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Projective-injective modules, Serre functors
and symmetric algebras

By Volodymyr Mazorchuk at Uppsala and Catharina Stroppel at Glasgow

Abstract. We describe Serre functors for (generalisations of) the category (7 associ-
ated with a semisimple complex Lie algebra. In our approach, projective-injective modules,
that is modules which are both, projective and injective, play an important role. They con-
trol the Serre functor in the case of a quasi-hereditary algebra having a double centraliser
with respect to a projective-injective module whose endomorphism ring is a symmetric al-
gebra. As an application of the double centraliser property together with our description of
Serre functors, we prove three conjectures of Khovanov about the projective-injective mod-
ules in the parabolic category (}(sl,,).
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1. Introduction

Symmetric algebras are particularly well-behaved algebras with several special
properties. We first want to recall two of these properties and then discuss to which extent
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they can be generalised and transferred to other finite dimensional algebras. A finite dimen-
sional algebra A is called symmetric if there is an A-bimodule isomorphism 4 =~ 4*. In
particular, projective A-modules are always injective. On the other hand, since 4 =~ A* as
A-bimodules, we have isomorphisms of vector spaces

Homy (A4, A) =~ Homy(4,A* ®,4A) =~ Homy (A4, A)"
which give rise to isomorphisms
Hom,(M,N) ~ Homy(M,A* ® ,N) ~ Hom,(N, M)"

for any free A-modules M and N. Moreover, these isomorphisms are functorial in M
and N.

The question we want to ask now is whether these two properties can be transferred
somehow to a more general class of algebras. We will consider finite dimensional algebras
which have a symmetric subalgebra which, in some sense, can control the representation
theory of the original algebra. If we are lucky, 4 has “enough” projective modules which
are also injective. We fix a system of representatives for the isomorphism classes of inde-
composable projective-injective (i.e. at the same time projective and injective) A-modules.
Then, instead of considering A itself we propose to consider the direct sum, say Q, of all
modules from this fixed system. In many cases, the endomorphism ring End4(Q) is a Fro-
benius algebra. The following questions naturally arise:

e Is End4(Q) a symmetric algebra?

¢ How much information about the category of finitely generated A-modules is al-
ready encoded in Q and End4(Q)?

¢ [s there an isomorphism, functorial in both entries,
HomA(Pl, Pz) = HOI’I’IA(Pl,A* ®A Pz) = HOl’IlA(Pz,Pl)*
for any projective-injective 4-modules P; and P,?

In general, the first question is very difficult to answer. Concerning the second ques-
tion, we will describe the situation where all the information about 4-mod is already con-
tained in Q and End,4(Q). This is given by the so-called double centraliser property which
we will explain more precisely shortly. The last question relates to the existence and de-
scription of a so-called Serre functor, motivated by Serre’s duality for sheaves on projective
varieties. The purpose of this paper is to answer the above three questions for certain alge-
bras appearing in representation theory.

To substantiate and to specify our approach we would like to recall the important
role projective-injective modules play in representation theory, in particular in different ver-
sions of the category (. The striking example is the case of an integral block of the category
O for a semisimple complex Lie algebra. By Soergel’s result ([58], Endomorphismensatz
and Struktursatz) such a block can be completely described by (a certain subcategory of)
the category of finitely generated modules over the endomorphism ring of the (unique up to
isomorphism) indecomposable projective-injective module in this block. This idea was gen-
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eralised and formalised in [S1] as the so-called double centraliser property. In this language,
Soergel’s result could be stated as follows: Let A4 be a finite dimensional algebra such that
A-mod is equivalent to the block of the category ¢ in question. Then for the indecompos-
able projective-injective 4-module Q we have 4 = Endgyq,(0)(Q). Note that [58], Endo-
morphismensatz, implies that End4(Q) is a symmetric algebra.

Using the Ringel duality functor it is easy to see (Corollary 2.4) that there is always a
tilting module 7" having the double centraliser property above. This module 7" need not be
projective-injective in general. Nevertheless, there are many known examples where we
have the particularly handy situation of the double centraliser property with respect to a
projective-injective tilting module 7. We recall such examples in Section 2. Since in these
cases the category A-mod is completely determined by End,(7) and T, it follows directly
that the centre of 4-mod is isomorphic to the centre of the endomorphism ring of 7' (in
particular [48], Conjecture 4, follows, see Theorem 5.2).

Motivated by Serre’s duality, there is the notion of a Serre functor for any k-linear
category with finite dimensional homomorphism spaces (see Section 3). Happel (see e.g.
[35]), and afterwards Kapranov and Bondal ([14]) in a more general geometric context,
showed that the bounded derived category Z° (A) for any finite dimensional algebra 4 of
finite global dimension admits a Serre functor. In fact, the existence of a Serre functor
is equivalent to the finiteness of the global dimension of 4 and also to the existence of
Auslander-Reiten triangles ([55], [36]). It is well-known that in the latter case the Serre
functor is the left derived of the Nakayama functor (see e.g. [35], page 17), that is of
the functor isomorphic to 4* ® 4 e. However, if the algebra A is not explicitly given, the
Serre functor might be hard to compute.

Nevertheless, in some cases the Serre functor for Z°(A) can be explicitly described,
using for instance geometric or functorial methods. For example, in [14] it was conjectured
that the Serre functor of the bounded derived category of perverse sheaves on flag varieties
is given by a geometrically defined intertwining functor. This was our motivation to study
the Serre functor of the bounded derived category of (integral blocks of) ¢, associated with
the corresponding semi-simple Lie algebra, which is equivalent to the category of perverse
sheaves in question. The original conjecture has recently been proved by Beilinson, Bezru-
kavnikov and Mirkovic in [8]. In the present paper we explicitly construct the Serre functor
for the bounded derived category of any integral block of (¢ using the twisting functors,
defined in [4] and studied e.g. in [3]. Our approach is purely algebraic and does not require
the explicit knowledge of the associative algebra associated to (. As a (very unexpected)
consequence we obtain an isomorphism between a certain composition of twisting functors
and a certain composition of Irving’s shuffling functors (see Corollary 4.2).

We further apply this result to construct the Serre functors of the bounded derived
categories of (integral blocks of) any parabolic category O* in the sense of Rocha-Caridi,
[57]. Using the explicit description of the Serre functor (in terms of shuffling functors) we
prove in Theorem 4.6 that the endomorphism algebra of the sum of all indecomposable
projective-injective modules in @F is symmetric, which was conjectured by Khovanov. One
of the motivations to consider the category of projective-injective modules in ¢® is to find a
precise connection between Khovanov’s categorification of the Jones polynomial ([46]) and
the categorification of the Jones polynomial via representation theory of the Lie algebra s,
(as proposed in [10] and proved in [62]). It might be possible to simplify the approach in
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[10] and [62] by working with these symmetric endomorphism algebras. Moreover, from a
topological point of view it seems to be much more natural and plausible to work with sym-
metric (or at least Frobenius) algebras to construct knot invariants instead of the compli-
cated algebras which describe the integral blocks of the (parabolic) category (.

We expect that the Serre functor for the category @ for rational Cherednik algebras
can be constructed in a similar way via twisting functors as the Serre functor for the
Bernstein-Gelfand-Gelfand category (. However, we are not able to prove this, mainly be-
cause of the lack of translation functors. Nevertheless, we give a description of the Serre
functor for the category (0 for rational Cherednik algebras via partial coapproximation
with respect to the direct sum of all indecomposable projective-injective modules (see [45],
2.5). The proof however uses the fact that Hecke algebras are symmetric and the properties
of the Knizhnik-Zamolodchikov-functor. Using [31], Remark 5.10, it might be possible to
construct the Serre functor in a different way, which would imply a conceptual proof of the
fact ([19]) that the Hecke algebras occurring here are symmetric (see Conjecture 4.12).

As an additional application we describe in Subsection 4.5 the Serre functor for the
bounded derived category of the Schur algebra S(n,r) and its g-version S,(n,r) in case
nzxr.

In the last section of the paper we consider the special case of a parabolic category,
03 (sl,), for the Lie algebra sl,. For this category we give an easier proof of the main result
of [37] (Theorem 5.1). As a consequence we show that there is a double centraliser property
with respect to a basic projective-injective module. This implies [48], Conjecture 4. The par-
abolic subalgebra p of sl, is determined by some composition of n. In [37], Proposition 4.3,
it is shown that indecomposable projective-injective modules in (0 (sl,)" are indexed by the
elements of some right cell. The Kazhdan-Lusztig combinatorics of translation functors,
applied to these projective-injective modules, suggests a connection with Specht modules
for the symmetric group S,. It is well known that the Specht modules which correspond
to different compositions of n, but giving rise to the same partition of n, are isomorphic.
This observation might have led M. Khovanov to the conjecture that the endomorphism
algebras of the basic projective-injective modules in different y(sl,)*, corresponding to
the same partition of n, are isomorphic. We finish the paper by proving this conjecture
(Theorem 5.4).

Some guidance for the reader. Section 2 recalls some facts and results on double cen-
tralisers for module categories over standardly stratified algebras. In principle, the content
is not new, the viewpoint might be slightly more general than usual. We formulated the
setup as generally as possible, since we believe that our approach can be applied to a
much wider class of algebras than the ones actually appearing in the paper. For the reader,
however, it might be more approachable to have first a look at the Examples 2.7, skip the
details of Section 2 and focus on the main result characterising Serre functors which can be
found in Section 3. Applications and concrete descriptions of Serre functors are given in
Section 4. The deepest result might be Theorem 4.6 stating that the endomorphism ring of
a basic projective-injective module in the principal block of a (parabolic) category ¢ is not
only Frobenius, but symmetric.
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2. Standardly stratified structure and double centralisers

In representation theory double centraliser properties play an important role. The
aim of this section is to recollect known results from the literature, to emphasise the univer-
sal principle behind it, and to show the significance of projective-injective modules.

Let k be an algebraically closed field. Let 4 be a unitary finite dimensional associative
k-algebra. We denote by 4-mod (mod-A4) the category of finite dimensional left (resp.
right) A-modules. In the following we will mainly work with left 4-modules, hence an
“A-module” is always meant to be a left A-module. For M, N € A-mod we denote by
Try N the trace of M in N (which is by definition the submodule of N, generated by the
images of all morphisms from M to N).

Let {L(A)},.5 be a complete set of representatives for the isomorphism classes of
simple A-modules. For a simple A-module, L(4), we denote by P(A) its projective cover,
and by (/) its injective hull. We assume that there is a partial pre-order <X (i.e. a reflexive

and transitive binary relation) on A, which we fix. Let P~* = @ P(u) and P=* = @ P(u).
w4 uz=xr

With respect to < we define the so-called standard module A(A) to be the largest
quotient of P(A) containing only composition factors of the form L(u), where 4 < 4, i.e.
A(A) = P(A)/Trp-. P(1). We also have a proper standard module A(2) which is the largest
quotient of P(4) such that its radical contains only composition factors of the form L(u),
where 4 X g, i.e. A(A) = P(1)/Trp=: rad P(1). Dually, we have the costandard module V(1)

and the proper costandard module V(J.).

