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QUADRATIC DUALS, KOSZUL DUAL FUNCTORS,
AND APPLICATIONS

VOLODYMYR MAZORCHUK, SERGE OVSIENKO, AND CATHARINA STROPPEL

ABSTRACT. This paper studies quadratic and Koszul duality for modules over
positively graded categories. Typical examples are modules over a path al-
gebra, which is graded by the path length, of a not necessarily finite quiver
with relations. We present a very general definition of quadratic and Koszul
duality functors backed up by explicit examples. This generalizes the work of
Beilinson, Ginzburg, and Soergel, 1996, in two substantial ways: We work in
the setup of graded categories, i.e. we allow infinitely many idempotents and
also define a “Koszul” duality functor for not necessarily Koszul categories. As
an illustration of the techniques we reprove the Koszul duality (Ryom-Hansen,
2004) of translation and Zuckerman functors for the classical category O in a
quite elementary and explicit way. From this we deduce a conjecture of Bern-
stein, Frenkel, and Khovanov, 1999. As applications we propose a definition
of a “Koszul” dual category for integral blocks of Harish-Chandra bimodules
and for blocks outside the critical hyperplanes for the Kac-Moody category O.

1. INTRODUCTION

This paper deals with (categories of) modules over positively graded categories,
defines quadratic duality and studies Koszul duality. The first motivation behind
this is to get a generalized Koszul or quadratic duality which also works for module
categories over not necessarily finite-dimensional, not necessarily unital algebras.
In our opinion, the language of modules over (positively) graded categories is very
well adapted to this task. Our second motivation is to provide a definition of
quadratic duality functors for any quadratic algebra. These functors give rise to
the usual Koszul duality functors for Koszul algebras. Remind yourself that a
positively graded algebra is Koszul if all simple modules have a linear projective
resolution. Despite this definition and the vast amount of literature on Koszul
algebras and Koszul duality (see, for example, [BGS| [GK| [GRS| [Ke2] and the
references therein), and, in particular, its relation to linear resolutions (see, for
example, [GMRSZ, HI, MV7Z] and the references therein), it seems that (apart
from [MVS]) there are no attempts to study Koszul duality by working seriously
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with the category of linear complexes of projective modules. The intention of the
paper is to provide the following:

e A very general definition of a quadratic dual category in terms of the cat-
egory of linear complexes of projectives, and a detailed study of the latter
(Section B Section []).

e A general setup of quadratic/Koszul duality for positively graded categories
instead of positively graded algebras (Section [2]) with an abstract definition
of a duality functor (Section])) and a Koszul duality theorem for Koszul cat-
egories. Using the word duality here might be too optimistic, in particular,
since the functors are not even equivalences in general (see Theorem [30).
However, later on we will see many “duality-like” effects in our situation,
which, from our point of view, justify this usage.

e An illustration of our techniques in the form of an alternative proof of the
statement that translation functors and Zuckerman functors for the classical
Bernstein-Gelfand-Gelfand category O are Koszul dual to each other (The-
orem [35). This fact is well-known, was conjectured in [BGS|] and proved in
[IRH| using dg-algebras. Our approach seems to be more elementary and
more explicit. As a consequence we prove that twisting/completion and
shuffling/coshuffling functors are Koszul dual. Although these functors are
well-studied their Koszul duality was a surprise even for specialists. It clar-
ifies the connection of the two categorifications of [BFK] and establishes
a direct connection between the main result of [St2] and a result in [Sul
(Section [7)).

e An elementary description of the Koszul complex as a complex of C-C'-
bimodules (see Section [A]). This provides a connection to the quite recent
article [El].

e A complimentary approach to Lefevre’s and Keller’s generalization of the
Koszul duality from [Ke3]. The combination of these two approaches pro-
vides a sort of quadratic homological duality.

A (positively) graded category C is a small category with (positively) graded
morphism spaces. To our knowledge, the study of modules over categories was
initiated by Bredon ([Br]) and tom Dieck ([tDi]) in the obstruction theory for finite
groups and appears now in different variations; see for example [Gal Mil, [Ke2]. In
their setup, the categories of (right) modules over a category C play an important
role, where by definition a module is a covariant functor from C to the category of
finite-dimensional vector spaces. From our perspective, modules over a positively
graded category C should be thought of as representations of a (not necessarily
unital) positively graded algebra. One could consider C-modules as representations
of the (not necessarily finite) quiver with relations associated with C. The vertices
of the quiver with relations correspond to the objects in C and the path algebra A
is just the direct sum of all morphism spaces €9 A C(\, 1), where the sum runs over
all pairs of objects A, x from C. Then, a C-module is a functor which associates to
each object in the category (i.e. to each vertex in the quiver) a finite-dimensional
vector space and to each morphism (hence to each arrow in the quiver) a linear map
between the corresponding vector spaces. The functoriality guarantees that each
C-module is exactly what a representation of the associated quiver with relations
should be. Note that, in case C has only finitely many objects, the objects from C
are in bijection with a maximal set of pairwise orthogonal primitive idempotents
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ex of A corresponding to the identity elements in C(\, \). From the definitions of
graded categories (Definition [Il) we get a correspondence as follows:

positively graded cat-

egories  with  finitely . . . .
. . finite-dimensional  posi-
(1.1) many objects and finite- -
. . . tively graded algebras
dimensional morphism
spaces

by mapping a category C to the graded algebra B, LEOB(C) C(\, p) of morphisms.
In the opposite direction, an algebra A is mapped to the category, whose objects
are a chosen system of pairwise orthogonal primitive idempotents and morphisms
are the morphisms between the associated indecomposable projective modules.

Under this correspondence equivalent categories correspond to Morita equivalent
algebras and isomorphic categories to isomorphic algebras. It is also easy to see
that the notions of modules correspond. If we remove the additional finiteness
assumptions there is no such nice correspondence, since there is no natural choice
for a maximal set of pairwise orthogonal idempotents. Therefore, one should think
of graded categories as the correct language to speak about algebras with a fixed
set of pairwise orthogonal primitive idempotents (see also [BoGa]). We want to
illustrate the results of the paper in the following two examples:

A (well-behaved) illustrating example. We consider the C-algebra A which is
the path algebra of the quiver

(1.2) 17 T2

modulo the relation g o f = 0 (i.e. the loop starting at vertex 1 is zero). Putting
the arrows in degree one defines a non-negative Z-grading on A. We denote this
graded algebra by A. Note that Ag is semi-simple. The algebra A is quadratic and
its quadratic dual is the algebra A' given as the path algebra of the same quiver,
but with the relation fog = 0. This algebra is again graded by putting the arrows
in degree one. We get decompositions A = P(1) @ P(2) and A' = P'(1) @ P'(2) into
indecomposable (graded) projective A-modules corresponding to the vertices of the
quiver. Note that the indecomposable projective graded A-modules are all of the
form P(4)(j), where ¢ € {1,2}, j € Z, and (j) shifts the grading of the module down

by j.

Linear complexes of projective A-modules and the equivalence €. To describe the
category of finite-dimensional, graded A'-modules we use a result of [MVS] which
says that this category is equivalent to LC(P), the so-called category of linear
complexes of projective modules, i.e. complexes of projective A-modules, where
in position j we have a direct sum of projective modules of the form P(i)(j) for
i € {1,2}, j € Z, each occurring with finite multiplicity. The category LC(P) is
abelian with the usual kernels and cokernels (Proposition[), and the simple objects
are exactly the indecomposable objects P(7)(j), for i € {1,2}, j € Z, considered as
linear complexes with support concentrated in position j. Let S(¢) be the simple
top of the graded A-module P(7) and let (i) be the injective hull of S(i). Note
that the simple objects in A-gfmod are exactly the S(i)(j), where i € {1,2}, j € Z.
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Similarly we define S'(), P'(i), I'(4) for the algebra A'. Then the equivalence e~ ! :

A'-gMod 22 LE(P) (Theorem [[2) gives a correspondence as follows:

A'-gMod Le(P)
s'(1) 0 - P — 0
S'(2) 0 - P2 - 0
I'(2) 0 — P1){(-1) — P(2) — 0
I'(1) P(1)(=2) — P(2)(-1) — P(1) — 0
P'(2) 0 - P(2) — P(1)(1)
P'(1) 0 - P(1) — P@2)1) — P(1)(2)

where the maps in the complexes are the obvious ones and the not shown parts
of the complexes are just trivially zero. Note that the indecomposable projective
module P(i)(—j)[j] occurs exactly [M : S(4)'(j)] times in the complex associated to
M. The maps in the complexes are naturally obtained from the action of A' on M.
This equivalence A'-gfmod =2 LC(P) will be explained in Theorem [[2in the general
setup of locally finite-dimensional modules over a quadratic graded category C. In
Proposition [IT] we will describe the indecomposable injective objects in LC(P). It
turns out that the injective hull of the simple module S'(4) is nothing other than the
maximal linear part of a minimal projective resolution of S(i). Since the algebra
A from our example above is in fact Koszul, the minimal projective resolution
of S(7) is automatically linear. In Proposition [I1] we also describe how to get the
indecomposable projective objects: We take a minimal injective resolution (for S(2)
we get 1(2) — 1(1)(1)), then we apply the inverse of the Nakayama functor (we get
P(2) — P(1)(1)), and finally we take the maximal linear part of the result (since
the resolution in our example is already linear, we are done).

The Koszul self-duality. The algebra A from our example is very special, since it
is Koszul self-dual, i.e. A is isomorphic to its quadratic dual A* ([Sol Theorem 18]
for g = sly). An isomorphism is of course given by identifying P(1) with P'(2)
and P(2) with P(1)'. In general, the quadratic dual A' could be very different
from A. In Proposition [[7 we give a homological characterization of the quadratic
dual of a positively graded category. In the example it gets reduced to the fact
that A" = Ext® (S(1) @ S(2),S(1) @ S(2)), which is the usual Koszul dual. Note
that if A is any, not necessarily a finite-dimensional, positively graded algebra (in
the sense of Definition ) of finite global dimension, then its quadratic dual A' is
finite-dimensional (Corollary [[9} see also [Ke2 Section 10.4]).

The Koszul dual functors. In Section Bl we define a generalization of (the pair of ad-
joint) Koszul dual functors (Theorem 22)). Using the category of linear complexes
of projectives, it is easy to describe the (inverse) Koszul functor K’; (Proposi-
tion BI): Given a graded A'-module, the equivalence e~' maps this module to a
linear complex of projective graded A-modules. This can be considered as an ob-
ject in the bounded derived category DP(A) of graded A-modules. Hence we have
a functor KfA(O) : Al-gfmod — DP(A) which can easily be extended to a functor

defined on DP(A"). For example, the simple graded A'-modules S(i)' are mapped
to the complexes with P(i) concentrated in degree zero, hence S(i)' is mapped to
P(i) (see Theorem R2|[) for a general result). Since the algebra A in the example
is Koszul, so is A', and the Koszul functors are inverse to each other (see [BGS]).
This statement will be generalized in Theorem
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Connection to representation theory of Lie algebras. In Section [0l we consider a
special case of [BGS| and [Ball, namely the Koszul duality functor for blocks of the
Bernstein-Gelfand-Gelfand category O associated to any semi-simple Lie algebra.
For the principal block of O corresponding to the Lie algebra sly we get exactly the
category of finitely generated A-modules as described in the examples above. We
have the Zuckerman functor Z which maps an A-module to its maximal quotient
containing only simple composition factors of the form S(1). If e is the primitive
idempotent corresponding to P(2), then Z is a functor from the category of finitely
generated A-modules to the category of finitely generated A/AeA-modules. The
functor is right exact and has the obvious right adjoint (exact) functor i. If we
take the left derived functor of the composition we get £(iZ)S(2) = S(1)(—1)[1]
and L(iZ)S(1) = S(1) ® S(1)(—2)[2] (see the fourth line of the table above). From
the results described above, the Koszul dual functor has to map injective modules
to injective modules. It turns out that this is exactly the well-known so-called
translation functor through the wall. Section [6] provides an alternative proof of
the statement that derived Zuckerman functors and translation functors are Koszul
dual. This was conjectured in [BGS] and proved in the setup of dg-algebras in
[RH|]. Our proof avoids the use of dg-algebras, but again illustrates the power
of the equivalence e. Theorem finally shows that the left derived functor of
AeA ®a e, shifted by (1), is Koszul dual to Irving’s shuffling functor ([Ix]).

Another (less well-behaved) illustrating example. Consider the following
quiver:

(1.3) 1 2 3 4

This defines a positively graded category C where the objects are the positive
integers and the morphisms C(m,n) are just the linear span of the paths from m
to n. The length of the path defines a positive grading on C.

The problem with projective covers. The category C-gfmod contains the simple
modules L(n)(k) (concentrated in degree —k, k € Z) for any object n, and their
projective covers P(n)(k) which have n composition factors, namely L(j) occurs in
degree n — j — k for any 1 < j < n. The injective hull 1(j)(k) of L(j){k) does not
have a finite composition series. The composition factors of I(n)(k) are the L(j) for
j > n, each appearing once, namely in degree n — j — k. Note that this category
does not have enough projectives, since, for example, the indecomposable injective
modules do not have projective covers. This makes life much more complicated,
but it turns out that for any positively graded category we have at least projective
covers and injective hulls for any module of finite length, in particular for simple
modules (see Lemma [B)) and enough projectives in a certain truncated category
(Lemma [@l). Similar problems can be found e.g. in [AR].

