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Abstract. We develop a graded version of the theory of cyclotomic
q-Schur algebras, in the spirit of the work of Brundan-Kleshchev on
Hecke algebras and of Ariki on q-Schur algebras. As an application,
we identify the coefficients of the canonical basis on a higher level Fock
space with q-analogues of the decomposition numbers of cyclotomic q-
Schur algebras.

We present cyclotomic q-Schur algebras as a quotient of a convolution
algebra arising in the geometry of quivers; hence we call these quiver

Schur algebras. These algebras are also presented diagrammatically,
similar in flavor to a recent construction of Khovanov and Lauda. They
are also manifestly graded and so equip the cyclotomic q-Schur algebra
with a non-obvious grading.

On the way we construct a graded cellular basis of this algebra, re-
sembling the constructions for cyclotomic Hecke algebras by Mathas,
Hu, Brundan and the first author.

The quiver Schur algebra is also interesting from the perspective of
higher representation theory. The sum of Grothendieck groups of cer-
tain cyclotomic quotients is known to agree with a higher level Fock
space. We show that our graded version defines a higher q-Fock space
(defined as a tensor product of level 1 q-deformed Fock spaces). Under
this identification, the indecomposable projective modules are identi-
fied with the canonical basis and the Weyl modules with the standard
basis. This allows us to prove the already described relation between
decomposition numbers and canonical bases.
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1. Introduction

Recent years have seen remarkable advances in higher representation theory;
the most exciting from the perspective of classical representation theory were
probably the proof of Broué’s conjecture for the symmetric groups by Chuang and
Rouquier [CR08] and the introduction and study of graded versions of Hecke al-
gebras by Brundan and Kleshchev [BK09a] with its Lie theoretic origins ([BK08],
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[BS11]). At the same time, the question of finding categorical analogues of the
usual structures of Lie theory has proceeded in the work of Khovanov, Lauda,
Rouquier, Vazirani, the authors and others. In this paper, we address a question
of interest from both perspectives, representation theory and higher categorical
structures.

As classical (or quantum) representation theorists, we ask

Is there a natural graded version of the q-Schur algebra and its higher level
analogues, the cyclotomic q-Schur algebra?

This question has been addressed already in the special case of level 1 by Ariki
[Ari09]. We give here a more general construction that both illuminates connec-
tions to geometry and is more explicit.

As higher representation theorists, we ask

Is there a natural categorification of q-Fock space and its higher level analogues

with a categorical action of ŝln?

We will show that these questions not only have natural answers; they have the
same answer.

Our main theorem is a graded version with a graded cellular basis of the cy-
clotomic q-Schur algebra of Dipper, James and Mathas, [DJM98] and a combi-
natorics of graded decomposition numbers using higher Fock space.

To describe the results more precisely, let k be an algebraically closed field of
characteristic zero and n, ℓ, e natural numbers with e > 1. Let (q,Q1, . . . , Qℓ) be
an ℓ+1-tuple of e-roots of unities such that q is primitive. In particular, Qi = qzi

for some zi. The associated cyclotomic Hecke algebra or Ariki-Koike algebra

H(n; q,Q1, . . . , Qℓ) = H(Sn ≀ Z/ℓZ; q,Q1, . . . , Qℓ)

is the associative unitary k-algebra with generators Ti, 1 ≤ i ≤ n − 1 modulo
the following relations, for 1 ≤ i < j − 1 < n− 1,

(T0 −Q1) · · · (T0 −Qℓ) = 1, (Ti − q)(Ti + 1) = 1

TiTj = TjTi, TiTi+1Ti = Ti+1TiTi+1, T0T1T0T1 = T1T0T1T0

The cyclotomic q-Schur algebra we consider is the endomorphism ring

S(n; q,Q1, . . . , Qℓ) = EndH(n;q,Q1,...,Qℓ)

(
⊕

µ

M(µ̂)

)
(1)

where the sum runs over all ℓ-multipartitions µ̂ of n and M(µ̂) denotes the
(signed) permutation module associated to µ̂.

To make contact with the theory of quiver Hecke algebras we encode the pa-
rameters (q,Q1, . . . , Qℓ) as a sequence ν = (wz1 , . . . , wzℓ) of fundamental weights

for the affine Lie algebra ŝle. The corresponding cyclotomic Hecke algebra only
depends on the multiplicities of each root of unity, that is, only on the weight
ν =

∑
i νi. Thus, we write

Hν :=
⊕

n≥0

H(n; q,Q1, . . . , Qℓ) H
ν =

⊕

n≥0

S(n; q,Q1, . . . , Qℓ)

for the sums of corresponding Ariki-Koike and cyclotomic q-Schur algebras of
all different ranks. To this data we introduce then a certain Z-graded algebra
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Aν which we call the cyclotomic quiver Schur algebra. The name stems from
the fact that the algebra is related to the cyclotomic quiver Hecke algebras Rν

and their tensor product analogues T ν (defined in [Web10a]) like the finite Schur
algebra is to the classical Hecke algebra. Our main result (Theorem 6.3) says that
Aν is a graded version of H ν given by an extension of the Brundan-Kleshchev
isomorphism Φν : Rν ∼= Hν from [BK09a] between the diagrammatic cyclotomic
quiver Hecke algebras Rν introduced in [KL09] and the sum of cyclotomic Hecke
algebra Hν .

Theorem A. There is an isomorphism Φν from Aν to the cyclotomic q-Schur
algebra H ν , extending the isomorphism Φν : Rν ∼= Hν. In particular, the algebra
H ν =

⊕
n≥0 S(n; q,Q1, . . . , Qℓ) inherits a Z-grading.

Like the cyclotomic quiver Hecke algebra, the algebra Aν can be realized as
a natural quotient of a geometrically defined convolution algebra. This con-
struction is based on the geometry of quivers using a certain category of flagged
nilpotent representations (quiver partial flag varieties) of the cyclic affine type
A quiver. It naturally extends the work of Varagnolo and Vasserot [VV09] and
clarifies the origin of the grading.

The construction of Aν (and its summand A
ν
n for fixed n) proceeds in three

steps. We first define an infinite dimensional convolution algebra, which we call
quiver Schur algebra, using flagged representations of the cyclic quiver Γ. This
algebra only depend on e (and has summands depending on n). The second
step is to add some extra shadow vertices to the quiver and define an involution
algebra working with flagged representations of the extended quiver Γ depending
on the parameters Qi and ℓ. Finally the last step is to pass to a finite dimensional
quotient which is the desired algebra Aν (with the direct summand A

ν
n for fixed

n).
To make explicit calculations we describe the quiver Schur algebra algebraically

by considering a faithful representation on a direct sum of polynomial rings, ex-
tending the corresponding result for quiver Hecke algebras. Moreover, we give
a diagrammatical description of the algebra by extending the diagram calculus
of Khovanov and Lauda [KL09]. In contrast to their work, however, we are not
able to give a complete list of relations diagrammatically. Still, we have enough
information to construct (signed) permutation modules for the cyclotomic Hecke
algebra and show that our algebra Aν is isomorphic to the cyclotomic q-Schur
algebra using the known three different description (geometric, algebraic and
diagrammatical) of the quiver Hecke algebras.

Note that this can also be viewed as an extension of work of the second
author [Web10a, §5.3], which showed that similar diagrammatic algebras were
the endomorphism algebras of some, but not all, (signed) permutation modules.

Independently, Ariki [Ari09] introduced graded q-Schur algebras and studied
in detail permutation modules. This is a special case of our results when ℓ = 1
(and e and n are not too small) and indeed, we show that our grading coincides
with Ariki’s.

In the course of the proof we also establish, similar in spirit to the arguments
in [BS11], the existence of a graded cellular basis (Theorem 5.7) in the sense of
Mathas and Hu [HM10]:
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Theorem B. The cyclotomic quiver Schur algebra Aν is a graded cellular alge-
bra. Moreover

• The cellular ideals coincide under Φν with those of the Dipper-James-
Mathas cellular ideals.
• The cell modules define graded lifts of the Weyl modules.

After circulating a draft of this paper, we received a preprint of Hu and Mathas
[HM] which gives an independent proof of Theorem B; while their construction
doesn’t follow exactly the same path as ours, a uniqueness argument analogous
to Theorem 6.5 should show it is graded Morita equivalent to the grading we
have defined. Their preprint also shows versions of Theorems C and D in the
(special) case of a linear, rather than cyclic, quiver.

From both the geometric and the diagrammatic sides, our construction fits
quite snugly inside Rouquier’s program of categorical representation theory,
[Rou08]. More precisely, the following holds

Theorem C. The category of graded Aν-modules carries a categorical action of

Uq(ŝle) in the sense of Rouquier. As a Uq(ŝle)-module, its complexified graded
Grothendieck group is canonically isomorphic to the ℓ-fold tensor product

Fℓ = C[q, q−1, p1, p2, . . .]
⊗ℓ

of level 1 Fock spaces with central charge z = (z1, . . . , zℓ) given by ν.

Here the parameter q corresponds to the effect of grading shift on the Grothendieck
group, and this thus a formal variable, not a complex number.

Our constructions can also be described using an affine version of the “thick
calculus” introduced by Khovanov, Lauda, Mackaay and Stošić for the upper

half of ŝle. Unlike in [KLMS10] however, our category has objects which do not

appear in the “thin calculus” and categorifies the upper half of Uq(ĝle) instead

of Uq(ŝle).
Of course, it is tempting to think this could easily be extended to a graph-

ical categorification of the Lie algebra ĝle, which is the direct sum of ŝle and
a Heisenberg Lie algebra H modulo an identification of their centers. This is
especially intriguing and promising given the various interesting categorification
of Heisenberg algebras ([CL10], [Kho10], [LS11]) which appeared recently in the
literature. However, the connection cannot be as straightforward as one might
hope at first, since the functors associated to the standard generators in the cat-

egorification of the upper half of Uq(ĝle) simply do not have biadjoints (unlike

those in Uq(ŝle)) as was pointed out already in [Sha08, 5.1,5.2]. In their action
on the categories of Aν -modules, they send projectives to projectives, but not
injectives to injectives, so their right adjoints are exact, but not their left adjoints.

The Grothendieck group of graded Aν -modules is naturally a Z[q, q−1]-module
and comes also along with several distinguished lattices and bases. To describe
them combinatorially we introduce a bar-involution on the tensor product Fℓ of
Fock spaces appearing in Theorem C which allows us to define, apart from the
standard basis, two other distinguished bases: the canonical and dual canonical
bases. This canonical basis is a “limit” of that for higher level q-Fock spaces de-
fined by Uglov, in a sense we describe later. Our canonical isomorphism induces
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correspondences

bar involution ←→ Serre-twisted duality

canonical basis ←→ indecomposable projectives

dual canonical basis ←→ simple modules

standard basis ←→ Weyl modules

As a consequence we get (Theorem 7.10) information about (graded) decom-
position numbers of cyclotomic q-Schur algebras.

Theorem D. The graded decomposition numbers of the cyclotomic q-Schur al-
gebra are the coefficients of the canonical basis in terms of the standard basis on
the higher level q-Fock space Fℓ.

Again this problem was studied independently by Ariki [Ari09] for the level
ℓ = 1 case. The above theorem combines and generalizes therefore results of Ariki
on Schur algebras and Brundan-Kleshchev-Wang [BKW11] on cyclotomic Hecke
algebras describing graded decomposition numbers of cyclotomic Schur algebras.
It is very similar in spirit to a conjecture of Yvonne [Yvo06, 2.13]; however, there
are several small differences between Yvonne’s conjecture and our results. The
most important is that Yvonne used Jantzen filtrations to define a q-analogue
of decomposition numbers instead of a grading. This approach using Jantzen
filtrations has been worked out in level 1 by Ram-Tingley [RT10] and Shan
[Sha08]. Their results show that the same q-analogue of decomposition numbers
arise from counting multiplicities with respect to depth in Jantzen filtrations.
We expect that this will hold in higher level as well; it should follow from the
following

Conjecture E. The cyclotomic quiver Schur algebra Aν is Koszul.

Our approach has the advantage of working with gradings instead of filtrations
which are easier to handle in practice. (A similar phenomenon appears for the
classical category O for semi-simple complex Lie algebras, where the Jantzen
filtration can also be described in terms of a grading, [BGS96], [Str03]. This
grading is actually directly connected with the grading on the algebras Rν ∼= Hν ,
see [BS11] for details).

We should emphasize that at the moment, this approach only allows us to
understand the higher-level Fock spaces which are constructed as tensor products

of level 1 Fock spaces (or their irreducible ĝle constituents). This does not include
the more elaborate higher level Fock spaces studied by Uglov [Ugl00]; these
are categorified by category O of certain Cherednik algebras, see e.g. [Sha08].
Connections between these constructions have still to be clarified.

Let us briefly summarize the paper:

• Section 2 contains preliminaries of the geometry of quiver representations
needed to define the quiver Schur algebra both as a geometric convolu-
tion algebra and in terms of an action on a polynomial ring which then
is related to Demazure operators in Section 3. We connect its graded
Grothendieck group with the generic nilpotent Hall algebra of the cyclic
quiver.
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• In Section 4, we discuss a generalization of this algebra using extended (or
shadowed) quiver representations that will allow us to deal with higher
level Fock spaces.
• In Section 5, we define cyclotomic quotients, equip them with a (graded)
cellular structure and establish the isomorphism to cyclotomic q-Schur
algebras in Section 6.
• In Section 7, we consider the connection of these constructions to higher

representation theory, describe the categorical action of ŝle on these cat-
egories, and show that they categorify q-Fock spaces. In particular, we
consider the relationship between projective modules, canonical bases,
and decomposition numbers.

Acknowledgment: We thank Geordie Williamson, Michela Varagnolo, Peter
Tingley, Iain Gordon and Michael Ehrig for useful input and fruitful discussions
and Bernard Leclerc and Peter Littelmann for helpful comments. We also would
like to thank the Hausdorff Center for supporting B.W.’s visit to Bonn at the
genesis of this work, and the organizers of the Oporto Meeting on Geometry,
Topology and Physics 2010 for facilitating our collaboration.

B.W. was supported by an NSF Postdoctoral Research Fellowship and by the
NSA under Grant H98230-10-1-0199.

2. The quiver Schur algebra

Throughout this paper, we will fix an integer e > 1. Let Γ be the Dynkin
diagram for ŝle with the fixed clockwise orientation. Let V = {1, 2, . . . , e} be
the set of vertices of Γ, identified with the set of remainders of integers modulo
e. Let hi : i → i + 1 be the arrow from the vertex i to the vertex i + 1 for
1 ≤ i ≤ e where here and in the following all formulas should be read taking
indices corresponding to vertices of Γ modulo e.

Definition 2.1. A representation (V, f) of Γ over a field k is

• a collection of finite dimensional k-vector spaces Vi, 1 ≤ i ≤ e, one
attached to each vertex together with
• k-linear maps fi : Vi → Vi+1.

A subrepresentation is a collection of vector subspaces Wi ⊂ Vi such that
fi(Wi) ⊂ Wi+1. A representation (V, f) of Γ is called nilpotent if the map
fe · · · f2f1 : V1 → V1 is nilpotent.

2.1. Quiver representations and quiver flag varieties. The dimension

vector of a representation (V, f) is the tuple d = (d1, . . . , de), where di = dimVi.
We let |d| =

∑
di. We denote by αi the special dimension vector where dj =

δij . Mapping it to the corresponding simple root αi of ŝle identifies the set of

dimension vectors with the positive cone in the root lattice of ŝle, and with
semi-simple nilpotent representations of Γ:

Lemma 2.2. There is a unique irreducible nilpotent representation Sj of dimen-
sion vector αj . Any semi-simple nilpotent representation is of the form (V, f)
with fi = 0 for all i.

Proof. Obviously Sj equals (V, f), where fi and Vi are zero except of Vj = k.
Assume (V, f) is a non-trivial irreducible nilpotent representation. If fj 6= 0 then

6



e
e− 1 1

··
·

· ·
·

Figure 1. The oriented Dynkin quiver Γ and the extended
Dynkin quiver Γ̃.

dimVj = 1, since otherwise Wj = ker fj, Wi = {0} for i 6= j defines a non-trivial
proper subrepresentation. Not all fi’s are injective, since the representation is
nilpotent and non-trivial. Say f1 is not injective, then dimV1 = 1 and f1 = 0. In
particular S1 is a subrepresentation and therefore (V, f) is isomorphic to S1. Any
representation (V, f) with fi = 0 for all i is obviously semi-simple. Conversely,

assume (V, f) is semi-simple, hence isomorphic to
⊕e

i=1 S
di
i . In particular, Sdi

i
is a direct summand (for any i) which implies that fi = 0. �

Let Repd be the affine space of representations of Γ with dimension vector d;

(2) Repd =
⊕

i∈V

Hom(Vi, Vi+1).

It has a natural algebraic action by conjugation of the algebraic group Gd =
GL(d1) × · · · × GL(de), and we are interested in the moduli space of repre-

sentations, i.e. the quotient GRepd = Repd/Gd parametrizing isomorphism
classes of representations. Since the Gd-action is very far from being free, we
must interpret this quotient in an intelligent way. One option is to consider it
as an Artin stack. While this is perhaps the most elegant approach, it is more
technical than necessary for our purposes. Instead the reader is encouraged to
interpret this quotient as a formal symbol where, by convention for any complex
algebraic G-variety X

• H∗(X/G) is the G-equivariant cohomology H∗
G(X), and HBM

∗ (X/G) is
the G-equivariant Borel-Moore homology of X (for a discussion of equi-
variant Borel-Moore homology, see [Ful98, section 19], or [VV09, §1.2]).
• D(X/G) (resp. D+(X/G)) is the bounded (resp. bounded below) equi-
variant derived category of Bernstein-Lunts [BL94], with the usual six
functor formalism described therein. See also [WW09] as an additional
reference for our purposes.

