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Introduction

It is well known that the complex simple Lie algebras can be classified via
Dynkin diagrams. By the theorem of Serre (|[Hum72, 17.3]) the Lie algebras
can be defined via generators and relations. Moreover given a quiver @) the
underlying diagram determines a Cartan matrix which yields a corresponding
Kac-Moody Lie algebra g (see [Kac94|). To study representation theory it
is useful to introduce the universal enveloping algebra U(g) for a given Lie
algebra g. Representations of g are nothing else than U(g)-modules.

The root space decomposition of g = n* @ h @ n~ induces a triangular
decomposition

U(g) =U(n") @c U(h) @c U(n")

for U(g). This algebra has a deformation U,(g) over Q(v) which can be
defined again via generators and Serre type relations. Note that U,(g) still
has a triangular decomposition. The deformation parameter comes into the
picture in a very subtle but at the same time natural way. This turns out
by considering representations of the associated quiver defined over a finite
field F,. The algebras U,(g) are also called quantum groups and play an
important role in representation theory as well as topology (see for example
[Kas95]).

Now fix a finite field k = F, with ¢ elements and a quiver ). Consider
the category Rep(Q) of finite dimensional representations of Q). Then we
build the (twisted) Hall algebra Hiy(Repr(Q)) of Repi(Q). This is the
free C-vector space generated by isomorphism classes of objects in Repg(Q).
The multiplication encodes the structure of extensions between objects in
Repr(Q) (for a detailed definition see Definition 3.1). Then by a famous
theorem of Ringel [Rin90] one can specialize the corresponding quantum
enveloping algebra U,(g) at ¢ = +,/q and obtain an embedding of C-algebras

Uy (‘(1+) = Hiw (R@pk (Q)) :

Moreover if @) is a simply-laced quiver with underlying Dynkin graph this
is an isomorphism. Unfortunately this construction only gives the positive
part. The construction of the whole universal enveloping algebra appears
to be much harder and more involved (see the work of Peng and Xiao in
[PX97] and [PX00]). Recently Bridgeland provides in [Bril3| a possibility to
describe the whole quantum enveloping algebra Uy(g) in terms of Hall alge-
bras. To be more specific he takes the Hall algebra of 2-periodic complexes
of projective objects. Then he localizes this algebra at the acyclic complexes
and introduces an additional relation (fot details see Definition 3.20). The
result is the reduced localized Hall algebra DH,..q(Repr(Q)) and he shows
that there is an embedding

Ui(9) <= DHyrea(Repi(Q))



which is an isomorphism in the simply-laced Dynkin case. Moreover the con-
struction of the reduced localized Hall algebra is given for arbitrary k-linear
abelian A categories with finite morphism spaces and finite global dimen-
sion. If A is hereditary we obtain a suitable description of a basis and of the
multiplication in DH,eq(A).

Now the main purpose of this thesis is to give a detailed overview of his work
in [Bril3] where the embedding of U;(g) is the main result. Moreover we dis-
cuss several examples of categories which satisfy the assumptions mentioned
above. In particular we consider the category of representations of the quiver
Ap

[0} o (¢]
1 n

Another example is k[ X ]—gmodf 9. the category of finitely generated Z-graded
k[X]-modules. It turns out that the corresponding Hall algebras behave quite
similar. This fact leads to the second important result of this thesis.

Theorem 0.1. For every n € N there is an embedding of C-algebras:

D%red(Repk (An)) — DHred(kZ[X] —ngdfg).

Now we want to give a short overview on the contents of the particular sec-
tions.

Section 1 serves to introduce the reader to the world of quivers and their
representations. We define the category Repy(Q) and describe the simple
and projective objects. Furthermore we show that Repp(Q) is hereditary
and of finite length.

Section 2 starts with the definition of Grothendieck groups and discuss sev-
eral examples. Hereafter we formulate the following conditions on an abelian
k-linear category A:

(Assl) A has finite morphism spaces.

(Ass2) A is of finite global dimension and has enough projectives.
(Ass3) A is hereditary.

(Ass4) Any non-zero object in A defines a non-zero class K(A).

We check that the assumptions (Assl)-(Ass4) hold for Repi(Q) and k[X]-
hmod’9. Then we introduce the non-hereditary category G (for a definition
see Example 1.10). These tree categories are our main examples in this the-
sis. From this point on we restrict to categories A satisfying (Assl)—(Ass2).
We consider the category of 2-periodic complexes of objects in A and show



some useful properties of acyclic complexes and complexes of projectives. In
particular for projective objects P we define complexes

1 0
kp= P—=P and kp= P—=P.
0 1

These complexes correspond to the generators K;, K L of Uy(g) in the main
Theorem (Theorem 4.37).

The focus of section 3 lies on the introduction of Hall algebras. We give the
definition of the twisted and untwisted version and consider the examples
Repr(Ay), k[X]-gmod’? and G. We compute some Hall products in these
categories and it turns out that one can embed the Hall algebra of Repy(A,)
into the Hall algebra of k[X]-gmod’9. Hereafter we consider the (twisted)
Hall algebra Ht.,(Cz,(P)) of complexes of projecives and show some useful
identities for Hall products in this algebra. In order to make the complexes
kp invertible we localize Hy,(Cz,(P)) at the acyclic complexes and obtain
the localized Hall algebra DH(A). Moreover to make the complexes kp and
K} inverse to each other we define a reduced version DH,.4(.A) by imposing
an additional relation.

The main part of section 4 is preparation for the proof of Theorem 4.37.
Thus we restrict to categories A which satisfy all assumptions (Assl)-(Ass4)
like Repr(Q). We introduce the quantum enveloping algebra U;(g) special-
ized at t = +,/q and state Ringel’s theorem. This yields an injective linear
map

¢: Ui(g) = Up(n®) @ Uy(h) @ Up(n™) = Hiw(A) © CIK(A)] © Hiw(A)

for A = Repr(Q). The main idea is now to define an isomorphism

& Hiw(A) ® CIK(A)] @ Hiw(A) = DHyea(A)

and to show that £ o ¢ is a morphism of C-algebras. In order to do this we
check that all defining relations of U;(g) hold for the corresponding elements
in DH,.q(A). Hereafter we finally state the main theorem.

Section 5 serves to consider the reduced localized Hall algebras of Repy(4,,),
k[X]-gmod’? and G. In each case we give a description of the basis and
compute several Hall products. Again it turns out that Hall products in
DH,ea(Repr(Ay)) behave quite similar to those in DH, eq(k[X]-gmod/9).
This leads to Theorem 0.1 and we use the main theorem to give a proof.



1 Representations of Quivers

In this section we introduce the basic concepts of quivers and their repre-
sentation. The main reference is [Kra08]. Throughout this section we fix a
field k.

1.1 Definitions and Notation

Definition 1.1. A (finite) quiver is a directed graph with finitely many
vertices and finitely many arrows. More precisely, it is a quadrupel
Q = (V, E, s,t) consisting of a finite set V' of vertices, a finite set E of edges
or arrows and two functions s,t: E — V assigning each arrow its source and
its target.

Definition 1.2. A path is a sequence of arrows «;...agaq, where
s(a;) = t(a—1) holds for all i € {2,...,1}. The number [ is called the length
of the path. In particular for each vertex ¢ there exists a trivial path e; of
length zero.

A quiver has no oriented cycles if for each path «;...asa; and for all

i,j € {1,...,1} holds: i # j = t(cy) # t(a ).
Remark 1.3. By considering each vertex as an object and a path between
two vertices as a morphism, each quiver forms a category.

Definition 1.4. Let Q be a quiver. A representation (X, f) = (X, fa)icV.acE
of () consists of a vector space X; for each vertex ¢ and a k-linear map
Jai Xg@) = Xiy(a) for each arrow a.

Let (X,f) and (Y,g9) be two representations of (. A morphism
Y: (X, f) = (Y, g) of representations is a tuple ¢ = (v;);ey of linear maps
i X; — Y; such that for each arrow « the following diagram commutes:

fa
Xya) = Xi(a)

ws(a)i lwt(a)

Jo
1/s(oc) ’ Y;f(a).

Definition 1.5. For a representation (X, f) of a quiver @ define

dim(X, f) =) dim(X;)
%
to be the total dimension of X.
We call (X, f) finite dimensional if dim(X, f) < oc.

From now on we only consider finite dimensional representations of fi-
nite quivers without oriented cycles. Throughout this thesis the following
example will be our main example of a finite quiver without oriented cycles.



Example 1.6. For n € N we define a quiver 4,, = (V, E, s,t) as follows:
V={1,....,n}, E={aq,...,an_1}, s(a;)=1 and t(a;) =17+ 1.
We can represent A,, by a diagram:

e} e}
1 2

@]
n

w O

If (X, f) and (Y,g) are two representations of A,, then ¢e: Xo — Y, is a
morphism of representations iff the following diagram commutes:

« « @ f&n—
x, ey, Joea oy Tea T
lwl le lws lwn
Yl Gaq Y2 Gao }/3 gaz 7" Gay g Yn

Remark 1.7. Considering a quiver @) as a category a representation can be
viewed as a functor to the category of vector spaces with linear maps.

Notation 1.8. Let (X, f) and (Y, g) be two representations of a quiver Q.

e Instead of (X, f) = (X;, fa)f‘eevE one often writes X = (X, Xa)f‘eef.

e For some pathp = ;... agaq define f, = fo, ... fan fo, and feo, = idx; .

e We denote by Repi(Q) the category of finite dimensional representa-
tions of Q).

e We denote by Hom((X, f), (Y, g)) the space of morphisms of represen-
tations from (X, f) to (Y, g).

Definition 1.9. Let @ be a quiver and (X, f), (Y, g) two representations of
Q. Then (X, f) is called a subrepresentation of (Y, g) if X; is a subspace of
Y; for each vertex i and fo = galy " holds for each arrow «. A non-zero

representation is called simple if it has no proper subrepresentation.

Example 1.10. An example of a quiver with oriented cycles is the quiver

G:

«

B

Now we want to introduce some kind of relation Sa = 0 to prevent the
formation of an infinite number of paths. So the new set of all paths is given
by

G= o
1

e}
2

{0,e1,e2,a,B,a5 }.
A representation of G with respect to the relation Sa = 0 is then an object
(X, f) € Repi(G) with fgo fo = 0. Define G to be the full subcategory of
these objects in Repi(G).



1.2 Simple and Projective Representations

Lemma 1.11. Let Q = (V, E,s,t) be a quiver with no oriented cycles and
(X, f) a simple representation of Q. Then there exists some i € V such that
(X, f) is isomorphic to S(i) with

so={5 7.

and obviously S(i)o =0 forallj €V, a € E.

to be the subquiver of Q) with

V={ieV|X;#0}, E={aeFE|s(a)tla)ecV}

and

§:8]E:E~—>f/, f:t]E:E%V.

Suppose £ is surjective. Then one can easily construct a path p of length
\f/\ + 1. Since at least one vertex has to occur twice in this path, p con-
tains an oriented cycle. But this contradicts the assumption that ) has no
oriented cycles. So we can assume, that there exists a vertex ig € V with
io & im(#). But then (X, f) with

~ 0, if j =i i
X; = and = i
: {Xj it 0 T Jelee

for all j € V, o € E defines a subrepresentation of (X, f). Since (X, f) is
simple, it follows that (X, f) is zero. Hence (X, f) is of the form

Xi,, it j=1p
for all j € V. And again since @ has no oriented cycles, we have that f, =0

for all @« € E. In this case any proper subspace of X, defines a proper
subrepresentation of (X, f). Thus Xj;, has to be one-dimensional. O

X

j =

Definition 1.12. Let @ be a quiver. For every vertex i € V' let P(i) be the
representation with:

P(i); = the free vector space over the set {p |p a path from i toj },
P(i)a(p) = ap

forall j € V, a € E, and p a path from i to s(a).



Proposition 1.13. Let (X, f) be a representation of Q and ¢ € V. Then
there is a (natural) isomorphism of vector spaces Hom(P(i), (X, f)) = X;.
In particular P(i) € Repr(Q) is projective.

Proof. Define
U, : X; — Hom(P(i), (X, f)) ;' Hom(P(i), (X, f)) — Xi
T oy = pi(ei)

where (¢3);(p) = fp(z) for p a path from i to j. Now by a direct calculation
we see that for x € X;, j € V and p a path from ¢ to j there holds:

U (W) = U5 (po) = wuler) = fe(2) = idx, () = 2
and with ¢ € Hom(P(7), (X, f))
W07 ())(p) = Wilvi(ei));(p) = (Pyuen)i(p) = fo(diler)) = 1;(p).

The last step follows because f, is a composition of some f,’s, and 9 is a
morphism of representations and P(7), is just composition of paths.

Now take w: (X, f) — (Y, ¢g) a morphism of representations and 1 as above.
Then naturality of W 1 follows from

Uy (Hom(P(i), ) (¢))) = Wi (w0 1) = (withs)(e:)

= wi o ;v (¥) = Hom(P(i),w)(¥; x (v)).

5

The Lemma follows. O

Example 1.14. Consider the quiver A, defined in Example 1.6. We claim
that every projective object in Repy(Ay) is a finite direct sum of some P(7)’s.

Proof. Let P be a projective object in Repi(A,). Now choose a basis

By ={by,....b, }C P

of P;. Then P,,(P;) defines a subspace in P and we can choose a set

Bgz{b%,...,b?m }CP2

which is a basis of a vector space complement of P,,(P;) in P». Again
P,,(P) defines a subspace in P3 and we can continue inductively to define
B, for all 1 <4 <n. Define a map

f @ ri—r

i=1pien,

(ei)j — b;



and set Q = @, @Dyicp, P(i). Since f is an epimorphism and P is pro-
jective there exists a sjplit map s: P — @ such that fos = idp. Since
s is monomorphic it follows that every s; is an injective linear map. But
dim(Q1) = dimg(P;) and thus s; is an isomorphism. Now we do an induc-
tion on ¢. So assume that s; is already an isomorphism for j < 4. Then note
that

Qi = Qai71(Qi—l) S @ P(Z)l

b;EBl

and since s;_1 is an isomorphism we have that

8i(Po; 1 (Pi-1)) = Qa,;_, (8i-1(Pi-1)) = Qa;_, (Qi-1)-

But by definition the set B; = { b,..., b}, }is a basis of a vector space com-
plement of P,, ,(P;—1) and thus by taking the injectivity of s; into account
it follows that

dimy(s;(F;)) = dimg(si(Pa,, (Pi-1))) + i

ng

= dimg (Qu,_; (Qi-1)) + dimy (D P(i)i) = dimy(Qs).

=1
Hence s; is an isomorphism for 1 <7 <n and s: P — @ defines an isomor-
phism of representations. O

1.3 Properties of Repi(Q)

Theorem 1.15. Let Q be a quiver with no oriented cycles. Then Repi(Q)
has enough projectives. Moreover it is hereditary (i.e. gldim <1).

Proof. Let (X, f) be any representation of . We have to show that (X, f)
has a projective resolution of length 1. As a first step take for every vertex
1 € V the natural isomorphism ¥; from Proposition 1.13 and choose a basis
Zi1...T;p, for each X;. Then define

11 ]_[ Wy (w5): @@P(i) — X.

i€V j=1 i€V j=1

The origin is projective as a finite sum of projectives. We first have to check
that this map is epi. So let y; € X;, then by definition ¥;(y;) is a morphism
of representations with e; — y;. But since ¥;(y;) € Hom(P(7), (X, f)) and
U, takes a basis to a basis, we have that y; is in the image of (H;“zl U,(xi5))i
Hence (J[;ey [172, Wi(wi5))i — Xi is surjective and because this is true for

9



each ¢ € V' the whole map is epi.
Moreover every (][72; ¥;(w;,7)); is indeed an isomorphism from (P}, P(i));
to X;. Due to this fact we can construct the kernel of the map by summing

up over all arrows and define the map

a=T[2: D Drw)-DDri)

eV a: l—r j=1 i€V j=1

as follows: At first fix an a: ] — r and a vertex v € V. We have that
Ty1...Trn, 15 a basis of X, so for each 1 < j < n; there exist )\;‘fl .. /\ﬁnr

such that fo(2;;) = ATt + o+ NG, Trn,. Now let p be a path from r
to v. Then

is mapped to
_(A?vlp’ ceey Agnrp) lf qg=r,w =0,
Qd(z) = (0,...,0,p;)¢,(),...,0) if g=1,w=nu,
0 else.

n;
By construction the composition of 2 with H H U, (x;5) is zero:
eV j=1

Yi(z15)(pa) = fp(falziy)) = fr(Af12r1 + .o+ AT Trn,.)

