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Introduction; outline

By the name braid group one usually refers to the Artin braid group, first introduced and studied by Artin
in |Art25). Similarly to the symmetric group, the Artin braid group consists of permutations (called
braids) of a fixed finite set which—in contrast to the symmetric group—keep track how elements pass
“behind each other”. Whereas it is standard to depict a permutation on say four elements by images like

i

a braid in four strands is best thought of as a diagram like

7K A

which are in fact two different braids. The symmetric group in particular is a quotient of the Artin braid
group, and both of the above braids have the same image under the quotient map. To make things
rigorous consider the following definition:

Deﬁm’tz’on The Artin braid group Bg, is the group with generators si,...,s,—1, depicted by a crossing
=|---| /|| of the i-th strand over the (i 4+ 1)-st one (whose multiplication is depicted by stacking
plctures) subject to the following (pictorial) relations:

sy = sy f ) uﬁ for i~ 4| > 1

SiSi4+15; = Si+15iSit+1 K = % foralll1 <i<n-—1.
\

SO

In other words, Bg, has the same presentation as S, except that it misses the relation s; = s;
instead only satisfies the automatic relation

\ J
sis;lzsi_lsi:e Q—b— forall 1 <i<n.
14 A\

Thus Bg, admits the quotient map Bg, —» Sy, s; — ;.

1 and

Braid groups can also be defined for arbitrary Cozeter groups; these are a certain type of (finite or
infinite) groups introduced by Coxeter in [Cox34| as a generalisation of reflection groups.

Definition. A Cozxeter system (W, S) with Coxeter matrix (ms:)s tes consists of a group W, called Cozeter
group, with generators S C W and presentation

ms¢ factors
—~
W= (scS|Vs,tcS:sts--=¢tst--- s =e).
——
ms¢ factors

The braid group Byy associated to the Coxeter group W is the group with presentation

ms¢ factors
By =(s€S|Vs,t€S:sts---=¢tst---)
=~

ms¢ factors
such that the Coxeter group W is a quotient of its braid group By .

Coxeter groups have been classified in the finite case by Coxeter in [Cox35|. The symmetric group
Sy, is a particular Coxeter group with generating set S = {s1,...,$,-1} the simple transpositions and
associated braid group Bg, . According to the nomenclature for Coxeter groups, S, is the Coxeter group
of type A,,_1.
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Part I. Braid group actions on the bounded derived BGG category D"(O)

Coxeter groups occur naturally as Weyl groups of root systems; they are thus strongly related to the
representation theory of Lie algebras and are naturally realised as reflection groups. Let g be a complex
semisimple Lie algebra. Its Weyl group W is a Coxeter group and acts naturally on the set of integral
weights by reflections. It is known that the classes [M(w . A)] of Verma modules for w € W form a basis
of the Grothendieck group Ky(Ox(g)) of the block of the BGG category O(g) associated to a regular
integral weight A\. The map s;: [M(w . \)] — [M(ws; . A)] thus induces a right action of W on Ky(O)).

Associated with the (self-biadjoint) translation through the s-wall functor O there are the shuffling
and coshuffling functors Shy = coker(adj: ©, = idp) and Csh, = ker(adj’: ido = ©j) [see MSO07,
introduction, and references therein] whose derived functors induce an action of By on the bounded
derived category DP(Q)), yielding the above action of W on Ky(O,) [MS05, §5; Rou06, §10]. This action
plays an important role in representation theory. It even lifts to a higher action in the sense that the
relations of the braid group can be lifted to relations between functors [Rou06].

This thesis studies several aspects of these functors and tries to put them into a general framework.
We shall explain in more detail how to calculate the images of Verma modules and indecomposable
projectives under Shy. We shall exploit the fact that O, is equivalent as a category to Mod-A for a
quasi-hereditary basic algebra A [Maz12l §4.4] where the distinguished modules of the quasi-hereditary
structure correspond to Verma-, simple- and indecomposable projective modules. In small ranks, the
algebra A can be described as a path algebra of a certain quiver associated to g [Str03b; Mar06|. For

instance, for g = sly the category Oy (sly) is equivalent to modules over the path algebra C[e = o]/ (ba):;

see Section 2111 ’

By a result of Beilinson, Ginzburg and Soergel the algebra A (and hence the category O,) can be
endowed with a positive grading [BGS96] which allows to define a graded category O%; see Section
Moreover, the translation and shuffling functors ©5 and Shy can be taken to graded functors [Str03a].
The grading coincides with the natural grading of A as a path algebra under the above equivalence of
categories. We shall see that when gradings are taken into account, the functors Sh induce an action of
the Iwahori-Hecke algebra H, (W) and for g = sl,, we shall see the following in Theorem m

Theorem. There is an isomorphism of Z[g™!]-modules
Ko (O (1)) = Hq(Sh),  [M(w)(@)] = qHw, [P(w){g)] = ¢Cu.
The shuffling functor Sh, then acts by -Hj.

The algebra H, (W) is related to W and By by algebra homomorphisms C[¢*!|[Bw| — Hy(W) —» C[W].
The Iwahori-Hecke algebra H,(W) is of particular interest as it is employed in the refinement and
categorification of knot invariants [cf. [Kho06|. The algebra H,(W') has two distinguished bases, namely
the standard- and the Kazhdan-Lusztig basis. It is a deep result of representation theory that the base
change coefficients encode the composition series of modules in Og; see Section [2.3.1

Spherical objects and spherical twist functors

We shall also interpret the action of By on DP(O,) by derived (co)shuffling functors as an extension of
another action of braid groups on derived categories: in [ST01] Seidel and Thomas have constructed an
action of Bg, on the derived category D®(C) of an arbitrary abelian linear category C of finite global
dimension by the so-called spherical twist functomﬂ

Tg, : F s cone(homf(Ey, F) ® Ej, =% F)

associated to an A,,_j-configuration (E1,..., F,_1) of spherical objects. Since O, satisfies the conditions
of |[STO01] on the category C, it is natural to ask whether one can find spherical objects in DP(O(sl,,),)
such that the associated action of Bg, is isomorphic to the action induced by the (co)shuffling functors.

After having explained the set-up and constructions of [ST01] we shall deal with that question both for
the principal block Oy(g) for g = sl,, as well as their parabolic counterparts Of (sl,,). We shall show the
following in Theorem [£.23}

IThe spherical twist functors in the sense of [STO1] are not to be confused with Arkhipov’s twisting functors [AS03|. We
shall only deal with the former family of functors in this thesis.
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Theorem. For a maximal parabolic subalgebra p of sl,, corresponding to the parabolic subgroup S, 1 X571 <
Sn, there is an A,,_s-configuration of spherical objects such that the associated spherical twist functor
(in the sense of [ST01]) and the restriction L Shy, | Dh(0F) Are naturally isomorphic auto-equivalences of
DP(O}). This set-up corresponds to the quiver

1 2
o<’_‘>o<’_-><’_‘>2

of type A,,—2, subject to certain relations.

The first part of the thesis is devoted to proving this statement and explaining the necessary background.
We shall recall briefly the definitions of the BGG category O as well as the construction of translation-
and shuffling functors in Section [1} In Sections and we shall explain how to calculate images of
the shuffling functor, how to obtain the quiver describing Oy for the Lie algebras sl and sl3 and how to
make use of this description. The construction of spherical twist functors from [STO01] will be recalled in
Section [3] and applied to Og; first by showing that the spherical twist functor and the derived shuffling
functor have isomorphic images and then by showing that both are indeed naturally isomorphic functors
in the case of the theorem.

Part I1. Towards super Soergel bimodules

We begin the second part of this thesis with presenting in Section [5| Rouquier’s proof from [Rou06] for
the that the derived (co)shuffling functors induce an action of By on DP(O,). In fact, Rouquier’s proof
shows more: namely, there is an action of By, on the homotopy category of Soergel bimodules and hence
on the homotopy category K" (Cy) of modules over the coinvariant algebra of W [see [Soe90; BKMO1,
§2] which yields the desired action on D"(0,) by Soergel’s functor V [Soe90]. We devote Section [5| to
retracing Rouquier’s proof and elaborating on some details.

An important tool both for Rouquier’s proof and the study of Soergel bimodules are symmetric
polynomials. The symmetric polynomials in n indeterminates are the invariants APol,, := Polf;" of the
polynomial ring Pol,, := k[z1, ..., 2,] under the action of S,, by permutation of indeterminates (see e. g.
[Man98|). It is classical that APol,, = k[eq,...,e,] again is a polynomial ring, generated by the elementary
symmetric polynomials ,,. It is known that Pol, is a free APol,,-module of rank n! [Che55} |Dem73| thm.
6.2].

There is another way to define symmetric polynomials. Namely, the invariants Pol}’ under a single
simple transposition coincide with the kernel ker 9; of the Demazure operator 0;: f +— ﬁ%fﬁ) [Dem?73].
These operators allow to define certain subalgebras of Endy(Pol€,,) such as the NilHecke Algebra NH,, =
(1, ., Zn,01,...,0n—1) C Endg(Pol,). The algebra NH,, has been generalised to the so-called KLR
algebra in [KL09; KL11; KL10; Rou08].

Super-KLR algebra and its polynomial representation

Our aim is to investigate super-algebraic analogues for these invariants. A superalgebra is a Z/2Z-graded
algebra whose degrees usually are referred to as parities. We recall the relevant definitions in Section [6]
We shall encounter a particular superalgebra, namely the so-called Clifford algebra (see Example ,
which plays an important role in our considerations.

We shall present in Section [7| two superalgebras H,, (C) and H&,, (C) as super-analogues of the KLR-
algebra. Their definitions are mostly inspired from [KKT16]. To that end we shall employ—besides a
usual definition in terms of generators and relations—a diagrammatic description of HE(C') and H(C),
which is adapted for the super-set-up from [KL09} Brul6; BE17b].

The ordinary KLR algebra has a faithful polynomial representation Pol(C') [KL09]. We shall define a
Clifford analogue Pol€(C') (see Section and show in Proposition

Proposition. The superalgebras HE(C) and |:|(C) have a faithful polynomial representation Pol€(C).
The proof is mostly an adaptation of [KL09] for the super-algebraic set-up.

Clifford-symmetric polynomials

The construction of HE,,(C) involves the definition of a super-algebraic analogue d; for the Demazure
operator or divided difference operator, also motivated by [KKT16]. We call this the Clifford Demazure
operator.



In Section [8] we shall develop a short theory of these operators and try to understand which properties
from the ordinary set-up can also be shown in the super-algebraic world. In a (non-commutative)
polynomial superalgebra Pol€,,, we define 0-symmetric polynomials to be the common kernel ﬂZ;ll ker 0,,
of the Clifford Demazure operators. In Lemma we recursively define elementary 0-symmetric

polynomials egff ), analogously to the recursion relation of the ordinary elementary symmetric polynomials.
(n)

Let APol€, be the sub-superalgebra of Pol€, generated by the e;,’’s. In the most of Section E we work
on proving the following (see Theorem [8.23)):

Theorem. The 0-symmetric polynomials are generated by the elementary 9-symmetric polynomials. Fur-
thermore, Pol€,, is a free APol&,-algebra.

To that end, we also define analogues for the Schubert polynomials (see Section [8.4) and adapt the
classical proof of the theorem to the super-set-up.

Complete symmetric polynomials, Grassmannians and partial flag varieties

We also define a super-analogue for for the complete homogeneous symmetric polynomials, see Section
We relate these to a NilHecke Clifford algebra NHC,, (see Definition and show the following in
Theorem [8.306l

Theorem. The yet to be defined cyclotomic quotient NHE" of NHC,, and a super-algebraic analogue
HE,  for the cohomology ring of Grassmannians (see Definition [8.34)) are Morita equivalent.

Finally, we define polynomial rings APol&; in Section [8.8] which play the super-analogous role of
invariants Polil for S’ C S a subset of the simple transpositions. In the classical case, such rings occur as
cohomology rings of partial flag varieties Fl(k). We shall thus define in Section a super-analogue
H¢, for these cohomology rings which generalise the Clifford cohomology ring H&,, ,,) of Grassmannians;
see Proposition [8.48

These steps can be be considered as first steps towards super-algebraic Clifford-Soergel bimodules.
Future research has to show whether the algebras defined in this thesis turn out to be beneficial for this
purpose.
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Notation and conventions

We

2z =

—~
L=

shall make use of the following notational conventions throughout the thesis:

An arbitrary field of characteristic distinct from 2.
Natural numbers are the numbers {0,1,2,...}.
As maps out of (into) a direct sum, these denote the projection (inclusion) of one direct summand.

A group (algebra, module, vector space etc.) generated by the given elements. It should be
clear from the context which structure is meant.

—Graded algebras: By a graded algebra A we always mean a Z-graded algebra.

deg, | — | The degree of an element of a graded ring (module, vector space etc.) is denoted by deg. In

particular, polynomial degrees are denoted deg. We reserve | — | for the parity when working
with superalgebras.

(=) The grading shift of graded rings (modules, vector spaces etc.). We define (—) shifting upwards,

0+

i.e. for a graded module M = @, M}, with degree k-part My, the shifted module has degree
k-part M (i) = Mj_;.

For a a homogeneous ideal of a graded algebra A = @kzoa we set ay = P, ar.

—Homological algebra: For us, the differential of chain complexes increases the homological degree.

F+H4G Fisaleft adjoint functor to G.

Ch(C)  The category of chain complexes in C. We shall not always indicate chain complexes by a e.

Db
(-]

12

(C)  The bounded derived category of C.
For us, the homological degree shift shifts to the left, i.e. for a chain complex X, we set
Xi]k = Xk+i,
An isomorphism.
A quasi-isomorphism, or an equivalence of categories.

A homotopy equivalence.

Hom and hom: The symbol hom always denotes a chain complex of maps whereas Hom is a space of chain

|-
I

viii

maps.

-} We use this to denote both the total complex of a double (triple) complex and the mapping

cone. This should not cause confusion: if we consider a chain map X — Y as a double complex
with Y in column 0, then its total complex coincides with cone(X — Y).

| The homological degree of a chain complex (used in Sections (3| and .

fe For f: X — Y a morphism, we denote the induced natural transformations of the Hom-functor
by f*: Hom(Y, —) = Hom(X, —) and f,: Hom(—, X) — Hom(—,Y).



Part 1.
Braid group actions on the bounded derived BGG category D"(O)

1. Shuffling functors on the BGG category O

Given a semisimple complex Lie algebra g, we consider the so-called BGG-category O, first defined in
[BGGT6|, which is defined as follows: Let b C g be a fixed Cartan subalgebra of g and let g=n~"@®bhHn™
be a corresponding Cartan decomposition, fixing a choice of simple roots.

Definition 1.1. The BGG-category O is the full subcategory of U(g)-Mod consisting of modules M that
(O1) are finitely generated, (O2) have a weight space decomposition M = B, ¢y My and (O3) are locally
n-finite, i.e. U(n™") - v is finite dimensional for every v € M.

This category contains in particular the Verma modules M (X) = U(n")®y () Cy of highest weight A € h*
and their simple quotients L(\), which exhaust all simple objects of O. The category O is a Krull-Schmidt
category by Weyl’s theorem [Hum72, thm. 6.3; HumO08, §1.11], i.e. any M € O decomposes uniquely (up
to up to isomorphism and permutation [Kralb, thm. 4.2]) into a finite direct sum of indecomposable
modules. The category O has enough projectives. Every Verma module M (\) has a projective cover
P()), and the modules P()\) are the indecomposable projective objects of O. There is a duality functor
(=)¥: O — O which is an exact auto-equivalence of O.

Definition 1.2. A composition series for a module M € O is a finite filtration
0=MyCM CM;C---CM=M (1.1)

such that for all i < ¢ we have M;/M;_; = L();) for some weights \; € b*. The quotients M;/M;_; are
called composition factors of M. By the Jordan-Hélder theorem, the composition factors of such a series
are unique up to isomorphism and order of appearance. Every module M € O admits such a composition
series [Jan79, Satz 1.13; HumO8|, §1.11]. Write [M : L(X)] for the multiplicity of L()) in a filtration for M.
We depict composition series by stacking the quotients from the simple socle My at the bottom to the
simple head M /M,;_1 at the top.

The category O admits a direct sum decomposition into subcategories associated to linkage classes of
weights: Denote by ® C h* the root system of g with simple roots A, half sum of positive roots p and
associated Weyl group W; see [Hum?72, part III] for the notions. W acts on ® and on h* by reflections.
Recall the dot action of W on h* given by w - A := w(A + p) — p. We denote the dot action of W by “W.”.

Two weights A\, i € h* are said to be linked if they belong to the same orbit of W-. Let O, denote the
full subcategory of O containing those modules that have composition factors of highest weights linked to
A. Then the category O decomposes as the direct sum

0 =EpOos. (1.2)

Aeh* /W

In particular, @) is a Serre subcategory of O and contains the Verma modules M (w - \) for w € W as
well as the respective simple- and indecomposable projective modules. If a dominant regular integral
weight A is fixed, we often write M (w) for M (w - A). The category Oy is called principal block of O. It
has finite global dimension [Maz07, thm. 2]. It contains in particular the trivial representation C of g.

Apart from the composition series defined in Definition [I.2] another kind of filtration is of particular
interest:

Definition 1.3. A module M is said to admit a standard filtration if it admits a finite filtration by
submodules of the form whith quotients M;/M; 11 = M(X). If it exists, the length of such a filtration
and the occurring Verma modules are again unique (up to isomorphism and order) by the Jordan-Holder
theorem. We write (M : M(\)) for the multiplicity of the Verma module M () in a standard filtration of
M.

Fact 1.4 [HumO08| §§3.9-3.11]. For multiplicities in composition series and standard filtrations, the following
useful properties hold:



B=p 0 Figure 1.1: Roots, the associated reflection hyperplanes (called
walls) and the enclosed chambers for sls. The hatched chamber

1 lies below the a-wall, below the (a + 3)-wall and above the S-wall;

2 it is thus uniquely identified by ®7, = {8} and &, = {o, a + B}.
Black bullets e are the weights in the orbit W - 0 (which all are

®x —p  regular). The weights —p and —% 3 (white bullets o) are examples
for non-regular weights. In particular, —p always lies on every wall
for any g.

lower wall

upper wall

Haoyp
[ ]
—B—p

(i) Let M € O be a module with standard filtration. Its composition factors then have multiplicities
[M = L] = 2 pewa (M2 M () [M(p) = LA

(ii) The indecomposable projectives P(A) admit a standard filtration with (P(\) : M () = {0 ig " z i .
The case p < A will be dealt with in Section

iii) Any projective module P € O can be written as a direct sum P = P(\)®™ of indecomposable

A

projectives with multiplicities ny = [P, L()\)].

(iv) For every M € O, dimc Homp (P(A\), M) = [M : L()\)]

(v) BGG Reciprocity theorem: (P(X\) : M(u)) = [M(u) : L(X\)]. Together with the other statements, this
in particular implies dimc Endo(P(X) = >° cw A (P(A) : M (p))? and [M(p) : L(v)] = {(1) ig ' z i .

1.1. Translation functors

We shall recall a certain collection of functors connecting the different blocks Oy of O from [HumO8,
§7], originally defined in [Jan79, §2.10]. For simplicity of notation we stick to integral weights in our
considerations. Consider [HumO8|, §7.4] for a treatment of non-integral weights.

Definition 1.5. Given integral weights A, u € h* let v be the unique dominant weight v € W(u — A) (w.r.t.
the normal action). The functor T4 : Oy — O, M — 7, (L(v) ®c M) is called translation functor, where
m,, denotes the projection O — O,, onto the respective summand of the decomposition (|1.2).

Since v is dominant, L(v) is finite dimensional, and T} is an example of a projective functor [Mazl12,
def. 5.1], i.e. a direct summand of the functor V ®¢ — for some finite dimensional V' € O. Projective
functors preserve projective modules [HumO8|, prop. 3.8].

Lemma 1.6. The functors T} and T;;\ are biadjoint; in particular they are exact.

Proof. Since L(v) is finite dimensional. there are adjunctions (L(v)® —) 4 (L(v)* ® —) and (L(v)*®@ —) 4
(L(v) ® —) as endofunctors of the category of vector spaces. For instance, the first adjunction is established
by the isomorphism

Home(L(v) ® M,N) — Hom¢(M, L(v)* @ N)
f= (m — Ze* ®f(e,m))
(l@m— (evy ®idn)(g(m))) <+ g, LO)=(e)

which (as well as the isomorphism for the other adjunction) is compatible with the action of U(g).

Furthermore, there is an adjunction ) : O ﬂ O, : ty of the projection 7 and the inclusion ¢) of the
direct summand O), of the decomposition ([1.2]). This proves the claim. O

Chambers and walls Consider the space h* of all weights and the reflection hyperplanes
Hy={pebh" [ {u+pa)’)=0} (1.3)

orthogonal to a root A € @, called the A-wall in h*. It is the fixed point set of the reflection s, orthogonal

to A. The connected components of the complement h* \ |J,cq Ha are called chambers. A chamber thus

is a cone with cone point —p enclosed by walls and is uniquely identified by a partitioning <I>(J§ Ud, =o*



of the set ®1 of positive roots such that
C={xebh" | (A+pa)20ifacdF}. (1.4)
The chamber C' is said to lie above/below the \-wall for A € <I>25 and its upper closure is defined as
C=Cu{rep |(A+pa)>0if A AL). (1.5)

See Figure [I.1] for a depiction of these notions for the root system of sl3. Note that the fundamental
chamber (i.e. the one containing all dominant weights, in particular the weight 0) lies above all of its
walls and the chamber containing all antidominant weights (in particular —2p) lies below all of its walls.
A weight A € h* is said to be a regular weight if it is contained in none of the walls H,. For instance, 0
(and every weight in the orbit W - 0) always is a regular integral weight for any semisimple complex Lie
algebra g.

Recall 1.7 [HumO8| §7 and references therein]. Let A € C' be a regular integral we1ghtE| contamed in a
chamber C. l

(i) If 4 € C is another weight contained in the same chamber, then T4 : Oy VN O, : T:‘
are mutually inverse equivalences of categories.
(ii) Translation to a wall: If g lies in the closure of C, then translation preserves Verma

modules, dual Verma modules, and, if u lies in the upper closure, also simple modules: oY
. N,
TEM(w-3) = M(w-p), <
TEM(w-A)Y = M(w - p)”,

T L(w- ) = Lw-p) ifw-pew-C,
0 otherwise.

(iii) Translation from a wall: If w-pu € w - C, then TAP(w-p) = P(w- A). If furthermore

’ 2
u lies solely on the s,-wall, then ./:/
Y
T/(‘TIQ\L(w ) =L(w-p) & L{w - p). °
If furthermore ¢(ws,) > ¢(w), then there is a nonsplit short exact sequence

0= M(w-\) = TAM(w-p) — M(wsq - \) = 0, (1.6)
N————

nw
(é)TSM(wsa N
where (x) holds since p lies in the s,-wall of the chamber and thus is fixed by s,.

Definition 1.8. Let X\ be contained in a chamber and p precisely in its s-wall. Denote the

translation functors by T, = Tf and Ty := Tlf‘ Their composite O, = TogT,, is called von
translation through the wall. By biadjointness of Ty, and Ti,g, the functor O, is an exact g off
self-adjoint functor. Note that given two Verma modules of the same block which lie inside

two chambers separated by a wall, translating the Verma modules through this wall gives
isomorphic modules.

2. Derived kernel and cokernel functors

Given a natural transformation n: F' = G of two exact functors F,G: C — D of abelian categories C and
D, one can define functors

cokern: C — D; X +— coker(nyx: FX — GX), (1.7)
kern: C - D; X — ker(nx: FX — GX).

By the snake lemma, coker 7 is right exact and ker 7 is left exact.

2]t is not necessary to assume regularity nor integrity for all of the listed properties, but simplifies the notation considerably
and suffices for our purposes; see |[HumO08| §7] for a more general treatment.



Definition 1.9. Given a category C, its arrow category C1') is the category with objects given by morphisms
f: X =Y in C, and morphisms from f: X — Y to g: X’ — Y’ given by commutative squares. If C is an
abelian category, then so is C[Y.

The adjunction map n: F = G may be regarded as a functor C — D! which inherits exactness from F
and G. The cokernel can be regarded as a right exact functor DY — D |Grol6), lem 3.1.4], and cokern is
the composition C 2 DI <X, D,

Now consider the bounded derived categories DP(C) and D®(D). The exact functor 7 induces : D"(C) —
DP(DM). Since coker is right exact, one can form its left derived functor L coker: D (D) — DP(D).

Lemma 1.10 [Grol6} thm. 3.5.6]. The left derived functor Lcoker: DP(DIY) — DP(D) is naturally
isomorphic to the mapping cone (f: X = Y) — {X ER Y'}. Similarly, R ker is naturally isomorphic to

the mapping cocone.

Caveat 1.11. Tt is important to keep in mind that the obvious functor DP(DM) — DP(D) is not an
equivalence of categories. We consider the derived category as subcategory of the homotopy category.
Objects in DP (D) are certain objects of Ch(DM) = Ch(D)!M, i.e. (strictly) commutative diagrams

X ...*}XkHXk"i‘l;)...
1l s 4 2z 1z
Ye e = YR S YR

in D. Morphisms in Db(Dm) are homotopy classes of commutative squares in Ch D, called coherent
diagrams |Grol6, def. 4.1.1]. This is to say, a morphism in Db(D[l]) is represented by a strictly commutative
diagram

x’* Xk xRt
o A | o1 |
Xe J Xk X1 ecn (pt)
Vi + +
J( y’® l*} y’k lﬁ y/R
1 M 7
ve . . Yk yk+1
N——
epltl

in D, up to homotopy for the dashed arrows. In contrast, an object in DP(D)!! is a morphism X*® — Y
in D®(D), which is only defined up to homotopy. A morphism in D®(D)[ is a homotopy-commutative
square

X — X'*
U
Ye - Y’*

in D*(D), i.e. X* — Y* — Y'* and X* — X’* — Y’* are homotopic chain maps. A homotopy-
commutative square need not be homotopy equivalent to a strictly commutative square. These are called
incoherent diagrams. The mapping cone is functorial only as a functor D(D!) — DP(D) but does not
factor through D®(D)MM [Grol6, warn. 4.1.8].

1.3. Shuffling functors

Since the functors Ty, and Tog from Definition [I.§] are biadjoint, there are the corresponding adjunction
unit and counit maps 7: id = TogT,n = O, from the adjunction Tog 4 T, and e: O4 = TogTon = id from
the adjunction T, 4 Tog.

Definition 1.12. Define the right (resp. left) exact endofunctors
Shy = coker(id = Oy), Cshy := ker(O; = id)

of Oy, called shuffling and coshuffling functor respectively. They have been firstly defined in [Irv93} §3].



Lemma 1.13. Let w € W and s be a simple reflection such that £(ws) > ¢(w). There are isomorphisms
Shy M(w - A) = M(ws - ),
Cshs M(ws - A) = M(w - \), (1.9)
OsM(w) = O ;M (ws).

Furthermore, translation through the wall and the shuffling functor fit into short exact sequences

&\/ 0, M (w) M (ws). (1.10)
Shy M (ws) S~

The modules M (w) and Sh? M (w) in particular have the same composition factors.

Proof. Given an adjunction F': C é D: G of functors between arbitrary categories, the adjunction
unit nx: X — GFX is given by the image of idp under the natural isomorphism Homp(FX, FX) =
Homp(X,GFX). Recall that for all Verma modules the endomorphism ring Ende (M (w - A)) is one-
dimensional [Hum08, thm. 4.2]. Thus the adjunction map 7n: id = ©;, given by

C = Hom (TonM (w - A), Tou M(w - X)) — Hom (M (w - X), O,M (w - \)),
_/_/ .
M (w-p1) id — €pr(w-a)s

is the unique (up to scalars) non-zero map M(w - A) = O, M (w - A). If L(ws) > {(w), the map e thus fits
into a short exact sequence of the form (1.6), exhibiting M (ws - \) as the cokernel of 1y/(,.5). A similar
argument holds for the coshuffling functor. O

Lemma 1.14. Translating indecomposable projectives through the wall twice yields
0?P(w) = O,P(w) ® O,P(w).

Proof. Since Oy is exact, ©2P(w - \) is a projective module and thus can be written as a direct sum
O2P(w - A) = @cp P(w' - \)™ of indecomposable projectives. The module P(w’ - X) occurs with
multiplicity

Ny = dimg Home (©2P(w - \), L(w’ - \)) 77 1.4.(iii)
= dimg Homo (Ton P(w - A), TonTogTon L(w" - \)) Lemma
= dim¢ Home (Ton P(w - ), TonTog L(w' - 1)) 27 1.7.(ii)
= dim¢ Homo (Ton P(w - A), L(w'" - p) & L(w'" - w)) 7?7 1.7.(iii)
= 2dimc Home (Ton P(w - X), L(w' - p))
= 2dim¢ Home (Ton P(w - A), Ton L(w' - X)) 77 1.7.(ii)
= 2dimc Homp (O, P(w - A), L(w - X)) Lemma O

Since Sh, and Csh, are not exact in general, we pass to the bounded derived category D®(0p) and
consider the derived functors L Shy and R Csh.
Lemma 1.15. The derived shuffling functors L Shy satisfy the following properties:
(i) LiShy = { g7 572 1
(ii) For modules M with a standard filtration, the adjunction map ny: M — ©,M is an inclusion.
(iii) Modules having a standard filtration are Shs-acyclic, i.e. L; Shy M = 0 for ¢ > 0 if M admits a
standard filtration.

Proof. (i) The long exact sequence of L Shy coincides with the long exact sequence of the snake lemma
for the exact sequence id = ©4 = Shy; = 0 of functors. This shows that L; Shy = 0 for ¢ > 1 and
L; Shy = ker .

(ii) By Lemma the adjunction map 7 is injective for Verma modules. Hence by the four lemma, 7,
is also injective if M is an extension of a Verma module by another Verma module. The statement
follows by induction of the length of the filtration.

(iii) This follows immediately from the first two statements. O



1.4. W acts on the Grothendieck group, By acts on D"(O)

Definition 1.16. Given an abelian (resp. triangulated) category C, its Grothendieck group Ko(C) is the
abelian group generated by isoclasses [X] of objects X € C, with the relation [X] = [Y] 4 [Z] whenever
there is a short exact sequence Y — X —» Z (triangle Y — X — Z — Y[1]) in C. If C is a (braided)
monoidal category, then Ky(C) becomes a (commutative) ring by virtue of the multiplication induced by
the tensor product.

Before letting By act on DP(Op), we consider an action of W on the Grothendieck group.
Lemma 1.17 |Gro77, §§1-4]. The Grothdendieck group has the following properties:

(i) If F: C — D is an exact (triangulated) functor of abelian (triangulated) categories, it induces a
homomorphism [F]: K¢(C) — Ko(D),[X] — [FX] of abelian groups.
(ii) If T is a triangulated category, then [X[1]] = —[X] in Ko(T).
(iii) If C is an abelian category, there is an isomorphism of abelian groups

[(X] = [X]
D (CDFEMNX)] = (X7

k

fcan] : Ko(C) 2= Ko(D(C)) : X
}_}
<

with the canonical embedding can : C < DP(C) and the Euler characteristic x.

Corollary 1.18 of Lemma [T.13] Shuffling functors induce a right action of W on the Grothendieck group
Ky(Op) by the assignment s — ([LShy]: [M(w)] — [M(ws)]) for simple reflections s € S.

Proof. Recall that every module of Oy admits a composition series of the form with simple factors
L(w). Hence, the isoclasses [L(w)] form a generating set of Ky(Op). Since the composition factors are
unique (up to isomorphism and order of occurrence) by the Jordan-Holder theorem, the [L(w)]’s are even
a Z-basis of Ko(Op) [HumO08, §§1.111].

