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1 Introduction

The main objects studied in the thesis is the quiver Hecke algebra and an important generalisation,
the quiver Schur algebra.

The quiver Hecke algebra was introduced by Khovanov-Lauda [KL09] and Rouquier [Rou0§]
independently, so it is also called KLR algebra.

Khovanov and Lauda applied a combinatorial approach. Suppose that I' is a fixed graph with
no loops and multiple edges, and let I be the set of vertices. Then for d € N[I] := @ Ni of non-

iel
negative integers associated to each vertex, they define an algebra R4 generated by brafid—like plane
diagrams which consist of interacting strings labelled by vertices of the graph. As vector space, the
resulting algebra is given by finite linear combinations of these diagrams modulo certain relations
which can also be described by linear combinations of diagrams, and the multiplication is given by
concatenation.

On the other side, Rouquier treated it in a categorical way. In [Rou08], Rq is defined by
listing generators and relations explicitly, and it can also be viewed as a category, whose objects
are decomposition of d consisting of unit vectors, and the generators of the algebra, with the same
relations, generate the space of the morphisms between two objects.

Suppose that g is a simply-laced Kac-Moody Lie algebra with Dynkin diagram I', then it admits
a decomposition g = nT@hPn~. One of the most important property of KLR algebra is that it cate-
gorifies Lusztig’s integral form 4f of U,(n™). Let Ky(Ra) (resp.Go(Ra)) be the Grothendieck group
of the category of finitely generated graded left projective Rq-modules (resp. finite dimensional
graded left Rg-modules), and we consider

Ky(R) = P Ko(Ra), Go(R)= @D Go(Ra).
]

deN[/ deN[I]
Then there exists an isomorphism of N[/]-graded twisted bialgebras
i Af — KO(R>a 7* : Af* - GO(R)a

where 4f* is the graded dual of 4f.

This result is refined by Varagnolo and Vasserot [VV11]. They proved that « sends Lusztig’s
canonical basis of 4f to the classes of indecomposable projective modules in Ky(R), and +* sends
the Lusztig’s dual canonical basis of 4f* to the classes of simple modules in Go(R). In their paper,
this algebra is constructed by geometry. The method they used is of great importance in geometric
representation theory. More precisely, they used the Steinberg-type varieties and Borel-Moore
homology groups to produce convolution algebras.

Steinberg-type variety

The classical Steinberg variety was introduced in the study of representations theory of semisimple
Lie algebras over C and the corresponding Weyl groups by Springer. Let G be a semisimple complex
algebraic group and let g be its Lie algebra. Let A be the nilpotent cone in g and let B be the flag
variety corresponding to G. We define N = {(z, b) € N x Bz € b}, then the Springer resolution is
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the proper map p: N — N, and N ~ T*B as G-equivariant vector bundles. The Steinberg variety
is defined as ) 3
Z =N xy N ={(z,b,b") e N x Bx Blzrebnb'},

whose Borel-Moore homology group is equipped with a convolution product. If x € N, we define
B, as the fiber of y at x, which is called the Springer fiber, then the convolution determines an
HPM(Z)-module structure on the Borel-Moore homology group of B,. It turns out that HZ(Z)
is isomorphic to the group algebra of the Weyl group of GG, and the Borel-Moore homology groups
of these Springer fibers provide all the irreducible representations of the Weyl group.

The geometric construction in [VV11] can be viewed as a generalization of this construction.
For simplicity, we just assume that G = SL,(C). We consider a quiver with only one vertex and
an arrow pointing the vertex to itself, which is called the Jordan quiver because its indecomposable
representations are classified by Jordan normal forms up to isomorphism. A nilpotent element
x € N can now be viewed as a nilpotent representation of the quiver of dimension n. If a Borel
subalgebra b contains x, then the flag corresponding to b in C" will be compatible with x. Here a
flag F' such that

F=0=F'CcF'c---cF"=C", dimF'—dimF"' =1, V1<i<n

is said to be compatible with x, if it satisfies z(F;) C F;_; for all .

For a more general quiver I', we replace N by the space Repy of nilpotent representations with
dimension vector d = (d;);ey, where V is the set of vertices of I'. We also replace N by the space
Q of pairs (f, F') satisfying some compatible conditions, where f is a representation of the quiver
and F' = (F})jev where each Fj is a flag in C%. Roughly speaking, we can again take the fiber
product Q Xgep, @, and this is our new Steinberg-type variety. Varagnolo and Vasserot consider an
equivariant Ext-algebra on this variety, which is the same as the equivariant Borel-Moore homology
group, and the resulting algebra is exactly the KLR algebra.

In order to answer the question if there is a natural graded version of the cyclotomic ¢-Schur
algebra introduced in [DJM98|, the quiver Schur algebra was introduced by Stroppel and Webster
in [SWI1I]. They defined this algebra geometrically and via a faithful polynomial representation
on equivariant (co)homology of flag varieties. The generators were interpreted diagrammatically,
generalizing the KLR diagram mentioned above. A complete presentation of the algebra is however
not known, and this is the motivation behind this thesis.

Hecke-Schur pattern

The study of Hecke-type algebras and their Schur version has a long history.

While studying the relationship between representations of GL,(C) and symmetric group S, the
classical Schur algebra was defined as the S,-endomorphism algebra of the direct sum of permutation
modules of 5,,. The famous Schur-Weyl duality states that: two algebras of operators on the tensor
space generated by the actions of GL, and S,, are the full mutual centralizers in the algebra of the
endomorphisms End¢((C™)®") and the Schur algebra can be defined as Endg, ((C™")®") (see [GSE07]
). A Morita equivalent version of the Schur algebra is defined as the S,-equivariant endomorphism
algebra of the direct sum of permutation modules of S,,. This definition provide the idea to generalize
the Schur-type algebra.

Various generalizations of this pattern play importance roles in representation theory.
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1. Let ¢ be a power of a prime p. The Hecke algebra H,(q) of finite type is a g-deformation of
the group algebra of S, which is isomorphic to the space of functions on GL,(F,) which are
bi-invariant under the action of a Borel subgroup equipped with the convolution as an algebra
(see [Str22b]). In this case the Hecke modules play the role of permutation modules, and
Dipper and James[DJ89] define the g-Schur algebra as the H,(q)-equivariant endomorphism
algebra of the direct sum of Hecke modules.

2. Let p be a prime and E is a finite extension of QQ,. Suppose that ¢ is the cardinality of
the residue field of £. The Iwahori-Matsumoto Hecke algebra H,(q) is isomorphic to the
space of functions on GL, (F) which are bi-invariant under the action of an Iwahori subgroup
equipped with the convolution as an algebra. As a vector space, H,(¢) is isomorphic to
the tensor product of H,(q) and the polynomial algebra with n variables. Then the Hecke
modules of H,, together with the polynomial algebra can generate the affine version of Hecke
modules for H,(q). Vignéras [Vig03|] defined the affine Schur algebra as the H,,(¢)-equivariant
endomorphism algebra of the direct sum of (affine) Hecke modules.

Compared with the Hecke-Schur pattern, the relationship between KLR algebra and the quiver
Schur algebra has following similarities:

1. There are certain finite dimensional quotients of both algebras called the cyclotomic quotients,
such that the cyclotomic quiver Schur algebra is the space of the endomorphisms over the
cyclotomic KLR algebra of the direct sum of the analogues of permutation modules.

2. If we view S,, as a Coxeter group, then the permutation modules correspond to Young sub-
groups of S, and Hecke modules correspond to parabolic Hecke subalgebras. The Hecke
algebra itself, as a Hecke module, corresponds to the minimal parabolic Hecke subalgebra,
and we may say it corresponds to the Borel type, and other Hecke modules correspond to
other parabolic type. Now the geometric construction of the KLR algebra involves complete
flags corresponding to Borel subalgebras, while the quiver Schur algebra uses all partial flags
corresponding to parabolic subalgebras.

3. The affine Hecke algebras and the KLR algebras are isomorphic after taking certain comple-
tions. It is shown in [MS19] that we have compatible isomorphisms between the completions
of affine Schur algebras and quiver Schur algebra.

Outline

The thesis has two main objectives. The first is to give the definition of two Hecke-type algebras
and their Schur versions, and explain the Hecke-Schur pattern and the relationship between these
two families of algebras. The second goal is to study the quiver Schur algebra in the particular case
when the dimension vector is concentrated on one vertex, and present a new basis of the quiver
Schur algebra in this case. We will also study other nice properties in this case related with the
theory of the highest weight categories.

In Section 2| we give the definition of the affine Hecke algebra and the KLR algebra as well as
their Schur versions. Various Hecke algebras and the Schur analogues are described to show the
Hecke-Schur pattern, and the quiver Schur algebra is defined geometrically. We give an explicit
algebraic description in case that the dimension vector is concentrated on one vertex.



In Section [3 we firstly introduce the completion of affine Hecke algebras and KLR algebras, and
then we present the isomorphism between completions of affine Hecke algebras and KLR algebras.
We will also give the statement for the isomorphism theorem for Schur algebras.

In Section 4| we present the main result, which is a new basis for the quiver Schur algebra in the
simplest case. We give the proof, and describe why the similar construction in general cases fails
to form a basis of the quiver Schur algebra.

In Section [5| we introduce the settings and results related to highest weight categories from
[BS1§|, and show that the quiver Schur algebra in the special case fits into these settings by using
the new basis given in Section [4]
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2 Hecke type algebras and Schur analogues

In this section, we will introduce two Hecke-type algebras, as well as the Schur analogue of them.
Both of them are of their own importance in representation theory, and their relationship will be
discussed in Section Bl

We firstly introduce the classical Schur algebra, which is the most fundamental template of the
construction of Hecke-type algebras and Schur analogues.

After that, we will define the affine version and the quiver version of this construction, and these
generalized versions of Hecke algebras and Schur algebras will be the main object to study.

2.1 Schur algebra

The symmetric group is one of the most fundamental object in representation theory. The classical
Schur algebra is introduced in order to study the representation of symmetric groups.

Let n be a positive integer. We denote by X = ¥, the symmetric group of order n!, with the
usual Coxeter group presentation. Let I,, be the set of all compositions of n. For any composition A
of n, let X, be the parabolic subgroup associated to A\, and o, be the longest element in X,. Also,
we let *X be the set of shortest representative elements of 3\ X, which exists by [Bou07].

Also, let T = {1,2,...,n — 1}, then I, is bijectively corresponding to the set of subsets of I,
given by A — J if X, is exactly the subgroup of ¥ generated by s; for all 7 € J. So we also have the
notion ¥y = ¥y and 'Y = *¥. For example, the partition (1,1,...,1) corresponds to the empty
set, while (n) corresponds to I. Moreover, if K, J, I are subsets of T such that K C .J, . C .J, then
we let KX% be the set of the shortest representative elements of Yy \Yy/3r,.

Suppose that V' is a vector space of m dimension over k for some m > n, where k is an
algebraically closed field of characteristic 0, and we have a right Y-action on the right on V®" by

/U1®...®’Un-0’:7)0_(1)®"'®U0—(n)7v0-EE.

Then we can define the Schur algebra S(m,n) = Endg(V®").

The Schur-Weyl duality states that this algebra S(m,n) is exactly the subalgebra generated by
the diagonal action of natural representation of GL,,(k) on V in the endomorphism ring of V®"
and we have the following mutually centralizing property:

S(m,n) = Endg(V*®"), kX = Endgr,, (V") = Endg(m,, (VE").

According to [Henl6], there is an alternative definition of Schur algebra, which is Morita equiv-
alent to S(m,n), defined as

S = Ends(EP k @i, kE) = Ends(EP Ind3, ki)

Ael, Ael,

This construction uses the so called permutation modules k ®ys;, k>, which is can be generalized
to a quantized version.
The quantized version of the group algebra k3 is the Hecke algebra H,, of finite type, with a

basis {T,|oc € ¥}. For any J C I we can define zy = »_ T, and then we have a quantized analogue
ocEY]



of the permutation module, which is called the Hecke module Hy := x3H,, (see [Str22b]). Also, we
can also define the Hecke module H) for any composition of n.
In [DJ89], the g-Schur algebra is defined as

Sem = Endy, ( D Hy).
AEP(n)

When ¢ is specialized to 1, this algebra is Morita equivalent to the classical Schur algebra.

So for both the classical version and the quantized version, with a Hecke type algebra, we can
define the corresponding Hecke modules, and the Schur analogue of this algebra is the endomophism
algebra over this Hecke-type algebra of the direct sum of Hecke modules.

2.2 Affine Hecke algebras and affine Schur algebras

The first idea is to generalize the symmetric groups to extended affine Weyl groups of type A, and
we may denote it by X', With this group, the resulting Hecke type algebra is called the affine
Hecke algebra, which is thoroughly studied in [Lus89].

A presentation of ¥¢' is given by the semi-direct product ¥ x X where X is the free abelian
group of rank n with generators Xy, ..., X, and for any simple reflection s; € ¥ for 1 <i<n—1,
we have s, X;s; = X;41 and s;X;s; = X, if j & {i,i + 1}.

The following definition, known as Bernstein’s presentation [Lus83|, gives a quantized version
of the group algebra of ¢,

Definition 2.2.1 (Affine Hecke algebra). Let k be a algebraically closed field of characteristic 0, and
e € ZsoU{oo}. The affine Hecke algebra is the unital k-algebra H = H,, generated by T, ..., T, 4
and X, ... X* subject to the defining relations:

For1<i,5,k <n—1 such that |i — j| > 1,

(H-1) (T; — ¢)(Ti + 1) = 0,

(H-2) T.T; = T;T,

(H-3) TTinT; = T TiTi 14,

(H-4) X;X;'=1=X;"X,,

(H-5) X; X = X3 X,

(H-6) T;X; = X;T;,

(H-7) T X{T; = q X1,

where q € K is an e-th order primitive root of unity.

