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1 Introduction

Schur-Weyl duality of type A makes the study of representations over C of two seemingly disparate
objects, namely the symmetric group Sd and the Lie algebra gln akin to exploring two reflections in
the same mirror. In other words, when working over C, one side completely determines the other
side. On the one hand, in the classical approach to studying the representations of Sn, partitions and
the combinatorics of tableaux appear in a rather unnatural way, as this approach is not taking into
account special algebraic features that Sn enjoys, for example its structure as a Coxeter group, or that
symmetric groups are naturally embedded in each other. Juxtaposingly, the classification and study of
finite dimensional representations of gln (or more generally any finite dimensional complex semisimple
Lie algebra) heavily depends on the existence of a weight space decomposition i.e, a simultaneous
eigenspace decomposition with respect to a maximal commutative (Cartan) subalgebra of the universal
enveloping algebra U(gln). Thus, one might expect that we can mimic this approach to study the
representation theory of the symmetric groups using a spectral approach in analogy to weights and
weight spaces arising from the action of a commutative subalgebra. Okounkov and Vershik [11] realized
this idea, using special elements of the group algebra C[Sn] called the Young-Jucys-Murphy elements
which were independently used by Young, Jucys and Murphy for proving various results about the
structure of C[Sn]. These elements are generators of a maximal commutative subalgebra of C[Sn], the
Gelfand-Zetlin algebra, and dominate the study of irreducible representations over C. Note that the
field of complex numbers was chosen in order to ensure some properties exist, for example over C we
have a generalized eigenspace decompsition.

Ever since, various attempts have been made to generalize this to other types of diagrammatic
algebras arising from passing this duality to other Lie subalgebras or even the group of permutation
matrices Sn inside gln while in parallel enlarging the "mirror" player C[Sn]. A peculiar case is the one
of the partition algebras P2n(t), arising as the "mirror" player for the group of permutation matrices,
naturally identified with Sn (where the action is different than the one coming from the classical Schur-
Weyl duality, namely the first one permutting tensor factors while this one permutes basis elements),
first proven by Martin, see [8]. The partition algebra first arose from problems in statistical mechanics,
see [9]. Halverson and Ram [6] defined analogues of YJM elements for the partition algebra, using
this duality with the symmetric groups and showed that whenever these algebras are semisimple,
their representation theory is again governed by these YJM elements. However, a problem with this
approach is the following: The diagrammatics available did not include YJM elements as generators.
Instead, they could only be described via linear combinations of other diagrams. As a consequence,
the power of YJM elements and of diagrammatics could not be combined.

Enyang [5] provided us with very complicated recursive formulas for the YJM elements of P2n(t),
making relations in this algebra difficult to confirm. In order to solve the first problem, one first tries to
find an invariant way to define these YJM elements (i.e a recursive formula completely characterizing
them) and secondly find a "nice" presentation of the corresponding algebra, compatible with the
definition of these YJM elements. Then one creates a new algebra that contains the original one both
as a subalgebra and as a quotient, by adjoining these YJM elements as generators satisfying certain
relations. In particular, for the case of Sn with its usual presentation as a Coxeter group, this new
algebra is the degenerate affine Hecke algebra Hn, originally introduced by Nazarov. For the partition
algebra, recently Creedon and De Visscher in [4] defined a version of the affine partition algebra, using
it to prove various results for the representation theory of P2n(t) both for the semisimple and for the
non-semisimple case. But this still did not solve the problem of the YJM elements not being included
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in the diagrammatics.
Towards that, Brundan and Vargas [1] took a more modern approach to the matter, defining

a new category, the affine partition category. They used a theorem from [10], which embeds the
partition category Part inside the Heisenberg category Heis defined by Khovanov [7]. The latter
has natural candidates for YJM elements. With this approach, the YJM elements are included in
the diagrammatics and moreover, one can now employ the string calculus of Heis to prove relations
involving these complicated YJM elements, making them easier to control. This thesis takes a tour
through these ideas and is structured as follows: In section 2, we give an exposition of the Okounkov-
Vershik approach, mostly following [11] and [2]. In section 3 we deal with the case of the partition
algebras P2n(t), following [6],[4] and [3]. In section 4, we take a detour to the structure of Deligne’s
interpolation category Rep(St;C), mostly following [3]. Finally, section 5 is devoted to the definition of
the affine partition category and the retrieval of the classical YJM elements via this approach, following
[1].
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2 The Okounkov-Vershik Approach

2.1 Gelfand-Zetlin Constructions

For this approach, we are working over C, thus for any finite group G, the group algebra C[G] is
semisimple by Maschke’s theorem. Also, unless otherwise stated, all our representations are unitary and
finite dimensional. By unitary we mean that any representation (V, σ) of G is equipped with a scalar
product ( , ) making the actions of every g ∈ G unitary operators, or equivalently (σ(g)v, σ(g)w) =

(v, w) for every v, w ∈ V . We can turn every representation (V, σ) into a unitary representation as
follows. Pick a non-zero arbitrary scalar product ⟨ , ⟩ for V . Then the scalar product

(v, w) =
∑
g∈G
⟨σ(g)v, σ(g)w⟩

endows V with the structure of a unitary representation of G. For a group G, we denote by Ĝ the
set consisting of a fixed complete class of inequivalent irreducible representations of G. Moreover, if
H ≤ G is a subgroup, we denote by C(G,H) = {g ∈ G : hgh−1 = g, ∀h ∈ H} the centralizer algebra
of H in G.

Definition 2.1 (Multiplicity-free subgroup). Let H ≤ G. We say that H is a multiplicity-free subgroup
of G if for every σ ∈ Ĝ the restriction ResGH σ is multiplicity free. Equivalently, we can characterize
the above as

dimHomH(ρ,ResGH σ) ≤ 1

for every ρ ∈ Ĥ, σ ∈ Ĝ.

Definition 2.2 (Multiplicity free chain). Let G be a group. A chain of subgroups

G1 = {1} ≤ G2 ≤ . . . ≤ Gn−1 ≤ Gn ≤ . . .

is called a multiplicity free chain if Gn−1 is a multiplicity free subgroup of Gn for all n ≥ 2.

Remark 2.3. Note that by adjunction of restriction and induction for finite groups, the above definition
can also be reformulated as

dimHomG(σ, Ind
G
H ρ) ≤ 1

for every σ ∈ Ĝ, ρ ∈ Ĥ.

Theorem 2.4. The following are equivalent:

(a) The algebra C(G,H) is commutative.

(b) H is a multiplicity-free subgroup of G.

Proof. For a full proof, see [2].

Note that for the chain to be multiplicity free, we necessarily need G1 = {1} to be a multiplicity
free subgroup in G2, or equivalently by theorem 2.4, C(G2, 1) = G2 to be abelian. Note that by
theorem 2.4, an equivalent definition for the chain to be multiplicity free would be that the centralizers
C(Gi, Gi−1) are commutative for all i.

Proposition 2.5 (Generalized Gelfand Lemma). Let H be a subgroup of the finite group G such that
every g ∈ G is H-conjugate to g−1. Then the centralizer C(G,H) is commutative.
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Proof. See Proposition 2.1.12 from [2].

Definition 2.6 (Branching graph). The branching graph of a multiplicity free chain is the oriented
graph whose vertex set is Ĝ1 ⊔ Ĝ2 ⊔ . . . ⊔ Ĝn ⊔ . . . and whose edge set is

{(ρ, σ) : ρ ∈ Ĝn, σ ∈ Ĝn−1,mσ,ρ = 1, n ≥ 2}

where mσ,ρ is the multiplicity of σ in ResGn
Gn−1

ρ.

In other words, it is the graph with vertex set the inequivalent representations of each individual
group in the chain and two irreducible representations in consecutive levels are connected, if and only if
we can find the one in the lower level inside the decomposition of the restriction of the one in the higher
level into irreducible representations when restricting to the previous level. We shall write ρ → σ if
(ρ, σ) is an edge in the branching graph.

CONSTRUCTION OF GELFAND-ZETLIN BASIS

Remember that by Schur’s lemma, the irreducible representations of an abelian group over C are all 1
dimensional. Let (Vσ, σ) ∈ Ĝn. If we have a multiplicity free chain then

ResGn
Gn−1

Vσ =
⊕

ρ∈Ĝn−1:σ→ρ

Vρ

is an orthogonal decomposition. Iterating this decomposition we get that for ρ ∈ Ĝn−1 the decompos-
ition

Res
Gn−1

Gn−2
Vρ =

⊕
θ∈Ĝn−2:

ρ→θ

Vθ

Iterating this process for n− 1 steps, we get direct sums of one dimensional trivial representations. To
formalize this, let T (σ) be the set of all paths in the branching graph, i.e

T (σ) = {T = (σ = σn → σn−1 → . . .→ σ2 → σ1) : σi ∈ Ĝi, ∀i = 1, 2, . . . , n.}.

Notice that every path in T (σ) ends in the trivial representation. We can now write

Vσ =
⊕

σn−1∈Ĝn−1:
σ→σn−1

Vσn−1 = . . . =
⊕

T∈T (σ)

Vσ1

In the last decomposition, every space is one dimensional, thus for each T ∈ T (σ), we may choose vT
in Vσ1 such that ∥vT ∥ = 1. Then the decomposition above may be written as

Vσ =
⊕

T∈T (σ)

⟨vT ⟩.

In other words, the set of vT ’s defined above yields an orthonormal basis for Vσ.

Definition 2.7. The above orthonormal basis {vT | T ∈ T (σ)} will be called a Gelfand-Zetlin basis
(or GZ basis for short) for the irreducible Vσ ∈ Ĝn with respect to the multiplicity free chain

{e} = G1 ≤ G2 ≤ . . . ≤ Gn−1 ≤ Gn.
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Note that in every level of the graph, for a θ ∈ Ĝk, its multiplicity in ResGn
Gk
σ is exactly the number

of paths in the graph from σ to θ. Moreover, we get an effective way of decomposing the isotypic
component of Vθ in ResGn

Gk
σ into its orthogonal irreducible copies. Indeed, with each path from σ to

θ one associates a unique component Vθ and in particular, two different paths correspond to different
components. For j = 1, . . . , n we denote by Tj(ρ) the set of paths S in the branching graph of the form

S = (ρ = σn → σn−1 → . . .→ σj+1 → σj)

where σk ∈ Ĝk for all k and note that T1(ρ) = T (ρ). For T = (σn = ρ → σn−1 → . . . → σ1) ∈ T (ρ)
denote by Tj ∈ Tj(ρ) the j-truncated path of T , or in other words the path following T from ρ up to
σj . Now for j = 1, . . . , n and S ∈ Tj(ρ) set

VS =
⊕

T∈T (ρ):
Tj=S

Vρ1

(That is, the space consisting of the decomposition of one of the irreducible factors in the decomposition
of ResGn

Gj
ρ intoGj-irreducibles in the selected GZ basis). So following this, by setting ρS = (ResGn

Gj
ρ)|VS

we have that ρS is a Gj-irreducible representation and in fact, ρS = ρj . Also, VT = CvT for all
T ∈ T (ρ). Finally, the restriction of ρ to Gj yields the orthogonal decomposition into Gj irreducible
representations

ResGn
Gj
Vρ =

⊕
S∈Tj(ρ)

VS .

Lastly, for every j, if S ∈ Tj(ρ) and T ∈ T (ρ), then Tj = S if and only if vT ∈ VS . In other words,
an element of the GZ basis belongs to a certain Gj irreducible summand (indexed by a truncated path)
if and only if the j- truncation of the path we took is exactly the path corresponding to that summand.

Remark 2.8. For σ ∈ Ĝn, it holds that

dimVσ =|T (σ)|.

That is, the dimension of any irreducible Gn representation is equal to the number of paths starting
from it in the branching graph.

Example 2.9. For the sake of sanity, suppose we know that the chain of symmetric groups is multipli-
city free and that their branching graph is isomorphic to the Young graph of partitions. We explain how
the above ideas work out for S(2,1), the irreducible representation of S3 corresponding to the partition
(2, 1) ⊢ 3. There are two paths from it to S1, namely

T1 =

 → →

 , T2 =

 → →


and thus S(2,1) is two-dimensional. Moreover, as an S2 representation it decomposes in a multiplicity
free way into irreducibles as

S(2,1) = S(2) ⊕ S(1,1)

i.e it is the sum of the trivial and the alternating representation for S2. For a GZ basis {vT1 , vT2}, we

have that vT1 ∈ S(2) ⊆ S(2,1) as its 2-truncated path

 →

 falls exactly onto the trivial

partition (2) corresponding to the representation S(2). Similarly vT2 ∈ S(1,1) ⊆ S(2,1).
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2.1.1 Gelfand-Zetlin Algebra

The classification and study of finite dimensional representations of a finite dimensional complex
semisimple Lie algebra heavily depends on the existence of a weight space decomposition that is a
simultaneous eigenspace decomposition of a commutative Cartan subalgebra. In analogy to this theory,
one might think that we would like to find a maximal commutative subgroup of G. In the case of the
symmetric group, that is completely hopeless, but as in the case of Lie algebras, having the existence
of the universal enveloping algebra which entails all the information of its representations, so does the
group algebra here. So we instead try to find a maximal commutative subalgebra of C[G]. This is the
role of the Gelfand-Zetlin algebra whose definition is given below.

Definition 2.10 (Gelfand-Zetlin algebra). Let G be a finite group. We denote by Z(i) the center of the
group algebra C[Gi]. The Gelfand-Zetlin algebra (GZ for short), denoted by GZ(n) associated with the
multiplicity-free chain G1 ≤ G2 ≤ . . . ≤ Gn−1 ≤ Gn ≤ . . . is the algebra generated by the subalgebras

Z(1),Z(2), . . . ,Z(n)

i.e in symbols
GZ(n) = ⟨Z(1),Z(2), . . . ,Z(n)⟩.

We want to give a characterization of this algebra as a maximal commutative subalgebra of C[Gn].
In order to gain some insight on how this algebra might look like, we first find a maximal commutative
subalgebra of Mn×n(C).

Example 2.11. We claim that the algebra of diagonal matrices Dn is maximal commutative in
Mn×n(C). Commutativity is imminent by commutativity of C. Now for maximality, assume that
Dn ⊂ A, where A is a commutative subalgebra of Mn×n(C). For i = 1, . . . , n, denote by Ei,i the matrix
containing 1 in position (i, i) and 0 elsewhere and let (xi,j)ni,j=1 = x ∈ A. Since A is commutative and
contains diagonal matrices, it holds

Ei,ix = xEi,i

for all i = 1, . . . , n. Equivalently, since multiplying with Ei,i from the left (right) means nullifying every
entry of x but row (column) i, we get xi,j = 0 for all j ̸= i. Since i was random, this yields x ∈ Dn,
proving that Dn is a maximal commutative subalgebra of Mn×n(C).

Theorem 2.12. The Gelfand-Zetlin algebra GZ(n) is a maximal commutative subalgebra of C[Gn].
Moreover, it coincides with the subalgebra of elements f ∈ C[Gn] whose actions σ(f), σ ∈ Ĝn are
simultaneously diagonalized by a Gelfand-Zetlin basis of Vσ. In formulas,

GZ(n) = {f ∈ C[Gn] : σ(f)(vT ) ∈ CvT , for all σ ∈ Ĝn and T ∈ T (σ)}.

Proof. We prove that GZ(n) is commutative and a set of generators is the set of all products of the
form

f1f2 . . . fn (1)

where fi ∈ Z(i). Since we are dealing with central elements, for j ≤ i, if fj ∈ Z(j) and fi ∈ Z(i) then
it is clear that

fifj = fjfi.

since C[Gj ] ⊆ C[Gi] and fi is central. This proves that GZ(n) is commutative and that the set
proposed in eq. (1) is a generating set. Now denote by A the set on the right hand side of the
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theorem. Since the linearization of an action is an algebra morphism, A is an algebra. We show that
it contains all the centers. Suppose fi ∈ Z(i), σ ∈ Ĝn, T ∈ T (σ) and S = Ti. Then for the GZ basis
element vT corresponding to this path, we have that vT ∈ VS , where VS is the irreducible summand
corresponding to the path S in the decomposition of ResGn

Gi
σ. Combined with fi ∈ Z(i), we get that

σ(fi) ∈ EndGi(Res
Gn
Gi
σ) and by Schur’s lemma, its action onto vT falls into EndGi(VS) = CidVS

, thus
it acts by a scalar, or in other words, there exists λS,fi ∈ C such that σ(fi)vT = λS,fivT . This proves
Z(i) ⊆ A for all i and consequently GZ(n) ⊆ A. We are left with proving the opposite direction and
maximality. To show A ⊆ GZ(n), let σ ∈ Ĝn and T ∈ T (σ), say

T = (σ = σn → σn−1 . . .→ σ2 → σ1).

Remember that we have the isomorphism

C[G] ∼=
⊕
σ∈Ĝ

Hom(Vσ, Vσ) (2)

given by f 7→ ⊕σ(f). Then since EndGi(V ) = CidV for every irreducible representation V of Gi, for
each i = 1, . . . , n we can choose fi ∈ C[Gi] such that their actions satisfy

ρ(fi) =

idVρ , if ρ = σi

0, otherwise

for all ρ ∈ Ĝi. By repeating this argument, it is easy to see that the element

FT = f1f2 . . . fn

satisfies FT ∈ GZ(n) since,

σ(FT )vS =

vT , ifS = T

0, otherwise

for all S ∈ T (σ). It also follows, that the set {FT : T ∈ T (σ), σ ∈ Ĝn} is a basis for A and thus
A ⊆ GZ(n). Maximality stems from the isomorphism

C[Gn] ∼=
⊕
σ∈Ĝn

Hom(Vσ, Vσ) ∼=
⊕
σ∈Ĝn

Mdσ×dσ(C).

where dσ = dimVσ, together with the fact that A contains the algebra of diagonal matrices.

By the last computation and the existence of the elements FT , we get the following.

Corollary 2.13. Every element vT , for T ∈ T (σ) in the Gelfand-Zetlin basis of Vσ is a common
eigenvector for all operators σ(f) with f ∈ GZ(n). In particular, it is uniquely determined up to a
scalar factor by the corresponding eigenvalues.

We end the section by showing that the Gelfand-Zetlin algebra of a multiplicity-free chain contains
the centralizer algebra of Gn−1 in Gn.

Proposition 2.14. Let G1 ≤ G2 ≤ . . . ≤ Gn−1 ≤ Gn ≤ . . . be a multiplicity-free chain of finite groups.
Then C(Gn, Gn−1) ⊆ GZ(n).
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Proof. First note that f ∈ C(Gn, Gn−1) if and only if fh = hf for every h ∈ Gn−1. Then if σ ∈ Ĝn,
we have

σ(h)σ(f) = σ(hf) = σ(fh) = σ(f)σ(h).

which means that
σ(f) ∈ HomGn−1(Res

Gn
Gn−1

σ,ResGn
Gn−1

σ).

Since the chain is multiplicity-free, ResGn
Gn−1

σ is multiplicity free, meaning that

σ(f)Vρ ⊆ Vρ

for every f ∈ C(Gn, Gn−1), ρ ∈ Ĝn−1 such that Vρ ≤ Vσ. Now observe that if f ∈ C(Gn, Gn−1), then
f ∈ C(Gn, Gk) for every k = n − 2, . . . , 2, 1. Therefore, we can iterate the above argument all the
way down to when ρ ∈ Ĝ1, implying that every vT in the GZ basis is an eigenvector for σ(f). Thus
C(Gn, Gn−1) ⊆ A which is equal to GZ(n) by the theorem 2.12.

Remark 2.15. All the considerations in this chapter naturally generalize for chains of finite dimen-
sional semisimple algebras over any field.

2.2 Combinatorics of Young diagrams and Multiplicity free chain of Sn

We start by reminding some basic facts about the symmetric group Sn. Remember that every
σ ∈ Sn can be written uniquely as a product of disjoint cycles. That is,

σ = (a1 . . . aλ1)(b1 . . . bλ2) . . . (c1 . . . cλk
)

where the numbers above form a permutation of 1, 2, . . . , n. Since the cycles are disjoint, they commute
and thus we can assume without loss of generality that λ1 ≥ λ2 ≥ . . . ≥ λk ≥ 0 with λ1+λ2+. . .+λk =

n. Additionally, if π ∈ Sn is any other permutation, then

πσπ−1 = (π(a1) . . . π(aλ1)) (π(b1) . . . π(bλ2)) . . . (π(c1) . . . π(cλk
)) .

That means conjugacy classes in Sn are completely characterized by cycle structures. In other words,
the permutations in the orbit of the random σ ∈ Sn are exactly the elements with cycle structure
(λ1, . . . , λk). Note that the cycle structure by the above considerations is also completely characterized
by partitions of n. Since conjugacy classes are in bijection with the irreducible representations of Sn
for all n ∈ N, we get that an indexing set for the set of inequivalent irreducible representations for Sn
are partitions of n.

Lemma 2.16 (Indexing set for Ŝn is set of partitions of n.). The conjugacy classes of Sn can be
parametrized by partitions of n. In particular, if λ ⊢ n, the conjugacy class associated to λ consists of
all permutations σ ∈ Sn whose cycle decomposition is of the form

σ = (a1 . . . aλ1)(b1 . . . bλ2) . . . (c1 . . . cλk
).

Consequently, an indexing set for Ŝn is the set of partitions of n.