Note that H∗
Gd

(Repd) = H∗(BGd), where BGd denotes the classifying space

of Gd (or the classifying space of its C-points in the analytic topology for the
topologically minded) since Repd is contractible. Thus, we can use the usual
Borel isomorphism to identify the H∗(GRepd)’s with polynomial rings.

We will consider the direct sum H∗(GRep) =
⊕

d
H∗(GRepd) which corre-

sponds to taking the union of the quotients GRep =
⊔

d
GRepd as Artin stacks.

One can think of this as a quotient by the groupoid G =
⊔

d
Gd, and we will

7



speak of the G-equivariant cohomology of Rep =
⊔

d
Repd, etc.

A composition of length r of n ∈ Z>0 is a tuple µ = (µ1, µ2, . . . , µr) ∈ Z
r
>0

such that
∑r

i=1 µi = n. In contrast, a vector composition1 of type m ∈ Z>0

and length r = r(µ̂) is a tuple µ̂ = (µ(1),µ(2), . . . ,µ(r)) of nonzero elements from
Z
m
≥0. If m = e we call a vector composition also residue data and denote their

set by Compe. Alternatively, µ̂ can be viewed as an r ×m matrix µ[i, j] with

the i-th row µ(i). We call the column sequence, i.e. the result of reading the
columns, the flag type sequence t(µ̂), whereas the residue sequence res(µ̂)
is the sequence

(3) 1µ
(1)
1 , 2µ

(1)
2 , · · · , eµ

(1)
e |1µ

(2)
1 , 2µ

(2)
2 , · · · , eµ

(2)
e | · · · |1µ

(r)
1 , 2µ

(r)
2 , · · · , eµ

(r)
e .

The parts separated by the vertical lines | are called blocks of res(µ̂). We say

that µ̂ has complete flag type if every µ(i) is a unit vector which has exactly
one non-zero entry, hence blocks of res(µ̂) contain at most one element.

The transposed vector composition of µ̂ of type r(µ) and length m is defined

to be µ̌ = (µ̌(1), µ̌(2), . . . , µ̌(m)) where µ̌
(i)
j = µ[j, i] = µ̂

(j)
i , which we call in case

m = e also the flag data. Given a composition µ of n of length r, we denote by
F(µ) the variety of flags of type µ, that is the variety of flags

F1(µ) ⊂ F2(µ) ⊂ · · · ⊂ Fr(µ) = C
n

where Fi(µ) is a subspace of dimension
∑i

j=1 µi. For a vector composition µ̂, we

let F(µ̂) =
∏

iF(µ̌
(i)), a product of partial flag varieties inside Cd =

∏e
i=1 C

di of
type given by the flag data. Here d = d(µ̂) = (d1, . . . , de) denotes the dimen-

sion vector of the vector composition µ̂ which is simply the sum d =
∑r

i=1 µ̂
(i),

and d denotes the total dimension. For a given dimension vector d denote

VCompe(d) = {µ̂ ∈ VCompe | d(µ̂) = d}.

Example 2.3. Let e = 2 and µ̂ = ((2, 1), (1, 1), (2, 3), (0, 1)), a residue data of
length r = 4 with dimension vector d = (5, 6). The flag data is

µ̌ = ((2, 1, 2, 0), (1, 1, 3, 1)) and res(µ̂) = 1, 1, 2|1, 2|1, 1, 2, 2, 2|2.

There are
(11
5

)
elements of complete flag type in VCompe(d).

Definition 2.4. For a given vector composition µ̂ ∈ Compe (of length r) a
representation with compatible flags of type µ̌ is a nilpotent representation
(V, f) of Γ with dimension vector d = d(µ̂) together with a flag F (i) of type µ̌(i)

inside Vi for each 1 ≤ i ≤ e such that fi(F (i)j) ⊂ F (i+ 1)j−1 for 1 ≤ j ≤ r.
We denote by

Q(µ̂) =
{
(V, f, F ) ∈ Repd×F(µ̂) | fi(F (i)j) ⊂ F (i+ 1)j−1

}

the subset of Repd×F(µ̂) of representations with compatible flag. It comes
equipped with the obvious action of the group G := Gd by change of basis.

1Note that this differs from the notion of an r-multicomposition where the tuples could be of
different lengths or an r-multipartition where the tuples are partitions but again not necessarily
of the same length m.
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Alternatively (see Lemma 2.2), a representation with compatible flags is a
tuple ((V, f), F ) consisting of a representation (V, f) ∈ Repd equipped with
a filtration by subrepresentations with semi-simple successive quotients (with
dimension vectors given by µ̂). In Example 2.3,

V (4) ∼= S2, V (3)/V (4) ∼= S2
1 ⊕ S

3
2 , V (2)/V (3) ∼= S1 ⊕ S2, V (1)/V (2) ∼= S2

1 ⊕ S
1
2 .

Forgetting either the flag or the representation defines two Gd-equivariant
proper morphisms of algebraic varieties

p : Q(µ̂) −→ Repd, ((V, f), F ) 7→ (V, f) ∈ Repd(4)

π : Q(µ̂) −→ F(µ̂), ((V, f), F ) 7→ F ∈ F(µ̂)(5)

Generalizing the notion of a quiver Grassmannian we call the fibres of p the
quiver partial flag varieties.

Consider the k-algebra of polynomials in an alphabet for each node in the
affine Dynkin diagram of size given by the dimension at that node:

(6) R(d) =
e⊗

j=1

k[xj,1, . . . , xj,dj ] = k[x1,1, . . . , x1,d1 , . . . , xe,1, . . . , xe,de ]
This algebra carries an action of the Coxeter group Sd = Sd1 × · · · × Sde by
permuting the variables in the same tensor factor. The flag data defines a Young
subgroup Sµ̌ ⊆ Sd. Note that F(µ̂) ∼= Gd/Pµ̌ is the partial flag variety defined
by the parabolic subgroup Pµ̌ of Gd, given by upper triangular block matrices
with block sizes determined by the flag sequence.

Thus, the Borel presentation identifies the rings

(7) H∗(F(µ̂)/G) ∼= R(d)Sµ̂ =: Λ(µ̂),

by sending Chern classes of tautological bundles to elementary symmetric func-
tions, [Bri98, Proposition 1].

In the extreme case where d = (r, 0, . . . , 0) we have µ̂(i) = (1, 0, . . . , 0) for all i
and Sµ̂ is trivial, hence we obtain the GLd-equivariant cohomology of the variety

of full flags in C
d. If µ̂ = (d) then µ̌ = ((d1), (d2), . . . , (de)), the variety F(µ̂) is

just a point and Λ(µ̂) = R(d)Sd . We call this the ring of total invariants.

Lemma 2.5. The map π is a vector bundle with affine fibre; in particular,
we have a natural isomorphism π∗ : H∗(F(µ̂)/G) ∼= H∗(Q(µ̂)/G), and thus
H∗(Q(µ̂)/G) ∼= Λ(µ̂).

Grading convention. Throughout this paper, we will use a somewhat unusual
grading convention on cohomology rings: we shift the (equivariant) cohomology
ring or equivariant Borel-Moore homology of a smooth variety X downward by
the complex dimension of X, so that the identity class is in degree − dimCX.
This choice of grading has the felicitous effect that pull-back and push-forward
maps in cohomology are more symmetric. Usually, for a map f : X → Y we have
that pull-back has degree 0, and push-forward has degree 2 dimC Y − 2 dimCX,
whereas in our grading convention

(8) both push-forward and pull-back have degree dimC Y − dimCX.

Those readers comfortable with the theory of the constructible derived category
will recognize this as replacing the usual constant sheaf with the intersection
cohomology sheaf kQ(µ̂)/G ∈ D

+(Q(µ̂)/G) of Q(µ̂)/G. Since Q(µ̂) is smooth,
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kQ(µ̂)/G is simply a homological shift of the usual constant sheaf on each in-
dividual component (but by different amounts on each component). A more
conceptual explanation for the convention is the invariance of kQ(µ̂)/G under
Verdier duality. We should also note that this grading shift provides a straight-
forward explanation of the grading on the representation Poℓ of the quiver Hecke
algebra in [KL09], [KL11].

Since p is proper and the constant sheaf of geometric origin, the Beilinson-
Bernstein-Deligne decomposition theorem from [BBD82] applies (in the formu-
lation [dCM09, Theorem 4.22]), and p sends the kQ(µ̂)/G on Q(µ̂)/G to a direct
sum L of shifts of simple perverse sheaves on Repd. Our first object of study in
this paper will be the algebra of extensions of these sheaves.

2.2. The convolution algebra. Let µ̂, λ̂ ∈ Compe be vector compositions
with associated dimension vector d, and consider the corresponding “Steinberg
variety”

(9) Z(µ̂, λ̂) = Q(µ̂)×Repd Q(λ̂).

Its quotient modulo the diagonal Gd-action is denoted by H(µ̂, λ̂). Note that
Q(µ̂) is smooth and p is proper, so by [CG97, Theorem 8.6.7], we can identify the
algebra of self-extensions of L (although not as a graded algebra) with the Borel-
Moore homology of our Steinberg variety: we have the natural identification

Ext∗Db(GRepd)
(p∗kQ(µ̂), p∗kQ(λ̂)) = HBM,G

∗ (Z(µ̂, λ̂)),

such that the Yoneda product

Ext∗Db(GRep
d
)(p∗kQ(µ̂), p∗kQ(λ̂))⊗ Ext∗Db(Rep

d
)(p∗kQ(λ̂), p∗kQ(ν̂))

→ Ext∗Db(GRepd)
(p∗kQ(µ̂), p∗kQ(ν̂))

agrees with the convolution product. This defines an associative non-unital
graded algebra structure Ad on

⊕

(µ̂,λ̂)

Ext∗Db(GRepd)

(
p∗kQ(µ̂), p∗kQ(µ̂)

)
=
⊕

(µ̂,λ̂)

HBM
∗ (H(µ̂, λ̂)).(10)

Here the sums are over all elements in VCompe(d) × VCompe(d). For reasons
of diagrammatic algebra, we call this product vertical composition and we
denote it like the usual multiplication (f, g) 7→ fg. We call the algebra Ad the
quiver Schur algebra.

2.3. A faithful polynomial representation. the quiver Schur algebra acts,
by [CG97, Proposition 8.6.15], naturally on the sum (over all vector partitions
of dimension vector d) of cohomologies

Vd :=
⊕

µ̂∈VCompe(d)

HBM
∗ (Q(µ̂)/G) ∼=

⊕

µ̂∈VCompe(d)

Λ(µ̂).(11)

compatible with the grading convention (8).

Proposition 2.6. The Ad-module Vd is faithful.

10



Proof. By the decomposition theorem, the sheaves p∗kQ(µ̂) decompose into sum-
mands which are shifts of the intersection cohomology sheaves associated to
nilpotent orbits (these orbits are Gd-equivariantly simply connected, and thus
these are the only simple perverse sheaves supported on the nilpotent locus).
Now Borel-Moore homology HBM

∗ (X) of a smooth space X equals hypercoho-
mology H

−∗(X,D) of its dualizing sheaf D which is, up to a shift, the constant
sheaf. Its push-forward p∗DQ(µ̂) via the proper map p is a direct sum of sim-
ple IC-sheaves. The action of the algebra (10) is then induced by applying the
functor j∗ to p∗DQ(µ̂) where j is the map from Repd to a point.

We note that the spaces we deal with have good parity vanishing properties.
Each orbit has even equivariant cohomology, since it has a transitive action of
G with the stabilizer of a point given by a connected algebraic group ([Lib07,
Lemma 78, Theorem 79]). Also, the stalks of intersection cohomology sheaves
have even cohomology [Hen07, Theorem 5.2(3)].

Thus by [BGS96, Theorem 3.4.2], j∗ is faithful on semi-simple Gd-equivariant
perverse sheaves, and so we have a faithful action on

j∗p∗DQ(µ̂) = HBM
∗ (Q(µ̂)/G). �

2.4. Monoidal structure and a categorified nilpotent Hall algebra. The
algebra Ad comes along with distinguished idempotents eµ̂ indexed by vector
compositions with dimension vector d. The Ad-module

(12) P (µ̂) =
⊕

λ̂∈VCompe(d)

e
λ̂
Adeµ̂

is a finitely generated indecomposable graded projective Ad-module. Each finitely
generated indecomposable graded projective Ad-module is (up to a grading shift)
isomorphic to one of this form. We denote by Ad−pmod the category of graded
finitely generated projective Ad-modules.

Proposition 2.7. The category Ad−pmod is equivalent to the additive category
of sums of shifts of semi-simple perverse sheaves in D+(GRep) which are pure
of weight 0 with nilpotent support in GRepd.

Proof. There is a functor sending a finitely generated projective Ad-module M

to the perverse sheaf
(⊕

d(µ̂)=d
p∗kQµ̂

)
⊗Ad

M . This map is fully faithful, since

it induces an isomorphism on the endomorphisms of Ad itself. Thus, we need
only show that every simple perverse sheaf on GRep with nilpotent support is a
summand of p∗kQ(µ̂) for some µ̂.

Every such simple perverse sheaf is IC(X̄) where X is the locus of modules
isomorphic to a fixed module N . Consider the socle filtration on N . The dimen-
sion vectors of the successive quotients define a vector composition µ̂N . The map
Q(µ̂N ) → GRep is generically an isomorphism over X, and thus for dimension
reasons, has image X̄ . In particular,

p∗kQ(µ̂N )
∼= IC(X̄)⊕ L

where L is a finite direct sum of shifts of semi-simple perverse sheaves supported
on X̄\X. Thus, every simple perverse sheaf with nilpotent support is a summand
of such a pushforward, and we are done. �

11



Using correspondences we describe a monoidal structure on Ad−pmod. For
µ̂, ν̂ ∈ VCompe the join µ̂ ∪ ν̂ is the vector composition

µ̂ ∪ ν̂ = (µ(1), . . . , µ(r(µ̂)), ν(1), . . . , νr(ν̂))

obtained by joining the two tuples. Let µ̂1, λ̂1 and µ̂2, λ̂2 be vector compositions
with associated dimension vectors c and d respectively. Let

Q(µ̂1; µ̂2, λ̂1; λ̂2) ⊆ Q(λ̂1 ∪ λ̂2)×Repc Q(µ̂1 ∪ µ̂2)

be the space of representations with dimension vector c + d which carry a pair
of compatible flags of type µ̂1 ∪ µ̂2 and λ̂1 ∪ λ̂2 respectively, such that the

subspaces of dimension vector c in the two flags coincide; let H(µ̂1; µ̂2, λ̂1; λ̂2)
be the quotient by the diagonal Gd-action.

Definition 2.8. The horizontal multiplication is the map

Ac ×Ad −→ Ac+d

(a, b) 7−→ a|b(13)

induced on equivariant Borel-Moore homology by the correspondence (i.e. by
pull-and-push on the following diagram)

(14) H(µ̂1, λ̂1)×H(µ̂2, λ̂2)←− H(µ̂1; µ̂2, λ̂1; λ̂2) −→ H(µ̂1 ∪ µ̂2, λ̂1 ∪ λ̂2).

Here the rightward map is the obvious inclusion, and the leftward is induced
from the map V 7→ (W,V/W ) of taking the common subrepresentation W of
dimension vector c and the quotient by it.

We let A = ⊕d(Ad−pmod) be the direct sum of the categories Ad−pmod
over all dimension vectors; that is its objects are formal direct sums of finitely
many objects from these categories, with morphism spaces given by direct sums.

Proposition 2.9. The assignment ⊗ : (P (µ̂), P (ν̂)) 7→ P (µ̂ ∪ ν̂) extends to a
monoidal structure (A,⊗,1) with unit element 1 = P (∅).

Proof. In the ungraded case this follows directly from Lusztig’s convolution prod-
uct [Lus91, §3], by Proposition 2.7. More explicitly, we define

M ⊗N = Ac+d ⊗Ac×Ad
M ⊠N,

meaning one first takes the outer tensor product of the graded Ac-module M
and the graded Ad-module N . The resulting Ac × Ad-module is then induced
to a graded Ac+d-module via the horizontal multiplication (13). This is obvi-
ously functorial in both entries and defines the required tensor product with the
asserted properties. �

2.5. Categorified generic nilpotent Hall algebra. Let K0
q (A) be the Gro-

thendieck group of the additive Krull-Schmidt category A i. e. the free abelian
group on isomorphism classes [M ] of objects in A−pmod modulo the relation
[M1]+ [M2] = [M1⊕M2]. This is a free Z[q, q−1]-module where the action of q is
by grading shift (and has nothing to do with the parameter q from the introduc-
tion). For a graded vector spaceW = ⊕jW

j, we defineW (d) byW (d)j =W d+j,

and let qℓ[M ] = [M(ℓ)]. The module K0
q (A) is of infinite rank, but is naturally

a direct sum of the Grothendieck groups K0
q (Ad−pmod), each of which is finite

rank.

12



Let VCompfe(d) ⊂ VCompe be the set of vector compositions of d of complete
flag type. For each d, there is a subalgebra,

Rd =
⊕

λ̂,µ̂∈VCompfe(d)

e
λ̂
Adeµ̂.(15)

There is also a corresponding monoidal subcategory R of A generated by the
indecomposable projectives indexed by the µ̂ ∈ VCompfe(d) for all d. Both
Ad and Rd can be defined for any quiver and the following proposition holds in
general, though in this paper we only use these categories for the affine type A
quiver. The algebra Rd appears as quiver Hecke algebra (associated with d)
in the literature:

Proposition 2.10 (Vasserot-Varagnolo/Rouquier [VV09, 3.6]).
As graded algebra, Rd is isomorphic to the quiver Hecke algebra R(d) associ-
ated to the quiver Γ in [Rou08]. In particular, K0

q (R) is naturally isomorphic

to the Lusztig integral form of U−
q (ŝle) by mapping the isomorphism classes of

indecomposable projective objects to Lusztig’s canonical basis.