Remark 2.2.2. Here q is a root of unity. In fact, if we let q be the cardinality of the residue field of a
finite extension E of Q, for some prime p, with the same relations, we obtain the Iwahori-Matsumoto
Hecke algebra, which is the convolution algebra of functions on GL, (F) which are bi-invariant under
the action of Twahori subgroup with values in k.



Remark 2.2.3. By construction, the Hecke algebra of finite type H,, is a subalgebra of H, and the
Laurent polynomial ring K[ X7, ..., X, which is the group algebra of X, is another subalgebra.
And H is just the quotient of the algebra generated by H, and k[Xi", ..., X*1] by relations|(2.2. 1. H-

@ and . If we specialize q to 1, then it becomes the group algebra of X,

For any element o € ¥ with a reduced expression o = s;,s;, - - - 5;,, we write T, = T;,T;, - - - T},.
Via|(2.2.1.H-3)| this definition is independent of the choice of the reduced expression. Here we have
by [Lus89, Proposition 3.7] two sets of basis of the algebra, which are both obviously bijectively
corresponding to the set ¥ x X, which is exactly the same as X as a set, just like in the finite
type case.

Proposition 2.2.4. The following two sets are both k-basis of H.:
{X{+ - XonTolo € ¥, a; € 2}, {T, X" - X;"|o € &, a; € Z} (1)

There are two natural faithful representations of . In fact, they can be viewed as the repre-
sentation induced from the trivial and sign representation of H,.

Proposition 2.2.5 (Trivial faithful representation, [MS19]). Let U = > H(T; — q), then there
exists a faithful representation of H on

WU ~k[XEL, .. X "N kXE L X,

space

where the action of generators XijEl 15 left multiplication, and the action of T; is given by

qX; — Xit1
m(f — si(f))vr. (2)

where s;(f) is the Laurent polynomial f with variables X;, X;y1 interchanged.

(Ti —q) - fu =

Similarly, we have a signed version of the faithful representation:

Proposition 2.2.6 (Signed faithful representation, [MS19]). Let U = Y. H(T; + 1), then there
exists a faithful representation of H on

vector

H/U ~ k[ X7 XA o~ k(X XY,

space

where the action of generators XijEl 15 left multiplication, and the action of T; is given by

qu—i—l — Xz _

—(f — sy : 3
L — s Q

It is not difficult to check the relations of H, and for faithfulness see [Roul2].

We have the following quantized version of the group algebra of the Young subgroup (parabolic
subgroup) in H (In fact, it is even in H,,). Let T = {1,2,...,n — 1}, and J be a subset of I, then
we define #H; as the Hecke subalgebra generated by {7}|j € J} as k-algebra. By Proposition m,
‘H is a free module over Hj, with the following k-basis

{T, X" X0 €73 a; € 7},

(Ti +1) - for =

where 7Y is the set of shortest representative elements in ¥3\X. And now we can define the
affine version of Hecke modules, which is the quantized and affine version of permutation modules
described in the previous subsection.



Definition 2.2.7 (Hecke module). For any J C I, we set
v= Y T,v5= Y (—9)"T,
UEEJ} O'GZJ]

then the trivial (resp. signed) Hecke modules associated to J is the right principal ideal vyH (resp.
vgH ), equipped with the natural right-action of H.

Lemma 2.2.8. The ideal vyH coincides with

{veH|(T; — qv=0,Vie J},
and the ideal V3 H coincides with

{veH|(T; + 1)v =0,Vi € T}.

We can deduce from this lemma immediately that K C J C I implies vxH C vy H.
Now we can just follow the method of last subsection to define the Schur analogue of the affine
Hecke algebra. This is firstly introduced in [Vig03] to study the representation of p-adic groups.

Definition 2.2.9 (Affine Schur algebra,[Vig03]). Given an affine Hecke algebra H, we define the
corresponding affine Schur algebra S to be

Endy (€D vsH) = Homy (D vst, @ vsH), (4)
JcI JCI J/CI

where the multiplication is the composition of the maps.

Here we consider four types of maps, which appear in the basis of S given in [Vig03] whose
action are easy to write down explicitly. For K C J C I, we consider the following H-equivariant
maps

sy WgH — vkH, vyh— vk( Z T,)h,
ocKyg
myk VkH — vgH, vkh— vgh, (5)
P13 Vg H — vgH,  vgh = vpph,
Co1,7 VIH — VogH, vzh = vo31,-1h,
for h € H and p € k[X7',..., XF|®7. The following proposition gives another basis consisting of
the product of these four types maps, so these four types maps generate the whole S over k.

Proposition 2.2.10 ([MS19]). Let Ky, Ky be two subsets of I, and for any subset J of 1, let By
be a set of basis vector of k[ X, ... X >5, then the set

B, kK, = {MK, L csLL - PLL - SLK, | L =K N o 'Ky, p € By}, (6)

is a basis of Homy (v, H, v, H), and

B = U %]KL]Kl (7>

(K1,Ko2)

is a basis of S.
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And we have the following faithful representation of S, which is an enlarged version of the
faithful representation of H.

Proposition 2.2.11 (Faithful representation, [MS19]). The affine Schur algebra S has a faithful
representation on

Vs = @k[Xlil’ S 7)(71i1]2J U1 ye&tcr@k[Xlil> T inl]EJ>
Jct

space n
JCI

where the action is given by

sk KX XE e = K[XT L X PR, fop e for,
myx  KXT . XE PR = k[XGEL L X R, fop e Z T, for,
oexk (8)
pro  KIXT X e = k(XL X e, for = pfn
Corg  KIXTY o X0 — K[XT L X, fur — Ty fur,

forKcJcClandpek[ X, ..., X",

It is not obvious that this representation is well-defined and faithful, and the proof can be found
in [MS19].

Remark 2.2.12. Just like the case of affine Hecke algebras, there are two wversions of faithful
representations, the trivial one and the signed one, and here we just present the trivial one.

2.3 Quiver Hecke algebras and quiver Schur algebras

The second generalized version is the quiver Hecke algebra and the quiver Schur algebra. We will
present the geometric definition of these two algebras, as well as the faithful representation of the
quiver Schur algebra introduced in [SW11].

Let T' be the Dynkin diagram of 5A[6, which is the cyclic quiver with e vertices with the fixed
clockwise orientation when e is finite, and is an infinite sequence without starting and ending points
equipped with a fixed orientation. Let V = Z/eZ if e is finite, and V = Z if e is infinity.

We firstly recall the basic notion of representations of the quiver.

A finite dimensional representation (V, f) of I' over C is

e V: a collection of space V; over C for each i € V such that > . dimV; < oo,
e f: a collection of linear maps f; : V; — Vii1.

A dimension vector d of the representation is an e-tuple (dy,...,d.) where d; = dimV;. A
subrepresentation of (V) f) is a representation (W, g) such that W; C V;, and g; = filw, : Wi = Wiy,
for all i € V.

When e is finite, then a representation (V, f) is said to be nilpotent if the map f.--- fofi : Vi —
V7 is nilpotent. If e = oo, then every representation is nilpotent.

11



2.3.1 Vector decomposition

To define the Schur algebra used above the composition of n. We generalize this now to vector
decompositions in the context of quivers with more than one vertex.

Definition 2.3.1 (Vector decomposition). A wvector decomposition fi of length r (of the dimension
vector d) is an r x e matriz (fi;;) with non-negative integer entries such that the summation of
the entries in j-th column is d; and every row vector is non-zero. We denote the set of vector
decompositions of d € ZY, by Iq4.

Let the i-th row (resp.j-th column) of ju be i) (resp.fi¢;)).

Suppose that i is a vector decomposition of d of length [, and /i’ is the vector decomposition
obtained by summing up the k-th and k 4 1-th row vectors for some 1 < k£ <[ — 1. In other words,
the row vectors of (r — 1) x e matrix (j};) satisfies

i i <k,
@ = a® 4 k) G = ke
ot i >k,

then we say that i’ is a (simple) merge of i at k, and i is said to be a (simple) split of 4’ at ji. In
general, we also call {1 a merge of \ if we have a finite sequence of simple merges from \ to ft. And
we also say that \is a split of ji. Here the terms merge and split are just combinatorial relations
between vector decompositions. Later we will define operators associated to these decompositions,
and we will abuse the notation to call these operators again merges and splits.

Now we introduce some geometric object to define quiver Schur algebras.

1. The affine space of representations of the quiver of dimension vector d is defined as
Repyq = @ Home(C%, C%+1).
iev
2. The second object is a generalization of the partial flags and flag varieties.

Definition 2.3.2 (Quiver flag). Let ji be a vector decomposition of d. A (partial) flag F' of
type fi is a collection of flags Fy of type [i(;), that is, a sequence of vector spaces:

_ 170 1 2 r_ rd; q; T i—1 _ o~ .
O0=F; CF; CF;C---CF; =CY dimF;, —dimF;"" = [1;;,V] € V.

Such a composition is called of complete type if each (i) is a unit vector with only one non-zero
entry, and the flags of this type are called complete flags.

For a fixed vector decomposition fi, let F (/i) be the set of flags of type fi, which naturally has
the structure of a variety. In case that there is only one vertex associated with a non-trivial
vector space, this variety is exactly the classical partial flag variety.

In general, this variety is the product of the classical partial flag varieties of type fi(;) for each
vertex j, and it is smooth and projective. As the name suggests, when [ has complete type,
then F (/) is the product of all full flag varieties of GLg,(C) for each j € V.

12



3. If F is a flag of type i, then a representation f is compatible with this flag if f](FJZ) - F;ﬁ
for any 1, 7. For fixed i, we denote by

Qi) = {((V, f), F) € Repq x F(@)|f;(F}) C Fji1, Vi, j}

the set of representations with compatible flags of type ji. Note that if a representation is
compatible with a flag of certain type, then it is automatically a nilpotent representation.
There is also a natural structure of a variety on this set.

Moreover, for ji, A € I, we can consider the fiber product Z(ji, \) := Q(ji) X Repy Q()), which
is a Steinberg-type variety.

Let G = G4 = GLg, X - - - X GLg, be the automorphism group of V' = (V}),ev, then it can act on
all of these varieties mentioned above. More explicitly, let g = (g;);ev € G, then for (V| f) € Repy,
g will send it to (V,g(f)) € Repq determined by ¢(f); = gj41 0 fj 0 gj_l. In particular, nilpotent
representations remain nilpotent under the action of G.

For a flag F', the flag g(F') consists of a sequence of spaces g(F)} such that g(F): = g;(F}). If f
is compatible with the flag F', then

9(N)i(g(F)) = gjsr 0 fi 097 (g;(F)) = gjza 0 fi(F)) C gja(Fii1) = g(F)'i,

so g(f) is compatible with g(F'). Also, as g is an automorphism, it will not change the type of
flags. This determines the action of G on F(j1), Q(i1) and Z(ji, A). Notice that the first projection
Q(i1) — Repq is a proper G-equivariant map, while the second projection Q(i) — F(i1) is a

G-equivariant affine bundle over F(f1).

2.3.2 Equivariant Borel-Moore homology

Here we give the definition of the equivariant Borel-Moore homology, which will be used in the
geometric construction.

Suppose that X is a locally compact topological space which has the homotopy type of a finite
CW-complex and admits a closed embedding into a smooth manifold. Let X = X U {oo} be the
one-point compactification of X, and then the Borel-Moore homology of X is defined as H?M (X)) :=
H;(X,00), where H;(—,—) means the relative singular homology over C. For more detail about
Borel-Moore homology, we refer to [CG09).

Now suppose that H is a Lie group and let { E"H — B™H } be an approximation of the universal
bundle EH — BH. Let X be a topological space satisfying the conditions in the last paragraph, and
further assume that X is also a complex algebraic variety of pure dimension x/2. Let r,, = dimg E"H
and h = dimg H. Then the H-equivariant homology of X is defined as

HPM(X) o= lim HEY ) (B"H <™ X).
An important property of Borel-Moore homology is the convolution structure. Suppose that

X1, X5 and X3 are three spaces and Yo C X7 x Xo,Ys3 C Xy X X3 are closed subspaces, with
suitable topological assumptions (see [CG09, 2.7.8]). We define

Yis = Yio 0 Yos := {(y1,y3) € X1 X X3|3y2 € X, such that (y1,v2) € Yia, (¥2,93) € Yos},
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then we have a convolution

HPM(Yi2) x HPM (Yas) — HEM g 5, (Yis).

If we put X = X; = Xy = X3 with a proper map X — Z, and Y = Y5 = Yo3 = X X7 X, then we
have Yi3 =Y, and then the convolution map

HEM(Y) < HPM(Y) = Hi5 gy x (Y),

determines an algebra structure on HZM(Y). With a shift of degree dimg X, this convolution
becomes a graded map. With more suitable assumptions on the group action on each spaces, the
convolution map can be lifted to equivariant Borel-Moore homologies. More detail about equivariant
Borel-Moore homology and convolution algebras can be found in [Bri00, [CG09].

In our case, X is the space of the union of Q(f1) for all vector decompositions, and Z is Repy.
In this case the projection map X — Z is proper. Then we actually have the following associative
convolution product

HEME(2(p, V) @ HPMO(Z(A, p) — HIMO(Z (i, ), Vi A, o € T,
as Z(ji,A) o Z(\, 1) C Z(f1, ).
With this product, we have the following algebras:
Ra= @ HIMC(2(3,0)),
fLAETG
which is called the quiver Hecke algebra, and
Aa= @ HIMC(Z(@, M),
fi,AEIq

which is called the quiver Schur algebra.