The quadratic dual via linear complexes of projectives. Let us look at the category
LEC(P), which describes the quadratic dual. The indecomposable injective objects
are the linear complexes of the form

+—>0—-=P(1)»0—- or ---=>0—-PE—-1)(-1)=>P{)—0—---

for ¢ > 2 and their (k)[—k]-shifts for any k € Z, since they are just the maximal
linear parts of the minimal projective resolutions of the simple modules (Proposi-
tion [[1]). The indecomposable projective objects are the linear complexes of the
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form
= 0—P@G@) —-PE+1){1)—=0—---,

for any ¢ > 1 and together with all their (k)[—Fk|-shifts. From the equivalence e
(Theorem [2)) we get that the quadratic dual C' is the positively graded category
given by the following quiver:

1 2 3 4

with the relation that the composition of two consecutive arrows is always zero.
The indecomposable projective module P'(i) in C'-gfmod therefore has the compo-
sition factors L'(j) for j = 4,i + 1 appearing in degree 0 and 1, respectively. The
indecomposable injective module I'(4) in C'-gfmod is simple for i = 1 and has the
composition factors L'(j) for j = 4,i— 1 appearing in degree 0 and —1, respectively.

The quadratic dual of the quadratic dual. Let us consider the category LC(P'). The
indecomposable injective objects are the linear complexes of the form

(1.4) o= PE+2)(-2) = PE+1){(-1) = P@E) - 0— -

for ¢ > 1, and their (k)[—k]-shifts for any k € Z. Since the projective resolutions of
the simple modules are linear, these are nothing other than the projective resolu-
tions of the simple C'-modules, and the category C' is Koszul. The indecomposable
injective objects are the linear complexes of the form

(15) -+ —=0—>PHEH —->PE—1){) > --->PLE-1)—>0—---,

for any ¢ > 1 together with their (k)[—k] shifts. From Theorem [I2 we get that
the quadratic dual C' is the positively graded category given by the quiver (L3).
Note that C and its quadratic dual are both Koszul. The (inverse) Koszul duality
functor K is again nothing other than extending e to a functor defined on the
corresponding derived category mapping a complex of locally finite-dimensional
graded C'-modules to a complex of linear complexes of projectives. Taking the total
complex we get a complex of locally finite-dimensional graded C-modules. This
description of the (inverse) Koszul duality functor can be found in Proposition 21

A (classical) family with the same quadratic duals. Consider the alge-
bra B(co) = C[z] or B(n) = Clz]/(z™) for any integer n > 3. Putting = in
degree 1 we get a graded algebra B(n) for n > 3 or n = co. The maximal
linear part of a minimal projective resolution of the trivial B(n)-module is just
the complex B(n)(—1) & B(n). By Proposition I and Theorem 2 we get a
description of the (only) indecomposable injective B(n)-module. In particular,
B(n)' = C[z]/(2?), independent of n. Proposition [Tl and Theorem [ also imply
(B(n)")' = (C[z]/(z?))' = C[x] which is the classical example of Koszul duality from
[BGGI] for n = 2.

A (too badly behaved) illustrating example. Consider the path algebra A of
the following quiver:

(1.6) 1 2 n

L
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(i.e. vertices are {0,1,2,...} and for each i > 0 there is an arrow i — 0). Putting
the arrows in degree one defines a non-negative grading A on A. However, this
example is different from the previous ones because there are infinitely many ar-
rows pointing to the vertex 0. Hence the morphism space from P(0) to @, P(7)
is infinite-dimensional in degree one. This infinite-dimensionality makes some of
our arguments inapplicable. Hence we will avoid such situations in our paper by
considering locally bounded categories (condition (CIiv]) in Subsection 2L cf. e.g.
[BoGal, 2.1]).

User’s manual. The following section contains basic definitions and results on
graded categories which are crucial for the general approach but are quite tech-
nical. Therefore, at the first reading attempt, we suggest skipping all the details
from Section Bl and carrying on with Section Bl Since our paper is rather long
and contains lots of notation for objects of rather different nature, we tried, for
the reader’s convenience, to organize our notation in a way as unified as possible
via different fonts. Of course there are exceptions due to already well-established
notation in the literature, but otherwise the general convention for notation in the
paper is as follows:

‘ Object | Notation ‘
Algebras: A B, C,...
Graded algebras: A B, C,...
Categories: A, B, C,...
Graded categories: A B C,...
Modules: M,N,L,...
Graded modules: M, N, L,...
Complexes: P2 N A A
Functors: F, G K,...
Derived categories and functors: | D, £, R,. ..
Dualities: D, d,...
Objects in categories: A,y Vs
Idempotents: €, ex,.

2. PRELIMINARIES

For the whole paper we fix an arbitrary field k. Throughout the paper graded
means Z-graded, and algebra means, if not otherwise stated, a unital k-algebra with
unit 1; dim means dimg, and a category means a small category. For any category A
we denote by Ob(A) the set of objects of A and often just write A € A if A € Ob(A).
For A\, 1 € A the morphisms from A to p are denoted A(\, ). We denote by A°P
the opposite category, that is, AP (A, ) = A(p, A). If not stated otherwise, functors
are always covariant.

2.1. Graded algebras and graded categories. Let C be a k-linear category
with a set of objects Ob(C). Let ey € C(A, \) be the identity morphism. Recall
that the category C is called graded provided that the morphism spaces are graded,
that is, C(A\, u) = B,z Ci(A, p) such that Ci(u,v)Cj(A, u) € Ciy (A, v) for all
A i, v € Ob(C) and i,j € Z.

A standard example: A standard example of a graded category is the category
with objects finite-dimensional graded k-vector spaces and morphisms the k-linear
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maps. The i-th graded part is then given by graded maps which are homogeneous
of degree 1.

A rather naive example: To any graded k-algebra A = (P, A; one can associate,
in a rather naive way, the graded category C* containing one single object, namely
A. The morphisms in this category are given by putting Cf(A,A) = A; for all
i € Z with compositions given by the multiplication in A. This example will
not be very important for us, although it appears quite often in the literature;
namely whenever a discrete group is considered as a category (groupoid) with one
object and morphisms given by the elements of the group and composition given
by the group multiplication. If C is a graded k-linear category, one can consider
EBMLGOb(C) C(A, ), which is a graded k-algebra, however without a unit element
if |Ob(C)| = oo. As already mentioned in the Introduction, this procedure does
not have a uniquely defined inverse in general.

From graded categories to quotient categories and vice versa. Graded categories
appear as quotient categories modulo free Z-actions. There is even a correspondence

{categories with a free Z-action} « {graded categories},
(2.1) C — C/Z,
ez <~ ¢
constructed in the following way: Let C be a k-category. Assume that the group Z
acts freely on € via automorphisms (here freely means that the stabilizer of every
object is trivial). In this case we can define the quotient category C/Z, whose objects
are the orbits of Z on Ob(€), and for A\, u € Ob(C) the morphism set C/Z(Z\, Z)
is defined as the quotient of
P e, )

N ez
W EZp

modulo the subspace, generated by all expressions f — i - f, where ¢ € Z. The
product of morphisms is defined in the obvious way. For any A, u € Ob(€) we have
a canonical isomorphism of vector spaces,

C/Z(ZN\, Zp) = €D e, p),
N EZA
which turns €/Z into a graded category. Conversely, let € be a graded k-category.
Then we can consider the category CZ such that Ob(CZ) = Ob(€) x Z, and for
A\, p € Ob(€) and i, j € Z we have CZ((A, i), (i1,7)) = Cj_i(\, ). Then Z acts freely
on CZ in the obvious way and we have C%/Z = € as graded categories (for details
we refer the reader, for instance, to [CM| Section 2]).

Positively graded algebras and categories. In the following it will be useful to
strengthen the definition of a graded category and replace it with the notion of
a positively graded category defined as follows (compare with the notion of locally
bounded categories in [BG| 2.1]):

Definition 1. A graded k-category C is said to be positively graded provided that
the following conditions are satisfied:

(C-i) C;(A,u) =0 for all A\, € Ob(C) and ¢ < 0.
0, if A # p,

C-ii) Co(A, p) =
(C-11) Co(A 1) key, if A= p.
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(C-iil) dim C;(A, ) < oo for all A\, u € Ob(C) and i € Z.
(C-iv) Forany A € Ob(C), i € Z, the sets {p | C;(A, ) # {0}} and {p | Ci(p, A) #
{0}} are finite.

A semi-simple category is always positively graded, whereas the category of all
finite-dimensional graded k-vector spaces is not positively graded (both (CH) and
(CI) fail). For other examples of positively graded categories we refer to the
Introduction, where one also finds an example of a category, which does not satisfy
the condition (C{v]). We remark that a positively graded category is in reality non-
negatively graded (since (Cl) only says that all negatively graded components are
zero); however, the use of the term positively graded in this context is now commonly
accepted (see for example [BGS| 2.3] or [MVS] Introduction]). Positively graded
categories with finitely many objects come along with positively graded algebras:

Definition 2. A graded algebra, A = @, ., A;, is said to be positively graded
provided that the following conditions are satisfied:

(A-i) dimA; < oo for all i € Z.
(A-ii) A; =0 for all i < 0.
(A-iii) Ag = @y kex, where 1 =37, ey is a (fixed) decomposition of the unit
element 1 into a finite sum of pairwise orthogonal primitive idempotents.

As already mentioned in the Introduction, to any positively graded algebra A one
associates a positively graded k-category, which we denote by A. The objects of this
category are Ob(A) = A (one can also interpret these objects as indecomposable
projective right A-modules), and the morphisms are defined by setting A;(u, \) =
exA;e,, for all A\, u € Ob(A) and i € Z (in other words, the morphisms are just the
homomorphisms between the corresponding projective modules). The composition
of morphisms in A is induced by the multiplication in A. The condition (C{Lv)
is satisfied, since we have finitely many objects. Conversely, for any positively
graded k-linear category C with finitely many objects the space €D, 1LEO(C) C(\ )
is a positively graded k-algebra. These two processes restrict naturally to the
correspondence described in (L)) which will always be in the background of our
considerations. However, the setup of graded categories is more general, since we
also allow | Ob(C)| = oc.

2.2. Modules over graded categories. We have seen that positively graded
categories correspond to positively graded algebras in the sense of (1) and should
be thought of as being the correct framework to deal with not necessarily unital
algebras equipped with some fixed complete set of pairwise commuting idempotents
(for example path algebras of not necessarily finite quivers). We therefore also
introduce the notion of modules over graded categories which provides the usual
definition of modules over an algebra under the correspondence (II]) as explained
in the Introduction. We denote

by k-Mod the category of all k-vector spaces;

by k-mod the category of all finite-dimensional k-vector spaces;

by k-gMod the category of all graded k-vector spaces;

by k-gmod the category of all finite-dimensional graded k-vector spaces;
by k-gfmod the category of all graded k-vector spaces with finite-dimensi-
onal graded components.
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Let C be a graded category. A k-linear functor F : C — k-gMod is called ho-
mogeneous of degree d if it maps morphisms of degree k to morphisms of degree
k +d for all k € Z. In particular, homogeneous functors of degree 0 preserve the
degree of morphisms. A natural transformation between homogeneous functors is
by definition grading preserving. We define

e the category C-Mod of all C-modules as the category of all k-linear functors
from C to k-Mod,;

e the category C-gMod of all graded C-modules as the category of all k-linear
homogeneous functors of degree 0 from C to k-gMod;

e the category C-fmod of locally finite-dimensional C-modules as the category
of all k-linear functors from C to k-mod;

e the category C-gfmod of locally finite-dimensional graded C-modules as
the category of all k-linear homogeneous functors of degree 0 from C to
k-gfmod;

e the category C-fdmod of finite-dimensional C-modules as the category of
all k-linear functors from C to k-mod satisfying the condition that the value
of such functor is non-zero only on finitely many objects from C;

e the category C-gfdmod of finite-dimensional graded C-modules as the cat-
egory of all k-linear homogeneous functors of degree 0 from C to k-gmod
satisfying the condition that the value of such functor is non-zero only on
finitely many objects from C.

Similarly, we define the corresponding categories of right C-modules via the oppo-
site category C°P (or, equivalently, using contravariant functors instead of covari-
ant).

Graded modules over graded categories and modules over quotient categories. There
is (see for example [CM Section 2]) an equivalence of categories

(2.2) Ec: C-gMod — C%-Mod

which is induced by the correspondence ([Z.I)) and explicitly given as follows: For
a graded C-module, that is, a functor M : C — k-gMod, and for each object
(A7) € Ob(C*) we set Ec(M)(A, i) = M(A);, where M(X) = @,., M(A);. For every
f € CE((\i), (1, §)) = Cj—i(A\, p) we define Ec(M)(f) = M(f);, which is a map
from Ec(M)(A,i) = M(A); to My () = Mj(u) = Ec(M)(p, j). This defines
a functor, Ec(M) : CZ — k-Mod, or, in other words, an object in C%2-Mod. The
assignment M — Eg (M) specifies what the functor Ec does on the level of objects.
If o : M — N is a homomorphism of graded modules, for every A € Ob(C) and
i € Z we define Ec(p)(A, 1) to be ¢x; : M(A); — N(X); which is the restriction of
the map ¢, to the the i-th graded component. This defines the functor E¢. For the
inverse functor Eg' and a C%module M we have Eg'(M)(A) = @, M ((A,4))
for any A € Ob(C). If f € C(\, ) is homogeneous of degree j, then for i € Z
we use the identification C;(A,u) = C%((A,4), (i, j + 1)) to get the element f(i),
corresponding to f. Then we have Eg'(M)(f) = @, M(f(i)). If ¢ : M — N
is a natural transformation, we put (Eal(ga))/\ = D,z P, It is straightforward
to check that these assignments define inverse equivalences of categories. For more
details we refer the reader to [CM]. Obviously, the functor ([Z2]) restricts to an
equivalence of categories

(2.3) Ec: C-gfmod — C%fmod.
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Let A be a positively graded algebra and A the corresponding positively graded
category. We define the following categories of A-modules and leave it as an exercise
for the reader to check that they coincide with our previous definitions under the

equivalence ([IZT]).

A-Mod := A-Mod;

A-gMod := A-gMod;

A-mod as the category of all finitely-generated A-modules;

A-gmod as the category of all finitely-generated graded A-modules;
A-gfmod as the category of all graded A-modules with finite-dimensional
graded components.

