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Abstract. We describe Serre functors for (generalisations of) the category O associ-
ated with a semisimple complex Lie algebra. In our approach, projective-injective modules,
that is modules which are both, projective and injective, play an important role. They con-
trol the Serre functor in the case of a quasi-hereditary algebra having a double centraliser
with respect to a projective-injective module whose endomorphism ring is a symmetric al-
gebra. As an application of the double centraliser property together with our description of
Serre functors, we prove three conjectures of Khovanov about the projective-injective mod-
ules in the parabolic category O

m
0 ðslnÞ.
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1. Introduction

Symmetric algebras are particularly well-behaved algebras with several special
properties. We first want to recall two of these properties and then discuss to which extent



they can be generalised and transferred to other finite dimensional algebras. A finite dimen-
sional algebra A is called symmetric if there is an A-bimodule isomorphism AGA�. In
particular, projective A-modules are always injective. On the other hand, since AGA� as
A-bimodules, we have isomorphisms of vector spaces

HomAðA;AÞGHomAðA;A�nA AÞGHomAðA;AÞ�

which give rise to isomorphisms

HomAðM;NÞGHomAðM;A�nA NÞGHomAðN;MÞ�

for any free A-modules M and N. Moreover, these isomorphisms are functorial in M

and N.

The question we want to ask now is whether these two properties can be transferred
somehow to a more general class of algebras. We will consider finite dimensional algebras
which have a symmetric subalgebra which, in some sense, can control the representation
theory of the original algebra. If we are lucky, A has ‘‘enough’’ projective modules which
are also injective. We fix a system of representatives for the isomorphism classes of inde-
composable projective-injective (i.e. at the same time projective and injective) A-modules.
Then, instead of considering A itself we propose to consider the direct sum, say Q, of all
modules from this fixed system. In many cases, the endomorphism ring EndAðQÞ is a Fro-
benius algebra. The following questions naturally arise:

� Is EndAðQÞ a symmetric algebra?

� How much information about the category of finitely generated A-modules is al-
ready encoded in Q and EndAðQÞ?

� Is there an isomorphism, functorial in both entries,

HomAðP1;P2ÞGHomAðP1;A
�nA P2ÞGHomAðP2;P1Þ�

for any projective-injective A-modules P1 and P2?

In general, the first question is very di‰cult to answer. Concerning the second ques-
tion, we will describe the situation where all the information about A-mod is already con-
tained in Q and EndAðQÞ. This is given by the so-called double centraliser property which
we will explain more precisely shortly. The last question relates to the existence and de-
scription of a so-called Serre functor, motivated by Serre’s duality for sheaves on projective
varieties. The purpose of this paper is to answer the above three questions for certain alge-
bras appearing in representation theory.

To substantiate and to specify our approach we would like to recall the important
role projective-injective modules play in representation theory, in particular in di¤erent ver-
sions of the category O. The striking example is the case of an integral block of the category
O for a semisimple complex Lie algebra. By Soergel’s result ([58], Endomorphismensatz
and Struktursatz) such a block can be completely described by (a certain subcategory of)
the category of finitely generated modules over the endomorphism ring of the (unique up to
isomorphism) indecomposable projective-injective module in this block. This idea was gen-
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eralised and formalised in [51] as the so-called double centraliser property. In this language,
Soergel’s result could be stated as follows: Let A be a finite dimensional algebra such that
A-mod is equivalent to the block of the category O in question. Then for the indecompos-
able projective-injective A-module Q we have A ¼ EndEndAðQÞðQÞ. Note that [58], Endo-
morphismensatz, implies that EndAðQÞ is a symmetric algebra.

Using the Ringel duality functor it is easy to see (Corollary 2.4) that there is always a
tilting module T having the double centraliser property above. This module T need not be
projective-injective in general. Nevertheless, there are many known examples where we
have the particularly handy situation of the double centraliser property with respect to a
projective-injective tilting module T . We recall such examples in Section 2. Since in these
cases the category A-mod is completely determined by EndAðTÞ and T , it follows directly
that the centre of A-mod is isomorphic to the centre of the endomorphism ring of T (in
particular [48], Conjecture 4, follows, see Theorem 5.2).

Motivated by Serre’s duality, there is the notion of a Serre functor for any k-linear
category with finite dimensional homomorphism spaces (see Section 3). Happel (see e.g.
[35]), and afterwards Kapranov and Bondal ([14]) in a more general geometric context,
showed that the bounded derived category DbðAÞ for any finite dimensional algebra A of
finite global dimension admits a Serre functor. In fact, the existence of a Serre functor
is equivalent to the finiteness of the global dimension of A and also to the existence of
Auslander-Reiten triangles ([55], [36]). It is well-known that in the latter case the Serre
functor is the left derived of the Nakayama functor (see e.g. [35], page 17), that is of
the functor isomorphic to A�nA �. However, if the algebra A is not explicitly given, the
Serre functor might be hard to compute.

Nevertheless, in some cases the Serre functor for DbðAÞ can be explicitly described,
using for instance geometric or functorial methods. For example, in [14] it was conjectured
that the Serre functor of the bounded derived category of perverse sheaves on flag varieties
is given by a geometrically defined intertwining functor. This was our motivation to study
the Serre functor of the bounded derived category of (integral blocks of) O, associated with
the corresponding semi-simple Lie algebra, which is equivalent to the category of perverse
sheaves in question. The original conjecture has recently been proved by Beilinson, Bezru-
kavnikov and Mirkovic in [8]. In the present paper we explicitly construct the Serre functor
for the bounded derived category of any integral block of O using the twisting functors,
defined in [4] and studied e.g. in [3]. Our approach is purely algebraic and does not require
the explicit knowledge of the associative algebra associated to O. As a (very unexpected)
consequence we obtain an isomorphism between a certain composition of twisting functors
and a certain composition of Irving’s shu¿ing functors (see Corollary 4.2).

We further apply this result to construct the Serre functors of the bounded derived
categories of (integral blocks of) any parabolic category Op in the sense of Rocha-Caridi,
[57]. Using the explicit description of the Serre functor (in terms of shu¿ing functors) we
prove in Theorem 4.6 that the endomorphism algebra of the sum of all indecomposable
projective-injective modules in Op is symmetric, which was conjectured by Khovanov. One
of the motivations to consider the category of projective-injective modules in Op is to find a
precise connection between Khovanov’s categorification of the Jones polynomial ([46]) and
the categorification of the Jones polynomial via representation theory of the Lie algebra sln
(as proposed in [10] and proved in [62]). It might be possible to simplify the approach in
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[10] and [62] by working with these symmetric endomorphism algebras. Moreover, from a
topological point of view it seems to be much more natural and plausible to work with sym-
metric (or at least Frobenius) algebras to construct knot invariants instead of the compli-
cated algebras which describe the integral blocks of the (parabolic) category O.

We expect that the Serre functor for the category O for rational Cherednik algebras
can be constructed in a similar way via twisting functors as the Serre functor for the
Bernstein-Gelfand-Gelfand category O. However, we are not able to prove this, mainly be-
cause of the lack of translation functors. Nevertheless, we give a description of the Serre
functor for the category O for rational Cherednik algebras via partial coapproximation
with respect to the direct sum of all indecomposable projective-injective modules (see [45],
2.5). The proof however uses the fact that Hecke algebras are symmetric and the properties
of the Knizhnik-Zamolodchikov-functor. Using [31], Remark 5.10, it might be possible to
construct the Serre functor in a di¤erent way, which would imply a conceptual proof of the
fact ([19]) that the Hecke algebras occurring here are symmetric (see Conjecture 4.12).

As an additional application we describe in Subsection 4.5 the Serre functor for the
bounded derived category of the Schur algebra Sðn; rÞ and its q-version Sqðn; rÞ in case
nf r.

In the last section of the paper we consider the special case of a parabolic category,
Op

0 ðslnÞ, for the Lie algebra sln. For this category we give an easier proof of the main result
of [37] (Theorem 5.1). As a consequence we show that there is a double centraliser property
with respect to a basic projective-injective module. This implies [48], Conjecture 4. The par-
abolic subalgebra p of sln is determined by some composition of n. In [37], Proposition 4.3,
it is shown that indecomposable projective-injective modules in O0ðslnÞp are indexed by the
elements of some right cell. The Kazhdan-Lusztig combinatorics of translation functors,
applied to these projective-injective modules, suggests a connection with Specht modules
for the symmetric group Sn. It is well known that the Specht modules which correspond
to di¤erent compositions of n, but giving rise to the same partition of n, are isomorphic.
This observation might have led M. Khovanov to the conjecture that the endomorphism
algebras of the basic projective-injective modules in di¤erent O0ðslnÞp, corresponding to
the same partition of n, are isomorphic. We finish the paper by proving this conjecture
(Theorem 5.4).

Some guidance for the reader. Section 2 recalls some facts and results on double cen-
tralisers for module categories over standardly stratified algebras. In principle, the content
is not new, the viewpoint might be slightly more general than usual. We formulated the
setup as generally as possible, since we believe that our approach can be applied to a
much wider class of algebras than the ones actually appearing in the paper. For the reader,
however, it might be more approachable to have first a look at the Examples 2.7, skip the
details of Section 2 and focus on the main result characterising Serre functors which can be
found in Section 3. Applications and concrete descriptions of Serre functors are given in
Section 4. The deepest result might be Theorem 4.6 stating that the endomorphism ring of
a basic projective-injective module in the principal block of a (parabolic) category O is not
only Frobenius, but symmetric.

Acknowledgements. We thank Mikhail Khovanov for sharing his ideas with us and
for many helpful discussions and remarks. We also would like to thank Iain Gordon for
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many useful discussions and explanations and Ken Brown for useful remarks. We also
thank Joshua Sussan for comments on a preliminary version of the paper. We are very
grateful to the referee for several useful comments and a careful reading of the manuscript.
The first author was partially supported by The Royal Swedish Academy of Sciences, The
Swedish Research Council, and STINT. The second author was supported by EPSRC.

2. Standardly stratified structure and double centralisers

In representation theory double centraliser properties play an important role. The
aim of this section is to recollect known results from the literature, to emphasise the univer-
sal principle behind it, and to show the significance of projective-injective modules.

Let k be an algebraically closed field. Let A be a unitary finite dimensional associative
k-algebra. We denote by A-mod (mod-A) the category of finite dimensional left (resp.
right) A-modules. In the following we will mainly work with left A-modules, hence an
‘‘A-module’’ is always meant to be a left A-module. For M;N A A-mod we denote by
TrM N the trace of M in N (which is by definition the submodule of N, generated by the
images of all morphisms from M to N).

Let fLðlÞgl AL be a complete set of representatives for the isomorphism classes of
simple A-modules. For a simple A-module, LðlÞ, we denote by PðlÞ its projective cover,
and by IðlÞ its injective hull. We assume that there is a partial pre-order 8 (i.e. a reflexive
and transitive binary relation) on L, which we fix. Let P�l ¼

L
m�l

PðmÞ and P9l ¼
L
m9l

PðmÞ.

With respect to 8 we define the so-called standard module DðlÞ to be the largest
quotient of PðlÞ containing only composition factors of the form LðmÞ, where lO m, i.e.
DðlÞ ¼ PðlÞ=TrP�l PðlÞ. We also have a proper standard module DðlÞ which is the largest
quotient of PðlÞ such that its radical contains only composition factors of the form LðmÞ,
where lQ m, i.e. DðlÞ ¼ PðlÞ=TrP9l rad PðlÞ. Dually, we have the costandard module ‘ðlÞ
and the proper costandard module ‘ðlÞ.

We denote by FðDAÞ ¼FðDÞ the full subcategory of A-mod given by all modules
having a filtration, with all subquotients of this filtration being isomorphic to DðlÞ for var-
ious l A L. If M A FðDÞ then we say that M has a standard flag. Similarly, we define FðDÞ,
Fð‘Þ, Fð‘Þ, the categories of modules having a proper standard, a costandard, and a
proper costandard flag respectively.

Let A be a finite dimensional standardly stratified algebra as defined in [17], that is

� the kernel of the canonical surjection PðlÞ !! DðlÞ has a standard flag;

� the kernel of the canonical surjection DðlÞ !! LðlÞ has a filtration with subquo-
tients LðmÞ, where m8 l.