Furthermore, recall that L(w) is the unique simple quotient of M (w) w.r.t. a submodule M C M (w),
where M only has composition factors L(w’) with w’ < w w.r.t. the Bruhat order (?? 1.4.(v)). By
induction on w this shows that also the isoclasses [M(w)] of Verma modules form a basis of Ky(Op)
[HumO8, ex. 1.12] which is isomorphic to Ko(DP(Oy)). It thus suffices to show the assertion for Verma
modules. The short exact sequences in show that Sh, (and by Lemma also L Shy) acts by s on
Verma modules. The argument for Cshy is similar. O

Definition 1.19. Given a reduced expression w = s;, - - - s;, € W for an element of the Weyl group W, let
Sh,, =L Shsi1 - L Shsik and Csh,, = RCshsi1 ---R Cshsik.

Theorem 1.20 [MS05, thm. 5.7, lem. 5.10; Rou06, thm. 10.4]. Up to natural isomorphism, the functors Sh,,
and Csh,, are independent of the choice of a reduced expression for w. The functors L Shy and R Csh;
are mutually inverse auto-equivalences of DP(0p). Hence the assignment

Bw — Aut(D®(0p)), s+ LSh,, s !+ RCsh,

defines an action of the braid group By on the category O,. This action induces the action from
Corollary on Ko(O,).

Whereas Mazorchuk and Stroppel’s proof works directly in the set-up of category O, Rouquier’s proof in
fact shows the statement for the homotopy category of Soergel bimodules, then passes to the coinvariant
algebra and obtains the theorem by virtue of Soergel’s functor V. We shall recall this proof in Section

Note that this action of Bg, on D"(0y) does not come from an action of Bg, on O. In algebra and
geometry, there are plenty of other examples for braid group actions on derived or other triangulated
categories, all of which do not seem to exist in the abelian category [Kho02, §6.5].



2. Explicitly computing shuffling functors

After the formulation of the general theory of shuffling and translation functors in Section [1} we like to
consider the involved functors more explicitly in the cases of g = sly and g = sls. We shall do so by
dealing with modules in O in terms of their composition series and descriptions of them in the terminolgy
of quiver representations. We firstly introduce our toolbox for g = sly before applying it to the (more
involved) example g = sls.

2.1. Shuffling functors on Oy(sl,)

After the formulation of the general theory of shuffling and translation functors in Section [1} we like
to consider the involved functors more explicitly in the case g = sl;. Recall the root system of sly (see
Figure with Weyl group S = {e, s}. We want to explicitly provide the images of Verma modules,
simple modules and their projective covers under the shuffling functor Sh,. There is only one wall which
corresponds to the dominant and antidominant weight —1, hence the Verma module M (—1) is both
projective and simple [HumO8| prop. 3.8, thm. 4.8]. Since we know that Ty, preserves Verma modules
M (w) and T, preserves indecomposable projectives P(w) (?? 1.7), we know that P(e) = M (e) and
M (s) = L(s) are mapped to P(s) by ©,. The module L(e) is annihilated, since it is translated to a lower
wall (27 1.7.(iii)). For determining the image under the shuffling functor, we argue as follows:

M (e): We know that ©,M(e) = P(s) and Shy M(e) = M(s) (Lemma |1.13]), The corresponding short
exact sequence M (e) N P(s) —» M(s) is the standard filtration of P(s) = ©,M/(e), see Table
M(s): The module P(s) has standard filtration M (e) — P(s) —» M(s), see Table In fact, this is (up

to scalars) the only extension of M (s) by M(e) |[Car86, thm 3.8]. Thus, there is a unique non-zero
map (up to scalars) M(s) < M(e) < P(s), which can be written in terms of composition factors:

L) _, L(s)

Le) 7 Lie) o)
L(s) <= L(s) et '
—~— —~—
M(s) P(s)

The picture is to be read as follows: It states for instance that P(s) has simple quotient L(s)
(top) and also simple submodule L(s) (bottom). Se Notation for more details on the notation.
Comparing composition sequences shows that M(s) < P(s) has M(e)" as its cokernel.

P(s): We know that P(s) occurs as the image P(s) = ©,M(e) = ©,M(s). Since O, is exact and the
shuffling functor is right exact (see Definitions and , we obtain a commutative diagram

{0 — M(e) - P(s) — M(s) — O}
ol
(s) —
(

!
v

92}
&
——
o
l
!

0

Figure 2.1: The root system of slz is given by ® = {£a} with simple
root « and reflection s = so. The integral weight lattice is identified
with 2Z.
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Table 2.1: Composition series of the Verma modules, dual Verma v
modules and standard filtrations of indecomposable projectives in M(e) M(S) M(e) ‘ P(e) P(S)

the principal block Op for the Lie algebra g = sls. LEE%
L(s

L(s)
L(e)

M(s)

L) M(e)

‘ M(e)




module M ©;,M Shy, M Table 2.2: Images of Verma modules and indecomposable projectives
in the principal Og(sl2) under the translation ©, through the s-wall
M(e P(s) M(s) and under shuffling Sh,.

M(s) P(s)  M(e)”

P(s)  P(s)®  P(s)

L(e) 0 0

with split exact middle row. This gives O;P(s) = P(s)® P(s) and Sh, P(s) = P(s) by commutativity.
We thus obtain the images under ©, and Shy listed in Table 2:2]

2.1.1. Oy(sl,) as module category over a path algebra

We want to find an approach to describe the structure of modules in Oj other than stacking composition
factors as in . This is of particular importance if the extensions of simple modules in the composition
series are more involved and are not just linearly ordered. We will see that this will already happen for
sl3, which necessitates a more rigid description of the modules in Oy. Recall the following statement:

Theorem 2.1 (Gabriel, Mitchell, Morita) [Bas68, thm. II.1.3]. Let C be an abelian category and P € C.
There is a functor C — Mod-(End¢(P)); M — Home (P, M), where Home (P, M) obtains a right Endc¢ (P)-
module by precomposition with endomorphisms of P, i.e. f.g = fog for f € Home(P, M) and
g € End¢(P). If P is a compact projective generator in C, this functor is an exact equivalence of
categories.

Corollary 2.2. For g = sls, there is an equivalence of categories Oy ~ Mod-A, where A is the path algebra
of the quiver with relations

Q= . o/ ) (2'2)

Proof. The category Og admits a projective generator P = @, yy.o P()), see [HumO08, §3.13]. For sly the
endomorphism ring of P = P(e) @ P(s) is generated as an algebra by the identity morphisms e, of P(e)
and eg of P(s), the inclusion a : P(e) < P(s) and the quotient b : P(s) —» M(s) — P(e). By the standard
filtration of P(s), these maps admit the relation bo a = 0. The endomorphism ring End (P(e) ® P(s))
thus is isomorphic to the path algebra A. O

Notation 2.3. We point to the convention we use for composing arrows of quivers, namely by writing them
down like morphisms. Explicitly, this means that ba is the path e — as — be (and not s — be — as). We
denote the trivial path attached to a vertex v of a quiver by e,. Let A be the path algebra of (). Then
ey, A < A is the right ideal of all paths ending in the vertex v.

Given a module M € Ogy, we can interpret M € Mod-A as representation of ) via

M = (Hom(P(e), M) 2= Hom(P(s), M)), (2.3)
ob
where the structure maps are given by composition with the endomorphisms a and b of P. We shall
freely identify modules M € Oy with their images under the equivalence Oy ~ Mod-A. We want to find
bases of the Verma modules and indecomposable projectives as representations of @) as in . Since by
Theorem [2.T] the equivalence Oy ~ Mod-A is exact, it preserves indecomposable projectives, whose images
can be characterised explicitly:

Proposition 2.4 |Barl5| cor. 4.18, rmk. 4.20]. Let A be a finite dimensional basic C-algebra, with a complete
set E C A of pairwise orthogonal primitive idempotents, e. g. the path algebra of a bounded quiver @) with
the collection of trivial paths {e,} attached to all vertices v € Qp. Then the indecomposable projective
A-modules are precisely the right ideals eA for e € E.

For the path algebra A of @, the indecomposable projective modules thus have bases

0

Pe) = ecA = ({ec) % ®),  P(s)=eA=((a) % (es,ab)). (2.4)



Recall that any P()) admits a standard filtration by Verma modules (see ?? 1.4). By exactness of the
equivalence Oy ~ Mod-A we can carry over these standard filtrations from Qg to Mod-A. Explicitly, as a
Q-representation, M (s) fits into the short exact sequence

ao (1)
() 2 () <S5 (a) == (esyab) —» 02 (e) (2.5)
0 (10) —_—
P(e)=M(e) 0. M(e)=P(s) M(s)

corresponding to Shy M (e) = M (s). The action of Shs on the other Verma module M (s) is exhibited by
the sequence

0
O <:> <€s> — <Cl> —< <€3,ab> — <a> <:> <es>- (26)
N—— (10) 1
M ©,M(s)=P(s) Shy M (s)=M/(e)¥

At this point, we want to emphasize the difference between M (¢) and M (e)V: Although both have the
same simple composition factors®| L(e) = (C &2 0) and L(s) = (0 & C), the structure maps linking them
are interchanged; namely in M (e)Y socle and head are exchanged in comparison to M (e).

2.2. Shuffling functors on Oy(sl;3)

As a more involved example, we now want to apply the strategies developed so far to g = sl3. Recall the
root system of sl3 from Figure with Weyl group W = S5 = (s, t), whose longest element sts = tst we
denote wy. Verma modules in Oy have the composition series listed in Table 2.3 where we employ the
following notation:

Notation 2.5. We depict composition factors as follows: consider the entry for M (e) in Table The
depiction states that M (e) has L(wg) as its unique simple submodule (L(wp) is the only entry in the
bottom layer) and L(e) as its unique simple quotient (the only entry in the top layer). The “intermediate
layer” for M (e) for instance depict the fact M Ee) /L(wp) in turn has simple submodules L(st) and L(ts),
or that M (e) has e.g. a (non-simple) quotient ﬁ z). We also write down morphisms in terms of composition
factors by drawing arrows which indicate where each composition factor is mapped: for example in g = sls,
the nontrivial endomorphism ab of P(s) is depicted

L(s) L(s)
ab: P(s) = L(e)\L(e) = P(s).
L(s) L(s)
Any factor from which no arrow starts is in the kernel of the morphism, and any factor at which no arrow

ends is in the cokernel. We use a similar notation for standard filtrations.

Again, our first step is to deduce the composition series of the images Shy M (ws) for £(ws) > £(w) from
the already known images Shy M (w) = M (ws), using the short exact sequences (1.10). The image of
Sh, M(s) under Shy is exhibited by the following short exact sequence:

M(s) —— ©;M(s) = P(s) —— Sh, M (s)

| |
L) L(s) (2.7)

L(e) L(st) L(ts) L(e) L(st) L(ts)
L(s) L(s) L(t) L(wo) L(t) L(wo)
L(st) L(ts) L(st) L(ts)
L(wo) L(wo)

Remark 2.6. We see from ([2.7) that Shy M (s) and M (e) have the same composition factors (see Lemma ,
but arranged in a different order. For instance, M (e) has simple quotient L(e) and simple submodule
L(wg) (see Table , whereas (2.7)) shows that Shy M(s) has simple quotient L(s) and simple submodules
L(wp) and L(t).

3To put it another way, both have the same dimension vector.



Table 2.3: Composition series of the Verma modules and standard filtrations of indecomposable projectives in
the principal block Oy for the Lie algebra g = sl3. See Notation for an explanation of the depiction of the
composition series. Note that (by definition) every Verma module M (w) has unique simple quotient L(w) and
unique simple submodule L(wo). M(w) is a submodule of M (w’) if and only if w > w’ in the Bruhat order.
Likewise, P(w) by definition has quotient M (w), and P(w’) is a submodule of P(w) if and only if w < w'.

M (e) M(s) M () M (st) M(ts) M (wop)
L(e)
L(s) L(t) L(s) L(t)
L(st) L(ts) L(st) L(ts) L(st) L(ts) L(st) L(ts)
L(wo) L(wo) L(wo) L(wo) L(wo) L(wo)
P(e) P(s) P(t) P(st) P(ts) P(wo)
M (wo)
M (st) M (ts) M (st) M(ts)
M(s) M (t) M(s) M(t) M(s) M(t) M(s) M(t)
M(e) M (e) M(e) M (e) M (e) M(e)

For understanding the structure of Shs M(ts), we first need to deduce the structure of O,M (¢s) from
the extension

M) — 5 O,M(t) ——» M(ts)

H ll ll
L(ts) L(ts)

L(t) L(t)  L(wo) L(wo)
L(st) L(ts) L(st) L(ts)

L(wo) L(wo)

of Shy M (t) = M(ts) by M(t). Since Lemma asserts that O, M (t) = O5M (ts), we obtain the quotient
L(ts)

L(#) L(wo).
L(st)

M(ts) ——— O;M(ts) ———» Sh, M (ts) ——

By the same means, we obtain Shy M (wg) = LL(&“)) . One observes the following:

Lemma 2.7. Let w € W and s € S be a simple reflection such that £(ws) > £(w). Then Sh? M(w) =
Shy M (ws) has simple quotient L(ws).

Proof. Since Shy M (w) = M(ws) is a quotient © M (w) —» M (ws), the module ©4M (w) has simple
quotient L(ws). Recall that OsM (ws) = ©;M (w) (Lemma|1.13]). Since M (ws) — ©,M (ws) is a proper
inclusion, the quotient Shy, = ©,M (ws)/M (ws) has simple quotient L(ws). O

However, studying the module structure solely relying on composition series is not satisfactory: Which
submodule is generated by a certain simple composition factor? Does any of the extensions involved in
the composition series split? Considering the composition series for the indecomposable projectives P(w),
one notes that the inclusions P(w) < ©4P(w) are not uniquely determined by the composition series;
how to determine Shy P(w) in this case?

These questions are difficult to answer in this framework; especially the last one is crucial. W We saw
already in the sly-case that we can describe the modules in Oy as representations of a certain quiver,
which will turn out to be an advantageous description for sl3 as well.

2.2.1. Oy(sl3) as module category over a path algebra

Unfortunately, we find ourselves trapped in a vicious circle: as we cannot really understand the homomor-
phisms between indecomposable projectives, we want to consider representations of quivers. However, in
the case of g = sls, we obtained the quiver from exactly these maps (see Section .

Nevertheless, we know indecomposable projective quiver representations to be of the form e, A for A the
path algebra and e, the trivial path at the vertex v (see Proposition . Hence we can rely on [Str03b]
providing the desired quiver in order to reconstruct all the other modules.

10
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0 0 0 -300 00 0 0 650 oani6 0000 00 0 0-60
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00-4 0 0100
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Figure 2.2: Indecomposable projective modules P(w) of highest weight w for sl3 as representations of the quiver
Q from . Each hexagon denotes one module P(w) for some Weyl group element w € W as in . The
meaning of the hexagonal shape and the numbers is explained in Notation For the vector space attached
to one vertex we have chosen the denoted paths as basis vectors; see the explanation to . ‘We provide the
structure maps in terms of these bases, writing just 1 and 0 for the identity and the zero map. Letting w run
through W, we arrange the modules P(w) hexagonally as in .
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Before discussing the relevant modules and the action of the shuffling functor on them we introduce
some notation:

Notation 2.8. We arrange the weights in the following Shapeﬂ and number them throughout this section as
indicated in the second diagram:
e 1
PN PN
s t 2 3
‘ =] | (2.8)
st ts b 4,
Swe” \6/
where we denote by wg the longest element of W = S3. We abbreviate paths by the numbers of the

corners they pass, for instance we write 421 for the path 1 — 2 — 4.

Recall from the proof of Corollary that Oy ~ Mod-A for A = Endp P the endomorphism ring of
the projective generator P = @, .y P(w) (Theorem [HumO08| §3.13]). It has been shown in [Str03b)
§5.1.2; Mar06, thm. 4.1] that A is the path algebra C[Q)] of the quiver with relations

2= 0 1Bl= 0
u2= 0 383= 0
431= 41 521 = —2 531
352 =—2.342 243 = —2.213
1 1
N = 4.312 =—2.253
2 3 2
'\ 252 =—4.212 353 = —313
Q = I \ I 652 = 2-642 643 = —653 (2.9)
1
5 4 124= 134 135 = - 125
N 3
6 464 =—3 . 424 565 =— - 535
256 =—2-246 346= 356
3 3
564 = - (524+534) 465 =—> - (425+435).

We denote an element of A by a path representing it up to the relations of @.

2.2.2. Bases of representations of (Q by paths

Indecomposable projectives By the equivalence Oy ~ Mod-A an arbitrary module M € Qg is mapped
to Hom(P, M), which becomes a representation of Q via

Hom (P(e), M)

0112/0;1 031\()}3
Hom (P(s), M) Hom (P(t), M)
Hom(P, M) = [ \ (2.10)
Hom (P(st), M) Hom (P(ts), M).

In particular, the indecomposable projectives P(w) € Oy are (by abuse of notation) mapped to P(w) = e,, A.
This becomes a representation of () by attaching to the vertex v the vector space e, Ae, spanned by paths
from v to w. We then can describe the structure maps of P(w) as matrices after having chosen some
paths in @ as basis vectors for each corner e, Ae,,.

Ezample 2.9. Let M = P(e). The vector space Hom(P(e), P(e)) in the top corner of (2.10) is one
dimensional with basis vector idp), which corresponds to the path 1 = e.. Similarly, Hom(P(s), P(e))
(top left corner) contains only one homomorphism (up to scalars), denoted by 12. The entire representation

4Note that our schematic intentionally deviates from the arrangement in [Str03b|. Although Stroppel’s hexagon resembles
the familiar picture for the root system of sl3, it turns out that the corners 4 and 5 stand for ¢s and ts resp.
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Hom(P, P(e)) has the following basis by paths with structure maps:

P(e) = Ae. = 1J\20y : 011 (2.11)

1246

The coefficients for the structure maps are obtained from the relations listed in (2.9); for instance,

012: Hom (P(e), P(e)) — Hom (P(s), P(t)). 1+ 12;
021: Hom (P(s), P(t)) — Hom (P(e), P(e)), 12 — 121 = 0.

Note that we can see immediately from this structure that P(e) has

e socle L(wp): all outgoing maps from the the bottom corner are zero (i.e. from the vector space
Hom(P(wyp), P(e)) = (6421)). The representation of @ with Hom(P(wy), P(e)) at corner 6 (and
zero in all other corners) thus is a (simple) subrepresentation of P(e);

e head L(e): all maps into the top corner (i.e. into the vector space Hom(P(e), P(e)) = (1) whose
only basis vector is the trivial path at vertex e) are zero; and

e each simple module L(—) exactly once as composition factor since at every corner there is precisely
one basis vector.

In fact, we can infer the entire composition series of P(e) from this picture immediately. The procedure
for the other indecomposable projectives is similar. A basis for every P(w) together with matrices for the
structure maps is given in Figure

Verma modules Recall that the indecomposable projectives have standard filtrations by Verma modules,
listed in Table We can thereupon recover the Verma modules M (—) (to be precise: their images as
representations of the quiver @) as quotients of the modules P(—), beginning with M (e) = P(e) and
proceeding to M (wg). A basis for each Verma module is given in Figure In particular, there are the
following inclusions

21?/ P(e) \}10 12%M(e) r\}30
PO PO M) Mo
o 430 ° 40 (2.12)
52 l K j 3 25 ] 350/24X [3
P(st) P(ts), M (st) M(ts)
650\‘P(w0)’/64o 56(2\)M(w0(/£160

of representations of Q.

2.2.3. Sh, in terms of representations of Q)

Verma modules We can use the description of indecomposable projectives and Verma modules from
Section [2:2.2] to compute their images under the shuffling functor Shy as representations of Q. Recall
that we already know the images of M (e), M (t) and M (st) under Sh, and that O,M (w) = O ;M (ws) by
Lemma [LT3]

The adjunction map 1) : M(s) — ©,M(s) = P(s) is the unique inclusion M (s) < P(s) (Lemmam
and comparison of composition factors from Table [2.3). Since we have chosen bases for M(s) and
P(s) = ©,M(s) (for instance the ones in Figures and , N (s) can explicitly be formulated as a
collection of matrices attached to every vertex v of ), representing the maps M(s), — P(s),. We can
compute a basis of its cokernel, which by Definition [[.12]is the image under Shy:

0 21
2. 0213
— /> A

Shy M (s) = coker nys(s) = 1 0\// —4'0 (2.13)
<70 ™S
25" 5, | 24

o e 13



N Figure 2.3: Bases for Verma modules M (w) of highest
TN weight w for sl3 as representations of the quiver .
Q 0 13 Each hexagon denotes one Verma module. The arrange-
IJU 011 ment of weights into the hexagon is as in . Although
we realise Verma modules as quotients of the projective
3 modules from Figure 2.2 by Table 23] we do not distin-
O’L guish in our notation between paths (as basis vectors of
some P(w)) and their image under P(w) —» M (w). The
34 depiction thus provides basis vectors (in terms of repre-
senting paths) attached to each corner of Q. The structure
maps are either the identity 1 or the zero map 0.

Remark 2.10. As representation of @), The image Shy M (s) has the same dimension vector as M (e), i.e.
both have the same simple composition factors with multiplicities. The dashed structure maps indicate
extensions in the composition series whose head and socle exchanged w.r.t. the series of M(s). This
observation is analogous to Remark

In the same manner, we obtain the images of the other Verma modules under Shy:

/ \ /’ \O
Sh, M(ts) \ ¢ Shy M (w) = I\\I
) _3/2 4 56 . 0.
0\)46 o« O\\’6/

Projective covers We already know P(e) = M (e) and hence Sh, P(e) = P(s). To obtain Shy P(t) and
Sh, P(st) we apply the following strategy. Recall that any P(w) has a standard filtration 0 = M, C

- C My = P(w) with subquotients isomorphic to Verma modules. Applying the exact functor ©; yields
a filtration of ©4P(w) with subquotients isomorphic to translated Verma modules. By naturality, the
adjunction map 7 gives a commutative diagram

Ml Mg PN Mg_l P(w)
[ ] N =
OsM) —— O My —— ... —— O;My_1 —— O,P(w)

of inclusions (see Lemma [1.15]), which allows us to infer the adjunction map P(w) < ©,P(w). Making
things explicit, we compute the following images of indecomposable projectives:

P(t): we compute Shg P(t) by applying ©; and Shy to the standard filtration of P(s):

(t) } (2.15)
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Since we already know bases of P(s) and ©;M (t) as representations of QE we can compute a basis
for their extension ©4P(ts), which by comparison shows ©,P(t) & P(ts). Commutativity of the
diagram allows us to find the vertical adjunction map P(t) — ©,P(t) and its cokernel Shy P(t),
which in turn fits into the (exact, see Lemma bottom row of :

0 0 0
2 / \ 0 42 / \ 0 0 / \ 0
><f=I><l-D<] =
\ \
25 \ / 24 425 “ I/4, 524 0 \ / 4.
246 46, 4246 46
Sh, M(e)=M(s) Sh, P(t) Sh, M(t)=M (ts)

P(st): There are similar diagrams for the standard filtration of P(st). We want to make this explicit
once again, primarily since the images of P(st) under translation and shuffling turn out to have
an interesting appearance, and secondly in order to illustrate an extensive argumentation based on
filtration factors.

Recall from Table [2.3|that P(st) has a standard filtration consisting of the two short exact sequences
K — P(st) = M(st), P(t) = K — M(s). (2.17)

Apply O, to the second sequence:

{ P(t) K - M(s) }
o. | nxJ{(é) | (2.18)

{P(ts) % P(ts) @ P(s) —» P(s) }

where the second row splits by exactness. The adjunction map 7x is obtained from composition
factors through the diagram. Namely, (2.18)) looks as follows in terms of standard filtrations (see
Notation for an explanation of the notation):
M(t) M(t) M(s)
M (e) M (e)

M (s)

(2.19)

M (ts) M (ts) } {1\/[(3)
M(s) M(t) p———{M(s) M(t) ®3M(e) M(e)
M(e) M(e)

which yields i: K < P(ts) and g: K — M (s) — M(e) < P(s).

Now that we have a standard filtration of K and know its adjunction maps, we may obtain O4P(st)
by applying ©; to the first sequence from (2.17). Explicitly, we see that O4,P(st) = P(wg) @ P(s)
fits into the bottom sequence of

{ Ke— 5 P(st) ——» M(st) }

)
o, lnx nmst)l( 7) l (2.20)

{ P(ts) @ P(s) —— P(wo) ® P(s) —s ©,M(st) }

5The latter is an extension of M(ts) by M(t), and this extension is unique up to scalars [Car86, thm. 3.8].
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Table 2.4: Translated and shuffled indecomposable projective modules in Oy for sls.

P(_) @sP(_) Shs P(_)

Pe)  P(s) M(s)

P(s)  P(s)®* P(S)

P(st) P(wy) ® P(s) (ts) @ P(s)
P(t) P(ts) see ([2.16)

P(ts) P(ts)®? (ts)

P(wp)  P(wo)®? P(wy)

by considering the diagram in terms of standard filtrations:

M(st)}/\)M(st)

M(t) M(s)} M(t)  M(s) h

M(e) ) M (e)
3 Jf—/
7 T S e

(2.21)

M(ts) M(ts) M(st M (st
M(s) M(t) & M (s) M (s) ]\/I(t) & M(s)}
M(e) M(e) M (e) M (e)

\_/A

The maps 4, g are taken from ; the other two are the inclusion j : P(st) < P(wp) and the

inclusion h : M((Sst)) — %EZ% The 1mage Shy P(st) thus is

— i\ o ( M(wo)
Sh, P(st) = coker(] ) = ( o) ) @ P(s) (2.22)
We point to the circumstance that the right summand P(s) in (2.22)) is not identical to the respective
summand P(s) of (2.21) but intersects both P(wg) and P(s) non—trivially. To see this, one chases
composition factors through the diagram. Note that the first summand is just ©;M (¢s), so that
Shg P(st) = ©,M(ts) & P(s).

P(ts), P(wp): Recall from Lemma that ©2P(w) = ©,P(w) ® ©,P(w). Since we just saw that
OsP(t) = P(ts), we thereupon obtain O,P(ts) = P(ts) @ P(ts).
The last module P(wp) occurs in P(wg) @ P(s) = O4P(st); and we have O4(P(wo) ® P(s)) =
(P(wp) ® P(s)) ® (P(wo) @ P(s)). Recall from Section [1] that Qg is a Krull-Schmidt category;
in particular every projective object decomposes uniquely (up to permutation and isomorphism)
into a direct sum of finitely many indecomposable projective modules P(w). Uniqueness allows
to split off O4P(s) = P(s) & P(s) from O4(P(wp) ® P(s)) |[Krald, cor. 4.3]; we thus obtain
GSP(’LU()) = P(U)O) D P(U}())
To understand the images Shg P(ts) and Shg P(wp), we use that Shy is exact on modules with
standard filtrations.

Altogether, we obtain the images of indecomposable projectives under translation and shuffling listed in

Table 2.4

Remark 2.11. The argumentation for P(st) can be formulated more rigorously in the same fashion as for
P(s). It is indeed enlightening to track how the maps involved are formed as module homomorphisms
over the path algebra A.

2.3. Gradings on Oy; Iwahori-Hecke algebra

The path algebra of a quiver comes with a natural grading having the trivial paths in degree 0 and all
arrows in degree 1. Since all relations of the quiver @ in (2.9) are homogeneous, we can endow Mod-A
(and by Theorem also Op) with a grading which was not visible from the Lie-theoretic point of view.
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Let O% := grMod-A be the thus graded category Op. See [Str03a; RS15| for more information on O%. We
denote by (—): grMod-A =5 grMod-A the upward shift of the grading. We shall freely identify modules
in Op and their graded lifts in OF.

Such a graded category O% can be defined for an arbitrary semisimple complex Lie algebra [Str03b)
sec. 5.1.2]. The mutual inclusions among projective covers and among Verma modules are of order one,
which can be seen in for g = sl3. Note that, since A is positively graded, any inclusion of a proper
submodule into an A-module is a map of positive order. We can thus recover the order of the composition
factors of a module from the grading [Str03a].

If we look at the inclusions M (w) < OsM (w) in terms of the chosen homogeneous basis, we see that
they are of order one if w lies above an s-wall, and of order two if w lies below the s-wall. If we let
O M(ws) =2 O;M(w)(—1) for £(ws) > ¢(w) and shift Shy M (ws) accordingly, we can turn into
short exact sequences of graded modules

M(w)(1) < O,M (w) —» M (ws); M (ws)(1) <= OsM(ws) = Shy M (ws). (2.23)

Definition 2.12. Given a graded algebra A, the Grothendieck group Kp(grMod-A) becomes a Z[g*!]-module
by letting the grading shift (—) of grMod-A act by g, i.e. [M(1)] := gq[M] for any graded A-module M.

With the two short exact sequences above, we thus obtain

(O M (w)] = q[M(w)] + [M(ws)] [Shs M(w)] = [M(ws)]
[©:M (ws)] = [M(w)] + ¢~ [M (ws)] [Shs M (ws)] = [©sM (ws)] — q[M (ws)]
= [M(w)] + (¢~ — ¢)[M (ws)] (2.24)

whenever ¢(ws) > {(w). To spell it out more concisely, Shy acts by s if the word gets longer and by
s+ (¢! — q) if it gets shorter when multiplied with s. These are precisely the relations of the following
algebra:

Definition 2.13 [Lus03|. The Iwahori-Hecke algebra H,(W) of a Coxeter system (W, S) is the Z[g*!]-algebra
with generators Hg for s € S, and relations

H?=1+(¢""' —q)H,,  H.HH,---=HHH -

ms¢ factors ms¢ factors

for two simple reflections s,t € S with s # t. H, (W) thus is a quotient of the group algebra Z[g*!][Bw/].
It is a deformation of the group algebra Z[W] since H, (W) ®zjq21) Z = Z[W] where we let ¢ act on Z by 1.

The element H, is a unit with inverse H; ! = Hy — (¢~ — ¢). Given a reduced expression w = s;, - - - 8;,
of we W, let Hy, := Hy, ---Hg, . This is independent of the reduced expression [Mat64, thm. 4]. The
algebra H, (W) is a free Z[¢g™!] module with basis {H, }wew [Bou07, exc. 22;|Jac12, thm. 2.3; [Bum04,
thm. 46.3], called standard basis. In terms of the standard basis, multiplication is given by

H, if =
. H, - ws i Z(ws? L(w) + £(s) (2.25)
Hy, + (¢! —q)Hys otherwise

by the defining relations.

Remark 2.14. The seemingly arbitrary relations of H,(W) arise, for W = S,,, by realising H,(S,,) as
follows: Let B C GL,(F,) be the (Borel) subgroup of upper triangular matrices. Then H,(S,,) is realised
as the convolution algebra of complex-valued functions on GL, (F,) which are B-biinvariant (i.e. constant
on double cosets B\ GLy,(F,)/B). The parameter ¢ hence arises as the cardinality of the finite field F,
[Bum04), thm. 46.4].

2.3.1. Kazhdan-Lusztig theory

Theorem 2.15 (Kazhdan-Lusztig) [KL79, thm. 1.1]. The algebra Hy (W) has an involution (—) defined by

g=q 'and H, = H;}l There is a unique basis of H,(W') by elements C,, satisfying

é{u = qum quu = Z Dowdy

v<w

with coefficients p,,, = 1 and, for v < w, pyw € Z[g]4+ is a polynomial without constant term. We set
Pow = 0 for v £ w.
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Definition 2.16. The basis {C!, }wew of Hy(W) is called Kazhdan-Lusztig basis. The base change coefficients
Pwo are called Kazhdan-Lusztig polynomials.