For any n ∈ N we embed Sn−1 into Sn as the subgroup stabilizing n, i.e Sn−1 = {σ ∈ Sn : σ(n) =

n}.
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Theorem 2.17. For any n ∈ N, it holds that Sn−1 is a multiplicity free subgroup of Sn. Consequently,
the chain

S1 ≤ S2 ≤ . . . ≤ Sn−1 ≤ Sn

is multiplicity free.

Proof. By proposition 2.5, it is enough to show that every element σ ∈ Sn is Sn−1-conjugate to its
inverse σ−1. Decomposing σ into its disjoint cycle decomposition, we have that cycles belonging in
Sn−1 are conjugate to their inverse as the inverse of a k-cycle is a k-cycle yielding that they belong
in the same conjugacy class. Thus we only have to consider cycles involving n. Also since cycles are
cyclic arrangements of numbers, we can assume σ = ( n ak ak−1 . . . a1 ) is a k cycle with k ≤ n and
ai < n for all i. Then σ−1 = ( n a1 a2 . . . ak ) = πσπ−1 where π ∈ Sn−1 is the permutation bringing
the ai’s back in place.

For example, the cycle (1 2 3 4) = (4 1 2 3) is S3 conjugate to its inverse (4 3 2 1) =

(1 3)(4 1 2 3)(1 3) with (1 3) ∈ S3.

Definition 2.18 (Young diagram). Let λ = (λ1, . . . , λk) ⊢ n. The Young diagram of shape λ associated
to the partition is the array formed by n boxes with k left-justified rows in which every row i contains
exactly λi boxes. In particular, every such Young diagram contains λ1 columns.

Example 2.19. Consider the partition (5, 5, 3, 2, 1) ⊢ 16. The Young diagram associated with it is
given below

The rows and the columns are enumerated from top left to bottom right, exactly like the rows and
columns of a matrix. We can thus give coordinates to every box according to the row and column they
are in.

Definition 2.20 (Removable-Addable boxes). In the Young diagram associated to λ = (λ1, . . . , λk) ⊢
n, we say that the box in position (i, j) is removable if in the positions (i+ 1, j) and (i, j + 1) there is
no box. Equivalently, either i < k and j = λi > λi+1, or i = k and j = λk. This means that removing
this box we are again left with a Young diagram associated with a partition λ′ ⊢ n− 1. Similarly, the
position (i, j) is addable, if λi = j − 1 < λi−1 or i = k+ 1 and j = 1. This means that if we add a box
to an addable position (i, j) we get a Young diagram associated to a partition λ′ ⊢ n+ 1.

Pictorially, addable and removable boxes in a Young diagram are very easy to identify. Namely,
removable boxes are the inner low-right corner boxes, while addable boxes are the outer high- right
boxes. In example 2.19,
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the boxes colored in blue are the removable boxes, while the ones colored in red are the addable ones.
As usual, a standard tableaux of shape λ ⊢ n is a bijective filling of the Young diagram with the
numbers 1, 2, . . . , n such that the numbers are strictly increasing both along the rows and along the
columns. For any partition λ ⊢ n, we denote by Tab(λ) the set of all standard tableaux of shape λ.
Finally we set

Tab(n) =
⊔
λ⊢n

Tab(λ).

Example 2.21. The following is a standard tableaux of shape (5, 5, 3, 2, 1) ⊢ 16:

1 2 10 13 15

3 4 11 14 16

5 6 12

7 8

9

Remark 2.22. Note that in a standard tableau, number 1 is always placed in position (1, 1), and the
box containing the value n is always a removable box.

Let T be a Young tableau of shape λ and σ ∈ Sn. We denote by σT the tableau obtained from T

by replacing i with σ(i) for all i = 1, . . . , n.

Definition 2.23 (Admissible transpositions). Let T be a standard Young tableau. We say that a simple
transposition si = (i i+ 1) is admissible for T if siT is again a standard tableau.

Notice that since only the entries i, i+ 1 are affected by the action of si, a simple transposition is
admissible for T if and only if i, i + 1 belong neither to the same row nor to the same column of T .
In example 2.21, s2, s4, s6, s8, s14 are admissible transpositions, while s7 is not since it results in a non
standard tableaux.

For λ ⊢ n we denote by T λ the canonical standard tableau of shape λ shown below

1 2 3 . . . λ1−1 λ1

λ1+1 λ1+2 . . . λ1+λ2

...
...

...

λ̄k−1 . . . n

where λ̄k−1 = λ1 + λ2 + . . .+ λk−1 + 1. If T ∈ Tab(λ), we denote by σT ∈ Sn the unique permutation
such that σTT = T λ.

Example 2.24. For example, the canonical standard tableau T (3,2,2) is illustrated below:

1 2 3

4 5

6 7
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Theorem 2.25. Let T ∈ Tab(λ) and set l = l(σT ). Then there exists a sequence of admissible simple
transpositions si1si2 . . . sil such that

si1si2 . . . silT = T λ.

Proof. Let j denote the entry in the right bottom box of T . If j = n then the box is removable, so we
can consider the standard tableau T ′ of shape λ′ = (λ1, λ2, . . . , λk − 1) ⊢ n− 1 obtained by removing
that box. Then we can apply induction to T ′ to find a sequence of l′ = l(σT ′) admissible transpositions
transforming T ′ into T λ′ . Then it is clear that since the box removed had the value n, the same sequence
transforms T into T λ and that l = l′. Suppose now that j ̸= n. Then since j is sitting in the right
bottom corner of a standard tableau, it is clear that sj is an admissible transposition for T . Similarly,
sj+1 is an admissible transposition for sjT . Iterating this process, sn−1 is an admissible transposition
for sn−2sn−3 . . . sj+1sjT . But now the standard tableau sn−1sn−2sn−3 . . . sj+1sjT contains the value
n in the bottom right corner box and thus the situation is reduced to the previous case.

Example 2.26. We illustrate how the algorithm of theorem 2.25 works for the standard tableau

1 3 4

2 6

5 7

.

Since 7 is in the right bottom removable box, we can remove it and continue the process with

1 3 4

2 6

5

Since 5 is in the right bottom box, s5 ∈ S7 is admissible and such that 6 goes to the right bottom
removable box. Thus we continue with

1 3 4

2 5

but 5 is in the right box, so we continue to

1 3 4

2

.

Here the transposition s2 is admissible and right after s3 is admissible, finally bringing everything in
order. Thus s3s2s5 ∈ S7 is the permutation transforming the original tableau to the canonical standard
tableau.

Corollary 2.27. Let S, T ∈ Tab(λ). Then S can be obtained from T by applying a sequence of
admissible simple transpositions.
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Proof. If σ, π are the permutations transforming S, T respectively to T λ, then π−1σ is the permutation
transforming T to S.

Remark 2.28. theorem 2.25 provides us with a standard procedure to decompose σT as a product of
l(σT ) admissible simple transpositions.

2.2.1 Content of a tableau

Let T be a Young tableau of shape λ = (λ1, . . . , λk) ⊢ n. We denote by i : [n] −→ [k] and
j : [n] −→ [λ1] the functions defined by setting i(t) and j(t) to be the row, respectively column of
T containing the value t. Set c(t) = j(t) − i(t) and call it the content of the box with value t. For
example, in the canonical standard tableau T (5,5,3,2,1) it holds that i(10) = 2, j(10) = 5.

Definition 2.29 (Content of a tableau). Let T ∈ Tab(λ). The content of T is the vector in Zn given
by

C(T ) = (c(1), c(2), . . . , c(n))

For example, the content vector for the canonical standard tableau T (5,5,3,2,1) is the vector v ∈ Z16,
with coordinates

v = (0, 1, 2, 3, 4,−1, 0, 1, 2, 3,−2,−1, 0,−3,−2,−4).

Note that for any two standard tableau of the same shape, the values appearing in the content vector
are going be the same modulo a permutation in the position of the coordinates. Below is an illustration
of the contents of the canonical standard tableau T (5,5,3,2,1).

0 1 2 3 4

−1 0 1 2 3

−2 −1 0

−3 −2

−4

The choice of a particular standard tableau T determines the order in which the contents are going to
appear in the content vector. Note also that the Young diagram of shape λ = (λ1, λ2, . . . , λk) can be
divided into diagonals, enumerated by

−k + 1,−k + 2, . . . , 0, 1, . . . , λ1 − 1.

The t diagonal consists exactly of the boxes for which c(i, j) = t. Moreover, the lengths of the diagonals
completely determine the shape of the tableau.

Example 2.30. For the standard tableau from example 2.26, the content vector is

C(T ) = (0,−1, 1, 2,−2, 0,−1).

The way to recover the shape of T from the content vector is the following: Since the biggest entry
in C(T ) is 2, we know that the first row has length 3. Similarly from the lowest entry, namely −2
we recover that the diagram has 3 columns. Then counting the number of times each content number
appears, we fill in that many boxes in the corresponding diagonal to recover that the shape is (3, 2, 2).
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In order for a vector to be a content vector of some standard tableau, it has to satisfy certain
properties. We will prove that these properties are the ones stated in the following definition.

Definition 2.31. Let Cont(n) be the set of all vectors (a1, . . . , an) ∈ Cn such that

(1) a1 = 0.

(2) {aq + 1, aq − 1} ∩ {a1, a2, . . . , aq−1} ≠ ∅ for all q ≥ 1.

(3) if ap = aq for some p < q then {aq − 1, aq + 1} ⊆ {ap+1, . . . , aq−1}

Inductively from the definition, it is clear that Cont(n) ⊆ Zn. Given two vectors u, v ∈ Cont(n), we
write u ≈ v if v can be obtained from u by permuting its entries. In other words, if there exists σ ∈ Sn
such that σu = v. The relation≈ is an equivalence relation in Cont(n). However, it does not necessarily
hold that given u ∈ Cont(n) and σ ∈ Sn that σu ∈ Cont(n). For instance, u = (0, 1) ∈ Cont(2) and
s = (12) ∈ S2 but su = (1, 0) /∈ Cont(2) as it does not satisfy condition (1).

Proposition 2.32. Suppose u = (u1, u2, . . . , un) ∈ Cont(n). Then for p, q ∈ [n] the following hold:

(a) If uq > 0, then uq−1 ∈ {u1, u2, . . . , uq−1}. Analogously, if uq < 0 then uq+1 ∈ {u1, u2, . . . , uq−1}.

(b) If p < q, ap = aq and ar ̸= aq for all r = p + 1, p + 2, . . . , q − 1 then there exist unique
s−, s+ ∈ {p+ 1, p+ 2, . . . , q − 1} such that us− = uq − 1 and us+ = uq + 1

Proof. (a) Suppose that uq > 0. Then using (2) in the definition of Cont(n) we can construct a
sequence us0 = uq, us1 , . . . , usk = 0 with s0 = q > s1 > s2 > . . . > sk ≥ 1 such that ush > 0 and
|ush − ush+1

| = 1 for all h = 0, 1, . . . , k − 1. Then as h varies, ush attains all values in [uq] and
thus it attains the value uq − 1. For negative uq the argument is completely analogous.

(b) The existence of such s−, s+ is guaranteed by (3) in the definition of Cont(n). Their uniqueness
stems from the fact that if there is another s′− such that us′− = uq − 1, and without loss of
generality s− < s′−, then again by (3) there exists an s between these two numbers such that
us = uq − 1 + 1 = uq contradicting the assumptions.

Theorem 2.33. The map
Tab(n)→ Cont(n)

mapping
T 7→ C(T )

is a bijection. Moreover, if a, b ∈ Cont(n) such that a = C(T ) and b = C(S) then a ≈ b if and only if
T, S are of the same shape.

Proof. First of all we have to show that the map is well defined. That is, we have to show that for
a standard tableaux T of shape λ, its content C(T ) satisfies the three conditions imposed on the set
Cont(n). Suppose the content of T is C(T ) = (a1, a2, . . . , an). Clearly by construction since 1 is always
on box (1, 1) we have a1 = 0. So (1) is satisfied. Now if q ∈ {2, 3, . . . , n} is placed in position (i, j) so
that aq = j−i then we have i > 1 or j > 1. In the first case, i.e i > 1, consider the number p in the box
right above from (i, j), that is (i− 1, j). Then since T is standard, p < q and ap = j − i+ 1 = aq + 1.
Similarly, if j > 1 we consider the value p′ in the box on the left of (i, j) namely (i, j− 1). Then, since
T is standard, p′ < q and ap′ = j − i− 1 = aq − 1. Thus condition (2) is also satisfied. For condition
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(3) suppose that ap = aq with p < q. This means that p, q are placed in the same diagonal. Thus, if
(i, j) is the box containing q, then i, j > 1 and denoting by q−, q+ the values (in {p+1, p+2, . . . , q−1}
since T standard) in the boxes with coordinates (i−1, j) and (i, j−1), by the same argument as above
we have aq+ = aq − 1 and aq− = aq + 1. See the picture below

aq+1

aq−1 aq

Thus (3) is also satisfied, proving that C(T ) ∈ Cont(n).
We now prove that the map is injective. Suppose C(T ) = (a1, a2, . . . , an). Then the h-diagonal of T
is filled in with the numbers q ∈ [n] such that aq = h from up-left to bottom right, as shown below.

aq1

aq2

aq3

. . .

. . .

aqk

where q1 < q2 < q3 < . . . < qk are such that aqj = h for all j = 1, 2, . . . , k and aq ̸= h for q /∈
{q1, q2, . . . , qk}. Thus the diagonals completely determine the whole standard tableau, meaning that if
T1, T2 are standard tableau such that C(T1) = C(T2) then they have the same diagonals and therefore
they must coincide.
We are left to show that the map T 7−→ C(T ) is surjective. For that we do induction on n. For
n = 1, 2 this is trivial. Suppose that the map Tab(n − 1) −→ Cont(n− 1) is surjective and let
a = (a1, a2, . . . , an) ∈ Cont(n). Then by truncating the last entry, we get that a′ = (a1, a2, . . . , an−1) ∈
Cont(n− 1). By the induction hypothesis, there exists T ′ ∈ Tab(n− 1) such that C(T ′) = a′. We
show that by adding a box on the lower-rightmost box in the an diagonal and placing n in this box,
we get a standard tableau T ∈ Tab(n) such that C(T ) = a. We distinguish two cases:
Case 1: an /∈ {a1, . . . , an−1}. In this case, we know that either an− 1 or an +1 is one of the numbers
{a1, . . . , an−1}. If an − 1 is among them, we can add a box to the first row, while in the other case we
add a box to the first column. (Pictorially, in the first case an is on the rightmost box of the first row
and thus the position next to it is addable, while in the second case, an is sitting alone on the end of
the first column and thus the position below it is addable.)
Case 2: an ∈ {a1, . . . , an−1}. In this case, denote by p the largest index among these numbers such
that ap = an. If the coordinates of the box containing p are (i, j), then the box with coordinates
(i + 1, j + 1) is addable. That is because from proposition 2.32, we have the existence of unique
r, s ∈ {p+ 1, p+ 2, . . . , n} such that ar = an + 1 and as = an − 1, as is shown in the figure below
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p r

s n

We thus place the value n in the box (i+1, j+1), yielding us a standard tableau T such that C(T ) = a.
Finally, note that if a = C(T ) and b = C(S) then b may be obtained from a by permutation of its
entries, if and only if T, S are of the same shape. That is because the shape of a standard tableau is
completely determined by the length of the diagonals.

Given a ∈ Cont(n) we say that a simple transposition si = (i i + 1) is admissible for a, if it is
admissible for the unique standard tableau T such that C(T ) = a. This is equivalent to ai+1 ̸= ai ± 1.
We thus get the following two corollaries.

Corollary 2.34. Given a, b ∈ Cont(n) we have that a ≈ b if and only if there exists a sequence of
admissible transpositions which transforms a to b.

Proof. By the bijection of theorem 2.33, we can assume a = C(T ) and b = C(T ′). Then a ≈ b if and
only if T, T ′ are of the same shape, which is equivalent by corollary 2.27 to being able to obtain T ′

from T by applying a sequence of admissible simple transpositions.

Corollary 2.35. The cardinality of the quotient Cont(n)/≈ is equal to p(n) =|{λ : λ ⊢ n}|.

Proof. By theorem 2.33, an equivalence class of Cont(n)/ ≈ consists of all standard tableau corres-
ponding to a partition λ ⊢ n. Altogether, we have as many equivalence classes as partitions of n.

2.2.2 The Young graph

Denote by Y = {λ : λ ⊢ n, n ∈ N} the set of all partitions. Equivalently, we can also regard
Y as the set of all Young diagrams. We endow Y with the structure of a poset, by setting for µ =

(µ1, µ2, . . . , µk) ⊢ n and λ = (λ1, λ2, . . . , λl) ⊢ m,

µ ⪯ λ

if m ≥ n, l ≥ k and λj ≥ µj for all j = 1, 2, . . . , k. From the perspective of Young diagrams, µ ⪯ λ if
and only if the Young diagram of µ is contained in the Young diagram of λ, i.e if µ contains a box in
the position (i, j) then so does λ. For instance, consider λ = (3, 2, 1) and µ = (2, 2, 1). Then it is clear
that µ ⪯ λ as depicted below.

Now if µ ⪯ λ, we denote by λ/µ the array obtained by removing from the Young diagram of λ the
boxes of the Young diagram of µ. Notice that λ/µ is a skew-diagram, as shown in the example below.
Consider the partitions λ = (5, 5, 3, 2, 1) and µ = (4, 4, 2, 1). Then
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For µ, λ ∈ Y, we say that λ covers µ if µ ⪯ λ and

µ ⪯ ν ⪯ λ, ν ∈ Y =⇒ ν = µ or ν = λ.

In the language of diagrams, λ covers µ if and only if λ/µ consists of a single box. We write λ → µ

to denote that λ covers µ. We define the Young graph to be the oriented graded graph with levels
indexed by nonnegative integer, whose vertex set on level n is Y⋉ (partitions of n) and we draw an
arrow between partitions λ and µ in consecutive levels, if and only if λ → µ. Below is an illustration
of the first 4 levels of the Young graph. We read the diagram from bottom to top, thus abbreviating
the arrows.

∅

A path in the Young graph is a sequence p = (λn → λn−1 → . . .→ λ1) of partitions λk ⊢ k such that
λk covers λk−1 for all k = 1, 2, . . . , n. Notice that a path always ends at the trivial partition (1) ⊢ 1.
The number l(p) = n is called the length of the path p. We denote the set of all paths of length n in
the Young graph by Pathn(Y) and we set

Path(Y) =
∞⋃
n=1

Pathn(Y)

to be the set of all paths in the Young graph.
With a partition λ ⊢ n and a path (λ = λ(n) → λ(n−1) → . . .→ λ(1)) we associate the standard tableau
T of shape λ obtained by placing the value k ∈ [n] in the box λ(k)/λ(k−1).
As an example, the standard tableau T of shape λ = (4, 3, 2, 1) pictured below
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1 3 5 7
2 4 6
8 10
9

is associated with the path λ → (4, 3, 1, 1) → (4, 3, 1) → (4, 3) → (3, 3) → (3, 2) → (2, 2) → (2, 1) →
(1, 1)→ (1). This way, we obtained a natural bijection

Pathn(Y)←→ Tab(n)

which extends to a bijection

Path(Y)←→
∞⋃
n=1

Tab(n).

By the bijection in theorem 2.33, we also get a bijection

Pathn(Y)←→ Cont(n).

Example 2.36. Suppose we have the content vector c = (0, 1,−1,−2, 0,−1, 2) ∈ Cont(7). This
corresponds to a standard tableau of shape (3, 2, 2). Moreover, the path it corresponds to is

∅

where in every step we remove the unique removable box with content the last coordinate of our content
vector. Now the standard tableau corresponding to this sequence is obtained by filling in the numbers
7, 6, . . . , 1 in this order, to the box removed in each step, thus

1 2 7
3 5
4 6

Corollary 2.37. Let a, b ∈ Cont(n). Suppose they correspond to the paths λ(n) → λ(n−1) → . . .→ λ(1)

and µ(n) → µ(n−1) → . . .→ µ(1) respectively. Then a ≈ b if and only if λ(n) = µ(n).

2.3 The Young Jucys Murphy elements and a Gelfand-Zetlin basis for Sn.

We study the GZ algebra associated to the multiplicity free chain of symmetric groups. The main tool
to study this algebra are the so called Young-Jucys-Murphy elements defined below.
Definition 2.38 (YJM-elements). The Young-Jucys-Murphy (YJM) elements of C[Sn] are defined by
ξ1 = 0, and for k = 2, 3, . . . , n we let

ξk = (1, k) + (2, k) + . . .+ (k − 1, k) ∈ C[Sk].

Some observations on these elements to start highlighting their importance. First notice that ξk
comprises exactly of the transpositions in Sk that are not transpositions in Sk−1. With this observation,
if we denote the sum of transpositions in Sk by Tk, we can write ξk = Tk −Tk−1. Since Tk is central in
C[Sk] as the sum of elements in a conjugacy class, we get ξk ∈ Z(k)−Z(k−1) yielding ξk ∈ C(Sk, Sk−1).
As a consequence, these elements commute ξiξj = ξjξi for all i, j = 1, 2, . . . , n, but note that they are
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not central themselves. There is also an invariant way to define these elements which will be more
useful for future endeavors.

skξksk =
k−1∑
i=1

(i k + 1) = ξk+1 − sk

and thus we can redefine these elements recursively by setting ξ1 = 0 and

ξk+1 = skξksk + sk, for all k = 1, 2, . . . , n− 1.

For l, k ≥ 1, we denote by Sl+k, Sl, the symmetric groups on the sets [l + k], [l] and set

Z(l, k) = C(Sl+k, Sl).