Ny
= [ [T #(n) | O5ap.- - X, p):
j=1

To verify that € is mono, we will check that the induced maps on each vertex
are injective. Fix a vertex v as above. Let ) (y$,... ,yf{s(a)) be any element

in (B, DL, P(r))y and assume it is mapped to zero. Since Q has no
oriented cycles there is a vertex [ which is not the target of any arrow of Q.
Then

A W)= Y @)

)
@ a: l—t(a)

Since two paths ag, ...a1 and By, ... 1 can only coincide if oy = 51 and
the paths from [ to v build a basis of P(l),, we have that all y&' must be zero
for those a whith s(a) = 1.

10



Again because @ has no oriented cycles, there exists a vertex I’ which is not
the target of any arrow except those with source [. Since we already know
that the summands corresponding to those arrows are zero, we can conclude
as above that

l/
GO Wiy )= Y e yn,a).
el a: l'—t(a)

Thus all y¢ have to vanish for all @ with s(a) = I’. Moreover @ has a finite
vertex set, so it follows by induction that > (y%,..., yf{sm)) = 0 and thus
) is a monomorphism.

To see that 2 is indeed the kernel we check the dimensions of the vector
spaces:

dimg (X;) = n;, dimy, @@P(l) = Z nj.

eV j=1 i prj—i

On the other hand:

dimy @ @P(T) = Z Z nj = Z nj = —n; + Z nj.

a: l—=r j=1 i a: j—lp: l—i p: j—1, p:J—
pFe;

Example 1.16. Consider the quiver

A3 = o—2so0—"so.
We want to find a projective resolution of length 1 of
S(1) = k—=0—>0.

Following the proof of Theorem 1.15 we have an epimorphism P(1) — S(1)
and its kernel is given by P(2) as follows:




So we obtain a projective resolution

0— P(2) - P(1) - S(1) — 0.

Lemma 1.17. The category Repp(Q) has finite length i.e. every object has
a finite composition series with simple subgquotients.

Proof. Let X be a finite dimensional representation of ). We want to do an
induction over dim(X):

If dim(X) = 1 then X has to be isomorphic to a S(i) for some i € V' and
hence X is already simple.

Let dim(X) = n and suppose that every representation Y with dim(Y) < n
already has a finite composition series. Again we make use of the fact that
@ has no oriented cycles. Like in Lemma 1.11 we can define Q to be the full
subquiver with exactly the vertices ¢ of @ for which X; is not zero. Again
as in Lemma 1.11 we find a vertex ig € V with i ¢ im(f). In particular we
have dim(Xj;,) # 0, so let U be a subspace of Xj;, of dimension dim(X;,)-1.
But then X defines a subrepresentation of X with

N U if =i }
X] = { I 7 20 a‘nd Xa = Xa’)?s<a>

Xj, i) # iy
for all jeV,ae E. Now by construction we have X C X with

dim (X/ X) — 1. By induction X already has a finite decomposition series
so we are done. O

Remark 1.18. The composition in Lemma 1.17 is unique up to isomor-
phism. This is true because for each ¢ € V' the number

[X : S(7)] = dimg(X;)

is independent of the chosen composition series.

12



2 The Category of 2-Periodic Complexes

In this section we first give a short introduction to Grothendieck groups
and discuss several examples. From this point on, we will restrict to certain
abelian categories that we will show Repi(Q) to belong to. Hereafter we
will define the category of 2-periodic complexes Cz,(.A) and show some basic
properties of acyclic complexes and complexes of projectives. The main
reference is [Bril3].

2.1 Grothendieck Groups

Definition 2.1. Given an abelian category A we denote by K (A) its Grothen-
dieck group. That is the free abelian group generated by isomorphism classes
M of objects M in A modulo short exact sequences. In formulas:

B=A+C

if there is a short exact sequence

0 A B C 0.

Example 2.2. Consider the abelian category Vecty of finite dimensional
vector spaces over k. Take a vector space V' € Vecty, with 2 < n = dimg(V).
Then V is isomorphic to k" and thus V = k" in K (Vecty). There is a short
exact sequence in Vecty:

0—=k" 1 —s " — > k”/kf”’l —0.
Hence it follows that

"= k" 4 (knJkn1) € K (Vecty,)

with di@k(kn_l),dimk(k”/k‘"—l) < n. So by induction over n we see that
V =z -k for z € N and thus we obtain

K (Vecty,) = Z(k).
Example 2.3. We want to determine K (Repi(Q)). Take a representation
X of @, then by Lemma 1.17 we know that X has a finite decomposition
series
{0}=XoCc X1 CXoC...CX,1CX, =X

which yields short exact sequences

0 X Xit1 Xig1/Xi—=0

for 0 <4 <r — 1. Hence we have that

13



r—1
X = Z EX1+1/X1) S K(Repk(Q))
=0

where X;11/X; are simple objects in Repr(Q). Now by Lemma 1.11 we
obtain that

A~

K(Repr(Q)) = Z{{ S(@) [i €V }).
In particular Example 2.2 follows if we set Q = Aj.

Lemma 2.4. Let A be an abelian category with enough projectives and
gldim(A) < 1. Then for every o € K(A) exist projective objects P,Q € A
such that

a=P-QeK(A).

Proof. Since A is hereditary every object A € A has a projective resolution

0 Qa Py A 0

with projective objects Q4 and P4. Moreover note that (A® B) = A+ B
since

0O—A—A@B—B——0

defines a short exact sequence for B € A.
Now let

CM:Zni-Ai—ij-Bj, ni,mJGN,Ai,BjGA,
icl jed
be any element in K (A) where I and J are finite index sets. Then we can
calculate:

i€l JjeJ
=> ni-(Pa, = Qa) =Y _mj (P, - Qp,)
i€l jeJ

(®Dr DD (DD DD,

el =1 jeJ i=1 iel =1 jeJ i=1

The lemma follows because direct sums of projective objects are again pro-
jective. [

14



The following example shows that non-zero objects can define zero classes
in the corresponding Grothendieck group. This motivates (Ass4) in the
subsequent Setup 2.6.

Example 2.5. Denote by N the category of finitely generated modules over
k[X]. Note that N is not of finite length (since for instance k[X] has not
finite length). Then

is a short exact sequence in N and hence

K[X] = k[X] + k € K(N).
Thus k = 0 € K(N) although k 20 € N,

2.2 General Setup: (Assl)-(Ass4)

Setup 2.6. Fix now k£ = I, a finite field with ¢ elements, and set ¢t = +,/q.
From now on let A be any abelian k-linear category which satisfies the fol-
lowing conditions:

(Assl) A has finite morphism spaces.
(Ass2) Ais of finite global dimension and has enough projectives.

From section 4 on we shall also assume:

(Ass3) A is hereditary.

(Ass4) Any non-zero object in A defines a non-zero class in the Grothendieck
group K(A).

Now we want to prove that Repg(Q) satisfies the assumptions of Setup
2.6. Since (Assl)-(Ass3) follow from the results in section 1 and we already
know that Repi(Q) is of finite length, the following lemma completes the
proof.

Lemma 2.7. Let B be a k-linear abelian category. If B is of finite length
(i.e. every object has a finite composition series) then it satisfies assumption

(Assd).
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Proof. Let M be any object in B. Since B is of finite length there exists
r € N and objects My, ..., M, such that

{0} =MyCcMyCMyC...CMy_1CM, =M

is a finite composition series of M with simple quotients. Like in Example
2.3 we obtain for 0 <14 < r short exact sequences

with My = M; + (Miﬂ/Mi) in the Grothendieck group. Hence in K (B)
the isomorphism class of M can be written as a sum of the isomorphism
clagses of its simple subquotients:

M — é (Mz‘-s-Al/Mi),

In particular the simple objects in B generate its Grothendieck group. More-
over we want to show that they form indeed a basis of K(B) as a Z-module.
Define

Irr = {isomorphism classes of simple objects},

and two maps

o P z- K(B) KB~ Pz
[S]elrr [S]elrr
lig) = M ) miglis),
[S])€Irr
where myg) = [M : S] is the number of subquotients occuring in a composi-

tion series of M which are contained in [S]. This is unique by Remark 1.18.
It is left to show that ®~! is well-defined. So consider a short exact sequence
in B:
0 A B C 0.

Now choose a composition series of A and extend it by a composition series
of B/A to a composition series of B. Since C = B/A it follows from the
Jordan-Hélder Theorem that bg = ag + cg for all simple S in B and this
shows that ®~! is well-defined and it is obviously the inverse of ®. O

Corollary 2.8. Repi(Q) is a k-linear abelian category which satisfies the
assumptions (Assl) — (Assd).

Proof. The condition (Assl) is satisfied because k = Fy is a finite field, @ a
finite quiver and all representations are finite dimensional. Now (Ass2) and
(Ass3) follow from Theorem 1.15 and (Ass4) follows from Lemma 1.17 and
Lemma 2.7. Ul

16



2.3 The Category k[X]-gmod/?

Although our main example satisfying (Assl)-(Ass4) is Repi(Q) the follow-
ing example provides another interesting category satisfying the assumptions
of Setup 2.6.

Example 2.9. Consider M = k[X]-gmod/9, the category of finitely gen-
erated Z-graded k[X]-modules with degree preserving morphisms. We will
omit the proof of the fact that M is abelian (to see this note for example that
k[X] is noetherian and thus the kernel of every morphism is again finitely
generated). We claim that the assumptions (Assl)-(Ass4) of Setup 2.6 hold
for M. We want to introduce the shift functor (z): M — M for z € 7Z:
Take two modules M, N € M and f: M — N. Then

M=FM, N=FN, ad f=Pfi: PM PN

1€EL 1€EL 1€ 1€ 1€EL

where all M; and N; are finite dimensional vector spaces over k, since M
and N are finitely generated. Define

(M(z))i = Mi—- and  (f(2))i = fi=-
Proposition 2.10. The category M satisfies all assumptions of Setup 2.6.

Proof. For (Assl) take two modules M, N € M as above. Now choose ho-
mogeneous generators mi, ..., m, of M with m; € M;;, for 1 < j <n. Then
[ =&,cz fi: M — N is uniquely determined by the images of the m; under
fi;- But every f;;: M;; — N;, is a morphism of finite dimensional vector
spaces. Thus there are only finitely many choices for f since k is a finite
field.

To show that (Ass2) and (Ass3) hold we want to find a short exact projective
resolution for every module in M. Note that k[X](z) is a projective object
in M for every z € Z. Let M be as above. Then there is an epimorphism

n
p: @ EIX;) — M
j=1
1j = my;
where @ = @’_, k[X](i;) is projective as a finite direct sum of projectives.

This shows that M has enough projectives. Now we have to show that
ker(p) = @,y ker(p;) is projective. Let m = 1glj£ (¢j). Then @; = 0 for
<j<n

7 < m. Choose a basis

17



Ap =By ={b",....00 } CQn

of ker(py,). Since the action of X on @ is injective it follows that X.A,, is a
linearly independent subset of ker(py,+1). So we can choose a set

Bpor = {00 0™ b such that Ay = X Ay U B

? T Mm41

is a basis of ker(py,+1). Again X.A,,;+1 is a linearly independent subset of
ker(pym+2) and we can continue inductively to define B; for all m < i. For
i < mset B; = @. Since ker(p) is a finitely generated module we obtain that
all B; vanish for large enough . Define a map

: DX — @

i€z j=1
11‘7]' — b;
where P = @,z @2, k[X](i) is projective as a finite sum of projective

objects. Moreover by construction every f;: P; — ker(p;) is an isomorphism
of vector spaces. Thus we have a projective resolution of M:

0 J A, WL V) 0.

This proves that M is hereditary.

Similar to Example 2.5 the category M is not of finite length. Thus we
cannot use Lemma 2.7 to show that (Ass4) holds. Let M and N be modules
as above and R another module in M. First note that M = N € M implies
that M; =2 N; € Vecty for all ¢ € Z. Moreover every short exact sequence

0 M N R 0

in M induces short exact sequences

0 M; N; R; 0

in Vecty, for all i € Z. Hence M = 0 € K (M) implies that M; = 0 € K (Vecty,)
for all ¢ € Z. But since Vecty, is of finite length this implies that M; = 0 for
all i € Z and thus M =0 € M.

In view of Example 2.5 this shows that the condition that the modules are
graded is quite strong. O

Proposition 2.11. Every projective object in k[X]-gmod/9 is a finite direct
sum of some k[X](i)’s.

18



Proof. This proof is very similar to the proof of Example 1.14. Let P be
a projective object in [X]- gmod/9. Since P is finitely generated there is a
minimal m € Z such that P, # 0. Choose a basis

By ={0b",....b } C Py

of P,,. Then X.(P,,) defines a subspace in P,,+; and we can choose a set
By = { 000 Y C P

which is a basis of a vector space complement of X.(P,;,) in P,11. Again
X.(Pp+1) defines a subspace in Py, 2 and we can continue inductively to
define B; for all m < . Since P is finitely generated all B; vanish for large
enough . For i < m set B; = @ Define a map

f P P kixiiy — P
IEL b;EBZ‘

1i,j — b;

and set Q@ = @,cy DBpicp, k[ X](i). Since f is an epimorphism and P is
J K2

projective there exists a split map s: P — @ such that f os=1idp. Since s
is monomorphic it follows that every s; is an injective linear map. Moreover
P; = Q; =0 for j < m and dimy(Qy,) = dimy(P,,). Thus s; is an isomor-

phism for j < m. Now we do an induction on 7. So assume that s; is already
an isomorphism for j < ¢. Then note that

Qi=X.Qi1® P kX))
b;ieBi

and since s;_1 is an isomorphism we have that

5i(X.Pi—1) = X.(5i-1(Pi—1)) = X.(Qi-1).

But by definition the set B; = { bi,..., b} } is a basis of a vector space
complement of X.P;_; and thus it follows by taking the injectivity of s; into
account that

j=1

Hence s; is an isomorphism for all 4 € Z and s: P — @ defines an isomor-
phism of k[X]- gmod/9-modules . O
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2.4 The Category ¢

Consider the category G defined as in Example 1.10. This category is an
example for an abelian k-linear category satisfying (Assl)-(Ass2) but which
is not hereditary (S(1) possesses no projective resolution of lenght 1).

Proposition 2.12. The category G has enough projectives and gldim(G) = 2.
Proof. Before we start with the proof, observe that P(1) and P(2) are pro-
jective objects in G. P(1) and P(2) are given by

P(1) = k<e1>§k<a> and P(2) = k<5>;::k<e2,aﬁ>.

Although we use the same notation observe that objects in G are no 2-periodic
complexes in general. Now consider an object

fa

M = M Mo

Is

and let { mi,...,mf } be a basis of M; for i = 1,2. Then the following
map defines an epimorphism

2 n;
PP =PEPPri—M

i=1 j=1
(ei)j — m;

where P! is projective as a direct finite sum of projectives. This shows
that G has enough projectives. Note that Pl: P} — Pj is injective. Set
Q' = kerp'. Then Q! is a subrepresentation of P! and thus QL: Q1 — @}
is injective. Now choose a vector space complement Ko of ker(Qé) in Q}
and let { k2,..., k:l22 } be a basis of K. Then the maps

Qply: K2 — Qp(Ks) and Q}J\Q;}(Kz)i Qp(K2) = Qhp(K2)

are both injective and since QéB(Kg) C ker Q}j we have that
éﬁ(Kg) N Ky = @ and in view of the definition of P(2) we obtain an em-
bedding:

l2

P re — Q'

j=1
(62)]' — k]2
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Now choose a vector space complement K; of Qé(KQ) in Q1 and let
{ki,..., kzll } be a basis of K7. Since Q. is injective and Qq (K1) C ker(Qé)
it follows that Qa (K1) NQ/s(K2) = @ and Qa(K1) N Ky = @. Thus in view
of the definition of P(1) we have an embedding

l;

DD ro— e

i=1 j=1

(ei)j — k;

Now choose a vector space complement K3 of QL(Q') in ker(Q/é) and let

{ kl22+17 e l{:lz3 } be a basis of K3. Then the following map defines an epi-
morphism:

51 l3
p2: PP=PPr)e@PP2 — Q'
j=1

j=1
(ei)j — ki;
Set Q2 = ker(pz). Then by construction

dimy, Q% = dimy, K3 = I3 — I.

