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Introduction

The chromatic polynomial of a graph is a well-studied graph invariant, whose properties are very elusive,

in spite of its simple and intuitive definition. The chromatic symmetric function of a graph, introduced by

Stanley in 1995, is a multivariate refinement of the chromatic polynomial. This graph invariant lies in the

ring of symmetric functions, enabling its study from both a combinatorial and a representation theoretic

point of view.

On the one hand, the space of symmetric functions has many distinguished bases, whose structure con-

stants and connecting coefficients encode important invariants of partitions and permutations. On the

other hand, the algebra of symmetric functions is isomorphic to the algebra of finite-dimensional repre-

sentations of the symmetric group. Moreover, this isomorphism plays well with the distinguished bases of

symmetric functions, allowing questions about positivity, which are fundamental in combinatorics, to be

formulated in terms of decompositions on the representation theoretic side.

The Stanley–Stembridge conjecture, a long-standing conjecture in combinatorics, concerns 𝑒-positivity of

chromatic symmetric functions. The Shareshian–Wachs conjecture from 2012 is regarded as a stepping

stone towards the Stanley–Stembridge conjecture. It strives to realize the representations corresponding

to chromatic symmetric functions explicitly, on the cohomology of certain closed subvarieties of the full flag

variety, calledHessenberg varieties. This correspondence hinges on a combinatorial model for𝑇 -equivariant

cohomology classes of Hessenberg varieties, which is given by themoment graph of the Hessenberg variety.
The symmetries of the moment graph allow us to construct a suitable 𝑆𝑛-action on the cohomology, called

Tymoczko’s dot action, in a purely combinatorial way. This action is the geometric counterpart of chromatic

(quasi-)symmetric functions.

The aim of this thesis is twofold. First, we would like to understand the correspondence between chromatic

symmetric functions and Hessenberg varieties by computing a wide range of explicit examples at each

stage of the construction. In Section 1, we provide the necessary background and motivating examples,

involving chromatic polynomials, chromatic symmetric functions and chromatic quasi-symmetric function,

focusing on incomparability graphs of Dyck paths, a class of graphs that play an important role in the

1



study of 𝑒-positivity. The reasons for this will become apparent as we delve into the examples. In Section

2, we introduce moment graphs of Hessenberg varieties, and the so-called flow-up classes, which will be

helpful to compute the dot action explicitly. We carry out these computations for some specific Hessenberg

varieties, such as the full flag variety of rank 3 and the permutohedral variety of rank 3, thereby verifying

the Shareshian–Wach conjecture for these specific examples. The second aim of the thesis, presented in

Section 3, is to go through Guay-Paquet’s Hopf algebraic proof of the Shareshian–Wachs conjecture, and

make it more palatable by interpreting each step in terms of our explicit examples from Section 2.
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1 Stanley–Stembridge Conjecture

In this section, we explore chromatic quasi-symmetric functions, a vast generalization of chromatic polyno-

mials. We illustrate the celebrated Stanley–Stembridge conjecture by computing numerous examples, and

describe a strategy for proving special cases of it.

Our exposition of the fundamental facts in Lemma 1.23, 1.29, 1.39, 1.42 and 1.49 follows [Sa1], while the

proofs of Lemma 1.25 and 1.37 follow [St2]. In the proof of Theorem 1.69, we expand on the article [SW].

Our explicit computations featured in this section include the Frobenius character of the coinvariant algebra

in Example 1.53 and the 𝑒-expansion of various families of graphs arising from Dyck paths in Example 1.54,

1.61, 1.70 and 1.71.

1.1 Chromatic Polynomials

Definition 1.1. A proper colouring of a graph𝐺 = (𝑉 , 𝐸) is a colouring ^ : 𝑉 → Z>0 such that no adjacent

pair of vertices have the same colour, i.e. if 𝑢 and 𝑣 are adjacent, then ^ (𝑢) ≠ ^ (𝑣). The minimal number

of colours required for a proper colouring of 𝐺 is called the chromatic number of 𝐺 , denoted by 𝜒 (𝐺).

All the graphs that we consider will be finite and simple, i.e. graph with finitely many vertices, without

loops or multiple edges, and from now on we will tacitly assume these properties.

Example 1.2. The chromatic number of the Petersen graph is three. Indeed, there exists a proper colouring
with three colours (e.g. the colouring below), and there is no proper colouring with two colours, since the

Petersen graph contains 5-cycles.
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Figure 1: a 3-colouring of the Petersen graph

The notion of graph colourings gives rise to many notoriously difficult problems in combinatorics, such as

the four colour problem or the classification of perfect graphs. So one would naturally be tempted to attach

algebraic invariants to graph colourings.

Perhaps the most natural invariant that one can associate to proper graph colourings is the chromatic
polynomial, introduced by George D. Birkhoff in the 1912 article [Bir]. ■

Definition 1.3. The chromatic polynomial enumerates the number of proper colourings of a graph 𝐺 by

the number of colours being used,

𝑃 (𝐺 ; 𝑟 ) ≔
∑︁

^ : 𝑉→[𝑟 ]
proper

1, (1.1)

where [𝑟 ] denotes the set {1, . . . , 𝑟 } of the first 𝑟 positive integers.

Remark 1.4. (a). It is not a priori clear from the definition that 𝑃 (𝐺 ; 𝑟 ) is a polynomial in 𝑟 . But there

is a simple contraction-deletion algorithm, described in Lemma 1.5, that bridges the gap between the

complete graph and the edgeless graph.

(b). Note that 𝑃 (𝐺 ; 𝑟 ) = 0 for any 𝑟 < 𝜒 (𝐺). In particular, the constant term is zero for nonempty graphs.

(c). The simplest examples are the edgeless graph 𝐸𝑛 and the complete graph 𝐾𝑛 of order 𝑛, i.e. with 𝑛
vertices. In the case of the edgeless graph, there are no restrictions on the colourings, so 𝑃 (𝐸𝑛; 𝑟 ) = 𝑟𝑛 .
At the other extreme, each pair of vertices in 𝐾𝑛 are adjacent. So each colour can be used at most

once, and we have 𝑃 (𝐾𝑛; 𝑟 ) = 𝑟 (𝑟 − 1) · · · (𝑟 − 𝑛 + 1).

Lemma 1.5. For any 𝑒 ∈ 𝐸, we have

𝑃 (𝐺 ; 𝑟 ) = 𝑃 (𝐺\𝑒; 𝑟 ) − 𝑃 (𝐺/𝑒; 𝑟 ), (1.2)

where 𝐺/𝑒 denotes the contraction of the edge 𝑒 and 𝐺\𝑒 denotes the deletion of 𝑒 from the graph 𝐺 .

Example 1.6. Let us illustrate the contraction-deletion algorithm by a short example. Consider the com-

plete bipartite graph 𝐾2,4, and perform contraction-deletion on the red edge 𝑒 = 𝑣1𝑣3

𝑣4

𝑣2𝑣1

𝑣6𝑣5𝑣3
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The graphs 𝐾2,4\𝑒 and 𝐾2,4/𝑒 are obtained by deleting and contracting the red edge, respectively

𝑣4

𝑣2𝑣1

𝑣6𝑣5𝑣3 𝑣4

𝑣2𝑤1

𝑣6𝑣5

If we then perform contraction-deletion on the edge 𝑓 = 𝑤1𝑣2, we end up with the two graphs

𝑣4

𝑣2𝑣1

𝑣6𝑣5 𝑣4

𝑤2

𝑣6𝑣5

The second of these is the tree 𝐾1,3, called the claw graph, which plays a central role in this section. ■

Proof of Lemma 1.5. Denote the endpoints of 𝑒 by 𝑢 and 𝑣 , and note that the set of proper colourings of

𝐺\𝑒 is the disjoint union of the proper colourings ^ of 𝐺\𝑒 for which ^ (𝑢) = ^ (𝑣) and those for which

^ (𝑢) ≠ ^ (𝑣). The former corresponds bijectively to proper colourings of𝐺/𝑒 and the latter corresponds to
proper colourings of 𝐺 . ■

Lemma 1.7. The chromatic polynomial 𝑃 (𝐺 ; 𝑟 ) is a polynomial in 𝑟 .

Proof. First, we induct on the number of vertices in𝐺 . For the graph 𝐾1 with a single vertex, the chromatic

polynomial is just 𝑟 . If 𝐺 = 𝐸𝑛 is the edgeless graph, then 𝑃 (𝐺 ; 𝑟 ) = 𝑟𝑛 is also a polynomial. We proceed

by induction on the number of edges in 𝐺 . The base case is 𝐾1 for both inductions. Take an edge 𝑒 ∈ 𝐸,
then we can apply contraction-deletion, and write 𝑃 (𝐺 ; 𝑟 ) = 𝑃 (𝐺\𝑒; 𝑟 ) − 𝑃 (𝐺/𝑒; 𝑟 ). The right-hand side

is a difference of polynomials by induction, since deletion of an edge decreases the number of edges and

contraction of an edge decreases the number of vertices. ■

Remark 1.8. (a). We have seen that the constant term is always zero. Note that 𝑃 (𝐺 ; 𝑟 ) is monic of

degree 𝑛, where 𝑛 is the order of 𝐺 . This can be seen by induction via the contraction-deletion

formula: eventually we end up with the edgeless graph 𝐸𝑛 and graphs of smaller order.

(b). Note that the coefficient of the monomial 𝑟𝑛−1 in 𝑃 (𝐺 ; 𝑟 ) is −𝑚, where𝑚 is the size of𝐺 . Indeed, take

an edge 𝑒 , and use induction on the size with the contraction-deletion formula. Then the coefficient

of 𝑟𝑛−1 in 𝑃 (𝐺\𝑒; 𝑟 ) is −(𝑚−1) and the coefficient of 𝑟𝑛−1 in 𝑃 (𝐺/𝑒; 𝑟 ) is 1, since𝐺/𝑒 has order 𝑛−1,
and the chromatic polynomial is monic. Hence, the coefficient is −(𝑚 − 1) − 1 = −𝑚.

(c). The coefficients of the chromatic polynomial alternate in sign. Indeed, we can proceed by induction,

and write

𝑃 (𝐺\𝑒; 𝑟 ) = 𝑟𝑛 − 𝑎𝑛−1𝑟𝑛−1 + · · · + (−1)𝑛𝑎0, (1.3)

𝑃 (𝐺/𝑒; 𝑟 ) = 𝑟𝑛−1 − 𝑏𝑛−2𝑟𝑛−2 + · · · + (−1)𝑛−1𝑏0, (1.4)
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where 𝑎𝑖 , 𝑏𝑖 ≥ 0. Then by contraction-deletion, we have

𝑃 (𝐺 ; 𝑟 ) = 𝑃 (𝐺\𝑒; 𝑟 ) − 𝑃 (𝐺/𝑒; 𝑟 ) (1.5)

= 𝑟𝑛 − 𝑎𝑛−1𝑟𝑛−1 + · · · + (−1)𝑛𝑎0 − (𝑟𝑛−1 − 𝑏𝑛−2𝑟𝑛−2 + · · · + (−1)𝑛−1𝑏0) (1.6)

= 𝑟𝑛 − (𝑎𝑛−1 + 1)𝑟𝑛−1 + (𝑎𝑛−2 + 𝑏𝑛−2)𝑟𝑛−1 − · · · + (−1)𝑛 (𝑎0 + 𝑏0) . (1.7)

(d). There are various open problems about chromatic polynomials, the most audacious of which is to

classify those polynomials which arise as the chromatic polynomial of some graph. We have seen

that the coefficients have alternating sign. However, the sequence of absolute values satisfy a regu-

larity property, called log-concavity: 𝑐2𝑖 ≥ |𝑐𝑖+1𝑐𝑖−1 | > 0. The quintessential example of a log-concave

sequence is the sequence of binomial coefficients, in rows of the Pascal triangle. Log-concavity of

chromatic polynomials was proved in 2012 by June Huh, at the generality of matroids, using tech-

niques from complex geometry in the context of realisable matroids (see [Huh]).

Along with formulating general statements about chromatic polynomials of graphs, one would also

like to investigate which specific properties of graphs are captured by chromatic polynomials. The

simplest example is the characterization of trees (among connected graphs).

Lemma 1.9. A connected graph is a tree if and only if its chromatic polynomial is

𝑃 (𝑇 ; 𝑟 ) = 𝑟 (𝑟 − 1)𝑛−1. (1.8)

Proof. Take a tree 𝑇 . To compute its chromatic polynomial, we can proceed by induction on the order of

𝑇 , the base case being the complete graph 𝐾1 on one vertex. Pick a leaf 𝑣 , i.e. a degree one vertex (which

always exists in a tree). Each colouring of the tree 𝑇 \𝑣 with 𝑟 colours permits 𝑟 − 1 colours on 𝑣 , since it

has only one neighbour. So we have 𝑃 (𝑇 ; 𝑟 ) = 𝑃 (𝑇 \𝑒; 𝑟 ) · (𝑟 − 1), as claimed. In fact, finding a leaf can be

made superfluous by appealing to the contraction-deletion algorithm, since the chromatic polynomial of a

disjoint union is the product of the chromatic polynomials of the components.

For the converse, note that the coefficient of 𝑟𝑛−1 in 𝑃 (𝑇 ; 𝑟 ) is−𝑚. By assumption, this coefficient is−(𝑛−1).
If a connected graph has size 𝑛 − 1 and order 𝑛, then this graph is a tree. ■

Remark 1.10. Hence, the chromatic polynomial is sophisticated enough to distinguish between trees and

connected graphs with cycles, but it cannot distinguish between non-isomorphic trees of the same order.

For example, the claw and a path of order 4 have the same chromatic polynomial 𝑟 (𝑟 − 1)3,

Figure 2: 𝑃4 and the claw graph

which is a significant drawback, because the claw graph serves as a counterexample for many statements

in graph theory, such as the graph reconstruction conjecture.

In the graph reconstruction conjecture, we associate to each graph the multiset of graphs, which are ob-

tained by deleting an edge and all isolated vertices from the original graph. Note that themultiset associated

to the claw graph 𝐾3,1 consists of three copies of the path 𝑃3 of order 4. The cycle 𝐶3 of order 3 has the

same associated multiset. Thus, we cannot distinguish between 𝐾3,1 and 𝐶3 based on these multisets. The
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graph reconstruction conjecture claims that this is the only counterexample, i.e. any other graph can be

reconstructed from this multiset. We will see shadows of graph reconstruction in the description of certain

combinatorial Hopf algebras, in Remark 3.37.

Remark 1.11. Chromatic symmetric functions are a multivariate refinement of chromatic polynomials

introduced by Richard P. Stanley in 1995, in the article [St3]. This invariant was introduced in an attempt

to remedy some of the deficiencies of chromatic polynomials (e.g. that chromatic polynomials cannot

distinguish between trees of the same order). Although this has been checked for all trees up to order 23,

in general it is still unknown whether the chromatic symmetric function distinguishes between all trees of

the same order (see [MMW]).

Definition 1.12. For a graph 𝐺 with vertex set 𝑉 = {𝑣1, . . . , 𝑣𝑛}, the chromatic symmetric function of 𝐺 is

defined as

𝑋 (𝐺) = 𝑋 (𝐺 ;𝑥) ≔
∑︁

𝑐 : 𝑉→Z>0
proper

𝑥𝑐 , (1.9)

where the sum runs over all proper colourings of 𝐺 , and where 𝑥𝑐 denotes the monomial 𝑥𝑐 (𝑣1 ) · · · 𝑥𝑐 (𝑣𝑛 ) ,
the product of the variables indexed by the multiset of colours being used.

Remark 1.13. Note that chromatic symmetric functions are power series in infinitely many variables, and

they are symmetric in the following sense: any permutation of the colours in a proper colouring produces

another proper colouring.

1.2 Elementary Symmetric Functions

Definition 1.14. The ring of symmetric functions Sym consists of formal power series in infinitely variables

{𝑥𝑖}𝑖∈Z>0 with complex coefficients, which are fixed by any permutation of the variables and have bounded

degree, i.e. there is a natural number 𝑚 such that the degree of any monomial is at most 𝑚. The ring

structure is inherited from the ring of formal power series.

Remark 1.15. (a). One could formulate the definition of symmetric functions over an arbitrary ring

𝑅, instead of the ground field C, but for our present purposes it is unnecessary to take this general

perspective. In Subsection 3.3, we will needC(𝑡)-coefficients as well asC-coefficients, but everything

in this section works analogously over any algebraically closed field 𝑘 of characteristic zero.

(b). The bounded degree condition is imposed to make Sym into a graded C-algebra, graded by degree,

in other words the degree 𝑘 part Sym𝑘 consists of all symmetric functions of degree 𝑘 .

If 𝑛 = |𝑉 | is the order of 𝐺 , then the chromatic symmetric function is homogeneous of degree 𝑛, i.e.

𝑋 (𝐺) ∈ Sym𝑛 , since 𝑥
𝑐
has degree 𝑛 for any colouring 𝑐 .

(c). The chromatic symmetric function encodes more information than the chromatic polynomial. In-

deed, if we evaluate 𝑋 (𝐺) at 1 in the first 𝑟 variables and at 0 elsewhere, then we recover 𝑃 (𝐺 ; 𝑟 ).

Lemma 1.16. Recall that a partition _ ⊢ 𝑛 is a tuple _ = (_1 ≥ _2 ≥ · · · ≥ _𝑟 > 0) of non-increasing positive
integers that add up to 𝑛. There is a C-basis of Sym𝑛 consisting of monomial symmetric functions, indexed
by partitions _ = (_1 ≥ _2 ≥ · · · ≥ _𝑟 > 0) ⊢ 𝑛,

𝑚_ ≔
∑︁
𝛼

𝑥𝛼 =
∑︁
𝛼

𝑥
𝛼1

1 𝑥
𝛼2

2 · · · , (1.10)

where the sum runs over all weak compositions 𝛼 of shape _, i.e. all infinite tuples 𝛼 = (𝛼1, 𝛼2 . . .) obtained
by rearranging the parts of _ arbitrarily, and putting zeros everywhere else.
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In particular, the dimension of Sym𝑛 is 𝑝 (𝑛), the number of partitions of [𝑛].

Remark 1.17. We will see in Construction 3.22 a more succinct way of describing monomial symmetric

functions, with the aid of monomial quasi-symmetric functions, that we introduce in Subsection 3.2.

Example 1.18. For 𝑛 = 3, there are three partitions, (3), (2, 1) and (1, 1, 1). The corresponding monomial

symmetric functions are given by

𝑚 (3) = 𝑥
3
1 + 𝑥32 + 𝑥33 + 𝑥34 · · · ,

𝑚 (2,1) = 𝑥
2
1𝑥2 + 𝑥1𝑥22 + 𝑥21𝑥3 + 𝑥22𝑥3 + 𝑥1𝑥23 + 𝑥2𝑥23 + · · · ,

𝑚 (1,1,1) = 𝑥1𝑥2𝑥3 + 𝑥1𝑥2𝑥4 + · · · + 𝑥2𝑥3𝑥4 + 𝑥2𝑥3𝑥5 + · · · .

■

Remark 1.19. Another vector space with dimension 𝑝 (𝑛) that one often encounters in representation

theory, is the space of class functions of the symmetric group 𝑆𝑛 , i.e. the space of C-valued functions that

are constant on conjugacy classes. We will return to this observation when we discuss the connection

between symmetric functions and representations of the symmetric group in Subsection 1.3.

Proof of Lemma 1.16. The symmetric functions𝑚_ , for distinct partitions, are linearly independent, since

they have no monomials in common. To show that they span Sym𝑛 , take a symmetric function 𝑓 ∈ Sym𝑛 ,

and pick a monomial 𝑐 · 𝑥_1
𝑖1
· · · 𝑥_𝑑

𝑖𝑑
with 𝑐 ∈ C and _ = (_1, . . . , _𝑑 ) ⊢ 𝑛 of maximal degree. Then the

symmetric function 𝑓 − 𝑐𝑚_ has a smaller number of partitions that yield monomials of maximal degree,

and there can only be finitely many of such partitions _. Hence, we can always reduce the degree of 𝑓 in

finitely many steps, and obtain the monomial expansion inductively. ■

Remark 1.20. We will take the liberty to use several different notations for partitions, which is standard

practice in the literature. For instance, it is sometimes more convenient to abbreviate the partition (1, 1, 1)
by (13). Also, when using partitions as indices, one may omit the brackets, and write𝑚12 instead of𝑚 (1,2) .

Construction 1.21. There are some other notable bases of Sym𝑛 , and much of the theory of symmetric

functions revolves around their connecting coefficients (the entries of the transition matrix), because they

encode important quantities from enumerative combinatorics.

The 𝑛th power sum symmetric function is

𝑝 (𝑛) =𝑚 (𝑛) =
∑︁
𝑖≥1

𝑥𝑛𝑖 . (1.11)

The 𝑛th elementary symmetric function is

𝑒 (𝑛) =𝑚 (1𝑛 ) =
∑︁

𝑖1,...,𝑖𝑛∈Z>0
𝑖1<· · ·<𝑖𝑛

𝑥𝑖1 · · · 𝑥𝑖𝑛 , (1.12)

which is the symmetric function analogue of the 𝑛th elementary symmetric polynomial (featured, for ex-

ample, in Viète’s formulas, see [Gar], Chapter 15).

A similar construction yields the 𝑛th complete homogeneous symmetric function, given by

ℎ (𝑛) =
∑︁
_⊢𝑛

𝑚_ =
∑︁

𝑖1,...,𝑖𝑛∈Z>0
𝑖1≤···≤𝑖𝑛

𝑥𝑖1 · · · 𝑥𝑖𝑛 . (1.13)
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To each partition _ = (_1, . . . , _𝑟 ), one can associate a power sum symmetric function by taking the product

of the power sum symmetric functions 𝑝_𝑖 corresponding to the parts,

𝑝_ = 𝑝 (_1 )𝑝 (_2 ) · · · 𝑝 (_𝑟 ) , (1.14)

and similarly for 𝑒_ and ℎ_ . One can see that the sets {𝑒_ | _ ⊢ 𝑛}, {𝑝_ | _ ⊢ 𝑛} and {ℎ_ | _ ⊢ 𝑛} form bases of

Sym𝑛 in many different ways.

Example 1.22. For instance, we have

𝑝 (1) = 𝑥1 + 𝑥2 + 𝑥3 + · · · , (1.15)

𝑝 (2) = 𝑥
2
1 + 𝑥22 + 𝑥33 + · · · , (1.16)

𝑒 (2) = 𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥1𝑥4 + · · · + 𝑥2𝑥3 + 𝑥2𝑥4 + · · · , (1.17)

so we can express 𝑒 (2) as

𝑒 (2) =
𝑝2(1) − 𝑝 (2)

2
=
𝑝 (1,1) − 𝑝 (2)

2
. (1.18)

■

Lemma 1.23. The set {𝑝_ | _ ⊢ 𝑛} forms a C-basis of Sym𝑛 .

Proof. One can show that the transformation matrix from the monomial basis to power sum symmetric

functions is upper-triangular and invertible via imposing two different orderings on the partitions indexing

the rows and columns.

First, consider the lexicographic order , which is the total order on partitions defined by ` = (`1, . . . , `𝑚) <
_ = (_1, . . . , _𝑟 ) if for some 𝑖 ≥ 1, we have `𝑖 < _𝑖 and _ 𝑗 = ` 𝑗 for any 𝑗 < 𝑖 , where we regard indices that

are not present as indices of zero parts.

If 𝑥
`1
1 𝑥

`2
2 · · · 𝑥

`𝑚
𝑚 appears in the expansion

𝑝_ =
∏
𝑖

(𝑥_𝑖1 + 𝑥
_𝑖
2 + · · · ), (1.19)

then each ` 𝑗 is a sum of some of the _𝑖 . Adding parts of a partition to another partition makes it larger

with respect to the dominance order , which is the partial order on partitions defined by ` = (`1, . . . , `𝑚) ⊴
_ = (_1, . . . , _𝑟 ) if for each 𝑖 ≥ 1, we have `1 + · · · + `𝑖 ≤ _1 + · · · + _𝑖 . In our case,𝑚_ is the smallest term

that appears with respect to the dominance order, and consequently, we have

𝑝_ = 𝑐__𝑚_ +
∑︁
`▷_

𝑐_`𝑚`, (1.20)

where 𝑐__ ≠ 0, which shows that the transition matrix is indeed upper-triangular and invertible. ■

Remark 1.24. When it comes to 𝑒_ and ℎ_ , one can appeal to the generating functions:

𝐸 (𝑡) =
∑︁
𝑛≥0

𝑒𝑛 (𝑥)𝑡𝑛 =
∏
𝑖≥1
(1 + 𝑥𝑖𝑡) ∈ C⟦𝑥, 𝑡⟧, (1.21)

𝐻 (𝑡) =
∑︁
𝑛≥0

ℎ𝑛 (𝑥)𝑡𝑛 =
∏
𝑖≥1

1

1 − 𝑥𝑖𝑡
∈ C⟦𝑥, 𝑡⟧, (1.22)
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and use the identity 𝐻 (𝑡)𝐸 (−𝑡) = 1. The generating functions can be computed as follows. Pick a partition

_ with distinct parts and consider the weight associated to _, which is the monomial wt(_) ≔ 𝑥_1 · · · 𝑥_𝑟 .
One can introduce a new variable 𝑡 , and consider a twisted version of the weight w̃t(_) ≔ 𝑡 ℓ (_)𝑥_1 · · · 𝑥_𝑟 .
Note that we can express 𝐸 (𝑡) as

𝐸 (𝑡) =
∑︁
𝑛≥0

∑︁
_⊢𝑛

w̃t(_) . (1.23)

On the other hand, we have

{_ | all parts _𝑖 distinct} = ({10 ∪· 11}) × ({20 ∪· 21}) × · · · , (1.24)

which shows the product formula. The generating function 𝐻 (𝑡) can be computed by explicitly expanding∏
𝑖≥1

1

1 − 𝑥𝑖𝑡
=

∏
𝑖≥1
(1 + 𝑥𝑖𝑡 + 𝑥2𝑖 𝑡2 + · · · ), (1.25)

and realizing that the coefficient of a fixed power 𝑡𝑛 is indeed the sum

∑
_⊢𝑛
𝑚_ .

In fact, the above identity 𝐻 (𝑡)𝐸 (−𝑡) = 1 yields a much stronger statement than the fact that the 𝑒_ and

the ℎ_ form bases of Sym𝑛 . But first, let us describe the transformation matrices a bit more explicitly.

Lemma 1.25. Given two partitions _, ` ⊢ 𝑛, regarded as weak compositions, let 𝑀_` denote the number of
matrices 𝐴 ∈ Mat𝑛×𝑛 (F2) with row(𝐴) = _ and col(𝐴) = `, where row(𝐴) denotes the weak composition
whose parts are the row sums of 𝐴 and col(𝐴) denotes the weak composition whose parts are the column sums
of 𝐴. Then we have

𝑒_ =
∑̀︁
⊢𝑛
𝑀_`𝑚` . (1.26)

Remark 1.26. To clarify the notation, consider the example

©«
1 0 1 1 0
1 0 0 0 1
1 0 1 0 1
0 0 0 0 1
1 0 0 0 0

ª®®®®®¬
. (1.27)

Then the corresponding weak compositions are row(𝐴) = (3, 2, 3, 1, 1) and col(𝐴) = (4, 0, 2, 1, 3).

Note that the transformationmatrix (𝑀_`) is symmetric. Indeed, the matrix𝐴 has row(𝐴) = _ and col(𝐴) =
` if and only if row(𝐴𝑡 ) = ` and col(𝐴𝑡 ) = _, where 𝐴𝑡

denotes the transpose of 𝐴.

Proof. Since 𝑒_ is a symmetric function, it suffices to show that

𝑒_ =
∑︁
𝛼

𝑀_𝛼𝑥
𝛼 , (1.28)

where the sum runs over all weak compositions 𝛼 = (𝛼1, 𝛼2, . . .) of 𝑛. Consider the matrix

©«
𝑥1 𝑥2 𝑥3 · · ·
𝑥1 𝑥2 𝑥3 · · ·
...

...
...

. . .

ª®®¬. (1.29)

The coefficient of 𝑥𝛼 in the expansion of 𝑒_ can be described by the number of ways to choose _1 entries

in the first row, _2 entries in the second row, and so on, such that the product of these entries is 𝑥𝛼 .

Substituting the chosen entries by 1 and the others by 0, we end up with the matrices 𝐴, counted by 𝑀_` ,

where ` is the partition corresponding to the weak composition 𝛼 . ■
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Example 1.27. Let us list the expansion of elementary symmetric functions corresponding to the partitions

of the first four positive integers:

𝑒 (1) =𝑚 (1)

𝑒 (2) =𝑚 (12 )

𝑒 (12 ) = 2𝑚 (12 ) +𝑚 (2)

𝑒 (3) =𝑚 (13 )

𝑒 (2,1) = 3𝑚 (13 ) +𝑚 (2,1)
𝑒 (13 ) = 6𝑚 (13 ) + 3𝑚 (2,1) +𝑚 (3)

𝑒 (4) =𝑚 (14 )

𝑒 (3,1) = 4𝑚 (14 ) +𝑚 (2,12 )
𝑒 (22 ) = 6𝑚 (14 ) + 2𝑚 (2,12 ) +𝑚 (22 )
𝑒 (2,12 ) = 12𝑚 (14 ) + 5𝑚 (2,12 ) + 2𝑚 (22 ) +𝑚 (3,1)
𝑒 (14 ) = 24𝑚 (14 ) + 12𝑚 (2,12 ) + 6𝑚 (22 ) + 4𝑚 (3,1) +𝑚 (4)

It is apparent from the examples above that the transition matrix frommonomials to elementary symmetric

functions is unipotent, which is equivalent to saying that the 𝑒𝑖 ’s are algebraically independent generators

of Sym, with coefficients coming from an arbitrary ring 𝑅 (but as we said, we will not need this level

of generality). So one can also prove that the set {𝑒_ : _ ⊢ 𝑛} is a basis of Sym𝑛 directly, without using

generating functions.

Similarly to the transformation matrix (𝑀_`), one can consider the (symmetric) matrices (𝑁_`) whose
entries count the number of matrices 𝐴 with positive integer entries with row(𝐴) = _ and col(𝐴) = `.

Then we have

ℎ_ =
∑̀︁
⊢𝑛
𝑁_`𝑚` . (1.30)

The proof of this identity goes by a similar double-counting argument to the expansion of 𝑒_ . ■

Remark 1.28. The values 𝑒𝑘 (1𝑛) andℎ𝑘 (1𝑛) (where the first𝑛 variables are evaluated at 1 and the others at
0) are

(
𝑛
𝑘

)
and (−1)𝑘

(−𝑛
𝑘

)
, respectively. The relationship between these quantities is the archetypal example

of a combinatorial duality, (
−𝑛
𝑘

)
=

1

𝑘!

𝑘−1∏
𝑖=0

(−𝑛 − 𝑖) (1.31)

=
(−1)𝑘
𝑘!

𝑘−1∏
𝑖=0

(𝑛 + 𝑖) (1.32)

=
(−1)𝑘
𝑘!

𝑘−1∏
𝑖=0

(𝑛 + 𝑘 − 1)!
(𝑛 − 1)! (1.33)

= (−1)𝑘
(
𝑛 + 𝑘 − 1

𝑘

)
. (1.34)

This duality also has a manifestation in the theory of symmetric functions, described by the following

lemma.
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Lemma 1.29. There exists a C-algebra involution 𝜔 : Sym → Sym given by 𝜔 (𝑒𝑛) = ℎ𝑛 for any 𝑛 ∈ Z>0,
called the fundamental involution of Sym.

Proof. Note that the generating function identity, 𝐻 (𝑡)𝐸 (−𝑡) = 1 from Remark 1.24 yields∑︁
𝑖+𝑗=𝑛
(−1)𝑖𝑒𝑖ℎ 𝑗 = 𝛿0,𝑛, (1.35)

so we have 𝑒0 = 1 = ℎ0, and for any 𝑛 ∈ Z>0, we have

𝑒𝑛 = 𝑒𝑛−1ℎ1 − 𝑒𝑛−2ℎ2 + 𝑒𝑛−3ℎ3 − · · · , (1.36)

ℎ𝑛 = ℎ𝑛−1𝑒1 − ℎ𝑛−2𝑒2 + ℎ𝑛−3𝑒3 − · · · . (1.37)

The generators are algebraically independent, so we can define a C-algebra endomorphism 𝜔 of Sym, by

𝜔 (𝑒𝑛) = ℎ𝑛 for 𝑛 ∈ Z>0 and 𝜔 (𝑒0) = 𝜔 (1) = 1 = ℎ0 for 𝑛 = 0. To show that𝑤 is an involution, we proceed

by induction, and compute

𝜔 (ℎ𝑛) = 𝜔 (ℎ𝑛−1𝑒1 − ℎ𝑛−2𝑒2 + ℎ𝑛−3𝑒3 − · · · ) (1.38)

= 𝜔 (ℎ𝑛−1)𝜔 (𝑒1) − 𝜔 (ℎ𝑛−2)𝜔 (𝑒2) + 𝜔 (ℎ𝑛−3)𝜔 (𝑒3) − · · · (1.39)

= 𝑒𝑛−1ℎ1 − 𝑒𝑛−2ℎ2 + 𝑒𝑛−3ℎ3 − · · · (1.40)

= 𝑒𝑛 . (1.41)

Hence 𝜔2(𝑒𝑛) = 𝑒𝑛 for each 𝑛 ≥ 0, which agrees with id on the generators, and consequently 𝜔2 = id. ■

Remark 1.30. The expansion of chromatic symmetric functions in the 𝑒-basis will be particularly impor-

tant for us. We will be focusing on graphs whose chromatic symmetric functions have positive coefficients

in the 𝑒-expansion. These chromatic symmetric functions (as well as the original graphs) are said to be

𝑒-positive. Note that a symmetric function 𝑓 is 𝑒-positive if and only if 𝜔 (𝑓 ) is ℎ-positive (having positive

coefficients when expanded in the ℎ-basis).

1.3 Schur Functions and the Character Map

Let 𝑅𝑛 denote the vector space of class function of 𝑆𝑛 over C, i.e. complex valued functions which are

constant on conjugacy classes. The dimension of 𝑅𝑛 is the number of conjugacy classes in 𝑆𝑛 , which are

characterized by cycle types of permutations. Cycle types of permutations are in bijection with partitions

_ ⊢ 𝑛. Consequently, we have
dim(𝑅𝑛) = 𝑝 (𝑛), (1.42)

where 𝑝 (𝑛) denotes the number of partitions of 𝑛, so that 𝑅𝑛 and Sym𝑛 are isomorphic as vector spaces.

Definition 1.31. Let 𝐺 be a finite group, and 𝜌 : 𝐺 → GL𝑛 (C) a finite dimensional representation of 𝐺

over C. Then the character of 𝜌 is the homomorphism

𝜒 : 𝐺 → C, 𝜒 (𝑔) ≔ tr 𝜌 (𝑔) . (1.43)

Note that the character is independent of the choice of the matrix representation among the ones corre-

sponding to a given 𝐺-module, since for any 𝑇 ∈ GL𝑛 (C), 𝑔 ∈ 𝐺 and 𝜌 = 𝑇𝜌𝑇 −1, we have

tr 𝜌 (𝑔) = tr𝑇𝜌 (𝑔)𝑇 −1 = tr 𝜌 (𝑔) . (1.44)

Remark 1.32. Let us briefly recall themain properties of characters 𝜒 of finite dimensional representations

𝜌 : 𝑆𝑛 → GL𝑚 (C) of the symmetric group 𝑆𝑛 over C.
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(a). For any such character, 𝜒 (id) =𝑚 and 𝜒 is a class function.

(b). For any other finite dimensional representation 𝜌 of𝐺 , if 𝜌 is isomorphic to 𝜌 and 𝜌 has character 𝜒 ,

then 𝜒 = 𝜒 . In fact, the converse also holds, which can be seen by looking at the character relations,
listed in part (e), that arise from the following inner product.

(c). Class functions have a canonical inner product, given by

⟨𝜙,𝜓 ⟩ = 1

𝑛!

∑︁
𝜋∈𝑆𝑛

𝜙 (𝜋)𝜓 (𝜋) . (1.45)

This stems from the more general inner product on multiplicative functions 𝜑,𝜓 : 𝐺 → 𝐴, where 𝐺

is a finite group and 𝐴 is a C-algebra, given by

⟨𝜑,𝜓 ⟩ = 1

|𝐺 |
∑︁
𝑔∈𝐺

𝜑 (𝑔)𝜓 (𝑔−1) . (1.46)

Indeed, the two inner products coincide for class functions of the symmetric group, since 𝜋 and 𝜋−1

have the same cycle type for any 𝜋 ∈ 𝑆𝑛 .

(d). Irreducible characters (which correspond bijectively to irreducible representations) of 𝑆𝑛 form an or-

thonormal basis for 𝑅𝑛 with respect to this inner product,

⟨𝜒,𝜓 ⟩ = 𝛿𝜒,𝜓 . (1.47)

(e). Maschke’s theorem states that 𝜌 decomposes uniquely as a direct sum of pairwise inequivalent irre-

ducibles with some multiplicities,

𝑋 � 𝑚1𝜌
(1) ⊕ · · · ⊕𝑚𝑘𝜌

(𝑘 ) , (1.48)

Denote the character of each 𝜌 (𝑖 ) by 𝜒 (𝑖 ) . Then the following relations hold,

𝜒 =𝑚1𝜒
(1) + · · · +𝑚𝑘 𝜒

(𝑘 ) , (1.49)

⟨𝜒, 𝜒 (𝑖 )⟩ =𝑚𝑖 for all 𝑖, (1.50)

⟨𝜒, 𝜒⟩ =𝑚2
1 + · · · +𝑚2

𝑘
. (1.51)

Moreover, the representation 𝜌 is irreducible if and only if ⟨𝜒, 𝜒⟩ = 1.

(f). Another important feature of this inner product is the hom-tensor adjunction, and even a reciprocity,

between restriction and induction. For a subgroup 𝐻 ≤ 𝐺 and multiplicative functions 𝜑 : 𝐻 → 𝐴

and𝜓 : 𝐺 → 𝐴 as above, we have a duality

⟨Ind𝐺𝐻 (𝜑),𝜓 ⟩ = ⟨𝜑,Res
𝐺
𝐻 (𝜓 )⟩, (1.52)

called the Frobenius reciprocity. Recall that the restriction is the pullback along the inclusion, and

the induction is given by tensoring with the group algebra 𝑘 [𝐺] over 𝑘 [𝐻 ], where we tacitly use

the fact that the category of finite dimensional 𝐺-representations is equivalent to the category of

𝑘 [𝐺]-modules. In particular, the induction Ind𝐺𝐻 (1) is the 𝐺-module CH , where H is the set of all

cosets, where 1 denotes the trivial representation of 𝐺 .
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Remark 1.33. To construct all irreducible representations of 𝑆𝑛 (which are indexed by partitions), the most

natural thing one can do is to consider Young subgroups of 𝑆𝑛 , associated to partitions _ = (_1, . . . , _𝑟 ) ⊢ 𝑛,

𝑆_ ≔ 𝑆_1 × · · · × 𝑆_𝑟 . (1.53)

Recall that the shape of a Young tableau is the partition corresponding to its underlying Young diagram and

the content is the weak composition that describes the numbers appearing in the entries with multiplicities,

so the content (1𝑛) simply means that each number from the set [𝑛] is used exactly once. As an example,

if _ = (2, 1) and 𝑛 = 2, then there are six tableaux with content 1, 2, 3, each used exactly once,

1 2

3

2 1

3

1 3

2

3 1

2

2 3

1

3 2

1

(1.54)

Young tabloids are the equivalence classes of Young tableaux of a given shape _ ⊢ 𝑛 and content (1𝑛),
under the natural action of the Young subgroup 𝑆_ on the rows of these tableaux. So the Young tabloids

corresponding to the Young tableaux in (1.54) are

1 2

3

1 3

2

2 3

1

(1.55)

We shall shortly revisit this example in Construction 1.42. Note that here we did not impose any of the

customary restrictions on increasing or non-decreasing entries along the rows and columns of the diagram,

like in the case of semi-standard Young tableaux, in Remark 1.34.

The induction𝑀_ ≔ Ind𝑆𝑛
𝑆_
(1) can be described explicitly as

𝑀_ = C{{𝑡} : sh(𝑡) = _}, (1.56)

the span of the set of Young tabloids {𝑡} with the natural 𝑆𝑛-action.

In general, Young modules are not irreducible 𝑆𝑛-modules, but they are an important step in the construc-

tion of irreducible representations. In particular, under a suitable ordering (the dual lexicographic order)

of partitions _ (1) , . . . , _𝑝 (𝑛) ⊢ 𝑛, the first Young module 𝑆_
(1)

≔ 𝑀_ (1)
is irreducible, and inductively, 𝑀_ (𝑖 )

decomposes as a direct sum of the irreducibles 𝑆_
( 𝑗 )

with multiplicities and 𝑗 < 𝑖 , that we have already

constructed, in addition to a new irreducible 𝑆𝑛-module that we denote by 𝑆_
(𝑖 )
.

