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CATEGORY O: QUIVERS AND ENDOMORPHISM RINGS
OF PROJECTIVES

CATHARINA STROPPEL

Abstract. We describe an algorithm for computing quivers of category O of
a finite dimensional semisimple Lie algebra. The main tool for this is Soergel’s
description of the endomorphism ring of the antidominant indecomposable
projective module of a regular block as an algebra of coinvariants. We give
explicit calculations for root systems of rank 1 and 2 for regular and singular
blocks and also quivers for regular blocks for type A3.

The main result in this paper is a necessary and sufficient condition for an
endomorphism ring of an indecomposable projective object of O to be com-
mutative. We give also an explicit formula for the socle of a projective object
with a short proof using Soergel’s functor V and finish with a generalization of
this functor to Harish-Chandra bimodules and parabolic versions of category
O.

1. Introduction

For a finite dimensional semisimple Lie algebra g with Borel and Cartan subal-
gebras b and h resp., we consider the so-called category O (originally defined by
[BGG]). This category decomposes into blocks, where each block has as objects
certain g-modules with a fixed general central character. Every block is quasi-
hereditary in the sense of [CPS] and can be considered as a category of modules
over a finite dimensional algebra. The work of Soergel (see, e.g., [So1]) can be used
to find an explicit algorithm which computes the corresponding quiver describing
each block.

Soergel’s key result is the description of the endomorphism ring of the antidomi-
nant indecomposable projective module as the algebra of coinvariants. For a regular
block this algebra is just a quotient of the algebra of regular functions on the Car-
tan subalgebra of our semisimple Lie algebra, which depends only on the Cartan
subalgebra and on the Weyl group. Soergel defined a functor from a fixed block
of category O into the category of finite dimensional modules over this algebra of
coinvariants. This functor is fully faithful on projectives. Therefore it is possible to
describe homomorphisms between indecomposable projectives of O as homomor-
phisms between finite dimensional modules over a commutative finite dimensional
algebra.
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Having pointed out these results of Soergel we want to explain how we can obtain
the describing quiver of a block. We give an algorithm for the computation of such
quivers.

We have explicitly computed quivers for regular and singular (integral) blocks
for all root systems of rank one and two. Finally, we give the quiver for regular
integral blocks for the root system A3 with an explicit representation corresponding
to the projective Verma module which gives an explicit insight into its submodule
structure. The motivation for this was to understand the relation between the
submodule lattice of projective Verma modules and the primitive ideals of the
universal enveloping algebra in a very explicit way. A more theoretical approach to
this can be found in [St]. The calculations were done using Maple1, GAP2 and C.

As the main result of this paper, we will prove that the ring of endomorphisms
of an indecomposable projective object in an integral block of O is commutative if
and only if the projective Verma module in this block occurs with multiplicity one
in a Verma flag of the projective in question. That this condition is necessary can
be also proved by some deformation arguments developed in [So2]. (For a proof
see [Jau].) We give a more elementary proof for this fact and also show that this
condition is sufficient, illustrated by some explicit examples.

We give an explicit formula for the socle of a projective module in an integral
block. A special case of this is the socle of the projective-injective module in such a
block, which can be found in [Ir1]. More generally we describe the socle of projective
Harish-Chandra modules with a fixed generalized central character from the right.
This implies the faithfulness on such projectives for a generalization of Soergel’s
combinatorial functor for Harish-Chandra bimodules.

In the last section we describe a generalization of Soergel’s functor to parabolic
versions of O.

Acknowledgement. I would like to thank the referees for many useful suggestions
and for reading the paper carefully. I also thank Volodymyr Mazorchuk and Steffen
König for helpful comments.

Notations. Tensor products and dimensions are always meant to be as vector spaces
over the complex numbers if not otherwise stated.

2. Category O: Definitions and the main properties

Let g ⊃ b ⊃ h be a semisimple complex Lie algebra with a chosen Borel and a
fixed Cartan subalgebra. Let g = n−⊕b = n−⊕h⊕n be the corresponding Cartan
decomposition. The corresponding universal enveloping algebras are denoted by
U(g),U(b), etc.

We consider the category O defined as

O :=

M ∈ g -mod

∣∣∣∣∣∣
M is finitely generated as a U(g)-module,
M is locally finite for n,
h acts diagonally on M,


1Maple V is a registered trademark of Waterloo Maple, Inc.
2GAP—Groups, Algorithms, and Programming. Lehrstuhl D für Mathematik, RWTH,

Aachen, Germany, 1995.
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where the second condition means that dimC U(n) ·m <∞ for all m ∈M , and the
last says that M =

⊕
µ∈h∗Mµ, where Mµ = {m ∈M | h ·m = µ(h)m for all h ∈ h}

denotes the µ-weight space of M .
Many results about this category can be found, for example, in [BGG, Ja1, Ja2].

We want to list a few of these properties needed in the following without giving
proofs.

The category O decomposes into a direct sum of full subcategories Oχ indexed
by central characters χ of U = U(g). Let S = S(h) = U(h) be the symmetric
algebra over h considered as regular functions on h∗, together with the dot-action
of the Weyl group W , defined as w · λ = w(λ + ρ) − ρ for λ ∈ h∗, where ρ is
the half-sum of positive roots. Let Z = Z(U) be the center of U . Using the so-
called Harish-Chandra isomorphism (see, e.g., [Ja1, Satz 1.5], [Di, Theorem 7.4.5])
Z → SW · and the fact that S is integral over SW · ([Di, Theorem 7.4.8]) we get an
isomorphism ξ : h∗/(W ·)→ MaxZ. Here MaxZ denotes the set of maximal ideals
in Z. This yields the following decomposition into blocks

O =
⊕

χ∈MaxZ
Oχ =

⊕
λ∈h∗/(W ·)

Oλ,

where Oχ denotes the subcategory of O consisting of all objects killed by some
power of χ. It denotes the same block as Oλ if ξ(λ) = χ.
Oλ is called a regular block of category O iff λ is regular, that is, if λ+ ρ is not

zero at any coroot α̌ belonging to b.
For all λ ∈ h∗ we have a standard module, the Verma module M(λ) = U⊗U(b)Cλ,

where Cλ denotes the irreducible h-module with weight λ enlarged by the trivial
action to a module over the Borel subalgebra. This Verma module is a highest
weight module of highest weight λ and has central character ξ(λ). We denote by
L(λ) the unique irreducible quotient of M(λ).

Theorem 2.1.

(1) Every object in O has finite length.
(2) dimCHomg(M,N) <∞ for all M,N ∈ Ob(O).
(3) There is a one-one correspondence

h∗
1:1←→ {simples of O (up to isomorphism)}

λ 7−→ L(λ)

There are only a finite number of simple modules in each block. More
precisely, the simples of Oλ are in bijection with W/Wλ, where Wλ = {w ∈
W |w · λ = λ} denotes the stabilizer of λ under the dot-action of W . The
map is given by

W/Wλ
1:1←→

{
simples of Oλ
(up to isomorphism)

}
x 7−→ L(x · λ), the simple module with highest weight x · λ.

(4) For every λ ∈ h∗ there is (up to isomorphism) a unique indecomposable
projective module P (λ) ∈ O surjecting onto L(λ). Therefore there are
enough projective objects in O.
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For each block Oλ we get the following bijection of sets:

W/Wλ
1:1←→

{
indecomposable projectives of Oλ
(up to isomorphism)

}
x 7−→ P (x · λ), the projective cover of L(x · λ).

(5) P (λ) has a Verma flag for every λ ∈ h∗, and the multiplicities (P (λ) :
M(µ)) are given by the reciprocity formula (P (λ) : M(µ)) = [M(µ) : L(λ)],
where the last expression denotes the multiplicity of L(λ) in a composition
series of M(µ).

(6) The Verma module M(λ) is projective iff λ is dominant, that is, 〈λ+ρ, α̌〉 /∈
{−1,−2, . . .} for all positive coroots α̌.

(7) The Verma module M(λ) is simple iff λ is antidominant, that is 〈λ+ρ, α̌〉 /∈
{1, 2, . . .} for all positive coroots α̌.

Proof. See [Ja1, Kapitel 1] and [Ja2, Kapitel 4]. �
2.1. Category O as a module category over a finite dimensional algebra.
If we fix λ ∈ h∗, we get an equivalence of categories of the block Oλ with a certain
category of finite dimensional modules over a finite dimensional algebra in the
following way:

For R a ring, we denote by mof -R the category of finitely generated right R-
modules. Take P :=

⊕
x∈W/Wλ

P (x · λ) the direct sum over all indecomposable
projectives in Oλ. This is a projective generator and we get an equivalence of
categories (see [Ba, Theorem 1.3])

eλ : Oλ −→ mof- Endg(P )(2.1)
M 7−→ Homg(P,M).

In this way we can consider each block as a category of finitely generated modules
over a quasi-hereditary algebra or as a highest weight category (in the sense of
[CPS]).

3. Category O and quivers

We start with the definition of a (finite) quiver defined over C.

Definition 3.1. A (finite) quiver Q(V,E) over C is an oriented graph, where V is
the (finite) set of vertices and E is the (finite) set of arrows between vertices.

We define the “source”-map s and the “end”-map e : E → V such that if f ∈ E
is an arrow from the vertex i to the vertex j we set s(f) = i and e(f) = j.

A path (of length t) in the quiver Q(V,E) is an ordered sequence of arrows
p = ft . . . f2f1 with e(fi) = s(fi+1) for 1 ≤ i < t.

We call a complex artin algebra A basic, if it is a direct sum of pairwise non-
isomorphic indecomposable projective modules. Given a finite dimensional basic
algebra the corresponding quiver can be constructed in the following way: We
have a bijection between the simple A-modules (up to isomorphism) and the ver-
tices of such a quiver belonging to A. The number of arrows from the vertex i
to vertex j is given by dimC Ext(S(j), S(i)) of the corresponding simple modules
S(i) and S(j). This number is the same as the dimension of the vector space
HomA

(
P (i), rad(P (j))/ rad(rad(P (j)))

)
, where P (i) is the projective cover of the

simple module corresponding to the vertex i. If we also take for each vertex the
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corresponding trivial path we obtain by concatenating paths the so-called “path
algebra”. This algebra can be described by generators and relations. The relations
for this path algebra are often just called “relations of the quiver”. Every basic fi-
nite dimensional algebra over an algebraically closed field is isomorphic to the path
algebra with certain relations of some quiver. (For more details see, for example,
[ARS]).