We denote by # (A1) = Z(A) the full subcategory of A-mod given by all modules
having a filtration, with all subquotients of this filtration being isomorphic to A(4) for var-
ious A € A. If M € 7 (A) then we say that M has a standard flag. Similarly, we define 7 (A),
F(V), Z(V), the categories of modules having a proper standard, a costandard, and a

proper costandard flag respectively.
Let 4 be a finite dimensional standardly stratified algebra as defined in [17], that is
e the kernel of the canonical surjection P(4) — A(/1) has a standard flag;

e the kernel of the canonical surjection A(4) — L(A) has a filtration with subquo-
tients L(x), where u < A.

In particular, if < is a partial order and A(1) = A(A) for 1, then A is quasi-hereditary
(see [16], [23]). If < is a partial order and any A(A) has a proper standard flag, then A4 is
properly stratified (see [22]).
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We call a module M basic with respect to some property 2, if M is the direct sum of
pairwise non-isomorphic indecomposable modules with property 2 and any indecompos-
able module having this property is isomorphic to a summand in M. For example, a basic

k
projective module in 4-mod is a minimal projective generator. If N = @ N, where
i=1
m; € {1,2,...} for all i, with N; indecomposable and pairwise non-isomorphic, we set
k
Noasic = 69 Ni.
=1

1

2.1. Tilting modules and Ringel duality. A tilting module is an object in

F(A)nZF(V), and a cotilting module is an object in # (A) nZ (V). In [27] it is shown
that for a standardly stratified algebra the category Z (A) n % (V) is closed under taking
direct summands and that the indecomposable modules in this category are in natural bi-
jection with standard modules. Let 7'(1) denote the unique indecomposable tilting module
having a standard flag, where A(1) occurs as a submodule. Let 7= @ T'(4) be the char-
AEN

acteristic tilting module. There is the dual notion of cotilting modules. In general, cotilting
modules cannot be classified in the same way as tilting modules. However, this can be done
in the case when the opposite algebra 4°PP is also standardly stratified (with respect to the
same partial pre-order), see [27], 4.2. For quasi-hereditary algebras cotilting and tilting
modules obviously coincide, but in general they do not have to. The Ringel duality functor
(as introduced in [56]) was studied in the more general setup of various stratified algebras
for example in [1] and [27]. We will need the following slight variation of these results:

Proposition 2.1. Let A be a standardly stratified algebra. Then the Ringel
dual R(A) =End,(T) is standardly stratified and the contravariant functor
R = Homy(e,T) : A-mod — mod-R(A) satisfies the following properties:

(1) R maps tilting modules to projective modules.
(2) R maps projective modules to tilting modules.
(3) R defines an equivalence of categories F (A) = ?(AR(A)).

Proof. That the algebra R(A) is standardly stratified follows for example from [27],
Theorem 5 (iii). Obviously, 7 is mapped to End,(7), hence it is projective. Taking direct
summands implies the first statement. The last statement is proved analogously to [1], The-
orem 2.6 (iv) (note that the duality D used there swaps standard and costandard modules).
To prove the second statement let now Q be projective, then RQ has a standard flag.
Of course, Extll(Q,A(}L)) =0 for any A. Using the last part of the proposition we get
Extp ;) (RA(4),RQ) =0, even Exty ,(A®"(1),RQ) =0 for any standard module
AR () € R(4)-mod. Therefore (see e.g. [27], Theorem 3, and [1], Theorem 1.6), RQ has a
proper costandard flag, hence it is tilting. []

For any abelian category ¢ we denote by 2° (%) its bounded derived category. If
% = A-mod we set 2°(4) = 2°(%). If the opposite is not explicitly stated, by a “functor”
we always mean a covariant functor. We use the standard notation like XF, 2G, ZF,
A'G etc. to denote left derived and right derived functors and their i-th cohomology
functors.
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For the sake of completeness we mention the following fact:
Proposition 2.2. Let A and B be standardly stratified such that tilting modules are also
cotilting. Let F : A-mod — B-mod be a (covariant) right-exact functor with right adjoint G.

Assume that F defines an equivalence

Z (A1)

I

F (V2.
Then the following hold.

(1) F maps projective modules to tilting modules and tilting modules to injective
modules. In fact, F defines equivalences (with inverse G) of the corresponding additive
subcategories.

(2) If A has finite global dimension then B has finite global dimension as well, more-
over, LF : 9*(4) — 2°(B) is an equivalence with inverse #G.

(3) B is the Ringel dual of A.
Proof. Let P e A-mod be projective, then FP € 7 (VB) by assumption and
Exty(FP, V(1)) = Exty(FP,FF~'V(1)) = Ext} (P, F"'V(1)) =0

for any proper costandard module W_(/l). Hence FP € 7 (A®) and is therefore tilting. If X is
tilting, hence cotilting, then X € # (A4). Therefore FX € % (V?) and

(2.1) Exty(V2(4), FX) = Exty(FF'V2(2), FX)
~ Ext}, (F7'V5(2),X) =0

for any proper costandard module VZ(1), since F~'VZ(1) € #(A*) and X e 7 (V*). If we
now choose an inclusion of FX e 7 (V?®) in its injective hull, then the cokernel is contained
in 7 (V8) and the inclusion splits because of (2.1). This means that FX is injective and the
first part follows. We have 2G £F =~ ID on projectives and ZF ZG = ID on injectives.
This implies that the global dimension of B is finite and then the second statement follows.
The fact that B is the Ringel dual of A4 is then clear from the definitions. []

2.2. Double centraliser property. We claim that, given a standardly stratified alge-
bra A, there is always some tilting module X such that we have a double centraliser prop-
erty, A = Endgyq,(x)(X). This relies on the following:

Proposition 2.3. Let A be standardly stratified and let R = R(A) be its Ringel dual.
Let P be the projective cover of the characteristic tilting module T in mod-R. Then there is

an exact sequence 0 — A — Q — coker — 0, where Q = R~ P (see Proposition 2.1) is tilting
and coker € 7 (A?).

Proof. Since P, T € 7 (A®), the kernel K of the surjection between P and T is con-
tained in . (A®) ([1], Theorem 1.6 (i), and [27], Theorem 3). Applying the inverse of the
Ringel duality functor (which is defined on % (A%)) we get the short exact sequence
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0— A4 — Q — coker — 0,
where coker € # (A) by Proposition 2.1. []

Corollary 2.4. There exists a (basic) tilting module X such that we have an isomor-
phism, A = Endgng,(x)(X).

Proof. Let Y be a tilting module such that we have an inclusion coker — Y (the
existence follows from [6], Theorem 5.4). Put X := (Q @ Y),,., then there exists an exact
sequence, 0 — coker — X", satisfying the assumptions of [51], Theorem 2.8. Hence the
double centraliser property follows. []

Remark 2.5. One can show that there exists a minimal basic tilting module Y with
the following property: any M € # (A) embeds into Y for some m. Here minimal means
that every other tilting module with the latter property has Y as a direct summand. How-
ever, it is not clear whether there exists a minimal basic tilting module Y, with respect to
which one has the double centraliser property. It is the case in all the examples we know, in
particular in the Examples 2.7.

In general, it could happen that X is already the characteristic tilting module, and the
statement of Corollary 2.4 is not very useful. As an example we refer to [49], Example 4,
where the algebra A is given by all 3 x 3 upper triangular matrices over some field k with
the matrix idempotents e;, e, e3 and the quasi-hereditary structure given by the ordering
1 < 2 < 3. The same algebra, but with the quasi-hereditary structure given by the reversed
order (see [49], Example A4,) provides also an example, where X is not contained in
Add(Q), the additive category generated by Q. In particular, we do not have the double
centraliser property with respect to Q.

2.3. Double centraliser and projective-injective modules. On the other hand, under
the assumptions and notation of Proposition 2.3 we have the following nice situation,
where projective-injective modules play a crucial role.

Corollary 2.6. Let Q be as in Subsection 2.2. If the injective hull of any standard mo-
dule is contained in Add(Q), then the following holds:

A = Endgnq, () (Q) = Endgng, (0, (Obasic)-

Proof. If the injective envelope of any standard module is contained in Add Q, the
assumptions of [51], Theorem 2.8; Theorem 2.10, are satisfied and the statement follows.

O

As interesting examples we have the following:

Examples 2.7. In the examples which follow we illustrate the use of Proposition 2.3
and Corollary 2.4, in particular, we explicitly describe the modules Q and X which appear
in the double centraliser statements.

(1) Let A be such that 4-mod is equivalent to an integral block of the Bernstein-
Gelfand-Gelfand category (¢ for some semi-simple complex Lie algebra g (see [12]). The
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algebra A is equipped with the usual quasi-hereditary structure (given by the Bruhat order
and the Verma modules as standard modules). In this case we have exactly one indecom-
posable projective-injective module, namely the projective cover P(wy) of the unique simple
standard (or Verma) module in this block. Moreover, 4 is Ringel self-dual ([59], Theorem
5.12 and Bemerkung 2.4 (3)). The projective cover of a tilting module is a direct sum of
P(wp)’s. Via Ringel duality we get an inclusion

(2.2) iid—Q,

where Q = P(wg)" for some positive integer n. The cokernel of this inclusion has (by Pro-
position 2.3) a standard (or Verma-) flag. Hence there is an exact sequence of the form

(2.3) 0—-4—0— Q0"

for some positive integer m. We could take X = Qpusic = P(wp) and get the famous
double centraliser theorem of Soergel ([58], see also [51], Theorem 3.2), namely
A= EndEndA(X)(X).

(2) Let A® be such that 4°-mod is equivalent to an integral block of some parabolic
category (" in the sense of [57] (see also Section 4.2) with the usual quasi-hereditary struc-
ture. Then A® is Ringel-self-dual (see [59] or Proposition 4.4 below). The self-dual projec-
tive modules are exactly the summands occurring in the injective hulls of standard modules
([37]), they are also exactly the summands occurring in the projective cover of tilting
modules. This means, we have an embedding of the form (2.2) and then an exact sequence
of the form (2.3), where Q is a direct sum of projective-injective modules. If we set
X = Opasic the sum over (a system of representatives for the isomorphism classes of)
all indecomposable projective-injective modules we get the double centraliser property
A¥ = Endgyq,, (x)(X) (this is proved in [61], Theorem 10.1).