The idempotents in Rd get identified with those in R(d) by viewing the residue
sequence (3) as a sequence of simple roots αi.

Remark 2.11. For a Dynkin quiver, the categories R and A are canonically
equivalent. In fact, both are equivalent to the full category of semi-simple per-
verse sheaves on GRep. However, in affine type A (the case of interest in this
paper), they differ. In terms of perverse sheaves, the IC-sheaves which appear
in p∗kQ(µ̂) for µ̂ having complete flag type are those whose Fourier transform
has nilpotent support as well; for example, the constant sheaf on the trivial rep-
resentation with dimension vector (1, . . . , 1) cannot appear. Thus, in this case
there are objects in A which don’t lie in R.

Recall that the nilpotent Hall algebra of the quiver Γ is an algebra structure
on the set of complex valued functions on the space of nilpotent representations,
typically considered over a finite field. The structure constants are polynomial
in the cardinality q of the field. Hence it makes sense to consider q as a for-
mal parameter and define the generic Hall algebra over the ring of Laurent
polynomials C[q, q−1]. Following Vasserot and Varagnolo, [VV99], we denote this
algebra U−

e . By work of Schiffmann [Sch00, §2.2] it is isomorphic as an algebra to

U−
q (ŝle)⊗Λ(∞), where Λ(∞) denotes the ring of symmetric polynomials. Iden-

tifying Λ(∞) with U−
q (H), the lower half of a Heisenberg algebra, this algebra

can also be described as U−
q (ĝle). This generic Hall algebra has a basis given by

characteristic functions on the isomorphism classes of nilpotent representations
of Γ and is naturally generated as algebra by the characteristic functions fd on
the classes of semi-simple representations (which we label by their dimension
vectors d following Lemma 2.2). The integral form U−

e,Z over Z[q, q−1] is given

here by the lattice generated by all fd’s, analogous to Lusztig’s integral form for
quantum groups, see [Sch00].

Proposition 2.12. There is an isomorphism K0
q (A) ∼= U−

e,Z of Z[q, q−1]-algebras

sending [(d)] 7→ fd from the graded Grothendieck ring of A to the integral form
of the generic nilpotent Hall algebra of the cyclic quiver.
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Proof. Fixing a prime p, there is a natural map from K0
q (A) to U−

e |q=p. This
is given by applying the equivalence of Proposition 2.7, and then sending the
class of a semi-simple perverse sheaf to the function given by the super-trace of
Frobenius on its stalks. This is a function on the points of Rep over the field Fp

and hence defines an element of the Hall algebra. By the definition of the Hall
multiplication and the Grothendieck trace formula, this is an algebra map.

Since these super-traces are polynomial in p (they are the Poincaré polyno-
mials of the quiver partial flag varieties), the coefficients of the expansion of
this function in terms of the characteristic functions of orbits are also polyno-
mial, and this assignment can be lifted to an algebra map K0

q (A) → U−
e,Z. This

map is obviously surjective, since the function for each intersection cohomology
sheaf on a nilpotent orbit, and thus the characteristic function on the orbit, is
in its image. It is also injective, since when we expand any non-zero class in the
Grothendieck group in terms of the classes of intersection cohomology sheaves,
we must have a nonzero value of the corresponding function on the support of an
intersection cohomology sheaf maximal (in the closure ordering) amongst those
with non-zero coefficient.

Since [(d)] corresponds to the skyscraper sheaf of the semi-simple representa-
tion of dimension d, it is sent to the characteristic function of that point. �

The monoidal structure on A is compatible with the usual monoidal structure
(Vectk,⊗k,k) on the category of vector spaces in the following way:

Lemma 2.13. Let Φd : Ad → End(Vd) be the representation from (11). Then
Φc+d((a|b))(v) = Φc(a)(v1) ⊗ Φc(b)(v2) where v is the image of v1 ⊗ v2 under
the canonical map Vµ̂ ⊗ Vλ̂ → V

µ̂∪λ̂.

That is, the functor V : A→ Vectk given by µ̂ 7→ Vµ̂ is monoidal.

Proof. This follows directly from the definitions, [CG97]. �

Thus, we can describe elements corresponding to vector compositions with a
large number of parts by looking at (the action) of the ones with a very small
number of parts.

3. Splitting and merging, Demazure operators and diagrams

In this section we describe a basis of the algebras Ad and elementary mor-
phisms, called splits and merges. We give a geometric, algebraic and diagram-
matical description of these maps.

Let λ̂
′
, λ̂ ∈ Compe be residue data.

Definition 3.1. We say that λ̂
′
is a merge of λ̂ (and λ̂ a split of λ̂

′
) at the

index k if λ̂
′
= (λ(1), · · · , λ̂

(k)
+ λ̂

(k+1)
, . . . , λ̂

(r)
).

If λ̂
′
is a merge of λ̂, then there is an associated correspondence

(16)
Q(λ̂)

Q(λ̂, k) =
{
(V, f, F ) ∈ Q(λ̂) | fi(F (i)k+1) ⊂ F (i+ 1)k−1

}

Q(λ̂
′
)
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where the right map is just the obvious inclusion and the left map is forgetting
Fk(i) for all vertices 1 ≤ i ≤ e (and reindexing all subspaces in the flags with
higher indices). Obviously the same variety defines also a correspondence in the
opposite direction (reading from right to left) which we associate to the split.
We are interested in the equivariant version:

Definition 3.2. For λ̂
′
a merge (resp. split) of λ̂ at k, we let λ̂

k
→ λ̂

′
or

just λ̂→ λ̂
′
denote the element of A given by multiplication with the equivariant

fundamental class [Q(λ̂, k)] (resp. [Q(λ̂
′
, k)]) pushed forward to HBM

∗ (H(λ̂
′
, λ̂)).

Proposition 3.3. Let λ̂
′
be a merge or split of λ̂ at index k. Then λ̂ → λ̂

′
is

homogeneous of degree
∑e

i=1 λ
(k)
i (λ

(k+1)
i−1 − λ

(k+1)
i ).

Proof. In the most obvious choice of grading conventions, pull-back by a map is
degree 0, and pushforward has degree given by minus the relative (real) dimension
of the map (i.e. the dimension of the target minus the dimension of the domain).
This normalization has the disadvantage of breaking the symmetry between splits
and merges. It is, for example, carefully avoided in [KL09]. Instead, we use,
(8), the perverse normalization of the constant sheaves which “averages” the
degrees of pull-back and pushforward. Then the degree of convolving with the
fundamental class of a correspondence is minus the sum of the relative (complex)
dimensions of the two projection maps (note that for a correspondence over two
copies of the same space, this agrees with the most obvious normalization).

Thus, it is clear that we will arrive at the same answer in the split and merge

cases. If λ̂
′
is a merge of λ̂, then

• the map Q(λ̂, k)→ Q(λ̂
′
) is a smooth surjection with fiber given by the

product of Grassmannians of λ
(k)
i -dimensional planes in λ

(k)
i + λ

(k+1)
i -

dimensional space, which has dimension
∑

λ
(k)
i λ

(k+1)
i and

• the map Q(λ̂, k)→ Q(λ̂) is a closed inclusion of codimension
e∑

i=1

dimHom(F (i − 1)k+1/F (i− 1)k, F (i)k/F (i)k−1) =
∑

λ
(k)
i λ

(k+1)
i−1 .

The result follows. �

3.1. Explicit formulas for merges and splits. We give now explicit formulas
for elementary merges and splits. Consider the particular choices for the vector
compositions: H((c,d), (c+d)) ∼= F(c,d)/Gc+d. The variety Q(c+ d) is just a
point, but equipped with the action of G = Gc+d. We want to describe how the
fundamental classes of H((c,d), (c+d)) or H((c+d), (c,d)) (which are isomor-
phic as varieties, but different as correspondences) act on V via Proposition 2.6
and determine in this way the merge and split map. They are given by pullback
followed by pushforward in equivariant cohomology given by the diagram

HBM
∗ (Q(c,d)/G)

ι∗ ..
HBM

∗ (F(c,d)/G)
ι∗

nn

q∗
//
HBM

∗ (Q(c + d)/G),
q∗

nn

where ι : F(c,d) → Q(c,d) is the zero section of the G-equivariant fibre bundle
π : Q(c,d) −→ F(c,d) and q : F(c,d) → Q(c + d) is the proper G-equivariant
map given by forgetting the subspaces of dimension ci.
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Proposition 3.4. Let c, d ∈ Z
e
≥0 non-zero. The following diagram

H∗(Q(c,d)/G)
q∗◦ι∗

..

Borel
��

H∗(Q(c+ d)/G)
ι∗◦q∗

nn

Borel
��

Λ(c,d)
int

--
Λ(c+ d)

E

mm

(17)

commutes where E is the inclusion map from the total invariants Λ(c+ d) into
the invariants Λ(c,d) followed by multiplication with the Euler class

(18) E :=

e∏

i=1

ci+1∏

j=1

di+ci∏

k=ci+1

(xi+1,j − xi,k)

and int is the integration map which sends an element f to the total invariant

∑

w∈Sc+d

(−1)l(w)w(f)

e∏

i=1

1

ci!di!

w

( ∏

1≤j<k≤ci

(xi,j − xi,k)
∏

ci<ℓ<m≤ci+di

(xi,ℓ − xi,m)

)

∏

1≤j<k≤ci+di

(xi,j − xi,k)

where ℓ denotes the usual length function on the symmetric group.

Remark 3.5. The degrees of the maps q∗ ◦ ι
∗ and ι∗ ◦ q

∗ are again not the
degrees which one would naively guess, but rather given by the convention (8),
in particular they are of the same degree. By convention, we set E = 1 if either
one of the products in (18) is empty or one of the variables xi−1,k or xi,j does
not exist.

Proof. Since π∗ is an isomorphism and ι the inclusion of the zero section, ι∗

is also an isomorphism. On the other hand q is the map to a point, hence q∗

is just the inclusion of the total invariants. By the usual adjunction formula,
ι∗ι∗(a) = e ∪ a where e is the Euler class of the vector bundle π. To see that
the map E is as asserted it is enough to verify the formula E = e for the Euler
class. The map i is the inclusion of the zero section of the vector bundle

⊕

i∈V

Hom(Vi,di ,Vi+1,ci+1),

where V = ⊕e
i=1Vi,di is the tautological vector bundle on the moduli space of

quiver representation with dimension vector d. As equivariant vector bundles
over the maximal torus of Gd, we have a splitting into line bundles

Vi+1,c
∼=

ci+1⊕

j=1

Li+1,j Vi,d ∼=

ci+di⊕

k=ci+1

Li,k

where Li,k is the tautological line bundle for the corresponding weight space.
Thus,

Hom(Vi,d,Vi+1,c) ∼=

ci+1⊕

j=1

ci+di⊕

k=ci+1

Li+1,j ⊗ L
∗
i,k

and the formula (18) for the Euler class follows.
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On the other hand, q is the projection from the partial flag variety Ga/Pc,d

to a point, where a = c+ d. The formula for equivariant integration on the full
flag variety is given by

(19)

∫

Ga/B
f =

∑

Sa

(−1)l(w)w · f

e∏

i=1

∏

j<k≤ai

(xi,j − xi,k)

Thus, we have that
∫

Q(c,d)

f =

∫

F(c,d)

∫

Pc,d/Bc+d

1∏e
i=1 ci!di!

fD =

∫

Gc+d/Bc+d

1∏e
i=1 ci!di!

fD,

where D =
∏

j<k≤ci
(xi,j − xi,k)

∏
ci<ℓ<m≤ci+di

(xi,ℓ − xi,m). The integration for-

mula follows then from (19). �

3.2. Demazure operators. The splitting and merging maps can be described
algebraically via Demazure operators acting on polynomial rings. The i-th De-

mazure operator or difference operator ∆i = ∆si acts on k[x1, . . . xn] by
sending f to f−si(f)

xi−xi+1
, where si = (i, i + 1) denotes the simple transposition act-

ing by permuting the ith and (i+ 1)th variable. If w = si1si2 . . . sil is a reduced
expression of w ∈ Sn we define ∆w = ∆i1∆i2 · · · sil . This is independent of the
reduced expression, [Dem73]. If G is a product of symmetric groups we denote by
w0 ∈ G the longest element. Demazure operators satisfy the twisted derivation
rule

∆i(fg) = ∆(f)g + si(f)∆i(g)

and more generally for a reduced expression w = si1si2 . . . sil the formula

∆i1∆i2 · · ·∆il(fg) =
∑

Ai1Ai2 · · ·Ail(f)Bi1Bi2 · · ·Bil(g)(20)

where the sum runs over all possible choices of either Aj = ∆j and Bj = id or
Aj = sj and Bj = ∆j , for each 1 ≤ r.

Proposition 3.6. Let (c,d) be a vector composition.

(1) Assume c+ d = (ci + di)αi for some i, then

int(f) = ∆
w

ci,di
0

where wci,di
0 ∈ Sci+di denotes the shortest coset representative of w0 in

Sci+di/(Sci ×Sdi). In general, int(f) is a product of pairwise commuting

Demazure operators wci,di
0 , one for each i.

(2) Merging successively from a vector composition (αi, αi, . . . , αi) of length
r to rαi equals the Demazure operator for w0 ∈ Sr,

(21) ∆w0(f) =
∑

w∈Sr

(−1)l(w)w(f)
1∏

1≤i<j≤r(xi − xj)
.

(3) The split c+ d into c and d where either ci+1di = 0 for all i or c+ d =
(ci + di)αi for some i, is just the inclusion from Λ(c+ d) to Λ(c,d).
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Proof. Part (3) is obvious, since E = 1 by Remark 3.5. The second statement is
clear for r = 1 and r = 2. The successive merge of the first r− 1 αi’s is given by
induction hypothesis, hence we only have to merge with the last αi and obtain

f 7→
∑

y∈Sr−1×S1

(−1)l(y)
y(f)

(r − 1)!

1∏
1≤i<j≤r−1(xi − xj)

=: P

7→
∑

z∈Sr/Sr−1×S1

(−1)l(z)z(P ) =
∑

z,y

(−1)l(z)+l(y)zy(f)
1∏

1≤i<j≤r(xi − xj)
.

Hence (2) follows from the general formula for ∆w0 , [Ful97, 10.12]. Associativity
of the merges and formula (2) gives int(f)∆w0(ci,di) = ∆w0(ci+di) = ∆w0(ci,di)∆w0(ci,di),
where w0(ci, di) and w0(ci+di) are the longest elements in Sci×Sdi and Sci+di re-
spectively. Since ∆w0(ci,di) surjects to the Sci×Sdi-invariants, int(f) = ∆w0(ci,di)

and so (1) follows. �

3.3. The pictorial interpretation. As shown in [VV09], the quiver Hecke
algebra R(d) is isomorphic to the diagram algebra introduced by Khovanov and
Lauda in [KL09]. This result allows to turn rather involved computations in the
convolution algebra into a beautiful diagram calculus. Motivated by these ideas,
we present now a graphical calculus for the algebra A where the split and merge
maps from Proposition 3.4 are displayed as trivalent graphs. We will always read
our diagrams from bottom to top. We represent

• the usual (vertical) algebra multiplication as vertical stacking of dia-
grams,
• horizontal multiplication as horizontal stacking of diagrams,
• the idempotent eµ̂ as a series of lines labeled with the parts of the vector
composition or equivalently the blocks of the residue sequence,

µ̂(1) µ̂(2)

· · ·

µ̂(r−1) µ̂(r)

• the morphism (c,d) −→ (c+ d) as a joining of two strands c,d,

c d

c+ d

• the morphism (c+ d) −→ (c,d) as its mirror image,

c d

c+ d

• multiplication by a polynomial is displayed by putting a box containing
the polynomial.
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A typical element of A is obtained by horizontally and vertically composing
these morphisms. The composition of a merge followed by a split of the form
(c,d)→ (c+d)→ (d, c) is also abbreviated as a crossing and denoted (c,d)→
(d, c).

Remark 3.7. Our calculus is an extension of the graphical calculus of [KL09]:
given a crossing as in the Khovanov-Lauda picture, we interpret it as merge-split
of the kth and (k + 1)th strands:

αi

αi

αj

αj

αi αj

αi + αj

αiαj

 

Assuming it is the ath αi and bth αj in the residue sequence.

• If j 6= i, i+1 then our map just flips the tensor factors k[xi,a]⊗k[xj,b] 7→k[xj,b]⊗ k[xi,a].
• If i = j then we associate the Demazure operator ∆k as in [KL09].
• For j = i+1, we multiply by xi+1,a−xi,b followed by flipping the tensor
factors.

In each case, this agrees with the action Poℓ defined in [KL11], though Khovanov
and Lauda have a single alphabet of variables, which they index by their left-
position, as opposed to having separate alphabets for each node of the Dynkin
diagram. We believe that when one incorporates non-unit dimension vectors,
the latter convention is more convenient. Lemma 3.3 implies that crossings have
degree 1, −2, or 0 according to the cases j = i ± 1, i = j or j 6= i, i ± 1
respectively. Given a single strand labeled with the a-th αj we denote, following
[KL09] multiplication with xRj,a also by decorating the strand with R dots.

To keep track of the permutation w appearing in the Demazure operators ∆w,
it will be useful to work also with residue sequences, interpreting the numbers
occurring in a residue sequence as colors from the chart {1, . . . , e}. If the sequence
is of length d, then permutations in Sd permuting only inside the colors can be
viewed as elements of Sd, where di is the number of i’s appearing. We want to
associate to each idempotent, elementary split or merge such a permutation as
follows:

(22) 1

1

1

1

1

1

2

2

2

2

1

1

1

1

2

2

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

1

1

1

1

1

1

2

2

2

2

1

1

1

1

2

2

To an idempotent corresponding to a residue sequence of length d we attach
the identity element in Sd which corresponds to the identity element in Sd. To
a split (c + d) −→ (c,d) we associate also the identity element in Sc+d, which
when viewed as a permutation in Sc+d is sending the a to b if on place a of the
residue sequence of (c+ d) we find the k-th j, whereas the k-th j in the residue
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sequence for (c,d) is on place b. To an elementary merge M : (c,d) −→ (c+ d)

we associate the product w = w(M) =
∏e

i=1 w
ci,di
0 . In the example (22) we have

the permutations (written in cycle decomposition) (1, 3, 5, 2, 4)(6, 8, 7) ∈ Sd =
S5 × S3 ⊂ S8.