In particular, if 8 is a partial order and DðlÞ ¼ DðlÞ for l, then A is quasi-hereditary

(see [16], [23]). If 8 is a partial order and any DðlÞ has a proper standard flag, then A is
properly stratified (see [22]).
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We call a module M basic with respect to some property P, if M is the direct sum of
pairwise non-isomorphic indecomposable modules with property P and any indecompos-
able module having this property is isomorphic to a summand in M. For example, a basic

projective module in A-mod is a minimal projective generator. If N ¼
Lk

i¼1

N mi

i , where

mi A f1; 2; . . .g for all i, with Ni indecomposable and pairwise non-isomorphic, we set

Nbasic ¼
Lk

i¼1

Ni.

2.1. Tilting modules and Ringel duality. A tilting module is an object in
FðDÞXFð‘Þ, and a cotilting module is an object in FðDÞXFð‘Þ. In [27] it is shown
that for a standardly stratified algebra the category FðDÞXFð‘Þ is closed under taking
direct summands and that the indecomposable modules in this category are in natural bi-
jection with standard modules. Let TðlÞ denote the unique indecomposable tilting module
having a standard flag, where DðlÞ occurs as a submodule. Let T ¼

L
l AL

TðlÞ be the char-

acteristic tilting module. There is the dual notion of cotilting modules. In general, cotilting
modules cannot be classified in the same way as tilting modules. However, this can be done
in the case when the opposite algebra Aopp is also standardly stratified (with respect to the
same partial pre-order), see [27], 4.2. For quasi-hereditary algebras cotilting and tilting
modules obviously coincide, but in general they do not have to. The Ringel duality functor
(as introduced in [56]) was studied in the more general setup of various stratified algebras
for example in [1] and [27]. We will need the following slight variation of these results:

Proposition 2.1. Let A be a standardly stratified algebra. Then the Ringel

dual RðAÞ ¼ EndAðTÞ is standardly stratified and the contravariant functor

R ¼ HomAð�;TÞ : A-mod! mod-RðAÞ satisfies the following properties:

(1) R maps tilting modules to projective modules.

(2) R maps projective modules to tilting modules.

(3) R defines an equivalence of categories FðDAÞGFðDRðAÞÞ.

Proof. That the algebra RðAÞ is standardly stratified follows for example from [27],
Theorem 5 (iii). Obviously, T is mapped to EndAðTÞ, hence it is projective. Taking direct
summands implies the first statement. The last statement is proved analogously to [1], The-
orem 2.6 (iv) (note that the duality D used there swaps standard and costandard modules).
To prove the second statement let now Q be projective, then RQ has a standard flag.
Of course, Ext1

A

�
Q;DðlÞ

�
¼ 0 for any l. Using the last part of the proposition we get

Ext1
RðAÞ

�
RDðlÞ; RQ

�
¼ 0, even Ext1

RðAÞ
�
DRðAÞðlÞ; RQ

�
¼ 0 for any standard module

DRðAÞðlÞ A RðAÞ-mod. Therefore (see e.g. [27], Theorem 3, and [1], Theorem 1.6), RQ has a
proper costandard flag, hence it is tilting. r

For any abelian category C we denote by DbðCÞ its bounded derived category. If
C ¼ A-mod we set DbðAÞ ¼ DbðCÞ. If the opposite is not explicitly stated, by a ‘‘functor’’
we always mean a covariant functor. We use the standard notation like LF , RG, LiF ,
R iG etc. to denote left derived and right derived functors and their i-th cohomology
functors.
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For the sake of completeness we mention the following fact:

Proposition 2.2. Let A and B be standardly stratified such that tilting modules are also

cotilting. Let F : A-mod! B-mod be a (covariant) right-exact functor with right adjoint G.

Assume that F defines an equivalence

FðDAÞGFð‘BÞ:

Then the following hold:

(1) F maps projective modules to tilting modules and tilting modules to injective

modules. In fact, F defines equivalences (with inverse G) of the corresponding additive

subcategories.

(2) If A has finite global dimension then B has finite global dimension as well, more-

over, LF : DbðAÞ ! DbðBÞ is an equivalence with inverse RG.

(3) B is the Ringel dual of A.

Proof. Let P A A-mod be projective, then FP A Fð‘BÞ by assumption and

Ext1
B

�
FP;‘ðlÞ

�
GExt1

B

�
FP;FF�1‘ðlÞ

�
GExt1

A

�
P;F�1‘ðlÞ

�
¼ 0

for any proper costandard module ‘ðlÞ. Hence FP A FðDBÞ and is therefore tilting. If X is
tilting, hence cotilting, then X A FðDAÞ. Therefore FX A Fð‘BÞ and

Ext1
B

�
‘BðlÞ;FX

�
GExt1

B

�
FF�1‘BðlÞ;FX

�
ð2:1Þ

GExt1
A

�
F�1‘BðlÞ;X

�
¼ 0

for any proper costandard module ‘BðlÞ, since F�1‘BðlÞ A FðDAÞ and X A Fð‘AÞ. If we
now choose an inclusion of FX A Fð‘BÞ in its injective hull, then the cokernel is contained
in Fð‘BÞ and the inclusion splits because of (2.1). This means that FX is injective and the
first part follows. We have RG LF G ID on projectives and LF RG G ID on injectives.
This implies that the global dimension of B is finite and then the second statement follows.
The fact that B is the Ringel dual of A is then clear from the definitions. r

2.2. Double centraliser property. We claim that, given a standardly stratified alge-
bra A, there is always some tilting module X such that we have a double centraliser prop-
erty, AGEndEndAðX ÞðXÞ. This relies on the following:

Proposition 2.3. Let A be standardly stratified and let R ¼ RðAÞ be its Ringel dual.

Let P be the projective cover of the characteristic tilting module T in mod-R. Then there is

an exact sequence 0! A! Q! coker! 0, where Q ¼ R�1P (see Proposition 2.1) is tilting

and coker A FðDAÞ.

Proof. Since P;T A FðDRÞ, the kernel K of the surjection between P and T is con-
tained in FðDRÞ ([1], Theorem 1.6 (i), and [27], Theorem 3). Applying the inverse of the
Ringel duality functor (which is defined on FðDRÞ) we get the short exact sequence
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0! A! Q! coker! 0;

where coker A FðDÞ by Proposition 2.1. r

Corollary 2.4. There exists a (basic) tilting module X such that we have an isomor-

phism, AGEndEndAðXÞðX Þ.

Proof. Let Y be a tilting module such that we have an inclusion coker ,! Y (the
existence follows from [6], Theorem 5.4). Put X :¼ ðQlYÞbasic, then there exists an exact
sequence, 0! coker! X n, satisfying the assumptions of [51], Theorem 2.8. Hence the
double centraliser property follows. r

Remark 2.5. One can show that there exists a minimal basic tilting module Y with
the following property: any M A FðDÞ embeds into Y m for some m. Here minimal means
that every other tilting module with the latter property has Y as a direct summand. How-
ever, it is not clear whether there exists a minimal basic tilting module Y , with respect to
which one has the double centraliser property. It is the case in all the examples we know, in
particular in the Examples 2.7.

In general, it could happen that X is already the characteristic tilting module, and the
statement of Corollary 2.4 is not very useful. As an example we refer to [49], Example A1,
where the algebra A is given by all 3� 3 upper triangular matrices over some field k with
the matrix idempotents e1, e2, e3 and the quasi-hereditary structure given by the ordering
1 < 2 < 3. The same algebra, but with the quasi-hereditary structure given by the reversed
order (see [49], Example A2) provides also an example, where X is not contained in
AddðQÞ, the additive category generated by Q. In particular, we do not have the double
centraliser property with respect to Q.

2.3. Double centraliser and projective-injective modules. On the other hand, under
the assumptions and notation of Proposition 2.3 we have the following nice situation,
where projective-injective modules play a crucial role.

Corollary 2.6. Let Q be as in Subsection 2.2. If the injective hull of any standard mo-

dule is contained in AddðQÞ, then the following holds:

AGEndEndAðQÞðQÞGEndEndAðQbasicÞðQbasicÞ:

Proof. If the injective envelope of any standard module is contained in Add Q, the
assumptions of [51], Theorem 2.8; Theorem 2.10, are satisfied and the statement follows.

r

As interesting examples we have the following:

Examples 2.7. In the examples which follow we illustrate the use of Proposition 2.3
and Corollary 2.4, in particular, we explicitly describe the modules Q and X which appear
in the double centraliser statements.

(1) Let A be such that A-mod is equivalent to an integral block of the Bernstein-
Gelfand-Gelfand category O for some semi-simple complex Lie algebra g (see [12]). The
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algebra A is equipped with the usual quasi-hereditary structure (given by the Bruhat order
and the Verma modules as standard modules). In this case we have exactly one indecom-
posable projective-injective module, namely the projective cover Pðw0Þ of the unique simple
standard (or Verma) module in this block. Moreover, A is Ringel self-dual ([59], Theorem
5.12 and Bemerkung 2.4 (3)). The projective cover of a tilting module is a direct sum of
Pðw0Þ’s. Via Ringel duality we get an inclusion

i : A ,! Q;ð2:2Þ

where Q ¼ Pðw0Þn for some positive integer n. The cokernel of this inclusion has (by Pro-
position 2.3) a standard (or Verma-) flag. Hence there is an exact sequence of the form

0! A! Q! Qm;ð2:3Þ

for some positive integer m. We could take X ¼ Qbasic ¼ Pðw0Þ and get the famous
double centraliser theorem of Soergel ([58], see also [51], Theorem 3.2), namely
AGEndEndAðX ÞðX Þ.

(2) Let Ap be such that Ap-mod is equivalent to an integral block of some parabolic
category Op in the sense of [57] (see also Section 4.2) with the usual quasi-hereditary struc-
ture. Then Ap is Ringel-self-dual (see [59] or Proposition 4.4 below). The self-dual projec-
tive modules are exactly the summands occurring in the injective hulls of standard modules
([37]), they are also exactly the summands occurring in the projective cover of tilting
modules. This means, we have an embedding of the form (2.2) and then an exact sequence
of the form (2.3), where Q is a direct sum of projective-injective modules. If we set
X ¼ Qbasic the sum over (a system of representatives for the isomorphism classes of)
all indecomposable projective-injective modules we get the double centraliser property
Ap GEndEndAp ðXÞðX Þ (this is proved in [61], Theorem 10.1).

(3) Let g be a semisimple complex Lie algebra. Let H be the category of Harish-
Chandra bimodules for g, that is the category of g-bimodules which are of finite length
and locally finite for the adjoint action of g (see for example [11] or [40], Section 6).
The category H decomposes into blocks lHm. A bimodule X A H is contained in the
block lHm if it is annihilated by ðker wlÞ

n from the left and by ðker wmÞ
n from the right for

some positive integer n, where ker wl is the annihilator of the Verma module with highest
weight l. The category lHm does not have projective objects, however, we get enough pro-
jectives (see e.g. [40], 6.14) if we consider the full subcategory lH

1
m of lHm given by all

bimodules which are annihilated by ker wm from the right-hand side. Let A
m
l be such that

A
m
l -modG lH

1
m , where l and m are integral. Then A

m
l is standardly stratified (it is not

quasi-hereditary in general) and contains a unique indecomposable projective-injective
module (see [50], Corollary 2). Later (Proposition 4.9) we give a new proof for the
fact that A

m
l is Ringel self-dual (see [28], Theorem 3, for the original argument). As in

category O, the projective cover of a tilting module is projective-injective, and hence Q

becomes a direct sum of copies of the unique self-dual indecomposable projective module.
The injective hulls of standard modules are projective as well. Hence we could take
X ¼ Qbasic, the indecomposable projective-injective module and get the double centraliser
A

m
l GEndEnd

A
m

l
ðXÞðX Þ.

(4) Let A be such that A-modGOðHcÞ, the category O for some rational Cherednik
algebra Hc ¼ H0; c as considered for example in [34] or [31]. The projective-injective mo-
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dules are exactly the summands occurring in the injective hulls of standard modules ([31],
Proposition 5.21), they are also exactly the summands occurring in the projective covers of
tilting modules. Hence, Q is a direct sum of projective-injectives and then we could take
X ¼ Qbasic to be the sum over all indecomposable projective-injective modules. This is the
double centraliser property from [31], Theorem 5.16.

(5) As shown in [51], there is a double centraliser property in the context of Schur
algebras and q-Schur algebras. This will be used and explained in more detail in Subsection
4.5.

