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1 Introduction

In the first part (section 3), Savage‘s result [21] on a geometric approach to realising the canonical
basis of finite tensor products of integrable highest weight representations of Uy (sl2) is presented,
but I have added some explicit examples and an explicit geometric description of the varieties
used. Then, not following [21] anylonger, I find an alternative geometric realisation of finite
tensor products of integrable highest weight representations of U(sly) and Uy(sly) and their
bases with an analogue for type D (section 4 and 5). In the first part, a tensor product variety
%(d), a special form of Nakjima tensor product variety, is considered first over C, then over
the finite field F2 with q? elements (or its algebraic closure an). This allows me for example
to count points and is used in one proof (Proposition 3.8). However, the combinatorics do not
depend on the particular ¢, so g can be treated as a variable, which becomes the variable ¢ in the
quantum group. A tensor product variety associated to the tensor product of a finite number
of integrable highest weight representations of a Lie algebra g of type ADE was defined in [18§]
and [19], though over C. For d € (Zx0)*, an U,(sly)-action on the space of invariant functions,

T'(d), (with respect to a natural group action) from Uy (slz) into C(g) is presented. Two distinct



subspaces of invariant functions, Tp(d) and T¢(d), isomorphic to Vg, ® - -- ® Vg, , are introduced.
I also present a natural basis for each of them: a basis B, corresponding to the elementary
basis, and a basis B, corresponding to Lusztig’s canonical basis [17]. B, is characterized by its
relation to the irreducible components of ¥(d). These irreducible components, defined over Fo2,
are defined as the F-points of the irreducible components of the corresponding variety %(d)’
over the algebraic closure qu. Distinct elements of B, are supported on distinct irreducible
components of T(d) (where the supports are not necessarily disjoint) and are nonzero on the
dense points of this irreducible component. The dense points are defined as [F2-points of certain
dense subsets of the irreducible components of T(d)’. The notation in the first part is mostly
taken from [21]. The following conventions will be used throughout the thesis, unless otherwise
stated. The topology used will always be the Zariski topology and a function on an algebraic
variety will be a function into C(g), the field of rational functions in an indeterminate g. The
span of a set of such will be their C(g) span. The support is defined as {z | f(x) # 0}. At several
instances, the graphical calculus of intertwiners of Uy (slz) will be used. This was introduced by
Penrose, Kauffman and others, and is expanded in [6], see also [7]. In subsection 2.7, this is
explained a little as well.

In the second part I return to C as ground field and define B' as the set of functions from
Wi = Sa/(Si x Sq—i) to C and Cpype as the direct sum over all i of the sets of B-modules. My
main result is Theroem 4.3: I define an isomorphism between Ko(Cfyne) and V1®d, sending a
natural basis of Ko(Cpunc), consisting of isomorphism classes of irreducible elements of Cfyne,

to the elementary basis of Vl®d. This can be restricted to an isomorphism from a subcategory

/
func

Clune to the elementary basis) and can be defined both for U(slz)- and Ug(slz)-modules. An

onto Vg, ® --- ® Vg, (where it sends again a basis corresponding to simple modules in

analogue for type D is presented as well.
I want to thank my supervisor, Prof. Stroppel, for suggesting this topic, and for her help in the

development.

2 Finite Dimensional Representations of U,(sls)

2.1 Some Definitions

Definition 2.1. Let C(gq) denote the field of rational functions in an indeterminate ¢. Then
define the quantum group Ug(slz) (or U, as a shorthand) as the associative algebra over C(q)

with generators E, F, K, K~ and relations

KK1= K1lK=1

KE = ¢?EK

KF = ¢ ?FK

EF —-FE= K=K
q9—q

Remark 1. The quantum group can be defined more generally for any finite dimensional simple

Lie algebra, see e.g. [14].



U, has the structure of a Hopf algebra with the following comultiplication ([11])

Kili—> K:I:1®K:I:1
A F— E®R1+KQ®FE
F—» FQK'4+1®F.

Hence tensor products of representations are again representations via

AFRD: B Y Ko 9K@E®le---0l
Fesy YH 1@ @FK '@ @K'

(where E respectivly F' in the second respecitvly third row are in the ith position).

Definition 2.2. Define an antiinvolution w, the Cartan antiinvolution, by
w(E) = F, w(F) = B, (K™') = K™, w(g™) = ¢, w(zy) = w(y)w(z) for z,y € U,

Define also a second comultiplication A, using the so called “bar” involution o. This will be

used later to let the quantum group act on the dual space in a bilinear pairing. Set
o(E)=E, o(F)=F, oK)= K™, o(¢"") = ¢, o(xy) = o(z)o(y) for 2,y € U,

and define

A(z) = (0 ® 0)A(o(x)), for z € U,.
So
[(ilb_> Kil®Kil
A: Ew— E®I1+K1'QEF.
F— FK4+1F

Recall from [14] that any finite d 4+ 1-dimensional irreducible U;,-module V' is generated by a
highest weight vector vy of heighest weight eq?, € = +1. In this thesis, only those of type I, i.e.
with € = 1 are considered. Fixing €, there is only one irreducible module in each dimension (up

to isomorphism). Let V; denote the d + 1-dimensional irreducible U, (sly)-representation.

n

Definition 2.3. Define [n] = L= = ¢" 1 4 ¢" 3 4 ... 4 ¢ [E]! = [k][k — 1] - - - [2][1] and

q—q—
| T TR

Set vg_or = F*vy/[k]!. Since dim(Vy) = d + 1 and Vj is irreducible, I have vg_o = 0 for k > d

and a basis of Vj is given by {vg4,v4—2, -+ ,v_q}. Then

K:I:lvm — q:tmvm
Ev,, = [‘HT’” + 1] U2

Fu,, = [d_Tm + 1] Umn—9.



Define a bilinear symmetric pairing on Vg by (vg—ok, va—21) = i,

d
Ll Then a straightforward

calculation shows that this implies the conditions

(xu,v) = (u,w(x)v), (v4,vq) =1 VYu,v € Vgand x € U,.

-1
d
The dual basis with respect to the bilinear form is given by v?=2F = [k] vg—9k With the action

of U, given by

K:I:lvm: q:l:mvm
B[]
Fon = [dgn] n-2

Now consider tensor products of representations. Define a bilinear pairing
(= =) Vg @@ Vg x Vg, ® - @Vy —C

by
(Uh @ ®vikvvlk @ ®Ull> = 51'1,11 ’ "5ik,lk' (1)

Note that this definition agrees with the earlier one for just one tensor factor. One can calculate
that

<A(k_1)(x)vzl ® e ® vlk,vlk ® e ® /Ull> e <’UZ1 ® e ® Q}Zk,z(k_l)(w(.ﬁ))vlk ® tt ® /Ul1>-

Here the alternativ comultiplication is used.

When considering a tensor product of simple modules, the action of U, on a standard basis vector
of the form v;; ® --- ® v;, does not in general give another standard basis vector, but rather a
linear combination of several standard basis vectors. Therefore one wants to find some other
basis on which U, acts particularily nicely. This is called the canonical basis and denoted by
v;, O - vy, (see [17]). Denote its dual with respect to the bilinear pairing (1) by v%Q@ ... Quit,
The notion of a based module going back to Lusztig ([17]) makes it precise what it means that U,
“acts nicely” one a basis. In more detail, let A denote Z[q, ¢~ '] and consider finite-dimensional
Ugmodules of type I. Any such module M has a decomposition M = @,., M A into weight
spaces

M*={me M| Km=q¢‘m}.
Let B be a C(g)-basis of M. Define an involution o : M — M by
op(fb) = fb VfeClg),be B

(where —: C(q) — C(q) such that ¢® = ¢~ for all n, is a C-algebra involution). Then (M, B) is
called a based module (with respect to the choice of generators E, F, K*! of U,) if the following

conditions are satisfied:

1. BN M is a basis of M?*, for any A € Z (so in particular all elements of B are weight

vectors)



2. The A — submodule M4 generated by B is stable under % and £

W?

3. The involution op is compatible with the bar involution ¢ on U, in the sense that op(xm)

o(z)op(m) for all x € Uy, m € M,
4. B is a crystal basis of M at co.
For the notion of a crystal basis, see [13] (e.g. the {v;}¢__, are a crystal basis of V at 00).

Lemma 2.4. Vy is a based module with C(q)-basis B = {vg,v4—2, -+ ,v_q} and involution op

as described above.

Proof: As vy, is a basis of the weight space of V; associated to the weight m, the first condition is
satisfied. Moreover, by the definition of the action of £ and F', the second condition is satisfied

as well. Now, to see that the third condition is satisfied, consider

[dJrTm + l]vm+2 x=F
op(Tm) = [dme +1]vm—e z=F =o(x)op(vm).

a o, r=K*!
0

Lemma 2.5. The direct sum of two based modules (M, B) and (M', B") is again a based module
(MeM' ,Ba B

Proof: As x(m 4+ m') = xm + am/ and oggp/(m + m') := op(m) + op/(m’), the first three
conditions are satisfied. For the fourth condition, see [11]. O]
Since all the representations considered here are semisimple, the above gives a description of
tensor products of representations as based modules. However, one wants to have an intrinsic
structure of based module for tensor products of representations, but the tensor product with the
obvious basis B ® B’ does not in general satisfy property 3) of the definition. Lusztig introduces
a modified basis BOB' in the tensor product as follows:

Let : M ® M’ — M ® M’ be given by

U(m @ m') = Oop(m) @ op(m),
where

— g~ Hn —
0= Z(—l)”qn(nl)ﬂ(q[sp)pn ® E" € Uy ® Uy, a completion of U, ® U,.
n>0 )

A quick calculation shows that
v =1

follows from ©O© = 1 ® 1, which can be shown by a somewhat more lenghty and not entirely

trivial calculation. Moreover, on can show

U(z(mem'))=oc@)¥(meom),zeU,



(One has A(z) = (0 @ 0)A(o(x)), OA = AO and og(zm) = o(z)op(m), so

U(z(mem'))= V(A()(mem)) = O(op @ op/ (A(z)(m@m')))
= O(o®@a(A(x)(op(m) @ op(m))) = O(A(o(2))(op(m) ® op(m')))
= A(o(2))O(op(m) @ op(m')) = o(z)¥(m @ m')).

Set opepr = ¥ and let M ® M/, (respectivly M ® Mé[q,l]) be the A- (resp. Z[q']-) submodule

of M ® M’ generated by the basis B ® B’. The set B x B’ has a partial ordering such that

(by, b)) > (ba, bh) = b € MM, b, € M with
AL > A, AL S AG, A A = A 4

Example 1. Let M = M’ = V;. Then B = B’ = {v,v_1} and v; € (V1)}, v_1 € (V1)7!. So
(v1,v-1) > (v—1,v1), and of course the trivial relations (vq,v1) > (v1,v1), (v—1,v-1) > (v_1,v_1)
hold.

Then Lusztig proves the following result:

Theorem 2.6. 1. For any (b1,b]) € B x B, there is a unique element by by € M @ M)

Zlg—1)
such that
U (b1Oby) = b

and biOb — b1 @by € ¢TI M ® Mi[q,l].

2. The element b1y is equal to by @ V) plus a linear combination of elements by @ bl with
(ba,bh) € B x B', (ba, b)) < (b1,b}) and coefficients in ¢~ Z[q™1].

3. These elements by Oy form a C(q)-basis BOB' of M @ M, an A-basis of M ® M/, and

a Zlq~']-basis of M ® Mi[q—l}'

4. (M @ M',BOB') is a based module with associated involution W (so W takes the role of

oB).

For more details, see [6], on which the preceeding paragraph, starting with Lusztig’s notion
of based module, is based. An example for based modules are tensor products of irreducible
representations with canonical bases (where the canonical basis is the basis defined in theorem
2.6 above).

Example 2. Again, consider V; ® Vj. The canonical basis is given by {v_1Qv_1 = v_1 ®

1

v_1, V1OV = v Qu, 1PV = V1 ®V_1 + ¢ v_1 v, V1OV = V1 @ vy}

Write
d _
R vw = Vdy —2wq K- Q Vdy, —2wy,
®d/UW — ,Ud172’l,U1 ® e ® ,Udk72’LUk
d
Q% w = Ud1—2w1<> ce <>Udk—2wk
@d,UW — ,Ud1—2w1@ . @,Udk—ka



where d,w € (Z>0)¥. The bar involution o can be extended to tensor products of irreducible

representations in the following way [21]: Define 6 by
&(@de) = @9y,
and extend it antilinearly via

5(f(a)(@%ow)) = fla™)(@%ow)

for any polynomial f(q) in ¢, and extend by C-linearity. Then & is an isomorphism from

Vi, ® -+ ® Vg, to itself and
(A D (2)0) = (0 @ - ® o) (AF D)) (50)

with z € Uy, v € Vg, ® --- ® Vg, (so & is the involution op associated to o as in the definition
of based module above).

Now consider the space of intertwiners Homy, Vg, ® - @ Vg, Ve, ® --- ® V), consisting of
intertwiners commuting with the Uj-action given by (A)#=1D A basis can be identified with the
set of crossingless matchings CMg) " 7! (for more details, see [6], [7]). However, the intertwiners

)

. For such an intertwiner
(k1)
)

used in [6] and [7] are commuting with the action of U, given by A
7, define v = 676. Then v is an intertwiner commuting with the action of U, given by A

" IAFD@)(0) = 5360 (@)(0)

7((0 ® -+ @ o) AF=D(2))(5v)
A (o) (60)
oA"Y (02)5(5v)
= 6((0®-- ®0)AF(2))67y(v)
= AF(z)y(v)
forx e Ujand v e Vg, ® --- @ Vg, [21].

2.2 Diagrammatics of Intertwiners

The definitions of the crossingless matchings are taken from [21].

Definition 2.7. Depict V; by a box with d vertices, marked with a d, and define the set of

crossingless matchings C’MCZ1 2; to be the set of non-intersecting curves in the plane (up to

5

isotopy) connecting the vertices between a horizontal line consisting of the boxes depicting the
Va, and another horizontal line above consisting of the boxes depicting the V¢,, where the curves

satisfy the following conditions:

1. Each curve connects exactly two vertices
2. Each vertex is endpoint of exactly one curve

3. No curve connects vertices of the same box



4. All curves lie inside the space bounded by the two horizontal lines and the vertical lines

through the extreme left and right points.

The curves connecting two lower vertices are called lower curves or caps, those connecting upper
vertices are called upper curves or cups and the remaining curves connecting an upper and a

lower vertex are called middle curves.

Example 3. Let d = (4,3,3,4) and e = (5, 3).

A crossingless matching;:

The following are no crossingless matchings:

5L

To see how a crossingless matching is associated to an intertwiner, see [7| and the following
rough explanation: Fix maps V,, < V", V" — V,, and an identification between V,, and its
dual. One has

4 )
Vi, ® Vay ® Vg ® Vi, = VD @ VP% @ V2% @ VEd = P 2

and similar
V'l®e1+62 s V€1 ® Veg-

Moreover, Vi = Vj* canonically and there is a natural map Vi@ Vi 2 Vi @ Vi* = Q(¢), v ® f +—
f(v), which is denoted by a cap. Similarly, a map Q(q) — V5 ® V4 can be defined, denoted by a

cup. Then the crossingless match defines a map
Vi, @@ Vg, = Ve, ® Ve,
as composite of
Vi, @ Vay ® Vi, @ Vg = VEZ= Y and vEa+e L, v, oV,

with
4
i
V1® i1 di Vl®€1+62'

4
21:1 d; ®e1+e2
)

Middle curves map a V; in the tensor product V1® to a Vi in the tensor product V;
and cups and caps act as described above.
Elements of the set of oriented crossingless matchings OCM;II’:: ;L are given by crossingless

matchings together with an orientation such that all upper and lower curves are oriented to



the left (i.e. if the curve connects vertices a and b and a is to the left of b, the curve must be
oriented such that the arrow would point away from b if the arrow was placed at the right end of
the curve) and the middle curves oriented upwards are to the left of the middle curves oriented

downwards.