Since P2: P? — P3 is injectve and Q2 is a subrepresentation of P? we know
that Q2%: Q2 — Q3 is injective. Let { q1,...,1;,_1, } be a basis of Q1 then
in view of the definition of P(1) the following map is an isomorphism:

l3—12

ps: PP = P P(1) — @

j=1
(e1)j — g

Altogether we obtain a projective resolution of M:

p3 p? p!
Q° Q'

Lemma 2.13. Every object M € G has a (up to isomorphism unique) direct
sum decomposition

p1 M.

O

M =X with [Xi] € { [S)][SQ@), [P [PQ)], [L(1)] },

i=1
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where I(1) is given by:

0
I(1)= h———= — k
Proof. Consider an object M € G
fa
M= A B.
fe

Now we decompose A and B as follows: Let K7 be a vector space complement
of im(fg) in A. Then let K3 be a vector space complement of ker( f,) Nim( f3)
in im(f3) and let K3 be a vector space complement of ker(f,) N K7 in K.
We have A = A1 & Ay A3 ® Ay where

Ay = ker(fo) Nim(f5), As = Ko,
As = K3, A4:ker(fa)ﬂK1.

On the other hand choose a vector space complement L; of im(f,) in B.
Since fg o fo = 0 we already have that im(f,) = ker(fz Nim(fs)). Then
choose a vector space complement Lz of ker(fg) N Ly in L;. We have
B = By & B3 & B4 where

By :ker(fg)ﬂim(fa), B3 :LQa
B, = ker(f/j) NLy.

Altogether we can write M as follows:

fo
M= (AL ®A® A3 ® Ay ——= B ® B3 ® By)

fs
0 fal
= (A4 <0—E By) @ (A1 ® Ay @ As T B, & Bs).
5

The first summand is a direct sum of S(1)’s and S(2)’s, so we can con-
tinue with the second one. Since Bj lies in the kernel of fg we know that
fslBy: Bs — im(fp) is surjective. Moreover since Bs lies in the complement
of the kernel it is an isomorphism. Hence B3 decomposes as follows

Bg = im(fg) = A1 D AQ.

On the other hand observe that A = ker(f,) ® (A2 @ As3). Hence As & Az is
a vector space complement of the kernel of f,. Thus f,|: A2 ® A3 — im(f,)
is an isomorphism. By decomposes as follows

By = im(fa) =~ Ay D As.
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Altogether we obtain

fal

(Al@Az@Aaf:IBlEBBs)
5

fa
= A @A DAz ——= (A2 D A3) © (A1 ® Ay)

I8
where
) 8(1](1) ) 0 01 0
fa = and fg=10 0 0 1
000 0 0 0O
0 00

This gives the following decomposition:

fa
Al @Ay @ A3 ——= (A2 @ A3) @ (A1 ® Ay)
I8

1
0 1 0
=(A=——A) )P (A3s——=A3 ) (A —= A2 Ay ).
1 0 (0 1)

The first summand is a direct sum of I(1)’s, the second summand is isomor-
phic to a direct sum of P(1)’s and the third summand is isomorphic to a
direct sum of P(2)’s. This proves the lemma. O

Proposition 2.14. Every projective object in G is a finite direct sum of
some P(i)’s fori=1,2.

Proof. Let P be projective. Like in the proof of Proposition 2.12 there is an
epimorphism

P! :ééP(i) — P

=1 i=1

for some n1,no € N. Since P is projective there exists a split map s: P — P!,
In particular s; and sy are injective linear maps. Now we use Lemma 2.13
to obtain a direct sum decomposition

P=@P X with [Xi] € { [SD)],[S) [P, [P@), (1) }.

i=1
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Observe that Pl: Pl — Pj is injective. Suppose [X;] = [S(1)] for some i
and take x # 0 € (X;);. Then

Py(s1(2)) = s1((Xi)a(2)) = 51(0) = 0

and since Pl and s; are both injective this yields a contradiction to the
assumption that « # 0. The same argument works for the case [X;] = [I(1)].
Thus we have

P=@x; with (X € { S IPOL)LPO)] ).

Now suppose that [X;] = [S(2)] for some i and without loss of generality
assume that ¢« = 1. Then consider the following diagram:

SR e@iXi=P

0 (1 0)=r
P(2) - 62’; - 5(2).

If P is projective there exists a map g which makes the diagram commute.
But then for 1 € S(2) we have that g2(1) = e2 and thus

B =P(2)p(e2) = P(2)p(g2(1)) = 92(5(2)5(1)) = 92(0) = 0.

This is a contradiction and we finally obtain

P = @Xi with [X] € { [P(1)], [P(2)] }.

2.5 Definition of Cz,(A)

Definition 2.15. Let Cz,(A) be the abelian category of 2-periodic complexes
of A. Objects in this category are ordinary chain complexes of objects in A
of the form:

d1 do d1 dO dl

M; (1)

My M, My

where My sits in the homological degree 0 and morphisms are ordinary chain
maps. We abbreviate 2-periodic complexes (1) as follows:

do
My —=M
1
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with Mo, My € Ob(A) and dy ody = 0 and dp o dy = 0. A morphism
Ye: Mo — M, in Cz,(A) is then a diagram

do
Mo —=M;

dy
wol iwl
Yog Y
MO:Ml
dy
with ¥ o dy = dg o 1y and g o dy = dy 0 9;.

Definition 2.16. Two morphism§ Doy Ve: My — M.~are called homotopic if
there are morphisms hg: Mo — M; and hi: M; — My such that:

Yo —¢o=diohg+hiody and by — ¢y =dyohy+hyod.

Define Hoz,(A) to be the category with the same objects as Cz,(A) and
morphisms the equivalence classes modulo homotopy.

Definition 2.17. Define *: Cz,(A) — Cz,(A) to be the shift functor which
shifts the homological grading of the complex by one and changes the sign
of the morphisms:

do dy
My—=M; M, —= M
d1 . do
woi l% = —Tﬁli l—wo
N dog ! 2 d .
MO : M1 M1 <:> Mo.
dy do

Note that the shift functor defines an involution on Cz,(A).

Notation 2.18. Let P denote the full additive subcategory of projective
objects of A and define Cz,(P) and Hogz,(P) to be the corresponding full
subcategories in Cz,(.A) respectively Hoz,(A) whose objects are complexes
of objects in P.

2.6 Acyclic Complexes and Complexes of Projectives

Definition 2.19. We call a complex M, € Cz,(A) acyclic if H*(M,) = 0.
For P € P there are two distinguished acyclic complexes:

1 0
HP:(P%)P), K*P:(P;>P).

The complexes kp and k) are quite important because they are in cor-
respondence to the generators K, K; 1 of U,(g) in the main theorem (The-
orem 4.37). Moreover they are the building blocks of all acyclic complexes
in Cz,(P) in the following sense.
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Lemma 2.20. Let M, € Cz,(P) be an acyclic complex of projectives. Then
there are projective objects P,Q) € P such that Me = kp P KQ-
Proof. Suppose

do

My —=M;
dy

is an acyclic complex of projectives. Define P = ker(d;) = im(dp) and
Q@ = ker(dp) = im(d;). Then there are two short exact sequences

0=+Q—My—P—=0 0—=P— M —Q—0.

Now let ¢ > 0 and consider the long exact Ext 4-sequences induced by the
short exact sequences above:

— BExtly(My, —) — Ext’y (P, —) — Ext'{1(Q, —) — Ext'J 1 (My, —) —

— Ext'} 1 (My, —) = Ext'{1(Q, —) — Ext’{?(P, —) — Ext{ (M, —) —

Since My and M are already projective we have that ExtlA(Mj, —) =0 for
[>0and j=1,2. So it follows that

Ext) (P, —) = Ext'{(Q, —) = Ext’{*(P, -)
and analogously
EXt:LA(Qa _) = EXtﬂ_l(Pv _) = EXti—{g(Qv _)

But since A has finite global dimension P and @ have finite projective res-
olutions. So for large enough i the Ext’-groups must all vanish and hence
all these Ext-groups vanish. It follows that P and @ are projective and the
short exact sequences split with:

$:Q — My and t: P — M.

Thus we get the desired result:

do do®do
(Mo ——= M) = (H(P)®Q=—=PDs(Q))
dy d1®d
(PoQ==PeQ) = ((P)eQ=—PasQ)

Corollary 2.21. A complex M, € Cz,(P) is acyclic if and only if My = 0
m 7‘[022 (73)
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Proof. Let M, be a complex in Cz,(P)
Assume M, is acyclic. By Lemma 2.20 there are projective objects P and @
such that Me &Z kp ® /-;22. Now define

hh=0®1): P®Q—-PdQ and h1=(1®0): PdQ — PdQ.

Hence we get that

&7 o hg+hyody” " = (0@ 1) 0 (0& 1) + (18 0) o (1&0) = idpens,
and
Ay o+ hyody"" = (190)0 (1®0)+ (00 1) (0 1) = idepan,

But this shows that idnp@ﬁzz ~ 0 and thus kp & kg = 0 in Hoz, (P).
Now assume M, = 0in Hoz, (P). Hence idyy, ~ 0 and there are hg: My — M
and hq: My — My such that:

idMOIhlodo—i-leho and id]\/[1 =hpody +dgyoh;.
It follows that
ker(dp) = idp, (ker(dp)) C im(d; o hg) € im(dy)

and
ker(d;) = iday, (ker(dy)) C im(dp o h1) C im(dp)

and thus M, is acyclic. OJ

Example 2.22. Assumption (Ass2) of Setup 2.6 is necessary for Corollary
2.21:

Let k = F; and set R = k(X (x2)- Consider the category R-mod of R-
modules. R-mod has infinite global dimension. Then the complex

R—R

X

is acyclic but not zero in Hogz,(R-mod). Suppose it were then there exist
hg, h1: R — R such that

idp=h1o(-X)+ (-X)ohy and idr=hoo(-X)+ (-X)oh;.
In particular it follows that
X = (hio (-X))(X) + ((-X) 0 ho)(X) = h1(X?) + X - ho(X) = ho(X?) = 0.

Hence there cannot be such hg, h; and thus this complex is acyclic but not
zero in Hoz, (R-mod).
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Note that statements like in Corollary 2.21 are usually stated for bounded
complexes and the standard proofs make use of this condition. Later on the
following result will be very useful to compute extension groups of complexes.

Lemma 2.23. If M,, N, € Cz,(P) then

ExtéZQ (4)(Ne, M) & Homyy, (ay(Ne, My).
Proof. Let
0— My — Po — No — 0 (2)

be a short exact sequence in Cz,(A) with M,, No € Cz,(P). This leads to
two short exact sequences in A which both split because M; and N; are
projective and thus P; = M; & N; for i = 1,2. So (2) is as an extension
isomorphic to a diagram of the form

dar
M() Ml
dM
10 1
df;
M() &b NO M1 D N1
dP
1
po p1
dy’
Ng Nl
dN
1

with 79,71 and pg,p1 the canonical inclusions and projections. From the
commutativity of the above diagram we can write dOP , df as follows:

dF — dy" so JP — " 5
0 dYy)’ 0 a¥
with morphisms sg: Ng — My and s1: N1 — My such that déD o df =0 and
d¥’ o df’ = 0. This condition is equivalent to

d{VIosoz —.§1odév and dé\/loél = —sood{\[.
But this condition is precisely the condition that

Se: No¢ — M (3)
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is a morphism of complexes for s; = —5;. So any morphism (3) determines
an extensions (2) and any extension gives a morphism (3) (note that we did
not consider extension classes yet!).

Now suppose there are two morphisms se,te: N¢ — MJ. Then they de-
termine two extensions with middle term P, and P, and differentials given

by
dP . déw S0 dP . d]l\J —S1
0 No d4)’ L7\o 4

aP — ' to aP — d’ —t
0 0 dj)’ 0 4y )

The corresponding extensions agree in ExtéZ ( A)(N., M,) precisely if there
2

and

is an isomorphism 1 : Py — P, such that the following diagram commutes:

i i p
Mo (MO@NOﬁMl@Nl)) N.
d
idl dJoi 17 \L¢l J{id
i a5 p
M, (Mo ® Ng ——= M; & Ny)) No
df’

This commutativity means that 1, is of the form

(1 ho (1
%—(0 1>> ¢1—<O 1>

with morphisms hg: Ng — My and Bl : N1 — M such that 1, is a morphism
of complexes. But this last condition is equivalent to

so—to=d) ohg—hiod) and s —t; =hgod) —dMoh,.

Now by setting h; = —iLl this leads to se =~ te via hg and @1 and we

finally get that these two extensions with middle term P and P agree in

ExtéZ (A) (N, M,) precisely if s, and t, agree in HomHoZ2 (A)(N., Mp). O
2
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3 The Hall Algebra of Complexes

At the beginning of this section we define the twisted Hall algebra H, (.A)
and the twisted Hall algebra of complexes Hy,(Cz,(P)). Then we first com-
pute Hall products for some concrete categories and later on in the general
case for complexes. Finally we are ready to define the reduced localized Hall
algebra DH,.q(A) and give a first example. The main reference is [Bril3].

3.1 Hall Algebras

Definition 3.1. Given objects A, B,C € A define Ext!(A,C)p to be the
subset of Extl (A, C) parameterising extensions with middle term isomor-
phic to B. Then the Hall algebra H(A) is the free C-vector space over the
isomorphism classes [A] € Iso(A) of objects A € A and with associative
multiplication given by

o o ‘EXti\(A,C)B| .
[A] [C] - [B]gg(fl) ‘HOHI_A(A, C>| [B]

Remark 3.2. The sum in Definition 3.1 is well-defined: Let A,C be two
objects in A. Since A has enough projectives we can choose a projective
resolution

o> PP —-Py—>A—0

of A. Now we obtain ExtY (4, C) by taking the first homology of the following
sequence:

0 — Hom(Py, C') — Hom(P;,C) — Hom(P,C) — ... .
But since all Hom-spaces are finite it follows that Ext 4(A, C) is finite.
Definition 3.3. For objects A, B € A define

(A,B) = (—1)"dimy(Ext/y(A, B)).
€7
Since A is of finite global dimension and has enough projectives it turns out,
that every object has a finite projective resolution. Hence Extf4 vanishes for
large enough ¢ and the sum is finite.
Note that
(—, =) K(A) x K(A) - Z

is a well-defined bilinear form called the Euler form. Moreover we want to
define the symmetrised Euler form

(=, —): K(A) x K(A) - 7
given by (o, 8) = (o, ) + (5, ).

30



Remark 3.4. Since for P € P all FEuxt-groups vanish we have
(P,—) = dimg(Hom 4 (P, —)).

In order to have a natural bialgebra structure on H(.A) we have to twist
the multiplication. Moreover if we extend the Hall algebra by symbols K,
for a € K(A) together with imposing some relations we even obtain a Hopf
algebra structure. For further details see [Sch06, Lecture 1].

Definition 3.5. Now define the twisted Hall algebra Hyw(A) as the same
vector space as H(A), but with twisted multiplication given by
A *[C] = ¢4 - (4] o [C)

Moreover we can define the extended twisted Hall algebra H, (A) by adjoin-
ing symbols K, for a € K(A), with respect to the following relations for
a,f € K(A) and A € A:

Ko#Ks=Karpg, Kox[A =tV [4]xK,. (4)

Remark 3.6. Note that Cz,(A) is usually not of finite global dimension.
But since Cz,(P) is closed under extensions it follows from Lemma 2.23 that
it makes perfect sense to define 7 (Cz,(P)) as in Definition 3.1.

Definition 3.7. Define H;,(Cz,(P)) to be the same vector space as
H(Cz,(P)), but with twisted multiplication given by

[M,] % [N,] = (Mo No)+H0 M) (4] 6 ().

3.2 The Hall Algebra of Repi(A4,)
Example 3.8. Consider the category R = Repi(A,) where A, is defined
as in Example 1.6. We want to compute some Hall products in Hy,,(R).

o [S(i)] x[S(3)] for i < n:
Choose a projective resolution of S(7) as in Example 1.16

0——=P(i + 1) P(i) S(i) 0

and consider the corresponding Homg-sequence:

0 —— Homg (P(i), S(i)) — Homg (P(i + 1), $(i)) — 0.

