
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 357, Number 7, Pages 2939–2973
S 0002-9947(04)03650-5
Article electronically published on December 28, 2004

TRANSLATION AND SHUFFLING OF PROJECTIVELY
PRESENTABLE MODULES AND A CATEGORIFICATION

OF A PARABOLIC HECKE MODULE

VOLODYMYR MAZORCHUK AND CATHARINA STROPPEL

Abstract. We investigate certain singular categories of Harish-Chandra bi-
modules realized as the category of p-presentable modules in the principal
block of the Bernstein-Gelfand-Gelfand category O. This category is equiva-
lent to the module category of a properly stratified algebra. We describe the
socles and endomorphism rings of standard objects in this category. Further,
we consider translation and shuffling functors and their action on the standard
modules. Finally, we study a graded version of this category; in particular,
we give a graded version of the properly stratified structure, and use graded
versions of translation functors to categorify a parabolic Hecke module.

1. Introduction

Harish-Chandra bimodules for semi-simple complex Lie algebras play an impor-
tant role in representation theory. Certain categories of Harish-Chandra bimodules
(the “regular” ones) are now relatively well-understood since they are equivalent to
blocks of the well-known category O of Bernstein, Gelfand and Gelfand, [BGG]. In
particular, they form highest weight categories. However, the “singular” categories
of Harish-Chandra bimodules are not that well understood and are more difficult
to approach. The aim of the paper is to give a better description of the structure
of some singular categories of Harish-Chandra bimodules using different equivalent
realizations.

The categories in question are not highest weight categories in general. Recently
it was shown in [KM1] that these categories can be described as module categories
over properly stratified algebras (in the sense of [Dl]). On the other hand, it is
well known that these categories of Harish-Chandra bimodules can be realized as
certain subcategories of the principal block of the category O. Our first task is
to understand this realization more explicitly. In Section 2 we describe projective,
standard and simple objects, and the abelian structure of the category. One advan-
tage of this realization is that we have the singular situation as a subcategory of the
regular one. We tried to use very general arguments in the proofs. From our point
of view this might provide an approach to transfer translation principles to a more
general situation of module categories (see also the formalization of properties of
translation functors and their categorical setup, recently developed in [Kh]).

To state our further results we need some notation. Let g denote a semi-simple
finite-dimensional complex Lie algebra with a fixed triangular decomposition. The
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isomorphism classes of indecomposable projective objects in the principal block of
the corresponding category O are indexed by the elements of the Weyl group W of
g. Let p be a parabolic subalgebra of g associated with the triangular decomposition
above and Wp ⊂W the corresponding parabolic subgroup. The main object of our
study is the category Op−pres

0 . This is the full subcategory of the principal block of
O, consisting of all modules M , having a presentation by projective modules, whose
indecomposable direct summands are indexed by the elements of the set W (p) of
distinguished right coset representatives of maximal length in Wp\W .

We reprove the fact that Op−pres
0 is a module category over a properly stratified

algebra (Theorem 2.16). For a properly stratified algebra one has a class of so-
called standard modules whose role is analogous to the role of standard (Verma)
modules in a highest weight category. Our first result is that standard modules in
Op−pres

0 behave like Verma modules under translation through the wall. That is,
for a standard module ∆(w) and a simple reflection s we have (Proposition 4.2) the
following short exact sequences (both in the categories O0 and Op−pres

0 ):

∆(w)
adjs
↪→ θs∆(w) � ∆(ws) if ws ∈W (p) and ws > w,

∆(ws) ↪→ θs∆(w)
adjs

� ∆(w) if ws ∈W (p) and ws < w,

∆(w)
adjs
↪→ θs∆(w) � ∆(w) if ws �∈W (p).

In fact, the standard objects can also be realized as “thickened” Verma modules. In
Theorem 3.1 we prove an equivalence of categories between Op−pres

0 and modules
having a certain fixed singular central character inside the “thick” category O (i.e.
an enlargement of O in the sense that the Cartan subalgebra acts locally nilpotent).
It generalizes the equivalence from [So3] to the singular situation. In this realization
simple objects are well known. A disadvantage of this setup, however, is the fact
that the usual definition and techniques of translation functors are not available.
Thus we have two equivalent realizations of our category of Harish-Chandra bimod-
ules: as a subcategory in O and as a subcategory of the thick category O. Each
realization has advantages and disadvantages. The most convenient description for
us, however, is Op−pres

0 as both, the classical technique of translation functors and
the restriction techniques (to subalgebras), are available in this context.

The principal series modules inside the categories of Harish-Chandra bimodules
play an important role. Motivated by the results of Irving, which describe principal
series modules as shuffled Verma modules (see [Ir1]), we define shuffled standard
objects. We prove that shuffling defines an auto-equivalence of the bounded derived
categories of O0 (Theorem 5.7) and Op−pres

0 (Theorem 5.9) respectively. This
implies, in particular, that the shuffled standard objects are indecomposable. As
one of our main results we show in Theorem 6.3 that the center of the universal
enveloping algebra of g maps naturally onto their endomorphism rings, which are all
isomorphic to the coinvariant algebra associated with Wp. This is a generalization of
[Be, Section 4] and [So2, Endomorphismensatz] since for p = g the unique standard
object in Op−pres

0 is the big projective module from O0. We also show that the socle
of a standard module in Op−pres

0 is simple, a statement which is quite surprising
from the point of view of Harish-Chandra bimodules.

Since a standard module, considered as an object in O0, has a Verma filtration,
a shuffled standard module has a filtration with principal series modules. Its sub-
module structure is in general completely unknown. It is well known that shuffled



PROJECTIVELY PRESENTABLE MODULES 2941

Verma modules or principal series modules can be described as L(∆,∇) for some
Verma module ∆ and some dual Verma module �. One would expect that re-
placing the (dual) Verma modules by (dual) standard modules one would get the
shuffled standard objects. A character argument however shows that this is not
true. The complexity of the submodule structure of shuffled standard objects mir-
rors the complexity of the submodule structure of tilting and projective objects,
since we prove that the latter have filtrations, subquotients of which are isomorphic
to certain shuffled standard objects (Theorem 5.15 and Theorem 5.16).

In [BGS] it was shown that the quasi-hereditary algebra associated with O0 is
Koszul, in particular, graded. This defines a graded version of O0 and gives graded
lifts of simple, projective and Verma modules. It even happens that translation
functors admit a graded analogue, [St3]. In Sections 7 and 8 we work out the
graded version of the category Op−pres

0 , including graded lifts of standard objects,
properly standard objects and simple objects. Proposition 8.7 shows that the prop-
erly stratified structure on Op−pres

0 is compatible with the grading.
Again, the behavior of the graded versions of standard modules under graded

translations is similar to the behavior of the graded versions of Verma modules.
A combinatorial description of this behavior is given by a parabolic Hecke module
Mp, defined in [De], in the following sense. The graded versions of the standard
modules correspond to the standard basis of the parabolic Hecke module, and
graded translation through the s-wall corresponds to the multiplication by the
Kazhdan-Lusztig self-dual element Cs of the Hecke algebra (Theorem 7.7). In
this picture the graded projective modules correspond to the self-dual Kazhdan-
Lusztig-Deodhar basis of Mp. In this way we obtain a categorification of Mp via
the translation functors on Op−pres

0 . The combinatorics, which we get here, are
the same as the one obtained in the Koszul-dual situation (see [So1, Remark 3.2
(2)]) of the categorification process described in [BFK] via projective functors on
parabolic subcategories of O0 (see also [St2]).

We finish the paper with two detailed examples for the Lie algebra g = sl(3, C).

2. The category of p-presentable modules in O
2.1. General conventions. Throughout the paper we fix the ground field C of
complex numbers. For a Lie algebra a we denote by U(a) the universal enveloping
algebra of a and by Z(a) the center of U(a). If not otherwise stated, modules over
any finite-dimensional associative algebra are always right modules, whereas mod-
ules over universal enveloping algebras are always left modules. For two modules,
M and N say, the trace of M in N , denoted by TrM (N) is the sum of all images of
all homomorphisms from M to N . For an abelian category C we denote by [C] the
corresponding Grothendieck group, and for an exact functor F on C we denote by
[F ] the induced endomorphism of [C]. For a module M of some module category,
C say, we denote by [M ] the image of M in [C], and define the category Add(M)
as the full subcategory of C consisting of all modules which admit a direct sum
decomposition with summands being direct summands of M . We denote by ID the
identity functor.

2.2. The category O. Let g denote a semi-simple finite-dimensional complex Lie
algebra with a fixed triangular decomposition, g = n− ⊕ h⊕ n+, where h is a fixed
Cartan subalgebra of g, and b = h ⊕ n+ is the corresponding Borel subalgebra.
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This defines a set of simple roots π ⊂ R inside the set of all roots. Let W be the
corresponding Weyl group with the length function l. By e and w0 we denote the
shortest and the longest elements in W respectively.

The Bernstein-Gelfand-Gelfand category O = O(g, b), associated with the above
triangular decomposition of g, is defined as the full subcategory in the category of
all g-modules which consists of all finitely generated, h-diagonalizable, and locally
U(n+)-finite g-modules (see [BGG]). Important objects of O are Verma modules
M(λ), defined as follows: for λ ∈ h∗ we first define a b-module structure on Cλ = C

via (h + n)v = λ(h)v for h ∈ h, n ∈ n, and v ∈ C, and then set M(λ) = U(g)⊗U(b)

Cλ; see [Ja, Kapitel 4] (or [Di, Chapter 7]). The module M(λ) has a unique simple
quotient, which we will denote by L(λ).

The action of the algebra Z(g) on every module from O is locally finite and thus,
with respect to this action, the category O decomposes into a direct sum of full
subcategories indexed by the maximal ideals in Z(g):

O =
⊕

m∈MaxZ(g)

Om,

where

Om =
{
M ∈ O|∃k ∈ N : mkM = 0

}
is usually called a block of O.

Any linear map λ : h→ C extends uniquely to an algebra homomorphism from
the symmetric algebra S(h) to C. Via the Harish-Chandra homomorphism, this
defines the maximal ideal mλ of Z(g). From now on we restrict our consideration
to the trivial or principal block O0 = Om0 . Because of Soergel’s equivalence of
categories ([So2, Theorem 11]) our restriction is equivalent to the condition that
we consider a regular block of O. The block O0 can alternatively be described
as the block of O, containing the trivial (one-dimensional) g-module L(0). Simple
modules in O0 are modules {L(w · 0)|w ∈ W}, where · stands for the dot-action of
W on h∗. This action is defined as follows: w · λ = w(λ + ρ) − ρ, where ρ denotes
the half-sum of all positive roots. To simplify our notation, we put L(w) = L(w · 0)
and M(w) = M(w · 0). Every M ∈ O0 has finite length and for w ∈ W we denote
by [M : L(w)] the multiplicity of L(w) in M .

It is well known (see for example [BGG]) that O has enough projective mod-
ules. Let us denote by P (w) the indecomposable projective cover and by I(w) the
indecomposable injective envelope of L(w) respectively. By abstract nonsense, the
category O0 is equivalent to the category of finitely generated right modules over
the finite-dimensional associative algebra A = Endg P , where P =

⊕
w∈W P (w).

The algebra A is quasi-hereditary with respect to the Bruhat order ≤ on W , with
Verma modules being the standard modules (see [CPS]). A filtration, whose sub-
quotients are standard modules, is usually called a standard filtration. In particular,
all projective modules in O have a standard filtration.

The Chevalley anti-involution ω gives rise to a duality on O, that is a contravari-
ant exact involutive equivalence preserving simple modules. This duality, which we
will denote by � (and write also M� instead of �(M) for M ∈ O), is defined
as follows: for M ∈ O the space HomC(M, C) has a natural g-module structure
given by (gf)(m) = f(ω(g)m) for m ∈ M , g ∈ g and f ∈ HomC(M, C). The
maximal h-diagonalizable part M� = HomC(M, C)h−ss of HomC(M, C) is in fact a
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g-submodule and one checks that M� ∈ O. For all w ∈ W one has I(w) ∼= P (w)�.
The modules M(w)�, w ∈W , are called costandard modules in O0.

2.3. The category Op−pres
0 and its abelian structure. Now let p ⊇ b be a

parabolic subalgebra of g. Let p = a⊕h⊥a ⊕n be the Levi decomposition of p, where
n is the nilpotent radical, a⊕h⊥a is the reductive Levi factor, a is semi-simple and h⊥a
is the center of a⊕h⊥a . Denote by Wp the Weyl group of a with the longest element
wp

0 . The set of all longest right coset representatives of W modulo Wp is denoted
by W (p). Put Pp =

⊕
w∈W (p) P (w), Ip =

⊕
w∈W (p) I(w), and B = Bp = End(Pp).