2.3.3 Faithful representation and geometric basis

Both algebras have natural representations coming from the theory of general convolution algebras
by [CGQ9]. Here we describe it for Ag4.
Consider the following direct sum of equivariant Borel-Moore homology groups

Va = HIMC(Q(p),

pelq
and Aq acts on Vg via the convolution product
HEMG (1, 3) @ HPM Q) — HEPMC(Q()).

The following result emphasizes the importance of this representation, which enable us to write
down this algebra explicitly.

Proposition 2.3.3 ([SW11]). The space Vg is faithful as an Agq-module.
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Remark 2.3.4. Here we only consider quiver Schur algebras over C, but actually the statement
remains valid for prime characteristic. The proof of both cases can be found in [SW11).

In the remaining part of this subsection, we present an explicit basis over C of Aq introduced
in [SWT1I]. Firstly we will construct several special types of elements in Ajq.

El

E2

E3

E4

If i € Iq, then we have a closed immersion Q(f) into Z(f, i) by ((V, f), F) — ((V, f), F, F),
which induces the proper push-forward

HPMG(Q(p)) — HPMY(Z(f, ),

so every class h € HPMS(Q(fi)) can be identified with an element in Aq. We call such an
operator a polynomial and denote it by h;. In particular, if & is the unit of of the Borel-Moore
homology group, then we call this operator the idempotent e;.

If i is a simple merge of ji/, then there is a natural forgetful map 7 from F(i') to F (). We
let

Q. i) ={((V. /), F. F') € Z(j, /), F = n(F)},

and its class [Q(f1, i')] € HPMCG(Z(fi, ') is an element in Aq. As it is determined by the
merge of vector decompositions, we also call this operator a merge and denote it by m ;.

More generally, if i is a merge of fi’, then there is a sequence of simple merges from /i’ to f,
and then my, ;s is defined as the composition of these simple merge operators.

An immediate question is: does the resulting operator depend on the choice of the sequence?
The answer is no, which can be shown via geometry (see [Prz19, Lemma 2.9]). However, we
will present this property in a special case later.

With the same setting as [2.3.3.E2, but with i, i/ swapped, we let

Qi i) ={((V, /), F', F) € Z(i', ), F = n(F")}.

Then its class [Q(f/, i)] € HPMY(Z(i/, 1)) is also an element in Aq. In this case, i is a split
of f1, so we also call this operator a split, and denote it by s/ ;.

The split generators for general splits are defined in a similar way as the merge operators,
and the resulting operators are again independent of the choice of the sequence by the same
reason.

Suppose that i and ) are two vector decompositions with length r, and the matrix expressions
(f1;;) and (A;;) only differs from a row action. Suppose that u € S, has a reduced expression

u = s;, - -+ s; such that the permutation u can send (f;;) to (\;;) (Notice that there can be
more than one permutation which satisfies the requirement.), then we set

and we define fig, = u® (1) for 0 < k < 1. So i = fip and A = fig, and all of these figy are
vector decompositions of length [. Moreover, we define fig, 1 as the merge of fio at position
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i for 0 < k <1 —1, and all of them are vector decompositions of length [ — 1. For any k,
flok11 is a merge of [ig, and fiop is a split of figx_1. Then we define

[u] _
Ao Sponfior—1 " Mgy 1,fi21—2

¢ Spz,fin M fro s

where the multiplication is convolution. We obtain an element of HBMG(Z (X, 1)), which we
denote by [u] because this element depends on the reduced expression. Such an operator is
called a crossing.

We introduce the following notation, which is almost the same as what we do when we define
affine Hecke algebras and affine Schur algebras. Let W be the symmetric group Sy, with the usual
Coxeter group presentation. Let I; be the set of all compositions of d. For any composition A of d,
let Wy be the parabolic subgroup associated to A, and w) be the longest element in W). Also, we
let *W be the set of shortest representative elements of W\W.

Also, let T = {1,2,...,d — 1}, then I, is bijectively corresponding to the set of subsets of I,
given by A — J if W), is exactly the subgroup of W generated by s; for all : € J. So we also have
the notion W; = Wy and W = *W. For example, the partition (1,1,...,1) corresponds to the
empty set, while (d) corresponds to I. Moreover, if K, .J, L are subsets of I such that K C J,L C J,
then we let T be the set of the shortest representative elements of Wi \W;/W7p.

For any fi, A € I4 of length 7, and any w € I1 AU)Wé{j”, by [DJ86] there exist unique [/, N eIy

jEV
of the same length (denoted by r) such that

Wi, = Wi NwWw™ Wy = W, nw™ ' Wiw.

Moreover, the matrices representing N, [/ are the same up to the permutation on row vectors
determined by w, and we denote this permutation by u € S, such that u(i') = N. Then the

operator CQ)‘\},AM, can be defined after fixing a reduced expression of w.

Now for any h € HPMG(Q(X)), we can define

8 b s € HEM9(Z(A, ). (9)

b;\”#(h) =msy o K

Finally, we can give the main theorem of this section. The operators defined as in @D actually
form a C-basis of the quiver Schur algebra Ajq.

Theorem 2.3.5 (Geometric basis, [SW11]). Let range
° ﬂ,S\ over Iq X Ig

Ny 117G
o w over [[ *@W3Y, and
jev !

o h over a C-basis of HPMC(Q(ii')) where Wy = W Nw™ ' Wiw.

Then all these b;\wﬂ(h) defined in @ form a C-basis of Aq. This basis is called the geometric basis
Of Ad. 7
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The proof of this theorem in [SW11] uses geometric method.

An immediate result of Theorem is that merges, splits and polynomials generate the whole
Aq as a C-algebra, because the crossings can be written as the product of merges and splits.

Also, if we only let /i, A range over /3, then we obtain the geometric basis of the quiver Hecke alge-

bra. In this case, w will range over the whole [] Wq,, and h ranges over a C-basis of H?M:¢(Q(f)).
jeV

Also, the element by’ (h) is exactly ¢ - hy in this case. And this implies that the quiver Hecke

algebra Hgq is generated by crossings and polynomial operators as a C-algebra.

Remark 2.3.6. As we mention before, different choices of the reduced expression while defining
the operator clv L can result in different geometric basis which differ by a linear combination of maps

corresponding to shorter double cosets. More detail can be found in [SWTI].

2.4 Algebraic description of quiver Schur algebra with one vertex

In this section, we describe a special case of Aq explicitly and introduce the diagrammatic expression
when e > 2 and the dimension vector d is concentrated on a single vertex in I'. Without loss of
generality, we assume that d = (d,0,...,0), then I can be identified with I;, and we may simply
denote this algebra by Ay, and we will then write u = fi(1) € Iy instead of i € 4.

Before we start, some algebraic constructions need to be introduced.

Definition 2.4.1 (Demazure operator). Let R = Clzy,...,z4], then for any simple reflection s; €
W, where 1 <1 < d—1, and any polynomial p € R, we set

p —si(p)

alp'_> )
Ty — Tjy1

where s; acts on p by interchanging variables of x; and x;y.
By convention, 0, = 1Id for the identity element e € W, and for any element w € W of length
larger than 0, we choose an arbitrary reduced expression w = s;, -+ - s;,, and Oy = 0;; 0 ---00;, .

This is well-defined because this construction is independent of the choice of the reduced ex-
pression since one can show that they satisfy the following relations:

i 8l o & =0
ii 8zaz+laz = ai+laiai+1

N /
fii 9, 00y = 4 O W) =lw) +lw)
0 l(ww') < l(w) +

N~—
N
—~
E\

For an arbitrary polynomial f € R, 9;(f) is still a polynomial in R, which follows from the fact

that
Rl ke

y(ahtty = T T i szxm,vkm

— Ti4+1
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A polynomial f satisfies that 0;(f) = 0 if and only if f is s;-invariant. Besides, if f is of degree [,
then 0, (f) is either zero or of degree [ — ¢(w), as 0; lowers the degree by one. Moreover, for 0s,, we
have the following “Leibniz rule”:

For a fixed integer d, and any composition A = (A, A,..., \;) € Iz, we can consider the
parabolic subgroup Wy, and the space of invariants Ry := Clxy, 2, ..., 24/"". An extreme case
is that the composition \g := (n) has only one component, then the space of invariants is Ry :=
Clzy, o, ...,24"". All these Ry, as a C-algebra, are again isomorphic to the polynomial ring of d
variables over C. In fact, all of these R, are isomorphic to the tensor product of total invariant
polynomial rings, and the total invariant case follows from the following classical result:

Theorem 2.4.2 (Fundamental theorem of symmetric polynomials,[Mac15]). Let

ek<x17"'7xd): Z Tjy o Tjy,

1<j1 <--<jp<d

for 1 <k <d, then Clxy,xa,. .., 245 is the polynomial ring generated by ey, es, . .., eq.
The space of W ,-invariants Iz, also have the following properties:

Proposition 2.4.3. Let i € 14, and let w, be the longest element in W,,. Then we have
1. The operator 0, sends R to R,,,
2. If f € R, and g € R, then for any w € W, we have 0y(fg) = fOu(9).

Proof. In fact, a polynomial is in R, if and only if it is annihilated by 0; for all s, appearing in
W,. Suppose that h is an arbitrary polynomial in R. We have 0;(0y,(h)) = 0; 0 0, (h), and since
((s;wy) < £(w,) when s; € W, we have 9; 0 9, = 0 by relation 80 Oy, (h) is killed by all 0;
in W,.

Also, for any w € W,,, its reduced expression is a product of simple reflections appearing in W,
and all of these simple reflections annihilate f as f € R,. Therefore, we have 0,,(fg) = f0,(9), as
the Leibniz rule implies that

9i(fg) = f0i(g), Vs € W,,.
]

An important property of these invariant polynomial rings is that all R, are free as Rg-modules.
For the space R of all polynomials, we have the following lemma:

Lemma 2.4.4. Let ag(xy, 20, ... ,2q) = 28 232 241 € R, then the set
B = {0y(ag)|lw e W}

forms an Rg-basis of R.

Proof. See [BGGT3| or [Bruld]. O
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In fact, the polynomial oy can be replaced by an arbitrary polynomial not annihilated by any
0s with the same degree as ay. Moreover, we see from [2.4l11i] and Proposition that the map
Ow, : R — Ry annihilates 0, () if w # 1, and it sends Ry - g bijectively to Ry. So Oy, : R — Ry is
surjective. This immediately implies that for any A € I, the map 9, : R — R, is also surjective.

Example 2.4.5. Let d = 3, then as(zy, e, x3) = 2319, and the basis B is

3 = 1'11'2

/\

O1(az) = x129 a3) = 1’%
- “h
8281(043 =T 3182 043 =21+ 22
w() Oég

As a corollary, other R, are also free over Ry.

Corollary 2.4.6. The set
B, := {0y, w(ag)|w € )‘W}

forms an Rg-basis of Ry.

Proof. A polynomial is in R, if and only if it is invariant under the action of W), which is equivalent
to being invariant under the action of any simple reflection in W), and which is again equivalent to
being annihilated by any 0 for any simple reflection s in W).

So all elements in the set {Jy,u(aq)|w € *W} are in Ry. In fact, for any simple reflection
s € Wy, we have swy € Wy. As w € *W, we have

lwyw) = L(w)y) + L(w)

U(swyw) = l(swy) + L(w) = L(wy) + L(w) — 1.

This, by [2.4}iii} implies that 05 0 Oy, = 0. Then all 0,,., () are annihilated by 05 for any simple
reflection s € W), which implies that they are in R). Also, they are obviously linearly independent

by Lemma

Now we need to show that they span the whole R). Now we consider an element of the form

Yo D cuwBuww(@a); Cuw € Ry

ueWi\{e} we W

and suppose that f € R,, so it suffices to show that all these ¢,, = 0. As f € R,, we have
Oy(f) =0 for all v € W)\{e}.
We will use induction on ¢(u).
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(1) Firstly, if v’ € Wy and ¢(u') = €(w)), then ¢, ,, = 0.

In fact, (u') = ¢(w),) implies that u' = w,, then we put v = w,, and we see that

0 - aw)\(f) - Z Z Cu,wau»\ o auwxw(a/d)

ueWx\{e} we W

= Z Z Cuw(Owy © Ouawy ) © Oy (tg) (uwy € Wy, w € *W)
ueWi\{e} we w

Z Z Cuw(Owy, © Ouwy ) © Oy (tq) (w) is maximal in W)y, use ([2.4]iii)))

u=u' werW

= Z Cu’,wawAw(ad>
wEAW

and we know that all ¢,/ ,, has to be zero as these 0y, ,,(aq)’s are linear independent by Lemma

244

(2) If we have already ¢, ,, = 0 for all u € W) \{e} such that k+1 < ¢(u) < ¢(w,) for some k > 1,
now we show that for an arbitrary element v’ € Wy\{e} of length k, the coefficients ¢,/ ,, = 0
for all w € *W.

Asl(v') =k > 1 and v € W), we put v = v’ and we have

0= au/(f) = Z Z Cu,wau’ © auw,\w<ad)

u€Wx\{e} we W

= Z Z Cu,wau’ o auwkw(ad)
weWy,1<l(u)<k we W

= Z Z Cuw (O © Oy, ) © O (ag)  (Here we use uwy € Wy, w € A W)
ueWy,1<l(u) <k we W

Z Z Cuo(Our © Oy ) © Oy () (Here £(u') + L(uwy) > (u'uwy))

u=u' we W

- Z Cu’,wawkw<05d)
wEAW

and this implies that ¢,/ ,, = 0.
So by induciton we know that all ¢, ,, = 0, and this means that any element in R, has to be a linear

combination of vectors in B,.
In conclusion, the B, forms an R4-basis of R,. ]

2.4.1 Computing homology groups

Now we will use the faithful representation mentioned in last subsection to describe our algebra
Ag as a subring of the endomorphism ring of a vector space. We need to actually write down the
homology groups and the actions of generators explicitly.