Remark 1.34. Recall that in a semistandard Young tableau, the numbers along the rows of the diagram are

non-decreasing and they are increasing along the columns. The multiplicity of the Specht module 𝑆_ in the

Young module 𝑀`
is the number of semi-standard Young tableaux of shape _ and content `, which called

the Kostka number and is denoted by 𝐾_` . This formula is called Young’s rule. The set of all semistandard

Young tableaux of shape _, filled with numbers coming from the set [𝑛], is denoted by SSYT(_, [𝑛]). As
an example, if _ = (2, 1) and 𝑛 = 2, then SSYT(_, [𝑛]) consists of

1 1

2

1 2

2

(1.57)

13



For a Young tableau 𝑇 of shape _ and content `, we can define the product of the entries,

𝑥𝑇 ≔
∏
(𝑖, 𝑗 )

𝑥𝑇𝑖,𝑗 , (1.58)

called the weight 𝑥` = 𝑥
`1
1 𝑥

`2
2 · · · of the composition `. Recall that compositions are sequences of positive

integers like partitions, but here the order of the parts is also fixed, i.e. compositions are not necessarily

non-increasing sequences. Earlier, we have used weak-compositions, where zero parts were also permitted.

Definition 1.35. The Schur function associated to _ ⊢ 𝑛 is defined as

𝑠_ (𝑥) =
∑︁

𝑇 ∈SSYT(_)
𝑥𝑇 , (1.59)

where the sum runs over all semistandard Young tableaux of shape _ and any content from the positive

integers Z>0.

Remark 1.36. Schur functions bridge the gap between elementary symmetric functions and complete

homogeneous symmetric functions: 𝑠 (𝑛) = ℎ𝑛 and 𝑠 (1𝑛 ) = 𝑒𝑛 .

Lemma 1.37. Schur functions are symmetric.

Proof. To see that Schur functions are symmetric, we can appeal to the representation theory of 𝑆𝑛 , and

notice that for any rearrangement ˜̀ of `, the corresponding Young modules are isomorphic, and conse-

quently they have the same multiplicities 𝐾`_ of Specht modules. We will further elaborate on this in the

proof of Lemma 1.39.

There is also an insightful combinatorial proof. Since simple transpositions generate 𝑆𝑛 , it suffices to show

that for each 𝑖 ∈ [𝑛 − 1], the Schur function 𝑠_ is invariant under the action (𝑖, 𝑖 + 1) .𝑠_ (𝑥) = 𝑠_ (𝑥).

To this end, we define an involution on SSYT(_, [𝑛]) that swaps the number of 𝑖’s and an 𝑖 + 1’s in the

tableau (making sure that it remains semi-standard). For each 𝑖 , we fix the boxes with 𝑖 if there is a box

with 𝑖 + 1 strictly below, and the boxes with 𝑖 + 1 if there is a box with 𝑖 strictly above. In each row, we can

then swap the number of non-fixed 𝑖’s and 𝑖 + 1’s, and the tableau we obtain will still be semi-standard.

To illustrate this, consider the tableau

1 1 1 2 2 2 2 2 2 2 2 2 3

2 3 3 3 3 3

3

which turns into the following tableau when we take 𝑖 = 2,

1 1 1 2 2 2 2 3 3 3 3 3 3

2 2 2 3 3 3

3

where the red entries are fixed and the blue ones have been swapped. For instance, in the first row, originally

there were six non-fixed 2s and one non-fixed 3, so we should turn five of the non-fixed 2s into 3s. ■
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Example 1.38. Let us list the Schur functions corresponding to partition of the first four positive integers in
their monomial expansion. This can be done by directly computing the first few Kostka numbers: 𝐾(1),(1) =
1, 𝐾(2),(2) = 1, 𝐾(2),(12 ) = 1, 𝐾(12 ),(12 ) = 1, 𝐾(12 ),(2) = 0, etc, and we get

𝑠 (1) =𝑚 (1)

𝑠 (12 ) =𝑚 (12 )

𝑠 (2) =𝑚 (12 ) +𝑚 (2)

𝑠 (13 ) =𝑚 (13 )

𝑠 (2,1) = 2𝑚 (13 ) +𝑚 (2,1)
𝑠 (3) =𝑚 (13 ) +𝑚 (2,1) +𝑚 (3)

𝑠 (14 ) =𝑚 (14 )

𝑠 (2,12 ) = 3𝑚 (14 ) +𝑚 (2,12 )
𝑠 (22 ) = 2𝑚 (14 ) +𝑚 (2,12 ) +𝑚 (22 )
𝑠 (3,1) = 3𝑚 (14 ) + 2𝑚 (2,12 ) +𝑚 (22 ) +𝑚 (3,1)
𝑠 (4) =𝑚 (14 ) +𝑚 (2,12 ) +𝑚 (22 ) +𝑚 (3,1) +𝑚 (4)

■

Lemma 1.39. The set of Schur functions {𝑠_ | _ ⊢ 𝑛} forms a basis for Sym𝑛 .

Proof. By definition of Schur functions, we have

𝑠_ =
∑̀︁

𝐾_`𝑥
`, (1.60)

where the sum runs over all compositions ` of 𝑛, and 𝐾_` is the Kostka number. Since Schur functions are

symmetric, this sum can be rewritten as

𝑠_ =
∑̀︁
⊢𝑛
𝐾_`𝑚`, (1.61)

where ` runs over all partitions of 𝑛. Note that 𝐾_` = 0 if _ ⋭ ` and 1 if _ = `, which follows immediately

from Young’s rule, in Remark 1.34.

Alternatively, there is also a combinatorial argument. If 𝐾_` ≠ 0, then there is a _-tableau 𝑇 of content `

such that its columns are increasing and its rows are non-decreasing. All occurrences of the values 1, 2, . . . , 𝑖
must then be in the rows 1 through 𝑖 , and consequently, for all 𝑖 , we have

`1 + · · · + `𝑖 ≤ _1 + · · · + _𝑖 , (1.62)

in other words, ` ⊴ _. If _ = `, then there is only one semi-standard Young tableau of shape and content

_, since in this case row 𝑖 must contain all occurrences of 𝑖 .

Hence, Schur functions can be expressed in terms of monomial symmetric functions as

𝑠_ =
∑︁
`⊴_

𝐾_`𝑚`, (1.63)

where the sum is taken over partitions (not compositions), and𝐾__ = 1. In particular, {𝑠_ | _ ⊢ 𝑛} is another
basis for Sym𝑛 . ■
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Example 1.40. (a). Since wewill be exploring 𝑒-positivity and 𝑠-positivity of chromatic symmetric func-

tions, the transformation matrix from the 𝑒-basis to the 𝑠-basis of symmetric functions plays an im-

portant role. The famous Jacobi–Trudi determinant expresses Schur functions as the determinant of

a matrix whose entries are elementary symmetric functions, or equivalently (via the fundamental

involution), in terms of complete homogeneous symmetric functions,

𝑠_′ = |𝑒_𝑖−𝑖+𝑗 | and 𝑠_ = |ℎ_𝑖−𝑖+𝑗 |, (1.64)

where _′ denotes the transpose of the partition _ (constructed by reflecting its Young diagram to the

diagonal). Let us list the first few connecting coefficients, for later use,

𝑠 (1) = 𝑒 (1)

𝑠 (12 ) = 𝑒 (2)

𝑠 (2) = 𝑒 (12 ) − 𝑒 (2)

𝑠 (13 ) = 𝑒 (3)

𝑠 (2,1) = 𝑒 (2,1) − 𝑒 (3)
𝑠 (3) = 𝑒 (13 ) − 2𝑒 (2,1) + 𝑒 (3)

𝑠 (14 ) = 𝑒 (4)

𝑠 (2,12 ) = 𝑒 (3,1) − 𝑒 (4)
𝑠 (22 ) = 𝑒 (2,2) − 𝑒 (3,1)
𝑠 (3,1) = 𝑒 (2,12 ) − 𝑒 (2,2) − 𝑒 (3,1) + 𝑒 (4)
𝑠 (4) = 𝑒 (14 ) − 3𝑒 (2,12 ) + 𝑒 (22 ) + 2𝑒 (3,1) − 𝑒 (4)

There is an elegant combinatorial proof for Jacobi–Trudi identities. Since𝜔 (𝑠_) = 𝑠_′ and𝜔 (𝑒_) = ℎ_ ,
it suffices to show the first identity. The Lindström–Gessel–Viennot Lemma (see [St1], Theorem 2.7.1)

expresses the determinant of a square matrix in terms of certain non-crossing lattice paths, and this

is the main idea behind the proof. For the details, see the first proof of Theorem 7.16.1 in [St2]. We are

not going to elaborate on this proof here, because the Jacobi–Trudi identities will not be used later

on, only the handful of examples that we listed above (and these expansions can also be computed

directly).

The application of the Lindström–Gessel–Viennot Lemma is reminiscent of the correspondence be-

tween totally non-negative invertible matrices (matrices whose minors are non-negative) and edge-

weighted acyclic planar networks. Indeed, the Jacobi–Trudi matrix (being a Vandermonde-type ma-

trix) is totally positive, i.e. all its minors are positive.

(b). If a symmetric function is 𝑒-positive, then it is also 𝑠-positive. This is best understood on the rep-

resentation theoretic side. We have seen that Young modules decompose as a direct sum of Specht

modules, in Remark 1.33. Young modules correspond to elementary symmetric functions and Specht

modules to Schur functions under the character map that we will introduce in Definition 1.46.

■

Construction 1.41. We have seen that irreducible characters appear in the connecting coefficients from

Schur functions tomonomials. They also showup in the connecting coefficients frompower sum symmetric

functions to monomials.
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Consider the three partitions (3), (2, 1) and (13) of 3, and expand the corresponding power sum symmetric

functions in the monomial basis,

𝑝 (3) = 𝑥
3
1 + 𝑥32 + · · · =𝑚 (3) , (1.65)

𝑝 (2,1) = (𝑥21 + 𝑥22 + · · · ) (𝑥1 + 𝑥2 + · · · ) =𝑚 (3) +𝑚 (2,1) , (1.66)

𝑝 (13 ) = (𝑥1 + 𝑥2 + · · · )3 =𝑚 (3) + 3𝑚 (2,1) + 6𝑚 (13 ) . (1.67)

The connecting coefficients may be familiar from the character theory of Young modules. The conjugacy

classes of 𝑆3 corresponding to the partitions are the following (in cycle notation),

𝐾(13 ) = {𝑒}, 𝐾(2,1) = {(12), (13), (23)}, 𝐾(3) = {(123), (132)}. (1.68)

Note that𝑀 (3) is spanned by the single Young tabloid over C

1 2 3

where the bars indicate that the order of the elements within each row is arbitrary, and one may choose

a representative with increasing order. In particular, 𝑀 (3) is one-dimensional, and it is isomorphic to the

trivial representation, given by𝑔 ↦→ 1 for all𝑔 ∈ 𝑆3, and consequently, the trace is 1 on all conjugacy classes.
The Young module𝑀 (1

3 )
is spanned by the six Young tabloids that lie in the 𝑆3-orbit of

1

2

3

Therefore, 𝑀 (1
3 ) � C𝑆3 as representations, which is called the regular representation. We fix the basis 𝑒 ,

(12), (13), (23), (123) and (132) of C𝑆3 in this order, and express the values of 𝑀 (1
3 )

in terms of 6 × 6-
matrices. Note that we only need to compute these values for representatives of conjugacy classes, since

we are looking for character values. Then𝑀 (1
3 ) (𝑒) = id6, so the trace is 6 for 𝑒 , and we have

𝑀 (1
3 ) (12) =

©«

0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0

ª®®®®®®®¬
, (1.69)

so the trace is 0 for the conjugacy class {(12), (13), (23)}. Similarly, we have

𝑀 (1
3 ) (123) =

©«

0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0

ª®®®®®®®¬
, (1.70)

so the trace is also 0 for the conjugacy class {(123), (132)}.
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Finally, we consider the Young module𝑀 (2,1) with the basis

1 2

3

1 3

2

2 3

1

(1.71)

which is isomorphic to the defining representation C{1, 2, 3}, i.e. the canonical action of 𝑆3 on the set [3].
Again, we fix an ordered basis (1, 2, 3) and compute its matrix values on some representatives of conjugacy

classes. Then𝑀 (2,1) (𝑒) = id3, so the trace is 3 on the conjugacy class {𝑒}, and we have

𝑀 (2,1) (12) = ©«
0 1 0
1 0 0
0 0 1

ª®¬ , (1.72)

so the trace is 1 on the conjugacy class {(12), (13), (23)}, and finally,

𝑀 (2,1) (123) = ©«
0 0 1
1 0 0
0 1 0

ª®¬ , (1.73)

so the trace is 0 on the conjugacy class {(123), (132)}. Let us denote the character of𝑀 (3) ,𝑀 (2,1) and𝑀 (13 )
by 𝜙 (3) , 𝜙 (2,1) and 𝜙 (1

3 )
, respectively. Then the character values are indeed the same as the connecting

coefficients in equation (1.65), summarised by the following table

𝐾(13 ) 𝐾(2,1) 𝐾(3)
𝜙 (3) 1 1 1

𝜙 (2,1) 3 1 0

𝜙 (1
3 ) 6 0 0

Figure 3: values of Young characters of 𝑆3

Note that𝑀 (3) is irreducible but𝑀 (2,1) and𝑀 (1
3 )
are not. This can be seen either by the character relations

from Remark 1.32, or by explicitly identifying a sub-representation, for example

𝑉 = {(𝑥,𝑦, 𝑧) ∈ C3 : 𝑥 + 𝑦 + 𝑧 = 0} (1.74)

in the case of𝑀 (1
3 )
.

Lemma 1.42. In general, we have
𝑝_ =

∑︁
`⊵_
`⊢𝑛

𝜙
`

_
𝑚`, (1.75)

where 𝜙`

_
denotes the character 𝜙` of the Young module 𝑀` , evaluated at the cycle type (i.e. conjugacy class)

corresponding to the partition _.

Proof. To see this, let𝐶 = (𝑐_`) denote the transformation matrix from the monomial basis to power sums

of degree 𝑛, so that for any _ ⊢ 𝑛 we have∏
𝑖

(𝑥_𝑖1 + 𝑥
_𝑖
2 + · · · ) =

∑̀︁
⊢𝑛
𝑐_`𝑚` . (1.76)
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Then we need to find the coefficient of 𝑥` on both sides, where ` = (`1, . . . , `𝑚) is an arbitrary partition.

On the right-hand side, this coefficient is simply 𝑐_` . On the left-hand side, we can see by expanding the

bracket that the coefficient is the number of ways to distribute parts of _ into sub-partitions _1, . . . , _𝑚 such

that _ is the disjoint union of the _𝑖 ’s, and for each 𝑖 we have _𝑖 ⊢ `𝑖 .

Next, we need to identify the 𝑐_` with the character values. For any 𝜋 ∈ 𝑆𝑛 with cycle type 𝑐 (𝜋) = _,

𝜙
`

_
= 𝜙` (𝜋) is the number of fixed points of 𝜋 on all standard Young tabloids𝑇 with sh(𝑇 ) = _. Note that𝑇

is fixed if and only if each cycle of 𝜋 has elements lying on a single row of𝑇 , which is exactly the condition

for 𝑐_` presented above, and this shows the formula. ■

Remark 1.43. Consider the function 𝑝𝑛 : 𝑆𝑛 → Sym that sends a permutation with cycle type _ to the

power sum symmetric function 𝑝_ . Then for the character 𝜒_ of a Specht module 𝑆_ , we have

1

𝑛!

∑︁
𝜋∈𝑆𝑛

𝑝𝑛 (𝜋)𝜒_ (𝜋) =
1

𝑛!

∑︁
𝜋∈𝑆𝑛

( ∑̀︁
𝜙` (𝜋)𝑚`

)
𝜒_ (𝜋) (1.77)

=
∑̀︁

𝑚`

(
1

𝑛!

∑︁
𝜋∈𝑆𝑛

𝜙` (𝜋)𝜒_ (𝜋)
)

(1.78)

=
∑̀︁

𝑚` ⟨𝜙`, 𝜒_⟩ (1.79)

=
∑̀︁

𝐾_`𝑚`, (1.80)

where 𝐾_` is the Kostka number, by Young’s rule, since the inner product gives us the multiplicity of the

Specht module 𝑆_ in the Young module𝑀`
. Consequently, we have

𝑠_ =
1

𝑛!

∑︁
𝜋∈𝑆𝑛

𝜒_ (𝜋)𝑝𝜋 , (1.81)

or equivalently,

𝑠_ =
1

𝑛!

∑̀︁
𝑘` 𝜒

_
`𝑝`, (1.82)

where 𝐾` denotes the conjugacy class corresponding to the partition `, the cardinality of 𝐾` is denoted by

𝑘` , and 𝜒
_
` is the value of 𝜒_ on the conjugacy class 𝐾` . Note that we can express 𝑘` as

𝑘` =
𝑛!

𝑧`
, (1.83)

where 𝑧` is the size of the centralizer of elements in 𝐾` , and it can be written as

𝑧` =
𝑛!

1`1`1! · · ·𝑛`𝑟 `𝑟 !
. (1.84)

Hence we can express 𝑠_ , without factorials, as

𝑠_ =
∑̀︁ 1

𝑧_
𝜒_`𝑝` . (1.85)

Construction 1.44. The above description of the connecting coefficients suggests that the suitable inner

product on symmetric functions, that mimics the inner product of class functions, is given by

⟨𝑠_, 𝑠`⟩ = 𝛿_` . (1.86)

This is called the Hall inner product on Sym𝑛 .
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(a). The Hall inner product is a symmetric bilinear form: for any 𝑓 , 𝑔 ∈ Sym, we have ⟨𝑓 , 𝑔⟩ = ⟨𝑔, 𝑓 ⟩.

(b). Note that for any 𝑛 ≠𝑚 ∈ Z≥0, 𝑓 ∈ Sym𝑛 and 𝑔 ∈ Sym𝑚 , we have that ⟨𝑓 , 𝑔⟩ = 0, since in this case,

0 = 𝛿_,` = ⟨𝑠_, 𝑠`⟩ and Schur functions form a basis.

(c). For any 𝑓 ∈ Sym𝑛 , we have

⟨ℎ𝑛, 𝑓 ⟩ = 𝑓 (1) ≔ 𝑓 (1, 0, 0, . . .) . (1.87)

Again, by C-linearity, it suffices to show the identity for the Schur basis: take 𝑓 = 𝑠_ for some _ ⊢ 𝑛.

If ℓ (_) = 1, then _ = (𝑛) and 𝑠_ = 𝑠 (𝑛) = ℎ𝑛 . Therefore, 𝑓 (1) = ℎ𝑛 (1) = 1, and ⟨ℎ𝑛, 𝑓 ⟩ = ⟨𝑠 (𝑛) , 𝑠 (𝑛)⟩ =
𝛿 (𝑛),(𝑛) = 1, and consequently, ⟨ℎ𝑛, 𝑓 ⟩ = 𝑓 (1).

If ℓ (_) > 1, i.e. if _ has multiple parts, then𝑚_ (𝑥1, . . . , 𝑥𝑘 , 0, 0, . . .) = 0 for any 𝑘 with ℓ (_) > 𝑘 , so

we have 𝑠_ (𝑥1, 0, 0, . . .) = 0, and consequently 𝑓 (1) = 𝑠_ (1) = 0. On the other and, since ⟨ℎ𝑛, 𝑓 ⟩ =
⟨𝑠 (𝑛) , 𝑠_⟩ = 𝛿 (𝑛),_ = 0, we have ⟨ℎ𝑛, 𝑓 ⟩ = 𝑓 (1), as desired.

Remark 1.45. It would be natural to map the orthonormal basis of irreducible characters to the orthonor-

mal basis of Schur functions. This way, the vector space isomorphism between class functions of 𝑆𝑛 and

Sym𝑛 automatically becomes an isometry.

Definition 1.46. The Frobenius character map is the linear map defined by

ch𝑛 : 𝑅𝑛 → Sym𝑛, ch𝑛 (𝜒_) = 𝑠_ . (1.88)

Remark 1.47. (a). Consequently, ch𝑛 : 𝑅𝑛 → Sym𝑛 is an isometry.

(b). One can extend this to a graded module isomorphism,

ch ≔
⊕
𝑛≥0

ch𝑛 : 𝑅 → Sym, (1.89)

which is also an isometry between 𝑅 ≔
⊕

𝑛 𝑅𝑛 and Sym.

(c). According to the computations above, the character map has a simple description in terms of power

sum symmetric functions too. For any 𝜙 ∈ 𝑅𝑛 , we can write

ch(𝜙) = 1

𝑛!

∑︁
𝑤∈𝑆𝑛

𝜙 (𝑤)𝑝_ (𝑤 ) =
∑̀︁
⊢𝑛
𝑧−1` 𝜙 (`)𝑝`, (1.90)

where _(𝑤) denotes the cycle type of the permutation 𝑤 and 𝑧` is the size of the centraliser of 𝐾` ,

as in equation (1.84). This formula is very convenient for explicit computations, and it is one of the

main reasons why we care about power sum symmetric functions in this thesis. Another reason will

be provided in Section 3, when we explore the Hopf algebra structure on symmetric functions.

Example 1.48. (a). Consider the trivial representation of 𝑆3. Since it is one-dimensional, its character

𝜒1 has value 1 on all cycle types. Consequently, we have

ch(𝜒1) =
1

3!

∑︁
𝑤∈𝑆3

𝑝𝑤 =
1

6
· 𝑝 (13 ) +

1

2
· 𝑝 (2,1) +

1

3
· 𝑝 (3) = 𝑠 (3) . (1.91)

(b). The character value at a permutation of the sign representation of 𝑆3 is the sign of the permutation

𝜒2(𝑤) = sign(𝑤), so we have

ch(𝜒2) =
1

3!

∑︁
𝑤∈𝑆3

sign(𝑤)𝑝𝑤 =
1

6
· 𝑝 (13 ) −

1

2
· 𝑝 (2,1) +

1

3
· 𝑝 (3) = 𝑠 (13 ) . (1.92)
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■

Lemma 1.49. The character map ch : 𝑅 → Sym is a graded algebra isomorphism.

Proof. We have seen that is an isomorphism of graded vector spaces, so it suffices to show that ch is an

algebra morphism.

However, the multiplication on 𝑅𝑛 that is compatible with the multiplication of Sym inherited from the

C-algebra of formal power series is not componentwise multiplication of class functions, because we need

to take the grading into account. If 𝜒 is a character of 𝑆𝑛 and𝜓 a character of 𝑆𝑚 , then 𝜒 ⊗𝜓 is a character

of 𝑆𝑛 × 𝑆𝑚 . To obtain a character of 𝑆𝑛+𝑚 , we can take the induced representation

𝜒 ·𝜓 ≔ Ind𝑆𝑛+𝑚
𝑆𝑛×𝑆𝑚 (𝜒 ⊗𝜓 ), (1.93)

and extend bilinearly. To see that the character maps respects multiplication, one can use Frobenius reci-

procity, from Remark 1.32, part (f), and compute

ch(𝜒 ·𝜓 ) = ⟨𝜒 ·𝜓, 𝑝⟩ (1.94)

= ⟨Ind𝑆𝑛+𝑚
𝑆𝑛×𝑆𝑚 (𝜒 ⊗𝜓 ), 𝑝⟩ (1.95)

= ⟨𝜒 ⊗𝜓,Res𝑆𝑛+𝑚
𝑆𝑛×𝑆𝑚 (𝑝)⟩ (1.96)

=
1

𝑛!𝑚!

∑︁
𝜋∈𝑆𝑛
𝜎∈𝑆𝑚

(𝜒 ⊗𝜓 ) (𝜋 × 𝜎) · 𝑝𝜋×𝜎 (1.97)

=
1

𝑛!𝑚!

∑︁
𝜋∈𝑆𝑛
𝜎∈𝑆𝑚

𝜒 (𝜋)𝜓 (𝜎)𝑝𝜋𝑝𝜎 (1.98)

=

(
1

𝑛!

∑︁
𝜋∈𝑆𝑛

𝜒 (𝜋)𝑝𝜋
) (

1

𝑚!

∑︁
𝜎∈𝑆𝑚

𝜓 (𝜎)𝑝𝜎
)

(1.99)

= ch(𝜒) ch(𝜓 ) . (1.100)

■

Remark 1.50. (a). Later, when we endow Sym with the structure of a graded connected Hopf algebra,

in Subsection 3.1, we will also show that the character map is in fact a Hopf algebra map.

(b). We will also need a refinement of the Frobenius character map that takes into account graded repre-
sentations, i.e. representations on graded vector spaces where the action preserves the graded parts,

because ultimately, we would like to study chromatic quasi-symmetric functions, introduced in Def-

inition 1.60.

(c). Since the character map plays a central role in the theory of symmetric functions, it is natural to ask

what kind of 𝑆𝑛-representations correspond to chromatic symmetric functions. Then, we can ask if

these representations decompose as a direct sum of Specht modules or Young modules. In terms of

base expansions of symmetric functions, this will be reflected by 𝑠-positivity or 𝑒-positivity of the

corresponding chromatic symmetric functions.

Definition 1.51. The graded Frobenius character of a graded 𝑆𝑛-module 𝑉 =
⊕

𝑑 𝑉𝑑 is defined as

Frob(𝑉 ) (𝑡) ≔
∑︁
𝑑

ch(𝑉𝑑 )𝑡𝑑 ∈ Sym⟦𝑡⟧. (1.101)
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Remark 1.52. Let {𝑒𝑖}𝑖∈𝐼 be a homogeneous basis for the graded representation𝑉 . Then the expression of

the 𝑝-expansion of the Frobenius character, in Remark 1.47, yields the following 𝑝-expansion of the graded

Frobenius. Let 𝑎𝑖 denote the coefficient of 𝑒𝑖 in𝑤 · 𝑒𝑖 , then we have

Frob(𝑉 ) = 1

𝑛!

∑︁
𝑤∈𝑆𝑛

(∑︁
𝑖∈𝐼

𝑡deg(𝑒𝑖 )𝑎𝑖

)
𝑝_ (𝑤 ) , (1.102)

where _(𝑤) denotes the cycle type of𝑤 .

Example 1.53. The C-algebra C[𝑥1, 𝑥2, 𝑥3] carries an action of 𝑆3 given by permuting the variables

𝜎.𝑓 (𝑥1, 𝑥2, 𝑥3) = 𝑓 (𝑥𝜎 (1) , 𝑥𝜎 (2) , 𝑥𝜎 (3) ) . (1.103)

Invariants under this action are called symmetric polynomials, whose power series analogues are symmetric

functions. The ideal generated by elementary symmetric polynomials in this ring is

⟨𝑒1, 𝑒2, 𝑒3⟩ = ⟨𝑥1 + 𝑥2 + 𝑥3, 𝑥1𝑥2 + 𝑥1𝑥2 + 𝑥2𝑥3, 𝑥1𝑥2𝑥3⟩, (1.104)

and the quotient is called the coinvariant algebra C[𝑥1, 𝑥2, 𝑥3]/⟨𝑒1, 𝑒2, 𝑒3⟩.

More generally, the coinvariant algebra for 𝑆𝑛 is defined as C[𝑥1, . . . , 𝑥𝑛]/𝐼𝑛 , where 𝐼𝑛 = ⟨𝑒1, . . . , 𝑒𝑛⟩. An
important basis for this space is given by the Schubert polynomials {𝔖𝑤 + 𝐼𝑛 |𝑤 ∈ 𝑆𝑛}. The Schubert

polynomial𝔖𝑤 for a permutation𝑤 ∈ 𝑆𝑛 can be defined inductively, using the (strong) Bruhat order, which
is the partial order on 𝑆𝑛 defined by 𝑢 ≤ 𝑣 if some (or equivalently, every) reduced word for 𝑣 contains a

substring (of not necessarily consecutive letters) that forms a reduced word for 𝑢. For instance the (strong)

Bruhat order for 𝑆3 yields the following poset, using the standard notation for simple transpositions,

𝑠1 = (12), 𝑠2 = (23), (1.105)

123

132213

312231

321

id

𝑠2𝑠1

𝑠2𝑠1𝑠1𝑠2

𝑠1𝑠2𝑠1 = 𝑠2𝑠1𝑠2

Figure 4: (strong) Bruhat order for 𝑆3

For the longest permutation𝑤0 in the (strong) Bruhat order,

𝔖𝑤0 ≔ 𝑥𝑛−11 𝑥𝑛−22 · · · 𝑥1𝑛−1, (1.106)

and for any𝑤 with𝑤 (𝑖) > 𝑤 (𝑖 + 1), the corresponding Schubert polynomial is defined as

𝔖𝑤𝑠𝑖 ≔ 𝜕𝑖 (𝔖𝑤), (1.107)

where 𝜕𝑖 is the divided difference operator , given by

𝜕𝑖 (𝑓 (𝑥1, . . . , 𝑥𝑛)) ≔
𝑓 (𝑥1, . . . , 𝑥𝑛) − 𝑠𝑖 (𝑓 (𝑥1, . . . , 𝑥𝑛))

𝑥𝑖 − 𝑥𝑖+1
. (1.108)
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Here are the Schubert polynomials for 𝑆3, arranged along the vertices of the (strong) Bruhat poset.

𝔖123 = 1

𝔖132 = 𝑥1 + 𝑥2𝔖213 = 𝑥1

𝔖312 = 𝑥21𝔖231 = 𝑥1𝑥2

𝔖321 = 𝑥21𝑥2

Figure 5: Schubert polynomials for 𝑆3

Then we can compute the actions of permutations on Schubert polynomials. Note that 𝑠2(𝑥21𝑥2) = 𝑥21𝑥3
and (𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥2𝑥3)𝑥1 = 𝑥21𝑥2 + 𝑥21𝑥3 + 𝑥1𝑥2𝑥3, where 𝑥1𝑥2𝑥3 ∈ 𝐼3, which yields the base expansion

𝑥21𝑥3 + 𝐼3 = −𝑥21𝑥2 + 𝐼3. Similarly, we can compute the base expansion of the other actions, summarized in

the following table.

123 132 213 231 312 321
𝑥21𝑥2 𝑥21𝑥2 −𝑥21𝑥2 −𝑥21𝑥2 𝑥21𝑥2 𝑥21𝑥2 −𝑥21𝑥2
𝑥1𝑥2 𝑥1𝑥2 −𝑥1𝑥2 − 𝑥21 𝑥1𝑥2 𝑥21 −𝑥1𝑥2 − 𝑥21 𝑥21
𝑥21 𝑥21 𝑥21 −𝑥1𝑥2 − 𝑥21 −𝑥1𝑥2 − 𝑥21 𝑥1𝑥2 𝑥1𝑥2
𝑥1 𝑥1 𝑥1 −𝑥1 + (𝑥1 + 𝑥2) −𝑥1 + (𝑥1 + 𝑥2) −(𝑥1 + 𝑥2) −(𝑥1 + 𝑥2)

𝑥1 + 𝑥2 𝑥1 + 𝑥2 𝑥1 − (𝑥1 + 𝑥2) 𝑥1 + 𝑥2 −𝑥1 𝑥1 − (𝑥1 + 𝑥2) −𝑥1
1 1 1 1 1 1 1

Figure 6: 𝑆3-action on the coinvariant algebra

Therefore, the subspaces (𝑥21𝑥2), (𝑥1𝑥2, 𝑥21), (𝑥1, 𝑥1 + 𝑥2) and (1) are invariant, and the representation can

be expressed in terms of matrices as follows,

123 132 213 231 312 321

(𝑥21𝑥2)
(
1
) (

−1
) (

−1
) (

1
) (

1
) (

−1
)

(𝑥1𝑥2, 𝑥21)
(
1 0
0 1

) (
−1 0
−1 1

) (
1 −1
0 −1

) (
0 −1
0 −1

) (
−1 1
−1 0

) (
−1 0
−1 1

)
(𝑥1, 𝑥1 + 𝑥2)

(
1 0
0 1

) (
1 1
0 −1

) (
−1 0
1 1

) (
−1 −1
1 0

) (
0 1
−1 −1

) (
0 −1
−1 0

)
(1)

(
1
) (

1
) (

1
) (

1
) (

1
) (

1
)

Figure 7: 𝑆3-action on the coinvariant algebra, in terms of matrices

Let us start by computing the Frobenius character of the degree three part, which is in fact the sign repre-

23



sentation, treated in Example 1.48, part (a). The conjugacy classes of 𝑆3 are represented by id, 𝑠1 and 𝑠1𝑠2,
and the classes have 1, 3 and 2 elements, respectively. The identity matrix has trace 1, while the represent-
ing matrices of the other two classes have trace −1 and 1, respectively. Therefore, the Frobenius character
of the degree three part is given by

1

6
(1 · 1 · 𝑝 (13 ) + 3 · (−1) · 𝑝 (2,1) + 2 · 1 · 𝑝 (3) ) = 𝑠 (13 ) . (1.109)

Similarly, we can compute the Frobenius character of the degree two part by reading off the traces from

the representing matrices, and we have

1

6
(1 · 2 · 𝑝 (13 ) + 3 · 0 · 𝑝 (2,1) + 2 · (−1) · 𝑝 (3) ) = 𝑠 (2,1) . (1.110)

The Frobenius character of the degree one part is the same, because the representing matrices have the

same traces. The degree zero part is the trivial representation, so the Frobenius character is

1

6
(1 · 1 · 𝑝 (13 ) + 3 · 1 · 𝑝 (2,1) + 2 · 1 · 𝑝 (3) ) = 𝑠 (3) . (1.111)

Hence, the graded Frobenius character of the coinvariant algebra is

Frob(C[𝑥1, 𝑥2, 𝑥3]/⟨𝑒1, 𝑒2, 𝑒3⟩) = 𝑠 (13 )𝑡3 + 𝑠 (2,1)𝑡2 + 𝑠 (2,1)𝑡 + 𝑠 (3) . (1.112)

Note that the 𝑠-expansion is positive in each degree, but it is far from being 𝑒-positive. We can read off the

connecting coefficients from Example 1.40, and obtain the 𝑒-expansion

Frob(C[𝑥1, 𝑥2, 𝑥3]/⟨𝑒1, 𝑒2, 𝑒3⟩) = 𝑒 (3)𝑡3 + (𝑒 (2,1) − 𝑒 (3) )𝑡2 + (𝑒 (2,1) − 𝑒 (3) )𝑡 + (𝑒 (13 ) − 2𝑒 (2,1) + 𝑒 (3) ) . (1.113)

However, if we were to evaluate the Frobenius character at 𝑡 = 1, then we would get 𝑒 (13 ) , which is 𝑒-

positive. We will return to the covariant algebra, when we discuss the equivariant cohomology of full flag

varieties, in Example 2.28. ■

1.4 Chromatic Quasi-Symmetric Functions

Example 1.54. (a). Consider the path 𝑃3 of order 3

𝑣1 𝑣2 𝑣3

Then the chromatic symmetric function is

𝑋 (𝑃3;𝑥) = 6𝑚 (13 ) +𝑚 (2,1) . (1.114)

Indeed, there are six different ways to colour 𝑃3, since any permutation yields a proper colouring,

so the coefficient of the monomial symmetric function𝑚 (13 ) is 6. Using two colours 𝑎, 𝑏, the middle

vertex 𝑣2 must get a different colour, so the corresponding monomials are 𝑥2𝑎𝑥𝑏 and 𝑥𝑎𝑥
2
𝑏
, and the

coefficient of the term 𝑚 (2,1) is 1. In particular, 𝑋 (𝑃3;𝑥) is 𝑚-positive (i.e. the expansion in the

monomial basis yields positive coefficients).
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To find the 𝑒-expansion, we can use the transformationmatrix from themonomial basis to the 𝑒-basis,

presented in Lemma 1.25, to read off the following identities:

𝑚 (13 ) = 𝑒 (3) ,

𝑚 (2,1) = 𝑒 (2,1) − 3𝑚 (13 )
= 𝑒 (2,1) − 3𝑒 (3) ,

𝑚 (3) = 𝑒 (13 ) − 6𝑚 (13 ) − 3𝑚 (2,1)
= 𝑒 (13 ) − 3𝑒 (2,1) + 3𝑒 (3) .

Hence, the 𝑒-expansion of the chromatic symmetric function is given by

𝑋 (𝑃3;𝑥) = 3𝑒 (3) + 𝑒 (2,1) , (1.115)

so this symmetric function is also 𝑒-positive. Recall from Example 1.40, part (c) that 𝑒-positivity

implies 𝑠-positivity, and indeed, we can compute that 𝑋 (𝑃3;𝑥) = 4𝑠 (13 ) + 𝑠 (2,1) .

(b). Similarly, we can compute the chromatic symmetric function of the path 𝑃4 of order 4

𝑣1 𝑣2 𝑣3 𝑣4

whose monomial expansion is

24𝑚 (14 ) + 6𝑚 (2,12 ) + 2𝑚 (22 ) .
Again, we can appeal to the transformation matrix to convert this to the 𝑒-basis,

𝑚 (14 ) = 𝑒 (4)

𝑚 (2,12 ) = 𝑒 (3,1) − 4𝑚 (14 )
= 𝑒 (3,1) − 4𝑒 (4) ,

𝑚 (22 ) = 𝑒 (22 ) − 6𝑚 (14 ) − 2𝑚 (2,12 ) ,
= 𝑒 (22 ) − 6𝑚 (14 ) − 2(𝑒 (3,1) − 4𝑚 (14 ) )
= 𝑒 (22 ) + 2𝑒 (4) − 2𝑒 (3,1) .

Hence, the 𝑒-expansion of the chromatic symmetric function is

𝑋 (𝑃4;𝑥) = 4𝑒 (4) + 2𝑒 (3,1) + 2𝑒 (22 ) . (1.116)

By computing the Kostka numbers explicitly, we can also find its 𝑠-expansion, which is given by

𝑋 (𝑃4;𝑥) = 8𝑠 (14 ) + 4𝑠 (2,12 ) + 2𝑠 (22 ) . (1.117)

(c). Now let us consider the claw graph 𝐾1,3

𝑣1

𝑣2

𝑣3𝑣4
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Its chromatic symmetric function is

𝑋 (𝐾1,3;𝑥) = 24𝑚 (14 ) + 6𝑚 (2,12 ) +𝑚 (3,1) . (1.118)

Indeed, there are 4! ways to colour the four vertices with four distinct colours. Given three colours

𝑎, 𝑏, 𝑐 , if 𝑎 is used twice, then the vertex 𝑣4 must be either 𝑏 or 𝑐 , and the other vertices must be

coloured with a different colour, so we have 6 choices corresponding to each monomial with parti-

tion (2, 12). Therefore, the coefficient of the monomial symmetric function𝑚 (2,12 ) is 6. If we have
two colours 𝑎, 𝑏, and 𝑣4 is coloured with 𝑎, then all the other vertices must be coloured with 𝑏, so

the corresponding monomial is 𝑥𝑎𝑥
3
𝑏
, and consequently, the coefficient of the monomial symmetric

function𝑚 (3,1) is 1.

The salient point about this computation is that the chromatic symmetric function of the claw graph

is not 𝑒-positive,

𝑋 (𝐾1,3;𝑥) = 4𝑒 (4) + 5𝑒 (3,1) − 2𝑒 (2,2) + 𝑒 (2,12 ) . (1.119)

In fact, its 𝑠-expansion also has a negative coefficient,

𝑋 (𝐾1,3;𝑥) = 𝑠 (3,1) − 𝑠 (2,2) + 5𝑠 (2,12 ) + 8𝑠 (14 ) . (1.120)

We saw in this example, that unlike the chromatic polynomial, the chromatic symmetric function can

distinguish between the claw graph and the path of order 4. It has been checked for all trees with order

at most 23 (see [MMW]), but it remains an open problem in general, that if 𝑇1 and 𝑇2 are non-isomorphic

trees, then𝑋 (𝑇1) ≠ 𝑋 (𝑇2). At any rate, chromatic symmetric functions are considerably more sophisticated

invariants than chromatic polynomials. ■

Remark 1.55. (a). Let𝐺 = (𝑉 , 𝐸) be a graph, then the 𝑝-expansion of its chromatic symmetric function

can be described as

𝑋 (𝐺) =
∑︁
𝐹⊆𝐸
(−1) |𝐹 |𝑝_ (𝐹 ) , (1.121)

where _(𝐹 ) denotes the partition determined by the components spanned by 𝐹 . For a bijective proof,

using sign reversing involutions, see [SV].

(b). Stanley proved the following description of the expansion of chromatic symmetric functions in the

elementary symmetric function basis. If we write

𝑋 (𝐺 ;𝑥) =
∑︁
_⊢𝑛

𝛼_𝑒_, (1.122)

then for any𝑚 ∈ Z>0 the sum ∑︁
_⊢𝑛

ℓ (_)=𝑚

𝛼_ (1.123)

counts the number of acyclic orientiations of 𝐺 with exactly𝑚 sinks.