We define the category Op−pres
0 as the full subcategory of O0, which consists of

all modules M , having a presentation P1 → P0 →M → 0, with P1, P0 ∈ Add(Pp).
By [Au, Proposition 5.3], Op−pres

0 is equivalent to the category of finitely generated
right B-modules; it is in fact equivalent to several other categories:

• Harish-Chandra bimodules with generalized trivial character from the left-
hand side and certain singular character from the right-hand side (see [BG]).
• The full subcategory of O0, objects of which have a copresentation by mod-

ules in Add(Ip) (see Remark 2.4).
• The full subcategory ofO0, objects of which are Enright-complete (see [En])

when restricted to a (see [KM1]).
The last realization also connects Op−pres

0 to the parabolic generalizations O(P , Λ)
of O, studied in [FKM1]. In particular, there is a connection to S-subcategories of
O, studied in [FKM2], and to certain categories of Gelfand-Zetlin modules, consid-
ered in [KM2].

The subcategory Op−pres
0 inside O0 is obviously not closed by taking kernels and

cokernels. However, via the equivalence to the category of B-modules, Op−pres
0

inherits an abelian structure. The inclusion i : Op−pres
0 ↪→ O0 is right exact but not

left exact in general. The characterization of exact sequences in Op−pres
0 is quite

natural and looks as follows:

Lemma 2.1. Let

(2.1) . . .
fi−2→ Mi−1

fi−1→ Mi
fi→Mi+1

fi+1→ . . .

be a sequence of modules in Op−pres
0 . Then the following conditions are equivalent:

(i) The sequence (2.1) is exact in Op−pres
0 .

(ii) We have fi ◦ fi−1 = 0 and Homg

(
Pp, Ker(fi)/ Im(fi−1)

)
= 0 for all i.

(iii) The induced sequence

(2.2) . . .
f̃i−2→ Homg(Pp, Mi−1)

f̃i−1→ Homg(Pp, Mi)
f̃i→ Homg(Pp, Mi+1)

f̃i+1→ . . .

is exact.

Proof. The equivalence (i)⇔(iii) follows from the fact that Pp is a projective gen-
erator of Op−pres

0 . The equivalence with (ii) is then also straightforward. �

Corollary 2.2. Let

(2.3) . . .
fi−2→ Mi−1

fi−1→ Mi
fi→Mi+1

fi+1→ . . .

be an exact sequence of modules from O0, and assume that Mi ∈ Op−pres
0 for all i.

Then the sequence (2.3) is also exact as the sequence of modules from Op−pres
0 .
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Proof. The second condition of Lemma 2.1 is obviously satisfied. �
Example 2.3. Let g = sl(2, C) and p = g with simple reflection s. We have a
complex in O0 of the form

0→M(e)� f→ P (s)
g→M(e)� → 0,

where f, g �= 0, which is obviously not exact, but it is exact when considered as a
sequence in Op−pres

0 .

2.4. The category Op−pres
0 and coapproximation. According to [Au, Section 3]

the inclusion functor i has a right adjoint, say j : O0 → Op−pres
0 , which we call the

coapproximation with respect to Pp.
In general, coapproximation functors are defined as follows. Let Q ∈ O0 be

projective and M ∈ O0. Let pM : MQ→→TrQ(M) be a projective cover. Then
the coapproximation jQ with respect to Q is defined on objects by jQ(M) :=
MQ/ TrQ(ker pM ). Any f ∈ HomOo(M, N) can be restricted to a morphism TrQ(M)
→ TrQ(N) and then lifted to a morphism MQ → NQ, which maps ker pM to ker pN .
Hence factorization gives an element jQ(f) ∈ Homg(jQ(M), jQ(N)). One has to
check that all this is well defined and independent of the choices (see [Au, KM1]).
Finally, this defines a functor jQ called coapproximation with respect to Q. In the
following we only consider j = jPp .

Remark 2.4. Dually, one can define approximation with respect to a certain module
and consider Op−copres

0 , the full subcategory in O0 which consists of all modules
M having a copresentation 0 → M → I1 → I2 with I1, I2 ∈ Add(Ip). Duality �

induces an obvious contravariant equivalence Op−copres
0

∼= Op−pres
0 . Further, one

can also show that approximation and coapproximation induce mutually inverse
covariant equivalences between these two categories.

Associated to p we have Zuckermann’s functor z = zp which is defined as fol-
lows: for M ∈ O0 the module z(M) is the maximal submodule of M satisfying
Homg(Pp, z(M)) = 0; the action on morphisms is given by restriction. Denote by
z� = � z � the dual Zuckermann’s functor. The next statement follows immediately
from the definitions.

Lemma 2.5. There is the following exact sequence of functors on O0:

i j
x→ ID→ z� → 0.

Moreover, for every M ∈ O0 the kernel KM of the natural morphism i j(M)
x→ M

satisfies Homg(Pp, KM ) = 0.

Proposition 2.6. The functor � = j � i : Op−pres
0 → Op−pres

0 is a duality on
Op−pres

0 .

In the following we will also write M� instead of �(M).

Proof. � is contravariant because � is contravariant and i, j are covariant. To show
that � is exact, we consider a short exact sequence

(2.4) 0
f0→M1

f1→M2
f2→M3

f3→ 0

in Op−pres
0 . By Lemma 2.1, applying i gives a complex in O, whose homology has

trivial Pp-trace. The latter is still true for the �-dual sequence, since � is exact
on O and preserves simple modules. By Lemma 2.1 it is sufficient to show that i�
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applied to (2.4) gives rise to a complex whose homology has trivial Pp-trace. Using
Lemma 2.5 the sequence (2.4) gives rise to the following commutative diagram:

0 i(M�
1 ) = i j�i(M1)

i(f�
0 )��

x

��

i(M�
2 ) = i j�i(M2)

i(f�
1 )��

x

��

i(M�
3 ) = i j�i(M3)

i(f�
2 )��

x

��

0
i(f�

3 )��

0 (i(M1))�
(if0)�

�� (i(M2))�
(if1)�

�� (i(M3))�
(if2)�

�� 0.
(if3)�
��

From Lemma 2.5 we get that the kernels and cokernels of the vertical maps have
trivial Pp-trace. Hence the homology in the upper row has trivial Pp-trace and
therefore � is exact.

The fact that � preserves simple objects in Op−pres
0 follows from Lemma 2.7

below. From Lemma 2.12 below it follows that � is involutive. �

2.5. Projective, simple and standard objects in Op−pres
0 . The projective

modules P (w) ∈ O0, where w ∈ W (p), are actually objects in Op−pres
0 . In fact, they

constitute an exhaustive list of indecomposable projective objects in Op−pres
0 . We

define S(w) = P (w)/ TrPp(radP (w)) ∈ O0. By construction it is even an object in
Op−pres

0 where it is simple with projective cover isomorphic to P (w).

Lemma 2.7. Let w ∈ W (p). Then the following assertions hold:
(1) The module S(w) ∈ O0 is indecomposable.
(2) The module S(w) ∈ O0 is simple if and only if p = b.
(3) As an object in O0 we have [S(w) : L(w)] = 1 and [S(w) : L(w′)] = 0 for

all w′ ∈ W (p), w �= w′.
(4) Considered as an object in Op−pres

0 , there is an isomorphism S(w)� ∼= S(w)
for all w ∈ W (p)

Proof. The first and the third statements follow immediately from the definition
of S(w). For the second statement it is enough to show that S(w) is not simple
in the case p �= b. But in this case one can find w′ ∈ wWp, w′ �= w, such that
radM(w′) has a primitive element of weight w · 0 and hence the module L(w) on
the top. This implies [S(w) : L(w′)] �= 0 and hence S(w) is not a simple g-module.
To prove the last statement we consider S(w)� ∈ O0. This module has a simple
socle, isomorphic to L(w), and Homg(Pp, S(w)�/L(w)) = 0 by the third statement.
From the definition of j we now get j(S(w)�) ∼= P (w)/ TrPp(radP (w)) ∼= S(w),
completing the proof. �

For w ∈ W (p) we consider the module Pw =
⊕

w′ P (w′), where w′ ∈ W (p)
and w′ < w, and set ∆(w) = P (w)/ TrP w(P (w)) ∈ O0. It is in fact an object
in Op−pres

0 (which will be denoted by the same symbol). In particular, ∆(wp
0 ) =

P (wp
0) in Op−pres

0 . The modules ∆(w) are called standard modules because of their
role in the properly stratified structure on Op−pres

0 , which will be explained later.
These modules have a universal property, analogous to that of Verma modules. To
formulate this we need one more notion. We call M ∈ Op−pres

0 a p-highest weight
module with p-highest weight w ∈ W (p) provided that M is generated by some
v ∈M of weight w · 0 such that nv = 0. For a p-highest weight module we have:

Lemma 2.8. Every p-highest weight module with the p-highest weight w ∈ W (p)
is a homomorphic image of ∆(w).
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Proof. Let M ∈ Op−pres
0 be a p-highest weight module with p-highest weight w ∈

W (p). Since M is generated by v and nv = 0, there is an epimorphism, ϕ say,
from P (w) to M , sending the canonical generator of P (w) to v. But nv = 0 even
implies that TrP w(P (w)) is annihilated by ϕ. Hence, M is a homomorphic image
of ∆(w). �

We denote by P a(w · 0) the projective cover in the category O(a, a ∩ b) of the
simple highest weight module with highest weight w · 0. The p-module structure
on P a(w · 0) is defined via nP a(w · 0) = 0.

Proposition 2.9. Let w ∈W (p).

(1) As g-modules, ∆(w) ∼= U(g)⊗U(p) P a(w · 0).
(2) As an a-module, the module ∆(w) is a direct sum of self-dual projective

modules from O(a, a ∩ b).
(3) As an a-module, the module P (w) is a direct sum of self-dual projective

modules from O(a, a ∩ b).

Proof. Since the module N = U(g) ⊗U(p) P a(w · 0) is generated by an element of
weight w ·0, which is annihilated by n, we can apply Lemma 2.8 and get a surjection
from ∆(w) onto N . On the other hand, using the adjunction

Homg(U(g)⊗U(p) P a(w · 0),−) ∼= Homp(P a(w · 0), ResU(p)(−))

and the projectivity of P a(w · 0), one gets a universal property of N , analogous to
that of ∆(w) given by Lemma 2.8. Therefore, ∆(w) is a homomorphic image of N
and thus N ∼= ∆(w) and the first statement is proved.

Since w ∈W (p), the module P a(w · 0) is the projective cover of a simple Verma
module, and therefore self-dual. Further, U(g) is a direct sum of finite-dimensional
a-modules under the adjoint action. Hence, as an a-module, the module U(g)⊗U(p)

P a(w · 0) is isomorphic to a direct sum of modules of the form E ⊗ P a(w · 0),
where E is a finite-dimensional a-module. Since a self-dual projective object stays
both projective and self-dual after tensoring with a finite-dimensional module, the
second statement follows.

The last statement is now evident, because P (w) is a direct summand of some
E ⊗ P (wp

0) ∼= E ⊗∆(wp
0 ), where E is a finite-dimensional a-module. �

Proposition 2.10. Let M ∈ O0 be a module which, viewed as an a-module, is a
direct sum of self-dual projective modules in O(a, a ∩ b). Then M ∈ Op−pres

0 .

Proof. Recall that self-dual projectives are exactly the projective covers of simple
Verma modules ([Ir2]). Hence, as an a-module (and then of course also as a g-
module), M is generated by elements of weight x · 0, where sx < x for any simple
reflection s ∈Wp (i.e. x ·0 is an a-anti-dominant weight). The projective cover PM

of M in O0 is a direct sum of modules P (w), w ∈W (p), and hence PM ∈ Add(Pp).
As both, M and PM , are direct sums of self-dual projective a-modules (see the last
statement of Proposition 2.9), the kernel K ↪→ PM � M is also a direct sum of
self-dual projective a-modules. As already proved, the projective cover of K must
belong to Add(Pp) and thus the module M is presented by modules from Add(Pp).
This completes the proof. �
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In particular, Propositions 2.9 and 2.10 imply:

Corollary 2.11. The modules ∇(w) = ∆(w)� and I(w) ∼= P (w)� belong to
Op−pres

0 for all w ∈ W (p).

From Corollary 2.11 we derive that the indecomposable injective objects in
Op−pres

0 are precisely the injective modules I(w), w ∈ W (p). The modules ∇(w)
are called costandard modules, because of their role in the properly stratified struc-
ture which will be explained in Subsection 2.6. First, however, we would like to
finish the proof of Proposition 2.6.

Lemma 2.12. The functor � � is isomorphic to ID on Op−pres
0 .