Note that ∆ω(M) for a merge M is precisely the Demazure operator from
Lemma 3.6. By (18), a split corresponds to an inclusion followed by multiplica-
tion with some polynomial. For a composition X = M1M2 · · ·Mt of splits and
merges let ω(X) = ω(M1)ω(M2) · · ·ω(Mt), where ω of a split is, compatible with
the definition above, just the identity permutation. For a finite linear combina-
tion X ′ of such X’s we let ω(X ′) be the the sum of all ω(X)’s of maximal length.
The following relations are basic relations in the algebra A which we call braid
relations:

Proposition 3.8. Let b, c,d be vector compositions.

(1) Let E be the Euler class attached to the splitting (c + d) −→ (c,d) and
∆w = ∆

w
c1,d1
0
· · ·∆

wce,de
0

. Then

(c+ d) −→ (c,d) −→ (c+ d) = ∆w(E)(c + d)
id
−→ (c+ d)

or equivalently in terms of diagrams:

c d

c+ d

c+ d

= ∆w(E)

c+ d

c+ d

In particular, if X := (c,d) → (d, c) is a crossing then X2 = fX for
some (possibly zero) polynomial f .

(2) Let

X1 := (b, c,d) −→ (c,b,d) −→ (c,d,b) −→ (d, c,b)

X2 := (b, c,d) −→ (b,d, c) −→ (d,b, c) −→ (d, c,b)

X3 := (b, c,d) −→ (b+ c+ d) −→ (d, c,b)

Then X1 = X2 + R, and X1 = X3 + R′ where ω(R), ω(R′) < ω(X1) =
ω(X2). Hence up to lower order terms X1 ≡ X2 ≡ X3, in diagrams

b c d

b c d

≡

b c d

b dc

≡

d c b

b c d

=:

d c b

b c d

Proof. Let x = wc1,d1
0 ·wce,de

0 . Recall that ∆i(gf) = ∆i(g)f + si(g)∆i(f) for any
f, g and ∆i(f) = 0 if f is si-invariant. Hence ∆x(Ef) = ∆x(E)f for any total
invariant polynomial f and the first claim follows. Let now x1 = w(X1) and
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x2 = w(X2). Then obviously x1 = x2 and X1 = α∆x1 +R1 and X2 = β∆x2 +R2

for some polynomials α, β and R1, R2 with ω(R1), ω(R2) < ω(X1) = ω(X2).
We still have to verify that α = β up to terms with ω of smaller length and
the definition of (18). Let X1 be the composition E3 ◦M3 ◦ E2 ◦M2 ◦ E1 ◦M1

where the Mi denotes the i-th merge and Ei denotes the multiplication with an
Euler class E(i). We verify the claim by invoking the definitions and the equality
∆i(gf) = si(g)∆i(f) + ∆(g)f . First note that up to lower order terms

M2 ◦E1 = w




e∏

i=1

∏

1≤r≤ci+1
ci+1≤s≤bi+ci

(xi+1,r − xi,s)


M2

where w is the permutation associated with M2 via (22), hence

M2 ◦ E1 =
∏

1≤r≤ci+1
ci+di+1≤s≤bi+ci+di

(xi+1,r − xi,s)M2.

Repeating these type of calculations we obtain

X1 =

e∏

i=1




∏

1≤r≤di+1
di+1≤s≤ci+di

(xi+1,r − xi,s)
∏

1≤r≤di+1
ci+di+1≤s≤bi+ci+di

(xi+1,r − xi,s)

×
∏

di+1+1≤r≤ci+1+di+1
ci+di+1≤s≤bi+ci+di

(xi+1,r − xi,s)


 M3 ◦M2 ◦M1

X2 =

e∏

i=1




∏

di+1+1≤r≤ci+1+di+1
ci+di+1≤s≤bi+ci+di

(xi+1,r − xi,s)
∏

1≤r≤di+1
ci+di+1≤s≤bi+ci+di

(xi+1,r − xi,s)

×
∏

1≤r≤di+1
di+1≤s≤ci+di

(xi+1,r − xi,s)


 M3 ◦M2 ◦M1

and therefore α = β. Note also that ifMi = ∆wi
thenM3M2M1 is the Demazure

operator corresponding to the product w = w3w2w1 and the last claim follows
as well. �

Example 3.9. Let e = 3 and b = (2, 1, 0), c = (1, 1, 0),d = (1, 1, 0). Then
X1 ≡ X2 ≡ X3 : (b, c,d) −→ (d, c,b) equal

(x2,1 − x1,2)(x2,1 − x1,3)(x2,1 − x1,4)(x2,2 − x1,3)(x2,2 − x1,4)∆s1s2s3s1s2∆s1s2s1

up to lower order terms where si (respectively si) denotes the ith transposition
for the strands colored by 1 (respectively by 2) in Sd = S5 × S3.

21



3.4. An explicit basis of A. We construct and describe explicitly a basis of A
by geometric arguments and then interpret it diagrammatically. We again fix a
dimension vector d.

Fix µ̂, λ̂ ∈ VCompe(d) with residue sequences res µ̂ and res λ̂; and let Sµ̂

and Sλ̂ be the subgroups of Sd preserving the blocks. Note that µ̂ is deter-
mined uniquely by res µ̂ and Sµ̂. Now, fix a permutation p ∈ Sd such that
p(res µ̂) = res λ̂ (hence p ∈ Sd) and let p− be its shortest double coset represen-

tative in Sλ̂\Sd/S
µ̂. Note that in the graphical pictures (22) an element p ∈ Sd

is a shortest coset representative in Sµ̂\Sd/S
λ̂ if and only if strands with the

same color which end or start in the same block do not cross. In particular,
idempotents, splits and merges correspond to shortest double coset representa-
tives.

To the triple µ̂, λ̂, p−, we associate a composition of merges and splits from

µ̂ to λ̂ as follows: First, let µ̂′ be the unique vector composition with residue
sequence

res(µ̂′) = p−1
− (res λ̂) = p−1

− p(res µ̂)

such that Sµ̂′

= Sµ̂ ∩ p−S
λ̂p−1

− , and similarly, λ̂
′
the unique vector composition

so that
res(λ̂

′
) = p−(res µ̂) = p−p

−1(res λ̂)

and Sλ̂
′

= Sλ̂ ∩ p−1
− Sµ̂p−.

In other words we first refine the blocks of res µ̂ into res µ̂′ as coarse as possible
such that p− sends all elements in a block of res µ̂ to the same block of res λ̂.

Similarly refine λ̂ into λ̂
′
again as coarse as possible such that p−1

− sends all
elements in a block to the same block.

Proposition 3.10. The vector compositions µ̂′, λ̂
′
have the same length (i.e.

number of blocks), say ℓ, and λ̂
′
can be obtained from µ̂′ by some permutation

q ∈ Sℓ of its blocks inducing p− on the residue sequences.

Proof. Each part of µ̂′ is given by the numbers of 1’s, 2’s, etc. in a given block of
the residue sequence for µ̂ which are sent to a fixed block of λ̂. It is obtained by
refining µ̂ according to the blocks of res λ̂ (read from left to right) they are sent

to. On the other hand, the parts λ̂
′
have the same description, just reversing

the roles of λ̂ and µ̂; thus, we just change the order of the blocks, which gives
the permutation q ∈ Sℓ as asserted. �

For each p ∈ S
λ̂
\Sd/Sµ̂, we find the associated permutation q as in Propo-

sition 3.10. Fix a reduced decomposition q = si1 · · · siℓ with the corresponding

morphism µ̂′ q
−→ λ̂

′
given by composition of crossings and define

µ̂
p;1
=⇒ λ̂ := µ̂ −→ µ̂′ q

−→ λ̂
′
−→ λ̂.

Of course, this definition depends on our choice of reduced decomposition for q.

For h ∈ Λ(µ̂′) set let µ̂′ h
−→ µ̂′ be multiplication with h and set

µ̂
p;h
=⇒ λ̂ := µ̂ −→ µ̂′ h

−→ µ̂′ q
−→ λ̂

′
−→ λ̂.

Theorem 3.11. The morphisms µ̂
p;h
=⇒ λ̂ generate A as a k-vector space. In

fact, if we let range
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• (µ̂, λ̂) over all ordered pairs of vector compositions of type e,
• p over the minimal coset representatives w in S

λ̂
\Sd/Sµ̂ and

• h over a basis for Λ(µ̂′),

then the morphisms µ̂
w;h
=⇒ λ̂ form a basis of A.

Remark 3.12. If we choose different reduced decompositions for one q, the
resulting elements will differ by a linear combination of maps corresponding
to shorter double cosets (Proposition 3.8) which also shows that non-reduced
decompositions can be replaced by reduced ones by changing h.

Let q as in Proposition 3.10 and q = sik · · · si1 a reduced decomposition.

where si = (i, i+1) ∈ Sℓ is a simple transposition; let q(j) = sij · · · si1 . From this
reduced decomposition, we can read off a string diagram of q, as in Khovanov-
Lauda [KL09]. We let µ̂2j = q(j)(µ̂′) and µ̂2j+1 be the merge of µ̂2j at index

ij+1. Then, of course, µ̂2j is a split of µ̂2j at index ij . In particular, µ̂2k = λ̂
′
.

For each w ∈ Sµ̂\Sd/Sλ̂, let p(w) be the unique permutation in Sd which
acts as w does on each individual color, where [1, d] is colored according to

µ̂ for the domain and λ̂ for the image. Put another way, if we think of Sd
as acting on colored alphabets 11, . . . , d11, 1

2, · · · d22, . . . , and p(µ̂) is the unique
minimal length permutation sending this sequence to one colored according to
the residue sequence of µ̂, then p(w) = p(λ̂) ·w ·p(µ̂)−1 (where p(λ̂) is the unique

permutation sending a totally ordered sequence of 1’s, 2’s etc. to res λ̂).

Proof of Theorem 3.11. Our method of proof is to show that this remains a basis
when we take associated graded of our algebra. The filtration we require is
geometric in nature.

Forgetting the representation (and only keeping the flags) defines a canonical

map Φ : H(µ̂, λ̂) → F(µ̂) × F(λ̂) which is Gd-equivariant. Every fiber is the
space of quiver representations on a vector space preserving a particular pair of
flags, which is naturally an affine space (one can assume both flags are spanned
by vectors in a fixed basis, and thus the condition of preserving the pair of flags is
simply requiring certain matrix coefficients to vanish). Thus, over each Gd-orbit,
the map is an affine bundle, but with a different fiber over each orbit.

The Gd-orbits on F(µ̂) × F(λ̂) are in bijection with the double coset space
Sµ̂\Sd/Sλ̂; if we choose completions of the partial flags to complete flags, their
relative position is an element of Sd, and its double coset is independent of the
completion chosen.

That is, using the Bruhat decomposition with fixed lifts of elements from Sd
to Gd it sends an element (xPt(µ̂), yPt(λ̂)), x, y ∈ Sd to x−1y, and a shortest

double coset representative w defines the orbit Fw of all elements of the form
(gPt(µ̂), gwPt(λ̂)), g ∈ Gd. A pair of flags contained in Fw is said to have relative

position w.
The orbit Fw is an affine bundle over Gd/(Pµ̂ ∩wPλ̂

w−1) via the bundle map

(gPt(µ̂), gwPt(λ̂)) 7→ g(Pµ̂ ∩ wPλ̂
w−1),

and so both the orbit and its preimage in Gd have (equivariant) homology con-
centrated in even degrees.
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Using the surjection Φ we can partition H(µ̂, λ̂) into the preimages of the
orbits and filter the space by letting Hk be the union of orbits with length of the
shortest representative ≤ k. The space Hk \ Hk−1 is a disjoint union of affine
bundles over partial flag varieties, and in particular has even homology. The
usual spectral sequence for a filtered topological space shows that HBM

∗ (H(µ̂, λ̂))
has a filtration whose associated graded is the sum of the homologies of these
orbits (the spectral sequence degenerates immediately for degree reasons because
of the concentrations in even degrees).

Thus, it suffices to show that the morphisms µ̂
w;h
=⇒ λ̂ pass to a basis of the

associated graded. That is, if we fix w, that the classes µ̂
w;h
=⇒ λ̂ pullback to a

basis of HBM
∗ (Φ−1(Fw)/G).

It is enough to show that µ̂
w;1
=⇒ λ̂ goes to the fundamental class of Φ−1(Fw),

since adding the h simply has the effect of multiplying by classes that range over
a basis of H∗(Φ−1(Fw)/G).

Consider the iterated fiber product

H(µ̂, w, λ̂) =

Q(µ̂0, µ̂)×Q(µ̂0)
Q(µ̂0, i1)×Q(µ̂1)

Q(µ̂2, i1)×Q(µ̂2)
Q(µ̂2, i2)×Q(µ̂3)

· · ·

×Q(µ̂2k−2)
Q(µ̂2k−2, ik)×Q(µ̂2k−1)

Q(µ̂2k, ik)×Q(µ̂2k)
Q(µ̂2k, λ̂)

where Q(µ̂0, µ̂) denotes the subset of Q(µ̂0) such that the associated graded
remains semi-simple after coarsening the flag to one of type µ̂. Recall that by
the definition of µ̂2k+1 we have that

Q(µ̂k, µ̂k+1) = Q(µ̂k, ik+1) Q(µ̂k, µ̂k−1) = Q(µ̂k, ik).

We can think of this fiber product as the space of representations with compatible
flags F,F0, . . . , F2k, F

′ of dimension vectors µ̂, µ̂0, . . . , µ̂2k, λ̂ respectively such
that if any two consecutive flags have subspaces of the same size, those spaces
must coincide. We have a map bw : H(µ̂, w, λ̂)→ H(µ̂, λ̂) which must remembers

the flags F and F ′ and µ̂
w;1
=⇒ λ̂ = b∗[H(µ̂, w, λ̂)] is the push-forward of the

fundamental class of H(µ̂, w, λ̂).

More generally, we can identify Λ(µ̂2k) with the classes in H∗(H(µ̂, w, λ̂))
generated by the Chern classes of the tautological bundles corresponding to the

successive quotients of the flag F2k. Then µ̂
w;h
=⇒ λ̂ = b∗(h ∩ [H(µ̂, w, λ̂)]) is the

pushforward of the cap product of h with the fundamental class (the Poincaré
dual of the class h).

Lemma 3.13. The image of the map bw lies in Hℓ(w) and induces an isomor-

phism between the locus in H(µ̂, w, λ̂) where F and F ′ have relative position w
and Φ−1(Fw).

Proof. Let p(j) be the element of Sd induced by acting on the blocks of res µ̂′ with
q(j). By the usual Bruhat decomposition, we must have that F2j , considered as

a flag on ⊕e
i=1Vi, has relative position ≤ p(j) with respect to F and ≤ p(j)p(w)−1

with respect to F ′. Since p(j) ≤ p(w) in right Bruhat order (its inversions are a
subset of those of p(w)), this condition uniquely specifies F2j (which also uniquely
specifies F2j−1, since this is a coarsening of F2j).
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Thus, we need only show that this flag is compatible with the decomposition
⊕e

i=1Vi and strictly preserved by the accompanying quiver representation f . The
former is clear, since we can choose a basis compatible with this decomposition
such that both F and F ′ contain only coordinate subspaces; thus, the spaces of Fj

are coordinate for this basis as well. It follows that they are also compatible with
the decomposition. The latter is a well-known property of Bruhat decomposition:
if a nilpotent preserves two different flags F and F ′, then it preserves any other
flag F ′′ that fits into a chain where the relative position of F and F ′′ is v, that
of F ′′ to F ′ is w, and ℓ(vw) = ℓ(v) + ℓ(w). We simply apply this to f thought
of as a nilpotent endomorphism of ⊕e

i=1Vi. �

Thus, we have a Cartesian diagram

Φ−1(Fw) H(µ̂, λ̂)

b−1(Φ−1(Fw)) H(µ̂, w, λ̂)

b≀

If we push-forward and pull-back h ∩ [H(µ̂, w, λ̂)] from the bottom right to

upper left, we obtain the class of µ̂
w;h
=⇒ λ̂ in the associated graded with respect

to the geometric filtration, thought of as a Borel-Moore class on Φ−1(Fw). We
can also calculate this class by pull-back and pushforward; this goes to h ∩
[Φ−1(Fw)] where we consider h now as a class on Φ−1(Fw) by pull-back. The
tautological bundles for F2k pulled back to Φ−1(Fw) induce an isomorphism
Λ(µ̂2k)

∼= H∗(Φ−1(Fw)/G), and cap product with the fundamental class induces

an isomorphism H∗(Φ−1(Fw)/G) ∼= HBM
∗ (Φ−1(Fw)/G). Thus, the classes µ̂

w;h
=⇒

λ̂ pull-back to a basis of HBM
∗ (Φ−1(Fw)/G); thus ranging over all w, we obtain

a basis of the associated graded. These vectors must thus have been a basis of
HBM

∗ (H(µ̂, λ̂)). �

Remark 3.14. Theorem 3.11 could also be proved diagrammatically. The lin-
early independence follows analogously to the arguments in [KL09] as follows:

Let µ̂, λ̂ be fixed. By construction, µ̂
w;h
=⇒ λ̂ is zero if w 6= w−. Let S be the split

from λ̂ into unit vectors and M the merge from unit vectors to µ̂. Then a linear

combination
∑
αw,h(µ̂

w;h
=⇒ λ̂) is zero if and only if

∑
αw,hS ◦ (µ̂

w;h
=⇒ λ̂)◦M = 0

(because M is surjective and composing with S is injective. The linear indepen-
dence is therefore given by [KL09, Theorem 2.5].