Using the equivalence of categories (2.1) we can associate to each block of O a
quiver describing the whole block.

4. Computation of quivers using the algebra of coinvariants

Theoretically, a quiver corresponding to a certain block of category O is given by
a projective generator. But such a projective generator is not easy to handle and
therefore not very useful for explicit calculations. What is needed is a better de-
scription of the homomorphisms between projectives. The first step can be done by
describing the endomorphisms of the indecomposable projective module belonging
to the longest element of the Weyl group.

Fix λ ∈ h∗ dominant and integral. The center Z of the universal enveloping
algebra U yields by multiplication a map Z → Endg(P (wλ0 · λ)), where wλ0 denotes
the longest element of W/Wλ. On the other hand, we have a map Z → SW · →
S/(SW+ ) by composing the Harish-Chandra-isomorphism and the natural projection.
Here S+ denotes the maximal ideal of S consisting of all regular functions vanishing
at zero and (SW+ ) is the ideal generated by polynomials without a constant term,
invariant under the (usual!) action of the Weyl group. The key result for computing
quivers of category O is that, for λ = ρ, both of these maps are surjective and have
the same kernel. We therefore get the following very beautiful theorem:

Theorem 4.1. ([So1, Endomorphismensatz], with a nice proof for regular λ by
[Be].) Let λ ∈ h∗ be dominant and integral and Wλ its stabilizer under the dot-
action of the Weyl group. Let wλ0 be the longest element of W/Wλ. Then there is
an isomorphism of algebras

Endg(P (wλ0 · λ)) ∼= (S/(SW+ ))Wλ .

Remark. The algebra (S/(SW+ )) is the so-called “algebra of coinvariants” and its
dimension (as complex vector space) is just the order of the Weyl group (see [Bo]).
In the following we denote it by C and its invariants CWλ by Cλ. This algebra is
commutative, so we can consider right C-modules also as left C-modules.

Using this description of the endomorphisms of this “big” projective module
we can describe the homomorphisms between the other indecomposable projective
modules of a certain block using the following.

Theorem 4.2 ([So1, Struktursatz 9]). Let λ ∈ h∗ be dominant and integral. The
exact functor

Vλ : Oλ → Cλ -mof
M 7→ Homg(P (wλ0 · λ),M)

is fully faithful on projectives.
In other words, for x, y ∈W/Wλ, there is an isomorphism of vector spaces

Homg(P (x · λ), P (y · λ)) ∼= HomCλ(VλP (x · λ),VλP (y · λ)).
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Remark. More precisely, the Struktursatz of [So1] says that the functor Vλ induces
even an isomorphism

Homg(M,P ) ∼= HomCλ(VλM,VλP )

for arbitrary M in Oλ and any projective module P in Oλ.

If we use translation functors, we can describe the right-hand side in a more
manageable way for computing quivers.

Let µ, λ ∈ h∗ such that λ − µ is an integral weight. Let E(µ − λ) be the finite
dimensional irreducible g-module with extremal weight µ− λ. Then we define the
translation functor (which is an irreducible projective functor in the sense of [BG])

T µλ : Oλ −→ Oµ
M 7→ prµ(E(µ− λ)⊗M),

where prµ denotes the projection to the block Oµ. If we choose λ regular and µ
singular with Wµ = {1, s} for a simple reflection s, we can define the composition
θs = T λµ T

µ
λ as a functor on Oλ. For x ∈ W with x = sr · · · s3s2s1 a reduced

expression and λ dominant, the module P (x ·λ) is isomorphic to a direct summand
of θs1 · · · θsrM(λ). Even more, it is the unique indecomposable direct summand of
M(λ) not isomorphic to some P (y · λ) with y < x (more details can be found, e.g.,
in [Ja2], [BG]).

The combinatorial description of our projective modules can be given by the
following.

Theorem 4.3 ([So1, Theorem 10]). Let λ ∈ h∗ be regular and let s be a simple
reflection. Denote by Cs the invariants of C under the action of s. There is a
natural equivalence of functors Oλ → C -mof

Vλθs ∼= C ⊗Cs Vλ.

Corollary 4.4. Let x = sr . . . s3s2s1 be a reduced expression of x ∈ W . Then the
module VλP (x · λ) is isomorphic to a direct summand of C ⊗Cs1 C ⊗Cs2 C ⊗Cs3
C · · ·C ⊗Csr C.

Remark. The theorem is also true for singular λ when replacing C by Cλ.

The corollary makes it possible to compute quivers for category O. We will give
some examples.

5. Examples: Lie algebras of rank 1 and 2

In this section we will describe quivers of blocks Oλ, where λ is integral and
regular and g has a root system of rank at most two. Before giving these examples
we want to explain more precisely the method we use to calculate them. The
algorithm we use consists of five steps:

(1) Compute a basis of C and describe the algebra structure in this basis.

We identify S with a polynomial ring. After calculating generators of SW+ we use
Groebner bases (see, e.g., [AL, Theorem 2.1.6]) to find a basis of C.

(2) For x ∈ W and x = sr . . . s3s2s1, a reduced expression, find a basis of
C ⊗Cs1 C ⊗Cs2 C ⊗Cs3 C · · · ⊗Csr C and express the C-action in this basis.
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It is not very hard to give a basis where all elements have the form x1⊗x2⊗· · ·⊗xr
with xi ∈ C a monomial of degree 0 or 1. The operation of C could more easily be
described by using the results about tensor products of smaller length, but needs
some computer capacity.

(3) Find a basis of the desired direct summand VλP (x · λ) and describe the
C-module structure using the results of the first step.

This is the most difficult part, because we have no algorithm which can do this in
general. Therefore it depends on the situation how we can find the desired direct
summand. It makes it more manageable if the desired submodule is generated by
the element 1⊗ 1⊗ · · · ⊗ 1. This is always the case for root systems of rank 2. For
higher ranks one has to use ad hoc methods (see example A3).

(4) Take the previous results to compute all homomorphisms between any two
indecomposable projectives in Oλ.

This can be done by Theorem 4.2. In the previous steps the C-modules VP (x · λ)
were completely described. Hence it is possible to determine all C-linear maps
between them. It is simply solving a system of linear equations to find which C-
linear maps are in fact C-linear. The problem here is that this step needs a great
deal of computer capacity.

(5) Find elements of the homomorphism spaces which represent the arrows of
a quiver.

Composing maps between our indecomposable modules we can decide which mor-
phisms must be represented by a path of length longer than one. The other ones
represent the arrows.

(6) Find the relations by computing all possible compositions of linear maps
represented by the arrows.

This step is not very difficult and can by solved by a state of the art computer
program. The calculation loop stops as soon as the dimension of the resulting path
algebra is correct.

Remark and Notation. Using the famous conjecture of Kazhdan-Lusztig ([KL, Con-
jecture 1.5], proved in [BB], [BK]) one can verify the number of arrows which are
given as certain coefficients of the corresponding Kazhdan-Lusztig polynomials (see
[BGS, Proposition 3.6.1] with q = b or the explicit formula [Ir1, Corollary 3]). The
existence of a contravariant duality d on O which fixes simple objects (see, e.g.,
[Ja2, 4.10, 4.11]) implies that for all vertices i and j of quivers describing a block
of O the number of arrows from i to j is the same as the number of arrows the
other way around. In the following we use the symbol↔ instead of�. The symbol
(i→ j) denotes the arrow from i to j, if there is only one such arrow.

5.1. Regular blocks. To calculate a basis of the coinvariant algebra we use the
description of the regular functions on h as a polynomial ring in dim h variables
identifying the indeterminants with the simple coroots.

5.1.1. The case A1. In this case we have two indecomposable projective objects in
an integral regular block. One can see at once, that C ∼= C[X ]/(X2), which has as
basis the images of 1 and X under the canonical projection. On the other side we
have VM(λ) ∼= C, the trivial module. All homomorphisms between projectives are
therefore given by C-linear maps between C and C. We get easily a basis for the
homomorphisms between these modules:
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C→ C id
C→ C p(1→ 2) : 1 7→ X
C → C p(2→ 1) : 1 7→ 1

X 7→ 0
C → C id 1 7→ X

X 7→ 0

We observe that p(1 → 2) ◦ p(2 → 1) is just the last map. Therefore we get the
following quiver with relations (where the first vertex corresponds to the projective
Verma module M(λ) and the second vertex corresponds to the indecomposable
projective-injective module):

1←→ 2 relations: (2→ 1) ◦ (1→ 2) = 0.

To make it more readable we write instead of expressions like (2 → 1) ◦ (1 → 2)
just (1→ 2→ 1).

5.1.2. The case A2. In this case the algebra of coinvariants is isomorphic to C[X,Y ]/
〈X2 +XY + Y 2, 2XY 2 + Y 3, Y 4〉. Using the theory of Groebner bases we can find
as basis the images of 1, X , Y , X2, Y 2, X3 of the canonical projection. Identifying
X and Y with the coroots α̌ and β̌ resp., we get a basis of modules which are of
the form C ⊗Cs1 C ⊗Cs2 C ⊗Cs3 C · · ·C ⊗Csr C. We have for example a basis of
C⊗Csα C given by the vectors 1⊗1 and X⊗1 (and the equality Y ⊗1 = − 1

2X⊗1).
For the root system A2 we can skip step 3 of our algorithm. The reason for this
is Theorem 4.3 and the fact that the projectives occurring after translating the
dominant Verma module through the walls at most twice are still indecomposable,
which can be verified by comparing the characters of the translated Verma module
in question and the indecomposable projective modules. After all calculations we
get the following quiver with relations (where (i→ j) denotes the arrow from i to j):

1??

��������� __

��
???????

2 gg

''OOOOOOOOOOOOOOO

��

377

wwooooooooooooo OO

��
4 __

��
??????? 5??

