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Introduction

The GrassmannianGr(k,N) is the manifold whose points correspond to k-dimensional
subspaces of CN . These are geometric objects where geometry, representation the-
ory and combinatorics intertwine. For geometers, Grassmannians are among the
first examples of moduli spaces, which are equipped with God-given vector bundles
or families of geometric objects. Furthermore, Chern classes and vector bundles
play a fundamental role in intersection theory, and the infinite Grassmannian (in
the analytic topology) is a classifying space for complex vector bundles, hence
all Chern classes are pullbacks of its cohomology classes, see [MSSU74] for de-
tails. For combinatorists, the Schubert classes are symmetric polynomials known
as Schur polynomials, which are labeled by partitions and carry much combina-
torial information. And for representation theorists, the Schur functions encode
for example characters of the symmetric groups and of the general linear group.
Furthermore, they form a Z-basis of the ring of symmetric functions, which in turn
carries many algebraic structures. Thus, the classical theory of the cohomology
ring of Grassmannians is already of much interest.

From other areas of mathematics arise various enhancements of the cohomology
ring of nice spaces, among which we are interested in torus equivariant cohomology.
denoted by H∗T and quantum cohomology, denoted by QH∗. The former arises from
topology, and the reason why we focus on tori is that a general Lie group has the
same homotopy type as its maximal reductive quotient, hence they yield the same
equivariant cohomology theory. Then the equivariant cohomology for a reductive
group is essentially the Weyl group invariants of the equivariant cohomology of its
maximal torus. See [Bri98a] for details. This is of much interest for representation
theorists because e.g. they provide a geometric construction for Soergel bimodules.
On the other hand, quantum cohomology arises from physics and enumerative
geometry, and plays a central role e.g. in mirror symmetry. The general theories
are rich and giving a substantially general treatment is far beyond the scope of
this thesis. We will rather give a glimpse of the beauty of the theory by focusing
on combinatorial models for both H∗TGr(k,N) and QH∗Gr(k,N), and discusses
some connections between them.
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More specifically, we consider the Knutson-Tao puzzle rule for equivariant coho-
mology of Grassmannians as in [KT+03] and the fermionic model for the quantum
cohomology of Grassmannians as in [KS10]. The former described the following
puzzle game: take an equilateral triangle with side length N , where the sides have
certain 2-colored patterns, and try to fill it with certain puzzle pieces into a puzzle
of the following form:

And Knutson-Tao assert that the product structure of the Grassmannian is char-
acterized by the number of such puzzles. On the other hand, [KS10] considers
particle configurations on a circle with N slots, where each slot allows at most one
particle. The following picture presents an example with N = 7.
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Let Fk[q] be the free C[q]-module on basis all such configurations with k particles.
Then there are natural particle hopping operators acting on Fk[q]. As a C[q]-
module, QH∗Gr(k,N) is trivially isomorphic to Fk[q]. Now multiplication by a
Schubert class in QH∗Gr(k,N) can be viewed as a C[q]-linear operator on Fk[q],
which can be expressed in terms of the particle hopping operators.

Our first main result (see §3.2.6) is the connection between the fermion model and
the boson-fermion correspondence in [KRR13]. The latter is an isomorphism (as
certain Lie algebra representations) between a space of infinite wedges F (k) and
the polynomial ring B(k) with infinitely many variables.

Theorem. There is a commutative diagram:

F (k)[q] B(k)[q]

Fk[q] QH∗Gr(k,N)

Our second main result is presented in §3.3, where we interpret certain puzzles
pieces as particle hopping operators. From this point of view we deduce an algo-
rithm producing the puzzles for H∗Gr(k,N).

;8<
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Theorem. Algorithm 1 in §3.3 produces all Knutson-Tao puzzles of a given bound-
ary condition.

Our conjecture is that, this interpretation could lead to a similar puzzle rule for
the quantum cohomology of Grassmannians.

The structure of this thesis is as follows: in the first chapter we present a brief
introduction to the construction of torus equivariant cohomology. Next, in the
second chapter we review basic properties of Grassmannians and the Knutson-Tao
puzzle rule. In the third chapter we define the quantum cohomology of Grassman-
nians and explain the construction of [KS10]. Then we establish the main results
mentioned above.

;8<

3



CONTENTS

;8<

4



Chapter 1

Equivariant cohomology

The aim of the first chapter is to provide the reader with knowledge from first
courses on manifolds and topology or on algebraic geometry a quick introduction
to the basic properties of equivariant cohomology of torus actions. In §1 We shall
quickly introduce the topological backgrounds used in the theory, then give a
quick overview of the main results in §2. In the last section a proof of the main
Theorem 1.3.7 of this chapter is presented. In this thesis we are only interested in
Grassmannians, which we discuss in more details in the next chapter.

Conventions. Throughout this thesis, a space always means a topological space
with homotopy type of a CW complex, e.g. a compact manWefold is homotopy
equivalent to a CW complex via Morse theory. A map between spaces is always
assumed to be continuous. All varieties are over C, and dimension for varieties
always means complex dimension. Let N be a fixed positive integer, denote the
N -fold product of a space X by XN = X × X × . . . × X. All group actions are
left actions.

1.1 Prerequisites

Here we collect the topological ingredients for equivariant cohomology.

1.1.1 Tori

An (algebraic) torus T = TN of rank N is a product of N copies of C∗ (the
multiplicative group of complex numbers). It is a Lie group under the analytic
topology, i.e. a manifold with a group structure such that the multiplication and
the inversion are smooth maps.

5



1.1. PREREQUISITES

The set of all left invariant vector fields on T is a Lie algebra with the usual
commutator of vector fields on manifolds as the Lie bracket. This Lie algebra is
identified with the tangent space at the identity element via restriction. For a torus
the Lie bracket is identically 0, since the multiplication of T is commutative.

Remark 1.1.1. A torus is also an algebraic group under the Zariski topology. The
reader can always think of either topology or algebraic geometry, but in this chapter
We will mostly stick to the former.

Our basic setting is a continuous action of T on a space X, i.e. an action

α : T ×X −→ X

that is a continuous map under the product topology of T ×X.

Example 1.1.2. The action of T = (C∗)2 on C2 given by

(x, y) · (z, w) = (xz, yw) ∀(x, y) ∈ T, (z, w) ∈ C2

is continuous. In other words, T acts via 2 × 2 diagonal matrices in GL2(C) and
hence brings linear subspaces to linear subspaces. Therefore this descends to an
action of T 2 on P1.

Definition 1.1.3. A character of T is an algebraic group homomorphism T →
C∗. The set X(T ) of all characters of T has a group structure induced by the
multiplication of C∗.

Lemma 1.1.4. A character C∗ → C∗ is of the form z 7→ zn. More generally,
X(T ) is a free abelian groups of rank N if T is a rank N torus.

Proof. Given a character χ : C∗ → C∗, consider the associated algebra homomor-
phism of coordinate rings χ] : C[z, z−1] → C[z, z−1]. This is determined by the
image of z, and we want to show that χ](z) = zn for some n ∈ Z. Since z is
invertible, so is χ](z). The unit group of C[z, z−1] is isomorphic to C∗ × Z via
λzn 7→ (λ, n) for λ ∈ C∗, hence χ](z) = λzn for λ ∈ C∗ and n ∈ Z. Finally,
χ(1) = 1 implies that χ](z − 1) = λzn − 1 is divisible by z − 1, or λ · 1n − 1 = 0,
which gives λ = 1.

Now consider a character χ : T → C∗ of a rank N torus T . Choose a splitting
T ∼= (C∗)N , compose the inclusion of the i-th factor with χ (1 ≤ i ≤ N), we get a
character C∗ ↪→ T → C∗, which is of the form z 7→ zni by the previous paragraph.
Hence the assignment

χ 7−→ (n1, . . . , nN)

defines a group isomorphism X(T ) ∼= Z⊕N , and via this identification the projec-
tions T ∼= (C∗)N → C∗ form a basis of X(T ).

;8<
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CHAPTER 1. EQUIVARIANT COHOMOLOGY

Example 1.1.5. Given two characters χ1, χ2 : T → C∗ of a torus T , we can define
a T -action on P1 via the above example:

t · [x : y] = [χ1(t)x : χ2(t)y] ∀t ∈ T, [x : y] ∈ P1

For later use we notice that if χ1χ
−1
2 is not the trivial character sending everything

to 1 ∈ C∗, then the set of fixed points of this action is

(P1)T = { 0 = [0 : 1], ∞ = [1 : 0] }

because if we view P1 as lines in C2, then the two lines corresponding to these two
points are exactly the common eigenspaces of the corresponding T -action C2. We
will see below (Proposition 1.2.16) that for “good” T -varieties all one dimensional
orbit closures are isomorphic to P1 with 2 fixed points.

Given a continuous torus action, one might want to define equivariant cohomology
as the singular cohomology of the orbit space X/T . The problems is that when
the action is not free (i.e. all stabilizers are trivial), it is not clear whether or not
X/T is still a space in our sense. The idea of the Borel construction is to replace
X by a space with the same homotopy type, but with a free action. For this we
need the notion of principal bundles.

1.1.2 Principal bundles

Here we present only a minimal review of the theory of principal bundles and refer
to [Hus13] and [Ste99] for a more thorough discussion.

Definition 1.1.6. A fibre bundle with fibre F is a is a continuous map π : E → B,
such that there is an open cover {Ui}i of B with homeomorphisms

π−1(Ui) ∼= Ui × F

B is called the base and E the total space.

A principal T -bundle is a fibre bundle π : E → B with fibre T , with a free T -action
on E that preserves the fibres. In what follows we always assume that the base
space is path connected.

Remark 1.1.7. For every principal T -bundle π : E → B, one can equip B with the
trivial T -action, then π becomes a T -equivariant map, since by assumption

tπ(e) = π(e) = π(te) ∀ e ∈ E, t ∈ T

and then one can check that the orbit space E/T ∼= B. When the group is clear
from context or is not emphasized we will also simply say principal bundles instead
of principal T -bundles.

;8<
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1.1. PREREQUISITES

Just like the case of vector bundles, there are pullback principal bundles. Given
a principal T -bundle E → B and a map f : X → B, taking fiber products in the
category of topological spaces gives the pullback bundle f ∗E → X.

f ∗E E

X B
f

This is still a principal T -bundle. To see this, take a trivialization over an open set
U ⊂ B, consider the following diagram where the front, back, bottom and right
facets are Cartesian, then one checks that so is the left one, hence the fiber of
f ∗E → X over f−1(U) is f−1(U)× T .

f ∗E E

f−1(U)× T U × T

X B

f−1(U) U

f

Lemma 1.1.8 (Homotopy invariance of pullback bundles). Let E → B be a prin-
cipal T -bundle and f, g : X → B homotopic maps, then f ∗E ∼= g∗E as principal
T -bundles.

The miracle is that there is a (unique up to homotopy) universal bundle such that
all principal T -bundles are obtained from pulling back this bundle along some
map.

Definition 1.1.9. A classifying bundle for T , or a universal principal T -bundle,
is a principal T -bundle ET → BT satisfying:

For any principal bundle E → B, there is a unique continuous map
f : B → BT , up to homotopy, such that E ∼= f ∗B.

f ∗E ET

B BTf

Remark 1.1.10. The base space BT of the universal bundle, if exists, is unique
up to homotopy equivalence. This can be seen, for example, from the fact that

;8<
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CHAPTER 1. EQUIVARIANT COHOMOLOGY

the assignment sending each space to the set of isomorphism classes of principal
T -bundles on it defines a contravariant functor from the homotopy category of
topological spaces to the category of sets. The existence of the universal bundle is
equivalent to the representability of this functor by the universal base BT .

Theorem 1.1.11 (Milnor). For any topological group G with homotopy type of a
CW complex, there is a universal principal G-bundle EG→ BG.

Proof. See [Hus13, chapter 4 §11].

Remark 1.1.12. In what follows we are only concerned with the case G = T . In
fact any principal bundle with weakly contractible total space is universal, see
[Ste99, §19]. (A space E is weakly contractible means that for any n ∈ N, any
continuous map Sn → E is null-homotopic.) We next use this to construct a
universal principal T -bundle.

Example 1.1.13 (Universal principal C∗-bundle). Consider the space

C∞ − {0} = lim−→
m∈N

Cm − {0}

obtained as follows: identify C as the line x1 = 0 on the (x1, x2)-coordinate plane
C2 minus the origin, then identify C2 as the plane x2 = 0 inside the (x1, x2, x3)-
coordinate space C3 minus the origin, etc. Similarly, we can form the infinite
projective space CP∞ = lim−→m∈N CP

m.

Composing the projection Cm+1 − {0} → CPm with CPm ↪→ CP∞ we obtain the
following commutative diagram:

Cm+1 − {0} CPm

Cm+2 − {0} CPm+1

Hence by the universal property of C∞ − {0} we get a map

π : C∞ − {0} −→ CP∞

We claim that π is a universal principal C∗-bundle.

To see that the map π is a principal bundle, note that by construction each {xi 6=
0} ⊂ CP∞ intersects CPm ⊂ CP∞ at the standard open set with xi 6= 0, provided
that m > i, and does not intersect CPm otherwise. This means that {xi 6= 0} ⊂
CP∞ is open under the weak/direct limit topology. On the other hand, each

;8<
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1.1. PREREQUISITES

standard projection Cm+1 − {0} → CPm is a trivial principal bundle on {xi 6=
0} ⊂ CPm. Since such open sets cover CP∞, π is indeed a principal C∗-bundle.

Now we claim that the total space C∞−{0} is weakly contractible, so that in view
of Remark 1.1.12, π is indeed a universal bundle. To prove the claim, notice that
Cm − {0} is homotopy equivalent to the sphere S2m−1, hence for any i < 2m− 1,
any amp Si → Cm−{0} is null-homotopic. Now take any map f : Si → C∞−{0},
since Si is compact, its image is contained in some Cm − {0}, and we can assume
that 2m− 1 > i, therefore f is contractible.

Example 1.1.14 (Universal principal T -bundle). Now from the above example
we can construct a universal bundle for a torus of arbitrary rank N . Take the
product of N copies of P∞ as BT , and the product of N copies of C∞−{0} as ET .
Since C∞ − {0} is weakly contractible, so is its N -fold product. This concludes
that we have found the classifying bundle for T .

1.1.3 Chern classes

Here is a quick overview of Chern classes. This is closely related to the classifying
bundles, but we will only need some elementary properties of Chern classes. For
a more thorough introduction of Chern classes the reader is referred to [BT13],
[EH16] or [MSSU74]. Denote by H∗ singular cohomology with complex coefficients,
∪ the cup product and by ∩ the cap product with homology.

Definition 1.1.15. Consider a complex vector bundle π : E → B. Its Chern
classes are the cohomology classes

ci(E) ∈ H2i(B)

characterized by the following axioms:

• c0(E) = 1 ∈ H0(B) and ci(E) = 0 for i > rank E.

• (Normalization). For the tautological line bundle O(−1) on P1,

c1(O(−1)) ∩ [P1] = −[pt]

where [pt] ∈ H0(P1) is the class of a point, and [P1] ∈ H1(P1) is the funda-
mental class.

• (Naturality). For any f : B′ → B and vector bundle ξ over B,

f ∗ci(ξ) = ci(f
∗ξ)

;8<
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CHAPTER 1. EQUIVARIANT COHOMOLOGY

• (Whitney sum formula). Given a short exact sequence

0 ξ′ ξ ξ′′ 0

of vector bundles over B, we have

c(ξ) = c(ξ′)c(ξ′′)

where c(ξ) = 1 + c1(ξ) + c2(ξ) + . . . =
∑

0≤2i≤rank ξ ci(ξ) ∈ H∗(B) is the total
Chern class.

Example 1.1.16. Let me elaborate a little more about the normalization axiom
for those not familiar with the tautological bundle O(−1) on Pn. This bundle is
defined as follows: view the points Pn as lines in Cn+1, and consider the subspace
of the trivial bundle

{(L, x) ∈ Pn × Cn+1 | x ∈ L}
then the projection to the first factor defines a line bundle over Pn, with fiber over
L ∈ Pn equal to L ⊂ Cn+1.

Remark 1.1.17. As a matter of fact, naturality and normalization axioms determine
c1 for all line bundles, Then one reaches the higher Chern classes via the Whitney
sum formula plus the following splitting principle.

Lemma 1.1.18 (Splitting principle). For any complex vector bundle E → B there
exists a space B′ → B such that the pullback H∗(B)→ H∗(B′) is injective and the
pullback bundle on B′ has a filtration with line bundle subquotients.

Remark 1.1.19. The top Chern classes are also the Euler classes of the complex
vector bundles. The difference is that the Euler class is defined for any oriented real
vector bundle. A complex vector bundle carries a canonical orientation therefore
has an Euler class. Some authors use Euler classes in what follows instead.

1.2 Torus Equivariant Cohomology

1.2.1 Definition and first examples

Fix a torus T of rank N and a universal bundle ET = (C∞ − {0})N → BT =
(CP∞)N as in Example 1.1.14. Recall that T acts on ET on the left.

Definition 1.2.1. Given a T -space X, the Borel construction is defined to be the
space

ET ×T X := ET ×X/ ∼
where ∼ is defined by the diagonal action

(e, x) ∼ (te, tx) ∀e ∈ ET, x ∈ X, t ∈ T

;8<
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1.2. TORUS EQUIVARIANT COHOMOLOGY

Note that the T -action on ET×X is free, and it is homotopy equivalent to X.

Lemma 1.2.2. The Borel construction ET ×T X has the homotopy type of a CW
complex.

Proof. The total spaces ET of the universal bundles in Example 1.1.14 are actually
T -CW complexes, i.e. they are inductively constructed from pushouts of the form

Sn × T Dn × T

Yn Yn+1

where Yn ↪→ ET is the n-skeleton of ET . Therefore ET ×T X is constructed
inductively via pushouts of the form

Sn ×X Dn ×X

Zn Zn+1

where Zn ⊂ ET ×T X is the n-skeleton of the Borel construction. Now X itself by
our convention has the homotopy type of a CW complex, so all maps are homotopic
to cellular maps, see [Hat02]. Replacing all maps by these cellular maps, we get a
CW complex which is homotopy equivalent to Zn+1, see [Hat02].

Remark 1.2.3. In fact when the T -action on X is free, one can show that the Borel
construction is homotopy equivalent to X/T . See [Aud12] for a proof when X is
a manifold. See [Jan87, part I chapter 5] for a similar construction using schemes.

Definition 1.2.4. The T -equivariant cohomology of a T -space X with coefficient
ring Λ is by definition the ring

H i
T (X,Λ) = H i(ET ×T X,Λ)

where H∗(−,Λ) is the singular cohomology with coefficient ring Λ and multipli-
cation given by the usual cup product. In what follows we abbreviate H∗T (−) =
H∗T (−,C).

Lemma 1.2.5. A T -equivariant map X → X ′ induces an algebra homomorphism

H∗(X ′,Λ) −→ H∗(X,Λ)

;8<
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CHAPTER 1. EQUIVARIANT COHOMOLOGY

In this way equivariant cohomology becomes a contravariant functor from the cat-
egory of T -spaces to that of abelian groups. Moreover, taking X ′ = pt yields a
canonical ring homomorphism

H∗T (pt,Λ) −→ H∗T (X,Λ)

thus all equivariant cohomology rings are H∗T (pt,Λ)-algebras.

Example 1.2.6. If X is a point with a T = C∗-action, then ET ×T X = ET/T =
BT , therefore

H∗T (pt) = H∗(BT )

Recall Example 1.1.14, we have chosen BT = CP∞ and have an isomorphism

H∗T (pt) = C[X]

c1(O(−1)) 7−→ X

where C[X] is a polynomial ring with degX = 2. We use the Chern class as the
generator so that there is no ambiguity in the generator on the right hand side.

Lemma 1.2.7. If rank T = N , we have H∗T (pt) ∼= Sym•t∗, where t∗ denotes the
linear space dual of the Lie algebra of T .

Proof. By the Künneth formula and Example 1.2.6 we get

H∗T (pt) ∼= C[X1, X2, . . . XN ]

where each Xi can be taken to be the first Chern class of the pull back of O(−1)
on P∞ via the i-th projection (P∞)N → P∞. This however depends on the choice
of a splitting T ∼= (C∗)N . Our goal is thus a natural description of H∗T (pt).

We make use of the character group X(T ) of T . Take a character λ : T → C∗ =
GL1(C) and the corresponding one dimensional representation Cλ, form the line
bundle L = ET ×T Cλ → BT , then take the first Chern class c1(L) ∈ H2(BT ). In
view of Whitney sum formula, this gives a linear map

C⊗Z X(T ) −→ H2(BT )

We claim that this is bijective. Choose a splitting T ∼= (C∗)N , the basis elements
of X(T ) as in Lemma 1.1.4 are brought to the pullbacks of c1(O(1)) via the pro-
jections BT ∼= (P∞)N → P∞, which are known to form a basis of H2(BT ) from
our non-natural description. Thus we have

Sym• (C⊗Z X(T )) −→ H∗(BT ) = H∗T (pt)

;8<
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1.2. TORUS EQUIVARIANT COHOMOLOGY

Here Sym• denotes the symmetric algebra over C. Now we cite the fact that by
taking the tangent map, C⊗ZX(T ) is naturally identified with t∗, the dual of the
Lie algebra of T . Then we obtain a canonical isomorphism

Sym•t∗ −→ H∗(BT ) = H∗T (pt)

In what follows we shall often use this description of H∗T (pt).

Example 1.2.8. Consider P1 with the standard action (Example 1.1.2), we can
also determine its equivariant cohomology by hand. From {∞} ↪→ P1 we obtain a
closed embedding

ET ×T {∞} ET ×T P1

Denote E0 = ET ×T P1 − ET ×T {∞}, consider the relative cohomology sequence
of the pair (ET ×T P1, E0):

. . . H i(ET ×T P1) H i(E0) H i+1(ET ×T P1, E0) . . .

Note that in some CW structure all these spaces have no cells of odd real dimen-
sions, this sequence breaks down to the following short exact sequences:

0 H2i(ET ×T P1, E0) H2i(ET ×T P1) H2i(E0) 0

The fibers of the line bundle E0 → BT can be contracted to the zero section, which
makes the base BT a deformation retract of E0. This gives H∗(E0) ∼= H∗(BT ) =
H∗T (pt). In particular, the following short exact sequence of H∗T (pt)-modules splits.

0 H∗(ET ×T P1, E0) H∗(ET ×T P1) H∗(E0) 0

On the other hand, by excision we have

H2i(ET ×T P1, E0) ∼= H2i(E0, E0 − zero section)

then the Thom isomorphism (see [BT13] or [MSSU74]) applied to the line bundle
E0 → BT yields

H2i+2(E0, E0 − zero section) ∼= H2i(BT ) = H2i
T (pt)

In other words H∗(E0, E0 − zero section) ∼= H∗T (P1) ∼= H∗T (pt)〈2〉 as a graded
H∗T (P1) ∼= H∗T (pt)-module, where the i-th graded piece of H∗T (pt)〈2〉 is H i−2

T (pt).
Thus we get H∗T (P1) ∼= H∗T (pt)〈2〉 ⊕H∗T (pt) as a graded module over H∗T (pt).
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Remark 1.2.9. The above arguments requires some knowledge in algebraic topol-
ogy. We will see that the main Theorem 1.3.7 in this chapter reduces everything
to elementary combinatorics which also gives the ring structure of H∗T (P1).

The following properties follow immediately from the standard properties of sin-
gular cohomology.

Proposition 1.2.10. Let X be a T -space.

• An equivariant closed embedding Y ↪→ X gives a long exact sequence

. . . H i
T (X) H i

T (Y ) H i+1
T (X, Y ) . . .

where H∗T (X, Y ) := H∗(ET ×T X,ET ×T Y ).

• (Mayer-Vietoris sequence) Let U, V ↪→ X be equivariant open embeddings
such that X = U ∪ V , then there is a long exact sequence

. . . H i
T (X) H i

T (U)⊕H i
T (V ) H i

T (U ∩ V ) . . .

From examples 1.2.6, 1.2.7 we see that, in contrast to the non-equivariant case,
points actually carry nontrivial information for the equivariant cohomology. In
general one can define principal bundles for arbitrary topological groups and obtain
the corresponding equivariant cohomology theory. Its value on a point contains
information about the group, even though its action on a point is trivial. e.g.
H∗GLn(pt) = (Sym•t∗)Sn , the symmetric group invariants in Sym•t∗, see [Bri98a].
In what follows we will see that often one can describe H∗T (X) in terms of the fixed
point set.

The slogans

Given a T -space X, let XT be the set of fixed points. Then the inclusion ι : XT →
X is equivariant, hence induces a map

ι∗ : H∗T (X) −→ H∗T (XT )

Our slogans are:

• Equivariant cohomology is determined by that of the fixed locus: in nice
situations

ι∗ : H∗T (X) −→ H∗T (XT ) is injective.

and the image can be determined explicitly.
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• Equivariant cohomology determines the usual one: under nice circumstances
we want to have a canonical surjective map H∗T (X) � H∗(X), whose kernel
can be described explicitly.

Remark 1.2.11. Both slogans can miserably fail in general. Consider T = X = C∗,
acting on itself via left multiplication, then there are no fixed points, so the second
statement obviously fails. On the other hand, ET ×T T = ET has vanishing coho-
mology, henceH∗T (T ) = H∗(ET ) = 0 whereas the singular cohomologyH1(T ) ∼= C,
consequently the first statement also fails.

1.2.2 Setting the stage

Next, we will formulate a suitable setting, and work exclusively under these rea-
sonable assumptions thereafter.

Definition 1.2.12. A topological space with T -action satisfying the following
condition (EF) is called equivariantly formal.

H∗T (X) is a free H∗T (pt)-module, and has a H∗T (pt)-basis that re-
stricts to a Z-basis for H∗(X).