Proof. We have P �
p ∈ Op−pres

0 by Corollary 2.11 and thus P �
p = j(P �

p ) = P �
p .

Therefore, � is isomorphic to � on Add(Pp) and thus � � is isomorphic to ID on
Add(Pp). The latter functors must be isomorphic on the entire category Op−pres

0 ,
since both functors are exact and Pp is a projective generator of Op−pres

0 . �

Recall that a Verma flag of a module in O0 is a filtration, whose subquotients
are isomorphic to Verma modules. As an interesting implication from the above
results we get

Proposition 2.13. Let M ∈ O0. Then the following conditions are equivalent:
(i) M has a filtration, subquotients of which are isomorphic to modules ∆(w),

w ∈W (p).
(ii) M has a Verma flag and, viewed as an a-module, it is a direct sum of

self-dual projective modules in O(a, b ∩ a).
(iii) M is n−-free and, viewed as an a-module, it is a direct sum of self-dual

projective modules in O(a, b ∩ a).
(iv) For all w ∈W we have Ext1O

(
M, M(w)�)

= 0, and, viewed as an a-module,
M is a direct sum of self-dual projective modules in O(a, b ∩ a).

Proof. The equivalence (ii)⇔(iv) is well known; see for example [Rin, Section 4].
The equivalence (ii)⇔(iii) follows from the standard fact that a module in O has
a Verma flag if and only if it is n−-free; see for example [Di, Chapter 7]. The im-
plication (i)⇒(ii) is trivial and the inverse implication follows from Proposition 2.9
by induction on the length of a Verma filtration. �

We will say that the module M ∈ Op−pres
0 (or M ∈ O0) has a standard filtration

or standard flag provided that there is a filtration of M , whose subquotients are
isomorphic to standard modules. Analogously, one defines costandard filtrations or
costandard flags. We denote by F(∆) (resp. F(∇)) the full subcategory in Op−pres

0

consisting of all modules, having a standard (resp. costandard) filtration. Note that
if a module in Op−pres

0 , considered as an object in O0, has a standard filtration,
then (by Corollary 2.2) it also has a standard filtration, considered as an object in
Op−pres

0 .

Corollary 2.14. The full subcategory F(∆) of O0 is closed under taking direct
summands.

Proof. Since the last condition in Proposition 2.13 is invariant under taking direct
summands, the statement follows. �
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2.6. Properly stratified structure on Op−pres
0 . First, we revise the properly

stratified structure on Op−pres
0 established in [FKM1]. We recall (see [Dl]) that

a finite-dimensional associative algebra A with a fixed order ≤ on the set Λ of
isomorphism classes of simple A-modules (the latter will be denoted by S(i), i ∈ Λ)
is called properly stratified provided that there exist some A-modules ∆(i) and ∆(i),
i ∈ Λ, such that
(PS1) The projective cover P (i) of S(i) surjects onto ∆(i) and the kernel of this

surjection has a filtration, subquotients of which are isomorphic to ∆(j)
with j < i.

(PS2) The module ∆(i) surjects onto S(i) and the kernel of this surjection has a
filtration, subquotients of which are isomorphic to S(j) with j > i.

(PS3) The module ∆(i) has a filtration subquotients of which are isomorphic to
∆(i).

The modules ∆(i) are called standard modules and the modules ∆(i) are called
proper standard modules.

Remark 2.15. In the definition above we have chosen the order, opposite to the
classical order on properly stratified algebras (as for example in [Dl]).

For w ∈ W (p) we define the a-module Sa(w) = P a(w·0)/ TrP a(w·0)(radP a(w·0))
and then ∆(w) = U(g) ⊗U(p) Sa(w), where the p-module structure on Sa(w) is
defined via nSa(w) = 0. For a simple, projective or standard object M ∈ Op−pres

0

we denote the B = End(Pp)-module Homg(End(Pp), M) with the same symbol by
abuse of notation.

We consider the set {S(w) : w ∈ W (p)} of iso-classes of simple B-modules with
the order induced from the Bruhat order on W . The following theorem shows
that there is no confusion with the notation ∆(w) we use for standard modules in
Op−pres

0 .

Theorem 2.16. The algebra B is properly stratified with modules ∆(w) and ∆(w),
w ∈ W (p), being the standard and proper standard modules respectively.

Proof. (PS1) follows from Propositions 2.13 and 2.9. (PS2) follows from the con-
struction of ∆(w) and the universal property of the tensor product. Finally, (PS3)
follows from (PS2) and exactness of the tensor induction from p to g, considering
any filtration 0 = N0 ⊂M1 ⊂ · · · ⊂ Nl = P a(w ·0) such that P a(w ·0) � Mi/Mi−1

and dim Homa(P a(w · 0), Mi/Mi−1) = 1 for all i. �
Remark 2.17. The proper standard modules ∆(w) can be constructed in many
different ways. We have defined them via parabolic induction. On the other
hand, ∆(w) ∼= ∆(w)/ Tr∆(w)(rad∆(w)) and is also isomorphic to the module
∆(w)/R∆(w), where R = rad(Endg(∆(w))). As an object in O0, the module
∆(w) is isomorphic to the shuffled Verma module M(w, wp

0) in the sense of [Ir1],
or to the corresponding twisted Verma module in the sense of [AL].

We define the proper costandard modules as �(w) ∼= ∆(w)� for all w ∈ W (p).
One can also define properly stratified algebras in a dual way using injective modules
and introducing costandard and proper costandard modules. The corresponding
axioms will be dual with respect to those, described in (PS1), (PS2) and (PS3).
We also remark that, although ∆(w)� ∼= ∆(w)�, there is no g-module isomorphism
∆(w)� ∼= ∆(w)� in general.
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Considering ∆(w) as an object in O0, we have the following statement:

Proposition 2.18. Let w ∈ W (p). The module ∆(w) ∈ O0 has a Verma flag
of length |Wp|. The subquotients in this filtration are exactly the modules M(w′),
w′ ∈Wpw, each occurring once.

Remark 2.19. Applying the non-exact functor j to any Verma flag, given by Propo-
sition 2.18, one gets a filtration of the standard module ∆(w) in which all sub-
quotients are isomorphic to the proper standard module ∆(w). This is exactly the
filtration, required by (PS3).

Proof. We write ∆(w) ∼= U(g)⊗U(p) P a(w · 0) with the notation of Proposition 2.9.
The BGG-reciprocity implies that the self-dual projective module P a(w · 0) ∈
O(a, a ∩ b) has a Verma flag of length |Wp| with subquotients Ma(w′), w′ ∈Wpw,
each occurring exactly once. Applying the exact functor U(g) ⊗U(p) − to this fil-
tration produces the desired filtration. �

3. An alternative description of Op−pres
0 via the thick category O

The ideas and results of [So3] can be used to give an alternative description of the
category Op−pres

0 in terms of certain categories of Harish-Chandra bimodules and
the “thickened” version of the category O. The advantage of this approach is that
in the latter categories the notion of a simple object coincides with the notion of
a simple g-bimodule and a simple g-module respectively. The promised alternative
description requires some new definitions and notions.

3.1. Thick category O. For a g-module M , an integer i ∈ {1, 2, 3, . . .}, and
µ ∈ h∗ we denote by

M i
µ = {v ∈M |(h− µ(h))iv = 0 for all h ∈ h}

the corresponding generalized weight space of exponent i. Note that M i
µ ⊂ M i+1

µ

by definition. Set M∞
µ =

⋃
i≥1 M i

µ.
Let λ ∈ h∗ be dominant. For i ∈ {1, 2, 3, . . .} ∪ {∞} we define the i-thickened

category Oi
λ as the full subcategory in the category of all g-modules, which consists

of all g-modules M , which
• are locally b-finite;
• are annihilated by mm

λ , m� 0;
• admit a decomposition M =

⊕
µ∈h∗ M i

µ.

We remark that O1
λ = Oλ is just the corresponding block of the classical cat-

egory O. One also has O∞
λ =

⋃
i≥1Oi

λ. The category
⊕

λO∞
λ is called the thick

category O. However, the main object of our interest will be the subcategory Oλ

of O∞
λ , which is defined as the full subcategory of O∞

λ , consisting of all modules
M annihilated by mλ. (For λ regular, this category was denoted by O′

λ in [So3]).
In Subsection 3.3 we will show that there exists λ ∈ h∗ such that the categories
Op−pres

0 and Oλ are equivalent.

3.2. Harish-Chandra bimodules. Let H denote the category of all finitely-
generated U(g)-bimodules, which decompose into a direct sum of finite-dimensional
g-modules under the adjoint action of g. Such bimodules are called Harish-Chandra
bimodules. For dominant λ, µ and i, j ∈ {1, 2, 3, . . .} ∪ {∞} we define i

λH
j
µ as the

full subcategory of H which consists of all bimodules M such that mi
λM = 0 if
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i < ∞ (mk
λM = 0 for k � 0 if i = ∞) and Mmj

µ = 0 if j < ∞ (Mmk
µ = 0 for

k � 0 otherwise). For g-modules M and N , the space HomC(M, N) becomes a
U(g)-bimodule in a natural way ([Ja, 6.2]). Let L(M, N) denote its largest sub-
module contained in H (see [Di, Proposition 1.7.9]). We refer the reader to [Ja] for
the standard properties of these categories.

3.3. An alternative description of Op−pres
0 .

Theorem 3.1. Let λ be dominant and integral such that the stabilizer Wλ of λ in
W coincides with Wp. Then there is an equivalence of categories Op−pres

0
∼−→ Oλ.

Proof. [BG, Theorem 5.9] provides an equivalence, β : ∞
0 H1

0
∼−→ O0, which is

extended in [So3] to an equivalence β : ∞
0 H∞

0
∼−→ O0. Denote by η : ∞

0 H1
0

∼−→ 1
0H

∞
0

the equivalence, obtained by interchanging the left and the right actions. It is
shown in [So3] that, restricting β to 1

0H
∞
0 , gives an equivalence, γ, which induces

an equivalence, ε say, such that the following diagram commutes:

(3.1) ∞
0 H1

0

β

��

η �� 1
0H

∞
0

γ

��
O0

ε �� O0

On the other hand, [BG, Theorem 5.9] provides an equivalence α : ∞
0 H1

λ
∼−→

Op−pres
0 . The inclusion i : Op−pres

0 ↪→ O0 defines an inclusion, i′ say, such that the
following diagram commutes:

(3.2) ∞
0 H1

λ

α

��

i′ �� ∞
0 H1

0

β

��
Op−pres

0

i �� O0

Denote by θl : 1
0H

∞
0 → 1

λH
∞
0 and θr : ∞

0 H1
0 → ∞

0 H1
λ the left and the right

translations from 0 to λ respectively. Since θl commutes naturally with tensoring
over U(g) with thick Verma modules from the right-hand side, the last commutative
diagram extends to the following:

(3.3) ∞
0 H1

λ

α

��

i′ �� ∞
0 H1

0

β

��

η �� 1
0H

∞
0

θl
��

γ

��

1
λH

∞
0

γ′

��
Op−pres

0

i �� O0
ε �� O0

θ �� Oλ

where θ : O0 → Oλ is the translation from 0 to λ and γ′ is the induced equivalence,
making the diagram commutative.

Lemma 3.2. θl η i′ ∼= η.
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Proof. Let X ∈ ∞
0 H1

λ. We have

θl η i′(X) ∼= θl η
(L(M(0), X ⊗U(g) M(λ))

)
(by (3.2) and [BG, Theorem 5.9])

∼= η θr
(L(M(0), X ⊗U(g) M(λ))

)
(as θl = η θr η)

∼= η
(L(M(λ), X ⊗U(g) M(λ))

)
(by [Ja, 6.33])

∼= η(X) (by [BG, Theorem 5.9]).

The isomorphisms above are all natural and the statement follows. �

Define F = θ ε i : Op−pres
0 → Oλ and G = α η−1 (γ′)−1 : Oλ → Op−pres

0 . Then
we have

G F ∼= α η−1 (γ′)−1 θ ε i
∼= α η−1 (γ′)−1 θ ε β i′ α−1 (by (3.2))
∼= α η−1 (γ′)−1 θ γ η i′ α−1 (by (3.1))
∼= α η−1 (γ′)−1 γ′ θl η i′ α−1 (by (3.3))
∼= α η−1 ID η α−1 (by Lemma 3.2)
∼= ID,

and
F G ∼= θ ε i α η−1 (γ′)−1

∼= θ γ η i′ η−1 (γ′)−1 (by (3.3))
∼= γ′ θl η i′ η−1 (γ′)−1 (by (3.3))
∼= γ′ η η−1 (γ′)−1 (by Lemma 3.2)
∼= ID.