���������

6

(1→ 2→ 1)=0
(1→ 3→ 1)=0
(2→ 4→ 2)=0
(3→ 5→ 3)=0
(1→ 3→ 4)=(1→ 2→ 4)
(1→ 3→ 5)=− 1

2 (1→ 2→ 5)
(2→ 4→ 3)=−2(2→ 1→ 3)
(2→ 5→ 2)=−4(2→ 1→ 2)
(2→ 5→ 3)=4(2→ 1→ 3)
(2→ 5→ 6)=2(2→ 4→ 6)

(3→ 4→ 2)=−2(3→ 1→ 2)
(3→ 4→ 3)=−4(3→ 1→ 3)
(3→ 5→ 2)=4(3→ 1→ 2)
(3→ 5→ 6)=−(3→ 4→ 6)
(4→ 3→ 1)=(4→ 2→ 1)
(4→ 6→ 4)=−3(4→ 2→ 4)
(5→ 3→ 1)=− 1

2 (5→ 2→ 1)

(5→ 6→ 5)=− 3
2 (5→ 3→ 5)

(6→ 5→ 2)=−2(6→ 4→ 2)
(6→ 5→ 3)=(6→ 4→ 3)

(4→ 6→ 5)= 3
2 (4→ 2→ 5) + 3

2 (4→ 3→ 5)

(5→ 6→ 4)=− 3
2 (5→ 2→ 4)− 3

2 (5→ 3→ 4)

The shape of the relations. In the previous example and in all the following
ones it is possible to avoid rational coefficients and choose generators such that
only integral coefficients occur. There might be perhaps a representation theoret-
ical reason for that. The path algebra might be considered as a Z-graded algebra,
generated by its one element of degree 0 and its arrows, all of degree 1. The results
of [BGS] imply that the relations can be choosen such that they are compatible
with the grading.

We now give quivers for type B2 and G2, since they turned out to be useful for
explicit calculations such as finding socle and radical filtrations of given represen-
tations.
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5.1.3. The case B2. In this case we have C[X,Y ] ∼= C/〈Y 4, Y 2 + 2XY + 2X2〉,
which has as basis the images of the elements 1, X, Y,XY, Y 2, XY 2, Y 3, XY 3 un-
der the canonical projection. We get the following quiver with relations:

1??

��������� __

��
???????

2 gg

''OOOOOOOOOOOOOOO

��

377

wwooooooooooooo OO

��
4 gg

''OOOOOOOOOOOOOOO

��

577

wwooooooooooooo OO

��
6 __

��
??????? 7??

���������

8

(1→ 2→ 1)=0
(1→ 3→ 1)=0
(2→ 5→ 2)=0
(3→ 4→ 3)=0
(1→ 3→ 4)=(1→ 2→ 4)
(1→ 3→ 5)=−2(1→ 2→ 5)
(2→ 4→ 2)=2(2→ 1→ 2)
(2→ 4→ 3)=(2→ 1→ 3)
(2→ 4→ 6)=(2→ 5→ 6)
(2→ 4→ 7)= 1

2 (2→ 5→ 7)
(2→ 5→ 3)=−2(2→ 1→ 3)
(3→ 4→ 2)=−(3→ 1→ 2)
(3→ 4→ 6)=− 1

2 (3→ 5→ 6)

(3→ 4→ 7)=− 1
4 (3→ 5→ 7)

(3→ 5→ 2)=−2(3→ 1→ 2)
(3→ 5→ 3)=−4(3→ 1→ 3)

(4→ 3→ 1)=−(4→ 2→ 1)
(4→ 6→ 4)=−2(4→ 2→ 4)
(4→ 7→ 4)=2(4→ 3→ 4)
(4→ 7→ 8)=−(4→ 6→ 8)
(5→ 3→ 1)=−2(5→ 2→ 1)
(5→ 6→ 5)=(5→ 2→ 5)
(5→ 7→ 5)=−2(5→ 3→ 5)
(5→ 7→ 8)=−2(5→ 6→ 8)
(6→ 4→ 2)=2(6→ 5→ 2)
(6→ 4→ 3)=(6→ 5→ 3)
(6→ 8→ 6)=−2(6→ 5→ 6)
(7→ 4→ 2)=− 1

2 (7→ 5→ 2)

(7→ 4→ 3)=− 1
4 (7→ 5→ 3)

(7→ 8→ 7)=2(7→ 4→ 7)
(8→ 7→ 4)=−(8→ 6→ 4)
(8→ 7→ 5)=4(8→ 6→ 5)

(4→ 6→ 5)=−(4→ 2→ 5) − (4→ 3→ 5)

(4→ 7→ 5)=−4(4→ 2→ 5)− 2(4→ 3→ 5)

(5→ 6→ 4)=−2(5→ 2→ 4) + 2(5→ 3→ 4)

(5→ 7→ 4)=4(5→ 2→ 4)− 2(5→ 3→ 4)

(6→ 8→ 7)=−(6→ 5→ 7) + (6→ 4→ 7)

(7→ 8→ 6)= 1
2 (7→ 5→ 6) + (7→ 4→ 6)

5.1.4. The case G2. In this case we have C ∼= C[X,Y ]/〈Y 2+3XY+3X2, Y 6〉, which
has as basis the images of 1, X, Y,XY, Y 2, XY 2, Y 3, XY 3, Y 4, XY 4, Y 5, XY 5 under
the canonical projection. We get the following quiver with relations:

1>>

~~|||||||| ``

  BBBBBBBB

2 hh

((PPPPPPPPPPPPPPPOO

��

366

vvnnnnnnnnnnnnnnn OO

��
4 hh

((PPPPPPPPPPPPPPPOO

��

566

vvnnnnnnnnnnnnnnn OO

��
6 hh

((PPPPPPPPPPPPPPPOO

��

766

vvnnnnnnnnnnnnnnn OO

��
8 hh

((PPPPPPPPPPPPPPPOO

��

966

vvnnnnnnnnnnnnnnn OO

��
10 ``

  BBBBBBBB 11>>

~~||||||||

12

(1→ 2→ 1)=0
(1→ 3→ 1)=0
(2→ 5→ 2)=0
(3→ 4→ 3)=0
(1→ 3→ 4)=(1→ 2→ 4)
(1→ 3→ 5)=−2(1→ 2→ 5)
(2→ 4→ 2)=−3(2→ 1→ 2)
(2→ 4→ 3)=(2→ 1→ 3)
(2→ 4→ 6)=−2(2→ 5→ 6)
(2→ 4→ 7)= 1

2 (2→ 5→ 7)
(2→ 5→ 3)=−2(2→ 1→ 3)
(3→ 4→ 2)=(3→ 1→ 2)
(3→ 4→ 6)=(3→ 5→ 6)
(3→ 4→ 7)=− 1

4 (3→ 5→ 7)
(3→ 5→ 2)=−2(3→ 1→ 2)
(3→ 5→ 3)=−4(3→ 1→ 3)
(4→ 3→ 1)=(4→ 2→ 1)
(4→ 7→ 4)=2(4→ 3→ 4)
(4→ 7→ 8)=− 1

12 (4→ 6→ 8)

(4→ 7→ 9)=− 1
3 (4→ 6→ 9)

(5→ 3→ 1)=−2(5→ 2→ 1)
(5→ 6→ 5)=2(5→ 2→ 5)
(5→ 7→ 8)= 1

3 (5→ 6→ 8)

(5→ 7→ 9)= 4
3 (5→ 6→ 9)

(6→ 4→ 2)=4(6→ 5→ 2)
(6→ 4→ 3)=−2(6→ 5→ 3)
(6→ 8→ 10)=4(6→ 9→ 10)
(6→ 8→ 11)=(6→ 9→ 11)
(6→ 8→ 6)=4(6→ 4→ 6)
(6→ 9→ 6)=2(6→ 5→ 6)
(7→ 4→ 2)= 1

4 (7→ 5→ 2)

(7→ 4→ 3)=− 1
8 (7→ 5→ 3)

(7→ 8→ 10)=(7→ 9→ 10)
(7→ 8→ 11)= 1

4 (7→ 9→ 11)
(7→ 8→ 7)=2(7→ 4→ 7)
(7→ 9→ 7)=−4(7→ 5→ 7)
(8→ 11 → 12)=− 1

6 (8→ 10→ 12)
(8→ 11 → 8)=2(8→ 7→ 8)
(8→ 7→ 4)= 1

32 (8→ 6→ 4)

(8→ 7→ 5)= 1
2 (8→ 6→ 5)

(9→ 10 → 9)=2(9→ 6→ 9)
(9→ 11 → 12)=− 2

3 (9→ 10→ 12)
(9→ 7→ 4)=2(9→ 6→ 4)
(9→ 7→ 5)=32(9→ 6→ 5)
(10→ 8→ 6)=128(10→ 9→ 6)
(10→ 8→ 7)=2(10→ 9→ 7)
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(10→ 12→ 10)=− 9
4 (10→ 9→ 10)

(11→ 8→ 6)= 1
2 (11→ 9→ 6)

(11→ 8→ 7)= 1
128 (11→ 9→ 7)

(11→ 12→ 11)= 9
4 (11→ 8→ 11)

(12→ 11→ 8)= 1
16 (12→ 10→ 8)

(12→ 11→ 9)=16(12→ 10→ 9)
(4→ 6→ 4)=32(4→ 2→ 4) + 48(4→ 3→ 4)
(4→ 6→ 5)=−4(4→ 2→ 5) + 6(4→ 3→ 5)
(4→ 7→ 5)=8(4→ 2→ 5)− 4(4→ 3→ 5)
(5→ 6→ 4)=8(5→ 2→ 4)− 12(5→ 3→ 4)
(5→ 7→ 4)=4(5→ 2→ 4)− 2(5→ 3→ 4)
(5→ 7→ 5)=−16(5→ 2→ 5)− 8(5→ 3→ 5)
(10→ 12→ 11)=− 9

8 (10→ 9→ 11) − 9
64 (10→ 8→ 11)

(11→ 12→ 10)= 3
64 (11→ 9→ 10) + 3

8 (11→ 8→ 10)

(6→ 8→ 7)=4(6→ 5→ 7) + (6→ 4→ 7)
(6→ 9→ 7)=8(6→ 5→ 7) + 8(6→ 4→ 7)
(7→ 8→ 6)= 8

3 (7→ 5→ 6)− 8
3 (7→ 4→ 6)

(7→ 9→ 6)= 1
3 (7→ 5→ 6)− 4

3 (7→ 4→ 6)
(8→ 10→ 8)=−2(8→ 6→ 8) + 96(8→ 7→ 8)
(8→ 10→ 9)= 1

4 (8→ 6→ 9) + 3(8→ 7→ 9)
(8→ 11→ 9)=2(8→ 6→ 9) + 8(8→ 7→ 9)
(9→ 10→ 8)=8(9→ 6→ 8) + 6(9→ 7→ 8)
(9→ 11→ 8)=(9→ 6→ 8) + 1

4 (9→ 7→ 8)
(9→ 11→ 9)=32(9→ 6→ 9)− 2(9→ 7→ 9)

5.2. Singular blocks. In this section we want to give quivers for singular blocks.
In the most singular case, where λ = −ρ, the situation is very easy, because there
is only one Verma module which is a simple projective module. So, in rank two
case, we restrict ourselves to studying only the situation where λ is exactly on one
wall.

