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1 Introduction

In the first part (section 3), Savage‘s result [21] on a geometric approach to realising the canonical

basis of finite tensor products of integrable highest weight representations of Uq(sl2) is presented,

but I have added some explicit examples and an explicit geometric description of the varieties

used. Then, not following [21] anylonger, I find an alternative geometric realisation of finite

tensor products of integrable highest weight representations of U(sl2) and Uq(sl2) and their

bases with an analogue for type D (section 4 and 5). In the first part, a tensor product variety

T(d), a special form of Nakjima tensor product variety, is considered first over C, then over

the finite field Fq2 with q2 elements (or its algebraic closure Fq2). This allows me for example

to count points and is used in one proof (Proposition 3.8). However, the combinatorics do not

depend on the particular q, so q can be treated as a variable, which becomes the variable q in the

quantum group. A tensor product variety associated to the tensor product of a finite number

of integrable highest weight representations of a Lie algebra g of type ADE was defined in [18]

and [19], though over C. For d ∈ (Z≥0)k, an Uq(sl2)-action on the space of invariant functions,

T (d), (with respect to a natural group action) from Uq(sl2) into C(q) is presented. Two distinct
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subspaces of invariant functions, T0(d) and Tc(d), isomorphic to Vd1 ⊗· · ·⊗Vdk , are introduced.

I also present a natural basis for each of them: a basis Be corresponding to the elementary

basis, and a basis Bc corresponding to Lusztig’s canonical basis [17]. Bc is characterized by its

relation to the irreducible components of T(d). These irreducible components, defined over Fq2 ,

are defined as the Fq2-points of the irreducible components of the corresponding variety T(d)′

over the algebraic closure Fq2 . Distinct elements of Bc are supported on distinct irreducible

components of T(d) (where the supports are not necessarily disjoint) and are nonzero on the

dense points of this irreducible component. The dense points are defined as Fq2-points of certain

dense subsets of the irreducible components of T(d)′. The notation in the first part is mostly

taken from [21]. The following conventions will be used throughout the thesis, unless otherwise

stated. The topology used will always be the Zariski topology and a function on an algebraic

variety will be a function into C(q), the field of rational functions in an indeterminate q. The

span of a set of such will be their C(q) span. The support is defined as {x | f(x) 6= 0}. At several

instances, the graphical calculus of intertwiners of Uq(sl2) will be used. This was introduced by

Penrose, Kauffman and others, and is expanded in [6], see also [7]. In subsection 2.7, this is

explained a little as well.

In the second part I return to C as ground field and define Bi as the set of functions from

Wi = Sd/(Si × Sd−i) to C and Cfunc as the direct sum over all i of the sets of Bi-modules. My

main result is Theroem 4.3: I define an isomorphism between K0(Cfunc) and V ⊗d1 , sending a

natural basis of K0(Cfunc), consisting of isomorphism classes of irreducible elements of Cfunc,

to the elementary basis of V ⊗d1 . This can be restricted to an isomorphism from a subcategory

C ′func onto Vd1 ⊗ · · · ⊗ Vdk (where it sends again a basis corresponding to simple modules in

C ′func to the elementary basis) and can be defined both for U(sl2)- and Uq(sl2)-modules. An

analogue for type D is presented as well.

I want to thank my supervisor, Prof. Stroppel, for suggesting this topic, and for her help in the

development.

2 Finite Dimensional Representations of Uq(sl2)

2.1 Some Definitions

Definition 2.1. Let C(q) denote the field of rational functions in an indeterminate q. Then

define the quantum group Uq(sl2) (or Uq as a shorthand) as the associative algebra over C(q)

with generators E,F,K,K−1 and relations

KK−1 = K−1K = 1

KE = q2EK

KF = q−2FK

EF − FE = K−K−1

q−q−1

.

Remark 1. The quantum group can be defined more generally for any finite dimensional simple

Lie algebra, see e.g. [14].
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Uq has the structure of a Hopf algebra with the following comultiplication ([11])

∆ :

K±1 7→ K±1 ⊗K±1

E 7→ E ⊗ 1 +K ⊗ E
F 7→ F ⊗K−1 + 1⊗ F.

Hence tensor products of representations are again representations via

∆(k−1) :

K±1 7→ K±1 ⊗ · · · ⊗K±1

E 7→
∑k

i=1K ⊗ · · · ⊗K ⊗ E ⊗ 1⊗ · · · ⊗ 1

F 7→
∑k

i=1 1⊗ · · · ⊗ F ⊗K−1 ⊗ · · · ⊗K−1

(where E respectivly F in the second respecitvly third row are in the ith position).

Definition 2.2. Define an antiinvolution w, the Cartan antiinvolution, by

w(E) = F, w(F ) = E, (K±1) = K±1, w(q±1) = q±1, w(xy) = w(y)w(x) for x, y ∈ Uq.

Define also a second comultiplication ∆, using the so called “bar” involution σ. This will be

used later to let the quantum group act on the dual space in a bilinear pairing. Set

σ(E) = E, σ(F ) = F, σ(K±1) = K∓1, σ(q±1) = q∓1, σ(xy) = σ(x)σ(y) for x, y ∈ Uq

and define

∆(x) = (σ ⊗ σ)∆(σ(x)), for x ∈ Uq.

So

∆ :

K±1 7→ K±1 ⊗K±1

E 7→ E ⊗ 1 +K−1 ⊗ E
F 7→ F ⊗K + 1⊗ F

.

Recall from [14] that any finite d + 1-dimensional irreducible Uq-module V is generated by a

highest weight vector vd of heighest weight εqd, ε = ±1. In this thesis, only those of type I, i.e.

with ε = 1 are considered. Fixing ε, there is only one irreducible module in each dimension (up

to isomorphism). Let Vd denote the d+ 1-dimensional irreducible Uq(sl2)-representation.

Definition 2.3. Define [n] = qn−q−n
q−q−1 = qn−1 + qn−3 + · · ·+ q−n+1, [k]! = [k][k− 1] · · · [2][1] and[

d

k

]
= [d]!

[k]![d−k]! .

Set vd−2k = F kvd/[k]!. Since dim(Vd) = d+ 1 and Vd is irreducible, I have vd−2k = 0 for k > d

and a basis of Vd is given by {vd, vd−2, · · · , v−d}. Then

K±1vm = q±mvm

Evm =
[
d+m
2 + 1

]
vm+2

Fvm =
[
d−m
2 + 1

]
vm−2.
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Define a bilinear symmetric pairing on Vd by 〈vd−2k, vd−2l〉 = δk,l

[
d

k

]
. Then a straightforward

calculation shows that this implies the conditions

〈xu, v〉 = 〈u,w(x)v〉, 〈vd, vd〉 = 1 ∀u, v ∈ Vd and x ∈ Uq.

The dual basis with respect to the bilinear form is given by vd−2k =

[
d

k

]−1
vd−2k with the action

of Uq given by

K±1vm = q±mvm

Evm =
[
d−m
2

]
vm+2

Fvm =
[
d+m
2

]
vm−2

.

Now consider tensor products of representations. Define a bilinear pairing

〈−,−〉 : Vd1 ⊗ · · · ⊗ Vdk × Vdk ⊗ · · · ⊗ Vd1 → C

by

〈vi1 ⊗ · · · ⊗ vik , v
lk ⊗ · · · ⊗ vl1〉 = δi1,l1 · · · δik,lk . (1)

Note that this definition agrees with the earlier one for just one tensor factor. One can calculate

that

〈∆(k−1)(x)vi1 ⊗ · · · ⊗ vik , v
lk ⊗ · · · ⊗ vl1〉 = 〈vi1 ⊗ · · · ⊗ vik ,∆

(k−1)
(w(x))vlk ⊗ · · · ⊗ vl1〉.

Here the alternativ comultiplication is used.

When considering a tensor product of simple modules, the action of Uq on a standard basis vector

of the form vi1 ⊗ · · · ⊗ vik does not in general give another standard basis vector, but rather a

linear combination of several standard basis vectors. Therefore one wants to find some other

basis on which Uq acts particularily nicely. This is called the canonical basis and denoted by

vi1♦ · · ·♦vik (see [17]). Denote its dual with respect to the bilinear pairing (1) by vid♥ · · ·♥vi1 .

The notion of a based module going back to Lusztig ([17]) makes it precise what it means that Uq

“acts nicely” one a basis. In more detail, let A denote Z[q, q−1] and consider finite-dimensional

Uq-modules of type I. Any such module M has a decomposition M =
⊕

λ∈ZM
λ into weight

spaces

Mλ = {m ∈M | Km = qλm}.

Let B be a C(q)-basis of M . Define an involution σB : M →M by

σB(fb) = fb ∀f ∈ C(q), b ∈ B

(where −: C(q)→ C(q) such that qn = q−n for all n, is a C-algebra involution). Then (M,B) is

called a based module (with respect to the choice of generators E,F,K±1 of Uq) if the following

conditions are satisfied:

1. B ∩ Mλ is a basis of Mλ, for any λ ∈ Z (so in particular all elements of B are weight

vectors)
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2. The A− submodule MA generated by B is stable under En

[n]! and Fn

[n]! ;

3. The involution σB is compatible with the bar involution σ on Uq in the sense that σB(xm) =

σ(x)σB(m) for all x ∈ Uq, m ∈M ;

4. B is a crystal basis of M at ∞.

For the notion of a crystal basis, see [13] (e.g. the {vi}di=−d are a crystal basis of Vd at ∞).

Lemma 2.4. Vd is a based module with C(q)-basis B = {vd, vd−2, · · · , v−d} and involution σB

as described above.

Proof: As vm is a basis of the weight space of Vd associated to the weight m, the first condition is

satisfied. Moreover, by the definition of the action of E and F , the second condition is satisfied

as well. Now, to see that the third condition is satisfied, consider

σB(xvm) =


[
d+m
2 + 1

]
vm+2 x = E[

d−m
2 + 1

]
vm−2 x = F

q∓1vm x = K±1

= σ(x)σB(vm).

Lemma 2.5. The direct sum of two based modules (M,B) and (M ′, B′) is again a based module

(M ⊕M ′, B ⊕B′)

Proof: As x(m + m′) = xm + xm′ and σB⊕B′(m + m′) := σB(m) + σB′(m
′), the first three

conditions are satisfied. For the fourth condition, see [11].

Since all the representations considered here are semisimple, the above gives a description of

tensor products of representations as based modules. However, one wants to have an intrinsic

structure of based module for tensor products of representations, but the tensor product with the

obvious basis B⊗B′ does not in general satisfy property 3) of the definition. Lusztig introduces

a modified basis B♦B′ in the tensor product as follows:

Let Ψ : M ⊗M ′ →M ⊗M ′ be given by

Ψ(m⊗m′) = Θ(σB(m)⊗ σB′(m′)),

where

Θ =
∑
n≥0

(−1)nq−n(n−1)/2
(q − q−1)n

[n]!
Fn ⊗ En ∈ Ûq ⊗ Uq, a completion of Uq ⊗ Uq.

A quick calculation shows that

Ψ2 = 1

follows from ΘΘ = 1 ⊗ 1, which can be shown by a somewhat more lenghty and not entirely

trivial calculation. Moreover, on can show

Ψ(x(m⊗m′)) = σ(x)Ψ(m⊗m′), x ∈ Uq
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(One has ∆(x) = (σ ⊗ σ)∆(σ(x)), Θ∆ = ∆Θ and σB(xm) = σ(x)σB(m), so

Ψ(x(m⊗m′)) = Ψ(∆(x)(m⊗m′)) = Θ(σB ⊗ σB′(∆(x)(m⊗m′)))
= Θ(σ ⊗ σ(∆(x)(σB(m)⊗ σB′(m′)))) = Θ(∆(σ(x))(σB(m)⊗ σB′(m′)))
= ∆(σ(x))Θ(σB(m)⊗ σB′(m′)) = σ(x)Ψ(m⊗m′)).

Set σB♦B′ = Ψ and let M ⊗M ′A (respectivly M ⊗M ′Z[q−1]) be the A- (resp. Z[q−1]-) submodule

of M ⊗M ′ generated by the basis B ⊗B′. The set B ×B′ has a partial ordering such that

(b1, b
′
1) ≥ (b2, b

′
2)⇔ bi ∈Mλi , b′i ∈M ′λ

′
i with

λ1 ≥ λ2, λ′1 ≤ λ′2, λ1 + λ′1 = λ2 + λ′2.

Example 1. Let M = M ′ = V1. Then B = B′ = {v1, v−1} and v1 ∈ (V1)
1, v−1 ∈ (V1)

−1. So

(v1, v−1) ≥ (v−1, v1), and of course the trivial relations (v1, v1) ≥ (v1, v1), (v−1, v−1) ≥ (v−1, v−1)

hold.

Then Lusztig proves the following result:

Theorem 2.6. 1. For any (b1, b
′
1) ∈ B×B′, there is a unique element b1♦b′1 ∈M ⊗M ′Z[q−1]

such that

Ψ(b1♦b′1) = b1♦b′1

and b1♦b′1 − b1 ⊗ b′1 ∈ q−1M ⊗M ′Z[q−1].

2. The element b1♦b′1 is equal to b1 ⊗ b′1 plus a linear combination of elements b2 ⊗ b′2 with

(b2, b
′
2) ∈ B ×B′, (b2, b

′
2) < (b1, b

′
1) and coefficients in q−1Z[q−1].

3. These elements b1♦b′1 form a C(q)-basis B♦B′ of M ⊗M ′, an A-basis of M ⊗M ′A, and

a Z[q−1]-basis of M ⊗M ′Z[q−1].

4. (M ⊗M ′, B♦B′) is a based module with associated involution Ψ (so Ψ takes the role of

σB).

For more details, see [6], on which the preceeding paragraph, starting with Lusztig´s notion

of based module, is based. An example for based modules are tensor products of irreducible

representations with canonical bases (where the canonical basis is the basis defined in theorem

2.6 above).

Example 2. Again, consider V1 ⊗ V1. The canonical basis is given by {v−1♦v−1 = v−1 ⊗
v−1, v−1♦v1 = v−1 ⊗ v1, v1♦v−1 = v1 ⊗ v−1 + q−1v−1 ⊗ v1, v1♦v1 = v1 ⊗ v1}.

Write
⊗dvw = vd1−2w1 ⊗ · · · ⊗ vdk−2wk
⊗dvw = vd1−2w1 ⊗ · · · ⊗ vdk−2wk

♦dvw = vd1−2w1♦ · · ·♦vdk−2wk
♥dvw = vd1−2w1♥ · · ·♥vdk−2wk
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where d,w ∈ (Z≥0)k. The bar involution σ can be extended to tensor products of irreducible

representations in the following way [21]: Define σ̂ by

σ̂(⊗dvw) = ⊗dvw

and extend it antilinearly via

σ̂(f(q)(⊗dvw)) = f(q−1)(⊗dvw)

for any polynomial f(q) in q, and extend by C-linearity. Then σ̂ is an isomorphism from

Vd1 ⊗ · · · ⊗ Vdk to itself and

σ̂(∆(k−1)(x)v) = ((σ ⊗ · · · ⊗ σ)(∆(k−1)x))(σ̂v)

with x ∈ Uq, v ∈ Vd1 ⊗ · · · ⊗ Vdk (so σ̂ is the involution σB associated to σ as in the definition

of based module above).

