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Introduction

The nil Hecke algebras are a family (NHy),en, of graded algebras over a field k& which is of
huge importance in current research in representation theory. Originally, they were introduced
by Kostant and Kumar in [KK86] in order to study the cohomology rings of flag varieties. A
further field of representation theory in which they appear is the theory of categorification of
quantum groups.

We now outline this in more detail. Nil Hecke algebras are special cases of Quiver Hecke
algebras which are a family of graded k-algebras attached to a given quiver without loops
whose construction is based on the famous Vershik-Okounkov approach in the representation
theory of symmetric groups [OV96]. They were introduced independently by Khovanov and
Lauda in [KL09, KL11] and Rouquier in [Rou08]. Thus, they are also called Khovanov-Lauda—
Rouquier algebras.

One important aspect of quiver Hecke algebras is that their representation theory categorifies
Lusztig’s integral quantum group 4f, where A = Z[q,q"']. The integral quantum group af
was introduced by Lusztig in [Lus93] and plays a fundamental role in the theory of quantum
groups. The mentioned categorification theorem was proved by Khovanov and Lauda in [KL09,
Theorem 1.1].

In the following, we elaborate on this result. For this, we fix some notation. Let I' be a fixed
quiver without loops and vertex set I. Let QT := @,c; Noa; be the free commutative monoid
on a basis with index set I. By definition, the family of quiver Hecke algebras is a family of
algebras (R(v)),cq+ parameterized by Q. For each non-zero v € Q%, we have that R(v) is an
infinite dimensional graded k-algebra with finite dimensional graded components. Moreover,
each R(v) is bounded from below, i.e. there exists d(v) € Z such that all homogeneous
components of R(v) of degree < d(v) vanish.

Now, let Ko(R(v)- pmod) be the split Grothendieck group of the additive category of finitely
generated graded projective R(v)-modules and Go(R(v)-fmod) be the Grothendieck group of
the category of finite dimensional graded R(v)-modules. Both Grothendieck groups admit the
structure of an A4-module, where g acts via shifting degrees. We proceed with defining

Ko(R) == @ Ko(R(v)-pmod), Go(R) := ED Go(R(v)- fmod).

ve@t veQt

Via induction and restriction functors, we obtain a multiplication and comultiplication on
Ko(R) and Go(R) turning them into Q*-graded twisted bialgebras. Moreover, Go(R) can be
identified with the Q*-graded dual of Ko(R). The categorification theorem of Khovanov-Lauda
then states that there are isomorphisms of twisted bialgebras

v:af = Ko(R), 7" :Go(R) = Af,

where 4f denotes Lusztig’s integral quantum group corresponding to the unoriented underlying
graph of I' and 4f* denotes the graded dual of 4f.

In the special case, where I' is the one-vertex quiver without arrows, the corresponding
family of quiver Hecke algebras (R(v)),cq+ is by definition the family of nil Hecke algebras
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(NH,, )nen,- In this special case, we set Ko(NH) := Ko(R) and Go(NH) := Go(R). Moreover,
we call Ko(NH) and Go(NH) the nil Hecke Grothendieck groups.

This thesis is devoted to the study of an interesting family of graded subalgebras of nil Hecke
algebras. Namely, the alternating nil Hecke algebras which we denote by (ANH,,),en,. In our
studies, we focus in particular on the following interesting question:

(Q) Can we formulate an analogous version of the categorification theorem of Khovanov—
Lauda for alternating nil Hecke algebras?

We now briefly outline the origins of alternating nil Hecke algebras. They are special cases
of a more general family of algebras, namely the alternating quiver Hecke algebras which
were introduced by Boys and Mathas in [Boy14, BM17]. The definition of alternating quiver
Hecke algebras is based on the definition of the alternating group as fixed point subgroup of
the symmetric group under the sign involution. Concretely, Boys and Mathas defined a sign
involution

sgn : R(v) = R(v),

on the quiver Hecke algebras attached to quivers of type Ag,i1 or A,. They particularly
used for the construction of the sign involution that these quivers admit isomorphisms to the
opposite quivers which correspond to multiplication with —1 in a certain sense. This can be
illustrated by the following pictures, where we choose {—n,—n + 1,...,n} as the vertices in
type Aan+1 and Z/n as the vertices in type A,.

e — o —...—e = @ — @ — ... e
—n 1-n n =1 -n 1-n n

/N

By definition, the alternating nil Hecke algebras are the alternating quiver Hecke algebras
corresponding to the one-vertex quiver without arrows.

~

[ —
n—1 i—>—1

K

In the following, we describe the results of this thesis. Overall, the thesis is divided into two
parts.

Part 1. In the first two chapters, we discuss the representation theory of graded k-algebras
which have finite dimensional graded components and are bounded from below. Following
Kleshchev [Klelba, Klel5b], we call these k-algebras Laurentian. As already mentioned above,
quiver Hecke algebras and hence also alternating quiver Hecke algebras satisfy these finiteness
conditions.

The crucial point why the representation theory of Laurentian k-algebras is worth to study is
that firstly they form a huge class of graded k-algebras and secondly many pleasant results from
the representation theory of finite dimensional k-algebras transfer to the setting of Laurentian
k-algebras. We characterize this in detail in the first chapter.

One important fact is that a Laurentian k-algebra A is graded semiperfect. Hence, A admits
only finitely many graded simple modules up to shift-isomorphism and each graded simple A-
module admits a projective cover. In addition, the Laurentian property also implies that each
graded simple A-module has finite dimension over k.
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A further essential aspect of Laurentian k-algebras is the notion of graded composition
multiplicities. If M is a finitely generated graded A-module, then M is not necessarily of finite
length. In particular, M does in general not admit a composition series. However, in our
setting, we have a satisfying alternative. Given a graded simple A-module L, then the graded
composition multiplicity [M : L], is a Laurent series with integer coefficients

> aid’ € Z(q),

1>>—00

where for each i € Z the coefficient a; counts the multiplicity of the shifted module L(i) in a
separated filtration
M:FQDFlDFQD...

with graded simple subquotients. The Laurentian property ensures that a; is independent
from the choice of the filtration. We will discuss this in detail in Section 1.4.

Altogether, the above properties imply that we have an interesting theory of Grothendieck
groups of Laurentian k-algebras. In Chapter 2, we focus on working out important aspects of
this theory.

In the following, let A-fmod be the Abelian category of finite dimensional graded A-modules
and A-pmod additive category of finitely generated graded projective A-modules. We de-
note by Gg(A-fmod) and Ky(A-pmod) the corresponding Grothendieck groups. Moreover,
let us assume that A is also graded left Noetherian and let A-mod denote the Abelian cat-
egory of finitely generated A-modules. The corresponding Grothendieck group is denoted
by Go(A-mod). We have that Go(A-fmod), Ko(A-pmod) and Go(A-mod) are all A-modules,
where ¢ acts by shifting degrees.

Using graded composition multiplicities we obtain a close connection between Gg(A-mod)
and Go(A-fmod) which is given by the graded character map

gch : Go(A-mod) — Z((q)) ® 4 Go(A-fmod).

The graded character map can be viewed as mapping a class of a finitely generated graded
A-module to the (possibly infinite) sum of the classes of its graded simple filtration quotients.

In our studies, we are particularly interested in characterizing relations between the graded
characters of graded projective indecomposable and graded simple A-modules. For this,
we transfer a further crucial aspect of the theory of Grothendieck groups of finite dimen-
sional k-algebras to our setting. Namely, we define A-bilinear Euler forms xr, xp and xm on
Go(A-fmod), Ko(A-pmod) and Go(A-mod). Our motivation for this is to establish a duality
relationship between the graded characters of graded projective indecomposable and graded
simple A-modules.

To define these bilinear Euler forms, we make some assumptions on A. One assumption
is that A has finite global dimension, so we have that all graded EXT-terms vanish in high
enough degrees. A further assumption is that A admits a self-inverse anti-automorphism. This
assumption provides that if M is a graded A-module, then M® := HOM(M, k) again admits
a graded A-module structure. Here, HOMy (M, k) is the graded k-vector space spanned by
homogeneous k-homomorphisms between M and k. This fact is of significant importance in
the definition of x¢, xp and xm, since it provides the A-bilinearity condition.

Using the A-bilinearity, we can then extend x¢ and x;, to Z((¢))-bilinear forms ¢ and ¥, on
Z((q)) ® 4 Go(A-fmod) and Z((¢)) ® 4 Ko(A-pmod). The main result of the first part is then the
following duality statement.
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Theorem. The following holds:
(i) The Euler forms Xp and Xt are both non-degenerated.

(ii) If Ly,..., L, is a complete list of pairwise non-shift-isomorphic graded simple A-modules
and Py, ..., P. are the corresponding projective covers, then

(geh([LY]), .- -, geh([Ly]))  and  (geh([P1]),. .., geh([F7]))
are dual Z((q))-bases of Z((q)) @ 4 Go(A-fmod) with respect to Xs.

According to our choice of assumptions, this theorem can be applied to a large class of
Laurentian k-algebras including (alternating) nil Hecke algebras, as we will outline in the
second part.

Part 2. This part is devoted to the study of the representation theory of alternating nil
Hecke algebras. Motivated by the definition of the nil Hecke Grothendieck groups, we define
the alternating nil Hecke Grothendieck groups as

Go(ANH) := € Go(ANH, -fmod), Ko(ANH) := @ Ko(ANH, -pmod).
neNp neNp

By construction, Go(ANH) and Ko(ANH) are Ny-graded .A-modules. Moreover, in Section 4.3,
we show that Go(ANH) and Ko(ANH) both admit multiplicative and comultiplicative struc-
tures given by induction and restriction. In addition, Go(ANH) is also the graded dual of
Ko(ANH). However, in contrast to the nil Hecke Grothendieck groups, Go(ANH) and K¢(ANH)
are no twisted bialgebras which we show in Proposition 4.6.2.

We now outline a further interesting aspect. For this, we first consider the following
fact about Ko(NH) and Go(NH) which is a consequence of the categorification theorem of
Khovanov-Lauda:

(F) We have that Ko(NH) and Go(NH) are not isomorphic as twisted algebras over A. How-
ever, taking graded characters induces an isomorphism of twisted bialgebras over Q(q):

¢ : Ko(NH)Q(q) — Go(NH)Q(q),

where Ko(NH)g(,) and Go(NH)g(,) are obtained from Ko(NH) and Go(NH) via scalar
extension to Q(q).

Using techniques from the first part, we show that this result generalizes to our setting as
follows. Let Ko(ANH)q() and Go(ANH)g(g) be the scalar extended versions of Ko(ANH) and
Go(ANH). Then, in Theorem 4.4.4, we show that taking graded characters gives an isomor-
phism of No-graded Q(g)-vector spaces between Ko(ANH)q,) and Go(ANH)g(,), which is com-
patible with the multiplicative and comultiplicative structures. Moreover, in Proposition 4.6.1,
we show that Ko(ANH) and Go(ANH) are neither isomorphic as Ny-graded .A-algebras nor as
No-graded A-coalgebras.

Hereafter, we come to a further application of the results from the first part. At first, we
construct non-degenerated Q(q)-bilinear Euler forms yxg and xx on Go(NH) and Ko(NH).
The categorification theorem implies that under the identification KO(NH)Q(q) =~ Q(q) @4 4f,
we have that xg corresponds to Lusztig’s symmetric form (.,.). Here, 4f denotes Lusztig’s
integral quantum group corresponding to the one-vertex graph without edges.
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Motivated by these considerations, we also construct non-degenerated Q(gq)-bilinear Euler
forms xq and xj on Go(ANH)qg() and Ko(ANH)g(,) and show that they satisfies similar
properties as (.,.). In Theorem 4.4.4, we then apply the main theorem from the first part to
determine explicit formulas for x{; and xk with respect to appropriate bases.

Finally, we characterize the multiplicative and comultiplicative structures on Go(ANH) and
Ko(ANH). In view of the categorification theorem, we are particularly interested in relating
these structures to 4f. For this, let A[Z/2] be the group algebra of Z/2 over A and let A[Z/2]*
denote the graded dual coalgebra of A[Z/2]. In Theorem 4.5.9, we construct an isomorphism
of Nyp-graded A-coalgebras

P (Af ®A .A[Z/2]*)22 — Ko(ANH)ZQ

Here, the subscript > 2 means that we only have an isomorphism in degrees > 2. This is due
to the fact that ANHy and ANH; strongly differ from the alternating nil Hecke algebras ANH,,
for n > 2. Using the duality between Go(ANH) and Ko(ANH), we then obtain an isomorphism
of Ng-graded A-algebras

1/1* : GO(ANH)ZQ — (Af XA A[Z/2D22

In order to describe the comultiplication on Go(ANH) and the multiplication on Ko(ANH),
we define an Nyp-graded A-algebra Af' which can be seen as a sign perturbated version of 4f.
Let Af * be the graded dual coalgebra of Af' . In Theorem 4.5.16, we show that the Ng-graded
A-coalgebras Go(ANH)so and ( 4f* @ 4f*)>2 become isomorphic after extending the scalars
to A’ := A[3]. Likewise, we have that the No-graded A-algebras Ko(ANH)>2 and the product

algebra ( 4f x 4f)>2 become isomorphic after scalar extension to A’.
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1 Representation theory of Laurentian algebras

Convention. Throughout this chapter, we fix a ground field k.

Summary

This thesis is devoted to the study of the representation theory of alternating nil Hecke algebras
which are interesting subalgebras of nil Hecke algebras. Both, the nil Hecke algebras and the
alternating nil Hecke algebras, are graded k-algebras that satisfy the following conditions:

L1 All homogeneous components are of finite dimension over k.
L2 There exists d € Z such that all homogeneous components of degree ¢ vanish, for i < d.

Following Kleshchev [Klelb5a, Klel5b], we call a graded k-algebra A Laurentian, if A satisfies
the conditions L1 and L2. In this chapter, we discuss well-known and important properties
of Laurentian k-algebras. The crucial point why the representation theory of Laurentian k-
algebras is interesting is that Laurentian k-algebras satisfy many pleasant properties that are
similar to the properties of finite dimensional k-algebras. We now formulate some of these
properties. For this, let A be a Laurentian k-algebra:

1. We have that A is graded semiperfect. In particular, A admits only finitely many graded
simple modules up to shift-isomorphism and each graded simple A-module admits a
projective cover.

2. All graded simple A-modules are of finite dimension over k.

3. For finitely generated graded A-modules, we have a notion of graded composition multi-
plicities.

An important application of these properties is that there is an interesting theory of Grothen-
dieck groups of Laurentian k-algebras. In Chapter 2, we will discuss this in sufficient detail.

In this chapter, we assume that the reader is familiar with the basics of graded algebras
and graded modules, for a reference see e.g. [NvO04]. Furthermore, we assume basic knowl-
edge about Abelian and additive categories and in particular the notion of projective covers
and Krull-Schmidt categories, see for instance [Kral5|. Finally, we also assume some basic
knowledge in homological algebra, for a reference see e.g. [Wei95].

1.1 Basic definitions and conventions

In this section, we recall important definitions and provide the general setup of this thesis. At
first, we stress that by N we denote the natural numbers without 0 and we set Ny := NU {0}.
Now, we move to (graded) k-algebras.

11



1.1. Basic definitions and conventions

Convention 1.1.1. Throughout the thesis, we adhere to the following conventions:

1. A k-algebra A is always assumed to be associative and unital. By a module M over A,

we always mean a unital left A-module.

. By a graded k-algebra A, we always mean an associative unital Z-graded k-algebra. The

homogeneous components of A are denoted by A;, for i € Z. If a € A is homogeneous,
then the degree of @ is denoted by |a|, i.e. |a| =i if a € A;. Whenever we write |a|, we
always assume that a is homogenoues.

. Let A be a graded k-algebra. By a graded A-module M over A, we always mean a

unital graded left A-module. The homogeneous components of M are denoted by M;,
for i € Z. If m € M is an homogeneous element, then the degree of m is denoted by
|m|. In particular, we have |am| = |a||m| for a € A,m € M homogeneous. Whenever we
write |m| for m € M, we always assume that m is homogenoues.

We proceed with fixing the notation for the sets of homomorphisms between graded and

ungraded modules.

Notation 1.1.2. Let A be a k-algebra and M, N be A-modules. Then the k-vector space of
A-module homomorphisms between M and N is denoted by Hom 4 (M, N).

Notation 1.1.3. Let A be a graded k-algebra and M, N be graded A-modules.

1. An A-linear map f € Homyu (M, N) is called a homomorphism of graded A-modules, if

for all i € Z, we have f(M;) C N;. We denote by homy (M, N) the k-vector space of
graded A-module homomorphisms between M and N. Moreover, we set ends (M) :=
hom 4 (M, M). Note that end (M) is an ungraded k-algebra, where the multiplication is
given by composition of functions.

. Let d € Z. An A-linear map f € Hom (M, N) is called a homogeneous of degree d, if

for all i € Z, we have f(M;) C N;yq. We denote by HOM 4 (M, N)g C Hom (M, N) the
k-vector space of homogeneous A-linear maps of degree d. In particular, hom (M, N) =

HOM 4(M, N)q.

. We set

HOM,(M,N) := @HOM4(M, N)q C Homa(M,N).
deZ

Then HOM4 (M, N) is a graded k-vector space. Moreover, we set
END 4 (M) := HOM4 (M, M).

Then END 4(M) is a graded k-algebra with multiplication given by composition of func-
tions. We call END 4 (M) the graded endomorphism algebra of M.

In the following let A be a fixed graded k-algebra and M, N be graded A-modules. If M is

a finitely generated graded A-module, then one can directly check that we have

12

HOM_4(M, N) = Hom (M, N).



1.1. Basic definitions and conventions

We will use the following degree shifts of graded A-modules. For d € Z, let M (d) denote
the graded A-module obtained from M by defining the homogeneous components

M<d>z = M;_4, forallieZ.

It is a straightforward exercise to check that we have natural isomorphisms of k-vector spaces

HOM (M, N)g = homu (M (d), N) 2 hom (M, N{(—d)).

We call two graded A-modules M, N shift-isomorphic if there exists d € Z such that M = M (d).
Next, we fix the notation of several categories of graded A-modules.

Notation 1.1.4. Let A be a graded k-algebra.

1.

Let A-Mod denote the graded Abelian category of graded A-modules with morphism
spaces hom 4 (M, N).

Let A-mod C A-Mod denote the full graded subcategory of finitely generated graded
A-modules.

Let A-fmod C A-Mod denote the full graded Abelian subcategory of graded A-modules
that are of finite dimension over k.

Let A-pmod C A-Mod denote the full graded additive subcategory of finitely generated
graded projective A-modules.

Let A-Mod™ C A-Mod denote the full graded Abelian subcategory whose objects are the
graded A-modules M that satisfy the following conditions:

5.a. All homogeneous components of M are of finite dimension over k.

5.b. There exists d € Z (depending on M) such that M; = 0, for i < d.

Let A-Mod™ C A-Mod denote the full graded Abelian subcategory whose objects are the
graded A-modules M that satisfy the following conditions:

6.a. All homogeneous components of M are of finite dimension over k.

6.b. There exists d € Z (depending on M) such that M; = 0, for i > d.

The categories A-Mod™ and A-Mod™ are of particular importance since we have a notion of
graded dimensions on these categories. For this, we denote by Z((¢)) the ring of formal Laurent
series with integer coefficients.

Definition 1.1.5. Let M € A-Mod™. Then the graded dimension of M is defined as

grdim(M) := Z dimy, (M;)q" € Z((q)).

1>>—00

Likewise, for N € A-Mod™, we define the dual graded dimension by

dgrdim (V) := Z dimy,(N;)¢" € Z(gY).

1<K 00

We now consider some basic examples of graded and dual graded dimensions. For this, we
denote for a graded k-algebra A the regular A-module by ,A.

13



1.1. Basic definitions and conventions

Example 1.1.6. (1) Let A = k be the ground field. Then we have

grdim( 4A) = dgrdim(4A4) = 1.

(2) Let A = Ek[xi,...,zy], where each x; is homogeneous of degree 1. Then the graded

dimension of 4A is
1

grdim( 4A) = Ao

In particular, for n = 1 we have

grdim(4A)=1+qg+ @3+ +....

(3) Now, let A = k[x1,...,x,], where each z; is homogeneous of degree —1. Then the dual
graded dimension of 4A is
. 1

In particular, for n = 1 we have
grdim(4A) =1+q¢ ' 4¢3 +q¢3+....

We end this section with recalling the notion of graded EXT-functors and Frobenius reci-
procity. At first, we recall that it is a well-known fact that the category A-Mod admits enough
projectives and enough injectives, see for instance [NvOO04, Appendix]. In the following let
vect denote the category of graded k-vector spaces. We have that the graded functor

HOM4(.,.) : A-Mod x A-Mod — vect

is left-exact in both variables. For each M € A-Mod, we denote by EXT% (., M) the i-th right
derived functor of HOM 4(., M), for i € Ng. Moreover, we denote by R{(HOM 4(M,.)) the i-th
right derived functor of HOM 4 (M, .), for i € Ng. It is a well-known fact from homological
algebra that for all M, N € A-Mod, we have isomorphisms of graded k-vector spaces

EXTY (M, N) = R (HOM(M,.))(N).

A proof of this fact is given or instance in [Wei95, Theorem 2.7.6]. The reference only treats
the ungraded case, but the arguments directly generalize to the graded setting.

Finally, we recall the notion of Frobenius reciprocity. For this, let A, B be graded k-algebras
and A C B a non-necessarily unital inclusion of graded k-algebras, i.e. we do not demand that
the unity element 14 of A is the unity element of B. The corresponding restriction functor is
defined as

Resf : B-Mod — A-Mod, M s 14- M.

We proceed with defining the corresponding induction functor. For this, note that if M is a
graded right A-module and N is a graded left A-module, then M ® 4 N is a graded k-vector
space, where the graded component (M ®4 N); is spanned by the pure tensors m ® n, where
m € M,n € N are homogeneous with |m| + |n| = i. With this observation, we define the
induction functor corresponding to A C B by

Ind% : A-Mod — B-Mod, M — B®4 M.

14



1.2. Laurentian algebras

Note that B ® 4 M is a graded B-module with scalar multiplication
bt ®m) =bb' @m, forall b,/ € B,me M.

Let M € A-Mod and N € B-Mod. By the universal property of tensor products, we obtain
a natural isomorphism of graded k-vector spaces

HOMp(Ind5 (M), N) =2 HOM 4 (M, Res5 (N)).

This isomorphism is called Frobenius reciprocity. Using the Grothendieck spectral sequence
(see e.g. [Wei95, Theorem 5.8.3]) and the fact that Ind§ preserves graded projective modules,
we obtain an isomorphism of the right-derived functors

EXT%4(Ind5 (M), N) = EXT!, (M, Res5(N)), for all i € No.

This isomorphism is called generalized Frobenius reciprocity.
We herewith end this section about general notions of graded k-algebras. In the upcoming
section, we will come to crucial players of this thesis: the Laurentian k-algebras.

1.2 Laurentian algebras

In this section, we recall the definition of Laurentian k-algebras and discuss important well-
known representation theoretic properties of these algebras. Our notation in this section is
modeled on [Klel5a].

Definition 1.2.1. Let A be a graded k-algebra. We say that A is Laurentian if A satisfies the
following conditions:

L1 For alli € Z, the homogeneous component A; has finite dimension over k.
L2 There exists d € Z such that A; =0, for all i < d.

Using the notation from the previous section, we have that a graded k-algebra A is Lauren-
tian if and only if the regular A-module ,A is contained in A-Mod™.

Let A be a Laurentian k-algebra. By definition, we have A-mod C A-Mod™. In particular,
for every finitely generated graded A-module, the graded dimension is well-defined. As a direct
consequence, we conclude that if M is a finitely generated graded A-module and d € Z, then
M = M (d) if and only if d = 0.

Moreover, we define the graded dimension of A by

grdim(A) := Z dimy(4:)¢" € Z((q)).

1>>—00

This observation motivates the name Laurentian, because the graded dimension of a Laurentian
k-algebra is a Laurent series with integer coefficients.
We proceed with considering two important examples of Laurentian k-algebras.

Example 1.2.2. Let A = k[z1,...,2,] be a graded polynomial algebra, where all variables x;
are homogeneous of strictly positive degree. Then A is Laurentian.

15



1.2. Laurentian algebras

The second example we consider are graded matrix algebras over Laurentian k-algebras.
They give in particular examples for Laurentian k-algebras with non-vanishing negative ho-
mogeneous components.

Definition 1.2.3. Let A be a graded k-algebra, n € N and d = (dy,...,d,) € Z™. Let
M, (A)(d) be the k-vector space of n x n matrices over A with the grading such that for any
homogeneous element ¢ € A the matriz cE; j is homogeneous of degree |c|+d; —d;. This means
that the i-th graded component of M,,(A)(d) is given by

A; Aivdy—ay - Aitdp-ds
Aitdi—dy Ai oo Aivdy 1—ds
Ai+d1 —dn Ai+d2 —dp—1 - Ai

One can verify directly that M,,(A)(d) with the usual matriz multiplication is a graded k-algebra.
We call M,,(A)(d) the graded matriz algebra over A parameterized by d.

If we assume that the graded k-algebra A is Laurentian, then it follows directly from the
definition that also M, (A)(d) is Laurentian. Moreover, the graded dimension of M,,(A4)(d) is
given by

grdim(M,,(A)(d)) = ( H qdi*dj) - grdim(A).
1<i<n
1<55<n
In particular, in this way, we obtain examples of Laurentian k-algebras with non-vanishing
components of strictly negative degree.
We proceed with recalling two fundamental properties of graded matrix algebras.

Proposition 1.2.4. Let A be a graded k-algebra and A°P be the opposite k-algebra of A.
Let M be a graded free module over A°P with homogeneous basis (mi,...,my) of degrees
d:=(dy,...,dy) € Z". Then there is an isomorphism of graded k-algebras

M, (A)(d) = ENDaop(M), B (pp:mi+— Y Bijm;).
j=1

Proof. This follows immediately from the definition of graded matrix algebras. O

Proposition 1.2.5. Let A be a graded k-algebra, n € Ng and d = (dy,...,dy,) € Z". Let A(d)
be the graded free A-right module with homogeneous basis a1, . .., a, and each a; is homogeneous
of degree d;, for each i € {1,...,n}. Via the usual matriz multiplication, we obtain a graded
(M, (A)(d), A)-bimodule structure on A(d). Then we have the following equivalence of graded
categories

A-Mod — (M, (A)(d))-Mod, M — A(d) @4 M

Proof. See e.g. [Haz16, Proposition 2.1.1]. O

Next, we describe some crucial representation theoretic properties of Laurentian k-algebras.
Our first observation is that if A is a graded k-algebra that satisfies the condition L2, then for
all finitely generated graded A-modules M, N, we have that hom 4 (M, N) is a finite dimensional
k-vector space. Thus, we immediately obtain the following proposition.
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1.2. Laurentian algebras

Proposition 1.2.6. Let A be a graded k-algebra that satisfies the condition L2. Then the cat-
egories A-mod and A-pmod are both Krull-Schmidt categories, i.e. every object is isomorphic
to a direct sum of objects having local endomorphism rings.

The property that A-pmod is a Krull-Schmidt category can be reformulated as graded
semiperfectness of A as follows.

Theorem 1.2.7. Let A be a graded algebra over a field k. Then the following are equivalent:
(i) The additive category A-pmod is a Krull-Schmidt category.

(ii) Every object in A-mod admits a projective cover in A-mod.

(iii) Let J9(A) denote the graded Jacobson radical of A. Then the graded k-algebra A/ JI(A) is
graded semisimple and each homogeneous idempotent in A/ JI(A) lifts to a homogeneous
idempotent in A.

We call A graded semiperfect, if A satisfies the above equivalent conditions.

Proof. See e.g. [AF12, Theorem 27.6]. This reference only treats the ungraded case, but the
proof directly transfers to the graded case. O

Corollary 1.2.8. Laurentian k-algebras are graded semiperfect.

The graded semiperfectness property has many peasant consequences that we describe in
the following. We begin with characterizing the graded radical of finitely generated graded
modules over graded semiperfect algebras. For this, we recall the general definition of the
graded radical.

Definition 1.2.9. Let A be a graded k-algebra and M be a graded A-module.

(i) Let N C M be a graded A-submodule. We call N graded superfluous if for any graded
A-submodule H C M, we have H+ N = M if and only if H = M.

(ii) The graded radical rad(M) is defined to be the graded A-submodule of M generated by
all graded superfluous graded A-submodules of M.

If we assume that A is graded semiperfect, then the graded radical of finitely generated
graded A-modules can be described in the following way.

Proposition 1.2.10. Let A be a graded semiperfect k-algebra and M be a finitely generated
graded A-module. Then we have rad(M) = J9(A)M.

Proof. The inclusion J9(A)M C rad(M) follows from the graded version of the Nakayama
Lemma, see e.g. [NvO04, Corollary 2.9.2]. The other inclusion follows from the fact that
A/ J9(A) is graded semisimple. O

The Proposition 1.2.10 gives an adequate notion of the head of a finitely generated graded
module over a graded semiperfect k-algebra.

Definition 1.2.11. Let A be a graded semiperfect k-algebra and M be a finitely generated
graded A-module. Then the head hd(M) of M is defined as

hd(M) := M/ rad M.

By Proposition 1.2.10, hd(M) is the unique mazimal graded semisimple quotient of M.
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1.2. Laurentian algebras

We continue with a further useful consequence of the equivalent characterizations of the
graded semiperfectness. Namely, by using standard arguments, we obtain a 1:1 correspon-
dence between the graded simple A-modules and the finitely generated graded projective in-
decomposable A-modules which we describe in Theorem 1.2.13. In the theorem and also in
the following, we use the following notational convention.

Convention 1.2.12. Given a graded k-algebra A, then we call the finitely generated graded
projective indecomposable A-modules just graded projective indecomposable A-modules, so
we omit the part ’finitely generated’.

Theorem 1.2.13. Let A be a graded semiperfect k-algebra, then the following are true:

(i) Let P be graded projective indecomposable A-module P, then hd(P) is graded simple and
P is the projective cover of hd(P).

(ii) A admits only finitely many graded simple A-modules up to shift-isomorphism.

(iii) Let I be the set of isomorphism classes of graded simple A-modules and P be the set
of isomorphism classes of graded projective indecomposable A-modules. Then there is a
bijection

P > 1I, [P]+w [hd(P)].
The inverse map is given by assigning to a class [L] the class [Pr], where Pr, denotes the
projective cover of L.

After this discussion about the pleasant consequences of the graded semiperfectness property,
we continue with describing a further crucial property of Laurentian k-algebras, namely that
the graded simple modules over Laurentian k-algebras are always of finite dimension over k.