For instance, in the case of the path of order 3, we have 3 orientations with 1 sink, 1 orientation with

two sinks, and it is not possible to have more than 2 sinks. Indeed, we have seen that the 𝑒-expansion

of its chromatic symmetric function is 3𝑒 (3) + 𝑒 (2,1) .

There is a classical theorem in graph theory, called the Gallai–Hasse–Roy–Vitaver theorem, which

states that the chromatic number 𝜒 (𝐺) of a graph𝐺 equals one plus the length of the longest path(s)

in an orientation of 𝐺 chosen to minimize this length (for a proof, see [ChZ], Theorem 7.17). Any
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such orientation can be chosen to be acyclic. A corollary of this theorem is the fact that the chromatic

polynomial 𝜒 (−1) evaluated at −1 yields the number of acyclic orientations of the graph. This result

can be regarded as a precursor to the 𝑒-expansion of chromatic symmetric functions.

Definition 1.56. (a). For a poset 𝑃 , one can consider the incomparability graph, whose vertices are the
elements of the poset and two vertices are adjacent if and only if they are incomparable.

(b). For 𝑎, 𝑏 ∈ Z>0, an (𝑎 + 𝑏)-free poset is a poset that does not contain an induced subposet that is

isomorphic to a disjoint union of an 𝑎-chain and a 𝑏-chain.

Remark 1.57. We have seen that the claw graph is not 𝑒-positive, which is the incomparability graph of

the poset given by the disjoint union of a 3-chain and a 1-chain,

∗

∗

∗

∗

Conjecture 1.58 (Stanley–Stembridge conjecture). The incomparability graph of a (3 + 1)-free poset 𝑃
is 𝑒-positive.

Remark 1.59. (a). A 𝑃-tableau is a Young diagram with a filling (𝑎𝑖 𝑗 ) such that each element of 𝑃 is one

of the 𝑎𝑖 𝑗 , and 𝑎𝑖 𝑗 <𝑃 𝑎𝑖, 𝑗+1 but 𝑎𝑖+1, 𝑗 ≮𝑃 𝑎𝑖 𝑗 .

In 1996, Gasharov (see [Gas]) related the number 𝑐_ of 𝑃-tableaux of a given shape _ with the chro-

matic symmetric function of the incomparability graph𝐺 (𝑃) of 𝑃 , when 𝑃 is (3+1)-free, and thereby,
showed 𝑠-positivity for these chromatic symmetric functions.

(b). Some special cases of the Stanley–Stembridge conjecture were successfully tackled by purely com-

binatorial techniques, but a geometric or algebraic resolution to the Stanley–Stembridge conjecture

seems more likely. To make chromatic symmetric functions more amenable to a geometric inter-

pretation, Shareshian and Wachs introduced a graded version of this invariant in 2012, in the article

[SW].

(c). It is not true, however, that claw-free graphs, i.e. graphs with no induced subgraphs isomorphic to

the claw graph, are necessarily 𝑒-positive. For example, for the following claw-free graph

•

•

• •

• •

the 𝑒-expansion of the chromatic symmetric function is

6𝑒 (3,2,1) − 6𝑒 (32 ) + 6𝑒 (4,12 ) + 12𝑒 (4,2) + 18𝑒 (5,1) + 12𝑒 (6) . (1.124)

Definition 1.60. Let 𝐺 = (𝑉 , 𝐸) be a graph with vertex set 𝑉 = [𝑛] endowed with the natural total order,

and denote by PC(𝐺) the set of proper colourings 𝑐 : 𝑉 → Z>0 of𝐺 . For any such 𝑐 , denote by Asc(𝑐) the
set of ascents,

Asc(𝑐) ≔ {𝑖 𝑗 ∈ 𝐸 | 𝑖 < 𝑗 and 𝑐 (𝑖) < 𝑐 ( 𝑗)}. (1.125)
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We call the cardinality of Asc(𝑐) the ascent number asc(𝑐) of 𝑐 . Let 𝑥 denote the ordered set of variables

𝑥 = (𝑥1, 𝑥2, . . .), and we introduce another parameter 𝑡 . The chromatic quasi-symmetric function of 𝐺 is

𝑋 (𝐺 ;𝑥, 𝑡) ≔
∑︁

𝑐∈PC(𝐺 )
𝑥𝑐𝑡asc(𝑐 ) , (1.126)

where 𝑥𝑐 is 𝑥_ for the partition _ ⊢ 𝑛 induced by the colouring 𝑐 . Sometimes we will use the following

notation,

𝑋𝑘 (𝐺 ;𝑥) ≔
∑︁

𝑐∈PC(𝐺 )
asc(𝑐 )=𝑘

𝑥𝑐 , (1.127)

so that the chromatic quasi-symmetric function takes the form

𝑋 (𝐺 ;𝑥, 𝑡) =
∑︁
𝑘≥0

𝑋𝑘 (𝐺 ;𝑥)𝑡𝑘 . (1.128)

Example 1.61. Consider the path 𝑃3 of order 3,

1 2 3

with the colouring ^ (1) = 2, ^ (2) = 1, ^ (3) = 2. Then the only ascent is (2, 3), so the monomial corre-

sponding to this colouring is 𝑡1𝑥^ = 𝑡𝑥22𝑥1.

Continuing in this manner, we can see that the chromatic quasi-symmetric function of 𝑃3 with respect to

this labelling is

𝑋𝑃3 (𝑥 ; 𝑡) = (1 + 4𝑡 + 𝑡2)𝑚 (13 ) + 𝑡𝑚 (2,1) , (1.129)

where 1 + 4𝑡 + 𝑡2 is the Eulerian polynomial, i.e. the coefficient of 𝑡𝑚 is the number of permutations 𝜎 ∈ 𝑆𝑛
with exactly𝑚 ascents. The coefficient of𝑚21 is indeed 𝑡 , since the ascent set is always a singleton whether

𝑏 < 𝑎 or 𝑎 < 𝑏.

Note that this quasi-symmetric function is in fact symmetric in each degree of 𝑡 , i.e. the coefficients of

powers of 𝑡 lie in Sym. Therefore, we may expand them in other bases of symmetric functions too.

Their 𝑒-expansion is as follows. We can read these values off from the transformation matrix between the

monomial basis and the 𝑒-basis. Note that𝑚 (13 ) = 𝑒 (3) and 𝑒 (2,1) = 𝑒 (2,1) − 3𝑚 (13 ) = 𝑒 (2,1) − 3𝑒 (3) . Thus,
we have

𝑋𝑃3 (𝑥, 𝑡) = 𝑒 (3) + (𝑒 (3) + 𝑒 (2,1) )𝑡 + 𝑒 (3)𝑡2, (1.130)

which is again 𝑒-positive in each degree.

However, if we consider the path with a different labelling, for example,

2 1 3

then the chromatic quasi-symmetric function is far from being symmetric,

𝑋𝐺 (𝑥 ; 𝑡) = (2 + 2𝑡 + 2𝑡2)𝑚 (13 ) +
∑︁
𝑖< 𝑗

𝑥2𝑖 𝑥 𝑗 + 𝑡2
∑︁
𝑖< 𝑗

𝑥𝑖𝑥
2
𝑗 . (1.131)

The coefficient of 𝑚 (13 ) is 2 + 2𝑡 + 2𝑡2 ∈ C(𝑡) since there are two colourings with no ascents: (1, 3, 2)
and (2, 3, 1), two colourings with one ascent: (1, 2, 3) and (3, 2, 1), and two colourings with two ascents:
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(2, 1, 3) and (3, 1, 2). The last two terms correspond to the colourings (𝑖, 𝑗, 𝑖) and ( 𝑗, 𝑖, 𝑗) with 𝑗 > 𝑖; the

first one has no ascents and the second one has two ascents.

A large class of chromatic quisi-symmetric functions which are symmetric in each degree arises from Dyck
paths, one of the many Catalan objects in enumerative combinatorics (such as triangulations of an 𝑛-gon,

binary trees with a fixed number of leaves or semi-standard Young tableaux of shape 2 × 𝑛). ■

Remark 1.62. The 𝑛th Catalan number 𝐶𝑛 is given by
1

𝑛+1
(2𝑛
𝑛

)
=

(2𝑛
𝑛

)
−

( 2𝑛
𝑛+1

)
. Recall that the square sum(

𝑛
0

)2 + (
𝑛
1

)2 + · · · + (
𝑛
𝑛

)2
is

(2𝑛
𝑛

)
, which can be seen geometrically by double-counting the number of (shortest)

paths along the Pascal triangle from

(0
0

)
to

(2𝑛
𝑛

)
. Then one can interpret the Catalan number 𝐶𝑛 as the

average of such squares. For example, 𝐶1 = 1, 𝐶2 = 2, 𝐶3 = 5, 𝐶4 = 14.

Definition 1.63. Dyck paths with 𝑛 horizontal steps are lattice paths that do not cross the diagonal. Alter-
natively, a vector𝑚 = (𝑚1, . . . ,𝑚𝑛) ∈ Z𝑛>0 is called a Dyck path if𝑚 is weakly increasing (i.e. for all 𝑖 < 𝑗 ,

we have𝑚𝑖 ≤ 𝑚 𝑗 ), and for all 𝑖 ∈ [𝑛], we have 𝑖 ≤ 𝑚𝑖 ≤ 𝑛.

Example 1.64. There are five 3 × 3 Dyck paths, given by (1, 2, 3), (1, 3, 3), (2, 2, 3), (2, 3, 3) and (3, 3, 3):

Figure 8: Dyck paths of rank 3

■

Definition 1.65. One can associate a poset 𝑃𝑑 on [𝑛] to a Dyck path 𝑑 , where 𝑖 < 𝑗 in 𝑃𝑑 if and only if

𝑑𝑖 < 𝑗 . Then one can consider its incomparability graph, whose vertices are the elements of the poset and

two vertices are adjacent if and only if they are incomparable.

Example 1.66. Consider the Dyck path 𝑑 = (3, 3, 4, 5, 5), then the corresponding poset is

1

5

32

4

Its incomparability graph 𝑃𝑑 is

1 2 3 4 5

■

Remark 1.67. Posets of Dyck paths 𝑃𝑑 are (3 + 1)-free and (2 + 2)-free. In fact, this is a characterizing

property of posets of Dyck paths. The following are equivalent for a poset 𝑃 :

(a). 𝑃 is the poset of a Dyck path,

(b). 𝑃 is (3 + 1)-free and (2 + 2)-free,

(c). 𝑃 is a natural unit interval order , i.e. a poset on a finite subset of real numbers 𝑦1 < · · · < 𝑦𝑛 , where
𝑦𝑖 + 1 < 𝑦 𝑗 if and only if 𝑖 <𝑃 𝑗 for all 𝑖, 𝑗 ∈ [𝑛].
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An explicit proof of the equivalence of these statements can be found in [SW], Proposition 4.1. Alterna-

tively, one can show that all of these objects are Catalan objects (where the index is the number of intervals

or the number of vertices of the poset or the number of labels on the grid), and then one only needs to find

surjections. The (3+1) and (2+2)-free condition is a local condition, so it suffices to show that for all 4×4
Dyck paths, there are corresponding natural unit interval orders.

Construction 1.68. (a). There is a simple description of the incomparability graph of the poset associ-

ated to the Dyck path 𝑑 . Vertices are labelled by the coordinates of the grid, and two vertices 𝑖 and

𝑗 are adjacent if and only if the square with coordinates (𝑖, 𝑗) lies below the Dyck path. This graph

is called the indifference graph of the Dyck path. To see that the indifference graph of a Dyck path

𝑑 is the same as the incomparability graph of the poset 𝑃𝑑 , one simply needs to compare the two

definitions.

(b). From the indifference graph description, it is clear that the complete graph corresponds to the Dyck

path (3, 3, 3) in Example 1.64, or in general (𝑛, 𝑛, . . . , 𝑛), whereas the empty graph corresponds to the

Dyck path (1, 2, 3), or in general (1, 2, . . . , 𝑛).

(c). If the indifference graph of a Dyck path contains an edge (𝑖, 𝑗) with 𝑖 < 𝑗 and 𝑖 < 𝑖′ < 𝑗 ′ < 𝑗 , then

𝑖′ 𝑗 ′ is also an edge. This is best seen from the poset point of view, since posets of Dyck paths are

natural unit interval orders.

(d). The indifference graph of a Dyck path is connected if and only if the Dyck path does not touch the

diagonal. We will see many examples in Example 1.70 and 1.71, but let us quickly indicate why this

holds in general. This follows from the previous observation about the edges. Indeed, connectivity

in such a graph implies that pairs of labels which are simple transpositions are edges, e.g. (1, 2),
and (2, 3) in the 3 × 3 case. Note that the chromatic (quasi-)symmetric function of a disconnected

graph is the product of the chromatic (quasi-)symmetric function of its components, which makes

this construction suitable for inductive arguments.

Theorem 1.69. For any Dyck path 𝑑 with indifference graph 𝐺𝑑 , we have

𝑋𝐺𝑑
(𝑥 ; 𝑡) ∈ Sym[𝑡] = SymC[𝑡 ] . (1.132)

Proof. For a Dyck path 𝑑 , a proper colouring ^ and 𝑎 ∈ Z>0, we denote by𝐺^,𝑎 the subgraph of𝐺𝑑 induced

by the subset ^−1(𝑎) ∪ ^−1(𝑎 + 1) ⊂ 𝑉 . Then we would like to show that every connected component of

𝐺^,𝑎 is a path with consecutive vertex labels 𝑖1 < · · · < 𝑖 𝑗 .

The graph 𝐺^,𝑎 = (𝑉 , 𝐸) is bipartite with partite sets ^−1(𝑎) and ^−1(𝑎 + 1). In particular, 𝐺^,𝑎 has no

triangles, i.e. 𝑥𝑦,𝑦𝑧 ∈ 𝐸 implies that 𝑥𝑧 ∉ 𝐸. Consider a path of order three with consecutive vertex labels

(𝑥,𝑦, 𝑧), and we need to show that 𝑥 < 𝑦 < 𝑧 or 𝑥 > 𝑦 > 𝑧.

Assume that 𝑥 < 𝑦. Since 𝑥 and 𝑦 are incomparable in the poset 𝑃𝑑 , we have 𝑑𝑥 ≥ 𝑦 and 𝑑𝑦 ≥ 𝑥 . On

the other hand, 𝑥 and 𝑧 are comparable, so either 𝑑𝑥 < 𝑧 or 𝑑𝑧 < 𝑥 . But 𝑑𝑧 < 𝑥 is not possible, because

𝑑𝑧 < 𝑥 < 𝑦 implies that 𝑦 and 𝑧 are comparable in 𝑃𝑑 (which cannot happen because 𝑦𝑧 is an edge in 𝐺𝑑 ).

Therefore, we have 𝑦 ≤ 𝑑𝑥 < 𝑧, and we end up with the chain of inequalities 𝑥 < 𝑦 < 𝑧, as desired.

Now assume that 𝑥 > 𝑦. Since 𝑥 and 𝑦 are incomparable 𝑃𝑑 , we have 𝑑𝑦 ≥ 𝑥 and 𝑑𝑥 ≥ 𝑦, and since 𝑦 and 𝑧

are incomparable in 𝑃𝑑 , we also have 𝑑𝑦 ≥ 𝑧 and 𝑑𝑧 ≥ 𝑦. In particular, we have 𝑑𝑥 > 𝑧. On the other hand,

𝑥, 𝑧 are comparable, so we have 𝑑𝑥 < 𝑧 or 𝑑𝑧 < 𝑥 , but we have seen that 𝑑𝑥 > 𝑧, so the only remaining

option is 𝑑𝑧 < 𝑥 . We have also seen that 𝑥 ≤ 𝑑𝑦 , so 𝑑𝑧 < 𝑑𝑦 . Thus 𝑧 < 𝑦, and we get the chain of inequalities

𝑥 > 𝑦 > 𝑧, as desired.
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We have shown that any path in 𝐺^,𝑎 has its labels in the desired order, since we can break it up into

overlapping paths of order 3. Thus 𝐺^,𝑎 is acyclic, i.e. a forest.

We need to show that every degree in𝐺^,𝑎 is at most two. If there is a vertex of degree three, then there is

a subgraph isomorphic to the claw graph

𝑧

𝑥

𝑦𝑤

Consider the path 𝑧𝑤𝑥 , then either 𝑥 < 𝑤 < 𝑧 or 𝑥 > 𝑤 > 𝑧. Assume, without loss of generality, that

𝑥 < 𝑤 < 𝑧. Then we look at the path 𝑥𝑤𝑦, where we have 𝑥 < 𝑤 , so the chain of inequalities must be

𝑥 < 𝑤 < 𝑦. Thus 𝑤 < 𝑧 and 𝑤 < 𝑧. But in this case, the path 𝑧𝑤𝑦 has the ordering 𝑧 < 𝑤 > 𝑦, which is

impossible. This proves the claim that there is no vertex with degree greater than two.

Now we fix a proper colouring ^, and define an involution that preserves the number of ascents. For any

𝑎 ∈ Z>0, pick a connected component of 𝐺^,𝑎 , which is a path 𝑖1 · · · 𝑖 𝑗 . If the number of vertices in this

path is even, we do not change anything. If the order of this path is odd, we swap the colours 𝑎 and 𝑎 + 1.
Note that this involution leaves the number of ascents invariant. Since simple transpositions generate the

symmetric group, this shows that the chromatic quasi-symmetric function 𝑋𝐺 (𝑥 ; 𝑡) is symmetric in each

degree. ■

Example 1.70. Let us compute the 𝑒-expansion of chromatic quasi-symmetric functions of indifference

graphs explicitly, for 3 × 3 Dyck paths.

1 2 3 1 2 3 1 2 3

(a) (b) (c)

1 2 3 1 2 3

(d) (e)

Figure 9: indifference graphs of rank 3 Dyck paths

(a). The indifference graph of the Dyck path (3, 3, 3) is the complete graph on three vertices, since all

squares in the grid lie under the path. Therefore, all proper colourings use three distinct colours,

which we can assume to be 1, 2 and 3. Then the only colouring with three ascents is 123 (by which

we mean that the vertex with label 1 has colour 1, vertex 2 has colour 2 and vertex 3 has colour 3).
There are two colourings with two ascents, namely 132 and 213, two colourings with one ascent,

namely 231 and 312, and there is a single colouring with no ascents: 321. Hence, the chromatic

quasi-symmetric function of this graph can be written as

(1 + 2𝑡 + 2𝑡2 + 𝑡3)𝑚 (13 ) = (1 + 2𝑡 + 2𝑡2 + 𝑡3)𝑒 (3) . (1.133)

(b). We have already computed the chromatic quasi-symmetric function of this graph (in Example 1.61),

and seen that it is 𝑒-positive,

(1 + 4𝑡 + 𝑡2)𝑚 (13 ) + 𝑡𝑚 (2,1) = 𝑒 (3) + (𝑒 (3) + 𝑒 (2,1) )𝑡 + 𝑒 (3)𝑡2, (1.134)

where the conversion to the 𝑒-basis involved some cancellations within the degree 1 part.
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(c). The Dyck path (2, 2, 3) touches the diagonal, so its incomparability graph is disconnected. Conse-

quently, the chromatic quasi-symmetric function can be written as the product

𝑚 (1) · (1 + 𝑡)𝑚 (12 ) = (1 + 𝑡)𝑒 (2,1) . (1.135)

(d). Similarly, the incomparability graph of the Dyck path (1, 3, 3) has only one edge, between 2 and 3,
and the chromatic quasi-symmetric function is the same as the above,

𝑚 (1) · (1 + 𝑡)𝑚 (12 ) = (1 + 𝑡)𝑒 (2,1) . (1.136)

(e). The incomparability graph of the Dyck path (1, 2, 3) is the edgeless graph of order 3, so the chromatic

quasi-symmetric function is

𝑚3
(1) = 𝑒 (13 ) . (1.137)

■

Example 1.71. Now let us consider the indifference graphs of 4 × 4 Dyck paths.

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

(a) (b) (c) (d)

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

(e) (f) (g) (h)

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

(i) (j) (k) (l)
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1 2 3 4 1 2 3 4

(m) (n)

Figure 10: indifference graphs of rank 4 Dyck paths

(a). In the first nine cases, the Dyck path touches the diagonal, and the indifference graphs are discon-

nected. So the chromatic quasi-symmetric functions can be expressed as a product of chromatic

quasi-symmetric function of smaller graphs. The edgeless graph has the chromatic quasi-symmetric

function𝑚4
(1) = 𝑒 (14 ) . Let us list the remaining eight disconnected cases:

(b)–(d). 𝑚2
(1) · (1 + 𝑡)𝑚 (12 ) = (1 + 𝑡)𝑒 (2,12 ) ,

(e)–(f). 𝑚 (1) · ((1 + 4𝑡 + 𝑡2)𝑚 (13 ) + 𝑡𝑚 (2,1) ) = 𝑒 (3,1) + (𝑒 (3,1) + 𝑒 (2,12 ) )𝑡 + 𝑒 (3,1)𝑡2,

(g)–(i). ((1 + 2𝑡 + 2𝑡2 + 𝑡3)𝑚 (13 ) )𝑚 (1) = (1 + 2𝑡 + 2𝑡2 + 𝑡3)𝑒 (3,1) ,

(j). The Dyck path (2, 3, 4, 4) does not touch the diagonal, so the incomparability graph is connected. It is

the 4-path with consecutive vertex labels 1, 2, 3, 4. The chromatic quasi-symmetric function cannot

be reduced to a product of smaller ones. Let us compute it directly.

If we use four distinct colours, we may assume these to be 1, 2, 3, 4. Then there is only one permu-

tation (i.e. colourings with four distinct colours) with three ascents: 1234, there are 11 permuta-

tions with two ascents: 1243, 1324, 1342, 1423, 2134, 2314, 2341, 2431, 3124, 3412 and 4123, there
are 11 permutations with one ascent: 1432, 2143, 2431, 3142, 3214, 3241, 3421, 4132, 4213, 4231
and 4312, and there is one permutation with zero ascents: 4321. This gives rise to the monomial

(1 + 11𝑡 + 11𝑡2 + 𝑡3)𝑚 (14 ) . Note that the coefficient of𝑚 (14 ) is the Eulerian polynomial of 𝑆4.

If we use three distinct colours, we may assume that these colours are 1, 2, 3. Let us first consider the
case when colour 1 is used twice. There are three colourings with two ascents: 1213, 1231, 1312, and
three colourings with one ascent: 1321, 2131, 3121. This gives rise to the monomial quasi-symmetric

function (3𝑡 + 3𝑡2)𝑀(2,12 ) . One can also compute, case-by-case, that the same set of colours 1, 2, 3,
when 2 or when 3 is used twice, yields three colourings with one and three colourings with two

ascents. Alternatively, one can appeal to the fact that the chromatic quasi-symmetric function of

the indifference graph of a Dyck path lies in Sym[𝑡], which tells us that the colourings with three

colours give rise to the monomial (3𝑡 + 3𝑡2)𝑚 (2,12 ) .

If we use two distinct colours, say 1 and 2, then there are two possible colourings 1212 and 2121,
where the first one has two ascents and the second has one. Note that the colouring is symmetric in

the two colours that appear. Thus, the colourings of the path 𝑃4 with two colours gives rise to the

monomial (𝑡 + 𝑡2)𝑚 (22 ) .

Hence, the chromatic quasi-symmetric function of 𝑃4 (with the linear ordering of vertices) is

(1 + 11𝑡 + 11𝑡2 + 𝑡3)𝑚 (14 ) + (2𝑡 + 3𝑡2)𝑚 (2,12 ) + (𝑡 + 𝑡2)𝑚 (22 ) . (1.138)
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To find the 𝑒-expansion in each 𝑡-degree, we can read off the following identities from the transfor-

mation matrix from the monomial basis to the 𝑒-basis:

𝑚 (14 ) = 𝑒 (4)

𝑚 (2,12 ) = 𝑒 (3,1) − 4𝑚 (14 )
= 𝑒 (3,1) − 4𝑒 (4)

𝑚 (22 ) = 𝑒 (22 ) − 6𝑚 (14 ) − 2𝑚 (2,12 )
= 𝑒 (22 ) − 6𝑚 (14 ) − 2(𝑒 (3,1) − 4𝑚 (14 ) )
= 𝑒 (22 ) + 2𝑒 (4) − 2𝑒 (3,1) .

Hence, the 𝑒-expansion of the chromatic quasi-symmetric function is

1 · 𝑒 (4) + 𝑡 · (𝑒 (4) + 𝑒 (3,1) + 𝑒 (22 ) ) + 𝑡2(𝑒 (4) + 𝑒 (3,1) + 𝑒 (22 ) ) + 𝑡3 · 𝑒 (4) , (1.139)

which is (just about) 𝑒-positive. All these cancellations suggest that there should be some hidden

sign-reversing cancellation lurking in the background. We shall see in Section 3, when we come to

the proof of the Shareshian–Wachs conjecture, that this is indeed the case.

(l). Consider the indifference graph of theDyck path (2, 4, 4, 4), and compute its chromatic quasi-symmetric

function directly.

If we use four distinct colours, say 1, 2, 3, 4, then there is a single permutation 1234with four ascents.
There are six permutations with three ascents (recall that ascents are counted along the edges of the

incomparability graph): 1243, 1324, 2134, 2314, 3124, 4123. There are ten permutations with two

ascents: 1342, 1432, 2143, 2341, 2413, 3142, 3214, 3412, 4132, 4213. There are six permutations

with one ascent: 1432, 2431, 3241, 3421, 4231, 4312. Finally, there is a single permutation 4321with
zero ascents. Consequently, the colourings of this graph using four different colours give rise to the

monomial (1 + 6𝑡 + 10𝑡2 + 6𝑡3 + 𝑡4)𝑚 (14 ) .

There are three colourings using the colours, 1, 2, 3with colour 1 repeated twice. The colouring 1213
has three ascents, 1231 and 1312 have two ascents, and 1321 has one ascent. By a similar argument

to the previous case, this means that the colourings with three colours give rise to the monomial

(𝑡 + 2𝑡2 + 𝑡3)𝑚 (2,12 ) .

Hence, the chromatic quasi-symmetric function of this graph is

(1 + 6𝑡 + 10𝑡2 + 6𝑡3 + 𝑡4)𝑚 (14 ) + (𝑡 + 2𝑡2 + 𝑡3)𝑚 (2,12 ) . (1.140)

Again, by looking at the transformation matrix from the monomial basis to the 𝑒-basis, we can find

the 𝑒-expansion

1 · 𝑒 (4) + 𝑡 · (2𝑒 (4) + 𝑒 (3,1) ) + 𝑡2 · (2𝑒 (4) + 2𝑒 (2,12 ) ) + 𝑡3 · (2𝑒 (4) + 𝑒 (3,1) ) + 𝑡4 · 𝑒 (4) , (1.141)

so this chromatic quasi-symmetric function is also 𝑒-positive in each degree.

One can also collect the coefficient of each elementary symmetric function of a given type

(1 + 2𝑡 + 2𝑒2 + 2𝑡3 + 𝑡4)𝑒 (4) + (𝑡 + 𝑡3)𝑒 (3,1) + 2𝑡2𝑒 (2,12 ) . (1.142)

The indifference graph of the Dyck path (3, 3, 4, 4) is isomorphic, so its chromatic quasi-symmetric

function will be the same.
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(m). Consider the indifference graph of the Dyck path (3, 4, 4, 4). Note that the edges of this graph are

symmetric, and thus for each colouring𝑎𝑏𝑐𝑑 (where some lettersmay denote the same colour),𝑑𝑐𝑏𝑎 is

also a colouring. Consequently, the coefficient of monomial symmetric functions will be palindromic

polynomials in 𝑡 , and we only need to count half of the possible ascents (a shortcut we could have

made in the case of the path 𝑃4 too).

Looking at the 24 colourings with four distinct colours, say 1, 2, 3, 4, we obtain one colouring 1234
with five ascents, three colourings with four ascents: 1243 1423, 2143, and eight colourings with

three ascents: 1342, 1423, 2143, 2314, 2341, 3124, 3132, 3123. By reflecting these colourings, we

obtain eight colourings with two ascents, three colourings with one ascent and one colouring with

no ascents. There are two colourings, using the three colours 1, 2, 3 with colour 1 repeated twice:

1231 has three ascents, and the colouring 1321 obtained by reflection has two ascents.

Hence, the chromatic quasi-symmetric function of this graph is

(1 + 3𝑡 + 8𝑡2 + 8𝑡3 + 3𝑡4 + 𝑡5)𝑚 (14 ) + (𝑡2 + 𝑡3)𝑚 (2,12 ) , (1.143)

whose 𝑒-expansion is

1 · 𝑒 (4) + 𝑡 · 3𝑒 (4) + 𝑡2(4𝑒 (4) + 𝑒 (2,12 ) ) + 𝑡3 · (4𝑒 (4) + 𝑒 (2,12 ) ) + 𝑡4 · 3𝑒 (4) + 𝑡5 · 𝑒 (4) , (1.144)

which is again 𝑒-positive in each coefficient. Collecting the coefficient of each elementary symmetric

function yields the expression

(1 + 3𝑡 + 4𝑡2 + 4𝑡3 + 3𝑡4 + 𝑡5)𝑒 (4) + (𝑡2 + 𝑡3)𝑒 (2,12 ) . (1.145)

(n). The indifference graph of the Dyck path (4, 4, 4, 4) is the complete graph of order four. So all proper

colourings use four distinct colours. Since the edge set is again symmetric, the coefficient of the

monomial𝑚 (14 ) is a palindromic polynomial in 𝑡 . If we take the colours 1, 2, 3, 4, then there is one

colouring 1234with six ascents, three colourings with five ascents: 1243, 1324, 2134, five colourings
with four ascents: 1342, 1423, 2143, 2314, 3124, and six colourings with three ascents: 1432, 2341,
2413, 3142, 3214, 4123. By reflecting all these colourings (since the edge set is again symmetric), we

get five colourings with two ascents, three colourings with one ascent, and the one colouring with

no ascents. Hence, the chromatic quisi-symmetric function is

(1 + 3𝑡 + 5𝑡2 + 6𝑡3 + 5𝑡4 + 3𝑡5 + 𝑡6)𝑚 (14 ) = (1 + 3𝑡 + 5𝑡2 + 6𝑡3 + 5𝑡4 + 3𝑡5 + 𝑡6)𝑒 (4) . (1.146)

■

Remark 1.72. Note that for all the above chromatic quasi-symmetric functions, the coefficients in the 𝑒-

expansion are all palindromic polynomials in 𝑡 . Poincaré duality suggests that the corresponding geometric

invariant could be the cohomology ring of a smooth variety.

2 Shareshian–Wachs Conjecture

In this section, we describe the geometric counterpart of chromatic quasi-symmetric functions, which we

alluded to earlier. In particular, we discuss Tymoczko’s dot action on the cohomology of regular, semisimple

Hessenberg varieties, which are certain closed subvarieties of the full flag variety associated to Dyck paths.

Our main references for the constructions featured in this section, such as moment graphs of Hessenberg

varieties, flow-up bases and the dot action, are [GKM], [Ty1] and [Ty2]. The construction of flow-up
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classes in 2.18 and 2.22 follows the article [Ty3]. Explicit computations are again a quintessential part

of this section. In Example 2.13, 2.14 and 2.15 we compute a few simple examples of moment graphs.

Then we compute the moment graphs of all regular semisimple Hessenberg varieties of rank 3 and 4, in

Example 2.20, 2.21 and 2.23. In Example 2.26 and 2.28, we compute the dot action on the full flag variety

and permutohedral variety of rank 3, which we compare with the earlier computations in Example 1.53.

2.1 Hessenberg Varieties

Definition 2.1. As a set, the full flag variety of rank 𝑛 over C is the set of full flags of vector spaces

Fl(C𝑛) = {(𝐹1 ⊂ · · · ⊂ 𝐹𝑛) : dim 𝐹𝑖 = 𝑖}. (2.1)

One can endow this set with the structure of a projective variety, as a product of projective spaces (or

more general Grassmannians for partial flag varieties). In fact, one can describe the full flag variety as the

quotient of the group 𝐺 = GL𝑛 (C) by the (standard) Borel subgroup 𝐵, which is the smallest parabolic

subgroup, consisting of upper triangular matrices. Consequently, the dimension of the full flag variety

Fl(C𝑛) is
(
𝑛
2

)
.

Example 2.2. (a). For any 𝑔 ∈ GL𝑛 (C) with column vectors 𝑣1, . . . , 𝑣𝑛 , we have

𝑔𝐵 = ({0} ⊂ ⟨𝑣1⟩ ⊂ ⟨𝑣1, 𝑣2⟩ ⊂ · · · ⊂ ⟨𝑣1, . . . 𝑣𝑛⟩ = C𝑛). (2.2)

Each flag has a canonical representative obtained by Gaussian elimination, where one can only sub-

tract a larger index row or column from a smaller one. This representative is a permutation matrix

with possible extra non-zero entries above and to the right of the 1s, for example:

©«
2 2 1 0
3 1 0 0
7 0 0 1
1 0 0 0

ª®®®¬ .
(b). For any permutation matrix𝑤 of rank 𝑛, we have

𝑤𝐵 = ({0} ⊂ ⟨𝑒𝑤 (1)⟩ ⊂ ⟨𝑒𝑤 (1) , 𝑒𝑤 (2)⟩ ⊂ · · · ⊂ ⟨𝑒𝑤 (1) , . . . 𝑒𝑤 (𝑛)⟩ = C𝑛). (2.3)

The flag variety 𝐺/𝐵 admits an affine cell decomposition, induced by the Bruhat decomposition of

𝐺 = GL𝑛 (C). The cell 𝐵𝑤𝐵/𝐵 is called the Schubert cell 𝐶𝑤 associated to a permutation 𝑤 ∈ 𝑆𝑛 ,
which gives rise to the stratification

𝐺/𝐵 =
×
𝑤∈𝑆𝑛

𝐵𝑤𝐵/𝐵. (2.4)

(c). The Schubert cell𝐶𝑤 consists of the flags, whose canonical form has zeros to the right and under the

1s in the permutation matrix of 𝑤 . In the above example, 𝑤 = 4213, and representatives of flags in

the corresponding Schubert cells are of the form

©«
∗ ∗ 1 0
∗ 1 0 0
∗ 0 0 1
1 0 0 0

ª®®®¬ ,
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so the dimension of𝐶4213 is four. In general, a Schubert cell is an affine cell, and the C-dimension of

𝐶𝑤 is the number of inversions of𝑤 , which is equal to the length of the permutation in the Bruhat or-

der, i.e. the minimal number of simple transpositions needed to decompose𝑤 . For example, from the

above diagram, which is called a Rothe diagram, we can see that the inversion set of the permutation

(4, 2, 1, 3) is {(4, 2), (4, 1), (4, 3), (2, 1)}.

(d). The closure 𝐶𝑤 of the Schubert cell is called the Schubert variety, which also decomposes as a union

of Schubert cells

𝐶𝑤 =
×
𝑣≤𝑤

𝐶𝑣, (2.5)

given explicitly by the (strong) Bruhat order on the Weyl group𝑊 = 𝑆𝑛 that we encountered in

Example 1.53. Schubert cells endow the flag variety with the structure of a CW-complex, so the set

of Schubert varieties {𝐶𝑤 : 𝑤 ∈𝑊 } induces a C-module basis for the cohomology 𝐻 ∗(𝐺/𝐵;Q).

Moreover, the intersection of Schubert varieties corresponds to the product of the cohomology classes

that they induce.

(e). In 1990, Lakshmibai and Sandya found a combinatorial smoothness condition for Schubert varieties

(see [LS]). The Schubert variety 𝐶𝑤 is smooth if and only if the permutation 𝑤 avoids the patterns

𝑐𝑑𝑎𝑏 and 𝑑𝑏𝑐𝑎 for any 𝑎 ≤ 𝑏 ≤ 𝑐 ≤ 𝑑 , in the one-line notation. For example, the permutation

𝑣 = 324651 gives rise to a smooth Schubert variety, whereas the Schubert variety corresponding to

𝑤 = 624351 is singular, since𝑤 contains the subword 6251.

■

Remark 2.3. (a). The set of 𝑘-dimensional subspaces of an 𝑛-dimensional vector space (over C, in this

context) can also be endowed by the structure of a projective variety via the Plücker embedding.

This variety is called the GrassmannianGr(𝑘, 𝑛). The Grassmannian can be described as the quotient

GLn(C)/𝑃 , where 𝑃 is a maximal parabolic subgroup of type A. Thus, there is a natural projection

from the full flag variety to the Grassmannian, 𝐺/𝐵 ↠ 𝐺/𝑃 .

(b). It is natural to look at the images of the Schubert cells (from the Bruhat decomposition of the flag

variety 𝐺/𝐵) under this projection. The cells that do not collapse are indexed by partitions _ whose

Young diagrams have at most 𝑘 columns and at most 𝑛 − 𝑘 rows. The corresponding cohomology

classes are denoted by 𝜎_ ∈ 𝐻 ∗(Gr(𝑘, 𝑛);C).

For example, there are only 6 Schubert cells out of the 24 Schubert cells of the rank four full flag

variety, that survive the projection GL4(C) ↠ Gr(2, 4). These cells are indexed by the partitions ∅,
(1), (2), (1, 1), (2, 1) and (2, 2).

(c). The structure constants of the basis elements 𝜎_ ,

𝜎_ · 𝜎` =
∑︁
a

𝑐a
_,`
𝜎a , (2.6)

are the constants that appear in the tensor product decomposition of irreducible (polynomial) repre-

sentation of GL𝑛 (C), called the Littlewood-Richardson coefficients. These numbers are also pivotal

in the theory of symmetric functions, and we shall discuss them in the next section, in Remark 3.9.

Remark 2.4. (a). There is another variety, that reveals a lot about the geometry of flag varieties. Let 𝔤

denote the Lie algebra of 𝐺 = GL𝑛 (C), which consists of all 𝑛 × 𝑛 matrices and let 𝔟 denote the Lie

algebra of 𝐵, whose elements are the upper triangular matrices. The Springer fibre associated to a
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nilpotent element 𝑋 ∈ 𝔤 is given by

S𝑋 ≔ {𝑔𝐵 ∈ 𝐺/𝐵 : 𝑔−1𝑋𝑔 ∈ 𝔟}. (2.7)

Springer fibres are a natural precursor to (and an example of) Hessenberg varieties, so let us briefly

describe their role in representation theory.

(b). One can again consider the affine cells 𝐶𝑤 ∩ S𝑋 . Here, these cells do not form a CW-complex, but

the closures still induce a basis for the cohomology 𝐻 ∗(S𝑋 ).

(c). Let _(𝑋 ) be the Young diagram (or the corresponding partition) determined by the Jordan type of 𝑋 ,

i.e. _(𝑋 ) has as many rows as the number of Jordan boxes of 𝑋 , and each row has as many squares

as the size of the Jordan box. Based on this object, there is a combinatorial criterion for smoothness.

The Springer variety S𝑋 is not necessarily connected, but all components are smooth if _(𝑋 ) has
two rows (and there are a few other conditions that would also guarantee smoothness). In 1976,

Spaltenstein proved that the top dimensional Schubert cells 𝐶𝑤 ∩ S𝑋 in the Springer variety are in

bijection with the standard fillings of _(𝑋 ), in the article [Spa].

This suggests that there should be a a connection with the representation theory of 𝑆𝑛 , which we

will discuss at the end of this section. The cohomology 𝐻 ∗(S𝑋 ) carries an 𝑆𝑛-action, and the top-

dimensional part is the irreducible 𝑆𝑛-module (the Specht module, that we introduced in 1.33) cor-

responding to the partition _(𝑋 ). Moreover, each irreducible representation of 𝑆𝑛 uniquely arises

in this way (up to conjugation of 𝑋 , which leaves the Springer variety invariant). Our goal in this

section is to see how this 𝑆𝑛-action manifests on regular, semisimple Hessenberg varieties, which we

shall define subsequently.

Definition 2.5. A Hessenberg variety is a subvariety of the full flag variety Fl(C𝑛), which generalizes

Springer fibres. It is determined by a Dyck path ℎ and a matrix 𝑀 ∈ 𝔤 = 𝔤𝔩𝑛 (C) in the Lie algebra of

GL𝑛 (C), and it is defined by

Hess(𝑀,ℎ) = {𝐹∗ ∈ Fl(C𝑛) |𝑀𝐹𝑖 ⊆ 𝐹ℎ (𝑖 ) ∀𝑖 ∈ [𝑛]}. (2.8)

Alternatively, it can be described as the set {𝑔𝐵 ∈ 𝐺/𝐵 | 𝑔−1𝑀𝑔 ∈ 𝐻ℎ}, where 𝐻ℎ is the Hessenberg space,
the complex vector space generated by all elementary matrices 𝐸𝑖 𝑗 with ℎ( 𝑗) ≥ 𝑖 . From this description, it

is clear that Hessenberg varieties are closed in 𝐺/𝐵, and consequently they are projective varieties.