Now consider the space of intertwiners HomUq(Vd1 ⊗ · · · ⊗ Vdk , Ve1 ⊗ · · · ⊗ Vel), consisting of

intertwiners commuting with the Uq-action given by (∆)(k−1). A basis can be identified with the

set of crossingless matchings CM e1,··· ,el
d1,··· ,dk (for more details, see [6], [7]). However, the intertwiners

used in [6] and [7] are commuting with the action of Uq given by ∆
(k−1)

. For such an intertwiner

γ̃, define γ = σ̂γ̃σ̂. Then γ is an intertwiner commuting with the action of Uq given by ∆(k−1),

as
γ∆(k−1)(x)(v) = σ̂γ̃σ̂∆(k−1)(x)(v)

= σ̂γ̃((σ ⊗ · · · ⊗ σ)∆(k−1)(x))(σ̂v)

= σ̂γ̃∆
(k−1)

(σx)(σ̂v)

= σ̂∆
(k−1)

(σx)γ̃(σ̂v)

= σ̂((σ ⊗ · · · ⊗ σ)∆(k−1)(x))σ̂γ(v)

= ∆(k−1)(x)γ(v)

for x ∈ Uq and v ∈ Vd1 ⊗ · · · ⊗ Vdk [21].

2.2 Diagrammatics of Intertwiners

The definitions of the crossingless matchings are taken from [21].

Definition 2.7. Depict Vd by a box with d vertices, marked with a d, and define the set of

crossingless matchings CM e1,··· ,el
d1,··· ,dk to be the set of non-intersecting curves in the plane (up to

isotopy) connecting the vertices between a horizontal line consisting of the boxes depicting the

Vdi and another horizontal line above consisting of the boxes depicting the Vei , where the curves

satisfy the following conditions:

1. Each curve connects exactly two vertices

2. Each vertex is endpoint of exactly one curve

3. No curve connects vertices of the same box
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4. All curves lie inside the space bounded by the two horizontal lines and the vertical lines

through the extreme left and right points.

The curves connecting two lower vertices are called lower curves or caps, those connecting upper

vertices are called upper curves or cups and the remaining curves connecting an upper and a

lower vertex are called middle curves.

Example 3. Let d = (4, 3, 3, 4) and e = (5, 3).

A crossingless matching:

d1

e1

d4

e2

d3d2 .

The following are no crossingless matchings:

To see how a crossingless matching is associated to an intertwiner, see [7] and the following

rough explanation: Fix maps Vn ↪→ V ⊗n1 , V ⊗n1 � Vn and an identification between Vn and its

dual. One has

Vd1 ⊗ Vd2 ⊗ Vd3 ⊗ Vd4 ↪→ V ⊗d11 ⊗ V ⊗d21 ⊗ V ⊗d31 ⊗ V ⊗d41 = V
⊗
∑4
i=1 di

1

and similar

V ⊗e1+e21 � Ve1 ⊗ Ve2 .

Moreover, V1 ∼= V ∗1 canonically and there is a natural map V1 ⊗ V1 ∼= V1 ⊗ V ∗1 → Q(q), v ⊗ f 7→
f(v), which is denoted by a cap. Similarly, a map Q(q)→ V1 ⊗ V1 can be defined, denoted by a

cup. Then the crossingless match defines a map

Vd1 ⊗ · · · ⊗ Vd4 → Ve1 ⊗ Ve2

as composite of

Vd1 ⊗ Vd2 ⊗ Vd3 ⊗ Vd4 ↪→ V
⊗
∑4
i=1 di

1 and V ⊗e1+e21 � Ve1 ⊗ Ve2

with

V
⊗
∑4
i=1 di

1 → V ⊗e1+e21 .

Middle curves map a V1 in the tensor product V
⊗
∑4
i=1 di

1 to a V1 in the tensor product V ⊗e1+e21 ,

and cups and caps act as described above.

Elements of the set of oriented crossingless matchings OCM e1,··· ,el
d1,··· ,dk are given by crossingless

matchings together with an orientation such that all upper and lower curves are oriented to
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the left (i.e. if the curve connects vertices a and b and a is to the left of b, the curve must be

oriented such that the arrow would point away from b if the arrow was placed at the right end of

the curve) and the middle curves oriented upwards are to the left of the middle curves oriented

downwards.

Example 4. An oriented crossingless matching:

d1

e1

d4

e2

d3d2 .

Furthermore define the set of lower crossingless matchings LCMd1,··· ,dk and oriented lower

crossingless matchings OLCMd1,··· ,dk . Elements are obtained by removing the upper boxes from

elements of CM e1,··· ,el
d1,··· ,dk respectivly OCM e1,··· ,el

d1,··· ,dk , converting middle curves to vertical rays, and

keeping the orientation of the curves in the case ofOLCMd1,··· ,dk . So in the case ofOLCMd1,··· ,dk ,

the vertices oriented up must be to the left of those oriented down, as for the middle curves of

OCM e1,··· ,el
d1,··· ,dk . Upper crossingless matchings are defined in an analogous way.

Example 5. An oriented lower crossingless matching:

d1 d4d3d2 .

Remark 2. This is not taken from [21]. Using V1 ∼= V ∗1 and the canonical isomorphisms

HomUq(V ⊗ W,X) ∼= HomUq(V,Hom(W,X)) ∼= HomUq(V,Hom(W,X∗)) ∼= HomUq(V, (W ⊗
X)∗) ∼= HomUq(V,X ⊗ W ), one obtains (The isomorphisms correspond to the operations on

the matchings, see [23, Chapter VI 3.2])

HomUq(Vd1 ⊗ · · · ⊗ Vdk , Ve1 ⊗ · · · ⊗ Vel) d1

e1

d4

e2

d3d2

∼= HomUq(Vd1 ⊗ · · · ⊗ Vdk−1
, Ve1 ⊗ · · · ⊗ Vel ⊗ Vdk) d1

e1 d4e2

d3d2

∼= HomUq(Q(q), Ve1 ⊗ · · · ⊗ Vel ⊗ Vdk ⊗ · · · ⊗ Vd1)

d1e1 d4e2 d3 d2

∼= (Ve1 ⊗ · · · ⊗ Vel ⊗ Vdk ⊗ · · · ⊗ Vd1)Inv

since a map f : Q(q)→ Ve1 ⊗· · ·⊗Vel ⊗Vdk ⊗· · ·⊗Vd1 is given by f(1) and E,F act trivially on

Q(q). This illustrates a relation between upper or lower crossingless matchings without vertical

rays and general crossingless matchings and gives an easy way of obtaining the elements of a

tensor product of representations invariant under the action of Uq.
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Given a and d ∈ Zk≥0 with ai ≤ di ∀ i, a lower oriented crossingless matching M(d,a) ∈
OLCMd1,··· ,dk can be associated to it as follows [21]:

For each i, place downwards oriented arrows on the rightmost ai vertices of the box representing

Vdi , and upwards oriented arrows on the remaining di − ai vertices. There is a unique way to

connect the vertices such that M(d,a) forms a lower oriented crossingless matching, respecting

the orientation of the arrows on the vertices. Starting from the right, connect each down arrow

to the first up arrow to its right not already connected, if there is any (as the up arrows of each

box are the the left of the down arrows in the same box, the resulting curves do not connect ver-

tices of the same box). This produces a lower oriented crossingless matching with all unmatched

downwards oriented arrows to the right of all unmatched upwards oriented arrows, as required.

Example 6. Let d = (4, 3, 3, 4).

Orientation of arrows for d = (4, 3, 3, 4) and a = (3, 1, 1, 2):

d1 d4d3d2

and resulting M(d,a):

d4d3d1 d2 .

Lemma 2.8. The correspondence between OLCMd1,··· ,dk and {a ∈ Zk≥0 | ai ≤ di ∀i} is one to

one.

Proof: From the definition it becomes clear that any element of OLCMd1,··· ,dk can be associated

to precisly one such a. ai denotes the number of down arrows of the ith box di and by fixing the

order in which arrows are connected, only one lower oriented crossingless matching is associated

to an a.

Definition 2.9. [21] A partial order on the sets CM e1,··· ,el
d1,··· ,dk , OCM e1,··· ,el

d1,··· ,dk , LCMd1,··· ,dk and

OLCMd1,··· ,dk can be defined by setting S1 ≤ S2 if the set of lower curves of S1 is a subset of

the set of lower curves of S2, for any two elements S1, S2 of one of these sets.

3 A Geometric Realisation of the Canonical Basis

I want to realise the canonical basis of a representation of Uq(sl2) geometrically.

3.1 The Tensor Product Variety

Let D = Cd and let d ∈ (Z≥0)k such that
∑k

i=1 di = d.

Definition 3.1. Let k be an arbitrary field and set GLk(d) = {f ∈ End(kd) | f invertible} and

glk(d) = End(kd). If the ground field is clear, I will write GL(d) respectivly gl(d) instead of

GLk(d) respectivly glk(d).
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I now assume k = C.

Definition 3.2. Fix d. Define the variety Fl(d) of flags of type d via

Fl(d) = {D = {Di}ki=0 | 0 = D0 ⊆ D1 ⊆ . . . ⊆ Dk−1 ⊆ Dk = D, dim(Di/Di−1) = di}.

Note that this makes sense over an arbitrary field.

Remark 3. The variety of partial flags Fl(d) can be identified with the set of parabolic subal-

gebras of gl(d) of type d (see [10]) via

Fl(d)
∼−→ {parabolic subalgebras of gl(d) of type d}

D = D1 ⊂ · · · ⊂ Dk 7−→ {x | xDi ⊂ Di∀i} = p(D) = stabilizer˝of D.

All parabolics of type d are GL(d)-conjugate to the standard parabolic of type d,

d1 ∗
d2 ∗pd = ...
dk ∗

(and all the subalgebras conjugate to pd are parabolics of type d). Now fix the standard˝flag

Dst =< e1, · · · , ed1 >⊂< e1, · · · , ed1+d2 >⊂ · · · ⊂< e1, · · · , ed >;

then its stabilizer is pd. An arbitrary element D ∈ Fl(d) is therefore of the form gDst for some

g ∈ GL(d). Then

xDi ⊂ Di ⇔ xg(Dst)i ⊂ g(Dst)i ⇔ g−1xg(Dst)i ⊂ (Dst)i,

so the stabilizer of D is the conjugate by g of the stabilizer pd of Dst. Note that here one needs

the ground field to be C.

Remark 4. One has furthermore Fl(d)=̂Gl(d)/p for a parabolic subgroup p of the correct type d

(identify a flag with the coset of matricies sending the standard basis to a basis compatible with

the flag). Gl(d)/p is a subvariety of the product of projective spaces G(d1, d) × . . . × G(dk, d)

(see [10, section 1.8]), where G(l, d) gets a projective structure in the following way:

Consider the exterior algebra
∧
D.
∧dD is 1-dimensional. If V is a subspace, then

∧lW may be

identified canonically with a subspace of
∧lD. Thus there is a map G(l, d)→ P(

∧lD) sending

a subspace V to the corresponding point in projective space belonging to
∧l V . Moreover, the

cartesian product of projective varieties can be viewed again as a projective variety.

Gl(d)/p is projective because one can embed it into the product of projective spaces (or either

because it is a homogeneous space). The projective space P(D) is a special example of some

G/p, namely the one where p has 2 blocks of size 1 and d− 1.

Definition 3.3. Define the tensor product variety

T(d) = {(D = {Di}ki=0,W, t) | D ∈ Fl(d), W ⊆ D, t ∈ End(D), t(Di) ⊆ Di−1, im(t) ⊆W ⊆ ker(t)}
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with subvariety

T0(d) = {(D,W, 0) ∈ T(d)} = Fl(d)×
d∐
i=0

G(i, d),

where G(i, d) denotes a Grassmannian of subspaces of dimension i.

Remark 5. Using remark 3, the tensor product variety can be described as follows:

Denote the standard parabolics of type d respectivly (i, d − i) by pd respectivly p(i,d−i). Then

these contain the standard Levi subalgebras ld respectivly l(i,d−i) given by the elements with zeros

outside the blockmatricies on the diagonal. Moreover, there are the unipotent subalgebras ud

respectivly u(i,d−i) consisting of the matricies with zeros in the blockmatricies and underneath,

such that pd = ld+ud and p(i,d−i) = l(i,d−i)+u(i,d−i). Define orthogonal projections π : pd → ud

and π′ : p(i,d−i) → u(i,d−i) and extend these to all parabolics of type d respectivly (i, d − i) as

follows:

Let p be a parabolic of type d and F ∈ p. Then there is g ∈ GL(d) such that gpg−1 = pd. Set

π(F ) := g−1π(gFg−1)g and analogously for parabolics of type (i, d− i). So

Fl(d)←→ parabolics of type d

Grassmannian G(i, d)←→ parabolics of type (i, d− i)
endomorphisms t −→ nilpotent elements in gl(d) which square to zero

The condition t(Di) ⊆ Di−1 then implies t ∈ π(p(D)). Similarly, the condition im(t) ⊆ W ⊆
ker(t) can be reformulated as t(Fi) ⊆ Fi−1 for F = {0} ⊆ W ⊆ D and thus, t ∈ π′(p(F)) =

π′(p(W ⊆ D)), where p(W ⊆ D) is the parabolic associated to W ⊆ D. Thus, for fixed

dimension w of W , one obtains the following variety of triples:

{(D,W, t) ∈ T(d) | dim W = w}

∼=

{
(x, p1, p2)

∣∣∣∣∣ p1 parabolic of type d, p2 parabolic of type (w, d− w),

x ∈ π(p1) ∩ π′(p2) with x2 = 0

}
= St(d, w).

This is called the Steinberg variety (see [2, section 3.3]). Therefore T(d) =
⋃d
w=0 St(d, w).

GL(D) acts on T(d) via g·(D,W, t) = ({g·Di}ki=0, g·W, gtg
−1).

The same definition of T(d) makes sense when substituting a finite field K = Fq2 for C (where q

of course has to be chosen as a power of a prime number instead of an invariant), so from now

on, let D be a d-dimensional vector space over Fq2 .

An example for the tensor product variety follows.

3.2 Explicit Examples

In the following I describe some small examples of these varieties explicitly.

Example 7. Let d = 2, thus d ∈ {(2), (1, 1)} (ignore zeros in the vector, e.g. (2, 0) = d). I

describe these two cases explicitly.
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• T(2) = {(D = {Di}1i=0,W, t) | 0 = D0 ⊆ D1 = D, dim(D1/D0) = d, W ⊆ D, t ∈
End(D), t(D) ⊆ D0 = 0, 0 = im(t) ⊆W ⊆ ker(t) = D},
hence

Fl(2) = {0 ⊂ D} and T(2) = {(0 ⊆ D,W, 0)} = T0(2) =
⋃2
w=0 Fl(2)×G(w, 2)

is a union of Grassmannian varieties and each Grassmannian is an orbit for the action of

GL(d). Thus T(2) has 3 orbits.

If k is a finite field then the variety contains only finietly many points, for instance over

the field Fq2 with q2 elements I have the following:

Since G(0, 2) = {0}, G(1, 2) = {span{e2}, span{e1 + λe2}}λ∈Fq2 , and G(2, 2) = {D},
it follows that |G(0, 2)| = 1, |G(1, 2)| = (q2 + 1), and |G(2, 2)| = 1 and so T(2) has

1 + (q2 + 1) + 1 points.

• Consider T(1, 1) = {(D = {Di}2i=0,W, t) | 0 = D0 ⊆ D1 ⊆ D2 = D, dim(Di/Di−1) =

di, W ⊆ D, t ∈ End(D), t(Di) ⊆ Di−1, im(t) ⊆W ⊆ ker(t)}

= T0(1, 1) ∪ {(0 ⊂< v >⊂ D,< v >, t 6= 0) | D =< v > ⊕ < u >, t =

(
0 λ

0 0

)
, λ ∈ F×

q2

for some u completing v to a basis of D and t as a matrix in this basis (v, u)}
∼= T0(1, 1)∪ P1× Fxq2 (W =< v > in the second set as t(D) ⊂ D1 =< v >, im(t) ⊂W and

t 6= 0).

