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On the category of finite dimensional representations of OSp(r | 2n): Part II

Abstract. We study Brauer and Deligne categories to describe the finite dimensional
representation category F of the orthosymplectic supergroups OSp(r | 2n). On the way
we show that the Deligne categories provide upper finite highest weight categories and
categorify the Fock space of charge δ/2− 1 for the (quantum) symmetric pairs (gθ, glZ+δ/2)

of type (AIII). The main result is an explicit description of the endomorphism ring of a
projective generator of F in terms of a quotient of a type D Khovanov arc algebra. As an
application we obtain graded versions of Brauer algebras and the Deligne category.
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Introduction

Lie superalgebras and Lie supergroups have a rich representation theory. Already the
finite dimensional representations provide interesting non-semisimple tensor categories. In
this paper we will focus on the BCD series, that is the orthosymplectic Lie supergroups
OSp(r | 2n) with Lie superalgebras osp(r|2n), and study its representation theory.

Main Result: Endomorphism Theorem. The main result is Theorem 10.5, which gives
a description of the endomorphism ring of a projective generating family of the category
F of finite dimensional representations of OSp(r | 2n). The answer is explicit in terms of a
diagrammatically defined algebra, which moreover comes with a natural grading, and thus
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induces a grading on the category. The main ingredient in the proof is Deligne’s universal
tensor category Repδ, i.e. the idempotent completion of the Brauer category Br(δ).

Since the Brauer category is diagrammatic, but the idempotent completion is formal and
not expressible in these diagrams, we have to solve on the way the fundamental problem

Find a diagrammatical definition of the Deligne category!

Despite tremendous recent developments in finite dimensional super representation theory,
the BCD series is remarkably poorly understood. One reason for this is the lack of Kac
modules, [Kac77] in F , so that techniques from highest weight categories are not available.
Motivated by the existing rather ad hoc replacements, see e.g. [GS10], [GS13], [ES17] we
like to study more conceptually the category F using Deligne’s category Repδ for δ = r−2n.

To describe some results in more detail, fix C as ground field and let δ ∈ C. Then Repδ is
the idempotent completion of the free rigid symmetric monoidal category generated by one
self-dual object ? of categorical dimension δ, [Del07], see also [CW12b], [CH17], [Cou18].

(Graded) Highest weight categories. Let D(δ) be the category of of representations of
Repδ (Definition 2.1). Using the classification of indecomposable objects in Repδ (Theo-
rem 1.15) we index the isomorphism classes of indecomposable projectives in D(δ) by the set
Λ of partitions (Lemma 2.3). We then show in Corollary 2.11 that D(δ) is an upper finite
highest weight category in the sense of [BS18] with Λ viewed as a poset with the reversed
inclusion ordering. The categories D(δ) are always highest weight, even though Brauer al-
gebras might be only cellular, see e.g. [ES18, Theorem 5.13, Remark 5.14]. Tensoring with
? followed by the projections onto prescribed generalized eigenspaces for the Jucys-Murphy
elements defines i-induction functors (Section 2.3). We study these functors and describe
their action on standard and projective objects (Lemma 2.16, Theorem 8.7). As an appli-
cation we obtain a generalization of the Ariki-Grojnowski categorification theorem ([Ari96],
[Gro99]) by using instead of symmetric groups the Deligne category to categorify a Fock

space
∧∞/2 Vδ. This is now a type BCD Fock space, since the combinatorics is controlled by

Weyl groups of types BCD.

Categorification Theorem. Since the most interesting cases, including the non-semisimple
ones, appear for δ ∈ Z let us assume this for this introduction. Let Vδ be the vector space
with basis vi for i ∈ Z + δ/2 viewed as the vector representation of the infinite general linear
Lie algebra g = gl(Vδ) with Chevalley generators Ei, Fi, i ∈ Z + δ+1

2
. Consider the classical

Fock space
∧∞/2 Vδ of semiinfinite wedges of Vδ of charge δ−1

2
with its standard basis vectors

identified with Λ, see e.g. [Lec12], [KR87]. In Section 3 we identify
∧∞/2 Vδ with the com-

plexified Grothendieck group K0(D∆(δ)) of the exact subcategory D∆(δ) of D(δ) given by
all objects which admit a filtration with subquotients isomorphic to standard objects ∆(λ),

K0(D∆(δ)) ∼= 〈 Λ 〉 ∼=
∞/2∧

Vδ, [∆δ(λ)] 7→ λ 7→ vλδ . (0.1)

We show in Theorem 3.5 that the exact i-induction functors define on D∆(δ) an action of the
fixed point Lie subalgebra gθ ⊂ g defined by the involution on g sending Ei to F−i. Using
the classification of thick ideals in Repδ, we obtain a filtration on K0(D∆(δ)) by isotypical
components for gθ indexed by values of a combinatorial function κ. It turns out to be a
special case of Lusztig’s a-function, Remark 13.7, and later encodes the degree of atypicality,
Corollary 13.6. This construction fits into the theory of categorified socle filtrations of limit
Lie algebra, [HPS19].

Remarkably, the canonical basis of K0(D∆(δ)) given by the isomorphism classes of inde-
composable projective objects can be described explicitly, Corollary 2.11, Remark 11.24).
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The entries in the base change matrixD to the standard basis are parabolic Kazhdan-Lusztig-
polynomials evaluated at 1 of type (DN ,AN−1) or equivalently (BN−1,AN−2), [ES16b, Sec-
tion 9.7]. Slightly different type BCD Fock spaces were defined in [LRS19] using affine Hecke
algebras; those would appear if we passed from C to fields of characteristics p > 2; they would
inherit an action of an analogous fixed point Lie subalgebra of affine slp.

The canonical basis differs from Lusztig’s canonical basis on the g-module
∧∞/2 Vδ. Instead

of Lusztig’s bar involution on the quantised Fock space, one has to work with the bar
involution from [ES18, Proposition 8.9]. It is compatible with the action of Letzter’s quantum
symmetric pair, [Let02], of type (AIII) attached to (gθ, g) instead of the quantum group for
g. We refer to [Lec12] and to [ES18] for the two constructions. Bar involutions for quantum
symmetric pairs were studied in general in [BK15], [BK19]. The notion of canonical bases
for type (AIII) were independently introduced in [ES18] and, under the name ι-canonical
bases, in [BW18] (with ι referring to the involution θ).

After having finished our paper we were informed about the independent result from
[RS20]. Rui and Song proved the same categorification theorem and even generalisations
thereof to higher levels. Our focus here is however different in the sense that we are in-
terested in a generalisation to the quantum version by categorifying the Fock space for the
corresponding quantum symmetric pair using graded enrichments of the involved categories.
We therefore like to nevertheless give our independent proofs which have the advantage that
they directly lift to the graded setting. We expect that all the results from [RS20] with a
Lie theoretic origin generalise directly to a quantum setting using the Koszul grading on
category O from [BGS96]. The case of interest in our paper is in some sense one of the most
complicated one as we indicate below.

Higher structures. Section 4 deals with the higher structures of the categorification theo-
rem, that is with natural transformations between induction functors. The main tool is the
affine VW-category or degenerate affine Brauer category which was introduced in a super
version in [BDE+20] and then in the version relevant for our purposes in [RS19]. Impor-
tant for us are two special cyclotomic quotients, the Brauer quotient of level 1, which we
like to understand, and the isotropic Grassmannian quotient of level 2, which we connect
via an equivalence of categories Theorem 4.7 to the well-understood parabolic category O
of the above parabolic types. By pushing this equivalence further to categories of perverse
sheaves on isotropic Grassmannians, geometric tools become available; in particular (Koszul)
gradings appear naturally, [BGS96]. Via the equivalence in Theorem 4.8 we realise the first
quotient as an idempotent truncation of the second and use this to define a graded version
of the Deligne category, i.e. an enrichment in the category of graded vector spaces, Defini-
tion 10.2. We like to stress for the experts that this is not a trivial result at all in the sense,
that the Brauer algebra is one of the cyclotomic quotients of the affine VW-category ??
which has not a direct Lie theoretic incarnation as a parabolic category O involving higher
Schur-Weyl duality, since (nonsemisimple) parabolic category .O give rise to cyclotomic quo-
tients of level strictly higher than 1. For a careful treatment of this connection with category
O we refer to [RS19].

Finite dimensional representations of OSp. In Section 5 we finally pass to the Lie
supergroup G = OSp(r | 2n) and the category F . Let V be the vector representation of
G. The connection to the Deligne category is given by the First Fundamental Theorem of
invariant theory and the universal property of Repδ, [DLZ18], [Ser14]. Namely sending ? to
V defines a full tensor functor F = F(r | 2n) from Repδ to the tensor category of representations
of G generated by V , Theorem 5.8. For the fullness it is important to work with G and not
just the special orthosymplectic supergroup or it Lie superalgebra osp(r|2n), see [LZ15b] or
[ES16d, Remark 5.35.].

Since any projective in F appears in some V ⊗d, our strategy is to describe
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• idempotents picking out the indecomposable summand (see Lemma 1.8, Remark 8.11),
• a characterisation of the projective summands among all summands (see Theo-

rem 6.17, Proposition 7.6),
• convenient labelling sets depending first on δ and then also on r and n (Theo-

rem 5.12),
• and finally a dictionary translating into highest weight modules with the choice of

Borel as in [GS13] (Section 13).

The main tool hereby are the weight, cup and circle diagrams introduced in [ES16b]. To
understand how they fit into the picture we go back to the Fock space with its standard
basis of semiinfinite wedges. Every basis vector gives rise to a sequence i1, i2, i3, . . . of
indices ij ∈ Z + δ/2 such that ij = −(δ/2 + j − 1) for j � 0. We encode these by marking
the corresponding positions ij on the (half)-number line by ∨. To encode the action of the

fixed point Lie algebra gθ, we fold the negative part of the line with the symbols swapped
upside down onto the positive part (mimicking the involution θ). The result is what we call
a Deligne weight diagram consisting out of symbols ◦,×,∧ (finitely many) and ∨ (infinitely
many). For δ = 7 and basis vector v−11/2 ∧ v−9/2 ∧ v−5/2 ∧ v1/2 ∧ v9/2 ∧ v17/2 ∧ · · · we obtain

. . . ◦ ∨ ∨ ◦ ∨ ◦ ◦ ∨
−1/2 1/2 3/2

◦ ◦
δ/2

◦ ∨ ◦ ◦ ◦ ∨ · · · ∨∨ · · ·

y
and its folding ∨

1/2 3/2

◦ ∧
δ/2

◦ × ∧ ◦ ◦ ∨ · · · ∨∨ · · ·

To each Deligne weight diagram λδ we attach a dotted cup diagram λδ via a simple rule,
Definition 6.3. We have then bijections of sets (where the outer ones depend on δ)Indecomposable

objects Rδ(λ) in
Repδ

 {
partitions λ

}  cup diagrams λδ
for Deligne

weight diagrams λδ


The highest weight structure on D(δ) implies that the Cartan matrix C of D(δ) can be

factorised as C = DDt. This allows us to represent homomorphisms between indecomposable
objects in Repδ as linear combinations of oriented circle diagrams, Definition 6.7, i.e. pairs
of cup diagrams with a compatible orientation. More precisely, we obtain an isomorphism of
categories between the Deligne category and the category where objects are λδ, λ ∈ Λ and
morphism from λδ to µ

δ
is the vector space with basis all circle diagrams (µ

δ
, λδ, ν). The

composition is given by the multiplication in the Khovanov arc algebras of type D, [ES16b].
This category is a solution to our fundamental problem.

This diagrammatic description has moreover the following advantages:

• The morphism spaces can be equipped with a grading such that it is Koszul and the
circle diagrams form a homogeneous basis ( Definition 10.2).
• The kernel of the functor F = F(r | 2n) has an easy description in terms of nuclear

morphisms (see Definition 10.2, Lemma 10.4, Theorem 10.5). The nuclear circle
diagrams form a homogeneous basis of the kernel.

These properties are used to finally prove the main theorem. A major combinatorial work
is hereby required to translate between the combinatorics in the (two incarnations of the)
Deligne category and the combinatorics of Lie theoretic weights.

In Section 12 we describe a few applications. This includes the structure of the indecom-
posable summands in V ⊗d and the minimal tensor power V ⊗d in which the determinant
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representation respectively super Pfaffian from [Ser01], [LZ15b] occurs in terms of the de-
veloped cup diagram combinatorics. We finish with a small section which explains the
dictionary to Lie theoretic weights with the choice of Borel from [GS13].

The following chart illustrates the most important involved combinatorial sets. A frame
indicates that a set depends on r and n, whereas the unframed sets only depend on δ.

Indecomposable
projectives

FRδ(λ) = P (λ†δ) in

V ⊗d for some d




Indecomposable
objects

FRδ(λ) in

V ⊗d for some d


Indecomposable

objects Rδ(λ) in
Repδ


 cup diagrams of

projective weight
diagrams


cup diagrams of

tensor weight
diagrams


cup diagrams λδ of

Deligne weight
diagrams


 signed

(n,m)-hook
partitions pλ


{

super (n,m)-weight

diagrams λ†δ = pλ?

}

F

κ
κ
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1. Brauer and Deligne categories

We fix as ground field the complex numbers C. All vector spaces are over C and categories,
functors etc. are assumed to be C-linear. For any algebra A we denote by A -mod the
category of finite dimensional A-modules. Our algebras are always associative and if not
stated otherwise also unital, and algebra homomorphisms preserve units.

1.1. Basics. Let δ ∈ C. For fixed r, s ∈ Z≥0, a Brauer diagram of type (r, s) is a partitioning
of the set P := {1, 2, . . . , r} ∪ {r + 1, . . . , r + s} into subsets of cardinality two. We identify
such diagrams with planar diagrams by identifying p ∈ P with the point (p, 0) in the plane
if 1 ≤ p ≤ r and with (p − r, 1) if r + 1 ≤ p ≤ r + s, and then connect the two points in
each subset by an arc inside the rectangle [1,max{r, s}]× [0, 1]. Two Brauer diagrams of the
same type are defined to be equivalent if the corresponding partitioning is the same. Here
is an example of a Brauer diagram of type (9, 11):

(1.2)

The Brauer category Br(δ), see [LZ15a], has objects r ∈ Z≥0 and HomBr(δ)(r, s) is the
vector space with basis the equivalence classes of Brauer diagrams of type (r, s) (independent
of δ) with the following diagrammatic composition (depending on δ). Given Brauer diagrams
Di of type (ri, si) for i = 1, 2 with s1 = r2, we can stack D2 on top of D1 and obtain, after
removing all internal closed components, again a Brauer diagram D. Then set D2◦D1 = δcD,
where c is the number of internal components removed, for example
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◦ = δ (1.3)

The endomorphism algebra of the object d is the Brauer algebra Brd(δ) originally intro-
duced diagrammatically in [Bra37]. For an algebraic presentation see e.g. [Naz96].

Lemma 1.1. We have dim HomBr(δ)(r, s) = dim Br r+s
2

(δ) with Br r+s
2

= {0} if r + s is odd.

Proof. For an (r, s)-Brauer diagram to exist, r + s must be even, and then the number of
such diagrams only depends on r + s. �

Note, that Br(δ) is a rigid symmetric monoidal category, see [LZ15a]. The tensor product,
denoted �, on objects is r � s = r + s, and a � b for basis morphisms a and b is obtained
by placing the diagram for b to the right of the one for a. If we denote by id the identity
morphism on the object 1, then id�d is the identity element in Brd(δ). Using this, Br(δ) can
be defined alternatively as follows (where ? corresponds to the object 1, the diagrams to the
Brauer diagrams displayed in the same way and the monoidal product ⊗ to �):

Proposition 1.2. The Brauer category Br(δ) is the strict rigid monoidal category generated
as monoidal category by a single object ? and morphisms

s = : ?⊗ ? −→ ?⊗ ?, [ = : ?⊗ ? −→ 1, [∗ = : 1 −→ ?⊗ ?

subject to the following relations

(1) The braid relations: = and = ,

(2) The snake relations: = and = ,

(3) The untwisting relations: = and = .

(4) The loop removing relation: = δ

Proof. This follows directly from [LZ15a, Theorem 2.6]. �

Remark 1.3. Standard calculations imply that the mirrors of the untwisting relations hold
as well, see e.g. [BDE+20, Lemmas 4-5, ignoring the signs coming from the super structure].

Definition 1.4. The Deligne category Repδ, or more precisely Rep(Oδ), from [DLZ18], is
the Karoubian envelope of the additive envelope of Br(δ), i.e. it is obtained from Br(δ) by
adding finite direct sums and images of idempotent endomorphisms, see e.g. [CW12b] for
more details on this construction.

Repδ is a rigid symmetric monoidal category with full subcategory Br(δ). By definition,
every idempotent e in Brd(δ) = HomBr(δ)(d, d) has an image object im e in Repδ and we
identify HomRepδ(im e, im e′) with e′HomRepδ(d, d

′) e.



DELIGNE CATEGORIES AND REPRESENTATIONS OF OSp(r | 2n) 7

1.2. Jucys-Murphy elements and semisimplicity. Consider the Brauer algebra Brd(δ)
for fixed d. Note that it contains as a subalgebra the group algebra C[Sd] of the symmetric
group Sd (given by all permutation diagrams) with the standard generators si = (i, i + 1),
1 ≤ i ≤ d − 1. A general transposition si,j = (i, j) for i 6= j corresponds to the diagram,
denoted by si,j as well, which connects (i, 0) with (j, 1) and (i, 1) with (j, 0) and (k, 0) with
(k, 1) for 1 ≤ k ≤ d otherwise. We define τi,j ∈ Brd(δ), 1 ≤ i ≤ d − 1, to be the diagram
which again connects the points (k, 0) with (k, 1) for any 1 ≤ k ≤ d, k 6= i, j, but then (i, 0)
with (j, 0) and (i, 1) with (j, 1). In particular. we have

τi := τi,i+1 = (id�(i−1)� ∪� id�d−i−1) ◦ (id�(i−1)� ∩� id�d−i−1),

where ∪ and ∩ are the unique (0, 2) respectively (2, 0) Brauer diagrams.
Following the approach of Okounkov and Vershik for the symmetric groups, Nazarov

defined in [Naz96] the Jucys-Murphy elements ξk ∈ Brd(δ) for 1 ≤ i ≤ d as

ξk := δ−1
2

+
∑

1≤i<k
(si,k − τi,k). (1.4)

Lemma 1.5. The Jucys-Murphy elements generate a commutative subalgebra GZd(δ) of
Brd(δ) and the element ξ1 + ξ2 + · · ·+ ξd is central in Brd(δ).

Proof. This is [Naz96, Corollaries 2.2 and 2.4]. In fact, the second claim follows from the
equalities sk(ξk + ξk+1) = (ξk + ξk+1)sk and τk(ξk + ξk+1) = 0 = (ξk + ξk+1)τk (note the
cancelling of terms involving δ) together with skξl = ξlsk and τkξl = ξlτk for |k− l| > 1. �

In contrast to the symmetric group, the action of GZd(δ) is not diagonalizable in general.
The occurring Jordan blocks are however at most of size 2, as can be deduced for instance
from [ES16c, Theorem B]. This is because the Brauer algebra is not semisimple for certain
integral values of δ, as was first proved by Wenzl [Wen88] (using trace arguments), and
then made explicit and generalized to any field in [Rui05] (using determinants of Cartan
matrices). For an alternative proof using tilting modules for quantum groups see [AST17].
Over the complex numbers the result can be stated as follows:

Proposition 1.6. Let δ ∈ C. Then Brd(δ) is semisimple if and only if δ 6∈ Z or δ = 0 and
d ∈ {1, 3, 5} or δ 6= 0 and d ≤ δ + 1.

The following consequence is [Del07, Theorem 9.7].

Corollary 1.7. Repδ is abelian semisimple if and only if δ 6∈ Z.

We are therefore mainly interested in the case δ ∈ Z and assume from now on δ ∈ Z .

1.3. Primitive idempotents. We will need the following general well-known results.

Lemma 1.8. Let A and B be finite dimensional algebras with a surjective algebra homomor-
phism f : A→→B. Let e ∈ B be an idempotent, i.e. e2 = e, then there exists an idempotent
ê ∈ A such that f(ê) = e. If e is primitive, ê can be chosen to be primitive as well.

Proof. This is the Idempotent Lifting Lemma, see e.g. [Lin18, Theorem 4.7.1.]. �

Lemma 1.9. Let D be a (C-linear) Krull-Schmidt category, D′ a preadditive category and
F : D → D′ a full pre-additive functor. Then FX ∈ D′ is indecomposable if X ∈ D is
indecomposable; and for indecomposable objects X,Y ∈ D we have (FX ∼= FY ⇒ X ∼= Y.)

Proof. A proof can be found in [CW12b, Proposition 2.7.4]. �

Definition 1.10. A partition of d is a sequence λ = (λ1, λ2, . . .) of non-negative integers λi
such that λ1 ≥ λ2 ≥ · · · and

∑
i λi = d. We call λi the parts of λ and set |λ| =

∑
i λi. Let

∅ be the empty partition with all parts being zero, and let Λ be the set of all partitions.
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As usual we identify partitions with their Young diagram with λi boxes in row i and
denote by λt the partition transposed to λ whose Young diagram is obtained by reflecting
the one for λ in the middle diagonal such that λt has λi boxes in the ith column. For a
partition λ of d fix the corresponding primitive Frobenius idempotent zλ ∈ C[Sd], see e.g.
[FH91, Section 4.2] for a construction.

Sending all diagrams to zero which are not permutation diagrams and sending permutation
diagrams to itself defines an algebra homomorphism π : Brd(δ)→→C[Sd]. By Lemma 1.8 we
can lift zλ to a primitive idempotent eλ ∈ Brd(δ) (which is uniquely defined up to conjugacy).
To classify primitive idempotents in Brd(δ) define for r, i ∈ Z≥0 the (r, r+2i)-Brauer diagram

ψr,i = id�r �∪�i and the (r + 2i, r)-Brauer diagram ϕr,i = id�r−1� ∩�i � id in case r > 0,
and ϕ0,i = 1

δi
∩�i if δ 6= 0. Define the following set of partitions

Λd(δ) =

{
{λ | |λ| = d− 2i, 0 ≤ i ≤ d/2} if δ 6= 0, or d odd, or d = 0,

{λ | |λ| = d− 2i, 0 ≤ i < d/2} if δ = 0 and d > 0 even.

For any λ ∈ Λd(δ), and i ∈ Z such that d = |λ|+2i, the element e
(i)
λ = ψ|λ|,ieλϕ|λ|,i ∈ Brd(δ)

is an idempotent and the following holds, see e.g. [CH17, Theorem 3.4].

Proposition 1.11. The elements e
(i)
λ , where λ ∈ Λd(δ), and 2i = d − |λ| form a complete

set of pairwise orthogonal primitive idempotents in Brd(δ).

Example 1.12. If d = 2, then we have the following complete sets of pairwise orthogonal
primitive idempotents: z(2) = 1+s1

2
and z(1,1) = 1−s1

2
in C[S2], and e(2) = 1+s1

2
− 1

δ
τ1, e(1,1) =

1−s1
2

and e∅ = 1
δ
τ1 in Brd(δ) if δ 6= 0. In case δ = 0 we only have 1+s1

2
and 1−s1

2
(note that

e1 is then nilpotent). In general, there is no explicit formula for the idempotents, for some
explicit results see e.g. [DLS18], [MR13], [BB01].

It follows that in the category Brd(δ)- mod of finite dimensional representations of Brd(δ),
the isomorphism classes of irreducible representations are indexed by Λd(δ).

Definition 1.13. We denote by Ld,δ(λ) the irreducible module corresponding to λ ∈ Λd(δ)
and by Pd,δ(λ) its indecomposable projective cover.

By definition of Karoubian closure, the idempotents e
(i)
λ have an image, im e

(i)
λ in Repδ.

By [CH17, Proposition 3.3] the e
(i)
λ , for fixed λ, are (up to isomorphism) independent of i.

Definition 1.14. For λ ∈ Λ let eλ = e
(0)
λ and set Rδ(λ) = im eλ. This is an indecomposable

object in Repδ.

There is the following classification theorem from [CH17, Theorem 3.5].

Theorem 1.15 (Indecomposables in Repδ). The assignment λ 7→ Rδ(λ) gives a bijection be-
tween the set Λ of all partitions and the set of isomorphism classes of nonzero indecomposable
objects in Repδ.

Remark 1.16. As in Lemma 1.1, HomRepδ(Rδ(λ), Rδ(µ)) = {0} if |λ| 6≡ |µ| mod 2; otherwise
we have for any d such that λ, µ ∈ Λd(δ) an isomorphism of vector spaces

HomRepδ(Rδ(λ), Rδ(µ)) ∼= HomBrd(δ)(Pd,δ(λ), Pd,δ(µ)). (1.5)

We fix such isomorphisms for every allowed d in a compatible way by fixing compatible

isomorphisms between the idempotents e
(i)
λ for any fixed λ.
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1.4. Cellularity of Brd(δ) and facts on cell modules. For any δ ∈ C, Brd(δ) is a cellular
algebra in the sense of Graham and Lehrer, [GL96]. This was first observed in [GL96]; but
see also e.g. [Mar15], [CVM09], [AST18] for different approaches. Apart from the case
δ = 0 (see Example 1.12), Brd(δ) is always quasihereditary [CVM09, Corollary 2.3], that
is Brd(δ)- mod is a highest weight category. The only facts we need are summarized in the
following proposition.

Proposition 1.17. Brd(δ) is a cellular algebra with a collection of cell modules ∆d,δ(λ)

labelled by λ ∈ Λ+
d (δ) = Λd(δ) ∪ {∅} and constructed as in Remark 1.18. Their irreducible

quotients for λ ∈ Λd(δ) give a full set Ld,δ(λ) of pairwise non-isomorphic irreducible modules.

Proof. These are Theorems (4.10) and (4.17) in [GL96] with [GL96, (3.4)]. �

Note that Λ+
d (δ) = Λd(δ) iff δ 6= 0 or d odd, that is precisely if Brd(δ) -mod is a highest

weight category by [GL96, (3.10)].