Theorem 3.11 provides a basis which is natural diagrammatically as well as
geometrically, and Proposition 3.8 provides some fairly obvious relations, we do
not have a complete set of relations defining our algebras. Although we have
reduced the question to one of linear algebra, it appears to be quite difficult
linear algebra and we are left with the following problem:

Problem 3.15. Find an explicit presentation with generators and defining re-
lations of the algebras Ad (or at least Morita equivalent one) and A.

The following result describes its center (which is a Morita invariant):
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Lemma 3.16. The ring of total invariants R(d)Sd is naturally isomorphic to
the center of Ad.

Proof. The proof is essentially identical to [KL09, 2.9]. Restricting the action
maps simultaneously to the total invariants, defines a map α from R(d)Sd into
the center of Ad. For each µ̂ ∈ VCompe(d), we can obtain a new vector compo-
sition µ̂′ ∈ VCompe(d) by splitting each dimension vector between each colors.
By Proposition 3.4, composing with this defines an inclusion from Aeµ̂ to Aeµ̂′ .

Now, we obtain a third vector composition µ̂′′ ∈ VCompe(d) by reordering all
the colors in the residue sequence, the smallest to the left, by permuting the
blocks by applying crossings. In this case the Demazure operator from Proposi-
tion 3.4 is the identity and we get an inclusion from Ae′µ̂ to Aeµ̂′′ . It follows that

Aeµ̂ is a submodule (not necessarily direct summand) of Aeµ̂′′ . In particular,

every central element acts non-trivially on some P (µ̂′′) = Aeµ̂′′ . Furthermore,

every P (µ̂′′) is just obtained by inducing the direct sum of modules of the form
P ((d1, 0, . . . )), P ((0, d2, 0, . . . )), . . . ) . . .. We thus have an injective homomor-
phism β : Z(Ad) → eµd

Aeµd

∼= R(d)Sd given by ψ(z) = eµd
. Furthermore, the

composition β ◦ α is the identity on R(d)Sd . Thus, β is surjective as well, and
gives the desired isomorphism. �

4. Extended quiver representations and convolution algebra

In this section we extend our convolution algebras to a “higher level version.”
Just as in [Web10a, §4], we consider not only quiver representations of Γ, but
equip them with extra data, motivated by the construction of quiver varieties
of Nakajima [Nak94], [Nak98], [Nak01]. We equip the quiver Γ with shadow
vertices, one for each i ∈ V together with an arrow pointing from the ith vertex
to the i-th shadow vertex, see Figure 1 were the shadow vertices are drawn in
red/grey. For given ν : V→ Z≥0, we extend the affine space (2) of representations
of a fixed dimension vector d to the affine space

Repd;ν := Repd ×
⊕

i

HomK

(
Vi,K

ν(i)
)
, Repν =

⊔

d

Repd;ν

of representations (V, f, γ) shadowed by vector spaces Kν(i). It comes endowed
with the product Gd-action.

Definition 4.1. Assume we are given a weight data consisting out of

• an ℓ-tuple ν = (ν1, . . . , νℓ) of maps V→ Z≥0, called an ℓ-weight,
• an ℓ + 1-tuple µ̀ = (µ̂(0), µ̂(1), . . . , µ̂(ℓ)) of vector compositions of no
fixed length, but all of type e.

The we call µ̂ = µ̂(0)∪· · ·∪µ̂(ℓ) ∈ VCompe(d) the associated vector compo-

sition and denote by Q(µ̀) the subspace of Q(µ̂) ×
⊕

iHomK(Vi,K
ν(i)) defined

as

Q(µ̀) =
{
((V, f, F ), {γi}) | γi(Ẁi(k)) ⊂ K

ν1(i)+···+νk(i)
}

where as usual Ka ⊂ Kb for a ≤ b is the subspace spanned by the first a unit vec-
tors, and Ẁi(1) ⊂ Ẁi(2) ⊂ · · · ⊂ Ẁi(ℓ+ 1) = Vi is the partial flag at the vertex
i coarsening Fi and obtained by picking out the largest subspace corresponding to
each part of µ̀.
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Just as an unadorned representation carries a canonical socle filtration (i.e. a
filtration starting with the maximal semi-simple submodule and proceeding such
that the successive quotients are maximal semi-simple), an extended represen-
tation (V, f, γ) ∈ Repd;ν carries a slightly modified filtration which starts with
{0} ⊂ R1 = (W,f, γ) such that (W,f) is the largest subrepresentation (V, f) for

which γ(Wi) ⊂ Kν1(i)+···+νk(i) and proceeds inductively by considering the cor-
responding first step in (V/W, f , γ) pulled back to (V, f). The dimension vectors
of these subquotients define a weight data (ν, µ̀) where µ̀ denotes the type of the
multi flag Ri/Ri−1 induced by the filtration.

4.1. Extended convolution algebras. Generalizing (4), we have a projection
map

p : Q(µ̀)→ Repd;ν

where ν := ν1 + · · ·+ νℓ, and we can study the convolution algebra

Ãν := Ext∗D(Repν/G)

(⊕

µ̀

p∗kQ(µ̀),
⊕

µ̀

p∗kQ(µ̀)

)
∼=
⊕

µ̀,ν̀

HBM
∗ (H(µ̀, ν̀))

where H(µ̀, ν̀) ∼= Q(µ̀) ×Repd;ν
Q(ν̀)/G and the sum runs over all weight data

(ν, µ̀) with associated vector composition µ̂ ∈ VCompe(d).
Proposition 2.6 generalizes directly to the statement that

Proposition 4.2. The algebra Ãν has a natural faithful action on

Ṽ ν =
⊕

µ̀

H∗(Q(µ̀)) ∼= Λ(µ̂(0) ∪ · · · ∪ µ̂(ℓ)).(23)

No individual algebra (with vertical multiplication given by convolution) in
this family has a notion of horizontal multiplication. Instead, there is a horizontal
multiplication Ãν× Ãν′

→ Ãν∪ν′
which concatenates the tuples of weights. This

can, of course, be organized in a single algebra Ã, but for our purposes, it is
more profitable to think of the separate algebras Ãν . The following is a direct
consequence of our definitions:

Proposition 4.3. For each fixed dimension vector d, horizontal composition
induces a right A-module structure on Aν .

Using horizontal and vertical composition, the algebra Ãν is generated by a
small number of elements, like A is, which are defined in some sense locally and
also have an easy diagrammatic description. We mimic this construction now
in the extended case incorporating the shadow vertices. Of course, we still have
the old merges and splits not involving the shadow vertices, but also have a new
“move” on ℓ-tuples of compositions.

Definition 4.4. We call λ̀ a left shift of µ̀ (and µ̀ a right shift of λ̀) by c if
for some index m, we have that

λ̀(m) = µ̀(m) ∪ c and µ̀(m+ 1) = c ∪ λ̀(m+ 1).

In words, if a vector c has been shifted from the start of the m+1-st composition
of µ̀ to the end of the mth composition for λ̀.
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If λ̀ is a left shift of µ̀, then Q(λ̀) is naturally a subspace of Q(µ̀). Thus,
generalizing the construction after Definition 3.1, we can think of it as a corre-
spondence (read from right to left)

Q(λ̀)

Q(λ̀)

Q(µ̀)

Similarly, for right shifts we can reverse this correspondence and read from left
to right. Thus, the fundamental class of this correspondence gives elements of
Aν corresponding to left and right shifts, which we denote by µ̀→ λ̀ and λ̀→ µ̀.

Proposition 4.5. The degree of the map λ̀→ µ̀ or µ̀← λ̀ associated to right or
left shift by c at the index m equals

∑
i ciνm(i).

Proof. This follows from a direct calculation. �

Theorem 3.11 generalizes immediately to the algebra Ãν : If we let Sµ̀ be
the Young subgroup associated to the concatenation of the parts of µ̀, then the
following holds:

Proposition 4.6. If we let

• (µ̀, ν̀) range over all ordered pairs of ℓ+ 1-tuples of vector compositions
of type e,
• w range over minimal coset representatives in Sµ̀\Sd/Sν̀ and
• h range over a basis for Λ(µ̂j),

then the morphisms µ̀
w;h
=⇒ ν̀ form a basis of Ãν .

Proof. Completely analogous to the proof of Theorem 3.11. �

As in Section 3.1, we can also calculate how this morphism acts on the polyno-
mial ring Ṽ ν from (23). Using horizontal composition, we need only consider the
case where ν = (λ) (so l = 1) and look at pairs (∅,d) and (d, ∅) of vector compo-
sitions of type e. Both H((∅,d), (d, ∅)) and H((d, ∅), (∅,d)) are simply Q(d), and
thus their Borel-Moore homology is a rank 1 free module over H∗(BGd) ∼= Λ(d)

generated by the corresponding fundamental class. Their actions on Ṽ ν are sim-
ply the actions of ι∗ and ι∗ where ι : Q(d, ∅) → Q(∅,d) is the obvious inclusion
map.

Proposition 4.7. The following diagram commutes,

HBM
∗ (Q(d, ∅)) HBM

∗ (Q(∅,d))

Λ(µ̂(0) ∪ · · · ∪ µ̂(ℓ)) Λ(µ̂(0) ∪ · · · ∪ µ̂(ℓ))

ι∗

ι∗

BorelBorel
∏e

k=1 t
λ(k)
k

1

28



ν1 µ̂
(1)
µ̂

(2)
µ̂

(3) ν2 µ̂
(1)
µ̂

(2)
µ̂

(3) ωj αj+2αj αj+1 αj+2αj αj+1 αj+2αj αj+1

Figure 2. An idempotent and t(j;9) from Lemma 5.15 for e = 3.

where tk = xk,1 · · · xk,dk is the highest degree elementary symmetric function in
the alphabet (6) for the kth vertex in Γ.

Proof. The map ι is the inclusion of the 0-section of a Gd-equivariant vector bun-
dle, whose underlying vector bundle is trivial, but equals ⊕e

k=1Hom(Vk,K
λ(k))

equivariantly. As the second vector space is trivial, the Euler class of this bun-
dle is

∏e
k=1 ctop(V

∗
k)

λ(k). Since the Borel isomorphism sends the Chern class of
maximal possible degree ctop(V

∗
k) to tk, the result follows. �

4.2. Extended graphical calculus. We can extend our graphical calculus to
the algebras Ãν quite easily. We simply add a red band labeled with νi between
the black lines representing µ̂(i − 1) and µ̂(i). For instance, for fixed ν, the
idempotent e(ν,µ̀) corresponding to the weight data (ν, µ̀) and another element
of the algebra is graphically described in Figure 2.

The splitting and merging morphisms defined earlier are displayed as in Sec-
tion 3.3, except of additional red lines separating the multicompositions. We
have also diagrams associated to the new morphisms, that is to left and right
shifts. They are denoted by a (left resp. right) crossing of red and black strands,
as shown below:

(24)
a left shift a right shift

Hence Figure 3 (read as usual from bottom to top) is a merge and split followed
by a left shift.

Remark 4.8. Diagrammatically, Proposition 4.5 is assigning a degree to each
crossing of a red band with a black strand which agrees with the definitions in
[Web10a, 2.1].

4.3. The tensor product algebra and cyclotomic quotients. Just as A
contains an idempotent which projects down to the quiver Hecke algebra, the
algebra Ãν contains an analogous idempotent eT . Let

eT =
∑

eµ̀(25)

denote the idempotent in Ãν defined as the sum over all primitive idempotents
eµ̀ indexed by all vector multicompositions µ̀ where each composition appearing
is of the form αi, that is, the corresponding flag is complete.

The tensor product algebra T̃ ν from [Web10a, Def. 2.2] is then the cen-
tralizer algebra:

Proposition 4.9. eT Ã
νeT = T̃ ν
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Proof. By Proposition 4.2, we have a faithful action of eT Ã
νeT on

eT Ṽ
ν ∼=

⊕

µ̂(i)∈VCompfe(d)

H∗(Q(µ̀)) ∼= Λ(µ̂(0) ∪ · · · ∪ µ̂(ℓ)).

This is a sum of polynomial rings, corresponding to ℓ+ 1-tuples of sequences of
simple roots. By [Web10a, Proof of Prop. 2.4], T̃ ν acts on a sum of polynomial
rings with the same indexing set. (We can obtain the indexing used in [Web10a]
by taking i to be the concatenation of the sequences of roots in the description in
this paper, and the function κ to send j to

∑
k<j |µ̂(k)|.) Comparing the explicit

formulas of this action [Web10a, Figure 9] with the formulas from Propositions
3.4 and 4.7 shows that the action of a crossing or dot in the two calculi agree,
except in the case where e = 2. Thus, the images of eT Ã

νeT and T̃ ν in the
endomorphisms of this module are identified, giving the desired isomorphism.

The case of e = 2 is easily dealt with by a slight generalization of the represen-
tation given in [Web10a], following Rouquier [Rou08, 3.12]; if Rij(u, v) denotes
a polynomial such that Qij(u, v) = Rij(u, v)Rji(v, u) (with Qij as in [Web10a]),
then we can adjust the action to send a crossing of the k and k+1st black strands
to the operator Rik+1ik(yk, yk+1)(k, k + 1) · − when ik 6= ik+1. One can easily
check that the relations between these operators only depend on Qij and that

the representations of eT Ã
νeT and T̃ ν in the case where e = 2 just correspond

to different choices of Rij with the same Qij . In this way we get the asserted
identification. �

The quiver Hecke algebra R(d) has a very interesting family of finite dimen-
sional quotients, the cyclotomic quiver Hecke algebras T λ (implicitly depending
on our choice of d) where λ is an integer valued function on Γ. We will usu-

ally think of this function as a weight of the affine Lie algebra ŝle. As shown
in [BK09a], blocks of the diagrammatically defined cyclotomic quotients of the
quiver Hecke algebra are isomorphic to blocks of cyclotomic Hecke algebras for
symmetric groups. The latter are Hecke algebra which behave as though they
are of “characteristic e” (i.e. the cyclotomic quotient is defined using powers
of an element q from the ground field and e is the smallest number such that
1 + q + q2 + · · ·+ qe−1 = 0).

We want now to define similar quotients Aν of Ãν :

Definition 4.10. Let I = Iν be the ideal of Aν generated by all elements of the
form eαi

|a. We call this ideal the violating ideal and the quotient Aν = Ãν/I
cyclotomic quotient of Aν .

Pictorially, I is generated by all diagrams where at some point the left-most
strand is black and labeled with some simple root, see Figure 3 for an example.

Obviously, the idempotent (2) associated to an ℓ + 1-tuple will be 0 in this
quotient unless it begins with the empty set (hence a red strand to the left). To
avoid much tedious writing of ∅, we shall henceforth just deal with ℓ-tuples, and
leave the initial ∅ as given.

Note that if ν = (λ), and r is the element which is just a red strand labeled

with λ, then a 7→ r|a followed by projection defines an algebra map Ãλ → Aλ

which is surjective. The kernel of this map is called the cyclotomic ideal of
A. An argument analogous to [Web10a, Theorem 2.8] shows that this ideal has
a definition looking more like a traditional cyclotomic ideal.
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ν αi

Figure 3. An example of an element of the violating ideal.

Let T ν = T̃ ν/J be the cyclotomic quotient of the tensor algebra as defined in
[Web10a, Def. 2.2].

Proposition 4.11. eTA
νeT ∼= T ν

Proof. We first claim that any element x of eT Ã
νeT which is in the violating ideal

in Ãν is mapped to an element in the violating ideal of T̃ ν via the isomorphism
of Proposition 4.9. Now x is a sum of elements of the form abc where a ∈
eT Ã

ν , c ∈ ÃνeT and b = eαi
|b′ is a generator of I as above. First, we apply

Theorem 3.11 to a and c, so we may assume that a = a1a2 and c = c2c1 where
a1, c1 ∈ eT Ã

νeT , and a2 just joins and c2 just splits strands. In both cases
the leftmost strand is kept unchanged. Thus both commute with b, so abc =
a1ba2c ∈ eT Ã

νeT · b · eT Ã
νÃν . Similarly, abc = ac2bc1 ∈ ÃνÃνeT · b · eT Ã

νeT .
The claim follows and implies the proposition by definition of the violating ideal
J . �

5. A graded cellular basis

We specialize in the remaining sections to the case where ν is a sequence of
fundamental weights, so ν = (ωz1 , . . . , ωzℓ), where the j-th fundamental weight
is of the form ωj(k) = δj,k. We wish to show that Aν has a cellular basis, turning
it into a graded cellular algebra. Let us first recall the relevant definitions from
[GL96].

Definition 5.1. A cellular algebra is an associative unital algebra H together
with a cell datum (Λ,M,C, ∗) such that

(1) Λ is a partially ordered set and M(λ) is a finite set for each λ ∈ Λ;

(2) C :
⋃̇

λ∈ΛM(λ) ×M(λ) → H, (T, S) 7→ Cλ
T,S is an injective map whose

image is a basis for H;
(3) the map ∗ : H → H is an algebra anti-automorphism such that (Cλ

T,S)
∗ =

Cλ
S,T for all λ ∈ Λ and α, β ∈M(λ);

(4) if ξ ∈ Λ and S,T ∈M(λ) then for any x ∈ H we have that

xCξ
S,T ≡

∑

S′∈M(ξ)

rx(S
′,S)Cξ

S′,T (mod H(> ξ))

where the scalar rx(S
′,S) is independent of T and H(> µ) denotes the

subspace of H generated by {Cν
S′′,T′′ | ν > ξ,S ′′,T′′ ∈M(ν)}.

The basis consisting of the Cλ
T,S is then a cellular basis of H.

