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Introduction
The nil Hecke algebras are a family (NHn)n∈N0 of graded algebras over a field k which is of
huge importance in current research in representation theory. Originally, they were introduced
by Kostant and Kumar in [KK86] in order to study the cohomology rings of flag varieties. A
further field of representation theory in which they appear is the theory of categorification of
quantum groups.
We now outline this in more detail. Nil Hecke algebras are special cases of Quiver Hecke

algebras which are a family of graded k-algebras attached to a given quiver without loops
whose construction is based on the famous Vershik-Okounkov approach in the representation
theory of symmetric groups [OV96]. They were introduced independently by Khovanov and
Lauda in [KL09, KL11] and Rouquier in [Rou08]. Thus, they are also called Khovanov–Lauda–
Rouquier algebras.
One important aspect of quiver Hecke algebras is that their representation theory categorifies

Lusztig’s integral quantum group fA , where A = Z[q, q−1]. The integral quantum group fA
was introduced by Lusztig in [Lus93] and plays a fundamental role in the theory of quantum
groups. The mentioned categorification theorem was proved by Khovanov and Lauda in [KL09,
Theorem 1.1].
In the following, we elaborate on this result. For this, we fix some notation. Let Γ be a fixed

quiver without loops and vertex set I. Let Q+ :=
⊕

i∈I N0αi be the free commutative monoid
on a basis with index set I. By definition, the family of quiver Hecke algebras is a family of
algebras (R(ν))ν∈Q+ parameterized by Q+. For each non-zero ν ∈ Q+, we have that R(ν) is an
infinite dimensional graded k-algebra with finite dimensional graded components. Moreover,
each R(ν) is bounded from below, i.e. there exists d(ν) ∈ Z such that all homogeneous
components of R(ν) of degree < d(ν) vanish.

Now, let K0(R(ν)- pmod) be the split Grothendieck group of the additive category of finitely
generated graded projective R(ν)-modules and G0(R(ν)- fmod) be the Grothendieck group of
the category of finite dimensional graded R(ν)-modules. Both Grothendieck groups admit the
structure of an A-module, where q acts via shifting degrees. We proceed with defining

K0(R) :=
⊕
ν∈Q+

K0(R(ν)-pmod), G0(R) :=
⊕
ν∈Q+

G0(R(ν)- fmod).

Via induction and restriction functors, we obtain a multiplication and comultiplication on
K0(R) and G0(R) turning them into Q+-graded twisted bialgebras. Moreover, G0(R) can be
identified with theQ+-graded dual of K0(R). The categorification theorem of Khovanov–Lauda
then states that there are isomorphisms of twisted bialgebras

γ : fA → K0(R), γ∗ : G0(R)→ fA ∗,

where fA denotes Lusztig’s integral quantum group corresponding to the unoriented underlying
graph of Γ and fA ∗ denotes the graded dual of fA .

In the special case, where Γ is the one-vertex quiver without arrows, the corresponding
family of quiver Hecke algebras (R(ν))ν∈Q+ is by definition the family of nil Hecke algebras

5



Introduction

(NHn)n∈N0 . In this special case, we set K0(NH) := K0(R) and G0(NH) := G0(R). Moreover,
we call K0(NH) and G0(NH) the nil Hecke Grothendieck groups.

This thesis is devoted to the study of an interesting family of graded subalgebras of nil Hecke
algebras. Namely, the alternating nil Hecke algebras which we denote by (ANHn)n∈N0 . In our
studies, we focus in particular on the following interesting question:

(Q) Can we formulate an analogous version of the categorification theorem of Khovanov–
Lauda for alternating nil Hecke algebras?

We now briefly outline the origins of alternating nil Hecke algebras. They are special cases
of a more general family of algebras, namely the alternating quiver Hecke algebras which
were introduced by Boys and Mathas in [Boy14, BM17]. The definition of alternating quiver
Hecke algebras is based on the definition of the alternating group as fixed point subgroup of
the symmetric group under the sign involution. Concretely, Boys and Mathas defined a sign
involution

sgn : R(ν)→ R(ν),

on the quiver Hecke algebras attached to quivers of type A2n+1 or Ãn. They particularly
used for the construction of the sign involution that these quivers admit isomorphisms to the
opposite quivers which correspond to multiplication with −1 in a certain sense. This can be
illustrated by the following pictures, where we choose {−n,−n + 1, . . . , n} as the vertices in
type A2n+1 and Z/n as the vertices in type Ãn.

•
−n

•
1−n

. . . •
n

•
−n

•
1−n

. . . •
n

∼
i 7→−i

•
0

•
0

•
1

. . . •
n−1

•
1

. . . •
n−1

∼
i 7→−i

By definition, the alternating nil Hecke algebras are the alternating quiver Hecke algebras
corresponding to the one-vertex quiver without arrows.

In the following, we describe the results of this thesis. Overall, the thesis is divided into two
parts.

Part 1. In the first two chapters, we discuss the representation theory of graded k-algebras
which have finite dimensional graded components and are bounded from below. Following
Kleshchev [Kle15a, Kle15b], we call these k-algebras Laurentian. As already mentioned above,
quiver Hecke algebras and hence also alternating quiver Hecke algebras satisfy these finiteness
conditions.
The crucial point why the representation theory of Laurentian k-algebras is worth to study is

that firstly they form a huge class of graded k-algebras and secondly many pleasant results from
the representation theory of finite dimensional k-algebras transfer to the setting of Laurentian
k-algebras. We characterize this in detail in the first chapter.

One important fact is that a Laurentian k-algebra A is graded semiperfect. Hence, A admits
only finitely many graded simple modules up to shift-isomorphism and each graded simple A-
module admits a projective cover. In addition, the Laurentian property also implies that each
graded simple A-module has finite dimension over k.
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A further essential aspect of Laurentian k-algebras is the notion of graded composition
multiplicities. IfM is a finitely generated graded A-module, thenM is not necessarily of finite
length. In particular, M does in general not admit a composition series. However, in our
setting, we have a satisfying alternative. Given a graded simple A-module L, then the graded
composition multiplicity [M : L]q is a Laurent series with integer coefficients∑

i>>−∞
aiq

i ∈ Z((q)),

where for each i ∈ Z the coefficient ai counts the multiplicity of the shifted module L〈i〉 in a
separated filtration

M = F0 ⊃ F1 ⊃ F2 ⊃ . . .

with graded simple subquotients. The Laurentian property ensures that ai is independent
from the choice of the filtration. We will discuss this in detail in Section 1.4.
Altogether, the above properties imply that we have an interesting theory of Grothendieck

groups of Laurentian k-algebras. In Chapter 2, we focus on working out important aspects of
this theory.
In the following, let A-fmod be the Abelian category of finite dimensional graded A-modules

and A-pmod additive category of finitely generated graded projective A-modules. We de-
note by G0(A-fmod) and K0(A-pmod) the corresponding Grothendieck groups. Moreover,
let us assume that A is also graded left Noetherian and let A-mod denote the Abelian cat-
egory of finitely generated A-modules. The corresponding Grothendieck group is denoted
by G0(A-mod). We have that G0(A-fmod), K0(A-pmod) and G0(A-mod) are all A-modules,
where q acts by shifting degrees.
Using graded composition multiplicities we obtain a close connection between G0(A-mod)

and G0(A-fmod) which is given by the graded character map

gch : G0(A-mod)→ Z((q))⊗A G0(A-fmod).

The graded character map can be viewed as mapping a class of a finitely generated graded
A-module to the (possibly infinite) sum of the classes of its graded simple filtration quotients.
In our studies, we are particularly interested in characterizing relations between the graded

characters of graded projective indecomposable and graded simple A-modules. For this,
we transfer a further crucial aspect of the theory of Grothendieck groups of finite dimen-
sional k-algebras to our setting. Namely, we define A-bilinear Euler forms χf , χp and χm on
G0(A-fmod),K0(A-pmod) and G0(A-mod). Our motivation for this is to establish a duality
relationship between the graded characters of graded projective indecomposable and graded
simple A-modules.
To define these bilinear Euler forms, we make some assumptions on A. One assumption

is that A has finite global dimension, so we have that all graded EXT-terms vanish in high
enough degrees. A further assumption is that A admits a self-inverse anti-automorphism. This
assumption provides that if M is a graded A-module, then M~ := HOMk(M,k) again admits
a graded A-module structure. Here, HOMk(M,k) is the graded k-vector space spanned by
homogeneous k-homomorphisms between M and k. This fact is of significant importance in
the definition of χf , χp and χm, since it provides the A-bilinearity condition.
Using the A-bilinearity, we can then extend χf and χp to Z((q))-bilinear forms χ̂f and χ̂p on

Z((q))⊗AG0(A-fmod) and Z((q))⊗AK0(A-pmod). The main result of the first part is then the
following duality statement.
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Theorem. The following holds:

(i) The Euler forms χ̂p and χ̂f are both non-degenerated.

(ii) If L1, . . . , Lr is a complete list of pairwise non-shift-isomorphic graded simple A-modules
and P1, . . . , Pr are the corresponding projective covers, then

(gch([L~1 ]), . . . , gch([L~r ])) and (gch([P1]), . . . , gch([Pr]))

are dual Z((q))-bases of Z((q))⊗A G0(A-fmod) with respect to χ̂f .

According to our choice of assumptions, this theorem can be applied to a large class of
Laurentian k-algebras including (alternating) nil Hecke algebras, as we will outline in the
second part.

Part 2. This part is devoted to the study of the representation theory of alternating nil
Hecke algebras. Motivated by the definition of the nil Hecke Grothendieck groups, we define
the alternating nil Hecke Grothendieck groups as

G0(ANH) :=
⊕
n∈N0

G0(ANHn -fmod), K0(ANH) :=
⊕
n∈N0

K0(ANHn -pmod).

By construction, G0(ANH) and K0(ANH) are N0-graded A-modules. Moreover, in Section 4.3,
we show that G0(ANH) and K0(ANH) both admit multiplicative and comultiplicative struc-
tures given by induction and restriction. In addition, G0(ANH) is also the graded dual of
K0(ANH). However, in contrast to the nil Hecke Grothendieck groups, G0(ANH) and K0(ANH)
are no twisted bialgebras which we show in Proposition 4.6.2.
We now outline a further interesting aspect. For this, we first consider the following

fact about K0(NH) and G0(NH) which is a consequence of the categorification theorem of
Khovanov–Lauda:

(F) We have that K0(NH) and G0(NH) are not isomorphic as twisted algebras over A. How-
ever, taking graded characters induces an isomorphism of twisted bialgebras over Q(q):

φ : K0(NH)Q(q) → G0(NH)Q(q),

where K0(NH)Q(q) and G0(NH)Q(q) are obtained from K0(NH) and G0(NH) via scalar
extension to Q(q).

Using techniques from the first part, we show that this result generalizes to our setting as
follows. Let K0(ANH)Q(q) and G0(ANH)Q(q) be the scalar extended versions of K0(ANH) and
G0(ANH). Then, in Theorem 4.4.4, we show that taking graded characters gives an isomor-
phism of N0-graded Q(q)-vector spaces between K0(ANH)Q(q) and G0(ANH)Q(q), which is com-
patible with the multiplicative and comultiplicative structures. Moreover, in Proposition 4.6.1,
we show that K0(ANH) and G0(ANH) are neither isomorphic as N0-graded A-algebras nor as
N0-graded A-coalgebras.
Hereafter, we come to a further application of the results from the first part. At first, we

construct non-degenerated Q(q)-bilinear Euler forms χG and χK on G0(NH) and K0(NH).
The categorification theorem implies that under the identification K0(NH)Q(q) ∼= Q(q)⊗A fA ,
we have that χK corresponds to Lusztig’s symmetric form (., .). Here, fA denotes Lusztig’s
integral quantum group corresponding to the one-vertex graph without edges.
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Motivated by these considerations, we also construct non-degenerated Q(q)-bilinear Euler
forms χ′G and χ′K on G0(ANH)Q(q) and K0(ANH)Q(q) and show that they satisfies similar
properties as (., .). In Theorem 4.4.4, we then apply the main theorem from the first part to
determine explicit formulas for χ′G and χ′K with respect to appropriate bases.

Finally, we characterize the multiplicative and comultiplicative structures on G0(ANH) and
K0(ANH). In view of the categorification theorem, we are particularly interested in relating
these structures to fA . For this, let A[Z/2] be the group algebra of Z/2 over A and let A[Z/2]∗
denote the graded dual coalgebra of A[Z/2]. In Theorem 4.5.9, we construct an isomorphism
of N0-graded A-coalgebras

ψ : ( fA ⊗A A[Z/2]∗)≥2 → K0(ANH)≥2.

Here, the subscript ≥ 2 means that we only have an isomorphism in degrees ≥ 2. This is due
to the fact that ANH0 and ANH1 strongly differ from the alternating nil Hecke algebras ANHn
for n ≥ 2. Using the duality between G0(ANH) and K0(ANH), we then obtain an isomorphism
of N0-graded A-algebras

ψ∗ : G0(ANH)≥2 → ( fA ⊗A A[Z/2])≥2.

In order to describe the comultiplication on G0(ANH) and the multiplication on K0(ANH),
we define an N0-graded A-algebra f̃A which can be seen as a sign perturbated version of fA .
Let f̃A ∗ be the graded dual coalgebra of f̃A . In Theorem 4.5.16, we show that the N0-graded
A-coalgebras G0(ANH)≥2 and ( fA ∗ ⊕ f̃A ∗)≥2 become isomorphic after extending the scalars
to A′ := A[1

2 ]. Likewise, we have that the N0-graded A-algebras K0(ANH)≥2 and the product
algebra ( fA × f̃A )≥2 become isomorphic after scalar extension to A′.
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1 Representation theory of Laurentian algebras

Convention. Throughout this chapter, we fix a ground field k.

Summary
This thesis is devoted to the study of the representation theory of alternating nil Hecke algebras
which are interesting subalgebras of nil Hecke algebras. Both, the nil Hecke algebras and the
alternating nil Hecke algebras, are graded k-algebras that satisfy the following conditions:

L1 All homogeneous components are of finite dimension over k.

L2 There exists d ∈ Z such that all homogeneous components of degree i vanish, for i < d.

Following Kleshchev [Kle15a, Kle15b], we call a graded k-algebra A Laurentian, if A satisfies
the conditions L1 and L2. In this chapter, we discuss well-known and important properties
of Laurentian k-algebras. The crucial point why the representation theory of Laurentian k-
algebras is interesting is that Laurentian k-algebras satisfy many pleasant properties that are
similar to the properties of finite dimensional k-algebras. We now formulate some of these
properties. For this, let A be a Laurentian k-algebra:

1. We have that A is graded semiperfect. In particular, A admits only finitely many graded
simple modules up to shift-isomorphism and each graded simple A-module admits a
projective cover.

2. All graded simple A-modules are of finite dimension over k.

3. For finitely generated graded A-modules, we have a notion of graded composition multi-
plicities.

An important application of these properties is that there is an interesting theory of Grothen-
dieck groups of Laurentian k-algebras. In Chapter 2, we will discuss this in sufficient detail.

In this chapter, we assume that the reader is familiar with the basics of graded algebras
and graded modules, for a reference see e.g. [NvO04]. Furthermore, we assume basic knowl-
edge about Abelian and additive categories and in particular the notion of projective covers
and Krull–Schmidt categories, see for instance [Kra15]. Finally, we also assume some basic
knowledge in homological algebra, for a reference see e.g. [Wei95].

1.1 Basic definitions and conventions
In this section, we recall important definitions and provide the general setup of this thesis. At
first, we stress that by N we denote the natural numbers without 0 and we set N0 := N ∪ {0}.
Now, we move to (graded) k-algebras.

11



1.1. Basic definitions and conventions

Convention 1.1.1. Throughout the thesis, we adhere to the following conventions:

1. A k-algebra A is always assumed to be associative and unital. By a module M over A,
we always mean a unital left A-module.

2. By a graded k-algebra A, we always mean an associative unital Z-graded k-algebra. The
homogeneous components of A are denoted by Ai, for i ∈ Z. If a ∈ A is homogeneous,
then the degree of a is denoted by |a|, i.e. |a| = i if a ∈ Ai. Whenever we write |a|, we
always assume that a is homogenoues.

3. Let A be a graded k-algebra. By a graded A-module M over A, we always mean a
unital graded left A-module. The homogeneous components of M are denoted by Mi,
for i ∈ Z. If m ∈ M is an homogeneous element, then the degree of m is denoted by
|m|. In particular, we have |am| = |a||m| for a ∈ A,m ∈M homogeneous. Whenever we
write |m| for m ∈M , we always assume that m is homogenoues.

We proceed with fixing the notation for the sets of homomorphisms between graded and
ungraded modules.

Notation 1.1.2. Let A be a k-algebra and M,N be A-modules. Then the k-vector space of
A-module homomorphisms between M and N is denoted by HomA(M,N).

Notation 1.1.3. Let A be a graded k-algebra and M,N be graded A-modules.

1. An A-linear map f ∈ HomA(M,N) is called a homomorphism of graded A-modules, if
for all i ∈ Z, we have f(Mi) ⊂ Ni. We denote by homA(M,N) the k-vector space of
graded A-module homomorphisms between M and N . Moreover, we set endA(M) :=
homA(M,M). Note that endA(M) is an ungraded k-algebra, where the multiplication is
given by composition of functions.

2. Let d ∈ Z. An A-linear map f ∈ HomA(M,N) is called a homogeneous of degree d, if
for all i ∈ Z, we have f(Mi) ⊂ Ni+d. We denote by HOMA(M,N)d ⊂ HomA(M,N) the
k-vector space of homogeneous A-linear maps of degree d. In particular, homA(M,N) =
HOMA(M,N)0.

3. We set
HOMA(M,N) :=

⊕
d∈Z

HOMA(M,N)d ⊂ HomA(M,N).

Then HOMA(M,N) is a graded k-vector space. Moreover, we set

ENDA(M) := HOMA(M,M).

Then ENDA(M) is a graded k-algebra with multiplication given by composition of func-
tions. We call ENDA(M) the graded endomorphism algebra of M .

In the following let A be a fixed graded k-algebra and M,N be graded A-modules. If M is
a finitely generated graded A-module, then one can directly check that we have

HOMA(M,N) = HomA(M,N).

12



1.1. Basic definitions and conventions

We will use the following degree shifts of graded A-modules. For d ∈ Z, let M〈d〉 denote
the graded A-module obtained from M by defining the homogeneous components

M〈d〉i := Mi−d, for all i ∈ Z.

It is a straightforward exercise to check that we have natural isomorphisms of k-vector spaces

HOMA(M,N)d ∼= homA(M〈d〉, N) ∼= homA(M,N〈−d〉).

We call two gradedA-modulesM,N shift-isomorphic if there exists d ∈ Z such thatM ∼= M〈d〉.
Next, we fix the notation of several categories of graded A-modules.

Notation 1.1.4. Let A be a graded k-algebra.

1. Let A-Mod denote the graded Abelian category of graded A-modules with morphism
spaces homA(M,N).

2. Let A-mod ⊂ A-Mod denote the full graded subcategory of finitely generated graded
A-modules.

3. Let A-fmod ⊂ A-Mod denote the full graded Abelian subcategory of graded A-modules
that are of finite dimension over k.

4. Let A-pmod ⊂ A-Mod denote the full graded additive subcategory of finitely generated
graded projective A-modules.

5. Let A-Mod+ ⊂ A-Mod denote the full graded Abelian subcategory whose objects are the
graded A-modules M that satisfy the following conditions:
5.a. All homogeneous components of M are of finite dimension over k.
5.b. There exists d ∈ Z (depending on M) such that Mi = 0, for i < d.

6. Let A-Mod− ⊂ A-Mod denote the full graded Abelian subcategory whose objects are the
graded A-modules M that satisfy the following conditions:
6.a. All homogeneous components of M are of finite dimension over k.
6.b. There exists d ∈ Z (depending on M) such that Mi = 0, for i > d.

The categories A-Mod+ and A-Mod− are of particular importance since we have a notion of
graded dimensions on these categories. For this, we denote by Z((q)) the ring of formal Laurent
series with integer coefficients.

Definition 1.1.5. Let M ∈ A-Mod+. Then the graded dimension of M is defined as

grdim(M) :=
∑

i>>−∞
dimk(Mi)qi ∈ Z((q)).

Likewise, for N ∈ A-Mod−, we define the dual graded dimension by

dgrdim(N) :=
∑
i<<∞

dimk(Ni)qi ∈ Z((q−1)).

We now consider some basic examples of graded and dual graded dimensions. For this, we
denote for a graded k-algebra A the regular A-module by AA .

13



1.1. Basic definitions and conventions

Example 1.1.6. (1) Let A = k be the ground field. Then we have

grdim( AA ) = dgrdim( AA ) = 1.

(2) Let A = k[x1, . . . , xn], where each xi is homogeneous of degree 1. Then the graded
dimension of AA is

grdim( AA ) = 1
(1− q)n .

In particular, for n = 1 we have

grdim( AA ) = 1 + q + q2 + q3 + . . . .

(3) Now, let A = k[x1, . . . , xn], where each xi is homogeneous of degree −1. Then the dual
graded dimension of AA is

dgrdim( AA ) = 1
(1− q−1)n .

In particular, for n = 1 we have

grdim( AA ) = 1 + q−1 + q−2 + q−3 + . . . .

We end this section with recalling the notion of graded EXT-functors and Frobenius reci-
procity. At first, we recall that it is a well-known fact that the category A-Mod admits enough
projectives and enough injectives, see for instance [NvO04, Appendix]. In the following let
vect denote the category of graded k-vector spaces. We have that the graded functor

HOMA(., .) : A-Mod×A-Mod→ vect

is left-exact in both variables. For each M ∈ A-Mod, we denote by EXTi
A(.,M) the i-th right

derived functor of HOMA(.,M), for i ∈ N0. Moreover, we denote by Ri(HOMA(M, .)) the i-th
right derived functor of HOMA(M, .), for i ∈ N0. It is a well-known fact from homological
algebra that for all M,N ∈ A-Mod, we have isomorphisms of graded k-vector spaces

EXTi
A(M,N) ∼= Ri(HOMA(M, .))(N).

A proof of this fact is given or instance in [Wei95, Theorem 2.7.6]. The reference only treats
the ungraded case, but the arguments directly generalize to the graded setting.
Finally, we recall the notion of Frobenius reciprocity. For this, let A,B be graded k-algebras

and A ⊂ B a non-necessarily unital inclusion of graded k-algebras, i.e. we do not demand that
the unity element 1A of A is the unity element of B. The corresponding restriction functor is
defined as

ResBA : B-Mod→ A-Mod, M 7→ 1A ·M.

We proceed with defining the corresponding induction functor. For this, note that if M is a
graded right A-module and N is a graded left A-module, then M ⊗A N is a graded k-vector
space, where the graded component (M ⊗A N)i is spanned by the pure tensors m⊗ n, where
m ∈ M,n ∈ N are homogeneous with |m| + |n| = i. With this observation, we define the
induction functor corresponding to A ⊂ B by

IndBA : A-Mod→ B-Mod, M 7→ B ⊗AM.

14



1.2. Laurentian algebras

Note that B ⊗AM is a graded B-module with scalar multiplication

b(b′ ⊗m) = bb′ ⊗m, for all b, b′ ∈ B, m ∈M .

Let M ∈ A-Mod and N ∈ B-Mod. By the universal property of tensor products, we obtain
a natural isomorphism of graded k-vector spaces

HOMB(IndBA(M), N) ∼= HOMA(M,ResBA(N)).

This isomorphism is called Frobenius reciprocity. Using the Grothendieck spectral sequence
(see e.g. [Wei95, Theorem 5.8.3]) and the fact that IndBA preserves graded projective modules,
we obtain an isomorphism of the right-derived functors

EXTi
B(IndBA(M), N) ∼= EXTi

A(M,ResBA(N)), for all i ∈ N0.

This isomorphism is called generalized Frobenius reciprocity.
We herewith end this section about general notions of graded k-algebras. In the upcoming

section, we will come to crucial players of this thesis: the Laurentian k-algebras.

1.2 Laurentian algebras

In this section, we recall the definition of Laurentian k-algebras and discuss important well-
known representation theoretic properties of these algebras. Our notation in this section is
modeled on [Kle15a].

Definition 1.2.1. Let A be a graded k-algebra. We say that A is Laurentian if A satisfies the
following conditions:

L1 For all i ∈ Z, the homogeneous component Ai has finite dimension over k.

L2 There exists d ∈ Z such that Ai = 0, for all i < d.

Using the notation from the previous section, we have that a graded k-algebra A is Lauren-
tian if and only if the regular A-module AA is contained in A-Mod+.

Let A be a Laurentian k-algebra. By definition, we have A-mod ⊂ A-Mod+. In particular,
for every finitely generated graded A-module, the graded dimension is well-defined. As a direct
consequence, we conclude that if M is a finitely generated graded A-module and d ∈ Z, then
M ∼= M〈d〉 if and only if d = 0.

Moreover, we define the graded dimension of A by

grdim(A) :=
∑

i>>−∞
dimk(Ai)qi ∈ Z((q)).

This observation motivates the name Laurentian, because the graded dimension of a Laurentian
k-algebra is a Laurent series with integer coefficients.

We proceed with considering two important examples of Laurentian k-algebras.

Example 1.2.2. Let A = k[x1, . . . , xn] be a graded polynomial algebra, where all variables xi
are homogeneous of strictly positive degree. Then A is Laurentian.
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1.2. Laurentian algebras

The second example we consider are graded matrix algebras over Laurentian k-algebras.
They give in particular examples for Laurentian k-algebras with non-vanishing negative ho-
mogeneous components.

Definition 1.2.3. Let A be a graded k-algebra, n ∈ N and d = (d1, . . . , dn) ∈ Zn. Let
Mn(A)(d) be the k-vector space of n × n matrices over A with the grading such that for any
homogeneous element c ∈ A the matrix cEi,j is homogeneous of degree |c|+dj−di. This means
that the i-th graded component of Mn(A)(d) is given by

Ai Ai+d2−d1 . . . Ai+dn−d1

Ai+d1−d2 Ai . . . Ai+dn−1−d2
...

... . . . ...
Ai+d1−dn Ai+d2−dn−1 . . . Ai

 .

One can verify directly that Mn(A)(d) with the usual matrix multiplication is a graded k-algebra.
We call Mn(A)(d) the graded matrix algebra over A parameterized by d.

If we assume that the graded k-algebra A is Laurentian, then it follows directly from the
definition that also Mn(A)(d) is Laurentian. Moreover, the graded dimension of Mn(A)(d) is
given by

grdim(Mn(A)(d)) =
( ∏

1≤i≤n
1≤j≤n

qdi−dj

)
· grdim(A).

In particular, in this way, we obtain examples of Laurentian k-algebras with non-vanishing
components of strictly negative degree.
We proceed with recalling two fundamental properties of graded matrix algebras.

Proposition 1.2.4. Let A be a graded k-algebra and Aop be the opposite k-algebra of A.
Let M be a graded free module over Aop with homogeneous basis (m1, . . . ,mn) of degrees
d := (d1, . . . , dn) ∈ Zn. Then there is an isomorphism of graded k-algebras

Mn(A)(d)→ ENDAop(M), B 7→ (ϕB : mi 7→
n∑
j=1

Bi,jmj).

Proof. This follows immediately from the definition of graded matrix algebras.

Proposition 1.2.5. Let A be a graded k-algebra, n ∈ N0 and d = (d1, . . . , dn) ∈ Zn. Let A(d)
be the graded free A-right module with homogeneous basis a1, . . . , an and each ai is homogeneous
of degree di, for each i ∈ {1, . . . , n}. Via the usual matrix multiplication, we obtain a graded
(Mn(A)(d), A)-bimodule structure on A(d). Then we have the following equivalence of graded
categories

A-Mod→ (Mn(A)(d))-Mod, M 7→ A(d)⊗AM

Proof. See e.g. [Haz16, Proposition 2.1.1].

Next, we describe some crucial representation theoretic properties of Laurentian k-algebras.
Our first observation is that if A is a graded k-algebra that satisfies the condition L2, then for
all finitely generated graded A-modulesM,N , we have that homA(M,N) is a finite dimensional
k-vector space. Thus, we immediately obtain the following proposition.
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1.2. Laurentian algebras

Proposition 1.2.6. Let A be a graded k-algebra that satisfies the condition L2. Then the cat-
egories A-mod and A-pmod are both Krull–Schmidt categories, i.e. every object is isomorphic
to a direct sum of objects having local endomorphism rings.

The property that A-pmod is a Krull–Schmidt category can be reformulated as graded
semiperfectness of A as follows.

Theorem 1.2.7. Let A be a graded algebra over a field k. Then the following are equivalent:

(i) The additive category A-pmod is a Krull–Schmidt category.

(ii) Every object in A-mod admits a projective cover in A-mod.

(iii) Let Jg(A) denote the graded Jacobson radical of A. Then the graded k-algebra A/Jg(A) is
graded semisimple and each homogeneous idempotent in A/Jg(A) lifts to a homogeneous
idempotent in A.

We call A graded semiperfect, if A satisfies the above equivalent conditions.

Proof. See e.g. [AF12, Theorem 27.6]. This reference only treats the ungraded case, but the
proof directly transfers to the graded case.

Corollary 1.2.8. Laurentian k-algebras are graded semiperfect.

The graded semiperfectness property has many peasant consequences that we describe in
the following. We begin with characterizing the graded radical of finitely generated graded
modules over graded semiperfect algebras. For this, we recall the general definition of the
graded radical.

Definition 1.2.9. Let A be a graded k-algebra and M be a graded A-module.

(i) Let N ⊂ M be a graded A-submodule. We call N graded superfluous if for any graded
A-submodule H ⊂M , we have H +N = M if and only if H = M .

(ii) The graded radical rad(M) is defined to be the graded A-submodule of M generated by
all graded superfluous graded A-submodules of M .

If we assume that A is graded semiperfect, then the graded radical of finitely generated
graded A-modules can be described in the following way.

Proposition 1.2.10. Let A be a graded semiperfect k-algebra and M be a finitely generated
graded A-module. Then we have rad(M) = Jg(A)M .

Proof. The inclusion Jg(A)M ⊂ rad(M) follows from the graded version of the Nakayama
Lemma, see e.g. [NvO04, Corollary 2.9.2]. The other inclusion follows from the fact that
A/Jg(A) is graded semisimple.

The Proposition 1.2.10 gives an adequate notion of the head of a finitely generated graded
module over a graded semiperfect k-algebra.

Definition 1.2.11. Let A be a graded semiperfect k-algebra and M be a finitely generated
graded A-module. Then the head hd(M) of M is defined as

hd(M) := M/ radM.

By Proposition 1.2.10, hd(M) is the unique maximal graded semisimple quotient of M .

17



1.2. Laurentian algebras

We continue with a further useful consequence of the equivalent characterizations of the
graded semiperfectness. Namely, by using standard arguments, we obtain a 1:1 correspon-
dence between the graded simple A-modules and the finitely generated graded projective in-
decomposable A-modules which we describe in Theorem 1.2.13. In the theorem and also in
the following, we use the following notational convention.
Convention 1.2.12. Given a graded k-algebra A, then we call the finitely generated graded
projective indecomposable A-modules just graded projective indecomposable A-modules, so
we omit the part ’finitely generated’.
Theorem 1.2.13. Let A be a graded semiperfect k-algebra, then the following are true:
(i) Let P be graded projective indecomposable A-module P , then hd(P ) is graded simple and

P is the projective cover of hd(P ).

(ii) A admits only finitely many graded simple A-modules up to shift-isomorphism.

(iii) Let I be the set of isomorphism classes of graded simple A-modules and P be the set
of isomorphism classes of graded projective indecomposable A-modules. Then there is a
bijection

P ∼→ I, [P ] 7→ [hd(P )].
The inverse map is given by assigning to a class [L] the class [PL], where PL denotes the
projective cover of L.

After this discussion about the pleasant consequences of the graded semiperfectness property,
we continue with describing a further crucial property of Laurentian k-algebras, namely that
the graded simple modules over Laurentian k-algebras are always of finite dimension over k.
Theorem 1.2.14. Let A be a Laurentian k-algebra and L be a graded simple A-module, then
L has finite dimension over k.
Proof. According to Theorem 1.2.7.(iii), we know that A/Jg(A) is a graded semisimple Lauren-
tian k-algebra. By the graded version of the Artin-Wedderburn theorem (see [Bla11, Corollary
9.4.5]), we obtain that A/Jg(A) is isomorphic to a product of graded matrix algebras over
graded k-division algebras. Recall at this point that a graded k-division algebra is a graded
k-algebra with the property that every homogeneous element is invertible. In particular, a
Laurentian k-division algebra has to be of finite dimension over k and to be concentrated in
degree zero. From this observation, we can infer that A/Jg(A) is of finite dimension over k
which implies the assertion of Theorem 1.2.14

We end this section with a basic but important example, where we illustrate the results
discussed in this section.
Example 1.2.15. Let A = k[x1, . . . , xn], where x1, . . . , xn graded polynomial algebra, where
all variables xi are homogeneous of strictly positive degree. The regular A-module P := AA
is the unique graded projective indecomposable A-module up to shift-isomorphism. Moreover,
Jg(A) = (x1, . . . , xn) and the head of P is given by L := P/(x1, . . . , xn)P . So L is one
dimensional and the unique graded simple A-module up to shift-isomorphism.
Altogether, we conclude that the representation theory of k[x1, . . . , xn] in the graded setting

heavily differs from the ungraded setting. In the ungraded setting we have that the simple
k[x1, . . . , xn]-modules correspond to maximal ideals in k[x1, . . . , xn]. However, in the graded
setting, there exists only one graded simple module over k[x1, . . . , xn] up to shift-isomorphism
which we obtain by dividing out the ideal (x1, . . . , xn).
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1.3. Outer tensor products of Laurentian algebras

1.3 Outer tensor products of Laurentian algebras
In this section, we discuss a useful application of the results of the previous section. Namely,
we show that if A and B are graded Schurian Laurentian k-algebras, then the graded simple
(A⊗k B)-modules are all given by outer tensor products S ⊗k T , where S is a graded simple
A-module and T is a graded simple B-module. From this, we also conclude the analogous
statement for the graded projective indecomposable (A ⊗k B)-modules. Again, this result is
analogous to the corresponding statement for finite dimensional k-algebras, in particular for
group algebras over finite groups.

At first, we recall the definition of graded Schurian k-algebras.