For a positively graded category C and ¢ € Z we denote by (i) : C-gMod —
C-gMod the functor of shifting the grading, defined as follows: For objects A €
Ob(C) we have M(i)(A); = M(X);4; for all j € Z. On morphisms, the functor (z)
is defined in the obvious (trivial) way.

For a positively graded category C the category C°P inherits a positive grading
in the natural way, namely C;"(\, u) = C;(u, \) for any \, u € C, and i € Z. If
fe C?p(:uv)‘) = Ci()‘uu)’ and g € C?p(yﬂu) = Ci(ua V)a then f o g =go f €
Citj(\v) = CE;(w, N).

Bimodules, tensor products, Hom functors, and dualities. If A and B are two k-
linear categories, then an A-B-bimodule is by definition an A ®j B°P-module, where

Ob(A @y BP) — Ob(A) x Ob(B°P),
A®k30p((>‘aﬂ)7(A,7ﬂ/)) = .A()\,/\’)(X)k"B(/LI,M)

for all A, \" € Ob(A) and p, ' € Ob(B).

Given an B°P-module X and a B-module Y we define the tensor product X @5
Y as the vector space @, ,cp X(A) ®k Y (1) modulo the subspace W, which is
generated by all the elements X (b)(v) ® w — v @ Y (b)(w), where v € X(\), w €
Y(p) and b € B(u,A) = BP(A\, p). If X was an A-B-bimodule, then the tensor
product X ®3 Y is the A-module, which assigns to a € Ob(A) the vector space
X(a,— ) ®p Y (and the obvious assignment on morphisms). One can easily check
that this corresponds exactly to the usual tensor product of (bi)modules under the
correspondence ([II)).

For two A-modules X and Y the set A-Mod(X,Y) is obviously a vector space. If
X is an A-B-bimodule, we define the B-module A-Mod(X,Y) in the following way:
To any object b from B we assign the vector space A-Mod(X (_,b),Y), and to each
f € B(b,0') we assign the map, which maps g = (ga)acona) € A-Mod(X(_,b),Y)
to h = (ha)acob) € A-Mod(X(_,b),Y), where hy = go 0 X(eq, f). Again, one
checks that this corresponds exactly to the usual homomorphism construction under
the correspondence (LT]).

It is straightforward to check that for a B-module Y, an A-module Z, and an
A-B-bimodule X we have the usual functorial adjunction isomorphism

A-Mod(X @5 Y,Z) 2 B-Mod(Y,A-Mod(X, Z)),
© = {Pa}acob(a) ® = {Pv}veon()
¥ = {Ya}acoba) Y = {1 }pcob(B):

where for any a € Ob(A), b € Ob(B), m € Y(b) and z € X(a,b) we have
Gp(m)(z) = pa(z ®m) € Z(a), and o (x @ m) = ¢y(x)(m) € Z(a).

—
<«
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Let d : k-Mod — k-Mod be the usual duality functor k-Mod(_,k). We also
have the graded duality D : k-gMod — k-gMod for which (DV); = d(V_;) for any
V € k-gMod and which acts as the usual duality on morphisms. Note that if M

is a graded C-module, then DM (defined simply as a composition of functors) is a
C°P-module.

2.3. The abelian category C-gfmod. Let C be a positively graded k-category.
The following statement is obvious, but crucial:

Lemma 3. For any positively graded k-category C the categories C-gfmod and
C-gmod are abelian categories.

Proof. The abelian structure is inherited from the abelian structure of k-gfmod and
k-gmod. For details we refer to [Scl p. 104]. O

Lemma 4. Let C be a positively graded category and A € Ob(C). Then Pc()A) =
C(\, =) is an indecomposable projective object in both C-gMod and C-gfmod.

Proof. By definition we have P(A) = Pc(A) = C(X, ) € C-gMod. Because of the
assumption (C), it is even an object of C-gfmod. It is indecomposable, since
the only non-trivial idempotent of its endomorphism ring is the identity (by the
assumption (C-()) and using the Yoneda lemma). To see that it is projective, let
¢ :F— Gand a: P(A) — G be morphisms between graded C-modules, where ¢
is surjective. We have to show that there is a morphism ® : P(A) — F such that
@o® = a. Choose b € p~(aley)) C F(A) and define ®(f) = F(f)(b) for any
f €PN () =C(A p). Then we have

p(2(f)) = (p o F(£))(b) = (G(f) e ) (b) = G(f)(ale)) = a(fe) = a(f).

Hence, Pc(A) is projective, and we are done. O

Factoring out the unique maximal graded submodule of P()), that is, the sub-
module given by all elements of positive degree, we obtain the graded simple mod-
ule L(A\). The duality D maps projective objects to injective objects and preserves
indecomposability, hence we have the graded indecomposable injective envelope
[(A) = DC°P(A, _) of L(A). If we forget the grading, we obtain the ungraded C-
modules P()), L(A) and I(\), respectively. Note that they are still indecomposable,
and, of course, L(\) is simple. We define

P = Pc = € Pcly,

AEOb(C)

(2.4) =l = D leW,
A€0b(C)

L = Le = La(\).
AEOb(C)

Lemma 5. Let C be a positively graded category, without necessarily satisfying
(CId). The simple objects in C-gfmod are exactly the modules of the form L(\)(i),
A€ C,i€Z. Any object in C-gfmod of finite length has a projective cover and an
injective hull.

Proof. From Lemma Bl we know that C-gfmod is an abelian category. Let M €
C-gfmod be simple. Let 0 # v € M(X); for some A, i. Then there is a non-trivial,
hence a surjective, morphism P(\){—i) — M sending ey to v. From the positivity
of the grading we get M 22 L(\)(—1). O
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The assumption (CIv)) in Definition [l was introduced in order to have the fol-
lowing result available:

Lemma 6. Let C be a positively graded category.

(a) Let M be an object in C-gfmod. Assume there exist some k € Z with the
following property: If j < k, then M(n); = {0} for any p € Ob(C). Then M
has a projective cover in C-gfmod.

(b) In particular, any simple object L(X) has a minimal projective resolution.

(¢) Dually, any simple object L(\) has a minimal injective coresolution.

Proof. Let A denote the full subcategory of C-gfmod, which consists of all modules
satisfying the conditions of statement (@). Statement (@) would follow from the
general theory of projective covers (see for example [Shl Proposition 1]), provided
that we prove two things. Namely, that each object from A is a quotient of some
projective object from C-gfmod, and that for any epimorphism f : X - Y in A
there is a minimal submodule Z of X with respect to the condition f(Z) =Y.

First we prove that each object from A is a quotient of some projective object
from C-gfmod Let M = Ec(M) € C%-fmod. Define N € C%-Mod as follows:

dimy M((,u,r))

(2.5) N= P B (wr).-).

HEOB(C),reZ s=1

Note that the second sum just indicates that we take a certain number of copies
of C((p,;r),—). Since M € C-gfmod = C%-fmod, the space M(u,r) is always
finite-dimensional, hence the second sum of (Z3)) is finite. By the assumption
on M it is enough to take r > k. Since C is positively graded, we can have
C((p,7), (A\,9)) = C(p, N)i—r # {0} only if i — 7 > 0, that is, 7 < i. Hence we get

dimy M((u,'r'))

(2.6) N(ND)) = D P B clwr),\i).
s=1

r=k p€Ob(C)

Because of condition (CH), the second sum appearing in (2.6) in fact produces
only a finite number of non-zero summands. Hence N (()\, z)) is finite-dimensional,
so N € C%fmod = C-gfmod. By construction, N is projective and surjects onto
M.

The fact that for any epimorphism f : X — Y in A there is a minimal submodule
Z of X with respect to the condition f(Z) =Y follows from the definition of A using
the standard arguments involving Zorn’s lemma. Hence statement (@) now follows
[Shl Proposition 1].

The second statement of the lemma follows from the first one and from the
remark that the condition on M in (@) is also satisfied for the kernel of the projective
cover of M, constructed above. The last statement follows by duality. O

For A € Ob(C) let Q% and Jy denote a fixed minimal projective resolution and a
minimal injective coresolution of L(\) in C-gfmod, respectively. It is easy to check
that such (co)resolutions are unique up to isomorphism. It is not difficult to see
that C-gMod has enough projectives, whereas C-gfmod = C%-fmod does not need
to have enough projectives in general (see the example of the quivers (L3) and

(L.8))-



1142 V. MAZORCHUK, S. OVSIENKO, AND C. STROPPEL

\L | position

(grading) degree

FIGURE 1. The supports of objects from the categories A and AT.

2.4. Some general notation. In the following we will sometimes write M¢ to
indicate that M is a (left!) C-module. If X* is a complex of modules with differ-
ential d®, then d* : X* — X! for all i € Z. If M is a module, M* will denote
the complex where M* = 0, i # 0, and M® = M with the trivial differential. For
i € Z we denote by [i] the functor of shifting the position in a complex, defined for
any complex X' as follows: X[i] = X/ for all j € Z. We denote by H'X® the
i-th cohomology of A'®. In the hope to avoid confusion we will use the word degree
for the degree in the grading, and the word position for the degree in a complex.
An example: If a graded module M is concentrated in degree 0, then M®[i](j) is
concentrated in position —i and degree —j.

For an abelian category, A, we denote by C(A) the category of complexes of
objects from A, by K(A) its homotopy category, and by D(A) the corresponding
derived category. We will use the standard upper indices b, +, and — to denote the
corresponding categories of bounded, right bounded and left bounded complexes. If
A has enough projectives and F : A — A is a right exact functor, we denote by LF
its left derived functor and by £;F the i-th cohomology functor of F. Analogously
we define RF and R'F, if F is left exact and A has enough injectives. The symbol
ID denotes the identity functor.

For a graded vector space, V = ,, Vi, and for j € Z we denote by Lev; the
operation of taking the j-th graded component of V, that is, Lev; (V) = V.

Let A be an abelian category whose objects are some graded modules. Following
[BGS), 2.12], we denote by C!(A) the category of complexes of graded modules from
A, which consists of all complexes X'* € A, such that there exist integers Ni(X'®)
and Na(X'*) satisfying

(2.7) Levj(X") =0 forall i> Ny (X®) andall i+j< Ny(X*);

and by C'(A) the category of complexes of graded modules from A, such that there
exist integers N1(X'®) and No(X'®) satisfying

(2.8) Lev;(X") =0 forall i< Ny(X®) andall i+ j> No(X*).

Thus the non-zero components of the objects from C!'(A) and CT(A) are concen-
trated in regions as depicted in Figure [l We further denote by K!(A), KT(A),
DL(A), and DT (A) the corresponding homotopy and derived categories. Our no-
tation is exactly opposite to the one in [BGS| 2.12]. We made this change, since
we think our choice is better adjusted to the usual terminology that an indecom-
posable projective module has a simple head (or top), which in our picture indeed
corresponds to the highest part of a depicted module.
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For a complex X'® and i € Z we denote by (t;X')® the naively i-truncated complex,
defined as follows: (;X)? = X7 for all j <4, and (t;X)7 = 0 for all j > i, with the
differential on (t;X')® induced from that on X'°.

3. CATEGORIES OF LINEAR COMPLEXES

In this section we will introduce one of the main players, the category of linear
complexes (usually of projective modules) as they appear for example in [MVS]. For
Koszul algebras the categories of linear complexes already appeared in [BGS, Corol-
lary 2.13.3] (as cores of non-standard ¢-structure). Let M be a graded-structures
C-module. We denote by LC(M) the category of linear complexes associated with
M, which is defined as follows: The objects of LE(M) are all complexes X*® such
that for every i € Z every indecomposable summand of the module X occurs
with finite multiplicity and has the form N(i), where N is an indecomposable sum-
mand of M; the morphisms in LE(M) are all possible morphisms of complexes of
graded modules. In the special case when M = P (as defined in ([2.4])), the category
LC(M) = LC(P) is called the category of linear complexes of projective modules.
In the case M = |, the category LC(M) = LC(I) is called the category of linear
complexes of injective modules.

For k € Z let LC(P)Z* be the full subcategory of LE(P) given by all complexes
M satisfying MY = {0} for j < k. Obviously, LC(P) = lim LE&(P)=*, where the
inverse system is given by truncation functors. Let us recall some basic facts about
the categories of linear complexes:

Proposition 7. (i) Both LC(P) and LC(l) are abelian categories with the usual
kernels and cokernels for complexes.
(i) The simple objects of LC(P) (resp. LC(l)) are exactly the complexes of the
form P(A)*(—=i)[] (resp. 1(A)*(—i)[i]), where A € Ob(C) and i € Z.
(iii) The Nakayama functor N = Ng = (DC(_, _)) ®¢ - induces an equivalence
between LC(P) and LC(I). The Nakayama functor satisfies

NP (i)[=i]) = N(P(N) (i) [—i] = 1(A){i)[~i]
for any A € Ob(C) and i € Z.

Proof. The statements (i) and () are proved in [MO| Lemma 5]. The existence
of the equivalence from part (i) follows from the standard fact that N induces an
equivalence between the additive closures of P and | with finite multiplicities (see
for example [Hal, 1.4.6]). The formulas hold by definition. O

3.1. Projective and injective objects in LC(P). The purpose of this section is
to give an explicit constructible description of the indecomposable projective covers
and injective hulls of simple objects in the category LC(P). These projective and
injective objects exist, although the category does not have enough projectives or
enough injectives in general. The analogous results for LC(I) can be obtained by ap-
plying the Nakayama automorphism from Proposition[ll Recall that for A € Ob(C)
we denote by O3 (and Jy respectively) a fixed minimal projective resolution (and
a fixed minimal injective coresolution) of L()\), considered as an object of C-gfmod
(see Lemma [B). We will show in Proposition [Tl below how injective (respectively,
projective) objects in LE(P) can be considered as maximal linear parts of the Q%’s
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(respectively, of the images under the inverse Nakayama functor applied to the
Jy’s). We start with some preparation.