That is, Z(l, k) is the algebra of all Sl-conjugacy invariant elements in C[Sl+k].

Theorem 2.39 (Olshanskii).

Z(l, k) = ⟨ξl+1, ξl+2, . . . , ξl+k, Sk,Z(l)⟩

Proof. For a complete proof, see [2], Theorem 3.2.6. The proof heavily relies on calculus of marked
permutations, a characterization of the Sl-conjugacy classes in Sl+k.

It is now imminent that the GZ algebra is generated by the YJM elements.

Corollary 2.40 (GZ algebra generated by YJM-elements). The GZ algebra GZ(n) of the multiplicity-
free chain S1 ≤ S2 ≤ . . . ≤ Sn−1 ≤ Sn ≤ . . . is generated by the YJM-elements ξ1, ξ2, . . . , ξn. In
formulae

GZ(n) = ⟨ξ1, ξ2, . . . , ξn⟩

Proof. As we have already noticed, ξk = Tk−Tk−1 and Ti ∈ Z(i), thus ξk ∈ GZ(n) for all k = 1, 2, . . . , n.
Moreover,

Z(n) = C(Sn, Sn) ⊆ C(Sn, Sn−1) = Z(n− 1, 1) = ⟨Z(n− 1), ξn⟩

where the last equality follows from theorem 2.39. Suppose now by induction that

GZ(n− 1) = ⟨ξ1, ξ2, . . . , ξn−1⟩.

Then
GZ(n) = ⟨GZ(n− 1),Z(n) >= ⟨ξ1, ξ2, . . . , ξn⟩

completing the proof.

Remark 2.41. We now have a different way of proving that the centralizer C(Sn, Sn−1) is commutative.
Indeed, Z(n− 1, 1) = ⟨Z(n− 1), ξn⟩ and ξn = Tn− Tn−1 commutes with Z(n− 1) as it commutes with
C[Sn−1].

Now that we’ve established an explicit set of generators for the Gelfand-Zetlin algebra, we can
start characterizing the irreducible representations of the symmetric groups by understanding what
the corresponding eigenvalues of the YJM elements are with respect to a GZ basis.
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2.4 Spectrum of YJM elements and Branching graph of Sn

2.4.1 The weight of a Young basis vector

Let (Vσ, σ) ∈ Ŝn and consider the Gelfand-Zetlin basis {vT : T ∈ T (σ)} associated with the
multiplicity-free chain S1 ≤ S2 ≤ . . . ≤ Sn−1 ≤ Sn ≤ . . .. In this setting, the basis is also called a
Young basis for Vσ, which Young used to prove his seminormal and orthogonal forms, but could not
prove them a global basis since this required the notion of the GZ algebra. Since the Gelfand-Zetlin
algebra is generated by the YJM-elements ξ1, ξ2, . . . , ξn, we have that every vT is an eigenvector for
σ(ξi) for all i = 1, 2, . . . , n. Thus for every vT , we define

a(T ) = (a1, a2, . . . , an)

where ai is the eigenvalue of σ(ξi) corresponding to the eigenvector vT , i.e ξi.vT = aivT for all i =
1, 2, . . . , n. Moreover, the elements vT are completely determined up to a scalar by the vector a(T )
by corollary 2.13. We call the vector a(T ) the weight of vT . We now study the action of the Coxeter
generators on the Young basis.

Proposition 2.42. For every σ ∈ Ŝn and T = (σ = σn → σn−1 → . . .→ σ2 → σ1) ∈ T (σ), the vector
sk.vT is a linear combination of the vectors vT ′ with T ′ = (σ = σ′n → σ′n−1 → . . .→ σ′2 → σ′1) ∈ T (σ)
such that σ′i = σi for all i ̸= k.

Proof. Let Vj be the representation space of σj for j = 1, 2, . . . , n. Note that

Vj = C[Sj ]vT .

Indeed, the right hand side is a nontrivial Sj sub-representation and since σj is irreducible, it is the
whole space.
Now notice that for j > k we have sk ∈ Sj , thus σj(sk)vT ∈ Vj , for all j = k + 1, k + 2, . . . , n. This
implies that σj = σ′j for all j = k + 1, k + 2, . . . , n. On the other hand, if j < k then by setting
Wj = {σj(f)σ(sk)vT : f ∈ C[Sj ]} = σ(sk)Vj , we see that the map

Vj −→Wj

σj(f)vT 7−→ σj(f)σ(sk)vT

is morphism of Sj-representations since sk commutes with Sj . Moreover, it is an isomorphism, with
inverse given by

Wj −→ Vj

σ(sk)σj(f)vT 7−→ σj(f)vT .

Thus the vector σ(sk)vT belongs to the σj-isotypic component of ResSn
Sj
σ and therefore σj = σ′j for all

j = 1, 2, . . . , k − 1.

proposition 2.42 informs us that the action of a simple transposition sk on the GZ basis affects only
the k-th level of the branching graph and depends only on the levels k − 1, k, k + 1.
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2.4.2 The Spectrum of the YJM elements

Set
Spec(n) = {a(T ) : T ∈ T (σ), σ ∈ Ŝn}

where a(T ) is the weight of vT . That is, Spec(n) is the spectrum of the YJM elements of Sn. Since
this spectrum determines the elements of a Young basis, we have

|Spec(n)| =
∑
σ∈Ŝn

dimVσ

That is, Spec(n) is in natural bijection with the set of all paths in the branching graph of S1 ≤ S2 ≤
. . . ≤ Sn. Denote this bijection by a 7→ Ta. Also denote by va the Young basis vector corresponding
to Ta. Notice that for any a ∈ Spec(n), we have that va ∈

⊔
λ⊢n

Sλ, where Sλ is the irreducible Sn

representation corresponding to λ.

Definition 2.43. For a, b ∈ Spec(n), we say a ∼ b if va and vb belong to the same irreducible Sn-
representation. In terms of the branching graph, that means that the corresponding paths have the same
starting point.

It is clear that the relation defined above is an equivalence relation. Also the space of equivalence
classes essentially identify the irreducible representations of Sn by picking one representative for each
class. In other words,

|Spec(n)/ ∼ | =|Ŝn|

We now try to explore the properties of Spec(n) as well as the equivalence relation ∼. When j ̸= i, i+ 1,
the YJM elements commute with simple transpositions, i.e,

siξj = ξjsi. (3)

Moreover,
siξisi + si = ξi+1 (4)

for all i = 1, . . . , n− 1. We are ready to give some basic properties of Spec(n).

Proposition 2.44 (Properties of Spec(n)). Let a = (a1, a2, . . . , ai, ai+1, . . . , an) ∈ Spec(n). Then

(a) ai ̸= ai+1 for i = 1, 2, . . . , n− 1.

(b) ai+1 = ai ± 1 if and only if siua = ±ua

(c) if ai+1 ̸= ai ± 1 then

a′ = sia = (a1, a2, . . . , ai−1, ai+1, ai, . . . , an) ∈ Spec(n),

with a ∼ a′, and the Young basis vector associated to a′ up to a scalar factor, is

va′ = siva −
1

ai+1 − ai
va.

Moreover, the space ⟨va, va′⟩ is invariant for the actions of ξi, ξi+1 and si, and in the basis {va, va′}
these operators are represented by the matrices[

ai 0

0 ai+1

]
,

[
ai+1 0

0 ai

]
and

[
1

ai+1−ai
1− 1

(ai+1−ai)2

1 1
ai−ai+1

]
respectively.
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Proof. From the definition of va, we have that ξi.va = aiva and ξi+1.va = ai+1va. Moreover, using
eq. (3) and eq. (4), we get that {va, siva} is invariant under the action of ξi, ξi+1 and si. Assuming that
the two vectors are linearly dependent, i.e siva = λva then since s2i = 1 we have λ2 = 1 i.e λ = ±1.
Using eq. (4) yields

aisiva + va = ai+1siva.

Thus, siva = ±va if and only if ai+1 = ai ± 1. This proves (b).
Suppose now that ai+1 ̸= ai ± 1. Then by (b), va and siva are linearly independent, or equivalently

dim⟨va, siva⟩ = 2

and the restrictions of si, ξi, ξi+1 to ⟨va, siva⟩ are represented with respect to the basis ⟨va, siva⟩ by the
matrices [

0 1

1 0

]
,

[
ai −1
0 ai+1

]
,

[
ai+1 1

0 ai

]
respectively. We know that the restriction of the operators ξi are diagonalizable. But a matrix of the
form [

a ±1
0 b

]
is diagonalizable, if and only if a ̸= b and in that case, the eigenvalues are a, b with corresponding
eigenvectors (1, 0) and (± 1

b−a , 1). Thus it holds ai ̸= ai+1, yielding (a). Applying this to our context,
we get that v′ = siva − 1

ai+1−ai
va is an eigenvector of ξi, ξi+1 with corresponding eigenvalues ai+1, ai

respectively. Moreover, for any j ̸= i, i+ 1 by eq. (3), we get that ξjv′ = ajv
′ for all other j. Therefore,

we conclude that a′ = sia = (a1, a2, . . . , ai−1, ai+1, ai, . . . , an) ∈ Spec(n) and v′ = va′ is a vector in the
Young basis (thus a ∼ a′). Computing the matrix representing si in the basis {va, va′} is trivial.

Let a = (a1, a2, . . . , an) ∈ Spec(n). If ai+1 ̸= ai ± 1, so that by proposition 2.44

a′ = (a1, a2, . . . , ai−1, ai+1, ai, . . . , an) ∈ Spec(n)

we say that si is an admissible transposition for a. In order to prove that Spec(n) = Cont(n) we will
need the following observation.

Lemma 2.45. Let a = (a1, a2, . . . , an) ∈ Cn. If ai = ai+2 = ai+1 − 1 for some i ∈ {1, 2, . . . , n − 2}
then a /∈ Spec(n).

Proof. On the contrary, suppose that a ∈ Spec(n). Then by (b) of proposition 2.44, we have siva = va

and si+1va = −va. By the braid relation sisi+1si = si+1sisi+1, we get that

va = si+1sisi+1va = sisi+1siva = −va,

a clear contradiction.

Lemma 2.46. Suppose a ∈ Spec(n). The following hold:

(a) For every a = (a1, a2, . . . , an) ∈ Spec(n) we have a1 = 0.

(b) If a = (a1, a2, . . . , an) ∈ Spec(n) then a′ = (a1, a2, . . . , an−1) ∈ Spec(n− 1).

(c) Spec(2) = {(0, 1), (0,−1)}.
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Proof. (a) is imminent, since ξ1 = 0. (b) follows automatically from the fact that ξ1, . . . , ξn−1 ∈ C[Sn−1]

and that ξiva = aiva. For (c), note that the irreducible representations of S2 are ι, ϵ, the trivial and
the alternating representation. As ξ2 = (1 2) = s1, we get that for v ∈ Vι it holds ξ2v = v and that for
v ∈ Vϵ, it holds ξ2v = −v.

We are ready to give the inductive step.

Lemma 2.47. (a) For every n ≥ 1 we have Spec(n) ⊆ Cont(n).

(b) If a ∈ Spec(n), b ∈ Cont(n) and a ≈ b then b ∈ Spec(n) and a ∼ b.

Proof. We show (a) by induction on n. For n = 1 it is trivial while for n = 2 it was proven in
lemma 2.46. Suppose that Spec(n − 1) ⊆ Cont(n− 1) and let a = (a1, a2, . . . , an) ∈ Spec(n). By
lemma 2.46, we have that a1 = 0 which corresponds to Condition (1) in the definition of Cont(n).
Since a′ = (a1, a2, . . . , an−1) ∈ Spec(n− 1), we have to check conditions (2) and (3) just for q = n.
Suppose by contradiction that

{an − 1, an + 1} ∩ {a1, a2, . . . , an−1} = ∅ (5)

Then, the transposition sn−1 = (n − 1 n) is admissible for a, that is, (a1, a2, . . . , an−2, an, an−1) ∈
Spec(n). Thus (a1, a2, . . . , an−2, an) ∈ Spec(n− 1) ⊆ Cont(n− 1). From eq. (5) we deduce that
{an − 1, an + 1} ∩ {a1, a2, . . . , an−2} = ∅ which contradicts (2) in the definition of Cont(n− 1). Thus
(2) holds. Now assume again by contradiction that a doesn’t satisfy (3) for q = n, that is ap = an = x

for some p < n and for instance,

x− 1 /∈ {ap+1, ap+2, . . . , an−1}.

We can also assume that p is maximal, that is x /∈ {ap+1, ap+2, . . . , an−1}. Since (a1, a2, . . . , an−1) ∈
Cont(n− 1) by the inductive hypothesis, x+1 can appear among {ap+1, ap+2, . . . , an−1} at most once.
Suppose that it does not appear. Then (ap, ap+1, . . . , an) = (x, ∗, ∗, . . . , ∗, x) where every ∗ represents
a number not equal to x, x − 1, x + 1. In this case, by using a sequence of n − p − 1 admissible
transpositions, we get that

a ∼ a′ = (. . . , x, x, . . .) ∈ Spec(n).

which is a contradiction to (a) from proposition 2.44. Similarly, assume that x+1 appears exactly once
among {ap+1, ap+2, . . . , an−1}. Then (ap, ap+1, . . . , an) = (x, ∗, . . . , x+1, ∗ . . . , ∗, x), where again every
∗ is a number different than x, x−1, x+1. Now again by using a sequence of admissible transpositions
we get

a ∼ a′ = (. . . , x, x+ 1, x, . . .) ∈ Spec(n)

which contradicts lemma 2.45. Therefore, condition (3) is also satisfied and thus Spec(n) ⊆ Cont(n).
Now (b) is an immediate consequence of (a) with our previous results on the equivalence relations.

Theorem 2.48. It holds that Spec(n) = Cont(n). Moreover the equivalence relations ∼ and ≈ coin-
cide. Finally the Young graph Y is isomorphic to the branching graph of the multiplicity-free chain

S1 ≤ S2 ≤ . . . ≤ Sn−1 ≤ Sn ≤ . . .

Proof. We know that |Cont(n)/ ≈ | = p(n) that is, the number of equivalence classes is equal to the
number of partitions of n. Moreover, we know that this is equal to the conjugacy classes in Sn (by cycle
structure) and the latter is equal to the number of irreducible representations of the symmetric group,
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that is |Ŝn| which in turn is equal to |Spec(n)/ ∼ |. Additionally, by lemma 2.47, an equivalence class
in Cont(n)/ ≈ is either disjoint from Spec(n) or is contained in an equivalence class of Spec(n)/ ∼.
Rephrasing, the partition of Spec(n) induced by ≈ is finer than the one induced by ∼. Collecting all
of the above, we get

|Spec(n)/ ∼ |≤ |Spec(n)/ ≈ | ≤ |Cont(n)/ ≈ | = |Spec(n)/ ∼ |

and thus Spec(n) = Cont(n) and the two equivalence relations coincide. This equality gives a natural
correspondence between the set of all paths in the branching graph (parametrized by Spec(n)) and
the set of all paths in Y parametrized by Cont(n). This yields a bijective correspondence between the
vertices of the two graphs which is the required graph isomorphism.

From the above theorem, we get a natural correspondence between Ŝn and the n-th level of the
Young graph Y, that is the set of all partitions of n. We can now recover some of the standard results
for the irreducible representations Sλ.

Proposition 2.49. It holds that the dimension of the irreducible representation corresponding to λ is
equal to the number of standard tableau’s of shape λ, that is dimSλ = |Tab(λ)|.

Another immediate consequence is the following.

Corollary 2.50. Let 0 ≤ k < n, λ ⊢ n and µ ⊢ k. Then the multiplicity mµ,λ of Sµ in ResSn
Sk
Sλ is

equal to zero if µ ⊀ λ and it is equal to the number of paths in Y from λ to µ otherwise. In any case,
mµ,λ ≤ (n− k)! and this estimate is sharp.

Proof. We have
ResSn

Sk
Sλ = Res

Sk+1

Sk
Res

Sk+2

Sk+1
. . .ResSn

Sn−1
Sλ

where in each step of the consecutive restrictions the decomposition is multiplicity free and according
to the Young diagram Y. This way, the multiplicity of Sµ in ResSn

Sk
Sλ is equal to the number of paths

in Y that start from λ and end at µ. It is also equal to the number of ways in which we can obtain the
diagram of λ from the diagram of µ by adding n − k addable boxes to µ. In particular, the number
of ways in which this can happen is bounded above by (n − k)! and this estimate is sharp when the
boxes can be added to different rows and columns.

Corollary 2.51 (Branching Rule). For every λ ⊢ n we have

ResSn
Sn−1

Sλ =
⊕

µ⊢n−1:
λ→µ

Sµ

that is, the direct sum runs over all partitions of n − 1 that can be obtained from λ by removing one
box. Equivalently, by adjunction of induction and restriction for finite groups, for every µ ⊢ n− 1, it
holds

IndSn
Sn−1

Sµ =
⊕
λ⊢n:
λ→µ

Sλ.

Proof. Follows from corollary 2.50, for k = n− 1.

Remark 2.52. Since YJM elements generate the GZ algebra, for any irreducible representation Sλ ∈
C[Sn]−mod with Young basis {vT | T ∈ Tab(λ)} we have that this basis is a simultaneous eigenvector
basis for the action of ξ1, . . . , ξn. Moreover, the corresponding eigenvalue vectors are the content vectors.
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In particular, every content vector determines an eigenspace and vice versa. Exactly because ξn ∈
C(Sn, Sn−1), these eigenspaces are C[Sn−1] modules and by induction they are irreducible, completely
determined by the n− 1 paths in the Young graph.

We illustrate the power of this approach with the following example.

Example 2.53. Consider the simple C[S5] module S(3,2). Restricting the action down to S4 we notice
the following. Since ξ5 ∈ C(S5, S4), we have ξ5 ∈ EndS4(Res

S5
S4
S(3,2)). Moreover, this endomorphism

is diagonalizable with respect to the GZ basis of S(3,2). The corresponding eigenvalues are the contents
of the removable boxes in (3, 2) so 0, 2 respectively. We thus have

ResS5
S4
S(3,2) = Eξ5(0)⊕ Eξ5(2)

By the relations we have from both Spec(5) and Cont(5), we inductively have that Eξ5(0) is the span
of elements of the Young basis {va | a ∈ Cont(5), a5 = 0} which is identified inductively with the span
of the Young vectors corresponding to the 3 blue paths in the graph below, i.e to the content vectors
(0, 1, 2,−1), (0, 1,−1, 2), (0,−1, 0, 2).

∅

= Eξ5(0) = Eξ5(2)

2
0

−1
2

1

2

1

−1 0

−1

0

Notice that this is exactly the irreducible representation corresponding to the partition (3, 1) ⊢ 4 and
thus Eξ5(0) = S(3,1). The same applies for the two dimensional Eξ5(2) which we can identify with
S(2,2) thus justifying

ResS5
S4
S(3,2) = S(3,1) ⊕ S(2,2).

The space S(3,2) is then identified with the span of Young vectors corresponding to the content vectors
created by the above graph.

Remark 2.54. We have not completely characterized Sλ, since we only know the action of YJM
elements. In the next section we will find formulas for the action of the Coxeter generators in a GZ
basis, thus giving a complete characterization for all the irreducibles.
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2.5 Young’s normal forms

2.5.1 Young’s seminormal form

Remember the canonical standard tableau T λ. Also recall that the chain S1 ≤ S2 ≤ . . . ≤ Sn

determines a decomposition of every irreducible representation into one dimensional subspaces and
that the GZ-basis is obtained by choosing a non-trivial vector from each of these subspaces. If the
vectors are normalized we call them an orthonormal basis, while if they are not we will refer to it
as an orthogonal basis (the decomposition into these subspaces is orthogonal with respect to a scalar
product making them unitary representations). In both cases, the vectors are completely determined
up to a scalar factor. For T ∈ Tab(λ) we denote the corresponding GZ element by vT .

Proposition 2.55. It is possible to choose the scalar factors of the GZ-basis {vT : T ∈ Tab(n)} in
such a way that, for every T ∈ Tab(n), one has

π−1
T vTλ = vT +

∑
R∈Tab(λ):l(πR)<l(πT )

γRvR

where γR ∈ C and πT is the permutation transforming T to T λ.

Proof. We use induction on l(πT ). In each step, we choose the scalar factor for all T with l(πT ) =

l. If l(πT ) = 1, then πT is an admissible simple transposition for T λ and the result follows from
proposition 2.42 (where vT corresponds to va′ and the corresponding coefficient for vTλ can also be
chosen accordingly). So suppose now that πT = si1si2 . . . sil−1

sj is the standard decomposition of πT
into a product of admissible simple transpositions. Set l = l(πT ) and j = il for simplicity of notation.
Then πT = πT1sj , where T1 = sjT is a standard tableau. It is clear that l(πT1) = l(πT ) − 1. By the
inductive hypothesis we can write

π−1
T1
vTλ = vT1 +

∑
R∈Tab(λ):l(πR)<l(πT1

)

γ
(1)
R vR. (6)

Since T = sjT1, we can choose the scalar factor of vT such that

sjvT1 = vT +
1

aj+1 − aj
vT1 (7)

where a = (a1, a2, . . . , an) = C(T1) ∈ Cont(n) is the content of T1. Combining eq. (6) with eq. (7),
we get the required formula (by keeping in mind how to compute sjvR for R ∈ Tab(λ) such that
l(πR) < l(πT1).

As is already hinted, the matrix coefficients will actually turn out to be rational numbers. The next
theorem finally gives us how Coxeter generators act on a GZ basis of an irreducible representation of
Sn.

