Geometric Realisations for Tensor Products of Representations of $U_{q}\left(\mathfrak{s l}_{2}\right)$

Ulrike Faltings
Born 24th July 1988 in Princeton, U.S.A.

12th December 2012

Master's Thesis Mathematics

Advisor: Prof. Dr. Catharina Stroppel
Mathematical Institute

Contents

1 Introduction 1
2 Finite Dimensional Representations of $U_{q}\left(\mathfrak{s l}_{2}\right)$ 2
2.1 Some Definitions 2
2.2 Diagrammatics of Intertwiners 7
3 A Geometric Realisation of the Canonical Basis 10
3.1 The Tensor Product Variety 10
3.2 Explicit Examples 12
3.3 Relative Positions of Subspaces 14
3.4 The Spaces $T(\mathbf{d})$ and $T_{0}(\mathbf{d})$ 18
3.5 Relation between $T_{0}(\mathbf{d})$ and $V_{d_{1}} \otimes \cdots \otimes V_{d_{k}}$ 21
3.6 Examples 22
3.7 The Space $T_{c}(\mathbf{d})$ and a Canonical Basis of It 25
3.8 Examples for the $M(\mathbf{d}, \mathbf{w})$ and Corresponding $A_{\mathbf{w}, \mathbf{r}^{\mathrm{M}}, \mathbf{n}^{\mathrm{M}}}$ 30
3.9 A more Detailed Description of the Irreducible Components 33
3.10 A Geometric Interpretation of the Canonical Basis Elements 37
4 Another Construction for a U_{q}-Module 42
4.1 A Construction for a U-Module 43
4.2 A Similar Construction for U_{q} 49
5 A Construction for a $U_{q}\left(\mathfrak{5 o}_{2 n}\right)$-Module 52

1 Introduction

In the first part (section 3), Savage's result [21] on a geometric approach to realising the canonical basis of finite tensor products of integrable highest weight representations of $U_{q}\left(\mathfrak{s l}_{2}\right)$ is presented, but I have added some explicit examples and an explicit geometric description of the varieties used. Then, not following [21] anylonger, I find an alternative geometric realisation of finite tensor products of integrable highest weight representations of $U\left(\mathfrak{s l}_{2}\right)$ and $U_{q}\left(\mathfrak{s l}_{2}\right)$ and their bases with an analogue for type D (section 4 and 5). In the first part, a tensor product variety $\mathfrak{T}(\mathbf{d})$, a special form of Nakjima tensor product variety, is considered first over \mathbb{C}, then over the finite field $\mathbf{F}_{q^{2}}$ with q^{2} elements (or its algebraic closure $\overline{\mathbf{F}}_{q^{2}}$). This allows me for example to count points and is used in one proof (Proposition 3.8). However, the combinatorics do not depend on the particular q, so q can be treated as a variable, which becomes the variable q in the quantum group. A tensor product variety associated to the tensor product of a finite number of integrable highest weight representations of a Lie algebra \mathfrak{g} of type $A D E$ was defined in [18] and [19], though over \mathbb{C}. For $\mathbf{d} \in\left(\mathbb{Z}_{\geq 0}\right)^{k}$, an $U_{q}\left(\mathfrak{s l}_{2}\right)$-action on the space of invariant functions, $T(\mathbf{d})$, (with respect to a natural group action) from $U_{q}\left(\mathfrak{s l}_{2}\right)$ into $\mathbb{C}(q)$ is presented. Two distinct
subspaces of invariant functions, $T_{0}(\mathbf{d})$ and $T_{c}(\mathbf{d})$, isomorphic to $V_{d_{1}} \otimes \cdots \otimes V_{d_{k}}$, are introduced. I also present a natural basis for each of them: a basis B_{e} corresponding to the elementary basis, and a basis B_{c} corresponding to Lusztig's canonical basis [17]. B_{c} is characterized by its relation to the irreducible components of $\mathfrak{T}(\mathbf{d})$. These irreducible components, defined over $\mathbb{F}_{q^{2}}$, are defined as the $\mathbb{F}_{q^{2}}$-points of the irreducible components of the corresponding variety $\mathfrak{T}(\mathbf{d})^{\prime}$ over the algebraic closure $\overline{\mathbb{F}}_{q^{2}}$. Distinct elements of B_{c} are supported on distinct irreducible components of $\mathfrak{T}(\mathbf{d})$ (where the supports are not necessarily disjoint) and are nonzero on the dense points of this irreducible component. The dense points are defined as $\mathbb{F}_{q^{2}}$-points of certain dense subsets of the irreducible components of $\mathfrak{T}(\mathbf{d})^{\prime}$. The notation in the first part is mostly taken from [21]. The following conventions will be used throughout the thesis, unless otherwise stated. The topology used will always be the Zariski topology and a function on an algebraic variety will be a function into $\mathbb{C}(q)$, the field of rational functions in an indeterminate q. The span of a set of such will be their $\mathbb{C}(q)$ span. The support is defined as $\{x \mid f(x) \neq 0\}$. At several instances, the graphical calculus of intertwiners of $U_{q}\left(\mathfrak{s l}_{2}\right)$ will be used. This was introduced by Penrose, Kauffman and others, and is expanded in [6], see also [7]. In subsection 2.7, this is explained a little as well.

In the second part I return to \mathbb{C} as ground field and define B^{i} as the set of functions from $W_{i}=S_{d} /\left(S_{i} \times S_{d-i}\right)$ to \mathbb{C} and $C_{f u n c}$ as the direct sum over all i of the sets of B^{i}-modules. My main result is Theroem 4.3: I define an isomorphism between $K_{0}\left(C_{f u n c}\right)$ and $V_{1}^{\otimes d}$, sending a natural basis of $K_{0}\left(C_{f u n c}\right)$, consisting of isomorphism classes of irreducible elements of $C_{\text {func }}$, to the elementary basis of $V_{1}^{\otimes d}$. This can be restricted to an isomorphism from a subcategory $C_{\text {func }}^{\prime}$ onto $V_{d_{1}} \otimes \cdots \otimes V_{d_{k}}$ (where it sends again a basis corresponding to simple modules in $C_{f u n c}^{\prime}$ to the elementary basis) and can be defined both for $U\left(\mathfrak{s l}_{2}\right)$ - and $U_{q}\left(\mathfrak{s l}_{2}\right)$-modules. An analogue for type D is presented as well.
I want to thank my supervisor, Prof. Stroppel, for suggesting this topic, and for her help in the development.

2 Finite Dimensional Representations of $U_{q}\left(\mathfrak{s l}_{2}\right)$

2.1 Some Definitions

Definition 2.1. Let $\mathbb{C}(q)$ denote the field of rational functions in an indeterminate q. Then define the quantum group $U_{q}\left(\mathfrak{s l}_{2}\right)$ (or U_{q} as a shorthand) as the associative algebra over $\mathbb{C}(q)$ with generators E, F, K, K^{-1} and relations

$$
\begin{aligned}
K K^{-1} & =K^{-1} K=1 \\
K E & =q^{2} E K \\
K F & =q^{-2} F K \\
E F-F E & =\frac{K-K^{-1}}{q-q^{-1}}
\end{aligned}
$$

Remark 1. The quantum group can be defined more generally for any finite dimensional simple Lie algebra, see e.g. [14].
U_{q} has the structure of a Hopf algebra with the following comultiplication ([11])

$$
\begin{aligned}
& K^{ \pm 1} \mapsto \quad K^{ \pm 1} \otimes K^{ \pm 1} \\
& \Delta: \quad E \mapsto E \otimes 1+K \otimes E \\
& F \mapsto \quad F \otimes K^{-1}+1 \otimes F .
\end{aligned}
$$

Hence tensor products of representations are again representations via

$$
\begin{aligned}
K^{ \pm 1} & \mapsto K^{ \pm 1} \otimes \cdots \otimes K^{ \pm 1} \\
\Delta^{(k-1)}: \quad E & \mapsto \sum_{i=1}^{k} K \otimes \cdots \otimes K \otimes E \otimes 1 \otimes \cdots \otimes 1 \\
F & \sum_{i=1}^{k} 1 \otimes \cdots \otimes F \otimes K^{-1} \otimes \cdots \otimes K^{-1}
\end{aligned}
$$

(where E respectivly F in the second respecitvly third row are in the $i t h$ position).
Definition 2.2. Define an antiinvolution w, the Cartan antiinvolution, by

$$
w(E)=F, w(F)=E,\left(K^{ \pm 1}\right)=K^{ \pm 1}, w\left(q^{ \pm 1}\right)=q^{ \pm 1}, w(x y)=w(y) w(x) \text { for } x, y \in U_{q} .
$$

Define also a second comultiplication $\bar{\Delta}$, using the so called "bar" involution σ. This will be used later to let the quantum group act on the dual space in a bilinear pairing. Set

$$
\sigma(E)=E, \sigma(F)=F, \sigma\left(K^{ \pm 1}\right)=K^{\mp 1}, \sigma\left(q^{ \pm 1}\right)=q^{\mp 1}, \sigma(x y)=\sigma(x) \sigma(y) \text { for } x, y \in U_{q}
$$

and define

$$
\bar{\Delta}(x)=(\sigma \otimes \sigma) \Delta(\sigma(x)), \text { for } x \in U_{q} .
$$

So

$$
\begin{array}{rl}
\overline{K^{ \pm 1}} \mapsto & K^{ \pm 1} \otimes K^{ \pm 1} \\
\bar{\Delta}: \quad E \mapsto & E \otimes 1+K^{-1} \otimes E . \\
F & F \otimes K+1 \otimes F
\end{array}
$$

Recall from [14] that any finite $d+1$-dimensional irreducible U_{q}-module V is generated by a highest weight vector v_{d} of heighest weight $\epsilon q^{d}, \epsilon= \pm 1$. In this thesis, only those of type I, i.e. with $\epsilon=1$ are considered. Fixing ϵ, there is only one irreducible module in each dimension (up to isomorphism). Let V_{d} denote the $d+1$-dimensional irreducible $U_{q}\left(\mathfrak{s l}_{2}\right)$-representation.

Definition 2.3. Define $[n]=\frac{q^{n}-q^{-n}}{q-q^{-1}}=q^{n-1}+q^{n-3}+\cdots+q^{-n+1},[k]!=[k][k-1] \cdots[2][1]$ and $\left[\begin{array}{l}d \\ k\end{array}\right]=\frac{[d]!}{[k!!d-k]!}$.

Set $v_{d-2 k}=F^{k} v_{d} /[k]$!. Since $\operatorname{dim}\left(V_{d}\right)=d+1$ and V_{d} is irreducible, I have $v_{d-2 k}=0$ for $k>d$ and a basis of V_{d} is given by $\left\{v_{d}, v_{d-2}, \cdots, v_{-d}\right\}$. Then

$$
\begin{aligned}
K^{ \pm 1} v_{m} & =q^{ \pm m} v_{m} \\
E v_{m} & =\left[\frac{d+m}{2}+1\right] v_{m+2} \\
F v_{m} & =\left[\frac{d-m}{2}+1\right] v_{m-2} .
\end{aligned}
$$

Define a bilinear symmetric pairing on V_{d} by $\left\langle v_{d-2 k}, v_{d-2 l}\right\rangle=\delta_{k, l}\left[\begin{array}{l}d \\ k\end{array}\right]$. Then a straightforward calculation shows that this implies the conditions

$$
\langle x u, v\rangle=\langle u, w(x) v\rangle,\left\langle v_{d}, v_{d}\right\rangle=1 \quad \forall u, v \in V_{d} \text { and } x \in U_{q}
$$

The dual basis with respect to the bilinear form is given by $v^{d-2 k}=\left[\begin{array}{l}d \\ k\end{array}\right]^{-1} v_{d-2 k}$ with the action of U_{q} given by

$$
\begin{aligned}
K^{ \pm 1} v^{m} & =q^{ \pm m} v^{m} \\
E v^{m} & =\left[\frac{d-m}{2}\right] v^{m+2} \\
F v^{m} & =\left[\frac{d+m}{2}\right] v^{m-2}
\end{aligned}
$$

Now consider tensor products of representations. Define a bilinear pairing

$$
\langle-,-\rangle: V_{d_{1}} \otimes \cdots \otimes V_{d_{k}} \times V_{d_{k}} \otimes \cdots \otimes V_{d_{1}} \rightarrow \mathbb{C}
$$

by

$$
\begin{equation*}
\left\langle v_{i_{1}} \otimes \cdots \otimes v_{i_{k}}, v^{l_{k}} \otimes \cdots \otimes v^{l_{1}}\right\rangle=\delta_{i_{1}, l_{1}} \cdots \delta_{i_{k}, l_{k}} \tag{1}
\end{equation*}
$$

Note that this definition agrees with the earlier one for just one tensor factor. One can calculate that

$$
\left\langle\Delta^{(k-1)}(x) v_{i_{1}} \otimes \cdots \otimes v_{i_{k}}, v^{l_{k}} \otimes \cdots \otimes v^{l_{1}}\right\rangle=\left\langle v_{i_{1}} \otimes \cdots \otimes v_{i_{k}}, \bar{\Delta}^{(k-1)}(w(x)) v^{l_{k}} \otimes \cdots \otimes v^{l_{1}}\right\rangle
$$

Here the alternativ comultiplication is used.
When considering a tensor product of simple modules, the action of U_{q} on a standard basis vector of the form $v_{i_{1}} \otimes \cdots \otimes v_{i_{k}}$ does not in general give another standard basis vector, but rather a linear combination of several standard basis vectors. Therefore one wants to find some other basis on which U_{q} acts particularily nicely. This is called the canonical basis and denoted by $v_{i_{1}} \diamond \cdots \diamond v_{i_{k}}$ (see [17]). Denote its dual with respect to the bilinear pairing (1) by $v^{i_{d}} \oslash \cdots \oslash v^{i_{1}}$. The notion of a based module going back to Lusztig ([17]) makes it precise what it means that U_{q} "acts nicely" one a basis. In more detail, let A denote $\mathbb{Z}\left[q, q^{-1}\right]$ and consider finite-dimensional U_{q}-modules of type I. Any such module M has a decomposition $M=\bigoplus_{\lambda \in \mathbb{Z}} M^{\lambda}$ into weight spaces

$$
M^{\lambda}=\left\{m \in M \mid K m=q^{\lambda} m\right\}
$$

Let B be a $\mathbb{C}(q)$-basis of M. Define an involution $\sigma_{B}: M \rightarrow M$ by

$$
\sigma_{B}(f b)=\bar{f} b \quad \forall f \in \mathbb{C}(q), b \in B
$$

(where $-\mathbb{C}(q) \rightarrow \mathbb{C}(q)$ such that $\overline{q^{n}}=q^{-n}$ for all n, is a \mathbb{C}-algebra involution). Then (M, B) is called a based module (with respect to the choice of generators $E, F, K^{ \pm 1}$ of U_{q}) if the following conditions are satisfied:

1. $B \cap M^{\lambda}$ is a basis of M^{λ}, for any $\lambda \in \mathbb{Z}$ (so in particular all elements of B are weight vectors)
2. The $A-$ submodule M_{A} generated by B is stable under $\frac{E^{n}}{[n]!}$ and $\frac{F^{n}}{[n]!}$;
3. The involution σ_{B} is compatible with the bar involution σ on U_{q} in the sense that $\sigma_{B}(x m)=$ $\sigma(x) \sigma_{B}(m)$ for all $x \in U_{q}, m \in M ;$
4. B is a crystal basis of M at ∞.

For the notion of a crystal basis, see [13] (e.g. the $\left\{v_{i}\right\}_{i=-d}^{d}$ are a crystal basis of V_{d} at ∞).
Lemma 2.4. V_{d} is a based module with $\mathbb{C}(q)$-basis $B=\left\{v_{d}, v_{d-2}, \cdots, v_{-d}\right\}$ and involution σ_{B} as described above.

Proof: As v_{m} is a basis of the weight space of V_{d} associated to the weight m, the first condition is satisfied. Moreover, by the definition of the action of E and F, the second condition is satisfied as well. Now, to see that the third condition is satisfied, consider

$$
\sigma_{B}\left(x v_{m}\right)=\left\{\begin{array}{ll}
\overline{\left[\frac{d+m}{2}+1\right]} v_{m+2} & x=E \\
\left.\frac{d-m}{2}+1\right] & v_{m-2}
\end{array} \quad x=F \quad=\sigma(x) \sigma_{B}\left(v_{m}\right)\right.
$$

Lemma 2.5. The direct sum of two based modules (M, B) and $\left(M^{\prime}, B^{\prime}\right)$ is again a based module $\left(M \oplus M^{\prime}, B \oplus B^{\prime}\right)$

Proof: As $x\left(m+m^{\prime}\right)=x m+x m^{\prime}$ and $\sigma_{B \oplus B^{\prime}}\left(m+m^{\prime}\right):=\sigma_{B}(m)+\sigma_{B^{\prime}}\left(m^{\prime}\right)$, the first three conditions are satisfied. For the fourth condition, see [11].
Since all the representations considered here are semisimple, the above gives a description of tensor products of representations as based modules. However, one wants to have an intrinsic structure of based module for tensor products of representations, but the tensor product with the obvious basis $B \otimes B^{\prime}$ does not in general satisfy property 3) of the definition. Lusztig introduces a modified basis $B \diamond B^{\prime}$ in the tensor product as follows:
Let $\Psi: M \otimes M^{\prime} \rightarrow M \otimes M^{\prime}$ be given by

$$
\Psi\left(m \otimes m^{\prime}\right)=\Theta\left(\sigma_{B}(m) \otimes \sigma_{B^{\prime}}\left(m^{\prime}\right)\right)
$$

where

$$
\Theta=\sum_{n \geq 0}(-1)^{n} q^{-n(n-1) / 2} \frac{\left(q-q^{-1}\right)^{n}}{[n]!} F^{n} \otimes E^{n} \in \widehat{U_{q} \otimes U_{q}}, \text { a completion of } U_{q} \otimes U_{q}
$$

A quick calculation shows that

$$
\Psi^{2}=1
$$

follows from $\Theta \bar{\Theta}=1 \otimes 1$, which can be shown by a somewhat more lenghty and not entirely trivial calculation. Moreover, on can show

$$
\Psi\left(x\left(m \otimes m^{\prime}\right)\right)=\sigma(x) \Psi\left(m \otimes m^{\prime}\right), x \in U_{q}
$$

(One has $\bar{\Delta}(x)=(\sigma \otimes \sigma) \Delta(\sigma(x)), \Theta \bar{\Delta}=\Delta \Theta$ and $\sigma_{B}(x m)=\sigma(x) \sigma_{B}(m)$, so

$$
\begin{array}{rlrl}
\Psi\left(x\left(m \otimes m^{\prime}\right)\right) & =\Psi\left(\Delta(x)\left(m \otimes m^{\prime}\right)\right)= & \Theta\left(\sigma_{B} \otimes \sigma_{B^{\prime}}\left(\Delta(x)\left(m \otimes m^{\prime}\right)\right)\right) \\
& =\Theta\left(\sigma \otimes \sigma\left(\Delta(x)\left(\sigma_{B}(m) \otimes \sigma_{B^{\prime}}\left(m^{\prime}\right)\right)\right)\right)= & \Theta\left(\bar{\Delta}(\sigma(x))\left(\sigma_{B}(m) \otimes \sigma_{B^{\prime}}\left(m^{\prime}\right)\right)\right) \\
& =\Delta(\sigma(x)) \Theta\left(\sigma_{B}(m) \otimes \sigma_{B^{\prime}}\left(m^{\prime}\right)\right)= & & \left.\sigma(x) \Psi\left(m \otimes m^{\prime}\right)\right) .
\end{array}
$$

Set $\sigma_{B \diamond B^{\prime}}=\Psi$ and let $M \otimes M_{A}^{\prime}$ (respectivly $M \otimes M_{\mathbb{Z}\left[q^{-1]}\right.}^{\prime}$) be the A - (resp. $\mathbb{Z}\left[q^{-1}\right]$-) submodule of $M \otimes M^{\prime}$ generated by the basis $B \otimes B^{\prime}$. The set $B \times B^{\prime}$ has a partial ordering such that

$$
\begin{aligned}
& \left(b_{1}, b_{1}^{\prime}\right) \geq\left(b_{2}, b_{2}^{\prime}\right) \Leftrightarrow \quad b_{i} \in M^{\lambda_{i}}, b_{i}^{\prime} \in M^{\prime \lambda_{i}^{\prime}} \text { with } \\
& \lambda_{1} \geq \lambda_{2}, \lambda_{1}^{\prime} \leq \lambda_{2}^{\prime}, \lambda_{1}+\lambda_{1}^{\prime}=\lambda_{2}+\lambda_{2}^{\prime} .
\end{aligned}
$$

Example 1. Let $M=M^{\prime}=V_{1}$. Then $B=B^{\prime}=\left\{v_{1}, v_{-1}\right\}$ and $v_{1} \in\left(V_{1}\right)^{1}, v_{-1} \in\left(V_{1}\right)^{-1}$. So $\left(v_{1}, v_{-1}\right) \geq\left(v_{-1}, v_{1}\right)$, and of course the trivial relations $\left(v_{1}, v_{1}\right) \geq\left(v_{1}, v_{1}\right),\left(v_{-1}, v_{-1}\right) \geq\left(v_{-1}, v_{-1}\right)$ hold.

Then Lusztig proves the following result:
Theorem 2.6. 1. For any $\left(b_{1}, b_{1}^{\prime}\right) \in B \times B^{\prime}$, there is a unique element $b_{1} \diamond b_{1}^{\prime} \in M \otimes M_{\mathbb{Z}\left[q^{-1}\right]}^{\prime}$ such that

$$
\Psi\left(b_{1} \diamond b_{1}^{\prime}\right)=b_{1} \diamond b_{1}^{\prime}
$$

and $b_{1} \diamond b_{1}^{\prime}-b_{1} \otimes b_{1}^{\prime} \in q^{-1} M \otimes M_{\mathbb{Z}\left[q^{-1}\right]}^{\prime}$.
2. The element $b_{1} \diamond b_{1}^{\prime}$ is equal to $b_{1} \otimes b_{1}^{\prime}$ plus a linear combination of elements $b_{2} \otimes b_{2}^{\prime}$ with $\left(b_{2}, b_{2}^{\prime}\right) \in B \times B^{\prime},\left(b_{2}, b_{2}^{\prime}\right)<\left(b_{1}, b_{1}^{\prime}\right)$ and coefficients in $q^{-1} \mathbb{Z}\left[q^{-1}\right]$.
3. These elements $b_{1} \diamond b_{1}^{\prime}$ form a $\mathbb{C}(q)$-basis $B \diamond B^{\prime}$ of $M \otimes M^{\prime}$, an A-basis of $M \otimes M_{A}^{\prime}$, and a $\mathbb{Z}\left[q^{-1}\right]$-basis of $M \otimes M_{\mathbb{Z}\left[q^{-1}\right]}^{\prime}$.
4. $\left(M \otimes M^{\prime}, B \diamond B^{\prime}\right)$ is a based module with associated involution Ψ (so Ψ takes the role of $\left.\sigma_{B}\right)$.

For more details, see [6], on which the preceeding paragraph, starting with Lusztig's notion of based module, is based. An example for based modules are tensor products of irreducible representations with canonical bases (where the canonical basis is the basis defined in theorem 2.6 above).

Example 2. Again, consider $V_{1} \otimes V_{1}$. The canonical basis is given by $\left\{v_{-1} \diamond v_{-1}=v_{-1} \otimes\right.$ $\left.v_{-1}, v_{-1} \diamond v_{1}=v_{-1} \otimes v_{1}, v_{1} \diamond v_{-1}=v_{1} \otimes v_{-1}+q^{-1} v_{-1} \otimes v_{1}, v_{1} \diamond v_{1}=v_{1} \otimes v_{1}\right\}$.

Write

$$
\begin{aligned}
& \otimes^{\mathbf{d}^{\mathbf{d}} v_{\mathbf{w}}}=v_{d_{1}-2 w_{1}} \otimes \cdots \otimes v_{d_{k}-2 w_{k}} \\
& \otimes^{\mathbf{d}} v^{\mathbf{w}}=v^{d_{1}-2 w_{1}} \otimes \cdots \otimes v^{d_{k}-2 w_{k}} \\
& \diamond^{\mathbf{d}} v_{\mathbf{w}}=v_{d_{1}-2 w_{1}} \diamond \cdots \diamond v_{d_{k}-2 w_{k}} \\
& \diamond^{\mathbf{d}} v^{\mathbf{w}}=v^{d_{1}-2 w_{1}} \circlearrowleft \cdots \diamond v^{d_{k}-2 w_{k}}
\end{aligned}
$$

where $\mathbf{d}, \mathbf{w} \in\left(\mathbb{Z}_{\geq 0}\right)^{k}$. The bar involution σ can be extended to tensor products of irreducible representations in the following way [21]: Define $\hat{\sigma}$ by

$$
\hat{\sigma}\left(\otimes^{\mathbf{d}} v_{\mathbf{w}}\right)=\otimes^{\mathbf{d}} v_{\mathbf{w}}
$$

and extend it antilinearly via

$$
\hat{\sigma}\left(f(q)\left(\otimes^{\mathbf{d}} v_{\mathbf{w}}\right)\right)=f\left(q^{-1}\right)\left(\otimes^{\mathbf{d}} v_{\mathbf{w}}\right)
$$

for any polynomial $f(q)$ in q, and extend by \mathbb{C}-linearity. Then $\hat{\sigma}$ is an isomorphism from $V_{d_{1}} \otimes \cdots \otimes V_{d_{k}}$ to itself and

$$
\hat{\sigma}\left(\Delta^{(k-1)}(x) v\right)=\left((\sigma \otimes \cdots \otimes \sigma)\left(\Delta^{(k-1)} x\right)\right)(\hat{\sigma} v)
$$

with $x \in U_{q}, v \in V_{d_{1}} \otimes \cdots \otimes V_{d_{k}}$ (so $\hat{\sigma}$ is the involution σ_{B} associated to σ as in the definition of based module above).
Now consider the space of intertwiners $\operatorname{Hom}_{U_{q}}\left(V_{d_{1}} \otimes \cdots \otimes V_{d_{k}}, V_{e_{1}} \otimes \cdots \otimes V_{e_{l}}\right)$, consisting of intertwiners commuting with the U_{q}-action given by $(\Delta)^{(k-1)}$. A basis can be identified with the set of crossingless matchings $C M_{d_{1}, \cdots, d_{k}}^{e_{1}, \cdots, e_{l}}$ (for more details, see [6], [7]). However, the intertwiners used in [6] and [7] are commuting with the action of U_{q} given by $\bar{\Delta}^{(k-1)}$. For such an intertwiner $\tilde{\gamma}$, define $\gamma=\hat{\sigma} \tilde{\gamma} \hat{\sigma}$. Then γ is an intertwiner commuting with the action of U_{q} given by $\Delta^{(k-1)}$, as

$$
\begin{aligned}
\gamma \Delta^{(k-1)}(x)(v) & =\hat{\sigma} \tilde{\gamma} \hat{\sigma} \Delta^{(k-1)}(x)(v) \\
& =\hat{\sigma} \tilde{\gamma}\left((\sigma \otimes \cdots \otimes \sigma) \Delta^{(k-1)}(x)\right)(\hat{\sigma} v) \\
& =\hat{\sigma} \tilde{\gamma} \bar{\Delta}^{(k-1)}(\sigma x)(\hat{\sigma} v) \\
& =\hat{\sigma} \bar{\Delta}^{(k-1)}(\sigma x) \tilde{\gamma}(\hat{\sigma} v) \\
& =\hat{\sigma}\left((\sigma \otimes \cdots \otimes \sigma) \Delta^{(k-1)}(x)\right) \hat{\sigma} \gamma(v) \\
& =\Delta^{(k-1)}(x) \gamma(v)
\end{aligned}
$$

for $x \in U_{q}$ and $v \in V_{d_{1}} \otimes \cdots \otimes V_{d_{k}}[21]$.

2.2 Diagrammatics of Intertwiners

The definitions of the crossingless matchings are taken from [21].
Definition 2.7. Depict V_{d} by a box with d vertices, marked with a d, and define the set of crossingless matchings $C M_{d_{1}, \cdots, d_{k}}^{e_{1}, \cdots, e_{l}}$ to be the set of non-intersecting curves in the plane (up to isotopy) connecting the vertices between a horizontal line consisting of the boxes depicting the $V_{d_{i}}$ and another horizontal line above consisting of the boxes depicting the $V_{e_{i}}$, where the curves satisfy the following conditions:

1. Each curve connects exactly two vertices
2. Each vertex is endpoint of exactly one curve
3. No curve connects vertices of the same box
4. All curves lie inside the space bounded by the two horizontal lines and the vertical lines through the extreme left and right points.

The curves connecting two lower vertices are called lower curves or caps, those connecting upper vertices are called upper curves or cups and the remaining curves connecting an upper and a lower vertex are called middle curves.

Example 3. Let $\mathbf{d}=(4,3,3,4)$ and $\mathbf{e}=(5,3)$.
A crossingless matching:

The following are no crossingless matchings:

To see how a crossingless matching is associated to an intertwiner, see [7] and the following rough explanation: Fix maps $V_{n} \hookrightarrow V_{1}^{\otimes n}, V_{1}^{\otimes n} \rightarrow V_{n}$ and an identification between V_{n} and its dual. One has

$$
V_{d_{1}} \otimes V_{d_{2}} \otimes V_{d_{3}} \otimes V_{d_{4}} \hookrightarrow V_{1}^{\otimes d_{1}} \otimes V_{1}^{\otimes d_{2}} \otimes V_{1}^{\otimes d_{3}} \otimes V_{1}^{\otimes d_{4}}=V_{1}^{\otimes \sum_{i=1}^{4} d_{i}}
$$

and similar

$$
V_{1}^{\otimes e_{1}+e_{2}} \rightarrow V_{e_{1}} \otimes V_{e_{2}}
$$

Moreover, $V_{1} \cong V_{1}^{*}$ canonically and there is a natural map $V_{1} \otimes V_{1} \cong V_{1} \otimes V_{1}^{*} \rightarrow \mathbb{Q}(q), v \otimes f \mapsto$ $f(v)$, which is denoted by a cap. Similarly, a map $\mathbb{Q}(q) \rightarrow V_{1} \otimes V_{1}$ can be defined, denoted by a cup. Then the crossingless match defines a map

$$
V_{d_{1}} \otimes \cdots \otimes V_{d_{4}} \rightarrow V_{e_{1}} \otimes V_{e_{2}}
$$

as composite of

$$
V_{d_{1}} \otimes V_{d_{2}} \otimes V_{d_{3}} \otimes V_{d_{4}} \hookrightarrow V_{1}^{\otimes \sum_{i=1}^{4} d_{i}} \text { and } V_{1}^{\otimes e_{1}+e_{2}} \rightarrow V_{e_{1}} \otimes V_{e_{2}}
$$

with

$$
V_{1}^{\otimes \sum_{i=1}^{4} d_{i}} \rightarrow V_{1}^{\otimes e_{1}+e_{2}}
$$

Middle curves map a V_{1} in the tensor product $V_{1}^{\otimes \sum_{i=1}^{4} d_{i}}$ to a V_{1} in the tensor product $V_{1}^{\otimes e_{1}+e_{2}}$, and cups and caps act as described above.
Elements of the set of oriented crossingless matchings $O C M_{d_{1}, \cdots, d_{k}}^{e_{1}, \cdots, e_{l}}$ are given by crossingless matchings together with an orientation such that all upper and lower curves are oriented to
the left (i.e. if the curve connects vertices a and b and a is to the left of b, the curve must be oriented such that the arrow would point away from b if the arrow was placed at the right end of the curve) and the middle curves oriented upwards are to the left of the middle curves oriented downwards.

Example 4. An oriented crossingless matching:

Furthermore define the set of lower crossingless matchings $L C M_{d_{1}, \cdots, d_{k}}$ and oriented lower crossingless matchings $O L C M_{d_{1}, \cdots, d_{k}}$. Elements are obtained by removing the upper boxes from elements of $C M_{d_{1}, \cdots, d_{k}}^{e_{1}, \cdots, e_{l}}$ respectivly $O C M_{d_{1}, \cdots, d_{k}}^{e_{1}, \cdots, e_{l}}$, converting middle curves to vertical rays, and keeping the orientation of the curves in the case of $O L C M_{d_{1}, \cdots, d_{k}}$. So in the case of $O L C M_{d_{1}, \cdots, d_{k}}$, the vertices oriented up must be to the left of those oriented down, as for the middle curves of $O C M_{d_{1}, \cdots, d_{k}}^{e_{1}, \cdots, e_{l}}$. Upper crossingless matchings are defined in an analogous way.

Example 5. An oriented lower crossingless matching:

Remark 2. This is not taken from [21]. Using $V_{1} \cong V_{1}^{*}$ and the canonical isomorphisms $\operatorname{Hom}_{U_{q}}(V \otimes W, X) \cong \operatorname{Hom}_{U_{q}}(V, \operatorname{Hom}(W, X)) \cong \operatorname{Hom}_{U_{q}}\left(V, \operatorname{Hom}\left(W, X^{*}\right)\right) \cong \operatorname{Hom}_{U_{q}}(V,(W \otimes$ $\left.X)^{*}\right) \cong \operatorname{Hom}_{U_{q}}(V, X \otimes W)$, one obtains (The isomorphisms correspond to the operations on the matchings, see [23, Chapter VI 3.2])

$$
\operatorname{Hom}_{U_{q}}\left(V_{d_{1}} \otimes \cdots \otimes V_{d_{k}}, V_{e_{1}} \otimes \cdots \otimes V_{e_{l}}\right)
$$

$$
\cong \operatorname{Hom}_{U_{q}}\left(V_{d_{1}} \otimes \cdots \otimes V_{d_{k-1}}, V_{e_{1}} \otimes \cdots \otimes V_{e_{l}} \otimes V_{d_{k}}\right)
$$

$$
\begin{aligned}
& \cong \operatorname{Hom}_{U_{q}}\left(\mathbb{Q}(q), V_{e_{1}} \otimes \cdots \otimes V_{e_{l}} \otimes V_{d_{k}} \otimes \cdots \otimes V_{d_{1}}\right) \\
& \cong\left(V_{e_{1}} \otimes \cdots \otimes V_{e_{l}} \otimes V_{d_{k}} \otimes \cdots \otimes V_{d_{1}}\right)^{I n v}
\end{aligned}
$$

since a map $f: \mathbb{Q}(q) \rightarrow V_{e_{1}} \otimes \cdots \otimes V_{e_{l}} \otimes V_{d_{k}} \otimes \cdots \otimes V_{d_{1}}$ is given by $f(1)$ and E, F act trivially on $\mathbb{Q}(q)$. This illustrates a relation between upper or lower crossingless matchings without vertical rays and general crossingless matchings and gives an easy way of obtaining the elements of a tensor product of representations invariant under the action of U_{q}.