We will call a complex minimal provided that it does not contain any direct
summands of the form

5 0oMEM=S0— ...

Consider the full subcategory C(C) of the category of complexes of graded C-
modules, whose objects are all possible minimal complexes X'® such that for every
j € Z every indecomposable direct summand of X7 is isomorphic to P()\)(k) for
some A € Ob(C) and some k € Z. Denote by K(C) the corresponding homotopy
category.

Fix for the moment i € Z and let X* € K(C) with the differential d®. For every
j € Z we have the following canonical decomposition of X/:

X =x{>iYox{=i} ox{<i},
where all the indecomposable direct summands
of X{> i}/ are isomorphic to P(\)(k) for some A € Ob(C) and k > i,

of X{=1i}’ are isomorphic to P(\)(i) for some A € Ob(C),
of X{< i}J are isomorphic to P()\)(k) for some A\ € Ob(C) and k < i.

Lemma 8. Let X* € K(C). For any i,j € Z we have the following inclusion:
(X {>i}) Cc X{>i+ 1}

Proof. We have of course d/(X7) C X9+l Now let P(\)*(k) be a summand of
X{> i}/, that is, k > i. Let P(u)*(l) be a summand of X771 such that &’ induces
a non-trivial morphism

o € C-gMod (P(N) (k). P(u) (1)) = C-Mod (P(A), P(1))1— = C (1, \)i—s-
Since C is positively graded, we have [ > k, hence
dx{>iP)cx{>iPlt=x>i+ 1Pl ox{=i+ 1}

The positivity of the grading also implies that the only indecomposable direct sum-
mands of X{> i}/ which can be mapped to X{=1i+1}/! are the ones isomorphic
to P(A){(i + 1) for some A € Ob(C), in which case the corresponding map must be
an isomorphism. This is impossible because of the minimality of X'®*. The claim
follows. (]

Lemma [ allows us to define, depending on some fixed i € Z, the following
functor (which picks out the part “supported above the i-shifted diagonal”):

S;=S¢: K(C) — K(C),
X = X{>i+ e},
where the differential on X{> i+ e}* is induced from that on X'® by restriction. By

definition, there is a natural inclusion of functors S; — ID. We denote by Q; = QF
the quotient functor.

Lemma 9. Let X* € K(C) be such that for every j € 7 each indecomposable
summand of X7 occurs with finite multiplicity. Then S_1QoX*® is a linear complex
of projectives, hence an object in LC(P).
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Proof. The statement follows directly from the definitions, because, at the position
J, the functor S_1QoAX® picks out the summands of the form P(\)(k), where A €
Ob(C) and j —1 <k <j. O

Note that the functor S_1Qq is exactly picking out the (maximal) linear part
of a complex. Denote by K& the full subcategory of K(C), which consists of all
complexes X'* € K(C), such that each indecomposable direct summand occurs with
finite multiplicity in X7 for any j, and C-Mod (X, L(j)) # 0 implies j < i for all
1,7 € Z. Then we have the natural inclusion

incl : LE(P) — K.
Lemma 10. The functor S_1Qq : K& — LC(P) is right adjoint to incl.

Proof. Let X* € LC(P) and Y* € K&. Since C is positively graded, using the same
arguments as in the proof of Lemma[8] we have

(Lemma [B)

K(C)(incl X°, JJ') = K(C)(incl X°, S_lQoy') o L(‘Z(P)(X', S_lQOy').
The claim follows. O

Proposition 11. Let A € Ob(C).

(a) The simple object P(X\)* of LE(P) has a projective cover Py and an injective hull
I3. Hence, any simple object in LC(P) has a projective cover and an injective
hull.

(b) There are isomorphisms, of objects from LC(P), as follows:

(i) T3 = S_,Qo0;.
(ii) Py = S_1QoN"17¢, where N is the Nakayama functor from Proposi-
tion [0

Since it is quite easy to prove Proposition [[TI[H) assuming the existence of
the projective covers and injective hulls as claimed, we will first give a separate
proof for this part. In this proof we will compare the functors L€(P)(—,Z3) and
LC(P)(~,5-1Q0Q}) and show that they are isomorphic. The second proof is more
technical, but provides the existence as well. It characterizes S_1QuQ3 as the
unique object having simple socle P(\)® and being injective.

Proof of Proposition II[M) assuming the existence part @). Consider the functors
F1 = LG(P)(_,I;), Fg = LG(P)(_,S_lQ()Q;)

Since 73 is the injective hull of the simple object P(A)® in LC(P), we have for any
X* € LC(P) the isomorphism

F1(X*®) 2 C-gfmod(X°, P(\)) = d(Levo(X°(N))).

On the other hand, since X® is a linear complex of projective modules, applying
Lemma [I0] we have

Fo(X*) 22 K (incl X*, Q%) = K(C-gfmod) (incl X*, L(A)®*) 2 d(Levo (X°()))).

Since all the isomorphisms are natural, it follows that the functors F; and Fy are
isomorphic. Therefore, there must be an isomorphism Zy = S_;1Q( Q3. The second
statement then follows by applying Proposition [7 O
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Proof of Proposition [I1] including the existence. We first note that the implication
in part @) is clear, since if Py is a projective cover and Z3 is an injective hull of
the simple object P(A)®, then P3(—i)[i] is a projective cover and Z3(—i)[¢] is an
injective hull of the simple object P(\)®*(—i)[i]; we are done by Proposition [1

Set X* =S_1QpQ3%. This is an object of LC(P) by Lemma [ Using Lemma [I0]
we calculate

LE(P)(P(u)*{=i)[i], X*)

LE(P)(P(w)*(—=i)[i],S-1Q0Q3)
/Cé(incl P(p)®*(—1)[d], Q:\)

From the definition of Q% we therefore get the following: For y € Ob(C) and i € Z
we have

1

k, ifu=Xi=0
LC(P)(P(p)®(=d)[i], X*) =< ’ ’
( )( ()* (=0 ) {0, otherwise.
This implies that X'® has, as an object of LC(P), simple socle, namely P(\)®. Thus,
to complete the proof we just have to show that X'® is an injective object of LC(P).
We claim that it is even enough to show that

(3.1) Extr e(p) (P(){~0)[i], X*) = 0

for all u € Ob(C) and i € Z. Indeed, if we fix k € Z, then formula [BI]) implies
that ExtlLe(P) (V*,X*) =0 for any V* € LC(P)Z*. Since LC(P) = pﬂl[)G(P)Z’C we
are done.

For ¢ < 0 formula B is clear. Let us assume ¢ > 0. Let d® be the differential
in X, and f : P(u)(—i)[i] — X~ be a non-zero map such that d=**1 o f = 0.
Let Y* = Cone(f) be the cone of f. Let V denote the kernel of d=*!, restricted
to Lev;(X~*!) and v € V. Since Lev;(H~"*1Q%) = 0, there exists w € Lev;(Q}")
such that d~*(w) = v. However, Lev;(Q,") = Lev;(X~*) by construction, which
implies that there exists an indecomposable direct summand, say M, of X%, such
that d=¢(M) = f(P(u)(—i)[i]). It follows that M =2 P(u)(—i)[i], and one can find
generators, a € M, b € P(u){—i)[i], such that d=%(a) = f(b). The element a — b thus
generates a C-submodule in Y =%, isomorphic to P(u){—i)[i]. The latter belongs to
the socle of the complex Y* € LE(P). Hence Y* splits. This proves (B8] for ¢ > 0.
Hence, I3 exists and has the required form. The remaining statements then follow

by applying Proposition [Ti{). O

4. QUADRATIC DUALITY FOR POSITIVELY GRADED CATEGORIES

In this section we develop the abstract theory of quadratic duality in terms of
linear complexes. This approach has its origins in [MVS] and [MO].

Recall that a positively graded category C is said to be generated in degree one
if any morphism in C is a linear combination of either scalars or compositions
of homogeneous morphisms of degree one. Further, C is called quadratic if it is
generated in degree one and any relation for morphisms in C follows from relations
in degree two. The purpose of this section is to describe locally finite-dimensional
modules over the quadratic dual category in terms of linear complexes of projectives
in the original category. We start by defining the quadratic dual.
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4.1. The quadratic dual of a positively graded category via linear com-
plexes of projectives. Let C still be a positively graded k-linear category. Let
Cy be the subcategory of C with the same set of objects but only homogeneous
morphisms of degree 0. Then C;(_, _) becomes a Cyp-bimodule in the natural way,
which also induces a Cy-bimodule structure on V = d(Cy(_, —)). Therefore, one
can define the free tensor bimodule

CO[V](—a—) - CO(—;—) @V(—’—) 2 (V(—a—) ®c, V(—’—)) D...

and the corresponding category F, where Ob(F) = Ob(C), and for A, u € Ob(F)
we have F(A, u) = Co[V](A, p).
For A\, i, v € Ob(C) consider the multiplication map

mj Ci(v,p) @ C1(A\, v) — Ca(\ p),
which gives rise to the dual map
(4.1)  d(m5,): d(Cz(), p)) — d(Ci(v, ) ® C1(A,v)) = d(Ci(A,v)) @ d(Ci(v, 1))

Note that the canonical isomorphism as indicated in ({1 exists by property (C-l)
and [Mcll Page 147]. We denote by J(_, _) the subbimodule of Cy[V](_, _), gener-
ated by the images of all these maps, and define the (positively) graded category C',
called the quadratic dual of C, as follows: We just have Ob(C') = Ob(C) = Ob(F),
and for \, u € Ob(C') we set

C!()\, 1) =F 1) /I ).

By definition, the quadratic dual is quadratic.

The following statement was originally proved in [MVS] Theorem 2.4] for unital
algebras; an alternative proof was given in [MOl Theorem 8]. The latter one can
be adjusted to the setup of the graded categories:

Theorem 12. There is an equivalence of categories,
e=ec: LC(P)=C'gfmod,
such that e(i)[—i] = (—i)e.

Proof. We will use the identification ([Z2) and define an equivalence €’ : LC(P)
(CHZ-fmod. We start by defining the inverse functor. Let X be an object from
(CH%-fmod. In particular, for any (),4) € Ob(C?) we have dim X ()\,4) < oo. For
i € Z let (Mx)® be the graded C-module

(4.2) Mx)'= P PN()® X (i)

A€EOb(C)

(this means we just take dim X (\,4) many copies of P(\)(i)). We consider the
graded C-module (Mx)? as a C#-module via

(4.3) (PN (i) ® X (N, 9)) (v, k) = CE((\, i), (v, k) ® X(\,1)

for any (v,k) € Ob(C%). We want to construct an object My in LC(P) with i-
!

component (Mx)%. Any object X in (C')%-fmod is uniquely defined by the following
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data describing the module structure:

(D1) a collection of finite-dimensional vector spaces X (A, j) for any A € Ob(C),
j € Z; and
(D2) certain elements

fhui € k—fmod((cl)z((A,j), (1,5 + 1)), k-fmod (X (A, 5), X (1, j + 1)))

for any A, u € Ob(C) and j € Z.

Note that it is enough to consider just the action of morphisms of degree one, since
Co[V](-, -) is generated in degrees zero and one. By the definition of the quadratic
dual we have fixed isomorphisms

(CHE((N0), (pyi + 1)) 2 d(C (i + 1), (Ad)))-

We get natural isomorphisms as follows:

k—fmod((C’)Z(()\, i), (i + 1)), k-fmod (X (A, i), X (1, i + 1)))

[

o ]k-fmod(X()\, i) @ (CYE((\d), (i + 1)), X (i + 1))

(4.4)

IR

k—fmod(X(A, i), C (i + 1), (A1) ® X (1, + 1)).

We denote by fi .. € lk—fmod(X()\, i), C%((,i+1), (N, 1) @ X (i, i+1)) the image
of f} . under (4). Hence, X comes along with this collection fy ,; of maps and

is uniquely determined by this collection. For any (v, k) € Ob(CZ%) the map fx .
induces a k-linear map

C%((\9), (1, k) @ X(Ni) — C¥((pyi+1), (k) @ X(p,i+1)
(4.5) c@r — (c®id)(faui(x)).

This construction is obviously natural in (v, k). Together with formula (@3] we
therefore get a natural transformation of functors (that is, a morphism of C-
modules):

di,: POV ® X)) — P)i+1)@X(pi+1).

Taking the direct sum defines a morphism of graded C-modules d’ : (Mx)? —
(Mx)H—l.

We claim that we in fact constructed a complex. For this we have to consider
the compositions dﬁ'gl odj , for any A, u,0 € Ob(C) and i € Z. We have to show
that the composition

Fxu,i

d®fu,o,i .
Flrgitt (A @ Ci(o, 1) ® X (0,7 +2)
(4.6) 28 Cy(o,\) @ X (0,0 + 2)
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is zero. Via the isomorphisms (£4) it is enough to show that the following compo-
sition:

d(mg»\)

d(CQ(Jv A)) d(Cl(:u’v >‘) ® Cl(av /1‘)) = C!l(ﬂy U) Y C‘l(Av lu)

! /
fu-cnj®f>\=u,j
—_—

k-fmod(X (A, ), X (1,5 + 1))
@k-fmod (X (p, 7 + 1), X (0,7 + 2))
k-fmod (X (X, §), X (o, § + 2))

(47) com;isi)tion
is zero. The latter is obviously satisfied by the definition of the quadratic dual cat-
egory C' and the fact that X is a (C')2-module. Altogether, we defined a functor
n: (CH% — fmod — LC(P).

Let Py be the projective cover of P(A\)® in LE(P) (see Proposition[IT]). We define
a functor

¢: Le(P) — (C"Y%-fmod
as follows: If M* is an object from LC(P), then we define
/(M) (A, i) = LE(PR(=i)[i], M®).