Theorem 1.2.14. Let A be a Laurentian k-algebra and L be a graded simple A-module, then
L has finite dimension over k.

Proof. According to Theorem 1.2.7.(iii), we know that A/.J9(A) is a graded semisimple Lauren-
tian k-algebra. By the graded version of the Artin-Wedderburn theorem (see [Blall, Corollary
9.4.5]), we obtain that A/J9(A) is isomorphic to a product of graded matrix algebras over
graded k-division algebras. Recall at this point that a graded k-division algebra is a graded
k-algebra with the property that every homogeneous element is invertible. In particular, a
Laurentian k-division algebra has to be of finite dimension over k and to be concentrated in
degree zero. From this observation, we can infer that A/JY9(A) is of finite dimension over k
which implies the assertion of Theorem 1.2.14 ]

We end this section with a basic but important example, where we illustrate the results
discussed in this section.

Example 1.2.15. Let A = k[z1,...,x,], where z1,...,z, graded polynomial algebra, where
all variables z; are homogeneous of strictly positive degree. The regular A-module P := 4A
is the unique graded projective indecomposable A-module up to shift-isomorphism. Moreover,
JI(A) = (x1,...,2,) and the head of P is given by L := P/(z1,...,z,)P. So L is one
dimensional and the unique graded simple A-module up to shift-isomorphism.

Altogether, we conclude that the representation theory of k[z1,. .., x,] in the graded setting
heavily differs from the ungraded setting. In the ungraded setting we have that the simple
k[x1,...,zy]-modules correspond to maximal ideals in k[z1,...,x,]. However, in the graded
setting, there exists only one graded simple module over k[x1, ..., x,] up to shift-isomorphism
which we obtain by dividing out the ideal (z1,...,z,).
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1.3. Outer tensor products of Laurentian algebras

1.3 Outer tensor products of Laurentian algebras

In this section, we discuss a useful application of the results of the previous section. Namely,
we show that if A and B are graded Schurian Laurentian k-algebras, then the graded simple
(A ® B)-modules are all given by outer tensor products S ®j T', where S is a graded simple
A-module and T is a graded simple B-module. From this, we also conclude the analogous
statement for the graded projective indecomposable (A ®j B)-modules. Again, this result is
analogous to the corresponding statement for finite dimensional k-algebras, in particular for
group algebras over finite groups.

At first, we recall the definition of graded Schurian k-algebras.

Definition 1.3.1. Let A be a graded k-algebra. Then A is called graded Schurian, if for any
graded simple A-module L, we have that end(L) is one dimensional over k.

If A and B are graded k-algebras, then A ®y B is a graded k-vector space, where the graded
component (A®y B); is spanned by the pure tensors a®b, where a € A,b € B are homogeneous
with |a| + |b] = i. Moreover, we have a multiplication on A ®; B given by

(a®b)(d @V)=ad @b, foralla,d €A bb €B.

In this way, A ®; B admits the structure of a graded k-algebra. We call A ®; B the outer
tensor product of A and B.

Let M resp. N be a graded A- resp. B-module. Then as above, M ®; N is a graded k-vector
space. For each i € Z, he graded component (M ®j N); is spanned by the pure tensors m ® n,
where m € M,n € N are homogeneous with |m| 4 |n| = i. We can endow M ®; N with a
graded (A ®; B)-module structure such that

(a®b)(m®n)=am® bn,

foralla € A,b € Bm € M and n € N. We call M ®; N the outer tensor product of M
and N.
By the definition of the Laurentian property, we immediately obtain the following lemma.

Lemma 1.3.2. If A and B are both Laurentian k-algebras, then A ®y B is also Laurentian
k-algebra.

Now, let us formulate the above mentioned classification result.

Theorem 1.3.3. Let A, B be graded Schurian Laurentian k-algebras. Let Si,...,S, resp.
Ti,...,Ts be a complete list of pairwise non-shift-isomorphic graded simple A- resp. B-
modules. Then S; ® Tj, for i € {1,...,r},j € {1,...,s} is a complete list of pairwise
non-shift-isomorphic graded simple modules over A Qi B.

Proof. At first, note that the case where A and B are of finite dimension over k is well-known,
see e.g. [EGH™11, Theorem 3.10.2]. The proof in the reference treats the ungraded case, but
all arguments transfer directly to the graded setting.

Now, let us prove the general case. At first, note that A/J9(A) and B/J9(B) are graded
semisimple. Moreover, as we assumed A and B to be graded Schurian, the graded version
of the theorem of Artin-Wedderburn implies that A/J9(A) ®; B/J9(B) is graded semisimple
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1.3. Outer tensor products of Laurentian algebras

and that S; ® T for i € {1,...,r},j € {1,...,s} is a complete list of pairwise non-shift-
isomorphic graded simple (A/J9(A) ®; B/J9(B))-modules. We conclude that S; ® T} for
ie{l,...,r},j€{1,...,s} is a list of pairwise non-shift-isomorphic graded simple (A ®j, B)-
modules. So to conclude the theorem, it remains to show that the list is complete. For this,
let M be a graded simple (A ®; B)-module. According to Theorem 1.2.13, we know that
M has finite dimenison over k. Now, the (A ®; B)-module structure on M is given by a
homomorphism of graded k-algebras

p: ARy B — ENDk(M).

We set A" := p(A®y k), B' := p(k ® B) and regard A’ resp. B’ as a finite dimensional graded
quotient algebras of A resp. B. We have that p(A®y B) = A’ ®; B’ and M is a graded simple
(A" ® B')-module. Since A’ and B’ are graded Schurian k-algebras of finite dimension, we
conclude that M is isomorphic as (A’ ®x B')-module to an outer tensor product S ®j T, where
S resp. T is a graded simple A’- resp. B’-module. By inflation, it follows that S resp. T is
also a graded simple A- resp. B-module and M = S ®; T as graded (A ®; B)-module. As
the S1,...,Sy resp. T1,...,Ts form a complete list of pairwise non-shift-isomorphic graded
simple A- resp- B-modules, there exist unique i € {1,...,7},5 € {1,...,s} such that S is shift-
isomorphic to S; and T is shift-isomorphic to 7;. Hence, M is shift-isomorphic to S; ®j 7.
This finishes the proof. O

The following are direct consequences of Theorem 1.3.3.

Corollary 1.3.4. Let A, B be graded Schurian Laurentian k-algebras. Then the graded Jacob-
son radical of A ®y B is given by

JIA®, B)=J9A) @k B+ A®y, JI(B).
In particular, we obtain an isomorphism of graded k-algebras
A/J9(4) @ BJJ*(B) = (A®, B)/J*(A &) B).
Moreover, A ®i B is graded Schurian.

By applying Theorem 1.2.13 and Corollary 1.3.4, we get the following analogous description
of the graded projective indecomposable modules over outer tensor products.

Corollary 1.3.5. Let A, B be graded Schurian Laurentian k-algebras. Then the following
holds:

(i) Let S resp. T be a graded simple A- resp. B-module. Let P be the projective cover of S
and @Q be the projective cover of T. Then P ®y Q is the projective cover of S ® T .

(ii) Let Py, ..., P, resp. Q1,...,Qs be a complete list of pairwise non-shift-isomorphic graded
projective indecomposable A- resp. B-modules. Then P; @i Q; fori € {1,...,r},j €
{1,...,s} is a complete list of pairwise non-shift-isomorphic graded projective indecom-
posable modules over A Q. B.

Proof. (i) At first, observe note that P ®; @ indeed is a finitely generated graded projective
(A ®j, B)-module. Moreover, from Theorem 1.3.3, we directly conclude

hd(P @ Q) = (P @x Q)/(JI(A® B)(P @, Q) = P/JI(A) @ Q/J'(B) = S @ T.
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Thus, P ®; Q is the projective cover of S ®p T

(ii) This assertion follows directly from the assertion (i) and Theorem 1.3.3, using the 1:1 cor-
respondence between graded simple and graded projective indecomposable (A ®; B)-modules
from Theorem 1.2.13. 0

1.4 Graded composition multiplicities

We now come to a further important aspect of the representation theory of Laurentian k-
algebras. Namely, the notion of graded composition multiplicities. We now briefly describe
the basic idea of graded composition multiplicities.

If M is a finitely generated graded module over a Laurentian k-algebra A, then M is in
general not of finite length. So M does in general not admit a composition series. However,
in our setting, we have a satisfying alternative to composition series. Namely, the Laurentain
property of A implies that M admits a countable separated filtration F' = (M = Fy D F} D
...) with graded simple quotients. Now, let L be a graded simple A-module and i € Z. Let a;
be the multiplicity how often L(i) appears as filtration quotient of F'. The Laurentian property
of A ensures that a; is a finite natural number and moreover, that there exists d(M) € Z such
that a; = 0 if i < d(M). In this way, we can assign to M a Laurent series

3 i € 2(a). (11)

Furthermore, we have that each coefficient a; is independent of the choice of the filtration. By
definition, the graded composition multiplicity of L in M is then the Laurent series (1.1).

Let us now translate this into practice. Our notation in this section is modeled on [Klel5a,
Chapter 2]. Throughout this section let A be a fixed Laurentian k-algebra. At first, we recall
the general definition of composition multiplicities for objects in A-Mod.

Definition 1.4.1. Let L be a graded simple A-module.

(i) Let N € A-Mod and F = (N = Fy D Fy D --- D F, = 0) be a finite filtration of N by
graded A-modules. Then the composition multiplicity [F' : L] of L in F is defined as

[F:L:={i=0,...,r = 1|F;/Fx1 = L}|.
(i) For any M € A-Mod the graded composition multiplicity [M : L] of L in M is defined as
[M : L] :=sup{[F : L||F is a finite filtration of M }.
Note that possibly [M : L] = oc.

The following properties of composition multiplicities can easily be verified by using the
results that were discussed in Section 1.2.

Lemma 1.4.2. Let A be a Laurentian k-algebra and L be a graded simple A-module. Further
let P be the projective cover of L and M € A-mod. Then the following holds:

(i) We have the equality

1

M L) = e (onda (D))

- dimg (hom 4 (P, M)).

In particular, [M : L] < co.
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(i) There exists mo € Z such that [M : L{i)] = 0 for all i < my.
Using Lemma 1.4.2, we now state the definition of graded composition multiplicities.

Definition 1.4.3. Let A be a Laurentian k-algebra, L be a graded simple A-module and M be
a finitely generated graded A-module. Then the graded composition multiplicity [M : L], of L
in M is defined as

[M: Llg:= Y [M:L{D)q" € Z(q).

1>>—00
Note that Lemma 1.4.2.(i) implies
1
M:L|,= -grdim(HOM 4 (P, M 1.2
[ ]q dlmk(endA(L)) gr 1m( A( ) ))? ( )

where P is the projective cover of L.
Next, we explain the equivalent characterization of graded composition multiplicities that
we already mentioned above.

Definition 1.4.4. Let M be a graded A-module and let I =Ny or I ={0,1,...,n} for some
n € Ng. Let F = (F})ier be a decreasing filtration of M by graded A-submodules, i.e. all F;
are graded A-submodules of M with F;_1 D F; for alli € I withi > 1 and Fy = M.

We call F' a countable separated graded simple filtration of M if F satisfies the following
properties:

1. The filtration F is separated, i.e. we have

() F=0.

i€l
2. For each i € I with i > 1, we have that F;_1/F; is a graded simple A-module.
Proposition 1.4.5. Let M be a finitely generated graded A-module. Then the following holds:
(i) M admits a countable separated graded simple filtration.

(ii) Let F = (M = Fy D F1 D ...) be a countable separated graded simple filtration of M
and let L be a graded simple A-module. Then we have

[M : L} = ’{Z < NO’Fi/Fi+1 = L}‘
In particular, we have

M Ll,= S G € NolEy/Fran = L)} - .

1>>—00
Proof. (i) Let my,...,m, be homogeneous generators of M as graded A-module. Moreover,
for i € Ny let a; C A be the graded two-sided ideal generated by all homogeneous elements of
degree > i. We further set F; := a; M;. Then

M=FyD>DF, DF,D>...
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is a countable separated graded filtration of M such that all subquotients are of finite dimension
over k. Since every graded finite dimensional A-module admits a composition series in A-fmod,
we can refine the filtration M = Fy D Fy D F> D ... to a countable separated graded simple
filtration of M.

(ii) If M is of finite dimension over k, the assertion is clear. So let us assume that M is of
infinite dimension over k. In this case, we know that F; = 0 for all i € Ny. Since M is finitely
generated and L is of finite dimension over k, we know by the separateness of F' that there
exists j € Ny such that

max{i € Z|L; # 0} < min{i € Z|(F}); # 0}.
This implies that
{i € No|Fi/Fiy1 = L} = [{i € No|Fy/Fiyn = L1 < j}.
Moreover, we also obtain hom 4 (P, F;) = 0. Hence, by Lemma 1.4.2, we conclude

1
dimg (end(L))
1
~ dimg(end(L))
= |{i € No|F;/Fip1 = L,i < j}|
= [{i € No|Fi/Fi41 = L}|.

[M: L] = dimy (hom 4 (P, M))

dimy, (homa (P, M/ F;))

This completes the proof. ]
We end this section by explicitly computing some graded composition multiplicities.

Example 1.4.6. Let A = k[z1,...,x,] with all z1,..., 2, homogeneous of strictly positive
degree. Then P := 4A be the regular A-module. So P is the unique graded projective inde-
composable A-module and L := P/(x1,...,x,)P is the graded simple A-module corresponding
to P. It follows that

i 1

[P: L], = grdim(HOM4(P, P)) = grdim(P) = 1;[1 T

For the next example, we first introduce the following notion.

Definition 1.4.7. Let A be a graded k-algebra and ¢ : A — A be a self-inverse graded
automorphism of k-algebras. We define the graded semidirect product A x Z/2 to be the k-
algebra of formal sums

A XZ/2 ={ae + ber|a,b e A},

where the addition is componentwise and the multiplication is given by
(ae1 +ber)(d'er + ber) = (aad’ + bp(b))er + (ab’ + bop(a'))er,

for all a,a’,b,b' € A. We endow A x Z/2 with the unique grading such that |eja| = |a| = |eral
for all homogeneous a € A.

23



1.5. Criterion for finiteness of global dimension

Example 1.4.8. Let A = k[z] with = homogeneous of degree 1. Let ¢ : A — A be the
isomorphism given by x — —x and let AxZ/2 be the graded semidirect product corresponding
to ¢. Now, set e™ := (e +e;), e = %(61 —e;) € A. By direct arguments, one can show
that PT := Aet and P~ := Ae~ are non-shift-isomorphic graded projective indecomposable
A-modules. Moreover, Lt := Pt /zP™ is the graded simple A-module corresponding to P*
and L™ := P~ /xP~ is the graded simple A-module corresponding to P~. From the definition
of et and e, it follows that

I

HOM(PT, PT)
HOMA (P, PT)

et Aet = spany (zle™|i € Ny, 2|1),
e~ Ae™ = span(zet|i € Ng,211).

I

This implies [P+ : L], = (1 —¢?)"! and [PT : L7], = ¢(1 — ¢?) . Moreover, one can readily
check that

Pt > PY/(ze™)PT > Pt /(ze™)?PT > ...
is a countable separated graded simple filtration of P*. Similarly, with the same arguments,
one can show that [P~ : L7], = (1 —¢*)"tand [P~ : LT], = q(1 — ¢*)~! and

P= > P J(ze )P~ D P J(ze )’P™ D ...

is a countable separated graded simple filtration of P~.

1.5 Criterion for finiteness of global dimension

We end this chapter with considering a useful criterion to bound the global dimension of
Laurentian k-algebras which are additionally also graded left Noetherian. Namely, the global
dimension of a graded left Noetherian Laurentian k-algebra is controlled by the EXT-terms
between the graded simple A-modules. This property is again analogous to the corresponding
property of finite dimensional k-algebras. For a general reference for the notion of global
dimension and its importance in homological algebra see [Wei95, Chapter 4].

At first, we recall the notions of projective dimensions. For this, we assume that C be an
Abelian category with enough projectives. We also assume that C is not equivalent to the
trivial category with only one object and one morphism.

Definition 1.5.1. We define the following:
(i) Let C € C be a non-zero object and
o> PP —-FP—-C—=0

be a projective resolution in C which we denote by P. Then I(P) is defined to be the
minimal number n (if it exists) such that P, # 0 and P; = 0 for i > n. Otherwise, we

set [(P) := oco. We call [(P) the length of P.

(ii) Let C € C be a non-zero object. We define pd(C) to be the minimum number n (if it
exists) such that there exists a projective resolution of C' in C of length n. Otherwise, we
set pd(C) = oco. We call pd(C) the projective dimension of M.

Next, we recall the definition of the (graded) global dimension.
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Definition 1.5.2. The global dimension of C is defined as
gl(C) :=sup{pd(C)|C € C, C non-zero}.

Let A is be a k-algebra. Then the global dimension of A is defined as

where D is the category of A-modules. If A is a graded k-algebra, then the graded global
dimension is defined as

gr-gl(A) := gl(D’),

where D' is the category of graded A-modules.

It is well-known that the finiteness condition L2 ensures that we do not have to distinguish
between gl and gr-gl, i.e. the following holds.

Proposition 1.5.3. Let A be a graded k-algebra that satisfies the condition L2. Then we have
gl(A) = gr-gl(4).

Proof. See e.g. [NVOT79, Corollary 7.8]. O

Finally, we come to the mentioned criterion to bound the global dimension of graded left
Noetherian Laurentian k-algebras. For this, we first briefly recall the corresponding criterion
for finite dimensional k-algebras. So let A be a finite dimensional k-algebra, let D denote the
category of A-modules and Irr(D) the set of simple objects in D. From [Wei95, Theorem 4.1.2],
we know that

gl(A) = sup{pd(M)| M € D, dimy(M) < oo}.

Let us now assume that
m :=sup{i € No|3L, L’ € Trr(D) : ExtYy (L, L') # 0} < oo.

Given a finite dimensional A-module M, then we can estimate the projective dimension of M
as follows. At first, recall the well-known fact

pd(M) = max{i € Ng|3L € Trr(D) : Ext’(M, L) # 0}.

This fact id for instance proved in [Aus55, Proposition 3.7]. Now, using induction on the
length of M and the long exact Ext-sequence, we obtain the estimate pd(M) < m. Hence, we
conclude that

gl(A) =m.

The Laurentian and graded left Noetherian properties, allow us to adapt these ideas and
translate the result to the setting of graded left Noetherian Laurentian k-algebras. This was
for instance done by McNamara in [McN15, Lemma 4.11]. He proved the result only for finite
type quiver Hecke algebras which are special examples of graded left Noetherian Laurentian
k-algebras. However, the same arguments work also in general for graded left Noetherian
Laurentian k-algebras.
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Theorem 1.5.4. Let A be a graded left Noetherian Laurentian k-algebra and let Irr(A) denote
the set of graded simple A-modules. Suppose that

m :=sup{i € No|3L, L’ € Irr(A) : EXT% (L, L') # 0} < oc.
Then we have gl(A) = m.
Next, we consider an example which illustrates Theorem 1.5.4.

Example 1.5.5. Let A = k[x] x Z/2 be the semidirect product that was already considered
in Example 1.4.8. With the notation from there, we have a short exact sequence

0 P (1) I5 Pt Lt 0,

where f is given by 3(e; —e;) — %(e1 + e,) and the map P+ — LV is the projection to the
head of P*. Similarly, we also have a short exact sequence

0= PH1 I P - o,

where f_ is given by 1(e1 + ;) — Z(e1 —e;) and P~ — L~ is the projection to the head of
P~. Using these short exact sequences, one can directly calculate that

k iti=0,

0 else.

k(—1) ifi=1,

0 else.

EXTY (LY, LT) 2 EXTY (L™ ,L7) = {
EXTY (LT, L7) 2 EXTY (L, L") = {

Hence, by Theorem 1.5.4, we conclude that gl(A) = 1.

We herewith end this chapter about the representation theory of Laurentian k-algebras. In
the next chapter, we will study Grothendieck groups of Laurentian k-algebras. Again, many
results can be transferred from the finite dimensional k-algebras to the Laurentian k-algebras.
However, there are also subtleties that we will work out.
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2 Grothendieck groups of Laurentian algebras

Convention. Throughout this chapter let k£ be a fixed ground field and A, B be fixed Lau-
rentian k-algebras. Moreover, we assume that A and B are graded left Noetherian and graded
Schurian.

Summary

In this chapter, we study Grothendieck groups of module categories over Laurentian k-algebras.
Our main focus lies on describing the Grothendieck groups Gg(A-fmod), Ko(A-pmod) and
Go(A-mod). These Grothendieck groups are naturally modules over A := Z[q, ¢ '], where
q acts via degree shifting. In the first sections, we discuss well-known properties of these
Grothendieck groups.

A crucial ingredient in our studies of these Grothendieck groups is the graded character
map which connects the Grothendieck group Go(A-mod) with the Grothendieck group of finite
dimensional graded A-modules but scalar extended to the ring of Laurent series A := Z((q)).
In this way, we obtain an A-linear homomorphism

geh : Go(A-mod) — A @4 Go(A-fmod), [M]— Y [M : L], ® [Li],
=1

where L1, ..., L, is a complete list of pairwise non-shift-isomorphic graded simple A-modules
and [M : L;], denotes the graded composition multiplicity of L; in M. We discussed the notion
of graded composition multiplicities in detail in Section 1.4. We like to warn the reader that
the graded character map is in general not injective, see Example 2.2.6.

Now, via the graded character map, we obtain a homomorphism of A-modules

¢ : A®4Ko(A-pmod) — A ® 4 Go(A-fmod).

If we additionally assume that A has finite global dimension, we then obtain by a standard
argument that (Z§ is an isomorphism of A-modules.

In Section 2.5, we come to the main result of this chapter. Under the assumption that A is
of finite global dimension and admits a self-inverse graded anti-automorphism ¥ : A — A, we
define A-bilinear Euler forms xf, xp and xm on Go(A-fmod), Ko(A-pmod) and Go(A-mod). In
the definition of these bilinear Euler forms, we use that thanks to T, taking HOM(., k) gives
contravariant equivalences

® : A-fmod — A-fmod, & : A-Mod"™ — A-Mod ™,

These equlvalences ensure the A-bilinearity property of xt, xp and xm. Now, via scalar exten-
sion, we obtain A-bilinear Euler forms %¢ and ¥, on A® 4 Go(A-fmod) and A® 4 Ko(A-pmod).
Our main result is then Theorem 2.5.14 which states that:

1. The isomorphism (ﬁ is compatible with ¥, and x.
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2.1. Definitions and fundamental properties

2. The Euler forms ¥, and xr are both non-degenerated.

3. If P,..., P, is acomplete list of pairwise non-shift-isomorphic projective indecomposable
graded A-modules and L, ..., L, are the corresponding graded simple A-modules, then

(@@ [A),....6(l@ [R]) and (1®[L{],....1®[L]])
are dual A-bases of A ® 4 Go (A-fmod) with respect to X.

Altogether, we have that Theorem 2.5.14 holds for a large class of graded k-algebras. In
particular, we can apply this theorem to (alternating) nil Hecke algebras as we will discuss in
Section 3.3 and Section 4.4.

2.1 Definitions and fundamental properties
We start by introducing the several Grothendieck groups.
Definition 2.1.1. We define the following:

(i) Let C be a small Abelian category. Then the Grothendieck group Go(C) of C is the Abelian
group generated by the set {[C]|C € C} of isomorphism classes of objects in C, subject to
the relation [C] = [C'] 4+ [C"], whenever there exists a short exact sequence

0—-C'-C—-C"=0
in C.

(ii) Let P be a small additive category. Then the split Grothendieck group Ko(P) of the
category in P is the Abelian group generated by the set {[P]|P € P} of isomorphism
classes of objects in P, subject to the relation [P] = [P'] + [P"], whenever there exists an
isomorphism P = P’ @& P" in P.

Of particular interest in our studies are the Grothendieck groups Go(A-fmod), Ko(A-pmod)
and Go(A-mod). Note that the graded left Noetherian assumption on A implies that A-mod
is an Abelian category.

We begin our studies with an important observation. Let C be a small Abelian subcategory
of A-Mod. Then G¢(C) admits the structure of a Z[q, ¢~ !]-module, where for every i € Z the
scalar multiplication with ¢’ is given by

¢'[M] = [M(i)], forall M €C.

Analogously, if P is a small additive subcategory of A-Mod, then Ko(P) is also a Z[q, ¢ !]-
module, where for every i € Z the scalar multiplication with ¢’ is given by

¢'[P] = [P(i)], forall P € P.

In particular, Go(A-fmod), Go(A-mod) and Ky(A-pmod) are .A-modules.

28



2.1. Definitions and fundamental properties

Notation 2.1.2. Let A := Z[q, ¢ '], A :=7Z((q)) and B :=7Z((¢"")). Moreover, let —: A — A
be the unique additive map such that ¢¢ = ¢~ for all i € Z. Let M, N be A-modules and
f M — N be an additive map. If f satisfies

flam) =am, forallac A,

then f is called A-anti-linear. Moreover, let ~ : B — A be the additive map defined as

( Z aiq_i) = Z aiq'.
1>>—00 1>>—00
Finally, if we are given an element f contained in A, A or B, then fi denotes the coefficient of
q*, for i € Z.

Remark 2.1.3. We like to stress that we never view A, A and B as graded rings, but as
ordinary ungraded rings.

In the following, we focus on the Grothendieck groups Go(A-fmod) and Ko(A-pmod). Using
that A-fmod is a finite length category and A-pmod is a Krull-Schmidt category, we obtain by
well-known arguments the following basis theorem.

Theorem 2.1.4. The following holds:

(i) We have that Go(A-fmod) is a free A-module of finite rank with basis ([L1i],...,[Ly]),
where Ly,..., L, is a complete list of pairwise non-shift-isomorphic graded simple A-
modules.

(it) We have that Ko(A-pmod) is a free A-module of finite rank with basis ([P1],...,[P;]),
where Py, ..., P. is a complete list of pairwise non-shift-isomorphic graded projective
indecomposable A-modules.

By the graded semiperfectness of Laurentian k-algebras, we deduce that taking the projective
cover gives an isomorphism of \A-modules between Go(A-fmod) and Ko(A-pmod).

Proposition 2.1.5. We have an isomorphism of A-modules
pc : Go(A-fmod) — Ko(A-pmod),

given by assigning to a class [M] € Go(A-fmod) the class [Pys], where M € A-fmod and Pys
is the projective cover of M. We call pc the projective cover map.

Proof. At first, we observe that pc is well-defined. Indeed, this follows directly from the fact
that if
0> M - M-M"—0

is a short exact sequence in A-fmod and P’ resp. P” is the projective cover of M’ resp. M",
then P’ @ P” is the projective cover of M. Hence, pc is a well-defined homomorphism of
A-modules. From Theorem 2.1.4 and the 1:1 correspondence between the graded simple and
the graded projective indecomposable A-modules from Theorem 1.2.13, then directly follows
that pc is an isomorphism of A-modules. O

Next we use the results discussed in Section 1.3 to describe the Grothendieck groups of outer
tensor products.
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2.2. The graded character map

Proposition 2.1.6. The following holds:

(i) There is an isomorphism of A-modules
D4 B : Go(A-fmod) ® 4 Go(B-fmod) — Go((A ®j, B)-fmod),
such that ® 4 g([M] @ [N]) = [M ®j N| for all M,N € A-fmod.
(ii) There is an isomorphism of A-modules
U 4,5 : Ko(A-pmod) ® 4 Ko(B-pmod) — Ko((A @ B)-pmod),
such that W4 p([P] ® [Q]) = [P ® Q] for all P € A-pmod, @ € B-pmod.
(iii) These isomorphisms are compatible with taking projective covers, i.e. the following dia-
gram commutes:
Go(A-fmod) @4 Go(B-fmod) —2Z, Go((A @5, B)-fmod)
pcy ® pCBJ Jpcmks
Ko(A-pmod) &4 Ko(B-pmod) > Ko((4 & B)-pmod)
Here, pcy,pcg and PCag,B aT€ the respective projective cover maps.

Proof. (i) The well-definedness of ® 4 p is a consequence of the fact that taking tensor products
over k preserves exactness. Now, from Theorem 2.1.4 and Theorem 1.3.3, it follows that ® 4 g
is an isomorphism of A-modules.

(ii) If P € A-pmod, @ € B-pmod, then also P ®; Q € (A ®; B)-pmod. Since, the tensor
products over k preserves also direct sums, we deduce that W4 p is well-defined. Using Theo-
rem 2.1.4 and Corollary 1.3.5.(ii), we then deduce that ¥4 p is an isomorphism of .4-modules.

(iii) This assertion is a direct consequence of Corollary 1.3.5.(i). O

After these considerations, we come in the following section to a crucial player in our study
of Grothendieck groups: the graded character map.

2.2 The graded character map

The graded character map provides an important connection between the Grothendieck groups
Go(A-mod) and Gg(A-fmod). The target of the graded character map will be the following
scalar extension of Gg(A-fmod).

Definition 2.2.1. We set
Go(A-fmod) := A @ 4 Go(A-fmod), Ky(A-pmod) := A ® 4 Ko(A-pmod)

and call Go(A-fmod) the extended Grothendieck group of Go(A-fmod) and Ko(A-pmod) the
extended Grothendieck group of Ko(A-pmod).

For the definition of the graded character map, we use the notion of graded composition
multiplicities that were discussed in Section 1.4.
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2.2. The graded character map

Definition 2.2.2. Let Ly,...,L, be a complete list of pairwise non-shift-isomorphic graded
simple A-modules. Then there exists a unique homomorphism of A-modules

gch : Go(A-mod) — Go(A-fmod),

such that

r

gch([M]) = Z[M : Lilq ® [Li],
i=1

for all M € A-mod. We call gch the graded character map.
The following lemma treats the well-definedness of the graded character map.

Lemma 2.2.3. The graded character map gch is well-defined. In addition, gch is independent
from the choice of complete list of pairwise non-shift-isomorphic graded simple A-modules.

Proof. We first show that gch is well-defined. For this, let Lq,..., L, be a complete list of
pairwise non-shift-isomorphic graded simple A-modules and let P; be the projective cover of
L; for i € {1,...,r}. At first, recall from the definition of graded composition multiplicities
that [M : L;], is indeed contained in A. Thus, the element

T

> M Lijg®[Li]

i=1
is contained in Gy (A-fmod). Now, let

0—M — M- M -0

be a short exact sequence in A-mod. Then, by (1.2) and the graded Schurain property of A,
we have the following equations

[M : Li]; = grdim(HOM 4 (P;, M))
= grdim(HOM 4 (P;, M")) + grdim(HOM 4 (P;, M"))
= [M, : Lz]q + [M” : Ll]q
Hence, we conclude that gch is well-defined. Next, we show the independence property. For
this, let L},..., L. be a second complete list of pairwise non-shift-isomorphic graded simple

A-modules. Without loss of generality, we may assume that for each ¢ € {1,...,r} there exists
d; € Z such that L;(d;) = L}. Then we have

[M : Lilg® [Li] = (¢"%[M : Liq) ® (¢"[Li]) = [M : L]y ® [L7).