Theorem 2.56 (Young’s seminormal form). Choose the vectors in the Young basis of Sn according
to proposition 2.55. If T ∈ Tab(λ) and C(T ) = (a1, a2, . . . , an) its content vector, then the simple
transposition sj acts on vT as follows:

(a) If aj+1 = aj ± 1 then sjvT = ±vT .

(b) If aj+1 ̸= aj ± 1, then setting T ′ = sjT (sj is admissible for T in this case) yields

sjvT =


1

aj+1−aj
vT + vT ′ if l(πT ′) > l(πT )

1
aj+1−aj

vT + [1− 1
(aj+1−aj)2

]vT ′ if l(πT ′) < l(πT ).
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Proof. (a) is already proven in proposition 2.44. (b) follows from proposition 2.55. The only thing to
check is that when choosing the basis according to proposition 2.55, sjvT has exactly this expression.
So suppose first that l(πT ′) > l(πT ). We have

πT ′ = πT sj

and by proposition 2.55,
π−1
T vTλ = vT +

∑
R∈Tab(λ):l(πR)<l(πT )

γRvR

We thus deduce that

π−1
T ′ vTλ = vT ′ +

∑
R′∈Tab(λ):l(πR′ )<l(πT ′ )

γR′vR′ =

= sjvT + sj
∑

R∈Tab(λ):l(πR)<l(πT )

γRvR

therefore the formula holds exactly in the same form as proposition 2.55 (notice that the coefficient of
vT ′ in sjvT is equal to 1). The other case is analogous to the first one by starting from πT = πT ′sj and
taking a = C(T ′) when applying proposition 2.55.

Corollary 2.57. Fixing a GZ-basis, the matrix coefficients of the irreducible representations of Sn are
rational numbers. In particular, the coefficients γR in proposition 2.55 are rational numbers. So one
can define all irreducible representations of Sn over Q.

2.5.2 Young’s orthogonal form

We normalize the GZ-basis {vT : T ∈ Tab(λ)} of Sλ by taking

wT =
vT
∥vT ∥

where the norm is associated with an arbitrary scalar product making Sλ a unitary representation of
Sn. Let T be a standard tableau and C(T ) = (a1, a2, . . . , an) be its content.

Definition 2.58 (Axial distance). For i, j ∈ [n] the axial distance from j to i is the integer aj − ai.

This has a clear meaning when we translate everything to Young diagrams. Suppose that we want
to move from j to i. Each step to the left or downwards counts as +1, while each step to the right
or upwards counts for −1. Then the resulting integer is exactly aj − ai and this is independent of the
chosen path.

j

i

In the above example, the axial distance is aj − ai = 5. Remember that the content aj counts the
boxes on the left of the box with entry j minus the entries upwards from the same box. Now in our
picture to reach from j to i, we first need to bring them in the same column, so we count that number.
Suppose their coordinates are (x(i), y(i)) and (x(j), y(j)). Then that number is clearly equal to (in
our case) y(j) − y(i) and then bring them to the same box, making x(i) − x(j) moves downwards.
Altogether, we account for y(j) − y(i) + x(i) − x(j) = aj − ai. All the other cases work similarly to
give the same result.
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Theorem 2.59 (Young’s orthogonal form). Given the orthonormal basis {wT : T ∈ Tab(n)}, we
have

sjwT =
1

r
wT +

√
1− 1

r2
wsjT

where for C(T ) = (a1, a2, . . . , an) the quantity r = aj+1 − aj is the axial distance from j + 1 to j. In
particular, if aj+1 = aj ± 1 we have r = ±1 and sjwT = ±wT .

Proof. Set T ′ = sjT and suppose that l(πT ′) > l(πT ). Then from Young’s seminormal form, we have

∥vT ′∥2=∥sjvT −
1

r
vT ∥2=

=∥vT ∥2−
1

r
⟨sjvT , vT ⟩ −

1

r
⟨vT , sjvT ⟩+

1

r2
∥vT ∥2=

(remember sjvT =
1

r
vT + vT ′ and vT ⊥ vT ′) = (1− 1

r2
)∥vT ∥2.

where ∥sjvT ∥2=∥vT ∥2 since sj is unitary. Then Young’s seminormal form in the orthonormal basis
{ vT
∥vT ∥ ,

vT ′√
1− 1

r2
∥vT ∥
} reads

sjwT =
1

r
wT +

√
1− 1

r2
wT ′

In the case l(πT ′) < l(πT ) the proof is similar.

Why is this theorem called Youngs orthogonal form? The reason is the following. It is clear that
the space generated by wT , wT ′ is invariant under the action of sj . Youngs formulas in this basis, readsjwT = 1

rwT +
√

1− 1
r2
wsjT

sjwsjT = −1
rwsjT +

√
1− 1

r2
wT

and thus the operator sj in this basis is represented by the orthogonal matrix 1
r

√
1− 1

r2√
1− 1

r2
−1

r


Let’s give some applications. Young’s normal forms yield explicit formulas for the actions of the Coxeter
generators in the GZ basis. Thus, we have completely characterized the action of the symmetric groups
on any of their respective irreducible modules!

Example 2.60. (a) Let λ = (n) ⊢ n be the trivial partition. Then there exists only one standard
tableau of shape λ, namely

1 2 3 . . . n

The corresponding content is C(T ) = (0, 1, 2, . . . , n− 1) and clearly since aj+1 = aj + 1 we have
sjwT = wT for all j = 1, 2, . . . , n− 1. Since these generate Sn, we deduce that S(n) is the trivial
representation of Sn.

(b) Let λ = (1, 1, 1, . . . , 1) ⊢ n. In this case, we again have exactly one standard tableau of shape λ,
namely
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1
2
3
.
.
.
n

The corresponding content is C(T ) = (0,−1,−2,−3, . . . ,−n+ 1). Since in this case for all j we
have aj+1 = aj − 1, we get that sjwT = −wT , j = 1, 2, . . . , n− 1. It follows that S(1,1,...,1) is the
alternating representation of Sn.

(c) Consider S(3,1). All standard tableau’s of this shape are shown below

T1 =
1 2 3
4

, T2 =
1 3 4
2

, T3 =
1 2 4
3

with corresponding content vectors C(T1) = (0, 1, 2,−1), C(T2) = (0,−1, 1, 2), C(T3) = (0, 1,−1, 2).
Then for the orthogonal Young basis {wT1 , wT2 , wT3} of S(3,1) and the Coxeter generators s1, s2, s3
of S4 we have

s1wT1 = wT1 , s1wT2 = −wT2 s1wT3 = wT3

since in each of these tableau’s a2 = a1 ± 1. For the action of s2,

s2wT1 = wT1 , s2wT2 =
1

2
wT2 +

√
3

2
wT3 , s2wT3 =

1

2
wT3 +

√
3

2
wT2

and for the action of s3

s3wT1 = −1

3
wT1 +

2
√
2

3
wT3 , s3wT2 = wT2 , s3wT3 =

1

3
wT3 +

2
√
2

3
wT1 .

We end the Okounkov-Vershik approach with some comments and observations. Even though the
YJM elements provide very important information about the structure of C[Sn], this algebra does
not really see them as generators together with the Coxeter generators si in the sense that they are
superfluous. One can thus consider the following algebra

Hn = ⟨si, xj | i = 1, . . . , n− 1, j = 1, . . . , n⟩

called the degenerate affine Hecke algebra, where the Coxeter generators are subject to the usual
Coxeter relations in order to have C[Sn] as a subalgebra and the xj are subject to the defining relations
for YJM elements, namely

xi+1si = sixi + 1,∀i xisj = sjxi,∀i ̸= j, j + 1

The si then generate a copy of the group algebra C[Sn] inside this algebra. Moreover, as a vector space
Hn is readily seen to be isomorphic to C[x1, x2, . . . , xn] ⊗ C[Sn]. There is also a natural surjective
algebra map (a projection)

Hn → C[Sn]

mapping si → si and x1 7→ 0. Note that by the defining relations it is then clear that xi 7→ ξi. Thus
we can recover the group algebra as the quotient of Hn by the ideal generated by x1, i.e

C[Sn] ∼= Hn/⟨x1⟩.

This algebra essentially freed up the YJM elements. One can then use this algebra to reformulate most
of the results in this chapter in a modern way. In particular, in Hn it is easier to prove relations and
thus find central elements compared to C[Sn]. This is one way to prove for example that the center of
the group algebra C[Sn] is the algebra of symmetric polynomials in YJM elements.
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3 Partition algebras and their YJM elements.

3.1 Construction of partition algebras and connection to symmetric groups

In this chapter, we will deal with the case of partition algebras. We mostly follow [3],[6],[9],[8] as
well as [4]. We start by giving some motivation for the partition algebra through Schur-Weyl duality
with Sn. For d a nonnegative integer, consider the tensor category Rep(Sd;C) of finite dimensional
representations of Sd over C. Let Vd = Cd be the natural d−dimensional permutation module of C[Sd]
with ordered basis {v1, . . . , vd}, the action just permuting basis elements. Then we can extend this
action diagonally on tensor powers, or in other words we have

σ.(vi1 ⊗ vi2 ⊗ . . .⊗ vin) = vσ(i1) ⊗ vσ(i2) ⊗ . . .⊗ vσ(in),

for all i1, . . . , in ∈ {1, . . . , d}. Setting V ⊗0
d = C, for all d ≥ 0, since the natural representation is

faithful, the following holds.

Proposition 3.1. Any irreducible representation of Sd is a direct summand of V ⊗n
d for some nonneg-

ative integer n.

Proof. Let W be an irreducible representation of Sd and fix ⟨ , ⟩ a non-degenerate bilinear form on
W . Then for any element 0 ̸= w ∈W , we have the nonzero linear form ⟨w, ⟩ :W → C. We construct
a map i :W → Vd

⊗d by setting

i(w′) =
∑
σ∈Sd

⟨w, σ−1.w′⟩vσ(1) ⊗ vσ(2) ⊗ . . .⊗ vσ(d).

Notice that every element in the sum gives a different basis vector of V ⊗d
d . Now this is an Sd morphism,

since
σ′i(w′) =

∑
σ∈Sd

⟨w, (σ′σ)−1(σ′.w′)⟩vσ′σ(1) ⊗ vσ′σ(2) ⊗ . . .⊗ vσ′σ(d) = i(σ′w′)

by making the change of variables σ′σ ↔ σ, since this map is bijective. We thus found a nonzero
morphism in HomSd

(W,V ⊗d
d ), concluding the proof.

Thus, a way to understand the category of finite dimensional representations of the symmetric
groups is to study the category with objects tensor products of the natural representation V ⊗n

d and
morphisms between them. This category will be missing direct sums as well as summands in order to
include all representations, but luckily some categorical constructions will fix these issues.

We first want to control morphisms between these objects. For that, we will use set partitions as
a diagrammatic way to help us have combinatorial rules to construct such morphisms. Recall that a
partition π of a finite set S is a collection π1, . . . , πn of disjoint subsets of S such that S = ⊔ni=1πi. We
call the sets πi the parts of π. Given a partition π of {1, . . . , n, 1′, . . . ,m′}, a partition diagram of π
is any graph with vertices labelled {1, . . . , n, 1′, . . . ,m′} whose connected components are exactly the
parts of π. We always draw partition diagrams using the following conventions:

• Vertices 1, . . . , n (resp. 1′, . . . ,m′) are aligned horizontally and increasing from left to right with
i directly above i′.

• Edges lie entirely below the vertices labelled 1, . . . , n and above the vertices labelled 1′, . . . ,m′.

Example 3.2. The partition diagrams
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1 2 3 4

1′ 2′ 3′

1 2 3 4

1′ 2′ 3′

both represent the set partition π = {{1, 3, 2′, 3′}, {2, 4}, {1′}} of the set {1, 2, 3, 4, 1′, 2′, 3′}.

So the diagram representing a set partition is not unique, but the connected components are. We will as-
sociate a morphism of representations V ⊗m

d → V ⊗n
d to each partition of the set {1, 2, . . . , n, 1′, 2′, . . . ,m}.

To prepare the ground for this assignment, we setup the following notations:

• For n,m ∈ Z≥0, we let Pn,m be the set of set partitions of the set {1, . . . , n, 1′, . . . ,m′}.

• For n, d nonnegative integers [n, d] = [d][n] = {f : [n] → [d]}. Given i ∈ [n, d], j ∈ [n], we write
ij = i(j).

• For i ∈ [n, d] and i′ ∈ [m, d] the (i, i′) coloring of a partition π ∈ Pn,m is obtained by coloring the
vertices of a partition diagram representing π labelled j (reps. j′) by the integer ij (resp. i′j).

Remark 3.3. In order to create a map f ∈ HomSd
(V ⊗n

d , V ⊗m
d ), we first have to fix a basis of V ⊗n

d and
V ⊗m
d , describe when a matrix coefficient is non-zero and then find an explicit rule yielding the matrix

describing f in the respective bases of the two spaces. So for any k, fix the basis {vi1 ⊗ vi2 ⊗ . . .⊗ vik :

i1, . . . , ik ∈ {1, . . . , d}} of V ⊗k
d . We first describe what is the diagrammatic rule describing when a

matrix coefficient is non-zero, for any π ∈ Pn,m.

Definition 3.4 (Good/Perfect colorings). Let n,m, d be nonnegative integers, π ∈ Pn,m and an (i, i′)-
coloring of π.

• We say that the (i, i′)-coloring of π is good, if vertices in the same connected component have the
same color.

• We say that the (i, i′)-coloring of π is perfect, when vertices have the same color if and only if
they are in the same connected component.

For n ̸= 0 and i ∈ [n, d], let
vi := vi1 ⊗ vi2 ⊗ . . .⊗ vin ∈ Vd⊗n

and set v∅ = 1 ∈ Vd⊗0 = C.

Example 3.5. As examples of good and perfect colorings, consider the following. Let

π =

1 2 3 4 5

1′ 2′ 3′ 4′

Clearly, there is only "one" choice for a perfect coloring, namely the one assigning a distinct color
to every connected component, as shown below (notice that every permutation of the colors is also a
perfect coloring).
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π =

x y y z z

w x y x

where x, y, z, w distinct nonnegative integers. In particular we can see that in order for a partition
diagram to have a perfect d− coloring, we need d to be as big, as the number of parts of the partition.
A perfect coloring is always a good coloring, but the opposite doesn’t hold. For example, the trivial
coloring (assigning one color to the entire diagram) is a good coloring, but it is only perfect when the
diagram consists of only one part.

Remark 3.6. The definitions of good and perfect colorings are exactly what we need to describe a
"nice" map f : CPn,m → HomSd

(V ⊗n
d , V ⊗m

d ). In particular, for π ∈ Pn,m and vi, vi′ basis elements of
V ⊗n
d and V ⊗m

d respectively, the coefficient of vi′ in f(π)(vi) is non-zero, if and only if the (i, i′)-coloring
of π is good. We make the pairing of basis elements clear with the following example.

Example 3.7. Assume we have

π = ∈ P3,2

When we assign numbers on the top nodes of the diagram, we are assigning a basis element of V ⊗3
d

and assigning numbers on the bottom corresponds to a certain basis element of V ⊗2
d . Then the dia-

grammatics provide the following information. Good colorings correspond to

π =

x x y

y x

,

where x, y ∈ {1, 2, 3}. This means that the only non-zero matrix coefficients are between basis elements
of the form vx ⊗ vx ⊗ vy and vy ⊗ vx. For example, automatically under π, the image of v1 ⊗ v2 ⊗ v3
is zero, while v1 ⊗ v1 ⊗ v2 is a multiple scalar of v2 ⊗ v1.

Remark 3.8. We can assign to every coloring of the set {1, . . . , n, 1′, . . . ,m′} a unique partition
diagram, namely the one whose parts consist of the vertices with the same color. Notice that this
is exactly the partition diagram having this coloring as a perfect coloring.

We are now ready to define the Schur-Weyl map.

Definition 3.9 (Schur-Weyl Map). For nonnegative integers n,m, d we define the C-linear map

f : CPn,m → Hom(V ⊗n
d , V ⊗m

d )

by setting on a basis element
f(π)(vi) =

∑
i′∈[m,d]

f(π)ii′vi′

where

f(π)ii′ =

1, (i, i′)− coloring of π is good,

0 , otherwise.

and then extending linearly (both to CPn,m and to V ⊗n
d ).

33



Lemma 3.10. It holds that
f : CPn,m → HomSd

(V ⊗n
d , V ⊗m

d ).

Proof. We have to check that indeed, f(π) is a morphism of Sd representations. Let σ ∈ Sd. We want
to prove that for any basis element vi, it holds that

σ.f(π)(vi) = f(π)(σ.vi).

This is equivalent to proving for the coefficients that f(π)σ.iσ.i′ = f(π)ii′ for every i′ ∈ [m, d]. But
this would mean that the coloring (σ.i, σ.i′) is good if and only if the coloring (i, i′) is good which is
true since σ will just permute the colors, giving elements in the same connected component the same
color.

Remark 3.11. Let us unpack the definition of f . For a partition π ∈ Pn,m and i ∈ [n, d], we know that
in order for a coefficient f(π)ii′ to survive, we first have to check if i ∈ [n, d] satisfies ij = ik whenever
j, k are in the same connected component. Then the only "good" choices for i′ ∈ [m, d] are the ones
for which i′k = ij for every pair of vertices k′, j in the same connected component.

Example 3.12. 1. As a first example, consider the trivial partition ∅ ∈ P0,0. Then f(∅) : C → C
is trivially the identity map, f(∅) = idC.

2. Suppose d > 0 and consider the partition diagram

π =

1 2 3 4 5

1′ 2′ 3′ 4′ 5′

Then f(π) : V ⊗5
d → V ⊗5

d is given by

f(π)(vi) =
∑

x,y,z∈[d]

δi1,i5δi2,i4vx ⊗ vy ⊗ vx ⊗ vz ⊗ vx.

Since good colorings only occur when the vertices 1′, 3′, 5′ have the same color and to even consider a
nonzero map, we need the vertices 1, 5 and 2, 4 to have the same colour.

Let again d > 0 and π be the partition represented by the diagram

1 2 3 4 5

1′ 2′ 3′ 4′ 5′ 6′

We see from the above that a choice of i ∈ [5, d], able to yield a good coloring needs i1 = i2 , i3 = i4.
Now for i′ ∈ [6, d], we need thus to have i′3 = i3 = i4 i

′
5 = i5 and then for the lower traversal edges

i′1 = i′4 i
′
2 = i′6. Thus for a basis element vi ∈ V ⊗5

d we have that f(π) : V ⊗5
d → V ⊗6

d is given by

f(π)(vi) =
∑

j,k∈[d]

δi1,i2δi3,i4vj ⊗ vk ⊗ vi3 ⊗ vj ⊗ vi5 ⊗ vk.

Define ≤ to be the partial ordering on Pn,m given by µ ≤ π if and only if every part of π is contained
in a part of µ. In the example below, π ≤ µ, where
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π =

1 2 3 4

1′ 2′ 3′

µ =

1 2 3 4

1′ 2′ 3′

Definition 3.13 (Orbit basis). For every π ∈ Pn,m define the elements O(π) by the recursive relation

π =
∑
µ≥π

O(µ).

It is easy to see that the set {O(π) : π ∈ Pn,m}, forms a basis of CPn,m as with every extension of ≤
to a total ordering, the change of basis matrix is unitriangular.

Remark 3.14. The orbit basis will give an even better combinatorial rule for the matrix coefficients,
namely the one corresponding to perfect colorings.

Lemma 3.15. For the orbit elements f(O(π)), the matrix coefficients with respect to the diagrammatic
basis are given by

f(O(π))ii′ =

1, (i, i′)− coloring of π is perfect,

0, otherwise.

Proof. We do induction on the number of parts of π. If π has one part, then a good coloring is also
perfect (since the only good coloring is the trivial one, which is perfect). Thus it holds for a connected
diagram. Suppose we know it for diagrams with at most t parts and consider π with t + 1 parts. By
definition

O(π) = π −
∑
µ>π

O(µ)

where every µ > π has less than or equal to t parts. Consider a perfect coloring of π. Then it is not a
good coloring of any of µ > π and thus f(O(π))ii′ = 1. Moreover, if a coloring of π is not good, then
two vertices in the same part have the same colour and thus this is definitely not a perfect coloring for
any µ > π, yielding f(O(π))ii′ = 0. Lastly, for a good but not perfect coloring of π, exactly one of the
µ > π is going to have this coloring as perfect, yielding f(O(π))ii′ = 1− 1 = 0.

Theorem 3.16. For n,m, d nonnegative integers, the map f enjoys the following properties:

1. f is surjective.

2. kerf = span{O(π) : π has more than d-parts}.

Proof. For d = 0, the map is identically zero, thus both assertions hold. Suppose d > 0, and let
g ∈ HomSd

(V ⊗n
d , V ⊗m

d ). Then for every i ∈ [n, d] we write

g(vi) =
∑

i′∈[m,d]

gii′vi′ .

Since g is an Sd-morphism, the matrix entries gii′ are constant on the Sd orbits of the matrix coordinates
{(i, i′) : i ∈ [n, d], i′ ∈ [m, d]}. Notice that every orbit corresponds to a partition as follows: (i, i′) is
in the orbit corresponding to π if and only if the (i, i′)-coloring of π is perfect. It is clear that if µ > π

and the (i, i′)-coloring of π is perfect, then it is not even a good coloring of µ as in order to make µ
coarser than π we connected two different connected components (and thus there is at least a pair of
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vertices in the same connected component with a different color). Consequently, using lemma 3.15, g
is a C-linear combination of the f(O(π)), proving surjectivity of f .