Hence F defines an equivalence of categories with inverse G. �

Remark 3.3. The equivalence, given by Theorem 3.1, sends the proper standard
module ∆(w) in Op−pres

0 to the usual Verma module M(w−1 · λ) in Oλ and the
standard module ∆(w) in Op−pres

0 to the “maximally thickened” extension of the
corresponding Verma module in Oλ. The existence of the duality on Op−pres

0 also
follows now easily from the usual duality on Oλ.

4. Standard modules in Op−pres
0 and their translations

In this section we study the behavior of standard modules in the categoryOp−pres
0

under translation functors. For a simple reflection s we denote by θs : O → O the
translation functor through the s-wall. The functor θs is self-adjoint, and we have
natural transformations adjs : ID→ θs and (adjs) : θs → ID. To simplify notation,

the adjunction morphisms M
adjs(M)−→ θsM and θsM

adjs(M)−→ M will be denoted by

M
adjs−→ θsM and θsM

adjs

−→ M respectively. From Proposition 2.18 one gets that
the adjunction morphism ∆(w)

adjs−→ θs∆(w) is injective. We refer the reader to [Ja]
and [GJ, Section 3] for details.

In what follows we will often use the following statement.

Lemma 4.1. Let M ∈ O0 be n−-free and, as a-module, a direct sum of self-dual
projective modules in O(a, a∩b). Then for any p-highest weight w of M there exists
an embedding ∆(w) ↪→ M . Moreover, the cokernel of this embedding is again n−-
free and (its restriction) is a direct sum of self-dual projective modules in O(a, a∩b).
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Proof. Let N ⊂M be the submodule generated by the vectors of M of weight w · 0.
From Lemma 2.8 we get that N is a homomorphic image of N̂ =

⊕k
i=1 ∆(w),

where k is assumed to be minimal. The minimality of k, the self-duality, and
the projectivity of both M and ∆(w) as a-modules imply that the restriction of
N̂ � N to the weight space w · 0 is injective. Since both M and ∆(w) are n−-free,
the constructed map must have trivial kernel and thus N ∼= N̂ . Everything else is
straightforward. �

The following crucial fact describes the behavior of standard modules under
translations through the wall.

Proposition 4.2. Let w ∈W (p), and let s be a simple reflection. Then the module
θs∆(w) ∈ O0 (or Op−pres

0 respectively) has a standard filtration of length two.
Moreover, in both categories it fits into one of the following short exact sequences:

∆(w)
adjs
↪→ θs∆(w) � ∆(ws) if ws ∈ W (p) and ws > w,

∆(ws) ↪→ θs∆(w)
adjs

� ∆(w) if ws ∈ W (p) and ws < w,

∆(w)
adjs

↪→ θs∆(w) � ∆(w) if ws �∈ W (p).

Proof. By Corollary 2.2 it is enough to prove the statement for O0. Our strategy
is the following: first we use that θs doubles the number of simple Verma subquo-
tients to prove the first part of the theorem. For the first two sequences we use
the injectivity (surjectivity) of the adjunction morphism and the fact that θs∆(w)
contains a unique submodule (has unique quotient), isomorphic to the standard
modules given by the corresponding exact sequence above. For the last part we use
the fact that ∆(w) is a direct sum of self-dual a-projectives.

Proposition 2.18 implies that ∆(w) is n−-free and by Proposition 2.9 it is a
direct sum of self-dual projective a-modules. Then the module θs∆(w) will also
have both properties. Now let x ∈ {w, ws} be minimal if ws ∈ W (p), and x = w
otherwise. Then every vector v ∈ θs∆(w) of weight x · 0 satisfies nv = 0 and
hence there is an embedding of ∆(x) into θs∆(w) by Lemma 4.1. Let K be the
cokernel. By the same arguments there is an embedding of some ∆(x′) into K,
and the cokernel K ′ of the last embedding is again n−-free. By [GJ, 3.6] we have
[θs∆(w) : L(w0)] = 2[∆(w) : L(w0)], hence [K ′ : L(w0)] = 0 by Proposition 2.18
and therefore K ′ = 0. Furthermore, we get K ∼= ∆(xs) comparing the highest
weights and therefore θs∆(w) has a standard filtration of length two as indicated.
It remains to prove that the adjunction morphisms fit into these sequences.

Assume now that ws ∈ W (p) and ws > w. Then the adjunction morphism
∆(w) ↪→ θs∆(w) is injective. As ws > w, we already saw that the standard
subquotients of a standard filtration of θs∆(w) are ∆(w) and ∆(ws). But, since
ws > w we have [∆(ws) : S(w)] = 0 in Op−pres

0 and thus the kernel of θs∆(w) �
∆(ws) coincides with the image of adjs : ∆(w)↪→θs∆(w). The case ws ∈ W (p),
ws < w, follows by analogous arguments.

Finally, let us assume that ws �∈ W (p). We saw already that both subquotients
of a standard filtration of θs∆(w) are isomorphic to ∆(w) and that adjs(∆(w)) is
injective. On the other hand, both ∆(w) and θs∆(w), considered as a-modules,
are direct sums of self-dual projectives, and thus the image of the adjunction is
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an a-direct summand of ∆(w). This implies that the quotient is again a direct-
sum of self-dual a-projectives and another application of Lemma 4.1 completes the
proof. �

Corollary 4.3. Both F(∆) and F(∇) are stable under translation functors.

Proof. For F(∆) the statement follows from Proposition 4.2, using exactness of
translation functors. Since � commutes with all θs, the statement for F(∇) follows
as well. �

Corollary 4.4. Let w ∈W (p) and let s be a simple reflection such that ws ∈ W (p).
Then, θs∆(w) is indecomposable and θs∆(w) ∼= θs∆(ws) (as modules both in O0

and Op−pres
0 ).

Proof. The first two sequences of Proposition 4.2 imply that the head of θs∆(w)
is contained in L(w) ⊕ L(ws). On the other hand, the self-adjointness of θs im-
plies that it only contains simple modules which are not annihilated by θs, i.e.,
θs∆(w) has simple head and is therefore indecomposable. To prove the second
statement let us assume that w < ws. From the self-adjointness of θs we get
Homg(θs∆(w), θs∆(ws)) ∼= Homg(∆(w), θ2

s∆(ws)). Taking into account θ2
s
∼=

θs ⊕ θs and Proposition 2.9, we get from Proposition 4.2 that

dim Homg(∆(w), θs∆(ws) ⊕ θs∆(ws)) = dim Homg

(
∆(w), θs∆(w)⊕ θs∆(w)

)
= 2 dimEnda

(
P a(w · 0)

)
= 2|Wp|.

We already know that both θs∆(w) and θs∆(ws) have a simple top isomorphic to
L(ws). Hence [rad θs∆(ws) : L(ws)] = 2|Wp| − 1 by Lemma 2.18 and therefore

dim Homg

(
θs∆(w), rad θs∆(ws)

) ≤ 2|Wp| − 1.

Therefore, there exists an element in Homg(θs∆(w), θs∆(ws)), whose image is not
contained in the radical of θs∆(ws). Since θs∆(ws) has a simple top, a comparison
of characters shows that the last homomorphism must be an isomorphism. �

5. Shuffling in Op−pres
0

5.1. Shuffling and coshuffling on O0 and their derived functors. Let M ,
N ∈ O0. For a simple reflection s we denote by KsM and CsM the kernel of the

adjunction morphism M
adjs−→ θsM and the cokernel of the adjunction morphism

θsM
adjs−→ M respectively. By functoriality of θs, each f ∈ Homg(M, N) gives rise

to unique morphisms Ksf ∈ Homg(KsM, KsN) and Csf ∈ Homg(CsM, CsN) via
restriction and factorization respectively. Let Ks and Cs respectively denote the
resulting endofunctors on O0. By construction, Ks is left exact and Cs is right
exact. The functor Cs is called shuffling functor (with respect to s) and is studied
in [Ir1]. We call Ks coshuffling with respect to s. They are connected by the
following.

Lemma 5.1. Let s be a simple reflection. Then (Cs, Ks) is an adjoint pair of
functors.
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Proof. Let M , N ∈ O0. Applying Homg(−, N) and Homg(M,−) to the exact
sequences

M
adjs−→ θsM −→ CsM → 0, and 0→ KsN −→ θsN

adjs−→ N,

respectively, gives the following diagram with exact rows:

0 �� Homg(CsM, N) ��

h

��

Homg(θsM, N)
◦ adjs ��

	
��

Homg(M, N)

0 �� Homg(M, KsN) �� Homg(M, θsN)
adjs ◦ �� Homg(M, N).

The self-adjointness of θs induces the middle vertical isomorphism. By the definition
of the adjunction morphisms, the square on the right-hand side commutes. Hence,
it induces a natural homomorphism h as depicted in the diagram. By the five
lemma, h is an isomorphism and the lemma follows. �

Moreover, the two functors are related by duality:

Lemma 5.2. For any simple reflection s, there is an isomorphism Ks
∼= � Cs � of

endofunctors on O0

Proof. For M ∈ O0 we consider the exact sequence M
adjs−→ θsM −→ CsM → 0.

Dualizing gives an exact sequence 0 → (CsM)� −→ (θsM)� (adjs)�−→ M�. The
duality � commutes with θs and the isomorphism ϕs : �θs→̃θs� can be chosen such
that the following diagram commutes:

(θsM)�

(adjs)�

��������������������

ϕs(M)

��
θs(M�)

adjs
�� M�.

This defines an isomorphism (CsM)� ∼= Ks(M�) which is canonical. Hence, we get
an isomorphism of functors � Cs

∼= Ks �. The statement of the lemma follows. �

Let LiCs denote the i-th left derived functor of Cs. It is described by the
following.

Proposition 5.3. For any simple reflection s the following holds:
(1) LiCsM(x) = 0 for x ∈W , i > 0.
(2) Cs is exact when restricted to the full subcategory of modules having a

Verma flag.

(3) LiCs =

{
ker(adjs) if i = 1,

0 if i > 1.

Remark 5.4. Dual statements hold for RiKs, the i-th right derived functor of Ks.

Proof. Let V denote the full subcategory of O0 given by objects whose socle is
a direct sum of the simple Verma module. In particular, Verma modules and all
submodules of projective objects are objects of V . Note that adjs(M) is injective for
any M ∈ V . Hence, the Snake Lemma implies the exactness of Cs when restricted
to V . This proves (1), (2) and the second part of (3). For N ∈ O0 arbitrary we
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choose a projective cover P
p→→ N . Let K denote the kernel of p. The Snake Lemma

gives a short exact sequence

0→ ker(adjs(M)) −→ CsK −→ CsP −→ CsM → 0.

The first part of the last statement follows and the proposition is proved. �

Corollary 5.5. Let s be a simple reflection. When restricted to the full subcategory
of modules with Verma flag, the adjunction morphism induces an isomorphism of
functors KsCs

∼= ID.

Proof. We first claim that KsCs is exact on modules with Verma flag. By the
definition of Cs the head of CsM for any M ∈ O0 is not annihilated by θs. Hence,

the adjunction morphism θs(CsM)
adjs→ CsM is surjective. Now given a short exact

sequence S of modules with Verma flag we get by the previous Proposition 5.3 a
short exact sequence CsS of modules, where adjs is surjective. The Snake Lemma
implies the claim.

Now let x ∈ W such that xs > x. Then KsCsM(x) ∼= KsM(xs) ∼= M(x). On
the other hand, there is a short exact sequence

0→M(xs)→M(x)→ Q→ 0,

where θsQ = 0. Hence, by definition of Cs, the Snake Lemma gives a short exact
sequence of the form Q ↪→ CsM(xs)→→M(xs). Again by the Snake Lemma (and
the definition of Ks), we get a short exact sequence of the form KsCsM(xs) ↪→
M(x)→→Q. This implies KsCsM(xs) ∼= M(xs). Therefore, we have an isomorphism
KsCsM(x) ∼= M(x) for any x ∈ W , which is given by the adjunction morphism
KsCs → ID. The full statement follows now easily by induction on the length of a
Verma flag. �

Corollary 5.6. When restricted to the full subcategory of projective modules, the
adjunction morphism induces an isomorphism KsCs

∼= ID for any simple reflection
s.

Proof. The claim follows from Corollary 5.5 because every projective has a Verma
flag. �

Let Db(O0) denote the bounded derived category ofO0. For any simple reflection
s we consider the endofunctors LCs and RsKs of Db(O0) induced from Cs and Ks

respectively. The last corollary motivates the following.

Theorem 5.7. For any simple reflection s, the functor LCs defines an auto-
equivalence of Db(O0) with inverse functor RKs.