To calculate the cardinality of T(1, 1), note that the number of different flags of type

(1, 1) equals the number of different one-dimensional subspaces of (Fq2)2, which is q2 + 1.

Therefore |T0(1, 1)| = q2 + 1 + (q2 + 1)2 + q2 + 1 = q4 + 4q2 + 3 and |T(1, 1)| = |T0(1, 1)|+
(q2 + 1)(q2 − 1) (as there are q2 + 1 possibilities for the flag, which also fixes W , and for

each flag q2 − 1 = |Fxq2 | possibilities for the endomorphism t for the elements of T(1, 1)

with nonzero endomorphism).

Example 8. Now let d = 3, so d ∈ {(3), (1, 2), (2, 1), (1, 1, 1)}.

• Then

T(3) = T0(3)

∼= Fl(3) ∪ Fl(3)× P2 ∪ Fl(3)×G(2, 3) ∪ Fl(3)

∼= {(D, 0, 0)} ∪ {(D,< v >, 0)}v 6=0 ∪ {(D,< v,w >, 0)}v,w 6=0
v 6=λw

∪ {(D,D, 0)}

(As seen before, T0(d) is generally of the form
∐d
i=0 Fl(d)×G(i, d). However, for example

Fl(3)× P2 divides into several GL(D)-orbits, depending on how W lies in D. ).

• T(2, 1) = T0(2, 1) ∪ R with

R =

((D1 ⊂ D),W, t)

∣∣∣∣∣∣∣∣
W ⊂ D, dim(D1) = 2, t 6= 0

im(t) ⊂ D1 ⊂ ker(t)

im(t) ⊂W ⊂ ker(t)

 .
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One has ((D1 ⊂ D),W, t) ∈ R ⇒ dim(ker(t)) = 2 and dim(im(t)) = 1 as t 6= 0, im(t) ⊂
ker(t) and dim(im(t)) + dim(ker(t)) = 3. So D1 = ker(t) and W = im(t) or W = ker(t).

It follows

R =

(D, im(t), t)

∣∣∣∣∣∣∣∣
t 6= 0

dim(D1) = 2,

im(t) ⊂ D1 = ker(t)

 ∪̇
(D, ker(t), t)

∣∣∣∣∣∣∣∣
t 6= 0

dim(D1) = 2,

im(t) ⊂ D1 = ker(t)


with D = (D1 ⊂ D). So it divides into the T0(2, 1)-part and a union of Spaltenstein-

varieties.

• T(1, 2) = T0(1, 2) ∪ R with

R =

((D1 ⊂ D),W, t)

∣∣∣∣∣∣∣∣
W ⊂ D, dim(D1) = 1, t 6= 0

im(t) ⊂ D1 ⊂ ker(t)

im(t) ⊂W ⊂ ker(t)

 .

As before, one has ((D1 ⊂ D),W, t) ∈ R ⇒ dim(im(t)) = 1, dim(ker(t)) = 2 and W =

im(t) or W = ker(t). But in this case im(t) = D1. So it follows

R =

(D, im(t), t)

∣∣∣∣∣∣∣∣
t 6= 0

dim(D1) = 1,

im(t) = D1 ⊂ ker(t)

 ∪̇
(D, ker(t), t)

∣∣∣∣∣∣∣∣
t 6= 0

dim(D1) = 1,

im(t) = D1 ⊂ ker(t)


with D = (D1 ⊂ D).

• T(1, 1, 1) = T0(1, 1, 1) ∪ R with

R =

((D1 ⊂ D2 ⊂ D),W, t)

∣∣∣∣∣∣∣∣
W ⊂ D, dim(D1) = 1, dim(D2) = 2, t 6= 0

im(t) ⊂ D2, D1 ⊂ ker(t), t(D2) ⊂ D1

im(t) ⊂W ⊂ ker(t)

 .

Again, ((D1 ⊂ D2 ⊂ D),W, t) ∈ R ⇒ dim(ker(t)) = 2, dim(im(t)) = 1 and W = im(t) or

W = ker(t). It follows

R =


(D, im(t), t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

t 6= 0

dim(D1) = 1,

dim(D2) = 2,

im(t) ⊂ D2,

D1 ⊂ ker(t),

t(D2) ⊂ D1


∪̇


(D, ker(t), t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

t 6= 0

dim(D1) = 1,

dim(D2) = 2,

im(t) ⊂ D2,

D1 ⊂ ker(t),

t(D2) ⊂ D1


with D = (D1 ⊂ D2 ⊂ D).

3.3 Relative Positions of Subspaces

In the following I introduce a function α which describes the relative position of a subspace

V ⊆ D with respect to the flag D.
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Definition 3.4. Define α : (V,D) 7→ α(V,D) ∈ (Z≥0)k, α(V,D)i = dim((V ∩Di)/(V ∩Di−1))

and denote the following unions of orbits of T(d) under the action of GL(D) by Aw,r,n =

{(D,W, t) ∈ T(d)|α(W,D) = w, α(im t,D) = r, α(ker t,D) = n} for fixed w, r,n ∈ (Z≥0)k.

The Aw,r,n will be used to characterize the canonical basis later on.

Remark 6. As im(t) ⊆W ⊆ ker(t), Aw,r,n is empty unless
∑j

i=1 ri ≤
∑j

i=1wi ≤
∑j

i=1 ni for all

j and
∑k

i=1 ri + ni = d(as dim(im(t)) + dim(ker(t)) = d).

Example 9. This example illustrates the counting of points over finite fields of cardinality

q2. The results will always depend on a polynomial of q. This allows me later to treat q as

a formal variable and connect it with the modules over the quantum group Uq. Let d = 3

and d = (1, 2). Then F3q2 has (q2)3 different elements of which all but one are nonzero. The

Grassmannian G(1, 3) has q2[3] points because leaving out linear multiples, one obtains q6−1
q2−1 =

q3(q3−q−3)
q(q−q−1)

= q2[3] different lines ˝, i.e pairwise linear independent vectors. So there are q2[3]

different flags of type (1, 2), since a flag of type d = (1, 2) is of the form (< v >⊂ D). In general,

G(1, d) = Pd−1 has (q2)n − 1 elements and q2n−1
q2−1 points. Using the following easy identities

q2[3]−1 = q6−1
q2−1−1 = q6−1−q2+1

q2−1 = q2 q
4−1
q2−1 = q3[2] and q3[2] = q2 q

4−1
q2−1 , so q3[2](q2−1) = q2(q4−1)

and q2[3](q4 − 1) = q3[3][2](q2 − 1) = q3[3]!(q2 − 1), I can now determine the number of points

(not elements!) in A. The result is given in the following tables:

First let r = 0, n = (1, 2), so t = 0.

w |Aw,r,n| Explanatory Remarks

(1, 0) q2[3] W has to be equal to D1

(1, 1) q5[3]! W =< v, v′ >, < v >= D1 and v′ has to be linear independent of v

(1, 2) q2[3] W = D = F3q2
(0, 0) q2[3] W = 0

(0, 1) q5[3]! W =< v′ >, < v >= D1 and v′ has to be linear independant of v

(0, 2) 1
2q

7[3]! q2[3] possibilities for < v >= D1 and W =< v′, v′′ >, so q2[3]− 1

possibilities for v′ and then only q2 for v′′ to obtain different W ,

but the order in which v′, v′′ are choosen does not matter.

.

Now let r = (1, 0), n = (1, 1), so t 6= 0 and w is of the form (1, |w| − 1):

w |Aw,r,n| Explanatory Remarks

(1, 0) q3[3]!(q2 − 1) W = D1 and t =
(

0 ∗ ∗
0 0 0
0 0 0

)
6= 0 in a basis compatible with the flag,

so there are q4 − 1 = (q2 + 1)(q2 − 1) possibilities for t

(1, 1) q5[3]!(q2 − 1) As in the t = 0-case, there are q5[3]! possibilities for the tupel (D,W )

and since t(W ) = 0, t 6= 0, q2 − 1 possibilities for t

.

More concretely, take e.g. q = 2, Fq2 = F4 ∼= {0, 1, e
2πi
3 = x, e

4πi
3 = y}, so x, y are third roots of
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unity. Then the one-dimensional subspaces of F34 are given by the spans of the vectors in

V =




1

0

0

 ,


0

1

0

 ,


0

0

1

 ,


1

1

0

 ,


1

0

1

 ,


0

1

1

 ,


1

x

0

 ,


1

y

0

 ,


1

0

x

 ,


1

0

y

 ,


0

1

x

 ,


0

1

y

 ,


1

x

x

 ,


1

y

y

 ,


1

x

1

 ,


1

y

1

 ,


1

1

x

 ,


1

1

y

 ,


1

x

y

 ,


1

y

x

 ,


1

1

1




and

T0(1, 2) = {(< v >⊂ D, 0, 0) | v ∈ V } ∪ {(< v >⊂ D,< v >, 0) | v ∈ V }
∪{(< v >⊂ D,< v′ >, 0) | v 6= v′ ∈ V } ∪ {(< v >⊂ D,< v, v′ >, 0) | v 6= v′ ∈ V }
∪{(< v >⊂ D,< v′, v′′ >, 0) | v 6= v′, v′′ ∈ V such that < v′, v′′ > ∩ < v >= 0}
∪{(< v >⊂ D,D, 0) | v ∈ V }

= A0,0,d ∪A(1,0),0,d

∪A(0,1),0,d ∪A(1,1),0,d

∪A(0,2),0,d

∪A(1,2),0,d

Furthermore,

{D ∈ Fl(1, 2)|tDi ⊂ Di−1} × {D ∈ Fl(1, 2)|tDi ⊂ Di−1}

= {(< v >⊂ D,< v >, t =
(

0 λ µ
0 0 0
0 0 0

)
) | v ∈ V, λ, µ ∈ F4 not both zero} = A(1,0),(1,0),(1,1)

and

{D ∈ Fl(1, 2)|tDi ⊂ Di−1} × {D ∈ Fl(2, 1)|tDi ⊂ Di−1}
= {(< v >⊂ D,< v, v′ >, t =

(
0 λ µ
0 0 0
0 0 0

)
) | v 6= v′ ∈ V, t(v′) = 0, λ, µ ∈ F4 not both zero}

= A(1,1),(1,0),(1,1)

(t as a matrix for a basis compatible with the flag).

The cardinalities are
|A0,0,d| = q2[3] = 21

|A(1,0),0,d| = q2[3] = 21

|A(0,1),0,d| = q5[3]! = 420

|A(1,1),0,d| = q5[3]! = 420

|A(0,2),0,d| = 1
2q

7[3]! = 840

|A(1,2),0,d| = q2[3] = 21

|A(1,0),(1,0),(1,1)| = q3[3]!(q2 − 1) = 315

|A(1,1),(1,0),(1,1)| = q5[3]!(q2 − 1) = 1260.

The following corrects a claim made in [21]:

Lemma 3.5. The varieties Aw,r,n are unions of orbits. In general, they are not single orbits

(in contrast to the claim made in [21]).
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Proof: The first claim is clear by definition, since the condition is GL(D)-equivariant. For the

second claim, I refer to the following example.

Example 10. Let d = (1, 1, 1, 1) and let A(1,1,0,0,),(1,1,0,0),(1,1,0,0,) = {(D,W, t)|W = D2 =

ker t = im t}. Then, for D = (< e1 >⊂< e1, e2 >⊂< e1, e2, e3 >⊂< e1, e2, e3, e4 >= D), the

two elements

(D, < e1, e2 >,


0 0 0 1

0 0 1 0

0 0 0 0

0 0 0 0

) and (D, < e1, e2 >,


0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

)

are in this set. Assuming both were in the same orbit, there should exist a g ∈ GL(D) such that

g(D, < e1, e2 >,


0 0 0 1

0 0 1 0

0 0 0 0

0 0 0 0

) = (D, < e1, e2 >,


0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

).

Since gD = D, g = (gi,j), gi,i 6= 0 has to be an upper triangular matrix. Thus

g


0 0 0 1

0 0 1 0

0 0 0 0

0 0 0 0

 g−1 =


0 0 g1,2 g1,1

0 0 g2,2 0

0 0 0 0

0 0 0 0

 g−1 =


0 0 g1,2g

−1
3,3 g1,1g

−1
4,4 − g1,2g3,4g

−1
4,4g

−1
3,3

0 0 g2,2g
−1
3,3 −g2,2g3,4g−14,4g

−1
3,3

0 0 0 0

0 0 0 0

 .

But g2,2g
−1
3,3 6= 0, so the two elements can not be in the same orbit. So the Aw,r,n are merely

a union of orbits. However, the Aw,0,d always are orbits and the projection of Aw,r,n onto the

first two components (sending (D,W, t) to (D,W )) is an orbit under the GL(D)-action as well.

Remark 7. To identify the orbits in general, consider (D,W, t), (D′,W ′, t′) ∈ Aw,r,n. Without

loss of generality, I can assume D = D′, W = W ′. Choose a basis (ui)
d
i=1 of D such that

Di = span{ui}dii=1

and

W ∩Dj = span

j⋃
l=0

{ui}
(
∑l−1
s=1 ds)+wl

i=(
∑l−1
s=1 ds)+1

.

Then t, t′ have to fulfill the conditions posed by r,n. If g.(D,W, t) = (D,W, t′), then g is an

upper triangular matrix, so if t(ui) ∈ Dj , then t′(ui) ∈ Dj . However, if t′ fulfills this, then there

also exists g such that gtg−1 = g′. This describes the orbits.

It remains to see which r,n allow more than one orbit. I need ui1 ∈ Dj1 , ui2 ∈ Dj2 , j1 < j2 with

njl 6= djl , l = 1, 2 (so t(Djl) 6= 0) and
∑k

i=j1
ri <

∑k
i=j1+1 xi, with di = ni+xi i.e ui1 and ui2 can

be mapped to Dj1−1 and not to zero. Moreover, there must be l1 6= l2 with rli 6= 0 and li < j1
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such that t may map ui1 , ui2 to Dl1 , Dl2 or Dl2 , Dl1 . Then t, t′ with t(ui1) ∈ Dl1 , t(ui2) ∈ Dl2

and t′(ui1) ∈ Dl2 , t
′(ui2) ∈ Dl1 are not in the same orbit. E.g.

n = (∗, · · · , ∗, dj1 − xj1 , · · · , dj2 − xj2 , ∗, · · · , ∗), xi 6= 0

and

r = (∗, · · · , ∗,
li1
1 , ∗, · · · , ∗,

li2
1 , ∗, · · · , ∗,

j1
0 , · · · ,

j2
0 , ∗, · · · , ∗).

(if looking at the corresponding crossingless matching, it must have at least two arrows running

above one another, e.g ).

3.4 The Spaces T (d) and T0(d)

Definition 3.6. A function f : T(d)→ C such that (g·f)(x) := f(g−1x) = f(x) ∀g ∈ GL(D) is

called invariant. Let T (d) denote the space of invariant functions on T(d).

Define 1A(x) :=

{
1 if x ∈ A
0 else

the indicator function. Set

kw,r,n = q
∑
i<j riwj+winj−wiwj

a constant and define

fw,r,n = kw,r,n1Aw,r,n.

Define T0(d) = span{fw,0,d}w, the set of invariant functions on T0(d) (Recall that Aw,0,d is a

single orbit).