Given a and $\mathbf{d} \in \mathbb{Z}_{\geq 0}^{k}$ with $a_{i} \leq d_{i} \forall i$, a lower oriented crossingless matching $M(\mathbf{d}, \mathbf{a}) \in$ $O L C M_{d_{1}, \cdots, d_{k}}$ can be associated to it as follows [21]:
For each i, place downwards oriented arrows on the rightmost a_{i} vertices of the box representing $V_{d_{i}}$, and upwards oriented arrows on the remaining $d_{i}-a_{i}$ vertices. There is a unique way to connect the vertices such that $M(\mathbf{d}, \mathbf{a})$ forms a lower oriented crossingless matching, respecting the orientation of the arrows on the vertices. Starting from the right, connect each down arrow to the first up arrow to its right not already connected, if there is any (as the up arrows of each box are the the left of the down arrows in the same box, the resulting curves do not connect vertices of the same box). This produces a lower oriented crossingless matching with all unmatched downwards oriented arrows to the right of all unmatched upwards oriented arrows, as required.

Example 6. Let d $=(4,3,3,4)$.
Orientation of arrows for $\mathbf{d}=(4,3,3,4)$ and $\mathbf{a}=(3,1,1,2)$:

and resulting $M(\mathbf{d}, \mathbf{a})$:

Lemma 2.8. The correspondence between $O L C M_{d_{1}, \cdots, d_{k}}$ and $\left\{\mathbf{a} \in \mathbb{Z}_{\geq 0}^{k} \mid a_{i} \leq d_{i} \forall i\right\}$ is one to one.

Proof: From the definition it becomes clear that any element of $O L C M_{d_{1}, \cdots, d_{k}}$ can be associated to precisly one such a. a_{i} denotes the number of down arrows of the i th box d_{i} and by fixing the order in which arrows are connected, only one lower oriented crossingless matching is associated to an a.

Definition 2.9. [21] A partial order on the sets $C M_{d_{1}, \cdots, d_{k}}^{e_{1}, \cdots, e_{l}}, O C M_{d_{1}, \cdots, d_{k}}^{e_{1}, \cdots, e_{l}}, L C M_{d_{1}, \cdots, d_{k}}$ and $O L C M_{d_{1}, \cdots, d_{k}}$ can be defined by setting $S_{1} \leq S_{2}$ if the set of lower curves of S_{1} is a subset of the set of lower curves of S_{2}, for any two elements S_{1}, S_{2} of one of these sets.

3 A Geometric Realisation of the Canonical Basis

I want to realise the canonical basis of a representation of $U_{q}\left(\mathfrak{s l}_{2}\right)$ geometrically.

3.1 The Tensor Product Variety

Let $D=\mathbb{C}^{d}$ and let $\mathbf{d} \in\left(\mathbb{Z}_{\geq 0}\right)^{k}$ such that $\sum_{i=1}^{k} d_{i}=d$.
Definition 3.1. Let k be an arbitrary field and set $G L_{k}(d)=\left\{f \in \operatorname{End}\left(k^{d}\right) \mid f\right.$ invertible $\}$ and $\mathfrak{g l}_{k}(d)=\operatorname{End}\left(k^{d}\right)$. If the ground field is clear, I will write $G L(d)$ respectivly $\mathfrak{g l}(d)$ instead of $G L_{k}(d)$ respectivly $\mathfrak{g l}_{k}(d)$.

I now assume $k=\mathbb{C}$.
Definition 3.2. Fix d. Define the variety $F l(\mathbf{d})$ of flags of type \mathbf{d} via

$$
F l(\mathbf{d})=\left\{\mathbf{D}=\left\{D_{i}\right\}_{i=0}^{k} \mid 0=D_{0} \subseteq D_{1} \subseteq \ldots \subseteq D_{k-1} \subseteq D_{k}=D, \operatorname{dim}\left(D_{i} / D_{i-1}\right)=d_{i}\right\}
$$

Note that this makes sense over an arbitrary field.
Remark 3. The variety of partial flags $\mathrm{Fl}(\mathbf{d})$ can be identified with the set of parabolic subalgebras of $\mathfrak{g l}(d)$ of type \mathbf{d} (see [10]) via

$$
\begin{aligned}
F l(\mathbf{d}) \xrightarrow{\sim} & \{\text { parabolic subalgebras of } \mathfrak{g l}(d) \text { of type } \mathbf{d}\} \\
\mathbf{D}=D_{1} \subset \cdots \subset D_{k} & \left.\longmapsto x \mid x D_{i} \subset D_{i} \forall i\right\}=p(\mathbf{D})=\text { "stabilizer"of } \mathbf{D} .
\end{aligned}
$$

All parabolics of type \mathbf{d} are $G L(d)$-conjugate to the standard parabolic of type d,

$$
p_{\mathbf{d}}=\left\{\begin{array}{c}
d_{1} \\
d_{2} \\
\vdots \\
d_{k}
\end{array}\left|\begin{array}{lll}
* & * & * \\
& & \boxed{*}
\end{array}\right|\right)
$$

(and all the subalgebras conjugate to $p_{\mathbf{d}}$ are parabolics of type d). Now fix the "standard"flag

$$
\mathbf{D}_{s t}=<e_{1}, \cdots, e_{d_{1}}>\subset<e_{1}, \cdots, e_{d_{1}+d_{2}}>\subset \cdots \subset<e_{1}, \cdots, e_{d}>;
$$

then its stabilizer is $p_{\mathbf{d}}$. An arbitrary element $\mathbf{D} \in F l(\mathbf{d})$ is therefore of the form $g \mathbf{D}_{\text {st }}$ for some $g \in G L(d)$. Then

$$
x D_{i} \subset D_{i} \Leftrightarrow x g\left(\mathbf{D}_{s t}\right)_{i} \subset g\left(\mathbf{D}_{s t}\right)_{i} \Leftrightarrow g^{-1} x g\left(\mathbf{D}_{s t}\right)_{i} \subset\left(\mathbf{D}_{s t}\right)_{i},
$$

so the stabilizer of \mathbf{D} is the conjugate by g of the stabilizer $p_{\mathbf{d}}$ of $\mathbf{D}_{s t}$. Note that here one needs the ground field to be \mathbb{C}.

Remark 4. One has furthermore $F l(\mathbf{d}) \hat{=} G l(d) / p$ for a parabolic subgroup p of the correct type \mathbf{d} (identify a flag with the coset of matricies sending the standard basis to a basis compatible with the flag). $G l(d) / p$ is a subvariety of the product of projective spaces $G\left(d_{1}, d\right) \times \ldots \times G\left(d_{k}, d\right)$ (see [10, section 1.8]), where $G(l, d)$ gets a projective structure in the following way:
Consider the exterior algebra $\bigwedge D . \bigwedge^{d} D$ is 1-dimensional. If V is a subspace, then $\bigwedge^{l} W$ may be identified canonically with a subspace of $\bigwedge^{l} D$. Thus there is a map $G(l, d) \rightarrow \mathbb{P}\left(\bigwedge^{l} D\right)$ sending a subspace V to the corresponding point in projective space belonging to $\Lambda^{l} V$. Moreover, the cartesian product of projective varieties can be viewed again as a projective variety.
$G l(d) / p$ is projective because one can embed it into the product of projective spaces (or either because it is a homogeneous space). The projective space $\mathbb{P}(D)$ is a special example of some G / p, namely the one where p has 2 blocks of size 1 and $d-1$.

Definition 3.3. Define the tensor product variety
$\mathfrak{T}(\mathbf{d})=\left\{\left(\mathbf{D}=\left\{D_{i}\right\}_{i=0}^{k}, W, t\right) \mid \mathbf{D} \in F l(\mathbf{d}), W \subseteq D, t \in \operatorname{End}(D), t\left(D_{i}\right) \subseteq D_{i-1}, \operatorname{im}(t) \subseteq W \subseteq \operatorname{ker}(t)\right\}$
with subvariety

$$
\mathfrak{T}_{0}(\mathbf{d})=\{(\mathbf{D}, W, 0) \in \mathfrak{T}(\mathbf{d})\}=F l(\mathbf{d}) \times \coprod_{i=0}^{d} G(i, d),
$$

where $G(i, d)$ denotes a Grassmannian of subspaces of dimension i.
Remark 5. Using remark 3, the tensor product variety can be described as follows:
Denote the standard parabolics of type \mathbf{d} respectivly $(i, d-i)$ by $p_{\mathbf{d}}$ respectivly $p_{(i, d-i)}$. Then these contain the standard Levi subalgebras $l_{\mathbf{d}}$ respectivly $l_{(i, d-i)}$ given by the elements with zeros outside the blockmatricies on the diagonal. Moreover, there are the unipotent subalgebras $u_{\mathbf{d}}$ respectivly $u_{(i, d-i)}$ consisting of the matricies with zeros in the blockmatricies and underneath, such that $p_{\mathbf{d}}=l_{\mathbf{d}}+u_{\mathbf{d}}$ and $p_{(i, d-i)}=l_{(i, d-i)}+u_{(i, d-i)}$. Define orthogonal projections $\pi: p_{\mathbf{d}} \rightarrow u_{\mathbf{d}}$ and $\pi^{\prime}: p_{(i, d-i)} \rightarrow u_{(i, d-i)}$ and extend these to all parabolics of type \mathbf{d} respectivly $(i, d-i)$ as follows:

Let p be a parabolic of type \mathbf{d} and $F \in p$. Then there is $g \in G L(d)$ such that $g p g^{-1}=p_{\mathbf{d}}$. Set $\pi(F):=g^{-1} \pi\left(g F g^{-1}\right) g$ and analogously for parabolics of type $(i, d-i)$. So

$$
F l(\mathbf{d}) \longleftrightarrow \text { parabolics of type } \mathbf{d}
$$

Grassmannian $G(i, d) \longleftrightarrow$ parabolics of type $(i, d-i)$
endomorphisms $t \longrightarrow$ nilpotent elements in $\mathfrak{g l}(d)$ which square to zero

The condition $t\left(D_{i}\right) \subseteq D_{i-1}$ then implies $t \in \pi(p(\mathbf{D}))$. Similarly, the condition $\operatorname{im}(t) \subseteq W \subseteq$ $\operatorname{ker}(t)$ can be reformulated as $t\left(F_{i}\right) \subseteq F_{i-1}$ for $\mathbf{F}=\{0\} \subseteq W \subseteq D$ and thus, $t \in \pi^{\prime}(p(\mathbf{F}))=$ $\pi^{\prime}(p(W \subseteq D))$, where $p(W \subseteq D)$ is the parabolic associated to $W \subseteq D$. Thus, for fixed dimension w of W, one obtains the following variety of triples:

$$
\begin{aligned}
& \{(\mathbf{D}, W, t) \in \mathfrak{T}(\mathbf{d}) \mid \operatorname{dim} W=w\} \\
& \quad \cong\left\{\left(x, p_{1}, p_{2}\right) \left\lvert\, \begin{array}{c}
p_{1} \text { parabolic of type } \mathbf{d}, p_{2} \text { parabolic of type }(w, d-w), \\
x \in \pi\left(p_{1}\right) \cap \pi^{\prime}\left(p_{2}\right) \text { with } x^{2}=0
\end{array}\right.\right\}=S t(\mathbf{d}, w) .
\end{aligned}
$$

This is called the Steinberg variety (see [2, section 3.3]). Therefore $\mathfrak{T}(\mathbf{d})=\bigcup_{w=0}^{d} S t(\mathbf{d}, w)$.
$G L(D)$ acts on $\mathfrak{T}(\mathbf{d})$ via $g \cdot(\mathbf{D}, W, t)=\left(\left\{g \cdot D_{i}\right\}_{i=0}^{k}, g \cdot W, g t g^{-1}\right)$.
The same definition of $\mathfrak{T}(\mathbf{d})$ makes sense when substituting a finite field $\mathbb{K}=\mathbb{F}_{q^{2}}$ for \mathbb{C} (where q of course has to be chosen as a power of a prime number instead of an invariant), so from now on, let D be a d-dimensional vector space over $\mathbb{F}_{q^{2}}$.
An example for the tensor product variety follows.

3.2 Explicit Examples

In the following I describe some small examples of these varieties explicitly.

Example 7. Let $d=2$, thus $\mathbf{d} \in\{(2),(1,1)\}$ (ignore zeros in the vector, e.g. $(2,0)=\mathbf{d}$). I describe these two cases explicitly.

- $\mathfrak{T}(2)=\left\{\left(\mathbf{D}=\left\{D_{i}\right\}_{i=0}^{1}, W, t\right) \mid 0=D_{0} \subseteq D_{1}=D, \operatorname{dim}\left(D_{1} / D_{0}\right)=d, W \subseteq D, t \in\right.$ $\left.\operatorname{End}(D), t(D) \subseteq D_{0}=0,0=\operatorname{im}(t) \subseteq W \subseteq \operatorname{ker}(t)=D\right\}$,
hence
$F l(2)=\{0 \subset D\}$ and $\mathfrak{T}(2)=\{(0 \subseteq D, W, 0)\}=\mathfrak{T}_{0}(2)=\bigcup_{w=0}^{2} F l(2) \times G(w, 2)$
is a union of Grassmannian varieties and each Grassmannian is an orbit for the action of $G L(d)$. Thus $\mathfrak{T}(2)$ has 3 orbits.
If k is a finite field then the variety contains only finietly many points, for instance over the field $\mathbb{F}_{q^{2}}$ with q^{2} elements I have the following:
Since $G(0,2)=\{0\}, G(1,2)=\left\{\operatorname{span}\left\{e_{2}\right\}, \operatorname{span}\left\{e_{1}+\lambda e_{2}\right\}\right\}_{\lambda \in \mathbb{F}_{q^{2}}}$, and $G(2,2)=\{D\}$, it follows that $|G(0,2)|=1,|G(1,2)|=\left(q^{2}+1\right)$, and $|G(2,2)|=1$ and so $\mathfrak{T}(2)$ has $1+\left(q^{2}+1\right)+1$ points.
- Consider $\mathfrak{T}(1,1)=\left\{\left(\mathbf{D}=\left\{D_{i}\right\}_{i=0}^{2}, W, t\right) \mid 0=D_{0} \subseteq D_{1} \subseteq D_{2}=D, \operatorname{dim}\left(D_{i} / D_{i-1}\right)=\right.$ $\left.d_{i}, W \subseteq D, t \in \operatorname{End}(D), t\left(D_{i}\right) \subseteq D_{i-1}, \operatorname{im}(t) \subseteq W \subseteq \operatorname{ker}(t)\right\}$
$=\mathfrak{T}_{0}(1,1) \cup\left\{(0 \subset<v>\subset D,<v>, t \neq 0) \left\lvert\, D=<v>\oplus<u>, t=\left(\begin{array}{ll}0 & \lambda \\ 0 & 0\end{array}\right)\right., \lambda \in \mathbb{F}_{q^{2}}^{\times}\right.$ for some u completing v to a basis of D and t as a matrix in this basis $(v, u)\}$
$\cong \mathfrak{T}_{0}(1,1) \cup \mathbb{P}^{1} \times \mathbb{F}_{q^{2}}^{x}\left(W=<v>\right.$ in the second set as $t(D) \subset D_{1}=\langle v>, \operatorname{im}(t) \subset W$ and $t \neq 0$).
To calculate the cardinality of $\mathfrak{T}(1,1)$, note that the number of different flags of type $(1,1)$ equals the number of different one-dimensional subspaces of $\left(\mathbb{F}_{q^{2}}\right)^{2}$, which is $q^{2}+1$. Therefore $\left|\mathfrak{T}_{0}(1,1)\right|=q^{2}+1+\left(q^{2}+1\right)^{2}+q^{2}+1=q^{4}+4 q^{2}+3$ and $|\mathfrak{T}(1,1)|=\left|\mathfrak{T}_{0}(1,1)\right|+$ $\left(q^{2}+1\right)\left(q^{2}-1\right)$ (as there are $q^{2}+1$ possibilities for the flag, which also fixes W, and for each flag $q^{2}-1=\left|\mathbb{F}_{q^{2}}^{x}\right|$ possibilities for the endomorphism t for the elements of $\mathfrak{T}(1,1)$ with nonzero endomorphism).

Example 8. Now let $d=3$, so $\mathbf{d} \in\{(3),(1,2),(2,1),(1,1,1)\}$.

- Then

$$
\begin{array}{lcccccc}
\mathfrak{T}(3)=\mathfrak{T}_{0}(3) & & & & \\
\cong F l(3) & \cup & F l(3) \times \mathbb{P}^{2} & \cup & F l(3) \times G(2,3) & \cup & F l(3) \\
\cong\{(D, 0,0)\} & \cup & \{(D,<v>, 0)\}_{v \neq 0} & \cup & \{(D,<v, w>, 0)\}_{v, w \neq 0}^{v \neq \lambda w} \\
& \cup & \{(D, D, 0)\}
\end{array}
$$

(As seen before, $\mathfrak{T}_{0}(\mathbf{d})$ is generally of the form $\coprod_{i=0}^{d} F l(\mathbf{d}) \times G(i, d)$. However, for example $F l(3) \times \mathbb{P}^{2}$ divides into several $G L(D)$-orbits, depending on how W lies in \mathbf{D}.).

- $\mathfrak{T}(2,1)=\mathfrak{T}_{0}(2,1) \cup R$ with

$$
R=\left\{\begin{array}{c|c}
\left(\left(D_{1} \subset D\right), W, t\right) & \begin{array}{c}
W \subset D, \operatorname{dim}\left(D_{1}\right)=2, t \neq 0 \\
\operatorname{im}(t) \subset D_{1} \subset \operatorname{ker}(t) \\
\operatorname{im}(t) \subset W \subset \operatorname{ker}(t)
\end{array}
\end{array}\right\}
$$

One has $\left(\left(D_{1} \subset D\right), W, t\right) \in R \Rightarrow \operatorname{dim}(\operatorname{ker}(t))=2$ and $\operatorname{dim}(\operatorname{im}(t))=1$ as $t \neq 0, \operatorname{im}(t) \subset$ $\operatorname{ker}(t)$ and $\operatorname{dim}(\operatorname{im}(t))+\operatorname{dim}(\operatorname{ker}(t))=3$. So $D_{1}=\operatorname{ker}(t)$ and $W=\operatorname{im}(t)$ or $W=\operatorname{ker}(t)$. It follows

$$
R=\left\{(\mathbf{D}, \operatorname{im}(t), t) \left\lvert\, \begin{array}{c}
t \neq 0 \\
\operatorname{dim}\left(D_{1}\right)=2, \\
\operatorname{im}(t) \subset D_{1}=\operatorname{ker}(t)
\end{array}\right.\right\} \dot{\cup}\left\{(\mathbf{D}, \operatorname{ker}(t), t) \left\lvert\, \begin{array}{c}
t \neq 0 \\
\operatorname{dim}\left(D_{1}\right)=2 \\
\operatorname{im}(t) \subset D_{1}=\operatorname{ker}(t)
\end{array}\right.\right\}
$$

with $\mathbf{D}=\left(D_{1} \subset D\right)$. So it divides into the $\mathfrak{T}_{0}(2,1)$-part and a union of Spaltensteinvarieties.

- $\mathfrak{T}(1,2)=\mathfrak{T}_{0}(1,2) \cup R$ with

$$
R=\left\{\left(\left(D_{1} \subset D\right), W, t\right) \left\lvert\, \begin{array}{c|c}
W \subset D, \operatorname{dim}\left(D_{1}\right)=1, t \neq 0 \\
\operatorname{im}(t) \subset D_{1} \subset \operatorname{ker}(t) \\
\operatorname{im}(t) \subset W \subset \operatorname{ker}(t)
\end{array}\right.\right\}
$$

As before, one has $\left(\left(D_{1} \subset D\right), W, t\right) \in R \Rightarrow \operatorname{dim}(\operatorname{im}(t))=1, \operatorname{dim}(\operatorname{ker}(t))=2$ and $W=$ $\operatorname{im}(t)$ or $W=\operatorname{ker}(t)$. But in this case $\operatorname{im}(t)=D_{1}$. So it follows

$$
R=\left\{(\mathbf{D}, \operatorname{im}(t), t) \left\lvert\, \begin{array}{c}
t \neq 0 \\
\operatorname{dim}\left(D_{1}\right)=1, \\
\operatorname{im}(t)=D_{1} \subset \operatorname{ker}(t)
\end{array}\right.\right\} \dot{\cup}\left\{(\mathbf{D}, \operatorname{ker}(t), t) \left\lvert\, \begin{array}{c}
t \neq 0 \\
\operatorname{dim}\left(D_{1}\right)=1 \\
\operatorname{im}(t)=D_{1} \subset \operatorname{ker}(t)
\end{array}\right.\right\}
$$

with $\mathbf{D}=\left(D_{1} \subset D\right)$.

- $\mathfrak{T}(1,1,1)=\mathfrak{T}_{0}(1,1,1) \cup R$ with

$$
R=\left\{\left(\left(D_{1} \subset D_{2} \subset D\right), W, t\right) \left\lvert\, \begin{array}{c}
W \subset D, \operatorname{dim}\left(D_{1}\right)=1, \operatorname{dim}\left(D_{2}\right)=2, t \neq 0 \\
\operatorname{im}(t) \subset D_{2}, D_{1} \subset \operatorname{ker}(t), t\left(D_{2}\right) \subset D_{1} \\
\operatorname{im}(t) \subset W \subset \operatorname{ker}(t)
\end{array}\right.\right\}
$$

Again, $\left(\left(D_{1} \subset D_{2} \subset D\right), W, t\right) \in R \Rightarrow \operatorname{dim}(\operatorname{ker}(t))=2, \operatorname{dim}(\operatorname{im}(t))=1$ and $W=\operatorname{im}(t)$ or $W=\operatorname{ker}(t)$. It follows

$$
R=\left\{(\mathbf{D}, \operatorname{im}(t), t) \left\lvert\, \begin{array}{c}
t \neq 0 \\
\operatorname{dim}\left(D_{1}\right)=1, \\
\operatorname{dim}\left(D_{2}\right)=2, \\
\operatorname{im}(t) \subset D_{2}, \\
D_{1} \subset \operatorname{ker}(t), \\
t\left(D_{2}\right) \subset D_{1}
\end{array}\right.\right\} \dot{\cup}\left\{(\mathbf{D}, \operatorname{ker}(t), t) \left\lvert\, \begin{array}{c}
t \neq 0 \\
\operatorname{dim}\left(D_{1}\right)=1, \\
\operatorname{dim}\left(D_{2}\right)=2, \\
\operatorname{im}(t) \subset D_{2}, \\
D_{1} \subset \operatorname{ker}(t), \\
t\left(D_{2}\right) \subset D_{1}
\end{array}\right.\right\}
$$

with $\mathbf{D}=\left(D_{1} \subset D_{2} \subset D\right)$.

3.3 Relative Positions of Subspaces

In the following I introduce a function α which describes the relative position of a subspace $V \subseteq D$ with respect to the flag \mathbf{D}.

Definition 3.4. Define $\alpha:(V, \mathbf{D}) \mapsto \alpha(V, \mathbf{D}) \in\left(\mathbb{Z}_{\geq 0}\right)^{k}, \alpha(V, \mathbf{D})_{i}=\operatorname{dim}\left(\left(V \cap D_{i}\right) /\left(V \cap D_{i-1}\right)\right)$ and denote the following unions of orbits of $\mathfrak{T}(\mathbf{d})$ under the action of $G L(D)$ by $A_{\mathbf{w}, \mathbf{r}, \mathbf{n}}=$ $\{(\mathbf{D}, W, t) \in \mathfrak{T}(\mathbf{d}) \mid \alpha(W, \mathbf{D})=\mathbf{w}, \alpha(\operatorname{im} t, \mathbf{D})=\mathbf{r}, \alpha(\operatorname{ker} t, \mathbf{D})=\mathbf{n}\}$ for fixed $\mathbf{w}, \mathbf{r}, \mathbf{n} \in\left(\mathbb{Z}_{\geq 0}\right)^{k}$.

The $A_{\mathbf{w}, \mathbf{r}, \mathbf{n}}$ will be used to characterize the canonical basis later on.
Remark 6. As $\operatorname{im}(t) \subseteq W \subseteq \operatorname{ker}(t), A_{\mathbf{w}, \mathbf{r}, \mathbf{n}}$ is empty unless $\sum_{i=1}^{j} r_{i} \leq \sum_{i=1}^{j} w_{i} \leq \sum_{i=1}^{j} n_{i}$ for all j and $\sum_{i=1}^{k} r_{i}+n_{i}=d(\operatorname{as} \operatorname{dim}(\operatorname{im}(t))+\operatorname{dim}(\operatorname{ker}(t))=d)$.

Example 9. This example illustrates the counting of points over finite fields of cardinality q^{2}. The results will always depend on a polynomial of q. This allows me later to treat q as a formal variable and connect it with the modules over the quantum group U_{q}. Let $d=3$ and $\mathbf{d}=(1,2)$. Then $\mathbb{F}_{q^{2}}^{3}$ has $\left(q^{2}\right)^{3}$ different elements of which all but one are nonzero. The Grassmannian $G(1,3)$ has $q^{2}[3]$ points because leaving out linear multiples, one obtains $\frac{q^{6}-1}{q^{2}-1}=$ $\frac{q^{3}\left(q^{3}-q^{-3}\right)}{q\left(q-q^{-1}\right)}=q^{2}[3]$ different "lines ", i.e pairwise linear independent vectors. So there are $q^{2}[3]$ different flags of type $(1,2)$, since a flag of type $\mathbf{d}=(1,2)$ is of the form $(<v>\subset D)$. In general, $G(1, d)=\mathbb{P}^{d-1}$ has $\left(q^{2}\right)^{n}-1$ elements and $\frac{q^{2 n}-1}{q^{2}-1}$ points. Using the following easy identities $q^{2}[3]-1=\frac{q^{6}-1}{q^{2}-1}-1=\frac{q^{6}-1-q^{2}+1}{q^{2}-1}=q^{2} \frac{q^{4}-1}{q^{2}-1}=q^{3}[2]$ and $q^{3}[2]=q^{2} \frac{q^{4}-1}{q^{2}-1}$, so $q^{3}[2]\left(q^{2}-1\right)=q^{2}\left(q^{4}-1\right)$ and $q^{2}[3]\left(q^{4}-1\right)=q^{3}[3][2]\left(q^{2}-1\right)=q^{3}[3]!\left(q^{2}-1\right)$, I can now determine the number of points (not elements!) in A. The result is given in the following tables:
First let $\mathbf{r}=0, \mathbf{n}=(1,2)$, so $t=0$.

\mathbf{w}	$\left\|A_{\mathbf{w}, \mathbf{r}, \mathbf{n}}\right\|$	Explanatory Remarks
$(1,0)$	$q^{2}[3]$	W has to be equal to D_{1}
$(1,1)$	$q^{5}[3]!$	$W=<v, v^{\prime}>,<v>=D_{1}$ and v^{\prime} has to be linear independent of v
$(1,2)$	$q^{2}[3]$	$W=D=\mathbb{F}_{q^{2}}^{3}$
$(0,0)$	$q^{2}[3]$	$W=0$
$(0,1)$	$q^{5}[3]!$	$W=<v^{\prime}>,<v>=D_{1}$ and v^{\prime} has to be linear independant of v $(0,2)$\left\lvert\,$\frac{1}{2} q^{7}[3]!$ $q^{2}[3]$ possibilities for $<v>=D_{1}$ and $W=<v^{\prime}, v^{\prime \prime}>$, so $q^{2}[3]-1$ \quadbut the order in which $v^{\prime}, v^{\prime \prime}$ are choosen does not matter.\right.

Now let $\mathbf{r}=(1,0), \mathbf{n}=(1,1)$, so $t \neq 0$ and \mathbf{w} is of the form $(1,|\mathbf{w}|-1)$:

| \mathbf{w} | |
| :---: | :--- | :--- |
| $(1,0)$ | $\left\lvert\,$$\left\|A_{\mathbf{w}, \mathbf{r}, \mathbf{n}}\right\|$ Explanatory Remarks
 $q^{3}[3]!\left(q^{2}-1\right)$ $W=D_{1}$ and $t=\left(\begin{array}{ll}0 & * \\ 0 & 0 \\ 0 \\ 0 & 0\end{array}\right) \neq 0$ in a basis compatible with the flag,
 $(1,1)$ so there are $q^{4}-1=\left(q^{2}+1\right)\left(q^{2}-1\right)$ possibilities for t
 $q^{5}[3]!\left(q^{2}-1\right)$ As in the $t=0$-case, there are $q^{5}[3]!$ possibilities for the tupel (\mathbf{D}, W)
 and since $t(W)=0, t \neq 0, q^{2}-1$ possibilities for $t$$..\right.$. |

More concretely, take e.g. $q=2, \mathbb{F}_{q^{2}}=\mathbb{F}_{4} \cong\left\{0,1, e^{\frac{2 \pi i}{3}}=x, e^{\frac{4 \pi i}{3}}=y\right\}$, so x, y are third roots of
unity. Then the one-dimensional subspaces of \mathbb{F}_{4}^{3} are given by the spans of the vectors in

$$
\begin{aligned}
& V=\{ \left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
x \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
y \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
x
\end{array}\right) \\
&\left.\left(\begin{array}{l}
1 \\
0 \\
y
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
x
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
y
\end{array}\right),\left(\begin{array}{l}
1 \\
x \\
x
\end{array}\right),\left(\begin{array}{l}
1 \\
y \\
y
\end{array}\right),\left(\begin{array}{l}
1 \\
x \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
y \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
x
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
y
\end{array}\right),\left(\begin{array}{l}
1 \\
x \\
y
\end{array}\right),\left(\begin{array}{l}
1 \\
y \\
x
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\mathfrak{T}_{0}(1,2)= & \{(<v>\subset D, 0,0) \mid v \in V\} \cup\{(<v>\subset D,<v>, 0) \mid v \in V\} \\
& \cup\left\{\left(<v>\subset D,<v^{\prime}>, 0\right) \mid v \neq v^{\prime} \in V\right\} \cup\left\{\left(<v>\subset D,<v, v^{\prime}>, 0\right) \mid v \neq v^{\prime} \in V\right\} \\
& \cup\left\{\left(<v>\subset D,<v^{\prime}, v^{\prime \prime}>, 0\right) \mid v \neq v^{\prime}, v^{\prime \prime} \in V \text { such that }<v^{\prime}, v^{\prime \prime}>\cap<v>=0\right\} \\
& \cup\{(<v>\subset D, D, 0) \mid v \in V\} \\
= & A_{0,0, \mathbf{d}} \cup A_{(1,0), 0, \mathbf{d}} \\
& \cup A_{(0,1), 0, \mathbf{d}} \cup A_{(1,1), 0, \mathbf{d}} \\
& \cup A_{(0,2), 0, \mathbf{d}} \\
& \cup A_{(1,2), 0, \mathbf{d}}
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
& \left\{\mathbf{D} \in F l(1,2) \mid t D_{i} \subset D_{i-1}\right\} \times\left\{\mathbf{D} \in F l(1,2) \mid t D_{i} \subset D_{i-1}\right\} \\
& \\
& \quad=\left\{\left.\left(<v>\subset D,<v>, t=\left(\begin{array}{ccc}
0 & \lambda & \mu \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\right) \right\rvert\, v \in V, \lambda, \mu \in \mathbb{F}_{4} \text { not both zero }\right\}=A_{(1,0),(1,0),(1,1)}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\{\mathbf{D} \in F l(1,2) \mid t D_{i} \subset D_{i-1}\right\} \times\left\{\mathbf{D} \in F l(2,1) \mid t D_{i} \subset D_{i-1}\right\} \\
& =\left\{\left.\left(<v>\subset D,<v, v^{\prime}>, t=\left(\begin{array}{lll}
0 & \lambda & \mu \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\right) \right\rvert\, v \neq v^{\prime} \in V, t\left(v^{\prime}\right)=0, \lambda, \mu \in \mathbb{F}_{4} \text { not both zero }\right\} \\
& =A_{(1,1),(1,0),(1,1)}
\end{aligned}
$$

(t as a matrix for a basis compatible with the flag).
The cardinalities are

$$
\begin{array}{rll}
\left|A_{0,0, \mathbf{d}}\right| & =q^{2}[3] & \\
\left|A_{(1,0), 0, \mathbf{d}}\right| & =q^{2}[3] & \\
\left|A_{(0,1), 0, \mathbf{d}}\right| & =q^{5}[3]! & \\
\left|A_{(1,1), 0, \mathbf{d}}\right| & =420 \\
\left|A_{(0,2), 0, \mathbf{d}}\right| & =q^{5}[3]! & \\
\left|A_{(1,2), 0, \mathbf{d}}\right| & =420 \\
\left|A_{(1,0),(1,0),(1,1)}\right| & =q^{2}[3]! & \\
\left|A_{(1,1),(1,0),(1,1)}\right| & =840 \\
\mid 3]!\left(q^{2}-1\right) & =21 \\
=315 \\
\hline
\end{array}
$$

The following corrects a claim made in [21]:
Lemma 3.5. The varieties $A_{\mathbf{w}, \mathbf{r}, \mathbf{n}}$ are unions of orbits. In general, they are not single orbits (in contrast to the claim made in [21]).