Proof. By Corollary 5.6, the adjunction induces a natural isomorphism RKs LCsP∼= P for any projective module P ∈ O0, since CsP is acyclic for Ks. On the other
hand, any object of Db(O0) is quasi-isomorphic to a finite complex including only
projective objects. Hence RKs LCs

∼= ID. Dually, we have LCsRKsI ∼= I via
the adjunction morphism for any injective object I. Now, any object of Db(O0)
is quasi-isomorphic to a finite complex including only injective objects. Hence
LCsRKs

∼= ID. �

Remark 5.8. The previous theorem follows directly by arguments used in [Ric]: We
consider the following (co)complexes of endofunctors on O0:
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(Cs)• : · · · −→ 0 −→ ID
adjs−→ θs −→ 0 −→ · · ·

(Ks)• : · · · −→ 0 −→ θs
adjs−→ ID −→ 0 −→ · · · ,

where θs is always concentrated in degree zero. Applying the (co)complex to objects
of Db(O0) and taking the total complex of the resulting double complex defines two
endofunctors on Db(O0) which coincide with LCs and RKs, respectively. These
are exactly the functors described in [Ric] in the setup of reductive groups in pos-
itive characteristic. Rickard proves that such functors are inverse to each other
and therefore define an auto-equivalence on the derived category corresponding to
regular integral blocks. His arguments can be transfered mutatis mutandis to our
situation, giving an alternative proof of Theorem 5.7.

5.2. Shuffling and coshuffling on Op−pres
0 and their derived functors. Shuf-

fling with respect to a simple reflection s preserves the category Op−pres
0 . This

is clear in the picture of Harish-Chandra bimodules. To see this directly we first
observe that if M ∈ O0 has a projective cover contained in Add(Pp), then so
does CsM . Indeed, a projective cover P

p→→ M gives a surjection f : θsP
can→→

CsP
Csp→→ CsM and θs preserves Op−pres

0 . We assume now that M ∈ Op−pres
0 . Note

that ker(Csp) is a quotient of Cs(ker p), hence its projective cover is contained in
Add(Pp).

Given a simple object L = L(x) ∈ O0 such that x /∈ W (p), the short exact
sequence P ↪→ θsP→→CsP implies Ext1O(CsP, L) = 0. Altogether, the short exact

sequence ker(Csp) ↪→ CsP
Csp→→ CsM implies Ext1O(CsM, L) = 0. Hence the outer

terms in the following exact sequence

Homg(θsP, L) −→ Homg(ker f, L) −→ Ext1O(CsM, L) = 0

vanish, i.e., the projective cover of kerf is contained in Add(Pp). This shows that
CsM ∈ Op−pres

0 , that is, Cs preserves Op−pres
0 .

Of course, coshuffling does not preserve Op−pres
0 in general. If we consider

Db(Op−pres
0 ), the bounded derived category of Op−pres

0 , then we get the follow-
ing analogue of Theorem 5.7:

Theorem 5.9. The composition RjLCs Li defines an auto-equivalence of the cat-
egory Db(Op−pres

0 ) with inverse RjRKs Li.

Proof. First we consider the category D−(Op−pres
0 ). Note that j i = ID on Op−pres

0

and i j = ID when restricted to the subcategory of p-presentable modules in O0.
Since Cs preserves Op−pres

0 , we have an adjoint pair of functors (F, G), where
F = jCs i and G = jKs i. The adjunction morphism ID → GF defines an iso-
morphism for any projective object P ∈ Op−pres

0 (using the fact that Cs preserves
Op−pres

0 and Corollary 5.6). On the other hand, P is acyclic for F and F (P ) is
acyclic for G by definition of the functors. Therefore, the adjunction defines an
isomorphism (RjRKs Li) (Rj LCs Li) ∼= ID when restricted to projective modules
(considered as objects in the derived category). Now, any object in Op-pres

0 can be
replaced by a (possibly infinite) negative complex including only projectives. Hence
(RjRKs Li) (Rj LCs Li) ∼= ID as endo-functors of D−(Op−pres

0 ).
Consider now the category D+(Op−pres

0 ). Recall that any injective object I ∈
Op−pres

0 is a direct sum of projective-injective modules from O(a, a∩b) and that the
adjunction morphism adjs(I) is surjective for any simple reflection s. Hence KsI is
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p-presentable by Proposition 2.10. Therefore, the adjunction morphism FG → ID
defines an isomorphism j Cs i jKs i(I) = jCs Ks i(I) ∼= I, giving rise to the desired
isomorphism of functors (Rj LCs Li) (RjRKs Li) ∼= ID.

Using Proposition 5.3 and Remark 5.4 we obtain that RjLCs Li and RjRKs Li

both preserve Db(Op−pres
0 ). Hence the statement of the theorem follows now from

what has been proved in the first two paragraphs and the fact that the category
Db(Op−pres

0 ) is the intersection of the categories D−(Op−pres
0 ) and D+(Op−pres

0 ).
�

5.3. Shuffled standard objects. Let x ∈ W with a fixed reduced expression
x = s1 · . . . · sr. We define Cs = Csr · · · Cs1 and Kx = Ksr · · · Ks1 . Note that
(Cx, Kx−1) defines an adjoint pair of functors by Lemma 5.1. For M ∈ O0 we call
Kx(M) the x-coshuffle of M and Cx(M) the x-shuffle of M . So far it is not clear
that these definitions do not depend on the chosen reduced expression. To see this
we have to work in the setup of Harish-Chandra bimodules. Since we do not want
to introduce too many new notations, we just sketch the proof. For details we refer
to [St1]:

Lemma 5.10. Let x ∈ W and M ∈ O0. Up to isomorphism, both KxM and CxM
are independent of the reduced expression of x.

Sketch of the proof. For n ∈ N and λ ∈ h∗ we consider the thickened Verma mod-
ules

Mn(λ) = U(g)⊗U(b) S(h)/(kerλ)n.

Note that M1(λ) = M(λ) is the usual Verma module. Let η : ∞
0 H∞

0 −→ ∞
0 H∞

0

denote the endofunctor which is given by switching the left and right action of
g. Since tensoring with finite dimensional left (or right) g-modules preserves H,
one can define translations through the wall. We fix a simple reflection s. Let θl

s

and θr
s denote the translation through the s-wall from the left and right hand side

respectively. Let El (and Er respectively) be a finite dimensional U(g)-bimodule
with trivial right (left) action. It is easy to see that there are isomorphisms η(X ⊗
El) ∼= η(X) ⊗ Er and η(X ⊗ Er) ∼= η(X) ⊗ El for any X ∈ ∞

0 H∞
0 . This implies

isomorphisms of functors (for details see [Ja, 6.33–6.35])

η θr
s
∼= θl

s η and η θl
s
∼= θr

s η.(5.1)

Let kr
s denote the endofunctor on ∞

0 H∞
0 which is given by taking the kernel of

the adjunction morphism r-adjs : θr
s → ID. Similarly, let kl

s denote the endofunctor
given by taking the kernel of the adjunction morphism l-adjs : θl

s → ID. The
isomorphisms (5.1) imply η kr

s
∼= kl

s η.
Now let M , N ∈ O∞

0 (see section 3.1). Translation gives a natural isomorphism
θr

sL(M, N) ∼= L(θsM, N) such that the following diagram with exact rows and
induced isomorphism q commutes:

(5.2) 0 �� kr
sL(M, N) ��

q

��

θr
sL(M, N)

r-adjs ��

	
��

L(M, N)

0 �� L(CsM, N) �� L(θsM, N)
◦ adjs �� L(M, N),
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where Cs denotes the corresponding shuffling functor in O∞
0 . Since the modules

Mn(x ·0) behave similar to Verma modules under translation, we get CsM
n(x ·0) ∼=

Mn(xs · 0) if xs > x.
On the other hand (see [So3]), any X ∈ ∞

0 H∞
0 is isomorphic to L(Mn(0), N)

for some n ∈ N and N ∈ O∞
0 . Hence, with M = Mn(0), the diagram (5.2)

above implies kr
sX
∼= L(Mn(s · 0), N) and inductively kr

xX = kr
sr
· . . . · kr

s1
X ∼=

L(Mn(x · 0), N) for any reduced expression x = s1 · . . . · sr of x. In particular, it
does not depend on the actual choice of the reduced expression.

A diagram, analogous to (5.2), provides an isomorphism,

kl
sX
∼= kl

sL(Mn(0), N) ∼= L(Mn(0), KsN),

where Ks denotes the coshuffling on O∞
0 . With the isomorphism of functors η kr

s
∼=

kl
s η we get that kl

xX = kl
sr
· . . . ·kl

s1
X does not depend on the choice of the reduced

expression for x and hence kl
xX ∼= L(Mn(0), KxN) as well. Therefore, KxN does

not depend (up to isomorphism) on the reduced expression of x (by the equivalence
of [So3]). The arguments for CxM are analogous. �

Remark 5.11. One can show that Kx and hence Cx are independent of the reduced
expression of x even as functors (see [St1]).

For x ∈ W (p) and y ∈ W we define ∆(x, y) = Cy(∆(x)) (it is well defined by
Lemma 5.10). In particular, ∆(x, e) = ∆(x). To illustrate this definition we will
give two detailed examples in Section 9. For w ∈ W we denote by w the longest
element in the coset Wpw. The basic properties of ∆(x, y) are collected in the
following statement:

Proposition 5.12. Let x ∈ W (p) and y ∈ W . In both O0 and Op−pres
0 the

following holds:

(1) Let s be a simple reflection such that ys > y. The adjunction morphism on
∆(x, y) is injective and fits into the following short exact sequence:

0→ ∆(x, y)
adjs−→ θs∆(x, y)→ ∆(x, ys)→ 0.

(2) We have [∆(x, y)] = [∆(xy)], i.e., the characters of the modules ∆(x, y)
and ∆(xy) coincide.

(3) ∆(x, y)� ∼= ∆(xw0, w0y).
(4) ∆(x, y) is indecomposable.
(5) Let s be a simple reflection such that xs > x and sy < y. Then ∆(xs, sy) ∼=

∆(x, y).
(6) Let s be a simple reflection. Then θs∆(x, y) ∼= θs∆(x, ys).

Proof. The proof is the same as the proof of corresponding statements for shuffled
Verma modules ([Ir1]) and twisted Verma modules ([AL, Section 2]). �

Remark 5.13. One can make a parallel with [AL, Section 2] and say that the mod-
ules {∆(x, y)} are uniquely defined by properties described in Proposition 5.12
together with ∆(e, e) = ∆(e). Hence they define a family of “twisted standard
modules” in Op−pres

0 . One might expect that ∆(x, y) corresponds to L(∆(w0 · 0),
∇(w0xy ·0)) as in the regular case. Comparing the characters, however, shows that
this is not true.
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5.4. Shuffled filtrations of projective and tilting modules. In this section we
start with an analogue of Irving’s results from [Ir1, Section 4] for shuffled filtrations
on projective modules. They are now easy corollaries of the results from the Sub-
sections 5.1 and 5.4. For M ∈ Op−pres

0 and y ∈ W we say that M has a y-shuffled
standard flag if there is a filtration of M , whose subquotients are isomorphic to
modules ∆(t, y), t ∈W (p). Since shuffling preserves Op−pres

0 , Corollary 2.2 ensures
that we can consider M and its filtration inside Op−pres

0 . We denote by F(∆, y) the
full subcategory of Op−pres

0 , consisting of all modules, having a y-shuffled standard
flag. We also note that F(∆, w0) = F(�)

Lemma 5.14. Assume that M ∈ F(∆, y) for some y ∈ W and s is a simple
reflection such that ys > y. Then CsM ∈ F(∆, ys).

Proof. From Subsection 5.1 and the condition ys > y it follows that Cs is exact
on the category of all modules having a y-shuffled standard flag and the statement
follows. �

For x ∈W we denote by W x the subgroup of W , generated by all simple reflec-
tions s, satisfying xs < x.

Theorem 5.15. Let x ∈ W (p). For any y ∈ W x we have P (x) ∈ F(∆, y). In
particular, P (w0) ∈ F(∆, y) for all y ∈W .

Proof. For a simple reflection s ∈ W x a comparison of characters yields θsP (x) ∼=
P (x)⊕ P (x) and thus CsP (x) ∼= P (x). Now the statement follows by induction in
the length of y using Lemma 5.14. �

Recall (see for example [FKM2, Section 6]) that tilting modules in Op−pres
0 are

defined as self-dual modules having a standard filtration. It is well known that
every tilting module is a direct sum of indecomposable tilting modules, and the
latter ones bijectively correspond to simple modules and are therefore indexed by
w ∈ W (p). For w ∈ W (p) we denote by T (w) the indecomposable tilting module
having a standard filtration starting with ∆(w) as a submodule. The next theorem
is a generalization to Op−pres

0 of the main result of [Ma].