Remark 8. Then T (d) ⊃ span{fw,r,n}w,r,n, but in general not equal (the inclusion is in general

strict, e.g. consider f the indicator function of some orbit strictly contained in an Aw,r,n. Recall

that Aw,r,n is not necessarily an orbit, see example 10).

Only finitly many of the fw,r,n are nonzero, more precisely fw,r,n = 0 unless |r|+ |n| = |d| = d

(as |r| = dim(im t), |n| = dim(ker t) and dim(D) = d = dim(ker t) + dim(im t)) and r ≤ w ≤ n

(as im t ⊆ W ⊆ ker t) where |a| :=
∑k

i=1 ai and a ≤ b ⇔
∑j

i=1 ai ≤
∑j

i=1 bi ∀ 1 ≤ j ≤ k,

a < b⇔ a ≤ b,a 6= b, for a,b ∈ (Z≥0)k.

Example 11. • d = (2): T (2) = span{f0,0,2, f1,0,2, f2,0,2} (Recall that T(d) = T0(d), so

fw,r,n = 0 unless r = 0, n = d). So the span equals T (2) and is not just a subset.

• d = (1, 1): Recall T(1, 1) = T0(1, 1) ∪ {(0 ⊂< v >⊂ D,< v >, t 6= 0)|D =< v > ⊕ <

v >⊥, t =
(
0 λ
0 0

)
}, so Aw,r,n 6= ∅ if and only if w = r = n = (1, 0) or r = 0, n = d

and w ∈ {(0, 0), (1, 0), (0, 1), (1, 1)}. So fw,r,n 6= 0 if and only if w = r = n = (1, 0) or

r = 0, n = d and w ∈ {(0, 0), (1, 0), (0, 1), (1, 1)}. Again, T (1, 1) = span{fw,r,n}, since in

the case of d = (1, 1), all the Aw,r,n are single orbits.

One wants to equip T (d) with a Uq-module action such that there is a module-isomorphism

T0(d)
η0,d→ Vd1 ⊗ · · · ⊗ Vdk sending fw,0,d to vd1−2w1 ⊗ · · · ⊗ vdk−2wk =: ⊗dvw, the elementary
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basis element corresponding to w.

Set

T(w; d) = {(D,W, t) ∈ T(d) | dim W = w}

and

T(w,w + 1; d) = {(D, U,W, t) | (D,W, t), (D, U, t) ∈ T(d), dim U = w, dim W = w + 1}.

Then there is a correspondence

T(d)
π1←
⋃
w

T(w,w + 1; d)
π2→ T(d)

with π1((D, U,W, t)) = (D, U, t) and π2((D, U,W, t)) = (D,W, t). Define π!(f)(x) :=
∑

y∈π−1(x) f(y)

(recall that I am working over a finite field) and π∗f(x) = f(π(x)).

Remark 9. The correspondence can be defined over C as well.

Definition 3.7. [21, Theorem 2.2.1]

T (d) becomes a Uq(sl2) module via the following action of E,F,K±1 : Set

Ef = q− dim(π−1
1 (−))(π1)!π

∗
2f,

Ff = q− dim(π−1
2 (−))(π2)!π

∗
1f

and

K±1f = q±(d−2 dim(−))f.

So

Ef(D, U, t) = q− dim(π−1
1 (D,U,t))(π1)!π

∗
2f(D, U, t)

= q− dim(π−1
1 (D,U,t))

∑
(D,U,W,t)∈

⋃
w T(w,w+1;d)

f(D,W, t),

Ff(D,W, t) = q− dim(π−1
2 (D,W,t))(π2)!π

∗
1f(D,W, t)

= q− dim(π−1
2 (D,W,t))

∑
(D,U,W,t)∈

⋃
w T(w,w+1;d)

f(D, U, t)

and

K±1f(D,W, t) = q±(d−2 dim W )f(D,W, t).

Remark 10. π1, π2 are in general not surjective, e.g. consider Aw,r,n = A(1,1,0,0),(1,1,0,0),(1,1,0,0).

T(w,w + 1; d)

= {(D, U,W, t) | (D,W, t),D, U, t) ∈ T(d), dim U = w, dim W = w + 1}
= {(D, U,W, t) | im t ⊂ U (W ⊂ ker t, (D,W, t),D, U, t) ∈ T(d), dim U = w, dim W = w + 1},
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so if ker t = im t, no (D, U,W, t) ∈ T(w,w + 1; d) for any w,d. Thus

Ef(1,1,0,0),(1,1,0,0),(1,1,0,0)(D, U, t)

= q− dim(π−1
1 (D,U,t))

∑
(D,U,W,t)∈

⋃
w T(w,w+1;d) f(D,W, t)

= q− dim(π−1
1 (D,U,t))

∑
(D,U,W,t)∈

⋃
w T(w,w+1;d), (D,W,t)∈Aw,r,n

f(D,W, t)

= q− dim(π−1
1 (D,U,t))

∑
(D,U,W,t)∈∅ f(D,W, t)

= 0 ∀(D, U, t),

similarly for F .

Proposition 3.8. Applying the action of E,F,K±1 to the vectors fw,r,n, one obtains

K±1fw,r,n = q±(d−2|w|)fw,r,n,

Efw,r,n =
k∑
j=1

q
∑j−1
i=1 ni−ri−2(wi−ri)[nj −wj + 1]fw−δj ,r,n

and

Ffw,r,n =
k∑
j=1

q−
∑k
i=j+1 ni−ri−2(wi−ri)[wj − rj + 1]fw+δj ,r,n

(where δj ∈ (Z≥0)k is the element such that δji = 0∀ i 6= j, δjj = 1).

Proof: Let (D, U, t) ∈ T(d) be fixed. It is clear that Efw,r,n(D, U, t) = 0 unless α(U,D) = w−δj

for some j since

Efw,r,n(D, U, t) = q− dim(π−1
1 (D,U,t))

∑
(D,U,W,t)∈

⋃
w T(w,w+1;d)

fw,r,n(D,W, t),

so there must exist a W such that (D,W, t) ∈ Aw,r,n.

Then

Efw,r,n(D, U, t) = q− dim(π−1
1 (D,U,t))

∑
(D,U,W,t)∈

⋃
w T(w,w+1;d) fw,r,n(D,W, t)

= kw,r,nq
− dim(π−1

1 (D,U,t))χq(π
−1
1 (D, U, t) ∩ π−12 (Aw,r,n)).

(χq(A) is the Euler characteristic, i.e. the number of points in A, which is finite since k =

Fq2 and χq(π
−1
1 (D, U, t) ∩ π−12 (Aw,r,n)) is the number of W such that (D,W, t) ∈ Aw,r,n and

(D, U,W, t) ∈
⋃
w T(w,w + 1; d))

Now,

π−11 (D, U, t) ∼= {W |U ⊂W ⊂ ker t, dim W = dim U + 1}
∼= {W |W ⊂ ker t/U, dim W = 1}
∼= Pdim(ker t)−dim U−1

= P|n|−(|w|−1)−1

= P|n|−|w|

and thus dim(π−11 (D,W, t)) = |n| − |w| (remember α(U,D) = w − δj , so dim(U) = |w| − 1).

Moreover,

π−11 (D, U, t) ∩ π−12 (Aw,r,n)

∼= {W |U ⊂W ⊂ ker t, α(W,D) = w}
∼= {W |(U ∩Dj) ⊂W ⊂ (ker t ∩Dj), dim(W ∩Dj−1) = w(1,j−1), dim W = w(1,j)}
∼= {W |W ⊂ (ker t ∩Dj)/(U ∩Dj) ,W * (ker t ∩Dj−1)/(U ∩Dj−1), dim W = 1},
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(where w(i,j) =
∑j

l=iwl), so the dimension equals

dimPdim(ker t∩Dj)/(U∩Dj)−1 − dimPdim(ker t∩Dj−1)/(U∩Dj−1)−1

= dimPn(1,j)−(w−δj)(1,j)−1 − dimPn(1,j−1)−(w−δj)(1,j−1)−1

= dimPn(1,j)−w(1,j) − dimPn(1,j−1)−w(1,j−1)−1.

Therefore,

Efw,r,n(D, U, t) = kw,r,nq
−(|n|−|w|)

(∑n(1,j)−w(1,j)

i=0 q2i −
∑n(1,j−1)−w(1,j−1)−1

i=0 q2i
)

= kw,r,nq
|w|−|n|∑n(1,j)−w(1,j)

i=n(1,j−1)−w(1,j−1) q
2i

= kw,r,nq
|w|−|n|+2(n(1,j−1)−w(1,j−1))

∑nj−wj
i=0 q2i

= kw,r,nq
wj+1,k−w1,j−1+n1,j−1−nj+1,k

[nj − wj + 1].

Using kw−δj,r,n = kw,r,nq
−r1,j−1−nj+1,k+w1,j−1+wj+1,k

, one obtains

kw,r,nq
wj+1,k−w1,j−1+n1,j−1−nj+1,k

= kw−δj,r,nq
r(1,j−1)+n1,j−1−2w1,j−1

.

Inserting this gives Efw,r,n(D, U, t) = kw−δj,r,nq
r(1,j−1)+n1,j−1−2w1,j−1

[nj − wj + 1]. Thus

Efw,r,n =
∑k

j=1 q
r(1,j−1)+n1,j−1−2w1,j−1

[nj − wj + 1]kw−δj,r,n1A
w−δj,r,n

=
∑k

j=1 q
r(1,j−1)+n1,j−1−2w1,j−1

[nj − wj + 1]fw−δj,r,n

=
∑k

j=1 q
∑j−1
i=1 (ni−ri−2(wi−ri))[nj − wj + 1]fw−δj,r,n.

Similarly,

Ffw,r,n =
k∑
j=1

q−
∑k
i=j+1(ni−ri−2(wi−ri))[wj − rj + 1]fw+δj,r,n.

It follows from the definition that

K±1fw,r,n = q±(d−2|w|)fw,r,n = q±
∑k
i=1(ni−ri−2(wi−ri))fw,r,n

as |r|+ |n| = |d| = d.

3.5 Relation between T0(d) and Vd1 ⊗ · · · ⊗ Vdk

Definition 3.9. Define ηr,n : span{fw,r,n}w → Vn1−r1 ⊗ · · · ⊗ Vnk−rk by fw,r,n 7→ ⊗n−rvw−r,

extended by linearity.

Proposition 3.10. η is a Uq-module isomorphism.

Proof: The action of x ∈ Uq on Vd1 ⊗ · · · ⊗ Vdk was defined as ∆k−1(x), so

∆k−1E =

k∑
i=1

K ⊗ · · · ⊗K ⊗ E ⊗ 1⊗ · · · ⊗ 1

∆k−1F =
k∑
i=1

1⊗ · · · ⊗ 1⊗ F ⊗K−1 ⊗ · · · ⊗K−1

∆k−1K± = K± ⊗ · · · ⊗K±

where E and F appear in the ith position in the first two equations. Comparing this with the

action on T (d), the claim follows.
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Definition 3.11. Denote by hdw the preimage under η0,d of vd1−2w1♦ · · ·♦vdk−2wk =: ♦dvw,

the canonical basis element corresponding to w. So the canonical basis can be interpreted as

certain invariant functions on a subvariety of T(d).

3.6 Examples

Example 12. Action of Uq on T0(d) (I will abbreviate fw,0,d by fw).

d = (1, 1, 1):

Ef(0,0,0) = 0 Ef(0,0,1) = q2f(0,0,0) Ef(0,1,1) = qf(0,0,1) Ef(1,1,1) = f(0,1,1)

+f(0,1,0) +q−1f(1,0,1)

+q−2f(1,1,0)

Ef(0,1,0) = qf(0,0,0) Ef(1,1,0) = f(0,1,0)

+q−1f(1,0,0)

Ef(1,0,0) = f(0,0,0) Ef(1,0,1) = f(0,0,1)

+f(1,0,0) ,

Ff(0,0,0) = f(0,0,1) Ff(0,0,1) = qf(0,1,1) Ff(0,1,1) = q2f(1,1,1) Ff(1,1,1) = 0

+q−1f(0,1,0) +f(1,0,1)

+q−2f(1,0,0)

Ff(0,1,0) = f(0,1,1) Ff(1,1,0) = f(1,1,1)

+f(1,1,0)

Ff(1,0,0) = f(1,0,1) Ff(1,0,1) = qf(1,1,1)

+q−1f(1,1,0)

and

Kf(0,0,0) = q3f(0,0,0) Kf(0,0,1) = qf(0,0,1) Kf(0,1,1) = q−1f(0,1,1) Kf(1,1,1) = q−3f(1,1,1)

Kf(0,1,0) = qf(0,1,0) Kf(1,1,0) = q−1f(1,1,0)

Kf(1,0,0) = qf(1,0,0) Kf(1,0,1) = q−1f(1,0,1)

One sees that there are four weightspaces determined by the absolute value of w. Compare this

to the action of Uq on Vd1 ⊗ · · · ⊗ Vdk (⊗dvw = vd1−2w1 ⊗ · · · ⊗ vdk−2wk and recall the action of

Uq (see the proof of Proposition 3.10)):

d = (1, 1, 1):
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E ⊗d v(0,0,0) E ⊗d v(0,0,1) E ⊗d v(0,1,1) E ⊗d v(1,1,1)

= 0 = q2 ⊗d v(0,0,0) = q ⊗d v(0,0,1) = ⊗dv(0,1,1)

+⊗d v(0,1,0) +q−1 ⊗d v(1,0,1)

+q−2 ⊗d v(1,1,0)

E ⊗d v(0,1,0) E ⊗d v(1,1,0)

= q ⊗d v(0,0,0) = ⊗dv(0,1,0)

+q−1 ⊗d v(1,0,0)

E ⊗d v(1,0,0) E ⊗d v(1,0,1)

= ⊗dv(0,0,0) = ⊗dv(0,0,1)

+⊗d v(1,0,0) ,

F ⊗d v(0,0,0) F ⊗d v(0,0,1) F ⊗d v(0,1,1) F ⊗d v(1,1,1)

= ⊗dv(0,0,1) = q ⊗d v(0,1,1) = q2 ⊗d v(1,1,1) = 0

+q−1 ⊗d v(0,1,0) +⊗d v(1,0,1)

+q−2 ⊗d v(1,0,0)

F ⊗d v(0,1,0) F ⊗d v(1,1,0)

= ⊗dv(0,1,1) = ⊗dv(1,1,1)

+⊗d v(1,1,0)

F ⊗d v(1,0,0) F ⊗d v(1,0,1)

= ⊗dv(1,0,1) = q ⊗d v(1,1,1)

+q−1 ⊗d v(1,1,0)

and

K ⊗d v(0,0,0) K ⊗d v(0,0,1) K ⊗d v(0,1,1) K ⊗d v(1,1,1)

= q3 ⊗d v(0,0,0) = q ⊗d v(0,0,1) = q−1 ⊗d v(0,1,1) = q−3 ⊗d v(1,1,1)

K ⊗d v(0,1,0) K ⊗d v(1,1,0)

= q ⊗d v(0,1,0) = q−1 ⊗d v(1,1,0)

K ⊗d v(1,0,0) K ⊗d v(1,0,1)

= q ⊗d v(1,0,0) = q−1 ⊗d v(1,0,1)

Example 13. d = (1, 1, 1):

The coefficients of the fw′,0,d occuring in the representation of hdw in this basis are calculated

using the Kazhdan-Lusztig polynomials pw′,w, with q−1 inserted ( see [1, section 5] ) (Again, I
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will abbreviate fw,0,d by fw).

hd(0,0,0) = f(0,0,0) hd(0,0,1) = f(0,0,1) hd(0,1,1) = f(0,1,1) hd(1,1,1) = f(1,1,1)

+q−1f(0,1,0) +q−1f(1,0,1)

+q−2f(1,0,0) +q−2f(1,1,0)

hd(0,1,0) = f(0,1,0) hd(1,1,0) = f(1,1,0)

+q−1f(1,0,0)

hd(1,0,0) = f(1,0,0) hd(1,0,1) = f(1,0,1)

+q−1f(1,1,0)

Operation of Uq(sl2) on T0(d) ∼= V ⊗31 with basis hdw:

Ehd(0,0,0) = 0 Ehd(0,0,1) = [3]hd(0,0,0) Ehd(0,1,1) = [2]hd(0,0,1) Ehd(1,1,1) = hd(0,1,1)

Ehd(0,1,0) = [2]hd(0,0,0) Ehd(1,1,0) = hd(0,1,0)

Ehd(1,0,0) = hd(0,0,0) Ehd(1,0,1) = hd(1,0,0)

+hd(0,0,1)

Fhd(0,0,0) = hd(0,0,1) Fhd(0,0,1) = [2]hd(0,1,1) Fhd(0,1,1) = [3]hd(1,1,1) Fhd(1,1,1) = 0

Fhd(0,1,0) = hd(1,1,0) Fhd(1,1,0) = hd(1,1,1)

+hd(0,1,1)

Fhd(1,0,0) = hd(1,0,1) Fhd(1,0,1) = [2]hd(1,1,1)

( use q + q−1 = [2] and q2 + 1 + q−2 = [3]) and

K±1hd(0,0,0) = q±3hd(0,0,0)

K±1hd(0,0,1) = q±1hd(0,0,1) K±1hd(0,1,0) = q±1hd(0,1,0) K±1hd(1,0,0) = q±1hd(1,0,0)

K±1hd(0,1,1) = q±−1hd(0,1,1) K±1hd(1,1,0) = q±−1hd(1,1,0) K±1hd(1,0,1) = q±−1hd(1,0,1)

K±1hd(1,1,1) = q±−3hd(1,1,1) .