For the computation of Kazhdan-Lusztig polynomials there is a recursive algorithm, see [KL79| thm.
1.1]. A self-contained expository article on the matter is given in [Soe97|. Kazhdan-Lusztig polynomials
occur as the multiplicities of simple factors in composition series of Verma modules, and hence by the
BGG reciprocity theorem (see ?? 1.4.(v)) as multiplicities of Verma modules in the standard filtrations of
indecomposable projectives:

Theorem 2.17 [BB81|, §4; BKS81| §8]. For any two elements v,w € W,
[M(w) : L(v)] = (P(v) : M(w)) = pv,w(1). (2.26)

Remark 2.18. The formula in differs from the usual form (P(v) : M(w)) = Nuwyv.ww(l) found
in the literature. This is owing to the fact that we take M (w) = M (w . 0) with the dominant weight
0 whereas many other sources use M (w) := M(—2p) for the antidominant weight —2p. Secondly, the
polynomials 7., are defined with respect to another presentation for H, (W) which seems to be slightly
more widespread than the one from Definition Namely, the Iwahori-Hecke algebra may also be
defined as the Z[t*1/2]-algebra with presentation

H, (W) = (T for s € S | distant and braid relations, and for all i: T? =t + (t — 1)T3). (2.27)

7

In contrast, convention from Definition is used e. g. in [Lus03}; [S0e97].

For q = t~1/2 there is an isomorphism H,(W) = H{(W); H, ~ t~*/2T,. The adapted version of
Theorem in terms of the presentation asserts that the Kazhdan-Lusztig basis vectors C,, relate
to the generators T by

01/11 = t_l(w)/Z Z nvav
veW

for the appropriate (and more common) definition Kazhdan-Lusztig polynomials n,,,. By T, = {2,
this shows

cl, = 3t 2 g,
veW

and therefore by comparison with Theorem we get ppw = ¢¢W Wy, For the investigation of
composition series of modules in O we consider the presentation in Definition 2.13| by H,’s to be the more
useful one.

In fact, even more than stated in Theorem [2.17]is true. Namely, the exponents of ¢ in the Kazhdan-
Lusztig polynomial also encode the “layer” in which a composition factor occurs.

Definition 2.19 [HumoO8, §8.14]. Let v € W and M (v) = M* > M' > ... M* > 0 a filtration for M (v) of
minimal length ¢ whose subquotients M}, :== M¥/M*+1 are semisimpleﬁ Such a filtration is called Loewy
filtration and the subquotients M}, are called Loewy layers.

Example 2.20. The extremal cases of a Loewy filtration are the following:

(i) Recall that a proper submodule N C M is a mazimal submodule if there is no submodule N C S ¢ M
properly lying “between” N and M. The radical rad M of M is intersection of all maximal submodules.
It is the smallest submodule such that M/rad M is semisimple. The radical filtration M2 4 of M is
the Loewy filtration Mroad =M, MrlaLd =rad M, Mfad = rad Mrlad, ceey Mﬁd = rad Mﬁgl, where M%
is semisimple.

(ii) Recall that the socle soc M of a module M is its largest semisimple submodule. The socle fil-
tration M . of M is the Loewy filtration defined by the Loewy layers M{°® = soc M, M5°¢ =

soc

soc(M/M5°°), ..., M;P° = soc(M/M;P°,) with My semisimple.

6 A filtration of mazimal length is just a composition series of M (v). In particular, such a filtration of finite minimal length
exists.
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Table 2.5: Kazhdan-Lusztig polynomials for sl3. See the explanations on our pL,— | e s t st ts wo
conventions for the polynomials in Remark [2.18] By Theorem one can > 2 3
infer the composition series listed in Table 23] from these polynomials. By ¢ L g q ¢ q q2
??7 1.4.(iv) these can be used to compute dimensions of Hom-spaces between s 010 ¢ ¢ q2
projectives. For sl3, see Table [4.9| for these dimensions. jt 8 8 (1) ? g (Iq

ts 0 0 0 0 1 q

wp |0 0 0 0O O 1

A module M is called rigid if both coincide. That is, a rigid module has a unique (up to isomorphism)
Loewy filtration.

Theorem 2.21 (generalised Kazhdan-Lusztig theorem) |Irv88, thm. 1, 2, cor. 7; see also [Str03a, thm. 7.6].

(i) Verma modules are rigid.
(ii) The composition factor multiplicities of their Loewy layers relate to the Kazhdan-Lusztig polynomials
by

Pow = Z[Mz(v)—e(w)+2k : L(w)]q".
k>0

To state it differently, the coefficient of the ¢¥-term of p,,, is the multiplicity of L(w) in the k-th
Loewy layer of M (w).

(iii) Consider an indecomposable projective module P(w). Let P > P! > --- D P* 5 0 be a filtration
of maximal length whose subquotients P, = P*/P**! are isomorphic to Verma modulesﬂ The
standard filtration multiplicities of the subquotients of this filtration relate to the Kazhdan-Lusztig
polynomials by

Pow = Z(P€(1u)—€v+2k : M(v))qk
k>0

The last statement is a g-analogue of the BGG reciprocity theorem, see ?? 1.4.(v). Note that Irving
states his theorem for antidominant weights instead dominant ones. Later we shall also use a parabolic
analogue of these statements, see Theorem [4.10

Ezxample 2.22. For sl3, recall the composition series of Verma modules from Table Each line in the
depictions constitutes a Loewy layer. Compare this to the Kazhdan-Lusztig polynomials for sl3 listed in
Table

2.3.2. KO(O(? (s [n)) is isomorphic to the Iwahori-Hecke algebra

Using Kazhdan-Lusztig theory we obtain the following connection of graded category O% and the Hecke
algebra:

Theorem 2.23. There is an isomorphism of Z[g*!]-modules
Ko(OF(stn)) = Hy(Sn),  [M(w)(@)] = qHu,  [P(w){g)] = qCu.
The shuffling functor Shy then acts by -Hj.

Proof. Recall that Ky(Op(sl,)) admits a basis {[M(w)]}wew as free abelian group; see the proof of
Corollary Therefore, taking gradings into account, {[M (w)]}wew is a basis of Ko(O%(sl,,)) as free
Z[g*')-module, and H, (W) and Ko(O%(sl,,)) are isomorphic free Z[g=!]-modules by sending [M (w)] to
H,,. By Theorem one can express the class [P(w)] = Y, o, Po.w[M(v)] in Ko(OE(sl,,)). This shows
that the isomorphism assigns [P(w)] — C,,. The action of Shy is taken from . O

To express it more concisely, the theorem shows that by virtue of Verma modules, indecomposable
projectives and the shuffling functor, the category Og(sl,) categoryfies the Iwahori-Hecke algebra; see
[KMS09, and references; |[Maz12] for an overview of algebraic catorification.

7Albeit lacking an appropriate name for such a series, we should consider it as the analogue of a Loewy filtration
corresponding to standard filtrations instead of composition series.

19



3. Spherical twist functors

There is a general construction of an action of the braid group Bg, of the symmetric group on the derived
category DP(&) of some suitable category & |STO1, sec. 2], given in terms of twist functors that are
parametrised by spherical objects. Seidel and Thomas aim at letting & be some category of quasi-coherent
sheaves, which does not have enough projectives, necessitating some technicalities for the category that is
acted on.

However, we will not have such difficulties with category Oy which has enough projectives. This section
is dedicated to recapitulating the construction and proof given in [ST01] in a manner sufficient for our
case with some details added sporadically. We later shall examine whether the braid group action given
by shuffling functors can be understood as twisting.

Seidel and Thomas’ spherical twist functors Let C be an abelian C-linear category of finite global
dimension. Given a finite dimensional vector space V and an object X € C, we can always form their
tensor product V ®¢ X € C which lies in C and is just a fancy way to express a direct sum of copies of X
indexed by a basis of V. Likewise, we can construct the space Ling(V, X) of C-linear maps from V to X
as a product of copies of X indexed by a basis of V. If C contains also infinite direct sums and products,
both constructions can be extended to infinite dimensional vector spaces; however, we do not need this
for our purposes. The functors V ®¢ — and Ling(V, —) are exact since these are just finite direct sums
(products)ﬂ Given two objects X, Y such that Home (X,Y) is finite dimensional, we define the evaluation
and the coevaluation map

ev: Home(X,Y)®c X - Y ev': X — Ling(Home (X,Y),Y), (3.1)
fez flx) z = (f = f(2)),

which are natural transformations ev: (V ®c —) = id¢ and ev’: id¢ = Ling(V, —).

3.1. Passage to Chain Complexes

Both constructions pass down to functors of chain complexes of objects in C. Recall that, given two chain
complexes X*® Y*® € Ch(C), we can form a chain complex homg(X,Y") of vector spaces given by

homg (X*®,V*) == [ [ Home (X', V")
1€Z
with differential
d¥(f) =dy o f—(-1)*odx

for f € homé (X,Y) a degree k-map. Note the notational difference between the following objects:

e hom((X*® Y*): The chain complex of C-vector spaces, with degree k-maps of chain complexes in C
in homological degree k.

e Homcyc(X®,Y*®): The C-vector space of chain maps from X*® to Y*. It relates to homa(X*®,Y*)
by Homene(X®,V*) = 20(hom8(X*, V'*)).

e Home(X,Y): The C-vector space of maps X — Y in C.

e Hom (o) (X,Y), Hompy ) (X,Y): The graded C-vector space of degree k-maps in K°(C) (resp.
DP(C). Note that Hom gy (X,Y) = H*(home(X,Y)) [Wei94, §2.7.5].

Notation 3.1. From now on, we shall drop the “(—)®” from chain complexes. Most of the time, X, Y
will denote chain complexes in Ch(C) and V' a chain complex of C-vector spaces. For an element f € X
of a chain complex X, we denote its homological degree by |f]|, i.e. f € X1 All tensor products are
understood to be taken over C.

8For infinite dimensional V' one would need in addition that C satisfies the axioms (Ab4) and (Ab4*) from Grothendieck’s
To6hoku-article |Gro57.,
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Definition 3.2. Given a chain complex V' of vector spaces and a chain complex X of objects in C, define
chain complexes V' ® X and ling(V, X) by

VeXx)=FPviex* lin(V, X) = [ [ Linc(V*, X"**)
k=i+j i€Z
dver)=dv@z+(-)"veds d() (@) = ()M d(f(v) = f(dv))].

It is a standard fact that V ® X is a chain complex; for ling(V, X) we verify

d(df)(v)
= (=) |a((dN)(@)) - (@f)(dv)]
= (=" a (=DM (@f) = fdv)) = (=) (afd() + f(ddv))]

—(=nPldfd() — (-1)"+1dfd(v)
=0.

Remark 3.3. We could have defined ling(V, X) with the same sign convention for the differential as for
home (X, Y). However, this would necessitate introducing signs in the following maps.

Lemma 3.4. Let X,Y € Ch(C) and V' € Ch(C-Vect). The maps ev and ev’ from (3.1]) induce chain maps
ev: home(X,Y)®@ X =Y, ev': X — ling(home (X,Y),Y).
Furthermore, there are monomorphic maps of chain complexes

a:V ®@home(X,Y) = home(X,V®Y),
v® fr (x> 0@ fz)),
B: home(X,Y) ® V — home(ling(V, X),Y),

f@v= (o (fod)(v)),
~v: home (X, ling(V,Y)) ® Z — ling(V, home(X,Y) ® Z),
f@z= (0= ly= f(y) ()] @ 2),

induced by the respective monomorphisms of vector spaces. These maps are isomorphisms (resp. quasi-
isomorphisms) if V' (resp. H*(V')) has finite total dimension.

Proof. We only have to show that the above maps are compatible with the sign convention we have chosen
for the differential. Throughout this proof z, y, z and v denote elements of the respective chain complexes.
For an element f ® z € home(X,Y) ® X,

ev(d(f ®z)) = ev{[dof— (—1)|f‘f0d} Rz + (—1)|f‘f®dx}

=df(z) — (- fd(x) + (-1 fd(x)
=d(ev(f ® x)).

For z € X, denote ev'(z): f +— f(z). Then

d(ev'(@)(1) = (1) [dev'(@)(f) — et/ (d( 1))
= ()1 [df(2) - df (@) + (-1)/ fa ()
= fd(z)
= ev/(dz)(f).

For the map a: V ® home(X,Y) — home(X,V @ Y):

dla(v® f)](z) =dv® f(z) + (-1l @ (df)(x)
=dv® f(z) + ()" wedf(z) - (-1)"FFly @ f(dz)
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=afdv® f+ (-)lve (do f— (=) fod](z)
= oz[d(v ® f)} (z).

For the map 8: hom¢(X,Y) ® V' — home (ling(V, X),Y):

d[B(f @ v)](¢) = dfp(v) — (=)VH* f(dg)(v)
=dfg(v) — (=) Fdg(v) — fed(v)]
=dfo(v) — (1)1 fde(v) + (1)1 fed(v)
=B[(do f—(=D)Vfod)®v)+ (- f @ dv](9)
= Bd(f @ ¢).
For ~: home (X, ling(V,Y)) ® Z — ling(V,home(X,Y) ® Z), we abbreviate the map y — f(y)(v) by

f(=)(v). Then df(—)(v) denotes the differential of this map, whereas do f(—)(v) denotes the map followed
by the differential. Then d o« is given by

d[v(f @ 2)](v) = (=) {d[(f( ®d] — [f(-)(dv)] ® 2}
= <—1> {[do [f(—)(v)] — (=) (=) (v)] @ 2+
+ () (=) () @ dz — f(-)(dv) @ 2}

= (-D)"do[f(-)()] &z — (=1 f(d=)(v) ® 2+
+ (DY () ) @ dz = ()M f(=)(dv) © 2

=(do f)()w) ®z = (D f(d-)(w) ® z + (~)VIf(-)(v) ® d=
’y{[dof ()Ml fod] ®z+(—1)|f‘f®z}(v)
=y[d(f ® 2)])(v),
so these maps are indeed maps of chain complexes. O

Remark 3.5. Alternatively, we can describe the chain complex V ® X (resp. ling(V, X)) as a direct sum
(product) of shifted copies of X: Given a homogeneous basis (z;) of V, let d(z;) = >_,; z;;z;. Both chain
complexes V' ® X and ling(V, X) then have degree-k-part

(Ve x)t @Xﬁj‘zi‘

ling,(V, X) = H Xl

T4

where the the subscript x; is only used for indexing. The differential of the latter (see Definition has
components

(—Dl=ldy  ifi= g,

dk . xktled kalﬂfj\; dk =
ij - z; ij (_1)|$i|zij id if ‘xl| = ‘$J| + 1.

3.2. Spherical objects, spherical twist functors

The following terminology is from [STO01]:
Definition 3.6. A chain complex E € D(C) is called d-spherelikeﬂ for an integer d > 0 if

(S1) for any chain complex F € D"(C), the graded vector spaces Hompu (e (E, F') and Hom, ) (F, E)
have finite total dimension, and

(S2) there is an isomorphism Hompw ) (E, E) = Clz]/(2?) of graded algebras, with the identity in degree
zero and a non-trivial degree d-morphism .

9There is no name for this property in [STO1]. The term spherelike object has been coined in [HKP16|, where property
is called Calabi- Yau property.
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It is called d—spherz'caﬂ if furthermore

(S3) the composition map Hom'’y, (F, E) ® Hom%}i(F, E) — Hom%, (E, E) = (z)¢ is non-degenerate for
all F' and 1.

Remark 3.7. We point out that there might also be 0-spherical objects. We will encounter some when
applying the theory. The object C[z]/(z?) € D"(Clz]/(2*)-Mod), considered as concentrated in degree
zero, is an obvious example for a 0-spherical object.

Remark 3.8. An object X of a linear category C is said to have a Serre dual if there is an object SX such
that there is an isomorphism of functor Home (X, —)* & Home(—, SX). If SX is functorial in X and an
auto-equivalence of C, then S is said to be a Serre functor on C; see [MSO08, §3] for an overview of the
notion.

In fancy language, thus says that E[d] is a Serre dual of E. Assuming that F is d-spherelike and
has some Serre dual SE, one can find a triangulated subcategory of DP(C) containing both E and SE,
called the spherical subcategory of E in DP(C) in which E becomes spherical [HKP16], thm. 4.4].

Notation 3.9. We denote the homological degree of chain complexes (resp. double) by writing a 0 below
the entry in homological degree zero. Curly braces around a double complex (resp. triple complex) denote
its total complex. Explicitly, given a double complex X, its total complex

! !

x-1,0 9 . x00
{2 X1 XX 5 )= dvl ddv
X—l,l XO,l
d
1 ol

has degree k-part @, ;_, X" with differential given by components
dio = dp + (=1)'dy: X% — X717 @ X871,

In particular, let f: X — Y be a map of chain complexes. We can consider f as a double complex

concentrated in horizontal degrees ¢« = —1,0. Its total complex
(+4)
f ._ 1 0 Fody 2 1
X—>)0/ = -2 X Y — XY — .-

then is just the mapping cone of f. We will henceforth use the notation {X — Y} rather than
cone(X —Y).

Recall 3.10. Recall from Caveat the distinction between the coherent arrow category DP(C) and the
incoherent arrow category DP(C)!Y. Let X € D"(C) be a fixed chain complex. Since ev: home(X, —) ®
X = idcne is a natural transformation in Ch(C) (i.e. its naturality square strictly commutes, not just up
to homotopy), it induces a functor ev: D(C) — DP(CI!) into the coherent arrow category. Taking its
mapping cone thus gives an endofunctor of D”(C).

Definition 3.11. Given an object E € DP(C) satisfying we define the associated (spherical) twist
functor as the mapping cone

Tg: DP(C) — DP(C) (3.2)
F s {homC(E, F)®E < 13}

of the evaluation map, and the cotwist functor as the cocone
Th: F s {1(«; s ling (home (F, ), E)} (3.3)

of the coevaluation. Since the Hom-complexes are assumed to have finite total dimension, the resulting
chain complex is bounded and hence belongs to DP(C).
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Recall that Hom(E, —) is a homological functor for any chain complex E € D"(C) [Wei94} ex. 10.2.8].
Applying it to an exact triangle F' — G — H — F[1] yields an exact sequence

... = Hom(E, F) — Hom(E, G) — Hom(E, H) — Hom(E, F[1]) = Hom'(E, F) — - - -
which shows that home(FE, —) and hence Ty and T}, are triangulated functors.

Remark 3.12. The concept of spherical twist functors Tr and Tgs for a spherical object E has been
taken to a more general notion of twist functors on triangulated categories: A functor F': C — D of
triangulated categories is said to be a spherical functor if it admits both adjoints L 4 F' 4 R such that the
twist functor T = {FR[1] — idp} and the cotwist functor Cr := {id¢ — RF[—1]} are mutual inverse
auto-equivalences [Segl6, def. 2.1].

The shuffling functor Shy thus is an example for a spherical twist functor Shy = Tg, on DP(0),
corresponding to the spherical functor O. It seems remarkable that every auto-equivalence of a triangulated
category arises in this way [Segl6l thm. 2.10].

Recall the definition of the Grothendieck group Ko(D"C)) from Definition The following is not
from [STO1] but an easy to see consequence of Definition

Proposition 3.13. For a 2d-spherelike object E € DP(C), the functors T and Th induce an [Tg] = [T of
Ko.

Proof. Consider the composition T Tx, which assigns to F' € DP(C) the total complex
home (E, home (E, F) ® E) @ E —=~ hom¢(E, F) ® E
TETE: F— lhomc(E,ev)(@E lev
home(E, F) @ E = F

Note that shifting the homological degree by +1 induces a sign in the Grothendieck grouﬂ Given a
complex V' of C-vector spaces, recall from Remark [3.5] that V @ F' is just a direct sum of copies of F'
indexed by a basis of V', each copy shifted by the homological degree of the respective basis vector of V.
We thus have [V ® F] = [F]V =Y, (-1)Fdim V*[F] in Ko(C). The functor Tk therefore induces a
homomorphism

[TETE] K()(C) — _K'()(C)7
[F] — [F} _ 2[E]homc(E,F) + [E]homc(E,hOmc(E,F)@)E);

We apply Lemma to obtain

(id®[2d]) homg (E, F)

= ()
= ()

_ 2[E]homc(E,F) + [E]homc(E,F)®h0mc(E,E)

_ 2[E]homc(E,F) 4 (1 4 (_1)2d) [E]homc(E,F)

since hom¢(E, E) is concentrated in degrees 0 and 2d. Since 2d is even, the second two summands cancel
such that we get [TgTgF| = [F]. For the other compositions, the argument is similar. O

Lemma 3.14. The twist and cotwist functors have the following immediate properties:

(i) Shifted objects induce naturally isomorphic (co)twist functors.
(ii) There is an adjunction Ty, 4 Tg.

Proof. (i) Recall that the shift [—] of chain complexes acts on objects by E[k]* := E***. Putting this
into the definition of the chain complex home(E, F') (see Definition gives

home (E, F)[k]' = [ [ Home (E*, F***+!) = ] Home (E'*, F'*)

= homk (E, F[k]) = homk (E[—k], F).

10This can be seen from rotating the triangle X — X — 0 — X[1].
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Similarly, (E ® F)[k] = E[k] ® F = E ® F[k]. Putting this into the definition of T and T}, (see
Definition [3.11)) shows
Tpy F = {homc(E[i], F) ® Eli] — F} Tpy F = {F — ling (home (F, B[]
= {hom¢(E, F)[—i] ® E[i] — F} = {F — lin¢ (hom¢ (F, E)[i
= T F; = TLF.

v
=
& &
Sy S,
S—
—

(ii) Let G € D"(C). Recall that all hom-complexes home(E, —) are finite dimensional. The map « from
Lemma for V = home(FE, G) thus gives a quasi-isomorphism
home (F, home (E,G) @ E)
~ home(E, G) ® home (E, F),

and the map § for V = hom¢(F, F') gives an quasi-isomorphism
~ home {linc[home (F, E), E], G}.

Since H” home(—, —) = Homgw(c)(—, —) and since DP is a localisation of K" [see Wei94, §§10.3,
10.7], these induce isomorphisms of Hom-spaces in DP(C). The adjunction is revealed by

Hompw (F, Tr(G))
= {Homps (F,hom¢(E,G) ® E) — Hompy (F, G) }
~ {Hompe (linc (home (F, E), E), G) — Homps (F,G) }
= Hompy (T F, G).

Note that, although this is not necessary for what we do, this shows that both functors are even
dg-adjoint. O

3.3. Braid relations

Our goal is to find a criterion for a collection of objects sufficient for the associated (co)twist functors to
satisfy the relations of the braid group.

Definition 3.15. A collection of d-spherical objects E1, ..., E, is said to be an A,,-configuration if the total
Lif li—j]=1

dimensions of Hom-complexes are dim Hom*Db(c) (E;, Ej) = { 0if [i — 7] = 0.

Theorem 3.16 |ST01, thm. 2.17]. Given an A, -configuration of d-spherical objects, the (co)twist functors
associated to such a configuration induce an action of the braid group Bs,,, of type A, on DP(C), i.e.
there are natural isomorphisms

TEi = (Té‘q;)ilv
TEiTEi+1TEi = TEi+1TEiTEi+1 forl1 <i<n.

The rest of this section is devoted to presenting the proof of this theorem.

Proposition 3.17. The (co)twist functors T and T}, are mutually inverse auto-equivalences of D®(C) if
and only if E is d-spherical for some integer d > 0.

Proof. —Showing TgTRF ~ F: The first composition TgTyF is the total complex

e’ui@id]g

home (E, F) ® E —— home [E, ling (home (F, E), E)| ® E
TpT}F = J i (3.5)
F 7 hnc [homc (F, E), E]
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with F' in degree (0,0). Our goal is to show that this complex is quasi-isomorphic to F'. First we use the
quasi-isomorphism v from Lemma on V = home(F, E) to replace the top right corner. We obtain the
quasi-isomorphic complex

home(E, F) ® E —2— ling [home(F, E), home (E, E) @ E]

TeTLF ~ J l (3.6)
F ling [homc (F,E), E]

’
ev

with ¢ := v o (ev, ® idg). The map ev.: f — evo f has a right inverse ¢: g — (h — idp ® g(h)), ie.
ev, o ¢ is the identity of ling (homc(F7 E), E) We can use the map ¢ to construct the dashed inclusion

hnc [homc (F, E), ]

idg i
home(E, F) @ E —% ling [home (F, E), home (E, E) © E]
i (3.7)

ev| ling [homc (F,E), E] ev.
«._id
T
F linc [hOmc (F, E), E]

/
ev

of a null-homotopic double complex into (3.6)). This is indeed an inclusion of complexes since ev, o ¢ =
idiinghome (F,E), 5] Hence the original chain complex TrTyF is quasi-isomorphic to the cokernel

home (B, F) ® E —2 ling [homc(F, E), toneB.E) E]

l | (3.8)
0

F

of this inclusion. To show that the obvious inclusion of F' into (3.8) is a quasi-isomorphism is the same as
to show that its cokernel is acyclic.

—) is a quasi-isomorphism: To do so, it suffices to show that the map

home (E, E)

¥: home(F, F) ® E — ling |home(F, E), :
(idg)

®F
f®e— [grgof®e]

is a quasi-isomorphism. Since all vector spaces involved are finite dimensional, we can rewrite Hom-
complexes as tensoring with dual complexes. The map v thus becomes

hOmc(E,E)
(idg)
feer > h@(hof)@e,

home (F,E)={(h)

Y: home(E, F) @ E — home(F,E)Y @ ®FE

where the h’s form a basis of home (F, F) with dual basis vectors the h*’s. Now ) is just the adjoint map
of the composition

o: hom¢(F, F) ® home(F, E) — hom¢(E, E)/(idg), (3.9)
tensored with the identity on E. Recall that taking homology commutes with V® = — and lin¢(V, —)
for finite dimensional V' (finite direct sum resp. product). There is a natural map H*(home(—,—)) =

Homiew ¢y (—, —) = Homp ) (—, —) [Weid4, §10.7; Ver96, def. 1.1.2.2]. Applying H* to (3.9) thus gives
a map

Hom’sy, (E, F) @ Hom'hy, (F, E) — Hom’, (B, E)/(idp),
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which by [(S3)|is a perfect pairing if and only if F is spherical. In this case, its adjoint 1 is a quasi-
isomorphism. Therefore, the complex (3.8)) is quasi-isomorphic to the cokernel of the inclusion (3.7), which
already has been shown to be quasi-isomorphic to (3.5). This shows TgTpF ~ F.

—Showing TpTgF ~ F: The other composition T, TgF is given by the total complex

home (E, F) ® E cv F
evi}omc(EyF)J/ J{ev} . (310)
ling [hom (home (E, F) ® E, E), E| —— linc[home (F, E), E]

The bottom map ev, and the left map ev’ are given by

evy: ling [hom(homc(E,F) ®F, E),E] — ling [homc(F, E),E]
g [f o g(F o en)];
ev': home(E, F) ® E — hom|[E, ling (home(E, E), F)]
fee—g(f®e).

The square (3.10) indeed commutes with these maps: one verifies

foe: fle)
4 [ev (3.11)
[h = h(f(e))]

(9= 9(f®e) o = [h= (hoev)(f @e) = h(f(e))].

—quasi-isomorphic replacements: We replace the object in the bottom left corner of (3.10) by

ling [hom (home (E, F) @ E, E), E]
= ling [home (E, F)¥ ® home(E, E), E]
= ling [home (E, E), home (E, F) ® E].

These are indeed isomorphisms by finite dimensionality of all Hom-complexes involved. The original total
complex (3.10) is quasi-isomorphic to

home(E, F) ® E e F

”l lev% (3.12)

ling [home (E, E), home (E, F) ® E] —— ling [home (F, E), E|

evy

with the new bottom map

évy: ling [home(E, E),home(E, F) ® E| — ling [home (F, E), E] (3.13)
g [f — (goevo f)(ldE)}

The new vertical map ev’ is induced by C — home(E, E), 1 + idg, i.e.

év': home(E, F) ® E — ling [home (E, E), home (E, F) ® EJ, (3.14)
®e if g = idg,
f Qe g= fO ot%erwisg

It has a left inverse
h(idg) & h, (3.15)
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i.e. ¢ o v’ equals the identity of home(E, F). The map 1 is induced by (idg)*: home(E, E) — C. To
verify that the square (3.12)) still commutes one calculates

foe - (o)
Nl IF (3.16)
[l (7 (e))]
o= U5 pnid Jwe = = [h hlevlalidr)) = h(f(e))].

=:a

The fact that év’ has a left inverse ¢ allows us to consider the dashed surjection

home(E, F) ® E = F

"
ev’ hom¢ (E, F) QR FE ev’

ling [home (E, E), hom¢ (E, F) ® E] —

1% lin [home (F, E), E]
PRI Uid
home(E, F) @ E

onto a null-homotopic chain complex. This is indeed a surjection of chain complexes since (¢) o (év') =
idhome (E,F)@E- This surjection has kernel

0 ——mm F

l lev' : (3.17)

ker ¢ —— ling [homc (F,E), E]

eV

It follows from the definition of ¢ in (3.15)) that one sees

ker ¢ = {g € linc [home (E, E),home(E, F) ® E| | g(idg) = 0}

— ling [h”ggig“” home (E, F) ® E}

There is an obvious surjection from (3.17) onto F'. Since every complex involved has finite total dimension,
we can write hom-complexes as tensoring with duals. The surjection onto F' thus has kernel

\
(mnzfdigm) ® home(E, F) ® E == home(F,E)Y ® E

nRf@e— [fn(fog)®e

(3.18)

We are done if we can show that this complex is acyclic. The map ev, in (3.18) is just the adjoint of the
dual composition

\Y%
oV (%W) — home (B, F)Y @ home(F, E)Y, (3.19)

tensored with idg. The map o: hom¢(E, F) ® home(F, E) — }mr?fdi(‘EE)’E’) and hence oV is a quasi-

isomorphism if and only if F is spherical. This proves the statement. O

The following statement is the crucial step for establishing the braid- and commutativity relations for
the (co)twist functors.

Proposition 3.18. Given two d-spherical objects E1, E; € D®(C),

(i) the object T, E; is d-spherelike, and
(ii) there is a natural isomorphism of functors Ty, g, T, = TE,TE, -
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Proof. (i) We first show that T, is d-spherelike.

Let F' € D"(C). There is an isomorphism Homps ¢y (F, T, E1) = Hompe o) (T, F, Ev) by the
adjunction T]’E2 4 Tg,. The latter has finite total dimension since by assumption F; satisfies
Since Fs is assumed to be d-spherical, the equivalence from Proposition gives
Hompw ¢y (T, E1, F') = Hompy ) (E1, Ty, F) the latter of which is again finite dimensional.

Since FEs is assumed to be spherical, the equivalence from Proposition and the assumption
on E; to satisfy gives

Homp ¢y (Te, B, Te, B1) = Hompy ¢ (Th, T, Er, Er) = Clal/(2?).

(i) We now show that there is natural isomorphism Ty, g, T, F' = Tg, Tk, I as endofunctors of D®(C).
Explicitly, we want to show that there is a quasi-isomorphism between the total complex

home [TE2 Eq, homc(Eg, F) & EQ] ® Tg, Er LN hom¢ [TE2 Eq, F} ® Tg, Eq
Try, 1, T, F = l lev
hOIl’lc(Eg,F) ®E2 F

and the total complex

home [E», home (Ey, F) ® B1|®@E> — home(Es, F) ® E»
Tp, T, F = l ieu
homc(El,F) ®E1 F

ev

We take the quasi-isomorphism o from Lemma for V = home(E1, F) and apply a ® FE5 on the
top left corner of the diagram; this allows us to replace this double complex quasi-isomorphically by
= (%)
fome (Esr, F) ® home(Ea, E1) ® B> "% home(Es, F) © Es
Ty, Tp, F ~ l Jev
home (B, F) ® By F

=: (%)

with the composition 7: f ® g — g o f. This double complex is just
T, T, F ~ {homc(El, F)®Te,(E) 2 TE2F} (3.20)

for some map ¢.
Claim. This map ¢ factors as

Tr,®idrg, By

¢) : homc(El,F) ® TE2E1 homc(TE2E1,TE2F) ® TE2E1 ﬂ) TE2F7

=U

where T, denotes the map home (E1, F')i — home(Tg, E1, Tr, F') induced by the functor Tg,.
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The first map is an isomorphism since T, is spherical by assumption; hence, by Proposition it
is an equivalence. Writing down U as triple complex

home [El, home (Es, F) ® E2:| home (Eq, F) } (%)
N =
® home (B2, E1) ® E3 ®homc (B2, E1) ® E2

y /
home [homc(Ez, E1) ® Es, home (Ea, F) ® E2] ev. home [homc(Ez, E1) ® Es, F]
®h0mc(E2,E1)®E2 ®h0mc(E27E1)®E2

home [ E1, home (Ez, F) @ Es|

®E1

home [homc(Eg, E1) ® Ez, home (Ea, F) ® EQ]
®FE,

—homc (E1, F) @ Ep = (x%)

—p  home [homc(Ez,El) ® E27F] ® Ey

shows that ¢ factors as required. Hence
Tp,Tp, F ~{U = T, F} = Tr, 5,Te, F.
This proves the assertion. O

Proposition 3.19. The spherical twist functors satisfy the braid relations: Let E;, Es be d-spherical for
some d > 0.