This implies that gch is independent from the choice of complete list of pairwise non-shift-
isomorphic graded simple A-modules. O

Let us consider an example that illustrates the graded character map.

Example 2.2.4. Let A = k[z1,...,x,] be a graded polynomial algebra with all z; homo-
geneous of degree 1. The regular A-module P := 4A is the unique graded projective inde-

composable A-module up to shift-isomorphism and L := P/(x1,...,x,)P is the corresponding
graded simple A-module of P. Then the graded character of P is given by
1 n
ge((P]) = (=) @]
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2.2. The graded character map

In particular, if n = 1, we have
0 .
geh([P]) = (Y _q') @ [L].
i=0
Remarkably, the graded character map needs not to be injective as the following example

shows. It relies on the following useful criterion.

Lemma 2.2.5. Let M, N € A-mod. Then, we have [M] = [N] in Go(A-mod) if and only if
there exists E € A-mod such that E admits two finite filtrations in A-mod of the same length

O=FCF,C---CF;=FE, 0=GycCcGyC---CGs=EFE,
such that there exists i,7 € {1,...,s} with
Fi/Fi_1 =M, G;/Gj_1=N
and there exists a bijection w: {1,...,r} \ {i} = {1,...,r} \{j} such that
Fi/F 1 = Gray/Gray—1

foralll e {1,...,r}\ {i}.

Proof. The lemma is a straightforward consequence of the definition of the Grothendieck group
G(] (A—HlOd) . J

Example 2.2.6. Suppose that k is not of characteristic 2. Let A = k[x,y] be the graded
polynomial algebra with = and y homogeneous of degree 1. Again, let P := ,A be the
regular A-module, so P is the unique graded projective indecomposable A-module up to shift-
isomorphism and L := P/(z,y)P is the corresponding graded simple A-module.

Now, consider the graded A-modules

M, :=A/(x+y)A, My:=A/(x—y)A.

By definition, we have
grdim(M;) = grdim(My) = (1 — ¢)~ 1.

Thus, we conclude that the graded characters of [M;] and [Ms] are given by
gch([Mi]) = geh([Mo]) = (1 - ¢)~ @ [L].

In the remaining part of this example, we show that [M;] # [Maz] in Go(A-mod) which proves
that gch is not injective.

For the sake of contradiction, we assume that [M;] = [M;] and apply Lemma 2.2.5 to
M = My and N = M. Thus, there exists £ € A-mod and 7 as in Lemma 2.2.5. At first, we
extend the map 7 to a bijection on {1,...,s} by setting 7(i) = j and set B := k[z,y, 2=}, y~!].
Then, we apply the functor B ® 4 (.) to the filtrations

O=FyCFC---CFs=FE, 0=GocGyC---CGs=E.
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2.2. The graded character map

Since B is a graded flat A-module, we deduce that B ® 4 E is a finitely generated graded
B-module with two finite filtrations

0=BRuFyCBRAFI C---CBRsaF;,=B®sF,
O:B®AGOCB®AG1C"'CB@AGs:B@)AE,

such that
(BRAF;)/(BRaF;1)=2B®aAM, (BRaG))/(BRaGj-1)= B®s M.
In addition, we have
(B®a F1)/(B®a Fi—1) = (B®aGrq))/(B®a Gry-1),

foralll € {1,...,7}\{i}. Since B®4F is a finitely generated B-module, all graded components
of E are of finite dimension over k.

Now, we take a closer look at the graded B-modules B® 4 M; and B® 4 M»>. For each ] € Z,
the graded component (B ®4 Mj); is of dimension 1 with generator v; := 1 ® z!. The scalar
multiplication of x and y on B ® 4 M is given by

U = vy, Yy = —v41, forallleZ.

Similarly, each homogeneous component (B ® 4 Ms); is also of dimension 1 with generator
wy := 1 ® 2!. The scalar multiplication of  and y on B ®4 M, is given by

Tw; = wpy1, yw; =wpq, foralll € Z.

1

From these considerations, we conclude that scalar multiplication with zy ™" is multiplication

with —1 on (B ®4 M) respectively multiplication with 1 on (B ®4 M2)o.
Now, consider the k-vector space filtrations

0= (B®aFp)oC(B®aAF1)gC---C(B®aFs)o=(B®aE)y,
0=(B®aGploC (BR®aG1)gC - C(B®aGs)o=(B®aE).

Let i1,...,i, € {1,...,s} be those indices such that
(B®a Fy))o/(B®a Fij—1)o0 # 0.

In particular, there is some lp € {1,...,r} such that i;, =7 and hence
B®aF, /B®aF;, 1= M.

Now, let
m: (B &A E)o — (B XA E)Ov

and
my : ((B ®a F7)/(B ®a Fl—l))o — ((B ®a F1)/(B®a FZ—l))O, for I € {i1,... i},
as well as

m) : ((B ®4Gy)/(B®4 Gl_l))o — ((B ®4G)/(B®2 Gl_l))o, for I € {m(iy), ..., m(iy)},
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2.2. The graded character map

denote the k-linear automorphisms given by scalar multiplication with xy~!, respectively.

These are automorphisms of finite dimensional k-vector spaces, hence they have non-zero
determinant. Moreover, they satisfy

H det(my) = det(m) = H det(mj) (2.1)

1€{is, yin} 1e{m(in)y....m(ir)}

By our assumptions on 7, we also have the equality

det(my) = H det(my). (2.2)
1€{ip, . ir P\ {3} le{m(ia),...,m(ir) P\ {7}

The equations (2.1) and (2.2) imply det(m;) = det(m;) which contradicts our calculations
above. So we have finally proved that [M;] # [Ms] in Go(A-mod).

We proceed with a crucial property of the graded character map. Namely, if we assume
that A is of finite global dimension, then the graded character map induces an isomorphism
of A-modules

¢ : Ko(A-pmod) — Go(A-fmod).

So beside the projective cover map, we obtain a second isomorphism between KO(A—pmod) and
Go (A-fmod). The great advantage of the isomorphism ¢§ is that it satisfies neat compatibility
conditions as we will discuss in Section 2.3 and Section 2.5.

In order to put this into practice, we first show the following general proposition.

Proposition 2.2.7. Given M € A-mod, then M admits a minimal projective resolution in
the category A-mod:

0: 0 1o} o]
Py 2P Py M 0.

This means that each P; is a finitely generated graded projective A-module and the homomor-
phisms P; — ker(0;) are projective covers.

Proof. Recall from Corollary 1.2.8 that A is graded semiperfect. Thus, M admits a projective
cover in A-mod. We choose 0y : Py — M to be the projective cover of M in A-mod. By
assumption, A is graded left Noetherian. Hence, ker(dp) is also a finitely generated graded A-
module. According to the graded semiperfectness of A there exists a projective cover of ker(d)
in A-mod. Let p; : P; — ker(0dy) be the projective cover in A-mod and let g : ker(9y) — Py
be the inclusion. Then, we define 0y : P, — Py as 01 := 19 o p1. By continuing this procedure,
we obtain a minimal resolution of M in the category A-mod. O

The following properties of minimal projective resolutions are well-known and can be shown
directly by using the definition of projective covers.

Lemma 2.2.8. Let M € A-mod and let P be a minimal projective resolution of M in A-mod.
Let Q be a projective resolution of M in A-mod. Then P is a direct summand of Q. In
particular, if M is non-zero, then we have pd(M) = [(P).

We now come to the promised isomorphism theorem. For this, let ¢ : Ko(A-pmod) —
Go(A-fmod) be the unique homomorphism of .4-modules such that

[P] — gch([P]), for all P € A-pmod.
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2.2. The graded character map

Note that [P] denotes on the left hand side a class in Ko(A-pmod) and on the right hand side
a class in Go(A-mod). Let

¢ : Ko(A-pmod) — Go(A-fmod) (2.3)
be the A-linear extension of ¢.

Theorem 2.2.9. Suppose gl(A) < co. Then & is an isomorphism of A-modules.

Proof. According to Proposition 2.1.4, we know that Ky(A-pmod) and Go(A-fmod) are free
A-modules of finite rank and the rank of Ky(A-pmod) and Go(A-fmod) coincides. Thus, it
suffices to show that ¢ is surjective. Let M € A-fmod be non-zero. Then by Lemma 2.2.8 and
Proposition 2.2.7, we know that M admits a projective resolution in A-mod of length < n.
Let

e = Q> Q1 > Qo — M —0

be such a projective resolution. From this, we deduce the following equality in Go(A-mod):

Thus, we obtain the following equality in Gy (A-fmod):

n

Y (=1 geh([Qi]) = 1@ [M].
i=0
This implies

n

H(Y (- e[Q]) =10 M.
=0

Thus, we proved that <Z§ is surjective and hence, (Z§ is an isomorphism of A-modules. ]

We end this section, with showing that the graded character map is compatible with outer
tensor products. For this, we use the following well-known fact.

Lemma 2.2.10. Let M € A-mod, N € B-mod. Then for all graded A-modules M’ and all
graded B-modules N’ the canonical map

HOM 4 (M, M") @ HOM4(N, N') — HOMag, 5(M @i N, M’ @ N') (2.4)
is an tsomorphism of graded k-vector spaces.

Proof. See e.g. [Del90, Corollary 5.4]. The reference only treats the ungraded case, but the
argument generalizes directly to the graded setting. O

This fact implies that the graded composition multiplicities are compatible with outer tensor
products.

Proposition 2.2.11. Let M € A-mod, N € B-mod and let S resp. T be graded simple A-
resp. B-modules. Then we have

M@, N:S®,T)g=[M:S];-[N:T,.
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2.2. The graded character map

Proof. At first note that by Corollary 1.3.4, we have that A ®; B is graded Schurian. Let P
resp. @ be the projective cover of S resp. T. By Corollary 1.3.5, we know that P ®; @ is the
projective cover of S ®; 1. Hence, we obtain

[M R N : S ® T]q = gl‘dim(HOMA@kB(P Rk Q, M Ry N))
= grdim(HOM4 (P, M) ®, HOMp(Q, N))
= grdim(HOMy (P, M)) grdim(HOMp(Q, N))
(M 8], [N T,

where in the first and last equality, we used the graded Schurian property and in the second
equality, we used Lemma 2.2.10. O

From Proposition 2.2.11, we directly obtain a compatibility statement for the graded char-
acter map with outer tensor products. For this, note that by Proposition 2.1.6, we have an
isomorphism of A-modules

(i)/LB : Go(A-fmod) ® 4 Go(B-fmod) — Go((A ®) B)-fmod),

such that
(f®[M])®(g®[N]) = fg®[M @ N],

for all f,g € A,M € A-fmod, N € B-fmod. Moreover, we also have an isomorphism of
A-modules
W ,B : Ko(A-pmod) ® ; Ko(B-pmod) — Ko((A ® B)-pmod),

such that
(fe[P)®(@e(Q))— fgo [P ey Ql,

for all f,g € A, P € A-pmod, Q € B-pmod.
Corollary 2.2.12. Let M € A-mod, N € B-mod. Then we have

(4,5 0 gchag, ) ([M @, N]) = gehy ([M]) ® gehp([N]),
where gch g, g, gchy and gchp denote the respective graded character maps.

Proof. Let S1,...,S, resp. Ti,...,Ts be a complete list of pairwise non-shift-isomorphic A-
resp. B-modules. Using Proposition 2.2.11, we immediately obtain

(®4,5 0 geh g, 5) (M @k N]) = dap( Y- [M @ N : S @4 Ty @ [Si @ T))

1<i<r
1<j<s
—dan( X (IM:S1IN:T)) © 15 @ 1))
1<i<r
1<5<s
= > ([M: 8], ®[S]) @ (IN : Tjly @ Tj))
1<i<r
1<j<s

This finishes the proof. O
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Corollary 2.2.13. We have the following commutative diagram:

N N U N

Ko(A-pmod) ® 4 Ko(B-pmod) —%, Ko((A ® B)-pmod)
J’A@é’BJ{ JéA@kB

Go(A-fmod) ® 4 Go(B-fmod) das, Go((A @, B)-fmod)

Here, dA)A@kB,qAﬁA and éB are the respective homomorphisms offl modules from (2.3). If we
assume that A and B are of finite global dimension, then gi)A and gZ)B are zsomorphzsm of
A-modules. Hence, we deduce that in this case also ¢A®kB is an isomorphism of.A modules.

2.3 Induction and restriction

In the previous sections, we studied the projective cover map and the graded character map.
We now discuss how these homomorphisms behave under induction and restriction. In Ex-
ample 2.3.3, we will see that pc is in general not compatible with induction and restriction.
However, in Proposition 2.3.4, we show that the graded composition multiplicities satisfy
compatibility relations with induction and restriction. From this, it follows that the graded
character map is compatible with induction and restriction.

At first, we discuss some basic facts about induction and restriction functors. For this, let
A C B be a non-necessary unital inclusion of graded k-algebras and let

Indf : A-Mod — B-Mod, M — B®4 M,
Res% : B-Mod — A-Mod, M~ 14 M,

denote the corresponding induction and restriction functors. In our studies, we are mostly
interested in the case where these functors give well-defined A-linear homomorphisms between
Grothendieck groups. Since Resﬁ is exact and preserves finite dimensionality, we conclude
that

Go(B-fmod) — Gg(A-fmod), [M] > [Res§ (M)],

is a well-defined A-linear homomorphism. It is also always true that Indﬁ preserves finitely
generated graded projective modules, hence

Ko(A-pmod) — Ko(B-pmod), [P] — [Ind%(P)],
is a well-defined A-linear homomorphism. However, in general the following holds:

1. In general, the functor Ind5 neither gives an A-homomorphism between Gg(A-fmod)
and Go(B-fmod) nor between Go(A-mod) and Go(B-mod). This is due to the fact that
in general, IndA{B neither preserves finite dimensionality nor is exact.

2. In general, Res§ neither gives a well-defined .A-homomorphism between Gg(B-fmod)
and Go(A-fmod) nor between Go(B-mod) and Go(A-mod). This is due to the fact
that in general, Resﬁ neither preserves finitely generated modules nor preserves graded
projective modules.

However, we will mostly consider inclusions A C B such that the induction and restriction
functors satisfy the following conditions:
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2.3. Induction and restriction

G1 For all P € B-pmod, we have Resf (P) € A-pmod.
G2 For all M € A-fmod, we have Ind5 (M) € B-fmod.
G3 The functor Indf is exact.

These conditions are for example satisfied if B is a graded free right A-module of finite rank,
or, more generally, if B is a finitely generated graded projective right A-module.

Proposition 2.3.1. Suppose that the inclusion A C B satisfies the properties G1, G2 and
G3. Then we have homomorphisms of A-modules

Rt : Go(B-fmod) — Go(A-fmod), Ry, : Go(B-mod) — Go(A-mod),
R, : Ko(B-pmod) — Ko(A-pmod),

each given by assigning to a class [M] the class [Res5(M)] in the respective Grothendieck
group. Likewise, we have also homomorphisms of A-modules

It : Go(A-fmod) — Go(B-fmod), I, : Go(A-mod) — Go(B-mod),
I, : Ko(A-pmod) — Ko(B-pmod),
each given by assigning to a class [M] the class [Ind5 (M) in the respective Grothendieck group.

Proof. This follows directly from the definitions and the assumptions G1, G2 and G3. O

Convention 2.3.2. Throughout this chapter, we assume that the conditions G1, G2 and G3
are always satisfied whenever we consider induction and restriction functors.

The following example shows that the projective cover map is in general not compatible
with induction and restriction.

Example 2.3.3. Let B := k[z] be the polynomial algebra with z homogeneous of degree 1
and let A := k[z?] C B. Let

pcy : Go(A-fmod) — Ko(A-pmod), pcp : Go(B-fmod) — Ko(B-pmod)

be the respective projective cover maps. Let P := pB resp. @ := ,A be the regular A-
resp. B-module. Then P resp. @ is the unique graded projective indecomposable A- resp.
B-module up to shift-isomorphism. We denote the corresponding graded simple quotients by
S := P/zP and T := Q/2>Q. Readily, we have Res%(S) = T. However, Res% (P) =2 Q ® Q(1).
Hence, it follows that

pea(Re([5]) = [Q] # (1 + 9)[Q] = Rp(pep([S]))-

Similarly, Ind5 (T) = S @ S(1), whereas Ind% (Q) = P. Thus, we can infer that

pep(Le([T1)) = (1 + @) [P) # [P] = L (pea([T1))-

Hence, we observe that in this example, the projective cover map is neither compatible with
induction nor with restriction.
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In contrast to the projective cover map, the graded character map is compatible with induc-
tion and restriction. This is thanks to the following transitivity formulas of graded composition
multiplicities.

Proposition 2.3.4. Let Ly,...,L, be a complete list of non-shift-isomorphic graded simple
A-modules and Sy, ..., Ss be a complete list of non-shift-isomorphic graded simple B-modules.
Then the following holds:

(i) Let S be a graded simple B-module and M € A-mod. Then we have

[d5 (M) : S]g =D [M : Li]o[Ind5(L;) : S],.
i=1
(ii) Let L be a graded simple A-module and N € B-mod. Then we have

[ResB(N): L], = i[M : Silq[Res5(Si) : L,

i=1
Proof. We only prove (i) since (ii) can be shown in the same way. Let
F=(MD>DFyD>F D...)

be a countable separated graded simple filtration of M. Using the Laurentian property and
the assumption that Ind% preserves finite dimensionality, we conclude that

Ind% (M) > nd% (Fy) D md5(Fy) > ...

is a countable separated graded filtration of Ind% (M) with finite dimensional subquotients.
We denote this filtration by Indf (F). As we assumed that Ind% is exact, we also have

Ind% (F;)/nd5 (Fi1) = Ind5(F;/F;11), for all i € No.

Given N € B-fmod, then we define

Indf(F): Nlg = (3 [{i > 1/Idf(F)/ Indf(Fip) = N} - ') € Z(a).

1>>—00

Using the Laurentian property of B, one can easily check that [Ind5(F) : N], is indeed well-
defined. Next, we introduce the equivalence relation ~ on the set {L1,..., L, }, where L; ~ L;
if and only if Indf(L;) = Ind5(L;). Let L;,...,L; be a system of representatives for ~.
Then we conclude the following equalities

[md% (M) : 8], = > [Ind4(F) : Ind%(L;,)]g[md5 (L;,) : g

j=1
t

=3 ( X0 MLy [mdf (L) : Sly)
i

= ZT:[M : Li]q[Indf(Lz‘j) 1 Sy
i=1

This finishes the proof. O
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As a direct consequence, we can infer that the graded character map is compatible with
induction and restriction. It follows that also the A-homomorphism ¢ from (2.3) is compatible
with induction and restricition.

Corollary 2.3.5. In the setting of Proposition 2.3.4 let

gch 4 : Go(A-mod) — Go(A-fmod), gchy : Go(B-mod) — Go(B-fmod)
denote the respective graded character maps and let

It : Go(A-fmod) — Go(B-fmod), Rg : Go(B-fmod) — Go(A-fmod)
denote the A-linear maps obtained via scalar extension from Iy and R¢. Then we have
It ogchy =gchgol, and f{fogchB =gchyoRy, .

Corollary 2.3.6. In the setting of Corollary 2.3.5, let

$a : Ko(A-pmod) — Go(A-fmod), ¢ : Ko(B-pmod) — Go(B-fmod)
denote the respective homomorphisms of A-modules from (2.3) and let

I, : Ko(A-pmod) — Ko(B-pmod), R, : Ko(B-pmod) — Ky(A-pmod)
denote the A-linear maps obtained via scalar extension from I, and Ry. Then we have

ifOQ;A:(ZgBin and RfOQ/SBZQZ/;AORp-

2.4 HOM-pairings

In this section, we discuss HOM-pairings between Go(A-fmod) and Ko(A-pmod). Via these
pairings we get a connection between Go(A-fmod) and Ko(A-pmod) which is also compatible
with induction and restriction thanks to Frobenius reciprocity. Our notation in this section is
modeled on the notation in [KL09, Section 2.5].

We begin with defining the semi-linear HOM-pairing between the Grothendieck groups
Ko(A-pmod) and Go(A-fmod).

Definition 2.4.1. There exists a unique A-semi-linear pairing
(.,.) : Ko(A-pmod) x Go(A-fmod) — A,
such that for all P € A-pmod, M € A-fmod, we have
([P, [M]) = grdim(HOM (P, M)).

We call (.,.) the semi-linear HOM-pairing between the Grothendieck groups Ko(A-pmod) and
Go(A-fmod). Here, A-semi-linear means, that (.,.) is A-anti-linear in the first variable and
A-linear in the second variable.
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Let P be a graded projective indecomposable A-module and let L be corresponding graded
simple A-module and recall that we assumed A to be graded Schurian. Hence, from (1.2)
follows

(P,M)=[M : L], forall M e A-fmod.

Thus, we deduce the following duality result.

Proposition 2.4.2. Let Py,..., P, be a complete list of pairwise non-shift-isomorphic graded

projective indecomposable A-modules and let Lq,...,L, be the corresponding graded simple
A-modules, then we have

1 if i =j,

(P, L) = e

0 ifi+#j,

foralli,j €{1,...,r}.

Moreover, by Frobenius reciprocity, it follows that the semi-linear HOM-pairing satisfies the
following compatibility relations with induction and restriction. Let A C B be a non-necessary
unital graded inclusion. Then we have

(mdZ(P)], [M]) = ([P], [Res3 (M),

for all P € A-pmod, M € B-fmod.

Next, we describe a possibility how we can obtain an A bilinear pairing from (.,.). In
general, bilinear pairings have the advantage that we can extend them to ring extensions of A
via scalar extension.

Now, in order to obtain a bilinear pairing from (., .), we use certain dualities on the categories
A-fmod and A-pmod. To define these dualities we make the following assumption on A.

Convention 2.4.3. For the rest of this section, we assume that A that admits a self-inverse
graded anti-isomorphism ¥ : A — A. This means, ¥ is an automorphism of graded k-vector
spaces such that T(ab) = T(b)%(a) for all a,b € A.

As we will show in the following chapters, we have that (alternating) nil Hecke algebras
satisfy this assumption. So the results that we discuss in the following can be applied to them.

The crucial step to obtain a bilinear pairing from (., .) is to observe that we have the following
dualities on the categories A-fmod and A-pmod.

Definition 2.4.4. We define the following:

(i) Let ® : A-fmod — A-fmod be the duality given by
M — HOMg (M, k),
where the graded A-module structure on HOMy (M, k) is defined as
(af)(m) = f(T(a)m),

for allm € M, f € HOMy(M, k) and a € A.
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(i) Let # : A-pmod — A-pmod be the duality given by
P — HOMy (P, A),
where the graded A-module structure on HOM4 (P, A) is defined as
(af)(p) = f(P)Z(a),
forallp € P, f € HOM4(P, A) and a € A.
Note that if e € A is a homogeneous idempotent, then (Ae)™ = AT (e).

In the following lemma, we list important properties of these dualities. These properties
are formulated for instance in [KL09, Section 2.5] in the context of quiver Hecke algebras and
transfer directly to our more general setting.

Lemma 2.4.5. Let P € A-pmod and M € A-fmod. Then we have
([P7], [M]) = grdim(P* @4 M) = ([P],[M®]),

where P* denotes the graded right A-module obtained from P wia the map T. Moreover, ~ is
the involution on A from Notation 2.1.2.

Proof. It suffices to prove the equalities in the case P = Ae, where e € A is a homogeneous
idempotent. The equality

grdim(HOM 4 (P#, M)) = grdim(P* ® 4 M)

follows from the fact that both HOM 4(P#, M) and P*® 4 M are isomorphic as graded k-vector
space to T(e)M. Now, let us prove the second equality. For this, we have to show

grdim(P* @4 M) = grdim(HOM 4 (P, M®)).
Since P¥ ®4 M is isomorphic as graded k-vector space to T(e)M it suffices to show
dimy,(T(e)M); = dimy(HOM 4 (P, M®)_;), for each i € Z.

Let us fix i € Z. At first, note that HOM 4 (P, M®) is isomorphic as graded k-vector space to
eM®. Let mg(e) : M; — M; denote k-linear homomorphism given by left multiplication with
%(e). By the definition of M¥, we have that (eM®)_; and Homy (msg e (M;), k) are isomorphic
as k-vector spaces. Since (T(e)M); = msg()(M;), we can infer that (T(e)M); and (eM?®)_;
have the same dimension over k. O

As a direct consequence we obtain the following result.

Corollary 2.4.6. Let L be a graded simple A-module with projective cover P. Then P# is
the projective cover of L¥.

After these considerations, we now define the bilinear HOM-pairing.
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Definition 2.4.7. There exists a unique A-bilinear pairing
(.,.) : Ko(A-pmod) x Go(A-fmod) — A,
such that for all P € A-pmod, M € A-fmod, we have
([P, [M]) = ([P*],[M]).
We call (.,.) the A-bilinear HOM-pairing between Ko(A-pmod) and Go(A-fmod).

Let P be a graded projective indecomposable A-module and let L be corresponding graded
simple A-module. According to Corollary 2.4.6, we have

(P,M)=[M: L%,

for all M € A-fmod. Thus, we obtain a slightly different duality result for the bilinear HOM-
pairing.

Proposition 2.4.8. Let Pi,..., P, be a complete list of pairwise non-shift-isomorphic graded
projective indecomposable A-modules and let Ly, ..., L, be the corresponding graded simple
A-modules. Then we have
1 ifi=j,
(P L) = { ’

J 0 ifi#j,
foralli,j € {1,...,r}. In particular, (.,.) is non-degenerate.

We end this section with compatibility statements of (.,.) with induction, restriction and
outer tensor products. For this, we assume that also B admits a self-inverse graded anti-
automorphism $ : B — B.

Proposition 2.4.9. Let A C B be a non-necessary unital graded inclusion such that $4 = <.
Then the following holds:

(i) For all P € A-pmod, M € B-fmod, we have

(Ind[P], [M]) = ([P, Res{[M]),.

(ii) For all P € B-pmod, M € A-fmod, we have

(Res[P), [M]) = ([P], Ind[M]).

Proof. This is a direct application of Lemma 2.4.5. For details, see e.g. [KL09, Proposition 3.3].
The reference only treats quiver Hecke algebras, but the arguments directly generalize to our
more general setting. O

We continue with stating a compatibility relation of the bilinear HOM-pairing with respect
to outer tensor products. For this, note that

is a self-inverse graded anti-automorphism of A ®; B.
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Proposition 2.4.10. Let M € A-fmod, N € B-fmod, P € A-pmod, Q) € B-pmod. Then we
have

(P ®r Q, M @y N) = (P,M)(Q,N).
Proof. By Lemma 2.2.10, we have (P ®;, Q)" = P# ®; Q7. Thus, we conclude
(P @k Q, M &), N) = grdim(HOM 40, 5((P ®, Q)%, M @ N))
= grdim(HOM g, 5(P* @ Q%, M @, N))
= grdim(HOM4 (P#, M) ®;, HOMp(Q*, N))
= grdim(HOM 4 (P#, M)) - grdim(HOMp(Q*, N))
= (P, M)(Q,N),

where in the third equation we also used Lemma 2.2.10. ]

2.5 Euler Forms

In this section, we define bilinear Euler forms on Go(A-fmod), Go(A-mod) and Ko(A-pmod)
and prove the results that were outlined in the summary of this chapter.

Convention 2.5.1. Recall that we assume in this chapter that A is a graded Schurian, graded
left Noetherian and Laurentian k-algebra. Throughout this section, we further make the
following assumptions on A:

1. A has finite global dimension.
2. A admits a self-inverse graded anti-automorphism ¥ : A — A.
We set n := gl(A) and denote the associated dualities to T by ® and #.

In the following, we define the A-bilinear Euler forms xt and xy, on the Grothendieck groups
Go(A-fmod) and Go(A-mod). For this, we extend the functor ® appropriately. Recall at this
point the definition of the categories A-Mod™ and A-Mod™ from Section 1.1. Then we have a
contravariant equivalence of categories

® : A-Mod' — A-Mod™~, M ~— HOM4(M, k),
where the graded A-module structure on HOMy (M, k) is defined as

(af)(m) = f(Z(a)m),

for all m € M, f € HOMg(M, k) and a € A. By definition, ® maps the subcategory A-fmod
to itself and coincides with ® on A-fmod.

We proceed with introducing some notation. Let vect denote the category of graded k-vector
spaces and homomorphisms between graded k-vector spaces and let vect™ C vect be the full
graded subcategory whose objects are the graded k-vector spaces V' that satisfy the following
conditions:

1. All homogeneous components of V' are of finite dimension over k.

2. There exists d € Z (depending on V') such that V; = 0, for i > d.
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Recall from Definition 1.1.5 that for every V' € vect™ the dual graded dimension is defined as

dgrdim (V) := Z dim(V;)q' € B.

1<K 00

Before we define the A-bilinear Euler forms on Gg(A-fmod) and Go(A-mod), we list some
useful facts in the following lemma. They can be proved directly by standard arguments using
Proposition 2.2.7 and Lemma 2.2.8.

Lemma 2.5.2. The following holds:

(i) Let L be a graded simple A-module with projective cover P. Then L® is graded simple
and P® is the injective hull of L®.

(ii) Let M,N € A-mod. Then EXTY(M,N¥®) € vect™, for all i € Ny.
(iii) Let M, N € A-mod. Then we have an isomorphism of graded k-vector spaces
EXT (M, N®) =~ EXTY (N, M#),
for all i € Ny.

Equipped with Lemma 2.5.2, we now state the definition of the bilinear Euler forms on
Go(A-fmod) and Go(A-mod).

Definition 2.5.3. We define the following:

(i) Let x¢ : Go(A-fmod) x Go(A-fmod) — A be the unique A-bilinear form such that

xe([M],[N]) = (=1)" grdim(EXT} (M, N¥)),
1=0

for all M;N € A-fmod. Here, ~ : B — A denotes the additive isomorphism from
Notation 2.1.2. We call xt the bilinear Euler form on Gg(A-fmod).

(ii) Let %t : Go(A-fmod) x Go(A-fmod) — A be the unique A-bilinear form obtained from i
by scalar extension. We call Xt the bilinear Euler form on Go(A-fmod).

(iii) Let xum : Go(A-mod) x Go(A-mod) — A be the unique A-bilinear form such that

Xm([M], [N]) = D _(~1)" dgrdim(EXT} (M, N©)),
=0

for all M, N € A-mod. Here, ~ : B — A denotes the additive isomorphism from Nota-
tion 2.1.2. We call xy the bilinear Euler form on Go(A-mod).