Proof: The first claim is clear by definition, since the condition is $G L(D)$-equivariant. For the second claim, I refer to the following example.

Example 10. Let $\mathbf{d}=(1,1,1,1)$ and let $A_{(1,1,0,0,),(1,1,0,0),(1,1,0,0,)}=\left\{(\mathbf{D}, W, t) \mid W=D_{2}=\right.$ ker $t=\operatorname{im} t\}$. Then, for $\mathbf{D}=\left(<e_{1}>\subset<e_{1}, e_{2}>\subset<e_{1}, e_{2}, e_{3}>\subset<e_{1}, e_{2}, e_{3}, e_{4}>=D\right)$, the two elements

$$
\left(\mathbf{D},<e_{1}, e_{2}>,\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\right) \text { and }\left(\mathbf{D},<e_{1}, e_{2}>,\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\right)
$$

are in this set. Assuming both were in the same orbit, there should exist a $g \in G L(D)$ such that

$$
g\left(\mathbf{D},<e_{1}, e_{2}>,\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\right)=\left(\mathbf{D},<e_{1}, e_{2}>,\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\right)
$$

Since $g \mathbf{D}=\mathbf{D}, g=\left(g_{i, j}\right), g_{i, i} \neq 0$ has to be an upper triangular matrix. Thus

$$
g\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) g^{-1}=\left(\begin{array}{cccc}
0 & 0 & g_{1,2} & g_{1,1} \\
0 & 0 & g_{2,2} & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) g^{-1}=\left(\begin{array}{cccc}
0 & 0 & g_{1,2} g_{3,3}^{-1} & g_{1,1} g_{4,4}^{-1}-g_{1,2} g_{3,4} g_{4,4}^{-1} g_{3,3}^{-1} \\
0 & 0 & g_{2,2} g_{3,3}^{-1} & -g_{2,2} g_{3,4} g_{4,4}^{-1} g_{3,3}^{-1} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

But $g_{2,2} g_{3,3}^{-1} \neq 0$, so the two elements can not be in the same orbit. So the $A_{\mathbf{w}, \mathbf{r}, \mathbf{n}}$ are merely a union of orbits. However, the $A_{\mathbf{w}, \mathbf{0}, \mathbf{d}}$ always are orbits and the projection of $A_{\mathbf{w}, \mathbf{r}, \mathbf{n}}$ onto the first two components (sending (\mathbf{D}, W, t) to (\mathbf{D}, W)) is an orbit under the $G L(D)$-action as well.

Remark 7. To identify the orbits in general, consider $(\mathbf{D}, W, t),\left(\mathbf{D}^{\prime}, W^{\prime}, t^{\prime}\right) \in A_{\mathbf{w}, \mathbf{r}, \mathbf{n}}$. Without loss of generality, I can assume $\mathbf{D}=\mathbf{D}^{\prime}, W=W^{\prime}$. Choose a basis $\left(u_{i}\right)_{i=1}^{d}$ of D such that

$$
D_{i}=\operatorname{span}\left\{u_{i}\right\}_{i=1}^{d_{i}}
$$

and

$$
W \cap D_{j}=\operatorname{span} \bigcup_{l=0}^{j}\left\{u_{i}\right\}_{i=\left(\sum_{s=1}^{l-1} d_{s}\right)+1}^{\left(\sum_{s=1}^{l-1} d_{s}\right)+w_{l}} .
$$

Then t, t^{\prime} have to fulfill the conditions posed by \mathbf{r}, \mathbf{n}. If $g .(\mathbf{D}, W, t)=\left(\mathbf{D}, W, t^{\prime}\right)$, then g is an upper triangular matrix, so if $t\left(u_{i}\right) \in D_{j}$, then $t^{\prime}\left(u_{i}\right) \in D_{j}$. However, if t^{\prime} fulfills this, then there also exists g such that $g t g^{-1}=g^{\prime}$. This describes the orbits.
It remains to see which \mathbf{r}, \mathbf{n} allow more than one orbit. I need $u_{i_{1}} \in D_{j_{1}}, u_{i_{2}} \in D_{j_{2}}, j_{1}<j_{2}$ with $n_{j_{l}} \neq d_{j_{l}}, l=1,2\left(\operatorname{so} t\left(D_{j_{l}}\right) \neq 0\right)$ and $\sum_{i=j_{1}}^{k} r_{i}<\sum_{i=j_{1}+1}^{k} x_{i}$, with $d_{i}=n_{i}+x_{i}$ i.e $u_{i_{1}}$ and $u_{i_{2}}$ can be mapped to $D_{j_{1}-1}$ and not to zero. Moreover, there must be $l_{1} \neq l_{2}$ with $r_{l_{i}} \neq 0$ and $l_{i}<j_{1}$
such that t may map $u_{i_{1}}, u_{i_{2}}$ to $D_{l_{1}}, D_{l_{2}}$ or $D_{l_{2}}, D_{l_{1}}$. Then t, t^{\prime} with $t\left(u_{i_{1}}\right) \in D_{l_{1}}, t\left(u_{i_{2}}\right) \in D_{l_{2}}$ and $t^{\prime}\left(u_{i_{1}}\right) \in D_{l_{2}}, t^{\prime}\left(u_{i_{2}}\right) \in D_{l_{1}}$ are not in the same orbit. E.g.

$$
\mathbf{n}=\left(*, \cdots, *, d_{j_{1}}-x_{j_{1}}, \cdots, d_{j_{2}}-x_{j_{2}}, *, \cdots, *\right), x_{i} \neq 0
$$

and

$$
\mathbf{r}=\left(*, \cdots, *, 1, *, \cdots, *, 1_{1}^{l_{i_{1}}}, *, \cdots, *, 0_{1}^{j_{1}}, \cdots, \stackrel{j_{2}}{0, *, \cdots, *) .}\right.
$$

(if looking at the corresponding crossingless matching, it must have at least two arrows running above one another, e.g ■ ■).

3.4 The Spaces $T(\mathbf{d})$ and $T_{0}(\mathbf{d})$

Definition 3.6. A function $f: \mathfrak{T}(\mathbf{d}) \rightarrow \mathbb{C}$ such that $(g . f)(x):=f\left(g^{-1} x\right)=f(x) \forall g \in G L(D)$ is called invariant. Let $T(\mathbf{d})$ denote the space of invariant functions on $\mathfrak{T}(\mathbf{d})$.
Define $1_{A}(x):=\left\{\begin{array}{lc}1 & \text { if } x \in A \\ 0 & \text { else }\end{array}\right.$ the indicator function. Set

$$
k_{\mathbf{w}, \mathbf{r}, \mathbf{n}}=q^{\sum_{i<j} r_{i} w_{j}+w_{i} n_{j}-w_{i} w_{j}}
$$

a constant and define

$$
f_{\mathbf{w}, \mathbf{r}, \mathbf{n}}=k_{\mathbf{w}, \mathbf{r}, \mathbf{n}} 1_{A \mathbf{w}, \mathbf{r}, \mathbf{n}}
$$

Define $T_{0}(\mathbf{d})=\operatorname{span}\left\{f_{\mathbf{w}, \mathbf{0}, \mathbf{d}}\right\}_{\mathbf{w}}$, the set of invariant functions on $\mathfrak{T}_{0}(\mathbf{d})\left(\right.$ Recall that $A_{\mathbf{w}, \mathbf{0}, \mathbf{d}}$ is a single orbit).

Remark 8. Then $T(\mathbf{d}) \supset \operatorname{span}\left\{f_{\mathbf{w}, \mathbf{r}, \mathbf{n}}\right\}_{\mathbf{w}, \mathbf{r}, \mathbf{n}}$, but in general not equal (the inclusion is in general strict, e.g. consider f the indicator function of some orbit strictly contained in an $A_{\mathbf{w}, \mathbf{r}, \mathbf{n}}$. Recall that $A_{\mathbf{w}, \mathbf{r}, \mathbf{n}}$ is not necessarily an orbit, see example 10).
Only finitly many of the $f_{\mathbf{w}, \mathbf{r}, \mathbf{n}}$ are nonzero, more precisely $f_{\mathbf{w}, \mathbf{r}, \mathbf{n}}=0$ unless $|\mathbf{r}|+|\mathbf{n}|=|\mathbf{d}|=d$ (as $|\mathbf{r}|=\operatorname{dim}(\operatorname{im} t),|\mathbf{n}|=\operatorname{dim}(\operatorname{ker} t)$ and $\operatorname{dim}(D)=d=\operatorname{dim}(\operatorname{ker} t)+\operatorname{dim}(\operatorname{im} t)$) and $\mathbf{r} \leq \mathbf{w} \leq \mathbf{n}$ (as $\operatorname{im} t \subseteq W \subseteq$ ker t) where $|\mathbf{a}|:=\sum_{i=1}^{k} a_{i}$ and $\mathbf{a} \leq \mathbf{b} \Leftrightarrow \sum_{i=1}^{j} a_{i} \leq \sum_{i=1}^{j} b_{i} \forall 1 \leq j \leq k$, $\mathbf{a}<\mathbf{b} \Leftrightarrow \mathbf{a} \leq \mathbf{b}, \mathbf{a} \neq \mathbf{b}$, for $\mathbf{a}, \mathbf{b} \in\left(\mathbb{Z}_{\geq 0}\right)^{k}$.

Example 11. - d $=(2): T(2)=\operatorname{span}\left\{f_{0,0,2}, f_{1,0,2}, f_{2,0,2}\right\}$ (Recall that $\mathfrak{T}(\mathbf{d})=\mathfrak{T}_{0}(\mathbf{d})$, so $f_{\mathbf{w}, \mathbf{r}, \mathbf{n}}=0$ unless $\left.\mathbf{r}=0, \mathbf{n}=\mathbf{d}\right)$. So the span equals $T(2)$ and is not just a subset.

- $\mathbf{d}=(1,1)$: Recall $\mathfrak{T}(1,1)=\mathfrak{T}_{0}(1,1) \cup\{(0 \subset<v>\subset D,<v>, t \neq 0) \mid D=<v>\oplus<$ $\left.v>^{\perp}, t=\left(\begin{array}{ll}0 & \lambda \\ 0 & 0\end{array}\right)\right\}$, so $A_{\mathbf{w}, \mathbf{r}, \mathbf{n}} \neq \emptyset$ if and only if $\mathbf{w}=\mathbf{r}=\mathbf{n}=(1,0)$ or $\mathbf{r}=0, \mathbf{n}=\mathbf{d}$ and $\mathbf{w} \in\{(0,0),(1,0),(0,1),(1,1)\}$. So $f_{\mathbf{w}, \mathbf{r}, \mathbf{n}} \neq 0$ if and only if $\mathbf{w}=\mathbf{r}=\mathbf{n}=(1,0)$ or $\mathbf{r}=0, \mathbf{n}=\mathbf{d}$ and $\mathbf{w} \in\{(0,0),(1,0),(0,1),(1,1)\}$. Again, $T(1,1)=\operatorname{span}\left\{f_{\mathbf{w}, \mathbf{r}, \mathbf{n}}\right\}$, since in the case of $\mathbf{d}=(1,1)$, all the $A_{\mathbf{w}, \mathbf{r}, \mathbf{n}}$ are single orbits.

One wants to equip $T(\mathbf{d})$ with a U_{q}-module action such that there is a module-isomorphism $T_{0}(\mathbf{d}) \xrightarrow{\eta_{0}, \mathbf{d}} V_{d_{1}} \otimes \cdots \otimes V_{d_{k}}$ sending $f_{\mathbf{w}, \mathbf{0}, \mathbf{d}}$ to $v_{d_{1}-2 w_{1}} \otimes \cdots \otimes v_{d_{k}-2 w_{k}}=: \otimes^{\mathbf{d}} v_{\mathbf{w}}$, the elementary
basis element corresponding to \mathbf{w}.
Set

$$
\mathfrak{T}(w ; \mathbf{d})=\{(\mathbf{D}, W, t) \in \mathfrak{T}(\mathbf{d}) \mid \operatorname{dim} W=w\}
$$

and

$$
\mathfrak{T}(w, w+1 ; \mathbf{d})=\{(\mathbf{D}, U, W, t) \mid(\mathbf{D}, W, t),(\mathbf{D}, U, t) \in \mathfrak{T}(\mathbf{d}), \operatorname{dim} U=w, \operatorname{dim} W=w+1\} .
$$

Then there is a correspondence

$$
\mathfrak{T}(\mathbf{d}) \stackrel{\pi_{1}}{\leftarrow} \bigcup_{w} \mathfrak{T}(w, w+1 ; \mathbf{d}) \xrightarrow{\pi_{2}} \mathfrak{T}(\mathbf{d})
$$

with $\pi_{1}((\mathbf{D}, U, W, t))=(\mathbf{D}, U, t)$ and $\pi_{2}((\mathbf{D}, U, W, t))=(\mathbf{D}, W, t)$. Define $\pi_{!}(f)(x):=\sum_{y \in \pi^{-1}(x)} f(y)$ (recall that I am working over a finite field) and $\pi^{*} f(x)=f(\pi(x))$.

Remark 9. The correspondence can be defined over \mathbb{C} as well.
Definition 3.7. [21, Theorem 2.2.1]
$T(\mathbf{d})$ becomes a $U_{q}\left(s l_{2}\right)$ module via the following action of $E, F, K^{ \pm 1}$: Set

$$
\begin{aligned}
& E f=q^{-\operatorname{dim}\left(\pi_{1}^{-1}(-)\right)}\left(\pi_{1}\right)!\pi_{2}^{*} f, \\
& F f=q^{-\operatorname{dim}\left(\pi_{2}^{-1}(-)\right)}\left(\pi_{2}\right)!\pi_{1}^{*} f
\end{aligned}
$$

and

$$
K^{ \pm 1} f=q^{ \pm(d-2 \operatorname{dim}(-))} f .
$$

So

$$
\begin{aligned}
& E f(\mathbf{D}, U, t)=q^{-\operatorname{dim}\left(\pi_{1}^{-1}(\mathbf{D}, U, t)\right)}\left(\pi_{1}\right)!\pi_{2}^{*} f(\mathbf{D}, U, t) \\
&=q^{-\operatorname{dim}\left(\pi_{1}^{-1}(\mathbf{D}, U, t)\right)} \sum_{(\mathbf{D}, U, W, t) \in \bigcup_{w} \mathfrak{T}(w, w+1 ; \mathbf{d})} f(\mathbf{D}, W, t),
\end{aligned}
$$

$$
\begin{array}{rl}
F f(\mathbf{D}, W, t)=q^{-\operatorname{dim}\left(\pi_{2}^{-1}(\mathbf{D}, W, t)\right)}\left(\pi_{2}\right)!\pi_{1}^{*} f & f(\mathbf{D}, W, t) \\
& =q^{-\operatorname{dim}\left(\pi_{2}^{-1}(\mathbf{D}, W, t)\right)} \sum_{(\mathbf{D}, U, W, t) \in \cup_{w} \mathfrak{F}(w, w+1 ; \mathbf{d})} f(\mathbf{D}, U, t)
\end{array}
$$

and

$$
K^{ \pm 1} f(\mathbf{D}, W, t)=q^{ \pm(d-2 \operatorname{dim} W)} f(\mathbf{D}, W, t) .
$$

Remark 10. π_{1}, π_{2} are in general not surjective, e.g. consider $A_{\mathbf{w}, \mathbf{r}, \mathbf{n}}=A_{(1,1,0,0),(1,1,0,0),(1,1,0,0)}$.

$$
\begin{aligned}
& \mathfrak{T}(w, w+1 ; \mathbf{d}) \\
= & \{(\mathbf{D}, U, W, t) \mid(\mathbf{D}, W, t), \mathbf{D}, U, t) \in \mathfrak{T}(\mathbf{d}), \operatorname{dim} U=w, \operatorname{dim} W=w+1\} \\
= & \{(\mathbf{D}, U, W, t) \mid \operatorname{im} t \subset U \subsetneq W \subset \operatorname{ker} t,(\mathbf{D}, W, t), \mathbf{D}, U, t) \in \mathfrak{T}(\mathbf{d}), \operatorname{dim} U=w, \operatorname{dim} W=w+1\},
\end{aligned}
$$

so if ker $t=\operatorname{im} t$, no $(\mathbf{D}, U, W, t) \in \mathfrak{T}(w, w+1 ; \mathbf{d})$ for any w, \mathbf{d}. Thus

$$
\begin{aligned}
& E f_{(1,1,0,0),(1,1,0,0),(1,1,0,0)}(\mathbf{D}, U, t) \\
= & q^{-\operatorname{dim}\left(\pi_{1}^{-1}(\mathbf{D}, U, t)\right)} \sum_{(\mathbf{D}, U, W, t) \in \cup_{w} \mathfrak{T}(w, w+1 ; \mathbf{d})} f(\mathbf{D}, W, t) \\
= & q^{-\operatorname{dim}\left(\pi_{1}^{-1}(\mathbf{D}, U, t)\right)} \sum_{(\mathbf{D}, U, W, t) \in \cup_{w} \mathfrak{T}(w, w+1 ; \mathbf{d}),(\mathbf{D}, W, t) \in A_{\mathbf{w}, \mathbf{r}, \mathbf{n}}} f(\mathbf{D}, W, t) \\
= & q^{-\operatorname{dim}\left(\pi_{1}^{-1}(\mathbf{D}, U, t)\right)} \sum_{(\mathbf{D}, U, W, t) \in \emptyset} f(\mathbf{D}, W, t) \\
= & 0 \quad \forall(\mathbf{D}, U, t),
\end{aligned}
$$

similarly for F.
Proposition 3.8. Applying the action of $E, F, K^{ \pm 1}$ to the vectors $f_{\mathbf{w}, \mathbf{r}, \mathbf{n}}$, one obtains

$$
\begin{gathered}
K^{ \pm 1} f_{\mathbf{w}, \mathbf{r}, \mathbf{n}}=q^{ \pm(d-2|\mathbf{w}|)} f_{\mathbf{w}, \mathbf{r}, \mathbf{n}} \\
E f_{\mathbf{w}, \mathbf{r}, \mathbf{n}}=\sum_{j=1}^{k} q^{\sum_{i=1}^{j-1} \mathbf{n}_{i}-\mathbf{r}_{i}-2\left(\mathbf{w}_{i}-\mathbf{r}_{i}\right)}\left[\mathbf{n}_{j}-\mathbf{w}_{j}+1\right] f_{\mathbf{w}-\delta^{j}, \mathbf{r}, \mathbf{n}}
\end{gathered}
$$

and

$$
F f_{\mathbf{w}, \mathbf{r}, \mathbf{n}}=\sum_{j=1}^{k} q^{-\sum_{i=j+1}^{k} \mathbf{n}_{i}-\mathbf{r}_{i}-2\left(\mathbf{w}_{i}-\mathbf{r}_{i}\right)}\left[\mathbf{w}_{j}-\mathbf{r}_{j}+1\right] f_{\mathbf{w}+\delta^{j}, \mathbf{r}, \mathbf{n}}
$$

(where $\delta^{j} \in\left(\mathbb{Z}_{\geq 0}\right)^{k}$ is the element such that $\delta_{i}^{j}=0 \forall i \neq j, \delta_{j}^{j}=1$).
Proof: Let $(\mathbf{D}, U, t) \in \mathfrak{T}(\mathbf{d})$ be fixed. It is clear that $E f_{\mathbf{w}, \mathbf{r}, \mathbf{n}}(\mathbf{D}, U, t)=0$ unless $\alpha(U, \mathbf{D})=\mathbf{w}-\delta^{j}$ for some j since

$$
E f_{\mathbf{w}, \mathbf{r}, \mathbf{n}}(\mathbf{D}, U, t)=q^{-\operatorname{dim}\left(\pi_{1}^{-1}(\mathbf{D}, U, t)\right)} \sum_{(\mathbf{D}, U, W, t) \in \bigcup_{w} \mathfrak{T}(w, w+1 ; \mathbf{d})} f_{\mathbf{w}, \mathbf{r}, \mathbf{n}}(\mathbf{D}, W, t),
$$

so there must exist a W such that $(\mathbf{D}, W, t) \in A_{\mathbf{w}, \mathbf{r}, \mathbf{n}}$.
Then

$$
\begin{aligned}
E f_{\mathbf{w}, \mathbf{r}, \mathbf{n}}(\mathbf{D}, U, t) & =q^{-\operatorname{dim}\left(\pi_{1}^{-1}(\mathbf{D}, U, t)\right)} \sum_{(\mathbf{D}, U, W, t) \in \cup_{w} \mathfrak{T}(w, w+1 ; \mathbf{d})} f_{\mathbf{w}, \mathbf{r}, \mathbf{n}}(\mathbf{D}, W, t) \\
& =k_{\mathbf{w}, \mathbf{r}, \mathbf{n}} q^{-\operatorname{dim}\left(\pi_{1}^{-1}(\mathbf{D}, U, t)\right)} \chi_{q}\left(\pi_{1}^{-1}(\mathbf{D}, U, t) \cap \pi_{2}^{-1}\left(A_{\mathbf{w}, \mathbf{r}, \mathbf{n}}\right)\right) .
\end{aligned}
$$

$\left(\chi_{q}(A)\right.$ is the Euler characteristic, i.e. the number of points in A, which is finite since $k=$ $\mathbb{F}_{q^{2}}$ and $\chi_{q}\left(\pi_{1}^{-1}(\mathbf{D}, U, t) \cap \pi_{2}^{-1}\left(A_{\mathbf{w}, \mathbf{r}, \mathbf{n}}\right)\right)$ is the number of W such that $(\mathbf{D}, W, t) \in A_{\mathbf{w}, \mathbf{r}, \mathbf{n}}$ and $\left.(\mathbf{D}, U, W, t) \in \bigcup_{w} \mathfrak{T}(w, w+1 ; \mathbf{d})\right)$
Now,

$$
\begin{aligned}
\pi_{1}^{-1}(\mathbf{D}, U, t) & \cong\{W \mid U \subset W \subset \operatorname{ker} t, \operatorname{dim} W=\operatorname{dim} U+1\} \\
& \cong\{W \mid W \subset \operatorname{ker} t / U, \operatorname{dim} W=1\} \\
& \cong \mathbb{P}^{\operatorname{dim}(\operatorname{ker} t)-\operatorname{dim} U-1} \\
& =\mathbb{P}^{|\mathbf{n}|-(|\mathbf{w}|-1)-1} \\
& =\mathbb{P}^{|\mathbf{n}|-|\mathbf{w}|}
\end{aligned}
$$

and thus $\operatorname{dim}\left(\pi_{1}^{-1}(\mathbf{D}, W, t)\right)=|\mathbf{n}|-|\mathbf{w}|\left(\right.$ remember $\alpha(U, \mathbf{D})=\mathbf{w}-\delta^{j}$, so $\left.\operatorname{dim}(U)=|\mathbf{w}|-1\right)$. Moreover,

$$
\begin{aligned}
& \pi_{1}^{-1}(\mathbf{D}, U, t) \cap \pi_{2}^{-1}\left(A_{\mathbf{w}, \mathbf{r}, \mathbf{n}}\right) \\
\cong & \{W \mid U \subset W \subset \operatorname{ker} t, \alpha(W, \mathbf{D})=\mathbf{w}\} \\
\cong & \left\{W \mid\left(U \cap D_{j}\right) \subset W \subset\left(\operatorname{ker} t \cap D_{j}\right), \operatorname{dim}\left(W \cap D_{j-1}\right)=\mathbf{w}^{(1, j-1)}, \operatorname{dim} W=\mathbf{w}^{(1, j)}\right\} \\
\cong & \left\{W \mid W \subset\left(\operatorname{ker} t \cap D_{j}\right) /\left(U \cap D_{j}\right), W \nsubseteq\left(\operatorname{ker} t \cap D_{j-1}\right) /\left(U \cap D_{j-1}\right), \operatorname{dim} W=1\right\},
\end{aligned}
$$

(where $\mathbf{w}^{(i, j)}=\sum_{l=i}^{j} w_{l}$), so the dimension equals

$$
\begin{aligned}
& \operatorname{dim} \mathbb{P}^{\operatorname{dim}\left(\operatorname{ker} t \cap D_{j}\right) /\left(U \cap D_{j}\right)-1}-\operatorname{dim} \mathbb{P}^{\operatorname{dim}\left(\operatorname{ker} t \cap D_{j-1}\right) /\left(U \cap D_{j-1}\right)-1} \\
= & \operatorname{dim} \mathbb{P}^{\mathbf{n}^{(1, j)}-\left(\mathbf{w}-\delta^{j}\right)^{(1, j)}-1}-\operatorname{dim} \mathbb{P}^{\mathbf{n}^{(1, j-1)}-\left(\mathbf{w}-\delta^{j}\right)^{(1, j-1)}-1} \\
= & \operatorname{dim} \mathbb{P}^{\mathbf{n}^{(1, j)}-\mathbf{w}^{(1, j)}}-\operatorname{dim} \mathbb{P}^{\mathbf{n}^{(1, j-1)}-\mathbf{w}^{(1, j-1)}-1} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
E f_{\mathbf{w}, \mathbf{r}, \mathbf{n}}(\mathbf{D}, U, t) & =k_{\mathbf{w}, \mathbf{r}, \mathbf{n}} q^{-(|\mathbf{n}|-|\mathbf{w}|)}\left(\sum_{i=0}^{\mathbf{n}^{(1, j)}-\mathbf{w}^{(1, j)}} q^{2 i}-\sum_{i=0}^{\mathbf{n}^{(1, j-1)}-\mathbf{w}^{(1, j-1)}-1} q^{2 i}\right) \\
& =k_{\mathbf{w}, \mathbf{r}, \mathbf{n}} q^{|\mathbf{w}|-|\mathbf{n}|} \sum_{i=\mathbf{n}^{(1, j-1)}-\mathbf{w}^{(1, j-1)}}^{\mathbf{n}^{(1, j)}-\mathbf{w}^{(1, j)}} q^{2 i} \\
& =k_{\mathbf{w}, \mathbf{r}, \mathbf{n}} q^{|\mathbf{w}|-|\mathbf{n}|+2\left(\mathbf{n}^{(1, j-1)}-\mathbf{w}^{(1, j-1)}\right)} \sum_{i=0}^{n_{j}-w_{j}} q^{2 i} \\
& =k_{\mathbf{w}, \mathbf{r}, \mathbf{n}} q^{\mathbf{w}^{j+1, k}-\mathbf{w}^{1, j-1}+\mathbf{n}^{1, j-1}-\mathbf{n}^{j+1, k}}\left[n_{j}-w_{j}+1\right] .
\end{aligned}
$$

Using $k_{\mathbf{w}-\delta^{\mathbf{j}}, \mathbf{r}, \mathbf{n}}=k_{\mathbf{w}, \mathbf{r}, \mathbf{n}} q^{-\mathbf{r}^{1, j-1}-\mathbf{n}^{j+1, k}+\mathbf{w}^{1, j-1}+\mathbf{w}^{j+1, k}}$, one obtains

$$
k_{\mathbf{w}, \mathbf{r}, \mathbf{n}} q^{\mathbf{w}^{j+1, k}-\mathbf{w}^{1, j-1}+\mathbf{n}^{1, j-1}-\mathbf{n}^{j+1, k}}=k_{\mathbf{w}-\delta \mathbf{j}, \mathbf{r}, \mathbf{n}} q^{\mathbf{r}^{(1, j-1)}+\mathbf{n}^{1, j-1}-2 \mathbf{w}^{1, j-1}}
$$

Inserting this gives $E f_{\mathbf{w}, \mathbf{r}, \mathbf{n}}(\mathbf{D}, U, t)=k_{\mathbf{w}-\delta^{\mathbf{j}}, \mathbf{r}, \mathbf{n}} \mathrm{q}^{\mathbf{r}^{(1, j-1)}+\mathbf{n}^{1, j-1}-2 \mathbf{w}^{1, j-1}}\left[n_{j}-w_{j}+1\right]$. Thus

$$
\begin{aligned}
E f_{\mathbf{w}, \mathbf{r}, \mathbf{n}} & =\sum_{j=1}^{k} q^{\mathbf{r}^{(1, j-1)}+\mathbf{n}^{1, j-1}-2 \mathbf{w}^{1, j-1}}\left[n_{j}-w_{j}+1\right] k_{\mathbf{w}-\delta^{\mathbf{j}, \mathbf{r}, \mathbf{n}}} 1_{A_{\mathbf{w}-\delta^{\mathbf{j}, \mathbf{r}, \mathbf{n}}}} \\
& =\sum_{j=1}^{k} q^{\mathbf{r}^{(1, j-1)}+\mathbf{n}^{1, j-1}-2 \mathbf{w}^{1, j-1}}\left[n_{j}-w_{j}+1\right] f_{\mathbf{w}-\delta^{\mathbf{j}, \mathbf{r}, \mathbf{n}}} \\
& =\sum_{j=1}^{k} q^{\sum_{i=1}^{j-1}\left(n_{i}-r_{i}-2\left(w_{i}-r_{i}\right)\right)}\left[n_{j}-w_{j}+1\right] f_{\mathbf{w}-\delta^{\mathbf{j}}, \mathbf{r}, \mathbf{n}}
\end{aligned}
$$

Similarly,

$$
F f_{\mathbf{w}, \mathbf{r}, \mathbf{n}}=\sum_{j=1}^{k} q^{-\sum_{i=j+1}^{k}\left(n_{i}-r_{i}-2\left(w_{i}-r_{i}\right)\right)}\left[w_{j}-r_{j}+1\right] f_{\mathbf{w}+\delta^{\mathbf{j}}, \mathbf{r}, \mathbf{n}}
$$

It follows from the definition that

$$
K^{ \pm 1} f_{\mathbf{w}, \mathbf{r}, \mathbf{n}}=q^{ \pm(d-2|\mathbf{w}|)} f_{\mathbf{w}, \mathbf{r}, \mathbf{n}}=q^{ \pm \sum_{i=1}^{k}\left(n_{i}-r_{i}-2\left(w_{i}-r_{i}\right)\right)} f_{\mathbf{w}, \mathbf{r}, \mathbf{n}}
$$

as $|\mathbf{r}|+|\mathbf{n}|=|\mathbf{d}|=d$.

3.5 Relation between $T_{0}(\mathbf{d})$ and $V_{d_{1}} \otimes \cdots \otimes V_{d_{k}}$

Definition 3.9. Define $\eta_{\mathbf{r}, \mathbf{n}}: \operatorname{span}\left\{f_{\mathbf{w}, \mathbf{r}, \mathbf{n}}\right\}_{\mathbf{w}} \rightarrow V_{n_{1}-r_{1}} \otimes \cdots \otimes V_{n_{k}-r_{k}}$ by $f_{\mathbf{w}, \mathbf{r}, \mathbf{n}} \mapsto \otimes^{\mathbf{n}-\mathbf{r}} v_{\mathbf{w}-\mathbf{r}}$, extended by linearity.

Proposition 3.10. η is a U_{q}-module isomorphism.
Proof: The action of $x \in U_{q}$ on $V_{d_{1}} \otimes \cdots \otimes V_{d_{k}}$ was defined as $\Delta^{k-1}(x)$, so

$$
\begin{gathered}
\Delta^{k-1} E=\sum_{i=1}^{k} K \otimes \cdots \otimes K \otimes E \otimes 1 \otimes \cdots \otimes 1 \\
\Delta^{k-1} F=\sum_{i=1}^{k} 1 \otimes \cdots \otimes 1 \otimes F \otimes K^{-1} \otimes \cdots \otimes K^{-1} \\
\Delta^{k-1} K^{ \pm}=K^{ \pm} \otimes \cdots \otimes K^{ \pm}
\end{gathered}
$$

where E and F appear in the $i^{t h}$ position in the first two equations. Comparing this with the action on $T(\mathbf{d})$, the claim follows.

Definition 3.11. Denote by $h_{\mathbf{w}}^{\mathbf{d}}$ the preimage under $\eta_{\mathbf{0 , d}}$ of $v_{d_{1}-2 w_{1}} \diamond \cdots \diamond v_{d_{k}-2 w_{k}}=: \diamond^{\mathbf{d}} v_{\mathbf{w}}$, the canonical basis element corresponding to \mathbf{w}. So the canonical basis can be interpreted as certain invariant functions on a subvariety of $\mathfrak{T}(\mathbf{d})$.