To understand (EF), from topology (or for an algebraic geometry version [Jan87,
§5.14]) we know that the Borel construction is a fibre bundle ET ×T X → BT with
fibre X, (EF) considers the restriction of cohomology to a fibre H∗(ET ×T X)→
H∗(X).

X ET ×T X

pt BG

Theorem 1.2.13 (Leray-Hirsch). Given a fibre bundle E → B with fibre F , as-
sume that there are classes α1, . . . αr ∈ H∗(E) whose restriction to each fibre form
a C-basis of H∗(F ), then αi also form a H∗(B)-basis for H∗(E). In particular,
there is an isomorphism of H∗(B)-modules

H∗(B)⊗C H
∗(F ) ∼= H∗(E)

So (EF) amounts to the setting of the Leray-Hirsch theorem. Although this as-
sumption already gives the Z-module structure of the equivariant cohomology, the
ring structure is our major concern. The following lemma specifies a convenient
class of equivariantly formal spaces.

Lemma 1.2.14. Suppose X is a smooth projective variety with an algebraic action,
then X is equivariantly formal.

;8<

16



CHAPTER 1. EQUIVARIANT COHOMOLOGY

This comes in handy when we want to check equivariant formality. For a proof
see [GKM98, Theorem 14.1 (6)].

From now on we consider a projective T -variety X satisfying the following condi-
tions.

• Equivariantly formal, i.e. (EF) holds.

• There are finitely many fixed points, i.e. |XT | <∞.

• There are finitely many one dimensional orbits.

In section §1.4.3 we will see that this class of T -spaces yield the desired picture in
our slogans.

Example 1.2.15. Consider the T action on P1 defined in Example 1.1.5. By the
above lemma P1 is equivariantly formal: it is a smooth projective variety, and
there are two fixed points 0 = [0 : 1],∞ = [1 : 0] ∈ P1. This also checks the second
assumption above. Finally P1−{0,∞} is the only one dimensional orbit, because
the whole space is one dimensional. This turns out to be the basic building block
of the theory for T -varieties satisfying the above conditions.

Proposition 1.2.16. Let X be an equivariantly formal projective T -variety, with
finitely many fixed points and one dimensional orbits. Suppose the tangent weights
at each fixed point are linearly independent. Then

• The closure of each one dimensional orbit of T in X is isomorphic to P1.

• There are exactly two fixed points in the closure of each one dimensional
orbit.

• The torus acts on each one dimensional orbit via a character.

Proof. Take any one dimensional orbit O, and x ∈ O. Then O is the image of T
under ·x : T × {x} → X sending (t, x) 7→ t · x, hence is isomorphic to T/Tx where
Tx ⊂ T denotes the stabilizer of x.

Claim 1. O is isomorphic to C∗ as a variety.

Consider first the case rank T = 1: the only possible one dimensional quotient
of T = C∗ by a closed subgroup is C∗, because its proper closed subgroups are
zero dimensional, hence finite, hence cyclic groups generated by a root of unity
(see [Mor96]).

Now take a general torus, we do induction on the rank. Take a splitting T ∼= (C∗)N ,
and consider the first N − 1 factors T ′ = (C∗)N−1 ⊂ T . The closure of its image
in O under the map ·x is either 1 dimensional or 0 dimensional, and in the former
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case the claim follows from induction hypothesis. In the latter case, since T ′ is
connected, so is its image, which implies T ′x = {x}, and T ′ ⊂ Tx. Then O is a
quotient of T/T ′ ∼= C∗, hence isomorphic to C∗.

Claim 2. There is a character χ of T which defines a T -action on C∗, such that
the above isomorphism O ∼= C∗ is T -equivariant.

Observe that T/Tx ∼= C∗ as algebraic groups, because T is abelian. The above
action map ·x : T → O then defines a character χ : T → T/Tx ∼= C∗. Then T
acts on C∗ via χ, and the above isomorphism O ∼= C∗ sends t · x 7→ χ(t), hence is
T -equivariant.

Claim 3. The closure O of O in X is isomorphic to P1.

Now since X is proper, the inclusion C∗ ∼= O ↪→ X extends to a map P1 → X,
whose image is closed, and O − O consists of at most 2 fixed points. This map is
either injective, in which case O ∼= P1 as desired, or sends two poles of P1 to the
same point. In the latter case, suppose T acts on P1 via the character χ, then the
tangent weights at the two poles of P1 are χ,−χ resp. Since the poles are mapped
to the same fixed point p ∈ X, this pair of linearly dependent weights occur as
tangent weights of p, a contradiction.

Remark 1.2.17. The condition on the tangent weights in Proposition 1.2.16 is in
fact superfluous. Using the nontrivial theorem of Sumihiro-Kambayashi, there is
an equivariant embedding X ↪→ P(V ) for some finite dimensional representation
V , see [CG10, Theorem 5.1.25] . Then the argument of [Mil17, online version,
Theorem 14.47] proves that the one dimensional orbits are isomorphic to P1. Our
treatment is more elementary and it is easy to check this condition for our main
examples.

Example 1.2.18. Proposition 1.2.16 says that under nice circumstances, if we
consider the restriction of the T -action to any one dimensional orbit, we always
have the following setting: P1 with T -action via a character χ as in Example 1.1.5.
Let us examine this basic example first.

The fixed points and the unique one dimensional orbit of this T -action on P1 can
be presented by a graph

[1 : 0] [0 : 1]

One might want to label the line with χ to indicate the T -action. However, to
be consistent with Example 1.2.7, we take the tangent map of χ at the identity
element Dχ|1 ∈ t∗.
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We make the following important observation: consider the tangent space of a
fixed point 0 ∈ P1, which is a representation of T via

t · v = D(χ(t)·)|0 v ∈ T0P1 ∀t ∈ T, v ∈ T0P1

where χ(t)· : P1 → P1 denotes multiplication by χ(t). Explicitly, take a standard
coordinate chart z : C = P1 − {∞} → C

D(χ(t)·)|0 (∂z) = χ(t)∂z

Thus we can read off the torus character defining the action on P1 from this
representation of T .

Notation. From now on we denote by εi = dti (1 ≤ i ≤ N) the i-th standard
cotangent vector of (C∗)N at the origin, where (t1, . . . , tN) are the standard coor-
dinates on the torus. So this will give a (non-canonical) basis of the dual of the Lie
algebra t∗, as well as H2

T (pt). Denote by S∨ the dual of a vector bundle S.

Example 1.2.19. Consider the T = (C∗)2 action on P2 given by the following
T -action on C3:

(t1, t2)(x0, x1, x2) = (x0, t1x1, t2x2)

We can find out all the fixed points and one dimensional orbits by hand. The fixed
points are exactly the lines in C3 invariant under the T action, which are spanned
by common eigenvectors of T . In the standard basis the matrices of elements in T
are already simultaneously diagonal, so the fixed points are

p1 = [1, 0, 0], p2 = [0, 1, 0], p3 = [0, 0, 1]

Similarly, the one dimensional orbits are 2 dimensional subspaces in C3 that are
stable under T . Given such a 2 dimensional subspace W , we restrict the T -action
to W and again find linearly independent common eigenvectors of T , which are
also common eigenvectors of T in C3, hence are simply two of the standard basis
elements. Consequently the one dimensional orbits are

O1 = {[0 : ∗ : ∗]}, O2 = {[∗ : 0 : ∗]} O3 = {[∗ : ∗ : 0]}

where ∗ denotes arbitrary nonzero complex numbers. Then in view of Example
1.1.5, the T -action here on O2 is given by the character (t1, t2) 7→ t2 if we set
∞ = [1 : 0 : 0].

Now we also want to represent these data by a graph. We take the vertices to be
fixed points and edges the 1-dimensional orbits connecting two fixed points. Then
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we want to label the edges that tell tales about the torus action.

p1 p2

p3

ε1

ε2 ε1 − ε2

In view of the above Example 1.2.18, one might want to calculate the torus action
on the orbits and differentiate to get the labels. There is a more convenient way:
consider the tangent spaces at the fixed points. If O is a 1-dimensional orbit, then
we have an equivariant inclusion

TpO TpP2

In other words, O gives a subrepresentation of TpP2. Any finite dimensional T -
representation splits into a direct sum of 1-dimensional representations, which are
called weight spaces, and the character through which T acts on each 1-dimensional
representation is called the weight. In view of Example 1.2.7 we also view the
weight as a cotangent vector in t∗. This is exactly the tangent map we described
in Example 1.2.18.

Next we have to compute these weights. Recall the standard description of the
tangent bundle of Pn: the tautological bundle O(−1) is by definition a subbundle
of the trivial bundle E = Pn×Cn+1, and the tangent bundle is O(1)∨⊗E/O(−1).
We postpone the proof that this identification is compatible with the torus actions
to Lemma 2.1.4. In particular, at the point corresponding to a line L ⊂ C3

the tangent space is naturally identified with the quotient space L∨ ⊗ C3/L as
a representation of T . Now let e1, e2, e3 be the standard basis of C3 as a T -
representation and e1, e2, e3 the dual basis of (C3)∗. Denote by ēi the image of ei
in the quotient space C3/L. Combining the above facts, the tangent space at p1

is spanned by

e1 ⊗ ē2 e1 ⊗ ē3 ∈ (Ce1)∨ ⊗ C3/Ce1

The corresponding torus characters are projections to the first resp. the second
factor of T = (C∗)2. Thus ε1, ε2 ∈ t∗ label the edges corresponding to O3, O2 resp.
Similarly, for p2 the corresponding t∗ elements are −ε1, ε2 − ε1. From this we see
that there is a sign ambiguity in the labeling of the edges. This does not harm for
our purposes.
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1.3 The GKM theorem

1.3.1 GKM conditions

In this subsection we extract combinatorial information from a T -variety. In the
above examples we have seen that for certain T -varieties there is a graph encoding
some information about the T -action. We make the following definition.

Definition 1.3.1. Under the setting of Proposition 1.2.16, consider a graph de-
fined as follows:

• the vertices are the fixed points;

• the edges correspond to 1-dimensional orbits;

• two vertices are connected by an edge iff the corresponding one dimensional
orbit closure contains the two corresponding fixed points;

• let p be a fixed point in a one dimensional orbit closure O. The corresponding
edge by the tangent weight of TpO, up to a sign.

This graph is called the GKM graph (Goresky-Kottwitz-MacPherson).

Next, since there are finitely many fixed points in the T -variety X, then H∗T (XT ) is
a direct sum of |XT | copies of H∗T (pt) ∼= Sym•t∗, with product ring structure. This
can also be identified with the set Maps(XT , Sym•t∗) of maps of sets XT → Sym•t∗

with the obvious ring structure.

Definition 1.3.2. Given the GKM graph for a T -variety X, for any one dimen-
sional orbit O denote by α(O) ∈ t∗ the label of the edge in the GKM graph
corresponding to the orbit O. Consider the condition on Maps(XT , Sym•t∗)

f(p) ≡ f(q) mod α(O) ∀ p, q ∈ XT ∩O (GKM)

A map in Maps(XT , Sym•t∗) satisfying (GKM) is called a GKM class. Observe
that the set of GKM classes is a Sym•t∗-submodule of Maps(XT , Sym•t∗).

Remark 1.3.3 (Here be dragons). We do not want to get into whether or not there
are several edges between two given fixed points in general, but rather contend
ourselves with the fact that this does not happen in all examples interesting to us.

1.3.2 Examples of GKM classes

According to our slogan, the restriction map H∗T (X)→ H∗T (XT ) is injective. Then
we want to determine its image. On the other hand, we have the submodule
of GKM classes inside H∗T (XT ). Is there a good reason to expect a connection
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between the geometric object H∗T (X) and the combinatorial GKM classes? Let us
examine the examples at hand.

Example 1.3.4. Consider the standard action of T = (C∗)2 on P1. On the local
coordinate chart near [0, 1] this is

(a, b) · z = ab−1z

hence T acts via the character (a, b) 7→ ab−1. The corresponding Lie algebra
element is ε1 − ε2 ∈ t∗. The GKM classes are

H = {(f, g) | f − g ≡ 0 mod ε1 − ε2} ⊂ Sym•t∗ ⊕ Sym•t∗

In fact H is a rank 2 free module over Sym•t∗. To see this, take any (f, g) ∈ H,
write

(f, g) = (0, g − f) + (f, f) = (0, g − f) + f(1, 1)

This makes sense because (1, 1) ∈ H automatically. Since g − f is divisible by
ε1 − ε2, this proves that (1, 1), (0, ε1 − ε2) span H. They are linearly independent
over Sym•t∗ because looking at the first component, r(1, 1)+s(0, ε1−ε2) = 0 implies
that r = 0, and then s also has to be 0. This proves that H ∼= Sym•t∗⊕Sym•t∗〈2〉
as a graded Sym•t∗-module.

The careful reader would recall from Example 1.2.8, that H∗T (P1) in this case is
also isomorphic to Sym•t∗ ⊕ Sym•t∗〈2〉 as a graded Sym•t∗-module. We strongly
suspect that they coincide, and Theorem 1.3.7 below confirms this.

We also make the following observation, parallel to our slogan: there is a short
exact sequence of Sym•t∗-modules

0 H Sym•t∗ ⊕ Sym•t∗ Sym•t∗/(ε1 − ε2) 0

Notice that the cokernel is torsion, and after localization (in the sense of basic com-
mutative algebra) with respect to the multiplicative set {(ε1−ε2)n} ⊂ Sym•t∗, this
term vanishes and the inclusion H ↪→ Sym•t∗ ⊕ Sym•t∗ becomes an isomorphism.

Example 1.3.5. More generally, let T act on P1 via a character χ (see Example
1.1.5). The GKM classes are

{(f, g) | f − g ≡ 0 mod χ}

where by abuse of notation we also denote by χ ∈ t∗ the Lie algebra element
corresponding to the character.
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Example 1.3.6. Consider the (C∗)2-action on P2 from Example 1.2.19. We de-
termine the GKM classes in (Sym•t∗)⊕3. First of all we have multiples f(1, 1, 1)
of (1, 1, 1). To obtain others we write a GKM class (f, g, h) as

(f, g, h) = f(1, 1, 1) + (0, ε1g
′, ε2h

′), g′ε1 = g − f, h′ε2 = h− f,

By the same spirit, one might want to write (0, ε1g
′, ε2h

′) = g′ε1(0, 1, 1)+(0, 0, ε2h
′−

ε1g
′). At a second thought, this does not work because (0, 1, 1) is not a GKM class.

If we want to put a zero at the first component, we have to take a multiple of ε1
at the second component. Let us try the easiest guess: take (0, ε1, ε2). Write

(0, ε1g
′, ε2h

′) = g′(0, ε1, ε2) + (0, 0, ε2(h′ − g′))

At this point we are not comfortable with the second summand, which is not a
priori a GKM class if we pick random g′, h′. On the other hand, we do know that
it IS a GKM class because all other terms in this equation are GKM classes, and
the set of GKM classes is a submodule of (Sym•t∗)⊕3. What makes it work? It
is the GKM condition on g, h in the original tuple (f, g, h), which implies that
g′ε1 − h′ε2 is divisible by (ε1 − ε2). Then

(g′ − h′)ε2 ≡ g′(ε2 − ε1) + g′ε1 − h′ε2 ≡ 0 mod (ε2 − ε1)

therefore h′−g′ = h′′(ε1−ε2), because ε2 and ε1−ε2 are coprime in the polynomial
ring Sym•t∗. As a result, any GKM class is a Sym•t∗-linear combination of the
form

(f, g, h) = f(1, 1, 1) + g′(0, ε1, ε2) + h′′(0, 0, ε2(ε1 − ε2))

where f, g′, h′′ can take any value in Sym•t∗. Now (0, 0, ε2(ε1 − ε2)) is indeed a
GKM class. Again the set of GKM classes is a free Sym•t∗-module of rank 3 (the
number of fixed points), compare with Leray-Hirsch theorem.

From the above example we observe that in general the combinatorics in the com-
putations can be rather complicated. What we used here implicitly to make thing
easier is a partial ordering on the set of vertices. This will be crucial when we
work with Grassmannians, which are the most interesting examples for us.

1.3.3 The GKM theorem

Here we formulate the main theorems in this chapter, which will be established
later. Recall the equivariant closed embedding XT → X, which induces the re-
striction map

H∗T (X) −→ H∗T (XT ).
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Theorem 1.3.7 (Goresky-Kottwitz-MacPherson). Let X be an equivariantly for-
mal T -variety, with finitely many fixed points and finitely many one dimensional
orbits. Then the restriction map H∗T (X) → H∗T (XT ) is injective, with image ex-
actly the GKM classes.

Example 1.3.8. Consider the standard rank 2 torus action on P1, the theorem
says that the restriction map

H∗T (P1) ↪→ Sym•t∗ ⊕ Sym•t∗

is injective with image Sym•t∗(1, 1) ⊕ Sym•t∗(0, ε1 − ε2), by Example 1.3.4. This
gives an isomorphism of graded algebras H∗T (P1) ∼= Sym•t∗(1, 1)⊕Sym•t∗(0, ε1−ε2),
which is exactly what we expected from the direct computations. Furthermore,
the ring structure is give by

(0, ε1−ε2)2 = (0, (ε1−ε2)2) = (ε1−ε2)·(0, ε1−ε2) ∈ Sym•t∗(1, 1)⊕Sym•t∗(0, ε1−ε2)

Now with the help of Theorem 1.3.7 we can also deal with P2. Consider the
T -action on P2 as in Examples 1.2.19, 1.3.6. The image of the restriction map
H∗T (P2)→ (Sym•t∗)⊕3 is

Sym•t∗(1, 1, 1)⊕ Sym•t∗(0, ε1, ε2)⊕ Sym•t∗(0, 0, ε2(ε1 − ε2)) ⊂ (Sym•t∗)⊕3

This again describes H∗T (P2) as a graded C-algebra, where for example

(0, ε1, ε2)2 = ε1 · (0, ε1, ε2)− (0, 0, ε2(ε1 − ε2))

Note that the computation of H∗T via GKM theorem is totally combinatorial, and
gives more than Leray-Hirsch theorem by also describing the ring structure.

1.4 The slogans revisited

In this section we introduce some convenient geometric gadgets: equivariant Chern
classes and Gysin pushforward, then we establish the slogans. The GKM theorem
is not necessary here, however, we introduced the GKM theorem before this section
because it is recommended to keep in mind these examples before entering the
somewhat dazzling world of geometry.

1.4.1 Equivariant Chern classes

There is also an equivariant version of vector bundles for general nice algebraic
groups or Lie groups. We are only concerned with closed subgroups ofGLN(C).
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Definition 1.4.1. Let H be a closed subgroup of GLN(C), an H-equivariant
vector bundle is a vector bundle E → B such that E carries an H-action that
preserves the fibres.

Observe that for an H-equivariant vector bundle E → B of rank r, there is an
induced map

ET ×T E −→ ET ×T B
which is also a vector bundle of rank r. Then we can take its Chern classes.

Definition 1.4.2. Let E → B be a T -equivariant vector bundle. Its equivariant
Chern classes is by definition

cTi := ci (ET ×T E → ET ×T B) ∈ H2i
T (B)

From the Axioms of ordinary Chern class we deduce the following properties:

Lemma 1.4.3. Let ξ = (E → B) be a T -equivariant vector bundle.

• cT0 (E) = 1 ∈ H0(B) and cTi (E) = 0 for i > rank E.

• (Naturality). For any T -equivariant vector bundle ξ′ = (E ′ → B′), and any
T -equivariant bundle map f : ξ′ → ξ,

f ∗cTi (ξ) = cTi (f ∗ξ)

• (Whitney sum formula). Given a short exact sequence

0 ξ′ ξ ξ′′ 0

of T -equivariant vector bundles over B and T -equivariant bundle maps

cT (ξ) = cT (ξ′)cT (ξ′′)

where cT (ξ) = 1 + cT1 (ξ) + cT2 (ξ) + . . . =
∑

0≤2i≤rank ξ c
T
i (ξ) ∈ H∗T (B) is the

total equivariant Chern class.

Example 1.4.4. For later applications, the only case we will need is when B is a
point. In this case an equivariant vector bundle E → B is just a representation of
T . Since T is abelian, this representation splits as a direct sum of one dimensional
representations given by characters χi : T → C∗ = GL1(C). Then these weights χi
can be used to represent the first equivariant Chern classes of the corresponding
one dimensional representations. To be more precise, recall Example 1.2.7, taking
equivariant Chern classes defines an abelian group isomorphism

ch : X(T ) −→ H2(BT,Z)
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So the image of the weight χi in H2(BT,Z) are the first equivariant Chern class
of the corresponding one dimensional representation. Under the identification
X(T ) ⊗Z C ∼= H2(BT,C) ∼= t∗ we will take the corresponding element in t∗ to
represent the equivariant Chern class. The Whitney sum formula gives the total
equivariant Chern class of E as

1 + cT1 (E) + cT2 (E) + · · · =
∏

(1 + chχi)

so cTj (E) is the j-th elementary symmetric polynomial in all chχi.

Example 1.4.5. Consider the standard T -action on P1 in Example 1.1.2. The
restrictions of cT1 (T ∗P1) to the fixed points can be calculated as follows: let p be a
fixed point, consider the following pullback diagram viewed as an equivariant map
of equivariant line bundles.

T ∗pP1 T ∗P1

p P1ιp

By naturality ι∗pc
T
1 (P1) = cT1 (T ∗pP1), which is just the weight of the cotangent space

at p. Let 0 = [0 : 1],∞ = [1 : 0], we have

cT1 (T ∗0 P1) = ε2 − ε1, cT1 (T ∗∞P1) = −ε2 + ε1 (1.1)

where we identified H2(BT ) ∼= t∗ as usual and εi are the standard basis elements.

Remark 1.4.6. The labels of the edges in a GKM graph are in fact equivariant
Chern classes. To see this, take a one dimensional orbit, it suffices to discuss the
P1-case. Notice that the tangent bundle TP1 is an equivariant line bundle. Let p
be a fixed point, the fibre diagram

TpP1 TP1

p P1ι

is a map of equivariant vector bundles, therefore we can form the pullback

ι∗cT1 (TP1) = cT1 (TpP1) ∈ Sym•t∗

This is exactly the label on the edge corresponding to this orbit, up to a sign.

;8<
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Remark 1.4.7. Using the equivariant Chern classes, in the setting of example 1.4.5
one can show that

H∗T (pt)[ζ]/
(
(ζ − cT1 (T0P1))(ζ − cT1 (T∞P1))

) ∼= H∗T (P1)

where the isomorphism is given by ζ 7→ cT1O(−1), the equivariant Chern class of
the tautological line bundle on P1.

1.4.2 Gysin maps

The next geometric ingredient is a push forward map. To give some motivation,
consider a fibre bundle f : X → Y where both the fibre F and the base Y
are compact smooth manifolds. One can define a push-forward map of de Rham
cohomology f∗ : H∗dR(X)→ H∗dR(Y ) via the formula

α 7−→
∫
F

α ∈ H∗dR(Y )

see [BT13] for its interaction with characteristic classes. When Y is a point this
is just the usual integration of differential forms.

With more work one can construct a Gysin pushforward for the equivariant coho-
mology for proper maps. see [Bot99]. We are only concerned with two cases:

1. Equivariant fundamental classes. Let ι : Y → X be a T equivariant codi-
mension d closed embedding, where Y is irreducible. Then Y has an equivariant
fundamental class in X

[Y ]T ∈ H2d
T (X)

see [Bri98b]. Furthermore, there is a push forward map

ι∗ : H∗T (Y ) −→ H∗+2d
T (X)

satisfying ι∗(1) = ι∗[Y ]T = [Y ]T ∈ H2d
T (X). We are only using this to define the

equivariant Schubert classes for Grassmannians, and then work with the combina-
torics thereafter.

Example 1.4.8. For P1 with the standard action of the rank 2 torus, only the
two fixed points 0,∞ and P1 itself give equivariant fundamental classes. We will
see that the classes of the two fixed points are also not equal.

2. Integrals. When X is compact and nonsingular of dimension n, the pushfor-
ward along the constant map X → pt gives an integration map∫

X

: H∗T (X) −→ H∗−2n
T (pt)

;8<
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Next, we turn to the interaction of Gysin maps with equivariant Chern classes.
Given an n-dimensional T -variety X and the inclusion of a fixed point ι : p→ X,
recall that we want to consider the restriction map H∗T (X)→ H∗T (p). The following
proposition is basically due to one of the constructions of Chern classes.

Proposition 1.4.9 (Self-intersection formula). Given an n-dimensional smooth
T -variety X and the inclusion ι : p ↪→ X of a fixed point to X, then

ι∗ι∗α = cTn (TpX) · α.

More generally, if Y ⊂ X is any closed subvariety (not necessarily smooth) and
p ∈ Y is a smooth fixed point, then

ι∗[Y ]T = cTtop (NpY ) ,

where NpY denotes the normal space to Y at p.

1.4.3 The localization theorems and the slogans

Let X be a T -variety. For each fixed point p ∈ XT denote the inclusion by

ιp : p −→ X

Theorem 1.4.10 (Algebraic localization theorem). Let X be an n-dimensional
smooth projective T -variety with finitely many 1-dimensional orbits and finitely
many fixed points. Let S ⊂ H∗T (pt) be a multiplicative set containing the element

c :=
∏
p∈XT

cTn (TpX)

Then the localization of the restriction map with respect to S is an isomorphism

S−1ι : S−1H∗T (X) ∼= S−1H∗T (XT )

Proof. We first prove that S−1ι is surjective. Consider also the localization of the
pullback map S−1ι∗ : S−1H∗T (X)→ S−1H∗T (XT ), we take the composition

S−1ι∗ ◦ S−1ι∗ = S−1 (ι∗ι∗) : S−1H∗T (XT )→ S−1H∗T (XT )

Note that S−1H∗T (XT ) is a free H∗T (pt)-module of rank |XT |. By the self intersec-
tion formula 1.4.9, for each p ∈ XT the map S−1ι∗S−1ι∗ sends the basis element
1p corresponding to the identity in S−1H∗T (p) to cTn (TpX)1p, and since we allow
the inverse of cTn (TpX), the collection {cTn (TpX)1p | p ∈ XT} again form a basis of
S−1H∗T (XT ). Conclusion: S−1ι∗ ◦ S−1ι∗ is surjective, hence so is S−1ι∗.