5.2.1. The case A2. Suppose λ is singular with respect to the coroot X . We can
choose as basis for Cλ, the images of {1, a, a2}, with a = X + 2Y . We have three
simples in this block and get the following quiver:

1@@

���������

2 ^^

��
>>>>>>>

3

and the relations

(1→ 2→ 1) = 0
(2→ 1→ 2) = (2→ 3→ 2)

(the simple number 1 belongs to the dominant weight and number 3 to the an-
tidominant weight).

5.2.2. The number of arrows and Kazhdan-Lusztig polynomials. We can also in the
singular case get the number of arrows using Kazhdan-Lusztig polynomials, but
not as directly as in the regular case. First of all we have to describe our chosen
block by a Koszul ring. Let λ be dominant and integral and denote by Sλ the set
of all simple reflections stabilizing λ under the dot-action. Let Wλ be the stabilizer
of λ and Wλ be the set of longest representatives of the cosets W/Wλ. Let gλ be
the parabolic Lie subalgebra of g corresponding to Sλ.

Let Ogλ denote the corresponding parabolic category O, i.e., the full subcate-
gory of O0 whose objects are locally gλ-finite. The simple objects of Ogλ are the
L(x−1w0 · 0) for x ∈Wλ. We write Lλ(x) for Lλ(x−1w0 · 0). Denote by Pλ(x) the
projective cover of L(x−1w0 · 0) in Ogλ . Put Aλ = EndOλ(

⊕
x∈Wλ P (x · λ)) and

Aλ = EndOgλ (
⊕

x∈Wλ Pλ(x)).
By the main theorem of Beilinson, Ginzburg and Soergel ([BGS, Theorem 1.1.3]),

there are isomorphisms of finite dimensional complex algebras

Aλ = EndOλ(
⊕
x∈Wλ

P (x · λ)) ∼= Ext•Ogλ (
⊕
x∈Wλ

Lλ(x),
⊕
x∈Wλ

Lλ(x)).(5.1)

Aλ = EndOgλ (
⊕
x∈Wλ

Pλ(x)) ∼= Ext•Oλ(
⊕
x∈Wλ

L(x · λ),
⊕
x∈Wλ

L(x · λ)).
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Moreover, Aλ inherits the structure of a graded algebra from the natural grading
of the Ext-algebra and with this grading Aλ becomes Koszul. The ring Aλ is then
the Koszul dual of Aλ. The isomorphisms can be chosen such that the obvious
idempotents 1x for x ∈ Wλ correspond. In particular, extensions of simples in
a singular block can be described by endomorphisms of projectives in a parabolic
category O.

Recall the equivalence of categories eλ : Oλ ∼= mof-Aλ and (with the same proof)
one has Ogλ ∼= mof-Aλ. Under these equivalences A0

λ1x (where A0
λ denotes the part

of degree zero) corresponds to L(x · λ) and (Aλ)01x corresponds to L(x−1w0 · 0).
Denote by gmof-Aλ the category of finite dimensional graded rightAλ−modules.

There is the grading forgetting functor fλ : gmof-Aλ → mof-Aλ ∼= Oλ. A lift of an
object M of Oλ (respectively M ∈ Ob(mof-Aλ)) is an object M̃ of gmof-Aλ such
that fλ(M̃) ∼= eλ(M) (respectively fλ(M̃) ∼= M). If L ∈ Ob(mof-Aλ) is simple,
then any lift L̃ will be simple and concentrated in a single degree. Let Lxλ denote
the lift of A0

λ1x which is concentrated in degree zero. Then every simple object
in gmof-Aλ is given by Lλx〈i〉 for some x and i. Here 〈i〉 is the shift operator,
satisfying M〈i〉k = Mk−i for any graded module M . The projective cover P xλ of Lxλ
in Aλ-gmof is a lift of Aλ1x and P (x · λ), respectively.

To get lifts of our Verma modules we can consider them as projective covers in the
truncated subcategory of Oλ. For x ∈Wλ this subcategory is the full subcategory
consisting of all modules having all simple composition factors of the form L(y · λ)
with y 6< x in the Bruhat ordering. The Verma module M(x ·λ) corresponds under
the equivalence (2.1) of section 2.1 to Aλ/I, where I is the ideal generated by all
idempotents 1y with y < x. Because I is homogeneous, Aλ/I has a natural grading
and hence we get the required lift. (For details see [BGS, 3.11].) Moreover, this lift
is unique up to isomorphism and a grading shift (see [St, Lemma 4.3.5]).

We denote by D(A) the derived category of an abelian categoryA. For a complex
(X i, δ) we denote by X [n] the shifted complex (X [n])i = Xn+i with differentials
(−1)nδ. We get the following isomorphisms of vector spaces:

ExtiOλ(L(x · λ), L(y · λ)) ∼= ExtiAλ(A0
λ1x, A

0
λ1y)

∼= HomD(mof-Aλ)(A0
λ1x, A

0
λ1x[i])

∼= HomD(gmof-Aλ)(Lxλ, L
y
λ[i]〈i〉).

The second isomorphism can be found in [KS, I, Exerc.17]. The last is given by the
Koszul condition ([BGS, Proposition 2.1.3]). To get Kazhdan-Lusztig polynomials
into the picture we have to use a key result of Beilinson, Ginzburg and Soergel
([BGS, Theorems 1.2.6 and 3.11.1]) which gives an equivalence Db(Aλ -gmof) ∼=
Db(Aλ -gmof) of triangulated categories, where Db denotes the bounded derived
category. This equivalence yields finally the isomorphism

ExtiOλ(L(x · λ), L(y · λ)) ∼= HomD(gmof-Aλ)(P
λ
y 〈i〉, Pλx )

where Pλx = Aλ1x denotes the lift of the projective cover of Lλ(x) under the grading
forgetting functor fλ : Aλ -gmof → Oλ, such that Pλx is the projective cover of Lλx,
which is the lift of Lλ(x) sitting in degree zero.

This last equation gives a formula for the desired dimension of extensions of
simples. Recall that the number of arrows from the vertex corresponding to the
simple module L(y · λ) to the vertex corresponding to the simple module L(x · λ)
is the dimension of Ext1

Oλ(L(x · λ), L(y · λ)). We can thus calculate the number
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of arrows of our quivers using multiplicities of simples in a decomposition series of
projectives in the following way:

dim ExtiOλ(L(x · λ), L(y · λ)) = [Pλx : Lλy〈i〉]

=
∑

z∈Wλ,j∈Z

(
Pλx : Mλ

z 〈j〉
)
[Mλ

z 〈j〉 : Lλy〈i〉].(5.2)

The projectives Pλx have a flag with subquotients isomorphic to some lifted Verma
modules of Ogλ , which we denote by Mλ

z 〈j〉. In the equation above (Pλx : Mλ
z 〈j〉)

denotes the corresponding multiplicity. The last step is now to formulate these
multiplicities in terms of (parabolic) Kazhdan-Lusztig polynomials. The definition
of these polynomials can be found in [KL]; our special case is treated in Theorem
3.11.4 of [BGS], i.e., (Pλx : Mλ

z 〈i〉
)

= [Mλ
z : Lλx〈i〉] = nλz,x〈i〉. (The latter denotes

the coefficient of vi in the corresponding Kazhdan-Lusztig polynomial nλz,x ∈ Z[v]
in the notation of [So3]). Hence we get the following formula involving parabolic
Kazhdan-Lusztig polynomials to compute the number of arrows:

dim ExtiOλ(L(x · λ), L(y · λ)) =
∑

z∈Wλ,j∈N

nλz,x〈j〉 nλz,y〈i− j〉.(5.3)

Let us calculate multiplicities for a singular block for the root system A2. We
have three Verma modules. We order them by their highest weights, such that the
projective one is the first one. The polynomials are just the parabolic Kazhdan-
Lusztig polynomials nx,y in the notation of [So3], where x, y are representatives of
minimal length of Wλ\W and given by the following matrix:

B(v) :=

 1 v 0
0 1 v
0 0 1

 .

Therefore the numbers of arrows in our quiver are given (using formula (5.3)) by
the following matrix: 1 0 0

0 1 0
0 0 1

 0 1 0
0 0 1
0 0 0

+

 0 0 0
1 0 0
0 1 0

 1 0 0
0 1 0
0 0 1

 =

 0 1 0
1 0 1
0 1 0

 .

This means that the total number of arrows is just four as in the picture in the last
section.

5.2.3. The case B2. Let λ be integral, lying on the wall belonging to the long root.
Let a = Y + 2X ∈ C[X,Y ]. Then Cλ has as basis the images of {1, a, a2, a3} under
the canonical projection with the identification introduced in the last chapter. If λ
is on the other wall, take only a = X +Y . With a few (not very hard) calculations
we get in both situations the following quiver:

1 ^^

��
>>>>>>>

3 ^^

��
>>>>>>> 2//oo

4
��

^^>>>>>>>

with relations
(1→ 2→ 1) = 0
(2→ 1→ 2) = (2→ 3→ 2)
(3→ 2→ 3) = (3→ 4→ 3)
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5.2.4. The case G2. For λ on the wall belonging to the long root we have as basis
of Cλ the images of 1, a, a2, a3, a4, a5 where a = 2X + Y . In the other possible
situation we can choose a = 3

2X + Y . We can calculate the following quiver:

2 oo //ff

&&MMMMMMMMMMMMM 1

4 oo //ff

&&MMMMMMMMMMMMM 3

6 oo // 5

with relations
(1→ 2→ 1) = 0
(2→ 1→ 2) = (2→ 3→ 2)
(3→ 2→ 3) = (3→ 4→ 3)
(4→ 3→ 4) = (4→ 5→ 4)
(5→ 4→ 5) = (5→ 6→ 5)

6. A more complicated example: The case A3

In this case we have C ∼= C[x, y, z]/I where I is the ideal

I = 〈z4y2 + z5y, xz4 + 2z4y + z5, z4 + 2z3y + 3y2z2 + 2y3z + y4,

2y3z2 + 3y2z3 + 3z4y + z5, 5z3x+ 10z3y + 3z4 + 10z2xy + 10y2z2, z6,

4xy + 4yz + 3x2 + 4y2 + 3z2 + 2xz, 5z2x+ 7z2y + 3z3 + 5xyz + 5xy2 + 3y2z + 2y3〉.