3.6 Examples

Example 12. Action of U_{q} on $T_{0}(\mathbf{d})$ (I will abbreviate $f_{\mathbf{w}, \mathbf{0}, \mathbf{d}}$ by $f_{\mathbf{w}}$).
$\mathbf{d}=(1,1,1)$:

$$
\begin{aligned}
& E f_{(0,0,0)}=0 \quad E f_{(0,0,1)}=q^{2} f_{(0,0,0)} \quad E f_{(0,1,1)}=q f_{(0,0,1)} \quad E f_{(1,1,1)}=f_{(0,1,1)} \\
& +f_{(0,1,0)} \quad+q^{-1} f_{(1,0,1)} \\
& +q^{-2} f_{(1,1,0)} \\
& E f_{(0,1,0)}=q f_{(0,0,0)} \quad E f_{(1,1,0)}=f_{(0,1,0)} \\
& +q^{-1} f_{(1,0,0)} \\
& E f_{(1,0,0)}=f_{(0,0,0)} \quad E f_{(1,0,1)}=f_{(0,0,1)} \\
& +f_{(1,0,0)} \\
& F f_{(0,0,0)}=f_{(0,0,1)} \quad F f_{(0,0,1)}=q f_{(0,1,1)} \quad F f_{(0,1,1)}=q^{2} f_{(1,1,1)} \quad F f_{(1,1,1)}=0 \\
& +q^{-1} f_{(0,1,0)} \quad+f_{(1,0,1)} \\
& +q^{-2} f_{(1,0,0)} \\
& F f_{(0,1,0)}=f_{(0,1,1)} \quad F f_{(1,1,0)}=f_{(1,1,1)} \\
& +f_{(1,1,0)} \\
& F f_{(1,0,0)}=f_{(1,0,1)} \quad F f_{(1,0,1)}=q f_{(1,1,1)} \\
& +q^{-1} f_{(1,1,0)}
\end{aligned}
$$

and

$$
\begin{array}{ll}
K f_{(0,0,0)}=q^{3} f_{(0,0,0)} & K f_{(0,0,1)}=q f_{(0,0,1)} \\
& K f_{(0,1,1)}=q^{-1} f_{(0,1,1)} \quad K f_{(1,1,1)}=q^{-3} f_{(1,1,1)} \\
& K f_{(1,0,0)}=q f_{(0,1,0)} \\
K f_{(1,1,0)}=q^{-1} f_{(1,1,0)} & K f_{(1,0,1)}=q^{-1} f_{(1,0,1)}
\end{array}
$$

One sees that there are four weightspaces determined by the absolute value of \mathbf{w}. Compare this to the action of U_{q} on $V_{d_{1}} \otimes \cdots \otimes V_{d_{k}}\left(\otimes^{\mathbf{d}} v_{\mathbf{w}}=v_{d_{1}-2 w_{1}} \otimes \cdots \otimes v_{d_{k}-2 w_{k}}\right.$ and recall the action of U_{q} (see the proof of Proposition 3.10)):
$\mathbf{d}=(1,1,1)$:

$$
\begin{aligned}
& E \otimes^{\mathbf{d}} v_{(0,0,0)} \quad E \otimes^{\mathbf{d}} v_{(0,0,1)} \quad E \otimes^{\mathbf{d}} v_{(0,1,1)} \quad E \otimes^{\mathbf{d}} v_{(1,1,1)} \\
& =0 \quad=q^{2} \otimes^{\mathbf{d}} v_{(0,0,0)}=q \otimes^{\mathbf{d}} v_{(0,0,1)} \quad=\otimes^{\mathbf{d}} v_{(0,1,1)} \\
& +\otimes^{\mathbf{d}} v_{(0,1,0)} \quad+q^{-1} \otimes^{\mathbf{d}} v_{(1,0,1)} \\
& +q^{-2} \otimes^{\mathbf{d}} v_{(1,1,0)} \\
& E \otimes^{\mathbf{d}} v_{(0,1,0)} \quad E \otimes^{\mathbf{d}} v_{(1,1,0)} \\
& =q \otimes^{\mathbf{d}} v_{(0,0,0)} \quad=\otimes^{\mathbf{d}} v_{(0,1,0)} \\
& +q^{-1} \otimes^{\mathbf{d}} v_{(1,0,0)} \\
& E \otimes^{\mathbf{d}} v_{(1,0,0)} \quad E \otimes^{\mathbf{d}} v_{(1,0,1)} \\
& =\otimes^{\mathbf{d}} v_{(0,0,0)} \quad=\otimes^{\mathbf{d}} v_{(0,0,1)} \\
& +\otimes^{\mathbf{d}} v_{(1,0,0)} \quad \text {, } \\
& F \otimes^{\mathbf{d}} v_{(0,0,0)} \quad F \otimes^{\mathbf{d}} v_{(0,0,1)} \quad F \otimes^{\mathbf{d}} v_{(0,1,1)} \quad F \otimes^{\mathbf{d}} v_{(1,1,1)} \\
& =\otimes^{\mathbf{d}} v_{(0,0,1)} \quad=q \otimes^{\mathbf{d}} v_{(0,1,1)} \quad=q^{2} \otimes^{\mathbf{d}} v_{(1,1,1)}=0 \\
& +q^{-1} \otimes^{\mathbf{d}} v_{(0,1,0)}+\otimes^{\mathbf{d}} v_{(1,0,1)} \\
& +q^{-2} \otimes^{\mathbf{d}} v_{(1,0,0)} \\
& F \otimes^{\mathbf{d}} v_{(0,1,0)} \quad F \otimes^{\mathbf{d}} v_{(1,1,0)} \\
& =\otimes^{\mathbf{d}} v_{(0,1,1)} \quad=\otimes^{\mathbf{d}} v_{(1,1,1)} \\
& +\otimes^{\mathbf{d}} v_{(1,1,0)} \\
& F \otimes^{\mathbf{d}} v_{(1,0,0)} \quad F \otimes^{\mathbf{d}} v_{(1,0,1)} \\
& =\otimes^{\mathbf{d}} v_{(1,0,1)} \quad=q \otimes^{\mathbf{d}} v_{(1,1,1)} \\
& +q^{-1} \otimes^{\mathbf{d}} v_{(1,1,0)}
\end{aligned}
$$

and

$$
\begin{array}{llll}
K \otimes^{\mathbf{d}} v_{(0,0,0)} & K \otimes^{\mathbf{d}} v_{(0,0,1)} & K \otimes^{\mathbf{d}} v_{(0,1,1)} & K \otimes^{\mathbf{d}} v_{(1,1,1)} \\
=q^{3} \otimes^{\mathbf{d}} v_{(0,0,0)} & =q \otimes^{\mathbf{d}} v_{(0,0,1)} & =q^{-1} \otimes^{\mathbf{d}} v_{(0,1,1)} & =q^{-3} \otimes^{\mathbf{d}} v_{(1,1,1)} \\
& K \otimes^{\mathbf{d}} v_{(0,1,0)} & K \otimes^{\mathbf{d}} v_{(1,1,0)} & \\
& =q \otimes^{\mathbf{d}} v_{(0,1,0)} & =q^{-1} \otimes^{\mathbf{d}} v_{(1,1,0)} \\
& \\
& K \otimes^{\mathbf{d}} v_{(1,0,0)} & K \otimes^{\mathbf{d}} v_{(1,0,1)} \\
& =q \otimes^{\mathbf{d}} v_{(1,0,0)} & =q^{-1} \otimes^{\mathbf{d}} v_{(1,0,1)}
\end{array}
$$

Example 13. $\mathbf{d}=(1,1,1)$:
The coefficients of the $f_{\mathbf{w}^{\prime}, \mathbf{0}, \mathbf{d}}$ occuring in the representation of $h_{\mathbf{w}}^{\mathbf{d}}$ in this basis are calculated using the Kazhdan-Lusztig polynomials $p_{\mathbf{w}^{\prime}, \mathbf{w}}$, with q^{-1} inserted (see [1, section 5]) (Again, I
will abbreviate $f_{\mathbf{w}, \mathbf{0}, \mathbf{d}}$ by $\left.f_{\mathbf{w}}\right)$.

Operation of $U_{q}\left(s l_{2}\right)$ on $T_{0}(\mathbf{d}) \cong V_{1}^{\otimes 3}$ with basis $h_{\mathbf{w}}^{\mathbf{d}}$:
(use $q+q^{-1}=[2]$ and $q^{2}+1+q^{-2}=[3]$) and

$$
\begin{array}{lll}
K^{ \pm 1} h_{(0,0,0)}^{\mathbf{d}} & =q^{ \pm 3} h_{(0,0,0)}^{\mathbf{d}} & \\
K^{ \pm 1} h_{(0,0,1)}^{\mathbf{d}} & =q^{ \pm 1} h_{(0,0,1)}^{\mathbf{d}} & K^{ \pm 1} h_{(0,1,0)}^{\mathbf{d}}=q^{ \pm 1} h_{(0,1,0)}^{\mathbf{d}}
\end{array} \quad K^{ \pm 1} h_{(1,0,0)}^{\mathbf{d}}=q^{ \pm 1} h_{(1,0,0)}^{\mathbf{d}} .
$$

Notice that all coefficients are positive for the action of U_{q} on the $h_{\mathbf{w}}^{\mathbf{d}}$.
Remark 11. Compare this to the action of U_{q} on the dual basis given by [6]. The dual basis can be denoted by (upper) crossingless matchings where an arc is drawn between to arrows if the one oriented up is to the left of the one oriented down and as usual w_{i} denotes the number of down verticies in the box corresponding to $V_{d_{i}}$ (a down vertex is associated to v_{-1} and an up vertex to v_{1}, so e.g. $v_{1} \otimes v_{-1}$ is associated to
$\square \square)$. To determine the action of E, numerate all down-oriented verticies not connected to some other vertex with an arc, starting from the left, by $\left(1,2, \cdots, l_{d o w n}\right)$. E acts on $\oslash^{\mathbf{d}} v^{\mathbf{w}}$ by $\sum_{i}[i] E_{(i)} \cap^{\mathbf{d}} v^{\mathbf{w}}$, where $E_{(i)}$ reverses the $i^{\text {th }}$ down arrow not connected with an arc to an up arrow and draws an arc if possible (i.e. if there is a neighboring down arrow to the right of the up arrow). Similarly, F reverses the up-arrows, starting from the right. For $\mathbf{d}=(1,1,1)$, one gets:

and one has $\left\langle u, \bar{\Delta}^{(k-1)}(w(x)) v^{*}\right\rangle=\left\langle\Delta^{(k-1)}(x) u, v^{*}\right\rangle$ for u in usual basis and v^{*} in dual basis, so e.g. $\left\langle\diamond^{\mathbf{d}} u_{\mathbf{w}}, \bar{\Delta}^{(k-1)}(E) \oslash^{\mathbf{d}} v^{\mathbf{w}^{\prime}}\right\rangle=\left\langle\Delta^{(k-1)}(F) \diamond^{\mathbf{d}} u_{\mathbf{w}}, \oslash^{\mathbf{d}} v^{\mathbf{w}^{\prime}}\right\rangle$. This gives a further way of checking that the results on the canonical basis calculated before in the example are indeed correct. Again, all the coefficients occuring are positive.

3.7 The Space $T_{c}(\mathbf{d})$ and a Canonical Basis of It

One can find an extension $e: T_{0}(\mathbf{d}) \rightarrow T(\mathbf{d})$ (module homomorphism, isomorphism onto its image) extending invariant functions on $\mathfrak{T}_{0}(\mathbf{d})$ to invariant functions on $\mathfrak{T}(\mathbf{d})$ with larger support. By this, one wishes to obtain from the $h_{\mathbf{w}}^{\mathbf{d}}$ a basis of invariant functions on $\mathfrak{T}(\mathbf{d})$ with a nice geometric interpretation. So the aim is to find an extension that will yield such a nice basis and that is an isomorphism onto its image, such that the new basis can again be identified with the canonical basis via e and $\eta_{\mathbf{0 , d}}$.

Definition 3.12. Define an extension e extending a function $f \in T_{0}(\mathbf{d})$ to a function $f^{e} \in T(\mathbf{d})$ by

$$
f^{e}=\sum_{\mathbf{r}, \mathbf{n}}\left(\eta_{\mathbf{r}, \mathbf{n}}\right)^{-1} \circ \gamma_{\mathbf{r}, \mathbf{n}} \circ \eta_{\mathbf{0}, \mathbf{d}}(f)
$$

(Recall the definition 3.9 of η), where the $\gamma_{\mathbf{r} \mathbf{n}}$ in the set of intertwiners $\left\{\gamma_{\mathbf{r} \mathbf{r}}: V_{d_{1}} \otimes \cdots \otimes V_{d_{k}} \rightarrow\right.$ $\left.V_{n_{1}-r_{1}} \otimes \cdots \otimes V_{n_{k}-r_{k}}\right\}_{\mathbf{r}, \mathbf{n}}$ are defined below.

To define the $\gamma_{\mathbf{r}, \mathbf{n}}$, some preparation is needed. It is known from [6], that a basis of the space of intertwiners (though linear endomorphisms commuting with the alternative comultiplication) between two tensor product representations of U_{q} is given by the corresponding crossingless matchings. For a lower crossingless matching S, define \mathbf{r}^{S} by setting r_{i}^{S} equal to the number of left endpoints of lower curves contained in $V_{d_{i}}$ and define \mathbf{n}^{S} by setting n_{i}^{S} equal to d_{i} minus the number of right endpoints of lower curves contained in $V_{d_{i}}$. One can associate to any lower crossingless matching an endomorphism t sending a vector of $D_{i} \backslash D_{i-1}$ to a vector of $D_{j} \backslash D_{j-1}, j<i$, for any curve connecting $V_{d_{i}}$ and $V_{d_{j}}$ (choose a basis of D compatible with the flag \mathbf{D} and define the matrix of t in this basis by $\left(C_{t}\right)_{i, j}=1$ if $i<j$ and S has a curve connecting the $i^{\text {th }}$ and $j^{\text {th }}$ vertices and equal to zero otherwise). E.g. let S be the crossingless matching $\hat{\square} \square$, so $\mathbf{n}^{\mathbf{S}}=(1,1,0)$ and $\mathbf{r}^{\mathbf{S}}=(0,1,0)$, and let \mathbf{D} be the standard flag $<e_{1}>\subset<e_{1}, e_{2}>\subset<e_{1}, e_{2}, e_{3}>$. Then let the matrix of t in the standard basis be $\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$. So one actually obtains $\mathbf{r}^{\mathbf{S}}=\alpha(\operatorname{im} t, \mathbf{D})$ and $\mathbf{n}^{\mathbf{S}}=\alpha(\operatorname{ker} t, \mathbf{D})$. This S can be completed to a crossingless matching to $V_{n_{1}^{S}-r_{1}^{S}} \otimes \cdots \otimes V_{n_{k}^{S}-r_{k}^{S}}$ in a unique way as $n_{i}^{S}-r_{i}^{S}$ is the number of unconnected vertices of the i th box.
E.g. the lower crossingless matching S

with $\mathbf{r}^{\mathbf{S}}=(3,1,1,0)$ and $\mathbf{n}^{\mathbf{S}}=(4,1,1,3)$ can be completed to a crossingless match to $V_{1} \otimes V_{0} \otimes$ $V_{0} \otimes V_{2}=V_{n_{1}^{S}-r_{1}^{S}} \otimes \cdots \otimes V_{n_{4}^{S}-r_{4}^{S}}$,

Then let $\tilde{\gamma}_{\mathbf{r}}{ }^{\mathbf{s}} \mathbf{n}$ be the corresponding intertwiner commuting with the action of U_{q} given by $\bar{\Delta}^{(k-1)}$. This is welldefined as $S \mapsto\left(\mathbf{r}^{\mathbf{s}}, \mathbf{n}^{\mathbf{S}}\right)$ is injective. Define $\gamma_{\mathbf{r}^{\mathbf{s}}, \mathbf{n}^{\mathbf{s}}}=\hat{\sigma} \tilde{\gamma}_{\mathbf{r}^{\mathbf{s}}, \mathbf{n}} \hat{\sigma}$; this is an intertwiner commuting with the action of U_{q} given by $\Delta^{(k-1)}$. If (\mathbf{r}, \mathbf{n}) is not of the form $\left(\mathbf{r}^{\mathbf{S}}, \mathbf{n}^{\mathbf{S}}\right)$ for any crossingless matching S, set $\gamma_{\mathbf{r}, \mathbf{n}}=0$.

Proposition 3.13. e is an isomorphism onto its image and $\left.f^{e}\right|_{T_{0}(\mathbf{d})}=f$.
Proof: Follows from Proposition 3.10 and the way the intertwiner associated to a crossingless matching is defined.
Let $T_{c}(\mathbf{d}):=\operatorname{span}\left\{f_{\mathbf{w}, \mathbf{0}, \mathbf{d}}^{e}\right\}$. Now one wants to show that the distinguished basis $g_{\mathbf{w}}^{\mathbf{d}}=\left(h_{\mathbf{w}}^{\mathbf{d}}\right)^{e}$ of this space corresponds to the irreducible components of $\mathfrak{T}(\mathbf{d})$ and to the canonical basis of $V_{d_{1}} \otimes \cdots \otimes V_{d_{k}}$, thus getting a geometric interpretation of the canonical basis.

In order to do this, it is necessary to work over the algebraic closure of the field for some time. Let $\mathfrak{T}(\mathbf{d})^{\prime}$ denote the variety over the closure of the field defined in the same fashion as $\mathfrak{T}(\mathbf{d})$ and set $Z_{\mathbf{w}}^{\prime}=\left\{(\mathbf{D}, W, t) \in \mathfrak{T}(\mathbf{d})^{\prime} \mid \alpha(W, \mathbf{D})=\mathbf{w}\right\}=\bigcup_{\mathbf{r}, \mathbf{n}} A_{\mathbf{w}, \mathbf{r}, \mathbf{n}}^{\prime}$ (where $A_{\mathbf{w}, \mathbf{r}, \mathbf{n}}^{\prime}$ is defined in analogy to $\left.A_{\mathbf{w}, \mathbf{r}, \mathbf{n}}\right)$.

Proposition 3.14. The $\overline{Z_{w}^{\prime}}$ are the irreducible components of $\mathfrak{T}(\mathbf{d})^{\prime}$.
Remark 12. An analogous statement for the Steinberg varieties introduced in section 3.1 is well-known ([2], [5]).
Proof: Clearly $\dot{U}_{\mathbf{w}} Z_{\mathbf{w}}^{\prime}=\mathfrak{T}(\mathbf{d})^{\prime}$. Moreover, the connected components of $\mathfrak{T}(\mathbf{d})^{\prime}$ are given by fixing the dimension of W, i.e. by $\bigcup \underset{\left|\mathbf{w}^{\prime}\right|=|\mathbf{w}|}{\mathbf{w}^{\prime},} A_{\mathbf{w}^{\prime}, \mathbf{r}, \mathbf{n}}^{\prime}$. Thus it sufficies to show that the $Z_{\mathbf{w}}^{\prime}$ are irreducible and locally closed and that their dimension is independent of \mathbf{w} for fixed $|\mathbf{w}|$ (so the closures (the sets themselves are disjoint), are not contained in one another). In order to do so, consider the maps

given by $p_{1}(\mathbf{D}, W, t)=(\mathbf{D}, W)$ and $p_{2}(\mathbf{D}, W)=\mathbf{D}$ with

$$
Z_{\mathbf{w}}^{\prime 1}=\left\{(\mathbf{D}, W) \mid(\mathbf{D}, W, t) \in Z_{\mathbf{w}}^{\prime} \text { for some } t\right\} \hat{=} A_{\mathbf{w}, \mathbf{0}, \mathbf{d}}
$$

and

$$
Z_{\mathbf{w}}^{\prime 2}=\left\{\mathbf{D} \mid(\mathbf{D}, W) \in Z_{\mathbf{w}}^{\prime 1} \text { for some } W\right\}=F l(\mathbf{d})
$$

a flag manifold. p_{1} and p_{2} are locally trivial fibrations, i.e. for each point $(\mathbf{D}, W, t)((\mathbf{D}, W)$ respectivly) there is an open neighborhood U of (\mathbf{D}, W) (\mathbf{D} respectivly) such that $p_{1}^{-1}(U) \cong$ $(\mathbf{D}, W) \times\left\{t \in \operatorname{End}(D) \mid t\left(D_{i}\right) \subset D_{i-1}, \operatorname{im}(t) \subset W \subset \operatorname{ker}(t)\right\}\left(p_{2}^{-1}(U) \cong \mathbf{D} \times\{W \subset D \mid\right.$ $\alpha(W, \mathbf{D})=\mathbf{w}\}$ respectivly). $G L(D)$ acts transitively on $Z_{\mathbf{w}}^{\prime 1}=A_{\mathbf{w}, \mathbf{0}, \mathbf{d}}$ with stabilizer

$$
G_{1}=\left\{\left.\left(\begin{array}{cccccccc}
M_{1} & * & * & * & * & \cdots & \cdots & * \\
0 & N_{1} & 0 & * & 0 & \cdots & \cdots & * \\
0 & 0 & M_{2} & * & * & & & * \\
0 & 0 & 0 & N_{2} & 0 & & & * \\
0 & 0 & 0 & 0 & \ddots & \ddots & & * \\
0 & 0 & 0 & 0 & \ddots & \ddots & 0 & \vdots \\
\vdots & \vdots & \vdots & \vdots & \ddots & \ddots & M_{k} & * \\
0 & 0 & 0 & 0 & \cdots & \cdots & 0 & N_{k}
\end{array}\right) \right\rvert\, M_{i} \in G L\left(w_{i}\right), N_{i} \in G L\left(d_{i}-w_{i}\right)\right\} .
$$

Thus $\operatorname{dim}\left(A_{\mathbf{w}, \mathbf{0}, \mathbf{d}}\right)=\operatorname{dim} G L(D)-\operatorname{dim} G_{1}=\sum_{i<j} d_{i} d_{j}+\sum_{i \leq j} w_{j}\left(d_{i}-w_{i}\right)$. The fiber of p_{1} over a point $(\mathbf{D}, W) \in Z_{w}^{\prime 1}$ is

$$
F_{1}=\left\{t \in \operatorname{End}(D) \mid t\left(D_{i}\right) \subset D_{i-1}, \text { im } t \subset W \subset \text { ker } t\right\} .
$$

In order to describe the dimension of this fiber, pick a basis $\left\{u_{i}\right\}_{i=1}^{d}$ of D such that $\left\{u_{i}\right\}_{i=1}^{d_{1}+\ldots+d_{j}}$ is a basis of D_{j} and such that $\bigcup_{l=0}^{j}\left\{u_{i}\right\}_{i=\mathbf{d}^{(1, l-1)}+1}^{\mathbf{d}^{(1, l-1)}+w_{l}}$ is a basis for $W \cap D_{j}\left(\right.$ where $\left.\mathbf{d}^{(i, j)}=\sum_{l=i}^{j} d_{l}\right)$. By considering the matrices of t in this basis
one sees that F_{1} is an affine space of dimension $\sum_{i>j} w_{j}\left(d_{i}-w_{i}\right)$. Finally, one obtains

$$
\operatorname{dim} Z_{\mathbf{w}}^{\prime}=\operatorname{dim} Z_{\mathbf{w}}^{\prime 1}+\operatorname{dim} F_{1}=\sum_{i<j} d_{i} d_{j}+\sum_{i, j=1}^{k} w_{j}\left(d_{i}-w_{i}\right)=\sum_{i<j} d_{i} d_{j}+|\mathbf{w}|(d-|\mathbf{w}|),
$$

which is independent of \mathbf{w} for fixed $|\mathbf{w}|$. The spaces $Z_{\mathbf{w}}^{\prime 2}, F_{1}$ and $F_{2}=\{W \subset D \mid \alpha(W, \mathbf{D})=$ $\mathbf{w}\}$, the fiber of p_{2} over a point $\mathbf{D} \in Z_{\mathbf{w}}^{\prime 2}$, are all smooth and connected, hence irreducible. Furthermore, $Z_{\mathbf{w}}^{\prime 2}$ and F_{1} are closed and F_{2} is locally closed since F_{2} is equal to the closed set $\{W \subset D \mid \alpha(W, \mathbf{D}) \geq \mathbf{w}\}$ minus the finite collection of closed sets $\{W \subset D \mid \alpha(W, \mathbf{D}) \geq \mathbf{a}\}_{\mathbf{a}>\mathbf{w}}$. Thus Z_{w}^{\prime} is irreducible and locally closed.

Remark 13. In a similar fashion as in the case of $A_{\mathbf{w}, \mathbf{0}, \mathbf{d}}^{\prime}$, one can calculate the dimensions of the other orbits. Let $W \in F_{2}$ for some \mathbf{D} and $A_{\mathbf{w}, \mathbf{r}, \mathbf{n}}^{\prime} \neq \emptyset$. Then one can define a t such that $(\mathbf{D}, W, t) \in A_{\mathbf{w}, \mathbf{r}, \mathbf{n}}^{\prime}$ as follows. \mathbf{r} and \mathbf{n} tell me how many basis elements of D_{i} have to be sent to 0 and onto how many basis vectors of D_{j} the rest may be sent (use the same basis as in the proof of proposition 3.14). Since $A_{\mathbf{w}, \mathbf{r}, \mathbf{n}}^{\prime}$ is not empty, these vectors can be chosen from the basis of W. Thus $\left.p_{1}\right|_{A_{\mathbf{w}, \mathbf{r}, \mathbf{n}}^{\prime}}=Z_{\mathbf{w}}^{\prime 1}$. The difference in dimension therefore can only occur in the fiber F_{1}^{\prime} of $\left.p_{1}\right|_{A_{\mathbf{w}, \mathbf{r}, \mathbf{n}}}$ over some point (\mathbf{D}, W). Consider $t \in F_{1}^{\prime}$ in the same basis as in the proof of
proposition 3.14:

In addition, to fulfill the condition posed by \mathbf{r}, there must by r_{1} linear independant columns with zero entries outside the first d_{1} rows (so that im $t \cap D_{1}$ has dimension r_{1}), r_{2} linear independant collumns with zero entries in rows below the first $d_{1}+d_{2}$ rows and not all entries zero in the rows below the first d_{1} rows and so on. Clearly, as \mathbf{r} increases and subsequently \mathbf{n} decreases, the number of possibilities and thus the dimension of $A_{\mathbf{w}, \mathbf{r}, \mathbf{n}}^{\prime}$ increases.

Proposition 3.15. Setting $M=M(\mathbf{d}, \mathbf{w})$, the crossingless matching corresponding to \mathbf{w}, then $A_{\mathbf{w}, \mathbf{r}^{\mathrm{M}}, \mathbf{n}^{\mathrm{M}}}^{\prime}$ is open and dense in $\overline{Z_{\mathbf{w}}^{\prime}}$.

Proof: It is obvious that $A_{\mathbf{w}, \mathbf{r}^{\mathbf{M}}, \mathbf{n}^{\mathbf{M}}}^{\prime} \subset \overline{Z_{\mathbf{w}}^{\prime}}$, so it only remains to show that $A_{\mathbf{w}, \mathbf{r}^{\mathbf{M}}, \mathbf{n}^{\mathbf{M}}}^{\prime}$ is dense in Z_{w}^{\prime} (Recall that in the Zariski-topology, a subset of an irreducible variety is dense if it is open and not empty). As seen in the remark, the projection of $A_{\mathbf{w}, \mathbf{r}^{\mathrm{M}}, \mathbf{n}^{\mathbf{M}}}^{\prime}$ onto $Z_{w}^{\prime 1}$ is all of $Z_{w}^{\prime 1}$. Thus it suffices to show that $A_{\mathbf{w}, \mathbf{r}^{\mathrm{M}}, \mathbf{n}^{\mathrm{M}}}^{\prime}$ is dense in each fiber. For fixed $(\mathbf{D}, W) \in Z_{w}^{\prime 1}$, the intersection F_{1}^{\prime} of F_{1} with $\left(\left.p_{1}\right|_{A_{\mathbf{w}, \mathbf{r}, \mathbf{n}}^{\prime}}\right)^{-1}(\mathbf{D}, W)$ is given by

$$
F_{1}^{\prime}=\left\{t \in \operatorname{End}(D) \mid t\left(D_{i}\right) \subset D_{i-1}, \operatorname{im} t \subset W \subset \operatorname{ker} t, \alpha(\operatorname{im} t, \mathbf{D})=\mathbf{r}^{\mathbf{M}}, \alpha(\operatorname{ker} t, \mathbf{D})=\mathbf{n}^{\mathbf{M}}\right\}
$$

Choose a basis as in the proof of proposition 3.14. Since im $t \subset W \subset$ ker t, t can be factored through D / W and viewed as map into W. Then t is uniquely determined by the correspponding $\bar{t} \in \operatorname{End}(D / W, W)$. Then (see proof of proposition 3.14) the matrix C_{t} of \bar{t} is of the form

$$
C_{t}=\left(\begin{array}{ccccc}
0 & A_{1,2} & A_{1,3} & \ldots & A_{1, k} \\
\vdots & 0 & A_{2,3} & \ldots & A_{2, k} \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \vdots & \ddots & 0 & A_{k-1, k} \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

with $A_{i, j}$ a $\left(w_{i}\right) \times\left(d_{j}-w_{j}\right)$-matrix (corresponding to the $*$ in the matrix in the proof of proposition 3.14). I claim that $t \in F_{1}^{\prime}$ if and only if each submatrix

$$
C_{t}^{i, j}=\left(\begin{array}{cccc}
A_{i, i+1} & A_{i, i+2} & \ldots & A_{i, j+1} \\
0 & A_{i+1, i+2} & \ldots & A_{i+1, j+1} \\
\vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & 0 & A_{j, j+1}
\end{array}\right)
$$

for $1 \leq i \leq j \leq k-1$ has maximal rank. That is, $\alpha(\operatorname{im} t, \mathbf{D})_{l}$ and $d_{l}-\alpha(\operatorname{ker} t, \mathbf{D})_{l}$ are maximal for all l. Now consider a diagram M^{\prime} of non-crossing oriented curves connecting the $V_{d_{l}}$ associated to a $t \in F_{1}$, i.e. the number of downward vertices among those associated to $V_{d_{l}}$ is given by w_{l} and the number of left and right endpoints of curves of M^{\prime} in $V_{d_{l}}$ is given by $\alpha(\operatorname{im} t, \mathbf{D})_{l}$ and $d_{l}-\alpha(\operatorname{ker} t, \mathbf{D})_{l}$ respectively (So M^{\prime} illustrates how t maps the basis vectors of D_{l} / D_{l-1} to those of D_{m} / D_{m-1} in a certain especially nice basis). A priori, this need not be an oriented lower crossingless matching, as for example the unmatched vertices might not be arranged such that those oriented down are to the right of those oriented up. However, requiring the rank of $C_{t}^{i, j}$ to be maximal is equivalent to M^{\prime} having the maximal number of curves connecting $V_{d_{i}}, V_{d_{i+1}}, \ldots$ and $V_{d_{j+1}}$. Comparing this to the definition of $M(\mathbf{d}, w)$ in definition 2.7, one sees that $C_{t}^{i, j}$ having maximal rank is equivalent to $M^{\prime}=M$ and thus to $\mathbf{r}^{\mathbf{M}}=\mathbf{r}^{\mathbf{M}^{\prime}}$ and $\mathbf{n}^{\mathrm{M}}=\mathbf{n}^{\mathbf{M}^{\prime}}$, therefore to $t \in F_{1}^{\prime}$. This prooves the claim. This argument shows once more, that $F_{1}^{\prime} \neq \emptyset$, since one can define $t \in F_{1}^{\prime}$ by $\left(C_{t}\right)_{(i, j)}=1$ if $i<j$ and M has a curve connecting the $i^{t h}$ and $j^{\text {th }}$ vertices, and $\left(C_{t}\right)_{(i, j)}=0$ otherwise. To be more precise, as seen above, any $t \in F_{1}^{\prime}$ has a matrix of this form for a basis chosen accordingly.
Now one still has to see that the set F_{1}^{\prime} is open and dense. Being non-empty, it is clear that F_{1}^{\prime} is dense if it is open.
I claim that $N_{m, n}=\left\{A \in M_{m, n} \mid A\right.$ has maximal rank $\} \subset M_{m, n}=m \times n-$ matrices is open in $M_{m, n}$. To see this, let $r=\min (m, n)$.
Then $N_{m, n}=\left\{A \in M_{m, n} \mid\right.$ at least one $r \times r$ submatrix of A has rank r$\}$, which is a union of open subsets of $M_{m, n}$ since a $r \times r$ matrix has rank r if and only if it has a nonzero determinant, thus open. Since $N_{m, n}$ is open, it is given by the non-vanishing of a finite collection of polynomials in the matrix elements of $M_{m, n}$ (since I am working over the Zariski-topology). Applying this to the $C_{t}^{i, j}$, requiring $C_{t}^{i, j}$ has maximal rank is equivalent to the non-vanishing of a finite number of polynomials in the matrix elements of $C_{t}^{i, j}$, and thus of C_{t}. Therefore F_{1}^{\prime} is the intersection of a finite number of open subsets of F_{1}, and hence open.

3.8 Examples for the $M(\mathbf{d}, \mathbf{w})$ and Corresponding $A_{\mathbf{w}, \mathbf{r}^{\mathrm{M}}, \mathbf{n}^{\mathrm{M}}}$

In this section I describe explicitly the spaces $A_{\mathbf{w}, \mathbf{r}, \mathbf{n}}$ assigned to crossingless matchings in some small examples.