;8<
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To show that S−1ι∗ is injective, we use the fact that S−1H∗T (pt) is a noetherian
ring. By equivariant formality H∗T (X) is a free module, and by the Bia lynicki-
Birula decomposition (see [ByB73]), of rank at most |XT |. Hence the same is true
for S−1H∗T (X). By surjectivity of S−1ι∗, the rank has to be equal to |XT | (tensor
with the fraction field to see this). Then the conclusion follows from the next
Lemma 1.4.11.

Lemma 1.4.11. Let f : M → N be a surjective map of finite free modules of the
same rank over a noetherian ring A. Then f is an isomorphism.

Proof. Take any prime ideal p ⊂ A. It suffices to show that fp : Mp → Np is
injective. Let K = ker f , we have the following short exact sequence

0 K ⊗ k(p) M ⊗ k(p) N ⊗ k(p) 0

where k(p) := Ap/pAp. But M ⊗ k(p), N ⊗ k(p) are vector spaces of the same
(finite) dimension, so we have Kp ⊗ k(p) = K ⊗ k(p) = 0, or Kp = pKp. By
Nakayama’s lemma this implies Kp = 0, and we have ker fp = Kp.

Corollary 1.4.12. Let X be an n dimensional smooth projective T -variety with
finitely many one dimensional orbits and finitely many fixed points. Then the
restriction map

ι∗H∗T (X) −→ H∗T
(
XT
)

is injective.

Proof. Let m ∈ ker ι∗, then m ∈ S−1ι∗ for S as in Theorem 1.4.10. This means
that m = 0 in S−1H∗T (X). On the other hand, H∗T (X) is a free module over
H∗T (pt), which is a polynomial ring by Example 1.2.7. Therefore, H∗T (pt) has no
torsion and m = 0.

At this point we have established the first slogan: under our assumptions the
localization map ι∗ : H∗T (X) → H∗T (XT ) is injective. The image is described by
the GKM theorem, which we prove later.

The second slogan also follows immediately. View ET ×T X as a fibre bundle over
BT with fibre X, restriction to the fibre gives a natural map

H∗T (X) −→ H∗(X)

Then equivariant formality says that this is surjective. In particular, when X is a
point, we get a short exact sequence

0 m H∗T (pt) H∗(pt) 0

;8<
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Lemma 1.4.13. Let X be an n dimensional smooth projective T -variety with
finitely many one dimensional orbits and finitely many fixed points. The kernel of
the natural map H∗T (X)→ H∗(X) is mH∗T (X).

Proof. By Leray-Hirsch theorem, H∗T (X) ∼= H∗T (pt)⊗CH
∗(X) as a H∗T (pt) module,

where the H∗T (pt) = H∗(BT ) factor comes from the base of the fibre bundle ET ×T
X → BT and H∗(X) comes from the fibre, therefore restriction to the fibre is given
by the map H∗T (pt)⊗C H

∗(X) −→ (H∗T (pt)/mH∗T (pt))⊗C H
∗(X).

Theorem 1.4.14. Let X be an n-dimensional smooth projective T -variety with
finitely many fixed points, then for any α ∈ H∗TX,

α =
∑
p∈XT

(ιp)∗ι
∗
pα

cTn (TpX)

in a localization of H∗T (X) such that all the Chern classes are invertible.

Proof. By Theorem 1.4.10 it suffices to check that

ι∗qα = ι∗q
∑
p∈XT

(ιp)∗ι
∗
pα

cTn (TpX)

for all fixed point q. By self intersection formula 1.4.9

ι∗q
∑
p∈XT

(ιp)∗ι
∗
pα

cTn (TpX)
= ιq

(ιq)∗ι
∗
qα

cTn (TpX)
= cTn (TpX)

ι∗qα

cTn (TpX)
= ι∗qα

Example 1.4.15. Consider P1 with standard T action, we have calculated the
cotangent weights of the fixed points in Example 1.4.5. The tangent spaces are
the dual representations of the cotangent spaces, hence the tangent weights are
obtained by multiplying the cotangent weights by −1:

cT1 (T0P1) = −ε2 + ε1, cT1 (T∞P1) = ε2 − ε1

Identify the localization mapH∗T (P1) ↪→ H∗T ({0,∞}) with the inclusion Sym•t∗(1, 1)⊕
Sym•t∗(0, ε1− ε2) ↪→ (Sym•t∗)⊕2, the self-intersection formula says that the equiv-
ariant fundamental class [0]T is sent to

(−ε2 + ε1) · (1, 0) = (−ε2 + ε1) · (1, 1)− (0, ε1 − ε2) ∈ (Sym•t∗)⊕2

;8<
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The following formula is one of the main computational tools of equivariant coho-
mology.

Corollary 1.4.16 (Atiyah-Bott integration formula). Let X be an n-dimensional
smooth projective T -variety with finitely many fixed points, then for any α ∈ H∗TX,∫

X

α =
∑
p∈XT

ι∗pα

cTn (TpX)
∈ H∗T (pt)

Example 1.4.17. Consider the standard torus action on P1. We integrate the
class of a fixed point [∞]T ∈ H∗T (P1). The pullback of this class to the other fixed
point is 0, hence ∫

P1

[∞]T =
ι∗[∞]T

cT1 (T∞P1)
= 1

because the self-intersection formula says

ι∗[∞]T = cT1 (T∞P1) ∈ H∗T (pt)

Note that the verbatim repetition of this calculation gives that the integral of any
fixed point in any smooth projective variety is 1.

Remark 1.4.18. We close this section with a few remarks for the die-hard algebraic
people. One can also construct equivariant cohomology using only algebraic geom-
etry, however, the major drawback is the need of stacks for a universal principal
bundle. On the other hand, the algebraic setting is best suited for our purposes,
hence we present the (for us) important aspects of the theory on the topology side,
but always keep in our minds an algebraic setting.

1.5 The proof of the GKM theorem

In this section we present a proof of Theorem 1.3.7 following [GKM98]. Recall
the identification 1.2.7 H∗T (pt) ∼= Sym•t∗. Recall that under the assumptions
of the theorem, by equivariant formality, H∗T (X) is a free module over H∗T (pt),
and by Proposition 1.2.16 and Definition 1.3.1, we can make sense of the GKM
condition.

1.5.1 Equivariant cohomology gives GKM classes

Lemma 1.5.1. Under the assumptions of Theorem 1.3.7, the image of the restric-
tion map H∗T (X)→ HT (XT ) is contained in the set of GKM classes.

;8<
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Proof. Pick a one dimensional orbit O with fixed points N,S in its closure, consider
the following diagram:

H∗T (X) H∗T (N)⊕H∗T (S)

H∗T (O)

In view of Proposition 1.2.16, T acts on O via a character χ. Take an element
(f, g) ∈ H∗T (N)⊕H∗T (S). We write down the GKM equation for the edge O, and
compare it with that of O ∼= P1 with the inherited action. The former condition
says that f ≡ g mod χ, on the other hand, recall Example 1.2.18, this is also
the GKM condition on P1. Next, by functoriality and by the above commutative
diagram, it suffices to show that any class living in H∗T (P1) gives a GKM class in
H∗T (N)⊕H∗T (S). For this use the following commutative diagram

H∗T (P1) H∗T (P1 −N)

H∗T (P1 − S) H∗T (P1 − {N,S})

We have the identifications

H∗T (O ∪N) ∼= H∗T (N) H∗T (O ∪ S) ∼= H∗T (S)

Commutativity of the diagram says that for any class α ∈ H∗T (P1), we have α|N , α|S
goes to the same class in H∗T (P1 − {N,S}) ∼= H∗T (pt)/(χ) (Definition 1.2.4). The
restriction map H∗T (P1 − S)→ H∗T (P1 − {N,S}) is the natural quotient map, and
similarly for N . Hence we get α|N ≡ α|S mod χ as desired.

1.5.2 Topological localization

The other ingredient is the topological localization, which describes H∗T (X) as a
kernel. Let X1 be the union of the orbits of dimension ≤ 1. This is the “equivariant
1-skeleton” of X. We are going to recover H∗T (X) from the relative equivariant
cohomology of the pair (X1, X

T ).

Theorem 1.5.2. Under the assumptions of Theorem 1.3.7, then there is an exact
sequence

0 H∗T (X) H∗T (XT ) H∗T (X1, X
T )ι∗ δ

;8<
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Proof. We have shown that the restriction map H∗T (X) → H∗T (XT )is injective.
Consider the long exact sequences 1.2.10 of the equivariant pair (X,XT ) as well
as (X1, X

T ), we have the following commutative diagram

H∗T (X) H∗T (XT ) H∗+1
T (X,XT )

H∗T (X1) H∗T (XT ) H∗+1
T (X1, X

T )

ι∗ δ′

δ

Therefore the image of H∗T (X) in H∗T (XT ) is contained in ker δ. To show the
reversed inclusion, let ξ ∈ H∗T (XT ) with δ(ξ) = 0, we want to show that δ′(ξ) = 0.
Suppose this is not the case, then the annihilator ann(δ′(ξ)) ⊂ H∗T (pt) is a proper
ideal. We now introduce another exact sequence and use this to study ann(δ′(ξ)).

For each x ∈ X −XT we can consider the Lie algebra of (the identity component
of) its stabilizer in T , viewed as a Lie subalgebra of t. Let P be the set of all
such Lie subalgebras. For each l ∈ P we have again an exact sequence of relative
cohomology

H∗T (X l) H∗T (X l ∩XT ) H∗T (X l, XT )
γ δl

By the Lemma 1.5.3 below, we have

Supp ann(δ′(ξ)) ⊂
⋃
l∈P

δl(ξ)6=0

l ⊂ Spec H∗T (pt)

Since any nonzero element in ann δ′(ξ) is a nonzero divisor, some l ∈ P has codi-
mension 1 inside t (Krull’s Hauptidealsatz). For this l we have X l ⊂ X1, hence
the following diagram:

H∗T (X) H∗T (XT ) H∗+1
T (X,XT )

H∗T (X1) H∗T (XT ) H∗+1
T (X1, X

T )

H∗T (X l) H∗T (XT ∩X l) H∗+1
T (X l, XT ∩X l)

ι∗ δ′

δ

γ δl

(1.2)

but then δl(ξ) 6= 0 contradicts δ(ξ) = 0 in view of the bottom right square.

Below is a technical support of the proof of the topological localization theorem.
All notations as above.

;8<
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Lemma 1.5.3. Suppose δ′(ξ) 6= 0, then the support of ann(δ′(ξ)) satisfies

Supp ann(δ′(ξ)) ⊂
⋃
l∈P

δl(ξ)6=0

l ⊂ Spec H∗T (pt)

Proof. See [GKM98, §15.9].

1.5.3 Proof of the GKM theorem

Now we have shown that the restriction map H∗T (X)→ H∗T (XT ) is injective, and
the image is contained in the subset of GKM classes. To prove the GKM theorem
it remains to show that any GKM class glue to an equivariant cohomology class.
We first prove a technical lemma.

Lemma 1.5.4. Under the assumption of Theorem 1.3.7, take a one dimensional
orbit O, with fixed points N,S ∈ O. Then there is an isomorphism H i+1

T (O, {N,S}) ∼=
H i
T (O) that fits into the following commutative diagram

H i
T (U)⊕H i

T (V ) H i
T (O)

H i
T (N)⊕H i

T (S) H i+1
T (O,N ∪ S)

β

' '

β′

Proof. Consider the long exact sequence 1.2.10 of the equivariant closed embedding
N ∪ S ↪→ O.

H i
T (O) H i

T (N)⊕H i
T (S) H i+1

T (O, {N,S}) 0
β

Here right exactness follows from the fact that O has no odd cohomology. To deal
with this relative cohomology we apply the MV sequence to the open equivariant
cover by U = O−S and V = O−N . Since all H2i+1

T (Ō) ∼= H2i+1
T (P1), H2i+1

T (O) ∼=
H2i+1
T (BT ) vanish, the MV sequence breaks into short exact sequences. Consider

the following commutative diagram.

0 H i
T (O) H i

T (U)⊕H i
T (V ) H i

T (O) 0

0 H i
T (O) H i

T (N)⊕H i
T (S) H i+1

T (O, {N,S}) 0

β

' '

restr β′

(†)

From injectivity of the top row we deduce injectivity of the bottom left arrow,
hence the right vertical arrow is an isomorphism.

;8<
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Proposition 1.5.5. In the setting of Theorem 1.5.2, any GKM class lies in ker δ.

Proof. By Theorem 1.5.2 it suffices to show that the GKM classes are contained
in the skernel of the map δ : H∗T (XT ) → H∗T (X1, X

T ). For this we take any one
dimensional orbit O ⊂ X1 with fixed points N,S ⊂ O. Consider the following
commutative diagram:

H∗T (XT ) H∗+1
T (X1, X

T )

H∗T (N)⊕H∗T (S) H∗+1
T (O, {N,S})

δ

β′

we want to show that β′ is given by (f, g) 7→ f̄ − ḡ ∈ Sym•t∗/χ, where χ is the
character through which T acts on O. By Lemma 1.5.4 this is true, hence the set
of GKM classes in H∗T (XT ) is the same as ∩ ker β′.

Now it remains to show that this is in ker δ. For this we consider the following
modification of diagram 1.2:

H∗T (X) H∗T (XT ) H∗+1
T (X,XT )

H∗T (X1) H∗T (XT ) H∗+1
T (X1, X

T )

⊕H∗T (X l) ⊕H∗T (XT ∩X l) ⊕H∗+1
T (X l, XT ∩X l)

ι∗ δ′

δ

⊕δl

where the direct sum is over codimension 1 l’s. The bottom middle vertical arrow is
injective, hence by the algebraic localization theorem so is the bottom left vertical
arrow. Then by five lemma so is the bottom right vertical arrow. Now observe
that the GKM classes are in the kernel of ⊕δl, hence in ker δ.

;8<
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Chapter 2

Grassmannians

In this chapter we collect useful facts about Grassmannians. The Grassmannian
with the standard torus action is the most interesting example for us. Recall
that the set Gr(k,N) of all k-dimensional linear subspaces of CN embeds via the
Plücker embedding as a closed subset of some projective space. Thus Gr(k,N)
admits the structure of a projective variety, known as the Grassmannian.

Notations. Fix positive integers 0 ≤ k ≤ N . Consider GLN(C) ⊂ B ⊂ T
where T is the standard torus and B is the opposite standard Borel subgroup.
Let Pk ⊂ GLN(C) be the opposite standard parabolic subgroup containing B.
Explicitly, B is the subgroup of invertible upper triangular matrices, and T is the
subgroup of invertible diagonal matrices, and Pk is the set of invertible matrices
of the following form:

C 0

∗ D

 C ∈ GLk, D ∈ GLN−k

Usually the opposite groups are convenient when we want to connect geometry
to combinatorics. The Grassmannian is also realized as a Chevalley quotient
GLN(C)/Pk (see [Spr09] chapter 5 §5).

The T -action onGLN(C) by left multiplication descends to a T -action onGr(k,N),
which we refer to as the standard action. Note that PN = Gr(1, N + 1), the reader
may find it helpful to take this as a running example.
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2.1 Basic structures

2.1.1 Vector bundles

Let us first describe some natural vector bundles on the Grassmannian, starting
with the tautological bundle.

Definition 2.1.1. View Gr(k,N) as the set of k-dimensional subspaces of CN .
The tautological bundle S on Gr(k,N) is by definition

S = {(V, v) ∈ Gr(k,N)× CN | v ∈ V } proj−→ Gr(k,N)

There is a short exact sequence

0 S Gr(k,N)× CN Q 0 (2.1)

Intuitively, S is a rank k vector bundle whose fiber over V ⊂ Gr(k,N) is V itself,
and thus the name. Since Gr(k,N) carries a natural GLN -action, we can view all
these natural vector bundles S ,Q, TGr(k,N) as GLN -equivariant vector bundles.
e.g. the GLN -action on S , is given by the restriction of the diagonal action on
Gr(k,N) × CN . Then intuitively, we can use the GLN -action to translate the
information of a point to anywhere else.

Theorem 2.1.2. There is an equivalence between the category of GLN -equivariant
vector bundles on Gr(k,N) ∼= GLN/Pk and finite dimensional representations
of Pk, given by taking the fibre at the coset Pk ∈ GLN/Pk. Furthermore, this
equivalence preserves tensor products and duals.

Proof. A quasi-inverse of the functor of taking the fibre at Pk is given as follows:
given a representation V of Pk, define ∼ on GLN × V by

(g, v) ∼ (gp−1, pv) ∀ g ∈ GLN , v ∈ V, p ∈ Pk

the projection (g, v) 7→ gPk defines a vector bundle GLN ×Pk V := GLN ×V/ ∼→
GLN/Pk. See [Jan87, part I §5.14] for details.

Let pk be the Lie algebra of Pk. Explicitly, pk consists of matrices of the formC 0

∗ D

 C ∈ glk, D ∈ glN−k

;8<
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This is naturally a representation of Pk via differentiating the conjugation action
of Pk on itself. We have a short exact sequence of Pk-modules

0 pk glN glN/pk 0

Intuitively, the quotient map GLN → GLN/Pk is a submersion, and the tangent
vectors to Pk at the identity element is killed, so the quotient space glN/pk should
be the tangent space of GLN/Pk at the coset Pk.

Proposition 2.1.3. The tangent bundle of GLN/Pk is isomorphic to the bundle
GLN ×Pk (glN/pk) as GLN -equivariant vector bundles.

Proof. See [Jan87, part II, §4.2].

In what follows we will denote the dual of a vector bundle F by F∨.

Lemma 2.1.4. Let S ,Q be as in (2.1). The tangent bundle of Gr(k,N) is
isomorphic to S ∨ ⊗Q as GLN -equivariant vector bundles.

Proof. In view of Theorem 2.1.2 it suffices to compare the fibres over the coset
Pk ∈ G/Pk as Pk representations. The fibre of S∨⊗Q is spanned by basis vectors

{ei ⊗ ēj | 1 ≤ i ≤ k, k + 1 ≤ j ≤ N}

Take any p ∈ Pk, we calculate

pei ⊗ ēj = p−1ei ⊗ pēj

where ēi denote the congruent class of the standard basis in the fibre of Q, and ei

denote the dual basis of the standard basis in the fibre of S . On the other hand,
the action of Pk on glN/pk is given by conjugation

pĒji = pĒjip
−1 1 ≤ i ≤ k, k + 1 ≤ j ≤ N

where Ēji ∈ glN/pk denotes the image of the matrix unit Ejiel = δliej. Define a
linear map from the fibre of S ∨ ⊗Q to glN/pk by

ei ⊗ ēj 7−→ Ēji

this is bijective, and compatible with the Pk-action, as desired.

;8<
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2.1.2 Fixed points

Notations. We denote by Λ(k,N) the set of 01-strings λ = (λ1, λ2, . . . , λN) ∈
{0, 1}N such that

∑N
i=1 λi = k.

Lemma 2.1.5. The fixed points of the standard torus action on Gr(k,N) are
precisely the coordinate subspaces, i.e. the linear subspaces spanned by k of the
standard basis elements

ei = (0, 0, . . . 0, 1
i-th
, 0, . . . , 0) ∈ CN

Proof. Note that a torus element t ∈ T simply sends a subspace W ⊂ CN to the
subspace tW ⊂ CN , thus W is a fixed point iff W = tW for all t ∈ T . It is then
a linear algebra exercise to show that this is equivalent to W being spanned by
common eigenvectors of T .

Corollary 2.1.6. The set of 01-strings Λ(k,N) corresponds bijectively to the torus
fixed points in Gr(k,N) via

λ = λ1λ2 . . . λn 7−→
∑

Cλiei ⊂ CN

Notation. By abuse of notation, denote by λ the fixed point corresponding to λ.
Denote the corresponding linear subspace of CN by Cλ.

Now by Lemma 2.1.4 we can also read off the T -action on the tangent bundle of
Gr(k,N) via that of S ∨ ⊗ Q, whose fibre over any fixed point W ⊂ Gr(k,N)
is naturally identified with W∨ ⊗ CN/W as a T -module. Since T is abelian, the
tangent space at any fixed point splits into a direct sum of common eigenspaces of
T called weight spaces. On each summand T acts via a character called the weight.
Recall example 1.2.7 that we identify weights as certain Lie algebra elements.

Example 2.1.7. Consider Gr(2, 4) with the standard T -action. By Lemma 2.1.5
the torus fixed points are the coordinate subspaces

span{ei, ej}, 1 ≤ i < j ≤ 4

Therefore by the argument above the tangent space at 0110 ∈ Λ(2, 4) splits as a
T -module:

T0110Gr(2, 4) = Ce2 ⊗ ē1 ⊕ Ce3 ⊗ ē1 ⊕ Ce2 ⊗ ē4 ⊕ Ce3 ⊗ ē4

For a general Grassmannian we can do the same thing. By Example 1.2.7 we have
the identification H∗T (pt) ∼= Sym•t∗. For our standard torus T ⊂ GLN(C) we have
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a standard choice of a basis of t∗ given by the tangent map εi of the coordinate
function 

t1

t2
. . .

tN

 7−→ ti ∈ C∗

Denote them by εi, then we have an identification

H∗T (pt,Z) ∼= Sym•Zt
∗ ∼= Z[ε1. . . . εN ] (2.2)

where deg εi = 2.

Proposition 2.1.8. In Gr(k,N) the top T -equivariant Chern class of the tangent
space at the fixed point λ is

cTtop(TλGr(k,N)) =
∏
λi>λj

(εj − εi) ∈ H2k(N−k)
T Gr(k,N)

Proof. The tangent space of Gr(k,N) at a fixed point λ is identified with (Cλ)∗⊗
CN/Cλ as a T -module, which has an common eigenbasis for the T -action

{ei ⊗ ēj | λj = 0, λi = 1}

The T -weights are given by

(t1, . . . tN) · ei ⊗ ēj = tjt
−1
i ei ⊗ ēj

under the identification (2.2) these weights are identified with εi−εj ∈ t∗ for λi = 1
and λj = 0.

2.1.3 Schubert cells and Schubert varieties

To study the geometry of Gr(k,N) one usually start with a cellular decomposition
associated to the fixed points.

Definition 2.1.9. The Schubert cells are the B-orbits of the torus fixed points in
Gr(k,N). The Schubert varieties are the closures of the Schubert cells.

These cells are studied via the following combinatorial information of the fixed
points.
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Definition 2.1.10. Define a map I : Λ(k,N)→ N by

I(λ) = ]{(i, j) | i < j, λi < λj}

Define a partial order ≥ on Λ(k,N) by

λ′ ≥ λ ⇐⇒
n∑
i=1

λ′i ≥
n∑
i=1

λi ∀ 1 ≤ n ≤ N

Proposition 2.1.11. Let 0 = V0 ⊂ V1 ⊂ . . . VN = CN be the opposite standard
flag, where Vi is the span of the last i standard basis vectors eN−i+1, . . . eN .

• Gr(k,N) is the disjoint union Schubert cells.

• For each torus fixed point λ ∈ Gr(k,N) the unique Schubert cell Cλ contain-
ing λ is isomorphic to the affine space Ck(N−k)−I(λ).

• Cλ = {W ⊂ CN | dimW ∩ VN−i+1/W ∩ VN−i = λi}.

• Cλ is dense and open in its closure Ωλ := Cλ.

• Ωλ =
∐

µ≤λCµ

• Ωλ = {W ⊂ CN | dimW ∩ Vi ≥
∑N

j=N−i+1 λj}

For the proof the reader is referred to [EH16], chapter 4.

Example 2.1.12. Take PN−1 = Gr(1, N) as an example. Then

Λ(1, N) = {λr = 00 . . . 010
r-th

. . . 00 | 1 ≤ r ≤ N}

The Schubert cell Cr := Cλr is by definition the B-orbit of the fixed point λ, hence
in homogeneous coordinates [x1 : x2 · · · : xN ] on PN−1 we have

Cr = {[0 : · · · : 0 : 1 : xr+1 : xr+2 · · · : xN ] | xi ∈ C} ∼= C(N−1)−(r−1)

Note that I(λr) = r − 1, as in the proposition. It is also clear that the disjoint
union of Schubert cells is Gr(1, N). On the other hand, Cr consists of lines spanned
by some v ∈ Ber consisting of vectors satisfying

v ≡ cer mod span{er+1 . . . eN} c ∈ C∗

One can directly check that this is equivalent to

dimCv ∩ Vi/(Cv ∩ Vi−1) =

{
1 if i = r

0 otherwise.
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Next, one can directly check that

Ωr = Cr = {[0 : · · · : 0 : xr : xr+1 : xr+2 · · · : xN ] ∈ PN−1} ∼= Pr−1

and Cr is dense open in Ωr. This is the set of lines L satisfying

dimL ∩ VN−r+1 ≥ 1

and one can see that Ωr = ∪i≥rCi. This cellular structure is exactly the standard
CW structure for the complex projective space in topology.

Tangent and normal spaces of Schubert varieties

Next we write down the tangent and normal spaces of the Schubert variety Ωλ at
the corresponding torus fixed point λ.

Lemma 2.1.13. The tangent space to Ωλ at the torus fixed point λ is

{ēi ⊗ dej | λi = 0, λj = 1, i > j} ⊂ TλGr(k,N)

This identification is compatible with the T -action.