Definition 1.3.1. Let A be a graded k-algebra. Then A is called graded Schurian, if for any
graded simple A-module L, we have that end(L) is one dimensional over k.

If A and B are graded k-algebras, then A⊗kB is a graded k-vector space, where the graded
component (A⊗kB)i is spanned by the pure tensors a⊗b, where a ∈ A, b ∈ B are homogeneous
with |a|+ |b| = i. Moreover, we have a multiplication on A⊗k B given by

(a⊗ b)(a′ ⊗ b′) = aa′ ⊗ bb′, for all a, a′ ∈ A, b, b′ ∈ B.

In this way, A ⊗k B admits the structure of a graded k-algebra. We call A ⊗k B the outer
tensor product of A and B.
LetM resp. N be a graded A- resp. B-module. Then as above,M⊗kN is a graded k-vector

space. For each i ∈ Z, he graded component (M ⊗kN)i is spanned by the pure tensors m⊗n,
where m ∈ M,n ∈ N are homogeneous with |m| + |n| = i. We can endow M ⊗k N with a
graded (A⊗k B)-module structure such that

(a⊗ b)(m⊗ n) = am⊗ bn,

for all a ∈ A, b ∈ B,m ∈ M and n ∈ N . We call M ⊗k N the outer tensor product of M
and N .
By the definition of the Laurentian property, we immediately obtain the following lemma.

Lemma 1.3.2. If A and B are both Laurentian k-algebras, then A ⊗k B is also Laurentian
k-algebra.

Now, let us formulate the above mentioned classification result.

Theorem 1.3.3. Let A,B be graded Schurian Laurentian k-algebras. Let S1, . . . , Sr resp.
T1, . . . , Ts be a complete list of pairwise non-shift-isomorphic graded simple A- resp. B-
modules. Then Si ⊗k Tj, for i ∈ {1, . . . , r}, j ∈ {1, . . . , s} is a complete list of pairwise
non-shift-isomorphic graded simple modules over A⊗k B.

Proof. At first, note that the case where A and B are of finite dimension over k is well-known,
see e.g. [EGH+11, Theorem 3.10.2]. The proof in the reference treats the ungraded case, but
all arguments transfer directly to the graded setting.
Now, let us prove the general case. At first, note that A/Jg(A) and B/Jg(B) are graded

semisimple. Moreover, as we assumed A and B to be graded Schurian, the graded version
of the theorem of Artin-Wedderburn implies that A/Jg(A)⊗k B/Jg(B) is graded semisimple
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1.3. Outer tensor products of Laurentian algebras

and that Si ⊗ Tj for i ∈ {1, . . . , r}, j ∈ {1, . . . , s} is a complete list of pairwise non-shift-
isomorphic graded simple (A/Jg(A) ⊗k B/Jg(B))-modules. We conclude that Si ⊗ Tj for
i ∈ {1, . . . , r}, j ∈ {1, . . . , s} is a list of pairwise non-shift-isomorphic graded simple (A⊗k B)-
modules. So to conclude the theorem, it remains to show that the list is complete. For this,
let M be a graded simple (A ⊗k B)-module. According to Theorem 1.2.13, we know that
M has finite dimenison over k. Now, the (A ⊗k B)-module structure on M is given by a
homomorphism of graded k-algebras

ρ : A⊗k B → ENDk(M).

We set A′ := ρ(A⊗k k), B′ := ρ(k⊗k B) and regard A′ resp. B′ as a finite dimensional graded
quotient algebras of A resp. B. We have that ρ(A⊗kB) = A′⊗kB′ and M is a graded simple
(A′ ⊗k B′)-module. Since A′ and B′ are graded Schurian k-algebras of finite dimension, we
conclude that M is isomorphic as (A′⊗kB′)-module to an outer tensor product S⊗k T , where
S resp. T is a graded simple A′- resp. B′-module. By inflation, it follows that S resp. T is
also a graded simple A- resp. B-module and M ∼= S ⊗k T as graded (A ⊗k B)-module. As
the S1, . . . , Sr resp. T1, . . . , Ts form a complete list of pairwise non-shift-isomorphic graded
simple A- resp- B-modules, there exist unique i ∈ {1, . . . , r}, j ∈ {1, . . . , s} such that S is shift-
isomorphic to Si and T is shift-isomorphic to Tj . Hence, M is shift-isomorphic to Si ⊗k Tj .
This finishes the proof.

The following are direct consequences of Theorem 1.3.3.

Corollary 1.3.4. Let A,B be graded Schurian Laurentian k-algebras. Then the graded Jacob-
son radical of A⊗k B is given by

Jg(A⊗k B) = Jg(A)⊗k B +A⊗k Jg(B).

In particular, we obtain an isomorphism of graded k-algebras

A/Jg(A)⊗k B/Jg(B) ∼= (A⊗k B)/Jg(A⊗k B).

Moreover, A⊗k B is graded Schurian.

By applying Theorem 1.2.13 and Corollary 1.3.4, we get the following analogous description
of the graded projective indecomposable modules over outer tensor products.

Corollary 1.3.5. Let A,B be graded Schurian Laurentian k-algebras. Then the following
holds:

(i) Let S resp. T be a graded simple A- resp. B-module. Let P be the projective cover of S
and Q be the projective cover of T . Then P ⊗k Q is the projective cover of S ⊗k T .

(ii) Let P1, . . . , Pr resp. Q1, . . . , Qs be a complete list of pairwise non-shift-isomorphic graded
projective indecomposable A- resp. B-modules. Then Pi ⊗k Qj for i ∈ {1, . . . , r}, j ∈
{1, . . . , s} is a complete list of pairwise non-shift-isomorphic graded projective indecom-
posable modules over A⊗k B.

Proof. (i) At first, observe note that P ⊗k Q indeed is a finitely generated graded projective
(A⊗k B)-module. Moreover, from Theorem 1.3.3, we directly conclude

hd(P ⊗k Q) = (P ⊗k Q)/(Jg(A⊗k B)(P ⊗k Q)) ∼= P/Jg(A)⊗k Q/Jg(B) ∼= S ⊗k T.
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Thus, P ⊗k Q is the projective cover of S ⊗k T .
(ii) This assertion follows directly from the assertion (i) and Theorem 1.3.3, using the 1:1 cor-

respondence between graded simple and graded projective indecomposable (A⊗k B)-modules
from Theorem 1.2.13.

1.4 Graded composition multiplicities
We now come to a further important aspect of the representation theory of Laurentian k-
algebras. Namely, the notion of graded composition multiplicities. We now briefly describe
the basic idea of graded composition multiplicities.
If M is a finitely generated graded module over a Laurentian k-algebra A, then M is in

general not of finite length. So M does in general not admit a composition series. However,
in our setting, we have a satisfying alternative to composition series. Namely, the Laurentain
property of A implies that M admits a countable separated filtration F = (M = F0 ⊃ F1 ⊃
. . . ) with graded simple quotients. Now, let L be a graded simple A-module and i ∈ Z. Let ai
be the multiplicity how often L〈i〉 appears as filtration quotient of F . The Laurentian property
of A ensures that ai is a finite natural number and moreover, that there exists d(M) ∈ Z such
that ai = 0 if i < d(M). In this way, we can assign to M a Laurent series∑

i>>−∞
aiq

i ∈ Z((q)). (1.1)

Furthermore, we have that each coefficient ai is independent of the choice of the filtration. By
definition, the graded composition multiplicity of L in M is then the Laurent series (1.1).
Let us now translate this into practice. Our notation in this section is modeled on [Kle15a,

Chapter 2]. Throughout this section let A be a fixed Laurentian k-algebra. At first, we recall
the general definition of composition multiplicities for objects in A-Mod.

Definition 1.4.1. Let L be a graded simple A-module.

(i) Let N ∈ A-Mod and F = (N = F0 ⊃ F1 ⊃ · · · ⊃ Fr = 0) be a finite filtration of N by
graded A-modules. Then the composition multiplicity [F : L] of L in F is defined as

[F : L] := |{i = 0, . . . , r − 1|Fi/Fi+1 ∼= L}|.

(ii) For any M ∈ A-Mod the graded composition multiplicity [M : L] of L in M is defined as

[M : L] := sup{[F : L]|F is a finite filtration of M}.

Note that possibly [M : L] =∞.

The following properties of composition multiplicities can easily be verified by using the
results that were discussed in Section 1.2.

Lemma 1.4.2. Let A be a Laurentian k-algebra and L be a graded simple A-module. Further
let P be the projective cover of L and M ∈ A-mod. Then the following holds:

(i) We have the equality

[M : L] = 1
dimk(endA(L)) · dimk(homA(P,M)).

In particular, [M : L] <∞.
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(ii) There exists m0 ∈ Z such that [M : L〈i〉] = 0 for all i < m0.

Using Lemma 1.4.2, we now state the definition of graded composition multiplicities.

Definition 1.4.3. Let A be a Laurentian k-algebra, L be a graded simple A-module and M be
a finitely generated graded A-module. Then the graded composition multiplicity [M : L]q of L
in M is defined as

[M : L]q :=
∑

i>>−∞
[M : L〈i〉]qi ∈ Z((q)).

Note that Lemma 1.4.2.(i) implies

[M : L]q = 1
dimk(endA(L)) · grdim(HOMA(P,M)), (1.2)

where P is the projective cover of L.
Next, we explain the equivalent characterization of graded composition multiplicities that

we already mentioned above.

Definition 1.4.4. Let M be a graded A-module and let I = N0 or I = {0, 1, . . . , n} for some
n ∈ N0. Let F = (Fi)i∈I be a decreasing filtration of M by graded A-submodules, i.e. all Fi
are graded A-submodules of M with Fi−1 ⊃ Fi for all i ∈ I with i ≥ 1 and F0 = M .
We call F a countable separated graded simple filtration of M if F satisfies the following

properties:

1. The filtration F is separated, i.e. we have⋂
i∈I

Fi = 0.

2. For each i ∈ I with i ≥ 1, we have that Fi−1/Fi is a graded simple A-module.

Proposition 1.4.5. Let M be a finitely generated graded A-module. Then the following holds:

(i) M admits a countable separated graded simple filtration.

(ii) Let F = (M = F0 ⊃ F1 ⊃ . . . ) be a countable separated graded simple filtration of M
and let L be a graded simple A-module. Then we have

[M : L] = |{i ∈ N0|Fi/Fi+1 ∼= L}|.

In particular, we have

[M : L]q =
∑

i>>−∞
|{j ∈ N0|Fj/Fj+1 ∼= L〈i〉}| · qi.

Proof. (i) Let m1, . . . ,mr be homogeneous generators of M as graded A-module. Moreover,
for i ∈ N0 let ai ⊂ A be the graded two-sided ideal generated by all homogeneous elements of
degree ≥ i. We further set Fi := aiMi. Then

M = F0 ⊃ F1 ⊃ F2 ⊃ . . .
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is a countable separated graded filtration ofM such that all subquotients are of finite dimension
over k. Since every graded finite dimensional A-module admits a composition series in A-fmod,
we can refine the filtration M = F0 ⊃ F1 ⊃ F2 ⊃ . . . to a countable separated graded simple
filtration of M .
(ii) If M is of finite dimension over k, the assertion is clear. So let us assume that M is of

infinite dimension over k. In this case, we know that Fi 6= 0 for all i ∈ N0. Since M is finitely
generated and L is of finite dimension over k, we know by the separateness of F that there
exists j ∈ N0 such that

max{i ∈ Z|Li 6= 0} < min{i ∈ Z|(Fj)i 6= 0}.

This implies that

|{i ∈ N0|Fi/Fi+1 ∼= L}| = |{i ∈ N0|Fi/Fi+1 ∼= L, i < j}|.

Moreover, we also obtain homA(P, Fj) = 0. Hence, by Lemma 1.4.2, we conclude

[M : L] = 1
dimk(end(L)) dimk(homA(P,M))

= 1
dimk(end(L)) dimk(homA(P,M/Fj))

= |{i ∈ N0|Fi/Fi+1 ∼= L, i < j}|
= |{i ∈ N0|Fi/Fi+1 ∼= L}|.

This completes the proof.

We end this section by explicitly computing some graded composition multiplicities.

Example 1.4.6. Let A = k[x1, . . . , xn] with all x1, . . . , xn homogeneous of strictly positive
degree. Then P := AA be the regular A-module. So P is the unique graded projective inde-
composable A-module and L := P/(x1, . . . , xn)P is the graded simple A-module corresponding
to P . It follows that

[P : L]q = grdim(HOMA(P, P )) = grdim(P ) =
n∏
i=1

1
1− q|xi|

.

For the next example, we first introduce the following notion.

Definition 1.4.7. Let A be a graded k-algebra and φ : A → A be a self-inverse graded
automorphism of k-algebras. We define the graded semidirect product A o Z/2 to be the k-
algebra of formal sums

Ao Z/2 = {ae1 + beτ |a, b ∈ A},

where the addition is componentwise and the multiplication is given by

(ae1 + beτ )(a′e1 + b′eτ ) = (aa′ + bφ(b′))e1 + (ab′ + bφ(a′))eτ ,

for all a, a′, b, b′ ∈ A. We endow AoZ/2 with the unique grading such that |e1a| = |a| = |eτa|
for all homogeneous a ∈ A.
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Example 1.4.8. Let A = k[x] with x homogeneous of degree 1. Let φ : A → A be the
isomorphism given by x 7→ −x and let AoZ/2 be the graded semidirect product corresponding
to φ. Now, set e+ := 1

2(e1 + eτ ), e− := 1
2(e1 − eτ ) ∈ A. By direct arguments, one can show

that P+ := Ae+ and P− := Ae− are non-shift-isomorphic graded projective indecomposable
A-modules. Moreover, L+ := P+/xP+ is the graded simple A-module corresponding to P+

and L− := P−/xP− is the graded simple A-module corresponding to P−. From the definition
of e+ and e−, it follows that

HOMA(P+, P+) ∼= e+Ae+ = spank(xie+|i ∈ N0, 2|i),
HOMA(P−, P+) ∼= e−Ae+ = span(xie+|i ∈ N0, 2 - i).

This implies [P+ : L+]q = (1− q2)−1 and [P+ : L−]q = q(1− q2)−1. Moreover, one can readily
check that

P+ ⊃ P+/(xe+)P+ ⊃ P+/(xe+)2P+ ⊃ . . .

is a countable separated graded simple filtration of P+. Similarly, with the same arguments,
one can show that [P− : L−]q = (1− q2)−1 and [P− : L+]q = q(1− q2)−1 and

P− ⊃ P−/(xe−)P− ⊃ P−/(xe−)2P− ⊃ . . .

is a countable separated graded simple filtration of P−.

1.5 Criterion for finiteness of global dimension
We end this chapter with considering a useful criterion to bound the global dimension of
Laurentian k-algebras which are additionally also graded left Noetherian. Namely, the global
dimension of a graded left Noetherian Laurentian k-algebra is controlled by the EXT-terms
between the graded simple A-modules. This property is again analogous to the corresponding
property of finite dimensional k-algebras. For a general reference for the notion of global
dimension and its importance in homological algebra see [Wei95, Chapter 4].

At first, we recall the notions of projective dimensions. For this, we assume that C be an
Abelian category with enough projectives. We also assume that C is not equivalent to the
trivial category with only one object and one morphism.

Definition 1.5.1. We define the following:

(i) Let C ∈ C be a non-zero object and

· · · → P2 → P1 → P0 → C → 0

be a projective resolution in C which we denote by P. Then l(P) is defined to be the
minimal number n (if it exists) such that Pn 6= 0 and Pi = 0 for i > n. Otherwise, we
set l(P) :=∞. We call l(P) the length of P.

(ii) Let C ∈ C be a non-zero object. We define pd(C) to be the minimum number n (if it
exists) such that there exists a projective resolution of C in C of length n. Otherwise, we
set pd(C) =∞. We call pd(C) the projective dimension of M .

Next, we recall the definition of the (graded) global dimension.
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1.5. Criterion for finiteness of global dimension

Definition 1.5.2. The global dimension of C is defined as

gl(C) := sup{pd(C)|C ∈ C, C non-zero}.

Let A is be a k-algebra. Then the global dimension of A is defined as

gl(A) := gl(D),

where D is the category of A-modules. If A is a graded k-algebra, then the graded global
dimension is defined as

gr-gl(A) := gl(D′),

where D′ is the category of graded A-modules.

It is well-known that the finiteness condition L2 ensures that we do not have to distinguish
between gl and gr-gl, i.e. the following holds.

Proposition 1.5.3. Let A be a graded k-algebra that satisfies the condition L2. Then we have
gl(A) = gr-gl(A).

Proof. See e.g. [NVO79, Corollary 7.8].

Finally, we come to the mentioned criterion to bound the global dimension of graded left
Noetherian Laurentian k-algebras. For this, we first briefly recall the corresponding criterion
for finite dimensional k-algebras. So let A be a finite dimensional k-algebra, let D denote the
category of A-modules and Irr(D) the set of simple objects in D. From [Wei95, Theorem 4.1.2],
we know that

gl(A) = sup{pd(M)|M ∈ D, dimk(M) <∞}.

Let us now assume that

m := sup{i ∈ N0|∃L,L′ ∈ Irr(D) : ExtiA(L,L′) 6= 0} <∞.

Given a finite dimensional A-module M , then we can estimate the projective dimension of M
as follows. At first, recall the well-known fact

pd(M) = max{i ∈ N0|∃L ∈ Irr(D) : Exti(M,L) 6= 0}.

This fact id for instance proved in [Aus55, Proposition 3.7]. Now, using induction on the
length of M and the long exact Ext-sequence, we obtain the estimate pd(M) ≤ m. Hence, we
conclude that

gl(A) = m.

The Laurentian and graded left Noetherian properties, allow us to adapt these ideas and
translate the result to the setting of graded left Noetherian Laurentian k-algebras. This was
for instance done by McNamara in [McN15, Lemma 4.11]. He proved the result only for finite
type quiver Hecke algebras which are special examples of graded left Noetherian Laurentian
k-algebras. However, the same arguments work also in general for graded left Noetherian
Laurentian k-algebras.
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1.5. Criterion for finiteness of global dimension

Theorem 1.5.4. Let A be a graded left Noetherian Laurentian k-algebra and let Irr(A) denote
the set of graded simple A-modules. Suppose that

m := sup{i ∈ N0|∃L,L′ ∈ Irr(A) : EXTi
A(L,L′) 6= 0} <∞.

Then we have gl(A) = m.

Next, we consider an example which illustrates Theorem 1.5.4.

Example 1.5.5. Let A = k[x] o Z/2 be the semidirect product that was already considered
in Example 1.4.8. With the notation from there, we have a short exact sequence

0→ P−〈1〉 f+−→ P+ → L+ → 0,

where f+ is given by 1
2(e1 − eτ ) 7→ x

2 (e1 + eτ ) and the map P+ → L+ is the projection to the
head of P+. Similarly, we also have a short exact sequence

0→ P+〈1〉 f−−→ P− → L− → 0,

where f− is given by 1
2(e1 + eτ ) 7→ x

2 (e1 − eτ ) and P− → L− is the projection to the head of
P−. Using these short exact sequences, one can directly calculate that

EXTi
A(L+, L+) ∼= EXTi

A(L−, L−) =
{
k if i = 0,
0 else.

EXTi
A(L+, L−) ∼= EXTi

A(L−, L+) =
{
k〈−1〉 if i = 1,
0 else.

Hence, by Theorem 1.5.4, we conclude that gl(A) = 1.

We herewith end this chapter about the representation theory of Laurentian k-algebras. In
the next chapter, we will study Grothendieck groups of Laurentian k-algebras. Again, many
results can be transferred from the finite dimensional k-algebras to the Laurentian k-algebras.
However, there are also subtleties that we will work out.
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2 Grothendieck groups of Laurentian algebras

Convention. Throughout this chapter let k be a fixed ground field and A,B be fixed Lau-
rentian k-algebras. Moreover, we assume that A and B are graded left Noetherian and graded
Schurian.

Summary
In this chapter, we study Grothendieck groups of module categories over Laurentian k-algebras.
Our main focus lies on describing the Grothendieck groups G0(A-fmod), K0(A-pmod) and
G0(A-mod). These Grothendieck groups are naturally modules over A := Z[q, q−1], where
q acts via degree shifting. In the first sections, we discuss well-known properties of these
Grothendieck groups.
A crucial ingredient in our studies of these Grothendieck groups is the graded character

map which connects the Grothendieck group G0(A-mod) with the Grothendieck group of finite
dimensional graded A-modules but scalar extended to the ring of Laurent series Â := Z((q)).
In this way, we obtain an A-linear homomorphism

gch : G0(A-mod)→ Â ⊗A G0(A-fmod), [M ] 7→
r∑
i=1

[M : Li]q ⊗ [Li],

where L1, . . . , Lr is a complete list of pairwise non-shift-isomorphic graded simple A-modules
and [M : Li]q denotes the graded composition multiplicity of Li inM . We discussed the notion
of graded composition multiplicities in detail in Section 1.4. We like to warn the reader that
the graded character map is in general not injective, see Example 2.2.6.
Now, via the graded character map, we obtain a homomorphism of Â-modules

φ̂ : Â ⊗A K0(A-pmod)→ Â ⊗A G0(A-fmod).

If we additionally assume that A has finite global dimension, we then obtain by a standard
argument that φ̂ is an isomorphism of Â-modules.
In Section 2.5, we come to the main result of this chapter. Under the assumption that A is

of finite global dimension and admits a self-inverse graded anti-automorphism T : A→ A, we
define A-bilinear Euler forms χf , χp and χm on G0(A-fmod),K0(A-pmod) and G0(A-mod). In
the definition of these bilinear Euler forms, we use that thanks to T, taking HOMk(., k) gives
contravariant equivalences

~ : A-fmod→ A-fmod, ~̃ : A-Mod+ → A-Mod−,

These equivalences ensure the A-bilinearity property of χf , χp and χm. Now, via scalar exten-
sion, we obtain Â-bilinear Euler forms χ̂f and χ̂p on Â⊗AG0(A-fmod) and Â⊗AK0(A-pmod).
Our main result is then Theorem 2.5.14 which states that:

1. The isomorphism φ̂ is compatible with χ̂p and χ̂f .
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2.1. Definitions and fundamental properties

2. The Euler forms χ̂p and χ̂f are both non-degenerated.

3. If P1, . . . , Pr is a complete list of pairwise non-shift-isomorphic projective indecomposable
graded A-modules and L1, . . . , Lr are the corresponding graded simple A-modules, then

(φ̂(1⊗ [P1]), . . . , φ̂(1⊗ [Pr])) and (1⊗ [L~1 ], . . . , 1⊗ [L~r ])

are dual Â-bases of Â ⊗A G0(A-fmod) with respect to χ̂f .

Altogether, we have that Theorem 2.5.14 holds for a large class of graded k-algebras. In
particular, we can apply this theorem to (alternating) nil Hecke algebras as we will discuss in
Section 3.3 and Section 4.4.

2.1 Definitions and fundamental properties

We start by introducing the several Grothendieck groups.

Definition 2.1.1. We define the following:

(i) Let C be a small Abelian category. Then the Grothendieck group G0(C) of C is the Abelian
group generated by the set {[C]|C ∈ C} of isomorphism classes of objects in C, subject to
the relation [C] = [C ′] + [C ′′], whenever there exists a short exact sequence

0→ C ′ → C → C ′′ → 0

in C.

(ii) Let P be a small additive category. Then the split Grothendieck group K0(P) of the
category in P is the Abelian group generated by the set {[P ]|P ∈ P} of isomorphism
classes of objects in P, subject to the relation [P ] = [P ′] + [P ′′], whenever there exists an
isomorphism P ∼= P ′ ⊕ P ′′ in P.

Of particular interest in our studies are the Grothendieck groups G0(A-fmod), K0(A-pmod)
and G0(A-mod). Note that the graded left Noetherian assumption on A implies that A-mod
is an Abelian category.
We begin our studies with an important observation. Let C be a small Abelian subcategory

of A-Mod. Then G0(C) admits the structure of a Z[q, q−1]-module, where for every i ∈ Z the
scalar multiplication with qi is given by

qi[M ] = [M〈i〉], for all M ∈ C.

Analogously, if P is a small additive subcategory of A-Mod, then K0(P) is also a Z[q, q−1]-
module, where for every i ∈ Z the scalar multiplication with qi is given by

qi[P ] = [P 〈i〉], for all P ∈ P.

In particular, G0(A-fmod), G0(A-mod) and K0(A-pmod) are A-modules.
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2.1. Definitions and fundamental properties

Notation 2.1.2. Let A := Z[q, q−1], Â := Z((q)) and B̂ := Z((q−1)). Moreover, let : A → A
be the unique additive map such that qi = q−i for all i ∈ Z. Let M,N be A-modules and
f : M → N be an additive map. If f satisfies

f(am) = am, for all a ∈ A,

then f is called A-anti-linear. Moreover, let : B̂ → Â be the additive map defined as( ∑
i>>−∞

aiq−i
)

:=
∑

i>>−∞
aiq

i.

Finally, if we are given an element f contained in A, Â or B̂, then fi denotes the coefficient of
qi, for i ∈ Z.

Remark 2.1.3. We like to stress that we never view A, Â and B̂ as graded rings, but as
ordinary ungraded rings.

In the following, we focus on the Grothendieck groups G0(A-fmod) and K0(A-pmod). Using
that A-fmod is a finite length category and A-pmod is a Krull-Schmidt category, we obtain by
well-known arguments the following basis theorem.

Theorem 2.1.4. The following holds:

(i) We have that G0(A-fmod) is a free A-module of finite rank with basis ([L1], . . . , [Lr]),
where L1, . . . , Lr is a complete list of pairwise non-shift-isomorphic graded simple A-
modules.

(ii) We have that K0(A-pmod) is a free A-module of finite rank with basis ([P1], . . . , [Pr]),
where P1, . . . , Pr is a complete list of pairwise non-shift-isomorphic graded projective
indecomposable A-modules.

By the graded semiperfectness of Laurentian k-algebras, we deduce that taking the projective
cover gives an isomorphism of A-modules between G0(A-fmod) and K0(A-pmod).

Proposition 2.1.5. We have an isomorphism of A-modules

pc : G0(A-fmod)→ K0(A-pmod),

given by assigning to a class [M ] ∈ G0(A-fmod) the class [PM ], where M ∈ A-fmod and PM
is the projective cover of M . We call pc the projective cover map.

Proof. At first, we observe that pc is well-defined. Indeed, this follows directly from the fact
that if

0→M ′ →M→M ′′ → 0

is a short exact sequence in A-fmod and P ′ resp. P ′′ is the projective cover of M ′ resp. M ′′,
then P ′ ⊕ P ′′ is the projective cover of M . Hence, pc is a well-defined homomorphism of
A-modules. From Theorem 2.1.4 and the 1:1 correspondence between the graded simple and
the graded projective indecomposable A-modules from Theorem 1.2.13, then directly follows
that pc is an isomorphism of A-modules.

Next we use the results discussed in Section 1.3 to describe the Grothendieck groups of outer
tensor products.
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2.2. The graded character map

Proposition 2.1.6. The following holds:

(i) There is an isomorphism of A-modules

ΦA,B : G0(A-fmod)⊗A G0(B-fmod)→ G0((A⊗k B)-fmod),

such that ΦA,B([M ]⊗ [N ]) = [M ⊗k N ] for all M,N ∈ A-fmod.

(ii) There is an isomorphism of A-modules

ΨA,B : K0(A-pmod)⊗A K0(B-pmod)→ K0((A⊗k B)-pmod),

such that ΨA,B([P ]⊗ [Q]) = [P ⊗k Q] for all P ∈ A-pmod, Q ∈ B-pmod.

(iii) These isomorphisms are compatible with taking projective covers, i.e. the following dia-
gram commutes:

G0(A-fmod)⊗A G0(B-fmod) G0((A⊗k B)-fmod)

K0(A-pmod)⊗A K0(B-pmod) K0((A⊗k B)-pmod)

ΦA,B

pcA⊗ pcB
pcA⊗kB

ΨA,B

Here, pcA, pcB and pcA⊗kB
are the respective projective cover maps.

Proof. (i) The well-definedness of ΦA,B is a consequence of the fact that taking tensor products
over k preserves exactness. Now, from Theorem 2.1.4 and Theorem 1.3.3, it follows that ΦA,B

is an isomorphism of A-modules.
(ii) If P ∈ A-pmod, Q ∈ B-pmod, then also P ⊗k Q ∈ (A ⊗k B)-pmod. Since, the tensor

products over k preserves also direct sums, we deduce that ΨA,B is well-defined. Using Theo-
rem 2.1.4 and Corollary 1.3.5.(ii), we then deduce that ΨA,B is an isomorphism of A-modules.
(iii) This assertion is a direct consequence of Corollary 1.3.5.(i).

After these considerations, we come in the following section to a crucial player in our study
of Grothendieck groups: the graded character map.

2.2 The graded character map
The graded character map provides an important connection between the Grothendieck groups
G0(A-mod) and G0(A-fmod). The target of the graded character map will be the following
scalar extension of G0(A-fmod).

Definition 2.2.1. We set

Ĝ0(A-fmod) := Â ⊗A G0(A-fmod), K̂0(A-pmod) := Â ⊗A K0(A-pmod)

and call Ĝ0(A-fmod) the extended Grothendieck group of G0(A-fmod) and K̂0(A-pmod) the
extended Grothendieck group of K0(A-pmod).

For the definition of the graded character map, we use the notion of graded composition
multiplicities that were discussed in Section 1.4.
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2.2. The graded character map

Definition 2.2.2. Let L1, . . . , Lr be a complete list of pairwise non-shift-isomorphic graded
simple A-modules. Then there exists a unique homomorphism of A-modules

gch : G0(A-mod)→ Ĝ0(A-fmod),

such that
gch([M ]) =

r∑
i=1

[M : Li]q ⊗ [Li],

for all M ∈ A-mod. We call gch the graded character map.

The following lemma treats the well-definedness of the graded character map.

Lemma 2.2.3. The graded character map gch is well-defined. In addition, gch is independent
from the choice of complete list of pairwise non-shift-isomorphic graded simple A-modules.

Proof. We first show that gch is well-defined. For this, let L1, . . . , Lr be a complete list of
pairwise non-shift-isomorphic graded simple A-modules and let Pi be the projective cover of
Li for i ∈ {1, . . . , r}. At first, recall from the definition of graded composition multiplicities
that [M : Li]q is indeed contained in Â. Thus, the element

r∑
i=1

[M : Li]q ⊗ [Li]

is contained in Ĝ0(A-fmod). Now, let

0→M ′ →M →M ′′ → 0

be a short exact sequence in A-mod. Then, by (1.2) and the graded Schurain property of A,
we have the following equations

[M : Li]q = grdim(HOMA(Pi,M))
= grdim(HOMA(Pi,M ′)) + grdim(HOMA(Pi,M ′′))
= [M ′ : Li]q + [M ′′ : Li]q.

Hence, we conclude that gch is well-defined. Next, we show the independence property. For
this, let L′1, . . . , L′r be a second complete list of pairwise non-shift-isomorphic graded simple
A-modules. Without loss of generality, we may assume that for each i ∈ {1, . . . , r} there exists
di ∈ Z such that Li〈di〉 ∼= L′i. Then we have

[M : Li]q ⊗ [Li] = (q−di [M : Li]q)⊗ (qdi [Li]) = [M : L′i]q ⊗ [L′i].

This implies that gch is independent from the choice of complete list of pairwise non-shift-
isomorphic graded simple A-modules.

Let us consider an example that illustrates the graded character map.

Example 2.2.4. Let A = k[x1, . . . , xn] be a graded polynomial algebra with all xi homo-
geneous of degree 1. The regular A-module P := AA is the unique graded projective inde-
composable A-module up to shift-isomorphism and L := P/(x1, . . . , xn)P is the corresponding
graded simple A-module of P . Then the graded character of P is given by

gch([P ]) =
( 1

1− q
)n
⊗ [L].
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2.2. The graded character map

In particular, if n = 1, we have

gch([P ]) =
( ∞∑
i=0

qi
)
⊗ [L].

Remarkably, the graded character map needs not to be injective as the following example
shows. It relies on the following useful criterion.

Lemma 2.2.5. Let M,N ∈ A-mod. Then, we have [M ] = [N ] in G0(A-mod) if and only if
there exists E ∈ A-mod such that E admits two finite filtrations in A-mod of the same length

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fs = E, 0 = G0 ⊂ G1 ⊂ · · · ⊂ Gs = E,

such that there exists i, j ∈ {1, . . . , s} with

Fi/Fi−1 ∼= M, Gj/Gj−1 ∼= N

and there exists a bijection π : {1, . . . , r} \ {i} → {1, . . . , r} \ {j} such that

Fl/Fl−1 ∼= Gπ(l)/Gπ(l)−1

for all l ∈ {1, . . . , r} \ {i}.

Proof. The lemma is a straightforward consequence of the definition of the Grothendieck group
G0(A-mod).

Example 2.2.6. Suppose that k is not of characteristic 2. Let A = k[x, y] be the graded
polynomial algebra with x and y homogeneous of degree 1. Again, let P := AA be the
regular A-module, so P is the unique graded projective indecomposable A-module up to shift-
isomorphism and L := P/(x, y)P is the corresponding graded simple A-module.
Now, consider the graded A-modules

M1 := A/(x+ y)A, M2 := A/(x− y)A.

By definition, we have
grdim(M1) = grdim(M2) = (1− q)−1.

Thus, we conclude that the graded characters of [M1] and [M2] are given by

gch([M1]) = gch([M2]) = (1− q)−1 ⊗ [L].

In the remaining part of this example, we show that [M1] 6= [M2] in G0(A-mod) which proves
that gch is not injective.

For the sake of contradiction, we assume that [M1] = [M2] and apply Lemma 2.2.5 to
M = M1 and N = M2. Thus, there exists E ∈ A-mod and π as in Lemma 2.2.5. At first, we
extend the map π to a bijection on {1, . . . , s} by setting π(i) = j and set B := k[x, y, x−1, y−1].
Then, we apply the functor B ⊗A (.) to the filtrations

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fs = E, 0 = G0 ⊂ G1 ⊂ · · · ⊂ Gs = E.
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Since B is a graded flat A-module, we deduce that B ⊗A E is a finitely generated graded
B-module with two finite filtrations

0 = B ⊗A F0 ⊂ B ⊗A F1 ⊂ · · · ⊂ B ⊗A Fs = B ⊗A E,
0 = B ⊗A G0 ⊂ B ⊗A G1 ⊂ · · · ⊂ B ⊗A Gs = B ⊗A E,

such that

(B ⊗A Fi)/(B ⊗A Fi−1) ∼= B ⊗AM1, (B ⊗A Gj)/(B ⊗A Gj−1) ∼= B ⊗AM2.