Example 14. $M(\mathbf{d}, \mathbf{w})$ and the corresponding $A_{\mathbf{w}, \mathbf{r}^{\mathrm{M}}, \mathbf{n}^{\mathrm{M}}}$ for $d=3,4$:
Recalling the inclusion $V_{d_{1}} \otimes \cdots \otimes V_{d_{k}} \rightarrow V_{1}^{\otimes \sum_{i=1}^{k} d_{i}}$, one can reduce the case where $\mathbf{d}^{\prime} \neq(1, \ldots, 1)$
to the case $\mathbf{d}=(1, \ldots, 1)$ ，where $\left|\mathbf{d}^{\prime}\right|=$ number of 1 s in $(1, \ldots, 1)=|\mathbf{d}|$ ，by＂merging＂the boxes in the diagram according to \mathbf{d}^{\prime}（ so that each box contains the correct number of vertices）and regarding only those lower oriented crossingless matchings which do not have a lower curves among vertices of a single box．For fixed \mathbf{d} ，all lower oriented crossingless matchings can be parametrised by the \mathbf{w} ，yielding the $M(\mathbf{d}, \mathbf{w})$ ．
$d=3$

Now，for $\mathbf{d}=(3)$ ，only the first four $M(\mathbf{d}, \mathbf{w})$ are admitted，for $\mathbf{d}=(2,1)$ ，the first six，for $\mathbf{d}=(1,2)$ the first four and the last two，and all for $\mathbf{d}=(1,1,1)$ ．
$d=4$

w	（ $0,0,0,0$ ）	（0， $0,0,1)$	（ $0,0,1,1$ ）	（ $0,1,1,1$ ）
$M((1,1,1,1), \mathbf{w})$	向苗 \downarrow 古	白古古尚	占负尚尚	尚尚尚尚
$\begin{gathered} A_{\mathrm{w}, \mathbf{r}^{\mathrm{M}}, \mathbf{n}^{\mathrm{M}}} \\ \text { element of orbit } \end{gathered}$	$\begin{gathered} A_{\mathbf{w},(0,0,0,0)(1,1,1,1)} \\ (\mathbf{D}, 0,0) \end{gathered}$	$\begin{gathered} A_{\mathbf{w},(0,0,0,0)(1,1,1,1)} \\ \left(\mathbf{D},<e_{4}>, 0\right) \end{gathered}$	$\begin{aligned} & A_{\mathbf{w},(0,0,0,0)(1,1,1,1)} \\ & \left(\mathbf{D},<e_{3}, e_{4}>, 0\right) \end{aligned}$	$\begin{gathered} A_{\mathbf{w},(0,0,0,0)(1,1,1,1)} \\ \left(\mathbf{D},<e_{2}, e_{3}, e_{4}>, 0\right) \end{gathered}$
w	（ $1,1,1,1$ ）			
$M((1,1,1,1), \mathbf{w})$	尚尚尚尚			
$A_{\mathbf{w}, \mathbf{r}^{\mathrm{M}}, \mathbf{n}^{\mathrm{M}}}$ element of orbit	$\begin{gathered} A_{\mathbf{w},(0,0,0,0)(1,1,1,1)} \\ (\mathbf{D}, D, 0) \end{gathered}$			

w	（ $0,0,1,0$ ）	（0，1，1， 0 ）	（1，1，1，0）
$M((1,1,1,1), \mathbf{w})$	官靣 $®$	占尚 ロ	尚尚 \square
$A_{\mathbf{w}, \mathbf{r}^{\mathrm{M}}, \mathbf{n}^{\mathrm{M}}}$	$A_{\text {w，}(0,0,1,0)(1,1,1,0)}$	$A_{\mathbf{w},(0,0,1,0)(1,1,1,0)}$	$A_{\text {w，}(0,0,1,0)(1,1,1,0)}$
W in element	$<e_{3}>$	$<e_{2}, e_{3}>$	$<e_{1}, e_{2}, e_{3}>$
（ \mathbf{D}, W, t ）of set with $t=\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right)$			
w	$(0,1,0,0)$	$(0,1,0,1)$	（1，1，0，1）
$M((1,1,1,1), \mathbf{w})$	官 \downarrow ¢	古扫尚	当追的
$A_{\mathbf{w}, \mathbf{r}^{\mathrm{M}}, \mathbf{n}^{\mathrm{M}}}$	$A_{\text {w，}(0,1,0,0)(1,1,0,1)}$	$A_{\text {w，（0，}, 1,0,0)(1,1,0,1)}$	$A_{\text {w，}(0,1,0,0)(1,1,0,1)}$
W in element	$<e_{3}>$	$<e_{2}, e_{3}>$	$<e_{1}, e_{2}, e_{3}>$
w	（1，0，0，0）	（1，0，0，1）	（1，0，1，1）
$M((1,1,1,1), \mathbf{w})$	ロロ向	号的尚	号 $\square^{\text {尚尚 }}$
$A_{\mathrm{w}, \mathrm{r}^{\mathrm{M}}, \mathrm{n}^{\mathrm{M}}}$	$A_{\text {w，（1，0，0，0）（1，0，1，1）}}$	$A_{\text {w，（1，0，0，0）（1，0，1，1）}}$	$A_{\text {w，（1，0，0，0）（1，0，1，1）}}$
W in element	$<e_{3}>$	$<e_{2}, e_{3}>$	$<e_{1}, e_{2}, e_{3}>$
（ \mathbf{D}, W, t ）of set $\text { with } t=\left(\begin{array}{ccc} 0 & 1 & 0 \end{array} 0^{0} 0\right.$			
w	（ $1,1,0,0$ ）		
$M((1,1,1,1), \mathbf{w})$	$\downarrow \square$		
$A_{\mathrm{w}, \mathrm{r}^{\mathrm{M}}, \mathbf{n}^{\mathrm{M}}}$	$A_{\text {w，（1，1，0，0）（1，1，0，0）}}$		
W in element	$\left.<e_{1}, e_{2}\right\rangle$		
（ \mathbf{D}, W, t ）of set $\text { with } t=\left(\begin{array}{cccc} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$			
w	（1， $0,1,0)$		
$M((1,1,1,1), \mathbf{w})$	$\square \square \square$		
$A_{\mathbf{w}, \mathbf{r}^{\mathrm{M}}, \mathbf{n}^{\mathrm{M}}}$	$A_{\mathbf{w},(1,0,1,0)(1,0,1,0)}$		
W in element	$<e_{1}, e_{3}>$		
（D，W, t ）of set			
$\text { with } t=\left(\begin{array}{lllll} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right)$			

3.9 A more Detailed Description of the Irreducible Components

Proposition 3.16. $\overline{A_{\mathrm{a}, \mathrm{r}, \mathrm{n}^{\mathrm{s}}}^{\prime}} \subset \overline{Z_{w}^{\prime}}$ for all $S \leq M, \mathbf{a} \geq \mathbf{w},|\mathbf{a}|=|\mathbf{w}|$.
Proof: It is sufficient to show $A_{\mathbf{a}, \mathbf{r}^{\mathrm{s}}, \mathbf{n}^{\mathrm{s}}}^{\prime} \subset \overline{Z_{w}^{\prime}}$. Since the connected components of $\mathfrak{T}(\mathbf{d})^{\prime}$ are given by fixing the dimension of W, i.e. by

$$
\bigcup_{\substack{\mathbf{w}^{\prime},\left|\mathbf{w}^{\prime}\right|=|\mathbf{w}|}} A_{\mathbf{w}^{\prime}, \mathbf{r}, \mathbf{n}}^{\prime},
$$

$|\mathbf{a}|=|\mathbf{w}|$ is clear as well. First consider $A_{\mathbf{a}, \mathbf{0}, \mathbf{d}}^{\prime}$. I want to show that

$$
A_{\mathbf{a}, \mathbf{0}, \mathbf{d}}^{\prime} \subset \overline{A_{\mathbf{w}, \mathbf{0}, \mathbf{d}}^{\prime}} \text { if and only if }|\mathbf{a}|=|\mathbf{w}| \text { and } \mathbf{a} \geq \mathbf{w} .
$$

Since $Z_{\mathbf{w}}^{\prime 1}=A_{\mathbf{w}, \mathbf{0}, \mathbf{d}}^{\prime}$, it follows that $p_{1}\left(A_{\mathbf{a}, \mathbf{r}^{\mathbf{s}}, \mathbf{n}^{\mathbf{s}}}^{\prime}\right) \subset \overline{Z_{\mathbf{w}}^{\prime \prime}}$ if and only if $|\mathbf{a}|=|\mathbf{w}|$ and $\mathbf{a} \geq \mathbf{w}$, so $A_{\mathbf{a}, \mathbf{r}^{\mathrm{s}}, \mathbf{n}}^{\prime} \subset \overline{Z_{\mathbf{w}}^{\prime}}$ only if $|\mathbf{a}|=|\mathbf{w}|$ and $\mathbf{a} \geq \mathbf{w}$.
One has $A_{\mathbf{a}, \mathbf{0}, \mathbf{d}}^{\prime} \subset F l(\mathbf{d}) \times G(|\mathbf{a}|, d)$, which is projective (see remark 4). Let $I(X)$ denote the ideal of homogenous polynomials vanishing on X, then $I\left(A_{\mathbf{a}, \mathbf{0}, \mathbf{d}}^{\prime}\right) \supset I\left(A_{\mathbf{w}, \mathbf{0}, \mathbf{d}}^{\prime}\right)$ for $\mathbf{a} \geq \mathbf{w}$ (Since for fixed \mathbf{D}, consider $(\mathbf{D}, W, 0) \in A_{\mathbf{a}, \mathbf{0}, \mathbf{d}}^{\prime}$ and let $\left(u_{l}\right)_{l}=\bigcup_{i=1}^{k}\left(u_{l}^{i}\right)_{l}$ denote a basis compatible with \mathbf{D} and W as in the proof of proposition 3.14, where $\bigcup_{i=1}^{j}\left(u_{l}^{i}\right)_{l}$ denotes the basis of D_{j}. Then one can define a $\left(\mathbf{D}, W^{\prime}, 0\right) \in A_{\mathbf{w}, \mathbf{0}, \mathbf{d}}^{\prime}$: for each i such that $a_{i} \geq w_{i}, a_{i}=w_{i}+l$, choose j_{1}, \ldots, j_{l} with $a_{j_{k}} \leq w_{j_{k}}$ such that $\left(u_{l}^{i}+\lambda u_{m}^{j_{k}}\right)_{i, l}$ for some λ 's forms a basis of a W^{\prime} as required. Then a polynomial vanishing on $\left(\mathbf{D}, W^{\prime}, 0\right)$ for all λ, already has to vanish on $(\mathbf{D}, W, 0)$. Hence the inclusion follows.).
Let $V(I)$ denote the vanishing set of an ideal, then $V\left(I\left(A_{\mathbf{a}, \mathbf{0}, \mathbf{d}}^{\prime}\right)\right) \subset V\left(I\left(A_{\mathbf{w}, \mathbf{0}, \mathbf{d}}^{\prime}\right)\right)=\overline{A_{\mathbf{w}, \mathbf{0}, \mathbf{d}}^{\prime}}$. Next, consider the fiber of the projection p_{1} over a point (\mathbf{D}, W) given by

$$
\left\{(\mathbf{D}, W, t) \in A_{\mathbf{a}, \mathbf{r}^{\mathrm{s}}, \mathbf{n}^{\mathbf{s}}}^{\prime} \mid p_{1}(\mathbf{D}, W, t)=(\mathbf{D}, W)\right\} .
$$

So the first two entries are fixed and the fiber can be identified with

$$
\left\{t \mid(\mathbf{D}, W, t) \in \mathfrak{T}(\mathbf{d}), \alpha(\operatorname{ker} t, \mathbf{D})=n^{S}, \alpha(\operatorname{im} t, \mathbf{D})=r^{S}\right\} .
$$

This is in the closure of

$$
\left\{t \mid\left(\mathbf{D}, W^{\prime}, t\right) \in \mathfrak{T}(\mathbf{d}), \alpha(\operatorname{ker} t, \mathbf{D})=n^{M}, \alpha(\operatorname{im} t, \mathbf{D})=r^{M}\right\}
$$

(since $S \leq M$, one has $r_{i}^{S} \leq r_{i}^{M}, n_{i}^{S} \geq n_{i}^{M}$, and therefore $A_{\mathbf{w}, \mathbf{r}^{\mathbf{S}}, \mathbf{n}^{\mathbf{s}}}^{\prime} \in Z_{\mathbf{w}}^{\prime}$, so for each t with $(\mathbf{D}, W, t) \in A_{\mathbf{a}, \mathbf{r}^{\mathrm{s}}, \mathbf{n}^{\mathbf{s}}}^{\prime}$, there is W^{\prime} with $\left(\mathbf{D}, W^{\prime}, t\right) \in A_{\mathbf{w}, \mathbf{r}^{\mathrm{s}}, \mathbf{n}^{\mathrm{s}}}^{\prime}$. But then
$\left(\mathbf{D}, W^{\prime}, t\right) \in \overline{\left\{\left(\mathbf{D}, W^{\prime}, t\right) \in \mathfrak{T}(\mathbf{d}) \mid \alpha(\operatorname{ker} t, \mathbf{D})=n^{M}, \alpha(\operatorname{im} t, \mathbf{D})=r^{M}, p_{1}\left(\mathbf{D}, W^{\prime}, t\right)=\left(\mathbf{D}, W^{\prime}\right)\right\}}$,
which can be identified with the closure of

$$
\left\{t \mid\left(\mathbf{D}, W^{\prime}, t\right) \in \mathfrak{T}(\mathbf{d}), \alpha(\operatorname{ker} t, \mathbf{D})=n^{M}, \alpha(\operatorname{im} t, \mathbf{D})=r^{M}\right\}
$$

So all t lie in the closure of

$$
\left.\left\{t \mid\left(\mathbf{D}, W^{\prime}, t\right) \in \mathfrak{T}(\mathbf{d}), \alpha(\operatorname{ker} t, \mathbf{D})=n^{M}, \alpha(\operatorname{im} t, \mathbf{D})=r^{M}, \alpha\left(W^{\prime}, \mathbf{D}\right)=\mathbf{w}\right\} .\right)
$$

Now,

$$
\left\{t \mid\left(\mathbf{D}, W^{\prime}, t\right) \in \mathfrak{T}(\mathbf{d}), \alpha(\operatorname{ker} t, \mathbf{D})=n^{M}, \alpha(\operatorname{im} t, \mathbf{D})=r^{M}, \alpha\left(W^{\prime}, \mathbf{D}\right)=\mathbf{w}\right\} \in \overline{Z_{\mathbf{w}}^{\prime}}
$$

by proposition 3.15, thus

$$
\overline{\left\{t \mid\left(\mathbf{D}, W^{\prime}, t\right) \in \mathfrak{T}(\mathbf{d}), \alpha(\operatorname{ker} t, \mathbf{D})=n^{M}, \alpha(\operatorname{im} t, \mathbf{D})=r^{M}, \alpha\left(W^{\prime}, \mathbf{D}\right)=\mathbf{w}\right\}} \in \overline{Z_{\mathbf{w}}^{\prime}} .
$$

So it is proven that $A_{\mathbf{a}, \mathbf{r}^{\mathbf{s}}, \mathbf{n}^{\mathbf{s}}}^{\prime} \subset \overline{Z_{\mathbf{w}}^{\prime}}$.
Given an algebraic group G acting on an algebraic variety X, the closure of an orbit O of G is of course again G-invariant, hence a union of G-orbits. In fact, see [10, 8.3], $\bar{O}-O$ is a union of orbits of strictly smaller dimension than O. This applies in particular to the situation here, and I am interested in describing the induced partial ordering on orbits given by $O^{\prime}<O$ if O^{\prime} is contained in the closure of O in more detail.

Remark 14. In a similar manner as in the proof, one can describe more generally some of the $A_{\mathbf{a}, \mathbf{r}^{\prime}, \mathbf{n}^{\prime}}^{\prime}$ lying in the closure of $A_{\mathbf{w}, \mathbf{r}, \mathbf{n}}^{\prime}$. For one thing, $|\mathbf{a}|=|\mathbf{w}|$ and $\mathbf{a} \geq \mathbf{w}$ needs to be satisfied. It remains to consider the fiber. To each orbit I can associate a "generalised" lower oriented (crossingless) matching by arranging the vertices and up and down arrows as usual and drawing caps from the d_{i} th to the d_{j} th vertices for each basis vector of D_{i} / D_{i-1} mapped to D_{j} / D_{j-1} by some t belonging to an element of this orbit (these matching are no longer necessarily crossingless, e.g.■ $\hat{\square}$ corresponding to

$$
t=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

with standard basis and standard flag or $\square \square \square \square$ corresponding to

$$
t=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

but I can let them have as few crossings as possible, egg. $\square \square$ rather than $\square \square$).
Proposition 3.17. $A_{\mathbf{a}, \mathbf{r}^{\prime}, \mathbf{n}^{\prime}}^{\prime} \subset \overline{A_{\mathbf{w}, \mathbf{r}, \mathbf{n}}^{\prime}}$ if all the diagrams corresponding to the orbits of $A_{\mathbf{a}, \mathbf{r}^{\prime}, \mathbf{n}^{\prime}}^{\prime}$ are $<$ some diagram corresponding to an orbit of $A_{\mathbf{w}, \mathbf{r}, \mathbf{n}}^{\prime}$, i.e. if $r_{i}^{\prime} \leq r_{i}, n_{i}^{\prime} \geq n_{i} \forall i$, and $|\mathbf{a}|=|\mathbf{w}|, \mathbf{a} \geq \mathbf{w}$.

In particular, the $<$ ordering on diagrams is a refinement of the partial ordering on orbits, i.e. all the diagramms corresponding to the orbits of $A_{\mathbf{a}, \mathbf{r}^{\prime}, \mathbf{n}^{\prime}}^{\prime}$ are $<$ some diagramm corresponding to an
orbit of $A_{\mathbf{w}, \mathbf{r}, \mathbf{n}}^{\prime} \Rightarrow A_{\mathbf{a}, \mathbf{r}^{\prime}, \mathbf{n}^{\prime}}^{\prime}<A_{\mathbf{w}, \mathbf{r}, \mathbf{n}}^{\prime}$. Proof: One has that if $r_{i}^{\prime} \leq r_{i}, n_{i}^{\prime} \geq n_{i}$, then $A_{\mathbf{w}, \mathbf{r}^{\prime}, \mathbf{n}^{\prime}}^{\prime} \in Z_{\mathbf{w}}^{\prime}$, so for each t^{\prime} with $\left(\mathbf{D}, W, t^{\prime}\right) \in A_{\mathbf{a}, \mathbf{r}^{\prime}, \mathbf{n}^{\prime}}^{\prime}$, there is $W_{t^{\prime}}$ with $\left(\mathbf{D}, W_{t^{\prime}}, t^{\prime}\right) \in A_{\mathbf{w}, \mathbf{r}^{\prime}, \mathbf{n}^{\prime}}^{\prime}$. But then

$$
\left(\mathbf{D}, W_{t^{\prime}}, t^{\prime}\right) \in \overline{\left\{\left(\mathbf{D}, W_{t^{\prime}}, t^{\prime}\right) \in \mathfrak{T}(\mathbf{d}) \mid \alpha(\operatorname{ker} t, \mathbf{D})=n, \alpha(\operatorname{im} t, \mathbf{D})=r, p_{1}\left(\mathbf{D}, W_{t^{\prime}}, t^{\prime}\right)=\left(\mathbf{D}, W_{t^{\prime}}\right)\right\}}
$$

which can be identified with the closure of

$$
\left\{t \mid\left(\mathbf{D}, W_{t^{\prime}}, t\right) \in \mathfrak{T}(\mathbf{d}), \alpha(\operatorname{ker} t, \mathbf{D})=n, \alpha(\operatorname{im} t, \mathbf{D})=r\right\} .
$$

So all t^{\prime} lie in the closure of

$$
\left\{t \mid\left(\mathbf{D}, W^{\prime}, t\right) \in \mathfrak{T}(\mathbf{d}), \alpha(\operatorname{ker} t, \mathbf{D})=n, \alpha(\operatorname{im} t, \mathbf{D})=r, \alpha\left(W^{\prime}, \mathbf{D}\right)=\mathbf{w}\right\}
$$

Then again,

$$
\left\{t \mid\left(\mathbf{D}, W^{\prime}, t\right) \in \mathfrak{T}(\mathbf{d}), \alpha(\operatorname{ker} t, \mathbf{D})=n, \alpha(\operatorname{im} t, \mathbf{D})=r, \alpha\left(W^{\prime}, \mathbf{D}\right)=\mathbf{w}\right\} \in \overline{Z_{\mathbf{w}}^{\prime}},
$$

thus

$$
\overline{\left\{t \mid\left(\mathbf{D}, W^{\prime}, t\right) \in \mathfrak{T}(\mathbf{d}), \alpha(\operatorname{ker} t, \mathbf{D})=n, \alpha(\operatorname{im} t, \mathbf{D})=r, \alpha\left(W^{\prime}, \mathbf{D}\right)=\mathbf{w}\right\}} \in \overline{Z_{\mathbf{w}}^{\prime}}
$$

Define the irreducible components of $\mathfrak{T}(\mathbf{d})$ to be the k-points of $\overline{Z_{\mathbf{w}}^{\prime}}$ and denote them by $\overline{Z_{\mathbf{w}}}$. Moreover, defining the dense points of $\overline{Z_{\mathbf{w}}}$ to be the k-points of the dense subset $A_{\mathbf{w}, \mathbf{r}^{\mathrm{M}}, \mathbf{n}^{\mathrm{M}}}^{\prime}$ of $\overline{Z_{\mathbf{w}}^{\prime}}$, these dense points are exactly the elements of $A_{\mathbf{w}, \mathbf{r}^{\mathrm{M}}, \mathbf{n}^{\mathrm{M}}}$.

Example 15. Consider the irreducible components:
The following tables illustrate the decomposition of the $Z_{\mathbf{w}}$ into the $A_{\mathbf{w}, \mathbf{r}, \mathbf{n}}$ and the $A_{\mathbf{w}^{\prime}, \mathbf{r}^{\prime}, \mathbf{n}^{\prime}}$ contained in $\overline{Z_{\mathbf{w}}}-Z_{\mathbf{w}}$, which the propositions above yield. $\mathbf{d}=(1,1,1)$, and the $A_{\mathbf{w}, \mathbf{r}^{\mathrm{M}}, \mathbf{n}^{\mathrm{M}}}$ are colored blue and underlined.

w	$Z_{\text {w }}$	the part of $\overline{Z_{\mathbf{w}}}$ the propositions yield
(0, 0,0)	$\underline{A}_{0,0, \mathrm{~d}}$	$Z_{\text {w }}$
$(0,0,1)$	$\underline{A}_{(0,0,0, \mathbf{1}, \mathbf{0}, \mathrm{~d}}$	$Z_{\mathbf{w}} \cup A_{(\mathbf{0}, \mathbf{1 , 0} \mathbf{0}, \mathbf{0}, \mathbf{d}} \cup A_{(\mathbf{1}, \mathbf{0}, \mathbf{0}), \mathbf{0}, \mathbf{d}}$
($0,1,0$)	$A_{(\mathbf{0 , 1 , 0}), \mathbf{0 , \mathbf { d }}} \cup \underline{A}_{(0,1,0),(\mathbf{0 , 1 , 0}),(\mathbf{1 , 1 , 0})}$	$Z_{\mathbf{w}} \cup A_{(\mathbf{1}, \mathbf{0}, \mathbf{0}), \mathbf{0}, \mathrm{d}}$
(1, 0,0)	$A_{(\mathbf{1}, \mathbf{0}, \mathbf{0}), \mathbf{0}, \mathbf{d}} \cup A_{(\mathbf{1}, \mathbf{0}, \mathbf{0}),(\mathbf{1}, \mathbf{0}, \mathbf{0}),(\mathbf{1 , 1 , 0})}$	$Z_{\text {w }}$
	$\cup \underline{A}_{(\mathbf{1}, \mathbf{0}, \mathbf{0}),(\mathbf{1}, \mathbf{0}, \mathbf{0}),(\mathbf{1}, \mathbf{0}, \mathbf{1})}$	
($0,1,1$)	$\underline{A}_{(0,1,1), \mathbf{0}, \mathrm{d}}$	$Z_{\mathbf{w}} \cup A_{(\mathbf{1}, \mathbf{0}, \mathbf{1}), \mathbf{0}, \mathbf{d}} \cup A_{(\mathbf{1}, \mathbf{1}, \mathbf{0}), \mathbf{0}, \mathbf{d}}$
(1, 0, 1)	$A_{(\mathbf{1 , 0 , 1)}, \mathbf{0 , \mathbf { d }}} \cup \underline{A}_{(1,0,1),(\mathbf{1}, \mathbf{0}, \mathbf{1}),(\mathbf{1}, \mathbf{0} \mathbf{1})}$	$Z_{\mathbf{w}} \cup A_{(\mathbf{1 , 1 , 0}), \mathbf{0}, \mathrm{d}}$
($1,1,0$)	$A_{(\mathbf{1}, \mathbf{1}, \mathbf{0}), \mathbf{0}, \mathbf{d}} \cup A_{(\mathbf{1}, \mathbf{1}, \mathbf{0}),(\mathbf{1}, \mathbf{0}, \mathbf{0}),(\mathbf{1 , 1 , 0})}$	$Z_{\text {w }}$
	$\cup \underline{A}_{(\mathbf{1}, \mathbf{1}, \mathbf{0}),(\mathbf{0}, \mathbf{1} \mathbf{0}),(\mathbf{1 , 1 , 0})}$	
$(1,1,1)$	$\underline{A}_{(1,1,1), \mathbf{0}, \mathrm{d}}$	$Z_{\text {w }}$

$\mathbf{d}=(1,1,1,1)$, and again, the $A_{\mathbf{w}, \mathbf{r}^{\mathbf{M}}, \mathbf{n}^{\mathbf{M}}}$ are colored blue and underlined.

w	$Z_{\text {w }}$	the part of $\overline{Z_{\mathbf{w}}}$ the propositions yield
(0, 0, 0, 0)	$\underline{A}_{\mathbf{w}, \mathbf{0}, \mathrm{d}}$	$Z_{\mathbf{w}}$
$(0,0,0,1)$	$\underline{A}_{\mathrm{w}, \mathbf{0}, \mathrm{d}}$	$\begin{gathered} Z_{\mathbf{w}} \cup A_{(\mathbf{0}, \mathbf{0}, \mathbf{1}, \mathbf{0}), \mathbf{0}, \mathbf{d}} \\ \cup A_{(\mathbf{0}, \mathbf{1}, \mathbf{0}, \mathbf{0}), \mathbf{0}, \mathbf{d}} \cup A_{(\mathbf{1}, \mathbf{0}, \mathbf{0}, \mathbf{0}), \mathbf{0}, \mathbf{d}} \end{gathered}$
$(0,0,1,0)$	$A_{\mathbf{w}, \mathbf{0}, \mathbf{d}} \cup \underline{A}_{\mathbf{w},(\mathbf{0}, \mathbf{0}, \mathbf{1}, \mathbf{0}),(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{0})}$	$\begin{gathered} Z_{\mathbf{w}} \cup A_{(\mathbf{0}, \mathbf{1}, \mathbf{0}, \mathbf{0}), \mathbf{0}, \mathbf{d}} \\ \cup A_{(\mathbf{1}, \mathbf{0}, \mathbf{0}, \mathbf{0}), \mathbf{0}, \mathbf{d}} \end{gathered}$
$(0,1,0,0)$	$\begin{gathered} A_{\mathbf{w}, \mathbf{0}, \mathbf{d}} \cup A_{\mathbf{w},(\mathbf{0}, \mathbf{1}, \mathbf{0}, \mathbf{0}),(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{0})} \\ \cup \underline{A}_{\mathbf{w},(\mathbf{0}, \mathbf{1}, \mathbf{0}, \mathbf{0}),(\mathbf{1}, \mathbf{1}, \mathbf{0}, \mathbf{1})} \end{gathered}$	$Z_{\mathbf{w}} \cup A_{(\mathbf{1}, \mathbf{0}, \mathbf{0}, \mathbf{0}), \mathbf{0}, \mathbf{d}}$
$(1,0,0,0)$	$\begin{gathered} A_{\mathbf{w}, \mathbf{0}, \mathbf{d}} \cup A_{\mathbf{w},(\mathbf{1}, \mathbf{0}, \mathbf{0}, \mathbf{0}),(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{0})} \\ \cup A_{\mathbf{w},(\mathbf{1}, \mathbf{0}, \mathbf{0}, \mathbf{0}),(\mathbf{1}, \mathbf{1}, \mathbf{0}, \mathbf{1})} \cup \underline{A}_{\mathbf{w},(\mathbf{1}, \mathbf{0}, \mathbf{0}, \mathbf{0}),(\mathbf{1}, \mathbf{0}, \mathbf{1}, \mathbf{1})} \end{gathered}$	$Z_{\text {w }}$
$(0,0,1,1)$	$\underline{A}_{\mathrm{w}, \mathbf{0}, \mathrm{d}}$	$\begin{gathered} Z_{\mathbf{w}} \cup A_{(\mathbf{0}, \mathbf{1}, \mathbf{0}, \mathbf{1}), \mathbf{0}, \mathbf{d}} \\ \cup A_{(\mathbf{0}, \mathbf{1}, \mathbf{1}, \mathbf{0}), \mathbf{0}, \mathbf{d}} \cup A_{(\mathbf{1}, \mathbf{0}, \mathbf{0}, \mathbf{1}), \mathbf{0}, \mathbf{d}} \\ \cup A_{(\mathbf{1}, \mathbf{0}, \mathbf{1}, \mathbf{0}), \mathbf{0}, \mathbf{d}} \cup A_{(\mathbf{1}, \mathbf{1}, \mathbf{0}, \mathbf{0}), \mathbf{0}, \mathbf{d}} \end{gathered}$
$(0,1,0,1)$	$A_{\mathbf{w}, \mathbf{0}, \mathbf{d}} \cup \underline{A}_{\mathbf{w},(\mathbf{0}, \mathbf{1}, \mathbf{0}, \mathbf{0}),(\mathbf{1}, \mathbf{1}, \mathbf{0}, \mathbf{1})}$	$\begin{gathered} Z_{\mathbf{w}} \cup A_{(\mathbf{0}, \mathbf{1}, \mathbf{1}, \mathbf{0}), \mathbf{0}, \mathbf{d}} \\ \cup A_{(\mathbf{1}, \mathbf{0}, \mathbf{0}, \mathbf{1}), \mathbf{0}, \mathbf{d}} \cup A_{(\mathbf{1}, \mathbf{0}, \mathbf{1}, \mathbf{0}), \mathbf{0}, \mathbf{d}} \\ \cup A_{(\mathbf{1}, \mathbf{1}, \mathbf{0}, \mathbf{0}), \mathbf{0}, \mathbf{d}} \cup A_{(1,1,0,0),(0,1,0,0),(1,1,0,1)} \end{gathered}$
$(0,1,1,0)$	$\begin{gathered} A_{\mathbf{w}, \mathbf{0}, \mathbf{d}} \cup A_{\mathbf{w},(\mathbf{0}, \mathbf{1}, \mathbf{0}, \mathbf{0}),(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{0})} \\ \cup \underline{A}_{\mathbf{w},(\mathbf{0}, \mathbf{0}, \mathbf{1}, \mathbf{0}),(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{0})} \end{gathered}$	$\begin{gathered} Z_{\mathbf{w}} \cup A_{(\mathbf{1}, \mathbf{0}, \mathbf{1}, \mathbf{0}), \mathbf{0}, \mathbf{d}} \\ \cup A_{(\mathbf{1}, \mathbf{1}, \mathbf{0}, \mathbf{0}), \mathbf{0}, \mathbf{d}} \cup A_{(1,1,0,0),(0,1,0,0),(1,1,1,0)} \end{gathered}$
$(1,0,0,1)$	$\begin{gathered} A_{\mathbf{w}, \mathbf{0}, \mathbf{d}} \cup A_{\mathbf{w},(\mathbf{1}, \mathbf{0}, \mathbf{0}, \mathbf{0}),(\mathbf{1}, \mathbf{1}, \mathbf{0}, \mathbf{1})} \\ \cup \underline{A}_{\mathbf{w},(\mathbf{1}, \mathbf{0}, \mathbf{0}, \mathbf{0}),(\mathbf{1}, \mathbf{0}, \mathbf{1}, \mathbf{1})} \end{gathered}$	$\begin{gathered} Z_{\mathbf{w}} \cup A_{(\mathbf{1}, \mathbf{0}, \mathbf{1}, \mathbf{0}), \mathbf{0}, \mathbf{d}} \\ \cup A_{(\mathbf{1}, \mathbf{1}, \mathbf{0}, \mathbf{0}), \mathbf{0}, \mathbf{d}} \cup A_{(1,0,1,0),(1,0,0,0),(1,0,1,1)} \\ \cup A_{(1,1,0,0),(1,0,0,0),(1,1,0,1)} \end{gathered}$
$(1,0,1,0)$	$\begin{gathered} A_{\mathbf{w}, \mathbf{0}, \mathbf{d}} \cup A_{\mathbf{w},(\mathbf{0}, \mathbf{0}, \mathbf{1}, \mathbf{0}),(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{0})} \\ \cup A_{\mathbf{w},(\mathbf{1}, \mathbf{0}, \mathbf{0}, \mathbf{0}),(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{0})} \cup A_{\mathbf{w},(\mathbf{1}, \mathbf{0}, \mathbf{0}, \mathbf{0}),(\mathbf{1}, \mathbf{0}, \mathbf{1}, \mathbf{1})} \\ \cup \underline{A}_{\mathbf{w},(\mathbf{1}, \mathbf{0}, \mathbf{1}, \mathbf{0}),(\mathbf{1}, \mathbf{0}, \mathbf{1}, \mathbf{0})} \end{gathered}$	$\begin{gathered} Z_{\mathbf{w}} \cup A_{(\mathbf{1}, \mathbf{1 , 0 , 0}), \mathbf{0}, \mathbf{d}} \\ \cup A_{(1,1,0,0),(1,0,0,0),(1,1,1,0)} \end{gathered}$
$(1,1,0,0)$	$\begin{gathered} A_{\mathbf{w}, \mathbf{0}, \mathbf{d}} \cup A_{\mathbf{w},(\mathbf{0}, \mathbf{1}, \mathbf{0}, \mathbf{0}),(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{0})} \\ \cup A_{\mathbf{w},(\mathbf{1}, \mathbf{0}, \mathbf{0}, \mathbf{0}),(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{0})} \cup A_{\mathbf{w},(\mathbf{0}, \mathbf{1}, \mathbf{0}, \mathbf{0}),(\mathbf{1}, \mathbf{1}, \mathbf{0}, \mathbf{1})} \\ \cup A_{\mathbf{w},(\mathbf{1}, \mathbf{0}, \mathbf{0}, \mathbf{0}),(\mathbf{1}, \mathbf{1}, \mathbf{0}, \mathbf{1})} \cup \underline{A}_{\mathbf{w},(\mathbf{1}, \mathbf{1}, \mathbf{0}, \mathbf{0}),(\mathbf{1}, \mathbf{1}, \mathbf{0}, \mathbf{0})} \end{gathered}$	$Z_{\text {w }}$

(0, 1, 1, 1)	$\underline{A}_{\mathbf{w}, \mathbf{0 , \mathrm { d }}}$	$\begin{gathered} Z_{\mathbf{w}} \cup A_{(\mathbf{1 , 0 , 1 , 1) , \mathbf { 0 } , \mathbf { d }}} \\ \cup A_{(\mathbf{1 , 1 , \mathbf { 0 } , \mathbf { 1 }) , \mathbf { 0 } , \mathbf { d }}} \cup A_{(\mathbf{1}, \mathbf{1 , 1 , \mathbf { 0 } , \mathbf { 0 } , \mathbf { d }}} \end{gathered}$
(1, 0, 1, 1)	$A_{\mathbf{w}, \mathbf{0}, \mathbf{d}} \cup \underline{A}_{\mathbf{w},(\mathbf{1}, \mathbf{0}, \mathbf{0} \mathbf{0}),(\mathbf{1}, \mathbf{0}, \mathbf{1}, \mathbf{1})}$	$\begin{gathered} Z_{\mathbf{w}} \cup A_{(\mathbf{1 , 1 , 0 , 1) , \mathbf { 0 } , \mathbf { d }}} \\ \cup A_{(\mathbf{1 , 1 , 1 , \mathbf { 0 }) , \mathbf { 0 } , \mathbf { d }}} \end{gathered}$
(1, 1, 0, 1)	$A_{\mathbf{w}, \mathbf{0}, \mathbf{d}} \cup A_{\mathbf{w},(\mathbf{1}, \mathbf{0}, \mathbf{0}, \mathbf{0}),(\mathbf{1}, \mathbf{1}, \mathbf{0}, \mathbf{1})}$ $\cup \underline{A}_{\mathbf{w},(\mathbf{0}, \mathbf{1}, \mathbf{0}),(\mathbf{1}, \mathbf{1}, \mathbf{0}, \mathbf{1})}$	$Z_{\mathbf{w}} \cup A_{(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{0}), \mathbf{0}, \mathbf{d}}$
(1, 1, 1, 0)	$\begin{array}{r} A_{\mathbf{w}, \mathbf{0}, \mathbf{d}} \cup A_{\mathbf{w},(\mathbf{1}, \mathbf{0}, \mathbf{0}),(\mathbf{1}, \mathbf{1 , 1 , 0})} \\ (\mathbf{0}, \mathbf{1 , 0 , 0}),(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{0}) \end{array} \underline{A}_{\mathbf{w},(\mathbf{0}, \mathbf{0}, \mathbf{1}, \mathbf{0}),} .$	$Z_{\text {w }}$

Remark 15. Compare the part of $\overline{Z_{\mathbf{w}}}$ provided by the propositions to the $h_{\mathbf{w}}^{\mathrm{d}}$. For the case $d=3$, one can see from example 13 that the $A_{\mathbf{w}^{\prime}, \mathbf{0}, \mathbf{d}}$ added to $Z(\mathbf{w})$ to obtain this part of the closure correspond precisly to the $f_{\mathbf{w}^{\prime}, \mathbf{0}, \mathbf{d}}$ added to $f_{\mathbf{w}, \mathbf{0}, \mathbf{d}}$ to obtain $h_{\mathbf{w}}^{\mathbf{d}}$.