Since P(i + 1); = 0 it follows that Homg (P (i + 1),5(i)) = 0 and thus
Extk (S(i), S(i)) = 0. Hence

[1S(0)] = [S(0)] = 5O-50) | Homg (S(i), S))[ 7 - [S(i) @ S()]
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=t-q¢ ' - [SGE) @ SHE) =t [S34) @ S>i)).

o [S(i)]*[S(j)] for j <i<m:
As above we obtain a Homg-sequence

0 —— Homg (P (i), 5(j)) — Homp (P(i + 1), 5(j)) —=0

and we can conclude that Extk (S(i), S(j)) = 0 since P(i+1); = 0. Moreover
Homg (S(i), S(j)) = 0. Thus

[S(@)] * [S()] = 950 [ Homr (S(3), S(4))| ™" - [S(0) © S()]

=7 171 [S() ® S(5)] = [S() ® S(5)]-

Note that we omitted the case i = n. Then S(i) = P(i) is already projective
and all occuring Ext%z—groups vanish. Thus we obtain the same results as
above.

o [S(0)] *[S(5)] for i < j:
As above we have a Homp-sequence:

0 —— Homg (P(i),S(j)) — Homg (P(i + 1), 5(j)) —=0.

If i+1 < j we have that Homg (P(i+ 1), S(j)) = 0 because every morphism
f:P(i+1)— S(j) maps e;11 to zero and thus

fi(p) = fi(P(i+ 1)p(eir1)) = QUi + 1)p(fir1(ei1)) =0

where p is the path from ¢ + 1 to j. We can conclude as above that

[S(@)] * [SG)] = [S() & S()]-
Now suppose ¢ + 1 = j. Then Homg(P(i + 1),S(j)) = k. Because ev-
ery morphism f: P(i) — S(j) maps e; to zero it follows as above that
Homg (P(i), S(5)) = 0. Thus Extk (S(i), S(j)) = Homg (P(i+1),S(j)) = k.
Now define a representation M as follows:

k, ifl i
ay = dF HEEIh 0, i
0, else

Moreover define for every z € k a map f*: M — S(i) with

fiik—k
1=z
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and consider for non-zero elements 21,22 € k the following diagram with
exact rows:

Suppose there exists a map g for which this diagram commutes. Since the
left hand square commutes it follows that g; = id; and since M,, = idy
we have that ¢ = idjys. But then the right hand square only commutes
if 21 = 2. Thus every z # 0 € k defines an extension of S(i) by S(j)
and two such extensions are only isomorphic if the corresponding z coincide.
Note moreover that Homg (S(i), S(j)) = 0. Since there are only ¢ many
non-isomorphic extensions in total we have that

1S(0))#[S()] = t5OSD . Homa(S (i), S(G) - ((g—1)- [M]+[S(D) @S ()

=177 (g 1) [M]+[S@) @ SG)]) =t - ((g—1) - [M]+[S(0) & S (1))

3.3 The Hall Algebra of k[X]-gmod/?

Example 3.9. Consider M = k[X]-gmod”¢ as in Example 2.9. Recall the
definition of the shift functor and note that for ¢ € N we have the identity
k(i) = (X*). We want to compute some Hall products in Hg.,(M).

o [k] % [k], where k = k[ X]/(X):
The short exact sequence

0—=k[X](1) = (X) — k[X] —=k——>0

yields a projective resolution of k. To compute Ext}w(k:,k) consider the
corresponding Hom y¢-sequence:

0 —— Hom (k[ X], k) —— Hompnm((X), k) — 0.

Since (X)o = 0 it follows that Hom((X), k) = 0 and thus Exth(k, k) = 0.
Hence

[k] % [k] = %R . | Hompqg (k, k)|~ - [k @ K]
=t- gl kokl=t koK.
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o [k]™, for n € N:
We first compute [k] * [D;~, k] for m € N. As above we obtain a Hom -
sequence

0 — Homp (k[X], @™, k) — Hom (X)), B

1=

1k)—=0
and we can conclude that Ext},(k, @[", k) = 0. Thus

(K] * (@7, K] = t®mE) | Hom (k, @, k)| ' - (D4 k)

=" DI K = [ K
Hence we can conclude by induction that

_n(n=1)

(k] = (-0 (@ K =t - [, K.
o (K] [k[X]/(X™)], for n > 1:
As above we have a Hom s¢-sequence:

0 —— Hom (k[ X], K[X]/(X™)) 2 Homug((X), HX]/(X™)) —> 0.

Now Homp((X), k[X]/(X™)) is not zero in general, but incl* is surjective.
Thus we can conclude again that Extl(k, k[X]/(X™)) = 0. Moreover we
have for f € Hom(k, k[ X]/(X™)) and A € k that

XSV = F(XN) = F(0) = 0.

Since n > 1 we have that X.f(\) = 0 implies that f(A\) = 0 and it follows
that f = 0. Hence

[ KX/ (X)) = ¢ EXD | Hom g (k, k[X]/(X™))| 1 [kebk[X]/(X™)

=10 171 [k @ k[X]/(X™)] = [k @ K[X]/(X™)].

o [k[X]/(X™)]*[k], for n > 1:
Now consider the short exact sequence

0 — K[X](n) = (X") — K[X] —> k[X]/(X") —0

which yields a projective resolution of k[X]/(X™). Thus we obtain a Hom -
sequence:
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0 —— Hom (k[ X], k) —— Hompn((X™), k) — 0.

Since (X™)p = 0 it follows that Hompn((X™),k) = 0 and thus
Extl,(k[X]/(X™),k) = 0. Hence

[K[X]/ (X)) [k] = HEXITCDE | Hom v (K[X]/(X™), k)|~ [K[X]/(X") @]

=t-¢ ' kO kX]/(XM)] =t [k @ k[X]/(X").
This shows that Hy, (M) is a non-commutative algebra.

o [k [(X)]:

As above we obtain a Hom y-sequence:

0 —— Homu ([X], (X)) — Hom((X), (X)) —0.

Now Hom (k[ X], (X)) = 0 because every morphism f: k[X] — (X) maps
1 into (X)o = 0. Thus Ext},(k, (X)) = Homam((X), (X)) = k. For 2z € k
define
f7: (X) = k[X]
X —=zX

and consider for non-zero elements 21,22 € k the following diagram with
exact rows:

e

0— (X) L R[X] — k——0
iid g id
N
0 —— (X) —= X] —=k —0

Suppose there exists a map g for which this diagram commutes. Since the
right hand square commutes it follows that g(1) = 1 and hence g = id. But
then the left hand square only commutes if z1 = 2zo. Thus every z £ 0 € k
defines an extension of k by (X) and two such extensions are only isomorphic
if the corresponding z coincide. Note moreover that Hom(k, (X)) = 0 since
(X)o = 0. Since there are only ¢ many non-isomorphic extensions in total
we have that

k] [(X)] = D | Hom (k, () 7+ (g = 1) - [KX]] + [k & (X))

=701 (g 1) KX+ [k @ (X)) = ¢ (g = 1) - [RIX]] + [k @ (X))
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o [k(i)] * [k(j)] for 2 < |i — jl:
Consider the short exact sequence

0 — k[X](i + 1) — k[X](i) k(i) 0

which yields a projective resolution of k(). We obtain a Hom -sequence:

0 —— Hom v (K[X](4), k(j)) —— Homp (K[X](i + 1), k(j)) —0.

Since 2 < |i—j| we know that 1 € k[X](i+1) must be mapped to zero by any
map k[X|(i+1) — k(j). We can conclude that Homa (k[ X](i + 1),k(j)) =0
and hence Ext}((k(i), k(j)) = 0. Moreover Hom(k{i), k(j)) = 0 since i # j
and thus

(i) * [l(5)] = tRR0D | Hom g (i), k()7 - k(i) ® k(5)]

=070 171 k() @ k(5)] = [k(i) @ k(5)).

3.4 The Hall Algebra of G

We know by Proposition 2.12 that gldim(G) = 2. Thus in contrast to the
previous examples we have to take the Exté—groups into account.

Example 3.10. Consider the category G defined as in Example 1.10. Propo-
sition 2.12 shows that it makes perfect sense to define the Hall Algebra of G.
We want to compute some Hall products in Hy,, (M).

o [S(]*[SM):

The following exact sequence

P(1) 5(1)
yields a projective resolution of S(1). Consider the corresponding Homg-
sequence:

Homg (P(1), S(1)) — Homg(P(2), S(1)) — Homg(P(1), S(1)) — 0.
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Observe that Homg(P(1),S(1)) = k and Homg(P(2),S5(1)) = 0. Hence we
can conclude that Ext}(S(1),S(1)) = 0 and Ext3(S(1),S(1)) = k and we
obtain

[S(1)] + [S(1)] = #5DSO . Homg (5(1), S(1))| - [S(1) @ S(1)]

— 10 g [S(1) @ S(1)] = [S() @ S(1)]
o [S()]*[S(2):

As above we obtain a Homg-sequence

Homg(P(1),5(2)) — Homg(P(2), S(2)) — Homg(P(1),S(2)) ——=0

where Homg(P(1),S5(2)) = 0 and Homg(P(2),S(2
that Ext§(S(1),S(2)) = k and Extg(S(1),5(2)) =
a map f?: S(2) — P(1) with

)) = k. Then it follows
0. Define for every z € k

ff:k:—ﬂc(a)
1=z«

and consider for non-zero elements z1, 29 € k the following diagram with
exact rows:

0——52) L% Py —=5(1) 0
\le g \le
Y
0= 8(2) —= P(1) —= S(1) —=0

Suppose there exists a map g for which this diagram commutes. Since the
right hand square commutes it follows that ¢ = id and since
g2(a) = ga(P(1)ale1)) = P(1)a(e1) = o we have that g = idp(;). But then
the left hand square only commutes if z; = 29. Thus every z # 0 € k defines
an extension of S(1) by S(2) and two such extensions are only isomorphic
if the corresponding z coincide. Note moreover that Homg(S(1), 5(2)) = 0.
Since there are only ¢ many non-isomorphic extensions in total we have that

[S(]+[5(2)] = ¢SS Homg (5(1), 5(2)) " ((g¢=1) [P()]+[S()@S(2)])

7017 (g 1) [P(]+HS(M@S(2)]) = ¢ ((a-1) [P +[S(1) @S (2)]).
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o [S@)]*[)]:

The short exact sequence

0 P(1) ——= P(2) S(2)—=0
yields a projective resolution of S(2). Consider the corresponding Homg-
sequence:
Homg(P(2), (1)) ——= Homg(P(1), I(1)) — 0.

Observe that ¢* is surjective. It follows that Extg(S(2),1(1)) = 0 (this
follows immediately if you already know that I(1) and I(2) = P(2) are
the indecomposable injective objects in G). Moreover we have that
Homg(S5(2),1(1)) = 0 and thus

[1S(2)] * [1(1)] = £SO Homg (S(2), T(1))[ ™ - [S(2) @ I(1)]

=970 17 [S(2) @ I(1)] = [S(2) @ I(1)].

3.5 Embedding of H,,(Repi(A,)) into Hy,(k[X]-gmod’?)

In view of the previous examples note that Hall products in Hy,, (Repr(Ay))
behave quite similar to Hall products in Hy, (k[X]-gmod/9) where the repre-
sentations S(i) and P(i) correspond to the modules k(i) and k[X](i) respec-
tively. Indeed the following lemma shows that we can embed Hy,, (Repr(Ay))
in Hyp (k[ X]-gmod”9).

Proposition 3.11. There is an embedding of C-algebras:
J: Hiw(Repp(An)) = Hiw(k[X]- gmod/9).

Proof. First set R = Repy(A,) and M = k[X]- gmod”? as above and define
a functor

t: R—-M
Y — oY)
f=u(f)

where

Y, f1<i<
L(Y)Z-:{OZ (lelseizin, with Xy =Y, (y) foryeY;

and

38



;o if 1 <i<n, . .
o f)i= fi iflsisn for a morphism f in R.
0 else

Then define J([Y]) = [¢(Y)]. Consider two objects Y, ZinR. If f: Y — Zis
an isomorphism then ¢(f): ¢«(Y) — «(Z) is obviously again an isomorphism
and every isomorphism g¢:¢(Y) — «(Z) in M yields an isomorphism
g: Y — Zin R where g; = ¢g;. Thus J is well-defined and maps a basis of
R to linearly independent elements in M. Hence J defines an embedding
of vector spaces. It is left to show that J is a morphism of algebras. Recall
the definition of the multiplication in H,(A) for an abelian category A
satisfying (Assl)-(Ass4):

1
[A] % [C] — tdimk Hom 4 (A,C)—dimy, Ext’ (4,0) Z ’EXtA(A’ C)B‘ . [B]

where A,C € A. Hence it is enough to show that ¢ is fully faithful and
induces an isomorphism

Exth (Y, Z) = Extl,((Y),(Z)) forY,Z € R. (5)

These are all easy observations so we will not give a detailed proof. Just
note that every extension

0 A w Y 0

in R yields an extension

0 UZ) L(W) W(Y) —0

in M and every extension of +(Y) by «(Z) in M is already of this form. [

In particular J induces an isomorphism between Hy,, (Repy(A;)) and the
subalgebra, of Hy,, (k[X]- gmod’9) generated by the elements [k(1)],..., [k(n)].
This is true because by Theorem 4.28 the elements [S(1)], ..., [S(n)] generate
Hiw(Repr(Ay)) as an algebra.

Proposition 3.12. There is an embedding of C-algebras:
T M (Repr(An)) — Hey (k[X]- gmod/9).

Proof. Set R = Repy(A,) and M = k[X]- gmod’ as above. In view of (4)
it is enough to show that



defines an injective morphism of groups. Take o € K(R) and suppose that
i(a) =0 € K(M). By Lemma 2.4 there are projective objects P,Q € R
such that a« = P — ). Thus we have that

~

U(P) = 1(Q) =0 € K(M).

With the same argument as in the proof of (Ass4) in Proposition 2.10 we

~

can conclude that ¢(P); = L(@)Z € K(Vecty) for all 1 <14 < n. But since

~

dimg(P) - k= o(P); and dimg(Q:) -k = «(Q);
in K(Vecty) we get that P, = @; for all 1 < i < n. Then it follows with
Example 1.14 that [P] = [@] and hence a = 0 € K(R). This proves the
injectivity of . O
3.6 Computation of some Hall-Products in H(Cz,(P))
Definition 3.13. Every object M, € Cz,(A) defines a class

M, = My — M, € K(A).
In particular we have that M,* = — M.

Note that by definition M, lies in K (A) and not in K (Cz,)(A)). For the
following lemma recall that t = +,/q and k = .

Lemma 3.14. For P € P and M, € Cz,(P) there are the following identities
in Hw(Cz,(P)):

ip] * [Ma] = =P op @ M, (] * [Ma] = 8P 55 @ M)

(Ma) * [ip] =tV P p @ ML), [Ma]x [55] = VP @ M),

Proof. Since k), and k} are acyclic complexes we know by Corollary 2.21

that they are homotopy equivalent to the zero complex and it follows from

Lemma 2.23 that ExtéZQ () (Fpy M), ExtéZQ( ) (Fps M), ExtéZQ (M, rp),

and Ex‘c(lZZ (A)(M.7 k) are all trivial. Now all morphisms e: Kp — M, and
2

Yo Kp — M, have the form:

1 0
P——P P P
0 1
wol i 1=doovp wo=d10p1 l l@l
do dO
0o=——= M 0 =—= M

d1 dl
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Hence we have HomCZQ(A)(/{p, M,) = Hom (P, My) and HomCZQ(A)(/{}"D, M,)

= Homy (P, M).
have the form:

Moreover all morphisms &o: Me — kp and (e: Me — Kp

do dO
Moy ——= M, My —=M
d1 dl
£0=£10d0i lﬁl Col iCIZCOOdl
1 0
P——P P——P.
0 1

Hence we have Home,, (4)(Ms, kp) = Hom 4 (M, P) and Home, (4)(Me,r}p)

= Hom (M, P). Now taking Remark 3.4 into account we can calculate:

[kp] * [Ma] = t{PMo) (P ]HomCZQ(A)(ﬁP,M.)rl “[kp © M)

t<]57M0)+<P7M1> . q_ dlmk HOmA(P,MO) . [K;P @ M.]

— PO HPL) 2PN} [ ]

= t_<]57M.> . [/{P ©® M.]

All other equalities follow analogously. O

Corollary 3.15.