As for the kernel, notice that a partition π ∈ Pn,m has a perfect coloring if and only if it has at
most d-components. By lemma 3.15, we see that f(O(π)) = 0 if and only if π has more than d−parts.
Thus span{O(π) : π has more than d-parts} ⊆ kerf and by the first isomorphism theorem together
with counting dimensions we conclude that equality holds.

Corollary 3.17. If d ≥ n+m then f is an isomorphism of vector spaces, yielding CPn,m
∼= HomSd

(V ⊗n
d , V ⊗m

d ).

We want to find a way to turn CPn,n into an algebra, such that this map turns into an algebra
morphism. For that we equip Pn,n with the structure of a monoid.

Definition 3.18. Let π ∈ Pn,m and µ ∈ Pm,l. We construct a new diagram µ ∗ π by identifying
the vertices 1′, 2′, . . . ,m′ of π with the vertices 1, 2, . . . ,m of µ and renaming them 1′′, 2′′, . . . ,m′′, by
vertical concatenation with µ below π as illustrated below.

1 n

π

1′′ m′′

µ

1′ l′

Now let l(µ, π) denote the number of connected components of µ∗π whose vertices are involving only
1′′, . . . ,m′′. Finally, let µ ·π ∈ Pn,l be the partition obtained by restricting µ ∗π to {1, . . . , n, 1′, . . . , l′}
(r, s in the same part of µ · π if and only if they are in the same part of µ ∗ π).

Proposition 3.19.
f(µ)f(π) = dl(µ,π)f(µ · π)

for π ∈ Pn,m and µ ∈ Pm,l.

Proof. Let π ∈ Pn,m and µ ∈ Pm,l for n,m, l nonnegative integers. By definition of f , the matrix
coefficients of f(µ)f(π) : V ⊗n

d → V ⊗l
d are given by

(f(µ)f(π))ii′ =
∑

i′′∈[m,d]

f(µ)i
′′
i′ f(π)

i
i′′ .

In concrete terms, it is equal to the number of i′′ ∈ [m, d] such that the (i, i′′)-coloring of π and the
(i′′, i′)-coloring of µ are simultaneously good. Notice that these are equal to the number of i′′ ∈ [m, d]

such that coloring the vertices j, j′, j′′ of µ ∗π with the integers ij , i′j , i
′′
j yields a good coloring of µ ∗π.

Obviously, any good coloring of µ ∗ π gives rise to a good coloring of µ · π and any good coloring has
to arise in that way. Additionally, any two good colorings of µ ∗ π yield the same good coloring of
µ · π if and only if they differ in connected containing only the vertices 1′′, . . . ,m′′. Since there are
d-choices for the color of each such component, the number of i′′ ∈ [m, d] such that the two colorings
are simultaneously good is

dl(µ,π)f(µ · π)ii′ .
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Remark 3.20. The above proposition informs us that the structure constants of f(µ)f(π) are polyno-
mial in the integer d. We will exploit this to create a new category by freeing up this integer d to be
any element of our field.

Definition 3.21 (Partition category). For d a nonnegative integer, let Rep0(Sd;C) denote the full
subcategory of Rep(Sd;C) whose objects are of the form V ⊗n

d , n ≥ 0. Clearly objects can be indexed by
nonnegative integers and since the map f is surjective, morphisms in this category can be represented
(not uniquely!) by C-linear combinations of the maps f(π). Moreover, the structure constants are
polynomials in d. We then define the partition category Part, to be the category with

1. Objects of the form [n], for n ≥ 0.

2. Morphism spaces given by HomPar([n], [m]) = CPn,m.

3. Composition by CPm,l × CPn,m → CPn,l by the bilinear map satisfying

µ ◦ π = tl(µ,π)µ · π.

It is easy to see that ν◦(µ◦π) = (ν◦µ)◦π, since the numbers l(µ, π)+l(ν, µ·π) and l(ν, µ)+l(ν ·µ, π)
both represent the number of connected components of ν ∗µ ∗π with vertices only among {1′′, 2′′, . . .}.
The identity morphism idn : [n]→ [n] is the partition with parts {i, i′ : for all i = 1, . . . , n}.

Definition 3.22. The partition algebra P2n(t) is defined to be the endomorphism algebra EndPar([n]).

Remark 3.23. Notice that by twisting the monoid structure of Pn,n in this way, we made f an algebra
morphism. Consequently, for large nonnegative integer values of t, we have P2n(t) ∼= EndSt(V

⊗n
t ) as

algebras.

Remark 3.24. The group algebra of the symmetric group C[Sn] can be naturally embedded in the
partition algebra P2n(t) with its usual diagrammatic representation. In concrete terms, we identity
σ ∈ Sn with the partition whose connected components are all of the form {i, σ(i)′}. Denote this by
i : C[Sn] ↪→ P2n(t).

Example 3.25. The cycle σ = (1 3 2) in S3 ⊆ P3(t) is depicted by the following diagram:

1 2 3

1′ 2′ 3′

By the connection of this category to the category containing n-fold tensor products of the natural
representation, we can naturally endow it with a tensor product and appropriate morphisms to give
it the structure of a tensor category. In particular, we set [n] ⊗ [m] = [n + m], tensor products
of diagrams is horizontal stacking, every object is self dual with evaluation and coevaluation maps
defined as follows:

evn = 1 2 . . . n n+ 1 n+ 2 . . . 2n

i.e the partition with parts {i, n+ i} for all i and

coevn
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being the flip of evn by 180◦. Also, the commutator βn,m : [n]⊗ [m]→ [m]⊗ [n] is given by

1 n n+ 1 n+m

1′ m′ (m+ 1)′ (n+m)′

so that the trace of a morphism π ∈ P2n(t), is equal to tr(π) = ta where a is the number of connected
components in the diagram

π .

In other words, tr(π) is the number of connected components in the diagram connecting the components
containing i, i′, for every i. We first plan to classify idempotents in this algebra, using the following
lemma.

Lemma 3.26. Suppose A is a finite dimensional algebra over C and e is an idempotent in A. Let (e)
be the two sided ideal of A generated by e. There is a bijective correspondence{

primitive idempotents

in A up to conjugation

}
↔ {p.i. in A/(e) up to conj.} ⊔ {p.i. in eAe up to conj.}

satisfying the following property:
Suppose that p is a primitive idempotent in A. Then p corresponds to a primitive idempotent in eAe

if and only if p ∈ (e). Moreover, if p /∈ (e), then p corresponds to its image under the quotient map
A→ A/(e).

We have a natural embedding
i : P2n−2(t) ↪→ Pn(t)

sending a partition π ∈ P2n−2(t) to the partition connecting n with n−1 and n′ with (n−1)′ respectively,
or equivalently sending π to e(π ⊗ 1)e, where e is the idempotent defined below lemma 3.27.

Lemma 3.27. For n > 1, let e denote the following idempotent in P2n(t):

e =

1 2 3

1′ 2′ 3′

. . .

. . .

n−2 n−1 n

(n−2)′(n−1)′n′

Then we have the following algebra isomorphisms:

• eP2n(t)e ∼= P2n−2(t).

38



• P2n(t)/(e) ∼= C[Sn].

Proof. The image of the embedding i : P2n−2(t) ↪→ P2n(t) is the algebra eP2n(t)e as the e on the left
draws n− 1 in the same part as n and the right one does the same for (n− 1)′ and n′. For the second
isomorphism, observe that the ideal (e) always has a part containing either both n−1 and n or (n−1)′

and n′. By that and the embedding of C[Sn] in Pn(t) it is clear that C[Sn]∩ (e) = (0). It thus suffices
to show that a partition π ∈ Pn,n satisfies µ ∈ (e) whenever µ /∈ C[Sn]. To that direction, we have
that for fixed j and k, the partition

πj,k = σeσ =

1

1′

. . .

. . .

j k

j′ k′

. . .

. . .

n

n′

is in the ideal (e), where σ = (j n− 1)(k n) ∈ Sn ⊆ Pn,n. Let µ ∈ Pn,n\Sn. That means that a part of
µ either is of the form {i} for some i ∈ [n], or there exist j, k ∈ [n] in the same part. In the first case,
we have that

µ = µπi,jνi,j ∈ (e)

where j ̸= i and

νi,j =

1

1′

. . .

. . .

i j

i′ j′

. . .

. . .

n

n′

.

In the second case, it is clear that µ = µπj,k ∈ (e) which completes the proof.

Remark 3.28. In fact, the proof shows that the following short sequence is exact

0→ C[Sn]
i−→ P2n(t)

p−→ P2n(t)/(e) ∼= C[Sn]→ 0

and thus the group algebra of the symmetric group is both a subalgebra and a quotient of the partition
algebra.

We are able to now classify primitive idempotents in partition algebras, using lemma 3.27 and
lemma 3.26.

Theorem 3.29. 1. When t ̸= 0 we have the following bijection{
primitive idempotents

in P2n(t) up to conjugation

}
←→

{
Young diagrams λ

with |λ|≤ n

}

2. When n > 0 the bijection becomes{
primitive idempotents

in P2n(0) up to conjugation

}
←→

{
Young diagrams λ

with 0 <|λ|≤ n

}

Proof. The first statement is trivial for n = 0, as P0(t) = C. For n = 1, let
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π =

1

1′

and f = 1
tπ. It is obvious that f is idempotent and since P2(t) = span{1, f} we immediately get

that 1 = f + (1 − f) is a decomposition of 1 into primitive idempotents. Thus the result holds for
n = 1. The result follows by induction on n, considering the lemma 3.27 together with the fact that
irreducibles up to isomorphism (and thus also primitive idempotents up to conjugation) of C[Sn] are
indexed by partitions of n.
The proof of 2 is the same, keeping in mind that for t = 0 and n = 1, it holds that 1 is the only
primitive idempotent in P2(0) since π2 = 0.

Remark 3.30. By this, a primitive idempotent f ∈ P2n(t) corresponds to a partition of n if and only if
f /∈ (e). Moreover, if f /∈ (e), then the image of f under the quotient map P2n(t) ↠ C[Sn] is a primitive
idempotent corresponding to λ in Sn. Moreover, since primitive idempotents are in correspondence with
indecomposable modules, the above discussion shows that an indexing set for indecomposable P2n(t)-
modules is Y≤n, the set of Young diagrams with |λ| ≤ n. Thus, whenever P2n(t) is semisimple, this is
an indexing set for its irreducibles.

3.2 Jucys Murphy elements for Partition Algebras

Halverson and Ram originally defined analogues of the classic Jucys Murphy elements for the
partition algebras. Later Enyang worked with these elements and provided us with a 5 term recursive
formula, together with a presentation of the partition algebra introducing new generators σi that
resemble the Coxeter generators of the symmetric group in their properties. These Jucys Murphy
elements, even though immensely complicated compared to their classic analogues, provide a spectral
approach to the representation theory of the partition algebras. As in the Okounkov-Vershik approach,
we would like to have a multiplicity free chain of semisimple algebras

C = P0(t) ≤ P2(t) ≤ . . . ≤ P2n−2(t) ≤ P2n(t)

but unfortunately this chain is not multiplicity free. An intuitive reason for that is the following: Using
Schur Weyl duality, we have seen that the centralizer for the action of Sn as a subgroup of GLn(C)
for the natural representation is Pn(t). What if we further restrict to Sn−1? Ideally, to follow the
structure of the symmetric groups, we would like the centralizer to be P2n−2(t), which is not the case.

Definition 3.31. The subalgebra of P2n(t) generating the centralizer of the restriction to Sn−1 is
denoted by P2n−1(t) and is defined as the subalgebra of P2n(t) consisting of partitions having n, n′ in
the same part.

Including these into the chain, we have refined it as follows:

C = P0(t) ⊆ P1(t) ⊆ P2(t) ⊆ . . . ⊆ Pn(t).

Martin proved that it is a multiplicity free chain, whenever t /∈ Z≥0. In fact, it can be proven that
the partition algebra Pn(t) is semisimple, if and only if t /∈ {0, 1, . . . , 2⌊n2 ⌋ − 1}. We start by giving a
presentation for the partition algebra P2n(t). For more details, see [6].
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Theorem 3.32. For t ∈ C,the partition algebra P2n(t), has a presentation with generating set

{si, ej | i ∈ [n− 1], j ∈ [2n− 1]}

where

si =

1

1′

. . .

. . .

i i+1

i′ i+1′

. . .

. . .

n

n′

, e2i−1 =

1

1′

. . .

. . .

i

i′

. . .

. . .

n

n′

e2i =

1

1′

. . .

. . .

i i+1

i′ i+1′

. . .

. . .

n

n′

and relations

1. Coxeter relations:

• s2i = 1.

• sisj = sjsi for |j − i| ≠ 1.

• sisi+1si = si+1sisi+1.

2. Idempotent relations:

• e22i−1 = te2i−1.

• e22i = e2i.

• sie2i = e2isi = e2i.

• sie2i−1e2i+1 = e2i−1e2i+1si = e2i−1e2i+1.

3. Commutation relations:

• e2i−1e2j−1 = e2j−1e2i−1.

• e2ie2j = e2je2i.

• e2i−1e2j = e2je2i−1.

• sie2j−1 = e2j−1si for j ̸= i, i+ 1.

• sie2j = e2jsi for |j − i| ≠ 1.

• sie2i−1si = e2i+1.

• sie2i−2si = si−1e2isi−1.

4. Contraction relations:

• eiei+1ei = ei.

• ei+1eiei+1 = ei+1.
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From the symmetry of all the relations in theorem 3.32, the map ∗ : P2n(t) → P2n(t) flipping the
corresponding diagrams though a horizontal axis is an involution, fixing the generators si, ej . Notice
that the restriction to Sn is given by the classic involution, i.e σ∗ = σ−1, for σ ∈ Sn. We can now
define YJM elements and Enyang’s generators for the algebra P2n(t).

Definition 3.33. Let x1 = 0, x2 = e1, σ2 = 1 and σ3 = s1. Then for i = 1, 2, . . . , define

x2i+2 = six2isi − six2ie2i − e2ix2isi + e2ix2ie2i+1e2i + σ2i+1 (8)

where for i = 2, 3, . . . , we have

σ2i+1 = si−1siσ2i−1sisi−1 + sie2i−2x2i−2sie2i−2si + e2i−2x2i−2sie2i−2

− sie2i−2x2i−2si−1e2ie2i−1e2i−2 − e2i−2e2i−1e2isi−1x2i−2e2i−2si.

Additionally, define

x2i+1 = six2i−1si − x2ie2i − e2ix2i + (t− x2i−1)e2i + σ2i (9)

where

σ2i = si−1siσ2i−2sisi−1 + e2i−2x2i−2sie2i−2si + sie2i−2x2i−2sie2i−2

− e2i−2x2i−2si−1e2ie2i−1e2i−2 − sie2i−2e2i−1e2isi−1x2i−2e2i−2si.

The elements σi resemble the Coxeter generators in their properties and the elements xi are the
Jucys Murphy elements for the partition algebras. By induction, one can show that xi ∈ Pi(t) and
σi ∈ Pi+1(t). The two recursive formulas eq. (8) and eq. (9) above are the analogues of the equation
ξi+1 = siξisi + si. Some of the main properties of these elements are listed below.

Proposition 3.34. For all i, the following hold:

1. x∗i = xi and σ∗i = σi.

2. xi commutes with Pi−1(t).

3. σi+1 commutes with Pi−1(t).

Remark 3.35. We have changed the notation from [5]. In particular, the elements x2i (x2i+1 respect-
ively) correspond to xi (xi+ 1

2
respectively) and the same holds for Enyang generators.

Example 3.36. The first non trivial YJM elements are presented below

x3 = − − + t + , x4 = − − + + .

The projection we created for the group algebras respects these YJM elements, as well as Enyang’s
generators.

Lemma 3.37. The projection p : P2n(t) ↠ C[Sn] projects the even YJM elements to their correspond-
ing counterparts in the symmetric group, and the odd ones contain no information. In other words,

p(x2j) = ξj , p(x2j−1) = (j − 1) · id

As for Enyang’s generators
p(σ2j) = id p(σ2j−1) = sj−1.
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Proof. We proceed by induction on j. For j = 1, the assertion is trivial. Since p is an algebra morphism
killing the generators ei, it follows by the inductive hypothesis that

p(x2j+2) = sjp(x2j)sj + p(σ2j+1) = sjξjsj + sj = ξj+1

p(x2j+1) = sjp(x2j−1)sj + p(σ2j) = (j − 1) · id+ id = j · id

and similarly for Enyang’s generators.

3.3 Representation theory of P2n(t).

In this section, we provide a quick exposition for how the Okounkov-Vershik approach from Chapter
1 generalizes to the case of the partition algebras, whenever they are semisimple. We describe the
branching graph of the partition algebras as well as the spectrum of the Jucys Murphy elements in the
Gelfand-Tsetlin basis.

Theorem 3.38. For n ≥ 0, the partition algebra Pn(t) is semisimple if and only if t /∈ {0, 1, . . . , 2⌊n2 ⌋−
2}.

Theorem 3.39. For values making Pn(t) semisimple, the chain of C-algebras

C = P0(t) ≤ P1(t) ≤ P2(t) ≤ . . . ≤ Pn(t)

is multiplicity free.

In accordance to the case of the symmetric groups, we can thus define the branching graph for this
chain, as well as its GZ basis.

Definition 3.40. We let B̂ denote the graded directed graph, with levels indexed by nonnegative integers
n ≥ 0 such that:

1. The vertices on level i are indexed by Y≤⌊ i
2
⌋ × {i}

2. For i even, an edge (λ, i)→ (µ, i+ 1) exists if and only if λ = µ or µ = λ−□.

3. For i odd, an edge (λ, i)→ (µ, i+ 1) exists if and only if λ = µ or µ = λ+□.
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Example 3.41. The first 8 levels of the graph are illustrated below.

0 ∅

1 ∅

2 ∅ □

3 ∅ □

4 ∅ □

5 ∅ □

6 ∅ □

7 ∅ □

Denote the set of paths in B̂ with endpoint λ by Path(λ). The above graph, truncated at level n
gives the branching graph of the multiplicity free chain from above. This is described by the following
theorem.

Theorem 3.42. Let n be a nonnegative integer and t /∈ {0, 1, 2, . . . , 2⌊n2 ⌋ − 2}. Then for all i ≤ n:

1. The i−th level of B̂ provides an indexing set for the set of inequivalent simple modules of Pi(t).
We denote by L(λ, i) the simple module corresponding to (λ, i) ∈ Y≤⌊ i

2
⌋.

2. The Branching rule is given by the graph B̂. In other words, for a simple Pi(t)-module L(λ, i),
the following holds:

Res
Pi(t)
Pi−1(t)

L(λ, i) =
⊕

(µ,i−1)→(λ,i)

L(µ, i− 1).

It is clear from the above theorem and the consideration of the analogue for the symmetric groups,
that dimL(λ, i) =|Path(λ, i)|. Moreover, we can use the branching rule to obtain a decomposition of
L(λ, i) in one dimensional vector spaces indexed by the set Path(λ, i). Choosing a non-zero vector for
each of these summands, we obtain a basis {vT : T ∈ Path(λ, i)} of L(λ, i) to which we refer again as
a GZ basis. We now describe how the GZ basis of any L(λ, i) simultaneously diagonalizes the action
of the Jucys Murphy elements and describe the corresponding eigenvalues.

Definition 3.43. For (λ, i) ∈ B̂, and a path T = (λ0, 0) → (λ1, 1)→ . . .→ (λi, i) to λ we define the
following for j ≤ i:
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1. If j odd, we set

cont(T, j) =

t−|λi|, if λi = λi−1

c(□), if λi = λi−1 +□.

2. If j even, we set

cont(T, j) =

|λi|, if λi = λi−1

t− c(□), if λi = λi−1 −□.

We call the above numbers the content of path T at step j.

The above numbers play exactly the same role as contents do for the Jucys Murphy elements of
the symmetric groups. In particular, they are the eigenvalues for the action of the JM elements in the
GZ basis of an irreducible Pn(t) module as highlighted below.

Theorem 3.44. Suppose we have a nonnegative integer n and t /∈ {0, 1, . . . , 2⌊n2 ⌋ − 2}. Also let
L(λ, n) be any simple Pn(t) module with GZ-basis {vT | T ∈ Path(λ, n)}. The GZ basis simultaneously
diagonalizes the action of the YJM elements x1, x2, . . . , xn. In particular, we have that

xivT = contT (t, i)vT

for any i = 1, . . . , n and T ∈ Path(λ, n).

For proofs of the results stated in this section, see [6]. Thus we see that in the semisimple case, the
representation theory of Pn(t) is again controlled by YJM elements.

Remark 3.45. In fact, even in the non-semisimple case, Creedon and De Visscher [4] proved that
YJM elements provide a big enough commutative subalgebra of elements that seperate blocks via the
use of central characters.
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4 Deligne’s interpolation category Rep(St;C).

4.1 Construction and basis properties.

Definition 4.1. Let Rep
1
(St;C) denote the additive envelope of Part. Deligne’s interpolation category

Rep(St;C) is then defined as the Karoubian envelope (or pseudo-abelian completion) of Rep
1
(St;C).

This category has objects pairs (A, e), where A is an object in Rep
1
(St;C) and e ∈ EndRep

1
(St;C)(A)

is an idempotent. Morphisms are given by HomRep(St;C)((A, e), (B, f)) = f HomRep
1
(St;C)(A,B)e. The

composition is the induced composition from the additive envelope Rep
1
(St;C).

