, ν ∈ R is invertible and
d ∈ Z>0.

Definition 4.2.1. Assume µ |= d and let Sµ < Sd be the corresponding Young subgroup.
Then the element

mµ
..=

∑
w ∈Sµ

ν−ℓ(w)Hw ∈ H (Sµ) ⊂ H (Sd ) (4.3)

spans the right permutation module associated to µ:

M µ ..=mµH ⊂ H

As indicated above, permutation modules are closely related to the subalgebras
H (Sµ) ⊂ H . With the next lemma we see that permutation modules are, as H -modules,
just induced modules of the trivial representation of H (Sµ). The following proof is given
in [Mat06, Lemma 3.2].

Lemma 4.2.2. If µ |= d andw ∈ Sµ , then

mµHw = ν−ℓ(w)mµ . (4.4)

Proof. By (4.2) it is enough to show (4.4) for simple reflections s ∈ Sµ . We can reorder the
sum of (4.3) by realizing that ℓ(w) < ℓ(ws) also implies
ℓ(ws) > ℓ(wss) = ℓ(w). Now

mµHs
(4.3)
=

∑
w ∈Sµ

ν−ℓ(w)HwHs =
∑
w ∈Sµ

ℓ(w)<ℓ(ws)

(ν−ℓ(w)Hw + ν−ℓ(w)−1Hws)Hs

=
∑
w ∈Sµ

ℓ(w)<ℓ(ws)

(ν−ℓ(w)−1Hw + ν−ℓ(ws)−1Hws) = ν−1 ·
∑
w ∈Sµ

ν−ℓ(w)Hw = ν−1mµ

finishes the proof, using the multiplication formulas in H (Sd ) from Proposition 4.1.2 in the
third equation. □
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Remark 4.2.3. For composition µ = (1)d of d the corresponding Young subgroup is
Sµ = {e}, the generating element is m(1)d = He = 1 and the permutation module is

M(1)d = H . Hence, all permutation modules are submodules of a single permutation
module, the Hecke algebra itself.

There exists a R-basis of each permutation module, which uses the coset representatives
of Young subgroups from Proposition 3.2.5. Recall that for a µ-tableau t we denote by w(t)
the element inSd such that t = tµ .w(t).

Proposition 4.2.4. Let µ |= d , thenM µ has the row-standard basis

{mµHw(t) | t row-standard µ-tableaux} . (4.5)

Proof. By Lemma 3.2.5 we can express each w ∈ Sd as w = xy with
ℓ(w) = ℓ(x) + ℓ(y) for some elements x ∈ Sµ and y ∈ Dµ . Then we have
mµHw = ν−ℓ(x)mµHy by Lemma 4.2.2, so the elements of (4.5) span M µ . They are linearly
independent because eachmµHy is a sum over standard basis elements of H coming from
disjoint cosets ofSµ . □

The proof of Proposition 4.2.4 is from [Mat06, Corollary 3.4]. Here we see the advantage
of extending the notion of compositions to tableaux in Section 3. Row-standard tableaux
correspond to minimal length coset representatives ofSµ < Sd by Proposition 3.2.5, which
help us to understand the H -action onto the generator of M µ .

The row-standard basis is a generalization of the standard basis of H from Proposi-
tion 4.1.2 to permutation modules. Indeed, both constructions agree for H , as all
(1)d -tableaux are row-standard. Just like the standard basis of H , the row-standard basis
reveals a basic structure of permutation modules. However, it is not suitable for our pur-
poses and we will modify it below. Note that there also exists a Kazhdan–Lusztig basis for
all permutation modules (cf. [Soe97], [Str20]).

4.2.2 Standard basis

One example of the shortcomings of the row-standard basis of permutation modules is its
interaction with the anti-isomorphism ∗. A central object for Schur algebras below will be
the intersection M µ ∩ Mη∗ for µ,η |= d . Note that because Sµ is a subgroup of Sd , so
w ∈ Sµ ⇔ w−1 ∈ Sµ and ℓ(w−1) = ℓ(w), we have

m∗µ =
∑
w ∈Sµ

ν−ℓ(w)H ∗w =
∑
w ∈Sµ

ν−ℓ(w
−1)Hw−1 =mµ , (4.6)

and thus Mη∗ = H mη ⊂ H . Although Proposition 4.2.4 also gives us a basis for Mη∗, it is
unclear which row-standard basis elements are in this intersection, or which elements even
span it.

These observations motivate the search for elements in H similar to row-standard basis
elements that interact with such intersection and ∗ by construction.
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For µ |= d and two row-standard µ-tableaux s, t define

mst ..= ν−(ℓ(w(s))+ℓ(w(t)))H ∗w(s)mµHw(t) ∈ H . (4.7)

We havem∗
st
=mts by (4.6). Wewill see concrete examples of these elements in Example 4.2.6

below.

Note that M µ is not necessarily a two-sided module, so these elements do not have to
lie in M µ . They also do not have to be linearly independent. At first glance this seems
problematic for our goal of finding another basis of permutation modules, but in reality
the situation was similar for the row-standard basis. There we established a row-standard
basis for H in Proposition 4.1.2, which elements are only contained in certain permutation
modules. However, summing up elements in the same Young subgroup cosets led to row-
standard bases for all permutation modules in Proposition 4.2.4.

Here we will proceed in a similar way. We start with the construction of a basis of H
consisting of some of the mst . For the general case we then sum up these elements using
the action of compositions on tableaux.

Proposition 4.2.5. The Hecke algebra H has a R-basis

{mst | λ ⊢ d and s, t ∈ Std(λ)} ,

which is called the Murphy basis of H .

Proof. Here we only sketch the proof and refer to [Mat06, Theorem 3.20] for a complete
proof. The set

B ..= {mst | µ |= d and s, t row-standard}
generates H , because for µ = (1)d and s = tµ the elementsmst are the basis in Proposi-
tion 4.1.2. Note that the tableaux t involved in this argument are not standard, except for
t = tµ . 

Then one can show that those mst stemming from partitions of d already generate B.
A careful induction shows that the remaining elements can be generated bymst stemming
from standard tableaux.

For linear independence one then counts the elements in this set and compares this with
the cardinality of the standard basis in Proposition 4.1.2. □

Example 4.2.6. We continue with the example H (S3) and want to construct the Murphy
basis with (4.7).

The set of all partitions of d = 3 is

Λ+(3) =
 ▷ ▷

 ,
their corresponding Young subgroups are

S = ⟨s, t⟩ =S3, S = ⟨s⟩ = {e, s}, S = ⟨t⟩ = {e, t }
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and the generators of their permutation modules defined in Definition 4.2.1 are

m = ν−3Hsts + ν−2Hts + ν−2Hst + ν−1Ht + ν−1Hs + 1

m = ν−1Hs + 1

m = 1 .

To construct elements of the Murphy basis we need the standard tableaux of all parti-

tions. The standard tableaux of and are obvious, as rows must be increasing and

columns strictly increasing. For the standard tableaux are included in Example 3.2.4.

Std ( ) =
{

1 2 3
}
, Std

( )
=

{
1 2

3
, 1 3

2

}
, Std

( )
=


1

2

3


Finally, the elements in the Murphy basis are:

m 1 2 3 1 2 3 = H ∗em He = ν−3Hsts + ν−2Hts + ν−2Hst + ν−1Ht + ν−1Hs + 1

m 1 2

3

1 2

3

= H ∗em He = ν−1Hs + 1

m 1 2

3

1 3

2

= ν−1H ∗em Ht = ν−2Hst + ν−1Ht

m 1 3

2

1 2

3

= ν−1H ∗tm He = ν−2Hts + ν−1Ht

m 1 3

2

1 3

2

= ν−2H ∗tm Ht = ν−3Hsts + (ν−2 − 1)Ht + ν−2

m 1

2

3

1

2

3

= H ∗em He = 1

Note thatmst are defined for all row-standard tableaux, but only standard tableaux ap-
pear in the basis. An example of an omitted element is

m 1 2

3

2 3

1

= ν−2H ∗em Hts

= ν−3Hsts + ν−2Hts =m 1 2 3 1 2 3 −m 1 2

3

1 3

2

−m 1 2

3

1 2

3

.
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Semistandard tableaux, which were introduced in Section 3.3, are used to generalize
the Murphy basis of H to all permutation modules. Let λ ⊢ d and t ∈ Std(λ) a standard
λ-tableaux. Let µ |= d and S a semistandard λ-tableaux of type µ. Then we define

mS t
..=

∑
s∈Std(λ)
µ(s)=S

mst

and
mtS ..=

∑
s∈Std(λ)
µ(s)=S

mts =m∗S t .

Example 4.2.7. Let µ = (1, 2) = , then by Example 3.3.1 there are two semistandard

tableaux of this type: 1 2 2 and 1 2

2
.

The shape of S = 1 2 2 is . The only standard tableau with this shape is 1 2 3 .
Acting with µ on this tableau yields

(1, 2)
(

1 2 3
)
= 1 2 2 = S .

Hence, we get the element

m 1 2 2 1 2 3 =m 1 2 3 1 2 3 ∈ M .

The shape of S = 1 2

2
is . The standard tableaux with this shape are 1 2

3
and 1 3

2
.

Acting with µ on them yields

(1, 2) *, 1 2

3
+- = 1 2

2
= (1, 2) *, 1 3

2
+- ,

so we get two summands for each t ∈ Std( ):

m 1 2

2

1 2

3

=m 1 2

3

1 2

3

+m 1 3

2

1 2

3

∈ M

m 1 2

2

1 3

2

=m 1 2

3

1 3

2

+m 1 3

2

1 3

2

∈ M

Proposition 4.2.8. The permutation moduleM µ for µ |= d has the standard basis{
mS t | λ ⊢ d, S ∈ T0(λ, µ), t ∈ Std(λ)

}
.

Proof. We again only sketch the proof and refer to [Mat06, Theorem 4.9] for a complete
proof. Its key input is an extended version of Proposition 3.3.3. It implies that for w ∈ Dλµ
such that S = µ(tλ .w) we have∑

y∈Dλ
µ(tλ .y)=S

ν−ℓ(y)H ∗ymλ =
∑

z∈Sµw−1Sλ

ν−ℓ(z)Hz ∈ M µ (4.8)
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and, by applying ∗ to (4.8),

mλ

∑
y∈Dλ

µ(tλ .y)=S

ν−ℓ(y)Hy =
∑

z∈SλwSµ
ν−ℓ(z)Hz ∈ M µ∗ . (4.9)

Then
mS t

def
=

∑
s∈Std(λ)
µ(s)=S

mst
3.2.5
= ν−ℓ(w(t))

∑
y∈Dλ

µ(tλ .y)=S

ν−ℓ(y)H ∗ymλHw(t)
4.8∈ M µ , (4.10)

where the double cosets of the last sum are disjoint for different S , so these elements are
linearly independent.

The argument for generation ofM µ involves expressing an element ofM µ in theMurphy
basis of H and observing that allmst with µ(s) = S have the same coefficient. □

Example 4.2.9. Wealready computed the standard basis ofM in Example 4.2.7 using the
semistandard tableaux of Example 3.3.1. Here are the permutationmodules for compositions
µ = (µ1, µ2) of d = 3:

M   = spanR
{
 m 1 2 3 1 2 3

}
M   = spanR

{
 m 1 2 3 1 2 3 ,m 1 2

3

1 2

3

,m 1 2

3

1 3

2

}
M   = spanR

{
 m 1 2 3 1 2 3 ,m 1 2

3

1 2

3

+m 1 3

2

1 2

3

,m 1 2

3

1 3

2

+m 1 3

2

1 3

2

}
M   = spanR

{
 m 1 2 3 1 2 3

}
From Proposition 4.2.8 we get a similar basis for the dual permutation modules, con-

sisting of elements mtS . Note that if H is viewed as a permutation module, the basis in
Proposition 4.2.8 is the Murphy basis from Proposition 4.2.5.

Remark 4.2.10. The naming convention of the basis of permutation modules in Proposi-
tion 4.2.8 is problematic. The Hecke algebra is a permutation module itself and already has
a basis named standard basis from Proposition 4.1.2. Therefore, the basis of the Hecke al-
gebra from Proposition 4.2.8 is called the Murphy basis (cf. Proposition 4.2.5), named after
Murphy [Mur95].

The standard basis of permutation modules can now be used to study intersections
M µ ∩Mη∗. By summing up standard basis elements once more we get a R-basis. To make
this precise let λ ⊢ d , S ∈ T0(λ, µ) and T ∈ T0(λ,η). Then define

mST
..=

∑
s, t∈Std(λ)

µ(s)=S, η(t)=T

mst =
∑
t∈Std(λ)
η(t)=T

mS t =
∑

s∈Std(λ)
µ(s)=S

msT . (4.11)
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The following proposition is from [Mat06, Corollary 4.11].

Proposition 4.2.11. For µ,η |= d the intersectionM µ ∩Mη∗ has a basis{
mST | λ ⊢ d, S ∈ T0(λ, µ) and T ∈ T0(λ,η)

}
.

Proof. These elements are, by construction, contained in the intersection. They are linearly
independent as they are sums over disjoint sets of standard basis elements.

To see that they generate the intersection we use the Murphy basis and compare coef-
ficients. Let h ∈ M µ ∩Mη∗ ⊂ H and express it in the Murphy basis as

h =
∑
λ⊢d

∑
s, t∈Std(λ)

rstmst . (4.12)

Then we have for all s, s′, t, t′ ∈ Std(λ) that

µ(s) = µ(s′)
4.2.8⇒ rst = rs′t

η(t) = η(t′)
4.2.8⇒ rst = rst′

,

so
µ(s) = µ(s′)
η(t) = η(t′)

}
⇒ rst = rs′t = rst′ = rs′t′ .

Therefore, every summand of somemST has the same coefficient in (4.12). Thus, h is gener-
ated by the set {mST }. □

Example 4.2.12. We continuewith the setup of Example 4.2.7 for the semistandard tableaux
1 2 2 and 1 2

2
.

There is only one standard tableau of shape , so we get

m 1 2 2 1 2 2 =m 1 2 2 1 2 3 =m 1 2 3 1 2 3 ∈ M ∩M
∗
.

For S = 1 2

2
we computed two elementsmS t ∈ M , one for each t ∈ Std( ). To get

mSS we have to take the sum of these two elements:

m 1 2

2

1 2

2

  =m 1 2

2

1 2

3

+m 1 2

2

1 3

2

=m 1 2

3

1 2

3

+m 1 3

2

1 2

3

+m 1 2

3

1 3

2

+m 1 3

2

1 3

2

∈ M ∩M
∗

The two elementsm 1 2 2 1 2 2 andm 1 2

2

1 2

2

form the basis ofM ∩M
∗
described

in Proposition 4.2.11.
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Bases for all intersections between permutationmodules and dual permutationmodules
of Example 4.2.9 are summarized in the following table:

∩
M M M M

M ∗m 1 2 3 1 2 3 m 1 2 3 1 2 3 m 1 2 3 1 2 3 m 1 2 3 1 2 3

M
∗
m 1 2 3 1 2 3

m 1 2 3 1 2 3

m 1 2

3

1 2

3

m 1 2 3 1 2 3

m 1 2

3

1 2

3

+m 1 3

2

1 2

3

m 1 2 3 1 2 3

M
∗
m 1 2 3 1 2 3

m 1 2 3 1 2 3

m 1 2

3

1 2

3

+m 1 2

3

1 3

2

m 1 2 3 1 2 3

m 1 2

3

1 2

3

+m 1 2

3

1 3

2

+m 1 3

2

1 2

3

+m 1 3

2

1 3

2

m 1 2 3 1 2 3

M
∗
m 1 2 3 1 2 3 m 1 2 3 1 2 3 m 1 2 3 1 2 3 m 1 2 3 1 2 3

Remark 4.2.13. It is worth highlighting that all constructions in this chapter thus far did
not really depend R or ν . This includes the standard basis of H , permutation modules,
row-standard bases, the Murphy basis and even the basis of the intersections in Proposi-
tion 4.2.11. These constructions are mainly based on the combinatorics of the symmetric
group, partitions and different tableaux.

Of course, multiplication in H and the action on modules will depend on R and ν .
Thus, if these constructions should be part of a cell datum, we will eventually have some
dependencies on R and ν .

This ends the discussion of permutation modules. In Section 4.3 we will continue to deal
with them in the context of a cellular basis of the Hecke algebra, called the Murphy basis.
In Chapter 5 we will also use them in the construction of another cellular algebra, called the
Schur algebra.
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4.3 Murphy basis

We can now state a cellular basis for H . In fact, we have already seen most of it in
Proposition 4.2.5, but let’s describe it in full detail. We refer to [Mat06, Theorem 3.20] for
this result, but much of it was already proven in [Mur95].

Proposition 4.3.1. The Hecke algebra H = H (Sd ) is a cellular algebra. A cell datum for
H is given by the tuple ((Λ+(d),▷) , Std,M, ∗), where

(Λ+(d),▷) is the set of all partitions of d with dominance ordering,

Std : Λ+(d)→  
{
finite sets

}
assigns to λ ∈ Λ+(d) the set of standard λ-tableaux Std(λ),

M :
⨿

λ∈Λ+(d) Std(λ) × Std(λ) ↪→H (Sd ), (s, t) 7→mst is the map with image

im(M) = {mst | λ ⊢ d and s, t ∈ Std(λ)},

the R-basis of H from Proposition 4.2.5, and

∗ : H →H is the algebra anti-isomorphism Hw 7→ Hw−1 .

Much of what is used to prove this proposition has been discussed in Section 4.2, but we
have not yet touched on the cellular property (C1) of this basis. By Proposition 4.1.2 the cel-
lular property (C1) can be checked by verifying it for the right action of
all Hw ∈ H on Murphy basis elements. The full proof involves careful induction on the
length of w ∈ Sd , on partitions λ ∈ Λ+(d) using the dominance ordering on tableaux
(cf. [Mat06, Theorem 3.20] or [Mur95, Theorem 4.18]). Instead of repeating these argu-
ments we will verify the cellular property in an example.

Example 4.3.2. We already constructed the Murphy basis of H (S3) in Example 4.2.6. The
complete H -action on Murphy basis elements can be found in Section 6.1. Here we will
only consider an excerpt of two basis elements to see the cellular property in an example.

m 1 2

3

1 2

3

m 1 3

2

1 2

3

right H -action

(ν−2 + 1)m 1 2 3 1 2 3 ν−2(ν−2 + 1)m 1 2 3 1 2 3 ·m 1 2 3 1 2 3

(ν−2 + 1)m 1 2

3

1 2

3

(ν−2 + 1)m 1 3

2

1 2

3

·m 1 2

3

1 2

3

(ν−2 + 1)m 1 2

3

1 3

2

(ν−2 + 1)m 1 3

2

1 3

2

·m 1 2

3

1 3

2

m 1 2 3 1 2 3 −m 1 2

3

1 2

3

ν−2m 1 2 3 1 2 3 −m 1 3

2

1 2

3

·m 1 3

2

1 2

3

ν−2m 1 2 3 1 2 3 −m 1 2

3

1 3

2

ν−4m 1 2 3 1 2 3 −m 1 3

2

1 3

2

·m 1 3

2

1 3

2

m 1 2

3

1 2

3

m 1 3

2

1 2

3

·m 1

2

3

1

2

3

The basis elements are chosen such that they have a common second tableau but differ
in the first tableau. We have to check three points to verify the cellular property for these
elements.
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Firstly, tableaux of shape appearing as a first tableau have to have the same filling

as the first tableaux of the basis element that is acted on. This is true in both columns of
the table.

Secondly, partitions are ordered as ▷ ▷ , so the elementm 1

2

3

1

2

3

should not

appear in any of the two columns. Indeed, it does not.
Thirdly, basis elements associated to with the same second tableau should have the

same coefficient for both columns in each row of the table. This is true as well, for example
in the second row of the table the coefficient (ν−2 + 1) appears in both columns for the
correct basis elements.

Hence, we have verified the cellular property for these elements in this example.

Remark 4.3.3. As noted in Remark 4.2.13 above, the Murphy basis of H (Sd ) is independ-
ent of R and ν , in the sense that the construction of the basis elements, their labeling, the
poset and the anti-isomorphism do not depend on them. Therefore, the number of right cell
modules is also independent of R and ν .