(i) If Homps (Eq, Eq) = 0, then Tk, and Tg, naturally commute, i. e. there is a natural isomorphism of
functors rfE‘1 TE2 = T}_:;2 TEl-

(ii) If Hompu (F2, E1) has total dimension one, then there is a natural isomorphism of functors
Te,Tp,Tr, = Tp,Tr, T,.

Proof. (i) Twisting F7 with Es yields

TE2E1 = {hOch(Eg,El)@EQ — El} ~ El.
—_——

acyclic
Proposition [3.18] then yields
Tp, T, = Try, 5 B2 = Tk, TE, .

(ii) Let f be the unique (up to scalars) non-trivial map f: Fs — E;. Let k be the degree of f,
i.e. f: Eqlk] — Fj is a homogeneous chain map and is the only (up to scalars) non-trivial map
Es[k] — FEj. Since the spherical twist functors are not affected by shifting the spherical object we
may w.l.o0.g. assume that kK = 0. Writing down the (co)twisted objects exhibits an isomorphism

(Tp,T1) = {Es L B} = (B, L By = ), Bu[1). (3.21)

Again we can apply the previous statements to obtain

Tp,Tp,Te, = Tp, Try, 5, Tr, Tg, o Proposition
= T, Tr, g T, B.21)
=TpTry, B, TE, Lemma B.14]
= Try 1y, 5, T Te, Proposition [3.18] o Tg,
—
~ T Tg Th, Proposition [3.17 O

This completes the proof of Theorem [3.16]
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4. Relating shuffling functors and spherical twist functors on D®(O,)

The category O as well as each of its blocks has the properties required in the set-up of Section [3] In the
remainder of the first part of this thesis, we thereupon want to pursue the following question:

Question 4.1. Can we find spherical objects in D?(Op) such that the associated spherical twist functors
are isomorphic to the shuffling functor?

We shall first show that for certain Lie algebras there are spherical objects (namely some indecomposable
projective modules) such that the associated twist functor and the shuffling functor have isomorphic
images (see Observations and . For certain other Lie algebras, none of the indecomposable
projectives are spherical (see Observations and [4.15). We finally show that we can answer 77 4.1

Ej 0 h

positively for certain Lie algebras (see Theorems [4.21 .

4.1. Spherical objects in D (Oy(sl,))

We see from that the endomorphism ring of P(s) is isomorphic to C[z]/(x?) with the morphism
z = (P(s) 5 Ple) & P(s)), hence P(s) is a 0-spherelike object in the sense of Definition [3.6|if considered
as a complex concentrated in degree zero.

Recall that Oy has finite global dimension [Maz07, thm. 2]. Since we are working in the derived category
of Oy, we may replace every module M € D"(Oy) by a projective resolution P*® =5 M of finite length. It
is thus enough to check for F € {P(e), P(s)} ranging over the indecomposable projective modules.
But apart from P(s) the only indecomposable projective is P(e), and the corresponding composition

Home(P(e), P(s)) x Homop (P(s), P(e)) — Homo(P(s), P(s))/(idp(s)).
(a,b) —»ab==x

is a perfect pairing since the Hom-spaces are all one-dimensional. Hence P(s) is a spherical object whose
cotwisting functor yields

Tp(syP(s) = {P(s) (s) @ P(s)} = {0 = P(s)} = P(s)[-1] = Sh, P(s)[-1],

(s) = P
T;;(S)P(e) = {P((Je) — P(s)} ~ {0 — M(s)} = M(s)[—1] = Sh, P(e)[-1] (41)

on indecomposable projectives. We observe:

Observation 4.2. For sly, the indecomposable projective object P(s) is spherical, and for all M € D®(Oy)
there is an isomorphism of images TI’D(S)M ~ L Sh M[—1] under the spherical cotwist and the derived
shuffling functor.

Can we find further d-spherical objects, maybe for d > 0? Consider the simple module L(e) with
projective resolution P(e) — P(s) — P(e) = L(e). This can be seen to be 2-spherelike and in fact is a
spherical object. Its associated twist functor has images

Ti(e)P(s) = {homo(L(e), P(s)) = P(s)} ~ P(s)[-1],

“o (4.2)
Ty Pe) = {P(()e) — P(s)} ~ M(s)[—1];

where (%) can be seen from the composition series in Table Therefore, also cotwisting with L(e)
has images Ti(e)M quasi-isomorphic to the images Shy M of the shuffling functor Shy for all modules

M € D®(Oy). We in particular observe:

Observation 4.3. There may be non-isomorphic spherical objects whose associated spherical twist functors
have isomorphic images.
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4.2. Spherical objects in Oy(sl3)

Can we transfer what we have learnt for sly to D(Og(sl3))? Unfortunately the object P(s), albeit still
0-spherelike in DP(Oy(sl3)), is not spherical anymore because the composite P(s) — P(t) — P(s) is the
zero map; this can be seen from Table or Figure Since according to Definition we only need
the object to be spherelike to define its associated spherical twist functor, we may still wonder whether at
least one of the two functors L Sh or R Csh, might be isomorphic to the (co)twist functors

Lo P(H) = (P(s) > PO Thy P = (P(2) ~ P(s)) (4.3)

However, we already saw that Sh P(t) has composition factors M(ts), M(s), which do not occur as
homologies of any of the two (co)twisted objects. Using the Csh,-acyclic resolution P(t) = P(ts) — %((tj))
we see that R Csh, P(t) = {P(ts) — P(t)}, which is also not quasi-isomorphic to Tp(s) P(t).

Remark 4.4. We notice that T’p(,) and Tl{)(s) still induce mutual inverse automorphisms in the Grothendieck
group by Proposition since P(s) is O-spherelike.

4.3. Spherical objects in the parabolic category O}

We have seen in Section that the sphericity of P(s) is not preserved under the inclusion sly C sl3,
owing to the existence of objects F' € Ogy(sl3) \ Op(sl2) on which the condition fails. We thus want to
find a suitable intermediate category Og(slz) € Z C Op(sls), ideally with a structure relating to that of O,
such that the sphericity of P(s) is preserved under Op(sly) C Z. Wee shall see in this section that the
parabolic category OF has this property for an appropriate choice of the parabolic subalgebra p. In this
set-up, we will eventually prove that Tp(,) and L Shy are isomorphic as functors.

4.3.1. The parabolic category OP

We recall the definition and the most important properties of parabolic category OP, mostly taken from
[HumO8, §9; Maz12, §4.6; [KM16, §2.4].

Definition 4.5. Given a parabolic subalgebra p C g (i.e. a Lie subalgebra containing a Borel subalgebra),
OF is the full subcategory of O containing those U(g)-modules for which the action of U(p) is locally
finite, i. e. for any element m of a U(g)-module, U(p) - m is finite dimensional.

The category OP shares the direct sum decomposition of @, and we consider its principal block (98.
Let ®° C ® be the root system of p with simple roots AP C A. We obtain a parabolic subgroup
Wy = (sq | @ € AP) < W of the Weyl group of g. Conversely, a parabolic subgroup W, < W determines
a set AP C A of simple roots, which in turn fixes a parabolic subalgebra p. Each left coset in W,\W has
a unique representative of minimal length [Hum90, §1.10]; denote by W® the set of such representatives.

Ezample 4.6. Let W = S5 with generators s,t, and consider the parabolic subalgebra W, := (s) < W.
The left quotient W, \W comprises cosets W,\W = {{e, s}, {t, st}, {ts, sts}} which have minimal length
representatives WP = {e, t,ts}.

The category (98 consists precisely of those modules in Oy whose composition series only contains
simple factors L(w) for w € W¥ [KM16, §2.4]. This makes O} a Serre subcategory of Oy.

Ezample 4.7. (i) In the situation of Example O} is the subcategory of Oy(sl3) generated under
extensions by the simple modules L(e), L(t) and L(ts).

(i) Consider the extremal case p = g. This corresponds to AP = A, hence W, = W and WP = (e) < W.
The category Of therefore is the abelian category generated by L(e) under direct sums. The other
extremal case p = b the Borel subalgebra of upper triangular matrices corresponds to A = (3, hence
Wy = (e) and WP = W. Therefore, 0l = 0.

The inclusion ¢ : Of C Oy has both left and right adjoint functors: its left adjoint is the Zuckerman
functor ZP - ¢ which maps a module to its largest quotient in O, and its right adjoint is the dual
Zuckerman functor « 4 Z, which assigns to a module its largest submodule in O [Maz12, §4.6; KM16,
§2.4].
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Table 4.1: Composition series and standard filtrations of Verma modules and indecomposable projective modules
in O} for the parabolic subalgebra p C sl3 corresponding to W, = (t). The modules are obtained from the
composition series from Table by MP?(w) = Z° M (w) and P?(w) = ZP P(w), where ZP discards the smallest
submodule generated by all composition factors L(w) for w € Wy; see Section

MP(e)  MP(s) MP(st) | PP(e) P(s) PP(st)
L(s) L(st)
M(s) _ M(st) _
L(e) L(s) = L(st) L(e) = L(s)
L(s) L(st) L(st) M) Mfe) L(s) M) sty

The category Of shares many of the properties used so far with Op; in particular, it has enough
projectives, and the indecomposable projective modules are precisely the images PP(w) := ZP P(w) of the
indecomposable projectives in Op [Maz12, §4.6]. The category Of has a projective generator

PP =P PP (w)=2°P (4.4)
weWw?
for P the projective generator of Oy from Corollary [2:2]

Caveat 4.8. The indecomposable projective objects PP(w) in Of are in general not projective if considered
as objects in Oy.

The P?(w)’s admit standard filtrations with quotients isomorphic to parabolic Verma modules M (w) :=
ZP M (w). There is a parabolic analogue of BGG reciprocity theorem (see ?? 1.4.(v)) and of 7? 1.4.(iv);
namely, for all M € Of and v,w € WP we have

[MP(w) : LP(v)] = (PP (v) : MP(w)), (4.5
dim¢ Homog (PP (w), M) = [M : L(w)];

(=)
=

see [Roc80, prop. 4.5, thm. 6.1]. There are parabolic analogues pf,, € Z[¢*'] of Kazhdan-Lusztig
polynomials, defined in [Deo87, §3], allowing to compute the composition multiplicities by

(PP(v) : MP(w)) = [MF(w) : LP(v)] = py (1) (4.7)

just as in the non-parabolic case in Theorem see [CC87), thm. 3.2.8]. A recursive algorithm for
computing the p} ,, is concisely described in [Soe97, thm. 3.1] There is an equivalence of categories

OF ~ Mod-A, for A, = A/Ae,A (4.8)

for a basic quasi-hereditary algebra A with Oy ~ Mod-A. Here, Ae, A < A denotes the two sided ideal
generated by a maximal idempotent e, of A annihilating p. The quotient A, itself is a basic quasi-
hereditary algebra by virtue of the family {MP(w)} and their duals. We shall obtain A, as a path algebra
of a quiver with relations. For more information on Of, see [Hum08, §9; Maz12} §4.6; KM16, §2.4].

The Zuckerman functors Z*? and Z, naturally commute with projective functors [Maz12, prop. 6.1], in
particular with translation ©, through the s-wall. Since Z* is right exact, it commutes with the cokernel
Sh,, and likewise Z, commutes with Csh,. We want to decide whether the shuffling functor and the
spherical twist with an appropriate object have isomorphic images when restricted to Db(Og).

4.3.2. Spherical objects in D?(O}): sl;

We start with the parabolic subalgebr p = (0 (:) Z) C sl3 corresponding to the parabolic subgroup

Wy, = (t) < W. The left cosets have representatives WP = {e, s, st} see Example The category O}
contains Verma modules and indecomposable projectives with composition series listed in Table .1}

Note that both PP(s) and PP(st) can be seen from Table [4.1| to have precisely one non-trivial endomor-
phism (up to scalars) which is nilpotent and sends the head to the socle. Hence, both have endomorphism
algebra isomorphic to C[z]/(x?) and thus are O-spherelike. In fact, P?(s) and PP(st) are even self-dual.
We obtain images of the Vermas and projectives as follows:

11 This notation means the subalgebra of sl3 of matrices with arbitrary entries for * and a zero for 0.
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Module M o.M L; Shy M Sh, M Table 4.2: Images of Verma modules and indecompos-
able projectives in DP (Oop (5[2)) under the translation O,

M (e) PP(s) 0 ZMLp(S) through the s-wall and the derived shuffling L; Shs for
MP(s)  PPs) Lst) "), i=o.L

MP(st) 0 L(st) 0

PP(s) PP(s)®2 0 P?(s)

Pr(st) PP(s) L(st) MP(e)Y

MP(e): The Zuckerman functor Z® naturally commutes with ©5. The short exact sequence (1.10)
associated to Shy M (e) therefore passes via ZP to the respective right exact sequence

MP(e) = PP(s) = MP(s) — 0,

which in fact is the standard filtration of PP(s) and has an injection on its left. This yields
Shy MP(e) = MP(s).

MP(s): The adjunction map MP®(s) — P¥(s) has non-trivial kernel and cokernel; hence by Lemma|1.15.(i)|

Sh, M (st) = coker(M?(s) — PP(s)) = (L(e)”sg(st) );
Ly Shy MP(st) =  ker(MP(s) — P¥(s)) = L(st).
In particular, M?(s) is not Shs-acyclic.
M (st): Since ©4M (st) has head L(wg) and wg &€ WP, we obtain ©,MP(st) = 0 for the translate in Of.

PP(st): The module PP (st) fits into the short exact sequence

! ! l

{o L MP(s) —— PP(st) —— MP(st) —— o}
[S]
C {0 L PP(s) —=5 0,PP(st) 0 o}.

This gives ©,P?(st) = PP(s) and allows us to infer L Sh, PP (st) = {M?¥(e) — L(st)}, e.g. by the
long exact sequence of the snake lemma.

Altogether, we obtain the translated and shuffled modules listed in Table Note that MP(s), MP(st)
and PP(st) are not Shs—acyclicE This in particular shows that for a module M € Oy with a standard
filtration Lemma need not hold for ZP M.

We now want to continue our search for spherical objects. We are lucky: our candidate P*(s) turns out
to be spherical this time. Its endomorphism space

L(s) L(s)
End(P*(s) = did, 1o L(Ne) Len b= Clal/ () (4.9)
L(s) L(s)

shows that PP (s) indeed is a 0-spherelike object (recall the arrow notation from Notation [2.8). Computing
the “composition pairings”

o : Hom(P?(e), P*(s)) x Hom(P?(s), P(e))

\\ L(s)
— Q L(st) (e),\{ (=) \Lje) L(st)y p ={x} (4.10)
L

L(e
(s) (e) L(s)

o : Hom(PP(st), P?(s)) x Hom(P¥(s), P(st))

L(s) L(at) L(s)
L(e) Lst\ L(s L(st) L) p ={x} (4.11)

L(s)

12We should not be surprised by PP(st) not being Shs-acyclic since we are considering PP (st) as an object of Og where it is
not projective; see Caveat
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Table 4.3: Parabolic Kazhdan-Lusztig polynomials for the parabolic subgroup W, = (s2,s3,...,8n-1) = S1 X
Spn—1 < Sp. The dimensions dim _, := dim Hom(P¥*(]), P¥(—)) of Hom-spaces in the right half of the table are

computed by .

pi_> ‘ (& S1 8182 S182S83 e dimi,_, ‘ e S1 8182 S1S82S83
e 1 q 1 1 0 0
s1 1 q 1 2 1 0
S189 1 q 0 1 2 1
818283 1 0 0 1 2

with the other indecomposable projectives PP(e) and PP(st) shows that PP(s) satisfies and therefore
indeed is a spherical object. For all modules M listed in Table which have PP(s) as their translate
O,M it is immediate that there is an isomorphism

Thy (M = {M = P?(s)} ~ LSh, M

of images. Since for the remaining module M®(st) there is no non-zero morphism MP(st) — P*(s), we
also have T, ) MP(st) ~ L'Shy M¥(st). Hence we obtain the following:

Observation 4.9. In the subcategory DP(O}) C DP(Oy) for sl3, the object PP(s) is spherical, and for all
M € DP(O}) there is an isomorphism T]’DP(S)M ~ LSh, M in D"(O}).

We shall see in Theorem that this is in fact a natural isomorphism of functors.

4.3.3. Spherical objects in D*(O}): from sl; to s,

Now consider a (maximal) parabolic subalgebra

p= < o ) Csly (4.12)

*
0-- 0=

corresponding to the parabolic subgroup Wy, = (s2,s3,...,Sp—1) = S1 X Sp—1 < S, and minimal length

coset representatives WP = {e, s1, $152, $15283,...,81 -+ Sp—1}. This is a somehow extremal case of a

maximal parabolic subalgebra, i.e. one corresponding to a subgroup of the form S, X S,_mm € Sy.

Parabolic Kazhdan-Lusztig theory To find spherical objects we need to understand the composition
series of the relevant objects and the dimensions of Hom-spaces between indecomposable projectives.
For maximal parabolic subalgebras there is a handy graphical calculus for computing the parabolic
Kazhdan-Lusztig polynomials p?,, [BS1laj, §5; LS13], which yields the polynomials listed in Table
We may compute the dimensions

dim Hom(P? (v), P?(w)) = [PP(w) : L(v)]
> (PP(w) s MP(u))[MP(u) : L(v)]

uceWwe

> Puw(D)pus(1) (4.13)

of Hom-space between each two indecomposable projectives by . We thus obtain the dimensions
listed in Table which indicates that the collection (PP(s1),PP(s1s2),...) is a candidate for an
A,,_1-configuration.

We shall have a deeper look into the structure of these modules to be able to check whether is
satisfied in this context. By , we obtain the multiplicity of composition factors of Verma modules
resp. indecomposable projective modules from Table [£:3]

In fact more is true: recall from Section the graded version 0% of Oy. We have seen the grading
to (partially) encode the “order” of simple factors in a composition series. Recall the equivalence
Of ~ Mod-A, from . The algebra A, has been obtained from the (graded, see Section algebra A
by quotienting out the homogeneous ideal Ae, A and thus is graded itself. Therefore, we obtain a graded
parabolic category Og’p = grMod-A,. We shall freely identify modules in (98 with their graded lifts.

35



Table 4.4: Composition series of Verma modules and indecomposable projectives in OF(sl,) for the parabolic
subalgebra p from lj The series are obtained from Table by virtue of Theorem

‘ e S1 8182 81" Sp—1
L(e) L(s1) L(s182)
Mp(_) L(s1) L(31;2) L(31«1‘32i3) o L(81 o Snil)
L(sy) L(s1s2) L(s1-*Sp—1)
PP () " L(e) L(s1s2) L(s1) L(sis2s3) - L(s1-8n_2)
L(s1) L(s1s2) L(s1+8p—1)

Furthermore, recall from Theorem that we may obtain the order of Loewy layerﬂ from Kazhdan-
Lusztig polynomials. The following parabolic analogues of the generalised Kazhdan-Lusztig-Theorem [2.21]
hold true in our set-up. Recall the definition of the radical filtration and of rigidity of a module from

Example [2.20.(i)]

Theorem 4.10 (parabolic generalised Kazhdan-Lusztig-theorem).

(i) Consider a parabolic Verma module M®(w). The composition factor multiplicities of layers of the
radical filtration (MP(w))5 of MP(w) relate to the parabolic Kazhdan-Lusztig polynomials by

Phy = Z[(Mp (w))%ﬁ)—f(w)—k?k : L(w)] q".
k>0

In other words, the coefficient of the g*-term of p?, is the multiplicity of L(w) in the k-th layer of
(MP(w))zad |TIrv90, cor. 7.1.3].

(ii) For a maximal parabolic subalgebra p C g, parabolic Verma modules M?(w) remain rigid |CIS88,
thm. 1.3].

Remark 4.11. As in the non-parabolic case, the filtration associated to the grading of modules in (,)(z),p
coincides with the radical filtration. Theorem [4.10.(i)| thus states that

Py = Y IMP(v) : L(w)(k)lg" =Y (PP (v) : MP(w)(k))a";

k>0 k>0

see [BGS96, thm. 3.11.4] where the graded lift of M?(w) is denoted by MY and P, denotes the parabolic
Kazhdan-Lusztig polynomials (see also [Soe97, rmk. 3.2.2] on the relatlon to |BGS96 thm. 3.11.4]).

Translation and shuffling functor From the parabolic Kazhdan-Lusztig polynomials in Table we
obtain the composition series of Verma modules and indecomposable projectives listed in Table
Each of the indecomposable projectives hence has C[x]/(2?) as endomorphism space. Any non-trivial
composition PP(wy) — PP(w2) — PP(w3) vanishes unless it is of the form

x: PP(s1--8;) = PP(s1-+-si41) = PP(s1-+-8;)
for2<i<n-—1(resp. 2 <i<n-—1), up to isomorphism. This proves the following:
Observation 4.12. The PP(sq---$,—1) indeed form an A,,_;-configuration.

Remark 4.13. It is interesting to note that—similar to the non-parabolic setting—we can realise the
category (’)g * as graded modules over the path algebra A, of the quiver with relations

1-2—-1=0

i—itl—it2=0forl<i<n-—1, i=>(i+1)—=i=i—>(G—-1)—i

(4.14)

For more details on the case of general maximal parabolic subalgebras we refer to [BS11b].

13See Definition m
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Table 4.5: Images of the translation and derived shuffling functors ©,, and L Sh,, for w € W? for the parabolic
subalgebra p C sl,, defined in . A table cell containing a single object as image L Sh,, M means that M is
Shy-acyclic and the cell contains just Sh,, M. A table cell containing a chain complex (written vertically) means
that that L Sh,, M is a chain complex concentrated in degrees 0 and 1 (see also Lemma with homological
degree 0 at the bottom.

M ‘ Mp(e) Pp(sl) Mp(sl) Pp(8182) Mp(8182)
@slM PP(Sl) 1:)'3(81)692 Pp(Sl) O 0
Mp(sl) Pp(3182) Mp(slsg)
LSh,, M | M¥(sy) PP (sy) l ! !
Pp(Sl) 0 0
932M 0 0 Pp(slsg) PP(Slsg)@z PP(Slsg)
MP(s1) PP(s1) MP(s152)
LSh,, M 1 1 MP(s152) PP(s159) {
0 O P"(5152)

We now come back to 7?7 4.1: Does this A, _;-configuration have something to do with shuffling functors?
If—as we might expect—PP?(s) again induces a spherical cotwist Tl’)p(s) with images are isomorphic to
those of Sh: what functor arises from the other spherical indecomposable projectives? In contrast to the
non-parabolic case, all Verma modules and projectives fit into short exact sequences

MP(sy-+8) = PP(s1-+-8i41) —» MP(s1- - 8i41) (4.15)

for 0 < i < n — 1, hence all Verma modules have indecomposable projectives as their translates (and
not only the ones corresponding to dominant weights). We thus obtain the translated and shuffled
modules listed in Table Note that by Lemma the image Sh,, M is always concentrated at most
in homological degrees 0 and 1 for all M and g.

Shuffling and spherical cotwist have isomorphic images We argue as for sls. Let M be a module with
translate O5, M = PP (w) and such that Home»r (M, P?(w)) is one dimensional. It is then obvious that

Tpy (yyM = LSh,, M since

T},p(w)Md:Ef{J\OI s homg [homes (M, PP (w)), P (w)] }

~{M > @SOM}[l]

'L Sh,, M[1).

Recall from Table that for M = P¥(v) the Hom-spaces Home» (P?(v), PP (w)) for distinct v,w € WP

are zero- or one-dimensional; hence Tl’gp(w)Pp (v) ~ Sh, P?(v)[1]. For M = PP(w) itself, we have

id
Tpo () PP (w) = {Ppgw) Q PP (w) ® P¥(w)}

= {0 = P*(w)}[1]

0

L Sh,, PP (w)[1].

where x is (up to scalars) the non-trivial endomorphism of P?(w). We deduce:

Observation 4.14. Let p C sl, be the maximal parabolic subalgebra corresponding to the partition
(n —1,1) of n. For all M € D(O}) and all integers 1 < i < n — 1, there is an isomorphism of images
Thoy,..syM = LShy, M[1].

We shall show in Theorem [{:21] that this in fact is a natural isomorphism of functors.
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Table 4.6: Parabolic Kazhdan-Lusztig polynomials for the parabolic subgroup (s) x (u) = Sa x Sz < S4 = (s, ¢, u)
The dimensions dim _, := dim Hom(P*({), P?(—)) of Hom-spaces in the right half of the table are computed by

(14.13).

piﬁ ‘ e t ts tu tsutsut dimy e t ts tu tsutsut
e 1 ¢ 0 0 0 ¢ 1 1 0 0 0 1
t 01 q q ¢ 1 1 2 1 1 1 2
ts 0 01 0 ¢q O o 1 2 1 2 1
tu 0 0 0 1 q O 0o 1 1 2 2 1
tsu 0 0 0 0 1 ¢ o 1 2 2 4 2

tsut 0O 0 0 0 0 1 1 2 1 1 2 4

Table 4.7: Composition series of parabolic Verma modules and indecomposable projectives in O} for p C sls the
parabolic subalgebra corresponding to the parabolic subgroup Wy := Sa X S2 < S4 (see (4.16])). The series are
obtained from the parabolic Kazhdan-Lusztig polynomials listed in Table

we WP MP(w) PP (w)
e L(e) dto.
L(t)
L(tsut)
L(t) L(t)
t L(ts) L(tsut) L(tu) L(e) L(ts) L(tsut) L(tu)
L(tsu) L(t) L(tsu)
L(tsut)
ts L(ts) L(ts)
L(tsu) L(t) L(tsu)
L(ts) L(tsut) L(tsu)
L(tsu)
tu L(tu) L(tu)
L(tsu) L(t) L(tsu)
L(ts) L(tsut) L(tsu)
L(tsu)
tsu L(tsu) L(tsu)
L(tsut) L(ts) L(tu) L(tsut)
L(t) L(tsu) L(tsu)
L(ts) L(tsut) L(tsu)
L(tsu)
tsut L(tsut) L(tsut)
L(tsu)
L(t) L(tsut)
L(e) L(ts) L(tsut) L(tu)
L(t) L(tsu)
L(tsut)
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4.3.4. Maximal parabolic subalgebras with different partitions

Is it necessary to choose a parabolic subalgebra p which corresponds to the “extremal” partition (n —1,1),
i.e. to the parabolic subgroup S,,_1 x S; < 5,7 The maximal parabolic subalgebra

X

corresponding to th parabolic subgroup W, = (s) X (u) = S X Sy < Sy = (s,t,u) with minimal length
coset representatives WP = {e, t, tu, ts, tsu, tsut}, has the parabolic Kazhdan-Lusztig polynomials listed

* ¥ ¥ ¥

) C sly, (416)

* x
* %
0 *
0 *

OO * *

in Table (see also [BS11b]).

By , these imply the dimensions of Hom-spaces listed in Table There is no possible Ag
configuration consisting of indecomposable projectives. The dimensions suggest that PP (t), PP(ts) and
PP(tsu) might be spherelike, so we wonder whether we can find an As-configuration or at least a single
spherical object. Indeed, the composition series listed in Table show that PP (t), P*(ts) and P®(tsu)
have endomorphism rings isomorphic to C[z]/(z?), i.e. are spherelike.

Are these objects spherical? Unfortunately, we encounter the very same problem of the present spherelike
objects as in the non-parabolic sl3-case, revealed by the composition series:

PP(ts), PP(tu): The projectives PP(ts), P?(tu) corresponding to the two incomparable weights ts 2 tu
have non-trivial morphisms PP (ts) — PP (tu) and P?(tu) — P?(ts) whose composition

PP(ts) PP (tu) PP(ts)
L(ts) L(tu) L(ts)

L(t) L(tsu)} L(t) L(tsu)} L(t) L(tsu) (4.17)
L(ts) L(tsut) L(tu) L(ts) L(tsut) L(tu) L(ts) L(tsut) L(tu)
L(tsu) \\;(tsu) \\L(tsu)

is the zero morphism. The same holds true for (PP(tu) — P¥(t) — P¥(tu)) = 0. Hence neither
PP (tu) nor PP(ts) is spherical.

PP(t): For P*(t) the composition

PP(t) PP (tsu) PP(t)

L(t) L(tsu) L(t)
L(e) L(ts) L(tsut) L(tuw) L(ts) L(tu) L(tsut)} L(e) L(ts) L(tsut) L(tu) (4.18)
L(t) L(tsu) \{ L(t) L(tsu) L(tsu)

L(tsu)

L(t)
L(tsut) L(ts) L(tsut) L(tu) L(tsut
L(tsu)

shows that PP(t) it is not spherical either.

We summarise:

Observation 4.15. For p C sl the parabolic subalgebra corresponding to the parabolic subgroup Sy x Sy <
Sa (see (4.16)), PP(t), PP(ts) and PP(tu) are the spherelike indecomposable projective modules. None of
them is spherical.

4.4. Shuffling and spherical twist functors are isomorphic functors...

Until now, we have only investigated the behaviour of the twisting- and the shuffling functor on objects.
It remains to be shown that in the set-up of Observation [£.14] the two functors are indeed naturally
isomorphic, which we shall address in this section.

We shall make use of the following possibility to explicitly describe a right exact functor on module
categories. We know that the tensor product is a right exact additive functor. The converse also holds:

Lemma 4.16. Any right exact functor F': Mod-A — Mod-B that preserves arbitrary direct sums is
isomorphic to tensoring with the A-B-bimodule F'A.
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Remark 4.17. The image F'A of the A-module A indeed has a left action on A. Namely, any element
a € A induces a bimodule endomorphism (a-) of A. The functor F then yields a B-module endomorphism
F(a) of FA.

Proof of Lemma[{. 16 Let M € Mod-A be an A-module. We can identify M with Hom (A, M) via the
evaluation map Hom4 (A, M)®4 A — M. Applying F yields a map Homy (A, M)®4 FA — FM,¢®@a —
F(#)(a) which is natural in M. It is clear that this is an isomorphism for M = A and hence, since F
and the tensor product both commute with direct sums, for arbitrary free A-modules. For an arbitrary
module M, we can choose a free presentation of M which maps to a presentation of F'M under F' by right
exactness of F'. By the five lemma applied to the natural isomorphism already found for free modules,

this shows that indeed FM = M ® 4 F A. O

Corollary 4.18. Given abelian categories A and B with projective generators P4 and Pg, any right exact
functor F': A — B which commutes with arbitrary direct sums is naturally isomorphic to the tensor
product functor

— QEnd P4 HOHIB(P_A,FPA): A — B. (4.19)
We denote the End 4(P4)-Endg(Pg)-bimodule Homg(P4, FP4) by Mp.

Proof. Recall from Theorem that there are equivalences G 4 : A ~ Mod-End 4(P4) and Gg : B ~
Mod-Endp(Pg) of categories. Under these equivalences, Lemma states that GglF G 4 is isomorphic
to

— Qpndy P, Homp(Pa, FP4): Mod-End 4(P4) — Mod-Endg(Pg) .
where the bimodule structure of Hompg(P4, F'P4) is given by
b.f.0=F(g)ofor
for f € Homg (P4, FP4), ¢ € End4(P4) and ¢ € Endp(Pg); see Remark By abuse of notation, we

just write
F=-— ®EndA(PA) HomB(PA,FPA): A — B.
where the endomorphism ring acts by precomposition on homomorphisms. O

In the context of chain complexes, a functor Ch(A) — Ch(B) that is given by a complex of functors
A — B is seen immediately to be isomorphic to tensoring with a complex of modules. This also passes to
the derived category.