Theorem 5.16. Let T be a tilting module. Then T ∈ F(∆, y) for all y ∈W .

To prove the theorem we will need the following observations:

Lemma 5.17. Assume that M ∈ F(∆, y) for all y ∈W . Then θsM ∈ F(∆, y) for
all y ∈ W and for any simple reflection s ∈W .

Proof. As M has both a standard and a costandard filtration, it is a tilting module,
and thus θsM is a tilting module as well by Corollary 4.3. In particular, the

adjunction morphism M
adjs→ θsM is injective and CsM ∈ F(∆, y) for any y ∈ W

such that ys < y. Since M ∈ F(∆, y) for any y ∈W , we get that θsM ∈ F(∆, y) for
any y ∈W , ys < y. On the other hand, θsM is self-dual and thus if θsM ∈ F(∆, y)
for some y ∈ W , we have θsM ∈ F(∆, w0y). This implies that θsM ∈ F(∆, y) for
any y ∈ W and completes the proof. �

Lemma 5.18. There is an equivalence F(∆, x) ∼= F(∆, y) of categories for all
x, y ∈ W . In particular, F(∆, y) is closed under taking direct summands for all
y ∈ W .
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Proof. Without loss of generality, we can assume x = ys for some simple reflection
s and ys < y. By the same arguments as in Corollary 5.5 one shows that the
adjunction morphisms induce the isomorphism of functors KsCs

∼= ID : F(∆, y)→
F(∆, y) and CsKs

∼= ID : F(∆, ys) → F(∆, ys). Hence Ks : F(∆, ys) → F(∆, y)
and Cs : F(∆, y)→ F(∆, ys) are mutually inverse equivalences of categories. Now
the second statement follows from the first one and Corollary 2.14. �
Proof of Theorem 5.16. We start with the module ∆(w0). This module is a trans-
lation of a simple Verma module, hence it is self-dual and thus tilting. From the
second part of Proposition 5.12 it follows that for every y ∈W there exists x ∈W (p)
such that ∆(x, y) ∼= ∆(w0). Hence ∆(w0) ∈ F(∆, y) for any y ∈W .

Translating ∆(w0) produces new tilting modules and every indecomposable tilt-
ing module is a direct summand of some E ⊗∆(w0) with E finite dimensional (see
[CI]). By Lemma 5.17, all O0-projections of E ⊗∆(w0) belong to F(∆, y) for any
y ∈ W . Further, by Lemma 5.18, every direct summand M of E ⊗∆(w0) belongs
to F(∆, y) for any y ∈W , which completes the proof . �

6. Socles of standard modules and endomorphism rings

of shuffled standard modules

In this section we study the standard modules from Op−pres
0 in more detail. The

main results of this section are the following statements.

Theorem 6.1. Let w ∈W (p).
(1) The action of Z(g) on ∆(w) gives rise to a surjection Z(g) � Endg(∆(w)).

Moreover, Endg(∆(w)) does not depend on w.
(2) The module ∆(w) (considered as an object of both Op−pres

0 and O) has
simple socle.

Remark 6.2. From the proof of Theorem 6.1 and [So2, Endomorphismensatz] it
follows that Endg(∆(w)) is isomorphic to the coinvariant algebra, associated with
a.

The first part of Theorem 6.1 can be generalized as follows:

Theorem 6.3. Let x ∈ W (p) and y ∈ W . Then the algebra Endg(∆(x, y)) is
commutative, moreover, the action of Z(g) on ∆(x, y) gives rise to a surjection
Z(g) � Endg(∆(x, y)).

To prove this theorem we have to recall the notion of the p-Harish-Chandra
homomorphism from [DFO]. For the algebras U(g) and U(a ⊕ h⊥a ) we let U(g)0
and U(a ⊕ h⊥a )0 be the centralizers of h in U(g) and U(a ⊕ h⊥a ) respectively. Set
L(g) = U(g)0 ∩U(g)n and one easily computes that U(g)0 ∼= L(g)⊕U(a + h). The
projection ϕp onto the second summand U(a + h) ∼= U(a)⊗C U(h⊥a ) is called the p-
Harish-Chandra homomorphism. It is easy to see that ϕp(Z(g)) = Z(a)⊗C U(h⊥a ).
A crucial property of ϕp is the following: Let M be a g-module and v ∈ M . If
nv = 0, then zv = ϕp(z)v for all z ∈ Z(g). In other words, the action of Z(g) on
weight elements annihilated by n is determined by the action of Z(a) and U(h⊥a ).

Fix i ∈ {0, 1, . . . , l(wp
0)} and w ∈ W (p), and denote by S(w, i) the set of all

w′ ∈ Wpw such that l(w) − l(wp
0) ≤ l(w′) ≤ l(w) − l(wp

0) + i. Let Nw
i be the

submodule of ∆(w) which occurs as a submodule in a Verma filtration of ∆(w)
such that [Nw

i ] =
∑

w′∈S(w,i)[M(w′)]. It is easy to see that Nw
i is well defined. Set

Kw
i = {v ∈ ∆(w) : mi

0v = 0}.
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Lemma 6.4. Let w ∈ W (p). Then Nw
i = Kw

i for any i ∈ {0, 1, . . . , l(wp
0)}

Proof. Since ∆(w) ∼= U(g) ⊗U(p) P a(w · 0) (see Proposition 2.9) and the action
of Z(g) commutes with the parabolic induction, the statement reduces to the
corresponding statement for P a(w · 0). The latter one is a weight module and
nP a(w · 0) = 0, hence the p-Harish-Chandra homomorphism reduces the action
of Z(g) on P a(w · 0) to that of Z(a). Now the statement follows from [Ba, Sec-
tion 2.6]. �

Proof of Theorem 6.1. Since ∆(w) is a quotient of P (w), it has a simple top, namely
S(w). As [∆(w) : S(w)] = 1 by the definition of proper standard modules, it follows
from Proposition 2.18 that [∆(w) : S(w)] = |Wp|. Hence, dim Endg(∆(w)) ≤ |Wp|.
On the other hand, the parabolic induction gives an injection

Enda(P a(w · 0)) ↪→ Endg(∆(w)).

By [So2, Endomorphismensatz], the algebra Enda(P a(w · 0)) is commutative, has
dimension |Wp|, and the action of Z(a) on P a(w · 0) gives rise to a surjection onto
Enda(P a(w · 0)). As nP a(w · 0) = 0, the first statement now follows by applying
the p-Harish-Chandra homomorphism.

To prove the second part we use Lemma 6.4 and get that the socle of ∆(w)
coincides with the socle of ∆(w). The latter one is known to have a simple socle in
Op−pres

0 (see for example [FKM2]). �

Remark 6.5. Unlike the socle of the standard modules, the socle of ∆(x, y) is not
simple in general and is quite difficult to describe.

Proof of Theorem 6.3. Since ∆(x, y) is obtained from ∆(x, e) = ∆(x) via shuffling,
which is an equivalence of appropriate categories (see Lemma 5.18), it follows that
Endg(∆(x, y)) ∼= Endg(∆(x)); in particular, Endg(∆(x, y)) ∼= Endg(∆(x′, y′)) for
all x′ ∈ W (p) and y′ ∈ W . Thus Theorem 6.1 implies that Endg(∆(x, y)) is a
commutative algebra of dimension |Wp|. To complete the proof it is enough to
show that the image of Z(g) in Endg(∆(x, y)) with respect to the natural action
has dimension at least |Wp|.

The modules ∆(x, e) = ∆(x) are direct sums of self-dual projective modules in
O(a, b ∩ a) by Proposition 2.9; hence so is the module ∆(x, y) by the definition of
Cx and the injectivity of adjs(∆(x, t)) for ts > t. Let λ⊥ ∈ (h⊥a )∗ be maximal such
that

∆(x, y)λ⊥ = {v ∈ ∆(x, y) : hv = λ⊥(h)v for all h ∈ h⊥a } �= 0.

As [a, h⊥a ] = 0, the a-module ∆(x, y)λ⊥ is a direct summand of ∆(x, y), and there-
fore a direct sum of self-dual projective modules in O(a, b ∩ a). The maximality of
λ⊥ implies n∆(x, y)λ⊥ = 0 and hence the action of Z(g) on ∆(x, y)λ⊥ reduces to
the action of Z(a) via the p-Harish-Chandra homomorphism. From [So2, Endomor-
phismensatz] it follows that the image of this action in Enda(∆(x, y)λ⊥) and hence
the image of Z(g) in Endg(∆(x, y)) has dimension at least |Wp|. This completes
the proof. �

7. A categorification of a Hecke module via Op−pres
0

7.1. Graded lifts of standard objects in Op−pres
0 . Recall (from Section 2.2) the

equivalence of categories between O0 and the category of finitely generated (right)
modules over the endomorphism ring A of a minimal projective generator P . We
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denote the latter category by mof −A. In [BGS] and [St3] it is explained how the
algebra A can be equipped with a Z-grading such that it becomes a positively graded
Koszul algebra. In the following, we fix this grading on A and denote by gmof −A
the category of finitely generated graded right A-modules. Note that graded in what
follows always means Z-graded. Let f : gmof −A −→ mof −A denote the functor
which forgets the grading. Let i ∈ Z. For a graded A-module M =

⊕
n∈Z

Mn we
denote by M〈i〉 the shifted module with respect to its grading; i.e., f(M〈i〉) ∼= f(M)
and (M〈i〉)n = Mn−i. We say M ∈ O0 is gradable, if there exists M̃ ∈ gmof −A

such that f(M̃) ∼= Homg(P, M) as A-modules. In this case we call M̃ , by abuse of
language, a lift of M . In [St3], it is shown that all projective and injective objects,
all simple objects and the (dual) Verma modules are gradable. Moreover,

Lemma 7.1 ([St3, Lemma 2.5] or [BGS, Lemma 2.5.3]). A lift of an indecomposable
gradable object in O0 is unique up to isomorphism and grading shift.

The lifts of the simple modules are all concentrated in one single degree. For
any x ∈ W we denote the graded lifts of P (x), M(x) and L(x) with the (up to
isomorphism) characterizing property that their heads are all concentrated in degree
zero by P̃ (x), M̃(x) and L̃(x), respectively.

For any simple reflection s, there is an exact Z-functor θ̃s : gmof −A −→
gmof−A (in the sense of [AJS, Appendix E]) which becomes translation through
the s-wall on O0 after forgetting the grading and using the equivalence of cate-
gories O0→̃ gmof −A. This functor is self-adjoint. The graded adjunction mor-
phisms Adjs(M) : M −→ θ̃sM and Adjs(M) : θ̃sM −→ M turn out to be graded
morphisms, homogeneous of degree 1, for any M ∈ gmof −A. The graded lifts of
Verma modules fit into short exact sequences

(7.1) 0 → M̃(x)〈1〉 Adjs−→ θ̃sM(x) −→ M̃(xs) → 0 if xs > x,

0 → M̃(xs) −→ θ̃sM(x)
Adjs−→ M̃(x)〈1〉 → 0 if xs < x,

for any x ∈ W and simple reflection s (see [St3, Theorems 4.6 and 6.3].) Our first
step is to prove that the standard objects in Op−pres

0 are gradable as objects of O0:

Lemma 7.2. Let x ∈ W (p). Then ∆(x) ∈ O0 is gradable. Moreover, a graded lift
is unique up to isomorphism and shift of the grading.

Proof. Let w = wp
0 ∈ W (p) be minimal. Then ∆(w) = P (w) and therefore grad-

able. Assume, ∆(w) is gradable with lift ∆̃(w) and let s be a simple reflection such
that ws > w and ws ∈ W (p). By Proposition 4.2, there is a short exact sequence

∆(w)
adjs
↪→ θs∆(w) � ∆(ws). It follows that the cokernel of the graded adjunction

morphism Adjs : ∆̃(w)〈1〉 → θ̃s∆̃(w) defines a graded lift of ∆(ws). By induction
on the length of w we get the gradability of all ∆(w), w ∈ W (p). Since all standard
objects have a simple head, they are indecomposable. Hence their graded lifts are
unique up to isomorphism and shift of the grading by Lemma 7.1. �

Convention. From now on we fix for any w ∈ W (p) a graded lift ∆̃(w) of ∆(w)
which is characterized up to isomorphism by requiring that its head is concentrated
in degree zero. Note, that this is compatible with our conventions for the lifts of
projectives.
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Proposition 7.3. Let s be a simple reflection. For any w ∈ W (p) the graded
modules ∆̃(w) fit into short exact sequences of the form

∆̃(w)〈1〉 Adjs
↪→ θ̃s∆̃(w) � ∆̃(ws) if ws ∈ W (p) and ws > w,

∆̃(ws) ↪→ θ̃s∆̃(w)
Adjs

� ∆̃(w)〈−1〉 if ws ∈ W (p) and ws < w,

∆̃(w)〈1〉 Adjs
↪→ θ̃s∆̃(w) � ∆̃(w)〈−1〉 if ws �∈ W (p).