(3) Let g be a semisimple complex Lie algebra. Let # be the category of Harish-
Chandra bimodules for g, that is the category of g-bimodules which are of finite length
and locally finite for the adjoint action of g (see for example [11] or [40], Section 6).
The category # decomposes into blocks ;#,. A bimodule X € J# is contained in the
block ;#, if it is annihilated by (ker ;)" from the left and by (ker y,)" from the right for
some positive integer n, where ker y; is the annihilator of the Verma module with highest
weight A. The category ;.#, does not have projective objects, however, we get enough pro-
jectives (see e.g. [40], 6.14) if we consider the full subcategory iL%”ﬂl of , 4, given by all
bimodules which are annihilated by ker y, from the right-hand side. Let A% be such that
A%-mod = ;Jfﬂl, where / and u are integral. Then A% is standardly stratified (it is not
quasi-hereditary in general) and contains a unique indecomposable projective-injective
module (see [50], Corollary 2). Later (Proposition 4.9) we give a new proof for the
fact that 4% is Ringel self-dual (see [28], Theorem 3, for the original argument). As in
category (, the projective cover of a tilting module is projective-injective, and hence Q
becomes a direct sum of copies of the unique self-dual indecomposable projective module.
The injective hulls of standard modules are projective as well. Hence we could take
X = QObupasic, the indecomposable projective-injective module and get the double centraliser
Aﬁl = EndEndA{z(X) (X)

(4) Let A4 be such that 4-mod = ((H,), the category ¢ for some rational Cherednik
algebra H. = H, . as considered for example in [34] or [31]. The projective-injective mo-
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dules are exactly the summands occurring in the injective hulls of standard modules ([31],
Proposition 5.21), they are also exactly the summands occurring in the projective covers of
tilting modules. Hence, Q is a direct sum of projective-injectives and then we could take
X = Qpasic to be the sum over all indecomposable projective-injective modules. This is the
double centraliser property from [31], Theorem 5.16.

(5) As shown in [51], there is a double centraliser property in the context of Schur
algebras and ¢-Schur algebras. This will be used and explained in more detail in Subsection
4.5.

(6) Quite often there are double centraliser properties with respect to tilting modules,
which do not have to be projective or injective. In the following examples the tilting module
X is neither projective nor injective: Let Q be a finite quiver with vertices {1,...,n}. As-
sume it is directed, that is an arrow from i to j exists only if 7 > j. Let A = A(RQ) be the
corresponding path algebra and D be its dual extension, that is the algebra 4 ® 4°PP
with the relations (rad 4°PP)(rad 4) = 0 (see e.g. [20]). Then D is quasi-hereditary with re-
spect to the natural order on {1,...,n}. One can show that there is a double centraliser
property with respect to the tilting module X = Qpasic = @ 7'(7), where the sum runs over

1

all sources of Q. It is also easy to see that X is neither injective nor projective in general.

Remark 2.8. Let 4 and X be as in the examples above, then we could define

V : A4-mod — End4(X)-mod,
M — Homy (X, M).

The double centraliser property can be reformulated as: The functor V is fully faithful on
projective modules, i.e. V induces an isomorphism

Hom (P, P2) = Homgyg, (x)(VP1, VP,)
for all projective modules P, and P».

Another easy consequence from the definitions is the following: The functor V is fully
faithful on tilting modules, i.e. V induces an isomorphism

(24) HOIIIA(ThTz) ’EHOHIEndA(X)(\/Tl,\/Tz)
for all tilting modules 7, and T75.

Proof. 1f Homy(T),K) = 0 =Homy,(K, T;) for any K € A-mod such that VK =0
then

HOIIIA(Tl7 Tz) = HomEndA(X)(\/Tla \/Tz)
since V is a quotient functor (see [30]). All the composition factors in K are annihilated by

V. On the other hand, none of the composition factors in the head of 77 and in the socle of
T> is annihilated by V. This proves the statement. []
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3. Serre functors

The aim of the present section is to develop an effective machinery to describe Serre
functors for the categories appearing in the examples above, where the algebra is not
given explicitly. Let € be a k-linear additive category with finite dimensional homomor-
phism spaces. A right Serre functor is an additive endofunctor F of % together with iso-
morphisms

(31) \I’X7y : HOmrg(X,FY) = Hom(g(Y,X)*,

natural in X and Y. Here, * denotes the ordinary duality for vector spaces. Right Serre
functors satisfy the following properties:

e Two right Serre functors are isomorphic (see [55], Lemma 1.1.3).

e If ¢ is an auto-equivalence of ¥ and F is a right Serre functor then ¢F =~ Fe. (It
follows directly from the definitions that eFe~' is a right Serre functor, hence it must be
isomorphic to F.)

A right Serre functor is a Serre functor if it is an auto-equivalence of 4. By general
results (see [35], [14]), for any finite dimensional algebra A of finite global dimension, there
is a Serre functor S for the bounded derived category Z° (A), more precisely S =~ ¥H,
where H = A* ®4 o ([14], Example 3.2(3)). In the literature, the functor H is often called
the Nakayama functor (see e.g. [35], page 37). This is because H =~ Hom(e, 4)".

Recall that for any abelian category % we denote by 2°(%) its bounded derived cat-
egory. If ¥ = A-mod we set 2°(A4) = 2°(%). We use the standard notation like LF, ZG,
S F, #'G etc. to denote left derived and right derived functors and their i-th cohomology
functors. Let also Zper(A) denote the full subcategory of 7 (A), consisting of perfect com-
plexes (i.e. of those complexes which are quasi-isomorphic to bounded complexes of projec-
tive 4-modules).

In order to be able to describe more explicitly the Serre functors for some of the
examples mentioned above we will need effective tools to detect Serre functors. Recall
that a finite-dimensional algebra, A, is called self-injective provided that 4 =~ A* as left A-
modules; and symmetric provided that 4 =~ A* as A-bimodules. We start with the following
easy observation:

Lemma 3.1. Let A be a finite-dimensional algebra.

(1) If A is self-injective, then LH is a Serre functor of Dperr(A).

(2) ID is a Serre functor of Dperi(A) if and only if A is symmetric.

Proof. Let first 4 be self-injective. Let 2* be a bounded complex of projective A-
modules. Then we have that YHZ* = H#* is a bounded complex of injective 4-modules
by the definition of H. Since A is self-injective we have HZ* € Zperr(A). That in this case

ZH is a Serre functor is proved for example in [32], Proposition 20.5.5(i). Finally, the last
statement follows from the definition of a symmetric algebra. []
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Definition 3.2. Given an algebra 4 and a projective-injective module Q, we call Q
good if the socle of Q is isomorphic to the head of Q. (Equivalently, if 0 =~ & P(4) for
some A’ = Athen Q= € I(1).) reN

JeN’

If A has a duality which preserves simple modules, any projective-injective module is
automatically good.

Remark 3.3. In the following we will also use double centraliser properties for the
opposed algebra A°PP. Let I be a basic injective A-module. It is easy to see that the exis-
tence of an exact sequence of the form

(3.2) 0,— 01 —1—0

for some projective-injective 4-modules Q;, 0>, is equivalent to the requirement that A4°PP
has a double centraliser property with respect to a projective-injective module. Indeed, the
double centraliser property for A°PP is equivalent to the existence of an exact sequence of
the form

3.3 0— A°P" — X' — X
1 2

for some projective-injective modules X, X,. Applying the usual duality Homy (e, k) we
get an exact sequence

(3.4) X — X1 —-1—-0,

where 7 is the injective cogenerator of 4-mod and X, X, are projective-injective.

3.1. A characterisation of Serre functors. The following result provides a tool to de-
tect Serre functors:

Theorem 3.4. Let A be a finite dimensional ls-algebra of finite global dimension.
Assume that a basic projective-injective A-module exists, is good, and both, A and A°PP,
have the double centraliser property with respect to a projective-injective module. Let
F : A-mod — A-mod be a right exact functor. Then LF is a Serre functor of 9°(A) if and
only if the following conditions are satisfied.

(a) Its left derived functor LF : 3°(A) — 2°(A) is an auto-equivalence.
(b) F maps projective A-modules to injective A-modules.

(c) F preserves the full subcategory 29 of A-mod, consisting of all projective-injective
modules, and the restrictions of F and H to #5 are isomorphic.

Proof. Let Q be a good basic projective-injective 4-module. We know that 2°(4)
has a Serre functor, S, and S ~ ¥H, where H = A* ®, o. By definition, H satisfies (a) and
(b) and preserves ¢, because Q is good. Hence H satisfies (c).

Now let F : A-mod — A-mod be a right exact functor, satisfying (a)—(c). We claim
that F and H are isomorphic when restricted to the category of injective 4-modules. In-
deed, the double centraliser property for 4°PP gives us an exact sequence,
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(3.5) X, - X1 —1—0,

where 7 is the injective cogenerator of 4-mod and Xj, X> € 27 (see Remark 3.3). Let
Y : F — H be the isomorphism, given by (c). Applying F and H to (3.5) and using (c) we
obtain the following diagram with exact rows, where the square on the left-hand side com-
mutes, inducing an isomorphism, ;, as indicated:

F(Xy) —— F(X)) —— F(I) —— 0

wﬁl whl %

H(X>) —— H(X)) —— H(I) —— 0.

By standard arguments, it defines an isomorphism of functors, F' =~ H, when restricted to
the full additive category of injective A-modules. Since £F is an auto-equivalence, we have
PFS =S PLF. As projectives are acyclic for right exact functors, we get an isomorphism,
PF H =~ S F, when restricted to the full additive subcategory given by projectives. Taking
the 0-th homology we get an isomorphism of functors

(3.6) FH>~HF

when restricted to the full additive category of projective A-modules. Since the functors F'
and H are right exact, we only have to deduce that /' =~ H on the category of projectives.
We already know that F and H are invertible on #¢, hence we can fix isomorphisms
o: Endy(Q) =~ Endy(FQ) and f:Endy(Q) =~ Endy(HQ). When restricted to 24, we
have F ~ ID* and H =~ ID”, where ID* and ID? denote the identity functors, but with
the End,(Q)-action twisted by o or [ respectively. Since both, F and H, are right exact,
they uniquely extend to functors on mod-End4(Q), the latter being realised as the full sub-
category % of A-mod given by all modules, having a presentation of the form (3.4) (see [5],
Section 5). From the explicit description above, we obtain that both F and H are invertible
as endofunctors of . As both, H and F, map projectives to injectives and F =~ H on injec-
tives we get, together with (3.6), isomorphisms of functors F> ~ H F ~ F H when re-
stricted to the full additive category of projective A-modules. This gives then rise to an iso-
morphism, F =~ H, since F is invertible on €. So, we are done. []

Proposition 3.5. Let A be a finite dimensional k-algebra of finite global dimension.
Assume there is a good basic projective-injective module Q and set B = End 4(Q). Then the
algebra B is symmetric if and only if the restriction of the Serre functor for 2°(A) to P is
the identity functor.