Notice that all coefficients are positive for the action of Uq on the hdw.

Remark 11. Compare this to the action of Uq on the dual basis given by [6]. The dual basis can

be denoted by (upper) crossingless matchings where an arc is drawn between to arrows if the

one oriented up is to the left of the one oriented down and as usual wi denotes the number of

down verticies in the box corresponding to Vdi (a down vertex is associated to v−1 and an up

vertex to v1, so e.g. v1 ⊗ v−1 is associated to
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). To determine the action of E, numerate all down-oriented verticies not connected to

some other vertex with an arc, starting from the left, by (1, 2, · · · , ldown). E acts on ♥dvw by∑
i[i]E(i)♥dvw, where E(i) reverses the ith down arrow not connected with an arc to an up arrow

and draws an arc if possible (i.e. if there is a neighboring down arrow to the right of the up

arrow). Similarly, F reverses the up-arrows, starting from the right. For d = (1, 1, 1), one gets:

♥dvw

with w (0, 0, 0) (1, 0, 0) (1, 1, 0) (1, 1, 1)

crossingless match

E.♥dvw 0

+[2] +[2]

+[3]

F.♥dvw 0

+[2] +[2]

+[3]

♥dvw

with w (0, 0, 1) (1, 0, 1) (0, 1, 0) (0, 1, 1)

crossingless match

E.♥dvw 0 0

F.♥dvw 0 0

and one has 〈u,∆(k−1)
(w(x))v∗〉 = 〈∆(k−1)(x)u, v∗〉 for u in usual basis and v∗ in dual basis, so

e.g. 〈♦duw,∆
(k−1)

(E)♥dvw
′〉 = 〈∆(k−1)(F )♦duw,♥dvw

′〉. This gives a further way of checking

that the results on the canonical basis calculated before in the example are indeed correct. Again,

all the coefficients occuring are positive.

3.7 The Space Tc(d) and a Canonical Basis of It

One can find an extension e : T0(d) → T (d) (module homomorphism, isomorphism onto its

image) extending invariant functions on T0(d) to invariant functions on T(d) with larger support.

By this, one wishes to obtain from the hdw a basis of invariant functions on T(d) with a nice

geometric interpretation. So the aim is to find an extension that will yield such a nice basis and

that is an isomorphism onto its image, such that the new basis can again be identified with the

canonical basis via e and η0,d.

Definition 3.12. Define an extension e extending a function f ∈ T0(d) to a function fe ∈ T (d)

by

fe =
∑
r,n

(ηr,n)−1 ◦ γr,n ◦ η0,d(f)
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(Recall the definition 3.9 of η), where the γr,n in the set of intertwiners {γr,n : Vd1 ⊗· · ·⊗Vdk →
Vn1−r1 ⊗ · · · ⊗ Vnk−rk}r,n are defined below.

To define the γr,n, some preparation is needed. It is known from [6], that a basis of the space

of intertwiners (though linear endomorphisms commuting with the alternative comultiplication

) between two tensor product representations of Uq is given by the corresponding crossingless

matchings. For a lower crossingless matching S, define rS by setting rSi equal to the num-

ber of left endpoints of lower curves contained in Vdi and define nS by setting nSi equal to di

minus the number of right endpoints of lower curves contained in Vdi . One can associate to

any lower crossingless matching an endomorphism t sending a vector of Di\Di−1 to a vector

of Dj\Dj−1, j < i, for any curve connecting Vdi and Vdj (choose a basis of D compatible with

the flag D and define the matrix of t in this basis by (Ct)i,j = 1 if i < j and S has a curve

connecting the ith and jth vertices and equal to zero otherwise). E.g. let S be the crossing-

less matching , so nS = (1, 1, 0) and rS = (0, 1, 0), and let D be the standard flag

< e1 >⊂< e1, e2 >⊂< e1, e2, e3 >. Then let the matrix of t in the standard basis be
(

0 0 0
0 0 1
0 0 0

)
.

So one actually obtains rS = α(im t,D) and nS = α(ker t,D). This S can be completed to a

crossingless matching to VnS1−rS1
⊗ · · · ⊗ VnSk−rSk in a unique way as nSi − rSi is the number of

unconnected vertices of the ith box.

E.g. the lower crossingless matching S

d4d2 d3d1

with rS = (3, 1, 1, 0) and nS = (4, 1, 1, 3) can be completed to a crossingless match to V1 ⊗ V0 ⊗
V0 ⊗ V2 = VnS1−rS1

⊗ · · · ⊗ VnS4−rS4 ,

nS1 − rS1

d4

nS4 − rS4

d2 d3d1 .

Then let γ̃rS,nS be the corresponding intertwiner commuting with the action of Uq given by

∆
(k−1)

. This is welldefined as S 7→ (rS,nS) is injective. Define γrS,nS = σ̂γ̃rS,nS σ̂; this is an

intertwiner commuting with the action of Uq given by ∆(k−1). If (r,n) is not of the form (rS,nS)

for any crossingless matching S, set γr,n = 0.

Proposition 3.13. e is an isomorphism onto its image and fe|T0(d) = f .

Proof: Follows from Proposition 3.10 and the way the intertwiner associated to a crossingless

matching is defined.

Let Tc(d) := span{few,0,d}. Now one wants to show that the distinguished basis gdw = (hdw)e

of this space corresponds to the irreducible components of T(d) and to the canonical basis of

Vd1 ⊗ · · · ⊗ Vdk , thus getting a geometric interpretation of the canonical basis.
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In order to do this, it is necessary to work over the algebraic closure of the field for some time.

Let T(d)′ denote the variety over the closure of the field defined in the same fashion as T(d) and

set Z ′w = {(D,W, t) ∈ T(d)′|α(W,D) = w} =
⋃

r,nA
′
w,r,n (where A′w,r,n is defined in analogy

to Aw,r,n ).

Proposition 3.14. The Z ′w are the irreducible components of T(d)′.

Remark 12. An analogous statement for the Steinberg varieties introduced in section 3.1 is

well-known ([2], [5]).

Proof: Clearly
⋃̇

wZ
′
w = T(d)′. Moreover, the connected components of T(d)′ are given by

fixing the dimension of W , i.e. by
⋃

w′,
|w′|=|w|

A′w′,r,n. Thus it sufficies to show that the Z ′w are

irreducible and locally closed and that their dimension is independent of w for fixed |w| (so the

closures (the sets themselves are disjoint), are not contained in one another). In order to do so,

consider the maps

Z ′w

p1~~
Z ′1w

p2 // Z ′2w

given by p1(D,W, t) = (D,W ) and p2(D,W ) = D with

Z ′1w = {(D,W )|(D,W, t) ∈ Z ′w for some t}=̂Aw,0,d

and

Z ′2w = {D|(D,W ) ∈ Z ′1w for some W} = Fl(d)

a flag manifold. p1 and p2 are locally trivial fibrations, i.e. for each point (D,W, t) ((D,W )

respectivly) there is an open neighborhood U of (D,W ) (D respectivly) such that p−11 (U) ∼=
(D,W ) × {t ∈ End(D) | t(Di) ⊂ Di−1, im(t) ⊂ W ⊂ ker(t)} (p−12 (U) ∼= D × {W ⊂ D |
α(W,D) = w} respectivly). GL(D) acts transitively on Z ′1w = Aw,0,d with stabilizer

G1 =





M1 ∗ ∗ ∗ ∗ · · · · · · ∗
0 N1 0 ∗ 0 · · · · · · ∗
0 0 M2 ∗ ∗ ∗
0 0 0 N2 0 ∗

0 0 0 0
. . .

. . . ∗

0 0 0 0
. . .

. . . 0
...

...
...

...
...

. . .
. . . Mk ∗

0 0 0 0 · · · · · · 0 Nk



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Mi ∈ GL(wi), Ni ∈ GL(di − wi)



.

Thus dim(Aw,0,d) = dim GL(D)−dim G1 =
∑

i<j didj +
∑

i≤j wj(di−wi). The fiber of p1 over

a point (D,W ) ∈ Z ′1w is

F1 = {t ∈ End(D) | t(Di) ⊂ Di−1, im t ⊂W ⊂ ker t}.
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In order to describe the dimension of this fiber, pick a basis {ui}di=1 of D such that {ui}
d1+...+dj
i=1

is a basis of Dj and such that
⋃j
l=0{ui}

d(1,l−1)+wl
i=d(1,l−1)+1

is a basis for W ∩Dj (where d(i,j) =
∑j

l=i dl).

By considering the matrices of t in this basis

d1︷ ︸︸ ︷ d2︷ ︸︸ ︷ · · ·
dk︷ ︸︸ ︷

t =



w1︷︸︸︷
0 0

...

w2︷︸︸︷
0 ∗

... · · ·
...

wk︷︸︸︷
0 ∗

0 0
... 0 0

... · · ·
... 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
... 0 0

... · · ·
... 0 ∗

... 0 0
... · · ·

... 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

...
...

. . .
. . .

...
. . .

...
...

...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

... · · ·
... 0 0

...
... · · ·

... 0 0


one sees that F1 is an affine space of dimension

∑
i>j wj(di − wi). Finally, one obtains

dimZ ′w = dimZ ′1w + dimF1 =
∑
i<j

didj +

k∑
i,j=1

wj(di − wi) =
∑
i<j

didj + |w|(d− |w|),

which is independent of w for fixed |w|. The spaces Z ′2w, F1 and F2 = {W ⊂ D | α(W,D) =

w}, the fiber of p2 over a point D ∈ Z ′2w, are all smooth and connected, hence irreducible.

Furthermore, Z ′2w and F1 are closed and F2 is locally closed since F2 is equal to the closed set

{W ⊂ D | α(W,D) ≥ w} minus the finite collection of closed sets {W ⊂ D | α(W,D) ≥ a}a>w.

Thus Z ′w is irreducible and locally closed.

Remark 13. In a similar fashion as in the case of A′w,0,d, one can calculate the dimensions of

the other orbits. Let W ∈ F2 for some D and A′w,r,n 6= ∅. Then one can define a t such that

(D,W, t) ∈ A′w,r,n as follows. r and n tell me how many basis elements of Di have to be sent

to 0 and onto how many basis vectors of Dj the rest may be sent (use the same basis as in the

proof of proposition 3.14). Since A′w,r,n is not empty, these vectors can be chosen from the basis

of W . Thus p1|A′w,r,n = Z ′1w. The difference in dimension therefore can only occur in the fiber

F ′1 of p1|A′w,r,n over some point (D,W ). Consider t ∈ F ′1 in the same basis as in the proof of
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proposition 3.14:
d1︷ ︸︸ ︷ d2︷ ︸︸ ︷ · · ·

dk︷ ︸︸ ︷

t =



w1︷︸︸︷
0 0

...

w2︷︸︸︷
0 ∗

... · · ·
...

wk︷︸︸︷
0 ∗

0 0
... 0 0

... · · ·
... 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
... 0 0

... · · ·
... 0 ∗

... 0 0
... · · ·

... 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

...
...

. . .
. . .

...
. . .

...
...

...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

... · · ·
... 0 0

...
... · · ·

... 0 0


︸ ︷︷ ︸
rank 0

︸ ︷︷ ︸
rank d2−n2

· · · ︸ ︷︷ ︸
rank dk−nk

In addition, to fulfill the condition posed by r, there must by r1 linear independant columns with

zero entries outside the first d1 rows (so that im t∩D1 has dimension r1), r2 linear independant

collumns with zero entries in rows below the first d1 + d2 rows and not all entries zero in the

rows below the first d1 rows and so on. Clearly, as r increases and subsequently n decreases,

the number of possibilities and thus the dimension of A′w,r,n increases.

Proposition 3.15. Setting M = M(d,w), the crossingless matching corresponding to w, then

A′
w,rM,nM is open and dense in Z ′w.

Proof: It is obvious that A′
w,rM,nM ⊂ Z ′w, so it only remains to show that A′

w,rM,nM is dense in

Z ′w (Recall that in the Zariski-topology, a subset of an irreducible variety is dense if it is open

and not empty). As seen in the remark, the projection of A′
w,rM,nM onto Z ′1w is all of Z ′1w . Thus

it suffices to show that A′
w,rM,nM is dense in each fiber. For fixed (D,W ) ∈ Z ′1w , the intersection

F ′1 of F1 with (p1|A′w,r,n)−1(D,W ) is given by

F ′1 = {t ∈ End(D)|t(Di) ⊂ Di−1, im t ⊂W ⊂ ker t, α(im t,D) = rM, α(ker t,D) = nM}.

Choose a basis as in the proof of proposition 3.14. Since im t ⊂ W ⊂ ker t, t can be factored

through D/W and viewed as map into W . Then t is uniquely determined by the correspponding

t ∈ End(D/W,W ). Then (see proof of proposition 3.14) the matrix Ct of t is of the form

Ct =



0 A1,2 A1,3 . . . A1,k

... 0 A2,3 . . . A2,k

...
...

. . .
. . .

...
...

...
. . . 0 Ak−1,k

0 0 0 0 0
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with Ai,j a (wi)×(dj−wj)-matrix (corresponding to the ∗ in the matrix in the proof of proposition

3.14). I claim that t ∈ F ′1 if and only if each submatrix

Ci,jt =


Ai,i+1 Ai,i+2 . . . Ai,j+1

0 Ai+1,i+2 . . . Ai+1,j+1

...
. . .

. . .
...