For P,QQ € P and M, € Cz,(P) there are the following

identities in Hiw(Czy (P)):

[kp] = [Ma] = =P M) (0] 5 [rip] (6)
(5]« [Ma] = tPN) - 0] 5 1] (7)
[kp] % [kq] = [kp ® KQ)] (8)
(5] % [5g) = [ @ ) (9)
[5p] % [q] = [q] * [Kp] = [Kp @ rig) (10)

Proof. Equation (6) and (7) follow immediately from Lemma 3.14. For (8)-

(10) note that for

A € P we have that 44 = A — A =0 € K(A) and hence

(4, =) = (=, Ay =0. O
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3.7 The Localized Hall Algebra

As mentioned above we want that the objects [kp] and [k}] in Hyy (Cz,(P))
correspond to the elements K; and K i_l in the quantum enveloping algebra.
In order to make them invertible we want to localize Hyy,(Cz,(P)) at the
following set:

Definition 3.16. Define S to be the vector subspace of Hy.,(Cz,(P)) gen-
erated by elements in {[M,] € Cz,(P) | H.(M,) = 0}.

Remark 3.17. Note that S is a multiplicative closed subset of Hyy, (Cz, (P)).
This follows immediately from Lemma 2.20 and Lemma 3.14.

Observe that Hw(Cz,(P)) is a non commutative algebra in general. To
obtain a well-defined localization we have to check the Ore Condition.

Lemma 3.18. S satisfies the right Ore Condition, i.e. for generators [Ne] €
S and [M,] € Hiw(Cz,y(P)) the intersection ([Me]*S) N ([Ne] * Hiw(Cz, (P)))
18 non empty.

Proof. Let [No] € S and [M,] € Hw(Cz,(P)). By Lemma 2.20 we have
[Ne] = [kp @ k()] for some P,Q € P. Now we use Corollary 3.15 to calculate:

(M) * [kp ® k5] = [Ma]  [p] * [3)]
€S

= [rop] * (E 7M1 (D))  [1)]
=[] * [g) * (tPA (@M A
= [kp @ k) * (M) =(@QMa) pp])

_ [N.] % (t(P,M.)f(Q,M.) . [MOD )

EHtw (CZQ (P))

O]

Definition 3.19. Define the localized Hall algebra DH(A) as the twisted
Hall algebra Ht,,(Cz,(P)) localized at S:

DH(A) = Huw(Cz, (P))[[Ma] '+ Ho(Ms) = 0].

Since S satisfies the right Ore condition this is a well-defined localization.
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Definition 3.20. Define the reduced localized Hall algebra DH,eq(A) by
taking DH(A) and setting [Me] = 1 whenever M, is an acyclic complex,
invariant under the shift functor, in formulas:

DHyea(A) = DH(A)/([Ma] — 1: Hy (M) = 0, M, 2 M)

Remark 3.21. Setting [M,] = 1 for acyclic complexes M,, invariant under
the shift functor, is the same as setting [kp] * [x}] = 1 for all P € P:
Let M, be such a complex. Then by Lemma 2.20 there are objects P,Q € P

such that [M,] = [kp @ k()]. But since M, is invariant under * it follows that
P = @Q and by taking Corollary 3.15 into account we have [M,] = [kp ® K}
and [kp @ kp] = [kp] * [k}p]. On the other hand every complex kp & Kk} is

already acyclic and invariant under *.
In particular if we set [M,] = 1 for all acyclic complexes invariant under *,
this already forces xkp to be invertible so we have

DHrea(A) = Hiw(Cz,(P))/([Me] — 1: Ho(Ma) = 0, Mo = M).

Example 3.22. Consider the category of finite dimensional vector spaces
Vecty, = Repr(A1). We want to find a basis of DH,..q(Vecty). Note that all
elements in Vecty are projective. Let

d
M= My=—=M,, My, M € Vecty,
dy
be any element in Hy,(Cz,(Vecty). Now choose vector space complements
Ky and K; of ker(dyg) in My and of ker(d;) in M; respectively.
Since im(dy) C ker(dy) and im(dy) C ker(dy) we have that M, decomposes
as follows:

do 0@(d0‘K0)
My = (MO o — Ml) = (kel“(do) & Ky K& ker(dl))
dy (dl‘Kl )EBO
0 dolx
= (ker(dp) —=K;) & (Ko —ker(dy)) .
dilKy 0

Now choose vector space complements Cy and C; of di (K1) in ker(dg) and
of do(Kp) in ker(dy) respectively. Then

0 dolk,
(ker(dp) —= K1) @ (Ko 4<T>ker(d1))

di|k,
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= (Co==C1) ® (K1) == K1) & (Ko == do(K)) .

dilk,

Since the maps d;|g, : K; — d;(K;) are isomorphisms for i = 1,2, it follows
with Lemma 3.14 that

0
[Me] = [ (Co ~ C1) @ kK, © K, ]

0
=t"-[(Co —= Ch) | * [kry © K, ]

for some n € Z. For every vector space A we have that A = kdimr(4)  Thyg
the set

0
{ [ (k"™ <407>k:”1) | % [Frnp © Kyng] | mo,n1,np,ng €N }

forms a basis of H,(Cz,(Vecty). Now consider a basis element

0
[k === k™) | [ranr @ o]

and assume that ng < np. Then by using Corollary 3.15 we have the
following equation in DH,..q(Vecty):

[kinp @ Kpng| = ["%”P*”@ D Kro @ Ky
= [kymnp-ng)] * [Kgro @ Kpng] = [Fynp=na)]-
—_—

acyclic and invariant under *

On the other hand if we assume that np < ng we obtain

[fknp @ Kingl = [Kinp © Kinp © K (ng—np)]

= [/ﬁ]knp @ /‘i;;np] * [/{Z("Q_np)] = [HZ(nQ_nP)] ln DHTed(VeCtk)

Hence again by using Lemma 3.14 we can state the following lemma:
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Lemma 3.23. A basis of DH,eq(Vecty) is given by elements

0 0
[ (k™o <4T> k™) @ kgnp] and | (K™ ? E™) @ Kingl

for ng,n1,np,ng € N.
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4 The Hereditary Case

In order to show our main theorem (Theorem 4.37) we now restrict to cat-
egories with properties similar to those of Repi(Q). Thus from now on we
assume that A also satisfies the assumptions (Ass3)-(Ass4) of Setup 2.6. The
main reference is again [Bril3]. We start by showing that there is a direct
sum decomposition of elements in Cz,(A) which yields a basis of DH(A)
later on. Using (Ass3) we see that every object A € A has a projective
resolution of lenght 1 which defines a corresponding element E4 € DH(A).
By using results from the theory of derived categories it turns out that the
assignments

I Htw(.A) — DH(.A), I : Htw(A) — DH(.A)
[A]>—>EA [A]HFAZEAZ
define injective morphisms of rings. Moreover we use (Ass4) and the descrip-

tion of a basis of DH(.A) to show that the assignment a ® b — I (a)* I_(b)
defines an isomorphism of vector spaces. We even obtain an isomorphism

Hiw(A) @c CIK(A)] @c Hiw(A) — DHyea(A).

At this point we set A = Repy(Q) and consider the corresponding quantum
enveloping algebra U;(g) specialized at ¢ = +,/g. We use its triangular
decomposition and Ringel’s Theorem to define an embedding of vector spaces

Ui(g) — Hiw(A) @c C[K(A)] @c Hiw(A) — DHrea(A).

Knowing that Iy and I_ are already morphisms of rings we check all defining
relations of U;(g) and obtain that this composition is already a morphism of
C-algebras. This is the main theorem of this thesis.

4.1 Minimal Projective Resolutions

The condition that A is hereditary implies that all subobjects of projective
objects are again projective. Since A has enough projectives every object A
has a projective resolution of the form

0—PLligLia—0 (11)

with P = ker(g). Condition (Assl) ensures that A is a Krull-Schmidt cate-
gory so we can decompose P and @ into finite direct sums of indecomposable

objects P = @P,;c; P, Q = ®jeJ Q;. Hence we may write f = (fi;)ierjes
in matrix form for certain morphisms f; j: P; — Q.

Definition 4.1. Let A € A a resolution (11) is then called minimal if none
of the morphisms f; ; is an isomorphism.
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Lemma 4.2. Any resolution (11) is isomorphic to a resolution of the form

0—RoP ¥ rag 2 40

with R € P, and some minimal resolution
0—P Iy 24—

Proof. Suppose (11) is not minimal then some f; ; is an isomorphism. With-
out loss of generality we can assume that P; = @Q; and f;; = id. Set
R=P;=Q;, P =P/P;, and Q' = Q/Q;. Now the short exact sequence of

complexes
' R

|
1.0

Z
L)

splits and by choosing the correct split we have f = 1@ f’. Hence (11) is
isomorphic to

0—RaP 2L Reg 299 4 0.

Now we can repeat this process. It terminates because the sets I and J are
finite. O
4.2 Direct Sum Decomposition

We want to generalize the decomposition given in Example 3.22. To do
this we have to define the occuring components for an arbitrary category A
satisfying (Assl)-(Assd).

Definition 4.3. Given A € A choose a minimal projective resolution (11)
and define C4 € Iso(Cz,(P)) as follows:

0
Ca= [Q?P]. (12)
Remark 4.4. Note that C4 is well-defined by Lemma 4.2 but P, @, and

f are only unique up to isomorphism. By an abuse of notation we will also

denote a representative in Q _0, P by Ca.
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Definition 4.5. Let @ € K(A). Then by Lemma 2.4 there are projective

objects P,Q € P with a = P — (). Define:

Ko = [rp] * [mo] ™"
To see that K, is well-defined we prove the following lemma.

Lemma 4.6. The map

A: K(A) —» DH(A)®
a— [Kp] * [/{22]_1 fora=P—-Q

is a well-defined morphism of groups.

Proof. Define a map

&: Iso(A) - DH(A
[A] = [5p] * [kg)

where

0 Q P A 0

is a projective resolution of A. This assignment is independent of the chosen
resolution: By Lemma 4.2 there exists a minimal projective resolution

0 Q' P A 0

and an object R € A such that Q = Q'® R and P = P'® R. Thus we obtain
by Corollary 3.15 that

[5p] * [Ko] ™" = [Kprgrl * [yer] ™"
= [wp] * [WR] * (5] (5G] = [wp] = [k ] 7

Since two minimal resolutions are isomorphic we can conclude that £ is well-
defined. Now consider a short exact sequence

0 A B Y-C 0

and projective resolutions

0 Qa Py A 0,

0 Qc P e, c 0.
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Since g is an epimorphism and P is a projective object there exists a mor-
phism p¢.: Pc — B such that gopf, = pc. We obtain the following commu-
tative diagram:

QA Qc
Py Py & Po Pc
P \L fopa ig P& lpc
A 7 B C

where ( = (f o pa) @ p{ is an epimorphism. Define pf,: Po — B/f(A) and
observe that

ker(C) & er(f o pa) @ ker(pi) = ker(pa) @ ker(pi).
On the other hand we have that

Qc = ker(pc) = ker(g o pe) = ker(pe)

and it follows that ker(¢) = Q4 ® Q¢. Hence by taking Corollory 3.15 into
account we have that

1 -1

E([B) = [Fpyerc] * [5G 000) ™" = [Kh,) * [Kh] * [5G, ] * [5G ]

= [Kp,) * (80,71 * [Khe] * [80.1 71 = €([A]) * £([C)).
This proves that A is well-defined. O

Remark 4.7. There are some simple but useful identities:

Kp=[xp)=[kp] ' = K:]lj € DHyrea(A)

Kpag = [kp ® k) € DH(A)

Ci=Q-P=AcK(A)
with P, () and A as above.

Lemma 4.8. Every object Mo € Cz,(P) has a direct sum decomposition

M. = Ca & Cl & ip @ i
with objects A, B € A and P, Q) € P uniquely determined up to isomorphism.

49



Proof. Because A is a Krull-Schmidt category we can assume that

do
Moy = (My——= M)

di

is already indecomposable. Consider the short exact sequences
00— kerdo L) MQ p_o) 1m(d0) — 0

0 —> kerd; 2 M; L im(dy) — 0.

Since A is hereditary, all objects in these sequences are projective and thus
we get two splits

10" 1m(d0) — Mo, p1: My — ker(dl)
with pg oig = id and p; o471 = id. Set

N = (im(do) === ker(d1)).

where m is the obvious inclusion. Now i, and pe define morphisms of com-
plexes

do do
My—=DM; My—=M;
d1 dl
pol ipl ioT Til
m m
No=—/—M No=—/—MN;

and moreover ie: Ng — M, defines a split of the short exact sequence of
complexes

0 — ker pe — My 22 Ny — 0.

Hence we have that M, = N, @ ker(ps) and since M, is indecomposable we
can conclude that either

ker(d;) = im(dp) =0 or ker(dy) =im(d;) = 0. (13)
We assume that the first one holds, so dy = 0 and d; is mono. Then
0 — My -2 My —s Ho(M,) — 0 (14)

is a projective resolution of Ho(M,). If it is minimal we have Mo = Cpo (s, )-
Now suppose it is not minimal then by Lemma 4.2 there exists a minimal
resolution (11) and R 2 0 such that (14) is isomorphic to

0—ReP ¥ Rreq 2% Hy,) — 0.
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But then it follows that

0 0
M= (R—=R) @ (Q§>P),

and since M, is indecomposable and R 2 0 we get P = @ = 0 and M, = K},
If the second case in (13) holds we have that dy is mono and d; = 0 and we
obtain that M, is either C;EIO(M.) or KR- O

4.3 The Root Category

Definition 4.9. Define D°(A) the (Z-graded) bounded derived category of
A to be its bounded homotopy category Ho%(A) localized at the morphism
set of quasi-isomorphisms.

Definition 4.10. For i € Z define the shift functor [i] on D?(A) as follows:

d4 (—1)ids,
AT A — A A s
J Jj+1 J+i Jj+i+1
[4]
lfj ifﬁl — Jiti fitit1
—Bj — Bjy1 —— — Bivi B —
j —D)'ayy;

for a morphism f,: Ay — B, in DP(A).

Definition 4.11. Let R(A) = D*(A)/[2] be the root category of A. This
has the same objects as D°(A), but the morphisms are given by
Homp4)(X,Y) = €D Hompy( 4 (X, Y'[2i]).
1€Z

Theorem 4.12. The category D°(A) is equivalent to the bounded homotopy
category HO%(P) of projectives.

Proof. See appendix 6.1. 0

In particular R(A) is well defined as the orbit category of Ho%(P), i.e.
R(A) = Hoy(P)/[2].

Lemma 4.13. There is a fully faithful functor

F: R(A) — Hol, (P)
sending a Z-graded complex (P;)icz of projectives to the Zs-graded complex

P P P Pais.

i€ Dideitr oy

eai d2i
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Proof. Consider a morphism f,:

D, d3;
P P = P Paina
1€7 @1 d2’L+l 1E€EL
fo fi
®; d5,
—_—
P Q2 5 P Qait1-
1€EL & d3iv1 i€z

Then we can write f; = (f2k,2l)k,l and fy = (f2k+172l+1)k’l with f@ji P, — Qj.
Since f, is a morphism of complexes the following diagram commutes for all
k.l € Z:

g, dipi
Py Py 1 Py 19
\ \ \

fok, 21 f2k+¢,2l+1 f2k+i,2l+2

Qar —5= Qart1 —5 > Qak2
d
2k 2k+1

This shows exactly that f, 2i1e is @ morphism of complexes from P, to Qe[2i]
for all i € Z. Thus (fe2i+e)icz is a preimage of f, under F'.

On the other hand suppose that fo = F((fe2i4e)icz) = F((ge2i+e)icz) = Go
in ’Ho%2 (P), i.e. there are maps hg = (hok2i+1)k,; and hq = (hog—1,21)k, such

that
fo—g0=(EPd51) oo+ hio (P dh)

and

fi—g1= (EBdSi) o hy + ho o (D dj;y1)-

But this is exactly the condition that fe2i+e is homotopic to ge2ite Vvia
h.72i+1+. and thus (f.,21'+.)ieZ - (go,2i+o)i€Z in R(A) O]

Notation 4.14. For X € A let X, € D(A) denote the complex with

X, - X, ifi=0,
0, if7#£0.
Lemma 4.15. Given X,Y € A and i € Z we have

Homp4)(Xa, Ya[i]) = Ext’4(X,Y).

Proof. See appendix 6.2. O
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4.4 Embedding of H(A) into DH(A)
Definition 4.16. For A € A define

BEa=tPA K, %[Ca] € DH(A). (15)
Remark 4.17. In DH,.q(A) the following equation holds:

E4 :t<]5’A) -Kﬁp* [CA] = [KP@CA].

This follows from Lemma 3.14 and the fact that K 5 = [kp] € DHyeq(A)
and Cy =Q— P =Aec K(A).