Proof. Let S be the Serre functor for 2°(4). Then S obviously preserves 27, be-
cause Q is good, and hence it also preserves the (homotopy) category of bounded com-
plexes of projective-injective A-modules. Moreover, it induces a Serre functor on this cate-
gory. By [5], Section 5, the latter one is equivalent to the category Zpe(B). The statement
now follows from Lemma 3.1. []

3.2. Serre functors via partial coapproximation. In this subsection we want to show
that double centraliser properties with respect to projective-injective modules quite often
make it possible to describe the Serre functor in terms of partial coapproximations.
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For the remaining section let 4 be a finite dimensional algebra of finite global dimen-
sion. Let Q € A-mod be a projective module. For any module M let My be the trace of Q
in M (i.e. My is the smallest submodule of M such that Hom,(Q, M /M) = 0). Dually let
M 9 be the smallest quotient of M such that Hom,(Q, M) = Hom,(Q, M9).

Associated with Q, there is a right exact functor Coapp,, : A-mod — A-mod called
the partial coapproximation with respect to Q (for details we refer for example to [45], 2.5).
It sends a projective module P to Py. Note that if /' : P — P’ is a morphism between pro-
jective modules, then it induces a morphism, Coapp,(f) : Coapp P — Coapp(P’). These
assignments can be extended uniquely to a right exact endofunctor Coapp, of 4-mod.
For an arbitrary module M € A-mod, the module Coapp, M can be constructed in the fol-
lowing way: We choose a short exact sequence K — P — M, where P is projective. Then

Coappy M = (P/Ko)o,

in other words Coapp, M is obtained from M by first maximally extending M using simple
modules, which do not occur in the top of Q, and afterwards deleting all occurrences of
such modules in the top part. Since coapproximation is a right exact functor, compatible
with taking direct summands and sums, one might think of this functor as a functor given
by tensoring with some A-bimodule X. The explicit description of X will not be relevant
for the following, therefore we prefer to stick to the more abstract language of right exact
functors.

Lemma 3.6. Let A be a finite dimensional k-algebra. Assume, A°PP has the double
centraliser property with respect to a projective-injective module. Let Q be a basic
projective-injective A-module. Let . € A. Then the following holds: If P(4), = I (A)€ then

(Coappy)® (P(2)) = I(2).
Proof. We have
(Coappy)*(P(4)) = Coappy(P(4),)
=~ Coapp, (I(4)°)
~ I(%).

Here, only the last isomorphism needs some explanation. If P is the projective cover of
1(2)2 then the natural surjection from /() onto 7(2) lifts to a map, f : P — I(4). From
the definition of 7(4) 2 and (3.2) it follows that f"is surjective. The double centraliser prop-
erty for 4°PP (see Remark 3.3) also implies that any composition factor in the head of the
kernel of f is not annihilated by Hom,4(Q, e). Hence the desired isomorphism follows. []

The following theorem describes a situation, where the double centraliser property
with respect to a basic projective-injective module Q, the description of the Serre functor
via partial coapproximation, and the symmetry of the endomorphism ring of Q are nicely
connected. Later on we will see that this setup applies to all the different versions of cate-
gory (0 mentioned in the Examples 2.7.

Theorem 3.7. Let A be a finite dimensional k-algebra of finite global dimension. Let
0 be a basic projective-injective A-module. Assume, Q is good and both, A and A°PP have the
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double centraliser property with respect to some projective-injective module. Consider the
functors

V = Homy(Q,e) : A-mod — mod-End4(Q)

and H = A* ® 4 . Then the following assertions are equivalent:
(i) V=VH.
(i) H = (Coapr)Z.
(i) Endy(Q) is symmetric.
In either of these cases, the Serre functor for Q(A)b is 3((Coapr)2).

Proof. Obviously, if (ii) holds then ¥ ((Coapr)z) is the Serre functor for 2°(4). It
is left to show that the three cases are equivalent.

(i) = (ii). Let us assume V =~ VH. Let P be a projective module. By the assumed
double centraliser property for 4 and 4°PP (see Remark 3.3) we have natural isomorphisms

Hom, (P, P) = Homgyg,(g)(VP, VP)
= HomEndA(Q)(\/HP, \/P)

~ Hom,(HP, P)

(for the last isomorphism we refer to the proof of (2.4)). The identity map in End4(P) gives
rise to a natural morphism, HP — P, identifying (HP) 2 and Py. Since H maps the projec-
tive cover of any simple module to its injective hull, we are in the situation of Lemma 3.6.
In particular, (Coapr)2 sends an indecomposable projective module to the corresponding
indecomposable injective module. Let G be the right adjoint functor to Coapp,, (this is the
functor of partial approximation with respect to Q, see [45] 2.5). We have the adjunction
morphism ID — GZ(Coapr)2 which we know is an isomorphism on projective-injective
modules. From the double centraliser property we get that this adjunction morphism
is injective on all projective modules. Since (Coapr)2P is isomorphic to the corre-
sponding injective module, we have GZ(Coapr)2 ~ P. In particular, G2(Coapr)2 ~ID
when restricted to the additive subcategory given by projective modules. Dually,
(Coappg)zG2 =~ ID when restricted to the additive category given by injective modules.
Since A has finite global dimension, & ((Coapr)z) defines an auto-equivalence of
the derived category 2°(A4) with inverse #G?. From our assumption we have
\/(Coapr)2 ~ V =~ VH. Therefore, (Coapr)2 ~ H on the additive subcategory given
by all projective-injective modules. Hence (Coapr)2 satisfies the assumptions of Theorem
3.4. It follows in particular that H ~ (Coapr)z.

(ii) = (iii). The definition of Coapp, implies that it induces the identity functor on
the category of projective-injective 4-modules. Hence End4(Q) is symmetric by Proposi-
tion 3.5.



146 Mazorchuk and Stroppel, Serre functors

(iii) = (i). We assume that B = End,(Q) is symmetric. From Lemma 3.1 we have
that the Serre functor of Zpe(B) is isomorphic to the identity functor. On the other
hand, the Serre functor of %°(A4) induces a Serre functor on the category of bounded com-
plexes of projective-injective A-modules. (Note that this category is preserved by the Serre
functor, since Q was assumed to be good.) Altogether, when restricted to the category of
projective-injective modules, the functor H is isomorphic to the identity functor. This pro-
vides the following sequence of natural isomorphisms for any projective A-module P:

VHP =~ Hom,(Q, HP)
~ Hom,(HQ, HP)
~ Homy,(Q, P)
~ VP

(For the penultimate isomorphism we used that H defines an auto-equivalence of Z°(4),
hence it is in particular fully faithful on projectives.) Thus we get an isomorphism of func-
tors VH =~ V when restricted to the category of projective modules. Since the involved
functors are right exact, the isomorphism extends to an isomorphism of functors
VH —- V. [

4. Applications

4.1. Bernstein-Gelfand-Gelfand category (). Let g be a semisimple complex Lie alge-
bra with a fixed Borel subalgebra b containing the fixed Cartan subalgebra b. Let @ be the
corresponding BGG-category (see [12]). Let W denote the Weyl group of g with longest
element wy. For any weight 1 € ™ let W, be the stabiliser W, = {we W |w- 1= A}, where
w-A=w(A+p)—p and p is the half-sum of positive roots. For uebh* let A(u) be the
Verma module with highest weight u. For 2 € ), a dominant and integral weight, we con-
sider the block ,, containing the Verma modules A(x), where ue W - A. Let L(u) be the
simple quotient of A(x) and P(u) its projective cover. For any w € W, there is a twisting
functor T, : O — (O (given by tensoring with some ‘‘semi-regular bimodule™), see [2], [45]
or [3] for a precise definition. Let d be the duality on ¢. We denote by G, the right adjoint
functor of T,,. We have G,, = d T, d (see [3], Section 4).

If 1 is regular, and s is a simple reflection, we denote by C; Irving’s shuffling functor
defined as taking the cokernel of the adjunction morphism between the identity functor and
the translation 6, “through the s-wall” ([29], Section 3). Let wy = s;,5;, - - - 5;, be a reduced
expression, then we define C,,, = C;, G, -G .Upto isomorphism, this does not depend
on the chosen reduced expression (see e.g. [54], Lemma 5.10).

Proposition 4.1. Let A = A, such that A,-mod = O, for some integral block ©,.
(1) The functor £(T,,)* : 2°(0;) — 2(0;) is a Serre functor.

(2) If 4 is regular, then #(Cy,)* : 2°(0;) — 2°(0,) is a Serre functor. In particular,
L(T,,)* = L(Cy)™
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Proof. 'We want to verify the assumptions of Theorem 3.4 for 4 = 4, and F =T, )%O
considered as an endofunctor of A-mod.

Because of the existence of a duality on 4 we have 4 =~ 4°PP and, as we have already
mentioned in the introduction, 4 has a double centraliser property with respect to the good
basic projective-injective module P(wy - 4) (see [58], Struktursatz). If 1 is regular, the endo-
morphism algebra of the latter is the coinvariant algebra associated with W. If A is singular
then this endomorphism ring is isomorphic to the subalgebra of W),-invariants in the
coinvariant algebra ([58], Endomorphismensatz). In any case, the resulting algebra is sym-
metric. Consider now (TWU)2 : 0, — 0,. This functor is both right exact and additive by
definition. It’s derived functor defines a self-equivalence of 2°(¢;) by [3], Corollary 4.2,
for the regular case; the singular case follows by translation, since twisting functors com-
mute naturally with translation functors ([3], Theorem 3.2). Hence the assumption (a) of
Theorem 3.4 is satisfied.

From [3], formula (2.3) and Theorem 2.3, we have
(4.1) F(P(2)) = F(AQQ) = V(4) = I(2),

if A is regular. By [3], Theorem 3.2, F commutes with projective functors. Applying projec-
tive functors to (4.1) gives F(P(u)) = I(u) for any u € W - J. Hence, the assumption (b) of
Theorem 3.4 is satisfied. It is left to verify the assumption (c) of Theorem 3.4.

Since the endomorphism ring of P(wy - 4) is symmetric, by Proposition 3.5 it is left
to check that T, is isomorphic to the identity functor when restricted to the category
of projective-injective modules. By [45], Theorem 4, there is a natural transformation,
T\, — ID, which is an isomorphism, when restricted to projective-injective modules ([3],
Proposition 5.4). In particular, the assumption (c) of Theorem 3.4 is satisfied. Theorem
3.4 therefore implies that #(T,,)* is a Serre functor of °((;). The first part of the pro-
position follows.