From Lemma 2.5.2.(iii), we immediately obtain the following consequence.
Corollary 2.5.4. The bilinear FEuler forms x¢, Xt and xm are symmetric.

Next, we prove the first crucial result of this section. Namely, we show that the graded
character map is compatible with the bilinear Euler forms y, and xs.

45



2.5. Euler Forms

Theorem 2.5.5. Let M, N € A-mod. Then we have

Xm([M], [N]) = X¢(geh([M]), geh([N]))- (2.5)

As preparation for the proof of Theorem 2.5.5, we first prove two lemmata. The first lemma
allows us to control the graded dimension of minimal projective resolutions of finitely generated
graded A-modules. This type of argument is commonly used in the context of Laurentian and
graded left Noetherian k-algebras. For example, McNamara used a similar technique in his
proof of the theorem that the global dimension of finite type quiver Hecke algebras is finite,
see [McN15, Theorem 4.7]. To formulate the first lemma, we define

b(M) := min{i € Z : M; # 0},
for any non-zero M € A-mod

Lemma 2.5.6. There exists mg € Ny, only depending on the algebra A, such that the following
holds. Let M € A-Mod™, P be a graded projective indecomposable A-module and f : P — M
be a non-zero homomorphism of graded A-modules. Then we have

b(P) > b(M) — mo.

Proof. Let Pi,..., P, be a complete list of pairwise non-shift-isomorphic graded projective
indecomposable A-modules. Let Lq,..., L, be the corresponding graded simple A-modules.
We choose

mo := max{b(L;) —b(P;)|i=1,...,7}.

Note that mg is contained in Ny and does not depend on our choice of Pi,...,P.. Since
Li,...,L, are all of finite dimension, we can assume without loss of generality that for all
i € {l,...,r}, we have b(L;) = 0. By this assumption, we obtain that for all 7 € {1,...,r},
the Laurent series [M : L;], vanishes in all degrees strictly less than b(M). Finally, let d € Z
and j € {1,...,r} such that P;(d) = P. By our choice of mg, we have b(P) > d —mg. As f
was supposed to be non-zero, it follows that [A : L;], has a non-zero coefficient of degree d.
Hence, we have d > b(M). We conclude that b(P) > b(M) — mg which finishes the proof. [J

The following lemma will be crucial in the proof of Theorem 2.5.5.

Lemma 2.5.7. Let M, N € A-mod. Then there exists a graded A-submodule G C N such
that the following three conditions are satisfied:

(i) N/G is of finite dimension over k,
(ii) EXTY(M,G®)o = 0 for all i € Ny,
(iii) Xt(geh[M], geh[G])o = 0.
Note that (ii) implies xm(M,G)o = 0.

Proof. Clearly, we can assume that M, N are non-zero. In order to construct the graded
A-submodule G C N, we first record two general facts:

(a) There exists a natural number n; € Ny, only depending on M, such that for all non-zero
M’ € A-mod with b(M') > ny, we have X¢(gch[M], gch[M'])o = 0.
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(b) According to Proposition 2.2.7, we have that M admits a minimal projective resolution
in A-mod:
oo > PP — Py— M — 0.

We denote the resolution by P. By Lemma 2.2.8, we know that the length of P is
bounded by n, i.e. P; =0 for ¢ > n. Thus, by Lemma 2.5.6 there exists m; € Ny, only
depending on the algebra A, such that all non-zero P; satisfy

b(B;) > b(M) — m.

According to (a) and (b), it is hence sufficient to construct a graded A-submodule G C N,
such that N/G is of finite dimension over k£ and we have

b(G) > max{ny,m; — b(M)}.

Indeed, by (a), we immediately get (iii). Now, let r := [(P). Then r < n by (b). Moreover,
from b(G) > m; — b(M), we conclude

max{j € Z|(G¥); # 0} = —b(G) < b(M) —m; < b(P),
for all i € {0,...,r}. This implies
HOM4(P;, G%) = 0,

for all 7 € {0,...,r} which gives (ii). Now, we define G C N to be the graded A-submodule
generated by all homogeneous elements of degree strictly greater than

max{ni,m; —b(M)} +b(4A),

where 4A denotes the regular A-module. According to our discussion above, it follows that G
satisfies all the desired properties. ]

Finally, we prove Theorem 2.5.5.

Proof of Theorem 2.5.5. At first, note that (2.5) is satisfied for M, N € A-fmod. Moreover,
recall that y, and x¢ are symmetric by Corollary 2.5.4. Now, we complete the proof of
Theorem 2.5.5 in the following two steps.

Step 1. We prove (2.5) for M € A-fmod and N € A-mod. At first, note that it suffices
to prove that for all M € A-mod and N € A-fmod the degree 0 coefficients of xm([M], [N])
and X¢(gch[M], gch[N]) coincide. Now, choose G C M as in Lemma 2.5.7. Then we have the
following equalities

where the first equality follows from Lemma 2.5.7.(ii), the second from the fact that that (2.5)
holds for finite dimensional modules and Lemma 2.5.7.(i) and the third from Lemma 2.5.7.(iii).
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Step 2. Now, we prove (2.5) for M, N € A-mod. Again, we choose G C N as in Lemma 2.5.7.
Using Step 1 and the properties (i), (ii), and (iii) from Lemma 2.5.7, we obtain by the same
arguments as in Step 1, the following equalities

Xm([M]v [N])O = Xm([M]) [N/G])

= Re(gch[M], gch[N/G])o
= Xe(gch[M], gch[N])o.
This finishes the proof of Step 2 and also the proof of Theorem 2.5.5. 0

As a short reality check, we consider an elementary but insightful example illustrating The-
orem 2.5.5.

Example 2.5.8. Let A = k[z] be a polynomial algebra with  homogeneous of degree 1.
Since A is commutative, we can choose ¥ = ids. Moreover, since A is a graded principal
ideal domain, A has global dimension 1. Let P := 4A be the regular A-module, so P is the
unique graded projective indecomposable A-module up to shift-isomorphism. Let S := P/xzP
be the graded simple A-module corresponding to P. In the following, we directly calculate
Xm([P], [P]) and x¢(gch([P]),gch([P])). At first, we observe that

Xm([P], [P]) = dgrdim(HOM 4 (P, P¥))
= dgrdim(P?)
=((1-¢ 1)
=(1—¢q) "

Next, we calculate X¢(gch([P]),gch([P])). At first, note that gch([P]) = (1 — ¢)~! ® [S].
Moreover, we have

EXTY(S,S) =k, EXTYL(S,S) = k(-1).

Here, k£ denotes the graded one-dimensional k-vector space concentrated in degree 0. Thus,
we obtain

Xe(geh([P]), gch([P])) = (1 — ) (1@ [S], 1@ [S]) = (L —q) "

This gives xuu([P], [P]) = R (gch([P]), gch([P])).

We proceed with defining the A-bilinear Euler form on Ky(A-pmod). In our approach, we
are particularly motivated by Lemma 2.4.5 which transfers to our setting as follows.

Lemma 2.5.9. Let P,Q € A-pmod. Then we have the following equalities

grdim(HOM 4 (P#,Q)) = P* ®4 Q = dgrdim HOM 4 (P, Q%).
Proof. The proof is a straightforward adaption of the proof of Lemma 2.4.5. 0
Definition 2.5.10. Let x, be the unique A-bilinear pairing
Ko(A-pmod) x Ko(A-pmod) — A,

such that
Xp([P],[Q)) = grdim(HOM(P¥, Q)),
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for all P,Q € A-pmod. We call x;, the bilinear Euler form on Ko(A-pmod). Furthermore, let
Xp : Ko(A-pmod) x Ko(A-pmod) — A
be the A-bilinear extension of xp- We call X the bilinear Euler form on KO(A—pmod).
Again, we immediately conclude from Lemma 2.5.2 the following consequence.
Corollary 2.5.11. We have that xp and Xp are symmetric.

Let P be a graded projective indecomposable A-module and L is the corresponding graded
simple A-module. Then we have

xp([P),[Q]) = [Q# : L,
for all @ € A-pmod. So, x;, is given by taking graded composition multiplicities.

Remark 2.5.12. At this point, we stress that in the definition of x,, and X, we do not need
the assumption on A to be of finite global dimension. So x}, and X}, are also well-defined if A is
not of finite global dimension. Moreover, the equivalent descriptions of Lemma 2.5.9 and the
symmetry of x, and X, also remain true in the case where A is not of finite global dimension.

Finally, we come to the main result of this section. For this, we first fix the following
notation.

Notation 2.5.13. Let (.,.) : Ko(A-pmod) x Go(A-fmod) — A be the A-bilinear HOM-pairing
between Ko(A-pmod) and Go(A-fmod) from Definition 2.4.7. Let

(.,.) : Ko(A-pmod) x Go(A-fmod) — A

bet the A-bilinear pairing obtained from the A-bilinear HOM-pairing via scalar extension. We
call (.,.) the extended bilinear HOM-pairing.

Theorem 2.5.14. Let ¢ : Ko(A-pmod) — é’o(A—fmod) be the isomorphism of A-modules from
Theorem 2.2.9. Then the following holds:

(i) For all P,Q € A-pmod, we have

(1® [P, 19[Q]) = xt(¢(1 @ [P)), (1  [Q))).

(it) The bilinear Euler forms Xp and X¢ are both non-degenerated.
(iii) The A-bilinear pairings %¢(¢(.),.) and (.,.) coincide.

(iv) If Pi,..., P, is a complete list of pairwise non-shift-isomorphic projective indecomposable
graded A-modules and L1, ..., L, are the corresponding graded simple A-modules, then

(@@ [P]),....o0 @ [P]) and (1®[LT],....1@[L]])

are dual A-bases of Go(A-fmod) with respect to Xs.
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Proof. We begin with proving (i). From Theorem 2.5.5 and Lemma 2.5.9 follows

Xp(1®[P),1®[Q]) = dgrdim(HOMA(P, Q%))
= xm([P],[Q])
= Xr(geh([P]), geh([Q)))

A

= Xt(d(1 @ [P]), (1 ® [Q))),

for all P,@Q € A-pmod. Hence, we proved (i). Next, we show the assertion (iv). For this, recall

from Theorem 2.1.4 that (1® [P4],...,1® [P]) is an A-basis of Ko(A-pmod) and likewise,

(1®[LY],...,1® [L¥]) is an A-basis of Gy(A-fmod). Now, from Theorem 2.5.5 we conclude
(01 @ [P)), 1@ [LF]) = xm((P1], [L5])

1 ifi=y,
o else,

for all i,5 € {1,...,r}. Hence, it follows that

A

(@@ [A),....6(1@ [R]) and (1®[L{],....1®[L]])

are dual A-bases of G(A-fmod) with respect to ¢ which proves (iv). We also immediately
conclude that X is non-degenerate. From (i), it directly follows that also X}, is non-degenerated
which gives (ii). Finally, note that by Proposition 2.4.8, the extended HOM-pairing is uniquely
determined by
o 1 ifi=y,

1®[P,1®[LY]) =

(19 (Pl 19(L) {0 e
for all 4,j € {1,...,r}. Thus, from (iv), we directly deduce that ¢(¢(.),.) = (.,.). Hence, we
proved (iii). O

As a direct consequence of Theorem 2.5.14, we conclude the following degeneracy result
for xs.

Corollary 2.5.15. Suppose that A is not of finite dimension, then x¢ is a degenerate A-bilinear
form on Go(A-fmod).

Remark 2.5.16. Theorem 2.5.14 and Corollary 2.5.15 demonstrate that if the algebra A is of
infinite dimension over k, then we prefer to work with the bilinear Euler forms on Go(A-fmod)
and I%O(A—pmod) because here, the bilinear Euler forms are non-degenerate and we have
the duality between the graded projective indecomposable A-modules and graded simple A-
modules as described in Theorem 2.5.14.(iii).

We proceed with considering a compatibility relation of the bilinear Euler forms with induc-
tion and restriction. For this, let B be a second graded k-algebra that satisfies the conditions
formulated in Convention 2.5.1. We denote the self-inverse graded anti-automorphism of B by
9. In addition, we denote the corresponding Euler forms on the graded B-module categories
also by X, xm and xp. From the context, it will be always clear, where the forms are defined.
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Proposition 2.5.17. Suppose A C B such that 4 =%. Let
(x,C, D) € {(x¢, A-fmod, B-fmod), (xm, A-mod, B-mod), (xp, A-pmod, B-pmod)}.
Then for all M € C, N € D, we have
X([Ind% (M)], [N]) = x([M], [ResZ(N)]).

Proof. The assertion directly follows from generalized Frobenius reciprocity and the fact that
the dualities ® and & commute with the functor Res§. Ul

We end this section with considering a further interesting aspect. Namely, we discuss under
which conditions the statement of Theorem 2.5.14 also holds for the Grothendieck groups

Q(q) ®4 Ko(A-pmod), Q(q) ®4 Go(A-fmod).

An important reason why one might prefer the scalar extension to Q(q) to the scalar extension
to A is the following. The duality ® gives an A-anti-linear involution

Go(A-fmod) — Go(A-fmod), [M]+— [M®].
Likewise, we also obtain an A-anti-linear involution
Ko(A-pmod) — Ko(A-pmod), [P] — [P¥].

These involutions are further useful structures on these Grothendieck groups. Now, it is
possible to extend these involutions to Q(q) ® 4 Go(A-fmod) and Q(q) ® 4 Ko(A-pmod). How-

PN

ever, these involutions can not be extended to the Grothendieck groups Go(A-fmod) and
Ko(A-pmod).

In order to translate Theorem 2.5.14 to the rational setting, we assume in the following that
the finitely generated graded projective A-modules have only rational graded composition
multiplicities. This means that

for every finitely generated graded projective A-module P and every graded simple A-module L.

Definition 2.5.18. We define the following:

(i) Let xtq(q) be the Q(q)-bilinear extension of xt to Q(q) ®.4 Go(A-fmod). We call Xt g(q)
the rational blinear Euler form on Q(q) ® 4 Go(A-fmod).

(ii) Let Xpq(q) e the Q(q)-bilinear extension of xp to Q(q) ®.4 Ko(A-pmod). This is well-
defined since, by assumption, the image of xp is contained in An Q(q). We call Xp,Q(q)
the rational blinear Euler form on Q(q) ® 4 Ko(A-pmod).

(iii) Let
() + (Qq) ®4 Ko(A-pmod)) x (Q(g) ®4 Go(A-fmod)) — Q(q)

be the Q(q)-bilinear extension of the A-bilinear HOM-pairing between Ko(A-pmod) and
Go(A-fmod). We call (.,.) the rational HOM-pairing between Q(q) ® 4 Ko(A-pmod) and
Qg) ©.4 Go(A-fmod).
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In addition, let A" := AN Q(g). Then by our assumption, we have that the image of
¢ : Ko(A-pmod) — Go(A-fmod), [P] — gch([P))
is contained in A’ ® 4 Go(A-fmod). Thus, we can extend ¢ to a Q(g)-linear map
Pg(q) + Qg) ®4 Ko(A-pmod) — Q(q) ®.4 Go(A-fmod).

Now, using exactly the same arguments as in the proof of Theorem 2.5.14, one can directly
show that Theorem 2.5.14 literally also holds in the rational setting.

Theorem 2.5.19. In the above setling, we have that ¢g,) is an isomorphism of Q(q)-vector
spaces. In addition, the following holds:

(i) For all P,Q € A-pmod, we have

Xp,0(g) (1 ® [P, 1® [Q]) = X¢,0(q) (Pa(g) (1 ® [P]), dgg) (1 ® [Q]))-

(ii) The bilinear Euler forms Xp,Q(q) and Xt,0(q) are both non-degenerated.
(iii) The Q(q)-bilinear pairings X q(q)(Pa(q)(-);-) and (.,.) coincide.

(iv) If Pi,..., P, is a complete list of pairwise non-shift-isomorphic projective indecomposable
graded A-modules and L1, ..., L, are the corresponding graded simple A-modules. Then

(Yo @[P)), . b1 @ [R]) and (1®ILY],....1®[L]])

are dual Q(q)-bases of Q(q) ®4 Go(A-fmod) with respect to xt(q)-

Proof. By using the same argument as in Theorem 2.2.9, we deduce that ¢q(4) is an isomor-
phism of Q(gq)-vector spaces. Now, the assertions (i)-(iv) can be shown exactly in the same
way as the assertions (i)-(iv) of Theorem 2.5.14. O

We herewith end this chapter. In the next two chapters, we will study concrete applications
of Theorem 2.5.14. In particular, we explicitly calculate the bilinear Euler forms x, and xs
for Grothendieck groups of (alternating) nil Hecke algebras in Section 3.3 and in Section 4.4.
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3 Nil Hecke algebras

Convention. Throughout this chapter we fix a ground field k.

Summary

Our aim in the next two chapters is to study the representation theory of alternating nil Hecke
algebras. For this, we recall in this chapter important representation theoretic properties of
nil Hecke algebras. In the following chapter, we will then use these results to describe the
representation theory of alternating nil Hecke algebras.

The nil Hecke algebras are a family of graded k-algebras (NH,),en, which were introduced
by Kostant and Kumar in [KK86] to study the cohomology rings of flag varieties. In our
discussion in this chapter, we focus on the following two aspects.

At first, we recall the faithful operation of the nil Hecke algebra NH, on the polynomial
algebra P, := k[x1,...,z,] which is defined via Demazure operators. For this, let Sym,, := P;?"
denote the symmetric functions in FP,. The Demazure operators are a family of Sym,,-linear
operators 01, ...,0,—1 on P, which were introduced independently by Bernstein, Gelfand and
Gelfand in [BGGT73] and Demazure in [Dem74]. Like the nil Hecke algebras, they were also
introduced in a geometrical context. Namely, in order to study properties of Schubert classes
in cohomology rings of flag varieties.

Now, using Demazure operators, we obtain a faithful operation of NH, on P, which is given
by an isomorphism of graded k-algebras

® : NH,, — ENDsym (Py).

This isomorphism implies many pleasant properties of NH,. In particular, P, is the unique
graded projective indecomposable NH,-module up to shift-isomorphism, see Theorem 3.2.4.
In Chapter 4, we will then use this result to establish a classification of the graded projective
indecomposable modules over alternating nil Hecke algebras.

The second aspect is the description of the categorification theorem of Khovanov—Lauda
([KL09, Theorem 1.1]) in the special case of nil Hecke algebras. We now give a brief character-
ization of this theorem. Let 4f denote Lusztig’s integral quantum group corresponding to the
one-vertex graph without edges, where A = Z[q, ¢~!]. For a general introduction to Lusztig’s
integral quantum groups, see [Lus93].

We set

Go(NH) := @ Go(NH,-fmod), Ko(NH) := @5 Ko(NH,, -pmod)
n€Np n€Np

and call Go(NH) the nil Hecke Grothendieck group and Ko(NH) the split nil Hecke Grothen-
dieck group. By construction, Go(NH) and Ko(NH) are both Ny-graded free A-modules. Via
induction and restriction, we obtain multiplicative and comultiplicative structures on Go(NH)
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3.1. Demazure operators

and Ko(NH) turning them into Ny-graded twisted bialgebras. Using the HOM-pairing from
Section 2.4, we deduce that Go(NH) is the Ny-graded dual of Ko(NH).

Finally, the categorification theorem of Khovanov-Lauda states that the Nyp-graded twisted
bialgebra Ko(NH) is isomorphic to 4f. By duality, we deduce that Go(NH) is isomorphic to
the No-graded dual 4f* of 4f.

In the context of our studies of the representation theory of alternating nil Hecke algebras in
Chapter 4, this theorem is an important motivation. Modeled on the definition of Go(NH) and
Ko(NH), we will define alternating nil Hecke Grothendieck groups Go(ANH) and Ko(ANH)
and study their algebraic properties as well as their relations to Go(NH) and Kq(NH).

3.1 Demazure operators

In this section, we give an overview to well-known properties of Demazure operators. As we
will discuss in the following section, there is a close connection between Demazure operators
and nil Hecke algebras with which the representation theory of the nil Hecke algebras can be
described in an adequate way. Our notation in this section is modeled on [Man01, Section 2.3].

At first, we fix some notation.

Notation 3.1.1. For a given n € Ny, let P, := k[z1,...,2,] be the polynomial algebra in
n variables, where each z; is homogeneous of degree 2. Let S, denote the symmetric group.
Then S,, acts on P, by permuting the variables. We set Sym,, := P5». Moreover, for each
ie{l,...,n—1}, let s; € S,, denote the simple transposition s; = (i,i + 1).

Recall at this point that by the fundamental theorem of symmetric polynomials, Sym,, is a
graded polynomial algebra over k£ which is generated by the elementary symmetric functions

€l,...,en € Sym,,, where
€; = Z Ljp «o o Lyj;e
1<j1<..<ji<n

So in particular, the graded dimension of Sym,, is given by

n
i 1
grdim(Sym,,) = H —
—il—a
We now come to the definition of Demazure operators.

Definition 3.1.2. Let n € N with n > 2. Then the Demazure operators O1,...,0,_1 are the
graded k-linear operators on P, of degree —2 given by

di: Py, — Py, 8i(f) = ;’;__2(2 for all f € P,.

In the following lemma, we list of important properties of Demazure operators that follow
directly from the definition.

Lemma 3.1.3. Let n € N with n > 2. Then the following holds:

(i) Let f € P, such that s;(f) = f. Then 9;(f) =0.
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(i) Each Demazure operator 0; is a twisted derivation, i.e. for all f,g € P,, we have

9i(fg) = 9i(f)g + (sif)9i(g).
If si(f) = f, then 0;(fg) = f0;(g). In particular, 0; is Sym,,-linear.
(iii) The Demazure operators satisfy the following relations
92 =0, (3.1)
0;0i+10; = 0;4+10;01,
6i8j = 8]8, Zf |Z —j| > 1,
for all admissible i, j.

Through the relations (3.1), (3.2) and (3.3), we get a close connection between Demazure
operators and elements of the symmetric group S,. In order to characterize this connection,
we first recall important well-known facts about symmetric groups. For this, we follow [BB06,
Chapter 2 and 3].

The symmetric group S, is generated by the simple transpositions si,...,8,—1 € S,. We
denote the set of simple transpositions by & C S5,. The defining relations of the symmetric
group with respect to the generators si,...,s,_1 are

s?=¢e (3.4)
S$iSit18i = Si41SiSi+1, .5)
$i8j = 858 if |Z —]‘ > 1, (3.6

for all admissible i,j. Here, e € S,, denotes the neutral element. The relation (3.4) is called
the quadratic relation. The relations (3.5) and (3.6) are called braid relations. An important
aspect of the theory of symmetric groups is the length function | : S, — Ny which is defined
as

l(w) := min{m € Ng|3s;;,..., 8, €ES:w==8;...8, }

If we are given w € S, and an expression w = s;, ...s;,, with s;,,...,s; € S and m = l[(w),
then we call s;, ...s;,, a reduced expression of w. Otherwise, we call s;, ...s;,, an unreduced

m

expression of w. The symmetric group S, admits a unique element wp, of maximal length
given by the permutation
T 1 2 ... n—=1 n
o= \n n—1 ... 2 1)

We have that I(wo,) = n(n — 1).

In the following, we use these facts to assign to each w € S, an operator 0, in terms of
the Demazure operators 01,...,0,—1. The key input for this assignment is the theorem of
Matsumoto—Tits. For this, we recall the notion of nil-moves and braid-moves. Let w € .S, and
w = S ...8;, and w = sj, ...s;. be expressions of w. If s;, ...s;, is obtained from s;, ...s;
by deleting a factor of the form ss, we say that the expressions sj, ...s;,
linked by a nil-move. Likewise, if s;, ...s;, is obtained from s;, ...s;, by applying once the a
braid relation (3.5) or (3.6), we say that s;, ...s;. and s;, ...s;,, are linked by a braid move.

T m

and s;, ...s;, are

T m

Theorem 3.1.4 (Matsumoto-Tits). Let w € S,,. Then the following holds:
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(i) Any expression w = s;, ...S;,, With S;,,...,s;, can be transformed into a reduced expres-
sion of w by a sequence of nil-moves and braid-mowves.

(ii) Every two reduced expressions of w can be transformed into each other by a sequence of
braid-moves.

Proof. See e.g. [BB06, Theorem 3.3.1]. O

From Theorem 3.1.4 and the relations (3.1), (3.2) and (3.3), we immediately obtain the
following consequence.

Corollary 3.1.5. Let w € S,,. For a reduced expression w = s;, ...S;,, , we define the Sym,,-
linear operator

Ow:Pn— Py, Op:=0,0---00;,.

Then 0, is independent of the choice of reduced expression. We have that 0y, is homogeneous
of degree —2l(w). By convention, we set 0. := idp,, where e € Sy, is the neutral element.

By Theorem 3.1.4, we directly deduce that if s;, ...s;
element in S,,, then we have

is an unreduced expression of an

m

Thus, it follows that for all v, w € S,,, we have

0,0, — {&,w if l(vw) = 1(v) + l(w),

0 else.

Next, we discuss an important basis theorem for the graded k-algebra ENDgym (F,) which
involves the Demazure operators. For this, we first recall the definition of Schubert polynomi-
als.

Definition 3.1.6. For each n € N, we set zf" = x’fflzngﬁ .o Zp_1. Then for w € Sy, the

Schubert polynomial &, € P, is defined as &, := 8w71w07n (xPm).

Note that &,, is homogeneous of degree n(n — 1) — 2[(w). Moreover, we have by definition

D6, — {ewvl if l(vw) = 1(v) + l(w), (3.7)

0 else.

We now describe some Schubert polynomials explicitly. From the definition, it follows that
Suwp,,, = 2. The other extreme case is the following.

Lemma 3.1.7. For each n € N, we have G, = 1.
Proof. We proof this assertion by induction on n. The case n = 1 is clear by definition. For

the induction step, note that wg, = s1...s,—1won—1. In the following equations, we use in
the third equality the induction hypothesis. The other equations follow from Lemma 3.1.3.(ii),
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since x1...x; € P, is s;-invariant for each 7 < j.

Owg (TF7) = 01 ... On—10wq 1 (71 ... 127" 1)
=01...0n-1(x1... 2y 10w, _, (1))
=01...0p—1(x1...2p_1)
=01...0p—2(x1...2p—20,—1(Tp-1))
=01...0p—2(x1...2p_2)

=1.
This completes the induction step. O

It is a well-known property of the Schubert polynomials that they form a homogeneous
Sym,,-basis of P, i.e. we have the following important theorem.

Theorem 3.1.8. We have that P, is a graded free Sym,,-module and (Sy,)wes, s a homoge-
neous basis of P,.

Proof. See e.g. [Man01, Proposition 2.5.2]. O

A crucial consequence of Theorem 3.1.8 is the following basis theorem for the graded k-
algebra ENDgyp, (P). It can be proved by considering the action of the Demazure operators
on the Schubert polynomials and using the relations from Corollary 3.1.5.

Theorem 3.1.9. Let n € N, then the elements z{"* ... 20"y, for mi,...,m, € N},w € S,
form a homogeneous k-basis of ENDgym_(F).

Proof. See e.g. [Laul0, Proposition 3.5]. O

As we will explain in the following section, this theorem proves to be very useful to describe
the representation theory of nil Hecke algebras.
We end this section with an explicit example that illustrates Theorem 3.1.9.

Example 3.1.10. In the following let n = 2. We write So = {e, s}, where e is the neutral
element and s is the transposition (1,2). Then we have the Schubert polynomials

Gezl, 65:.%'1.

By Theorem 3.1.8, we know that P; is a graded free Symy-module and (&., &) is a homoge-
neous basis. Now, for a,b € S2, we denote by E,j € ENDgyn, () the Symy-linear operator
given by

G, ifb=c,

0 else,

Ea,b(Gc) = {

for all ¢ € Sa. By Proposition 1.2.4, we know that ENDgyp,, (P) is isomorphic as graded Syms,-
algebra to the graded matrix algebra Ma(Sym,)(d), where d = (0,2) € Z%. Let E1 1, E12,F21
and FEs o denote the elementary matrices in Ma(Sym,)(d). Then an explicit isomorphism of
graded Syms-algebras is given by

Ma(Symy)(d) = ENDgym, (P2),
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where
Er1v Fee, FEi12+ Ees, Eo1r> Ese, Fagr Egs.

So the operators Eg ¢, Ec s, Es . and Es ¢ correspond to the diagonal matrices in My (Syms,)(d)
under this isomorphism.

According to Theorem 3.1.9, the elements 7" 520, for mi, ma € Ny and w € Sy form a ho-
mogeneous k-basis of ENDSme(Pg). In the following, we describe the operators Fe c, Fe s, Es ¢
and F, s as k-linear combination with respect to this basis. By definition, we have J. = idp,
and by (3.7), we have 0s = E, 5. From this, we directly deduce

Es,s = $108a Ee,e = 0. — 710s.

So finally, we consider the operator E;.. At first, note that the operator x; - idp, maps &, to
Gs. Moreover, we have
1165 = l’% = (1’1 + 1'2)65 — 21226,.

Hence, we deduce the equality
x1 -1dp, = Ese — 122Fc s + (21 + 22) Es 5.
Inserting the above formulas for idp,, Ee s, Fs s then yields
Ese =210, — 1:%88.

Thus, we described the operators Ee ., E. s, Es . and E s as k-linear combinations with respect
to the k-basis from Theorem 3.1.9.

3.2 Nil Hecke algebras

The Demazure operators together with the polynomial algebra define an algebra called the
nil Hecke algebra. In this section, we consider well-known important representation theoretic
properties of these algebras. All the results, we discuss are well-known. We model this section
on [Brul3, Chapter 2]. Our main focus is on the description of the graded simple and the
graded projective indecomposable modules over nil Hecke algebras.

Definition 3.2.1. Letn € Ny, then the nil Hecke algebra NH,, is the k-algebra with generators

{7'1,...,Tn_l}U{yl,...,yn}

subject to the relations

72 =0, (3.8)
TiTif1Ti = Tit1TiTit 1, (3.9)
7Ty =11 if |i— g > 1, (3.10)
YilYj = YjYis (3.11)
Tiy; =y if [i— ] > 1, (3.12)
Tiyi = 1+ yip17i, (3.13)
YiTi = 1+ Tiyig1, (3.14)

for all admissible i, j. There is a well-defined grading on NH,, such that each vy; is homogeneous
of degree 2 and each T; is homogeneous of degree —2.
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By definition, we have that NHy = k and NH; = k[y;] with y; homogeneous of degree 2. In
the following let n € Ny be fixed. The relations (3.8), (3.9) and (3.10) coincide with the rela-
tions (3.1), (3.2) and (3.3) for Demazure operators. Thus, we can again apply Theorem 3.1.4
in the following way.