Remark 4.18. Note that (15) is independent of the chosen resolution of A.
Suppose we take a different, not necessarily minimal, projective resolution.
By Lemma 4.2 there exists an R € P such that this resolution is isomorphic
to

0—RoP-LRoQ X% A0

But then, by Lemma 3.14, we get
HPORA) | K_pepx*[ki®Cal = HPA) K_p%[Cal.
Corollary 4.19. For Ay, Ay € A there are identities:
EXt(lzZQ (A) (CA17 CAQ) = EXt}Ll(Al, Ag)
ExtéZQ ) (Cay, C4,) = Homy (A, Ag).

Proof. Note that Cs,[—1] = Ca,[1] = C}_, then by Lemma 2.23 we have for
ie{-1,0}

Exte, (4)(Cay, Ca,li]) = Homyy, (4)(Cays Cagfi + 1)
and by Lemma 4.13
HOHl’HoZ2 (A) (CAlﬂ CAz [Z + 1])

= HomR(A)(CApCAz [Z + 1])
= HomD(A)(CAl,CAQ[Z' + 1)).
Now by Lemma 4.15 we obtain

HomD(A)(CAl,CA2 [Z + 1}) = HOHID(A)((Al)., (AQ),[Z + 1]) = EXti—\H<A1, AQ)

since Cy; Is quasi-isomorphic to (4;)e and €7 is quasi-isomorphic to (Aj)e[1].
O
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Lemma 4.20. For Ay, As € A there is a short exact sequence

0 — Homa(Qy, P2) & Home, (4)(Ca,,Ca,) %5 Hom (A1, A2) — 0.

Proof. Assume without loss of generality that f; and fy are inclusions and
define ¢ and & as follows:

0
Cay = (@1 Py) A =Q /P <L—Q P,
\fl fi
¢(h)o=f20h h. ¢(h)1=hof1 &(e)=10 o 1
0\ N 0
Ca, = (Q2 ; Py), A2 = Q2/ Py <5— Q2 ; P.
2 2

Now suppose ((h) = 0 then we have 0 = ((h)y = f2 0 h and since f5 is mono
we get h = 0. Hence ( is injective.

On the other hand consider morphisms from A; = Q1/P; to A2 = Q2/Ps.
These are exactly those morphisms ¢: Q1 — (2 which send P; to P». But
then v, with 19 = 9 and 1; = ¢|p, defines a morphism from Cy, to Ca,.
Hence € is surjective.

So finally suppose that (i) = 0. This is equivalent to the fact that g
factors through Ps like ¢)g = fo o h for some h: Q1 — P». But this shows
exactly that ¢¥e = ((h). Hence ker(§) = im(¢) and thus the sequence is
exact. O

Theorem 4.21. There is an injective morphism of C-algebras
Iy: Hyw(A) = DH(A), [A] — E4.

Proof. We first check that I, is a morphism of rings: For Ay, Ay € A define
objects Cy,,C4, € C(P) as above. Then by Corollary 3.15 and Remark 4.7

EA1 * EA2 — t(ﬁ17A1>+<ﬁ2,A2> . K—Pl * [CAJ * K—Isz * [CAQ]

= tPAVTOATEAD Ky # O] (O]

Set n = (]52, 1211) + <151, fll) + (]52, flg>. We claim that any extension of Cjy,
by Cj, is a complex C4, where A3 is the corresponding extension of A; by
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As. So consider the following diagram:

Cay, = (@2 Py)

(Q1® Q2 <Z— P @ Py)

pi 0 lp

Ca, - (@1 Pp).

f1

If it is commutative then wu is of the form

fi 0>
u =
<8 P
and since f; and f2 are mono so is u. But then wov = 0 implies that v =0

and this proves the claim.
Now by Lemma 4.20 we have that

|Home, (4)(Ca,,Ca,)| = [Homu (A1, A2)| - [Homa(Q1, P)|

= |Hom4(Ay, Ag)| - t¥QuF2),

By putting all this together and taking Corollary 4.19 into account we get:

EA1 * EA2 = tn : K_(p1+]52) * [CAJ *® [CA2]

| EXt(ljZ (A) (CAI ) CAQ)‘
~(Pr+Py)* > - [Cas]

_ tn+(Q17Q2>+(151,152> K
(Caglefontezy Py | HOME (0 (O O )

— v (Q1.Q2)+( P, Po) —2(Qu,P2) | |

| Exty (A1, Ao)]
-C
2 THoma(d, Ay (0

*(131 +152) *
[As]€Iso

N A A . .. 1
R I R R B S o CTE) g

A3
[A3z]€Iso(A) | HOHIA(Al, A2)|

PN 1
; t<A1’A2> . Z |EXtA(A1, A2)| B

Az
[A3]€Iso(A) | HOIHA(Al, A2)|
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€lso

Ao Ext! (Al A2)|
_g, (e oy Bl Al
( sjermotay | HOmAlAL A2)
— (A * [As).

So it is left to show that equation (16) holds and thus we have to compute
the power of ¢. Note that A; = Q; — P, € K(A):

n+(Q1,Qa) + (P1, By) — 2(Q1, By) — (P1 + Py, A3)

N ~

= (Py, A1) + (P1, A1) + (P2, A) + (Q1, Q2) + (P1, Py) — 2(Q1, Py)

*(Pl + pzw‘h +A2>

= (Py, Ay) + (A1, By) + (P1, A) 4 (Py, Ag) + (Q1, Q2) + (P1, Po) — 2(Q1, Po)
—(P1, A1) — (Pr, Ag) — (Py, A1) — (P3, Ay)

A~ N A~

= (A1, Py) +(Q1, Qo) + (P1, By) — 2(Q1, By) — (P1, As)

= (Q1— P, Py) +(Q1,Q2) + (P1, Py) = 2(Q1, B) — (P1,Q2 — )

= (Q1, Py) — (P, P2) 4+ (Q1,Q2) + (P1, Po) — 2(Q1, P2) — (P1, Q2) + (P1, By)
=(Q1,Q2) — (Q1, P2) — (P1,Q2) + (P1, Py)
:<Q1,Q2—p2>—<p1,Q2—P2>

= (Q1 — P1,Q2 — Py) = (A1, Ay).

To show injectivity we define a linear map

Q: DHred(A) — ,Htw(A)
[Mo] — Hy(Ms,)

and compute:
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QI ([A])) = Q(Ea) = Ho([kp ® Ca])

(] P@Q%P@PD — [Q/Tm(f)] = [A]

O

Remark 4.22. By composing I, with the involution * we obtain another
injective ring homomorphism

I_: Huy(A) — DH(A), [A]l— Fa
where F)y = .
Corollary 4.23. There is an embedding of algebras
IS : M5, (A) — DH(A)
mapping [A] to E4 and K, to K.

Proof. This follows immediately from Theorem 4.21 and the fact that Corol-
lary 3.15 shows that the relations (4) hold in DH(A). O

Remark 4.24. Again by composing I with x we obtain another embedding
of algebras

I¢: Hi,(A) = DH(A)
sending [A] to F4 and K, to K.

4.5 Quantum Enveloping Algebra

Let I' be a finite graph with vertices {1,...,n}. Let n;; be the number of
edges connecting i and j. Assume that n;; = 0 for all 7. Let a;; = 26;; — ny;.
Now (asj)i; is a symmetric generalised Cartan matrix with corresponding
Kac-Moody Lie algebra g.

Definition 4.25. Define the quantum enveloping algebra U,(g) as an asso-
ciative algebra over Q(v), the rational functions in v, generated by symbols
E; F;, K;, Ki_1 with respect to the following relations:

KixK'=K 'K, =1, [K;,K;]=0, (17)

KixEj=0v% -EjxK;, K;j*Fj=v%.FxK,; (18)
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B Fl==—"—"1— [BEi,F}]=0 fori+j (19)

v—ov 1’
and the quantum Serre relations:

1—a;;

Z (=1)" ' _naij EP s Ejx B, 7" =0 fori# (20)
n=0 -

l—aij

> (-nr L=aij) pr,p, «F, 7" =0 fori#j, (21)

n

n=0 -

where the coefficients

n n|! o thr—t"
Wemrheg =l m=55

are quantum binomials.

Definition 4.26. Define subalgebras
Uy(n), Un(), Up(n7) C Us(g)
generated by the F;, the K l-i, and the F; respectively. Moreover define
Uo(6),U,(67) C Us(g)
generated by F;, K Zi and F;, K ch respectively.
Lemma 4.27. The multiplication map
Uy(n™) @c Uy(h) @c Uy(n™) = Uy(g)
s an isomorphism of vector spaces.

Proof. See |[Lusl0, Corollary 3.2.5]. O

4.6 Ringel’s Theorem

Let @ be a finite quiver without oriented cycles and T" its underlying graph.
Let Uy(g) be the quantum enveloping algebra corresponding to the Cartan
matrix of I but specialized at ¢t = +,/q (i.e. the same elements and relations
as Uy(g) but evaluated at v = t).
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Theorem 4.28. There are injective morphisms of C-algebras

R: Uy(nt) < Hpw(Repr(Q))
Re: Uy(b™1) — Hpw(Repr(Q))
defined by

R(E) = R(E) = P Re(K) = Ky,

These maps are isomorphisms precisely if the underlying graph of Q is a
simply-laced Dynkin diagram.

Proof. See [Sch06, Theorem 3.16]. O

4.7 Relations

Recall that Fy = £ and E4 = HPA) . K 5 *[Cy4]. We now want to show
that the relations between the E;’s and the Fj’s in the definition of the
quantum enveloping algebra also hold in DH(A) for the E4’s and the Fpg’s
respectively.

Lemma 4.29. Suppose Ay, Ay € A satisfy
Hom4(A1, Az) = 0 = Hom4(Az, Ar)
then [E4,, Fa,] =0.

Proof. Note that ¢4 € Home, (4)(Ca,,C},) is of the form

0
QL=—=n
f1
Oi J{wl
f2
Py —=Q>
0
and thus we have
HomCZQ(A)(CANCZg) = HOmA(Pl,QQ). (22)
Moreover it follows from Corollary 4.19 that
Extg, (4)(Cay, Ch,) = Homy(Ar, 42) = 0.
Then by Corollary 3.15 and Remark 4.7 we have

Ea, % Fy, = t{PoA+H(24) K _p % [Cay] Ki]% * [C,]
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_ {PLAY (P, Ao)— (P ) K _p x K [Ca)] *[C4)] (23)

- K* [CAI @ C:ZQ:I

t<151,A1)+<152,A2)*(152,A1)+<151,Q2>+<Q1,P2) K %
~P =R [ Homa (Pr, Qo)

t<P17A1>+<P2,A2>—(152,Al)+(151,Q2>+<Q17152> K oA x K* . % [CAl S Cj‘?]
—h - £2(P1,Q2)

_ t<151,A1)+<152,A2)7(152,A1)*<1517Q2>+(Q17132> K_p % K*P % [Ca, ® C4)
_p _P 9

Note that flz = Ql — ]5Z then the total power of ¢ can be rewritten as

A A~ ~ A~ ~ N

(P, A1) + (Py, Ag) — (Py, A1) — (P1,Q2) + (Q1, P2)
= (P, Ay) + (P, Ag) — (Po, Ay) — (Ay, By) — (P1,Q2) + (Q1, P2)

~ ~

= (P, A1) + (P2, Ag) — (Po, A1) — (Q1 — P, ) — (P1,Q2) + (Q1, P»)

= (P1, A1) + (Do, As) — (P, A1) — (Q1, P2) + (P1, By) — (P1,Q2) + (Q1, Do)

= (P, A1) + (P2, Ag) — (Py, Ay) — (P, Q2 — P)

= (P1, A1) + (P2, As) — (Py, A1) — (P1, Ay)
and this is invariant under exchanging the indices 1 and 2. Set

N A~

n= (P, A)) + (P, Ay) — (P, A)) — (P1, Ay)
then

F’A2 *EA1 = (E'A2 *FAI)* :tn-_[{if32 *K—ﬁ1 * [CA2 @Czl]*

=t"-K_p *Kil% % [Ca, ®CL,) = Egy * Fa,.
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Observe that the result of the following lemma looks quite different from
relation (19). But in view of the definition of

R: U(g) — DHiw(Repr(Q))

in Theorem 4.37, this turns out to be exactly the relation we need.

Lemma 4.30. Suppose A € A satisfies End4(A) = k, then

[Ea, Fal=(¢—1) (K} — Kj).

Proof. Tt follows from Corollary 4.19 that

Exté@ ) (Ca, C4) = Homy(4, A) = k.

Note that any endomorphism of A is either an isomorphism or zero. Now
any extension of C'4 by C is isomorphic to an extension M, of the form:

f
P Q

0

ip iQ
M = [f 50}

0 O
PaQ QoPr
0 S1
M __
; ‘{0 f}
TI’Q =
Q - P.
f

Since f is mono it follows from d}! o d = 0 that s; = 0. Now consider the
long exact sequence in cohomology of this extension:

s

HO(C%) = 0—= H(M,) = ker(sq)/im(f) —> HO(C4) = A

. J
s

HY(C}) = A—— H'(M.) = Q/im([f so]) —> H'(Ca) = 0.

Note that 77, is mono and 47 is epi. Since ¢ € Homa(A, A) = k is either an
isomorphism or zero it follows that 7'(6 and 122 are either zero or isomorphisms
respectively. If they are isomorphisms it follows that sp = 0 and hence
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M, = C’ ® C4y is the trivial extension. If they are zero it follows that M, is
acyclic because 776 is mono and i, is epi. Moreover it turns out that

ker(d)') = ker(sg) = P, and ker(dM)=Q
and by Lemma 2.20 we have M, = kg ® k. Thus by (22) and (23)

Eqx Fa=tPA~AP) g L K5 [Ca] % [C3]

(PA-APHQPHPA K LW K [Ca® Ca]+ (g 1) [rq © K (24)
- 12(P.Q)

— {PA—(AP)HQP)—(PQ) K p+K* o5 ([Ca®Chl+(g—1)- sz * Kp).

Taking A= Q — P into account the total power of ¢ is:

Applying * gives:
FaxEp=(BEa*xFa)" =K pxK px([ChoCal+(q—1) Ky K})

=K p*x K"+ ([Ca®Chl+(q—1) Ky * K}).
So finally we get

EA*FA—FA*EA:(q—1)‘K_P*Kip*(K5*KP—KQ*K;;)

= (¢- 1) (K}_p— K¢

o-P Qfﬁ):(q_l)'(Kt_KA)'

A
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4.8 Decomposition Statements

Lemma 4.31. DH(A) has a basis
{ [Ca® Cplx Ko x Kj | [A],[B] € Iso(A) and o, 8 € K(A) }.

Proof. The basis of H,(Cz,(P)) consists of isomorphism classes [M,] where
M, € Cz,(P). To obtain a basis of DH(A) we have to take the inverses
of the isomorphism classes of acyclic complexes into account. Lemma 2.20
shows that every acyclic complex decomposes into a direct sum kp @ k) for
two objects P, € P. Now by Corollary 3.15 we know that

1 1

rp @ k] = [rp] ™ % [k] .

Moreover we know from Lemma 3.14 that [rp] and [kg)] commute with other
elements [M,]| € Hiw(Cz,(P)) up to some factors " with n € Z. So the
elements [kp]~! and [/-@22]_1 do in DH(A).

Altogether we obtain that a basis of DH(.A) consists of elements

[Ma] * [k, )" * [rg,) ™!

where M, € Cz,(P) and Qq, Qs € P. Now by Lemma 4.8 there are elements
A,B € A, and P,, Pg such that

My =Cs®Cp®Kp, © kp,.

So finally this gives

[Ma] * [5,]7" * [5Q,) ™! = [Ca ® Cp @ K, @ k] * [5G, 17" * [k, ™!

=t"-[Ca® Cpl* [kp, ] * [Kp,] * [nz)a]fl * [ﬂQﬂ]*l =t"-[Ca®Cpl* Ko Kj

for some n € Z, o« = P, — Qq and f = Pg — Qg in K(A). So a basis of
DH(A) consists of elements
[Ca ® CRl x Ko * K.
U

Definition 4.32. Assumption (Ass4) of Setup 2.6 implies that we have a
partial order on K (.A) given by:

a<fedAdcA:f—a=A
for a, 5 € K(A).
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Definition 4.33. For v € K(A) define DH(A)<, to be the subspace spanned
by those basis elements

[Ca ® Cp] * Ko % K, A,Be A, o, K(A)
for which A+ B < ~ holds.
Lemma 4.34. For o, € K(A) we have
DH(A)<a * DH(A)<p € DH(A)<a+s
so that this defines a filtration on DH(A).