...
. . . 0 Aj,j+1


for 1 ≤ i ≤ j ≤ k−1 has maximal rank. That is, α(im t,D)l and dl−α(ker t,D)l are maximal for

all l. Now consider a diagram M ′ of non-crossing oriented curves connecting the Vdl associated

to a t ∈ F1, i.e. the number of downward vertices among those associated to Vdl is given by wl

and the number of left and right endpoints of curves of M ′ in Vdl is given by α(im t,D)l and

dl−α(ker t,D)l respectively (So M ′ illustrates how t maps the basis vectors of Dl/Dl−1 to those

of Dm/Dm−1 in a certain especially nice basis). A priori, this need not be an oriented lower

crossingless matching, as for example the unmatched vertices might not be arranged such that

those oriented down are to the right of those oriented up. However, requiring the rank of Ci,jt to

be maximal is equivalent to M ′ having the maximal number of curves connecting Vdi , Vdi+1
, . . .

and Vdj+1
. Comparing this to the definition of M(d, w) in definition 2.7, one sees that Ci,jt

having maximal rank is equivalent to M ′ = M and thus to rM = rM
′

and nM = nM′ , therefore

to t ∈ F ′1. This prooves the claim. This argument shows once more, that F ′1 6= ∅, since one can

define t ∈ F ′1 by (Ct)(i,j) = 1 if i < j and M has a curve connecting the ith and jth vertices, and

(Ct)(i,j) = 0 otherwise. To be more precise, as seen above, any t ∈ F ′1 has a matrix of this form

for a basis chosen accordingly.

Now one still has to see that the set F ′1 is open and dense. Being non-empty, it is clear that F ′1

is dense if it is open.

I claim that Nm,n = {A ∈ Mm,n|A has maximal rank} ⊂ Mm,n = m × n −matrices is open in

Mm,n. To see this, let r = min(m,n).

Then Nm,n = {A ∈ Mm,n| at least one r × r submatrix of A has rank r}, which is a union of

open subsets of Mm,n since a r×r matrix has rank r if and only if it has a nonzero determinant,

thus open. SinceNm,n is open, it is given by the non-vanishing of a finite collection of polynomials

in the matrix elements of Mm,n (since I am working over the Zariski-topology). Applying this to

the Ci,jt , requiring Ci,jt has maximal rank is equivalent to the non-vanishing of a finite number

of polynomials in the matrix elements of Ci,jt , and thus of Ct. Therefore F ′1 is the intersection

of a finite number of open subsets of F1, and hence open.

3.8 Examples for the M(d,w) and Corresponding Aw,rM,nM

In this section I describe explicitly the spaces Aw,r,n assigned to crossingless matchings in some

small examples.

Example 14. M(d,w) and the corresponding Aw,rM,nM for d = 3, 4:

Recalling the inclusion Vd1⊗· · ·⊗Vdk → V
⊗
∑k
i=1 di

1 , one can reduce the case where d′ 6= (1, . . . , 1)
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to the case d = (1, . . . , 1), where |d′| = number of 1s in (1, . . . , 1) = |d|, by “merging” the boxes

in the diagram according to d′ ( so that each box contains the correct number of vertices) and

regarding only those lower oriented crossingless matchings which do not have a lower curves

among vertices of a single box. For fixed d, all lower oriented crossingless matchings can be

parametrised by the w, yielding the M(d,w).

d = 3

w (0, 0, 0) (0, 0, 1) (0, 1, 1) (1, 1, 1)

M((1, 1, 1),w)

Aw,rM,nM Aw,(0,0,0)(1,1,1) Aw,(0,0,0)(1,1,1) Aw,(0,0,0)(1,1,1) Aw,(0,0,0)(1,1,1)

element of orbit (D, 0, 0) (D, < e3 >, 0) (D, < e2, e3 >, 0) (D, D, 0)

w (0, 1, 0) (1, 1, 0)

M((1, 1, 1),w)

Aw,rM,nM Aw,(0,1,0)(1,1,0) Aw,(0,1,0)(1,1,0)

element of orbit (D, < e2 >,
(

0 0 0
0 0 1
0 0 0

)
) (D, < e1, e2 >,

(
0 0 0
0 0 1
0 0 0

)
)

w (1, 0, 0) (1, 0, 1)

M((1, 1, 1),w)

Aw,rM,nM Aw,(1,0,0)(1,0,1) Aw,(1,0,0)(1,0,1)

element of orbit (D, < e1 >,
(

0 1 0
0 0 0
0 0 0

)
) (D, < e1, e3 >,

(
0 1 0
0 0 0
0 0 0

)
)

(D = (0 ⊂< e1 >⊂< e1, e2 >⊂< e1, e2, e3 >= D), < ei > the standard basis vectors of D).

Now, for d = (3), only the first four M(d,w) are admitted, for d = (2, 1), the first six, for

d = (1, 2) the first four and the last two, and all for d = (1, 1, 1).

d = 4

w (0, 0, 0, 0) (0, 0, 0, 1) (0, 0, 1, 1) (0, 1, 1, 1)

M((1, 1, 1, 1),w)

Aw,rM,nM Aw,(0,0,0,0)(1,1,1,1) Aw,(0,0,0,0)(1,1,1,1) Aw,(0,0,0,0)(1,1,1,1) Aw,(0,0,0,0)(1,1,1,1)

element of orbit (D, 0, 0) (D, < e4 >, 0) (D, < e3, e4 >, 0) (D, < e2, e3, e4 >, 0)

w (1, 1, 1, 1)

M((1, 1, 1, 1),w)

Aw,rM,nM Aw,(0,0,0,0)(1,1,1,1)

element of orbit (D, D, 0)
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w (0, 0, 1, 0) (0, 1, 1, 0) (1, 1, 1, 0)

M((1, 1, 1, 1),w)

Aw,rM,nM Aw,(0,0,1,0)(1,1,1,0) Aw,(0,0,1,0)(1,1,1,0) Aw,(0,0,1,0)(1,1,1,0)

W in element < e3 > < e2, e3 > < e1, e2, e3 >

(D,W, t) of set

with t =

(
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

)

w (0, 1, 0, 0) (0, 1, 0, 1) (1, 1, 0, 1)

M((1, 1, 1, 1),w)

Aw,rM,nM Aw,(0,1,0,0)(1,1,0,1) Aw,(0,1,0,0)(1,1,0,1) Aw,(0,1,0,0)(1,1,0,1)

W in element < e3 > < e2, e3 > < e1, e2, e3 >

(D,W, t) of set

with t =

(
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

)

w (1, 0, 0, 0) (1, 0, 0, 1) (1, 0, 1, 1)

M((1, 1, 1, 1),w)

Aw,rM,nM Aw,(1,0,0,0)(1,0,1,1) Aw,(1,0,0,0)(1,0,1,1) Aw,(1,0,0,0)(1,0,1,1)

W in element < e3 > < e2, e3 > < e1, e2, e3 >

(D,W, t) of set

with t =

(
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

)

w (1, 1, 0, 0)

M((1, 1, 1, 1),w)

Aw,rM,nM Aw,(1,1,0,0)(1,1,0,0)

W in element < e1, e2 >

(D,W, t) of set

with t =

(
0 0 0 1
0 0 1 0
0 0 0 0
0 0 0 0

)

w (1, 0, 1, 0)

M((1, 1, 1, 1),w)

Aw,rM,nM Aw,(1,0,1,0)(1,0,1,0)

W in element < e1, e3 >

(D,W, t) of set

with t =

(
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

)
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3.9 A more Detailed Description of the Irreducible Components

Proposition 3.16. A′
a,rS,nS ⊂ Z ′w for all S ≤M, a ≥ w, |a| = |w|.

Proof: It is sufficient to show A′
a,rS,nS ⊂ Z ′w. Since the connected components of T(d)′ are given

by fixing the dimension of W , i.e. by ⋃
w′,

|w′|=|w|

A′w′,r,n,

|a| = |w| is clear as well. First consider A′a,0,d. I want to show that

A′a,0,d ⊂ A′w,0,d if and only if |a| = |w| and a ≥ w.

Since Z ′1w = A′w,0,d, it follows that p1(A
′
a,rS,nS) ⊂ Z ′1w if and only if |a| = |w| and a ≥ w, so

A′
a,rS,nS ⊂ Z ′w only if |a| = |w| and a ≥ w.

One has A′a,0,d ⊂ Fl(d) × G(|a|, d), which is projective (see remark 4). Let I(X) denote the

ideal of homogenous polynomials vanishing on X, then I(A′a,0,d) ⊃ I(A′w,0,d) for a ≥ w (Since

for fixed D, consider (D,W, 0) ∈ A′a,0,d and let (ul)l =
⋃k
i=1(u

i
l)l denote a basis compatible with

D and W as in the proof of proposition 3.14, where
⋃j
i=1(u

i
l)l denotes the basis of Dj . Then

one can define a (D,W ′, 0) ∈ A′w,0,d: for each i such that ai ≥ wi, ai = wi + l, choose j1, . . . , jl

with ajk ≤ wjk such that (uil + λujkm)i,l for some λ’s forms a basis of a W ′ as required. Then

a polynomial vanishing on (D,W ′, 0) for all λ, already has to vanish on (D,W, 0) . Hence the

inclusion follows.).

Let V (I) denote the vanishing set of an ideal, then V (I(A′a,0,d)) ⊂ V (I(A′w,0,d)) = A′w,0,d.

Next, consider the fiber of the projection p1 over a point (D,W ) given by

{(D,W, t) ∈ A′a,rS,nS | p1(D,W, t) = (D,W )}.

So the first two entries are fixed and the fiber can be identified with

{t|(D,W, t) ∈ T(d), α(ker t,D) = nS , α(im t,D) = rS}.

This is in the closure of

{t|(D,W ′, t) ∈ T(d), α(ker t,D) = nM , α(im t,D) = rM}

( since S ≤ M , one has rSi ≤ rMi , n
S
i ≥ nMi , and therefore A′

w,rS,nS ∈ Z ′w, so for each t with

(D,W, t) ∈ A′
a,rS,nS , there is W ′ with (D,W ′, t) ∈ A′

w,rS,nS . But then

(D,W ′, t) ∈ {(D,W ′, t) ∈ T(d) | α(ker t,D) = nM , α(im t,D) = rM , p1(D,W ′, t) = (D,W ′)},

which can be identified with the closure of

{t|(D,W ′, t) ∈ T(d), α(ker t,D) = nM , α(im t,D) = rM}.

So all t lie in the closure of

{t|(D,W ′, t) ∈ T(d), α(ker t,D) = nM , α(im t,D) = rM , α(W ′,D) = w}.)
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Now,

{t|(D,W ′, t) ∈ T(d), α(ker t,D) = nM , α(im t,D) = rM , α(W ′,D) = w} ∈ Z ′w

by proposition 3.15, thus

{t|(D,W ′, t) ∈ T(d), α(ker t,D) = nM , α(im t,D) = rM , α(W ′,D) = w} ∈ Z ′w.

So it is proven that A′
a,rS,nS ⊂ Z ′w.

Given an algebraic group G acting on an algebraic variety X, the closure of an orbit O of G is

of course again G-invariant, hence a union of G-orbits. In fact, see [10, 8.3], O − O is a union

of orbits of strictly smaller dimension than O . This applies in particular to the situation here,

and I am interested in describing the induced partial ordering on orbits given by O ′ < O if O ′

is contained in the closure of O in more detail.

Remark 14. In a similar manner as in the proof, one can describe more generally some of the

A′a,r′,n′ lying in the closure of A′w,r,n. For one thing, |a| = |w| and a ≥ w needs to be satisfied.

It remains to consider the fiber. To each orbit I can associate a “generalised” lower oriented

(crossingless) matching by arranging the vertices and up and down arrows as usual and drawing

caps from the dith to the djth vertices for each basis vector of Di/Di−1 mapped to Dj/Dj−1

by some t belonging to an element of this orbit (these matchings are no longer necessarily

crossingless, e.g. corresponding to

t =


0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0



with standard basis and standard flag or corresponding to

t =


0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0



but I can let them have as few crossings as possible, e.g. rather than ).

Proposition 3.17. A′a,r′,n′ ⊂ A′w,r,n if all the diagramms corresponding to the orbits of A′a,r′,n′

are < some diagramm corresponding to an orbit of A′w,r,n, i.e. if r′i ≤ ri, n
′
i ≥ ni ∀ i, and

|a| = |w|, a ≥ w.

In particular, the < ordering on diagrams is a refinement of the partial ordering on orbits, i.e. all

the diagramms corresponding to the orbits of A′a,r′,n′ are < some diagramm corresponding to an

34



orbit of A′w,r,n ⇒ A′a,r′,n′ < A′w,r,n. Proof: One has that if r′i ≤ ri, n′i ≥ ni, then A′w,r′,n′ ∈ Z ′w,

so for each t′ with (D,W, t′) ∈ A′a,r′,n′ , there is Wt′ with (D,Wt′ , t
′) ∈ A′w,r′,n′ . But then

(D,Wt′ , t
′) ∈ {(D,Wt′ , t′) ∈ T(d) | α(ker t,D) = n, α(im t,D) = r, p1(D,Wt′ , t′) = (D,Wt′)},

which can be identified with the closure of

{t|(D,Wt′ , t) ∈ T(d), α(ker t,D) = n, α(im t,D) = r}.

So all t′ lie in the closure of

{t|(D,W ′, t) ∈ T(d), α(ker t,D) = n, α(im t,D) = r, α(W ′,D) = w}.

Then again,

{t|(D,W ′, t) ∈ T(d), α(ker t,D) = n, α(im t,D) = r, α(W ′,D) = w} ∈ Z ′w,

thus

{t|(D,W ′, t) ∈ T(d), α(ker t,D) = n, α(im t,D) = r, α(W ′,D) = w} ∈ Z ′w.

Define the irreducible components of T(d) to be the k-points of Z ′w and denote them by Zw.

Moreover, defining the dense points of Zw to be the k-points of the dense subset A′
w,rM,nM of

Z ′w, these dense points are exactly the elements of Aw,rM,nM .