Example 2.6. (a). If we take the Dyck path ℎ(𝑖) = 𝑛, then we have 𝐻ℎ = 𝔤. Thus, for any 𝑀 ∈ 𝔤,

Hess(𝑀,ℎ) is the full flag variety.

(b). If we take the Dyck path ℎ(𝑖) = 𝑖 for all 𝑖 , then we have 𝐻ℎ = 𝔟 is the Lie algebra of 𝐵. When 𝑀 ∈ 𝔤
is nilpotent, Hess(𝑀,ℎ) is the Springer variety.

(c). If ℎ(𝑖) = 𝑖 + 1 for all 𝑖 ∈ {1, . . . , 𝑛 − 1}, then the Hessenberg variety is a toric variety H𝑛 , called

the permutohedral variety associated to the Coxeter complex of 𝑆𝑛 , whenever 𝑀 ∈ 𝔤 is regular and
semisimple, i.e. conjugate to a diagonal matrix with distinct eigenvalues. Note that for any 𝑔 ∈ 𝔤, we
have

Hess(𝑀,ℎ) � Hess(𝑔𝑀𝑔−1, ℎ), (2.9)

where the isomorphism is given by 𝑉∗ ↦→ 𝑔𝑉∗, so we may choose a diagonal matrix 𝑆 with distinct

diagonal entries. From now on, we will only consider Hessenberg varieties corresponding to such a

matrix 𝑆 . The Dyck path ℎ(𝑖) = 𝑖 , that appeared in part (b) is also important in the context of regular

semisimple Hessenberg varieties, not only nilpotent one. We will see a number of examples later on,

in Example 2.21 and 2.23.
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(d). In 1992, De Mari, Procesi and Shayman proved, in the article [MPS], that any regular semisimple

Hessenberg variety Hess(𝑆, ℎ) is smooth of C-dimension

𝑛∑︁
𝑖=1

(ℎ(𝑖) − 𝑖).

Its Poincaré polynomial is given by

Poin(Hess(𝑆, ℎ);𝑞) ≔
∑︁
𝑘≥0

dimC𝐻
𝑘 (Hess(𝑆, ℎ))𝑞𝑘 =

∑︁
𝑤∈𝑆𝑘

𝑞2ℓℎ (𝑤 ) , (2.10)

where the modification of the length ℓℎ (𝑤), with respect to the Dyck path ℎ, is defined as

ℓℎ (𝑤) ≔ #{(𝑖, 𝑗) | 1 ≤ 𝑖 < 𝑗 ≤ ℎ(𝑖), 𝑤 (𝑖) > 𝑤 ( 𝑗)}. (2.11)

We shall elaborate on these properties in Construction 2.20.

■

Remark 2.7. The restriction map 𝐻 ∗(Fl(C𝑛)) → 𝐻 ∗(𝑋 (ℎ)) is not surjective in general, for regular

semisimple Hessenberg varieties 𝑋 (ℎ). We will show this in Example 2.22, where we explicitly construct

generators.

Example 2.8. Wewould like to exhibit a very explicit combinatorial model for the generators of the coho-

mology ring. To this end, one should consider equivariant cohomology first, and then go back to ordinary

cohomology. We will be regarding Hessenberg varieties as 𝑇 -varieties, i.e. varieties with a torus action.

In order to leverage the torus action and construct a suitable contravariant functor from the category of

𝑇 -varieties to the category of graded rings, it is expedient to replace𝑋 by a larger space, which is homotopy

equivalent to 𝑋 but which has a suitable 𝑇 -action.

A possible candidate would be taking the orbit space𝑋/𝑇 . In order to see why the orbit space is inadequate
for our purposes, it is convenient to consider a more general setting. If 𝐺 = 𝑆1 is acting on 𝑆2 by rotation,

𝑟𝑡
©«
𝑥

𝑦

𝑧

ª®¬ =
©«
cos 𝑡 − sin 𝑡 0
sin 𝑡 cos 𝑡 0
0 0 1

ª®¬ ©«
𝑥

𝑦

𝑧

ª®¬ , (2.12)

then the orbit space is isomorphic to the closed integral [−1, 1], which is contractible, so its cohomology

is isomorphic to that of a point, and it gives us no information about the action. On the other hand, if we

consider the action ofZ onR by translation then the orbit spaceR/Z is isomorphic to 𝑆1, whose cohomology

ring with complex coefficient is C[𝑥]/(𝑥2). The second action was free (i.e. if we have 𝑔 · 𝑥 = 𝑥 for some

𝑥 ∈ 𝑋 , then 𝑔 = 𝑒), whereas the first one wasn’t. One would hope to extend the original group action to a

free action on a larger, homotopy equivalent space.

The main idea behind this construction comes from the following observation. Let 𝐺 be a group acting

freely on a space 𝐸. Let 𝑀 be another space with a 𝐺-action. Then no matter how 𝐺 acts on 𝑀 , the

diagonal action of𝐺 on 𝐸 ×𝑀 , given by 𝑔 · (𝑒, 𝑥) = (𝑔 · 𝑒, 𝑔 · 𝑥), is free. Indeed, 𝑔 lies in the stabilizer of the

point (𝑒, 𝑥) ∈ 𝐸 ×𝑀 if and only if 𝑔 · 𝑒 = 𝑒 and 𝑔 · 𝑥 = 𝑥 , which is equivalent to saying that 𝑔 = 𝑒 , since the

𝐺-action on 𝐸 is free. Thus, if take a contractible space 𝐸𝐺 with a free 𝐺 action, then the diagonal action

on 𝐸𝐺 ×𝑀 is free and this space has the same homotopy type as 𝑀 . For algebraic groups or compact Lie

groups one can always find a principal 𝐺-bundle 𝐸𝐺 → 𝐵𝐺 , with weakly contractible total space 𝐸𝐺 . ■
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Construction 2.9. Consider the orbit space of 𝐸𝐺 × 𝑋 , i.e. the space

𝑋 �𝐺 ≔ 𝐸𝐺 ×𝐺 𝑋 = 𝐸𝐺 × 𝑋/∼, (2.13)

where (𝑒, 𝑥) ∼ (𝑒𝑔−1, 𝑔𝑥) for some 𝑔 ∈ 𝐺 .

This construction is called the homotopy quotient (or Borel construction). Then the equivariant cohomology
of 𝑋 with respect to the 𝐺-action is defined as

𝐻 ∗𝐺 (𝑋 ;C) = 𝐻 ∗(𝑋 �𝐺 ;C), (2.14)

where we could have chosen coefficients from any ring 𝑅, but we will always stick to complex coefficients,

just like we did in our treatment of symmetric functions. The fact that equivariant cohomology is indepen-

dent of the choice of 𝐸𝐺 is a difficult result, that uses the theory of approximation spaces. By construction,

𝐸𝐺 ×𝐺 𝑋 → 𝐵𝐺 is a fibre bundle with fibre 𝑋 , so we have a string of ring homomorphisms

𝐻 ∗(𝐵𝐺) → 𝐻 ∗𝐺 (𝑋 ) → 𝐻 ∗(𝑋 ) . (2.15)

Now we can return to our original setting of a rank 𝑘 torus action on𝑋 . Here, the total space is 𝐸𝑇 = 𝐸𝑇𝑘 �

(𝑆∞)𝑘 and the classifying space is 𝐵𝑇 = 𝐵𝑇𝑘 �
∏

𝑘 CP
∞
. The torus 𝑇 acts on 𝐸𝑇 ×𝑇 𝑋 via the diagonal

action (𝑒, 𝑥) · 𝑡 = (𝑒𝑡, 𝑡−1𝑥).

Note that if 𝑋 = pt is a point, then, by definition, the equivariant cohomology of 𝑋 is isomorphic to

the ordinary (singular) cohomology of the classifying space 𝐵𝑇 = 𝐸𝑇 /𝑇 . Since 𝐸𝑇 → 𝐵𝑇 is a principal 𝑇 -

bundle,𝐻 ∗(𝐵𝑇 ) is isomorphic to the ring of characteristic classes. This observation, alongwith the Künneth

formula for ordinary cohomology, yields the following string of isomorphisms between the equivariant

cohomology of the point with respect to the (trivial) action of the rank 𝑘 torus and the symmetric algebra

of the cotangent space 𝔱∗ of 𝑇 ,

𝐻 ∗(𝐵𝑇 ) � 𝐻 ∗
(∏

𝑘

CP∞
)
�

⊗
𝑘

𝐻 ∗(CP∞) �
⊗
𝑘

C[𝑡𝑖] � S(𝔱∗), (2.16)

where the variable 𝑡𝑖 corresponds to the first Chern class 𝑐1(OCP∞ (−1)) of the tautological bundle, i.e. the
line bundle over 𝐵𝑇 corresponding to the projection 𝑇 → C∗ given by diag(𝑥1, . . . , 𝑥𝑘 ) → 𝑥𝑖 . From now

on, let us denote the ring 𝐻 ∗
𝑇
(pt) by Λ or Λ𝑇 , which is isomorphic to the polynomial ring C[𝑡1, . . . , 𝑡𝑘 ].

Analogously to the ordinary cohomology, functionality is satisfied for 𝑇 -equivariant cohomology, in the

category of 𝑇 -spaces with equivariant maps as morphisms. By functionality of equivariant cohomology,

the projection 𝑋 → pt induces a map Λ→ 𝐻 ∗
𝑇
(𝑋 ), which allows us to regard 𝐻 ∗

𝑇
(𝑋 ) as a module over Λ,

in fact, an algebra via the cup product. Consider the following commutative diagram

𝑋 𝐸𝑇 ×𝑇 𝑋

pt 𝐵𝑇

(2.17)

Restriction induces a canonical map 𝐻 ∗
𝑇
(𝑋 ) → 𝐻 ∗(𝑋 ) lying over Λ→ 𝐻 ∗(pt). To describe this Λ-module

explicitly, we would like the following properties to hold.

(a). The map C[𝑡1, . . . , 𝑡𝑘 ] � 𝐻 ∗(𝐵𝑇 ) → 𝐻 ∗
𝑇
(𝑋 ) is injective.

(b). The induced map 𝐻 ∗
𝑇
(𝑋 ) → 𝐻 ∗(𝑋 ) is surjective.
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(c). The ordinary cohomology can be obtained from the equivariant cohomology by the isomorphism

𝐻 ∗(𝑋 ) �
𝐻 ∗
𝑇
(𝑋 )

⟨𝑡1, . . . , 𝑡𝑘⟩𝐻 ∗𝑇 (𝑋 )
. (2.18)

(d). The localisation map
]∗ : 𝐻 ∗𝑇 (𝑋 ) → 𝐻 ∗𝑇 (𝑋𝑇 ) =

⊕
𝑤∈𝑋𝑇

C[𝑡1, . . . , 𝑡𝑘 ], (2.19)

induced by the inclusion ] : 𝑋𝑇 ↩→ 𝑋 of fixed points, is injective.

The above conditions are, in practice, fairly ubiquitous, but not true for all 𝑇 -spaces. One can obtain a

counterexample by gluing three Riemann spheres CP1 along a pair of distinguished points for each pair,

and letting C∗ act on this space by fixing the intersection points and rotating each sphere around the axes

given by these intersection points.

Construction 2.10. A variety with a𝑇 -action having finitely many fixed points {𝑣𝑖}𝑖∈𝑉 and finitely many

1-dimensional orbits {O𝑖}𝑖∈𝐸 , in addition to satisfying the conditions listed in Construction 2.9, are called

GKM-spaces. The closure of each O𝑖 is an embedded copy of the Riemann sphere CP1, and it contains

exactly two fixed points, which we will call the south pole 𝑁𝑖 and the south pole 𝑆𝑖 , in any particular order,

for the time being. These properties allow us to construct a graph whose vertices correspond to the fixed

points of the𝑇 -action and whose edges correspond to the 1-dimensional orbits. It is a difficult theorem that

there are no double edges in this graph (so this graph is simple).

Moreover, for each orbit O, we have a subtorus 𝑇 ′ ⊂ 𝑇 of codimension 1 that fixes O pointwise. The main

result of GKM theory (see [GKM], Theorem 1.2.2) states that in order to identify the image of the localisation

map ]∗ based on the above graph, we need to assign weights for the edges and impose additional conditions

on the weights. These conditions stem from character theory. If 𝛼𝑖 denotes the annihilator in the cotangent

space 𝔱∗ of the subtorus fixing O𝑖 pointwise, then the torus acts on the two fixed points in O with weight

𝛼𝑖 : 𝔱 → C and −𝛼𝑖 , respectively. We will call the fixed point with weight 𝛼𝑖 the north pole, and the other

fixed point the south pole. Subsequently, we label the edge by 𝛼𝑖 , and give it a direction, going from the

south pole to the north pole. We call this graph the moment graph or GKM graph 𝑀 (𝑋 ) of 𝑋 . The GKM
Presentation Theorem states that the information encoded in the moment graph is sufficient to determine

the equivariant cohomology.

Theorem 2.11. Given a moment graph of order 𝑛, the equivariant cohomology can be described as

𝐻 ∗𝑇 (𝑋 ) �
{
(𝑓𝑣1, . . . , 𝑓𝑣𝑛 ) ∈

⊕
𝑛

Λ

���� 𝑓𝑁 𝑗
− 𝑓𝑆 𝑗

∈ ⟨𝛼 𝑗 ⟩ ∀ 𝑗 ∈ 𝐸 (𝑀 (𝑋 ))
}
, (2.20)

where 𝐸 (𝑀 (𝑋 )) denotes the edge set of the moment graph𝑀 (𝑋 ).

Remark 2.12. A regular semisimple Hessenberg variety𝑋 = Hess(𝑀,ℎ), which we introduced in Example

2.6, is smooth. This stems from the following general statement (Lemma 4 in [MPS]). If 𝑋 is a complete

variety with a 𝑇 -action such that every 𝑥 ∈ 𝑋𝑇
is a smooth point, then 𝑋 is smooth. As a consequence,

the action of 𝑇 on𝐺/𝐵 given by 𝑡 · 𝑔𝐵 = 𝑡𝑔𝐵, restricted to 𝑋 (which is well-defined since 𝑇 = 𝐶𝐺 (𝑋 ) is the
centraliser) makes 𝑋 into a GKM-space.

Example 2.13. Consider the action of 𝑇 = C∗ on 𝑋 = CP1 given by 𝑡 · [𝑥0, 𝑥1] = [𝑥0, 𝑡𝑥1]. There are two
fixed points 𝑣1 = [1, 0] and 𝑣2 = [0, 1] and a single 1-dimensional orbit O = [∗, ∗] = [1, ∗], where ∗ denotes
an arbitrary element of C∗. Then the moment graph is the complete graph 𝐾2 of order two
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𝑣1 𝑣20 ∈ 𝔱∗

Figure 11: moment graph of CP1

where the edge is labelled by 0 ∈ 𝔱∗ since the subtorus fixing [∗, ∗] is 1 ⊂ 𝑇 with the identity action, and

consequently the annihilator in the cotangent space is 0. Therefore, by Theorem 2.11, we have

𝐻 ∗𝑇 (𝑋 ) � {(𝑓1, 𝑓2) ∈ Λ⊕2 | 𝑓1(0) = 𝑓2(0)}, (2.21)

in other words, 𝑓2 − 𝑓1 ∈ ⟨𝑡⟩, and the polynomials associated to the vertices are

𝑝1 𝑝1 + 𝑡𝑝2

Figure 12: 𝐻 ∗
𝑇
(CP1)

where 𝑝2 ∈ Λ is arbitrary. Since 𝑝1 and 𝑝2 may be picked arbitrarily, by reading off their coefficients, we

see that 𝐻 ∗
𝑇
(𝑋 ) is generated as a module over Λ by (1, 1) and (0, 𝑡) in degrees 0 and 1, as polynomials in 𝑡 .

In fact the equivariant cohomology𝐻 ∗
𝑇
(𝑋 ) of a smooth Hessenberg variety𝑋 can only be nontrivial in even

degrees, and the degree of a class (i.e. homogeneous tuple of polynomials) associated to its moment graph

is only half the degree of the corresponding cohomology class. However, this shift in the degrees will not

be important in our computations. ■

Example 2.14. Analogously to our the previous example, consider the action of (C∗)2 on CP2 given by

(𝑡1, 𝑡2) · [𝑥0, 𝑥1, 𝑥2] = [𝑥0, 𝑡1𝑥1, 𝑡2𝑥2]. This action has three fixed points 𝑣1 = [1, 0, 0], 𝑣2 = [0, 1, 0], 𝑣3 =

[0, 0, 1] and three 1-dimensional orbits O1 = [1, ∗, 0], O2 = [0, 1, ∗], O1 = [1, 0, ∗]. The codimension 1
subtorus that stabilizes O1 is 1 × C∗, the orbit O2 is stabilized by {(𝑡, 𝑡) : 𝑡 ∈ C∗} and O3 is stabilized

by C∗ × 1. These stabilizers are annihilated by 𝑡1, 𝑡1 − 𝑡2 and 𝑡2 ∈ 𝔱∗, respectively. So the moment graph

associated to this action is

𝑣2

𝑣1

𝑣3

𝑡1 𝑡2

𝑡1 − 𝑡2

Figure 13: moment graph of CP1

By invoking Theorem 2.11 again, we may associate an arbitrary polynomial 𝑝1 ∈ Λ to 𝑣1, and a polynomial

𝑝2 to 𝑣2 subject to the condition that 𝑝2 − 𝑝1 ∈ ⟨𝑡1⟩. Thus 𝑝1 is of the form 𝑝1 + 𝑡1𝑞, where 𝑞 ∈ Λ is

again arbitrary. To compute the polynomial 𝑃3 associated to 𝑣3, we need to impose two conditions. We

have 𝑝3 − 𝑝1 ∈ ⟨𝑡2⟩ and 𝑝3 − 𝑝2 ∈ ⟨𝑡1 − 𝑡2⟩. Therefore, 𝑝3 is of the form 𝑝1 + 𝑡2𝑟 for some 𝑟 ∈ Λ, and
𝑝3 − 𝑝2 = 𝑡2𝑟 − 𝑡1𝑝2 ∈ ⟨𝑡1 − 𝑡2⟩. Consequently, 𝑟 = 𝑝1 + (𝑡2 − 𝑡1)𝑝3, and 𝑝3 = 𝑝1 + 𝑡2(𝑝2 + (𝑡2 − 𝑡1)𝑝3). So
we have the following vertex labels,
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𝑝1 + 𝑡1𝑝2

𝑝1

𝑝1 + 𝑡2𝑝2
+𝑡2 (𝑡2 − 𝑡1)𝑝3

Figure 14: 𝐻 ∗
𝑇
(CP1)

Hence the equivariant cohomology can be described as

𝐻 ∗𝑇 (𝑋 ) = {(𝑝1, 𝑝1 + 𝑡1𝑝2, 𝑝1 + 𝑡2𝑝2 + 𝑡2(𝑡2 − 𝑡1)𝑝3) ∈ Λ⊕3 : 𝑝1, 𝑝2, 𝑝3 ∈ Λ}, (2.22)

and by reading off the coefficients as before, it is generated as a module over Λ by (1, 1, 1), (0, 𝑡1, 𝑡2) and
(0, 0, 𝑡2(𝑡2 − 𝑡1)) in degrees 0, 1 and 2, respectively, as polynomials. These degrees are in turn 0, 2 and 4
according to the grading of 𝐻 ∗

𝑇
(𝑋 ). ■

2.2 Moment Graphs of Hessenberg Varieties

Example 2.15. Consider the action 𝑡 · [𝑔] ↦→ [𝑡 · 𝑔] of the maximal torus (C∗)3 on the full flag variety of

rank three. Recall that we may represent a full flag 𝑉1 ⊊ 𝑉2 ⊊ 𝑉3 = C3 by a matrix (𝑔𝑖 𝑗 ) = 𝑔 ∈ Mat3×3(C)
with columns 𝑐1, 𝑐2, 𝑐3 such that 𝑉𝑖 is spanned by the vectors 𝑐1, . . . , 𝑐𝑖 . Explicitly, the 𝑇 -action is given by

©«
𝑡1 0 0
0 𝑡2 0
0 0 𝑡3

ª®¬ · (𝑔𝑖 𝑗 ) = ©«
𝑡1𝑔11 𝑡1𝑔12 𝑡1𝑔13
𝑡2𝑔21 𝑡2𝑔22 𝑡2𝑔23
𝑡3𝑔31 𝑡3𝑔32 𝑡3𝑔33

ª®¬ . (2.23)

Note that 𝑆𝑛 embeds in GL𝑛 (C) as the subgroup of permutation matrices. The fixed points of the torus

action are exactly the permutations, since in a matrix representing a fixed point, each column has at most

one nonzero entry (otherwise we can see from the matrix formula that the orbit contains the span of at

least two of the 𝑡𝑖 ’s, so it cannot be 1-dimensional) and the matrix must be of full rank since it represents

an element of the full flag variety. Denote the permutations (i.e. the fixed points, which correspond to the

vertices of the moment graph) by the following

𝑣1 =

(
1 0 0
0 1 0
0 0 1

)
, 𝑣2 =

(
0 1 0
1 0 0
0 0 1

)
, 𝑣3 =

(
1 0 0
0 0 1
0 1 0

)
, 𝑣4 =

(
0 0 1
1 0 0
0 1 0

)
,

𝑣5 =

(
0 1 0
0 0 1
1 0 0

)
, 𝑣6 =

(
0 0 1
0 1 0
1 0 0

)
.

By the properties of moment graphs discussed in the previous subsection (see Construction 2.10), each

1-dimensional orbit has exactly two fixed points in its closure, which is an embedded copy of the Riemann

sphere. We infer that 1-dimensional orbits are spanned by a matrix that differs from a permutation matrix

by one extra nonzero entry. This entry has to lie to the left and on top of the 1s in the permutation

matrix. This follows from the assumption that the matrices representing elements of the quotient𝐺/𝐵 are

in echelon form. We denote the nine 1-dimensional orbits by the following

O1 =
(
𝑎 1 0
1 0 0
0 0 1

)
, O2 =

(
1 0 0
0 𝑎 1
0 1 0

)
, O3 =

(
0 𝑎 1
1 0 0
0 1 0

)
, O4 =

(
𝑎 0 1
1 0 0
0 1 0

)
, O5 =

(
0 1 0
𝑎 0 1
1 0 0

)
,
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O6 =
(
𝑎 1 0
0 0 1
1 0 0

)
, O7 =

(
0 0 1
𝑎 1 0
1 0 0

)
, O8 =

(
0 𝑎 1
0 1 0
1 0 0

)
, O9 =

(
𝑎 0 1
0 1 0
1 0 0

)
.

We claim that O1 connects the vertices 𝑣2 and 𝑣1 in the moment graph. Indeed, we have

Flag(⟨𝑒2⟩ ⊊ ⟨𝑒1, 𝑒2⟩ ⊊ ⟨𝑒1, 𝑒2, 𝑒3⟩)
0←𝑎←−−− Flag(⟨𝑎𝑒1 + 𝑒2⟩ ⊊ ⟨𝑎𝑒1 + 𝑒2, 𝑒1⟩ ⊊ ⟨𝑎𝑒1 + 𝑒2, 𝑒1, 𝑒3⟩) (2.24)

= Flag(⟨𝑒1 + 𝑎−1𝑒2⟩ ⊊ ⟨𝑒1 + 𝑎−1𝑒2, 𝑒2⟩ ⊊ ⟨𝑒1, 𝑒2, 𝑒3⟩) (2.25)

𝑎→∞−−−−→ Flag(⟨𝑒1⟩ ⊊ ⟨𝑒1, 𝑒2⟩ ⊊ ⟨𝑒1, 𝑒2, 𝑒3⟩), (2.26)

where we used the fact that we may change the basis without altering the full flag it represents, when we

multiply by an element of the Borel 𝐵. Similarly, we can find the edges corresponding to the other orbits:

O2 connects the vertices 𝑣3 and 𝑣1 in the moment graph. Indeed, we have

Flag(⟨𝑒1⟩ ⊊ ⟨𝑒1, 𝑒3⟩ ⊊ ⟨𝑒1, 𝑒2, 𝑒3⟩)
0←𝑎←−−− Flag(⟨𝑒1⟩ ⊊ ⟨𝑒1, 𝑎𝑒2 + 𝑒3⟩ ⊊ ⟨𝑒1, 𝑎𝑒2 + 𝑒3, 𝑒2⟩) (2.27)

= Flag(⟨𝑒1⟩ ⊊ ⟨𝑒1, 𝑒2 + 𝑎−1𝑒3⟩ ⊊ ⟨𝑒1, 𝑒2, 𝑒3⟩) (2.28)

𝑎→∞−−−−→ Flag(⟨𝑒1⟩ ⊊ ⟨𝑒1, 𝑒2⟩ ⊊ ⟨𝑒1, 𝑒2, 𝑒3⟩), (2.29)

By a similar computation, O3 connects 𝑣4 and 𝑣2, O4 connects 𝑣4 and 𝑣3, O5 connects 𝑣5 and 𝑣2, O6 connects
𝑣5 and 𝑣3, O7 connects 𝑣6 and 𝑣4, O8 connects 𝑣6 and 𝑣5 and O9 connects 𝑣6 and 𝑣1.

Let us summarise these computations by drawing the (unlabeled) moment graph,

𝑣1

𝑣3𝑣2

𝑣4 𝑣5

𝑣6

O1 O2

O7 O8

O6O3

O9

O5 O4

Figure 15: unlabeled moment graph of Fl(C3)

By the matrix description of the action, the codimension 1 subtorus fixing O1 pointwise in 𝐺/𝐵 is

{(𝑠, 𝑠, 𝑟 ) : 𝑠, 𝑟 ∈ C∗} ⊂ (C∗)3.

Indeed, the condition 𝑡1 = 𝑡2 must be imposed, and nothing else matters, since we have

©«
𝑡1 0 0
0 𝑡2 0
0 0 𝑡3

ª®¬ · ©«
𝑎 1 0
1 0 0
0 0 1

ª®¬ =
©«
𝑡1𝑎 𝑡1 0
𝑡2 0 0
0 0 𝑡3

ª®¬ =
©«
(𝑡1/𝑡2)𝑎 1 0

1 0 0
0 0 1

ª®¬. (2.30)

Similarly, the subtorus fixing O2 pointwise is {(𝑟, 𝑠, 𝑠) : 𝑠, 𝑟 ∈ C∗} ⊂ (C∗)3 since

©«
𝑡1 0 0
0 𝑡2 0
0 0 𝑡3

ª®¬ · ©«
1 0 0
0 𝑎 1
0 1 0

ª®¬ =
©«
𝑡1 0 0
0 𝑡2𝑎 𝑡2
0 𝑡3 0

ª®¬ =
©«
1 0 0
0 (𝑡2/𝑡3)𝑎 1
0 1 0

ª®¬. (2.31)
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Analogously, the subtorus fixing O3 pointwise is {(𝑠, 𝑟, 𝑠) : 𝑠, 𝑟 ∈ C∗} ⊂ (C∗)3, the subtorus fixing O4
pointwise is {(𝑠, 𝑠, 𝑟 ) : 𝑠, 𝑟 ∈ C∗} ⊂ (C∗)3, the subtorus fixing O5 pointwise is {(𝑟, 𝑠, 𝑠) : 𝑠, 𝑟 ∈ C∗} ⊂ (C∗)3,
the subtorus fixing O6 pointwise is {(𝑠, 𝑟, 𝑠) : 𝑠, 𝑟 ∈ C∗} ⊂ (C∗)3, the subtorus fixing O7 pointwise is

{(𝑟, 𝑠, 𝑠) : 𝑠, 𝑟 ∈ C∗} ⊂ (C∗)3, the subtorus fixing O8 pointwise is {(𝑠, 𝑠, 𝑟 ) : 𝑠, 𝑟 ∈ C∗} ⊂ (C∗)3, and the

subtorus fixing O9 pointwise is {(𝑠, 𝑟, 𝑠) : 𝑠, 𝑟 ∈ C∗} ⊂ (C∗)3.

Note that the annihilator of the subtorus {(𝑠, 𝑠, 𝑟 ) : 𝑠, 𝑟 ∈ C∗} ⊂ (C∗)3 is generated by 𝑡1 − 𝑡2 ∈ Λ, the
annihilator of {(𝑠, 𝑟, 𝑠) : 𝑠, 𝑟 ∈ C∗} ⊂ (C∗)3 is generated by 𝑡1 − 𝑡3 and the annihilator of {(𝑟, 𝑠, 𝑠) : 𝑠, 𝑟 ∈
C∗} ⊂ (C∗)3 is generated by 𝑡2 − 𝑡3. Therefore, we obtain the following moment graph,

123

132213

231 312

321

𝑡1 − 𝑡2 𝑡2 − 𝑡3

𝑡1 − 𝑡3

Figure 16: moment graph of Fl(C3)

If we draw the graph in a suitable fashion (like the one above), then the linear flow of the torus action

endows each edgewith a direction such that the source is upwards from the target. Also, parallel edges have

the same label; an observation that will be key to what follows. The reason for this becomes clear when one

writes the vertices as a product of a minimal number of transpositions. Indeed, each edge which is labelled

𝑡𝑖 − 𝑡 𝑗 corresponds to multiplication of its south pole by the transposition (𝑖, 𝑗), giving a combinatorial

meaning to the annihilators.

In this context, themoment graph is the Hasse diagram of the (strong) Bruhat order on 𝑆3 with an additional

edge from 321 to 123. The length of each permutation is given by the minimal number of transposition

needed. In terms of the matrix representation, the transposition in question swaps the two row indices of

the extra nonzero element 𝑎 and the entry 1 that lies in the same column. If the edge label is 𝑡𝑖 − 𝑡 𝑗 , then
these indices are (𝑖, 𝑗). Moreover, the edge is directed towards the smaller vertex in the Bruhat order.

id

(23)(12)

(13) (23) = (23) (12)(13) (12) = (12) (23)

(13) = (12) (23) (12) = (23) (12) (23)

(23) ·(12) ·

(13) ·

Similarly to our earlier examples, the polynomial 𝑓𝑖 associated to the fixed point 𝑣𝑖 can be computed by

taking into account the conditions determined by the edges of the moment graph. We may appeal to

Theorem 2.11 to find generators for the equivariant cohomology of this torus action.

45



Let us pick 𝑣1 as our first vertex, and associate an arbitrary polynomial 𝑓1 = 𝑏1 ∈ Λ to it. If the second

vertex we consider is 𝑣2, then the associated polynomial must be of the form 𝑓2 = 𝑏1 + (𝑡1 − 𝑡2)𝑏2 for some

𝑏2 ∈ Λ, since 𝑓2 −𝑏1 ∈ ⟨𝑡1 − 𝑡2⟩ and no other condition is imposed. Similarly, a polynomial 𝑓3 associated to

our third vertex 𝑣3 is of the form 𝑏1 + (𝑡2 − 𝑡3)𝑏3 for some 𝑏3 ∈ Λ, since 𝑓3 − 𝑏1 ∈ ⟨𝑡2 − 𝑡3⟩. Now we get to

𝑣4, where two conditions have to be taken into account simultaneously. If 𝑓4 ∈ Λ is attached to 𝑣4, then

𝑓4 − (𝑏1 + (𝑡1 − 𝑡2)𝑏2) ∈ ⟨𝑡1 − 𝑡3⟩ and 𝑓4 − (𝑏1 + (𝑡2 − 𝑡3)𝑏3) ∈ ⟨𝑡1 − 𝑡2⟩. (2.32)

So 𝑓4 is of the form

𝑓4 = 𝑏1 + (𝑡1 − 𝑡2)𝑏2 + (𝑡1 − 𝑡3)𝑞, (2.33)

for some 𝑞 ∈ Λ, satisfying the condition that

𝑏1 + (𝑡1 − 𝑡2)𝑏2 + (𝑡1 − 𝑡3)𝑞 − (𝑏1 + (𝑡2 − 𝑡3)𝑏3) = (𝑡1 − 𝑡2)𝑝2 + (𝑡1 − 𝑡3)𝑞 − (𝑡2 − 𝑡3)𝑏3 ∈ ⟨𝑡1 − 𝑡2⟩, (2.34)

which yields 𝑞 = (𝑡1 − 𝑡2)𝑏4 − 𝑏3 for an arbitrary 𝑏4 ∈ Λ. Consequently, we have

𝑓4 = 𝑏1 + (𝑡1 − 𝑡2)𝑏2 − (𝑡1 − 𝑡3)𝑏3 + (𝑡1 − 𝑡3) (𝑡1 − 𝑡2)𝑏4. (2.35)

Similarly, we impose the conditions

𝑓5 − (𝑏1 + (𝑡1 − 𝑡2)𝑏2) ∈ ⟨𝑡2 − 𝑡3⟩ and 𝑓5 − (𝑏1 + (𝑡2 − 𝑡3)𝑏3) ∈ ⟨𝑡1 − 𝑡3⟩, (2.36)

and consequently, 𝑓5 takes the form

𝑓5 = 𝑏1 + (𝑡1 − 𝑡3)𝑏2 + (𝑡2 − 𝑡3)𝑏3 + (𝑡1 − 𝑡3) (𝑡2 − 𝑡3)𝑏5, (2.37)

for an arbitrary 𝑏5 ∈ Λ. By the time we get to 𝑣6 we have 3 conditions to take into account. We must have

𝑓6 − 𝑏1 ∈ ⟨𝑡1 − 𝑡3⟩, (2.38)

𝑓6 − (𝑏1 + (𝑡1 − 𝑡2)𝑏2 + (𝑡1 − 𝑡3)𝑏3 + (𝑡1 − 𝑡2) (𝑡1 − 𝑡2)𝑏4) ∈ ⟨𝑡2 − 𝑡3⟩, (2.39)

𝑓6 − (𝑏1 + (𝑡2 − 𝑡3)𝑏3 + (𝑡1 − 𝑡3)𝑏2 + (𝑡1 − 𝑡3) (𝑡2 − 𝑡3)𝑏5) ∈ ⟨𝑡1 − 𝑡2⟩, (2.40)

and thus 𝑓6 takes the form

𝑏1 + (𝑡1 − 𝑡3)𝑏2 + (𝑡1 − 𝑡3)𝑏3 + (𝑡1 − 𝑡3) (𝑡1 − 𝑡2)𝑏4 + (𝑡1 − 𝑡3) (𝑡2 − 𝑡3)𝑏5 + (𝑡1 − 𝑡2) (𝑡2 − 𝑡3) (𝑡1 − 𝑡3)𝑏6, (2.41)

for an arbitrary 𝑏6 ∈ Λ. We can summarize this computation by the following diagram.

𝑏1

𝑏1 + (𝑡2 − 𝑡3 )𝑏3𝑏1 + (𝑡1 − 𝑡2 )𝑏2

𝑏1 + (𝑡1 − 𝑡3 )𝑏2
+(𝑡2 − 𝑡3 )𝑏3

+(𝑡1 − 𝑡3 ) (𝑡2 − 𝑡3 )𝑏5

𝑏1 + (𝑡1 − 𝑡2 )𝑏2
+(𝑡1 − 𝑡3 )𝑏3

+(𝑡1 − 𝑡3 ) (𝑡1 − 𝑡2 )𝑏4

𝑏1 + (𝑡1 − 𝑡3 )𝑏2
+(𝑡1 − 𝑡3 )𝑏3

+(𝑡1 − 𝑡3 ) (𝑡1 − 𝑡2 )𝑏4
+(𝑡1 − 𝑡3 ) (𝑡2 − 𝑡3 )𝑏5

+(𝑡1 − 𝑡2 ) (𝑡2 − 𝑡3 ) (𝑡1 − 𝑡3 )𝑏6

Figure 17: 𝐻 ∗
𝑇
(Fl(C3))
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By construction, 𝑏𝑖 ∈ Λ may all be picked arbitrarily, so we get a set of generators of 𝐻 ∗
𝑇
(𝑋 ) as a free

Λ-module by reading off the tuple of coefficients for each 𝑏𝑖

(1, 1, 1, 1, 1, 1), (2.42)

(0, 𝑡1 − 𝑡2, 0, 𝑡1 − 𝑡2, 𝑡1 − 𝑡3, 𝑡1 − 𝑡3), (2.43)

(0, 0, 𝑡2 − 𝑡3, 𝑡1 − 𝑡3, 𝑡2 − 𝑡3, 𝑡1 − 𝑡3), (2.44)

(0, 0, 0, (𝑡1 − 𝑡2) (𝑡1 − 𝑡3), 0, (𝑡1 − 𝑡2) (𝑡1 − 𝑡3)), (2.45)

(0, 0, 0, 0, (𝑡2 − 𝑡3) (𝑡1 − 𝑡3), (𝑡2 − 𝑡3) (𝑡1 − 𝑡3)), (2.46)

(0, 0, 0, 0, 0, (𝑡1 − 𝑡2) (𝑡2 − 𝑡3) (𝑡1 − 𝑡3)) . (2.47)

We shall illustrate these classes attached to the moment graph in Example 2.19. Later, in Example 2.28, we

will revisit this basis in our explicit computations. ■

Example 2.16. Now consider the action of the maximal torus (C∗)4 on the full flag variety Fl(C4) of
rank four. Analogously to the calculations in our previous example, we can see that the fixed points are

represented by thematrices of the 24 permutations of {1, . . . , 4} and the 1-dimensional orbits have one extra

nonzero element above and to the right of the 1s in a permutation matrix (recall, that the representatives

of 𝐺/𝐵 are chosen to be in echelon form), which corresponds to left-multiplication by the transposition

(𝑖, 𝑗), where the extra nonzero element 𝑎 is in the 𝑖th row and the row index of the entry 1 that lies in the

same column as 𝑎 is 𝑗 . The edges of the moment graph can again be directed according to the underlying

Bruhat order, such that the target of each edge has smaller length than the target.

It is easier to visualize the moment graph of by picturing the permutohedron, where the red edges have

the label 𝑡1 − 𝑡2 (i.e. they correspond to multiplication by the transposition (12)), gray edges have the label
𝑡1 − 𝑡3, orange edges have the label 𝑡1 − 𝑡4, blue edges have the label 𝑡2 − 𝑡3, light blue edges have the label
𝑡2 − 𝑡4 and green edges have the label 𝑡3 − 𝑡4.

2431

1432

3421

1423

3412

2413

3124

4123

2134

4132

2143

3142

4213

3214

1243

3241

1234

4231

1342

2341

4312

2314

4321

1324

■
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Remark 2.17. A crucial observation is that unicoloured edges form perfect matchings in the moment

graphs above, i.e. sets of edges with disjoint endpoints that cover all vertices in the graph. The correspon-

dence between transpositions and perfect matchings would suggest the existence of an 𝑆𝑛-representation

on the moment graph, generated by assigning certain involutions to the transpositions. These involutions

will somehow alter the polynomials associated to the endpoints of the corresponding edges, without vio-

lating any of conditions imposed by other edges. Later, in Subsection 2.3, we will describe this action in

the more general setting of Hessenberg varieties, which will be the geometric counterpart of chromatic

quasi-symmetric functions, that we are looking for.

The highlighted edges along the frame form a polytope, called the permutohedron. This will turns out to be
a fundamental observation, that we’ll revisit in Example 2.23 and later in Construction 3.43, in an attempt

to interpret Guay-Paquet’s Hopf algebraic construction geometrically.

Construction 2.18. We shall construct the moment graph and the flow-up classes of full flag varieties

below. In part (a) we give an explicit description of moment graphs of Fl𝑛 (C). In part (b) we define flow-up

classes, and provide an example. In part (c), we prove the existence of flow up classes for Fl𝑛 (C), and in

part (d) we show uniqueness.

(a). The full flag variety Fl(C𝑛) = GL𝑛 (C)/𝐵 of rank 𝑛, being a smooth variety over C, is a GKM space.

Denote its moment graph by 𝐺 = (𝑉 , 𝐸). The vertex set is given by 𝑉 = {𝑤𝐵 |𝑤 ∈ 𝑖 (𝑆𝑛)}, where
𝑖 : 𝑆𝑛 ↩→ GL𝑛 (C) is the canonical embedding of 𝑆𝑛 as permutation matrices. The explicit identifica-

tion is given by sending a permutation 𝑤 ∈ 𝑆𝑛 to the full flag 𝐹• = (spanC{𝑒𝑤 (1) , . . . , 𝑒𝑤 (𝑖 ) }), where
{𝑒1, . . . , 𝑒𝑛} is the standard basis for C𝑛 .

Analogously to Example 2.15, one can characterise the edges by the following condition. Two vertices

𝑣𝑖 and 𝑣 𝑗 are connected by an edge if and only if the permutations matrices connecting them differ by

a transposition. The label of the edge corresponding to left-multiplication by the transposition (𝑖 𝑗)
is 𝑡𝑖 − 𝑡 𝑗 ∈ Λ. The direction of the edge goes from the higher to the lower vertex with respect to the

Bruhat order, i.e. there is an edge going from the vertex 𝑤 ′𝐵 to 𝑤𝐵, labeled by 𝑡𝑖 − 𝑡 𝑗 if 𝑤 ′ = (𝑖 𝑗)𝑤
and (𝑖 < 𝑗) ∈ inv(𝑤) is an inversion.