Corollary 3.2.2. For a reduced expression w = s;, ...s;,, we define the element

m

Tw = Tjy - T4

Then T, is independent of the choice of reduced expression. By convention, we set 7. = 1,
where e € Sy, is the neutral element. We have that T,, is homogeneous of degree —2l(w).

Moreover, just as for the Demazure operators, Theorem 3.1.4 also implies that if s;, ... s;
is an unreduced expression of an element in S,,, then we have

m

Ti1 + - T, =0.

Hence, we conclude that for all v, w € .S,,, we have

{va if L(ow) = 1(v) + l(w),
ToTw =
0 else,

In the following, we apply the results from the previous section to describe the representation
theory of nil Hecke algebras. For this, we continue to use the notation that was used in the
previous section. The central result is that via Demazure operators, we obtain the following
faithful operation of NH,, on P,.

Theorem 3.2.3. The following holds:

(i) We have that B := (y{"™ ...yn""7w| mi,...,m, € Nj,w € Sy,) is a homogeneous k-basis
of NH,,.

(i) There is a isomorphism of graded k-algebras
¢ : NH,, = ENDgym, (Pr)
given by 1; — 0; and y; — x; for all admissible i.

Proof. Using the defining relations of NH;,, one can directly check that ® is a well-defined
homomorphism of graded k-algebras. Moreover, using the relations (3.13) and (3.14), we
obtain that the elements of B generate NH,,. Finally, we have that the elements of B are linear
independent because by Theorem 3.1.9, they are mapped via ® to a basis of ENDgyy, (FPy).
From this, the assertions (i) and (ii) directly follow. O

From now on, we identify NH, and ENDgyy (F,) via the isomorphism ®. Moreover, we
view P, as NH,-module, where the action is given via the isomorphism ® and we consider
Sym,, as graded k-subalgebra of NH,,.

As a direct consequence of Theorem 3.2.3, we obtain that NH,, is a Laurentian k-algebra
and hence all the results outlined in the first chapter can be applied to NH,. However,
Theorem 3.2.3 implies a more profound description of the representation theory of NH,. By
Theorem 3.1.8, we know that P, is a graded free Sym,,-module with homogeneous basis given
by the Schubert polynomials. Thus, by Proposition 1.2.4, we have that ENDgyy, (Pn) is
isomorphic as graded k-algebra to a graded matrix algebra over Sym,,. From these observations,
we immediately obtain the following classification of the graded simple and graded projective
indecomposable NH,-modules.
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Theorem 3.2.4. The following holds:
(i) P, is the unique graded projective indecomposable NH, -module up to shift-isomorphism.

(ii) The graded Jacobson radical of NH,, is J9(NH,) = (Sym,’) NH,,, where

Sym; == P(Sym,,):

i>1
is the augmentation ideal of Sym,,.

(iii) Ly := P,/(Sym,})P, is the unique graded simple NH,-module up to shift-isomorphism.
As graded k-vector space, L, has a homogeneous basis given by the residue classes of

Schubert polynomials (Sy)wes, and NHy acts on Ly, through the epimorphism

NH,, — ENDSymn (Pn)/«sym:zr) ENDSymn (Pn)) = ENDk(Ln)
For v,w € Sy, let E,,, € NH,, denote the elementary matrix given by

G, if z=w,

Ev,w(Gz) — {

0 else,

for all z € S,. Note that E,, is homogeneous of degree 2(I(v) — I(w)). Evidently, the
elementary matrices Ey, ,, for w € S, form a complete set of primitive orthogonal homogeneous
idempotents in NH,,. We now describe the corresponding graded projective indecomposable

NH,-module of the idempotent E, ,. For this, note that we have an explicit isomorphism of
graded NH,,-modules

Py (—2l(w)) 5 NHy By, Gy fEyw, forall f€Sym,,veS,.

Our next goal is to describe the graded dimension of P, and L, and compute the graded
composition multiplicity of L,, in P,. In order to formulate these quantities appropriately, we
use the notion of quantum numbers. Our notation is modeled on [Kas12, Chapter IV].

Definition 3.2.5. For a natural number n € N, the quantum number (n), € Z[q| is defined as

n

1-4"

4 € Z[ql.

(n)g:=1+q+ - +q" ' =

The quantum factorial (n),! is defined as

(1-q)(1—¢%)...(1—q")
(1—q)

Let m,n € Ng with m < n. Then we define the corresponding quantum binomial coefficient as

(n) = ((n)q!! (n—m)q! € Zq).

For the fact that (Z)q is indeed contained in Z[q|, see e.g. [Kas12, Proposition IV.2.1].

(m)g! = (1)g(2)g ... (n)g = )

We also have the notion of symmetric quantum numbers.
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3.2. Nil Hecke algebras

Definition 3.2.6. The symmetric quantum number [nl, is defined as

-n _ .n
[l =q " (n)y = % =q " g " e Zg g7 Y

Similarly, the symmetric quantum factorial is defined as
—ln(n— _
[nlg! i= [1g[2]g - - - [n]g = ¢ 2"V (n) 2! € Z[g, ¢7").

Let m,n € Ng with m < n. Then we define the corresponding symmetric quantum binomial

[n] L [n]Q' EZ[ —1]
mi, o [m]g![n —ml,! et

coefficient as

It is a well-known fact that we have the equality

ST ¢ ™) = (n),). (3.15)

’LUESn

One can for example prove (3.15) by induction on n. Now, from equation (3.15), we can infer
the following useful consequence. Let m,n € Ny and let W,,,, C Sp4, denote the set of
shortest left coset representatives of Sy,4p/(Sm X Sp). Then we have

AR <m+”> : (3.16)

m
’wEWm,n

Indeed, given w € Sy, 4p, then exist unique x € Sy, y € S, and z € Wy, ,, such that w = z(x xy)
and [(w) = I(x) + I(y) + I(z). Hence, by (3.15), we obtain

(3 ) m)glm)g! = (m+ n)gl

wGWm,n

By definition, this is equivalent to (3.16).
We proceed with determining the graded dimension of P, and L,,. Using equation (3.15)
and the fundamental theorem of symmetric polynomials, we immediately obtain the following

formulas
L 1
grdim(P,) = (n),2! H —, grdim(Ly,) = (n),.!. (3.17)
i=1

1— q21’
Since L, is the unique graded simple NH,-module up to shift-isomorphism, we also directly
obtain a formula for the graded composition multiplicity of L, in P,. Namely, we have
L 1
[Pn : Lplq = grdim(Fy) - (grdim(Ly,)) " = H 1—¢%° (3.18)
i=1

We end this section with discussing some duality properties of P, and L,,. For this, recall
that in Definition 2.4.4, we defined dualities ® and # on the categories A-fmod and A-pmod,
where A is a Laurentian k algebra that admits a self-inverse graded anti-automorphism. In
order to apply this to NH,, we use that NH,, admits a self-inverse graded anti-automorphism
T : NH,, — NH,, given by

Ti = Ty Yi b7 Yi,
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3.3. Nil Hecke Grothendieck groups

for all admissible i. Thus, by Definition 2.4.4, we have dualities

® :NH,,-fmod — NH,,-fmod, =~ M® := HOM (M, k),
# :NH,-pmod — NH,,-pmod, P# := HOMyy, (P,NH,,),

defined with respect to <.
Next, we investigate how ® and # act on NH,, -fmod and NH,, -pmod. Since we have

grdim(L¥) = (n),-2! = q*"("*l)(n)qz! = ¢ " grdim(L,,),

q
we conclude that LY = L,,(—n(n—1)) because L,, is the unique graded simple NH,-module up
to shift-isomorphism. From Corollary 2.4.6, it then follows that P = P,(—n(n — 1)). Now,
we set

T, = Ln<—%n(n _1), Q= Pn(—%n(n — 1)

Then we have that, up to isomorphism, 7;, is the unique graded simple NH,-module such
that T)¥ = T,,. Likewise, up to isomorphism, we have that @, is the unique graded projective
indecomposable NH,-module such that Q¥ = Q,,. Moreover, @, is the projective cover of T},.

3.3 Nil Hecke Grothendieck groups

In the following sections we study Grothendieck groups of nil Hecke algebras. Our main goal is
to explicitly describe the categorification theorem of Khovanov-Lauda ([KL09, Theorem 1.1])
in the special case of nil Hecke algebras. In Chapter 4, we then discuss how we can generalize
this theorem for alternating nil Hecke algebras. Now, in this section, we follow [KL09, Chap-
ter 3] to define the nil Hecke Grothendieck groups Ko(NH) and Go(NH) and characterize their
algebraic properties.

We use the notation that was introduced in Chapter 2. In particular A denotes the ring
Z[q,q"']. In the following proposition, we list basic facts about the Grothendieck groups
Go(NH,, -fmod) and K¢(NH,, -pmod) that are direct consequences of the results from the pre-
vious section.

Proposition 3.3.1. Let n € Ng. Then the following holds:

(i) The Grothendieck group Go(NH,, -fmod) admits a self-inverse A-anti-linear automor-
phism
~: Go(NH,, -fmod) — Go(NH,, -fmod), [M]+— [M?¥],

for all M € NH,,-fmod. We call ~ the bar involution on Go(NH,, -fmod).

(ii) The Grothendieck group Ko(NH, -pmod) admits a self-inverse A-anti-linear automor-
phism
~: Ko(NH,, -pmod) — Ko(NH,,-pmod), [P] — [P*],

for all P € NH,,-pmod. We call ~ the bar involution on Ko(NH, -pmod).

(iii) The A-modules Go(NH,, -fmod) and Ko(NH,, -pmod) are free of rank one. We have that
Go(NH,, -fmod) is generated by the class [T,] and Ko(NH,, -pmod) is generated by the

class [Qn].
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3.3. Nil Hecke Grothendieck groups

(iv) Let (.,.)n : Ko(NH, -pmod) x Go(NH,, -fmod) — A, be the A-bilinear HOM-pairing from
Definition 2.4.7. So (.,.)p is the unique A-bilinear pairing such that

([P, [M])y, = grdim(HOMyw, (P*, M)),
for all P € NH,,-pmod, M € NH,, -fmod. Then we have ([Q.], [Tn])n = 1.

Proof. (i) Since ® is a duality, we have that the bar involution on Go(NH,, -fmod) is a well-
defined and self-inverse additive map. The A-anti-linearity follows from

(M(d))® = HOMy(M(d), k) = (HOMy(M, k))(—d) = (M*){-d),

for all M € NH,, -fmod, d € Z.

(ii) We can use the same argument as in (i). As # is a duality, we obtain that the bar
involution on Ko(NH,, -pmod) is a well-defined and self-inverse additive map. The anti-linearity
follows from

(P(d))* = HOMyy, (P(d), NH,) = (HOMyg, (P,NH,))(—d) = (P*)(—d),

for all P € NH,,-pmod,d € Z.

(iii) This follows directly from Theorem 2.1.4 and the classification of the graded simple and
graded projective indecomposable NH,-modules from Theorem 3.2.4.

(iv) At first, recall from Theorem 3.2.3 that NH, is graded Schurian. Moreover, @, is the
projective cover of T, and Q7 = @,,. Thus, using (1.2), we conclude

([Qn], [Th])n = grdim(HOMnw,, (@n, Tn)) = [T : Thlq = 1.
This finishes the proof. O

We choose the class [T},] as standard generator of Go(NH,, -fmod) since [T},] is the unique
generator of Go(NH) that is invariant under the bar involution. With the same motivation,
we choose the class [@,] as standard generator of Ko(NH,, -pmod).

Definition 3.3.2. The nil Hecke Grothendieck group Go(NH) and the split nil Hecke Grot-
hendieck group Ko(NH) are defined as

Go(NH) := P Go(NH,-fmod), Ko(NH) := @ Ko(NH,, -pmod).
n€Np n€Np

They are in a natural way Ng-graded A-modules.

The bar involutions on Go(NH,, -fmod) and Ko(NH,, -pmod) give A-anti-linear self-inverse
automorphisms

T Go(NH) — Go(NH), T Ko(NH) — KQ(NH),
which we call the bar involutions on Go(NH) and Ko(NH). Moreover, the A-bilinear HOM-
pairings between Ko(NH,, -pmod) and Go(NH,, -fmod) give a pairing
(.,.) : Ko(NH) x Go(NH) — A,

such that
([P],[M]),, if P € NH, -pmod, M € NH,, -fmod,

0 else,

([P, [M]) :{
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3.3. Nil Hecke Grothendieck groups

for all P € NH,,-pmod, M € NH,,, -fmod. We call (.,.) the A-bilinear HOM-pairing between
Ko(NH) and Go(NH)

Our next aim is to show that Go(NH) and Ko(NH) admit both an algebra and a coalgebra
structure which is defined via induction and restriction functors. For this, we introduce the
following inclusions.

Proposition 3.3.3. Let m,n € Ny. Then we have inclusions of graded k-algebras
im,n : NHm — NHm_;,_n7 Yi — Yi, T &> T;

and
jm,n :NH,, = NHyqn, ¥ = Yitm, Ti &> Titm

for all admissible i. In particular, we obtain an inclusion of graded k-algebras
tmn = tmn @ Jmn : NHp, @ NHy, — NHpppy,

Proof. 1t follows directly from the defining relations of nil Hecke algebras that i, , and j,, , are
well-defined homomorphisms of graded k-algebras. The injectivity of i, ,, and j, ,, follows from
Theorem 3.2.3.(i). Thus, by definition we have that ¢y, j is also an inclusion of k-algebras. [

From now on, we consider ¢, , as standard inclusion NH,, ®; NH,, < NH,,,1,,. By Theo-
rem 3.2.3.(i), we directly obtain the following important result.

Lemma 3.3.4. Let m,n € Ng. Then the following holds:

(i) The graded left (NH,, ®x NH,,)-module NH,, 4, is graded free and a homogeneous basis
is given by (Tw)weWn .., where Wi, o is the set of shortest right coset representatives of

(Sm X Sn)\Smtn-

(ii) The graded right (NH,, @, NH,,)-module NH,,,1,, is graded free and a homogeneous basis
is given by (Ty)wew: ., where W! _ is the set of shortest left coset representatives of

m,n
Simtn/(Sm X Sp).
We denote the induction and restriction functors corresponding to ¢y, , by

Ind2 4" : (NH,, @4 NH,,)-Mod — NH,,4,-Mod,
Res!" " : NH,,4n-Mod — (NH,, ®j, NH,,)-Mod.

In the following theorem, we describe the multiplicative and comultiplicative structure on
Go(NH) and Ky(NH) via these functors. For this, we will in the following implicitly use the
identifications

Go(NH,,, -fmod) ® 4 Go(NH,, -fmod) = Go((NH,, ®; NH,,)-fmod),
Ko(NH,,, -pmod) ® 4 Ko(NH,, -pmod) = Ko ((NH,,, ®, NH,,)-pmod),

given by the A-module isomorphisms from Proposition 2.1.6.

Theorem 3.3.5. The following holds:
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3.3. Nil Hecke Grothendieck groups

(i) We have that Go(NH) admits the structure of an No-graded A-algebra with unit [To] and
multiplication
[M] - [N] = [Ind;3 7" (M @ N)],
for all m,n € No, M € NH,,-fmod, N € NH,, -fmod,. Similarly, Ko(NH) admits the
structure of an No-graded A-algebra with unit [Qo] and multiplication

[P]-[Q] = [Ind3 7" (P @k Q)]
for all m,n € Ny, P € NH,,, -pmod, () € NH,, -pmod.

(ii) We have that Go(NH) admits the structure of an No-graded A-coalgebra, where the counit
is the projection to Go(NHg-fmod) and the comultiplication is

n

Ag([M]) = [Res}, .(M)], for alln € No, M € NH,, -fmod.
r=0

Analogously, Ko(NH) admits the structure of an Ng-graded A-coalgebra, where counit is
the projection to Ko(NHp-pmod) and the comultiplication is

n

Ak([P]) = > [Res}, (P)], for alln € Ny, P € NH, -pmod.

rn—r
r=0

Proof. From Lemma 3.3.4 and Proposition 2.1.6, we obtain that the above multiplications and
comultiplications are well-defined. The associativity and coassociativity is a direct consequence
of the associativity of induction, restriction and outer tensor products. O

We proceed with discussing an important duality relationship between Go(NH) and Ko(NH)
which is given by the bilinear HOM-pairing. For this, we first recall some general notions.

Notation 3.3.6. Let R be commutative unital ring and A be an Nyp-graded free R-module
such that all graded components of A are of finite rank. We set

A* = @ Hompg(Ay, R).

neNy

By definition, A* is an Ny-graded R-module. For each i € Z, let (ai1,...,a;m,;) be an R-
basis of A; and let (ajy,...,a;,, ) be the corresponding dual basis of Hompg(4;, R). Then

(aj;li € No,j € {1,...m;}) is a homogeneous R-basis of A* which we call the dual basis of
(ai,j’i € Np,j € {1, e ml})

Definition 3.3.7. Let R be commutative unital ring.

(i) Let A be an Ny-graded free R-algebra such that all graded components of A are of finite
rank. Let n: R — A be the unit and let

w:ARrA— A, a®b— ab, foralla,be A.

Fori,j € No, let p;j : A; ®@rA; — Aitj be the restriction of pu. Then the No-graded dual
R-coalgebra A* of A is defined to be the No-graded R-coalgebra with underlying No-graded
R-module
A% = @ Homp(A,, R)
neNp
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3.3. Nil Hecke Grothendieck groups

and counit i
A* L Homp(Ao, R) > R,

where qo is the projection to the zeroth component Ay = Hompg(Ao, R) and n* is the
adjoint map of n. The comultiplication on A* given by

f Y ui(f) e @ Af®rA4j,
it+j=|f] it+j=|f]
where f € A* is homogeneous and i} ; : A7, ; — AT®pAT is the adjoint map of yi; ;. Here,
we identify A7 Qpr A; with Hompg(A; ®p Aj, R) via the canonical R-linear isomorphism.

(ii) Let C' be an Ny-graded free R-coalgebra with comultiplication A and counit . For each
i € Ny, let p; : C'— C; denote the projection. We set

AZ'J' : Ci-i-j — C; QR Cj, Ai7j = (pi ®pj) o A.

Then the Ng-graded dual R-algebra C* of C' is defined to be the Ng-graded R-algebra with
underlying No-graded R-module
c* = @ Homp(Cy, R)
n€eNg

and unit €* : R — C*, where €* is the adjoint of €. The multiplication on C* is given by

o AF
C; ®r C; 5 Homp(C; ©f Cj, R) —5 CF;.
for all i,j € Ng. Here, A;j denotes the adjoint map of A;; and 1;; is the canonical

R-linear inclusion.

Let A be an Ng-graded free R-algebra such that all graded components of A are of finite rank
which also admits an Ny-graded coalgebra structure. Then the Ny-graded dual A* of A is defined
to be the Ng-graded R-module

A" = @ Hompg(A,, R),
n€Ng

endowed with the Ny-graded R-algebra structure from (i) and with the No-graded R-coalgebra
from (ii).

We now come to the duality relationship between Ko(NH) and Go(NH). For this, we define
the A-bilinear pairing

() (Ko(NH) ®4 Ko(NH)) x (Go(NH) @4 Go(NH)) — A, (3.19)

via (a ® b,c® d) = (a,c)(b,d), for a,b € Ko(NH), ¢,d € Go(NH).
Theorem 3.3.8. The following holds:

(i) For each n € Ny, let

fn : Go(NH,, -fmod) — Hom 4(Ko(NH,, -pmod), .A)

be the homomorphism of A-modules given by [M] — (.,[M])n, for all M € NH, -fmod.
Then
=P fn:Go(NH) - Ko(NH)*

n€eNg
is an isomorphism of No-graded A-algebras and Ng-graded A-coalgebras.
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(it) For each n € Ny, let
gn : Ko(NH,, -pmod) — Hom 4(Go(NH,, -fmod), .A)
be the isomorphism of A-modules given by [P] — ([P], .)n, for all P € NH, -pmod. Then

9= B gn : Ko(NH) — Go(NH)*
neNg

s an isomorphism of Ng-graded A-algebras and No-graded A-coalgebras.

Proof. We only show (i) since the proof for (ii) is analogous. By construction, f is a homo-
morphism of Ng-graded A-modules. Next, we show that f is a homomorphism of algebras.
Let m,n € Ng and let M € NH,,, -fmod, N € NH,, -fmod and P € ANH,,,,, -pmod. Moreover,
let

Pl,...,P. € NH,,-pmod, and P/..., P/ e NH,-pmod
such that

Res7(P)] = [P &y PY).

i=1
Then we have the following equalities, where the second equality follows from Proposition 2.4.9
and the fourth equality follows from Proposition 2.4.10.

(F((M] - IND)(P]) = (
(

P), [nd7 5" (M @, N)))
Resy " (P)], [M @ N])

€S

|
M- =

([P} @k '], [M @ NJ)

N
< |
—

I
)

L [M)((P], [N)
i=1

I
I

—_ —

[M]) © F(IN])(Ax([P]))
[M]) - FAND)([PD)-

Thus, we conclude that f is a homomorphism of algebras. By a similar argument, one can
also show that f is a homomorphism of coalgebras. Hence, it is only left to show that
f is bijective. By Proposition 3.3.1, we have that (.,[T},]), is an A-module generator of
Hom 4(Ko(NH,, -pmod), A) for all n € Nyg. Hence, f maps an A-basis of Go(NH) to an A-
basis of Ko(NH)*. Thus, we conclude that f is an isomorphism of Ny-graded .A-algebras and
Np-graded A-coalgebras. O

We end this section by applying the results of Section 2.5 to the nil Hecke Grothendieck
groups. In this way, we obtain further interesting algebraic structures. In addition, this gives
us a favorable opportunity to see some explicit examples of the results of Section 2.5. At first,
we make two preparatory observations.

Firstly, in order to apply the results from Section 2.5, we have to ensure that NH,, satisfies
the conditions from Convention 2.5.1. According to Theorem 3.2.3, NH,, is a graded matrix
algebra over Sym,,. Furthermore, in Section 3.2, we defined a self-inverse anti-automorphism
T : NH, — NH,,. Hence, it follows that the conditions from Convention 2.5.1 are satisfied. For
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the finiteness of the global dimension, note that by Proposition 1.2.5, NH,, is graded Morita
equivalent to Sym,,. Now, Sym,, is a graded polynomial algebra over k in n variables and
hence has global dimension n, see for instance [Wei95, Theorem 4.3.7]. Thus, we obtain

gl(NH,) = n. (3.20)

Secondly, by (3.18), we have that the graded composition multiplicities of finitely generated
graded projective NHy,-modules are contained in Q(¢). Thus, we can apply the rational versions
of the results of Section 2.5. For this, we introduce the rational nil Hecke Grothendieck groups.

Definition 3.3.9. The rational nil Hecke Grothendieck group Go(NH)q(q) and the rational
split nil Hecke Grothendieck group Ko(NH)q,) are defined as

Go(NH)g(g) = P Q(q) ®.4 Go(NH,-fmod),
neNg

Ko(NH)g(g) = P Q(q) ®4 Ko(NH,, -pmod).
n€Ng

By Theorem 3.3.5, we have that both Go(NH)g(,) and Ko(NH)g(,) are No-graded Q(q)-
algebras and Ny-graded Q(g)-coalgebras. In addition, the involution ~ on A extends uniquely
to Q(q). Thus, we have that the bar involutions on Go(NH) and Ko(NH) naturally extend
to bar involutions on Go(NH)g(g) and Ko(NH)g(. Moreover, the A-bilinear HOM-pairing
(.,.) between Ko(NH) and Go(NH) extends to a Q(g)-bilinear HOM-pairing (.,.) between
Ko(NH)Q(q) and Go(NH)Q(q).

Let us now apply the results from Section 2.5 to Go(NH)g(q) and Ko(NH)gy
with defining Q(g)-bilinear Euler forms on Go(NH)g(4) and Ko(NH)g(q)-

q- We begin

Definition 3.3.10. We define the following:

(i) For n € Ny, let xxn be the rational bilinear Euler on Go(NH, -fmod) from Defini-
tion 2.5.18.(i). So xKn is the unique Q(q)-bilinear form such that

xin(f @ [M], g @ [N]) = fg 3 (=1)" grdim(EXTxy, (M, N¥)),

for all f,9 € Q(q) and M, N € NH,, -fmod.
(i) Let xc be the unique Q(q)-bilinear form on Go(NH)g(, such that
XK,n(f® [M]vg® [N]) if m=n,
0 if m #n,

holds for all f,g € Q(q), M € NH,,,-fmod and N € NH,,-fmod. We call x¢ the Q(q)-
bilinear Euler form on Go(NH)g(qg)-

xa(f @ [M],g©[N]) = {

(iii) For n € Ny, let xkn be the rational bilinear Euler on Ko(NH,-pmod) from Defini-
tion 2.5.18.(ii). So xkn is the unique Q(q)-bilinear form such that

Xka(f @ [Pl,g®(Q]) = fg grdim(HOMym, (P¥,Q)),

for all f,g € Q(¢q) and P,Q € NH,, -pmod.
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(iv) Let xk be the unique Q(q)-bilinear form on Ko(NH)g(,) such that

Xkn(f ®[Pl,g®[Q]) if m=n,
0 if m #n,

holds for all f,g € Q(q), P € NH,, -pmod and Q € NH,, -pmod. We call xx the Q(q)-
bilinear Euler form on Ko(NH)g(q)-

xk(f @ [Pl,g®[Q]) = {

Corollary 3.3.11. The bilinear Fuler forms xa and xx are symmetric.
Proof. This follows directly from Corollary 2.5.4 and Corollary 2.5.11. O

Next, we apply Theorem 2.5.19 to Go(NH)qq) and Ko(NH)gg). For this, note that by (3.18),
the graded character of [Q,] is

n

gch([Qn)]) = (H 1—1q?Z> ® [Ty], for each n € Ny.

i=1
Thus, we obtain the following result.

Theorem 3.3.12. We have an isomorphism of No-graded Q(q)-algebras and Ny-graded Q(q)-
coalgebras

¢ : Ko(NH)Q(q) — Go(NH)Q(q),
such that

n

[Qn] — (H 1_1(121) ® [Tn), for alln € Ny.

i=1

Furthermore, the following holds:

(i) We have xk(z,y) = xc(o(x), ¢(y)) for all z,y € Ko(NH)g(y)-

(i) The Q(q)-bilinear Euler forms xg and xk are non-degenerate and xc(o(.),.) = (.,.). In
particular, ($(1®[Qn]))nen, and (1@[Ty])nen, are dual bases of Go(NH)g(q) with respect
to xG-

Proof. The compatibility of the graded character map with induction, restriction and outer
tensor products from Corollary 2.3.6 and Corollary 2.2.13 implies that ¢ is a homomorphism
of Nyp-graded Q(g)-algebras and Ny-graded Q(g)-coalgebras. The remaining assertions imme-
diately follow from Theorem 2.5.19. ]

We now conclude useful properties of xg and ykx from Theorem 3.3.12.
Proposition 3.3.13. The following holds:
(i) For all z,y,z € Go(NH)q(q), we have
xG(z -y, 2) = xalz ®@y, Aa(2)),
where the Q(q)-bilinear form xc on Go(NH)g(g) ®q(q) Go(NH)q(q) s given by
xa(a®b,c®d) =xa(a, c)xa(b,d),

for all a,b,c,d € Go(NH)g(g)-
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(i) Likewise, for all z,y,z € Ko(NH)q(q), we have
Xk (7 -y, 2) = xx(z ®y, Ax(2)),
where the Q(q)-bilinear form xx on Ko(NH)g(q) ®q(q) Ko(NH)g(q) s given by
Xk(a ®b, c®d) = xx(a, ¢)xk(b, d),
for all a,b,c,d € Ko(NH)g(g)-

Proof. Note that (i) and (ii) are equivalent by Theorem 3.3.12. Hence, we only have to prove
(i). According to Theorem 3.3.12, it suffices to show the following. Let m,n € Ny and let
P € NH,,-pmod, @ € NH,, -pmod and M € NH,,,,, -fmod be arbitrary. Moreover, let

Mj,...,M! € NH,,-fmod and M7,..., M/ € NH,, -fmod
such that [Respit"(M)] = >°7_; [M{ ®j M/']. Then we have
xc(¢(1@[Ind 1" (P @k Q))), 1 ® [M])

= 3" xe(0(1 @ [P) 1@ [M)xa (601 ® [Q]).1 ® M), (3.21)
=1

We prove (3.21) by using the compatibility properties of the bilinear HOM-pairing. For this,
let

(- )+ (Ko(NH)g(q) @q(q) Ko(NH)g(q)) X (Go(NH)g(q) ®q(q) Go(NH)g(q)) — Q(g),

be the Q(g)-bilinear extension of the pairing (.,.) from (3.19). Then we have the following
equalities, where in the second equality we use Proposition 2.4.9 and in the third equality we
use Proposition 2.4.10.

Xa(¢(1 @ [Ind3 " (P @ Q))),1 @ [M]) = (1® [Indy 1" (P @k Q)], 1 ® [M])

r

- (<1 @[Phele@)d 1eoM)e(le [Mi//]))

=1

_ ja  [Pl,1e [M))(1 @ [Q),1 [M])

Y xe(@1® [P, 18 M)xa(@( @ (@)1 © (M),
=1

Thus, we proved (3.21) and hence we obtain (i). O

We end this section with explicitly describing the Q(g)-bilinear Euler forms yk and xg with
respect to the bases (1 ® [Qn])nen, and (1 ® [T),])nen,. By the definition of xk and xg, we
only have to calculate the products yk (1 ® [Qn], 1 ® [@Qx]) and xq(1 ® [T,],1 ® [T},]) since the
other products vanish. Now, from (3.18), we obtain

L 1
XK(1®Qrl,1®[Qn]) =[Qn: Tn)g = H T for all n € Ny. (3.22)
i=1
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3.4. Classification of nil Hecke Grothendieck groups

By Theorem 3.3.12, we then conclude

n n

xa(1® [T, 19 [To]) = [T(1 = ¢*)xc(6(1 @ [Qu)), 1 @ [T]) = [T (1 = ¢*).
i=1 i=1

This provides an explicit description of the bilinear Euler forms yx and xg with respect to
the bases (1 ® [Qn])nen, and (1 ® [Th])nen,-

3.4 Classification of nil Hecke Grothendieck groups

After the preparations made in the previous section, we now finally discuss the categorification
theorem of Khovanov-Laudain the special case of nil Hecke algebras. In this case, the categori-
fication theorem states that Ko(NH) is an Ny-graded twisted bialgebra over .4 and isomorphic
to Lusztig’s integral quantum group 4f corresponding to the one-vertex graph without edges.
Using the duality between Ko(NH) and Go(NH) from Theorem 3.3.8, we can infer that Go(NH)
is also an Ny-graded twisted bialgebra over A and isomorphic to the Ny-graded dual of 4f. To
formulate this theorem, we first recall the definition of Lusztig’s integral quantum group 4f.
For this, we follow [Lus93, Chapter 1].