Example 15. Consider the irreducible components:

The following tables illustrate the decomposition of the Zw into the Aw,r,n and the Aw′,r′,n′

contained in Zw − Zw, which the propositions above yield. d = (1, 1, 1), and the Aw,rM,nM are

colored blue and underlined.

w Zw the part of Zw the propositions yield

(0, 0, 0) A0,0,d Zw

(0, 0, 1) A(0,0,1),0,d Zw ∪A(0,1,0),0,d ∪A(1,0,0),0,d

(0, 1, 0) A(0,1,0),0,d ∪A(0,1,0),(0,1,0),(1,1,0) Zw ∪A(1,0,0),0,d

(1, 0, 0) A(1,0,0),0,d ∪A(1,0,0),(1,0,0),(1,1,0) Zw

∪A(1,0,0),(1,0,0),(1,0,1)

(0, 1, 1) A(0,1,1),0,d Zw ∪A(1,0,1),0,d ∪A(1,1,0),0,d

(1, 0, 1) A(1,0,1),0,d ∪A(1,0,1),(1,0,1),(1,0,1) Zw ∪A(1,1,0),0,d

(1, 1, 0) A(1,1,0),0,d ∪A(1,1,0),(1,0,0),(1,1,0) Zw

∪A(1,1,0),(0,1,0),(1,1,0)

(1, 1, 1) A(1,1,1),0,d Zw
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d = (1, 1, 1, 1), and again, the Aw,rM,nM are colored blue and underlined.

w Zw the part of Zw the propositions yield

(0, 0, 0, 0) Aw,0,d Zw

(0, 0, 0, 1) Aw,0,d Zw ∪A(0,0,1,0),0,d

∪A(0,1,0,0),0,d ∪A(1,0,0,0),0,d

(0, 0, 1, 0) Aw,0,d ∪Aw,(0,0,1,0),(1,1,1,0) Zw ∪A(0,1,0,0),0,d

∪A(1,0,0,0),0,d

(0, 1, 0, 0) Aw,0,d ∪Aw,(0,1,0,0),(1,1,1,0) Zw ∪A(1,0,0,0),0,d

∪Aw,(0,1,0,0),(1,1,0,1)

(1, 0, 0, 0) Aw,0,d ∪Aw,(1,0,0,0),(1,1,1,0) Zw

∪Aw,(1,0,0,0),(1,1,0,1) ∪Aw,(1,0,0,0),(1,0,1,1)

(0, 0, 1, 1) Aw,0,d Zw ∪A(0,1,0,1),0,d

∪A(0,1,1,0),0,d ∪A(1,0,0,1),0,d

∪A(1,0,1,0),0,d ∪A(1,1,0,0),0,d

(0, 1, 0, 1) Aw,0,d ∪Aw,(0,1,0,0),(1,1,0,1) Zw ∪A(0,1,1,0),0,d

∪A(1,0,0,1),0,d ∪A(1,0,1,0),0,d

∪A(1,1,0,0),0,d ∪A(1,1,0,0),(0,1,0,0),(1,1,0,1)

(0, 1, 1, 0) Aw,0,d ∪Aw,(0,1,0,0),(1,1,1,0) Zw ∪A(1,0,1,0),0,d

∪Aw,(0,0,1,0),(1,1,1,0) ∪A(1,1,0,0),0,d ∪A(1,1,0,0),(0,1,0,0),(1,1,1,0)

(1, 0, 0, 1) Aw,0,d ∪Aw,(1,0,0,0),(1,1,0,1) Zw ∪A(1,0,1,0),0,d

∪Aw,(1,0,0,0),(1,0,1,1) ∪A(1,1,0,0),0,d ∪A(1,0,1,0),(1,0,0,0),(1,0,1,1)

∪A(1,1,0,0),(1,0,0,0),(1,1,0,1)

(1, 0, 1, 0) Aw,0,d ∪Aw,(0,0,1,0),(1,1,1,0) Zw ∪A(1,1,0,0),0,d

∪Aw,(1,0,0,0),(1,1,1,0) ∪Aw,(1,0,0,0),(1,0,1,1) ∪A(1,1,0,0),(1,0,0,0),(1,1,1,0)

∪Aw,(1,0,1,0),(1,0,1,0)

(1, 1, 0, 0) Aw,0,d ∪Aw,(0,1,0,0),(1,1,1,0) Zw

∪Aw,(1,0,0,0),(1,1,1,0) ∪Aw,(0,1,0,0),(1,1,0,1)

∪Aw,(1,0,0,0),(1,1,0,1) ∪Aw,(1,1,0,0),(1,1,0,0)
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(0, 1, 1, 1) Aw,0,d Zw ∪A(1,0,1,1),0,d

∪A(1,1,0,1),0,d ∪A(1,1,1,0),0,d

(1, 0, 1, 1) Aw,0,d ∪Aw,(1,0,0,0),(1,0,1,1) Zw ∪A(1,1,0,1),0,d

∪A(1,1,1,0),0,d

(1, 1, 0, 1) Aw,0,d ∪Aw,(1,0,0,0),(1,1,0,1) Zw ∪A(1,1,1,0),0,d

∪Aw,(0,1,0,0),(1,1,0,1)

(1, 1, 1, 0) Aw,0,d ∪Aw,(1,0,0,0),(1,1,1,0) Zw

∪Aw,(0,1,0,0),(1,1,1,0) ∪Aw,(0,0,1,0),(1,1,1,0)

Remark 15. Compare the part of Zw provided by the propositions to the hdw. For the case d = 3,

one can see from example 13 that the Aw′,0,d added to Z(w) to obtain this part of the closure

correspond precisly to the fw′,0,d added to fw,0,d to obtain hdw.

3.10 A Geometric Interpretation of the Canonical Basis Elements

In the following one wants to define a basis of Tc(d) related to the irreducible components of

T(d) and the the canonical basis, thus obtaining a geometric interpretation of the canonical

basis.

Definition 3.18. Define gdw = (hdw)e.

Proposition 3.19. gdw can be written as

gdw =
∑

S≤M(d,w)

(ηrS,nS)−1(♦nS−rSvw−rS)

(recall definitions 3.9, 3.12).

Proof: gdw = (hdw)e =
∑

S(ηrS,nS)−1(γrS,nS(η0,d(hdw))) =
∑

S(ηrS,nS)−1(γrS,nS(♦dvw)). I claim

that

γrS,nS(♦d
w) =

{
♦nS−rSvw−rS if S ≤M(d,w)

0 otherwise
.

From the graphical calculus in [6], it follows that if S ≤M(d,w), then

(γ̃rS,nS)†((♥nS−rSvw−r
S
)r) = (♥dvw)r

and other dual canonical basis elements (♥nS−rSva)r, a 6= w − rS are sent to elements of the

form (♥dva
′
)r, a′ 6= w. This yields

〈γrS,nS(♦dvw), (♥nS−rSvw−r
S
)r〉 = 〈♦dvw, (γ̃rS,nS)†((♥nS−rSvw−r

S
)r)〉 = 〈♦dvw, (♥dvw)r〉 = 1

and

〈γrS,nS(♦dvw), (♥nS−rSva)r〉 = 0 for all a 6= w − rS.
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Therefore

γrS,nS(♦dvw) = ♦nS−rSvw−rS .

Similarly, one can see that

γrS,nS(♦dvw) = 0 if S �M(d,w)

as in this case the image of (γ̃rS,nS)† is spanned by ♥dva with a 6= w.

Let me illustrate the graphical calculus used above in an example:

Let d = (3, 2, 4),w = (2, 1, 1), so

M(d,w) = d2 d3d1 .

Then

♥dvw =

d2 d3d1

.

Let

S = d2 d3d1 ,

then

γ̃rS,nS = d2 d3

nS3 − rS3

d1

nS1 − rS1

.

Therefore,

γ̃rS,nS(♥dvw) =

d2 d3

nS3 − rS3

d1

nS1 − rS1

= ♥nS−rSvw−r
S
.

So (γ̃rS,nS)†((♥nS−rSvw−r
S
)r) = (♥dvw)r and similarly, the other claims on the graphical cal-

culus follow.

Proposition 3.20. Writing ♦dvw as a linear combination of elementary basis elements, it

equals ⊗dvw plus a linear combination of elements ⊗dva with a > w and |a| = |w| with coeffi-

cients in q−1N[q−1].

Proof: This follows from [6, section 1.5,1.6].

Example 16. Using Proposition 3.19 and example 14, I can compute the gdw for d = 3, 4.

d = 3: For w in the first row in the table of example 14, only the S in the first row are

S ≤M(d,w), so

gdw = 4η−10,d(♦dvw).
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If w lies in the second row in example 14, all S from the first two rows are S ≤ M(d,w).

Therefore

gdw = 4η−10,d(♦dvw) + 2η−1(0,1,0),(1,1,0)(♦
(1,0,0)vw−(0,1,0)).

Similarly, if w lies in the third row, S ≤M(d,w) for all S from the first and third row, and

gdw = 4η−10,d(♦dvw) + 2η−1(1,0,0),(1,0,1)(♦
(0,0,1)vw−(1,0,0)).

Again as in example 14, if d 6= (1, 1, 1), only those w and M(d,w), that are admitted, are used

(so, e.g. for d = (2, 1), the gdw from the third row are left aside). Using the expansion of the

canonical basis in the standard basis calculated in example 13 (since hdw = η−10,d(♦dvw) and the

canonical basis of e.g. V1 ⊗ V0 ⊗ V0 is simply the standard basis), one thus obtains for gdw (with

d = (1, 1, 1)):

gd(0,0,0) = 4f(0,0,0),0,d

gd(0,0,1) = 4(f(0,0,1),0,d + q−1f(0,1,0),0,d + q−2f(1,0,0),0,d)

gd(0,1,1) = 4(f(0,1,1),0,d + q−1f(1,0,1),0,d + q−2f(1,1,0),0,d)

gd(1,1,1) = 4f(1,1,1),0,d

gd(0,1,0) = 4(f(0,1,0),0,d + q−1f(1,0,0),0,d) + 2f(0,1,0),(0,1,0),(1,1,0)

gd(1,1,0) = 4f(1,1,0),0,d + 2f(1,1,0),(0,1,0),(1,1,0)

gd(1,0,0) = 4f(1,0,0),0,d + 2f(1,0,0),(1,0,0),(1,0,1)

gd(1,0,1) = 4(f(1,0,1),0,d + q−1f(1,1,0),0,d) + 2f(1,0,1),(1,0,0),(1,0,1)

d = 4: Similarly as in the case d = 3, one obtains that if w lies in the first row of the d = 4-part

of example 14, then

gdw = 5η−10,d(♦dvw),

if w lies in the second, third or fourth row, then

gdw = 5η−10,d(♦dvw) + 3η−1
rM,nM(♦nM−rMvw−rM)

(where M is from the second, third, or fourth row, respectivly). For w in the fifth row, one

obtains

gdw = 5η−10,d(♦dvw) + 3η−1(0,1,0,0),(1,1,0,1)(♦
(1,0,0,1)vw−(0,1,0,0)) + η−1(1,1,0,0),(1,1,0,0)(♦

(0)v(0))

and for w in the sixth row,

gdw = 5η−10,d(♦dvw) + 3η−1(0,0,1,0),(1,1,1,0)(♦
(1,1,0,0)vw−(0,0,1,0))

+ 3η−1(1,0,0,0),(1,0,1,1)(♦
(0,0,1,1)vw−(1,0,0,0)) + η−1(1,0,1,0),(1,0,1,0)(♦

(0)v(0))

(if one labels the rows by i), ii), . . . , vi), then

i) ≤ ii) ≤ vi)
i) ≤ iv) ≤ vi)
i) ≤ iii) ≤ v)

for the crossingless matchings, which gives, together with the number of w in each row, the η

and their coefficients)
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Theorem 3.21. gdw is, up to a multiplicativ constant, the unique element of Tc(d) satisfying

1. gdw is equal to a non-zero constant on the set Aw,rM,nM of dense points of the irreducible

component Zw.

2. The support of gdw lies in Zw.

Moreover, the gdw form a basis of Tc(d) and

♦dvw 7→ gdw,

extended by linearity, is a Uq(sl2)-module isomorphism Vd1 ⊗ · · · ⊗ Vdk → Tc(d).

Proof: Since

Vd1 ⊗ · · · ⊗ Vdk
η0,d← T0(d)

e→ Tc(d), ♦dvw 7→ hdw 7→ gdw

are Uq-module isomorphisms, it is clear that the gdw form a basis and that the map given in the

theorem is an Uq-module isomorphism.

It remains to prove the first part of the theorem. Surpressing the isomorphism ηr,n in order to

simplify notation, I may identify fw,r,n with ⊗dvw. To show uniqueness, consider a ĝdw satisfying

the conditions of the theorem and let ĥdw ∈ T0(d) be such that

ĝdw = (ĥdw)e =
∑
r,n

γr,n(ĥdw).

Then

ĝdw =
∑

aw,r,nfw,r,n.

Therefore, the value of ĝdw on Aw,rM,nM is given by aw,rM,nMkw,rM,nM . One has

aw,rM,nM = 〈γrM,nM(ĥdw), (⊗nM−rMvw−r
M

)r〉

(where r stands for reversed, i.e. (⊗dvw)r = vdk−2wk ⊗ · · · ⊗ vd1−2w1 ) since

fw,rM,nM=̂⊗nM−rM vw

(In more detail: ĝdw = (ĥdw)e =
∑

r,n γr,n(ĥdw), so the coefficient of

VnM1 −rM1
⊗ · · · ⊗ VnMk −rMk 3 ⊗

nM−rMvw−rM = ηrM,nM(fw,rM,nM)

is given by inserting γrM,nM(ĥdw) into the scalar product ( where γr,n : Vd1 ⊗ · · · ⊗ Vdk →
Vn1−r1 ⊗ · · · ⊗ Vnk−rk)).

kw,rM,nM being nonzero, the first condition in the theorem is equivalent to

〈γrM,nM(ĥdw), (⊗nM−rMvw−r
M

)r〉 6= 0

which is equivalent to

〈ĥdw, (γ̃rM,nM)†((⊗nM−rMvw−r
M

)r)〉 6= 0.

Since M = M(d,w), it follows that M(nM − rM,w − rM) has no curves and all down arrows

are to the right of all up arrows (it would have curves otherwise). After rotating this diagramm
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by 180°, but keeping the original orientation (such that arrows oriented up remain oriented up,

but all arrows are “below” the boxes), all down arrows are to the left of all up arrows. Then by

[6, section 2.3],

(⊗nM−rMvw−r
M

)r = (♥nM−rMvw−r
M

)r

and by the graphical calculus in [6] it follows that

(γ̃rM,nM)†((♥nM−rMvw−r
M

)r) = (♥dvw)r.

So condition 1 (stating that gdw is equal to a nonzero constant on Aw,rM,nM) is equivalent to

〈ĥdw, (♥dvw)r〉 6= 0.

To satisfy the second condition, ĝdw must be equal to zero on Aw′,rM′ ,nM′ for all w 6= w′ and

M ′ = M(d,w′). In the same way as above, one shows that this condition is equivalent to

〈ĥdw, (♥dvw
′
)r〉 = 0

for all w 6= w′. But this shows that

ĥdw = cdw · ♦dvw = cdw · hdw

for some constant cdw 6= 0. Therefore gdw is indeed unique up to a multiplicative constant. It only

remains to show that gdw fulfills the conditions. By Proposition 3.19, the value of gdw on Aw,rM,nM

is equal to kw,rM,nM times the coefficient of ⊗nM−rMvw−rM in the expression of ♦nM−rMvw−rM

as a linear combination of elementary basis elements, and by [6, section 1.5,1.6] (or proposition

3.20), this coefficient is 1. Thus gdw meets condition 1. Propositions 3.19 and 3.20 furthermore

show that gdw is equal to a linear combination of of functions of the form

fa+rS,rS,nS = (ηrS,nS)−1(⊗nS−rSva)

with S ≤ M and |a| = |w − rS|(⇒ |a + rS| = |w|), a ≥ w − rS(⇒ a + rS ≥ w). Then

Proposition 3.16 shows that the support of gdw lies in Zw. this proves the theorem.

Remark 16. Using 3.8 and Zw ⊂
⋃

w′, |w′|=|w|Aw′,r,n, it is clear that gdw lies in the weight space

corresponding to the weight d− 2|w|. Since e is a module homomorphism, the action of Uq can

also be calculated on the hdw to obtain the action on the gdw (see example 13).

Definition 3.22. There exists a scalar product on T (d) in respect to which the standard basis

is orthogonal, i.e. < fw,r,n, fw′,r′,n′ >= δ(w,r,n),(w′,r′,n′).

Remark 17. Which Orbits are contained in Zw ∩ Zw′? At the least all those whose diagram is

included in some diagram of an orbit in Zw and a diagram of an orbit in Zw′ .

In which relation do diagrams (or their cups) and the hdw stand? M(d,w) corresponds to hdw.

Can intersection of closures be calculated using scalar products of the hw (and how do these

scalar products look like?)? I do not think so.