(b). One can use the direction of the edges to obtain a considerably easier method of producing bases for

𝐻 ∗
𝑇
(Fl𝑛 (C)). Pick a vertex 𝑣 , assign 0s to all vertices that are either smaller than 𝑣 or incompatible

with 𝑣 with respect to the Bruhat order, and set 𝑝𝑣𝑣 to be the product of the labels of the edges

protruding out of 𝑣

𝑝𝑣𝑣 ≔
∏

(𝑖< 𝑗 ) ∈Inv(𝑣−1 )
(𝑡𝑖 − 𝑡 𝑗 ) . (2.48)

For the moment, assume that we can assign some polynomials 𝑝𝑣𝑢 ∈ Λ for the other vertices that

respect the conditions imposed by the edge labels, such that the GKM conditions hold from Theorem

from Theorem 2.11. Running over the vertex set 𝑆𝑛 , the tuples {𝑝𝑣}𝑣∈𝑆𝑛 would then be linearly

independent, since the support of each 𝑝𝑣 is contained in the set {𝑤 ∈ 𝑆𝑛 | 𝑣 ≤Br,ℎ 𝑤}, while 𝑝𝑣𝑣 ≠ 0.
We call the above sets of tuples {𝑝𝑣} flow-up classes, if they are homogeneous (with degree equal

to the out-degree of 𝑣 , i.e. the number of edges pointing out of 𝑣). For instance, we have already

exhibited flow-up classes for the full flag variety of rank 3 has,

𝑝123 = (1, 1, 1, 1, 1, 1), (2.49)

𝑝213 = (0, 𝑡1 − 𝑡2, 0, 𝑡1 − 𝑡2, 𝑡1 − 𝑡3, 𝑡1 − 𝑡3), (2.50)

𝑝132 = (0, 0, 𝑡2 − 𝑡3, 𝑡1 − 𝑡3, 𝑡2 − 𝑡3, 𝑡1 − 𝑡3), (2.51)

𝑝231 = (0, 0, 0, (𝑡1 − 𝑡2) (𝑡1 − 𝑡3), 0, (𝑡1 − 𝑡2) (𝑡1 − 𝑡3)), (2.52)

𝑝312 = (0, 0, 0, 0, (𝑡2 − 𝑡3) (𝑡1 − 𝑡3), (𝑡2 − 𝑡3) (𝑡1 − 𝑡3)), (2.53)

𝑝321 = (0, 0, 0, 0, 0, (𝑡1 − 𝑡2) (𝑡2 − 𝑡3) (𝑡1 − 𝑡3)), (2.54)
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and the illustrate the notation of the elements in the tuple, e.g. we have

𝑝321312 = (𝑡2 − 𝑡3) (𝑡1 − 𝑡3), 𝑝231123 = 1, 𝑝132132 = 𝑡2 − 𝑡3, 𝑝312132 = 𝑡1 − 𝑡3. (2.55)

It follows from Theorem 2.11, by induction on the finite number of fixed points, that a choice of

flow-up classes (if they exist) generate the equivariant cohomology 𝐻 ∗
𝑇
(𝑋 ), as a free Λ-module.

(c). The existence of flow-up classes is best formulated in the more general setting of splines (see [AMT],

Lemma 2.7), but for us, it suffices to exhibit flow-up classes for the full flag variety Fl𝑛 (C).

For each vertex 𝑣 ∈ 𝑆𝑛 , let us denote by 𝐼 (𝑣) the ideal generated by the edge labels protruding out of

𝑣 , i.e. downwards in the moment graph. Then we have

𝑝𝑣𝑣 =
∏

𝑡𝑖−𝑡 𝑗 ∈𝐼 (𝑣)
(𝑡𝑖 − 𝑡 𝑗 ) . (2.56)

If ℓ (𝑢) = ℓ (𝑣) + 1 and there is an edge 𝑢 → 𝑣 , whose label we denote by 𝑡 𝑗 − 𝑡𝑘 , then 𝑝𝑢𝑣 can be

expressed as the product

𝑞 ≔
∏

𝑡𝑖−𝑡𝑖′ ∈𝐼 (𝑢 )
𝑡𝑖−𝑡𝑖′≠𝑡 𝑗−𝑡𝑘

(𝑡𝑖 − 𝑡𝑖′). (2.57)

Indeed, first note that there are ℓ (𝑣) + 1 edges protruding out of 𝑢; one edge points towards 𝑣 and

ℓ (𝑣) edges point towards vertices 𝑢′ that are incomparable with 𝑣 , so that we have 𝑝𝑢
′

𝑣 = 0 for all

such vertices 𝑢′. Thus, the polynomial 𝑝𝑢𝑣 ∈ Λ lies in the ideal generated by the labels of these ℓ (𝑣)
edges, so 𝑝𝑢𝑣 must be a scalar multiple of the product 𝑞. Moreover, since we have 𝑢 = ( 𝑗𝑘)𝑣 , by the

explicit description of the edge labels of the moment graph from part (a), we have 𝐼 (𝑢) � 𝐼 (( 𝑗𝑘)𝑢)
modulo ⟨𝑡 𝑗 − 𝑡𝑘⟩. Therefore, 𝑞 − 𝑝𝑢𝑣 ∈ ⟨𝑡 𝑗 − 𝑡𝑘⟩. However, 𝑞 ∉ ⟨𝑡 𝑗 − 𝑡𝑘⟩, so 𝑝𝑢𝑣 = 𝑞, as claimed.

(d). Note that for any directed edge𝑤 → 𝑣 in the moment graph of the full flag variety, the out-degree of
𝑤 , i.e. the number of vertices pointing out of𝑤 , is strictly larger than that of 𝑣 . This property ensures

that the flow-up classes are unique. Indeed, let 𝑝𝑣 = (𝑝𝑤𝑣 )𝑤∈𝑆𝑛 and 𝑞𝑣 = (𝑞𝑤𝑣 )𝑤∈𝑆𝑛 be two flow-up

classes, corresponding to a vertex 𝑣 . Then we may consider the class 𝑝𝑣 −𝑞𝑣 ∈ 𝐻 ∗𝑇 (𝑋 ), and note that
(𝑝𝑣 − 𝑞𝑣)𝑢 = 0, i.e. the value of the class 𝑝𝑣 − 𝑞𝑣 vanishes at the vertex 𝑢 if 𝑢 = 𝑣 or if there is no

directed path from 𝑢 to 𝑣 . Pick a vertex 𝑢0 that is minimal in the Bruhat order such that the value

(𝑝𝑣 −𝑞𝑣)𝑢0
is nonzero. Moreover, by the GKM condition in Theorem 2.11, (𝑝𝑣 −𝑞𝑣)𝑢0

lies in the ideal

generated by the labels of the edges 𝑢0 → 𝑣 . However, the number of edges 𝑢0 → 𝑣 is greater than

deg(𝑝𝑣) = deg(𝑝𝑣 − 𝑞𝑣); a contradiction. Thus, there is no vertex 𝑢0 with (𝑝𝑣 − 𝑞𝑣)𝑢0 ≠ 0, i.e. we
have 𝑝𝑣 − 𝑞𝑣 = 0.

We shall shortly observe, in Example 2.22, that uniqueness no longer holds for general Hessenberg

varieties.

Example 2.19. We have already calculated flow-up classes for the full flag variety Fl3(C) in Example 2.15.

By Construction 2.18, these are the unique flow-up classes. Let us draw these tuples of polynomials on the

vertices of the moment graph. We will abbreviate the difference 𝑡𝑖 − 𝑡 𝑗 by 𝑡𝑖 𝑗 .

1

11

1 1

1

0

0𝑡12

𝑡12 𝑡13

𝑡13

0

𝑡230

𝑡13 𝑡23

𝑡13

0

00

𝑡12𝑡13 0

𝑡12𝑡13

0

00

0 𝑡23𝑡13

𝑡23𝑡13

0

00

0 0

𝑡12𝑡23𝑡13

(2.58)

■
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Construction 2.20. We shall provide an explicit description of the moment graph of regular, semisimple

Hessenberg varieties, starting from the moment graph of the full flag variety, that we discussed in Con-

struction 2.18, and throughout Example 2.15 and 2.16. In part (a), we describe the vertices of these moment

graphs and in part (b), we describe the edges. In particular, we present a direct way to compute the edges

solely based on the underlying Dyck path.

(a). The 𝑇 -fixed points of a regular, semisimple Hessenberg variety Hess(𝑀,ℎ) with Dyck path ℎ and

matrix 𝑀 ∈ 𝔤 of rank 𝑛 coincides with the 𝑇 -fixed points of the full flag variety Fl(C𝑛). To see

this, first recall from Construction 2.18 part (a), that the 𝑇 -fixed points (𝐺/𝐵)𝑇 can be identified

with the symmetric group 𝑆𝑛 . We cannot have any other fixed point, since the 𝑇 -action is given by

restriction. To see the inclusion (𝐺/𝐵)𝑇 ⊂ Hess(𝑀,ℎ), note that the canonical image of the Weyl

group𝑊 = 𝑁 /𝑇 � 𝑆𝑛 of𝐺 = GL𝑛 (C) in the full flag variety𝐺/𝐵 is given by 𝑁𝐵/𝐵 � (𝐺/𝐵)𝑇 , where
𝑁 is the normaliser of the maximal torus 𝑇 , and for any 𝑛 ∈ 𝑁 , we have 𝑛−1𝑀𝑛 ∈ 𝔱 ⊂ 𝐻ℎ , where 𝐻ℎ

is the Hessenberg space, that we introduced in Definition 2.5.

(b). Similarly to the vertex set of the moment graph of Hess(𝑀,ℎ), we cannot have any 1-dimensional

orbits other than those of the complete flag varieties. However, by restricting our torus action to a

Hessenberg variety we may reduce the number of 1-dimensional orbits.

As we saw in Example 2.15 and 2.16, every 1-dimensional𝑇 -orbit of the full flag variety correspond to

multiplication by the transposition that turns the permutation corresponding to one endpoints into

the other, i.e. two vertices 𝑤 and 𝑤 ′ are connected by an edge if 𝑤 ′ = (𝑖 𝑗)𝑤 for some transposition

(𝑖 𝑗). By definition of the Hessenberg variety, this 1-dimensional orbit lies in Hess(ℎ,𝑀) if and only

if𝑤−1(𝑖) ≤ ℎ(𝑤−1( 𝑗)). We will see this characterisation in action momentarily, in Example 2.21 and

2.23.

Equivalently, there is an edge from𝑤 to𝑤 ′ if and only if𝑤 ′ = 𝑤 (𝑖′ 𝑗 ′) for some 𝑖′ < 𝑗 ′ withℎ(𝑖′) ≥ 𝑗 ′.
Indeed, we have𝑤 ′ = (𝑖 𝑗)𝑤 = 𝑤 (𝑤−1( 𝑗)𝑤−1(𝑖)), and we may take 𝑖′ = 𝑤−1( 𝑗) < 𝑤−1(𝑖) = 𝑗 ′.

Therefore, the moment graph of the Hessenberg variety Hess(ℎ,𝑀) can be described completely

in terms of the Dyck path. It contains the edges corresponding to right-multiplication by those

transpositions (𝑖 𝑗) with 𝑖 < 𝑗 , for which the square (𝑖, 𝑗) lies between the diagonal and the path.

This tells us that the moment graph is disconnected if and only if the Dyck path touches the di-

agonal. Indeed, if the Dyck path does not touch the diagonal, then all edges in the moment graph

corresponding to right-multiplication by simple transpositions are drawn, and simple transpositions

generate the symmetric group. On the other hand, if the Dyck path touches the diagonal, then the

simple transposition corresponding to the square where the Dyck path touches the diagonal cannot

be generated by any of the other permitted transpositions. Let us look at a few examples.

Example 2.21. Let us compute the moment graphs of Hess(ℎ,𝑀) for all 3 × 3 Dyck paths, where𝑀 is an

arbitrary regular semisimple matrix of rank three.
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123

132213

231 312
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123

132213

231 312

321

123

132213

231 312

321

123

132213

231 312

321

123

132213

231 312

321

Figure 18: moment graphs corresponding to rank 3 Dyck paths

Indeed, for the Dyck path (1, 2, 3), multiplication on the right by any transposition is not permitted, and

consequently, the corresponding moment graph has no edges. Here we are using Construction 2.20, part

(b). For the Dyck path (1, 3, 3), right-multiplication by the transposition (2, 3) is allowed, and the oth-

ers are forbidden, so the corresponding moment graph is the disjoint union of three edges. The moment

graph corresponding to the Dyck path (2, 2, 3) is isomorphic to that of (1, 3, 3): here, multiplication by the

transposition (12) is allowed.

The Dyck path (2, 3, 3) does not touch the diagonal, so the corresponding moment graph is connected. It

is the 6-cycle, the Hasse diagram of the weak Bruhat order, where 𝑢 ≤ 𝑣 if some initial substring of some

reduced word for 𝑣 is a reduced word for 𝑢. Similarly to the (strong) Bruhat order, that we introduced

in Example 1.53, using the standard notation for simple transpositions, we can illustrate the weak Bruhat

order on 𝑆3 by the following Hasse diagram

123

132213

312231

321

id

𝑠2𝑠1

𝑠2𝑠1𝑠1𝑠2

𝑠1𝑠2𝑠1 = 𝑠2𝑠1𝑠2

Figure 19: (strong) Bruhat order for 𝑆3

Finally, the moment graph of the full flag variety, corresponding to the Dyck path (3, 3, 3), where right-

multiplication by any transposition is permitted. As we have observed before, this is the Hasse diagram of

the (strong) Bruhat order with an additional edge from 321 to 123. ■

Construction 2.22. As we saw in Constriction 2.20, the moment graph of the full flag variety has more

edges than the moment graph of other regular semisimple Hessenberg varieties. When computing the

cohomology, one needs to take into account all edge labels, so the degrees of flow-up bases might be

smaller for general (regular semisimple) Hessenberg varieties. For example, we have
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0

00

𝑡1 − 𝑡30

𝑡2 − 𝑡3

0

00

(𝑡2 − 𝑡3 ) (𝑡1 − 𝑡3 )0

(𝑡2 − 𝑡3 ) (𝑡1 − 𝑡3 )

Figure 20: moment graphs of the permutohedron of rank 3

The strong Bruhat poset on 𝑆𝑛 induces a partial order on the vertices of themoment graph of theHessenberg

variety Hess(𝑀,ℎ). For any two vertices 𝑣,𝑤 ∈ 𝑆𝑛 , we have 𝑣 ≤Br,ℎ 𝑤 if and only if there is a path

𝑤 = 𝑤0 → 𝑤1 → · · · → 𝑤𝑘 = 𝑣 (2.59)

in the moment graph of the Hessenberg variety. This partial order gives rise to flow-up classes, similarly

to the case of full flag varieties that we discussed in Construction 2.18. The only difference is that the

polynomial assigned to the first vertex is

𝑓 (𝑣) ≔
∏

(𝑖< 𝑗 ) ∈Inv(𝑣−1 )
𝑣−1 (𝑖 )≤ℎ (𝑣−1 ( 𝑗 ) )

(𝑡𝑖 − 𝑡 𝑗 ) (2.60)

with support supp(𝑓 ) ⊂ {𝑤 ∈ 𝑆𝑛 | 𝑣 ≤Br,ℎ 𝑤}, where the support of 𝑓 is the set {𝑤 ∈ 𝑆𝑛 | 𝑓 (𝑤) ≠ 0}.

Unlike the full flag variety, general Hessenberg varieties may have multiple flow-up classes associated to a

given vertex. For instance, recall that the moment graph corresponding to the Dyck path ℎ = (2, 3, 3) is

123

132213

231 312

321

𝑡1 − 𝑡2

𝑡2 − 𝑡3

𝑡1 − 𝑡3

Figure 21: moment graphs of the permutohedron of rank 3

The following two are distinct flow-up classes for 𝑣 = 𝑠2 in 𝐻
∗
𝑇
(Hess(𝑀,ℎ))
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0

𝑡2 − 𝑡30

𝑡2 − 𝑡10

0

0

𝑡2 − 𝑡30

𝑡2 − 𝑡30

𝑡2 − 𝑡3

Figure 22: distinct flow-up classes

Furthermore, note that these classes are elements of 𝐻 ∗(Hess(𝑀,ℎ)) but not of 𝐻 ∗(Fl(C𝑛)), which shows

that the aforementioned restriction map from Remark 2.7 is not always surjective.

However, the moment graph of a Hessenberg variety has at most as many edges as the moment graph of the

full flag variety of the same rank, so there exists at least one flow-up class corresponding to any vertex of

the moment graph, for any Hessenberg variety. Consequently, by Construction 2.18, these flow-up classes

form a basis for 𝐻 ∗
𝑇
(𝑋 ).

Example 2.23. Now let us compute the moment graphs corresponding to the fourteen 4 × 4 Dyck paths.

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

Figure 23: Dyck paths of rank 4

The first nine Dyck paths touch the diagonal, so their moment graphs are disconnected, and they can be

reduced to our previous example of 3×3Dyck paths, while the last five cases give rise to five new, connected
moment graphs, where the edge labels correspond to the same colours as in Example 2.16.
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Figure 24: moment graphs of rank 4 Hessenberg varieties

Finally, the Hessenberg variety in case (n) is the full flag variety of rank four, whose moment graph we have

already seen in Example 2.16. Note that all these moment graphs are regular, i.e. each vertex has the same

number of neighbours, in the undirected case, and unicoloured edges form matchings, but not necessarily

perfect matchings, i.e. the matching does not necessarily cover all vertices. The first connected graph, in

case (j), is a (twisted) permutohedron, isomorphic to the highlighted frame in Example 2.16, in the moment

graph of the full flag variety. This is the underlying graph of (the Hasse diagram of) the weak Bruhat order

of the symmetric group 𝑆4. ■

2.3 The Dot Action on Moment Graphs

Example 2.24. The group 𝑆𝑛 , or rather its canonical image given by permutation matrices (as in Con-

struction 2.18) acts on the full flag variety Fl(C𝑛) by left multiplication. However, Hessenberg varieties in

general are not invariant under this 𝑆𝑛 action. To give a counterexample, consider ℎ = 233 and the regular

semisimple matrix𝑀 =

(
1 0 0
0 2 0
0 0 3

)
. Recall that the Hessenberg space 𝐻ℎ is generated by elementary matrices

𝐸𝑖 𝑗 with ℎ( 𝑗) ≥ 𝑖 . In this case, ℎ(1) = 2, ℎ(2) = 3, ℎ(3) = 3, so𝐻ℎ =
{ ( ∗ ∗ ∗
∗ ∗ ∗
0 ∗ ∗

) }
Then the matrix 𝑔 =

(
1 1 1
2 1 0
1 0 0

)
represents a full flag in Hess(𝑀,ℎ), since we have 𝑔−1𝑀𝑔 =

(
3 0 0
−2 2 0
0 −1 1

)
. However, if we take the action

of the transposition (12) with matrix 𝑤 =

(
0 1 0
1 0 0
0 0 1

)
, then the result (𝑤𝑔)−1𝑀 (𝑤𝑔) =

(
3 0 0
−4 1 0
3 1 2

)
no longer

represents a full flag in Hess(𝑀,ℎ).

Providing a suitable 𝑆𝑛-action on the cohomology of Hessenberg varieties is the main application of mo-

ment graphs. ■

Construction 2.25. The group 𝑆𝑛 acts on C[𝑡1, . . . , 𝑡𝑛] by permuting the indices of variables

𝑤.𝑓 (𝑡1, . . . , 𝑡𝑛) = 𝑓 (𝑡𝑤 (1) , . . . , 𝑡𝑤 (𝑛) ), (2.61)

which is a ring automorphism of C[𝑡1, . . . , 𝑡𝑛]. As indicated before, this action extends to an action of

𝑆𝑛 on the moment graph of regular semisimple Hessenberg varieties. In Example 2.16, we saw that edges

corresponding to a given transposition form a perfect matching of the moment graph of the full flag variety.
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Let𝑤 = (𝑖 𝑗) be a transposition. Its action interchanges the vertex labels across those edges in the moment

graph of the full flag variety, whose label is 𝑡𝑖 − 𝑡 𝑗 , and it permutes the variables.

Let 𝑓 (𝑣, 𝑡1, . . . , 𝑡𝑛) be the polynomial associated to the vertex 𝑣 ∈ 𝑆𝑛 in the moment graph. Then for any

𝑤 ∈ 𝑆𝑛 , the dot action on 𝐻 ∗
𝑇
(Hess(ℎ,𝑀);C) is given by

(𝑤 · 𝑓 ) (𝑣, 𝑡1, . . . , 𝑡𝑛) ≔ 𝑓 (𝑤−1𝑣, 𝑡𝑤 (1) , . . . , 𝑡𝑤 (𝑛) ) . (2.62)

Let (𝑣, 𝑣 ′) be a directed edge with label 𝑡𝑖 − 𝑡 𝑗 and 𝑝 ∈ 𝐻 ∗𝑇 (Hess(ℎ,𝑀)). To see that the dot action is well-

defined, we need to show that𝑤 · 𝑝 still satisfies the GKM condition (𝑤 · 𝑝)𝑣 − (𝑤 · 𝑝)𝑣′ ∈ ⟨𝑡𝑖 − 𝑡 𝑗 ⟩, where
the subscript denotes the polynomial at vertex 𝑣 . Indeed, we can directly compute that

(𝑤 · 𝑝)𝑣 − (𝑤 · 𝑝)𝑣′ = 𝑤.(𝑝𝑤−1 (𝑣) − 𝑝𝑤−1 (𝑣′ ) ) ∈ 𝑤.⟨𝑡𝑤−1 (𝑖 ) − 𝑡𝑤−1 ( 𝑗 )⟩ = ⟨𝑡𝑖 − 𝑡 𝑗 ⟩. (2.63)

Let us consider the dot action of 𝑆3 on the 𝑇 -equivariant cohomology ring 𝐻 ∗
𝑇
(Fl(C3)) of the full flag

variety of rank three. Let us abbreviate the polynomials 𝑡𝑖 − 𝑡 𝑗 ∈ Λ by 𝑡𝑖 𝑗 . Then we have

𝑠1 ·

0

00

𝑡21𝑡31 0

𝑡21𝑡32𝑡31

=

0

𝑡12𝑡320

0 𝑡12𝑡31𝑡32

0

𝑠2 ·

0

𝑡12𝑡320

0 𝑡12𝑡31𝑡32

0

=

𝑡13𝑡23

0𝑡13𝑡21𝑡23

0 0

0

𝑠1 ·

𝑡13𝑡23

0𝑡13𝑡21𝑡23

0 0

0

=

𝑡23𝑡12𝑡13

0𝑡23𝑡13

0 0

0

(13) ·

0

00

𝑡21𝑡31 0

𝑡21𝑡32𝑡31

=

𝑡23𝑡12𝑡13

0𝑡23𝑡13

0 0

0

This induces an action on each Hessenberg variety by restricting to the relevant subset of edges, described

in Construction 2.20. For example, the action on the permutohedronH3 of rank three is the following

𝑠1 ·

0

00

𝑡31 0

𝑡21

=

0

𝑡320

0 𝑡12

0

𝑠2 ·

0

𝑡320

0 𝑡12

0

=

𝑡23

0𝑡13

0 0

0

𝑠1 ·

𝑡23

0𝑡13

0 0

0

=

𝑡23

0𝑡13

0 0

0

(13) ·

0

00

𝑡31 0

𝑡21

=

𝑡23

0𝑡13

0 0

0

Example 2.26. The equivariant cohomology ofH3 has an ideal that is fixed by the dot action, namely

𝑖1 ≔

𝑡1

𝑡1𝑡1

𝑡1 𝑡1

𝑡1

𝑖2 ≔

𝑡2

𝑡2𝑡2

𝑡2 𝑡2

𝑡2

𝑖3 ≔

𝑡3

𝑡3𝑡3

𝑡3 𝑡3

𝑡3

(2.64)
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Let us denote the invariant ideal by 𝐼 = ⟨𝑖1, 𝑖2, 𝑖3⟩. Consider the following flow-up classes that generate the
equivariant cohomology ring 𝑅 ofH3

𝑟1 ≔

1

11

1 1

1

𝑟2 ≔

0

00

0 0

𝑡21𝑡32

𝑟3 ≔

0

00

𝑡31 0

𝑡21

(2.65)

𝑟4 ≔

0

0𝑡21

𝑡23 0

0

𝑟5 ≔

0

00

0 𝑡31

𝑡32

𝑟6 ≔

0

𝑡320

0 𝑡12

0

(2.66)

Then the six generators above give rise to a basis {𝑟1 + 𝐼 , . . . , 𝑟6 + 𝐼 } for the quotient ring 𝑅/𝐼 , which is

isomorphic to the ordinary cohomology ring 𝐻 ∗(H3), by Construction 2.9, part (c).

Since 𝐼 is an invariant ideal, 𝑆3 acts on 𝑟1 + 𝐼 trivially. Its action on 𝑟2 + 𝐼 is also trivial, because

𝑠1 · 𝑟2 =

0

00

0 𝑡12𝑡31

0

=

0

00

0 0

𝑡21𝑡32

+

0

00

0 𝑡12𝑡31

𝑡12𝑡32

= 𝑟2 + (𝑖1 − 𝑖2)𝑟5, (2.67)

𝑠2 · 𝑟2 =

0

00

𝑡23𝑡31 0

0

=

0

00

0 0

𝑡21𝑡32

+

0

00

𝑡23𝑡31 0

𝑡21𝑡23

= 𝑟2 + (𝑖2 − 𝑖3)𝑟3. (2.68)

Furthermore, 𝑠2 · 𝑟3 = 𝑟3 is fixed, while 𝑠1 · 𝑟3 = 𝑟6. Similarly, 𝑠1 · 𝑟5 = 𝑟5 and 𝑠2 · 𝑟4 = 𝑟5. The remaining two

cases are a tad more complicated,

𝑠2 · 𝑟6 =

𝑡23

0𝑡13

0 0

0

=

0

00

𝑡31 0

𝑡21

+

0

0𝑡31

𝑡23 0

0

+

0

𝑡230

0 𝑡21

0

+

𝑡12

𝑡12𝑡12

𝑡12 𝑡12

𝑡12

= 𝑟3 + 𝑟4 − 𝑟6 + (𝑖1 − 𝑖2),

(2.69)

𝑠2 · 𝑟6 =

𝑡23

0𝑡13

0 0

0

=

0

0𝑡12

𝑡32 0

0

+

0

00

0 𝑡31

𝑡32

+

0

𝑡320

0 𝑡12

0

+

𝑡23

𝑡23𝑡23

𝑡23 𝑡23

𝑡23

= −𝑟4 + 𝑟5 + 𝑟6 + (𝑖2 − 𝑖3) .

(2.70)
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Therefore, the representation 𝑅/𝐼 is graded, the degree 0 and degree 2 parts are the trivial representation

of 𝑆3 (of rank 1), and the degree 1 part is given by {𝑟3 + 𝐼 , 𝑟4 + 𝐼 , 𝑟5 + 𝐼 , 𝑟6 + 𝐼 }. The conjugacy classes of

𝑆3 are represented by id, 𝑠1 and 𝑠1𝑠2, and the classes have 1, 3 and 2 elements, respectively. The identity

matrix has trace 4, while the other two classes are represented by the matrices

©«
0 1 0 1
0 1 0 0
0 0 1 0
1 −1 0 0

ª®®¬ and

©«
0 0 1 0
0 0 1 −1
0 1 0 1
1 0 −1 1

ª®®¬
so their traces are 2 and 1, respectively. Therefore, we can use Example 1.52 the Frobenius character of the

degree 1 part is

1

6
(1 · 4 · 𝑝 (13 ) + 3 · 2 · 𝑝 (2,1) + 2 · 1 · 𝑝 (3) ) = 2𝑠 (3) + 𝑠 (2,1) , (2.71)

Hence, the graded Frobenius character of the representation 𝑅/𝐼 is

Frob(𝐻 ∗(H3)) = 𝑠 (3)𝑡2 + (2𝑠 (3) + 𝑠 (2,1) )𝑡 + 𝑠 (3) . (2.72)

In the 𝑒-basis, this symmetric function takes the form

(𝑒 (13 ) − 2𝑒 (2,1) + 𝑒 (3) )𝑡2 + (2𝑒 (13 ) − 3𝑒 (2,1) + 𝑒 (3) )𝑡 + (𝑒 (13 ) − 2𝑒 (2,1) + 𝑒 (3) ), (2.73)

which is not 𝑒-positive. However, its image under the fundamental involution, thatwe introduced in Lemma

1.29, is 𝑒-positive,

𝜔 (Frob(𝐻 ∗(H3))) = (ℎ (13 ) − 2ℎ (2,1) + ℎ (3) )𝑡2 + (2ℎ (13 ) − 3ℎ (2,1) + ℎ (3) )𝑡 + (ℎ (13 ) − 2ℎ (2,1) + ℎ (3) )
(2.74)

= 𝑒 (3)𝑡
2 + (𝑒 (3) + 𝑒 (2,1) )𝑡 + 𝑒 (3) . (2.75)

In fact, it is the chromatic quasi-symmetric function of the path 𝑃3, that we encountered in Example 1.70.

This relationship between Hessenberg varieties and chromatic quasi-symmetric functions was first ob-

served by Shareshian and Wach in 2012, in the article [SW]. ■

Conjecture 2.27 (Shareshian–Wachs). For any Dyck path ℎ, we have

𝜔 (Frob(𝐻 ∗(𝑋ℎ))) = 𝑋 (𝐺 (ℎ);𝑥, 𝑡), (2.76)

where 𝑋ℎ is a regular semisimple Hessenberg variety associated to ℎ, 𝐻 ∗(𝑋ℎ) is the 𝑆𝑛-module given by the dot
action on the cohomology ring of 𝑋ℎ , Frob is the Frobenius character map, 𝜔 is the fundamental involution,
𝐺 (ℎ) is the indifference graph of ℎ and 𝑋 (𝐺 (ℎ);𝑥, 𝑡) is its chromatic quasi-symmmetric function.

Example 2.28 (Dot action onFl(C3)). The cohomology ring𝐻 ∗(Fl𝑛 (C)) is isomorphic to the coinvariant

algebra, which we discussed in Example 1.53. However the Frobenius character of the canonical 𝑆3-action

on C[𝑥1, 𝑥2, 𝑥3]/⟨𝑒1, 𝑒2, 𝑒3⟩, described in the aforementioned example, is given by

Frob(C[𝑥1, 𝑥2, 𝑥3]/⟨𝑒1, 𝑒2, 𝑒3⟩) = 𝑒 (3)𝑡3 + (𝑒 (2,1) − 𝑒 (3) )𝑡2 + (𝑒 (2,1) − 𝑒 (3) )𝑡 + (𝑒 (13 ) − 2𝑒 (2,1) + 𝑒 (3) ) . (2.77)

When we apply the fundemental involution to this, we obtain

𝜔 (Frob(C[𝑥1, 𝑥2, 𝑥3]/⟨𝑒1, 𝑒2, 𝑒3⟩)) = (𝑒 (13 ) −2𝑒 (2,1) +𝑒 (3) )𝑡3+ (𝑒 (2,1) −𝑒 (3) )𝑡2+ (𝑒 (2,1) −𝑒 (3) )𝑡 +𝑒 (3) . (2.78)

Thus, the canonical representation of 𝑆3 on the coinvariant algebra should not coincide with the dot action.
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Consider the (unique) flow-up classes that we computed in Example 2.19,

𝑟1 ≔

1

11

1 1

1

𝑟2 ≔

0

0𝑡12

𝑡12 𝑡13

𝑡13

𝑟3 ≔

0

𝑡230

𝑡13 𝑡23

𝑡13

(2.79)

𝑟4 ≔

0

00

𝑡12𝑡13 0

𝑡12𝑡13

𝑟5 ≔

0

00

0 𝑡23𝑡13

𝑡23𝑡13

𝑟6 ≔

0

00

0 0

𝑡12𝑡23𝑡13

(2.80)

Let us describe the dot action on these elements,

𝑠1 · 𝑟1 = 𝑠1 ·

1

11

1 1

1

=

1

11

1 1

1

= 𝑟1, (2.81)

𝑠1 · 𝑟2 = 𝑠1 ·

0

0𝑡12

𝑡12 𝑡13

𝑡13

=

𝑡21

𝑡210

0 𝑡23

𝑡23

=

0

0𝑡12

𝑡12 𝑡13

𝑡13

+

21

21𝑡21

𝑡21 𝑡21

𝑡21

= 𝑟2 + 𝑡21𝑟1, (2.82)

𝑠1 · 𝑟3 = 𝑠1 ·

0

𝑡230

𝑡13 𝑡23

𝑡13

=

0

𝑡230

𝑡13 𝑡23

𝑡13

= 𝑟3, (2.83)

𝑠1 · 𝑟4 = 𝑠1 ·

0

00

𝑡12𝑡13 0

𝑡12𝑡13

=

0

𝑡21𝑡230

0 𝑡21𝑡23

0

=

0

00

𝑡12𝑡13 0

𝑡23𝑡13

+

0

𝑡21𝑡230

𝑡21𝑡13 𝑡21𝑡23

𝑡21𝑡13

= 𝑟4 + 𝑡21𝑟3, (2.84)
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𝑠1 · 𝑟5 = 𝑠1 ·

0

00

0 𝑡12𝑡13

𝑡23𝑡13

=

0

00

0 𝑡12𝑡13

𝑡23𝑡13

= 𝑟5, (2.85)

𝑠1 · 𝑟6 = 𝑠1 ·

0

00

0 0

𝑡12𝑡23𝑡13

=

0

00

0 𝑡21𝑡13𝑡23

0

=

0

00

0 0

𝑡12𝑡23𝑡13

+

0

00

0 𝑡21𝑡23𝑡13

𝑡21𝑡23𝑡13

= 𝑟6 + 𝑡21𝑟5, (2.86)

𝑠2 · 𝑟1 = 𝑠2 ·

1

11

1 1

1

=

1

11

1 1

1

= 𝑟1, (2.87)

𝑠2 · 𝑟2 = 𝑠2 ·

0

0𝑡12

𝑡12 𝑡13

𝑡13

=

0

0𝑡12

𝑡12 𝑡13

𝑡13

= 𝑟2, (2.88)

𝑠2 · 𝑟3 = 𝑠2 ·

0

𝑡230

𝑡13 𝑡23

𝑡13

=

𝑡32

0𝑡32

𝑡13 0

𝑡13

=

0

𝑡230

𝑡13 𝑡23

𝑡13

+

32

𝑡3232

𝑡32 𝑡32

𝑡32

= 𝑟3 + 𝑡32𝑟1, (2.89)

𝑠2 · 𝑟4 = 𝑠2 ·

0

00

𝑡12𝑡13 0

𝑡12𝑡13

=

0

00

𝑡12𝑡13 0

𝑡12𝑡13

= 𝑟5, (2.90)

𝑠2 · 𝑟5 = 𝑠2 ·

0

00

0 𝑡12𝑡13

𝑡23𝑡13

=

0

0𝑡23𝑡13

𝑡23𝑡13 0

0

=

0

00

0 𝑡12𝑡13

𝑡23𝑡13

+

0

0𝑡32𝑡12

𝑡32𝑡12 𝑡32𝑡13

𝑡23𝑡13

= 𝑟5 + 𝑡32𝑟2, (2.91)

𝑠2 · 𝑟6 = 𝑠2 ·

0

00

0 0

𝑡12𝑡23𝑡13

=

0

00

0 𝑡13𝑡32𝑡12

0

=

0

00

0 0

𝑡12𝑡23𝑡13

+

0

00

0 𝑡32𝑡12𝑡13

𝑡32𝑡12𝑡13

= 𝑟6 + 𝑡21𝑟5, (2.92)
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We can describe this action more succinctly by the formula

𝑠𝑖 · 𝑟𝑤 =

{
𝑟𝑤 if 𝑠𝑖𝑤 > 𝑤

𝑟𝑤 + 𝑡𝑖+1,𝑖 𝑟𝑠𝑖𝑤 if 𝑠𝑖𝑤 < 𝑤,
(2.93)

where 𝑟𝑤 is the flow-up class corresponding to𝑤 ∈ 𝑆3.

Therefore, by Construction 2.9, part (c), the graded 𝑆3-action descending to the ordinary cohomology

𝐻 ∗(Fl3(C)) is the trivial representation in each degree. The conjugacy classes of 𝑆3 are represented by

id, 𝑠1 and 𝑠1𝑠2, and these classes have 1, 3 and 2 elements, respectively. Any class is represented by the

identity matrix in each degree 2𝑑 whose rank is the number of flow-up classes of degree 𝑑 . The trace of

this matrix is the number of flow-up classes of the given degree. Hence, the Frobenius character in degree

zero is given by

1

6
(1 · 1 · 𝑝 (13 ) + 3 · 1 · 𝑝 (2,1) + 2 · 1 · 𝑝 (3) ) = 𝑠 (3) , (2.94)

the Frobenius character in degree one is

1

6
(1 · 2 · 𝑝 (13 ) + 3 · 2 · 𝑝 (2,1) + 2 · 2 · 𝑝 (3) ) = 2𝑠 (3) , (2.95)

in degree two we have

1

6
(1 · 2 · 𝑝 (13 ) + 3 · 2 · 𝑝 (2,1) + 2 · 2 · 𝑝 (3) ) = 2𝑠 (3) , (2.96)

and finally, in degree six, the Frobenius character can be expressed as

1

6
(1 · 1 · 𝑝 (13 ) + 3 · 1 · 𝑝 (2,1) + 2 · 1 · 𝑝 (3) ) = 𝑠 (3) . (2.97)

Thus, the Schur expression of the graded Frobenius is given by

Frob(𝐻 ∗(H3)) = 𝑠 (3)𝑡3 + 2𝑠 (3)𝑡2 + 2𝑠 (3)𝑡 + 𝑠 (3) . (2.98)

In the 𝑒-basis, the symmetric function 𝑠 (3) takes the form

𝑠 (3) = 𝑒 (13 ) − 3𝑒 (2,1) + 𝑒 (3) , (2.99)

which is not 𝑒-positive, but again, after we apply the fundamental involution 𝜔 , we obtain an 𝑒-positive

expression,

𝜔 (Frob(𝐻 ∗(Fl3(C)))) = 𝑒 (3)𝑡3 + 2𝑒 (3)𝑡2 + 2𝑒 (3)𝑡 + 𝑒 (3) . (2.100)

It is the chromatic quasi-symmetric function of the path 𝑃3, that we encountered in Example 1.70.

In [Ty3], Tymoczko proved that the dot action on a full flag variety of arbitrary rank is trivial in each

degree, using a recursive construction on flow-up classes that generalise the example above, building on

the work of Billey (see [Bil]) on Kostant polynomials and the cohomology of full flag varieties of any type,

not only type A. ■

3 Proof of the Shareshian–Wachs Conjecture

In this section, we discuss the Hopf algebraic proof of the Shareshian–Wachs conjecture, due to Guay-

Paquet. The Shareshian–Wachs conjecture is regarded as a stepping stone towards the Stanley–Stembridge

conjecture, as the proof of this correspondence allows us to interpret e-positivity in terms of combinatorial

Hopf algebras and geometry, simultaneously.
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In the first subsection, the proofs of Lemma 3.11, 3.12, 3.18, 3.19 and Construction 3.15 follow [GR]. In

the second subsection, the proof of the universal property in Theorem 3.35, as well as the two auxiliary

statements in Lemma 3.31 and 3.32 follow [ABS], and [GR]. In the final subsection, in the proof of Lemma

3.41, 3.44, 3.46, 3.49 and 3.50 leading up to Theorem 3.51, we follow and expand on the article [GP]. Our

goal is to revisit our earlier computations, e.g. in Example 2.26 and 2.28, and to present this Hopf algebraic

construction in a more transparent and accessible manner.