In addition, we have

(B ⊗A Fl)/(B ⊗A Fl−1) ∼= (B ⊗A Gπ(l))/(B ⊗A Gπ(l)−1),

for all l ∈ {1, . . . , r}\{i}. Since B⊗AE is a finitely generated B-module, all graded components
of E are of finite dimension over k.
Now, we take a closer look at the graded B-modules B⊗AM1 and B⊗AM2. For each l ∈ Z,

the graded component (B ⊗AM1)l is of dimension 1 with generator vl := 1 ⊗ xl. The scalar
multiplication of x and y on B ⊗AM1 is given by

xvl = vl+1, yvl = −vl+1, for all l ∈ Z.

Similarly, each homogeneous component (B ⊗A M2)l is also of dimension 1 with generator
wl := 1⊗ xl. The scalar multiplication of x and y on B ⊗AM2 is given by

xwl = wl+1, ywl = wl+1, for all l ∈ Z.

From these considerations, we conclude that scalar multiplication with xy−1 is multiplication
with −1 on (B ⊗AM1)0 respectively multiplication with 1 on (B ⊗AM2)0.

Now, consider the k-vector space filtrations

0 = (B ⊗A F0)0 ⊂ (B ⊗A F1)0 ⊂ · · · ⊂ (B ⊗A Fs)0 = (B ⊗A E)0,

0 = (B ⊗A G0)0 ⊂ (B ⊗A G1)0 ⊂ · · · ⊂ (B ⊗A Gs)0 = (B ⊗A E)0.

Let i1, . . . , ir ∈ {1, . . . , s} be those indices such that

(B ⊗A Fil)0/(B ⊗A Fil−1)0 6= 0.

In particular, there is some l0 ∈ {1, . . . , r} such that il0 = i and hence

B ⊗A Fil0/B ⊗A Fil0−1 ∼= M1.

Now, let
m : (B ⊗A E)0 → (B ⊗A E)0,

and

ml :
(
(B ⊗A Fl)/(B ⊗A Fl−1)

)
0
→
(
(B ⊗A Fl)/(B ⊗A Fl−1)

)
0
, for l ∈ {i1, . . . , ir},

as well as

m′l :
(
(B ⊗A Gl)/(B ⊗A Gl−1)

)
0
→
(
(B ⊗A Gl)/(B ⊗A Gl−1)

)
0
, for l ∈ {π(i1), . . . , π(ir)},
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2.2. The graded character map

denote the k-linear automorphisms given by scalar multiplication with xy−1, respectively.
These are automorphisms of finite dimensional k-vector spaces, hence they have non-zero
determinant. Moreover, they satisfy∏

l∈{il,...,ir}
det(ml) = det(m) =

∏
l∈{π(i1),...,π(ir)}

det(m′l) (2.1)

By our assumptions on π, we also have the equality∏
l∈{il,...,ir}\{i}

det(ml) =
∏

l∈{π(i1),...,π(ir)}\{j}
det(m′l). (2.2)

The equations (2.1) and (2.2) imply det(mi) = det(mj) which contradicts our calculations
above. So we have finally proved that [M1] 6= [M2] in G0(A-mod).

We proceed with a crucial property of the graded character map. Namely, if we assume
that A is of finite global dimension, then the graded character map induces an isomorphism
of Â-modules

φ̂ : K̂0(A-pmod)→ Ĝ0(A-fmod).

So beside the projective cover map, we obtain a second isomorphism between K̂0(A-pmod) and
Ĝ0(A-fmod). The great advantage of the isomorphism φ̂ is that it satisfies neat compatibility
conditions as we will discuss in Section 2.3 and Section 2.5.
In order to put this into practice, we first show the following general proposition.

Proposition 2.2.7. Given M ∈ A-mod, then M admits a minimal projective resolution in
the category A-mod:

. . .
∂3−→ P2

∂2−→ P1
∂1−→ P0

∂0−→M → 0.

This means that each Pi is a finitely generated graded projective A-module and the homomor-
phisms Pi → ker(∂i) are projective covers.

Proof. Recall from Corollary 1.2.8 that A is graded semiperfect. Thus, M admits a projective
cover in A-mod. We choose ∂0 : P0 → M to be the projective cover of M in A-mod. By
assumption, A is graded left Noetherian. Hence, ker(∂0) is also a finitely generated graded A-
module. According to the graded semiperfectness of A there exists a projective cover of ker(∂0)
in A-mod. Let p1 : P1 → ker(∂0) be the projective cover in A-mod and let ι0 : ker(∂0) → P0
be the inclusion. Then, we define ∂1 : P1 → P0 as ∂1 := ι0 ◦ p1. By continuing this procedure,
we obtain a minimal resolution of M in the category A-mod.

The following properties of minimal projective resolutions are well-known and can be shown
directly by using the definition of projective covers.

Lemma 2.2.8. Let M ∈ A-mod and let P be a minimal projective resolution of M in A-mod.
Let Q be a projective resolution of M in A-mod. Then P is a direct summand of Q. In
particular, if M is non-zero, then we have pd(M) = l(P).

We now come to the promised isomorphism theorem. For this, let φ : K0(A-pmod) →
Ĝ0(A-fmod) be the unique homomorphism of A-modules such that

[P ] 7→ gch([P ]), for all P ∈ A-pmod.
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Note that [P ] denotes on the left hand side a class in K0(A-pmod) and on the right hand side
a class in G0(A-mod). Let

φ̂ : K̂0(A-pmod)→ Ĝ0(A-fmod) (2.3)

be the Â-linear extension of φ.

Theorem 2.2.9. Suppose gl(A) <∞. Then φ̂ is an isomorphism of Â-modules.

Proof. According to Proposition 2.1.4, we know that K̂0(A-pmod) and Ĝ0(A-fmod) are free
Â-modules of finite rank and the rank of K̂0(A-pmod) and Ĝ0(A-fmod) coincides. Thus, it
suffices to show that φ̂ is surjective. Let M ∈ A-fmod be non-zero. Then by Lemma 2.2.8 and
Proposition 2.2.7, we know that M admits a projective resolution in A-mod of length ≤ n.
Let

. . .→ Q2 → Q1 → Q0 →M → 0

be such a projective resolution. From this, we deduce the following equality in G0(A-mod):
n∑
i=0

(−1)i[Qi] = [M ].

Thus, we obtain the following equality in Ĝ0(A-fmod):
n∑
i=0

(−1)i gch([Qi]) = 1⊗ [M ].

This implies

φ̂
( n∑
i=0

(−1)i ⊗ [Qi]
)

= 1⊗ [M ].

Thus, we proved that φ̂ is surjective and hence, φ̂ is an isomorphism of Â-modules.

We end this section, with showing that the graded character map is compatible with outer
tensor products. For this, we use the following well-known fact.

Lemma 2.2.10. Let M ∈ A-mod, N ∈ B-mod. Then for all graded A-modules M ′ and all
graded B-modules N ′ the canonical map

HOMA(M,M ′)⊗k HOMA(N,N ′)→ HOMA⊗kB(M ⊗k N,M ′ ⊗k N ′) (2.4)

is an isomorphism of graded k-vector spaces.

Proof. See e.g. [Del90, Corollary 5.4]. The reference only treats the ungraded case, but the
argument generalizes directly to the graded setting.

This fact implies that the graded composition multiplicities are compatible with outer tensor
products.

Proposition 2.2.11. Let M ∈ A-mod, N ∈ B-mod and let S resp. T be graded simple A-
resp. B-modules. Then we have

[M ⊗k N : S ⊗k T ]q = [M : S]q · [N : T ]q.
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Proof. At first note that by Corollary 1.3.4, we have that A ⊗k B is graded Schurian. Let P
resp. Q be the projective cover of S resp. T . By Corollary 1.3.5, we know that P ⊗k Q is the
projective cover of S ⊗k T . Hence, we obtain

[M ⊗k N : S ⊗k T ]q = grdim(HOMA⊗kB(P ⊗k Q,M ⊗k N))
= grdim(HOMA(P,M) ⊗k HOMB(Q,N))
= grdim(HOMA(P,M)) grdim(HOMB(Q,N))
= [M : S]q · [N : T ]q,

where in the first and last equality, we used the graded Schurian property and in the second
equality, we used Lemma 2.2.10.

From Proposition 2.2.11, we directly obtain a compatibility statement for the graded char-
acter map with outer tensor products. For this, note that by Proposition 2.1.6, we have an
isomorphism of Â-modules

Φ̂A,B : Ĝ0(A-fmod)⊗Â Ĝ0(B-fmod)→ Ĝ0((A⊗k B)-fmod),

such that
(f ⊗ [M ])⊗ (g ⊗ [N ]) 7→ fg ⊗ [M ⊗k N ],

for all f, g ∈ Â,M ∈ A-fmod, N ∈ B-fmod. Moreover, we also have an isomorphism of
Â-modules

Ψ̂A,B : K̂0(A-pmod)⊗Â K̂0(B-pmod)→ K̂0((A⊗k B)-pmod),

such that
(f ⊗ [P ])⊗ (g ⊗ [Q]) 7→ fg ⊗ [P ⊗k Q],

for all f, g ∈ Â, P ∈ A-pmod, Q ∈ B-pmod.

Corollary 2.2.12. Let M ∈ A-mod, N ∈ B-mod. Then we have

(Φ̂A,B ◦ gchA⊗kB
)([M ⊗k N ]) = gchA([M ])⊗ gchB([N ]),

where gchA⊗kB
, gchA and gchB denote the respective graded character maps.

Proof. Let S1, . . . , Sr resp. T1, . . . , Ts be a complete list of pairwise non-shift-isomorphic A-
resp. B-modules. Using Proposition 2.2.11, we immediately obtain

(Φ̂A,B ◦ gchA⊗kB
)([M ⊗k N ]) = Φ̂A,B

( ∑
1≤i≤r
1≤j≤s

[M ⊗k N : Si ⊗k Tj ]q ⊗ [Si ⊗k Tj ]
)

= Φ̂A,B

( ∑
1≤i≤r
1≤j≤s

([M : Si]q[N : Tj ]q)⊗ [Si ⊗k Tj ]
)

=
∑

1≤i≤r
1≤j≤s

([M : Si]q ⊗ [Si])⊗ ([N : Tj ]q ⊗ Tj ])

= gchA([M ])⊗ gchB([N ]).

This finishes the proof.
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Corollary 2.2.13. We have the following commutative diagram:

K̂0(A-pmod)⊗Â K̂0(B-pmod) K̂0((A⊗k B)-pmod)

Ĝ0(A-fmod)⊗Â Ĝ0(B-fmod) Ĝ0((A⊗k B)-fmod)

Ψ̂A,B

φ̂A⊗φ̂B φ̂A⊗kB

Φ̂A,B

Here, φ̂A⊗kB, φ̂A and φ̂B are the respective homomorphisms of Â-modules from (2.3). If we
assume that A and B are of finite global dimension, then φ̂A and φ̂B are isomorphism of
Â-modules. Hence, we deduce that in this case also φ̂A⊗kB is an isomorphism of Â-modules.

2.3 Induction and restriction
In the previous sections, we studied the projective cover map and the graded character map.
We now discuss how these homomorphisms behave under induction and restriction. In Ex-
ample 2.3.3, we will see that pc is in general not compatible with induction and restriction.
However, in Proposition 2.3.4, we show that the graded composition multiplicities satisfy
compatibility relations with induction and restriction. From this, it follows that the graded
character map is compatible with induction and restriction.

At first, we discuss some basic facts about induction and restriction functors. For this, let
A ⊂ B be a non-necessary unital inclusion of graded k-algebras and let

IndBA : A-Mod→ B-Mod, M 7→ B ⊗AM,

ResBA : B-Mod→ A-Mod, M 7→ 1A ·M,

denote the corresponding induction and restriction functors. In our studies, we are mostly
interested in the case where these functors give well-defined A-linear homomorphisms between
Grothendieck groups. Since ResBA is exact and preserves finite dimensionality, we conclude
that

G0(B-fmod)→ G0(A-fmod), [M ] 7→ [ResBA(M)],

is a well-defined A-linear homomorphism. It is also always true that IndBA preserves finitely
generated graded projective modules, hence

K0(A-pmod)→ K0(B-pmod), [P ] 7→ [IndBA(P )],

is a well-defined A-linear homomorphism. However, in general the following holds:

1. In general, the functor IndBA neither gives an A-homomorphism between G0(A-fmod)
and G0(B-fmod) nor between G0(A-mod) and G0(B-mod). This is due to the fact that
in general, IndBA neither preserves finite dimensionality nor is exact.

2. In general, ResBA neither gives a well-defined A-homomorphism between G0(B-fmod)
and G0(A-fmod) nor between G0(B-mod) and G0(A-mod). This is due to the fact
that in general, ResBA neither preserves finitely generated modules nor preserves graded
projective modules.

However, we will mostly consider inclusions A ⊂ B such that the induction and restriction
functors satisfy the following conditions:
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G1 For all P ∈ B-pmod, we have ResBA(P ) ∈ A-pmod.

G2 For all M ∈ A-fmod, we have IndBA(M) ∈ B-fmod.

G3 The functor IndBA is exact.

These conditions are for example satisfied if B is a graded free right A-module of finite rank,
or, more generally, if B is a finitely generated graded projective right A-module.

Proposition 2.3.1. Suppose that the inclusion A ⊂ B satisfies the properties G1, G2 and
G3. Then we have homomorphisms of A-modules

Rf : G0(B-fmod)→ G0(A-fmod), Rm : G0(B-mod)→ G0(A-mod),
Rp : K0(B-pmod)→ K0(A-pmod),

each given by assigning to a class [M ] the class [ResBA(M)] in the respective Grothendieck
group. Likewise, we have also homomorphisms of A-modules

If : G0(A-fmod)→ G0(B-fmod), Im : G0(A-mod)→ G0(B-mod),
Ip : K0(A-pmod)→ K0(B-pmod),

each given by assigning to a class [M ] the class [IndBA(M)] in the respective Grothendieck group.

Proof. This follows directly from the definitions and the assumptions G1, G2 and G3.

Convention 2.3.2. Throughout this chapter, we assume that the conditions G1, G2 and G3
are always satisfied whenever we consider induction and restriction functors.

The following example shows that the projective cover map is in general not compatible
with induction and restriction.

Example 2.3.3. Let B := k[x] be the polynomial algebra with x homogeneous of degree 1
and let A := k[x2] ⊂ B. Let

pcA : G0(A-fmod)→ K0(A-pmod), pcB : G0(B-fmod)→ K0(B-pmod)

be the respective projective cover maps. Let P := BB resp. Q := AA be the regular A-
resp. B-module. Then P resp. Q is the unique graded projective indecomposable A- resp.
B-module up to shift-isomorphism. We denote the corresponding graded simple quotients by
S := P/xP and T := Q/x2Q. Readily, we have ResBA(S) ∼= T . However, ResBA(P ) ∼= Q⊕Q〈1〉.
Hence, it follows that

pcA(Rf([S])) = [Q] 6= (1 + q)[Q] = Rp(pcB([S])).

Similarly, IndBA(T ) ∼= S ⊕ S〈1〉, whereas IndBA(Q) ∼= P . Thus, we can infer that

pcB(If([T ])) = (1 + q)[P ] 6= [P ] = Ip(pcA([T ])).

Hence, we observe that in this example, the projective cover map is neither compatible with
induction nor with restriction.
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In contrast to the projective cover map, the graded character map is compatible with induc-
tion and restriction. This is thanks to the following transitivity formulas of graded composition
multiplicities.

Proposition 2.3.4. Let L1, . . . , Lr be a complete list of non-shift-isomorphic graded simple
A-modules and S1, . . . , Ss be a complete list of non-shift-isomorphic graded simple B-modules.
Then the following holds:

(i) Let S be a graded simple B-module and M ∈ A-mod. Then we have

[IndBA(M) : S]q =
r∑
i=1

[M : Li]q[IndBA(Li) : S]q.

(ii) Let L be a graded simple A-module and N ∈ B-mod. Then we have

[ResBA(N) : L]q =
s∑
i=1

[M : Si]q[ResBA(Si) : L]q.

Proof. We only prove (i) since (ii) can be shown in the same way. Let

F = (M ⊃ F0 ⊃ F1 ⊃ . . . )

be a countable separated graded simple filtration of M . Using the Laurentian property and
the assumption that IndBA preserves finite dimensionality, we conclude that

IndBA(M) ⊃ IndBA(F0) ⊃ IndBA(F1) ⊃ . . .

is a countable separated graded filtration of IndBA(M) with finite dimensional subquotients.
We denote this filtration by IndBA(F ). As we assumed that IndBA is exact, we also have

IndBA(Fi)/ IndBA(Fi+1) ∼= IndBA(Fi/Fi+1), for all i ∈ N0.

Given N ∈ B-fmod, then we define

[IndBA(F ) : N ]q :=
( ∑
i>>−∞

|{i ≥ 1| IndBA(Fi)/ IndBA(Fi+1) ∼= N}| · qi
)
∈ Z((q)).

Using the Laurentian property of B, one can easily check that [IndBA(F ) : N ]q is indeed well-
defined. Next, we introduce the equivalence relation ∼ on the set {L1, . . . , Lr}, where Li ∼ Lj
if and only if IndBA(Li) ∼= IndBA(Lj). Let Li1 , . . . , Lit be a system of representatives for ∼.
Then we conclude the following equalities

[IndBA(M) : S]q =
t∑

j=1
[IndBA(F ) : IndBA(Lij )]q[IndBA(Lij ) : S]q

=
t∑

j=1

( ∑
1≤i≤r
Li∼Lij

[M : Li]q[IndBA(Lij ) : S]q
)

=
r∑
i=1

[M : Li]q[IndBA(Lij ) : S]q.

This finishes the proof.
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As a direct consequence, we can infer that the graded character map is compatible with
induction and restriction. It follows that also the Â-homomorphism φ̂ from (2.3) is compatible
with induction and restricition.

Corollary 2.3.5. In the setting of Proposition 2.3.4 let

gchA : G0(A-mod)→ Ĝ0(A-fmod), gchB : G0(B-mod)→ Ĝ0(B-fmod)

denote the respective graded character maps and let

Îf : Ĝ0(A-fmod)→ Ĝ0(B-fmod), R̂f : Ĝ0(B-fmod)→ Ĝ0(A-fmod)

denote the Â-linear maps obtained via scalar extension from If and Rf . Then we have

Îf ◦ gchA = gchB ◦ Im and R̂f ◦ gchB = gchA ◦Rm .

Corollary 2.3.6. In the setting of Corollary 2.3.5, let

φ̂A : K̂0(A-pmod)→ Ĝ0(A-fmod), φ̂B : K̂0(B-pmod)→ Ĝ0(B-fmod)

denote the respective homomorphisms of Â-modules from (2.3) and let

Îp : K̂0(A-pmod)→ K̂0(B-pmod), R̂p : K̂0(B-pmod)→ K̂0(A-pmod)

denote the Â-linear maps obtained via scalar extension from Ip and Rp. Then we have

Îf ◦ φ̂A = φ̂B ◦ Îp and R̂f ◦ φ̂B = φ̂A ◦ R̂p.

2.4 HOM-pairings

In this section, we discuss HOM-pairings between G0(A-fmod) and K0(A-pmod). Via these
pairings we get a connection between G0(A-fmod) and K0(A-pmod) which is also compatible
with induction and restriction thanks to Frobenius reciprocity. Our notation in this section is
modeled on the notation in [KL09, Section 2.5].

We begin with defining the semi-linear HOM-pairing between the Grothendieck groups
K0(A-pmod) and G0(A-fmod).

Definition 2.4.1. There exists a unique A-semi-linear pairing

〈., .〉 : K0(A-pmod)×G0(A-fmod)→ A,

such that for all P ∈ A-pmod,M ∈ A-fmod, we have

〈[P ], [M ]〉 = grdim(HOMA(P,M)).

We call 〈., .〉 the semi-linear HOM-pairing between the Grothendieck groups K0(A-pmod) and
G0(A-fmod). Here, A-semi-linear means, that 〈., .〉 is A-anti-linear in the first variable and
A-linear in the second variable.
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Let P be a graded projective indecomposable A-module and let L be corresponding graded
simple A-module and recall that we assumed A to be graded Schurian. Hence, from (1.2)
follows

〈P,M〉 = [M : L]q, for all M ∈ A-fmod.

Thus, we deduce the following duality result.

Proposition 2.4.2. Let P1, . . . , Pr be a complete list of pairwise non-shift-isomorphic graded
projective indecomposable A-modules and let L1, . . . , Lr be the corresponding graded simple
A-modules, then we have

〈Pi, Lj〉 =
{

1 if i = j,

0 if i 6= j,

for all i, j ∈ {1, . . . , r}.

Moreover, by Frobenius reciprocity, it follows that the semi-linear HOM-pairing satisfies the
following compatibility relations with induction and restriction. Let A ⊂ B be a non-necessary
unital graded inclusion. Then we have

〈[IndBA(P )], [M ]〉 = 〈[P ], [ResBA(M)]〉,

for all P ∈ A-pmod,M ∈ B-fmod.
Next, we describe a possibility how we can obtain an A bilinear pairing from 〈., .〉. In

general, bilinear pairings have the advantage that we can extend them to ring extensions of A
via scalar extension.
Now, in order to obtain a bilinear pairing from 〈., .〉, we use certain dualities on the categories

A-fmod and A-pmod. To define these dualities we make the following assumption on A.

Convention 2.4.3. For the rest of this section, we assume that A that admits a self-inverse
graded anti-isomorphism T : A → A. This means, T is an automorphism of graded k-vector
spaces such that T(ab) = T(b)T(a) for all a, b ∈ A.

As we will show in the following chapters, we have that (alternating) nil Hecke algebras
satisfy this assumption. So the results that we discuss in the following can be applied to them.
The crucial step to obtain a bilinear pairing from 〈., .〉 is to observe that we have the following

dualities on the categories A-fmod and A-pmod.

Definition 2.4.4. We define the following:

(i) Let ~ : A-fmod→ A-fmod be the duality given by

M 7→ HOMk(M,k),

where the graded A-module structure on HOMk(M,k) is defined as

(af)(m) = f(T(a)m),

for all m ∈M,f ∈ HOMk(M,k) and a ∈ A.
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(ii) Let # : A-pmod→ A-pmod be the duality given by

P 7→ HOMA(P,A),

where the graded A-module structure on HOMA(P,A) is defined as

(af)(p) = f(p)T(a),

for all p ∈ P, f ∈ HOMA(P,A) and a ∈ A.

Note that if e ∈ A is a homogeneous idempotent, then (Ae)# ∼= AT(e).

In the following lemma, we list important properties of these dualities. These properties
are formulated for instance in [KL09, Section 2.5] in the context of quiver Hecke algebras and
transfer directly to our more general setting.

Lemma 2.4.5. Let P ∈ A-pmod and M ∈ A-fmod. Then we have

〈[P#], [M ]〉 = grdim(PT ⊗AM) = 〈[P ], [M~]〉,

where PT denotes the graded right A-module obtained from P via the map T. Moreover, is
the involution on A from Notation 2.1.2.

Proof. It suffices to prove the equalities in the case P = Ae, where e ∈ A is a homogeneous
idempotent. The equality

grdim(HOMA(P#,M)) = grdim(PT ⊗AM)

follows from the fact that both HOMA(P#,M) and PT⊗AM are isomorphic as graded k-vector
space to T(e)M . Now, let us prove the second equality. For this, we have to show

grdim(PT ⊗AM) = grdim(HOMA(P,M~)).

Since PT ⊗AM is isomorphic as graded k-vector space to T(e)M it suffices to show

dimk(T(e)M)i = dimk(HOMA(P,M~)−i), for each i ∈ Z.

Let us fix i ∈ Z. At first, note that HOMA(P,M~) is isomorphic as graded k-vector space to
eM~. Let mT(e) : Mi → Mi denote k-linear homomorphism given by left multiplication with
T(e). By the definition ofM~, we have that (eM~)−i and Homk(mT(e)(Mi), k) are isomorphic
as k-vector spaces. Since (T(e)M)i = mT(e)(Mi), we can infer that (T(e)M)i and (eM~)−i
have the same dimension over k.

As a direct consequence we obtain the following result.

Corollary 2.4.6. Let L be a graded simple A-module with projective cover P . Then P# is
the projective cover of L~.

After these considerations, we now define the bilinear HOM-pairing.
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Definition 2.4.7. There exists a unique A-bilinear pairing

(., .) : K0(A-pmod)×G0(A-fmod)→ A,

such that for all P ∈ A-pmod,M ∈ A-fmod, we have

([P ], [M ]) = 〈[P#], [M ]〉.

We call (., .) the A-bilinear HOM-pairing between K0(A-pmod) and G0(A-fmod).

Let P be a graded projective indecomposable A-module and let L be corresponding graded
simple A-module. According to Corollary 2.4.6, we have

(P,M) = [M : L~]q,

for all M ∈ A-fmod. Thus, we obtain a slightly different duality result for the bilinear HOM-
pairing.

Proposition 2.4.8. Let P1, . . . , Pr be a complete list of pairwise non-shift-isomorphic graded
projective indecomposable A-modules and let L1, . . . , Lr be the corresponding graded simple
A-modules. Then we have

(Pi, L~j ) =
{

1 if i = j,

0 if i 6= j,

for all i, j ∈ {1, . . . , r}. In particular, (., .) is non-degenerate.

We end this section with compatibility statements of (., .) with induction, restriction and
outer tensor products. For this, we assume that also B admits a self-inverse graded anti-
automorphism H : B → B.

Proposition 2.4.9. Let A ⊂ B be a non-necessary unital graded inclusion such that H|A = T.
Then the following holds:

(i) For all P ∈ A-pmod,M ∈ B-fmod, we have

(IndBA [P ], [M ]) = ([P ],ResBA [M ]), .

(ii) For all P ∈ B-pmod,M ∈ A-fmod, we have

(ResBA [P ], [M ]) = ([P ], IndBA [M ]).

Proof. This is a direct application of Lemma 2.4.5. For details, see e.g. [KL09, Proposition 3.3].
The reference only treats quiver Hecke algebras, but the arguments directly generalize to our
more general setting.

We continue with stating a compatibility relation of the bilinear HOM-pairing with respect
to outer tensor products. For this, note that

T⊗ H : A⊗k B → A⊗k B

is a self-inverse graded anti-automorphism of A⊗k B.
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Proposition 2.4.10. Let M ∈ A-fmod, N ∈ B-fmod, P ∈ A-pmod, Q ∈ B-pmod. Then we
have

(P ⊗k Q,M ⊗k N) = (P,M)(Q,N).

Proof. By Lemma 2.2.10, we have (P ⊗k Q)# ∼= P# ⊗k Q#. Thus, we conclude

(P ⊗k Q,M ⊗k N) = grdim(HOMA⊗kB((P ⊗k Q)#,M ⊗k N))
= grdim(HOMA⊗kB(P# ⊗k Q#,M ⊗k N))
= grdim(HOMA(P#,M) ⊗k HOMB(Q#, N))
= grdim(HOMA(P#,M)) · grdim(HOMB(Q#, N))
= (P,M)(Q,N),

where in the third equation we also used Lemma 2.2.10.

2.5 Euler Forms
In this section, we define bilinear Euler forms on G0(A-fmod),G0(A-mod) and K0(A-pmod)
and prove the results that were outlined in the summary of this chapter.

Convention 2.5.1. Recall that we assume in this chapter that A is a graded Schurian, graded
left Noetherian and Laurentian k-algebra. Throughout this section, we further make the
following assumptions on A:

1. A has finite global dimension.

2. A admits a self-inverse graded anti-automorphism T : A→ A.

We set n := gl(A) and denote the associated dualities to T by ~ and #.

In the following, we define the A-bilinear Euler forms χf and χm on the Grothendieck groups
G0(A-fmod) and G0(A-mod). For this, we extend the functor ~ appropriately. Recall at this
point the definition of the categories A-Mod+ and A-Mod− from Section 1.1. Then we have a
contravariant equivalence of categories

~̃ : A-Mod+ → A-Mod−, M 7→ HOMA(M,k),

where the graded A-module structure on HOMk(M,k) is defined as

(af)(m) = f(T(a)m),

for all m ∈ M,f ∈ HOMk(M,k) and a ∈ A. By definition, ~̃ maps the subcategory A-fmod
to itself and coincides with ~ on A-fmod.

We proceed with introducing some notation. Let vect denote the category of graded k-vector
spaces and homomorphisms between graded k-vector spaces and let vect− ⊂ vect be the full
graded subcategory whose objects are the graded k-vector spaces V that satisfy the following
conditions:

1. All homogeneous components of V are of finite dimension over k.

2. There exists d ∈ Z (depending on V ) such that Vi = 0, for i > d.
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Recall from Definition 1.1.5 that for every V ∈ vect− the dual graded dimension is defined as

dgrdim(V ) :=
∑
i<<∞

dimk(Vi)qi ∈ B̂.

Before we define the A-bilinear Euler forms on G0(A-fmod) and G0(A-mod), we list some
useful facts in the following lemma. They can be proved directly by standard arguments using
Proposition 2.2.7 and Lemma 2.2.8.

Lemma 2.5.2. The following holds:

(i) Let L be a graded simple A-module with projective cover P . Then L~ is graded simple
and P ~̃ is the injective hull of L~.

(ii) Let M,N ∈ A-mod. Then EXTi
A(M,N ~̃) ∈ vect−, for all i ∈ N0.

(iii) Let M,N ∈ A-mod. Then we have an isomorphism of graded k-vector spaces

EXTi
A(M,N ~̃) ∼= EXTi

A(N,M ~̃),

for all i ∈ N0.

Equipped with Lemma 2.5.2, we now state the definition of the bilinear Euler forms on
G0(A-fmod) and G0(A-mod).

Definition 2.5.3. We define the following:

(i) Let χf : G0(A-fmod)×G0(A-fmod)→ A be the unique A-bilinear form such that

χf([M ], [N ]) =
n∑
i=0

(−1)i grdim(EXTi
A(M,N~)),

for all M,N ∈ A-fmod. Here, : B̂ → Â denotes the additive isomorphism from
Notation 2.1.2. We call χf the bilinear Euler form on G0(A-fmod).

(ii) Let χ̂f : Ĝ0(A-fmod)× Ĝ0(A-fmod)→ Â be the unique Â-bilinear form obtained from χf
by scalar extension. We call χ̂f the bilinear Euler form on Ĝ0(A-fmod).

(iii) Let χm : G0(A-mod)×G0(A-mod)→ Â be the unique A-bilinear form such that

χm([M ], [N ]) =
n∑
i=0

(−1)i dgrdim(EXTi
A(M,N ~̃)),

for all M,N ∈ A-mod. Here, : B̂ → Â denotes the additive isomorphism from Nota-
tion 2.1.2. We call χm the bilinear Euler form on G0(A-mod).

From Lemma 2.5.2.(iii), we immediately obtain the following consequence.

Corollary 2.5.4. The bilinear Euler forms χf , χ̂f and χm are symmetric.

Next, we prove the first crucial result of this section. Namely, we show that the graded
character map is compatible with the bilinear Euler forms χm and χ̂f .
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Theorem 2.5.5. Let M,N ∈ A-mod. Then we have

χm([M ], [N ]) = χ̂f(gch([M ]), gch([N ])). (2.5)

As preparation for the proof of Theorem 2.5.5, we first prove two lemmata. The first lemma
allows us to control the graded dimension of minimal projective resolutions of finitely generated
graded A-modules. This type of argument is commonly used in the context of Laurentian and
graded left Noetherian k-algebras. For example, McNamara used a similar technique in his
proof of the theorem that the global dimension of finite type quiver Hecke algebras is finite,
see [McN15, Theorem 4.7]. To formulate the first lemma, we define

b(M) := min{i ∈ Z : Mi 6= 0},

for any non-zero M ∈ A-mod

Lemma 2.5.6. There exists m0 ∈ N0, only depending on the algebra A, such that the following
holds. Let M ∈ A-Mod+, P be a graded projective indecomposable A-module and f : P → M
be a non-zero homomorphism of graded A-modules. Then we have

b(P ) ≥ b(M)−m0.

Proof. Let P1, . . . , Pr be a complete list of pairwise non-shift-isomorphic graded projective
indecomposable A-modules. Let L1, . . . , Lr be the corresponding graded simple A-modules.
We choose

m0 := max{b(Li)− b(Pi)|i = 1, . . . , r}.

Note that m0 is contained in N0 and does not depend on our choice of P1, . . . , Pr. Since
L1, . . . , Lr are all of finite dimension, we can assume without loss of generality that for all
i ∈ {1, . . . , r}, we have b(Li) = 0. By this assumption, we obtain that for all i ∈ {1, . . . , r},
the Laurent series [M : Li]q vanishes in all degrees strictly less than b(M). Finally, let d ∈ Z
and j ∈ {1, . . . , r} such that Pj〈d〉 ∼= P . By our choice of m0, we have b(P ) ≥ d −m0. As f
was supposed to be non-zero, it follows that [M : Lj ]q has a non-zero coefficient of degree d.
Hence, we have d ≥ b(M). We conclude that b(P ) ≥ b(M)−m0 which finishes the proof.

The following lemma will be crucial in the proof of Theorem 2.5.5.

Lemma 2.5.7. Let M,N ∈ A-mod. Then there exists a graded A-submodule G ⊂ N such
that the following three conditions are satisfied:

(i) N/G is of finite dimension over k,

(ii) EXTi
A(M,G~̃)0 = 0 for all i ∈ N0,

(iii) χ̂f(gch[M ], gch[G])0 = 0.

Note that (ii) implies χm(M,G)0 = 0.

Proof. Clearly, we can assume that M,N are non-zero. In order to construct the graded
A-submodule G ⊂ N , we first record two general facts:

(a) There exists a natural number n1 ∈ N0, only depending on M , such that for all non-zero
M ′ ∈ A-mod with b(M ′) ≥ n1, we have χ̂f(gch[M ], gch[M ′])0 = 0.
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(b) According to Proposition 2.2.7, we have that M admits a minimal projective resolution
in A-mod:

. . .→ P2 → P1 → P0 →M → 0.