The Weyl group is isomorphic to the symmetric group S4, so it has 24 elements.
We can choose as (Groebner) basis of C the images of the elements

1, x, y, z, xy, xz, y2, yz, z2, xyz, xz2, y3, y2z, yz2,

z3, xz3, yz5, y3z, y2z2, yz3, z4, y2z3, yz4, z5

under the canonical projection.

6.1. A quiver for regular blocks. If we denote by 1, 2, 3 the three simple
reflections, we have

W = {0, 3, 2, 1, 12, 23, 32, 13, 21, 123, 312, 232, 121, 231, 321,(6.1)

2312, 1232, 1231, 1321, 2321, 12132, 32312, 12321, 123121}.
For this quiver the calculations are very hard. We have also the problem, that, in
general, there exists no algorithm to find our desired direct summands (see step 3
of the algorithm). For A3, there are two indecomposable projectives, in which the
dominant Verma module occurs twice. The corresponding elements of the Weyl
group are 2312 and 12321. In these cases (see Lemma 7.3) we have no single
generator of the direct summand, which is needed in our algorithm to find a basis
of the desired direct summand without any problems.

On the other hand, we can use Kazhdan-Lusztig polynomials to compute the
dimensions of the C-modules corresponding to these projectives. Fortunately, after
successive translations through the walls of the reflections 2,1,3,2, our dominant
Verma module still stays indecomposable, because it has the same Verma flag as
the desired indecomposable module, namely of length 24 = 16. Therefore it has to
be indecomposable and we don’t have to look for a direct summand. So there is no
problem with step 3.

Using Kazhdan-Lusztig polynomials we are able to compute the length of a
Verma flag of the projective indecomposable P (12321 · 0) corresponding to 12321.
The result is 24, hence dimVP (12321 · 0) = 24. On the other hand, we get
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dimVP (1232 · 0) = 12. Therefore P (12321 · 0) ∼= θ1P (1232 · 0) holds. Hence
we easily get a basis of VP (12321 · 0) using a basis of P (1232 · 0). And so we are
done. An explicit quiver can be found in the Appendix.

7. Indecomposable projectives: Commutativity of their

endomorphism rings

Given an indecomposable projective object P , we want to describe its endomor-
phism ring. In the extremal case, when P is a Verma module, the situation is
easy. The “other” extremal case is covered by Theorem 4.1. In both cases we get a
commutative ring. Using the functor V we can give a necessary and sufficient con-
dition for the commutativity of endomorphism rings of indecomposable projectives
objects.

Theorem 7.1. Let λ ∈ h∗ be dominant and integral and P = P (x · λ) ∈ Oλ be
indecomposable and projective. Then the following statements are equivalent:

(1) Endg(P ) is commutative.
(2) (P : M(λ)) = 1.
(3) There is a surjection Z→→Endg(P ).

Before proving the theorem we give some examples for λ regular.

Examples 7.2. a) If g = sl(2), we have Endg(P (0)) ∼= C and Endg(P (s · 0)) ∼=
C ∼= C[X ]/(X2). Obviously both are commutative.

b) Let g = sl(3). Recall that we have C ∼= C[X,Y ]/〈X2 + XY + Y 2, 2XY 2 +
Y 3, Y 4〉 and there is a C-basis given by the images of the elements 1, X, Y,X2, Y 2, X3

under the canonical projection. Some easy calculations yield the following rings of
endomorphisms:

End(P (0)) ∼= C/〈X,Y 〉,
End(P (sα · 0)) ∼= End(P (sβ · 0)) ∼= C/〈Y,X2〉,

End(P (sβsα · 0)) ∼= End(P (sαsβ · 0)) ∼= C/〈Y 2, X3〉.

The endomorphism rings in the previous examples are all commutative. More-
over, they are quotients of the algebra of coinvariants. The reason for this is the
following general result.

Lemma 7.3. Let λ ∈ h∗ be dominant and integral and x ∈ W/Wλ. Let min denote
the cardinality of a minimal system of generators of VP (x · λ). Then the equality

min = (P (x · λ) : M(λ))

holds.

Proof. Let λ be regular. Let M ∈ C -mof be a finite dimensional C-module. Con-
sider the following canonical C-morphisms:

M ∼= C ⊗C M
pr⊗id−→ C/C+ ⊗C M ∼= M/C+M.

The composition is surjective and C/C+ ∼= C . Choosing preimages of a fixed
C-basis of the image M/C+M gives a minimal system of generators of M as a
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C-module. Hence the following equalities hold:

min = dimVP (x · λ)/C+VP (x · λ) = dim HomC(VP (x · λ)/C+VP (x · λ),C)
= dim HomC(VP (x · λ)/C+VP (x · λ), C/C+)
= dim HomC(VP (x · λ), C/C+)
= dim Homg(P (x · λ),M(λ)) = [M(λ) : L(x · λ)] = (P (x · λ) : M(λ)).

For singular λ the argument is just the same, if C is replaced by Cλ. �

The last lemma should show why (2) implies (1) in the theorem. We need some
conventions to prove the theorem:

Convention 7.4. We consider S = S(h) as an even-graded algebra, so S =⊕
i∈N S

2i. We also assume that S2 = h holds. The grading is compatible with
the action of the Weyl group, so the algebra C inherits a grading. Inductively the
module VP (x · λ) becomes a graded C-module for all x ∈ W and λ ∈ h∗. Details
can be found in [So1]. By convention the module VP (x · λ) should be considered
as a graded C-module with highest degree l(x).

Proof of Theorem 7.1. We prove the theorem only for λ regular, but the arguments
are the same for singular weights.

• 3)⇒ 1): This is obvious.
• 2)⇒ 3): By Lemma 7.3 the module VP (x·λ) and therefore also Endg(P (x·
λ)) is a quotient of C. Hence the latter is also a quotient of Z.
• 1)⇒ 2): We assume that there are higher multiplicities. The theorem will

be proved by constructing two morphisms g and f which do not commute.

Construction of ψ ∈ EndC(VP ) with the property im(ψ) 6⊆ V kerχλP . Let P =
N0 ⊃ N1 ⊃ N2 ⊃ · · · ⊃ Nr ⊃ Nr+1 = {0} be a Verma flag; that is, a filtration
such that Ni/Ni+1

∼= M(λi) where λi ∈ h∗ and 0 ≤ i ≤ r. This filtration induces
by restriction a “quasi-Verma flag” on kerχλP , which is a filtration all of whose
subquotients are isomorphic to submodules of Verma modules. Let M̃(λi) ⊆M(λi)
denote the corresponding subquotients and J := {i | M̃(λi) 6= 0} ⊂ {0, 1, . . . , r}.
We thus have the following equalities in the Grothendieck group of O:

[P ] =
r∑
i=0

[M(λi)] and [kerχλP ] =
∑
i∈J

[M̃(λi)].

By the arguments in the proof of Lemma 7.3 we know the codimension of V kerχλP
in VP , namely the multiplicity (P : M(λ)), and hence |J | = r − (P : M(λ)).

Let s ∈ {0, 1, . . . , r}, s /∈ J such that λs 6= x · λ. It is well known (see, e.g.,
[Di]), that there is an inclusion M(x · λ) ↪→M(λs). The projectivity of P yields a
nontrivial morphism φs : P → Ns, hence an endomorphism of P . By construction
imVφs 6⊆ V kerχλP and φs 6∈ C id, because λs 6= x · λ. All these morphisms Vφs
have the property that Vφs(e1) /∈ V kerχλP , where e1 ∈ VP has minimal degree
−m = −l(x).

We choose ψ /∈ C id homogeneous of minimal degree, such that ψ(e1) /∈ V kerχλP .
Let ẽ2 := ψ(e1) be of degree −n.

We claim, that there is a d ∈ C such that ψ + d · id does not commute with a
certain map f .
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The definition of d. Let h ∈ VP be of maximal possible degree m = l(x). The
vector space of polynomials of degree m is generated by the m-th-power of degree 1
polynomials in S(h) (see [Hu]). Hence there is an element e ∈ h such that eme1 = h.
Therefore there are homogeneous elements d, a ∈ C of degree m − n and m + n,
respectively, such that a(de1 +ψ(e1)) = h. If there is a c ∈ C such that cψ(e1) = h,
we can choose a = c and d = 0. Otherwise, take a = e

m+n
2 and d = e

m−n
2 .

The definition of f . Let e2 := de1 +ψ(e1) and complete e1, e2 to a minimal system
of generators e1, e2, · · · , er of VP . Define f ∈ EndC(VP ) by

f : e1 7→ ae1

ei 7→ 0, if i ∈ {2, · · · , r}
For checking that the map is well defined assume ce1 = 0 for c ∈ C. Then f(ce1) =
cae1 = ace1 = 0. Let c ∈ C be homogeneous and let ce1 =

∑r
i=2 αiei, where

αi ∈ C. By definition of the ei’s it follows deg(c) > m − n, hence deg(f(ce1)) =
deg(cae1) > (m− n) + (m+n)−m = m. So (f(ce1)) = 0, since the highest degree
of VP is m.

The endomorphisms g = d · id +ψ and f do not commute. By definition we have

f ◦ (d · id +ψ)(e1) = 0.

On the other hand,
(d · id +ψ) ◦ f(e1) = h.

Therefore we have proved that, if (P : M(λ)) > 1, then there are f , g ∈ Endg(P ),
such that f ◦ g 6= g ◦ f . The theorem follows. �

Remark 7.5. a) It is not very difficult to find a basis of VP (x · λ):
Let P (x · λ) = M1 ⊃ M2 ⊃ · · · ⊃ Mr ⊃ Mr+1 = {0} be a Verma flag,
such that Mi/Mi+1

∼= M(λi) for 1 ≤ i ≤ r. Let 0 6= fλi ∈ Homg(P (wo ·
λ),M(λi)). (This map is unique up to a scalar.) The canonical map from
Mi to M(λi) has a lift hi ∈ VP via fλi . Then {hi}1≤i≤r is a basis of
VP (x · λ).

To see this, assume
∑r

i=1 cihi = 0. Let x ∈ P (wo · λ) be such that
h1(x) ∈ M1 \M2. Evaluating the sum at the point x yields c1 = 0, as the
images of hi for 1 < i ≤ r are contained in M2. Inductively ci = 0 holds
for all i. Comparing the dimensions we are done.

b) A basis of the socle of P (x · λ) is given by

si : P (wo · λ)→→L(wo · λ) ↪→M(λ)
incli
↪→

⊕
[P (x·λ):M(λ)]

M(λ) ↪→ P (x · λ),

where incli denotes the inclusion in the i-th direct summand (see Theorem
8.1 below).

c) If all multiplicities are at most one, the module VP (x · λ) is generated (as
a C-module) by h1.