Let now A be dominant, integral and regular. We again want to apply Theorem 3.4.
The functor F = (CWO)2 : 0, — 0, is both right exact and additive by definition. Its derived
functor defines a self-equivalence of #”(0;) by [54], Theorem 5.7. That F(P(u)) = I(y)
for any u € W - 1 follows inductively from [38], Proposition 3.1, [54], Theorem 5.7, Lemma
5.2 and Proposition 5.3. Since End (P(wo . /1)) is symmetric, it is, by Proposition 3.5, left
to check that F is isomorphic to the identity functor when restricted to the category of
projective-injective modules. That F' preserves projective-injective modules follows from
[38], Theorem 4.1(1). From [58], Section 2.4, it follows that F commutes with the action
of the centre of A, which, because of the double centraliser and commutativity of
Endg(P(wo - 4)), is in fact Endg(P(wo - 4)). This implies that F, restricted to the category
of projective-injective modules, is isomorphic to the identity functor. Theorem 3.4 now im-
plies that & (CWO)2 is a Serre functor of Z°(0;). From the uniqueness of Serre functors we
get in particular £ (7, wo)z ~ & (CWO)Z. O

We obtain the following surprising consequence:

Corollary 4.2. Let 4 be an integral, dominant and regular weight. Considered as endo-

functors of O, there is an isomorphism of functors (Cy,)> = (T,,)*. In particular (C,,)*

commutes with projective functors.
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Proof. The functors are isomorphic when restricted to the additive category of pro-
jective modules, since they both give rise to a Serre functor. On the other hand, they are
both right exact and @, has finite global dimension. Therefore, the isomorphism extends
uniquely to the whole category (,. Twisting functors commute with projective functors
(see [3], Section 3), hence (C,,)* commutes with projective functors as well. []

Remark 4.3. We would like to draw the reader’s attention to the following observa-
tions concerning the principal block O of O:

(1) The functor d 7, jo d is exactly Enright’s completion functor, see e.g. [41]. This fol-
lows from [45], Section 3.

(2) Considered as an endofunctor of ¢y, the functor C,, does not commute with the
action of the centre of the universal enveloping algebra of g (or with the centre of ())) and
does not commute with translation functors even if g = sl, (whereas 7, does, see [3], Sec-
tion 3). This is because C,,, twists the action of the centre by wy (this follows from [58], Sec-
tion 2.4). This means, however, that C,-1 C, commutes with the action of the centre of the
category for any y € W (however, not necessarily with projective functors).

(3) Since (C,,)” induces the identity on the category of injective modules, it follows
that (Cy,)* = (Cy,)% It is easy to see that already (T,,)> = (T\,)>. Further, the functors
Cuy» (Cyy)?, and (Cy,)* are pairwise non-isomorphic; and the functors 7, (T, )" are not
isomorphic.

(4) If wo = 51 - - - 5% 1s a reduced decomposition, then
L(Cp)* 2 (LCy, LCy, - LCNLCy, LCy, -+ LC),
L(T) 2 (LT, LTy, LTNLT, LTy, - LT).

The first isomorphism follows for example from [38], Proposition 3.1, by standard argu-
ments. The second follows directly from [3], Theorem 2.2, Theorem 2.3 and Theorem 3.2.

(5) The Serre functor S for Z°(0,) satisfies S* & S' for all k + /. Indeed, from [3],
Corollary 6.2, it follows that S*L(0) = L(0)[k2I(w)]. From [3], Corollary 6.2, it also fol-
lows that S* 2 [/] for any k, / because SP(wy - 0) = P(wy - 0).

(6) The braid group acts on Z°(() via the auto-equivalences .# C; and via the auto-
equivalences .# T;. Since the Serre functor commutes with auto-equivalences, it is natural
to expect that it should correspond to a central element in the Braid group. In fact,
S1 -+ SkS1 -+ - Sk (see notation above) generates the centre of the Braid group B,, n = 3, see
for example [13], Corollary 1.8.4.

4.2. The parabolic category C in the sense of Rocha-Caridi. Our next task is to de-
scribe the Serre functor for the bounded derived category associated with the principal
block of a parabolic category ¢ in the sense of [57]. The situation here is much more com-
plicated, since there are in general non-isomorphic indecomposable projective-injective
modules in the same block and we do not yet know if the endomorphism ring of a basic
projective-injective module is symmetric. However, the knowledge of the Serre functor for
the bounded derived category of (U turns out to be extremely useful to determine the Serre
functor for the parabolic situation.
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Let p o b be a parabolic subalgebra of g with corresponding Weyl group W, = W.
Let w) be the longest element in W,. For any integral dominant weight /4 let ¢} be the full
subcategory of (), given by locally p-finite objects. This category was 1ntroduced in [57].
For any we W let A’(w- /) denote the corresponding parabolic Verma module with
highest weight w -, i.e. the maximal quotient, contained in ¢}, of the Verma module
A(w - 1) € 0;. Note that A¥(w - 4) % 0 if and only if w is a shortest coset representative in
W \W.

Let from now on A be dominant, integral and regular. Since any object in 2°(0,) for
which all cohomology objects are contained in ¢} is quasi-isomorphic to some complex of
objects from (! (see the proof of [42], Proposition 1.7.11), 2”(0}) embeds as a full trian-
gulated subcategory in Z°(¢ ;). Note that translations through walls preserve the parabolic
subcategory. We may therefore consider the restriction of ¥ C,, to this subcategory as well
as to the subcategory O} (considered as a subcategory of ,@b((ﬁ/’f)). We get the following
result:

Proposition 4.4.  For any integral dominant and regular weight A we have:

(1) The functor £ (Cy,)|—1(w})] maps parabolic Verma modules to parabolic dual
Verma modules. More precisely

(4.2) L(Cup)[=IW)AP (w - 2) = d AP (wiwwy - )
for any parabolic Verma module A*(w - 1) € 0.
(2) The category O} is Ringel self-dual.
(3) The functor £ (Cy,)*[=2I (w})] maps projectives in OF to injectives in O®.
(4) The functor £(C,,)*[—21(w})] is a Serre functor for 2°(0Y).

Proof. We first check that wf;’ wwy 1s indeed a shortest coset representative, if so is w.
Let s € W, be a simple reflection. Then

I(swywwo) = I(wo) — I(swyw) = I(wo) — I(sw{) — 1(w)
=1(wo) — I(w§) + 1 = I(w) = I(wo) — I(wygw) + 1
= I(wiwwy) + 1.

Let A*(w- 1) be a parabolic Verma module in ¢}. From [52], Section 4, we have a
finite resolution, P)’, of A"(w - ) by Verma modules, where

P'= @ AQyw-A).
yeWwy,l(y)=i

The involved maps are clear up to scalars, for the exact normalisation we refer to [52],
Lemma 4.1.

For a simple reflection, s, the definition of C, implies C,A(x-A) = A(xs-A) if
xs > x, and CV(x-1) = V(xs-4) if xs < x. Therefore C,,A(x-1) = V(xwp-4), which
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implies that C,, is exact on the category of modules with Verma flag. This gives

w 11 wo

RC,AP(w- 1) = C,, (PY). Dually, d P, ™ is a coresolution of d A*(w{ww - 1). On the
other hand, applying C,, to the resolution P gives a complex, Q., where

0= @ dApwwy-A)= @ V(wwy-A).
ye Wy, l(y)=i yeWwy l(y)=i
The maps in this complex satisfy the dual version of [52], Lemma 4.1. Hence
d P Q.[—1(w})]. The formula (4.2) follows.

Let now F' = ) Cy,. We claim that F, restricted to ¢/}, is right exact. Note that
the formulas above imply that %;C, M = 0 for any M € 7 (A®) and i # /(w]), in particu-
lar, for M € 0} projective. Let M € ¢} be arbitrary. Choose a short exact sequence
K—P—M, Where Pe0!is prOJectlve Since the global dimension of A} is finite, one
obtains %;C,,,M =0 for all M and all i </ (WO) by induction. Therefore F is right exact.
It is known (see e.g. [54], Lemma 5.1, Lemma 5.2) that G = %' (d C,, d) is the right
adJ01nt functor of F. From the formula (4.2) it follows that F defines an equivalence

F (A?) = 7 (V?) with inverse G. Proposition 2.2 implies that 0% is Ringel self-dual. Apply-
ing Proposition 2.2 twice, we get that the functor L(Cyy)*[-2 (WO )] maps projective mod-
ules to injective modules. To prove that #(C,,)*[—2! (wo)} is a Serre functor we only have
to verify the last assumption of Theorem 3.4. This is not completely trivial. Instead of
applying again Theorem 3.4 we will give an alternative argument after the following
lemma. [J

Let A still be dominant, integral and regular. Let i: (9" — (0, denote the exact inclu-
sion functor, let Z : ) — O; : be its left adjoint and Z : 0, — OF be the right adjoint to
(i.e. Z is the Zuckerman functor of taking the maximal quotient in ¢, and Z ~ d Zd). To
proceed we will need the following result from folklore:

Lemma 4.5. There are isomorphisms of functors:
di £7d =i 2Z[-20w)): 2°(0;) — 2°(0,),
d2Zd = 2Z[-2w)): 2°(0;) — 2°(0F).
Proof.  Using [25], Proposition 4.2, we can fix an isomorphism,
diLZAA(L) =i LZAA)[-21(w])].

Since Z commutes with projective functors (see e.g. [10], Proposition 3), this isomorphism
lifts to an isomorphism on projective modules. We have to verify that it is functorial. With-
out loss of generality we may assume that p = p, is the parabolic subalgebra corresponding
to a simple reflection s. The general case for arbitrary p follows then by induction. Associ-
ated to s, there is a complex of functors

T, —ID —iZ

which gives rise to a short exact sequence when applied to projective objects ([45], Theorem
4, and [3], Proposition 5.4). Taking the left derived functors we therefore get an isomor-
phism % (iZ) =~ AT, (see [42], Proposition 1.8.8). From [3], Theorem 4.1, and [53], Theo-
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rem 1, we have an isomorphism of functors % Ty =~ diZd. The first statement follows, the
second is then also clear. []

Now we are ready to complete the proof of Proposition 4.4:

Proof of the last part of Proposition 44. To prove that #(C,,)*[-2I (wg)] is a Serre
functor for 2°(©}) it is enough to show that for the functor X := Z Poiw )(CWO)2 i we have
an isomorphism, natural in both arguments, as follows:

where PP is a projective generator of (/. Without loss of generality we assume P? = ZP,
where P is a projective generator of ¢,. We have isomorphisms

Hom»(P*, XP*) =~ Hom+(ZP,XP?)
= HOl’l’l(ﬁZ (i ZP, iXPp)
2.
= Hom@ (P, gym,(;’)(CwU) IPp)
(by Proposition 4.4 (1)) = Homy,, ( L(Cy,) 2 iPP[-2 I(wy)])
= Hom g, (PRIWY)] , L (Cyy) PP )
(by Proposition 4.1) = Hom, (I SN
(by adjointness of i and dZd) = Homg) (Pp d2ZdP2I(w)])"
(by Lemma 4.5) =~ Hom ;v (PY, LZP)"
~ Hom»(P?,ZP)"
= Homg» (PP, PP)",
which are natural in both arguments. This completes the proof of Proposition 4.4. []
As an application we get the following nontrivial result:
Theorem 4.6. Let 4 be an integral, reqular and dominant weight. We consider the cat-
egory OF, where p = b is some parabolic subalgebra of . Let Q be a basic projective-injective
module in O}. Then Endy(Q) is symmetric.