We denote the resolution by P. By Lemma 2.2.8, we know that the length of P is
bounded by n, i.e. Pi = 0 for i > n. Thus, by Lemma 2.5.6 there exists m1 ∈ N0, only
depending on the algebra A, such that all non-zero Pi satisfy

b(Pi) ≥ b(M)−m1.

According to (a) and (b), it is hence sufficient to construct a graded A-submodule G ⊂ N ,
such that N/G is of finite dimension over k and we have

b(G) > max{n1,m1 − b(M)}.

Indeed, by (a), we immediately get (iii). Now, let r := l(P). Then r ≤ n by (b). Moreover,
from b(G) > m1 − b(M), we conclude

max{j ∈ Z|(G~̃)j 6= 0} = −b(G) < b(M)−m1 ≤ b(Pi),

for all i ∈ {0, . . . , r}. This implies

HOMA(Pi, G~̃)0 = 0,

for all i ∈ {0, . . . , r} which gives (ii). Now, we define G ⊂ N to be the graded A-submodule
generated by all homogeneous elements of degree strictly greater than

max{n1,m1 − b(M)} + b( AA ),

where AA denotes the regular A-module. According to our discussion above, it follows that G
satisfies all the desired properties.

Finally, we prove Theorem 2.5.5.

Proof of Theorem 2.5.5. At first, note that (2.5) is satisfied for M,N ∈ A-fmod. Moreover,
recall that χm and χ̂f are symmetric by Corollary 2.5.4. Now, we complete the proof of
Theorem 2.5.5 in the following two steps.
Step 1. We prove (2.5) for M ∈ A-fmod and N ∈ A-mod. At first, note that it suffices

to prove that for all M ∈ A-mod and N ∈ A-fmod the degree 0 coefficients of χm([M ], [N ])
and χ̂f(gch[M ], gch[N ]) coincide. Now, choose G ⊂ M as in Lemma 2.5.7. Then we have the
following equalities

χm([M ], [N ])0 = χm([M ], [N/G])0

= χ̂f(gch[M ], gch[N/G])0

= χ̂f(gch[M ], gch[N ])0,

where the first equality follows from Lemma 2.5.7.(ii), the second from the fact that that (2.5)
holds for finite dimensional modules and Lemma 2.5.7.(i) and the third from Lemma 2.5.7.(iii).
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Step 2. Now, we prove (2.5) forM,N ∈ A-mod. Again, we choose G ⊂ N as in Lemma 2.5.7.
Using Step 1 and the properties (i), (ii), and (iii) from Lemma 2.5.7, we obtain by the same
arguments as in Step 1, the following equalities

χm([M ], [N ])0 = χm([M ], [N/G])0

= χ̂f(gch[M ], gch[N/G])0

= χ̂f(gch[M ], gch[N ])0.

This finishes the proof of Step 2 and also the proof of Theorem 2.5.5.

As a short reality check, we consider an elementary but insightful example illustrating The-
orem 2.5.5.

Example 2.5.8. Let A = k[x] be a polynomial algebra with x homogeneous of degree 1.
Since A is commutative, we can choose T = idA. Moreover, since A is a graded principal
ideal domain, A has global dimension 1. Let P := AA be the regular A-module, so P is the
unique graded projective indecomposable A-module up to shift-isomorphism. Let S := P/xP
be the graded simple A-module corresponding to P . In the following, we directly calculate
χm([P ], [P ]) and χ̂f(gch([P ]), gch([P ])). At first, we observe that

χm([P ], [P ]) = dgrdim(HOMA(P, P ~̃))

= dgrdim(P ~̃)
= ((1− q−1)−1)
= (1− q)−1.

Next, we calculate χ̂f(gch([P ]), gch([P ])). At first, note that gch([P ]) = (1 − q)−1 ⊗ [S].
Moreover, we have

EXT0
A(S, S) ∼= k, EXT1

A(S, S) = k〈−1〉.

Here, k denotes the graded one-dimensional k-vector space concentrated in degree 0. Thus,
we obtain

χ̂f(gch([P ]), gch([P ])) = (1− q)−2χ̂f(1⊗ [S], 1⊗ [S]) = (1− q)−1.

This gives χm([P ], [P ]) = χ̂f(gch([P ]), gch([P ])).

We proceed with defining the A-bilinear Euler form on K0(A-pmod). In our approach, we
are particularly motivated by Lemma 2.4.5 which transfers to our setting as follows.

Lemma 2.5.9. Let P,Q ∈ A-pmod. Then we have the following equalities

grdim(HOMA(P#, Q)) = PT ⊗A Q = dgrdim HOMA(P,Q~̃).

Proof. The proof is a straightforward adaption of the proof of Lemma 2.4.5.

Definition 2.5.10. Let χp be the unique A-bilinear pairing

K0(A-pmod)×K0(A-pmod)→ Â,

such that
χp([P ], [Q]) = grdim(HOMA(P#, Q)),
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for all P,Q ∈ A-pmod. We call χp the bilinear Euler form on K0(A-pmod). Furthermore, let

χ̂p : K̂0(A-pmod)× K̂0(A-pmod)→ Â

be the Â-bilinear extension of χp. We call χ̂p the bilinear Euler form on K̂0(A-pmod).

Again, we immediately conclude from Lemma 2.5.2 the following consequence.

Corollary 2.5.11. We have that χp and χ̂p are symmetric.

Let P be a graded projective indecomposable A-module and L is the corresponding graded
simple A-module. Then we have

χp([P ], [Q]) = [Q# : L]q,

for all Q ∈ A-pmod. So, χp is given by taking graded composition multiplicities.

Remark 2.5.12. At this point, we stress that in the definition of χp and χ̂p, we do not need
the assumption on A to be of finite global dimension. So χp and χ̂p are also well-defined if A is
not of finite global dimension. Moreover, the equivalent descriptions of Lemma 2.5.9 and the
symmetry of χp and χ̂p also remain true in the case where A is not of finite global dimension.

Finally, we come to the main result of this section. For this, we first fix the following
notation.

Notation 2.5.13. Let (., .) : K0(A-pmod)×G0(A-fmod)→ A be the A-bilinear HOM-pairing
between K0(A-pmod) and G0(A-fmod) from Definition 2.4.7. Let

(., .) : K̂0(A-pmod)× Ĝ0(A-fmod)→ Â

bet the Â-bilinear pairing obtained from the A-bilinear HOM-pairing via scalar extension. We
call (., .) the extended bilinear HOM-pairing.

Theorem 2.5.14. Let φ̂ : K̂0(A-pmod)→ Ĝ0(A-fmod) be the isomorphism of Â-modules from
Theorem 2.2.9. Then the following holds:

(i) For all P,Q ∈ A-pmod, we have

χ̂p(1⊗ [P ], 1⊗ [Q]) = χ̂f(φ̂(1⊗ [P ]), φ̂(1⊗ [Q])).

(ii) The bilinear Euler forms χ̂p and χ̂f are both non-degenerated.

(iii) The Â-bilinear pairings χ̂f(φ̂(.), .) and (., .) coincide.

(iv) If P1, . . . , Pr is a complete list of pairwise non-shift-isomorphic projective indecomposable
graded A-modules and L1, . . . , Lr are the corresponding graded simple A-modules, then

(φ̂(1⊗ [P1]), . . . , φ̂(1⊗ [Pr])) and (1⊗ [L~1 ], . . . , 1⊗ [L~r ])

are dual Â-bases of Ĝ0(A-fmod) with respect to χ̂f .
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Proof. We begin with proving (i). From Theorem 2.5.5 and Lemma 2.5.9 follows

χ̂p(1⊗ [P ], 1⊗ [Q]) = dgrdim(HOMA(P,Q~̃))
= χm([P ], [Q])
= χ̂f(gch([P ]), gch([Q]))
= χ̂f(φ̂(1⊗ [P ]), φ̂(1⊗ [Q])),

for all P,Q ∈ A-pmod. Hence, we proved (i). Next, we show the assertion (iv). For this, recall
from Theorem 2.1.4 that (1 ⊗ [P1], . . . , 1 ⊗ [Pr]) is an Â-basis of K̂0(A-pmod) and likewise,
(1⊗ [L~1 ], . . . , 1⊗ [L~r ]) is an Â-basis of Ĝ0(A-fmod). Now, from Theorem 2.5.5 we conclude

χ̂f(φ̂(1⊗ [Pi]), 1⊗ [L~j ]) = χm([Pi], [L~j ])
= dgrdim(HOMA(Pi, Lj))

=
{

1 if i = j,

0 else,

for all i, j ∈ {1, . . . , r}. Hence, it follows that

(φ̂(1⊗ [P1]), . . . , φ̂(1⊗ [Pr])) and (1⊗ [L~1 ], . . . , 1⊗ [L~r ])

are dual Â-bases of Ĝ0(A-fmod) with respect to χ̂f which proves (iv). We also immediately
conclude that χ̂f is non-degenerate. From (i), it directly follows that also χ̂p is non-degenerated
which gives (ii). Finally, note that by Proposition 2.4.8, the extended HOM-pairing is uniquely
determined by

(1⊗ [Pi], 1⊗ [L~j ]) =
{

1 if i = j,

0 else,

for all i, j ∈ {1, . . . , r}. Thus, from (iv), we directly deduce that χ̂f(φ̂(.), .) = (., .). Hence, we
proved (iii).

As a direct consequence of Theorem 2.5.14, we conclude the following degeneracy result
for χf .

Corollary 2.5.15. Suppose that A is not of finite dimension, then χf is a degenerate A-bilinear
form on G0(A-fmod).

Remark 2.5.16. Theorem 2.5.14 and Corollary 2.5.15 demonstrate that if the algebra A is of
infinite dimension over k, then we prefer to work with the bilinear Euler forms on Ĝ0(A-fmod)
and K̂0(A-pmod) because here, the bilinear Euler forms are non-degenerate and we have
the duality between the graded projective indecomposable A-modules and graded simple A-
modules as described in Theorem 2.5.14.(iii).

We proceed with considering a compatibility relation of the bilinear Euler forms with induc-
tion and restriction. For this, let B be a second graded k-algebra that satisfies the conditions
formulated in Convention 2.5.1. We denote the self-inverse graded anti-automorphism of B by
H. In addition, we denote the corresponding Euler forms on the graded B-module categories
also by χf , χm and χp. From the context, it will be always clear, where the forms are defined.
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Proposition 2.5.17. Suppose A ⊂ B such that H|A = T. Let

(χ, C,D) ∈ {(χf , A-fmod, B-fmod), (χm, A-mod, B-mod), (χp, A-pmod, B-pmod)}.

Then for all M ∈ C, N ∈ D, we have

χ([IndBA(M)], [N ]) = χ([M ], [ResBA(N)]).

Proof. The assertion directly follows from generalized Frobenius reciprocity and the fact that
the dualities ~ and ~̃ commute with the functor ResBA .

We end this section with considering a further interesting aspect. Namely, we discuss under
which conditions the statement of Theorem 2.5.14 also holds for the Grothendieck groups

Q(q)⊗A K0(A-pmod), Q(q)⊗A G0(A-fmod).

An important reason why one might prefer the scalar extension to Q(q) to the scalar extension
to Â is the following. The duality ~ gives an A-anti-linear involution

G0(A-fmod)→ G0(A-fmod), [M ] 7→ [M~].

Likewise, we also obtain an A-anti-linear involution

K0(A-pmod)→ K0(A-pmod), [P ] 7→ [P#].

These involutions are further useful structures on these Grothendieck groups. Now, it is
possible to extend these involutions to Q(q)⊗A G0(A-fmod) and Q(q)⊗A K0(A-pmod). How-
ever, these involutions can not be extended to the Grothendieck groups Ĝ0(A-fmod) and
K̂0(A-pmod).

In order to translate Theorem 2.5.14 to the rational setting, we assume in the following that
the finitely generated graded projective A-modules have only rational graded composition
multiplicities. This means that

[P : L]q ∈ Â ∩Q(q),

for every finitely generated graded projectiveA-module P and every graded simpleA-module L.

Definition 2.5.18. We define the following:

(i) Let χf,Q(q) be the Q(q)-bilinear extension of χf to Q(q)⊗A G0(A-fmod). We call χf,Q(q)
the rational blinear Euler form on Q(q)⊗A G0(A-fmod).

(ii) Let χp,Q(q) be the Q(q)-bilinear extension of χp to Q(q) ⊗A K0(A-pmod). This is well-
defined since, by assumption, the image of χp is contained in Â ∩Q(q). We call χp,Q(q)
the rational blinear Euler form on Q(q)⊗A K0(A-pmod).

(iii) Let
(., .) : (Q(q)⊗A K0(A-pmod))× (Q(q)⊗A G0(A-fmod))→ Q(q)

be the Q(q)-bilinear extension of the A-bilinear HOM-pairing between K0(A-pmod) and
G0(A-fmod). We call (., .) the rational HOM-pairing between Q(q)⊗A K0(A-pmod) and
Q(q)⊗A G0(A-fmod).
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In addition, let A′ := Â ∩Q(q). Then by our assumption, we have that the image of

φ : K0(A-pmod)→ Ĝ0(A-fmod), [P ] 7→ gch([P ])

is contained in A′ ⊗A G0(A-fmod). Thus, we can extend φ to a Q(q)-linear map

φQ(q) : Q(q)⊗A K0(A-pmod)→ Q(q)⊗A G0(A-fmod).

Now, using exactly the same arguments as in the proof of Theorem 2.5.14, one can directly
show that Theorem 2.5.14 literally also holds in the rational setting.

Theorem 2.5.19. In the above setting, we have that φQ(q) is an isomorphism of Q(q)-vector
spaces. In addition, the following holds:

(i) For all P,Q ∈ A-pmod, we have

χp,Q(q)(1⊗ [P ], 1⊗ [Q]) = χf,Q(q)(φQ(q)(1⊗ [P ]), φQ(q)(1⊗ [Q])).

(ii) The bilinear Euler forms χp,Q(q) and χf,Q(q) are both non-degenerated.

(iii) The Q(q)-bilinear pairings χf,Q(q)(φQ(q)(.), .) and (., .) coincide.

(iv) If P1, . . . , Pr is a complete list of pairwise non-shift-isomorphic projective indecomposable
graded A-modules and L1, . . . , Lr are the corresponding graded simple A-modules. Then

(φQ(q)(1⊗ [P1]), . . . , φQ(q)(1⊗ [Pr])) and (1⊗ [L~1 ], . . . , 1⊗ [L~r ])

are dual Q(q)-bases of Q(q)⊗A G0(A-fmod) with respect to χf,Q(q).

Proof. By using the same argument as in Theorem 2.2.9, we deduce that φQ(q) is an isomor-
phism of Q(q)-vector spaces. Now, the assertions (i)-(iv) can be shown exactly in the same
way as the assertions (i)-(iv) of Theorem 2.5.14.

We herewith end this chapter. In the next two chapters, we will study concrete applications
of Theorem 2.5.14. In particular, we explicitly calculate the bilinear Euler forms χp and χf
for Grothendieck groups of (alternating) nil Hecke algebras in Section 3.3 and in Section 4.4.
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Convention. Throughout this chapter we fix a ground field k.

Summary

Our aim in the next two chapters is to study the representation theory of alternating nil Hecke
algebras. For this, we recall in this chapter important representation theoretic properties of
nil Hecke algebras. In the following chapter, we will then use these results to describe the
representation theory of alternating nil Hecke algebras.
The nil Hecke algebras are a family of graded k-algebras (NHn)n∈N0 which were introduced

by Kostant and Kumar in [KK86] to study the cohomology rings of flag varieties. In our
discussion in this chapter, we focus on the following two aspects.
At first, we recall the faithful operation of the nil Hecke algebra NHn on the polynomial

algebra Pn := k[x1, . . . , xn] which is defined via Demazure operators. For this, let Symn := PSn
n

denote the symmetric functions in Pn. The Demazure operators are a family of Symn-linear
operators ∂1, . . . , ∂n−1 on Pn which were introduced independently by Bernstein, Gelfand and
Gelfand in [BGG73] and Demazure in [Dem74]. Like the nil Hecke algebras, they were also
introduced in a geometrical context. Namely, in order to study properties of Schubert classes
in cohomology rings of flag varieties.
Now, using Demazure operators, we obtain a faithful operation of NHn on Pn which is given

by an isomorphism of graded k-algebras

Φ : NHn → ENDSymn
(Pn).

This isomorphism implies many pleasant properties of NHn. In particular, Pn is the unique
graded projective indecomposable NHn-module up to shift-isomorphism, see Theorem 3.2.4.
In Chapter 4, we will then use this result to establish a classification of the graded projective
indecomposable modules over alternating nil Hecke algebras.
The second aspect is the description of the categorification theorem of Khovanov–Lauda

([KL09, Theorem 1.1]) in the special case of nil Hecke algebras. We now give a brief character-
ization of this theorem. Let fA denote Lusztig’s integral quantum group corresponding to the
one-vertex graph without edges, where A = Z[q, q−1]. For a general introduction to Lusztig’s
integral quantum groups, see [Lus93].
We set

G0(NH) :=
⊕
n∈N0

G0(NHn-fmod), K0(NH) :=
⊕
n∈N0

K0(NHn -pmod)

and call G0(NH) the nil Hecke Grothendieck group and K0(NH) the split nil Hecke Grothen-
dieck group. By construction, G0(NH) and K0(NH) are both N0-graded free A-modules. Via
induction and restriction, we obtain multiplicative and comultiplicative structures on G0(NH)

53



3.1. Demazure operators

and K0(NH) turning them into N0-graded twisted bialgebras. Using the HOM-pairing from
Section 2.4, we deduce that G0(NH) is the N0-graded dual of K0(NH).
Finally, the categorification theorem of Khovanov–Lauda states that the N0-graded twisted

bialgebra K0(NH) is isomorphic to fA . By duality, we deduce that G0(NH) is isomorphic to
the N0-graded dual fA ∗ of fA .

In the context of our studies of the representation theory of alternating nil Hecke algebras in
Chapter 4, this theorem is an important motivation. Modeled on the definition of G0(NH) and
K0(NH), we will define alternating nil Hecke Grothendieck groups G0(ANH) and K0(ANH)
and study their algebraic properties as well as their relations to G0(NH) and K0(NH).

3.1 Demazure operators

In this section, we give an overview to well-known properties of Demazure operators. As we
will discuss in the following section, there is a close connection between Demazure operators
and nil Hecke algebras with which the representation theory of the nil Hecke algebras can be
described in an adequate way. Our notation in this section is modeled on [Man01, Section 2.3].

At first, we fix some notation.

Notation 3.1.1. For a given n ∈ N0, let Pn := k[x1, . . . , xn] be the polynomial algebra in
n variables, where each xi is homogeneous of degree 2. Let Sn denote the symmetric group.
Then Sn acts on Pn by permuting the variables. We set Symn := PSn

n . Moreover, for each
i ∈ {1, . . . , n− 1}, let si ∈ Sn denote the simple transposition si := (i, i+ 1).

Recall at this point that by the fundamental theorem of symmetric polynomials, Symn is a
graded polynomial algebra over k which is generated by the elementary symmetric functions
e1, . . . , en ∈ Symn, where

ei :=
∑

1≤j1<...<ji≤n
xj1 . . . xji .

So in particular, the graded dimension of Symn is given by

grdim(Symn) =
n∏
i=1

1
1− q2i .

We now come to the definition of Demazure operators.

Definition 3.1.2. Let n ∈ N with n ≥ 2. Then the Demazure operators ∂1, . . . , ∂n−1 are the
graded k-linear operators on Pn of degree −2 given by

∂i : Pn → Pn, ∂i(f) = f − si(f)
xi − xi+1

, for all f ∈ Pn.

In the following lemma, we list of important properties of Demazure operators that follow
directly from the definition.

Lemma 3.1.3. Let n ∈ N with n ≥ 2. Then the following holds:

(i) Let f ∈ Pn such that si(f) = f . Then ∂i(f) = 0.
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(ii) Each Demazure operator ∂i is a twisted derivation, i.e. for all f, g ∈ Pn, we have

∂i(fg) = ∂i(f)g + (sif)∂i(g).

If si(f) = f , then ∂i(fg) = f∂i(g). In particular, ∂i is Symn-linear.

(iii) The Demazure operators satisfy the following relations

∂2
i = 0, (3.1)

∂i∂i+1∂i = ∂i+1∂i∂i+1, (3.2)
∂i∂j = ∂j∂i if |i− j| > 1, (3.3)

for all admissible i, j.

Through the relations (3.1), (3.2) and (3.3), we get a close connection between Demazure
operators and elements of the symmetric group Sn. In order to characterize this connection,
we first recall important well-known facts about symmetric groups. For this, we follow [BB06,
Chapter 2 and 3].
The symmetric group Sn is generated by the simple transpositions s1, . . . , sn−1 ∈ Sn. We

denote the set of simple transpositions by S ⊂ Sn. The defining relations of the symmetric
group with respect to the generators s1, . . . , sn−1 are

s2
i = e (3.4)

sisi+1si = si+1sisi+1, (3.5)
sisj = sjsi if |i− j| > 1, (3.6)

for all admissible i, j. Here, e ∈ Sn denotes the neutral element. The relation (3.4) is called
the quadratic relation. The relations (3.5) and (3.6) are called braid relations. An important
aspect of the theory of symmetric groups is the length function l : Sn → N0 which is defined
as

l(w) := min{m ∈ N0|∃si1 , . . . , sim ∈ S : w = si1 . . . sim}.

If we are given w ∈ Sn and an expression w = si1 . . . sim with si1 , . . . , sim ∈ S and m = l(w),
then we call si1 . . . sim a reduced expression of w. Otherwise, we call si1 . . . sim an unreduced
expression of w. The symmetric group Sn admits a unique element w0,n of maximal length
given by the permutation

w0,n =
(

1 2 . . . n− 1 n
n n− 1 . . . 2 1

)
.

We have that l(w0,n) = 1
2n(n− 1).

In the following, we use these facts to assign to each w ∈ Sn an operator ∂w in terms of
the Demazure operators ∂1, . . . , ∂n−1. The key input for this assignment is the theorem of
Matsumoto–Tits. For this, we recall the notion of nil-moves and braid-moves. Let w ∈ Sn and
w = si1 . . . sim and w = sj1 . . . sjr be expressions of w. If sj1 . . . sjr is obtained from si1 . . . sim
by deleting a factor of the form ss, we say that the expressions sj1 . . . sjr and si1 . . . sim are
linked by a nil-move. Likewise, if sj1 . . . sjr is obtained from si1 . . . sim by applying once the a
braid relation (3.5) or (3.6), we say that sj1 . . . sjr and si1 . . . sim are linked by a braid move.

Theorem 3.1.4 (Matsumoto–Tits). Let w ∈ Sn. Then the following holds:
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3.1. Demazure operators

(i) Any expression w = si1 . . . sim with si1 , . . . , sim can be transformed into a reduced expres-
sion of w by a sequence of nil-moves and braid-moves.

(ii) Every two reduced expressions of w can be transformed into each other by a sequence of
braid-moves.

Proof. See e.g. [BB06, Theorem 3.3.1].

From Theorem 3.1.4 and the relations (3.1), (3.2) and (3.3), we immediately obtain the
following consequence.

Corollary 3.1.5. Let w ∈ Sn. For a reduced expression w = si1 . . . sim, we define the Symn-
linear operator

∂w : Pn → Pn, ∂w := ∂i1 ◦ · · · ◦ ∂im .

Then ∂w is independent of the choice of reduced expression. We have that ∂w is homogeneous
of degree −2l(w). By convention, we set ∂e := idPn, where e ∈ Sn is the neutral element.

By Theorem 3.1.4, we directly deduce that if si1 . . . sim is an unreduced expression of an
element in Sn, then we have

∂i1 . . . ∂im = 0.

Thus, it follows that for all v, w ∈ Sn, we have

∂v∂w =
{
∂vw if l(vw) = l(v) + l(w),
0 else.

Next, we discuss an important basis theorem for the graded k-algebra ENDSymn
(Pn) which

involves the Demazure operators. For this, we first recall the definition of Schubert polynomi-
als.

Definition 3.1.6. For each n ∈ N, we set xρn := xn−1
1 xn−2

2 . . . xn−1. Then for w ∈ Sn, the
Schubert polynomial Sw ∈ Pn is defined as Sw := ∂w−1w0,n

(xρn).

Note that Sw is homogeneous of degree n(n− 1)− 2l(w). Moreover, we have by definition

∂vSw =
{
Swv−1 if l(vw) = l(v) + l(w),
0 else.

(3.7)

We now describe some Schubert polynomials explicitly. From the definition, it follows that
Sw0,n = xρn . The other extreme case is the following.

Lemma 3.1.7. For each n ∈ N, we have Se = 1.

Proof. We proof this assertion by induction on n. The case n = 1 is clear by definition. For
the induction step, note that w0,n = s1 . . . sn−1w0,n−1. In the following equations, we use in
the third equality the induction hypothesis. The other equations follow from Lemma 3.1.3.(ii),
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3.1. Demazure operators

since x1 . . . xj ∈ Pn is si-invariant for each i < j.

∂w0,n(xρn) = ∂1 . . . ∂n−1∂w0,n−1(x1 . . . xn−1x
ρn−1)

= ∂1 . . . ∂n−1(x1 . . . xn−1∂w0,n−1(xρn−1))
= ∂1 . . . ∂n−1(x1 . . . xn−1)
= ∂1 . . . ∂n−2(x1 . . . xn−2∂n−1(xn−1))
= ∂1 . . . ∂n−2(x1 . . . xn−2)
= . . .

= 1.

This completes the induction step.

It is a well-known property of the Schubert polynomials that they form a homogeneous
Symn-basis of Pn, i.e. we have the following important theorem.

Theorem 3.1.8. We have that Pn is a graded free Symn-module and (Sw)w∈Sn is a homoge-
neous basis of Pn.

Proof. See e.g. [Man01, Proposition 2.5.2].

A crucial consequence of Theorem 3.1.8 is the following basis theorem for the graded k-
algebra ENDSymn

(Pn). It can be proved by considering the action of the Demazure operators
on the Schubert polynomials and using the relations from Corollary 3.1.5.

Theorem 3.1.9. Let n ∈ N, then the elements xm1
1 . . . xmn

n ∂w for m1, . . . ,mn ∈ Nn0 , w ∈ Sn
form a homogeneous k-basis of ENDSymn

(Pn).

Proof. See e.g. [Lau10, Proposition 3.5].

As we will explain in the following section, this theorem proves to be very useful to describe
the representation theory of nil Hecke algebras.
We end this section with an explicit example that illustrates Theorem 3.1.9.

Example 3.1.10. In the following let n = 2. We write S2 = {e, s}, where e is the neutral
element and s is the transposition (1, 2). Then we have the Schubert polynomials

Se = 1, Ss = x1.

By Theorem 3.1.8, we know that P2 is a graded free Sym2-module and (Se,Ss) is a homoge-
neous basis. Now, for a, b ∈ S2, we denote by Ea,b ∈ ENDSym2(P2) the Sym2-linear operator
given by

Ea,b(Sc) =
{
Sa if b = c,

0 else,

for all c ∈ S2. By Proposition 1.2.4, we know that ENDSym2(P2) is isomorphic as graded Sym2-
algebra to the graded matrix algebra M2(Sym2)(d), where d = (0, 2) ∈ Z2. Let E1,1, E1,2, E2,1
and E2,2 denote the elementary matrices in M2(Sym2)(d). Then an explicit isomorphism of
graded Sym2-algebras is given by

M2(Sym2)(d)→ ENDSym2(P2),
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where
E1,1 7→ Ee,e, E1,2 7→ Ee,s, E2,1 7→ Es,e, E2,2 7→ Es,s.

So the operators Ee,e, Ee,s, Es,e and Es,s correspond to the diagonal matrices in M2(Sym2)(d)
under this isomorphism.
According to Theorem 3.1.9, the elements xm1

1 xm2
2 ∂w for m1,m2 ∈ N0 and w ∈ S2 form a ho-

mogeneous k-basis of ENDSym2(P2). In the following, we describe the operators Ee,e, Ee,s, Es,e
and Es,s as k-linear combination with respect to this basis. By definition, we have ∂e = idP2

and by (3.7), we have ∂s = Ee,s. From this, we directly deduce

Es,s = x1∂s, Ee,e = ∂e − x1∂s.

So finally, we consider the operator Es,e. At first, note that the operator x1 · idP2 maps Se to
Ss. Moreover, we have

x1Ss = x2
1 = (x1 + x2)Ss − x1x2Se.

Hence, we deduce the equality

x1 · idP2 = Es,e − x1x2Ee,s + (x1 + x2)Es,s.

Inserting the above formulas for idP2 , Ee,s, Es,s then yields

Es,e = x1∂e − x2
1∂s.

Thus, we described the operators Ee,e, Ee,s, Es,e and Es,s as k-linear combinations with respect
to the k-basis from Theorem 3.1.9.

3.2 Nil Hecke algebras
The Demazure operators together with the polynomial algebra define an algebra called the
nil Hecke algebra. In this section, we consider well-known important representation theoretic
properties of these algebras. All the results, we discuss are well-known. We model this section
on [Bru13, Chapter 2]. Our main focus is on the description of the graded simple and the
graded projective indecomposable modules over nil Hecke algebras.

Definition 3.2.1. Let n ∈ N0, then the nil Hecke algebra NHn is the k-algebra with generators

{τ1, . . . , τn−1} ∪ {y1, . . . , yn}

subject to the relations

τ2
i = 0, (3.8)

τiτi+1τi = τi+1τiτi+1, (3.9)
τiτj = τjτi if |i− j| > 1, (3.10)
yiyj = yjyi, (3.11)
τiyj = yjτi if |i− j| > 1, (3.12)
τiyi = 1 + yi+1τi, (3.13)
yiτi = 1 + τiyi+1, (3.14)

for all admissible i, j. There is a well-defined grading on NHn such that each yi is homogeneous
of degree 2 and each τi is homogeneous of degree −2.
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3.2. Nil Hecke algebras

By definition, we have that NH0 = k and NH1 = k[y1] with y1 homogeneous of degree 2. In
the following let n ∈ N0 be fixed. The relations (3.8), (3.9) and (3.10) coincide with the rela-
tions (3.1), (3.2) and (3.3) for Demazure operators. Thus, we can again apply Theorem 3.1.4
in the following way.
Corollary 3.2.2. For a reduced expression w = si1 . . . sim we define the element

τw := τi1 . . . τim .

Then τw is independent of the choice of reduced expression. By convention, we set τe = 1,
where e ∈ Sn is the neutral element. We have that τw is homogeneous of degree −2l(w).
Moreover, just as for the Demazure operators, Theorem 3.1.4 also implies that if si1 . . . sim

is an unreduced expression of an element in Sn, then we have

τi1 . . . τim = 0.

Hence, we conclude that for all v, w ∈ Sn, we have

τvτw =
{
τvw if l(vw) = l(v) + l(w),
0 else,

In the following, we apply the results from the previous section to describe the representation
theory of nil Hecke algebras. For this, we continue to use the notation that was used in the
previous section. The central result is that via Demazure operators, we obtain the following
faithful operation of NHn on Pn.
Theorem 3.2.3. The following holds:
(i) We have that B := (ym1

1 . . . ymn
n τw|m1, . . . ,mn ∈ Nn0 , w ∈ Sn) is a homogeneous k-basis

of NHn.

(ii) There is a isomorphism of graded k-algebras

Φ : NHn → ENDSymn
(Pn)

given by τi 7→ ∂i and yi 7→ xi for all admissible i.
Proof. Using the defining relations of NHn, one can directly check that Φ is a well-defined
homomorphism of graded k-algebras. Moreover, using the relations (3.13) and (3.14), we
obtain that the elements of B generate NHn. Finally, we have that the elements of B are linear
independent because by Theorem 3.1.9, they are mapped via Φ to a basis of ENDSymn

(Pn).
From this, the assertions (i) and (ii) directly follow.

From now on, we identify NHn and ENDSymn
(Pn) via the isomorphism Φ. Moreover, we

view Pn as NHn-module, where the action is given via the isomorphism Φ and we consider
Symn as graded k-subalgebra of NHn.
As a direct consequence of Theorem 3.2.3, we obtain that NHn is a Laurentian k-algebra

and hence all the results outlined in the first chapter can be applied to NHn. However,
Theorem 3.2.3 implies a more profound description of the representation theory of NHn. By
Theorem 3.1.8, we know that Pn is a graded free Symn-module with homogeneous basis given
by the Schubert polynomials. Thus, by Proposition 1.2.4, we have that ENDSymn

(Pn) is
isomorphic as graded k-algebra to a graded matrix algebra over Symn. From these observations,
we immediately obtain the following classification of the graded simple and graded projective
indecomposable NHn-modules.
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Theorem 3.2.4. The following holds:

(i) Pn is the unique graded projective indecomposable NHn-module up to shift-isomorphism.

(ii) The graded Jacobson radical of NHn is Jg(NHn) = (Sym+
n ) NHn, where

Sym+
n :=

⊕
i≥1

(Symn)i

is the augmentation ideal of Symn.

(iii) Ln := Pn/(Sym+
n )Pn is the unique graded simple NHn-module up to shift-isomorphism.

As graded k-vector space, Ln has a homogeneous basis given by the residue classes of
Schubert polynomials (Sw)w∈Sn and NHn acts on Ln through the epimorphism

NHn � ENDSymn
(Pn)/((Sym+

n ) ENDSymn
(Pn)) ∼= ENDk(Ln).

For v, w ∈ Sn, let Ev,w ∈ NHn denote the elementary matrix given by

Ev,w(Sz) =
{
Sv if z = w,

0 else,

for all z ∈ Sn. Note that Ev,w is homogeneous of degree 2(l(v) − l(w)). Evidently, the
elementary matrices Ew,w for w ∈ Sn form a complete set of primitive orthogonal homogeneous
idempotents in NHn. We now describe the corresponding graded projective indecomposable
NHn-module of the idempotent Ew,w. For this, note that we have an explicit isomorphism of
graded NHn-modules

Pn〈−2l(w)〉 ∼→ NHnEw,w, fSv 7→ fEv,w, for all f ∈ Symn, v ∈ Sn.

Our next goal is to describe the graded dimension of Pn and Ln and compute the graded
composition multiplicity of Ln in Pn. In order to formulate these quantities appropriately, we
use the notion of quantum numbers. Our notation is modeled on [Kas12, Chapter IV].