(6) Quite often there are double centraliser properties with respect to tilting modules,
which do not have to be projective or injective. In the following examples the tilting module
X is neither projective nor injective: Let Q be a finite quiver with vertices f1; . . . ; ng. As-
sume it is directed, that is an arrow from i to j exists only if i > j. Let A ¼ AðQÞ be the
corresponding path algebra and D be its dual extension, that is the algebra Ank Aopp

with the relations ðrad AoppÞðrad AÞ ¼ 0 (see e.g. [20]). Then D is quasi-hereditary with re-
spect to the natural order on f1; . . . ; ng. One can show that there is a double centraliser
property with respect to the tilting module X ¼ Qbasic ¼

L
i

TðiÞ, where the sum runs over

all sources of Q. It is also easy to see that X is neither injective nor projective in general.

Remark 2.8. Let A and X be as in the examples above, then we could define

V : A-mod! EndAðXÞ-mod;

M ! HomAðX ;MÞ:

The double centraliser property can be reformulated as: The functor V is fully faithful on
projective modules, i.e. V induces an isomorphism

HomAðP1;P2ÞGHomEndAðX ÞðVP1;VP2Þ

for all projective modules P1 and P2.

Another easy consequence from the definitions is the following: The functor V is fully
faithful on tilting modules, i.e. V induces an isomorphism

HomAðT1;T2ÞGHomEndAðX ÞðVT1;VT2Þð2:4Þ

for all tilting modules T1 and T2.

Proof. If HomAðT1;KÞ ¼ 0 ¼ HomAðK ;T2Þ for any K A A-mod such that VK ¼ 0
then

HomAðT1;T2ÞGHomEndAðX ÞðVT1;VT2Þ

since V is a quotient functor (see [30]). All the composition factors in K are annihilated by
V. On the other hand, none of the composition factors in the head of T1 and in the socle of
T2 is annihilated by V. This proves the statement. r
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3. Serre functors

The aim of the present section is to develop an e¤ective machinery to describe Serre
functors for the categories appearing in the examples above, where the algebra is not
given explicitly. Let C be a k-linear additive category with finite dimensional homomor-
phism spaces. A right Serre functor is an additive endofunctor F of C together with iso-
morphisms

CX ;Y : HomCðX ;FYÞGHomCðY ;XÞ�;ð3:1Þ

natural in X and Y . Here, � denotes the ordinary duality for vector spaces. Right Serre
functors satisfy the following properties:

� Two right Serre functors are isomorphic (see [55], Lemma I.1.3).

� If e is an auto-equivalence of C and F is a right Serre functor then eF GF e. (It
follows directly from the definitions that eF e�1 is a right Serre functor, hence it must be
isomorphic to F .)

A right Serre functor is a Serre functor if it is an auto-equivalence of C. By general
results (see [35], [14]), for any finite dimensional algebra A of finite global dimension, there
is a Serre functor S for the bounded derived category DbðAÞ, more precisely SGLH,
where H ¼ A�nA � ([14], Example 3.2(3)). In the literature, the functor H is often called
the Nakayama functor (see e.g. [35], page 37). This is because H GHomAð�;AÞ�.

Recall that for any abelian category C we denote by DbðCÞ its bounded derived cat-
egory. If C ¼ A-mod we set DbðAÞ ¼ DbðCÞ. We use the standard notation like LF , RG,
LiF , R iG etc. to denote left derived and right derived functors and their i-th cohomology
functors. Let also DperfðAÞ denote the full subcategory of DbðAÞ, consisting of perfect com-
plexes (i.e. of those complexes which are quasi-isomorphic to bounded complexes of projec-
tive A-modules).

In order to be able to describe more explicitly the Serre functors for some of the
examples mentioned above we will need e¤ective tools to detect Serre functors. Recall
that a finite-dimensional algebra, A, is called self-injective provided that AGA� as left A-
modules; and symmetric provided that AGA� as A-bimodules. We start with the following
easy observation:

Lemma 3.1. Let A be a finite-dimensional algebra.

(1) If A is self-injective, then LH is a Serre functor of DperfðAÞ.

(2) ID is a Serre functor of DperfðAÞ if and only if A is symmetric.

Proof. Let first A be self-injective. Let P� be a bounded complex of projective A-
modules. Then we have that LHP� ¼ HP� is a bounded complex of injective A-modules
by the definition of H. Since A is self-injective we have HP� A DperfðAÞ. That in this case
LH is a Serre functor is proved for example in [32], Proposition 20.5.5(i). Finally, the last
statement follows from the definition of a symmetric algebra. r

141Mazorchuk and Stroppel, Serre functors



Definition 3.2. Given an algebra A and a projective-injective module Q, we call Q

good if the socle of Q is isomorphic to the head of Q. (Equivalently, if QG
L
l AL 0

PðlÞ for
some L 0HL then QG

L
l AL 0

IðlÞ.)

If A has a duality which preserves simple modules, any projective-injective module is
automatically good.

Remark 3.3. In the following we will also use double centraliser properties for the
opposed algebra Aopp. Let I be a basic injective A-module. It is easy to see that the exis-
tence of an exact sequence of the form

Q2 ! Q1 ! I ! 0ð3:2Þ

for some projective-injective A-modules Q1, Q2, is equivalent to the requirement that Aopp

has a double centraliser property with respect to a projective-injective module. Indeed, the
double centraliser property for Aopp is equivalent to the existence of an exact sequence of
the form

0! Aopp ! X 01 ! X 02ð3:3Þ

for some projective-injective modules X 01, X 02. Applying the usual duality Homkð�; kÞ we
get an exact sequence

X2 ! X1 ! I ! 0;ð3:4Þ

where I is the injective cogenerator of A-mod and X1, X2 are projective-injective.

3.1. A characterisation of Serre functors. The following result provides a tool to de-
tect Serre functors:

Theorem 3.4. Let A be a finite dimensional k-algebra of finite global dimension.

Assume that a basic projective-injective A-module exists, is good, and both, A and Aopp,
have the double centraliser property with respect to a projective-injective module. Let

F : A-mod! A-mod be a right exact functor. Then LF is a Serre functor of DbðAÞ if and

only if the following conditions are satisfied:

(a) Its left derived functor LF : DbðAÞ ! DbðAÞ is an auto-equivalence.

(b) F maps projective A-modules to injective A-modules.

(c) F preserves the full subcategory PI of A-mod, consisting of all projective-injective

modules, and the restrictions of F and H to PI are isomorphic.

Proof. Let Q be a good basic projective-injective A-module. We know that DbðAÞ
has a Serre functor, S, and SGLH, where H ¼ A�nA �. By definition, H satisfies (a) and
(b) and preserves PI, because Q is good. Hence H satisfies (c).

Now let F : A-mod! A-mod be a right exact functor, satisfying (a)–(c). We claim
that F and H are isomorphic when restricted to the category of injective A-modules. In-
deed, the double centraliser property for Aopp gives us an exact sequence,
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X2 ! X1 ! I ! 0;ð3:5Þ

where I is the injective cogenerator of A-mod and X1;X2 A PI (see Remark 3.3). Let
c : F ! H be the isomorphism, given by (c). Applying F and H to (3.5) and using (c) we
obtain the following diagram with exact rows, where the square on the left-hand side com-
mutes, inducing an isomorphism, cI , as indicated:

FðX2Þ ���! FðX1Þ ���! FðIÞ ���! 0

cX2

???y cX1

???y cI

HðX2Þ ���! HðX1Þ ���! HðIÞ ���! 0:

��������

a

By standard arguments, it defines an isomorphism of functors, F GH, when restricted to
the full additive category of injective A-modules. Since LF is an auto-equivalence, we have
LF SGSLF . As projectives are acyclic for right exact functors, we get an isomorphism,
LF H GSF , when restricted to the full additive subcategory given by projectives. Taking
the 0-th homology we get an isomorphism of functors

F H GH Fð3:6Þ

when restricted to the full additive category of projective A-modules. Since the functors F

and H are right exact, we only have to deduce that F GH on the category of projectives.
We already know that F and H are invertible on PI, hence we can fix isomorphisms
a : EndAðQÞGEndAðFQÞ and b : EndAðQÞGEndAðHQÞ. When restricted to PI, we
have F G IDa and H G IDb, where IDa and IDb denote the identity functors, but with
the EndAðQÞ-action twisted by a or b respectively. Since both, F and H, are right exact,
they uniquely extend to functors on mod-EndAðQÞ, the latter being realised as the full sub-
category C of A-mod given by all modules, having a presentation of the form (3.4) (see [5],
Section 5). From the explicit description above, we obtain that both F and H are invertible
as endofunctors of C. As both, H and F , map projectives to injectives and F GH on injec-
tives we get, together with (3.6), isomorphisms of functors F 2 GH F GF H when re-
stricted to the full additive category of projective A-modules. This gives then rise to an iso-
morphism, F GH, since F is invertible on C. So, we are done. r

Proposition 3.5. Let A be a finite dimensional k-algebra of finite global dimension.

Assume there is a good basic projective-injective module Q and set B ¼ EndAðQÞ. Then the

algebra B is symmetric if and only if the restriction of the Serre functor for DbðAÞ to PI is

the identity functor.

Proof. Let S be the Serre functor for DbðAÞ. Then S obviously preserves PI, be-
cause Q is good, and hence it also preserves the (homotopy) category of bounded com-
plexes of projective-injective A-modules. Moreover, it induces a Serre functor on this cate-
gory. By [5], Section 5, the latter one is equivalent to the category DperfðBÞ. The statement
now follows from Lemma 3.1. r

3.2. Serre functors via partial coapproximation. In this subsection we want to show
that double centraliser properties with respect to projective-injective modules quite often
make it possible to describe the Serre functor in terms of partial coapproximations.
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For the remaining section let A be a finite dimensional algebra of finite global dimen-
sion. Let Q A A-mod be a projective module. For any module M let MQ be the trace of Q

in M (i.e. MQ is the smallest submodule of M such that HomAðQ;M=MQÞ ¼ 0). Dually let
M Q be the smallest quotient of M such that HomAðQ;MÞ ¼ HomAðQ;M QÞ.

Associated with Q, there is a right exact functor CoappQ : A-mod! A-mod called
the partial coapproximation with respect to Q (for details we refer for example to [45], 2.5).
It sends a projective module P to PQ. Note that if f : P! P 0 is a morphism between pro-
jective modules, then it induces a morphism, CoappQð f Þ : Coapp P! CoappðP 0Þ. These
assignments can be extended uniquely to a right exact endofunctor CoappQ of A-mod.
For an arbitrary module M A A-mod, the module CoappQ M can be constructed in the fol-
lowing way: We choose a short exact sequence K ,! P!!M, where P is projective. Then

CoappQ M G ðP=KQÞQ;

in other words CoappQ M is obtained from M by first maximally extending M using simple
modules, which do not occur in the top of Q, and afterwards deleting all occurrences of
such modules in the top part. Since coapproximation is a right exact functor, compatible
with taking direct summands and sums, one might think of this functor as a functor given
by tensoring with some A-bimodule X . The explicit description of X will not be relevant
for the following, therefore we prefer to stick to the more abstract language of right exact
functors.

Lemma 3.6. Let A be a finite dimensional k-algebra. Assume, Aopp has the double

centraliser property with respect to a projective-injective module. Let Q be a basic

projective-injective A-module. Let l A L. Then the following holds: If PðlÞQ G IðlÞQ then

ðCoappQÞ
2�

PðlÞ
�
G IðlÞ.

Proof. We have

ðCoappQÞ
2�

PðlÞ
�
GCoappQ

�
PðlÞQ

�

GCoappQ

�
IðlÞQ

�

G IðlÞ:

Here, only the last isomorphism needs some explanation. If P is the projective cover of

IðlÞQ then the natural surjection from IðlÞ onto IðlÞQ lifts to a map, f : P! IðlÞ. From
the definition of IðlÞQ and (3.2) it follows that f is surjective. The double centraliser prop-
erty for Aopp (see Remark 3.3) also implies that any composition factor in the head of the
kernel of f is not annihilated by HomAðQ; �Þ. Hence the desired isomorphism follows. r

The following theorem describes a situation, where the double centraliser property
with respect to a basic projective-injective module Q, the description of the Serre functor
via partial coapproximation, and the symmetry of the endomorphism ring of Q are nicely
connected. Later on we will see that this setup applies to all the di¤erent versions of cate-
gory O mentioned in the Examples 2.7.