So if the irreducible representations of H (Sd ) depend on R and ν , which is what we
would expect, then R and ν have to affect the bilinear form. More precisely, whether the
bilinear form is degenerate or not has to depend on R and ν . As a result, we expect the
radicals and Λ0 to depend on these choices.

Having established a cellular basis of H we will now apply some constructions and
results developed in Chapter 2 to Hecke algebras for this basis. For simplicity we will as-
sume that R is a field throughout the rest of this section, although it is only necessary for
classifying the irreducibles.

We start with the construction of cell modules of H , which are called Specht mod-
ules because they generalize Specht modules from the representation theory of symmetric
groups (cf. [DJ86, Chapter 4]). Hence, we denote the cell module for a partition λ ⊢ d
by Sλ instead of Cλ .

By Definition 2.1.7, Sλ is the right H -module

Sλ ..= spanR
{
mλ
t
| t ∈ Std(λ)

}
(4.13)

with right H -action determined by the cellular property (C1). Note that
Shape(t) = λ, so the superscript λ in the generators of Sλ is redundant and will be omit-
ted from now on.

Example 4.3.4. For H (S3) the Specht modules are:

S = spanR
{
m 1 2 3

}
, S = spanR

{
m 1 2

3

, m 1 3

2

}
, S = spanR

m 1

2

3


The right H -action on the generators can be inferred from Figures 6.2 and 6.3 in Section 6.1.
They are summarized in Figure 6.4 in Chapter 6.1. A more detailed description of these
computations can be found in Section 6.1 as well.



4.3. MURPHY BASIS 49

Recall that, by Proposition 2.3.12, the set {Dλ | λ ⊢ d, Dλ , {0}} is a complete set of
non-isomorphic irreducible H -modules, where Dλ ..= Sλ/rad Sλ . In principle, it is now
possible to compute the bilinear form introduced in Proposition 2.3.2 on Specht modules Sλ ,
the corresponding radicals rad Sλ and quotients Dλ to determine the non-trivial quotients
and their dimensions for fields of any characteristic. We will do so for the case d = 3 in
Section 6.1, an excerpt of this is also stated in Example 4.3.5 below.

Although these calculations are tedious and prone to error we can make an important
observation: The radical depends on the characteristic of R and the choice of unit ν . This
dependency does not come from the Specht modules or the construction of the bilinear form
on them. It is the degeneracy of the bilinear form that is dependent on R and ν . We will see
how the degeneracy is affected by them in the example below.

Example 4.3.5. The bilinear form on Specht modules of H (S3) can be inferred from the
multiplication table in Figure 6.3 in Section 6.1, similar to the action on Specht modules in
Example 4.3.4.

S : ⟨m 1 2 3 ,m 1 2 3 ⟩ = ν−6 + 2ν−4 + 2ν−2 + 1

S : ⟨m 1 2

3

,m 1 2

3

⟩ = ν−2 + 1 ⟨m 1 3

2

,m 1 2

3

⟩ = −1

⟨m 1 2

3

,m 1 3

2

⟩ = −1 ⟨m 1 3

2

,m 1 3

2

⟩ = ν−4 + 1

S : ⟨m 1

2

3

,m 1

2

3

⟩ = 1

Note that the bilinear form on S and S is never trivial, so their radical is never the whole
module. The bilinear form on S is trivial, if and only if ν−6 + 2ν−4 + 2ν−2 + 1 = 0. So
either ν−2 = 1 and charR = 2, 3 or ν−2 , 1 and ν−2 is a 2nd or 3rd root of unity.

We calculate the radicals and irreducible quotients explicitly in Proposition 6.1.1 of Sec-
tion 6.1.

Instead of explicitly calculating each quotient Dµ it is possible to determine the set
{λ ⊢ d | Dλ , {0}} by a simpler condition on the partitions. However, this condition
will not give us the dimension or even the explicit form of the irreducible modules.

Definition 4.3.6. For a field R with unit ν we define

e ..= inf
{
m > 0 | 1 + ν−2 + ν−4 · · ·+ ν−2(m−1) = 0

}
.

Then a partition λ ⊢ d is called e-restricted, if

λi − λi+1 < e for all  i ≥ 1 . (4.14)
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Note that the definition of e is just a compact way of writing

e =


charR , if ν−2 = 1
m , if ν−2 , 1 and ν ism-th root of unity
∞ , otherwise

. (4.15)

With Definition 4.3.6 we can state a classification of irreducible right H -modules based
on Proposition 2.3.12, the general classification result for cellular algebras.

Proposition 4.3.7. Let R be a field, ν ∈ R a unit and d ∈ N. Then:

{λ ⊢ d | λ is e-restricted} 1:1←→
{

Irreducible right HR,ν (Sd )-modules 
up to isomorphism

}
λ 7−→ Dλ

We will outline the proof of this proposition that was presented in
[Mat06, Theorem 3.43 (i)] in Section 4.4. Moreover, we verify Proposition 4.3.7 for H (S3)
in Proposition 6.1.1 of Section 6.1 and in Example 4.3.8.

Example 4.3.8. Weuse Proposition 4.3.7 to classify the irreducible representations ofH (S3).
To check that a partition λ ⊢ 3 is e-restricted for a fixed e we need to compute all λi − λi+1

by (4.14):

λ = ⇒ λ1 − λ2 = 3

λ = ⇒ λ1 − λ2 = λ2 − λ3 = 1

λ = ⇒ λ1 − λ2 = λ2 − λ3 = 0, λ3 − λ4 = 1

Because e ≥ 2, the only partition not e-restricted is for e = 2 or e = 3. So by
Proposition 4.3.7:

{
Irreducible right H (S3)-modules 

up to isomorphism

}
=


D , D , if e = 2 or 3

D , D , D , otherwise

By reformulation (4.15) of e-restriction we also have

D = {0} ⇔ ν−2 = 1 ∧ (charR = 2 or 3)
or ν−2 , 1 ∧ (ν−2 is 2nd or 3rd root of unity)

This result agrees with our explicit analysis of the bilinear form in Example 4.3.5, verify-
ing Proposition 4.3.7 for this example.
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Note that Proposition 4.3.7 does not reveal the module structure of the irreducible rep-
resentations. In particular we do not knowwhich irreducible representation is the trivial and
which is the sign representation of H . For this we need to calculate the radicals explicitly,
which we will do in Section 6.1.

Proposition 4.3.7 also makes no statements about the dimension of the irreducible mod-
ules of H . When we outline its proof in Section 4.4 we will at least derive a lower bound on
the dimension.

However, it is important to note that, for a specific example, we could get the exact di-
mension of all irreducibles by calculating the radicals. Providing a distinct path to calculate
these dimensions is a valuable feature of the cellular structure of H , or rather of cellular
bases of all cellular algebras.

Remark 4.3.9. For the first time in the discussion of the Murphy basis, the result of Pro-
position 4.3.7 does depend on the choice of R and ν . And, as we have seen in Example 4.3.8,
the choice really matters. For R and ν such that e = 2, 3 there is one less non-zero quo-
tient of a right cell module than for choices such that e , 2, 3, so one less irreducible
right H (S3)-module. Moreover, in all of these cases we can get the irreducible modules
explicitly by calculating the radicals.

4.4 Classification of irreducible right H (Sd)-modules

In this section we want to outline the proof of Proposition 4.3.7, in which irreducible right
H (Sd )-modules are classified by e-restricted partitions of d . Recall that the irreducibles
are exactly the non-zero quotients of Specht modules by their radicals.

Careful computations with the Murphy basis of H (Sd ) show, that Dλ = { 0} if λ ⊢ d
is not e-restricted. Indeed, if s and t are standard λ-tableaux, then the author of [Mat06]
explicitly computes factors of ⟨ms,mt⟩ in [Mat06, Lemma 3.42] and shows that one of these
factors is 0, if λ is not e-restricted. Because s and t are arbitrary, it follows that Dλ is trivial.

The other part of this proof, showing that Dλ , {0} if λ is e-restricted, involves
Jucys–Murphy elements of H (Sd ), a generalization of Jucys–Murphy elements of C[Sd ].
One key result of this part of the proof is a lower bound for the dimension of quotients Dλ

of right Specht modules (see Corollary 4.4.16 or [Mat06, Corollary 3.38]).
The Jucys–Murphy elements of H (Sd ) are interesting beyond these applications. In

particular, they will reappear in Section 4.5 when we discuss Young’s orthogonal form, an
orthogonal basis of Specht modules.

Here we focus on the second part of the proof and give examples for all constructions
and the intuitions behind them. All results are due to the author of [Mur95], but we also
refer to [Mat06, Section 3.3 and 3.4] for rigorous proofs of these results.
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4.4.1 Jucys–Murphy elements and residue sequences

Jucys–Murphy elements originate in the representation theory of the symmetric group
over C. Classically, these are defined as elements

Lk ..=
k−1∑
i=1

(i,k) ∈ C[Sd ]

for k = 2, 3, . . . ,d and L1 = 0, where (i,  k) ∈ Sd is the element transposing i and k .
Jucys proved in [Juc74] that every element in the center of C[Sd ] can be expressed as a

symmetric polynomial in Jucys–Murphy elements. Murphy used these elements in [Mur81]
to construct a special basis for each Specht module of C[Sd ]. The matrix representations of
simple transpositions in this basis are sparse. Symmetric groups are naturally nested in each
other and this special basis are also important in the study of restricted representations in
this nesting structure. We will come back to this point in Section 4.5.

A good reference for Jucys–Murphy elements and the mentioned orthogonal basis in the
classical case is [CST10, Chapter 3]. Their work is based on [VO05], but their explanations
are a bit more detailed.

There are several generalizations of Jucys–Murphy elements to the Hecke algebra of the
symmetric group. We follow the conventions used in [Mat06]. However, depending on the
application, other conventions might be better suited (see [Mat06, Notes on Chapter 3]).

The other tool we introduce in this section is the residue sequence of a standard tableau,
which is a specific tuple of integer we associate to a tableau. In the classical case of C[Sd ]
it is possible to recover the tableau from its residue sequence. We will see that entries of
this sequence naturally appear in the action of Jucys–Murphy elements on basis elements
of Specht modules.

One approach to generalize the classical Jucys–Murphy elements is to generalize the
transpositions appearing. We denote by

H(l,k) ∈ H (Sd )

the standard basis element associated to the transposition

(l ,k) = sk−1sk−2 . . . sl+1slsl+1 . . . sk−2sk−1 ∈ Sd .

Definition 4.4.1. The Jucys–Murphy elements of H (Sd ) are defined as

L1 = 0

and

Lk ..= ν
k−1∑
i=1

 H(i,k) = νH(k−1,k) + νH(k−2,k) + · · ·+ νH(1,k)

for k = 2, 3, . . . ,d .
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Example 4.4.2. If we considerR = C, specialize ν to 1 and identifyH(i,k) with (i,k) ∈ C[Sd ]
we get the classical Jucys–Murphy elements for C[Sd ].

Example 4.4.3. The Jucys–Murphy elements of H (S3) are:

L1 = 0

L2 = νH(1,2) = νHs

L3 = νH(2,3) + νH(1,3) = νHt + νHsts

The goal of Section 4.4 is to demonstrate how Jucys–Murphy elements can be used to
prove the classification of irreducible right H (Sd )-modules by e-restricted partitions from
Proposition 4.3.7. Therefore, we focus on two central properties of these elements that we
need for our goal.

Just like in Proposition 4.3.7 we will now assume that R is a field.

The first property is connected to the subalgebra generated by all Jucys–Murphy ele-
ments.

Proposition 4.4.4. The Jucys–Murphy elements of H (Sd ) commute and thus generate an
abelian subalgebra

L ..= ⟨L1,L2, . . . ,Ld ⟩ ⊂ H (Sd ) .

See [Mat06, Proposition 3.26 (iii)] for a proof of this property.

Example 4.4.5. For H (S3) this property is easily verified, as we only need to check:

L2L3 = ν(1 − ν2)Hsts + ν2Hst + ν2Hts = L3L2

Compared to H (Sd ), the representation theory of L turns out to be quite simple.
In Section 4.4.2 the Specht modules of H (Sd ) are considered as right L -modules. Their
composition series contain enough information to deduce results about the representation
theory of H (Sd ).

The second property needed to achieve our goal is, that the right action of Jucys–Murphy
elements on Specht modules is triangular, if we consider the partial order on standard
tableaux of a given shape, which was introduced in Section 3.2.

Moreover, the diagonal part of this action is entirely determined by so called residue
sequences.

Definition 4.4.6. Let λ be a partition of d and t a standard λ-tableau. Let k = 1, 2, . . . ,d
and (ik , jk ) the position of the box in t, which is labeled by k . Then the e-residue of k in t
is defined as

rest(k) ..= (jk − ik )mod e .

The residue sequence of t is defined as the tuple of integers

(rest(1), rest(2), . . . , rest(d)) .
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An equivalent definition of the e-residue is based on top-left to bottom-right diagonals
of t. Label these diagonals increasingly with integers, such that box 1 is on diagonal 0.
Then relabel the diagonals by taking these labels mod e. The e-residue of k in t is then just
the label of the diagonal on which the box labeled with k resides.

Example 4.4.7. Suppose ν = 1, charR = 3, so e = 3. Let t be the (2, 1)-standard tableau
1 3

2 . Here is how the diagonals are labeled:

1 3

2

diagonals labeled by
increasing integers

0 1

−1
1 3

2

previous diagonals
taken mod e

0 1

2

The residue sequence of t is (0, 2, 1).

Remark 4.4.8. In the setup of Definition 4.4.6 we could also consider the tuple

(j1 − i1, j2 − i2, . . . , jd − id ) . (4.16)

If e = ∞ then 4.16 is just the residue sequence. It is possible to recover the original tableau
from this sequence, so different standard tableaux can not share such sequence.

Indeed, if (l1, l2, . . . lk ) is sequence (4.16) of some standard tableau, then we can rebuild
it by sequentially adding boxes with labels k from 1 to d to an empty tableau by placing
them at diagonal lk . Because we know the original tableau has strictly increasing columns
and rows, there is only one place on diagonal lk , where a new box can be added. It is the
first spot on diagonal lk , where no box has been placed yet.

Note that the same does not hold true for the residue sequence. Suppose R and ν are
chosen such that e = 2. Then sequence (4.16) of 1 2

3 and 1 3

2 is (0,−1, 1) and (0, 1,−1)
respectively, so they are distinct. However, both have residue sequence (0, 1, 1).

Residue sequences of standard tableaux also appear in the representation theory of
C[Sd ], for example in [Mur81]. To adapt residue sequences to Hecke algebras, they are
transformed from integers to expressions in R involving ν , so called quantum integers.

Definition 4.4.9. The quantum integers are defined as

[0]ν ..= 0

[m]ν ..= νm−1 + νm−3 + · · ·+ ν−(m−3) + ν−(m−1)

for allm ∈ Z>0 and
[−m]ν ..= −[m]ν

form ∈ Z≥0.
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Remark 4.4.10. This definition is equivalent to

[m]ν ..=
νm − ν−m
ν − ν−1

for allm ∈ Z if ν , ν−1, so if ν , 1,−1.

If ν is specialized to 1, the quantum integers are the usual integers.
Note that form > 0 we have

ν−(m−1)[m]ν = 1 + ν−2 + ν−4 + · · ·+ ν−2(m−1)

and
ν−(m−1)[m]ν = 0⇔ [m]ν = 0 .

So the definition of e for e-restricted partitions in Definition 4.3.6 can be reformulated using
quantum integers:

e ..= inf {
m > 0 | [m]ν = 0

}
= inf

{
m > 0 | ν−(m−1)[m]ν = 0

}
In the next proposition we will see where the residue sequence appears in the

action of Jucys–Murphy elements on Specht modules. For a proof of this result
see [Mat06, Theorem 3.32].

Proposition 4.4.11. Let λ ⊢ d , t a standard λ-tableau and 1 ≤ k ≤ d . Then there exist
coefficients av ∈ R for all standard λ-tableaux v ▷ t such that

mtLk = ν−(rest(k)−1)[rest(k)]νmt +
∑
v∈Std(λ)
v▷t

avmv .

In other words, the action of Jucys–Murphy elements on a basis elementmt of a Specht
module Sλ follows the dominance order on Std(λ). The coefficient ofmt is entirely determ-
ined by the residue sequence of t.

These coefficients are gathered in the quantum residue sequence ρt of t. Set

ρt ..= (ν−(rest(1)−1)[rest(1)]ν , ν−(rest(2)−1)[rest(2)]ν , . . . , ν−(rest(d)−1)[rest(d)]ν  ) (4.17)

and
ρtk

..= ν−(rest(k)−1)[rest(k)]ν

for 1 ≤ k ≤ d .
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Example 4.4.12. Assume R and ν are chosen such that e > 3. Under these assumptions the
quantum residue sequences of all standard tableaux of size d = 3 are distinct:

1 2 3 : (ν [0]ν , [1]ν ,ν
−1[2]ν ) = (0, 1,ν−1(ν + ν−1))

1 2

3
: (ν [0]ν , [1]ν ,ν

2[−1]ν ) = (0, 1,−ν2)

1 3

2
: (ν [0]ν ,ν

2[−1]ν , [1]ν ) = (0,−ν2, 1)

1

2

3

: (ν [0]ν ,ν
2[−1]ν ,ν3[−2]ν ) = (0,−ν2,−ν3(ν + ν−1))

We summarize the right action of Jucys–Murphy elements on basis elements of Specht mod-
ules for H (S3) in the following table:

m 1 2 3 m 1 2

3

m 1 3

2

m 1

2

3

0 0 0 0 ·L1
m 1 2 3 m 1 2

3

−ν2m 1 3

2

− ν2m 1 2

3

−ν2m 1

2

3

·L2

ν−1(ν + ν−1)m 1 2 3 −ν2m 1 2

3

m 1 3

2

+ ν2m 1 2

3

−ν3(ν + ν−1)m 1

2

3

·L3

Entries of the quantum residue sequences appear as coefficients, as predicted by Proposi-
tion 4.4.11. Furthermore, the Jucys–Murphy elements act diagonally on m 1 2

3

, but not on

m 1 3

2

. This agrees with Proposition 4.4.11, because (2, 1)-standard tableaux are partially

ordered by 1 2

3 ▷ 1 3

2 .

Note that Proposition 4.4.11 is not directly related to the cellular property of H (Sd ),
although it looks similar. Here we have a partial order on tableaux of a given shape, which
label basis elements of a Specht module. For H (Sd ) the partial order is on partitions of d
and basis elements are labeled by ordered pairs of tableaux with the same shape.
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4.4.2 Specht modules as right L -modules

We are now able to describe how Murphy [Mur95] used Jucys–Murphy elements and their
properties to proof Proposition 4.3.7, the classification of irreducible right H (Sd )-modules.

Proposition 4.4.11 yields certain composition series of Specht modules
as right L -modules. Order the set Std(λ) = {t1, t2, . . . , tk } for λ ⊢ d following the par-
tial order, meaning i > j if ti ▷ tj for i, j = 1, 2, . . . ,k . Then the R-submodule

Si ..= spanR {mtj | i ≤ j ≤ k } ⊂ Sλ

is a well defined right L -submodule for i = 1, 2, . . . ,k + 1 by Proposition 4.4.11. The
filtration

Sλ = S1 > S2 > · · · > Sk > Sk+1 = {0} (4.18)

is a right L -module composition series with one-dimensional composition factors Si/Si+1.
Again by Proposition 4.4.11, a Jucys–Murphy element Ll acts on Si/Si+1 by
ρtil = ν−(resti (l)−1)[resti (l)]ν , an element of the quantum residue sequence ρti . Thus, this
irreducible right L -module is denoted by Lρ ti .

Additionally, every irreducible right L -module is of this form, because L is a sub-
algebra of H (Sd ) and every irreducible right H (Sd )-module is a composition factor of
some Specht module. Therefore, irreducible right L -modules are characterized by quantum
residue sequences of standard tableaux of size d . However, by Remark 4.4.8 they are in gen-
eral not in one-to-one correspondence with standard tableaux of size d themself, because
different standard tableaux can yield the same quantum residue sequence.