From the definitions it follows that dim LC(P3(—i)[i], M*®) is the multiplicity of
P(A)*(—4)[¢] in M*®. This number is finite by the definition of LC(P). Since M* is
a complex of graded C-modules, its differential ¢/ induces a map

T C((N\i),— ) @ (M*)(Ni) = C((yi+1),— ) @ (M) (i + 1)
for any A, u, 4; in particular,
Ting : C((N 1), (A1) @ € (M*)(N, i) — C((pyi+ 1), (A, i) @ € (M) (i + 1).

Since ¥ (, ;) is a morphism of C-modules, it is uniquely determined by the induced
k-linear map

(M)A, i) = C((u,i 4+ 1), (N, 7)) @ €' (M®) (74 1).

Using formula (@4) we get a possible data (D2) defining a (C')%-module structure
on €(M). Using again the formulas (£17) and (£8) we get that this is in fact
a module structure. Hence €(M®) becomes an object in (C')%-fmod. From the
naturality of the construction it follows that this defines a functor € : LC(P) =
(C%)'-fmod. Together with the identification from ([Z.2]) we get an equivalence € as
asserted in the theorem.

By definition we have e(i)[—i]) = (—i)e. By construction we have en(X) =
X and ne(M®) =2 M?*. Hence ¢ and 7 are dense. Moreover, by construction,
they are both faithful, hence automatically full as well. Therefore, ¢ and n are
equivalences of categories. (In fact they are mutually inverses. To see this one
has to fix a minimal system of representatives for the isomorphism classes of the
indecomposable projective C-modules and work only with projectives from this
system.) The theorem follows. (]

For k € Z let (C')2* denote the full subcategory of C', whose objects are (), 1),
where A € Ob(C) and i > k. The (C')Z*-fmod can be considered as full subcate-
gories of (C')Z-fmod. The inclusions (C')Z**+1 < (C")2* induce an inverse system
on (C')Z*-fmod via truncations, and we have (C')*-fmod = lim ((C')=*-fmod).
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Corollary 13. (a) Let k € Z. The equivalence € restricts to an equivalence
=k Le(P)zk = (¢)ZF-fmod.

(b) For any k € 7Z, the category LC(P)Z* has enough projectives. Moreover,
Pr(—i)[i] € LE(P)=* for any i < k and A € Ob(C).

Proof. This follows directly from Theorem [[2] and Lemma O

Let P? be a fixed minimal projective generator of LE(P)Z¥. This is by definition
a complex of graded C-modules. If M* is a complex in LC(P), then there is a
(C')Z*-module structure on LC(P)(Pg, M*) as follows: To each A € Ob(C) and
i > k we assign the space LC(P)(Px(—1)[i], M?*) (recall that Py (—i)[i] is the direct
summand of P, which corresponds to these A and ).

Proposition 14. The functor LC(P)(P,— ) defines an equivalence of categories
LE(P)ZF = (C')ZF-fmod.

Proof. This follows directly form Theorem [I2] and Corollary d

If we choose P} such that it gives rise to a directed system we directly get the
following result

Corollary 15. The functor C(C-gMod)(im P}, ) = lim LE(P)(P},— ) defines an
equivalence of categories LC(P) = (C')-fmod.

4.2. The complex P*. We denote P* = limP;. This should be thought of as
playing the role of a minimal projective generator of LC(P); see Corollary
Proposition [[] gives us at least some information about the structure of C-direct
summands of P*. We would like to describe the components P! of P as well:

Proposition 16. Let k € Z.

(a) P2 is a complex of C* —(C')Z*-bimodules, which is projective both as a left and
as a right module.

(b) P* is a complex of C*-(C")%-bimodules, which is projective both as a left and
as a right module.

Proof. Let Cy be the subcategory of C from Subsection .1l and let [ € Z. Then
the C% — (C')Z*-bimodule structure on the component PL is given by the following:
PL((A,4), (1,4)) = PL(=5)[7](A, 7) with the obvious assignments on morphisms. We
even claim that

>k

PL= P (C(\D).-)@c, (C)

AE0b(C)

(-, (A 0))

if I > k, which would imply the projectivity. For such [ and each A € Ob(C) we
can choose 0 # vy € PL((A, 1), ()\,1)) and

0 # wy € (I, (A D)) @co ((CHTF (D), (A D).

Then, sending wy, +— vy (for all \) defines a homomorphism of bimodules, which is
surjective. Since the bimodules have the same composition factors, the surjection
is an isomorphism. This implies (@), and (B follows by taking limits. O



QUADRATIC DUALS, KOSZUL DUAL FUNCTORS, AND APPLICATIONS 1151

4.3. A homological description of the quadratic dual of a category. Given
a finite-dimensional Koszul algebra A, its Koszul dual is characterized or, depend-
ing on the author, even defined, as the Ext-algebra corresponding to the direct sum
of all simple modules concentrated in degree zero. In this section we describe an
extension of this characterization which applies to our more general setup.

Let Extd'(L) denote the full subcategory of D(C-gfmod), objects of which are
all complexes of the form L(A)*(—i)[i], A € Ob(C), i € Z. Proposition [[1]implies a
homological characterization of the category C' as follows:

Proposition 17. There is an isomorphism of categories,
Extd(L) = ((C')*)°P,
compatible with the natural Z-actions on both sides. In particular, Extlci;n(L) 15

generated by the elements of degree zero and one.

Proof. For each A € Ob(C) and i € Z set Q3 ; = Q3(—i)[i]. Denote by A the
full subcategory of D(C-gfmod), whose objects are all complexes Q3 ;» where A €
Ob(C) and i € Z. There is an obvious functor

a: Extg(l) — A,
L (=i — Q%
identifying an object with its projective resolution. On the other hand, by Lemma[d]
we get the functor
B:=5_1Qp: A — LC(P).

By Proposition [Tl we have Ba (L(A)(—4)[i]) = Z3. By Theorem [[Z to prove the
statement of the proposition, it is therefore enough to show that functor 8« is full
and faithful. From the definition of o and A it is in fact enough to show that §
is fully faithful. Let A\,u € Ob(C) and i,5 € Z. Since C is positively graded, it is
easy to see that we have

(4.8) D(C-gfmod)(Q-1Q3 ;, L(w)(—4)[j]) = 0.
Hence we get the following chain of isomorphisms:

Le(P) (893,595 ;)

LE(P) (S-1Q0Q3.1-S-1Q0Q;. ;)

(Lemma [T0))

= ICE/j <IHC1 S_lQOQ:\)Z; Q/:‘J)
E D(C-gfmod) (inclS_1Qo Q3 ;, L(1){—4)1])
Proposition and
oS S p(Grghnod) (3,1, L) (~4)1)
& D(C-gfmod) (L(A)(—4)[i], L(1)(~)1j])
= AL (=) [al, L(u) (=) [4])-
Hence, the functor g = S_1Qy is fully faithful. The claim follows. ([l

Corollary 18. The morphism space of the positively graded category Extl(ijn(L) can
be generated by elements of degree 0 or 1 only.

Proof. We have Extgf*(L) 2 ((C')%)°P by Proposition [T, and the positively graded
category ((C")%)°P is quadratic by definition, hence its morphism space is generated
in degrees 0 and 1. (]
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As an immediate consequence of Proposition [I7] we also obtain the following
statement, which is obvious for Koszul algebras:

Corollary 19. If A is a positively graded algebra of finite homological dimension,
then A is finite-dimensional.

Proof. By Proposition[I7] A' is a subalgebra of the ext-algebra Ext* (L, L), which is
finite-dimensional, because A is assumed to have finite homological dimension. [

5. THE QUADRATIC DUALITY FUNCTOR

The purpose of this section is to introduce what we call the quadratic duality
functor. In some sense it is a generalization of the Koszul duality functor for
positively graded Koszul algebras. We will start by stating some general abstract
nonsense. For details we refer for example to [Kel] and [De].

Let A and B be two arbitrary k-linear categories and X'®* be a complex of A-B-
bimodules. Then we have the inner Hom functor

HomY (X*,_) : C(A) — C(B),

as defined in [GM| IT1.6.14]. At the same time, for any complex Z°® of B-modules
we have the associated bicomplex X*®* ®3 Z°. Applying the functor Tot of taking
the total complex defines a functor,

X®*®p _:C(B) — C(A).

These functors form an adjoint pair (X* ®3 _, Hom% (X*, _)).

5.1. Definition and the main theorem. Recall from Proposition [[6 that P* is a

complex of CZ-C'"-bimodules. Hence by the general definition above we have the
following pair of functors:

F:=E_| Homgy (P',Ec(—))
(51)  C(CgMod) = (CgMod) -
F:=Eg’ P*®ciEqi (-)

Proposition 20. Let C be a positively graded category.
(i) The functors F and F' as in &) form a pair (F',F) of adjoint functors.
(ii) For every X* € C(C-gfmod), V* € C(C'-gfmod), i,j € Z, we have
F(G)l) = (FA°)(=5)li+ ],
FQe@) = (FEY (=Dl + ]
(i1i) For A € Ob(C) and i,j € Z we have
(5.2) F(Lc(A)*(5)[i]) e (A)* (=)l + 41,
‘ F'(La: (V) () e]) Pc(N)* (=)l + 1.
(iv) We have
F(C!(C-gMod)) <C CI(C'-gMod),
F/(CT(C'-gMod)) < C}(C-gMod).

(v) F sends acyclic complexes from C'(C-gMod) to acyclic complexes, and F'
sends acyclic complezes from C1(C'-gMod) to acyclic compleves.
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Proof. The statement (i) follows from [GM, II1.6.14]. The properties F(X*[i]) =
(FX*)[i] and F'O*[i]) = (F'Y*)[i], as well as F(¥*(j)) = (KA*)(—j)[j] and
F'(Y*(5)) = (F’Y*){—3)[j], follow immediately from the definitions of F, F’, and
P*. This proves ().

From Theorem [[2] and Proposition [7[) we have

(5-3) F'(Ler(V) =Pc(V).

From the definition of P* it follows immediately that M® := F(Lc(A)*®) is concen-
trated in position 0 (i.e. it is in fact a C'-module). We have to show that M is an
indecomposable injective module. To see this we calculate

C'-gfmod(Lc: (1) (k), M)
C(Cl-gfmod) (L (1)* (k), M*)
C(C'-gfmod) (Lei (1)*(k), F(Lc(V)*))

1

C'
C!

1

C(C-gfmod) (F'(La: (1)*(k)). Le(
= C(C-gfmod) (Pc(k)*{~k)[H,Lc(N)*)
{]k, A=pand k=0,
0, otherwise.

1%

D)
D)
(

1%

Here, the isomorphism (54)) follows by adjointness, and the isomorphism (B3 is
given by (53). This implies that that module MY has the simple socle Lgi()).
Now to prove that M® 2 |~i(\) it remains to compare the characters: Let u € C,
1 > 0, and mL y denote the multiplicity of P()) as a direct summand of the zero
component of the complex Pj(—i)[i]. From the definition of I we have that the
dimension of M%(u)_; equals mfw\, that is, the composition multiplicity of L (A) in
Pci(u)(i). The latter equals the composition multiplicity of Lo (1) (2) in Igr(A) (as
both numbers equal the dimension of Homeg: (Pt (14)(i), It (A))). Now statement
(o) follows from ().

Statement ([v]) follows from () and () by a direct calculation.

Finally, to prove [@) we first note the following simplification: If X* €
Cl(C-gMod), A € Ob(C), and i € Z, then from the construction of P it fol-
lows that the bicomplex of vector spaces Homgz(Py(—i)[i], X'*) has only finitely
many non-zero components, moreover, they all are finite-dimensional. Hence in the
definition of the functor F all direct products which occur are finite direct products
of finite-dimensional spaces. Hence they coincide with the corresponding direct
sums.

Now let X* € C}(C-gMod) be an acyclic complex of graded C'-modules. Then
we can write X'® as a direct sum of acyclic complexes of vector spaces of the form
0—V —W — 0, where V= W = k(i) is such that both V and W are annihilated
by all but one ey. Denote by V' and W’ the subspace of F(X*), which consist of
all those homomorphisms in which the images of the generators of indecomposable
projective summands of P® belong to V and W, respectively. From the definitions
it is obvious that both V/ and W’ are in fact C'-modules. From (f) it even follows
that both V/ and W’ are indecomposable injective C'-modules. The differential
in X* induces an isomorphism V/ = W’ of these C'-modules. This means that
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the complex F(X*) decomposes into a direct sum of acyclic complexes of the form
0 — V' 2W — 0, and hence is acyclic. For the functor F/ the proof is similar (and
even easier, as we do not have any direct product in the definition at all). This
completes the proof. O

Thanks to Proposition 20l we can restrict the functors F and F’ to subcategories
C!(C-gMod) and C'(C'-gMod), respectively, and then derive the picture (5.I)) in
the following way:

Ko:=E_! R Homgz (P*.Ec(-))

(5:6) DHCegMod)z__— = DI(C'gMod).

KL :=E5! PGB
c=Ec X c!(*)

The functors K = K¢ and K’ = K are what we call quadratic duality functors.
We emphasize once more that we have

K = R(Flet(cgmoay) and K’ = L(F'|¢t(cgmoa))-

The following alternative description clearly depicts the importance of the equiv-
alence € from Theorem (namely, K’ is just the equivalence e~ ! extended to the
derived category followed by taking the total complex):

Proposition 21. Up to an isomorphism of functors, the following diagram com-
mutes:

DI(LE(P))
D!(C-gfmod) prm— D ((CHZ-fmod).
c!
Proof. This follows directly from the definitions and Proposition [TG|(H). O

Our main statement here is the following:

Theorem 22 (Quadratic duality). Let C be a (positively graded) category.
(i) (K',K) is a pair of adjoint functors.
(ii) For every X* € D'(C-gfmod), Y* € D' (C'-gfmod), i,j € Z, we have
K@&*(G)l) = (KX*)(=j)[i + 4],
K'(V*(5)[i]) (K'Y*) (=i + 5]
(i1i) For A € Ob(C) and i,j € Z we have
. KoM O] = o (V-3 + ],
' K'(Ler(A)* ()il Pc(A)*(=)li +Jl.