Theorem 3.7. Let A be a finite dimensional k-algebra of finite global dimension. Let

Q be a basic projective-injective A-module. Assume, Q is good and both, A and Aopp have the

144 Mazorchuk and Stroppel, Serre functors



double centraliser property with respect to some projective-injective module. Consider the

functors

V ¼ HomAðQ; �Þ : A-mod! mod-EndAðQÞ

and H ¼ A�nA �. Then the following assertions are equivalent:

(i) VGVH.

(ii) H G ðCoappQÞ
2.

(iii) EndAðQÞ is symmetric.

In either of these cases, the Serre functor for DðAÞb is L
�
ðCoappQÞ

2�
.

Proof. Obviously, if (ii) holds then L
�
ðCoappQÞ

2� is the Serre functor for DbðAÞ. It
is left to show that the three cases are equivalent.

(i)) (ii). Let us assume VGVH. Let P be a projective module. By the assumed
double centraliser property for A and Aopp (see Remark 3.3) we have natural isomorphisms

HomAðP;PÞGHomEndAðQÞðVP;VPÞ

GHomEndAðQÞðVHP;VPÞ

GHomAðHP;PÞ

(for the last isomorphism we refer to the proof of (2.4)). The identity map in EndAðPÞ gives
rise to a natural morphism, HP! P, identifying ðHPÞQ and PQ. Since H maps the projec-
tive cover of any simple module to its injective hull, we are in the situation of Lemma 3.6.
In particular, ðCoappQÞ

2 sends an indecomposable projective module to the corresponding
indecomposable injective module. Let G be the right adjoint functor to CoappQ (this is the
functor of partial approximation with respect to Q, see [45] 2.5). We have the adjunction
morphism ID! G2ðCoappQÞ

2 which we know is an isomorphism on projective-injective
modules. From the double centraliser property we get that this adjunction morphism
is injective on all projective modules. Since ðCoappQÞ

2
P is isomorphic to the corre-

sponding injective module, we have G2ðCoappQÞ
2 GP. In particular, G2ðCoappQÞ

2 G ID
when restricted to the additive subcategory given by projective modules. Dually,
ðCoappQÞ

2
G2 G ID when restricted to the additive category given by injective modules.

Since A has finite global dimension, L
�
ðCoappQÞ

2� defines an auto-equivalence of

the derived category DbðAÞ with inverse RG2. From our assumption we have
VðCoappQÞ

2 GVGVH. Therefore, ðCoappQÞ
2 GH on the additive subcategory given

by all projective-injective modules. Hence ðCoappQÞ
2 satisfies the assumptions of Theorem

3.4. It follows in particular that H G ðCoappQÞ
2.

(ii)) (iii). The definition of CoappQ implies that it induces the identity functor on
the category of projective-injective A-modules. Hence EndAðQÞ is symmetric by Proposi-
tion 3.5.
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(iii)) (i). We assume that B ¼ EndAðQÞ is symmetric. From Lemma 3.1 we have
that the Serre functor of DperfðBÞ is isomorphic to the identity functor. On the other

hand, the Serre functor of DbðAÞ induces a Serre functor on the category of bounded com-
plexes of projective-injective A-modules. (Note that this category is preserved by the Serre
functor, since Q was assumed to be good.) Altogether, when restricted to the category of
projective-injective modules, the functor H is isomorphic to the identity functor. This pro-
vides the following sequence of natural isomorphisms for any projective A-module P:

VHPGHomAðQ;HPÞ

GHomAðHQ;HPÞ

GHomAðQ;PÞ

GVP:

(For the penultimate isomorphism we used that H defines an auto-equivalence of DbðAÞ,
hence it is in particular fully faithful on projectives.) Thus we get an isomorphism of func-
tors VH GV when restricted to the category of projective modules. Since the involved
functors are right exact, the isomorphism extends to an isomorphism of functors
VH ! V. r

4. Applications

4.1. Bernstein-Gelfand-Gelfand category O. Let g be a semisimple complex Lie alge-
bra with a fixed Borel subalgebra b containing the fixed Cartan subalgebra h. Let O be the
corresponding BGG-category (see [12]). Let W denote the Weyl group of g with longest
element w0. For any weight l A h� let Wl be the stabiliser Wl ¼ fw A W jw � l ¼ lg, where
w � l ¼ wðlþ rÞ � r and r is the half-sum of positive roots. For m A h� let DðmÞ be the
Verma module with highest weight m. For l A h�, a dominant and integral weight, we con-
sider the block Ol, containing the Verma modules DðmÞ, where m A W � l. Let LðmÞ be the
simple quotient of DðmÞ and PðmÞ its projective cover. For any w A W , there is a twisting

functor Tw : O! O (given by tensoring with some ‘‘semi-regular bimodule’’), see [2], [45]
or [3] for a precise definition. Let d be the duality on O. We denote by Gw the right adjoint
functor of Tw. We have Gw G d Tw d (see [3], Section 4).

If l is regular, and s is a simple reflection, we denote by Cs Irving’s shu¿ing functor

defined as taking the cokernel of the adjunction morphism between the identity functor and
the translation ys ‘‘through the s-wall’’ ([29], Section 3). Let w0 ¼ si1 si2 � � � sir be a reduced
expression, then we define Cw0

¼ Csir
Csir�1

� � �Csi1
. Up to isomorphism, this does not depend

on the chosen reduced expression (see e.g. [54], Lemma 5.10).

Proposition 4.1. Let A ¼ Al such that Al-modGOl for some integral block Ol.

(1) The functor LðTw0
Þ2 : DbðOlÞ ! DbðOlÞ is a Serre functor.

(2) If l is regular, then LðCw0
Þ2 : DbðOlÞ ! DbðOlÞ is a Serre functor. In particular,

LðTw0
Þ2 GLðCw0

Þ2.
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Proof. We want to verify the assumptions of Theorem 3.4 for A ¼ Al and F ¼ T 2
w0

considered as an endofunctor of A-mod.

Because of the existence of a duality on A we have AGAopp and, as we have already
mentioned in the introduction, A has a double centraliser property with respect to the good
basic projective-injective module Pðw0 � lÞ (see [58], Struktursatz). If l is regular, the endo-
morphism algebra of the latter is the coinvariant algebra associated with W . If l is singular
then this endomorphism ring is isomorphic to the subalgebra of Wl-invariants in the
coinvariant algebra ([58], Endomorphismensatz). In any case, the resulting algebra is sym-
metric. Consider now ðTw0

Þ2 : Ol ! Ol. This functor is both right exact and additive by
definition. It’s derived functor defines a self-equivalence of DbðOlÞ by [3], Corollary 4.2,
for the regular case; the singular case follows by translation, since twisting functors com-
mute naturally with translation functors ([3], Theorem 3.2). Hence the assumption (a) of
Theorem 3.4 is satisfied.

From [3], formula (2.3) and Theorem 2.3, we have

F
�
PðlÞ

�
¼ F

�
DðlÞ

�
G‘ðlÞG IðlÞ;ð4:1Þ

if l is regular. By [3], Theorem 3.2, F commutes with projective functors. Applying projec-
tive functors to (4.1) gives F

�
PðmÞ

�
¼ IðmÞ for any m A W � l. Hence, the assumption (b) of

Theorem 3.4 is satisfied. It is left to verify the assumption (c) of Theorem 3.4.

Since the endomorphism ring of Pðw0 � lÞ is symmetric, by Proposition 3.5 it is left
to check that Tw0

is isomorphic to the identity functor when restricted to the category
of projective-injective modules. By [45], Theorem 4, there is a natural transformation,
Tw0
! ID, which is an isomorphism, when restricted to projective-injective modules ([3],

Proposition 5.4). In particular, the assumption (c) of Theorem 3.4 is satisfied. Theorem
3.4 therefore implies that LðTw0

Þ2 is a Serre functor of DbðOlÞ. The first part of the pro-
position follows.

Let now l be dominant, integral and regular. We again want to apply Theorem 3.4.
The functor F ¼ ðCw0

Þ2 : Ol ! Ol is both right exact and additive by definition. Its derived
functor defines a self-equivalence of DbðOlÞ by [54], Theorem 5.7. That F

�
PðmÞ

�
¼ IðmÞ

for any m A W � l follows inductively from [38], Proposition 3.1, [54], Theorem 5.7, Lemma
5.2 and Proposition 5.3. Since Endg

�
Pðw0 � lÞ

�
is symmetric, it is, by Proposition 3.5, left

to check that F is isomorphic to the identity functor when restricted to the category of
projective-injective modules. That F preserves projective-injective modules follows from
[38], Theorem 4.1(1). From [58], Section 2.4, it follows that F commutes with the action
of the centre of A, which, because of the double centraliser and commutativity of
Endg

�
Pðw0 � lÞ

�
, is in fact Endg

�
Pðw0 � lÞ

�
. This implies that F , restricted to the category

of projective-injective modules, is isomorphic to the identity functor. Theorem 3.4 now im-
plies that LðCw0

Þ2 is a Serre functor of DbðOlÞ. From the uniqueness of Serre functors we
get in particular LðTw0

Þ2 GLðCw0
Þ2. r

We obtain the following surprising consequence:

Corollary 4.2. Let l be an integral, dominant and regular weight. Considered as endo-

functors of Ol, there is an isomorphism of functors ðCw0
Þ2 G ðTw0

Þ2. In particular ðCw0
Þ2

commutes with projective functors.
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Proof. The functors are isomorphic when restricted to the additive category of pro-
jective modules, since they both give rise to a Serre functor. On the other hand, they are
both right exact and Ol has finite global dimension. Therefore, the isomorphism extends
uniquely to the whole category Ol. Twisting functors commute with projective functors
(see [3], Section 3), hence ðCw0

Þ2 commutes with projective functors as well. r

Remark 4.3. We would like to draw the reader’s attention to the following observa-
tions concerning the principal block O0 of O:

(1) The functor d T 2
w0

d is exactly Enright’s completion functor, see e.g. [41]. This fol-
lows from [45], Section 3.

(2) Considered as an endofunctor of O0, the functor Cw0
does not commute with the

action of the centre of the universal enveloping algebra of g (or with the centre of O0) and
does not commute with translation functors even if g ¼ sl2 (whereas Tw0

does, see [3], Sec-
tion 3). This is because Cw0

twists the action of the centre by w0 (this follows from [58], Sec-
tion 2.4). This means, however, that Cy�1 Cy commutes with the action of the centre of the
category for any y A W (however, not necessarily with projective functors).

(3) Since ðCw0
Þ2 induces the identity on the category of injective modules, it follows

that ðCw0
Þ4 G ðCw0

Þ2. It is easy to see that already ðTw0
Þ3 G ðTw0

Þ2. Further, the functors
Cw0

, ðCw0
Þ2, and ðCw0

Þ3 are pairwise non-isomorphic; and the functors Tw0
, ðTw0

Þ2 are not
isomorphic.

(4) If w0 ¼ s1 � � � sk is a reduced decomposition, then

LðCw0
Þ2 G ðLCs1

LCs2
� � �LCst

ÞðLCs1
LCs2

� � �LCst
Þ;

LðTw0
Þ2 G ðLTs1

LTs2
� � �LTst

ÞðLTs1
LTs2

� � �LTst
Þ:

The first isomorphism follows for example from [38], Proposition 3.1, by standard argu-
ments. The second follows directly from [3], Theorem 2.2, Theorem 2.3 and Theorem 3.2.

(5) The Serre functor S for DbðO0Þ satisfies Sk YS l for all k 3 l. Indeed, from [3],
Corollary 6.2, it follows that SkLð0ÞGLð0Þ½k2lðw0Þ�. From [3], Corollary 6.2, it also fol-
lows that Sk Y ½l � for any k, l because SPðw0 � 0ÞGPðw0 � 0Þ.

(6) The braid group acts on DbðO0Þ via the auto-equivalences LCs and via the auto-
equivalences LTs. Since the Serre functor commutes with auto-equivalences, it is natural
to expect that it should correspond to a central element in the Braid group. In fact,
s1 � � � sks1 � � � sk (see notation above) generates the centre of the Braid group Bn, nf 3, see
for example [13], Corollary 1.8.4.