Example 4.4.13. Let’s continue with the setup of Example 4.4.12, so e > 3 and d = 3.

S
1 2 3 and S

1

2

3 are one-dimensional and we see from Example 4.4.12 that

S
1 2 3

= L(0,1,ν−1(ν+ν−1)) and S

1

2

3 = L(0,−ν2,−ν3(ν+ν−1)). For S
1 2

3 recall that 1 2

3 ▷ 1 3

2 ,

so filtration (4.18) for λ =
1 2

3 is

S
1 2

3 = spanR {m 1 2

3

,m 1 3

2

} > spanR {m 1 2

3

} > {0} .

Its right L -module composition factors are

S1⧸S2 = L(0,−ν2,1) and S2⧸{0} = L(0,1,−ν2) .

Recall that by Proposition 2.3.12, the general classification result for cellular algebras,
irreducible right H (Sd )-modules are exactly the non-zero quotients of Specht modules by
their radicals. Let’s see how L is used in [Mur95] to identify non-zero quotients.

Let Sλ be the Specht module associated to λ ⊢ d and Dλ the quotient by its radical.
By Remark 2.3.18 and the proof of Proposition 2.3.12 we know that a right H (Sd )-module
composition series of Sλ can only have composition factors isomorphic to Dµ for λ ⊵ µ.
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Refine such composition series to a composition series of Sλ as a right L -module and com-
pare its composition factors to the composition factors appearing in (4.18).

Assume Lρ t is a composition factor from (4.18). This composition factor thus also ap-
pears in the refined composition series, but the question is: When does Lρ t have to appear
as a composition factor of Dλ? In other words, under what condition is Lρ t never a com-
position factor of Dµ for λ ▷ µ?

We know that every composition factor of Dµ as a right L -module is of the form Lρs

for a µ-standard tableau s. The existence of a right L -module isomorphism Lρ t � Lρs

is equivalent to ρt = ρs , meaning s and t have the same quantum residue sequence. This
motivates the following definition.

Definition 4.4.14. Let ρ be the quantum residue sequence of some standard tableaux of
size d . Equip the set {t | λ ⊢ d, t ∈ Std(λ), ρt = ρ} with a partial order defined by

s ≤ t def⇔

s = t or

s , t and  Shape(s) ◁ Shape(t) .

Minimal elements in this poset are called e-restricted tableaux. For λ ⊢ d the
set of e-restricted tableaux is denoted by Stde(λ).

Example 4.4.15. Suppose e = 3, then the quantum residue sequences of standard tableaux
of size d = 3 are:

1 2 3 : (0, 1, 2)
1

2

3

: (0, 2, 1)

1 2

3
: (0, 1, 2)

1 3

2
: (0, 2, 1)

By comparing their shapes we see for (0, 1, 2) that 1 2

3
< 1 2 3 and for (0, 2, 1) that

1

2

3

< 1 3

2
in the partial order defined above. Hence, Std3((2, 1)) = { 1 2

3
} and

Std3((1)3) = { 1

2

3

}. Note that there is no 3-restricted tableau of shape (3).

Continuing the reasoning from above we can see that if t is e-restricted,
then Lρ t can not be isomorphic to Lρs . Otherwise ρs = ρt , which, in combination with the
assumption λ ▷ µ, contradicts the minimality of t in the poset stated in Definition 4.4.14.

We summarize the reasoning from above in the following corollary.

Corollary 4.4.16. For all λ ⊢ d the dimension of Dλ is bounded by

dimDλ ≥ |Stde(λ)| .

The reasoning from above closely follows [Mat06, Section 3.4]. In particular,
Corollary 4.4.16 is [Mat06, Corollary 3.38].
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Example 4.4.17. If e > d , two quantum integers for 0 ≤ m ≤ d agree, if and only if
the underlying integers agree. Thus, two quantum residue sequences agree, if and only if
the underlying residue sequences agree. By Remark 4.4.8 all residue sequences of standard
tableaux are distinct in this setup. Thus, every standard tableau is e-restricted.

Hence, Dλ , {0} by Corollary 4.4.16 for all λ ⊢ d . Furthermore, Dλ = Sλ for all λ ⊢ d ,
because the dimension of each Specht module is |Std(λ)|.

Definition 4.4.14 already suggests that a partition λ is e-restricted, if and only if there
exists an e-restricted λ-tableau. We have stated in the introduction of Section 4.4 above
that Dλ = {0} if λ is not e-restricted. To show the converse it is enough so construct an
e-restricted λ-tableau if λ is e-restricted. This is surprisingly difficult, as the construction
should hold for any e.

The author of [Mat06] constructs a so called ladder tableau and proves that it is indeed
e-restricted if λ is e-restricted in [Mat06, Lemma 3.40]. Here is an algorithm that constructs
the ladder tableau for λ. First label each box (i, j) in the diagram of λ by its ladder number
j − i + e(i − 1). Then label boxes of another λ-diagram with 1, 2, . . . ,d , increasingly by their
ladder number. If two boxes have the same ladder number, label the one on the lowest row
in the diagram first, that is the box with the highest row number.

Example 4.4.18. Suppose R and ν are chosen such that e = 3. To construct the ladder
tableau of shape (2, 1) first label boxes of the (2, 1)-diagram by their ladder numbers:

0

2

1

Then label boxes of a (2, 1)-diagram increasingly by 1, 2, 3 according to their ladder numbers,
prioritizing boxes with highest row numbers in ties:

1
⇝

1 2
⇝

1 2

3

Note that by Example 4.4.15 this is the single 3-restricted tableau of shape (2, 1).

If two boxes have the same ladder number, then they also have the same e-residue. So
the ladder number splits the set of boxes with the same e-residue into groups that indicate,
which boxes of a given e-residue should be added first.

This finishes our outline of the proof of Proposition 4.3.7, classifying irreducible right
H (Sd )-modules by e-restricted partitions of d , following [Mat06]. Careful computations
show, that if λ ⊢ d is not e-restricted, then the bilinear form on Sλ is trivial, so Dλ = {0}.
Here we focused on the reverse implication. Using the subalgebra of H (Sd ) generated by
Jucys–Murphy elements, one can bound the dimension of Dλ by the amount of e-restricted
λ-tableaux. Such a tableau exists if λ is e-restricted, proving Dλ , {0}.
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4.5 An orthogonal basis of Specht modules

In Section 4.3 we recalled Jucys–Murphy elements for H (Sd ) from [Mur95] and gave an
overview of their application to the classification of irreducible right H (Sd )-modules. Now
we want to discuss another application of these elements: constructing an orthogonal basis
for each Specht module, which is known as Young’s orthogonal form, if H is semisimple.
There are two properties that make this orthogonal basis special. Firstly, the action of stand-
ard generators of H (Sd ) on these elements is known explicitly and quickly computed.
Secondly, matrix representations of these generators are sparse.

Their construction is a generalization of the corresponding result for the classical case
of C[Sd ]. See [Mur81] or [CST10] for more details of the classical case. We will look at the
general case of H (Sd ) and explicitly compute the bases for Specht module of H (S3).

Jucys–Murphy elements and the orthogonal basis have been generalized to a broader
class of cellular algebras. Such algebras need to possess a set of elements that behave like
Jucys–Murphy elements. The right cell modules then have an orthogonal basis with similar
properties as described above. One account of this generalization is given in [MS06].

Thus, the construction presented below is rather natural and is connected to the cellular
structure of H (Sd ). For rigorous proofs of the results we once again refer
to [Mat06, Section 3.3].

Afterwards we will see how to use this orthogonal basis to decompose irreducible right
H (Sd )-modules as H (Sj)-modules for j < d using ideas from [VO05]. The traditional
approach to such decompositions in the case of C[Sd ] requires a decent amount of compu-
tations and can, for example, be found in [Jam78]. The approach with the orthogonal basis
is simpler and can also be applied to the general case of all semisimple H (Sd ).

4.5.1 Young’s orthogonal form

Assume, just like in Section 4.4, that R is a field. An additional assumption is e > d , so either
ν−2 = 1 and charR > d or, if ν−2 is am-th root of unity, thenm > d .

Remark 4.5.1. These assumptions guarantee that every Specht module of H (Sd ) is irre-
ducible. Indeed, following the arguments in Example 4.4.17, e > d implies that the residue
sequences of all standard tableaux of size d are distinct. Therefore, all standard tableaux are
e-restricted and the claim follows from Corollary 4.4.16. Alternatively, all partitions of d are
e-restricted if e > d .

It is possible to show that the reverse implication is also true: if all Specht modules are
irreducible, then e > d . Furthermore, it is also true that this assumption is equivalent to
semisimplicity of H (Sd ). See [Mat06, Corollary 3.44] or [GL96, Theorem 3.8] for details.
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The construction of Young’s orthogonal form begins with the definition of an interme-
diate element in H (Sd ). Recall the definition of the quantum residue sequence

ρt ..= (ρt1, ρ
t
2, . . . , ρ

t

d )

..= (ν−(rest(1)−1)[rest(1)]ν , ν−(rest(2)−1)[rest(2)]ν , . . . , ν−(rest(d)−1)[rest(d)]ν  )

for λ ⊢ d and t ∈ Std(λ) from (4.17).
For such t set

Ft ..=
d∏

k=1

∏
s∈Std(λ)
ρsk,ρ

t

k

Lk − ρsk
ρtk − ρ

s

k

∈ H (Sd ) , (4.19)

which is well defined, because Jucys–Murphy elements commute with each other and R is
a field.

Moreover, define
ft ..=mtFt ∈ Sλ . (4.20)

These definitions are straightforward generalizations of similar elements in the classical case
(cf. [Mur81]). There are two important properties of these elements.

Firstly, because Jucys–Murphy elements act triangular onmt by Proposition 4.4.11, fol-
lowing the partial order on Std(λ), so does Ft . Additionally, each factor of Ft acts non-
trivially onmt and gets normalized by the coefficient ofmt . Thus, { ft | t ∈ Std(λ)} is a basis
of Sλ and the base change from {mt | t ∈ Std(λ)} is unitriangular. It can be shown that
{ ft | t ∈ Std(λ)} is orthogonal with respect to the bilinear form on Sλ .

Secondly, it is possible to compute

ftLk = ρtk ft (4.21)

for all k = 1, 2, . . . ,d and t ∈ Std(λ), so the transformed basis elements are eigenvectors for
the Jucys–Murphy elements. For detailed proofs see [Mat06, Proposition 3.35].

Remark 4.5.2. Recall that if ν = 1 the quantum integers are the ordinary integers. There-
fore the Jucys–Murphy basis act by elements in Z in the classical case of C[Sd ].

Example 4.5.3. We want to compute all elements Ft and ft for H (S3) and verify the two
properties stated above. Note that the element 1 + ν2 ∈ R is invertible, because we assume
e > 3 and R is a field.

To compute Ft for 1 2 3 and 1

2

3

, note that the product in (4.19) is empty. Hence, Ft = 1

for these standard tableaux.
For 1 2

3 and 1 3

2 there are two factors in Ft . Indeed, the quantum residue sequences
are

(ν [0]ν , [1]ν ,ν
2[−1]ν ) = (0, 1,−ν2)

and
(ν [0]ν ,ν

2[−1]ν , [1]ν ) = (0,−ν2, 1)
respectively. They only agree in the first entry, because we assume e > 3.
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We get the following elements in H (S3):

F 1 2 3 = 1

F 1 2

3

= − 1

(1 + ν2)2
(L2 + ν2)(L3 − 1)

F 1 3

2

= − 1

(1 + ν2)2
(L2 − 1)(L3 + ν2)

F 1

2

3

= 1

For elements ft in the Specht modules we use (4.20) and the action of Jucys–Murphy ele-
ments on the standard basis of Specht modules, which were summarized in Example 4.4.12:

f 1 2 3 =m 1 2 3 ∈ S

f 1 2

3

=m 1 2

3

∈ S

f 1 3

2

=m 1 3

2

+
ν2

(1 + ν2)
m 1 2

3

∈ S

f 1

2

3

=m 1

2

3

∈ S

We see that for H (S3) the elements ft indeed form a basis of each Specht module. Recall

that 1 2

3 ▷ 1 3

2 , so the base change in S is unitriangular with respect to the dominance
order on standard tableaux. The other Specht modules satisfy this property as well.

To compute the action of Jucys–Murphy elements on the transformed basis we once
again use the results of Example 4.4.12 and express the results in the transformed basis:

f 1 2 3 f 1 2

3

f 1 3

2

f 1

2

3

0 0 0 0 ·L1
f 1 2 3 f 1 2

3

−ν2 f 1 3

2

−ν2 f 1

2

3

·L2

(1 + ν−2)f 1 2 3 −ν2 f 1 2

3

f 1 3

2

−ν3(ν + ν−1)f 1

2

3

·L3
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We see that the transformed basis elements are eigenvectors for Jucys–Murphy elements.
The coefficients agree with entries of the quantum residue sequences of the corresponding
standard tableaux fromExample 4.4.12. We have therefore verified (4.21) in the case ofd = 3.

We are now ready to state Young’s orthogonal form for H (Sd ). The statement is taken
from [Mat06, Theorem 3.36].

Proposition 4.5.4. Let R be a field and ν ∈ R invertible such that e > d . Then the set
{ ft | t ∈ Std(λ)} is an orthogonal basis of Sλ for all λ ⊢ d . Moreover, let s ∈ Std(λ) and
i = 1, 2, . . . ,d − 1 and define αs,i ..= ress(i) − ress(i,i+1)(i) as the difference between the i-th
e-residue of s and s(i, i + 1). Then the action of the standard generator Hi ∈ H (Sd ) on the
orthogonal basis element fs is given by:

fsHi =



− ναs,i
[αs,i ]ν

 fs , if s(i, i + 1) < Std(λ)

− ναs,i
[αs,i ]ν

 fs + ν fs(i,i+1)
, if s(i, i + 1) ∈ Std(λ)
and s  ▷ s(i, i + 1)

− ναs,i
[αs,i ]ν

 fs + ν−1
[αs,i+1]ν [αs,i−1]ν

[αs,i ]2ν
fs(i,i+1)

, if s(i, i + 1) ∈ Std(λ)
and s  ◁ s(i, i + 1)

Example 4.5.5. To verify Proposition 4.5.4 for H (S3) we continue with the setup of Ex-
ample 4.5.3. Orthogonality can be verified with Example 4.3.5, where we stated the bilinear
form on each Specht module of H (S3) explicitly.

Using the constructions from Example 4.5.3 we can calculate the action of standard gen-
erators on the orthogonal basis directly:

f 1 2 3 f 1 2

3

f 1 3

2

f 1

2

3

ν−1 f 1 2 3 ν−1 f 1 2

3

−ν f 1 3

2

−ν f 1

2

3

·Hs

ν−1 f 1 2 3 − ν2

(ν+ν−1) f 1 2

3

+ ν f 1 3

2

ν−2
(ν+ν−1) f 1 3

2

+
ν−1(ν2+1+ν−2)

(ν+ν−1)2 f 1 2

3

−ν f 1

2

3

·Ht

A comparison to the coefficients in Proposition 4.5.4 shows that we have verified the result
for H (S3).

Instead of the construction above we could have used Gram-Schmidt to deduce an or-
thogonal basis of each Specht module. What is special about this particular orthogonal
basis are the explicit formulas for the right action of the standard generators of H (Sd ).
Note that for each combination of s ∈ Std(λ) and i = 1, 2, . . .d − 1, fsHi expressed in the
orthogonal basis is the sum of at most two elements. Hence, the matrix representation of
each Hi in this basis is sparse.
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4.5.2 Restrictions of irreducible representations

We want to discuss another application of Young’s orthogonal form besides sparse matrix
representations of theHi ’s. Symmetric groups are naturally nested in each other and repres-
entations can be restricted according to this structure. One is interested in the decompos-
ition of such restricted representations into irreducibles, classically in the semisimple case
of representations over C. With Young’s orthogonal form already established it is relatively
straightforward to describe the decomposition, even for all semisimple Hecke algebras.

We first recall the classical results before proving their generalizations to semisimple
Hecke algebras.

For any d > 3 the natural injection

Sd−1 ↪→Sd , (i, i + 1) 7→ (i, i + 1)

yields a chain of finite groups

{1} =S1 ⊂ S2 ⊂ S3 ⊂ . . . . (4.22)

If V is a representation ofSd and j < d , then V is also a representation ofSj by acting via
the injection from (4.22). We call this representation the restriction of V toSj and denote
it by resSd

Sj
V .

This structure naturally leads us to the following question in the semisimple case of
representations of the symmetric group over C: if V is an irreducible representation ofSd ,
which irreducible representations of Sj appear in the decomposition of resSd

Sj
V and what

is their multiplicity? The traditional approach to this question, for example in [Jam78],
involves extensive calculations using tableaux.

More recently, the authors of [VO05] presented another approach to the representation
theory of Sd . They build the representation theory on top of the nested structure (4.22)
and even introduced a more general framework to study representations for groups with
a nested structure similar to (4.22). The decomposition of restricted representations is a
natural part of their construction. For the symmetric group they even show how to get
Young’s orthogonal form from their results.

For a more elaborate explanation of the approach of [VO05] in the
classical case of C[Sd ] see [CST10].

Here we can take a much easier approach that still relies on the ideas of [VO05], because
we already stated Young’s orthogonal form in Proposition 4.5.4. This proposition holds for
any semisimple Hecke algebra of the symmetric group, which also has a nested structure.
We can therefore immediately prove the general result.

Assume that R is a field and e > d . Recall from Remark 4.5.1 that the Hecke algebra
H (Sd ) is semisimple under these assumptions and that every Specht module is irreducible.
Under these assumptions we can apply Proposition 4.5.4, so the Specht module Sλ for λ ⊢ d
has Young’s orthogonal form, an orthogonal basis { ft | t ∈ Std(λ)}.
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Like for the symmetric group there is a natural injection

H (Sd−1) ↪→H (Sd ), Hi 7→ Hi

for any d > 3, which yields a chain of finite-dimensional R-modules

R = H (S1) ⊂ H (S2) ⊂ H (S3) ⊂ . . . .

Any right H (Sd )-module M is also a right H (Sj)-module for j ≤ d . It is called the

restriction of M to H (Sj). We denote this right H (Sj)-module by resH (Sd )

H (Sj )
M and are

particularly interested in the decomposition of Specht modules into
irreducible right H (Sj)-modules. The Branching theorem, a naming convention that be-
comes obvious momentarily, gives their exact decomposition.

If j < d , λ ⊢ d and µ ⊢ j then we write µ ⊂ λ if µi ≤ λi for any i ∈ N. In other words,
we write µ ⊂ λ if we get the diagram of µ by removing boxes from the end of rows in the
diagram of λ. This relation is transitive.

Example 4.5.6. Consider the partitions (13) ⊢ 3, (12) ⊢ 2 and (2) ⊢ 2. Then (12) ⊂ (13)
but (2) 1 (13).

The proof of the general Branching theorem works by repeatedly applying the one-step
case, meaning the case where j = d − 1. We deal with this one-step case in the following
lemma.

Lemma 4.5.7. Let R be a field, e > d and λ ⊢ d . The restriction of Sλ toH (Sd−1) decomposes
as a right H (Sd−1)-module as

resH (Sd )

H (Sd−1)
Sλ =

⊕
µ⊢d−1
µ⊂λ

S µ .

In particular, S µ for µ ⊢ d − 1 is a summand of Sλ , if and only if µ ⊂ λ. In this case it has
multiplicity one.

Proof. We begin by clustering basis elements fs ∈ Sλ based on having the same box in their
diagram labeled by d . Let µ ⊢ d−1 and let Ŝ µ ⊂ Sλ be the right H (Sd−1)-module generated
by elements fs , such that if we remove the box labeled d from s, the resulting tableau has
shape µ. By construction, Ŝ µ is non-trivial, if and only if µ ⊂ λ.

Firstly, note that the generating elements of Ŝ µ also form a R-basis. Indeed, by Proposi-
tion 4.5.4 we know that for i < d −2 the element fsHi lies in the span of fs and fs(i,i+1). The
tableau s(i, i + 1) has the same shape as s and moreover the same box labeled d as s. Thus,
fs(i,i+1) is a generating element of Ŝ µ and the claim follows.