Remark 1.18. To construct the cell module ∆d,δ(λ) explicitly set t := 1/2(d − |λ|) and
consider the two-sided ideal J td of Brd(δ) spanned by the Brauer diagrams with at least t
horizontal arcs at the top (and bottom). The images of the Brauer diagrams with exactly
t such horizontal arcs give a basis for the quotient J td/J

t+1
d . Let Itd be the subspace of

J td/J
t+1
d spanned by the images of the diagrams with exactly t horizontal arcs at the bottom

connecting the (d− t−k+1)th vertex to the d− t+kth vertex for each k = 1, . . . , t. Identify
C[S|λ|] with the subalgebra of Brd(δ) generated by the si, 1 ≤ i ≤ |λ| − 1 in the obvious

way, Itd is invariant under right multiplication by elements of C[S|λ|] and left multiplication

by elements of Brd(δ), hence it is a
(
Brd(δ),C[S|λ|]

)
-bimodule. Then we have by definition

∆d,δ(λ) := Itd ⊗C[S|λ|] S(λ), (1.6)

where S(λ) is the ordinary Specht module for C[S|λ|].

The bimodule Itd is free as right C[S|λ|]-module, with basis Xt
d given by the images of the

Brauer diagrams with exactly t horizontal arcs at the bottom connecting the (d− t−k+1)th
vertex to the (d− t+ k)th vertex for each k = 1, . . . , t and in which no two vertical strands
cross. Hence we can consider it as a vector space and compute its dimension

∆d,δ(λ) =
⊕
τ∈Xt

d

τ ⊗ S(λ), dim ∆d,δ(λ) = 1
(t+1)

(
2t

t

)(
d

2t

)
dimS(λ), (1.7)

which is in particular independent of δ.

To study their behaviour under induction we recall from Lemma 1.5 the central element

Ωd = 2
d−1∑
k=1

ξk ∈ Brd(δ).

It defines an endomorphism of each irreducible module, thus by Schur’s Lemma a scalar. To
describe this scalar recall that the content of a box (i, j) in a partition λ is j − i.
Lemma 1.19. Ωd acts on the irreducible module Ld,δ(λ) or cell module ∆d,δ(λ) for Brd(δ)

by the scalar cBr
λ := |λ|(δ − 1) + 2 cont(λ), where cont(λ) is the sum of all contents of λ.

Proof. It suffices to prove the second claim which is [Naz96, formula before (2.13)] or
[DWH99, Theorem 3.2] using the definition (1.6) for cell modules. �

The Brauer algebra Brd(δ) embeds into the Brauer algebra Brd+1(δ) by adding to each
diagram an additional strand to the right. We obtain the induction functors

indd+1
d : Brd(δ) -mod→ Brd+1(δ)- mod M 7→ Brd+1(δ)⊗Brd(δ) M. (1.8)

The following branching rules are well-known, see e.g. [CVM09, Proposition 2.7].
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Lemma 1.20. Let λ ∈ Λ+
d (δ). The module indd+1

d ∆d,δ(λ) has a multiplicity free filtration
with subquotients exactly of the form ∆d+1,δ(µ) where µ runs through all partitions obtained
from λ by adding or removing a box.

Definition 1.21. An up-down tableau of length d is a sequence λ = (λ(0), . . . , λ(d)) of

partitions such that λ(0) = ∅ and λ(i+1) is obtained from λ(i) by adding or removing a single
box. We call λ(d) the shape of λ. Denote by Ed the set 1of all up-down tableaux of length d

and by E
d′

d the set of pairs (λ,µ) ∈ Ed × Ed′ of the same shape.

Proposition 1.22. We have dim HomBr(δ)(r, s) =
∣∣∣ Esr∣∣∣.

Proof. By Lemma 1.1 the left hand side depends only on r + s and is zero if this number
is odd. On the other hand, the set E

s
r can be identified with up-down-tableaux of shape ∅

and length r+s by composing the pair (λ, µ) as (λ(0), . . . , λ(r−1), λ(r) = µ(s), µ(s−1) . . . , µ(0)).

Hence also this side depends only on r + s, and E
s
r is empty if r + s is odd, since the parity

of |λ(r)| = |µ(s)| agrees with the parity of r respectively s.
Thus we may assume r = s and, since the left hand side is independent of δ, restrict to

the semisimple case. But then the statement follows directly from Lemma 1.20 noting that
induction sends the regular module to the regular module, indd+1

d Brd(δ) ∼= Brd+1(δ). �

Definition 1.23. We fix the reverse inclusion ordering on Λ, i.e. λ ≥ µ if the partition λ is
contained in the partition µ, in formulas λ ⊂ µ. In particular, ∅ is maximal.

By general properties of cellular algebras, [GL96, (2.9)(ii), (2.10)(i)], any Pd,δ(λ) has a
filtration with subquotients of the form ∆d,δ(µ); and any ∆d,δ(λ) has a Jordan-Hoelder series
with subquotients Ld,δ(µ)’s where µ ≤ λ and Ld,δ(λ) appears exactly once [GL96, 3.6].

Remark 1.24. It will be important for us that the cell module ∆d,δ(λ) for λ ∈ Λd(δ) is
the maximal quotient of Pd,δ(λ) by the submodule generated by the images of all morphism
from any Pd,δ(µ) with µ > λ, and all the endmorphisms in the maximal ideal of the local
ring EndBrd(δ)(Pd,δ(λ)). This follows from [GL96, (2.9), (3.7)].

Definition 1.25. We denote by (Pd,δ(λ) : ∆d,δ(µ)) =: dλ,µ := [∆d,δ(µ) : Ld,δ(λ)] the cell-
respectively Jordan-Hoelder multiplicities (which agree by [GL96, 3.7]). Note that then

dim HomBrd(δ)(Pd,δ(λ), Pd,δ(µ)) =
∑
ν

dλ,ν dµ,ν . (1.9)

Remark 1.26. Using the multiplicity formulas dλ,µ and Remark 1.18 one can inductively
compute the dimensions of the projective and (in principle) of the irreducible modules.

An important observation is that dλ,µ are parabolic Kazhdan-Lusztig polynomials dλ,µ(q)
of type (DN ,AN−1) for large enough N evaluated at 1, see [CVM09]. We will recall in
Lemma 6.20 a graphical interpretation of dλ,µ and dλ,µ(q). Important fur us is that these
Kazhdan-Lusztig polynomials are always monomials, see [LS12] for a proof and for a general
treatment. Hence all the multiplicities dλ,µ are always zero or one.

2. Abelianized Deligne category D(δ) and highest weight structures

In this section we show that, for any δ ∈ C, the category of representations of Repδ is an
upper finite highest weight category in the sense of [BS18].

1We often think of these up-down-tableaux as describing paths of length d in a Bratelli type diagram. The
symbol Ed should indicate that for each element one walks d steps in this diagram.
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2.1. Representations of Repδ.

Definition 2.1. A representation of Repδ is a contravariant functor from Repδ to Vect, the
category of finite dimensional complex vector spaces. We denote the abelian category of all
representations of Repδ by D(δ) and call it the abelianized Deligne category.

Definition 2.2. For λ ∈ Λ we define Pδ(λ) = HomRepδ(−, Rδ(λ)) in D(δ), i.e. the functor
that sends an object M ∈ Repδ to HomRepδ(M, Rδ(λ)) and a map f : M → M ′ to − ◦ f :
HomRepδ(M

′, Rδ(λ))→ HomRepδ(M, Rδ(λ)).

Lemma 2.3. Let λ, µ ∈ Λ.

(1) Pδ(λ) ∈ D(δ) is an indecomposable projective object.
(2) HomD(δ)(Pδ(λ),Pδ(µ)) ∼= HomRepδ(Rδ(λ), Rδ(µ)).
(3) For λ ∈ Λd(δ) we have dim HomD(0)(P0(∅),P0(λ)) = (Pd,0(λ) : ∆d,0(∅)), and there

is moreover an embedding of functors

P0(∅)⊕(Pd,0(λ):∆d,0(∅)) ↪→ Pδ(λ). (2.10)

Note that D(δ) makes sense for δ ∈ C, but gives a semisimple category if δ /∈ Z.

Proof. Statement (2) is just (the contravariant version of) the Yoneda lemma. Now Pδ(λ)
is indecomposable, since the only non-trivial idempotent of its endomorphism ring is the
identity. For the projectivity assume we have F,G ∈ D(δ) with α1 ∈ HomD(δ)(Pδ(λ),G),
and α2 ∈ HomD(δ)(F,G) an epimorphism. We want to construct β ∈ HomD(δ)(Pδ(λ),F) such
that α2◦β = α1. For this take the identity map eλ ∈ EndRepδ(Rδ(λ)) = Pδ(λ)(Rδ(λ)) and pick

an element b ∈ α−1
2 (α1(eλ)) ⊆ F Rδ(λ). Then for f ∈ Pδ(λ)(Pδ(µ)) = HomRepδ(Rδ(µ), Rδ(λ))

set β(f) = F(f)(b) which is obviously a morphism in D(δ). The definition of β and b imply

α2 ◦ β(f) = α2(F(f)(b)) = G(f)(α2(b)) = G(f)(α1(eλ)) = α1(eλ ◦ f) = α1(f),

since the αi’s are natural transformations of functors. We use (2) and observe that e∅
is the identity morphism of 0. Thus, HomD(δ)(Pδ(∅),Pδ(λ)) ∼= eλ HomRepδ(0, |λ|). But
the latter is eλ∆d,δ(∅) by the construction of cell modules (see (1.6)). It has dimen-
sion equal to (∆d,δ(∅) : Ld,δ(λ)) = (Pd,0(λ) : ∆d,0(∅)). If we pick a basis {gi} for
HomD(δ)(Pδ(∅),Pδ(λ)) = HomRepδ(Rδ(∅), Rδ(λ)) then g = (⊕igi)◦− defines a map as re-
quired. (It is obviously injective, since diagrammatically it puts a certain fixed linear com-
bination of (0, |λ|)-Brauer diagrams on top of (|µ|, 0)-Brauer diagrams.) �

Definition 2.4. We denote by Lδ(λ) be the unique irreducible quotient of Pδ(λ) in D(δ).

Remark 2.5. Observe that the category Repδ is a finite dimensional category, that is a
small category with finite dimensional morphism spaces

eλAeµ := HomRepδ (Rδ(λ), Rδ(µ)) .

Equivalently, the (infinite dimensional and non-unital) algebra A :=
⊕

λ,µ eλAeµ is a

locally finite dimensional locally unital algebra in the sense of [BS18, Remark 2.3] and the
category D(δ) can be identified with the category of locally finite dimensional A-modules.
Hereby Pδ(λ) corresponds to the A-module Aeλ.

Objects in D(δ) are not of finite length in general. For objects M , L with L irreducible
we define the composition multiplicity [M : L] to be the supremum of the sizes of the sets
{i = 1, . . . , n |Mi/Mi−1

∼= L} taken over all finite filtrations 0 = M0 < M1 < · · · < Mn = M
by subobjects in D(δ). This generalizes the Jordan-Hoelder multiplicities.

Lemma 2.6. The composition multiplicities [Pδ(λ) : Lδ(µ)] are all finite.

Proof. This holds in any finite dimensional category by [BS18, Section 2], in particular for
Repδ by Remark 2.5. �
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2.2. Upper finite highest weight structure Repδ. For λ ∈ Λ we construct important
objects in D(δ) as follows. For each ν ≥ λ pick a finite (which exists by (1.5)) generating
set Gν,λ (as vector space) of HomRepδ(Rδ(ν), Rδ(λ)) in case ν > λ and of the unique maximal
ideal mλ in EndRepδ(Rδ(λ)) in case ν = λ. Note that mλ is indeed unique, since Rδ(λ) is
indecomposable, hence its endomorphism ring is local. Set mν,λ = |Gν,λ| and let

fλ = ⊕νfλν :
⊕
ν≥λ

Rδ(ν)mν,λ −→ Rδ(λ) and fλν := ⊕gν∈Gν,λgν . (2.11)

Note that the direct sums are finite, the first by definition of the reversed inclusion ordering
and the last by the definition of Repδ. Consider the Yoneda embedding functor

Y := HomRepδ(−, ?) : Repδ → D(δ), M 7→ HomRepδ(−,M),

especially Y(Rδ(µ)) = Pδ(µ). It has image in the additive subcategory of D(δ) generated by
the projective objects Pδ(λ)’s. Applying Y to fλ from (2.11) yields a morphism in D(δ)

Y(fλ) :
⊕
ν≥λ
Pδ(ν)mν,λ −→ Pδ(λ).

Since D(δ) is abelian, Y(fλ) has image, im(Y(fλ)), and cokernel, coker(Y(fλ)), in D(δ).

Definition 2.7. For λ ∈ Λ define the representation ∆δ(λ) := coker(Y(fλ)). We call it the
standard representation of Repδ corresponding to λ.

Example 2.8. As special cases we obtain directly ∆δ(∅) = Pδ(∅) and ∆δ(�) = Pδ(�).

The standard representations are directly connected with the cell modules:

Lemma 2.9. Let λ be a partition. Then ∆δ(λ) is isomorphic to the representation which
sends Rδ(µ) to HomBrd(δ)(Pd,δ(µ),∆d,δ(λ)) for some (and then any) d satisfying λ, µ ∈ Λd(δ),
and a morphism α : Rδ(ν) → Rδ(µ) to the precomposition − ◦ α with α. Hereby we use the
identifications from Remark 1.16.

Proof. This is obvious from the definitions except in case λ = ∅. Note that Pδ(∅)(Rδ(µ)) =
HomRepδ(Rδ(µ), Rδ(∅)) = HomRepδ(|µ|, 0)eµ ∼= (eµ∆d,δ)

∗. But the latter can be identified

with HomBrd(δ)(Pd,δ(µ),∆d,δ(∅)) whenever µ,∅ ∈ Λ+
d (δ). �

Theorem 2.10 (Standard filtrations). For any partition λ, the representation Pδ(λ) has a
filtration with subquotients isomorphic to some ∆δ(µ)’s with µ ≥ λ, such that the following
multiplicity formulas hold for λ ∈ Λd(δ), µ ∈ Λd(δ) ∪ {∅},

(Pδ(λ) : ∆δ(µ)) = (Pd,δ(λ) : ∆d,δ(µ)) . (2.12)

Proof. Choose η ∈ Λ maximal with mη := dim HomD(δ)(Pδ(η),Pδ(λ)) 6= 0. This exists, since
mλ 6= 0 and Λ has a unique maximal element. Pick a basis {gi | 1 ≤ i ≤ mη} for this space
and set γη = ⊕mηi=1gi : Pδ(η)mη → Pδ(λ). We claim that

γη factors through ∆δ
mη and induces an isomorphism γη : ∆δ(η)mη ∼= im γη.

This is clear in case η = ∅ by Example 2.8 and Lemma 2.3. Hence assume η 6= ∅.
To see that γη is well-defined we have to show that γη ◦ Y(fη) = 0. Assume not, then

gi ◦ Y(fην) 6= 0 for at least one pair (i, ν) with ν ≥ η. Now ν > η would give a contradiction
to the maximality of η. If ν = η, thus in particular ν 6= ∅, then apply the functors to Rδ(µ)
for arbitrary µ ∈ Λ, with µ 6= ∅ if δ = 0. (The case µ = ∅ is trivial, since ∆δ(η)mη(Rδ(∅)) is
trivial by the assumption on η and thus HomRepδ(Rδ(∅), Rδ(λ)) = HomD(δ)(Pδ(∅), Rδ(λ)) =
{0} = ∆δ(η)mη(Rδ(∅)).) Now consider the top square in the following diagram (with d
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such that η, µ ∈ Λd(δ)). Hereby the top horizontal identification is obvious and induces via
Lemma 2.9 an isomorphism α2 as indicated.

HomRepδ(Rδ(µ), Rδ(η)mη) HomBrd(δ)(Pd,δ(µ), Pd,δ(η)mη)

∆δ(η)mη(Rδ(µ)) HomBrd(δ)(Pd,δ(µ),∆d,δ(η)mη)

im γη(Rδ(µ))

HomRepδ(Rδ(µ), Rδ(λ)) HomBrd(δ)(Pd,δ(µ), Pd,δ(λ)).

γη |Rδ(µ)

α2

α1

(2.13)

The bottom identification is also obvious and the outer bended arrows are induced by γη mak-
ing the outer square commute. By definition of ∆d,δ(η) and the construction of a cell module
filtration of Pd,δ(λ), the map on the right factors through HomBrd(δ)(Pd,δ(µ),∆d,δ(η)mη) In
fact, ∆d,δ(η)mη is a submodule of Pd,δ(λ) at the bottom of a cell module filtration, and
hence the map on the left has to factor as well. Thus, γη is well-defined such that (2.13)
commutes. Now α1 must be injective, since ∆d,δ(η)mη is a submodule of Pd,δ(λ) and Pd,δ(µ)
is projective. Since α2 is an isomorphism, a diagram chasing implies that γη is a monomor-
phism on any Rδ(µ). For µ = ∅ we have HomRepδ(Rδ(∅), Rδ(λ)) = HomD(δ)(Pδ(∅), Rδ(λ)) =
{0} = ∆δ(η)mη(Rδ(∅)) by assumption on η. Thus, γη is a monomorphism and therefore an
isomorphism, since it was by definition an epimorphism. �

As a consequence, D(δ) is a highest weight category (with an infinite poset):

Corollary 2.11. For any δ ∈ C, the category D(δ) is an upper finite highest weight category
in the sense of [BS18] with standard objects ∆δ(λ), λ ∈ Λ.

Proof. The poset Λ of all partitions with reversed inclusion ordering is an upper finite set
(with maximal element ∅) which is in bijection with the irreducible modules in D(δ). By
Theorem 2.10, D(δ) satisfies for δ ∈ Z the property (P∆ε) from [BS18] for ε the constant
function + with ∆δ(λ) defined as in [BS18, (1.3)]. For δ /∈ Z this is property is obvious.
Hence ∆δ(λ) is an ε-stratified upper finite category in the sense of [BS18, Definition 3.32]
by Remark 2.5. It is highest weight by [BS18, Lemma 3.6] since (∆δ(λ) : Lδ(λ)) = 1 for any
λ ∈ Λ by Lemma 2.9. �

We denote by (Pδ(µ) : ∆δ(λ)) the multiplicity of ∆δ(λ) in a (and then also any by [BS18,
Lemma 3.38]) standard flag, i.e. a finite filtration of Pδ(µ) with subquotients isomorphic to
standard representations (as given by Theorem 2.10).

Remark 2.12. We could also construct the standard representations diagrammatically using
the concept of Borelic pairs as in [CZ19] or (weakly) triangular decompositions as in [BS18,
Section 5] or in [MGS20]. Both constructions restrict to the description (1.6) of standard
modules for Brd(δ) via Lemma 2.9. They all mimic the classical Lie theoretic constructions
of Verma modules in a quite elegant way. We chose the different construction based on
Lemma 2.9 and Remark 1.24 here, since it can directly be transferred to the graded setting
in Section 11 without using an explicit isomorphism or explicit multiplication rules.

Lemma 2.13. For any λ, µ ∈ Λ we have the following multiplicity formulas.

(1) If λ, µ ∈ Λd(δ) for some d ∈ Z≥0, then [Pδ(λ) : Lδ(µ)] = [Pd,δ(λ) : Ld,δ(µ)] and
[Pδ(λ) : Lδ(µ)] = 0 otherwise.

(2) [∆δ(λ) : Lδ(µ)] = (Pδ(µ) : ∆δ(λ)) for any λ, µ ∈ Λ.
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Proof. Part (1) follows directly from Lemma 2.3 and (1.5), cf. also [BS18, Theorem 3.37].
For the second observe first that (Pδ(µ) : ∆δ(λ)) = [∇δ(λ) : Lδ(µ)] for any λ, µ ∈ Λ by [BS18,
Corollary 3.38], where ∇δ(λ) denote the costandard module in the sense of [BS18, (5.2)].
Flipping the diagrams representing morphisms in the Deligne category define an equivalence
of categories between the Deligne category and its opposite. Together with the ordinary
duality on Vect this defines a duality on D(δ) which preserves the simple objects and sends
∆δ(λ) to ∇δ(λ). Therefore, [∆δ(λ) : Lδ(µ)] = [∇δ(λ) : Lδ(µ)] and the claim follows. �

2.3. Induction functors. Consider the endofunctor ind = � Rδ(�) of Repδ given by
tensoring with Rδ(�). Diagrammatically it adds to each basis morphism a strand to the
right of each diagram. This functor induces an endofunctor ind = � Rδ(�) on D(δ) by
sending M ∈ D(δ) to F � Rδ(�) defined by M � Rδ(�)(Rδ(µ)) = M(Rδ(µ)� Rδ(�)) with the
obvious assignment on morphisms. By definition, there are natural isomorphisms

HomRepδ(Rδ(µ), Rδ(λ)� Rδ(�)) ∼= HomBrd+1(δ)

(
Pd,δ(µ), indd+1

d Pd,δ(λ)
)

(2.14)

for d = |λ| = |µ| − 1. We call these functors simply induction functors.
In case of D(δ) or Brd(δ) -mod they are right exact and preserve obviously the additive

subcategories Proj(D(δ)) respectively Proj(Brd(δ) -mod) generated by projective objects.

Definition 2.14. For i ∈ Z + δ/2 we define the i-induction functor

i -ind : Repδ → Repδ M 7→ proji (M � Rδ(�)) ,

where proji is the projection onto the generalized i-eigenspace of ξ|λ|+1 viewed as an element
in EndRepδ(Rδ(λ)�Rδ(�)) for an indecomposable object Rδ(λ). This is extended to arbitrary
objects M and is well-defined due to Lemma 2.15 below. We denote by i -ind also the induced
endofunctor on D(δ).

Lemma 2.15. Let λ, µ ∈ Λ and f ∈ HomRepδ(Rδ(λ), Rδ(µ)). Then

(f � id) ◦ ξ|λ|+1 = ξ|µ|+1 ◦ (f � id) in HomRepδ(Rδ(λ)� Rδ(�), Rδ(µ)� Rδ(�)).

Proof. Note that the formula makes sense, since ξ|λ|+1 commutes with eλ � id and thus can
be regarded as an element in EndRepδ(Rδ(λ)�1). Since f is a linear combinations of elements

of the form eµ ◦ f̃ ◦ eλ, for f̃ a (|λ|, |µ|)-Brauer diagram, it is enough to check the claim for
f a generating morphism for Br(δ). For the crossing this is obvious. So it remains the case
when f is a single cup or cap flanked by a number of identity strands. This can be checked
by a quick calculation which we omit. �

Lemma 2.16. Let λ ∈ Λ and i ∈ Z + δ/2. Then i -ind(∆δ(λ)) ∈ D∆(δ) with a multiplicity
free standard filtration with subquotients of the form ∆δ(µ), where µ is obtained from λ by
adding a box of content i− δ−1

2
or removing a box of content −(i− δ−1

2
).

Proof. The first claim follows directly from Lemma 2.9, Lemma 1.20 and (2.14). (Note that
i -ind(∆δ(λ)) is obtained from ind(∆δ(λ)) by projecting onto a certain generalized eigenspace
of the central element Ω|λ|+1. Hence having a standard filtration is preserved under this
projection.) The second statement follows with Lemma 2.9 and (2.14) from Lemma 1.19,
since ξ|λ|+1 acts on ∆δ(µ) as 1/2

(
Ω|λ|+1 − Ω|λ|

)
. �

Thus, i-induction behaves well on standard representations; moreover ind = ⊕i∈Z+δ/2i -ind.

3. Application: The first categorification theorem

We like to establish an analogue of the famous Ariki-Grojnowski categorification result,
[Ari96], [Gro99] for the category D(δ). In this section we explain how the representation
category D(δ) of Repδ together with induction functors categorifies the Fock space of charge
δ−1
2

with an action of a fixed point subalgebra of glZ+δ/2 with respect to an involution.
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For background and details on Fock spaces see e.g. [Lec12], [KR87].

Definition 3.1. Let D∆(δ) be the full subcategory of D(δ) given by all objects which have
a standard flag. Consider the free abelian group of isomorphism classes [M ] of objects M
in D∆(δ) modulo the relation [M ] = [M1] + [M2] if there is a short exact sequence in D(δ)
of the form M1 → M → M2. We call this the Grothendieck group of D∆(δ) and denote by
K0(D∆(δ)) its complexification. By abuse of notation we will always write [M ] instead of
[M ]⊗ 1 for the corresponding vector in the complexified Grothendieck group.

By Theorem 2.10, Pδ(λ) is an object in D∆(δ) for any λ ∈ Λ. Obviously, the classes
[∆δ(λ)], λ ∈ Λ form a basis of K0(D∆(δ)). Starting from ∆δ(∅) = Pδ(∅) it follows from
Theorem 2.10 by induction on the poset Λ that the [Pδ(λ)], λ ∈ Λ, form a basis as well.

Definition 3.2. Let Vδ be the vector space on basis {vi | i ∈ Z + δ/2}. The corresponding
vacuum vector is defined as the formal expression

v∅ = vi1 ∧ vi2 ∧ vi3 ∧ vi4 ∧ · · · (3.15)

of basis vectors from Vδ, such that the ij = −(δ/2 + j − 1). The Fock space of charge δ−1
2

is

the vector space
∧∞/2 Vδ with basis all formal semiinfinite wedges

vi1 ∧ vi2 ∧ vi3 ∧ vi4 ∧ · · ·
where the indices are strictly decreasing and ij 6= −( δ

2
+j−1) for only finitely many j ∈ Z>0.

As usual, we can identify the basis vectors of
∧∞/2 Vδ with partitions. More precisely,

given a partition λ we attach the unique basis vector vλδ with set of indices

X(λ) =
{
λti − i+ 1− δ/2

∣∣ i ≥ 1
}
⊂ Z + δ/2. (3.16)

We get isomorphisms of vector spaces as in (10.46).
To describe the action of the induction functors on K0(D∆(δ)) we consider the universal

enveloping algebra U(g) of gl(Vδ), the Lie algebra of all complex matrices (ai,j) where i, j ∈
Z+δ/2, with only finitely many nonzero entries. Then U(g) has the usual Chevalley generators
Ei+1/2,i−1/2, Ei−1/2,i+1/2 for i ∈ Z + δ+1

2
and Ei,i for i ∈ Z + δ/2 subject to the type A Serre

relations; it comes with the natural representation Vδ. Let θ be the involution on gl(Vδ)
given by Ei 7→ F−i, and gl(Vδ)θ the Lie subalgebra of fixed points with universal enveloping
algebra U(gl(Vδ)θ).

Lemma 3.3. If δ is odd, then U(gl(Vδ)θ) is isomorphic the algebra Hclass with generators

{Bi | i ∈ Z} ∪ {Hi | i ∈ Z≥0 + 1/2},
subject to the following defining relations

(1) The Bi, B−i, for i ∈ Z≥1, and Hj, for j ∈ Z≥0 + 1/2 satisfy the usual defining
relations of U(glN(C)) with Bi and B−i taking the place of the generator Ei and Fi
respectively.