Since the quiver I' has at least two vertices and the dimension vector is concentrated on one
vertex, the variety of representation Repy has only one point, which attaches zero maps to all
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arrows, and the flag variety F(ji) = F(u) is just the usual partial flag variety of C? of type u. We
also have Q(u) = Redy x F(u) ~ F(u) as all flags are compatible now, and Z(u, A) is isomorphic
to F(u) x F(A).

Proposition 2.4.7. There exists an isomorphism R,, — HPMS(Q(u)) as algebras over C.

Proof. As Q(p) = F(p) which is the quotient of G by a paraabolic subgroup of type p, it is smooth
and projective. Note that for any smooth variety X, we have by [EGI8] HEM:G(X) ~ HZImX=*(X),
hence it suffices to compute the G-equivariant cohomology of Q(u).

Now we see that H(Q(n)) = Hi(G/F,) ~ Hp, (). Let G, be the Levi subgroup of P, then
we see that P,/G,, ~ U is contractible, so we have H¢(Q(un)) ~ Hp(x) ~ Hg, (x) ~ H*(BG),) ~

I
® Hgp (%), so it suffices to show that H} () ~ R, = C[xy, ..., X,,]", which follows from
j=1 Hj

Hy (%) ~ Hp(x)V = Clay, ..., X)W
by [Briog]. O

So the faithful representation of A4 acts on V; = @ R,,. Also, the action of the polynomial gen-
nely
erator in HBME(Q(u)) coincides with cap product of Borel-Moore homology (see [CG09, 2.6.16]),

so its action is exactly the regular action of R, on itself.

Remark 2.4.8. In fact we can also use equivariant cohomology groups instead of the equivariant
Borel-Moore homology groups, but it turns out that the grading of equivariant Borel-Moore homology
groups is easier to deal with. In this thesis we introduce the grading structure via algebraic definition

and its relationship with geometric construction will not be discussed. More explanations can be
found in [SWTI].

Now we need to know the action of merges and splits on V;. We firstly compute the actions
of operators induced by simple merges and simple splits. And it suffices to consider the following
most simple case: p is a composition of length 2 and k£ = 1.

Let a,b € Z~q. Then is a split of (a + b). Now Q(a+b) is a point equipped with an action

a
b
of GL41p, and Q(a,b) equals to Gr(a,a + b). Let ¢ be the zero section of the G-equivariant fiber
bundle 7 : Q(a,b) — F(a+b) and q : F(a,b) — Q(a+0b) is the proper map forgetting the subspaces
of dimension a, and both of two maps are G-equivariant, so we have the following diagram
¥ qx
HPMG(Q(a,b)) —— HPMC(F(a,b)) __— HPM4(Q(a+1b)),

L q*
and the action of merges and splits is given by the following proposition:
Proposition 2.4.9. The following diagram commutes:

g«oL*

HBME(Q(a,b)) HfM’G(T(a + b))

l Lx0q*
int

C[l‘l, Ce ,CEa_H;]SaXSb )(C[.Tl, e ,l‘a+b]sa+b

inclusion
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and the map int, which means integration, is given by

w( [ (w5 — ) I[I  (m—=n)

f Z (_1>z(w)w(f), 1§j<k§aa!b! 0 aH(Z:nf;:; (11)

1<j<k<a+b

wESaer

where € is the length function of Syip.

Proof. In our setting, the map m and ¢ are just identity maps, so 7* and ¢* are isomorphisms. Also,
the map ¢, is also the isomorphism.

As we know that HEM:Y(F(a, b)) ~ HPMT(F(a,b))%+ and HEMC(Q(a + b)) ~ HEMT(Q(a +
b))%+, and the fact that there exists T-fixed points in Q(a,b), so the natural map HZMT(Q(a +
b)) — HEMT(F(a,b)) is injective, and hence ¢* has to be injective, which turns out to the inclusion
of the total invariants by considering the map HZMT (x) — HPMT(F(a, b)) — HEMT(F(a,b)T).

Now it suffices to analyze the map q,, which is the equivariant integration:

(zj — x1) [T (-2

1< Hk:< 1< <a+b
<j<k<a at+1<l<m<a+
Lo =L ] 0 ) f
F(a,b) Flab) 4 Pap/Bass a!b!
H (xj - xk) H ($l - fljm)

/ 1<j<k<a a+1<l<m<a-+b f
Ga+b/Ba+b

(12)

alb!
and we apply the formula for full flag variety
(1) g
/GC/BC 9= H (%’ — x) (13)

1<j<k<c

we will get the formula in the statement. A more detailed treatment of the integration formula of
equivariant cohomology classes can be found in [TA20]. O

Let wola, b] be the minimal representative of wg in S, X Su\Sat6/Sa X Sp. In other words,

b+j 1<j<a,

14
jJ—a a<j<a-+b, (14)

wola, b](7) :{

then we have the following lemma:

Lemma 2.4.10. The map int is the same as
Owo[a,b} : C[l‘l, c ,.CEaer]SaXSb — C[.%’l, . ,:L‘a+b]s‘”b

Proof. By [Ful96], for wy the longest element in S, for any non-negative integer r, we have the
following formula
1

hicicjor (i —2)) (15)

Owy [ = Y (1) ™ w(f)

wWESy
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We denote by w(,p) the longest element in S, x Sp, which is the product of longest elements in S,
and S, and w,,p the longest element in S, 4.

For any f € Clzy,. .., Tay)° %, we denote by
g=1f- H (xj — xp) - H () — z) € R.
1<j<k<a a+1<l<m<a+b

Then we have

aw(a,b) (g) =f- aw(a,b)( H (xj - xk) . H (xl — :L’m)),

1<j<k<a a+1<l<m<a+b
and by applying the formula for r = a and r = b respectively, and the fact that
wl [T @20 II  @-2)=0 [] @-20- I (@—aw)
1<j<k<a a+1<l<m<a+b 1<j<k<a a+1<l<m<a-+b

we see Oy, , (9) = f [Sa X Sp| = (alb!) f. Then we have

1 1
aw()[avb}(f) = waw()[avb}aw(a,b) (g) = wawaﬁ»b (9)7
and we apply the formula , SO
1 1
aw [a,b}(f) = (_1)€(w)w(g) 5
0 alb! weZS;+b H1§i<j§a+b(33i — ;)

which is exactly int(f).
[

This lemma shows that the merge operators satisfy associativity and answer the question arising
when we define [2.3.3] E2|in this special case. More precisely, if 1, po, 13 are compositions of d such
that p is a merge of po and ps is a merge of ug, then the merge operators defined by them satisfy

My s = Moy pg * Mg s -

Indeed, if we write this equality in terms of Demazure operators, it follows from the relation [2.4] 111
of Demazure operators. It is obvious that the split operators also satisfy this property, because the
composition of inclusions is still the inclusion, so we have

Sugpur = Spzue - Suo,u

As every merge (resp. split) of vector decompositions is a sequence of simple merges (resp. splits),
the algebra Aq is generated by simple merge operators, simple split operators and polynomials.

Remark 2.4.11. The associativity of these operators remains true for the quiver Schur algebra Aq
for an arbitrary quiver involving general dimension vectors and more vertices. The geometric proof
of this property can be found in [Prz19, §2].

Remark 2.4.12. In this one-vertex case, the crossing operator defined in|2.3.5. E4 does not depend
on the choices of the reduced expression. In fact, for any reduced expression, the corresponding
operator cgwi just acts by O, for w € *W* in the faithful representation.
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2.4.2 Explicit actions and the grading

Now we give the explicit description of generators as maps between summands of V; = @ el R,,.

10

20

For p and g/ in I; such that p' is a split of u' at k, which means

@ i<k
M(Z) = /’Ll(k) -+ /"Ll(k‘+1) Z — k' ,
/D i>k

then we have split operator
St RM — RH’

f= 1

We use the following diagram to represent this element:

/’[’/(k) /’[/,(k+1) Iu/(l_l) lu(l)

M(l) M(2) /’L(k) /[L(lfl) ’u(l)

This operator is of degree — /) /(#+1) In general, if A is a split of p, then the degree of Sxp
equals £(wy) — l(w,,).

With the same setting as [2.4.2[1° | we have a map in the opposite direction, the merge
operator, given by
m

/e RM' — RN
f = awgv#'(f)a

Bt

(17)

where w}™ " is the longest element in W;". In case that & = 1 and the length of u' is 2,
then this element is exactly wo[u/'(V), 1/®)] defined in (I4). We use the following diagram to
represent this element:



1(k)

This operator is again of degree —u/®) /1) Also, if 41 is a merge of ), then the degree of

my,x equals to £(wy) — (w,,).

3° The third map is the polynomial. Let h € HEM¢ () ~ R, which is now indeed a polynomial,
then we have

h,: R, — R
f=h-f
and we use the following diagram to represent this element:
pM @ pu®
r ’
¢ & ¢
M @ p®

where each hy is a symmetric polynomial with p*) variables, and h is a linear combination of
the products of the form h; - - - hy. If b is a monomial, then the degree of h,, is 2 deg(h), where
deg(h) is the degree of h as a polynomial in zy, ..., z,.

4° In particular, in the case of [2.4.2/3° | if h is just the identity, we call the map as idempotents
eu, with the following diagrammatic expression:

M(l) M(2) ,u(l)
M(l) M(2) ,u(l)

As the name and the diagram suggest, this element is indeed an idempotent, and ) e, is
Hnely
exactly the identity of Ay. Every idempotent is of degree 0.

All these diagrams should be read from bottom to top. We represent the product v; - vy of two
elements v; and vy by stacking the diagram of v; on the diagram vy, so every element in Ay is a
linear combination of these diagrams.

Now we have an alternative definition for the algebra A,.

Definition 2.4.13 (Alternative definition). The quiver Schur algebra Ay is the C-subalgebra of
Endc(Vy), where
V=D R

puely

generated by simple merge operators, simple split operators and polynomial operators presented in

2.4.2
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The following proposition states that Aq is a free unital algebra over Ry.
Proposition 2.4.14. The quiver Schur algebra Ay is a free algebra over Ry.
Proof. For any f € R;, we can define the map

.Ad — .Ad
au(h) = by (f - h).

where \, 1 range over Iy, w ranges over *W+* and h € Clxy, .. ., a:d]wflwwﬂwﬂ. This map immediately
determines an Rj;-module structure on Ajy.

By [DJ86], for arbitrary A, p € I; and w € *W*, there exists unique j,, € I such that W, =
w™ W w N W,. This implies that the vector space Clz, ... ,xd]“’_IWWmW“ is a free module over R,

with a basis B, given in Corollary [2.4.6, This implies that

Ai= P P B Ri-baulp).

AETG weAWH pEB

In particular, Ay is a free Rg-module.
So the map, which is an algebra homomorphism,

Rd — .Ad = @ 6,\Ad€u,

Ap€Elg

e f1a,=> bl (f)

pely

(19)

makes Ay a free Rg-algebra. O

Let A; be the composition (1,1,...,1), which is the only decomposition of complete type, then
Ra = ey, Aqen,, and in this case it is called the nil-Hecke algebra, and the geometric basis of Ry is
exactly the set

{by ,,(p) = Oy o plw € W, p runs over a basis of Clzy,...,x4]},

considered as a subring of Endc[z1, ..., x,].

Warning: Note that the notations of nil-Hecke algebra R, and the ring of symmetric polyno-
mials in d variables R4 are similar, but they are different.

The following proposition concerns the structure of the nil-Hecke algebra.

Proposition 2.4.15 ([Roul2]). The ring Rq is isomorphic to the matriz algebra Endg,(R)°PP, as
R~ Rffd!, and the center of Ry is isomorphic to Ry.

Via this result, we have:

Proposition 2.4.16. The center of Ay is isomorphic to Ry = Clxy, ..., X,]%
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Proof. The image of the map in , which is isomorphic to R4, lies in the center of A,. It is
obvious that elements in the image commute with polynomials and splits. Moreover, multiplying
by a symmetric polynomial commutes with all Demazure operators by Proposition [2.4.3] so the
elements in the image also commute with all merges.

Now we show that the center of Ay is exactly the image of .

Suppose that a = €@ a,\ =) a,, is in the center of Ay, where a, ) € e,Aqe.
.u’y)\eld
Firstly, a should commute with any idempotent ey, whenever \; € I;. This means we have

E Aux, = A€x = €\, 0 = E Ay \s VA € Id,
m A

which immediately implies that a, , = ay, » = 0 for any p # Ay and A # ;. So we may assume

that a = 3, a,,.
Next, a should commute with all splits. Now we consider the split s, ,, and we should have

a)\d7>\d © SAdaM =ao SAdaM = S)\d# ca= S)\d# © aM7M‘

Via the faithful representation of A4, this implies that for any f € R, we have

Arg,Aa (S/\d,#(f» = SAd7ﬂa#7#<f)=

which means ax, x,(f) = auu(f).

It is obvious that ay,, lies in the center of ey, Aqey,, and by Proposition 2.4.15] it acts by
multiplying by some g, € Ry, so we see that a,, ,(f) = g, f, which means that a, , = e,9.€, = (9a)
a polynomial operator, and hence

w

a = Z €udaCy = Z(ga)u'

n

So we have completed the proof. O

As a result, we see that for any p € Iy, e, Rqe,, is contained in the center of subalgebra e, Aqe,,.
In fact, we have the following stronger result:

Proposition 2.4.17. The center of the subalgebra e, Aqe,, is e, Rqe,, which is isomorphic to Ry.