Example 4. An oriented crossingless matching:

Furthermore define the set of lower crossingless matchings LCMjy; ... 4, and oriented lower

k
crossingless matchings OLC My, ... 4,. Elements are obtained by removing the upper boxes from
elements of C]\/Igl1 2; respectivly OCM;;”:: SL , converting middle curves to vertical rays, and
keeping the orientation of the curves in the case of OLC My, ... 4,. So in the case of OLC' My, ... 4, ,
the vertices oriented up must be to the left of those oriented down, as for the middle curves of

OCMg! i . Upper crossingless matchings are defined in an analogous way.

Example 5. An oriented lower crossingless matching:

Gy

Remark 2. This is not taken from [21]. Using Vi = V{* and the canonical isomorphisms
Homy, (V ® W, X) = Homy, (V,Hom(W, X)) = Homy, (V, Hom(W, X*)) = Homy, (V,(W ®
X)*) = Homy, (V,X ® W), one obtains (The isomorphisms correspond to the operations on
the matchings, see [23, Chapter VI 3.2])

[ﬁ €9
<
- md/r_\\d x
Homy, (Vg ® - @ Vg, Ve, @ - @ Vo) Cdi ) [de ] [da ] [ds
[ e 1 [e dy
- md/r_\\l
gHOHIUQ(le ®“'®de~—1’V€1 ®"'®V;31®de) L ] Ldy]
[ e eo [ di J[d3g ] [do ][ _di]
T\ 7 I

= Homy, (Q(q), Ve, ® -+ @ Ve, @ Vg, @ -+~ @ Vyy)
>V ® @V, ®@Vy @@ Vg, )™

sinceamap f: Q(q) = Ve, ®---®@ Ve, @Vy, ®---®Vy, is given by f(1) and E, F' act trivially on
Q(q). This illustrates a relation between upper or lower crossingless matchings without vertical
rays and general crossingless matchings and gives an easy way of obtaining the elements of a

tensor product of representations invariant under the action of U,.



Given a and d € Zgo with a; < d;Vi, a lower oriented crossingless matching M (d,a) €
OLCMg,.... a

For each i, place downwards oriented arrows on the rightmost a; vertices of the box representing

. can be associated to it as follows [21]:

Va,;, and upwards oriented arrows on the remaining d; — a; vertices. There is a unique way to
connect the vertices such that M (d,a) forms a lower oriented crossingless matching, respecting
the orientation of the arrows on the vertices. Starting from the right, connect each down arrow
to the first up arrow to its right not already connected, if there is any (as the up arrows of each
box are the the left of the down arrows in the same box, the resulting curves do not connect ver-
tices of the same box). This produces a lower oriented crossingless matching with all unmatched

downwards oriented arrows to the right of all unmatched upwards oriented arrows, as required.

Example 6. Let d = (4,3, 3,4).
Orientation of arrows for d = (4,3,3,4) and a = (3,1, 1, 2):

Till 11l 17l T7111
Ldr ] [dy ][ ds] [da ]

and resulting M (d, a):

(TN N
i v e o

Lemma 2.8. The correspondence between OLC My, ... q, and {a € Zéo | a; < d;Yi} is one to

k

one.

Proof: From the definition it becomes clear that any element of OLC My, ... 4, can be associated
to precisly one such a. a; denotes the number of down arrows of the ith box d; and by fixing the
order in which arrows are connected, only one lower oriented crossingless matching is associated

to an a. O

Definition 2.9. [21] A partial order on the sets CMy'"" ’22, OCMy;"" ’22, LCMy, ... 4, and
OLCM,, ... 4

the set of lower curves of Ss, for any two elements Sp, So of one of these sets.

k

. can be defined by setting S7 < S if the set of lower curves of S; is a subset of

3 A Geometric Realisation of the Canonical Basis
I want to realise the canonical basis of a representation of U,(slz) geometrically.
3.1 The Tensor Product Variety

Let D = C? and let d € (Z>0)* such that Zle d; =d.

Definition 3.1. Let k be an arbitrary field and set GLy(d) = {f € End(k%) | f invertible} and
alp(d) = End(k%). If the ground field is clear, I will write GL(d) respectivly gl(d) instead of
G Li(d) respectivly gl (d).

10



I now assume k = C.

Definition 3.2. Fix d. Define the variety Fi(d) of flags of type d via
Fi(d)={D={D;}t,|0=DyC Dy C...C Dy CDyp=D,dim(D;/D; 1) = d;}.
Note that this makes sense over an arbitrary field.

Remark 3. The variety of partial flags FI(d) can be identified with the set of parabolic subal-
gebras of gl(d) of type d (see [10]) via

Fi(d) = {parabolic subalgebras of gl(d) of type d}
D=D;C---C D+ {z|zD; C D;Vi} = p(D) = “stabilizer"of D.

All parabolics of type d are GL(d)-conjugate to the standard parabolic of type d,

(and all the subalgebras conjugate to pq are parabolics of type d). Now fix the “standard”flag
Dst =<e1, " ,€q, >C< ey, - y €dy+da >C - C<er,,€eq >

then its stabilizer is pq. An arbitrary element D € Fl(d) is therefore of the form gDy, for some
g € GL(d). Then

xD; C D; & 2g(Dgt)i C 9(Dgt)i & g xg(Dgt)i C (Dgt)i,

so the stabilizer of D is the conjugate by g of the stabilizer pg of Dg. Note that here one needs
the ground field to be C.

Remark 4. One has furthermore Fl(d)=GI(d)/p for a parabolic subgroup p of the correct type d
(identify a flag with the coset of matricies sending the standard basis to a basis compatible with
the flag). Gi(d)/p is a subvariety of the product of projective spaces G(di,d) x ... x G(d,d)
(see [10, section 1.8]), where G(I,d) gets a projective structure in the following way:

Consider the exterior algebra A D. A® D is 1-dimensional. If V' is a subspace, then A’ W may be
identified canonically with a subspace of A' D. Thus there is a map G(I,d) — P(A\' D) sending
a subspace V to the corresponding point in projective space belonging to /\l V. Moreover, the
cartesian product of projective varieties can be viewed again as a projective variety.

Gl(d)/p is projective because one can embed it into the product of projective spaces (or either
because it is a homogeneous space). The projective space P(D) is a special example of some

G /p, namely the one where p has 2 blocks of size 1 and d — 1.

Definition 3.3. Define the tensor product variety
T(d)={(D= {D,'}?:O, W,t) | D e Fi(d), W C D, t € End(D), t(D;) C D;_1, im(t) C W C ker(t)}

11



with subvariety
d

To(d) = {(D,W,0) € T(@)} = FI(d) x [[G(i,d),
1=0

where G(7,d) denotes a Grassmannian of subspaces of dimension 1.

Remark 5. Using remark 3, the tensor product variety can be described as follows:

Denote the standard parabolics of type d respectivly (i,d — i) by pq respectivly p(; 4—;). Then
these contain the standard Levi subalgebras lq respectivly [(; 4_;) given by the elements with zeros
outside the blockmatricies on the diagonal. Moreover, there are the unipotent subalgebras ug
respectivly u(; q_;) consisting of the matricies with zeros in the blockmatricies and underneath,
such that pg = lg+uq and p(; 4—i) = l(3,d—i) +U(i,d—i)- Define orthogonal projections 7 : pq — uq
and 7’ : D(i,d—i) — U(i,d—i) and extend these to all parabolics of type d respectivly (i,d — i) as
follows:

Let p be a parabolic of type d and F' € p. Then there is g € GL(d) such that gpg~! = pq. Set
7(F) := g 'n(gFg~!)g and analogously for parabolics of type (i,d —i). So

Fl(d) «+— parabolics of type d
Grassmannian G(i,d) «+— parabolics of type (i,d — i)

endomorphisms ¢ — nilpotent elements in gl(d) which square to zero

The condition ¢(D;) C D;_; then implies ¢ € m(p(D)). Similarly, the condition im(t) C W
ker(t) can be reformulated as ¢(F;) C F;_; for F = {0} C W C D and thus, t € 7/(p(F)) =
' (p(W C D)), where p(W C D) is the parabolic associated to W C D. Thus, for fixed

dimension w of W, one obtains the following variety of triples:

N

{(D,W,t) € T(d) | dim W = w}

p1 parabolic of type d, ps parabolic of type (w,d — w),

= {($7P1,p2)

} = St(d, w).

x € 7(p1) N7’ (pg) with 22 =0

This is called the Steinberg variety (see [2, section 3.3]). Therefore T(d) = Ui:o St(d, w).

GL(D) acts on T(d) via g.(D,W,t) = ({g.D;}¥_o, g W, gtg™1).

The same definition of T(d) makes sense when substituting a finite field K = 2 for C (where ¢
of course has to be chosen as a power of a prime number instead of an invariant), so from now
on, let D be a d-dimensional vector space over F .

An example for the tensor product variety follows.

3.2 Explicit Examples

In the following I describe some small examples of these varieties explicitly.

Example 7. Let d = 2, thus d € {(2),(1,1)} (ignore zeros in the vector, e.g. (2,0) = d). I

describe these two cases explicitly.
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e T(2) = {(D = {Di}}_o,W,t) | 0 = Dy C Dy = D,dim(Dy/Dg) = d, W C D, t €
End(D), t(D) € Dy =0, 0 =im(t) C W C ker(t) = D},
hence
Fl(2) ={0Cc D} and T(2) = {(0 C D,W,0)} = Fp(2) = Ui;:o Fl(2) x G(w,?2)
is a union of Grassmannian varieties and each Grassmannian is an orbit for the action of
GL(d). Thus T(2) has 3 orbits.
If k is a finite field then the variety contains only finietly many points, for instance over
the field F 2 with ¢ elements I have the following:
Since G(0,2) = {0}, G(1,2) = {span{ea}, span{e; + )\62}})\qu2, and G(2,2) = {D},
it follows that |G(0,2)| = 1,|G(1,2)] = (¢* + 1), and |G(2,2)] = 1 and so T(2) has
1+ (¢? +1) + 1 points.

e Consider T(1,1) = {(D = {D;}2,,W,t) | 0 = Dy C Dy C Dy = D, dim(D;/D;_,) =
di, W C D, te End(D), t(Dz) C Difl, lm(t) CWC ker(t)}

0 A
:50(1,1)U{(0c<v>CD,<v>,t7é0)\D:<v>@<u>,t:(0 0>,>\GIF;2

for some u completing v to a basis of D and ¢ as a matrix in this basis (v, u)}

~ To(1,1) UP! x Fee (W =< v > in the second set as t(D) C Dy =< v >, im(t) C W and
t #0).

To calculate the cardinality of T(1,1), note that the number of different flags of type
(1,1) equals the number of different one-dimensional subspaces of (IF qz)Q, which is ¢® + 1.
Therefore [To(1,1)| = ¢* + 1+ (¢* + 1)+ ¢* +1 = ¢* +4¢* + 3 and |T(1,1)| = |To(1,1)| +
(¢*> +1)(¢> — 1) (as there are ¢ + 1 possibilities for the flag, which also fixes W, and for
each flag ¢> — 1 = \Fgle possibilities for the endomorphism ¢ for the elements of T(1,1)

with nonzero endomorphism).

Example 8. Now let d = 3, s0d € {(3),(1,2),(2,1),(1,1,1)}.

e Then
T(3) = To(3)
>~ [1(3) U FI(3) x P? U FI(3) x G(2,3) U FI(3)
= {(D,0,0)} U {(D,<v>,0}uz0 U {(D,<v,w>0)}ywro U {(D,D,0)}

VEIW

(As seen before, T((d) is generally of the form ngo Fl(d) x G(i,d). However, for example
FI(3) x P? divides into several GL(D)-orbits, depending on how W lies in D. ).

e T(2,1) =%p(2,1) U R with

W C D, dim(Dy) =2, t £ 0
R =< ((D1CD),W,t) im(t) C D; C ker(t)
im(t) C W C ker(t)

13



One has ((D; € D),W,t) € R = dim(ker(¢t)) = 2 and dim(im(¢)) = 1 as t # 0, im(¢) C
ker(¢) and dim(im(t¢)) + dim(ker(¢)) = 3. So Dy = ker(t) and W = im(¢t) or W = ker(t).
It follows

t#0 t#0
R =< (D,im(t),t) dim(Dy) = 2, U< (D, ker(t),t) dim(D,) = 2,
im(t) C Dy = ker(t) im(t) C D1 = ker(t)

with D = (D; C D). So it divides into the Ty(2,1)-part and a union of Spaltenstein-

varieties.
T(1,2) = %p(1,2) U R with

W c D, dim(D;)=1,t#0
R=1< ((Dy C D),W,t) im(t) C Dy C ker(t)
im(t) C W C ker(t)

As before, one has ((D; C D),W,t) € R = dim(im(¢)) = 1, dim(ker(t)) = 2 and W =
im(t) or W = ker(¢). But in this case im(¢) = D;. So it follows

t#0 t#0
R =< (D,im(t),t) dim(Dy) =1, U< (D, ker(t),t) dim(D;) =1,
im(t) = Dy C ker(t) im(t) = Dy C ker(t)

with D = (D; C D).
T(1,1,1) = To(1,1,1) U R with

W C D, dim(D;) =1, dim(Dy) =2, t #0
R=1< ((Dy C Dy C D), W,t) im(t) C Do, D1 C ker(t), t(D2) C Dy
im(t) C W C ker(t)

Again, ((D1 C Dy C D), W,t) € R = dim(ker(t)) = 2, dim(im(¢)) = 1 and W = im(t) or
W = ker(t). It follows

t#0 t#0
dim(Dy) =1, dim(D;) =1,
R={ @ im),| TP =2 L) g ey, gy | P2 =2
im(t) C Do, im(t) C Do,
Dy C ker(t), Dy C ker(t),
t(Dg) c Dy L t(Dg) Cc Dy

with D = (D1 Cc Dy C D)

3.3 Relative Positions of Subspaces

In the following I introduce a function « which describes the relative position of a subspace

V C D with respect to the flag D.
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Definition 3.4. Define o : (V,D) — a(V,D) € (Zzo)k, a(V,D); =dim((V N D;)/(V N D;_1))
and denote the following unions of orbits of T(d) under the action of GL(D) by Awrn =
{(D,W,t) € T(d)|a(W, D) = w, a(im t,D) = r, a(ker t, D) = n} for fixed w,r,n € (Z>o)*.

The Ay rn Will be used to characterize the canonical basis later on.

Remark 6. As im(t) C W C ker(t), Aw rn is empty unless 23:1 r; < 23:1 w; < ZLI n; for all
j and Zle ri +n; = d(as dim(im(¢)) + dim(ker(¢)) = d).