At first, we fix the notion of Ny-graded twisted bialgebras.

Definition 3.4.1. Let R = A or R = Q(q). Let A be an Ny-graded R-algebra. We call A an
No-graded twisted R-bialgebra if A admits a coalgebra structure (A e, A) such thate: A — R
and A : A — ARr A are homomorphisms of Ng-graded R-algebras, where A @p A is endowed
with the twisted multiplication given by

(11 ®@y1) - (22 @ y2) = ¢ V1™ lay 29 @ g1y,
where x1,%2,Y1,y2 € A are homogeneous elements.

We proceed with recalling the definition of Lusztig’s quantum group f and Lusztig’s integral
quantum group 4f. In general, the definition of f and 4f depends on a choice of Cartan datum
or a choice of finite unoriented graph.We are only interested in the very special case where the
graph consists of a single vertex without edges (and the associated Cartan type A;). In this
case, Lusztig’s quantum group f is defined to be the Ny-graded polynomial algebra f = Q(q)[d]
with # homogeneous of degree 1. We have that f is a Ny-graded twisted Q(q)-bialgebra, where
the counit is the projection to the zeroth component and the comultiplication is the unique
algebra homomorphism

rif s f@gf, 0 001+10.

Lusztig’s integral quantum group 4f is defined to be the Ny-graded submodule of f generated
by the elements 6 := 6" /[n],!, for all n € Ny. We have that 4f inherits the structure of
an Np-graded twisted .A-bialgebra. Moreover, the canonical inclusion 4f — f extends to an
isomorphism of Ny-graded twisted Q(g)-bialgebras Q(q) ®4 4f = f.

By construction, one can directly check that the multiplication on 4f is given by

m

gm) . g(n) — [m + n] 00"+ for all m,n € No.
q
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3.4. Classification of nil Hecke Grothendieck groups

Moreover, the comultiplication on 4f is given by

() Z g7 @0 for all n € Ny.
r=0

Additionally, we have the following algebraic structures on f and 4f:

1. There is a symmetric non-degenerate Q(q)-bilinear form (.,.) on f given by
Ui 1
o600y — 5,0 1]~
( ’ ) ) bt 1— q2z’

for all m,n € Ny. Here, 0, , denotes the Kronecker symbol. The form (.,.) is called
Lusztig’s symmetric form. In addition, (.,.) satisfies

(zy,2) = (@ y,7(2)),
for all z,y, 2 € f, where the Q(g)-bilinear form (.,.) on f ®g(,) f is given by

(a®b,c®d)=(a,c)(b,d), foralla,b,c,def.

2. There exists a multiplicative self-inverse Q(g)-anti-linear automorphism b : f — f such
that b(f) = 6. We call b the bar involution on f.

3. We have that the bar involution on f restricts to a self-inverse A-anti-linear automor-
phism b : 4,f — 4f that we call the bar involution on 4f.

Let 4f* denote the No-graded dual of 4f, see Defintion 3.3.7. The fact that 4f is an Ny-graded
twisted bialgebra over A implies that also 4f* is an Ny-graded twisted bialgebra over A. Let
(0(*),.cn, be the dual basis of ((™),cn,. Then by definition, one can directly check that the
multiplication on 4f* is given by

H(m)* . e(n)* _ qune(m+n)*7 for all m,n € Ny.

Furthermore, the comultiplication is given by
o 3 m 0 @ 0= for all n € Ny.
r
r=0 q

The dependence of the structure constants on m,n € Ny implies that 4f and 4f* are not
isomorphic as Ng-twisted bialgebras over A. However, the following holds.

Lemma 3.4.2. We have an inclusion of Ng-graded A-modules

R A LA (H(l - q%)> M),
i=1

that is compatible with the multiplication and comultiplication. In addition, let
0:Q(q) ®a " = f

be the map obtained via scalar extension. Then U is an isomorphism of Ng-graded twisted
bialgebras over Q(q).
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3.4. Classification of nil Hecke Grothendieck groups

Proof. At first note that by construction, we have §(* = (,((™*),.). Now, using the com-
patibility of (.,.) with respect to the multiplication and comultiplication on f, we obtain that
¢ is multiplicative and comultiplicative. Finally, we observe that 7 is an isomorphism of Nj-
graded twisted bialgebras over Q(g), since it maps a homogeneous basis of Q(q) ®4 4f* to a
homogeneous basis of f. O

Lemma 3.4.2 directly implies that 4f and 4f* become isomorphic as No-graded Q(q)-twisted
bialgebras after extending scalars to Q(q).

From now on, we view 4f* as embedded into f via the inclusion from Lemma 3.4.2. Let
b* : f — f be the A-anti-linear adjoint map of b, i.e. b* is uniquely determined by

(b(x),y) = (z,b*(y)), forall z,y € f.

One can directly check that we have

n
b*(0™) = H 1_1(]_%, for all n € Nj.

=1
It follows that b* is self-inverse and restricts to an A-anti-linear automorphism b* : 4f* — 4f*,
which we call the bar involution on 4f*. According to the above description of b*, we have
b*(M*) = 9= for all n € Ny.

Finally, after these preparations, we state the categorification theorem of Khovanov—Lauda

for nil Hecke Grothendieck groups.

Theorem 3.4.3. The split nil Hecke Grothendieck group Ko(NH) is an Ng-graded twisted
bialgebra over A. In addition, we have an isomorphism of Ng-graded twisted A-bialgebras

v 4f = Ko(NH), 0™ — [Q,], for alln € Ny.

Moreover, the following holds:

(i) For all x € 4f, we have y(b(x)) = v(z).

(ii) Let vq(q) : £ — Ko(NH)gq(q) be the scalar extension of v. Then for all x,y € f, we have
(7,9) = xx (Ya(g) () Yag) (¥))-

Proof. According to Proposition 3.3.1 and equation (3.22), the only assertion that is left to
show is that v is multiplicative and comultiplicative. Both properties can be proved in the
same way. Hence, we here only prove that « is multiplicative. For this, we have to show that

m-+n

[Ind%jﬁn(Qm K Qn)] = [Qm—l—n]

q

m

holds for all m,n € Ny. Since both NH,,,+,, and NH,,, ®, NH;, admit only one graded projective
indecomposable module up to shift-isomorphism, it suffices to show

erdim (Ind” (Qm @k Qu)) = ||+ grdim(Qp ).

q

This is however an immediate consequence of Lemma 3.3.4. ]
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3.4. Classification of nil Hecke Grothendieck groups

By the duality between Go(NH) and Ko(NH) from Theorem 3.3.8, we direclty obtain the
corresponding result for Go(NH).

Theorem 3.4.4. The nil Hecke Grothendieck group Go(NH) is an Ny-graded twisted bialge-
bra over A. In addition, let v* : Go(NH) — 4£* be the adjoint map of v. Then v* is an
isomorphism of No-graded twisted A-bialgebras and we have

V¥ ([T]) = 0", for all n € Ny.
Moreover, the following holds:
(i) For all x € Go(NH), we have v*(Z) = b*(v*(x)).
(ii) Let () Go(NH)g(q) — Q(q) ®a Af* = f be the scalar extension of v*. Then for all
z,y € Go(NH)g(q), we have
XG(7,9) = () () 1) ()

Finally, we investigate how the isomorphism ¢ : Ko(NH)g() — Go(NH)g() from Theo-
rem 3.3.12 fits into the picture. For this, note that under the identifications Q(q) ® 4 4f = f
and Q(q) ®4 4f* = £, we have the following commuting diagram

f 7@(‘1) KO (NH)Q(q)

R
(75(11))71

f GO(NH)Q(q)

Hence, we observe that ¢ corresponds under these identifications to the isomorphism

Q(q) ®a Af = Q(q) ®a Af7,
that we described above.

With this observation, we end this chapter about the representation theory of nil Hecke
algebras. In the following chapter, we establish similar results for the alternating nil Hecke
algebras.
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4 Alternating nil Hecke algebras

Convention. Throughout this chapter, let k£ be a fixed field with char(k) # 2.

Summary

This chapter is devoted to the study of the representation theory of the alternating nil Hecke
algebras. These are special cases of a more general family of algebras called alternating quiver
Hecke algberas which were introduced by Boys and Mathas in [Boyl4, BM17]. Our main focus
in our studies lies on the description of their Grothendieck groups.

By definition, the alternating nil Hecke algebras are a family of graded k-algebras denoted by
(ANH,)nen,, where ANH,, is the fixed point subalgebra of the nil Hecke algebra NH,, under
the sign involution on NH,. The definition of the sign involution on NH, is based on the
definition of the sign involution on symmetric groups.

In the first section, we discuss fundamental algebraic properties of alternating nil Hecke
algebras. Then, in Section 4.2, we give a classification of their graded simple and graded
projective indecomposable modules. Since the (graded) representation theory of ANHy = &
and ANH; = k[y;] with y; homogeneous of degree 4 is well-understood, let us now assume that
n > 2. Let P, be the polynomial representation of NH;, from Theorem 3.2.3. Via restriction
P, becomes an ANH,,-module. Then we observe that it decomposes into a direct sum

Res\Ny (Pn) = P2 & P,

where Py is the 'even’ and Py is the 'odd’ part of P,. We specify this in detail in Section 4.2.
In Theorem 4.2.5, we then show that PS, P? is a complete list of pairwise non-shift-isomorphic
graded projective indecomposable ANH,-modules. From this, we obtain an analogous classi-
fication of the graded simple ANH,-modules.

Hereafter, we define the alternating nil Hecke Grothendieck groups Go(ANH) and Ko(ANH)
and study their algebraic structures. We define Go(ANH) and Ko(ANH) analogously to the
nil Hecke Grothendieck groups Go(NH) and Ko(NH). Just as Go(NH) and Ko(NH), we have
that Go(ANH) and Ko(ANH) admit both a multiplication and comultiplication which is given
by induction and restriction functors. Moreover, we also have that Go(ANH) is the Ny-graded
dual of Kq(ANH) as Ny-graded algebra and Ng-graded coalgebra over A = Z[q, ¢~ ']. However,
in contrast to Go(NH) and Ko(NH), we show that Go(ANH) and Ky(ANH) are no twisted
bialgebras, see Propotsition 4.6.2.

Then, in Section 4.4, we use the techniques from Section 2.5 to show the following crucial
results:

1. There is a non-degenerated Q(g)-bilinear Euler forms xk resp. xg on Q(q) ® 4 Ko(ANH)
resp. Q(q) ® 4 Go(ANH), and

2. the graded character map induces an isomorphism of Nyp-graded Q(q)-vector spaces

¢ - Q(g) ®4 Ko(ANH) — Q(g) @4 Go(ANH),
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4.1. Alternating nil Hecke algebras

which is compatible with the multiplication and comultiplication. In addition, ¢ is also
compatible with yx and xc.

Furthermore, we explicitly calculate the isomorphism ¢ and its inverse ¢~! in Theorem 4.4.9
and also provide formulas for the Euler forms yk and xg in Theorem 4.4.10.

Finally, in Section 4.5, we study in detail the multiplicative and comultiplicative structure
of Go(ANH) and Ko(ANH). At first, we give explicit formulas on appropriate bases. Then we
relate these structures to Lusztig’s integral quantum group 4f corresponding to the one-vertex
graph without edges.

In Theorem 4.5.9, we establish an isomorphism of Ny-graded .A-coalgebras between Ko(ANH)
and 4f ®4 A[Z/2]* in degrees > 2. Here, A[Z/2]* is the dual coalgebra of the group algebra
A[Z/2]. By using the duality between Ko(ANH) and Go(ANH), we then construct an isomor-
phism of Ny-graded .A-algebras between Go(ANH) and 4f* ® 4 A[Z/2] in degrees > 2, where
4f* is the No-graded dual of 4f.

In order to describe the comultiplication on Go(ANH) and the multiplication on Ko(ANH),
we extend the scalars to A’ := A[5]. Moreover, we introduce an No-graded .A-algebra Af,
which is in a certain sense a sign perturbated version of 4f. Let Af" * denote the Ny-graded
dual A-coalgebra of Af' . Then, in Theorem 4.5.16, we establish an isomorphism of Ny-graded
A’-coalgebras between A’ @4 (f* @ 4f*) and A’ ® 4 Ko(ANH) in degrees > 2. Again, using a
duality argument, we conclude in Corollary 4.5.17 that we have an isomorphism of Ny-graded
A’-algebras between A’ @ 4 Ko(ANH) and the direct product A’ @4 (4f x 4f) in degrees > 2.

4.1 Alternating nil Hecke algebras

In this section, we describe important algebraic properties of alternating nil Hecke algebras.
For this, we mostly follow [Boyl4, Chapter 5]. The algebras are defined via the following
involution.

Definition 4.1.1. Let n € Ng. Then there exists a unique self-inverse graded k-algebra auto-
morphism sgn : NH, — NH,,, such that

Ti & —Ti, Yj = —Yjs
foralll <i<n-—1,1<j<n. The automorphism sgn is called the sign involution on NH,.

Using the description of the nil Hecke algebra NH, by generators and relations, one can
verify directly that sgn is well defined and also uniquely determined by the above properties.

Definition 4.1.2. Let n € Ny. Then the alternating nil Hecke algebra ANH,, is defined to be
the fived point k-subalgebra ANH, := NH?®" C NH,,.

Remark 4.1.3. Since sgn is a graded k-algebra automorphism, we have that ANH,, inherits
a grading from NH,, that turns ANH,, into a graded k-algebra.

Now, let us consider basic examples of alternating nil Hecke algebras.

Example 4.1.4. (1) If n = 0, then NHy = k£ and by definition, sgn = idg. So we also have
ANHp = k.

(2) If n =1, then NH; = k[y1] with y; homogeneous of degree 2. The sign involution is given
by y1*" = —y1, hence ANH; = k[y{] C NH;.
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4.1. Alternating nil Hecke algebras

In the following let n € Ny be fixed. In order to obtain first properties of the alternating
nil Hecke algebra ANH,,, we first describe the sign involution in more detail. For this, we fix
some notation.

Notation 4.1.5. Let A be a graded k-algebra such that the graded components A; vanish for
all i € 1 4+ Z. We call a non-zero homogeneous element a € A of degree d even if 4|d and we
call a odd if 41 d. Moreover, we denote by A° C A the even part of A, i.e. A® is the graded
k-subalgebra whose graded components are given by

A¢ =

)

{Ai if i =0 mod 4,

0 else.

Furthermore, let A° C A be odd part of A, i.e. A° is the graded (A®, A®)-bimodule whose
graded components are given by

i

s — A; if i =2 mod 4,
o else.

Using this notation, the sign involution on NH, can be described in the following way.

Proposition 4.1.6. Let a € NH,, be a homogeneous element. Then we have

gen )0 if a is even,
—a if a is odd.

Proof. The proposition follows directly from the definition of the sign involution and the fact
that the generators 71,...,7n—1,91,.--,Yn € NH,, are all odd. ]

Hence, one might view ANH,, as thinning of NHj,.
Proposition 4.1.7. We have that ANH,, = (NH,,)°.

Next, we discuss a further useful interpretation of ANH,,. For this, recall the isomorphism
of graded k-algebras
¢ : NH, — ENDgy,, (Pn),

from Theorem 3.2.3. As in Theorem 3.2.3, we denote by P, the graded polynomial algebra
klx1,...,zy) with 1,..., 2, homogeneous of degree 2 and by Sym,, the graded k-subalgebra
P2 C P,. By Theorem 3.1.8, we know that P, is a graded free Sym,-module with a basis
given by the Schubert polynomials (& )wes, . Hence, we can view ENDgy, (P,) as a graded
matrix algebra. For v,w € S, let E,,, € ENDSymn(Pn) denote the elementary matrix given
by

Ev w(Gw’) =

)

G, ifw=w,
0 else,

for all w’ € S,. Note that E,,, is homogeneous of degree 2(I(v) — l(w)), where [ denotes
the length function on S,. Now, using the description of ANH,, as a thinning of NH,, we
immediately get a description of the image ®,,(ANH,).

Proposition 4.1.8. Using the notation from above, we have that the underlying graded k-
vector space of the graded k-subalgebra ®,(ANH,) C ENDgyy, (Py) is spanned by the following
elements:
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4.1. Alternating nil Hecke algebras

(1) fEyw, for f € Sym;, and v,w € S,, such that 2|(l(v) — l(w)),
and the elements:
(ii) fEyw, for f € Sym; and v,w € Sy, such that 21 (I(v) — l(w)).
In the following example, we illustrate the statement of Proposition 4.1.8 in the case n = 2.

Example 4.1.9. We consider the special case ®3(ANH3) C ENDgyy,, (P2). Let Sy = {e, s},
where e is the neutral element and s is the transposition (1,2). We pick (&.,S;) as ordered
homogeneous Sym,-basis of P, view ENDgyn, (%) as graded matrix algebra with respect to
this choice of basis. We then have by Proposition 4.1.8 that the elements of ®2(ANHj) are
exactly the matrices of the following form

Sym$  Syms
$5(ANH,) = (Siié sﬁi) C ENDgym, (Py).

We will usually identify algebras ANH,, and ®,,(ANH,). It turns out that the description
of ®,(ANH,) from Proposition 4.1.8 is very useful to describe the representation theory of
ANH,. We will discuss this in detail in the following section.

We end this section by showing that ANH,, inherits some properties from NHj,.

Proposition 4.1.10. The following holds:
(i) ANH,, is Laurentian.

(ii) ANH,, has the homogeneous k-basis

(Twyy™ -yl w € Spyma, ..., my € No, 2|(I(w) +mq + ... +my)).

(iii) Let Z(ANH,) resp. Z(NH,) denote the centre of ANH, resp. NHy,. Recall that we can
identify Z(NHy) with Sym,, by Theorem 3.2.53. Then we have

Z(ANH,)) = Z(NH,) N ANH, = Sym¢ .

Proof. (i) We know from Theorem 3.2.3 that NH, is Laurentian. Since ANH, is a graded
k-subalgebra of NHy,, it follows that also ANH,, is Laurentian.

(ii) This assertion follows immediately from Theorem 3.2.3 and the description of ANH,, as
thinning of NH,,.

(iii) The assertion is trivial for n = 0. So let us assume that n > 1. We clearly have
Z(NH,) N ANH, € Z(ANH,). For the converse inclusion let z € Z(ANH,). At first, we
show that z commutes with every odd element x € NH,,. For this, let e; € Sym,, be the first
elementary symmetric polynomial. Since e; € Z(NH,,) and e;x € ANH,,, we have the equality
eixz = ejzx. As NH,, is a graded free Sym,, module, the map

NH, —- NH,, y+~ ey, forally e NH,,

is injective. Hence, ejxz = ejzx implies xz = zx. Thus, we proved that z commutes with
every odd element in NH,,. Since z € Z(ANH,), we also have that z commutes with every
even element of NH,. Thus, z also commutes with arbitrary sums of odd and even elements,
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which implies that z commutes with every element in NH,,. This gives z € Z(NH,,) and hence
the inclusion Z(NH,) N ANH, C Z(ANH,). So, we proved Z(NH,) N ANH,, = Z(ANH,).
Finally, the equality Z(NH,) N ANH,, = Sym;, follows directly from

Sym;, = Sym,, N(NH,)® = Sym N ANH,, = Z(NH,) N ANH,, = Z(ANH,)).
This completes the proof. ]

We now describe an important property of the left and right ideals of ANH,. By the
description of ANH,, as thinning of NH,,, it follows that they are always contracted ideals from
NH,,. By this we mean the following.

Proposition 4.1.11. Let I be a possibly ungraded left ideal of ANH,. Let J C NH, be the
left ideal generated by I. Then I = J N ANHy. The assertion remains true if we replace left
ideal by right ideal.

Proof. The inclusion I € JNANH,, is clear. So let us show JNANH, C I. Let x € JNANH,,.
We can write x as

T
T = Z(ai + b;)y;, where a; € ANHy,, b; € (NH,)®, y; € 1.
i=1

We have that ; .
(Z aiyi) S ANHn7 (Z biyi) S (NHH)O.
=1 i=1

Since NH,, = ANH, ®&(NH,)°, the assumption x € ANH,, implies > /_; b;y; = 0. Thus, we
have

xTr = (iaiyi) S ANHn .
i=1

This proves the inclusion J N ANH,, C I. Thus, we have I = J N ANH,. The same argument
works also for right ideals. O

Corollary 4.1.12. ANH, is Noetherian as ungraded k-algebra.

Proof. The assertion follows directly from the fact that NH, is Noetherian as ungraded k-
algebra and Proposition 4.1.11. O

In particular, it follows that ANH,, a graded Noetherian k-algebra.

Remark 4.1.13. The statement of Corollary 4.1.12 could also be deduced from general in-
variant theory. Let R be a ring and G be a finite group that acts by ring automorphisms on
R. Let R® C R denote the fixed subring of G. Assume that |G| is invertible in R. If R is
left (or right) Noetherian, then so is R®. For a proof of this result, see for instance [Mon80,
Corollary 1.12].

Altogether, in this section, we have considered several algebraic properties of the alternating
nil Hecke algebras. In the next section, we will use them to study their representation theory.
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4.2. Graded modules over alternating nil Hecke algebras

4.2 Graded modules over alternating nil Hecke algebras

As the alternating nil Hecke algebra ANH, is Laurentian, we know by the results treated
in the first chapter, that ANH, admits many useful properties. In particular, ANH, is
graded semiperfect. So ANH,, admits only finitely many graded simple modules up to shift-
isomorphism and every graded simple ANH;-module admits a projective cover. Moreover, all
graded simple ANH,-modules have finite dimension over k. In this section, we classify the
graded simple and graded projective indecompoable ANH,-modules. In addition, we outline
interesting properties properties of these modules.
The cases n = 0 and n = 1 are clear. Hence, we make the following assumption.

Convention 4.2.1. Throughout this section, we fix n € Ny with n > 2.

Using the notation from the previous section, recall from Theorem 3.2.4 that P, is the
unique graded projective indecomposable NH,-module up to shift-isomorphism. The underly-
ing graded k-vector space of the unique (up to shift-isomorphism) graded simple NH,-module
L, := P,/(Sym,) P, has a homogeneous basis given by the residue classes of Schubert poly-

nomials (&y)wes, and NH,, acts on L,, via the epimorphism
NH,, — ENDSymn (Pn)/((sym:) ENDSymn (Pn)) = ENDk(Ln)'
Now, we pass to the alternating nil Hecke algebras.

Notation 4.2.2. Let M be a graded ANH,-module such that the graded components M;
vanish for all ¢+ € 1 + Z. We define the M° C M to be the even part of M, ie. M€ is the
graded ANH,-module whose graded components are

i

e — M; ifi=0 mod 4,
0 else.

Likewise, we define M° C M to be the odd part of M, i.e. M° is the graded ANH,-module
whose graded components are

i

MOZ{MZ» if i =2 mod 4,

0 else.

There is a decomposition of ANH,-modules M = M®° & M°.
If N is a graded NHy-module such that the graded components NV; vanish for all i € 1 + 7Z,
then we have a decomposition of ANH,-modules

Res\ypy (N) = N®& N°,

where N¢ := (Reslzg“Hn(N))e and N° := (Resigf{n(]\f))o. As above, we call N the even part
and N° the odd part of N.

At this point, we warn the reader that this notation is not compatible with Notation 4.1.5.
The following lemma will be of great use in our study of ANH,,.
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Lemma 4.2.3. Let M be a graded ANH, -module such that the graded components M; vanish
foralli e 1+7Z. Let N C M be a graded ANH,,-submodule. Then we have an isomorphism of
graded ANH,-modules

F:M°/N®— (M/N)¢, mw—m, forallTme M®/N°.
Stmilarly, we also have an isomorphism of graded ANH, -modules
G:M°/N° — (M/N)°, mw~m, forallTme M°/N°.
Proof. At first, note that
(M/N); ={m € M/N|m € M}, forallicZ. (4.1)

Hence, we conclude that F' is indeed a well-defined homomorphism of graded ANH,-modules.
From (4.1), we also deduce that F is surjective. In order to show the injectivity, let m € M®
be homogeneous with F(m) = m = 0 € (M/N)®. Hence, we have m € N. This implies
m e NNM®=N¢ Som=0¢& M®/N°® and hence, F is injective.

The second assertion can be shown in exactly the same way. O

Using Notation 4.2.2, we have the following decompositions of ANH,-modules.
Lemma 4.2.4. We have that Resyypy (Pn) = PS @ P2 and Res\\yy (Ln) = LS & LS.
Proof. Recall from (3.17) that

L 1
grdim(P,) = (n),2! H
=1

1_7(]21., grdlm(Ln) = (n)qzl.
Here, we use the notion of quantum numbers from Definition 3.2.5. These formulas imply
that (P,); = 0 and (Ly); = 0 for i € 1 + Z. Thus, we can take the even and the odd part of

Resgg’f{n (P,) and Resggan(Ln) as described in Notation 4.2.2. O

One can easily check that L; and L; are graded simple ANH,-modules. In fact, we will
prove in the following theorem that PS and P; are exactly the unique graded projective
indecomposable ANH,-modules up to shift-isomorphism. To see this, recall the notion of
the elementary matrices Ey, € ENDgyy (Pn) for v,w € S, from the previous section. In
particular, note that for each w € S,,, we have that E,, ,, is contained in ANH,,.

Theorem 4.2.5. The following assertions are true:

(i) The graded ANH,-modules PS and P? are graded projective indecomposable and non-
shift-isomorphic.

(ii) We have that hd(P¢) = L® and hd(P°) = L°.
(iii) Any graded projective indecomposable ANH,-module is shift-isomorphic to PS or PP.

(iv) Let w € Sy, then Ey, ., is a homogeneous primitive idempotent in ANH,. Moreover, we
have
Pr(=2l(w)) if 2|l(w),

) (4.2)
Po(=2l(w)) if 2t 1l(w).

ANH,, By & {
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4.2. Graded modules over alternating nil Hecke algebras

Proof. We begin with proving (iv). Since E,, ,, is a homogeneous primitive idempotent in NH,,,
it is also a homogeneous primitive idempotent in ANH,,. Now, we prove the relation (4.2).
For this, we only consider the case 2|l(w). The other case can be proved in the same way.
In Section 3.2, we showed that there is an isomorphism NH, E,, ., = P,(—2l(w)) of graded
NH,-modules. Thus, we conclude

ANH,, Ey, . = (NH,, By ) = (Po(—2l(w)))® = P (—2l(w)).

This gives (iv). Next, we show the remaining assertions. Since {Ey, | w € Sy} is a complete
set of homogeneous pairwise orthogonal primitive idempotents in ANH,,, we obtain by (iv) that
P and P, are graded projective indecomposable and any graded projective indecomposable
ANH,,-module is shift-isomorphic to PS or P;. Hence, we obtain (iii). Now, since we have
hd(P,) = Ly, Lemma 4.2.3 implies that L is a quotient of P¢. Since L, is graded simple and
P¢ is graded projective indecomposable, we deduce that hd(P¢) = L§. The same argument
gives hd(P?) = L?2. Thus, we proved (ii). To conclude (i), it is left to show that PS¢ and P?
are non-shift-isomorphic. For this, it suffices to show that L;, and L{, are non-shift-isomorphic.
Now, note that L has a homogeneous k-basis given by the residue classes of Schubert poly-
nomials &, for w € S,, with 2|i(w). Similarly, L9 has a homogeneous k-basis given by the
Sy, for w € S, with 24 (w). Thus, it follows that for each v € S,, with 2|I(v), we have that
E, , operates on L; by a non-zero homomorphism. However, F,,L; = 0, so L;, and L; are
non-shift-isomorphic. O

As a direct consequence, we obtain a classification of the graded simple ANH,,-modules.
Corollary 4.2.6. The following assertions are true:
(i) The graded ANHy,-modules LS, and LS are graded simple and non-shift-isomorphic.
(ii) Any graded simple ANHy-module is shift-isomorphic to LS or LS.
(iii) ANH,, is graded Schurian.

Proof. The assertions (i) and (ii) directly follow from Theorem 4.2.5. So let us prove (iii). We
have to show that ENDanp, (LS) = k and ENDan,, (LS) = k. In the following, we just prove
the assertion for Lf. The assertion for L; can be shown in the similarly. By construction,
L% has a homogeneous k-basis given by the residue classes of Schubert polynomials &, for
w € Sy with 2|l(w). Let e € S, be the neutral element. Then by Theorem 4.2.5, we have
P; = ANH, E. . and hence

HOMy (P, LS) = E. LS, = span, (S.).
Since Pf is the projective cover of LS, we obtain ENDany, (LS) = k. O

Corollary 4.2.7. For each n € Ny, we have that NHy, is a finitely generated graded projective
ANH,, -module.

In the following proposition, we consider the induction behavior of the graded projective
indecomposable and the graded simple ANH,-modules. This behavior is analogous to the
Clifford theory of group algebras of finite groups, see e.g. [FH13, Proposition 5.1].
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4.2. Graded modules over alternating nil Hecke algebras

Proposition 4.2.8. There are isomorphisms of graded NH;,-modules
IndNi, (P) = Indjxgy, (P7) = Py

and also
IndyNi, (L) = Indjixgy, (L5) & Lo,

Proof. Let e € S, be the neutral element. Since P; = ANH, E, . we obtain

Indjnpy (P5) = NH, B & P,

The assertion IndIXE“H (PS) = P, can be proved similarly. Next, we show Indigi‘{n(L%) = L.
To this end note that there is a homomorphism of graded NH,-modules

foInd{{y (L8) = Ly, €®@ar— &a, forall { € NHy,a € LS.

In order show that f is an isomorphism, we construct an inverse. For this, we fix an arbitrary
simple transposition s € S, and define the following homomorphism of graded k-vector spaces

e 126, if 2|1(w)
t Ly — Ind{\y (LS), &y — S ’
g AN, (L) {EW,ws ® Gys if 21 1(w),

for all w € S,,. At first sight g is just a homomorphism of graded k-vector spaces. However, it
is a straightforward exercise to check that g is the inverse of f. Thus, f and g are isomorphisms
of graded NH,-modules. The fact Indlz%f{ (L) = L,, can be shown in the same way. O

Our next aim is to compute the graded dimension of the ANH,,-modules PS, Py, LS and Lj.
In addition, we also determine the graded composition multiplicities of P, and P?. For this,
we use that we already know the corresponding formulas for P, and Ly, see (3.17) and (3.18).

Notation 4.2.9. Let f =Y, a;q" be a Laurent series with integer coefficients such that
a; = 0 for all ¢ € 1 + 2Zi. Then we define the Laurent series

Even(f) := Z aguq’,  Odd(f) Z agit2q 2.