Proof. The statement (i) follows from general nonsense (see e.g. [Kell 8.1.4] or
[De]). The rest follows follows from the definitions and Proposition O

11
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5.2. The duality functors applied to modules. Calling K a duality functor
might be too optimistic, in particular, since K is not an equivalence in general (see
e.g. [Kell Proposition 8.1.4] and also Theorem [B0l). However, later on we will see
many “duality-like” effects in our situation, which, from our point of view, justify
this usage. Our first general observation is the following:

Proposition 23. (i) Let X € C-gfmod N D! (C-gfmod). Then
KX* € LE(I¢1) N D' (C'-gfmod).

(i) The functor Tot from Proposition 211 sends non-zero objects to non-zero ob-
jects.

Proof. Let X = Xg D X1 D ... be a decreasing filtration of X such that for every
i=0,1,... the module X;/X; 1 is semi-simple and concentrated in a single degree,
say k;. Since P*® is a complex of projective C-modules, analogously to the proof of
Theorem B2(), the module X; /X, 1 gives rise to an injective C'-module, which is,
however, shifted by (—k;)[k;] because of Theorem R2J[l). Claim (i) follows.

Every element from D'(LC(P)) is a double complex of projective C-modules,
linear in one direction, and isomorphic to a direct sum of trivial complexes and
complexes of the form

(5.8) o= 0->M-=0—...

in the other direction. Moreover, it is acyclic in DT(LC(P)) if and only if no direct
summands of the form (B.8)) in the second direction occur. Since the image of Tot
is a complex of a projective C-module, bounded from the right, we obtain that the
image is acyclic if and only if the bicomplex we started with was acyclic. The claim
([ follows, and the proof of Proposition 23 is complete. O

In case C is a quadratic category, the functors K and K’ are particularly well-
behaved as we will now illustrate. We first show that the functor K’ for C can be
realized using the functor K for (C')°P (which means that these two functors are
in fact dual to each other).

Proposition 24. Assume that C is quadratic. Then
Kcyor = DK D.

Proof. First let M € C'-gfmod be such that M; = 0 for all big enough 7. Further, let
X=C®c, C'. Then X is a graded projective C — C'-bimodule, which has a unique
decomposition into a direct sum of indecomposable projective C — C'-bimodules of
the form Ny = C()\, _)®c, C'(_, \), where A € C, each occurring with multiplicity
one (this multiplicity is given by the dimension of the homomorphism space to
the appropriate simple bimodule). Under these assumptions the graded left C-
module X ®c DM has finite-dimensional graded components (and we even have
(X®c DM); = 0 for all small enough ¢). Then the module D(X @t DM) is a well-
defined right C-module with finite-dimensional graded components. Moreover, this
module is isomorphic to the module Homg(X ®c: DM, k) as a graded C-module
by definition of D (note that we understand the Hom-functor using the definitions
from the last part of Subsection 222)). From the definition of Ny and Subsection
it follows that the graded components of the graded vector spaces in the formula
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E3) below are finite-dimensional, and hence the adjunction morphism defines an
isomorphism of these components:

(5.9) ® : Homg(Ny ®c: DM, k) = Homg: (DM, Homy (Ny, k)).

The space on the right hand side of (59) is nothing other than Homg: (DM, DN})
which is naturally isomorphic to Homc:yer (N, M) by applying the duality D. Now,
from the definition of X and the assumptions on M it follows that there is a natural
isomorphism of graded right C-modules with finite-dimensional graded components:

®:D(X®@c DM) = Hom cyen (X, M).

Now let M® € CT(C'-gfmod) and X* = P*. Then, by Proposition[I8] the components
of X* are (up to shift) isomorphic to the bimodule X above. Hence it follows that
® induces a natural isomorphism

" : D(X! @t (DM)?) =2 Homygryon (X7, M)
for any i,j € Z. The naturality of ® induces an isomorphism of bicomplexes
]D)(X. ®C! ]D)M.) = Hom(cz)op (X., M.)

By the arguments from the proof of Proposition[20] taking the total complex reduces
to taking direct sums of finitely many non-zero spaces. Hence the above induces
an isomorphism of the corresponding total complexes. The isomorphism DK D =
K(ctyer therefore follows from the definition of the involved functors. O

For A € Ob(C) let Q3, denote a minimal projective resolution of L(Cz)op()\) €
(C")°P-gfmod. The following result says that the images of indecomposable projec-
tive (resp. injective) modules under the functor K (resp. K’) is nothing other than
the linear part of a minimal injective (projective) resolution of the corresponding
simple module.

Proposition 25. Let C be a positively graded category. Then there are isomor-
phisms
(i) K'lgr(N)® 2 I3 =2 S_1Q,Q% of objects in LE(Pc) NDY(C-gfmod), and
(i1) KPo(N)® = ]D)S(_Ci)op éci)op 3. of objects in LC(lg:) N DT (C'-gfmod) in case
C is quadratic.
Proof. Let A € Ob(C). From Proposition 2T Theorem [[2] and Proposition [TTI([H)

we know that K'lqi(\) = Z% =2 S_1QpQ%. This proves (). From this () follows
using Proposition O

For quadratic C we have ((C')°P)! = ((C")")°P = C°P canonically and from
Theorem [[2] and Proposition [fit follows immediately that the categories C-gfmodnN
D} (C-gfmod) and LC(lc:)NDT(C'-gfmod) are equivalent. This equivalence can also
be realized in the following way:

Proposition 26. Assume that C is quadratic. Then
K : C-gfmod N D*(C-gfmod) — LC(I¢') N DT (C'-gfmod)

is an equivalence.
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Proof. From the arguments in the proof of Proposition 23] it follows immediately
that the functor

K : C-gfmod N D! (C-gfmod) — LC(lg!) N DT (C'-gfmod)

is exact. By Proposition 25|[) and Proposition [I}[b), K sends indecomposable
projective objects from C-gfmod to the corresponding indecomposable projective
objects from LC(Ict). By [MOl Lemma 6], the induced map on the morphisms is an
isomorphism when restricted to the part of degree 1. Hence it is an isomorphism,
since C is quadratic. This completes the proof. O

5.3. Quadratic dual functors. Let C be a positively graded category and A C
Ob(C), A # @. We denote by C, the full subcategory of C such that Ob(C,) = A.
The category Cp obviously inherits a positive grading. Let B be the C%-(Cy)%-
bimodule C(_,_ ), which means that it maps the object (()\, i), (u,j)) to C(A, ) j—i,
where € Ob(C), A € Ob(Cp). Further, we define the category AC as fol-
lows: Ob(,C) = A, and for \,u € Ob(,C), the space AC(\, p) is the quo-
tient of C(A, 1) modulo the subspace, generated by all morphisms, which factor
through some object outside A. Let »D be the (C')%-(,C")%-bimodule such that
AD((p,7), (A, 5)) = A(C") (1, \)j—i if p € A and which is the trivial vector space
otherwise. The assignments for the maps are the obvious ones. The following ob-
servation (which was made in [Ma, 3.1]) about the connections between C, and
A(C") is easy but crucial:

Lemma 27. There is an isomorphism of categories
7:(Cp)'-gfmod = (C')-gfmod,

such that TM(X) = M(X) for any A € A and TM(f) = M(f) for any morphism f
homogeneous of degree one.

Proof. Let A\, u € A. The equalities

(Ca))1(A ) = d((Ca)i(m, V) = d(Cu(p, V)

=d((sC)1(1, A) = (AC))1 (A, )
give rise to an identification of the morphisms of degree one. It is easy to see that
this gives rise to an identification ((Cy)")(\, 1) = ((AC)")(\, i), and the statement
follows. O

Motivated by the Koszul duality (as proved in [RH|) between translation functors
and Zuckerman functors for the classical Bernstein-Gelfand-Gelfand category O,
we would like to extend the above equivalence to the following correspondence on
functors:

Theorem 28. Let C be a positively graded category and A C Ob(C), A # &. Then
the following diagrams commute up to an isomorphism of functors:

1 Kc ! 1 Ko T
D*(C-gfmod) —— D'(C’-gfmod) D*(C-gfmod) <—— D' (C’-gfmod)

7K Ké—_; =1

D (Ca-gfmod) — ) (A(Ch-gfmod) D (Ca-gfmod) DAL D' (5 (CY-gfmod),
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where

_ L _ L
F=Eg'Ba @, Ben(2), G =EBglaD 8oy Eyen(-);

F' = Eg, RHomgz (B, Ec(—)), G’ =E_ o RHomcz(aD, Eqi(-)).

Proof. Since the diagrams are adjoint to each other, it is enough to prove the
commutativity of the second, say. We have the natural restriction functor res :
C-gfmod — Cj-gfmod which is isomorphic to C-gfmod(By,- ) and has the right
adjoint ind given by tensoring with Bp. On the other hand we have the natural
functor J : 5(C')-gfmod — C'-gfmod, which is given by J(M)(A) = M()) if A € A
and J(M)(A) = {0} otherwise, and on morphisms J(M)(f) = M(f) if M(f) is defined
and J(M)(f) = 0 otherwise. In other words: J = AD ®, (c1)z —. We claim that
there is an isomorphism of functors as follows:
661 J = ind 6611\ L

This can be checked by an easy direct calculation. The commutativity of the second
diagram above then follows directly from Theorem [I2 and Proposition 211 O

Remark 29. The statement of Theorem 28 resembles the equivalence of categories,
given by Auslander’s approximation functor from [Aul, Section 5]. A substantial
part of the “easy direct calculation” in the proof repeats the calculation, used to
establish the fact that Auslander’s functor is an equivalence of certain categories.

5.4. The Koszul duality theorem. We call a positively graded category C
Koszul provided that the minimal projective resolution of L(A\) € C-gmod is lin-
ear for every A. This generalizes the usual definition of Koszul algebras (see e.g.
[BGS| Section 2]). It is of course not a big surprise that for Koszul categories all
of our previous results can be seriously strengthened. Our main result here is the
following:

Theorem 30 (Koszul duality). Let C be a positively graded category. The following
conditions are equivalent:
(a) C is Koszul.
(b)
Kc
DY(C-gfmod) = DI(C'-gfmod)

KL

are mutually inverse equivalences of categories.
(c) KPc(A)® 2 Lot (N)® for every A € Ob(C).
(d) K'lg:(A)® = La(N)® for every A € Ob(C).
(e) The functor Tot from [21) is dense.

Proof. @) = (0). We assume that C is Koszul. Since we have an adjoint pair
of functors (K, Kc) (see Theorem 22)), it is enough to show that the adjunction
morphisms are isomorphisms. We even claim that it is enough to show that the
adjunction morphisms are isomorphisms for any simple object. Indeed, by the
definition of D!(C-gfmod), for any X* € D!(C-gfmod), A € Ob(C) and i € Z, the
bicomplex
HomC—gfmod(P; <*Z> [Z]a X.)

has only finitely many non-zero components, each of which is a finite-dimensional
vector space. Hence the claim that the adjunction morphism is an isomorphism for
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X* follows from the corresponding statement for simple objects by taking the limit
as in Corollary

Now let us prove the statement for simple objects. We can of course assume
that these simple objects are concentrated in position zero. From Proposition
we have KLc(A) = I (M)*®, and we also have an isomorphism K'lqr(A) 2 S_1Qe Q3.
The latter one is isomorphic to 93, since C is Koszul. Hence K'KLc (M) & Le(N).
Since the adjunction morphism K'KLg(A) — Le(A) is non-zero, it must be an
isomorphism. Via the duality D we could also say that C is Koszul provided that
the minimal injective resolution of L(A) € C-gmod is linear for every A. Note
that C is quadratic by [BGS|, Corollary 2.3.3]. Again using Theorem 22(il) and
Proposition we get, completely analogous to our previous argument, that the
adjunction morphism ID — KK’ is an isomorphism. This implies ().

([B) = @). By Proposition 28 we have KLc(A)® 22 I (X)® for any A € Ob(C).
From Theorem 22|il) and () we know that K'KLc(\)® is a linear complex of
projective C-modules. Since, by assumption, K'KLc(A)® = Le(A)®, the module
Lc(A)® has a linear projective resolution, which implies (@).

@) < (d). From Proposition 28 we get K'lc: () 2 S_1Qo 9%, and the statement
is clear.

@) = @). This follows from Propositions [[1] and 2H] since any Koszul category
is quadratic ([BGS, Corollary 2.3.3]).

@ = @). Since we assume KP(A)®* = L (A)® for every A € Ob(C), Proposi-
tion 23 implies that the minimal injective resolution of any Lgi(A)® is linear, hence
(C") is Koszul, and therefore so is (C')". So, it is enough to show that C is qua-
dratic. If it is not, then there is some A € Ob(C) such that the characters of Pc())
and P ¢y (A) do not agree, since C is then a proper quotient of (C')" (it does have
more relations). From Theorem R2[) we get that if KPc(A\)® = Lai(A), then
KP 1y (M)® 2 Ly (A) = Lai(A). This however contradicts Theorem R2IE).