Proof. Suppose that a lies in the center of e, Aqe,. By faithful representation of Ay, it is obvious
that e, Aqe, acts on R, faithfully, and it suffices to show that a acts on R, by multiplying with a
symmetric polynomial.

For any f € R,,, then we have a(f) = a(f-1), and this is the composition of @ and the polynomial
operator f,. As a is in the center, we have a(f) = f-a(l) = a(1) - f, as a(1) € R,. This already
implies that a is a polynomial operator. So it suffices to show that a(1) is a symmetric polynomial,
and this is equivalent to that a(1) is annihilated by 9; for 1 <i < d — 1.

If s; € W,, then there is nothing to prove as a(1) € R,. Now if s; ¢ W,,, we can consider the
following operator b defined as the composition of m,,y,, by, (g) and sy, ., where g is an arbitrary
polynomial in R. Then a commutes with b is equivalent to

O, (0:(a(1) - fg)) = a(1) - 0w, (0:(f9)), V[ € Ry, g € R. (20)
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We apply the Leibniz rule . Then the left hand side of equals to

O, (0:(a(1)) - 5i(f9)) + O, (a(1) - 9i(fg)), -

Using Proposition [2.4.3, we see that 0,,(a(1) - 0;(fg)) = a(1) - 0w, (0;(fg)), which is exactly the
right hand side of (20]). This means 0, (9;(a(1)) - s;(fg)) = 0 for arbitrary f € R, and g € R, so
we actually have

Ou, (Bi(a(1))h) = 0

for any polynomial h € R. This implies that 0;(a(1)) = 0 because 0y, : R x R — R is a non-

degenerated bilinear form over Ry (see [BGGT3] or Remark [£.2.3), and 9y, factors through d,,.
Then we have shown that a(1) is annihilated by any 0;, which means a(1) € R; C R,, and hence

a € e,Rqe,. So we finish the proof. O

2.4.3 Examples

The following examples show the diagrammatic expression of the geometric basis and we write down
the action explicitly.

Example 2.4.18. Let n = 3, u = (2,1), A = (1,2). Then there are two double cosets in (S x
SQ)\Sg/(SQ X Sl), that iS,

{1, 51, 89, 8251}, {5152, 515251},
and the set of shortest representatives is
)\WM = {1,8182}.
1. Let w be identity, then we have that W, = W, N Wy = Wy is the trivial group, and the space
R, = R.

This means N = p’, and we can let the polynomial range over R. Moreover, the crossing
operator ¢y, , induced by w =1 is trivial.

So the basis by ,(p) is
CXTUN P S puCus

or simply my ,ypwsw . The diagram of b}w(p) is given by

(5 1 2

T

P [p1] [P2] [ps]

€u 9
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where p ranges over a basis of Clzy, xq, x3] >~ Clz1] ® Clag] @ Clas].

Since sy, is just the inclusion, p, acts by multiplying with p and my v acts by Oa, the action
of b}, is
Clay, w2, 252" — Clay, w9, 2]

f=(p-f)

Suppose that p is a monomial of degree deg(p), then this element is homogeneous. Now the
degree of this element is the sum of the degrees of each step. We have

deg (s, ) = —1,
deg(p,v) = 2deg(p),
deg(mz\,ul) = _17

so the degree of b} ,(p) equals the sum (—1) + 2deg(p) + (1), which is 2deg(p) — 2.

2. Let w be s18g, then Wy = W, Nw 'Wyw = W,, and Wy = Wy NnwW,w™! = Wy, so we
have p' = p, N = A, and the polynomial operator is in R,. In this case, the merging part
and splitting part are trivial, and the crossing determined by w is given by permuting two row
vectors, which acts by 0105.

So for q € Ry, the element b}'}? (q) is ey - A quen- The diagram of bf\f(q) is

v 2 1

where q ranges over a basis of Clxy, xq, 13]%2*% ~ Clxy, 15]°? ® Clas].
The action of b}'?(q) is

C[I‘l,l’g, $3]S2><Sl N C[I’l, fL'Q,.T?,]SlXSQ

[ 010a(q - f).

Suppose the degree of q is deg(q), then deg(q,) = 2deg(q), and the degree of ¢} 2 = 2-(—2-1) =
—4, so the degree of b{!?(q) equals 2deg(q) — 4.
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3 Isomorphism theorem of completions

In this section, we will present the isomorphism theorem of completions of affine Hecke algebras
and quiver Hecke algebras, as well as their Schur analogue. Although both of these two families of
algebras have natural origins, this theorem demonstrates the relation between these two family of
algebras.

Various versions of this kind of isomorphisms can be found in [BK09, [Web19, [MS19].

3.1 Completions of affine Hecke algebras and quiver Hecke algebras

We begin with introducing the completion of both types of algebras.

3.1.1 Completion of affine Hecke algebras

We denote by & the subalgebra k[ X, ..., X*]. Recall from [Lus89, Proposition 3.11] that the
center & of H is given by

¥ =Z(H)=0" =k[X;i, ... X

which is a subalgebra of 0.
For a = (ay,...,a,) € (k*)” we define the corresponding central character

a:Z —k

by restriction from the algebra homomorphism from & to k sending X; to a;. It is obvious that this
character only depends on the »-orbit of a. If M is a finite-dimensional representation of 4, then
we can decompose it as M = @, M, where x runs over X-orbits on k™ and M, is the generalized
eigenspace of 2 with eigen-character x. We denote by m, the kernel of x in 2.

Recall that in Definition [2.2.1] there is a parameter ¢ in the affine Hecke algebra, which is a root of
unity in k. The interesting cases we care about are those where a € {(q", ¢, ...,¢")|(i1,...,in) €
Z"}. So now we use i = (iy,4a,...,1,) € Z" to represent the n-tuple a such that a; = ¢, and the
corresponding central character is denoted by xj. Since in our setting ¢ is a e-th primitive root of
unity, so we may also view i € (Z/eZ)".

Definition 3.1.1 (Completion of H, [Lus89]). For fized i, we set x = x;. Then we define P as the
completion with respect to m,, and we define O=0Qy QP H=HQy Z.

For u € ¥i, we define the ideal J, = (X; — ¢*, ..., X,, — ¢"*), and O, is defined as the Jy-adic
completion of 0. ) R R R R
By [Lus89, §7], we have decompositions H = & 1,0 = & OT,, and 0 = [] O,. We also

oex oex ueXi

have that each @, is isomorphic to the ring of formal power series of n variables.

So we have H = @ Hu as vector spaces, where by [MSI9, Section 3.3]
ueki

Hy = @ 1,0, ={h € H|¥m € N,3N € N such that Vj € {1,....n}, h(X; — ¢¥)" € mT}.
oeY
We denote by e, the idempotent in # which projects to the summand Hyu. Then the set {eu|u € Xi}

forms a complete set of orthogonal idempotents. Combining these results, we obtain by [MS19,
Lemma 3.8] the following result on basis:
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Lemma 3.1.2. The following sets
{T, X0 Xbrey|o € 2,b; € Zso,u € Xi}
{T, X0 Xboeylo € 2,b; € Ze,u € Ti}
both form a topological basis of H.

Just as in the case of affine Hecke algebras (see Subsection , we have the analogue of Hecke
modules and faithful representations for the completion.
The Hecke modules are defined as vyH. Similarly to Lemma we have

Corollary 3.1.3. The following sets form a topological k-basis of UJ”;':L:
{vre T, X0 - Xbrju € Y, 0 € I8, b; € Zo},
{vre T, X0 - Xbrju € Si, 0 € 75, b; € Zo ).

As a corollary of Proposition and Proposition [2.2.6, we have the following corollaries
(IMS19L Corollary 3.13]), which are faithful representations for the completion.

Corollary 3.1.4 (Faithful representation of 7:[) 1 There is a faithful representation of H on
B xiX. ..., Xewts

by completing the representation from Proposition with respect to the maximal ideal
generated by ‘
(X, — ¢ ey, 1 <r<n, uei

2 There is a faithful representation of’l:[ on

@k (X X Jewts

by completing the representation from Proposition with respect to the maximal ideal
generated by A
(X' —q¢ ey, 1<r<n, uedi

There is an important type of elements called intertwining elements in #, which is a slightly
modified version of the usual intertwining elements as in [Kle05, §5.1]. Now we consider the following
intertwining elements: for r € I,

O, =T+ Y. 1_XX_leu+ d e

Up 417U r+1 Ur41=Un

which is studied in [BK09]. It is obviously that H can also be generated by all these ®, and X; for
1 <i<nandr el If wefix a reduced expression o € X such that o = s;, - - - 5;., then we define
Q) = ®;, - - - @;,. This does depend on the choice of reduced expression, so we use the notation [o]
here.

Direct computation gives us the following lemma.
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Lemma 3.1.5. For 1 <r <n—1 and u € i, we have
Xr - quJrl

1. es,.u®, 01 = Xrt1-x,
0 if Upy1 = Uy

esr-uU]I Zf Ur41 7é Uy,

X'r - X’f‘ s 'Ll_ ) r .
2. €ST.u(I)T(XT+1 — XT‘)_]I — {(q +1 )6 - UH qu +1 7§ U

2(¢ X1 — Xp)eaUr  if Upyq = .

XewmaXe,
3. esr.u@rvl = XT+1 _ Xr Sr-u r+ r
(C] * 1)UH if Upp1 = Uy

XT R Xr Sr-u . T T
4' esr'u(I)T(Xr+1 - XT)U]I = (q +1)€ r U1 qu +1 ;é U
(q - 1)(Xr+1 + X’I’)UH Zf ur+1 = U,.

3.1.2 Completion of quiver Hecke algebras

Now we come to the quiver Hecke algebra side. This time, we will consider the quiver Hecke algebra
related with the fixed data i and e.

Let ' = I', be the Dynkin diagram of the affine Kac-Moody Lie algebra sl, with the vertices
numbered clockwise from 1 to e, and we identify these vertices with fixed representatives 1,...,e
of Z/eZ. Recall our i € Z™. Since q € H is a primitive e-th root of unity, then we may assume that
all the factors of i are in {1,...,e}.

For j € {1,...,e}, we let d; be the multiplicity how often j appears in i. Then any u €
21 corresponds to a unique vector decomposition @ with a matrix expression (@kl) of d =
(dy,...,d.) of length n. This vector decomposition is of complete type. More explicitly, the k-th
row row vector is a unit vector whose only nonzero term is in the ug-th column. Moreover, the orbit
Yi is exactly the set of all vector decomposition of d of complete type.

We give an alternative definition of R4 in terms of generators and relations ([MS19, Definition
7.1]), which turns out to be equivalent to the geometric definition presented in Section .

Definition 3.1.6. The quiver Hecke algebra Rq is the unital C-algebra generated by elements

{6(11)|11 c Zl} U {77/}17 - ,@Z)n_l} U {[El, - ,IL‘n}

subject to the relations

e(u)e(u’) = oy we(u); Z e(u) = 1;

uelri

rre(u) =e(u)x,; Yre(u) =e(s, -, x.05 = T2y,

¢r¢s = ¢s¢r7 Zf |T’ - 3| > 1;
wr-rs :xsqu)m ZfS?'éT,T’—i—l;
Vrxppre(u) = (2,9, + 5ur,ur+1)e(u)§ Trphre(u) = (Yra, + 5“7‘7ur+1)6(u);
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0 if up = Upyq,
e

(u) if Upyi1 # up £ 1, u,,
2e(u) = ¢ (7,41 — ;) if Up1 = u, + 1, # 2,
(l’r - :UT+1) Z.fuTJrl = Ur — 176 7& 27
(Trp1 — xp) (T — zppr)e(n)  if Uy = —up, e = 2.
(¢r+1wrwr+l + 1)6(11) if Uppo = Up = Upp1 — 1€ 7é 2,
(wr+1wrwr+1 - 1)6(11) if Upgo = Up = Upg1 + 1,6 # 2,
r¥r rée\u) = .
Vrpreaire(u) (Vr1Vrthri1 — Tp — Tpyo + 200 1)e(0)  if Uppo = Up = —Upy1, 6 = 2,
Ur 10 1e(0) otherwise.

Remark 3.1.7. Though we will not prove it, the relationship between generators and the operators
mentioned in 15 as follows.

1. The idempotent e(u) here is exactly the idempotent operator, which should be denoted by € )"

2. The suitable products of these xs and idempotents e(u) are exactly polynomial operators.

3. As all vector decompositions have the complete type and are of length n, the 1, is exactly
the crossing operator corresponding to the block permutation interchanging the r-th row vector
with the r + 1-th row vector. These 1, generate all crossing operators, just like all simple
transports generate the whole symmetric group ..

We denote by O the subalgebra of Rq generated by {e(u)lu € Xi} U{zy,...,z,}.

We now write explicitly down the natural faithful representation of Rq which is defined and
arises from the general theory of convolution algebra. Again, we will not explain why they are the
same representation.

Proposition 3.1.8. The algebra Rq has a faithful representation on

Fa=@De()Clay,... 2, 1

ueXi
where e(u) and z; act by the ordinary multiplication, while
if Ur = Upry1,

0
Pre(u) - 1< (2, — xrﬂ)e(s cu) -1 if ey =u, + 1,
e(sy-u)-1 if upyq # up,u, + 1.

Definition 3.1.9. Now we let J,, = Ra(z1, ..., 2,)"Ra, and we denote by 7A€d the completed algebra
with respect to the sequence of ideals (Jy,)m>1-

We denote by O the subalgebra generated by {e(u)ju € Zi}U{zy, ..., 2,} in Rd The completed
algebra Rd has also a completed version of the faithful representation, denoted by Fd = Rd QryFa.
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3.2 Isomorphism between completions

Now we let k = C, and we present an isomorphism between H and Ra.
Firstly we have an isomorphism

70— O (X;—¢")eq — —q“ae(n),V1 <i<n,ue i (21)

In fact, both of 0 and O are the direct product of |¥i| copies of formal power series ring, and =y
just sends the variables from the left hand side subtracted by some elements in C to the variables
from the right hand side multiplied by some elements in C*, so it is an isomorphism.