Example 9. This example illustrates the counting of points over finite fields of cardinality
¢*>. The results will always depend on a polynomial of q. This allows me later to treat ¢ as
a formal variable and connect it with the modules over the quantum group U,. Let d = 3

and d = (1,2). Then ]F22 has (¢?)? different elements of which all but one are nonzero. The

Grassmannian G(1,3) has ¢?[3] points because leaving out linear multiples, one obtains ggj =
3,3 3
% = ¢%[3] different “lines ”, i.e pairwise linear independent vectors. So there are ¢[3]

different flags of type (1,2), since a flag of type d = (1, 2) is of the form (< v >C D). In general,

G(1,d) = P! has (¢?)" — 1 elements and q:;:ll points. Using the following easy identities
6__ 6_1_,2 4 _ 4_

CRl-1= 5 -1= 550 = 5 = ®2] and ¢*[2) = * %7, 50 °[2)(¢° - 1) = ¢*(¢* 1)

and ¢2[3](¢* — 1) = ¢*[3][2](¢® — 1) = ¢3[3]!(¢*> — 1), I can now determine the number of points

(not elements!) in A. The result is given in the following tables:
First let r =0, n = (1,2), so t = 0.

w | |Awrn| Explanatory Remarks

) | ¢33 W has to be equal to D

) | ¢°[3]! W =< wv,v" >, < v >= Dy and v/ has to be linear independent of v

) [3] W=D-= F22

)| °B] W =0

)| ¢°[3)! W =< v >, <v>= D and v has to be linear independant of v

) | 2¢"[3]!  ¢?[3] possibilities for < v >= Dy and W =< v/,v” >, so ¢*[3] — 1
possibilities for v/ and then only ¢? for v” to obtain different W,

but the order in which v/, v” are choosen does not matter.

Now let r = (1,0), n = (1,1), so t # 0 and w is of the form (1, |w|—1):

W | |[Awrnl Explanatory Remarks
(1,0) | ¢[3]'(¢*—1) W =D;jandt= <§ é §) # 0 in a basis compatible with the flag,
so there are ¢* — 1 = (¢? + 1)(¢® — 1) possibilities for ¢
(1,1) | ¢®[3]!(¢*> — 1)  As in the t = O-case, there are ¢°[3]! possibilities for the tupel (D, W)
and since (W) = 0, t # 0, ¢*> — 1 possibilities for ¢

s} 4mi

More concretely, take e.g. ¢ =2, F 2 =F; = {0,1, 5 = x,e 3 =y}, so x,y are third roots of
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unity. Then the one-dimensional subspaces of Fi are given by the spans of the vectors in

and

T0(1,2) = {(<v>CD,0,0)|veV}iUu{(<v>CD,<v>0)|veV}
U{(<v>C D,<v >,0)|v£dv eVIU{(<v>CD,<v,v >0)|v£v eV}
U{(<v>C D, < v, 0" >,0) |v#v,0" €V such that <o/, >N <v>=0}
U{(<v>C D,D,0)|veV}
= Aoo0dYAq0),04
UA(0,1),0,a Y A(1,1),0,d
UA(0,2),0,d
UA(1,2),0d

Furthermore,

{D S Fl(1,2)|tDl C Difl} X {D € Fl(1,2)|tDZ C Difl}
0
={(<v>CD,<v>t= (8 §)) | v eV, A\ u € Fynot both zero} = Ay 0) (1,0),(1,1)

SO >

and
{D S Fl(l,Q)‘tDl C Difl} X {D € Fl(2, 1)|tD1 C Difl}
={(<v>C D, <v,v > t= <§§§>) |v#£0v eV, t(v) =0, \, u € Fy not both zero}
= A(1,1),(1.0),(1,1)

(t as a matrix for a basis compatible with the flag).

The cardinalities are

[ 40,0,dl = ¢*[3] =21
|A(1,0),0,dl = ¢*[3] =21
’A(O,l),o,d’ =q° [3]! = 420
|A(1,1),0,d| =q° [3]! =420
[A(0,2),0,dl = 34"[3]! = 840
’A(1,2),O,d| = ¢ [3] =21

[A10), 10,0 =4
[Aqy,a,0,0 =@ [B](¢* —1) = 1260.

The following corrects a claim made in [21]:

Lemma 3.5. The varieties Aw rn are unions of orbits. In general, they are not single orbits

(in contrast to the claim made in [21]).
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Proof: The first claim is clear by definition, since the condition is GL(D)-equivariant. For the

second claim, I refer to the following example. O

Example 10. Let d = (1,1,1,1) and let A(17170’07)7(1717070)7(1,170707) = {(D,VV,t)’W = D2 =
ker t = im t}. Then, for D = (< e; >C< e1,e3 >C< e1,e9,e3 >C< e1,ea,e3,e4 >= D), the

two elements

0O 0 0 1 0 0 1 0

0 010 0 0 0 1
(D, < e1,ez >, ) and (D, < ey, ez >, )

0 0 0 O 0 0 0 O

0 0 0O 00 0O

are in this set. Assuming both were in the same orbit, there should exist a g € GL(D) such that

gD, < e, ez >, )=(D,<ei, e >,

o O o O

0
0
0
0

o O o O
o o o O

10
01
0 0
0 0

o o o

0
1
0
0

Since gD =D, g = (gi,), 9i,; # 0 has to be an upper triangular matrix. Thus

0001 00 gi12 911 0 0 g12053 911904 — 912934954953
G100 O 00 e 0 |00 92,2953 —02,293.491.495 5

0 0 0O 00 O 0 0 0 0 0

0 0 0 O 00 0 0 0 0 0 0

But ggggg_é # 0, so the two elements can not be in the same orbit. So the A rn are merely
a union of orbits. However, the Ay, 94 always are orbits and the projection of Ay rn onto the

first two components (sending (D, W, t) to (D, W)) is an orbit under the GL(D)-action as well.

Remark 7. To identify the orbits in general, consider (D, W,t), (D', W', t') € Aw rn. Without
loss of generality, I can assume D = D', W = W’. Choose a basis (u;)%_; of D such that

D; = span{ui}?gl

and

J -1yg +w
WnDj= spanp{ui}gisii__ll)ds)il.
=0

Then t,t' have to fulfill the conditions posed by r,n. If g.(D,W,t) = (D, W,t'), then g is an
upper triangular matrix, so if ¢(u;) € Dj, then t'(u;) € D;. However, if ¢’ fulfills this, then there
also exists ¢ such that gtg~' = ¢’. This describes the orbits.

It remains to see which r, n allow more than one orbit. I need u;, € Dj,,u;, € Dj,, j1 < j2 with
nj, # dj, 1 =1,2 (so t(Dj,) # 0) and Z'];:jl r; < Zf:jntl x;, with d; = n;+z; i.e u;; and u;, can
be mapped to Dj,_1 and not to zero. Moreover, there must be l1 # lo with r;, # 0 and [; < ji
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such that ¢ may map u;,,u;, to Dy, Dy, or Dy, D). Then t,t' with t(u;,) € Dy, t(u;,) € Dy,
and t'(u;,) € Dy,, t'(ui,) € Dy, are not in the same orbit. E.g.

n=(--,xdj, —xj, - ,dj, — Tjy, % %), x; 0

and

r:(*a"'a*a 17*7"'7*7 17*7"'a*voa"'aov*a"'7*)'

(if looking at the corresponding crossingless matching, it must have at least two arrows running

above one another, e.g @)

3.4 The Spaces T'(d) and Ty(d)

Definition 3.6. A function f: T(d) — C such that (g.f)(x) := f(¢7'2) = f(z)Vg € GL(D) is
called invariant. Let 7'(d) denote the space of invariant functions on ¥(d).

1 ifreA Lo .
Define 14(z) := the indicator function. Set
0 else

> TW T WN — W w5
kw,r,n—q i<y TiWi iy i Wy

a constant and define

fw,r,n = kw,r,nlAw,r,n-

Define To(d) = span{ fw,0,d}w, the set of invariant functions on Tp(d) (Recall that Ay o4 is a
single orbit).

Remark 8. Then T'(d) D span{ fw,rn}w,rn, but in general not equal (the inclusion is in general
strict, e.g. consider f the indicator function of some orbit strictly contained in an Aw rn. Recall
that Aw rn is not necessarily an orbit, see example 10).

Only finitly many of the fw rn are nonzero, more precisely fwrn = 0 unless |r| + |n| = |d]
(as |r| = dim(im ¢), |n| = dim(ker ¢) and dim(D) = d = dim(ker ¢) 4+ dim(im ¢)) and r < w
(as im ¢t € W C ker t) where |a| := 32 ¢; and a < b < 25:1 a; < Zgzl bVl < j
a<b&a<b,a#b, forabc (Zsg)".

d
<n
<k,

Example 11. o d = (2)2 T(Q) = Span{fo,gg,f1,072,f27072} (Recall that S(d) = ‘Io(d), SO

fwrn =0unless r =0, n =d). So the span equals T'(2) and is not just a subset.

e d=(1,1): Recall ¥(1,1) = Tp(1,1)U{(0 C<v >C D, < v >t#0)|D =<v>& <
v >ttt = (86‘)}, O Awrn # 0 ifand only if w =r =n = (1,00 orr = 0,n =d
and w € {(0,0),(1,0),(0,1),(1,1)}. So fwyrn # 0if and only if w =r =n = (1,0) or
r=0,n=dand w € {(0,0),(1,0),(0,1),(1,1)}. Again, T(1,1) = span{ fwrn}, since in
the case of d = (1,1), all the Ay ; n are single orbits.

One wants to equip 7'(d) with a Us-module action such that there is a module-isomorphism

To(d) g Va, ® --- ® Vg, sending fwo.d t0 V4, —2w, @ -+ @ Vgp—2w, =: @90y, the elementary
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basis element corresponding to w.
Set
T(w;d) = {(D,W,t) € T(d) | dim W = w}

and
FT(w,w+ 1;d) = {(D,U,W,t) | (D,W,t),(D,U,t) € ¥(d), dim U = w, dim W = w + 1}.
Then there is a correspondence

il Uzww—i-ld ) 3 2(d)

with m (D, U, W, t)) = (D, U, ) and m2((D, U, W, t)) = (D, W, t). Define m(f)(2) := > cr1(4) f(¥)
(recall that I am working over a finite field) and 7* f(x) = f(7(x)).

Remark 9. The correspondence can be defined over C as well.

Definition 3.7. [21, Theorem 2.2.1]
T(d) becomes a U, (sl2) module via the following action of E, F, K*! : Set

Ef = ¢~ 3 O) ()3 f,

Ff=gq dim(ﬁz_l(—))(m)!ﬁf

and
Kilf _ qj:(d72 dirn(f))f'

So

Ef(D,U,t) = ¢~ im0 OUD) ()22 £(D, U, 1)

. —1
— q— dlm(ﬂ'l (Dvat)) Z f(D') W? t)?
(D,UW,t)el,, T(w,w+1;d)

Ff(D,W,t) = g~ 4m0m (OW0) (r) 7 £(D, W, 1)

. -1
_ q— dim(7; ~(D,W,t)) Z f(D, U, t)
(D,Uu,wt)el,, T(w,w+1;d)

and
KE (D, W,t) = ¢=d=2dm W) gD W 1),

Remark 10. my, 2 are in general not surjective, e.g. consider Aw rn = A(1,1,0,0),(1,1,0,0),(1,1,0,0)-

Tw,w + 1;d)
= {(D,U,W,t) | (D,W,t),D,U,t) € ¥(d), dim U = w, dim W = w + 1}
= {(D,U,W,t)|imtCcUCW Ckert, (D,W,t),D,U,t) € %(d), dim U = w, dim W = w + 1},
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so if ker t =1im ¢, no (D, U, W,t) € T(w,w + 1;d) for any w,d. Thus

Ef1,1,0,0),(1,1,0,0),(1,1,0,0) (D, U, 1)

—dim(77!
—_ q d ( 1 (D,Uyt)) Z(D,U,I/V,t)euw ‘I(w,w-i—l,d) f(D7 M/’ t)

—dim(m] !

dim(7; ~(D,U,t)) E (D,UW,tEU,, T(wwt+1;d), (D,Wt)EAw. rn f(D, W 5 t)
. -1
g~ dim(m (D) > ouwpes S (D, W,1)

= 0 Y(D,U,t),

LS

similarly for F'.

Proposition 3.8. Applying the action of E,F, K*! to the vectors fw.rn, one obtains

Kilfw,r,n = qi(d_zlw‘)fw,r,na

k
J=1 . e .
Efw,r,n = Zqzi:l ni—Ti—2(Wi rl)[nj - W+ 1]fw—6j,r,n
j=1

and

k
_ Nk . U
Ffw,r,n = § q Limjr T2 rl)[wj _rj+1]fw+5j7r7n
Jj=1

(where 87 € (Z>o)* is the element such that (5{ =0Vi#j, 5; =1).

Proof: Let (D, U, t) € T(d) be fixed. It is clear that E fy rn(D, U, t) = 0 unless a(U,D) = w—4’
for some j since
Efwrn(D, U, t) = g~ @im ' (DU0) 3 fwen(D, W, 1),
D, u,w,t)el,, T(w,w+1;d)
so there must exist a W such that (D, W,t) € Aw rn.

Then

|
Efw,r,n(Da U, t) = g dmm(DU) Z(D,U,W,t)EUw T(w,w+1;d) fw,nn(D, w, t)

q
= kwrnq dim(“fl(D’U’t))xq(Wfl(D, U,t)N 7r2_1(Aw7r,n)).
(xq(A) is the Euler characteristic, i.e. the number of points in A, which is finite since k =
F,2 and Xq(m7H(D,U,t) N1y  (Awrn)) is the number of W such that (D, W,t) € Ay rn and
(D, U,w,t) e U, T(w,w + 1;d))
Now,
m (D, U t) = {W|U CW Cker t, dim W = dim U + 1}

= {(W|W Cker t/U, dim W =1}
pdim(ker t)—dim U—1

pho/=(w|-1)-1

= Phnl=iw|
and thus dim (77 (D, W,t)) = |n| — |w| (remember a(U,D) = w — 67, so dim(U) = |w| — 1).

Moreover,

wfl(D, U,t)N 7r271(Aw7r7n)
~ {(W|UCW Ckert, o(W,D) =w}
W(UND;)cW C (ker t N D;), dim(W N D,_1) = wdi=D dim W = w(ld)
Wi ;) ( ), dim( i—1) :
WIW C (ker tnND;)/(UND;),W & (kertND;_1)/(UND;_1), dim W = 1},
J J J J

1%

12
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(where w() = E{:l wy), so the dimension equals

dlm Pdlm(ker tﬂD])/(UﬁD])—l Pdlm(ker tﬂDj_l)/(UﬂD]'_l)—l

— dim
— Qi Pt —(w—d) BN -1 g e (wgd) (1D

Qi PR —w D iy pri Y —wllimD o1

Therefore,
(lal— n(1i) _w(1) o n(1i=1) _@i—1)_1 o
Efwrn(D,Ut) = kyrng 7D gzz_o = Xiso q
1,5) —w(1.9) 2%
= kw Q‘Wl o] ZZ n(li—1) _w(1,i-1) 4
2(n(1i—1) _w(1,i—1) nj—w; 9;
kwm,n‘]‘wl [nl+2(n v )Ziio Tq
i1,k _rlri—1 o li—1_ i1,k
= kwyr’nqwj W n ’ n? I:nj - w] + 1]'

pld—l_pit Lk li—1i+Lk :
r iAW AW one obtains

Using kw—éj,r,n = kw,r,nq
wi T wli=1 {pli =l itk P(Li=1) fpli=1_gyli—1
— Pw—§lrn :

kwrnq

Inserting this gives Efwrn(D,U,t) =k gt Anli T 2wt [nj —w; + 1]. Thus

w—38i,rn
k (1J=1) 4y nli—1_guli—1
EfW,I‘Jl = Z 14" n v [nj —wj + 1]kw—5j,r,n114

=1

o k (1,5-1) 4 pli—1_gwli-1
= Zj:l qr tn W [nj —wj + 1]fw7§j,r,n

k I ng—ri—2(wi—r;
= Z]:l qu:1 (nz T 2(11)1 'r'z))[n] — ’LUJ + 1]fW—65,r,n'

wf&j,r,n

Similarly,
Ffw rn — Zq = J_H(nlin 2(w17n))[w]’ -y + 1]fw+6j,r,n‘

It follows from the deﬁmtlon that

Kilfwrn:qi(d_zlwl)fw _q ZZ 1(nL i Q(wi_ri))fwrn

as |r| + |n| = |d| = d. O

3.5 Relation between Ty(d) and V;, ® --- @ Vg,

Definition 3.9. Define 0y n : span{fwrntw — Vii—r @ - @ Voo —rp by fwrn — @ Tog_y,
extended by linearity.