3.10 A Geometric Interpretation of the Canonical Basis Elements

In the following one wants to define a basis of $T_{c}(\mathbf{d})$ related to the irreducible components of $\mathfrak{T}(\mathbf{d})$ and the the canonical basis, thus obtaining a geometric interpretation of the canonical basis.

Definition 3.18. Define $g_{\mathbf{w}}^{\mathbf{d}}=\left(h_{\mathbf{w}}^{\mathbf{d}}\right)^{e}$.
Proposition 3.19. $g_{\mathrm{w}}^{\mathrm{d}}$ can be written as

$$
g_{\mathbf{w}}^{\mathbf{d}}=\sum_{S \leq M(\mathbf{d}, \mathbf{w})}\left(\eta_{\mathbf{r}^{\mathbf{s}}, \mathbf{n}^{\mathrm{s}}}\right)^{-1}\left(\diamond^{\mathbf{n}^{\mathbf{s}}-\mathbf{r}^{\mathbf{s}}} v_{\mathbf{w}-\mathbf{r}^{\mathbf{s}}}\right)
$$

(recall definitions 3.9, 3.12).
Proof: $g_{\mathbf{w}}^{\mathbf{d}}=\left(h_{\mathbf{w}}^{\mathbf{d}}\right)^{e}=\sum_{S}\left(\eta_{\mathbf{r}^{\mathbf{s}}, \mathbf{n}^{\mathbf{s}}}\right)^{-1}\left(\gamma_{\mathbf{r}^{\mathbf{s}}, \mathbf{n}} \mathbf{s}\left(\eta_{0, \mathbf{d}}\left(h_{\mathbf{w}}^{\mathbf{d}}\right)\right)\right)=\sum_{S}\left(\eta_{\mathbf{r}^{\mathbf{s}}, \mathbf{n}^{\mathbf{s}}}\right)^{-1}\left(\gamma_{\mathbf{r}^{\mathbf{s}}, \mathbf{n}^{\mathbf{s}}}\left(\diamond^{\mathbf{d}} v_{\mathbf{w}}\right)\right)$. I claim that

$$
\gamma_{\mathbf{r}, \mathbf{n}} \mathbf{s}\left(\diamond_{\mathbf{w}}^{\mathbf{d}}\right)=\left\{\begin{array}{cc}
\diamond^{\mathbf{n}^{\mathbf{s}}-\mathbf{r}^{\mathbf{s}}} v_{\mathbf{w}-\mathbf{r}} \mathrm{s} & \text { if } S \leq M(\mathbf{d}, \mathbf{w}) \\
0 & \text { otherwise }
\end{array} .\right.
$$

From the graphical calculus in [6], it follows that if $S \leq M(\mathbf{d}, \mathbf{w})$, then

$$
\left(\tilde{\gamma}_{\mathbf{r}}^{\mathbf{s}, \mathbf{n}^{\mathrm{s}}}\right)^{\dagger}\left(\left(\wp^{\mathbf{n}^{\mathrm{s}}-\mathbf{r}^{\mathrm{s}}} v^{\mathbf{w}-\mathbf{r}^{\mathbf{s}}}\right)^{r}\right)=\left(\wp^{\mathbf{d}} v^{\mathbf{w}}\right)^{r}
$$

and other dual canonical basis elements $\left(\mathscr{S}^{\mathbf{n}}-\mathbf{r}^{\mathbf{S}} v^{\mathbf{a}}\right)^{r}, \mathbf{a} \neq \mathbf{w}-\mathbf{r}^{\mathbf{S}}$ are sent to elements of the form $\left(\varrho^{\mathbf{d}} v^{\mathbf{a}^{\prime}}\right)^{r}, \mathbf{a}^{\prime} \neq \mathbf{w}$. This yields
$\left.\left\langle\gamma_{\mathbf{r}^{\mathbf{s}}, \mathbf{n}^{\mathbf{s}}}\left(\diamond^{\mathbf{d}} v_{\mathbf{w}}\right),\left(\wp^{\mathbf{n}^{\mathbf{s}}-\mathbf{r}^{\mathbf{s}}} v^{\mathbf{w}-\mathbf{r}^{\mathbf{s}}}\right)^{r}\right\rangle=\left\langle\diamond^{\mathbf{d}} v_{\mathbf{w}},\left(\tilde{\gamma}_{\mathbf{r}^{\mathbf{s}}, \mathbf{n}^{\mathrm{s}}}\right)^{\dagger}\left(\left(\wp^{\mathbf{n}^{\mathbf{s}}-\mathbf{r}^{\mathbf{s}}} v^{\mathbf{w}-\mathbf{r}^{\mathbf{s}}}\right)^{r}\right)\right\rangle=\langle \rangle^{\mathbf{d}} v_{\mathbf{w}},\left(\wp^{\mathbf{d}} v^{\mathbf{w}}\right)^{r}\right\rangle=1$
and

$$
\left\langle\gamma_{\mathbf{r}}^{\mathbf{s}}, \mathbf{n}^{\mathbf{s}}\left(\diamond^{\mathbf{d}} v_{\mathbf{w}}\right),\left(\wp^{\mathbf{n}^{\mathbf{s}}-\mathbf{r}^{\mathbf{s}}} v^{\mathbf{a}}\right)^{r}\right\rangle=0 \text { for all } \mathbf{a} \neq \mathbf{w}-\mathbf{r}^{\mathbf{s}}
$$

Therefore

$$
\gamma_{\mathbf{r}^{\mathbf{s}}, \mathbf{n}^{\mathbf{s}}}\left(\diamond^{\mathbf{d}} v_{\mathbf{w}}\right)=\diamond^{\mathbf{n}^{\mathbf{s}}-\mathbf{r}^{\mathbf{s}}} v_{\mathbf{w}-\mathbf{r}^{\mathbf{s}}}
$$

Similarly, one can see that

$$
\gamma_{\mathbf{r}^{\mathbf{s}}, \mathbf{n}^{\mathbf{s}}}\left(\diamond^{\mathbf{d}} v_{\mathbf{w}}\right)=0 \text { if } S \not \leq M(\mathbf{d}, \mathbf{w})
$$

as in this case the image of $\left(\tilde{\gamma}_{\mathbf{r}}^{\mathbf{s}}, \mathbf{n} \mathbf{s}\right)^{\dagger}$ is spanned by $\varnothing^{\mathbf{d}} v^{\mathbf{a}}$ with $\mathbf{a} \neq \mathbf{w}$.
Let me illustrate the graphical calculus used above in an example:
Let $\mathbf{d}=(3,2,4), \mathbf{w}=(2,1,1)$, so

Then

Let
then

Therefore,

 culus follow.

Proposition 3.20. Writing $\diamond^{\mathbf{d}} v_{\mathbf{w}}$ as a linear combination of elementary basis elements, it equals $\otimes \otimes^{\mathbf{d}} v_{\mathbf{w}}$ plus a linear combination of elements $\otimes^{\mathbf{d}} v_{\mathbf{a}}$ with $\mathbf{a}>\mathbf{w}$ and $|\mathbf{a}|=|\mathbf{w}|$ with coefficients in $q^{-1} \mathbb{N}\left[q^{-1}\right]$.

Proof: This follows from [6, section 1.5,1.6].
Example 16. Using Proposition 3.19 and example 14, I can compute the $g_{\mathbf{w}}^{\mathbf{d}}$ for $d=3,4$.
$d=3$: For \mathbf{w} in the first row in the table of example 14 , only the S in the first row are $S \leq M(\mathbf{d}, \mathbf{w})$, so

$$
g_{\mathbf{w}}^{\mathbf{d}}=4 \eta_{\mathbf{0}, \mathbf{d}}^{-1}\left(\diamond^{\mathbf{d}} v_{\mathbf{w}}\right)
$$

If \mathbf{w} lies in the second row in example 14, all S from the first two rows are $S \leq M(\mathbf{d}, \mathbf{w})$. Therefore

$$
g_{\mathbf{w}}^{\mathbf{d}}=4 \eta_{\mathbf{0}, \mathbf{d}}^{-1}\left(\diamond^{\mathbf{d}} v_{\mathbf{w}}\right)+2 \eta_{(0,1,0),(1,1,0)}^{-1}\left(\diamond^{(1,0,0)} v_{\mathbf{w}-(0,1,0)}\right)
$$

Similarly, if w lies in the third row, $S \leq M(\mathbf{d}, \mathbf{w})$ for all S from the first and third row, and

$$
g_{\mathbf{w}}^{\mathbf{d}}=4 \eta_{\mathbf{0}, \mathbf{d}}^{-1}\left(\diamond^{\mathbf{d}} v_{\mathbf{w}}\right)+2 \eta_{(1,0,0),(1,0,1)}^{-1}\left(\diamond^{(0,0,1)} v_{\mathbf{w}-(1,0,0)}\right)
$$

Again as in example 14 , if $\mathbf{d} \neq(1,1,1)$, only those \mathbf{w} and $M(\mathbf{d}, \mathbf{w})$, that are admitted, are used (so, e.g. for $\mathbf{d}=(2,1)$, the $g_{\mathbf{w}}^{\mathbf{d}}$ from the third row are left aside). Using the expansion of the canonical basis in the standard basis calculated in example 13 (since $h_{\mathbf{w}}^{\mathbf{d}}=\eta_{\mathbf{0}, \mathbf{d}}^{-1}\left(\diamond^{\mathbf{d}} v_{\mathbf{w}}\right)$ and the canonical basis of e.g. $V_{1} \otimes V_{0} \otimes V_{0}$ is simply the standard basis), one thus obtains for $g_{\mathbf{w}}^{\mathbf{d}}$ (with $\mathbf{d}=(1,1,1))$:

$$
\begin{gathered}
g_{(0,0,0)}^{\mathbf{d}}=4 f_{(0,0,0), 0, \mathbf{d}} \\
g_{(0,0,1)}^{\mathbf{d}}=4\left(f_{(0,0,1), 0, \mathbf{d}}+q^{-1} f_{(0,1,0), 0, \mathbf{d}}+q^{-2} f_{(1,0,0), 0, \mathbf{d}}\right) \\
g_{(0,1,1)}^{\mathbf{d}}=4\left(f_{(0,1,1), 0, \mathbf{d}}+q^{-1} f_{(1,0,1), 0, \mathbf{d}}+q^{-2} f_{(1,1,0), 0, \mathbf{d}}\right) \\
g_{(1,1,1)}^{\mathbf{d}}=4 f_{(1,1,1), 0, \mathbf{d}} \\
g_{(0,1,0)}^{\mathbf{d}}=4\left(f_{(0,1,0), 0, \mathbf{d}}+q^{-1} f_{(1,0,0), 0, \mathbf{d}}\right)+2 f_{(0,1,0),(0,1,0),(1,1,0)} \\
g_{(1,1,0)}^{\mathbf{d}}=4 f_{(1,1,0), 0, \mathbf{d}}+2 f_{(1,1,0),(0,1,0),(1,1,0)} \\
g_{(1,0,0)}^{\mathbf{d}}=4 f_{(1,0,0), 0, \mathbf{d}}+2 f_{(1,0,0),(1,0,0),(1,0,1)} \\
g_{(1,0,1)}^{\mathbf{d}}=4\left(f_{(1,0,1), 0, \mathbf{d}}+q^{-1} f_{(1,1,0), 0, \mathbf{d}}\right)+2 f_{(1,0,1),(1,0,0),(1,0,1)}
\end{gathered}
$$

$d=4$: Similarly as in the case $d=3$, one obtains that if \mathbf{w} lies in the first row of the $d=4$-part of example 14 , then

$$
g_{\mathbf{w}}^{\mathbf{d}}=5 \eta_{\mathbf{0}, \mathbf{d}}^{-1}\left(\diamond^{\mathbf{d}} v_{\mathbf{w}}\right)
$$

if \mathbf{w} lies in the second, third or fourth row, then

$$
g_{\mathbf{w}}^{\mathbf{d}}=5 \eta_{\mathbf{0}, \mathbf{d}}^{-1}\left(\diamond^{\mathbf{d}} v_{\mathbf{w}}\right)+3 \eta_{\mathbf{r}^{\mathrm{M}}, \mathbf{n}^{\mathrm{M}}}^{-1}\left(\diamond^{\mathbf{n}^{\mathrm{M}}-\mathbf{r}^{\mathrm{M}}} v_{\mathbf{w}-\mathbf{r}^{\mathrm{M}}}\right)
$$

(where M is from the second, third, or fourth row, respectivly). For \mathbf{w} in the fifth row, one obtains

$$
g_{\mathbf{w}}^{\mathbf{d}}=5 \eta_{\mathbf{0}, \mathbf{d}}^{-1}\left(\diamond^{\mathbf{d}} v_{\mathbf{w}}\right)+3 \eta_{(0,1,0,0),(1,1,0,1)}^{-1}\left(\diamond^{(1,0,0,1)} v_{\mathbf{w}-(0,1,0,0)}\right)+\eta_{(1,1,0,0),(1,1,0,0)}^{-1}\left(\diamond^{(0)} v_{(0)}\right)
$$

and for \mathbf{w} in the sixth row,

$$
\begin{aligned}
& g_{\mathbf{w}}^{\mathbf{d}}=5 \eta_{\mathbf{0 , \mathbf { d }}}^{-1}\left(\diamond^{\mathbf{d}} v_{\mathbf{w}}\right)+3 \eta_{(0,0,1,0),(1,1,1,0)}^{-1}\left(\diamond^{(1,1,0,0)} v_{\mathbf{w}-(0,0,1,0)}\right) \\
&+3 \eta_{(1,0,0,0),(1,0,1,1)}^{-1}\left(\diamond^{(0,0,1,1)} v_{\mathbf{w}-(1,0,0,0)}\right)+\eta_{(1,0,1,0),(1,0,1,0)}^{-1}\left(\diamond^{(0)} v_{(0)}\right)
\end{aligned}
$$

(if one labels the rows by i), ii), .., vi), then

$$
\begin{aligned}
i) & \leq i i) \\
i) & \leq i v i \\
i) & \leq v i \\
i & \leq i i i)
\end{aligned}
$$

for the crossingless matchings, which gives, together with the number of \mathbf{w} in each row, the η and their coefficients)

Theorem 3.21. $g_{\mathbf{w}}^{\mathbf{d}}$ is, up to a multiplicativ constant, the unique element of $T_{c}(\mathbf{d})$ satisfying

1. $g_{\mathbf{w}}^{\mathbf{d}}$ is equal to a non-zero constant on the set $A_{\mathbf{w}, \mathbf{r}^{\mathrm{M}}, \mathbf{n}^{\mathrm{M}}}$ of dense points of the irreducible component $\overline{Z_{\mathbf{w}}}$.
2. The support of $g_{\mathbf{w}}^{\mathbf{d}}$ lies in $\overline{Z_{\mathbf{w}}}$.

Moreover, the $g_{\mathbf{w}}^{\mathbf{d}}$ form a basis of $T_{c}(\mathbf{d})$ and

$$
\diamond^{\mathbf{d}} v_{\mathbf{w}} \mapsto g_{\mathbf{w}}^{\mathbf{d}}
$$

extended by linearity, is a $U_{q}\left(s l_{2}\right)$-module isomorphism $V_{d_{1}} \otimes \cdots \otimes V_{d_{k}} \rightarrow T_{c}(\mathbf{d})$.
Proof: Since

$$
V_{d_{1}} \otimes \cdots \otimes V_{d_{k}} \stackrel{\eta_{\mathbf{0}, \mathbf{d}}}{\leftarrow} T_{0}(\mathbf{d}) \stackrel{e}{\rightarrow} T_{c}(\mathbf{d}), \diamond^{\mathbf{d}} v_{\mathbf{w}} \mapsto h_{\mathbf{w}}^{\mathbf{d}} \mapsto g^{\mathbf{d}_{\mathbf{w}}}
$$

are U_{q}-module isomorphisms, it is clear that the $g_{\mathbf{w}}^{\mathbf{d}}$ form a basis and that the map given in the theorem is an U_{q}-module isomorphism.
It remains to prove the first part of the theorem. Surpressing the isomorphism $\eta_{\mathbf{r}, \mathbf{n}}$ in order to simplify notation, I may identify $f_{\mathbf{w}, \mathbf{r}, \mathbf{n}}$ with $\otimes^{\mathbf{d}} v_{\mathbf{w}}$. To show uniqueness, consider a $\hat{g}_{\mathbf{w}}^{\mathbf{d}}$ satisfying the conditions of the theorem and let $\hat{h}_{\mathbf{w}}^{\mathbf{d}} \in T_{0}(\mathbf{d})$ be such that

$$
\hat{g}_{\mathbf{w}}^{\mathbf{d}}=\left(\hat{h}_{\mathbf{w}}^{\mathbf{d}}\right)^{e}=\sum_{\mathbf{r}, \mathbf{n}} \gamma_{\mathbf{r}, \mathbf{n}}\left(\hat{h}_{\mathbf{w}}^{\mathbf{d}}\right)
$$

Then

$$
\hat{g}_{\mathbf{w}}^{\mathbf{d}}=\sum a_{\mathbf{w}, \mathbf{r}, \mathbf{n}} f_{\mathbf{w}, \mathbf{r}, \mathbf{n}}
$$

Therefore, the value of $\hat{g}_{\mathbf{w}}^{\mathbf{d}}$ on $A_{\mathbf{w}, \mathbf{r}^{\mathrm{M}}, \mathbf{n}^{\mathrm{M}}}$ is given by $a_{\mathbf{w}, \mathbf{r}^{\mathbf{M}}, \mathbf{n}^{\mathrm{M}}} k_{\mathbf{w}, \mathbf{r}^{\mathrm{M}}, \mathbf{n}^{\mathrm{M}}}$. One has

$$
a_{\mathbf{w}, \mathbf{r}^{\mathrm{M}}, \mathbf{n}^{\mathrm{M}}}=\left\langle\gamma_{\mathbf{r}^{\mathrm{M}}, \mathbf{n}^{\mathrm{M}}}\left(\hat{h}_{\mathbf{w}}^{\mathbf{d}}\right),\left(\otimes^{\mathbf{n}^{\mathrm{M}}-\mathbf{r}^{\mathrm{M}}} v^{\mathbf{w}-\mathbf{r}^{\mathrm{M}}}\right)^{r}\right\rangle
$$

(where r stands for reversed, i.e. $\left(\otimes^{\mathbf{d}} v^{\mathbf{w}}\right)^{r}=v^{d_{k}-2 w_{k}} \otimes \cdots \otimes v^{d_{1}-2 w_{1}}$) since

$$
f_{\mathbf{w}, \mathbf{r}^{\mathrm{M}}, \mathbf{n}^{\mathrm{M}}} \hat{=} \otimes^{\mathbf{n}^{\mathrm{M}}-\mathbf{r}^{\mathrm{M}}} v_{\mathbf{w}}
$$

(In more detail: $\hat{g}_{\mathbf{w}}^{\mathbf{d}}=\left(\hat{h}_{\mathbf{w}}^{\mathbf{d}}\right)^{e}=\sum_{\mathbf{r}, \mathbf{n}} \gamma_{\mathbf{r}, \mathbf{n}}\left(\hat{h}_{\mathbf{w}}^{\mathbf{d}}\right)$, so the coefficient of

$$
V_{n_{1}^{M}-r_{1}^{M}} \otimes \cdots \otimes V_{n_{k}^{M}-r_{k}^{M}} \ni \otimes^{\mathbf{n}^{\mathbf{M}}-\mathbf{r}^{\mathbf{M}}} v_{\mathbf{w}-\mathbf{r}^{\mathrm{M}}}=\eta_{\mathbf{r}^{\mathbf{M}}, \mathbf{n}^{\mathbf{M}}}\left(f_{\mathbf{w}, \mathbf{r}^{\mathrm{M}}, \mathbf{n}^{\mathrm{M}}}\right)
$$

is given by inserting $\gamma_{\mathbf{r}^{\mathbf{M}}, \mathbf{n}^{\mathbf{M}}}\left(\hat{h}_{\mathbf{w}}^{\mathbf{d}}\right.$) into the scalar product (where $\gamma_{\mathbf{r}, \mathbf{n}}: V_{d_{1}} \otimes \cdots \otimes V_{d_{k}} \rightarrow$ $\left.V_{n_{1}-r_{1}} \otimes \cdots \otimes V_{n_{k}-r_{k}}\right)$).
$k_{\mathbf{w}, \mathbf{r}^{\mathrm{M}}, \mathbf{n}^{\mathrm{M}}}$ being nonzero, the first condition in the theorem is equivalent to

$$
\left\langle\gamma_{\mathbf{r}^{\mathbf{M}}, \mathbf{n}^{\mathbf{M}}}\left(\hat{h}_{\mathbf{w}}^{\mathbf{d}}\right),\left(\otimes^{\mathbf{n}^{\mathbf{M}}-\mathbf{r}^{\mathbf{M}}} v^{\mathbf{w}-\mathbf{r}^{\mathbf{M}}}\right)^{r}\right\rangle \neq 0
$$

which is equivalent to

Since $M=M(\mathbf{d}, \mathbf{w})$, it follows that $M\left(\mathbf{n}^{\mathbf{M}}-\mathbf{r}^{\mathbf{M}}, \mathbf{w}-\mathbf{r}^{\mathbf{M}}\right)$ has no curves and all down arrows are to the right of all up arrows (it would have curves otherwise). After rotating this diagramm
by 180°, but keeping the original orientation (such that arrows oriented up remain oriented up, but all arrows are "below" the boxes), all down arrows are to the left of all up arrows. Then by [6, section 2.3],

$$
\left(\otimes^{\mathbf{n}^{\mathrm{M}}-\mathbf{r}^{\mathrm{M}}} v^{\mathbf{w}-\mathbf{r}^{\mathrm{M}}}\right)^{r}=\left(\wp^{\mathbf{n}^{\mathrm{M}}-\mathbf{r}^{\mathrm{M}}} v^{\mathbf{w}-\mathbf{r}^{\mathrm{M}}}\right)^{r}
$$

and by the graphical calculus in [6] it follows that

$$
\left(\tilde{\gamma}_{\mathbf{r}^{\mathrm{M}}, \mathbf{n}^{\mathrm{M}}}\right)^{\dagger}\left(\left(\wp^{\mathbf{n}^{\mathrm{M}}-\mathbf{r}^{\mathrm{M}}} v^{\mathbf{w}-\mathbf{r}^{\mathrm{M}}}\right)^{r}\right)=\left(\wp^{\mathbf{d}} v^{\mathbf{w}}\right)^{r}
$$

So condition 1 (stating that $g_{\mathbf{w}}^{\mathbf{d}}$ is equal to a nonzero constant on $A_{\mathbf{w}, \mathbf{r}^{\mathrm{M}}, \mathbf{n}^{\mathrm{M}}}$) is equivalent to

$$
\left\langle\hat{h}_{\mathbf{w}}^{\mathbf{d}},\left(\wp^{\mathbf{d}} v^{\mathbf{w}}\right)^{r}\right\rangle \neq 0
$$

To satisfy the second condition, $\hat{g}_{\mathbf{w}}^{\mathbf{d}}$ must be equal to zero on $A_{\mathbf{w}^{\prime}, \mathbf{r}^{\mathbf{M}^{\prime}}, \mathbf{n}^{\mathbf{M}^{\prime}}}$ for all $\mathbf{w} \neq \mathbf{w}^{\prime}$ and $M^{\prime}=M\left(\mathbf{d}, \mathbf{w}^{\prime}\right)$. In the same way as above, one shows that this condition is equivalent to

$$
\left\langle\hat{h}_{\mathbf{w}}^{\mathbf{d}},\left(\nabla^{\mathbf{d}} v^{\mathbf{w}^{\prime}}\right)^{r}\right\rangle=0
$$

for all $\mathbf{w} \neq \mathbf{w}^{\prime}$. But this shows that

$$
\hat{h}_{\mathbf{w}}^{\mathbf{d}}=c_{\mathbf{w}}^{\mathbf{d}} \cdot \diamond^{\mathbf{d}} v_{\mathbf{w}}=c_{\mathbf{w}}^{\mathbf{d}} \cdot h_{\mathbf{w}}^{\mathbf{d}}
$$

for some constant $c_{\mathbf{w}}^{\mathbf{d}} \neq 0$. Therefore $g_{\mathbf{w}}^{\mathbf{d}}$ is indeed unique up to a multiplicative constant. It only remains to show that $g_{\mathbf{w}}^{\mathbf{d}}$ fulfills the conditions. By Proposition 3.19, the value of $g_{\mathbf{w}}^{\mathbf{d}}$ on $A_{\mathbf{w}, \mathbf{r}^{\mathbf{M}}, \mathbf{n}^{\mathbf{M}}}$ is equal to $k_{\mathbf{w}, \mathbf{r}^{\mathrm{M}}, \mathbf{n}^{\mathrm{M}}}$ times the coefficient of $\otimes^{\mathbf{n}^{\mathbf{M}}-\mathbf{r}^{\mathrm{M}}} v_{\mathbf{w}-\mathbf{r}^{\mathrm{M}}}$ in the expression of $\diamond^{\mathbf{n}^{\mathrm{M}}-\mathbf{r}^{\mathrm{M}}} v_{\mathbf{w}-\mathbf{r}^{\mathrm{M}}}$ as a linear combination of elementary basis elements, and by [6, section 1.5,1.6] (or proposition 3.20), this coefficient is 1 . Thus $g_{\mathbf{w}}^{\mathbf{d}}$ meets condition 1 . Propositions 3.19 and 3.20 furthermore show that $g_{\mathbf{w}}^{\mathbf{d}}$ is equal to a linear combination of of functions of the form

$$
f_{\mathbf{a}+\mathbf{r}^{\mathbf{s}}, \mathbf{r}^{\mathrm{s}}, \mathbf{n}^{\mathbf{s}}}=\left(\eta_{\mathbf{r}^{\mathbf{s}}, \mathbf{n}^{\mathbf{s}}}\right)^{-1}\left(\otimes^{\mathbf{n}^{\mathbf{s}}-\mathbf{r}^{\mathbf{s}}} v_{\mathbf{a}}\right)
$$

with $S \leq M$ and $|\mathbf{a}|=\left|\mathbf{w}-\mathbf{r}^{\mathbf{S}}\right|\left(\Rightarrow\left|\mathbf{a}+\mathbf{r}^{\mathbf{S}}\right|=|\mathbf{w}|\right), \mathbf{a} \geq \mathbf{w}-\mathbf{r}^{\mathbf{S}}\left(\Rightarrow \mathbf{a}+\mathbf{r}^{\mathbf{S}} \geq \mathbf{w}\right)$. Then Proposition 3.16 shows that the support of $g_{\mathbf{w}}^{\mathbf{d}}$ lies in $\overline{Z_{\mathbf{w}}}$. this proves the theorem.

Remark 16. Using 3.8 and $\overline{Z_{\mathbf{w}}} \subset \bigcup_{\mathbf{w}^{\prime},\left|\mathbf{w}^{\prime}\right|=|\mathbf{w}|} A_{\mathbf{w}^{\prime}, \mathbf{r}, \mathbf{n}}$, it is clear that $g_{\mathbf{w}}^{\mathbf{d}}$ lies in the weight space corresponding to the weight $d-2|\mathbf{w}|$. Since e is a module homomorphism, the action of U_{q} can also be calculated on the $h_{\mathbf{w}}^{\mathbf{d}}$ to obtain the action on the $g_{\mathbf{w}}^{\mathbf{d}}$ (see example 13).

Definition 3.22. There exists a scalar product on $T(\mathbf{d})$ in respect to which the standard basis is orthogonal, i.e. $<f_{\mathbf{w}, \mathbf{r}, \mathbf{n}}, f_{\mathbf{w}^{\prime}, \mathbf{r}^{\prime}, \mathbf{n}^{\prime}}>=\delta_{(\mathbf{w}, \mathbf{r}, \mathbf{n}),\left(\mathbf{w}^{\prime}, \mathbf{r}^{\prime}, \mathbf{n}^{\prime}\right)}$.

Remark 17. Which Orbits are contained in $\overline{Z_{\mathbf{w}}} \cap \overline{Z_{\mathbf{w}^{\prime}}}$? At the least all those whose diagram is included in some diagram of an orbit in $\overline{Z_{\mathbf{w}}}$ and a diagram of an orbit in $\overline{Z_{\mathbf{w}^{\prime}}}$.
In which relation do diagrams (or their cups) and the $h_{\mathbf{w}}^{\mathbf{d}}$ stand? $M(\mathbf{d}, \mathbf{w})$ corresponds to $h_{\mathbf{w}}^{\mathbf{d}}$. Can intersection of closures be calculated using scalar products of the $h_{\mathbf{w}}$ (and how do these scalar products look like?)? I do not think so.
How do dimension of orbits depend on number of cups in diagrams? If there are more cups,
more diagramms can be included in the corresponding diagram. As seen in remark 14, inclusions of closures of orbits correspond to inclusions of diagrams.
The number of different types of diagrams (ordered by their number of cups) of $V_{1}^{\otimes d}$ corresponds to the number of different irreducible submodules occuring in the decomposition into irreducible submodules, e.g. $V_{1} \otimes V_{1}=V_{0} \oplus V_{2}$ and there are the diagramms without cups and one diagram with one cup, similar $V_{1} \otimes V_{1} \otimes V_{1}=V_{1} \oplus V_{1} \oplus V_{3}$ and again there are the diagramms without cups as well as the diagrams with one cup. For $V_{1}^{\otimes 4}=V_{0}^{2} \oplus V_{2}^{3} \oplus V_{4}$, there are the diagrams with no cups, with one cup, and with two cups. To see this, consider the canonical basis. The $d+1$ canonical basis elements corresponding to the diagrams without cups form the irreducible submodule of largest dimension (i.e V_{d}) and linear combinations with the other canonical basis vectors form the irreducible components of smaller dimension (e.g. for $d=3,<\diamond^{\mathbf{d}} v_{(0,1,0)}-\frac{[2]}{[3]} \diamond^{\mathbf{d}} v_{(0,0,1)}, \diamond^{\mathbf{d}} v_{(1,1,0)}-\frac{1}{[3]} \diamond^{\mathbf{d}} v_{(0,1,1)}>\cong V_{1}$ and $\left.<\diamond^{\mathbf{d}} v_{(1,0,0)}-\frac{1}{[3]} \diamond^{\mathbf{d}} v_{(0,0,1)}, \diamond^{\mathbf{d}} v_{(1,0,1)}-\frac{[2]}{[3]} \diamond^{\mathbf{d}} v_{(0,1,1)}>\cong V_{1}\right)$. The graphical way to describe the decomposition into irreducible modules was used in [7, p.43] in the context of categorification of tensor products of irreducble $\mathfrak{s l}_{2}$-modules.

4 Another Construction for a U_{q}-Module

I want to introduce a more naive construction of a U_{q}-module $\cong V_{d_{1}} \otimes \cdots \otimes V_{d_{k}}$ using functions on finite sets.