(2) The generator B0 commutes with all generators except for B1 and B−1, for which we
have the relations

B2
1B0 − 2B1B0B1 +B0B

2
1 = 0, B2

0B1 − 2B0B1B0 +B1B
2
0 = B1,

B2
−1B0 − 2B−1B0B−1 +B0B

2
−1 = 0, B2

0B−1 − 2B0B−1B0 +B−1B
2
0 = B−1.

Lemma 3.4. If δ is even, then U(gl(Vδ)θ) is isomorphic the algebra Hclass with generators

{Bi | i ∈ Z + 1/2} ∪ {Hi | i ∈ Z≥0},
subject to the following relations

(1) The Bi, B−i, for i ∈ Z≥1+1/2, and Hj, for j ∈ Z≥1 satisfy the usual defining relations
for U(glN(C)) with Bi taking the place of the generator Ei and B−i the place of Fi.
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(2) The generator H0 commutes with all B±i, for i 6= 1/2 and Hi, and both B±1/2 commute
with all generators apart from H0, H1, and B±3/2, for which we have the following
relations
(a) Commutativity relations

[H0, B1/2] = −B1/2, [H0, B−1/2] = B−1/2, [H1, B−1/2] = −B−1/2, [H1, B1/2] = B1/2.

(b) Serre relations

B2
3/2B1/2 − 2B3/2B1/2B3/2 +B1/2B

2
3/2 = 0, B2

−3/2B−1/2 − 2B−3/2B−1/2B−3/2 +B−1/2B2
−3/2 = 0,

B2
1/2B3/2 − 2B1/2B3/2B1/2 +B3/2B

2
1/2 = 0, B2

−1/2B−3/2 − 2B−1/2B−3/2B−1/2 +B−3/2B2
−1/2 = 0.

(c) Modified Serre relations

B2
1/2B−1/2 − 2B1/2B−1/2B1/2 +B−1/2B2

1/2 = − 4B1/2,

B2
−1/2B1/2 − 2B−1/2B1/2B−1/2 +B1/2B

2
−1/2 = − 4B−1/2.

Proofs of Lemma 3.3 and Lemma 3.4. The assignments

Bi 7→ Ei−1/2,i+1/2 + E−i+1/2,−i−1/2 and Hj 7→ Ej,j + E−j,−j (3.17)

preserve the relations in both, Hclass and Hclass, and thus define an algebra homomorphism

Hclass → U(gl(Vδ)θ) respectively Hclass → U(gl(Vδ)θ) depending on whether δ is odd or even.

Now (gl(Vδ), gl(Vδ)θ) is the limit n→∞ of the symmetric pair (gl2n, gln⊕gln) of type (AIII)
in the odd case (with a similar limit version of (gl2n+1, gln+1 ⊕ gln) in the even case), see
[Hel01, Table V] for the classification and [ES18, Section 9] for an explicit isomorphism.
Then our map is an isomorphism by [Let03, Section 7] with [ES18, Section 9.2]. �

Now U(gl(Vδ)θ) is a Hopf subalgebra of U(gl(Vδ)) which acts on
∧∞/2 Vδ by restricting the

natural U(gl(Vδ))-action. Via the isomorphisms (3.17) the following holds.

Theorem 3.5 (First categorification Theorem). The isomorphism (10.46) of vector spaces
is an isomorphism of U(gl(Vδ)θ)-modules, where the action of U(gl(Vδ)θ) on K0(D∆(δ)) is
given by sending Bi to [i -ind].

Proof. This is clear by Lemma 2.16, since E−i+1/2,−i−1/2 and Ei−1/2,i+1/2 acts on
∧∞/2 Vδ ∼= 〈Λ〉

by adding respectively removing a box of content i, see e.g. [Lec12, Exercise 1]. �

4. The affine VW-category and (cyclotomic) VW-algebras

The importance of Jucys-Murphy elements illustrated in the previous sections motivates
us to define the affine VW-algebra or degenerate affine Brauer category. This will allow us
to connect Brauer categories to geometry and classical Lie theory and in particular allows
to define a graded version of the Deligne cateory.

Definition 4.1. The (affine) VW-category is the C-linear strict rigid monoidal category
∨∨ generated as monoidal category by a single object ?, morphisms s, [, [∗ as in Proposi-

tion 1.2 and an additional generator y = : ? −→ ? subject to the relations (1)–(3) from

Proposition 1.2 and

the dot sliding relations : = + − and = − (4.18)

Remark 4.2. As in [BDE+20] one can deduce the additional relations

= + − ; = − + ; = ; = −
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Note that the first two relations are exactly the relations satisfied by the Jucys-Murpys
elements in the Brauer algebras.

The elements id⊗(k−1)⊗y ⊗ id⊗(d−k) ∈ End∨∨(d) are abbreviated as yk. We omit hereby
the dependence on d in the notation, since it will be clear from the context. Also abbreviate
[k = id⊗(k−1)⊗[⊗id⊗(d−k−1) and similarly [∗k and sk. For any k ∈ N we have endomorphisms

ωk = k ∈ End∨∨(0), where k denotes the k-fold composition yk of y.

The above category was studied the first time in [RS19] following ideas of [BCDR17]. A
similar category s ∨∨ was already defined in [BDE+20] in the super setting in connection with
the periplectic Lie superalgebras. The category ∨∨ is however much richer because of the
existence of the nontrivial elements ωk (cf. [BDE+20, Lemma 5]).

Remark 4.3. Our terminology affine VW-category follows [ES18] and [BDE+20], (and dif-
fers from [RS19]). We like to emphasize that we work with a degenerate affine version, i.e.
endomorphism algebras are degenerate affine BMW algebras that is affine VW -algebras.

Lemma 4.4. The following relation holds in End∨∨(0).

ω2a+1 =
1

2

−ω2a +

2a∑
j=0

(−1)jω2a−jωj

 . (4.19)

Proof. Using the relations in ∨∨ one easily shows by induction on a that the following holds

b

a
=


ωa+b −

a−1∑
j=0

(−1)jωa+b−j−1ωj if a is even,

ωa+b + ωa+b−1 −
a−1∑
j=0

(−1)jωa+b−j−1ωj if a is odd.

for any a ∈ N and b ∈ Z≥0. Together with the dot sliding relations we obtain

−ω2k+1 = 2k + 1 = ω2k+1 −

2k−1∑
j=0

(−1)jω2k−jωj

+ ω2a − ωaω2a. �

In particular, the ωk for k odd can be expressed in terms of ∆k’s for k even. It is known,
see [RS19, Theorem B], that the ωk for k even are algebraically independent and generate
the endomorphism algebra of the unit object, thus End(0) ∼= C[ω2k | k ∈ Z≥0]. For a more
detailed description of the morphism spaces as left End(0)-module we refer to [RS19].

4.1. Cyclotomic quotients.

Definition 4.5. Recall that a (right) tensor ideal in a C-linear monoidal category C is a
collection of vector subspaces I(d, d′) for any pair of objects d, d′ such that

f ⊗ id ∈ I(d⊗ b, d′ ⊗ b) and g ◦ f ◦ h ∈ I(b, c) (4.20)

for any f ∈ I(d, d′) and objects b, c whenever g ∈ HomC(d
′, c) and h ∈ HomC(b, d).

Definition 4.6. Given a monic polynomial f(t) =
∏`
i=1(t − ai) ∈ C[t] and a set ω of

complex numbers ωk, k ≥ 0 satisfying the equality (4.19) (with ωk replaced by ωk) let
If,ω be the tensor ideal generated by f(y) and ωk − ωk, k ≥ 0. We call it the cyclotomic
ideal attached to f and ω. The corresponding cyclotomic quotient is the quotient category
∨∨f,ω = ∨∨/If,ω which is the tensor category with the same objects as ∨∨, but morphism spaces
Hom∨∨f,ω(d, d′) = Hom∨∨(d, d

′)/If,ω(d, d′)
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Note that the cyclotomic quotient is not a monoidal category itself, but rather a right
module category over ∨∨. We call ` the level of the quotient. General cyclotomic quotients
were studied in [RS19], see also [MGS20]. We need two important special cases (depending
on our fixed δ ∈ Z) which were already considered in [ES18, Section 5].

Brauer quotient: This is the level 1 cyclotomic quotient defined by ωk = δ( δ−1
2

)k and
f(t) = (t − δ−1

2
). The corresponding cyclotomic quotient of ∨∨ is then isomorphic to the

Brauer category Br(δ) (which is in fact a monoidal category). Under this identification,
the elements yi are hereby sent to the Jucys-Murphy elements.
Isotropic Grassmannian quotient: This level 2 cyclotomic quotient, denoted ∨∨(α, β,N),
is defined as follows. Let N = 2n be an even natural number and f(t) = (t − α)(t − β)
with α = 1/2(1 − δ) and α + β = n. Define ωk by the recursion ω0 = N , ω1 = N N−1

2
and ωk = (α + β)ωk−1 − αβωk−2 for k ≥ 0. Let ∨∨δ(N) be the corresponding cyclotomic
quotient of level 2.

We are ultimately interested in a better understanding of the Brauer category. In [ES18] we
connected ∨∨δ(α, β,N) with a certain parabolic category O for the semisimple complex Lie
algebra of type DN

2
and could understand this cyclotomic quotient in this way and connect

it with the category of perverse sheaves on isotropic Grassmannians, [ES16b]. This is why
we call this quotient the Isotropic Grassmannian quotient. Via an idempotent truncation,
and not (!) by taking a further quotient, we will now pass from the Isotropic Grassmannian
quotient (of level two) to the Brauer quotient (of level one).

For this pick a (large) even natural number N and consider the complex Lie algebra so(N)
of type DN/2 with a fixed maximal proper parabolic subalgebra p of type AN/2−1. Let δ be δω
where ω is the fundamental weight orthogonal to all simple roots for AN/2−1 and let M(δ) be

the parabolic Verma module of highest weight δ. For any d ∈ N0 let Md
δ = M(δ)⊗ (CN )⊗d,

where CN is the vector representation of so(N). Given N let ∨∨δ,≤(N) be the full subcategory
of ∨∨δ(N) given by all objects d with N ≥ 4d.

Theorem 4.7. There is an equivalence of categories between ∨∨δ,≤(N) and the category with

objects Md
δ for N ≥ 4d and morphisms all so(N) module homomorphisms.

This equivalence sends the object d to Md
δ , and the generating morphisms s, b, b∗ to the

flip map, the counit and unit acting on the corresponding tensor factors in Md
δ . where the

unit is given by the bilinear form on CN ⊗ CN defining so(N). The identity element with a
dot on the first strand acts by the Casimir element in so(N)⊗so(N) on the factor M(δ)⊗V .

Proof. This is a reformulation of the isomomorphism theorem [ES18, Theorem 3.1] using the
adjunctions respectively snake relations. �

The morphism spaces Hom∨∨δ(N)(d, d
′) are finite dimensional

(
End∨∨δ(N)(d

′),End∨∨δ(N)(d)
)
-

bimodules. In particular they are bimodules over the respective subalgebras generated by
the pairwise commuting elements yi. The occurring eigenvalues are all in Z + 1/2(1 − δ),
[ES18, Section 3]. We denote by f (suppressing again the dependence on the object) the
idempotent endomorphisms projecting onto the simultaneous generalized eigenspaces for all
yi’s with eigenvalues ξ such that |ξ| < β. We denote by f∨∨δ,≤(N)f the idempotent truncation
of ∨∨δ,≤(N), by which we mean the category with the same objects as ∨∨δ,≤(N), but with the
morphism spaces Homf∨∨δ,≤(N)f (d, d

′) = f Hom∨∨δ,≤(N)(d, d
′)f .

The following crucial result provides now an interesting passage from the loop parameter
N to the loop parameter δ.

Theorem 4.8. There is an equivalence of categories between the full subcategory of the
Brauer category Br(δ) given by the objects d with N ≥ 4d and the category f∨∨δ,≤(N)f .
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Proof. Consider the elements bk := β + yk and b′k := β − yk in End∨∨δ(N)(d) for any object

d and 1 ≤ k ≤ d, and set (for a choice of square root) Qk =
√
bk+1
bk

f . For the existence and

well-definedness of this element and of similar elements used in the following calculations we
refer to [ES16c, Section 4]. We claim that the assignments d 7→ d on objects and

sk 7→ −fQkskQkf + f 1
bk

f , [k 7→ f[kQkf , [∗k 7→ fQk[
∗
kf (4.21)

on generating morphisms defines the desired equivalence. We need to show the well-definedness
which is done in Section 15. The faithfullness, that is the surjectivity and injectivity on mor-
phism spaces (via (4.21)), is then a direct consequence of the Isomorphism Theorem [ES16c,
Theorem 4.3] using adjunctions together with the snake relations. �

5. Representation Theory of the orthosymplectic supergroup OSp(r | 2n)

In this section we pass now to the representation theory of the orthosymplectic supergroup
OSp(r | 2n). The main result is a classification of the indecomposable summands in the tensor
products of the natural representation for OSp(r | 2n) using Deligne categories.

5.1. The orthosymplectic supergroup OSp(r | 2n). By a (vector) superspace we always
mean a finite-dimensional Z/2Z -graded vector space V = V0 ⊕ V1. For any homogeneous
element v ∈ V we denote by |v| ∈ {0, 1} its parity. The integer dimV0 − dimV1 is called
the superdimension of V . Given a superspace V let gl(V ) be the corresponding general
Lie superalgebra, i.e. the superspace EndC(V ) of all endomorphism with the superbracket

defined on homogeneous elements by [X,Y ] = X ◦ Y − (−1)|X|·|Y |Y ◦X.
Assume that V is additionally equipped with a non-degenerate even super-symmetric

bilinear form 〈−,−〉, i.e. a bilinear form V × V → C which is symmetric when restricted
to V0 × V0, skew-symmetric on V1 × V1 and zero on pairs with different parities. Then the
orthosymplectic Lie superalgebra osp(V ) is the Lie supersubalgebra of gl(V ) consisting of all
endomorphisms which respect this form. Explicitly, a homogeneous element X ∈ osp(V ) has
to satisfy for any homogeneous v ∈ V

〈Xv,w〉+ (−1)|X|·|v| 〈v,Xw〉 = 0. (5.22)

For more details on Lie superalgebras see for instance [Mus12], [Ser14].

From now on fix r = dimV0 and 2n = dimV1 and let m = br/2c and δ = r − 2n.

5.2. Concrete realisation. It is sometimes convenient to work with a concrete realization
of g = osp(V ) in terms of endomorphism of V which we identify with Cr|n fixing a homoge-
neous basis vi, 1 ≤ i ≤ r + 2n of V with the first r vectors being a basis of V0. We pick the
supersymmetric bilinear form given by the (skew)symmetric matrices

J sym =

1 0 0
0 0 1m
0 1m 0

 and J skew =

(
0 1n
−1n 0

)
where 1k denotes the respective identity matrix and r is equal to 2m+1 or equal to 2m, in the
latter case the first column and row of J sym are removed. Then g can be realized as the Lie
super subalgebra of matrices

(
A B
C D

)
in gl(r | 2n) where AtJ sym+J symA = BtJ sym−J skewC =

DtJ skew + J skewD = 0. The even part g0 (resp. g1) is the subset of all such matrices with
B = C = 0 (resp. A = D = 0). In particular, g0

∼= so(r)⊕ sp(2n) with its standard Cartan
h = h0 of all diagonal matrices. Let

X = X(g) =

m⊕
i=1

Zεi ⊕
n⊕
j=1

Zδj (5.23)
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be the integral weight lattice whose elements we call just weights. Here the εi’s and δj ’s are
the standard basis vectors of h∗ picking out the i-th respectively (r + j)-th diagonal matrix
entry. Let the parity map be 0 on the ε’s and 1 on the δ’s, and extend this (uniquely) to a
map of abelian groups from the whole weight lattice to Z/2Z. We fix the symmetric bilinear
pairing given on the basis vectors by (εi, εj) = δi,j and (δi, δj) = −δi,j and zero otherwise.
We will often denote weights as (m + n)-tuples (a1, a2, . . . , am | b1, b2, . . . , bn), with the ε-
coefficients to the left and the δ-coefficients to the right of the vertical line. We chose a Borel
as in [GS13], [ES17, Definition 2.2], so that the dominance condition looks similar to the one
for semisimple Lie algebras, see Definition 13.2 for the precise condition.

5.3. Finite dimensional representations. Let G0 = O(r)×Sp(2n) be the algebraic group
corresponding the (ordinary) Lie algebra g = osp(V )0

∼= so(r)⊕sp(2n) with its adjoint action
a on g, and let G = OSp(V ) = OSp(r | 2n) be the algebraic supergroup given by the Harish-
Chandra pair (g, G0, a) in the sense of [Ser11, Section 3], see [ES17, 1.2] especially for the
orthosymplectic case.

We denote by C(r | 2n) the category of finite dimensional representations of G, or equiva-
lently the category of finite dimensional Harish-Chandra modules for (g, G0, a).

Then C(r | 2n) decomposes into a direct sum of two equivalent categories F(r | 2n)⊕πF(r | 2n),
where π denotes the parity shift, and F(r | 2n) contains all objects where the parity of any
weight space agrees with the parity of the corresponding weight. In the following we restrict
our study to the summand F = F(r | 2n).

We first state the classification of the irreducible representation in F , see e.g. [CW12a]
for the general theory and [ES17] for our special case.

Definition 5.1. An (n,m)-hook partition is a partition λ such that λn+1 ≤ m. We call such
a hook partition special if λn+1 = m. Let Γ(n|m) be the set of (n,m)-hook partition.

Proposition 5.2. Let r = 2m or r = 2m+ 1 and consider G = OSp(r | 2n).

(1) If r odd, the irreducible objects in F are in bijection with sΓδ(n|m) := Γ(n|m)×{±}.
(2) If r even, the irreducible objects in F are in bijection with the equivalence classes

sΓδ(n|m) of Γ(n|m)×{±}, where two pairs (λ, ε) and (λ′, ε′) are equivalent if λ = λ′

and they are special, or if λ = λ′ and additionally ε = ε′ if they are not special.

In any case we call the elements in sΓδ(n|m) signed hook partitions.

Proof. This is [ES17, Propositions 2.6 and 2.13] together with [ES17, Lemma 2.21]. �

Remark 5.3. Note that in case of odd r, any irreducible object in F is in fact an irreducible
representation of g together with an action of the central element −1 ∈ G acting by ε id. In
particular, V corresponds to (�,−).

Definition 5.4. In part (2) of Proposition 5.2 we denote the equivalence class of (λ, ε)
usually just by (λ, ε). We say this equivalence class has no sign if (λ, ε) and (λ, ε′) are
equivalent; in which case we denote the class also by (λ,±).

Remark 5.5. The bijections in Proposition 5.2 between highest weights and hook partitions
are explicit, but do depend on our choice of a Borel which we do not want to recall here in
detail. Up to a shift by ρ, the coefficient of εi respectively δi for the attached highest weight
is determined by the lengths of the columns respectively rows of the hook partition λ, see
[ES17, Definition 2.19] for the precise relation.

We fix now bijections as in Proposition 5.2 and denote by L(λ, ε) the irreducible object
in F corresponding to (λ, ε) ∈ Γ(n|m)× {±}. We will use the explicit bijection only in one
proof, otherwise the abstract existence statement is sufficient for our purposes. The category
F has enough projective objects which are in fact also injective, see [BKN11, Proposition
2.2.2]. We denote the projective cover of L(λ, ε) by P (λ, ε).
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Example 5.6. Consider the case G = OSp(3 | 2). It this case the irreducibles L(λ, ε) are
labelled by a sign and and an element λ ∈ Γ(1|1) which are the hook partitions [a; b] := (b+
1, 1a) of arbitrary arm length b+1 and leg length a. Then [a; b] corresponds to the irreducible
g-module with highest weight aε1 + max{b, 0}δ1. In particular a single box corresponds to
the natural representation2 V of G.

5.4. Universal property and tensor space. The category F is (by definition) a tensor
category, which we want to study using the universal property of Deligne categories and
Schur-Weyl duality. For this consider the natural representation V = Cr | 2n ∈ F for G.

Lemma 5.7. Let d, d′ ∈ Z≥0. Then HomOSp(r | 2n)(V
⊗d, V ⊗d

′
) 6= 0 implies d ≡ d′mod 2.

Proof. In case r is odd, this is easy, since −1 ∈ G is central and acts by (−1)d respectively

(−1)d
′

on the source respectively target. In case r is is not necessarily odd, V ⊗d has weights

λ of the form
∑d

i=1 νi, where νi is of the form ±εj , ±δj for some standard basis vector εj
in the integral weight lattice. In particular, although the signs can cause cancellations, the
sum of the coefficients when writing λ in the standard basis, has the same parity as d. �

The vector representation V of OSp(r | 2n) has superdimension δ = r−2n. By the universal
property of Deligne’s category Repδ, see e.g. [Ost04], [DLZ18], [Cou18], there is a unique
monoidal functor F = F(r | 2n) from Repδ to F sending the object 1 to V . Then for any fixed

d ∈ Z>0 we have F(d) = V ⊗d and there is an action Υd,δ of Brd(δ) on V ⊗d commuting with
the action of G. For explicit formulas in our normalization see [ES16d].

Theorem 5.8 (First Fundamental Theorem). The functor F = F(r | 2n) is full. This implies
that, for δ = r − 2n, the action map Υd,δ is a surjective algebra homomorphism

Υd,δ : Brd(δ) →→ EndOSp(r | 2n)(V
⊗d). (5.24)

Proof. This is [DLZ18, Section 3.13], see also [Ser14]. �

Corollary 5.9. Let M ⊂ V ⊗d be a direct summand as an OSp(r | 2n)-module. Then there
is a natural isomorphism of Brd+1(δ)-modules

indd+1
d HomF (V ⊗d,M) ∼= HomF (V ⊗d+1,M ⊗ V ).

Proof. By adjunction, constructing a Brd+1(δ)-morphism

τM : Brd+1(δ)⊗Brd(δ) HomF (V ⊗d,M)→ HomF (V ⊗d+1,M ⊗ V ) := Y

is equivalent to a Brd(δ)-morphism τ̌M : HomF (V ⊗d,M) → Y . If we take τ̌M (f) = f ⊗ id,
then τM (b⊗ f) = b(f ⊗ id). This is by Theorem 5.8 an isomorphism if M = V ⊗d and then
also an isomorphism for any summand. �

5.5. Direct summands in V ⊗d. We refine the fact that V is a tensor generator of F :

Proposition 5.10. Let J ⊂ Λ(B) be a finite subset of weights such that all P (λ) are in the
same block B of F . Then ⊕λ∈JP (λ) is isomorphic to some direct summand P ′ of V ⊗d for
some large enough d.

Proof. By [CH17, Lemma 7.5] every P (λ) appears in V ⊗d for some large enough d. The
bilinear form β defines a surjective morphism idP(λ)⊗β : P (λ)⊗ V ⊗ V → P (λ)⊗ C which

splits, since P (λ) is projective. Hence if P (λ) appears as a summand in V ⊗d then also in

V ⊗d
′

for any d′ ≥ d with the same parity. Since by Lemma 5.7 there are only morphisms
between tensor powers of V of the same parity, the statement follows by realizing any P (λ),
λ ∈ J in some tensor power of V and choosing then for d the maximal occurring power. �

2We want to warn the reader that there is a typo in [ES17, Remark 2.7]: the conditions m > n, m ≤ n
should be replaced by m ≥ n, m < n respectively.



22 MICHAEL EHRIG AND CATHARINA STROPPEL

Theorem 5.11. Let J and P ′ = ⊕λ∈JP (λ) be as in Proposition 5.10. Then there is an
idempotent e = ed,δ in Brd(δ) such that Υd,δ induces a surjective algebra homomorphism

Υd,δ : eBrd(δ)e →→ EndF (P ′) (5.25)

identifying the primitive idempotents in both algebras. Thus, idempotents in EndF (P ′) lift.

Proof. Assume R is an indecomposable summand in V ⊗d. It corresponds to an idempotent
eR ∈ EndF (V ⊗d). Since Υd,δ is surjective by Theorem 5.8, eR can be lifted to an idempotent
eR ∈ Brd(δ) by Lemma 1.8. If im(eR) decomposes into several indecomposable summands
in Repδ, then all of them except of one, say X, are sent to zero under the functor F, since
F(im(eR)) is indecomposable. Hence F(X) = R for some indecomposable object X ∈ Repδ.
And this is unique up to isomorphism by Lemma 1.9. Then idX is a primitive idempotent in
Repδ, since Repδ is idempotent complete. By construction, idX is mapped to eR. Applying
this to any summand in P ′ and summing them up defines an idempotent e as required. �

Our goal is an explicit description of the algebra EndF (P ′). As a first step we recall
the classification from [CH17, Theorem 7.3, Lemma 7.16] of indecomposable summands in
V ⊗d in terms of a certain set Λ(d, r, n) of partitions, depending on d,m, n. This set will be
specified in the next section using the combinatorics of dotted cup diagrams.

Theorem 5.12 (Indecomposables in V ⊗d). The assignment λ 7→ FRδ(λ) gives a bijection
between the set Λ(d, r, n) := {λ ∈ Λd(δ) | FRδ(λ) 6= 0} and any set of representatives for the
isomorphism classes of nonzero indecomposable summands of V ⊗d.

6. Dotted cup diagrams and the graded basic Brauer algebra Dbsc
d (δ)

We review now some of the combinatorics of dotted cup diagrams introduced in [ES16b],
motivated by [BS11], [BS12b], which allows us to describe the decomposition numbers dλ,µ
from (1.9) as well as the classification of indecomposable summands in tensor space V ⊗d

by making explicit the set Λ(d, r, n) from Theorem 5.12. As an application we define the
idempotented version Dbsc

d (δ) of the basic version of the Brauer algebra Brd(δ) and equip it
with a grading.

Remark 6.1. Although the dotted cup diagrams look very similar to Brauer diagrams,
they should be considered as a quite different constructions and instead be viewed as half
type BCD Temperley-Lieb diagrams, see e.g. [LS12]. Diagrams similar to our dotted cup
diagrams were introduced independently as curl diagrams in [CVM09].

6.1. (Infinite) weight, cup and circle diagrams. We consider the nonnegative (half)
integer line L = Z + δ/2 ∩ R≥0 and call its elements vertices. A weight diagram is a map µ
from L to the set {∧,∨,×, ◦,3} such that 3 can only occur as the image of 0 and conversely
0 can only be mapped to ◦ or 3. Hence a weight diagram assigns to each vertex a unique
label of the form ∧, ∨, ×, ◦ or 3 called up, down, nought or diamond respectively. We
usually draw it as a sequence of symbols indicating the lowest number of L, e.g.