The injectivity of Soergel’s structure theorem (although it is not proven in this
way) relies on the fact that the socle of a projective module in O is a direct sum
of simples corresponding to the longest element in the Weyl group. On the other
hand, we can determine these socles explicitly using the structure theorem.
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8. The socle of a projective object

Theorem 8.1. Let λ ∈ h∗ be dominant and integral. Denote by wo the longest
element of the Weyl group. Then the socle of a projective module in Oλ is given by
the formula

socP (x · λ) =
(P (x·λ):M(λ))⊕

i=1

L(wo · λ).

Proof. The socle contains only simples corresponding to the longest element of the
Weyl group. Otherwise, we would get

0 6= dim Homg(L(y·λ), P (x·λ)) ∼= HomC(VL(y·λ),VP (x·λ)) ∼= HomC(0,VP (x·λ)),

because V annihilates all simples without maximal Gelfand-Kirillov dimension. An-
other way to see this is that because P (x ·λ) has a Verma flag, X−α ∈ gα acts freely
on P (x · λ) for all simple roots α. So it is the same for the socle and therefore the
socle has to be a direct sum of simple Verma modules.

Let L := L(wo · λ) ⊆ socP (x · λ) be the simple Verma module in Oλ. Consider
the exact sequence L ↪→M(λ)→→M(λ)/L. This yields an exact sequence

Homg(M(λ)/L, P (x · λ)) ↪→ Homg(M(λ), P (x · λ))
f→ Homg(L,P (x · λ)).

The module P (x · λ) is projective and (M(λ) : L) = 1, so the remark after Theo-
rem 4.2 gives

0 = HomC(V(M(λ)/L),VP (x · λ)) = Homg(M(λ)/L, P (x · λ)).

Hence f is an injection. From the equalities (which use the remark after Theo-
rem 4.2)

dim Homg(M(λ), P (x · λ)) = dim HomC(C,VP (x · λ))
= dim HomC(VL,VP (x · λ))
= dim Homg(L,P (x · λ))

it follows that Homg(L,P (x · λ)) = Homg(M(λ), P (x · λ)). Therefore the theorem
is proved. �

9. Generalization to Harish-Chandra bimodules

Recall that for a U(g)-bimodule M , the adjoint action of g is defined by x.m =
xm−mx for any x ∈ g and m ∈M . We consider the categoryH of Harish-Chandra
bimodules, a full subcategory of the category of all U(g)-bimodules. By definition,
the objects are all bimodules of finite length which are locally finite with respect to
the adjoint action of g. For results and description of this category see, e.g., [BG],
[Ja2], [So2].

To generalize our previous theorem to Harish-Chandra bimodules we have to
describe the Harish-Chandra bimodules which are projective in the full subcategory
consisting of modules with certain generalized central character from the right.
Let I be an ideal of U = U(g) with finite Z-codimension, i.e., dimC(Z/Z ∩ I) is
finite. Denote by HI the full subcategory of H consisting of all objects which are
annihilated by I from the right-hand side. The projectives in HI are described by
the following:
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Lemma 9.1. The projective objects in HI are the direct summands of modules
of the form E ⊗ U/I, where E is a finite dimensional g-module with trivial right
g-action; in particular, HI has enough projectives.

Proof. This is mutatis mutandis [Ja2, Satz 6.14 c)]; for details see [St]. �

For dominant weights λ and µ we denote by ∞µ Hnλ and ∞µ H∞λ respectively, the
full subcategories of H given by the following set of objects {M ∈ H | kerχmµM =
0 = M kerχnλ, m � 0} and {M ∈ H | kerχmµM = 0 = M kerχmλ , m � 0}.
For M , N ∈ O the space HomC(M,N) has a natural U-bimodule structure given
by ufv(m) = u(f(vm)) for u, v ∈ U , m ∈ M and f ∈ HomC(M,N). We denote
by L(M,N) the largest locally finite submodule for the adjoint action. This is an
object in H ([Di, Proposition 1.7.9]). We get as a generalization of Theorem 8.1:

Theorem 9.2. Let λ, µ be integral dominant weights. Let X ∈ ∞µ Hnλ be projective
for some fixed integer n. Then, the socle of X is a direct sum of modules of the form
L(M(λ), L(wo · µ)) (i.e., copies of the simple object with maximal Gelfand-Kirillov
dimension).

Proof. Note, that any simple object in ∞µ Hnλ is of the form L(M(λ), L(w · µ)) for
some w ∈ W . This object has maximal Gelfand-Kirillov dimension, if and only if
L(w · µ) has as well. The latter is exactly the case if w · µ = wo · µ (see [Ja2, 10.12,
8.15 and 9.1]).

Let m = kerχλ and consider the filtration of Z-modules

Z/mn ⊃ m/mn ⊃ · · · ⊃ mn−1/mn ⊃ {0}
with semisimple subquotients. The universal enveloping algebra is a free Z-module,
even a free left Z ⊗ U(n−)-module (see [MS, Lemma 5.7] or [Ko, Theorem 0.13]).
Applying the (exact) functor U⊗Z• to the filtration above gives rise to a filtration of
U⊗Z Z/mn = U/U(kerχλ)n starting with M := U ⊗Zmn−1/mn ∼=

⊕
U/U(kerχλ),

where the direct sum has dimC(mn−1/mn) many summands. Moreover, by con-
struction, this submodule contains all elements annihilated by m = (kerχλ). In
particular, it contains the socle of U/U(kerχλ)n. Obviously, M ∈ ∞λ H1

λ. This
category is equivalent to a certain subcategory of O (via the functor TM(λ) in the
notation of [Ja2]) such that M corresponds to a direct sum of Verma modules
M(λ). Hence, the socle of M , and therefore also of U ⊗Z Z/mn, consists only of
simple modules with maximal Gelfand-Kirillov dimension. Since this property is
still valid after tensoring with some finite dimensional g-module E (see [Ja2, 8.13])
and taking direct summands, the statement of the theorem follows by the previous
description of the projective objects (Lemma 9.1). �

The previous result implies the faithfulness on projectives of the “generalized”
functor V for Harish-Chandra modules defined in [So2].

For λ, µ ∈ h∗ dominant and integral, let λLµ = L(M(λ), L(wo ·µ)) be the unique
simple module with maximal Gelfand-Kirillov dimension in its block. Let Pn = λP

n
µ

be its projective cover in ∞µ Hnλ. We choose compatible surjections pm,n : Pm→→Pn
for m ≥ n which define a projective system. The generalized functor V = Vλ,µ :
∞
µ H∞λ −→ C−mof is then defined as VX := lim−→HomH(Pn, X). The functor is exact
([La, S.171]) and annihilates, by definition, all simple objects except λLµ having
maximal Gelfand-Kirillov dimension in its block, moreover dimC V(λLµ) = 1. Via
the action of the center Z on X , we can consider Vλ,µ as a functor into the category
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of finitely generated Z⊗Z-modules. The last theorem now implies the faithfulness
of V on projective modules in ∞µ Hnλ:

Corollary 9.3. Let λ, µ be integral dominant weights. Let X1, X2 ∈ ∞µ Hnλ be
projective for some fixed integer n. Then V = Vλ,µ induces an inclusion

HomH(X1, X2) ↪→ HomZ⊗Z(VX1,VX2).

Proof. The socle of any projective object contains only simple composition factors
which are not annihilated by V and imVf ∼= V im f for any f ∈ HomH(X1, X2). �

It is not completely clear whether the functor is in fact fully faithful in general
(except for regular λ (see [So2] and [St]), or in the case λ = µ = −ρ with direct
calculations).

10. Generalization to the parabolic situation

Let b ⊆ p ⊆ g. Let Op

λ denote the full subcategory of Oλ whose objects are
locally p-finite. (In the previous sections we used the notation Op instead of Op

0 !)
Let Qp

λ be the direct sum of all indecomposable projective-injective modules in an
integral block Op

λ. We can consider the following generalization of Soergel’s functor:

Vp

λ : Op

λ −→ mof- Endg(Qp

λ)

M 7−→ Homg(Qp

λ,M)

It has the following properties similar to the original functor:

Theorem 10.1. Let b ⊆ p ⊆ g be a parabolic subalgebra. The following holds for
any (dominant) integral weight λ:

(1) The functor V = Vp

λ is exact. For any simple object L ∈ Op

λ we have
V(L) = 0 except if L is of maximal Gelfand-Kirillov dimension. In that
case dimC V(L) = 1.

(2) The functor is fully faithful on projective objects, i.e., for any P1, P2 ∈ Op

λ

projective, it induces an isomorphism

Homg(P1, P2) ∼= HomEndg(Qp)(VP1,VP2).

Proof. The functor is exact by definition and annihilates exactly the simple modules
which do not occur in the head of Qp

λ. On the other hand, the simple modules
occuring in the head of Qp

λ are exactly the ones with maximal Gelfand-Kirillov
dimension ([Ir2, 4.3 and Addendum]. The first part of the theorem follows. Let P
be a minimal projective generator of Op

λ and let A be its endomorphism ring with
subring B = Endg(Qp

λ). For the second statement it is enough to prove that A
satisfies the double centralizer property (see [KSX]) A ∼= EndEndB

(
Homg(P,Qp

λ)
)
.