The following proposition stems from general properties of the additive and Karoubian envelopes.

Proposition 4.2. (a) Rep(St;C) is a tensor category with the obvious extensions of the tensor struc-
ture of Par.

(b) Given a nonnegative integer n and e ̸= 0 an idempotent in P2n(t), the object ([n], e) in Rep(St;C)
is indecomposable if and only if e is primitive. Moreover, every indecomposable object in Rep(St;C)
is isomorphic to one of the form ([n], e).

(c) Two primitive idempotents e, e′ ∈ P2n(t) give isomorphic objects ([n], e) and ([n], e′) if and only
if they are conjugate in P2n(t).

(d) Rep(St;C) is a Krull-Schmidt category in the sense that every object can be decomposed as a
finite direct sum of indecomposable objects in an essentially unique way up to permutations.

Remark 4.3. The category Part should be thought of as the category studying all the partition algebras
P2n(t) simultaneously. Via Schur Weyl duality combined with the fact that every irreducible C[Sn]
module appears as a summand of a high enough power of the natural representation, we created this
category to interpolate the representations of Sn. In particular, the category Part, did not have direct
sums and more importantly, direct summands. Through this construction we endowed it the properties
it was missing and thus now we can somewhat safely say that Rep(St;C) interpolates the category of
finite dimensional C[Sn]-modules. This idea will become clear once we have defined the interpolation
functor. Notice that whenever we choose nonnegative integer values for t, naively one might expect
that the category we made is going to be Rep(St,C). That is not the case, since we made our category
slightly bigger starting with Part, as by theorem 3.16, morphisms between tensor products of the natural
representation do not have a unique presentation as f(π) for π a partition diagram.

We are now in a position to classify the indecomposable objects in the Deligne category Rep(St;C).
By theorem 3.29, if λ is a Young diagram of arbitrary size, then it corresponds to a primitive idempotent
eλ ∈ P2|λ|(t), where for t = 0 we set e∅ = id0 ∈ P0(0). Remember that eλ is unique up to conjugation
and thus the object L(λ) = ([|λ|], eλ) is an indecomposable object in Rep(St;C), well defined up to
isomorphism.

Lemma 4.4. For a fixed n ≥ 0, the assignment λ 7→ L(λ) induces a bijection
nonzero indecomposable objects in

in Rep(St;C)of the form ([m], e)

with m ≤ n, up to isomorphism

←→
{

Young diagrams λ

with 0 ≤|λ|≤ n

}
.

For the above bijection, we also have:
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• If λ is a Young diagram with n ≥|λ|> 0, then there exists an idempotent e ∈ Pn(t) such that
([n], e) ∼= L(λ).

• If t ̸= 0, then there exists an idempotent e ∈ Pn(t) such that ([n], e) ∼= L(∅).

• If t = 0, then ([0], id0) is the unique object of the form ([m], e), isomorphic to L(∅).

Proof. We first assume that t ̸= 0 and proceed by induction on n. For n = 0 the statement becomes
trivial. For n = 1, write a, a′ for the unique objects in P1,0 and P0,1 respectively and let 1

tπ = f ∈ P2(t)

be the idempotent from section 3.1. Then we have that {f, 1 − f} is a complete set of pairwise non-
conjugate primitive idempotents in P2(t). Thus the indecomposable objects ([1], f), ([1], 1− f) are not
isomorphic. Additionally, fa′id0 : L(∅) ∼= ([0], id0) → ([1], f) is an isomorphism with inverse 1

t id0af .
Therefore, the objects ([1], f) ∼= L(∅) and ([1], 1− f) ∼= L(□) form a complete list of nonzero pairwise
non-isomorphic indecomposable objects in the Deligne category with m ≤ 1. Suppose now that n > 1

and let λ be a Young diagram with 0 ≤|λ|< n. By induction we can find a primitive idempotent
fλ ∈ P2n−2(t) such that ([n − 1], fλ) ∼= L(λ) such that {([n − 1], fλ) | 0 ≤ |λ| < n} is a complete
set of nonzero pairwise non-isomorphic indecomposable objects in Rep(St;C) of the form ([m], e) with
m < n. We elevate the above idempotents to P2n(t) as follows. Let

ϕn =

1 2

1′ 2′

. . .

. . .

n−2 n−1

(n−2)′(n−1)′n′

, ϕ′n =

1 2

1′ 2′

. . .

. . .

n−2 n−1 n

(n−2)′(n−1)′

and for every such λ, set f̂λ = ϕnfλϕ
′
n. Then by noticing that ϕ′nϕn = idn−1 we get that

f̂λ
2
= ϕnfλϕ

′
nϕnfλϕ

′
n = f̂λ ∈ P2n(t)

is an idempotent and that fλϕ′nf̂λ : ([n], f̂λ) → ([n − 1], fλ) is an isomorphism, with inverse f̂λϕnfλ.
But this means ([n], f̂λ) is indecomposable, or equivalently f̂λ ∈ P2n(t) is a primitive idempotent.
Moreover, by passing through ϕ′n, ϕn we connected n and n− 1, so that f̂λ = ef̂λ ∈ (e). Therefore, f̂λ
is not conjugate to eµ for any Young diagram µ of size n by lemma 3.26 and theorem 3.29. It follows
that the set {f̂λ | 0 ≤ |λ| < n}∪ {eλ | |λ|= n} is a set of pairwise non conjugate primitive idempotents
in P2n(t). As this is indexed by Young diagrams of size at most n, it follows from theorem 3.29 that
it is a complete set of pairwise non-conjugate primitive idempotents in P2n(t), thus yielding that the
objects ([n], f̂λ) ∼= L(λ) for 0 ≤ |λ| < n together with ([n], eλ) ∼= L(λ) for |λ|= n are a complete
list of nonzero pairwise non-isomorphic indecomposable objects in Rep(St;C) of the form ([m], e) with
m ≤ n. This completes the proof for t ̸= 0.
Suppose now that t = 0. Then every composition ([0], id0)→ ([m], e)→ ([0], id0) is equal to the zero
map unless m = 0 and e = id0 and thus ([0], id0) ∼= L(∅) is unique. The remainder of the lemma
follows again by induction on n with the same arguments, this time using the second statement of
theorem 3.29 for primitive idempotents in P2n(0).

Theorem 4.5. The assignment λ 7→ L(λ) induces an isomorphism{
nonzero indecomposable objects in

in Rep(St;C) up to isomorphism

}
←→

{
Young diagrams λ

of arbitrary size.

}
.
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4.2 The interpolation functor

In this section, we always assume that d is a nonnegative integer. We make the connection between
the Deligne category Rep(Sd;C) and Rep(Sd;C) clear. In particular, we will show that we can recover
Rep(Sd;C) by the semisimplification of Rep(Sd;C), yielding that for nonnegative integers d, the cat-
egory Rep(Sd;C) is not a semisimple category. Remember the map f : CPn,m → HomSd

(V ⊗n
d , V ⊗m

d )

from definition 3.9.

Definition 4.6 (Interpolation functor). We define the functor F : Rep(Sd;C) −→ Rep(Sd;C) on
indecomposable objects by F([n], e) = f(e)(V ⊗n

d ) and on morphisms a : ([n], e) → ([n′], e′) by F(a) =
f(a).

This functor preserves the tensor structures of the above categories and thus is a tensor functor.

Proposition 4.7. F is surjective on both objects and morphisms.

Proof. The fact that it is surjective on morphisms comes from the fact that the map f is always sur-
jective. Moreover, for primitive idempotent e ∈ Pn(t) we have that f(e)(V ⊗n

d ) is an indecomposable
(and thus irreducible) direct summand of V ⊗n

d . This combined with the fact that every irreducible
C[Sn]-module is a direct summand of a high enough tensor power of the natural representation con-
cludes the proof that it is also surjective on objects, since Rep(St;C) has finite direct sums (and is
Krull-Schmidt, so that every object decomposes as a finite direct sum of indecomposables).

Remark 4.8. As we have already hinted, F is not going to be an equivalence of categories, see re-
mark 4.3. The amount to which this functor fails to be an equivalence is measured by the so called
negligible morphisms, defined below.

Definition 4.9 (Negligible Morphisms). A morphism f : X → Y in a tensor category is called
negligible, if tr(fg) = 0, for every g : Y → X. We set N (X,Y ) := {f : X → Y | f is negligible}.

In partition algebras, to find negligible morphisms, we just find morphisms that have zero trace
when we compose them with any of the diagrammatic basis elements. By the characterization of the
kernel of f by spans of orbit basis elements, they are natural candidates for negligible morphisms.

Example 4.10. 1. For t = 0, we have that the only non-negligible morphisms in Par0 are nonzero
scalars of id0.

2. Suppose π : [1] → [1] is the partition having only singletons as parts. Then O(π) : [1] → [1] is
equal to O(π) = π − id1. Since tr(π) = t = tr(id1) it holds that tr(O(π)) = 0. Moreover, since
O(π)π = (t− 1)π, we have tr(O(π)π) = t(t− 1). Thus O(π) is negligible if and only if t = 0, 1.

Proposition 4.11. On any tensor category the following hold:

1. N is a tensor ideal.

2. The image under a full tensor functor of a morphism f is negligible if and only if f is negligible.

Since the category Rep(Sd;C) is semisimple, it does not contain nonzero negligible morphisms
and thus the functor F sends every negligible morphism to zero. Thus F induces a functor F :

Rep(Sd;C)/N −→ Rep(Sd;C). Additionally, for nonnegative integer values of t, the categoryRep(St;C)
is not semisimple since it contains negligible morphisms.
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Remark 4.12. More generally, in Part it holds that

N ([n], [m]) =

span{O(π) | π has more than t parts}, t ≥ 0,

0, otherwise.

For t ≥ 0, this follows by the definition of F , together with proposition 4.11, since F is full. If t /∈ Z≥0,
we will eventually show that the Deligne category is semisimple, implying that it does not contain any
negligible morphisms.

Theorem 4.13. F is faithful and thus induces an equivalence of categories Rep(Sd;C)/N ∼= Rep(Sd;C).

Proof. Suppose that two morphisms a, b have the same image under F . Then a− b is in the kernel of
f , so by remark 4.12 we get that a− b ∈ N , yielding a = b in Rep(Sd;C)/N .

We end by investigating how the functor F interacts with indecomposable objects.

Definition 4.14. For arbitrary t ∈ C and λ = (λ1, λ2, . . . , λn, . . .) a Young diagram, we define the
t−completion of λ to be

λ(t) = (t− |λ|, λ1, λ2, . . .).

Proposition 4.15. Suppose d is a nonnegative integer and λ = (λ1, λ2, . . .) is a Young diagram. If
the d-completion of λ is again a Young diagram, then F(L(λ)) = Lλ(d), otherwise F(L(λ)) = 0.

Proof. Idea : One can prove that the indecomposable objects L(λ) in Rep(Sd;C) of nonzero categorical
dimension are exactly those for which the d-completion of λ is again a Young diagram.

4.3 Study of Blocks and YJM like elements for Rep(St;C).

Comes and Ostrik defined morphisms in Rep(St;C) interpolating the action of the sum of all
r−cycles on representations of the symmetric groups. These elements have a striking resemblance to
the classic Jucys Murphy elements from Chapter 1, in the sense that they form a large commutative
subalgebra and their actions completely characterize blocks in Rep(St;C). However, there is a signi-
ficant difference. Rather than these elements acting diagonally, they act with a pure Jordan block,
yielding another indication of the non-semisimplicity.

Let Ωr,d ∈ C[Sd] denote the sum of all r−cycles in Sd. Notice that these elements are in the center
of the group algebra as we are summing up all the elements in a conjugacy class. Thus their action on
V ⊗n
d yields an element of EndSd

(V ⊗n
d ). Since the map f is an isomorphism whenever d ≥ n+m, the

following is well defined.

Definition 4.16. For nonnegative integers r, n and d with r ≤ d and 2n ≤ d, let Cr
n(d) be the unique

element of P2n(d) such that f(Cr
n(d)) is given by the action of Ωr,d.

Our goal is to define elements in P2n(t) that agree with the elements Cr
n(d) for large integer values

of t. We are able to do so because as we will see, Cr
n(d) depends polynomially on d.

Proposition 4.17. Let n ≥ 0 and π ∈ Pn,n. Fix the following notation

• Let a denote the number of parts of π.

• Let b denote the number of parts πk of π such that j, j′ ∈ πk for some j ∈ [n].

• Let c denote the number of connected components in the trace diagram of π.
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• Suppose r, d are positive integers with d ≥ r and i, i′ ∈ [n, d] such that the (i, i′)−coloring of π is
perfect. Let S(π, r, d) denote the number of r−cycles σ ∈ Sd such that σ(ij) = i′j for all j ∈ [n].

Then for a positive integer r the following hold:

1. If S(π, r, d) ̸= 0 for some integer d ≥ r, then S(π, r, d′) ̸= 0 for all d′ ≥ d.

2. If S(π, r, d) ̸= 0, then

S(π, r, d) =
(r − a+ c− 1)!

(r − a+ b)!

r+b−a∏
k=1

(d− r − b+ k).

Proof. The first assertion is clear since if an r−cycle in Sd satisfies the assertion, then the same cycle
considered as an element in Sd′ also satisfies the assertion. For the second, since S(π, r, d) does not
depend on the choice of perfect coloring of π, thus we may assume {ij , i′j | j ∈ [n]} = {1, 2, . . . , a}.
Then for x, y ∈ [a] we write x → y if x = ij and y = i′j for some j ∈ [n]. Generate the weakest
equivalence relation on [a] such that x → y implies x ∼ y. The equivalence classes correspond to
the connected components in the trace diagram of π. Thus there are exactly c equivalence classes.
Now assume that S(π, r, d) ̸= 0. Then the following two implications are clear. If x → y and x → y′

then y = y′. If x → y and x′ → y then x = x′. In particular, there are precisely b equivalence
classes with exactly one element. Thus the c− b equivalence classes with more than one element must
account for a − b elements of [a]. Suppose that an r−cycle σ ∈ Sd satisfies σ(ij) = i′j for all j. Then
among the elements in [a], the cyclic arrangement corresponding to σ contains precisely the a − b

elements in equivalence classes with more than one element. Additionally, if x → y for x ̸= y, then
x, y must be adjacent in the cyclic arrangement corresponding to σ. Thus σ is determined by a cyclic
arrangement of the following r−a+ c items: c− b equivalence classes with more than one element and
r−a+ b elements of {a+1, . . . , d}. Finally, if such a cycle exists, then any choice of r−a+ b elements
of {a + 1, . . . , d} arranged cyclically with the equivalence classes containing more than one element
determines an r−cycle in Sd interchanging ij , i′j . Since there are (r − a+ c− 1)! cyclic arrangements
of r − a+ c elements and

(
d−a

r−a+b

)
different r − a+ b element subsets of {a+ 1, . . . , d}, it follows that

S(π, r, d) = (r − a+ c− 1)!
(

d−a
r−a+b

)
which is equivalent to the desired formula.

Example 4.18. Consider

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1′ 2′ 3′ 4′ 5′ 6′ 7′ 8′ 9′ 10′11′12′13′14′15′

Then a = 13, b = 4, c = 7. For d ≥ 13, let (i, i′) be the perfect coloring of π shown below:

1 2 1 3 4 5 6 4 7 8 9 8 10 9 10

5 2 5 3 11 13 12 11 8 6 9 6 10 9 10

In order for an r−cycle σ ∈ Sd to satisfy σ(ij) = i′j for all j, it must first fix the b = 4 numbers
2, 3, 9, 10 and map 1 7→ 5 7→ 13, 4 7→ 11, 7 7→ 8 7→ 6 7→ 12. Such a cycle exists only if r ≥ 9 = a− b
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and d ≥ r + 4 = r + b. In that case, we count the cycles as follows. We consider the 4 non trivial
equivalence classes as 4 different objects and thus in order to count the cycles, we have to count the
cyclic arrangements of these 4 elements together with the rest r − 9 elements in the cycle. Thus we
have (r − 9 + 4 − 1)! = (r − 6)! such cyclic arrangements. Since for these r − 9 elements we have
d− 9− 3 = d− 12 choices, we can choose them in

(
d−12
r−9

)
ways. In total we have

S(π, r, d) = (r − 6)!

(
d− 12

r − 9

)
which after rearrangement is the same with the formula given in the proposition above.

With the above in mind, we can define elements in the partition algebras P2n(t) interpolating Ωr,d.

Definition 4.19. For t ∈ C and integers r > 0, n ≥ 0, define ωr
n(t) ∈ Pn(t) as follows.

ωr
n(t) =

∑
π∈Pn,n

qπ,r,tO(π)

where O(π) are the elements of the orbit basis, and

qπ,r,t =


0, if S(π, r, d) = 0 for all d > 1.

(r−a+c−1)!
(r−a+b)!

r+b−a∏
k=1

(t− r − b+ k), otherwise.

The idea for the above elements is that the coordinates in the orbit basis can be found by the
action of the image under f of Cr

n(d), as the following proposition justifies.

Proposition 4.20. 1. Fix integers r > 0, n ≥ 0. Whenever d is a sufficiently large integer, ωr
n(d) =

Cr
n(d). In other words, for large integers d the map f(ωr

n(d)) is given by the action of Ωr,d ∈ C[Sd].

2. Fix t ∈ C and an integer r > 0. The morphisms ωr
n(t) : [n] → [n] for each nonnegative integer

n form an endomorphism of the identity functor in Par. In particular, the elements ωr
n(t) are

central in P2n(t) for every t ∈ C and n ≥ 0.

Proof. For i, i′ ∈ [n, d], let π(i, i′) ∈ P2n(t) denote the partition having (i, i′) as a perfect coloring.
Then the action of Ωr,d on V ⊗n

d maps the basis vector vi to
∑

i′∈[n,d]
S(π(i, i′), r, d)vi′ . On the other

hand, since f(O(π))ii′ = 1 if (i, i′) is a perfect coloring of π and is equal to zero otherwise, we have that
f(ωr

n(t)) maps vi to
∑

i′∈[n,d]
qπ(i,i′),r,dvi′ . By proposition 4.17, for sufficiently large integers d it holds

that S(π(i, i′), r, d) = qπ(i,i′),r,d proving the first claim.
For the second assertion, let µ ∈ Pn,m. For an integer d > r, since Ωr,d is a central element we know
that f(µ) : V ⊗n

d → V ⊗m
d commutes with the action of Ωr,d. Hence, for large integers d, it holds that

f(µωr
n(d)) = f(ωr

m(d)µ)

Since f is an isomorphism for sufficiently large integers, we have

ωr
m(d)µ = µωr

n(d)

Thus, if we set ωr
m(t)µ =

∑
π∈Pn,m

aπ(t)π and µωr
n(t) =

∑
π∈Pn,m

a′π(t)π, then we have shown that for

sufficiently large integers t the polynomials aπ(t) and a′π(t) are equal. Thus they are always equal.
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We are in a position to study how these elements ωr
n(t) interact with indecomposable objects in

Rep(St;C).

Proposition 4.21. Fix t ∈ C along with integers r > 0, n ≥ 0. If e is a primitive idempotent in Pn(t),
then there exists ξ ∈ C and positive integer m such that

(ωr
n(t)− ξ)me = 0.

Proof. Since P2n(t) is finite dimensional, there exists a minimal polynomial a ∈ C[x] such that
a(ωr

n(t))e = 0. We first show that a is a power of an irreducible polynomial in C[x]. Suppose we
can factorize a(x) = b(x)c(x) for relatively prime monic polynomials b, c. Then by Bezout, there exist
polynomials g, h with deg(g) < deg(c) and deg(h) < deg(b), such that

g(x)b(x) + h(x)c(x) = 1.

Hence g(ωr
n(t))b(ω

r
n(t))e+ h(ωr

n(t))c(ω
r
n(t))e = e is a decomposition of e into orthogonal idempotents

since ωr
n(t) is central and a(ωr

n(t))e = 0. Since e is primitive, this implies that either g(ωr
n(t))b(ω

r
n(t))e =

0 or h(ωr
n(t))c(ω

r
n(t))e = 0. By minimality of a, this implies g(x) = 0 or h(x) = 0 which in turn yields

b(x) = 1 or c(x) = 1. So indeed, a is a power of an irreducible polynomial in C[x]. Thus there exist
ξ ∈ C and positive integer m such that a(x) = (x− ξ)m.

Theorem 4.22 (Frobenius formula). Fix integers d ≥ r > 1. Given a Young diagram λ = (λ0, λ1, . . .)

of size d, set µi = λi − i for every i ≥ 0. Then

Ωr,d.S
λ = ξλr,kS

λ

where

ξλr,k =
1

r

r∑
k=0

(µi + k − 1)(µi + k − 2) · · · (µi + k − r)
∏

0≤j≤k
j ̸=i

µi − µj − r
µi − µj

.

We end this section by showing that the scalar ξ from proposition 4.21 is given by the Frobenius
formula.

Theorem 4.23. Fix t ∈ C, a positive integer r and a Young diagram λ with positive integer k such
that λk+1 = 0. Then for the indecomposable L(λ) = ([n], e) ∈ Rep(St;C) we have that

(ωr
n(t)− ξ

λ(t)
r,k )me = 0

for some positive integer m.

Proof. By the classification of indecomposables, we may assume n =|λ|. Let ξ and m be as in propos-
ition 4.21, so that (ωr

n(t)− ξ)me = 0. We push this through the quotient map pn : P2n(t) ↠ C[Sn] to
get (p(ωr

n(t)) − ξ)mcλ = 0 in C[Sn], where cλ is the primitive idempotent corresponding to λ. Since
p(ωr

n(t)) is central, it holds that
p(ωr

n(t))cλ = ξcλ.