3.1 Hopf Algebra of Symmetric Functions

Definition 3.1. Recall the (diagrammatic) definition of an algebra over a field 𝑘 . A 𝑘-algebra is a 𝑘-vector
space𝐴 together with a linear map𝑚 : 𝐴⊗𝐴→ 𝐴, calledmultiplication, and a linear map𝑢 : 𝑘 → 𝐴, called

unit, such that the following diagrams commute

𝐴 ⊗ 𝐴 ⊗ 𝐴 𝐴 ⊗ 𝐴

𝐴 ⊗ 𝐴 𝐴

𝑚⊗id

id ⊗𝑚 𝑚

𝑚

and

𝐴 ⊗ 𝑘 = 𝐴 = 𝑘 ⊗ 𝐴 𝐴 ⊗ 𝐴

𝐴 ⊗ 𝐴 𝐴

id ⊗𝑢

𝑢⊗id 𝑚

𝑚

(3.1)

A 𝑘-coalgebra is a 𝑘-vector space 𝐶 together with linear maps Δ : 𝐶 → 𝐶 ⊗ 𝐶 , called the comultiplication,
and a linear map 𝜖 : 𝐶 → 𝑘 , called the counit, such that the dual diagrams commute

𝐶 ⊗ 𝐶 ⊗ 𝐶 𝐶 ⊗ 𝐶

𝐶 ⊗ 𝐶 𝐶

Δ⊗id

id ⊗Δ

Δ

Δ and

𝐶 ⊗ 𝑘 = 𝐶 = 𝑘 ⊗ 𝐶 𝐶 ⊗ 𝐶

𝐶 ⊗ 𝐶 𝐶

id ⊗𝜖

𝜖⊗id

Δ

Δ (3.2)

A bialgebra is a 𝑘-vector space which is both an algebra and a coalgebra at the same time, such that Δ and 𝜖

are algebramorphisms, or equivalently,𝑚 and𝑢 are coalgebramorphisms, i.e. the algebra and the coalgebra

structures are compatible. This can be formulated equivalently by imposing the following conditions,

𝜖 ◦ 𝑢 = id, (3.3)

𝜖 ◦𝑚 =𝑚 ◦ (𝜖 ⊗ 𝜖), (3.4)

Δ ◦ 𝑢 = (𝑢 ⊗ 𝑢) ◦ Δ, (3.5)

Δ ◦𝑚 = (𝑚 ⊗𝑚) ◦ (id ⊗𝑇 ⊗ id) ◦ (Δ ⊗ Δ), (3.6)

where the coalgebra isomorphism 𝑇 : 𝐶 ⊗ 𝐶 → 𝐶 ⊗ 𝐶 is given by 𝑇 (𝑥 ⊗ 𝑦) = 𝑦 ⊗ 𝑥 .

Remark 3.2. There is a shorthand, called the Sweedler notation, for describing the comultiplication. We

will write

Δ𝑐 =
∑︁
(𝑐 )
𝑐1 ⊗ 𝑐2, (3.7)

by which we mean the sum

Δ𝑐 =
𝑚∑︁
𝑖=1

𝑑𝑖 ⊗ 𝑒𝑖 , (3.8)

where is some choice of 𝑑1, . . . , 𝑑𝑚, 𝑒1, . . . , 𝑒𝑚 ∈ 𝐶 . Then, for any bilinear form 𝑓 : 𝐶 × 𝐶 → 𝑀 from the

coalgebra 𝐶 ×𝐶 to a C-module𝑀 , the value of

𝑚∑︁
𝑘=1

𝑓 (𝑑𝑖 , 𝑒𝑖) (3.9)
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is independent of the choice of the 𝑑𝑖 and 𝑒𝑖 above. So we may rewrite this sum as∑︁
(𝑐 )

𝑓 (𝑐1, 𝑐2) . (3.10)

Let 𝐶 be a coalgebra and 𝐴 an algebra over C. Then the C-module Hom(𝐶,𝐴) becomes an associative

algebra with the following (associative) multiplication. For any 𝑓 , 𝑔 ∈ Hom(𝐶,𝐴), we define the convolution
product 𝑓 ∗ 𝑔 to be the composition

𝐶
Δ−→ 𝐶 ⊗ 𝐶

𝑓 ⊗𝑔
−−−→ 𝐴 ⊗ 𝐴 𝑚−→ 𝐴, (3.11)

or written in Sweedler notation,

(𝑓 ∗ 𝑔) (𝑐) =
∑︁
(𝑐 )

𝑓 (𝑐1)𝑔(𝑐2) . (3.12)

Definition 3.3. A bialgebra 𝐴 is called a Hopf algebra if there is a two-sided inverse 𝑆 , called the antipode,
for the identity map id𝐴 under the convolution product ∗, i.e. the following diagram commutes

𝐴 ⊗ 𝐴 𝐴 ⊗ 𝐴

𝐴 C 𝐴

𝐴 ⊗ 𝐴 𝐴 ⊗ 𝐴

𝑆⊗id

𝑚Δ

𝜖

Δ

𝑢

id ⊗𝑆

𝑚

(3.13)

Using the Sweedler notation, we can abbreviate it by∑︁
(𝑎)

𝑆 (𝑎1)𝑎2 = 𝑢 (𝜖 (𝑎)) =
∑︁
(𝑎)
𝑎1𝑆 (𝑎2) . (3.14)

It follows from the defining diagrams that the antipode is unique, when it exists. Moreover, it is always an

algebra anti-endomorphism.

Example 3.4. The symmetric algebra S(𝑉 ) on a vector space𝑉 over C is the quotient of the tensor algebra

T (𝑉 ) by the commutator ideal. An element 𝑥 in a bialgebra is called primitive if its comultiplication is

given by Δ𝑥 = 1 ⊗ 𝑥 + 𝑥 ⊗ 1. The tensor algebra T (𝑉 ) is a Hopf algebra, where the comultiplication is

determined by the primitive elements 𝑥 ∈ 𝑉 ⊗1, the counit is zero on 𝑉 ⊗𝑛 for 𝑛 > 0 and the identity on

the zero degree part 𝑉 ⊗0, which is isomorphic to the ground field C. The Hopf algebra structure of T (𝑉 )
descends to S(𝑉 ), since the counit is zero on any commutator, and the commutator of primitive elements

in T (𝑉 ) is also a primitive element,

Δ[𝑥,𝑦] = Δ(𝑥𝑦 − 𝑦𝑥) (3.15)

= Δ𝑥Δ𝑦 − Δ𝑦Δ𝑥 (3.16)

= (1 ⊗ 𝑥 + 𝑥 ⊗ 1) (1 ⊗ 𝑦 + 𝑦 ⊗ 1) − (1 ⊗ 𝑦 + 𝑦 ⊗ 1) (1 ⊗ 𝑥 + 𝑥 ⊗ 1) (3.17)

= 1 ⊗ 𝑥𝑦 − 1 ⊗ 𝑦𝑥 + 𝑥𝑦 ⊗ 1 − 𝑦𝑥 ⊗ 1 + 𝑥 ⊗ 𝑦 + 𝑦 ⊗ 𝑥 − 𝑥 ⊗ 𝑦 − 𝑦 ⊗ 𝑥 (3.18)

= 1 ⊗ (𝑥𝑦 − 𝑦𝑥) + (𝑥𝑦 − 𝑦𝑥) ⊗ 1 (3.19)

= 1 ⊗ [𝑥,𝑦] + [𝑥,𝑦] ⊗ 1. (3.20)
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The polynomial ring C[𝑥] can also be endowed with a Hopf algebra structure, since S(C1) � C[𝑥] by
sending the basis element of the vector space C1 to the variable 𝑥 . Thus, 𝑥 is primitive, i.e. the comultipli-

cation is given by Δ𝑥 = 1 ⊗ 𝑥 + 𝑥 ⊗ 1 and the antipode yields 𝑆 (𝑥) = −𝑥 . Indeed, any primitive element 𝑥

satisfies the identity 𝑆 (𝑥) · 1 + 𝑆 (1) · 𝑥 = 𝑢𝜖 (𝑥) = 𝑢 (0) = 0 by the defining diagram (in Definition 3.3), and

hence we have 𝑆 (𝑥) = −𝑥 . Moreover, for any polynomial 𝑝 ∈ C[𝑥], we have 𝑆 (𝑝 (𝑥)) = 𝑝 (−𝑥), since C[𝑥]
is commutative and 𝑆 is an algebra anti-endomorphism. ■

Construction 3.5. Our choice of comultiplication on the ring of symmetric functions Symwill be the usual

construction, motivated by splitting the variables: (𝑥,𝑦) ≔ (𝑥1, 𝑥2, . . . , 𝑦1, 𝑦2, . . .). Consider the ring of

formal power series of bounded degree on these variables, denoted by 𝑅(𝑥,𝑦), with the action of the group

𝑆 (∞,∞) permuting all variables. Denote the C-algebra of invariants by Sym(𝑥,𝑦), which is isomorphic to

Sym = Sym(𝑥) by construction. The subgroup 𝑆 (∞) × 𝑆 (∞) ≤ 𝑆 (∞,∞) acts, via the canonical inclusion. by
permuting the sets of 𝑥𝑖 ’s and 𝑦𝑖 ’s separately. Thus, the C-vector space of invariants under this action has

a basis {𝑚_ (𝑥)𝑚` (𝑦)}, where the indices run over all partitions _ and `.

This suggests that we should consider the 𝑘-algebra homomorphism

𝑅(𝑥) ⊗ 𝑅(𝑥) → 𝑅(𝑥,𝑦), 𝑓 (𝑥) ⊗ 𝑔(𝑦) ↦→ 𝑓 (𝑥)𝑔(𝑦), (3.21)

which restrict to an isomorphism

Sym(𝑥) ⊗ Sym(𝑦) = 𝑅(𝑥)𝑆 (∞) ⊗ 𝑅(𝑥)𝑆 (∞) � 𝑅(𝑥,𝑦)𝑆 (∞)×𝑆 (∞) . (3.22)

since the basis {𝑚_ ⊗𝑚`} is sent to {𝑚_ (𝑥)𝑚` (𝑦)}.

Note that Sym(𝑥,𝑦) = 𝑅(𝑥,𝑦)𝑆 (∞,∞) injects into 𝑅(𝑥,𝑦)𝑆 (∞)×𝑆 (∞) , which is just Sym(𝑥) ⊗ Sym(𝑦) under the
above isomorphism. This yields the suitable comultiplication on the C-algebra of symmetric functions

Δ : Sym(𝑥) → Sym(𝑥,𝑦) ↩→ Sym(𝑥) ⊗ Sym(𝑦) ≃ Sym(𝑥) ⊗ Sym(𝑥), (3.23)

where the first map is given by 𝑓 (𝑥) ↦→ 𝑓 (𝑥,𝑦).

Example 3.6. Let us explicitly describe comultiplication on different bases of Sym. Along the way, we

will see that this operation satisfies the coassociativity and counit axioms.

(a). The coproduct of a monomial symmetric function𝑚_ can be expressed as

Δ𝑚_ =
∑︁
(`,a )

𝑚` ⊗𝑚a , (3.24)

where the sum is over all ordered pairs (`, a) of sub-partitions whose disjoint union is _. For example,

we can compute

Δ𝑚 (3,1) =𝑚 (3,1) (𝑥1, 𝑥2, . . . , 𝑦1, 𝑦2, . . .)
= 𝑥31𝑥2 + 𝑥1𝑥32 · · · + 𝑥31𝑦1 + 𝑥31𝑦2 + · · · + 𝑥1𝑦31 + 𝑥1𝑦32 + · · · + 𝑦1𝑦32 + 𝑦1𝑦32 + · · ·
=𝑚 (3,1) (𝑥) +𝑚 (3) (𝑥)𝑚 (1) (𝑦) +𝑚 (1) (𝑥)𝑚 (3) (𝑦) +𝑚 (3,1) (𝑦)
� 𝑚 (3,1) ⊗ 1 +𝑚 (3) ⊗𝑚 (1) +𝑚 (1) ⊗𝑚 (3) + 1 ⊗𝑚 (3,1) .

On the other hand, multiplication on the monomial basis can be expressed as a kind of shuffle, for
example, we have

𝑚 (4,22 )𝑚 (3,1) =𝑚 (4,3,2,2,1) + 2𝑚 (4,3,3,2) +𝑚 (5,3,2,2) +𝑚 (5,4,2,1) +𝑚 (5,4,3) + 2𝑚 (5,5,2) +𝑚 (7,2,2,1) +𝑚 (7,3,2) .
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(b). Power sum symmetric functions are primitive, i.e. Δ𝑝𝑛 = 1 ⊗ 𝑝𝑛 + 𝑝𝑛 ⊗ 1 for every 𝑛 ≥ 1. Indeed, for
any symmetric function 𝑓 (𝑥), Δ sends 𝑓 (𝑥) to 𝑓 (𝑥,𝑦), so we get

𝑝𝑛 (𝑥,𝑦) =
∑︁
𝑖

𝑥𝑛𝑖 +
∑︁
𝑖

𝑦𝑛𝑖 = 𝑝𝑛 (𝑥) · 1 + 1 · 𝑝𝑛 (𝑦) � 1 ⊗ 𝑝𝑛 + 𝑝𝑛 ⊗ 1. (3.25)

(c). Similarly, for elementary symmetric functions, we have

Δ𝑒𝑛 =
∑︁
𝑖+𝑗=𝑛

𝑒𝑖 ⊗ 𝑒 𝑗 (3.26)

for every 𝑛 ∈ Z>0, and we have

Δℎ𝑛 =
∑︁
𝑖+𝑗=𝑛

ℎ𝑖 ⊗ ℎ 𝑗 (3.27)

for every 𝑛 ∈ Z>0.

■

Lemma 3.7. The comultiplication Δ in Sym is coassociative.

Proof. The description of comultiplication on power sum symmetric functions can be used to show the

coassociativity axiom. On the one hand, we have

(Δ ⊗ 1)Δ𝑝𝑛 = Δ(𝑝𝑛 ⊗ 1) + 1 ⊗ 𝑝𝑛 (3.28)

= (𝑝𝑛 ⊗ 1) ⊗ 1 + (1 ⊗ 𝑝𝑛) ⊗ 1 + (1 ⊗ 1) ⊗ 𝑝𝑛 . (3.29)

On the other hand,

(1 ⊗ Δ)Δ𝑝𝑛 = Δ(𝑝𝑛 ⊗ 1) + 1 ⊗ 𝑝𝑛 (3.30)

= 𝑝𝑛 ⊗ (1 ⊗ 1) + 1 ⊗ (𝑝𝑛 ⊗ 1) + 1 ⊗ (1 ⊗ 𝑝𝑛). (3.31)

The two expressions above are equal by associativity of the tensor product. ■

Example 3.8. For any partition _, we have

Δ𝑠_ =
∑︁
`⊆_

𝑠` ⊗ 𝑠_/`, (3.32)

where the sum runs over all sub-partitions of _, i.e. all partitions comprised of some parts of _. To see this,

we can rewrite the explicit formula,

𝑠_ (𝑥,𝑦) =
∑︁
𝑇

(𝑥,𝑦)cont(𝑇 ) , (3.33)

where the sum runs over all semi-standard Young tableaux of shape _with content coming from the ordered

set 𝑥1 < 𝑥2 < · · · < 𝑦1 < 𝑦2 < · · · , and by 𝑇𝑦 the restriction to the alphabet 𝑦. The restriction 𝑇𝑥 of any

such tableau to the boxes with entries from the alphabet 𝑥 yields a skew-tableau of shape _/`, and the

restriction 𝑇𝑦 yields the other sub-tableau, of shape `. So we can express the comultiplication as

𝑠_ (𝑥,𝑦) =
∑︁
𝑇

𝑥cont(𝑇𝑥 ) · 𝑦cont(𝑇𝑦 ) (3.34)

=
∑︁
`⊆_

(∑︁
𝑇𝑥

𝑥cont(𝑇𝑥 )
) (∑︁

𝑇𝑦

𝑦cont(𝑇𝑦 )
)

(3.35)

=
∑︁
`⊆_

𝑠` (𝑥)𝑠_/` (𝑦) . (3.36)

■
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Remark 3.9. There is an alternative description of this formula via the Littlewood-Richardson coefficients,
which are the structure constants of both multiplication and comultiplication of Schur functions

𝑠`𝑠a =
∑︁
_

𝑐_`,a𝑠_, Δ𝑠_ =
∑̀︁
,a

𝑐_`,a𝑠` ⊗ 𝑠a . (3.37)

A graded connected Hopf algebra is a graded Hopf algebra whose degree zero part is isomorphic to the

ground field. A graded connected Hopf with a distinguished basis with respect to which the structure

constants of multiplication and comultiplication coincide is called a self-dual Hopf algebra.

Recall that the for a C-module 𝑉 , the dual is given by 𝑉 ∗ ≔ Hom(𝑉 ,C), where a morphism 𝜙 : 𝑉 →𝑊 is

sent to the adjoint 𝜙∗ :𝑊 ∗ → 𝑉 ∗, determined by (𝑓 , 𝜙 (𝑣)) = (𝜙∗(𝑓 ), 𝑣). If 𝑉 is a graded module, then one

can define the graded dual by
𝑉 𝑜 ≔

⊕
𝑛≥0
(𝑉𝑛)∗ ⊂

∏
𝑛≥0
(𝑉𝑛)∗ = 𝑉 ∗. (3.38)

If𝑉 is finite type, i.e. each𝑉𝑛 is a finite free module, then the dualizing functor is fully faithful, i.e. the map

𝜙 ↦→ 𝜙∗ is bijective. Thus, in this situation duals of graded bialgebras and graded Hopf algebras are graded

bialgebras and graded Hopf algebras, respectively.

The famous Littlewood-Richardson rule gives an explicit combinatorial formula for the above structure con-

stants by counting certain skew-tableaux, and thereby showing positivity of the structure constants. The

construction is somewhat lengthy, and since we are not using positivity later on, we shall not elaborate

on the Littlewood-Richardson rule (see [Sa1], Theorem 4.9.4). However, let us briefly delineate the main

properties of positive self-dual Hopf algebras. A connected graded Hopf algebra with a distinguished ba-

sis consisting of homogeneous elements, is called a positive self-dual Hopf algebra (PSH) if the structure

constants are positive, and the Hopf algebra is self-dual.

(a). The ring of symmetric functions is the only indecomposable PSH up to isomorphism.

(b). The Hall inner product from Construction 1.44 induces an isomorphism of Hopf algebras

Sym→ 𝑘, 𝑔 ↦→ (𝑓 , 𝑔) .

To see that this is an isomorphism of bialgebras, tantamount to showing self-duality.

(c). A close relative of the Hall inner product is the Frobenius character map. So it does not come as

a surprise that the Frobenius character map is also a PSH-isomorphism. We have seen that it is an

isometry in Remark 1.47, and an isomorphism of algebras in Lemma 1.49. We will not use positivity,

but we will need the fact that the character map respects the Hopf algebra structure.

Remark 3.10. Positivity of Sym will not be essential to what follows, but self-duality will be needed to

see that the counit axiom holds (in Lemma 3.11). So, let us indicate why these structure constants coincide.

There is a combinatorial identity, called the Cauchy product identity, in the ring C[𝑥1, 𝑥2, . . . , 𝑦1, 𝑦2, . . .] =
C[𝑥,𝑦], that yields a useful product expansion of comultiplication of Schur functions,

∞∏
𝑖, 𝑗=1

(1 − 𝑥𝑖𝑦 𝑗 )−1 =
∑︁

_∈Par
𝑠_ (𝑥)𝑠_ (𝑦), (3.39)

where the sum runs over all partitions _. There is an equivalent formulation of the Cauchy identity, given

by

∞∏
𝑖, 𝑗=1

(1 − 𝑡𝑥𝑖𝑦 𝑗 )−1 =
∑︁

_∈Par
𝑡 |_ |𝑠_ (𝑥)𝑠_ (𝑦). (3.40)
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This last equality is a consequence of the Robinson-Schensted-Knuth (RSK) algorithm, which recursively

constructs a bijection between permutations

(
𝑖
𝑗

)
=

(
𝑖1 · · ·𝑖ℓ
𝑗1 · · · 𝑗ℓ

)
written in two-line notation and pairs of standard

Young tableaux (𝑃,𝑄) of shape _, such that the content of 𝑄 is 𝑖 , the content of 𝑃 is 𝑗 . In particular, the

RSK algorithm can be used to show the following famous identity, relating permutations and partitions:

𝑛! =
∑︁
_⊢𝑛

𝑡2
_
, (3.41)

where 𝑡_ denotes the number of standard Young tableaux of shape _. The proof of this bijection (which

is not essential to what follows), as well as an explicit description of the RSK algorithm, can be found in

[Sa2], Subsection 3.1. To see how the RSK algorithm implies the Cauchy identity, we need to expand the

terms on the right-hand side,

(1 − 𝑡𝑥𝑦)−1 = 1 + 𝑡𝑥𝑦 + (𝑡𝑥𝑦)2 + · · · , (3.42)

and note that the left-hand side can be written as∑︁
(𝑖𝑗)

𝑡 ℓ𝑥cont(𝑖 )𝑦cont( 𝑗 ) , (3.43)

where the sum runs over all biwords

(
𝑖
𝑗

)
, where 𝑖 = (𝑖1, . . . , 𝑖ℓ ) and 𝑗 = ( 𝑗1, . . . , 𝑗ℓ ) are non-increasing tuples

of nonnegative integers. The RSK algorithm easily generalises from permutations in two-line notation and

standard Young tableaux to a correspondence between biwords as above and semistandard Young tableaux,

and this is where Schur functions enter the fray.

It is also worth noting that the Cauchy product can be expanded in terms of monomials and complete

homogeneous symmetric functions,

∞∏
𝑖, 𝑗=1

(1 − 𝑥𝑖𝑦 𝑗 )−1 =
∑︁

_∈Par
ℎ_ (𝑥)𝑚_ (𝑦), (3.44)

which implies (after a short computation) that the bases {ℎ_} and {𝑚_} are dual bases of Sym with respect

to theHall inner product. This duality has already appeared tacitly, during the construction of the Frobenius

character map in Construction 1.44.

Recall from Remark 1.45 that {𝑠_} forms an orthonormal basis of Sym, so {𝑠` (𝑥)𝑠a (𝑦)} forms an orthonor-

mal basis of Sym ⊗ Sym. As a consequence, multiplication and comultiplication are adjoint, i.e. we have

⟨Δ𝑓 , 𝑔 ⊗ ℎ⟩ = ⟨𝑓 , 𝑔ℎ⟩ for any 𝑓 , 𝑔, ℎ ∈ Sym. Let us elaborate on this phenomenon in the proof of the

following lemma.

Lemma 3.11. The structure constants of multiplication and comultiplication in Sym coincide with respect to
the Schur basis.

Proof. Denote the structure constants of multiplication by 𝑐_`,a and the structure constants of comultiplica-

tion by 𝑐_`,a . Since the Littlewood-Richardson coefficients are indexed by triples of partitions, consider the

ring C[𝑥,𝑦, 𝑧] ≔ C[𝑥1, 𝑥2, . . . , 𝑦1, 𝑦2, . . . , 𝑧1, 𝑧2, . . .], and expand the Cauchy product in two different ways
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to relate 𝑐_`,a and 𝑐
_
`,a . On the one hand, we have

∞∏
𝑖, 𝑗=1

(1 − 𝑥𝑖𝑧 𝑗 )−1
∞∏

𝑖, 𝑗=1

(1 − 𝑦𝑖𝑧 𝑗 )−1 =
( ∑̀︁

𝑠` (𝑥)𝑠` (𝑧)
) (∑︁

a

𝑠a (𝑦)𝑠a (𝑧)
)

(3.45)

=
∑̀︁
,a

𝑠` (𝑥)𝑠a (𝑦) · 𝑠` (𝑧)𝑠a (𝑧) (3.46)

=
∑̀︁
,a

𝑠` (𝑥)𝑠a (𝑦)
(∑︁

_

𝑐_`,a𝑠_ (𝑧)
)
, (3.47)

where the sums run over all partitions ` and a . On the other hand,

∞∏
𝑖, 𝑗=1

(1 − 𝑥𝑖𝑧 𝑗 )−1
∞∏

𝑖, 𝑗=1

(1 − 𝑦𝑖𝑧 𝑗 )−1 =
∑︁
_

𝑠_ (𝑥,𝑦)𝑠_ (𝑧) (3.48)

=
∑︁
_

Δ𝑠_ (𝑥)𝑠_ (𝑧) (3.49)

=
∑︁
_

( ∑̀︁
,a

𝑐_`,_𝑠` (𝑥)𝑠a (𝑦)
)
𝑠_ (𝑧) . (3.50)

Therefore, both 𝑐_`,a and 𝑐_`,a arise as the coefficient of 𝑠` (𝑥)𝑠a (𝑦)𝑠_ (𝑧) in the above Cauchy product, and

consequently, they are equal. ■

Lemma 3.12. The counit 𝜖 in Sym is defined as the identity on Sym0 � C and the zero map zero elsewhere,
i.e. it is the evaluation map 𝑓 ↦→ 𝑓 (0, 0, . . .). The counit 𝜖 in Sym satisfies the counit axiom.

Proof. Recall from diagram 3.2, that we need to show the identity

(id ⊗𝜖) ◦ Δ = id = (𝜖 ⊗ id) ◦ Δ. (3.51)

This fact hinges on self-duality from Lemma 3.11. On the one hand, we have

(𝜖 ⊗ 1)Δ𝑠_ = (Y ⊗ 1)
∑̀︁
,a

𝑐_`,a𝑠` ⊗ 𝑠a (3.52)

=
∑̀︁
,a

𝜖 (𝑠`) ⊗ 𝑐_`,a𝑠a (3.53)

= 1 ⊗ 𝑠_ . (3.54)

On the other hand,

(1 ⊗ 𝜖)Δ𝑠_ = (1 ⊗ Y)
∑̀︁
,a

𝑐_`,a𝑠` (𝑥)𝑠a (𝑦) (3.55)

=
∑̀︁
,a

𝑐_`,a𝑠` ⊗ 𝜖 (𝑠a ) (3.56)

= 𝑠_ ⊗ 1, (3.57)

so the counit axiom is also satisfied, and Sym can be endowed with a coalgebra structure. The compatibility

conditions in Definition 3.1 can directly checked by the definition of the operations. The twist operation

from equation 3.6𝑇 is easily dealt with, because Sym is cocommutative, which we will show subsequently

in Remark 3.14. Hence, we can endow Sym with a structure of a graded connected Hopf algebra over C. ■
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Example 3.13. Recall from Example 3.6, part (b) that power sum symmetric functions are primitive ele-

ments of Sym, i.e. Δ𝑝𝑛 = 1 ⊗ 𝑝𝑛 + 𝑝𝑛 ⊗ 1. Therefore, we obtain the identity 1 · 𝜖 (𝑝𝑛) + 𝜖 (𝑝𝑛) · 𝑝𝑛 = 𝑝𝑛 by

the defining diagram (in Definition 3.1), and consequently 𝜖 (𝑝𝑛) = 0. ■

Remark 3.14. Comultiplication in Sym is cocomutative, i.e. the following diagram commutes,

Sym ⊗ Sym

Sym ⊗ Sym

Sym

𝑇

Δ

Δ (3.58)

where 𝑇 denotes the twist map 𝑓 ⊗ 𝑔 ↦→ 𝑔 ⊗ 𝑓 . Here, it is expedient to consider the C-algebra generating

set {ℎ𝑛} of complete homogeneous symmetric functions. Using the explicit description of comultiplication

from Example 3.6 (b), we can compute

(𝑇 ◦ Δ) (ℎ𝑛) = 𝑇 (Δ(ℎ𝑛)) (3.59)

= 𝑇

( ∑︁
𝑖+𝑗=𝑛

ℎ𝑖 ⊗ ℎ 𝑗
)

(3.60)

=
∑︁
𝑖+𝑗=𝑛

ℎ 𝑗 ⊗ ℎ𝑖 =
∑︁
𝑖+𝑗=𝑛

ℎ𝑖 ⊗ ℎ 𝑗 (3.61)

= Δℎ𝑛 . (3.62)

Therefore, 𝑇 ◦ Δ = Δ on the generators, and these maps are C-algebra homomorphisms, so they must be

equal on the entire bialgebra Sym.

Construction 3.15. So far, we have seen that Sym is a graded bialgebra over C, and Sym0 � C, i.e. it is

also a connected bialgebra. According to a general statement about graded connected bialgebras (see [GR],

Proposition 1.4.16), the antipode comes for free, and it is completely determined. Moreover, a morphism of

bialgebras between Hopf algebras is in fact a morphism of Hopf algebras.

There is an explicit description of the antipode in a graded connected Hopf algebra 𝐴, called Takeuchi’s
formula, given by

𝑆 =
∑︁
𝑘≥0
(−1)𝑘𝑚 (𝑘−1) 𝑓 ⊗𝑘Δ(𝑘−1) (3.63)

= 𝑢𝜖 − 𝑓 +𝑚 ◦ 𝑓 ⊗2 ◦ Δ −𝑚 (2) ◦ 𝑓 ◦ Δ(2) + · · · , (3.64)

where 𝑓 = id𝐴 −𝑢𝜖 ∈ End(𝐴).

To see this, note that 𝑓 sends the zero degree part𝐴0 to 0. Then for every 𝑥 ∈ 𝐴𝑛 and𝑚 > 𝑛, each summand

ofΔ(𝑚−1) contains a factor lying in𝐴0. Thus, 𝑓
⊗𝑚

sends each summand to zero, and consequently, 𝑓 ∗𝑚 (𝑎) =
0, which means that the graded map 𝑓 is locally ∗-nilpotent. Hence, 𝑢𝜖 + 𝑓 = id𝐴 has a two-sided inverse,

which is by definition the antipode 𝑆 . Explicitly, we can write

𝑆 = (id𝐴)∗(−1) = (𝑢𝜖 + 𝑓 )∗(−1) =
∑︁
𝑘≥0
(−1)𝑘 𝑓 ∗𝑘 ,

which yields the desired formula.
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Remark 3.16. There is an equivalence of categories between affine group schemes (group objects in the

category of affine schemes) and commutative Hopf algebras. Hopf algebras graded by the integers cor-

respond to affine group schemes with G𝑚-action, where G𝑚 denotes the multiplicative group scheme

SpecZ[𝑥, 𝑥−1]. In this group scheme, the unit map is given by 𝑥 ↦→ 1, multiplication by 𝑥 ↦→ 𝑥 ⊗ 𝑥
and inverse by 𝑥 ↦→ 𝑥−1.

Example 3.17. The antipode in Sym is determined by the primitive elements 𝑆 (𝑝𝑛) = −𝑝𝑛 for all 𝑛 ∈ Z>0,
for the same reason that we gave in Example 3.4.

The antipode on elementary symmetric functions is given by 𝑆 (𝑒𝑛) = (−1)𝑛ℎ𝑛 for every 𝑛 ∈ Z>0, and we

have 𝑆 (ℎ𝑛) = (−1)𝑛𝑒𝑛 for every 𝑛 ∈ Z>0.

To see this, first recall the coproduct formula from Example 3.6. For every 𝑛 ∈ Z>0 we have

Δ(𝑒𝑛) =
∑︁
𝑖+𝑗=𝑛

𝑒𝑖 ⊗ 𝑒 𝑗 . (3.65)

Thus, by the defining relations for the antipode (in Definition 3.3), it follows that∑︁
𝑖+𝑗=𝑛

𝑆 (𝑒𝑖)𝑒 𝑗 = 𝑢𝜖 (𝑒𝑛) = 𝛿0,𝑛 =
∑︁
𝑖+𝑗=𝑛

𝑒𝑖 𝑆 (𝑒 𝑗 ), (3.66)

and analogously for complete homogeneous symmetric functions. Since we have the following identity

from Remark 1.24 ∑︁
𝑖+𝑗=𝑛
(−1)𝑒𝑖ℎ 𝑗 = 𝛿0,𝑛, (3.67)

we obtain the desired formulas 𝑆 (𝑒𝑛) = (−1)𝑛ℎ𝑛 and 𝑆 (ℎ𝑛) = (−1)𝑛𝑒𝑛 by induction. ■

Lemma 3.18. We have the following relation between the fundamental involution and the antipode in the
Hopf algebra of symmetric functions. For any 𝑓 ∈ Sym𝑛 ,

𝑆 (𝑓 ) = (−1)𝑛𝜔 (𝑓 ). (3.68)

Proof. Recall from Remark 3.14 that Sym is cocommuative, so all C-algebra anti-endomorphisms Sym→
Sym, such as the antipode, are in factC-algebra endomorphisms. Consider theC-bialgebra homomorphism

𝑎−1 : Sym→ Sym given by 𝑓 ↦→ (−1)𝑛 𝑓 for any 𝑓 ∈ Sym𝑛 , and precompose it with 𝜔 to get

𝜔 ◦ 𝑎−1 = 𝜔 ((−1)𝑛𝑒𝑛) = (−1)𝑛ℎ𝑛 . (3.69)

Since we have 𝑆 (𝑒𝑛) = (−1)𝑛ℎ𝑛 , the above identity yields (𝜔 ◦ 𝑎−1) (𝑒𝑛) = 𝑆 (𝑒𝑛) for each 𝑛 ∈ Z>0. Hence,
we get that 𝜔 ◦ 𝑎−1 = 𝑆 as C-algebra homomorphisms on Sym. ■

Lemma 3.19. The fundamental involution 𝜔 and the antipode 𝑆 are Hopf algebra automorphisms of Sym.

Proof. It is expedient to consider complete homogeneous symmetric functions for checking these relations,
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((𝜔 ⊗ 𝜔) ◦ Δ) (ℎ𝑛) = (𝜔 ⊗ 𝜔) (Δ(ℎ𝑛)) (3.70)

= (𝜔 ⊗ 𝜔)
( ∑︁
𝑖+𝑗=𝑛

ℎ𝑖 ⊗ ℎ 𝑗
)

(3.71)

=
∑︁
𝑖+𝑗=𝑛

𝜔 (ℎ𝑖) ⊗ 𝜔 (ℎ 𝑗 ) (3.72)

=
∑︁
𝑖+𝑗=𝑛

𝑒𝑖 ⊗ 𝑒 𝑗 (3.73)

= Δ(𝑒𝑛) (3.74)

= Δ(𝜔 (ℎ𝑛)) (3.75)

= (Δ ◦ 𝜔) (ℎ𝑛) . (3.76)

Thus, for all 𝑛 ∈ Z>0 we have
((𝜔 ⊗ 𝜔) ◦ Δ) (ℎ𝑛) = (Δ ◦ 𝜔) (ℎ𝑛), (3.77)

and consequently we have (𝜔 ⊗ 𝜔) ◦ Δ = Δ ◦ 𝜔 . Similarly, we can also see that 𝜖 = 𝜖 ◦ 𝜔 . Therefore, 𝜔 is

a morphism of bialgebras from a Hopf algebra to itself, and as such, it is a Hopf algebra morphism. Being

an involution, 𝜔 is invertible, so 𝜔 is indeed a Hopf algebra automorphism.

From Lemma 3.18 and Example 3.17, we know that

𝑆 (ℎ𝑛) = (−1)𝑛𝑒𝑛 = (−1)𝑛𝜔 (ℎ𝑛), (3.78)

and we have seen that 𝜔 is a Hopf algebra automorphism. Hence the antipode must also be a Hopf algebra

automorphism (since the antipode in Sym is a C-algebra automorphism,). ■

Lemma 3.20. The fundamental involution 𝜔 is a graded map.

Proof. Since the structure of a graded connected bialgebra gives rise to a unique graded algebra homomor-

phism that satisfies the diagram of the antipode, 𝑆 must be graded, i.e. 𝑆 (Sym𝑛) ⊆ Sym𝑛 for any 𝑛 ∈ Z>0.
From Example 3.17, we know that for any 𝑓 ∈ Sym𝑛 , we have 𝑆 (𝑓 ) = (−1)𝑛𝜔 (𝑓 ), so

(−1)𝑛𝑆 (𝑓 ) = (−1)𝑛 (−1)𝑛𝜔 (𝑓 ) = 𝜔 (𝑓 ) . (3.79)

Consequently, we end up with

𝜔 (𝑓 ) = (−1)𝑛𝑆 (𝑓 ) ∈ (−1)𝑛𝑆 (Sym𝑛) ⊂ Sym𝑛 . (3.80)

■

Lemma 3.21. The Frobenius character map (from Definition 1.46) is a Hopf algebra automorphism.

Proof. Wehave seen that the character map is an algebra automorphism in Lemma 1.49, and over the course

of this subsection we have endowed the ring of symmetric function Sym with a Hopf algebra structure.

Recall from Definition 1.46 that the C-algebra 𝑅𝑛 of class of functions of the symmetric group 𝑆𝑛 extends

to a graded C-algebra 𝑅 =
⊕

𝑛≥0 𝑅𝑛 , which is the domain of the character map ch. Irreducible characters

72



form an orthonormal basis of 𝑅, and the suitable product on 𝑅, so that the character map is an algebra

morphism, is given by𝑚 = Ind𝑆𝑛+𝑚
𝑆𝑛×𝑆𝑚 : 𝑅𝑖 ⊗ 𝑅 𝑗 → 𝑅𝑖+𝑗 . Then it is natural to define a coproduct on 𝑅 by

Δ ≔
⊕
𝑖+𝑗=𝑛

Res𝑆𝑛
𝑆𝑖×𝑆 𝑗

: 𝑅𝑛 →
⊕
𝑖+𝑗=𝑛

𝑅𝑖 ⊗ 𝑅 𝑗 , (3.81)

and one has to show the compatibility condition

ch

( 𝑛⊕
𝑘=0

Res𝑆𝑛
𝑆𝑘×𝑆𝑛−𝑘 (𝜒)

)
= Δ(ch(𝜒)) . (3.82)

The proof demonstrating that these operations give rise to a bialgebra structure on 𝑅 is quite cumbersome,

and it can be found in [GR], Corollary 4.3.10, in the broader context of PSHs. We will provide a proof in

Lemma 3.44 that pertains specifically to the context we require. ■

3.2 Hopf Algebra of Quasi-Symmetric Functions

We are now prepared to study quasi-symmetric functions from an algebraic perspective. The Hopf algebra

of symmetric functions lies within a larger Hopf algebraQSym of quasi-symmetric functions, which arises

as a terminal object in the category of graded connected Hopf algebras. This fact will be demonstrated in

Theorem 3.35, and we will subsequently use this universal property to present chromatic symmetric and

quasi-symmetric functions of graphs within an algebraic framework.

Construction 3.22. The ring of quasi-symmetric functions consists of power series in infinitely many

variables {𝑥𝑖}𝑖∈Z>0 with complex coefficients and of bounded degree, such that the coefficient of any two

monomials 𝑥
𝛼1
𝑖1
· · · 𝑥𝛼𝑟

𝑖𝑟
and 𝑥

𝛼1
𝑗1
· · · 𝑥𝛼𝑟

𝑗𝑟
coincides whenever 𝑖1 < · · · < 𝑖𝑟 and 𝑗1 < · · · < 𝑗𝑟 . Similarly to

Sym, the C-algebra QSym is graded by degree.

As before, everything in this section works analogously over any algebraically closed field 𝑘 of character-

istic zero. In Subsection 3.3, we will need C(𝑡)-coefficients as well as C-coefficients.

For any composition 𝛼 = (𝛼1, . . . , 𝛼𝑟 ), we can define, analogously to monomial symmetric functions,mono-
mial quasi-symmetric functions,

𝑀𝛼 ≔
∑︁

0<𝑖1<· · ·<𝑖𝑟
𝑥
𝛼1
𝑖1
𝑥
𝛼2
𝑖2
· · · 𝑥𝛼𝑟

𝑖𝑟
. (3.83)

Let us list the first few examples of monomial quasi-symmetric functions,

𝑀(1) = 𝑥1 + 𝑥2 + 𝑥3 + · · · =𝑚 (1) = 𝑠 (1) = 𝑒1 = ℎ1 = 𝑝1,
𝑀(2) = 𝑥

2
1 + 𝑥22 + 𝑥23 + · · · =𝑚 (2) = 𝑝2,

𝑀(1,1) = 𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥2𝑥3 + · · · =𝑚 (1,1) = 𝑒2
𝑀(3) = 𝑥

3
1 + 𝑥32 + 𝑥33 + · · · =𝑚 (3) = 𝑝3,

𝑀(2,1) = 𝑥
2
1𝑥2 + 𝑥21𝑥3 + 𝑥22𝑥3 + · · · ,

𝑀(1,2) = 𝑥1𝑥
2
2 + 𝑥1𝑥33 + 𝑥2𝑥23 + · · · ,

𝑀(1,1,1) = 𝑥1𝑥2𝑥3 + 𝑥1𝑥2𝑥4 + 𝑥1𝑥3 + 𝑥4 + · · · =𝑚 (1,1,1) = 𝑒3.

Analogously to the proof of Lemma 1.16, we can show that {𝑀𝛼 } forms a basis ofQSym, and if we restrict

to compositions 𝛼 |= 𝑛, thenmonomial quasi-symmetric functions form a basis of the degree𝑛 partQSym𝑛 .
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Monomial quasi-symmetric functions give the means to describe monomial symmetric functions in terms

of compositions, not just weak compositions, like did in Lemma 1.16. For any partition _,

𝑚_ =
∑︁
𝛼

𝑀𝛼 , (3.84)

where the sum runs over all compositions 𝛼 = (𝛼1, . . . , 𝛼𝑟 ) of shape _.

In particular, the C-dimension of the degree 𝑛 part QSym𝑛 is the number of compositions of 𝑛, which is

given by 2𝑛−1.