4.2. The parabolic category O in the sense of Rocha-Caridi. Our next task is to de-
scribe the Serre functor for the bounded derived category associated with the principal
block of a parabolic category Op in the sense of [57]. The situation here is much more com-
plicated, since there are in general non-isomorphic indecomposable projective-injective
modules in the same block and we do not yet know if the endomorphism ring of a basic
projective-injective module is symmetric. However, the knowledge of the Serre functor for
the bounded derived category of O0 turns out to be extremely useful to determine the Serre
functor for the parabolic situation.
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Let pI b be a parabolic subalgebra of g with corresponding Weyl group WpHW .
Let w

p
0 be the longest element in Wp. For any integral dominant weight l let Op

l be the full
subcategory of Ol given by locally p-finite objects. This category was introduced in [57].
For any w A W let Dpðw � lÞ denote the corresponding parabolic Verma module with
highest weight w � l, i.e. the maximal quotient, contained in Op

l , of the Verma module
Dðw � lÞ A Ol. Note that Dpðw � lÞ3 0 if and only if w is a shortest coset representative in
WpnW .

Let from now on l be dominant, integral and regular. Since any object in DbðOlÞ for
which all cohomology objects are contained in Op

l is quasi-isomorphic to some complex of
objects from Op

l (see the proof of [42], Proposition 1.7.11), DbðOp
l Þ embeds as a full trian-

gulated subcategory in DbðOlÞ. Note that translations through walls preserve the parabolic
subcategory. We may therefore consider the restriction of LCw0

to this subcategory as well
as to the subcategory Op

l (considered as a subcategory of DbðOp
l Þ). We get the following

result:

Proposition 4.4. For any integral dominant and regular weight l we have:

(1) The functor LðCw0
Þ½�lðwp

0 Þ� maps parabolic Verma modules to parabolic dual

Verma modules. More precisely

LðCw0
Þ½�lðwp

0 Þ�D
pðw � lÞG dDpðwp

0 ww0 � lÞð4:2Þ

for any parabolic Verma module Dpðw � lÞ A Op
l .

(2) The category Op
l is Ringel self-dual.

(3) The functor LðCw0
Þ2½�2lðwp

0 Þ� maps projectives in Op to injectives in Op.

(4) The functor LðCw0
Þ2½�2lðwp

0 Þ� is a Serre functor for DbðOp
l Þ.

Proof. We first check that w
p
0 ww0 is indeed a shortest coset representative, if so is w.

Let s A Wp be a simple reflection. Then

lðsw
p
0 ww0Þ ¼ lðw0Þ � lðsw

p
0 wÞ ¼ lðw0Þ � lðsw

p
0 Þ � lðwÞ

¼ lðw0Þ � lðwp
0 Þ þ 1� lðwÞ ¼ lðw0Þ � lðwp

0 wÞ þ 1

¼ lðwp
0 ww0Þ þ 1:

Let Dpðw � lÞ be a parabolic Verma module in Op
l . From [52], Section 4, we have a

finite resolution, Pw
� , of Dpðw � lÞ by Verma modules, where

Pw
i ¼

L
y AWp; lðyÞ¼i

Dðyw � lÞ:

The involved maps are clear up to scalars, for the exact normalisation we refer to [52],
Lemma 4.1.

For a simple reflection, s, the definition of Cs implies CsDðx � lÞGDðxs � lÞ if
xs > x, and Cs‘ðx � lÞG‘ðxs � lÞ if xs < x. Therefore Cw0

Dðx � lÞG‘ðxw0 � lÞ, which
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implies that Cw0
is exact on the category of modules with Verma flag. This gives

RCw0
Dpðw � lÞGCw0

ðPw
� Þ. Dually, d P

w
p

0
ww0

� is a coresolution of dDpðwp
0 ww0 � lÞ. On the

other hand, applying Cw0
to the resolution Pw

� gives a complex, Q�, where

Qi ¼
L

y AWp; lðyÞ¼i

dDðyww0 � lÞ ¼
L

y AWp; lðyÞ¼i

‘ðyww0 � lÞ:

The maps in this complex satisfy the dual version of [52], Lemma 4.1. Hence
d P

w
p

0
ww0

� GQ�½�lðwp
0 Þ�. The formula (4.2) follows.

Let now F ¼Llðwp

0
ÞCw0

. We claim that F , restricted to Op
l , is right exact. Note that

the formulas above imply that LiCw0
M ¼ 0 for any M A FðDpÞ and i3 lðwp

0 Þ, in particu-
lar, for M A Op

l projective. Let M A Op
l be arbitrary. Choose a short exact sequence

K ,! P!!M, where P A Op
l is projective. Since the global dimension of A

p
l is finite, one

obtains LiCw0
M ¼ 0 for all M and all i < lðwp

0 Þ by induction. Therefore, F is right exact.
It is known (see e.g. [54], Lemma 5.1, Lemma 5.2) that G ¼ R lðwp

0
Þðd Cw0

dÞ is the right
adjoint functor of F . From the formula (4.2) it follows that F defines an equivalence
FðDpÞGFð‘pÞ with inverse G. Proposition 2.2 implies that Op

l is Ringel self-dual. Apply-
ing Proposition 2.2 twice, we get that the functor LðCw0

Þ2½�2lðwp
0 Þ� maps projective mod-

ules to injective modules. To prove that LðCw0
Þ2½�2lðwp

0 Þ� is a Serre functor we only have
to verify the last assumption of Theorem 3.4. This is not completely trivial. Instead of
applying again Theorem 3.4 we will give an alternative argument after the following
lemma. r

Let l still be dominant, integral and regular. Let i : Op
l ! Ol denote the exact inclu-

sion functor, let Z : Ol ! Op
l be its left adjoint and ẐZ : Ol ! Op

l be the right adjoint to i

(i.e. Z is the Zuckerman functor of taking the maximal quotient in Op
l , and ẐZG d Z d). To

proceed we will need the following result from folklore:

Lemma 4.5. There are isomorphisms of functors:

d iLZ dG iLZ½�2lðwp
0 Þ�: DbðOlÞ ! DbðOlÞ;

dLZ dGLZ½�2lðwp
0 Þ�: DbðOlÞ ! DbðOp

l Þ:

Proof. Using [25], Proposition 4.2, we can fix an isomorphism,

d iLZ dDðlÞG iLZDðlÞ½�2lðwp
0 Þ�:

Since Z commutes with projective functors (see e.g. [10], Proposition 3), this isomorphism
lifts to an isomorphism on projective modules. We have to verify that it is functorial. With-
out loss of generality we may assume that p ¼ ps is the parabolic subalgebra corresponding
to a simple reflection s. The general case for arbitrary p follows then by induction. Associ-
ated to s, there is a complex of functors

Ts ! ID! iZ

which gives rise to a short exact sequence when applied to projective objects ([45], Theorem
4, and [3], Proposition 5.4). Taking the left derived functors we therefore get an isomor-
phism L2ðiZÞGL1Ts (see [42], Proposition 1.8.8). From [3], Theorem 4.1, and [53], Theo-
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rem 1, we have an isomorphism of functors L1Ts G d iZ d. The first statement follows, the
second is then also clear. r

Now we are ready to complete the proof of Proposition 4.4:

Proof of the last part of Proposition 4.4. To prove that LðCw0
Þ2½�2lðwp

0 Þ� is a Serre

functor for DbðOp
l Þ it is enough to show that for the functor X :¼ ZL2lðwp

0
ÞðCw0

Þ2 i we have
an isomorphism, natural in both arguments, as follows:

HomO
p

l
ðPp;XPpÞGHomO

p

l
ðPp;PpÞ�;ð4:3Þ

where Pp is a projective generator of Op
l . Without loss of generality we assume Pp ¼ ZP,

where P is a projective generator of Ol. We have isomorphisms

HomO
p

l
ðPp;XPpÞGHomO

p

l
ðZP;XPpÞ

GHomOl
ðiZP; iXPpÞ

GHomOl

�
P;L2lðwp

0
ÞðCw0

Þ2 iPp
�

ðby Proposition 4:4 ð1ÞÞ GHomDbðOlÞ
�
P;LðCw0

Þ2 iPp½�2lðwp
0 Þ�

�

GHomDbðOlÞ
�
P½2lðwp

0 Þ�;LðCw0
Þ2iPp

�

ðby Proposition 4:1Þ GHomDbðOlÞ
�
iPp;P½2lðwp

0 Þ�
��

ðby adjointness of i and dZdÞ GHomDbðOp

l
Þ
�
Pp; dLZ dP½2lðwp

0 Þ�
��

ðby Lemma 4:5Þ GHomDbðOp

l
ÞðPp;LZPÞ�

GHomO
p

l
ðPp;ZPÞ�

GHomO
p

l
ðPp;PpÞ�;

which are natural in both arguments. This completes the proof of Proposition 4.4. r

As an application we get the following nontrivial result:

Theorem 4.6. Let l be an integral, regular and dominant weight. We consider the cat-

egory Op
l , where pI b is some parabolic subalgebra of g. Let Q be a basic projective-injective

module in Op
l . Then EndgðQÞ is symmetric.

For the proof we need the following

Lemma 4.7. In the situation of Theorem 4.6 we have the following: the socle S of

DpðlÞ is simple and Homg

�
Q;DpðlÞ=S

�
¼ 0.

Proof. Assume L is a composition factor of DpðlÞ such that HomgðQ;LÞ3 0. From
the latter it follows that the projective cover, P, of L is projective-injective, hence tilting.
Since L is a composition factor of DpðlÞ, we have Homg

�
DpðlÞ;P

�
3 0. Therefore, LðlÞ
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appears as a composition factor in P. Hence P ¼ T pðlÞ and L is unique. On the other
hand

1 ¼ ½T pðlÞ : DpðlÞ� ¼ ½P : DpðlÞ� ¼ ½DpðlÞ : L�:

Since (by [37]) any simple module appearing in the socle of a parabolic Verma module is
not annihilated by HomgðQ; �Þ, the statement follows. r

Proof of Theorem 4.6. By Example 2.7 (2) and Proposition 3.5 it is enough to prove
that the Serre functor is isomorphic to the identity functor when restricted to the additive
subcategory of projective-injective modules. Let S ¼LðCw0

Þ2½�2lðwp
0 Þ� be the Serre func-

tor of DbðOp
l Þ. The idea of the proof is the following: From Proposition 4.4 and Corollary

4.2 we know that S :¼ iL2lðwp

0
ÞðCw0

Þ2 Z : Ol ! Ol is right exact and commutes with trans-

lations through walls, even in a natural way as defined in [44]. We will construct another
right exact functor G : Ol ! Ol which again naturally commutes with translations through
walls and coincides with S when evaluated at DðlÞ. The main result of [44] states that
two right exact additive functors, F1;F2 : Ol ! Ol, which agree on DðlÞ, and both natu-
rally commute with translations through walls, are in fact isomorphic. From this fact
we will deduce an isomorphism of functors S GG. Even more, the main step is to show
that we can choose a functor G with the additional property that G ¼ iG 0 Z for some
G 0 : Op

l ! Op
l , and G 0 is isomorphic to the identity functor when restricted to the category

of projective-injective modules in Op
l . Since Z is dense and full on projectives and

S ¼ iL2lðwp

0
ÞðCw0

Þ2 ZG iG 0 Z, we get that S must be isomorphic to the identity functor
on the subcategory of Op

l formed by projective-injective modules. This will finally imply
the assertion of the theorem.

Let’s do the work! We have S ¼LðCw0
Þ2½�2lðwp

0 Þ�, the Serre functor of DbðOp
l Þ,

given by restriction of LðCw0
Þ2½�2lðwp

0 Þ� : DbðOlÞ ! DbðOlÞ. Put S :¼ iL2lðwp

0
ÞðCw0

Þ2 Z,
considered as a functor Ol ! Ol. This functor is clearly right exact and additive. Since l
is regular, the category Ol is a category with full projective functors ([44], Proposition 16)
in the sense of [44], Section 2, where the projective functors are given by compositions of
translations through walls and their direct summands. Recall from [44], Definition 2, that a
functor G : Ol ! Ol naturally commutes with projective functors if for any projective func-
tor y, there is an isomorphism of functors jy : yG GG y such that the following holds: for
any two projective functors y1, y2 and any natural transformation a A Homðy1; y2Þ the fol-
lowing diagram commutes:

y1G ���!aG
y2G???yjy1

jy2

???y
G y1 ���!GðaÞ

G y2:

(Note the typos in the original formulation [44], Definition 2.)

Claim 1. The functor S : Ol ! Ol naturally commutes with projective functors.