By the definition of these elements, it becomes imminent that ξ depends polynomially on t.
Now let d be a positive integer such that d−|λ|≥ λ1. Passing the equation (ωr

n(d)− ξ)me = 0 through
the interpolation functor F yields (Ωr,d − ξ)mcλ(d) = 0. Using the Frobenius formula now yields
ξ = ξ

λ(t)
r,k whenever t = d is a sufficiently large integer. Since ξ depends polynomially on t and ξλ(t)r,k is

a rational function in t such that they agree in infinitely many values of t, they must be equal for all
t ∈ C.
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4.4 Description of Blocks

Suppose C is an arbitrary C-linear Krull-Schmidt category. We consider the weakest equivalence
relation on the set of isomorphism classes of indecomposable objects in C, where two indecomposable
objects are equivalent whenever there is a nonzero morphism between them. We call the equivalence
classes in this relation blocks. We will also refer to this term for a full subcategory whose objects are
direct sums of indecomposable objects in a single block. We say that a block is trivial, if it contains
only one indecomposable object and the endomorphism ring of that object is C. For example, in
any semisimple category over any algebraically closed field, all blocks are trivial. Non trivial blocks
essentially show how far our category falls from being semisimple. In this section, we describe the
blocks of Rep(St;C).

Definition 4.24. For t ∈ C and a Young diagram λ = (λ1, λ2, . . .), set

µλ(t) = (t−|λ|, λ1 − 1, λ2 − 2, . . .).

For Young diagrams λ and λ′ write µλ(t) = (µ0, µ1, . . .) and µλ′(t) = (µ′0, µ
′
1, . . .). We say λ

t∼ λ′

whenever there exists a bijection a : Z≥0 → Z≥0 such that µi = µ′a(i) for all i ≥ 0.

Example 4.25. Let λ = and λ′ = . Then µλ(t) = (t− 5, 2, 0,−3,−4,−5,−6, . . .) and

µλ′(t) = (t − 6, 2, 0,−2,−3,−4,−5,−6, . . .). Thus we see that for t = 3 one is a permutation of the
other, or equivalently λ 3∼ λ′.

For each t ∈ C the relation t∼ defines an equivalence relation on the set of all Young diagrams and
therefore on the indecomposable objects of Rep(St;C). We can now see how the action of these ωr

n(t)

seperates blocks.

Lemma 4.26. Suppose λ, λ′ are Young diagrams and k > 0 is such that λk+1 = λ′k+1 = 0. Then the
following hold:

(a) If L(λ) and L(λ′) are in the same block in Rep(St;C), then ξ
λ(t)
r,k = ξ

λ′(t)
r,k for all r > 0.

(b) If ξλ(t)r,k = ξ
λ′(t)
r,k for all r > 0, then λ

t∼ λ′.

Proof. For the first part, let n, n′ be nonnegative integers and e ∈ P2n(t), e
′ ∈ P(2n)′(t) be idempotents

with L(λ) ∼= ([n], e) as well as L(λ′) ∼= ([n′], e′). Moreover, fix r > 0 and write ω = ωr
n(t), ω

′ = ω′r
n(t),

as well as ξ = ξ
λ(t)
r,k , ξ

′ = ξ
λ′(t)
r,k . Additionally letm a positive integer such that (ω−ξ)me = (ω′−ξ′)me =

0. Now suppose that ξ ̸= ξ′. Then there exist polynomials p, q ∈ C[x] such that

p(x)(x− ξ)m + q(x)(x− ξ′)m = 1.

Thus given any morphism ϕ : ([n′], e′) → ([n], e) while remembering that the ωr
n(t) form an endo-

morphism of the identity functor, together with ϕe′ = ϕ = eϕ we get

ϕ = p(ω)(ω − ξ)mϕ+ q(ω)(ω − ξ′)mϕ = p(ω)(ω − ξ)meϕ+ q(ω)(ω − ξ′)mϕe′

which in turn is equal to
p(ω)(ω − ξ)meϕ+ ϕq(ω′)(ω′ − ξ′)me′ = 0

Thus if there exists a nonzero morphism between the two indecomposable objects, then ξ = ξ′.
For the second part, notice that ξλ(t)r,k is symmetric in µ0, . . . , µk. Thus by multiplying with

∏
0≤i<j≤k

(µi−
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µj) we get an antisymmetric polynomial in µ0, . . . , µk. But every antisymmetric polynomial is divis-
ible by the Vandermonde product

∏
0≤i<j≤k

(µi − µj), yielding that ξλ(t)r,k is a symmetric polynomial in

µ0, . . . , µk. Moreover, by opening up the formula for ξλ(t)r,k , we see that as a polynomial in µ0, . . . , µk,
it holds that

ξ
λ(t)
r,k =

1

r

k∑
i=0

µri + (lower order terms).

This in turn implies that the ring generated by the ξλ(t)r,k for every r > 0 contains the power sums
k∑

i=0
µri

and hence is equal to the ring of all symmetric polynomials in µ0, . . . , µk. But then ξ
λ(t)
r,k = ξ

λ′(t)
r,k for

all r > 0, implies that µ is a permutation of µ′ or λ t∼ λ′.

We finish this section by stating the main result by Comes and Ostrik [3] together with some results
and examples to understand the relation t∼.

Theorem 4.27. Two indecomposable objects L(λ) and L(λ′) are in the same block of Rep(St;C) if

and only if λ t∼ λ′.

We have already proven the forward implication. For the other implication one needs to first
understand the relation t∼, as well as how lifts of indecomposables of Rep(St;C) decompose in its
generic version Rep(ST ;Frac(C[T − t])), which is semisimple. The following proposition characterizes
when a transformation of µλ(t) is again of the form µλ′(t) for a Young diagram λ.

Proposition 4.28. Let λ ∈ Y and write µλ(t) = (µ0, µ1, . . .). Suppose that τ : Z≥0 → Z≥0 is a
bijection and set µ′ = (µ′0, µ

′
1, . . .) where µ′i = µτ−1(i). There exists a Young diagram λ′ such that

µ′ = µλ′(t) if and only if µ′i ∈ Z with µ′i > µ′i+1 for all i > 0.

Proof. Suppose λ′ satisfies µ′ = µλ′(t). Then µ′i = λ′i − i > λ′i+1 − i − 1 = µ′i+1 for all i > 0. For the
converse, assume µ′i > µ′i+1 for all i > 0 and set λ′i = µi + i for all i ≥ 0. Since both µi > µi+1 and
µ′i+1 = µτ−1(i+1) > µτ−1(i) = µ′i for all i > 0, τ−1 must be increasing for values i > τ−1(0), or else if
for some i we have τ−1(i) > τ−1(i+ 1), then λτ−1(i) − τ−1(i) > λτ−1(i+1) − τ−1(i+ 1) but since λ is a
Young diagram, λτ−1(i) < λτ−1(i+1), yielding that τ−1(i + 1) > τ−1(i) a contradiction. But then τ is
also increasing, thus for values i > max{τ(0), τ−1(0)} it holds that τ(i) ≥ i so that τ−1(i) ≤ i, finally
yielding τ(i) = i, for all i > max{τ(0), τ−1(0)}. Consequently, λ′i = λi for all i > max{τ(0), τ−1(0)},
yielding λ′i = 0 for large values. Moreover, λi− i > λi+1− i− 1 implies λ′i ≥ λ′i+1 for all i > 0, proving
that λ′ is a Young diagram. By choosing k > max{τ(0), τ−1(0)} with λk = 0 (and thus also λ′k = 0),
we get that

t =
∑

λi =
∑

µi +
k(k + 1)

2
=

∑
µ′i +

k(k + 1)

2
=

∑
λ′i.

yields λ′0 = t−|λ′|.

Corollary 4.29. (a) The t∼ equivalence classes are all trivial, unless t ∈ Z≥0.

(b) Suppose d is a nonnegative integer and λ a Young diagram. The d∼ equivalence class containing
λ is non trivial if and only if the coordinates of µλ(d) are pairwise distinct.

Proof. From proposition 4.28, we get that the class containing λ is nontrivial, if and only if all the
coordinates of µλ(t) are integers and pairwise distinct. Thus if t /∈ Z the classes are all trivial. Now
if t is a negative integer, then λ|λ|−t = 0 (since we passed the length) and thus µ has repetitions as
µ0 = µ|λ|−t.
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Proposition 4.30. Let d be a nonnegative integer and λ a Young diagram in a non-trivial d∼ equivalence
class. By the proposition 4.28, we can label the coordinates of µλ(d) by µ0, µ1, . . . such that µi < µi−1

for all i > 0. For each integer i ≥ 0, set λ(i) = (λ
(i)
1 , . . .), where

λ
(i)
j =

µj−1 + j, if j ≤ i,

µj + j j > i.

for all j > 0. Then λ(0) ≤ λ(1) ≤ . . . is a complete list of the Young diagrams in the d∼ equivalence
class containing λ.

Proof. λ(i) is a Young diagram for which µλ(i)(d) has coordinates

µ
(i)
j =


µi if j = 0,

µj−1 if 0 < j ≤ i,

µj if j > i.

Thus λ(i) d∼ λ for all i ≥ 0. Moreover from proposition 4.28, the list is complete. Lastly, for all j ̸= i

we have λ(i−1)
j = λ

(i)
j and λ(i−1)

i = µi + i > µi−1 + i = λ
(i)
i , yielding λ(i−1) ≤ λ(i). for all i > 0.

We can now fully characterize non-trivial blocks in a combinatorial manner.

Corollary 4.31. A Young diagram is the minimal element in a nontrivial d∼ equivalence class, if and
only if its d-completion is again a Young diagram. In particular, the non-trivial d equivalence classes
are parametrized by partitions of d. Additionally, if {λ(0) ≤ λ(1) ≤ . . .} is a nontrivial d equivalence
class, then for each i ≥ 0, the Young diagram λ(i) is created from λ(0)(d) by removing row i and adding
one box to row j for all j = 0, 1, . . . , i− 1.

Proof. If λ(d) is again a Young diagram, then d−|λ|> λ1−1 > λ2−2 > . . .. By corollary 4.29 λ belongs
to a nontrivial equivalence class and with the convention used there λ = λ(0) is the minimal element
in its equivalence class. Conversely, let {λ(0) ≤ λ(1) ≤ . . .} be a nontrivial d∼ equivalence class and
µ0, µ1, . . . be the coordinates of µλ(d) labelled as in proposition 4.30. Then d−|λ(0)|= µ0 ≥ µ1+1 = λ

(0)
1

proving that λ(0)(d) is a Young diagram. We have λ(i)1 = µ0 + 1 = d−|λ(0)|+1 and the j-th row of λ(i)

is λ(i)j = µj−1 + j = λ
(0)
j−1 + 1 for j ≤ i and for j > i λ

(i)
j = λ

(0)
j . Thus we obtain λ(i) from λ(0) by

removing row i and adding one box to row j for j ≤ i− 1.

Example 4.32. Let us consider the non trivial 4∼ equivalence classes. They are parametrized by
partitions of 4, thus we have 5 non trivial equivalence classes, and each one of them is given by the
chain proposed in corollary 4.31. Moreover, to obtain the minimal elements in equivalence classes we
need λ Young diagram such that its 4-completion is again a Young diagram, thus |λ|≤ 4. Out of all

those partitions, the ones whose 4-completion is again a Young diagram are ∅,□, , , with

respective 4-completions , , , , . The corresponding equivalence classes

are presented below.

C∅ =

∅ ≤ ≤ ≤ ≤ ≤ . . .

 ,
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C□ =

 ≤ ≤ ≤ ≤ ≤ . . .

 ,

C =

 ≤ ≤ ≤ ≤ ≤ . . .

 ,

C =

 ≤ ≤ ≤ ≤ ≤ . . .

 ,

C =

 ≤ ≤ ≤ ≤ ≤ . . .

 .

Lastly, we give the dimensions of morphism spaces between indecomposable objects. As a corollary,
we get the result originally secured by Deligne, characterizing when Rep(St;C) is semisimple.

Proposition 4.33. (a) Whenever λ is in a trivial t∼ equivalence class, dimCEndRep(St;C)(L(λ)) = 1.
Thus the block corresponding to a trivial t-equivalence class is trivial.

(b) For a non-trivial block {λ(0) ≤ λ(1) ≤ . . .} in Rep(St;C),

dimCHomRep(St;C)(L(λ
(i)), L(λ(j))) =


2 if i = j > 0,

0 if |i− j|≥ 2,

1 if |i− j|= 1.

For a proof of the above result, see [3].

Corollary 4.34. Rep(St;C) is semisimple if and only if t is a nonnegative integer.

Proof. We have a non trivial block if and only if t is a nonnegative integer. Otherwise all blocks are
trivial, yielding that Rep(St;C) is semisimple.
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5 The Affine partition category

In this chapter we give the modern approach to YJM elements for the partition algebras, via a
new category defined by Brundan and Vargas [1]. In order to define this category which somewhat
easily recovers the classic YJM elements defined in definition 3.33, they took advantage of a result by
Likeng and Savage [10], namely an embedding of Deligne’s category Rep(St;C)(and thus also Part) in
the Heisenberg category. The main advantage with the Heisenberg category is that it has a categorical
action to the symmetric category, giving it natural candidates for YJM elements, justyfying their
definition in the affine partition category. Another advantage of working in the Heisenberg category
is that we can employ monoidal calculus, making calculations more manageable compared to working
directly in the partition algebra.

Definition 5.1 (Partition Category). The partition category Part is the strict C-linear monoidal
category generated by one object |, with generating morphisms

 

which we call cross, split,merge, dl, ul respectively. subject to the following relations, as well as the
ones obtained from these by horizontal and vertical flips:

 

where 1 is the unit object of Part. Note that the object set of Part is {|⊗n : n ∈ N}, so we will identify
it with the natural numbers N.
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Remark 5.2. In order to avoid confusion with later notation, when a circle is attached to the bottom
(top) of a strand, that means the source (target) of that strand is the unit object 1.

Relations (1-4) imply that Part is a symmetric monoidal category, while (5)-(8) imply that the
generating object is a commutative Frobenius object, (9) implies it is a special Frobenius object (i.e
product is left inverse of coproduct). Note that the category is rigid with every object being self-dual.
We can write the evaluation and co-evaluation maps as

 

which are easily seen to satisfy the snake identities by relations 7 and 8. Thus, relations 9 and
10 imply that the object | is of categorical dimension t. An m × n partition diagram is a string
diagram f in HomPart(n,m) consisting of vertical and horizontal compositions of the above generating
morphisms such that every connected component of f has at least one endpoint, as floating bubbles
of the form ev ◦ coev can be removed giving the result a factor of t ∈ C. Then HomPart(m,n) is
C-linear combinations of partition diagrams as defined above. We also have the anti-isomorphism
flip : Part → (Part)op being identity on objects and sending morphisms to their flips in a horizontal
axis. By labelling the endpoints of an m× n partition diagram f from right to left by 1, . . . , n on the
bottom boundary and by 1′, . . . ,m′ on the top boundary, a partition diagram defines a partition of the
set {1, . . . , n, 1′, . . . ,m′} as in the following example:


























The above partition diagram determines the partition

{1, 2′} ∪ {1′, 4} ∪ {2} ∪ {3, 3′, 5′} ∪ {5′}

of the set {1, 2, 3, 4, 1′, 2′, 3′, 4′, 5′}. We thus get a nice functor from the partition category defined here
to the partition category defined in definition 3.21, which is an isomorphism of categories. We can now
identify HomPart(n,m) = CPn,m, with the convention that we are now working with flipped partition
diagrams (and thus composition also goes from bottom to top). We next reformulate Schur-Weyl
duality categorically.

Theorem 5.3. Let t be a nonnegative integer. Viewing C[St]−mod as a symmetric monoidal category
using the Kronecker tensor product, there is a full C-linear symmetric monoidal functor ψt : Part →
C[St]−mod sending the generating object | to the natural t-dimensional representation Vt and defined
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on generating morphisms by

ψt

( )
: Vt ⊗ Vt → Vt ⊗ Vt , ui ⊗ uj 7→ uj ⊗ ui ,

ψt

( )
: Vt ⊗ Vt → Vt, ui ⊗ uj 7→ δi,jui ,

ψt

( )
: Vt → Vt ⊗ Vt, ui 7→ ui ⊗ ui ,

ψt

(
•◦
)
: Vt → C , ui 7→ 1 ,

ψt

(
•◦
)
: C→ Vt 1 7→ u1 + · · ·+ ut .

Moreover, the linear map CPn,m → HomSt(V
⊗n
t , V ⊗m

t ) sending f 7→ ψt(f) is an isomorphism whenever
t ≥ n+m.

We also define the generic partition category Par to be the strict C-linear monoidal category with
the same generating objects and morphisms as in Part subject to all the relations but the last one
which is ommited. We denote the floating morphism by

T = dl ◦ ul

which is strictly central in Par, so that it can be viewed as a C[T ]-linear monoidal category. For t ∈ C
we get the canonical evaluation functor

evt : Par → Part

taking T to t11. We can use the basis theorem for Part infinitely many times through evt to obtain
a basis theorem for Par. Each morphism space HomPar(n,m) is free as a C[T ]-module, with basis
given by a set of representatives for the equivalence classes of m×n partition diagrams. This category
is useful since whenever we want to check if a relation holds in Part for all values of t, we just check
that they hold for all large enough positive integers. Moreover, using the functor ψt from above, we
can reduce the original question to one for symmetric groups. In particular, for t ∈ C, let

ϕt = ψt ◦ evt : Par → C[St]−mod

assuming that t is a nonnegative integer.

Lemma 5.4. Suppose f ∈ HomPar(n,m) satisfies ϕt(f) = 0 for infinitely many values of t ∈ Z≥0.
Then f = 0.

Proof. By the basis theorem, we write f =
∑
i
pi(T )fi for polynomials pi ∈ C[T ] and fi running over a

set of representatives for the equivalence classes of m×n partition diagrams. Since ϕt(f) = 0, it holds
that ∑

i

pi(t)ϕt(fi) = 0

for infinitely many values of t. But since ψt is an isomorphism for large integers, we get that∑
i

pi(t)evt(fi) = 0

for infinite values t ≥ m+ n. As the set of representatives form a basis for the Hom spaces of Par, for
each i, we have pi(t) = 0 for infinitely many values of t. Since our field is of characteristic zero, it thus
holds that the polynomials are identically zero, i.e pi(T ) = 0, for all i.
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Remark 5.5. By lemma 5.4, whenever we want to prove a relation in Par, it suffices to prove that it
holds asymptotically for their images through ϕt.

We can now define the category that will lead us to the definition of the Affine partition category.

Definition 5.6. The Heisenberg category Heis is the strict C-linear monoidal category with two gen-
erating objects ↑ and ↓ and five generating morphisms: 

subject to the following relations:

 

where we have used the sideways crossings, defined by

 

and the other one being its 180◦ flip. In order to make Heis a strictly pivotal category, we also require
the 180◦ flips of the snake relations 3 and 4 to hold.

This way, we made Heis a strictly pivotal category, with duality functor rotating diagrams through
180◦. We will also need the following shorthand notations for morphisms:

 

.
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In particular, using the above relations, one can prove that the braid relation holds no matter the
orientation of the arrows. The two decorated arrows play the role of YJM elements, as we will shortly
see.

Remark 5.7. Note that now the circle attached to the middle of a strand does not have anything to do
with the unit object as in definition 5.1. It is just the way to add YJM elements in the diagrammatics.

As a first indication, we show that they satisfy the degenerate Hecke algebra relation.

Lemma 5.8. The decorated up-arrow morphism satisfies the defining degenerate Hecke algebra relation:
 

or its equivalent by composing both up and down with the upwards crossing
 

Proof. We prove its equivalent by composing on top with the up crossing.

 

where we first used the braid relation, after that the two relations provided in ∗ and in the last equality
the two snake identities.

There exists a symmetric monoidal functor σ : Heis → (Heis)op which reverts the generating
objects and reflects a morphism along a horizontal axis, together with reverting the orientation of
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the arrows. We can use this symmetry to obtain further variations of the defining relations of the
Heisenberg category or even get other versions of the degenerate affine Hecke algebra relation. One
which we will need later on is the following.

Lemma 5.9. In Heis, the following relation holds:

 

Proof. This is a direct calculation 

where in the second equality we used the classic degenerate affine Hecke relation.

Remark 5.10. Notice how this relation is exactly what one would expect to obtain from the rotation
of the degenerate affine Hecke algebra relation lemma 5.8 by 90◦. We can use this to obtain other
variations of relations in Heis.

Khovanov [7] constructed a categorical action of this category on the category of finite dimensional
modules over the symmetric category, denoted by Sym−mod =

⊕
n∈N

C[Sn]−mod. In other words, he

constructed a strict C-linear monoidal functor

Θ : Heis→ EndC(Sym−mod) (10)

and proved that this functor is faithful over fields of characteristic zero.