If moreover there is a function deg :
⋃

λ∈λM(λ) → Z, S 7→ degλS such that

for (S, T ) ∈ M(λ) ×M(λ) putting CS,T in degree degλS +degλT turns H into a
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graded algebra, H is called a graded cellular algebra with graded cell datum
(Λ,M,C, ∗,deg), see [HM10].

We want to construct now such a basis, indexed by pairs (T, S) of semi-
standard Young tableaux of the same shape λ (but, not necessarily of the same
type) with the shape λ ranging over the set Λ of all ℓ-multipartitions (i.e. an ℓ-
multicomposition where the parts are partitions). The involution ∗ will be given
by a vertical reflection of the diagram in the diagrammatical realization.

Definition 5.2. Given an ℓ-multipartition λ̂, a semi-standard λ̂-tableau is
a filling of the boxes of its ℓ-tuple of Young diagrams with numbers from the
ℓ-fold disjoint union of Z≥0, usually denoted with a subscript to show which of
the ℓ copies it comes from, subject to the following rules (when the partitions are
drawn in the English style):

• the entries in each component are in each row weakly increasing from left
to right and in each columns strictly increasing from top to bottom,
• the ith copy of Z cannot only be used in the first i partitions of the
multipartition.
• We will also always assume that our tableaux have no gaps, i.e. if jk
appears, then ik for all i ≤ j also appear in the tableau.

Here ≤ denotes the lexicographic order, first in the subscripts and then the num-
bers themselves.

The type of S is µ = (µ(1),µ(2), . . . ,µ(ℓ)) where µ
(k)
i denotes the multiplicity

of the number i coming from the kth copy of the alphabet.

Example 5.3. The example from [DJM98, 4.9] of shape ((4, 3), (2, 1), (2, 1)) ,

S =

(
11 11 11 21
21 21 31

, 12 33
22

, 13 13
23

)

is a semistandard multitableau of type ((3, 3, 1), (1, 1, 0), (2, 1, 1)).

A semi-standard λ̂-tableau S is called standard or a standard multitableau,
if each of the entries only appears once and super-standard if it contains only
the numbers 1, . . . n from the last alphabet.

As shown in [DJM98], the Ariki-Koike algebra H(q,Q1, . . . , Qℓ) from the in-

troduction is a cellular algebra with basis labeled by pairs of standard λ̂-tableaux
of the same shape, but varying over all λ̂.

We fix an ℓ-tuple of vertices z = (z1, . . . , zℓ) in Z/eZ, which is called the
charge. The content of a box in the ith row and jth column is i − j. If it
appears in the kth Young diagram then its residue is zk + j − i (mod e).

Definition 5.4. Let S be a semi-standard λ̂-tableau. Then wS denotes the per-
mutation of minimal length such that wS applied to the row reading word of S is
increasing.

In particular, wS is a shortest coset representative for the Young subgroup Sλ
attached to the rows (since the entries of each row are already weakly ordered)
acting from the right, and the Young subgroup Sµ associated to the multiplicities
of the entries in S (that is, the Young subgroup that fixes wS times the row
reading word) acting from the left.
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residue row sequence: |1 , 2 , 3 , 1 3 , 1 , 2 | 2

1 , 2 | 3 | 1 | 3 | 1 , 2 | 2

refine according
to entries

group according
to rows

1 , 2 | 3 | 3 | 2 | 1 , 2| 1

reorder according
to entries

reorder according
to rows

1 , 2 | 3 , 3 | 2 | 1 , 2 | 1

group according
to entries

refine according
to rows

The bottom line represents µ̀S, to the top line, λ̀S.

Figure 4. Construction of the element BS

The compositions λ and µ get refined by the following two vector ℓ-multicom-
positions λ̀S = (λ̂S(1), . . . , λ̂S(ℓ)) and µ̀S = (µ̂S(1), . . . , µ̂S(ℓ)):

λ̀S(k)[g, h] = #{boxes of residue h in the gth row of the kth Young diagram}

µ̀S(k)[g, h] = #{boxes of residue h and entry gk}

Note that the first does not depend on the entries of S, but only on the shape.
In particular, if ξ is a shape, then we will use λ̀ξ to denote λ̀S for a tableau of
shape ξ.

Example 5.5. Let e = 3, l = 1 and λ̂ = . Then S =
1 1 2 5
2 4 4
3

is a semistandard λ̂-tableau of type µ = (2, 2, 1, 2, 1). The row reading word is

1, 1, 2, 5, 2, 4, 4, 3 and therefore wS =

(
1 2 3 4 5 6 7 8
1 2 3 8 4 6 7 5

)
∈ S8, a shortest

coset representative for Sµ\S8/Sλ, where Sλ = S4×S3×S2 and Sµ = S2×S2×

S1 × S2 × S1. If z = (1) then the residues are
1 2 3 1
3 1 2
2

and we have

λ̀S = (((2, 1, 1), (1, 1, 1), (0, 1, 0)))

µ̀S = (((1, 1, 0), (0, 0, 2), (0, 1, 0), (1, 2, 0), (1, 0, 0))).

By construction wS is a shortest length representative in Sλ̀S
\Sd/Sµ̀S

, hence

we can invoke Proposition 4.6 and associate a basis vector in Aν :

Definition 5.6. Given S, a semi-standard µ̂-tableau, denote by BS the element

µ̀S
wS;1=⇒ λ̀S and by B∗

S
the element obtained by flipping the diagram vertically. Set

CS,T = B∗
S
BT for S and T semi-standard tableaux.

Since the shape of S is determined by the idempotent attached to λ̀S, applying
the definition of CS,T = B∗

S
BT to tableaux which are not the same shape gives

0. Also note that C∗
S,T = (B∗

S
BT)

∗ = (B∗
T
BS) = CT,S.

Now, let Λ be the set of ℓ-multipartitions ordered lexicographically, and for
ξ ∈ Λ let M(ξ) be the set of ξ-semi-standard tableaux (which is finite thanks
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to the last condition in Definition 5.2. Let C : M(ξ) ×M(ξ) → Aν be the map
(S,T) 7→ CS,T and the involution ∗ from Definition 5.6. Let deg(BS) be the
degree of the homogeneous element BS.

In the setup of Example 5.5, the element BS is displayed in Figure 4 and of
degree 0 + 0 + 2 = 2.

Theorem 5.7. The data (Λ,M,C, ∗,deg) is a graded cell datum for Aν .

Before giving the proof we want to emphasize that our construction can be
used to define a grading on the set of semistandard multitableaux S by setting
the deg(S) := deg(BS).

This degree function also has a combinatorial definition. For a semi-standard
tableau S let S(< ij) (or S(≤ ij)) be the subdiagram of all boxes with entries
smaller (or equal) ij respectively.

Definition 5.8. The degree dS(b) of a box b with entry ij in a semi-standard
tableau S is the number of boxes strictly below b of the same residue as b that
are are addable in the diagram S(≤ ij), minus the number of such boxes which
removable in S(< ij). The degree Deg(S) of a tableau is the sum of the degrees
of the boxes,

∑
b dS(b).

Note that this definition generalizes the usual definitions for standard tableaux
from [LLT96, §4.2], [AM00, Definition 2.4], [BKW11, §3.5].

Proposition 5.9. deg(S) = Deg(S)

Proof. First, we note that this formula is correct for super-standard tableaux.
Indeed, adding a box of residue i changes the geometrical degree by the number
of boxes in the same row with residue i+1 minus those with residue i (Proposition
3.3), hence equals zero if i is not the residue of the unique addable box strictly
below and 1 otherwise. (Alternatively, it follows from [HM10, 5.3], since the
element CS,T is equal to Hu and Mathas’s element ψS,T plus other homogeneous
elements of the same degree.) We can easily extend this to standard tableaux as
follows. Let θ ∈ Aν be the element which sweeps all black strands to the far right
and red strands to the left, while introducing no crossings between elements of
the same color. This element is discussed more extensively in [Web10a, §3.4].
Then the claim is just [BKW11, Corollary 3.14].

Finally, we consider the passage from standard tableaux to semi-standard. We
work by induction on the number of boxes in the diagram which share an entry
with another box. Consider the “highest” box that shares an entry with another
(the first encountered in the reading word), and consider the effect of raising by
1 the entries of all other boxes with greater or equal entries in the same alphabet.
This tableau has fewer boxes that share entries, and so, by induction, its degrees
Deg(S) agrees with deg(S). Let i be the residue of this box, and k the entry in
it.

The effect that this transformation has on the degree of the associated mor-
phism is as follows. The degree on the second part (the permutation) in Figure
4 stays the same, only the split and merge parts could change the degree; Thus,
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we are left considering the transformation:

c+ αi d

c+ d+ αi

d

c+ dαi

c+ αi

where c is the dimension vector of the k’s in the same row as our chosen box,
and d is the dimension vector of those in higher rows. The degrees of these
morphisms are

di−1 − di +
∑

cj(dj−1 − dj) and ci−1 − ci +
∑

cj(dj−1 − dj)

Hence the difference in degree equals ci−1 − ci − di−1 + di.
On the other hand, consider the change in Deg(S). Nothing changes for the

degrees of the boxes below our chosen one b. The degree b could be affected
by every row containing k’s. If that row has equal numbers of boxes labeled k
with residue i and i− 1 there are no changes; however, if there is one more with
residue i than i − 1, then an addable box of residue i was created by removing
the strip consisting of all boxes whose entry was changed from k to k + 1. If
there is one more i − 1 than i, then an addable box of residue i was destroyed.
Thus, the net change is exactly di − di−1. On the other hand, for each box in
the same row as our chosen one, a removable box below with residue i has been
created and one with residue i − 1 has been destroyed. Thus, the net change
from these is ci−1− ci. Thus, we arrive at the same difference, and by induction,
the proposition is proved. �

5.1. The proof of cellularity. We will organize our proof into several chunks.
The first step only concerns the tensor product algebras T ν and extends Hu
and Mathas’ basis from [HM10] to these algebras, the second proves that the
proposed cellular basis for the Schur algebra spans, the four shows that it is
indeed a cellular basis and the final fourth step compares the ideals with the
Dipper-James-Mathas cellular ideals.

Step I: the case of T . We start with the following easy observation

Lemma 5.10. eTCS,TeT =

{
CS,T if S and T are standard

0 otherwise

Proof. Recall from (25) that eT corresponds to the vector compositions of com-
plete flag type, which in turn correspond precisely to the standard tableaux. �

Thus, Theorem 5.7 would imply that the elements CS,T for standard tableaux
give a basis of T ν from Proposition 4.11. However we will prove this result first
as a stepping stone to the full proof. Let N denote the set of standard tableaux.

Theorem 5.11. The data (Λ, N,C|N , ∗) defines a cell datum for T ν .

Proof. By restricting our construction further to tableaux ν (instead of multi-
tableaux) and only using the last copy of Z we obtain an algebra

(26) T ν ⊂ T ν
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with a distinguished basis which is precisely the cellular basis from [HM10].
If one fixes the idempotents µ̀S and µ̀T, that is, fixes the multiset of entries

in the tableaux, then the map (S,T) 7→ (S⋄,T⋄) is injective (because of our no
gap condition). Since we already know from [HM10] that the CS,T for pairs of
tableaux which only use the last copy of Z are linearly independent, the map
given by a 7→ θaθ∗ is injective, and the elements CS,T for standard tableaux
are linearly independent. They are thus a basis by the dimension formula from
[Web10a, 3.6]. This establishes conditions (1) and (2) of cellularity, and (3) is
obvious from the definition as mentioned above.

Finally to see (4), let x ∈ T ν be an arbitrary element. Consider xBS; since the
CS,T’s are a basis we must have xB∗

S
=
∑

S′,T′ rx(S
′,S,T)CS′,T′ for some uniquely

defined coefficients rx(S
′,S,T′). For this coefficient to be not 0 we must have

µ̀′
T
= λ̀S; in other words, T′ is a semi-standard tableaux whose type is the shape

of S.
Thus, either T′ is the ground state tableau T S of the shape of S (by which we

mean the tableau where the entries are just the row numbers) or the shape of
T′ is above that of S in dominance order of ℓ-multipartitions, hence contained
in H(≥ µ), where µ is the shape of S. If we let rx(S

′,S) = rx(S
′,S, T S) then

xCS,T = xB∗
S
BT =

∑
S′
rx(S

′,S)CS′,T SBT. Note that CS′,T SBT = B′∗
S
BT SBT =

B′∗
S
BT = CS′,T since the shape of T and S′ equal the type of T S and BT S is then

just the identity. Hence we have precisely condition (4). �

Corollary 5.12. (Λ, N,C|N , ∗,deg) defines a graded cellular algebra.

Proof. By definition deg(CS,T) = deg(BS) + deg(BT). �

Step 2: signed permutation modules and spanning set. Let now n be a
fixed natural number and let

Rn =
⊕

|d|=n

Rd

be the subalgebra of the quiver Hecke algebra of diagrams with n strands. The
summand T ν

n of the algebra T ν from (26) corresponding to partitions of n is then
a cyclotomic quotient Rν

n of Rn.
In [BK09a, (4.36)], an isomorphism between Rν

n and a cyclotomic Hecke al-
gebra Hν

n of Sn with parameters (ζ, ζz1 , . . . , ζzℓ) was established, where ζ is an
element of the separable algebraic closure of k which satisfies ζ + ζ2 + · · ·+ ζe−1

and e is the smallest integer where this holds.
This isomorphism Rν

n
∼= Hν

n from [BK09a, (4.36)] depends on the choice of
certain polynomials Qr(i) which we want to fix now. It will turn out to be
convenient not to follow the suggested choice of [BK09a, (4.36)], but instead fix

Qr(i)(yr, yr+1) =





1− ζ + ζyr+1 − yr ir = ir−1
Pr(i)−1
yr−yr+1

ir = ir+1 + 1

Pr(i)− 1 ir 6= ir+1, ir+1 + 1

(27)

with the notations from [BK09a, (4.27)]. The equation [BK09a, (4.28)] implies
that (1− Pr(i))

sr = ζ + Pr(i), so the equations [BK09a, (4.33-35)] follow imme-
diately and this choice indeed defines an isomorphism of algebras

Rν
n
∼= Hν

n(28)
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In the following we will identify

T ν
n = Rν

n = Hν
n T ν = Rν :=

⊕

n≥0

Rν
n =

⊕

n≥0

Hν
n =: Hν(29)

Analogously, we will write A
ν
n =

⊕
|d|=nA

ν

d
.

In [Web10a, §5.3] the isomorphism 28 was extended to an isomorphism

T ν
n
∼= EndHν

n


 ⊕

∑ℓ
i=1 ai=n

Hν
nu

+
a


(30)

where u+a , for a = (a1, . . . , aℓ) ∈ Z
ℓ, is the element defined by Dipper, James and

Mathas, [DJM98, Definition 3.1], as

u+a =

ℓ∏

s=1

ak∏

k=1

(Lk − ζ
zs).

For an ℓ-multicomposition ξ, we let aξ =
(
0, |ξ(1)|, |ξ(1)| + |ξ(2)|, . . . , |ξ(1)| +

· · ·+ |ξ(ℓ−1)|
)
and, following [DJM98, (3.2)(ii)], will assume from now on that

0 ≤ a1 ≤ a2 ≤ · · · ≤ aℓ ≤ n.

Thus, we can describe the cyclotomic Schur algebra H
ν
n from the introduction

(for the parameters (q,Q1, Q2, . . . Qℓ) := (ζ, ζz1 , . . . , ζzℓ)) as the endomorphism
algebra of the T ν module

HomH
ν

n

( ⊕

|a|=n

Hν
nu

+
a ,
⊕

ξ

Hν
nu

+
ξ xξ

)
=
⊕

|ξ|=n

T νxξ(31)

where xξ is the projection to vectors which transform under the sign represen-
tation for the Young subgroup Sξ. We refer to the modules T νxξ as signed

permutation modules for T ν . Using the cellular basis of H
ν
n , one can easily

deduce, see [DJM98, (4.14)], that

Lemma 5.13. The dimension of T νxξ is precisely the number of pairs (S,T) of
tableaux on ℓ-multipartitions with n boxes with the same shape satisfying

• T is of type ξ (i.e. the number of occurrences of ij is the length of the
ith row in the jth diagram of ξ), and
• S is standard.

Step 3: graded cellular basis. We start with some preparatory lemmata. For
j ∈ Z/eZ and n ∈ Z≥0 we let ej;n be the idempotent for the vector composition
µ̂j;n = (αj , αj+1, . . . , αj+n), and let dj;n be its dimension vector. Note that for
fixed j and varying n such dimension vectors d are characterized by dk + 1 ≥
dk−1 ≥ dk for k 6= j and dj−1 ≤ dj ≤ dj−1 + 1.

Lemma 5.14. Let j ∈ Z/eZ and n ∈ Z≥0. Let e(d) be an idempotent corre-
sponding to a vector composition corresponding to step 1 flags. In Aωj , we have
e(d) = 0 unless d = dj;n for some n. Furthermore, e(dj;n)A

ωje(dj;n)
∼= k

Proof. Assume d 6= dj;n for any n. If there exists k 6= j such that dk > dk−1 or
dk > dk−1 +1 for k = j then set R = dk − dk−1− 1. In either case we claim that
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ωj d

d

=

ωj d

d− αk

r

d

=

ωj d

d− αk

d

= 0s

where the labels r and s with S = R − δj,k denote the number of dots on the
strand (following Remark 3.7). Since the two cases correspond to S = R ≥ 0
respectively S + 1 = R ≥ 1, the last equality holds. The second relation is
[Web10a, (2.2)] with Proposition 4.9. To see the first equality in case k 6= j note
that the second diagram corresponds to

f 7→ X(dk−1, dk)(f) := ∆w(

dk−1∏

r=1

(xk,1 − xk−1,r)x
R
k,1f),(32)

with w = sdk−1
· · · s2s1, where st denotes the transposition swapping the vari-

ables xk,t and xk,t+1; hence it is enough to see that X(dk−1, dk) = id or even
X(dk−1, dk)(1) = 1. If dk−1 = 1, 0 this is easily verified, and so we proceed by
induction. Using formula (20) we obtain

X(dk−1, dk) = ∆w(

dk−1−1∏

r=1

(xk,1 − xk−1,r)x
R
k,1)

+ ∆ws1(

dk−1−1∏

r=1

(xk,2 − xk−1,r)x
R
k,1)∆s1(x3,1 − x2,dk−1

)

= 0 + 1 = 1

using twice the induction hypothesis and the fact ∆s1(x3,1−x2,dk−1
) = 1. In case

k = j, the split in the diagram (just an inclusion) is followed by multiplication
with xRj,1 and the operator ∆w for w = sdj−1

· · · s2s1. Now if dk ≥ dk−1 for all
k 6= j and dj ≤ dj−1 + 1 we automatically have dk > dk−1 − 1 and dj < dj−1.
Hence e(d)A

ωje(d) 6= 0 then d = (dj;n) for some j, n.