0
3 ◦ ∧ ∨ ◦ ∨ × ∨ ··· respectively

1/2
∧ ◦ ∧ ∨ ◦ ∨ × ∨ ··· .

Definition 6.2. A weight diagram µ is called admissible if µ−1({◦,×,∧}) is finite, and it
is called flipped if µ−1({◦,×,∨}) is finite. For such a weight diagram and ? ∈ {◦×,∧,∨} we
denote by #?(µ) ∈ N0 ∩ {∞} the number of ?’s appearing in µ.

Obviously, turning each symbol upside down gives a bijection between admissible weight
diagrams and flipped weight diagrams. Given an admissible or a flipped weight diagram µ
we like to assign a cup diagram µ. For this we say that two vertices in a weight diagram are
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neighboured if they are only separated by vertices labelled from the set {◦,×} and proceed
as follows:

Definition 6.3. The cup diagram µ associated with an admissible or a flipped weight dia-
gram µ is obtained by applying the following steps in order.

(C-1) If the weight diagram µ contains a 3 we change it into an ∧ or ∨ such that the
resulting number of ∧’s becomes odd in case this number is finite and into an ∧ in
case this number is infinite.

(C-2) First connect neighboured vertices labelled ∨∧ successively by a cup, i.e. an arc
forming a cup below the labels, ignoring already joint vertices as long as possible.
(The result is independent of the order in which the connections are made).

(C-3) Attach to each remaining ∨ a vertical ray.
(C-4) Connect from left to right pairs of two neighboured ∧’s by cups. In case only ∧’s are

left over we we might have to attach infinitely many cups in this step.3

(C-5) If a single ∧ remains, attach a vertical ray.
(C-6) Put a marker • on each cup created in (C-4) and each ray created in (C-5).
(C-7) Finally delete all labels at vertices.

The arcs for the connections should always be drawn without intersections. If a cup has
a marker •, it is called a dotted cup, otherwise an undotted cup. Two cup diagrams are
considered the same if there is a bijection between the set of arcs respecting the connected
vertices and the property whether they are dotted or undotted.

Remark 6.4. The admissibility condition makes sure that the algorithm producing the cup
diagram stops after finitely many steps creating finitely many cups only. In case of a flipped
weight diagram, the algorithm ends as well thanks to the rule (C-4). It produced infinitely
many dotted cups.

Definition 6.5. For a weight diagram µ we denote by def(µ) = def(µ) its defect, which is
the total number of cups (dotted or undotted) in µ and by rk(µ) = min(#◦(µ),#×(µ)) its
rank. Define κ(µ) := def(µ) + rk(µ). We call this the layer number of µ.

Admissibility implies that these numbers are finite. For a flipped weight diagram the rank
is still finite, whereas the defect is not.

Definition 6.6. (Weight dictionary) Let S ⊆ Z+δ/2. Then the weight diagram λS associated
with S is defined as follows (where i ∈ L)

λS(i) =



3 if i = 0 ∈ S, and otherwise

∧ if i ∈ X(λ) but −i /∈ X(λ),

∨ if −i ∈ X(λ) but i /∈ X(λ),

× if i ∈ X(λ) and −i ∈ X(λ),

◦ if i /∈ X(λ) and −i /∈ X(λ).

(6.26)

6.2. Circle diagrams. A pair of a cup diagram λ and a weight diagram ν is an oriented
cup diagram, denoted λν, if the following holds. If we put ν on top of λ, then the symbols
◦ and × match and each undotted ray carries the label ∨, each dotted ray the label ∧, each
undotted cup one label ∨ and one label ∧, and a dotted cup either two ∨’s or two ∧’s. For
the purpose of being oriented, the symbol 3 can be regarded as an ∧ or a ∨.

Definition 6.7. A circle diagram is a pair λν, µν of two oriented cup diagrams with the
same weight diagram ν. Diagrammatically a circle diagram is displayed by putting µ upside
down on top of λν, and also denoted λνµ. The orientation means then that it is built from
pieces which look as follows (the numbers below will only be used later):

3The additional rule in (Cup-(C-4)) in [ES17] is incorrect and should be omitted.
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0

∨ ∧

1

∧ ∨

0

3 ∧

1

3 ∨

0
∨ ∧

1
∧ ∨

0
3 ∧

1
3 ∨

0

∨

0

3

0
∨

0
3

0

∧ ∧

1

∨ ∨

0

3 ∧

1

3 ∨

0
∧ ∧

1
∨ ∨

0
3 ∧

1
3 ∨

0

∧

0

3

0
∧

0
3

(6.27)

Note that for cups and caps that do not involve the zero position, an orientation is the
naive idea of an orientation of the line segment, with the extra condition that the dot should
be thought of as an orientation reversal point.

The connected components of a circle diagram λνµ are called circles if they are closed
(i.e. a circle embedded into the plane), and are called lines otherwise.

6.3. Deligne weight diagrams. Let λ ∈ Λ and recall the set X(λ) from (3.16).

Definition 6.8. For λ ∈ Λ we abbreviate the associated weight diagram λδ = λX(λ) and
call it the (Deligne) weight diagram attached to the partition λ.

Example 6.9. The partition ∅ corresponds in case of odd δ to

∅δ =


◦
1/2

· · · ◦
δ/2

∨ ∨ · · · ∨ ∨ ∨ ∨ ∨ · · · if δ > 0,

×
1/2

· · · ×
−δ/2
× ∨ · · · ∨ ∨ ∨ ∨ ∨ · · · if δ < 0.

(6.28)

and in case of even δ to

∅δ =


◦
0

· · · ◦
δ/2

∨ ∨ · · · ∨ ∨ ∨ ∨ ∨ · · · if δ > 0,

3
0

× · · ·
−δ/2
× ∨ · · · ∨ ∨ ∨ ∨ ∨ · · · if δ ≤ 0.

(6.29)

Starting from ∅δ, the Deligne weight diagram λδ for λ ∈ Λ is obtained by moving the ith
symbol λti steps to the left until it reaches the first position, where it gets flipped upside down
and afterwards moved further to the right. The definitions directly imply the following.

Lemma 6.10. Adding a box to a partition λ corresponds to applying diagrammatically to
λδ one of the following local moves (which should be read from bottom to top):

λ+ � ∨◦ ×∧ ◦∧ ∨× ∨∧ ∨∧ ×◦ ◦× 3◦ ◦× ◦∧ 3∧ ∧
λ ◦∨ ∧× ∧◦ ×∨ ◦× ×◦ ∧∨ ∧∨ ◦∨ 3∨ 3◦ ◦× ∨ , (6.30)

with the last scenario only possible at position 1/2.

Note that λδ is always admissible; thus the corresponding cup diagram λδ is defined.

Remark 6.11. (1) If we consider the symbol × as a union of ∧ and ∨, the local moves
move a symbol ∨ one step to the left or a symbol ∧ one step to the right, or turn ∨
into ∧ at position 1/2.

(2) We observe that each local move (6.30) preserves the difference of the number of ◦
and ×. In particular, for fixed δ, the rank of a Deligne weight diagrams is nothing
else than the nunber of × in case δ ≥ 0 and the number of ◦ in case δ < 0.

For δ odd, the parity of |λ| for λ ∈ Λ can be read off from λδ as follows.
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Definition 6.12. Let ν be an admissible weight diagram. For each ◦ or × in ν count the
total number of ∧ and ∨ in ν to the left of the symbol. Sum all of these up and add the
number of ∧ in ν. The parity of the result is called the parity par(ν) of ν.

Lemma 6.13. Let λ ∈ Λ. The parity of |λ| equals par(λδ).

Proof. We prove this by induction on the number of boxes of λ. In case of the empty
partition, the corresponding weight diagram is given in (6.28) with obviously par(∅δ) = 0.
Let now µ be a partition obtained from λ by adding a box and assume the claim holds for
λ. Comparing par(λδ) and par(µδ) in each local move from (6.30), one checks easily that
they always differ by ±. We exemplify this for two of the local moves:

λ+ � ∨◦
λ ◦∨

In this case the number of ∧’s does not change, but the ◦ got moved
and we now count one more symbol to its left, while all other numbers
involved are kept. Hence altogether the parity changes.

λ+ � ∨∧
λ ×◦

In this case the contributions given by ∧ and ∨ on the left of ×, re-
spectively ◦ cancelled each other, since × does not change the parity.
Any ◦ or × to the right of the vertices involved in the local move will
count two more symbols after the move, also not changing the parity.
We however created one new ∧. Altogether the parity changes.

For the other moves the arguments are similar and therefore omitted. �

6.4. Central characters. We descibe now diagrammatically how the scalar cBr
µ by which

Ωd acts on cell modules (cf. Lemma 1.19) behaves under i-induction.

Lemma 6.14. Let λ, µ ∈ Λ such that µδ is obtained from λδ by a local move involving the
positions p ± 1/2. Then cBr

µ = cBr
λ ± 2p, where we add (or remove) 2p if a ∨ is moved from

right to left (respectively an ∧ is moved from left to right). A 3 is interpreted as an ∧ or ∨.

Proof. We computing the change cBr
λ  cBr

µ

• Assume a ∨ is moved from the right to the left: Enumerating all symbols in λ by first
counting all ∧ from right to left and then all ∨ from left to right let i be the index of the
symbol moved. Then to obtain λ from the ground state ∅ the symbol was moved a total
of δ/2 + i− 1− (p+ 1/2) steps. Thus in the language of partitions a new box is added in
row δ+1

2
+ i− 1− p and column i. Thus we have by Lemma 1.19

cBr
µ = |µ|(δ − 1) + 2c(µ) = |λ|(δ − 1) + 2c(λ) + (δ − 1) + 2 (i− ( δ+1

2
+ i− 1− p))

= cBr
λ + 2p.

• Assume an ∧ is moved from the left to the right: The only change to above is that the new
box in the partition is now added in row δ−1

2
+ i+ p, which results in cBr

µ = cBr
λ − 2p. �

Denote by Cr | 2n the Casimir element [Mus12, Lemma 8.5.1] in the centre of the universal
enveloping algebra U(osp(r | 2n)). Let multΩ denote the map given by the multiplication
with Ωd on V ⊗d and by multC the map given by acting on tensor space with Cr | 2n.

Proposition 6.15. Let M ⊂ V ⊗d be an OSp(r | 2n)-submodule. Then multΩ and multC

restrict to M and agree thereon.

Proof. The action of Cr | 2n is well-defined as a central element of U(osp(r | 2n)). The action of

Ωd is well-defined, since M is given by an idempotent in EndF (V ⊗d) which is the image of the
Brauer algebra by Theorem 5.8 and hence commutes with the action of Ωd by Lemma 1.5. To
see that both maps agree, note that Ωd = d (δ − 1) + 2

∑
1≤i<k≤d(si,k − τi,k). Multiplication
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with Ωd thus agrees with the action of

multΩ =

(
∆d−1(Cr | 2n)−

d∑
i=1

idi−1
V ⊗ C ⊗ idd−iV

)
+ d (∆− 1) idV ⊗d

=
(

∆d−1(Cr | 2n)− (∆− 1)idV ⊗d
)

+ d (∆− 1) idV ⊗d = ∆d−1(Cr | 2n) = multC,

where ∆ denotes the comultiplication of U(osp(r | 2n)), given on an element x ∈ osp(r | 2n)
by ∆(x) = x⊗1+1⊗x. Note further that the action of Cr | 2n on V is given by multiplication
with δ − 1, see [Mus12, Lemma 8.5.3] using the explicit formula for ρ from [ES17, 2.1] and
the fact that V is irreducible with highest weight ε1 if m ≥ n and δ1 if m < n. �

Corollary 6.16. Let λ ∈ Λ(d, r, n). Then HomF (V ⊗d,FRδ(λ)) is contained in a single
generalized eigenspace for the right action of Ωd and for the precomposition with multC

respectively. The two eigenvalues agree.

Proof. Since FRδ(λ) is an indecomposable summand of V ⊗d by Theorem 5.12, the module
HomF (V ⊗d,FRδ(λ)) it is contained in a single generalized eigenspace for Ω, since Ω induces
a central element in EndF (V ⊗d). But then all statements follow from Proposition 6.15. �

We obtain an explicit description of the set Λ(d, r, n) from Theorem 5.12 via certain
admissible weight diagrams, called therefore tensor weight diagrams.

Theorem 6.17 (Tensor weight diagrams). Recall the notation from Definition 6.5.

(1) There is an equality of sets Λ(d, r, n) = {λ ∈ Λd(δ) | κ(λδ) ≤ min(m,n)}.
(2) The summand FRδ(λ) is projective, if and only if κ(λδ) = min(m,n). In which case

we call λ a projective weight diagram.

Proof. This is [CH17, Corollary 7.14 with Lemma 7.16]. �

Example 6.18. The following table displays in the first two columns examples of partitions
and their corresponding Deligne weight diagrams and cup diagrams for δ = 1. The third col-
umn checks which of them correspond to projective modules for OSp(3 | 2) via Theorem 6.17.
None of them is projective for OSp(2n+ 1 | 2n) for n > 1.

λ
λδ
λδ

proj. ?
pλ∞

pλ∞
ε

λ?
ε

λ?
ε

∅
∨ ∨ ∨ ∨ ∨ ∨ ···

··· no
∧ ∧ ∧ ∧ ∧ ∧ ···

··· +
∧ ∧ ∧ ∨ ∨ ∨ ···

···

∧ ∨ ∨ ∨ ∨ ∨ ···
··· no

∨ ∧ ∧ ∧ ∧ ∧ ···
··· −

∨ ∧ ∧ ∨ ∨ ∨ ···
···

◦ × ∨ ∨ ∨ ∨ ···
··· X

◦ × ∧ ∧ ∧ ∧ ···
··· +

◦ × ∧ ∨ ∨ ∨ ···
···

× ◦ ∨ ∨ ∨ ∨ ···
··· X

× ◦ ∧ ∧ ∧ ∧ ···
··· +

× ◦ ∧ ∨ ∨ ∨ ···
···

◦ ∨ × ∨ ∨ ∨ ···
··· X

◦ ∧ × ∧ ∧ ∧ ···
··· −

◦ ∧ × ∨ ∨ ∨ ···
···

∨ ∧ ∨ ∨ ∨ ∨ ···
··· X

∨ ∧ ∧ ∧ ∧ ∧ ···
··· −

∨ ∧ ∧ ∨ ∨ ∨ ···
···

× ∨ ◦ ∨ ∨ ∨ ···
··· X

× ∧ ◦ ∧ ∧ ∧ ···
··· −

× ∧ ◦ ∨ ∨ ∨ ···
···
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Here the labelling set of the indecomposable objects Rδ(λ) in terms of cup diagrams is easy.
We have either one cup or no cup and then one ◦ and one × somewhere. We do not know
any reasonable description of the corresponding set of partitions even in this small case.

Question 6.19. Is there an intrinsic description of the involved sets of partitions, namely
for Λ(d, r, n) or the subset corresponding to projective summands FRδ(λ))?

6.5. Decomposition numbers and idempotented basic Brauer algebras. Oriented
cup diagrams encode the decomposition number dλ,µ and dimensions in (1.9):

Lemma 6.20. For Brd(δ) and λ, ν ∈ Λd(δ), the multiplicity (Pd,δ(λ) : ∆d,δ(ν)) is equal to 1
if λδ
nuδ is oriented and it is zero otherwise.

Proof. This is [CVM09, Theorem 4.11] adapted to our setup as in [ES18, Proposition 4.4]. �

Definition 6.21. For λ, µ ∈ Λ, we denote by Bδ(λ, µ) the vector space with basis consisting
of all oriented circle diagrams λδνµδ for ν a weight diagram. We set

Dbsc
d (δ) :=

⊕
λ,µ∈Λd(δ)

Bδ(λ, µ) and Dbsc(δ) :=
⊕
λ,µ∈Λ

Bδ(λ, µ). (6.31)

As a consequence of Lemma 6.20, respectively from Definition 1.25 and Lemma 2.3 we
obtain isomorphisms of vector spaces

Bδ(λ, µ) ∼= HomRepδ(Rδ(λ), Rδ(µ)) ∼= HomBrd(δ)(Pd,δ(λ), Pd,δ(µ)) (6.32)

for any λ, µ ∈ Λ and d such that |λ|, |µ| ≤ d.
Now Brbscd (δ) =

⊕
λ,µ∈Λd(δ) HomBrd(δ)(Pd,δ(λ), Pd,δ(µ)) is an algebra by viewing it as a

subalgebra of the Brauer algebra Brd(δ). We call it the basic Brauer algebra, since it is by
construction a basic algebra Morita equivalent to Brd(δ).

In [ES16b] we defined a diagrammatic multiplication generalizing the construction of
Khovanov’s arc algebra from [Kho00], [BS11] to a situation where we allow dotted cup
diagrams which we apply now to Dbsc

d (δ) and Dbsc(δ). Up to possible signs, the multiplication
rules are exactly as in [BS11]. We refer the reader for details to [ES16b].

Theorem 6.22 (Basic Brauer algebra).
The isomorphisms (6.32) can be chosen such that the following holds.

(1) They define an isomorphism of algebras

Brbscd (δ) ∼= Dbsc
d (δ).

(2) Under this isomorphism the primitive idempotent corresponding to Pd,δ(λ) is mapped

to the circle diagram of the form λδλδλδ.
(3) The primitive idempotents in Dbsc(δ) are the elements λδλδλδ, for λ ∈ Λ.

Proof. The last statement is [ES16b, Theorem 6.2]. For the first statement, recall that
Theorem 4.8 identifies the Brauer algebra Brd(δ) with the endomorphism algebra of d in
the idempotent truncation f∨∨(N,α, β)f of ∨∨(N,α, β). On the other hand, Theorem 4.7
identifies End∨∨(N,α,β)(d) with the endomorphism ring of M(δ) ⊗ V ⊗d. The identification
with the algebra Dbsc

d (δ) is then given by [ES16b, Theorem 9.1]. The second statement holds
again by [ES16b, Theorem 6.2]. �

Circle diagrams give a quite different diagrammatic description of the basic version Brbscd (δ)
of the Brauer algebra with the advantage of providing a distinguished basis involving primi-
tive idempotents and an explicit multiplication rule for basis elements, [ES16b, Theorem 6.2].
This approach will be extended to the Brauer algebra Brd(δ) in Theorem 11.20.
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It is worth to examine this distinguished basis a bit further. For this consider Dbsc(δ) =⊕
λ,µ∈Λ Bδ(λ, µ). It is a locally unital locally finite dimensional algebra with a distinguished

basis given by oriented circle diagrams, that is pairs of oriented cup diagrams λδνδ, µδνδ
with the same weight diagram νδ. For ν ∈ Λ define the set Y (ν) (and X(ν)) to be the set
of all oriented cup diagrams (respectively cap diagrams) with weight νδ. We have Y (ν) =⋃
λ∈Λ Y (λ, ν), where Y (λ, ν) contains the unique oriented cup diagram λδνδ in case this

exists and it is empty otherwise; similarly we have X(ν) =
⋃
λ∈ΛX(ν, λ) by fixing the cap

diagram. We view elements x ∈ X(ν, λ) and y ∈ Y (λ, ν) as basis vectors, i.e. as oriented
circle diagrams, by putting the cup diagram νδ on the bottom, respectively the cap diagram
νδ on the top. By definition of the multiplication, see [ES16b, Merge Case in (4.20)], the
product xy of basis vectors equals exactly the oriented circle diagram (x, y). By construction
we have X(ν, λ) ⊂ Bδ(ν, λ) and Y (λ, ν) ⊂ Bδ(λ, ν). Now the following holds:

Theorem 6.23 (Based quasi-hereditary).

(1) Consider the algebra Dbsc(δ) =
⊕

λ,µ∈Λ Bδ(λ, µ) with the set of primitive idempotents

λδλδλδ for λ ∈ Λ. Set I := Λ and B := Λ with the reverse inclusion ordering on
partitions. This data together with the sets X(ν, λ) and Y (λ, ν) equip Dbsc(δ) with
the structure of an upper finite based quasi-hereditary algebra in the sense of [BS18,
Definition 5.1] (and in the notation from there).

(2) If we define Yd(ν) =
⋃
λ∈Λ Yd(λ, ν), Xd(ν) =

⋃
λ∈Λ Yd(ν, λ) by restricting λ, ν to

elements in I := B := Λd(δ), then this equips Dbsc
d (δ) with the structure of an upper

finite based quasi-hereditary algebra.

Proof. We only need to check the conditions (QH4)-(QH6) from [BS18, Definition 5.1], since
all the other assumptions are obvious. By definition of the multiplication rules, the elements
yx with (y, x) ∈

⋃
ν∈Λ Y (ν)×X(ν) form exactly our distinguished basis, hence (QH4) holds.

(QH6) is obvious. To see (QH5) we observe that by [ES16b, Lemma 3.17] X(ν, λ) 6= ∅ or
Y (ν, λ) 6= ∅ only if νδ is obtained from λδ by a finite sequence of swaps of symbols turning
∨∧ into ∧∨ or ∧∧ into ∨∨. From Lemma 6.10 we see that this means ν ≥ λ. �

6.6. Gradings. Recall from Definition 6.21 the vector space Bδ(λ, µ) with basis the space of
oriented circle diagrams of the form λδνµδ. Following [ES16b] we equip this vector space, as
well as Dbsc

d (δ) and Dbsc(δ) with a grading by viewing each basis vector as built from oriented
cups, oriented caps and oriented rays.

Definition 6.24. The degree deg(λνµ) of an oriented circle diagram λνµ is defined to be
the total sum of the degrees of all oriented cups, caps and rays; where the degrees are defined
as indicated by the numbers in (6.27), e.g.

deg

 ∨ ∧ ∨ ∨ ∧ ∨

 = 4

Definition 6.25. The graded basic Deligne category gRepbsc
δ is the additive category enriched

in graded vector spaces with objects λ ∈ Λ, and morphism spaces HomgRepδ(λ, µ) = Bδ(λ, µ)
if there is some d such that λ, µ ∈ Λd(δ) and HomgRepδ(λ, µ) = {0} otherwise. The grading
on morphisms spaces is defined by Definition 6.24. The composition of morphisms is given
by the diagrammatical multiplication rules from [ES16b, Section 6.2].

Remark 6.26. The definition makes sense, since Bδ(λ, µ) is independent of d as long as
λ, µ ∈ Λd(δ) for some d. It is the same space for varying d, hence does not require identifi-
cations as in Remark 1.16.

The graded basic Deligne category is indeed a graded lift of the basic version of the additive
category Repδ

bsc of Repδ (where by Repδ
bsc we mean the full additive subcategory of Repδ
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given by the chosen representatives Rδ(λ) for the isomorphism classes of indecomposable
objects Rδ(λ) from Theorem 1.15):

Lemma 6.27. When forgetting the grading, gRepbsc
δ is isomorphic to Repbsc

δ .

Proof. We have an isomorphism on morphism spaces by (6.32) and (1.5). Then the claim
follows with the arguments as in the proof of Theorem 6.22 using [ES16b, Theorem 9.1] and
also the second part of Theorem 6.22. �

Definition 6.28. A representation of gRepbsc
δ is a contravariant functor G from gRepbsc

δ to
the category gVect of finite dimensional graded vector spaces. Let Dgr(δ) be the category of
such representations.

By Remark 2.5, Dgr(δ) is equivalent to the category of locally finite dimensional graded
Dbsc(δ)-modules, where we view Dbsc(δ) as a locally finite dimensional graded algebra. We call
an upper finite based quasi-hereditary algebra which is additionally a graded algebra such
that the sets defining the based quasi-hereditary structure consist of homogeneous elements
a graded upper finite based quasi-hereditary algebra. By definition we then havex

Theorem 6.29. The graded algebras Dbsc(δ) and Dbsc
d (δ) for d ∈ N, are with the data from

Theorem 6.23 graded upper finite based quasi-hereditary algebra.

Remark 6.30. Any upper finite based quasi-hereditary algebra comes with a collection of
standard modules by [BS18, (5.2)]. In the case of Dbsc(δ), these are modules ∆(λ), λ ∈ Λ
which can be realised as a subquotient of Dbsc(δ). The underlying vector space has basis y,
y ∈ Y (λ). Under the equivalence of categories with D(δ), they correspond to the standard
modules from Theorem 2.10. By construction the analogous statements hold in the graded
setting as well.

7. Classification of indecomposable summands in V ⊗d

In this section we establish first the important bijections mentioned in the introduction and
then show that the indecomposable summands in tensor space V ⊗d have always irreducible
heads. With the dictionaries given in Section 13 this allows to determine the highest weight
of the irreducible head.

7.1. Combinatorial bijections: partitions versus weight diagrams. We start by char-
acterizing Deligne weight diagrams (depending on δ) among all admissible weight diagrams.

Lemma 7.1. Fix δ ∈ Z. The assignment λ 7→ λδ gives a bijection

Wδ : {partitions} 1:1←→
{

admissible weight diagrams µ such that

#◦(µ)−#×(µ) = bδ/2c

}
. (7.33)

Proof. Let X be the set on the right hand side. Then ∅δ ∈ X by definition. Now, the image
of our map is indeed contained in X, since adding a box to a partition λ corresponds on
λδ to a local move of the form (6.30) which does not change the difference #◦(µ)−#×(µ).
The assignment is obviously injective. On the other hand let µ ∈ X. By admissibility, it
has far to right only ∨’s. Take the rightmost symbol of the form ∧ or ×. Assume it is at
position j1. Then set λ1 = bδ/2c+ bj1− 1/2c+ 1. Continue defining λi = bδ/2c+ bji− 1/2c+ i
using the next rightmost symbol ∧ or × at position ji as long as possible. Then continue
with the symbols ∨, × and 3’s and record (read from left to right) the number of ∧ or ◦ to
the right of each such symbol. By admissibility this sequence will be identically zero after
finitely many steps and thus defines together with the λi from above a partition λ such that
λδ = µ. This shows the surjectivity. �
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The same argument, but with the roles of ∧’s and ∨’s swapped, implies the following,
where λ∞ is the weight diagram λδ but with all symbols turned upside down.

Lemma 7.2. Fix δ ∈ Z. Sending λ to the weight diagram λ∞ gives a bijection

W∞δ : {partitions} 1:1←→
{

flipped weight diagrams µ such that

#◦(µ)−#×(µ) = bδ/2c

}
. (7.34)

Remark 7.3. In fact, λ∞ equals the weight diagram associated with the set

S∞(λ) := {−λi + i− 1 + δ/2 | i ≥ 1} ⊂ Z + δ/2. (7.35)

To see this, note first that the partition ∅ corresponds to the weight diagram ∅∞ obtained
from ∅δ in (3.16) by turning all symbols upside down (respectively by swapping ∧’s and ∨’s.
Then compare with λδ by adding successively boxes to the partition.