Definition 3.2.5. For a natural number n ∈ N, the quantum number (n)q ∈ Z[q] is defined as

(n)q := 1 + q + · · ·+ qn−1 = 1− qn

1− q ∈ Z[q].

The quantum factorial (n)q! is defined as

(n)q! := (1)q(2)q . . . (n)q = (1− q)(1− q2) . . . (1− qn)
(1− q)n ∈ Z[q].

Let m,n ∈ N0 with m ≤ n. Then we define the corresponding quantum binomial coefficient as(
n

m

)
q

:= (n)q!
(m)q!

(n−m)q! ∈ Z[q].

For the fact that
(n
m

)
q
is indeed contained in Z[q], see e.g. [Kas12, Proposition IV.2.1].

We also have the notion of symmetric quantum numbers.
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Definition 3.2.6. The symmetric quantum number [n]q is defined as

[n]q = q−(n−1)(n)q = q−n − qn

q−1 − q
= q−n+1 + q−n+3 + · · ·+ qn−3 + qn−1 ∈ Z[q, q−1].

Similarly, the symmetric quantum factorial is defined as

[n]q! := [1]q[2]q . . . [n]q = q−
1
2n(n−1)(n)q2 ! ∈ Z[q, q−1].

Let m,n ∈ N0 with m ≤ n. Then we define the corresponding symmetric quantum binomial
coefficient as [

n

m

]
q

:= [n]q!
[m]q![n−m]q!

∈ Z[q, q−1].

It is a well-known fact that we have the equality∑
w∈Sn

ql(w) = (n)q!. (3.15)

One can for example prove (3.15) by induction on n. Now, from equation (3.15), we can infer
the following useful consequence. Let m,n ∈ N0 and let Wm,n ⊂ Sm+n denote the set of
shortest left coset representatives of Sm+n/(Sm × Sn). Then we have

∑
w∈Wm,n

ql(w) =
(
m+ n

m

)
q

. (3.16)

Indeed, given w ∈ Sm+n, then exist unique x ∈ Sm, y ∈ Sn and z ∈Wm,n such that w = z(x×y)
and l(w) = l(x) + l(y) + l(z). Hence, by (3.15), we obtain( ∑

w∈Wm,n

ql(w)
)
(m)q!(n)q! = (m+ n)q!.

By definition, this is equivalent to (3.16).
We proceed with determining the graded dimension of Pn and Ln. Using equation (3.15)

and the fundamental theorem of symmetric polynomials, we immediately obtain the following
formulas

grdim(Pn) = (n)q2 !
n∏
i=1

1
1− q2i , grdim(Ln) = (n)q2 !. (3.17)

Since Ln is the unique graded simple NHn-module up to shift-isomorphism, we also directly
obtain a formula for the graded composition multiplicity of Ln in Pn. Namely, we have

[Pn : Ln]q = grdim(Pn) · (grdim(Ln))−1 =
n∏
i=1

1
1− q2i . (3.18)

We end this section with discussing some duality properties of Pn and Ln. For this, recall
that in Definition 2.4.4, we defined dualities ~ and # on the categories A-fmod and A-pmod,
where A is a Laurentian k algebra that admits a self-inverse graded anti-automorphism. In
order to apply this to NHn, we use that NHn admits a self-inverse graded anti-automorphism
T : NHn → NHn given by

τi 7→ τi, yi 7→ yi,
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for all admissible i. Thus, by Definition 2.4.4, we have dualities

~ :NHn-fmod→ NHn-fmod, M~ := HOMk(M,k),
# :NHn-pmod→ NHn-pmod, P# := HOMNHn(P,NHn),

defined with respect to T.
Next, we investigate how ~ and # act on NHn -fmod and NHn -pmod. Since we have

grdim(L~n ) = (n)q−2 ! = q−n(n−1)(n)q2 ! = q−n(n−1) grdim(Ln),

we conclude that L~n ∼= Ln〈−n(n−1)〉 because Ln is the unique graded simple NHn-module up
to shift-isomorphism. From Corollary 2.4.6, it then follows that P#

n
∼= Pn〈−n(n − 1)〉. Now,

we set
Tn := Ln〈−

1
2n(n− 1)〉, Qn := Pn〈−

1
2n(n− 1)〉.

Then we have that, up to isomorphism, Tn is the unique graded simple NHn-module such
that T~n ∼= Tn. Likewise, up to isomorphism, we have that Qn is the unique graded projective
indecomposable NHn-module such that Q#

n
∼= Qn. Moreover, Qn is the projective cover of Tn.

3.3 Nil Hecke Grothendieck groups
In the following sections we study Grothendieck groups of nil Hecke algebras. Our main goal is
to explicitly describe the categorification theorem of Khovanov–Lauda ([KL09, Theorem 1.1])
in the special case of nil Hecke algebras. In Chapter 4, we then discuss how we can generalize
this theorem for alternating nil Hecke algebras. Now, in this section, we follow [KL09, Chap-
ter 3] to define the nil Hecke Grothendieck groups K0(NH) and G0(NH) and characterize their
algebraic properties.
We use the notation that was introduced in Chapter 2. In particular A denotes the ring

Z[q, q−1]. In the following proposition, we list basic facts about the Grothendieck groups
G0(NHn -fmod) and K0(NHn -pmod) that are direct consequences of the results from the pre-
vious section.

Proposition 3.3.1. Let n ∈ N0. Then the following holds:

(i) The Grothendieck group G0(NHn -fmod) admits a self-inverse A-anti-linear automor-
phism

: G0(NHn -fmod)→ G0(NHn -fmod), [M ] 7→ [M~],

for all M ∈ NHn -fmod. We call the bar involution on G0(NHn -fmod).

(ii) The Grothendieck group K0(NHn -pmod) admits a self-inverse A-anti-linear automor-
phism

: K0(NHn -pmod)→ K0(NHn -pmod), [P ] 7→ [P#],

for all P ∈ NHn -pmod. We call the bar involution on K0(NHn -pmod).

(iii) The A-modules G0(NHn -fmod) and K0(NHn -pmod) are free of rank one. We have that
G0(NHn -fmod) is generated by the class [Tn] and K0(NHn -pmod) is generated by the
class [Qn].
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(iv) Let (., .)n : K0(NHn -pmod)×G0(NHn -fmod)→ A, be the A-bilinear HOM-pairing from
Definition 2.4.7. So (., .)n is the unique A-bilinear pairing such that

([P ], [M ])n = grdim(HOMNHn(P#,M)),

for all P ∈ NHn -pmod,M ∈ NHn -fmod. Then we have ([Qn], [Tn])n = 1.

Proof. (i) Since ~ is a duality, we have that the bar involution on G0(NHn -fmod) is a well-
defined and self-inverse additive map. The A-anti-linearity follows from

(M〈d〉)~ ∼= HOMk(M〈d〉, k) ∼= (HOMk(M,k))〈−d〉 ∼= (M~)〈−d〉,

for all M ∈ NHn -fmod, d ∈ Z.
(ii) We can use the same argument as in (i). As # is a duality, we obtain that the bar

involution on K0(NHn -pmod) is a well-defined and self-inverse additive map. The anti-linearity
follows from

(P 〈d〉)# ∼= HOMNHn(P 〈d〉,NHn) ∼= (HOMNHn(P,NHn))〈−d〉 ∼= (P#)〈−d〉,

for all P ∈ NHn -pmod, d ∈ Z.
(iii) This follows directly from Theorem 2.1.4 and the classification of the graded simple and

graded projective indecomposable NHn-modules from Theorem 3.2.4.
(iv) At first, recall from Theorem 3.2.3 that NHn is graded Schurian. Moreover, Qn is the

projective cover of Tn and Q#
n
∼= Qn. Thus, using (1.2), we conclude

([Qn], [Tn])n = grdim(HOMNHn(Qn, Tn)) = [Tn : Tn]q = 1.

This finishes the proof.

We choose the class [Tn] as standard generator of G0(NHn -fmod) since [Tn] is the unique
generator of G0(NH) that is invariant under the bar involution. With the same motivation,
we choose the class [Qn] as standard generator of K0(NHn -pmod).

Definition 3.3.2. The nil Hecke Grothendieck group G0(NH) and the split nil Hecke Grot-
hendieck group K0(NH) are defined as

G0(NH) :=
⊕
n∈N0

G0(NHn-fmod), K0(NH) :=
⊕
n∈N0

K0(NHn -pmod).

They are in a natural way N0-graded A-modules.

The bar involutions on G0(NHn -fmod) and K0(NHn -pmod) give A-anti-linear self-inverse
automorphisms

: G0(NH)→ G0(NH), : K0(NH)→ K0(NH),

which we call the bar involutions on G0(NH) and K0(NH). Moreover, the A-bilinear HOM-
pairings between K0(NHn -pmod) and G0(NHn -fmod) give a pairing

(., .) : K0(NH)×G0(NH)→ A,

such that

([P ], [M ]) =
{

([P ], [M ])n if P ∈ NHn -pmod,M ∈ NHn -fmod,
0 else,
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for all P ∈ NHn -pmod,M ∈ NHm -fmod. We call (.,.) the A-bilinear HOM-pairing between
K0(NH) and G0(NH).
Our next aim is to show that G0(NH) and K0(NH) admit both an algebra and a coalgebra

structure which is defined via induction and restriction functors. For this, we introduce the
following inclusions.

Proposition 3.3.3. Let m,n ∈ N0. Then we have inclusions of graded k-algebras

im,n : NHm ↪→ NHm+n, yi 7→ yi, τi 7→ τi

and
jm,n : NHn ↪→ NHm+n, yi 7→ yi+m, τi 7→ τi+m

for all admissible i. In particular, we obtain an inclusion of graded k-algebras

ιm,n := im,n ⊗ jm,n : NHm⊗k NHn ↪→ NHm+n .

Proof. It follows directly from the defining relations of nil Hecke algebras that im,n and jm,n are
well-defined homomorphisms of graded k-algebras. The injectivity of im,n and jm,n follows from
Theorem 3.2.3.(i). Thus, by definition we have that ιm,n is also an inclusion of k-algebras.

From now on, we consider ιm,n as standard inclusion NHm⊗k NHn ↪→ NHm+n. By Theo-
rem 3.2.3.(i), we directly obtain the following important result.

Lemma 3.3.4. Let m,n ∈ N0. Then the following holds:

(i) The graded left (NHm⊗k NHn)-module NHm+n is graded free and a homogeneous basis
is given by (τw)w∈Wm,n, where Wm,n is the set of shortest right coset representatives of
(Sm × Sn)\Sm+n.

(ii) The graded right (NHm⊗k NHn)-module NHm+n is graded free and a homogeneous basis
is given by (τw)w∈W ′m,n

, where W ′m,n is the set of shortest left coset representatives of
Sm+n/(Sm × Sn).

We denote the induction and restriction functors corresponding to ιm,n by

Indm+n
m,n : (NHm⊗k NHn)-Mod→ NHm+n-Mod,

Resm+n
m,n : NHm+n-Mod→ (NHm⊗k NHn)-Mod.

In the following theorem, we describe the multiplicative and comultiplicative structure on
G0(NH) and K0(NH) via these functors. For this, we will in the following implicitly use the
identifications

G0(NHm -fmod)⊗A G0(NHn -fmod) ∼= G0((NHm⊗k NHn)-fmod),
K0(NHm -pmod)⊗A K0(NHn -pmod) ∼= K0((NHm⊗k NHn)-pmod),

given by the A-module isomorphisms from Proposition 2.1.6.

Theorem 3.3.5. The following holds:
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(i) We have that G0(NH) admits the structure of an N0-graded A-algebra with unit [T0] and
multiplication

[M ] · [N ] = [Indm+n
m,n (M ⊗k N)],

for all m,n ∈ N0,M ∈ NHm -fmod, N ∈ NHn -fmod,. Similarly, K0(NH) admits the
structure of an N0-graded A-algebra with unit [Q0] and multiplication

[P ] · [Q] = [Indm+n
m,n (P ⊗k Q)],

for all m,n ∈ N0, P ∈ NHm -pmod, Q ∈ NHn -pmod.

(ii) We have that G0(NH) admits the structure of an N0-graded A-coalgebra, where the counit
is the projection to G0(NH0 -fmod) and the comultiplication is

∆G([M ]) =
n∑
r=0

[Resnr,n−r(M)], for all n ∈ N0,M ∈ NHn -fmod.

Analogously, K0(NH) admits the structure of an N0-graded A-coalgebra, where counit is
the projection to K0(NH0 -pmod) and the comultiplication is

∆K([P ]) =
n∑
r=0

[Resnr,n−r(P )], for all n ∈ N0, P ∈ NHn -pmod.

Proof. From Lemma 3.3.4 and Proposition 2.1.6, we obtain that the above multiplications and
comultiplications are well-defined. The associativity and coassociativity is a direct consequence
of the associativity of induction, restriction and outer tensor products.

We proceed with discussing an important duality relationship between G0(NH) and K0(NH)
which is given by the bilinear HOM-pairing. For this, we first recall some general notions.

Notation 3.3.6. Let R be commutative unital ring and A be an N0-graded free R-module
such that all graded components of A are of finite rank. We set

A∗ :=
⊕
n∈N0

HomR(An, R).

By definition, A∗ is an N0-graded R-module. For each i ∈ Z, let (ai,1, . . . , ai,mi) be an R-
basis of Ai and let (a∗i,1, . . . , a∗i,mi

) be the corresponding dual basis of HomR(Ai, R). Then
(a∗i,j |i ∈ N0, j ∈ {1, . . .mi}) is a homogeneous R-basis of A∗ which we call the dual basis of
(ai,j |i ∈ N0, j ∈ {1, . . .mi}).

Definition 3.3.7. Let R be commutative unital ring.

(i) Let A be an N0-graded free R-algebra such that all graded components of A are of finite
rank. Let η : R→ A be the unit and let

µ : A⊗R A→ A, a⊗ b 7→ ab, for all a, b ∈ A.

For i, j ∈ N0, let µi,j : Ai⊗RAj → Ai+j be the restriction of µ. Then the N0-graded dual
R-coalgebra A∗ of A is defined to be the N0-graded R-coalgebra with underlying N0-graded
R-module

A∗ :=
⊕
n∈N0

HomR(An, R)
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and counit
A∗

q0−→ HomR(A0, R) η∗−→ R,

where q0 is the projection to the zeroth component A∗0 = HomR(A0, R) and η∗ is the
adjoint map of η. The comultiplication on A∗ given by

f 7→
∑

i+j=|f |
µ∗i,j(f) ∈

⊕
i+j=|f |

A∗i ⊗R A∗j ,

where f ∈ A∗ is homogeneous and µ∗i,j : A∗i+j → A∗i⊗RA∗j is the adjoint map of µi,j. Here,
we identify A∗i ⊗R A∗j with HomR(Ai ⊗R Aj , R) via the canonical R-linear isomorphism.

(ii) Let C be an N0-graded free R-coalgebra with comultiplication ∆ and counit ε. For each
i ∈ N0, let pi : C → Ci denote the projection. We set

∆i,j : Ci+j → Ci ⊗R Cj , ∆i,j := (pi ⊗ pj) ◦∆.

Then the N0-graded dual R-algebra C∗ of C is defined to be the N0-graded R-algebra with
underlying N0-graded R-module

C∗ :=
⊕
n∈N0

HomR(Cn, R)

and unit ε∗ : R→ C∗, where ε∗ is the adjoint of ε. The multiplication on C∗ is given by

C∗i ⊗R C∗j
ιi,j−−→ HomR(Ci ⊗R Cj , R)

∆∗i,j−−→ C∗i+j .

for all i, j ∈ N0. Here, ∆∗i,j denotes the adjoint map of ∆i,j and ιi,j is the canonical
R-linear inclusion.

Let A be an N0-graded free R-algebra such that all graded components of A are of finite rank
which also admits an N0-graded coalgebra structure. Then the N0-graded dual A∗ of A is defined
to be the N0-graded R-module

A∗ :=
⊕
n∈N0

HomR(An, R),

endowed with the N0-graded R-algebra structure from (i) and with the N0-graded R-coalgebra
from (ii).

We now come to the duality relationship between K0(NH) and G0(NH). For this, we define
the A-bilinear pairing

(., .) : (K0(NH)⊗A K0(NH))× (G0(NH)⊗A G0(NH))→ A, (3.19)

via (a⊗ b, c⊗ d) = (a, c)(b, d), for a, b ∈ K0(NH), c, d ∈ G0(NH).

Theorem 3.3.8. The following holds:

(i) For each n ∈ N0, let

fn : G0(NHn -fmod)→ HomA(K0(NHn -pmod),A)

be the homomorphism of A-modules given by [M ] 7→ (., [M ])n, for all M ∈ NHn -fmod.
Then

f :=
⊕
n∈N0

fn : G0(NH)→ K0(NH)∗

is an isomorphism of N0-graded A-algebras and N0-graded A-coalgebras.
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(ii) For each n ∈ N0, let

gn : K0(NHn -pmod)→ HomA(G0(NHn -fmod),A)

be the isomorphism of A-modules given by [P ] 7→ ([P ], .)n, for all P ∈ NHn -pmod. Then

g :=
⊕
n∈N0

gn : K0(NH)→ G0(NH)∗

is an isomorphism of N0-graded A-algebras and N0-graded A-coalgebras.

Proof. We only show (i) since the proof for (ii) is analogous. By construction, f is a homo-
morphism of N0-graded A-modules. Next, we show that f is a homomorphism of algebras.
Let m,n ∈ N0 and let M ∈ NHm -fmod, N ∈ NHn -fmod and P ∈ ANHm+n -pmod. Moreover,
let

P ′1, . . . , P
′
r ∈ NHm -pmod, and P ′′1 . . . , P

′′
r ∈ NHn -pmod

such that
[Resm+n

m,n (P )] =
r∑
i=1

[P ′i ⊗k P ′′i ].

Then we have the following equalities, where the second equality follows from Proposition 2.4.9
and the fourth equality follows from Proposition 2.4.10.

(f([M ] · [N ]))([P ]) = ([P ], [Indm+n
m,n (M ⊗k N)])

= ([Resm+n
m,n (P )], [M ⊗k N ])

=
r∑
i=1

([P ′i ⊗k P ′′i ], [M ⊗k N ])

=
r∑
i=1

([P ′i ], [M ])([P ′′i ], [N ])

= (f([M ])⊗ f([N ]))(∆K([P ]))
= (f([M ]) · f([N ]))([P ]).

Thus, we conclude that f is a homomorphism of algebras. By a similar argument, one can
also show that f is a homomorphism of coalgebras. Hence, it is only left to show that
f is bijective. By Proposition 3.3.1, we have that (., [Tn])n is an A-module generator of
HomA(K0(NHn -pmod),A) for all n ∈ N0. Hence, f maps an A-basis of G0(NH) to an A-
basis of K0(NH)∗. Thus, we conclude that f is an isomorphism of N0-graded A-algebras and
N0-graded A-coalgebras.

We end this section by applying the results of Section 2.5 to the nil Hecke Grothendieck
groups. In this way, we obtain further interesting algebraic structures. In addition, this gives
us a favorable opportunity to see some explicit examples of the results of Section 2.5. At first,
we make two preparatory observations.
Firstly, in order to apply the results from Section 2.5, we have to ensure that NHn satisfies

the conditions from Convention 2.5.1. According to Theorem 3.2.3, NHn is a graded matrix
algebra over Symn. Furthermore, in Section 3.2, we defined a self-inverse anti-automorphism
T : NHn → NHn. Hence, it follows that the conditions from Convention 2.5.1 are satisfied. For
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the finiteness of the global dimension, note that by Proposition 1.2.5, NHn is graded Morita
equivalent to Symn. Now, Symn is a graded polynomial algebra over k in n variables and
hence has global dimension n, see for instance [Wei95, Theorem 4.3.7]. Thus, we obtain

gl(NHn) = n. (3.20)

Secondly, by (3.18), we have that the graded composition multiplicities of finitely generated
graded projective NHn-modules are contained in Q(q). Thus, we can apply the rational versions
of the results of Section 2.5. For this, we introduce the rational nil Hecke Grothendieck groups.

Definition 3.3.9. The rational nil Hecke Grothendieck group G0(NH)Q(q) and the rational
split nil Hecke Grothendieck group K0(NH)Q(q) are defined as

G0(NH)Q(q) :=
⊕
n∈N0

Q(q)⊗A G0(NHn-fmod),

K0(NH)Q(q) :=
⊕
n∈N0

Q(q)⊗A K0(NHn -pmod).

By Theorem 3.3.5, we have that both G0(NH)Q(q) and K0(NH)Q(q) are N0-graded Q(q)-
algebras and N0-graded Q(q)-coalgebras. In addition, the involution on A extends uniquely
to Q(q). Thus, we have that the bar involutions on G0(NH) and K0(NH) naturally extend
to bar involutions on G0(NH)Q(q) and K0(NH)Q(q). Moreover, the A-bilinear HOM-pairing
(., .) between K0(NH) and G0(NH) extends to a Q(q)-bilinear HOM-pairing (., .) between
K0(NH)Q(q) and G0(NH)Q(q).
Let us now apply the results from Section 2.5 to G0(NH)Q(q) and K0(NH)Q(q). We begin

with defining Q(q)-bilinear Euler forms on G0(NH)Q(q) and K0(NH)Q(q).

Definition 3.3.10. We define the following:

(i) For n ∈ N0, let χK,n be the rational bilinear Euler on G0(NHn -fmod) from Defini-
tion 2.5.18.(i). So χK,n is the unique Q(q)-bilinear form such that

χK,n(f ⊗ [M ], g ⊗ [N ]) = fg
n∑
i=0

(−1)i grdim(EXTi
NHn(M,N~)),

for all f, g ∈ Q(q) and M,N ∈ NHn -fmod.

(ii) Let χG be the unique Q(q)-bilinear form on G0(NH)Q(q) such that

χG(f ⊗ [M ], g ⊗ [N ]) =
{
χK,n(f ⊗ [M ], g ⊗ [N ]) if m = n,

0 if m 6= n,

holds for all f, g ∈ Q(q),M ∈ NHm -fmod and N ∈ NHn -fmod. We call χG the Q(q)-
bilinear Euler form on G0(NH)Q(q).

(iii) For n ∈ N0, let χK,n be the rational bilinear Euler on K0(NHn -pmod) from Defini-
tion 2.5.18.(ii). So χK,n is the unique Q(q)-bilinear form such that

χK,n(f ⊗ [P ], g ⊗ [Q]) = fg grdim(HOMNHn(P#, Q)),

for all f, g ∈ Q(q) and P,Q ∈ NHn -pmod.
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(iv) Let χK be the unique Q(q)-bilinear form on K0(NH)Q(q) such that

χK(f ⊗ [P ], g ⊗ [Q]) =
{
χK,n(f ⊗ [P ], g ⊗ [Q]) if m = n,

0 if m 6= n,

holds for all f, g ∈ Q(q), P ∈ NHm -pmod and Q ∈ NHn -pmod. We call χK the Q(q)-
bilinear Euler form on K0(NH)Q(q).

Corollary 3.3.11. The bilinear Euler forms χG and χK are symmetric.

Proof. This follows directly from Corollary 2.5.4 and Corollary 2.5.11.

Next, we apply Theorem 2.5.19 to G0(NH)Q(q) and K0(NH)Q(q). For this, note that by (3.18),
the graded character of [Qn] is

gch([Qn]) =
( n∏
i=1

1
1− q2i

)
⊗ [Tn], for each n ∈ N0.

Thus, we obtain the following result.

Theorem 3.3.12. We have an isomorphism of N0-graded Q(q)-algebras and N0-graded Q(q)-
coalgebras

φ : K0(NH)Q(q) → G0(NH)Q(q),

such that
[Qn] 7→

( n∏
i=1

1
1− q2i

)
⊗ [Tn], for all n ∈ N0.

Furthermore, the following holds:

(i) We have χK(x, y) = χG(φ(x), φ(y)) for all x, y ∈ K0(NH)Q(q).

(ii) The Q(q)-bilinear Euler forms χG and χK are non-degenerate and χG(φ(.), .) = (., .). In
particular, (φ(1⊗ [Qn]))n∈N0 and (1⊗ [Tn])n∈N0 are dual bases of G0(NH)Q(q) with respect
to χG.

Proof. The compatibility of the graded character map with induction, restriction and outer
tensor products from Corollary 2.3.6 and Corollary 2.2.13 implies that φ is a homomorphism
of N0-graded Q(q)-algebras and N0-graded Q(q)-coalgebras. The remaining assertions imme-
diately follow from Theorem 2.5.19.

We now conclude useful properties of χG and χK from Theorem 3.3.12.

Proposition 3.3.13. The following holds:

(i) For all x, y, z ∈ G0(NH)Q(q), we have

χG(x · y, z) = χG(x⊗ y,∆G(z)),

where the Q(q)-bilinear form χG on G0(NH)Q(q) ⊗Q(q) G0(NH)Q(q) is given by

χG(a⊗ b, c⊗ d) = χG(a, c)χG(b, d),

for all a, b, c, d ∈ G0(NH)Q(q).
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(ii) Likewise, for all x, y, z ∈ K0(NH)Q(q), we have

χK(x · y, z) = χK(x⊗ y,∆K(z)),

where the Q(q)-bilinear form χK on K0(NH)Q(q) ⊗Q(q) K0(NH)Q(q) is given by

χK(a⊗ b, c⊗ d) = χK(a, c)χK(b, d),

for all a, b, c, d ∈ K0(NH)Q(q).

Proof. Note that (i) and (ii) are equivalent by Theorem 3.3.12. Hence, we only have to prove
(i). According to Theorem 3.3.12, it suffices to show the following. Let m,n ∈ N0 and let
P ∈ NHn -pmod, Q ∈ NHn -pmod and M ∈ NHm+n -fmod be arbitrary. Moreover, let

M ′1, . . . ,M
′
r ∈ NHm -fmod and M ′′1 , . . . ,M

′′
r ∈ NHn -fmod

such that [Resm+n
m,n (M)] =

∑r
i=1[M ′i ⊗kM ′′i ]. Then we have

χG(φ(1⊗[Indm+n
m,n (P ⊗k Q)]), 1⊗ [M ])

=
r∑
i=1

χG(φ(1⊗ [P ]), 1⊗ [M ′i ])χG(φ(1⊗ [Q]), 1⊗ [M ′′i ]). (3.21)

We prove (3.21) by using the compatibility properties of the bilinear HOM-pairing. For this,
let

(., .) : (K0(NH)Q(q) ⊗Q(q) K0(NH)Q(q))× (G0(NH)Q(q) ⊗Q(q) G0(NH)Q(q))→ Q(q),

be the Q(q)-bilinear extension of the pairing (., .) from (3.19). Then we have the following
equalities, where in the second equality we use Proposition 2.4.9 and in the third equality we
use Proposition 2.4.10.

χG(φ(1⊗ [Indm+n
m,n (P ⊗k Q)]),1⊗ [M ]) = (1⊗ [Indm+n

m,n (P ⊗k Q)], 1⊗ [M ])

=
(
(1⊗ [P ])⊗ (1⊗ [Q]),

r∑
i=1

(1⊗ [M ′i ])⊗ (1⊗ [M ′′i ])
)

=
r∑
i=1

(1⊗ [P ], 1⊗ [M ′i ])(1⊗ [Q], 1⊗ [M ′′i ])

=
r∑
i=1

χG(φ(1⊗ [P ]), 1⊗ [M ′i ])χG(φ(1⊗ [Q]), 1⊗ [M ′′i ]).

Thus, we proved (3.21) and hence we obtain (i).

We end this section with explicitly describing the Q(q)-bilinear Euler forms χK and χG with
respect to the bases (1 ⊗ [Qn])n∈N0 and (1 ⊗ [Tn])n∈N0 . By the definition of χK and χG, we
only have to calculate the products χK(1⊗ [Qn], 1⊗ [Qn]) and χG(1⊗ [Tn], 1⊗ [Tn]) since the
other products vanish. Now, from (3.18), we obtain

χK(1⊗Qn], 1⊗ [Qn]) = [Qn : Tn]q =
n∏
i=1

1
1− q2i , for all n ∈ N0. (3.22)
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By Theorem 3.3.12, we then conclude

χG(1⊗ [Tn], 1⊗ [Tn]) =
n∏
i=1

(1− q2i)χG(φ(1⊗ [Qn]), 1⊗ [Tn]) =
n∏
i=1

(1− q2i).

This provides an explicit description of the bilinear Euler forms χK and χG with respect to
the bases (1⊗ [Qn])n∈N0 and (1⊗ [Tn])n∈N0 .

3.4 Classification of nil Hecke Grothendieck groups
After the preparations made in the previous section, we now finally discuss the categorification
theorem of Khovanov–Laudain the special case of nil Hecke algebras. In this case, the categori-
fication theorem states that K0(NH) is an N0-graded twisted bialgebra over A and isomorphic
to Lusztig’s integral quantum group fA corresponding to the one-vertex graph without edges.
Using the duality between K0(NH) and G0(NH) from Theorem 3.3.8, we can infer that G0(NH)
is also an N0-graded twisted bialgebra over A and isomorphic to the N0-graded dual of fA . To
formulate this theorem, we first recall the definition of Lusztig’s integral quantum group fA .
For this, we follow [Lus93, Chapter 1].

At first, we fix the notion of N0-graded twisted bialgebras.

Definition 3.4.1. Let R = A or R = Q(q). Let A be an N0-graded R-algebra. We call A an
N0-graded twisted R-bialgebra if A admits a coalgebra structure (A, ε,∆) such that ε : A→ R
and ∆ : A→ A⊗R A are homomorphisms of N0-graded R-algebras, where A⊗R A is endowed
with the twisted multiplication given by

(x1 ⊗ y1) · (x2 ⊗ y2) = q−|y1||x2|x1x2 ⊗ y1y2,

where x1, x2, y1, y2 ∈ A are homogeneous elements.

We proceed with recalling the definition of Lusztig’s quantum group f and Lusztig’s integral
quantum group fA . In general, the definition of f and fA depends on a choice of Cartan datum
or a choice of finite unoriented graph.We are only interested in the very special case where the
graph consists of a single vertex without edges (and the associated Cartan type A1). In this
case, Lusztig’s quantum group f is defined to be the N0-graded polynomial algebra f = Q(q)[θ]
with θ homogeneous of degree 1. We have that f is a N0-graded twisted Q(q)-bialgebra, where
the counit is the projection to the zeroth component and the comultiplication is the unique
algebra homomorphism

r : f → f ⊗Q(q) f , θ 7→ θ ⊗ 1 + 1⊗ θ.

Lusztig’s integral quantum group fA is defined to be the N0-graded submodule of f generated
by the elements θ(n) := θn/[n]q!, for all n ∈ N0. We have that fA inherits the structure of
an N0-graded twisted A-bialgebra. Moreover, the canonical inclusion fA ↪→ f extends to an
isomorphism of N0-graded twisted Q(q)-bialgebras Q(q)⊗A fA ∼= f .
By construction, one can directly check that the multiplication on fA is given by

θ(m) · θ(n) =
[
m+ n

m

]
q

θ(m+n), for all m,n ∈ N0.
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Moreover, the comultiplication on fA is given by

θ(n) 7→
n∑
r=0

q−r(n−r)θ(r) ⊗ θ(n−r), for all n ∈ N0.

Additionally, we have the following algebraic structures on f and fA :

1. There is a symmetric non-degenerate Q(q)-bilinear form (., .) on f given by

(θ(m), θ(n)) = δm,n

m∏
i=1

1
1− q2i ,

for all m,n ∈ N0. Here, δm,n denotes the Kronecker symbol. The form (., .) is called
Lusztig’s symmetric form. In addition, (., .) satisfies

(xy, z) = (x⊗ y, r(z)),

for all x, y, z ∈ f , where the Q(q)-bilinear form (., .) on f ⊗Q(q) f is given by

(a⊗ b, c⊗ d) = (a, c)(b, d), for all a, b, c, d ∈ f .

2. There exists a multiplicative self-inverse Q(q)-anti-linear automorphism b : f → f such
that b(θ) = θ. We call b the bar involution on f .

3. We have that the bar involution on f restricts to a self-inverse A-anti-linear automor-
phism b : fA → fA that we call the bar involution on fA .

Let fA ∗ denote the N0-graded dual of fA , see Defintion 3.3.7. The fact that fA is an N0-graded
twisted bialgebra over A implies that also fA ∗ is an N0-graded twisted bialgebra over A. Let
(θ(n)∗)n∈N0 be the dual basis of (θ(n))n∈N0 . Then by definition, one can directly check that the
multiplication on fA ∗ is given by

θ(m)∗ · θ(n)∗ = q−mnθ(m+n)∗, for all m,n ∈ N0.

Furthermore, the comultiplication is given by

θ(n)∗ 7→
n∑
r=0

[
n

r

]
q

θ(r)∗ ⊗ θ(n−r)∗, for all n ∈ N0.

The dependence of the structure constants on m,n ∈ N0 implies that fA and fA ∗ are not
isomorphic as N0-twisted bialgebras over A. However, the following holds.

Lemma 3.4.2. We have an inclusion of N0-graded A-modules

ι : fA ∗ ↪→ f, θ(n)∗ 7→
( n∏
i=1

(1− q2i)
)
· θ(n).

that is compatible with the multiplication and comultiplication. In addition, let

ι̃ : Q(q)⊗A fA ∗ → f

be the map obtained via scalar extension. Then ι̃ is an isomorphism of N0-graded twisted
bialgebras over Q(q).
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Proof. At first note that by construction, we have θ(n)∗ = (ι(θ(n)∗), .). Now, using the com-
patibility of (., .) with respect to the multiplication and comultiplication on f , we obtain that
ι is multiplicative and comultiplicative. Finally, we observe that ι̃ is an isomorphism of N0-
graded twisted bialgebras over Q(q), since it maps a homogeneous basis of Q(q) ⊗A fA ∗ to a
homogeneous basis of f .

Lemma 3.4.2 directly implies that fA and fA ∗ become isomorphic as N0-graded Q(q)-twisted
bialgebras after extending scalars to Q(q).
From now on, we view fA ∗ as embedded into f via the inclusion from Lemma 3.4.2. Let

b∗ : f → f be the A-anti-linear adjoint map of b, i.e. b∗ is uniquely determined by

(b(x), y) = (x, b∗(y)), for all x, y ∈ f .

One can directly check that we have

b∗(θ(n)) =
n∏
i=1

1
1− q−2i , for all n ∈ N0.