Proof. First note that for A,B € A and P,QQ € P we have the following
identities:

Ho(Ca) = A, Hi(Ca)=0, Ho(Cp)=0, Hi(Cp)=B,
Ho(kp) =0, Ho(kg) =0, Hi(kp)=0, Hi(kg)=0.

and hence
Ho(CAa® Cp®kpDrg) =A, and H(Ca® Ch @ kp®Ky) = B.

Now take two elements

[CAJ\{ @ CEM] * Kalw * KE]\/[ € DH(A)SB

[Cay @ CR ] * Koy ¥ K5, € DH(A)<a

where Apr, Ay, By, By € A and apy, an, Bu, By € K(A). Then multipli-
cation gives

([Cay @ Cpy, ] ¥ Koy, + K, ) # ([Cay © Cpyl x Kay * K,

=" [CAM D CEM} * [CAN ©® CEN] * KO‘MJFO‘N * KEM"_’BN

for some n € Z. Set

M, = Ca,, ®Cp,, and N¢=Cay ®Cp,.
Then we have to show that for every extension P, € C(P)
0— M, 2 Py = N, =0 (25)

the following holds:

HO(P.) +H1(Po) < O[—i—,@.
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Now (25) gives a long exact sequence in homology which can be split to give
two long exact sequences:

0= K < Ho(Ma) % Ho(P.) ™ Ho(Ns) - Q — 0 (26)

0= Q < Hy(My) = Hy(Ps) =5 Hy(N,) —» K — 0

where K = ker (i) and Q@ = Ho(N,.)/im(n(). But this gives the following
equalities in K (A):

Q — Ho(Ny) + Ho(P) — Ho(My) + K =0

A~

K — H{(Ny) + Hi(P,) — Hi (M) + Q = 0.
Putting this together gives

~ ~ ~ ~ ~ A~ ~ ~

2(K +@Q) = (Ho(Ne) + Hi(Ne)) + (Ho(Me) + Hi(Me)) — (Ho(Fe) + Hi(F,))

= (Ay + By) + (Ayr + Buy) — (Ho(P) + Hi(Py)).

Thus we finally get

Ho(P.) + Hi(P.) < (Ay + By) + (Ay + Bay) < o+ B.
O

Lemma 4.35. The multiplication map p: a ® b — IS (a) * 1¢(b) defines an
isomorphism of vector spaces

w: ,Hifw(A) Xc ,ng('A) — DH(A)
Proof. By Corollary 4.19 we have

Extéz2 0)(Ca,Cp) = Homu(4, B)
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for A, B € A. Like in the proof of Lemma 4.30 an extension L, looks like:

fB
Pp . QB
7 7
" . |fB S0 °r
=0 0
Pp®Qa QB D Pa
P ()
Y10 fa
QA TPy
0
Qa f Py
A

and we obtain a long exact sequence

*

HO(C?) = 0——= HO(La) = kex(so)/ im(f4) —2= HO(C1) = A

. /
I8
H'(Cp) =B ?Hl(L-) = Qp/m([fp so]) —H'(Ca) =0

where ¢ = 50: Qa/fa(Pa) — Qp/fs(Pp). This yields a commutative dia-
gram:

0 Py 4 A= Qa/fa(Pa)
L 0=sll \LSO lc:so
0 Pp i QB B =Qp/f(Pp).

Then for fixed ¢ we have by the Comparison Theorem (see [Wei95, Theorem
2.2.6]) that se is unique up to chain homotopy. Thus by Lemma 2.23 we can
conclude that an extension class in ExtéZQ (4)(Ca,Cp) is completely deter-
mined by the corresponding connecting homomorphism.

Now set Ng = Cy and M, = C} and consider (26). Then K = 0 and it
follows from the previous part and condition (Ass4) in Setup 2.6 that Q=0
exactly when the extension is trivial. Since DH(A) is a filtered algebra by
Lemma 4.34 we can build the associated graded algebra. On the other hand

Hw(A) = P HalA)

a=AcK(A)
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is already graded where H, (.A) denotes the subspace spanned by elements [A]
with A = a. Then by definition pu respects these gradings and thus induces
a well-defined map of graded objects. We obtain the follwing equation:

(Al * Ko @ [B] % Kp) = 1"[Ca @ CHl x K, p x K} 5

for some integer n. Hence in every degree p takes a basis to a basis and thus
w: He,(A) @c He,,(A) — DH(A) is an isomorphism. O

Lemma 4.36. The multiplication map [A] @ a® [B] — Eax K, *Fp defines
an isomorphism of vector spaces

Htw (.A) (e C[K(A)] X Htw (.A) — DHred(A).

Proof. This is exactly the same argument as in Lemma 4.35. O

4.9 Main Theorem

Let @ be a finite quiver without oriented cycles, and vertex set {1,...,n},
and underlying graph I'. Let U;(g) be the quantum enveloping algebra
specialized at ¢ = +,/q corresponding to the Cartan matrix of I'. Set

R = Repi(Q).

Theorem 4.37. There is an injective morphism of C-algebras
R: Ui(g) = DHrea(R)
defined on generators by

R(E;) = (q—1)""Es,, R(F)

(=t)-(¢—1)""-Fs,

R(K;)) =K

4, R(K™Y) = K.

The map R s an isomorphism precisely if the underlying graph of Q is a
simply-laced Dynkin diagram.

Proof. We first have to check that all defining relations of the quantum
enveloping algebra are mapped to zero to have a well-defined map. Now
Corollary 4.23 and Remark 4.24 show together with Ringel’s Theorem 4.28
that this already holds for the relations (17), (18), (20) and (21). Now we
compute with Lemma 4.30:

[R(E:), R(F})] = (=t) - (¢ = 1) - [Bs,, Fs]



This shows together with Lemma 4.29 that the relations (19) are also mapped
to zero. Thus R is a well-defined morphism of rings. There is a commutative
diagram of vector spaces

Ur(n*) @c Ug(h) ©c Up(n™) A Hiw(R) ®c C[K(R)] @c Hiw(R)

1R
IR

Ut(g) R D%red(R)

where the vertical arrows are the isomorphisms given in Lemma 4.27 and
Lemma 4.36 and A is built out of Theorem 4.28. Hence it follows from
Theorem 4.28 that R is injective in general and an isomorphisin precisely if
I" is a simply-laced Dynkin diagram. O
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5 Examples of reduced localized Hall Algebras

5.1 The Quiver A7

Example 5.1. For n > 3 define a quiver A7 as follows:

AT = o o o o.
1 2 3 n

Note that A7 and A, have the same underlying graph I'. Thus A,, and A]
yield the same quantum enveloping algebra Uy(g). Since T is a simply-laced
Dynkin diagram it follows from Theorem 4.37 that

DHT'ed(Repk(An)) = Ut(g) = D/Hred(Repk(A;))
as C-algebras. So we can observe in general that two quivers with the same
underlying simply-laced Dynkin diagram have isomorphic reduced localized
Hall algebras no matter how the arrows are oriented.

5.2 The reduced localized Hall Algebra of Repi(A,)

Example 5.2. Consider the category R = Repg(Ay). We want to describe
a basis of DH,¢q(R). We can use Lemma 4.31 to see that a basis of DH(R)
is given by

{ [Ca® Cp]* Ko x Kj | [A],[B] € Iso(R) and o, 8 € K(R) }.

Now fix [A], [B] € Iso(R) and «, 5 € K(R). By Lemma 2.4 there exist pro-
jective objects Py, Qa, P3, @3 € R such that o = PQ—QQ and g = 155 — Qg.
By taking Remark 3.21, Corollary 3.15 and Lemma 3.14 into account we can
calculate in DH,¢q(R) that

(Ca @ Cp] % Ko Kj = [Ca® Chl * [i5,] % [k 7" * [k, ]  [5,] "

= [Ca®Cplx[rp, ¥ [rQu] ¥ [k, ] ¥ [kq,] = [Ca®Cpl¥[Kp, OKp, R, DrQ.]

— [Ca® OB K, © Fguaqs) = - [Ca ® Ch ® Kiygp, ® Kuoa,]
for some n € Z. Moreover the following equation holds in DH,..q4(R):

[kp @ Kp] = [kp] * [wp] =1

for projective objects P € R. Thus with Example 1.14 we can state the
following lemma:
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Lemma 5.3. A basis of DH,eq(R) is given by elements

[Ca @ CEL @ kp @ kg
for [A],[B] € Iso(R) and

P:@@P(i) and Q:@@P(i)

i=1 j=1 i=1 j=1

where (N1, ...,ny), (M1,...,my) € N with 0 € {n;,m;} for all 1 <i<n.

Now we want to compute some Hall products in DH,..q(R).

[CS(i)] * [CS(Z')}:
We use Theorem 4.21 and the results of Example 3.8 to see that

((P(i+1),5(8)+2(P(i+1),5(i)) ‘K _ypiiiny * [Cs) * [Cs@) = sy * Esq

= L ([S@)]) * I+ ([S@)]) = L ([S(@)] = [S(D)]) = I (¢7" - [S(@) @ S(0)])

-1 —1+(2P(i+1),25(i
="' Es@ase =t~ TS0 K b o) * [Csmesa)-

Since (P(i +

+1),5(i)) = dimy, Homg (P(i + 1), 5(i)) = 0 we just have to
compute (S(7), P(i

1
) + 1)). Choose a short exact projective resolution of S(7)

)

0——=P@+1) P(3) S(i) 0

and consider the corresponding Hompg-sequence:

0 —— Hompg (P(i), P(i + 1)) — Homg (P(i + 1), P(i + 1)) — 0.

Observing that Homg(P(i),P(i + 1)) = 0 we can conclude that
ExtR(S() P(i+1)) = k. Moreover Homg (S(i),P(i + 1)) = 0 and thus

(S(i), P(i + 1)) = —1. Since K_ypj;y Is invertible in DHyea(R) we obtain
that

[Cs@)] * [Csiy] = [Csiymsi)-
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o [Cgp] * [C’g(j)] for i > j:
Since i # j we have the same setup as in Lemma 4.29. Thus we can use
Equation (23) to see that

[Csu) ® Cyj)]

Coi] # [Con] = #PEHDPUNHPELPG+D) ‘ .
[Cs)] * [Cs(y)] | Homp (P(i + 1), P(5))]

Because j < i we observe that
dimy Homg (P(i + 1), P(j)) = dimg Homg (P(i),P(j + 1)) =1

and thus
[Cs(iy) * [Cs(y] = [Csay © Cp)-

5.3 The reduced localized Hall Algebra of k[X]-gmod/?

Example 5.4. Consider the category M = k[X]-gmod/9. It follows from
Proposition 2.11 that one can show analogously to Example 5.2 that the
following lemma holds:

Lemma 5.5. A basis of DH,ea(M) is given by elements

[Ca @ CE @ kp @ Ky
for [A],[B] € Iso(M) and

P= @Qékm@ and Q= @@km@

i€Z j=1 i€Z j=1
where (n;)icz, (Mi)icz € B,cz Z with 0 € {n;,m;} CN for all i € Z.
Now we want to compute some Hall products in DH,eq(M).
i [Ckm] * [Ck<z‘>]1
Recall the embedding
J: Hiw(Repp(An)) < Hiw(k[X]- gmod”?)

of Proposition 3.11. Then use Theorem 4.21 and the results of Example 3.8
to see that

A {0)+2((X) (65) ki) K _y i * O] * [Crn] = Ergy * Brgy



=L [S@) @ S@)]) = LI (t™" - [k(i) ® k(D))

_ TN 2000 | g

1
=t - Ek(i)@k(i) —2((X)(@)) * [Ck(i>69k(i)]-

Since <(XA) (1), k(Az>) = dimg Hom((X)(7), k(7)) = 0 we just have to compute
(k(i), (X)(i)). Choose a projective resolution of k(i)

and consider the corresponding Hom y(-sequence:

0 —— Hom(K[X](7), (X)(i)) ——Homu ((X) (i), (X)(i)) —0.

Observing that Hom(k[X](i),(X)(i)) = 0 we can conclude that
Ext'y((k(i), (X)(i)) = k. Moreover Homp(k(i), (X)(i)) = 0 and thus
(k(i), (X)(i)) = —1. Since K—Q(X)(i) is invertible in DH,cq(M) we obtain
that

[Ck@')] * [Ck(z’>] = [Ck(i>69k(i>]'

o [Ci] * [CF:
Since Homy (k, k) = k we have the same setup as in Lemma 4.30. Thus we
can use Equation (24) to see that

[Cr & Cil + (g = 1) - [krpx) © K{x)]

[Cy] * [C7] = ¢ *EXLEOHE)RIX)) _
£2((X) k[X])

Observe that

dimy Homa (k[ X], (X)) =0 and dimg Hompa((X), k[X]) =1
and thus
[Cl * [CRl =t7" - ([Ch ® CR] + (¢ = 1) - [kigx) @ K{x)))-

5.4 The reduced localized Hall Algebra of G

In contrast to the previous examples we cannot apply the results of section
4 to the category G. We will see that it is quite difficult to find a basis of
DH.,eq(G) and to describe the multiplication.

72



Notation 5.6. Let f: X — Y be a morphism of representations and x € Xj.
In order to make the following part more readable we sometimes write f(z)
instead of f;(x) .

Example 5.7. Consider the category G. We want to describe a basis of
DH,eq(G). So take any complex of projectives

do

My= P Q.

di

We want to find all kpr and s}, which are direct summands in M,. By
Proposition 2.14 we know that P and @ are finite direct sums of P(1)’s and
P(2)’s. In particular we have that P, and @, are injective maps. Now by
Lemma 2.13 we have that

l
do(P) = €D Xi with [Xi] € {[[(1)], [S(V)], [S2)], [P(L)], [P(2)]}
i=1

for some [ € N. Moreover since P, and @), are injective we can conclude
that

a(P) = @ 52) s @ PO o D PR)
=1 =1 =1

for some ng,n1,n2 € N. Define a projection map

p: do(P) - P Py P P(2)
i=1 i=1

and observe that podp is an epimorphism. Since @;*, P(1) & B;2, P(2) is
projective this map splits and we obtain

ni

P =ker(podo) ® (P P(1) @ é P(2).
=1

i=1
These P(i)’s are the candidates for the desired direct summands in M,. Let

(e2)1 be the generator of the first P(2)-summand. As mentioned above there
are n,m € N such that

m

Q=Ppru)ePr@.
i=1 =1

Thus we can write

do((e2)1) = (Mo, ..., Apa pyea +viab, . piy e + vy0f)
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for some A}, ul, v} € k. Since do((e2)1) is supposed to be a generator of a
submodule isomorphic to P(2) in @ there has to be a p; # 0. Without loss
of generality we can assume that j = m and we obtain a new direct sum
decomposition

n m—1
Q=EPpr1ye P PR st
=1 =1

where (? = dy((e2);) and (2)g is the submodule generated by 2. Now consider

C22 = ()‘%av s )\72104, #%62 +V%aﬁ7 cees M?n—leQ +V72n—105/83 /‘12n<12 +V7271Qa5(<12))

for some A2, 2,2 € k. Then as above there exists a u? # 0 and moreover
we claim that there is such a j with j < m. This is true because otherwise
we obtain that

Qaﬁ(cg) = M%@Qaﬁ(C%)

and this is a contradiction to the direct sum decomposition of do(P). With-
out loss of generality assume that j = m — 1 and we have a new direct sum
decomposition

n m—2 2
Q= r1)e P P2 et
1=1 =1

i=1

and by induction we can decompose @ as follows

Q=@rne @ PeIo Do

Note that one can embed P(1) in P(2) via e; + [ for example. Thus we have
to pay a bit more attention to the P(1)-summands. Define ¢} = dy((e1);) as
above and write

Q’l = ('rilelv cee 755;6173/%67 s 7yinfn25vziQﬁ(Ci2)7 . ’Z;LQQB(C-??))

where xé-, y;», z; € k. Consider the vectors ' = (z%,...,2%) € k™ and choose
a maximal linearly independent set of these vectors. Without loss of gener-
ality assume that this is given by

{zt, ..., 2"}

for some n € N. In particular we have that le # 0 for some 1 < j < n.
Without loss of generality assume that j = m. Then we have a new direct
sum decomposition
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n—1 m—ng2 n2

Q=P rmese P PR P

i=1 i=1 =1

and with the same arguments as above we obtain

m—ng

Q=Pruye@ise @ PO e @G
=1 =1 1=1 =1

Our goal is to show that

D ruyedre) == @i o Dl
=1 =1 =1 =1

i1s a direct summand in M,. Now consider

1 ~n+1 ~n+1 1 ~n+1 ~n+1 2
<17L+1 = ($n+ elvwn+ C 7yn+ /szn+ Qﬁ(C )) € Q
where
.i'ﬁ+1 c k,n—ﬁ’{[}fl-‘rl c kﬁ’gﬁ-‘rl c km—ng’gﬁ-‘rl c k,ng
and

¢h=(CG 0 G) and Qp(¢) = (Qs(CD): - - Qp(Gr,))-

Moreover - is defined as follows:

—fitl 1 =~ o1 — i1 o1
wn+ C = (w?Jr Cl?"‘)wg+ Cﬁ,)
We will stick to this notation. Since {z!,...,2"} is a maximal linear inde-
pendent set, we know that 277! = 0 and @w™*! lies in the span of 2!, ..., 2™
Thus there are 77, ..., 42" € k such that
" = 7{”1:171 + ...+ vgﬂxﬁ

and define

g1 = (eD)ar1 — (VP e+ ...+ 72 (e1)n) € P.