Proof. By Proposition 2.1.11, Cλ is dense open in Ωλ and contains λ, hence
TλΩλ = TλCλ. To determine the latter, we produce some tangent vectors as
follows: consider the one-parameter subgroup

φij : t 7→ I + tEij ∈ B λi = 0, λj = 1, i > j

where Eij is the matrix defined by Eijel = δljei. Note that the stabilizer of λ of the
left GLN -action consists of matrices preserving the subspace Cλ =

∑
C{ei | λi =

1} ⊂ CN , therefore φij(t)λ is a curve on Gr(k,N). Taking the tangent vector of
this curve at t = 0 gives ēi⊗dej. The collection of these tangent vectors is linearly
independent. Notice that the torus fixed point λ is always in the Schubert cell
and thus a smooth point. Then by dimension reasons we see that all such vectors
already span TλΩλ.

The cotangent space is then identified with the dual representation of TλΩλ, i.e.
the T -weights are exactly the negative of the weights of the tangent space. Recall
the identification (2.2) H∗T (pt,Z) ∼= Z[ε1. . . . εN ].

Corollary 2.1.14. For any λ ∈ Λ(k,N) the top T -equivariant Chern class of the
normal space of the Schubert variety Ωλ at the fixed point λ is

cTtop(NλΩλ) =
∏
λi<λj
i<j

(εi − εj)
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The top T -equivariant Chern class of the conormal space of the Schubert variety
Ωλ at the fixed point λ is

cTtop(N∗λΩλ) =
∏
λi<λj
i<j

(−εi + εj)

2.1.4 Cohomology

Now we briefly recap the (integral) cohomology or Chow ring of the Grassmannian
Gr(k,N) (they are isomorphic as Z-algebras in this case). For the proofs and a
more thorough discussion see [EH16] or [Ful98].

The Schubert variety Ωλ gives a fundamental class in homology (or more precisely,
Borel-Moore homology, but for compact spaces they are the same, see [CG10]
§2.6), whose Poincaré dual defines a cohomology class Sλ ∈ H∗(Gr(k,N),Z).
These classes are known as the Schubert classes.

Theorem 2.1.15. The Schubert classes Sλ form a Z-basis of H∗(Gr(k,N),Z),
with each Sλ sitting in degree 2I(λ), where I(λ) is defined in 2.1.10.

For the proof the reader is again referred to [EH16] §4.2.2.

Remark 2.1.16. Note that there is a unique Schubert class Div sitting in degree 2,
corresponding to the string λ = 11 . . . 10100 . . . 0 and I(λ) = 1. This is called the
divisor class. The the Theorem 2.1.15 implies that

rank H2(Gr(k,N),Z) = 1

This divisor defines a line bundle O(1) satisfying c1(O(1)) = Div. In fact O(1) =∧k S ∨, where S is the tautological bundle (2.1). Furthermore, O(1) has
(
N
k

)
linearly independent sections, corresponding to ei1∧. . . eik , hence yields the Plücker
embedding.

Dually, there is a unique Schubert class in degree 2k(N − k)− 2, corresponding to
the string 00 . . . 01011 . . . 1. The corresponding Schubert variety is a T -invariant
P1, hence this Schubert class is often called the class of a line. We again deduce

rank H2k(N−k)−2(Gr(k,N),Z) = 1

Example 2.1.17. Consider PN−1 = Gr(1, N), recall example 2.1.12 that the
Schubert varieties are linear subspaces Pr ⊂ PN−1, i.e. the vanishing loci of the
first r− 1 coordinates x1, . . . xr−1 on PN . Since this is the standard CW structure
for the projective space, this illustrates Theorem 2.1.15.
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The intersection pairing

Recall that the Grassmannian is connected, hence we have an isomorphism

φ : H0Gr(k,N) ∼= Z

There is an intersection pairing on the cohomology give by∫
Gr(k,N)

α ∪ β := φ (α ∪ β ∩ [Gr(k,N)]) ∈ Z

where [Gr(k,N)] ∈ Hk(N−k)Gr(k,N) denotes the fundamental class. This number
is also called the intersection number. By definition∫

Gr(k,N)

α ∪ β 6= 0 =⇒ degα + deg β = 2 dimGr(k,N) = 2k(N − k)

This pairing is nondegenerate by (a version of) Poincaré duality, see [CG10, §2.6]
for details.

Remark 2.1.18. When degα+deg β = 2k(N−k), the integer
∫
Gr(k,N)

α∪β is called

the intersection number because cohomology classes represent (certain equivalence
classes) of closed submanifolds, and under nice circumstances (transversal inter-
section) it counts the number of intersection points of the two submanifolds. e.g.
the fact that two “generic” lines on P2 intersect at exactly one point is reflected
by ∫

P2

S010 ∪ S010 = 1

because the Schubert variety Ω010 is a line in view of example 2.1.12, and on any
projective space the fundamental class of any linear P1 is the Schubert class of a
line. The pairing is written as an integral because using de Rham cohomology this
is indeed the honest integral of differential forms.

Example 2.1.19.

Now by non-degeneracy of the intersection pairing, the matrix with entries
∫
Sλ ∪

Sµ is invertible. Denote its inverse matrix by (gλµ), we can write any cohomology
class as

α =

(∫
Gr(k,N)

α ∪ Sλ
)
gλµSµ

In particular,

Sλ ∪ Sµ =

(∫
Gr(k,N)

Sλ ∪ Sµ ∪ Sν
)
gνξSξ (2.3)
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The coefficients
∫
Gr(k,N)

Sλ ∪ Sµ ∪ Sν are sometimes called Schubert intersection

numbers. Thus to determine the cup product structure it suffices to compute the
Schubert intersection numbers and the matrix (gλµ).

Lemma 2.1.20. For any λ ∈ Λ(k,N) we have∫
Gr(k,N)

Sλ ∪ Sµ =

{
1 µ = w0λ

0 otherwise.

where w0λ means the string λ read backwards.

Proof. See [EH16, §4.2.2].

Now we can rewrite equation 2.3 as

Sλ ∪ Sµ =

(∫
Gr(k,N)

Sλ ∪ Sµ ∪ Sw0ν

)
Sν (2.4)

2.2 Schubert calculus and puzzle games

The ring structure of the cohomology of the Grassmannian is determined by the
equation 2.4. Abbreviate the Schubert intersection numbers

cνλµ :=

∫
Gr(k,N)

Sλ ∪ Sµ ∪ Sw0ν ∈ Z

In general, intersection numbers can be negative. However, as we will see, for
Grassmannians all cνλµ turn out to be nonnegative. They have interesting combina-
torial interpretations, one of which is that they count the puzzles of [KT+03].

Definition 2.2.1. A labeled equilateral triangle is an upward pointing equilateral
triangle of some integral side length n, with the 3n unit edges labeled by elements
in {0.1}.

Example 2.2.2. In the previous example the boundary of the puzzle is the fol-
lowing labeled equilateral triangle of side length 2.

0 1

1

1 0

0
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We call the left side of such a triangle the NW side, the right one the NE side, and
the bottom one the S side. To relate this to the Schubert calculus, for any three
strings λ, µ, ν ∈ Λ(k,N), let ∆λ,µ,ν be the labeled equilateral triangle with the NW
side λ, NE side µ and S side ν, all read clockwise. Next, like actual puzzle games,
a Knutson-Tao puzzle is obtained by filling such a labeled equilateral triangle by
basic puzzle pieces.

Definition 2.2.3. An ordinary puzzle piece is one of the following 3 plane figures
with labeled edges

• a unit triangle with all edges labeled 0,

• a unit triangle with all edges labeled 1,

• a unit rhombus, the two edges clockwise of acute vertices labeled 0, the others
labeled 1.

00
0

0
0 0

11
1

1
1 1

1

1

0

0

1 1
0

0

1

1
00

Note that this set of puzzle pieces is invariant under 120◦ rotation. Our labeling
is opposite to the ones in [KT+03]: what we label 1 would be 0 for them, and
vice versa. This is because we want to align with our conventions on Grassmanni-
ans.

Definition 2.2.4. A puzzle is a decomposition of an equilateral triangle with side
length N ∈ N into triangles and rhombi with all edges labeled 0 or 1, so that each
region is a puzzle piece.

Example 2.2.5. In the following picture the left figure is a puzzle and the right
one is not.

1

01

0

01

01

1

01

0

10

01
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Theorem 2.2.6 (Puzzles compute Schubert calculus). Let 0 ≤ k ≤ N and
λ, µ, ν ∈ Λ(k,N). The number of puzzles P with boundary ∆λ,µ,ν is the inter-
section number ∫

Gr(k,N)

Sλ ∪ Sµ ∪ Sν

In particular, the structure constant cνλµ is equal to the number of puzzles P with
boundary ∆λ,µ,w0ν;

Remark 2.2.7. In the Theorem 2.2.6, the symmetries of the intersection numbers∫
Sλ ∪ Sµ ∪ Sν =

∫
Sµ ∪ Sν ∪ Sλ =

∫
Sν ∪ Sλ ∪ Sµ

corresponds to our earlier observation that the 120◦ rotation preserves the set of
puzzle pieces and hence takes a puzzle to a puzzle.

Example 2.2.8. Consider P1 = Gr(1, 2), we haves seen that the Schubert cells are
C01 = {pt}, C10 = P1 − {pt} The Schubert classes are S01 = [pt] and S10 = [P1].
As a reality check, we examine all puzzles in the multiplication table of H∗(P1).

S10 S01

S10 S10

S01 S01 0

Start with S10S10 = S10. In the following puzzles we color the 1-edges by red and
0-edges by blue and thus omit the 0’s and 1’s. Now we count the corresponding
puzzles.

1

01

0

10∫
P1

S10 ∪ S10 ∪ S10

1

01

0

01∫
P1

S10 ∪ S10 ∪ S01

Of course the first intersection number is 0 for degree reasons. Let us check that
there can be no such puzzles: the upper acute angle has edges of different colors,
which only fits in the rhombus puzzle piece. But then this is also the case for
any other angle, and there is simply not enough room for so many rhombi in this
triangle. For the other integral, by the same observation we have to put a vertical
rhombus at the top, and this gives the unique puzzle given in example 2.2.5.
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Next we consider S10S01 = S01. We count the puzzles with the following boundary
conditions.

∫
P1

S10 ∪ S01 ∪ S01

∫
P1

S10 ∪ S01 ∪ S10

Notice that the second puzzle problem has be solved before, if we rotate it 120◦

clockwise. This gives the correct answer to the second integral. The first one has
no solution because we have to put a red triangle at the top and a blue one at the
bottom left corner, leaving nothing to fill in the remaining space.

Next, write S01 ∪ S01 = 0 as∫
P1

S01 ∪ S01 ∪ S01 = 0

∫
P1

S01 ∪ S01 ∪ S10 = 0

We count the puzzles with the following boundary conditions.

∫
P1

S01 ∪ S01 ∪ S01

∫
P1

S01 ∪ S01 ∪ S10

These boundaries have no solution because the upper acute angle does not fit into
any puzzle pieces.

Example 2.2.9. There are Littlewood-Richardson coefficients greater than 1. For
example in Gr(6, 10) we have the following puzzles, where for clarity we left out
all triangles and only marked the rhombi pieces.

Remark 2.2.10. Theorem 2.2.6 used integral coefficients for the cohomology, but
the results also apply to complex coefficients.

2.3 Equivariant Schubert calculus

Now let us discuss the equivariant cohomology of Gr(k,N). In what follows we
upgrade the puzzle rule to the equivariant setting following [KT+03]. In fact one
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Figure 2.1: All ∆0110110101
1011011010,1111010010 puzzles

can prove the equivariant case directly without appealing to the non equivariant
geometry, then obtain the non equivariant version as a corollary.

2.3.1 The GKM graph of Grassmannians

Recall that we can describe the equivariant cohomology in terms of GKM classes.
For this we need to consider the GKM graph of Grassmannians. Recall that a
transposition is a symmetric group element of the form (ij) ∈ SN .

Lemma 2.3.1. For any Gr(k,N) let λ 6= λ′ be two torus fixed points.

• If there is a transposition σ ∈ SN such that λi = λ′σi for all i, then there is
a unique one dimensional orbit whose closure contains λ, λ′.

• Otherwise there are no one dimensional orbits whose closure contains λ, λ′.

Proof. By Proposition 1.2.16 each one dimensional orbit O is isomorphic to P1 −
{0,∞} and its closure O isomorphic to P1 containing exactly two fixed points
λ, λ′ ∈ Gr(k,N) identified with 0,∞ ∈ P1 resp. As in example 1.2.19, via the
equivariant inclusion

T0P1 TλGr(k,N)

T∞P1 Tλ′Gr(k,N)

Ō specifies a weight space of the torus in each of the tangent spaces of Gr(k,N)
at these two fixed points. In view of Proposition 2.1.8, this weight has to be the
form εi − εj at λ, with λi = 1, λj = 0. Recall example 1.2.18, we deduce that the
torus T acts on O ∼= P1 via the character tit

−1
j . Hence the torus elements with 1’s

at the i-th and j-th diagonal fixes O pointwise. Take V ∈ O and a nonzero vector
v ∈ V . Write v =

∑
i aiei and assume that al 6= 0 for some l 6= i, j. Take the T

element with the l-th diagonal entry equal to 2ai and the other diagonal entries
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equal to 1.

t =



1
. . .

2ai
. . .

1


Then tV = V =⇒ tv ∈ V , and consequently el = a−1

i (tv − v) ∈ V . In this way
we conclude that V is the span of k−1 standard basis vectors, together with some
aei + bej, and both a, b 6= 0 because V is itself not a fixed point. Then one can
check that

O =

{
W ⊂ CN | W ⊂

∑
λl=1

Cel + Cej

}
(2.5)

Then observe that the only torus fixed points in RHS is λ and λ′ obtained from
λ via the transposition (ij). This proves the second assertion, together with the
uniqueness in the first one. To prove existence, just define the RHS in the above
equation 2.5 and check that it is a one dimensional orbit closure.

Example 2.3.2. Consider the standard T 4-action on Gr(2, 4). The torus fixed
points are the coordinate subspaces

Wij = span{ei, ej}, 1 ≤ i < j ≤ 4

Recall the identification (2.2), H∗T (pt,Z) ∼= Z[ε1, . . . , εN ], these weights at Wij are
εi − εl, εj − εl for l 6= i, j. The GKM graph is thus depicted as follows:

1100

1010

0110 1001

0101

0011

ε2 − ε3
ε2 − ε4

ε1 − ε3

ε4 − ε1

ε1 − ε2 ε4 − ε3

ε1 − ε2
ε3 − ε4

ε4 − ε1

ε1 − ε3
ε2 − ε4

ε2 − ε3
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One can explicitly check that λ, λ′ are connected by an edge iff there is a transpo-
sition σ ∈ S4 such that λi = λ′σi for all i.

In general the GKM graph can have so many edges that it could be hardly helpful
to draw it explicitly. We shall see in what follows that the partial order on the set
of vertices is sufficient for our purposes.

2.3.2 Equivariant Schubert classes

We have to first define the equivariant version of the Schubert classes. Follow-
ing Knutson and Tao’s treatment, we give a combinatorial definition and then
construct these classes via geometry.

Recall that we identify the set of fixed points with the set Λ(k,N). Recall the par-
tial order 2.1.10 on it. Recall Definition 1.3.2 that a GKM class is a map from the
set of torus fixed points to Sym•t∗ ∼= H∗T (pt) subject to the GKM conditions.

Definition 2.3.3. Let λ ∈ Λ(k,N). The support Supp f of is the subset of
λ ∈ Λ(k,N) such that f(λ) 6= 0 in H∗TGr(k,N). We say that f is supported below
λ if for all λ′ ∈ Supp f we have λ′ ≤ λ.

Recall example 1.3.6, where we found a basis for the equivariant cohomology con-
sisting of classes supported below some λ. To generalize this, observe that for each
of such pairs (i, j), we swap λi and λj to obtain another vertex λ′ > λ in the GKM
graph, which is connected to λ by an edge thanks to Lemma 2.3.1. Consequently
the GKM condition requires

α(λ) ≡ 0 mod (εi − εj)

Then the fact that Sym•t∗ is a factorial ring concludes that a GKM class f sup-
ported below λ satisfies

f(λ) ≡ 0 mod
∏
λi<λj
i<j

(εi − εj) ∈ Sym•t∗

Definition 2.3.4. The equivariant Schubert classes are GKM classes characterized
by the following properties:

• S̃λ is supported below λ;

• S̃λ(λ) =
∏

(εi − εj), where the product is over (i, j) with λi < λj and i < j;

• S̃λ(µ) is homogeneous of degree 2I(λ).
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Lemma 2.3.5. Suppose the equivariant Schubert class S̃λ exists for all λ, then
they are uniquely characterized by the Definition 2.3.4, and form a Sym•t∗-basis
of the GKM classes of Gr(k,N).

Proof. Suppose the equivariant Schubert classes exist. They form a Sym•t∗-basis
due to the “upper triangular” shape provided by its first defining property. More
precisely, to show linear independence, we take any linear combination∑

aλS̃λ = 0

consider a minimal µ with aµ 6= 0. We want to evaluate the above equation at µ.
Suppose aνS̃ν(µ) 6= 0, then µ is in the support of ν, i.e. ν ≥ µ, and also aν 6= 0,
hence contradicts the minimality of µ. Then we have

0 =
∑

aλS̃λ(µ) = aµS̃µ(µ) = aµ
∏

(εi − εj)

Consequently aµ = 0, a contradiction. This shows that we cannot have any nonzero
aλ at all. To show that any x ∈ H∗TGr(k,N) is in Sym•t∗S̃λ, use induction on
min{I(λ) | λ ∈ Supp x}. The case Supp x = {00 . . . 011 . . . 1} is clear: since

S̃00...011...1(λ) =


∏

1≤i≤N−k
N−k+1≤j≤N

(εi − εj) λ = 00 . . . 011 . . . 1

0 otherwise.

x is automatically divisible by S̃00...011...1. Now for general x, suppose µ1, . . . µs ∈
Supp x have minimal I(µi), then each x(µi) is divisible by S̃µi(µi), hence

x′ := x−
∑
i

x(µi)

S̃µi(µi)
S̃µi ∈ H∗TGr(k,N)

and min{I(λ) | λ ∈ Supp x′} > min{I(λ) | λ ∈ Supp x}. Induction hypothesis
thus yields x′ ∈

∑
Sym•t∗S̃λ.

To show uniqueness, suppose S̃ ′λ is another set of equivariant Schubert classes,
then we can write S̃ ′λ =

∑
aµS̃µ. Take a maximal ν 6≤ λ such that aν 6= 0, then

by definition we have ν /∈ Supp S̃ ′λ and evaluation at ν gives

0 = S̃ ′λ(ν) =
∑
µ≥ν

aµS̃µ(ν) = aν
∏
νi<νj
i<j

(εi − εj)

because S̃µ(ν) 6= 0 only if µ ≥ ν, and such µ ∈ Supp λ implies that λ ≥ µ ≥ ν,
a contradiction, therefore µ 6≤ λ. By maximality of µ we get µ = ν. This implies
that aν = 0, hence S̃ ′λ = aλS̃λ +

∑
µ<λ aµS̃µ. Again evaluation at λ gives aλ = 1.

Finally all lower terms vanish because S̃ ′λ is by definition homogeneous, and for
µ < λ we have deg S̃µ > deg S̃λ = deg S̃ ′λ.
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2.3.3 Equivariant Schubert classes exist

Next we construct the equivariant Schubert classes from geometry. As a moti-
vating observation, recall the computation of equivariant Chern classes 2.1.14 of
the normal space of the Schubert variety Ωλ at the tours fixed point λ, recall
the equivariant fundamental classes in section 1.4.2 and the self-intersection for-
mula 1.4.9. Comparing with the combinatorial Definition 2.3.4 of the equivariant
Schubert classes we get

S̃λ(λ) = cTtop(NλΩλ) = ι∗ι∗[Ωλ]
T

where ι : λ ↪→ Gr(k,N) is the inclusion of the fixed point.

Lemma 2.3.6. The equivariant fundamental class of the Schubert varieties satisfy
the defining properties 2.3.4 of the equivariant Schubert classes.

Proof. That the equivariant fundamental classes [Ωλ]
T give rise to GKM classes

is a part of our main Theorem 1.3.7. Next, by Proposition 2.1.11, the equivariant
fundamental class [Ωλ]

T is homogeneous of degree 2I(λ), and Ωλ is the union of Cµ
for µ ≤ λ. Hence for µ 6≤ λ the torus fixed point µ /∈ Ωλ and consequently [Ωλ]

T

restricts to 0 at the torus fixed point µ. In other words, the equivariant funda-
mental class [Ωλ]

T is supported below λ. Finally the last axiom is our motivating
observation.

Before we proceed let us see a few examples to keep in mind.

Example 2.3.7. For P1 = Gr(1, 2) the GKM graph is given in example 1.2.18.
The equivariant Schubert classes are

S̃01 =

0

ε1 − ε2

S̃10 =
1

1

Since the localization map H∗T (P1) → Sym•t∗ × Sym•t∗is a ring homomorphism,
one could also explicitly describe the multiplication of the equivariant Schubert
classes in this case. But this becomes harder for larger Grassmannians.

Example 2.3.8. Consider Gr(2, 4). Recall the GKM graph 2.3.2, the equivariant
Schubert classes are listed below, where we abbreviate the labels εij := εi − εj.
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The class of a fixed point:

S̃1100 =

0

0

0 0

0

ε24ε23ε14ε13

ε23
ε24

ε13

ε41

ε12 ε43

ε12
ε34 ε41

ε13

ε24
ε23

The class of a T -stable line:

S̃1010 =

0

0

0 0

ε34ε14ε12

ε24ε14ε13

ε23
ε24

ε13

ε41

ε12

ε43

ε12ε34
ε41

ε13

ε24
ε23

Two codimension 2 Schubert varieties.

S̃0110 =

0

0

0 ε34ε24

ε34ε14

ε24ε14

ε23
ε24

ε13

ε41

ε12
ε43

ε12ε34 ε41

ε13
ε24

ε23
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S̃1001

0

0

ε13ε12 0

ε14ε12

ε14ε13

ε23
ε24

ε13

ε41

ε12

ε43

ε12ε34 ε41

ε13
ε24

ε23

The divisor class, also the class of the unique singular Schubert variety in Gr(2, 4).

S̃0101 =

0

ε23

ε13 ε24

ε14

ε14 + ε23

ε23
ε24

ε13

ε41

ε12

ε43

ε12
ε34 ε41

ε13

ε24
ε23

And the identity element is the fundamental class of the total space Gr(2, 4).

S̃0011 =

1

1

1 0

1

1

ε23
ε24

ε13

ε41

ε12

ε43

ε12
ε34

ε41

ε13

ε24

ε23

2.3.4 Equivariant Schubert calculus of Grassmannians

In view of Lemma 2.3.5, the multiplicative structure of H∗TGr(k,N) is again de-
termined by the product formula for the equivariant Schubert classes. In this
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section we state the combinatorial rule in [KT+03] computing the product of two
equivariant Schubert classes.

Write S̃λS̃µ =
∑
c̃νλµS̃ν . Recall the identification H∗T (pt,Z) ∼= Z[ε1. . . . εN ] (2.2).

Here the coefficient c̃νλµ ∈ Z[ε1, . . . , εN ] is homogeneous of degree 2I(λ) + 2I(µ)−
2I(ν). Recall the map H∗TGr(k,N)→ H∗Gr(k,N) sending all equivariant param-
eters εi 7→ 0, by construction this map takes each equivariant Schubert class S̃λ to
the Schubert class Sλ, hence c̃νλµ give the same coefficient in the usual cohomology
if 2I(λ)+2I(µ) = 2I(ν). In particular, they count the puzzles as in Theorem 2.2.6.
In order to encode other equivariant coefficients, consider the following equivariant
puzzle piece: this is the vertical rhombus puzzle with 1 and 0 interchanged.

01

0 1

Warning. Unlike the usual puzzle pieces, this special piece can NOT be rotated.
We also don’t have an intersection number formula in the equivariant setting.

It turns out that allowing this extra piece in our puzzles yields these general
equivariant coefficients c̃νλµ. But there is one small problem: in the P1 example
2.3.7 we have

S̃2
01 = (ε1 − ε2)S̃01

So we have to also produce these extra polynomial coefficients in the puzzles.

Definition 2.3.9. Consider the same notion of puzzles and labeled equilateral
triangles, except that we allow this new puzzle piece. To each equivariant puzzle
piece p in a puzzle P we associate a weight wt(p) ∈ Sym•t∗ by dropping the rhombi
in the SW resp. SE direction until it pokes out the i-th resp. j-th segment on the
south side and set wt(p) := εi − εj.

We illustrate this by the following example.

Example 2.3.10. The following equivariant piece has weight ε2 − ε4.

0
10

1
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Definition 2.3.11. To each puzzle P we associate its weight
∏

pwt(p) where p
runs over the equivariant puzzle pieces of P . By convention an empty product is
1. Note that by definition the weights are products of εi − εj with j > i.

Theorem 2.3.12 (Puzzle computes equivariant Schubert calculus ). Let λ, µ, ν ∈
Λ(k,N) and corresponding to S̃λ, S̃µ, S̃ν, then

S̃λS̃µ =
∑

PNW=λ,PNE=µ

wt(P )S̃w0PS

In other words, the structure constant c̃νλµ is equal to the sum of all weights of P
with ∂P = ∆λ,µ,w0ν. In particular,

c̃νλµ ∈ N[ε1 − ε2, . . . , εN−1 − εN ]

This implies Theorem 2.2.6.

Example 2.3.13. As a reality check, we examine all puzzles in the multiplication
table of H∗(P1). The reader might want to compare this with example 2.2.8. The
multiplication table is computed using example 2.3.7.

S̃10 S̃01

S̃10 S̃10

S̃01 S̃01 (ε1 − ε2)S̃01

In the puzzles we again color the 1-edges by red and 0-edges by blue and thus omit
the 0’s and 1’s. Start with S̃10S̃10 = S̃10.