Proposition 3.10. 7 is a Us;-module isomorphism.

Proof: The action of x € U, on Vy, ® -+ ® Vy, was defined as A¥~1(z), so

k
A’“*lE:ZK@‘-@K@E@l@m@l
=1

k
AIF=318- @1 FeK '®- @K'
i=1
Ak_lKi:Ki(@"'@Ki
where E and F appear in the i*" position in the first two equations. Comparing this with the

action on T'(d), the claim follows. O
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Definition 3.11. Denote by hd the preimage under M0,d Of Vg2, O - - QVay—2uw, =: Oy,
the canonical basis element corresponding to w. So the canonical basis can be interpreted as

certain invariant functions on a subvariety of T(d).

3.6 Examples

Example 12. Action of U, on Ty(d) (I will abbreviate fw 0d by fw)-

d=(1,1,1):
Efo00= 0 Efoon= ¢fo00 Efoin= af001) Efain = foiy
+f0,1,0) +q_1f(1,0,1)
+q_2f(1,1,0)
Ef(o,l,o) = Qf(o,o,o) Ef(l,l,o) = f(0,1,0)
+q71f(1,0,0)
Efao0 = fo00  Efaon = Jfoon
+f1,0,0) )
Ffo00 = fo00) Ffoo1 = af0.1,) Ffoiny = @faiy Ffain= 0
+q_1f(0,1,0) +fa01)
+q72f(1,0,0)
Ffo10 = fo1y Ffai0= fai
+fa1,1,0)
Ff(l,o,o) = f(1,0,1) Ff(l,O,l) = Qf(1,1,1)
+q71f(1,1,0)
and

K fo00) = @fo00 Kfoon= afoo1) Kfoin= ¢ fory Kfain= a*fan
Kfo10= af010 Kfaie = q_lf(l,l,o)
Kfao00 = afap0 Kfaon = q_lf(l,o,l)
One sees that there are four weightspaces determined by the absolute value of w. Compare this
to the action of Uy on Vg, ® --- ® Vg, (®de = Vg, —2w; @ -+ @ Vg, —2u, and recall the action of

U, (see the proof of Proposition 3.10)):
d=(1,1,1):
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E&%vgo0 E®Yvgo E@% 1,1 E@% vy
=0 =% ve0n =@ 001 =%
+ @ V(0,1,0) +q ' @4 U(1,0,1)
+¢ 2 @4 V(1,1,0)

E&tvoie Bl v
=q® V(0,0,0) = ®dv(o,1,0)
+¢~ ! @4 U(1,0,0)

EoYvaen  E@vaon
= ®%v(0,0.0) = ®@%v(0,0,1)
+ ®d V(1,0,0) )

F®d V(0,0,0) F @4 V(0,0,1) F @ V(0,1,1) F @ U(1,1,1)
= ®%v(0,0,1) =q®%vo1y =F®%e11y =0

+q '@l V0,1,00 t+ @4 U(1,0,1)

+¢72 @4 U(1,0,0)

F@% v, F et
= ®@%(0,1.1) = @Y1
+ &% v,1,0)

F@% v F v
= ®%,01) =q@% v
+¢ ' @4 V(1,1,0)

and

K@%vgo0  Ko%veeny Ko K @%vq 1)

= ¢* ®4 V(0,000 =4 ®4 V(0,0,1) = g e vo,1,1) = g3 @4 U(1,1,1)

K ®d U(O,I,O) K ®d U(l,l,O)

=q o9 V(0,1,0) = g ' o U(1,1,0)

K@% va00 K@&Tvao
=q V(1,00 = gt e U(1,0,1)
Example 13. d = (1,1,1):
The coefficients of the fys 04 occuring in the representation of R4 in this basis are calculated

1

using the Kazhdan-Lusztig polynomials pys w, with ¢7* inserted ( see [1, section 5] ) (Again, I
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will abbreviate fwod by fw)-

h?o,o,o) = f000) h((io,o,l) = foom) h((io,m) = fou1 h((i1,1,1) = faiy
+q_1f(0,1,0) +q_1f(1,0,1)
Jrq_zf(l,o,o) Jrq_zf(l,l,o)
h((iO,l,O) = fo10 h?l,l,o) = fa1
+¢ " f1,0,0)
h((i1,0,0) = fa,00 h?1,0,1) = fao
+q71f(1,1,0)

Operation of Uy(slz) on Tp(d) = V;** with basis hd:

Eh?o,o,o) =0 Eh((jo,o,l) = [3]h?0,0,0) Eh?o,l,l) = [Q]h?o,o,l) Eh((jl,l,l) = h((jo,l,l)
Eh((io,l,O) = [Q]h((io,o,O) Eh((jl,l,o) = h?o,1,0)
Eha,o,o) = h?0,0,0) Eh?l,(],l) = h?Lo,o)
+h?0,0,1)
Fh?o,o,o) = h((io,o,l) Fh((jo,o,l) = [2]h?0,1,1) Fh?o,l,l) = [3]h?1,1,1) Fh((jl,l,l) = 0
Fh((io,l,O) = h((i1,1,0) Fh((j1,1,0) = h((i1,1,1)
+h‘(1071’1)
Fh((il,O,O) = h?1,071) Fh?l,ﬂ,l) = [2]h?1,1,1)
(use g+qt=[2] and ¢> + 1+ ¢ 2 = [3]) and
Kilh((io,o,o) = qigh‘(io,o,o)
Kﬂh?o,o,l) = qﬂh?o,o,l) Kilh?o,l,o) = qﬂh?o,l,o) Kilh?l,o,o) = qilh?l,o,o)
Kilh((jml,l) = qi_lh?o,l,l) Kilh((il,l,()) = qi_lh?l,l,O) Kilh((il,o,l) = qi_lh((il,o,l)
Kﬂh((im,l) = qiigh((il,l,l)

Notice that all coefficients are positive for the action of U, on the hS.

Remark 11. Compare this to the action of U, on the dual basis given by [6]. The dual basis can
be denoted by (upper) crossingless matchings where an arc is drawn between to arrows if the
one oriented up is to the left of the one oriented down and as usual w; denotes the number of
down verticies in the box corresponding to Vg, (a down vertex is associated to v—_; and an up

vertex to vy, so e.g. v1 ® v_1 is associated to
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LI ). To determine the action of F, numerate all down-oriented verticies not connected to
some other vertex with an arc, starting from the left, by (1,2, ,lgoun). E acts on QW by
Zi[i]E(i)Q?de, where E(;) reverses the i'" down arrow not connected with an arc to an up arrow
and draws an arc if possible (i.e. if there is a neighboring down arrow to the right of the up

arrow). Similarly, F' reverses the up-arrows, starting from the right. For d = (1,1, 1), one gets:

Qdyw

with w (0,0,0) (1,0,0) (1,1,0) (
crossingless match MpNEN NpNEN HpHpN [ G

B.0dp 0 R

FLodyw N SN minlin 0

Qdyw
with w (0,0,1) (1,0,1) (0,1,0) (0,1,1)
crossingless match - @ o Q;] @ - @ 5
0 ;] Q_;] 0 Q_;] ;]

E.Qdyw

F.Qdyw W Y 0 L 0

and one has (u,z(k_l)(w(:c))v*> = (AF=D(z)u, v*) for u in usual basis and v* in dual basis, so
e.g. (Oduw,z(k_l)(E)@del) = (AF=D(F)Ouy,, Q™). This gives a further way of checking
that the results on the canonical basis calculated before in the example are indeed correct. Again,

all the coefficients occuring are positive.

3.7 The Space T.(d) and a Canonical Basis of It

One can find an extension e : Ty(d) — T'(d) (module homomorphism, isomorphism onto its
image) extending invariant functions on Ty(d) to invariant functions on T(d) with larger support.
By this, one wishes to obtain from the hY a basis of invariant functions on ¥(d) with a nice
geometric interpretation. So the aim is to find an extension that will yield such a nice basis and
that is an isomorphism onto its image, such that the new basis can again be identified with the

canonical basis via e and 79 g.

Definition 3.12. Define an extension e extending a function f € Tp(d) to a function f¢ € T'(d)
by
€= Z(nr,n)_l © Yrn © 770,d(f)

r,n
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(Recall the definition 3.9 of 1), where the 4y, in the set of intertwiners {ypn: Vg, ®@---@Vy, —
Voi—ry @+ @ Vi, —r, }r.n are defined below.

To define the 7y n, some preparation is needed. It is known from [6], that a basis of the space
of intertwiners (though linear endomorphisms commuting with the alternative comultiplication
) between two tensor product representations of Uy is given by the corresponding crossingless
matchings. For a lower crossingless matching S, define r® by setting rzs equal to the num-
ber of left endpoints of lower curves contained in Vg4, and define n® by setting nf equal to d;
minus the number of right endpoints of lower curves contained in Vy,. One can associate to
any lower crossingless matching an endomorphism ¢ sending a vector of D;\D;_;1 to a vector
of Dj\D;_1, j < i, for any curve connecting Vg, and Vi, (choose a basis of D compatible with
the flag D and define the matrix of ¢ in this basis by (Cy);; = 1 if i« < j and S has a curve
connecting the i*" and j¥* vertices and equal to zero otherwise). E.g. let S be the crossing-
less matching &] ﬁ ,sonS = (1,1,0) and rS = (0,1,0), and let D be the standard flag
< e >C<ep,eg >C< e,eg, ez >. Then let the matrix of ¢ in the standard basis be <§ § g).

So one actually obtains rS = a(im ¢,D) and n® = a(ker ¢, D). This S can be completed to a

¥ —r? is the number of

crossingless matching to Vs s @ --- @ an—rf in a unique way as n
unconnected vertices of the ith box.

E.g. the lower crossingless matching S

(TN 2N
(.9 [ L L]

with S = (3,1,1,0) and nS = (4,1, 1,3) can be completed to a crossingless match to V; ® Vp ®
Vo Vo = Vni@_rf Q- & an—rf’

T T\ e
4, s s p

Then let ;s ,s be the corresponding intertwiner commuting with the action of U, given by

Z(k_l)

intertwiner commuting with the action of U, given by A%®=1 _If (r,n) is not of the form (rS, n%)

. This is welldefined as S + (rS,n%) is injective. Define YeSnS = O%ps psO; this is an

for any crossingless matching .S, set yp n = 0.
Proposition 3.13. ¢ is an isomorphism onto its image and f6|TO(d) = f.

Proof: Follows from Proposition 3.10 and the way the intertwiner associated to a crossingless
matching is defined. O
Let T¢(d) := span{fy ¢ q}- Now one wants to show that the distinguished basis g3 = (nd)e
of this space corresponds to the irreducible components of T(d) and to the canonical basis of

Vi, ® - ® Vg, , thus getting a geometric interpretation of the canonical basis.
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In order to do this, it is necessary to work over the algebraic closure of the field for some time.
Let T(d)" denote the variety over the closure of the field defined in the same fashion as ¥(d) and
set Zy, = {(D,W,t) € T(d)'|a(W,D) = w} = U, , 4% (where A is defined in analogy

w,r,n w,r,n
to Awrn )-
Proposition 3.14. The Z!, are the irreducible components of T(d)'.

Remark 12. An analogous statement for the Steinberg varieties introduced in section 3.1 is
well-known ([2], [5]).

Proof: Clearly UWZ‘/N = %(d)’. Moreover, the connected components of T(d) are given by
fixing the dimension of W, ie. by J ' A Thus it sufficies to show that the ZJ, are

w/,rn’
[w|=|w]

irreducible and locally closed and that their dimension is independent of w for fixed |w| (so the
closures (the sets themselves are disjoint), are not contained in one another). In order to do so,
consider the maps

Zw

o

p2

11 12
ZW ZW

given by p1(D,W,t) = (D, W) and p2(D, W) = D with
Zw = {(D,W)|(D,W,t) € Z, for some t}=Ay 0.4

and

72 = (D|(D,W) € ZJ} for some W} = Fi(d)

a flag manifold. p; and py are locally trivial fibrations, i.e. for each point (D, W,t) ((D,W)
respectivly) there is an open neighborhood U of (D, W) (D respectivly) such that p; }(U) =
(D,W) x {t € End(D) | t(D;) C D;_1,im(t) € W C ker(t)} (p,*(U) 2 D x {W C D |
(W, D) = w} respectivly). GL(D) acts transitively on Z/L = Ay 9.4 with stabilizer

M; * * * * eee e %
0 N O * 0 *
0 0 My = * *
0 0 0 Ny O *
Gy = M; € GL(w;), N; € GL(d; — w;)
0 0 0 0 *
0 0 0 o "~ .0
My x
0 0 0 0 -+ -+ 0 N

Thus dim(Aw,0,4) = dim GL(D) —dim Gy = >, _; did;j + >, ; wj(d; —w;). The fiber of p; over
a point (D, W) € Z!! is

Fy ={t € End(D) | t(D;) C Dj—1,im t C W C ker t}.
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In order to describe the dimension of this fiber, pick a basis {u;}%_; of D such that {ui}f;?'%j

. . ; (1,1-1) . . .. .
is a basis of D; and such that U?:o{ui}?:du,lj;ﬁl is a basis for W N D; (where d®) = Y7_ d;).