We characterize flipped weight diagrams for (n,m)-hook partitions.

Lemma 7.4. (1) Let pλ be an (n,m)-hook partition. Then the associated flipped weight
diagram pλ∞ has at most min(m,n) − rk(µ) many ∨’s, and pλ∞ has at most that
many undotted cups.

(2) The bijection W∞δ from (7.34) restricts to a bijection{
(n,m)-hook
partitions

}
1:1←→


flipped weight diagrams µ such that

#◦(µ)−#×(µ) = bδ/2c and

#∨(µ) ≤ min(m,n)− rk(µ)

 =: Γδ(n,m). (7.36)

Elements in the set Γδ(n,m) are called hook weight diagrams.

Proof. The second statement in (1) follows directly from the first since each undotted cup
requires a ∨. If δ ≥ 0, then m ≥ n. The first n rows in pλ could possibly each create a ∨ or ×
in pλ∞, hence a total of at most n of such, let us call them, bad symbols. The n+ jth symbol
(with j ≥ 1) has to get moved at least δ/2 + n+ j to create an additional bad symbol. But
δ/2+n+j > m. This is however impossible, since the n+jth row in pλ has at most m boxes.
Thus we have at most n = min(m,n) bad symbols, that means at most min(m,n) − rk(µ)
many ∨’s by Lemma 6.10. Conversely, if µ does not come from a (n,m)-hook partition, then
the (n+ 1)th ∧ has been turned into an ∨, possible as a part of a × which means (2) holds
as well.

If δ < 0, then m < n and there are n −m crosses in the weight diagram attached to ∅.
The first n rows of the hook partition move the ∨’s which are part of the crosses and then
the leftmost m from 3’s and ∧’s (including those contained in crosses). This can create a
total of at most m bad symbols by which we mean now ∨’s (not inside crosses) and ◦’s. To
create more bad symbols the m + 1th from the 3’s and ∧’s in the original weight must be
moved at least m+ 1 steps which is impossible, since the partition had at most m boxes in
the (n+ 1)th row. Again, (2) follows as well. �

Definition 7.5. By identifying Γδ(n,m) with Γ(n|m) from Definition 5.1 we can transfer the
equivalence relation on Γ(n|m)×{±} defined in Proposition 5.2 to Γδ(n,m)×{±}. We denote
by sΓδ(n|m) the corresponding set of equivalence classes. Its elements are called signed hook
weight diagram and denoted by the same notation as in Proposition 5.2. We also label the
irreducible OSp(r | 2n)-modules by signed hook weight diagrams, L(pλ∞, ε) = L(pλ, ε).

We use this setup now to describe the summands Rδ(λ) appearing in tensor space V ⊗d.

Proposition 7.6. There is a bijection

† :

{
projective

weight diagrams

}
1:1↔

{
signed (n,m)-hook

weight diagrams

}
= sΓδ(n|m)

λδ 7→ λ†δ := (Φ(λ), ε),
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where Φ(λ) is the weight diagram obtained from λ by swapping all symbols corresponding to
rays in λδ from ∨ to ∧; and

• in case δ is odd: ε ∈ {+,−} is + respectively − if the parity of the partition corresponding
to λδ via Lemma 7.1 is even respectively odd.
• in case δ is even: ε ∈ {+,−,±} is + (or −) if the leftmost ray in λδ is undotted (respec-

tively dotted) and not at position zero; ε = ± if the leftmost ray is at position zero.

Proof. The map is well-defined, since λδ has at most min(m,n)−rk(λ) many undotted cups,
thus Φ(λ) has at most that many ∨’s, and therefore corresponds to a hook partition by
(7.36). It is obviously injective, since two different projective weight diagrams give only
the same hook weight diagram if their cup diagrams agree up to a dot on the leftmost ray
in which case the signs are different. For surjectivity, consider a hook weight diagram ν
and its cup diagram ν with infinitely many dotted cups. Now, starting from the left, keep
as many dotted cups as required for the cup diagram corresponding to a projective, and
replace all others by undotted rays. The corresponding weight diagram λ is then projective

and λ†δ = (ν, ε) for some ε. Attaching a dot to the leftmost ray in λ defines a projective

weight µ such that µ†δ = (ν,−ε). �

We extend now the above map λδ 7→ λ† to all tensor weight diagrams.

Definition 7.7. The signed hook weight diagram λ†δ = (Φ(λ), ε) attached to a non-projective
tensor weight diagram λδ, is the pair of a weight diagram pλ∞ obtained from λδ by flipping
all symbols attached to rays in λδ upside down, and a sign ε which is defined as above in
case δ is odd and is always + in case δ is even.

We defined therefore a surjection (extending the bijection from Proposition 7.6),{
tensor

weight diagrams

}
� sΓδ(n|m)

λδ 7→ λ†δ := (Φ(λ), ε).

Via Theorem 6.17 we also obtain a map λ 7→ λ†δ on the corresponding set of partitions, i.e.
on {λ ∈ Λd(δ) | κ(λ) ≤ min(m,n)}; see Example 6.18 for concrete values of this map.

7.2. The classification theorem. We can now determine the irreducible quotients of the
summands FRδ(λ) in V ⊗d (following the notation from Section 5.3).

Theorem 7.8 (Classification Theorem). Let λ ∈ Λ(d, r, n):

(1) The indecomposable summand FRδ(λ) of the OSp(r | 2n)-module V ⊗d has irreducible

head isomorphic to L(λ†δ).

(2) In particular, if FRδ(λ) is projective, then FRδ(λ) ∼= P (λ†δ).
(3) Any indecomposable projective in F is obtained in this way for some λ and d.

Proof of Theorem 7.8. The second statement is a direct consequence of the first. The last
statement follows again from the first with Theorem 5.12 and Proposition 5.10. Hence it
remains to show the first statement. This will be done in Section 9. �

7.3. Central characters - again. The missing part in the proof of Theorem 7.8 will use
translation functors and in particular a good understanding of central characters. Therefore
we add here a description of the change in the value of the Casimir action on highest weight
modules if the corresponding weight diagrams are related by a local move (which up to signs
corresponds to adding or removing a box in the hook partitions). This should be compared
with Lemma 6.14.
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In this section, a symbol × will be considered as a union of two symbols, one ∧ and one
∨, so that a local move either moves an ∧ or ∨ to a neighboured position or swaps one of
them upside down at position 1/2, see Remark 6.11.

Consider again the Casimir element Cr | 2n ∈ Z(U(osp(r | 2n))), [Mus12, Lemma 8.5.1].

For a signed hook weight diagram λ†δ denote by c
λ†δ

the value by which Cr | 2n acts on the

corresponding irreducible OSp(r | 2n)-module L(λ†δ). If λLie denotes the highest weight in
the Lie theoretic sense, then we have the standard formula c

λ†δ
= (λLie + 2ρ, λLie), see e.g.

[Mus12, Lemma 8.5.3], where we will use the choice for ρ from Section 13.

Lemma 7.9. Let λ†δ = (pλ∞, ε), µ†δ = (pµ∞, ε′) be signed hook weight diagrams such that µ†δ
is obtained from λ†δ by a local move (6.30) involving the positions p± 1/2. Then

c
µ†δ

= c
λ†δ
± 2p. (7.37)

Hereby we add 2p if a symbol ∨ or ∧ is moved from right to left, and subtract 2p if a symbol
∨ or ∧ is moved from left to right.4 Changing the sign ε does not change the value c

λ†δ
.

Proof. Attached to λ†δ we have the irreducible module L(λ†δ). Let λLie =
∑

i=1m aiεi +∑
i=1n bi−ρ be its highest weight as in Section 13; similar for µ. The ai and bi are determined

by the lengths of the first m columns respectively first n rows in pλ. Let first p 6= 0.

• A ∨ moves to the left: In this case ε′ = ε. Assume that the `th symbol gets moved,
where we enumerate the symbols according to the rows in pλ, i.e., first counting the ∨
from right to left followed by the ∧ from left to right. Then by assumption in the lemma
S(λ)` = −(p + 1/2). By the definition of S(λ) it follows that pλ` = δ/2 + ` + p − 1/2 and
pµ` = pλ`− 1. Since a ∨ is moved the coefficient b` is changed from b` = p+ 1/2 to p− 1/2.
This implies using the biliner form on (5.23) (defined there) that

c
µ†δ

= (µ+ 2ρ, µ) = (λ− δ` + 2ρ, λ− δ`) = (λ+ 2ρ, λ) + (δ`, δ`)− 2(λ+ 2ρ, δ`)

= c
λ†δ
− 1 + 2b` = c

λ†δ
+ 2p.

• An ∧ moves to the left: Again we have ε′ = ε. With the notation as above we have now
S(λ)` = p + 1/2. Which implies for the hook partition pλ` = δ/2 + ` − (p + 1/2) − 1 and
pµ` = pλ` + 1. Since an ∧ is moved, the coefficient ak gets changed from p− 1/2 to p+ 1/2,
where k is given by δ/2 + `− (p+ 1/2). We obtain

c
µ†δ

= (µ+ 2ρ, µ) = (λ+ εk + 2ρ, λ+ εk) = (λ+ 2ρ, λ) + (εk, εk)− 2(λ+ 2ρ, εk)

= c
λ†δ

+ 1 + 2ak = c
λ†δ

+ 2p.

• An ∧ or a ∨ moves to the right: In both cases, independent whether an ∧ or a ∨ is moved,
a similar calculation as the two previous cases shows that c

µ†δ
= c

λ†δ
− 2p.

If p = 0 then only the sign gets changed, the hook partition is preserved. Hence the value
of the Cr | 2n-action is preserved. (The underlying SOSp-modules are isomorphic). �

8. Translation functors on F

Instead of working with the set sΓδ(n|m) of equivalence classes of weight diagrams with
signs we prefer to work with weight diagrams only. Which set of weight diagrams we obtain

will depend on r and n and not only on δ, and its elements are obtained from the λ†δ by an
easy procedure. That means we will rewrite each equivalence class of signed weight diagrams
as a certain new weight diagram which we call a super weight diagram.

4A 3 is counted as ∧ or ∨.
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These super weight diagrams will by construction be admissible, and so the corresponding
cup diagrams have finitely many cups. We will later see that the number of cups is related
to the atypicality of the irreducible OSp(r | 2n)-module corresponding to the signed hook
partition we started with, Corollary 13.6. These cup diagrams will be used later to give
a basis for the morphism space of indecomposable projective objects in F as well as of
HomF (Rδ(λ), Rδ(µ)).

The super weight diagrams are also particularly useful in understanding the behaviour of
FRδ(λ) under the action of translation functors. This will be used crucially in the proof of
the remaining part of Theorem 7.8.

8.1. The super weight diagram attached to an irreducible OSp(r | 2n)-module. We
assign now a certain admissible weight diagram to each irreducible OSp(r | 2n)-module.

Definition 8.1. Let λδ be a projective weight diagram, then the corresponding super weight

diagram λ?
ε is obtained as follows: Consider the signed (n,m)-hook weight diagram λ†δ =

(Φ(λ), ε) associated to λδ via Proposition 7.6 and its cup diagram Φ(λ) . Then λ?
ε is defined

as the unique admissible weight diagram µ with def(µ) + rk(µ) = min(m,n) such that

• µ is obtained from Φ(λ) by replacing (infinitely many) dotted cups with two undotted
vertical rays each,

• and possibly a dot on the resulting leftmost ray depending on the sign of λ†δ according to
the following sign rule.

Sign rule: If δ is even, then we put a dot on the first ray if ε = + and no dot if ε = −. If
δ is odd, then we put a dot if the leftmost ray in λδ is undotted and we do not put a dot
if the leftmost ray in λδ is dotted. The weight diagram λ?

ε is then called the super weight
diagram attached to W∞δ

−1(Φ(λ), ε). Let sΓδ(n|m) be the set of all super weight diagrams.

The super weight diagram is well-defined thanks to Lemma 7.4. When passing from Φ(λ)
to λ?

ε all undotted cups and then the required amount of leftmost dotted cups are kept. The
dotted cups which got removed in Definition 8.1 were called fake cups in [ES17, Definition 4.1]
and the vertices attached to them frozen. Some examples are given in Section 12.3. The
frozen vertices are indicated by small circles around the symbols.

Remark 8.2. In the case of odd δ, we can also formulate the sign rule directly in terms
of the signed (n,m)-hook weight diagram (pλ∞, ε) without knowledge of the corresponding
projective weight diagram λδ using Lemma 6.13 and Proposition 8.4 below5. Namely for
each symbol ◦ or × in pλ∞ we count the number of endpoints of rays and cups in pλ∞ to the
left of this symbol, and take their sum plus the total number of undotted cups in pλ∞. Let
this be s. In case s is even, we put a dot on the first ray if ε = + and no dot if ε = −. In
case s is odd, we put a dot on the first ray if ε = −, and no dot if ε = +. In other words, we
choose β such that, with µ := pλ∞, the number u+

∑
i∈µ−1({◦,×}) |{j < i | µ(j) ∈ {∧,∨}}+β

is odd in case ε = + and even in case ε = −.

Definition 8.3. The cup diagram for a signed hook partition λ†δ is defined as λ†δ := pλ?
ε .

Via the map λ 7→ λ†δ we can also talk about the super cup diagram attached to Rδ(λ).

Here in an easy, but important observation:

Proposition 8.4. If FRδ(λ) is projective, then λ†δ agrees with λδ up to a dot on the leftmost
ray, and additionally a dot on the cup attached to 3 in case there is such a cup.

Proof. The first part is clear by construction, see Definition 8.1, since passing from λδ to λ†δ
means we label all vertices corresponding to rays in λδ with ∧. By projectivity they are all
frozen and hence get again turned into ∨’s in λ?

ε apart from maybe the leftmost one. Hence,

5Note that this rule is just a reformulation of the rule in [ES17, Definition 4.6].
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the two cup diagrams in question agree up to possibly a dot on the first ray. That they are
in fact different follows then from Lemma 6.13 together with (C-1) from Definition 6.3 in
case of a cup attached to 3. �

8.2. i-induction and i-translation functors. We will now introduce translation func-
tors with the nice property that they send an indecomposable projective module either to
an indecomposable projective module, to zero, or to the direct sum of two copies of an
indecomposable projective module.

Definition 8.5. Let i ∈ Z + δ/2. Given a cup diagram λ for an admissible weight diagram
λ consider the following i-translation pictures involving the vertices |i| − 1/2 and |i|+ 1/2.

(i)
◦

◦

×

×

×

×

◦

◦
(ii)

× ◦

◦ ×

◦ ×

× ◦

Θi Θi Θ−i Θ−i Θi Θi Θ−i Θ−i

(iii)
◦

3 ◦

◦

3 ◦

3 ◦

◦

3 ◦

◦
(iv)

◦ ×

3

◦ ×

3

3

◦ ×

3

◦ ×
(v)

Θ1/2 Θ1/2 Θ−1/2 Θ−1/2 Θ1/2 Θ1/2 Θ−1/2 Θ−1/2 Θ0

(8.38)

By applying i-translation to λ we mean

(T-1) in case i 6= 0, to put a translation picture Θi from i)-iv) on top of λ identifying
the vertices at the bottom of the translation picture with two neighboured vertices
|i|±1/2 at the top of λ, and afterwards remove pairs of two dots on the same connected
component so that each component has at most one dot. Hereby the involved ◦’s,
×’s and 3’s in the translation picture have to match the labels at vertices |i| ± 1/2

in λ, and a cap cannot be put on top of two undotted rays. The resulting diagram
is (topologically) either again a cup diagram µ or a cup diagram µ with an internal
circle; and

(T-2) in case i = 0 to put the picture v) on top of λ at position 1/2, if the position 1/2 exists
and does not carry a ◦ or ×. Again, we obtain a cup diagram µ.

In either case just described we call the cup diagram µ a translated cup diagram or more
precisely a cup diagram obtained from λ by an i-translation.

Example 8.6. A number of example of translation pictures applied to cup diagrams is
given. Here the first two are not defined, while the last two give the indicated cup diagram,
with the third one having an internal circle.

i)

× ◦

ii)

× ◦

iii)

× ◦
=

× ◦

iv)◦

3 ◦

◦

=
3 ◦

The translation pictures describe i-induction on projective objects in D(δ).

Theorem 8.7. Let λ ∈ Λ and i ∈ Z + δ/2. Then

i -ind(Rδ(λ)) ∼=
⊕
µ

Rδ(µ)⊕sµ , i -ind(Pδ(λ)) ∼=
⊕
µ

Pδ(µ)⊕sµ , and

i -ind(Pd,δ(λ)) ∼=
⊕
µ

Pd+1,δ(µ)⊕sµ ,
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where µ runs through all partitions, such that µ
δ

can be obtained by an i-translation applied
to λδ not creating a circle with an odd number of dots. The multiplicity sµ is sµ = 2 if hereby
a circle (with an even number of dots) occurred, and sµ = 1 otherwise.

Proof. This is [ES18, Theorem 4.5]. �

The following easy observation will be crucial in proving the categorification statements.

Proposition 8.8. Let λ, µ ∈ Λ then κ(µδ) ≥ κ(λδ) if µ
δ

is obtained by a translation from

λδ. Moreover, κ(µδ) > κ(λδ) only if the translation picture is a cap put on top of a dotted
and an undotted ray in λ.

Proof. By applying a translation picture to λδ we never destroy cups except when we create
(using a translation picture with a cap) a small circle consisting of one cup and one cap
which then gets removed. But in this case we create additionally one ◦ and one ×. We can
create a new cups, but only by destroying one ◦ and one ×. Conversely we only can destroy
◦ and × in pairs and at the same time create a cup. We can only create ◦ and ×’s in pairs
by either creating a circle as in the beginning of the proof or by putting a cap on top of a
dotted and an undotted ray, see (8.40). In this case we obviously have κ(µδ) > κ(λδ)+1. �

Let λ†δ = (Φ(λ), ε) and µ†δ = (Φ(µ), ε′) be signed hook partitions. By [ES17, Propositions

6.2 and 6.3], L(λ†δ) and L(µ†δ) are in the same block of F if the positions of the ◦ and ×
coincide in pλ∞ and pµ∞ and ε = ε′.

Definition 8.9. The endofunctor −⊗V of F decomposes as −⊗V = ⊕i∈Z+δ/2Θi, where Θi

is the direct summand which changes the generalized eigenvalue of the Cr | 2n-action by 2i.
We call Θi the i-translation functor.

By Lemma 7.9, Θi can be non-zero only on blocks whose weight diagrams look locally as
at the bottom of a picture in (8.38) subtitled Θi (with image in the block at the top). We
finish this section by the following very important application of Theorem 7.8.

Theorem 8.10. The functor F(r | 2n) interwiners i-induction with i-translation, that means

F(r | 2n) ◦ i -ind ∼= ΘiF(r | 2n) (8.39)

for any i ∈ Z + δ/2. Moreover, Θi(P (λ†δ)
∼=
⊕

µ†δ
P (λ†δ)

⊗s where µ†δ runs through all signed

hook partitions, such that µ?
δ

can be obtained by an i-translation applied to λ?
δ not creating

a circle with an odd number of dots. The results are zero in case the sum is empty. The
multiplicity is s = 2 if hereby a circle occurred, and s = 1 otherwise.

Remark 8.11. Note that Theorem 8.7 and Theorem 8.10 imply that i-induction for i 6=
−1/2 sends the indecomposable objects Rδ(λ), Pd,δ(λ) to indecomposable objects, to zero or
to two copies of an indecomposable object. Thus Θi sends indecomposable projectives to
indecomposable projectives to zero or to two copies of an indecomposable projective. This
fact was already observed in [GS13].

Proof. The statement (8.39) is clear from the definitions and Proposition 6.15. For the second

part we assume Theorem 7.8. Let P (λ†δ). Clearly, Θi(P ) is projective, since − ⊗ V is exact
and selfadjoint. By Theorem 7.8 P ∼= F(r | 2n)(Rδ(λ)), and thus Θi(P ) ∼= F(r | 2n)(i -indRδ(λ)).
By Theorem 8.7 the indecomposable summands in i -indRδ(λ) are of the form Rδ(µ) where
µ
δ

is obtained from λδ by applying i-translation. Then by Theorem 5.12 and Theorem 6.17,

the direct summands in Θi(P ) are precisely the corresponding P (µ†δ) (with multiplicities)
for κ(µδ) = min(m,n). We have to match it now with the diagrammatics.
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In case κ(µδ) > min(m,n), we are by Proposition 8.8 in a local situation as follows:

× ◦ ( )† × ◦
(8.40)

with F(r | 2n) ◦ i -indRδ(λ) = {0}, hence Θi(P ) = {0}. The dotted ray here must be the
leftmost ray. By assumption κ(λδ) = min(m,n), and so Proposition 8.4 applies. Therefore,
pλ?
ε is the same cup diagram as λ except that the leftmost ray is now undotted, see (8.40).

Then no i-translation picture can be applied and hence the diagrammatical formula is true.
If κ(µδ) = min(m,n) the diagrammatical formula follows from Proposition 8.4. (This

is indeed obvious except that one has to keep track of dots on the leftmost ray. We leave
this check to the reader, but in fact one can see it also by following through the proof of
Proposition 9.1). �

Remark 8.12. Note that Θi, i 6= −1/2 is a classical translation functor in Lie theory, since
restricted to a block it is the functor − ⊗ V followed by projecting onto some block. Note
however that Θ−1/2 has image in two different blocks (see the two pictures in iv)), hence this
functor decomposes further if we project onto one of the two blocks.

We finish with an application in direction of our main categorification theorem.

Definition 8.13. For any k ∈ Z≥0 let Ik = {λ ∈ Λ | κ(λδ) ≥ k} and denote by Ik the full
additive subcategory of Repδ generated by the {Rδ(λ) | κ(λδ) ≥ k}.

This can be used to define a filtration on the Fock space considered in Theorem 3.5.

Corollary 8.14 (Layerfiltration). The isomorphism classes [Pδ(λ)], λ ∈ Ik generate a vector
subspace K0(D∆(δ))>k of K0(D∆(δ)) which is stable under the action of U(gθ).

Proof. The action of the generators Bi in Theorem 3.5 is given by [i -ind]. Then the claim
follows from Theorem 8.7 and Proposition 8.8. �

Definition 8.15. We call the subquotient K0 (D∆(δ)))k := K⊕0 (D∆(δ))>k/K0(D∆(δ))>(k+1)

the kth layer of the filtration. It has basis {[Pδ(λ)] | κ(λδ) = k}.

9. Proof of Theorem 7.8 using the Eigenvalue Comparison Lemma

It remains to show that the indecomposable summand FRδ(λ) of the OSp(r | 2n)-module
V ⊗d has irreducible head isomorphic to L(λ†) to complete the proof of Theorem 7.8. The
proof contains two main ideas: one is the matching of the combinatorics of i-induction and
i-translation functors and the second is the Eigenvalue Comparison Lemma justifying that
the two values i correspond under the functor F.

Proof of Theorem 7.8. As before we abbreviate F = F(r | 2n). If λ = ∅, then FRδ(λ) is the
trivial OSp(r | 2n)-module, i.e. FRδ(λ) ∼= L((0,+)), which via Proposition 5.2 corresponds to
the empty hook partition. Now p∅∞ is equal to ∅δ with all symbols flipped upside down.

On the other hand, ∅δ has no cups, and therefore λ†δ = (p∅∞,+) and p∅?
+ has precisely

min(m,n) dotted cups and a dotted ray. The claim follows in this case.
Assume now that µ ∈ Λ is obtained from λ ∈ Λ by adding one box and that the claim

is proved for FRδ(λ) with λ†δ = (pλ∞, ε). Then µδ differs from λδ by exactly one local move
from (6.30), say at position p± 1/2. Assume first that we do not have the situation that 3∨
turns into ◦∧.

By Lemma 6.14 and Remark 8.11, Rδ(µ) is (up to isomorphism) the unique indecomposable
summand in i -ind(Rδ(λ)) where i = ±p with the sign depending on whether a symbol was
moved to the left or to the right. Therefore, F(Rδ(µ)) is the unique indecomposable summand
in F(Rδ(λ) � Rδ(�)) = F(Rδ(λ)) ⊗ V contained in the generalized eigenspace for Ωd (with
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d = |µ|) with eigenvalue cBr
µ = cBr

λ ± 2p, which is also the generalized eigenvalue for the
Cr | 2n-action by Proposition 6.15.

By induction hypothesis we have a surjection P (λ†δ) � FRδ(λ), hence also P (λ†δ) ⊗ V �
FRδ(λ) ⊗ V ∼= F(Rδ(λ) � Rδ(∅)). In fact, already the direct summand contained in the

generalized 2p-eigenspace surjects onto FRδ(µ). Thus by Lemma 7.9 we obtain that P (ν†δ)

must surject onto FRδ(µ) where ν†δ is obtained from pλde† by a local move of a symbol at
positions p ± 1/2 and by Lemma 6.14 such that this symbol is moved in the same direction
as when passing from λδ to µδ.

In case 3∨ turns into ◦∧, the the summand P (ν†δ) is not unique. Instead, we have

to work with a direct sum P (ν†δ) ⊕ P (η†δ) where ν?
δ and η?

δ only differ by a dot on the
leftmost ray. However for one of the summands we know the claim already by induction,

say FRδ(η) ∼= P (η†δ). Thus by Lemma 7.9 we obtain that P (ν†δ) must surject onto FRδ(µ).

It remains to show µ†δ = ν†δ , since then FRδ(µ) has irreducible head L(µ†δ). By the same
induction on |λ|, this is Proposition 9.1 below, since we have established the case λ = ∅. �

Proposition 9.1 (Eigenvalue Comparison Lemma). Let λ, µ ∈ Λ and λ†δ = (pλ∞, ε) and

µ†δ = (pµ∞, ε′). If µ is obtained from λ by adding one extra box, then

cBr
λ = c

λ†δ
=⇒ cBr

µ = c
µ†δ
. (9.41)

Moreover, µ
δ

is obtained from λδ and pµ?
ε′ from pλ?

ε by some i-translation for the same i. The

corresponding translation pictures (8.38) agree except of an extra dot on on the cup or ray
attached to position zero if a diamond gets moved out of position zero (that is if i = −1/2).

Proof. Since the partitions differ by a box, the Deligne weight µδ is obtained from λδ by a
local move from (6.30). We start with the case where δ is odd.