1

01

0

10

c̃10,10,01

1

01

0

01

c̃10,10,10

The solutions to these puzzles are the same as before. Next consider the product
S̃10S̃01 = S̃01. We try to complete the following into puzzles.

c̃01,10,10 c̃10,01,01
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The equivariant piece also does not increase the number of puzzles in this case.
Next, for S̃01∪S̃01 = (ε1−ε2)S̃01, we count the puzzles with the following boundary
conditions.

c̃01,01,10 c̃01,01,01

Either case we have to put the equivariant rhombus at the top, then the first
puzzle has no solution, and the second has a unique one, with weight ε1− ε2. Thus
we have checked the multiplication table of H∗T (P1). Compare this with example
1.2.8, we have substantially reduced the abstractness of the matter!

Example 2.3.14. Consider Gr(2, 4), we compute the product S̃1010S̃0101 by trying
to complete the following into a puzzle.

0
1

0
1

0
1

0
1

There is only one puzzle piece we can put on the upper most position:

0
1

0
1

0
1

0
1

Then for the next 1 on the NE side there are two possibilities:

In either case the puzzle piece to the left of our rhombus is determined. Next, in
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the first case we have only one possible completed puzzle:

100 1

In this manner one can check that the following are the other possible puzzles.

1100 00 11

Next, the weights of the two equivariant puzzles are ε1 − ε3, ε3 − ε4 resp. This
concludes

S̃1010S̃0101 = S̃0011 + (ε1 − ε4)S̃0101

Finally set all equivariant parameters to 0, we get the usual product S1010S0101 =
S0011 is the class of a point. At this point it is desirable to have an algorithm giving
the puzzles, instead of really having to play an individual puzzle game each time.
Fortunately there is a source provided at https://doc.sagemath.org/html/en/

reference/combinat/sage/combinat/knutson_tao_puzzles.html. This sage
program uses the Knutson-Tao convention about the 01-strings, but their coloring
agrees with us.
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Chapter 3

Quantum cohomology

To give some motivation, we take a smooth projective variety X (We will only
consider X = Gr(k,N)) and describe the classical intersection product on the
Chow ring A∗X as follows. Consider the diagonal embedding ∆:

X

X ×X X

X

π2

π1

∆

Then for any α, β ∈ A∗X, we have

∆∗(π−1
1 α ∪ π2β) = α ∪ β

see e.g. [Ful98] §5.2. The “quantum” input is to replace the diagonal embedding
by certain moduli spaces M0,n(X, β) with natural maps

M0,n(X, β) Xnev

which depends on certain β ∈ AdimX−1, then pullback n classes γ1, . . . γn on X
and form the n-point genus 0 Gromov-Witten invariants

Iβ(γ1, . . . , γn) =

∫
M0,n(X,β)

ev∗ (γ1 × . . . γn)

We shall produce a new product structure on A∗X involving certain Iβ’s. For an
introduction to the moduli space M g,n(X, β) and the Gromov-Witten invariants
we refer to [FP96] and [KV07].
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3.1 Quantum cohomology of G/P

In this section we review the construction of the (small) quantum cohomology. Let
G be a reductive algebraic group and P ⊂ G a parabolic subgroup. We define the
small quantum cohomology for the smooth variety X = G/P , which is projective
by e.g. [Spr09] §6.2.

There is a cycle map A∗X → H∗(X,Z) sending each subvariety to its fundamental
class in the Borel-Moore homology and doubling the degree, see [Ful98] chapter
19. Similar to theorem 2.1.15, there are general Schubert cells which give a basis
for both sides, we get the following theorem.

Theorem 3.1.1. The a cycle map AiX → H2i(X,Z) is an isomorphism.

For details we refer to [Kum02], [LG01] or [Bri05].

3.1.1 Definition

We write down again the product formula for the Schubert classes. Denote all
the Schubert classes by U0, U1, U2, . . . Um ∈ A∗X. Denote the intersection num-
bers

gij =

∫
X

Ui ∪ Uj ∈ Z

The matrix (gij) is invertible by Poincaré duality. Denote (gij) the inverse matrix,
then

Ui ∪ Uj =
∑
e,f

(∫
X

Ui ∪ Uj ∪ Ue
)
gefUf

One of the original motivations for quantum cohomology is counting the number
of certain curves on the projective spaces.

Definition 3.1.2. An effective curve class β ∈ A1X is an N-linear combination
of the Schubert classes in AdimX−1X.

Following [FP96], we shall add the “quantum deformation” terms Iβ(Ui · Uj · Ue)
on the right hand side to get a new composition law of the form

Ui ∗ Uj =
∑
e,f

(∫
X

Ui ∪ Uj ∪ Ue
)
gefUf +

∑
β>0

qβI0(Ui, Uj, Ue)g
efUf

where the sum is over effective curve classes β.
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The quantum potential

Let U0 = 1 ∈ A0X and let U1, . . . Up be the divisor Schubert classes (i.e. the
Schubert classes in A1X ). Let U0, U1, U2, . . . Um ∈ A∗X be all the Schubert
classes. For a class γ ∈ A∗X, consider the “potential function”

Φ(γ) =
∑
n≥3

∑
β

1

n!
Iβ(γn) (3.1)

where γn is the n-fold cup product of γ. Here n ≥ 3 because the Gromov-Witten
invariants Iβ vanish for n ≤ 3. The next lemma allows to set γ as a formal linear
combination of the Schubert classes.

Lemma 3.1.3. Given any integer n, there can be only finitely many β ∈ A1X
such that Iβ(γn) is nonzero for some γ.

Proof. Let βi be the Schubert classes in AdimX−1. We need the following two facts,
see e.g. [FP96].

•
∫
βi
c1(TX) ≥ 2.

• dimM0,n(X, β) = dimX +
∫
β
c1(TX) + n− 3.

Hence Iβ(γn) 6= 0 only if∫
β

c1(TX) ≤ dimX +

∫
β

c1(TX) + n− 3 = n deg γ ≤ n dimX

write β =
∑
miβi, and note that the sum 3.1 is over n ≥ 3, we get∑

2mi ≤
∑

mi

∫
βi

c1(TX) =

∫
β

c1(TX) ≤ n dimX

Since each mi ∈ N, there are only finitely many such linear combinations.

Next we introduce formal parameters y0, . . . ym and replace γ ∈ A∗X above by
γ =

∑m
i=0 yiUi. Thanks to Lemma 3.1.3, we can consider the following formal

power series in Q[[y0, . . . ym]],

Φ(y0, y1, . . . , ym) =
∑

n0+...nm≥3

∑
β

Iβ(Un0
0 , . . . Unm

m )
yn0

0

n0!
. . .

ynmm
nm!

We take the formal partial derivatives of the potential function Φ(y). Denote

Φijk =
∂3

∂yi∂yj∂yk
Φ =

∑
n0+...nm≥0

∑
β

Iβ(Un0
0 , . . . , Unm

m )
yn0

0

n0!
. . .

ynmm
nm!
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The quantum product

If we proceed with Φijk we end up with the big quantum cohomology. However, we
are interested in the small quantum cohomology, i.e. we consider only the formal
variables y1, . . . yp corresponding to the divisor Schubert classes.

Φijk := Φijk(y0, y1, . . . yp, 0, . . . , 0) =
∑
n≥0

∑
β

Iβ(γn · Ui · Uj · Uk)

=
∑
n≥0

I0(γn · Ui · Uj · Uk) + Γijk (3.2)

where γ = y0U0 + y1U1 + . . . ypUp, and Iβ(γn · Ui · Uj · Uk) are n + 3 pointed
Gromov-Witten invariants, and

Γijk =
∑
n≥0

∑
β>0

Iβ(γn · Ui · Uj · Uk)

is the sum over nonzero β’s. We cite the following standard facts.

Theorem 3.1.4. Let X = G/P .

• If n = 3 then

I0(γ1 · γ2 · γ3) =

∫
X

γ1 ∪ γ2 ∪ γ3

otherwise I0(γ1 · γ2 · γ3) = 0 for all γi.

• If D ∈ A1X, then

Iβ(D · γ1 . . . γn) =

(∫
β

D

)
I0(γ1 . . . γn)

• For all γi ∈ A∗X we have I0(1 · γ1 . . . γn) = 0.

From these properties we write the two summands of equation 3.2 as∑
n≥0

I0(γn · Ui · Uj · Uk) =

∫
X

Ui ∪ Uj ∪ Uk

Γijk =
∑
ni≥0

∑
β>0

Iβ(Un1
1 . . . Unp

p · Ui · Uj · Uk)
yn1

1

n1!
. . .

y
np
p

np!

=
∑
ni≥0

∑
β>0

(∫
β

Un1
1 · · ·

∫
β

Unp
p

)
Iβ(Ui · Uj · Uk)

yn1
1

n1!
. . .

y
np
p

np!

=
∑
β>0

Iβ(Ui · Uj · Uk)e
∫
β U1y1 . . . e

∫
β Upyp
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Replace the formal variable qi = eyi , we get

Γijk =
∑
β>0

Iβ(Ui · Uj · Uk)q
∫
β U1

1 . . . q
∫
β Up
p

So the small quantum cohomology essentially only involves the 3-pointed Gromov-
Witten invariants. Again by Lemma 3.1.3 applied to n = 3, Γijk is a finite sum,
hence the above Φijk ∈ Z[q].

Definition 3.1.5. The small quantum cohomology of a Grassmannian X is the
free Z[q1 . . . qp]-module QH∗X := A∗X ⊗Z Z[q1 . . . qp] with multiplication

Ui ∗ Uj =
∑
e,l

Φijeg
elUl (3.3)

Theorem 3.1.6. Let G be a reductive group and P ⊂ G a parabolic subgroup. Let
X = G/P . The small quantum cohomology QH∗X is commutative, associative
Z[q1, . . . qp]-algebra with unit U0. Furthermore, it becomes a graded algebra with

deg qi = 2

∫
βi

c1(TX)

where TX is the tangent bundle of X and β1, . . . βp is the dual Schubert class of
the divisor Schubert class U1, . . . Up.

By construction, setting all qi = 0 recovers the original multiplication inA∗X.

Remark 3.1.7. Commutativity follows directly from the symmetry of Gromov-
Witten invariants. The difficulty lies completely in the associativity, which gives
an easy solution to a highly nontrivial enumerative geometry problem!

Remark 3.1.8. The construction of quantum cohomology is independent of the
choice of the basis Ui in the following sense: for another choice of basis of A∗(X)
one can define a new product on A∗(X)[q] analogous to 3.3. This again makes
A∗(X)[q] a commutative associative algebra, which is canonically isomorphic to
the one we have. One could also consider A∗X ⊗Z C and obtain the quantum
cohomology “with complex coefficients”.

Example 3.1.9. Recall 2.1.16, for Gr(k,N) there is a unique Schubert class of
codimension dimGr(k,N)−1, which is an effective curve class. Thus we abbreviate
the Gromov-Witten invariants as

Id(γ1 · . . . γn) := Id[line](γ1 · . . . γn)
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There is also only one divisor Schubert class, hence the quantum cohomology is a
Z[q]-algebra. To determine the degree of q, Recall Lemma 2.1.4 that TGr(k,N) ∼=
S ∨ ⊗Q. Hence we have

deg q = 2

∫
[line]

c1(TGr(k,N))

= 2

∫
[line]

c1(S ∨) + c1(Q)

= 2N.

Here we used the fact that c1(
∧N−kQ) = −c1(

∧k S) is the divisor Schubert class,
see Remark 2.1.16. We also get

dimM0,3(X, d[line]) = dimGr(k,N) +Nd. (3.4)

In order to evaluate the Gromov-Witten invariants, we often use the following
theorem. See [LM11] for a proof.

Theorem 3.1.10. Let X = Gr(k,N), let Γ1,Γ2,Γ3 be Schubert varieties satisfying∑
codim Γi = dimM0,n(X, d) = dimX + dN

then the Gromov-Witten invariant Iβ ([Γ1] · [Γ2] · [Γ3]) is equal to the number of
smooth degree d genus 0 curves on X incident to general translates of the Γi.

Remark 3.1.11. To prove properties of the Gromov-Witten invariants we have to
allow certain singular curves so as to compactify the moduli space. However,
this theorem tells us that to evaluate the Gromov-Witten invariants, it suffices to
consider smooth curves.

Example 3.1.12. We use Theorem 3.1.10 to determine the small quantum co-
homology of projective spaces. Recall that A∗PN−1 ∼= Z[U ]/(UN), where U =
c1(O(1)) is the unique divisor Schubert class of P1, and U i is the class of a codi-
mension i linear subspace. By 3.4 the dimension of the 3-pointed moduli space
is

dimM0,3(PN−1, d) = N − 1 +Nd

Then Id(U
i · U j · Uk) 6= 0 only if i + j + k = N − 1 + Nd, in which case we

must have d = 0, 1 because i, j, k ≤ N − 1 < N . Thus we only need to compute
I1(U i ·U j ·U2N−1−i−j). For this we take a generic codimension i, j and 2N−1−i−j
linear subspaces U, V,W resp. which are disjoint for dimension reasons. The
fundamental classes of these subspaces are exactly U i, U j, U2N−1−i−j resp. On the
other hand, generic degree 1 curve is a one dimensional linear subspace, and given
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one point on each of the U, V,W , there is a unique line through these points. Thus
by theorem 3.1.10,

I1(U i · U j · U2N−1−i−j) = 1

This gives the multiplication law

U i ∗ U j =

{
U i+j, i+ j < N

qU2N−1−i−j, i+ j ≥ N

Note that the above multiplication formula indeed respects the grading. Thus we
get the presentation

QH∗PN−1 = Z[q, U ]/(UN − q)
In either form it can be seen that if we set q = 0, then this gives the usual
cohomology of PN−1.

3.1.2 A presentation of QH∗X

For general Grassmannians there is also a presentation for the small quantum
cohomology due to Siebert-Tian [ST97]. In fact any presentation of A∗X gives
one for QH∗X. In this subsection we describe this general story.

Take the polynomial ring Z[Z1, . . . , Zr] with degZi = deg zi. Define the surjective
graded algebra homomorphism

φ : Z[Z1, . . . , Zr] −→ A∗X

by Zi 7→ zi. Then kerφ is a homogeneous ideal. Thanks to theorem 3.1.6, we can
also define an homomorphism of graded algebras

φ′ : Z[q1, . . . qp, Z1, . . . , Zr] −→ QH∗X

by sending Zi 7→ zi.

Lemma 3.1.13. The elements φ′(Z1), . . . φ′(Zr) generate QH∗X as a Z[q1, . . . , qp]-
algebra.

Proof. For any multi-index i = (i1, . . . .ir) ∈ Nr define

z∗i := z1 ∗ . . . z1︸ ︷︷ ︸
i1

∗ z2 ∗ . . . z2︸ ︷︷ ︸
i2

∗ · · · ∗ zr ∗ . . . zr︸ ︷︷ ︸
ir

zi := zi11 . . . z
ir
r

Notice that by definition zi ∗ zj ≡ zizj mod (q1, . . . , qp), thus we have z∗i ≡ zi

mod (q1, . . . , qp). For convenience we will abbreviate 0 = (0, . . . , 0) ∈ Nr. Let
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S ⊂ QH∗X be the subalgebra generated by zi. Write any homogeneous element
f ∈ QH∗X as f =

∑
fiq

i where fi ∈ A∗X. Thanks to the grading, it suffices to
show that

∃f ′ ∈ S deg f ′ ≤ deg f, f ′ − f ≡ 0 mod (q1, . . . qr)
deg f (?)

This can be proven via induction. There is a polynomial f ′0 ∈ Z[Z1, . . . Zr] such
that

• deg f ′0 ≤ deg f .

• φ′(f ′0)− f ≡ φ′(f ′(0))− f0 ≡ 0 mod (q1, . . . , qp)

Next, we can choose f ′(1,0,...0), . . . f(0,...,0,1) ∈ Z[Z1, . . . Zr] of degree ≤ deg f , such
that

φ′(f ′0 + f ′(1,0,...0)q1 + . . . f(0,...,0,1)qp)− f ≡ 0 mod (q1, . . . , qp)
2

etc. This proves (?).

Proposition 3.1.14. Let X = G/P . Choose a graded surjective homomorphism

φ : Z[Z1, . . . , Zr] ∼= A∗X

and homogeneous generators f1, . . . , fs of kerφ. Let f ′1 . . . f
′
s be polynomials in

Z[q1, . . . , qp, Z1, . . . , Zr] satisfying

• f ′(0, . . . 0, Z1, . . . , Zr) 7→ 0 under φ;

• f ′(q1, . . . qp, Z1, . . . , Zr) = 0 in QH∗X.

Then

QH∗X = Z[q1, . . . , qp, Z1, . . . , Zr]/(f
′
1, . . . f

′
s)

Proof. Use the arguments in Lemma 3.1.13, mutatis mutandis.

Finally we construct the f ′i satisfying the conditions of Proposition 3.1.14. Take
any f ∈ kerφ ⊂ Z[Z1, . . . Zr], viewed as an element in Z[q1, . . . qr, Z1, . . . , Zr].
Thanks to Lemma 3.1.13, we can fix a Z[q1, . . . , qp]-basis {z∗i | i ∈ S} for QH∗X.
Then we can write

φ′(f) =
∑
I∈S

ξiz
∗i ∈ QH∗X
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for uniquely determined polynomials ξi ∈ Z[q1, . . . qp]. Then the polynomial

f ′ = f(Z1, . . . Zr)−
∑
I∈S

ξiZ
i ∈ kerφ′

and f ′ = f if we set all qi = 0. So given any presentation of A∗X we can always
find a presentation of QH∗X.

3.1.3 Cohomology of Grassmannian Revisited

Now we need a presentation of H∗(Gr(k,N),Z), which is also classical.

Partitions and 01-strings

Consider the following set of partitions

P(k,N) := {λ = (λ1, . . . , λk) ∈ Nk | N − k ≥ λ1 ≥ λ2 · · · ≥ λk ≥ 0} (3.5)

Homo sapiens find it more convenient to work with diagrams rather than formulae.
A partition λ = (λ1, . . . , λk) ∈ P(k,N) is represented by a Young diagram with
λ1 boxes in the top row and λ2 in the second, etc. Thus this Young diagram is
contained in a rectangle of width N − k and height k.

e.g. the above Young diagram represents the partition (4, 3, 2, 2) in P(7, 11).

Lemma 3.1.15. There is a bijection F : P(k,N) ∼= Λ(k,N) such that

Inv(F (λ)) = |λ| :=
k∑
i=1

λi ∀λ ∈ P(k,N)

where Inv is the function defined in 2.1.10.

Proof. For each partition λ ∈ P(k,N) we take the boundary path of the Young
diagram, starting from the bottom left corner of the k× (N −k) rectangle, and we
interpret each horizontal line segment as 0 and each vertical segment as 1. This
produces a 01-string F (λ). Conversely, given a 01-string we can form the boundary
path and thus obtain the corresponding partition. It is easy to see that these two
operations are mutually inverse.
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By Lemma 3.1.15, the Schubert classes of Gr(k,N) are also labeled by P(k,N),
and for each partition λ the total number of boxes in its Young diagram is the
codimension of the corresponding Schubert class Sλ.

Example 3.1.16. Consider X = Gr(2, 4). We list the correspondence between
the above two different labels.

0011 0101 0110 1001 1010 1100

(2,2) (2,1) (1,1) (2,0) (1,0) (0,0)

∅

Here we omitted the ambient 2× 2 square for the Young diagrams.

From this point of view, it is more natural to notice partitions of the form

(1p) := (1, 1, . . . , 1︸ ︷︷ ︸
p

, 0, . . . 0) ∈ P(k,N)

In other words, the corresponding Young diagram has only one column of p boxes.
We can also consider the partitions with a single row

(p) := (p, 0, . . . 0︸ ︷︷ ︸
k−1

) ∈ P(k,N)

We will see that the Schubert classes labeled by (1p) generate the Chow ring and
the same is true for (p).

Schur polynomials

Partitions are natural labels for Schubert classes, one explanation being the ex-
plicit formulae for Schubert classes in terms of Schur polynomials. Define the
i-th elementary symmetric polynomial ei(x1, . . . xk) in k variables x1, . . . xk via the
generating series

E(X) :=
k∏
i=1

(1 + xiX) =
∑
n≥0

enX
n ∈ Z[x1, . . . xk][[X]] (3.6)

Define the i-th complete symmetric polynomial hi(x1, . . . xk) in k variables by

H(X) :=
k∏
i=1

(1− xiX)−1 =
∑
n≥0

hnX
n ∈ Z[x1, . . . xk][[X]] (3.7)
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Definition 3.1.17. For any partition λ, denote by λt the transposed partition,
which is by definition

λti := ]{j | λj ≥ i}

The Young diagram of λt is obtained from that of λ by “matrix transposition”.

Definition 3.1.18. Define the Schur polynomial via the Jacobi-Trudi formula

sλ = sλ(x1, . . . xk) = det(eλtj+i−j) = det(hλi−i+j) ∈ Z[x1, . . . xk]

Observe that s(1p) = ep, and s(p) = hp.

Of course one has to show that the above two determinants are equal. For this we
refer to [Pra19] or [Ful97] chapters 2 and 6.

Now we connect the combinatorics to geometry. Recall the tautological sequence
(2.1) on Gr(k,N):

0 S Gr(k,N)× CN Q 0

Lemma 3.1.19. There is a ring extension f ∗ : H∗(Gr(k,N),Z) ↪→ A′ and classes
x1, . . . xk ∈ A′ such that

f ∗ci(S
∨) = ei(x1, . . . xk) f ∗ci(Q) = hi(x1, . . . , xk) ∈ A′

Proof. By the splitting principle 1.1.18, there is a f : B′ → Gr(k,N) such that the
pullback H∗(Gr(k,N),Z) → A∗B′ is injective and the pullback bundle f ∗S∨ on
B′ has a filtration with line bundle subquotients. Let x1, . . . xk ∈ A∗B′ be the first
Chern classes of these subquotients, known as the Chern roots of the tautological
bundle. By the Whitney sum formula 1.1.15 we get ci(S

∨) = ei(x1, . . . xk). To
compute the Chern classes of Q, by Whitney sum formula c(S∨)c(Q) = 1, and
observe that the generating series 3.6 and 3.7 satisfies E(X)H(−X) = 1.

Remark 3.1.20. Here we use the dual tautological bundle because we want to avoid
signs when we express them in terms of the Schubert classes. e.g. for PN−1 the
negative of the divisor Schubert class is c1(O(−1)).

Now it remains to connect these Chern classes to the Schubert classes.

Proposition 3.1.21. In H∗(Gr(k,N),Z) hold the following identities:

S(i) = ci(Q) S(1i) = ci(S
∨)
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Proof. Fix the flag 0 ⊂ F0 ⊂ F1 ⊂ · · · ⊂ FN = CN as in Proposition 2.1.11, the
Schubert variety labeled by λ = (λ1, . . . , λN−k) ∈ P(k,N) can be described as

Ωλ = {V ⊂ CN | dimV ∩ FN−k−λi+i ≥ i, ∀ 1 ≤ i ≤ k} (3.8)

In particular, for λ = (p) we have

Ω(p) = {V ⊂ CN | dimV ∩ FN−k−p+1 ≥ 1} (3.9)

For convenience denote E = Gr(k,N)×CN . Consider the projective bundles P(S )
and P(E) = PN−1 × Gr(k,N) of the vector bundles S , E resp. The embedding
S ↪→ E induces an embedding η : P(S ) ↪→ P(E).

P(S ) P(E) = PN−1 ×Gr(k,N) Gr(k,N)
η π

By the description 3.9 and the “tautological” property of S , Ωp is the image of
P(S ) ∩ P(Fk−p+1) under π. Then we compute

S(p) = [Ωp] = π∗η
∗[P(Fk+1−p)] = π∗η

∗c1(OE(1))k−1+p (3.10)

where OE(1) is the pullback of O(1) on PN−1 via the projection PN−1×X → PN−1.
Next let OS (1) = η∗OE(1), by naturality of the Chern class we rewrite 3.10 as

π∗η
∗c1(OE(1))k−1+p = π∗c1(OS (1))k−1+p =: sp(S )

where sp(S ) is known as the p-th Segre class of S, satisfying

(1 + s1(S )X + s2(S )X2 + . . . )(1 + c1(S )X + c2(S )X2 + . . . ) = 1

where the identity is in H∗(Gr(k,N),Z)⊗ZQ[[X]], see [Ful98] §3.2. By the Whit-
ney sum formula we get c(Q) = s(S ), hence we conclude

S(p) = [Ωp] = sp(S ) = cp(Q), S(1p) = cp(S
∨)

Corollary 3.1.22. Let x1, . . . , xk be the Chern roots of S∨. For any λ ∈ P(k,N)
the Schubert class Sλ = sλ(x1, . . . xk). In particular, as a Z-algebra H∗(Gr(k,N),Z)
is generated by S(1p) for 1 ≤ p ≤ k.
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Proof. In view of our Definition 3.1.18, it suffices to cite the following result (the
Giambelli formula)

Sλ = det (cλi−i+j(Q))i,j = det
(
cλti+i−j(S

∨)
)
i,j

which is a corollary of the Kempf-Larksov formula for degeneracy loci by consider-
ing the quotient bundle Q and the trivial bundle Gr(k,N)×CN with the filtration
Gr(k,N)×Fi for the flag 0 ⊂ F0 ⊂ F1 ⊂ · · · ⊂ FN = CN as in Proposition 2.1.11.
For more details we refer to [Ful98] chapter 14, or to [And11] for an equivariant
treatment.

Remark 3.1.23. There is an asymmetry in the Schur polynomials. Note that by
Definition 3.1.18 the Schur polynomials in k formal variables lie in the ring of
symmetric polynomials Z[e1, . . . , ek]. The elementary symmetric polynomial er = 0
for r > k, but hr is nonzero for all r. Thus sometimes it is convenient to pass to
the ring of symmetric functions

Z[e1, . . . , ek] −→ lim−→
n

Z[e1, . . . , en]

The canonical image of sλ in the ring of symmetric functions is called the Schur
function corresponding to λ.