Secondly, we have Ŝ µ � S µ as right H (Sd−1)-modules. Indeed, by Proposition 4.5.4
the coefficients appearing in fsHi for i < d − 2 do not depend on the box of s labeled d .
Moreover, they are the same coefficients appearing in ftHi ∈ S µ , where the tableau t is s
with box labeled d removed. This follows again by Proposition 4.5.4.

Lastly, we see that each fs ∈ Sλ is part of exactly one Ŝ µ , proving the claimed decom-
position and multiplicity of S µ ∈ Sλ . □
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Example 4.5.8. Let’s consider an example of the grouping done in the proof of Lemma 4.5.7.

The Specht module S of H (S3) has basis elements f 1 2

3

and f 1 3

2

. Removing the box

labeled 3 from 1 2

3 and 1 3

2 yields the tableaux 1 2 and 1

2 respectively.

Thus, Ŝ = spanR { f 1 2

3

} and Ŝ = spanR { f 1

2

3

}.

The proof of Lemma 4.5.7 motivates the definition of a directed graph Y with all parti-
tions of all d ≥ 1 as vertices and a directed edge from µ ⊢ j to λ ⊢ d if j = d − 1 and µ ⊂ λ.
This graph is sketched in Figure 4.1 with partitions represented as diagrams.

Figure 4.1: Sketch of the directed graph Y up to partitions of size 4. Partitions of the same size are
placed on the same level of the graph. There is at most one edge between two vertices.
The ending vertex of each directed edge is exactly one level above its starting edge.

Proposition 4.5.9 (Branching theorem). Let R be a field, e > d , λ ⊢ d and j < d . The
restriction of Sλ to H (Sj) decomposes as a right H (Sj)-module as

resH (Sd )

H (Sj )
Sλ =

⊕
µ⊢j
 µ⊂λ

(S µ)⊕r
λ
µ ,

where r λµ is the number of directed paths in Y between µ and λ. In particular, S µ for µ ⊢ j is a
summand of Sλ , if and only if µ ⊂ λ. In this case it has multiplicity r λµ .

Proof. In light of Lemma 4.5.7 the proof of this proposition is an induction over j, starting at
j = d − 1. For j = d − 1 this proposition is exactly Lemma 4.5.7, because if µ ⊂ λ, µ ⊢ d − 1,
λ ⊢ d , then there is a single edge between µ and λ in Y. For j < d − 1 we apply induction for
j + 1 and get a decomposition as right H (Sj+1) modules

resH (Sd )

H (Sj+1)
Sλ =

⊕
ν⊢j+1
η⊂λ

(Sη)⊕r
λ
η .
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Now resH (Sd )

H (Sj )
Sλ = resH (Sj+1)

H (Sj )
(resH (Sd )

H (Sj+1)
Sλ) as right H (Sj)-modules. and thus

resH (Sd )

H (Sj )
Sλ =

⊕
η⊢j+1
η⊂λ

(resH (Sj+1)

H (Sj )
Sη)⊕r

λ
η .

Each resH (Sj+1)

H (Sj )
Sη decomposes according to Lemma 4.5.7. All S µ for µ ⊢ j, µ ⊂ η appear as

summands with multiplicity one and, by transitivity, we also have µ ⊂ λ. Finally, if µ ⊢ j,
η ⊢ j + 1 and µ ⊂ η ⊂ λ, then each path from η to λ in Y can be extended to a path from
µ to λ. For each extension, one copy of S µ appears in the decomposition of resH (Sd )

H (Sj )
Sλ . So,

varying η and adding up all paths, the multiplicity of S µ in resH (Sd )

H (Sj )
Sλ is the number of all

paths from µ to λ in Y. □

Example 4.5.10. To decompose restrictions of Specht modules of H (S3) to H (S2) we
apply Proposition 4.5.9 and use Example 4.5.8 and Figure 4.1.

S is one-dimensional, the only partition µ ⊢ 2 such that µ ⊂ is µ =

and there is a single path from to in Y. Hence resH (S3)

H (S2)
S = S as right

H (S2)-modules.

Similarly, resH (S3)

H (S2)
S = S as right H (S2)-modules.

This is expected, because S is the trivial representation of H (S2) and S is its sign
representation.

By Example 4.5.8 we already know that resH (S3)

H (S2)
S = S ⊕ S . The first summand

is associated to the path in Y from to , the other summand to the path in Y from
to .

Remark 4.5.11. The inductive proof of the Branching Theorem obscures the importance of
Young’s orthogonal form from Proposition 4.5.4 in this proof, so we want to highlight it in
this remark.

The restriction resH (Sd )

H (Sj )
Sλ for some j < d and λ ⊢ d is decomposed by stepwise decom-

position of Sλ using Lemma 4.5.7. First, it is decomposed into irreducible
right H (Sd−1)-modules, then into irreducible right H (Sd−2)-modules and so on until
H (Sj) is reached.

By the proof of Lemma 4.5.7, each element fs ∈ Sλ is part of some copy of S µ for some
µ ⊢ j, µ ⊂ λ, if S µ is viewed as a right H (Sj)-submodule of Sλ . This can also be seen
with the explicit formulas from Proposition 4.5.4 and a similar argument as in the proof of
Lemma 4.5.7. Acting withHi for i < j on fs ∈ Sλ is part of the R-span of elements ft , where t
has the same boxes labeled j + 1, j + 2, . . . ,d as s. In fact, the right
H (Sj)-submodule fsH (Sj) ⊂ Sλ is isomorphic to S µ , because of the explicit formulas
given in Proposition 4.5.4.

Note that, by the decomposition in (4.23) and its construction, basis elements in Young’s
orthogonal form can be labeled by the path from to λ in Y.
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Remark 4.5.12. Let’s consider the Branching Theorem for the extreme case resH (Sd )

H (S1)
Sλ for

some λ ⊢ d . If we decompose resH (Sd )

H (S1)
Sλ as described in Remark 4.5.11 we get

resH (Sd )

H (S1)
Sλ = (S )⊕r

λ

as right H (S1)-modules, with H (S1) = R. As R-submodules of Sλ , each copy of S is
generated by an element of Young’s orthogonal form fs ∈ Sλ . Moreover, for j < d the right
H (Sj)-submodule

fsH (Sj) ⊂ Sλ (4.23)

is an irreducible right H (Sj)-module. By the Branching theorem it is a Specht module S µ

for µ ⊢ j with µ ⊂ λ.

Example 4.5.13. With our previous calculations we can verify Remark 4.5.12 for the Specht

module S of H (S3). In Example 4.5.5 we summarized the right action on Young’s or-
thogonal form. As a subalgebra, H (S2) ⊂ H (S3) is generated by Hs . Therefore,

f 1 2

3

H (S2) ⊂ H (S3)

is determined by f 1 2

3

·Hs = ν−1 f 1 2

3

. Hence, f 1 2

3

H (S2) is the trivial representation S

of H (S2), which is indeed a summand of S by Example 4.5.10. Similarly,

f 1 3

2

H (S2) ⊂ H (S3)

is determined by f 1 3

2

· Hs = −ν f 1 3

2

. Hence, it is the sign representation S of H (S2),

which is the other summand of S by Example 4.5.10.

In the next section we will see another cellular basis of H , that differs from the Murphy
basis. The Branching theorem 4.5.9 can be seen as a motivation for the labeling of this
cellular basis.

Remark 4.5.14. Assume that R is a field and e > d , then H is semisimple. Recall that if
H is semisimple, all Specht modules are irreducible. Then H decomposes into a sum of
matrix rings by the Artin-Wedderburn theorem. Their dimensions are determined by the
dimension of the Specht modules.

Thus, there exists an isomorphism of algebras:

H �
⊕
λ⊢d

(
Sλ
∗ ⊗ Sλ

)
(4.24)

By Young’s orthogonal form, Sλ for λ ⊢ d has an orthogonal basis

{ fs | s ∈ Std(λ)} .
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Hence, H has an exceptional basis

{ fs ⊗ ft | λ ⊢ d, s, t ∈ Std(λ)} .

To study H as a right H -module using (4.24), consider λ ⊢ d and s, t ∈ Std(λ), so

fs ⊗ ft ∈ Sλ
∗ ⊗ Sλ ⊂ H .

In the decomposition of Sλ
∗ ⊗Sλ as a right H -module, the element fs ⊗ ft has the following

interpretation. The first factor fs of fs ⊗ ft fixes a copy of Sλ in the decomposition of Sλ
∗⊗Sλ

as a right H -module. By Remark 4.5.12, the second factor ft is an element in that copy of
Sλ and associated to a path in Y from to λ.

In summary, Young’s orthogonal form and the Branching theorem yield a special basis
of H , also labeled by ordered pairs of standard tableaux of size d . Their shape determines
a summand in (4.24). The first label fixes a right H -submodule of this summand, which
is also a right Specht module. Each standard tableau is associated to a different copy of
this Specht module in S from (4.24). The second label determines an element in Young’s
orthogonal form of that Specht module. It is interpreted as a path from to λ in Y.

Note that this basis differs from the Murphy basis in general. An element mst of the
Murphy basis would be associated toms ⊗mt in (4.24). This motivates us to find another cel-
lular basis of H , where the second label of each basis element is
interpreted as a path in Y.

4.6 Kazhdan–Lusztig basis

Cellular algebras can have many different cellular bases. One example of such algebra was
discussed in Example 2.1.5, where we highlighted the different sized posets between two
cellular bases for a certain quotient of the free polynomial ring. Another example of such al-
gebra is the Temperley–Lieb algebra from Example 2.1.3, where we described one cell datum
and referred to [AST18] for a whole family of cellular bases that differ from the one we de-
scribed. We also stated two cellular bases for H (S3) in Example 2.1.4.

In general, cell modules for different cellular bases do not have to be pairwise isomorphic.
Hence, we potentially have a variety of different cell modules for a cellular algebra. To study
a particular problem it is then crucial to find a cellular structure adjusted to that problem.

In Remark 4.5.1 we mentioned that H (Sd ) is semisimple over a field, if and only if all
Specht modules are irreducible. More generally, a cellular algebra over a field is semisimple,
if and only if all right cell modules are irreducible (cf. [GL96, Theorem 3.8]).

Consequently, the cell modules for a semisimple algebra of different cellular bases are
pairwise isomorphic. Even in this situation, one basis of the cell modules might be preferable
over another.

We conclude that it is advantageous to have several cellular bases for a cellular algebra.
In light of our discussion of the Murphy basis, we are particularly interested in another
cellular basis for H (Sd ).
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In this section we will consider the Kazhdan–Lusztig basis of H (Sd ), introduced by
Kazhdan and Lusztig in [KL79]. In their article the authors used the convention for gener-
ators and relations of H (Sd ) mentioned in Remark 4.1.5. See [Soe97] for a discussion of
Kazhdan–Lusztig elements using the convention of Definition 4.1.1.

As mentioned in Chapter 1, the work of Kazhdan and Lusztig inspired Graham and
Lehrer to define cellular algebras as in Definition 2.1.1. The first example of a cellular algebra
given by them in [GL96] was the Hecke algebra of the symmetric group with Kazhdan–
Lusztig basis as its cellular basis. A complete account of this result can be found in [Wil03],
where the author compiled all the necessary prerequisites to proof that the Kazhdan–Lusztig
basis is cellular. One advantage of the Kazhdan–Lusztig basis as a cellular basis is that it
is also defined for more general Hecke algebras of Coxeter groups. It can, in particular,
be used to construct a cellular basis for Hecke algebras of Coxeter groups of finite type
(see [Gec07] for more details).

Even for Hecke algebras of type A, proving cellularity for the Kazhdan–Lusztig basis is
non-trivial. We do not attempt to prove it here but refer to [Wil03]. Note that the author
uses left action on cellular basis elements for the cellular property and a reverse ordering
on the poset Λ that is easier to work with in the context of Kazhdan–Lusztig elements.
Thus, results might only be applicable in our setup if the anti-isomorphism ∗ is used and
the partial order on Λ reversed. Here, we will state the results using the convention from
Definition 2.1.1.

We will verify the cellular property for the Kazhdan–Lusztig basis in the case d = 3 by
explicit computations in Section 6.2.

This section is organized as follows: we first recall the definition and basic properties
of the Kazhdan–Lusztig basis of H (Sd ), relabel the basis elements using the Robinson–
Schensted correspondence (named after Robinson [Rob38] and Schensted [Sch61]) and then
state the corresponding cell datum.

4.6.1 Construction of Kazhdan–Lusztig elements

For the remaining sections of this chapter we assume that R is an algebraically closed field
and ν ∈ R invertible.

Recall from Section 4.1 that each standard basis element of H (Sd ) is invertible. To
construct the Kazhdan–Lusztig elements of H (Sd ), we first define the bar-involution as
the unique ring homomorphism

p :H (Sd ) −→H (Sd )

Hw 7→ (Hw−1)
−1 .

ν 7→ ν−1

Note that the bar-involution is not the anti-isomorphism ∗ of H (Sd ) defined in Section 4.1,
which maps Hw to Hw−1 and ν to ν .

An element H ∈ H (Sd ) is called self-dual, if H = H .
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Now we recall the Kazhdan–Lusztig basis of H (Sd ) from [Soe97]. It consists of the
elements Hw for all w ∈ Sd , where Hw ∈ H (Sd ) is defined to be the unique self-dual
element in H (Sd ) such that

Hw ∈ Hw +
∑
y<w

νZ [ν ]Hy .

The partial order appearing in the sum is the Bruhat order onSd from Section 3.1. Unique-
ness of such elements is not that difficult to prove. Assume there are two elements with that
property, then their difference is in

∑
y<w νZ[ν ]Hy and still self-dual. The coefficient of Hz

in their difference, where z < w is a highest length element y < w such that the coefficient
of Hy is non-zero, can be shown to be self-dual as well. But the only self-dual element in
νZ[ν ] is 0, so the difference above must be 0. Existence of such elements is not so clear. We
refer to [Soe97, Chapter 2] for a concise proof and to [Wil03, Section 3.5] for a slightly more
elaborate proof.

To summarize, notable properties of Kazhdan–Lusztig basis elements Hw are that they
are self-dual, the coefficient of Hw is 1, only Hy with y comparable and below w appear in
the sum and non-zero coefficients are polynomial in ν with minimal degree 1. For more
results regarding the coefficients appearing in the Kazhdan–Lusztig elements see [Soe97].

Most important for us is their interaction with the anti-isomorphism ∗. Let w ∈ Sd ,
then

H∗w = Hw−1 . (4.25)

See [Wil03, Proposition 3.6.2] for a proof of this property.

Example 4.6.1. The Kazhdan–Lusztig basis of H (S3) consists of:

He = 1

Hs = Hs + ν

Ht = Ht + ν

Hst = Hst + νHs + νHt + ν2

Hts = Hts + νHs + νHt + ν2

Hsts= Hsts + νHst + νHts + ν2Hs + ν2Ht + ν3

In each element the correct coefficients appear in front of the standard basis. Checking that
these elements are self-dual is lengthy.

We want to state a cell datum associated to the Kazhdan–Lusztig basis and thus need to
define a finite labeling sets T (λ) for each λ ∈ Λ, an anti-isomorphism ∗ and then label the
Kazhdan–Lusztig elements in a way such that the cellular property (C1) holds. Here we will
only describe the construction of the poset, labeling sets and the anti-isomorphism for the
cell datum associated to the Kazhdan–Lusztig basis. Proving the cellular property is quite
involved, using deep theorems from the Kazhdan–Lusztig theory. An exhaustive explanation
of the cellular structure of the Kazhdan–Lusztig basis, including rigorous proofs, is presented
in [Wil03].
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4.6.2 Robinson–Schensted correspondence

To state a cell datum for the Kazhdan–Lusztig basis, it is more convenient to first state the
labeling of the elements by an ordered pair of indices, which is needed for a cell datum.
Afterwards we define a suitable poset and its connection to the labeling.

Rather than labeling the Kazhdan–Lusztig elements directly, we relabel the elements in
Sd they are associated to. This is achieved with the so called Robinson–Schensted corres-
pondence, named after Robinson [Rob38] and Schensted [Sch61]. It is a well-known result
and discussed in many references, for example in [Ful96] and [Sag01].

Proposition 4.6.2 (Robinson–Schensted correspondence). There exists a bijection:

Sd
1:1←→

{
Ordered pairs of standard tableaux 
of the same shape with d boxes

}
w 7−→ (P(w),Q(w))

This result is proven in [Sch61, Lemma 3] and another proof is in [Sag01, Theorem 3.1.1].
We focus on the algorithm that constructs the ordered pair (P(w),Q(w)), which is also
described in [Sch61] and [Sag01].

P(w) is constructed by repeated application of the row bumping algorithm. Its inputs
are a standard tableau s and a natural number x that is not already a label in s. Its output,
denoted by s ← x , is a standard tableau with onemore box than s that has label x in addition
to all the labels from s. The algorithm works as follows. If x is greater than all labels in the
first row of s, then add a box to the end of this row of s and label it with x . Otherwise
replace the smallest label larger than x in that row of s and call the displaced label y. Then
repeat this step with the next row and y instead of x . The algorithm ends if a box is created,
meaning if a box is added to the end of some row.

By [Sch61, Lemma 1], the output s ← x is again a standard tableau.

Example 4.6.3. We apply the row bumping algorithm to:

s =

1 3 5

2 6

7

and x = 4

Then the following diagram describes how we arrive at s ← x .

4 1 3 5

2 6

7

⇝ 5

1 3 4

2 6

7

⇝

6

1 3 4

2 5

7

⇝
1 3 4

2 5

6

7

At each step, the circled number indicates the label we want to insert into the row it is
attached to. Because 4 < 5 the 4 replaces the 5 and the 5 needs to be inserted into row two.
As 5 < 6 the 5 then replaces the 6, which in turn replaces the 7. Then 7 is added to empty
row four, so a box is created and the algorithm stops.
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To get P(w) we first express w via its permutation action of {1, 2, . . . ,d }, meaning for
i = 1, 2, . . .d we definewi

..= w(i). Then set

P (0)(w) ..= ∅

and for i = 1, 2, . . . ,d set
P (i)(w) ..= P (i−1)(w)← wi .

Finally, denote P(w) ..= P (d)(w). In other words, we get P(w) by starting with the empty
tableau and successively adding the wi to the tableau using the row bumping algorithm,
beginning withw1.

Example 4.6.4. Weconstruct P(w) forw = 32541 ∈ S5, so in total we need five applications
of the row bumping algorithm. Note that in the diagram below, each⇝ indicates one pass
of the row bumping algorithm, adding the circled label above to the tableau left of it.

∅
3

⇝
3 2

⇝
2

3

5

⇝
2

3

5 4

⇝
2

3

4

5

1

⇝
1

2

4

5

3

 

Then P(w) is the rightmost tableau in this sequence.

Constructing Q(w) is much easier, as it only tracks the step in which each box in P(w)
was added. Formally, set Q(0)(w) ..= ∅ and for i = 1, 2, . . . ,d add a box to Q(i−1)(w) to
get Q(i)(w), where the box is added in the same place as a box is added to P (i−1)(w) to get
P (i)(w). This box is then labeled with i . Again, we set Q(w) ..= Q(d)(w).

Example 4.6.5. For w = 32541 ∈ S5 the associated Q(w) is derived from the sequence of
tableaux in Example 4.6.4:

1

2

3

4

5

Q(w) =

Q(w) naturally has the same shape as P(w) and is also a standard tableau, because when
a box is added in some step, its label is the largest label appearing.
See also [Sch61, Lemma 2].

The other direction of the Robinson–Schensted correspondence, recovering an element
in Sd from an ordered pair (P ,Q) of standard tableaux of the same shape with d boxes,
builds on the idea that if we know where the last box was placed in P , then we know which
label was last inserted by reversing the row bumping algorithm. We use this idea in the
example below, the general case works just the same. We can read off of Q when which
box was added to P by its construction. So by repeating the idea from above we buildw by
piecing together the labels in reverse order.
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Example 4.6.6. Consider the standard tableau we build in Example 4.6.3:

1 3 4

2 5

6

7

Suppose we know this tableau is the result of one pass of the row bumping algorithm and
we know that the last box added is the one labeled 7. Note that this information can be read
off of Q(w), if we wanted to reverse the Robinson–Schensted correspondence.