For the proof we need the following

Lemma 4.7. In the situation of Theorem 4.6 we have the following: the socle S of
AP (2) is simple and Homy(Q,AP(2)/S) = 0.

Proof.  Assume L is a composition factor of A”(1) such that Homy(Q, L) # 0. From
the latter it follows that the projective cover, P, of L is projective-injective, hence tilting.
Since L is a composition factor of A®(1), we have Homg(A¥(4), P) = 0. Therefore, L(1)
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appears as a composition factor in P. Hence P = T*(A) and L is unique. On the other
hand

1 =[T%(2): A"(A)] = [P: A*(2)] = [A*(2) : L.

Since (by [37]) any simple module appearing in the socle of a parabolic Verma module is
not annihilated by Hom,(Q, ), the statement follows. []

Proof of Theorem 4.6. By Example 2.7 (2) and Proposition 3.5 it is enough to prove
that the Serre functor is isomorphic to the identity functor when restricted to the additive
subcategory of projective-injective modules. Let S = #(C,, )*[—2/ (w))] be the Serre func-
tor of 2° (OY). The idea of the proof is the following: From Proposition 4.4 and Corollary
4.2 we know that S := ifle(wg)(c‘,vo)z Z: 0, — 0, is right exact and commutes with trans-
lations through walls, even in a natural way as defined in [44]. We will construct another
right exact functor G : ¢; — (@, which again naturally commutes with translations through
walls and coincides with S when evaluated at A(4). The main result of [44] states that
two right exact additive functors, Fy, F> : O; — O;, which agree on A(4), and both natu-
rally commute with translations through walls, are in fact isomorphic. From this fact
we will deduce an isomorphism of functors S =~ G. Even more, the main step is to show
that we can choose a functor G with the additional property that G =iG’Z for some
G': 0} — ¢!, and G’ is isomorphic to the identity functor when restricted to the category
of projective-injective modules in ¢!. Since Z is dense and full on projectives and
S = ici”z,(wg)(Cwo)z 7 ~1G'Z, we get that S must be isomorphic to the identity functor
on the subcategory of ¢! formed by projective-injective modules. This will finally imply
the assertion of the theorem.

Let’s do the work! We have S = £(C,,)*[~2/(w})], the Serre functor of 2°(0}),
given by restriction of $(C‘1,())2[—21(w§)] : 9%(0;) — 2°(0,). Put S := icfz,(“,u)(C‘,vo)zZ,
considered as a functor ¢, — @,. This functor is clearly right exact and additive. Since 1
is regular, the category O, is a category with full projective functors ([44], Proposition 16)
in the sense of [44], Section 2, where the projective functors are given by compositions of
translations through walls and their direct summands. Recall from [44], Definition 2, that a
functor G : O; — O, naturally commutes with projective functors if for any projective func-
tor 0, there is an isomorphism of functors ¢, : 0 G = G 0 such that the following holds: for
any two projective functors 6, ¢, and any natural transformation « € Hom(60, ¢») the fol-
lowing diagram commutes:

0,G 2 0,G

l‘/’al Po, J{

6o, 2% Go,.
(Note the typos in the original formulation [44], Definition 2.)
Claim 1. The functor S : O, — O, naturally commutes with projective functors.

Proof of Claim 1. To see this note first that S =~ 32,<1‘,,6))(Cw0)2 iZ, where
L(Cyy)* - 2°(0;) — 2°(0;). (This is clear from the definitions.) From [44], Section 6.2,
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we know that i Z naturally commutes with projective functors on (. In [44], Section 6.5, it
is proved that twisting functors on (¢, naturally commute with projective functors on
;. Corollary 4.2 gives an isomorphism (7,,,)* = (Cy,)* : 0; — ©;, hence (C,,)* naturally
commutes with projective functors. From [44], Lemma 8, it follows that £y, ( Cy,)* and
$2l(w8’)(cwo>2 naturally commute with projective functors, therefore so does .S, because it is
a composition of functors which commute naturally with projective functors. This implies
Claim 1. [

Let now J: 0, — O, be the partial coapproximation with respect to M, where
M= @ P(x-A)and
xeWw’

W'={xeW|ZP(x-1)=0or ZP(x - 1) € O} is projective-injective}.

Recall that, when restricted to projective objects, J is nothing else than taking the trace
with respect of M. The functor J is additive and right exact.

Claim 2. The functor J : O, — O, naturally commutes with projective functors.

Proof of Claim 2. Let 0: 0, — 0, be a projective functor. We first show that
0Try, P = Try, OP, via the natural inclusions

6TI'MP‘—> 9P<—’TI'MOP,

for any projective module Pe (@;. To see this consider the short exact sequence
Try P — P — N, where N is the canonical quotient, in particular Homg(M,N) = 0. We
claim that Homy(M,ON) = 0. Let ¢’ be the adjoint functor of 6. This is of course again
a projective functor and therefore we have the following: If ZP(x-1) =0 then
0=0ZP(x-A) =Z0'P(x-A). If ZP(x-1) # 0, but xe W', then ZP(x- /) is projective-
injective in @}, hence so is 0'ZP(x - A) = Z0'P(x - A). In particular,

Homgy(M,ON) =~ Hom,(60'M, N)
— Homy(M",N) (for some positive integer n)

=0.

The definition of the trace implies that the projective cover of Try, P is a direct summand of
some M", neZ-y. From the arguments above it follows that the projective cover of
0Try P is also a direct summand of some M", n € Z~. Altogether, 0 Try, P = Try, OP via
the natural inclusions. In other words, we may fix an isomorphism of functors ¢, : 0J = J0,
restricted to the category of projective modules, such that

(4.4) Joopy=0(j):0J — 0,

where j:J — ID is the obvious natural transformation. In particular, J commutes with
projective functors. We claim that this is already enough to show that J naturally com-
mutes with projective functors. We have to check this directly using the original definition
[44], Definition 2: Let 6,0, : ; — O, be two projective functors and let « € Hom(0, 0,)
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be a natural transformation between them. Consider the following diagram of functors re-
stricted to the additive category formed by all projective objects:

0, —2- 0,

01(j)  62())
U ” U
0] —2 0,J

id Po, %o, id
J (@)
Jo, —= Jb,
N N

Joy Joy

6, _*, 0.

The two ““squares”, the one on the left-hand side and the other on the right side, commute
because of (4.4). The squares at the top and bottom commute by definition (of a natural
transformation). We only have to show that the middle square commutes as well, i.e.
J(a) oy, = @y, 0 a5. Since jp, is injective (on projective modules) it is enough to show
that jy, o J() o @y, = jo, © @y, 0 2. Since all the other parts of the diagram commute we
can calculate
Jo, © J (@) 0 g, =000 jo, © gy,

= oo 01())

= 02(j) ooy

= Jo, © 99, © %

Hence, J commutes naturally with projective functors when restricted to projective objects.
Since the involved functors are right exact, Claim 2 follows. []

Claim 3. There is an isomorphism of modules SA(L) = i1ZJiZ JA(L).

Proof of Claim 3. We first show that Z JA(1) = soc A*(1), the socle of A”(1). Define
U to be the module which fits into the canonical short exact sequence

(4.5) 0—U—A(L) — AP(4) — 0.
From Lemma 4.7 we have Z JAP(1) = soc A"(1). On the other hand, ZU = 0 by definition,
i.e. the projective cover Py of U is annihilated by Z, hence also ZJPy = 0. Since iZ J is

right exact, the sequence (4.5) implies ZJU = 0 and ZJA(A) = soc A¥(4). From the double
centraliser property we have an exact sequence in ¢} of the form

0— A" — Q1 — 0,

where Q) and Q5 are projective-injective modules in ¢}. There is therefore also an exact
sequence in (0, of the form
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0> — Q1 — dA*(4) =0

Note that JQ; = Qi, J Q> = 0,. Hence iZJdAP(1) = dA¥P(4). Altogether we have
iZJiZJAY(A) =~ dA¥(A). The latter is isomorphic to SA"(1) by Proposition 4.4. This
proves Claim 3. [

From [44], Theorem 1, we get the existence of an isomorphism
o tZJiZJ = S.

By definition, J is isomorphic to the identity functor when restricted to projective-injectives
in 0. Therefore, « induces an isomorphism of functors

ID = #(Cy,)*[—20(w)]

when restricted to the category of projective-injective modules in ¢’}. This is exactly the
statement that the Serre functor for %° (O7) is isomorphic to the 1dent1ty when restricted
to the additive category formed by projective-injective modules. The assertion of the theo-
rem follows then finally from Proposition 3.5. []

We get the following consequence:

Corollary 4.8. In the situation of Theorem 4.6 the Serre functor for 9° (OF) is isomor-
phic to 3((Coappg) ).

Proof.  This follows directly from Theorem 4.6 and Theorem 3.7. []

4.3. Harish-Chandra bimodules. Let ,.#, be the category of Harish-Chandra bimo-
dules as in Examples 2.7(3), where 4 and u are integral and dominant. Recall the subcate-
gory ;#;, = Aj-mod. In [11] (see also [40], 6.17, 6.23) it is proved that ;#, ! is equivalent
to the full subcategory %" of (U, given by all modules M, which have an exact presentation,

(4.6) Py — P, — M —0,

where P, and P, are projective and the simple modules in their heads are of the form
L(x- ), where x is a longest coset representative in W,\ W /W,. Note that this category
does not have finite global dimension in general. Nevertheless we have the following

Proposition 4.9. Let A, u be integral dominant weights. Then:
(1) A% is Ringel self-dual.

(2) Doert(AY) has a Serre functor, namely #(Cy,)* (via the identification of € with
A%-mod given by [5], Section 5).

Proof.  From [54], Proposition 4.2, and its dual version we get that C,,, maps stan-
dard modules to costandard modules. From [54], Lemma 5.18, it follows that C,, defines

an equivalence between the categories of modules with standard flag and modules with
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costandard flag. In particular, Ext Aﬂ(CnOP V) = Ext Aﬂ(P C,.lV) = 0 for any costandard
module V and any projective P. Hence C,, maps a minimal projective generator to a char-
acteristic cotilting module, which is tilting (see e.g. [28], Section 6). Since it is an equiva-
lence, it preserves the endomorphism ring. The first part of the theorem follows.

To prove the second part of the theorem we use Proposition 4.1. Because of this result
and [32], Proposition 20.5.5(i), it is enough to show that Z(C,,)* preserves Dpert (AY).
Since & (Cwo) is a Serre functor for ¢, it sends indecomposable projective modules to the
corresponding indecomposable injective modules. However, an injective 45-module has a
presentation of the form (4.6) by [54], Corollary 2.11. Since all tilting A% —modules are also
cotilting ([28], Sectlon 6), it follows that injective A4-modules have ﬁmte projective dimen-
sion. Hence &( CHO) preserves Zperr(A%) and the statement follows. [

Remark 4.10. From [21], Theorem 2.5, it follows that 4/ has finite global dimension
if and only if the standard and proper standard A“-modules coincide (i.e. A% is quasi-
hereditary). Using the description of standard modules as in [54], Proposmon 2.18, it is
easy to see that this is the case if and only if 4 is regular or A% is semi-simple.