• Assume first µδ is obtained from λδ by one of the first four ”easy” moves in (6.30). We
explain the argument for the first of these moves only, since the others are similar. The ∨
involved in the move could correspond to a cup or a ray in λδ, as in one of the following
local situation 6

◦
◦ ( )†

◦
◦

◦
◦ ( )†

◦
◦

◦
◦ ( )†

◦
◦

◦
◦ ( )†

◦
◦

The first picture illustrates the situation, when we have a cup, the others when we
have a ray (which must be undotted). We indicated in each case the change when passing
from λδ to µ

δ
. In the second pictures we have κ(λδ) < min(m,n), whereas in the last

κ(λδ) = min(m,n) and the move happens at the leftmost ray. Applying ( )† gives µ†δ
respectively λ†δ with the cup diagrams λ?

δ respectively µ?
δ

as indicated. Indeed, in the
first picture the cup exists in λδ and µ

δ
and must stay when we apply the map. In the

second picture κ(λδ) < min(m,n) and then also κ(µδ) < min(m,n) by Proposition 8.8
and a dotted cup gets created at the position involved in the move when passing to λ?

δ ,
but then the same happens for µ?

δ
. In the third picture κ(λδ) ≤ min(m,n) and none of

the possibly newly created cups is attached to the position involved in the move (if this
holds for λδ then also for µδ). In the last picture we have κ(λδ) = min(m,n) = κµδ and
therefore applying the map ( )† keeps the cup diagrams except of maybe an extra dot
on the leftmost ray, see Proposition 8.4. To check the signs note that adding a box of
course changes the parity of the number of boxes in a partition. On the other hand par
is changed locally at the two vertices involved in the move. Hence the leftmost ray in

6Note that here and in the following illustrations the indicated cups could be much bigger than drawn and
could have other cups nested inside. Only the endpoints at the vertices involved in the move are fixed.
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µ?
δ

has a dot if and only if the leftmost ray in λ?
δ has a dot. Therefore µ?

δ
differs from

µ?
δ

exactly by the same i-translation as µ
δ

does from λδ. The changes in the Ω and the
Cr | 2n-value agree by Lemma 7.9 and Lemma 6.14.
• For the fifth and sixth move in (6.30) the claim is obviously true.
• We argue now for the seventh move in (6.30), but omit the eighth, since only the involved
◦ and × are switched. If λδ has cups attached to both vertices involved in the move, we
have local pictures as follows

× ◦ ( )† × ◦ × ◦ ( )† × ◦ × ◦ ( )† × ◦

(Note that λδ has the configuration ∧,∨ at the two vertices in question.) Since in each
move par is changed the leftmost ray is kept dotted respectively undotted in the corre-
sponding move on the super side. Again, the changes in the Ω and the Cr | 2n-value agree
by Lemma 7.9 and Lemma 6.14.

If λδ has a cup attached to one of the vertices involved in the move, we have locally

× ◦ ( )† × ◦ × ◦ ( )† × ◦ × ◦ ( )† × ◦

× ◦ ( )† × ◦ × ◦ ( )† × ◦ × ◦ ( )† × ◦

× ◦ ( )† × ◦

In the leftmost picture in the first two rows the ray becomes part of a (dotted) cup on
the super side (assuming λδ is not a projectiv weight diagram). Here and in the following
we use Proposition 8.8 without mentioning it explicitly. The second and third pictures
from these rows show the cases where the ray stays a ray. It might turn into a dotted
one or from a dotted into an undotted when we apply ( )†, but this happens in the same
way for λ and µ. This is because locally at the two vertices (and then also globally) par
changes. In the last case we create a new undotted cup out of the dotted ray. Obviously
the same i-translation is applied on each side of map. Again, the changes in the Ω and
the Cr | 2n-value agree by Lemma 7.9 and Lemma 6.14.

If we have two rays attached to the two involved vertices, the left one must be dotted
and the right one undotted. In case κ(λδ) < min(m,n) a new undotted cup gets created

κ(λδ)<min(m,n):
× ◦ ( )† × ◦

κ(λδ)=min(m,n):
× ◦ ( )† × ◦

(9.42)

and, again, the changes in the Ω and the Cr | 2n-value agree by Lemma 7.9 and Lemma 6.14.
In the second case, we create an additional ◦, × pair in µδ which means FRδ(µ) = {0}.
But on the other hand, the translation on the super side is not defined.
• Finally we have to consider the case, where µδ differs from λδ by a flip of a ∨ into an ∧ at

1/2. Now λδ could have a cup or a ray at position 1/2. If there is a (necessarily undotted)
cup, then it stays a cup when we apply ( )†. Moving to µ

δ
creates a dotted cup which

again stays when applying ( )†. Since par is changed in the diagram during the move, the
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leftmost ray will be unchanged after we apply ( )†, see picture i),

i)
( )†

ii)
( )†

iii)
( )† =

Otherwise there must be a ray (necessarily undotted) at position 1/2. If λ is a projective
weight diagram, then the claim follows from Proposition 8.4, see iii). If λδ is not a
projective weight diagram, then ∨ at position 1/2 corresponding to a ray in λδ becomes
an ∧ when we apply the †-map and hence creates a dotted cup in the corresponding cup
diagram. Then µδ has an ∧ instead which turns into a ∨ when we apply the †-map and
hence creates an undotted cup. In all these cases neither the Ω- nor the Cr | 2n-value

change by Lemma 7.9 and Lemma 6.14. (In fact L(λ†δ) and L(µ†δ) are isomorphic as
osp-modules, but different as OSp(r | 2n)-modules.)

This proves all claims in the proposition in case δ is odd. Now assume δ is even. Let ε and
ε′ be the signs attached to λ respectively µ.

• For the first four ”easy” moves from (6.30) the arguments are exactly as in the odd case,
as long as the vertices involved in the move are not connected with the leftmost ray. We
explain the argument for the first of these moves assuming the leftmost ray is connected
to the involved vertex. Then the situation looks locally as follows:

◦
◦ ( )†

◦
◦

ε=+

ε=+

◦
◦ ( )†

◦
◦

ε=−

ε=−

◦
◦ ( )†

◦
◦

ε=+

ε=+

In the first two pictures we have the situation κ(λδ) = min(m,n), whereas in the third
κ(λδ) < min(m,n) and hence we create an extra dotted cup on the super side. Since
κ(λδ) = κ(µδ) and also ε = ε′ the claims follow.
• For the fifth and sixth move in (6.30) the claims are again obviously true.
• We argue for the seventh move in (6.30), and omit the eighth.

– We have the special situation that the first involved vertex is connected in λδ with the
zero position. (This cannot happen with the second involved vertex, since it is labelled
by a ∨.) If κ(λδ) < min(m,n), then we have the first situation here, otherwise the
second or third.

3 × ◦ ( )† 3 × ◦

ε=+

ε=+
3 × ◦ ( )† 3 × ◦

ε=+

no sign
3 × ◦ ( )† 3 × ◦

ε=+

no sign

The dotted ray is always the leftmost ray in the diagram. Again all claims follow.
– The remaining arguments for the seventh move are the same as for odd δ as long as

the leftmost ray in λδ is not attached to the involved vertices.
∗ If there is exactly one ray attached to the involved vertices. then we have one of

the following five situations
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× ◦ ( )† × ◦

ε=+

ε=+
× ◦ ( )† × ◦

ε=−

ε=−
× ◦ ( )† × ◦

ε=+

ε=+

× ◦ ( )† × ◦

ε=+

ε=−
× ◦ ( )† × ◦

ε=−

ε=+

In the first two columns κ(λδ) = min(m,n). This is preserved when passing to
µδ, but also the sign since we destroy a cup but create additionally a pair ×◦,
the leftmost ray is kept dotted respectively undotted and by then passing to the
super side, the leftmost ray becomes undotted respectively dotted. In the rightmost
picture κ(λδ) < min(m,n), hence a cup gets created on the super side. This cup is
undotted, since the symbol attached to the dotted ray on the Brauer/Deligne side
is turned into a ∨ on the super side. Again κ(µδ) = κ(λδ), and the sign is preserved.
∗ The case that each of the involved vertices is attached to a ray in λδ is (8.40).

This settles the first eight (and of course the last) moves from (6.30)
• Now consider the ninth move. We have the following local situations if κ(λδ) = min(m,n)

◦
3 ◦ ( )†

◦
3 ◦

ε=+

no sign

◦
3 ◦ ( )†

◦
3 ◦

ε=+

no sign

where by (6.30) we always start with an undotted ray, hence the sign is +. Clearly,
κ(µδ) = min(m,n) as well. By the rule how to interpret 3 it has to be opposite before
to after applying the map ( )†. If κ(µδ) < min(m,n) then we create (possibly many)
additional cups, but one of them at position zero:

◦
3 ◦ ( )†

◦
3 ◦

ε=+

ε=+

◦
3 ◦ ( )†

◦
3 ◦

ε=+

ε=+

◦
3 ◦ ( )†

◦
3 ◦

ε=+

ε=+

◦
3 ◦ ( )†

◦
3 ◦

ε=+

ε=+

Here the sign is is + and so the leftmost ray on the super side must be dotted (as
indicated). Outside the displayed parts λδ and µδ respectively λδ and µ

δ
do not differ.
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• For the tenth move we argue as for the seventh. The possible local situations are

3
◦ × ( )†

3
◦ ×

ε=+ /−

ε=+ /−

3
◦ × ( )†

3
◦ ×

ε=+

ε=+

3
◦ × ( )†

3
◦ ×

ε=+ /−

ε=+ /−

3
◦ × ( )†

3
◦ ×

ε=+ /−

ε=+ /−

3
◦ × ( )†

3
◦ ×

ε=+

ε=+

3
◦ × ( )†

3
◦ ×

ε=+ /−

ε=+ /−

Note that in all situations, the left most ray on the super side is swapped from undotted to
dotted or vice versa compared to the Deligne side. This holds for both κ(λδ) = min(m,n)
and κ(λδ) < min(m,n) and swaps the role of 3 from one side to the other.
• For the eleventh move we first assume that λµ has a cup connected with position zero:

◦3
◦ ( )†

◦3
◦

ε=+/−

ε=+/−

◦3
◦ ( )†

◦3
◦

ε=+/−

ε=+/−

◦3
◦ ( )†

◦3
◦

ε=+/−

ε=+/−

◦3
◦ ( )†

◦3
◦

ε=+/−

ε=+/−

If λδ is a projective weight diagram, the sign is + or −, depending on the leftmost ray,
and it is + otherwise. In particular it stays the same for µδ. This leftmost ray gets
changed and an additional dot appears on the cup when passing to the super side, see
Proposition 8.4. The translation pictures on the two sides differ by a dot as claimed.

Now assume there is not a cup, hence there must be a ray, at position zero. If κ(λδ) =
min(m,n) then the possible scenarios are as follows:

◦3
◦ ( )†

◦3
◦

no sign

ε=+

◦3
◦ ( )†

◦3
◦

no sign

ε=−

◦3
◦ ( )†

◦3
◦

no sign

ε=−

◦3
◦ ( )†

◦3
◦

no sign

ε=+

If κ(λδ) < min(m,n) then we create a new cup at zero on the super side. Whether it is
dotted or not depends on how the 3 has to be interpreted.

◦3
◦ ( )†

◦3
◦

ε=+

ε=+

◦3
◦ ( )†

◦3
◦

ε=+

ε=+

We display here for the Brauer/Deligne side the first two rays and then the first ray which
does not turn into a cup when we apply the map ( )†. Again we see that the translation
pictures on the two sides differ by a dot. The remaining claims are obvious.
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• For the 12th move we obtain the following local situations

◦ ×
3 ( )†

◦ ×
3

ε=+

ε=+

◦ ×
3 ( )†

◦ ×
3

ε=+

ε=+

◦ ×
3 ( )†

◦ ×
3

ε=−

ε=−

◦ ×
3 ( )†

◦ ×
3

ε=−

ε=−

Note that µδ has an ∧ at position 1 creating a cup at zero in µ
δ
. Whether there is a dot

on the cup depends on how the 3 gets interpreted, but the leftmost ray should not change
when passing from λδ to µ

δ
, in particular the sign is preserved. The depicted situations

are in case λδ is projective, where by Proposition 8.4 the super side adds additional dots
on the leftmost ray and on the cup at zero. The case of non-projective λ and µ are the
same as the first two depicted situations with the difference that the left most ray on the
super side comes from some undotted ray on the Deligne side, not necessarily the left
most. Hence the sign is always + and again the cup at zero must get an additional dot
by the rules how to interpret the 3. We see that the translation pictures on the two sides
differ by a dot.

This finished finally all the moves from (6.30). The proposition follows. �

10. The category F as a graded module category

We now prepare the proof of the main theorem, an explicit description of the category
F(r | 2n) as the category of finite dimensional modules over the algebra A(r | 2n).

10.1. The algebra A(r | 2n).

Definition 10.1. The algebra describing F(r | 2n), denoted A(r | 2n), is defined as

A(r | 2n) =

 ⊕
(λ,ε),(µ,ε′)∈Γδ(n,m)×{±}

HomF(r | 2n)(P (λ, ε), P (µ, ε′))

op

. (10.43)

This is a locally finite dimensional (not unital, but) locally unital algebra with primitive
idempotents labelled by signed hook partitions or equivalently their signed hook weight
diagrams. By general theory, see e.g. [Mit72],⊕

(λ,ε)∈Γδ(n,m)×{±}

HomF(r | 2n)(P (λ, ε),− ) : F(r | 2n) −→ A(r | 2n)- mod (10.44)

is an equivalence of categories. To describe A(r | 2n) we first express the category Repδ (or
rather a basic version) in terms of circle diagrams, then connect Repδ with F(r | 2n) and
describe the algebra A(r | 2n). The construction moreover allows to enrich morphism spaces
in graded vector spaces (where by graded we always mean Z-graded). We start by defining
this graded enrichment.

10.2. The basic graded Deligne category gRepbsc
δ and the nuclear ideal.

Definition 10.2. Let k ∈ Z≥0 and Ik as in Definition 8.13.

(1) Define the (locally finite dimensional locally unital) algebra 1kA1k = ⊕λ,µ∈IkeλAeµ
with its distinguished basis given by λνµ ∈ Bd,δ(λ, µ) where λ, µ ∈ Ik.

(2) Denote by 1kA1k+1A1k the twosided ideal of 1kA1k generated by the idempotents
eλ = λλλ with λ ∈ Ik+1. For λ ∈ Ik we denote by eλ ∈ 1kA1k/1kA1k+1A1k the
idempotent which obtained as the image of eλ = λλλ under the canonical projection.

(3) A basis vector λνµ ∈ 1kA1k is nuclear if it contains at least one non-propagating
line. We denote by Ik ⊆ 1kA1k the span of such nuclear basis vectors and call it the
nuclear ideal in 1kA1k.
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Example 10.3. An example for a nuclear basis vector, in this case for k = 4, is

∨ ∨ × ◦ ∧ ∨ ∧ ∨ ∧ ∨ ∨ ∨ ∨

It was shown in [ES17, Proposition 5.3] that Ik ⊆ 1kA1k is indead an ideal. The algebra
1kA1k, the nuclear ideal Ik, and thus also the quotient algebra 1kA1k/Ik inherit a Z≥0-
grading from gRepδ. We give now a categorical characterisation using Definition 8.13.

Lemma 10.4. Let k ∈ Z≥0, λ, µ ∈ Ik and f ∈ Bd′,δ(λ, µ) with λ, µ ∈ Λd(δ). Then

f is nuclear if and only if it factors through an object ν ∈ Ik+1

(i.e. there exists d ∈ Z≥0, ν ∈ Ik+1 and f1 ∈ Bd,δ(ν, µ), f2 ∈ Bd,δ(λ, ν) such that f1 ◦f2 = f).

Proof. ⇒:) It obviously suffices to check this for basis morphisms. So let f be given by a
circle diagram, f = λνµ.

Each non-propagating line L in D must end with two rays at the same side of the circle
diagram. Hence, this line looks roughly as follows,

I) ∨ ∨ II) ∧ ∨ III) ∨ ∨ IV) ∧ ∨

where the dashed part can be a combination of an arbitrary number of cups and caps. In
case I) and III) there are an odd number of dots (indicated by a single dot) on the dashed part,
whereas in case II) and IV) there is an even number of dots on the dashed part (indicated by
putting no dot). These are all possible configurations and thus non-propagating lines cannot
be nested one inside the other, since this would contradict the rule that dots must be visible
from the left in the sense of [ES16b, Definition 3.5]. In particular this implies that there are
no further rays between the two, indicated in the cases, at the ends of L.

Pick the left-most non-propagating lines L in D ending at the bottom. This is always pos-
sible by [ES17, Proof of Proposition 5.3] since the number of non-propagating lines starting
at top and bottom agree. For f = λνµ we now define a few modified weights. First let λ′

be the weight diagram that is obtained from λ by swapping both symbols at the end of the
two rays involved in L. For λ′ this implies that it agrees with λ except that the two rays are
replaced by a single cup, which is dotted or undotted according two whether the two rays
where undotted or one was dotted. One can replace the two rays also by a dotted cup since
we choose the leftmost non-propagating line. Now let ν ′ be the weight diagram obtained
from ν by swapping all symbols that lie on the line L, not just the two for the rays as in λ′.
We can then form the two oriented circle diagrams f1 = λ′ν ′µ and f2 = λλλ′. Note that the
f1 only differs from f by having the two rays involved in L replaced by a cup and the newly
created circle being oriented anticlockwise (with the λ it would have been oriented clock-
wise), while f2 only consists of small anticlockwise circles, i.e. circles consisting of a single
cup and cap, except for a single non-propagating line starting at the bottom consisting of
the two original rays and a single cup. Thus f2 is an element of degree 1 while f1 has degree
exactly one less than f and we are done by induction. We illustrate this in two examples
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f = λνµ : ∨ ∧ ∨ ∨ ∧ ∧ ∨ ∨ ∧ ∨

L

= ◦

f1 = λ′ν ′µ : ∨ ∧ ∨ ∨ ∨ ∧ ∨ ∧ ∨ ∧

f2 = λλλ′ : ∧ ∨ ∧ ∧ ∧ ∨ ∧ ∨ ∧ ∨

for the case of the non-propagating line starting as indicated above. The composition
f1 ◦f2 is well-defined and checking the multiplication rule [ES16b, Remark 5.13] one obtains
that the product only consists of merges and only the merge with the non-propagating line
in f2 is non-trivial, which exactly creates the line L in the result. Hence f = f1 ◦ f2 and by
construction it factors through an object in layer k + 1, since we increased the defect from
λ to λ′ by one and have the same rank, thus the layer is increased by 1.

Analogously one could have taken the non-propagating line starting at the top and split
off a degree 1 element. In this case we obtain:

f = λνµ : ∨ ∧ ∨ ∨ ∧ ∧ ∨ ∨ ∧ ∨

L

= ◦

f1 = µ′µµ : ∨ ∨ ∧ ∨ ∨ ∨ ∧ ∧ ∨ ∧

f2 = λν ′µ′ : ∧ ∧ ∨ ∧ ∧ ∧ ∨ ∨ ∧ ∨

⇐:) Assume that f factors through the layer k + 1. Hence f is a linear combination of
elements of the form f = f1 ◦ f2 for some circle diagrams fi, such that the there are k + 1
cups at the bottom of f1 (and thus also k+ 1 caps at the top of f2). Using the kink removal
argument as in [ES16b, (4.18)] it is easy to see that each closed circle and each propagating
line in a circle diagram must contain as many cups as caps. Hence there is at least one
non-progating line in f1 as well as in f2, and so they are nuclear and so is their composition.
Therefore f is nuclear. �

Theorem 10.5 (Main Endomorphism Theorem). There is an isomorphism of algebras

Ψ : A(r | 2n)
∼= 1kA1k/1kA1k+1A1k

which identifies the primitive idempotent corresponding to P (λ) ∈ F(r | 2n) with the idempo-

tent eΨ(λ) such that Ψ(λ) = λ?
ε . Moreover, A(r | 2n) inherits a positive grading from A.

Proof. We claim that there is a surjective algebra homomorphism 1kA1k → A(r | 2n). To
see this let f ∈ A(r | 2n). By definition of A(r | 2n), it can be identified with some f ∈
EndF(r | 2n)(P, P ) for some projective module P which is the direct sum of finitely many pair-
wise non-isomorphic indecomposable projective objects in F(r | 2n). We can assume that they

are in the same block. By Proposition 5.10 there exists some V ⊗d which contains P as a sum-
mand and hence f can be identified with an endomorphism of V ⊗d. It can be lifted to an en-
domorphism in Brd(δ) by Theorem 5.8, and by construction and Theorem 6.17 actually to an
element in A. To make these choices canonical we realize each indecomposable projective as a
summand in some V ⊗d and consider the embeddings EndF(r | 2n)(V

⊗d) ↪→ EndF(r | 2n)(V
⊗d+1),

f 7→ f ⊗ 1. We then can embed A(r | 2n) as a subalgebra in lim−→EndF(r | 2n)(V
⊗d). By Theo-

rem 6.17 and Theorem 5.8 there is a surjective algebra homomorphism Ψ : 1kA1k → A(r | 2n).
By Theorem 7.8, it identifies the primitive idempotent corresponding to P (λ) ∈ F(r | 2n) with
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the idempotent eΨ(λ) such that Ψ(λ) = λ?
ε . By [ES17, Theorem 5.1], the map Ψ factors

through the nuclear ideal Ik inducing an isomorphism 1kA1k/Ik ∼= A(r | 2n). In particular,
A(r | 2n) inherits a positive grading from A. By Lemma 10.4 we obtain also an isomorphism
1kA1k/1kA1k+1A1k ∼= A(r | 2n). �

10.3. Categorification of the layers. Let k ∈ Z≥0. Then the full additive subcategory Ik
generated by the Rδ(λ), with λ ∈ Ik is a thick ideal in the sense of [CH17, 1.2]. To see this note
that it is stable under −� Rδ(�), and hence under −� Rδ(µ) thanks to Theorem 8.7. It was
proved in [CH17, Theorem 6.11], that these are precisely the thick ideals in Repδ. If 〈Ik+1〉
defines the tensor ideal in Ik generated by Ik+1, then Theorem 10.5 can be reformulated
(using the notion from from Section 5.3) as an equivalence of additive categories

Ik/〈Ik+1〉 ∼= Proj(F(r | 2n)),

where Proj(F(r | 2n)) denotes the full subcategory of F(r | 2n) given by projective objects.
This equivalence was in fact proved already in [Cou18, Theorem 7.1.1]. Our approach has

the advantage that we can lift it to a graded setting which we will do in the next section.
For a thick ideal Ik, the quotient Ik/Ik+1 is defined as the quotient category of Ik with

respect to all morphisms that factor through an objects in Ik+1.

Proposition 10.6. The functor F : Repδ → F restricts to a tensor functor F : Imin{m,n} →
F and factors through a functor

Imin{m,n}/Imin{m,n}+1 → Proj(F(r | 2n)), Rδ(λ) 7→ FRδ(λ) ∼= P (λ†δ) (10.45)

which is a bijection on objects and full on morphisms.

Proof. The first claim is clear, and the functor (10.45) is well-defined by Theorem 6.17,
surjective on objects by Proposition 5.10 and bijective by Theorem 6.17. It is full by Theo-
rem 5.8. �

The layers from Definition 8.15 describe the combinatorics of translation functors on
Proj(F(r | 2n)), where K⊕0 (Proj(F(r | 2n))) denotes the split Grothendieck group of the additive
category Proj(F(r | 2n)))

Corollary 10.7 (Categorification of Layers). There is a canonical isomorphism of U(gθ)-
modules

K0 (D∆(δ))k
∼= K⊕0 (Proj(F(r | 2n)))

Remark 10.8. That the functor induced by F in (10.45) is actually an equivalence was also
shown in [Cou18, Theorem 7.1.1]. In the notation therein, it is the bijectivity of Ob.

10.4. Additional remarks.

Graded Categorification Theorem. Note that the The First Categorification Theorem and
the Categorification of the Layers has naturally a graded version, since the nuclear ideal
is homogeneous. Including the grading corresponds to a quantized version of the involved
algebras, where U(g) is replaced by its usual quantum analogue Uq(g) and U(gθ) is replaced

by a subalgebra H respectively H of Uq(g) defined analogously to the classical case. For
their definition we refer to [ES18, Proposition 7.18. Proposition 7.17]. (The notation is
chosen such that the generators above correspond to the generator in the quantum version
denoted by the same letters.) To state the theorem consider the graded category Dgr(δ)
of graded representations of gRepδ as defined in ?? with its subcategory gD∆(δ) of graded
representations which have a filtration with subquotients graded standard representations,
see Remark 6.30, DeltaD(λ)〈i〉. For i ∈ Z we denote here by ∆δ(λ)〈i〉 the unique graded
lift of ∆δ(λ) normalised such that the head is in degree i ∈ Z.
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Theorem 10.9. There is an isomorphism of

K0(D∆(δ)) ∼= 〈 Λ 〉 ∼=
∞/2∧

Vδ, [∆δ(λ)] 7→ λ 7→ vλδ . (10.46)

In this case however the fixed point subalgebras are only coideal subalgebras, not Hopf
subalgebras. The appearing coideal subalgebras are the type (AIII) examples in the general
family of quantum symmetric pairs which were classified and studied by Letzter in [Let02]
[Let03] and further studied in [Kol14]. The lift to the graded setup is straight-forward using
the results from [ES18]. To get however explicit character formulas of simple modules one
has to develop the Fock space combinatorics further. This will be done in the sequel to this
paper.

noch fertig schreiben

The same coideal subalgebras (but without interpretation of the quantum parameter as a
grading shift) where used to obtain multiplicity formulas for category O for the orthosym-
plectic Lie superalgebra. In this setup also Fock spaces appeared and the arguments were
based on the so-called super duality connecting the combinatorics of the Lie superalgebras
with the combinatorics of classical category O. In contrast to our result for finite dimen-
sional representations, there is however no concrete description of the endomorphism ring of
a projective generator or of the morphism spaces between projective objects available (and
might in fact be far out of reach).