In this case all elements e(dj;n)xe(dj;n) where x is of the form µ̀
w;h
=⇒ ν̀ (as in

Proposition 4.6) and w 6= id or w = id and h 6= 1 can be written in terms of
similar diagrams where a single strand is pulled off, so they are again zero and
only the scalars remain. �

Now, we consider the element t(j;n) := (
∏⌊n/e⌋

k=1 xj−1,k)eµ̂j;n
, that is, eµ̂j;n

with

a dot on every strand labeled by j − 1 and no dots on any others, see Figure 2.
This element plays an important role in the basis of Hu and Mathas, [HM10].
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Lemma 5.15. Let αi1 , αi2 , . . . αin be an arbitrary sequence of simple roots. Then

ωj αi1

αi1

αi2

αi2

αin−1

αin−1

αin

αin

=

{
∓t(j;n) if αig = αj−g+1 for all g,

0 otherwise.

Proof. The fact that if αig 6= αj−g+1 for some g then the element is 0 follows
easily from Lemma 5.14. Now let d = dj;n, and k = j + n. The proof is then
by induction on n. When n < e the claim follows directly from Lemma 3.4.
Otherwise, we claim that

(33)

ωj d αk

d+ αk

αkd

=

ωj d αk

αkd

+

ωj d

d

αk

αk

b

for some polynomial b ∈ Λ(d, αk). To see this let G and F denote the first and
second morphism. Abbreviating a = dk and setting E =

∏a
m=1(xk+1,m−xk,a+1)

we have

G(f) =

{
E∆

(k)
1 ∆

(k)
2 · · ·∆

(k)
a−1∆

k
a(f) if dk − dk+1 = 1

E∆
(k)
1 ∆

(k)
2 · · ·∆

(k)
a−1(f) if dk = dk−1,

(34)

where ∆k
i denotes the Demazure operator involving the variables xk,i, xk,i+1.

Note that F is a composition of first multiplying with an Euler class E1, followed
by a merge M1, an inclusion and finally a merge M2 as follows

F = (d, αk)→ (d− αk, αk, αk)→ (d− αk, 2αk)→ (d− αk, αk, αk)→ (d, αk)(1)

so we get

F (f) =

{
∆

(k)
1 ∆

(k)
2 · · ·∆

(k)
a−1∆

k
a(E1f) if dk − dk+1 = 1

∆
(k)
1 ∆

(k)
2 · · ·∆

(k)
a−1(E1f) if dk = dk−1.

where E1 =
∏a

m=1(xk+1,m − xk,a). The latter is a polynomial in xk,a of degree
a. Using (20) we obtain

F (f) =

{
∆

(k)
1 ∆

(k)
2 · · ·∆

(k)
a−1∆

k
a(E1)f +G(f) if dk − dk+1 = 1

∆
(k)
1 ∆

(k)
2 · · ·∆

(k)
a−1(E1)f +G(f) if dk = dk−1.

(35)

since all the other terms vanish. Hence the claim follows with b = F (1). By an
easy induction one can show

∆
(k)
1 ∆

(k)
2 · · ·∆

(k)
a−1∆

k
a(x

n
k,a) =

{
1 a = n

0 otherwise.
(36)
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and so we are only interested in the leading term (−1)axak,a of E1. On the other
hand, again an easy induction shows that

∆
(k)
1 ∆

(k)
2 · · ·∆

(k)
a−1(x

n
k,a) = (−1)a−1(e1(k + 1, a) − e1(k, a)),(37)

where e1(p, a) denotes the first elementary symmetric polynomial in the variable
xp,q, 1 ≤ q ≤ a. Altogether we obtain

b = F (1) =

{
(−1)a if dk − dk+1 = 1

e1(k + 1, a) − e1(k, a) if dk = dk−1,
(38)

Note that dk = dk−1 if and only if k + 1 = j.
So far we did not use the cyclotomic condition, which gives the even stronger

relation

(39)
ωj d αk

d+ αk

αkd

=

ωj d

d

αk

αk

b

by noting that the middle term in (33) is in fact zero by Lemma 5.15 (since
the idempotent after splitting of the two αk causes it to vanish). Since all
positive degree endomorphisms of e(d) are 0, we have e1(j, a)−e1(j−1, a)ed,αk

=
xj−1;aed,αj

and the Lemma follows therefore by induction �

Given an vector composition µ̂, there is an induced usual composition of
length r given by c(µ̂) = {

∑e
j=1 µ[−, j]}. These compositions are endowed with

the usual lexicographic order on parts (note, this is a refinement of dominance
order). We can define a filtration of Aωj by letting A

ωj

>c be the two-sided ideal
generated by eµ̂ for c(µ̂) > c in lexicographic order.

Lemma 5.16. For a composition n = (n1, n2, . . . ), we have

ωj αj

αj

αj+1

αj+1

αj+n1−1

αj+n1−1

αj+n1

αj+n1

αj+n1+1

αj+n1+1

αj

αj

αj+n2−1

αj+n2−1

αjn2

αj+n2

· · ·

≡ ±t(j;n1)|t(j+1;n2)|t(j+2;n3)| · · · (mod A
ωj

>c(dj;n1
,dj+1;n2

,... ))

Proof. Obviously, if the composition n has 1 part, then we are done by Lemma
5.15. We assume we have k+1 parts and the statement is true for k parts. Thus
the displayed diagram is equivalent to

t(j;n1)|t(j+1;n2)|t(j+2;n3)| · · · |t(j+k−1;nk)|m

where m is the last of the double headed pitchforks, modulo I := A
ωj

>c.
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By Lemma 5.15, this is the same as the desired element, plus

t(j;n1)|t(j+1;n2)|t(j+2;n3)| · · · |t(j+k−1;nk)|m′

where m′ lies in the cyclotomic ideal for Aωj+k . That is, it can be written so
that every diagram in it has a strand at the left labeled with a single root αq,
which in addition carries a dot if that root is αj+k−1, hence we have for instance
a situation

αqαj+k−1

αj+k−1

αj+k

αj+k

αp−1

αp−1

αp

αp

In order to complete the induction, it is sufficient to show that this can be
written as a sum of elements each of which factors through the join of all strands
(and hence is contained in I) or is contained in the cyclotomic ideal Aωj+k−1 (and
hence we can repeat our argument until we finally obtain only elements in I or
in the cyclotomic ideal J for Aωj .)

If q 6≡ p + 1 mod e, then the diagram above is already in J by Lemma 5.14.
If q ≡ p+ 1 6≡ j + k − 1 mod e then by (39) we have

ωj d αk

d+ αj

αkd

=

ωj d αk

αkd

If k = p+ n+ 1 = p+ 1 mod e then

ωj d αk

d+ αj

αkd

=

ωj d αk

αkd

since the middle term of (33) vanishes (consider the idempotent after splitting
of the two αk and apply Lemma 5.15). Hence our element factors through the
join of all strands and hence lies in A

ωj

>c. The lemma follows. �

Proposition 5.17. The vectors CS,T span Aν .

Proof. By Proposition 4.6, we need only show that vectors of the form

µ̀1
w−1

1 ;h1
=⇒ λ̀

w2;h2
=⇒ µ̀2

can be written in terms of the CS,T’s. As usual, we induct on c(λ̀).
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By Lemma 5.16, if λ̀ is not of the form λ̀S for some semi-standard tableaux,
then we can rewrite our vector to factor through ὴ which is higher in lexicographic
order. Thus, we need only consider show that elements of the form

µ̀1
w−1

1 ;h1
=⇒ λ̀S

w2;h2
=⇒ µ̀2

can be written in terms of the CS,T’s (which are the special case where h1 = h2 =
1). At the center of this diagram, the picture looks precisely like that shown in
the statement of Lemma 5.16, except that some of the legs may not split all the
way down to unit vectors. We assume that we add the action of h1 at the bottom
of that portion of the diagram, which is after applying all crossings coming from
w1. By Lemma 5.16, the central portion of the diagram lies in A>c(λ̀), and so

by induction, this element can be written as a linear combination of CS,T’s. By
induction, the result follows. �

Given a semi-standard tableau S, we can associate a standard tableaux S◦ of
the same shape with the following properties:

• Any box contains labels from the same alphabets in S and S◦.
• Any pair of boxes with different entries in S has entries in S◦ in the same
order.
• The row reading word of S◦ is maximal in Bruhat order amongst the
standard tableau satisfying the first 2 conditions.

While the map S 7→ S◦ is obviously not injective, it is injective on the set of
tableaux with a fixed type.

To µ̀ we associate a vector ϕµ̀ of Aνeµ̀ defined as follows: let K be the set of
vector compositions whose corresponding flags are complete refinements of that
for µ̀. For each λ̀ ∈ K, there is a diagram µ̀ −→ λ̀ which looks like a bunch of
chicken feet where the top is labeled with the sequence λ̂.

Definition 5.18. We let ϕµ̀ =
∑

K µ̀ −→ λ̀ and ϕ =
∑

µ̀ ϕµ̀. We call them
chicken feet vectors and their duals ϕµ̀∗, ϕ

∗ pitchfork vectors.

Now, consider the map Aν → T ν , a 7→ ϕaϕ∗. This map is obviously not
injective, but it is on enA

νem for a fixed pair of compositions n,m.

Lemma 5.19. For all S,T, we have

(40) ϕCS,Tϕ
∗ = CS◦,T◦ +

∑

S′<S◦

T′<T◦

aS′,T′CS′,T′ (mod A
ν

>c(λ̀S)
).

In particular, the elements CS,T are all linearly independent.

Proof. First, we note that

ϕB∗
S = B∗

S◦ +
∑

S′<S

aS′B
∗
S′ (mod A

ν

>c(λ̀S)
).

The first term of the RHS comes from the term µ̀S◦ −→ µ̀S · B
∗
S
= BS◦ of the

product on the LHS; for any other pitchfork terms, we will either have a standard
tableaux where ℓ(wS′) < ℓ(wS◦) (by assumption), or a non-standard tableau, in
which case the term lies in A

ν

>c(λ̀S)
. Thus, the equality follows. If we have a

non-trivial relation between CS,T’s, then by multiplying by idempotents en on
the left and right, we may assume that all tableaux which appear are of the same
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type. Since the a 7→ ϕaϕ∗ is injective on such elements, we have a non-trivial
relation between the right hand sides of (40); which is impossible because of the
upper-triangularity in (40) and since the vectors CS◦,T◦ are linearly independent
modulo the image of A

ν

>c(λ̀S)
by Theorem 5.11. �

Proof of Theorem 5.7. We must check the conditions of a graded cell datum for
(Λ,M,C, ∗).

(1) Clear.
(2) This is the claim that the vectors CS,T are a basis. They span by Lemma

5.17 and are linearly independent by Lemma 5.19.
(3) By definition

C∗
S,T = (B∗

SBT)
∗ = B∗

TBS = CT,S.

(4) This is essentially identical to the proof of Theorem 5.11. Consider S of
shape ξ. Since the CS,T are a basis,

xB∗
S =

∑

S′,T

rx(S,S
′,T)CS′,T

for some coefficients rx(S,S
′,T). Since Tmust be a semi-standard tableau

of type ξ, we must have that the shape of T is above ξ in dominance order,
unless T is the super-standard tableau. So,

xB∗
S =

∑

S′

rx(S,S
′)B∗

S′ (mod Aν(> ξ)).

(5) The degree function deg obviously satisfies the required conditions.

�

6. Dipper-James-Mathas cellular ideals and graded Weyl modules

Let again ν be of the form ν = (ωz1 , . . . , ωzℓ); recall that from the introduction
that having fixed ζ, a primitive nth root of unity in k, we have an induced choice
of parameters for the cyclotomic Hecke algebra, given by q = ζ,Qi = ζzI .

Let V be a representation ofHν
n = T ν

n from (28). Recall, [BK09a, 4.1], that Hν
n

contains the finite dimensional Iwahori-Hecke algebra as a natural subalgebra.
A vector v ∈ V generates a sign representation if it generates a 1-dimensional
sign representation for this finite Hecke algebra (i.e. Tiv = −v for all generators
Ti in the notation of [BK09a]). We first express this condition in the standard
generators ψr of R

ν
n

Proposition 6.1. A vector v ∈ V generates a sign representation if and only if
it transforms under the action of ψr by

ψreiv =





0 ir = ir+1

(yr − yr+1)eisr v ir = ir+1 + 1

eisr v ir 6= ir+1, ir+1 + 1

Proof. This is immediate by plugging the choices (27) into [BK09a, (4.38)] using
the fact that Tiv = −v: the first case follows since in this case Pr(i) = 1, so
(Tr + Pr(i))e(i)v = 0; the last two follow immediately from the substitution of
−1 for Ti. �
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It might seem strange that we use anti-invariant vectors for the this proposi-
tion, instead of invariant. This could be fixed by picking a different isomorphism
to the Hecke algebra, but it is “hard-coded” into the isomorphism chosen in
[BK09a].

Proposition 6.2. The chicken feet vector ϕµ̀ transforms according to the sign
representation for the Young subgroup Sc(µ̀).

Proof. This follows directly from the definition [BK09a, (4.38)], using Proposi-
tion 3.4 and Proposition 6.1. �

We can consider AνeT as a T ν-representation (acting from the right). For each
ℓ-multicomposition ξ, we let ϕξ =

∑
c(µ̀)=ξ ϕµ̀, and let eξ =

∑
c(µ̀)=ξ eµ̀. Then

ϕξ is a vector in eξA
νeT which generates a sign representation for Sξ. Thus, it

induces a map hξ : xξT
ν → eξA

νeT , by xξa 7→ ϕξa.

Theorem 6.3. The map hξ is an isomorphism. In particular, AνeT ∼=
⊕

ξ xξT
ν

as right T ν−modules, and there is an isomorphism Φν : Aν → H ν . On the
cyclotomic q-Schur algebra of rank n, we obtain an induced isomorphism

Φν
n : Aν

n → S(n; q,Q1, . . . , Qℓ).

Proof. The surjectivity of hξ is clear; every element of eTA
νeξ is of the form

∑
aλ̀ · (µ̀ −→ λ̀) =

∑
aλ̀eλ̀ϕµ̀,

where λ̀ only contains compositions of type e which correspond to simple roots
αi, and aλ̀ ∈ T

νAνeT .
Thus, the map is an isomorphism if and only if the spaces have the same

dimension. We know that the dimension of xξT
ν by Lemma 5.13 is the number

of pairs of tableaux (S,T) where S is standard and T is type ξ. By Lemma 5.19,
the elements CS,T for the same set of pairs are linearly independent vectors in
eTA

νeξ, so it must have at least this dimension. Thus, hξ is an isomorphism.
The surjective map Φ

ν
n : A

ν
n → S(n; q,Q1, . . . , Qℓ) arises because we always have

a surjective map A → EndeAe(eA) for any algebra A and idempotent e ∈ A,
applied to eneT . Since the vectors CS,T span A

ν
n, and there is the same number of

them as the dimension of S(n; q,Q1, . . . , Qℓ), this map must be an isomorphism.
Summing over all n, we obtain that Φν is an isomorphism. �

The following holds under the fixed isomorphism (28).

Theorem 6.4. The cellular data from Theorem 5.7 satisfies the following:

(1) The cellular ideals coincide with those of [DJM98, Def. 6.7] with respect
to the lexicographic partial ordering on multipartitions.

(2) The cell modules W ξ = Aν(≥ ξ)/Aν(> ξ) are graded lifts of the Weyl
modules of H ν , and the F ξ =W ξ/ radW ξ form a complete, irredundant
set of graded lifts of simple modules.

(3) Any other graded lift of a Weyl module differs (up to isomorphism) only
by an overall shift in the grading.

Proof. The cellular ideals of either our basis or the Dipper-James-Mathas ba-
sis can be defined in terms of maps between permutation modules factoring
through those greater in lexicographic order. That is, identifying eξH

νeξ′ with
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Hom(H νeξ,H
νeξ′), the intersection with eξH

ν(> ϑ)eξ′ is just the maps fac-
toring through H νeϑ′ with ϑ′ < ϑ is the lexicographic order. Of course, it is
clear that the same definition works for our cellular structure. The second state-
ment is then clear and the third follows by standard arguments (e.g. [Str03,
Lemma 1.5]), since the Weyl modules are the standard modules of a highest
weight structure, and thus indecomposable. �

In the case where ν is itself a fundamental weight, H ν is the sum of the usual
q-Schur algebras for all different ranks and except for some degenerate cases, a
grading on this algebra has already been defined by Ariki.

Theorem 6.5. The grading defined on H ν via the isomorphism Φν agrees with
Ariki’s up to graded Morita equivalence.