4.4.1. ...on D"(Oy(sl3))

We now return to answering ?? 4.1. Let A denote the endomorphism algebra of the projective generator of
Oy (see Corollary [2.2) and (4.4))). Recall that by curly braces we denote mapping cones (see Notation [3.9)).
By the above considerations, the derived shuffling functor and the cotwist functor resp. are isomorphic to

LShS[—l] Z{ido%@s} = —-®a {A—>M@S}
0

Ilg(s) = {idoo — an(homo(—,P(S)),P(S))} = —®a {A — MP(S)}'

For proving that both functors are naturally isomorphic, it thus suffices to prove that Mg, and Mp ) are
isomorphic bimodules.

Complexes “representing” L Sh, and T, ,, For writing down the latter module explicitly, recall that
the Hom-spaces in question are finite dimensional by the definition of a spherical object in Definition
Hence,

Mp(s) = Hom [P, ling (hom 4 (4, P(s)), P(s))]
=~ Homp [P, P®4 P(s) ®c P(S)]
=~ P(s)Y ®c P(s)

as A-bimodules. Let us spell out this module explicitly for the case g = slo. We quickly recall the following
from Section 2.T.Tk
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Recall 4.19. The endomorphism algebra A is the path algebra of the quiver with relations @ = e =—
s/(e + s + e), see Corollary As a representation of @), we have seen that the module P(s) = e A is
given by assigning to a vertex v the space ez Ae, of all paths from v to the vertex s. We have chosen the
basis {ids, s « e, s < e < s} for P(s). The module P(s) is a right A-module by precomposing a path of
A to a path in P(s). See Section for a detailed explanation.

Notation 4.20. Consider a C-algebra B as well as finitely dimensional modules M € B-Mod and N € Mod-B
with C-bases M = (m; |i € I)c and N = (n; | j € J)¢ resp.

(i) We draw diagrams like

which are to be read as follows: the elements by and by € B act on m; as indicated. That there is
no arrow labelled by starting at mo means that by acts by zero on ms.

(ii) Consider B-B-bimodule M ®c N. It has a C-basis {m; @ n; |i € I,j € J} on which the bimodule
action is given by b.m; @ n; . b = (bm;) ® (n;b). We depict a concrete action on a bimodule by
diagrams like the following:

b m m b
bz< lg mo Q4 No % ’ (420)
b . . by

(iii) Analogously, consider the B-B-bimodule Hom¢(M, N). Let n; — m; be the C-linear map M —

N,ng — {6" Z;g . The bimodule Hom¢(M, N) then has a C-basis {m; <+ n; |i€ I,j € J}. In

terms of this basis, the bimodule structure is given by
b. (ml < nj) b= (b) o (7’77,z < nj) o (b/)

which we depict similarly to (4.20)).
(iv) Finally, assume that M = P, ; M; and N = @, ; N; as left (resp. right) B-modules. Given a

homomorphism f € Hompg(N;, M;), let f also denote the homomorphism N BEN N; ER M; 25 M.
The B-B bimodule Homp(M, N) = @, ; Homp(M;, N;) then has a C-basis

(M; <& N;|i€el,jeJ feHomp(N; M)}
on which the action is given by
b.(M; <& Nj) b = (b) o (M; <& Nj)o ().

Assume that all M; are identical, i.e. M = (M,)®! for some module M,. We then depict this basis
of Homp (M, N) by pictures like

) <M1<— <iN1§b
1 2
b2< My e { & N, (4.21)

o )

for f € Homp(Ny, M,) and f € Homp (N2, M,). We shall not attach the label “f” to the morphism
if Homp(N;, M,) is one-dimensional.

Module representing T1/3(s) We apply this notation for the left and right A-module structures on
P(s)¥ ®@c P(s). In terms of the basis recalled in ?? 4.19, the bimodule structure of P(s)Y @¢ P(s) is given
by the following action on basis vectors:

(s e+ s)* e
P(S)V ®c P(s) = o(e$—s) (s—e) (@] (s« e) o(s$—e) (4.22)
o(s<—e) e* (S e S) o(s¢—e).
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End(P)> f — O.f € End(@sP) Table 4.8: Images of all endomorphisms of the projective genera-
tor P = P(e) ® P(s) of Og(sl2) under the translation functor ©,.

P(s)—

Module representing ®, In order to understand the left action on the other bimodule Mg, = Hom(P(e) D
P(s),P(s) ® P(s)@z), we need to know how ©; acts on endomorphisms of the projective generator P,
since A = Endep(P) acts from the left via ©;. This can be revealed by fitting P(e) and P(s) into short
exact sequences: the image of the following sequence splits canonically (which yields the image of the
inclusion under ©,) and exhibits the adjunction map for P(s) to be the vertical map in the commutative
diagram

(4.23)
P(s) <2 P(s)®? —Z% P(s).

A similar sequence holds for the morphism ©,(P(s) — P(e)). The non-trivial endomorphism z of P(s)
fits into the following sequence. Commutativity of the diagram allows us to obtain the image of x in the
middle of the diagram

P(s) z P(s) —» P(e)V

U I
P(s)®2 (60) P(s)®2 2 (4.24)

P(s) ——» P(e)".

—T

The functor ©, thus assigns the images listed in Table [£.§] to the endomorphisms of P.
We can now return to the description of the bimodule action of A on Mg_. With the notation explained

in Notation and the left action from Table the left and right actions of A on Mg, on basis
vectors are as follows:

M B o(e$—s) P p o(s$—e)
0. = NP et e Pe)

P(s)2 « & P(s).

P(s)3 & P(s)
g % (4.25)

o(s<—e)

One sees that there is an isomorphism Hom(P,O,P) = P(s)" ®c P(s) of A-bimodules by comparing the
action on these bases; hence we have shown:

Theorem 4.21. Let g = sly. The functors L Shy[—1] and TP( ) are naturally isomorphic autoequivalences of
D®(Oy).

4.4.2. ...on D"(O}(sl,)) for certain p C sl,

We first generalise our insights to the parabolic subalgebra p C sl3 considered in Section We shall

notice later that this contains already all information required to understand the parabolic sl,-case.
Recall the equivalence Of ~ Mod-A4, from . and the indecomposable projectives of O} with

composition factors listed in Table @ The algebra A, is the path algebra of the quiver with relations

e+ s+ e=0, e+ s+ st=0,
Qp = esst, (4.26)
st s+ e=0, S4—€e<5=85+4 st s.
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With Notation [4.20] the A,-A,-bimodule PP(s)Y ®¢ P*(s) associated to the cotwist functor Tpy (s has
the following basis with A,-action:

*

(s e+ ) €s
(e(—s)o( )o(s(—e)
(St<—5)0< (s < st)* 5+ e >°(S<—st)

&
(e4—s)o (s +e)* s < st o(ed—s)
(s%st)oc N Do(st(—s).
e S<e+ s

(4.27)

For computing the bimodule Mg, , we notice that the images of morphisms listed in Table @ remain
valid for the respective parabolic modules. Additionally, there are images

Os: PP(st) » PP(s) +——  PP(s) @ PP(s)%2, (4.28)
PP(s) = PP(st) s PP(s)®2 121 prg),

We thus deduce that the left and right actions on the following vector space basis of Home (P, O4P) are

PP(8)3 + &L pr s)
@S(e<—s)o< )o(s(—e)
O, (st$—s)o PP(s)]  pr 6) o(s¢—st)
e

(s) (
(s) (

O, (et—s)o C PP(s), — PP(st) >0(6<_3)
(s) (

Again, the bimodules in (4.27)) and (4.29)) are isomorphic; hence we have shown:
Theorem 4.22. Let p C sl3 be a maximal parabolic subalgebra. The functors L Sh,[—1] and T% ) are

(4.29)

@5(3(—515)0(; >o(st<—s).

naturally isomorphic autoequivalences of DP(O}).

We eventually consider the case for the parabolic sl,-case. However, there remains nothing to do: the
dimensions of Hom-spaces listed in Table show that tensoring with P?(s1)Y ®c PP (s1) annihilates all
indecomposable projectives PP (s1s283 - --) not regarded so far. We already know that this is the case for
©;. Furthermore, the above considerations hold true for any copy of Of (sl3) in Of (sl,,), hence we deduce:

Theorem 4.23. For a maximal parabolic subalgebra p C sl, corresponding to the parabolic subgroup
Sn_1 x 81 <8, there is an A, _»-configuration (P”(sl),Pp(slsg), coy PP(sy - Sn_g)). The associated
cotwist functors Tp, (..., and the restriction of the derived shuffling functor L Shy,[-1] to DP(O}) are
naturally isomorphic auto-equivalences of DP(OF).

Remark 4.24. In Section [£:2] we have seen that for sl; none of the indecomposable projectives is spherical.
Since Tl’gp(t) therefore cannot be an auto-equivalence but L Shy certainly is, both functors cannot be
isomorphic. In Observation we have encountered similar problems if we consider maximal parabolic
subgroups other than S,_; x S < S,,. We suggest another (easier) argument to see L Shy[—1] % T},p(t) in
these cases:

We have used Corollary to answer ?? 4.1 by scrutinising the (easier) question whether the modules
that “represent” L Shy and T, (1) are isomorphic. A dimension argument easily reveals L Sh,[—1] 2 T, )
based on this consideration.

Consider for instance sl3. Although P(s) € Oy is infinite dimensional, its image under the equivalence
Op ~ A-Mod is finite dimensional, namely dim¢ P(s) = 10, which can be taken from the basis of
P(s) given in Figure Therefore, dimg Mp(s) = dimg P(s)” ®c¢ P(s) = 100. On the other hand,
consider the dimensions of Home (P(w), ©sP(v)) for v,w € S5 listed in Table The table yields
dim¢ Mo, = dim¢ Homp (P, ©,P) = 145, hence Mg, % Mp(y).

Remark 4.25. Recall the notion of spherical subcategories from Remark Since Oy (sl,,) is equivalent
to modules over a quasi-hereditary algebra of finite global dimension [Maz12} §4.4], its derived categor
DP(Oy) admits a Serre functor [BK89], namely S = L Shﬁj0 [MS08, prop. 4.1]. In the light of Remark
this means that the spherelike object P(s) has a spherical subcategory in D”(Qy). We refrain from giving
the construction of spherical subcategories; see [HKP17, §4] for the definition. We do not know yet the
shape of this spherical subcategory. It would be interesting to understand how it relates to O} for the
parabolic subalgebra we considered in Section [1.3.3]
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Table 4.9: Dimensions of Home (P(w), 85 P(v)) for v,w € W for the Lie algebra g = sl3. The dimensions can either
be computed by Kazhdan-Lusztig polynomials (see Table or by using the explicit bases from Figure [2.2

dimc Homo (—, ) P(e) P(s) P(t) P(st) P(ts) P(wo) P, Pw)
OsP(e) = P(s) 1 2 1 2 2 2 10
O:P(s) = P(s)®? 2 4 2 4 4 4 20
O,P(t) = P(ts) 1 2 2 3 4 4 16
O, P(st) = P(wo) ® P(s) 2 4 3 6 6 8 29
©,P(ts) = P(ts)®? 2 4 4 6 8 8 32
OsP(wo) = P(wp)®? 2 4 4 8 8 12 38
0.P =@, 0:P(w) 10 20 16 29 32 38 145

Remark 4.26. Recall from Section that when thinking about spherical objects we started with the
path algebra of the quiver Q = ¢ & s/(e — s — ¢). We generalised @Q to a certain quiver, see ,
corresponding to the inclusion sly C sl3. Another quiver containing () was given in , corresponding
to sly C p for certain p C sl,. A third possible generalisation are circular quivers. An investigation on

spherelike representations of circular quivers and the associated spherical subcategories has been performed
in [HKP17, §6].
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Part II.
From symmetric functions towards super Soergel bimodules

5. Rouquier Complexes and the action of By, on D"(O)

In this section, we want to present a proof for Theorem given by Rouquier in [Rou06]. Instead of
directly proving that the braid relations are satisfied by the shuffling functor, Rouquier introduces functors
F, which act on the homotopy category of so-called Soergel bimodules. We shall explain in Section [5.3|
how this construction links back to the category O.

5.1. Representations of Coxeter groups

Recall the definition of a Coxeter group (W,.S) and the associated braid group By from the introduction.

Definition 5.1. Let (W, S) be a Coxeter system. An element w € W is called a reflection if it is conjugate
to a generator s € S. We call the elements of S simple reflections.

Let V be a finite dimensional k-vector space. A reflection ¢ € Endg (V) is an involution whose fixed
point set V' has codimension one. Since we assume k not to be of characteristic 2, this implies that
V decomposes into eigenspaces V = V¢ @ V~¢ with dim V=% = 1. The vector space V is a reflection
representation of W if every reflection w € W acts by a reflection on V. The representation V is called
reflection faithful if any w € W acts by a reflection on V' if and only if w is a reflection in W. In this case,
for any two reflections v, w € W, we have that V=" # V=% implies v # w.

Definition 5.2 (geometric representation) [Hum90, §5.8]. Let the k-vector space Vg := (e5 | s € S)i be
endowed with the bilinear form that is given on basis vectors by (es, e;) := — cos(m/ms ). A generator
se Sactsonv € Vg by s.v:=uv—2(es,v)es, i.e. by reflecting v across the plane orthogonal to e; w.r.t.
(-,-). The vector space V, endowed with this action is called the geometric representation of W. This
representation is reflection-faithful [Soe07, prop. 2.1].

Ezxample 5.3. For W = S3 the symmetric group, the geometric representation is depicted in Figure In
general, if W is a Weyl group of a semisimple complex Lie algebra, its geometric representation is just h*
with the usual action of W.

Definition 5.4 (permutation representation). For the symmetric group S,,, which is a Coxeter group of
type A,_1, the permutation representation is the vector space V,, := (e;,...,en)r on which S, acts by
permuting coordinates. This representation is reflection-faithful, too. It has V; as quotient by the one-
dimensional subspace (e; + - - + e, ). A respective representation is given for other permutation groups,
in particular for the Coxeter group series BC,, and D,,.

Definition 5.5. Given a finite dimensional k-vector space V', the coordinate ring of V' or ring of regular
functions on V' is the k-algebra k[V] := k[ay] for a basis {«;} of the dual space V*.

(i) Let Ay = k[V,] = k[as]ses, where ay € V" is the functional with kera, = V*°, normalised
such that as(e;) = ms. The W-action on V, induces the contragredient action on Vg* given by
g.a(v) =a(g~'.v) for g € W,a € V; and v € V. The algebra A, thus inherits a W-action such
that s. a5 = —as.

Figure 5.1: Geometric representation of the Coxeter group W = S3 with generators
s,t. The basis vectors es and e; are the —1-eigenvectors of s and ¢ respectively. AN
They enclose an angle of mit where for Ss we have mg; = 3. This representation

corresponds to the root system of sl3, depicted in Figure

VS
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(ii) For W = S,, the symmetric group, we similarly define A, := k[V,] = k[z1,...,z,] with an S,,-action
on A, by permuting variables. This algebra has the quotient A, = A, /(z1 + -+ + ). We set
s, = Z;jy+1 — T; such that again s. a; = —as.

i

In the following, let V' denote either of the two representations V, and V;,, and let A denote the respective
ring of regular functions.

The algebra A is endowed with a natural grading by the degree of the polynomial. We follow Rouquier’s
convention to have the o, in degree one rather then Soergel’s convention to place them in degree two
[Soe07]. We point out again that we denote by (1) the upwards shift of the grading, which is opposite to
the convention in [Rou06].

Lemma 5.6. The algebra A is a free graded A°-module of rank 2: Given a simple reflection s € S of W,
the algebra A decomposes as A = A° ® A°«, as graded A°-A-bimodule.

Proof. The isomorphism sending a to its symmetric and anti-symmetric part is given by a — (%(a +s.
a), 5(a — s.a)), noting that 3(a —s.a) = (ar, o), is divisible by a. O
Definition 5.7 |[Dem73|. The Demazure operator is the homogeneous map
05 A(=1) = A% aw— 5
Its image lies in A® since both x — sz and « are antisymmetric; hence their quotient is symmetric.
Our goal is to establish an action of Byy on the category of graded A-bimodules A-gMod-A, following
the construction of Rouquier. From now on, let us work with k£ = C.

5.2. Braid group action

Define the twisted diagonal A, = {(wv,v)} C V x V with algebra of regular functions C[A,] =
(A®c A)/(wa®1—1® a)gea. Denote the ideal quotiented out by a,,. Furthermore, define the subset
Wew = {v e W |v < w} as well as the union A<, = J,<,, A of twisted diagonals which is a hyperplane
in V x V. Its algebra of regular functions is A<,, = A/[] a,. We have

v<w

can if w’ < w,

Homa (A<u, A<ur) = {0 otherwise,

with the canonical quotient map can : A<,, =% A<y, given by the restriction of functions along the
inclusion A<, C A<y,

Definition 5.8. The Rouquier complexes are defined to be the complexes

Fs:{0—>04>A®ASAL>A*>O}
0
n (5.1)
F1={0—A— A®a: A(-1) — 0 — 0}
0
1— a;®1+1®as

of graded A-bimodules, where the map €’ is the multiplication in the algebra A and 7 is the comultiplication
for a yet to be defined coalgebra structure.

We explain the proof of the following theorem of Rouquier:

Theorem 5.9 [Rou06, prop. 9.4]. Tensoring with the complexes Fy and F, ! establishes an action of By,
on KP(A-gMod-A), i.e. there is a map

Bw — End(K"(A-gMod-A))

defined on simple reflections by s*! +— (FF! ®4 —). We occasionally write F, for the tensor product
Fs®—.

We leave the following statement unproven:
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Proposition 5.10 [Rou06| prop. 8.1]. Let F': S 2 T :G be two triangulated functors between triangulated
categories and (1) be a triangulated auto-equivalence of S such that there are adjunctions F' 4 G - F'(1).
Assume that the following adjunction (co)units fit into a distinguished triangle ids — GF — (—1) 5 ids [1].
Then the mapping (co)cones C' = {ids <, GF} and K = {idr % F(1)G}[—1] of the adjunction (co)units
are mutually inverse auto-equivalences of D.

Corollary 5.11. The (co)shuffling functors Shy and Cshy are mutually inverse auto-equivalences Op.

Proof. Recall from Definition the definitions Shy, = {ido, = TogTon} and Cshy = {TogTon —
idp, }[—1] for the functors Tog: O, & Op :Ton and a weight p contained in the s-wall of the fundamental
chamber. The functors T, and T,, are biadjoint, and Proposition yields the statement with
<1> = id@o.

Recall from Section the definition of the graded category OZ% as well as the graded shuffling
Sh, = {id(1) — O} and coshuffling Cshy = {©; — idp,(—1)}[—1]. These are adjunction maps
from adjunctions Tog 3 Ton(l), Ton 1 Tog(—1) of graded translation functors; see [Str03a, thm. 8.4].
Proposition yields the statement with (1) the grading shift. O

The braid relations are the harder part. In fact, the graded version of the corollary is proven by
Rouquier without referring to [Str03a).

Lemma 5.12. The functors Fy ®4 — and F, ! @4 — € End(Kb(A—gMod—A)) for s € S indeed are mutual
inverses.

Proof. As the notation suggests, the structure maps of Fy and F; ! are part of adjunctions F' 4 G 4 F(—1).
Namely, consider the functors

F=A®ss —: A°-gMod & A-gMod : (A° ® A°(1)) ®4 — = G,

where the right A-action on A% & A*(1) is given by the isomorphism A® & A%(1) = A as left A5-modules.
The two adjunctions are established by tensoring with the following maps:

FAG: FG=A@a A—1 A in A-gMod
a®br——ab
id " id@id(l) = GF in A%-gMod
(5)
GHF(-1): GF(-1) =id(—1) @id (d—)> id in A*-gMod
01
A" A®ys A(-1) in A-gMod
= FG(-1)

l—— o, ®14+1® as.

The middle two maps obviously fit into a split exact sequence id < id & id(1) LZN id(1) of endofunctors
of A®-gMod. When passing to the homotopy category, this sequence gives rise to natural transformations

id £ id @id(1) 2 id(1) = id[1] of functors which yield distinguished triangles when evaluated on objects.
Proposition now asserts that the (co)cones of n and &’ are mutually inverse auto-equivalences of
KP(A-gMod). Unravelling the definition of ' and G exhibits that these cones are precisely the Rouquier
complexes

{id % FG(-1)} = {A = A®4s A(—1) = 0} @4 — = F71,
0

(FG 55id}[-1]={0 > A®@u A — Ao, = F..
0

This shows that F, ! and Fy are indeed mutually inverse auto-equivalences. O

Proposition 5.13 [Rou06, prop. 9.2]. Assume that W = I,, is a dihedral group of order 2n, i.e. is given
by the presentation W = (s;,s_ | s3 = s2 = (s;s_)™ = 1) with m < co. Then the functors
F, \F, € End(Kb(A—ngod A)) satisfy the braid relations.

S4
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Proof. Our strategy is to construct a complex Fi homotopy equivalent to the ¢-fold tensor product
Fs, ® Fs. @--- of complexes, such that F{ only depends on the group element represented by the word
5487 -+ of length ¢. This will prove the lemma.

—Constructing the complex Fi: We introduce some notation: Let U’ft ‘= 54554 -+ with £ factors,

th = Agwft and the respective ideal aft =y Note that whenever ¢ < j, we have w’ < w] for any
allocation of the two asterisks with signs. Consider the complex

/ e (B, e e (55) Lo

FjE::{O%[O]Di—>DjE —eDy — = D @Dy [Z]AQHO}

0 0

+-)

with the indicated multiples of the quotient map can. Note that F" = F™.

—Homology of F4: Our first goal is to show that the complex F{ has vanishing homology in all degrees
except of zero by showing that it is obtained from splicing short exact sequences together. For any ring R
and ideals b, ¢ < R there is a short exact sequence R/bc < R/b@® R/c —» R/(b + ¢). For the ideals a’, for
0 < r < /¢ we thus obtain

0 Aja"a” — A/a @ Aja" — A/, +a’) — 0. (5.2)
—— — —
C [Aswi OAS“’Z] C[Agwi UAS’U!”;]

Since w’ is built by alternating sy and s_, the only sub-words of w’ of length r» — 1 can be taken from
r—1 wr—l
+
——— ——
w =545 54 --5p54, W =5_5 - -Sp5457.
r—1 r—1

w w

Therefore, the set {v € W | v < w’,w” } of words smaller than both of them equals the union

Wewy N1 Wewr = Wer UW rm1; hence
Agwi N Agw"; == A§7U171 U A§w171

with coordinate rings
Af(a +a”) = A/(af "),

The short exact sequences (5.2) thus can be spliced together:

A/(af[1 —i—aZ{l)

SN

Flo= 0= A0 g e Af s A Afal?
A/ (e al) A/ (a7 + ).

This shows that the complex F{ is exact in all degrees except zero. We now show inductively that there
is a homotopy equivalence Fs, ®4 Ff; =~ Ff‘l.

—Induction base: For the case £ = 1, we first show:

Claim. The quotient map

ARss A —» (A®As A)/(a@l—1®a)a€A(sa'®l—1®a’)a/€A
=(A®cA)/(a®1—-1®a)seca(sa’ @1 —1®a)aea
:D_}E

is an isomorphism.
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By virtue of the isomorphism A = A®* @ A®«; (see Lemma we take decompositions a = u + va,
and a’ = u’ + v« for u,v,u’',v" € A5, We obtain that ker(A ®4s A — DY) is generated by elements
(a®1—-1®a)(sa’ @1 —-1®d)
[(u+va,) ®1—=1® (u+va,)][(v — Vo) @1 - 1@ (U +v'ay)]
=/ (—a?®1+1®a?)
0

We thus have an isomorphism of complexes

Fl={0 — D} — A — 0}

l= =

Fo, ={0 = A®s: A — A — 0}.

—Induction step: Assume the claim holds for all 7} for » < £. The tensor product Fs, ®4 FfF is given by
the total complex

Di@ADfFHDi(X)A (Dﬁ;l@Df;l)H"'HDi@AA

F,, @4 FL = | | l
ARaDt —— A®y (DY '@ DY) — - — A®a A

DiD% —— DD @ DLDE —— - —— Dy

- J | J (5.3)

0 l—1 l—1
Dl ——— Di' @ DY s A

where each of the morphisms is the quotient map.
Claim. There are homotopy equivalences
A4+ (0= DL - DI —0) = (0 D — D' = 0), (5.4)
(0=Di—+A—A—-0)®aDL=(0— DL —0—0).
See Lemma [5.15] below.

In the following, we use these two equivalences to replace (5.3)) by a simpler double complex step-by-step.
Consider the following diagram with explanation given afterwards:

. o R N = o
pft— > pi'eDf ——————— DD ———————

12

DyDf ——— DiDi’leaDiD?l \—"% DD *®D4 D!
| [

£ _ —1 -1 £—2 —2 .
Fy, @aFi= DI @Dy D — 5 DE2eDy DI —— (5.6)

N N
A X

) -1 L—1 D¢—2apt—2 ,

() (5] (]
(01id)

0eD: ! 08D ——— -
@) @)

(5.3) is highlighted by the brace. We perform the following steps:
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(i) Applying (5.4) to each of the morphisms in the top row of the diagram yields the first homotopy
equivalence.

(ii) Similarly, use (5.5) to replace the left half of the vertical morphisms.

(iii) The composition of these two homotopy equivalences is again a homotopy equivalence. The first
and the second homotopy equivalence have been obtained by replacing one summand at a time;

hence they are of diagonal form and so is composition. But Hom(D{™*, DfF_l) is zero, hence the

composite is of the form (§9).

(iv) This can only remain a homotopy equivalence if the complex formed by the indicated summands is
nullhomotopic.

(v) Thus the original double complex is homotopy equivalent to the double complex consisting of the
remaining indicated summands in the rear top and front bottom row.

This exhibits that there is a homotopy equivalence
F,@Fi= (0D - DLeDL - — A= 0) =C.
We do not know yet what the differentials of C' are.

—Showing C = F;;‘H: Recall that F,, and F{ have homology H"(Fs,)=0and H"(F{) =0 for r > 0. In
degree 0, homology is given by

HO(F,,) = ker(DL <5 A),
¢ ‘ (jrr) -1 -1
HO(FL) = ker(Di ~* Dt D DJF)
respectively. There is an isomorphism

DL 2 A@ s A (A% @ A2 (1)) @400 A2 AP?

of right A-modules; hence D} is a free right A-module of rank 2. The 0-th homology module H°(F;, ) €
Mod-A thus is a submodule of a free right A-module and thus is free itself (A is a PID). The Kiinneth
theorem [Wei94, thm. 3.6.3] thereupon implies that the homology of C' is given by

0
H'(C)= P H™(F..) ® H"(FL) & @ Tor{' (H™(F..), H"(FL))
m4n=r m4+n=r—1
_JHYF,,)® HO(FY) ifr=0;
o otherwise.

Hence, the complex C' has the same entries and the same homology as the complex Fi“ in degrees
other than zero. Since all spaces Hom ag 400 (DI 11, DY) are one-dimensional, the complex C' is completely
described by the scalar multiples of the canonical projection maps. We can understand C' as the complex

a a(bg)
0 — x (Cfﬂ) * P * (de Lo lad) * — 0.

Claim. None of the coefficients a.., b, ¢, and d,., 1 <r < £+ 1, can be zero.

Assume that there are vanishing coefficients, and let < ¢ be the smallest index for which a coefficient
vanishes, say ¢, = 0. Since C is a chain complex, the coefficients satisfy

r—1 br— b var—1 -\ LA
(zr—ll dr_1>(aor g) = (i) =05

in particular a,a,_; = 0. Since r was chosen minimally, a,. vanishes. On the other hand, the next degree
of the complex forces the maps to satisfy

(O b ) ary1 beg1 ) _ [ brcrg1 bpdegr ) L 0
0d, crt1 dry1 ) T \drcry1 dpdrgn ) T
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which requires either b, = d, =0 or ¢,41 = d,41 = 0. If b, = d, =0, C decomposes as

: {~-~*>D;“€BD;“—>D;€BD§F 0 }

1

@{--- 0 0 D;_l@D;_lé-«-}

If otherwise ¢,11 = d,+1 = 0, there is a direct sum decomposition

{~~~*>D;+1€BD:TF+1 Dy 0 }

(@rt1 bri1)

c

1%

@{ 0 DL D;_l@D;*;;...}

In both cases, the second summand has non-vanishing homology in its leftmost degree since all the
structure maps of the complex are non-trivial quotient maps. This is a contradiction; hence all coefficients
of the matrices are non-zero.

By imposing the condition on the coefficients that the product of every two consecutive matrices is zero,
we obtain linear equations that allow us to determine the complex only by the variables a, and c,:

c1as + dica =0 and therefore d; = —<92,

c1by + dids = 0

QrGpi1 + b’l"c’l"+1 = 0 b, = _a;:z%’
arbr—i-l + brdr—i-l =0
Crapy1 +dpcryr =0 dy = _%7
Crbry1 +drdry =0
agagsr + becopr =0 by = *%ﬁl,
cept1 + decor1 =0 dp = =S

Lines without an entry on the right are already determined by the others. Using this we can construct an
isomorphism

+ + -
Fi“:(o * (+) *@*(+_2--~(+72* 0)
1) L7 |70
C:(O *(giiia*ﬂa*(aegg)“'(q d1)* O).
Cyg Qy

To ensure that the vertical maps form a map of complexes, we construct them as follows. By fixing the
leftmost map to be one, we obtain f; since it has to satisfy

(aHl CE-H)(i) = (’jfj:ll)
————

fe
Continuing downward induction yields o
b
apf10¢ + =\ _ [ a¢ be _ (Qey10g Ceqa1by
( az+102)(+ —) = (cg dl)ff = (az+1ce Coq1dye )
—_—— ——
fe—1 : —agyice —apqiar
Qpy1Qryg 4+ -\ _ (ar b _( Qu41tQrp1l Qg1 Qrg2 Crp1bp
( Ag41°Ar42Cr41 )(+ 7) - (c: d: ).fT+1 - (atz+1"'ar+10r Qg41°Qrt2 Cry1dy )
fr : et
(al [ a2cl) ( + - ) = (Cl dy )fl = (a5+1‘~'a201 ag41°:°a3 cady )
———— —~
fO —azcy
The maps f, exhibit the complex C' to be isomorphic to Ffrl since the coefficients a, and ¢, are non-zero
for all 0 < r < ¢+ 1. This finishes the proof. O
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Corollary 5.14. The proposition holds for an arbitrary Coxeter system (W, S) and generators s,t € S such
that mg < oco.

Proof. The subgroup (s,t) < W generated by s and ¢t is isomorphic to the dihedral group I,,,,,. We
can decompose the reflection representation V = VSt @ Vj’t of W into its (s, t)-invariant part and its
complement. This yields a factorisation

A=C[V]=C[V*'] ®cC[V}]
of algebras. We denote both tensor factors by A =2 A; ®¢ Az. There is an induction functor

Ind%,: A,-gMod-A, — A-gMod-A,
M — A1 ®Qc M

where we let A7 act on the factor A; from both sides and let Ay act on M from both sides. There also is
a restriction functor Resﬁ"’7 coming from the algebra homomorphism 1 ® id4,: As — A3 ® As. Since Vit
(and hence A;) is invariant under the action of (s, t), the left and right actions of A; can be slid across
all tensor products ® 4= and ® 4¢; hence both the left and right actions of A; coincide on all modules
considered in the proof. Thus, when restricted to these modules there are natural isomorphisms of functors

Indj, o(A2 @45 —) o Res’y? Ind%, o(Az ®4, —) o Resy?
= (A ®c A2) @as — = A1 ®c A2 ®a, —
= A®(100a7) ~ = (41 80 42) Omiges, -
2 AQus — =ARA—
of A-bimodules. The proof for the dihedral case thus passes from A,-grMod-A, to A-grMod-A. O

The following lemma finishes the proof of Theorem

Lemma 5.15. Let © € W such that stx > tx > = # e. Then there are homotopy equivalences

A®4s (O—>A§tw ﬂ)Agl—}O)
(05 A®a: A5 A—0) @4 A<y

R%

(0= A<ypy — A<y — 0)
(0= A<, (1) > 0—0)

12

as claimed above.