That A satisfies this property follows directly from [T, (7.1)] or [KSX, Theorem
2.10]. (Note that the assumptions, in the formulation of [KSX, Theorem 2.10],
are satisfied: Since all projective objects in Op have a Verma flag, Irving’s result
[Ir2, 4.3] implies that Homg(P,Qp

λ) is a minimal faithful right ideal in A. The
assumption on the dominant dimension is obviously true.) �
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Appendix: A quiver describing an integral regular block for type A3

The corresponding simple and projective objects are numbered in the order as
listed in (6.1). Finally, we get the following quiver with a lot of arrows and very
many relations:
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(1→ 2→ 1) = 0
(1→ 3→ 1) = 0
(1→ 4→ 1) = 0
(21→ 16→ 3) = 0
(22→ 16→ 3) = 0
(24→ 23→ 8) = 0
(2→ 7→ 2) = 0
(2→ 8→ 2) = 0
(3→ 16 → 21) = 0
(3→ 16 → 22) = 0
(3→ 16 → 3) = 0
(3→ 6→ 3) = 0
(3→ 9→ 3) = 0
(4→ 5→ 4) = 0
(4→ 8→ 4) = 0
(5→ 10 → 5) = 0
(6→ 14 → 6) = 0
(7→ 15 → 7) = 0
(8→ 11 → 8) = 0
(8→ 23 → 24) = 0
(8→ 23 → 8) = 0
(9→ 14 → 9) = 0
(12→ 16→ 13) = 0
(12→ 20→ 12) = 0
(13→ 16→ 12) = 0
(13→ 18→ 13) = 0
(14→ 16→ 14) = 0
(17→ 23→ 17) = 0
(19→ 23→ 19) = 0
(1→ 3→ 6) = −(1→ 2→ 6)
(1→ 3→ 7) = (1→ 2→ 7)
(1→ 4→ 5) = (1→ 3→ 5)
(1→ 4→ 8) = (1→ 2→ 8)
(1→ 4→ 9) = −2(1 → 3 → 9)
(2→ 6→ 2) = (2→ 1→ 2)
(2→ 6→ 3) = −(2→ 1→ 3)
(2→ 7→ 12) = −(2→ 6 → 12)
(2→ 7→ 3) = (2→ 1→ 3)
(2→ 8→ 10) = −(2→ 6 → 10)
(2→ 8→ 11) = 2(2→ 7→ 11)
(2→ 8→ 14) = −2(2→ 6→ 14)
(2→ 8→ 15) = −2(2→ 7→ 15)
(2→ 8→ 4) = (2→ 1→ 4)
(3→ 16 → 11) = 1/2(3 → 5→ 11)
(3→ 16 → 12) = 2(3 → 6→ 12)
(3→ 16 → 13) = 2(3 → 5→ 13)
(3→ 16 → 14) = (3→ 6→ 14)
(3→ 5→ 3) = 2(3 → 1 → 3)
(3→ 5→ 4) = (3→ 1→ 4)
(3→ 6→ 10) = (3→ 5 → 10)
(3→ 6→ 2) = (3→ 1→ 2)
(3→ 7→ 11) = 1/2(3 → 5→ 11)
(3→ 7→ 12) = (3→ 6 → 12)
(3→ 7→ 2) = (3→ 1→ 2)
(3→ 7→ 3) = −(3→ 1→ 3)
(3→ 9→ 13) = (3→ 5 → 13)
(3→ 9→ 14) = 2(3→ 6→ 14)
(3→ 9→ 15) = −2(3→ 7→ 15)
(3→ 9→ 4) = (3→ 1→ 4)
(4→ 5→ 3) = (4→ 1→ 3)
(4→ 8→ 10) = (4→ 5 → 10)
(4→ 8→ 11) = (4→ 5 → 11)
(4→ 8→ 2) = (4→ 1→ 2)
(4→ 9→ 13) = −2(4→ 5→ 13)
(4→ 9→ 14) = −2(4→ 8→ 14)
(4→ 9→ 15) = −2(4→ 8→ 15)
(4→ 9→ 3) = −2(4 → 1 → 3)
(4→ 9→ 4) = −(4→ 1→ 4)
(5→ 10 → 6) = (5→ 3 → 6)
(5→ 10 → 8) = (5→ 4 → 8)
(5→ 11 → 17) = −4(5 → 10 → 17)
(5→ 11 → 5) = 4(5→ 4→ 5)
(5→ 11 → 7) = 2(5→ 3→ 7)
(5→ 11 → 8) = −4(5→ 4→ 8)
(5→ 13 → 18) = 2(5 → 10 → 18)
(5→ 13 → 19) = −1/2(5 → 11→ 19)
(5→ 13 → 5) = 2(5→ 4→ 5)
(5→ 4→ 1) = (5→ 3→ 1)
(6→ 10 → 5) = (6→ 3 → 5)
(6→ 10 → 8) = (6→ 2 → 8)
(6→ 12 → 17) = (6→ 10→ 17)
(6→ 12 → 6) = (6→ 3 → 6)
(6→ 14 → 18) = −(6→ 10→ 18)

(6→ 14 → 20) = 2(6 → 12 → 20)
(6→ 14 → 8) = −2(6→ 2→ 8)
(6→ 14 → 9) = −2(6→ 3→ 9)
(6→ 3→ 1) = (6→ 2→ 1)
(7→ 11 → 5) = −2(7→ 3→ 5)
(7→ 11 → 7) = 2(7→ 2→ 7)
(7→ 11 → 8) = −2(7→ 2→ 8)
(7→ 12 → 17) = −1/2(7 → 11 → 17)
(7→ 12 → 7) = (7→ 2→ 7)
(7→ 15 → 19) = −(7→ 11→ 19)
(7→ 15 → 20) = −2(7 → 12 → 20)
(7→ 15 → 8) = −2(7→ 2→ 8)
(7→ 15 → 9) = (7→ 3→ 9)
(7→ 3→ 1) = (7→ 2→ 1)
(8→ 10 → 5) = (8→ 4→ 5)
(8→ 10 → 6) = −(8→ 2→ 6)
(8→ 10 → 8) = −(8→ 4→ 8)
(8→ 11 → 17) = −4(8 → 10 → 17)
(8→ 11 → 5) = −4(8→ 4→ 5)
(8→ 11 → 7) = 2(8→ 2→ 7)
(8→ 14 → 16) = (8→ 11→ 16)
(8→ 14 → 18) = −2(8 → 10 → 18)
(8→ 14 → 6) = −2(8→ 2→ 6)
(8→ 14 → 9) = 2(8→ 4→ 9)
(8→ 15 → 19) = (8→ 11→ 19)
(8→ 15 → 20) = (8→ 14→ 20)
(8→ 15 → 7) = −2(8→ 2→ 7)
(8→ 15 → 8) = 2(8→ 2→ 8)
(8→ 15 → 9) = (8→ 4→ 9)
(8→ 23 → 17) = 2(8 → 10 → 17)
(8→ 23 → 18) = −(8→ 10→ 18)
(8→ 23 → 19) = −1/2(8 → 11 → 19)
(8→ 23 → 20) = −(8→ 14→ 20)
(8→ 4→ 1) = (8→ 2→ 1)
(9→ 13 → 9) = −2(9→ 3→ 9)
(9→ 14 → 18) = −(9→ 13→ 18)
(9→ 14 → 6) = 2(9→ 3→ 6)
(9→ 14 → 8) = −4(9→ 4→ 8)
(9→ 15 → 19) = −2(9 → 13 → 19)
(9→ 15 → 20) = (9→ 14→ 20)
(9→ 15 → 7) = −2(9→ 3→ 7)
(9→ 15 → 8) = 4(9→ 4→ 8)
(9→ 4→ 1) = (9→ 3→ 1)
(10→ 17→ 10) = (10→ 5→ 10)
(10→ 17→ 12) = (10→ 6→ 12)
(10→ 18→ 10) = −2(10 → 8→ 10)
(10→ 18→ 13) = −2(10 → 5→ 13)
(10→ 18→ 21) = −2(10 → 17 → 21)
(10→ 6→ 3) = (10→ 5→ 3)
(10→ 8→ 2) = (10→ 6→ 2)
(10→ 8→ 4) = (10→ 5→ 4)
(11→ 16→ 12) = (11→ 7→ 12)
(11→ 16→ 13) = (11→ 5→ 13)
(11→ 16→ 14) = −1/4(11 → 8→ 14)
(11→ 16→ 3) = −1/2(11 → 5→ 3)
(11→ 17→ 11) = (11→ 8→ 11)
(11→ 17→ 12) = −2(11 → 7→ 12)
(11→ 17→ 21) = (11→ 16→ 21)
(11→ 19→ 11) = 2(11 → 8→ 11)
(11→ 19→ 13) = −2(11 → 5→ 13)
(11→ 19→ 22) = −4(11 → 16 → 22)
(11→ 7→ 3) = −1/2(11 → 5 → 3)
(11→ 8→ 2) = −2(11 → 7→ 2)
(11→ 8→ 4) = (11→ 5→ 4)
(12→ 16→ 11) = (12→ 7→ 11)
(12→ 16→ 12) = 2(12 → 6→ 12)
(12→ 16→ 14) = (12→ 6→ 14)
(12→ 16→ 3) = 2(12 → 6→ 3)
(12→ 17→ 10) = (12→ 6→ 10)
(12→ 17→ 11) = 2(12 → 7→ 11)
(12→ 17→ 12) = 2(12 → 7→ 12)
(12→ 17→ 21) = −1/2(12 → 16 → 21)
(12→ 20→ 14) = (12→ 6→ 14)
(12→ 20→ 15) = (12→ 7→ 15)
(12→ 20→ 22) = −(12→ 16→ 22)
(12→ 20→ 23) = (12→ 17→ 23)
(12→ 7→ 2) = (12→ 6→ 2)
(12→ 7→ 3) = (12→ 6→ 3)
(13→ 16→ 11) = (13→ 5→ 11)
(13→ 16→ 13) = 2(13 → 9→ 13)
(13→ 16→ 14) = 1/2(13 → 9→ 14)
(13→ 16→ 3) = −2(13 → 5→ 3)
(13→ 18→ 10) = −2(13 → 5→ 10)
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(13→ 18→ 14) = 1/2(13 → 9 → 14)
(13→ 18→ 21) = 1/2(13 → 16 → 21)
(13→ 19→ 11) = 2(13 → 5→ 11)
(13→ 19→ 13) = 2(13 → 5→ 13)
(13→ 19→ 15) = −(13→ 9→ 15)
(13→ 19→ 22) = (13→ 16→ 22)
(13→ 19→ 23) = −2(13 → 18 → 23)
(13→ 9→ 3) = 2(13 → 5→ 3)
(13→ 9→ 4) = 2(13 → 5→ 4)
(14→ 16→ 11) = −1/4(14 → 8 → 11)
(14→ 16→ 12) = (14→ 6→ 12)
(14→ 16→ 13) = (14→ 9→ 13)
(14→ 16→ 3) = (14 → 6→ 3)
(14→ 18→ 13) = −(14→ 9→ 13)
(14→ 18→ 21) = −(14→ 16→ 21)
(14→ 20→ 12) = 2(14 → 6→ 12)
(14→ 20→ 22) = −2(14 → 16 → 22)
(14→ 8→ 2) = −2(14 → 6→ 2)
(14→ 9→ 3) = −2(14 → 6→ 3)
(14→ 9→ 4) = (14→ 8→ 4)
(15→ 19→ 13) = −4(15 → 9→ 13)
(15→ 19→ 15) = −4(15 → 7→ 15)
(15→ 20→ 12) = −2(15 → 7→ 12)
(15→ 20→ 15) = −1/2(15 → 8 → 15)
(15→ 20→ 22) = 1/2(15 → 19 → 22)
(15→ 8→ 2) = −2(15 → 7→ 2)
(15→ 9→ 3) = (15→ 7→ 3)
(15→ 9→ 4) = −1/2(15 → 8→ 4)
(16→ 14→ 8) = (16 → 11 → 8)
(16→ 22→ 24) = 1/4(16 → 21 → 24)
(17→ 11→ 5) = −4(17 → 10→ 5)
(17→ 11→ 8) = −4(17 → 10→ 8)
(17→ 12→ 6) = (17 → 10 → 6)
(17→ 12→ 7) = 1/2(17 → 11 → 7)
(17→ 21→ 18) = −2(17 → 10 → 18)
(17→ 23→ 18) = 2(17 → 10 → 18)
(17→ 23→ 19) = (17→ 11→ 19)
(17→ 23→ 20) = 4(17 → 12 → 20)
(17→ 23→ 24) = −3/10(17 → 21→ 24)
(17→ 23→ 8) = −2(17 → 10→ 8)
(18→ 13→ 5) = 2(18 → 10→ 5)
(18→ 14→ 6) = −(18 → 10 → 6)
(18→ 14→ 8) = 2(18 → 10→ 8)
(18→ 14→ 9) = 1/2(18 → 13 → 9)
(18→ 21→ 17) = −2(18 → 10 → 17)
(18→ 21→ 18) = −(18→ 13→ 18)
(18→ 23→ 17) = 2(18 → 10 → 17)
(18→ 23→ 19) = −(18→ 13→ 19)
(18→ 23→ 20) = 2(18 → 14 → 20)
(18→ 23→ 24) = −3/20(18 → 21→ 24)
(18→ 23→ 8) = (18 → 10 → 8)
(19→ 13→ 5) = 1/2(19 → 11 → 5)
(19→ 15→ 7) = (19 → 11 → 7)
(19→ 15→ 8) = (19 → 11 → 8)
(19→ 15→ 9) = −1/2(19 → 13 → 9)
(19→ 22→ 20) = 2(19 → 15 → 20)
(19→ 23→ 17) = −(19→ 11→ 17)
(19→ 23→ 18) = −(19→ 13→ 18)
(19→ 23→ 20) = 2(19 → 15 → 20)
(19→ 23→ 24) = 3/5(19 → 22 → 24)
(19→ 23→ 8) = −1/2(19 → 11 → 8)
(20→ 14→ 6) = (20 → 12 → 6)
(20→ 15→ 7) = (20 → 12 → 7)
(20→ 15→ 8) = (20 → 14 → 8)
(20→ 15→ 9) = −1/2(20 → 14 → 9)
(20→ 22→ 19) = 2(20 → 15 → 19)
(20→ 22→ 20) = −4(20 → 12 → 20)
(20→ 23→ 17) = −2(20 → 12 → 17)
(20→ 23→ 18) = −2(20 → 14 → 18)
(20→ 23→ 19) = −2(20 → 15 → 19)
(20→ 23→ 24) = −3/5(20 → 22 → 24)
(20→ 23→ 8) = (20 → 14 → 8)
(21→ 17→ 11) = −(21→ 16→ 11)