Theorem 3.1.24 (Pieri rule for Schur functions). For any partition λ let sλ be
the corresponding Schur function. We have

s(1p)sλ =
∑

sµ ∈ lim−→
n

Z[e1, . . . , en]

where the sum is over partitions µ whose Young diagram is obtained from adding
p boxes to that of λ, with no two added to the same row. Dually, for any partition
λ we have

s(p)sλ =
∑

sµ

where the sum is over partitions µ whose Young diagram is obtained from adding
p boxes to that of λ, with no two added to the same column.

Corollary 3.1.25 (Pieri rule for Grassmannians). For any λ ∈ P(k,N) the prod-
uct of the Schubert classes is computed as follows:

S(1p)Sλ =
∑

sµ

where the sum is over µ ∈ P(k,N) whose Young diagram is obtained from adding
p boxes to that of λ, with no two added to the same row.
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Remark 3.1.26. The Pieri rule for Grassmannians can be obtained from the equiv-
ariant Pieri rule, which can be proved using the divided difference operators thanks
to the localization theorems. See [KT+03]. For a combinatorial proof, we refer
to [Ful97] chapter 6 or [Pra19].

A presentation of H∗(Gr(k,N),Z)

Now recall that we need a presentation of H∗(Gr(k,N),Z). Since rank Q = N−k,
we have the natural vanishing

S(r) = 0 ∈ H∗(Gr(k,N),Z) N − k + 1 ≤ r ≤ N

Let e1, . . . ek be symmetric polynomials in k variables, with deg ei = 2i. By a slight
abuse of language we also write

sλ(e1, . . . ek) := det(eλti−i+j) ∈ Z[e1, . . . ek]

Recall that the complete symmetric polynomial hi = s(i) ∈ Z[e1, . . . ek].

Theorem 3.1.27. There is a canonical isomorphism of graded Z-algebras

Φ : Z[e1, . . . ek]/(hN−k+1, . . . , hN) ∼= A∗Gr(k,N)

sλ(e1, . . . ek) 7−→ Sλ

Proof. This map is clearly well defined and surjective in view of corollary 3.1.22.
To see injectivity, view Z[e1, . . . eN−k] as the ring of symmetric polynomials in k
variables, then it has a basis given by the Schur polynomials labeled by partitions
(λ1, . . . λk) ∈ Nk, see [Ful97].

Thus it suffices to show that sλ is in the ideal generated by hN−k+1, . . . hN for
λ /∈ P(k,N). In this case λ1 > N −k, and by Pieri’s rule we can write sλ = sµhλ1 ,
as illustrated by the above picture. Then it suffice to prove this for λ = (r), r >
N . This can be done using induction and the Pieri rule for multiplying by e1.
Finally the degree of the Schur polynomials can be calculated from the Jacobi-
Trudi formula 3.1.18 as follows:

sλ = det(hλi−i+j)

=
∑
π∈Sk

sgnπ
∏

hλi−i+π(i)

;8<

74



CHAPTER 3. QUANTUM COHOMOLOGY

here Sk denotes the symmetric group. Since deg hi = 2i,

deg
∏

hλi−i+π(i) = 2

(
k∑
i=1

λi − i+ π(i)

)
= 2|λ|

which is exactly the degree of the Schubert class Sλ.

3.1.4 A presentation of QH∗Gr(k,N)

Now thanks to Proposition 3.1.14 and theorem 3.1.27, we have a surjective homo-
morphism of graded Z-algebras

Φ′ : Z[e1, . . . ek][q] −→ QH∗Gr(k,N) (3.11)

where Z[e1, . . . ek] is the ring of symmetric polynomials in k variables.

Lemma 3.1.28. Suppose N − k < r < N . Then

Φ′hr = 0 ∈ QH∗Gr(k,N)

Proof. Let λ = (r) for some N−k < r < N . Since Φ′ is an algebra homomorphism,
we have Φ′sλ = Φ′hr. Thus it suffices to show that

det(Φ′hλi−i+j) =
∑
π∈Sk

(sgnπ)Φ′hλ1−1+π(1) ∗ Φ′hλ2−2+π(2) ∗ · · · ∗ Φ′hλk−k+π(k)

= 0

Recall that deg q = 2N in QH∗Gr(k,N), and the quantum product respects the
grading, hence Id(Sλ · Sµ · Sν) = 0 for d > 0, unless

degSλ + degSµ = 2|λ|+ 2|µ| ≥ 2N

On the other hand, Z[e1, . . . ek][q] is also graded, with deg sλ = 2|λ|. The homo-
morphism Φ′ respects this grading, hence for r < N and λ = (r),

deg Φ′hλ1−1+π(1) ∗ Φ′hλ2−2+π(2) ∗ · · · ∗ Φ′hλk−k+π(k) = 2|λ| = 2r < 2N

Which means that all quantum products must not produce any q’s, otherwise the
degree wouldn’t match. So we conclude that

Φ′(s(r)) = Φ(hr) = 0 N − k < r < N

where Φ is as in 3.1.27.
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Lemma 3.1.29. In QH∗Gr(k,N) we have Φ′(hN) = q.

Proof. Use the generating functions 3.6 3.7 to get

Φ′(hN) = Φ′(e1hN−1 − e2hN−2 + · · ·+ (−1)k−1hN−kek)

= (−1)k−1Φ′(hN−kek)

= (−1)k−1S(N−k) ∗ S(1k)

thanks to the vanishing of Φ′(hN−k+1), . . . ,Φ′(hN−1). So we only need to compute
SN−k ∗ S(1k). By Pieri’s rule the classical product S(N−k)S(1k) = 0. On the other
hand, degS(N−k) ∗ S(1k) = 2N = deg q, we must have

S(N−k) ∗ S(1k) =
∑
µ

I1(SN−k · S(1k) · Sµ)q

Recall 3.4 that the dimension of the moduli space is

dimM0,3(Gr(k,N), 1) = dimGr(k,N) +N

Hence the Gromov-Witten invariant I1(SN−k·S(1k)·Sµ) is 0 unless |µ| = dimGr(k,N).
Thus we have

S(N−k) ∗ S(1k) =
∑
µ

I1(SN−k · S(1k) · [pt])q

Now we have to evaluate the Gromov-Witten invariant. Thanks to theorem 3.1.10,
we count the number of lines in Gr(k,N) that meets generic translates of the
Schubert varieties Ω(1k),Ω(N−k) and a point. Recall equation 3.8, these Schubert
varieties are

Ω(N−k) = {V ⊂ CN | V ⊃ F1}
Ω(1k) = {V ⊂ CN | V ⊂ FN−1}

So a generic translation of Ω(1k) is

g′Ω(1k) = {V ⊂ CN | V ⊂ B}

where B is a N −1 dimensional subspace not containing F1, which we may take to
be the span of e1, . . . eN−1; finally a generic point is a k dimensional subspace not
in B and not containing F1, which we may take to be the span of e2, . . . ek, e1 +eN .

One final ingredient is Lemma 3.1.30 below. Note that there is a unique line
meeting Ω(N−k), g

′Ω(1k) and a generic point, namely

L = {V ⊂ CN | e2, . . . ek ∈ V ⊂ span{e1, . . . ek, eN}} ∼= P1

Thus we conclude that
I1(SN−k · Sλ · [pt]) = 1

therefore SN−k ∗ Sk = I1(SN−k · Sλ · [pt])q = q.
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Lemma 3.1.30. A degree 1 embedding L : P1 → Gr(k,N) is a line

L = {V ⊂ CN | U ⊂ V ⊂ W} ∼= P1

where U,W ⊂ CN are linear subspaces of dimension k − 1, k + 1 resp.

Proof. Consider the Plücker embedding

Gr(k,N) Pm = P
(∧k CN

)
span{vi | 1 ≤ i ≤ k} Cv1 ∧ . . . vk

Pl

where m =
(
N
k

)
− 1. Denote the standard basis Pm by

{eI = ei1 ∧ · · · ∧ eik | I = {i1, . . . ik} ⊂ {1, 2, . . . N}, |I| = k}

The corresponding homogeneous coordinates {xI} are viewed as the global sections
of OPm(1). Recall Remark 2.1.16,

∧k S k is the pullback of OPm(1) to Gr(k,N)
along Pl, and since f has degree 1, the pullback of OPm(1) to P1 via Pl ◦L is again
O(1). This implies that the image of P1 under Pl ◦L is a linear subspace in Pm.

Now, up to a linear transformation on CN , we may assume that the subspace
spanned by coordinate vectors e1, . . . ek viewed as a point on the Grassmannian is
in the image of L. Then Pl ◦L(P1) contains the point p0 := Ce1 ∧ · · · ∧ ek whose
only nonzero coordinate is xI0 = 1. Such a line on Pm has the form

{[b
I0

: 0 : · · · : 0 : acI1 : · · · : acIr : 0 : . . . ] | [a : b] ∈ P1, cIj ∈ C are fixed}

The tangent space of this line at p0, identified as a subspace of Tp0Pm, is spanned
by the tangent vector

eI0 ⊗ (cI1eI1 + . . . cIreIr) ∈ Tp0Pm (3.12)

where the convention is as in 2.1.4. On the other hand, the tangent space of
Tp0Gr(k,N) ⊂ Tp0Pm is spanned by

{eI0 ⊗ eJij ∈ Tp0Pm | i ∈ I0, j /∈ I0 Jij = I0 − {i}+ {j}}

which implies that all Ij in 3.12 are of the form Jij. Now consider the vectors
vi = αilej with coefficient matrix

(αil) =


b . . . 0 . . . acJ1,k+1

. . . acJ1,N

1 . . . 0 0 . . .
. . .

... 0 . . .

1 0 . . .
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For each [a : b] ∈ P1, we get a point in Gr(k,N) whose Plücker coordinates are
the k × k minors of (αil). Thus we obtain an embedded line L′ in Gr(k,N) with
degL′ = 1 because it meets the divisor Schubert variety

Ω(1) = {V ∈ Gr(k,N) | e1 ∈ V }

only at p0, which is a transversal intersection. Thus PlL′ is a line on Pm such that

p0, [0 : · · · : 0 : cI1 : · · · : cIr : 0 : . . . ] ∈ PlL′ ∩ PlL

This proves that L′ = L because Euclid said that there is only one line through
two given points.

Finally, it is easy to see that L′ has the desired form with U = span{e2, . . . ek} and

W = span{e1, . . . , ek, cI1eI1 + . . . cIreIr}

Assembling lemmata 3.1.28, 3.1.29 together with Proposition 3.1.14, we get the
following theorem.

Theorem 3.1.31 (Siebert-Tian). Let e1, . . . ek be elementary symmetric polyno-
mials in k variables. There is a graded Z[q]-algebra isomorphism

Z[q, e1, . . . ek]/(hN−k+1, . . . hN−1, hN + (−1)kq) ∼= QH∗Gr(k,N)

ei 7−→ S(1k)

where hr(e1, . . . eN−k) = det(e1+i−j)1≤i,j≤r and deg ei = 2i, deg q = 2N .

3.2 A fermion model of quantum cohomology

We next give a combinatorial description of the quantum cohomology of the Grass-
mannian following [KS10], providing some detailed proof.

3.2.1 Fermions on a circle

Inspired by physics, we consider k “fermions” on a circle with N slots, i.e. in each
slot there is at most one particle. We also refer to such particle configurations as
states. Number the slots by integers 1, 2, . . . , N clockwise, then the set of states
with k particles is identified with the following sets:

Λ(k,N) P(k,N)

w λ(w)

w(λ) λ

∼

(3.13)
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1 2N

. . .

• 3•N − 1•
• •

Figure 3.1: N slots on a circle, each can be occupied by at most one particle.

see Lemma 3.1.15 for this identification. In what follows we will always use Latin
letters for 01-strings and reserve the Greek letters for partitions.

Let Fk := CΛ(k,N) ∼=
∧k CN ∼= CP(k,N), where the first isomorphism is given

by
w = 00 . . . 1

i1
. . . 1

ik
. . . 00 7−→ eik ∧ . . . ei1

We often denote the empty wedge by ∅0 ∈ F , which corresponding to the string
00 . . . 0. Consider the state space

F :=
N⊕
k=0

Fk ∼=
∧k CN

Definition 3.2.1. Let ei, . . . , eN the dual basis, extended to operators
∧k CN →∧k−1 CN . Consider the following natural linear operators on F :

ψ∗i (w) = ei ∧ w

ψi(w) := ei(w)

Remark 3.2.2. In terms of physics, the empty wedge ∅0 is called the vacuum vec-
tor, i.e. the state with no particles. Up to a sign, ψ∗, ψ are the creation resp.
annihilation operators of the i-th particle, and the notation F comes from the
Fock space, which we introduce later.

Proposition 3.2.3 (Clifford algebra). Consider the subalgebra C ⊂ EndCF gen-
erated by ψi, ψ

∗
i . In EndC(F) hold the following relations

ψiψj = −ψjψi ψ∗iψ
∗
j = −ψ∗jψ∗i

ψiψ
∗
j + ψ∗jψi = δij

for 1 ≤ i, j ≤ N . Furthermore, C is isomorphic to the 22N dimensional Clifford
algebra C′.
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Proof. To check the relations, we calculate

ei ∧ ej ∧ v = −ej ∧ ei ∧ v

for any v ∈
∧k CN . This gives ψ∗iψ

∗
j = −ψ∗jψ∗i . Next, if i = j then we have ψ2

i = 0
so the relation is trivial. If i 6= j we may assume that i < j, then

eiej (ei1 ∧ ei2 ∧ . . . eiN ) =

{
(−1)s−1+t−1ei1 ∧ . . . êis ∧ . . . êit ∧ . . . eiN is = i, it = j

0 otherwise

ejei (ei1 ∧ ei2 ∧ . . . eiN ) =

{
(−1)s−1+t−2ei1 ∧ . . . êis ∧ . . . êit ∧ . . . eiN is = i, it = j

0 otherwise

where êi means no such term in the wedge. So we get ψiψj = −ψjψi. Next, we
have

ei ∧ ei (ei1 ∧ ei2 ∧ . . . eiN ) =

{
ei1 ∧ ei2 ∧ . . . eiN if some il = i

0 otherwise

ei (ei ∧ (ei1 ∧ ei2 ∧ . . . eiN )) =

{
0 if some il = i

ei1 ∧ ei2 ∧ . . . eiN otherwise

hence ψiψ
∗
i + ψ∗iψi = 1. This checks the Clifford relations, therefore there is a

surjective C-algebra homomorphism C′ → C from the Clifford algebra C′ to C. To
see that this is injective, note that there is a PBW type basis of C′ given by

{ψε11 . . . ψεNN (ψ∗1)ε
′
1 . . . (ψ∗N)ε

′
N | εi, ε′i ∈ {0, 1}}

We abbreviate

ψε = ψε11 . . . ψεNN (ψ∗1)ε
′
1 . . . (ψ∗N)ε

′
N ∀ ε = (ε1, . . . εN , ε

′
1, . . . ε

′
N)

Suppose in C ⊂ End(F) holds∑
aεψ

ε = 0 aε ∈ C

For each 1 ≤ i ≤ N we compute its action on the wedge

e1 ∧ . . . êi ∧ . . . eN := e1 ∧ . . . ei−1 ∧ ei+1 ∧ . . . eN

∑
aεψ

εe1 ∧ . . . êi ∧ . . . eN =
∑

aε(e
1)ε1 . . . (eN)εN e1 ∧ · · · ∧ eN

=
∑
±aεe1−ε1

1 ∧ · · · ∧ e1−εN
N = 0
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where the sums are over all ε = (ε1, . . . εN , ε
′
1, . . . ε

′
N) such that ε′i = 1, ε′j = 0 for all

j 6= i. Two such ε is equal iff all their first N entries coincide. Thus for different
ε the wedges e1−ε1

1 ∧ · · · ∧ e1−εN
N are distinct, and thus linearly independent in F .

This implies that all aε = 0 for such ε. Then we calculate the action of
∑
aεψ

ε on
the wedge e1 ∧ . . . êi ∧ . . . êj ∧ · · · ∧ eN .∑

aεψ
εe1 ∧ . . . êi ∧ . . . êj ∧ · · · ∧ eN =

∑
aε(e

1)ε1 . . . (eN)εN e1 ∧ · · · ∧ eN

=
∑
±aεe1−ε1

1 ∧ · · · ∧ e1−εN
N = 0

where the sums are over all ε = (ε1, . . . εN , ε
′
1, . . . ε

′
N) such that ε′i = ε′j = 1, ε′l = 0

for all l 6= i, j. This is because we have shown that all aε = 0 for ε having only one
nonzero ε′i, hence no N − 1 wedges appear in the first sum. Verbatim repetition of
the argument for the previous case gives all such aε = 0. Inductively, we can show
that all aε = 0. This concludes injectivity.

Remark 3.2.4. Notice that dimF = 2N hence dim End(F) = 22N is exactly the
dimension of the Clifford algebra, hence the creation and annihilation operators
actually generate End(F), and thus we get an identification C ∼= End(F). Since
F is an irreducible module over End(F), it follows that F is an irreducible repre-
sentation of the Clifford algebra.

Lemma 3.2.5. Consider the scalar product

〈αw, βw〉 = ᾱβδw,w′

where bar denotes complex conjugation. Then

〈ψiw,w′〉 = 〈w,ψ∗iw′〉

for all w,w′ ∈ F .

Proof. By definition 〈w,ψ∗iw′〉 6= 0 only if w = ±ψ∗iw′ 6= 0. Suppose this is the
case, then 〈w,ψ∗iw′〉 = ±1, and we check that

〈ψiw,w′〉 = 〈±ψiψ∗iw′, w′〉
= 〈±w′, w′〉 = ±1

= 〈w,ψ∗iw′〉

where the second line is because ψ∗iw
′ 6= 0 =⇒ ψiw

′ = 0, then the Clifford
relation gives w′ = (ψiψ

∗
i + ψ∗iψi)w

′ = ψiψ
∗
iw
′.

There is another possibility: if ψ∗iw
′ = ei∧ψi 6= ±w, then we also have ψiw 6= ±w′,

hence 〈w,ψ∗iw′〉 = 〈ψiw,w′〉 = 0.
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Apparently F is generated over C by the vacuum vector ∅0. In fact we have a
triangular decomposition C = C−⊗C id⊗C+, where C+ is the subalgebra generated
by ψ∗i , and C− is the subalgebra generated by ψi. Then clearly C− annihilates
∅0 ∈ F , in other words, C∅0 is a C−-module.

Lemma 3.2.6. F is a free C+-module of rank 1 generated by ∅0 ∈ F . Thus it is
obtained from the one dimensional C−-module C∅0 via induction:F = C⊗C− C∅0.

3.2.2 Particle hopping

Consider the following “particle hopping” operators

ui := ψ∗i+1ψi 1 ≤ i ≤ N − 1 (3.14)

We also add in the quantum parameter q. Take the C[q]-module F [q], we still have
the ψi, ψ

∗
i and thus ui action on F [q] extended C[q]-linearly. In order to capture

the “quantum behaviour”, define an “affine” operator

uN := (−1)k−1qψ∗1ψN on Fk[q] (3.15)

The algebra generated by the ui’s is not new to representation theory.

Definition 3.2.7. The nil-Temperley-Lieb algebra 0-TLN is an associative C-
algebra with generators ûi for 1 ≤ i ≤ N − 1 and relations

û2
i = ûiûi+1ûi = ûi+1ûiûi+1 = 0 ûiûj = ûjûi for |i− j| > 1 (3.16)

The affine nil-Temperley-Lieb algebra 0-T̂LN is an associative C-algebra with gen-
erators ûi for 1 ≤ i ≤ N and relations

û2
i = ûiûi+1ûi = ûi+1ûiûi+1 = 0 ûiûj = ûjûi for i− j 6≡ ±1 mod N (3.17)

where all indices are understood modulo N .

Proposition 3.2.8. Let N ≥ 2, the C-subalgebra generated by {ui | 1 ≤ i ≤ N−1}
of End(F) is isomorphic to the nil-Temperley-Lieb algebra 0-TLN .

Proof. Step 1. We check that the obvious assignment ui 7→ ûi defines an algebra
homomorphism 0-TLN → End(F). First write the Clifford relations 3.2.3 as

ψ2
i = (ψ∗i ))

2 = 0 ψiψ
∗
j = −ψjψ∗i ∀ i 6= j

Then this is straightforward computation:

u2
i = ψ∗i+1ψiψ

∗
i+1ψi = −ψ∗i+1ψ

∗
i+1ψiψi = 0
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uiui+1ui = ψ∗i+1ψiψ
∗
i+2ψi+1ψ

∗
i+1ψi = −ψ∗i+1ψiψiψ

∗
i+2ψi+1ψ

∗
i+1 = 0

ui+1uiui+1 = ψ∗i+2ψi+1ψ
∗
i+1ψiψ

∗
i+2ψi+1 = −ψ∗i+1ψiψiψ

∗
i+2ψi+1ψ

∗
i+1 = 0

And for |i− j| > 1, we have

uiuj = ψ∗i+1ψiψ
∗
j+1ψj

= (−1)2ψ∗j+1ψ
∗
i+1ψiψj

= (−1)4ψ∗j+1ψjψ
∗
i+1ψi = ujui

Now we get an algebra homomorphism 0-TLN → End(F), we want to show that
this is injective, or equivalently, F is a faithful representation of 0-TLN .

Step 2. For any monomial m′(ui) 6= 0 ∈ 0-TLN we take a lexicographically
minimal monomial m(ui) such that m(ui) = m′(ui) ∈ 0-TLN . These monomials
apparently span 0-TLN . To describe these monomials we define the descending
strings

dcnd(i, r) = ui+rui+r−1 . . . ui 1 ≤ i < i+ r ≤ N

Given a monomial m(ui) = ui1 . . . uil , we take the maximal descending string
ui1 . . . uil1 starting with ui1 , then the maximal descending string uil1+1

. . . uil2 , etc.
In this way any monomial is written as

m(ui) = ui1 . . . uil = dcnd(il1 , l1) dcnd(il2 , l2 − l1) . . . dcnd(ilr , lr − lr−1) (3.18)

where lr = l. Observe that for our minimal monomials, the initial index of each
maximal descending string is strictly increasing:

ilj+1
+ lj+1 − lj > ilj + lj − lj−1 ∀j

Denote sj+1 := ilj+1
+ lj+1 − lj. There are two cases:

• sj+1 < lj for some j, we would have in the middle of the monomial a product

dcnd(ilj , lj − lj−1) dcnd(ilj+1
, lj+1 − lj) = usj . . . uljusj+1

. . . ulj+1

= usj+1
. . . ulj+1

usj . . . ulj

which contradicts the minimality.

• If lj ≤ sj+1 ≤ sj, then dcnd(ilj , lj − lj−1) dcnd(ilj+1
, lj+1 − lj) = 0. We only

prove this forsj+1 = sj,

dcnd(ilj , lj − lj−1) dcnd(ilj+1
, lj+1 − lj) = usjusj . . . uljusj+1 . . . ulj+1

= 0

but the original monomial is by construction nonzero. In general the proof
is similar.
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Step 3. On the other hand, the action of dcnd(i, r) on F is equal to ψ∗i+rψi. So
the monomial m(ui) in 3.18 acts as

eij1 ∧ · · · ∧ eijr 7−→

{
±eil1+l1 ∧ · · · ∧ eilr+lr−lr−1 js = ls, ∀s
0 otherwise

Suppose a linear combination of minimal monomials is 0. Write this as∑
j

aj dcnd(il1,j , l1,j) . . . dcnd(ilrj ,j , lrj − lrj−1) aj ∈ C

acts by 0 on F . If the data (l1,j, . . . lrj , il1,j , . . . , irj ,j) are all distinct, then we can
find a wedge which only the summand for j = 1 acts by a nonzero operator, hence
we conclude that a1 = 0, etc. Thus conclude that all aj = 0. Now we have to show
that the data (l1,j, . . . lrj , il1,j , . . . , irj ,j) are all distinct. By the observation in step
2, a minimal monomial is uniquely determined by these data, so we are done.

Remark 3.2.9. We have also shown that the minimal monomials in ui are linearly
independent, hence yield a monomial basis for 0-TLN , and in view of the canonical
form of these monomials are uniquely determined by the input and output 01-
strings.

We cite following analogue of Proposition 3.2.8 from [BM16].

Lemma 3.2.10. For N ≥ 2, the state space F [q] is a faithful representation of

the affine nil-Temperley-Lieb algebra 0-T̂LN .

Remark 3.2.11. A canonical form of nonzero monomials in 0-T̂LN is also given
in [BM16] for N ≥ 3. Similar to the 0-TLN case, these monomials are uniquely
determined by the input 01string with minimal k, the output 01string, and the
power of q it raises.

As a free C[q]-module, Fk[q] has the rank equal to that of QH∗Gr(k,N), and we
next specifying a collection of C[q]-linear operators on Fk[q] indexed by Λ(k,N),
which turns out to be the quantum multiplication by the corresponding Schubert
classes on QH∗Gr(k,N).

3.2.3 The noncommutative Schur polynomials

Recall the Siebert-Tian presentation 3.1.31 of the quantum cohomology

QH∗Gr(k,N) = Z[e1, . . . ek]/(hN−k+1, . . . hN−1, hN + (−1)kq)
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Postnikov [Pos05] found the appropriate counterparts of ei, hi in 0-T̂LN , the “sym-
metric polynomials” in the non-commuting generators ui. Here we must be careful
about the order of the product. Recall that we label the slots on the circle clock-
wise, see figure 3.1. Note that all that matters is the order of consecutive genera-
tors, and they are either in clockwise or counterclockwise order in figure 3.1. For a
set of indices I = {i1, i2, . . . ir} where the consecutive ones are in clockwise order,
define

�∏
i∈I

ui := ui1ui2 . . . uir

�∏
i∈I

ui := uiruir−1 . . . ui1

Since the case N = 2 is completely understood, from now on we assume N ≥ 3
unless otherwise specified.