@) = (@). This follows directly from Proposition

[®) = ([@). We only have to show that, if Q% is not linear, then the isomorphism
class of the minimal projective resolution Q% of L()\) in D!(C-gfmod) does not
intersect the image of Tot. Assuming the contrary we have K'X* = Q% for some
X* € DI (C'-gfmod) by Proposition Il Then KK'X*® = I ()\) by Theorem 22{)
and

V= KKKX®2~S,Q00%
by Proposition [Ii(B)). The adjunction of K’ and K (Theorem R2(f)) implies the
existence of maps

(5.10) 0% — Y* — 95,

whose composition is the identity map. Since both Q3% and )* are complexes of
projective modules bounded from the right, the maps in (5I0) can already be
realized in the homotopy category (see e.g. [Hal Chapter III(2), Lemma 2.1]). We
obtain that Qf is a direct summand of Y*°, which is impossible since Y* is linear
and Q3 is not. The theorem follows. O

Remark 31. Analogously to [BGS, 2.13], linear complexes can be interpreted as
objects of the core of a non-standard t-structure on the category D'(C-gfmod)
(and other derived categories we consider). In the case of Koszul categories, the
Koszul duality functors transform the standard t-structure on D!'(C-gfmod) into
the non-standard t-structure on D'(C'-gfmod) and vice versa.
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We would like to emphasize the following direct consequence:

Corollary 32. All projective resolutions of simple C-modules are linear if and only
if they all belong to the image of the functor Tot from Proposition 211

6. KOSZUL DUAL FUNCTORS FOR THE CATEGORY O

In this section we apply the results from Section Bl to Koszul algebras associated
with the blocks of the classical Bernstein-Gelfand-Gelfand category O (see [BGG2],
[BGS]). We give an alternative proof of the result of Ryom-Hansen ([RH]) on
the Koszul duality of translation and Zuckerman functors on O, and prove the
Koszul duality of twisting/completion and shuffling/coshuffling functors. In the
next section we will describe several applications, in particular, we will give an
alternative proof of the categorification results of Sussan ([Sul) by applying Koszul
duality to the corresponding categorification result from [St2].

6.1. Category O: notation and preliminaries. For any (complex) Lie algebra g
we denote by U(g) its universal enveloping algebra. Let g be a complex semisimple
Lie algebra with a fixed Cartan subalgebra h inside a Borel subalgebra b. Let
O = O(g) be the corresponding category O from [BGG2| given by all finitely
generated U(g)-modules, which are h-diagonalizable and locally U(b)-finite. The
morphisms are ordinary U(g)-homomorphisms. The Weyl group W acts naturally
on h*, via (z,\) — x(\) for any z € W and A € h*. There is also the so-called
“dot-action” = - A = (A + p) — p with the fixed point —p, where p is the half-
sum of positive roots. It is well-known that the category O has enough projectives
and injectives. For p € h* let L(u) denote the simple module with the highest
weight p, P(p) denote the indecomposable projective cover and I(u) denote the
indecomposable injective hull of L(u) in O.

The action of the center of U(g) decomposes the category into blocks, i.e. O =
@D O,, where (due to the Harish-Chandra isomorphism) the blocks are indexed by
the W-orbits under the dot-action. We also write O, = Oy, if A € x is maximal (in
the usual ordering on weights). In particular, Oy denotes the principal block con-
taining the trivial representation, and P(u) (resp. L(u) or I(p)) is an object of Oy
if and only if 4 € W - A. The module P, = P, P(1) is a minimal projective gen-
erator for O, hence O(P,, o) defines an equivalence of categories between O, and
the category of finitely generated (which means finite-dimensional) right Ende (P, )-
modules ([Bass, Section 2]). From [BGS]| it is known that A(x) = Endp(Py) can
be equipped with a positive Z-grading such that the corresponding graded algebra
A(x) becomes a Koszul algebra. Since we have always worked with left modules so
far, we use the duality on O to identify A(yx) = A(x)°P. We denote by A(x) the
corresponding positively graded C-category (recall that the objects of A(y) can
be considered as a minimal system of representatives of the isomorphism classes
of indecomposable projective modules in A(x)-gfmod with the head concentrated
in degree zero and where the morphisms are the morphisms of graded modules;
see Subsection 21)). We will identify the objects of the category A(x) either with
isomorphism classes of indecomposable projective objects in A(x)-fmod, or the
isomorphism classes of simple modules in A(y)-fmod or even just with the corre-
sponding highest weights, depending on what is the most convenient way in any
particular situation.
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Then the category A(x)-gfmod of all finite-dimensional graded A (x)-modules is
a “graded version” of O,. We will also write A(\) (resp. A())) instead of A(x)
(resp. A(x)) if A € x is maximal. In particular, we have A(0)-gfmod, the graded
version of the principal block Oy.

If P(u) € Oy, then we have the corresponding indecomposable projective P(u) €
A(N)-fmod and P(p) = A(N)(p,— ) € A(N)-gfmod. Similarly, L(u) € Oy corre-
sponds to a simple module L(u) € A(M\)-fmod and to L(p) € A(M)-gfmod, the
simple quotient of P(u). Recall that we denoted the injective hull of L(u) by I(u).
The indecomposable projective modules in A (A)-gfmod are exactly the modules of
the form P(u)(j) for some p € W+ X and j € Z.

For more details concerning this graded version of category O (in the language
of modules over graded algebras) we refer to [BGS] and also [St1].

6.2. The parabolic categories 5 A(x)-gfmod. If p D b is a parabolic subalgebra
of g, then we denote by W, € W the corresponding parabolic subgroup, and let
OF denote the full subcategory of O given by all locally U(p)-finite objects. For
a W-orbit x with maximal weight A let Of = Of\ be the full subcategory having
as objects all the objects from O,, which are locally U (p)-finite. We will also call
these categories “blocks”, although they are not indecomposable and of course not
even non-trivial in general. The Zuckerman functors

ZK:(’),\ — Of\

are defined as the functors of taking the maximal p-locally finite quotient. These
functors are right exact. Let ZP = Z§ and let i* denote its right adjoint, i.e. i
is nothing other than the inclusion functor Of — Op. Note that ZP P(z - 0) # 0
if and only if € WP, the set of shortest coset representatives of W,\W. The
module Z§ P, is a minimal projective generator for 0% = OF. Let A(x)? denote
its endomorphism ring, which is the quotient of A(x) modulo the homogeneous
ideal generated by all idempotents corresponding to the simple modules which
are in O, but not in OF. In particular, A(x)P inherits a (positive) grading from
A(x). We will consider the positively graded category corresponding to A(x)?
via the correspondence (LI and denote it by A(x)?. Using the language from
Subsection B3] we have

Lemma 33. There is a canonical isomorphism of categories, A(x)® = A(A(x)),
where A = A(x,p) is the set of idempotents corresponding to simple modules in Oy,
which are contained in OF.

Proof. This follows directly from the definitions. O

6.3. The category A(0)(p)-gfmod. Let W, be a parabolic subgroup of W. Let
W(p) = {z € W | 27 wg € WP}, where wy is the longest element in W. Let
A = A(p)’ denote the set of weights of the form z -0, z € W(p). We consider A(p)’
as a subset of Ob(A(0)). Then the following holds

Lemma 34. A complete system of indecomposable projective objects in the category
A(0)pr-gfmod s given by restricting the modules P(A\){(j) € A(0)-gfmod, where
A€ N, jEZ, to objects in A(0)ps-gfmod.

Proof. This follows directly from the definition of A(0)x-. O
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6.4. Koszul duality of translation and Zuckerman functors. Let p D b be a
parabolic subalgebra and let A = A(p) € h* be such that its stabilizer under the dot-
action is W, and it is maximal in its orbit. In [BGS] (and [Ball), it is proved that
A(x)P is always a Koszul algebra. More precisely ([BGS, Corollary 3.7.3]), there is
an isomorphism of graded algebras A(0)' — A(0), which induces an isomorphism
of categories A(0)' — A(0), such that the object -0 is mapped to the object
7 wg - 0, where wy is the longest element in W. More generally (|[Ball, Proposi-
tion 3.1]), there is an isomorphism of categories (A(A(p)))' = A(0)? mapping the
object z - A(p) to the object 2~ twy - 0. For any p we fix such an isomorphism and the
induced isomorphism of categories o¥ : DT (A()\(p))!-gfmod) =~ DT(A(0)P-gfmod).
Set 0 = ¢°. We have the following Koszul duality functors:

Ka(o)

—_——> o
D' (A(0)-gfmod) T DT (A(0)"-gfmod) = DT (A (0)-gfmod),
Ka(0)

such that KL(z - 0) = I(x~ 1w - 0). More generally,

Kam))
p

DHAMAP))-gfmod) "~ DI(A(A(p))-gfmod) = D' (A(0)*-gfmod) -

K'A( ()

such that Kaap)L(z - A(p)) = I(zwg - 0).

As the algebra A is finite-dimensional, we have that the bounded derived cate-
gory DP(A(0)-gfdmod) is by definition contained in D!(A(0)-gfmod) as well as in
DT (A(0)-gfmod). Hence it makes sense to restrict the functors to this subcategory.
Since the Koszul functor sends simple modules to injective modules (Theorem 22

and the involved algebra has finite global dimension, we obtain functors as follows
(see [BGS], Theorem 2.12.6] for details):

Ka(o)

(6.1) D'(A(0)-gfdmod) D' (A(0)-gfdmod) = D (A (0)-gfdmod).

KA (0)
With the notation from Lemma B3] the Zuckerman functors induce functors
ZP : A(0)-gfdmod — A(0)P-gfdmod = 5 A(0)-gfdmod
i* : A\A(0)P-gfdmod = A(0)?-gfdmod — A(0)-gfdmod.

On the other hand, for any block Oy, where A is integral, we have the translation
functors

98‘ : O() — OA,
99\ : O,\ — Oo,

given by translation onto and out of the wall (for details see for example [Jal],
[GJ]). They induce functors

0y :  A(0)-fdmod — A(\)-fdmod,
6% :  A(\)-fdmod — A(0)-fdmod.
In [St1] it is proved that the latter have graded lifts
6} :  A(0)-gfdmod — A(\)-gfdmod,
60 A(N)-gfdmod — A(0)-gfdmod,
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which give rise to the original functors if we forget the grading. We are mostly
interested in the case when A is integral and the stabilizer W, of A is generated
by a simple reflection s, that is, A is “lying on exactly one wall”. To avoid even
more notation we restrict ourselves from now on to this case. We fix a standard
lift 63 such that 6 maps P(0) to P()\). We fix a standard lift 6 of 69 such that
the adjunction morphism ID — 696 is homogeneous of degree 1. This means
G9P(\) = P(s - 0). For more details we refer to [Stil Section 1, Section 3.2].

As an application of our general setup we get the following result, conjectured
in [BGS|, and originally proved in [RH], concerning the restrictions of the Koszul
functors as given in (6.1]):

Theorem 35. Let p DO b be a parabolic subalgebra of g such that W, = {1, s} for
some simple reflection s. The following diagrams commute up to isomorphisms of
functors:

oK

(6.2) DY(A(0)-gfdmod) o DY(A(0)-gfdmod)
05 (1) rzP

oPK
DY(A(A(p))-gfdmod) AOED DP(A(0)P-gfdmod)

oPK
(6.3)  DP(A(X(p))-gfdmod) AOED DY(A(0)?-gfdmod)

9 iy
oKa(0)

DY(A(0)-gfdmod) Db(A(0)-gfdmod)

The category D*(A(0)a(p) -gfdmod), considered as a subcategory of the category
D’(A(0)-gfdmod), is exactly the image of the translation functor 59\

Corollary 36. (i) The functor i,£LZ*(1)[~1] and the translation functor f, =
030} through the s-wall are Koszul dual to each other.
(i1) The functor i, LZP(1)[—1] is both left and right adjoint to itself.
Proof. (i) follows directly from Theorem [35] and Theorem 22J{). The statement
() is then clear, since 6; is self-adjoint ([St1), Corollary 8.5]). O

Remark 37. Our result differs from the one in [RH] by a shift in the grading. This is
because in [RH] the graded lift of the 6} is chosen such that it maps a simple module
concentrated in degree k to zero or to a simple module concentrated in degree k.
We chose the lift such that it maps a simple module concentrated in degree k to
zero or to a simple module concentrated in degree k — 1 (see [Stll Theorem 8.1]).