Proof of Claim 1. To see this note first that S GL2lðwp

0
ÞðCw0

Þ2 iZ, where
LðCw0

Þ2 : DbðOlÞ ! DbðOlÞ. (This is clear from the definitions.) From [44], Section 6.2,
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we know that iZ naturally commutes with projective functors on Ol. In [44], Section 6.5, it
is proved that twisting functors on Ol naturally commute with projective functors on
Ol. Corollary 4.2 gives an isomorphism ðTw0

Þ2 G ðCw0
Þ2 : Ol ! Ol, hence ðCw0

Þ2 naturally
commutes with projective functors. From [44], Lemma 8, it follows that L2lðwp

0
ÞðCw0

Þ2 and

L2lðwp

0
ÞðCw0

Þ2 naturally commute with projective functors, therefore so does S, because it is
a composition of functors which commute naturally with projective functors. This implies
Claim 1. r

Let now J : Ol ! Ol be the partial coapproximation with respect to M, where
M ¼

L
x AW 0

Pðx � lÞ and

W 0 ¼ fx A W jZPðx � lÞ ¼ 0 or ZPðx � lÞ A Op
l is projective-injectiveg:

Recall that, when restricted to projective objects, J is nothing else than taking the trace
with respect of M. The functor J is additive and right exact.

Claim 2. The functor J : Ol ! Ol naturally commutes with projective functors.

Proof of Claim 2. Let y : Ol ! Ol be a projective functor. We first show that
yTrM P ¼ TrM yP, via the natural inclusions

yTrM P ,! yP - TrM yP;

for any projective module P A Ol. To see this consider the short exact sequence
TrM P ,! P!! N, where N is the canonical quotient, in particular HomgðM;NÞ ¼ 0. We
claim that HomgðM; yNÞ ¼ 0. Let y 0 be the adjoint functor of y. This is of course again
a projective functor and therefore we have the following: If ZPðx � lÞ ¼ 0 then
0 ¼ y 0ZPðx � lÞGZy 0Pðx � lÞ. If ZPðx � lÞ3 0, but x A W 0, then ZPðx � lÞ is projective-
injective in Op

l , hence so is y 0ZPðx � lÞGZy 0Pðx � lÞ. In particular,

HomgðM; yNÞGHomgðy 0M;NÞ

,! HomgðM n;NÞ ðfor some positive integer nÞ

¼ 0:

The definition of the trace implies that the projective cover of TrM P is a direct summand of
some M n, n A Z>0. From the arguments above it follows that the projective cover of
yTrM P is also a direct summand of some M n, n A Z>0. Altogether, yTrM P ¼ TrM yP via
the natural inclusions. In other words, we may fix an isomorphism of functors jy : yJ G Jy,
restricted to the category of projective modules, such that

jy � jy ¼ yð jÞ : y J ! y;ð4:4Þ

where j : J ! ID is the obvious natural transformation. In particular, J commutes with
projective functors. We claim that this is already enough to show that J naturally com-
mutes with projective functors. We have to check this directly using the original definition
[44], Definition 2: Let y1; y2 : Ol ! Ol be two projective functors and let a A Homðy1; y2Þ
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be a natural transformation between them. Consider the following diagram of functors re-
stricted to the additive category formed by all projective objects:

y1 ���!a y2x???y1ð jÞ y2ð jÞ

x???
y1J ���!aJ

y2J???yjy1
jy2

???y
Jy1 ���!JðaÞ

Jy2???yjy1
jy2

???y
y1 ���!a y2:

H H
H H

id id

The two ‘‘squares’’, the one on the left-hand side and the other on the right side, commute
because of (4.4). The squares at the top and bottom commute by definition (of a natural
transformation). We only have to show that the middle square commutes as well, i.e.
JðaÞ � jy1

¼ jy2
� aJ . Since jy2

is injective (on projective modules) it is enough to show
that jy2

� JðaÞ � jy1
¼ jy2

� jy2
� aJ . Since all the other parts of the diagram commute we

can calculate

jy2
� JðaÞ � jy1

¼ a � jy1
� jy1

¼ a � y1ð jÞ

¼ y2ð jÞ � aJ

¼ jy2
� jy2

� aJ :

Hence, J commutes naturally with projective functors when restricted to projective objects.
Since the involved functors are right exact, Claim 2 follows. r

Claim 3. There is an isomorphism of modules SDðlÞG iZ J iZ JDðlÞ.

Proof of Claim 3. We first show that Z JDðlÞG socDpðlÞ, the socle of DpðlÞ. Define
U to be the module which fits into the canonical short exact sequence

0! U ! DðlÞ ! DpðlÞ ! 0:ð4:5Þ

From Lemma 4.7 we have Z JDpðlÞG socDpðlÞ. On the other hand, ZU ¼ 0 by definition,
i.e. the projective cover PU of U is annihilated by Z, hence also Z JPU ¼ 0. Since iZ J is
right exact, the sequence (4.5) implies Z JU ¼ 0 and Z JDðlÞG socDpðlÞ. From the double
centraliser property we have an exact sequence in Op

l of the form

0! DðlÞp ! Q1 ! Q2;

where Q1 and Q2 are projective-injective modules in Op
l . There is therefore also an exact

sequence in Ol of the form
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Q2 ! Q1 ! dDpðlÞ ! 0:

Note that J Q1 ¼ Q1, J Q2 ¼ Q2. Hence iZ J dDpðlÞG dDpðlÞ. Altogether we have
iZ J iZ JDpðlÞG dDpðlÞ. The latter is isomorphic to SDpðlÞ by Proposition 4.4. This
proves Claim 3. r

From [44], Theorem 1, we get the existence of an isomorphism

a : iZ J iZ J GS:

By definition, J is isomorphic to the identity functor when restricted to projective-injectives
in Op

l . Therefore, a induces an isomorphism of functors

IDGLðCw0
Þ2½�2lðwp

0 Þ�

when restricted to the category of projective-injective modules in Op
l . This is exactly the

statement that the Serre functor for DbðOp
l Þ is isomorphic to the identity when restricted

to the additive category formed by projective-injective modules. The assertion of the theo-
rem follows then finally from Proposition 3.5. r

We get the following consequence:

Corollary 4.8. In the situation of Theorem 4.6 the Serre functor for DbðOp
l Þ is isomor-

phic to L
�
ðCoappQÞ

2�
.

Proof. This follows directly from Theorem 4.6 and Theorem 3.7. r

4.3. Harish-Chandra bimodules. Let lHm be the category of Harish-Chandra bimo-
dules as in Examples 2.7(3), where l and m are integral and dominant. Recall the subcate-
gory lHmGA

m
l -mod. In [11] (see also [40], 6.17, 6.23) it is proved that lH

1
m is equivalent

to the full subcategory C
m
l of Ol given by all modules M, which have an exact presentation,

P1 ! P2 !M ! 0;ð4:6Þ

where P1 and P2 are projective and the simple modules in their heads are of the form
Lðx � lÞ, where x is a longest coset representative in WmnW=Wl. Note that this category
does not have finite global dimension in general. Nevertheless we have the following

Proposition 4.9. Let l, m be integral dominant weights. Then:

(1) A
m
l is Ringel self-dual.

(2) DperfðAm
l Þ has a Serre functor, namely LðCw0

Þ2 (via the identification of C
m
l with

A
m
l -mod given by [5], Section 5).

Proof. From [54], Proposition 4.2, and its dual version we get that Cw0
maps stan-

dard modules to costandard modules. From [54], Lemma 5.18, it follows that Cw0
defines

an equivalence between the categories of modules with standard flag and modules with
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costandard flag. In particular, Ext1
A

m

l
ðCw0

P;‘ÞGExt1
A

m

l
ðP;C�1

w0
‘Þ ¼ 0 for any costandard

module ‘ and any projective P. Hence Cw0
maps a minimal projective generator to a char-

acteristic cotilting module, which is tilting (see e.g. [28], Section 6). Since it is an equiva-
lence, it preserves the endomorphism ring. The first part of the theorem follows.

To prove the second part of the theorem we use Proposition 4.1. Because of this result
and [32], Proposition 20.5.5(i), it is enough to show that LðCw0

Þ2 preserves DperfðAm
l Þ.

Since LðCw0
Þ2 is a Serre functor for O, it sends indecomposable projective modules to the

corresponding indecomposable injective modules. However, an injective A
m
l -module has a

presentation of the form (4.6) by [54], Corollary 2.11. Since all tilting A
m
l -modules are also

cotilting ([28], Section 6), it follows that injective A
m
l -modules have finite projective dimen-

sion. Hence LðCw0
Þ2 preserves DperfðAm

l Þ and the statement follows. r

Remark 4.10. From [21], Theorem 2.5, it follows that A
m
l has finite global dimension

if and only if the standard and proper standard A
m
l -modules coincide (i.e. A

m
l is quasi-

hereditary). Using the description of standard modules as in [54], Proposition 2.18, it is
easy to see that this is the case if and only if m is regular or A

m
l is semi-simple.

Remark 4.11. One can also show that for any N;P A A
m
l -mod, where P is projective,

the Serre functor LðCw0
Þ2 from Proposition 4.1 induces a natural isomorphism,

HomA
m

l

�
N; ðCw0

Þ2P
�
GHomA

m

l
ðP;NÞ�:

4.4. The category O for rational Cherednik algebras. We briefly recall the facts
about rational Cherednik algebras which are important in our setup. We refer for example
to [31] for details. Let V be a finite dimensional vector space, WHGLðVÞ a finite reflection
group, and C½W� the group algebra of W over C. Let A denote the set of reflection hyper-
planes. If h A A then Wh denotes the (pointwise) stabiliser of h in W. Let g : A! C½W� be a
W-equivariant map such that gðhÞ A C½Wh�HC½W�. Associated to the pair ðV ; gÞ we have
H ¼ HðV ; gÞ, the corresponding rational Cherednik algebra as defined and studied for ex-
ample in [31]. As a vector space, HðV ; gÞ is isomorphic to SðVÞnC½W�nSðV �Þ, where
SðVÞ denotes the algebra of polynomial functions in V �. (This is the PBW-theorem [26],
Theorem 1.3.) The occurring three algebras SðVÞ, SðV �Þ and C½W� are in fact subalgebras,
for the nontrivial commutator relations between them (involving the parameter g) we refer
to [31], [34]. Let O ¼ OðH;V ; gÞ be the corresponding category O given by all finitely gen-
erated H-modules which are locally SðV �Þ-finite. This is a highest weight category, where
the isomorphism classes of simple modules are in natural bijection with irreducible modules
for W. More precisely, if E is an irreducible W-module, then DðEÞ ¼ HðV ; gÞnB E, where B

is the subalgebra of HðV ; gÞ generated by SðV �Þ and C½W�. (The action of p A SðV �Þ on E is
given by multiplication with pð0Þ.) The simple head LðEÞ of DðEÞ is the simple module
corresponding to E.

In general, HðV ; gÞ is not isomorphic to its opposite algebra HðV ; gÞopp, therefore
there is no simple preserving duality. However, we have an isomorphism ([31], Section
4.2) of algebras HðV ; gÞGHðV �; y � gÞopp, where y : W! W, g 7! g�1 (the isomorphism is
given by extending y trivially to SðV ?Þ and sending v A V to �v).

With this fixed isomorphism one can define two contravariant functors, namely:
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� The naive duality ([31], Proposition 4.7):

dV ; g : OðV ; gÞ ! OðV �; y � gÞ

by sending an object M to the largest submodule dV ; gðMÞ of (the ordinary vector space
dual) M � which is locally SðV �Þ-finite. This is a right HðV ; gÞ-module and becomes a left
HðV �; y � gÞ-module via the fixed isomorphism. This duality sends the simple module LðEÞ
to the simple module Lð �EEÞ indexed by the dual representation �EE of E. Projective objects are
sent to injectives and standard objects to costandard objects.

� The functor DV ; g (see [31], Proposition 4.10)

DV ; g ¼ Extdim V
HðV ; gÞ

�
�;HðV ; gÞ

�
: OðV ; gÞ ! OðV ; y � gÞ:

Conjecture 4.12. Let HðV ; gÞ be a rational Cherednik algebra with the corresponding

category OðV ; gÞ. Then

S ¼ dV �; gy DV �; g dV ; y�g DV ; g

is right exact and LS is a Serre functor.