By considering the matrices of ¢ in this basis

d1 d2 dk

—— —— ——
w1 wa w,

0 0 0 * 0 =
0 0 : 0 0 0 0
0 0 0 =
‘ 0 0 0 0
0 0
0 0

one sees that Fy is an affine space of dimension Wy (di — w;). Finally, one obtains

k
dim Z, = dim Z; + dim Fy = " did; + Y wildi —wi) =Y didy + |w|(d — |w]),
i<j ij=1 i<j
which is independent of w for fixed |w|. The spaces Zi2, F} and Fy, = {W C D | a(W,D) =
w}, the fiber of ps over a point D € Z/2, are all smooth and connected, hence irreducible.
Furthermore, Z"g and F) are closed and F5 is locally closed since F5 is equal to the closed set
{W C D | a(W,D) > w} minus the finite collection of closed sets {W C D | a(W,D) > a}asw-.
Thus Z,, is irreducible and locally closed. O

Remark 13. In a similar fashion as in the case of A 4, one can calculate the dimensions of
the other orbits. Let W € F, for some D and Ay, . , # 0. Then one can define a ¢ such that
(D, W, 1) € A

w.rn as follows. r and n tell me how many basis elements of D; have to be sent

to 0 and onto how many basis vectors of D; the rest may be sent (use the same basis as in the

proof of proposition 3.14). Since A

w.r,n 18 not empty, these vectors can be chosen from the basis

of W. Thus pi|a;, = Z!IL. The difference in dimension therefore can only occur in the fiber

Fi of pi|a;, _ over some point (D,W). Consider ¢ € F] in the same basis as in the proof of
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proposition 3.14:

dy da dk:
— —— ——
w1 w2 W
=~ =~ =~
0 0 0 * 0 =
0 O 0 0 0 O
0 0 0 =
‘ 0 0 0 0
0 O
0 O
rank 0 rank do—no rank dp—ny

In addition, to fulfill the condition posed by r, there must by 71 linear independant columns with
zero entries outside the first dy rows (so that im ¢ N D; has dimension r;), 79 linear independant
collumns with zero entries in rows below the first d; + do rows and not all entries zero in the

rows below the first d; rows and so on. Clearly, as r increases and subsequently n decreases,

/

w,rn lLCTEases.

the number of possibilities and thus the dimension of A

Proposition 3.15. Setting M = M(d,w), the crossingless matching corresponding to w, then

!/

is open and dense in Z! .
w,rM nM p w

Proof: 1t is obvious that A(N MM C Z1,, so it only remains to show that A’W M M is dense in
Z!, (Recall that in the Zariski-topology, a subset of an irreducible variety is dense if it is open
and not empty). As seen in the remark, the projection of A! ; \ onto Z!1is all of Z!!. Thus
it suffices to show that A\  is dense in each fiber. For fixed (D, W) € Z!!. the intersection

F{ of Fy with (p1]a.. )~Y(D, W) is given by

wW,r,n

F{ = {t € End(D)|t(D;) C D;_1,imt C W C ker t, a(im t,D) = r™, a(ker t,D) = n™}.

Choose a basis as in the proof of proposition 3.14. Since im ¢t C W C ker t, ¢t can be factored
through D /W and viewed as map into W. Then ¢ is uniquely determined by the correspponding
t € End(D/W,W). Then (see proof of proposition 3.14) the matrix C; of ¢ is of the form

0 ALQ A173 . Al,k
0 A2’3 . z42’]C
Cy =
0 Ap_1x

0 0 0 0 0
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with A; ; a (w;) x (dj—w;)-matrix (corresponding to the * in the matrix in the proof of proposition

3.14). I claim that ¢t € F] if and only if each submatrix

Aiiv1 Aiire 0 Aij
. 0 A2 oo Aip1j
C/Lmj —_
t - .
0 Ajjn

for 1 <i < j < k—1 has maximal rank. That is, a(im ¢, D); and d;—a(ker ¢, D); are maximal for
all I. Now consider a diagram M’ of non-crossing oriented curves connecting the Vj, associated
to at € Fy, i.e. the number of downward vertices among those associated to Vy, is given by wy
and the number of left and right endpoints of curves of M’ in V, is given by a(im t,D); and
d; — a(ker t, D); respectively (So M’ illustrates how ¢ maps the basis vectors of D;/D;_; to those
of Dy, /Dp,—1 in a certain especially nice basis). A priori, this need not be an oriented lower
crossingless matching, as for example the unmatched vertices might not be arranged such that
those oriented down are to the right of those oriented up. However, requiring the rank of C’f I to
be maximal is equivalent to M’ having the maximal number of curves connecting Vg, Va,,,, ...

and Vy,,,. Comparing this to the definition of M(d,w) in definition 2.7, one sees that C’Z’j
having maximal rank is equivalent to M’ = M and thus to t™ = ™ and nM = nM/, therefore
to t € F|. This prooves the claim. This argument shows once more, that F| # (), since one can
define t € F| by (Ct)(m-) = 1ifi < j and M has a curve connecting the i** and j* vertices, and
(Ct)(i,5) = 0 otherwise. To be more precise, as seen above, any t € F{ has a matrix of this form
for a basis chosen accordingly.
Now one still has to see that the set FJ is open and dense. Being non-empty, it is clear that Fy
is dense if it is open.
I claim that N, , = {A € M, ,|A has maximal rank} C M,, , = m X n — matrices is open in
My, . To see this, let » = min(m,n).
Then Ny, , = {A € My, | at least one r x r submatrix of A has rank r}, which is a union of
open subsets of M,, , since a r X r matrix has rank r if and only if it has a nonzero determinant,
thus open. Since Ny, ,, is open, it is given by the non-vanishing of a finite collection of polynomials
in the matrix elements of M,, ,, (since I am working over the Zariski-topology). Applying this to
the C’Z’j , Tequiring Cf’j has maximal rank is equivalent to the non-vanishing of a finite number
of polynomials in the matrix elements of C’Z’j , and thus of C;. Therefore FY is the intersection
of a finite number of open subsets of F}, and hence open.

O

3.8 Examples for the M(d,w) and Corresponding Ay, ,m ,m

In this section I describe explicitly the spaces Aw rn assigned to crossingless matchings in some

small examples.

Example 14. M(d,w) and the corresponding A
k q
V1® Z’L:l z

oM for d=3,4:

w,rM

Recalling the inclusion Vg, ®---@Vy, — , one can reduce the case where d’ # (1,...,1)

30



to the cased = (1,

..., 1), where |[d’| = number of 1s in (1,..

., 1) =|d|, by “merging” the boxes

in the diagram according to d’ ( so that each box contains the correct number of vertices) and

regarding only those lower oriented crossingless matchings which do not have a lower curves

among vertices of a single box. For fixed d, all lower oriented crossingless matchings can be

parametrised by the w, yielding the M (d, w).

d=3

W
M((1,1,1),w)
AWJ.M’nM

element of orbit

4%
M((1,1,1), w)
Ay M pM

element of orbit

w
M((1,1,1),w)
AWJM’nM

element of orbit

(0,0,0) (0,0,1) (0,1,1) (1,1,1)
000 uli=lin ajnlin ulinlin
Aw (0,0,0)(1,1,1) Aw (0,0,0)(1,1,1) Aw 0,0,01,1,1)  Aw,(0,0,0)(1,1,1)
(D,0,0) (D, < e3>,0) (D, < eg,e3 >,0) (D, D,0)

(0,1,0) (
B0 u

Aw,(0,1,0)(1,1,0)
00
(D, < eg >, (88

oo
S~—
O

A\

aQ

S,

8y

N

V
coo
ococo

oo

~
N~—

(1,0,0)
ufuln

Aw,(1,0,0)(1,0,1) Aw,(1,0,0)(1,0,1)
010 010
O <> (§§4) ©<enes> (§38)

(D= (0C<e >C<eg,e9 >C< e1,e9,e3 >= D), < ¢; > the standard basis vectors of D).
Now, for d = (3), only the first four M(d,w) are admitted, for d = (2,1), the first six, for
d = (1, 2) the first four and the last two, and all for d = (1,1, 1).

d=14

W
M((1,1,1,1),w)
AWJ.M’nM

element of orbit

W
M((1,1,1,1),w)
AWJ.M’nM

element of orbit

(O? O? 07 0) (07 07 07 1) (07 07 17 1) (O’ 17 17 1)
D000 aialsln uli=li=lin ainlinln
A (0,0,0,00(1,1,1,1)  Aw,(0,0,000(1,1,1,1)  Aw,0000(1,1,1,1)  Aw,(0,0,0,0)(1,1,1,1)
(D707O) <D7 < ey >70) (D7 < es,eq >7O) (D7 < e2,€3,€4 >70)
(1? 17 17 1)
ainlinln
Aw (0,0,0,0)(1,1,1,1)
(D, D,0)
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W

M((1,1,1,1),w)

Aw’rMmM

W in element

(0,0,1,0) (0,1,1,0) (1,1,1,0)
sfulsls ulufsls ulufislls

Aw (001,011,100 Aw,(001,0)1,1,1,00 Aw,(0,0,1,0)(1,1,1,0)

< e3> < eg,e3 > < ep,e,e3 >
(D, W,t) of set
. 0000
with = (gggg)
0000
w (0,1,0,0) (0,1,0,1) (1,1,0,1)

M((1,1,1,1),w)
AWJ,M’nM
W in element
(D, W, t) of set

with t = ( )
w

M((1,1,1,1),w)

Aw7rM7nM

(elelole]

0
0
0
0

oo—Oo
(elelol]

W in element

M((1,1,1,1),w)
AW’rMJlM
W in element
(D, W,1)

0090
witht=1{ gg50
0000

w

M((1,1,1,1

9 Ly Ly )7W)
AWJ.MJIM
W in element

(D, W,t) of set

uiufuls uiufsls ulinfulis

Aw (0,1,00(1,1,01) Aw,(0,1,001,1,01) Aw,(0,1,00)(1,1,0,1)

< e3> < eg,€e3 > < ep,e,e3 >

(1,0,0,0) (1,0,0,1) (1,0,1,1)

alululs alulul= ululinl=

Ay, (1,0,001,01,1) Aw,(1,0001,0,1,1) Aw,(1,000)(1,0,1,1)

< ez > < eg,€3 > < e1,e2,€3 >

(1,1,0,0)
T B

Aw (1,1,0,0)(1,1,0,0)
< ep,eg >

(1,0,1,0)

alululls

Aw,(1,0,1,0)(1,0,1,0)

<ep,e3 >

with t = <

[e]elel]
[e]lelelen]
oO—OO

)

1
0
0
0
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3.9 A more Detailed Description of the Irreducible Components

Proposition 3.16. A’

axSns C Z!, forall S < M, a>w, |a] = |w]|.
Proof: 1t is sufficient to show A; +Sns C Z! . Since the connected components of T(d)’ are given

by fixing the dimension of W, i.e. by

!/
l I AW’,I‘,H’
w/

)
[w'|=[wl

la| = |w]| is clear as well. First consider A/ , 4. I want to show that

Apod C Ay gq if and only if [a] = [w| and a > w.

Since Zit = Al 4, it follows that p; (A’ ) € ZI1 if and only if |a| = |w| and a > w, so

a,rS nS
Al

a,rS

One has A} o4 C Fl(d) x G(|a],d), which is projective (see remark 4). Let I(X) denote the
ideal of homogenous polynomials vanishing on X, then I(A; o 4) D I(Ay, o 4) for a > w (Since
for fixed D, consider (D, W,0) € A , 4 and let (w); = Ule(uf)l denote a basis compatible with
D and W as in the proof of proposition 3.14, where Ule(u%)l denotes the basis of D;. Then

s C Zb, only if |]a| = [w| and a > w.

one can define a (D, W’,0) € AL ; 4: for each i such that a; > w;, a; = w; + 1, choose ji, ..., j
with aj, < wj, such that (uf + )\u%’)i’l for some A’s forms a basis of a W’ as required. Then
a polynomial vanishing on (D, W’ 0) for all A, already has to vanish on (D, W,0) . Hence the
inclusion follows.).

Let V(I) denote the vanishing set of an ideal, then V/(I(A} o 4)) C V(I(Ay, gq)) = m.
Next, consider the fiber of the projection p; over a point (D, W) given by

{(D,W,t) € A;rs,ns | p1(D,W,t) = (D, W)}.
So the first two entries are fixed and the fiber can be identified with
{t|(D,W,t) € T(d), a(ker t,D) = n®, a(im t,D) = r°}.
This is in the closure of
{t|(D, W' t) € T(d), a(ker t, D) =nM, a(im t,D) = rM}

( since S < M, one has rf < rlM , nf > nM and therefore A(N Sps € Z! . so for each t with

7 ) o, W

(D,W,t) € A;,rs,ns’ there is W/ with (D, W' t) € A;”s’ns. But then

(D, W' t) e {(D, W' t) € T(d) | a(ker t,D) = nM a(im t,D) =rM p(D,W' t) = (D,W)},
which can be identified with the closure of
{t|(D, W', t) € T(d), a(ker t,D) = n™, a(im t,D) = rM}.
So all ¢ lie in the closure of
{t|(D, W’ t) € T(d), alker t,D) = n™, a(im t,D) =™, o(W' D) = w}.)
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Now,
{t|(D, W’ t) € T(d), alker t,D) = n™, a(im t, D) =™, o(W' D) =w} € ZI,

by proposition 3.15, thus

{t|(D,W’,t) € T(d), alker t,D) =nM a(im ¢t,D) =rM o(W',D)=w} € Z,.

So it is proven that A;,rs,ns cZl. O
Given an algebraic group G acting on an algebraic variety X, the closure of an orbit O of G is
of course again G-invariant, hence a union of G-orbits. In fact, see [10, 8.3], O — O is a union
of orbits of strictly smaller dimension than O. This applies in particular to the situation here,
and I am interested in describing the induced partial ordering on orbits given by O’ < O if O’

is contained in the closure of O in more detail.

Remark 14. In a similar manner as in the proof, one can describe more generally some of the
AI

! /
ar’ n

It remains to consider the fiber. To each orbit I can associate a “generalised” lower oriented

1
w,r,n’

lying in the closure of A For one thing, |a] = |[w| and a > w needs to be satisfied.
(crossingless) matching by arranging the vertices and up and down arrows as usual and drawing
caps from the d;th to the d;th vertices for each basis vector of D;/D; 1 mapped to D;/D;_1

by some ¢ belonging to an element of this orbit (these matchings are no longer necessarily

crossingless, e.g. NG00 corresponding to

o O o O
o O o O
o O o O
o O o =

with standard basis and standard flag or N0 00 corresponding to

~
I
S o o O

0
0
0
0

o o = O

1
0
0
0

but I can let them have as few crossings as possible, e.g. 9 0 D rather than — D D)

/
a,r’,n’

Proposition 3.17. A’ , , C Al if all the diagramms corresponding to the orbits of A

a,r’,n w,r,n
are < some diagramm corresponding to an orbit of Al .., t.e. if ri < ryynl > n;Vi, and
1

la|] = |w|, a > w.

In particular, the < ordering on diagrams is a refinement of the partial ordering on orbits, i.e. all

/

the diagramms corresponding to the orbits of A ,

o are < some diagramm corresponding to an
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orbit of A’ = A’

w,r,n a,r’

v <A Proof: One has that if r; <r;, nj > n;, then A, ., , € Z,

w,r,n* w,r’

so for each ¢ with (D, W,t') € A, , _,, there is Wy with (D, Wy, t') € A But then

/ I ot
a,r’,n w,r’ n

(D, Wy, t') € {(D,Wy,t') € T(d) | a(ker t,D) = n, a(im t,D) = r, p;(D, Wy, ') = (D, Wy)},
which can be identified with the closure of
{t|(D,Wy,t) € T(d), a(ker t,D) =n, a(im t,D) = r}.
So all ¢ lie in the closure of
{t|(D, W' t) € T(d), a(ker t,D) =n, a(im t,D) =r, a(W',D) = w}.
Then again,
{t|(D,W',t) € T(d), a(ker t,D) = n, a(im t,D) =r, «(W' D) =w} € Z/,,

thus

{t|(D,W’,t) € T(d), a(ker t,D) = n, a(im t,D) =r, «(W/, D) =w} € Z,.

O
Define the irreducible components of T(d) to be the k-points of Z and denote them by Z.
Moreover, defining the dense points of Zy, to be the k-points of the dense subset A:N M pm Of

Z!,, these dense points are exactly the elements of Ay xM M.