Proof. Note that, if we forget the grading, we get exactly the short exact sequences
of Proposition 4.2. We start with the case where ws ∈ W (p) and ws > w. Since the
adjunction morphisms are all homogeneous of degree 1, we get, by the definition of
∆̃(ws), a short exact sequence of graded A-modules of the form

0→ ∆̃(w)〈1〉 Adjs−→ θ̃s∆̃(w) −→ ∆̃(ws)〈j〉 → 0

for some j ∈ Z. If w = x ∈ W (p) is minimal, then ∆̃(x) ∼= P̃ (x), hence there
is a surjection px : ∆̃(x)→→M̃(x) of graded A-modules ([St3, Corollary 8.2 and
Theorem 8.5]). By functoriality, using the second sequence of (7.1), we get the
following diagram with exact rows and commuting left square:

∆̃(x)〈1〉 � � Adjs ��

p〈1〉
����

θ̃s∆̃(x) �� ��

θ̃sp
����

∆̃(xs)〈j〉
q

����
M̃(x)〈1〉 � � Adjs �� θ̃sM̃(x) �� �� M̃(xs).

The commutativity gives rise to a graded surjection q as pictured such that the
whole diagram commutes. This forces j = 0 by our conventions. Since we con-
structed a surjection ∆̃(xs)→→M̃(xs) of graded A-modules, we can apply induction
on the length of w. This shows the existence of a short exact sequence of graded
A-modules as claimed for any w ∈ W (p) such that ws > w.

Now let ws ∈ W (p) and ws < w. By Proposition 4.2 and Lemma 7.2 we have a
short exact sequence of the form

(7.2) 0→ ∆̃(ws)〈j〉 −→ θ̃s∆̃(w)
Adjs−→ ∆̃(w)〈−1〉 → 0

for some j ∈ Z. Let pw : ∆̃(w)→→M̃(w) be a graded surjection. By functoriality we
get the following commuting diagram with exact rows and induced surjection q:

∆̃(ws)〈j〉 � � ��

q

��

θ̃s∆̃(w)
Adjs(∆̃(w)) �� ��

θ̃spw

��

∆̃(w)〈−1〉
pw〈−1〉

��
M̃(ws) � � �� θ̃sM̃(w)

Adjs(∆̃(w))�� �� M̃(w)〈−1〉.

Therefore, the head of ∆̃(ws)〈j〉 has to be concentrated in degree zero, i.e., j = 0.
Hence (7.2) becomes the claimed sequence in the case w, ws ∈W (p) and ws < w.

Now let w ∈W (p) and ws /∈W (p). This implies, in particular, w > ws. We take
again pw : ∆̃(w)→→M̃(w), a surjection of graded A-modules. It gives a commutative
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diagram

∆̃(w)〈1〉 � � Adjs ��

pw〈1〉
����

θ̃s∆̃(w) �� ��

θ̃spw
����

∆̃(w)〈j〉
q

����
M̃(w)〈1〉 � � Adjs �� θ̃sM̃(w) �� �� Q.

The first row is a short exact sequence of graded modules for some j ∈ Z by
Proposition 4.2, and Q is defined to make the lower row exact. The square on
the left-hand side commutes by functoriality and induces therefore a surjection q
such that the whole diagram commutes. This implies that the head of Q is isomor-
phic to L̃(w)〈j〉. On the other hand, the adjunction morphism gives a surjection
θ̃sM̃(w)→→M̃(w)〈−1〉, hence the head of Q is concentrated in degree −1. This
implies j = −1 and completes the proof. �

Corollary 7.4. Let w ∈ W (p). If s is a simple reflection such that ws ∈ W (p)
and ws > w, then θ̃s∆̃(w) ∼= θ̃s∆̃(ws)〈1〉.
Proof. By Corollary 4.4 there is an isomorphism θs∆(w) ∼= θs∆(ws), and these
modules are indecomposable. Hence, the graded lifts are unique up to isomorphism
and shift of the grading by Lemma 7.1. Therefore the existence of the first two
exact sequences of Proposition 7.3 immediately implies θ̃s∆̃(w) ∼= θ̃s∆̃(ws)〈1〉 if
ws > w. �

7.2. The parabolic Hecke module M. Let us now consider the full abelian
subcategory of gmof −A generated by the projective modules P̃ (w)〈j〉 with w ∈
W (p) and j ∈ Z. This is a module category which is equivalent to gmof −B, where
B = Endg

( ⊕
w∈W (p) P (w)

)
considered as a graded subalgebra of A.

Let Z[v, v−1] denote the ring of Laurent polynomials in v with coefficients in Z.
We consider the Weyl group W as a Coxeter system, where the simple reflections
form a set of generators S ⊂W . Let H = H(W, S) denote the corresponding Hecke
algebra, which is by definition the free Z[v, v−1]-module with basis {Hx | x ∈ W}
and relations

HxHy = Hxy if l(x) + l(y) = l(xy), and H2
s = He + (v−1 − v)Hs for s ∈ S.

(compare [Bo]). Note that H is generated as an algebra over Z[v, v−1] by {Hs | s ∈
S}; or (which will turn out to be more convenient) by the set {Cs = Hs +vHe | s ∈
S}. Let Sp ⊂ S be the subset generating Wp. Let W p denote the set of distinguished
coset representatives of minimal length of Wp\W . Set Hp = H(Wp, Sp). Note that
H has an obvious left Hp-module structure via restriction. The natural Z[v, v−1]-
bimodule structure on Z[v, v−1] can be extended to an Hp-module structure by
letting Hs (where s ∈ Sp) act via multiplication with v−1. This bimodule structure
defines the following (Hp,H)-bimodule

Mp := Z[v, v−1]⊗Hp H.(7.3)

The bimodule Mp is called parabolic Hecke module. It is described in [De] and
[KL], but we follow the exposition of [So1]. Considered as a left Z[v, v−1]-module,
Mp is free with basis {Mx = 1 ⊗Hx | x ∈ W p}. The action of H is given by the
following formulas.
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Lemma 7.5 (see [So1, Section 3]). Let x ∈W p and s ∈ S. Then

MxCs =


Mxs + vMx if xs ∈W p and xs > x,
Mxs + v−1Mx if xs ∈W p and xs < x,
(v + v−1)Mx if xs /∈W p.

7.3. The combinatorial description. We still fix Sp ⊆ S. The multiplication
defines a bijection Wp×W p 1:1←→W and we have l(x)+ l(y) = l(xy) for any x ∈Wp

and y ∈ W p (see [Hu, 1.10]). On the other hand, it is easy to see that there is a
bijection W p 1:1←→ W (p) given by x �→ wp

0x. This implies that for any s ∈ S and
x ∈ W p we have xs ∈W p if and only if wp

0xs ∈W (p). In the case, where xs ∈W p

we have xs > x (or xs < x) if and only if wp
0xs > x (or wp

0xs < wp
0x respectively).

The Grothendieck group [gmof−B] becomes a Z[v, v−1]-module via vi[M ] =
[M〈i〉] for any M ∈ gmof −B. The connection with the corresponding Hecke mod-
uleMp is given by the following lemma.

Lemma 7.6. There is an injective homomorphism of Z[v, v−1]-modules

Φp : Mp −→ [gmof −B]

viHx �−→ [∆̃(wp
ox)〈i〉].

Proof. The map is well defined and injective, since {viHx | x ∈W p, i ∈ Z} forms a
Z-basis ofMp and [∆̃(wp

0x)〈i〉], x ∈W p, i ∈ Z are linearly independent (over Z) in
[gmof −B]. By definition, the map Φp is compatible with the action of Z[v, v−1]. �

Theorem 7.7. For any simple reflection s the following diagram commutes:

Mp
Φp ��

·Cs

��

[gmof −B]

[θ̃s]

��
Mp

Φp �� [gmof −B]

Proof. The proof is given by easy direct calculations. Let i ∈ Z and x ∈ W p.
Consider first the case xs ∈ W p and xs > x (hence also wp

0xs > wp
0x). Then

[θ̃s] ◦ Φp(viMx) = [θ̃s]
(
[∆̃(wp

0x)〈i〉]) = [∆̃(wp
0x)〈i + 1〉] + [∆̃(wp

0xs)〈i〉] by Proposi-
tion 7.3. On the other hand, Φp

(
viMxCs

)
= Φp(viMxs+vi+1Mx) = [∆̃(wp

0xs)〈i〉]+
[∆̃(wp

ox)〈i + 1〉] by Lemma 7.5.
Now let xs ∈W p and xs < x (hence also wp

0xs < wp
0x). Then [θ̃s] ◦Φp(viMx) =

[θ̃s]
(
[∆̃(wp

0x)〈i〉]) = [∆̃(wp
0xs)〈i〉] + [∆̃(wp

0xs)〈i − 1〉] = Φp(viMx + vi−1Mxs) =
Φp

(
viMxCs

)
by Proposition 7.3 and Lemma 7.5.

If xs /∈ W p, then [θ̃s] ◦ Φp(viMx) = [θ̃s]
(
[∆̃(wp

0x)〈i〉]) = [∆̃(wp
0x)〈i + 1〉] +

[∆̃(wp
0x)〈i − 1〉] = Φp(vi+1Mx + vi−1Mxs) = Φp

(
viMxCs

)
by Proposition 7.3 and

Lemma 7.5. �

Remark 7.8. By a categorification of Mp we understand an abelian category A
together with an exact auto-functor G and exact endofunctors Fs for any s ∈ S
such that the following hold:

(C1) [A] becomes a Z[v, v−1]-module via vi.[M ] = [GiM ] for any i ∈ Z and there
is an isomorphism Φp :Mp

∼= [A] of Z[v, v−1]-modules.
(C2) For all s ∈ S we have an isomorphism of functors GFs

∼= FsG.
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(C3) [Fs] and [G] satisfy the following relations (compare Lemma 7.5) for any
x ∈W p:

[Fs]
(
Φp(Hx)

)
=


Φp(Hxs) + [G]

(
Φp(Hx)

)
if xs ∈ W p, xs > x,

Φp(Hxs) + [G−1]
(
Φp(Hx)

)
if xs ∈ W p, xs < x,

[G]
(
Φp(Hx)

)
+ [G−1]

(
Φp(Hx)

)
if xs /∈ W p.

In this sense, gmof −B is a categorification of Mp with Fs = θ̃s and G = 〈1〉, the
grading shift by 1. The results of [St3] show that gmof−A can be considered as
a categorification of H. In [St2] it is proved that a graded version of the principal
block of a parabolic category O can be considered as categorification of the Hecke
module Np = Z[v, v−1] ⊗Hp H, where Z[v, v−1] is considered as an Hp-bimodule
where Hs acts by multiplication with −v (see [So1]).

Example 7.9. We consider the case g = sl(n+1, C) with p such that a ∼= sl(n, C).
We have W ∼= Sn+1 = 〈si | 1 ≤ i ≤ n〉 and assume Wp = 〈sj | 1 < j ≤ n〉. The
expressions xj = s1s2 · · · · · sj are reduced for 0 ≤ j ≤ n (here x0 = e), hence
W p = {xi | 0 ≤ i ≤ n}. Let Mi = Mxi denote the standard basis of Mp. As a Z-
moduleMp is isomorphic to Z[v, v−1]⊗Z Zn+1. The homomorphism [θ̃sj ]− [ID〈1〉]
on [gmof −B] is then described by the action of the Hecke algebra as follows:

Mi Hsj =


Mi+1 if i = j − 1,

Mi−1 + (v−1 − v)Mi if i = j,

v−1Mi otherwise.

This provides a representation of the Braid group, which is not isomorphic to the
Bureau representation.

8. The graded properly stratified structure on Op−pres
0

In this section we show that the properly stratified structure on Op−pres
0 admits

a graded lift. The first natural question is whether the simple objects in Op−pres
0

have graded lifts:

Lemma 8.1. For any w ∈W (p), the module S(w) is gradable. A lift is unique up
to isomorphism and grading shift.

Proof. Recall that S(w) ∼= P (w)/ TrPp(radP (w)). Since the canonical surjection
cw : P̃ (w)→→L̃(w) is gradable, its kernel radP (w) is gradable as well with a lift
r̃adP (w). For Pp =

⊕
x∈W (p) P̃ (x) we consider now the following isomorphisms of

vector spaces:

Homg(Pp, radP (w)) ∼= Hommof −A

(
Homg(P, Pp), Homg(P, rad P (w))

)
∼=

⊕
i∈Z

Homgmof −A

(
P̃p〈i〉, r̃adP (w)

)
.