Proof. See |Rou06, lem. 9.1]. O

5.3. Back to category O

We now want to use the results we obtained for the category of graded A-modules to prove that the
derived shuffling functor indeed admits the braid relations and is an auto-equivalence of DP(QO). First,
recall the definition of the coinvariant algebra C = A/ (Af)7 i.e. the quotient of A by its non-constant
W-invariant polynomials. Note that Cyy is independent of the choice for A € {Ag, Ay} [Cheb5|. By the
induced inclusion of module categories, we can act on complexes of C-modules:

KP"(C-gMod) — K" (A-gMod) ELN KP(A-gMod).

However, consider the A-A-bimodule A ® 4s A used in the construction of Fy. Tensoring this to the
A-C-bimodule C' yields

AGa (A/(AY)) = (A/(AV)) ©4 (A/(AV)) = C .

since W-invariants can in particular be slid across the tensor product ® 4. We thus obtain also an action
of the respective complexes F, and F; ! on KP(C-gMod). The algebra C' arises also in the context of
category O:

Theorem 5.16 (Soergel’s Endomorphismensatz) [Soe90} thm. 3]. Let 4 be a (not necessarily regular) integral
weight, W, its stabiliser subgroup under the dot-action and wo € W), the longest element therein. Denote
E, = Endo(P(wo - i)). Then CVr = E,,.
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This isomorphism allows to define Soergel’s functor V, = Homo(P(wo - p),—): O, — Mod-E,, ~
Mod-C%Wr which resembles the functor in Morita’s theorem. Although not an equivalence, it still has the
following useful property:

Theorem 5.17 (Soergel’s Struktursatz) [Soe90, thm. 2]. When restricted to the subcategory O,-Proj of
projective modules in O,,, this functor is fully faithful.

Now recall the translation functors Ty, and T,g from Section ﬂ;fl between the regular block Oy and
the block O, for a weight 1 on the s-wall adjacent to 0, i.e. with stabiliser subgroup W, = (s). Recall
that T,g preserves indecomposable projectives and in particular TogP(wq - @) is naturally isomorphic to
P(wq - 0). The thus induced map

C* = Endo (P(wp - 1)) 225 Endo (P(w - 0)) = C

is the inclusion ¢ : C* C C [S0e90, rmk. ad thm. 8]. The restriction functor induced by this inclusion
hence gives the top left square in

Rcsg“ Indg“
C-Mod —— C*-Mod —— C-Mod
T
Mod-E, —%» Mod-E,, — Mod-E,
Vol \ Vol
Op 0, Op.

Ton Tosr

Given a module M € Mod-E,, its image T/ M denotes the right E,-module with action m.¢ = m.T,a(¢)
for m € M and ¢ € E,. The top right square is obtained from the left one via the adjunctions

IndgA - ResgA and Ty, - Tog. The commutativity of the lower half of the diagram can be seen as follows:
Tlg o Vo(M) = Hom(P(wy - 0), M) with ¢ € Ey acting from right by f.¢ = f o Toa(¢). This yields an
isomorphism

4|
Tigo Vo = Homo (TogP(wo - 1), —) = Homo (P(wo - p), Ton(—)) = Vo Ton

and dually
T35, 0V, = Homp (TODP(wO - 0), —) g‘ Home (P(wo -0), Tog(—)) = Vo Tog.
This in particular shows that translation through the s-wall, is taken, under composition with Vg, to
V00, =VyoTogToy = IndS,. oV, o Ty = IndS,. o Res& oV,
Cecioeo—
Comparing this to the definition of the Rouquier complexes shows

Voo {ld — @s} = {C — O®Cs C} OV(); Voo {@s — ld} = {O Rcs C— C} oVy

L Sh, Pl R Csh, Fs

as functors KP(Op) — KP"(C). Finally, Soergel’s Struktursatz asserts that V is fully faithful when
restricted to O-Proj. The natural isomorphisms which ensure the braid relations for Fy and F, ! hence
can be lifted via Vg to the respective natural isomorphisms for L Sh and R Csh as endofunctors of
K®(0,-Proj) ~ D"(Oy). This finally proves Theorem m

5.4. Soergel bimodules

In the proof of Theorem we have already seen the objects of a remarkable subcategory of A-grMod-A,
the so-called Soergel bimodules.

Definition 5.18. The category of Bott-Samelson modules, denoted by BS, is the full subcategory of
A-grMod-A generated as a monoidal category by the A, := A ® 45 A(—1) for s € S. Its objects are thus
modules of the form A, == As;, ®4 --- ®4 As, for a word w := s1 - - - 5, of simple reflections.
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Its graded (resp. additive) envelope is the smallest category containing BS that is closed under grading
shifts (resp. direct sums). Its Karoubi envelope is the smallest category containing BS in which every
idempotent morphism splits. As a subcategory of an abelian category, this is a fancy way to express that
the Karoubi envelope is the smallest category containing all direct summands.

Definition 5.19. The category of Soergel bimodules, denoted by S, is the Karoubi envelope of the additive
and graded envelopes of BS. That is to say that Soergel bimodules are direct sums of grading shifts of
direct summands of Bott-Samelson modules.

Remark 5.20. Originally, Soergel bimodules have been defined for the geometric representation A,. However,
one may pass between A,- and Ag-modules by quotienting out resp. adjoining (z1 + - - - 4 z,,); see [EK10a,
rmk. 2.2 and §4.6] for a discussion about the difference between the construction for A, and A,.

Theorem then in fact shows that the braid group acts on DP(S). The indecomposable objects of
S are parametrised by the elements of W [Soe07), §6]. Recall the definition of the Hecke algebra from
Definition Soergel bimodules (called “spezielle Bimoduln” in [Soe07, def. 5.11]) have been proven to
categorify the Hecke algebra of H, (W) in [Soe07, thm. 1.10; [Soe92, thm. 1]:

Theorem 5.21. For A the ring of regular functors of a reflection faithful representation (e.g. A as above),
there is a ring isomorphism H, (W) — K (S) such that ¢ — [A(1)], Hs — (A,) and, for k = C, C, — (Ay).

Theorem then in fact shows that the braid group acts on DP(S). The category S admits a
well-established graphical description [Lib10; EK10a; [EW16] A comprehensive introduction to Soergel
bimodules and their diagrammatics is given in |[Lib17].

Remark 5.22. The Rouquier complexes have been subject to research on there own right. For instance,
[EK10b] uses the graphical description for Soergel bimodules from [EK10a] to show that Rouquier complexes
are functorial over braid cobordisms. In fancy language, this means that KP(S) is a 2-representation
of the braid 2-category, which is the 2-category with objects—natural numbers, 1-morphisms from n to
m~—>braids in Bg, and 2-morphisms—braid cobordisms.
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6. Superalgebras, supermodules and supercategories

If S names some algebraic structure, then a super-S is a Z/2Z-graded S. The Z/2Z-grading will be called
super grading if it is necessary to distinguish it from other gradings such as polynomial gradings. To tell
apart S and its super-analogue, we refer to S as the classical or ordinary structure. The super-degree is
called parity and will be denoted by |—|, whereas we reserve “deg” for polynomial gradings. Homogeneous
elements of parity 0 are called even and such of parity 1 are called odd. Explicitly:

Definition 6.1. A super vector space V is a Z/2Z-graded vector space V = Vj @ V;. The super-dimension
of V' is written dimy V' = dimy, Vp| dimg, V1, and we write k™" for the canonical m|n-dimensional k-super
vector space. A morphism of super vector spaces is a graded vector space homomorphism. The thus
defined category is denoted by k-sVect.

It admits a parity shift automorphism II which exchanges the odd and even parts of a super vector
space. The category k-sVect is a closed symmetric monoidal category with the usual tensor product of
graded vector spaces (V@ W), =D, ,,—, Vq ® W, and the braiding v ® w — (—1)lwl Tts internal Hom
is the super vector space whose degree p-part consists of degree p-morphisms, i.e. homg(V, W), consists
of grading-preserving morphisms whereas homy (V, W); consists of grading-reversing morphisms from V'
to W. Given finite dimensional super vector spaces V = k™" and W = kP19, we may chose homogeneous
bases, such that a homomorphism in homy(V, W) can be written as an (m|n) x (p|g)-block matrix

m n
p [ Too0 Toa
g \Tio Tia
where the diagonal blocks constitute the even part and the off-diagonal blocks constitute the odd part of
homy (V, W). The tensor product of two homomorphisms f € homy(V, W) and g € homy(V’, W) satisfies
(f2gvew) = (-1FMf@) o gw).
We now have to admit that we cheated when we said that k-sVect is a monoidal category: unlike in

ordinary monoidal category, we have to replace the interchange law by a super interchange law: The
composition of tensor products of morphisms on V@V obeys the rule (f®g)(f' ®g') = (-9 f f @94’

Remark 6.2. The name interchange law originates from the theory of 2-categories where it says that the
composition of 1-morphisms commutes with the composition of 2-morphisms. A monoidal category can be
regarded as a 2-category by defining the 1-morphisms to be generated by tensor products of two factors.
Then both notions of the interchange law coincide.

6.1. Superalgebras

Definition 6.3. A k-superalgebra A is a super vector space A with a graded k-algebra structure. It is called
supercommutative, or (possibly a source of confusion) just commutative, if the multiplication commutes
with the braiding, that is ab = (—1)!%!I’lba for all a,b € A. This means in particular that in a commutative
superalgebra every odd element squares to zero. The tensor product (of super vector spaces) of two
superalgebras A, B carries a superalgebra structure by (a ®b) - (¢’ @ ¥') = (=1)1%'IPlaa’ @ b

Ezample 6.4. The exterior algebra on n generators is the k-algebra
Alwr, .. wn] = E(wr, .. wa) / (Wiw; + wjwi)1<i j<n-

It is a commutative superalgebra concentrated in its odd part (apart from k in the even part). The
polynomial superalgebra on m|n indeterminates is the commutative superalgebra k[y1, . . ., Ym|wi1, - - . ,wp] =
Elyili<i<m @k Alwjli<j<n. There is an obvious action of S,, x S, on this algebra.

Ezxample 6.5. The Clifford algebra on n generators is the k-superalgebra
Co=k(er, .0y /(2 =1, ¢ = —cjeli # 5) (6.1)

with all generators odd. It is not (super-) commutative. There is an obvious action of S,, on €, by
permuting the generators.
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Definition 6.6. Given two k-superalgebras A, B, an A-B-super bimodule is a graded algebra bimodule;
that means in particular that the algebra action is an even map of super vector spaces. By the super
interchange law for vector space homomorphisms, a morphism f of bimodules has to satisfy f(a.m .b) =
(=1)l/llelg . £(m) . b. We denote the category of A-B-super bimodules by A-sMod-B. One-sided modules
are defined in the obvious way.

Over a commutative superalgebra, a left module obtains right module structure by a.m = (—1)'“”m|m.a.
Super bimodules admit the obvious tensor product over their superalgebras.

6.2. Supercategories

The category A-sMod of modules over a super k-algebra A should be the archetypical k-supercategory. It
is equipped with the auto-equivalence II which interchanges the even and odd parts. This motivates the
following definition:

Definition 6.7 [KKT16| §2]. A supercategory is a category C equipped with an endofunctor IT and a natural
isomorphism ¢: IT?2 = ide which turns II into an auto-equivalence, such that £I1 = II€. A superfunctor
consists of an ordinary functor F: C — D of the underlying categories and natural isomorphisms
FTle 2 IIpF such that the chain of natural isomorphisms F' = FH% > IpFlle 2 112 F = F equals the
identity of F. A supernatural transformation is a natural transformation n: F' = G such that

FII, 2222, 11,
4 4

IIpF H:> IIpG
DON

comimutes.

Since we are working with k-linear categories all the time, the following less opaque definition is sufficient
for our needs:

Definition 6.8 [BE17a). A k-linear supercategory (resp. superfunctor, supernatural transformation) is a
category (functor, natural transformation) enriched in k-super vector spaces. Explicitly, in a supercategory
C all Hom-spaces lie in k-sVect and composition is an even map of k-super vector spaces. A superfunctor
induces even maps of super vector spaces on Hom-spaces. A supernatural transformation is a natural
transformation n: F' = G whose naturality square supercommutes. This means that for each object = € C
the map 7, decomposes as a direct sum 7,9 ® 1,1 € Homp(Fx, Gr) of homogeneous maps, such that

Ne,p © F.f = (71)p\f|Gf O Nx,p-

A monoidal supercategory is defined like a monoidal structure on the underlying category whose
structure maps are the respective super-analogues, and whose interchange law is replaced by the above
super interchange law. see [BE17a] for a comprehensive treatment.

6.3. Super-Diagrams

For ordinary monoidal k-linear categories it is common depict the morphism f® g: V@ V' - W @ W'
graphically by

woow
:
vy
The super interchange law thus states that

w w’ w w’ w w’
@ _ é;] (1)f9
1% \& \% \"& i \% e
feg =(fel)o(leg) =(-D(1gg)o(fal).

We emphasize that such diagrams are to be understood as first vertical and then horizontal composition
of morphisms [cf. BE17a]. We shall keep this in mind when working with super-diagrams.
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7. Super-KLR algebras

We now recall the notion of KLR-superalgebras following [KKT16]. This is a generalisation of the ordinary
KLR-algebra from [KL09; Rou08|. We start with an index set I which is assumed to admit a decomposition
I = I, U 1,qq which turns it into a superset. Our goal is to extend the classical theory to the super-setting,
of course in such a way that the new constructions yield the classical case when restricted to an index set
with Iogq = 0.

7.1. NilHecke Superalgebra

Recall the definition of the NilHecke algebra NH,, of type A, [Dem?73| §2] and the definition of the Clifford
algebra €, from Example[6.5] The following definitions are motivated from the definition of the quiver
Hecke Clifford superalgebra in [KKT16| §3.3], which we shall consider later on.

Definition 7.1. The NilHecke Clifford superalgebra NHE,, of type A, is the k-superalgebra with even
generators y; and 0;, and odd generators ¢;, subject to the relations

YiYi = Y;i¥Yi Vi, J, —1—cep ifj=1
CiCj = —C;¢; Vi # j, iy — Ysi(j)0 = 1—cepq ifj=i+1
=1 Vi, 0 otherwise (7.1)
Yi€j = (—1)‘”’3’ Gy Vi, J, 0icj = ()0 Vi, j.
and the NilCoxeter-relations
=0
0,0, = 0,9 for |i —j| > 1 (7.2)

0;0,410; = 0;410;0541.
The NilCozeter Clifford algebra NCE, is the subalgebra generated by the 9;’s and the ¢;’s.

Definition 7.2. An algebra B over a (not necessarily commutative) ring A is defined to be an A-bimodule
equipped with a multiplication map B ® 4 B — B that is a bimodule homomorphism. The algebra B
is said to be generated by some of its elements if they generate B under the A-bimodule structure and
multiplication.

By this definition, we can consider NHC,, as a €&, algebra generated by the y;’s and the 0;’s. We
introduce the following analogues to the polynomial representation of the classical NilHecke algebra:

Definition 7.3. The polynomial Clifford superalgebra is the €,-algebra with generators and relations
PolC, = (Y1, s yn | iy = yivs,  vics = (=195 Vi, ), -

As a Clifford-analogue of the Demazure operator (see Definition , we define an even k-linear homomor-

phism 9; on Pol&,, by

Vi #i,0+ 1,

V7,

0i(yi) = —1—c;ciq1, 0i(y;) =
0i(yiy1) = 1 —ciciqn, 0;(cj) :
such that 9; is a s;-derivation. This means that
0:(fg) = 0i(f)g + si(f)0i(g) Vi # i+ 1,

where the symmetric group S,, acts on Pol€, by permuting the ¥;’s and ¢;’s independently.

0
0

Lemma 7.4. Pol€, is a free €,-left module and a free €,-right module. For both module structures, a
basis is given by {y{* -+ -y~ | a; € N}. In particular, Pol&, has the same graded rank as left and as right
¢,,-module.

Proof. Take any monomial in y;’s and ¢;’s from Pol€,. By the defining relation y;¢; = (—1)% ¢;y; of
Pol¢,,, we may slide all ¢;’s to the left (right), possible at the cost of introducing a sign when sliding them
past y;’s with the same index. Furthermore, since the y;’s commute, we may sort powers of y;’s by their
index. As a left (right) €,-module, Pol€,, thus is isomorphic to €, ®j Pol,, (&, ®; Pol,). O
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Lemma 7.5. The Clifford Demazure operator 9; is indeed a well-defined operator. Furthermore, it is a
right €,-module homomorphism.

Proof. Well-definedness is shown by induction. Assume for element f € Pol€,, that d;(f) is independent
of a presentation of minimal length of f in the generators y; and c;. The assertion than follows from
showing 9; is compatible with the commutator relations involving y; and ¢;. Let w.l.0.g. ¢ = 1. For the
commutativity of the y’s,

01 (y1y2f) = y1y201(f) + 01 (v1y2) f, 01(y2y1 f) = yeyr01(f) + 01(y2n) f;
—— N——
ig_l_clc2)y2+y2(1_5152) iél—flcz)yl-i‘yl(—l—ilcz)

hence 01(y1y2f) = 01(y2y1 f). For the relations involving ¢’s and y’s, one calculates for instance

01(c1y1f) = 01(cay) f + c2201(f) 01(c2y1f) = 01(cay1) f + c2y201(f)
—— ——
:C2(717C1C2) :C1(717C1C2)
=C1—C2 =—C1—C2
:—(—1—C1C2)C1 :(—1—C1C2)C2
——
=01(yicrf) = —01(yrcr) f — y2c201(f); d1(y1caf) = 01(y1c2) f — y2c201(f);

hence (c1y1f) = —01(y1c1f) and (coy1f) = —01(y1caf). The calculations for 91 (y2cl) = 01(coy;) and
01(coy2) = —01(y2c2) are similar. 9; is a right €,-module homomorphism since d;(fc;) = 0;(f)c; +
5i(f)0:(c;) =0;(f)c; for all f € Pol€,, and 1 < j < n. O

Lemma 7.6. The kernel ker 9, is a unitary €,-subalgebra of Pol€, in the sense of Definition [7.2

Proof. A priori kerd; is just a €,-submodule of Pol€,. We have €, C ker?d; by definition of 9;. Let
f,g € kerd,. Since 9; is a s;-derivation by definition, we have 9;(fg) = 0(f)g + s:(f)0:(g) = 0. Hence
ker 0, is multiplicatively closed. O

Lemma 7.7. (i) Pol€, is a representation of the NilHecke Clifford superalgebra.
(ii) There is a vector space isomorphism kerd; = imd;. This endows im d; with a €,-algebra structure.
Since im 0; C ker 0;, this is an equality.

Proof. (i) We have to check that the Clifford Demazure operators satisfy the defining relations from
Definition It is immediate from the definition of 9; that the relations (7.1]) are satisfied, so we
show that the 9,’s satisfy (7.2):

92(f) = 0: Assume that the statement has been proven for f € Pol€,,. it follows from

03(fg) = 0:(2:(f)g + s:(f)2:(9))
= 5i(0:(f)) 0i(g) + i(si f) 0i(g)

that it suffices to show that s;0; = —0;s;. Assume that s;0;(f) = —0;(s;f). We need to show
that s;0;(y;f) = —0i(si(y; f)), which is obvious for j # . For j =1i,i+ 1 one calculates

5i0i(yif) = si[(—=1 = cicip1) f + yip10if]
= (=14 ¢i0ip1) Sif — Yir1 0isif
= —0i(Yir15:f),
with the induction hypothesis applied in *. The calculation for j = ¢ + 1 is similar.
0,0,(f) =0,;0;(f) for |i —j| > 1: Clear from the definition of ;.

0;0,410;(f) = 0;410;0;41(f): Assume that the statement has been proven for f € Pol€,,. It is clear
that the statement then also holds true for ¢; f Vj and for y; f Vj # 4,7 + 1,4+ 2. For these
cases, let w.l.0.g. ¢ = 1. We compute:

010201 (Y1 f) = 0102(—1 — c1c2) f + y2 92 f)
— 0y ((—1 — c1¢3)00f + (=1 — cac5)01 f + 3 0201 f)
= (71 — C2C3)0102f + Y3 DlaZOlf
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=02((—1 = c1e2)0af + Y2 0102 f)
= 0201 (y1 02f)
= 020102(y1 f);
010201 (y2f) = 0102 ((—1 — c1¢2) f + 41 01 f)
=01 ((1 = c1e3)02f + 11 0201 f)
= (=1 —c2c3)0102f 4 (=1 — ¢1¢2)0201 f + 2 010201 f
= 02((—1 —¢1¢3)01 + Y3 0102f)
= 0201 ((—1 —cac3)f +y302f)
= 020102(y2f);
010201(y3f) = 0102(y3 01.f)
=01((1 — cac3)01f + 920201 )
= (1 = c102)0201 f + y1 010201 f
Z05((1 = crez) f + (1 — crc2)daf + y1 0102 )
= 0201 ((1 — c2¢3) f + y202f)
= 020102(y3 f);

with the induction hypothesis applied in *.

(ii) Since 92 = 0 we may view (Pol€,,?;) as a chain complex of €,-right modules by its polynomial
grading in the y;’s. We show that Pol€, then is contractible by the chain homotopy

(=1 —cep)yf  if2]Fk,

1
hy: (Pol€,), — (Pol€ 2
k ( n)k ( n)k-‘rl f {é(—f—l - Cici+1)yi+1f if 2 J( k.

Assume 2 | deg f.

hi—1(0:f) + 0ihi(f)
=11 = i)y (0 f) + 50: (1 = cicip )y f)
(1= cicin)yir1 (0af) + 5(=1+ ciciy1) [(—1 = cicira) f + yir10:(f)]
= %[\(1 —¢Cigr1) + (=14 c1ci+1)jyi+10¢(f) +2(=1+creip1) (=1 = ciei41) f-
0 1

The computation is similar if 2 { deg f. This shows that h, indeed is a contracting chain homotopy
id ~ 0. In particular, the chain complex (Pol€,), is acyclic, i. e. ker(0i|(pol¢n)k)/ im(ai|(p01¢n)k+1> =
0. This shows the assertion.

We shall show in Lemma [8:22] independently from the following results that the representation Pol¢,, of
NHEZ,, is faithful.
7.2. Quiver Hecke superalgebra
We now want to recall from [KKT16| §3] the definition of a super-algebraic analogue of the KLR-algebra.
Definition 7.8. A generalised Cartan matriz on I is a matrix C = (—d;;) € Z'*! such that

(i) —dj;=2forallie I,

(ii) —d,;; < 0 for distinct 4,5 € I,
(ili) —d;; = 0 if and only if —d;; = 0, and
(iv) 2 ‘ di,j if i € Ioqq-

We define a Z-valued bilinear form on N[I] by (i,j) = —d;;. Equivalently, we may describe the same
datum by a graph I' with vertex set I and d;; directed edges from i to j for i # j, called the Cozeter
graph of the Cartan matrix. For distinct indices 4, j we thus write i — j if d;; # 0 and i # j if —d;; = 0.

For the remainder of this section let C' € Z'*! be a symmetrisable generalised Cartan matrix. For each
edge ¢ — j of the Coxeter graph I' fix an orientation. We write ¢ — j if the edge is oriented from ¢ to j.
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Definition 7.9 (H,,(C), algebraically) [KKT16} §3]. The quiver Hecke superalgebra H,(C) is the k-linear
supercategory with objects v € I, their identities 1,, as well as generating morphisms xj,: v — v for

1<k<nand7g,: v — sg(v) for 1 < kn. Morphisms are equipped with the parities |z ,| == |vg| and
Tev| = [Vk||Vk21]. Composition is subject to the following relations:
Tk | = [kl [Ves1] p j g
—1)lwellvl gy o if v v
Ty Ty = {( ) fov Tty . o (7.3)
Tk Tl if vy =
ThysivTly = (—1)'”"‘”””777,,7;@7,, fori—j>1 (7.4)
0 if v =Vj
Tk,spvThk,y = 11/ if Vg 7L V41 (75)
dl—/ WV (jl/~ WV .
R S thl,kafi; k if v, — vt
0 ifl g {k,k+1} or v # Vi1
ThwTly — (—1)‘%"”’“*1"”[‘ “Ts (), Thy = § 1o ifl=k (7.6)
-1, ifl=k+1

(7.7)

TkovThk+1,vTk,wy — Te+10vThkvThk+1,0 =

Lo v i Vg = vy and vy — Vg
0 otherwise

If I,qq = 0, this definition just gives the ordinary quiver Hecke algebra from [KL09; [Rou08].

In the non-super case, there is a handy graphical calculus for the NilHecke algebra, developed in [KLO09;
KL11]. We suggest the following altered diagrammatic definition for the super-setting:

Definition 7.10. By a string diagram with n strands we understand n continuous paths ¢y, : [0,1] — R x[0, 1]
in a strip, 1 < k < n, subject to the following conditions:

(i) Each path starts in N x {0} and ends in N x {1}.

(ii) The projection of any path to the second coordinate is strictly monotonically increasing.

(iii) By their endpoints, the strands constitute a self-bijection of the natural numbers {1,...,n}.

(iv) Strands may intersect; however, there must not be any intersections of more than two strands in
one point.

A string diagram is defined up to isotopy. Strings in a diagram may be endowed with certain point-like
decorations; these are required not to lie on the crossings, and their positions are also specified only up to
isotopy. In the super-setting, we endow critical points (such as crossings) and decorations with parities.
The remarks in Section [6.3] apply. We count strands at the bottom from the left: the k-th strand is the
one that starts at k x {0}.

Definition 7.11 (H,,(C), diagrammatically). With the same set-up as in Definition let H,,(C) be the
k-linear supercategory with

e objects: sequences v € I"

e morphisms: if v/ is not permutation of v, Hom(v,v’) is the zero space. Otherwise, it consists of
formal linear combinations of string diagrams on n strands which connect identical entries of v
and v/. We say that the k-th strand is labelled by v and usually write its label below the strand.
Strings may be decorated by an arbitrary non-negative number of dots, distant from the crossings.

e parities: The dots z, = ¢, and crossings 7, = , X s have parities |¢Vk| = || and
b X vesa| = Vk|[ve41]. The explanations from Section 6.3 about vertical positioning apply here.

e composition: given by vertically stacking diagrams, subject to the following local relations:

ifi+j
>< _ (_1)|i|j|>< _

if i = j (7.8)

% %
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0 ifi#j
i J i J i i
0 ifi=j
if i # J;
= i j (7.10)
%+% b +@iﬁ¢—j
i J , . . ,
i 7 % J
. tij ifi:kandi—j
— (fl)IZHJ\ — (7.11)
i i i=k
Dok Pk 0 otherwise

It is clear that both definitions of H,(C) define the same category.

Remark 7.12. The diagrammatic definition of H, (C) makes it clear that there is an embedding of the
quiver Hecke superalgebra into Brundan’s diagrammatic super Kac-Moody 2-category [BE17b| by adding
an arrow tip pointing upwards to every string.

7.3. Quiver Hecke Clifford superalgebra

It turns out to be advantageous for calculations to adjoin odd generators for all odd indices i € I,qq rather
than to endow the x;’s with a super grading themselves. This is captured by the following definition from
[KKT16], where we propose a diagrammatic calculus based on the one for H, (C).

Definition 7.13 (HZ,(C), diagrammatically). With the same data as above, the quiver Hecke Clifford
superalgebra HE,, (C) is the supercategory with the same objects v € I"™ as H,,(C) and H,,(C), the even
generators y;i,, = +Vk, Tk = 4, X _— the odd generator ¢, = ¢Vk, subject to the relations ¢z, = 0
if |1/k|.: 0, = |, the con.amutati.vity r.elationsig = -3 T ==T k0 LT, = 7, and the
following relations for the interaction with the crossing:

0 if i #j
:><i-—;><:= —% % ifi=j (7.12)
t VN J i i i

0 ifi#j
:><:—:><i= - % % ifi=j (7.13)

K- PGP G &
7 7 [ J 7 7 [ J

0 ifi=j

if i £ j;
= R (7.15)

(—1)dis/2¢;; + (=G24 i

i 7 ' '
? J 1 J
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. ifi=k
4 and i — j
- - (7.16)
i i i=k
i § ko ik

otherwise.
For every odd index HE,,(C') contains a copy of NHE,,.
Lemma 7.14. There is an embedding
v H,(C) = HE,(O),
T = (ce) "y

vil|lv
Tk:,z/ — A/uk,uk_'_l(ck,u - ck:Jrl,z/)l kH k+1‘ak

with factors v; ; such that ~; ; = 1 if at least one index is even, v;;

— Lifii o= 1
s Yii = 5 if i is odd and 7v; ;v = —3
otherwise.

Proof. We verify the well-definedness of this map and refer to [KKT16, thm. 3.3] for injectivity. We have
to check:

z‘Xj + i}<j: If both indices ¢ and j are even, domain and codomain locally reduce to the ordinary
KLR-algebra; hence nothing remains to prove. Let us thus assume that both ¢ and j are odd
indices.

1
Yij L(Tz vlk+1,v + 7 w41, 1/)

“5 (X X
(X ><i> ()
=<?><;;><;>+<?<;i><)

by (7.14). If i # j, then (7.12) asserts that we can slide all diamonds across the crossing. By the

commutativity relations for +’s and ¢’s we obtain for i # j:
(333
i i j i i j
=0.
If instead ¢ = j, we obtain from (7.12):

(o 4 1] Do)

% i i A i % i % % i %

=2

i i
The computation for i){j + ;&< ; Is similar.

3{ : If ¢ = j this is immediate. For i # j nothing remains to prove if one index is even, so assume
I illg) =1

1 1 [ (X)) «(X)
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CAX

since we may drag white diamons across crossings by 1- If i # j, this equals —2 | \ since we
may resolve the double crossings by (7.15)). If i — j, we calculate

¥ — X For the braid relation, we resort to an “algebraic” rather than diagrammatic calculation. We
assume w. l. 0. g. that k = 1. The braid relation then follows from the computation
T1T2T1,v
= (¢ — c2)|5251(v)1 [s2s1(¥)2| 1 (e — c3)\31(V)2H51(V)3|02 (cp — c2)|”1H”2|01
= (c1 — c2)|”1””2|(c1 _ )|V1HV3|(C2 _ C3)‘V2HU3|J10201’V
= (cg— c3)|V2HV3|(C1 _ c3)|V1HV3|(c1 _ c2)\1’1\|l’2|020102#
= (ca c3)|51$2(l’)2\|5152(l’)3\ 2 (c1 — c2)\52(V)1HS2(V)2|01 (cy — c3)|l’2HV3|02,V
= T2T1T2,v-
The equation * is clear if at least one index is even and is verified by multiplying out the c’s if
every index is odd.

For injectivity see [KKT16} thm. 3.3]. O

7.4. Faithful polynomial representation

In the vein of the representation Pol€,, of the NilHecke Clifford algebra NHE,, defined in Lemma we
define polynomial representation of the quiver Hecke Clifford algebra NHC, (C).

Definition 7.15. Let Pol€,, (C) be the k-linear supercategory with

e objects: the free k-super vector spaces Pol€, = kly1,.,...,Unvs 10, .., o], indexed by sequences
v € I". The y;,,’s and ¢, have the same parities and satisfy the same relations as in Definition
e morphisms: super vector space homomorphisms.

Pol€,,(C) has a full subcategory Pol€(v) with objects {Pol€,, | v’ € S,, . v}. We may regard Pol€, (C) as
a free k-super vector space by taking the direct sum of its objects.