Example 15. Consider the irreducible components:
The following tables illustrate the decomposition of the Zy into the Aw rn and the Ay
contained in Zy, — Zy, which the propositions above yield. d = (1,1,1), and the Ay yM pM are

colored blue and underlined.

w L the part of Zy, the propositions yield

(0,0,0) Ao0.a Zw

(0,0,1) A0,01),0d Zw U A0,1,0),0,a Y A(1,0,0),0,
(0,1,0)  A0,1,0),0,d Y A(0,1,0),(0,1,0),(1,1,0) ZwUA1,00)04

(1,0,0)  A(1,0,0),0.a Y 4(1,0,0),(1,0,0),(1,1,0) Zy

UA(1,0,0),(1,0,0),(1,0,1)

(0,1,1) Aw1,1),0d Zw U A1,01),0aYA1,1,0),04
(1,0,1) A,0,1),0,d Y A(1,0,1),(1,01),(1,0,1) Zw U A110)04d

(1,1,0) Ax1,0),04 Y A4(1,1,0),(1,00),(1,1,0) Zi

UA(1,1,0),(0,1,0),(1,1,0)
(1,1,1) A111)04d Lw
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d = (1,1,1,1), and again, the Ay, ,m M are colored blue and underlined.

w Zw the part of Zy, the propositions yield
(07 0? 0? 0) Aw,O,d ZW
(0,0,0,1) Aw04d Zw U A(0,01,0).04d

UA(0,1,0,0),0d Y 4(1,00,0),0d

(0,0,1,0) Aw,0,d Y Aw (0,0,1,0),(1,1,1,0) Zw U A(0,1,0,0),0.d

UA(1,0,0,0),0d

(0,1,0,0) Aw,0,d Y Aw (0,1,0,0),(1,1,1,0) Zw U A1,0,0,0),0d

UAw (0.1,00),(1,1,0,1)

(1,0,0,0) Aw0,aU Ay (1,0,0,0),(1,1,1,0) Zw

UAw (1,0,0,0),(1,1,0,1) Y Aw (1,0,0,0),(1,0,1,1)

(0,0,1,1) Ay o4 Zw U A@0,1,01),04
UA(0,1,1,0),0.d Y A(1,001),04d

UA(1,0,1,0),0d Y 4(1,1,00),0d

(0,1,0,1) Aw0d YAy 0,1,0,0),(1,1,0,1) Zw U A0,1,1,0),0,d
UA(1,0,0,1),0,a Y A(1,0,1,0),0d

UA(171’0’0)’0’d U A(171’070)7(0711070)7(1’17071)

(0,1,1,0) Aw,0,d U Aw,(0,1,0,0),(1,1,1,0) Zw U A(1,0,1,0,0d
UAw (0,0,1,0),(1,1,1,0) UA(1,1,0,0),0,a Y A(1,1,0,0),(0,1,0,0),(1,1,1,0)
(1,0,0,1) Aw,0,d U Aw,(1,0,0,0),(1,1,0,1) Zw U A1,0,1,0),0d
UAw,(1,0,0,0),(1,0,1,1) UA(1,1,0,0),0.a Y A(1,0,1,0),(1,0,0,0),(1,0,1,1)

UA(1,1,0,0),(1,0,0,0),(1,1,0,1)

(17 07 17 0) AW,O,d U AW7(0707170)7(1717170) Zw U A(lrlvovo)vovd
UAw (1,0,0,0),(1,1,1,0) Y Aw,(1,0,0,0),(1,0,1,1) UA(1,1,0,0),(1,0,0,0),(1,1,1,0)

UAw (1,0,1,0),(1,0,1,0)

(1a 1,0, 0) Aw,O,d U Aw,(O,l,O,O),(l,l,l,O) L
UAW7(1707070)7(1717170) U AW7(071707O)7(1717071)

UAw (1,0,0,0),(1,1,0,1) Y Aw (1,1,0,0),(1,1,0,0)
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(0,1,1,1) Ay o4 ZwUA1011)0d

UA(1,1,01),04Y 41,1,1,0),0d

(1,0,1,1) Aw,0,dY Ay (1,0,0,0),(1,0,1,1) Zw U A(11,01),04

UA(1,1,1,0),0d

(1,1,0,1) Aw0,d Y Aw (1,0,0,0),(1,1,0,1) ZwUA(11,1,0),04

UAw (0,1,0,0),(1,1,0,1)

(1,1,1,0) Aw0,d Y Ay (1,0,0,0),(1,1,1,0) Zw
UAw,(0.1,0,0),(1.1.1,0) Y Aw 0,0,1,0),(1,1,1,0)
Remark 15. Compare the part of Zy provided by the propositions to the h“,iv. For the case d = 3,

one can see from example 13 that the Ay oq added to Z(w) to obtain this part of the closure

correspond precisly to the fy 04 added to fw 04 to obtain hf,lv.

3.10 A Geometric Interpretation of the Canonical Basis Elements

In the following one wants to define a basis of T.(d) related to the irreducible components of
%(d) and the the canonical basis, thus obtaining a geometric interpretation of the canonical

basis.
Definition 3.18. Define ¢& = (hd)e.

Proposition 3.19. ¢& can be written as
d _ —1 nS—rS
Iw = Z (nrs,ns) (<> vw—rs)
S<M(d,w)
(recall definitions 3.9, 3.12).

P?”OOf.' g\(;iv = (h;iv)e = Zs(nrs,ns)il(’)/rs,ns (nﬂ,d(hgv)» = ZS(an,nS)il(’Yrs,ns (Ode))' I claim
that

S S

oSy s if S < M(d,w)

0 otherwise

VxS nS (ng) = {

From the graphical calculus in [6], it follows that if S < M (d, w), then
~ nS—rS w—rS\r wWT
(a5 ws) T((OF 0™ )7) = (O40V)

and other dual canonical basis elements (@“S_rsva)r, a # w —rS are sent to elements of the
form (Q4v2)", a’ # w. This yields

S S S S S S

(18 15 (O%0w), (VP77 0W 7)) = (GQvm, (s ) T((OF 0™ 7)) = (00, (V™)) = 1

and
S S S

<7rs,ns(<>de), (O 7)) =0 for all a # w — r>.
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Therefore
s .S
Vrs,ns (Ode) = <>n r Uy —rpS -

Similarly, one can see that
Yes ns (O%vw) = 0/if S £ M(d, w)

as in this case the image of (s ps)' is spanned by ©9v? with a # w.
Let me illustrate the graphical calculus used above in an example:
Let d = (3,2,4),w = (2,1,1), so

M(d,w) = L4
Then
dy d3
Q?d wo_ w
Let
S = 7
then )
ny —ry W_]
f?rs s [ dl 3
Therefore,

S

’~Vrs7ns (@de) = = @ns_rs pWr

S

80 (s 8) (O 770

culus follow. O

)") = (V99W)" and similarly, the other claims on the graphical cal-

Proposition 3.20. Writing $%vy as a linear combination of elementary basis elements, it
equals @%vy plus a linear combination of elements @3v, with a > w and |a| = |w| with coeffi-

cients in ¢ 'N[g™].
Proof: This follows from [6, section 1.5,1.6]. O

Example 16. Using Proposition 3.19 and example 14, I can compute the gf,lv for d = 3, 4.
d = 3: For w in the first row in the table of example 14, only the S in the first row are
S < M(d,w), so



If w lies in the second row in example 14, all S from the first two rows are S < M(d,w).

Therefore
g = 4776,%1(<>de) + 277(70,11,0),(1,1,0)(Q(I’O’O)UW—(O,LO))'
Similarly, if w lies in the third row, S < M(d, w) for all S from the first and third row, and

g = 4775,}1(<>de) + 277(71,10,0),(170,1)(Q(O’O’I)Uw—(LO,O))'

Again as in example 14, if d # (1,1, 1), only those w and M (d, w), that are admitted, are used
(so, e.g. for d = (2,1), the g& from the third row are left aside). Using the expansion of the
canonical basis in the standard basis calculated in example 13 (since hd = Mo, é(ode) and the
canonical basis of e.g. Vi ® Vy ® Vj is simply the standard basis), one thus obtains for ¢¢ (with
d=(1,1,1)):

90.00) = 4f(0,00),0,d
g

o1 = Hfon0a T 7 fo1004 + 0 fr00.0a)
g =4

(foa1),0a + 7 fa1).0a+ 7 2f1,1.0)04d)

croa

1,1)
9?1,171) = 4f(1,1,1),0,d
98)71,0) = 4(fi0,1,000a + ¢ f1,00),0a) + 25(0,1,0),(0,1,0),(1,1,0)
9?1,1,0) =4f1,1,0,0d T 2/(1,1,0),0,1,0),(1,1,0)
9?17070) =4f1,00),0,d + 2/(1,0,0),(1,0,0),(1,0,1)
921170,1) = 4(f(1,0,1),0,d + q_lf(l,l,o),o,d) + 2!}‘3(1,0,1),(1,0,0),(1,0,1)
d = 4: Similarly as in the case d = 3, one obtains that if w lies in the first row of the d = 4-part
of example 14, then
I = 575 a(O%vw),
if w lies in the second, third or fourth row, then
g = 515 q(O%vw) + 3n;&7nM(<>“M‘erw_rM)
(where M is from the second, third, or fourth row, respectivly). For w in the fifth row, one

obtains

d ~1/ad 1 1,0,0,1 -1 0
9w = 57]0,d(<> Vw) + 377(07170,0)7(171,071)(0( )UW—(O,L(LO)) + 77(1,1,0,0),(171,0,0)(0( )U(O))
and for w in the sixth row,

G = 51l g (O%ow) + 3100 1 ) (11,10 (OO0

Uw—(o,o,l,o))

(<>(0,0,1,1)

-1 ~1 0
+3110,0,0),(1,0,1,1) Uw—(1,0,00)) + 77(1,0,1,0),(1,0,1,0)(0( )“(0))

(if one labels the rows by i), i), ..., vi), then

0 <idi) < wi)
i) <iv) <wi)
i) <iii) <w)

for the crossingless matchings, which gives, together with the number of w in each row, the 7

and their coefficients)
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Theorem 3.21. g;iv is, up to a multiplicativ constant, the unique element of T.(d) satisfying

1. ¢4 is equal to a non-zero constant on the set A M of dense points of the irreducible

w,rM

component T
2. The support of g3 lies in Zy.

Moreover, the g3 form a basis of T.(d) and
<>de = g\(;ivv
extended by linearity, is a Uy(sla)-module isomorphism Vg, @ --- & Vg, — Te(d).

Proof: Since
Vg, @@ Vg, 0d To(d) N T.(d), Ovg h:,iv — gdw

are Ug-module isomorphisms, it is clear that the g4 form a basis and that the map given in the
theorem is an U;-module isomorphism.

It remains to prove the first part of the theorem. Surpressing the isomorphism 7, , in order to
simplify notation, I may identify fw rn with ®@%vy. To show uniqueness, consider a §d satisfying

the conditions of the theorem and let h9 € Ty(d) be such that
gx(ziv = (ilgv)e = Z'Yr,n(ﬁsv)'

Then
~d
Iw = E CLw,r,nfw,r,n-

Therefore, the value of §3 on Ay M pM s given by ay, M pmky oM v, One has

nM_ M M

,UW—I‘ )7’>

(where r stands for reversed, i.e. (@4wW)" = v%H "2 @ ... ® 4121 ) since

Qw M pM = <’7rM,nM (h?v)> (®

M_ .M
~ onVY—r
fw7rM7nM =Q Vw

(In more detail: g4 = (hd)e = drn Yen(hd), so the coefficient of

M_, M
n'—r -
Vn{w_r{w Q- Vng/f_nzc\/f >® Vw—rM = 1yM nM (fWJ.M’nM)

is given by inserting 7,m ,m(hg) into the scalar product ( where yrn @ Vi, ® -+ ® Vg, —
an—ﬁ Q- ® Vnk—rk))'
k.

w.rM pM being nonzero, the first condition in the theorem is equivalent to

~d M

(e g (A, (@™ v =myry 22 g

which is equivalent to
M M

h by nM_rM Mg
<hgv7 (fYrM,nM)T((® v ) )> 7é 0.
Since M = M (d, w), it follows that M (n™ — rM w — rM) has no curves and all down arrows

are to the right of all up arrows (it would have curves otherwise). After rotating this diagramm
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by 180°, but keeping the original orientation (such that arrows oriented up remain oriented up,
but all arrows are “below” the boxes), all down arrows are to the left of all up arrows. Then by
[6, section 2.3],

M_ .M M

(®l’l —r ,UW—I' M

)T‘ — (QQIIM—I'M UW—I"

)7"
and by the graphical calculus in [6] it follows that

M

R (Ve i [ IR (Vb

So condition 1 (stating that ¢g< is equal to a nonzero constant on Ay pM M) is equivalent to
(g, (V4™)7) # 0.

To satisfy the second condition, §& must be equal to zero on A, o v for all w # w' and

M’ = M(d,w’). In the same way as above, one shows that this condition is equivalent to
(hg, (Q%™)7) =0
for all w # w’. But this shows that

7d _d ad, _ .d ;d
hy = cy - O%vw = ¢4, - hy,

for some constant ¢d # 0. Therefore g4 is indeed unique up to a multiplicative constant. It only
remains to show that ¢g< fulfills the conditions. By Proposition 3.19, the value of ¢& on Ay vM pM

. . . M_ .M . . M_ .M
is equal to ky M pm times the coefficient of @™ ™" vy, in the expression of O™ 77w

w—rM
as a linear combination of elementary basis elements, and by [6, section 1.5,1.6] (or proposition
3.20), this coefficient is 1. Thus g& meets condition 1. Propositions 3.19 and 3.20 furthermore

show that g4 is equal to a linear combination of of functions of the form

— S_ .S
fa+rs7rsvns = (T,rsyns) 1(®n g 'Ua)
with § < M and Ja] = [w—1%|(= [a+15| = [w|), a > w—r5(= a+1$ > w). Then

Proposition 3.16 shows that the support of gf,lv lies in Zy. this proves the theorem. ]

Remark 16. Using 3.8 and Zy, C UW,7 /| =|w] Aw’ rn, it is clear that g4 lies in the weight space
corresponding to the weight d — 2|w|. Since e is a module homomorphism, the action of U, can

also be calculated on the h{ to obtain the action on the g& (see example 13).

Definition 3.22. There exists a scalar product on 7'(d) in respect to which the standard basis

is orthogonal, i.e. < fwrn, fw/ r'n’ >= d(wrn),(w ' n)-

Remark 17. Which Orbits are contained in Zy N Zy/? At the least all those whose diagram is
included in some diagram of an orbit in Z, and a diagram of an orbit in Zy.

In which relation do diagrams (or their cups) and the hd stand? M(d, w) corresponds to hS.
Can intersection of closures be calculated using scalar products of the hy (and how do these
scalar products look like?)? I do not think so.

How do dimension of orbits depend on number of cups in diagrams? If there are more cups,
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more diagramms can be included in the corresponding diagram. As seen in remark 14, inclusions
of closures of orbits correspond to inclusions of diagrams.

The number of different types of diagrams (ordered by their number of cups) of Vl®d corres-
ponds to the number of different irreducible submodules occuring in the decomposition into
irreducible submodules, e.g. Vi ® Vi = V @& Vo and there are the diagramms without cups
and one diagram with one cup, similar V1 @ V1 ® V1 = V1 & V5 & V3 and again there are the
diagramms without cups as well as the diagrams with one cup. For V®* = VZ @ Vi @ Vj,
there are the diagrams with no cups, with one cup, and with two cups. To see this, con-
sider the canonical basis. The d + 1 canonical basis elements corresponding to the diagrams
without cups form the irreducible submodule of largest dimension (i.e V;) and linear com-
binations with the other canonical basis vectors form the irreducible components of smaller
dimension (e.g. for d = 3, < <>dv(07170) — %de(o,og)yodvu,m) — ﬁ@dv(og,l) > 1} and
< Odv(l’&o) — ﬁ@dv(o’o,l), Odv(l,m) — %de(o,l,l) >22V}). The graphical way to describe the
decomposition into irreducible modules was used in [7, p.43] in the context of categorification

of tensor products of irreducble sls-modules.