Theorem 5.11. There exists a faithful strict C-linear monoidal functor

Θ : Heis→ EndC(Sym−mod)

sending the generating objects ↑, ↓ to the induction and restriction functors I,R respectively. Moreover,
Θ sends the generating morphisms of Heis to the natural transformations defined on a C[Sn]-module
V as presented below:( )

V

: C[Sn+2]⊗C[Sn+1] C[Sn+1]⊗C[Sn] V → C[Sn+2]⊗C[Sn+1] C[Sn+1]⊗C[Sn] V,

g ⊗ 1⊗ v 7→ gsn+1 ⊗ 1⊗ v,
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( )
V

: C[Sn]⊗C[Sn−1] V → C[Sn+1]⊗C[Sn] V, g ⊗ v 7→ gsn ⊗ v,( )
V

: C[Sn+1]⊗C[Sn] V → CSn ⊗C[Sn−1] V, g ⊗ v 7→

{
g2 ⊗ g1v if g = g2sng1 for gi ∈ Sn,
0 otherwise,( )

V

: V → V, v 7→ sn−1v,

( )V : C[Sn]⊗C[Sn−1] V → V, g ⊗ v 7→ gv,

( )V : V → C[Sn ⊗C[Sn−1] V v 7→
n∑

i=1

(i n)⊗ (i n)v,

( )V : C[Sn+1]⊗C[Sn
V → V, g ⊗ v 7→

{
gv if g ∈ Sn,
0 otherwise,

( )V : V → C[Sn+1]⊗C[Sn
V v 7→ 1⊗ v,(

•◦
)

V

: C[Sn+1]⊗C[Sn] V → CSn+1 ⊗C[Sn] V, g ⊗ v 7→ gξn+1 ⊗ v,(
•◦
)

V

: V → V, v 7→ ξnv.

Proof. For a proof, see [7].

Remark 5.12. By theorem 5.11, we can think of the Heisenberg category as the category controlling
inductions and restrictions of representations of the symmetric groups, together with the necessary
natural transformations between them. Additionally, the dotted up and down arrows are acting as YJM
elements, making them "natural" candidates for YJM elements in Heis. Later, Likeng and Savage [10]
embedded the partition category into Heis. This result is not completely unexpected, as both categories
control representations of the symmetric groups, with Heis clearly being larger than Par, so in order to
connect the two, one tries to find which morphisms in Heis have compatible actions with the generating
morphisms of Par.

Theorem 5.13. There is a strict C-linear monoidal functor

i : Par → Heis (11)

sending the generating object | of Par to the object (↑ ⊗ ↓) and defined on generating morphisms by
 

Proof. See [10], Theorem 4.1.

We are now ready to give the definition of the affine partition category.

Definition 5.14. The affine partition category APar is the monoidal subcategory of Heis generated
by the object |=↑ ⊗ ↓ and the following morphisms:
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We will refer to the last four generators as the left dot, right dot, left and right crossing respectively.

Remark 5.15. Brundan and Vargas adjointed these 4 new generators following the idea of Schur-Weyl
duality between partition algebras and symmetric groups. In particular, we will see that the left and
right dots resemble YJM elements and the left and right crossings are closely related to the Enyang
generators. Moreover, theorem 5.13 now can be reformulated as follows.

Corollary 5.16. There is a strict C-linear monoidal functor

i : Par → APar (12)

sending the generating object and generating morphisms of Par to the generating object and generating
morphisms of APar corresponding to the same diagrams.

Remark 5.17. Notice that there is a symmetry of the generators of APar under rotation through
180◦, enabling the restriction of the strictly pivotal structure of Heis to a strictly pivotal structure of
APar. This way, the left and right dots are duals, as are the left and right crossings. The evaluations
and co-evaluations making | a self-dual object are given by the same formulas as in Par, making the
functor i pivotal. Additionally, the symmetry σ on Heis restricts to σ : APar → (APar)op again by
the symmetry of the generators. This reflects morphisms in APar in a horizontal axis. Note also that

T =
•◦
•◦

= . (13)

Lemma 5.18. The following commutation relations hold in APar:

 

Proof. The only non-trivial relation is the third one, since the other ones all follow since any morphism
commutes with the identity. For the third one, we calculate in Heis: 
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where the second to last equality follows from the snake identities in Heis.

Lemma 5.19. The following relations hold in APar:
 

Proof. For every set of relations, we prove only the first one (and specifically the first equality) since
the other ones follow by using the symmetry σ and the duality functor to reflect in horizontal and
vertical axes. For the first one, we have 

where the first equality comes from lemma 5.18 and the second one from the defining relations in Par.
For the second one we expand as morphisms in Heis to get 

.
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we treat each term seperately. First note that the last term is easy to handle, since by the defining
relations of Heis, clockwise bubbles are equal to 1. We show that the third term is equal to zero, since
it contains a left curl:












































0

where the first equality stems from the snake identities and the second from the defining relation in
Heis. The second term is also zero by containing a left curl. Thus we are left with the first term, for
which we calculate












































0

and thus it is equal to

 

yielding the desired result. For the third relation,

 

0

.

The fourth relation follows analogously by expanding in Heis.
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Remark 5.20. By lemma 5.19, every dotted generator of APar can be recovered from the undotted
generators together with the left dot. Consequently, the other generators are superfluous, yielding the
following corollary.

Corollary 5.21. As a C-linear category, APar is generated by the object |, together with the five
undotted generators and the left dot.

We can now prove the equivalent of the five term recurrence relations given by Enyang in [5].

Lemma 5.22. The following recursive formulas hold in APar:

 

Proof. For the first one, we instead prove its equivalent by composing with the crossing in the bottom.
We explore each term seperately by expanding as morphisms in Heis.
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.

Substitution now yields the first relation. For the second relation, rotate the first one by 180◦ and
compose both on the top and the bottom with the crossing. Then the defining relations of Par
combined with lemma 5.19 yield the result. To treat the third relation, we rewrite as follows:

 

.

Since term 5 is a horizontal flip of 4, it suffices to treat one of the two terms. In particular, using just
the defining relations in Par together with lemma 5.19 yields
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For the first term, we get 

.

The third term is readily seen to be equal to what we want just by uniting merges with splittings.
Term 2 remains a mystery to me. The last relation follows by composing on the bottom with a crossing
on the left two strands, using lemma 5.19.

Corollary 5.23. As a C-linear category, APar has object set identified with N and morphisms that
are linear combinations of vertical compositions of morphisms in the image of i : Par → APar together
with the morphism having the left dot in the first strand and identity on all other strands.

Proof. Induction on the length of the morphisms, using lemma 5.22.

Remark 5.24. The above relations are equivalent to Enyang’s recursive relations. If we manage to
produce a nice functor projecting elements of APar to Part, we will see that they project onto the
correct YJM elements. In order to do that, we see how the categorical action Θ from theorem 5.11 of
Heis restricts to APar.

Notice that Θ now sends the generating object | of APar to the functor I ◦R, thus it sends C[St]
modules to C[St] modules. Consequently, for t ∈ N we get a functor

Θt : APar → EndC(C[St]−mod).

Below are the explicit actions of the generators of APar for V ∈ C[St]-mod.( )
V

: C[St]⊗C[St−1]] C[St]⊗C[St−1] V → C[St]⊗C[St−1] C[St]⊗C[St−1] V,

g ⊗ h⊗ v 7→ gh⊗ h−1 ⊗ hv,(
•

)
V

: C[St]⊗C[St−1] C[St]⊗C[St−1] V → C[St]⊗C[St−1] C[St]⊗C[St−1] V,

g ⊗ h⊗ v 7→ g ⊗ h⊗ (h−1(t) t)v,(
•
)

V

: C[St]⊗C[St−1] C[St]⊗C[St−1] V → C[St]⊗C[St−1] C[St]⊗C[St−1] V,

g ⊗ h⊗ v 7→ gh⊗ (h−1(t) t)⊗ v,
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( )
V

: C[St]⊗C[St−1] C[St]⊗C[St−1] V → CSt ⊗C[St−1] V, g ⊗ h⊗ v 7→ δh(t),tgh⊗ v,( )
V

: C[St]⊗C[St−1] V → C[St]⊗C[St−1] C[St]⊗C[St−1] V, g ⊗ v 7→ g ⊗ 1⊗ v,(
•◦
)
V
: C[St ⊗C[St−1] V → V, g ⊗ v 7→ gv,(

•◦
)
V
: V → C[St]⊗C[St−1] V, v 7→

t∑
i=1

(i t)⊗ (i t)v,

(
•

)
V

: C[St]⊗C[St−1] V → C[St]⊗C[St−1] V, g ⊗ v 7→
t∑

j=1

g(j t)⊗ v,

(
•
)

V

: C[St]⊗C[St−1] V → C[St]⊗C[St−1] V, g ⊗ v 7→
t∑

j=1

g ⊗ (j t)v.

Remark 5.25. If we denote the trivial representation of St with trivt, then we have an isomorphism
of representations C[St]⊗C[St−1] trivt−1

∼= Vt, by sending g⊗ 1 7→ gvt. We also have an endofunctor of
C[St]-mod, namely the one sending objects W to Vt ⊗W and morphisms given by Kronecker product.

Lemma 5.26. The functor Θt is monoidally isomorphic to the strict C-linear monoidal functor

Φt : APar → EndC(C[St]−mod)

sending the generating object to the endofunctor Vt⊗ and the generating morphisms of APar to the
natural transformations defined on a module W as follows:

( )
V

: Vt ⊗ Vt ⊗W → Vt ⊗ Vt ⊗W, ui ⊗ uj ⊗ v 7→ uj ⊗ ui ⊗ v,(
•

)
V

: Vt ⊗ Vt ⊗W → Vt ⊗ Vt ⊗W, ui ⊗ uj ⊗ v 7→ ui ⊗ uj ⊗ (i j)v,(
•
)

W

: Vt ⊗ Vt ⊗W → Vt ⊗ Vt ⊗W, ui ⊗ uj ⊗ v 7→ uj ⊗ ui ⊗ (i j)v,( )
W

: Vt ⊗ Vt ⊗W → Vt ⊗W, ui ⊗ uj ⊗ v 7→ δi,jui ⊗ v,( )
W

: Vt ⊗W → Vt ⊗ Vt ⊗W, ui ⊗ v 7→ ui ⊗ ui ⊗ v,(
•◦
)
W

: Vt ⊗W →W, ui ⊗ v 7→ v,(
•◦
)
W

:W → Vt ⊗W, v 7→
t∑

i=1

ui ⊗ v,

(
•

)
W

: Vt ⊗W → Vt ⊗W, ui ⊗ v 7→
t∑

j=1

uj ⊗ (i j)v,

(
•
)

W

: Vt ⊗W → Vt ⊗W, ui ⊗ v 7→
t∑

j=1

ui ⊗ (i j)v.

Proof. As mentioned in remark 5.25, we have the isomorphism C[St]⊗C[St−1] trivSt−1
∼= Vt. Tensoring

over C with any module W yields C[St]⊗C[St−1] W
∼= Vt ⊗W . We thus obtain a natural isomorphism(

at1
)
W

: C[St]⊗C[St−1] W → Vt ⊗W.
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mapping g ⊗ v 7→ gvt ⊗ gv for any W a module over C[St]. In turn, this defines an isomorphism of
functors

(at1) : C[St]⊗C[St−1] → Vt ⊗ .

Denote by atn its n-fold horizontal composition. This is a natural isomorphism

atn : (C[St]⊗C[St−1])
◦n ⇒ (Vt⊗)◦n.

Explicitly, the action on a module W is given as follows(
atn

)
W

: gn ⊗ . . .⊗ g1 ⊗ v 7−→ gnvt ⊗ gngn−1vt ⊗ . . .⊗ gngn−1 . . . g1vt ⊗ gngn−1 . . . g1vt.

We define Φt : APar → EndC(C[St] −mod) to be the strict C-linear functor sending the object n to
(Vt⊗)◦n and defined on a morphism f ∈ HomAPar(n,m) by

Φt(f) = atm ◦Θt(f) ◦ (atn)−1.

By definition, at = (ant )n∈N : Θt ⇒ Φt is an isomorphism of strict C-linear monoidal functors. It
remains to prove that the actions of Φt are as proposed. We calculate for a couple of generators below.

1. Suppose f is the split. We calculate

(at2)W ◦ (Θt(f))W ◦ ((at1)−1)W (vi ⊗ v) = (at2)W ◦ (Θt(f))W ((i t)⊗ (i t)v)

= (at2)W ((i t)⊗ 1⊗ (i t)v) = (i t)vt ⊗ (i t)vt ⊗ (i t)(i t)v = vi ⊗ vi ⊗ v.

2. Suppose f is the merge. We then have to consider four cases because of the nature of (at2)−1.

(a) t ̸= i ̸= j ̸= t. Then, it holds

(at1)W ◦ (Θt(f))W ◦ ((at2)−1)W (vi ⊗ vj ⊗ v) = (at2)W ◦ (Θt(f))W ((i t)⊗ (j t)⊗ (j t)(i t)v) = 0

since j ̸= t.

(b) i = t ̸= j then
(at2)

−1
W (vt ⊗ vj ⊗ v) = 1⊗ (j t)⊗ (j t)

so we have again
(at1)W ◦ (Θt(f))W ◦ ((at2)−1)W (vi ⊗ vj ⊗ v) = 0

(c) i ̸= t = j. Then

(at1)W ◦ (Θt(f))W ◦ ((at2)−1)W (vi ⊗ vj ⊗ v) = (at1)W ◦ (Θt(f))W ((i t)⊗ (i t)⊗ v) = 0

(d) Lastly, if i = j we get

(at1)W ◦ (Θt(f))W ◦ ((at2)−1)W (vi ⊗ vj ⊗ v) = (at1)W ◦ (Θt(f))W ((i t)⊗ 1⊗ (i t)v)

= (at1)W ((i t)⊗ (i t)v) = vi ⊗ v.

The other cases follow analogously.

We also define the functor Act : C[St] → EndC(C[St] − mod) as the C-linear monoidal functor
induced by the Kronecker product. In other words, Act(V ) = V⊗ and Act(f) = f⊗ for a morphism
f : V → V ′.
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Lemma 5.27. For t ∈ N, the following diagram commutes up to canonical isomorphisms of monoidal
functors:

APar EndC(C[St]−mod)

Par C[St]−mod

Φt

Act

ϕt

i

where ϕt is the functor section 5 and i the inclusion functor.

Proof. On objects, Φt ◦ i takes the n-th object of APar to (Vt⊗)◦n while Act ◦ϕt takes it to V ⊗n
t ⊗.

Let
βtn : (Vt⊗)◦n ⇒ V ⊗n

t ⊗

be the canonical isomorphism given by compositions of the associators. One notices that tensoring the
formulas defining ϕt with a vector v on the right are exactly the same as the ones defining Φt, thus
yielding a natural isomorphism of monoidal functors

βt =
(
βt
)
n∈N : Φt ◦ i⇒ Act ◦ϕt.

Let Ev : EndC(C[St]−mod) be the non-monoidal C-linear functor evaluating on the trivial module.
We then have a canonical isomorphism of functors Ev ◦Act⇒ IdC[St]−mod defined on a module V by
the trivial isomorphism V ⊗ trivt ∼= V , mapping v ⊗ 1 7→ v. We can now prove that the partition
category Par can be retrieved as a quotient of APar. Denote by γtn : V ⊗n

t ⊗ trivt → V ⊗n
t the trivial

isomorphism defined by vin ⊗ . . .⊗ vi1 ⊗ 1 7→ vin ⊗ . . .⊗ vi1 .

Definition 5.28. We say a morphism f ∈ HomAPar(n,m) is good, if there exists f̄ ∈ HomPar(n,m)

such that
ϕt(f̄) = γtm ◦ Ev(Φt(f)) ◦ (γtn)−1.

Before stating the main theorem, we give some basic properties of good morphisms. Eventually we
will prove that all morphisms in APar are good and this is how we will project down to Par. Firstly,
if f is good, it comes from a unique f̄ . Towards that end, suppose f̄ , ḡ both satisfy the condition for
f being good. Then we would have ϕt(f̄) = ϕt(ḡ) for all t ∈ N, yielding f̄ = ḡ by lemma 5.4. It is
also imminent that sums and compositions of good morphisms are good, respecting the operation, or
in other words, f ◦ g = f̄ ◦ ḡ and f ◦ g = f̄ ◦ ḡ.

Lemma 5.29. Every morphism in APar is good.

Proof. Since APar is generated by the images of the generators of Par under i together with the left
dot by corollary 5.23 and being good respects sums and compositions, it is enough to prove that the
generating family is good. For all generators of the form i(f), they are good with i(f) = f by the
following computation:

γtm ◦ Ev(Φt(i(f))) ◦ (γtn)−1 = γtm ◦ Ev(Act(ϕt(f))) ◦ (γtn)−1 = ϕt(f)

using commutativity of lemma 5.27. We are thus left to prove that the left dot is a good morphism.
We will show that

f̄ = · · ·
12n

•◦
•◦ .
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By definition of ϕt, we have that on basis vectors

ϕt(f̄)(vin ⊗ . . .⊗ vi1) =
t∑

j=1

vin ⊗ . . .⊗ vj .

On the other hand, Ev(Φt(f))(vin ⊗ . . .⊗ vi1 ⊗ 1) =
t∑

j=1
vin ⊗ . . .⊗ vj ⊗ 1, thus going through γtn omits

the final ⊗1, making the two equal.

Theorem 5.30. There is a unique non-monoidal C-linear functor

p : APar → Par

such that p ◦ i = IdPar and

p

 · · ·
12n

•

 = · · ·
12n

•◦
•◦ . (14)

Moreover, for t ∈ N the following diagram commutes up to natural isomorphism:

APar EndC(C[St]−mod)

Par C[St]−mod

Φt

Ev

ϕt

p .

Additionally, p maps

· · ·
12n

• 7→ T · · ·
1n

, · · ·
123n

• 7→ · · ·
123n

, · · ·
123n

• 7→ · · ·
123n

. (15)

Proof. We define p(n) = n on objects and on morphisms f ∈ HomAPar(n,m) by p(f) = f̄ . By
section 5, this is a well defined C-linear functor satisfying eq. (14). By definition 5.28, we have that
γt = (γtn)n∈N : Ev ◦Φt ⇒ ϕt◦p is a natural isomorphism. Also, p◦i(f) = i(f) = f yielding p◦i = IdPar.
Uniqueness follows from being defined on generators as a C-linear category by corollary 5.23. The three
remaining properties follow by commutativity of the diagram, comparing the actions through ϕt.

Corollary 5.31. The functor i : Par → APar is faithful and the functor p : APar → Par is full.

Proof. We already established p ◦ i = Id.

Corollary 5.32. The functor p induces an isomorphism APar/I → Par, where I is the left tensor
ideal of APar generated by the morphism

• − •◦•◦ .

Proof. By the image of the left dot under p, it is clear that any morphisms in I are mapped to zero.
This way, p induces p̄ : APar/I → Par. This is still surjective on objects and morphisms. For
faithfulness, suppose f + I(n,m) is such that p̄(f + I(n,m)) = 0. Then p(f) = 0. By factoring out
the left dots, f is a linear combination of compositions in the image of i, and we may thus assume
f = i(f̄) for f̄ ∈ HomPar(n,m). But this yields

f̄ = p(i(f̄)) = p(f) = 0

so that f = i(f̄) = 0.
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We are finally in a position to project morphisms all the way down to Part. In particular, for
t ∈ N, we have the full C-linear functor

pt = evt ◦ p : APar → Par

which exactly as in corollary 5.32 induces an isomorphism

APar/It → Part

where It is the left tensor ideal of APar generated by T − t11 and • - •◦•◦ .

Definition 5.33. We define the affine partition algebra to be

AP2n = EndAPar(n)

We now denote the elements of AP2n defined by the left and right dots on the j-th string by XL
j

and XR
j as well as the left and right crossings on the k-th and k + 1-th strings by SL

k and SR
k . Taking

their images under pt gives us elements of P2n(t) which we denote as

xLj = pt(X
L
j ), x

R
j = pt(X

R
j )

and
sLk = pt(S

L
k ) s

R
k = pt(S

R
k ).

Theorem 5.34. For t ∈ N let ψt : P2n(t)→ EndC[St](V
⊗n
t ) be the morphism induced by ϕt. Then the

elements xLj , x
R
j , s

L
k , s

R
k act on basis elements by the following formulas :

ψt(x
L
j )(uin ⊗ · · · ⊗ ui1) =

t∑
i=1

uin ⊗ · · · ⊗ uij+1 ⊗ (i ij)
[
uij ⊗ · · · ⊗ ui2 ⊗ ui1

]
,

ψt(x
R
j )(uin ⊗ · · · ⊗ ui1) =

t∑
i=1

uin ⊗ · · · ⊗ uij ⊗ (i ij)
[
uij−1 ⊗ · · · ⊗ ui2 ⊗ ui1

]
,

ψt(s
L
k )(uin ⊗ · · · ⊗ ui1) = uin ⊗ · · · ⊗ uik ⊗ (ik ik+1)

[
uik−1

⊗ · · · ⊗ ui2 ⊗ ui1
]
,

ψt(s
R
k )(uin ⊗ · · · ⊗ ui1) = uin ⊗ · · · ⊗ uik+2

⊗ (ik ik+1)
[
uik+1

⊗ · · · ⊗ ui2 ⊗ ui1
]
.

Proof. Follows by commutativity of theorem 5.30 and lemma 5.26.

These actions are the same with the ones corresponding to the classic YJM elements and the
Enyang generators of the partition algebra P2n(t) as in [5]. By the fact that ψt is an isomorphism for
large t, we can finally say that we recovered the YJM elements with this approach. Notice that the
only thing to take care is that we are now identifying P2n(t) with the algebra of diagrams reflected
through a vertical axis, to account for enumerating vertices from right to left instead of from left to
right.

Corollary 5.35. The following equalities hold

xLj = x2j , x
R
j = t− x2j−1,

sLk = σ2k, s
R
k = σ2k+1

where xj , σj are as in definition 3.33.
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