Construction 3.23. Analogously to Sym (as in Construction 3.5), the product QSym(𝑥) ⊗ QSym(𝑦)
can be embedded in the 𝑘-algebra 𝑅(𝑥,𝑦) by identifying each 𝑓 ⊗ 𝑔 with 𝑓 𝑔 ∈ 𝑅(𝑥,𝑦). Thus, we have a

string of inclusion QSym(𝑥,𝑦) ⊂ QSym(𝑥) ⊗ QSym(𝑦) ⊂ 𝑅(𝑥,𝑦), and the comultiplication Δ : QSym→
QSym ⊗QSym can be defined as the composition

QSym � QSym(𝑥,𝑦) ↩→ QSym(𝑥) ⊗ QSym(𝑦) � QSym ⊗QSym, (3.85)

where the isomorphism QSym � QSym(𝑥,𝑦) is given by 𝑓 ↦→ 𝑓 (𝑥,𝑦) = 𝑓 (𝑥1, 𝑥2, . . . , 𝑦1, 𝑦2, . . .).

Example 3.24. The comultiplication on monomial quasi-symmetric functions is given by

Δ𝑀𝛼 =
∑︁

(𝛽,𝛾 ) : 𝛽 ·𝛾=𝛼
𝑀𝛽 ⊗ 𝑀𝛾 , (3.86)

where 𝛽 · 𝛾 is the concatenation of the two compositions.

Similarly to comultiplication of monomial symmetric functions in Example 3.6 part (a), one can compute

Δ𝑀(2,32 ) = 𝑀(2,32 ) (𝑥1, 𝑥2, . . . , 𝑦1, 𝑦2, . . .)
= 𝑥21𝑥

3
2𝑥

3
3 + 𝑥21𝑥32𝑥34 + · · · + 𝑥21𝑥32𝑦31 + 𝑥21𝑥32𝑦32 + · · ·

+ 𝑥21𝑦31𝑦32 + 𝑥21𝑦31𝑦33 + · · · + 𝑦21𝑦32𝑦33 + 𝑦21𝑦32𝑦34 + · · ·
= 𝑀(2,32 ) (𝑥) +𝑀2,3(𝑥)𝑀(3) (𝑦) +𝑀(2) (𝑥)𝑀(32 ) (𝑦) +𝑀(2,32 ) (𝑦)
= 𝑀(2,32 ) ⊗ 1 +𝑀(2,3) ⊗ 𝑀(3) +𝑀(2) ⊗ 𝑀(32 ) + 1 ⊗ 𝑀(2,32 ) .

In particular, if 𝛼 = (𝑛), then𝑀𝛼 is a primitive element.

On the other hand, multiplication can be expressed of a kind of shuffle on the monomial basis, for example

𝑀(2,32 )𝑀(5) = 𝑀(2,3,3,5) +𝑀(2,3,5,3) +𝑀(2,3,8) +𝑀(2,5,3,3) +𝑀(2,8,3) +𝑀(5,2,3,3) +𝑀(7,3,3) .

In particular, the primitive monomial quasi-symmetric function 𝑀(𝑛) appears in a product 𝑀𝛼𝑀𝛽 only if

𝛼 = (𝑖) and 𝛽 = ( 𝑗) with 𝑖 + 𝑗 = 𝑛. ■

Lemma 3.25. The ring of quasi-symmetric functions QSym is a graded connected Hopf algebra, containing
the ring of symmetric functions Sym as a Hopf subalgebra.
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Proof. To show coassociativity (Δ ◦ id) ◦ Δ = (id ⊗Δ) ◦ Δ, consider the monomial basis, and compute

((Δ ◦ id) ◦ Δ)𝑀𝛼 =

ℓ∑︁
𝑘=0

Δ(𝑀(𝛼1,...,𝛼𝑘 ) ) ⊗ 𝑀(𝛼𝑘+1,...,𝛼ℓ ) (3.87)

=

ℓ∑︁
𝑘=0

𝑘∑︁
𝑖=0

𝑀(𝛼1,...,𝛼𝑖 ) ⊗ 𝑀(𝛼𝑖+1,...,𝛼𝑘 ) ⊗ 𝑀𝛼𝑘+1,...,𝛼ℓ ) (3.88)

=

ℓ∑︁
𝑘=0

(𝑀(𝛼1,...,𝛼𝑘 ) ) ⊗ Δ𝑀(𝛼𝑘+1,...,𝛼ℓ ) (3.89)

= ((id ⊗Δ) ◦ Δ)𝑀𝛼 . (3.90)

The coproduct in QSym is an algebra morphism, being the composition of two algebra morphisms. The

counit in both Sym andQSymwill be the evaluation map that sends 𝑓 (𝑥) to 𝑓 (0, 0, . . .), which is an algebra
morphism. Consequently, QSym is a graded connected bialgebra, and hence a Hopf algebra.

For the second claim, that Sym arises as a Hopf subalgebra of QSym, note that the generators 𝑒𝑛 of Sym
can be written as 𝑒𝑛 = 𝑀(1,...,1) , so the formula for comultiplication on the monomial basis implies that the

comultiplication on QSym restricts to

Δ𝑒𝑛 =

𝑛∑︁
𝑖=1

𝑒𝑖 ⊗ 𝑒𝑛−𝑖 , (3.91)

which coincides with our comultiplication on the Hopf algebra Sym. Moreover, the antipode in a graded

connected Hopf algebra is uniquely determined. ■

Example 3.26. We are not going to use any explicit formula for the antipode in QSym, but let us briefly

explain how to express it in the monomial basis.

For any 𝛼, 𝛽 ∈ Comp𝑛 , 𝛼 is said to refine 𝛽 (or 𝛽 coarsens 𝛼) if one can obtain 𝛽 from 𝛼 by combining

some of its adjacent parts. For any composition 𝛼 , its reverse composition is rev(𝛼) = (𝛼ℓ , 𝛼ℓ−1, . . . , 𝛼2, 𝛼1),
which induces a poset automorphism of Comp𝑛 , given by 𝛼 ↦→ rev(𝛼). Then the antipode ofQSym in the

monomial basis is given by

𝑆 (𝑀𝛼 ) = (−1)ℓ (𝛼 )
∑︁

𝛾 ∈Comp:
𝛾 coarsens rev(𝛼 )

𝑀𝛾 . (3.92)

The proof of this formula (which can be found in [GR], Theorem 5.1.11) relies on a sign reversing involution

and the fact that𝑀(𝑛) is a primitive element. ■

Remark 3.27. There is another important basis ofQSym, called the basis of fundamental quasi-symmetric
functions. For a composition 𝛼 ∈ Comp𝑛 , the corresponding fundamental quasi-symmetric function is

defined as

𝐹𝛼 ≔
∑︁

𝛽∈Comp𝑛
𝛽 refines 𝛼

𝑀𝛽 . (3.93)
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For instance, for the eight compositions of 4, we have

𝐹 (1,1,1,1) = 𝑀(1,1,1,1) .

𝐹 (2,1,1) = 𝑀(1,1,1,1) +𝑀(2,1,1) ,
𝐹 (1,2,1) = 𝑀(1,1,1,1) +𝑀(1,2,1) ,
𝐹 (1,1,2) = 𝑀(1,1,1,1) +𝑀(1,1,2) ,
𝐹 (2,2) = 𝑀(1,1,1,1) +𝑀(1,1,2) +𝑀(2,1,1) +𝑀(2,2) ,
𝐹 (3,1) = 𝑀(1,1,1,1) +𝑀(1,2,1) +𝑀(2,1,1) +𝑀(3,1) ,
𝐹 (1,3) = 𝑀(1,1,1,1) +𝑀(1,2,1) +𝑀(1,1,2) +𝑀(1,3) ,
𝐹 (4) = 𝑀(1,1,1,1) +𝑀(1,1,2) +𝑀(1,2,1) +𝑀(1,3) +𝑀(2,1,1) +𝑀(2,2) +𝑀(3,1) +𝑀(4) .

Similarly to Schur functions, 𝐹𝛼 is also a bridge between elementary symmetric functions and complete

homogeneous symmetric functions, since we have

𝐹 (1𝑛 ) = 𝑀(1𝑛 ) = 𝑒𝑛, and 𝐹 (𝑛) =
∑︁

𝛼∈Comp𝑛

𝑀𝛼 = ℎ𝑛 . (3.94)

There is an operation on compositions, called near-concatenation, which helps describe comultiplication on

the fundamental basis. For two compositions𝛼 = (𝛼1, . . . , 𝛼𝑖) and 𝛽 = (𝛽1, . . . , 𝛽 𝑗 ), their near-concatenation
is defined by 𝛼 ⊙ 𝛽 ≔ (𝛼1, . . . , 𝛼𝑖−1, 𝛼𝑖 + 𝛽1, . . . , 𝛽 𝑗 ). Then the comultiplication on the fundamental basis is

given by

Δ𝐹𝛼 =
∑︁
(𝛽,𝛾 )

𝛽 ·𝛾=𝛼 or 𝛽⊙𝛾=𝛼

𝐹𝛽 ⊗ 𝐹𝛾 . (3.95)

The antipode on the fundamental basis is expressed by 𝑆 (𝐹𝛼 ) = (−1) |𝛼 |𝐹𝜔 (𝛼 ) , where 𝜔 (𝛼) is the (uniquely
defined) composition, whose partial sums form a complementary set within [𝑛 − 1] to the partial sums of

the reverse-composition rev(𝛼). For example, if 𝛼 = (4, 1, 3), a composition of 8, then rev(𝛼) = (3, 1, 4),
and the set of partial sums of rev(𝛼) is {3, 4} ⊂ [7]. The complementary set is {1, 2, 5, 6, 7}, and there is a

unique composition𝜔 (𝛼) = (1, 1, 3, 1, 1), whose set of partial sums is this set. We will not use these explicit

formulas later on, and proofs can be found in [GR], Proposition 5.2.15.

Example 3.28. Recall from Theorem 1.69 that the chromatic symmetric function of the path 𝑃3 with labels

1, 2, 3, in this linear order, lies in Sym[𝑡], since this path is the indifference graph of the Dyck path (2, 3, 3).
In Example 1.61, we computed 𝑒-expansion of this chromatic quasi-symmetric function 𝑒 (3) + (𝑒3+𝑒 (2,1) )𝑡 +
𝑒3𝑡

2
. We have also computed the chromatic quasi-symmetric function of the path 𝑃3 with labels 2, 1, 3, in

Example 1.61, and realised that this quasi-symmetric functions does not lie in the ring Sym[𝑡]. It can be

written as

(2 + 2𝑡 + 2𝑡2)𝑚 (13 ) +
∑︁
𝑖< 𝑗

𝑥2𝑖 𝑥 𝑗 + 𝑡2
∑︁
𝑖< 𝑗

𝑥𝑖𝑥
2
𝑗 , (3.96)

which can be expressed in terms of fundamental quasi-symmetric functions as

(𝑒 (3) + 𝐹 (2,1) ) + 2𝑒 (3)𝑡 + (𝑒 (3) + 𝐹 (1,2) )𝑡2. (3.97)

Similarly, if we calculate the chromatic quasi-symmetric functions of the path 𝑃3 with labels 1, 3, 2, then
we obtain the expansion

(𝑒 (3) + 𝐹 (1,2) ) + 2𝑒 (3)𝑡 + (𝑒 (3) + 𝐹 (2,1) )𝑡2. (3.98)

■
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Remark 3.29. Since Sym ⊂ QSym, we may consider the expansion of the symmetric functions we en-

countered earlier in terms of distinguished bases of QSym. Example 3.28 provided a small illustration of

this phenomenon. The monomial quasi-symmetric function expansion of symmetric functions can also be

helpful, as we will see in Lemma 3.46.

Let 𝑉 be a finite dimensional 𝑆𝑛-representation. Then the coefficient of the primitive monomial quasi-

symmetric function 𝑀(𝑛) in the Frobenius character ch(𝑉 ) ∈ Sym is equal to the dimension of the space

of 𝑆𝑛-invariants in 𝑉 . In other words, it is the dimension of the subspace of 𝑉 on which 𝑆𝑛 acts trivially.

This result is known as the Murnaghan-Nakayama rule, whose proof can be found in [Sa1], Section 4.10.

On the other hand, the coefficient of 𝑀(𝑛) in 𝜔 (ch(𝑉 )) is the dimension of subspace 𝑉 ′ of 𝑉 on which 𝑆𝑛
acts by the sign representation, i.e. for any 𝑥 ∈ 𝑉 ′, we have𝑤 · 𝑥 = (−1)ℓ (𝑤 )𝑥 .

Recall from Lemma 3.11 that the Hopf algebra of symmetric functions Sym is self-dual, and that 𝜔 and the

Hall inner product plays an important role in describing this duality on the distinguished bases. We will

shortly see that QSym is no longer self-dual.

Definition 3.30. The Hopf algebra of noncommutative symmetric functions NSym is the dual of QSym.

Consider the dual pairing ( · , · ) : NSym ⊗ QSym → 𝑘 , and let {𝐻𝛼 } be the 𝑘-basis of NSym dual to the

𝑘-basis {𝑀𝛼 } of QSym, so that (𝐻𝛼 , 𝑀𝛽 ) = 𝛿𝛼,𝛽 for all compositions 𝛼 and 𝛽 .

Lemma 3.31. For any 𝑛 ∈ Z>0, we will abbreviate 𝐻𝑛 ≔ 𝐻 (𝑛) and use the convention 𝐻0 = 1. Then we
have NSym � 𝑘 ⟨𝐻1, 𝐻2, . . .⟩, i.e. it is the free associative (but not commutative) algebra with generators
{𝐻1, 𝐻2, . . .}. Moreover, the coproduct is determined by

Δ𝐻𝑛 =
∑︁
𝑖+𝑗=𝑛

𝐻𝑖 ⊗ 𝐻 𝑗 . (3.99)

Proof. Recall, from Example 3.24, what comultiplication in QSym does to the monomial basis,

Δ𝑀𝛼 =

ℓ∑︁
𝑘=0

𝑀(𝛼1,...,𝛼𝑘 ) ⊗ 𝑀(𝛼𝑘+1,...,𝛼ℓ ) =
∑︁

(𝛽,𝛾 ): 𝛽 ·𝛾=𝛼
𝑀𝛽 ⊗ 𝑀𝛾 , (3.100)

where 𝛽 · 𝛾 is the concatenation of the two compositions. Consequently, multiplication on the dual {𝐻𝛼 }
is given by 𝐻𝛽𝐻𝛾 = 𝐻𝛽 ·𝛾 , and inductively, we have 𝐻𝛼 = 𝐻𝛼1 · · ·𝐻𝛼ℓ

, where 𝛼 = (𝛼1, . . . , 𝛼ℓ ). Hence, there
is an algebra isomorphism NSym � 𝑘 ⟨𝐻1, 𝐻2, . . .⟩.

For the second assertion, recall from Example 3.24 that the primitive monomial quasi-symmetric function

𝑀(𝑛) appears in a product 𝑀𝛼𝑀𝛽 only if 𝛼 = (𝑖) and 𝛽 = ( 𝑗) with 𝑖 + 𝑗 = 𝑛. In this case, we have

𝑀(𝑖 )𝑀( 𝑗 ) = 𝑀(𝑖+𝑗 ) +𝑀(𝑖, 𝑗 ) +𝑀( 𝑗,𝑖 ) . Since 𝐻𝑛 is dual to𝑀(𝑛) , this yields the desired equality (3.99). ■

Lemma 3.32. The homomorphism 𝜋 : NSym → Sym, 𝐻𝑛 ↦→ ℎ𝑛 is a surjective Hopf algebra morphism,
which is adjoint to the inclusion 𝑖 : Sym ↩→ QSym with respect to the dual pairing.

Proof. Let 𝑉 be the graded free C-module on the set {𝐻𝑖}. Recall from Lemma 1.25 and Lemma 1.25 that

Sym � 𝑘 [ℎ1, ℎ2, . . .] andNSym � 𝑘 ⟨𝐻1, 𝐻2, . . .⟩. As 𝜋 is an algebramorphism, it corresponds to a surjective

map from the free module 𝑉 to Sym(𝑉 ). Furthermore, recall from Example 3.6 part (b) and Lemma 3.31,

that the expressions for comultiplication also match up,

Δℎ𝑛 =
∑︁
𝑖+𝑗=𝑛

ℎ𝑖 ⊗ ℎ 𝑗 and Δ𝐻𝑛 =
∑︁
𝑖+𝑗=𝑛

𝐻𝑖 ⊗ 𝐻 𝑗 . (3.101)
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Hence, 𝜋 is a bialgebra morphism, and as a result, being a bialgebra morphism between graded connected

Hopf algebras, a Hopf algebra morphism.

For the second assertion, let 𝛼 be a composition and let _(𝛼) be the corresponding partition, i.e. a weakly

decreasing rearrangement of 𝛼 . Note that ⟨𝜋 (𝐻𝛼 ),𝑚`⟩ = ⟨ℎ_ (𝛼 ) ,𝑚`⟩ by Construction 1.44, which is 1 if

_(𝛼) =𝑚` and 0 otherwise. This coincides with the pairing〈
𝐻𝛼 ,

∑︁
𝛽 :_ (𝛽 )=_

𝑀𝛽

〉
= ⟨𝐻𝛼 , 𝑖 (𝑚_)⟩, (3.102)

which shows adjointness. ■

Definition 3.33. Let 𝑘 be a field of characteristic zero (for us, this will be C or C(𝑡)). A character of a Hopf
algebra𝐴 over 𝑘 is an algebra morphism Z : 𝐴→ 𝑘 satisfying Z (1𝐴) = 1𝑘 , 𝑘-linearity and Z (𝑎𝑏) = Z (𝑎)Z (𝑏)
for any 𝑎, 𝑏 ∈ 𝐴.

Definition 3.34. The distinguished character Z𝑄 : QSym→ 𝑘 is given by 𝑓 (𝑥) ↦→ 𝑓 (1, 0, 0, . . .). Note that

Z𝑄 (𝑀𝛼 ) = Z𝑄 (𝐹𝛼 ) =
{
1 if 𝛼 = (𝑛) for some 𝑛,

0 otherwise.
(3.103)

Consequently, the restriction Z𝑄 |QSym𝑛
is the functional 𝐻𝑛 ∈ NSym𝑛 = Hom𝑘 (QSym𝑛, 𝑘), i.e. for any

𝑓 ∈ QSym𝑛 , we have Z𝑄 (𝑓 ) = (𝐻𝑛, 𝑓 ).

Theorem 3.35. Let𝐴 be a connected graded Hopf algebra, and Z : 𝐴→ 𝑘 a character. Then there is a unique
graded Hopf algebra homomorphism𝜓 : 𝐴→ QSym making the following diagram commute

QSym

𝐴

𝑘

𝜓

Z
Z𝑄

(3.104)

For any homogeneous element 𝑎 ∈ 𝐴𝑛 , we have

𝜓 (𝑎) =
∑︁

𝛼∈Comp𝑛

Z𝛼 (𝑎)𝑀𝛼 , (3.105)

where Comp𝑛 denotes the set of compositions of 𝑛 and Z𝛼 for 𝛼 = (𝛼1, . . . , 𝛼ℓ ) ∈ Comp𝑛 is given by

𝐴𝑛

Δ(ℓ−1)−−−−−→ 𝐴⊗ℓ
𝜋𝛼−−→ 𝐴𝛼1 ⊗ · · · ⊗ 𝐴𝛼ℓ

Z ⊗ℓ

−−→ 𝑘, (3.106)

and where 𝜋𝛼 : 𝐴⊗ℓ → 𝐴𝛼1 ⊗ · · · ⊗ 𝐴𝛼ℓ
denotes the canonical projection onto the graded parts determined by

𝛼 . Furthermore, when 𝐴 is cocommutative, im𝜓 ⊂ Sym.

Proof. There is a bijection between graded 𝑘-linear maps𝐴→ QSym and graded 𝑘-linear mapsQSym𝑜 →
𝐴𝑜

, given by taking the dual 𝑓 ↦→ 𝑓 ∗. A graded map 𝑓 : 𝐴→ QSym is a 𝑘-coalgebra morphism if and only

if 𝑓 ∗ is a 𝑘-algebra morphism. Regard 𝜓 as a graded 𝑘-coalgebra map instead of a Hopf algebra map, and

consider the corresponding 𝑘-algebra map under the above correspondence NSym = QSym𝑜
𝜓 ∗

−−→ 𝐴𝑜
. By
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commutativity of diagram (3.104), for any 𝑎 ∈ 𝐴𝑛 , we have (𝜓 ∗(𝐻𝑛), 𝑎) = (𝐻𝑛,𝜓 (𝑎)) = Z𝑄 (𝜓 (𝑎)) = Z (𝑎).
Since𝜓 ∗ is graded, we have (𝜓 ∗(𝐻𝑚), 𝑎) = 0 if 𝑎 ∈ 𝐴𝑛 and𝑚 ≠ 𝑛. Hence,𝜓 ∗(𝐻𝑛) ∈ 𝐴𝑜

is given by

𝜓 ∗(𝐻𝑛) (𝑎) =
{
Z (𝑎) if 𝑎 ∈ 𝐴𝑛,

0 if 𝑎 ∈ 𝐴𝑚 for some𝑚 ≠ 𝑛.
(3.107)

SinceNSym � 𝑘 ⟨𝐻1, 𝐻2, . . .⟩, by the universal property of free associative 𝑘-algebras, for any 𝑘-linear map

Z : 𝐴 → 𝑘 , we have a unique 𝑘-algebra morphism 𝜓 ∗ : QSym𝑜 → 𝐴𝑜
satisfying equation (3.107) for any

𝑛 ∈ Z>0. By definition, 𝜓 ∗ also satisfies equation (3.107) for 𝑛 = 0, and we have 𝜓 ∗(1) = 1, since Z (1) = 1
and 𝐴 is connected. Therefore, for any Z : 𝐴→ 𝑘 with Z (1) = 1, there exists a unique 𝑘-algebra morphism

𝜓 ∗ : QSym → 𝐴 satisfying equation (3.107) for all 𝑛 ∈ Z>0. Taking the dual of 𝜙∗ yields

𝜓 (𝑎) =
∑︁

𝛼∈Comp

(𝐻𝛼 ,𝜓 (𝑎))𝑀𝛼 . (3.108)

For any composition 𝛼 = (𝛼1, . . . , 𝛼ℓ ), the projection to𝑀𝛼 in equation (3.108) can be expressed as

(𝐻𝛼 ,𝜓 (𝑎)) = (𝜓 ∗(𝐻𝛼 ), 𝑎) (3.109)

= (𝜓 ∗(𝐻𝛼1) · · ·𝜓 ∗(𝐻𝛼ℓ
), 𝑎) (3.110)

= (𝜓 ∗(𝐻𝛼1) ⊗ · · · ⊗𝜓 ∗(𝐻𝛼ℓ
),Δ(ℓ−1) (𝑎)) (3.111)

= (Z ⊗ℓ ◦ 𝜋𝛼 ) (Δ(ℓ−1) (𝑎)) (3.112)

= Z𝛼 (𝑎), (3.113)

and hence formula (3.105) follows.

When Z : 𝐴→ 𝑘 is a character and 𝐴 is a Hopf algebra, we need to show that𝜓 : 𝐴→ QSym is an algebra

morphism, i.e. the maps𝜓 ◦𝑚 and𝑚 ◦ (𝜓 ⊗𝜓 ) : 𝐴 ⊗𝐴→ QSym coincide. This follows from the universal

property applied to the above compositions,

𝐴 QSym

𝐴 ⊗ 𝐴 𝑘

𝜓

Z
Z𝑄𝑚

Z⊗Z

and

QSym⊗2 QSym

𝐴 ⊗ 𝐴 𝑘

𝑚

Z𝑄⊗Z𝑄 Z𝑄𝜓⊗𝜓

Z⊗Z

(3.114)

where the two diagrams commute since Z and Z𝑄 are algebra morphisms and the uniqueness part above,

applied to the character Z ⊗ Z : 𝐴 ⊗ 𝐴→ 𝑘 , ensures that𝜓 ◦𝑚 =𝑚 ◦ (𝜓 ⊗𝜓 ).

For the last assertion, consider the explicit description of 𝜓 (𝑎) in equation (3.106) when 𝐴 is also cocom-

mutative, and note that for any rearrangement 𝛽 of 𝛼 , we have Z𝛼 = Z𝛽 . ■

3.3 Hopf Algebra of Graphs

Definition 3.36. An isomorphism of simple graphs𝐺 = (𝑉 , 𝐸) and𝐺 ′ = (𝑉 ′, 𝐸′) is a bijective map 𝑓 : 𝑉 →
𝑉 ′ such that 𝑣,𝑤 ∈ 𝑉 are adjacent in 𝐺 if and only if 𝑓 (𝑣) and 𝑓 (𝑤) are adjacent in 𝐺 ′. Consider the free
𝑘-module G on isomorphism classes of finite simple graphs, where again, 𝑘 denotes an algebraically closed

field of characteristic zero, primarily C or C(𝑡). We definemultiplication of two classes of simple graphs to

be the isomorphism class of their disjoint union. The comultiplication Δ : G → G ⊗ G is defined by

Δ[G] ≔
∑︁
(𝑉1,𝑉2 )

[𝐺 |𝑉1] ⊗ [𝐺 |𝑉1], (3.115)

79



where the sum runs over all partitions 𝑉1 ∪· 𝑉2 = 𝑉 , and the restriction 𝐺 |𝑉𝑖 is the induced subgraphs by

the vertex set 𝑉𝑖 . For example, we have

Δ[ ] = 1 ⊗ [ ] + 2[ ] ⊗ [ ] + 2[ ] ⊗ [ ] (3.116)

+2[ ] ⊗ [ ] + 2[ ] ⊗ [ ] + [ ] ⊗ 1. (3.117)

Furthermore, the counit 𝜖 : G → 𝑘 will be 𝜖 [𝐺] = 1 if 𝐺 is the empty graph and 0 otherwise.

Remark 3.37. To see that the above operations give rise to a bialgebra structure on G, we need to verify

the identities in Definition 3.1 directly by definition of the operations. For instance, note that if 𝑉1 and 𝑉2
are disjoint vertex sets and 𝐺 |𝑉1 = 𝐺1, 𝐺 |𝑉2 = 𝐺2, then we have

Δ ◦𝑚( [𝐺1] ⊗ [𝐺2]) =
∑︁

(𝑉11,𝑉12,𝑉21,𝑉22 )
[𝐺1 |𝑉12 ∪· 𝐺2 |𝑉21] ⊗ [𝐺1 |𝑉11 ∪· 𝐺2 |𝑉22] (3.118)

= (𝑚 ⊗𝑚) ◦ (id ⊗𝑇 ⊗ id) ◦ (Δ ⊗ Δ) ( [𝐺1] ⊗ [𝐺2]), (3.119)

where the sum runs over all pairs of partitions (𝑉1 = 𝑉11 ∪· 𝑉12,𝑉2 = 𝑉21 ∪· 𝑉22).

Note that G is commutative and cocommutative, since 𝐺1 ∪· 𝐺2 = 𝐺2 ∪· 𝐺1, and G is finite type, since for

each graded part G𝑛 , there are only finitely many isomorphism classes of simple graphs of order 𝑛.

Although not necessary for what follows, it is worth noting that the multiset of graphs obtained by deleting

vertices (as opposed to edges, as discussed in Remark 1.10) can be recovered from the comultiplication

operation.

Remark 3.38. Since G is a graded connected bialgebra, there is a unique (graded) antipode. Moreover,

Takeuchi’s formula from Remark 3.15 takes the form

𝑆 [𝐺] =
∑︁
𝐹

(−1) |𝑉 |−rank(𝐹 )acyc(𝐺/𝐹 ) [𝐺𝑉 ,𝐹 ], (3.120)

where the sum runs over all subsets 𝐹 of the edge set 𝐸 that form the graphic matroid for 𝐺 , i.e. if 𝑒 =

{𝑣, 𝑣 ′} ∈ 𝐸 such that 𝐹 has a path from 𝑣 to 𝑣 ′, then 𝑒 ∈ 𝐹 . The graph𝐺/𝐹 is the quotient graph, i.e. all edges
of 𝐹 are contracted, acyc(G/F) denotes the number of acyclic orientations, 𝐺𝑉 ,𝐹 denotes the subgraph of

𝐺 spanned by 𝐹 , and rank of 𝐹 is the maximum cardinality of a subset 𝐹 ′ of 𝐹 such that𝐺𝑉 ,𝐹 ′ is acyclic. We

will not use this combinatorial description of the antipode in what follows; its proof can be found in [HM],

Theorem 3.1. However, the statement prompts an interesting observation.

Recall from Remark 1.55 that the quantity acyc(G/F) is also featured in an explicit description of the

𝑒-expansion of chromatic symmetric functions. The above description of the antipode motivates the intro-

duction of a new basis for G, which we describe briefly, in the following remark.

Mimicking the Möbius inversion formula for posets, as in Section 3.7 of [St1], given a finite graph 𝐺 =

(𝑉 , 𝐸), we can define the class

[𝐺]# ≔
∑︁

𝐻=(𝑉 ,𝐸′ )
𝐸′⊃𝐸𝑐

(−1) |𝐸′\𝐸𝑐 | [𝐻 ] ∈ G, (3.121)

where 𝐸𝑐 denotes the complement of 𝐸 in the edge set of the corresponding complete graph. Note that

[𝐺]# depends only on the isomorphism class [𝐺]. Every finite graph 𝐺 = (𝑉 , 𝐸) satisfies

[𝐺] =
∑︁

𝐻=(𝑉 ,𝐸′ )
𝐸′∩𝐸=∅

[𝐻 ]#. (3.122)
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The elements [𝐺]#, where [𝐺] ranges over all isomorphism classes of finite graphs, also form a basis of G
as a free 𝑘-module. For any graph 𝐻 = (𝑉 , 𝐸), the comultiplication can be described on the new basis as

Δ[𝐻 ]# =
∑︁
(𝑉1,𝑉2 )

𝑉=𝑉1∪·𝑉2
𝐻=𝐻 |𝑉1∪·𝐻 |𝑉2

[𝐻 |𝑉1]# ⊗ [𝐻 |𝑉2]#. (3.123)

Furthermore, for any two finite graphs 𝐻1 = (𝑉1, 𝐸1) and 𝐻2 = (𝑉2, 𝐸2), the structure constants of multi-

plication under this new basis can be described as

[𝐻1]# [𝐻2]# =
∑︁

𝐻=(𝑉1∪·𝑉2,𝐸 )
𝐻 |𝑉1=𝐻1

𝐻 |𝑉2=𝐻2

[𝐻 ]#. (3.124)

These formulas are reminiscent of the Littlewood-Richardson rule (from Remark 3.9), and comultiplication

of Schur functions (from Example 3.8). But they will not appear later on, so we refer the reader to [GR],

Proposition 7.3.9 for further details.

Construction 3.39. There is a natural generalization of the distinguished character, which appears in the

universal property of graded connected Hopf algebras, in Theorem 3.35. Let 𝑓 ∈ QSym, then the principal
specialization ps1(𝑓 ) (𝑚) of 𝑓 at𝑚 is defined by evaluating the first𝑚 variables at 1 and the rest at 0.

Note that this map produces the chromatic polynomial, when 𝑓 is the chromatic quasi-symmetric function

of a graph.

For any 𝑓 ∈ QSym, there is a unique element in C[𝑥] which takes the values ps1(𝑓 ) (𝑚) on positive

integers. One can see this by calculating ps1(𝑀𝛼 ) (𝑚) on the monomial basis,

ps1(𝑀𝛼 ) (𝑚) = 𝑀𝛼 (1, . . . , 1, 0, 0, . . .) =
∑︁

1≤𝑖1<· · ·<𝑖ℓ ≤𝑚
[𝑥𝛼1

𝑖1
· · · 𝑥𝛼ℓ

𝑖ℓ
]𝑥 𝑗=1, (3.125)

where we evaluated all variables at 1, in the last sum. This expression is

(
𝑚
ℓ

)
, which is a polynomial in𝑚

of degree ℓ , the length of 𝛼 . Hence, it is determined by the prescribed (infinitely many) values.

Principal specialization is a Hopf algebramap fromQSym toC[𝑥] endowedwith theHopf algebra structure
described in Example 3.4. To see this, first note that any evaluation map is an algebra morphism. One

can show that it is also a coalgebra morphism by computing both sides of the following identity on the

monomial basis. On the one hand, we have

(Δ ◦ ps1) (𝑀𝛼 ) = Δ

(
𝑚

ℓ

)
=

(
𝑚 ⊗ 1 + 1 ⊗𝑚

ℓ

)
. (3.126)

By Vandermonde summation, this can be expressed as

ℓ∑︁
𝑘=1

(
𝑚 ⊗ 1

𝑘

) (
1 ⊗𝑚
ℓ − 𝑘

)
=

ℓ∑︁
𝑘=0

(
𝑚

𝑘

)
⊗

(
𝑚

ℓ − 𝑘

)
. (3.127)

On the other hand, we have

((ps1 ⊗ ps1) ◦ Δ) (𝑀𝛼 ) =
ℓ∑︁

𝑘=0

ps1(𝑀(𝛼1,...,𝛼𝑘 ) ) ⊗ ps1(𝑀(𝛼𝑘+1,...,𝛼ℓ ) ) (3.128)

=

ℓ∑︁
𝑘=1

(
𝑚

𝑘

)
⊗

(
𝑚

ℓ − 𝑘

)
. (3.129)

81



Hence, principal specialization is a bialgebra morphism between two Hopf algebras, and as a result, a Hopf

algebra morphism.

Construction 3.40. Analogously, one can consider the Hopf algebra of ordered graphs G̃, where the

vertices of a graph of order 𝑛 are labelled by the set [𝑛]. Multiplication, comultiplication, unit and counit

can be defined in the same way as the operations on isomorphism classes of graphs. The order on the

disjoint union obtained by multiplication 𝑚(𝐺 ⊗ 𝐻 ) for two ordered graphs 𝐺 and 𝐻 with vertex sets

{𝑔1 < · · · < 𝑔𝑎} and {ℎ1 < · · · < ℎ𝑏}, respectively, is given by {𝑔1 < · · · < 𝑔𝑎 < ℎ1 < · · · < ℎ𝑏}.

However, since we would like to emulate the construction of chromatic quasi-symmetric functions, it is

expedient to introduce a twist in the comultiplication formula. We define the 𝑟 -fold comultiplication by

Δ𝑟 (𝐺) =
∑︁

^:𝑉→[𝑟 ]
𝑡asc(^ )𝐺 |^ . (3.130)

One can check that this new operation also endows ordered graphs with a graded connected bialgebra

structure, and hence a Hopf algebra structure by comparing the suitable formulas, as in Remark 3.37. The

only difference is that one has to keep track of the twist in the comultiplication. The explicit computation

can be found in [GP], Proposition 11. Now, we can leverage the universal property of graded connected

Hopf algebras in the Hopf algebra of ordered graphs, and compute the induced map for any particular

character.

Lemma 3.41. Let us consider the character Z0 : G̃ → C(𝑡) given by

Z0(𝐺) ≔
{
1 if 𝐺 is edgeless,
0 otherwise.

(3.131)

Then, for every ordered graph 𝐺 , the induced map from Theorem 3.35 is the chromatic quasi-symmetric func-
tion,

𝜓0(𝐺) = 𝑋 (𝐺 ;𝑥, 𝑡) .

Proof. To see this, we need to unravel the explicit construction of 𝜓0(𝐺). By Theorem 3.35, for any com-

position 𝛼 = (𝛼1, . . . , 𝛼𝑟 ), the coefficient of the monomial quasi-symmetric function 𝑀𝛼 in 𝜓0(𝐺) is given
by

(Z0 ⊗ · · · ⊗ Z0︸         ︷︷         ︸
𝑟 -fold

) ◦ (𝜋𝛼1 ⊗ · · · ⊗ 𝜋𝛼𝑟 ) ◦ Δ𝑟 (𝐺) . (3.132)

Using the defining formula of comultiplication in G̃, this expression turns into∑︁
^:𝑉→[𝑟 ]

𝑡asc(^ ) (Z0 ◦ 𝜋𝛼1 (𝐺 |𝑉1)) ⊗ · · · ⊗ (Z0 ◦ 𝜋𝛼𝑟 (𝐺 |𝑉𝑟 )), (3.133)

where 𝑉𝑖 = ^
−1(𝑖) and 𝜋𝑘 is the projection onto the 𝑘th homogeneous component. By definition of Z0, a

summand in (3.133) is nonzero if and only if the order of each𝑉𝑖 is 𝛼𝑖 and ^ is a proper colouring, i.e. there

are no monochromatic edges. Thus, the coefficient of𝑀𝛼 in𝜓0(𝐺) is given by∑︁
^:𝑉→[𝑟 ] proper
|𝑉𝑖 |=𝛼𝑖

𝑡asc(^ ) . (3.134)

Let us write the monomial quasi-symmetric function𝑀𝛼 as

𝑀𝛼 =
∑︁

𝑗1<· · ·< 𝑗𝑟

𝑥
𝛼1
𝑗1
· · · 𝑥𝛼𝑟

𝑗𝑟
, (3.135)
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and let ^′ : 𝑉 → Z>0 be a proper colouring using colours 𝑗𝑖 , each of them 𝛼𝑖 times, respectively. Each such

colouring can be factored uniquely as 𝑉
^−→ [𝑟 ] ]

↩−→ Z>0, where ^ is a proper colouring that uses 𝛼𝑖 times

each colour 𝑖 , and ] is an order preserving inclusion. Hence, we have expressed𝜓0(𝐺) as

𝜓0(𝐺) =
∑︁

^:𝑉→Z>0
proper

𝑡asc(^ )𝑥^, (3.136)

which is the chromatic quasi-symmetric function 𝑋 (𝐺 ;𝑥, 𝑡). ■

Remark 3.42. Recall from Construction 1.68, part (c), that an ordered graph 𝐺 = ( [𝑛], 𝐸, <) is the in-

comparability graph of a Dyck path if and only if 𝑖 𝑗 ∈ 𝐸 implies that 𝑖′ 𝑗 ′ ∈ 𝐸 for any 𝑖 ≤ 𝑖′ < 𝑗 ′ ≤ 𝑗 .

Note that this closure condition ensures that the set D of such graphs is closed under multiplication and

comultiplication operations of G̃. Hence, D is a graded connected Hopf subalgebra of G̃.

Construction 3.43. Let us revisit flow-up classes, the dot action and the Frobenius character of this action
from a Hopf algebraic point of view.

Recall from Construction 2.20 that the moment graph of a Hessenberg variety takes into account both the

left and the right regular action of the symmetric group. For instance, the moment graph of the permuto-

hedral variety of rank 3, which is determined by the Dyck path (2, 3, 3),

is given by

123

132213

231 312

321

𝑡1 − 𝑡2

𝑡2 − 𝑡3

𝑡1 − 𝑡3

where the vertices correspond to permutations in 𝑆3, the edges correspond to right-multiplication by the

transpositions (12) and (23), and the edge labels correspond to left-multiplication by the transpositions

(12) and (23) and (13). Recall fromConstruction 2.20 thatwe only take into account right-multiplication by

transporitions (𝑖 𝑗), where the cell with coordinates (𝑖, 𝑗) lies below the Dyck path and above the diagonal.

Therefore, it is expedient to introduce two ordered sets of variables 𝐿 = (𝐿1, . . . , 𝐿𝑛) and 𝑅 = (𝑅1, . . . , 𝑅𝑛).
Let us identifyC[𝐿] with𝐻 ∗

𝑇
(pt), and recall fromConstruction 2.9 that we have a tower of graded connected

C-algebras C ⊂ C[𝐿] ⊂ 𝐻 ∗
𝑇
(𝑋 (ℎ)), where 𝐻 ∗

𝑇
(𝑋 (ℎ)) is a free module over C[𝐿]. By dint of GKM theory,

we can express the ordinary cohomology as the quotient

𝐻 ∗(𝑋 (ℎ)) � 𝐻 ∗𝑇 (𝑋 (ℎ))/⟨𝐿⟩, (3.137)

which we also pointed out in Construction 2.9, and utilised in Example 2.26 and 2.28. Here, ⟨𝐿⟩ denotes the
C-submodule of 𝐻 ∗

𝑇
(𝑋 (ℎ)) generated by the labelled moment graphs, where all vertices are assigned the
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label 𝐿𝑖 . For examples, we saw that

𝑠1 · 𝑟4 = 𝑠1 ·

0

00

𝑡12𝑡13 0

𝑡12𝑡13

=

0

𝑡21𝑡230

0 𝑡21𝑡23

0

=

0

00

𝑡12𝑡13 0

𝑡23𝑡13

+

0

𝑡21𝑡230

𝑡21𝑡13 𝑡21𝑡23

𝑡21𝑡13

= 𝑟4 + 𝑡21𝑟3 � 𝑟4. (3.138)

Recall from Construction 2.9 that the dot action fixes C pointwise, while it preserves C[𝐿] with a twisted

C-algebra automorphism, given by𝑤 · 𝐿𝑖 = 𝐿𝑤 (𝑖 ) , e.g., in Example 2.28 we computed

𝑠2 · 𝑟1 = 𝑠2 ·

1

11

1 1

1

=

1

11

1 1

1

= 𝑟1, (3.139)

𝑠2 · 𝑡2𝑟1 = 𝑠2 ·

𝑡2

𝑡2𝑡2

𝑡2 𝑡2

𝑡2

=

𝑡3

𝑡3𝑡3

𝑡3 𝑡3

𝑡3

= 𝑟1. (3.140)

As a result, the dot action is twisted C[𝐿]-linear.