As 7 is larger than the 6 in the row above the box labeled 7, we know that 6 must have
displaced 7 during the row bumping algorithm. Now 6 is larger than the 5 in row two and
2 < 5, so 5 must have displaced 6. Lastly, 5 > 4 and 4 is the largest label in row one that
is smaller than 5, so 4 must have displaced 5. Therefore, the row bumping algorithm must
have inserted 4 into the standard tableau

1 3 5

2 6

7 .

A comparison to Example 4.6.3 shows, that we have successfully reversed the row bump-
ing algorithm from Example 4.6.3.

Remark 4.6.7. Note that in each step in the construction of P(w), the shape of P (i)(w)
moves one layer upwards in the directed graphY from Section 4.5.2. Its path inY is recorded
inQ(w). Or in other words, its path can be reconstructed fromQ(w) by successively adding
boxes to an empty diagram according to their label in Q(w). Thus, the pair (P(w),Q(w))
is an ordered pair of standard tableaux of the same shape and the second entry can be
interpreted as a path in Y.

In Remark 4.5.14 we wanted to find a cellular basis with such an ordered pair as labels.
Using the Robinson–Schensted correspondence, we can now relabel the Kazhdan–Lusztig
basis, which labels are not suitable for a cellular algebra, with our wanted labels. This en-
ables us to view the Kazhdan–Lusztig basis as a cellular basis.

For our purposes, the next result is an important property of the Robinson–Schensted
correspondence, because knowing what happens when labels are swapped is a key property
of a cellular basis.

Proposition 4.6.8. Letw ∈ Sd . Ifw ∼ (P ,Q) under the Robinson–Schensted correspondence,
thenw−1 ∼ (Q, P).

There is a good amount of preparation needed to prove this result. We refer to
[Ful96, Chapter 5] for a full proof. All necessary details to prove Proposition 4.6.8 are also
collected in [Wil03, Section 2.5]. More concretely, the above result is [Wil03, Theorem 2.5.2].

We are finally ready to state the complete cell datum associated to the Kazhdan–Lusztig
basis and refer to [Wil03, Theorem 5.6.2] for the proof.
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Proposition 4.6.9. The Hecke algebra H = H (Sd ) is a cellular algebra. A cell datum for
H is given by the tuple ((Λ+(d), ▷̃) , Std,K , ∗), where

(Λ+(d), ▷̃) is the set of all partitions of d with reverse dominance ordering,

Std : Λ+(d)→  
{
finite sets

}
assigns to each λ ∈ Λ+(d) the set of all standard λ-tableaux

Std(λ),

K :
⨿

λ∈Λ+(d) Std(λ) × Std(λ) ↪→ H (Sd ), (P(w),Q(w)) 7→ Hw is the map with
image

im(K ) = {Hw | w ∈ Sd },

the Kazhdan–Lusztig basis of H , and

∗ : H →H is the algebra anti-isomorphism Hw 7→ Hw−1 .

The reverse dominance ordering on Λ+(d) is defined by λ▷̃µ ⇔ λ ◁ µ for all partitions
λ, µ ∈ Λ+(d), where ◁ is the usual dominance ordering that is part of cell datum for the
Murphy basis of H (Sd ). Note that ∗ is the same anti-isomorphism we used in Section 6.1.
Furthermore, the labeling sets Std(λ) for λ ∈ Λ+(d) are also part of the cell datum for the
Murphy basis.

To emphasize the cellular structure of the Kazhdan–Lusztig basis of H (Sd ) we denote

H λ
P(w)Q(w)

..= Hw ,

where w ∈ Sd and where λ ∈ Λ+(d) is the shape of P(w) and Q(w). Sometimes we omit
λ, because it is the shape of P(w) and Q(w). By the important property of the Robinson–
Schensted correspondence from Proposition 4.6.8 the following relation holds:

(H λ
P(w)Q(w)

)∗ = (Hw )
∗ (4.25)

= Hw−1
4.6.8
= H λ

Q(w)P(w)

Recall that this is exactly the interaction of ∗ with cellular basis elements we need by Defin-
ition 2.1.1.

Remark 4.6.10. By [GL96, Theorem 3.8] a cellular algebra over a field is semisimple, if and
only if all right cell modules are irreducible. Hence, if H is semisimple, each cell module
from the Kazhdan–Lusztig basis is isomorphic to a Specht module from the Murphy basis.

The general result of Graham and Lehrer does not give us specific isomorphisms, nor
does it provide us with a matching between cell modules from this section and Specht mod-
ules. In Section 6.2.2 we describe thesematchings for H (S3) and provide explicit isomorph-
isms.



5. A cellular basis for Schur algebras

Schur algebras originate from the representation theory ofSd over C and its connection to
the general linear group.

Let n,d > 0 and denote V ..= Cn . Then GLn naturally acts from the left on V , as well
as on the tensor spaceV ⊗d by acting on each factor separately. Moreover,Sd acts from the
right on the tensor space V ⊗d by permuting the entries. This situation is usually depicted
as:

GLn V ⊗d Sd (5.1)

Classical Schur–Weyl duality states that these two actions centralize each other (see [Eti+11]
for details). In particular, viewing the action GLn V ⊗d as a map GLn → End(V ⊗d ), the
image of this map is EndSd (V

⊗d ) and called the Schur algebra S (n,d).
Its importance stems from the study of polynomial representations of GLn . We refer to

[Gre80] and the introduction of [Don98] for the complete picture.

There exists a quantum version of the Schur algebra, whichwas first introduced in [DJ89]
and will be recalled below. It appears in a quantum Schur–Weyl duality, first described in
[Jim86], where the right side of (5.1) is replaced by H (Sd ) and the left side of (5.1) by a
quantum group.

A good reference for these Schur algebras is [Don98]. For an extensive review of quantum
Schur–Weyl duality, the classical Schur–Weyl duality and even affine versions of Schur–
Weyl duality we refer to [Ant20].

Here we only focus on one aspect of quantum Schur algebras: they are cellular algebras.
Below we state a cell datum for a cellular basis, called the semistandard basis, that is de-
duced from the Murphy basis of H . Compared to the Hecke algebra, classifying irreducible
modules for quantum Schur algebras over a field R using the cellular basis is very simple:
every quotient Dλ of a cell module Cλ is non-zero and thus irreducible. It is, in particular,
independent of the choice of R and ν .

We begin this chapter with the definition of quantum Schur algebras, which we simply
call Schur algebras, following [Mat06]. Afterwards we state the full cell datum associated
to the semistandard basis. We will see an explicit example of the semistandard basis in
Section 6.3. In this example we will also verify the cellular property of the semistandard
basis by hand.
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5.1 Definition and notations

Let R be an integral domain and ν ∈ R invertible. Note that this is the setup from Section 4.3,
where we considered the Murphy basis of H (Sd ). Recall the sets

Λ(n,d) ..=
{
µ = (µ1, µ2, . . . , µn) | µ |= d

}
Λ+(n,d) ..=

{
λ = (λ1, λ2, . . . , λn) | λ ⊢ d

}
for n,d ∈ N from (3.2). Denote by H ..= HR,ν (Sd ) the Hecke algebra associated toSd .

Definition 5.1.1. The Schur algebra is defined as

SR,ν (n,d) ..= EndH
*.,

⊕
µ ∈Λ(n,d)

M µ+/- .
For some fixed R,ν ,n and d we will simply write S (n,d) or just S for the associated

Schur algebra.

Example 5.1.2. The poset of compositions µ = (µ1, µ2) of 3 is

Λ(2, 3) =
{

, , ,
}
,

so the involved permutation modules are

M , M , M , and M .

Remark 5.1.3. Compare Definition 5.1.1 to the definition of Schur algebras as certain en-
domorphisms of a tensor space from Schur–Weyl duality. The definitions are equivalent.
Indeed, there is a well defined right action of H on this tensor space and an isomorphism
V ⊗d �

⊕
µ ∈Λ(n,d)M

µ as right H -modules. See [Mat06, Exercise 4.19] or
[Ant20, Lemma 2.19] for more details.

Definition 5.1.1 is advantageous for our purposes, because we can apply results from the
bases of permutation modules derived from the Murphy basis of H . Recall that these were
discussed in Section 4.2.

The cellular basis of S (n,d) we are interested in is constructed via the decomposition

S (n,d) =
⊕

µ,η∈Λ(n,d)
HomH (Mη ,M µ) (5.2)

by constructing a basis on eachHomH (Mη ,M µ) and extending these basis elements trivially
to S (n,d).

For nowwe fix compositions µ,η ∈ Λ(n,d) and want to study HomH (Mη ,M µ). The per-
mutation module Mη is, by Definition 4.2.1, generated bymη as a right H -module. Hence,
any φ ∈ HomH (Mη ,M µ) is uniquely determined by φ(mη). Conversely, elements in M µ

that determine a homomorphism can be characterized by the following lemma.
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Lemma 5.1.4. For µ,η ∈ Λ(n,d) there exists a R-linear isomorphism

HomH (Mη ,M µ)
∼−→ M µ ∩Mη∗

φ 7→ φ(mη)
.

For a proof of Lemma 5.1.4 see [Mat06, Corollary 4.8]. We have already studied the
intersectionM µ ∩Mη∗ in Proposition 4.2.11. It has a R-basis given by allmST for S ∈ T0(λ, µ)
and T ∈ T0(λ,η) for some λ ⊢ d . Recall that the elementsmST were defined in (4.11) as

mST =
∑

s, t∈Std(λ)
µ(s)=S, η(t)=T

mst .

We can now use these elements to define the homomorphisms

φλST : Mη −→ M µ

mη 7→ mST
.

Recall that µ = (µ1, µ2, . . . ,  µn), because µ ∈ Λ(n,d). If a semistandard tableau
S ∈ T0(λ, µ) exists, then λ has at most n non-zero parts as well, because Shape(S) = λ
and columns of S must be strictly increasing.

Conversely, for all λ = (λ1, λ2, . . . λn) ∈ Λ+(n,d) there exists the semistandard λ-
tableau λ(tλ) of type λ ∈ Λ+(n,d) ⊂ Λ(n,d). Therefore, the set T0(λ) ..=

∪
µ ∈Λ(n,d) T0(λ, µ)

of semistandard λ-tableaux of types Λ(n,d) is non-empty.
A combination of Lemma 5.1.4with Proposition 4.2.11 gives us a basis of HomH (Mη ,M µ).

Proposition 5.1.5. For µ,η ∈ Λ(n,d) HomH (Mη ,M µ) is a R-module with basis{
φλST | λ ∈ Λ+(n,d), S ∈ T0(λ, µ) and T ∈ T0(λ,η)

}
.

By extending φλST trivially to a map on
⊕

µ ∈Λ(n,d)M
µ we get an element in S (n,d),

which we will also denote by φλST . Combined, these elements form a basis of S (n,d) by the
decomposition (5.2). In fact, this basis is cellular.
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5.2 Semistandard basis

Proposition 5.2.1. The Schur algebra S (n,d) is a cellular algebra. A cell datum for S (n,d)
is given by the tuple ((Λ+(n,d),▷),T0,Φ(n,d), ∗), where

(Λ+(n,d),▷) is the set of partitions of d of form λ = (λ1, λ2, . . . , λn),

T0 is the map assigning the finite set
∪

µ ∈Λ(n,d) T0(λ, µ) to each λ ∈ Λ+(n,d),

Φ(n,d) :
⨿

λ∈Λ+(n,d) T0(λ) × T0(λ) ↪→ S (n,d), (S,T ) 7→ φλST is the map with image

im(Φ(n,d)) = {φλST | λ ∈ Λ+(n,d) and S,T ∈ T0(λ)},

the R-basis ofS (n,d) called semistandard basis stemming from Proposition 5.1.5, and

∗ is the anti-automorphism φλST 7→ φλTS of S (n,d).

Proof. These elements form a basis by Proposition 5.1.5 and decomposition (5.2) of S (n,d).
We only sketch the proof of the cellular property here, which is based on the cellular property
of the Murphy basis of H (Sd ). For a full proof of this proposition
see [Mat06, Theorem 4.13].

Let φλST ∈ HomH (Mη ,M µ) and φ ∈ S (n,d) and consider φλST ◦ φ. We can assume that
φ is an element of the semistandard basis and φ ∈ HomH (Mτ ,Mη), otherwise the action
is trivial. Then φ(mτ ) = mηh for some h ∈ H and thus φλST ◦ φ(mτ ) = mSTh. We want to
express φλST ◦ φ ∈ Hom(Mτ ,M µ) in the semistandard basis and hence computemSTh and
express it in the basis of M µ ∩Mτ ∗.

Recall from (4.11) that
mST =

∑
s, t∈Std(λ)

µ(s)=S, η(t)=T

mst ,

so by the cellular property of the Murphy basis we have

mSTh ≡
∑

s∈Std(λ)
µ(s)=S

∑
v∈Std(λ)

r t,hv msv +
∑
κ⊵λ

p,q∈Std(κ)

rhpqmpq; . (5.3)

Moreover, becauseM µ ∩Mτ ∗ is a right H -submodule we havemSTh ∈ M µ ∩Mτ ∗ and thus

mSTh =
∑

α ∈Λ+(n,d)
U ∈T0(α,µ), V ∈T0(α,τ )

rUVmUV . (5.4)

We compare (5.3) with (5.4) and see that only rUV associated to α ⊵ λ can be non-zero.
Moreover, because of the first sum of (5.3), rUV associated to λ can only be non-zero, if
U = S . Summarized, we get

mSTh =
∑

V ∈T0(λ,τ )
rVmSV +

∑
α ∈Λ+(n,d) α▷λ

U ′∈T0(α,µ), V ′∈T0(α,τ )

rU ′V ′mU ′V ′

and hence verify the cellular property: φST ◦ φ ≡
∑
V ∈T0(λ,τ ) rVφSV mod Š λ(n,d). □
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Note that T0(λ) is never empty, as it contains the canonical element T λ ..= λ(tλ), the
unique semistandard λ-tableau of type λ.

Example 5.2.2. All elements of the semistandard basis of S (2, 3) are gathered in Figure 6.8
of Section 6.3.

Remark 5.2.3. The construction of elements mST , and subsequently the construction of
φλST , is largely independent of the choice of R and ν . In particular, the number of right cell
modules of S (n,d) is independent of R and ν . Similarly to the Murphy basis of H (Sd ), we
would therefore expect that R and ν influence the radicals of the cell modules, because we
suspect that the irreducible right S (n,d)-modules depend on R and ν .

Having established a cellular basis of S (n,d) in Proposition 5.2.1 we can classify the
irreducible representations using Proposition 2.3.12, the general classification result for cel-
lular algebras. It is much less involved than the classification of irreducible H -modules in
Section 4.

Firstly, consider the right cell modules of S (n,d), which are called Weyl modulesW λ

for some λ ∈ Λ+(n,d). Instead of using the abstract construction of cell modules from
Section 2.1 we will work with a specific realization of them. This lets us compute the
S (n,d)-action more naturally.

From the theory of cellular algebras we know that S λ(n,d)/Š λ(n,d), as a
right S (n,d)-module, decomposes into |T0(λ)| copies of the right cell module for λ. We
define the Weyl moduleW λ to be the copy associated to the canonical elementT λ ∈ T0(λ).
Explicitly, it is the S (n,d)-submodule

W λ ..= spanR
{
φλ
T λT
| T ∈ T0(λ)

}
⊂ S (n,d)⧸Š λ(n,d) , (5.5)

which is actually generated by φλ
T λT λ as a right S (n,d)-module, because φλ

T λT λ is the iden-

tity on Mλ . To simplify the notation we can define φλT
..= φλ

T λT
.

Now, by Section 2.3 we know that the right S (n,d)-module Lλ ..= W λ/radW λ for
λ ∈ Λ+(n,d) is either irreducible or {0}. Recall that by definition of the bilinear form onW λ

in Proposition 2.3.2 we have

⟨φλT λ ,φ
λ
T λ ⟩φλT λT λ ≡ φλT λT λ ◦ φλT λT λ mod Š λ(n,d) ,

so ⟨φλ
T λ ,φ

λ
T λ ⟩ = 1, as φλ

T λT λ is the identity on Mλ .
Therefore, φλ

T λ is not in the radical and thus every Lλ is irreducible and we get the fol-
lowing classification by Proposition 2.3.12.

Proposition 5.2.4. Let R be a field, ν ∈ R a unit and n,d ∈ N. Then:

Ψ : Λ+(n,d)
1:1←→

{
Irreducible right S (n,d)-modules 

up to isomorphism

}
λ 7−→ Lλ
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A concrete calculation of all irreducible representations of S (2, 3) can be found in Sec-
tion 6.3, in particular in Proposition 6.3.1.

Remark 5.2.5. Like the construction of theMurphy basis ofH (Sd ), the construction of the
semistandard basis of SR,ν (n,d) does not really depend on R and ν . Moreover, the classi-
fication of irreducible right SR,ν (n,d)-modules is also independent of R and ν . Hence, com-
pared to the classification of irreducible right H (Sd )-modules, this result is much easier to
apply in practice.

Note that this result does not give us the dimensions of the irreducible representations.
For this we still need to compute the radical explicitly. We have done so for S (2, 3) in
Section 6.3.



6. Explicit examples

One caveat of the theory of cellular algebras is, that it can be difficult to construct a cell
datum for a given algebra. Usually, the algebra has to be well understood before a cellular
basis can be defined. We gave an overview over three cellular bases in Chapters 4 and 5, but
the complete proofs either computationally involved or, in the case of the Kazhdan–Lusztig
basis, require hard results from its theory.

Given a cell datum it might also be difficult to apply the classification result from Pro-
position 2.3.12, as Λ0 can be elusive. We have seen so in Section 4.4, where we outlined a
reformulation of the general classification result Proposition 2.3.12 for the Murphy basis of
H (Sd ). Moreover, these classification results do not give us the dimension of the irredu-
cible right modules.

In this chapter we explicitly construct an example for each of the cellular bases discussed
in Chapters 4 and 5. We verify their cellularity in these explicit examples by providing
multiplication tables. Furthermore, we compute the associated right cell modules and state
the right H -action on them. The multiplication tables also give us the bilinear form on each
cell module, whichwe use to calculate their radicals. Finally, we compute all irreducible right
modules.

All explicit computations are done over fields of arbitrary characteristic and for any non-
zero ν ∈ R. For the Kazhdan–Lusztig basis we assume, like in Section 4.6, that the field is
algebraically closed.

We begin this chapter by discussing the Murphy basis of H (S3) in Section 6.1, then we
construct the Kazhdan–Lusztig basis ofH (S3) in Section 6.2 and finish with the semistand-
ard basis of S (2, 3) in Section 6.3.

6.1 Murphy basis of H (S3)

In Section 4.3 we described the general construction of the Murphy basis of H (Sd ). In
this section we will do the whole construction for d = 3, considering both the generic and
non-generic case of ν . We give detailed explanations on how to apply the results of
Section 4.3 in practice and state all computations explicitly.

In our explicit calculations we will see, how and why the results depend on ν and on the
characteristic of R.
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We first recall the standard basis of H (S3), calculate the Murphy basis elements and
verify the cellular property for them. Thenwe compute the rightA-action on Spechtmodules
and calculate the irreducible right A-modules without Proposition 4.3.7. Finally, we will
identify the trivial and sign representation in our results.

6.1.1 Constructing the cell datum

Let’s assume, similar to Section 4.3, that R is a field and ν ∈ R is a unit and
denoteH ..= H (S3). The simple transpositions that generateS3 are denoted by s ..= (1, 2)
and t ..= (2, 3).

By Proposition 4.1.2 we know that H has the standard basis

{He ,Hs ,Ht ,Hst ,Hts ,Hsts }

and also know how to multiply standard basis elements. The complete multiplication table
is given in Figure 6.1.

By Example 3.1.2 we know that the partitions of d = 3 are totally ordered by the dom-
inance ordering:

▷ ▷

In this chapter we will fix a notation for standard tableaux to make the labeling of
Murphy basis elements more compact.