To prove Theorem [35] we use the following auxiliary statement:

Lemma 38. Letp O b be a fized pgmbolic subalgebra of g. For any x € W (p) there
is an isomorphism B, : P(x - 0) 2 6P (x - A(p)) € A(0)-gfdmod.
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Proof. Using [St1l Theorem 8.4] and [Ja2l, 4.12 (3)] we get for any j € Z that
A(0)-gfdmod (03P (x - A(p), L(y - 0){))
> A(0)-gfdmod(P(z - A(p)), 65 L(y - 0)(j — 1))
is only non-zero if y = z and j = 0, in which case it is isomorphic to
A(0)-gfdmod(P(z - A(p)), L(z - A(p))) = C.
Since the translation functors map projective objects to projective objects, the

statement follows. O

Proof of Theorem B3l By adjointness it is enough to prove the commutativity of
the second diagram. We start with some general statements. Let x,y € W(p) and
P=P(z-Ap), Q=P(y-Ap)) € A(\(p))-gfdmod. The functor T := 69 is exact
and does not annihilate any submodule of a given projective module ([Ja2, 4.13 (5)
or (3%)]), hence it induces a natural inclusion

(6.4) A(A(p))-gfdmod(P(—1),Q) — A(0)-gfdmod(AP(—1),63Q)

of graded vector spaces. We claim that this is even an isomorphism. By [Stl]
Theorem 8.4, Proposition 6.7 (2)] we have

A(0)-gfdmod(83P(—1), Q)

A(0)-gfdmod(P, 6365Q)

A(0)-gfdmod (P, Q(1) ® Q(—1))

A(0)-gfdmod(P(-1),Q) ® A(0)-gfdmod(P(1), Q)
A(0)-gfdmod(P(—1),Q);

the latter follows from the positivity of the grading. Hence the spaces in (6.4)

have the same dimension, and the map has to be an isomorphism. Together with
Lemma [34], the functor T induces an isomorphism

a: AAP))1 = (A(0)ap))1-
From Lemma and Lemma [34] we know that T induces a functor
T . LG(PA(A(p))) — LG(PA(O))

To show that the second diagram in Theorem [ commutes, it is enough (by The-
orem [30] and Proposition 2I) to show that the following diagram commutes:

1%

— o~~~

1

-1
€A(0) o

LE(Pa() A(0)-gfdmod A(0)-gfdmod

TT Tgli)’gp Tip
—1
CA(N(p))

LC(Pa(p)) —22 A (A(p)) -gfdmod ~Z—= A (0)P-gfdmod

The right hand square commutes by definition. We have the isomorphisms 3, :
P(xz-0) = TP(z - A(p)) from Lemma The explicit description of ¢! in the
proof of Theorem implies therefore that for any M € A(\(p))'-gfdmod, the
components of the complexes Teﬁ)\(p))(M) and 6;10)0’11PUP(M) are isomorphic
via the isomorphism (3,. Moreover, the isomorphism « implies that we even have
an isomorphism of complexes. This isomorphism is natural by the definition of
morphisms in the category of linear complexes of projective modules. Hence the
diagram commutes and implies Theorem O
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6.5. Koszul duality of twisting and shuffling functors. For any simple reflec-
tion s let Ty : Oy — Op be the twisting functors described for example in [AS]. Let
Ts : A(0)-gfdmod — A(0)-gfdmod be the graded version of T such that T;P(0)
has head L(s-0) ([FKS| Proposition 5.1]) and let G4 be its right adjoint. This func-
tor is a graded version of Joseph’s completion functor ([Jo|, [MSI, Theorem 4]).
Let Cy : A(0)-gfdmod — A(0)-gfdmod denote the graded version of Irving’s shuf-
fling functor, which is given by taking the cokernel of the adjunction morphism
ID(-1) — égé@ Let D, be its right adjoint, which is given by taking the kernel of
the adjunction morphism 9953‘ — ID(1). In this section we will prove that twisting
functors and shuffling functors are Koszul dual to each other:

Theorem 39. For any simple reflection s, the following diagrams commute up to
isomorphism of functors:

oKa (o
DY(A(0)-gfdmod) —= DP(A(0)-gfdmod)

LC, l lLTS
oKa(o)

Db(A(0)-gfdmod) — D°(A(0)-gfdmod)

O'KA(O)

D*(A(0)-gfdmod) — D’(A(0)-gfdmod)

RDS\L lRGs

oKa (o
DY(A(0)-gfdmod) —= DP(A(0)-gfdmod)

Remark 40. Applying Proposition 24] [MS2, Lemma 5.2] and [KM| Corollary 6],
from Theorem it also follows that the following diagrams commute up to an
isomorphism of functors:

oK
DP(A(0)-gfdmod) ——= D¥(A(0)-gfdmod)

ETS\L lECs

O'KA(O)

D’ (A(0)-gfdmod) — D*(A(0)-gfdmod)

oK
DY(A(0)-gfdmod) —3 DP(A (0)-gfdmod)

RGSL l’RDS

oKa(o
DY(A(0)-gfdmod) ——= D¥(A(0)-gfdmod).

The rest of the section will be devoted to the proof of Theorem We start
with the following definition: Let A, B be categories and assume B is abelian. Let

(6.5) 0—F —Fy—F3—0

be a complex of functors F; : A — B (1 < i < 3). The complex ([@H) is exact if it
gives rise to a short exact sequence 0 — F1(M) — Fo(M) — F5(M) — 0 in B for
any object M € A. Analogously, if B is a triangulated category, then for functors
F; : A — B we say that F; — Fo — F3 — Fy[1] is a distinguished triangle if it gives
rise to a distinguished triangle in B when evaluated at any object in A.
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Lemma 41. Let s be a simple reflection and P C A(0)-gfdmod be the full additive
category given by all projective objects. Then there is an exact sequence of functors
from P to A(0)-gfdmod of the form

0— T, —id(1) —i,ZP(1) — 0,
where p is the parabolic subalgebra of g, associated with s.

Proof. We have TsP(wq - 0) = P(wp - 0) by definition. From the proof of [MSIl,
Theorem 6] it follows that Hom(T,,ID(1)) = C(h), where C(h) is the coinvariant
algebra as in [Sol, 1.2]. In particular, there is a unique up to scalar natural transfor-
mation can of lowest degree. It must be non-trivial on P(0), otherwise it would be

trivial anywhere, since Ty commutes with translation functors through walls ([AS|
Section 3]). Then the cokernel of can is i,Z¥ (1) ([AS, Proposition 5.4]). O

Corollary 42. There exists a morphism ¢ of functors such that
i, LZP (1)[—1] & £T, — id(1) — i, 2% (1)
is a triangle of functors.

Proof. This follows immediately from Lemma [I] (see for example [KS, Proposi-
tion 1.8.8]). O

Proof of Theorem [39. Since K = K (o) is a functor of triangulated categories and
an equivalence by Theorem B0, from Corollary 2] we get the triangle

(6.6) K i, £Z° (1)[-1]K % K~ £T,K — K ID(1)K — K1, Z° (1)K.

From Theorem 22] we have K(1) = (—1)[1]K. Together with Corollary the
triangle (6.6]) gives rise to a triangle

(6.7) G, £ K1LTK — ID(=1)[1] — 6,[1]
and therefore to the triangle
(6.8) K 'LT,K[-1] — ID(—1) %5 4, — K~1LT,K.

Note that the map ¢” is graded (homogeneous of degree zero). Since the graded vec-
tor space Hom(ID(—1), 6,) is one-dimensional in degree zero ([BaZ, Theorem 4.9]),
¢" must be the adjunction morphism up to a scalar. Hence we have K~'£LT,K =
LC;. Therefore, the first diagram of Theorem [B9 commutes. The commutativity

of the second follows by adjointness. O

7. APPLICATIONS
Finally we would like to indicate applications of our results.

7.1. A categorical version of the quantized Schur-Weyl duality. In [FKS9]
a categorification of finite-dimensional quantum sly-modules was obtained using
certain graded versions of blocks of the category of Harish-Chandra bimodules for
sl, and translation functors. The quantized Schur-Weyl duality was categorified
using certain singular blocks of the category O together with the action of twisting
functors and translation functors through walls (see [FKSL Section 5] based on
[BFK| Corollary 1]). The standard and the dual canonical bases were realized using
graded versions of Verma modules and simple modules. Now Theorems [35] and
provide the Koszul dual version of it: The Schur-Weyl duality can be categorified
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using the bounded derived categories of certain parabolic blocks of O (as suggested
in [BFK| Section 4]) together with the action of shuffling and derived Zuckerman
and inclusion functors. From Theorem 22l and [FKS, Theorem 5.3 (e)] it follows
directly that the standard and canonical basis can be realized using graded versions
of dual Verma modules and injective modules.

7.2. A functorial tangle invariant. J. Sussan proved in [Su] that the categori-
fication from [BFK| 3.2.3] of the Temperley-Lieb algebra using singular blocks of
category O together with Zuckerman functors and inclusion functors can be ex-
tended to a functorial tangle invariant using derived twisting and derived comple-
tion functors. Theorem [B9 shows that the functorial invariants of [Su] and of [St2]
and [MS3] are Koszul dual to each other.

7.3. A “Koszul dual” for Harish-Chandra bimodules. The categorification
of finite-dimensional quantum sly-modules from [BFK]| was obtained using certain
graded versions of blocks of the category of Harish-Chandra bimodules and trans-
lation functors. In general, these graded blocks are not Koszul, hence it does not
make sense to speak about a Koszul dual version at all. However, we propose the
following alternative to the “Koszul dual” of the graded version of the category
,\Ht of Harish-Chandra bimodules with generalized central character y, from the
left hand side and central character x, from the right hand side: There is the
well-known equivalence from [BG] which identifies AH}L with a certain subcategory
of Oy (see [BG] or [Ja2, Section 6]). By [Ja2, 6.17] the graded version of yHj, is
equivalent to A(A)a-gfdmod for some A. Hence Lemma 27 provides the quadratic
dual, namely o AP-gfdmod, where AP-gfdmod is the Koszul dual of A(\)-gfdmod.
Using the Koszul duality of translation and Zuckerman functors (Theorem [35 and
[RH]), we get directly from Theorem 28 a quadratic dual version of the results in
[FKS].

7.4. A Koszul duality for Kac-Moody Lie algebras. In our opinion, one ad-
vantage of our setup using graded categories in comparison with the setup in [BGS]
is the fact that the categories are allowed to have infinitely many objects. Instead
of considering the principal block of the category O for a semi-simple Lie algebra,
we could consider the category O for a symmetrizable complex Kac-Moody algebra,
and in there any regular block outside the critical hyperplanes. Translation func-
tors through walls are defined in [Fil]. The generalization of Soergel’s structure
theorem ([So]) holds (see [Fi2] for the deformed case and [St3] for the non-deformed
case). In analogy with [So] and [St1] the morphism spaces between indecomposable
projective objects (if they exist) can be equipped with a positive grading giving
rise to a positively graded category C as defined in Section In case projective
objects do not exist, they can be replaced by tilting objects (see [Fi2]). Theorem 22]
and Theorem 30l then provide an analogue of the Koszul duality for a regular block
outside the critical hyperplanes for the category O of a symmetrizable complex
Kac-Moody algebra.

APPENDIX A. AN ABSTRACT GENERALIZED KOSZUL COMPLEX

Some linear algebra. Let V be a finite-dimensional k-vector space and v = {v; :
i=1,...,n} be a basis in V. We denote by {v' : i = 1,...,n} the dual basis in
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V*:=d(V). Then we have a canonical isomorphism,

p: Ve Ve 5 Homy(V,V),
vRw* —  w*(_)v.

(A.1)

We have Iy = ¢~ 1(Idy) = Zle v; ® v%, in particular, the element Iy does not
depend on the choice of the basis v. Let H C V be a subspace and H+ = {f €
V*|f(h) =0 for all h € H} be the corresponding orthogonal complement in V*.
Then we have

p(Hox V') = {f:V = V|In(f) C H},

o(VeyHY) = {f:V —=V|HCXKer(f)}.

Lemma 43. Let HC V. Then Iy e H V¥ +V @, HE.

Proof. Let p : V — H be any projector on H. Then Idy = p+(Idy —p) and Im(p) =
Ker(Idy — p) = H. Hence ¢~ 1(p) € H®, V* and o '(Idy —p) e Ve H-. O

A semi-simple analogue. Let Cy be as in Subsection 23] and let Vg, be an
arbitrary right Cp-module. Define

COV* = CQ-MOd(VC07 (CO)CO)

(note that the authors of [BGS| 2.7] use the notation *V for the same object). The
formula (AJ]) defines a canonical isomorphism,

@ : VCO Rcy Co | A Homco (VCO, VCO)-

Let Hc, C Vg, be a (right) submodule. Then ¢, H is a (left) submodule of ¢, V*,
and, analogously to Lemma [43], we obtain

(A.2) Iy := ¢ *(Idy) € He, @c, c,V* + Ve, @c, co HT

A differential vector space for quadratic duals. Now let C and C' be as
in Section @ Let Mc be a right C-module and N be a left C'-module. Let
{a; :i=1,...,k} be a basis of C; and {a’:i =1,...,k} the corresponding dual
basis of C}.

Proposition 44. The linear transformation
0: Mc®co aoN — Mg Xc, a N,
men — Zle ma; ® a'n

satisfies 62 = 0. Moreover, if both, Mc and ¢ N, are graded modules, then Mc ®c,
c'N has a canonical bigrading, and § is a homogeneous map of bidegree (1,1).

Proof. That ¢ is a homogeneous map of bidegree (1,1) in the graded situation is
clear from the definition. What we have to prove is that §2 = 0. Let m denote the
multiplication in C (see Subsection E1), and m' denote the multiplication in C'.
We have

5(men)

Zf:l Z?;l ma;a; ® a’a'n
" ((((m N “’.!))I(Zf—l Z)?_Aaz- ®ay)® (@ ©a)))n
= m{(mYm)ic,gc,C1) N
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Now let R C C; ®c, C; be the set of quadratic relations of C. Then Rt is the
set of defining quadratic relations of C' by definition. Then, by (A2) we have
Ic,gc,c, = X +Y, where

X € R®¢, Ci &g, Ci, Y € C; ®c, C1 ®c, R*.

Hence m®m'(X) =0 and m@m'(Y) = 0 and thus §2(m®n) = 0. This completes
the proof. O

Consider the vector space C* = C*(M, N) defined via C* = (Mc ®c, ¢ N) for
all 4 € Z (which means that we just place a copy of M¢c ®¢, ¢! N in each position).

Corollary 45. (i) The linear transformation
0 c* — ce,
C's>(men) (Zle ma; ® a'n) € C*T1

satisfies 62 = 0, in particular, C* is a complex.
(i) If V is a C-bimodule and W is a C'-bimodule, then C*(V,W) is a complex of
C-C'-bimodules.

Finally, assume that both M and N are graded modules. Set C' = Mg (i) ®c,
cN(i) for all i € Z.

Corollary 46. (i) The linear transformation from Corollary BE|[l) defines on C*®
the structure of a complex of graded vector spaces (i.e. the differential is a
homogeneous map of degree 0).

(i) IfV is a graded C-bimodule and W is a graded C'-bimodule, then C*(V,W) is
a complex of bigraded C-C'-bimodules.

Generalized Koszul complexes. Several known complexes can be obtained by
this technique, for example:

e The complex C*(C, C'), given by Corollary EBI[), is isomorphic to P* from
Subsection by construction.

e The complex C*(C, (C")*), given by Corollary EGI), contains the classical
Koszul complex (as in [BGS, 2.8]) as a subcomplex (of C-modules). In
particular, C*(C, (C')*) can be considered as a natural bimodule extension
of the Koszul complex.

Because of the last example it is natural to call the complexes, given by Corol-
lary H6|[), generalized Koszul complexes.
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