Let us denote the permutation group of 𝐿 by 𝑆 (𝐿) and the permutation group of 𝑅 by 𝑆 (𝑅). Furthermore, we

denote the set of bijections from 𝑅 to 𝐿 by 𝑆 (𝐿 ← 𝑅). Guay-Paquet used this notation in [GP] to emphasize

that 𝑆 (𝐿) acts on 𝑆 (𝐿 ← 𝑅) by composition on the left.

It will be useful to think of the tuples of polynomials associated to the vertices in the moment graph of

𝑋 (ℎ) as elements of the product

T �
∏

𝛼∈𝑆 (𝐿→𝑅)
C[𝐿] . (3.141)

Let 1𝛼 denote the element of T , that has label 1 at the vertex corresponding to 𝛼 and 0 elsewhere. Then

the unit element of T can be written as 1 =
∑

𝛼 1𝛼 . For example,

1

11

1 1

1

=

1

00

0 0

0

+

0

10

0 0

0

+

0

01

0 0

0

+

0

00

1 0

0

+

0

00

0 1

0

+

0

00

0 0

1

. (3.142)

We shall identify C[𝐿] with the subring C[𝐿] · 1 of T . Any element 𝑓 ∈ T can be written as

𝑓 =
∑︁

𝛼∈𝑆 (𝐿←𝑅)
𝑓𝛼 (𝐿1, . . . , 𝐿𝑛) 1𝛼 . (3.143)

The element 𝑓 ∈ T is homogeneous if each 𝑓𝛼 is homogeneous. This grading turns T into a graded con-

nected C-algebra. Note that 𝑆 (𝑅) acts C[𝐿]-linearly on T by 1𝛼 ·𝑤 = 1𝛼◦𝑤 for any𝑤 ∈ 𝑆 (𝑅). For example,
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we have

𝑠1 · 1231 = 𝑠1 ·

0

00

1 0

0

=

0

10

0 0

0

= 1132 = 1𝑠1 (231) . (3.144)

One can also regard the ring T as a product of C[𝑅]’s, given by

T �
∏

𝛼∈𝑆 (𝐿←𝑅)
C[𝑅], (3.145)

but the two products (3.141) and (3.145) are not naturally isomorphic. We pick the isomorphism given by

1𝛼 𝑅𝑖 = 𝛼 (𝑅𝑖) 1𝛼 for every 𝛼 ∈ 𝑆 (𝐿 ← 𝑅) and every variable 𝑅𝑖 . If we express an element 𝑓 ∈ T as

T =
∏

𝛼∈𝑆 (𝐿←𝑅)
1𝛼 𝑔𝛼 (𝑅1, . . . , 𝑅𝑛), (3.146)

then the above isomorphism can be expressed as 𝑓𝛼 (𝐿1, . . . , 𝐿𝑛) = 𝑔𝛼 (𝛼 (𝑅1), . . . , 𝛼 (𝑅𝑛)). This way, T can

also be endowed with a right C[𝑅]-module structure, via the action 𝑤 · 1𝛼 = 1𝑤◦𝛼 for any 𝑤 ∈ 𝑆 (𝐿). Note
that the left action by 𝑆 (𝐿) commutes with the right action by 𝑆 (𝑅), and we have twisted C[𝐿] and C[𝑅]
linearity,

𝑤 · (𝐿𝑖1𝛼 ) = 𝑤 (𝐿𝑖)1𝑤 ·𝛼 and (1𝛼𝑅𝑖) ·𝑤 = 1𝛼◦𝑤𝑤 (𝑅𝑖) . (3.147)

For a Dyck path ℎ, let Tℎ denote the subring of T that satisfy the edge conditions of the moment graph

𝑀 (ℎ) of 𝑋 (ℎ), for a regular semisimple Hessenberg variety corresponding to ℎ. Recall from Construction

2.22 that Tℎ has a homogeneous basis given by flow-up classes, so that Tℎ is a free graded module of rank

𝑛! over both C[𝐿] and C[𝑅].

Let us denote by the graded Frobenius character (Definition 1.51) of these two actions byFrob(𝑆 (𝐿),Tℎ,C[𝐿])
and Frob(𝑆 (𝐿),Tℎ,C[𝑅]), respectively.

Lemma 3.44. The maps D → Sym[𝑡], given by

Frob𝑅 : 𝐺 (ℎ) → Frob(𝑆 (𝐿),Tℎ,C[𝑅]) and Frob𝐿 : 𝐺 (ℎ) → Frob(𝑆 (𝐿),Tℎ,C[𝐿]) (3.148)

are maps of graded connected Hopf algebras.

Proof. Since bothD and Sym are graded connected Hopf algebras, it suffices to show thatFrob𝑅 andFrob𝐿
respect multiplication and comultiplication, as well as the grading of D and Sym.

Recall from Example 1.71 that the indifference graph of a Dyck path is disconnected if and only if the Dyck

path touches the diagonal. Assume that we have a decomposition of𝐺 (ℎ) of the form𝐺 (ℎ1) ∪· · · · ∪· 𝐺 (ℎ𝑟 ),
where the𝐺 (ℎ𝑖) themselves are not necessarily connected and 𝑟 is some natural number. Let us denote the

Dyck path corresponding to𝐺 (ℎ𝑖) by ℎ𝑖 : 𝑛𝑖 → 𝑛𝑖 , so that 𝑛 = 𝑛1 + · · · +𝑛𝑟 , where 𝑛 is the rank of the Dyck
path ℎ : [𝑛] → [𝑛]. Then the 𝑟 -fold multiplication is given by𝑚𝑟 (𝐺 (ℎ1) ⊗ · · · ⊗ 𝐺 (ℎ𝑟 )) = 𝐺 (ℎ).

If we introduce new sets of variables 𝐿𝑖 ≔ (𝐿𝑖,1, . . . , 𝐿𝑖,𝑛𝑖 ) and 𝑅𝑖 = (𝑅𝑖,1, . . . , 𝑅𝑖,𝑛𝑖 ) for each 𝑖 ∈ [𝑟 ], then
Tℎ1 ⊗ · · · ⊗ Tℎ𝑟 is a module over both C[𝐿] and C[𝑅], where the action is induced by the Young subgroup

𝑌𝐿 ≔ 𝑆 (𝐿1)×· · ·×𝑆 (𝐿𝑟 ) ⊂ 𝑆 (𝐿) corresponding to the composition of 𝑛 given by 𝐿𝑖 . Analogously, we denote

by 𝑌𝑅 ≔ 𝑆 (𝑅1) × · · · × 𝑆 (𝑅𝑟 ) ⊂ 𝑆 (𝑅) the Young subgroup corresponding to the composition of 𝑛 given by

𝑅𝑖 . Later we will consider orbits of Young subgroups corresponding to other compositions too.
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If we can show that ∏
𝑖∈[𝑟 ]

Frob(𝑆 (𝐿𝑖),Tℎ𝑖 ,C[𝐿𝑖]) = Frob(𝑆 (𝐿),Tℎ,C[𝐿]), (3.149)

then we see that multiplication is respected by Frob𝐿 (and analogously, by Frob𝑅).

In other words, we need to show that

Tℎ � Ind𝑆 (𝐿)
𝑆 (𝐿1 )×···×𝑆 (𝐿𝑟 ) (Tℎ1 ⊗ · · · ⊗ Tℎ𝑟 ) . (3.150)

First, note that the moment graph 𝑀 (ℎ) has at least 𝑟 connected components, by Construction 2.20, since

the Dyck path ℎ touches the diagonal at least 𝑟 − 1 times. Let 𝛼0 ∈ 𝑆 (𝐿 ← 𝑅) denote the element given by

𝛼0(𝑅𝑖) = 𝐿𝑖 for all 𝑖 ∈ [𝑛]. Recall from Construction 3.43 that 𝛼0 can be regarded as a vertex of𝑀 (ℎ). Let us
denote its 𝑌𝑅-orbit by O. Then the restriction of 𝑀 (ℎ) to O is the Cartesian product 𝑀 (ℎ1) × · · · ×𝑀 (ℎ𝑟 ).
Consequently, the C-linear map Tℎ1 ⊗ · · · ⊗ Tℎ𝑟 → Tℎ |O , where Tℎ |O denotes the subspace whose elements

have zeros for coordinates outside O, takes flow-up classes to flow-up classes. Hence, it is an isomorphism.

The subspace Tℎ |O is preserved by the 𝑌𝐿-action, since O is the orbit of 𝛼0 under the 𝑌𝐿-action. Let

𝑤1, . . . ,𝑤𝑘 be coset representatives for 𝑌𝐿 in 𝑆 (𝐿), then we can decompose Tℎ as

Tℎ =
⊕
𝑖∈[𝑘 ]

𝑤𝑖 · Tℎ |O, (3.151)

which is the desired induced representation. Hence, the maps Frob𝑅 and Frob𝐿 are compatible with mul-

tiplication, as required.

To show that Frob𝑅 and Frob𝐿 respect comultiplication, let us compare the formulas for comultiplication

in D and Sym. In the Hopf algebra D of ordered graphs arising from Dyck paths, we have

Δ𝑟 (𝐺 (ℎ)) =
∑︁

^:[𝑛]→[𝑟 ]
𝑡asc(^ )𝐺 (ℎ) |^, (3.152)

and in the Hopf algebra Sym, we have

Δ𝑟 (Frob(𝑆 (𝐿),Tℎ,C[𝐿]) =
∑︁
𝛼

Frob(𝑌𝐿,𝛼 ,Tℎ,C[𝐿]), (3.153)

where the sum runs over all compositions 𝛼 = (𝛼1, . . . , 𝛼𝑟 ) of 𝑛, of length 𝑟 , and 𝑌𝐿,𝛼 denotes the Young

subgroup corresponding to 𝛼 . One can partition the set of colourings according to the compositions deter-

mined by the number of times each colour is being used, and rewrite the comultiplication formula (3.152)

by splitting the sum into (not necessarily proper) colourings ^ : [𝑛] → [𝑟 ],

Δ𝑟 (𝐺 (ℎ)) =
∑︁
𝛼

∑︁
^ : [𝑛]→[𝑟 ]
of type 𝛼

𝑡asc(^ )𝐺 (ℎ) |^ . (3.154)

We need to show the two formulas in (3.153) and (3.154) coincide, and thereby show that comultiplication

is respected by the map Frob𝐿 . The computation for Frob𝑅 is analogous.

For any 𝛽 ∈ 𝑆 (𝐿 ← 𝑅), the orbit O𝛽 under the action of the Young subgroup 𝑌𝐿,𝛼 on the vertices of the

moment graph𝑀 (ℎ) consists of those 𝛽 ′ ∈ 𝑆 (𝐿 ← 𝑅) with 𝛽−1(𝐿𝑖) = 𝛽 ′−1(𝐿𝑖) for all 𝑖 ∈ [𝑟 ]. Let us denote
the set 𝛽−1(𝐿𝑖) by 𝑅𝑖,𝛽 for any 𝛽 ∈ 𝑆 (𝐿 ← 𝑅) and 𝑖 ∈ [𝑟 ].

By the combinatorial description of the moment graph𝑀 (ℎ) in Construction 2.20, if the directed edge 𝑖 𝑗 is

an ascent of the colouring ^, then every vertex of the orbit O𝛽 has an incoming edge labelled by (𝑅𝑖 , 𝑅 𝑗 ).
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Similarly, if 𝑖 𝑗 is a descent of ^, then every vertex of O𝛽 has an outgoing vertex labelled by (𝑅𝑖 , 𝑅 𝑗 ). On
the other hand, if 𝑖 𝑗 is a monochromatic edge for ^, then the edges labelled by (𝑅𝑖 , 𝑅 𝑗 ) form a perfect

matching of O𝛽 . In other words, the subgraph of 𝑀 (ℎ) induced by O𝛽 can be written as the Cartesian

product 𝑀 (ℎ) |O𝛽 � 𝑀 (ℎ1) × · · · × 𝑀 (ℎ𝑟 ), where the ℎ𝑖 are the restricted Dyck paths determined by the

restriction 𝐺 (ℎ) |^ = (𝐺 (ℎ1), . . . ,𝐺 (ℎ𝑟 )). Moreover, if there is a directed edge in 𝑀 (ℎ) from 𝛽 to 𝛽 ′, then
there is also a directed edge from any vertex of O𝛽 to a distinct vertex of O𝛽 ′ , and consequently, the quotient
𝑀 (ℎ)/𝑌𝐿,𝛼 is a directed acyclic graph.

Let us denote the orbits of the𝑌𝐿,𝛼 -action on𝑀 (ℎ) by O𝛽1, . . . ,O𝛽𝑘 , listed in a way that there are no directed
edges from O𝛽𝑖 to O𝛽 𝑗

if 𝑖 < 𝑗 , which is feasible, since𝑀 (ℎ)/𝑌𝐿,𝛼 is acyclic. Then we have a chain of nested

ideals,

I1 ≔ Tℎ |O𝛽1 ⊆ I2 ≔ Tℎ |O𝛽1∪O𝛽2 ⊆ · · · ⊆ I𝑘 ≔ Tℎ |O𝛽1∪···∪O𝛽𝑘 , (3.155)

where the restrictions again denotes those tuples of polynomials in Tℎ that are zero for all vertices of the

moment graph𝑀 (ℎ) outside the restriction. The projections

Tℎ → Tℎ/I1 → Tℎ/I2 → · · · → Tℎ/I𝑘 = 0 (3.156)

are equivariant with respect to the C[𝐿] and C[𝑅]-actions, as well as the 𝑌𝐿,𝛼 ⊆ 𝑆 (𝐿)-action. Denote the
kernel of the 𝑖th projection by 𝐾𝑖 , and the 𝑖th orbit by O𝑖 with induced subgraph

𝑀 (ℎ) |O𝑖 � 𝑀 (ℎ1) × · · · ×𝑀 (ℎ𝑟 ) (3.157)

determined by the colouring 𝐺 (ℎ) |^ = (𝐺 (ℎ1), . . . ,𝐺 (ℎ𝑟 )). Note that Tℎ1 ⊗ · · · ⊗ Tℎ𝑟 are 𝑟 -tuples of poly-
nomials in C[𝑅1] ⊗ · · · ⊗ C[𝑅𝑟 ] � C[𝑅]. So we can construct a C-linear map,

𝜑 : Tℎ1 ⊗ · · · ⊗ Tℎ𝑟 → 𝐾𝑖 , (3.158)

sending a tuple of vertices in 𝑀 (ℎ) |O𝑖 = 𝑀 (ℎ1) × · · · × 𝑀 (ℎ𝑟 ) to the corresponding vertex of O𝑖 , and
multiplying each coordinate by ∏

𝑖 𝑗∈Asc(^ )
(𝑅𝑖 − 𝑅 𝑗 ), (3.159)

where the product runs over all ascents 𝑖 𝑗 of ^ on 𝐺 (ℎ). Indeed, 𝜑 maps to the kernel 𝐾𝑖 since the edge

conditions of the restriction 𝑀 (ℎ) |O𝑖 = 𝑀 (ℎ1) × · · · ×𝑀 (ℎ𝑟 ) are satisfied, and since multiplication by the

product (3.159) ensures that all edge condition are satisfied on directed edges from 𝛽 to 𝛽 ′, where 𝛽 ′ ∈ O𝑖
and 𝛽 ∉ O𝑖 .

In fact, 𝜑 maps flow-up vectors to flow-up vectors, which implies that 𝜑 is an isomorphism. This shows

that Formulas (3.153) and (3.154) coincide, and the degree shift comes from the product (3.159). ■

Remark 3.45. Recall from Formula 3.105 in Theorem 3.35 that the Hopf algebra mapsFrob𝐿 andFrob𝑅 are
determined by the values of their multiplicative characters, which are given by postcomposing Frob𝐿 and

Frob𝑅 with the canonical character Z𝑄 : QSym→ C(𝑡), where QSym denotes the Hopf algebra of quasi-

symmetric functions over the field C(𝑡). Recall from Construction 3.43 that Tℎ is a twisted C[𝐿]-linear
𝑆 (𝐿)-representation, so let us compute the multiplicative character of 𝜔 (Frob(𝑆 (𝐿),Tℎ,C[𝑅])).

Lemma 3.46. For any Dyck path ℎ, we have

𝜔 (Frob(𝑆 (𝐿),Tℎ,C[𝑅])) = 𝜓𝑡 (𝐺 (ℎ)), (3.160)

where𝜓𝑡 : G̃ → QSym is the Hopf algebra homomorphism induced by the multiplicative character

Z𝑡 : G̃ → C(𝑡), Z𝑡 (𝐺) ≔ 𝑡 |𝐸 (𝐺 ) | , (3.161)

via the universal property in Theorem 3.35.
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Proof. Consider the element

𝐵(ℎ) ≔
∑︁

𝛽∈𝑆 (𝐿←𝑅)
(−1) |inv(𝛽 ) | 1𝛽

∏
𝑖 𝑗∈𝐸 (𝐺 (ℎ) )

(𝑅𝑖 − 𝑅 𝑗 ) ∈ Tℎ, (3.162)

where inv(𝛽) denotes the set of inversions of 𝛽 . For example, for ℎ = (3, 3, 3), we have

𝐵(3, 3, 3) =

𝑅

−𝑅−𝑅

𝑅 𝑅

−𝑅

(3.163)

where 𝑅 is the product described in (3.162).

Then 𝑆 (𝐿) acts by the sign representation on the C[𝑅]-span of 𝐵(ℎ) in Tℎ . Let us denote by T ′ℎ the subspace

of Tℎ on which 𝑆 (𝐿) acts by the sign representation, and let

𝑥 =
∑︁

𝛽∈𝑆 (𝐿←𝑅)
1𝛽 𝑔𝛽 (𝑅1, . . . , 𝑅𝑛) ∈ T ′ℎ (3.164)

be an arbitrary element. Consider the element in the group algebra

Y =
∑︁

𝑤∈𝑆 (𝐿)
(−1)sgn(𝑤 )𝑤 ∈ C[𝑆 (𝐿)] (3.165)

that acts as the orthogonal projection onto T ′
ℎ
. Then for every transposition (𝑖 𝑗), swapping 𝐿𝑖 and 𝐿 𝑗 , the

action can be described as (𝑖 𝑗) · 𝑥 = (𝑖 𝑗)Y · 𝑥 = (−Y) · 𝑥 = −𝑥 .

Consequently, the action on polynomials in the tuple 𝑥 is given by 𝑔(𝑖 𝑗 )◦𝛽 (𝑅1, . . . , 𝑅𝑛) = −𝑔𝛽 (𝑅1, . . . , 𝑅𝑛),
which means that there is a unique polynomial 𝑔(𝑅1, . . . , 𝑅𝑛) such that

𝑥 =
∑︁

𝛽∈𝑆 (𝐿→𝑅)
(−1)inv(𝛽 )1𝛽 𝑔(𝑅1, . . . , 𝑅𝑛) .

By construction, the elements 𝑥 ∈ T ′
ℎ
satisfy the edge condition of the moment graph 𝑀 (ℎ) if and only if

𝑔(𝑅1, . . . , 𝑅𝑛) is divisible by
∏

𝑖 𝑗∈𝐸 (𝐺 (ℎ) ) (𝑅𝑖 − 𝑅 𝑗 ).

Recall from Remark 3.29 the representation theoretic interpretation of the coefficient of 𝑀(𝑛) in the sym-

metric function 𝜔 (ch(𝑉 )), for a finite dimensional 𝑆𝑛-representation 𝑉 : this coefficient is the dimension

of the subspace 𝑉 ′ of 𝑉 on which 𝑆𝑛 acts by the sign representation. Therefore, the corresponding the

multiplicative character from Theorem 3.35 is non-trivial in the degree of 𝑉 , considered a homogeneous

part of a graded representation.

Note that the degree of T ′
ℎ
within Tℎ is |𝐸 (𝐺 (ℎ)) |, since each vertex is assigned a polynomial, given by the

product in (3.162). Consequently, by Definition 3.34, the distinguished character of this representation is

Z𝑄 (𝜔 (Frob(𝑆 (𝐿),T ′ℎ ,C[𝑅]))) = 𝑡
|𝐸 (𝐺 (ℎ) ) | . (3.166)

By the above description the sign representation is the only component of Tℎ that contributes to the term

𝑀(𝑛) in themonomial expansion in the image of the graded Frobenius characterFrob(𝑆 (𝐿),Tℎ,C[𝑅]). Thus,
the distinguished character of the entire graded representation Tℎ is given by the same expression,

Z𝑄 (𝜔 (Frob(𝑆 (𝐿),Tℎ,C[𝑅]))) = 𝑡 |𝐸 (𝐺 (ℎ) ) | , (3.167)
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which coincides with the multiplicative character Z𝑡 (𝐺 (ℎ)) from (3.161). Hence, by the universal property

in Theorem 3.35, we have the desired equality,

𝜔 (Frob(𝑆 (𝐿),Tℎ,C[𝑅])) = 𝜓𝑡 (𝐺 (ℎ)) . (3.168)

■

Remark 3.47. In Lemma 3.41, we saw that

𝜓0(𝐺) =
∑︁

^ : 𝑉→Z>0
proper

𝑡asc(^ )𝑥^ . (3.169)

Similarly, we can unravel the explicit construction of 𝜓𝑡 . Again, by Theorem 3.35, for any composition

𝛼 = (𝛼1, . . . , 𝛼𝑟 ), the coefficient of the monomial quasi-symmetric function𝑀𝛼 in𝜓0(𝐺) is given by

(Z𝑡 ⊗ · · · ⊗ Z𝑡︸         ︷︷         ︸
𝑟 -fold

) ◦ (𝜋𝛼1 ⊗ · · · ⊗ 𝜋𝛼𝑟 ) ◦ Δ𝑟 (𝐺). (3.170)

By the defining formula of comultiplication in G̃, we obtain∑︁
^ : 𝑉→[𝑟 ]

𝑡asc(^ ) (Z𝑡 ◦ 𝜋𝛼1 (𝐺 |𝑉1)) ⊗ · · · ⊗ (Z𝑡 ◦ 𝜋𝛼𝑟 (𝐺 |𝑉𝑟 )), (3.171)

where𝑉𝑖 = ^
−1(𝑖) and 𝜋𝑘 is the projection into the 𝑘th homogeneous component. Now we can turn to the

definition of the multiplicative character,

Z𝑡 : G̃ → C(𝑡), Z𝑡 (𝐺) ≔ 𝑡 |𝐸 (𝐺 ) | . (3.172)

This time, a summand in (3.171) is nonzero if and only if the order of each 𝑉𝑖 is 𝛼𝑖 . The colouring ^ need

not be a proper colouring. Furthermore, for any colouring ^, the monomial 𝑡asc(^ ) in (3.171) gets multiplied

by 𝑡 |𝐸 (𝐺 |𝑉𝑖 ) | for all 𝑖 ∈ [𝑟 ]. In other words, the induced map𝜓𝑡 can be described as

𝜓𝑡 (𝐺) =
∑︁

^ : 𝑉→Z>0
arbitrary

𝑡weak asc(^ )𝑥^, (3.173)

whereweak asc(^) denotes the number of weak ascents of ^, i.e. the number of edges𝑢𝑣 ∈ 𝐸 (𝐺) with𝑢 < 𝑣

and ^ (𝑢) ≤ ^ (𝑣).

To express the Frobenius character of tensor products, we will need the following operation on symmetric

functions, treated extensively in [Ros].

Lemma 3.48. For two finite dimensional 𝑆𝑛-representations𝑈 and 𝑉 , we have

ch(𝑈 ⊗ 𝑉 ) = ch(𝑈 ) ★ ch(𝑉 ), (3.174)

where ★ is the Kronecker product Sym ⊗ Sym→ Sym given by

𝑝_ ★ 𝑝` =

{
𝑧 (_)𝑝_ if _ = `,

0 otherwise,
(3.175)

where 𝑧 (_) is a scaling factor.
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Lemma 3.49. The Kronecker product, from Lemma 3.48, yields the expression

Frob(𝑆 (𝐿),Tℎ,C) = Frob(𝑆 (𝐿),Tℎ,C[𝐿]) ★Frob(𝑆 (𝐿),C[𝐿],C), (3.176)

and similarly,
Frob(𝑆 (𝐿),Tℎ,C) = Frob(𝑆 (𝐿),Tℎ,C[𝑅]) ★Frob(𝑆 (𝐿),C[𝑅],C) . (3.177)

Proof. We will prove the first identity, the second one can be shown analogously. Let {𝑓𝑖}𝑖∈[𝑛!] be a flow-
up basis, which always exists by Construction 2.22. Let {𝑔𝑖} be the C-linear basis of monomials in C[𝐿].
Then, by Construction 2.9, part (c), the set {𝑔 𝑗 · 𝑓𝑖} is a homogenous C-linear basis for Tℎ . Let us denote
the C[𝐿]-coefficient of 𝑓𝑖 in𝑤 · 𝑓𝑖 by 𝑎𝑖 , for each 𝑖 ∈ [𝑛!]. Then 𝑎𝑖 has degree 0, i.e. we have 𝑎𝑖 ∈ C. Let us
denote by 𝑏 𝑗 the C-coefficient of 𝑔 𝑗 in𝑤 · 𝑔 𝑗 . Then the coefficient of 𝑔 𝑗 · 𝑓𝑖 in𝑤 · (𝑔 𝑗 · 𝑓𝑖) = (𝑤 · 𝑓𝑖) (𝑤 · 𝑔 𝑗 ),
is 𝑎𝑖𝑏 𝑗 , and we have ∑︁

𝑖∈[𝑛!]
𝑡deg(𝑓𝑖𝑔𝑗 )𝑎𝑖𝑏 𝑗 =

∑︁
𝑖∈[𝑛!]

𝑡deg(𝑓𝑖 )𝑎𝑖
∑︁

𝑖∈[𝑛!]
𝑡deg(𝑔𝑗 )𝑏 𝑗 , (3.178)

and as a result, we obtain the desired formula, via the 𝑝-expansion of the graded Frobenius character,

described in Remark 1.52. The proof of the second formula is analogous. ■

Lemma 3.50. Consider the Hopf algebra endomorphisms of Sym[𝑡] given by 𝐸𝑡 (𝑝 (𝑛) ) ≔ 𝑡𝑛𝑝 (𝑛) for all
𝑛 ∈ Z>0 and 𝐸 (1−𝑡 ) (𝑝 (𝑛) ) ≔ (1 − 𝑡)𝑛𝑝 (𝑛) for all 𝑛 ∈ Z>0. Then we can relate our C[𝐿] and C[𝑅]-actions by

𝐸 (1−𝑡 ) (Frob(𝑆 (𝐿),Tℎ,C[𝐿])) = (id ∗ (𝑆 ◦ 𝐸𝑡 )) (Frob(𝑆 (𝐿),Tℎ,C[𝑅])). (3.179)

Proof. Amonomial inC[𝐿] is fixed by the action of𝑤 ∈ 𝑆 (𝐿) if and only if for every cycle of the permutation

𝑤 , the variables 𝐿𝑖 labelled by the elements of this cycle have the same exponent.

Let us consider the power-sum expansion of Frob(𝑆 (𝐿),C[𝐿],C) from Remark 1.52. If 𝑎𝑖 denote the coef-

ficient of the basis 𝑒𝑖 in𝑤 · 𝑒𝑖 for any 𝑖 ∈ 𝐼 , then we have

Frob(𝑉 ) = 1

𝑛!

∑︁
𝑤∈𝑆𝑛

(∑︁
𝑖∈𝐼

𝑡deg(𝑒𝑖 )𝑎𝑖

)
𝑝_, (3.180)

where _ = (_1, _2, . . . , _ℓ ), with _1 + _2 + · · · + _ℓ = 𝑛, denotes the cycle type of𝑤 . Therefore, the summand

corresponding to𝑤 ∈ 𝑆 (𝐿) in the power-sum expansion of Frob(𝑆 (𝐿),C[𝐿],C) is given by

1

𝑛!
(1 + 𝑡_1 + 𝑡2_1 + · · · ) (1 + 𝑡_2 + 𝑡2_2 + · · · ) · · · (1 + 𝑡_ℓ + 𝑡2_ℓ + · · · )𝑝_ =

1

𝑛!

𝑝 (_1 )

1 − 𝑡_1
𝑝 (_2 )

1 − 𝑡_2
𝑝 (_ℓ )

1 − 𝑡_ℓ
. (3.181)

From Example 3.17, we can see that (id ∗(𝑆 ◦𝐸𝑡 )) (𝑝𝑘 ) = (1− 𝑡𝑘 )𝑝 (𝑘 ) for any 𝑘 ∈ Z>0. The action of 𝑆 (𝐿) on
C[𝑅] is the trivial representation, so the summand corresponding to𝑤 ∈ 𝑆 (𝐿) in the power-sum expansion

of Frob(𝑆 (𝐿),C[𝑅],C) is given
1

𝑛!
(1 + 𝑡 + 𝑡2 + · · · )𝑛𝑝_ =

1

𝑛!

1

(1 − 𝑡)𝑛 𝑝_ =
1

𝑛!

𝑝 (_1 )

(1 − 𝑡)_1
𝑝 (_2 )

(1 − 𝑡)_2
· · ·

𝑝 (_ℓ )

(1 − 𝑡)_ℓ
. (3.182)

By comparing these two 𝑝-expansions, Lemma 3.49 yields the desired equality. ■

Theorem 3.51. For any Dyck path ℎ, we have

𝜔 (Frob(𝐻 ∗(𝑋ℎ))) = 𝑋 (𝐺 (ℎ);𝑥, 𝑡),

where 𝑋ℎ is a regular semisimple Hessenberg variety associated to ℎ, 𝐻 ∗(𝑋ℎ) is the 𝑆𝑛-module given by the
dot action on the cohomology ring of 𝑋ℎ , Frob is the graded Frobenius character map, 𝜔 is the fundamental
involution, 𝐺 (ℎ) is the indifference graph of ℎ and 𝑋 (𝐺 (ℎ);𝑥, 𝑡) is its chromatic quasi-symmetric function.

90



Proof. Now we are ready to present Guay-Paquet’s proof of the Shareshian–Wachs conjecture, that we

stated in Conjecture 2.27. We have seen in Lemma 3.46 that 𝜔 (Frob(𝑆 (𝐿),Tℎ,C[𝑅])) = 𝜓𝑡 (𝐺 (ℎ)), where
𝜓𝑡 is the induced Hopf algebra morphism by the character Z𝑡 : G̃ → C(𝑡), Z𝑡 (𝐺) ≔ 𝑡 |𝐸 (𝐺 ) | via the universal
property from Theorem 3.35. Moreover, we have seen in Lemma 3.41 that 𝜓0(𝐺) = 𝑋 (𝐺 ;𝑥, 𝑡) induced via

the same universal property by the character Z0 : G̃ → C(𝑡) given by

Z0(𝐺) ≔
{
1 if 𝐺 is edgeless,

0 otherwise.
(3.183)

Recall from Lemma 3.50 that the Hopf algebra endomorphism 𝐸 (1−𝑡 ) of Sym satisfies

𝐸 (1−𝑡 ) (Frob(𝑆 (𝐿),Tℎ,C[𝐿])) = (id ∗ (𝑆 ◦ 𝐸𝑡 )) (Frob(𝑆 (𝐿),Tℎ,C[𝑅])). (3.184)

So it is enough to show that

𝐸 (1−𝑡 ) (𝜓0(𝐺 (ℎ))) = (id ∗(𝑆 ◦ 𝐸𝑡 )) (𝜓𝑡 (𝐺 (ℎ))). (3.185)

Note that it suffices to verify this equality for nonempty, connected ordered graphs 𝐺 (ℎ), i.e. whenever
the Dyck path ℎ does not touch the diagonal, because otherwise the chromatic quasi-symmetric function

is the product of the chromatic quasi-symmetric functions of the components, by Construction 1.68, part

(d). We can again appeal to the universal property in Theorem 3.35, and instead, show that the two sides

have the same multiplicative characters, i.e.

Z𝑄 (𝐸 (1−𝑡 ) (𝜓0(𝐺 (ℎ)))) = (id ∗(𝑆 ◦ 𝐸𝑡 )) (𝜓𝑡 (𝐺 (ℎ))). (3.186)

Since 𝐸 (1−𝑡 ) acts on Sym by multiplying by each homogeneous part by (1− 𝑡)𝑘 , where 𝑘 is the degree, and

since𝜓0 respects the grading, we have

Z𝑄 (𝐸 (1−𝑡 ) (𝜓0(𝐺 (ℎ)))) =
{
1 − 𝑡 if 𝐺 (ℎ) has one vertex,
0 otherwise.

(3.187)

Now we need to show that the canonical character of (id ∗ (𝑆 ◦ 𝐸𝑡 )) (𝜓𝑡 (𝐺 (ℎ))) is given by the same ex-

pression. Let 𝜋0 denote the projection onto the degree zero part of the graded Hopf algebra endomorphism

(id ∗ (𝑆 ◦ 𝐸𝑡 )) ∈ End(Sym), and let 𝜋+ denote the projection onto the positive degree part. By Takeuchi’s

formula from Remark 3.15, the antipode can be expressed as the 𝑟 -fold convolution product

𝑆 =
∑︁
𝑟≥0
(−1)𝑟 𝜋+ ∗ · · · ∗ 𝜋+︸         ︷︷         ︸

𝑟 -fold

. (3.188)

Therefore, the map in question can be written as

id ∗ (𝑆 ◦ 𝐸𝑡 ) =
∑︁
𝑟≥0
(−1)𝑟 id ∗ (𝜋+ ◦ 𝐸𝑡 ) ∗ · · · ∗ (𝜋+ ◦ 𝐸𝑡 )︸                           ︷︷                           ︸

𝑟 -fold

. (3.189)

Since the canonical character is multiplicative, we have

Z𝑄 ◦ (id ∗ (𝑆 ◦ 𝐸𝑡 )) =
∑︁
𝑟≥0
(−1)𝑟 (Z𝑄 ⊗ (Z𝑄 ◦ 𝜋+ ◦ 𝐸𝑡 ) ⊗ · · · ⊗ (Z𝑄 ◦ 𝜋+ ◦ 𝐸𝑡 )︸                                          ︷︷                                          ︸

𝑟 -fold

) ◦ Δ𝑟+1. (3.190)
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We have seen in the proof of Remark 3.47, in equation (3.173), that the coefficient of a monomial quasi-

symmetric function𝑀𝛼 in𝜓𝑡 (𝐺 (ℎ)) is given by∑̂︁
𝑡weak asc(^ ) ,

where the sum runs over all colourings ^ : 𝑉 → Z>0 corresponding to the composition 𝛼 .

Then, by Example 3.24, the comultiplication can be expressed as

Δ𝑟+1(𝑀𝛼 ) =
∑︁

(𝛼0,...,𝛼𝑟 )
𝛼0 ·...·𝛼𝑟=𝛼

𝑀𝛼0 ⊗ · · · ⊗ 𝑀𝛼𝑟 , (3.191)

where the sum runs over the (𝑟 + 1)-tuples of compositions whose concatenation is the composition 𝛼 .

When applying the canonical character, we get Z𝑄 (𝑀𝛼𝑖 ) = 0 if 𝛼𝑖 has more than one part or if 𝛼𝑖 is the

empty composition. Consequently, after applying Z𝑄 ◦ (id∗ (𝑆 ◦𝐸𝑡 )) from equation (3.190) to the monomial

quasi-symmetric function𝑀𝛼 , it becomes zero, unless

(a). 𝛼 has 𝑟 +1 parts 𝛼𝑖 and each partition 𝛼𝑖 in equation (3.191) is the singleton consisting of the (𝑖 +1)th
part 𝛼𝑖+1,

(b). or if 𝛼 has 𝑟 parts, 𝛼0 is the empty composition and 𝛼𝑖 is the singleton consisting of the 𝑖th part of 𝛼 .

Hence, when we apply the map on the right side of equation (3.190) to the monomial quasi-symmetric

function𝑀𝛼 , where 𝛼 = (𝛼1, . . . , 𝛼𝑟 ), we obtain the expression (−1)𝑟−1𝑡𝛼2+···+𝛼𝑟 +(−1)𝑟 𝑡𝛼1+···+𝛼𝑟
. Therefore,

the coefficients in (3.173) yield the identity

Z𝑄 (id ∗ (𝑆 ◦ 𝐸𝑡 )) (𝜓𝑡 (𝐺 (ℎ))) =
∑︁
𝑟≥0

∑̂︁
(−1)𝑟 𝑡 stat(^ ) , (3.192)

where the second sum runs over all colourings ^ : [𝑛] → {0} ∪ [𝑟 ] such that every colour in [𝑟 ] is used at
least once (but not necessarily colour 0), and the colouring invariant stat(^) in the exponent is given by

stat(^) ≔ (# vertices with colour > 0) + (# weak ascents of ^ on 𝐺 (ℎ)). (3.193)

If ℎ is the trivial Dyck path (1), then 𝐺 (ℎ) is the ordered graph with a single vertex, and in this case,

expression (3.192) is 1 − 𝑡 , which tallies with equation (3.187). To see that (3.187) and (3.192) are equal, we

need to show that for any other Dyck path ℎ, the expression in (3.192) is 0. Again, it suffices to show this

for connected graphs 𝐺 (ℎ) by 1.68, part (d).

To this end, wewould like to construct a suitable sign-reversing involution on the set of colourings^ : [𝑛] →
{0} ∪ [𝑟 ] such that every colour in [𝑟 ] is used at least once (but not necessarily colour 0), which preserves

inv(^), so that the all terms (−1)𝑟 𝑡 stat(^ ) cancel out. Let us denote the set of such colourings by C𝑛,𝑟 when
both 𝑛 and 𝑟 are fixed, and C𝑛 ≔

⋃
𝑟>0 C𝑛,𝑟 .

The idea behind this construction resembles the proof of Theorem 1.69. Take a colouring ^ ∈ C𝑛,𝑟 . First, we
consider the case where vertex 𝑛 has colour 0, and vertex 𝑛− 1 has an arbitrary colour 𝑖 . If 𝑛− 1 is the only
vertex with colour 𝑖 , then we can construct a colouring ^′ by giving vertex 𝑛 − 1 colour 𝑖 − 1, and thereby

removing colour 𝑖 entirely. Note that according to the expansion of𝜓𝑡 in equation (3.173) a colouring here

need not be proper, whereas in the case of𝜓0, in equation (3.136) we only consider proper colourings.

If there is another vertex with colour 𝑖 , other than vertex 𝑛 − 1, then we add a new colour lying between 𝑖

and 𝑖 + 1 in our ordered set of available colours, and give vertex 𝑛 − 1 this new colour. Then, in both cases,
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we may relabel the set of available positive colours in an order-preserving way, such that these sets are

[𝑟 − 1] and [𝑟 + 1], respectively. The maps described in the two cases are inverses of each other.

Now consider the case where vertex 𝑛 is the only vertex with colour 1, and vertex 𝑛 − 1 has colour 𝑖 . If

there are no other vertices with colour 𝑖 , then we give vertex 𝑛 − 1 colour 𝑖 − 1 if 𝑖 ≠ 2 and colour 0 if 𝑖 = 2,
and remove 𝑖 from the list of available colours. If, on the other hand, vertex 𝑛 − 1 is not the only one with

colour 𝑖 , then we give vertex 𝑛 − 1 colour with a new colour that lies directly after colour 𝑖 in our ordered

set of available colours. Again, we may relabel the set of available positive colours in an order-preserving

way, such that these sets are [𝑟 − 1] and [𝑟 + 1], respectively. The maps described inductively in the above

two cases are inverses of each other.

Finally, we need to consider the case where vertex 𝑛 has colour 𝑖 different from 0 or 1. If vertex 𝑛 is the

unique vertex with vertex 𝑖 , then we recolour it with colour 𝑖 − 1 and we discard colour 𝑖 . If there are other
vertices with colour 𝑖 , then we recolour vertex 𝑛 with a colour that is larger than all colours in [𝑖]. Then,
we may relabel the set of available positive colours in an order-preserving way, such that these sets are

[𝑟 − 1] and [𝑟 + 1], respectively, and again, the maps described in the two cases are inverses of each other.

This concludes the construction of the desired sign-reversing involution. ■

Remark 3.52. Guay-Paquet’s Hopf algebraic proof was written in 2016. However, it is worth noting that

this is the second proof of the Shareshian–Wachs conjecture. A year earlier, Brosnan and Chow provided

a proof, using advanced tools from geometry, such as perverse sheaves on flag varieties and nearby cycles,

in the article [BC]. Both perspectives have their merits and limitations.

While this thesis focuses solely on the Hopf algebraic proof, I also intend to explore the geometric proof in

the near future. Understanding the geometric approachmay shed light on certain details that are somewhat

obscured by the Hopf algebraic framework. For instance, it could provide insights into the the geometric

interpretation of the fundamental involution 𝜔 or that of the sign reversing involution utilised in the proof

of Theorem 3.51.
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