Highest weight structures. Recall the algebra A from Remark 2.5. By [BS18, Theorem 5.7]
Corollary 2.11 can be reformulated by saying that A can be equipped with the structure of an
upper finite based quasi-hereditary algebra in the sense of [BS18, Definition 5.1]. In contrast,
the algebra A(r | 2n) is an essentially finite algebra in the sense of [BS18], that is a locally
unital algebra A(r | 2n) = ⊕e

λ
†
δ

∈sΓδ(n|m)eλ†δ
Ae

µ†δ
with infinitely many primitive idempotents

e
λ†δ

, but finite dimensional pieces e
λ†δ
Ae

µ†δ
, and all indecomposable projectives have finite

length. Note that Ik ⊂ Λ is not an upper set in the sense of [BS18, 3.1]. Hence A(r | 2n)

does not inherit a nice stratification from the quasi-hereditary structure of A. However, the
standard filtrations of the Pδ(λ), λ ∈ Λ from Corollary 2.11 nevertheless induces a filtration
on any P (λ) ∈ F(r | 2n) where the subquotients are quotients of the standard representations
∆δ(µ), but the quotients we obtain could vary depending on P (λ). The combinatorics of
these filtrations is described in [ES17, Proposition 7.3]. The fact that the nuclear ideal is
not compatible with the poset Λ is one of the facts which make the category F hard to
understand.

Koszulity. The notion of Koszulity in [MOS09] generalizes (in natural way) the well-known
notion of Koszulity for finite dimensional algebras from [BGS96].

Conjecture 10.10. We conjecture that the algebra A(r | 2n) equipped with the grading from
Theorem 10.5 is a locally finite dimensional Koszul algebra in the sense of [MOS09].

The conjecture is true in case min(m,n) ≤ 2, see [ES16a]. In these cases we obtain infinite
zigzag algebras which are Koszul, see e.g. [ET19].

11. The graded Brauer algebras

In this section we introduce a graded version of the Brauer algebras, not just the basic
versions. We start by introducing graded versions of the up-down tableaux from Defini-
tion 1.21, the so-called oriented stretched cup diagrams. In contrast to ordinary up-down
tableaux they depend on δ.
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11.1. Grading on up-down tableaux. Recall the i-translations from Equation (8.38).

Definition 11.1. Let i ∈ Z + δ/2 and let Θ = Θ±i be a translation move at position i.

(1) Given a weight diagram λ we say that λ is compatible with the bottom respectively
top of Θ if the symbols ◦ and × in the bottom respectively top row of Θ match the
symbols of λ at positions |i| ± 1/2.

(2) Given two weight diagrams λ and µ λ is compatible with the bottom of Θ and µ is
compatible with the top of Θ. Then we say that λΘµ is oriented if λ and µ agree
outside of the positions |i|±1/2 and at positions |i|±1/2 putting the entries of λ below
Θ and the ones from µ above Θ gives an oriented diagram in the sense of (6.27).

Example 11.2. Let λ = ◦∨×∧∨∨∨ · · · , µ1 = ∨◦×∧∨∨∨ · · · , µ2 = ∨◦∧×∨∨∨ · · · and

Θ = Θ1 =
◦

◦
and Θ′ = Θ−2 =

×

×
.

We see that λ is compatible with the bottom of both Θ and Θ′, since it has ◦ at position
1/2 and × at position 5/2, but not with the top of either one. On the other hand µ1 is only
compatible with the top of Θ and the bottom of Θ′, while µ2 is only compatible with the
top of both Θ and Θ′. For the orientability we have that λΘµ1 and µ1Θ′µ2 are oriented,
while λΘµ2 and λΘ′µ2 are not oriented.

Definition 11.3. (1) A stretched cup diagram (for δ) is a sequence c = (c0, . . . , cd) of
cup diagrams such that c0 = ∅δ and cr is obtained from cr−1 by some ir-translation
Θir for 1 ≤ r ≤ d. We call (i1, . . . , id) the type of c and d its length.

(2) An orientation of c is a sequence λ = (λ0, . . . , λd) of weight diagrams such that
ciλi is oriented in the sense of (6.27) for any 0 ≤ i ≤ d. Furthermore the diagrams
λr−1Θirλr must all be oriented.

(3) We call λd the final weight diagram. The pair (c,λ) is called an oriented stretched
cup diagram and will in general be denoted by cλ.

We will denote by Ad the set7 of oriented stretched cup diagrams of length d. For a fixed
stretched cup diagram c (of length d) we will denote by cAd the set of all oriented stretched
cup diagrams of type c.

Remark 11.4. We identify an oriented stretched cup diagram with the picture obtained
by drawing the sequence λ of weights in order from bottom to top, putting ∅δ below and
the appropriate translation pictures Θi1 , . . . ,Θir (from (8.38)) between the weight diagrams
with additional vertical connections for the parts of the cup diagrams which do not get
changed under the translation. Note that the requirement of being oriented in each step
makes this into an oriented picture in the naive sense with dots interpreted as orientation
reversing points. For more details about stretched cup diagrams (but without dots) we refer
to [BS12a].

Example 11.5. Let us illustrate the two ways of viewing stretched cup diagrams from
Remark 11.4in an example. Here δ = 1 and the stretched cup diagram cλ has length 5. On
the left is the sequence of cup diagrams with corresponding orientations, while on the right

7Note the same notation for this space as for Verma paths in [ES18, Section 2.2], which is not a coincidence.
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shows the translations used in each step as well as the orientations.

c5λ5

∧ ∧ ∨ ∨ ∨ ∨ ···
···

c4λ4

∨ ∧ ∨ ∨ ∨ ∨ ···
···

c3λ3

∨ ◦ × ∨ ∨ ∨ ···
···

c2λ2

◦ ∨ × ∨ ∨ ∨ ···
···

c1λ1

◦ × ∨ ∨ ∨ ∨ ···
···

c0λ0

∧ ∨ ∨ ∨ ∨ ∨ ···
···

Θ5

∧ ∧ ∨ ∨ ∨ ∨ ···
···

Θ4

∨ ∧ ∨ ∨ ∨ ∨ ···
···

Θ3

∨ ◦ × ∨ ∨ ∨ ···
···

Θ2

◦ ∨ × ∨ ∨ ∨ ···
···

Θ1

◦ × ∨ ∨ ∨ ∨ ···
···

c0λ0

∧ ∨ ∨ ∨ ∨ ∨ ···
···

Definition 11.6. The reduction red(c) of a stretched cup diagram c of length d is the cup
diagram cd. Similarly red(cλ) = cdλd for an oriented diagram.

As for ordinary cup diagrams, we can use the stretched version to obtain circle diagrams.

Definition 11.7. An oriented stretched circle diagram, or osc-diagram for short, is a pair
(cλ, c′λ′) of oriented stretched cup diagrams with the same final weight diagram. We will
call it a (d, d′)-osc-diagram if we want to emphasize that c has length d and c′ has length d′.

Similar to stretched cup diagrams, we write cλλ′c′ for (cλ, c′λ′) and we call (c, c′) the
type of cλλ′c′.

We depict an osc-diagram by reflecting the diagram c′ vertically, but keeping the same
orientations, just in reversed order, and putting it on top of cλ in analogy to [BS12a, Section
6].

Definition 11.8. In analogy to the cup diagram case we denote by A
d′

d the set of all (d, d′)-

osc-diagram and by cA
d′

d c′ the sets of (d, d′)-osc-diagram of type (c, c′). The circles in an
osc-diagram that are already contained in either the stretched cup respectively cap diagram
part will be called internal circles in the following.

For an up-down tableaux λ denote by λδ the corresponding sequence of Deligne weight
diagrams obtained via Definition 6.8.

Proposition 11.9. (1) There is a canonical bijection

E
d′

d
1:1←→ A

d′

d (11.47)

sending (λ,µ) to cλδµδc
′. Here c, respectively c′, is the unique stretched cup diagram

of type (i1, . . . , id), respectively (i′1, . . . , i
′
d′), where the |ij | ± 1/2, respectively |ij |′ ±

1/2, are the involved vertices in the local moves (6.30) connecting λ
(j)
δ with λ

(j−1)
δ ,

respectively µ
(j)
δ with µ

(j−1)
δ .

(2) In particular, the number of (r, s)-osc diagrams is equal to dim HomBr(δ)(r, s).

Proof. Consider the translation pictures from (8.38). One easily verifies that the orientations
must look as follows

◦ ∨

∨ ◦

∨ ×

× ∨

× ∨

∨ ×

∨ ◦

◦ ∨

∨ ∧

× ◦

◦ ×

∨ ∧

∨ ∧

◦ ×

× ◦

∨ ∧

◦ ∨

3 ◦

◦ ∨

3 ◦

3 ◦

◦ ∨

3 ◦

◦ ∨

◦ ×

3 ∨

◦ ×

3 ∨

3 ∨

◦ ×

3 ∨

◦ ×

∨

∧
(11.48)
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or the role of ∨ and ∧ swapped. Further they are all allowed. But this corresponds
exactly to the local moves (6.30) read from top or from the bottom. Therefore (11.47)
follows. Statement (2) is then clear from Proposition 1.22. �

Remark 11.10. Note that by Proposition 11.9 part (1) there is a natural bijection between

E
d′

d and A
d′

d . Hence one should think of E
d′

d as the labelling set that is independent of δ, i.e.

it originates from the invariant theoretic side of the Brauer algebra, while the the set A
d′

d

depends on δ and originates in the version of the Brauer algebra obtained via Verma paths
and category O as described in Theorem 4.8.

As seen in the Proof of Proposition 11.9, internal circles of stretched cup diagrams encode
multiplicities of indecomposable projective modules Pd,δ(λ) in Brd(δ) for λ ∈ Λd(δ). To link

this directly to osc-diagrams, let ν ∈ Λd(δ) and µ ∈ Λd′ and denote by νδA
d′

d µδ the set of

(d, d′)-osc diagrams cλλ′c′ such that red(c) = νδ and red(c′) = µ
δ
. Then we have

Proposition 11.11. For the Brauer algebras Brd(δ) the following holds

(1) Let Brd(δ) ∼=
⊕

λ∈Λd(δ) Pd,δ(λ)⊕md,λ as a Brd(δ)-module. Then md,λ =
∑

c 2mc,

where c runs over all stretched cup diagrams of length d with red(c) = λδ and mc is
the number of internal circles in c.

(2) For ν ∈ Λd(δ) and µ ∈ Λd′, we have the following equalities

md,ν md′,µ dim eµ HomBr(δ)(d, d
′)eν =

∣∣∣µ
δ
A
d′

d νδ

∣∣∣ ,
in particular dim EndBrd(δ)(Pd,δ(λ)⊕md,λ) =

∣∣∣λδAddλδ∣∣∣.
Proof. By Theorem 8.7 the multiplicity of Pd,δ(λ) in Brd(δ) equals the number of stretched
cup diagrams c of length d ending in λδ counted with multiplicities 2m, where m is the
number of internal circles in c. By definition, the connected components in a stretched circle
diagram cλ that are removed for the reduction red(cλ) either have exactly one orientation,
if they are lines, or exactly two orientations, if they are internal circles. Then the claims
follow from (6.32) which determines eµ HomBr(δ)(d, d

′)eν in terms of ordinary oriented circle
diagrams up to the multiplicity 2m above. �

Definition 11.12. The degree of an oriented stretched cup diagram cλ is the degree of c0λ0

plus the sum of the degrees of the translation pieces λr−1Θirλr in the sense of (6.27) minus
the total number of caps appearing in the translation pieces.

The degree of an osc-diagram cλλ′c′ is the sum of the degrees of cλ and c′λ′.

Example 11.13. The osc-diagram cλ from Example 11.5 has degree 1, coming from c0λ0

having degree 0 plus 2 from a clockwise oriented cap in λ0Θ1λ2 and a clockwise oriented cup
in λ3Θ3λ4, minus 1 from the cap in Θ1.

To define an algebra using stretched circle diagrams we introduce the following space of
diagrams with a fixed form.

Definition 11.14. Let Dd,d′(δ) be the vector space with basis A
d′

d and by cDd,d′(δ)c′ the

subspace with basis cA
d′

d c′.

Given two osc-diagrams cλλ′c′ and bµµ′b′ their product is defined via the following
extended surgery procedure: Place bµµ′b′ on top of cλλ′c′

• If c′ 6= b, then the result is zero.
• If c′ = b, but there is a circle in c′ that has the same orientation in c′λ′ and in c′µ,

then the result is zero as well.
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• Otherwise, i.e. if c′ = b and all mirror symmetric pairs of circles in the middle part
have opposite orientations, we replace c′λ′ and bµ by their reductions and apply the
surgery procedure from [ES16b], as in Theorem 6.22, to this reduced part.

The result is a linear combination of osc-diagrams of the type (c,b′).

Theorem 11.15. The extended surgery procedure defines a well defined associative mul-
tiplication on the vector space D(δ) =

⊕
d,d′ Dd,d′(δ), where the sum runs over all pairs

non-negative integers. When equipping this vector space with the grading induced by the
grading degree of the basis vectors D(δ) turns into a graded algebra.

Proof. The associativity and well-definedness follows directly from [ES16b, Theorem 6.2].
The compatibility of the grading follows then from [ES16b, Theorem 6.2] and the definition
of the degrees with Lemma 11.16 below. Note that, due to Lemma 11.16, pairs of internal
circles that are oriented in opposite ways cancel each others’ degree contributions in the
middle part, while lines eliminated in the reduction give no contribution at all. �

Lemma 11.16. Let cλ be an oriented stretched cup diagram.

(1) Let C be an internal circle in c, then its contribution to the degree of cλ is ±1, with
−1 in the anti-clockwise case and +1 in the clockwise case.

(2) Let L be a line in c containing two rays from c0 then its contribution to the degree
of cλ is zero.

Proof. Part (1): Assume that C is a small circle, i.e. containing exactly one cup and one
cap, the claim is immediate since the orientation of the circle either adds zero or 2 to the
degree and the single cap contained in it will subtract 1 from this.

If C is not a small circle, one can successively eliminate kinks from the circle, i.e. a pair of
a cup and a cap with opposite orientations. By construction each kink has degree zero and
after removing finitely many one obtains a small circle. For more details on this, especially
how to handle possible dotted cups and caps, see [ES16b, (4.18) & (4.19)].

Part (2): Note that by assumption L contains at least one cap. Assume first that it
contains exactly one. Since L is a line and connects two rays in c0 it follows immediately
that the cap is oriented clockwise, i.e, its orientation contributes 1 to the degree, but being
a cap it subtracts one again. Thus the total contribution is zero. For an arbitrary line one
now argues as in case (1). �

Remark 11.17. Note that an osc-diagram cλλ′c′ is an idempotent if and only if cλ and
c′λ′ agree except that all internal circles in cλ are oriented opposite to the ones in c′λ′, and
all other circles are oriented anti-clockwise. This again follows directly from the definition
of the multiplication and from [ES16b, Theorem 6.2].

We have now a graded algebra

D(δ) =
⊕
d,d′

Dd,d′(δ)

Alternatively we can also formulate this as a category directly and obtain the following
graded versions of the Deligne and Brauer categories.

Definition 11.18 (Graded Deligne and Brauer categories).

(1) The graded Brauer category gBr(δ) is the category enriched in graded vector spaces
with set of objects Z≥0, morphism spaces HomgBr(δ)(d, d

′) = Dd,d′(δ), and composi-
tion given my multiplication of osc-diagrams.

(2) The graded Deligne category gRepδ is the additive closure of the idempotent com-
pletion of gBr(δ).
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Remark 11.19. Note that Dd(δ) := EndgBr(δ)(d) = Dd,d(δ). This is a graded algebra

with degree zero part having a basis of primitive, pairwise orthogonal idempotents cλλ′c as
described in Remark 11.17, i.e. internal mirror symmetric circles oriented in opposite ways
and all other circles oriented anti-clockwise. Thus an object in gRepδ is the formal direct
sum of objects of the form (d, e) with e an idempotent in Dd(δ) which is a sum of such
primitive idempotents. Thus morphisms in gRepδ are just matrices of osc-diagrams with
prescribed stretched cup and cap diagram part and orientations for internal circles.

Theorem 11.20 (Isomorphism Theorem II).
After forgetting the grading there are an equivalences of categories

gRepδ
∼= Repδ and gBr(δ) ∼= Br(δ),

such that one has isomorphisms of ungraded algebras

Dd(δ) ∼= Brd(δ).

We call Dd(δ) with the grading from gRepδ the graded Brauer algebra.

Proof. First note that the equivalence on the Deligne categories follows from the equivalence
on the Brauer categories. Since d ∈ Z≥0 is already an object of Br(δ) the statement on the
endomorphism ring also follows from this.

We first enumerate certain osc-diagrams. Let d ∈ Z≥0 and λ ∈ Λd(δ). For a weight
diagram ν such that λδν is oriented, the set of oriented stretched cup diagrams cν such that
red(c) = λδ and νd = ν has cardinality md,λ, where md,λ is given as in Proposition 11.11
as the sum of 2mc with mc being the number of internal circles in c. We write λiν with
1 ≤ i ≤ md,λ for them. We make this enumeration consistently for all such ν, i.e. λiν and
λiν
′ have the same type and orientation on internal circles. Finally we fix an involution

i 7→ i′ on the set {1, . . . ,md,λ} such that for any ν, λi′ν is obtained from λiν by reversing
the orientation of all internal circles, especially the underlying stretched cup diagrams agree.

Now let d, d′ ∈ Z≥0 and λ ∈ Λd(δ) and µ ∈ Λd′(δ). For a weight diagram ν such that λδν
and µ

δ
ν are oriented we thus have a collection of stretched oriented circle diagrams{

λiνµj′ | 1 ≤ i ≤ md,λ and 1 ≤ j ≤ md′,µ

}
.

Note that all orientations of internal circles are fixed by the enumeration, while orientations
for components not connected to the final diagram of either λi or µ

i
have fixed orientations

since they are lines. For each i and j, this gives a basis element of eµ,j HomgRepδ(d, d
′)eλ,i,

for idempotents eλ,i = λiλδλi′ and eµ,j = µ
j
µδµj′ . Furthermore the for each i and j, the

space eµ,j HomgRepδ(d, d
′)eλ,i can be identified with HomgRepbsc

δ
(λ, µ) by sending λiνµj′ to

λδνµδ. Taking these identifications together we obtain an isomorphism

Φ(d,λ),(d′,µ) :
⊕
i,j

eµ,j HomgRepδ(d, d
′)eλ,i −→ M(d,λ),(d′,µ),

where M(d,λ),(d′,µ) = Mmd′,µ,md,λ(HomgRepbsc
δ

(λ, µ)) are matrices with entries from the mor-

phism space HomgRepbsc
δ

(λ, µ) and Φ(d,λ),(d′,µ) sends λiνµj′ to the matrix with λδνµδ at

position (j, i) and zero otherwise. We define a composition on

M =
⊕
d,d′

⊕
λ∈Λd(δ), µ∈Λd′ (δ)

M(d,λ),(d′,µ),

by declaring for two summand that AB = 0 unless A ∈ M(d,λ),(d′,µ) and B ∈ M(d′,µ),(d′′,ν)

for some (d, λ), (d′, µ), and (d′′, ν), in which case we use matrix multiplication with the
entries being multiplied as usual for oriented circle diagrams. Then

⊕
(d,λ),(d′,µ) Φ(d,λ),(d′,µ)

intertwines the multiplication rules on both sides, by definition of the surgery procedure for
osc-diagrams.
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In case the parity of d, d′, and d′′ are not equal one of the elements is necessarily zero.
Hence we can assume that the parity of d, d′, and d′′ is equal, in which case we set d̂ =
max(d, d′, d′′). Then by Proposition 11.11 and Remark 1.16 we have

M(d,λ),(d′,µ)
∼= HomBrd̂(δ)

(
Pd̂,δ(λ)⊕md,λ , Pd̂,δ(µ)⊕md′,µ

)
and similarly on (d′, µ) and (d′′, ν) and matrix multiplication is intertwined with composition
of maps on the right hand side. Thus summing up over all λ for a fixed d we see that there
is an equivalence on the level of the graded and ungraded Brauer categories. This extends
then also to the Deligne categories. �

Remark 11.21. The connection between the Deligne category and its basic version is easy
to describe. Let d, d′ ∈ Z≥0, λ ∈ Λd(δ) and µ ∈ Λd′(δ) and set eλ =

∑
i eλ,i ∈ EndgRepδ(d)

and eµ =
∑

i eµ,i ∈ EndgRepδ(d
′). Then we have

eµHomgRepδ(d, d
′)eλ ∼=

⊕
c,c′

N⊗mc ⊗ Bδ(λ, µ)⊗N⊗mc′ , (11.49)

where the sum runs over all stretched cup diagrams c of length d with red(c) = λδ and c′ of
length d′ with red(c′) = µ

δ
and the space N is a graded vector space with graded dimension

q + q−1. This follows directly from Lemma 11.16.

Now we can consider graded representation theory:

Definition 11.22. A representation of gRepδ is a contravariant functor from gRepδ to
gVect, the category of graded finite dimensional complex vector spaces. We denote the
abelian category of all representations of gRepδ by gD(δ) and call it the abelianized graded
Deligne category.

We can now directly mimic the construction of Definition 2.7 in this graded setting and de-
fine completely analogously projective objects Pδ(λ, i) ∈ gD(δ) and standard objects ∆(λ, i)
for (λ, i) ∈ Λ×Z. These are graded lifts of the representations ∆(λ) defined in Definition 2.7
such that the idempotent eλ in the vector space associated to the object λ is concentrated
in degree i. By construction we have the following:

Proposition 11.23. In the category gD(δ) the following holds:

(1) Pδ(λ, i) has a filtration with subquotients isomorphic to ∆(µ, j) with ∆(λ, i) at the
top and some ∆(µ, i) for µ > λ and j > i.

(2) The multiplicities satisfy
∑

j (Pδ(λ, i) : ∆δ(µ, j)) = (Pδ(λ) : ∆δ(µ)) for any o ∈ Z.

Proof. The first claim follows directly from the construction in the non-graded situation
noting that all steps have a graded analogue. The second statement is then also clear by
forgetting the grading. �

Remark 11.24. By following carefully the construction, one can also deduce with [ES16b,
Lemma 8.6] that the graded multiplicities (Pδ(λ, i) : ∆δ(µ, j)) are given by the coefficient of
qj−i in some parabolic Kazdhan-Lusztig polyomial of type (DN ,AN−1) for large N . To make
the precise translation to [ES16b, Lemma 8.6] take λδ and µδ. These are two diagrammatical
weights which have far to the left only ∨’s. Pick a vertex such that no cups involve vertices
to the right right of it. Then remove all the vertices to the right to create finite weight and
cup diagrams. To these resulting weight diagrams we can apply [ES16b, Lemma 8.6].

Associated with the graded Deligne category we have the locally unital graded algebra

D(δ) =
⊕
d,d′

Dd,d′(δ)
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with its distinguished basis of stretched circle diagrams cλλ′c′. We now play a similar game
as in Theorem 6.23.

Denote by I the set of pairwise orthogonal idempotents cλλ′c of D(δ) as described in
Remark 11.17, i.e. internal mirror symmetric circles oriented in opposite ways and all other
circles oriented anti-clockwise. Recall that by definition stretched circle diagrams are pairs
(cλ, c′λ′) of oriented stretched cup diagrams with the same final weight diagram. We define
for ν ∈ Λ and i, j ∈ I, the sets Y (i, ν) (and X(ν, j)) as the set of all oriented stretched cup
diagrams (respectively oriented stretched cap diagrams) of shape i respectively j with final
weight νδ. Let Y (ν) =

⋃
i∈I Y (i, ν) and X(ν) =

⋃
j∈I X(ν, j) by fixing the cap diagram. We

view elements x ∈ X(ν, j) and y ∈ Y (i, ν) as basis vectors, i.e. as oriented stretched circle
diagrams, by putting the cup diagram νδ on the bottom, respectively the cap diagram νδ
on the top. By definition of the multiplication via the extended surgery rule defined right
before Theorem 11.15, the product xy of basis vectors equals exactly the oriented stretched
circle diagram (x, y). By construction we have X(ν, j) ⊂ eνD(δ)j and Y (i, ν) ⊂ iD(δ)eν .
Now the following holds:

Theorem 11.25. Consider the algebra D(δ) with the set I of primitive idempotents. Let
B := Λ with the reverse inclusion ordering on partitions. This data together with the sets
Y (i, ν) and X(ν, j) for ν ∈ Λ, i, j ∈ I defined as above, equip D(δ) with the structure of an
upper finite based quasi-hereditary algebra in the sense of [BS18, Definition 5.1].

Proof. The proof is totally analogous to the proof of Theorem 6.23, except that we have now
that B is a proper subset of I which is justified by Remark 11.21. �

Since D(δ) is additionally graded and all data is homogeneous, it is also an upper finite
based quasi-hereditary graded algebra.

12. Applications and examples

We finish this paper by stating a few applications and examples about the representation
theory of OSp(r | 2n) which we found interesting on its own.

12.1. Self-duality. Recall from [Mus12, 13.7] the usual duality on F preserving irreducible
modules. Then the following holds:

Theorem 12.1. The FRδ(λ) are self-dual. In particular they have irreducible socle isomor-

phic to L(λ†δ).

Proof. The claim is obviously true for λ = ∅. Assume now that it holds for FRδ(λ), then
it also holds for FRδ(λ) ⊗ V ∼= F(Rδ(λ) ⊗ Rδ(�)) by [Mus12, 13.7.2] and thus also for any
FRδ(µ) where Rδ(µ) is obtained from Rδ(λ) by some i-induction thanks to Theorem 8.10 and
[Mus12, 13.7.1] using Remark 8.12. Thus the claim follows inductively. �

12.2. Determinant representation and super Pfaffian. In [Ser01], Sergeev established
the existence of an even Pfaffian, an analogue of a determinant representation for OSp(r | 2n)
for r even. It was revisited and reformulated in terms of a subrepresentation of V ⊗d by
Lehrer and Zhang, see [LZ15b, Theorem 3.5]. In fact, this 1-dimensional representation was
constructed explicitly as a pseudo-invariant polynomial function.

In our notation, this representation is precisely L(0,−). The following gives an alternative
approach for the computation of the degree of the super Pfaffian, with the second and third
part being a refinement of the known results.

Theorem 12.2. (1) The minimal d = dmin such that L(0,−) appears as a submodule in
V ⊗d is dmin = r(2n+ 1).

(2) The minimal d = dmin such that L(0,−) appears as a quotient of V ⊗d is dmin =
r(2n+ 1).
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(3) Moreover, P (0,−) is a summand of V ⊗dmin.

Proof. By Theorem 12.1 the first and second statement are equivalent. By Proposition 7.6
and Definition 8.3 the super cup diagram associated to the signed hook partition (∅,−)
equals

(a)
◦ ◦ ◦ ··· ◦ ◦ ··· ··· if δ > 0 and odd,

(b)
× × × ··· × × ··· ··· if δ ≤ 0 and odd,

(c)
◦ ◦ ◦ ··· ◦ ◦ ··· ··· if δ > 0 and even, and

(d)
× × × ··· × × ··· ··· if δ ≤ 0 and even.