It follows that b∗ is self-inverse and restricts to an A-anti-linear automorphism b∗ : fA ∗ → fA ∗,
which we call the bar involution on fA ∗. According to the above description of b∗, we have
b∗(θ(n)∗) = θ(n)∗, for all n ∈ N0.
Finally, after these preparations, we state the categorification theorem of Khovanov–Lauda

for nil Hecke Grothendieck groups.

Theorem 3.4.3. The split nil Hecke Grothendieck group K0(NH) is an N0-graded twisted
bialgebra over A. In addition, we have an isomorphism of N0-graded twisted A-bialgebras

γ : fA → K0(NH), θ(n) 7→ [Qn], for all n ∈ N0.

Moreover, the following holds:

(i) For all x ∈ fA , we have γ(b(x)) = γ(x).

(ii) Let γQ(q) : f→ K0(NH)Q(q) be the scalar extension of γ. Then for all x, y ∈ f, we have

(x, y) = χK(γQ(q)(x), γQ(q)(y)).

Proof. According to Proposition 3.3.1 and equation (3.22), the only assertion that is left to
show is that γ is multiplicative and comultiplicative. Both properties can be proved in the
same way. Hence, we here only prove that γ is multiplicative. For this, we have to show that

[Indm+n
m,n (Qm ⊗k Qn)] =

[
m+ n

m

]
q

[Qm+n]

holds for allm,n ∈ N0. Since both NHm+n and NHm⊗k NHn admit only one graded projective
indecomposable module up to shift-isomorphism, it suffices to show

grdim(Indm+n
m,n (Qm ⊗k Qn)) =

[
m+ n

m

]
q

· grdim(Qm+n).

This is however an immediate consequence of Lemma 3.3.4.
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3.4. Classification of nil Hecke Grothendieck groups

By the duality between G0(NH) and K0(NH) from Theorem 3.3.8, we direclty obtain the
corresponding result for G0(NH).

Theorem 3.4.4. The nil Hecke Grothendieck group G0(NH) is an N0-graded twisted bialge-
bra over A. In addition, let γ∗ : G0(NH) → fA ∗ be the adjoint map of γ. Then γ∗ is an
isomorphism of N0-graded twisted A-bialgebras and we have

γ∗([Tn]) = θ(n)∗, for all n ∈ N0.

Moreover, the following holds:

(i) For all x ∈ G0(NH), we have γ∗(x) = b∗(γ∗(x)).

(ii) Let γ∗Q(q) : G0(NH)Q(q) → Q(q) ⊗A fA ∗ ∼= f be the scalar extension of γ∗. Then for all
x, y ∈ G0(NH)Q(q), we have

χG(x, y) = (γ∗Q(q)(x), γ∗Q(q)(y)).

Finally, we investigate how the isomorphism φ : K0(NH)Q(q) → G0(NH)Q(q) from Theo-
rem 3.3.12 fits into the picture. For this, note that under the identifications Q(q) ⊗A fA ∼= f
and Q(q)⊗A fA ∗ ∼= f , we have the following commuting diagram

f K0(NH)Q(q)

f G0(NH)Q(q)

idf

γQ(q)

φ

(γ∗Q(q))−1

Hence, we observe that φ corresponds under these identifications to the isomorphism

Q(q)⊗A fA ∼= Q(q)⊗A fA ∗,

that we described above.

With this observation, we end this chapter about the representation theory of nil Hecke
algebras. In the following chapter, we establish similar results for the alternating nil Hecke
algebras.
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4 Alternating nil Hecke algebras
Convention. Throughout this chapter, let k be a fixed field with char(k) 6= 2.

Summary
This chapter is devoted to the study of the representation theory of the alternating nil Hecke
algebras. These are special cases of a more general family of algebras called alternating quiver
Hecke algberas which were introduced by Boys and Mathas in [Boy14, BM17]. Our main focus
in our studies lies on the description of their Grothendieck groups.
By definition, the alternating nil Hecke algebras are a family of graded k-algebras denoted by

(ANHn)n∈N0 , where ANHn is the fixed point subalgebra of the nil Hecke algebra NHn under
the sign involution on NHn. The definition of the sign involution on NHn is based on the
definition of the sign involution on symmetric groups.
In the first section, we discuss fundamental algebraic properties of alternating nil Hecke

algebras. Then, in Section 4.2, we give a classification of their graded simple and graded
projective indecomposable modules. Since the (graded) representation theory of ANH0 = k
and ANH1 = k[y1] with y1 homogeneous of degree 4 is well-understood, let us now assume that
n ≥ 2. Let Pn be the polynomial representation of NHn from Theorem 3.2.3. Via restriction
Pn becomes an ANHn-module. Then we observe that it decomposes into a direct sum

ResNHn
ANHn

(Pn) = P e
n ⊕ P o

n ,

where P e
n is the ’even’ and P o

n is the ’odd’ part of Pn. We specify this in detail in Section 4.2.
In Theorem 4.2.5, we then show that P e

n, P
o
n is a complete list of pairwise non-shift-isomorphic

graded projective indecomposable ANHn-modules. From this, we obtain an analogous classi-
fication of the graded simple ANHn-modules.
Hereafter, we define the alternating nil Hecke Grothendieck groups G0(ANH) and K0(ANH)

and study their algebraic structures. We define G0(ANH) and K0(ANH) analogously to the
nil Hecke Grothendieck groups G0(NH) and K0(NH). Just as G0(NH) and K0(NH), we have
that G0(ANH) and K0(ANH) admit both a multiplication and comultiplication which is given
by induction and restriction functors. Moreover, we also have that G0(ANH) is the N0-graded
dual of K0(ANH) as N0-graded algebra and N0-graded coalgebra over A = Z[q, q−1]. However,
in contrast to G0(NH) and K0(NH), we show that G0(ANH) and K0(ANH) are no twisted
bialgebras, see Propotsition 4.6.2.
Then, in Section 4.4, we use the techniques from Section 2.5 to show the following crucial

results:

1. There is a non-degenerated Q(q)-bilinear Euler forms χK resp. χG on Q(q)⊗AK0(ANH)
resp. Q(q)⊗A G0(ANH), and

2. the graded character map induces an isomorphism of N0-graded Q(q)-vector spaces

φ : Q(q)⊗A K0(ANH)→ Q(q)⊗A G0(ANH),

75



4.1. Alternating nil Hecke algebras

which is compatible with the multiplication and comultiplication. In addition, φ is also
compatible with χK and χG.

Furthermore, we explicitly calculate the isomorphism φ and its inverse φ−1 in Theorem 4.4.9
and also provide formulas for the Euler forms χK and χG in Theorem 4.4.10.

Finally, in Section 4.5, we study in detail the multiplicative and comultiplicative structure
of G0(ANH) and K0(ANH). At first, we give explicit formulas on appropriate bases. Then we
relate these structures to Lusztig’s integral quantum group fA corresponding to the one-vertex
graph without edges.
In Theorem 4.5.9, we establish an isomorphism of N0-gradedA-coalgebras between K0(ANH)

and fA ⊗A A[Z/2]∗ in degrees ≥ 2. Here, A[Z/2]∗ is the dual coalgebra of the group algebra
A[Z/2]. By using the duality between K0(ANH) and G0(ANH), we then construct an isomor-
phism of N0-graded A-algebras between G0(ANH) and fA ∗ ⊗A A[Z/2] in degrees ≥ 2, where
fA ∗ is the N0-graded dual of fA .
In order to describe the comultiplication on G0(ANH) and the multiplication on K0(ANH),

we extend the scalars to A′ := A[1
2 ]. Moreover, we introduce an N0-graded A-algebra f̃A ,

which is in a certain sense a sign perturbated version of fA . Let f̃A ∗ denote the N0-graded
dual A-coalgebra of f̃A . Then, in Theorem 4.5.16, we establish an isomorphism of N0-graded
A′-coalgebras between A′⊗A ( fA ∗⊕ f̃A ∗) and A′⊗AK0(ANH) in degrees ≥ 2. Again, using a
duality argument, we conclude in Corollary 4.5.17 that we have an isomorphism of N0-graded
A′-algebras between A′ ⊗A K0(ANH) and the direct product A′ ⊗A ( fA × f̃A ) in degrees ≥ 2.

4.1 Alternating nil Hecke algebras
In this section, we describe important algebraic properties of alternating nil Hecke algebras.
For this, we mostly follow [Boy14, Chapter 5]. The algebras are defined via the following
involution.

Definition 4.1.1. Let n ∈ N0. Then there exists a unique self-inverse graded k-algebra auto-
morphism sgn : NHn → NHn, such that

τi 7→ −τi, yj 7→ −yj ,

for all 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n. The automorphism sgn is called the sign involution on NHn.

Using the description of the nil Hecke algebra NHn by generators and relations, one can
verify directly that sgn is well defined and also uniquely determined by the above properties.

Definition 4.1.2. Let n ∈ N0. Then the alternating nil Hecke algebra ANHn is defined to be
the fixed point k-subalgebra ANHn := NHsgn

n ⊂ NHn.

Remark 4.1.3. Since sgn is a graded k-algebra automorphism, we have that ANHn inherits
a grading from NHn that turns ANHn into a graded k-algebra.

Now, let us consider basic examples of alternating nil Hecke algebras.

Example 4.1.4. (1) If n = 0, then NH0 = k and by definition, sgn = idk. So we also have
ANH0 = k.

(2) If n = 1, then NH1 = k[y1] with y1 homogeneous of degree 2. The sign involution is given
by ysgn

1 = −y1, hence ANH1 = k[y2
1] ⊂ NH1.
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4.1. Alternating nil Hecke algebras

In the following let n ∈ N0 be fixed. In order to obtain first properties of the alternating
nil Hecke algebra ANHn, we first describe the sign involution in more detail. For this, we fix
some notation.

Notation 4.1.5. Let A be a graded k-algebra such that the graded components Ai vanish for
all i ∈ 1 + Z. We call a non-zero homogeneous element a ∈ A of degree d even if 4|d and we
call a odd if 4 - d. Moreover, we denote by Ae ⊂ A the even part of A, i.e. Ae is the graded
k-subalgebra whose graded components are given by

Ae
i =

{
Ai if i ≡ 0 mod 4,
0 else.

Furthermore, let Ao ⊂ A be odd part of A, i.e. Ao is the graded (Ae, Ae)-bimodule whose
graded components are given by

Ao
i =

{
Ai if i ≡ 2 mod 4,
0 else.

Using this notation, the sign involution on NHn can be described in the following way.

Proposition 4.1.6. Let a ∈ NHn be a homogeneous element. Then we have

asgn =
{
a if a is even,
−a if a is odd.

Proof. The proposition follows directly from the definition of the sign involution and the fact
that the generators τ1, . . . , τn−1, y1, . . . , yn ∈ NHn are all odd.

Hence, one might view ANHn as thinning of NHn.

Proposition 4.1.7. We have that ANHn = (NHn)e.

Next, we discuss a further useful interpretation of ANHn. For this, recall the isomorphism
of graded k-algebras

Φ : NHn → ENDSymn
(Pn),

from Theorem 3.2.3. As in Theorem 3.2.3, we denote by Pn the graded polynomial algebra
k[x1, . . . , xn] with x1, . . . , xn homogeneous of degree 2 and by Symn the graded k-subalgebra
PSn
n ⊂ Pn. By Theorem 3.1.8, we know that Pn is a graded free Symn-module with a basis

given by the Schubert polynomials (Sw)w∈Sn . Hence, we can view ENDSymn
(Pn) as a graded

matrix algebra. For v, w ∈ Sn let Ev,w ∈ ENDSymn
(Pn) denote the elementary matrix given

by

Ev,w(Sw′) =
{
Sv if w = w′,
0 else,

for all w′ ∈ Sn. Note that Ev,w is homogeneous of degree 2(l(v) − l(w)), where l denotes
the length function on Sn. Now, using the description of ANHn as a thinning of NHn, we
immediately get a description of the image Φn(ANHn).

Proposition 4.1.8. Using the notation from above, we have that the underlying graded k-
vector space of the graded k-subalgebra Φn(ANHn) ⊂ ENDSymn

(Pn) is spanned by the following
elements:
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4.1. Alternating nil Hecke algebras

(i) fEv,w, for f ∈ Syme
n and v, w ∈ Sn such that 2|(l(v)− l(w)),

and the elements:

(ii) fEv,w, for f ∈ Symo
n and v, w ∈ Sn such that 2 - (l(v)− l(w)).

In the following example, we illustrate the statement of Proposition 4.1.8 in the case n = 2.

Example 4.1.9. We consider the special case Φ2(ANH2) ⊂ ENDSym2(P2). Let S2 = {e, s},
where e is the neutral element and s is the transposition (1, 2). We pick (Se,Ss) as ordered
homogeneous Sym2-basis of P2 view ENDSym2(P2) as graded matrix algebra with respect to
this choice of basis. We then have by Proposition 4.1.8 that the elements of Φ2(ANH2) are
exactly the matrices of the following form

Φ2(ANH2) =
(

Syme
2 Symo

2
Symo

2 Syme
2

)
⊂ ENDSym2(P2).

We will usually identify algebras ANHn and Φn(ANHn). It turns out that the description
of Φn(ANHn) from Proposition 4.1.8 is very useful to describe the representation theory of
ANHn. We will discuss this in detail in the following section.

We end this section by showing that ANHn inherits some properties from NHn.

Proposition 4.1.10. The following holds:

(i) ANHn is Laurentian.

(ii) ANHn has the homogeneous k-basis

(τwym1
1 . . . ymn

n |w ∈ Sn,m1, . . . ,mn ∈ N0, 2|(l(w) +m1 + . . .+mn)).

(iii) Let Z(ANHn) resp. Z(NHn) denote the centre of ANHn resp. NHn. Recall that we can
identify Z(NHn) with Symn by Theorem 3.2.3. Then we have

Z(ANHn) = Z(NHn) ∩ANHn = Syme
n .

Proof. (i) We know from Theorem 3.2.3 that NHn is Laurentian. Since ANHn is a graded
k-subalgebra of NHn, it follows that also ANHn is Laurentian.

(ii) This assertion follows immediately from Theorem 3.2.3 and the description of ANHn as
thinning of NHn.
(iii) The assertion is trivial for n = 0. So let us assume that n ≥ 1. We clearly have

Z(NHn) ∩ ANHn ⊂ Z(ANHn). For the converse inclusion let z ∈ Z(ANHn). At first, we
show that z commutes with every odd element x ∈ NHn. For this, let e1 ∈ Symn be the first
elementary symmetric polynomial. Since e1 ∈ Z(NHn) and e1x ∈ ANHn, we have the equality
e1xz = e1zx. As NHn is a graded free Symn module, the map

NHn → NHn, y 7→ e1y, for all y ∈ NHn,

is injective. Hence, e1xz = e1zx implies xz = zx. Thus, we proved that z commutes with
every odd element in NHn. Since z ∈ Z(ANHn), we also have that z commutes with every
even element of NHn. Thus, z also commutes with arbitrary sums of odd and even elements,
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4.1. Alternating nil Hecke algebras

which implies that z commutes with every element in NHn. This gives z ∈ Z(NHn) and hence
the inclusion Z(NHn) ∩ANHn ⊂ Z(ANHn). So, we proved Z(NHn) ∩ANHn = Z(ANHn).
Finally, the equality Z(NHn) ∩ANHn = Syme

n follows directly from

Syme
n = Symn ∩(NHn)e = Sym∩ANHn = Z(NHn) ∩ANHn = Z(ANHn).

This completes the proof.

We now describe an important property of the left and right ideals of ANHn. By the
description of ANHn as thinning of NHn, it follows that they are always contracted ideals from
NHn. By this we mean the following.

Proposition 4.1.11. Let I be a possibly ungraded left ideal of ANHn. Let J ⊂ NHn be the
left ideal generated by I. Then I = J ∩ ANHn. The assertion remains true if we replace left
ideal by right ideal.

Proof. The inclusion I ⊂ J ∩ANHn is clear. So let us show J ∩ANHn ⊂ I. Let x ∈ J ∩ANHn.
We can write x as

x =
r∑
i=1

(ai + bi)yi, where ai ∈ ANHn, bi ∈ (NHn)o, yi ∈ I.

We have that ( r∑
i=1

aiyi
)
∈ ANHn,

( r∑
i=1

biyi
)
∈ (NHn)o.

Since NHn = ANHn⊕(NHn)o, the assumption x ∈ ANHn implies
∑r
i=1 biyi = 0. Thus, we

have

x =
( r∑
i=1

aiyi
)
∈ ANHn .

This proves the inclusion J ∩ ANHn ⊂ I. Thus, we have I = J ∩ ANHn. The same argument
works also for right ideals.

Corollary 4.1.12. ANHn is Noetherian as ungraded k-algebra.

Proof. The assertion follows directly from the fact that NHn is Noetherian as ungraded k-
algebra and Proposition 4.1.11.

In particular, it follows that ANHn a graded Noetherian k-algebra.

Remark 4.1.13. The statement of Corollary 4.1.12 could also be deduced from general in-
variant theory. Let R be a ring and G be a finite group that acts by ring automorphisms on
R. Let RG ⊂ R denote the fixed subring of G. Assume that |G| is invertible in R. If R is
left (or right) Noetherian, then so is RG. For a proof of this result, see for instance [Mon80,
Corollary 1.12].

Altogether, in this section, we have considered several algebraic properties of the alternating
nil Hecke algebras. In the next section, we will use them to study their representation theory.
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4.2. Graded modules over alternating nil Hecke algebras

4.2 Graded modules over alternating nil Hecke algebras

As the alternating nil Hecke algebra ANHn is Laurentian, we know by the results treated
in the first chapter, that ANHn admits many useful properties. In particular, ANHn is
graded semiperfect. So ANHn admits only finitely many graded simple modules up to shift-
isomorphism and every graded simple ANHn-module admits a projective cover. Moreover, all
graded simple ANHn-modules have finite dimension over k. In this section, we classify the
graded simple and graded projective indecompoable ANHn-modules. In addition, we outline
interesting properties properties of these modules.
The cases n = 0 and n = 1 are clear. Hence, we make the following assumption.

Convention 4.2.1. Throughout this section, we fix n ∈ N0 with n ≥ 2.

Using the notation from the previous section, recall from Theorem 3.2.4 that Pn is the
unique graded projective indecomposable NHn-module up to shift-isomorphism. The underly-
ing graded k-vector space of the unique (up to shift-isomorphism) graded simple NHn-module
Ln := Pn/(Sym+

n )Pn has a homogeneous basis given by the residue classes of Schubert poly-
nomials (Sw)w∈Sn and NHn acts on Ln via the epimorphism

NHn � ENDSymn
(Pn)/((Sym+

n ) ENDSymn
(Pn)) ∼= ENDk(Ln).

Now, we pass to the alternating nil Hecke algebras.

Notation 4.2.2. Let M be a graded ANHn-module such that the graded components Mi

vanish for all i ∈ 1 + Z. We define the M e ⊂ M to be the even part of M , i.e. M e is the
graded ANHn-module whose graded components are

M e
i =

{
Mi if i ≡ 0 mod 4,
0 else.

Likewise, we define Mo ⊂ M to be the odd part of M , i.e. Mo is the graded ANHn-module
whose graded components are

Mo
i =

{
Mi if i ≡ 2 mod 4,
0 else.

There is a decomposition of ANHn-modules M = M e ⊕Mo.
If N is a graded NHn-module such that the graded components Ni vanish for all i ∈ 1 + Z,

then we have a decomposition of ANHn-modules

ResNHn
ANHn

(N) = N e ⊕No,

where N e := (ResNHn
ANHn

(N))e and No := (ResNHn
ANHn

(N))o. As above, we call N e the even part
and No the odd part of N .

At this point, we warn the reader that this notation is not compatible with Notation 4.1.5.
The following lemma will be of great use in our study of ANHn.
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4.2. Graded modules over alternating nil Hecke algebras

Lemma 4.2.3. Let M be a graded ANHn-module such that the graded components Mi vanish
for all i ∈ 1 +Z. Let N ⊂M be a graded ANHn-submodule. Then we have an isomorphism of
graded ANHn-modules

F : M e/N e → (M/N)e, m 7→ m, for all m ∈M e/N e.

Similarly, we also have an isomorphism of graded ANHn-modules

G : Mo/No → (M/N)o, m 7→ m, for all m ∈Mo/No.

Proof. At first, note that

(M/N)i = {m ∈M/N |m ∈Mi}, for all i ∈ Z. (4.1)

Hence, we conclude that F is indeed a well-defined homomorphism of graded ANHn-modules.
From (4.1), we also deduce that F is surjective. In order to show the injectivity, let m ∈ M e

be homogeneous with F (m) = m = 0 ∈ (M/N)e. Hence, we have m ∈ N . This implies
m ∈ N ∩M e = N e. So m = 0 ∈M e/N e and hence, F is injective.
The second assertion can be shown in exactly the same way.

Using Notation 4.2.2, we have the following decompositions of ANHn-modules.

Lemma 4.2.4. We have that ResNHn
ANHn

(Pn) = P e
n ⊕ P o

n and ResNHn
ANHn

(Ln) = Le
n ⊕ Lo

n.

Proof. Recall from (3.17) that

grdim(Pn) = (n)q2 !
n∏
i=1

1
1− q2i , grdim(Ln) = (n)q2 !.

Here, we use the notion of quantum numbers from Definition 3.2.5. These formulas imply
that (Pn)i = 0 and (Ln)i = 0 for i ∈ 1 + Z. Thus, we can take the even and the odd part of
ResNHn

ANHn
(Pn) and ResNHn

ANHn
(Ln) as described in Notation 4.2.2.

One can easily check that Le
n and Lo

n are graded simple ANHn-modules. In fact, we will
prove in the following theorem that P e

n and P o
n are exactly the unique graded projective

indecomposable ANHn-modules up to shift-isomorphism. To see this, recall the notion of
the elementary matrices Ev,w ∈ ENDSymn

(Pn) for v, w ∈ Sn from the previous section. In
particular, note that for each w ∈ Sn, we have that Ew,w is contained in ANHn.

Theorem 4.2.5. The following assertions are true:

(i) The graded ANHn-modules P e
n and P o

n are graded projective indecomposable and non-
shift-isomorphic.

(ii) We have that hd(P e) ∼= Le and hd(P o) ∼= Lo.

(iii) Any graded projective indecomposable ANHn-module is shift-isomorphic to P e
n or P o

n .

(iv) Let w ∈ Sn, then Ew,w is a homogeneous primitive idempotent in ANHn. Moreover, we
have

ANHnEw,w ∼=
{
P e
n〈−2l(w)〉 if 2|l(w),
P o
n〈−2l(w)〉 if 2 - l(w).

(4.2)
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Proof. We begin with proving (iv). Since Ew,w is a homogeneous primitive idempotent in NHn,
it is also a homogeneous primitive idempotent in ANHn. Now, we prove the relation (4.2).
For this, we only consider the case 2|l(w). The other case can be proved in the same way.
In Section 3.2, we showed that there is an isomorphism NHnEw,w ∼= Pn〈−2l(w)〉 of graded
NHn-modules. Thus, we conclude

ANHnEw,w ∼= (NHnEw,w)e ∼= (Pn〈−2l(w)〉)e = P e
n〈−2l(w)〉.

This gives (iv). Next, we show the remaining assertions. Since {Ew,w| w ∈ Sn} is a complete
set of homogeneous pairwise orthogonal primitive idempotents in ANHn, we obtain by (iv) that
P e
n and P o

n are graded projective indecomposable and any graded projective indecomposable
ANHn-module is shift-isomorphic to P e

n or P o
n . Hence, we obtain (iii). Now, since we have

hd(Pn) ∼= Ln, Lemma 4.2.3 implies that Le
n is a quotient of P e

n. Since Le
n is graded simple and

P e
n is graded projective indecomposable, we deduce that hd(P e

n) ∼= Le
n. The same argument

gives hd(P o
n) ∼= Lo

n. Thus, we proved (ii). To conclude (i), it is left to show that P e
n and P o

n

are non-shift-isomorphic. For this, it suffices to show that Le
n and Lo

n are non-shift-isomorphic.
Now, note that Le

n has a homogeneous k-basis given by the residue classes of Schubert poly-
nomials Sw, for w ∈ Sn with 2|l(w). Similarly, Lo

n has a homogeneous k-basis given by the
Sw, for w ∈ Sn with 2 - l(w). Thus, it follows that for each v ∈ Sn with 2|l(v), we have that
Ev,v operates on Le

n by a non-zero homomorphism. However, Ev,vLo
n = 0, so Le

n and Lo
n are

non-shift-isomorphic.

As a direct consequence, we obtain a classification of the graded simple ANHn-modules.

Corollary 4.2.6. The following assertions are true:

(i) The graded ANHn-modules Le
n and Lo

n are graded simple and non-shift-isomorphic.

(ii) Any graded simple ANHn-module is shift-isomorphic to Le
n or Lo

n.

(iii) ANHn is graded Schurian.

Proof. The assertions (i) and (ii) directly follow from Theorem 4.2.5. So let us prove (iii). We
have to show that ENDANHn(Le

n) ∼= k and ENDANHn(Lo
n) ∼= k. In the following, we just prove

the assertion for Le
n. The assertion for Lo

n can be shown in the similarly. By construction,
Le
n has a homogeneous k-basis given by the residue classes of Schubert polynomials Sw, for

w ∈ Sn with 2|l(w). Let e ∈ Sn be the neutral element. Then by Theorem 4.2.5, we have
P e
n
∼= ANHnEe,e and hence

HOMA(P e
n, L

e
n) ∼= Ee,eL

e
n = spank(Se).

Since P e
n is the projective cover of Le

n, we obtain ENDANHn(Le
n) ∼= k.

Corollary 4.2.7. For each n ∈ N0, we have that NHn is a finitely generated graded projective
ANHn-module.

In the following proposition, we consider the induction behavior of the graded projective
indecomposable and the graded simple ANHn-modules. This behavior is analogous to the
Clifford theory of group algebras of finite groups, see e.g. [FH13, Proposition 5.1].
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Proposition 4.2.8. There are isomorphisms of graded NHn-modules

IndNHn
ANHn

(P e
n) ∼= IndNHn

ANHn
(P o

n) ∼= Pn

and also
IndNHn

ANHn
(Le

n) ∼= IndNHn
ANHn

(Lo
n) ∼= Ln.

Proof. Let e ∈ Sn be the neutral element. Since P e
n
∼= ANHnEe,e we obtain

IndNHn
ANHn

(P e
n) ∼= NHnEe,e ∼= Pn.

The assertion IndNHn
ANHn

(P o
n) ∼= Pn can be proved similarly. Next, we show IndNHn

ANHn
(Le

n) ∼= Ln.
To this end note that there is a homomorphism of graded NHn-modules

f : IndNHn
ANHn

(Le
n)→ Ln, ξ ⊗ a 7→ ξa, for all ξ ∈ NHn, a ∈ Le

n.

In order show that f is an isomorphism, we construct an inverse. For this, we fix an arbitrary
simple transposition s ∈ Sn and define the following homomorphism of graded k-vector spaces

g : Ln → IndNHn
ANHn

(Le
n), Sw 7→

{
1⊗Sw if 2|l(w),
Ew,ws ⊗Sws if 2 - l(w),

for all w ∈ Sn. At first sight g is just a homomorphism of graded k-vector spaces. However, it
is a straightforward exercise to check that g is the inverse of f . Thus, f and g are isomorphisms
of graded NHn-modules. The fact IndNHn

ANHn
(Lo

n) ∼= Ln can be shown in the same way.

Our next aim is to compute the graded dimension of the ANHn-modules P e
n, P

o
n , L

e
n and Lo

n.
In addition, we also determine the graded composition multiplicities of P e

n and P o
n . For this,

we use that we already know the corresponding formulas for Pn and Ln, see (3.17) and (3.18).

Notation 4.2.9. Let f =
∑
i>>−∞ aiq

i be a Laurent series with integer coefficients such that
ai = 0 for all i ∈ 1 + 2Zi. Then we define the Laurent series

Even(f) :=
∑

i>>−∞
a4iq

4i, Odd(f) :=
∑

i>>−∞
a4i+2q

4i+2.

Note that if f is a rational function, i.e. f = g(q2) for some g(q) ∈ Q(q), then also Even(f)
and Odd(f) are contained in Q(q). This follows from the equations

Even(f) = g(q2) + g(−q2)
2 , Odd(f) = g(q2)− g(−q2)

2 .

Now, recall from (3.17), that we have

grdim(Ln) = (n)q2 !, grdim(Pn) = (n)q2 !
n∏
i=1

1
1− q2i .

By the construction of the ANHn-modules P e
n, P

o
n , L

e
n and Lo

n, we hence obtain the following
formulas for their graded dimensions.
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4.2. Graded modules over alternating nil Hecke algebras

Proposition 4.2.10. We have

grdim(Le
n) = Even((n)q2 !), grdim(Lo

n) = Odd((n)q2 !)

and

grdim(P e
n) = Even

(
(n)q2 !

n∏
i=1

1
1− q2i

)
, grdim(P o

n) = Odd
(
(n)q2 !

n∏
i=1

1
1− q2i

)
.

Proof. Note that for each i ∈ 1+2Z, the i-coefficients (n)q2 ! and (n)q2 !
∏n
i=1(1−q2i)−1 vanishes.

Thus, we can apply Even and Odd to them. Now, by definition, the homogeneous components
of Le

n are given by

(Le
n)i =

{
(Ln)i if i ≡ 0 mod 4,
0 else,

for all i ∈ Z. Thus, grdim(Le
n) = Even((n)q2 !). The other graded dimensions can be determined

in exactly the same way.

Proposition 4.2.11. The graded composition multiplicities of P e
n and P o

n are given by

[P e
n : Le

n]q = Even
( n∏
i=1

1
1− q2i

)
, [P e

n : Lo
n]q = Odd

( n∏
i=1

1
1− q2i

)
,

and
[P o
n : Le

n]q = Odd
( n∏
i=1

1
1− q2i

)
, [P o

n : Lo
n]q = Even

( n∏
i=1

1
1− q2i

)
.

Note that all the above graded composition multiplicities are contained in Q(q).

Proof. We only determine graded composition multiplicities of P e
n, since the graded compo-

sition multiplicities of P o
n can be determined in the same way. At first, recall from (3.18)

that
[Pn : Ln]q =

n∏
i=1

1
1− q2i .

Let Pn = F0 ⊃ F1 ⊃ F2 ⊃ . . . be a countable separated graded simple filtration of Pn with
Fi/Fi+1 ∼= Ln〈di〉 for some di ∈ 2N0. Now, recall from Lemma 4.2.3 that F e

i /F
e
i+1
∼= (Ln〈di〉)e

for all i ∈ N0. Hence, we deduce that P e
n = F e

0 ⊃ F e
1 ⊃ F e

2 ⊃ . . . is a countable separated
graded simple filtration of P e

n and we have

F e
i /F

e
i+1
∼= (Ln〈di〉)e ∼=

{
Le
n〈di〉 if i ≡ 0 mod 4,

Lo
n〈di〉 if i ≡ 2 mod 4.

This directly implies the stated formulas for the composition multiplicities of P e
n.

We end this section with studying duality properties of the modules P e
n, P

o
n , L

e
n and Lo

n. Our
procedure is analogous as for the nil Hecke algebras in Section 3.2. At first, recall that in
Definition 2.4.4, we defined dualities ~ and # on the categories A-fmod and A-pmod, where
A is a Laurentian k algebra that admits a self-inverse graded anti-automorphism. Moreover,
recall that NHn admits a self-inverse graded anti-automorphism T : NHn → NHn given by

τi 7→ τi, yi 7→ yi,
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4.2. Graded modules over alternating nil Hecke algebras

for all admissible i. Since T is graded, we know that T maps ANHn onto ANHn. Hence, T re-
stricts to a self-inverse graded anti-automorphism of ANHn. Now, by applying Definition 2.4.4,
we also obtain dualities

~ : ANHn-fmod→ ANHn-fmod, M~ := HOMk(M,k),
# : ANHn-pmod→ ANHn-pmod, P# := HOMANHn(P,ANHn),

which are defined with respect to T.
In the following proposition, we describe how the duality ~ acts on the graded simple

ANHn-modules and, equivalently, how # acts on the graded projective indecomposable ANHn-
modules.
Proposition 4.2.12. If 4|(n(n− 1)), then we have

(Le
n)~ ∼= Le

n〈−n(n− 1)〉, (Lo
n)~ ∼= Lo

n〈−n(n− 1)〉,
(P e

n)# ∼= P e
n〈−n(n− 1)〉, (P o

n)# ∼= P o
n〈−n(n− 1)〉.

However, if 4 - (n(n− 1)), then we have

(Le
n)~ ∼= Lo

n〈−n(n− 1)〉, (Le
n)~ ∼= Lo

n〈−n(n− 1)〉,
(P e

n)# ∼= P e
n〈−n(n− 1)〉, (P o

n)# ∼= P o
n〈−n(n− 1)〉.

Proof. We only prove the assertion for Le
n. The assertion for Lo

n can be shown in the same
way. The assertions for P e

n and P o
n then follow from Corollary 2.4.6. Now, note that we have

a natural isomorphism of ANHn-modules

ResNHn
ANHn

(L~n ) ∼= (ResNHn
ANHn

(Ln))~.

This implies in particular that (L~n )e ∼= (Le
n)~. In Section 3.2, we showed that

L~n
∼= Ln〈−n(n− 1)〉.

Hence, we deduce

(Le
n)~ ∼= (Ln〈−n(n− 1)〉)e ∼=

{
Le
n〈−n(n− 1)〉 if 4|(n(n− 1)),

Lo
n〈−n(n− 1)〉 if 4 - (n(n− 1)).

This proves the assertion for Le
n.

Similar as for the nil Hecke algebra, we can symmetrize the graded simple and graded
projective indecomposable ANHn-modules, i.e. we set

T e
n := Le

n〈−
1
2n(n− 1)〉, T o

n := Lo
n〈−

1
2n(n− 1)〉

and
Qe
n := P e

n〈−
1
2n(n− 1)〉, Qo

n := P o
n〈−

1
2n(n− 1)〉.