Remark 4.11. One can also show that for any N, P € A}-mod, where P is projective,
the Serre functor &( m]) from Proposition 4.1 induces a natural isomorphism,

Hom 4« (N, (Cy,)*P) = Hom (P, N)".

4.4. The category (0 for rational Cherednik algebras. We briefly recall the facts
about rational Cherednik algebras which are important in our setup. We refer for example
to [31] for details. Let V" be a finite dimensional vector space, W = GL(V') a finite reflection
group, and C[W] the group algebra of W over C. Let .o/ denote the set of reflection hyper-
planes. If 4 € .o/ then W;, denotes the (pointwise) stabiliser of /2 in W. Let y : .o/ — C[W] be a
W-equivariant map such that y(h) € C[W,] = C[W]. Associated to the pair (V,y) we have
H = H(V,y), the corresponding rational Cherednik algebra as defined and studied for ex-
ample in [31]. As a vector space, H(V,y) is isomorphic to S(V) ® C[W] ® S(V'*), where
S(V') denotes the algebra of polynomial functions in V*. (This is the PBW-theorem [26],
Theorem 1.3.) The occurring three algebras S(V'), S(V*) and C[W] are in fact subalgebras,
for the nontrivial commutator relations between them (involving the parameter y) we refer
to [31], [34]. Let © = O(H, V, y) be the corresponding category ¢/ given by all finitely gen-
erated H-modules which are locally S(¥7*)-finite. This is a highest weight category, where
the isomorphism classes of simple modules are in natural bijection with irreducible modules
for w. More precisely, if E is an irreducible Ww-module, then A(E) = H(V,y) ®p E, where B
is the subalgebra of H(V/, y) generated by S(V*) and C[w|. (The action of p € S(V*) on E is
given by multiplication with p(0).) The simple head L(E) of A(E) is the simple module
corresponding to E.

In general, H(V,y) is not isomorphic to its opposite algebra H(V,y)°", therefore
there is no simple preserving duality. However, we have an isomorphism ([31], Section
4.2) of algebras H(V,y) =~ H(V*,1 0 y)°"P, where { : W — W, g — g~ (the isomorphism is
given by extending T trivially to S(7*) and sending v € V' to —v).

With this fixed isomorphism one can define two contravariant functors, namely:
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® The naive duality ([31], Proposition 4.7):
dy,: O(V,y) = OV foy)

by sending an object M to the largest submodule dy ,(M) of (the ordinary vector space
dual) M* which is locally S(V*)-finite. This is a right H(V/, y)-module and becomes a left
H(V*,} o y)-module via the fixed isomorphism. This duality sends the simple module L(E)
to the simple module L(E) indexed by the dual representation E of E. Projective objects are
sent to injectives and standard objects to costandard objects.

e The functor Dy , (see [31], Proposition 4.10)
Dy, = Extgfy” (. H(V. ) : O(V.y) — O(V, f o).

Conjecture 4.12. Let H(V,y) be a rational Cherednik algebra with the corresponding
category O(V,y). Then

S =dy- i Dy+,dy j0y Dy,
is right exact and S is a Serre functor.

To prove this conjecture it would be enough to verify the assumptions in Theorem
3.4, where F = Fi1Fy, F| =dy o, Dy, and F> = dy. ,i Dy ,. The fact that F is right exact
follows directly from [31], 4.1. The assumption (a) follows directly from [31], Lemma 4.1,
Proposition 4.7. The assumption (b) is proved in [31], Proposition 5.21. We do not know if
assumption (c) is satisfied. However, a positive answer to the conjecture [31], Remark 5.20,
would imply, via the Knizhnik-Zamolodchikov-functor, that F is isomorphic to the identity
functor on the additive subcategory given by projective-injective objects. Since the corre-
sponding Hecke algebra is symmetric (see e.g. [19], Lemma 5.10), the conjecture would fol-
low from Proposition 3.5.

Independently of the Conjecture 4.12, we can at least give a description of the corre-
sponding Serre functor in terms of partial coapproximation:

Proposition 4.13.  Let H(V, ) be a rational Cherednik algebra with the corresponding
category O(V,y). Let Q be a basic projective-injective module in O(V,y). Then the Serre
functor of 2° (o, y)) is isomorphic to 3((Coapr)2).

Proof. We only have to verify that we are in the situation of Theorem 3.7. We can
find a projective-injective module Pk representing the Knizhnik-Zamolodchikov-functor
(see [31], Proposition 5.21). On the other hand the endomorphism ring of Pk is isomorphic
to the Hecke algebra ([31], Theorem 5.15), hence symmetric ([19]). It is known that O(V,y)
has the double centraliser property with respect to Pxz ([31], Theorem 5.16). Since the
naive duality maps a basic projective module to a basic injective module, and Pk, to the
corresponding Pk ([31], Theorem 5.21), and O(V,7)°"® has again a double centraliser
property with respect to Pg, we get that 4 and 4°PP have the double centraliser with re-
spect to a basic projective-injective module. From [31], Theorem 5.21, it follows that such a
basic projective-injective module for 4 is good. Hence, the assumptions of Theorem 3.7 are
satisfied. The statement follows. []
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4.5. Schur algebras. Let n = r be natural numbers. Let either B = C[S,], the group
algebra of the symmetric group S,, or B = J#,(S,) the corresponding generic Iwahori-
Hecke algebra. Then B is a self-injective algebra which is even symmetric (see e.g. [19],
Lemma 5.10), and (C")®” is a faithful (right) B-module, where B acts by place permuta-
tions. Its endomorphism algebra 4 = Endg(Q) is the classical Schur algebra S(n,r) or the
g-Schur algebra S, (n, r) respectively (see [24]). Considered as a left 4-module in the natural
way, Q becomes a full projective-injective 4-module ([24], Section 4.3 and 4.4), and 4 sat-
isfies the double centraliser property with respect to Q (see e.g. [51], Theorem 1.2). Together
with Theorem 3.7 (and the notation there) we obtain the following result:

Theorem 4.14. Let A = S(n,r) or A = S,(n,r), where n = r. Then the Serre functor
for 2(4)" is g((Coapr)z).

Proof. The algebra A has finite global dimension ([24], Section 4.8) and has a simple
preserving duality ([33], Section 2.7, and [24], Section 4.1). The assumptions of Theorem
3.7 are satisfied. Moreover, End 4(Q) is isomorphic to B, the group algebra (or Hecke alge-
bra respectively) of the symmetric group S, (see e.g. [51]). In either case, this algebra is sym-
metric, and so we are done by Theorem 3.7. [

For the case n < r our methods do not work directly, since there is no double central-
iser property with respect to some full basic projective-injective module ([51]).

5. Projective-injectives in the category (*(sl,(C))

In the following section we study more carefully projective-injective modules in the
parabolic category (°, especially, for the Lie algebra sl, = sl,(C). As already mentioned
in the introduction, one of the motivations to consider the category of projective-injective
modules in OF is to find a precise connection between Khovanov’s categorification of the
Jones polynomial ([46]) and the categorification of the Jones polynomial via representation
theory of the Lie algebra s, (as proposed in [10] and proved in [62]). It might be possible to
pass directly from one model to the other by connecting the involved algebras directly, be-
cause the algebra, used by Khovanov in his categorification, is a quotient of an algebra A
such that 4-mod is equivalent to a certain block of OF for some sl, ([15], page 494). Al-
though, we have a very nice, more or less explicit, description of the algebra 4 in question
([15], Theorem 1.4.1), we are interested in more conceptual properties of the algebra. Sev-
eral conjectures in this direction were formulated by Khovanov in [48]. We want to simplify
the problem by using the double centraliser property. In this way, by using the Serre func-
tor, we confirm three conjectures of Khovanov: in Theorem 5.2 we confirm [48], Conjecture
4, concerning the centre of 4, and in Theorem 5.4 we confirm that the endomorphism alge-
bra of a basic projective-injective module is symmetric, and depends only on the chosen
partition of n, not on the actually chosen composition of n. (The last two conjectures were
formulated in a private communication.) Furthermore, Theorem 5.4 supports [48], Conjec-
ture 3.

5.1. On a result of Irving. Consider the classical triangular decomposition
sl, =n_ ®@bh@n,, where l) is the Cartan subalgebra of all diagonal matrices (with zero
trace) and n, denotes the subalgebra of all upper- and lower-triangular matrices respec-
tively. Given a composition, u = (g, ..., 1), of n (i.e. gy + - - - + w, = n), we have the cor-
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responding Young subgroup S, =S, xS, x---x S, of §,, the latter being the Weyl
group of sl,. Let ¢ be the correspondlng parabohc subcategory of 0y(sl,) (see Section
4.2). Recall that the s1mple objects in () are in bijection with the elements of S,,. We denote
by L(w) the simple module of highest weight w(p) — p, where p denotes the half-sum of the
positive roots. For w € S, we denote by A(w) and P(w) the corresponding Verma and in-
decomposable projective module in ¢)y. Let S# be the set of shortest coset representatives of
S,\S, and let w, be the longest element in S*. The simple objects in ¢/} are then the L(w),
where w € S#. For w € S# we denote by L#(w), A*(w) and P*(w) the corresponding simple,
parabolic Verma and indecomposable projective module in ¢} respectively. Note that
L*(w) = L(w) for we S*.

Foranyie{l,...,n— 1} we denote by 6, : Oy — 0 the translation functor through
the s;-wall (see e.g. [29], Section 3). This functor is exact, self-adjoint, and preserves ¢/f. For
w € S, we denote by R(w) the right cell of the element w (for a definition we refer to [43]).
Now we can give (for the sl, case) an easier proof for the following main result of [37]:

Theorem 5.1. For any composition u of n the following conditions are equivalent:
(i) P*(w) is injective.

(i) we R(w,).

(iii) L*(w) occurs in the socle of some parabolic Verma module A*(w'").

Proof.  Assume that (i) is satisfied. Since (/) has a simple preserving duality, if P*(w)
is injective, it is a tilting module in the highest weight category ¢/§ and hence is self-dual.
This means that its socle is L#(w), which must coincide with the socle of some parabolic
Verma module because P#(w) has a standard flag. This implies (iii).

Assume that (iii) is satisfied. Since any parabolic Verma module is a submodule of
some tilting module, we get that L#(w) occurs in the socle of some tilting module. By [18],
the tilting modules in () are exactly direct summands of translations of L*(w,). From [37],
Proposition 4.3 (this is an easy preparatory result) it follows that w € R(w,), that is (ii) is
satisfied.