We obtain a new decomposition of P

P =ker(pody) ® P P(1) @ (gar1)g ® P P(1) & EPP(2).
i=1

i=1 i=n+2

By induction we can decompose P as follows:
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ni

P=ker(podo) e P P& P () ® P PQ)
+1 i=1

i=1 1=n

where the g; are defined analogously to gs4+1. By construction we know that

& =do(g:) € P P2) e @
=1 =1

Thus we can write

€ﬁ+1 - (07 ngﬁ+157 2ﬁ+1 : Qﬂ(CQ))

where g7t € k™72 and 2"T! € k"2, We claim that there is a g?“ # 0 for
1 < j <m — ne. This is true because otherwise we have that

& € PHg
=1

and this is a contradiction to the direct sum decomposition of do(P). Assume
without loss of generality that j = m — ny. Now we have the problem
that ({741)g is no direct summand in Q. Thus we define an element wj 41
corresponding to &+ as follows:

Wi+1 = (07 Oagﬁ+1€27 Zﬁ+1 : CQ)

Then (wp+1)g is isomorphic to P(2) and due to the direct sum decomposition
of do(P) it is a direct summand in Q:

n—mn n m—ng—1 ng
Q=PrmePithee P PO e win)e@()s
=1 =1 =1 =1

By induction we obtain with the same arguments as above that

Q=D rOe@ee@PR e @ wiee Do
=1 =1 =1 1=n+1 =1

where m = (m — ng) — (n1 — 7). Now we have to take care of the direct
summand @;*,S(2) in do(P). Due to the direct sum decomposition of
do(P) we can choose a basis o1,...,04,71,...,Tn,—n of (B}2,5(2))2 for
some 7 € N which is of the following form:

0; = (aia7 0- Qa(<1)70a57 0- Qa(£)70 ’ Qaﬁ(cz))

and
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T, = (Oa70 : Qa(Cl)ﬂ biO‘ﬂ?O : Qa(f), 0- Qaﬁ(CQ))

where

a' € K" and b’ € k™.
Again (o;)g and (7;)g define no direct summands in ). Hence define corre-
sponding elements
5; = (a'e1,0,0,0,0)

and

7__i = (07 07 bi627 O? 0)

Then (7;)g = P(1) and (7;)g = P(2) and without loss of generality and with
the same arguments as always we obtain our final decomposition of Q:

n n—mn ns—"n ni

Pere P re@ihe@P @e P PR P wisPicd).
=1 =1

=1 i=n+1 i=1 i=ns—n+1 i=n+1

Now consider

ni n2

P = ker(pody) o@D P1)d P (gi)e P P2)—2~Q.

i=1 i=n+1 i=1
Altogether we know by construction that

ns—mn

do(ker(p o do)) € P (ei)g & EP (7i)g.
=1 =1

do: P P1) = Piche,
=1 =1
do( P (9:)0) € P (wide.
i=n+1 i=n+1
do: P P2) = PP
=1 =1

Since M, is a complex we have that di o dy = 0 and thus
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n2

d(EP()g) =0 and di(ED()g) =0.

i=1 =1

Hence we can finally conclude that

do

@ ra) Piche
i=1 0 i—1

and
P PE) — P
=1 =1

are direct summands in M, which are isomorphic to some kp/. Analogously
we can find direct summands which are isomorphic to some xp,.
Now consider the complement in P:

ni

K =ker(pody) ® @ (9i)g-
i=n+1

Then by construction

(do)1(K1) € Qp(Q2) and (do)2(K2) C Qu(Q1)-

This shows that we found all direct summands which are isomorphic to some
kpr. Hence we can formulate the following lemma:

Lemma 5.8. A basis of DH,eq(G) is given by elements

do §
[(M?N)@/@p@nd

do dO
forisomorphism classes [ M ———= N | of those complexes M ——= N of pro-
d1 dl

jectives with

(do)1 (M) C Ng(N2), (do)2(M2) C No(N1),

(d1)1(N1) © Mg(Ma), (d1)2(N2) € My (M)

and for
2 n; 2 my
P-@®®r0) wi o-BBr0)
i=1 j=1 i=1 j=1
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where (n1,m2), (m1, m2) € N2 with 0 € {n;,m;} fori=1,2.

Now we want to compute a Hall product in DH,¢4(G). Since S(2) is the only
indecomposable object with projective dimension 1 we compute

e [Cse)l * [Cs)l:
We first compute [S(2)]*[S(2)] € Htw(G). Consider the projective resolution

0 P(1) P(2) S(2)——0.
This yields a corresponding Homg-sequence:
0 —— Homg(P(2), 5(2)) —— Homg(P(1),5(2)) ——=0.

Since every morphism f: P(1) — S(2) sends the generator e; to zero it fol-
lows that Homg(P(1), S(2)) = 0 and hence Ext§(5(2), S(2)) = 0. Moreover
we have that Homg(S(2),5(2)) = k and thus

15(2)] % [S(2)] = t5@SP) . Homg(S(2), 5(2))] " - [S(2) @ S(2)]

=170 ¢ S 512)) =t [S(2) @ S(2)].

Since P(1) and P(2) are projective every extension of Cg) by Cg(g) is of
the form

Cspy = (P(2)

Cspy = (P(2)

(0

for some s: P(1) — P(2). Since f is monomorph we can conclude that u is
monomorphic and hence v = 0 since uov = 0. Thus every extension of Cg9)
by Cgz) is given by C4 where A is an extension of S(2) by S(2). As shown
above this is only the trivial extension. Moreover it follows from the proof

where u is given by
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that Lemma 4.20 applies for all objects Ay, As with projective dimension 1.
Thus we have that

| Homg (Cs(g), Cs(9))| = | Homg (S(2), $(2))| - | Homg (P(2), P(1))| = ¢*.

Then we can compute
[Cs2)] % [Csg)] = tFAF@HPLPO) | Homg (Cgay, Csi2))| ™ [Coyas @)

=t g2 [Cs@ms@2)] = =t [Cs)as@)]-

5.5 Embedding of DH,.i(Repi(A,)) into DH,cq(k[X]- gmod’?)

Observering that the calculations in Example 5.2 are quite similar to those
in Example 5.4 one could ask if there is a statement like Proposition 3.11 for
reduced localized Hall algebras. And indeed we can finally state the following
theorem.

Theorem 5.9. Let I' be the underlying graph of A,,. Let Uy(g) be the quan-
tum enveloping algebra specialized at t = +,/q corresponding to the Cartan
matriz of I'. There is an injective morphism of C-algebras

L: Ut(g) — D,Hred(k[X]_ngdfg)

defined on generators by

L(E)=(q—1)"" By, L(F)=(=t)-(¢—1)7" Fyy,

LK) = K LK) =K.

k(i) )

In particular L yields an embedding

DHred(Repk (An)) — DHred(k [X] - ngdfg).

Proof. 1t follows from Proposition 2.10 that we can apply the results of
sections 4 for k[X]- gmod/9 and thus like in Theorem 4.37 we can conclude
that L is a well-define morphism of rings. Set M = k[X]-gmod/9 and
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R = Repi(Ayn). Now there is a commutative diagram of vector spaces

Uy(n™) @c Up(h) ®c Uy(n) 2> Hy(R) ©c CIK (R)] ®c Hiw(R)
o (JRi1® J)
Ui(9) Hiw(M) @c C[K(M)] ®c Hiw(M)
R L =
DHyeq (R) LoR-1 DHT’ed('A/O

where A, R and the vertical isomorphisms are defined as in Theorem 4.37,
and J and ¢ are defined as in Proposition 3.11 and Proposition 3.12 respec-
tively. Since I' is a simply-laced Dynkin diagramm it follows from Theorem
4.28 and Theorem 4.37 that the maps R and A are isomorphisms. Now tak-
ing Proposition 3.11 and Proposition 3.12 into account we can conclude that
(J ® 1 ® J) is injective and thus L is injective. O
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6 Appendix

In this section we will give the prove of two commonly known results from
the theory of derived categories. Since the proofs are quite lengthy and they
are of no further interest to the rest of this thesis it was decided to outsource
them.

The main reference for part A6.1 is [Bue07, Lemma 9.7| whereas the main
reference for part A6.2 is [Mur06, Lemma 28|.

A 6.1. The category D*(A) is equivalent to the bounded homotopy category
Hob(P) of projectives.

Proof. We prove that the functor t: Hob(P) — DP(A) is full, faithful and
essential surjective.

(a) ¢ is essential surjective:

Proof of (a). Let

A da_y
0 Am m‘Am_H—)...—)An_l An 0

be a bounded complex with A; = 0 if ¢ < m or ¢ > n. Since A has enough
projectives we can choose P, € P with a,,: P, — A, and build the following

pullback square:
Anfl
dy’ Xg‘_i
Ap Ay
Py

Since df_l o dfl‘_z = 0 the universal property of the pullback square yields
a unique morphism d,_o: Ap_o — fln,l such that &,_1 o dyp_o = d,‘;‘_Q
and cZn_l ody_o = 0. Again since A has enough projectives we can choose
P, 1€ P witha,_1: P,_1 — fln_l and build the pullback square as above.
By repeating this process we obtain:

A A
dn -3 dn -2

An—3 An—2 An—l
AN A N 7 diy_,
n—3 Qn—2 n—2 Qn—1
X~ X~ ]
Ao Apq A, = A,
N SN AN 7
An—2 dn—2 An—1 n—1 Qn
/ N7
Pn—2 = Pn—l P Pn
d —2 dnfl



with dzp = J@ o @;. The maps df define indeed a differential:
dz—i-l df) :Ji+l o (@i+1 ocii)oo?i :czi+1o(ciiodi) oa; =0

since CZZ‘+1 od; = 0. Because A, is a bounded complex and every object in
A has a finite projective resolution this process terminates and we obtain a
bounded complex P, of projectives by setting all undefined P; to zero. In
particular if A is hereditary the lower boundary looks like this:

/ 0 \ / 0 \
O ker O_ém Am
\ / & am
ker oy, P,

incl

and we set P, =0for¢>nandi<m—1.
Now we define a; = &; o @; and claim that ae: Ps — Ae is an quasi-
isomorphism. Thus we consider its mapping cone

—dy 5, 0 —dy 0
Qp—2 dﬁfs Qn—1 dﬁﬁ

P, o® A3 n—1 D Ap_2 P,® A,
\ / \ / | o a2 )]

n2 ~

an2 n:An

which is exact because of the exactness of the sequences /L— — P11 @ A; — Ai+1.
This follows immediately from the universal property of the pushout squares.
Thus the mapping cone is acyclic and «, defines a quasi-isomorphism.

(b) Claim: Let P, be a bounded complex of projectives and fo: Ae — Po a
quasi-isomorphism. Then f, has right inverse in Ho%(A):

(¢) Let Ps, Qe be two bounded complexes of projectives. Then
Homg g (p) (Pe; Qo) = Hompy 1) (Pe, Qo)

i.e. ¢ is full and faithful:
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Proof of (¢). Consider an element P, EL) Ae L5 Q. in Hompy( 4y (Pe; Q)
where f, is a quasi-isomorphism. Then by part (b) there exists a right inverse
re Of fo. We have

PQ&AQLQQ

i
‘ JeTe

P.TP.HQ.

and thus P, & A, 2 Qe = t(geTe)-
On the other hand suppose that ¢(ge) = t(ge) for two chain maps
Jeo, Jo: Po — Q. Then there exists a quasi-isomorphism fo: A — Ps such

that ge © fo = Ge © fo. Again by part (b) we can choose a right inverse
re: Po — Ae of fo and we can calculate:

g.zgoof.OT.Zg.Of.OT.Zg.-

This proves (c) and finally completes the proof that ¢ is an equivalence of
categories.

Note that for (¢) we never used that Qe is a complex of projectives so (c)
holds even if we assume that Q, is in Cz(A).

Proof of (b). Consider the chain maps

0, m : Py — cone(f,).

Because fo is a quasi-isomorphism, cone( f,) is acyclic and we can apply the
comparison Theorem (see [Wei95, Theorem 2.2.6] and [Wei95, Proism 2.2.7|)

to conclude that [ﬂ is null-homotopic by a map LZ] :

P

fn—1 d5—2 [fn dﬁ—ﬂ

—— A, 1D P2 A, ® Py P, 0
0 \ Tn—1 0 \ Tn
1 hn1 \1 B \1
Pn—2 Pn—l Pn 0

In formulas:
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0l  [7it1 P, [-d} 0O Ti
M a [hm] odi t [ N R

_ riprod] —dftor
|k

is10dl + firi +dl o b 27)

The first coordinate of (27) shows that re: Ps — A, defines a chain map
and the second coordinate shows that fe7re is homotopic to the identity via
Re. O

A 6.2. Given X,Y € A and i € Z we have
Homp (1) (Xe, Ya[i]) = Ext!y(X,Y). (28)

Proof. At first we define a complex Homé( A) (Ae, Bs) for two complexes
As, Be € C(A) as follows:

Homc A., B,) H Homy4(Aj, Bj1:)
JEZ

and the differential:

O (fo); = fix10df + (=1)"*1dB ;o f;.

Now we claim the following statement:

(a) For As, Be € C(A) and n € Z there is an isomorphism of abelian groups
C: H”(HOmE(A) (A., B.)) — HOmeOZ(A) (A., Be [’I’L])

Proof of (a). We define ((f,) = fo and check that this is well-defined:
So at first we have to check that f, is indeed a morphism of complexes A,
and Be[n| if 0"(fs) = 0. But this condition is exactly that the following
diagram commutes for all j € Z :

4; Aj (29)

fjl lfj-ﬁ—l

Bt ——— B;
7+n " j+n+1
(=)"dPy,

and this is exactly the condition that fe is a morphism from A, to Be[n].
Now we have to check that f, = 0" 1(hs) is null-homotopic in C(A). But
the condition that

fi = 0" (he)j = hjs10df + (=1)"d ;1 ohy
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is exactly the condition that we have the following diagrams for all j € Z :

dj{l d]A
Aj1 4; Aj (30)
fi /hj/ i hjt1 fi+1
B, B; B; 1
J+n - 1)ndj+n ) J+n (- )nd]B+'n J+n+

giving a null-homotopy of f, via he as a morphism from A, to Be[n]. So
this shows that ¢ is well-defined. But since (29) holds exactly if fo is in the
kernel of 0™ and we have a diagram (30) yielding a null-homotopy exactly if
fo is in the image of 9”1, this already shows surjectivity and injectivity.

(b) Now we are ready to prove (28): Choose a finite projective resolution
..>Po9s—-P1—>P—X—>0

of X and obtain the complex Hom4(P,,Y):

0 — Hom(Fp,Y) — Homu(P1,Y) - Homy(P,Y) — ...

Note that up to the sign of the differential this complex is isomorphic to
Hom(‘z( A) (P.,Ys) and since sign changes do not affect cohomology we have
that H"(Homg 4 (Ps,Ys)) = H"(Homu(Fs,Y)). So finally by taking (a)
and A 6.1(c) into account we optain

Ext’(X,Y) = H'(Hom4(P.,Y))
>~ H'(Homy () (Fe, Ys))
= Homyy,,, (4)(Pe, Yeli])
&~ HOIIlD(A (Pe,Ye [7/])
= HOHlD(A) (X, Ysli])

where the last step follows because X, is quasi-isomorphic to P,. ]
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