By Proposition 4.2.12, we have that if 4|(n(n−1)), the duality ~ fixes T e
n and T o

n . Equivalently,
the duality # fixes Qe

n and Qo
n. So, we have

(T e
n)~ ∼= T e

n, (T o
n)~ ∼= T o

n , (Qe
n)# ∼= Qe

n, (Qo
n)# ∼= Qo

n. (4.3)

However, if 4 - (n(n− 1)), then we have

(T e
n)~ ∼= T o

n , (T o
n)~ ∼= T e

n, (Qe
n)# ∼= Qo

n, (Qo
n)# ∼= Qe

n. (4.4)

So in this case, the duality ~ switches T e
n and T o

n . Likewise, # switches Qe
n and Qo

n.
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4.3. Alternating nil Hecke Grothendieck groups

4.3 Alternating nil Hecke Grothendieck groups
The remaining sections of this chapter are devoted to the study of the alternating nil Hecke
Grothendieck groups G0(ANH) and K0(ANH). The definition of G0(ANH) and K0(ANH) is
modeled on the definition of the nil Hecke Grothendieck groups G0(NH) and K0(NH) which
were discussed in Section 3.3. In this section, we consider fundamental properties of G0(ANH)
and K0(ANH) that are analogous to the properties G0(NH) and K0(NH).

We start with some preparations. For n ∈ {0, 1}, we have that ANHn admits a unique (up
to isomorphism) graded simple module that is concentrated in degree zero which we denote
T e
n. Let Qe

n be the projective cover of T e
n. Furthermore, let the dualities ~ and # be defined

as in the case n ≥ 2. One can then directly check that (T e
n)~ ∼= T e

n and (Qe
n)# ∼= Qe

n.
In the following, we use the notation that was introduced in Chapter 2. In particular, A

denotes the ring Z[q, q−1]. In the next proposition, we list some important properties of the
Grothendieck groups of alternating nil Hecke algebras.
Proposition 4.3.1. The following assertions are true:
(i) We have that G0(ANH0 -fmod) and G0(ANH1 -fmod) are free A-modules of rank 1 with

generator [T e
0 ] resp. [T e

1 ]. For n ∈ N0 with n ≥ 2, we have that G0(ANHn -fmod) is a
free A-modules of rank 2 with generators [T e

n] and [T o
n ].

(ii) We have that K0(ANH0 -pmod) and K0(ANH1 -pmod) are free A-modules of rank 1 with
generator [Qe

0] resp. [Qe
1]. For n ∈ N0 with n ≥ 2, we have that K0(ANHn -pmod) is a

free A-modules of rank 2 with generators [Qe
n] and [Qo

n].

(iii) There exists a unique self-inverse A-anti-linear automorphism

: G0(ANHn -fmod)→ G0(ANHn -fmod), [M ] 7→ [M~],

for all M ∈ ANHn -fmod. We call the bar involution on G0(ANHn -fmod).

(iv) There exists a unique self-inverse A-anti-linear automorphism

: K0(ANHn -pmod)→ K0(ANHn -pmod), [P ] 7→ [P#],

for all P ∈ ANHn -pmod. We call the bar involution on K0(ANHn -pmod).
Proof. (i) This follows directly from Theorem 2.1.4.(i) and the classification of the graded
simple ANHn-modules from Corollary 4.2.6.
(ii) Like in (i), the assertion (ii) follows from Theorem 2.1.4.(ii) and the classification of the

graded projective indecomposable ANHn-modules from Theorem 4.2.5.
(iii) Since ~ is a duality on the category ANHn -fmod, we obtain that the bar involution on

G0(ANHn -fmod) is a well-defined self-inverse additive map. The A-anti-linearity then follows
from

(M〈d〉)~ = HOMk(M〈d〉, k) ∼= (HOMk(M,k))〈−d〉 = (M~)〈−d〉,
for all M ∈ ANHn -fmod, d ∈ Z.
(iv) We can use the same argument as in (ii). Since # is a duality on the category

ANHn -pmod, the bar involution on K0(ANHn -pmod) is a well-defined self-inverse additive
map. The A-anti-linearity is a consequence of

(P 〈d〉)# = HOMANHn(P 〈d〉,ANHn) ∼= (HOMANHn(P,ANHn))〈−d〉 = (P#)〈−d〉,

for all P ∈ ANHn -pmod, d ∈ Z.

86



4.3. Alternating nil Hecke Grothendieck groups

Now, let (., .)n : K0(ANHn -pmod)×G0(ANHn -fmod)→ A be the A-bilinear HOM-pairing
that was from Definition 2.4.7. So (., .)n is given by

([P ], [M ])n = grdim(HOMANHn(P#,M)),

for all P ∈ ANHn -pmod, M ∈ ANHn -fmod. Using the description of the action of the
involution # on the graded projective indecomposable ANHn-modules from Proposition 4.2.12,
we obtain an explicit description of (., .)n.

Proposition 4.3.2. The following holds:

(i) We have ([Qe
0], [T e

0 ])0 = 1.

(ii) We have ([Qe
1], [T e

1 ])1 = 1.

(iii) Let n ∈ N0 with n ≥ 2 and 4|n(n− 1). Then we have

([Qe
n], [T e

n])n = 1, ([Qe
n], [T o

n ])n = 0,
([Qo

n], [T e
n])n = 0, ([Qo

n], [T o
n ])n = 1.

(iv) Let n ∈ N0 with n ≥ 2 and 4 - n(n− 1). Then we have

([Qe
n], [T e

n])n = 0, ([Qe
n], [T o

n ])n = 1,
([Qo

n], [T e
n])n = 1, ([Qo

n], [T o
n ])n = 0.

Proof. The assertions (i) and (ii) are clear. So let n ∈ N0 with n ≥ 2. At first, we recall
that ANHn is graded Schurian by Corollary 4.2.6. Now, if 4|n(n− 1), then we know by (4.3)
that (Qe

n)# ∼= Qe
n and (Qo

n)# ∼= Qo
n. Moreover, Qe

n is the projective cover of T e
n and Qo

n is the
projective cover of T o

n . Thus, by (1.2), we obtain

([Qe
n], [T e

n])n = grdim HOMANHn(Qe
n, T

e
n) = [T e

n : T e
n]q = 1.

The other formulas from (iii) can be shown in the same way. Likewise, if 4 - n(n − 1), then
we know from (4.4) that (Qe

n)# ∼= Qo
n and (Qo

n)# ∼= Qe
n. With the same argument as in the

previous case, we conclude the formulas stated in (iv).

Definition 4.3.3. The alternating nil Hecke Grothendieck group G0(ANH) and the split al-
ternating nil Hecke Grothendieck group K0(ANH) are defined as

G0(NH) :=
⊕
n∈N0

G0(ANHn -fmod), K0(NH) :=
⊕
n∈N0

K0(ANHn -pmod).

By definition, G0(ANH) and K0(ANH) both admit an N0-graded A-module structure.

The bar involutions on G0(NHn -fmod) and K0(NHn -pmod) give in a natural way an A-
anti-linear self-inverse automorphisms

: G0(ANH)→ G0(ANH), : K0(ANH)→ K0(ANH),

which we call the bar involutions on G0(NH) and K0(NH). In addition, we can also extend
the bilinear HOM-pairing to the alternating nil Hecke Grothendieck groups as follows. Let

(., .) : K0(ANH)×G0(ANH)→ A
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be the unique A-bilinear pairing such that

([P ], [M ]) =
{

([P ], [M ])m if m = n,

0 if m 6= n,

holds for all P ∈ ANHm -pmod,M ∈ ANHn -fmod. We call (., .) the bilinear HOM-pairing
between K0(ANH) and G0(ANH).

Next, we show that the alternating nil Hecke Grothendieck groups G0(ANH) and K0(ANH)
both admit multiplicative and comultiplicative structure. For this, we proceed as for the nil
Hecke Grothendieck groups. At first, recall the inclusions

ιm,n : NHm⊗k NHn ↪→ NHm⊗k NHn

from Proposition 3.3.3. Since ιm,n is a graded inclusion, we deduce

ιm,n(ANHm⊗k ANHn) ⊂ ANHm+n .

Thus, via ιm,n, we obtain inclusions of graded algebras ANHm⊗k ANHn ↪→ ANHm+n. In the
following let

Indm+n
m,n : (ANHm⊗k ANHn)-Mod→ ANHm+n -Mod,

Resm+n
m,n : ANHm+n -Mod→ (ANHm⊗k ANHn)-Mod

denote the induction and restriction functors corresponding to this inclusion. To see that these
functors give well-defined maps on the alternating nil Hecke Grothendieck groups, we use the
following general proposition.

Proposition 4.3.4. Let m,n ∈ N0. Then the following holds:

(i) NHn is a finitely generated graded projective left ANHn-module,

(ii) NHn is a finitely generated graded projective right ANHn-module,

(iii) ANHm+n is a finitely generated graded projective left (ANHm⊗k ANHn)-module,

(iv) ANHm+n is a finitely generated graded projective right (ANHm⊗k ANHn)-module.

Proof. The assertion (i) was already shown in Corollary 4.2.7. We now use this result to prove
(ii). For this, let N be NHn viewed as left ANHn-module and N ′ be NHn viewed as right
ANHn-module. Let NT be the right ANHn-module obtained from N by twisting with T. Then
(i) implies that NT is a finitely generated graded projective ANHn right-module. Moreover,
we have an isomorphism of right ANHn-modules

NT → N ′, x 7→ T(x), for all x ∈ NT.

Thus, N ′ is a finitely generated graded projective right ANHn-module.
Next we prove (iii). According to (i), NHm⊗k NHn is a finitely generated graded projective

left (ANHm⊗k ANHn)-module. By Lemma 3.3.4.(i), we know that NHm+n is a graded free left
(NHm⊗k NHn)-module of finite rank. Hence, NHm+n is a finitely generated graded projective
left (ANHm⊗k ANHn)-module. Finally, since ANHm+n is a direct summand of NHm+n as left
(ANHm⊗k ANHn)-module, we obtain that ANHm+n is a finitely generated graded projective
left (ANHm⊗k ANHn)-module.

The proof of (iv) is completely analogous to the proof of (iii).
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Just like in the case of the nil Hecke Grothendieck groups which we considered in The-
orem 3.3.5, we obtain via the above induction and restriction functors multiplicative and
comultiplicative structures on G0(ANH) and K0(ANH). For this, recall from Proposition 2.1.6
the isomorphisms of A-modules

G0(NHm -fmod)⊗A G0(ANHn -fmod) ∼= G0((ANHm⊗k ANHn)-fmod),
K0(NHm -pmod)⊗A K0(ANHn -pmod) ∼= K0((ANHm⊗k ANHn)-pmod).

In the following, we will always identify these Grothendieck groups via the isomorphisms from
Proposition 2.1.6.

Theorem 4.3.5. The following assertions are true:

(i) We have that G0(ANH) admits the structure of an N0-graded A-algebra, with unit [T e
0 ]

and multiplication
[M ] · [N ] = [Indm+n

m,n (M ⊗k N)],

for all m,n ∈ N0,M ∈ ANHm -fmod, N ∈ ANHn -fmod. Similarly, K0(ANH) admits the
structure of an N0-graded A-algebra, with unit [Qe

0] and multiplication

[P ] · [Q] = [Indm+n
m,n (P ⊗k Q)],

for all m,n ∈ N0, P ∈ ANHm -pmod, Q ∈ ANHn -pmod.

(ii) We have that G0(ANH) admits the structure of an N0-graded A-coalgebra, where the
counit is the projection to G0(ANH0 -fmod) and the comultiplication is

∆G([M ]) =
n∑
r=0

[Resnn,n−r(M)], for all n ∈ N0,M ∈ ANHn -fmod.

Analogously, K0(ANH) admits the structure of an N0-graded A-coalgebra, where counit
is the projection to K0(ANH0 -pmod) and the comultiplication is

∆K([P ]) =
n∑
r=0

[Resnr,n−r(P )], for all n ∈ N0, P ∈ ANHn -pmod.

Proof. From Proposition 4.3.4.(iv) and Proposition 2.1.6, we obtain that the above multiplica-
tion and comultiplication maps are well-defined. The associativity and coassociativity follows
from the associativity of induction, restriction and outer tensor products.

In the following let K0(ANH)∗ be the N0-graded dual of K0(ANH), see Definition 3.3.7. So
K0(ANH)∗ is the N0-graded A-module

K0(ANH)∗ =
⊕
n∈N0

HomA(K0(ANHn -pmod),A)

with N0-graded A-algebra and N0-graded A-coalgebra structure as defined in Definition 3.3.7.
Likewise, let G0(ANH)∗ be the N0-graded dual of G0(ANH). In Theorem 3.3.8, we described
a duality between G0(NH) and K0(NH). Using the same argument as in Theorem 3.3.8, we
deduce the following duality G0(ANH) and K0(ANH).
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Theorem 4.3.6. The following assertions are true:

(i) For each n ∈ N0, let

fn : G0(ANHn -fmod)→ HomA(K0(ANHn -pmod),A)

be the homomorphism of A-modules given by [M ] 7→ (., [M ])n, for all M ∈ ANHn -fmod.
Then

f :=
⊕
n∈N0

fn : G0(ANH)→ K0(ANH)∗

is an isomorphism of N0-graded A-algebras and N0-graded A-coalgebras.

(ii) For each n ∈ N0, let

gn : K0(ANHn -pmod)→ HomA(G0(ANHn -fmod),A)

be the homomorphism of A-modules given by [P ] 7→ ([P ], .)n, for all P ∈ ANHn -pmod.
Then

g :=
⊕
n∈N0

gn : K0(ANH)→ G0(ANH)∗

is an isomorphism of N0-graded A-algebras and N0-graded A-coalgebras.

Proof. We only show (i), since (ii) can be shown in exactly the same way. With exactly the
same argument as in Theorem 3.3.8, one can deduce from the compatibility of the HOM-
pairing with induction, restriction and outer tensor products, that f is a homomorphism
of N0-graded A-algebras and N0-graded A-coalgebras. By Proposition 4.3.2, we know that
((., [T e

n])n, (., T o
n)n) is an A-basis of HomA(K0(ANHn -pmod),A) for each n ≥ 2. If n ∈ {0, 1},

then HomA(K0(ANHn -pmod),A) is free of rank 1 with generator (., [T e
n])n. Thus, from Propo-

sition 4.3.1, it follows that f maps an A-basis of G0(ANH) to an A-basis of K0(ANH)∗. This
implies that f is an isomorphism of N0-graded A-algebras and N0-graded A-coalgebras.

We end this section by observing that induction resp. restriction give algebra resp. coalgebra
homomorphisms between the alternating nil Hecke Grothendieck groups and the nil Hecke
Grothendieck groups.

Theorem 4.3.7. The following assertions are true:

(i) There exists a unique homomorphism of N0-graded A-algebras

IG : G0(ANH)→ G0(NH),

such that
[M ] 7→ [IndNHn

ANHn
(M)],

for all n ∈ N0,M ∈ ANHn -fmod. Similarly, there exists a unique homomorphism of
N0-graded A-algebras

IK : K0(ANH)→ K0(NH),

such that
[P ] 7→ [IndNHn

ANHn
(M)],

for all n ∈ N0, P ∈ ANHn -pmod.
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(ii) There exists a unique homomorphism of N0-graded A-coalgebras

RG : G0(NH)→ G0(ANH),

such that
[M ] 7→ [ResNHn

ANHn
(M)],

for all n ∈ N0,M ∈ NHn -fmod. Analogously, there exists a unique homomorphism of
N0-graded A-coalgebras

RK : K0(NH)→ K0(ANH),
such that

[P ] 7→ [ResNHn
ANHn

(P )],
for all n ∈ N0, P ∈ NHn -pmod.

Moreover, under the identifications

G0(ANH) ∼= K0(ANH)∗, K0(ANH) ∼= G0(ANH)∗,
G0(NH) ∼= K0(NH)∗, K0(NH) ∼= G0(NH)∗,

from Theorem 4.3.6 and Theorem 3.3.8, we have that RG is the adjoint map of IK, vice versa,
IK is the adjoint of RG. Moreover, IG is the adjoint map of RK and vice versa, RK is the
adjoint of IG.

Proof. By Proposition 4.3.4, we know that NHn is a finitely generated graded projective right
ANHn-module for each n ∈ N0. This implies that the maps IG, IK, RG and RK are well-
defined. From the transitivity of induction, we obtain that IG and IK are compatible with the
multiplicative structures. Likewise, the transitivity of restriction implies that RG and RK are
compatible with the comultiplicative structures. Next, we show that RG is the adjoint map of
IK. From Proposition 2.4.9, we know that

([IndNHn
ANHn

(P )], [M ]) = ([P ], [ResNHn
ANHn

(M)]),

for all P ∈ ANHn -pmod,M ∈ NHn -fmod. Hence, we obtain

(., [M ]) ◦ IK = (.,RG([M ])).

According to the identifications G0(ANH) ∼= K0(ANH)∗ and G0(NH) ∼= K0(NH)∗ from Theo-
rem 4.3.6 and Theorem 3.3.8, we conclude that RG is the adjoint map of IK. The remaining
adjunctions can be shown in exactly the same way.

4.4 Rational alternating nil Hecke Grothendieck groups
In this section, we study the rational alternating nil Hecke Grothendieck groups G0(ANH)Q(q)
and K0(ANH)Q(q) which we obtain by scalar extension to Q(q). In particular, we apply the
results from Section 2.5 to G0(ANH)Q(q) and K0(ANH)Q(q).

Definition 4.4.1. The rational alternating nil Hecke Grothendieck group G0(ANH)Q(q) and
the rational split alternating nil Hecke Grothendieck group K0(ANH)Q(q) are defined as

G0(ANH)Q(q) :=
⊕
n∈N0

Q(q)⊗A G0(ANHn -fmod),

K0(ANH)Q(q) :=
⊕
n∈N0

Q(q)⊗A K0(ANHn -pmod).
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By definition, G0(ANH)Q(q) and K0(ANH)Q(q) are N0-graded Q(q)-vector spaces. In addi-
tion, Theorem 4.3.5 implies that both G0(ANH)Q(q) and K0(ANH)Q(q) are N0-graded Q(q)-
algebras and N0-graded Q(q)-coalgebras. We also have that the bar involutions extend to
G0(ANH)Q(q) and K0(ANH)Q(q). Likewise, the A-bilinear HOM-pairing between K0(ANH)
and G0(ANH) extends to a Q(q)-bilinear pairing (., .) between G0(ANH)Q(q) and K0(ANH)Q(q).
In order to apply the results from Section 2.5 to G0(ANH)Q(q) and K0(ANH)Q(q), we have to

ensure that the conditions that were formulated in Convention 2.5.1 are satisfied. According
to our discussion from Section 4.1 and Section 4.2, it is only left to show that ANHn has finite
global dimension for all n ∈ N0. This follows from the following proposition.

Proposition 4.4.2. For each n ∈ N0, we have gl(ANHn) = n.

Proof. The assertion is clear for n = 0, 1. So in the following, we assume that n ≥ 2. From
(3.20), we know that gl(NHn) = n. By Theorem 1.5.4, we can infer that

max{i ∈ N0|EXTi
NHn(Ln, Ln) 6= 0} = n.

Using generalized Frobenius reciprocity and Proposition 4.2.8, we hence obtain

EXTi
ANHn(Le

n, L
e
n ⊕ Lo

n) ∼= EXTi
ANHn(Lo

n, L
e
n ⊕ Lo

n) ∼= EXTi
NHn(Ln, Ln) = 0,

for all i ≥ n + 1. Since Le
n, L

o
n are the unique graded simple ANHn-modules up to shift-

isomorphism, we deduce

max{i ∈ N0|EXTi
ANHn(S, T ) 6= 0, where S, T are graded simple ANHn-modules} ≤ n.

Hence, by Theorem 1.5.4, we conclude that gl(ANHn) ≤ n. Finally, from

EXTn
ANHn(Le

n, L
e
n)⊕ EXTn

ANHn(Le
n, L

o
n) ∼= EXTn

ANHn(Le
n, L

e
n ⊕ Lo

n) ∼= EXTn
NHn(Ln, Ln) 6= 0,

we obtain that gl(ANHn) = n.

Next, we note that by Proposition 4.2.11, all graded composition multiplicities of finitely
generated graded projective ANHn-modules are contained in Q(q). Hence, we can apply the
rational versions of the results from Section 2.5.
We begin with defining Q(q)-bilinear Euler forms on G0(ANH)Q(q) and K0(ANH)Q(q). The

definition is completely analogous to the corresponding definition of the Q(q)-bilinear Euler
forms on G0(NH)Q(q) and K0(NH)Q(q), see Definition 3.3.10.

Definition 4.4.3. We define the following:

(i) For n ∈ N0 let χK,n be the rational bilinear Euler form on G0(ANHn -fmod) from Defi-
nition 2.5.18.(i). So χK,n is the unique Q(q)-bilinear form such that

χK,n(f ⊗ [M ], g ⊗ [N ]) = fg
n∑
i=0

(−1)i grdim(EXTi
ANHn(M,N~)),

for all f, g ∈ Q(q) and M,N ∈ ANHn -fmod.
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(ii) Let χG be the unique Q(q)-bilinear form on G0(ANH)Q(q) such that

χG(f ⊗ [M ], g ⊗ [N ]) =
{
χK,n(f ⊗ [M ], g ⊗ [N ]) if m = n,

0 if m 6= n,

holds for all f, g ∈ Q(q),M ∈ ANHm -fmod and N ∈ ANHn -fmod. We call χG the
Q(q)-bilinear Euler form on G0(ANH)Q(q).

(iii) For n ∈ N0 let χK,n be the rational bilinear Euler form on K0(ANHn -pmod) from Defi-
nition 2.5.18.(ii). So χK,n is the unique Q(q)-bilinear form such that

χp,n(f ⊗ [P ], g ⊗ [Q]) = fg grdim(HOMANHn(P#, Q)),

for all f, g ∈ Q(q) and P,Q ∈ ANHn -pmod.

(iv) Let χK be the unique Q(q)-bilinear form on K0(ANH)Q(q) such that

χK(f ⊗ [P ], g ⊗ [Q]) =
{
χK,n(f ⊗ [P ], g ⊗ [Q]) if m = n,

0 if m 6= n,

holds for all f, g ∈ Q(q), P ∈ ANHm -pmod and Q ∈ ANHn -pmod. We call χK the
Q(q)-bilinear Euler form on K0(ANH)Q(q).

We proceed with applying Theorem 2.5.19 to G0(ANH)Q(q) and K0(ANH)Q(q).

Theorem 4.4.4. For each n ∈ N0, let

φn : Q(q)⊗A K0(ANHn -pmod)→ Q(q)⊗A G0(ANHn -fmod)

be the unique Q(q)-linear map such that

f ⊗ [P ] 7→ f · gch([P ]), for all f ∈ Q(q), P ∈ ANHn -pmod.

Here, gch denotes the graded character map from Definition 2.2.2. Let

φ :=
⊕
n∈N0

φn : K0(ANH)Q(q) → G0(ANH)Q(q).

Then φ is an isomorphism of N0-graded Q(q)-algebras and N0-graded Q(q)-coalgebras. Fur-
thermore, the following holds:

(i) We have χK(x, y) = χG(φ(x), φ(y)), for all x, y ∈ K0(NH)Q(q).

(ii) The Q(q)-bilinear Euler forms χG and χK are non-degenerate and χG(φ(.), .) = (., .).

Proof. The fact that φ is a homomorphism of N0-graded Q(q)-algebras and N0-graded coal-
gebras follows directly from the compatibility of the graded character map with induction,
restriction and outer tensor products, see Corollary 2.3.6 and Corollary 2.2.13. The remaining
assertions follow immediately from Theorem 2.5.19.

From Theorem 4.4.4.(ii), we directly obtain the following consequence.
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Corollary 4.4.5. We have that

{1⊗ [T e
0 ], 1⊗ [T e

1 ]} ∪ {1⊗ [T e
n], 1⊗ [T o

n ]|n ∈ N0, n ≥ 2}

and
{φ(1⊗ [Qe

0]), φ(1⊗ [Qe
1])} ∪ {φ(1⊗ [(Qe

n)#]), φ(1⊗ [(Qo
n)#])|n ∈ N0, n ≥ 2}

are dual homogeneous Q(q)-bases of G0(ANH)Q(q) with respect to χG.

Moreover, using exactly the same arguments as in Corollary 3.3.11 and Proposition 3.3.13,
we deduce the following properties of χG and χK.

Corollary 4.4.6. The following holds:

(i) The Euler forms χG and χK are symmetric.

(ii) For all x, y, z ∈ G0(ANH)Q(q), we have

χG(x · y, z) = χG(x⊗ y,∆G(z)),

where the Q(q)-bilinear form χG on G0(ANH)Q(q) ⊗Q(q) G0(ANH)Q(q) is given by

χG(a⊗ b, c⊗ d) = χG(a, c)χG(b, d),

for all a, b, c, d ∈ G0(ANH)Q(q).

(iii) Likewise, for all x, y, z ∈ K0(ANH)Q(q), we have

χK(x · y, z) = χK(x⊗ y,∆K(z)),

where the Q(q)-bilinear form χK on K0(ANH)Q(q) ⊗Q(q) K0(ANH)Q(q) is given by

χK(a⊗ b, c⊗ d) = χK(a, c)χK(b, d),

for all a, b, c, d ∈ K0(ANH)Q(q).

In the following, we work out an explicit description of φ and the inverse map φ−1. Further-
more, we also determine explicit formulas for the bilinear Euler forms χG and χK.

Notation 4.4.7. Let n ∈ N0. Then we define the following elements of Q(q):

Hn(q) :=
n∏
i=1

1
1− q2i , Fn(q) :=

n∏
i=1

(1− q2i) = H−1(q),

Hn,e(q) := Even(Hn(q)), Hn,o(q) := Odd(Hn(q)),
Fn,e(q) := Even(Fn(q)), Fn,o(q) := Odd(Fn(q)).

We have the following relations between these rational functions.

Lemma 4.4.8. We have the equalities

Fn,e(q) = Hn,e(q)
Hn,e(q)2 −Hn,o(q)2 , Fn,o(q) = −Hn,o(q)

Hn,e(q)2 −Hn,o(q)2 .
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Proof. We set Gn(q) :=
∏n
i=1(1− qi)−1 ∈ Q(q). Then we have

Hn,e(q) = Even(Hn(q)) = Even(Gn(q2)) = 1
2(Gn(q2) +Gn(−q2)).

Similarly, we also have the equalities

Hn,o(q) = 1
2(Gn(q2)−Gn(−q2)),

Fn,e(q) = 1
2(G−1

n (q2) +G−1
n (−q2)),

Fn,o(q) = 1
2(Gn(q2)−1 −Gn(−q2)−1).

Using these equalities, we conclude

Hn,e(q)
Hn,e(q)2 −Hn,o(q)2 = Gn(q2) +Gn(−q2)

2Gn(q2)Gn(−q2)

= G−1
n (−q2) +G−1

n (q2)
2

= Fn,e(q).

Thus, we proved the first equation. The second equation can be shown in the same way.

Using these preparations, we now give an explicit description of φ and φ−1.

Theorem 4.4.9. Let φ =
⊕

n∈N0 φn be as in Theorem 4.4.4. Then the following holds:

(i.a) We have φ0(1⊗ [Qe
0]) = 1⊗ [T e

0 ].

(i.b) We have φ1(1⊗ [Qe
1]) = (1− q4)−1 ⊗ [T e

1 ].

(i.c) For n ∈ N0 with n ≥ 2, we have

φn(1⊗ [Qe
n]) = Hn,e(q)⊗ [T e

n] +Hn,o(q)⊗ [T e
n],

φn(1⊗ [Qo
n]) = Hn,o(q)⊗ [T e

n] +Hn,e(q)⊗ [T o
n ].

Write φ−1 =
⊕
n∈N0 φn

−1. Then the following holds:

(ii.a) We have φ−1
0 (1⊗ [T e

0 ]) = 1⊗ [Qe
0].

(ii.b) We have φ−1
1 (1⊗ [T e

1 ]) = (1− q4)⊗ [Qe
1].

(ii.c) For n ∈ N0 with n ≥ 2, we have

φn
−1(1⊗ [T e

n]) = Fn,e(q)⊗ [Qe
n] + Fn,o(q)⊗ [Qo

n],
φn
−1(1⊗ [T o

n ]) = Fn,o(q)⊗ [Qe
n] + Fn,e(q)⊗ [Qo

n].
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Proof. The exceptional cases (i.a), (i.b), (ii.a) and (ii.b) can be shown by direct calculations.
So in the following, we only prove (i.c) and (ii.c). At first, recall from Proposition 4.2.11 that
we have

[Qe
n : T e

n]q = Even
( n∏
i=1

1
1− q2i

)
= Hn,e, [Qe

n : T o
n ]q = Odd

( n∏
i=1

1
1− q2i

)
= Hn,o,

[Qo
n : T e

n]q = Odd
( n∏
i=1

1
1− q2i

)
= Hn,o, [Qo

n : T o
n ]q = Even

( n∏
i=1

1
1− q2i

)
= Hn,e.

Hence, the graded characters of Qe
n and Qo

n are given by

gch([Qe
n]) = Hn,e ⊗ [T e

n] +Hn,o ⊗ [T o
n ], gch([Qo

n]) = Hn,o ⊗ [T e
n] +Hn,e ⊗ [T o

n ].

By the definition of φ, we hence immediately obtain (i.c). Now, in order to compute φ−1
n , we

have to compute the inverse of the matrix(
Hn,e Hn,o
Hn,o Hn,e

)
∈ M2(Q(q)).

For this, we use Lemma 4.4.8 as follows(
Hn,e Hn,o
Hn,o Hn,e

)−1

= 1
H2
n,e −H2

n,o

(
Hn,e −Hn,o
−Hn,o Hn,e

)
=
(
Fn,e Fn,o
Fn,o Fn,e

)
. (4.5)

This implies (ii.c).

From these formulas for φ and the inverse φ−1, we derive explicit formulas for the bilinear
Euler forms χK and χG with respect to the bases given by graded projective indecomposable
resp. graded simple modules.

Theorem 4.4.10. The following assertions are true:

(i) We have χK,0(1⊗ [Qe
0], 1⊗ [Qe

0]) = 1. Moreover, we have χG,0(1⊗ [T e
0 ], 1⊗ [T e

0 ]) = 1.

(ii) We have χK,1(1⊗ [Qe
1], 1⊗ [Qe

1]) = (1− q4)−1. Moreover, we have

χG,1(1⊗ [T e
1 ], 1⊗ [T e

1 ]) = 1− q4.

(iii) Let n ∈ N0 with n ≥ 2 and 4|n(n− 1). With respect to the basis (1⊗ [Qe
n], 1⊗ [Qo

n]), we
have that χK,n is given by the matrix(

Hn,e(q) Hn,o(q)
Hn,o(q) Hn,e(q)

)
.

Moreover, with respect to the basis (1⊗ [T e
n], 1⊗ [T o

n ]), we have that χK,n is given by the
matrix (

Fn,e(q) Fn,o(q)
Fn,o(q) Fn,e(q)

)
.
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(iv) Let n ∈ N0 with n ≥ 2 and 4 - n(n−1). Then, with respect to the basis (1⊗[Qe
n], 1⊗[Qo

n]),
we have that χK,n is given by the matrix(

Hn,o(q) Hn,e(q)
Hn,e(q) Hn,o(q)

)
Moreover, with respect to the basis (1⊗ [T e

n], 1⊗ [T o
n ]), we have that χK,n is given by the

matrix (
Fn,o(q) Fn,e(q)
Fn,e(q) Fn,o(q)

)
.

Proof. Again, the exceptional cases (i) and (ii) can be shown by straightforward computations.
Hence, in the following, we only show (iii) and (iv).
(iii) By (4.3), we know that (Qe

n)# ∼= Qe
n and (Qo

n)# ∼= Qo
n. Thus, from Proposition 4.2.11,

we directly obtain
χK,n(1⊗ [Qe

n], 1⊗ [Qe
n]) = [Qe

n : T e
n]q = Hn,e, χK,n(1⊗ [Qe

n], 1⊗ [Qo
n]) = [Qe

n : T o
n ]q = Hn,o,

χK,n(1⊗ [Qo
n], 1⊗ [Qe

n]) = [Qo
n : T e

n]q = Hn,o, χK,n(1⊗ [Qo
n], 1⊗ [Qo

n]) = [Qo
n : T o

n ]q = Hn,o.

Thus, we have that with respect to the basis (1 ⊗ [Qe
n], 1 ⊗ [Qo

n]), the bilinear form χK,n is
given by the following matrix (

Hn,e(q) Hn,o(q)
Hn,o(q) Hn,e(q)

)
From Theorem 4.4.9.(ii.c), it then follows that with respect to the basis (1⊗ [T e

n], 1⊗ [T o
n ]), we

have that χK,n is given by the following product of matrices(
Fn,e(q) Fn,o(q)
Fn,o(q) Fn,e(q)

)(
Hn,e(q) Hn,o(q)
Hn,o(q) Hn,e(q)

)(
Fn,e(q) Fn,o(q)
Fn,o(q) Fn,e(q)

)
︸ ︷︷ ︸

=id

=
(
Fn,e(q) Fn,o(q)
Fn,o(q) Fn,e(q)

)
.

Here, we used the equation (4.5).
(iv) By (4.4), we have (Qe

n)# ∼= Qo
n and (Qo

n)# ∼= Qe
n. With the same argument as in (iii),

we conclude that with respect to the basis (1⊗ [Qe
n], 1⊗ [Qo

n]), the bilinear form χK,n is given
by the matrix (

Hn,o(q) Hn,e(q)
Hn,e(q) Hn,o(q)

)
.

Again applying Theorem 4.4.9.(ii.c), we deduce that with respect to the basis (1⊗[T e
n], 1⊗[T o

n ]),
we have that χK,n is given by the following product of matrices

F :=
(
Fn,e(q) Fn,o(q)
Fn,o(q) Fn,e(q)

)(
Hn,o(q) Hn,e(q)
Hn,e(q) Hn,o(q)

)(
Fn,e(q) Fn,o(q)
Fn,o(q) Fn,e(q)

)
.

Using (4.5), we determine F as follows

F =
(
Fn,e(q) Fn,o(q)
Fn,o(q) Fn,e(q)

)(
0 1
1 0

)(
Hn,e(q) Hn,o(q)
Hn,o(q) Hn,e(q)

)(
Fn,e(q) Fn,o(q)
Fn,o(q) Fn,e(q)

)

=
(
Fn,e(q) Fn,o(q)
Fn,o(q) Fn,e(q)

)(
0 1
1 0

)

=
(
Fn,o(q) Fn,e(q)
Fn,e(q) Fn,o(q)

)
.
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Thus, we proved (iv).