Assume that (ii) is satisfied. Since all P#(w’), w’ € R(w,), can be obtained from
each other via translations through walls (this follows again from [37], Proposition 4.3),
it is now left to show that there exists w € R(w,) such that P#(w) is injective. Actually,
since we already know that (i) implies (ii), it is enough to show that there exists some
projective-injective module in ¢f. But this one is obtained by translating any simple pro-
jective module from the same weight lattice, which exists by [39], 3.1 (this is again an easy
result). [

5.2. On Khovanov’s conjectures. According to Theorem 5.1, the modules P#(w),
w e R(w,), constitute an exhaustive list of indecomposable projective-injective modules

in O0f. Let P,= € P*(w) be the basic projective-injective module and set
weR(wy)

B, = End((u( ). As a consequence, we have the following result which confirms [48], Con-

jecture 4:
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Theorem 5.2. Let u be a composition of n.
(1) The Loewy lengths of all projective-injective modules in Of coincide.

(2) Of satisfies the double centraliser property with respect to a basic projective-
injective module, in particular, the restriction induces an isomorphism between the centres of
A}y and B,

Remark 5.3. Theorem 5.2 is true for any semisimple complex Lie algebra g (the
proof is exactly the same if one replaces Theorem 5.1 by the main result of [37]).

Proof of Theorem 5.2. Let P*(w) be a projective-injective module. From [37], Pro-
position 4.3(ii), it follows that P#(w) is a direct summand of some translation of P*(w,).
Hence to prove the first statement it is enough to show that translations through walls do
not increase the Loewy length of projective-injective modules. If 0; (L(w)) #* 0, then

dim Hom (0;P*(w), L(w)) = dim Hom (P*(w), 0;L(w)) = 2

by [40], 4.12(3), 4.13(3’), which implies that P*(w)@® P#(w) is a direct summand
of 6; (P/‘(w)). Comparing the lengths of the standard filtrations we even get
0;(P*(w)) = P*(w) @ P*(w), in particular, such translations do not produce new
projective-injective modules.

Now assume that 0, (L(w)) = 0. The algebras 4y and Aé‘ , which correspond to ¢y and
O} are Koszul ([58], [9], [7]), in particular, they admit a canonical positive grading (the
Koszul grading), which we fix. This allows us to consider graded versions of both (/y and
Oy (see [9], [60]). In [60] and [9] it was shown that simple modules, Verma modules, para-
bolic Verma and projective modules in ¢y and ¢} are gradable. Their graded lifts are
unique up to isomorphism and grading shift, therefore we call a lift standard if the head is
concentrated in degree zero. In [60] it was shown, that the functors 0; (as endofunctors of
() are gradable as well. We denote by 6; the standard graded lift of 6; (i.e. 6;, applied to a
simple module concentrated in degree 0 has socle concentrated in degree 1). Since 0; pre-
serves (U}, the functor ; restricts to a graded lift of 6; on .

Let P& be the standard graded lift of P#(w). Since it has both simple top and simple
socle, the radical-, socle- and graded filtrations of P#" coincide by [9], Proposition 2.4.1. In
particular, P& has a unique component of maximal and a unique component of minimal
degree. On the other hand, 6;(L) is concentrated in the degrees —1, 0, 1 for any simple
module L, concentrated in degree 0 ([60], Theorem 5.1). This implies that the length of
the graded filtration of 6;(P£") can not exceed the length of the graded filtration of Pe".
Hence, the Loewy length of 0;(P*(w)) does not exceed that of P*(w) and the statement
(1) follows.

The double centraliser property follows from Corollary 2.6 and the main result of [37]

(as formulated in Theorem 5.1). For an algebra, 4, we denote its centre by Z(A). From the
double centraliser property we have

Ag = EndBﬂ(P,,).
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If x € Z(AY), then xa = ax for all a € A and hence x € B,. On the other hand, every ele-
ment of 4§ commutes with each element in B, by definition. Hence x € Z(B,,). This implies
Z(AY) — Z(B,). Because of the left-right symmetry of the double centraliser we finally get
Z(AY) = Z(B,). This completes the proof. []
We formulate now the main result of this section:

Theorem 5.4. (1) Let p be a composition of n. Then the algebra B, is symmetric.

(2) Let p and v be two compositions of n, which give rise to the same partition of n.
Then B, = B,.

Proof.  The statement (1) is just a special case of Theorem 4.6.

Let us now prove (2). Without loss of generality we may assume u = (4, ..., 1)
and
V= (s By Figers B B -+ M)
for some /€ {1,...,k — 1}. Moreover, we assume £ > [, .

For any composition, 7, of n Irving and Shelton constructed in [39], 3.1, a special
weight, A(7), with the following property: the simple highest weight module L(}L(r) — p)
with the highest weight A(7) — p is the only simple module in its block of @*. From the de-
finition in [39], 3.1, it follows immediately that, if r and 7’ are two compositions of n which
give rise to the same partition, then A(r) and A(z’) are in the same S,-orbit, in particular,
L(A(r) — p) and L(A(z") — p) belong to the same block of ¢.

Now we apply this to the case 7 = v, v/ = u. Let (¢ be the common block (of @) for
L(A() — p) and L(A(v) — p). Although L(A(u) — p) and L(A(v) — p) are in the same block
of O, we have that the parabolic categories ¢ and O are semi-simple containing only one
simple object each. Obviously, they are equivalent. However, we would like to construct a
functor on (0, which gives rise to an equivalence between these categories, and, additionally,
commutes with tensoring with finite-dimensional sl,,-modules.

To proceed we will need some general notation. For any transposition
s=s5=(i,i+1)in S, we set O° = O where f = (B,,...,5, ;) is the composition of n
such that #; =2 and f8; = 1 for all j = i. Denote by i, : ¢* — O the inclusion functor, and
by Z, : O — O° the left adjoint to i,, which is the Zuckerman functor, associated to s. Then
Z,=dZ,d: 0 < O is the right adjoint to i,. It is known that

(5.1)  %Z,=0 foralli>3, and <LZ,~dLZ,d]2] =~ RZ,2),
see [25] or [10], Proposition 3, and also Lemma 4.5. Finally, we denote by i, : O — ¢ and
i, : 0" — O the inclusion functors and by Z,, : O — (¢ and Z, : O — (" the corresponding

left adjoint Zuckerman functors.

Let m"=m; = +---+p_y and m =m; =m' + y;,,, and set r =y — y;, ;. Con-
sider the following element in S),:
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w = (5171’+r+1 v 'sm+r) T (Sm’+2 T 'Sn1+lsm/+1)(sm’+lsm’+2 T Sm—lsm)

(for example if u = (2,4) then v = (4,2) and we have w = (s253)(s152)). For simplicity we
write the above product in the form w = ¢;---¢, (thus p = ., ti = Sp4r4+1 and so on).
Fori=1,...,pweset w;=t;---t,, and w,,; = e. The element w is constructed such that
w(A(v)) = A(u) and w;i(A(v)) > wiy1 (A(v)) foralli=1,..., p = (w). Define

F=Y%2i,%2,i,LZ, i, LZi[-Iw)] :2"(0")— 2"(0"),
G=YX7i, L2, L7, iy LLyi[~1(w)] : 2"(0") — 2°(0").

Both, F and G, commute with tensoring with finite-dimensional sl,,-modules ([25], Proposi-
tion 2.2 and Proposition 3.7, see also [10], Proposition 3). Further, F is both left and right
adjoint to G by (5.1) and thanks to the adjunctions (i,, ¥Z,[k]) and (i,, £Z,[k]) for some
(common) k which only depends on the partition associated to x and v. (Namely, & is the
length of the longest element in the stabiliser of x or v under the dot-action.)

Claim. The functors F and G define, via restriction, mutually inverse equivalences
F:(Qg—»(ﬁgandGzﬁ)gH(Og.

Proof of the Claim. Since F and G are adjoint to each other and both @‘éf and O} are
semi-simple, it is enough to show that

To prove this we first note that for a simple reflection, s, and for a dominant integral
weight, A, we have

L(x-4)@® L(x-1)[2], SX A< XA,

(52)  LZ(L(x-2) = yslixL(y.z)am], sx-A=x-),

L(sx-2)[1]® @ L(y-4)*[1], otherwise,

yry>sx

where a, € {0,1,...}. To see this, let T, : ¢ — O be the twisting functor, associated with s
(as in Subsection 4.1). In [45], Theorem 4 (see also [53], Proposition 2.3) it is shown that
there exists a natural transformation, can, : Ty — ID, non-vanishing on Verma modules.
In [53], Theorem 1(3), it is proved that the kernel of cany is isomorphic to £ Z,. Now
(5.2) follows from the Kazhdan-Lusztig conjectures, see [3], Theorem 6.3 and Theorem
7.8, for details. (Note that the assumption for L’ to be s-finite is missing in the formulation
of [3], Theorem 6.3(3).)

Fori=1,...,pset
Fi=%2,i,%Z, -1, 2Z,i,[-(p—i+1)]: 2°(0") — 2°(0").
From (5.2) it follows by induction that

F,-L(/l(r) —p) = L(w,-(i(f)) _p) ® d L(y ) /l(r))a)(“i) [b)(}i)]’

yiy>w;
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where a§,i> e{0,1,...}, by) e {1,...} for all i. In particular, we have
L2,y FL(()  p) = L((w) ~ p)
since 0? is semi-simple and the claim follows. []

Let us now sum up what we know. We have an adjoint pair, (F,G), of functors
between Z°(0") and Z°(0*), which commute with tensoring with finite-dimensional
sl,-modules and induce mutually inverse equivalences, when restricted to ¢; and 0. On
the other hand, there is a finite dimensional sl,,-module, E, such that £ ® L(i(v) — p)' con-
tains P, as a direct summand, and E ® L(4(x) — p) contains P, as a direct summand (this
follows from Theorem 5.2, for the explicit statement see [37], Proposition 4.3(ii)). Therefore
the adjunction morphisms FG — ID and ID — GF are isomorphisms when evaluated at
P, and P, respectively. Hence F and G define mutually inverse equivalences between the
corresponding additive categories of projective-injective modules. This completes the proof
of Theorem 5.4. []

We have the following direct consequence, a part of which was also obtained in [48],
Section 6, by establishing a derived equivalence between @éf and O} using a geometric
argument:

Corollary 5.5.  The centres of B, B,, @é‘ and Of are all isomorphic.

Remark 5.6. Since the Kazhdan-Lusztig right cell modules for the Iwahori-Hecke
algebra #, of the symmetric group are exactly the irreducible modules, Theorem 5.1 can
be used to “‘categorify’ these irreducible modules: Let 4 be a partition of n. Consider the
abelian category of modules, admitting a 2-step presentation by projective-injective mo-
dules in the parabolic category ¢ for sl,,, associated with A. This abelian category is invariant
under the action of translations through walls. The action of these translation functors
gives rise to a categorification of the Specht module S; for the symmetric group S,,. The
graded version of the above result (in the sense of [60]) gives rise to a categorification of
the Specht module S; for #,. The details will appear in [47].
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