Definition 3.2.12. For 1 ≤ r ≤ N − 1, define the noncommutative elementary
symmetric polynomial

er(U) :=
∑
|I|=r

�∏
i∈I

ui

similarly, define

hr(U) :=
∑
|I|=r

	∏
i∈I

ui

where the sum runs through subsets of {1, 2, . . . , N}. For r = N we define

hN(U) = (−1)k−1q on Fk[q]

eN(U) =

{
(−1)Nq restriced on FN [q]

0 restriced on
∑N−1

i=1 Fi[q]

Example 3.2.13. If N = 3, then

e2(U) = u1u2 + u2u3 + u3u1 h2(U) = u3u2 + u2u1 + u1u3

and we write down their action on F2[q] = C[q]Λ(2, 3):

110 101 011

e2(U) 011 −q · 110 −q·101

h2(U) 0 0 0

One can see that e2(U) moves every “particle” clockwise by one slot, and on the
contrary, h2(U) wants to move particles more than one step, hence ends up killing
everything.
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Remark 3.2.14. We defined eN(U) and hN(U) specifically to produce the “quantum
cohomology relation” hN = (−1)k−1q. If we set uN , eN(U), hN(U) = 0 in what
follows we will obtain a description of the usual cohomology in terms of 0-TLN .

Definition 3.2.15. For any partition λ ∈ P(k,N) define the noncommutative
Schur polynomials by the Jacobi-Trudi formula

sλ(U) = det(eλtj+i−j(U)) = det(hλi−i+j(U)) ∈ 0-T̂LN (3.19)

where λt is the transposed partition and 1 ≤ i, j ≤ N .

The definition of the noncommutative symmetric polynomials makes sense only if
we can show that the er’s resp. hr’s pairwise commute, and the two determinants
in 3.19 are equal. For this we mimic the Bethe Ansatz, which is known in physics
as the problem of simultaneously diagonalizing certain linear operators, see e.g.
[KBI97] or [Bet97]. (An Ansatz is a particular speculation of solutions.)

Construction of common eigenvectors

Extend the scalar to C(q
1
N ). For z ∈ C(q

1
N ) define the operator

ψ̂∗(z) =
N∑
j=1

z−jψ∗j

For a k-tuple y = (y1, . . . yk) of pairwise distinct elements in C(q
1
N ), consider the

“Bethe vector”

b(y) := η(y)ψ̂∗(y1) . . . ψ̂∗(yk)∅0 ∈ F ⊗C C(q
1
N ) (3.20)

The normalization factor is by definition

η(y) =
(−1)

k(k−1)
2 y1 . . . yk

Van(y)

where Van(y) =
∏

i<j(y
−1
i − y−1

j ) is the Vandermonde determinant. This factor is
introduced in order to have the following equality. Recall that P(k,N) is the set
of partitions in a k × (N − k) rectangle.

Lemma 3.2.16. Identify Fk[q] ∼= C[q]P(k,N). For any yi we have

b(y) =
∑

λ∈P(k,N)

sλ(y
−1
1 , . . . y−1

k )λ

where sλ denote the usual Schur polynomial.
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Proof. By direct computation:

ψ̂∗(y1) . . . ψ̂∗(yk)∅0 =
∑
j1,...jk

y−j11 ψ∗j1 . . . y
−j1
k ψ∗jk∅0

=
∑
π∈Sk

∑
j1<···<jk

(−1)πy−j1π(1) . . . y
−jk
π(k)ψ

∗
j1
. . . ψ∗jk∅0

=
∑

λ∈P(k,N)

∑
π∈Sk

(−1)πy−λk−1
π(1) . . . y−λ1−kπ(k) λ

where Sk is the symmetric group. Now we multiply both sides by y1 . . . yk

y1 . . . ykψ̂
∗(y1) . . . ψ̂∗(yk)∅0 = y1 . . . yk

∑
λ∈P(k,N)

∑
π∈Sk

(−1)πy−λk−1
π(1) . . . y−λ1−kπ(k) λ

=
∑

λ∈P(k,N)

y1 . . . yk det


y−λk1 . . . y−λkk

y
−λk−1−1
1

. . . y
−λk−1−1
k

...
. . .

...

y−λ1−k+1
1 . . . y−λ1−k+1

k

λ

Permute the rows of the matrix on RHS by (k . . . 21), then compare with Cauchy’s
bialternant formula (see e.g. [Pra19]) we recognize that

RHS =
∑

λ∈P(k,N)

(−1)
k(k−1)

2 Van(yi)sλ(y
−1
1 , . . . y−1

k )λ

Next we derive equations for b(y) to be a common eigenvector of the noncommu-
tative symmetric polynomials.

Lemma 3.2.17. Suppose a k-tuple y = (y1, . . . yk) of pairwise distinct yi’s is a
solution for the equations

yN1 = · · · = yNk = (−1)k−1q (3.21)

then the corresponding vector b(y) 3.20 is a common eigenvector for the noncom-
mutative symmetric polynomials er(U) and hr(U) 3.2.12, and we have

er(U)b(y) = er(y)b(y) hr(U)b(y) = hr(y)b(y) (3.22)

for 0 ≤ r ≤ N .
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Proof. For convenience we some a notations

vj1,...ik := ψ∗j1 . . . ψ
∗
jk
∅0 1 ≤ j1 ≤ j2 · · · ≤ ik ≤ N

Note that vj1,...ik = 0 unless 1 ≤ j1 < j2 · · · < ik ≤ N . By Clifford relations we get

urvj1,...ik = ψ∗r+1ψrψ
∗
j1
. . . ψ∗jk∅0

= ψ∗j1 . . . ψ
∗
r+1ψrψ

∗
js . . . ψ

∗
jk
∅0

=

{
vj1,...,js+1,...,jk if some js = r

0 otherwise

uNvj1,...ik = (−1)k−1qψ∗1ψNψ
∗
j1
. . . ψ∗jk∅0

= qδjk,Nψ
∗
1ψ
∗
j1
. . . ψ∗jk∅0

= qδjk,Nv1,j1,...jk−1

Hence to unify the above expressions we define

vj1,...jk−1,N+1 := qv1,j1,...jk−1

Then we compute the action of ei(U) on the Bethe vectors.

er(U)b(y) =

∑
|I|=r

�∏
i∈I

ui

 η(y)
∑
π∈Sk

∑
j1<···<jk

(−1)πy−j1π(1) . . . y
−jk
π(k)vj1...jk

= η(y)
∑
π∈Sk

∑
j1<···<jk

(−1)πy−j1π(1) . . . y
−jk
π(k)

∑
1≤i1<···<ir≤k

uji1 . . . ujirvj1...jk

This is 0 if r > k, and otherwise

uji1 . . . ujirvj1,...jr = vj1,...ji1+1,...jir+1,...jk

Denote the anti-symmetrization operator Ak =
∑

π∈Sk(−1)ππ, where π permutes
the subscripts of yi. We have for r ≤ k

er(U)b(y) = η(y)Ak
∑

1≤j1<···<jk≤N+1

y−j11 . . . y−jkk

∑
1≤i1<···<ir≤k

vj1,...ji1+1,...jir+1,...jk

= η(y)Ak
∑

1≤j1<···<jk≤N+1

y−j11 . . . y−jkk

∑
1≤i1<···<ir<k

yπ(ji1 ) . . . yπ(jir )vj1...jk

= η(y)Ak
∑

1≤j1<···<jk≤N+1

y−j11 . . . y−jkk er(y1, . . . yk)vj1...jk

= er(y)b(y)
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where the second equality is because if ir = k, jk = N , then using the assumption
that yNi = (−1)k−1q, we calculate

Aky
−j1
1 . . . y−Nk vj1,...ji1+1,...jir+1,...jk−1,N+1

= Aky
−j1
1 . . . y

−jk−1

k−1 (−1)k−1q−1qv1,j1,...ji1+1,...jir+1,...jk−1

= Ak(−1)k−1yj1 . . . yjr−1yky
−j1
1 . . . y

−jk−1

k−1 y−1
k v1,j1,...jk−1

= Aky1yj1 . . . yjr−1y
−1
1 y−j12 . . . y

−jk−1

k−1 v1,j1,...jk−1

This proves our claim for 0 ≤ r ≤ k and r < N . For r = N , recall Definition
3.2.12 that eN(U) = (−1)Nq only on Fk[q], so the eigenvalue formula 3.22 boils
down to

eN(y1, . . . yN) =
N∏
i=1

yi = (−1)Nq

which is automatic if the yi’s are distinct roots of XN + (−1)Nq viewed as a
polynomial in X.

Similarly, we compute the action of hr(U):

hr(U)b(y) =

∑
|I|=r

	∏
i∈I

ui

 η(y)Ak
∑

j1<···<jk

y−j11 . . . y−jkk vj1...jk

= η(y)Ak
∑

l1+...ls=r
1≤i1<...is+ls

dcnd(i1, l1) . . . dcnd(is, ls)
∑

j1<···<jk

y−j11 . . . y−jkk vj1...jk

= η(y)Ak
∑

l1+...ls=r
1≤i1<...is+ls

∑
j1<···<jk

y−j11 . . . y−jkk vj1...i1+l1,...ir+lr,...jk

= η(y)Ak
∑

l1+...ls=r
1≤i1<...is+ls

∑
j1<···<jk

yl1i1 . . . y
lr
ir
y−j11 . . . y−jkk vj1,...jk

= hr(y)b(y)

Let Ŝol the set of solutions to equations 3.21 such that the yi’s are distinct. Then
clearly there is a bijection

Ŝol −→ Λ(k,N)

(−1)k−1(ζ i1q
1
N , . . . , ζ ikq

1
N ) 7−→ ei1 ∧ . . . eik
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where ζ = exp(2πi
N

) is a primitive N -th root of unity. For

w = 00 . . . 1
i1
. . . 1

ik
. . . 00 ∈ Λ(k,N)

denote the corresponding solution tuple yw := (−1)k−1(ζ i1q
1
N , . . . , ζ ikq

1
N ).

Theorem 3.2.18. The Bethe vectors b(yw) for yw ∈ Ŝol are pairwise orthogonal,

and form a common eigenbasis of F ⊗C(q
1
N ) for the action of the operators er(U)

and hs(U). We have the eigenvalue formula

er(U)b(yw) =

{
er(yw)b(yw) r ≤ k

0 r > k
(3.23)

hr(U)b(yw) =

{
hr(yw)b(yw) r 6= N

(−1)k−1q · b(yw) r = N
(3.24)

And the norm of the Bethe vectors is given by

〈b(yw), b(yw)〉 =
n(n+ k)n

Van(yw)
(3.25)

Proof. We have shown that the Bethe vectors are common eigenvectors for er(U)
and hs(U). Suppose for the moment that we have shown that they are pairwise

orthogonal, then they are linearly independent, and there are |Ŝol| = dimF ⊗
C(q

1
N ). To show orthogonality, by Lemma 3.2.16 and the definition of the bilinear

form 3.2.5

〈b(y), b(y′)〉 =

〈∑
λ

sλ(y
−1
1 , . . . y−1

k )λ,
∑
λ

sλ((y
′
1)−1, . . . (y′k)

−1)λ

〉
=
∑
λ

sλ(y
−1
1 , . . . y−1

k )sλ
(
(y′1)−1, . . . (y′k)

−1
)

Then we refer to [Rie01] proposition 4.3 to conclude that RHS = 0 if (y1, . . . yk) 6=
(y′1, . . . y

′
k) and is equal to 3.25 otherwise.

Corollary 3.2.19. The operators er(U) and hs(U) pairwise commute. Thus the
noncommutative Schur polynomials are well-defined. Moreover,

sλ(U)b(yw) = sλ(yw)b(yw) ∀ λ ∈ P(k,N), w ∈ Λ(k,N)

hence by the usual Jacobi-Trudi formula 3.1.18 we have

sλ(U) = det(eλti−i+j(U)) = det(hλi−i+j(U)) (3.26)
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3.2.4 The combinatorial quantum cohomology

Motivated by the description of the quantum cohomology of the Grassmannian in
terms of Schur polynomials, we make the following definition. Fix k ∈ N, recall
the bijection Λ(k,N) ∼= P(k,N) 3.13, consider

(w, u) 7−→ w ? u := sλ(w)(U)u

for w, u ∈ Λ(k,N − k). This defines an composition on Fk[q].

Theorem 3.2.20. The composition ? is commutative, associative and unital. Thus
Fk[q] becomes a C[q]-algebra QH∗comb.

Proof. We again extend the scalars to C(q
1
N ). By definition the empty partition

acts as the identity operator. For v ∈ Λ(k,N) write

v =
∑ 〈b(yw), v〉
〈b(yw), b(yw)〉

b(yw)

Then we compute

〈b(yw), u ? v〉 = 〈b(yw), sλ(u)(U)v〉

=

〈
b(yw),

∑
w′

sλ(u)(U)
〈b(yw′), v〉
〈b(yw′), b(yw′)〉

b(yw′)

〉

=

〈
b(yw),

∑
w′

〈b(yw′), v〉
〈b(yw′), b(yw′)〉

sλ(u)(yw′)b(yw′)

〉
= 〈b(yw), v〉sλ(u)(yw)

We first show commutativity, which amounts to 〈x ? v, b(yw)〉 = 〈v ? x, b(yw)〉 by
orthogonality of the Bethe vectors. Equivalently, we want to have

sλ(u)(yw)〈b(yw), v〉 = sλ(v)(yw)〈b(yw), u〉

This is true, because by Lemma 3.2.16,

b(yw) =
∑
µ

sµ(yw)w(µ)

thus we compute

sλ(u)(yw)〈b(yw), v〉 = sλ(u)(yw)

〈∑
µ

sµ(yw)w(µ), v

〉
= sλ(u)(yw)sλ(v)(yw)
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for all u, v, w ∈ Λ(k,N). The second equality is because λ(v) = µ ⇐⇒ w(µ) = v.
Interchanging u, v, we get

sλ(v)(yu)〈b(yw), u〉 = sλ(v)(yw)sλ(u)(yw)

as we desired.

Next, using commutativity, we rewrite associativity as

w ? (v ? u) = (w ? v) ? u = u ? (v ? w)

⇐⇒ sλ(w)(U)sλ(v)(U)u = sλ(u)(U)sλ(v)(U)w

Hence we calculate

〈
b(yw′), sλ(w)(U)sλ(v)(U)u

〉
=

〈
b(yw′),

∑
u′

〈b(yu′), u〉
〈b(yu′), b(yu′)〉

sλ(w)(yu′)sλ(v)(yu′)b(yu′)

〉
= 〈b(yw′), u〉sλ(w)(yw′)sλ(v)(yw′)

=

〈∑
µ

sµ(yw′)w(µ), u

〉
sλ(w)(yw′)sλ(v)(yw′)

= sλ(u)(yw′)sλ(w)(yw′)sλ(v)(yw′)

Interchanging u,w, we get

〈b(yw′), sλ(u)(U)sλ(v)(U)w〉 = sλ(w)(yw′)sλ(u)(yw′)sλ(v)(yw′)

This proves associativity.

Recall that for any u ∈ Λ(k,N), the string w0u ∈ Λ(k,N) is obtained from reading
u backwards.

Theorem 3.2.21. There is an isomorphism of Z[q]-algebras.

Z[e1, . . . ek]/(hN−k+1, . . . hN−1, hN + (−1)kq) QH∗comb
∼

ei 7−→ ei(U)

In particular, the Gromov-Witten invariants are give by

qdId(Su, Sw, Sv) = 〈w0v, u ? w〉

where d = N−1(I(u) + I(w)− I(v)) and I is the function defined in 2.1.10.
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Proof. First we check the relations. For any w,w′ ∈ Λ(k,N)

〈b(yw), hi(U)b(yw′)〉 = 〈b(yw), hi(yw′)b(yw′)〉
= δw,w′hi(yw′)〈b(yw′), b(yw′)〉

We claim that hi(yw′) = 0 for N − k < i < N and all w′ ∈ Λ(k,N). To see this,
recall that yw′ = (y1, . . . yk) is a tuple of distinct N -th roots of q. Let ζ1, . . . ζN−k
be those N -th roots of q distinct from yi. Recall 3.7, we have the expansion

(1− qXN)−1
∏
j

(1− ζjX) =
∏

(1− yiX)−1 =
∑

hn(yw′)X
n ∈ C(q

1
N )[[X]]

On the other hand

(1− qXN)−1
∏
j

(1− ζjX) =
∑

cnX
Nn
∏
j

(1− ζjX)

where ci ∈ C(q
1
N ). The X i term is 0 for N − k < i < N , and compare with the

previous equation we have hi(y
′) = 0 for such i. Since the Bethe vectors form an

orthogonal basis, we conclude that hi(U) acts on Fk[q] by 0 for N − k < i < N .

Next, for i = N by Definition 3.2.12

hN(U)b(y′) = hN(y′)b(y′) = (−1)kqb(y′)

By definition QH∗comb is generated as an algebra by the 01-string’s corresponding
to (1p) for 1 ≤ p ≤ k, hence the assignment ei → ei(U) defines a surjective algebra
homomorphism. Since both QH∗Gr(k,N) and QH∗comb are by definition free Z[q]-
modules of rank

(
N
k

)
, this is an isomorphism. The Gromov-Witten invariants are

given by

sλ ∗ sµ =
∑
d

qdId(Sλ, Sµ, Sw0ν)ν

hence in QH∗comb holds

w(λ) ? w(µ) =
∑
d

qdId(Sλ, Sµ, Sw0ν)w(ν)

taking inner product gives the desired formula.

In [KS10] a commutator relation is used to derive a recursion formula for the
Gromov-Witten invariants. In fact, they also used this relation to derived a com-
binatorial description of the ? product.
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Proposition 3.2.22. The following relation holds in the endomorphism ring of
F [q].

sλ(U)ψ∗i =

λ1∑
r=0

ψ∗i+r
∑

λ/µ=(r)

ŝµ(U) (3.27)

where ŝµ(U) denotes the noncommutative Schur polynomial (3.19) with q replaced
by −q and we impose the quasi-periodic boundary condition

ψ∗i+N = (−1)k−1qψ∗i . (3.28)

Proof. Here it is convenient to define the particle number operator K : F [q]→ C
sending Fk[q] to k. Then we can uniformly write uN = −(−1)Kqψ∗1ψN as an
operator. Note that we have the following commutator relation:

−(−1)Kq ◦ ψ∗j = ψ∗j ◦ (−1)Kq.

By Clifford relations 3.2.3 we have for 1 ≤ i < N

uiψ
∗
j = ψ∗i+1ψiψ

∗
j

= ψ∗i+1(δij − ψ∗jψi)
= δijψ

∗
i+1 + ψ∗jui

Now for uN we calculate

uNψ
∗
j = −(−1)Kqψ∗1ψNψ

∗
j

= −(−1)Kqψ∗1(δjN − ψ∗jψN)

= δjNψ
∗
N+1 + ψ∗j ûN

Write ûi = ui for 1 ≤ i < N and ûN = −uN , the above two formulae can be
compressed into one:

uiψ
∗
j = δijψ

∗
i+1 + ψ∗j ûi (3.29)

Next, for indices i1, . . . , ir in the clockwise order, we use induction to show that

ui1 . . . uirψ
∗
j = ψ∗j ûi1 . . . ûir + ψ∗j+1

r∑
s=1

δis,jûi1 . . .��̂uis . . . ûir (3.30)

where ��̂uis means omitting this generator in the product. Then 3.29 is exactly the
case r = 1. We use induction to prove 3.30: suppose this is true for some r < N−1,
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then for l, i1, . . . ir in the clockwise order we compute:

ului1 . . . uirψ
∗
j = ul

(
ψ∗j ûi1 . . . ûir + ψ∗j+1

r∑
s=1

δis,jûi1 . . .��̂uis . . . ûir

)

= (δljψ
∗
j+1 + ψ∗j ûl)ûi1 . . . ûir + ûlψ

∗
j+1

r∑
s=1

δis,jûi1 . . .��̂uis . . . ûir

Note that the second summand is 0 unless j = is for some s, in which case j+1 6= l
because r < N − 1. Thus we have ûlψ

∗
j+1 = ψ∗j+1ûl, and compare with 3.30, there

is only one missing summand, namely δljψ
∗
l+1ûi1 . . . ûir . Notice that if j = l, then

ψ∗j+1uj = ψ∗j+1ψ
∗
j+1ψj = 0, hence we are fine.

As a consequence, 3.30 immediately yields

er(U)ψ∗j = ψ∗j êr(U) + ψ∗j+1êr−1(U) (3.31)

which is the special case of our aim 3.2.22 for λ = (1r). Finally for partition
λt = (λ1, . . . , λr) ∈ P(k,N), we do induction on r, the case r = 1 is exactly
3.31. Suppose the case this is true for r, and µt = (λ0, λ1, . . . , λr) ∈ P(k,N), we
calculate

sµ(U)ψ∗j = det (eµi−i+j(U))

=
r∑
l=0

(−1)leλl−lsµ(l)t(U)ψ∗j

where the second line is expansion with respect to the first column, and µ(l) :=
(λ0 + 1, . . . λl−1 + 1, λl+1, . . . , λr). Apply the induction hypothesis gives

sµ(U)ψ∗j =
r∑
l=0

(−1)leλl−lsµ(l)t(U)ψ∗j

=
r∑
l=0

(−1)leλl−l

r∑
s=0

ψ∗j+s
∑

µ(l)t/νt=(s)

ŝνt(U)

=
r∑
l=0

r∑
s=0

(−1)l(ψ∗j+sêλl−l + ψ∗j+s+1êλl−l−1)
∑

µ(l)t/νt=(s)

ŝνt(U)

=
r∑
s=0

ψ∗j+s

r∑
l=0

(−1)lêλl−l
∑

µ(l)t/νt=(s)

ŝνt(U)

+
r∑
s=0

ψ∗j+s+1

r∑
l=0

(−1)lêλl−l−1

∑
µ(l)t/νt=(s)

ŝνt(U)
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Now we would like to interchange the last two summations: for a fixed l, the first
summand contributes the partitions obtained from µt by deleting a horizontal strip
but not in the l-th column, and the second contributes those deleting one box from
the l-th column, therefore we indeed get the right hand side of 3.2.22.

Remark 3.2.23. Using the commutator relation 3.2.22 one can derive a recursion
formula and many symmetries for the Gromov-Witten invariants, see [KS10].

Corollary 3.2.24. For partitions λ, µ, impose the quasi-periodic boundary condi-
tion 3.28, we have

λ ? µ :=
∑
T

ψ∗ln(µ)+αnψ
∗
ln−1(µ)+αn−1

ψ∗ln−2(µ)+αn−2
· · ·ψ∗l1(µ)+α1

∅ (3.32)

where the sum runs over all semi-standard tableaux T of shape λ with fillings from
[1, n], and weight α = (α1, . . . , αk), i.e. αi is the number of times i occurs in T .

Proof. Write w ∈ Λ(k,N) as w = ψ∗lk · · ·ψ
∗
l2
ψ∗l1∅ with 1 ≤ lk < lk−1 < · · · < l1 ≤ N .

By the commutation relation (3.27),

v ? w = sλ(v)(U)w = sλ(v)(U)ψ∗lk(µ) · · ·ψ∗l2(µ)ψ
∗
l1(µ)∅

=
∑
ρk−1

ψ∗lk(µ)+|λ/ρk−1|ŝρk−1
(U)ψ∗lk−1(µ) · · ·ψ∗l1(µ)∅

=
∑

ρk−2,ρk−1

ψ∗lk−1(µ)+|λ/ρk−1|ψ
∗
lk−1(µ)+|ρk−1/ρk−2|sρk−2

(U)ψ∗lk−2(µ) · · ·ψ∗l1(µ)∅

...

=
∑

(ρk−1,...,ρ1)

ψ∗lk(µ)+|λ/ρk−1|ψ
∗
lk−1(µ)+|ρk−1/ρk−2|ψ

∗
lk−2(µ)+|ρk−2/ρk−3| · · · ∅,

where eventually we arrive at ρ0 = ∅ because sρ∅ nonzero implies ρ = ∅, hence the
sums run over partitions ρi such that ρk = λ, ρ0 = ∅ and ρk+1−i/ρk−i is a horizontal
strip. Such a sequence of partitions ρ0, . . . ρk−1 is equivalent to a semi-standard
Young tableau T , where ρi is obtained by deleting all boxes with entries exceeding
i from T .

Example 3.2.25. Consider Gr(2, 4), take λ = µ = (2, 1), then the corresponding
01-string is 0101, and all possible semi-standard Young tableaux with entries from
{1, 2} are

1 1

2

1 2

2

;8<

96



CHAPTER 3. QUANTUM COHOMOLOGY

hence we compute in QH∗Gr(2, 4)

S(2,1) ∗ S(2,1) = qS1001 = qS(2)

From this example we see that in general there will be cancellations in this tableaux
description, so we cannot just count tableaux to get the Gromov-Witten invariants.
A natural question is that can one find a manifestly positive combinatorial formula
for them? We will discuss this in the next section.

3.2.5 The boson-fermion correspondence

In this subsection we connect the boson-fermion correspondence to the fermionic
model. Following [KRR13], the boson-fermion correspondence asserts that a “fermi
-onic” construction and a “bosonic” one both give the same irreducible represen-
tation of the infinite dimensional Heisenberg Lie algebra.

Definition 3.2.26. The infinite Heisenberg algebra H is the Lie algebra on basis
an, n ∈ Z and C where C is central and [an, al] = lδl,−nC.