4.5 Multiplicative and comultiplicative structures
In this section, we characterize the multiplicative and the comultipliative structure on the
alternating nil Hecke Grothendieck groups G0(ANH) and K0(ANH). For this, we identify
G0(ANH) ∼= K0(ANH)∗ and K0(ANH) ∼= G0(ANH)∗ by the isomorphisms of N0-graded A-
algebras and N0-graded A-coalgebras from Theorem 4.3.6. In addition, we use the following
notation which is analogous to Notation 4.2.2.

Notation 4.5.1. Let m,n ∈ N0. Let M be a graded (ANHm⊗k ANHn)-module such that the
graded components Mi vanish for all i ∈ 1 +Z. We define M e ⊂M to be the even part of M ,
i.e. M e is the graded (ANHm⊗k ANHn)-module whose graded components are

M e
i =

{
Mi if i ≡ 0 mod 4,
0 else.

Moreover, we defineMo ⊂M to be the odd part ofM , i.e. Mo is the graded (ANHm⊗k ANHn)-
module whose graded components are

Mo
i =

{
Mi if i ≡ 2 mod 4,
0 else.

We have the following decomposition of (ANHm⊗k ANHn)-modules M = M e ⊕Mo.
If N is a graded (NHm⊗k NHn)-module such that the graded components Ni vanish for all

i ∈ 1 + Z, then we have a decomposition of ANHm⊗k ANHn-modules

ResNHm⊗k NHn
ANHm⊗k ANHn

(N) = N e ⊕No,

where N e := (ResNHm⊗k NHn
ANHm⊗k ANHn

(N))e and No := (ResNHm⊗k NHn
ANHm⊗k ANHn

(N))o. We call N e the even
part and No the odd part of N .

We begin with determining explicit formulas for the comultiplication on K0(ANH).

Notation 4.5.2. Let R be a commutative unital ring and let C be an N0-graded R-module.
For n ∈ N0 let pn : C → Cn be the projection to the n-th homogeneous component. Let
c ∈ C ⊗R C be a homogeneous element and r, s ∈ N0 with r + s = |c|. Then we set

cr,s := (pr ⊗ ps)(c) ∈ Cr ⊗R Cs.

Theorem 4.5.3. Let r, s ∈ N0 with r, s ≥ 2 and set n := r + s. Then we have

∆K([Qe
n])r,s = q−rs([Qe

r]⊗ [Qe
s] + [Qo

r ]⊗ [Qo
s]),

∆K([Qo
n])r,s = q−rs([Qe

r]⊗ [Qo
s] + [Qo

r ]⊗ [Qe
s]).

Proof. We only show the formula for [Qe
n]. The same argument can be used to show the

formula for [Qo
n]. Now, by definition, we have

Qe
n = P e

n〈
1
2n(n− 1)〉.
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Now, according to Theorem 3.4.3, we know that ResNHn
NHr ⊗k NHs

(Pn) ∼= Pr ⊗k Ps. From this, we
conclude

ResANHn
ANHr ⊗k ANHs

(P e
n) ∼=

(
ResNHn

ANHr ⊗k ANHs
(Pn)

)e

∼=
(

ResNHr ⊗k NHs

ANHr ⊗k ANHs
(Pr ⊗k Ps)

)e

∼= (P e
r ⊗k P e

s )⊕ (P o
r ⊗k P o

s ).

Hence, we obtain

ResANHn
ANHr ⊗k ANHs

(Qe
n) ∼= (Qe

r ⊗k Qe
s)〈−rs〉 ⊕ (Qo

r ⊗k Qo
s)〈−rs〉,

which gives the stated formula for [Qe
n].

We further have the following exceptional cases. They can be computed with same argument
as the ordinary cases from Theorem 4.5.3.

Remark 4.5.4. Let m ∈ N0. Then we have

∆K([Qe
m+1])1,m = q−m([Qe

1]⊗ [Qe
m]) + q2−m([Qe

1]⊗ [Qo
m]),

∆K([Qe
m+1])m,1 = q−m([Qe

m]⊗ [Qe
1]) + q2−m([Qo

m]⊗ [Qe
1]),

∆K([Qo
m+1])1,m = q−m([Qe

1]⊗ [Qo
m]) + q2−m([Qe

1]⊗ [Qe
m]),

∆K([Qo
m+1])m,1 = q−m([Qo

m]⊗ [Qe
1]) + q2−m([Qe

m]⊗ [Qe
1]).

Moreover, we have

∆K([Qe
2])1,1 = (q−1 + q3)[Qe

1]⊗ [Qe
1],

∆K([Qo
2])1,1 = 2q[Qe

1]⊗ [Qe
1].

Using the duality between G0(ANH) and K0(ANH), we derive from Theorem 4.5.3 explicit
formulas for the multiplication on G0(ANH). In order to determine these formulas, we have to
take the duality relations (4.3) and (4.4) into account. For this, we use the following lemma.
It can be proved by straightforward computations.

Lemma 4.5.5. Let m,n ∈ N0. Then we have:

(i) Suppose that 4|(m+n)(m+n−1). Then 2|mn if and only if either 4|m(m−1), 4|n(n−1)
or 4 - m(m− 1), 4 - n(n− 1).

(ii) Suppose that 4 - (m+n)(m+n−1). Then 2|mn if and only if either 4|m(m−1), 4 - n(n−1)
or 4 - m(m− 1), 4|n(n− 1).

Theorem 4.5.6. Let m,n ∈ N0 with m,n ≥ 2. Then we have

[T e
m] · [T e

n] = [T o
m] · [T o

n ] =
{
q−mn[T e

m+n] if 2|mn,
q−mn[T o

m+n] if 2 - mn,

[T e
m] · [T o

n ] = [T o
m] · [T e

n] =
{
q−mn[T o

m+n] if 2|mn,
q−mn[T e

m+n] if 2 - mn.
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Proof. We only show the formula for [T e
m] · [T e

n]. The other stated formulas can be shown in
exactly the same way. Now, we know that

[T e
m] · [T e

n] = a[T e
m+n] + b[T o

m+n], (4.6)

for unique a, b ∈ A. So, we have to determine the coefficients a and b. For this, we first define
the A-bilinear pairing

(., .) : (K0(ANH)⊗A K0(ANH))× (G0(ANH)⊗A G0(ANH))→ A,

via (a⊗ b, c⊗ d) = (a, c)(b, d), for a, b ∈ K0(ANH), c, d ∈ G0(ANH).
Now, assume that 4|(m+ n)(m+ n− 1). According to Proposition 4.3.2, we can determine

the coefficient a by applying (., [Qe
m+n]) to (4.6). Using the compatibility of the HOM-pairing

with induction and restriction from Proposition 2.4.9 and the explicit formulas for ∆K([Qe
m+n]

from Theorem 3.4.3, we then deduce the following equalities

a = ([Qe
m+n], [T e

m] · [T e
n])

= (∆K([Qe
m+n]), [T e

m]⊗ [T e
n])

= q−mn([Qe
m]⊗ [Qe

n] + [Qo
m]⊗ [Qo

n], [T e
m]⊗ [T e

n])
= q−mn([Qe

m], [T e
m])([Qe

n], [T e
n]) + q−mn([Qo

m], [T e
m])([Qo

n], [T e
n]). (4.7)

By applying Proposition 4.3.2, we directly obtain the following possibilities

(4.7) =


q−mn if 4|m(m− 1), 4|n(n− 1),
q−mn if 4 - m(m− 1), 4 - n(n− 1),
0 if 4|m(m− 1), 4 - n(n− 1),
0 if 4 - m(m− 1), 4|n(n− 1).

Finally, Lemma 4.5.5 implies

a =
{
q−mn if 2|mn,
0 if 2 - mn.

Now, by applying (., [Qo
m+n]) to (4.6) and using exactly the same argument as above, we obtain

b =
{

0 if 2|mn,
q−mn if 2 - mn.

Thus, we showed the stated formula for [T e
m] · [T e

n] in the case 4|(m+ n)(m+ n− 1). The case
4 - (m+ n)(m+ n− 1) can be proved in the same way.

Again, we list the exceptional cases in the following remark. They can be verified with the
same argument as in Theorem 4.5.6.

Remark 4.5.7. Let n ∈ N0 with n ≥ 2. If 2|n, then we have

[T e
1 ] · [T e

n] = [T e
n] · [T e

1 ] = q−n[T e
n+1] + q2−n[T o

n+1],
[T e

1 ] · [T o
n ] = [T o

n ] · [T e
1 ] = q2−n[T e

n+1] + q−n[T o
n+1].
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If 2 - n, then we have

[T e
1 ] · [T e

n] = [T e
n] · [T e

1 ] = q2−n[T e
n+1] + q−n[T o

n+1],
[T e

1 ] · [T o
n ] = [T o

n ] · [T e
1 ] = q−n[T e

n+1] + q2−n[T o
n+1].

Finally, we also have
[T e

1 ] · [T e
1 ] = 2q[T e

2 ] + (q−1 + q3)[T o
2 ].

Next, we evaluate the results from Theorem 4.5.3 and Theorem 4.5.6. At first, we decide
that we only consider the comultiplication on K0(ANH) and the multiplication on G0(ANH)
in degrees ≥ 2. So in the following, we ignore the exceptional cases.

Notation 4.5.8. Let R be a ring.

1. Let A be an N0-graded R-algebra. For n ≥ 1, we denote by A≥n the two-sided ideal
A≥n :=

⊕
i≥nAi. We consider A≥2 as non-unital N0-graded R-algebra.

2. Let C be an N0-graded R-coalgebra with comultiplication ∆. For m ∈ N0, we denote by
pm : C → Cm the projection to the m-th homogeneous component. For n ≥ 1, we denote
by C≥n the non-counital N0-graded R-coalgebra C≥n :=

⊕
i≥nCi, with comultiplication

c 7→
( |c|∑
r=n

(pr ⊗ p|c|−r)∆(c)
)
∈
|c|⊕
r=n

Cr ⊗R C|c|−r.

for any homogeneous c ∈ C≥n.

In the following, let fA denote Lusztig’s integral quantum group corresponding to the one-
vertex graph without edges. We already discussed fA in Section 3.4 and continue to use the
notation that we used there. In particular, fA ∗ denotes the N0-graded dual of fA . Furthermore,
let

γ : fA → K0(NH), γ∗ : G0(NH)→ fA ∗

be the isomorphisms of N0-graded twistedA-bialgebras from Theorem 3.4.3 and Theorem 3.4.4.
Let A[Z/2] be the group algebra of Z/2 over A, i.e. A[Z/2] is the A-algebra of formal sums

A[Z/2] = {ae1 + beτ |a, b ∈ A},

where the addition is componentwise and the multiplication is given by

(ae1 + beτ )(a′e1 + b′eτ ) = (aa′ + bb′)e1 + (ab′ + ba′)eτ ,

for all a, a′, b, b′ ∈ A. We have that A[Z/2] admits a unique grading, where e1, eτ are homo-
geneous of degree 0. Let A[Z/2]∗ be the N0-graded dual A-coalgebra of A[Z/2], see Defini-
tion 3.3.7. By definition, the comultiplication ∆ on A[Z/2]∗ is given as follows. Let (e∗1, e∗τ ) be
the dual basis of (e1, eτ ). Then we have

∆(e∗1) = e∗1 ⊗ e∗1 + e∗τ ⊗ e∗τ , ∆(e∗τ ) = e∗1 ⊗ e∗τ + e∗τ ⊗ e∗1.
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Next, we consider the tensor product fA ⊗A A[Z/2]∗. It can be equipped with the tensor
product coalgebra structure that turns fA ⊗A A[Z/2]∗ into an N0-graded A-coalgebra, where
the comultiplication is given by

θ(n) ⊗ e1 7→
n∑
r=0

(q−r(n−r)(θ(r) ⊗ e∗1)⊗ (θ(n−r) ⊗ e∗1) + q−r(n−r)(θ(r) ⊗ e∗τ )⊗ (θ(n−r) ⊗ e∗τ )),

θ(n) ⊗ eτ 7→
n∑
r=0

(q−r(n−r)(θ(r) ⊗ e∗1)⊗ (θ(n−r) ⊗ e∗τ ) + q−r(n−r)(θ(r) ⊗ e∗τ )⊗ (θ(n−r) ⊗ e∗1)),

for all n ∈ N0. Finally, we note that we have a canonical embedding of N0-graded A-coalgebras

ι : fA → fA ⊗A A[Z/2]∗, θ(n) 7→ θ(n) ⊗ (e∗1 + e∗τ ), for all n ∈ N0.

Summarizing the above considerations, we obtain the following description of the comultil-
icative structure on K0(ANH).

Theorem 4.5.9. There is an isomorphism of non-counital N0-graded A-coalgebras

ϕ : ( fA ⊗A A[Z/2]∗)≥2 → K0(ANH)≥2,

such that
θ(n) ⊗ e∗1 7→ [Qe

n], θ(n) ⊗ e∗τ 7→ [Qo
n], for all n ∈ N0 with n ≥ 2.

Moreover, we have a commuting diagram:

( fA ⊗A A[Z/2]∗)≥2 K0(ANH)≥2

fA ≥2 K0(NH)≥2

ϕ

ι

γ

RK

Here, RK is the restriction homomorphism from Theorem 4.3.7.

Proof. According to Proposition 4.3.1, ϕ is an isomorphism of N0-graded A-modules. So, it
is left to show that ϕ is compatible with the comultiplication. For this, let ∆′ denote the
comultiplication on fA ⊗A A[Z/2]∗. Let r, s ∈ N0 with r, s ≥ 2 and n := r + s. Then we
conclude the following equalities from Theorem 4.5.3.

(ϕ⊗ ϕ)(∆′(θ(n) ⊗ e∗1)r,s) = q−rs((ϕ⊗ ϕ)(θ(r) ⊗ e∗1 ⊗ θ(s) ⊗ e∗1))
+ q−rs((ϕ⊗ ϕ)(θ(r) ⊗ e∗τ ⊗ θ(s) ⊗ e∗τ ))

= q−rs([Qe
r]⊗ [Qe

s] + [Qo
r ]⊗ [Qo

s])
= ∆K([Qe

n])
= ∆K(ϕ(θ(n) ⊗ e∗1))r,s.

In addition, we also have

(ϕ⊗ ϕ)(∆′(θ(n) ⊗ e∗τ )r,s) = q−rs((ϕ⊗ ϕ)(θ(r) ⊗ e∗1 ⊗ θ(s) ⊗ e∗τ ))
+ q−rs((ϕ⊗ ϕ)(θ(r) ⊗ e∗τ ⊗ θ(s) ⊗ e∗1))

= q−rs([Qe
r]⊗ [Qo

s] + [Qo
r ]⊗ [Qe

s])
= ∆K([Qo

n])
= ∆K(ϕ(θ(n) ⊗ e∗τ ))r,s.
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This implies that ϕ is compatible with the comultiplication and hence, ϕ is an isomorphism
of N0-graded non-counital A-coalgebras. The commutativity of the stated diagram follows
directly from

RK(γ(θ(n))) = RK([Qn]) = [Qe
n] + [Qo

n] = ϕ(θ(n) ⊗ e∗1 + θ(n) ⊗ e∗τ ) = ϕ(ι(θ(n))),

for n ∈ N0 with n ≥ 2. This completes the proof.

Using the duality between K0(ANH) and G0(ANH), we directly obtain from Theorem 4.5.9
a characterization of the multiplication on G0(ANH). For this, note that the N0-graded dual
A-algebra ( fA ⊗AA[Z/2]∗)∗ can be naturally identified with fA ∗⊗AA[Z/2]. The adjoint map
ι∗ : fA ∗ ⊗A A[Z/2]→ fA ∗ of ι is then given by

(θ(n)∗ ⊗ e1) 7→ θ(n)∗, (θ(n)∗ ⊗ eτ ) 7→ θ(n)∗,

for all n ∈ N0.

Corollary 4.5.10. Let ϕ be as in Theorem 4.5.3 and let

ϕ∗ : G0(ANH)≥2 → ( fA ∗ ⊗A A[Z/2])≥2

be the adjoint map. Then ϕ∗ is an isomorphism of non-unital N0-graded A-algebras. Moreover,
for each n ∈ N0 with n ≥ 2, we have

ϕ∗([T e
n]) =

{
θ(n)∗ ⊗ e1 if 4|n(n− 1),
θ(n)∗ ⊗ eτ if 4 - n(n− 1),

ϕ∗([T o
n ]) =

{
θ(n)∗ ⊗ eτ if 4|n(n− 1),
θ(n)∗ ⊗ e1 if 4 - n(n− 1).

In addition, the following diagram commutes:

G0(ANH)≥2 ( fA ∗ ⊗A A[Z/2])≥2

G0(NH)≥2 fA ∗≥2

ϕ∗

IG ι∗

γ∗

Here, IG is the induction homomorphism from Theorem 4.3.7.

We proceed with characterizing the comultiplicative structure on G0(ANH) and the multi-
plicative structure on K0(ANH).

Convention 4.5.11. In the following, we use in our formulas the non-symmetric quantum
binomial coefficients from Definition 3.2.5. This is due to our definition of the operators Even
and Odd. Namely, we have that

Even
((

n

m

)
q2

)
, Odd

((
n

m

)
q2

)
,

are both well-defined for all m,n ∈ N0 with 0 ≤ m ≤ n. In general, this is not true for the
symmetrized quantum binomial coefficients.
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Theorem 4.5.12. Let r, s ∈ N0 with r, s ≥ 2 and set n := r + s. Then we have

∆G([T e
n])r,s = q−rs Even

((
n

r

)
q2

)
([T e

r ]⊗ [T e
s ] + [T o

r ]⊗ [T o
s ])

+ q−rs Odd
((

n

r

)
q2

)
([T e

r ]⊗ [T o
s ] + [T o

r ]⊗ [T e
s ]),

∆G([T o
n ])r,s = q−rs Odd

((
n

r

)
q2

)
([T e

r ]⊗ [T e
s ] + [T o

r ]⊗ [T o
s ])

+ q−rs Even
((

n

r

)
q2

)
([T e

r ]⊗ [T o
s ] + [T o

r ]⊗ [T e
s ]).

Proof. We only prove the formula for [T e
n]. The formula for [T o

n ] can be shown in the same
way. Recall that by definition T e

n = Le
n〈12n(n− 1)〉. Now, by Theorem 3.4.4, we have

[ResNHn
NHr ⊗k NHs

(Ln)] =
(
n

r

)
q2

[Lr ⊗k Ls].

This means that ResNHn
NHr ⊗k NHs

Ln admits a finite filtration

ResNHn
NHr ⊗k NHs

(Ln) = F0 ⊃ F1 ⊃ . . . ⊃ FN ,

such that for each i ∈ {0, . . . , N − 1}, there exists di ∈ 2N0 such that Fi/Fi+1 ∼= Ln〈di〉.
Moreover, we have

∑N−1
i=0 qdi =

(n
r

)
q2 . Now, note that

ResANHn
ANHr ⊗k ANHs

(Le
n) = F e

0 ⊃ F e
1 ⊃ . . . ⊃ F e

N

is a finite filtration of ResANHn
ANHr ⊗k ANHs

(Le
n). Furthermore, by using the same argument as in

Lemma 4.2.3, we obtain

F e
i /F

e
i+1
∼= (Fi/Fi+1)e, for i ∈ {0, . . . , N − 1}.

Thus, we deduce

F e
i /F

e
i+1
∼=
{

(Le
r ⊗k Le

s)〈di〉 ⊕ (Lo
r ⊗k Lo

s)〈di〉 if 4|di,
(Le

r ⊗k Lo
s)〈di〉 ⊕ (Lo

r ⊗k Le
s)〈di〉 if 4 - di.

Hence, we directly obtain the following equality

[ResANHn
ANHr ⊗k ANHs

(Le
n)] = Even

((
n

r

)
q2

)
([Le

r ⊗k Le
s] + [Lo

r ⊗k Lo
s])

+ Odd
((

n

r

)
q2

)
([Le

r ⊗k Lo
s] + [Lo

r ⊗k Le
s]).

From this, the stated formula for [T e
n] directly follows.
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Again, we list the exceptional cases in the following remark. They can be shown in exactly
the same way as the formulas from Theorem 4.5.12.

Remark 4.5.13. Let m ∈ N0 with m ≥ 2. Then we have

∆G([T e
m+1])1,m = q−m Even((n+ 1)q2 [T e

1 ]⊗ [T e
m] + q−m Odd((n+ 1)q2)[T e

1 ]⊗ [T o
m],

∆G([T e
m+1])m,1 = q−m Even((n+ 1)q2)[T e

m]⊗ [T e
1 ] + q−m Odd((n+ 1)q2)[T o

m]⊗ [T e
1 ],

∆G([T o
m+1])1,m = q−m Odd((n+ 1)q2)[T e

1 ]⊗ [T e
m] + q−m Even((n+ 1)q2)[T e

1 ]⊗ [T o
m],

∆G([T o
m+1])m,1 = q−m Odd((n+ 1)q2)[T e

m]⊗ [T e
1 ] + q−m Even((n+ 1)q2)[T o

m]⊗ [T e
1 ]

Moreover, we have

∆G([T e
2 ])1,1 = q−1[T e

1 ]⊗ [T e
1 ],

∆G([T o
2 ])1,1 = q[T e

1 ]⊗ [T e
1 ].

By using the same duality argument as in Theorem 4.5.6, we obtain the corresponding for-
mulas for the multiplication on K0(ANH). We omit the proof, since the argument is completely
analogous.

Theorem 4.5.14. Let m,n ∈ N0 with m,n ≥ 2. Then we have

[Qe
m] · [Qe

n] = [Qo
m] · [Qo

n]

=

q
−mn Even(

(m+n
n

)
q2)[Qe

m+n] + q−mn Odd(
(m+n

n

)
q2)[Qo

m+n] if 2|mn,
q−mn Odd(

(m+n
n

)
q2)[Qe

m+n] + q−mn Even(
(m+n

n

)
q2)[Qo

m+n] if 2 - mn,

[Qe
m] · [Qo

n] = [Qo
m] · [Qe

n]

=

q
−mn Odd(

(m+n
n

)
q2)[Qe

m+n] + q−mn Even(
(m+n

n

)
q2)[Qo

m+n] if 2|mn,
q−mn Even(

(m+n
n

)
q2)[Qe

m+n] + q−mn Odd(
(m+n

n

)
q2)[Qo

m+n] if 2 - mn.

Moreover, we have the following exceptional cases.

Remark 4.5.15. Let n ∈ N0 with n ≥ 2 such that 2|n. Then we have

[Qe
1] · [Qe

n] = [Qe
n] · [Qe

1] = q−n Even((n+ 1)q2)[Qe
n+1] + q−n Odd((n+ 1)q2)[Qo

n+1],
[Qe

1] · [Qo
n] = [Qo

n] · [Qe
1] = q−n Odd((n+ 1)q2)[Qe

n+1] + q−n Even((n+ 1)q2)[Qo
n+1].

If 2 - n, then we have

[Qe
1] · [Qe

n] = [Qe
n] · [Qe

1] = q−n Odd((n+ 1)q2)[Qe
n+1] + q−n Even((n+ 1)q2)[Qo

n+1],
[Qe

1] · [Qo
n] = [Qo

n] · [Qe
1] = q−n Even((n+ 1)q2)[Qe

n+1] + q−n Odd((n+ 1)q2)[Qo
n+1].

Finally, we also have
[Qe

1] · [Qe
1] = q[Qe

2] + q−1[Qo
2].

In order to describe the comultiplication on G0(ANH) and the multiplication on K0(ANH),
we define the N0-gradedA-algebra f̃A as follows. For each n ∈ N0, let f̃A n be the freeA-module
of rank 1, with generator θ̃(n). Then we set

f̃A :=
⊕
n∈N0

f̃A n
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and endow f̃A with the multiplication

θ̃(m) · θ̃(n) = q−mn
(
m+ n

m

)
−q2

, for m,n ∈ N0.

Finally, we equip f̃A with the obvious N0-grading. By construction, we can view f̃A as a sign
perturbated version of fA . Now, let f̃A ∗ be the N0-graded dual A-coalgebra of f̃A . Then the
comultiplication on f̃A ∗ can be characterized as follows. Let (θ̃(n)∗)n∈N0 be the dual basis of
(θ̃(n))n∈N0 . Then we have

θ̃(n)∗ 7→
n∑
r=0

q−r(n−r)
(
n

r

)
−q2

θ̃(r)∗ ⊗ θ̃(n−r)∗, for all n ∈ N0.

According to the construction of f̃A and the formulas from Theorem 4.5.12, we then obtain
the following description of the comultiplication on K0(ANH).
Theorem 4.5.16. Let A′ := A[1

2 ]. There is an isomorphism of non-counital N0-graded A′-
coalgebras

ψ : A′ ⊗A ( fA ∗ ⊕ f̃A ∗)≥2 → A′ ⊗A G0(ANH)≥2

such that
1⊗ θ(n)∗ 7→ 1⊗ [T e

n] + 1⊗ [T o
n ], 1⊗ θ̃(n)∗ 7→ 1⊗ [T e

n]− 1⊗ [T o
n ],

for all n ∈ N0 with n ≥ 2. Moreover, we have a commuting diagram:

A′ ⊗A ( fA ∗ ⊕ f̃A ∗)≥2 A′ ⊗A G0(ANH)≥2

A′ ⊗A fA ∗≥2 A′ ⊗A G0(NH)≥2

ψ

inc
(γ∗)−1

RG

Here, inc is the canonical inclusion and RK is the restriction homomorphism from Theo-
rem 4.3.7.
Proof. At first note that (1⊗ [T e

n] + 1⊗ [T o
n ], 1⊗ [T e

n]− 1⊗ [T o
n ]|n ∈ N0, n ≥ 2) is an A′-basis

of A′ ⊗A G0(ANH)≥2. Thus, we conclude that ψ is an isomorphism of N0-graded A′-modules.
So it is left to show that ψ is compatible with the comultiplication. Let r, s ∈ N0 with r, s ≥ 2
and we set n := r + s. Using the equations(

n

r

)
q2

= Even
((

n

r

)
q2

)
+ Odd

((
n

r

)
q2

)
,

(
n

r

)
−q2

= Even
((

n

r

)
q2

)
−Odd

((
n

r

)
q2

)
,

we directly conclude from Theorem 4.5.12 that

∆G(1⊗ [T e
n]+1⊗ [T o

n ])

= q−r(n−r)
(
n

r

)
q2

((1⊗ [T e
n] + 1⊗ [T o

n ])⊗ (1⊗ [T e
n] + 1⊗ [T o

n ])), (4.8)

∆G(1⊗ [T e
n]−1⊗ [T o

n ])

= q−r(n−r)
(
n

r

)
−q2

((1⊗ [T e
n]− 1⊗ [T o

n ])⊗ (1⊗ [T e
n]− 1⊗ [T o

n ])). (4.9)

106



4.5. Multiplicative and comultiplicative structures

Now, let ∆′ denote the comultiplication on A′ ⊗A ( fA ∗ ⊕ f̃A ∗)≥2. Then we have the following
equalities

(ψ ⊗ ψ)((∆′(1⊗ θ(n)∗))r,s) = q−r(n−r)(ψ ⊗ ψ)
((

n

r

)
q2

(1⊗ θ(n)∗)⊗ (1⊗ θ(n)∗)
)

= q−r(n−r)
(
n

r

)
q2

((1⊗ [T e
n] + 1⊗ [T o

n ])⊗ (1⊗ [T e
n] + 1⊗ [T o

n ]))

(4.8)= ∆G(1⊗ [T e
n] + 1⊗ [T o

n ])
= ∆G(ψ(1⊗ θ(n)∗)).

Moreover, we have

(ψ ⊗ ψ)((∆′(1⊗ θ̃(n)∗))r,s) = q−r(n−r)(ψ ⊗ ψ)
((

n

r

)
−q2

(1⊗ θ̃(n)∗)⊗ (1⊗ θ̃(n)∗)
)

= q−r(n−r)
(
n

r

)
−q2

((1⊗ [T e
n]− 1⊗ [T o

n ])⊗ (1⊗ [T e
n]− 1⊗ [T o

n ]))

(4.9)= ∆G(1⊗ [T e
n]− 1⊗ [T o

n ])
= ∆G(ψ(1⊗ θ̃(n)∗)),

Thus, we proved that ψ is an isomorphism of non-counital N0-graded A′-coalgebras. The
commutativity of the stated diagram follows from

RG((γ∗)−1(1⊗ θ(n)∗)) = RG(1⊗ [Tn]) = 1⊗ [T e
n] + 1⊗ [T o

n ] = ψ(inc(1⊗ θ(n)∗)),

for all n ∈ N0 with n ≥ 2. This finishes the proof.

Again, by the duality between G0(ANH) and K0(ANH), we obtain the corresponding de-
scription of the multilication on K0(ANH). For this, note that the N0-graded dual A-algebra
of fA ∗ ⊕ f̃A ∗ is naturally isomorphic to the direct product algebra fA × f̃A . In the following
corollary, we identify the underlying N0-graded A-module of fA × f̃A with the direct sum
fA ⊕ f̃A .

Corollary 4.5.17. Let ψ be as in Theorem 4.5.16 and let

ψ∗ : A′ ⊗A K0(ANH)→ A′ ⊗A ( fA × f̃A )

be the adjoint map. Then ψ∗ is an isomorphism of non-unital N0-graded A′-algebras. For each
n ∈ N0, we have

ψ∗(1⊗ [Qe
n]) =

{1
2(1⊗ θ(n) + 1⊗ θ̃(n)) if 4|n(n− 1),
1
2(1⊗ θ(n) − 1⊗ θ̃(n)) if 4 - n(n− 1),

and

ψ∗(1⊗ [Qo
n]) =

{1
2(1⊗ θ(n) − 1⊗ θ̃(n)) if 4|n(n− 1),
1
2(1⊗ θ(n) + 1⊗ θ̃(n)) if 4 - n(n− 1).
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In addition, we have a commuting diagram:

A′ ⊗A K0(ANH)≥2 A′ ⊗A ( fA × f̃A )≥2

A′ ⊗A K0(NH)≥2 fA ≥2

ψ∗

IK pr

γ−1

Here, pr denotes the canonical projection and IK is the induction homomorphism from Theo-
rem 4.3.7.

4.6 Applications

We now come to two applications of our characterization of the multiplicative and comultiplica-
tive structures on G0(ANH) and K0(ANH). At first, we show that G0(ANH) and K0(ANH)
are neither isomorphic as N0-graded A-algebras nor as N0-graded A-coalgebras. So this be-
havior is analogous to the corresponding property of the nil Hecke Grothendieck groups, as we
discussed in Section 3.4.

Proposition 4.6.1. We have that G0(ANH) and K0(ANH) are neither isomorphic as N0-
graded A-algebras nor as as N0-graded A-coalgebras.

Proof. According to the duality between G0(ANH) and K0(ANH), it suffices to show that
G0(ANH) and K0(ANH) are not isomorphic as N0-graded A-algebras. For this, let m,n ∈ N0
with m,n ≥ 2. Now, Theorem 4.5.6 implies that the multiplication map

G0(ANH)m ×G0(ANH)n → G0(ANH)m+n, (x, y) 7→ x · y

is surjective. However, by Theorem 4.5.14, the image of the multiplication map

K0(ANH)m ×K0(ANH)n → K0(ANH)m+n, (x, y) 7→ x · y,

is the A-linear span of the elements

ξ := Even
((

m+ n

n

)
q2

)
[Qe

m+n] + Odd
((

m+ n

n

)
q2

)
[Qo

m+n]

and

η := Odd
((

m+ n

n

)
q2

)
[Qe

m+n] + Even
((

m+ n

n

)
q2

)
[Qo

m+n].

Finally, we observe that the A-linear span of ξ and η is unequal to K0(ANH)m+n. For this,
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note that

det
(

Even(
(m+n

n

)
q2) Odd(

(m+n
n

)
q2)

Odd(
(m+n

n

)
q2) Even(

(m+n
n

)
q2)

)
= Even

((
m+ n

n

)
q2

)2

−Odd
((

m+ n

n

)
q2

)2

=
(

Even
((

m+ n

n

)
q2

)
+ Odd

((
m+ n

n

)
q2

))

·
(

Even
((

m+ n

n

)
q2

)
−Odd

((
m+ n

n

)
q2

))

=
(
m+ n

n

)
q2

(
m+ n

n

)
−q2

.

Hence, the above determinant is not a unit in A. Indeed, we have that the units of A are
{aqi|a ∈ {1,−1}, i ∈ Z}. However, according to (3.16),

(m+n
n

)
q2 and

(m+n
n

)
−q2 are polynomials

in Z[q] of degree 2mn with absolute coefficient equal to 1. Thus, the product
(m+n

n

)
q2

(m+n
n

)
−q2

is not a unit in A. Altogether, we conclude that the A-linear span of ξ and η is a proper subset
of K0(ANH)m+n. It follows that G0(ANH) and K0(ANH) are not isomorphic as N0-graded
A-algebras.

Finally, we show that G0(ANH) and K0(ANH) are both no N0-graded twisted A-bialgebras.
So this points out a difference between the alternating nil Hecke Grothendieck groups and the
nil Hecke Grothendieck groups.

Proposition 4.6.2. Neither G0(ANH) nor K0(ANH) is an N0-graded twisted A-bialgebra.

Proof. By the duality between G0(ANH) and K0(ANH), it suffices to show that only one
of G0(ANH) and K0(ANH) is not an N0-graded twisted A-bialgebra. We choose K0(ANH).
Recall that we endow K0(ANH)⊗A K0(ANH) with the twisted multiplication as described in
Definition 3.4.1. Now, by the formulas from Remark 4.5.4 and Remark 4.5.15, we have

∆K([Qe
1] · [Qe

1])1,1 = ∆K(q[Qe
2])1,1 + ∆K(q−1[Qo

2])1,1

= (1 + q4)[Qe
1]⊗ [Qe

1] + 2[Qe
1]⊗ [Qe

1]
= (3 + q4)([Qe

1]⊗ [Qe
1]).

On the other hand, we also have

(∆K([Qe
1]) ·∆K([Qe

1]))1,1 = ((1⊗ [Qe
1] + [Qe

1]⊗ 1) · (1⊗ [Qe
1] + [Qe

1]⊗ 1))1,1

= (1 + q−2)([Qe
1]⊗ [Qe

1]).

Thus, K0(ANH) is not an N0-graded twisted A-bialgebra.
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