4 Another Construction for a U,-Module

I want to introduce a more naive construction of a U;-module = Vy, ® --- ® Vj, using functions

on finite sets.

Definition 4.1. Let W = S; be the symmetric group and Sy, X --- x Sg, = Sq € W the

(Young) subgroup generated by {s1, - ,Sq;—1,8d+1" " »Sdi+dy—1," - } (where Sy is generated
by the d — 1 generators {s1, -+ ,84-1}). E.g. < 81,80 > X < 84> X < 8 > S3 X Sy X Ss.
Now let

B' = { complex valued functions on Sy/(S; x Sg_;)}
and

B = { complex valued functions on Sy/(S; x Sy x Sg_i—1)}.

Then a basis of B (resp. B“*!) is given by the set of indicator functions on Sy, (S; x Sd — 1)

(resp. Sq,/(Si x S1 X Sg—;—1)). All these sets of functions are algebras (isomorphic to copies of
C).

There are natural surjections

Wiie1 = W/(Si x S1 X Sg. 1)~ W/(Sis1 X Sa_i_1) = Wi

W/(SZ X Sd—i) =: WZ

For g € BY, j € {i,i+ 1} and f € B%T!, define g.f(x) := g(m;(x)); this turns B*! into a
BJ-module. All rings being commutative, B***! thus turns into a B* — B*T!'-bimodule as well

as a B! — Bi_bimodule.

Lemma 4.2. B""* s a free Bi-module of rank |(W/W;)/(W/W;ii1)| = [Wiiv1/Wil.
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Proof: As a B'-module, B%>"*+1 = @i-:l fuw; B® for a complete transversal (w1, -- ,w;) of W; in

Wi.i+1 and f, the indicator function of w (since gy,.f = 2221 Jww)- d

4.1 A Construction for a U-Module

Now let Cryne = @?:0 Bt —mod and set E := @?:0 E; and F := @?:0 F;, where
E; : B' —mod — B™ —mod, M — B @pi M

for all 7 < d and zero otherwise, and
F;: B —mod — B! —mod, M — B Y @z M

for ¢ > 0 and zero otherwise.

Theorem 4.3. Ko(Clync) = V1®d as Ul(sly)-module, where Ko = (free abelian group of iso-
morphism classes [M] of objects) modulo [B] = [A] + [C] if A — B — C is a short ezvact
sequence, so in this case it is enough to say if B= A ® C.

A proof will follow later.

Remark 18. Ko(Crunc) is a Grothendieck group. Actually, I consider the group algebra of
Ko(Ctune) over C.

Claim: this generalises to Vy, ® --- ® Vg, by taking functions on UfZO(Sd\Wi).
Definition 4.4. Set
BY = {C-valued functions on Sq\.Sq,/(S; x Sg_i)},
similar B%*1 Then B” « B, as
BY={C-valued functions on Sg,/(S; x Sq_;) that are constant on left Sg-cosets}.

A basis of B? is given by { fu }wew,, where f,, is the indicator function of the coset w, i.e. fy,(z) =
(5w,2- Then Bi/ has a basis Corresponding to {ZaEde fa}we{system of representatives of cosets of Sq in W;}*
I get
e ﬂ—z,'-&-l
Wiiv1 —= Sa\Wiiy1 — Sa\Wit1
x
Sa\W;
= ®?:0 B —mod,

I can define the action of E and F as before. Any B’-module is also a B”-module with the

and as before, I can make B! and B! into a BY-module. Setting C?, .

restricted action. Vice versa, for a BY-module M, I can let f,, € B act as m Zaesdw fa- So
B — mod <> B" — mod.

Using B%*! for the action of E, I, the correspondance between B‘-mod and B”-mod commutes

with the action of F, F', thus yielding

Ofunc (j’ O}unc
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and
KO( Cfunc) :) KO(C]/”unc)

On the other hand,

Definition 4.5. For a = (a1, -+ ,a,) € {0,1}", let va = Vg, ® -+ @ v,, € V2" be the corres-
ponding basis vector.
Then define
Ty Vl®" —V,
by

ﬂn(va) = v‘a|.

This gives the projection 7g, ® --- ® mq, : Vl(dﬁm+dk) Vg, ®---0Vy,.
Furthermore define
tn Vo — Vl®"

by

tn(vg) = Z Vg.

la|=F

Thus one obtaines the inclusion g, ® -+ ® tg, : Vg, @ -+ - @ Vg, — ‘/1(d1+"'+d’“).

The composition ¢, o m, = p, is the Jones-Wenzl projector.

This yields
S Kol

U’IIC)

IRe 2

(2)
Vi @@V < Ve

So how is the isomorphism ¢ on the right defined? Can it be restricted to an isomorphism on

the left?

To answer these questions, I first need to define bases of Ko(Cfync) and Vl®d.

A basis of Ko(Crune) is given by the isomorphism classes of simple modules. Since Cpypne =
@le B?—mod, these are simple modules over the B*. Addition and multiplication being defined
pointwise in B, I have f,, fu/ = Swuw fw and Y fi, is the identity element of the multiplication,

and thus for some simple B’-module V and v € V,
fio-(0) = fuw-(v), fu(fw V) = 6ypuw fuw-v and v = wa.v.

So, V being simple, V =< {v, fyv | w € W;} >c.

Therefore dim V' < |W;|. However, f,,.v would span a 1—dimensional subspace of V', so V must
have been 1-dimensional from the beginning. Two 1-dimensional irreducible modules are not
isomorphic in general as Bi-modules, e.g. take V = {Cv | f,.v # 0}, V! = {CV' | fy v #
0}, w # w'. Then f,.V # 0 = f,,.V’. So the isomorphism classes of simple modules are given as

the 1-dim. modules where one of the f,, acts nontrivialy, and they can thus be parametrised by
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the f,. So write Vi for the simple module corresponding to f,, € B® (a 1-dimensional module
where two different fy,, fur act nontriavially cannot occur, as then f,.v = Av, f,,.v = pv, but
Juwfw = 0).

Similarly, a basis of Ko(C%,,,.)
for some v € V and w € W, ngw = {Cv | {(Xuesyw fa)-v # 0}. Then V! is mapped to this

Vsi’dw under the correspondance explained above (4.5), for all a € Sqw, and VSZ"dw is mapped to

is given by the isomorphism classes of simple B”-modules. Then,

Pacs deai. It remains to find a nice basis for Vl®d.

Remark 19. [4] Recall the Schur-Weyl duality between GL,, and Sy: Let V' be a n-dimensional
vector space, then G'L,, acts on V¥ by g.(v1 @+ ®vg) = g.v1 @ - - - ® g.vg and Sg by permuting
the entries. Schur observed that the centralizer algebra of each of the two actions equals the
image of the other action in End(V®?) in characteristic zero. Schur and Weyl used this to
obtain information about representations of GL,, from information about representations of Sy.

A similar correspondance has been found between s, and S; and both actions commute.

Sq acts on V1®d by permuting the entries, i.e
Vip @+ @ Vig. T = Vi) @ @ Vi,

and thus V1®d can be decomposed into

d d
V1®d = @ < U Vi; & - Qv >c= @(Vl(gd)%;d
7=0 Zf=1 u=j j=0
(i1 € {0,1}, (vo,v1) is a basis of Vi and (V;*%)a;_g4 is the weight space of V;*" associated to the

weight p = 2j —d, as K acts as 1 on v; and as —1 on vg) and

Xn — ) . ~ Sq
(‘/1 )2j7d =< U vzl - ® vld >(C_ 1 TSJ‘ XSd,j .
E?:l 4=y

Recall the definition of induced action:

Definition 4.6. Let G be group with subgroup H, and {t1,--- ,t} a fixed transversal for the
cosets of H, i.e. G = J;t;H. Then for a representation Y of H, the induced representation
Y 1% is given by Y 15 (9) = (Y (¢; 'gt;))i; (as a matrix in the basis given by the transversal),
with Y(g) =0 for g ¢ H.

In this particular case, 1 ngx s, , is aright Sg-module with a basis given by the cosets {t1, -, 4}
for a fixed transversal {t1,--- ,t;} for the cosets of Sy, (S; X Sg_;). Then t;.s = t;s for some
s € 8y.

The induced representation 1 ngx Sy is isomorphic to the representation
V(i’dfi) = (C{Si X Sqg_imi, -, 5 X Sd—iﬂ'l},

where {1, -+ ,m} is a transversal of S; X Sy_; in Sy, and Sy acts on the basis elements S; X Sg_;7;

by multiplication from the right ([20, Prop. 1.12.3]).
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Then I can identify
< U wweou,>c
iy =]
with V04=3) (4= ig cyclic ([20]), so I can just choose one (0, 1)-sequence to correspond to

(1)S; x Sq—;, for example let
Vi @ QU =01 Q- RV QR - ®up=(1,---,1,0---,0)
correpond to (1)S; x Sg—;. Then
Vig @+ QUi T =i ) @ QU

correponds to S; X Sq_;7.

So as a decomposition, one gets precisely the induced trivial modules for the Young subgroups
Sz' X Sdfi-

This action can be generalised to the Hecke algebra:

Definition 4.7. [22] The Hecke algebra Hg over Z[v, v~!] (with v generic) associated to Sy is the
associative algebra with generators {75 | m € Sy} and relations T, = T T, if [(7) +1(0) = l(70)
(where [ is the usual length function given by a shortest representation as a product of simple
reflections (i,i + 1)) and T2 = v=2T, + (v=2 — 1)T} for all simple reflections s € Sq (v™2 = ¢
yields the version of the definition of Kazhdan and Lusztig).

Define H; = vTy, then H2 = 1+ (v ! —v)H, (where 1 = T,) and H;! = Hg + (v — v~ 1), and
the Hg generate Hy as well.

Remark 20. It follws from Lusztig’s version of Tits’ deformation theorem ([16, Theorem 3.1}),
that the group algebra of S; over Q(q%) may be embedded in the Hecke algebra H4(q) of Sy
(with ¢ € C) and 7Sy may be written as linear combination of the T),, v € Sy. Since {m € Sy}
forms a basis of Sy and {T}, | v € Sy} a basis of Hy(q) as @(q%)—vector space, one can invert
this and write the T}, as linear combination of the m € S;. Then the action of S; on V1®d can be
extended to an action of the Hecke algebra. However, this isomorphism is not useful for explicit

calculations.

For some S\ C Sy (e.g. A = (i,d — 1)), define the subalgebra H(S)) of H, generated by the
Ts, s € Sy. Since H? = 1+ (v! —v)Hs < (Hs +v)(Hs —v™') = 0, there is a surjective
Z[v, v~ 1]-algebra morphism H(Sy) — Z[v,v™Y], Hs — v~! for s € S a simple reflection. This
turns Z[v,v~!] into an H(S))-bimodule where H; acts as v~!. This can be induced to a right H4-
module Z[v, v™!] ®(s,) Ha With basis given by {1 ® Hy,} for a fixed transversal t = {t1,--- ,#;}
for the cosets of S\\ Sy (where H, := UZ(W)TW). Choose the transversal such that the t; have
minimal length. Then the action of Hg is given by

1® Hy nset,ms>m
(1®Hx) Hi=¢ 1@ Hs+ (v —v)H, ms€t,ms<m
v 1(1® Hy) TS ¢t
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(from 7s ¢ t, it follows that s = rm for some simple reflection r € Sy, and so 7s is in the same
coset as 7) [22, chapter 3]. Notice that for v = 1, one obtains the action of the group algebra on
1 Tg‘i again (when identifying H with s) and Z[v,v~!] corresponds to the trivial representation
for S).

Remark 21. [4] Jimbo [12] and (independantly) Dipper and James [3] observed that there is a
g-analogue of V®? and the mutually centralizing actions of GL,, and S; on V®¢ become mutually

centralizing actions of Ugy(gl,,) and the Iwahori-Hecke algebra #4(q).

Example 17. Consider
Vi@ VA= < (0,0),(0,1), (1,0),(1,1) >=< (1,1) > & < (1,0), (0,1) > & < (0,0) >

as So-module ((z,y)=v; ® vy, (vo,v1) being a basis of V;). Then 1 Tg?xsl is a right Sy-module
and 2-dimensional as C-vector space with basis given by the transversal {1,5 = (1,2)} and the

operation of (1,2) in this basis is given by

01
(o)
so (1,0).(1,2) = 0(1,0) + Id(0,1) = (0,1) and vice versa. Thus the Se-module < (1,0), (0,1) >
corresponds to 1 ngx s, (which is a sum of sign representations for S, namely < (0,1)+(1,0) >
@ < (0,1) = (1,0) >). As Sy x Sy = S5 has transversal {(1)} in S, 1 ngxso ((1,2)) =1(1,2) =
Id. and similar for Sy x S, so < (0,0) > and < (1,1) > correspond to the induced trivial

representations of Sp x Sy and Sy x S2. The operation of Hg, on the H4-module induced from
the trivial representation of H(S; x Si) in the basis {1 ® He, 1 ® H; 9)} is given by

0 1
1 vi-w .

So a nice basis (the standard basis) for the induced modules is given by the S; x Sq_;7;. I have
precisly
Wi = Sa/(Si x Sg—i) = {m1,--- ,m}

(V(id=i) — C{S; x Sg—im1,--+,Si X Sq—;m}, where {my,--- ,m} is a transversal of S; x Sy_; in

Sg4) and the isomorphism ¢ in (2) is defined as sending V,, to S; x Sg_;w.
Proposition 4.8. The map defined thus is indeed an isomorphism.

Proof: E.V = B¥"*l®p Vi is a B l-module and can thus be decomposed into a direct sum of
simple B'*!'-modules. Then ijl is a summand if and only if ffjl € B! acts nontrivially on
E.V}. Since the action of B! on B¥*! is defined as fit!.g(x) = fi*(m1(x)) for fit! € B
g € B¥"*and o € W; 41, it follows that f2i BY 4@y Vi = Fazt ) @B Vi =1®p:

have BV, = 3 i1y isics Vet = @ Y(E.S; x Sq_p.w), so all the f4+ and no other fif!
should act nontrivially on E.V;. Therefore one w; in fmow_ll (wr) = Zj f(zw,-) should equal w

it
and none for w' # wrvVr = (i+1,5), j > i+ 1.

fm- c>7r;+11 (w’)"
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Now W;={A, V}-sequences of length d with i-times A and d—i-times V (identify e=A---AV -V
and let W; act by permuting elements of the sequence). Then W; mgﬁ;l Wit1, where a {A, V}-
sequence of length d with i-times A and d—i-times V is mapped to the sum of all {A, V }-sequences
of length d with ¢ + 1-times A and d — ¢ — 1-times V obtained from the original sequence by

. .. TOT 41 i1
converting one V to a A. Similarly for W;1 1 —" W;. Then ZT=(i+1,j),j2i+1 firl = meow;l(w)
and >, (i41,)<i+1 fi, = fmow;fl ()" The desired result follows for the action of E (since

fﬂloﬂ1+1( T Zu:(i+1,j),j§i+1 forrw = Zy:(i+1,j),j<i+1 farrw + fipr and fi, = fi,, and for wr #

wr in Wiy1 with 7 as before, w'v # w in W;) and the analogous result for F' follows using
1
ZT (7’+17] 7]>Z+1 fZ+ - fTri+lO7Ti_1(w)' D

Example 18. Let d =3 and ¢ = 1.
Then

= 53/(51 X 52)5{151 X SQ, (1,2)S1 X Sz, (1,3)51 X SQ}
= {{L (27 3)}, {(17 2)7 (17 2)(27 3)}7 {(173)7 (17 3)<27 3) = (2, 3)(1, 2)}}

and

WQé{ISQ X Sl, (2,3)52 X Sl, (1,3)52 X Sl}
= {1, (1,2)},{(2,3),(2,3)(1,2)},{(1,3), (1,3)(1,2) = (1,2)(2,3)}},

and WLQ = Sg.