We denote by F the first representation in Corollary of H. As O (resp. @) acts on F
(resp. Fq) via regular action, v induces an isomorphism

F - ﬁ‘d : HXfieum — H(q“"(l — xi))bie(u) -1,

i=1 i=1

as we require that vy — 1.
Finally, we can draw the following conclusion, see [MS19, Theorem 7.3]:

Theorem 3.2.1. The isomorphism v in can be extended to an isomorphism of algebras 7y :
H — Raq, via y(es,.u®,) = A%re(u) foru € ¥i and 1 <r <n— 1, where

Il —q— 2 +qrra Z.fur+1:ur>
u U Uy :ur+1a
Al =0 1—q+a +qz, Jurn

(=) — (L= )

(L= 211) — ¢ (1 — )

if Upi1 7 Uy, up + 1.

The fact that map ~ is a well-defined algebra homomorphism follows from the equations
Y(sp - eu®,T1) = Alhre(u) - 1,

Y(es,u®r(Xrp1 — Xo)01) = A0y (X1 — Xi)ew) - 1,

for 1 <r <n—1and all u € ¥i. These equations can be checked via a direct computation just
using the definition, and we omit it. As all coefficients A* are invertible in O (so y~! sends them
to invertible elements in &), this map turns out to be an isomorphism.

Remark 3.2.2. Although this isomorphism can be checked by computation, the idea behind it in-
volves analyzing finite dimensional module of H, which can be found in [BK0Y, §3].
Suppose that M is a finite dimensional module of H such that ¥z € 2, the action of z — x(2)

is nilpotent, where x = x;. Then we have a decomposition M = @ M,, where
ueXi

M, = {m € M|3N > 0, such that (X; — ¢")"m = 0}.

Then the idempotent ey, as well as e(u) = v(ey), is exactly the projection to M.

By|(2.2.1. H-7), we have T,.(My) C My+ Ms,.w, and one can check that the intertwining element
O, sends My to My . In fact, if u, = u,y1, then My = My and T, is an endomorphism of M.
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In this case, @, acts on My by T, + 1, and there is nothing to prove. If u, # u,,1, then ®, acts by

1—
T, + Tr)q(ffl; and by definition we have:

1—gq 1—g¢q

X (T + ——2 V= (Th+ ——L )X,
S S i S R
I—q 1—q
Xon (T + ————— )= (T, + ———)X,..
Al Ty

This means ®, interchange the generalized eigenvalues of X, and X, 1. On the other hand, the
formula in Proposition [3.1.§ implies that ¢, also sends My to M, .. In fact, we have

(@) = (3 Ave(u)) -,
uei
which means @, is just the product of a “weight funtion” and ,.
The relationship between the two families of polynomial operators is similar. Each My is stable
under the action of X; and x;, and the actions of X; — q" and x; are nilpotent on My. In fact, we

have
v (@) = — Z q Mea(Xi—q") =1~ Z q “enXs,
uei uei
which implies that x; has the same action as —q~ " (X; — ¢") on M,.

3.3 Isomorphism theorem for the Schur version

The isomorphism in Theorem [3.2.1| can extend to the Schur version. This is a special case of the
main result of [MS19], in which the ground field C is generalized.

With fixed i, we can define the completion S of the affine Schur algebra S, see [MS19, §5]. This
construction is compatible with the completion of the affine Hecke algebra. In fact, the completed
version also fits into the Hecke-Schur pattern, because we have

S~ Homﬁ(@ v ).
Jcl

As for the quiver side, there is an algebra Cq called the modified quiver Schur algebra [MS19,
Definition 8.4], which turns out to be isomorphic to Aq. In their article, this algebra is generated
by three types of operators, which are the modified versions of merges, splits and polynomials.

For instance, there are two different ways to embed C[z1, ..., x,]°" into C[zy,...,z,]. One can
either send f € Clay,...,2,]°" to f directly, or send it to f - [Iic;(z; — 2;). Working with either
of the two inclusions defines two versions of split operators. This can result in two presentations of
the quiver Schur algebra. In fact, the first inclusion gives us Cq, while the second inclusion gives us
Ag.

We can take the completion of Cq with respect to the ideal generated by all polynomial operators
whose constant terms are zero, and the completed algebra is denoted as Cq. We also call this algebra
as the completion of the quiver Schur algebra Aq4, and we also denote it by Agq. We have the following
theorem [MS19, Theorem 9.7]:

Theorem 3.3.1. There is an isomorphism of algebras S — .Zl;, which extends the isomorphism in

Theorem [3.2]].
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4 A new basis theorem for one vertex case

In this section, we will present the main result of the thesis. We continue focusing on the special
case in Subsection [2.4] and find a new basis for the quiver Schur algebra A,.

4.1 Reminder and motivation

The quiver we consider now is a cyclic quiver with e vertices labelled by 1, ..., e such that e > 2, with
the fixed clockwise orientation, and the dimension vector is concentrated at vertex 1 of dimension
d.

Let us recall the notion in the previous section. Let V; = € R, then the quiver Schur algebra
pnely
Ay is the C-subalgebra of End¢ (V) generated by merges, splits, idempotents and polynomials

mentioned in 2.4.2]
Combining Theorem [2.3.5] and Proposition [2.4.14] we have the following corollary, which gives

an Rg-basis of A,;. We still call it the geometric basis, although no geometric meaning is used here.

Corollary 4.1.1 (Geometric Ry-basis). The algebra Aq has an Ry-basis
{by (W), A € Iy, w € 'W* b € By, Wy = W, Nw™ ' Wyw}. (22)

An open question is: what is, for general quiver Schur algebras, a complete set of relations
among merges, splits, idempotents and polynomials.

In the special case for one vertex, a complete set of relations is given in [Seil7]. This set of
relations is related with the combinatorics of the symmetric group W = S,;, but the relations
appearing in this set are complicated. They turned out to be the same relations as the intertwiners
of tensor product of exterior powers of natural representations of gl,, for n — oo (see [TVWIT]).

Another idea of finding a complete set of relations is to compute the structure coefficients of
the geometric basis of A;. However, this is even more complicated. The product of two elements
in the geometric basis will be a linear combination of geometric basis elements, and the coefficients
are hard to determine.

A possible solution is to find another basis, whose structure coefficients are easier to determine,
and in the special case for one vertex, we found such a new basis. The next task is to explain this
basis.

4.2 Technical lemma

Before we start, here is a technical lemma which we will use later.
Lemma 4.2.1. For u,v € W such that {(u) > {(v), we have

0 ifu#v
1 ifu=w

awo (au(ad) ' avwo (Oéd)) = {

Proof. Notice that Oy, (0u(q) + Oupw, () is either zero or of degree ¢(v) — €(u). If ¢(u) > {(v), the
result is obvious by considering the degree of the polynomial. So it suffices to check the case that

l(u) = L(v).
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When ¢(u) = ¢(v) = 0, which means that u = v are the identity element, the statement is true,
because we always have 0y, (cq) = 1 by [BGGT3].

Now suppose that the statement is already true for f(u) = ¢(v) < k —1 for k > 1, then we
consider the case that ¢(u) = ¢(v) = k. Then we may assume that v = s;,s;, - - - 5;,, and we have

Oy (Ou(d) - Ovuy (va))
B0 00, © O (0u(0) - Do (0a)
D00, (0u(a) - By, © D) + D4, (0u(00)) - 81, (Do (@)
As U(siyu) < L(u), we know that 0, (0u(aq)) = 0 by and hence we have
O (Ou(a) = Ouuwg(td)) = Ougs,, (Ou(ata) - Ds;, © Oyug (@tar))- (23)
Notice that £(s;,vwe) > €(vwp) if and only if {(s;,v) < ((v).

L. If £(s;,v) > £(v), which implies that Js, © Oy, = 0 and u # v, by (2.4liii) we immediately
have Jyys;, (Ou(ag) - s, © Oy (@g) = 0, which satisfies the statement.

2. If {(s;,v) < (v), and we assume that v' = s;,v and v’ = s;,u, so both of them are of length
k — 1. Then we have 9, = 632.1 o d, and 851.1 0 Oy = 8811% = Oy~ S0 by we have

Oy (Ou(td) + Opug () = awosz-1 (Ou(a) = Oprung (va)) (24)

As U(s;,0"wy) = L(vwy) = £(v'wy) — 1, we know that Jyu,(aq) is vanished by 0, , and hence
invariant under s;,, so by , we have

asil (Ow () - Oyrwy (1))
=05, (0w (a)) - 8i, (Ovrawy () + O () - asz'l (Ovrw (@)
(

1

:asz'l O (@d)) + Oprawy ()
:au<05d) : 6v/w0 (ad).

Putting this into (24]), we obtain

awo (8u<ad) ’ a'uwo (ad)) = a’LUOSil (au(ad) ) av’u)o (Oéd))
= &uosq (asil (au’<05d) : av’wo (ad)))
awo (au/(()éd) ) av’wo (ad))

By the induction hypothesis, we know

0 ifu #

1 ifu =2

Ouwy (8u’ (O‘d) * Oty (ad)) = {

and v’ = ¢’ if and only if u = v.
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So we know that the statement is true for elements of length k, and by induction on ¢(u). We
completed the proof of the lemma. n

Remark 4.2.2. This result can be related to cohomology groups of the flag varieties (see [BGGT5]),
but we just prove it without any geometry. Also, the cohomology of the flag variety is a very
interesting algebra, which is useful in the study of the representations of Lie algebras, but we will
not discuss this in the thesis. More detail we refers to [Str220].

Remark 4.2.3. This result can rephrased as follows: if {(u) + £(w) > €(wy), then we have

0 if wtu # w

1 ifwtu = wy

Do (Ou(a) - Ou(a)) = {

Moreover, this implies that

<7 >5R®RdR_>Rd7<fag)'_>awo(f‘g>

s a non-degenerated bilinear form over Ry.

4.3 Main theorem: new basis

In order to parameterize the geometric basis, we need to compute the double cosets of W. Among
all double cosets, the following types of cosets are particularly simple: let Ay be the decomposition
of d represented by 1 x 1 matrix (d), then for arbitrary pu, A € I, the double cosets AW AT)/# are
both trivial.

By Corollary we know that the space ey,.Age, is spanned by {b} (p) = mx,.oplp € B,}
over R,4. Similarly, we know that the space eyAgey, is spanned by {q o sy ,|¢ € Ba} over R;. Now

we have a morphism of Rs-modules:
o e#.Ade,\O QR e,\OAde,\ — €u./4d€)\ (25)

via taking the composition, and we claim that this is in fact an isomorphism.
In fact, a basis over Ry of the left hand side of is {b} ,,(¢) @b}, ,(p)lg € Bx,p € B}, and

Ao, 1

the image of this set is {bj , (¢) - b}, ,(p)lg € Bx,p € B,}. So the statement that the composition

map o is an isomorphism is equivalent to the following statement:

Theorem 4.3.1. Let vy ,(q,p) = bk,\O(Q) - b

/\o,u(p) for \,p € Iy andp € B,,q € By. Then the set

{vau(a,p)la € Br,p € B,}
which is the same as
{Ouwyu(g) © 5309 © Mixg 1 © O () |u € AW, v e "W},
forms a basis of exAqe, over Ry.

The diagrammatic expression of the element v, ,(g,p) is:
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S>\7>\O

m)‘O S

e
[ M(l) H(Q) M(C)
(From bottom to top, we can read vy ,(q,P) = @x - Sxxg - Mrg * P

Before we give the proof of Theorem 4.3.1] we discuss a nice property of this new basis, which
answers the question mentioned in Subsection [£.1} In fact, the multiplication becomes much easier
to compute in terms of our new basis.

By Theorem @, we have an Ry-basis for A, given by vectors of the form v, ,(q,p) = bi (@)
bﬁw(p) for ¢ € By,p € B, and now we consider the multiplication

V)q,;ﬂ(lepl) : V/\Q,/Lg(q27p2)'

If Ao # py, this will be zero. So we should study the case Ay = py.
Now suppose that f € R,,, then we have

Vg, (qlapl) : V>\2,ﬂ2(£]27]72)(f) =q1 - Mxg,uy (p1QQ : on,uz(p2 : f)) € R>\1'

Here the splits are not shown in the formula because they are just inclusions and do not change
the polynomial itself. The only role of splits is sending the polynomial from one summand of Vj; to
another.

As we know that my, ., (p2f) € R4, we have

qi - Mig,u (P19 - Mg, o (p2f)) = Mg, (P1g2) - @1 - Mo,z (p2f) = Mo, (P1g2) - Vi,u2 (q1,p2)(f),

and here my, ,, (p1g2) € Rq is the coefficient. This coefficient is determined by i1, p; and g,. Recall
that B, is bijectively corresponding to #W. We define

C,u,vl,vg = m)\o,,u(aw#vl (Oéd)aw#'ug (ad))avﬂ € Id7 U1, U2 € HWv

and we also let ¢, 4, 4, = 0 if (vy,v2) & *W x V.
Then we have the following result, which gives a presentation of the algebra:

Corollary 4.3.2. The algebra Ay is isomorphic to the unital Rq-algebra generated by the set
X ={(\ g, u, )|\, € Iy,u € *W,v € "W},
with relations

(>\7 w, u, U) ’ ()\,7 :u/a ula U,) = 5#,)\’ ’ Cu’%u/()\, /1’/7 u, U/)v V()\, ©m, u, U)? (A/7 /“L/7 U/, Ul) € X.
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4.4 Proof of the theorem

4.4.1 Linear independence

We firstly prove that is injective by showing that the set {b} , (¢) - by, .(p)lg € Bx,p € B}
forms an Rg-linear independent set.