1>>—00 1>>—00

Note that if f is a rational function, i.e. f = g(¢?) for some g(q) € Q(q), then also Even(f)
and Odd(f) are contained in Q(g). This follows from the equations

Even(f) = W Odd(f) = W

Now, recall from (3.17), that we have

grdim(Ly,) = (n),e!, grdim(P,) = (n),! H e

y the construction of the ANH,-modules P, P?, LS and L, we hence obtain the following
formulas for their graded dimensions.
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4.2. Graded modules over alternating nil Hecke algebras

Proposition 4.2.10. We have
grdim(Ly,) = Even((n),2!), grdim(L;) = Odd((n),!)

and

1

grdim(P?) = Even ((n)q2! H 1_7(]21), grdim(Fy) = Odd ((n)qQ! H 1 _1q2i)'
i=1 i=1

Proof. Note that for each i € 1+2Z, the i-coefficients (n) 2! and (n),2! Tj; (1—¢*)~! vanishes.
Thus, we can apply Even and Odd to them. Now, by definition, the homogeneous components
of LY are given by

. (Ly); ifi=0 mod 4,
0 else,

foralli € Z. Thus, grdim(L;,) = Even((n),2!). The other graded dimensions can be determined
in exactly the same way. O

Proposition 4.2.11. The graded composition multiplicities of Py, and Py} are given by

) P L, —Odd(ﬁl_lqgi),

=1

n
1
[Py, : Ly]q = Even ( 11 T_ &
=1

and

[

<3

L L¢], :Odd(f[ll_lq%), [P°: L2, :Even<f[11_1q%).

Note that all the above graded composition multiplicities are contained in Q(q).

Proof. We only determine graded composition multiplicities of Py, since the graded compo-
sition multiplicities of P? can be determined in the same way. At first, recall from (3.18)
that
- 1
[Pn'Ln]q gl_q%'

Let P, = Fy D F1 D Fy D ... be a countable separated graded simple filtration of P, with
F;/Fi1 = Ly(d;) for some d; € 2Ng. Now, recall from Lemma 4.2.3 that F7/F} | = (L, (d;))®
for all ¢ € Ng. Hence, we deduce that P; = Fy D Fy D Fy D ... is a countable separated
graded simple filtration of PS and we have

LS (d;) ifi =0 mod 4,

FfJFf | = (Lp{d;))® =
i /i = (Ln(di)) {Lg(dﬁ if =2 mod 4.

This directly implies the stated formulas for the composition multiplicities of Py . O

We end this section with studying duality properties of the modules Py, Py, LS, and Ly . Our
procedure is analogous as for the nil Hecke algebras in Section 3.2. At first, recall that in
Definition 2.4.4, we defined dualities ® and # on the categories A-fmod and A-pmod, where
A is a Laurentian k algebra that admits a self-inverse graded anti-automorphism. Moreover,
recall that NH,, admits a self-inverse graded anti-automorphism ¥ : NH,, — NH,, given by

Ty = Tiy  Yi = Yi,

84
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for all admissible i. Since ¥ is graded, we know that ¥ maps ANH,, onto ANH,,. Hence, ¥ re-
stricts to a self-inverse graded anti-automorphism of ANH,,. Now, by applying Definition 2.4.4,
we also obtain dualities
® : ANH,,-fmod — ANH,,-fmod, = M® := HOM, (M, k),
# . ANH,,-pmod — ANH,-pmod, P7 := HOManm,, (P, ANH,,),
which are defined with respect to ¥.
In the following proposition, we describe how the duality ® acts on the graded simple

ANH,-modules and, equivalently, how # acts on the graded projective indecomposable ANH,,-
modules.

Proposition 4.2.12. If 4|(n(n — 1)), then we have

(Ly,)® = Ly(—n(n — 1)), (Ly)® = Ly(—n(n — 1)),

(P)* = Py{—n(n— 1)), (PR)* 2 P(—n(n —1)).
However, if 41 (n(n — 1)), then we have

(L) = Ly{-n(n — 1)), (L) = Ly{-n(n — 1)),

(P)* = Pi{-—n(n— 1)), (PR)* 2 P(=n(n —1)).

Proof. We only prove the assertion for L. The assertion for LY can be shown in the same
way. The assertions for P; and Py then follow from Corollary 2.4.6. Now, note that we have
a natural isomorphism of ANH,-modules

Resiinty, (L) = (Resiy, (Ln))®-
This implies in particular that (L®)® = (L$)®. In Section 3.2, we showed that
LY = L,(—n(n—1)).

Hence, we deduce

(Ln)®

I

(Ln<—n(n — 1)>)e ~ {L%(—n(n - 1)) if 4’(77,(71 _ 1))7

L2(—n(n—1)) if 41 (n(n—1)).
This proves the assertion for L. O

Similar as for the nil Hecke algebra, we can symmetrize the graded simple and graded
projective indecomposable ANH,-modules, i.e. we set

e = LZ(—%n(n _1)), TP = Lg<—%n(n — 1)

n n

and

Q5 = Py gnln = 1), @ i=P(~n(n—1).

By Proposition 4.2.12, we have that if 4|(n(n—1)), the duality ® fixes T¢ and T)?. Equivalently,
the duality # fixes ()5, and J5,. So, we have

(T =Ty, (T =T, (Q)F=Q;, ()7 =) (4.3)
However, if 41 (n(n — 1)), then we have
(T)* =Ty, (T))* =Ty, (@) =Qy, (@) =Q;. (4.4)

So in this case, the duality ® switches T, and 7. Likewise, # switches @Y, and Q9.
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4.3. Alternating nil Hecke Grothendieck groups

4.3 Alternating nil Hecke Grothendieck groups

The remaining sections of this chapter are devoted to the study of the alternating nil Hecke
Grothendieck groups Go(ANH) and Ko(ANH). The definition of Go(ANH) and Ko(ANH) is
modeled on the definition of the nil Hecke Grothendieck groups Go(NH) and K¢(NH) which
were discussed in Section 3.3. In this section, we consider fundamental properties of Go(ANH)
and Ko(ANH) that are analogous to the properties Go(NH) and Ko(NH).

We start with some preparations. For n € {0, 1}, we have that ANH,, admits a unique (up
to isomorphism) graded simple module that is concentrated in degree zero which we denote
T°. Let Q)5 be the projective cover of T;.. Furthermore, let the dualities ® and # be defined
as in the case n > 2. One can then directly check that (7°)® = T and (Q%)* = Q°.

In the following, we use the notation that was introduced in Chapter 2. In particular, A
denotes the ring Z[q,¢~']. In the next proposition, we list some important properties of the
Grothendieck groups of alternating nil Hecke algebras.

Proposition 4.3.1. The following assertions are true:

(i) We have that Go(ANHg-fmod) and Go(ANH; -fmod) are free A-modules of rank 1 with
generator [I§] resp. [I7]. For n € Ny with n > 2, we have that Go(ANH,, -fmod) is a
free A-modules of rank 2 with generators [Ty] and [T}].

(ii) We have that Ko(ANHg-pmod) and Ko(ANH; -pmod) are free A-modules of rank 1 with
generator [Qf] resp. [QS]. For n € Ny with n > 2, we have that Ko(ANH,, -pmod) is a
free A-modules of rank 2 with generators [Q5,] and [Q2].

(iii) There exists a unique self-inverse A-anti-linear automorphism
~: Go(ANH,, -fmod) — Go(ANH,, -fmod), [M] +~ [M?],
for all M € ANH,, -fmod. We call ~ the bar involution on Go(ANH,, -fmod).
(iv) There exists a unique self-inverse A-anti-linear automorphism
~: Ko(ANH,, -pmod) — Ko(ANH,, -pmod), [P] — [P#],
for all P € ANH,,-pmod. We call ~ the bar involution on Ko(ANH,, -pmod).

Proof. (i) This follows directly from Theorem 2.1.4.(i) and the classification of the graded
simple ANH,,-modules from Corollary 4.2.6.

(ii) Like in (i), the assertion (ii) follows from Theorem 2.1.4.(ii) and the classification of the
graded projective indecomposable ANH,-modules from Theorem 4.2.5.

(iii) Since ® is a duality on the category ANH,, -fmod, we obtain that the bar involution on
Go(ANH,, -fmod) is a well-defined self-inverse additive map. The .A-anti-linearity then follows
from

(M (d))® = HOM (M {d), k) = (HOMy (M, k))(~d) = (M*){~d),
for all M € ANH,, -fmod, d € Z.

(iv) We can use the same argument as in (ii). Since # is a duality on the category
ANH,, -pmod, the bar involution on Ky(ANH,, -pmod) is a well-defined self-inverse additive
map. The A-anti-linearity is a consequence of

(P(d))* = HOMan, (P{d), ANHy,) = (HOManu, (P, ANH,))(—d) = (P7)(~d),
for all P € ANH,, -pmod,d € Z. O
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Now, let (.,.)n : Ko(ANH,, -pmod) x Go(ANH,, -fmod) — A be the A-bilinear HOM-pairing
that was from Definition 2.4.7. So (.,.), is given by

([P], [M])n = grdim(HOM snm, (P#, M)),

for all P € ANH,,-pmod, M € ANH, -fmod. Using the description of the action of the
involution # on the graded projective indecomposable ANH,-modules from Proposition 4.2.12,
we obtain an explicit description of (.,.)s,.

Proposition 4.3.2. The following holds:
(i) We have ([Qf], [T5])o = 1.
(i1) We have ([QS], [TT])1 = 1.

(iii) Let n € Ny with n > 2 and 4|n(n — 1). Then we have

Proof. The assertions (i) and (ii) are clear. So let n € Ny with n > 2. At first, we recall
that ANH, is graded Schurian by Corollary 4.2.6. Now, if 4|n(n — 1), then we know by (4.3)
that (QS)7 = Q¢ and (Q9)* = Q9. Moreover, Q¢ is the projective cover of T and Q9 is the
projective cover of T.2. Thus, by (1.2), we obtain

(@], [T = grdim HOMaxw, (@5, T5) = [T, : Tilq = 1.

The other formulas from (iii) can be shown in the same way. Likewise, if 4 { n(n — 1), then
we know from (4.4) that (Q%)* = Q2 and (Q%)" = Q¢. With the same argument as in the
previous case, we conclude the formulas stated in (iv). O

Definition 4.3.3. The alternating nil Hecke Grothendieck group Go(ANH) and the split al-
ternating nil Hecke Grothendieck group Ko(ANH) are defined as

Go(NH) := P Go(ANH,,-fmod), Ko(NH) := P Ko(ANH,, -pmod).
neNp n€Ng

By definition, Go(ANH) and Ko(ANH) both admit an No-graded A-module structure.

The bar involutions on Go(NH,, -fmod) and Ko(NH,, -pmod) give in a natural way an A-
anti-linear self-inverse automorphisms

T Go(ANH) — Go(ANH), T KO(ANH) — K()(ANH),

which we call the bar involutions on Go(NH) and Ko(NH). In addition, we can also extend
the bilinear HOM-pairing to the alternating nil Hecke Grothendieck groups as follows. Let

(.,.) : Ko(ANH) x Go(ANH) — A
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be the unique A-bilinear pairing such that

([P], [M])m if m =mn,
0 if m # n,
holds for all P € ANH,, -pmod, M € ANH,, -fmod. We call (.,.) the bilinear HOM-pairing
between Ko(ANH) and Go(ANH).
Next, we show that the alternating nil Hecke Grothendieck groups Go(ANH) and K¢(ANH)

both admit multiplicative and comultiplicative structure. For this, we proceed as for the nil
Hecke Grothendieck groups. At first, recall the inclusions

tmn : NHp, ® NH, — NH,, ®, NH,
from Proposition 3.3.3. Since ¢y, 5, is a graded inclusion, we deduce
tmn(ANH,, ®; ANH,,) C ANH,,4,, .

Thus, via ¢y, we obtain inclusions of graded algebras ANH,, ®; ANH,, — ANH,,,1,,. In the
following let

Ind7 4" : (ANH,, ®; ANH,,)-Mod — ANH,,,4,, -Mod,
Res)" ™ : ANH, .4, -Mod — (ANH,,, ©; ANH,,)-Mod

denote the induction and restriction functors corresponding to this inclusion. To see that these
functors give well-defined maps on the alternating nil Hecke Grothendieck groups, we use the
following general proposition.

Proposition 4.3.4. Let m,n € Ng. Then the following holds:
(i) NHy, is a finitely generated graded projective left ANH,-module,
(ii) NH,, is a finitely generated graded projective right ANHy-module,
(iii) ANH,,4p, is a finitely generated graded projective left (ANH,, @, ANH,)-module,
(iv) ANH,,,, is a finitely generated graded projective right (ANH,, ®; ANH,)-module.

Proof. The assertion (i) was already shown in Corollary 4.2.7. We now use this result to prove
(ii). For this, let N be NH, viewed as left ANH,-module and N’ be NH,, viewed as right
ANH,-module. Let N¥ be the right ANH,-module obtained from N by twisting with T. Then
(i) implies that N7 is a finitely generated graded projective ANH,, right-module. Moreover,
we have an isomorphism of right ANH,-modules

N* - N, 2w F(x), forallze N

Thus, N’ is a finitely generated graded projective right ANH,-module.

Next we prove (iii). According to (i), NH,, ®x NH,, is a finitely generated graded projective
left (ANH,,, ®,; ANH,, )-module. By Lemma 3.3.4.(i), we know that NH,,,, is a graded free left
(NH,,, ®, NH,,)-module of finite rank. Hence, NH,, 1, is a finitely generated graded projective
left (ANH,,, ®, ANH,,)-module. Finally, since ANH,,,,, is a direct summand of NH,, 1, as left
(ANH,,, ®; ANH,,)-module, we obtain that ANH,,,;,, is a finitely generated graded projective
left (ANH,,, ®, ANH,,)-module.

The proof of (iv) is completely analogous to the proof of (iii). O
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Just like in the case of the nil Hecke Grothendieck groups which we considered in The-
orem 3.3.5, we obtain via the above induction and restriction functors multiplicative and
comultiplicative structures on Go(ANH) and Ko(ANH). For this, recall from Proposition 2.1.6
the isomorphisms of A-modules

Go(NH,,, -fmod) ® 4 Go(ANH,, -fmod) = Go((ANH,,, ®; ANH,,)-fmod),
Ko(NH,, -pmod) ® 4 Ko(ANH,, -pmod) = Ky ((ANH,,, ®, ANH,,)-pmod).

In the following, we will always identify these Grothendieck groups via the isomorphisms from
Proposition 2.1.6.

Theorem 4.3.5. The following assertions are true:

(i) We have that Go(ANH) admits the structure of an No-graded A-algebra, with unit [T§]
and multiplication
[M] - [N] = [Ind 1" (M @, N)J,

for all m,n € No, M € ANH,,, -fmod, N € ANH,, -fmod. Similarly, Ko(ANH) admits the
structure of an No-graded A-algebra, with unit [Qf] and multiplication

[P]- Q] = [Ind " (P @k Q)]
for all m,n € Ny, P € ANH,,, -pmod, @Q € ANH,, -pmod.

(ii) We have that Go(ANH) admits the structure of an Ny-graded A-coalgebra, where the
counit is the projection to Go(ANHp-fmod) and the comultiplication is

n

Ag([M]) = [Resy,, . (M)], for alln € No, M € ANH, -fmod.
r=0

Analogously, Ko(ANH) admits the structure of an Ny-graded A-coalgebra, where counit
is the projection to Ko(ANHg-pmod) and the comultiplication is

n

Ak([P]) = Z[Resn (P)], for alln € Ny, P € ANH,, -pmod.

=T
r=0

Proof. From Proposition 4.3.4.(iv) and Proposition 2.1.6, we obtain that the above multiplica-
tion and comultiplication maps are well-defined. The associativity and coassociativity follows
from the associativity of induction, restriction and outer tensor products. O

In the following let Ko(ANH)* be the Nyp-graded dual of Ko(ANH), see Definition 3.3.7. So
Ko(ANH)* is the Ny-graded .A-module

Ko(ANH)* = @5 Hom 4(Ko(ANH,, -pmod), A)
n€Np

with Ng-graded A-algebra and Ng-graded A-coalgebra structure as defined in Definition 3.3.7.
Likewise, let Go(ANH)* be the Ny-graded dual of Go(ANH). In Theorem 3.3.8, we described
a duality between Go(NH) and Ko(NH). Using the same argument as in Theorem 3.3.8, we
deduce the following duality Go(ANH) and Ko(ANH).
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Theorem 4.3.6. The following assertions are true:
(i) For each n € Ny, let
fn i Go(ANH,, -fmod) — Hom 4 (Ko (ANH,, -pmod), .A)

be the homomorphism of A-modules given by [M] — (.,[M])n, for all M € ANH, -fmod.
Then
f=EP fn:Go(ANH) — Ko(ANH)*

n€eNg

s an isomorphism of Ng-graded A-algebras and Ny-graded A-coalgebras.
(ii) For each n € Ny, let
gn : Ko(ANH,, -pmod) — Hom4(Go(ANH,, -fmod), A)

be the homomorphism of A-modules given by [P] — ([P],.)n, for all P € ANH,, -pmod.
Then
g:= B gn : Ko(ANH) — Go(ANH)*
n€eNg

s an isomorphism of Ng-graded A-algebras and Ng-graded A-coalgebras.

Proof. We only show (i), since (ii) can be shown in exactly the same way. With exactly the
same argument as in Theorem 3.3.8, one can deduce from the compatibility of the HOM-
pairing with induction, restriction and outer tensor products, that f is a homomorphism
of Ng-graded A-algebras and Ny-graded A-coalgebras. By Proposition 4.3.2, we know that
((, [TXDns (., T2)y) is an A-basis of Hom 4(Ko(ANH,, -pmod), .A) for each n > 2. If n € {0, 1},
then Hom 4 (Ko(ANH,, -pmod), A) is free of rank 1 with generator (., [Ty ]),. Thus, from Propo-
sition 4.3.1, it follows that f maps an A-basis of Go(ANH) to an A-basis of Ko(ANH)*. This
implies that f is an isomorphism of Nyp-graded A-algebras and Ny-graded .A-coalgebras. O

We end this section by observing that induction resp. restriction give algebra resp. coalgebra
homomorphisms between the alternating nil Hecke Grothendieck groups and the nil Hecke
Grothendieck groups.

Theorem 4.3.7. The following assertions are true:

(i) There exists a unique homomorphism of No-graded A-algebras
IG : Go(ANH) — GQ(NH),

such that
[M] = [N, (M),

for all n € Ng, M € ANH,, -fmod. Similarly, there exists a unique homomorphism of
No-graded A-algebras
Ik : Ko(ANH) — Ko (NH),

such that
[P] — [Indjxpy, (M)],

for all n € Ny, P € ANH,, -pmod.
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(i) There exists a unique homomorphism of No-graded A-coalgebras
Rg : Go(NH) — Go(ANH),
such that
[M] = [Resyiy, (M),

for all n € No, M € NH,, -fmod. Analogously, there exists a unique homomorphism of
No-graded A-coalgebras
Rk : Ko(NH) — Ko(ANH),
such that
[P] — [Resyni, (P)],
for all m € Ny, P € NH,, -pmod.

Moreover, under the identifications

Go(ANH) = Ko(ANH)*, Ko(ANH) = Go(ANH)*,
Go(NH) = Ko(NH)*, Ko(NH) = Go(NH)*,
from Theorem 4.3.6 and Theorem 3.3.8, we have that Rq is the adjoint map of Ik, vice versa,

Ik is the adjoint of Rg. Moreover, 1g is the adjoint map of Rk and vice versa, Rk is the
adjoint of Ig.

Proof. By Proposition 4.3.4, we know that NH,, is a finitely generated graded projective right
ANH,,-module for each n € Ny. This implies that the maps Ig, Ix, Rg and Rk are well-
defined. From the transitivity of induction, we obtain that Ig and Ik are compatible with the
multiplicative structures. Likewise, the transitivity of restriction implies that Rg and Rk are
compatible with the comultiplicative structures. Next, we show that R¢ is the adjoint map of
Ix. From Proposition 2.4.9, we know that

([IndXniy, (P)), [M]) = ([P], [Res)ixiy, (M))),
for all P € ANH,, -pmod, M € NH,, -fmod. Hence, we obtain
(-, [M]) o Ix = (. Ra([M])).

According to the identifications Go(ANH) = Ko(ANH)* and Go(NH) = Ko(NH)* from Theo-
rem 4.3.6 and Theorem 3.3.8, we conclude that Rg is the adjoint map of Ix. The remaining
adjunctions can be shown in exactly the same way. O

4.4 Rational alternating nil Hecke Grothendieck groups

In this section, we study the rational alternating nil Hecke Grothendieck groups Go(ANH)g(y)
and Ko(ANH)g(,) which we obtain by scalar extension to Q(q). In particular, we apply the
results from Section 2.5 to Go(ANH)q(q) and Ko(ANH)g(q)-

Definition 4.4.1. The rational alternating nil Hecke Grothendieck group GO(ANH)Q(Q) and
the rational split alternating nil Hecke Grothendieck group Ko(ANH)gq(,) are defined as

Go(ANH)g() = €D Q(q) ®4 Go(ANH,, -fmod),

n€Ng

Ko(ANH)g(y) :== @ Q(q) ®.4 Ko(ANH,, -pmod).

n€Np
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By definition, Go(ANH)q(,) and Ko(ANH)g(,) are No-graded Q(g)-vector spaces. In addi-
tion, Theorem 4.3.5 implies that both Go(ANH)g(,) and Ko(ANH)q(,) are No-graded Q(q)-
algebras and Ny-graded Q(g)-coalgebras. We also have that the bar involutions extend to
Go(ANH)g(q) and Ko(ANH)g(,). Likewise, the A-bilinear HOM-pairing between Ko(ANH)
and Go(ANH) extends to a Q(g)-bilinear pairing (.,.) between Go(ANH)g(q) and Ko(ANH)g(q)-

In order to apply the results from Section 2.5 to Go(ANH)q,) and Ko(ANH)g(q), we have to
ensure that the conditions that were formulated in Convention 2.5.1 are satisfied. According
to our discussion from Section 4.1 and Section 4.2, it is only left to show that ANH,, has finite
global dimension for all n € Ny. This follows from the following proposition.

Proposition 4.4.2. For each n € Ny, we have gl(ANH,)) = n.

Proof. The assertion is clear for n = 0,1. So in the following, we assume that n > 2. From
(3.20), we know that gl(NH,) = n. By Theorem 1.5.4, we can infer that

max{i € No| EXTky, (Ln, Ly) # 0} = n.
Using generalized Frobenius reciprocity and Proposition 4.2.8, we hence obtain
EXTinn, (L5, Ly, © L7) 2 EXT)p, (L5, Ly, @ Ly,) = EXTy, (Ln, Ln) =0,

for all i > n+ 1. Since L, Ly are the unique graded simple ANH,-modules up to shift-
isomorphism, we deduce

max{i € No| EXTnyy, (S, T) # 0, where S, T are graded simple ANH,-modules} < n.
Hence, by Theorem 1.5.4, we conclude that gl(ANH,,) < n. Finally, from
EX Ty, (L8 L) © EX Ty, (LS, L) = EX Ty, (£, LS ® 15) = EX Ty, (Lns L) # 0,
we obtain that gl(ANH,) = n. O

Next, we note that by Proposition 4.2.11, all graded composition multiplicities of finitely
generated graded projective ANH,-modules are contained in Q(q). Hence, we can apply the
rational versions of the results from Section 2.5.

We begin with defining Q(g)-bilinear Euler forms on Go(ANH)g(4) and Ko(ANH)g(g). The
definition is completely analogous to the corresponding definition of the Q(g)-bilinear Euler
forms on Go(NH)g(q) and Ko(NH)g(g), see Definition 3.3.10.

Definition 4.4.3. We define the following:

(i) For n € Ny let xkn be the rational bilinear Euler form on Go(ANH, -fmod) from Defi-
nition 2.5.18.(1). So xxn ts the unique Q(q)-bilinear form such that

n

Xka(f ®@ [M],g @ [N]) = fg (~1)" grdim(EXT)xp, (M, N®)),
=0

for all f,g € Q(q) and M, N € ANH,, -fmod.
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(ii) Let xa be the unique Q(q)-bilinear form on Go(ANH)q(q) such that

XK,n(f®[M]7g®[ND me:n7
0 if m #n,

holds for all f,g € Q(q), M € ANH,,-fmod and N € ANH, -fmod. We call xg the
Q(q)-bilinear Euler form on Go(ANH)q(g)-

xa(f ©[M],g©[N]) = {

(11t) For n € Ny let xkn be the rational bilinear Euler form on Ko(ANH, -pmod) from Defi-
nition 2.5.18.(ii). So Xk n is the unique Q(q)-bilinear form such that

Xpn(f @ [Pl,g®[Q)) = fg grdim(HOMang, (P7, Q)),
forall f,g € Q(q) and P,Q € ANH,, -pmod.

(iv) Let xk be the unique Q(q)-bilinear form on Ko(ANH)q(,) such that

Xkn(f @ [Plg®[Q]) if m=n,
0 if m#n,

holds for all f,g € Q(q), P € ANH,,,-pmod and @ € ANH, -pmod. We call xx the
Q(q)-bilinear Euler form on Ko(ANH)g(q)-

xk(f @ [Pl,g®[Q]) = {

We proceed with applying Theorem 2.5.19 to Go(ANH)q(q) and Ko(ANH)g(g)-

Theorem 4.4.4. For each n € Ny, let

¢+ Q(q) ®4 Ko(ANH,, -pmod) — Q(g) ®.4 Go(ANH,, -fmod)
be the unique Q(q)-linear map such that

f@[P]— f-gch([P]), forall f € Q(q), P € ANH, -pmod.
Here, gch denotes the graded character map from Definition 2.2.2. Let

6= D én : Ko(ANH)g () — Go(ANH)qg(q).
n€Ng

Then ¢ is an isomorphism of Ng-graded Q(q)-algebras and No-graded Q(q)-coalgebras. Fur-
thermore, the following holds:

(i) We have xk(z,y) = xa(¢(x), #(y)), for all z,y € Ko(NH)g(q)-
(ii) The Q(q)-bilinear Euler forms xg and xx are non-degenerate and xg(¢(.),.) = (.,.).

Proof. The fact that ¢ is a homomorphism of Ny-graded Q(g)-algebras and Ny-graded coal-
gebras follows directly from the compatibility of the graded character map with induction,
restriction and outer tensor products, see Corollary 2.3.6 and Corollary 2.2.13. The remaining
assertions follow immediately from Theorem 2.5.19. O

From Theorem 4.4.4.(ii), we directly obtain the following consequence.
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Corollary 4.4.5. We have that
{1e[Tg],1e M)} u{1 @ [T7],1 @ [T7]jn € No,n > 2}

and

{o(1 @ [Q5]), (1 ® [Q5])} U{e(1 ® [(Q7)F]), (1 ® [(Q7)*])In € No,n > 2}
are dual homogeneous Q(q)-bases of Go(ANH)q,) with respect to xa.

Moreover, using exactly the same arguments as in Corollary 3.3.11 and Proposition 3.3.13,
we deduce the following properties of yg and yk.

Corollary 4.4.6. The following holds:
(i) The Euler forms xg and xx are symmetric.

(i) For all z,y,z € Go(ANH)q(,), we have
xa(@ -y, 2) = xa(z @y, Ac(?)),
where the Q(q)-bilinear form xa on Go(ANH)g(q) ®q(g) Go(ANH)q(,) s given by
xala®b,c®d) =xala, c)xa(b, d),
for all a,b,c,d € Go(ANH)q(q)-

(iii) Likewise, for all x,y,z € Ko(ANH)gq(,), we have

)
Xk (- y,2) = xx(z @y, Ak (2)),
where the Q(q)-bilinear form xx on Ko(ANH)g(y) ®q(q) Ko(ANH)qg) is given by
Xk(a® b, c®d) = xx(a,c)xk(b, d),
for all a,b,c,d € Ko(ANH)q(g)-

In the following, we work out an explicit description of ¢ and the inverse map ¢~!. Further-
more, we also determine explicit formulas for the bilinear Euler forms yg and yk.

Notation 4.4.7. Let n € Ng. Then we define the following elements of Q(q):

Hoa) =[] = Fala) = [0~ ) = B '(a),

i=1 1 i=1
Hye(q) = Even(Hy(q)), Hnolgq) :=0dd(Hx(q)),
Fne(q) :==Even(F,(q)), Fno(q) = 0dd(F,(q)).

We have the following relations between these rational functions.
Lemma 4.4.8. We have the equalities

Hn,e(Q)
Hn,e(Q)z - Hn,O(Q)2 ’

Fn,e(Q) = Fn,o(‘]) =
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Proof. We set G,(q) :=[1"21(1 — ¢)~! € Q(q). Then we have

Hoe(a) = Bren(Hy () = Bven(Gn (%)) = 5(Gald?) + Gn(—?)).

Similarly, we also have the equalities

Hno(q) = = (Gn(q®) — Gn(—=4%)),

Fn,e(Q) = (G;zl(q2) + G;Ll(_QQ))v

NP~

Fn,O(Q) = *(Gn(q2)_1 - Gn(*q2)_1)~

Using these equalities, we conclude

Hn,e(Q)Q - Hn,O(Q)Q B 2Gn(q2)Gn(_q2)
_ Gl (=) + G ()
2
= Fn,e(Q)-

Hn,e(Q) Gn(q2) +Gn(_q2)

Thus, we proved the first equation. The second equation can be shown in the same way.

O]

Using these preparations, we now give an explicit description of ¢ and ¢~ !.

Theorem 4.4.9. Let ¢ = @D,,cn, ¢n be as in Theorem 4.4.4. Then the following holds:
(i.a) We have ¢o(1® [Qf]) =1 ® [T(].
(i.b) We have ¢1(1® [Q$]) = (1 — ¢*)~! & [T¥].

(i.c) For n € Ng with n > 2, we have

Pn(1®[Qy])
Pn(1® [Q7])

Hyo(q) @ [T;] + Hno(q) © [T5],
Hno(q) © [T,] + Hne(q) @ [T7]

’ ni:

Wrrite ¢~ = Dren, én L. Then the following holds:
(ii.a) We have ¢yt (1@ [T§]) = 1 @ [QF].
(ii.b) We have ¢ (1® [Tf]) = (1 - ¢*) ® [QF).