We have n−m leading symbols ◦ followed by n dotted cups if δ > 0, while we have m− n
leading symbols × followed by m dotted cups if δ > 0 and odd, while in the even case we
have m − 1 dotted cups instead and an additional undotted cup. In each case we have the
corresponding Deligne weight diagram λδ via Theorem 7.8, whose cup diagram λδ differs
from the diagrams in (a) − (d) by having a dotted leftmost ray in each case. We call the
corresponding diagram (a′)− (d′) correspondingly. To prove the first statement we need to
determine the minimal number dmin needed to obtain the diagrams (a′) − (d′) from ∅δ via
translations.

We first consider case (a), i.e. the case where

∅δ = ◦ ◦ ◦ ··· ◦ ◦ ··· ,

with m− n leading ◦ symbols followed by rays. To obtain the diagram (a′) we need to put
a dot on the 2n + 1st ray. For this we first need to eliminate the 2n rays to the left of it.
Looking at the moves from (8.38), we see that we first move the rays to the very left of the
diagram and then apply a dot on the first ray and the a cup. Thus one first obtains

◦ ◦ ◦ ··· ◦ ◦ ··· ,

by applying (8.38)(i) a total of m − n times to each of the two left-most rays. Afterwards
we apply (8.38)(v) followed by the third from (8.38)(ii), leaving us with

◦ × ◦ ◦ ◦ ··· ◦ ◦ ··· ,

after a total of 2(m − n + 1) translation pictures. We proceed by using the first and third
from (8.38)(i) and move the next two rays to the front. This is followed by (8.38)(v) and
the third in (8.38)(ii) to obtain

◦ × ◦ × ◦ ◦ ◦ ··· ◦ ◦ ··· ,

after a total of 2(m−n+ 3) more translation pictures. This we continue for the first 2n rays
in total to obtain

◦ × ··· ◦ × ◦ × ◦ ◦ ◦ ··· ◦ ◦ ··· ,

where we have a total of n pairs of ◦× at the front, followed by m − n times the symbol ◦
and then an infinite number of rays. In total this will be 2

∑n
k=1(m−n+ 2k−1) translation

pictures. By using another 2(m− n+ 2n) + 1 translation pictures we obtain

◦ × ··· ◦ × ◦ × ◦ ◦ ◦ ··· ◦ ◦ ··· ,

by just moving the ray to the front, applying (8.38)(v) and moving it back into position. To
create now a dotted cup we apply the second picture from (8.38)(ii) for i = 1, followed by
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(8.38)(v) to obtain
◦ × ··· ◦ × ◦ ◦ ◦ ··· ◦ ◦ ··· .

Using now the second and fourth picture from (8.38)(i) we move the cup to the right, giving
us

◦ × ··· ◦ × ◦ ◦ ◦ ··· ◦ ◦ ··· .

Creating and moving this dotted cup will take a total of 2(m − n + 2n − 1) translation
pictures. This we repeat with the rest of the n − 1 pairs of ◦× and end up with the cup
diagram (a′) for a total number of

2

n∑
k=1

(m− n+ 2k − 1) + 2(m+ n) + 1 + 2

n∑
k=1

(m+ n− 2k + 1)

=2

n∑
k=1

2m+ 2(m+ n) + 1

=4mn+ 2m+ 2n+ 1 = (2m+ 1)(2n+ 1).

(12.50)

We leave it to the reader to check that this is the minimum , i.e. dmin = (2m + 1)(2n + 1)
for this case. In case of diagram (b′) the arguments are nearly identical, with the roles of m
and n interchanged.

In case (c′) is nearly identical as well, except that instead of using a combination of
(8.38)(v) and (8.38)(ii) to create the dotted cups we instead use a single move from (8.38)(iv)
instead. Thus the summand in (12.50) are all reduced by 1 and we obtain

dmin = (2m+ 1)(2n+ 1)− (2n+ 1) = 2m(2n+ 1)

in this case as well. For the final case (d′), we first need (n−m+ 1) translations to obtain

◦ × × × × ··· × × ··· ,

with one ◦× pair in the front followed by n − m times the symbol ×. We then proceed
analogous to case (a′) and

◦ × ··· ◦ × ◦ × × × × ··· × × ··· .

with a total of 2m pairs of ◦×, followed by n−m times the symbol ×. Creating and moving
the dotted cups to the correct place is the same as for (a′), followed by creating the single
undotted cup and moving it so that it encloses the × symbols. We leave it to the reader to
check that the total number of translations is again dmin = 2m(2n+1). By construction and
Theorem 6.17, we have FRδ(λδ) is projective for the constructed Deligne weight diagram λδ
in each of the cases (a′)− (d′). Hence FRδ(λ) ∼= P (0,−). Thus, we have shown part (3) with
dmin = r(2n+ 1).

Hence L(0,−) appears as a quotient of V ⊗dmin . It is left to show that dmin is the minimal
power where this occurs.

Since the diagrams (a′)− (d′) were constructed with a minimal number of steps, we only
have to check that there are no non-projective summands for smaller powers. Thus we
assume that there exists µ constructed in less than dmin steps such that FRδ(µ) surjects

onto L(0,−) but FRδ(µ) 6∼= P (0,−), i.e. µ†δ is equal to the diagram (a) − (d) in each case
respectively. In case δ even, i.e. (c) and (d), the assertion follows directly since all non-

projective weight diagrams µ give µ†δ with sign +. Thus there exists no such µ as required
above. In case δ odd and δ > 0, i.e. (a) we obtain that µδ is of the form

µδ = ◦ ◦ · · · ◦ ∧ ∧ · · · ∧ ∨ ∨ · · ·
by Theorem 7.8 with m− n times the symbol ◦ follows by 2s times the symbol ∧ for s < n

followed by an infinite sequence of ∨. This holds since otherwise µ†δ would not have the
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correct form. In this case we have that |µ| is even, see Lemma 6.13, which implies that when

passing to µ†δ the sign is + contradicting the assumption on µ. Hence the assertion follows
in this case as well. The case that δ < 0 is completely analogous, just with the roles of n
and m reversed. �

12.3. Explicit examples for frozen symbols. We just briefly give some examples for
frozen symbols as introduced in [ES17].

Example 12.3. Consider the case of OSp(6 | 4) and the hook partition pλ = (4, 2, 1), then

pλ∞ : 3 ◦ ∧∨∧???? · · ·  pλ? : 3 ◦ ∧∨∧∨∨∨∨ · · ·

where we indicated the relevant positions by a horizontal line. For pλ = (4, 1, 1) on the other
hand we obtain

pλ∞ : ◦ ∧∧∨∧???? · · ·  pλ? : ◦ ∧∧∨∧∨∨∨∨ · · ·

12.4. Explicit tensor product decompositions in small examples. We illustrate the
the decomposition of V ⊗d into indecomposable in case G = OSp(3 | 2) for small d. In this
case δ = 1/2 and indecomposable summands in the tensor powers of V ⊗d are given by tensor
weight diagrams, i.e. {λ ∈ Λd(1/2) | κ(λδ) ≤ 1}. The summand is projective if there is
equality, hence κ(λδ) = 1.

Case d = 0: In this case ∅δ = ∨ ∨ ∨ ∨ ∨ ∨ ··· is the only relevant Deligne weight diagram
and ∅δ = ··· . Applying F to Rδ(∅) gives a quotient of P ( ··· ) that is
self-dual and not projective, which in this case is the trivial representation.

Case d = 1: There is again only a single Deligne weight diagram corresponding to a single
box in the partition, with corresponding cup diagram ··· . Applying F to the as-
sociated indecomposable object in Repδ gives a non-projective quotient of P ( ··· ),
which in this case is the representation V itself.

Case d = 2: At this point there are three possible Deligne weight diagrams indexing
summands of V ⊗3. We list the cup diagram indexing the Rδ(λ) in Repδ below, together with
the cup diagram indexing the projective module mapping onto FRδ(λ).

λδ λ†δ simple/projective?
◦ ×

···
◦ ×

··· simple and projective

× ◦
···

× ◦
··· simple and projective

··· ··· simple, but not projective

That the first two summands are projective follows by looking at their κ values, which are
both 1. They are simple, since there is a unique orientation that fits on top of the cup
diagram. The last one is the same one that already appears in the case d = 0 and is the
trivial representation. Especially it holds

V ⊗2 ∼= P ( × ◦ ··· )⊕ P ( ◦ × ··· )⊕ L( ··· )

Case d = 3: The total number of summands up to isomorphism is 4 in this case, but starting
from the d = 3 case and using the translation pictures, we see that one summand appears
twice. We list again the summands and the projective modules mapping onto them as in
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the previous case.

λδ λ†δ simple/projective?
◦ ×

···
◦ ×

··· simple and projective

× ◦
···

× ◦
··· simple and projective

··· ··· simple, but not projective

··· ··· projective, but not simple

The first three occur when applying the translation to the three cup diagrams from the case
d = 3 in the same order as they are listed. While the last one occurs in the first two cases
from d = 3, hence it appears twice in decomposition of V ⊗3. Note that the third and forth
have the same projective cover, in one case the summand is the simple module corresponding
to ··· , in the other it is the projective cover. In total we get as a decomposition
of the tensor power

V ⊗2 ∼= P ( ◦ × ··· )⊕P ( × ◦ ··· )⊕
(
L( ··· )⊕ P ( ··· )⊕2

)
Note that the first two summands lie in different, semisimple, blocks, while three summands
lie in the same, non semisimple, block.

13. Dictionary to the Gruson-Serganova labelling of highest weights

In this section we give an explicit dictionary which translates between the Gruson-Serganova
labelling of irreducible modules from [GS13] and our labelling with weight diagrams respec-
tively corresponding cup diagram.

13.1. Dominant weights. We consider g = osp(r|2n) and pick the Borel subalgebra and
simple roots as in [GS13], [ES17]. With this choice the sum of all the positive even roots
minus the sum of the positive odd roots equals 2ρ, where ρ is given as follows.

For g = osp(2m+ 1|2n) we have δ/2 = m− n+ 1/2 and

ρ =

{
(δ/2− 1, δ/2− 2, . . . , 1/2,−1/2, . . . ,−1/2 | 1/2, . . . , 1/2) if m ≥ n,
(−1/2, . . . ,−1/2 | −δ/2,−δ/2− 1, . . . , 1/2, . . . , 1/2) if m < n.

For g = osp(2m|2n) we have δ/2 = m− n and

ρ =

{
(δ/2− 1, δ/2− 2, . . . , 1, 0, . . . , 0 | 0, . . . , 0) if m > n,

(0, . . . , 0 | −δ/2,−δ/2− 1, . . . , 1, 0, . . . , 0) if m ≤ n.

Remark 13.1. Note that n = 0 gives ρ = (m − 1,m − 2, . . . , 0) for m even and ρ =
(m− 1/2,m− 3/2, . . . , 1/2) for m odd; and ρ = (n, n− 1, . . . , 1) in case m = 0. These are the
values for ρ for the semisimple Lie algebras of type Dm, Bm, Cn.

Definition 13.2. A weight λ ∈ X(g) is dominant (integral) if

λ+ ρ =

m∑
i=1

aiεi +

n∑
j=1

bjδj (13.51)

satisfies the following dominance condition, see [GS10].

For g = osp(2m+ 1|2n):

(1) either a1 > a2 > · · · > am ≥ 1/2 and b1 > b2 > · · · > bn ≥ 1/2,
(2) or a1 > a2 > · · · > am−l−1 > am−l = · · · = am = −1

2 and

b1 > b2 > · · · > bn−l−1 ≥ bn−l = · · · = bn = 1
2 ,

For g = osp(2m|2n):
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(1) either a1 > a2 > · · · > am−1 > |am| and b1 > b2 > · · · > bn > 0,
(2) or a1 > a2 > · · · > am−l−1 ≥ am−l = · · · = am = 0 and

b1 > b2 > · · · > bn−l−1 > bn−l = · · · = bn = 0.

The set of dominant weights is denoted X+(g). Note that

X+(osp(2m+ 1|2n)) ⊂ (Z + 1/2)m+n and X+(osp(2m|2n)) ⊂ Zm+n.

Definition 13.3. Weights satisfying (i) are called tailless and the number l + 1 from Defi-
nition 13.2 is the tail length, tail(λ), of λ.

Consider first the case g = osp(2m + 1|2n). Given a weight λ such that λ + ρ is dom-
inant in the sense of Definition 13.2, there are precisely two finite dimensional irreducible
representations L(λ,+) and L(λ,−) of OSp(2m+ 1|2n) which are irreducible highest weight
representations of highest weight λ for g. Note that tail(λ) in this case is multiplicity how
often −1/2 appears amongst the ai’s.

Theorem 13.4. (1) The indecomposable projective module P (λ, ε) for OSp(2m+ 1|2n)
with λ as in Definition 13.2 and ε ∈ {+,−} correspond to the super cup diagram
constructed as follows. Define A(λ) = {a1, a2, . . . , am} and B(λ) = {b1, b2, . . . , bn}.
Then put at position i ≥ 1/2 the symbol

∨ if i ∈ A(λ) ∩B(λ),

◦ if i ∈ A(λ), /∈ B(λ),

× if i /∈ A(λ) ∈ B(λ),

∧ otherwise

and construct the cup diagram following Definition 6.3, except that we stop in Step
(C-4) after having created tail(λ) many dotted cups. Instead of creating further cups
we attach rays to these remaining vertices with the leftmost ray being dotted in case
ε = + and undotted in case ε = −.

(2) Conversely, given a cup diagram, the corresponding indecomposable projective P (λ, ε)
for OSp(2m+1|2n) has ε = + if the leftmost ray is dotted and ε = − if the leftmost ray
is undotted. The positions of ◦ and left endpoints of cups determine the coefficients
ai ≥ 1/2, the positions of × and left endpoints of cups determine the coefficients
bi ≥ 1/2; and the number of dotted cups equals the tail length tail(λ).

Consider now the case g = osp(2m|2n). Given a weight λ such that λ+ρ is dominant in the
sense of Definition 13.2, there are precisely two finite dimensional irreducible representations
L(λ,+) and L(λ,−) of OSp(2m|2n) which are irreducible highest weight representations of
highest weight λ for g in case am > 0 and one irreducible represntation L(λ,±) in case
am = 0. Note that now tail(λ) is the multiplicity how often 0 appears amongst the bi’s.

Theorem 13.5. The indecomposable projective module P (λ, ε) for OSp(2m|2n) with λ as
in Definition 13.2 and ε ∈ {+,−,±} correspond to the super cup diagram constructed as
follows. Define A(λ) = {a1, a2, . . . , am} and B(λ) = {b1, b2, . . . , bn}. Then put at position
i > 0 the symbol 

∨ if i ∈ A(λ) ∩B(λ),

◦ if i ∈ A(λ), /∈ B(λ),

× if i /∈ A(λ) ∈ B(λ),

∧ otherwise

and construct the corresponding cup diagram following Definition 6.3, except that we stop in
Step (C− 4) after having created tail(λ) dotted cups and instead of creating cups attach rays
to these remaining vertices with the leftmost ray being dotted in case ε = + and undotted in
case ε = −.



DELIGNE CATEGORIES AND REPRESENTATIONS OF OSp(r | 2n) 59

As an application of the main theorem we obtain an interpretation the atypicality of a
block in the sense of [GS13] in terms of the defect from Definition 6.5.

Corollary 13.6. If P (λ) and P (µ) are are indecomposable projectives in the same block B
of F then def(Ψ(λ)) = def(Ψ(λ)). In particular, one can talk about the defect def(B) of
a block B of F . Moreover this defect is the atypicality of B and the Loewy length of any
indecomposable projective in B equals 2 def(B) + 1.

Proof. The first statement is [ES17, Corollary 6.5] which now holds by our main Theo-
rem 10.5. The second is just a translation from [GS13], see [ES17, Corollary 6.6]. Consider
now an indecomposable projective in B and let P be the corresponding module over the
diagrammatically defined algebra from Theorem 10.5. We first claim that the top degree of
P equals 2 def(B). It comes from the unique basis vector b of P ′ which is the oriented circle
diagram where bottom and top are both given by the cup diagram corresponding to P and
where the orientation is such that all circles are clockwise (i.e. of degree 2). Indeed, one can
directly see that this circle diagram can provide as maximal degree 2 def(B). By an easy
induction which successively removes kinks as in [ES17, proof of Proposition 4.9] one can
show that other basis vectors would have strictly smaller degree, thus the claim holds.

By construction, the projective module corresponding via Theorem 10.5 to P on the
diagrammatical side is a quotient of an indecomposable projective P ′′ from the algebras
studied in [ES16b]. In particular the Loewy length of P is at most that of P ′. Now by
[ES17, Corollary 9.3] P ′ can be chosen to be projective-injective and so has in particular
simple head and simple socle. By [ES17][Theorem 6.10] P ′ is a module over a graded algebra
which is semisimple in degree zero and generated in degree 1. Since it has simple head and
socle, [BGS96, Proposition 2.4.1.] implies that the grading filtration of P ′ agrees with both
the socle and the radical filtration of P ′. Hence the subspace of maximal degree of P ′ is
one-dimensional (i.e. the socle) and again of degree 2 def(B). The distinguished basis vector
is sent to b ∈ P under the quotient map. Thus the Loewy length of P cannot be smaller
than of P ′ and thus equals 2 def(B) + 1. �

Remark 13.7. The combinatorics of the translation functors as well as the multiplicity
formulas are controlled by the combinatorics of a type D Weyl group or Hecke algebra, in
fact of the Weyl group of type D∞, see [CVM09], [ES16b], [ES18]. One can easily verify
that the categorification of the layers from and [] gives can be seen as a categorification of
a filtration by isotypical components. Each layer is isomorphic to a direct sum of right cell
modules with a fixed a-function in the sense of Lusztig. This can be seen as an infinite and
type D generalisations of the filtrations from [FKS06, Section 11].

14. Algorithm to compute the highest weight of the head of an
indecomposable summand in V ⊗d

In this section we like to give a float-chart which describes how one can compute the
Lie theoretic highest weight of an indecomposable tensor module, i.e. an indecomposable
summand in V ⊗d from the Classification Theorem 7.8.

We have fixed m,n, δ and given the indecomposable summand FRδ(λ) labelled by the
partition λ. To compute the labelling δ† = (Φ(λ), ε) of the head of FRδ(λ) proceed as
follows:

(1) Compute the Deligne weight diagram λδ according to λ by applying the dictionary
(6.26) to the sequence X(λ) from (3.16).

(2) Construct the corresponding cup diagram λδ using the rules from Definition 6.3.
(3) Check whether the result is projective via the criterion from Theorem 6.17, namely

whether κ(λδ) = min(m,n), with κ as defined in Definition 6.5. Continue depending
on the answer as follows:
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• (yes): swap in λδ all ∨’s corresponding to rays in λδ into ∧’s and define the

corresponding cup diagram λ†δ via Definition 6.3. Also define ε ∈ {+.−,∓} as
in Proposition 7.6.

• (no) swap in λδ all symbols ∨ or ∧ corresponding to rays in λδ and define the

corresponding cup diagram λ†δ via Definition 6.3. Also define ε ∈ {+.−,∓} as
in Proposition 7.6.

Now one can read off the weight diagram Φ(λ) from the cup diagram λ†δ. This give

us the signed (n,m)-hook weight diagram δ† = (Φ(λ), ε) from Theorem 7.8.

15. Proof of Theorem 4.8

We now finish the proof of Theorem 4.8. We abbreviate ek = [k[
∗
k and observe that the

following formulas hold
1
bk
sk = sk 1

bk+1
+ 1

bkbk+1
− 1

bk
ek 1

bk+1
sk 1

bk
= 1

bk+1
sk + 1

bk

1
bk+1
− 1

bk+1
ek 1

bk
. (15.52)

thanks to Remark 4.2, whenever the quotients are defined. In the following we will not argue
why the expessions are defined, but instead refer to [ES16c] for a detailed treatment of these
issues. We also refer to [ES16c] for the justification that the idempotent on the left side of
the expressions in (4.21) can be omitted. In the following we will in fact quite often omit
some idempotents f in the middle and the left of expressions, since they are not necessary
thanks to the appearance of f on the right. We refer to [ES16c] for a detailed treatment of
this phenomenon.

Lemma 15.1. We claim that f[k 1
bk
[∗kf = (1 + 1

2β
)f for any k ≥ 1.

Proof. Let first k = 1. Then by definition of the cyclotomic quotient

f[1 1
b1
[∗1f = f[1

(
1

α+β
y1−β
α−β + 1

2β
y1−α
β−α

)
[∗1f

= 1
(α−β)(α+β)2β [1 ((β − α)y1 + (α− β)(α+ 2β)) [∗1f

= 1
(α+β)2β

[1 (−y1 + (α+ 2β)) [∗1f

= 1
(α+β)2β

(−ω1 + (α+ 2β)N)f

= 1
β

( 1−N
N

+ N
2

+ β) f =
(

1
2β

+ 1
)
f

Now assume the lemma holds for k and consider A := f[k+1
1

bk+1
[∗kf = f[k+1sksk[

∗
k+1f . Then

A = f[k+1sk 1
bk
sk[
∗
k+1f − f[k+1sk 1

bkbk+1
[∗k+1f + f[k+1sk 1

bk
ek 1

bk+1
[∗k+1f (15.53)

Now the first term in (15.53) equals

f[k+1sk 1
bk
sk[
∗
k+1f = [k+1ek 1

bk
ek[
∗
k+1f =

(
1 + 1

2β

)
f

by induction. The second term in (15.53) equals, using (15.52),

f[k+1sk 1
bk+1

[∗k+1
1
bk

f = f[k+1
1
bk
sk[
∗
k+1

1
bk

f − f[k+1
1

bkbk+1
[∗k+1

1
bk

f + f[k+1
1
bk
ek 1

bk+1
[∗k+1

1
bk

f

= f 1

b2
k

[k+1sk[
∗
k+1f − f 1

b2
k

A[k+1ek[
∗
k+1f + f 1

b2
k
b′
k

f

= f 1

b2
k
b′
k

(b′k + 1)f − f 1

b2
k

Af .

The third term in (15.53) equals, using (15.52),

f[k+1
1

bk+1
sk[
∗
k+1f + [k+1

1
bk

1
bk+1

[∗k+1f − f[k+1
1

bk+1
ek 1

bk
[∗k+1f

= f 1

b′2
k

[k+1ek[
∗
k+1f + f 1

bkb
′2
k

[k+1ek[
∗
k+1f − f 1

b′2
k

(
1 + 1

2β

)
[k+1ek[

∗
k+1f

= f 1

b′2
k

(
1
bk
− 1

β

)
f .

Altogether we obtain

f
(

1− 1

b2
k

)
Af = f

((
1 + 1

2β

)
− 1

b2
k

− 1

b2
k
b′
k

+ 1

bkb
′2
k

− 1

2βb′2
k

)
f .
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This is equivalent to

f
(
b2kb
′2
k − b′2k

)
Af = f

((
b2kb
′2
k − b′2k

) (
1 + 1

2β

))
f + f

(
bk − b′k + 1

2β
(b′2k − b2k)

)
f .

By definition the second summand here equals f(2yk − 1
2β

(4βyk))f = 0. Now the lemma is

proved, since
(
b2kb
′2
k − b′2k

)
has a left inverse. �

Proposition 15.2. The assignments for the morphisms in the proof of Theorem 4.8 define
a well-defined algebra homomorphism.

Proof. We have to verify the defining relations (1)-(4) from Proposition 1.2. Let us start with
the most interesting one, the loop removing relation. The loop is sent under our assignments
to

f[kQfQk[
∗
kt = [k

bk+1
bk
[∗kf = [k

b′k
bk
[∗kf = 2β[k 1

bk
[∗kf − [k[∗kf = (2β + 1−N)f = δf .

Here, we first used the definitions and the fact that f can be removed, then applied the dot
sliding relation, invoked the definition b′k = 2β − bk, and finally we applied Lemma 15.1.
Since (2β + 1−N) = δ the dot removal relation holds.

Consider the first untwisting relation. The left hand side of the relation is mapped to

−Qk+1sk+1Qk+1Qk[
∗
k + 1

bk+1
Qk[

∗
kf = −Qk+1√

bk
sk+1

√
bk+2[

∗
kf + 1√

bk+1bk
[∗kf

= −Qk+1√
bk
sk+1[

∗
k

√
bkf + 1√

bk+1bk
[∗kf . (15.54)

The right hand side is, using (15.52), mapped to A := −QkskQkQk+1[
∗
k+1f + 1

bk
Qk+1Qkf .

Now its first summand equals

−Qk
√
bk+2

1
bk+1

sk[
∗
k+1

√
bkf −−Qk

√
bk+2

1
bkbk+1

[∗k+1

√
bkf +−Qk

√
bk+2

1
bk+1

ek
1

bk
[∗k+1

√
bkf

here, the second summand equals −
√
bk+2√
bkbk+1

[∗k+1f which cancels with the second summand in

A we have ignored thus far. Hence we are left with

Qk+1
1√
bk
sk+1[

∗
k

√
bkf +Qk

√
bk+2
bk+1

[∗k
1√
bk

f

Since the second summand here is equal to Qk 1
bk+1

[∗k
√
bk 1√

bk
f which equals the second sum-

mand in (15.54) and so the desired relation is satisfied.
Consider the second untwisting relation. The left hand side is mapped to

−fQksk
bk+1
bk
[∗kf + f 1

bk
Qk[

∗
kf = −fQkbksk 1

bk
[∗kf + fQkek 1

bk
[∗kf

= −fQkbksk 1
bk
[∗kf + f

(
1 + 1

2β

)
Qk[

∗
kf

where we used Remark 4.2 and Lemma 15.1. Now the desired untwisting relation holds if
we can show fsk

1
bk
[∗kf = f 1

2β
1
bk
[∗kf . This follows from [ES16c, Proposition 6.2], but we give

(apart from the cancellation of the f) the arguments here. We have

fsk 1
bk
[∗kf = f 1

bk+1
[∗kf + f 1

bkbk+1
[∗kf − f 1

bk+1
ek 1

bk
[∗kf = f 1

bk+1

(
1 + 1

bk
− (1 + 1

2β
)
)
[∗kf

= f 1
bk+1

(
1
bk
− 1

2β

)
[∗kf = f 1

2β
1

bk+1

(
2β−bk
bk

)
[∗kf = f 1

2β
1

bk+1
[∗kf

The arguments for the snake relations are easy and therefore omitted. The braid relations
are involved, but were established in [ES16c, Lemma 6.5 and Proposition 6.6]. Thus the
proposition follows. �
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