Proposition 4.4.1. The set {qg o s\, © My, ©plg € By,p € B,} is an Ry-linear independent
subset.

Proof. By definition, we can rewrite the set in the statement as
{&Uw(ad) o S/\7>\0 e} m,\(w o} aw,ﬂ)(adﬂu € /\W, NS ,uw}

Now if we assume that there exists ¢, , € Ry for u,v € *W,#W respectively, such that

Z CuwOuwyu(d) © Sxxg © Mirgpu © Ow,o(aa) = 0 € exAge, C Home(R,, R)),
uerAW verW

then we claim that all ¢, , must be zero.
By assumption, for any g € R we can set [ = d,,(g9) € R,, and obtain

0= Z Cu,vawxu(ad) : m/\o,u<awp’v(ad) ’ f)

u,v

= Z cu,vauuu(ad) *Mxg,p © awu (8wuv(ad) : g)

u,v

Notice that my, , 0 Oy, is the composition of two merges, which equals to the merge from R to Ry,
so it equals to 0y, by , so we have

Z Cu,vaw)\u(ad) : 8100 (aw,w(ad) ' g) = 0.

u,v

Now we let 3, := (‘)wuwo(ad) for each x € #W. We will test this equation by substituting g to
these 3.
We firstly let @ = 1, then Oy, (0u,o(

@g) * Ow,wy(vg)) is zero for each v € #IW\{e} by considering
the degree, while when v = 1, 9y (0w, (aa) - O

) - Ow,wo (@va)) = 1 by Lemma [4.2.1] So we have

Z CueOwyu(ag) -1 =0.

ue AW

This implies that ¢, . = 0 because these 0,,,(4) are Ry-linear independent by Lemma [2.4.4]
Now suppose that ¢, , = 0 for all /(v) <k — 1, then for v; of length k in #W, we set x = v; and
g = By,. Now we have

Z Cu,vﬁww(ad) ' awo (awu'z)(ad) . 61;1) =0

uEAW wer W L(v) >k
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As By, = Ow,viwe () and L(w,vy) = L(w,) + k < L(wyw) if £(v) > k and v € #IV, we can apply
Lemma [4.2.1, and obtain
Z Cun Owyu(ag) - 1 =0,
uerW
which implies that all ¢, ,, have to be zero by Lemma . So by induction, we know that all ¢, ,
have to be zero, which means that

{0wyula) © 530 © Mg © Ouv(g)|u € AW, v € FW}

is a linear independent set. O

4.4.2 Graded dimension

Now we prove that is surjective. This can be shown by comparing ey Aqe,, and its Rq-module
spanned by
{bi,(a) - b}, u(p)la € By, p € B}

We know that the second space is a subspace of the first one. However, both of them are infinite
dimensional over C, so we cannot compare the dimension of them directly. Also, as R4 is not a
field, having the same rank over R; does not imply that two spaces are the same.

The solution is decompose both spaces into a direct sum of finite dimensional vector spaces over
C. More precisely, we introduce the grading structure of Ay, so we can compare the dimension of
the homogeneous components of each degree.

For a Z-graded C-space E, let E,, be the homogeneous component of degree m. Assume that
for any fixed m, E,, is of finite dimension over C, then we define the graded dimension of E as

grdim(E) =) _ dimc(E,,)t".

If £ and E’ are both Z-graded with finite dimensional homogeneous components, and assume that
E, =0 = E/, for m sufficiently small, then F ®¢ E’ turns into a Z-graded vector space, whose
homogeneous components are still finite dimensional, via

(E ®c By = @ E,®FE
n+l=m

and we have
grdim(E ® E') = grdim(FE) - grdim(E").

For a homogeneous vector v € E, we define the graded dimension of v as the graded dimension of
the one-dimensional space Cv , that is,

grdim(v) = grdim(Cv) = ¢48(*),

Example 4.4.2. Let us consider R as a graded ring such that each x; is of degree 2. Moreover, for
any decomposition u, the W,-invariant polynomial ring R, can be viewed as a graded subring of R.

1. The first example is the graded dimensions of the polynomial ring and the symmetric poly-
nomial ring. They are infinite-dimensional spaces, but their homogeneous components are all
finite dimensional.
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Lemma 4.4.3. Then we have the following equalities in formal power series.

d d oo
grdim(R) = ngdim( H Z % = H . _1 e

=1 k=0

Also, by Theorem we have

d

d oo d
grdim(Rg) = [ [ ardim(Cle)) = [[ > #2) = H 1 . o

i=1 i=1 k=0

Using Lemma [{.4.3, we can compute the graded dimension of the subspace of R spanned by

the set B given in Lemma over C. As we have

RZRd@)C @Cv,

veB
we immediately know that

deg(v . . e

;t ;Bgrdlm = grdim(R)/grdim(R,) H R

. By construction of polynomials in B, we know that

Z t%(w Z t2€(wg —20(w Z 2fdeg (Ow(aa)) — Z grdim(v),

weW weWw weWw vEB

which is also equal to grdim(R)/grdim(Ry).

We can also use this method to compute ZweWM 2@ for pe Iy If p= (pM, ...

we have
c 'u‘(k> 1 t2i
20(w) __ —
RN ) s
weW,, k=11i=1

, 1), then

(26)

Also, notice that W, x *W — W s a bijection, and if (u,v) — w = wv, then we have

l(u) + L(v) = L(w). Using this, we obtain

Z f26(w) _ > wew 4

20(w) *
werw Zwewut )

Now we apply , then we obtain the following formula:

d 2i
S gt - i U=t bwn)—twn) | d

(k) } 1), ( @] -
werw [T T, (1 —#2) P 7 ]y

Here we use the following notion of quantized multinomial coefficients

{ d } _ H NG t*i)
L @ ©f * 0 ,
PO T T (6 = 19)
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and for more details we refer to [Str22d].

By a similar method, we can show that

d 2i
Z f-26(w) _ [, (=) - lwo)+0(uwy) { d 1 ' (27)
t

o c (k) . 1,2 ©
wekWw Hk:l HfiLZI (1 - th) B s

Now we return to our task to prove the surjectivity.

As e Agqe, is a free Rg-module, the graded dimension of ey Agze, equals to the product of the
graded dimension of R; and the sum of the graded dimensions of R4-basis vectors as in Corollary
411

On the other hand, as in Proposition we know that vectors in {q o sy, © My, © plg €
B,,p € B,} are Ry-linearly independent, so the graded dimension of R4-submodule spanned by
these vectors equals to the product of the graded dimension of R; and the sum of the graded
dimensions of vectors in

{gosar 0omauoplg € Ba,p € B}

In order to show that the R;-submodule spanned by these vectors is exactly the whole ey.Age,, it
suffices to show that the sum of the graded dimensions of vectors in {go sy, omy, ,0p|qg € By, p €
B, } equals to the sum of the graded dimensions of an Ry-basis of ey Aqe,, that is,

Z grdlm(q O SX\ 0 © Mg, © p) = Z grdlm( q)ﬁ/.t(h)) (28)

q€By,peB,, werW i heB,/, W, =W,Nw= 1 Wyw
Now we compute both sides of . We begin with the left hand side.

Proposition 4.4.4. The sum of the graded dimensions of the vectors in {vy,(q,p)lq € Bxr,p € B,}
equals to

R P
1) (2 vl " |,,0 @ c
A NG A0 . p @ e .
for compositions X = (AN, N A®Y) and g = (M, 1@, p9).
Proof. Notice that the sum of graded dimensions of v, ,(q,p) for ¢ € By,p € B, equals to the
product of the sum of graded dimensions of Oy, () © sy, for u € *W and the sum of graded
dimensions of my, , © Oy,v(q) for v € HW.
As the graded dimensions of the split s y, and the merge mj, » are the same, so the computation
of the two parts is almost the same. Then we only give the details for the merge.

The graded dimension of my, , o awuv(ad) is equal to the product of the graded dimension of
My, and that of 8%@(0@). The graded dimension of my, , equals ttwi)=two) and by definition,

grdim(,, () = t2Ewo)—Hwn) =)
wyv .

By in Example [4.4.2 we have

—20(v 2 : —20(w E —«tlw —Hw w d
g , gee ey ¢

verW weW weWy,
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Now we take the summation over v € IV, we have

. . wo)—20(w —20(v d
>~ grdim(my, ., © Ou,o()) = grdim(my,,,) - Y #2000 7200 =200) = [Ml) 4@ u(c)] '
NTCRNIC] )

veELW verW

In conclusion, we have

: d d
> grdim () © $xa © Mgy © Duo(ta)) = {)\(1) @ A(b)} : lﬂ(” 4, u(c)} :
UEANW werW ’ ’ t ’ B t
which completes the proof. O]

Now we compute sum of the graded dimensions of the geometric basis over R; of eyAge,,
which is parameterized by pairs (o,h) such that ¢ runs over *W*, and h runs over B, where
WHU = WH N 0'71W)\O'.

For a fixed o, the graded dimension corresponding to the submodule spanned by all (o, h) is
computed as follows:

The graded dimension of s,,_,, is t~“@+4®ue) “and the graded dimension of my 4, is

W) (Wo () — = twn)+(wpg)

The graded dimension of the crossing given by o is t=2(?) and the sum of the graded dimensions
given by h ranging over B, is

—20(w
Z £20(w0) =20(wpug ) =26(w) _ 426(w0) ~2£(wps, ) P wew t)

—2l(w)’
weko W weW,Ne~1Wyo

so the sum of graded dimensions of the geometric basis equals

Z t*?@(w)
Z t—Z(w,\)—Z(wH)—‘r%(w,\U) . t—%(a) . t2€(w0)—2ﬁ(w>\o) . weW -~
U — ZwEWAF‘IoWuJ—l ¢2tw)
t*Zf(w)

20(wo)—L Lwy) | —20(c ZwEW
=t eyt Z —20(w) (29)

GEAWH weW,No~1Wxo
g2t ton)—tw) (37 2y § 1720

Z B t—24(w)
wew cerwn eWEWLNe ™1 Wyo

In order to compute the last part of , we need the following lemma studying the structure
of the double coset WyoW,,.

Lemma 4.4.5. For a fized o, there exists bijection

Wy x “”Wu — W)\O'Wu
(ryu) — rou

and U(rou) = U(r) + (o) + {(u).
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Proof. As o is the shortest representative element in WxoW,, any element w € WyoW, has a
reduced expression w = ryouy for r; € Wy and vy € W, by [DJ86] or [Bou(7].

If there is another reduced expression w = ry0uy such that ro € Wy and uy € W, then we
have 71 'ry = cuyuy o™t € Wy N oW,o™! and wyuy' € W, No *Wyo = W,_, so we can choose
Uy, € HoW, satisfies uy € W), u,, which is uniquely determined by w and independent with the
choice of u;.

Now we see that O(ur) = L(uy) + L(uruy’ ), and we have (w) = £(uy,) + ((wuy,'). We have
wu,' = riouguy' € Wyo, so we let 7, := wuy o' € Wy, which is also uniquely determined by w,

and we have ((wu,') = l(c) + (1) as 0 € )‘W“ C AW, so we have £(w) = £(ry) + £(0) + ().
One can check that the map w +— (7, u,,) is the inverse of the map in the statement. O

Lemma immediately implies the following corollary:
Corollary 4.4.6. For o € *W*, we have

R P N I S a0 (30)

reWy ueho W# weWy oW,

If we apply a similar argument as , we have

t_2e(o—) . Z t_2€(r) . Z’UEWH t724(v) — Z t—Qf(w) (31)
S B —20(w) :
reW,y weW,No = Wyo weW oW,

Then we take the summation over o € *W*, we have

—20(o)
Z —20(w) Z —20(v) Z 3 = Z —20(w) (32)

ueWy, veEW) cEAMV ZMGWAQUWHO'71 weW

Now we come back to (29)), we see that the sum of graded dimensions of an R;-basis equals to

t*Qﬂ(O’)
20(wo)—~£ 20(w)y |
RRCUEIN) SYSLEIT
weWwW o—e)\WM 'LUGW)\OO'WHO' 1
—20(w —20(w
:t%(wo)—é(wx)—@(wu) . Z”LUEVVt 2 . Zwewt 2
ZUEWM +—26(u) ZUEW/\ +—2¢(v) (33)

—24(w) —2¢(w)
:(tﬂ(wo)—ﬁ(wu) . Zwewt ) i (tﬂ(wo)—ﬂ(w,\) . Zwewt )
EuGWH +—26(u) E’UGWA thK(U)J

A, pe
As we computed in in Example 4.4.2 we have

d
A = ,
' [u(”, p@, . mfc)] .

d
Ap = [Au),xm,m,xb)]t-

Then we see that the graded dimension of eyAge,, equals to the submodule spanned by {q o sy, ©

M. ©Plg € By,p e B}
So we obtain the following result.
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Proposition 4.4.7. The sub-R4-module spanned by
{0wyu(g) 0 8329 © Mg © Ouo(tg)|u € AW, v e W}

is the whole ey Aqe,,.