Let w = (1,2). Then f, .1, = fo+ fi and £, o (w(2,3) = = fuom t flia) = fio T [l 5 and

: i +1 i+1 H—l
indeed BV, =" __ (i41,5) j>i+1 V =V Vi)

In order to restrict the isomorphism in (2) to Vg, ® --- ® Vg, and Ko(C},,,.), I need to check
that the images of the projection maps on both sides correspond. Since the inclusion maps are

injective, it is enough to show that the isomorphism commutes with the composition, i.e.
poLom=1g @ Qg 0Tg, @+ @ mg, ©P.

Let v, ® -+ ® vq,=5; X Sqg—jw, i.ea=(1,---,1,0,--- ,0)w and vq, ® -+ VU, = (V1 @ -+ ®
V] ®Uy ® - @vg)w. Then

Ty @+ @ Ty (Vay @ -+ @ Vgy) = ®U\az|
and
Ldy @+ @ g, <®i‘€:1 v|ai|)
= ®?:1 Z|éi|:|ai|véi
= Zéza(a),aesd ®f=1 Va
(Set ag ;) = (ai,--+,a;) and al = A(dy 4 tdy 1 +1,d1++d;)), @S 0 € Sq precisely means that

k k
@ @, (Qia) = @) > va
=1 |at|=la’|
Furthermore, 7(V}}) = Véédw with v € V! and L(Védw) = Boesqw V-
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Example 19. d =3,d = (2,1).

Ty @ 71 (V1 ® vy ® vg) = ®?:1 Yjai|
= v1 ® g .
Then
2@ u(v1 ®vo) = Y jaizy Vai ® Djaij=o Vai
(v(1,0) + v(0,1)) @ V(o)
= 11 ® vy ® v+ v v ® Vg

Example 20. Let d =3,d = (2,1).
Then S(51y = {(1,2) x (3),e} and o(7(VY)) = V] + 1/'("1’2)X(3).

So both maps correspond to one another up to constants and since ¢ is injective on both sides, the
images of the projections must already correspond to one another. Therefore the isomorphism

from (2) can be restricted as claimed.

4.2 A Similar Construction for U,

Again, one can define bases of V1®d and Ko(Crync) as well as their subspaces Vg, @ -+ @ Vg,
and Koy(C/

func

) as before. To pay reference to the modified action induced by the ¢ in Uy, the

projection and inclusion maps however are changed sligthly.

Definition 4.9. For a = (a1, -+ ,a,) € {0,1}", let va = v4, @ --- @ vy, € V2™ be the corres-
ponding basis vector.
Then define
Ty V1®" —V,
by

—l(a)

1 _
ﬂ'n(va) =q |:n:|v|a| =q l(a)v\a|

where [(a) is equal to the number of pairs i < j with a; < a;. This gives the projection
di4--+d
gy ® - @mg, VT SV 0@ vy,

Furthermore define
bn 2 Vi — V1®”

by
ln (vk) = Z qb(a)va

la|l=k
where b(a) = |a|(n —|a|) — I(a), i.e. the number of pairs ¢ < j with a; > a;. Thus one obtaines

the inclusion

Ldl®'._®[/dk:Vd1®_'.®vdk_>‘/1(d1+~.-+dk)'

The composition ¢y, o T, = p,, is the Jones-Wenzl projector.
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Similarly, map the class of the Bi-module V;! to the class of the B%*!l-module Vg;dw multiplied
by the same constant as ®§:1 Vjai| in the case of 74, ®- - -®7g, (va), where w should be choosen as
representative of minimal lenght of the coset in W; and a = w(1,---,1,0,---,0) and map V§ w

to Bucs de (with some constants A\, corresponding to the constants in the case of 1g, ®- - - ®1tq4, ).

Example 21. d =3,d = (2,1).

m @ (0 ®@u @) = Q2 q L@ ){ Ulail
R

= ¢ pru @ fgv
I
= q_3 [5] V1 & Vo
1
= q7° qqz_qq—z V1 & Vo

Then ) A'
,3ﬁ Z\éi\:l qb(a )Uéi () Z|;}_i|:0 qb(a )Ué
*3ﬁ(qb(1’0)v(1,0) + qb(O,l)U(O’l)) ® qb(O)U(O)

73[%](610(1,0) +v(0,1)) ® V(0)

2301 © v @ v + ¢ v @ v © g

t2 ® 11 (g o1 ® vo) =

q
q
q
q

How should the action of U, be defined such that so Vi +— (S; x S4_;)w remains an isomorphism?

E(Sz XSd_Z')w = A(d_l)E-(Ual ® . '®Uad) — Z;l:]_ Kval ® . ‘®Kvaj71 ®Evaj ®Uaj+1 ® ° '®vad =

Z;’lzl Mgy @ - ® ¢ g, ® [1+2aj + 1} Vaj+1 @ Vayy @ ® g, (Let o = aj — do,a;, 50
aj € {1, —1}).
Then

BVig= Yiig=res, a7 [H%_O + 1} Vit
= Z;?:Hl ¢ Uy @ @uRUyR-- Va;_1=0
®Va;+1=1 ® Vaj,1=0 @ - ® Vgy=0
= 2?21 g gy Q@+ @ YT g @ Vgj4+1 B Vg @ @ Vg
(a=(1,---,1,0,---,0), |a| =)

and E.V,! should be

. N . . 1+aw w—1(; =0 .
EVJ} — Z(w—l(i+1),w—1(j)):a,(i-‘,—l,j)esd_i q (J—1—i—2bjy1,5(w)) |: ( 5 (€))] 4 1] VJZQJEI
= ZT:(i—i-l,j)eSd_i qi—(j—l—i—QbiH,j(w))VJ]j_‘l

) . S Qi (1) Qw(w=1(5)-1)
(w1 (1) w1 () =0 (4 1.j)eSa_s Vaymy & - &4 7T a1y 1)

P>

Va1 H1=1 O Vay o1y © 7 @ Cautd)
o d o (i QX ()
= Zj:l q w(l)vaw(l) ® @ gl 1)yaw(j71) ® [7 + 1} Vayyj)+1 ® Vay(im R ® Va4

(a=(1,---,1,0,---,0), |]a| = 7).

(let b; j(w) denote the number of I < i such that w(l) > j, and cw = wr ).
This shows how the action ought to be defined in order for (3) to be a commutative diagram
and ¢ an isomorphism. It remains to interprete this action in some natural way. By adapting
the action of B, B! from left and right on B%*1 the action of E,F on B! Bl can be
deformed such that E can again act as E.V) = B! @p Vi (let fiflg := ¢t f

w)’
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g.fl = g T 2bitrisa(w) fﬂ;1 to obtain the action of E, and use an analogous approach for the
action of F'; I need fmor[fl(wf) - QQHI_J_%HM(MJ%+Zl<z‘+1,u=(l,z’+1) Qvfl forw = (i+1,5),

and use bi+17]’(w) = bi+17i+1(w7') for 7 = (’L + 1,]))

Remark 22. (this was used in the calculations above)

wl(j)th i+1th jit wL(i+1)th
a—= (al = 1’ 7aw71(j)7... , A = 17ai+1 :0, ’aj :07 ?awfl(i-‘rl)?”' 7ad:0)
w_l(j)th 7;_‘_1th jth ”Ll)_l(i-'rl)th
wa = (aw(1)7 , aj :O’ 7aw(i)7aw(i+1)7... ’aw(j)’... R a’b-‘rl :0’ ’aw(d))
w*l(j)th i+1th jth ,wfl(z'_i_l)th
owa = (aw(l), ey @ip = 0,00 y Qi) Aw(id1)y " 5 Quo(f)s " 7 s Aj = 0 - 7a‘w(d))
wt ()"
BEvwa = X w1(41)w-1()) =0 (i+1,/)€Sa_s B -Vay) @+ @ Eva=0 @ -+ @ Va,q,
Z'+1th jth w*l(i_;'_l)th
QVayiy1y @ " B Vapy @ - @ Vagyp1=0 Q- & Vq,,
w—l(j)th
- Z(w‘l(i+1),w—1(j))=a,(i+l,j)65d7i KVayp ® - ® E'”%<w<w71<i+1>>>:j:0 & @ Vay
’i+1th jth w*l(i_i_l)th
QVay 1) @+ Vg @+ Q@ Y, ((w=1(j))=i41=0 Q-+ @ Vg,

of course the position of w™ will vary and may e.g. lie to the right of the i*" position...
(of the position of w™!(j) will vary and may e.g. lie to the right of the i*" positi
(w™' (i + 1), w1 (j)) = o, (i + 1,5) € Sy_; precisely means that the action of E on the w'(j)™"
position is not zero, i.e. the basis vector in this position is vy and not vy).

So I have
— K()(

)

e 3
g
2

(3)

1~

“

Vi, @@ Vg, v

In order to restrict the isomorphism in (3) to Vg, ® -+ ® Vg, and Ko(C},,,.), I need to check
that the images of the projection maps on both sides correspond. Since the inclusion maps are

injective, it is enough to show that the isomorphism commutes with the composition, i.e.
d)OLO’]'(':Ld1®...®Ldko7Td1 ®®7‘[‘dko¢

Let vg, ® -+ ® vg,=wS; X Sg—j, iea=w(l,---,1,0,---,0) and vy, @ -+ vy, =wW(V1 ® -+ @
1)1®Uo®"'®v[)). Then

k
i(ai 1
7Td1®"'®7rdk(va1®”.®vad):®q @ d. ,Ulai‘
i=1 [|ali|]

and

- q_l(ai)m > ot o "% v

o1



(Set ag;jy = (as, -+ ,a;) and a’ = A(dy 4t diy+1,d1+-—+d;))> a8 0 € Sq precisely means that
o(a) =ain

k

tgy -+ ® Ldk(® R Vjai|) ® g —— Z ¢"@ vy
\a’!] [Ia’\]

i=1 jat|=la]

Furthermore, w(V}}) = Védw with v € V! and L(Védw) = Dresquw V-

So both maps correspond to one another as for the U-case, and since ¢ is injective on both sides,
the images of the projections must already correspond to one another (in fact, the projection
and inclusion map for KO(C}W .) was chosen precisely so that it would correspond). Therefore

the isomorphism from (3) can be restricted as claimed.

5 A Construction for a U,(s02,)-Module

A similar construction is possible for type D.

Definition 5.1. The (even) special orthogonal Lie algebra s0,, the finite dimensional simple

Lie algebra of type D,, (n > 4), is defined as

A B t t t
509, =1 = c D € Mopxon(C) | A,B,C,D € Myx,(C), A*=-D,B"'=-B,C"'=-C;.
The associated quantum group, the quantum special orthogonal algebra U, (s02,), is defined

as the quotient of the k = C(q)-algebra with unit generated by E,, Fy, K., K, ', a € I =
{i,k,j1...,jn—2} with relations

KK, =1 KoBy = @0 BK, EuFy — FE, = 65554
K. Ky = KK, KoF,=q “@FK, Va,be I

by the ideal generated by

E2E, — (¢ — q 1)E,EyEy + EyE2 F2F, — (@ — ¢ DFFFy + BF2 Cyp =1
E,E, — E,E, F,F, — F,F, Cup = 0.

Caq = 2 and Cyp, = —1 if there is an edge between a and b in the Dynkin diagramm of type D,,,
else Cyp = 0.

Remark 23. The Dynkin diagramm of type D,, is given by
L= Jn
\. . .
Jn—2—Jn-3— " —]1
/

k= jnfl

Now define the vector representation for Ug(s02,):
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Definition 5.2. [9] Let V = (@?:1 kvi) @ (@?:1 k:v;-) be a 2n-dimensional vector space.

Introduce a linear ordering on the index set by
n — —
1<2<--=<n<--=<2=<1

(Notice that the order between n and 7 is not defined). The U,(so02,)-module action is defined

as follows:
quj ifj=a
g lv; ifj=a+1
quj ifj=n—-1l,a=n
Kqvj = q_lvj ifj=a
quj ifj=a+1
¢ lv; ifj=n—T,a=n
[ else
(v, ifj=a+1l,a#n
v ifj=a,a#n
Eqvj = v, ifj=n—-1a=n
Up_1 fj=ma=n
0 else
fva+1 ifj=a,a#n
vg ifj=a+1l,a#n
Fov; = v,— ifj=mn,a=n
Ui ifj=n—1,a=n
0 else
(so E,Fyvj = vj = F,E.v; or zero and K,vj = glhawt(v)) for wt(vy) = €, wt(vj—-) = —¢; where

€;(A) = a;; for a 2n x 2n-matrix A and h, the ath diagonal generator of s0a,,).

Then a basis of V&4 is given by the vy = v,,® - ®v,,, witha; € {1 <2 < - <%< <2< 1}
Again, S; can act by permuting the indicies and if x = ([{a; = 1}|,...,|{a; = 1}|) denotes
the type of a, then V¥ = @ {va | type(a) = x}, is a decomposition into Sz-submodules.
Such a submodule {v, | type(a) = x}j is isomorphic to 1 Tgi (Sx = Sz X -+ X Sg,,), as
in the case of slo. Furthermore, I can again identify a basis element wSx with a simple B*-

module V¥,

Tx * Sd/Sx NSy = Wx,x’ — Wk.

How do the elements of U, act on these modules? The comultiplication is given by

where B* is the space of maps S;/Sx — C, as before. Furthermore, I can define

Ki'— KFoKF!
A: E,— K,QE,+E,®1
Forr 1QF,+F,®@K;!
and so
d—1
A(CH)(EG):ZKG®---®KQ®EQ®1®---®1
=1

<

53



and similar for the other generators, as in the Ug(sly)-case. So v, of type x is mapped by

E, to a sum of vy of type X' = (z1,..., 24 + (1 = d0,2,,1), max{zar1 — 1,0}, ..., 22pn—q + (1 —
00,23 —as1)s MAT{T2n—ar1—1,0}, ..., 22,), or to zero if 411 = 0 = T2,_q41, if @ # n, and of type
X' = (x1,..., o1+ (1=002,41)s Tn+(1=002,,0), max{zny1 —1,0}, maz{zpro—1,0}, ... 22p),

or to zero if 11 = 0 = zp49, if @ = n. Then a submodule {v, | type(a) = x}; = 1 Tgi is a
weight space and the type x again determines the weight.

Similarly, B*-modules can be mapped by E, to B¥ -modules as in the Uy (sl2)-case, but of course
this ought to be interpreted in some fashion perhaps similar to the case of sly (If I consider the
case of U(s0,,) rather than Uy(sop,), E; acts as E;.Vy = Vo = B** @ px Vy; one must of course

choose the x” accordingly.).

Remark 24. In the case of so,,, the Schur-Weyl duality becomes a duality between the Lie
algebra and the Brauer algebra (instead of the group algebra of S; or the corresponding Weyl
group for type D) [8, section 10.1]. The Brauer algebra is slightly larger than the group algebra
of the symmetric group. For the quantum case, it is an open question how the problem may be

solved in general.
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