That is, TrPp(rad P (w)) has a graded lift, T̃rPp(radP (w)) say, namely the (graded)
submodule given by all images of graded morphisms from

⊕
i∈Z

P̃p〈i〉 to P (w).
Hence, a graded lift of S(w) is given by P̃ (w)/T̃rPp(radP (w)). Since S(w) is
indecomposable by Lemma 2.7, the uniqueness of such a lift follows from Lemma 7.1.

�
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We denote by S̃(w) the (unique up to isomorphism) graded lift of S(w) with
head concentrated in degree zero. Note that the proof of Lemma 8.1 shows that the
canonical map P̃ (w)→→S̃(w) is a homomorphism of graded A-modules. Moreover,
the modules S(w)〈i〉, w ∈ W (p), i ∈ Z, form a complete set of simple objects in
gmof−B.

Remark 8.2. Recall that for w ∈ W (p) the proper standard module ∆(w) is iso-
morphic to ∆(w)/ Tr∆(w)(rad∆(w)). Hence we get the gradability of ∆(w) by

completely analogous arguments as in the proof of Lemma 8.1. Let ∆̃(w) denote
the (up to isomorphism) unique lift such that the head is concentrated in degree 0.

We say M ∈ gmof−A has a graded Verma flag if it has a filtration with sub-
quotients isomorphic to some M̃(x)〈k〉 with x ∈ W , j ∈ Z. An example for such
objects is given by the following.

Proposition 8.3. Let w ∈ W (p). Then ∆̃(w) ∈ gmof −A has a graded Verma
flag. Moreover, the occurring subquotients, all with multiplicity 1, are exactly
M̃(yw)〈l(y)〉, y ∈ Wp.

The first part will follow from the following more general lemma.

Lemma 8.4. Let M ∈ gmof−A such that f(M) ∼= Homg(P, M̌) for some M̌ ∈ O0

which has a Verma flag. Then M has a graded Verma flag.

Proof. We choose a surjection of A-modules (i.e., not necessarily graded) M
f→→

M̃(x) for some x ∈ W . Let f =
∑

i∈Z
fi be the decomposition into its graded

components. Since f is surjective, there is at least one i such that the image of fi

is not contained in the radical of M̃(x), i.e., fi is surjective. The kernel, K say, of
fi is then a graded A-module. On the other hand, an object N ∈ O0 has a Verma
flag if and only if ExtiO(N, M(y)�) = 0 for any y ∈ W . Hence, K satisfies again
the assumptions and the existence of a graded Verma flag follows inductively. �
Proof of Proposition 8.3. It remains to prove the multiplicity formulae. Let us first
consider the case where w ∈ W (p) is minimal, i.e., ∆̃(wp

0) = P̃ (wp
0). By [BGS, 3.11]

or [St3, 8.1], the number how often M̃(y)〈i〉 occurs in a graded Verma flag is equal
to the coefficient of vi in the Kazhdan-Lusztig polynomial hy,wp

0
(in the notation

of [So1]). This number is therefore nonzero (and moreover equal to 1) if and only
if i = l(y) and y ∈ Wp by [So1, Proposition 2.9]. This gives the starting point for
our induction. So, let us assume the formula to be true for w ∈ W (p). If w is not
maximal we choose a simple reflection s such that ws > w and ws ∈ W (p). Then
(with [Hu, 1.10]) yws > yw for any y ∈ Wp. The exact sequences of Proposition 7.3
and (7.1) imply therefore by induction hypotheses the following equalities in the
Grothendieck group of gmof −A:

[∆̃(ws)] = [θ̃s∆̃(w)] − [∆̃(w)〈1〉]
=

∑
y∈W (p)

(
[θ̃sM̃(yw)〈l(y)〉]− [M̃(yw)〈l(y) + 1〉]

)
=

∑
y∈W (p)

(
[M̃(yw)〈l(y) + 1〉] + [M̃(yws)〈l(y)〉]− [M̃(yw)〈l(y) + 1〉]

)
=

∑
y∈W (p)

[M̃(yws)〈l(y)〉].
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This gives the required multiplicity formulae. �

The following proposition is a graded analogue of property (PS1):

Proposition 8.5. Let w ∈ W (p). The graded module P̃ (w) ∈ gmof −B has a ∆̃-
flag, i.e., a filtration with subquotients isomorphic to some ∆̃(x)〈j〉, where x ∈W (p)
and j ∈ Z.

Proof. We prove again a more general fact (note that it directly generalizes to
gmof−A):

Lemma 8.6. Let M ∈ gmof −B such that f(M) ∼= Homg(Pp, M̌) for some M̌ ∈
Op−pres

0 which has a standard flag. Then M has a ∆̃-flag.

We choose a surjection of (not necessarily graded) B-modules M
f→→ ∆̃(x) for

some x ∈ W . Let f =
∑

i∈Z
fi be the decomposition into its graded components.

Since f is surjective, there is at least one i such that the image of fi is not contained
in the radical of ∆̃(x), i.e., fi is surjective. The kernel, K say, of fi is then a graded
B-module. Since M̌ ∈ Op−pres

0 has a standard flag and surjects onto ∆(x), we
have f K ∼= Homg(Pp, N) for some N ∈ Op−pres

0 . On the other hand, an object
N ∈ Op−pres

0 has a standard flag if and only if ExtiOp−pres
0

(N,�(y)) = 0 for any

y ∈ W (p) (see [Dl, Theorem 5]). Since also Ext2Op−pres
0

(∆(x),�(y)) = 0 for x,
y ∈ W (p) (again by [Dl, Theorem 5]), K satisfies again the assumptions and the
existence of a graded Verma flag follows inductively. �

We call a finite-dimensional associative graded algebra D with a fixed order ≤
on the set I of isomorphism classes of simple graded D-modules (the latter will be
denoted by S(i), i ∈ I) graded properly stratified provided that there exist graded
D-modules ∆(i) and ∆(i), i ∈ I, such that the graded versions of (PS1), (PS2) and
(PS3) hold. We summarize the results of this section in the following.

Proposition 8.7. Set S̃(w)〈j〉 > S̃(w′)〈j′〉 if w > w′ or w = w′ and j > j′.
Then the algebra B is graded properly stratified. The modules ∆̃(w) and ∆̃(w),
where w ∈ W (p), form the sets of graded standard and proper standard modules
respectively.

Proof. By Proposition 8.5, all projectives have a ∆̃-flag. By the formulae [BGS,
3.11] and [St3, 8.1], all projectives are positively graded having only their simple
heads concentrated in degree zero. This ensures (PS1), since the additional condi-
tion on the filtration holds after forgetting the grading. With the positivity of the
grading on projectives the property (PS2) follows from the definition of the graded
lifts and the existence of the corresponding filtration after forgetting the grading.
To see property (PS3), we take the graded Verma flag from Proposition 8.3. Since
the arguments in the proof of Lemma 8.1 show that the composition of functors
ij induces a functor on gmof −A, we can apply it to the graded Verma flag. The
result will be the required filtration. �

Note, that the isomorphism classes of standard objects in Op−pres
0 do not form a

basis of the corresponding Grothendieck group. The reason for this is that (with the
usual ordering on the isomorphism classes of simple modules) the matrix [∆(w) :
L(y)] is upper triangular, but has positive integers on the diagonal in general. In
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the graded version, we get 1’s on the diagonal, hence [S̃(w)] =
∑

y,j cy,j[∆(y)〈j〉]
with unique cy,j ∈ Z (but probably infinitely many nonzero coefficients!).

Corollary 8.8. Each of the following sets forms a Z-basis of [gmof −B]:{
[S̃(w)〈i〉 | w ∈W (p), i ∈ Z]

}
,{

[∆̃(w)〈i〉 | w ∈ W (p), i ∈ Z]
}
.

Proof. The first claim is obvious and the second one follows from the fact that the
transformation matrix from the basis given by simple modules to the basis given
by proper standard modules is triangular and [∆(w) : S(w)] = 1. �

Remark 8.9. Let x, y ∈ W (p). The graded duals (∆̃(x))� of (∆̃(y)) (see [St3])
define the dual proper standard modules of gmof−B. By general reasons (see
[Dl]), we get the following multiplicity formulae:

[P̃ (x) : ∆̃(y)〈i〉] = [(∆̃(y))�〈i〉 : S̃(x)]
(1)
= [M̃(y)�〈i〉 : L̃(x)]
(2)
= [M̃(y)� : L̃(x)〈−i〉]
(3)
= [M̃(y) : L̃(x)〈i〉]
(4)
= [P̃ (x) : M̃(y)〈i〉].

The equality (1) follows from the construction of the graded proper standard flag in
the proof of Proposition 8.7. The equality (2) is just a grading argument. Finally (3)
and (4) are given by [St3, Section 7]. Now, the last number is given as the coefficient
of vi in the Kazhdan-Lusztig polynomial hy,x (in the notation of [So1]) and this
is equal to the coefficient of vi in mwp

0y,wp
0 x by the formula [So1, Proposition 3.4].

This implies that, under the isomorphism of Theorem 7.7, the isomorphism class
[P̃ (w)] corresponds to the self-dual Kazhdan-Lusztig element Mw in the notation
of [So1].

9. Examples

9.1. Op−pres
0 for sl(3, C). Let g = sl(3, C) and p = b be the standard Borel sub-

algebra of g. The Weyl group of g is isomorphic to the symmetric group S3 and
is equal to {e, s, t, st, ts, sts = tst}, where s and t are standard simple reflections.
To simplify our notation, let us denote the simple modules L(e), L(s), L(t), L(st),
L(ts), and L(sts) by 1, 2, 3, 4, 5, and 6 respectively. The first row of Figure 1 shows
the radical filtrations of the Verma modules in the category O0. Using Verma mod-
ules, one computes the action of θs and θt on simple modules and gets the following
radical filtrations for translated simple modules:

θs(1) = 0, θs(2) =
2

1 4
2

, θs(3) = 0, θs(4) = 0, θs(5) =
5
3
5

, θs(6) =
6
4
6

;

θt(1) = 0, θt(2) = 0, θt(3) =
3

1 5
3

, θt(4) =
4
2
4

, θt(5) = 0, θt(6) =
6
5
6

.
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x \ y e s t st ts sts

e

1
2 3
4 5
6

2
4 5
6

3
4 5
6

4
6

5
6 6

s
2

4 5
6

2
1 4 5
3 6

4
6

4
3 6
5

6 6
5

t
3

4 5
6

5
6

3
1 4 5
2 6

6
5

2 6
4

6
4

st
4
6 6

4
2 6
5

6
5

6 2
1 4 5

3

6
5 4
3

ts
5
6

5
3 6
4

6
3 6

1 5 4
2

6
4

6
5 4
2

sts 6
6
4

6
5

6
4 5
2

6
4 5
3

6
4 5
2 3
1

Figure 1. The shuffled Verma modules M(x, y) ∈ O0

Under the categorification morphism, the functors θs and θt are represented by
the following matrices, given in the basis of standard modules:

[θ̃s] =


v 1 0 0 0 0
1 v−1 0 0 0 0
0 0 v 0 1 0
0 0 0 v 0 v
0 0 1 0 v−1 0
0 0 0 1 0 v−1

 , [θ̃t] =


v 0 1 0 0 0
0 v 0 1 0 0
1 0 v−1 0 0 0
0 1 0 v−1 0 0
0 0 0 0 v 1
0 0 0 0 1 v−1

 .

Using the action of θs and θt on simple modules and the definition of Cs and Ct it
is possible to compute all shuffled Verma modules M(x, y), x, y ∈W . Their radical
filtrations are collected in Figure 1.

9.2. Op−pres
0 for a proper parabolic in sl(3, C). Now let us assume that g =

sl(3, C) and p is a parabolic subalgebra of g, such that Wp = {e, s}. Then W (p) =
{s, st, sts}. Using the above tables and the definition of Cs and Ct one computes
all shuffled standard modules ∆̃(x, y), x ∈ W (p), y ∈ W . Their graded filtrations
are collected in Figure 2 and Figure 3. The first columns describe the graded lifts
of the usual standard modules.

In the basis of standard modules the matrices of the categorification morphism
are the following:

[θ̃s] =

 v + v−1 0 0
0 v 1
0 1 v−1

 , [θ̃t] =

 v 1 0
1 v−1 0
0 0 v + v−1

 .
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Figure 2. The shuffled standard objects ∆̃(x, y) as objects in gmof −A
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Figure 3. The shuffled standard objects ∆̃(x, y) as objects in gmof −B
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