The quiver Hecke Clifford superalgebra HE,,(C) then can also be understood in terms of linear algebra
by realising it as the following algebra of endomorphisms:

Proposition 7.16. HE(v) acts faithfully on Pol€(v), where yi,, and ¢, act by multiplication and oy, acts
by

Sk if vk # Vpy1 or Vg < Vi,

0y if v, = Vi,

1
(t’/k7l/k+1 (ck,uyk,u)dyk’y’“‘*'l‘F (7 7)

d if Vg — Vit 1-
o Skt 1,0 Yk 1,0) ”’“*1‘”’“)81@
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Proof. In the non-super case, a similar faithful representation of the quiver Hecke algebra was proven in
IKLO09, §2.3]. Our Clifford-analogue only necessitates minor alterations.

—Spanning set: As a vector space, HE,,(v) is isomorphic to a direct sum @H u’esn.u(/t’ H¢,,) of subspaces,
where , HE, is given by diagrams connecting the bottom sequence p with the top sequence v. Let
wSy < Sy, be the subgroup of permutations that map p to '

wSu < Sp = {wesS, | Haw (k) = :U‘;c}

Given a diagram of ;s HE,, assume there are two strands intersecting more than once. By the relation
it can be replaced by a linear combination of diagrams with fewer crossings, possibly decorated with
more diamonds. Diamonds can be slid across crossings by , possibly at the cost of introducing
summands with less crossings, and past other diamonds, possibly introducing signs.

The vector space ,» HE, thus is spanned by diagrams with any two strands intersecting at most once,
all black diamonds below all crossings and all white diamonds below the black ones, with at most one
white diamond per strand. The white ones may be arranged descending to the right. A typical diagram
in this spanning set looks like the following:

H1 K2 H3 M4 5

This spanning set can be written as

wBE, = {Tmuyﬁcﬁ}

— aq Qi 1 Bn (718)

- {Tﬂ',p/yl,p, o Ynu Cl,,u, T Cn,p,}
where 7 is a reduced expression for an element of ,,.S,,, u and p’ are permutations of v, &« € N, 8 € {0,1}"
are multiindices and cﬁ is an ordered monomial. Choose a complete order < on [ such that i < j whenever
there is an edge ¢ — j. This order induces a lexicographic order on I"™. We show by induction on pu w.r.t.
this order on I" that ,» BE, is a k-basis on which HE(v) acts faithfully.

—Base of induction: Let n; be the number of entries ¢ in v. Let

n = (il,...,il,ig,...,...)
S——
ni no
such that 71 < i3 < ---. The tuple p then is the lowest element in the orbit S, . v w.r.t. the order <. We
may write a permutation w € /S, as w = wow; where wy € Sy, X Sy, x --- only permutes the 41, 75 etc.

independently, and ws is of minimal length, i.e. does not interchange identical labels and interchanges
distinct labels at most once. The spanning set thus can be written as

v BE, = {Dwg,uauu,uygcg}'

We want to check that these elements act linearly independently on Pol&(v).

e The terms y,‘j‘cﬁ take y/‘flcﬁ/ to :I:yl‘j‘+°‘/c5+ﬂ/.
e Since w; permutes strands with distinct labels ordered increasingly, 9.,,,, acts by a permutation.

e Since wy € Sy, X --- xSy, is a permutation which only permutes identically labelled strands, 0., ,.
is contained in the product NC&,, x NC&,, x --- x NC&, . We shall prove in Lemma [8:22 that the
action of NC&,, on polynomials is faithful.

—Induction step: It suffices to show that if ,» B&, is linearly independent, then ,, () B, is linearly
independent for p, . 41 distinet and connected, for otherwise , (/) B, maps bijectively to ,» B&, by
1, The multiplication map (o) : 5, () B&, < v B&,, is seen to be injective by the same argumentation
as in [KLO09|:
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Let ,» BE,, be endowed with a partial order < such that if we assign to an element ,, ,y5 cﬁ of the
spanning set the tuple (¢(w), e, B), the order < coincides with the lexicographic ordering on these tuples.
Define a map

St s(n) B&w = By,
0D if the k-th and (k + 1)-st

D — strand do not intersect (7.19)

d .
T D’ (Ck,uyk,u) “kotk+1 otherwise

where D’ is obtained from D by removing the crossing. The map ¢ is injective, and multiplication by
O, satisfies

Ok - D € {Hs(D)} + > Zd C v BE,.
d=<s(D)

By the induction hypothesis on ,» B&,,, we obtain that the multiplication map (o, -) must be injective. [

Definition 7.17. We equip Pol€(v) with a polynomial grading by setting deg(yx, ) and deg(cx,,) = 0.
HE(v) admits a similar polynomial grading by additionally setting deg(oy ) = —1. Then Pol€(v) is a
faithful graded HE(v)-module.

Corollary 7.18. With this grading, Pol€(v) is a faithful graded HE(v)-module.
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8. Clifford symmetric Polynomials

Recall from Definition the definition of the Clifford Demazure operator 9; and how it acts on the
polynomial ring Pol€,,, see Definition [7.3] In the ordinary case, the symmetric polynomials, i.e. the ones
which are invariant under the action of S,,, are precisely the common kernel of the Demazure operators.

Let the index set I = {1,...,n} = Ioyen U Iogqa be endowed with parities. From now on, we consider
the algebra €, /(¢c; = 0 if |i| = 0). We shall denote this algebra also by &, for the remainder of the thesis.
Pol€,, and 9; are defined as in Definition [7.3| with the additional relation that ¢; = 0 if |i| = 0.

Definition 8.1. The €,-algebra of 0-symmetric polynomial is the intersection ﬂz;ll kerdy = ﬂZ;ll im9;.

Remark 8.2. Since each of the kernels kerd; is a €,-algebra by Lemma[7.6] so is their intersection. The
equality kerd; = im d; has been shown in Lemma

In this section, we want to investigate some of their properties. To this end, we shall introduce the
notion of elementary d-symmetric polynomials and eventually show that ﬂ;:ll kerd; is a polynomial ring
over €, generated by the d-symmetric polynomials.

Remark 8.3. Let 0 = (%(ck - ck+1))\kuk+1\ak and let f)\(;ln be the k-superalgebra with generators

Z1,...,&, of parities |zx| = |k| and commutativity relations zix; = (—1)1’5’“"“””:61%. There is an
inclusion Pol,, < Pol€&,,, z} (ck)““‘yk. If all indices are even, Pol,, = Pol€,, = Pol,,. If k and k£ + 1 are
odd indices, we have under this inclusion

(k) = ek — epgr)ehr1 (1 — cpeppr) = 1,

e(@rr1 = 2(er — ngr) k(1 — chcryr) =1

and if at least one of k, k£ 4+ 1 is an even index, then
On(ar) = (err )M (=1 = epesn) = —(cp),
5k($k+1) = (Ck)|k+1|(1 — CkChy1) = +(Ck)|k+1‘~

Oy, indeed is a well-defined operator by Lemma We prefer to work with 95 though. Note that

(%(ck — ck+1))‘ka+1| is a unipotent element in €,, and therefore in particular is a unit. This implies
that ker 9y = ker 0; as €,,-bimodules (and €,-algebras). Hence all our considerations about 9-symmetric
polynomials also hold true for 9, which justifies considering them instead of J-symmetric polynomials.

8.1. Interlude: counting graded ranks

Before we come to the definition of elementary 0-symmetric polynomials, we recall a useful tool for working
with polynomial rings. Note that we are dealing with ordinary (commutative) polynomial rings in this
section.

Let Pol,,, the NilCoxeter algebra NC,, and the NilHecke algebra NH,, be endowed with a grading such
that y; is of degree 1 and 9; is of degree —1. We shall call these gradings the polynomial grading, denoted
by “deg”.

Definition 8.4. Given a (graded) ring R and a free Z-graded R-module M = @, ., M, its graded rank or
Poincaré series is the formal power series tky r(M) =3, 7 tkr(My)q" € Z[[q]]. We write rky 7 for the
graded rank of free abelian groups. With respect to a field £, we denote the graded dimension by dim, .

For expressing graded ranks, the notion of g-integers (n)y == 1+ -+ ¢"~! is notably useful. One
usually assumes 1 — ¢ to be a unit such that (n), = 11:q; . For ¢ — 1 the g-analogues then converge to the
respective ordinary notions. For an introduction to g-numbers and a conversion between the notations
(n)q and [n], see [LQ1L5].

In analogy with rk, we define a g-analogue ord, of the order of a Coxeter group where powers of ¢

encode the length ¢ of words w.r.t. a chosen presentation.

Definition 8.5. Let (W, .S) be a Coxeter system with a fixed generating set S. Recall that S determines a
length function £ on W. We define ord, (W) == > i gt

140ne may be tempted to call these supersymmetric polynomials; this term has already been coined for another notion
though [Ste85].
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Lemma 8.6 [cf. WinO1} §1]. The Coxeter group series A,,, BC,, and D,, have the following g-orders:

(i) ordg(Sy) = (n)g! with the g-factorial (n)q! = (n)g(n —1)g--- (1),
(ii) ordy(BC,) = (2n),!! with the g-double factorial (2n),!!l == (2n)y(n —2)q - (2)4-
(iii) ordy(Dy) = (2n — 2)4!1(n),.

We included ord,(BC,,) and ord,(D,,) for the sake of completeness because we could not find a concise
explanation for these two cases in the literature. We shall not need them in the following though.

Proof. (i) The length ¢(w) of a permutation w € S,, equals the number of inversions [BB05, prop.
1.5.2], i.e. the cardinality of invw = {(4,7) | 1 < i < j < n,w(i) > w(j)}. Assume that
Y wes, P(w) = (n),!. Consider the permutations

mo: (1,...,n+ 1) —=(1,...,n,n+1),
m:(1,...,n+1)—=(1,...,n+1,n),

Tt (1,...,71—1—1)»—.>(n—|—1,1,...,n)

contained in 5,41, where my = e is the trivial permutation. Moving the rightmost entry in 7o to the
left will subsequently create new inversions such that 7 has the k inversions

invvr ={(n—k+1n—k+2),...,(n—k+1,n+1)}.

and >, ") = (14+q+---¢") = (n+1),. Since any w € S, only interchanges the first n slots,
the inversions of w and 7 do not interfere and we have that inv(myw) = w=!(inv 7)) U inv(w).
Therefore, 3°, ¢“(™®) = (n +1),¢"™). By the induction hypothesis, letting w traverse all of S,
proves the claim.

(ii) The Coxeter group BC,,, called the hyperoctahedral group or signed permutation group, is the group
of permutations 7 of the set {+1,...,+n} such that m(—k) = —m(k). It has as generators the simple
transpositions si: £ k= £k 4+ 1 for 1 < k <n — 1 and the additional generator so: 1 = —1. A
signed permutation w has set of inversions

inv(w) = {(i,7) | 1 <i<j<mw(@)>w()}U{(—ij) |1<i<j<nw(—i)>w(j)}

Then for a permutation w ¢(w) = |inv(w)|, see [BB05, prop. 8.1.1]. We count the number of
inversions as in part Assume that ord, BC,, = (n)4!! and consider the permutations

o (1,...,n+1)r—>(1, Ln,n+ 1),
(1,...,n+1)|—>(n—|—1,1,..., n),
Tt (1,...,n+1)»—>( n— coym),
T2n+1 " (1aan+1)}_>(17 ( )7777’71)'

They have inversions

ﬁn—k+Ln—k+m,”4n—k+Ln+U} if0<k<n,

{(lal)a'--a(lf171)7(*]%[)3"'7(14’131)

I =1 many t=1 many ifl<li<n+lforl:=Fk—n.

(4JL“q@n+U}

n — | + 2 many

invmg =

Hence, |inv | =k and 3, ¢“"*) = (2n + 2),. The rest of the argument is as in part

(iii) The Coxeter group D,, is the subgroup of BC,, generated by si, ..., s, and the additional generator
S0 = s08150: (1,2,3,...) = (—2,—1,3,...). It is the subgroup of signed permutations that flip an
even number of signs, called demihypercube group. A permutation w € D,, has inversions

inv(w) = {(6,5) | 1<i<j<n, w@)>wl)}U{(=ij)|1<i<j<nw(=i)>w()};
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(note the difference with BC,, w.r.t. the inequality 2) Then ¢(w) = |inv(w)|, see [BBO5, prop.
8.2.1]. Assume by induction that ord, D,, = (2n — 2),!!(n),. Consider the permutations

mo: (1, n+ 1) = (w(l),...,w(n),n+ 1),
Too1: (L,...,n+1) = (Ln+1,...,w(n)),

Tyt (1,...,n—|—1)»—>(n—|—1,1,2,...7 (n)),
. (1,...,n—|—1)»—>( n—1,-1,2,...,w(n)),
Ton: (1,...,n+1) s (1,.. —n—1).

Their set of inversions

{(n—k+1n-k+2),...,(n—k+1n+1)} f0<k<n,

R N A N R ()

1HV7Tk =

! — 1 many ! — 1 many
(_z,z+1),...,(z,n+1)}

n — 1+ 1 many

ifl<i<n+1lforl=k—n

has cardinality |inv 7rk)| = k and therefore
%
qu(ﬂ-k ) :1+...+q”+q”+...+q2”: (1+q”)(n+1)q,

By the same argumentation as in part and the induction hypothesis we see that
ordg Dpy1 = (2n — 2) 1 (1 4+ ¢")(n)g(n+ 1) = (2n)!1(n + 1),. O
—_———
=(2n)q
Lemma 8.7. There are the following graded ranks of abelian groups we are particularly interested in:

1 1

rk, z Pol, = — vk, g APol, = ——— 8.1
g ORI ®.1)

rkyz NG, = (n),! tk, 2 NH,, — e (8.2)
q,Z n g q,Z n (1 — q) .

Where NC,, denotes the NilCozeter-algebra NC,, = Z[0, ..., 0] and NH,, denotes the NilHecke-algebra
NH,, = Pol,, ®z NC,,.

Proof. Pol,,: Every indeterminate y; independently generates a free abelian group (1,y;,3?2, .. .)z of graded
rank 1+¢+¢>+ - = liq' Since Pol,, & Z[y]®" as abelian groups, Pol,, has graded rank
tkgzPol, = (1 —¢)™™.

APol,,: Recall that the symmetric polynomials APol,, = Polg" are isomorphic to the polynomial ring
APol,, = Z[sgn), e ,65:1)] in the elementary symmetric polynomials 55,7 ). The polynomial 657? ) is of
degree m and thus generates a subgroup of graded rank = q . APol,, therefore has graded rank
rkqz APol, = [ 1 == qm. Since (1 —¢™) = (m)q(1 —q) (telescoplng sum), one obtains inductively

that rkg z APol, W

NC,,: By the relations of the NilCoxeter-algebra NC,,, there is a bijection between the symmetric group
Sy, and a Z-basis of NC,, which maps Coxeter length to polynomial degree. By the Lemma [8:6] this
shows rk, z NC,, = (n),!.

NH,: By using NH,, = Pol,, ®; NC,,, we obtain that rk, z(NH,,) = 2. m

Remark 8.8. Similar statements hold for invariant polynomials for the series BC,, and D,, of Coxeter
groups.
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(i) The hyperoctahedral group BC,, acts on the polynomial ring Pol,, by permuting the indeterminates
and flipping their signs. It thus has invariants PO]SC" =Z[y?,...,y2]°", which yields
1 1
rky 7 PO]E" = = .
" 1=¢)A =g (1=¢") (2n)!1—-g"
(ii) The demihypercube group D,, acts on Pol,, by permuting the indeterminates and flipping two signs
at once. The invariants thus are

PolE" = Z[el(yf, . ,yi), R (Vo ,yi),en(yl, e ,yn)]
with graded rank

1 1
rk, z(Pol,) = (1—¢) - (1— g 2)(1—qm) = (2n —2),!1(n),(1 — N

We notice in particular that for W € {S,,,BC,,,D,,} we have that rk, z Pol,, /rk,z Pol,VLV =ord, W. In
fact, one has even rky 7 (Pol, / Pol}) = ord, W for general finite reflection groups, see [Che55|. Even
more is true: namely, Pol,, is a free APol,,-module of graded rank (g),! (resp. ord, W for other finite
reflection groups W) [Dem?73| thm. 6.2]. We shall show a respective statement in the Clifford set-up for
W =S,, in Theorem [8.23

Remark 8.9. It is clear that the same statements hold true when replacing Z by a field k£ by applying
k ®z — to each of the abelian groups considered so far.

Corollary 8.10. We have seen in Lemma that Pol€,, = €,, ®; Pol,, as left €,,-module and Pol¢,, =
Pol,, ® ¢, as right €,,-module. We endow Pol€,, with a (polynomial) grading such that the odd generators
¢; are of degree zero. Lemma [8.7] then shows that

1 1 n),!
I‘kqﬁn Pol¢,, = W’ I‘kq,gn APOI@n = m’ rkq,Q‘n NHE,, = (1(_);11)n
.

both as left and right €,,-modules.

8.2. Elementary 9-symmetric polynomials

We want to find an analogue of the elementary symmetric polynomials for APol&,. These are expected to
coincide with the ordinary elementary symmetric polynomials if all indices are even.

Lemma 8.11. The operator 9; on Clifford-polynomials has as kernel the €,-subalgebra
kerd; = (Yi,i+1¥i + Vit 1,iYi+1, Yili+1, Yj | J F 6,0+ 1) (8.3)

of Pol€,,, where we define

+¢; if i, + 1 both are of odd parity,
Vijitl = (8.4)

1 otherwise.

In the following, we stick to the convention that 0° := 1 so that we can simply write v; ;41 = (¢;)HI7#1
Note that always ’yiiil =1

Proof. Recall that in the purely even case the kernel of the Demazure operator Definition [5.7] is the
subalgebra ker 0; = (yi + yit1, Yi¥i+1,Y; | j # 4,1+ 1) C Pol,,. In the super-setting, we have already seen
that kerd; = im9; C Pol€,, is a €,-subalgebra in Lemma [7.7] Assume w.l.o0.g. that i = 1 and n = 2, so
the only indeterminates are y1, yo and c1,co. Let A :== (y1y2, 1241 + 72,1y2) as Ca-algebra. We have to
show that A = ker 0, as subalgebras of Pol€,.

(C) In general, y1y2 € kerd; since

01(y192) = (=1 — cic2)y2 + y2(1 — c1c2) = 0.

Furthermore, we have 01 (y1)y1 — 01(y2)y2 € kerd; since

01 (01(y1)y1 — 01(y2)y2) = —01(y2)01(y1) + 01 (y1)01(y2) = 0.
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Thus ker 0; also contains the polynomia]E

(=51 —c2)) (01(y1)y1 — 01(y2)y2)
— (= 3er — ) "PH((=1 = crea)yn — (1 — crea)n)
_Jay —caye if both 1, 2 are odd,
B Y1+ Y2 otherwise

1112l

= Y1,2¥1 + V2,1Y2-

(2) The algebra Pol€, contains an element oy := y; — y2 which satisfies 91 () = —2. Recall that Pol€s
is a free left and right €;-module of graded rank rkg ¢, Pol€ = ﬁ. Its subalgebra A is also €a-free
1 1

of graded rank rkq ¢, A = T T-g The €5-submodule Aa; C Pol€ does not intersect ker 91 since

for any A € A non-zero, we have 91 (Aa1) = —2s1(A) # 0. It has graded rank rky ¢, Aoy = grky e, A.
Since

1 1
rkg.e A+ kg ¢, Aoy = +t9 __ = 1k, ¢, PolC,

1+q¢(1-¢*) (1-gq)?

we obtain that Pol€y = A @ Ao, as €a-module and in particular that the inclusion A C ker?; in
fact is an equality. O

Let vp,n+1 :=1if n + 1 exceeds the number of indeterminates. Since

Yilit1 = Vit 1,i+2Vii+1 (Vi1 Vit 1i+2Yi4 1,42 Yili+1) (85)
= (—1)‘i‘|i+1|+|i+1”i+2l(yz'yz‘+1 %‘+1,z‘+2%‘+1,z‘+2)%‘+1,z‘+2%‘,¢+1
we may replace the second generator by v; i+1Y1 Vi+1,i+2¥i+1 Without changing the €, -span.

Definition 8.12. We denote the generators of kerd; by

(i—1,i+1) | ) (i—1,i+1) |
¢q = Yii+1Yi T Vit1,iYi+1s ¢y = Yi+1Y1 Vitl,i+2Yit1-

(2) . ((i=1it1)

If : = 1 we just write e, so that we can write ker 0, = <e(12), eé2)> C Pol€, as €y-algebra.

Our goal is to show that there are polynomials eglf ), 1 < m < n of polynomial degree m which generate

the intersection ﬂz;ll kerd,, of €,-algebras. These are supposed to serve as a Clifford-replacement for the
ordinary elementary symmetric polynomials.

Our first task is to find a recursive formula for polynomials lying in ﬂz;ll kerd,,. Proving that they are
indeed generators necessitates some more work. We shall prove this in Theorem [8.23

Before coming to the n-fold intersection ﬂZ;ll ker 0y, we shall for a moment think about the intersection
ker 9; Nker 052 C Pol€3 of just the first two kernels. We can multiply the first generator of ker 05 with the
unit y2,17y2,3 from the left without changing its span. Thus

(02

—_—
ker9; Nkerdg = <”yl72y1 + v2,1Y2 + 72,172,3 ¥3,2 Yo, (8.7)

Y2,172,3 2(11’3)

(1,3)
V1,2 Y1 Y2,172,3 ¢4

Y1,2Y1 V2,1 Y2 T V1,2 Y1 V2,172,3 V3,2 Y3 + V2,1 Y2 V2,172,3 V3,2 Y3,

(0,2)

€ ¥2,172,3 V3,2 Y3
(0,2)
¢

—N—
Y1,2Y1 V2,3Y2 V3,4 y3>

as a €,-algebra. This depiction serves as a template for the following lemma:

157t seems more natural to put all Clifford-generators on the right since 91 is €,-right linear. We shall stick to putting them
on the left though in order to preserve compatibility with the notation employed in [KKT16]|.
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Table 8.1: Elementary d-symmetric polynomials ei,?) as defined in Lemma , spelled out explicitly for m < n < 4.

m\n 1 2 3 4
V1,2 Y1
Y1,2 Y1
V1,2 Y1 ’ + 72,1 Y2
1 il )
7,291 + 72,192 +z1ve +72,172,373,2 Y3

+72,172,373,2 ¥3

V1,2 Y1 V2,3 Y2
2 Y1,2,Y1 Y2,3Y2 V1,291 V3,293
+v2,1 Y2 V3,23

3 71,2 Y1 72,3 Y3 73,4 Y3

+ 72,172,3 73,273,474,3 Y4

V1,2 Y1 V2,3 Y2
+ 71,291 73,293
+ v2,1 Y2 V3,293
+ 71,2 Y1 73,273,474,3 Y4
+ ¥2,1 Y2 73,273,474,3 Y4
+ 72,172,373,2 Y3 ¥3,2773,4 V4,3 Y4

Y1,2 Y1 V2,3 Y2 V3,493
+ 71,2 Y1 V2,3 Y2 V4,3 Y4
+ 71,2 Y1 V3,293 V4,3 Y4
+ 72,1 Y2 V3,2 Y3 V4,3 Y4

71,2 Y1 Y2,3Y2 73,4 Y3 V4,5 Y4

Table 8.2: Ordinary elementary symmetric polynomials 65,? ) for m < n < 4. They are a specialisation of the ones
listed in Table at v; ;41 = 1 for all 4, obtained when all ¢ have even parity.

m\n 1 2 3 4
1 wn Y1+ y2 y1+y2+y3 y1+y2 +y3+va
Y1y2 +y1y3
2 Y1y2 Y1y2 + Y1y3 + Y2y3 + Yy1y4 + y2y3
+ Y2y4 + y3y4
Y1Y2Y3 + Y1Y2y4
3
yry2ys + Y1Y3Y4 + Y2Y3y4
4 Y1Y2Y3Ya

Lemma 8.13. The recursively defined polynomials

X

= MN,2Y1
() _ (n-1) o
e = + (72,172,3 13,2734 Yn—1,n—2Yn—1M) Yn,n—1 Yn,

egn)Q = egnfl) 4 el™

(n—1)

1 (73,273,4 e "Ynfl,n72’7nfln)'7n,nfl Yn,,

95,?) - Qm + 95::11) (’Ym+1,m")/m+1,m+2 et ’Yn—l,n—Q"Yn—ln)’Yn,n—l Yn,

e%n) = egln_l) Yn+1,n+2 Yn-

are contained in the common kernel ﬂz;ll ker 0, C Pol€,, of the Clifford Demazure operators. We shall
refer to these polynomials as elementary 0-symmetric polynomials of degree m in n indeterminates. We
define the €,-algebra APol€,, = €n<egn), ey eﬁ{‘)y By the statement, this is a subalgebra of ﬂz;ll kerd,,.

Ezample 8.14. Before giving the proof of the lemma we make the definition of the ¢’s explicit for small
numbers of indeterminates in particular for purely even and purely odd indices.

(i) For n =1,...,4 variables, the elementary d-symmetric polynomials are listed explicitly in Table
(ii) If all indices are even, then all 7; ;41 = 1. In this case the d-elementary symmetric polynomials
from Table specialise to those from Table at 7i+1 = 1, which we recognise at the ordinary

(n)

elementary symmetric polynomials er,”. The induction formula from Lemma |8.13|indeed gives

551) =1

e — gm0 4 "Dy

(8.9)
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Table 8.3: Odd elementary symmetric polynomials 5,(1?) for m < n < 4. They are a specialisation of the ones listed
in Table at vi,i+1 = £1 for all ¢, obtained when all ¢ have odd parity.

m\n 1 2 3 4
1 T1 T — T2 T1 — T2 + 23 T1— X2+ T3 — T4
T1T2 — T1X3 T1T2 — T1T3 + T2X3
2 xr1To
+ x2x3 + T124 — T2T4 — T3T4
X1x3x3 — 12T
3 T12373 12323 12223

+ 7173724 — T2T3T3

4 T1X3T3L4

by setting each of the 4’s in (8.8) to 1. This is a well-known recursive formula for the ordinary
elementary symmetric polynomials

e = Z:}:kl ST, (8.10)

1<k; < <km<n

(iii) If all indices are odd, we have 7, ;11 = *¢;. We set z; == (¢;)lly; (cf. Remark and Lemma ,
thus in this case 7;;+1y; = ®;. The polynomials from Table then specialise at 7; ;41 = +¢; to
ones listed in Table We call these the odd elementary symmetric polynomials, denoted 0557?).

The recursion formula reduces to

1 _

0g1 " =T
0e{™ = oen=1) 4 (—1)"_7"055::11) Tn, (8.11)

-1
e = 055,?_1) Tn

Consider also the odd elementary symmetric polynomials

BK1LOES) = Z(—l)km_lxkl o G (8.12)
1<k < <km<n

as defined in [EKL14, (2.21-2.23)] which admit the recursion formula
ExLoey) = pxrocy D+ (=) prpoel Ve,

Our odd elementary symmetric polynomials indeed coincide with those from [EKL14] up to an
m(m—1)

overall sign (=1)" =z :

0el™ = oen=1) 4 (1) oD g,

m(m— (m—1)(m—2)
= (-1 B - pxLostr Y + (—1)(f)+(n_m) -pxLoenV a,
= (-1 B cpkLosm T 4 (=), - gg0e(n — 1),
— (1) 0e™, 8.13
EKLOSm

Note that in our sign convention the first monomial x1 - - - ,, of the odd polynomials always has +1
as coefficient. Odd symmetric functions have already been treated extensively in [EKL14; KE12;
EQ16].
Proof of Lemma[8.13. The statement is proven by induction on n and m. It is convenient to set e(()n) =1
for all n > 0. The claim then trivially holds for n =1 and m =0, 1.

—Induction step on n for m = 1: Assume that egk) €01 N---NV,_1 for all £ < n. We want to show that
kerd; N---Nd, contains the polynomial

?§n+1) = egn) + (72,1’72,3 e lyn,n717n71,n>7n+1,n Yn+1-
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The first summand egn) is contained in kerd; N --- Nker0,_; by the induction hypothesis. The second
summand contains no yi for k¥ < n and thus lies in ker9; N --- Nkerd,_; as well (cf. the definition of ? in

(7.1)). To show that e(ln'H) € ker0,,, expand the first summand once more:

1 -1
egnJr ) = egn ) + (72,1 e ’Yn—l,n—Q’Yn—l,n)’Yn,n—l Yn + (72,1 T ’Yn,n—l’}/n,n-&-l)f)/n-&-l,n Yn+1;

and regroup:

(n—1)
=e + 72,1 Ynn—1Tn—1,n Tn,n—1 (yn + Yn,n+1Vn+1,n ynJrl) .
cex :’Yn,n+1e(1n_1‘"+1)
-1 . . . . . .
The first summand e(ln ) clearly is contained in ker 9,, since it contains no y,,, yn+1. The second summand

lies in the €,-algebra <e§"_1’"+1)> C kerd, (see Lemma and Definition [8.12)). Hence we have
eﬁ"*” ckerogN---N0o,.

—Induction step for m > 1: Assume egf) € kero; N---Nkerd,_7 for all £k <n and m < k. We want to
show that ker0; N ---Nker?,, contains

egg“) = 25,?) + egll(WmH,meH,mw o "Yn,nfl’Ynfl,n)’ynle,n Yn+41- (8.14)

(n)

egffﬂ) € 0k for k < n — 1: By the induction hypothesis, ¢;,” € ker 0. For the second summand,

Uk( 652)71 Ym+1,mYm+1,m+2 " Vnn—1VYn—1n 7n+1,nyn+1)
—~—~

cker 0y, ey

= 5; (25:)_1 S Ym41,mYm4+1m42 ’Yn,n—l’}/n—l,nr)/n-l-l,n) ak(yn+l)

=0

(n)

m—1-

by the induction hypothesis on ¢

eg,? ¢ 0,: For 0, first expand both ¢’s in lj once more by the recursion formula:

e

_ -1
21(7?4_1) = \‘egr? 2 + e'ErTLL—l) (r}/m-i-l,m e 'Yn—l,n—Q’Yn—l,n)rYn,n—l ynJ +

(n—1) (n—1)
+ |:enL—1 o (Vmm—1""Yn-1,n)Ynn—1Yn) | -
e(r:ll
: (’ym-&-Lm e ’Yn,n—lr}/n,n-&-l)')/n-i—l,n Yn+1
.. -1
and regroup both terms containing eﬁi}_ﬁ: TN Gt S

=t(Ym,m—1"Yn,n—1)(Ym+1,m = Yn+1,n)YnYn+1

= 252_1) + Q%L:Ql) (’Ym,mfl e ’anl,n)'Yn,nfl Yn (7m+1,m e ’Yn,n+1)7n+1,n71 Yn+1 +

-1
+ 97(:71) ( o ’Yn—l,n—Q’Yn—l,n 'Yn,n—l) ('Yn,n—lyn + 7n+1,nyn+1)-

cx _ (n—1,n+1)
€¢; =]

When applying the operator 9,,, the terms egﬁ _1), ef:__zl ) and egg__ll ) vanish since they contain no y,,

Yn+1- LThe second summand vanishes when applying 9,, to it since it is contained in the €,,-bimodule

ef,?:f ). <e§”‘1’”+1)> C kerd,,. The last summand vanishes when applying 0,, since it is contained in

efjj‘f’ ~ <eg"_1’"+1)> C kerd,,.

Thus eﬁfﬁ” € kerd,, and we already saw egﬁlﬂ) € kerdy N---Nkerd,_;. This proves the assertion. [J

Remark 8.15. The €,-algebra APol€, has a basis {(egn))ai, ce (eﬁ{”)%} a; € N, as left and as right
¢,-module (cf. the proof of Lemma . With the same argumentation as in Lemma we see that
rkq e, APolE, = m both as left and right €,,-module.
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8.3. Invariance under Hecke-algebra action

Instead of knowing the (classical) elementary symmetric polynomials as the generators of the common
kernel ker 0; N - - - N ker 0,,, the reader is most likely to know the symmetric polynomials to be defined as
the invariants Pol,sl"7 where the symmetric group acts by exchanging indeterminates. One thus may ask
which action is “detected” by the 0;’s.