A standard tableau t is denoted byA decorated with a subscript, containing the shape λ
of the tableau, and a superscript, containing the element inw(t) ∈ S3 such that t = tλ .w(t).
By bijection (3.3) the tableau is uniquely determined by this information.

Ae
(3)

..= 1 2 3 , Ae
(2,1)

..= 1 2

3
, At

(2,1)
..= 1 3

2
, Ae

(1)3
..=

1

2

3

(6.1)

Recall the Murphy basis of H calculated in Example 4.2.6:

mAe
(3)

Ae
(3)

= H ∗em He = ν−3Hsts + ν−2Hts + ν−2Hst + ν−1Ht + ν−1Hs + 1

mAe
(2,1)

Ae
(2,1)

= H ∗em He = ν−1Hs + 1

mAe
(2,1)

At
(2,1)

= ν−1H ∗em Ht = ν−2Hst + ν−1Ht

mAt
(2,1)

Ae
(2,1)

= ν−1H ∗tm He = ν−2Hts + ν−1Ht

mAt
(2,1)

At
(2,1)

= ν−2H ∗tm Ht = ν−3Hsts + (ν−2 − 1)Ht + ν−2

mAe
(1)3

Ae
(1)3

= H ∗em He = 1
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Figure 6.1: Multiplication table for the standard basis of H (S3).



6.1. MURPHY BASIS OF H (S3) 85

To verify the cellular property of the Murphy basis in this example it is enough to check
it for the action of some basis elements of H . The right action of the standard basis and
Murphy basis on the Murphy basis itself is given in Figure 6.2 and Figure 6.3 respectively.
One can check the cellular property using both figures. We will use Figure 6.2 to check it
for the action onmAe

(1)3
Ae
(1)3

andmAe
(3)

Ae
(3)

and Figure 6.3 for the action on the other basis

elements.

Like in Example 4.3.2 we have to check that only certain elements appear in each column,
that the dominance ordering on partitions is followed and that the same coefficients appear
in both columns for each row of the table.

FormAe
(1)3

Ae
(1)3

andmAe
(3)

Ae
(3)

we only need to check that acting on them only produces

results that are associated to poset elements above them, because there is only one standard
tableaux of shape (3) and (1)3 respectively. This is always true formAe

(1)3
Ae
(1)3

, because (1)3

is minimal in the poset, and also hold true formAe
(3)

Ae
(3)

, as we can observe in the first column
of Figure 6.3.

There are four elements associated to (2, 1), making verifying the cellular property a bit
more involved. Compare, for example, the results of acting from the right withmAe

(2,1)
Ae
(2,1)

onmAe
(2,1)

Ae
(2,1)

andmAt
(2,1)

Ae
(2,1)

, which have the same tableau as second label:

mAe
(2,1)

Ae
(2,1)
·mAe

(2,1)
Ae
(2,1)

Figure 6.3
= (ν−2 + 1)mAe

(2,1)
Ae
(2,1)

mAt
(2,1)

Ae
(2,1)
·mAe

(2,1)
Ae
(2,1)

Figure 6.3
= (ν−2 + 1)mAt

(2,1)
Ae
(2,1)

Both results are a scaled Murphy basis element and both have the same first tableau as as
the element that was acted on. In both results the tableaux in the second label is the same
and these elements also have the same coefficient (ν−2+1). No other basis elements appear
in the expression. In particular, mAe

(1)3
Ae
(1)3

, which is associated to (1)3 below (2, 1), does

not appear in the expression. Hence, the property we verified formAe
(1)3

Ae
(1)3

andmAe
(3)

Ae
(3)

is also valid here.
Similarly, the cellular property can be verified for all other elements associated to (2, 1)

and thus for the whole basis.

6.1.2 Right Specht modules and their irreducible quotients

Now we can compute the right A-action on Specht modules of H . They are defined as

S = spanR
{
m 1 2 3

}
, S = spanR

{
m 1 2

3

, m 1 3

2

}
, S = spanR

m 1

2

3

 ,
where the right H -action on the generators can be inferred from Figures 6.2 and 6.3.

We give an informal description of this process. For an element mt ∈ Sλ , where
t ∈ Std(λ), one picks somemst ∈ H λ and computes the right action of H on this element.
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Figure 6.2: Multiplication table for Murphy with standard basis of H (S3).
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Figure 6.3: Multiplication table for the Murphy basis of H (S3).
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Then one applies the quotient map H → H /Ȟ λ and transforms non-zero quotients of
Murphy basis elements back to elements in Sλ by dropping the first tableau of each Murphy
basis element.

Consider, for example, the result ofmAt
(2,1)
· Hst ∈ S . We pickmAe

(2,1)
At
(2,1)
∈ H (S3)

and compute

mAe
(2,1)

At
(2,1)
· Hst =mAe

(3)
Ae
(3)
−mAe

(2,1)
Ae
(2,1)
−mAe

(2,1)
At
(2,1)
∈ H

with Figure 6.2. Applying the quotient map H →H /Ȟ killsmAe
(3)

Ae
(3)

, so we get

−mAe
(2,1)

Ae
(2,1)
−mAe

(2,1)
At
(2,1)
∈ H /Ȟ .

This element corresponds, by construction of cell modules in Section 2.1, to−mAe
(2,1)
−mAt

(2,1)

in the Specht module. Therefore,

mAt
(2,1)
· Hst = −mAe

(2,1)
−mAt

(2,1)
∈ S .

Using this process we can describe the complete action on each cell module. The results are
summarized in Figure 6.4.

The bilinear form on each Specht module is defined in Proposition 2.3.2 as

⟨ms,mt⟩muv ≡musmtv mod  Ȟ λ

for all λ ⊢ 3, s, t, u, v ∈ Std(λ) and can hence be computed from Figure 6.3. As stated in
Example 4.3.5 we have:

S : ⟨m 1 2 3 ,m 1 2 3 ⟩ = ν−6 + 2ν−4 + 2ν−2 + 1

S : ⟨m 1 2

3

,m 1 2

3

⟩ = ν−2 + 1 ⟨m 1 3

2

,m 1 2

3

⟩ = −1

⟨m 1 2

3

,m 1 3

2

⟩ = −1 ⟨m 1 3

2

,m 1 3

2

⟩ = ν−4 + 1

S : ⟨m 1

2

3

,m 1

2

3

⟩ = 1

Using e-restriction we know which Specht modules have irreducible quotients by Pro-
position 4.3.7. Here we want to verify the classification of irreducibles for H (S3) by calcu-
lating the radicals explicitly. Moreover, we want to compute the irreducible representations
and their dimensions in this example.
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mAe
(3)

S mAe
(1)3

S

mAe
(3)

·He mAe
(1)3

·He

ν−1mAe
(3)

·Hs −νmAe
(1)3

·Hs

ν−1mAe
(3)

·Ht −νmAe
(1)3

·Ht

ν−2mAe
(3)

·Hst +ν2mAe
(1)3

·Hst

ν−2mAe
(3)

·Hts +ν2mAe
(1)3

·Hts

ν−3mAe
(3)

·Hsts −ν3mAe
(1)3

·Hsts

mAe
(2,1)

mAt
(2,1)

S

mAe
(2,1)

mAt
(2,1)

·He

ν−1mAe
(2,1)

−νmAe
(2,1)
− νmAt

(2,1)
·Hs

νmAt
(2,1)

ν−1mAe
(2,1)

+ (ν−1 − ν)mAt
(2,1)

·Ht

mAt
(2,1)

−mAe
(2,1)
−mAt

(2,1)
·Hst

−ν2mAe
(2,1)
− ν2mAt

(2,1)
(ν−2 − 1 + ν2)mAe

(2,1)
− (1 − ν2)mAt

(2,1)
·Hts

−νmAe
(2,1)
− νmAt

(2,1)
−(ν−1 − ν)mAe

(2,1)
+ νmAt

(2,1)
·Hsts

Figure 6.4: Right H (S3)-action on Specht modules.

Proposition 6.1.1. The quotients of Specht modules of H (S3) by their radicals are:

D =


{0} ,

if (ν−2 = 1) ∧ (charR = 2 or 3)
or (ν−2 , 1) ∧ (ν−2 is 2nd or 3rd root of unity)

S , otherwise

D =


S
⧸spanR {−ν−2mAe

(2,1)
+mAt

(2,1)
} ,

if (ν−2 = 1)∧
(charR = 3)

or (ν−2 , 1)∧
(ν−2 is 3rd root of unity)

S , otherwise

D = S
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Proof. Recall that by Definition 2.3.3 the radical is the submodule

rad Sλ =
{
x ∈ Sλ | ⟨x ,y⟩ = 0 for all y ∈ Sλ

}
  ⊂   Sλ

for some λ ∈ Λ+(3). We consider each partition separately.

S is one-dimensional, so we have to determine when ν−6 +2ν−4 +2ν−2 +1 is 0:

ν−2 = 1 : 6 = 0 ⇔ charR = 2 or 3

ν−2 , 1 : Then ν−2 − 1 , 0, so:

ν−6 + 2ν−4 + 2ν−2 + 1 = 0

⇔ (ν−2 − 1)(ν−6 + 2ν−4 + 2ν−2 + 1) = 0

⇔ (ν−6 − 1)(ν−2 + 1) = 0

⇔ ν−2 is 2nd or 3rd root of unity

The Specht module is S = spanR {mAe
(2,1)
,mAt

(2,1)
}.

Assume x = a · mAe
(2,1)

+ b · mAt
(2,1)

∈ rad S , then we have for all

y = c ·mAe
(2,1)

+ d ·mAt
(2,1)
∈ S :

⟨x ,y⟩ = (ν−2 + 1)ac − ad − bc + (ν−4 + 1)bd = 0 (6.2)

Firstly, notice that if x , 0 then a , 0 and b , 0. Indeed, if a = 0 then b , 0 and if
we choose c = 1 and d = 0 then ⟨x ,y⟩ = −b , 0. The case b = 0 is similar. Thus we

have already established that rad S , S .

Secondly, we test (6.2) with element y = mAe
(2,1)

+ mAt
(2,1)

, so c = d = 1, to get

information about a, b and ν . In this case, (6.2) is

(ν−2 + 1)a − a − b + (ν−4 + 1)b = 0 ,

which reduces to a = −ν−2b. This already gives us an element spanning the radical,
should a non-zero radical exist. Plug a = −ν−2b back into (6.2), rearrange the terms
and get that

(ν−4 + ν−2 + 1)d = (ν−4 + ν−2 + 1)c

has to hold for all c,d ∈ R. Therefore, a non-zero radical exists if and only if
ν−4 + ν−2 + 1 = 0, so either ν−2 = 1 and charR = 3, or ν−2 , 1 and ν−2 is a
3rd root of unity. In these cases, the radical is spanned by −ν−2mAe

(2,1)
+mAt

(2,1)
.

S is one-dimensional and ⟨mAe
(1)3
,mAe

(1)3
⟩ = 1, so rad S = {0}.

□
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By Section 2.3 the non-zero quotients in Proposition 6.1.1 are the irreducible represent-
ations of H (S3). This result agrees with the classification in Example 4.3.8, where we used
the criterion of e-restriction. Additionally, we have a complete description of the H -action
on the irreducible representations and their dimension.

In particular, if (ν−2 = 1) ∧ (charR = 3) or (ν−2 , 1) ∧ (ν−2 is 3rd root of unity), there
is no two-dimensional representation of H (S3).

6.1.3 Identifying the trivial and sign representation

Before we end this section about theMurphy basis we use Proposition 6.1.1 to identify which
quotients correspond to known irreducible representations of H .

The trivial and sign representation defined in Remark 4.1.3 are one-dimensional and thus
irreducible H -modules. By the classification of irreducible H -modules in Proposition 4.3.7
they must be isomorphic to some irreducible quotient of some Specht module.

This leads to a natural question: to which quotients do they correspond exactly? We
need our explicit calculations from above, the general classification result is not enough to
determine this identification.

We approach this question for our example using the action on Specht modules from
Figure 6.4 and Proposition 6.1.1.

The irreducible module D is the sign representation. Indeed, S is always irreducible

and by Figure 6.4 Hs and Ht act by −ν on the basis element of D .

Identifying the trivial representation seems straightforward as well. By Figure 6.4 we ex-
pectD to be the trivial representation. But we know from Proposition 6.1.1 thatD
is not always irreducible. For these cases we have to identify the trivial representation with
another quotient.

We start with the case of (ν−2 = 1) ∧ (charR = 2 or 3). If (ν = −1), then the trivial

representation is obviously the sign representation, so D . This also includes the case of
(ν = 1) ∧ (charR = 2), because then also (ν = −1).

For (ν = 1) ∧ (charR = 3) or (ν−2 , 1) ∧ (ν−2 is 2nd or 3rd root of unity) we have

D = S /spanR {−ν−2mAe
(2,1)

+mAt
(2,1)
} by Proposition 6.1.1. Using the relation in

D , denoted by ♢, we see for the action of the standard generators on the basis element

mAe
(2,1)

of D :

mAe
(2,1)
· Hs = ν−1mAe

(2,1)

mAe
(2,1)
· Ht = νmAt

(2,1)

♢
= ν−1mAe

(2,1)

Thus, in these cases the trivial representation is D .
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We summarize our results in the following table:

trivial
representation

sign
representation

(ν = −1) ∧ (charR = 2 or 3) including
(ν = 1) ∧ (charR = 2)

D D

(ν = 1) ∧ (charR = 3) or
(ν−2 , 1) ∧ (ν−2 2nd or 3rd root of unity)

D D

otherwise D D

6.2 Kazhdan–Lusztig basis of H (S3)

Like in Section 6.1 we can verify the cellular property of the Kazhdan–Lusztig basis for
H (S3) using explicit calculations. This is also a good opportunity to demonstrate the
Robinson–Schensted correspondence from Section 4.6.2 oncemore. Our computations show
that, in general, the Kazhdan–Lusztig basis differs from the Murphy basis, although parts
of the cell data agree.

We begin this section with the cell datum associated to the Kazhdan–Lusztig basis of
H (S3). In particular, we calculate the complete Robinson–Schensted correspondence from
Proposition 4.6.2 forS3. Using this result we relabel the basis elements, which were already
stated in Example 4.6.1. Afterwards we compute the irreducible right H (S3)-modules once
more, this time using the Kazhdan–Lusztig cell datum. We finish this section with a brief
comparison between the Kazhdan–Lusztig and Murphy basis of H (S3).

6.2.1 Constructing the cell datum

Recall that simple transpositions s = (1, 2) and t = (2, 3) generate S3 as a group. The
standard basis of H (S3) consists of elements

{He , Hs , Ht , Hst , Hts , Hsts } .

The Kazhdan–Lusztig basis of H (S3) consists of elements{
He , Hs , Ht , Hst , Hts , Hsts

}
,

which were stated in Example 4.6.1 and will be recalled below.
We will now gather the complete cell datum associated to the Kazhdan–Lusztig basis of

H (S3). Its poset (Λ+(3), ▷̃) consists of three elements

(3) ◁̃ (2, 1) ◁̃(1, 1, 1) = (1)3  , (6.3)
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or as diagrams

◁̃ ◁̃
,

that are partially ordered by the reverse dominance ordering as indicated.
The standard tableaux with these shapes also appeared as labels in the Murphy basis.

Recall the compact notation for them from (6.1) in Section 6.1:

Ae
(3)

..= 1 2 3 , Ae
(2,1)

..= 1 2

3
, At

(2,1)
..= 1 3

2
, Ae

(1)3
..=

1

2

3

Recall that this notation was based on the action ofS3 on the tableau tλ that produces the
standard tableau for λ ∈ Λ+(3).

To label the Kazhdan–Lusztig elements with ordered pairs of standard tableaux of the
same shape we apply the Robinson–Schensted correspondence 4.6.2 to each element inS3.

For another example of the construction of the ordered pair of standard tableaux
(P(w),Q(w)) for a w ∈ S3, consider the element w = st ∈ S3. First, we need to express w
as a wordw1w2w3 withwi = w(i) for i = 1, 2, 3. For our example it is st = 231, because:

1
t(·)
−→ 1

s(·)
−→ 2

2
t(·)
−→ 3

s(·)
−→ 3

3
t(·)
−→ 2

s(·)
−→ 1

Here is the stepwise construction of the pair (P(w),Q(w)):

P (0)(w) = ∅ ⇝ 2 ⇝ 2 3 ⇝
1

2

3
= P(w)

2 3 1

Q(0)(w) = ∅ ⇝ 1 ⇝ 1 2 ⇝
1

3

2
= Q(w)

The circled number indicates the label added to the standard tableau left of it using the row
bumping algorithm. First, 2 is added in a new box to the first line of the trivial standard
tableau. Then, because 3 > 2, 3 is added in a new box at the end of the first row. Lastly,
because 1 < 2, 1 displaces 2 to the second row, adding a new box. The resulting standard
tableau is P(w). By construction, Q(w) tracks when each box in P(w) is created and labels
them accordingly.
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Here are the ordered pairs of standard tableaux of the same shape corresponding to each
element inS3:

e ∼ ( 1 2 3 , 1 2 3 ) =
(
Ae
(3)
,Ae

(3)

)
s ∼

(
1 3

2 ,
1 3

2

)
=

(
At
(2,1)
,At

(2,1)

)
t ∼

(
1 2

3 ,
1 2

3

)
=

(
Ae
(2,1)
,Ae

(2,1)

)
st ∼

(
1 3

2 ,
1 2

3

)
=

(
At
(2,1)
,Ae

(2,1)

)
ts ∼

(
1 2

3 ,
1 3

2

)
=

(
Ae
(2,1)
,At

(2,1)

)
sts ∼

(
1

2

3

,
1

2

3

)
=

(
Ae
(1)3
,Ae

(1)3

)
We can immediately observe the results of Proposition 4.6.8 in our exampleS3. The elements
e, s, t , sts ∈ S3 are self-inverse, so they correspond to a pair with the same tableau in both
entries. The elements st , ts ∈ S3 are inverse to each other, so the pairs they correspond to
are mirrored to each other, meaning we get one pair by swapping the entries of the other
pair.

With the established Robinson–Schensted correspondence we now state the Kazhdan–
Lusztig basis of H (S3) with the labeling used to highlight its cellular structure:

HAe
(3)

Ae
(3)

= H 1 2 3 1 2 3 = He = 1

HAt
(2,1)

At
(2,1)

= H 1 3

2

1 3

2

= Hs = Hs + ν

HAe
(2,1)

Ae
(2,1)

= H 1 2

3

1 2

3

= Ht = Ht + ν

HAt
(2,1)

Ae
(2,1)

= H 1 3

2

1 2

3

= Hst = Hst + νHs + νHt + ν2

HAe
(2,1)

At
(2,1)

= H 1 2

3

1 3

2

= Hts = Hts + νHs + νHt + ν2

HAe
(1)3

Ae
(1)3

= H 1

2

3

1

2

3

= Hsts = Hsts + νHst + νHts + ν2Hs + ν2Ht + ν3

Our next goal is to verify the cellular property of the Kazhdan–Lusztig basis in this
example. It is enough to check it for the right action of a basis of H (S3) on the Kazhdan–
Lusztig elements. Of course, the result must be expressed in terms of the Kazhdan–Lusztig
basis.

Recall the multiplication table for the standard basis from Figure 6.1. With this table we
can compute the action of the standard basis on the Kazhdan–Lusztig basis. It is summar-
ized in Figure 6.5. Multiplication of two Kazhdan–Lusztig basis elements is summarized in
Figure 6.6.

Now we can check the cellular property in our example. ForHAe
(3)

Ae
(3)

andHAe
(1)3

Ae
(1)3

we

only need to check that elements from poset elements above the respective element appear,
because there is only one standard tableau each with shape (3) and (1)3. From (6.3) we
know that partition (3) is minimal in the reversed Bruhat ordering, so the above is always
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Figure 6.5: Multiplication table for Kazhdan–Lusztig with standard basis of H (S3).
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Figure 6.6: Multiplication table for the Kazhdan–Lusztig basis of H (S3).
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satisfied for HAe
(3)

Ae
(3)

. As (1)3 is maximal, for the above property the action on HAe
(1)3

,Ae
(1)3

must be linear. This is easily seen in Figures 6.5 and 6.6.
This property also holds for the other four elements, because the single elementHAe

(3)
Ae
(3)

from the poset element below (2, 1) does not appear in columns two to five in Figures 6.5
and 6.6.

