
The Beauty of Braids

Catharina Stroppel (Bonn, Germany)

ICM 2022



TopologyRepresentation theory



TopologyRepresentation theory

Fundamental problem: find (interesting) topological invariants



of (oriented, smooth, compact)

MANIFOLDS

TopologyRepresentation theory

Fundamental problem: find (interesting) topological invariants



of (oriented, smooth, compact)

KNOTS

of (oriented)

MANIFOLDS

TopologyRepresentation theory

Fundamental problem: find (interesting) topological invariants



of (oriented, smooth, compact)

KNOTS LINKS

of (oriented)

MANIFOLDS

TopologyRepresentation theory

Fundamental problem: find (interesting) topological invariants



of (oriented, smooth, compact)

KNOTS LINKS BRAIDS TANGLES

of (oriented)

MANIFOLDS

TopologyRepresentation theory

Fundamental problem: find (interesting) topological invariants



Representation theory = study of algebraic objects (groups, algebras, Lie algebras, …)

by representing their elements as linear transformations (of a vector space)

of (oriented, smooth, compact)

KNOTS LINKS BRAIDS TANGLES

of (oriented)

MANIFOLDS

Fundamental problem: find (interesting) topological invariants

TopologyRepresentation theory



Selected success stories (1970s–1990s)



Tangle and 3-manifold invariants 

via Quantum groups

Quantum groups 

Reshetikhin–Turaev invariants

Crane–Yetter invariants

Selected success stories (1970s–1990s)

Knot and link invariants 

via polynomials

Jones polynomial 

HOMFLY–PT polynomial

Skein theory and Hecke algebras



Tangle and 3-manifold invariants 

via Quantum groups

Quantum groups 

Reshetikhin–Turaev invariants

Crane–Yetter invariants

Witten–Jones polynomial

Chern–Simons and Axelrod–Singer theory 

Atiyah–Segal axioms

Knot and manifold invariants 

via TQFT

Selected success stories (1970s–1990s)

Operads

En-algebras

Higher dimensional algebra

Topological invariants 

via higher homotopies

Knot and link invariants 

via polynomials

Jones polynomial 

HOMFLY–PT polynomial

Skein theory and Hecke algebras



Tangle and 3-manifold invariants 

via Quantum groups

Quantum groups 

Reshetikhin–Turaev invariants

Crane–Yetter invariants

Witten–Jones polynomial

Chern–Simons and Axelrod–Singer theory 

Atiyah–Segal axioms

Knot and manifold invariants 

via TQFT

Selected success stories (1970s–1990s)

Operads

En-algebras

Higher dimensional algebra

Topological invariants 

via higher homotopies

Knot and link invariants 

via polynomials

Jones polynomial 

HOMFLY–PT polynomial

Skein theory and Hecke algebras

stronger invariants ?

CATEGORIFICATION 



⚫ need to check relations

⚫ consequence of an obvious representation permuting coordinates: 

⚫ Define representation on generators
S

2

S
1

3

1

2

A representation: the symmetric group            as group of symmetries



dim 2

dim 3

⚫ need to check relations

⚫ consequence of an obvious representation permuting coordinates: 

⚫ Define representation on generators
S

2

S
1

3

1

2

A representation: the symmetric group            as group of symmetries



⚫ need to check relations

⚫ consequence of an obvious representation permuting coordinates: 

⚫ Define representation on generators

dim 2

dim 3

S
2

S
1

3

1

2

“projection […] which is an excellent tool for intuitive investigations, is a very clumsy one for rigorous proofs. This has 

lead me to abandon projections altogether.” E. Artin (1935)

A representation: the symmetric group            as group of symmetries



dim 2

dim 3

⚫ need to check relations

⚫ consequence of an obvious representation permuting coordinates: 

⚫ Define representation on generators

“projection […] which is an excellent tool for intuitive investigations, is a very clumsy one for rigorous proofs. This has 

lead me to abandon projections altogether.” E. Artin, (1935)

A representation: the symmetric group            as group of symmetries

S
2

S
1

3

1

2



symmetric group

From permutations to braids



symmetric group

=

From permutations to braids



symmetric group

=

≠

From permutations to braids≠



braid group

symmetric group

=

≠

From permutations to braids≠



braid group

symmetric group

=

≠

From permutations to braids≠



Upshot: braids turn into elements of braid groups

braid group

symmetric group

=

≠

From permutations to braids≠



Representations of braid groups ?

= ≠



Representations of braid groups ?

braids

permutations of coordinates

= ≠



Representations of braid groups ?

braids

permutations of coordinates

= ≠



Quantum trick

braids

permutations of coordinates

quantum trick

= ≠

quantum principle: 

variables don’t commute



Quantum trick

braids

permutations of coordinates

quantum trick

= ≠

quantum principle: 

variables don’t commute



Quantum trick

braids

permutations of coordinates

quantum trick

= ≠ 

quantum principle: 

variables don’t commute



Quantum trick

braids

permutations of coordinates

quantum trick

= ≠ 

quantum principle: 

variables don’t commute =



Quantum trick

braids

permutations of coordinates

quantum trick

= ≠ 

quantum principle: 

variables don’t commute = 



Upshot: representations of S
n

turn into representations of Br
n

via quantum trick

Quantum trick

braids

permutations of coordinates

quantum trick

= ≠ 

quantum principle: 

variables don’t commute = 



Atiyah–Segal Axioms of TQFT (1980s) “Representation theory of manifolds”



Atiyah–Segal Axioms of TQFT (1980s) “Representation theory of manifolds”



Atiyah–Segal Axioms of TQFT (1980s) “Representation theory of manifolds”





Atiyah–Segal Axioms of TQFT (1980s)

Categorical formulation: symmetric

“Representation theory of manifolds”





d = 1

+ -

+-

- +

+


-


-+

 

 

= =



d = 2

d = 1

+ -

+-

- +

+


-




-+

 

 

= =



d = 2

d = 1

Given a TQFT :   Get invariants by CUTTING-ASSIGNING-COMPOSING

+ -

+-

- +

+


-




-+

 

 

= =



“quantum field theories have, because of the difficulties involved in constructing them, often been described 

axiomatically. This identifies their essential structural feature and postpones the question of their existence”

Sir M. Atiyah (1988)
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What to assign to linear maps ?
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Observation:

What to assign to linear maps
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Quantum groups 

Reshetikhin–Turaev invariants

Crane–Yetter invariants

Witten–Jones polynomial

Chern–Simons and Axelrod–Singer theory 

Atiyah–Segal axioms

Knot and manifold invariants 

via TQFT

Operads

En-algebras

Higher dimensional algebra

Topological invariants 

via higher homotopies

Knot and link invariants 

via polynomials

Jones polynomial 

HOMFLY–PT polynomial

Skein theory and Hecke algebras

- TQFT
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the joy of

explicitly

computing

higher homotopies …

Thank you for your attention !