So after combining Proposition and Proposition [4.4.7] we finally complete the proof of
Theorem [4.3.1]

4.5 Discussion on general quiver Schur algebras

A natural question is: can we generalize this construction to obtain a basis of Aq for general
dimension vector d? Or we may ask whether the map

65\./4(16;\0 X Ry 65\0"4016!1 — 65\./4d6ﬂ (34)

is an isomorphism. The answer to both questions is negative. In fact, we can still obtain a linear
independent set whose cardinality equals to the rank of Aq over Rq, but the space spanned by this
set is not necessarily the whole Aq4. In other words, the map is injective but not surjective.

A significant difference between the one-vertex case and general cases is that the actions of split
operators are different. For one-vertex quiver Schur algebra Ay, the split is the same as the inclusion
map between spaces of invariant polynomials, but in general, the split acts by multiplying with a
polynomial corresponding to the Euler class of certain vector bundles. When the dimension vector
is concentrated on a single vertex, we have that Repy is just a point so that the vector bundle in
this case is of rank 0 and the Euler class is 1. As the elements appearing on the left hand side
of always involve multiplying with the Euler class, the elements on the right hand side may
not. For example, when i = 5\, then the idempotent does not involve an Euler class. The counter
example can be constructed even when the quiver only “has two vertices”.

Example 4.5.1 (Counter example). In this example, the map in 15 no longer surjective.
Let V.= {1,2} and d = (1,1). In this case, Rq ~ Clxy,y1]|, and Iq has three elements: Let

10 01
)\0:(1 1),)\1:(0 1>,and)\2:(1 0)

Then we see that ey, Aqen, = Ra-my, .z, and actually the map my, », is the identity from Clxy, y1]
to Clzy, y1] in the faithful representation, while ey, Aaex, = Ra-Sx, s Where sy, 5, acts by multiplying
with y; — x1 in the faithful representation, hence we see that the image of ex, Agex, @ ex,Aaen, in
ex,Aaexn, ~ Rq is Rq - (y — x).

However, by using the proof of the injectivity for the one vertex case, we can still obtain the
following statement:

Lemma 4.5.2. The multiplication map is injective.

In fact, we can still use the faithful representation to that the composition of multiplication map
and e;Aqe; — Home(Ry, Ry) is injective.
The set
{p o s; x,|p runs over a basis of R;}

46



is a basis of 65\Ad€,\‘0, and the set
{my, s © qlg runs over a basis of Rs}

is a basis of ey Agen” Their composition sends f € R, to p- E5 - my, 5fq, where Ej is a polynomial

in R; determined by A only. So it suffices to show that the set

{po ms, 4 © q}

forms an Rg-linear independent set, and this is true because polynomial operators and merge
operators can be computed locally. In other words, the action of polynomial operators and merges
can be decomposed into the tensor product of polynomial operators and merges at each vertex, so
it is reduced to the case for one vertex.
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5 Application: the based quasi-hereditary algebra struc-
ture

In this section, we firstly put our quiver Schur algebra aside and introduce some definition and
result about highest weight categories and quasi-hereditary algebras. Then we will show that the
algebra A, fits into the setting of this theory, and use these results to study the representation
theory of the algebra arising from A,.

5.1 Highest weight category and quasi-hereditary algebra

Highest weight categories were introduced in [CPS88], in order to set up the axiomatic framework
for a type of categories arising in many situations in representation theory. Abstracting from the
representation theory of semisimple groups, it turns out that the theory of highest weight categories
is related to the theory of quasi-hereditary algebras due to Ringel [DR92] and Scott[Sco87].

This notion is generalized to semi-infinite situations and its connection to highest weight cate-
gories is streamlined by Brundan and Stroppel in [BS18]. They give an alternative characterization
of these categories in terms of based quasi-hereditary algebras and based stratified algebras, and we
apply their definitions in the thesis.

A stratification of an Abelian category Z is a quintuple (4, L, p, A, <) consisting of a set A, a
function L labelling a full set {L(b)|b € Z} of pairwise inequivalent irreducible objects in %, and
a function p : B — A for the poset (A, <) whose fibers are all finite. The stratification of Z is
finite if Z is a finite Abelian category, which means that % is equivalent to the category of finite
dimensional modules of a finite dimensional algebra (see [EGNO16], Definition 1.8.5]).

We denote by %, the fiber p~*(\), and B< = J B, B := U B, Let %<, (vesp., Z-»)

H<A <A
be the Serre subcategories of #Z associated to the subsets B<y (resp., B<n), and Xy 1= B<\/ B

is called a stratum. We further assume:

the irreducible object L(b) has both a projective cover and an injective hull in Z<,@) for

all b € #, and each stratum is equivalent to the category of finite-dimensional vector spaces.

(35)

Definition 5.1.1 (Standard object, costandard object). With assumption , for b € B such
that p(b) = X\ we define the standard object A(b) as the projective cover of L(b) in %<y, and the
costandard object V(b) as the injective hull of L(b) in X<y.

For V. e %, a A-flag of V means a filtration 0 = V5 C V; € --- C V, = V with sections
Vin/Vin—1 = A(by,) for some b, € A. We denote by A(Z) the exact subcategory consisting of all
objects with a A-flag. We also define V-flags and V(Z) in a similar way.

Definition 5.1.2 (Highest weight category). Let % be an Abelian category equipped with a finite
stratification (A, L, p, A, <) satisfying assumption (35)).

Then we say X is a finite highest weight category if for each A € A, there exists a projective
object Py admitting a A-flag with A(N) at the top and other sections of the form A(u) for p € A
with > .
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Remark 5.1.3. There are many important and classical examples of highest weight categories, such
as blocks of the BGG category O for a semisimple Lie algebra [Hum08], the category of modules of
classical Schur algebras [Mat99] and categories arising from perverse sheaves and singular spaces
[BBDG18]. More recent examples, like categories defined via certain diagrams, can be found in
[BS1§].

Now suppose that Z is a highest weight category, we define .7 (%) = A(Z) NV (Z). Then for
any b € #, there is a unique indecomposable object T, € .7 (Z) such that such that [T}, : L(b)] =1
and p(b') < p(b) whenever [T}, : L(V')] # 0 by [Don98, Theorem A4.2] (see also [BS1§]). We also have
that any object T € (%) is a direct sum of these T,. If T € T (%) has a summand isomorphic
to Ty, for all b € A, we call it a tilting generator.

With such a tilting generator, we let B = Endg(7)°P. Then the finite Abelian category %’ =
B-Modyy is called the Ringel duality of Z relative to T'. It turns out that %’ is also finitely stratified,
and more detail can be found in [BS18, Theorem 4.10].

To give an elementary characterization of highest weight categories, we need the notion of based
quasi-hereditary algebras. We apply the following definition in [BS18|, which is equivalent to the
one given in [KM20), Definition 2.4]. For more details we refer to [BS18, §5].

Definition 5.1.4 (Based quasi-hereditary algebras). A finite based quasi-hereditary algebra is a
locally unital algebra over a field such that A = @ e;Aej which is free of finite rank over the ring,
with the following data: e

QH1 A subset A C I indexing special idempotents {e |\ € A}.

QH2 A partial order < making A into a poset.

QH3 Sets Y (i, \) C e;Aex, X (N, j) C exAe; fori,je I, \eA.
Let Y(X) = UierY (i, A), X(N) = Ujer X (N, 7), and we impose the following three axioms:

QH/ Products {yz|(y,x) € )\UAY()\> X X(A\)} form a basis for A.
S

QH5 For A\, e A, Y(u, ) and X(\, 1) are empty unless pp < A.
QHG6 For each A € A, we have X (A, \) =Y (A, A) = {ex}.

If there is some given algebra anti-involution o : A — A with o(e;) = e; and Y (i, \) = o(X (), 1))
forallv e I, € A, then A is said to be symmetrically based.

The basis given by is called the triangular basis of A (which obviously depends on
the choice of elements in X (A, 7) and Y (i, A)).

Suppose that A is already a finite based quasi-hereditary algebra, then for A € A we let A<, be
the quotient of A be the sum of Ae, A such that p £ XA. We write €y for the image of ey in A<y,
then the standard and costandard modules associated to A is defined as

A(N) = Acen, V(A) = (63 A<))”
respectively.
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Remark 5.1.5. The notion above also makes sense if we replace the field by a commutative ring,
and replace the finite dimensional condition by being free of finite rank over the ground ring. Then
in the symmetrically based case, it is equivalent to the notion of an object-adapted cellular category
introduced by Elias and Lauda. See [EL16, Definition 2.1, Lemmas 2.6-2.8] for more explanations.

The following theorem [BS18, Theorem 5.9, Theorem 5.10] gives the preicse relationship between
highest weight categories and based quasi-hereditary algebras.

Theorem 5.1.6. 1. Let A be a finite based quasi-hereditary algebra over a field. The modules
{L(A) := hdA(\) Z socV(A)|A € A}

give a complete set of pairwise inequivalent irreducible left A-modules. Moreover, the category
X = A-modgy is a finite highest weight category with the given weight poset (A, <). Its
standard and costandard objects A(X) and V() are as defined by (5.2).

2. Let Z be a finite highest weight category with weight poset (A, <) and labelling function L.
Suppose we are given A C I and a tilting generator T' = @, T; for # such that each Ty for
A € A is a direct sum of T(N\) and other T'(u) for p < A. Let

A= (@D Homy (T3, T;))™,

ijel
and fori,j € I,\ € A we pick morphisms
Y (i, ) C Homgp(T;,T)), X (N, j) C Homg(Ty, T;)

lifting basis for Homg(T;, V(N)) and Homg(A(N), T;) such that Y (A, X) = X (A, ) = {idn, },

then
el e J UYEn x X))

1s a triangular basis making A into a finite based quasi-hereditary algebra with respect to the
opposite poset (A, >).

5.2 The algebra A; as a based quasi-hereditary algebra

Back to our algebra A,;, which is free over R;. We have the decomposition of Rz;-module A; ~

@D e, Aqen where p, A runs over Iy, the set of all compositions of d. All these summands are free
WAEL
of finite rank over RR; because e, Aje =~ RLHWL‘AW' as Rg-modules.
Now we show that A4, is a based quasi-hereditary algebra over Ry.
The subset A C I; has only one element, which is the composition A\g = (d) with only one

component, and for any u, A € I;, we set

Y (A Xo) = {by,,(P)lp € Ba}, X (Ao, 1) = {b}, ,(q)la € B} (36)

And by Theorem [4.3.1] one can check that all axioms in Definition are satisfied, so we have
the following result:
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Theorem 5.2.1. The algebra A;~ @ e, Aqen is a finite based quasi-hereditary algebra over Ry
A u€ly

with A = {Xo} and Y (X, Xo), X (Xo, 1) defined as in (36]).

Moreover, the algebra A, actually is symmetrically based.
We consider the Ry-linear map o : A; — Ay such that

Vau(P,q) = v, p),

for any u, A € I;,p € By,q € B, then it is obvious that o? = 1. Alsp, it follows from definition
that o(X (Ao, u)) = Y (u, A) for p € 1.

Now we show that o is an anti-algebra homomorphism. Then for arbitrary py, po, s, g € Iy
and ¢; € B, for ¢ = 1,2,3,4, we have

‘7<Vu1,u2 (71,G2)) - U(Vus,m (g3,q4))
=Vyiz1 (425 41) * Vg s (a5 G3)
=0y 4 My 2o (@1 * Q4) * Vi 5 (G2, G3)
:6M1:u4mu1,>\o <QI ) Q4> : U(Vus,#z (Q?n qQ))
:U(5u4,u1muw\o (- q) - Vig,po (g3,92))
=0 (Vg ua (43, Q1) * Vi o (015 G2)),
so ¢ is an anti-algebra involution over Ry.
Moreover, we have o(ey) = ey for any A € I;, and hence o(1) = 1. In fact, we know that ey
is an idempotent and it is in the center of eyAqey, which is eyRqey, by Proposition 2.4.17} So we

know that e, is the only idempotent contained in the center of ey.A4e,, and the same is true for
o(ey), because o(ey) - a(ey) = o(e3) = o(ey), and for any 3 € ey Agey, we have

a(er) - B=o(ex) a0 (B) =a(0™'(B) ex) = alex 0 (B)) =00 (B) - o(ex) = B o(ex),

so we immediately see that o(e)) = ey, and under o, A; becomes a symmetrically based quasi-
hereditary algebra over R,.
Then we draw the following conclusion:

Proposition 5.2.2. The algebra Ay, together with the quasi-hereditary algebra structure as in
Theorem can be equipped with an anti-algebra involution o which sends vy ,(p, q) to v, (g, p),
making Aq a symmetric based quasi-hereditary algebra.

Theorem implies that A; = Agey, Aq, we immediately have A, is Morita equivalent to
exoAder, = Ry (see [AF92, §21]). More precisely, the following functors give the equivalence:

exgAd @4, (=) : Ag — Mod — e),Aqe), — Mod = Ry — Mod,

Ade,\o ®5A0Ad6)\0 (—) : Ry — Mod = 6)\0Ad6)\0 — Mod — A; — Mod.

And since A in this case has only one element A\, we have (A;)<), = Aqg4, and the standard
(resp., costandard) module A(Xg) (resp., V(Ag)) is Agey, (resp., (ex,4q)*). Note that

Agey, =~ @ R,

p€lq

o1



is exactly the faithful representation of A, given in the previous section.
Since Ry is not a field, we cannot apply Theorem to Ay. But we can let K, be the fraction
field of Ry, i.e the field of symmetric rational functions of d variables, and we let Aff = K,®p, Ad.
Obviously, this is again a symmetrically based quasi-hereditary algebra over K4, with exactly the
same A = {\g}, X (\, \o) and Y (g, 1). Also, the category of finite (K4-)dimensional AX-modules is
a highest weight category. Via Theorem [5.1.6] there is only one isomorphism class of simple objects
in this category, given by the head of A% ey, .
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