Additionally, acting on those elements and expressing the result in the Kazhdan–Lusztig
basis only produces elements from the poset element (2, 1), which have the same first label
as the element we started with. For example, consider

HAt
(2,1)

Ae
(2,1)
· Hts = ν−1HAe

(1)3
Ae
(1)3

+ ν−1HAt
(2,1)

At
(2,1)
− HAt

(2,1)
Ae
(2,1)

(6.4)

from Figure 6.5. Only elements HAt
(2,1)

At
(2,1)

and HAt
(2,1)

Ae
(2,1)

from the poset element (2, 1)

appear in the expression. These have the same first label as the element HAt
(2,1)

Ae
(2,1)

we

started with.
Finally, if we fix the second label, the coefficients appearing in the expression should not

depend on the first label. Compare the example in (6.4) above to

HAe
(2,1)

Ae
(2,1)
· Hts = ν−1HAe

(2,1)
At
(2,1)
− HAe

(2,1)
Ae
(2,1)

from Figure 6.5. Coefficients ν−1 and −1 appear in both expressions. The elements they
are associated to have the same second label, which verifies the cellular property for these
elements and this one action. Note that we do not compare the coefficients in front of
HAe

(1)3
Ae
(1)3

, because this element is not from the poset element (2, 1) and thus vanishes in

the quotient.
With Figures 6.5 and 6.6 one can verify the cellular property for all elements in the poset

element (2, 1) in a similar fashion, thus for the Kazhdan–Lusztig basis of H (S3).

6.2.2 Right cell modules and their irreducible quotients

Having established the cell datum associated to the Kazhdan–Lusztig basis we can now
construct the right cell modules for this basis. We have already done this for the Murphy
basis in Section 6.1, where cell modules were called Specht modules. The approach is the
same in both cases. Note that the cell modules below were called cell representations by
Kazhdan and Lusztig in [KL79].

Cell modules are, as R-modules, defined as:

C = spanR {HAe
(3)
}, C = spanR { HAe

(2,1)
,HAt

(2,1)
}, C = spanR { HAe

(1)3
}

The right H (S3)-action can be inferred from Figure 6.6 or 6.5. This process was already
described in Section 6.1 for the Murphy basis. Here we do one more example of this process.
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HAe
(3)

C HAe
(1)3

C

HAe
(3)

·He HAe
(1)3

·He

−νHAe
(3)

·Hs ν−1HAe
(1)3

·Hs

−νHAe
(3)

·Ht ν−1HAe
(1)3

·Ht

+ν2HAe
(3)

·Hst ν−2HAe
(1)3

·Hst

+ν2HAe
(3)

·Hts ν−2HAe
(1)3

·Hts

−ν3HAe
(3)

·Hsts ν−3HAe
(1)3

·Hsts

HAe
(2,1)

HAt
(2,1)

C

HAe
(2,1)

HAt
(2,1)

·He

HAt
(2,1)
− νHAe

(2,1)
ν−1HAt

(2,1)
·Hs

ν−1HAe
(2,1)

HAe
(2,1)
− νHAt

(2,1)
·Ht

−νHAt
(2,1)

ν−1HAe
(2,1)
− HAt

(2,1)
·Hst

ν−1HAt
(2,1)
− HAe

(2,1)
−νHAe

(2,1)
·Hts

−HAt
(2,1)

−HAe
(2,1)

·Hsts

Figure 6.7: Right H (S3)-action on cell modules from the Kazhdan–Lusztig basis.

Say we want to compute
HAe

(2,1)
· Hst .

We pick a representative of HAe
(2,1)

in H (S3), say HAt
(2,1)

Ae
(2,1)

, and compute the action on

this element instead. We can look this computation up in Figure 6.5:

HAt
(2,1)

Ae
(2,1)
· Hst = ν−1HAe

(1)3
Ae
(1)3
− νHAt

(2,1)
At
(2,1)

First, we drop ν−1HAe
(1)3

Ae
(1)3

from this expression, because it is not associated to (2, 1) and

will vanish in the quotient. Then we drop the first label of the remaining −νHAt
(2,1)

At
(2,1)

and
arrive at:

HAe
(2,1)
· Hst =   − νHAt

(2,1)

The complete right H (S3)-action on the cell modules is summarized in Figure 6.7.
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We can now state the bilinear form on right cell modules by using the multiplication
table in Figure 6.6 for the Kazhdan–Lusztig elements or the explicitly given right action on
the cell modules in Figure 6.7. Recall that by Proposition 2.3.2 the bilinear form on a cell
module Cλ for λ ∈ Λ+(3) is defined by

⟨Hs,Ht⟩Huv ≡ HusHtv mod Ȟ λ(S3)

for all s, t, u, v ∈ Std(λ). For example, to get ⟨HAe
(2,1)
,HAt

(2,1)
⟩ we compute

HAe
(2,1)

,Ae
(2,1)
· HAt

(2,1)
,Ae

(2,1)
≡ HAe

(2,1)
,Ae

(2,1)
mod Ȟ (2,1)(S3)

with Figure 6.6 and get
⟨HAe

(2,1)
,HAt

(2,1)
⟩ = 1 .

Alternatively, we could have taken these from certain coefficients in Figure 6.7, but this
approach is more error prone.

Here is the bilinear form on each cell module:

C : ⟨HAe
(3)
,HAe

(3)
⟩ = 1

C : ⟨HAe
(2,1)
,HAe

(2,1)
⟩ = ν−1 + ν ⟨HAt

(2,1)
,HAe

(2,1)
⟩ = 1

⟨HAe
(2,1)
,HAt

(2,1)
⟩ = 1 ⟨HAt

(2,1)
,HAt

(2,1)
⟩ = ν−1 + ν

C : ⟨HAe
(1)3
,HAe

(1)3
⟩ = ν−3 + 2ν−2 + 2ν−1 + 1

Note that we already see from this overview that D will never be trivial, because
HAe

(2,1)
and HAt

(2,1)
are not in the radical.

Finally, we can state the irreducible representations of H (S3) once more, this time
using the cell modules coming from the Kazhdan–Lusztig basis. To apply the classification
result from Proposition 2.3.12, we need to take the quotient of each cell module by its radical
and identify the non-zero quotients. These are decorated with ∼ to differentiate them from
the quotients from the Murphy basis in Section 6.1.
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The computations are summarized in the following proposition.

Proposition 6.2.1. The quotients of cell modules associated to the Kazhdan–Lusztig basis of
H (S3) by their radicals are:

D̃ = C

D̃ =



C
⧸spanR {HAe

(2,1)
−HAt

(2,1)
} ,

if (−ν−1 = 1) ∧ (charR = 3)
or (−ν−1 , 1) ∧ (−ν−1 is 3rd root of unity)

C
⧸spanR {HAe

(2,1)
+ HAt

(2,1)
} ,

if (ν−1 = 1) ∧ (charR = 3)
or (ν−1 , 1) ∧ (ν−1 is 3rd root of unity)

C , otherwise

D̃ =


{0} ,

if (ν−1 = 1) ∧ (charR = 2 or 3)
or (ν−1 , 1) ∧ (ν−1 is 2nd or 3rd root of unity)

C , otherwise

Proof. Recall that by Definition 2.3.3 the radical is the submodule

radCλ =
{
x ∈ Cλ | ⟨x ,y⟩ = 0 for all y ∈ Cλ

}
  ⊂  Cλ

for some λ ∈ Λ+(3). We consider each partition separately, just like we did for the Murphy
basis in Proposition 6.1.1.

The cell moduleC is one-dimensional and ⟨HAe
(3)
,HAe

(3)
⟩ = 1, so the radical only

contains 0.

Assume that x = a · HAe
(2,1)

+ b · HAt
(2,1)
∈ radC for some a,b ∈ R. Then for all

y = c · HAe
(2,1)

+ d · HAt
(2,1)
∈ C , so for all c,d ∈ R, we have:

⟨x ,y⟩ = (ν−1 + ν)ac + ad + bc + (ν−1 + ν)bd = 0 (6.5)

As in the proof of Proposition 6.1.1, we first notice that if x , 0, then a , 0 and b , 0.
Indeed, if a = 0 then b , 0 as x , 0. But if we test (6.5) with c = 1 and d = 0 we
get b = 0, a contradiction. So a , 0, and similarly b , 0. Therefore, we already know

that radC , C , so the quotient module D is always irreducible.

To get more information about a,b and ν we test (6.5) with the element
y = HAe

(2,1)
+ HAt

(2,1)
, so c = d = 1, rearrange the terms and get:

(ν−1 + ν + 1)(a + b) = 0

Thus, a non-zero radical can only exist, if either ν−1 + ν + 1 = 0 or a = −b.
We consider each case individually.
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a = −b : We can plug a = −b into (6.5):

(ν−1 + ν)(−b)c − bd + bc + (ν−1 + ν)bd = 0

b,0⇔ (ν−1 + ν − 1)(d − c) = 0

This needs to hold for all c,d ∈ R, so (ν−1 + ν − 1) = 0, which is equivalent to
(ν−2 −ν−1+1) = 0, as ν is invertible. Hence, either −ν−1 = 1 and charR = 3, or
−ν−1 , 1 and −ν−1 is a 3rd root of unity. In these cases the radical is spanned
by HAe

(2,1)
−HAt

(2,1)
as a R-module.

ν−1 + ν
+1 = 0

: This assumption is equivalent to (ν−2 + ν−1 + 1) = 0, so either ν−1 = 1 and

charR = 3, or ν−1 , 1 and ν−1 is a 3rd root of unity.
To find a non-zero element of the radical in these cases, we once again test (6.5),
this time with c = 0 and d = 1:

a + b(ν−1 + ν) = 0

By our assumption ν−1 + ν = −1, so we must have a = b. Thus, the radical is
spanned by HAe

(2,1)
+ HAt

(2,1)
as a R-module.

: The cell module C is one-dimensional, so we only have to check when

ν−3 + 2ν−2 + 2ν−1 + 1 is 0. This works exactly like a case in Proposition 6.1.1:

ν−1 = 1 : 6 = 0⇔ charR = 2 or 3

ν−1 , 1 : Then ν−1 − 1 , 0, so:

ν−3 + 2ν−2 + 2ν−1 + 1 = 0

⇔(ν−1 − 1)(ν−3 + 2ν−2 + 2ν−1 + 1) = 0

⇔(ν−3 − 1)(ν−1 + 1) = 0

⇔ν−1 is 2nd or 3rd root of unity

□

Note that, just like we saw in the explicit computations for the Hecke algebra in Proposi-
tion 6.1.1, there is no two-dimensional irreducible module if
(ν−2 = 1) ∧ (charR = 3) or (ν−2 , 1) ∧ (ν−2 is 3rd root of unity).

In Remark 4.6.10 we referred to result [GL96, Theorem 3.8] of Graham and Lehrer that
characterizes semisimple cellular algebras by their cell modules. In particular, if H is
semisimple then all right cell modules are irreducible. From this abstract result we know
that cell modules from the Kazhdan–Lusztig basis must be isomorphic to cell modules from
the Murphy basis.

Before ending this section we want to give explicit isomorphisms between these cell
modules in our example.
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Proposition 6.2.2. LetR be an algebraically closed field and assume thatH (S3) is semisimple.
Then there are the following isomorphisms of rightH (S3)-modules between cell modules from
the Kazhdan–Lusztig basis and cell modules from the Murphy basis:

C
∼−→ S , HAe

(3)
7→ mAe

(1)3

C
∼−→ S , HAe

(1)3
7→ mAe

(3)

C
∼−→ S , HAe

(2,1)
7→ ν(mAe

(2,1)
+mAt

(2,1)
)

HAt
(2,1)

7→ mAe
(2,1)

Proof. For the first two maps we can see in Figures 6.4 and 6.7 that the modules on both
sides are the sign and the trivial representation respectively.

For the lastmap note thatHs acts onHAt
(2,1)
∈ C byν−1 andHt acts onHAe

(2,1)
∈ C

also by ν−1. The idea is to find elements in S on which Hs and Ht act similarly.
ForHs they are of the form a1mAe

(2,1)
and forHt they are of the form a2(mAe

(2,1)
+mAt

(2,1)
)

for all a1,a2 ∈ R. Hence, our candidate for the isomorphism assigns

HAt
(2,1)
7→ a1mAe

(2,1)
and HAe

(2,1)
7→ a2(mAe

(2,1)
+mAt

(2,1)
) .

Now a1 and a2 need to be chosen such that this map is a right H (S3)-module isomorphism.
We check the action of Hs and Ht on both sides and conclude, after some calculation, that
a1 = 1 and a2 = ν . □

6.3 Semistandard basis of S (2, 3)

In Section 5.2 we recalled the semistandard basis of Schur algebras from [Mat06]. There
we did not provide many examples for this construction, which we want to rectify in this
section.

Here we give a detailed description of the semistandard basis of S (2, 3), including the
construction of all basis elements, their multiplication, verifying the cellular property and
calculating the irreducible representations of S (2, 3). Like in Section 6.1 for the Murphy
basis of H (S3), we will see how the results depend on the choices of R and ν in our explicit
calculations.

The semistandard basis of S ..= S (2, 3) is build on top of the Murphy basis
of H ..= H (S3), so we will be using results from Section 6.1.
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6.3.1 Constructing the cell datum

Assume, like we did in Section 6.1, that R is a field and ν ∈ R a unit. Note that we will be
deviating from the notation used in Section 5 to make it more compact.

By (5.2) the Schur algebra S (2, 3) has a natural decomposition

S (2, 3) =
⊕

µ,η∈Λ(2,3)
HomH (Mη ,M µ) .

The poset of compositions µ = (µ1, µ2) of 3 is

Λ(2, 3) =
{

, , ,
}
,

so the involved permutation modules are

M , M , M , and M .

By Definition 4.2.1 they are, as a right H -module, generated by

m =m Ae
(3)

Ae
(3)

= ν−3Hsts + ν−2Hts + ν−2Hst + ν−1Ht + ν−1Hs + 1

m =m Ae
(2,1)

Ae
(2,1)

= ν−1Hs + 1

m = ν−1Ht + 1

m =m Ae
(3)

Ae
(3)

= ν−3Hsts + ν−2Hts + ν−2Hst + ν−1Ht + ν−1Hs + 1 .

First, we need the poset of the semistandard basis of S , which are all partitions in
Λ(2, 3) with dominance ordering:

Λ+(2, 3) =
{

▷
}

The labeling set associated to each of these consists of all semistandard tableaux of this
shape. Recall that we have already stated them in Example 3.3.1. Here wewill use amodified
notation:

B
(3,0)

(3,0)
..= 1 1 1 ∈ T0 ( , )

B
(2,1)

(3,0)
..= 1 1 2 ∈ T0

(
,

)
B
(2,1)

(2,1)
..= 1 1

2
∈ T0

(
,

)
B
(1,2)

(3,0)
..= 1 2 2 ∈ T0

(
,

)
B
(1,2)

(2,1)
..= 1 2

2
∈ T0

(
,

)
B
(0,3)

(3,0)
..= 2 2 2 ∈ T0

(
,

)



6.3. SEMISTANDARD BASIS OF S (2, 3) 104

A semistandard tableau is denoted by B decorated with its shape as subscript and its
type as superscript. Note that this notation only makes sense in this example where n = 2
and d = 3, as there is at most one semistandard tableau for each combination of shape and
type.

The labeling sets of the semistandard basis of S are:

T0 ( ) =
{
B
(3,0)

(3,0)
, B

(2,1)

(3,0)
, B

(1,2)

(3,0)
, B

(0,3)

(3,0)

}
T0

( )
=

{
B
(2,1)

(2,1)
, B

(1,2)

(2,1)

}
To construct the semistandard basis elements we first need to construct the basis of in-

tersections of permutation modules with dual intersection modules from Proposition 4.2.11.

Recall that we have already done it for the intersection M ∩M
∗
in Example 4.2.12:

m
B(1,2)

(3,0)
B(1,2)

(3,0)

=mAe
(3)

Ae
(3)

m
B(1,2)

(2,1)
B(1,2)

(2,1)

=m Ae
(2,1)

Ae
(2,1)

+m At
(2,1)

Ae
(2,1)

+m Ae
(2,1)

At
(2,1)

+m At
(2,1)

At
(2,1)

⇒ M ∩M
∗
= spanR

{
m

B(1,2)

(3,0)
B(1,2)

(3,0)

, m
B(1,2)

(2,1)
B(1,2)

(2,1)

}
By similar calculations we get bases for all intersections, which are summarized in the

table of Example 4.2.12. Here is the table using the notation of this chapter:

∩
M M M M

M ∗ m
B(3,0)

(3,0)
B(3,0)

(3,0)

m
B(2,1)

(3,0)
B(3,0)

(3,0)

m
B(1,2)

(3,0)
B(3,0)

(3,0)

m
B(0,3)

(3,0)
B(3,0)

(3,0)

M
∗

m
B(3,0)

(3,0)
B(2,1)

(3,0)

m
B(2,1)

(3,0)
B(2,1)

(3,0)

m
B(2,1)

(2,1)
B(2,1)

(2,1)

m
B(1,2)

(3,0)
B(2,1)

(3,0)

m
B(1,2)

(2,1)
B(2,1)

(2,1)

m
B(0,3)

(3,0)
B(2,1)

(3,0)

M
∗

m
B(3,0)

(3,0)
B(1,2)

(3,0)

m
B(2,1)

(3,0)
B(1,2)

(3,0)

m
B(2,1)

(2,1)
B(1,2)

(2,1)

m
B(1,2)

(3,0)
B(1,2)

(3,0)

 m
B(1,2)

(2,1)
B(1,2)

(2,1)

m
B(0,3)

(3,0)
B(1,2)

(3,0)

M
∗

m
B(3,0)

(3,0)
B(0,3)

(3,0)

m
B(2,1)

(3,0)
B(0,3)

(3,0)

m
B(1,2)

(3,0)
B(0,3)

(3,0)

m
B(0,3)

(3,0)
B(0,3)

(3,0)
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For λ = the basis elements are

mBµ
(3,0)

Bη
(3,0)

=mAe
(3)

Ae
(3)
∈ M µ ∩Mη∗

for all µ,η ∈ Λ(2, 3), because there is exactly one semistandard tableau of shape for
each type in Λ(2, 3).

For λ = these basis elements are:

m
B(2,1)

(2,1)
B(2,1)

(2,1)

=mAe
(2,1)

Ae
(2,1)

∈ M ∩M
∗

m
B(2,1)

(2,1)
B(1,2)

(2,1)

=mAe
(2,1)

Ae
(2,1)

+mAe
(2,1)

At
(2,1)

∈ M ∩M
∗

m
B(1,2)

(2,1)
B(2,1)

(2,1)

=mAe
(2,1)

Ae
(2,1)

+mAt
(2,1)

Ae
(2,1)

∈ M ∩M
∗

m
B(1,2)

(2,1)
B(1,2)

(2,1)

= mAe
(2,1)

Ae
(2,1)

+mAe
(2,1)

At
(2,1)

+mAt
(2,1)

Ae
(2,1)

+mAt
(2,1)

At
(2,1)

∈ M ∩M
∗

Now we are able to construct the semistandard basis elements of S (2, 3).
For µ,η ∈ Λ(2, 3), λ ∈ Λ+(2, 3), S ∈ T0(λ, µ) andT ∈ T0(λ,η) they were defined in Chapter 5
as

φλST : Mη −→ M µ

mη 7→ mST
,

viewed as elements in S by trivial extension to
⊕

µ ∈Λ(2,3)M
µ . All basis elements are sum-

marized in Figure 6.8. Note that we do not need λ in the superscript with our notation,
because it is the shape of S and T , which is the subscript of each B.

For easier multiplication of the semistandard basis elements we have already expressed
φλST (mη) =mST ∈ M µ via the H -action on the generatormµ of M µ in Figure 6.8.