Proof. Ariki’s grading is defined uniquely (up to Morita equivalence) by the fact
that there is a graded version of the Schur functor compatible with the Brundan-
Kleshchev grading on Hν . The image of an indecomposable projective of the
q-Schur algebra under the Schur functor is a graded lift of an indecomposable
summand of a permutation module; since this object is indecomposable, its
graded lift is unique up to shift by the standard argument, [Str03, Lemma 1.5]).
This shows that such a grading is unique, and both Ariki’s and our gradings
satisfy this condition. �

7. Higher representation theory and q-Fock space

7.1. The categorical action. As promised in the introduction, we now draw
the connection between the algebras Aν and the theory of higher representation
theory as in the work of Rouquier [Rou08] and Khovanov-Lauda [KL08]. We
still assume that ν is of the form ν = (ωz1 , . . . , ωzℓ),

We have proven that Aν and T ν satisfy the double centralizer property for
the bimodule AνeT . This implies, see e.g. [MS08, Remark 2.8], that the functor
M 7→ MeT is a full and faithful functor from the category of projective Aν -
modules to the category of all T ν modules.

Consider the map γi : A
ν → Aν defined by a 7→ a|ei (where ei is the idempo-

tent corresponding to the sequence (αi)).

Definition 7.1. Extension and restriction of scalars along the map γ defines
the i-induction functor Fi and the i-restriction functor Ei,

Fi,Ei : Aν−mod→ Aν−mod.

Viewing Aν−mod as the representation category of Aν , these functors are
induced by the monoidal action of A described earlier and its adjoints.

Theorem 7.2. The isomorphism Φν intertwines Fi and Ei with the usual func-
tors of i-induction and i-restriction of modules over the cyclotomic q-Schur al-
gebra.

In particular, these functors are biadjoint (when the grading is not considered).

Proof. This follows from the fact that Φν intertwines the map
∑

i γi with the
inclusion H

ν

d → H
ν

d+1 induced by the map Hν
d → Hν

d+1 as the inclusion of a
Young subalgebra. Furthermore, the decomposition into the summands γi’s is
simply the decomposition of this functor according to eigenvalues of the deformed
Jucys-Murphys element under the isomorphism (28); see [BK09a, (4.21)]. �
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At the heart of higher representation theory, there is a 2-category U categori-

fying ŝle; here we use the definition of [Web10a, §1.1], which is only a minor
variation on that of Rouquier [Rou08] and Khovanov-Lauda [KL08]. As before,
recall that we are using the sign convention of [BK09a, (1.14)]. By [Web10a,
2.11], the category of T ν-modules carries an action of this 2-category U ; that is,
there is a 2-functor from U to the 2-category of k-linear categories sending an

object λ (which means integral weight λ for ŝle) to the category T
ν
λ−mod and

the generating morphisms Ei : λ → λ + αi and Fi : λ → λ − αi to i-restriction
and i-induction for cyclotomic Hecke algebras.

Theorem 7.3. The functors Ei and Fi define an action of U on the category of
representations of Aν .

Proof. First, note that the functor Aν−mod→ T ν−mod defined by M 7→ eTM
commutes with Fi and Ei. Furthermore, this functor is faithful on projectives
since the socle of no projective is killed by eT (this follows immediately from
Theorem 5.19) and hence fully faithful by Proposition 4.11.

Thus, projective Aν -modules are equivalent to a full subcategory of all T ν-
modules, which is closed under the action of U , and thus itself carries a U -module
category structure. The action on all Aν -modules follows since this is the cat-
egory of representations of Aν , that is, the category of functors from Aν to
finite dimensional vector spaces. More concretely, the action on projective mod-
ules and on all modules are defined by tensor product with the same bimodules,
and checking that this is a U -action involves checking equalities of bimodule
morphisms, which can be done in either category. �

7.2. Decategorification. Now, we consider how our construction decategori-
fies, that is, we study its effect on the Grothendieck group. Assume again that
ν = (ωz1 , . . . , ωzℓ) (although all of our results can be extended to an arbitrary
sequence of weights by replacing the Fock space by any highest weight represen-

tation of Uq(ĝle)). Recall the construction of the quantized level 1 Fock space
from [Hay90] and [MM90] with its Bosonic realization C[q, p1, p2, . . . ] via Boson-
Fermion correspondence, [KR87].

Definition 7.4. Let Fℓ be the ℓ-fold level 1 bosonic Fock space

Fℓ = (C[q, p1, p2, . . . ])
⊗ℓ,

with charge {z1, . . . , zℓ} equipped with its usual basis uξ where ξ ranges over ℓ-
multipartitions and the usual inner product where the basis uξ is orthonormal.
The elements uξ are called standard basis vectors (and are just products of
Schur functions uξ = sξ1sξ2 · · · sξℓ in ℓ different alphabets).

As we noted in the introduction, we are not considering the higher level Fock
space studied by Uglov [Ugl00], but the more naive tensor product of level 1
Fock spaces. This distinction is discussed extensively in [BK09b, §3], see also

Theorem 7.9. The Hayashi tensor product action of Uq(ŝle) on Fℓ extends to an
action of the generic Hall algebra U−

e of nilpotent representations of Γ, [VV99,
6.2]. If, as in Section 2.5, fd denotes the characteristic function of the trivial
d-dimensional representation then this action is defined by

fduξ =
∑

res(η/ξ)=d

q−m(η/ξ)uη
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where η ranges over ℓ-multipartitions such that η/ξ has no two boxes in any
column, and m(η/ξ) is the sum over boxes x in η/ξ of the number of boxes
with the same residue below that box which are addable in η minus the number
below that box removable in ξ. (By ”below” we mean as usual below in the same
component or in a later component.)

The action of Uq(ŝle) on Fℓ is then given by the operators fαi
and their adjoints

eαi
under (−,−). Of course, the operators eαi

have a description just as above
based on removing boxes, see [BK09b, (3.22)] for explicit formulas.

Definition 7.5. Given a residue data µ̂, define fµ̂ = fµ(r) · · · fµ(1) ∈ U−
e . The

associated canonical basis vector hµ̀ is defined as

hµ̀ = fµ̂(ℓ) · (h(µ̂ℓ−1,...,µ̂(1)))⊗ u∅)

We let K0
q (A

ν) be the split Grothendieck group of the graded category of

graded projective modules over Aν . This is a natural module over Z[q, q−1] by
the action of grading shift, where q shifts the grading down by 1. Also, it is
endowed with a q-bilinear pairing by

([P ], [P ′]) = dimq

(
Ṗ ⊗Aν P ′

)
.(41)

Hereby Ṗ is P considered as a right module using the ∗-antiautomorphism and
dimqM =

∑
dimMiq

i denotes the graded Poincare polynomial for any finite
dimensional Z-graded Aν -module M = ⊕i∈ZMi. We will often identify K0

q (A
ν)

with the Grothendieck group of all finitely generated Aν -modules or its bounded
derived category. Then the pairing (41) extends to objects M and N by taking

the derived tensor product ([M ], [N ]) = dimq

(
Ṁ ⊗L

Aν N
)
.

Theorem 7.6. There is an isomorphism of Uq(ŝle)-representations C⊗ZK
0
q (A

ν) ∼=
Fℓ satisfying

[Aνeµ̀] 7→ hµ̀, [W ξ] 7→ uξ,

and intertwining the inner product (41) with the inner product on Fℓ.

Proof. First, note that applying the formula for the action inductively together
with Proposition 5.9 we obtain

(hµ̀, uξ) =
∑

sh(S)=ξ
type(S)=µ̀

q−deg(S)

where the sum is over semistandard ℓ-multitableaux S of shape sh(S) = ξ and
type µ̀. Thus, we have that

(hµ̀, hλ̀) =
∑

ξ

(hµ̀, uξ)(uξ , hλ̀) =
∑

sh(S)=sh(T)
type(S)=µ̀

type(S)=λ̀

q−deg(S)−deg(T)

Since deg(S) + deg(T) is the degree of cellular basis vector CS,T, this shows that

([Aνeµ̀], [A
νeλ̀]) = dimq eµ̀A

ν ⊗Aν Aνeλ̀ = dimq eµ̀A
νeλ̀ = (hµ̀, hλ̀).

The form (−,−) is non-degenerate on Fℓ, hence any relation that holds in
K0(Aν) between the vectors [Aνeµ̀] also holds between the vectors hµ̀ in Fℓ.
Since these vectors span Fℓ, this defines a surjective map K0(Aν) → Fℓ. This
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preserves types, in the sense that if the type of µ̀ is d, then [Aνeµ̀] is sent to
the span of uξ where ξ ranges over Young diagrams of type ξ. Since we already
show that the dimension of K0(A

ν

d
) is the number of shapes with this residue,

this shows that the map is an isomorphism.
Note that

(hµ̀, [W
ξ]) =W ξ ⊗L

Aν Aνeµ̀ = dimqW
ξeµ̀ =

∑

sh(S)=ξ
type(S)=µ̀

q−dS ,

by Theorem 6.4, so the identification of [W ξ] with uξ follows by the non-degeneracy
of the inner product. �

For any left Aν -moduleM , the space H = HomAν (M,Aν) is naturally a right
Aν-module via the action (f · a)(m) = f(m).a which can be turned into a left
Aν-module via (f · a)(m) = f(m).a∗ for f ∈ H,m ∈M,a ∈ Aν . Of course, this
extends to the derived functor

D = RHomAν (−, Aν) : Db(Aν−mod)→ Db(Aν−mod).

We refer to this functor as Serre-twisted duality. This name can be ex-
plained by the following alternate description of the same functor. Let ⋆ :
Aν−mod → Aν−mod be the duality functor given by taking vector space
dual, and then twisting the action of Aν by the anti-automorphism ∗. Let
S : Db(Aν−mod) → Db(Aν−mod) be the graded version of the Serre functor
(in the sense of [MS08]). Since A

ν

d
is finite-dimensional and has finite global

dimension, this is simply derived tensor product with the bimodule (A
ν

d
)∗; thus,

⋆ ◦S = D.

The following gives a natural construction of a bar-involution on Fℓ which
we will show coincides with the construction in [BK09b]. Let g 7→ g be the
q-antilinear automorphism of U−

e which fixes the standard generators fd.

Theorem 7.7. The system of maps Ψ : Fℓ → Fℓ for all multi-charges induced
on Grothendieck groups by D satisfy the relations

(B1) Ψ(g · v) = ḡ ·Ψ(v) for g ∈ U−
e .

(B2) Ψ(v ⊗ u∅) = Ψ(v)⊗ u∅.
(B3) Ψ(uξ) = uξ +

∑
η<ξ aη,ξuη for aη,ξ ∈ Z[q, q−1]

and is uniquely map characterized by the first two properties. The vectors hµ̀ are
invariant under this involution.

Proof. First, we note that hµ̀ are invariant since for any algebra A, anti-automorphism
∗ and idempotent e, we have that D(Ae) = Ae∗. Of course e∗µ̀ = eµ̀, so

D(Aνeµ̀) ∼= Aνeµ̀.

For (1), it’s enough to prove that it is true for a bar-invariant spanning set of
U−
e . Such a spanning set is given by the monomials fµ̂. Since fµ̂hλ̀ = h

µ̂∪λ̀,

the result follows. For (2), it is enough to note that hµ̀ ⊗ u∅ = hµ̀′ where
µ̀′ = (µ̂(1), . . . , µ̂(ℓ), ∅). Since these properties determine the behavior on a
spanning set, the uniquely characterize the map.
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Finally, we prove (3) by induction. Since

hλ̀ξ
=

∑

type(S)=ξ

q−dSush(S)

we have that hλ̀ξ
= uξ +

∑
η<ξ bη,ξ(q)uη for bη,ξ ∈ Z[q, q−1]. Thus, for ξ minimal,

uξ = hλ̀ξ
= uξ. Now, assume this for η < ξ; thus we have that

uξ = hλ̀ξ
−
∑

η<ξ

bη,ξ(q)uη = hλ̀ξ
−
∑

η<ξ

bη,ξ(q)uη = uξ +
∑

η<ξ

a′η,ξ(q)uη

where again aη,ξ ∈ Z[q, q−1]. �

Choosing integers (z̃1, . . . , z̃ℓ) ∈ [0, e − 1]ℓ such that z̃i ≡ zi (mod e), one has a
natural vector space isomorphism β taking standard vectors to standard vectors
between our Fock space Fℓ and Uglov’s Fock space F̃ℓ. It is an isomorphism of
U−
e -modules on the weight spaces of height ≤ m, [BK09b, Lemma 3.20]. Using

this isomorphism one can also define a bar-type involution Ψ′ on the tensor
product by pulling back the bar involution ΨU of Uglov.

Definition 7.8. A multi-charge is m-dominant if for each i, we have z̃i−z̃i+1 ≥
m.

Theorem 7.9. If the multicharge (z̃1, . . . , z̃ℓ) is m-dominant, then on the weight
spaces of height ≤ m, we have that Ψ = Ψ′.

Proof. Since we have given uniquely characterizing properties (B1)-(B3) of Ψ,
we need only to show that Ψ′ satisfies these. Since β is an isomorphism of
U−
e -modules on the weight spaces of height ≤ m,

Ψ′(g ·v) = β−1(ΨU (β(g.v))) = β−1(ḡ ·(ΨU (β(v))) = ḡ ·β−1(ΨU (β(v))) = ḡ ·Ψ′(v)

for weight vectors v of height ≤ m, g ∈ U−
e (using [Ugl00, 3.31]); hence (B1)

holds.
To see (B2) we must consider the effect of tensoring with u∅ in Uglov’s lan-

guage: we must add n new variables in our bosonic between every group of
nℓ. The requirement that the multicharge is m-dominant assures that these are
charged so that they are all to the right of any variables which are “vacant.”
Thus Uglov’s formula [Ugl00, 3.23] for the bar involution in terms of wedges
simply leaves this part of the semi-infinite wedge unchanged and thus the bar
involution commutes with adding the new variables. This shows that

Ψ′(v ⊗ u∅) = Ψ′(v)⊗ u∅

and completes the proof, because (B3) is clear. �

In the setup of Theorem 6.4 let P ξ be the graded projective cover of F ξ

(which is the same as the projective cover of W ξ). Obviously, since we have a
surjective map Aνeλ̀ξ

→ F ξ, the projective P ξ is a summand of this module with

multiplicity 1. We let pξ = [P ξ], and φξ = [F ξ ].

Theorem 7.10. We have

pξ = uξ +
∑

η<ξ

eξη(q)uη for polynomials eξη(q) ∈ q
−1

Z≥0[q
−1].

49



By BGG-reciprocity, we also have uξ = φξ +
∑

ξ>η eξη(q)φη, and so the coeffi-
cients eξη are the graded decomposition numbers of Aν .

Proof. Since the complementary summand of eλ̀ξ
Aν to Pξ is filtered by Weyl

modules W η for η < ξ, we must have an expression as above for some Lau-
rent polynomials eξη(q); the coefficients of these polynomials are manifestly non-
negative integral, since they are graded multiplicities of Weyl modules in the
standard filtration of P ξ.

The negativity of powers of q follows from the fact that there is a surjective
map Ext∗(ICξ, ICξ′)→ Hom(P ξ, P ξ′) where ICξ is the intersection cohomology
sheaf of the orbit of extended Γ-representations whose socle filtration is of type
λ̀ξ. Since perverse sheaves are a t-structure, this Ext group is positively graded,
so only positive shifts of Weyl modules can appear in the standard filtration of
P ξ.

Finally, the BGG-reciprocity applies, since Aν is quasi-hereditary by [DJM98].
The graded version follows then by general arguments as for instance in [MS05,
§8]. �

This property of upper-triangularity with respect to a standard basis is one of
the hallmarks of a canonical basis (in the sense of Lusztig), the other being fixed
under a bar-involution, such as the Ψ defined above. In fact, the basis {pξ} does
satisfy these properties and thus can be thought of a canonical basis, justifying
our naming.

Theorem 7.11. The basis pξ is the unique basis of Fℓ such that:

• Ψ(pξ) = pξ and
• pξ = uξ +

∑
η<ξ eξη(q)uη for eξη(q) ∈ q

−1
Z≥0[q

−1].

That is, pξ is the “canonical basis” of the involution Ψ with “dual canonical
basis” φξ.

As with the bar involution Ψ, we can view this basis as a “limit” of Uglov’s
canonical basis G−

∗ as defined in [Ugl00, 3.25], in the sense that the transition
matrix from the standard basis to Uglov’s basis stabilizes to the transition matrix
for our basis on the weight spaces of height ≤ m once the multicharge is m-
dominant.

Proof. We have already shown that the second property holds. For the first,
we note that D fixes the projective A

ν

λ̀ξ

, and thus fixes each of its “isotypic

components” (the maximal summands of eλ̀ξ
Aν which are direct sums of the

same indecomposable projective). Since Pξ appears with multiplicity 1, it is also
invariant under D, so Ψ(pξ) = pξ.

Thus one only needs to prove uniqueness, and this holds by the usual standard
arguments: if {p′ξ} is another such basis, then we have that

pξ − p
′
ξ =

∑
(eξη(q)− e

′
ξη(q))uη

is Ψ-invariant, which is impossible by Theorem 7.7(3). Finally Theorem 7.6
together with the definition (41) show that the classes of the simple objects are
dual to the classes of indecomposable projectives. �
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It is a general phenomenon that canonical bases appear naturally from cat-
egorifications with positivity and integrality properties. For example, in all
simply-laced finite dimensional Lie algebras, Lusztig’s canonical bases for tensor
products of irreducible representations were shown by the second author to arise
from the projectives. In the special cases [FSS11, Theorem 45, Proposition 76]
explicit formulas are available which play an important role in the context of
link homology theories developed therein and more generally in [Web10b, §1.3].
The general interplay between canonical bases and higher representation theory
will be discussed in greater detail in forthcoming work [Web11] by the second
author. Also note that our result is moreover yet another striking example of

how ĝle behaves like a Kac-Moody algebra, even though it is not covered by the
theory of categorification for quantum groups as described in [KL08], [Rou08].
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