The “bosonic construction” is a natural representation of H on the polynomial
ring in countably many variables B = C[z±1, p1, p2, . . .]. Denote by ∂pl the oper-
ator of formal derivatives and pl· multiplication by pl, we have the commutator
relation

[∂pl , pn·] = δl,n id .

The H-action is given by letting the central element C act as the identity and the
basis vectors al act by 

l∂pl if l > 0

p−l· if l < 0

z∂z if l = 0.

Since higher powers of pi’s are allowed in B, we think of them as states of bosons,
thus for m > 0 we call am resp. a−l the annihilation resp. creation operators for
bosons.

For m ∈ Z write B(m) = zmC[p1, p2 . . . ], then a0 acts as multiplication by m
on B(m), hence B(m) is a subrepresentation, known as the bosonic Fock space of
central charge m. In fact, one can get any monomial in B(m) by applying the
creation operators to the vacuum vector zm ∈ B(m), hence it is a highest weight
representation generated by zm, see [KRR13]. We define a grading on B(m) by
deg pi = i.
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Remark 3.2.27. There is a surjective algebra homomorphism from the ring of sym-
metric functions to the invariant ring C[x1, . . . xN ]SN

pn 7−→
1

n
(xn1 + . . . xnN)

Recall the ring Λ = lim−→C[x1, . . . , xn]Sn of symmetric functions (see Remark 3.1.23).
We can identify C[p1, p2, . . . ] with Λ as graded algebras. One can define Schur
functions in terms of these normalized power sums, which are the preimages of the
usual Schur functions under this identification, see [KRR13, Lecture 6] for details.

Next, we define the infinite dimensional fermionic Fock space. Let V =
⊕

j∈Z ej
be a complex vector space on basis {ej, j ∈ Z}.

Definition 3.2.28. A semi-infinite wedge is a formal expression of the form

ei := ei0 ∧ ei1 ∧ ei2 ∧ ei3 ∧ . . .

where i = (ij)j∈N0 is an infinite tuple of integers satisfying i0 > i1 > i2 > i3 > . . .
and in = in−1 − 1 for n� 0. Let F be the complex vector space with basis given
by all semi-infinite infinite wedges.

The infinite dimensional space F becomes an H-module as follows: we define the
wedge and contraction operators:

ψ∗j (ei) = ej ∧ ei :=

{
(−1)k+1ei1 ∧ . . . ∧ eik ∧ ej ∧ eik+1

∧ . . . if ik > j > ik+1

0 if i = ik for some k.

ψj(ei) =

{
(−1)kei1 ∧ . . . ∧ eik ∧ eik+1

∧ . . . if j = ik

0 if j 6= ik for all k ∈ Z>0.

Then we let C act as the identity, and an act as the following infinite sums{∑
i∈Z ψi

∗ψi+n if n ∈ Z− {0},∑
i>0 ψi

∗ψi −
∑

i≤0 ψiψ
∗
i if i = 0.

Obviously ψiψ
∗
i ei = 0 for i � 0, and there are only finitely many positive indices

in i , hence
∑

i>0 ψi
∗ψi −

∑
i≤0 ψiψ

∗
i ei is always a finite sum. For other operators,

note that for any ei ∈ F (m) we have ψi
∗ψi+nei = 0 for i � 0 because we would

replace a factor ei in the semi-infinite wedge ei by ei+n which already appears in ei
given that i� 0. Therefore the above infinite sums are well-defined operators on
F . One can directly check the commutator relations of H, so that these operators
indeed define an H-action on F .
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Similar to the bosonic picture, for m ∈ Z we consider the subspace F (m) ⊂ F of
infinite wedges ei with in = m− n for n� 0. Here the vacuum vector is given by
∅m = em ∧ em−1 ∧ . . . , and we can again apply an for n < 0 to get all semi-infinite
wedges in F (m). From this one deduces that a0 acts as multiplication by m on
F (m). Again F (m) is an irreducible highest weight representation of H, known as
the fermionic Fock space of central charge m. For physicists, ∅0 ∈ F (0) is known
as the perfect vacuum.

We can also define a grading on F as follows: for each semi-infinite wedge ei ∈ F (m)

we assign the infinite tuple (i0 −m, i1 −m+ 1, i2 −m+ 2, . . . ), then only finitely
many entires concentrated at the beginning are nonzero, and i0−m ≥ i1−m+1 ≥
i2 −m+ 2 ≥ · · · ≥ 0, hence we actually get a partition. Clearly this is a bijection
between semi-infinite wedges in F (m) and the set of all partition. We define the
degree of the semi-infinite wedge to be the number of boxes of the corresponding
partition. We refer to [KRR13, Lecture 6] for the following theorem.

Theorem 3.2.29 (Boson-fermion correspondence). There is a unique isomor-
phism of graded H-modules σ : F (m) ∼= B(m) such that σ(∅0) = 1. Furthermore,
under the identification B(m) ∼= Λ in Remark 3.2.27, σ sends a semi-infinite wedge
to zm times the Schur polynomial labeled by its partition.

3.2.6 Connection to the dual rim hook algorithm

Now recall the Siebert-Tian presentation 3.1.31, which gives for any k,N a canon-
ical quotient map of algebras ∆ : Λ[q]→ QH∗Gr(k,N), where Λ denotes the ring
of symmetric functions (see Remark 3.1.23). Now we will translate the map ∆ to
the fermionic side via the boson-fermion correspondence. For this we consider the
Fock space of central charge k.

Definition 3.2.30. Consider wedges of the following form

e = ei1 ∧ ei2 ∧ . . . ∧ eik ∧ e0 ∧ e−1 ∧ e−2 . . . (3.33)

Assign to such a wedge a number a ∈ Z as follows: write ij = ajN + ij for
1 ≤ j ≤ k, such that 1 ≤ ij ≤ N and set a :=

∑
ai.

Define a C[q]-linear map qk,N : F (k) → Fk[q] by sending wedges of the form 3.33
to

(−1)a(k−1)qaei1 ∧ ei2 ∧ . . . ∧ eik ∈ Fk[q],

and other semi-infinite wedges to 0.

To connect this map with the bosonic picture, we need a more explicit description
of the quotient map ∆. For this we cite the dual rim hook algorithm in [BCFF99].
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Recall that Schur polynomials can be defined for arbitrary integer tuples v ∈ Zn
by passing from an integer tuple to a partition using the following straightening
rules (see [Pra19]):

s(...,a,b,...) = −s(...,b−1,a+1,...) and s(...,a,a+1,...) = 0. (3.34)

Definition 3.2.31 (Dual rim hook algorithm). Given two partitions λ, µ ∈ P(k,N),
first perform the standard Littlewood-Richardson algorithm in Λ to obtain the ex-
pansion

sλsµ =
∑
ν

cνλµsν

Then one imposes the quotient condition by discarding all terms sν with partitions
ν which contain more than k nonzero parts and by replacing all the remaining sν
with the polynomials (−1)d(k−1)qdsv(ν) where v(ν) is the unique set of integers such
that

vi(ν) = νi mod N and i− k ≤ vi(ν) ≤ i+N − k − 1 . (3.35)

and d = N−1(|ν| − |v(ν)|) ∈ Z. This gives the product in QH∗Gr(k,N).

Now define a C[q]-linear map ∆′ : Λ[q]→ QH∗Gr(k,N) by

∆′(sλ) =

{
0, if λ contains more than k parts

(−1)d(k−1)qdsλ otherwise.

where λ is the composition obtained from λ by taking all parts modulo N satisfying
the condition 3.35. In particular, ∆(sλ) = sλ if λ ∈ P(k,N). Then the dual rim
hook algorithm asserts that this map is a ring homomorphism, hence is equal to
the canonical quotient map ∆ : Λ[q]→ QH∗(k,N).

Theorem 3.2.32. The following diagram commutes:

F (k)[q] B[q] Λ[q]

Fk[q] C[e1, . . . , ek]/(hN−k+1 . . . hN + (−1)kq)

σ

qk,N

∼

∆

∼

(3.36)

Proof. All we need to check is that the reduction 3.35 is given by qk,N . First of
all ∆ sends all partitions with more than k parts to 0, which corresponds to the
definition that qk,N kills the corresponding wedges. Thus it suffices to consider
semi-infinite wedges of the form ei0 ∧ ei1 ∧ . . . eik−1

∧ e0 ∧ e−1 ∧ · · · ∈ F (k). Let λ
be the corresponding partition, then we have

λj = ij−1 − (k − j + 1). (3.37)
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On the one hand, qk,Nei = (−1)d(k−1)qdei where i is obtained from i by taking
residue within range 1 ≤ ij ≤ N modulo N . The sequence i translates to the
integer tuple λ with at most k parts satisfying

N − k + j − 1 ≥ λj ≥ 1− k + j − 1 = j − k 1 ≤ j ≤ k

Compare with the reduction condition 3.35, we find that this is the image of sλ
under ∆ is equivalent to d = a where a is as in Definition 3.2.30. In view of the
relation 3.37 and the reduction condition 3.35, this indeed holds.

Remark 3.2.33. The straightening rule 3.34 also translates nicely to the fermionic
side nicely: if λ = (. . . , a, a+ 1, . . . ) in the tuple λ, then we have repeated indices
in ei, hence it is zero; and if λ(. . . , a−1, b+1, . . . ), suppose a−1 appears at the jth
slot, then ij−1 = a+ k − j and ij = b+ k − j + 1. Interchanging these two indices
produces a minus sign on the semi-infinite wedge, and turns λ into (. . . , b, a, . . . ).

Example 3.2.34. Set k = 3, N = 7 and consider the partitions λ = (3, 1, 0) and
µ = (3, 2, 0). The Littlewood-Richardson rule says that in the ring of symmetric
functions, the nonzero summands sν of sλsµ are given by

ν = (6, 3, 0), (6, 2, 1), (5, 4, 0), (5, 3, 1), (5, 3, 1), (5, 2, 2), (4, 4, 1),

(4, 3, 2), (4, 3, 2), (3, 3, 3), (5, 2, 1, 1), (4, 3, 1, 1), (4, 2, 2, 1), (3, 3, 2, 1). (3.38)

Then we discard the last four as they have more than three parts. As for the
rest, take ν = (5, 3, 1) as an example. Reduce the entries modulo N yields v(ν) =
(−2, 3, 1), and following the dual rim hook algorithm sν = qs(−2,3,1) = −qs(2,−1,1) =
qs(2,0,0). On the other hand, the semi-infinite wedge corresponding to the partition
(5, 3, 1) is e8∧e5∧e2∧e0∧e−1∧ . . .. Apply q3,7, we obtain qe1∧e5∧e2 = e5∧e2∧e1

which corresponds to the partition (2, 0, 0), see Lemma 3.1.15.

There is another partition ν = (6, 3, 0) with sν = −qs(2,0,0). The corresponding
semi-infinite wedge is e9∧e5∧e1∧e0∧e−1∧ . . . , which goes to e9∧e5∧e1 via qk,N ,
and we normalize it into qe2 ∧ e5 ∧ e1 = −qe5 ∧ e2 ∧ e1 to get the partition (2, 0, 0).
These are all (2, 0, 0) terms, hence the corresponding Gromov-Witten invariant is
2− 1 = 1. In this way one can write down the product expansion

? = q + q + + 2 + .

One may also use the tableaux description (3.32). In this case we have 15 tableaux
from which we can discard 5. Amongst the remaining ones there are two pairs
which cancel each other which leaves the 6 summands from above.
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3.3 Puzzles revisited

With the fermion model in mind, let us consider the Knutson-Tao puzzles for usual
cohomology H∗Gr(k,N) again. We first make some observations.

Lemma 3.3.1. For PN−1 = Gr(1, N) the only puzzles are of the following form.

m-th segment

l-th segment

(m+ l − 1)-th segment

Figure 3.2: A P9 puzzle with N = 10,m = 4, l = 5.

Here the parallelogram regions with thick red and blue boundary lines are filled
with rhombi, the remaining regions are filled with triangles, and we count all red
segments on the boundaries from left to right.

Proof. Notice that these are indeed puzzles, and by Theorem 2.2.6 and the fact
that H∗(Pn) ∼= C[X]/(Xn+1), these are the only possible puzzles.

m-th segment

l-th segment

m+ l −N -th segment

Figure 3.3: Gr(N − 1, N) puzzles
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Remark 3.3.2. Dually, by the same argument, all puzzles for Gr(N − 1, N) are
of the form shown in figure 3.3, where the marked parallelograms are filled with
rhombi and the remaining regions are filled with red triangles.

Observe that to determine a puzzle for a general Grassmannian it is also sufficient
to determine all the rhombi. Now we want to reconsider these puzzles from the
viewpoint of the fermion model. For 01-strings x, v, w ∈ Λ(k,N), consider in
any ∆x,v,w puzzle the SW-NE rhombi, i.e. those whose edges are parallel to the
x and w edges. For example, in figure 3.2 we consider the light yellow shaded
rhombi. Recall 3.13, the partition corresponding to a 01-string x is denoted by
λ(x). On the other hand, on the fermion side there is a grading on 0-TLN by
setting deg ui = 1.

Lemma 3.3.3. In any ∆x,v,w puzzle, the number of SW-NE rhombi is equal to
deg sλ(v). Similarly, the number of the NW-SE rhombi is equal to deg sλ(x).

Proof. In [KT+03] it is proven that in any ∆x,v,w puzzle the number of SW-NE
rhombi is equal to I(w) − I(x) where I is defined in Definition 2.1.10. Then for
non equivariant puzzles we get deg sλ(v) = I(v) = I(w) − I(x) is the number of
SW-NE rhombi.

Lemma 3.3.3 suggests that SW-NE rhombi could be interpreted in terms of the
0-TLN action on the state space F .

Definition 3.3.4. We divide any puzzle into NW-SE strips which we call lanes,
as illustrated by figure 3.4. We number the lanes from left to right.

1
2

3
4

5
6

Figure 3.4: Lanes, counted from left to right

Similarly we define opposite lanes to be SW-NE strips.
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1
2

3
4

5

Figure 3.5: Opposite lanes, counted from left to right

Example 3.3.5. Let us first consider the projective space. In figure 3.2, consider
the edges in the i-th lane that are parallel to the south or NW boundary of the
puzzle, and are boundary edged of the puzzle pieces. For example, in the 7th lane
we don’t consider all but the short diagonals of the NW-SE rhombi. Observe that
the color of the edges do not change in the first 4 and the last 2 lanes. On the
other hand, there are no SW-NE rhombi in these lanes. Consider the 4,5,6th lanes,
it is easy to see that the rhombi transports the red edge on the NW side to the
5th, then the 6th and finally the 7th lane. This corresponds to the 0-TLN action
u7u6u50000100000.

3.3.1 SW-NE rhombi as 0-TLN generators

The observation in example 3.3.5 generalizes. Given any puzzle, we can track the
color of the edges as we travel from the top of each lane downwards. However,
it is possible to find us in the following situation: in figure 3.6 the yellow shaded
lane has a NW-SE rhombus at the bottom, whose short diagonal is not colored
and should be ignored.

Figure 3.6: A Gr(3, 6) puzzle

Therefore we make the following definition: for any puzzle, let L(i) be the set of
the colored edges satisfying

• parallel to the south or NW boundary of the puzzle

• contained in the i-th lane.
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Example 3.3.6. Consider the puzzle in figure 3.6, where we again only depicted
the edges of the rhombi. The set L(3) consists of the highlighted edges. The
red edge at the top of L(3) is first turned blue by the SW-NE rhombus adjacent
to it, and then turned red again by the SW-NE rhombus below. On the other
hand, this puzzle computes the product S011100S010110, which corresponds to the
0-TLN -action

s(2,2,1)(U)011100 = u4u5u2u3u4 = 011100 = 001011 (3.39)

In the fermion model picture, the 3rd position of the string turns into 0 by u4 and
then 1 by u2. This coincides with the color change of the edges in L(3).

Lemma 3.3.7. Given any puzzle, let E(i) be the sequence of the colors of edges
in L(i) read from top to bottom. Then

• Blue followed by red in the sequence E(i) is given by an upward pointing
triangle part of a SW-NE rhombus;

• Red followed by blue in the sequence E(i) is given by an downward pointing
triangle part of a SW-NE rhombus.

• Another puzzle piece gives rise to the same color twice consecutively in E(i).

Similar statements hold for NW-SE rhombi and opposite lanes.

Proof. Try every puzzle piece 2.2.3.

Note that a rhombus in fact interchanges the colors in two neighboring lanes.
For example, in figure 3.6 the top SW-NE rhombus in the yellow shaded lane
interchanges the red-blue pattern on the NW side of the puzzle into blue-red in
the 3rd and 4th lanes. Recall our convention that red translates into 1 and blue
into 0 in the corresponding 01-sequence, we propose the following interpretation
of any puzzle:

Definition 3.3.8 (Puzzle to 0-TLN -monomial). For any puzzle we define a mono-
mial in 0-TLN which we call the rhombi monomial, as follows: travel from the top
downwards along the leftmost opposite lane, and when we meet an SW-NE rhombi
whose south edge is in the i-th lane, we write down the 0-TLN generator ui, and
for the next rhombus corresponding to uj, write uj to the left of ui, etc. until
we reach the bottom of the current opposite lane, then we go to the remaining
leftmost lane and repeat this process.

For example, the puzzle in figure 3.6 yields the rhombi monomial u4u5u2u3u4,
which coincides with what we had in equation 3.39.
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Lemma 3.3.9. Up to a scalar multiple, the rhombi monomial of a ∆x,v,w puzzle
is a summand of sλ(v)(U) ∈ 0-TLN .

Proof. The specializing q = 0 in theorem 3.2.21 plus theorem 2.2.6 imply that in
a ∆x,v,w puzzle the above monomial acting on the 01-string x on the NW side is
a summand of sλ(v)(U)x. Next we notice that for any monomial m,m′ ∈ 0-TLN
if mv = m′v for some 01-string v, then m = m′. For this we write m,m′ in the
canonical form as in the proof of Lemma 3.2.8 and find that their canonical forms
must agree, see also remark 3.2.9.

We have the following result refining Lemma 3.3.3. Here we switch to the NW-SE
rhombi because the author tried to formulate it in terms of the good old SW-NE
rhombi but ended up this way.

Lemma 3.3.10. Given a ∆x,v,w puzzle, suppose 1 ≤ i1 < i2 . . . ik ≤ N and 1 ≤
j1 < j2 . . . jk ≤ N are the indices such that vil = wjl = 1. Then the number
of downward pointing triangle parts that belong to a NW-SE rhombus in the i-th
opposite lane is equal to #{il ≤ i | jl > i}.

A similar statement holds for SW-NE rhombi.

Proof. For clarity we use some diagrammatics. By the fermion model, we put the
particle configurations corresponding to v at the bottom of that of w, and mark
the particle hopping by arrows. For example, the puzzle in figure 2.1 yields

◦

◦

1

◦

◦

◦

2

◦

◦

◦

3

◦

◦

◦

4

◦

◦

◦

5

◦

◦

◦

6

◦

◦

◦

7

◦

◦

◦

8

◦

◦

◦

9

◦

◦

◦

10

◦•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Note that no crossings occur in such diagrams, hence the path starting at il ends
at jl for 1 ≤ l ≤ k. Thus, for 1 ≤ i ≤ N the number #{il ≤ i | jl > i} is the
number of diagonal arrows starting at some level in the i-th column. On the other
hand, Interpreting the NW-SE rhombi as in Lemma 3.3.7, we get that this number
is equal to the number of NW-SE rhombi in the i-th opposite lane.

Remark 3.3.11. From this point of view, we can give an explanation why triangular
puzzles work: because the red color at the first segment of the NE side can be
transfered by 0-TLN at most (N − 1) times to the last one, hence in the last lane
we can only allow N − 1 NW-SE rhombi. In fact, this upper bound is assumed
by PN−1. By the same reason in the second last lane admits only (N − 2) NW-SE
rhombi, etc. and the last opposite lane admits no such rhombi at all.
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3.3.2 A crystallization algorithm

Based on the above observations, we propose an algorithm that produces puzzles
for the usual cohomology of the Grassmannians. Here we divide any input equi-
lateral triangle into unit triangular grids. And the input a is the integer tuple
computed in Lemma 3.3.10.

Algorithm 1: Crystallization algorithm for H∗Gr(k,N) puzzles

Input: A labeled equilateral triangle ∆x,v,w

Result: All ∆x,v,w puzzles
Function Crystallize(a partially filled puzzle, a ∈ ZN≥0):

if the puzzle is completed then
Return(the current puzzle);

else
Let the i-th opposite lane be the lefmost among the ones that is not
completely filled;

Let J ⊂ {2 ≤ j ≤ N} such that
? the j-th upward pointing triangle in the current opposite lane (count
from the top) with its NW edge being either red or the short diagonal
of an NW-SE rhombus;
? the NW edge of the (j − 1)-th upward pointing triangle is either blue
or the short diagonal of an NW-SE rhombus;

for choices of ai elements j1 . . . jai ∈ J do
Put a NW-SE rhombus at the jl-th downward pointing unit
triangle (do nothing if ai = 0);

For the other upward pointing triangles in the i-th opposite lane,
put a SW-NE or vertical rhombus whenever possible, satisfying
the following rule:

The color of all NE and south edges of the unit triangles between
any two NW-SE rhombi or one such rhombus and the boundary
of the puzzle are the same;

if cannot fill the current opposite lane then
Clear the current opposite lane;

end
Crystallize (the current puzzle);

end

end

End function;
a = (a1, . . . , aN)=the number of NW-SE rhombi in each opposite lane;
Crystallize (∆x,v,w, a);
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Before proving algorithm 1, let us first examine an example.

Example 3.3.12. The following is an example of (a branch of) the crystallization
algorithm that gives the leftmost puzzle in figure 2.1.

We numbered the pictures by the opposite lane to be filled. For example, in the
first picture we start from the first lane and find the blue edges on the NW side
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to get J = {3, 6, 9}, because no edges on the boundary of the puzzle can be the
short diagonal of any rhombi. Now since the first red edge of the NE side is moved
only once to get the bottom side, we have a1 = 1. Here we picked j1 = 2 and put
a NW-SE rhombus at the 3rd lane. Then in the upper region of this rhombus we
can only color any NE or south grid edge red, and when they meet a blue edge we
get a vertical rhombus, as shown in the picture. Similarly, below this rhombus we
have a SW-NE rhombus. These are all rhombus pieces in the first opposite lane.

Next, we turn to the second opposite lane, then we have a2 = 1 and J = {4, 6, 9}
and we picked j1 = 4, and thus the second picture.

On the other hand, if in the first opposite lane we pick j1 = 9, we must then have
a vertical rhombus at the top of the puzzle, then we soon find that no puzzle piece
fits into the blue highlighted region in the above picture. Hence we delete this
SW-NE rhombus and try the next jl, but there isn’t a next jl, the algorithm will
in fact end the recursion here.

Theorem 3.3.13. For 01-strings x, v, w ∈ Λ(k,N), the crystallization algorithm
1 yields all puzzles with a given boundary condition ∆x,v,w.

Proof. Given any puzzle, we use induction on the label of opposite lanes to show
that it is given by Algorithm 1. Starting from a labeled equilateral triangle, if
there is a NW-SE rhombus in the first opposite lane at the i-th position, then the
01-string x on the NW side satisfies xi = 0, xi+1 = 1. In other words, we have the
following local picture, which is included in the conditions defining the set J in
Algorithm 1.

Now suppose the rhombi in the first i opposite lanes are determined. We again
divide the entire puzzle into unit triangular grids.

• If there are no NW-SE rhombi, in which case the NE and south edges in the
current opposite lane are all blue or all red, and a NW edge is either blue
or red or the short diagonal of a NW-SE rhombus. Start from the top, the
following are all the possible patterns of the upward pointing unit triangle
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in the current opposite lane: in the first row the NW edge is blue and in
the second row red, and in the last row it is the short diagonal of a NW-SE
rhombus.

In each case there is at mots one combination of puzzle pieces having the
pattern as its upper boundary, where all the rhombi pieces are described by
the algorithm.

• If there is a NW-SE rhombus as shown in the following picture, consider
the upward pointing triangle to its left, whose NW edge is either the short
diagonal of another NW-SE rhombus, or it has to be blue.

Similarly, the NW edge of the upward pointing unit triangle above it has to
be either red or the short diagonal of another NW-SE rhombus. Therefore
the conditions in Algorithm 1 captures all possible occurrences of NW-SE
rhombi.

Finally, by lemma 3.3.7 the NE and south edges between the NW-SE rhombi
are all of the same color, and we can use the arguments in the case where
there are no SW-NE rhombi to determine all other rhombi.

This proves that our algorithm exhausts all possible puzzles.

Remark 3.3.14. I call this “crystallization” because it resembles how crystals grow
on surfaces. One can grow the “crystals” (i.e. the rhombi) simultaneously on all
three edges of the puzzle to get a faster algorithm.

The Crystallize function defined in algorithm 1 can be also used to define an
algorithm with input only the NW and NE sides of the to be determined puzzle
and output all possible puzzles with these prescribed sides. Namely one just tries
all south edges, or only the edges with the correct I-function value (Definition
2.1.10) or only all possible south edges determined e.g. via the state picture.

Finally, if we allow the equivariant rhombus, one can also modify this algorithm

to produce equivariant puzzles. Note that in this case the pattern fits into
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either a SW-NE rhombus or an equivariant rhombus, both increasing the degree
of the NW side by 2, which reflects the fact that the multiplication respects the
grading on H∗TGr(k,N). However, I don’t have a finer explanation of equivariant
puzzles.

Conjecture. In this section we have only used the q = 0 specialization of the
fermion model. By the same spirit we can allow N rhombi in each lane, and
interpret the affine generator also as a rhombus, thus we expect a puzzle rule for
the quantum cohomology, possibly by tiling the puzzle pieces on a cylinder. If
we can find such a puzzle rule, then for example we might be able to provide a
combinatorial proof of the commutativity of the noncommutative elementary and
complete symmetric polynomials.
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