Because we extend these elements trivially to
⊕

µ ∈Λ(2,3)M
µ a multiplication φλ

′
S ′T ′ ◦φλST

can only be non-zero, if S and T ′ are of the same type. For example, one possibly non-zero
multiplication is φ

B(3,0)

(3,0)
B(2,1)

(3,0)

◦ φ
B(2,1)

(3,0)
B(2,1)

(3,0)

. Using Figure 6.8 we get

φ
B(3,0)

(3,0)
B(2,1)

(3,0)

◦ φ
B(2,1)

(3,0)
B(2,1)

(3,0)

: M
 

→ M , m 7→m · (ν−1Hsts + Hst + νHs) .

Now, because we knowmAe
(3)

Ae
(3)

= H ∗e ·m ·He =m from Section 6.1, we can
use Figure 6.2 to calculate

m · (ν−1Hsts + Hst + νHs) = (ν−4 + ν−2 + 1)m

and so
φ
B(3,0)

(3,0)
B(2,1)

(3,0)

◦ φ
B(2,1)

(3,0)
B(2,1)

(3,0)

= (ν−4 + ν−2 + 1)φ
B(3,0)

(3,0)
B(2,1)

(3,0)

.



φ
B
(3,0)

(3,0)
B
(3,0)

(3,0)

:M → M , m 7→mAe
(3)

Ae
(3)

=m

φ
B
(2,1)

(3,0)
B
(3,0)

(3,0)

:M → M , m 7→mAe
(3)

Ae
(3)

=m · (ν−1Hsts + Hst + νHs)

φ
B
(1,2)

(3,0)
B
(3,0)

(3,0)

:M → M , m 7→mAe
(3)

Ae
(3)

=m · (ν−2Hst + ν−1Hs + He)

φ
B
(0,3)

(3,0)
B
(3,0)

(3,0)

:M → M , m 7→mAe
(3)

Ae
(3)

=m

φ
B
(3,0)

(3,0)
B
(2,1)

(3,0)

:M → M , m 7→mAe
(3)

Ae
(3)

=m

φ
B
(2,1)

(3,0)
B
(2,1)

(3,0)

:M → M , m 7→mAe
(3)

Ae
(3)

=m · (ν−1Hsts + Hst + νHs)

φ
B
(1,2)

(3,0)
B
(2,1)

(3,0)

:M → M , m 7→mAe
(3)

Ae
(3)

=m · (ν−2Hst + ν−1Hs + He)

φ
B
(0,3)

(3,0)
B
(2,1)

(3,0)

:M → M , m 7→mAe
(3)

Ae
(3)

=m

φ
B
(3,0)

(3,0)
B
(1,2)

(3,0)

:M → M , m 7→mAe
(3)

Ae
(3)

=m

φ
B
(2,1)

(3,0)
B
(1,2)

(3,0)

:M → M , m 7→mAe
(3)

Ae
(3)

=m · (ν−1Hsts + Hst + νHs)

φ
B
(1,2)

(3,0)
B
(1,2)

(3,0)

:M → M , m 7→mAe
(3)

Ae
(3)

=m · (ν−2Hst + ν−1Hs + He)

φ
B
(0,3)

(3,0)
B
(1,2)

(3,0)

:M → M , m 7→mAe
(3)

Ae
(3)

=m

φ
B
(3,0)

(3,0)
B
(0,3)

(3,0)

:M → M , m 7→mAe
(3)

Ae
(3)

=m

φ
B
(2,1)

(3,0)
B
(0,3)

(3,0)

:M → M , m 7→mAe
(3)

Ae
(3)

=m · (ν−1Hsts + Hst + νHs)

φ
B
(1,2)

(3,0)
B
(0,3)

(3,0)

:M → M , m 7→mAe
(3)

Ae
(3)

=m · (ν−2Hst + ν−1Hs + He)

φ
B
(0,3)

(3,0)
B
(0,3)

(3,0)

:M → M , m 7→mAe
(3)

Ae
(3)

=m

φ
B
(2,1)

(2,1)
B
(2,1)

(2,1)

:M → M , m 7→mAe
(2,1)

Ae
(2,1)

=m

φ
B
(1,2)

(2,1)
B
(2,1)

(2,1)

:M → M , m 7→mAe
(2,1)

Ae
(2,1)

+mAt
(2,1)

Ae
(2,1)

=m · (ν−1Hs + He)

φ
B
(2,1)

(2,1)
B
(1,2)

(2,1)

:M → M , m 7→mAe
(2,1)

Ae
(2,1)

+mAe
(2,1)

At
(2,1)

=m · (ν−1Ht + He)

φ
B
(1,2)

(2,1)
B
(1,2)

(2,1)

:M → M , m 7→mAe
(2,1)

Ae
(2,1)

+mAe
(2,1)

At
(2,1)

+mAt
(2,1)

Ae
(2,1)

+mAt
(2,1)

At
(2,1)

=m · (mAe
(2,1)

Ae
(2,1)

+mAe
(2,1)

At
(2,1)

)

=m · (ν−2Hst + ν−1Ht + ν−1Hs + He)

Figure 6.8: All semistandard basis elements of S (2, 3).
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Our next goal is to verify the cellular property of this basis. By Definition 2.1.1 of cellular
algebras we need to show that for all λ ∈ Λ+(2, 3), η,γ ∈ Λ(2, 3), a ∈ S there exist
coefficients rη,aγ ∈ R independent of µ ∈ Λ(2, 3) such that

φBµλB
η
λ
◦ a ≡

∑
γ ∈Λ(2,3)

r
η,a
γ φBµλB

γ
λ

mod  Š λ .

Of course it is enough to show this for all a in the semistandard basis. Calculating all
202 multiplications to verify the cellular property is too much work. We can reduce that
number by using the anti-automorphism ∗ and only calculating the possibly non-zero mul-
tiplications. Even then there are many cases left, in particular for basis elements associated
to . Therefore we will use another argument to verify a large part of the cellular prop-
erty for , reduce the calculations needed for and then calculate the remaining cases

by hand.

Let λ = , µ,η ∈ Λ(2, 3) and φST a semistandard basis element, where T is of type
γ ∈ Λ(2, 3). We want to calculate φBµλB

η
λ
◦ φST , so we assume that it is non-zero and thus S

of type η. By Figure 6.8 we have φBµλB
η
λ
(mη) =mAe

(3)
Ae
(3)

for any µ, so if we express φST (mγ )

in terms of mη , like we did in Figure 6.8, then φBµλB
η
λ
just replaces mη by mAe

(3)
Ae
(3)

in that
expression:

φBµλB
η
λ
◦ φST : Mγ −→ M µ

mγ 7→ φST (mγ ) |mη=mAe
(3)

Ae
(3)

Notice that φST (mγ ) |mη=mAe
(3)

Ae
(3)

is independent of µ. Moreover, it is the result of some

element of H acting onmAe
(3)

Ae
(3)

from the right. In Section 6.1 we saw thatmAe
(3)

Ae
(3)

is part

of the Murphy basis of H , that is maximal in the dominance ordering on Λ+(3) and
that Ae

(3)
is the only standard tableau of shape .

Therefore, φST (mγ ) |mη=mAe
(3)

Ae
(3)
∈ spanR {mAe

(3)
Ae
(3)
}, say

φST (mγ ) |mη=mAe
(3)

Ae
(3)

= αSTmAe
(3)

Ae
(3)

with αST ∈ R independent of µ.
Finally, note that the basis element φBµλB

γ
λ
mapsmγ tomAe

(3)
Ae
(3)
∈ M µ , so

φBµλB
η
λ
◦ φST = αSTφBµλB

γ
λ

(6.6)

with αST independent of µ. This proves the cellular property for all elements associated to
λ = .

Furthermore, the coefficient αST is the same for all T of shape , because we see in
Figure 6.8 that after replacingmη bymAe

(3)
Ae
(3)

the expression is the same for allγ . This allows
us to state the S -action on semistandard basis elements associated to in Figure 6.9.

For standard basis elements associated to we can do a similar reduction by applying ∗
and using the results from above. We want to consider µ,η ∈ {(2, 1), (1, 2)}, S,T ∈ T0( )
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such that φBµ
(2,1)

Bη
(2,1)
◦ φST , 0. Then S must be of type η, so S = B

η
(3,0)

. Let γ ∈ Λ(2, 3) be

the type of T , so T = B
γ
(3,0)

.
By applying ∗ twice we get

φBµ
(2,1)

Bη
(2,1)
◦ φBη

(3,0)
Bγ
(3,0)

=
(
φBγ

(3,0)
Bη
(3,0)
◦ φBη

(2,1)
Bµ
(2,1)

)∗
6.6
=

(
αBη

(2,1)
Bµ
(2,1)

φBγ
(3,0)

Bµ
(3,0)

)∗
= αBη

(2,1)
Bµ
(2,1)

φBµ
(3,0)

Bγ
(3,0)

with αBη
(2,1)

Bµ
(2,1)

independent of γ , so we only need to calculate one of these coefficients. In

fact, these coefficients already appear in Figure 6.9. Moreover, we see the cellular property
holds, because φBµ

(3,0)
Bγ
(3,0)

is associated to ▷ , so

φBµ
(2,1)

Bη
(2,1)
◦ φBη

(3,0)
Bγ
(3,0)
≡ 0 mod Š

for all µ.

Although we have reduced the amount of calculations needed to verify the cellular prop-
erty for elements associated to there are still a few that need to be done by hand using

Figure 6.8. We have gathered the results in Figure 6.10 to check the cellular property for
these cases.

Consider, for example, the non-zero actions of φ
B(1,2)

(2,1)
B(2,1)

(2,1)

:

φ
B(2,1)

(2,1)
B(1,2)

(2,1)

◦ φ
B(1,2)

(2,1)
B(2,1)

(2,1)

= φ
B(2,1)

(3,0)
B(2,1)

(3,0)

+ν−2φ
B(2,1)

(2,1)
B(2,1)

(2,1)

φ
B(1,2)

(2,1)
B(1,2)

(2,1)

◦ φ
B(1,2)

(2,1)
B(2,1)

(2,1)

= (ν−2 + 1)φ
B(1,2)

(3,0)
B(2,1)

(3,0)

+ν−2φ
B(1,2)

(2,1)
B(2,1)

(2,1)

The coefficients of φ•B(2,1)

(2,1)

agree and φ•B(2,1)

(3,0)

∈ Š , so their coefficients do not have to

agree. Hence, the cellular property holds for this action. Similarly, the cellular property hold
for actions of all semistandard basis elements associated to .

We have finally shown that the semistandard basis ofS (2, 3) is cellular and thus verified
Proposition 5.2.1 for n = 2 and d = 3.



φ
Bµ
(3,0)

B(3,0)

(3,0)

φ
Bµ
(3,0)

B(2,1)

(3,0)

φ
Bµ
(3,0)

B(1,2)

(3,0)

φ
Bµ
(3,0)

B(0,3)

(3,0)

φBµ
(3,0)

Bη
(3,0)

◦φ
B(3,0)

(3,0)
Bη
(3,0)

(ν−4 + ν−2

+1)φBµ
(3,0)

Bη
(3,0)

◦φ
B(2,1)

(3,0)
Bη
(3,0)

(ν−4 + ν−2

+1)φBµ
(3,0)

Bη
(3,0)

◦φ
B(1,2)

(3,0)
Bη
(3,0)

φBµ
(3,0)

Bη
(3,0)

◦φ
B(0,3)

(3,0)
Bη
(3,0)

φ
Bµ
(3,0)

B(2,1)

(3,0)

◦φ
B(2,1)

(2,1)
B(2,1)

(2,1)

(ν−2 + 1)φ
Bµ
(3,0)

B(1,2)

(3,0)

◦φ
B(2,1)

(2,1)
B(1,2)

(2,1)

(ν−2 + 1)φ
Bµ
(3,0)

B(2,1)

(3,0)

◦φ
B(1,2)

(2,1)
B(2,1)

(2,1)

(ν−2 + 1)2φ
Bµ
(3,0)

B(1,2)

(3,0)

◦φ
B(1,2)

(2,1)
B(1,2)

(2,1)

Figure 6.9: S (2, 3)-action on semistandard basis elements associated to .
Here µ,η are arbitrary elements in Λ+(2, 3). Empty entries illustrate that the action is
zero.



φ
B(2,1)

(2,1)
B(2,1)

(2,1)

φ
B(1,2)

(2,1)
B(2,1)

(2,1)

φ
B(2,1)

(2,1)
B(1,2)

(2,1)

φ
B(1,2)

(2,1)
B(1,2)

(2,1)

◦φBµ
(3,0)

Bη
(3,0)

φ
B(2,1)

(3,0)
Bγ
(3,0)

φ
B(1,2)

(3,0)
Bγ
(3,0)

◦φ
B(2,1)

(3,0)
Bγ
(3,0)

(ν−2 + 1)φ
B(2,1)

(3,0)
Bγ
(3,0)

(ν−2 + 1)2φ
B(1,2)

(3,0)
Bγ
(3,0)

◦φ
B(1,2)

(3,0)
Bγ
(3,0)

φ
B(2,1)

(2,1)
B(2,1)

(2,1)

φ
B(1,2)

(2,1)
B(2,1)

(2,1)

◦φ
B(2,1)

(2,1)
B(2,1)

(2,1)

φ
B(2,1)

(2,1)
B(1,2)

(2,1)

φ
B(1,2)

(2,1)
B(1,2)

(2,1)

◦φ
B(2,1)

(2,1)
B(1,2)

(2,1)

φ
B(2,1)

(3,0)
B(2,1)

(3,0)

 + ν−2φ
B(2,1)

(2,1)
B(2,1)

(2,1)

(ν−2 + 1)φ
B(1,2)

(3,0)
B(2,1)

(3,0)

+ν−2φ
B(1,2)

(2,1)
B(2,1)

(2,1)

◦φ
B(1,2)

(2,1)
B(2,1)

(2,1)

(ν−2 + 1)φ
B(2,1)

(3,0)
B(1,2)

(3,0)

+ν−2φ
B(2,1)

(2,1)
B(1,2)

(2,1)

(ν−2 + 1)2φ
B(1,2)

(3,0)
B(1,2)

(3,0)

+ν−2φ
B(1,2)

(2,1)
B(1,2)

(2,1)

◦φ
B(1,2)

(2,1)
B(1,2)

(2,1)

Figure 6.10: S (2, 3)-action on semistandard basis elements associated to .

Here γ ∈ {(2, 1), (1, 2)}, µ ∈ {(3, 0), (0, 3)} and η ∈ Λ(2, 3). Empty entries illustrate that
the action is zero.
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6.3.2 Right cell modules and their irreducible quotients

Let’s derive the irreducible representations of S (2, 3) from the calculations above. Recall
that there is a canonical element T λ = λ(tλ) ∈ T0(λ) for each λ ∈ Λ+(2, 3). With the
notation of this chapter these are B(3,0)

(3,0)
∈ T0( ) and B

(2,1)

(2,1)
∈ T0( ).

By (5.5) there are two Weyl modules for S (2, 3):

W = spanR

{
φ
B(3,0)

(3,0)
T
| T ∈ T0( )

}
⊂ S⧸

Š
� S

W = spanR

{
φ
B(2,1)

(2,1)
T
| T ∈ T0( )

}
⊂ S⧸

Š

We abbreviate these generators by φT , where the shape ofT indicates which Weyl modules
it is a generator of. The right S (2, 3)-actions can be easily inferred from Figure 6.9 and
Figure 6.10.

Next we use the canonical semistandard tableaux to calculate the bilinear form on both
Weyl modules:

⟨φS ,φT ⟩φB(3,0)

(3,0)
B(3,0)

(3,0)

= φ
B(3,0)

(3,0)
S
◦ φ

T B(3,0)

(3,0)

mod Š for all S,T ∈ T0( )

⟨φS ,φT ⟩φB(2,1)

(2,1)
B(2,1)

(2,1)

≡ φ
B(2,1)

(2,1)
S
  ◦ φ

T B(2,1)

(2,1)

mod Š for all S,T ∈ T0( )

By Figures 6.9 and 6.10 the non-zero pairings are:

⟨φ
B(3,0)

(3,0)

,φ
B(3,0)

(3,0)

⟩ = 1

⟨φ
B(2,1)

(3,0)

,φ
B(2,1)

(3,0)

⟩ = ν−4 + ν−2 + 1 ⟨φ
B(2,1)

(2,1)

,φ
B(2,1)

(2,1)

⟩ = 1

⟨φ
B(1,2)

(3,0)

,φ
B(1,2)

(3,0)

⟩ = ν−4 + ν−2 + 1 ⟨φ
B(1,2)

(2,1)

,φ
B(1,2)

(2,1)

⟩ = ν−2

⟨φ
B(0,3)

(3,0)

,φ
B(0,3)

(3,0)

⟩ = 1

We are now ready to find all irreducible representations of S (2, 3). By Proposition 5.2.4
all Lλ =W λ/radW λ , λ ∈ Λ+(2, 3) are non-zero and thus irreducible.

Proposition 6.3.1. The irreducible representations of S (2, 3) are{
L ,L

}
with

L =


W

⧸
spanR

{
φ
B(2,1)

(3,0)

,φ
B(1,2)

(3,0)

}
, if ν−4 + ν−2 + 1 = 0

W , otherwise

L =W .
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Proof. We proceed like in the proof of Proposition 6.1.1.

: Assume x ∈ radW and express x in the basis ofW , say ax ,bx , cx ,dx ∈ R
and

x = axφB(3,0)

(3,0)

+ bxφB(2,1)

(3,0)

+ cxφB(1,2)

(3,0)

+ dxφB(0,3)

(3,0)

.

Then ⟨x ,y⟩ = 0 for all y ∈ W , so if we also express y in this way and use the
calculations from above we get

y = ayφB(3,0)

(3,0)

+ byφB(2,1)

(3,0)

+ cyφB(1,2)

(3,0)

+ dyφB(0,3)

(3,0)

.

and
axay + (ν−4 + ν−2 + 1)bxby + (ν−4 + ν−2 + 1)cxcy + dxdy = 0

for all ay ,by , cy ,dy ∈ R.
Testing with ay = 1,by = 0, cy = 0,dy = 0 we see ax = 0 and by similar arguments
also dx = 0. If (ν−4 + ν−2 + 1) , 0 the same applies for bx and cx and therefore
radW = {0 }. Otherwise ⟨x ,y⟩ = 0 for any by and cy , so

radW = spanR

{
φ
B(2,1)

(3,0)

,φ
B(1,2)

(3,0)

 
}
.

: Assume x ∈ radW , so ⟨x ,y⟩ = 0 for all y ∈ W . Express x and y again in the

basis ofW :

x = exφB(2,1)

(2,1)

+ fxφB(1,2)

(2,1)

and y = eyφB(2,1)

(2,1)

+ fyφB(1,2)

(2,1)

By the calculations above we get:

exey + ν−2 fx fy = 0

for all ey , fy ∈ R.

Because ν , 0 we can use similar argument as for and get radW = {0}.

□
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Before ending this section about explicit computations for S (2, 3) we use our results
to calculate the decomposition matrix of S (2, 3). Decomposition matrices were introduced
in Definition 2.3.16. If ν−4 + ν−2 + 1 , 0, both Weyl modules are irreducible by Proposi-
tion 6.3.1. Otherwise radW ⊂W is a proper submodule and there exists aR-linear
isomorphism

radW
∼−→ L

φ
B(2,1)

(3,0)

7→ φ
B(2,1)

(2,1)

φ
B(1,2)

(3,0)

7→ 1
1+ν−2φB(1,2)

(2,1)

,

which is also S (2, 3)-linear. Hence, the decomposition matrix of S (2, 3) is:

ν−4 + ν−2 + 1 , 0 ⇒ D =
( )

1 0
0 1

ν−4 + ν−2 + 1 = 0 ⇒ D =
( )

1 1
0 1

Moreover, by Proposition 2.3.19 the Cartan matrix of S (2, 3) is C = DtD, so:

ν−4 + ν−2 + 1 , 0 ⇒ C =
( )

1 0
0 1

ν−4 + ν−2 + 1 = 0 ⇒ C =
( )

1 1
1 2
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