(ii.c) Forn € Ng with n > 2, we have
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Proof. The exceptional cases (i.a), (i.b), (ii.a) and (ii.b) can be shown by direct calculations.
So in the following, we only prove (i.c) and (ii.c). At first, recall from Proposition 4.2.11 that
we have

[QZ : Trﬂq = Even ( ﬁ 1_1(]21) = Hpe, [Q% : TT(L)]q = 0dd (ﬁ 1—1(]21) = Hp o,
=1 =1

Q2+ T2y = 00 (T] =) = Huor (@2 T2y = Bven (T] 1= = Hone
i=1 =1

Hence, the graded characters of ()Y and ()9 are given by
geh([QR]) = Hne ® [T3] + Hpo ® [T7],  geh([QR]) = Hpo ® [T3] + Hype ® [T7)].

By the definition of ¢, we hence immediately obtain (i.c). Now, in order to compute ¢, !, we
have to compute the inverse of the matrix

Hn,c Hn,o
Hn,o Hn e

)

> € M2(Q(q))-

For this, we use Lemma 4.4.8 as follows

-1
Hn,e Hn,o —_ 1 Hn,e *Hn,o —_ Fn,e Fn,o (4 5)
Hn,o Hn,e H?%,e - H72l70 _Hn,o Hn e Fn o Fn,e ' .
This implies (ii.c). O

From these formulas for ¢ and the inverse ¢!, we derive explicit formulas for the bilinear
Euler forms yk and xg with respect to the bases given by graded projective indecomposable
resp. graded simple modules.

Theorem 4.4.10. The following assertions are true:
(i) We have xk0(1 ® [QF],1® [Qf]) = 1. Moreover, we have xgo(1 ® [T5],1® [I5]) = 1.
(i) We have xr1(1®[Q5],1® [QS]) = (1 — ¢*)~L. Moreover, we have

xa1(1®[T1),1@[T7]) =1 —q¢*.

(iii) Let n € Ng with n > 2 and 4|n(n — 1). With respect to the basis (1 ® [Q5],1® [QS]), we
have that x K n s given by the matriz

Hne(q) Hno(q)

Hn,o(Q) Hn,e(Q)
Moreover, with respect to the basis (1@ [Ty],1® [T}]), we have that xk , is given by the
matric
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(iv) Letn € Ng withn > 2 and 4t n(n—1). Then, with respect to the basis (1®[Q%],1®[Q2]),
we have that Xk n s given by the matriz

Moreover, with respect to the basis (1 ® [T5],1® [T}]), we have that xk r is given by the

matriz

Fn,o (Q) Fn,e(Q)

Foe(q) Foo(d))
Proof. Again, the exceptional cases (i) and (ii) can be shown by straightforward computations.
Hence, in the following, we only show (iii) and (iv).

(iii) By (4.3), we know that (Q%)” = Q¢ and (Q9)* = Q2. Thus, from Proposition 4.2.11,

we directly obtain
Xra(1@ QR 1@ [Q0]) = (@ : Tilg = Hue,  Xxrn(1®[Qu], 1@ [Q7]) = (@7 : TRy = Hao,
XEa(1®[QR], 1@ [QR]) = (@ Tilg = Huo, Xxra(1©[QR),10[Q0]) = Q5 : T3y = Hao-
Thus, we have that with respect to the basis (1 ® [Q5],1 ® [Q3]), the bilinear form xk , is

given by the following matrix
Hpe(q) Hnolq)
Hpo(q) Hne(q)

From Theorem 4.4.9.(ii.c), it then follows that with respect to the basis (1® [T], 1 ® [T}]), we
have that xx ., is given by the following product of matrices

Fn,e(Q) Fn,O(Q) Hn,e(Q) Hn,O(Q) Fme(Q) Fn,O(Q) _ Fn,e(Q) Fn,O(Q)
Fn,O(Q) Fn,e(Q) an(q) Hn,e(Q) Fn,O(Q) Fn,e(Q) Fn,c(‘]) F, .

=id

Here, we used the equation (4.5).
(iv) By (4.4), we have (Q¢)* = Q¢ and (Q9)* = Q¢. With the same argument as in (iii),
we conclude that with respect to the basis (1 ® [Q5],1® [Q2]), the bilinear form xxk ,, is given

by the matrix
(Hn,o(Q) Hn,e(Q))
Hne(q) Hnola))
Again applying Theorem 4.4.9.(ii.c), we deduce that with respect to the basis (1®[T], 1&[T?]),
we have that xk , is given by the following product of matrices

Fo.— Fn,e(Q) Fn,o(q) Hn,o(Q) Hn,e(Q) Fn,e(Q) Fn,o(Q)
’ Fn,o(‘]) Fn,e(Q) Hn,e(Q) Hn,O(Q) Fn,O(Q) Fn,e(q '

Using (4.5), we determine F' as follows

F = Fn,e(Q) Fn,o(‘]) 0 1 Hn,e(q) Hn,o(‘]) Fn,e(Q) Fn,o(Q)
,olgq elq 10 Hn,o(Q) Hn,e(‘]) Fn,o(Q) Fn,e(Q)

~—
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Thus, we proved (iv). O

4.5 Multiplicative and comultiplicative structures

In this section, we characterize the multiplicative and the comultipliative structure on the
alternating nil Hecke Grothendieck groups Go(ANH) and Ko(ANH). For this, we identify
Go(ANH) = Ko(ANH)* and Ko(ANH) = Go(ANH)* by the isomorphisms of Ny-graded A-
algebras and Ng-graded A-coalgebras from Theorem 4.3.6. In addition, we use the following
notation which is analogous to Notation 4.2.2.

Notation 4.5.1. Let m,n € Ny. Let M be a graded (ANH,,, ®; ANH,,)-module such that the
graded components M; vanish for all ¢ € 1 +Z. We define M® C M to be the even part of M,
i.e. M°¢ is the graded (ANH,, ®; ANH,)-module whose graded components are

ME =

(2

{Mi if i =0 mod 4,

0 else.

Moreover, we define M° C M to be the odd part of M,i.e. MP° is the graded (ANH,,, ®; ANH,,)-
module whose graded components are

7

o M; ifi=2 mod 4,
\/i p—
0 else.

We have the following decomposition of (ANH,, ®; ANH,)-modules M = M & M°.
If N is a graded (NH,, ®; NH},)-module such that the graded components N; vanish for all
1 € 1+ Z, then we have a decomposition of ANH,, ®, ANH,-modules

NH,, ®x NHy _ are o
ResaNIL,,, 6, ANH,, (N)=N°® N°,

where N¢ := (Resigﬁfng&Hn (N))¢ and N° := (Resigﬁfng“NHn (N))°. We call N¢ the even
part and N° the odd part of N.
We begin with determining explicit formulas for the comultiplication on Ko(ANH).

Notation 4.5.2. Let R be a commutative unital ring and let C' be an Nyp-graded R-module.
For n € Ny let p, : C — C, be the projection to the n-th homogeneous component. Let
¢ € C ®g C be a homogeneous element and r, s € Ny with 7 + s = |¢|. Then we set

Crs i= (pr ®ps)(c) € Cr QR Cs-
Theorem 4.5.3. Let r,s € Ny with r,s > 2 and set n:=r +s. Then we have

A([@n])rs = ¢ ™ ([Q7] @ [Q5) + Q7] © [QF]),
Ak([@Qn])rs = ¢ ([Q7] @ (@] + [@Q7] @ [QS])-

Proof. We only show the formula for [Q¢]. The same argument can be used to show the
formula for [Q2]. Now, by definition, we have

Q% = Pi(gn(n 1),
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Now, according to Theorem 3.4.3, we know that Resgg: ®5 NH, (P,) = P, ® Ps. From this, we
conclude

ANH, e\ ~ NH, €
Resy Ny ®p ANH; (Pp) = ( Res iy, ®k ANH, (P n))
NH, ®), NH, ¢
(ReSANHT ®r ANH; (PT Rk Ps))

= (PP @y P) o (P @ PY).

1

Hence, we obtain

ANH
Res\NH! @, ANH,

Q) = (Qr @k Q5)(—7s) © (Q ®k Q3){(—7s),
which gives the stated formula for [QS]. O

We further have the following exceptional cases. They can be computed with same argument
as the ordinary cases from Theorem 4.5.3.

Remark 4.5.4. Let m € Ny. Then we have

Ak (@D rm = " (1Q5] @ Q7)) + ™ ([QF] ® [@5.]),
Ak (@ Dma = ™ (1Q5] @ [QF]) + ™ ([Q] ® [Q1]),
Ak (@ Dim = " (1Q5] @ [Qn)) + ¢ ([QF] ® [@5]),
Ak(1Qp41])ma = a~"(1Q5] @ [QF]) + ¢* ™" (1Q7.] ® [QF)-

Moreover, we have

Using the duality between Go(ANH) and Ko(ANH), we derive from Theorem 4.5.3 explicit
formulas for the multiplication on Go(ANH). In order to determine these formulas, we have to
take the duality relations (4.3) and (4.4) into account. For this, we use the following lemma.
It can be proved by straightforward computations.

Lemma 4.5.5. Let m,n € Ng. Then we have:

(i) Suppose that 4|(m-+n)(m+n—1). Then 2|mn if and only if either 4m(m—1),4|n(n—1)
ordtm(m—1),41n(n—1).

(7i) Suppose that 4 1 (m~+n)(m+n—1). Then 2|mn if and only if either 4m(m—1),4 1 n(n—1)
or4{m(m —1),4n(n —1).

Theorem 4.5.6. Let m,n € Ny with m,n > 2. Then we have

e . el — 01 . 0] _ q_mn[Tﬁz—f—n] Zf2|mn7
[T - 1] = [Th] - T3] {q‘m”[T&+n] -
e . 0] _ 017 . e] qimn[Tron—l—n] Zf2|mn7
[T - T3] = (T3] - (T3] {Q‘m”[T%+n] 2 .
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Proof. We only show the formula for [T7,] - [T]. The other stated formulas can be shown in
exactly the same way. Now, we know that

[T5] - (T3] = a[Th ] + O[T 4], (4.6)

for unique a,b € A. So, we have to determine the coefficients a and b. For this, we first define
the A-bilinear pairing

(,.) : (Ko(ANH) ® 4 Ko(ANH)) x (Go(ANH) @4 Go(ANH)) — A,

via (a ® b,c®d) = (a,c)(b,d), for a,b € Ko(ANH), ¢, d € Go(ANH).

Now, assume that 4|(m + n)(m +n —1). According to Proposition 4.3.2, we can determine
the coefficient a by applying (., [Q5,,,]) to (4.6). Using the compatibility of the HOM-pairing
with induction and restriction from Proposition 2.4.9 and the explicit formulas for Ak ([Q5, ]
from Theorem 3.4.3, we then deduce the following equalities

[Qrnls [Tr] - [T3])

Ak (@), [Tn] @ [T3])

Q] @ [@n] + [Qn] @ (@] [Th] © [T3])

Q] [TED QAL TR + ¢ (@], [TRD QR [T3))- (4.7)

a=(
(

q
q
By applying Proposition 4.3.2, we directly obtain the following possibilities
mnif dlm(m — 1), 4|n(n — 1),
mnegfdtm(m—1),4tn(n —1),

-
-

0 if 4m(m —1),4 1 n(n — 1),
0 if 4tm(m —1),4n(n —1).

(4.7) =

Finally, Lemma 4.5.5 implies

g "™ if 2|mn,
a =
0 if 21 mn.

Now, by applying (., [@9,,,]) to (4.6) and using exactly the same argument as above, we obtain
b 0 if 2|mn,
g™ if 2t mn.

Thus, we showed the stated formula for [T)5,] - [T)%] in the case 4|(m + n)(m +mn — 1). The case
4+t (m+n)(m-+n—1) can be proved in the same way. O

Again, we list the exceptional cases in the following remark. They can be verified with the
same argument as in Theorem 4.5.6.

Remark 4.5.7. Let n € Ny with n > 2. If 2|n, then we have

([75] - (T3] = [T5) - (T3] = ¢~ " [Tl + ¢ [T0)

= q_
[75] - [1%] = (T3] - [TF] = ¢* "[T5 ] + 0 [T 4],

100



4.5. Multiplicative and comultiplicative structures

If 21 n, then we have
[T5] - T3] = (T3] - (T3] = ¢ [T a] + 0 " [T,
[75] - [T3] = (T3] - [T¥] = ¢ 7" [T ] + [T,
Finally, we also have

[75] - [TY] = 24[T5] + (a7 + ¢*)[T5)-

Next, we evaluate the results from Theorem 4.5.3 and Theorem 4.5.6. At first, we decide
that we only consider the comultiplication on Ko(ANH) and the multiplication on Go(ANH)
in degrees > 2. So in the following, we ignore the exceptional cases.

Notation 4.5.8. Let R be a ring.

1. Let A be an Ny-graded R-algebra. For n > 1, we denote by A, the two-sided ideal
Asp = @;>, Ai. We consider A>y as non-unital Ny-graded R-algebra.

2. Let C be an Ny-graded R-coalgebra with comultiplication A. For m € Ny, we denote by
Pm : C'— C,, the projection to the m-th homogeneous component. For n > 1, we denote
by C'>; the non-counital No-graded R-coalgebra C>,, := @;>,, C;, with comultiplication

lc| lc|
c— ( Z(pr ® p|c|7r)A<c)) € @ Cr ®r C|c|77”
for any homogeneous ¢ € Cs,.

In the following, let 4f denote Lusztig’s integral quantum group corresponding to the one-
vertex graph without edges. We already discussed 4f in Section 3.4 and continue to use the
notation that we used there. In particular, 4f* denotes the Ny-graded dual of 4f. Furthermore,
let

viaf = Ko(NH), ~*: Go(NH) — ,f*

be the isomorphisms of Ny-graded twisted .A-bialgebras from Theorem 3.4.3 and Theorem 3.4.4.
Let A[Z/2] be the group algebra of Z/2 over A, i.e. A[Z/2] is the A-algebra of formal sums

A[Z/2] = {ae1 + ber|a,b e A},
where the addition is componentwise and the multiplication is given by
(ae1 + ber)(d'e; +Ver) = (ad’ + bb ey + (ab' + ba)e,,
for all a,a’,b,t/ € A. We have that A[Z/2] admits a unique grading, where ej, e, are homo-
geneous of degree 0. Let A[Z/2]* be the Nyp-graded dual A-coalgebra of A[Z/2], see Defini-
tion 3.3.7. By definition, the comultiplication A on A[Z/2]* is given as follows. Let (e}, ek) be

the dual basis of (e1,e;). Then we have

Ale])=ej el +er®el, Alel)=el®el+erRe].
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Next, we consider the tensor product 4f @4 A[Z/2]*. It can be equipped with the tensor
product coalgebra structure that turns 4f ®4 A[Z/2]* into an Ny-graded .A-coalgebra, where
the comultiplication is given by

0 @ 1o 3 (IO @ ) & (90 @ ef) + (0 @ ef) © (00 @ ),
r=0

0 @er =3 (TP @) @ (0T @) +¢TTIEV @) @ (07T @ €)),
r=0

for all n € Ny. Finally, we note that we have a canonical embedding of Ng-graded A-coalgebras
vif = A F@a AZ)2]F, 07— 0™ @ (ef +€f), for all n € No.

Summarizing the above considerations, we obtain the following description of the comultil-
icative structure on Ko(ANH).

Theorem 4.5.9. There is an isomorphism of non-counital No-graded A-coalgebras
p: (af @4 A[Z/2]")>2 = Ko(ANH)>2,

such that
0™ @ et [Q%], 0™ ®el—[Q0], foralln e Ny withn > 2.

Moreover, we have a commuting diagram:

(uf @4 A[Z/2])52 —— Ko(ANH)>,

LT RKT
.Af ) % KQ (NH)ZQ

Here, Rx is the restriction homomorphism from Theorem 4.5.7.

Proof. According to Proposition 4.3.1, ¢ is an isomorphism of Ng-graded .A-modules. So, it
is left to show that ¢ is compatible with the comultiplication. For this, let A’ denote the
comultiplication on 4f ®4 A[Z/2]*. Let r,s € Ng with r,s > 2 and n := r +s. Then we
conclude the following equalities from Theorem 4.5.3.
(P ® ) (A (O™ @ ef)rs) = " ((p @ ) (07 ® €] © 0 @ ef))
+a (e @) @er @0 er))
=q (@] ® Q5] + Q7] ® [Q))
= Ak([Q7])
= Ak (p(0™ @ €f))rs.
In addition, we also have
(PR ) A (O™ @er)ns) = ™ ((p®p)(0") @ ef @60 er))
+a " ((p@ )0 @ ;00 @)
=q¢ (R e [Qd + Q7] @ [QF])
= Ax([Q7])
= Ak (p(0"™ ® €5))rs.
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4.5. Multiplicative and comultiplicative structures

This implies that ¢ is compatible with the comultiplication and hence, ¢ is an isomorphism
of Np-graded non-counital A-coalgebras. The commutativity of the stated diagram follows
directly from

Rk (7(6™)) = Rk ([@n]) = [@5] + [@0] = 0(0™) @ €] + 6" @ ¢7) = o(u(6™)),
for n € Ny with n > 2. This completes the proof. O

Using the duality between Ko(ANH) and Go(ANH), we directly obtain from Theorem 4.5.9
a characterization of the multiplication on Go(ANH). For this, note that the Ny-graded dual
A-algebra ( 4f ®4 A[Z/2]*)* can be naturally identified with 4f* ® 4 A[Z/2]. The adjoint map
o f* @4 A[Z/2) — 4f* of ¢ is then given by

O @ ey) = 0% (0 @e) s 0
for all n € Ny.

Corollary 4.5.10. Let ¢ be as in Theorem 4.5.3 and let
¢" 1 Go(ANH)>2 — (4f" @4 A[Z/2])>2

be the adjoint map. Then ©* is an isomorphism of non-unital No-graded A-algebras. Moreover,
for each n € Ng with n > 2, we have

.ty 0W* @ ey if dln(n — 1), o 0* @ e, if 4ln(n — 1),
g0([T"D_{e<n>>‘<®eT if 4t n(n —1), P = 0* @ ey if 4tn(n—1).

In addition, the following diagram commutes:

Co(ANH) 30— (4f* @4 A[Z/2])2

Lok

Go(NH)sg ——— Af%y

Here, 1g is the induction homomorphism from Theorem 4.3.7.

We proceed with characterizing the comultiplicative structure on Go(ANH) and the multi-
plicative structure on Ky(ANH).

Convention 4.5.11. In the following, we use in our formulas the non-symmetric quantum
binomial coefficients from Definition 3.2.5. This is due to our definition of the operators Even
and Odd. Namely, we have that

(1)) ().}

are both well-defined for all m,n € Ny with 0 < m < n. In general, this is not true for the
symmetrized quantum binomial coefficients.
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4.5. Multiplicative and comultiplicative structures

Theorem 4.5.12. Let r,s € Ng with r,s > 2 and set n :==r + s. Then we have

Ac([Ty])r,s = ¢ "° Even ((

S
N————
v

=
&
~
+
=
S
&
~
ZS

Ac([TR])rs = ¢ Odd ((7:) )([Tf] ® T3]+ [P ® [T3])

Proof. We only prove the formula for [T)]. The formula for [T?] can be shown in the same
way. Recall that by definition T}t = L& (3n(n — 1)). Now, by Theorem 3.4.4, we have

n
[Resﬁgf;@k i, (Ln)] = <r> [L, ®k L.

q2
This means that Resgg: ©5 NH, L,, admits a finite filtration
NH,
ReS‘NHr®;C NHS(Ln) =FDF1D...DF,

such that for each i € {0,..., N — 1}, there exists d; € 2Ny such that F;/Fj+1 = L,(d;).
Moreover, we have Zij\:ol q% = (:)q2. Now, note that

ANH, _
Resyng" ®chNHS(Lg) =FyDF D...DFy

is a finite filtration of Resﬁgg: o, ANH, (L). Furthermore, by using the same argument as in
Lemma 4.2.3, we obtain

FP/FY = (F/Fiy)°, forie{0,...,N —1}.
Thus, we deduce

F-e/ e~ (Lﬁ Ok L§)<d2> ® (Lg Xk Lcs))<dl> if 4|d17
LT (L @ L) ® (Lo @y, LO){ds) if 41 d;.

Hence, we directly obtain the following equality

e n e (5} o o
[ResiNi e, ani, (£7)] = Even (() )([LT @ L) + L7 @ L))
q2

+0dd <<Z> )([Li ®n L°] + [LC @5 LY]).
q2

From this, the stated formula for [T5] directly follows. O
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4.5. Multiplicative and comultiplicative structures

Again, we list the exceptional cases in the following remark. They can be shown in exactly
the same way as the formulas from Theorem 4.5.12.

Remark 4.5.13. Let m € Ny with m > 2. Then we have

Ac([Tg 1) 1m = ¢ Even((n + 1)2[T7] @ [T3,] + ¢7™ Odd((n + 1)2)[T7] © [T53],
Ac([Tg1])m1 = ¢~ Even((n + 1)) [T5] © [T7] + ¢ Odd((n + 1)g2)[T5] @ [T7],
Ac([Thal)1m = ¢7™ Odd((n + 1)) [T7] @ [T5,] + q_m Even((n + 1))[17] @ [T5],
Ac([Ta41])m1 = ¢7™ Odd((n + 1)) [T5] @ [T7] + ¢~ Even((n + 1)2)[T75] @ [17]

Moreover, we have

Ac([T5D = ' [IT] @ [T7],
Ac([T3])11 = q[T7] @ [T7].
By using the same duality argument as in Theorem 4.5.6, we obtain the corresponding for-

mulas for the multiplication on Ko(ANH). We omit the proof, since the argument is completely
analogous.

Theorem 4.5.14. Let m,n € Ng with m,n > 2. Then we have
Q] - [@n] = Q] - (@3]
_ {q_mn EVGH((m:{n)qz)[ minl T Odd(( )qz)[ manl i 2|mn,
o Odd((m+n)q2)[ fan] + 7™ Even((") min )qz)[ man] i 24mn,
(@] - [@n] = Q] - (@3]
) { 0 OdA(("™) ) Q] + a7 Bven(("E) (@] 2,

q m"Even<<m+”>q2>[Q$n+n}+q*m" Odd((";") 2 )@l if 24 mn.

Moreover, we have the following exceptional cases.

Remark 4.5.15. Let n € Ny with n > 2 such that 2|n. Then we have

[Q1] - [Q] = [@n] - [QF] = ¢ 7" Even((n + 1)g2)[Q 1] + ¢ Odd((n + 1)42) (@541,
[Q1] - [Q0] = [@n] - [Q7] = ¢ Odd((n + 1)42)[@5,41] + ¢~ " Even((n + 1)42)[@541]-

[Q1] - [Qn] = [@] - [Q7] = ¢7" Odd((n + 1)¢2)[@r41] + ¢ Even((n + 1)42)[ @544,
[Q1] - [Qn] = [@n] - [QF] = ¢ Even((n + 1)¢2)[@y 1] + ¢ Odd((n + 1)42)[@r11]-
Finally, we also have
Q1] - [Q5] = ql@5] + a1 [Q3).

In order to describe the comultiplication on Go(ANH) and the multiplication on Ko (ANH),
we define the Ny-graded A—fxlgebra f as follows. For each n € Ny, let 4f,, be the free A-module
of rank 1, with generator #(™. Then we set

Fo_ @ Af'n
n€eNy
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4.5. Multiplicative and comultiplicative structures

and endow 4f with the multiplication

oM . o) = g—mn <m + n) , for m,n € Ny.
—g2

m

Finally, we equip Af' with the obvious Ny-grading. By construction, we can view Af' as a sign
perturbated version of 4f. Now, let Af * be the Ng-graded dual A-coalgebra of Af' . Then the
comultiplication on Af' * can be characterized as follows. Let (é(n)*)neNg be the dual basis of
(™) ,en,. Then we have

[ ICOEIN Z q—T("—T) (:) r)* é(”_’”)*, for all n € Ny.
r=0 —q2

According to the construction of Af and the formulas from Theorem 4.5.12, we then obtain
the following description of the comultiplication on Ko(ANH).

Theorem 4.5.16. Let A’ := A[%]. There is an isomorphism of non-counital No-graded A'-
coalgebras }
¢ : .A/ XA (Af* D Af*)ZQ — A/ XA GO(ANH)ZQ
such that .
120" = 1@ I +1® (15, 100" =10 [1F] -1 T2,

for all n € Ng with n > 2. Moreover, we have a commuting diagram:

A @4 (4 @ 4F)52 —— A @4 Go(ANH)>9

incT R(;T
1

A @4 4f5y — s A ® 4 Go(NH) 5

Here, inc is the canonical inclusion and Ry is the restriction homomorphism from Theo-
rem 4.3.7.

Proof. At first note that (1® [T¢] +1® [T°],1® [T¢] — 1 ® [T?]|n € Ng,n > 2) is an A’-basis
of A’ ®4 Go(ANH)>9. Thus, we conclude that ) is an isomorphism of Ny-graded .A’-modules.
So it is left to show that v is compatible with the comultiplication. Let r, s € Ny with r,s > 2
and we set n := r 4+ s. Using the equations

(), == (), ) rom(().)
()=l G),) o))

we directly conclude from Theorem 4.5.12 that
Ac(1 @ [Trl+1 @ [T7])

_ ) (:}) (leT)+1elNe (ol +1eT)),  (48)
Ac(1®[T-1® [T2)

= g (”) (o -1eM)e (e T]-10[T]).  @9)
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4.5. Multiplicative and comultiplicative structures

Now, let A’ denote the comultiplication on A’ ® 4 (4f* @ 4f*)>2. Then we have the following
equalities

<w®w«Nu®e@w»9=qTmfww®w(Cj “®“m5®u®ewﬂ>

:wW%ﬂ<mmﬂmemumm+mmm

Wac o [T +10[12))

= Ac(y(1® 0M)).

Moreover, we have

(W @) (A (1@ 0" = ¢ " (@) ((:) (108" o (1 g(n>*)>

_q2

=q """ <n> (1] -1e () e 1 [T;] -1 [17)

s e8] -1 [12)
— Ag(¥(1® M),

Thus, we proved that 1) is an isomorphism of non-counital Ny-graded A’-coalgebras. The
commutativity of the stated diagram follows from

Ra((7) (1 @61 = Ra(1® [T3]) = 1@ [T3] + 1@ [T7] = ¢(inc(1 @ 60V7)),
for all n € Ng with n > 2. This finishes the proof. O

Again, by the duality between Go(ANH) and K¢(ANH), we obtain the corresponding de-
scription of the multilication on Ko(ANH). For this, note that the Nyp-graded dual .A-algebra
of A£* @ Af' * is naturally isomorphic to the direct product algebra ,f X Af . In the following
corollary, we identify the underlying No-graded A-module of 4f x Af with the direct sum
af & 4.

Corollary 4.5.17. Let ¥ be as in Theorem 4.5.16 and let
P* A @4 Ko(ANH) — A’ @4 (4f x 4F)

be the adjoint map. Then * is an isomorphism of non-unital No-graded A’-algebras. For each
n € Ny, we have

(1®6" +1260M) ifdn(n - 1),

vt el = { @00 —1©0M) i 4fn(n 1),

N D=

and 3
(1®60 —1260M) ifdn(n - 1),

V(1 e[Q)) = { 1©6™ +1@d™) if4tnn—1).

[N I

107



4.6. Applications

In addition, we have a commuting diagram:

A’ ®A KO(ANH)ZZ L A ®A (Af X A%)ZQ

iIK B Jpr

A @4 Ko(NH)sg ————— 459

Here, pr denotes the canonical projection and I is the induction homomorphism from Theo-
rem 4.3.7.

4.6 Applications

We now come to two applications of our characterization of the multiplicative and comultiplica-
tive structures on Go(ANH) and Ko(ANH). At first, we show that Go(ANH) and K¢(ANH)
are neither isomorphic as Ny-graded A-algebras nor as Ny-graded A-coalgebras. So this be-
havior is analogous to the corresponding property of the nil Hecke Grothendieck groups, as we
discussed in Section 3.4.

Proposition 4.6.1. We have that Go(ANH) and Ko(ANH) are neither isomorphic as No-
graded A-algebras nor as as Ng-graded A-coalgebras.

Proof. According to the duality between Go(ANH) and Ko(ANH), it suffices to show that
Go(ANH) and Ko(ANH) are not isomorphic as Ny-graded .A-algebras. For this, let m,n € Ny
with m,n > 2. Now, Theorem 4.5.6 implies that the multiplication map

Go(ANH)m x Go(ANH), — Go(ANH)imtn, (2,y) =2y
is surjective. However, by Theorem 4.5.14, the image of the multiplication map
Ko(ANH),, x Ko(ANH),, = Ko(ANH) 400, (z,y) = x -y,

is the A-linear span of the elements

s ven (("5") Y1l +0aa (") )il
77:=Odd<<m::n> )[ z,,+n1+Even<<m:”> )[ bl

Finally, we observe that the A-linear span of £ and 7 is unequal to Ko(ANH),,,. For this,

and
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note that

Even((m:")qz,) Odd((m:{")qQ) B m+n ’ m+n ’
det(Odd((mf{”)qz) Even((m;")q2)>_Even<< " >q2> —Odd(( n >q2>

Hence, the above determinant is not a unit in A. Indeed, we have that the units of A are
{aq'|la € {1,—1},i € Z}. However, according to (3.16), (m+n)q2 and (™17 _ 2 are polynomials

n n

in Z[q| of degree 2mn with absolute coefficient equal to 1. Thus, the product (mzn)q2 (m:{”)_q2

is not a unit in A. Altogether, we conclude that the A-linear span of £ and 7 is a proper subset
of Ko(ANH) ;4. It follows that Go(ANH) and Ko(ANH) are not isomorphic as Ny-graded
A-algebras. O

Finally, we show that Go(ANH) and Ko(ANH) are both no Ny-graded twisted .A-bialgebras.
So this points out a difference between the alternating nil Hecke Grothendieck groups and the
nil Hecke Grothendieck groups.

Proposition 4.6.2. Neither Go(ANH) nor Ko(ANH) is an No-graded twisted A-bialgebra.

Proof. By the duality between Go(ANH) and Ko(ANH), it suffices to show that only one
of Go(ANH) and Ko(ANH) is not an Ny-graded twisted A-bialgebra. We choose Ko(ANH).
Recall that we endow Ko(ANH) ® 4 Ko(ANH) with the twisted multiplication as described in
Definition 3.4.1. Now, by the formulas from Remark 4.5.4 and Remark 4.5.15, we have

Ax([QF] - 1@ = Ak(a[@5)11 + Ax(a ™ [Q3])1.1
= (1+¢"[Q5] ® [QF] +2[Q5] ® [QF)
= (3+¢")([QF] ® [Q5)).

On the other hand, we also have

(A (Q1) - Ak([@])1 = (M@ Qi+ Q1 ® 1) - (1@ Q1] + [Q7] ® 1)1
= (1+¢7?)(Qf] 2 [Q1]).

Thus, Ko(ANH) is not an Ny-graded twisted .A-bialgebra. O
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