Another way to see the classical action of the symmetric group on polynomials is by letting s; act
by the commutator [x;,d;] on Pol,. Indeed, one verifies that this yields the correct action. Recall from
Definition the Iwahori-Hecke algebra H,(S),), which is a deformation of the group algebra k[S,]. We
shall employ henceforth the presentation from Remark 2.18] namely

H; (W) = (T, for s € S | distant and braid relations; Vi : T? =t + (t — 1)T}) (12.27)

as a k[t*1]

Lemma 8.16 [APRO0, §3]. The Hecke algebra H;(S,,) acts on Pol,, by virtue of the t-commutator [z;, 0;]¢ =
x;0; — t0;x;. For the specialisation at ¢ = 1, this yields the usual action of k[S,,] by permutations.

algebra.

Caveat 8.17. Unless for the special case t = 1, this is not an action by algebra homomorphisms but only
by vector space homomorphisms.

Proof. We check that the t-commutators satisfy the relations of H;(S,,).
distant relation: Clear since the 0; also satisfy the distant relation.

quadratic relation:

[21, D]} = (2101 — tO121)?
= 11811181 — txlal(?lxl —8193581 + t28193181x1
0
= —x101 +1 (xl + x2)81 7752({911‘
N————

101 +01x1+1
=t+ (t - 1)(3&‘181 — t(’)lscl).

braid relation: See [APRO0, §3].

Let t = 1. It is clear that [x;, 0i]¢(z; f) = xj[z;, 0;]¢(f) for j # 4,4+ 1. Assume w.l.o.g. that i =1. One
then computes

(7101 — O1w1) (w1 f) (2101 — Orw1) (w2 f)
= —z1f + 212200 f + 21 — 220171 f =z f + 2101 f — 21 f — 21011 f
:xz(:rlﬁl 7(91391)(]0), :1:1(:5181 761$1)(f).
Hence [z;, 0;]; indeed acts on polynomials by the simple transposition s;. O

The odd symmetric polynomials, albeit not invariant any more under the action of the symmetric group,
are the invariants under the action of the Iwahori-Hecke algebra H_1(S,,) at ¢t = —1 [LR14, §2.4].

Question 8.18. Is there a (possibly multi-parameter) Iwahori-Hecke algebra acting on the €,-algebra Pol€,
such that the invariants under this action are precisely the polynomials in APole,,?

We have not yet managed to answer this question. One might attempt to construct an algebra

He(S,) = <Ts for s € S‘ distant and braid relations; > ’

: if 7 even 8.15
Vi:T? = { —2T1i—1 iffi odd ( )

which would lie somewhere between Hy (S),) and H_;(S,,), depending on the partitioning of I, such that the
0-symmetric polynomials are the invariants of an appropriate action of 3(S,,). However, this necessitates
further investigations which we shall not cover in this thesis.

Remark 8.19. It is interesting to note that the action by ¢-commutators allows to define new algebras such
as the algebra of ¢t-symmetric polynomials, which are the H¢(S,,)-invariants in the polynomial ring with
the commutativity relation z;x; = tx;x; for ¢ > j |[Ragl7, §§5sq.]. We shall not pursue this further.
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8.4. Schubert Polynomials; freeness of Pol&,,

Definition 8.20. For a reduced word w € S,, let the 0-Schubert polynomial s,, € Pol&, be

Sy = Dw—lwo (y?71 T y}mfl)» (8'16)

which makes sense since according to Lemma [7.7] the d; satisfy the relations of the symmetric group. This
is the definition of the ordinary Schubert polynomials [Man98, §2.3], with 9 instead of 9. Hence in the
purely even case, the 0-Schubert polynomials coincide with the ordinary ones.
Lemma 8.21. The 0-Schubert polynomials have the following properties:
(i) DySw = Syt if wv™! is a reduced expression.
(ii) For any tuple e € N, the following holds:
€Cy™ ifv=w1
YF 08, ¢ =0 if £(u) = £(w) but v # w™L, (8.17)
=0 if (v) > l(w).
In particular, s, is non-zero.
Proof. The first statement is clear from the definition of s,,. For the second one, we argue as follows:

£(v) > {(w): Every 0; reduces the polynomial degree by —1. Recall that the longest element w of the
symmetric group has {(wg) = @ =deg(yy~*---y._,). Thus, s, has polynomial degree £(w).

Since 0; acts on constants by zero, the assertion follows.
{(v) = 4(w),v # w~: In this case v(w ™ wy) is not a reduced expression, which implies 9,0,,-1,,, = 0.

v =w"!: Take the reduced expression wy = s,_1 - 5251Sn—2 - - - §352515251. We have

n—1

Qo (U1 Y1)
= owomal(yl Y2Y1 Y3Y2Y1 Yaysy2y1 * - Yn—1Yn—2 " - yl)
= Dwpsy [01(91) (1 Y211Y3Y2Y1 - - - ) + Y20(Y1 Y21 Y3yayi - - - )] .

The second summand vanishes since in the argument of 0; the indeterminates y;, y2 only occur in
products y1y2, which lie in kerd; (see Lemma [8.11]). We continue with the next operators. It turns
out that in every step we can apply 0; to precisely one factor y; since the remaining y;, y;4+1’s occur
pairwise:

0

= Dugsys252(0191) [(D212) (41 ysyayr -+ ) + 02(y1 ysyays - -)

= Dugsy sns $152(0191) 51 (0292) [01(y1) yayzys - - |

= (wos1)(D1y1) (wos152) (d2y2) (wos15251) (D1y1) - -+ 51(day2) - D1 (y1).
~—~ ~~~ ~~~
eex eer
Since the permutation action of S, preserves €, we obtain that s, € € is non-zero. O

Lemma 8.22. The action of NHE,, (and hence the action of NCC,,) on Pol€,, is faithful.

Proof. We recall briefly the proof of [EKL14, prop. 2.11] which can be applied nearly literally. By the
defining relations, it is clear that {y*0,}a,ves, is a generating set of NHE,, as €,,-algebra. We show by
induction on £(v) that y®9,s,, are linearly independent elements of the €,,-bimodule Pol¢,,. This proves
that the generating set {y®0,} acts linearly independently in Pole,.

—Induction base: The only element of length 1 is e, and by (8.17)) y*0,5. # 0 only if v = e, and in this
case y*0, € €,y*. Thus y*0. cannot be a linear combination of {y® 0,}y>e.

—Induction step: Assume that {y"‘/bv/}v/<v is linearly independent for a fixed v € S,,. Assume that y*9,
were a linear combination of {y"‘lbv/}z(v/)d(v). But y*0,5,-1 € €y by the first case in 7 whereas
a linear combination of {yo‘lbvr} maps 5,1 either to zero or to a polynomial of degree strictly larger than
0. This is a contradiction, so there cannot be any linear relations between y*?9, and elements y"‘lav/ for
L(v") < £(v). Assume now y*?d, were a non-trivial linear combination of {ya'avl}g(v/)zg(v). But by the
second two cases in , this is also a contradiction. O
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By virtue of Schubert polynomials, we may prove the following analogue of the respective theorem for
ordinary symmetric polynomials. Recall that the respective Clifford-analogues APol€,, and APol&,, of Pol,,
and APol,, have graded ranks rk, ¢, APol¢, = m and rkg ¢, Pol€, = ﬁ; see Remark [8.15

!

and Corollary

Theorem 8.23. The following facts, which are well-known for the purely even and the purely odd case,
remain true for the Clifford-setting:

(i) Pol€, is a free APol€,,-module of graded rank (n),!.
(if) The inclusion APol€,, C ﬂZ;ll ker 0, from Lemma is in fact an Equality.
(iii) The faithful action of NHE,, on Pol€,, gives an isomorphism NHE,, — Endapoe, (PolE,).

Proof. Since Schubert polynomials behave completely analogously to the classical case (apart from €,),
the classical proof applies entirely. We nevertheless explain briefly the arguments to see this. For details,
consider [Laul0l §3.2] for the even and [EKL14| prop. 2.15] for the odd case.

An—1

(i) Define the €,-bimodule $,, == (y{* ---y,,"7' | @i <n —i)¢,. This module has a basis given by the
Schubert polynomials s,,; see the proof of [EKL14, prop. 2.12]. For every index ¢ one may chose an
exponent 0 < a; < n — i which yields a generator y; of (polynomial) degree a;. The submodule
generated by y! thus has graded rank (n — i), and hence rky ¢, (9,) = (n)4!. The very same proof
as in the even (resp. odd) case shows that the multiplication

APol¢,, ®¢, $, — Pol€,

_q)n
is an isomorphism of €,,-modules, which exhibits Pol€,, to be a free APol€,-module of graded

(n)q!.

(ii) Inwe have shown that Pol€,, has a APol€,-basis by Schubert polynomials s,,. Given a polynomial
p € Pol€,,, we take a linear combination Zwe s, dwSw for ¢, € APol€,, with ¢, non-zero for some
w > e. Assume the image

2u(p) = (D vilaw)sn ) = Y silau)sein

under 0; were zero. Since by assumption there was some non-zero q,, for w > e, there still is a non-
zero term $; (P )Ss; i 0;(p). But since 0;5, = s, if s;v is a reduced expression by Lemma
0, maps no other Schubert polynomial to sg,, Therefore, 9;(p) cannot be zero. Hence there are no
APol€,,-linear combinations of Schubert polynomials in Pol€,, not already contained in ker d;, which
are annihilated by 9;. This proves the statement.

(iii) We have already seen in Lemma that NHE,, acts faithfully on the free €,-module Pol¢&,,. This
action is compatible with the APol€,,-module structure from as NH¢,, = NC¢&,, ®¢,, Pol€,,, we
see that Pol&, acts on itself, NC&,, acts trivially on APol&,, by the very definition of the latter and
NC¢,, indeed acts on $),, since it acts by decreasing exponents. A graded rank computation

is injective, and since both sides have the same graded €, -rank % (see 1} in Lemma , it
rank

I‘kq’g;n EndApolgn (POI@n) = I‘kq_’g;n (APOIQ:n) . I’kq7Ap01¢n (POI@n)2
_()g)?
(n)g!(1—q)"
= 1kg e, NHE,

shows the asserted isomorphism.

Note that [LaulOl prop. 3.5] gives a more explicit proof for surjectivity in the classical case. O

8.5. Complete symmetric polynomials

Just as in the classical case, we may give another collection of generators for APol€,,, namely a Clifford-
analogue for the complete symmetric polynomials. We beg the reader’s pardon for the advent of a
confusing amount of new notation.

76



Definition 8.24. Let M(,) be the n X n-matrix

e§"> R

—e;") R1,3
M) = : :
(—1)”’2251"7)1 Ri,m
(=" el 0
where we set

Rkl = Vk+1,EVk+1,k+2 - -+ VI—1,1-271—1,1 V1,1—15
for k < I, and k;—1,; = vi,1-1, K11 = Y,1+1. Furthermore, let
Rkl = Ki,IRLL = Yh+1,kVh+1,k+2 " Vi—1,0—2V1—1,0 Yi,1—1V,I1+1-

Note that we can “split” the k’s by

Bkl = Vk41,k " Ymym—1 Ym,m+1 Ym+lm ** Vi-1 = Ek,mFm,l- (8.18)
—_—
Kk,m Km, 1

The complete symmetric polynomial hg:f ) of (polynomial) degree m on n indeterminates is the top left
) In particular, p =™ and h{ =M = 1.

entry of the matrix power M (’Z

Remark 8.25. Note that the top row of M(’Z) has entries

(M(%>1,* = (h’gr?)7 hgs)_lf%,% hgl)_gfil,zﬁl,& o Rl2 Blmg1,0,...,0).
Ezample 8.26. (i) If all indices are even and thus eg,?) = 55,?) and ki = 1 for all k,, these polynomials

coincide with the ordinary complete symmetric polynomials

hgg) = Zﬂckl Ty, -

1<k1 < <km<n

(ii) If all indices are odd, the resulting complete homogeneous symmetric polynomials coincide with
those of [EKL14] up to a renormalisation involving the &’s.

Proposition 8.27. There are identities

m m
DDA Rrg e R = G0 = D (=) Rz Raae™ by
=0 =0

Proof. The complete homogeneous symmetric polynomial hw) is the top left entry of the matrix power

M (% =M (%_ 1. M,y and therefore equals

T
h,gg) = (hs:il, hfg)izlzélyg, ey IZELQ e Fél’m+1, 0, ey 0) . (Q(ln), —eé"), ey (—1)”25171)) H
hence one obtains a recursive description hg,?) = Zﬁl(fl)l’lhfs)_lkl,g e /%Llel(") of the complete homo-
geneous symmetric polynomials for m > 1. Putting h,(fj) to the other side proves the statement.

For the second equality, denote the other entries of M (’Z) by

hGH hi:llfil,z hi:'igﬁlaﬁl,z

) . , — m
h1y mar By mFe : = M,

(n)
h’(z)‘erz

such that hEZ)) , always is a polynomial of degree [. The polynomial hg,? ) is the top left entry of M (mn) =
My - M&;l and thus is given by

) = erhin)y + Raohly)
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hgrll))’m : —eghss)_Q + ’%L?’hg)),m

hEle)’m = (—1)kekh£§)_k, + Fé1,k+1hgz)),m

such that we obtain a recursion formula

B = €8O, 4 fxa (—eRG R (el B F Ry me) )
= Z(*l)lflfﬁ,z o Rage Y
1=1
Again, putting hgff ) to the other side proves the claim. O

8.6. Interlude: cohomology of Grassmannians and partial flag varieties

We recall some classical (non-super) theory on the cohomology rings of Grassmannians and partial flag
varieties. Our aim is to build super-analogues for these rings.

Definition 8.28. Fix natural numbers k£ < n. The set of all k-dimensional subspaces F' C k™ of the
n-dimensional k-vector space forms an algebraic variety, called Grassmann variety (or just Grassmannian),
denoted Gr(k,n).

Fact 8.29. The Grassmannian Gr(k,n) has cohomology ring
k[egn), .. 78%)}

H.n) = H*(Gr(k,n)) = .
e TR

(8.19)

with coefficients in k.
This is a corollary of ?? 8.31. We need to give some more definitions beforehand:

Definition 8.30. Fix natural number ¢ < n. A partial flag Fe of length £ is a chain F, of k-vector subspaces
0CFyCF C---CF,=k" The set of all partial flags of length ¢ is called (partial) flag variety F1(¢;n).
If ¢ = n, then Fl(n) := Fl(n;n) is called full flag variety. To a flag F, one associates its dimension vector
k = (dimy, Fo, . ..,dimg Fy). The connected components of F1(¢) are the varieties F1(k) of partial flags
with dimension vector k. In particular Gr(k,n) = F1(0, k, n).

Fact 8.31 [Man98| prop. 3.6.15, rmk. 3.6.16; or [Ful97, prop. 3]. The full flag variety Fl(n) has cohomology
ring H*Fl(n) = Pol,, /(APol,,)+. The partial flag variety F1(k) has cohomology ring

APoly, _p, @ - - @ APolg, _p,_,

Hy, = H*Fl(k) = Dol

(8.20)

We denote the nominator by APolg.
Recall the notion of graded ranks from Section [B.1]

Lemma 8.32. The cohomology ring H(k,n) := H*(Gr(k,n)) of the Grassmannian has graded dimension

dimg , H(k,n) = (Z)q with the g-binomial coefficient (Z)q = %

Proof. Without quotienting out the ideal, the polynomial ring APoly = k[eq,...,&x] in the symmetric
polynomials has graded dimension dim, x APoly, = (1—¢)~%---(1—¢*)~1. To count the graded dimension
of the ideal a = (hp—g+1,---,hs) to be quotiented out, we note that each generator h,, contributes a
principal ideal with graded dimension dimg (k) = ¢ dimg ; APol,. We then proceed by the inclusion-
exclusion principle to obtain
dimq,k(hn—k—i-h sy hn)
_ ((qn—k—H 4. ”qn) _ (q2(n—k)+3 T +q2n—1) . iq(n—k—i-l)-i-"'—i-n) dimg,;; APol;
=(1-(1- g (1 - q")) dimg ; APol;, .

The quotient thus has graded dimension

) 1—gn—k+1y ... (1 — g™ 1— n—(n—k)nq! n—kq! N
dimgu(APol ) = Lt = Bt — ), -
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For the cohomology ring of partial flag varieties (see 7?7 8.31) this allows to deduce:

Corollary 8.33. Let k := (0 = kg < ... < k. = n) be a dimension vector. The cohomology ring H (k) of
the partial flag variety F1(k) has as graded dimension the g-multinomial coefficient

(n)g!

n
ke — kr—l)q - (kl)q!(kQ - kl)q! o (ke — kr—l)q!.

(kl,kgkl,...

dimq,k H(k) ==

Proof. The cohomology ring is the quotient
APOlk1 (Y APOlkl—kl,l
(k1) . (ki—Fki—1) ki—ki_
0Ty (T A

of APolg := APol, ® - -+ ® APoly,_,_,. Denote the ideal quotiented out by a and proceed as in the proof
of Lemma We see that the nominator has graded dimension

l

dim, ;A = ﬁ LI 1 = 1 H 1
q,k o 1 —q 1 _ qkafka_1 (1 _ q)n ke (ka _ ka—l)q!’

and the ideal a quotiented out has graded dimension
dimg pa = ((1—¢)"(n)g! — 1) dimgj A.

This shows the assertion. O

8.7. Cyclotomic quotients

It is known that in the classical case the cohomology ring H(j ) of Grassmann varieties (see 77 8.29) is
Morita equivalent to the so-called cyclotomic quotient of the NilHecke algebra [Laul2, §5]. For the odd
setting, the respective Morita equivalence has already been established in [EKL14) §5]. We introduce
analogues of both rings in the Clifford setting and prove that they are Morita equivalent.

Definition 8.34. The m-th cyclotomic quotient of the Hecke Clifford algebra NHE,, is the quotient NHE)" :=
NH¢,, /((m,nyn)m). The quotient H&,, ,,) = APol&, /(h,gn))k>n_m is called the Clifford cohomology

ring of the Grassmannian Gr(m,n).

Remark 8.35. In contrast to the standard definition of the cyclotomic quotient, we mod out some power of
Yn instead of ;. However, using y; instead would necessitate transposing the matrix M, in Deﬁnitionl@
We want to avoid this.

Theorem 8.36. The rings NHE" and HC,, ) are Morita-equivalent.

Proof. The proof in [Laul2) §5] does not rely on commutativity of the rings involved and thus applies
immediately in our setting. We quickly recall how to show the statement. The reader is strongly encouraged
to verify the following calculation for n = 3. Let us start with

e{™ = ¥ Y1 V2.3Y2  * * Ynnt 1Yn

= (Y1.24172,3Y2 - Yn—1.0Yn—1) Vnin+1Yn

= (egzn—)l - Egmn—)l)'yn,n+19n
——

where we set Kon.om
s _ . . .
1 = 71,20 Tn—2,n—1Yn—2 Yn,n—1Yn + + Y2,1Y2 V3,293 Yn,n—1Yn
= ('71,291 CYn—2m—1Yn—2 + -+ Y2,1Y2 - "anl,nf2ynfl)'7n,nflyn

= (e;n_)g - E»E:L_)Q)’yn,n—lyn
——

where we set Kn—1,n
s(n)  _ ... .. ..
€0 = (71,2:{/1 Tn—3,n—2Yn—3 + + V3,2Y3 ’Yn—l,n—Qyn—l)7n—1,n—27n—1,n7n,n—1yn

= (eglnjg - E»E:i)g)'Ynfl,nff)’nfl,n’)/n,nflyn

Kn—2,n
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Egn) = (egn) - Egn))’737273,4 Yn—1,mn—2TYn—-1,nYn,n—1Yn

where K2,n

s(n) _
€ T =72,171.2 " Tn—-1,n—-2Tn—1,nVn,n—1 Yn-

Ri,n

To state the above calculation differently, we have that

0= elm _ (ef,”_)l — (- (én) 1) .)Wl)nyn) Kt

i
L

(_l)kegln_)kﬁnfk+1,nyn o RpnYn

ol
Il
<

(71)lel(n) H RknYn-

k=Il+1

I
NIE

N
I
—

Set by == HZ:H—I KknYn for 1 <1 <n —1; in particular b,, := 1. Recall now the €,-bimodule §,, from the
proof of Theorem We define a similar free €,-bimodule of graded rank (n),! with direct sum
decomposition

D=ty L <dde, = Wb,y Y ba)e, (8:21)
for multiindices ac. We denote the direct summands by Bg,. It is analogous to the proof of Theorem[8.23.(1)
that multiplication gives an isomorphism $,, ®¢, APol€,, — PolC,,.

Recall from (8.18) how to split the x’s. Multiplication from the left by %1 ny, acts on this basis of Be
by

(’%l,nyn'): Ba — Ba, ET3) =R1,n
- ——
1= bn = KinYn = R1,nRnnlfnnYn = ﬁl,nﬁn,nbnfl

bn—l — Hl,nyn’in,nynbn—l = Rin—1Bn—1,n—18Bn—1nYn = Hl,n—l“n—l,n—lbn—Q

=R1,n—1
by = K1 nYnb2 = K1,2K2,2Ynb2 = K1,2K2,201
b n 1)! (n) -1 =R
1 Zl:l(_ ) ) Hk:l RknYn - e tvaa
=b,

This shows that multiplication with k1 ¥, from the left acts on the basis from (8.21) by the matrix

z(ln) -

R1,2
R(Zn) fil’g
(-nn=2e) R1,n
(~1)" el 0

Quotienting out the two-sided ideal (k1,nyn)™ < NHE, is the same as requiring that M(Z) =0.
Claim. The ideal (hp—mi1,- .-, h,) < Pol€, is also generated by the first column of M&Tl

By definition, g1 is the top left entry of M, - M(kn) for any k. Recall that we denoted the entries of

the first column (M(k:)'l)*1 of M(k:)'l by

T
(M(]:Sl)*’l = (Phs1s h1y k42, B2y tss - - - Pnmk—1)n) -
We thus have

hn—m+2 = egn)hn—m—i-l + Rl,Qh(l),n—m—i-Q
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Table 8.4: Elementary 0-symmetric polynomials e for = 3, as defined in Definition m The leftmost column
is the same as in Table[8.I] The braces illustrates how one can construct the polynomials recursively as stated in
Corollary , starting with the rightmost polynomial eé2’3) = Y3,4Y3-

m\k + 1 1 2 3
1 Y1,2 Y1 + V2,1 Y2 + ¥2,172,373,2 U3 V2,3 Y2 + V3,2 Y3 V3,4 Y3
——
(1,3) (1,3)
V2,172,3¢; 73,273,4 ¢
2 V1,2 Y17Y2,3 Y2 + V1,2 Y17Y3,2 Y3 72,1 Y2 V3,2 Y3 2,3 Y2 V3,2 Y3
v1,2 y1e(1,3)4
3 Y1,2Y1 V2,3 Y373,4Y3
—_————
RO

= kl,Qh(l),n—m—s-Q (D’lOd hn7m+1)

hn7m+3 = egn)hnfm+2 + %I,Qh(l),n7m+3

(n)

eé") (egn)hnfmﬂ + /%I,Qh(l),n—m-‘,-Q) + K12 (—92 hn—mt1 + Rl,Sh(2),n—m+2)

= R12f13002) n-m+3  (mod hp—my1, Bnma2)

hn = ’%1,2 T R/l,mh(mfl),n (HlOd hn7m+la ceey hn71>-

This proves the claim since all #’s are units. Taking the product M(% =M (2)7 oM (7:51 shows that the
last column of M(% has entries

(M(TL))*JL = (hn7m+1a h(l),n—m+27 ceey h(m—l,n))Tﬁlﬂ o Rin-

Thus the entries of (M(’Z))>k ,, also generate (hn—m+1s- -, hn) <PolC,.

Claim. All entries of M, (% are APol€,-linear combinations of entries of the last column (M(”;))* -

Since M (knng =M (1n) - M (kn) for any k, the entries of (M (knng)* | are APol€,-linear combinations of entries

of (M(kn)>*,1' Since also M(kn‘gl = M(kn) . M(ln)7 we have (M(kn'g'l)*2 = K12 (M(kn))*’l. Therefore, the entries

of (M(krf)l)* , are linear combinations of entries of the second column (M(krf)l) ,- The claim follows by

*7

iterating this argument.

Altogether, we have shown that requiring M(’;';L = 0 is the same as quotienting out (hp—ma1,---,hn) <
)

Pol€,,. Applying this to each summand B, of (8.21]) yields
NH(’:? = Matnu(APOIQn)/(M{Z)) = Matng(HQ(m,n)).

This establishes the asserted Morita equivalence. O

8.8. Clifford algebras associated to partial flag varieties

We now come back to the consideration of d-symmetric polynomials.

Definition 8.37. Let eﬁ,’f’") be the polynomial of degree m in the indeterminates yx, ..., y, that is obtained

from eEj} =) by replacing every index ¢ by ¢ + k.

Recall from Lemma the recursion formula for the elementary 9-symmetric polynomials. We can
easily derive the following corollary by regrouping the terms of (8.8):

Corollary 8.38. There is another recursion formula

e = 1201 e 72,1728 ¢y (8.22)

for the elementary 0-symmetric polynomials, where ; ;41 is as defined in Lemma
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FEzample 8.39. The “regrouping” of terms is best made explicit by considering the first d-symmetric
polynomials hsted explicitly in Table We can start with the polynomial e( 3) = = 73,4y3 as defined

in Definition 7l and construct the polynomlals e,(jf 3) for 0 <k <3 and m < n — k as described in the
corollary. The resulting polynomials are listed in Table [8:4] with the grouping indicated by braces.

The two recursive expansions (8.8) and (8.22)) from Lemma and Corollary are subsumed in
the following definition:

Definition 8.40. For 1 < k < n, let AOEn) ¢, be the coefficients defined by
m,l

0<Ii<m

FEzample 8.41. By the expansions 1) and 1b we know the coefficients )\;Sf’") for two particular
values for k:

(i) For k=n—1, )\(O k) g just coefficient of the expansion eﬁn =3 el ))\l’}/n)n+1yn. The recursion
formula from Lemma gives

1 ifl=m

=y Ym+1,mYm+1m+2 " Tn—1,n—2Tn—-171 ifl=m-—1
0 otherwise.

)\(O,nfl,n)

m,l

(ii) For k =1, /\Sizf’") is the coefficient of the expansion e — nymyl)\lell’"_l). By Corollary
these are given by

Y2,172,3 ifl=0
AP =81 if1=1
0 otherwise.

In general however, it seems to be difficult to give an explicit formula for )\573’?’”) for arbitrary k.

Definition 8.42. Recall from Lemma that we defined APol€,, = <e§"), . e%”)> as the €, -subalgebra
of Pol¢,, generated by the ?-symmetric polynomials. We have shown APO]Q:H = ﬂ;:ll kerd; in The-

orem We additionally define the &,-algebras APol& ) = (e,(ﬁ’") |1 <m < m-—k)C
N k 1 kerb and more generally
APOIQ:(]%,“_JW) = ¢n<€£§8’kl), ngi’]%), ey eslgf:i’kl) ’ 1 S m; S kj+1 - k]>

Ckerdp,q1N---Nkerdy, N---Nkerdy, M-+ N0k _1

where all behatted factors ke/r\bkj for 1 < j <[ are to be omitted. In particular, the €,-algebra of
0-symmetric polynomials defined in Lemma is APol€,, = APol .

Remark 8.43. Note that Theorem [8.23.(ii)| applies to each <e$,’fjf’kj“) | 1 <mj <kjy1 — k;). Therefore, x
is in fact an equality.
8.8.1. One step flag varieties

For every j there are the following inclusions of €,-algebras: consider
APol&, & k)
= kerdp,41 M-+ Nkerdy, , N---Nkerdg, N---Nkerdy,,, N+ Ndp_1,

the intersection in which the k;-th kernel is not omitted. Clearly there is an inclusion into the intersection
of kernels where the k;-th kernel is omitted:

C kerdpyq1 M-+ Nkerdy, , N+ Nkerdg, M-+ Nkerdy,,, NNy
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= APOIQ:(kl ’’’’’ k) - (824)
Since we know from Lemma that kerd; is a €,-algebra and since the intersection of two subalgebras is

again a subalgebra, these are inclusions of €,,-algebras.

Lemma 8.44. Let k = (0,k,k+ 1,...,n) for some k, so that the there are inclusion
APol€ g, . k...n) S APOI& (o .k ky1,...n) 2 APOIC (o kg1, ) - (8.25)
by (8.24). The two inclusions can be written explicitly in terms of 0-symmetric polynomials, namely

APO].C(OJCJL) — APOlC(O,k,k+1,n) (826)
(0,k)
Cm

k, (k+1,n) k+1,
e YL kb2 Ukt 1 €1+ Vh Lk VR kg2 € ™)

s 0

APOlQ:(O,k+1,n) — APOlQ:(O’k’k+1’n) (827)

0,k+1 0,k 0,k
R efn—i “YmAlm Ve k Ykl

e%—&-l,n) — egrlf+1,n) )

Proof. A polynomial from APol€ j ) is contained in all kerd; fori € {1,..., k-1, k+1,k+2,...,n}
by Lemma Tt is a fortiori contained in all kerd; for i € {1,...,k —1,k+2...,n}, i.e. in kero; N
- kerdg_1 Nkerdgio N ---kero,.

We know from Theorem and Remark that this intersection equals APol€( i k41.n),

which has generators e£3”“’k“’" . The coefficients for writing elementary 0-symmetric polynomials from

APol€ g 1,5 in terms of those polynomials from APol&€ . r4+1,n) are given in Example This proves
the statement. O

Remark 8.45. These inclusions turn APol€q j x41,n) into a APol€ g j ,,)-APol& g 111,5,)-bimodule. In the
even case, this bimodule structure corresponds to the one described in [KL10, (5.17)]. In contrast to the
notation in [KL10], we let APol& g j ) act from the left and APol€ ;11 from the right.

8.8.2. Clifford Cohomology of partial flag varieties

Recall the Clifford Grassmann cohomology ring H€(,, ) from Definition .34 and the ordinary cohomology
ring of partial flag varieties from ?? 8.31. The following definition generalises both:

Definition 8.46. For any sequence k = (0 = ko < k1 < --- < ky = n) let the Clifford cohomology ring of
the flag variety Fl(k) be the quotient

HC (o) = NPOIC(k, ) / (APoIC )+ (8.28)
by the two-sided ideal generated by non-constant 0-symmetric polynomials.

Remark 8.47. The graded dimension computations carried out in Lemma [8:32) and Corollary [8:33] remain
valid for H&} if one replaces dimg 1 by rkg¢, .

Proposition 8.48 (Grassmannians). The quotient APol€q j ) /(APol& )+ is isomorphic to the Clifford
cohomology ring H& ) of Grassmannians defined in Definition [8.34]

Proof. We may expand the generators el(co’n) as in || In the quotient we therefore obtain relations

m

(0,k) y(0,kn) (kym) _
Zez A = 0m,0-
1=0

Comparing coefficients with those of the identity

m

k) ~ N k,
Z(—l)l hfn,”} Rt~ fik,k+zel( " = Om.0
=0

from Proposition [8.27] implies that

(1) BT R gogr - Fogess = el A (8.29)

so we indeed have an isomorphism APol€ 1 ) /(AP0l& (g 1))+ = HE( ). O
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We thus have arrived at a super-generalisation for the cohomology rings of Flag varieties. In the ordinary
set-up, it has been proven in [KL10| that these rings admit an action by the Kac-Moody 2-category from
[Brul6|. The latter has a super-analogue constructed in [BE17b]. This motivates:

Question 8.49. The Clifford cohomology rings H€, from Definition [8.46] bear a bimodule structure by
Remark Can one construct an action of the Kac-Moody 2-supercategory from [BE17b| on these
Clifford cohomology rings?

Answering this question has to be deferred to future work.
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