To prove this conjecture it would be enough to verify the assumptions in Theorem
3.4, where F ¼ F1F2, F1 ¼ dV ; y�g DV ; g and F2 ¼ dV �; gy DV �; g. The fact that F is right exact
follows directly from [31], 4.1. The assumption (a) follows directly from [31], Lemma 4.1,
Proposition 4.7. The assumption (b) is proved in [31], Proposition 5.21. We do not know if
assumption (c) is satisfied. However, a positive answer to the conjecture [31], Remark 5.20,
would imply, via the Knizhnik-Zamolodchikov-functor, that F is isomorphic to the identity
functor on the additive subcategory given by projective-injective objects. Since the corre-
sponding Hecke algebra is symmetric (see e.g. [19], Lemma 5.10), the conjecture would fol-
low from Proposition 3.5.

Independently of the Conjecture 4.12, we can at least give a description of the corre-
sponding Serre functor in terms of partial coapproximation:

Proposition 4.13. Let HðV ; gÞ be a rational Cherednik algebra with the corresponding

category OðV ; gÞ. Let Q be a basic projective-injective module in OðV ; gÞ. Then the Serre

functor of Db
�
OðV ; gÞ

�
is isomorphic to L

�
ðCoappQÞ

2�
.

Proof. We only have to verify that we are in the situation of Theorem 3.7. We can
find a projective-injective module PKZ representing the Knizhnik-Zamolodchikov-functor
(see [31], Proposition 5.21). On the other hand the endomorphism ring of PKZ is isomorphic
to the Hecke algebra ([31], Theorem 5.15), hence symmetric ([19]). It is known that OðV ; gÞ
has the double centraliser property with respect to PKZ ([31], Theorem 5.16). Since the
naive duality maps a basic projective module to a basic injective module, and PKZ to the
corresponding PKZ ([31], Theorem 5.21), and OðV ; gÞopp has again a double centraliser
property with respect to PKZ, we get that A and Aopp have the double centraliser with re-
spect to a basic projective-injective module. From [31], Theorem 5.21, it follows that such a
basic projective-injective module for A is good. Hence, the assumptions of Theorem 3.7 are
satisfied. The statement follows. r
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4.5. Schur algebras. Let nf r be natural numbers. Let either B ¼ C½Sr�, the group
algebra of the symmetric group Sr, or B ¼HqðSrÞ the corresponding generic Iwahori-
Hecke algebra. Then B is a self-injective algebra which is even symmetric (see e.g. [19],
Lemma 5.10), and ðCnÞnr is a faithful (right) B-module, where B acts by place permuta-
tions. Its endomorphism algebra A ¼ EndBðQÞ is the classical Schur algebra Sðn; rÞ or the
q-Schur algebra Sqðn; rÞ respectively (see [24]). Considered as a left A-module in the natural
way, Q becomes a full projective-injective A-module ([24], Section 4.3 and 4.4), and A sat-
isfies the double centraliser property with respect to Q (see e.g. [51], Theorem 1.2). Together
with Theorem 3.7 (and the notation there) we obtain the following result:

Theorem 4.14. Let A ¼ Sðn; rÞ or A ¼ Sqðn; rÞ, where nf r. Then the Serre functor

for DðAÞb is L
�
ðCoappQÞ

2�
.

Proof. The algebra A has finite global dimension ([24], Section 4.8) and has a simple
preserving duality ([33], Section 2.7, and [24], Section 4.1). The assumptions of Theorem
3.7 are satisfied. Moreover, EndAðQÞ is isomorphic to B, the group algebra (or Hecke alge-
bra respectively) of the symmetric group Sr (see e.g. [51]). In either case, this algebra is sym-
metric, and so we are done by Theorem 3.7. r

For the case n < r our methods do not work directly, since there is no double central-
iser property with respect to some full basic projective-injective module ([51]).

5. Projective-injectives in the category Op(sln(C))

In the following section we study more carefully projective-injective modules in the
parabolic category Op, especially, for the Lie algebra sln ¼ slnðCÞ. As already mentioned
in the introduction, one of the motivations to consider the category of projective-injective
modules in Op is to find a precise connection between Khovanov’s categorification of the
Jones polynomial ([46]) and the categorification of the Jones polynomial via representation
theory of the Lie algebra sln (as proposed in [10] and proved in [62]). It might be possible to
pass directly from one model to the other by connecting the involved algebras directly, be-
cause the algebra, used by Khovanov in his categorification, is a quotient of an algebra A

such that A-mod is equivalent to a certain block of Op for some sln ([15], page 494). Al-
though, we have a very nice, more or less explicit, description of the algebra A in question
([15], Theorem 1.4.1), we are interested in more conceptual properties of the algebra. Sev-
eral conjectures in this direction were formulated by Khovanov in [48]. We want to simplify
the problem by using the double centraliser property. In this way, by using the Serre func-
tor, we confirm three conjectures of Khovanov: in Theorem 5.2 we confirm [48], Conjecture
4, concerning the centre of A, and in Theorem 5.4 we confirm that the endomorphism alge-
bra of a basic projective-injective module is symmetric, and depends only on the chosen
partition of n, not on the actually chosen composition of n. (The last two conjectures were
formulated in a private communication.) Furthermore, Theorem 5.4 supports [48], Conjec-
ture 3.

5.1. On a result of Irving. Consider the classical triangular decomposition
sln ¼ n�l hl nþ, where h is the Cartan subalgebra of all diagonal matrices (with zero
trace) and nG denotes the subalgebra of all upper- and lower-triangular matrices respec-
tively. Given a composition, m ¼ ðm1; . . . ; mkÞ, of n (i.e. m1 þ � � � þ mk ¼ n), we have the cor-
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responding Young subgroup Sm ¼ Sm1
� Sm2

� � � � � Smk
of Sn, the latter being the Weyl

group of sln. Let O
m
0 be the corresponding parabolic subcategory of O0ðslnÞ (see Section

4.2). Recall that the simple objects in O0 are in bijection with the elements of Sn. We denote
by LðwÞ the simple module of highest weight wðrÞ � r, where r denotes the half-sum of the
positive roots. For w A Sn we denote by DðwÞ and PðwÞ the corresponding Verma and in-
decomposable projective module in O0. Let Sm be the set of shortest coset representatives of
SmnSn and let wm be the longest element in Sm. The simple objects in O

m
0 are then the LðwÞ,

where w A S m. For w A Sm we denote by LmðwÞ, DmðwÞ and PmðwÞ the corresponding simple,
parabolic Verma and indecomposable projective module in O

m
0 respectively. Note that

LmðwÞ ¼ LðwÞ for w A Sm.

For any i A f1; . . . ; n� 1g we denote by yi : O0 ! O0 the translation functor through
the si-wall (see e.g. [29], Section 3). This functor is exact, self-adjoint, and preserves Om

0 . For
w A Sn we denote by RðwÞ the right cell of the element w (for a definition we refer to [43]).
Now we can give (for the sln case) an easier proof for the following main result of [37]:

Theorem 5.1. For any composition m of n the following conditions are equivalent:

(i) PmðwÞ is injective.

(ii) w A RðwmÞ.

(iii) LmðwÞ occurs in the socle of some parabolic Verma module Dmðw 0Þ.

Proof. Assume that (i) is satisfied. Since O
m
0 has a simple preserving duality, if PmðwÞ

is injective, it is a tilting module in the highest weight category O
m
0 and hence is self-dual.

This means that its socle is LmðwÞ, which must coincide with the socle of some parabolic
Verma module because PmðwÞ has a standard flag. This implies (iii).

Assume that (iii) is satisfied. Since any parabolic Verma module is a submodule of
some tilting module, we get that LmðwÞ occurs in the socle of some tilting module. By [18],
the tilting modules in O

m
0 are exactly direct summands of translations of LmðwmÞ. From [37],

Proposition 4.3 (this is an easy preparatory result) it follows that w A RðwmÞ, that is (ii) is
satisfied.

Assume that (ii) is satisfied. Since all Pmðw 0Þ, w 0 A RðwmÞ, can be obtained from
each other via translations through walls (this follows again from [37], Proposition 4.3),
it is now left to show that there exists w A RðwmÞ such that PmðwÞ is injective. Actually,
since we already know that (i) implies (ii), it is enough to show that there exists some
projective-injective module in O

m
0 . But this one is obtained by translating any simple pro-

jective module from the same weight lattice, which exists by [39], 3.1 (this is again an easy
result). r

5.2. On Khovanov’s conjectures. According to Theorem 5.1, the modules PmðwÞ,
w A RðwmÞ, constitute an exhaustive list of indecomposable projective-injective modules
in O

m
0 . Let Pm ¼

L
w ARðwmÞ

PmðwÞ be the basic projective-injective module and set

Bm ¼ EndO
m

0
ðPmÞ. As a consequence, we have the following result which confirms [48], Con-

jecture 4:
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Theorem 5.2. Let m be a composition of n.

(1) The Loewy lengths of all projective-injective modules in O
m
0 coincide.

(2) O
m
0 satisfies the double centraliser property with respect to a basic projective-

injective module, in particular, the restriction induces an isomorphism between the centres of

A
m
0 and Bm.

Remark 5.3. Theorem 5.2 is true for any semisimple complex Lie algebra g (the
proof is exactly the same if one replaces Theorem 5.1 by the main result of [37]).

Proof of Theorem 5.2. Let PmðwÞ be a projective-injective module. From [37], Pro-
position 4.3(ii), it follows that PmðwÞ is a direct summand of some translation of PmðwmÞ.
Hence to prove the first statement it is enough to show that translations through walls do
not increase the Loewy length of projective-injective modules. If yi

�
LðwÞ

�
3 0, then

dim HomO

�
yiP

mðwÞ;LðwÞ
�
¼ dim HomO

�
PmðwÞ; yiLðwÞ

�
¼ 2

by [40], 4.12(3), 4.13(3 0), which implies that PmðwÞlPmðwÞ is a direct summand
of yi

�
PmðwÞ

�
. Comparing the lengths of the standard filtrations we even get

yi

�
PmðwÞ

�
GPmðwÞlPmðwÞ, in particular, such translations do not produce new

projective-injective modules.

Now assume that yi

�
LðwÞ

�
¼ 0. The algebras A0 and A

m
0 , which correspond to O0 and

O
m
0 are Koszul ([58], [9], [7]), in particular, they admit a canonical positive grading (the

Koszul grading), which we fix. This allows us to consider graded versions of both O0 and
O

m
0 (see [9], [60]). In [60] and [9] it was shown that simple modules, Verma modules, para-

bolic Verma and projective modules in O0 and O
m
0 are gradable. Their graded lifts are

unique up to isomorphism and grading shift, therefore we call a lift standard if the head is
concentrated in degree zero. In [60] it was shown, that the functors yi (as endofunctors of
O0) are gradable as well. We denote by ~yyi the standard graded lift of yi (i.e. ~yyi, applied to a
simple module concentrated in degree 0 has socle concentrated in degree 1). Since yi pre-
serves Om

0 , the functor ~yyi restricts to a graded lift of yi on O
m
0 .

Let Pgr be the standard graded lift of PmðwÞ. Since it has both simple top and simple
socle, the radical-, socle- and graded filtrations of Pgr coincide by [9], Proposition 2.4.1. In
particular, Pgr has a unique component of maximal and a unique component of minimal
degree. On the other hand, ~yyiðLÞ is concentrated in the degrees �1, 0, 1 for any simple
module L, concentrated in degree 0 ([60], Theorem 5.1). This implies that the length of
the graded filtration of ~yyiðPgrÞ can not exceed the length of the graded filtration of Pgr.
Hence, the Loewy length of yi

�
PmðwÞ

�
does not exceed that of PmðwÞ and the statement

(1) follows.

The double centraliser property follows from Corollary 2.6 and the main result of [37]
(as formulated in Theorem 5.1). For an algebra, A, we denote its centre by ZðAÞ. From the
double centraliser property we have

A
m
0 ¼ EndBm

ðPmÞ:
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If x A ZðAm
0 Þ, then xa ¼ ax for all a A A

m
0 and hence x A Bm. On the other hand, every ele-

ment of A
m
0 commutes with each element in Bm by definition. Hence x A ZðBmÞ. This implies

ZðAm
0 Þ ,! ZðBmÞ. Because of the left-right symmetry of the double centraliser we finally get

ZðAm
0 Þ ¼ ZðBmÞ. This completes the proof. r

We formulate now the main result of this section:

Theorem 5.4. (1) Let m be a composition of n. Then the algebra Bm is symmetric.