Definition 4.1. Let $W=S_{d}$ be the symmetric group and $S_{d_{1}} \times \cdots \times S_{d_{k}}=S_{\mathbf{d}} \subseteq W$ the (Young) subgroup generated by $\left\{s_{1}, \cdots, s_{d_{1}-1}, s_{d_{1}+1} \cdots, s_{d_{1}+d_{2}-1}, \cdots\right\}$ (where S_{d} is generated by the $d-1$ generators $\left\{s_{1}, \cdots, s_{d-1}\right\}$). E.g. $<s_{1}, s_{2}>\times<s_{4}>\times<s_{6}>\cong S_{3} \times S_{2} \times S_{2}$. Now let

$$
B^{i}=\left\{\text { complex valued functions on } S_{d} /\left(S_{i} \times S_{d-i}\right)\right\}
$$

and

$$
B^{i, i+1}=\left\{\text { complex valued functions on } S_{d} /\left(S_{i} \times S_{1} \times S_{d-i-1}\right)\right\}
$$

Then a basis of $B^{i}\left(\right.$ resp. $\left.B^{i, i+1}\right)$ is given by the set of indicator functions on $S_{d} /\left(S_{i} \times S d-i\right)$ (resp. $\left.S_{d} /\left(S_{i} \times S_{1} \times S_{d-i-1}\right)\right)$. All these sets of functions are algebras (isomorphic to copies of $\mathbb{C})$.
There are natural surjections

$$
W_{i, i+1}:=W /(S_{i} \times S_{1} \times \underbrace{\stackrel{\pi_{i+1}}{\pi_{i}}}_{W /\left(S_{d_{i}-1}\right)} W /\left(S_{i+1} \times S_{d-i-1}\right)=: W_{i+1})=: W_{i}
$$

For $g \in B^{j}, j \in\{i, i+1\}$ and $f \in B^{i, i+1}$, define $g . f(x):=g\left(\pi_{j}(x)\right)$; this turns $B^{i, i+1}$ into a B^{j}-module. All rings being commutative, $B^{i, i+1}$ thus turns into a $B^{i}-B^{i+1}$-bimodule as well as a $B^{i+1}-B^{i}$-bimodule.

Lemma 4.2. $B^{i, i+1}$ is a free B^{i}-module of rank $\left|\left(W / W_{i}\right) /\left(W / W_{i, i+1}\right)\right|=\left|W_{i, i+1} / W_{i}\right|$.

Proof: As a B^{i}-module, $B^{i, i+1}=\bigoplus_{i=1}^{l} f_{w_{i}} B^{i}$ for a complete transversal $\left(w_{1}, \cdots, w_{l}\right)$ of W_{i} in $W_{i, i+1}$ and f_{w} the indicator function of w (since $g_{w} . f=\sum_{i=1}^{l} f_{w_{i} w}$).

4.1 A Construction for a U-Module

Now let $C_{f u n c}=\bigoplus_{i=0}^{d} B^{i}-\bmod$ and set $E:=\bigoplus_{i=0}^{d} E_{i}$ and $F:=\bigoplus_{i=0}^{d} F_{i}$, where

$$
E_{i}: B^{i}-\bmod \rightarrow B^{i+1}-\bmod , M \mapsto B^{i, i+1} \otimes_{B^{i}} M
$$

for all $i<d$ and zero otherwise, and

$$
F_{i}: B^{i}-\bmod \rightarrow B^{i-1}-\bmod , M \mapsto B^{i-1, i} \otimes_{B^{i}} M
$$

for $i>0$ and zero otherwise.
Theorem 4.3. $K_{0}\left(C_{\text {func }}\right) \cong V_{1}^{\otimes d}$ as $U\left(\mathfrak{s l}_{2}\right)$-module, where $K_{0}=$ (free abelian group of isomorphism classes $[M]$ of objects) modulo $[B]=[A]+[C]$ if $A \hookrightarrow B \rightarrow C$ is a short exact sequence, so in this case it is enough to say if $B=A \oplus C$.

A proof will follow later.
Remark 18. $K_{0}\left(C_{\text {func }}\right)$ is a Grothendieck group. Actually, I consider the group algebra of $K_{0}\left(C_{\text {func }}\right)$ over \mathbb{C}.
Claim: this generalises to $V_{d_{1}} \otimes \cdots \otimes V_{d_{k}}$ by taking functions on $\bigcup_{i=0}^{d}\left(S_{\mathbf{d}} \backslash W_{i}\right)$.
Definition 4.4. Set

$$
B^{i \prime}=\left\{\mathbb{C} \text {-valued functions on } S_{\mathbf{d}} \backslash S_{d} /\left(S_{i} \times S_{d-i}\right)\right\},
$$

similar $B^{i, i+1 \prime}$. Then $B^{i \prime} \hookrightarrow B^{i}$, as

$$
B^{i \prime} \hat{=}\left\{\mathbb{C} \text {-valued functions on } S_{d} /\left(S_{i} \times S_{d-i}\right) \text { that are constant on left } S_{\mathrm{d}} \text {-cosets }\right\} .
$$

A basis of B^{i} is given by $\left\{f_{w}\right\}_{w \in W_{i}}$, where f_{w} is the indicator function of the coset w, i.e. $f_{w}(x)=$ $\delta_{w, x}$. Then $B^{i \prime}$ has a basis corresponding to $\left\{\sum_{a \in S_{\mathbf{d}} w} f_{a}\right\}_{w \in\left\{\text { system of representatives of cosets of } S_{\mathbf{d}} \text { in } W_{i}\right\}}$. I get

$$
W_{i, i+1} \xrightarrow{\pi} S_{\mathbf{d}} \backslash W_{i, i+1} \xrightarrow{\pi_{\mathbf{d}}^{\prime} \backslash W_{i}}
$$

and as before, I can make $B^{i, i+1}$ and $B^{i, i+1 \prime}$ into a $B^{i \prime}$-module. Setting $C_{f u n c}^{\prime}=\bigotimes_{i=0}^{d} B^{i \prime}$-mod, I can define the action of E and F as before. Any B^{i}-module is also a $B^{i \prime}$-module with the restricted action. Vice versa, for a $B^{i \prime}$-module M, I can let $f_{w} \in B^{i}$ act as $\frac{1}{\left|S_{\mathbf{d}} w\right|} \sum_{a \in S_{\mathbf{d}} w} f_{a}$. So

$$
B^{i}-\bmod \stackrel{\rightharpoonup}{\rightleftarrows} B^{i \prime}-\bmod .
$$

Using $B^{i, i+1}$ for the action of E, F, the correspondance between B^{i}-mod and $B^{i \prime}$-mod commutes with the action of E, F, thus yielding

$$
C_{\text {func }} \stackrel{\rightharpoonup}{\hookleftarrow} C_{\text {func }}^{\prime}
$$

and

$$
K_{0}\left(C_{f u n c}\right) \stackrel{\rightharpoonup}{\hookleftarrow} K_{0}\left(C_{f u n c}^{\prime}\right)
$$

On the other hand,
Definition 4.5. For $\mathbf{a}=\left(a_{1}, \cdots, a_{n}\right) \in\{0,1\}^{n}$, let $v_{\mathbf{a}}=v_{a_{1}} \otimes \cdots \otimes v_{a_{n}} \in V_{1}^{\otimes n}$ be the corresponding basis vector.
Then define

$$
\pi_{n}: V_{1}^{\otimes n} \rightarrow V_{n}
$$

by

$$
\pi_{n}\left(v_{\mathbf{a}}\right)=v_{|\mathbf{a}|}
$$

This gives the projection $\pi_{d_{1}} \otimes \cdots \otimes \pi_{d_{k}}: V_{1}^{\left(d_{1}+\cdots+d_{k}\right)} \rightarrow V_{d_{1}} \otimes \cdots \otimes V_{d_{k}}$.
Furthermore define

$$
\iota_{n}: V_{n} \rightarrow V_{1}^{\otimes n}
$$

by

$$
\iota_{n}\left(v_{k}\right)=\sum_{|\mathbf{a}|=k} v_{\mathbf{a}}
$$

Thus one obtaines the inclusion $\iota_{d_{1}} \otimes \cdots \otimes \iota_{d_{k}}: V_{d_{1}} \otimes \cdots \otimes V_{d_{k}} \rightarrow V_{1}^{\left(d_{1}+\cdots+d_{k}\right)}$.
The composition $\iota_{n} \circ \pi_{n}=p_{n}$ is the Jones-Wenzl projector.
This yields

$$
\begin{array}{ccc}
K_{0}\left(C_{\text {func }}^{\prime}\right) & \stackrel{\leftarrow}{\hookrightarrow} & K_{0}\left(C_{f u n c}\right) \tag{2}\\
\stackrel{?}{\cong} & & \stackrel{\phi}{\cong} \\
V_{d_{1}} \otimes \cdots \otimes V_{d_{k}} & \stackrel{\leftrightarrow}{\leftrightarrows} & V_{1}^{\otimes d}
\end{array} .
$$

So how is the isomorphism ϕ on the right defined? Can it be restricted to an isomorphism on the left?
To answer these questions, I first need to define bases of $K_{0}\left(C_{f u n c}\right)$ and $V_{1}^{\otimes d}$.

A basis of $K_{0}\left(C_{\text {func }}\right)$ is given by the isomorphism classes of simple modules. Since $C_{\text {func }}=$ $\bigoplus_{i=1}^{d} B^{i}-\bmod$, these are simple modules over the B^{i}. Addition and multiplication being defined pointwise in B^{i}, I have $f_{w} f_{w^{\prime}}=\delta_{w, w^{\prime}} f_{w}$ and $\sum_{w} f_{w}$ is the identity element of the multiplication, and thus for some simple B^{i}-module V and $v \in V$,

$$
f_{w}^{n} \cdot(v)=f_{w} \cdot(v), f_{w}\left(f_{w^{\prime}} \cdot v\right)=\delta_{w, w^{\prime}} f_{w} \cdot v \text { and } v=\sum_{w} f_{w} \cdot v
$$

So, V being simple, $V=<\left\{v, f_{w} v \mid w \in W_{i}\right\}>_{\mathbb{C}}$.
Therefore $\operatorname{dim} V \leq\left|W_{i}\right|$. However, $f_{w} \cdot v$ would span a 1 -dimensional subspace of V, so V must have been 1-dimensional from the beginning. Two 1-dimensional irreducible modules are not isomorphic in general as B^{i}-modules, e.g. take $V=\left\{\mathbb{C} v \mid f_{w} . v \neq 0\right\}, V^{\prime}=\left\{\mathbb{C} v^{\prime} \mid f_{w^{\prime}} \cdot v^{\prime} \neq\right.$ $0\}, w \neq w^{\prime}$. Then $f_{w} . V \neq 0=f_{w} . V^{\prime}$. So the isomorphism classes of simple modules are given as the 1-dim. modules where one of the f_{w} acts nontrivialy, and they can thus be parametrised by
the f_{w}. So write V_{w}^{i} for the simple module corresponding to $f_{w} \in B^{i}$ (a 1-dimensional module where two different $f_{w}, f_{w^{\prime}}$ act nontriavially cannot occur, as then $f_{w} \cdot v=\lambda v, f_{w^{\prime}} . v=\mu v$, but $f_{w} f_{w^{\prime}}=0$).
Similarly, a basis of $K_{0}\left(C_{f u n c}^{\prime}\right)$ is given by the isomorphism classes of simple $B^{i \prime}$-modules. Then, for some $v \in V$ and $w \in W_{i}, V_{S_{\mathbf{d}} w}^{i}=\left\{\mathbb{C} v \mid\left\{\left(\sum_{a \in S_{\mathbf{d}} w} f_{a}\right) . v \neq 0\right\}\right.$. Then V_{a}^{i} is mapped to this $V_{S_{\mathbf{d}} w}^{i}$ under the correspondance explained above (4.5), for all $a \in S_{\mathbf{d}} w$, and $V_{S_{\mathbf{d}} w}^{i}$ is mapped to $\oplus_{a \in S_{\mathbf{d}} w} V_{a}^{i}$. It remains to find a nice basis for $V_{1}^{\otimes d}$.

Remark 19. [4] Recall the Schur-Weyl duality between $G L_{n}$ and S_{d} : Let V be a n-dimensional vector space, then $G L_{n}$ acts on $V^{\otimes d}$ by $g \cdot\left(v_{1} \otimes \cdots \otimes v_{d}\right)=g \cdot v_{1} \otimes \cdots \otimes g \cdot v_{d}$ and S_{d} by permuting the entries. Schur observed that the centralizer algebra of each of the two actions equals the image of the other action in $\operatorname{End}\left(V^{\otimes d}\right)$ in characteristic zero. Schur and Weyl used this to obtain information about representations of $G L_{n}$ from information about representations of S_{d}. A similar correspondance has been found between $\mathfrak{s l}_{n}$ and S_{d} and both actions commute. S_{d} acts on $V_{1}^{\otimes d}$ by permuting the entries, i.e

$$
v_{i_{1}} \otimes \cdots \otimes v_{i_{d}} \cdot \pi=v_{i_{\pi(1)}} \otimes \cdots \otimes v_{i_{\pi(d)}}
$$

and thus $V_{1}^{\otimes d}$ can be decomposed into

$$
V_{1}^{\otimes d}=\bigoplus_{j=0}^{d}<\bigcup_{\sum_{l=1}^{d} i_{l}=j} v_{i_{1}} \otimes \cdots \otimes v_{i_{d}}>_{\mathbb{C}}=\bigoplus_{j=0}^{d}\left(V_{1}^{\otimes d}\right)_{2 j-d}
$$

$\left(i_{l} \in\{0,1\},\left(v_{0}, v_{1}\right)\right.$ is a basis of V_{1} and $\left(V_{1}^{\otimes d}\right)_{2 j-d}$ is the weight space of $V_{1}^{\otimes n}$ associated to the weight $\mu=2 j-d$, as K acts as 1 on v_{1} and as -1 on $\left.v_{0}\right)$ and

$$
\left(V_{1}^{\otimes n}\right)_{2 j-d}=<\bigcup_{\sum_{l=1}^{d} i_{l}=j} v_{i_{1}} \otimes \cdots \otimes v_{i_{d}}>_{\mathbb{C}} \cong 1 \uparrow_{S_{j} \times S_{d-j}}^{S_{d}}
$$

Recall the definition of induced action:
Definition 4.6. Let G be group with subgroup H, and $\left\{t_{1}, \cdots, t_{l}\right\}$ a fixed transversal for the cosets of H, i.e. $G=\bigcup_{i} t_{i} H$. Then for a representation Y of H, the induced representation $Y \uparrow_{H}^{G}$ is given by $Y \uparrow_{H}^{G}(g)=\left(Y\left(t_{i}^{-1} g t_{j}\right)\right)_{i, j}$ (as a matrix in the basis given by the transversal), with $Y(g)=0$ for $g \notin H$.

In this particular case, $1 \uparrow{\underset{S}{d}}_{S_{d} \times S_{d-i}}$ is a right S_{d}-module with a basis given by the cosets $\left\{\overline{t_{1}}, \cdots, \overline{t_{l}}\right\}$ for a fixed transversal $\left\{t_{1}, \cdots, t_{l}\right\}$ for the cosets of $S_{d} /\left(S_{i} \times S_{d-i}\right)$. Then $\overline{t_{i}} . s=\overline{t_{i} s}$ for some $s \in S_{d}$.
The induced representation $1 \uparrow_{S_{i} \times S_{d-i}}^{S_{d}}$ is isomorphic to the representation

$$
V^{(i, d-i)}=\mathbb{C}\left\{S_{i} \times S_{d-i} \pi_{1}, \cdots, S_{i} \times S_{d-i} \pi_{l}\right\}
$$

where $\left\{\pi_{1}, \cdots, \pi_{l}\right\}$ is a transversal of $S_{i} \times S_{d-i}$ in S_{d}, and S_{d} acts on the basis elements $S_{i} \times S_{d-i} \pi_{i}$ by multiplication from the right ([20, Prop. 1.12.3]).

Then I can identify

$$
<\bigcup_{\sum_{l=1}^{d} i_{l}=j} v_{i_{1}} \otimes \cdots \otimes v_{i_{d}}>_{\mathbb{C}}
$$

with $V^{(j, d-j)}$. $V^{(i, d-i)}$ is cyclic $([20])$, so I can just choose one $(0,1)$-sequence to correspond to (1) $S_{i} \times S_{d-i}$, for example let

$$
v_{i_{1}} \otimes \cdots \otimes v_{i_{n}}=v_{1} \otimes \cdots \otimes v_{1} \otimes v_{0} \otimes \cdots \otimes v_{0} \hat{=}(1, \cdots, 1,0 \cdots, 0)
$$

correpond to (1) $S_{i} \times S_{d-i}$. Then

$$
v_{i_{1}} \otimes \cdots \otimes v_{i_{d}} \cdot \pi=v_{i_{\pi(1)}} \otimes \cdots \otimes v_{i_{\pi(d)}}
$$

correponds to $S_{i} \times S_{d-i} \pi$.

So as a decomposition, one gets precisely the induced trivial modules for the Young subgroups $S_{i} \times S_{d-i}$.
This action can be generalised to the Hecke algebra:
Definition 4.7. [22] The Hecke algebra \mathcal{H}_{d} over $\mathbb{Z}\left[v, v^{-1}\right]$ (with v generic) associated to S_{d} is the associative algebra with generators $\left\{T_{\pi} \mid \pi \in S_{d}\right\}$ and relations $T_{\pi \sigma}=T_{\pi} T_{\sigma}$ if $l(\pi)+l(\sigma)=l(\pi \sigma)$ (where l is the usual length function given by a shortest representation as a product of simple reflections $(i, i+1)$) and $T_{s}^{2}=v^{-2} T_{e}+\left(v^{-2}-1\right) T_{s}$ for all simple reflections $s \in S_{d}\left(v^{-2}=q\right.$ yields the version of the definition of Kazhdan and Lusztig).
Define $H_{s}=v T_{s}$, then $H_{s}^{2}=1+\left(v^{-1}-v\right) H_{s}\left(\right.$ where $\left.1=T_{e}\right)$ and $H_{s}^{-1}=H_{s}+\left(v-v^{-1}\right)$, and the H_{s} generate \mathcal{H}_{d} as well.

Remark 20. It follws from Lusztig's version of Tits' deformation theorem ([16, Theorem 3.1]), that the group algebra of S_{d} over $\mathbb{Q}\left(q^{\frac{1}{2}}\right)$ may be embedded in the Hecke algebra $\mathcal{H}_{d}(q)$ of S_{d} (with $q \in \mathbf{C}$) and $\pi_{\in} S_{d}$ may be written as linear combination of the $T_{v}, v \in S_{d}$. Since $\left\{\pi \in S_{d}\right\}$ forms a basis of S_{d} and $\left\{T_{v} \mid v \in S_{d}\right\}$ a basis of $\mathcal{H}_{d}(q)$ as $\mathbb{Q}\left(q^{\frac{1}{2}}\right)$-vector space, one can invert this and write the T_{v} as linear combination of the $\pi \in S_{d}$. Then the action of S_{d} on $V_{1}^{\otimes d}$ can be extended to an action of the Hecke algebra. However, this isomorphism is not useful for explicit calculations.

For some $S_{\lambda} \subset S_{d}$ (e.g. $\lambda=(i, d-i)$), define the subalgebra $\mathcal{H}\left(S_{\lambda}\right)$ of \mathcal{H}_{d} generated by the $T_{s}, s \in S_{\lambda}$. Since $H_{s}^{2}=1+\left(v^{-1}-v\right) H_{s} \Leftrightarrow\left(H_{s}+v\right)\left(H_{s}-v^{-1}\right)=0$, there is a surjective $\mathbb{Z}\left[v, v^{-1}\right]$-algebra morphism $\mathcal{H}\left(S_{\lambda}\right) \rightarrow \mathbb{Z}\left[v, v^{-1}\right], H_{s} \mapsto v^{-1}$ for $s \in S_{\lambda}$ a simple reflection. This turns $\mathbb{Z}\left[v, v^{-1}\right]$ into an $\mathcal{H}\left(S_{\lambda}\right)$-bimodule where H_{s} acts as v^{-1}. This can be induced to a right $\mathcal{H}_{d^{-}}$ module $\mathbb{Z}\left[v, v^{-1}\right] \otimes_{\mathcal{H}\left(S_{\lambda}\right)} \mathcal{H}_{d}$ with basis given by $\left\{1 \otimes H_{t_{i}}\right\}$ for a fixed transversal $\mathbf{t}=\left\{t_{1}, \cdots, t_{l}\right\}$ for the cosets of $S_{\lambda} \backslash S_{d}$ (where $H_{\pi}:=v^{l(\pi)} T_{\pi}$). Choose the transversal such that the t_{i} have minimal length. Then the action of \mathcal{H}_{d} is given by

$$
\left(1 \otimes H_{\pi}\right) \cdot H_{s}= \begin{cases}1 \otimes H_{\pi s} & \pi s \in \mathbf{t}, \pi s>\pi \\ 1 \otimes H_{\pi s}+\left(v^{-1}-v\right) H_{\pi} & \pi s \in \mathbf{t}, \pi s<\pi \\ v^{-1}\left(1 \otimes H_{\pi}\right) & \pi s \notin \mathbf{t}\end{cases}
$$

(from $\pi s \notin \mathbf{t}$, it follows that $\pi s=r \pi$ for some simple reflection $r \in S_{\lambda}$, and so πs is in the same coset as π) [22, chapter 3]. Notice that for $v=1$, one obtains the action of the group algebra on $1 \uparrow_{S_{\lambda}}^{S_{d}}$ again (when identifying H_{s} with s) and $\mathbb{Z}\left[v, v^{-1}\right]$ corresponds to the trivial representation for S_{λ}.

Remark 21. [4] Jimbo [12] and (independantly) Dipper and James [3] observed that there is a q-analogue of $V^{\otimes d}$ and the mutually centralizing actions of $G L_{n}$ and S_{d} on $V^{\otimes d}$ become mutually centralizing actions of $U_{q}\left(\mathfrak{g l}_{n}\right)$ and the Iwahori-Hecke algebra $\mathcal{H}_{d}(q)$.

Example 17. Consider

$$
V_{1} \otimes V_{1} \hat{=}<(0,0),(0,1),(1,0),(1,1)>=<(1,1)>\oplus<(1,0),(0,1)>\oplus<(0,0)>
$$

as S_{2}-module $\left((x, y) \hat{=} v_{x} \otimes v_{y},\left(v_{0}, v_{1}\right)\right.$ being a basis of $\left.V_{1}\right)$. Then $1 \uparrow_{S_{1} \times S_{1}}^{S_{2}}$ is a right S_{2}-module and 2-dimensional as \mathbb{C}-vector space with basis given by the transversal $\{\overline{1}, \bar{s}=(1,2)\}$ and the operation of $(1,2)$ in this basis is given by

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

so $(1,0) .(1,2)=0(1,0)+\operatorname{Id}(0,1)=(0,1)$ and vice versa. Thus the S_{2}-module $<(1,0),(0,1)>$ corresponds to $1 \uparrow_{S_{1} \times S_{1}}^{S_{2}}$ (which is a sum of sign representations for S_{2}, namely $<(0,1)+(1,0)>$ $\oplus<(0,1)-(1,0)>)$. As $S_{2} \times S_{0} \cong S_{2}$ has transversal $\{(1)\}$ in $S_{2}, 1 \uparrow_{S_{2} \times S_{0}}^{S_{2}}((1,2))=1(1,2)=$ $I d$. and similar for $S_{0} \times S_{2}$, so $<(0,0)>$ and $<(1,1)>$ correspond to the induced trivial representations of $S_{2} \times S_{0}$ and $S_{0} \times S_{2}$. The operation of $H_{s_{1}}$ on the \mathcal{H}_{d}-module induced from the trivial representation of $\mathcal{H}\left(S_{1} \times S_{1}\right)$ in the basis $\left\{1 \otimes H_{e}, 1 \otimes H_{(1,2)}\right\}$ is given by

$$
\left(\begin{array}{cc}
0 & 1 \\
1 & v^{-1}-v
\end{array}\right)
$$

So a nice basis (the standard basis) for the induced modules is given by the $S_{i} \times S_{d-i} \pi_{j}$. I have precisly

$$
W_{i}=S_{d} /\left(S_{i} \times S_{d-i}\right)=\left\{\pi_{1}, \cdots, \pi_{l}\right\}
$$

$\left(V^{(i, d-i)}=\mathbb{C}\left\{S_{i} \times S_{d-i} \pi_{1}, \cdots, S_{i} \times S_{d-i} \pi_{l}\right\}\right.$, where $\left\{\pi_{1}, \cdots, \pi_{l}\right\}$ is a transversal of $S_{i} \times S_{d-i}$ in $\left.S_{d}\right)$ and the isomorphism ϕ in (2) is defined as sending V_{w} to $S_{i} \times S_{d-i} w$.

Proposition 4.8. The map defined thus is indeed an isomorphism.
Proof: E. $V_{w}^{i}=B^{i, i+1} \otimes_{B^{i}} V_{w}^{i}$ is a B^{i+1}-module and can thus be decomposed into a direct sum of simple B^{i+1}-modules. Then $V_{w^{\prime}}^{i+1}$ is a summand if and only if $f_{w^{\prime}}^{i+1} \in B^{i+1}$ acts nontrivially on $E . V_{w}^{i}$. Since the action of B^{i+1} on $B^{i, i+1}$ is defined as $f^{i+1} . g(x)=f^{i+1}\left(\pi_{i+1}(x)\right)$ for $f^{i+1} \in B^{i+1}$, $g \in B^{i, i+1}$ and $x \in W_{i, i+1}$, it follows that $f_{w^{\prime}}^{i+1} B^{i, i+1} \otimes_{B^{i}} V_{w}^{i}=f_{\pi_{i+1}^{-1}\left(w^{\prime}\right)} \otimes_{B^{i}} V_{w}^{i}=1 \otimes_{B^{i}} f_{\pi_{i} \circ \pi_{i+1}^{-1}\left(w^{\prime}\right)}$. I have $E . V_{w}^{i} \stackrel{!}{=} \sum_{\tau=(i+1, j), j \geq i+1} V_{w \tau}^{i+1}=\Phi^{-1}\left(E . S_{i} \times S_{d-i} . w\right)$, so all the $f_{w \tau}^{i+1}$ and no other $f_{w^{\prime}}^{i+1}$ should act nontrivially on $E . V_{w}^{i}$. Therefore one w_{j} in $f_{\pi_{i} \circ \pi_{i+1}^{-1}(w \tau)}=\sum_{j} f_{\left(w_{j}\right)}^{i}$ should equal w and none for $w^{\prime} \neq w \tau \forall \tau=(i+1, j), j \geq i+1$.

Now $W_{i} \hat{=}\{\wedge, \vee\}$-sequences of length d with i-times \wedge and $d-i$-times \vee (identify $e \hat{=} \wedge \cdots \wedge \vee \cdots \vee$ and let W_{i} act by permuting elements of the sequence). Then $W_{i} \xrightarrow{\pi_{i+1} \circ \pi_{i}^{-1}} W_{i+1}$, where a $\{\wedge, \vee\}-$ sequence of length d with i-times \wedge and $d-i$-times \vee is mapped to the sum of all $\{\wedge, \vee\}$-sequences of length d with $i+1$-times \wedge and $d-i$-1-times \vee obtained from the original sequence by converting one \vee to $\mathrm{a} \wedge$. Similarly for $W_{i+1} \stackrel{\pi_{i} \circ \pi_{i+1}^{-1}}{\rightarrow} W_{i}$. Then $\sum_{\tau=(i+1, j), j \geq i+1} f_{w \tau}^{i+1}=f_{\pi_{i+1} \circ \pi_{i}^{-1}(w)}$ and $\sum_{\nu=(i+1, j), j \leq i+1} f_{w \nu}^{i}=f_{\pi_{i} \circ \pi_{i+1}^{-1}(w)}$. The desired result follows for the action of E (since $f_{\pi_{i} \circ \pi_{i+1}^{-1}(w \tau)}=\sum_{\nu=(i+1, j), j \leq i+1} f_{w \tau \nu}^{i}=\sum_{\nu=(i+1, j), j<i+1} f_{w \tau \nu}^{i}+f_{w \tau}^{i}$ and $f_{w \tau}^{i}=f_{w}^{i}$, and for $w^{\prime} \neq$ $w \tau$ in W_{i+1} with τ as before, $w^{\prime} \nu \neq w$ in W_{i}) and the analogous result for F follows using $\sum_{\tau=(i+1, j), j \geq i+1} f_{w \tau}^{i+1}=f_{\pi_{i+1} \circ \pi_{i}^{-1}(w)}$.

Example 18. Let $d=3$ and $i=1$.
Then

$$
\begin{aligned}
& W_{1}=S_{3} /\left(S_{1} \times S_{2}\right) \hat{=}\left\{1 S_{1} \times S_{2},(1,2) S_{1} \times S_{2},(1,3) S_{1} \times S_{2}\right\} \\
&=\{\{1,(2,3)\},\{(1,2),(1,2)(2,3)\},\{(1,3),(1,3)(2,3)=(2,3)(1,2)\}\}
\end{aligned}
$$

and

$$
\begin{aligned}
W_{2} \hat{=}\left\{1 S_{2} \times S_{1},(2,3) S_{2}\right. & \left.\times S_{1},(1,3) S_{2} \times S_{1}\right\} \\
& =\{\{1,(1,2)\},\{(2,3),(2,3)(1,2)\},\{(1,3),(1,3)(1,2)=(1,2)(2,3)\}\}
\end{aligned}
$$

and $W_{1,2}=S_{3}$.
Let $w=(1,2)$. Then $f_{\pi_{i} \circ \pi_{i+1}^{-1}(w)}=f_{w}^{i}+f_{1}^{i}$ and $f_{\pi_{i} \circ \pi_{i+1}^{-1}(w(2,3))}=f_{w(2,3)}^{i}+f_{(1,3)}^{i}=f_{w}^{i}+f_{(1,3)}^{i}$ and indeed $E . V_{w}^{i}=\sum_{\tau=(i+1, j), j \geq i+1} V_{w \tau}^{i+1}=V_{w}^{i+1}+V_{w(2,3)}^{i+1}$.

In order to restrict the isomorphism in (2) to $V_{d_{1}} \otimes \cdots \otimes V_{d_{k}}$ and $K_{0}\left(C_{f u n c}^{\prime}\right)$, I need to check that the images of the projection maps on both sides correspond. Since the inclusion maps are injective, it is enough to show that the isomorphism commutes with the composition, i.e.

$$
\phi \circ \iota \circ \pi=\iota_{d_{1}} \otimes \cdots \otimes \iota_{d_{k}} \circ \pi_{d_{1}} \otimes \cdots \otimes \pi_{d_{k}} \circ \phi .
$$

Let $v_{a_{1}} \otimes \cdots \otimes v_{a_{d}} \hat{=} S_{i} \times S_{d-i} w$, i.e $\mathbf{a}=(1, \cdots, 1,0, \cdots, 0) w$ and $v_{a_{1}} \otimes \cdots \otimes v_{a_{d}}=\left(v_{1} \otimes \cdots \otimes\right.$ $\left.v_{1} \otimes v_{0} \otimes \cdots \otimes v_{0}\right) w$. Then

$$
\pi_{d_{1}} \otimes \cdots \otimes \pi_{d_{k}}\left(v_{a_{1}} \otimes \cdots \otimes v_{a_{d}}\right)=\bigotimes_{i=1}^{k} v_{\left|\mathbf{a}^{i}\right|}
$$

and

$$
\begin{aligned}
& \iota_{d_{1}} \otimes \cdots \otimes \iota_{d_{k}}\left(\bigotimes_{i=1}^{k} v_{\left|\mathbf{a}^{i}\right|}\right) \\
= & \bigotimes_{i=1}^{k} \sum_{\left|\hat{\mathbf{a}}^{i}\right|=\left|\mathbf{a}^{i}\right|} v_{\hat{\mathbf{a}}^{i}} \\
= & \sum_{\hat{\mathbf{a}}=\sigma(\mathbf{a}), \sigma \in S_{\mathbf{d}}} \bigotimes_{i=1}^{k} v_{\hat{\mathbf{a}}^{i}}
\end{aligned}
$$

$\left(\right.$ Set $a_{(i, j)}=\left(a_{i}, \cdots, a_{j}\right)$ and $\left.\mathbf{a}^{i}=a_{\left(d_{1}+\cdots+d_{i-1}+1, d_{1}+\cdots+d_{i}\right)}\right)$, as $\sigma \in S_{\mathbf{d}}$ precisely means that $\sigma(\mathbf{a})=\hat{\mathbf{a}}$ in

$$
\iota_{d_{1}} \otimes \cdots \otimes \iota_{d_{k}}\left(\bigotimes_{i=1}^{k} v_{\left|\mathbf{a}^{i}\right|}\right)=\bigotimes_{i=1}^{k} \sum_{\left|\hat{\mathbf{a}}^{i}\right|=\left|\mathbf{a}^{i}\right|} v_{\hat{\mathbf{a}}^{i}}
$$

Furthermore, $\pi\left(V_{w}^{i}\right)=V_{S_{\mathbf{d}} w}^{i}$ with $v \in V_{w}^{i}$ and $\iota\left(V_{S_{\mathbf{d}} w}^{i}\right)=\oplus_{\sigma \in S_{\mathbf{d}} w} V_{\sigma}^{i}$.