(21→ 17→ 12) = −1/2(21 → 16 → 12)
(21→ 18→ 10) = −2(21 → 17 → 10)
(21→ 18→ 13) = −1/2(21 → 16 → 13)
(21→ 18→ 14) = −(21→ 16→ 14)
(21→ 24→ 21) = −40(21 → 18→ 21)
(21→ 24→ 22) = −10(21 → 16→ 22)
(22→ 19→ 11) = −4(22 → 16 → 11)
(22→ 19→ 13) = −(22→ 16→ 13)
(22→ 20→ 12) = −2(22 → 16 → 12)
(22→ 20→ 14) = −2(22 → 16 → 14)
(22→ 20→ 15) = 1/2(22 → 19 → 15)
(22→ 24→ 21) = −10(22 → 16→ 21)
(22→ 24→ 22) = 5/2(22 → 20 → 22)
(23→ 19→ 13) = −2(23 → 18 → 13)
(23→ 20→ 12) = −2(23 → 17 → 12)
(24→ 22→ 16) = 1/4(24 → 21 → 16)
(24→ 23→ 17) = −1/2(24 → 21 → 17)
(24→ 23→ 18) = −1/4(24 → 21 → 18)
(24→ 23→ 19) = (24→ 22→ 19)
(24→ 23→ 20) = (24→ 22→ 20)
(5→ 13 → 16) = −2(5 → 3→ 16) + 2(5→ 11→ 16)
(5→ 13 → 9) = −2(5→ 3→ 9) − 2(5 → 4→ 9)
(6→ 10 → 6) = −2(6→ 2→ 6) + 2(6→ 3→ 6)
(6→ 12 → 7) = (6→ 2→ 7) + (6→ 3→ 7)
(6→ 14 → 16) = −(6→ 3→ 16) + (6→ 12→ 16)
(7→ 12 → 16) = (7→ 3→ 16) + (7→ 11→ 16)
(7→ 12 → 6) = −(7→ 2→ 6) + (7→ 3→ 6)
(8→ 14 → 8) = −2(8→ 2→ 8) + 4(8→ 4→ 8)
(9→ 13 → 5) = −(9→ 3→ 5) + 2(9 → 4 → 5)
(9→ 14 → 16) = (9→ 3→ 16) + 1/2(9 → 13→ 16)
(9→ 15 → 9) = −(9→ 3→ 9) − (9→ 4→ 9)
(10→ 17→ 11) = (10→ 5→ 11) + (10 → 8→ 11)
(10→ 18→ 14) = −(10→ 6→ 14) + (10 → 8→ 14)
(10→ 18→ 23) = −2(10 → 8→ 23)−(10 → 17 → 23)
(11→16→11) = 1/4(11→5→11) + 1/2(11→7→11)
(11→ 17→ 10) = (11→ 5→ 10) + (11 → 8→ 10)
(11→ 19→ 15) = 4(11 → 7→ 15) − 2(11 → 8 → 15)
(11→ 19→ 23) = 4(11 → 8→ 23) + 2(11 → 17 → 23)
(14→ 18→ 10) = −(14→ 6→ 10) − (14 → 8→ 10)
(14→ 18→ 14) = (14→ 6→ 14)− 1/2(14 → 9→ 14)
(14→ 20→ 14) = (14→ 6→ 14)− 1/2(14 → 9→ 14)
(14→20→15) = 1/2(14→8→15) + 1/2(14→9→15)
(14→ 20→ 23) = 2(14 → 8→ 23) + 2(14 → 18 → 23)
(15→ 19→ 11) = −4(15 → 7→ 11)−2(15 → 8→ 11)
(15→ 20→ 14) = 1/2(15 → 8→ 14)− (15→ 9→ 14)
(15→20→23) = −2(15→8→23) − 1/2(15→19→23)
(16→ 12→ 7) = (16 → 3→ 7) + (16 → 11 → 7)
(16→ 13→ 5) = 2(16 → 3→ 5) + 2(16 → 11 → 5)
(16→ 14→ 6) = −(16 → 3→ 6) + (16 → 12 → 6)
(16→ 14→ 9) = −(16 → 3→ 9) + 1/4(16 → 13 → 9)
(16→21→16) = 4(16→12→16) − 8(16→14→16)
(16→21→17) = −2(16→11→17) − 2(16→12→17)
(16→21→18) = −(16→13→18) − 4(16→14→18)
(16→22→16) = −1/2(16→13→16)+4(16→14→16)
(16→ 22→ 19) = 2(16 → 11 → 19) + (16 → 13 → 19)
(16→22→20) = 4(16→12→20) − 4(16→14→20)
(17→21→16) = 2(17→11→16) − 2(17→12→16)
(17→21→17) = 2(17→10→17) + 1/2(17→11→17)
(18→ 21→ 16) = (18→ 13→ 16)− 4(18 → 14 → 16)
(18→23→18) = −(18→10→18) + 1/2(18→13→18)
(19→ 22→ 16) = 2(19 → 11 → 16)− (19 → 13 → 16)
(19→ 22→ 19) = (19→ 11→ 19) + (19→ 15→ 19)
(20→22→16) = 2(20→12→16) − 4(20→14→16)
(20→23→20) = 4(20→12→20) − 4(20→15→20)
(21→24→23) = 20(21→17→23) − 20(21→18→23)
(22→24→23)=−5/2(22→19→23)−5/2(22→20→23)
(23→ 18→ 10) = 2(23 → 8→ 10) − (23→ 17 → 10)
(23→ 19→ 11) = 4(23 → 8→ 11)− 2(23 → 17 → 11)
(23→20→14) = −2(23→8→14) − 2(23→18→14)
(23→20→15) = 2(23→8→15) + 1/2(23→19→15)
(23→24→21) = 12(23→17→21) − 12(23→18→21)
(23→24→22)=−3/2(23→19→22)+3/2(23→20→22)
(23→24→23) = 3(23→17→23) − 3/2(23→19→23)

The dominant Verma module as a representation of the quiver. A rep-
resentation of a quiver consists of a collection of vector spaces and linear maps
arranged in the same shape as the quiver, i.e., with a vector space for each vertex
and a linear map for each arrow. If the quiver has relations, than the corresponding
linear maps should also fulfill these relations.

Let A be a basic algebra. Then there is an equivalence between the category of
A-modules with finite length and the representations of the quiver corresponding to
A (see [ARS, Theorem 1.5]). Consider the case where A = Endg(P ) and recall the
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equivalence of categories (2.1) in section 2.1. We can describe the objects in O by
representations of certain quivers. The picture above shows a representation of the
quiver corresponding to the dominant Verma module. We omit the arrows belonging
to the zero map. If not otherwise stated, the map is the identity. Otherwise, we
write down the map as a matrix or (in case of one-dimensional vector spaces) just
as a number. If there is a double arrow signified by two maps, the upper one
corresponds to the arrow pointing up.

The picture can for example give an explicit description of submodules which
are not sums of Verma submodules (see the remark in [Ja1, page 4]).
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