(2) Let m and n be two compositions of n, which give rise to the same partition of n.

Then BmGBn.

Proof. The statement (1) is just a special case of Theorem 4.6.

Let us now prove (2). Without loss of generality we may assume m ¼ ðm1; . . . ; mkÞ
and

n ¼ ðm1; . . . ; ml�1; mlþ1; ml ; mlþ2; . . . ; mkÞ

for some l A f1; . . . ; k � 1g. Moreover, we assume ml > mlþ1.

For any composition, t, of n Irving and Shelton constructed in [39], 3.1, a special
weight, lðtÞ, with the following property: the simple highest weight module L

�
lðtÞ � r

�
with the highest weight lðtÞ � r is the only simple module in its block of Ot. From the de-
finition in [39], 3.1, it follows immediately that, if t and t 0 are two compositions of n which
give rise to the same partition, then lðtÞ and lðt 0Þ are in the same Sn-orbit, in particular,
L
�
lðtÞ � r

�
and L

�
lðt 0Þ � r

�
belong to the same block of O.

Now we apply this to the case t ¼ n, t 0 ¼ m. Let Ox be the common block (of O) for
L
�
lðmÞ � r

�
and L

�
lðnÞ � r

�
. Although L

�
lðmÞ � r

�
and L

�
lðnÞ � r

�
are in the same block

of O, we have that the parabolic categories Om
x and On

x are semi-simple containing only one
simple object each. Obviously, they are equivalent. However, we would like to construct a
functor on O, which gives rise to an equivalence between these categories, and, additionally,
commutes with tensoring with finite-dimensional sln-modules.

To proceed we will need some general notation. For any transposition
s ¼ si ¼ ði; i þ 1Þ in Sn we set Os ¼ Ob, where b ¼ ðb1; . . . ; bn�1Þ is the composition of n

such that bi ¼ 2 and bj ¼ 1 for all j 3 i. Denote by is : O
s ,! O the inclusion functor, and

by Zs : O! Os the left adjoint to is, which is the Zuckerman functor, associated to s. Then
ẐZs ¼ d Zs d : Os ,! O is the right adjoint to is. It is known that

LiZs ¼ 0 for all if 3; and LZs G dLZs d½2�GRẐZs½2�;ð5:1Þ

see [25] or [10], Proposition 3, and also Lemma 4.5. Finally, we denote by im : O
m ,! O and

in : O
n ,! O the inclusion functors and by Zm : O! Om and Zn : O! On the corresponding

left adjoint Zuckerman functors.

Let m 0 ¼ m 0l ¼ m1 þ � � � þ ml�1 and m ¼ ml ¼ m 0 þ mlþ1, and set r ¼ ml � mlþ1. Con-
sider the following element in Sn:
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w ¼ ðsm 0þrþ1 � � � smþrÞ � � � ðsm 0þ2 � � � smþ1sm 0þ1Þðsm 0þ1sm 0þ2 � � � sm�1smÞ

(for example if m ¼ ð2; 4Þ then n ¼ ð4; 2Þ and we have w ¼ ðs2s3Þðs1s2Þ). For simplicity we
write the above product in the form w ¼ t1 � � � tp (thus p ¼ rmlþ1, t1 ¼ sm 0þrþ1 and so on).
For i ¼ 1; . . . ; p we set wi ¼ ti � � � tp, and wpþ1 ¼ e. The element w is constructed such that
w
�
lðnÞ

�
¼ lðmÞ and wi

�
lðnÞ

�
> wiþ1

�
lðnÞ

�
for all i ¼ 1; . . . ; p ¼ lðwÞ. Define

F ¼LZmit1
LZt1

it2
LZt2

� � � itp
LZtp

in½�lðwÞ� : DbðOnÞ ! DbðOmÞ;

G ¼LZnitp
LZtp

itp�1
LZtp�1

� � � it1
LZt1

im½�lðwÞ� : DbðOmÞ ! DbðOnÞ:

Both, F and G, commute with tensoring with finite-dimensional sln-modules ([25], Proposi-
tion 2.2 and Proposition 3.7, see also [10], Proposition 3). Further, F is both left and right
adjoint to G by (5.1) and thanks to the adjunctions ðin;LZn½k�Þ and ðim;LZm½k�Þ for some
(common) k which only depends on the partition associated to m and n. (Namely, k is the
length of the longest element in the stabiliser of m or n under the dot-action.)

Claim. The functors F and G define, via restriction, mutually inverse equivalences

F : On
x ! O

m
x and G : Om

x ! On
x.

Proof of the Claim. Since F and G are adjoint to each other and both O
m
x and On

x are
semi-simple, it is enough to show that

F
�
L
�
lðnÞ � r

��
¼ L

�
lðmÞ � r

�
:

To prove this we first note that for a simple reflection, s, and for a dominant integral
weight, l, we have

LZs

�
Lðx � lÞ

�
¼

Lðx � lÞlLðx � lÞ½2�; sx � l < x � l;L
y:y>sx

Lðy � lÞay ½1�; sx � l ¼ x � l;

Lðsx � lÞ½1�l
L

y:y>sx

Lðy � lÞay ½1�; otherwise;

8>>>><
>>>>:

ð5:2Þ

where ay A f0; 1; . . .g. To see this, let Ts : O! O be the twisting functor, associated with s

(as in Subsection 4.1). In [45], Theorem 4 (see also [53], Proposition 2.3) it is shown that
there exists a natural transformation, cans : Ts ! ID, non-vanishing on Verma modules.
In [53], Theorem 1(3), it is proved that the kernel of cans is isomorphic to L1Zs. Now
(5.2) follows from the Kazhdan-Lusztig conjectures, see [3], Theorem 6.3 and Theorem
7.8, for details. (Note that the assumption for L 0 to be s-finite is missing in the formulation
of [3], Theorem 6.3(3).)

For i ¼ 1; . . . ; p set

Fi ¼LZti
it2
LZt2

� � � itp
LZtp

in½�ðp� i þ 1Þ� : DbðOnÞ ! DbðO tiÞ:

From (5.2) it follows by induction that

FiL
�
lðtÞ � r

�
¼ L

�
wi

�
lðtÞ

�
� r

�
l

L
y:y>wi

L
�

y � lðtÞ
�a
ðiÞ
y ½bðiÞy �;
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where a
ðiÞ
y A f0; 1; . . .g, b

ðiÞ
y A f1; . . .g for all i. In particular, we have

LZmit1
F1L

�
lðtÞ � r

�
¼ L

�
lðmÞ � r

�

since O
m
x is semi-simple and the claim follows. r

Let us now sum up what we know. We have an adjoint pair, ðF ;GÞ, of functors
between DbðOnÞ and DbðOmÞ, which commute with tensoring with finite-dimensional
sln-modules and induce mutually inverse equivalences, when restricted to On

x and O
m
x . On

the other hand, there is a finite dimensional sln-module, E, such that E nL
�
lðnÞ � r

�
con-

tains Pn as a direct summand, and E nL
�
lðmÞ � r

�
contains Pm as a direct summand (this

follows from Theorem 5.2, for the explicit statement see [37], Proposition 4.3(ii)). Therefore
the adjunction morphisms FG ! ID and ID! GF are isomorphisms when evaluated at
Pm and Pn respectively. Hence F and G define mutually inverse equivalences between the
corresponding additive categories of projective-injective modules. This completes the proof
of Theorem 5.4. r

We have the following direct consequence, a part of which was also obtained in [48],
Section 6, by establishing a derived equivalence between O

m
x and On

x using a geometric
argument:

Corollary 5.5. The centres of Bm, Bn, O
m
x and On

x are all isomorphic.

Remark 5.6. Since the Kazhdan-Lusztig right cell modules for the Iwahori-Hecke
algebra Hn of the symmetric group are exactly the irreducible modules, Theorem 5.1 can
be used to ‘‘categorify’’ these irreducible modules: Let l be a partition of n. Consider the
abelian category of modules, admitting a 2-step presentation by projective-injective mo-
dules in the parabolic category O for sln, associated with l. This abelian category is invariant
under the action of translations through walls. The action of these translation functors
gives rise to a categorification of the Specht module Sl for the symmetric group Sn. The
graded version of the above result (in the sense of [60]) gives rise to a categorification of
the Specht module Sl for Hn. The details will appear in [47].
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stanţa 1995), An. Ştiinţ. Univ. Ovidius Constanţa Ser. Mat. 4 (1996), no. 2, 43–54.

[22] V. Dlab, Properly stratified algebras, C. R. Acad. Sci. Paris Sér. I Math. 331 (2000), no. 3, 191–196.

[23] V. Dlab and C. M. Ringel, Quasi-hereditary algebras, Ill. J. Math. 33 (1989), no. 2, 280–291.

[24] S. Donkin, The q-Schur algebra, London Math. Soc. Lect. Note Ser. 253, Cambridge University Press,

1998.

[25] T. J. Enright and N. R. Wallach, Notes on homological algebra and representations of Lie algebras, Duke

Math. J. 47 (1980), no. 1, 1–15.

[26] P. Etingof and V. Ginzburg, Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-

Chandra homomorphism, Invent. Math. 147 (2002), no. 2, 243–348.

[27] A. Frisk, Dlab’s theorem and tilting modules for stratified algebras, J. Algebra 314 (2007), no. 2, 507–537.

[28] V. Futorny, S. König, and V. Mazorchuk, S-subcategories in O, Manuscr. Math. 102 (2000), no. 4, 487–

503.

[29] O. Gabber and A. Joseph, Towards the Kazhdan-Lusztig conjecture, Ann. Sci. Éc. Norm. Sup. (4) 14 (1981),
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[40] J. C. Jantzen, Einhüllende Algebren halbeinfacher Lie-Algebren, Ergebn. Math. Grenzgeb. (3) 3, Springer-

Verlag, Berlin 1983.

[41] A. Joseph, The Enright functor on the Bernstein-Gel’fand-Gel’fand category O, Invent. Math. 67 (1982), no.

3, 423–445.

[42] M. Kashiwara and P. Schapira, Sheaves on manifolds, Grundl. Math. Wiss. 292, Springer-Verlag, 1994.

164 Mazorchuk and Stroppel, Serre functors



[43] D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979),

no. 2, 165–184.

[44] O. Khomenko, Categories with projective functors, Proc. London Math. Soc. (3) 90 (2005), no. 3, 711–737.

[45] O. Khomenko and V. Mazorchuk, On Arkhipov’s and Enright’s functors, Math. Z. 249 (2005), no. 2,

357–386.

[46] M. Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000), no. 3, 359–426.

[47] M. Khovanov, V. Mazorchuk, and C. Stroppel, Categorification of irreducible representations of symmetric

groups and their Hecke algebras, Proc. AMS, to appear.

[48] M. Khovanov, Crossingless matchings and the cohomology of ðn; nÞ Springer varieties, Commun. Contemp.

Math. 6 (2004), no. 4, 561–577.

[49] M. Klucznik and S. König, Characteristic tilting modules over Quasi-hereditary algebras, SFB343 Universität

Bielefeld, 1999.

[50] S. König and V. Mazorchuk, Enright’s completions and injectively copresented modules, Trans. Amer. Math.

Soc. 354 (2002), no. 7, 2725–2743.

[51] S. König, I. H. Slungard, and C. Xi, Double centralizer properties, dominant dimension, and tilting modules,

J. Alg. 240 (2001), no. 1, 393–412.

[52] J. Lepowsky, A generalization of the Bernstein-Gelfand-Gelfand resolution, J. Alg. 49 (1977), no. 2,

496–511.

[53] V. Mazorchuk and C. Stroppel, On functors associated to a simple root, J. Algebra 314 (2007), no. 1, 97–128.

[54] V. Mazorchuk and C. Stroppel, Translation and shu¿ing of projectively presentable modules and a catego-

rification of a parabolic Hecke module, Trans. Amer. Math. Soc. 357 (2005), no. 7, 2939–2973.

[55] I. Reiten and M. Van den Bergh, Noetherian hereditary abelian categories satisfying Serre duality, J. Amer.

Math. Soc. 15 (2002), no. 2, 295–366.

[56] C. M. Ringel, The category of modules with good filtrations over a quasi-hereditary algebra has almost split

sequences, Math. Z. 208 (1991), no. 2, 209–223.

[57] A. Rocha-Caridi, Splitting criteria for g-modules induced from a parabolic and the Berňsteı̆n-Gel’fand-
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