Example 19. $d=3, \mathbf{d}=(2,1)$.

$$
\begin{aligned}
\pi_{2} \otimes \pi_{1}\left(v_{1} \otimes v_{0} \otimes v_{0}\right) & =\bigotimes_{i=1}^{2} v_{\left|\mathbf{a}^{i}\right|} \\
& =v_{1} \otimes v_{0}
\end{aligned}
$$

Then

$$
\begin{aligned}
\iota_{2} \otimes \iota_{1}\left(v_{1} \otimes v_{0}\right) & =\sum_{\mid \hat{\mathbf{a}}^{i}=1} v_{\hat{\mathbf{a}}^{i}} \otimes \sum_{\left|\hat{\mathbf{a}}^{i}\right|=0} v_{\hat{\mathbf{a}}^{i}} \\
& =\left(v_{(1,0)}+v_{(0,1)}\right) \otimes v_{(0)} \\
& =v_{1} \otimes v_{0} \otimes v_{0}+v_{0} \otimes v_{1} \otimes v_{0}
\end{aligned}
$$

Example 20. Let $d=3, \mathbf{d}=(2,1)$.
Then $S_{(2,1)}=\{(1,2) \times(3), e\}$ and $\iota\left(\pi\left(V_{e}^{i}\right)\right)=V_{e}^{i}+V_{(1,2) \times(3)}^{i}$.
So both maps correspond to one another up to constants and since ι is injective on both sides, the images of the projections must already correspond to one another. Therefore the isomorphism from (2) can be restricted as claimed.

4.2 A Similar Construction for U_{q}

Again, one can define bases of $V_{1}^{\otimes d}$ and $K_{0}\left(C_{f u n c}\right)$ as well as their subspaces $V_{d_{1}} \otimes \cdots \otimes V_{d_{k}}$ and $K_{0}\left(C_{f u n c}^{\prime}\right)$ as before. To pay reference to the modified action induced by the q in U_{q}, the projection and inclusion maps however are changed sligthly.

Definition 4.9. For $\mathbf{a}=\left(a_{1}, \cdots, a_{n}\right) \in\{0,1\}^{n}$, let $v_{\mathbf{a}}=v_{a_{1}} \otimes \cdots \otimes v_{a_{n}} \in V_{1}^{\otimes n}$ be the corresponding basis vector.
Then define

$$
\pi_{n}: V_{1}^{\otimes n} \rightarrow V_{n}
$$

by

$$
\pi_{n}\left(v_{\mathbf{a}}\right)=q^{-l(\mathbf{a})} \frac{1}{\left[\begin{array}{c}
n \\
|\mathbf{a}|
\end{array}\right]} v_{|\mathbf{a}|}=q^{-l(\mathbf{a})} v^{|\mathbf{a}|}
$$

where $l(\mathbf{a})$ is equal to the number of pairs $i<j$ with $a_{i}<a_{j}$. This gives the projection

$$
\pi_{d_{1}} \otimes \cdots \otimes \pi_{d_{k}}: V_{1}^{\left(d_{1}+\cdots+d_{k}\right)} \rightarrow V_{d_{1}} \otimes \cdots \otimes V_{d_{k}}
$$

Furthermore define

$$
\iota_{n}: V_{n} \rightarrow V_{1}^{\otimes n}
$$

by

$$
\iota_{n}\left(v_{k}\right)=\sum_{|\mathbf{a}|=k} q^{b(\mathbf{a})} v_{\mathbf{a}}
$$

where $b(\mathbf{a})=|\mathbf{a}|(n-|\mathbf{a}|)-l(\mathbf{a})$, i.e. the number of pairs $i<j$ with $a_{i}>a_{j}$. Thus one obtaines the inclusion

$$
\iota_{d_{1}} \otimes \cdots \otimes \iota_{d_{k}}: V_{d_{1}} \otimes \cdots \otimes V_{d_{k}} \rightarrow V_{1}^{\left(d_{1}+\cdots+d_{k}\right)}
$$

The composition $\iota_{n} \circ \pi_{n}=p_{n}$ is the Jones-Wenzl projector.

Similarly, map the class of the B^{i}-module V_{w}^{i} to the class of the $B^{i, i+1}$-module $V_{S_{\mathbf{d}} w}^{i}$ multiplied by the same constant as $\bigotimes_{j=1}^{k} v_{\left|\mathbf{a}^{j}\right|}$ in the case of $\pi_{d_{1}} \otimes \cdots \otimes \pi_{d_{k}}\left(v_{\mathbf{a}}\right)$, where w should be choosen as representative of minimal lenght of the coset in W_{i} and $\mathbf{a}=w(1, \cdots, 1,0, \cdots, 0)$ and map $V_{S_{\mathbf{d}} w}^{i}$ to $\oplus_{a \in S_{\mathbf{d}} w} V_{a}^{i}$ (with some constants λ_{a} corresponding to the constants in the case of $\iota_{d_{1}} \otimes \cdots \otimes \iota_{d_{k}}$).

Example 21. $d=3, \mathbf{d}=(2,1)$.

$$
\begin{aligned}
\pi_{2} \otimes \pi_{1}\left(v_{1} \otimes v_{0} \otimes v_{0}\right) & =\bigotimes_{i=1}^{2} q^{-l\left(\mathbf{a}^{i}\right)} \frac{1}{\left[\begin{array}{c}
d_{i} \\
\left|\mathbf{a}^{2}\right| \mid
\end{array}\right]} v_{\left|\mathbf{a}^{i}\right|} \\
& =q^{-2} \frac{1}{\left[\begin{array}{l}
2 \\
1
\end{array}\right]} v_{1} \otimes q^{-1} \frac{1}{\left[\begin{array}{l}
1 \\
0
\end{array}\right]} v_{0} \\
& =q^{-3} \frac{1}{[2]} v_{1} \otimes v_{0} \\
& =q^{-3} \frac{q-q^{-1}}{q^{2}-q^{-2}} v_{1} \otimes v_{0}
\end{aligned}
$$

Then

$$
\begin{aligned}
\iota_{2} \otimes \iota_{1}\left(q^{-3} \frac{1}{[2]} v_{1} \otimes v_{0}\right) & =q^{-3} \frac{1}{[2]} \sum_{\left|\hat{\mathbf{a}}^{i}\right|=1} q^{b\left(\hat{\mathbf{a}}^{i}\right)} v_{\hat{\mathbf{a}}^{i}} \otimes \sum_{\left|\hat{\mathbf{a}}^{i}\right|=0} q^{b\left(\hat{\mathbf{a}}^{i}\right)} v_{\hat{\mathbf{a}}^{i}} \\
& =q^{-3} \frac{1}{[2]}\left(q^{b(1,0)} v_{(1,0)}+q^{b(0,1)} v_{(0,1)}\right) \otimes q^{b(0)} v_{(0)} \\
& =q^{-3} \frac{1}{[2]}\left(q v_{(1,0)}+v_{(0,1)}\right) \otimes v_{(0)} \\
& =q^{-2} \frac{1}{[2]} v_{1} \otimes v_{0} \otimes v_{0}+q^{-3} \frac{1}{[2]} v_{0} \otimes v_{1} \otimes v_{0}
\end{aligned}
$$

How should the action of U_{q} be defined such that so $V_{w}^{i} \mapsto\left(S_{i} \times S_{d-i}\right) w$ remains an isomorphism? $E .\left(S_{i} \times S_{d-i}\right) w:=\Delta^{(d-1)} E .\left(v_{a_{1}} \otimes \cdots \otimes v_{a_{d}}\right)=\sum_{j=1}^{d} K v_{a_{1}} \otimes \cdots \otimes K v_{a_{j-1}} \otimes E v_{a_{j}} \otimes v_{a_{j+1}} \otimes \cdots \otimes v_{a_{d}}=$ $\sum_{j=1}^{d} q^{\alpha_{1}} v_{a_{1}} \otimes \cdots \otimes q^{\alpha_{j-1}} v_{a_{j-1}} \otimes\left[\frac{1+\alpha_{j}}{2}+1\right] v_{a_{j}+1} \otimes v_{a_{j+1}} \otimes \cdots \otimes v_{a_{d}}$ (Let $\alpha_{j}=a_{j}-\delta_{0, a_{j}}$, so $\alpha_{j} \in\{1,-1\}$).
Then

$$
\begin{aligned}
E . V_{I d}^{i}= & \sum_{(i+1, j)=\tau \in S_{d-i}} q^{i-(j-1-i)}\left[\frac{1+\alpha_{j}=0}{2}+1\right] V_{\tau}^{i+1} \\
\hat{=} & \sum_{j=i+1}^{d} q^{i-(j-1-i)} v_{1} \otimes \cdots \otimes v_{1} \otimes v_{0} \otimes \cdots \otimes v_{a_{j-1}=0} \\
& \otimes v_{a_{j}+1=1} \otimes v_{a_{j+1}=0} \otimes \cdots \otimes v_{a_{d}=0} \\
= & \sum_{j=1}^{d} q^{a_{1}} v_{a_{1}} \otimes \cdots \otimes q^{a_{j-1}} v_{a_{j-1}} \otimes v_{a_{j}+1} \otimes v_{a_{j+1}} \otimes \cdots \otimes v_{a_{d}}
\end{aligned}
$$

$(\mathbf{a}=(1, \cdots, 1,0, \cdots, 0),|\mathbf{a}|=i)$
and $E . V_{w}^{i}$ should be

$$
\begin{aligned}
& E . V_{w}^{i}=\sum_{\left(w^{-1}(i+1), w^{-1}(j)\right)=\sigma,(i+1, j) \in S_{d-i}} q^{i-\left(j-1-i-2 b_{i+1, j}(w)\right)}\left[\frac{\left.1+\alpha_{w(w-1}(j)\right)}{2}+1\right] V_{\sigma w}^{i+1} \\
& =\sum_{\tau=(i+1, j) \in S_{d-i}} q^{i-\left(j-1-i-2 b_{i+1, j}(w)\right)} V_{w \tau}^{i+1} \\
& \begin{aligned}
\hat{=} \quad & \sum_{\left(w^{-1}(i+1), w^{-1}(j)\right)=\sigma,(i+1, j) \in S_{d-i}} q^{\alpha_{w(1)}} v_{a_{w(1)}} \otimes \cdots \otimes q^{\alpha_{w\left(w^{-1}(j)-1\right)}} v_{a_{w\left(w^{-1}(j)-1\right)}} \\
& \otimes v_{a_{w\left(w^{-1}(j)\right)}+1=1} \otimes v_{a_{w\left(w^{-1}(j)+1\right)}} \otimes \cdots \otimes v_{a_{w(d)}}
\end{aligned} \\
& =\sum_{j=1}^{d} q^{\alpha_{w(1)}} v_{a_{w(1)}} \otimes \cdots \otimes q^{\alpha_{w(j-1)}} v_{a_{w(j-1)}} \otimes\left[\frac{1+\alpha_{w(j)}}{2}+1\right] v_{a_{w(j)}+1} \otimes v_{a_{w(j+1)}} \otimes \cdots \otimes v_{a_{w(d)}} \\
& (\mathbf{a}=(1, \cdots, 1,0, \cdots, 0),|\mathbf{a}|=i) . \\
& \text { (let } b_{i, j}(w) \text { denote the number of } l<i \text { such that } w(l)>j \text {, and } \sigma w=w \tau \text {). }
\end{aligned}
$$

This shows how the action ought to be defined in order for (3) to be a commutative diagram and ϕ an isomorphism. It remains to interprete this action in some natural way. By adapting the action of B^{i}, B^{i+1} from left and right on $B^{i, i+1}$, the action of E, F on B^{i}, B^{i+1} can be deformed such that E can again act as $E . V_{w}^{i}=B^{i, i+1} \otimes_{B^{i}} V_{w}^{i}\left(\right.$ let $f_{w}^{i+1} \cdot g:=q^{i+1} f_{\pi_{i+1}^{-1}(w)}$,
$g . f_{w}^{i}:=q^{1+2 b_{i+1, i+1}(w)} f_{\pi_{i}^{-1}}$ to obtain the action of E, and use an analogous approach for the action of F; I need $f_{\pi_{i} \circ \pi_{i+1}^{-1}(w \tau)}=q^{2 i+1-j-2 b_{i+1, j}(w)} f_{w}^{i}+\sum_{l<i+1, \nu=(l, i+1)} q^{\lambda_{l}} f_{w \tau \nu}^{i}$ for $w=(i+1, j)$, and use $b_{i+1, j}(w)=b_{i+1, i+1}(w \tau)$ for $\left.\tau=(i+1, j)\right)$.

Remark 22. (this was used in the calculations above)

$$
\begin{aligned}
& \mathbf{a}=\left(a_{1}=1, \cdots, \stackrel{w^{-1}(j)^{t h}}{a_{w^{-1}(j)}}, \cdots, a_{i}=1, \stackrel{i+1^{t h}}{a}=0, \cdots, a_{j} \stackrel{j^{t h}}{=}=0, \cdots, \stackrel{w^{-1}(i+1)^{t h}}{a_{w^{-1}(i+1)}}, \cdots, a_{d}=0\right) \\
& w \mathbf{a}=\left(a_{w(1)}, \cdots, w_{j}=0, \cdots, a_{w(i)}, a_{w(i+1)}^{i+1^{t h}}, \cdots, a_{w(j)}^{j^{t h}}, \cdots, w_{i+1}^{w^{-1}(i+1)^{t h}}=0, \cdots, a_{w(d)}\right) \\
& \sigma w \mathbf{a}=\left(a_{w(1)}, \cdots, a_{i+1}^{w^{-1}(j)^{t h}}=0, \cdots, a_{w(i)}, a_{w(i+1)}^{i+1^{t h}}, \cdots, a_{w(j)}^{j^{t h}}, \cdots, a_{w^{-1}(i+1)^{t h}}^{=} 0, \cdots, a_{w(d)}\right) \\
& w^{-1}(j)^{t h} \\
& E . v_{w \mathbf{a}}=\sum_{\left(w^{-1}(i+1), w^{-1}(j)\right)=\sigma,(i+1, j) \in S_{d-i}} K . v_{a_{w(1)}} \otimes \cdots \otimes E . v_{a_{j}=0} \otimes \cdots \otimes v_{a_{w(i)}} \\
& \otimes v_{a_{w(i+1)}}^{i+1^{t h}} \otimes \cdots \otimes v_{a_{w(j)}}^{j^{t h}} \otimes \cdots \otimes{ }^{w^{-1}(i+1)^{t h}} v_{a_{i+1}=0} \otimes \cdots \otimes v_{a_{w(d)}} \\
& =\sum_{\left(w^{-1}(i+1), w^{-1}(j)\right)=\sigma,(i+1, j) \in S_{d-i}} K \cdot v_{a_{w(1)}} \otimes \cdots \otimes E \cdot v_{a_{\sigma\left(w\left(w^{-1}(i+1)\right)\right)=j}=0} \otimes \cdots \otimes v_{a_{w(i)}} \\
& \otimes v_{a_{w(i+1)}}^{i+1^{t h}} \otimes \cdots \otimes v_{a_{w(j)}}^{j^{t h}} \otimes \cdots \otimes v_{a\left(w\left(w^{-1}(j)\right)\right)=i+1}=0 \quad w^{-1}(i+1)^{t h} \quad \otimes \otimes v_{a_{w(d)}}
\end{aligned}
$$

(of course the position of $w^{-1}(j)$ will vary and may e.g. lie to the right of the $i^{\text {th }}$ position... $\left(w^{-1}(i+1), w^{-1}(j)\right)=\sigma,(i+1, j) \in S_{d-i}$ precisely means that the action of E on the $w^{-1}(j)^{t h}$ position is not zero, i.e. the basis vector in this position is v_{0} and not v_{1}).

So I have

$$
\begin{array}{cccc}
K_{0}\left(C_{f u n c}^{\prime}\right) & \stackrel{\leftrightarrows}{\leftrightarrows} & K_{0}\left(C_{\text {func }}\right) \tag{3}\\
\stackrel{?}{\cong} & & \stackrel{\phi}{\cong} \\
V_{d_{1}} \otimes \cdots \otimes V_{d_{k}} & \stackrel{\leftrightarrow}{\leftrightarrows} & V_{1}^{\otimes d}
\end{array} .
$$

In order to restrict the isomorphism in (3) to $V_{d_{1}} \otimes \cdots \otimes V_{d_{k}}$ and $K_{0}\left(C_{f u n c}^{\prime}\right)$, I need to check that the images of the projection maps on both sides correspond. Since the inclusion maps are injective, it is enough to show that the isomorphism commutes with the composition, i.e.

$$
\phi \circ \iota \circ \pi=\iota_{d_{1}} \otimes \cdots \otimes \iota_{d_{k}} \circ \pi_{d_{1}} \otimes \cdots \otimes \pi_{d_{k}} \circ \phi .
$$

Let $v_{a_{1}} \otimes \cdots \otimes v_{a_{d}} \hat{=} w S_{i} \times S_{d-i}$, i.e $\mathbf{a}=w(1, \cdots, 1,0, \cdots, 0)$ and $v_{a_{1}} \otimes \cdots \otimes v_{a_{d}}=w\left(v_{1} \otimes \cdots \otimes\right.$ $\left.v_{1} \otimes v_{0} \otimes \cdots \otimes v_{0}\right)$. Then

$$
\pi_{d_{1}} \otimes \cdots \otimes \pi_{d_{k}}\left(v_{a_{1}} \otimes \cdots \otimes v_{a_{d}}\right)=\bigotimes_{i=1}^{k} q^{-l\left(\mathbf{a}^{i}\right)} \frac{1}{\left[\begin{array}{c}
d_{i} \\
\left|\mathbf{a}^{i}\right|
\end{array}\right]} v_{\left|\mathbf{a}^{i}\right|}
$$

and

$$
\begin{aligned}
& \iota_{d_{1}} \otimes \cdots \otimes \iota_{d_{k}}\left(\otimes_{i=1}^{k} q^{-l\left(\mathbf{a}^{i}\right)} \frac{1}{\left[\begin{array}{l}
d_{i} \\
\left|\mathbf{a}^{i}\right|
\end{array}\right]} v_{\left|\mathbf{a}^{i}\right|}\right) \\
= & \bigotimes_{i=1}^{k} q^{-l\left(\mathbf{a}^{i}\right)} \frac{1}{\left[\begin{array}{c}
d_{i} \\
\left|\mathbf{a}^{i}\right|
\end{array}\right]} \sum_{\left|\hat{\mathbf{a}}^{i}\right|=\left|\mathbf{a}^{i}\right|} q^{b\left(\hat{\mathbf{a}}^{i}\right)} v_{\hat{\mathbf{a}}^{i}} \\
= & \sum_{\hat{a}=\sigma(a), \sigma \in S_{\mathbf{d}}} \bigotimes_{i=1}^{k} \frac{1}{\left[\begin{array}{l}
d_{i} \\
\left|\mathbf{a}^{i}\right|
\end{array}\right]} q^{b\left(\hat{\mathbf{a}}^{i}\right)-l\left(\mathbf{a}^{i}\right)} v_{\hat{\mathbf{a}}^{i}}
\end{aligned}
$$

(Set $a_{(i, j)}=\left(a_{i}, \cdots, a_{j}\right)$ and $\left.\mathbf{a}^{i}=a_{\left(d_{1}+\cdots+d_{i-1}+1, d_{1}+\cdots+d_{i}\right)}\right)$, as $\sigma \in S_{\mathbf{d}}$ precisely means that $\sigma(a)=\hat{a}$ in

$$
\iota_{d_{1}} \otimes \cdots \otimes \iota_{d_{k}}\left(\bigotimes_{i=1}^{k} q^{-l\left(\mathbf{a}^{i}\right)} \frac{1}{\left[\begin{array}{c}
d_{i} \\
\left|\mathbf{a}^{i}\right|
\end{array}\right]} v_{\left|\mathbf{a}^{i}\right|}\right)=\bigotimes_{i=1}^{k} q^{-l\left(\mathbf{a}^{i}\right)} \frac{1}{\left[\begin{array}{c}
d_{i} \\
\left|\mathbf{a}^{i}\right|
\end{array}\right]} \sum_{\left|\hat{a}^{i}\right|=\left|\mathbf{a}^{i}\right|} q^{b\left(\hat{\mathbf{a}}^{i}\right)} v_{\hat{\mathbf{a}}^{i}} .
$$

Furthermore, $\pi\left(V_{w}^{i}\right)=V_{S_{\mathrm{d}} w}^{i}$ with $v \in V_{w}^{i}$ and $\iota\left(V_{S_{\mathrm{d} w}}^{i}\right)=\oplus_{\sigma \in S_{\mathrm{d}} w} V_{\sigma}^{i}$.
So both maps correspond to one another as for the U-case, and since ι is injective on both sides, the images of the projections must already correspond to one another (in fact, the projection and inclusion map for $K_{0}\left(C_{f u n c}^{\prime}\right)$ was chosen precisely so that it would correspond). Therefore the isomorphism from (3) can be restricted as claimed.

5 A Construction for a $U_{q}\left(\mathfrak{s o}_{2 n}\right)$-Module

A similar construction is possible for type D.
Definition 5.1. The (even) special orthogonal Lie algebra $\mathfrak{s o}_{2 n}$, the finite dimensional simple Lie algebra of type $D_{n}(n \geq 4)$, is defined as
$\mathfrak{s o}_{2 n}=\left\{\left.T=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in M_{2 n \times 2 n}(\mathbb{C}) \right\rvert\, A, B, C, D \in M_{n \times n}(\mathbb{C}), A^{t}=-D, B^{t}=-B, C^{t}=-C\right\}$.
The associated quantum group, the quantum special orthogonal algebra $U_{q}\left(\mathfrak{s o}_{2 n}\right)$, is defined as the quotient of the $k=\mathbb{C}(q)$-algebra with unit generated by $E_{a}, F_{a}, K_{a}, K_{a}^{-1}, a \in I=$ $\left\{i, k, j_{1} \ldots, j_{n-2}\right\}$ with relations

$$
\begin{array}{ccc}
K_{a} K_{a}^{-1}=1 & K_{a} E_{b}=q^{C_{a b}} E_{b} K_{a} & E_{a} F_{b}-F_{b} E_{a}=\delta_{a b} \frac{K_{a}-K_{a}^{-1}}{q-q^{-1}} \\
K_{a} K_{b}=K_{b} K_{a} & K_{a} F_{b}=q^{-C_{a b}} F_{b} K_{a} & \forall a, b \in I
\end{array}
$$

by the ideal generated by

$$
\begin{array}{ccc}
E_{a}^{2} E_{b}-\left(q-q^{-} 1\right) E_{a} E_{b} E_{a}+E_{b} E_{a}^{2} & F_{a}^{2} F_{b}-\left(q-q^{-1}\right) F_{a} F_{b} F_{a}+F_{b} F_{a}^{2} & C_{a b}=1 \\
E_{a} E_{b}-E_{b} E_{a} & F_{a} F_{b}-F_{b} F_{a} & C_{a b}=0 .
\end{array}
$$

$C_{a a}=2$ and $C_{a b}=-1$ if there is an edge between a and b in the Dynkin diagramm of type D_{n}, else $C_{a b}=0$.

Remark 23. The Dynkin diagramm of type D_{n} is given by

Now define the vector representation for $U_{q}\left(\mathfrak{s o}_{2 n}\right)$:

Definition 5.2. [9] Let $V=\left(\bigoplus_{j=1}^{n} k v_{i}\right) \oplus\left(\bigoplus_{j=1}^{n} k v_{\bar{i}}\right)$ be a $2 n$-dimensional vector space. Introduce a linear ordering on the index set by

$$
1 \prec 2 \prec \cdots \prec \bar{n} \prec \cdots \prec \overline{2} \prec \overline{1}
$$

(Notice that the order between n and \bar{n} is not defined). The $U_{q}\left(\mathfrak{s o}_{2 n}\right)$-module action is defined as follows:

$$
\begin{aligned}
& K_{a} v_{j}= \begin{cases}q v_{j} & \text { if } j=a \\
q^{-1} v_{j} & \text { if } j=a+1 \\
q v_{j} & \text { if } j=n-1, a=n \\
q^{-1} v_{j} & \text { if } j=\bar{a} \\
q v_{j} & \text { if } j=\overline{a+1} \\
q^{-1} v_{j} & \text { if } j=\overline{n-1}, a=n \\
v_{j} & \text { else }\end{cases} \\
& E_{a} v_{j}= \begin{cases}v_{a} & \text { if } j=a+1, a \neq n \\
v_{\overline{a+1}} & \text { if } j=\bar{a}, a \neq n \\
v_{n} & \text { if } j=\overline{n-1}, a=n \\
v_{n-1} & \text { if } j=\bar{n}, a=n \\
0 & \text { else }\end{cases} \\
& F_{a} v_{j}= \begin{cases}v_{a+1} & \text { if } j=a, a \neq n \\
v_{\bar{a}} & \text { if } j=\overline{a+1}, a \neq n \\
v_{\overline{n-1}} & \text { if } j=n, a=n \\
v_{\bar{n}} & \text { if } j=n-1, a=n \\
0 & \text { else }\end{cases}
\end{aligned}
$$

(so $E_{a} F_{a} v_{j}=v_{j}=F_{a} E_{a} v_{j}$ or zero and $K_{a} v_{j}=q^{\left\langle h_{a}, w t\left(v_{j}\right)\right\rangle}$ for $w t\left(v_{j}\right)=\epsilon_{j}, w t\left(v_{\bar{j}}\right)=-\epsilon_{j}$ where $\epsilon_{i}(A)=a_{i i}$ for a $2 n \times 2 n$-matrix A and h_{a} the a th diagonal generator of $\mathfrak{s o}_{2 n}$).

Then a basis of $V^{\otimes d}$ is given by the $v_{\mathbf{a}}=v_{a_{i}} \otimes \cdots \otimes v_{a_{d}}$, with $a_{i} \in\{1 \prec 2 \prec \cdots \prec \bar{n} \prec \cdots \prec \overline{2} \prec \overline{1}\}$. Again, S_{d} can act by permuting the indicies and if $\mathbf{x}=\left(\left|\left\{a_{i}=1\right\}\right|, \ldots,\left|\left\{a_{i}=\overline{1}\right\}\right|\right)$ denotes the type of \mathbf{a}, then $V^{\otimes d}=\bigoplus_{\mathbf{x}}\left\{v_{\mathbf{a}} \mid \operatorname{type}(\mathbf{a})=\mathbf{x}\right\}_{k}$ is a decomposition into S_{d}-submodules. Such a submodule $\left\{v_{\mathbf{a}} \mid \operatorname{type}(\mathbf{a})=\mathbf{x}\right\}_{k}$ is isomorphic to $1 \uparrow_{S_{\mathbf{x}}}^{S_{d}}\left(S_{\mathbf{x}}=S_{x_{1}} \times \cdots \times S_{x_{2 n}}\right)$, as in the case of $\mathfrak{s l}_{2}$. Furthermore, I can again identify a basis element $w S_{\mathbf{x}}$ with a simple $B^{\mathbf{x}}$ module $V_{w}^{\mathbf{x}}$, where $B^{\mathbf{x}}$ is the space of maps $S_{d} / S_{\mathbf{x}} \rightarrow \mathbb{C}$, as before. Furthermore, I can define $\pi_{\mathbf{x}}: S_{d} / S_{\mathbf{x}} \cap S_{\mathbf{x}^{\prime}}=W_{\mathbf{x}, \mathbf{x}^{\prime}} \rightarrow W_{\mathbf{x}}$.
How do the elements of U_{q} act on these modules? The comultiplication is given by

$$
\begin{aligned}
K_{a}^{ \pm 1} \mapsto & K_{a}^{ \pm 1} \otimes K_{a}^{ \pm 1} \\
\Delta: \quad E_{a} & \mapsto K_{a} \otimes E_{a}+E_{a} \otimes 1 \\
F_{a} & \mapsto 1 \otimes F_{a}+F_{a} \otimes K_{a}^{-1}
\end{aligned}
$$

and so

$$
\Delta^{(d-1)}\left(E_{a}\right)=\sum_{j=1}^{d-1} K_{a} \otimes \cdots \otimes K_{a} \otimes E_{a} \otimes 1 \otimes \cdots \otimes 1
$$

and similar for the other generators, as in the $U_{q}\left(\mathfrak{s l}_{2}\right)$-case. So $v_{\mathbf{a}}$ of type \mathbf{x} is mapped by E_{a} to a sum of $v_{\mathbf{a}^{\prime}}$ of type $\mathbf{x}^{\prime}=\left(x_{1}, \ldots, x_{a}+\left(1-\delta_{0, x_{a+1}}\right), \max \left\{x_{a+1}-1,0\right\}, \ldots, x_{2 n-a}+(1-\right.$ $\left.\left.\delta_{0, x_{2 n-a+1}}\right), \max \left\{x_{2 n-a+1}-1,0\right\}, \ldots, x_{2 n}\right)$, or to zero if $x_{a+1}=0=x_{2 n-a+1}$, if $a \neq n$, and of type $\mathbf{x}^{\prime}=\left(x_{1}, \ldots, x_{n-1}+\left(1-\delta_{0, x_{n+1}}\right), x_{n}+\left(1-\delta_{0, x_{n+2}}\right), \max \left\{x_{n+1}-1,0\right\}, \max \left\{x_{n+2}-1,0\right\}, \ldots, x_{2 n}\right)$, or to zero if $x_{n+1}=0=x_{n+2}$, if $a=n$. Then a submodule $\left\{v_{\mathbf{a}} \mid \operatorname{type}(\mathbf{a})=\mathbf{x}\right\}_{k} \cong 1 \uparrow_{S_{\mathbf{x}}}^{S_{d}}$ is a weight space and the type \mathbf{x} again determines the weight.
Similarly, $B^{\mathbf{x}}$-modules can be mapped by E_{a} to $B^{\mathbf{x}^{\prime}}$-modules as in the $U_{q}\left(\mathfrak{s l}_{2}\right)$-case, but of course this ought to be interpreted in some fashion perhaps similar to the case of $\mathfrak{s l}_{2}$ (If I consider the case of $U\left(\mathfrak{s o}_{m}\right)$ rather than $U_{q}\left(\mathfrak{s o}_{m}\right), E_{i}$ acts as $E_{i} \cdot V_{\mathbf{x}}=V_{\mathbf{x}^{\prime}}=B^{\mathbf{x x}} \otimes_{B^{\mathbf{x}}} V_{\mathbf{x}}$; one must of course choose the \mathbf{x}^{\prime} accordingly.).

Remark 24. In the case of $\mathfrak{s o}_{m}$, the Schur-Weyl duality becomes a duality between the Lie algebra and the Brauer algebra (instead of the group algebra of S_{d} or the corresponding Weyl group for type D) [8, section 10.1]. The Brauer algebra is slightly larger than the group algebra of the symmetric group. For the quantum case, it is an open question how the problem may be solved in general.

References

[1] Jonathan Brundan and Catharina Stroppel, "Highest Weight Categories Arising from Khovanov's Diagram Algebra II: Koszulity" arXiv:0806.3472v2 [math.RT] 13 Jul 2009
[2] Neil Criss, Victor Ginzburg, "Representation Theory and Complex Geometry", Birkhäuser Boston Basel Berlin, 1997
[3] R. Dipper, G.D. James, " q-Tensor Space and q-Weyl Modules", Trans. A.M.S. 327 (1991), 251-282
[4] S.R.Dotty, R.M. Green, "Presenting Affine q-Schur Algebras",...
[5] Douglas, Röhrle, "Homology of the Steinberg Variety and Weyl Group Coinvariants", Doc. Math., 2009, 229-257
[6] Igor B. Frenkel and Mikhail G. Khovanov, "Canonical Bases in Tensor Products and Graphical Calculus for $U_{q}\left(s l_{2}\right) "$ Duke Mathematical Journal Vol.87, No. 3, 1997
[7] Igor Frenkel, Catharina Stroppel, Joshua Sussan, "Categorifying Fractional Euler Characteristics, Jones-Wenzel Projector and 3 -Symbols", Max-Planck-Institut für Mathematik Preprent Series 2011 (30)
[8] Roe Goodman, Nolan R. Wallach, "Symmetry, Representations, and Invariants", Springer 2009
[9] Jin Hong, Seok-Jin Kang, "Introduction to Quantum Groups and Crystal Bases", Graduate Studies in Mathematics Vol. 42, American Mathematical Society
[10] James E. Humphreys, "Linear Algebraic Groups", GTM, Springer-Verlag 1975
[11] Jens Carsten Jantzen, "Lectures on Quantum Groups", Graduate Studies in Mathematics Vol.6, American Mathematical Society
[12] M.A. Jimbo, "A q-Analogue of $U(\mathfrak{g l}(N+1))$, Hecke algebra, and the Yang-Baxter Equation", Lett. Math. Phys. 11 (1986), 247-252
[13] M. Kashiwara, "On Crystal Bases of the q-Analogue of Universal Enveloping Algebras", Duke Math. J. 63, 1991, 465-516
[14] Christian Kassel, "Quantum Groups", GTM, Springer-Verlag 1995
[15] Tobias Lejczyk, Catharina Stroppel, " A Graphical Description of (D_{n}, A_{n-1}) KazhdanLusztig Polynomials", arXiv: 1205.2935v1[math.RT] 14 May 2012
[16] George Lusztig, "On a Theorem of Benson and Curtis" Journal of Algebra 71, 1981, 490-498
[17] George Lusztig, "Canonical Bases in Tensor Products", Proc. Nat. Acad. Sci. U.S.A. Vol 89, 1992, 8177-8179
[18] Anton Malkin, "Tensor Product Varieties and Crystals, ADE case", preprint, math.AG/0103025, to appear in Duke Mathematical Journal
[19] Hiraku Nakajima, "Quiver Varieties and Tensor Products", Invent. Math 146 (2001), 399449.
[20] Bruce E. Sagan, "The Symmetric Group Representations, Combinatorial Algorithms, and Symmetric Functions", Second edition, Springer 2001
[21] Alistair Savage, "The Tensor Product of Representations of $U_{q}\left(s l_{2}\right)$ via Quivers", arxiv:math/0110248v4 [math.AG] 1 May 2003
[22] Wolfgang Soergel, "Kazhdan-Lusztig-Polynome und eine Kombinatorik für Kipp-Moduln", Representation Theory, Volume 1, 1997 37-68
[23] Vladimir G. Turaev, "Quantum Invariants of Knots and 3-Manifolds", Second Edition, De Gruyter 2010