How do dimension of orbits depend on number of cups in diagrams? If there are more cups,
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more diagramms can be included in the corresponding diagram. As seen in remark 14, inclusions

of closures of orbits correspond to inclusions of diagrams.

The number of different types of diagrams (ordered by their number of cups) of V ⊗d1 corres-

ponds to the number of different irreducible submodules occuring in the decomposition into

irreducible submodules, e.g. V1 ⊗ V1 = V0 ⊕ V2 and there are the diagramms without cups

and one diagram with one cup, similar V1 ⊗ V1 ⊗ V1 = V1 ⊕ V1 ⊕ V3 and again there are the

diagramms without cups as well as the diagrams with one cup. For V ⊗41 = V 2
0 ⊕ V 3

2 ⊕ V4,

there are the diagrams with no cups, with one cup, and with two cups. To see this, con-

sider the canonical basis. The d + 1 canonical basis elements corresponding to the diagrams

without cups form the irreducible submodule of largest dimension (i.e Vd) and linear com-

binations with the other canonical basis vectors form the irreducible components of smaller

dimension (e.g. for d = 3, < ♦dv(0,1,0) −
[2]
[3]♦

dv(0,0,1),♦dv(1,1,0) − 1
[3]♦

dv(0,1,1) >∼= V1 and

< ♦dv(1,0,0) − 1
[3]♦

dv(0,0,1),♦dv(1,0,1) −
[2]
[3]♦

dv(0,1,1) >∼= V1). The graphical way to describe the

decomposition into irreducible modules was used in [7, p.43] in the context of categorification

of tensor products of irreducble sl2-modules.

4 Another Construction for a Uq-Module

I want to introduce a more naive construction of a Uq-module ∼= Vd1 ⊗ · · · ⊗ Vdk using functions

on finite sets.

Definition 4.1. Let W = Sd be the symmetric group and Sd1 × · · · × Sdk = Sd ⊆ W the

(Young) subgroup generated by {s1, · · · , sd1−1, sd1+1 · · · , sd1+d2−1, · · · } (where Sd is generated

by the d− 1 generators {s1, · · · , sd−1}). E.g. < s1, s2 > × < s4 > × < s6 >∼= S3 × S2 × S2.
Now let

Bi = { complex valued functions on Sd/(Si × Sd−i)}

and

Bi,i+1 = { complex valued functions on Sd/(Si × S1 × Sd−i−1)}.

Then a basis of Bi (resp. Bi,i+1) is given by the set of indicator functions on Sd�(Si × Sd− i)
(resp. Sd�(Si × S1 × Sd−i−1)). All these sets of functions are algebras (isomorphic to copies of

C).

There are natural surjections

Wi,i+1 := W/(Si × S1 × Sdi−1)
πi+1 // //

πi

++ ++

W/(Si+1 × Sd−i−1) =: Wi+1

W/(Si × Sd−i) =: Wi

For g ∈ Bj , j ∈ {i, i + 1} and f ∈ Bi,i+1, define g.f(x) := g(πj(x)); this turns Bi,i+1 into a

Bj-module. All rings being commutative, Bi,i+1 thus turns into a Bi − Bi+1-bimodule as well

as a Bi+1 −Bi-bimodule.

Lemma 4.2. Bi,i+1 is a free Bi-module of rank |(W/Wi)/(W/Wi,i+1)| = |Wi,i+1/Wi|.
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Proof: As a Bi-module, Bi,i+1 =
⊕l

i=1 fwiB
i for a complete transversal (w1, · · · , wl) of Wi in

Wi,i+1 and fw the indicator function of w (since gw.f =
∑l

i=1 fwiw).

4.1 A Construction for a U-Module

Now let Cfunc =
⊕d

i=0B
i −mod and set E :=

⊕d
i=0Ei and F :=

⊕d
i=0 Fi, where

Ei : Bi −mod→ Bi+1 −mod, M 7→ Bi,i+1 ⊗Bi M

for all i < d and zero otherwise, and

Fi : Bi −mod→ Bi−1 −mod, M 7→ Bi−1,i ⊗Bi M

for i > 0 and zero otherwise.

Theorem 4.3. K0(Cfunc) ∼= V ⊗d1 as U(sl2)-module, where K0 = (free abelian group of iso-

morphism classes [M ] of objects) modulo [B] = [A] + [C] if A ↪→ B � C is a short exact

sequence, so in this case it is enough to say if B = A⊕ C.

A proof will follow later.

Remark 18. K0(Cfunc) is a Grothendieck group. Actually, I consider the group algebra of

K0(Cfunc) over C.

Claim: this generalises to Vd1 ⊗ · · · ⊗ Vdk by taking functions on
⋃d
i=0(Sd�Wi).

Definition 4.4. Set

Bi ′ = {C-valued functions on Sd�Sd�(Si × Sd−i)},

similar Bi,i+1′. Then Bi′ ↪→ Bi, as

Bi′=̂{C-valued functions on Sd�(Si × Sd−i) that are constant on left Sd-cosets}.

A basis of Bi is given by {fw}w∈Wi , where fw is the indicator function of the coset w, i.e. fw(x) =

δw,x. ThenBi′ has a basis corresponding to {
∑

a∈Sdw
fa}w∈{system of representatives of cosets of Sd in Wi}.

I get

Wi,i+1
π // Sd�Wi,i+1

π′i+1 //

π′i

''

Sd�Wi+1

Sd�Wi

and as before, I can make Bi,i+1 and Bi,i+1′ into a Bi′-module. Setting C ′func =
⊗d

i=0B
i′−mod,

I can define the action of E and F as before. Any Bi-module is also a Bi′-module with the

restricted action. Vice versa, for a Bi′-module M , I can let fw ∈ Bi act as 1
|Sdw|

∑
a∈Sdw

fa. So

Bi −mod �←↩ Bi′ −mod.

Using Bi,i+1 for the action of E,F , the correspondance between Bi-mod and Bi′-mod commutes

with the action of E,F , thus yielding

Cfunc
�←↩ C ′func
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and

K0(Cfunc)
�←↩ K0(C

′
func).

On the other hand,

Definition 4.5. For a = (a1, · · · , an) ∈ {0, 1}n, let va = va1 ⊗ · · · ⊗ van ∈ V ⊗n1 be the corres-

ponding basis vector.

Then define

πn : V ⊗n1 → Vn

by

πn(va) = v|a|.

This gives the projection πd1 ⊗ · · · ⊗ πdk : V
(d1+···+dk)
1 → Vd1 ⊗ · · · ⊗ Vdk .

Furthermore define

ιn : Vn → V ⊗n1

by

ιn(vk) =
∑
|a|=k

va.

Thus one obtaines the inclusion ιd1 ⊗ · · · ⊗ ιdk : Vd1 ⊗ · · · ⊗ Vdk → V
(d1+···+dk)
1 .

The composition ιn ◦ πn = pn is the Jones-Wenzl projector.

This yields

K0(C
′
func)

�
↪→ K0(Cfunc)

?∼=
φ∼=

Vd1 ⊗ · · · ⊗ Vdk
�
↪→ V ⊗d1

. (2)

So how is the isomorphism φ on the right defined? Can it be restricted to an isomorphism on

the left?

To answer these questions, I first need to define bases of K0(Cfunc) and V ⊗d1 .

A basis of K0(Cfunc) is given by the isomorphism classes of simple modules. Since Cfunc =⊕d
i=1B

i−mod, these are simple modules over the Bi. Addition and multiplication being defined

pointwise in Bi, I have fwfw′ = δw,w′fw and
∑

w fw is the identity element of the multiplication,

and thus for some simple Bi-module V and v ∈ V ,

fnw.(v) = fw.(v), fw(fw′ .v) = δw,w′fw.v and v =
∑
w

fw.v.

So, V being simple, V =< {v, fwv | w ∈Wi} >C.

Therefore dimV ≤ |Wi|. However, fw.v would span a 1−dimensional subspace of V , so V must

have been 1-dimensional from the beginning. Two 1-dimensional irreducible modules are not

isomorphic in general as Bi-modules, e.g. take V = {Cv | fw.v 6= 0}, V ′ = {Cv′ | fw′ .v′ 6=
0}, w 6= w′. Then fw.V 6= 0 = fw.V

′. So the isomorphism classes of simple modules are given as

the 1-dim. modules where one of the fw acts nontrivialy, and they can thus be parametrised by
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the fw. So write V i
w for the simple module corresponding to fw ∈ Bi (a 1-dimensional module

where two different fw, fw′ act nontriavially cannot occur, as then fw.v = λv, fw′ .v = µv, but

fwfw′ = 0).

Similarly, a basis of K0(C
′
func) is given by the isomorphism classes of simple Bi′-modules. Then,

for some v ∈ V and w ∈ Wi, V
i
Sdw

= {Cv | {(
∑

a∈Sdw
fa).v 6= 0}. Then V i

a is mapped to this

V i
Sdw

under the correspondance explained above (4.5), for all a ∈ Sdw, and V i
Sdw

is mapped to

⊕a∈SdwV
i
a . It remains to find a nice basis for V ⊗d1 .

Remark 19. [4] Recall the Schur-Weyl duality between GLn and Sd: Let V be a n-dimensional

vector space, then GLn acts on V ⊗d by g.(v1⊗· · ·⊗ vd) = g.v1⊗· · ·⊗ g.vd and Sd by permuting

the entries. Schur observed that the centralizer algebra of each of the two actions equals the

image of the other action in End(V ⊗d) in characteristic zero. Schur and Weyl used this to

obtain information about representations of GLn from information about representations of Sd.

A similar correspondance has been found between sln and Sd and both actions commute.

Sd acts on V ⊗d1 by permuting the entries, i.e

vi1 ⊗ · · · ⊗ vid .π = viπ(1) ⊗ · · · ⊗ viπ(d) ,

and thus V ⊗d1 can be decomposed into

V ⊗d1 =
d⊕
j=0

<
⋃

∑d
l=1 il=j

vi1 ⊗ · · · ⊗ vid >C=
d⊕
j=0

(V ⊗d1 )2j−d

(il ∈ {0, 1}, (v0, v1) is a basis of V1 and (V ⊗d1 )2j−d is the weight space of V ⊗n1 associated to the

weight µ = 2j − d, as K acts as 1 on v1 and as −1 on v0) and

(V ⊗n1 )2j−d =<
⋃

∑d
l=1 il=j

vi1 ⊗ · · · ⊗ vid >C∼= 1 ↑SdSj×Sd−j .

Recall the definition of induced action:

Definition 4.6. Let G be group with subgroup H, and {t1, · · · , tl} a fixed transversal for the

cosets of H, i.e. G =
⋃
i tiH. Then for a representation Y of H, the induced representation

Y ↑GH is given by Y ↑GH (g) = (Y (t−1i gtj))i,j (as a matrix in the basis given by the transversal),

with Y (g) = 0 for g /∈ H.

In this particular case, 1 ↑SdSi×Sd−i is a right Sd-module with a basis given by the cosets {t1, · · · , tl}
for a fixed transversal {t1, · · · , tl} for the cosets of Sd�(Si × Sd−i). Then ti.s = tis for some

s ∈ Sd.
The induced representation 1 ↑SdSi×Sd−i is isomorphic to the representation

V (i,d−i) = C{Si × Sd−iπ1, · · · , Si × Sd−iπl},

where {π1, · · · , πl} is a transversal of Si×Sd−i in Sd, and Sd acts on the basis elements Si×Sd−iπi
by multiplication from the right ([20, Prop. 1.12.3]).
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Then I can identify

<
⋃

∑d
l=1 il=j

vi1 ⊗ · · · ⊗ vid >C

with V (j,d−j). V (i,d−i) is cyclic ([20]), so I can just choose one (0, 1)-sequence to correspond to

(1)Si × Sd−i, for example let

vi1 ⊗ · · · ⊗ vin = v1 ⊗ · · · ⊗ v1 ⊗ v0 ⊗ · · · ⊗ v0=̂(1, · · · , 1, 0 · · · , 0)

correpond to (1)Si × Sd−i. Then

vi1 ⊗ · · · ⊗ vid .π = viπ(1) ⊗ · · · ⊗ viπ(d)

correponds to Si × Sd−iπ.

So as a decomposition, one gets precisely the induced trivial modules for the Young subgroups

Si × Sd−i.
This action can be generalised to the Hecke algebra:

Definition 4.7. [22] The Hecke algebraHd over Z[v, v−1] (with v generic) associated to Sd is the

associative algebra with generators {Tπ | π ∈ Sd} and relations Tπσ = TπTσ if l(π)+ l(σ) = l(πσ)

(where l is the usual length function given by a shortest representation as a product of simple

reflections (i, i + 1)) and T 2
s = v−2Te + (v−2 − 1)Ts for all simple reflections s ∈ Sd (v−2 = q

yields the version of the definition of Kazhdan and Lusztig).

Define Hs = vTs, then H2
s = 1 + (v−1 − v)Hs (where 1 = Te) and H−1s = Hs + (v − v−1), and

the Hs generate Hd as well.

Remark 20. It follws from Lusztig’s version of Tits’ deformation theorem ([16, Theorem 3.1]),

that the group algebra of Sd over Q(q
1
2 ) may be embedded in the Hecke algebra Hd(q) of Sd

(with q ∈ C) and π∈Sd may be written as linear combination of the Tv, v ∈ Sd. Since {π ∈ Sd}
forms a basis of Sd and {Tv | v ∈ Sd} a basis of Hd(q) as Q(q

1
2 )-vector space, one can invert

this and write the Tv as linear combination of the π ∈ Sd. Then the action of Sd on V ⊗d1 can be

extended to an action of the Hecke algebra. However, this isomorphism is not useful for explicit

calculations.

For some Sλ ⊂ Sd (e.g. λ = (i, d − i)), define the subalgebra H(Sλ) of Hd generated by the

Ts, s ∈ Sλ. Since H2
s = 1 + (v−1 − v)Hs ⇔ (Hs + v)(Hs − v−1) = 0, there is a surjective

Z[v, v−1]-algebra morphism H(Sλ) → Z[v, v−1], Hs 7→ v−1 for s ∈ Sλ a simple reflection. This

turns Z[v, v−1] into anH(Sλ)-bimodule where Hs acts as v−1. This can be induced to a rightHd-
module Z[v, v−1]⊗H(Sλ)Hd with basis given by {1⊗Hti} for a fixed transversal t = {t1, · · · , tl}
for the cosets of Sλ�Sd (where Hπ := vl(π)Tπ). Choose the transversal such that the ti have

minimal length. Then the action of Hd is given by

(1⊗Hπ).Hs =


1⊗Hπs πs ∈ t, πs > π

1⊗Hπs + (v−1 − v)Hπ πs ∈ t, πs < π

v−1(1⊗Hπ) πs /∈ t
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(from πs /∈ t, it follows that πs = rπ for some simple reflection r ∈ Sλ, and so πs is in the same

coset as π) [22, chapter 3]. Notice that for v = 1, one obtains the action of the group algebra on

1 ↑SdSλ again (when identifying Hs with s) and Z[v, v−1] corresponds to the trivial representation

for Sλ.

Remark 21. [4] Jimbo [12] and (independantly) Dipper and James [3] observed that there is a

q-analogue of V ⊗d and the mutually centralizing actions of GLn and Sd on V ⊗d become mutually

centralizing actions of Uq(gln) and the Iwahori-Hecke algebra Hd(q).

Example 17. Consider

V1 ⊗ V1=̂ < (0, 0), (0, 1), (1, 0), (1, 1) >=< (1, 1) > ⊕ < (1, 0), (0, 1) > ⊕ < (0, 0) >

as S2-module ((x, y)=̂vx ⊗ vy, (v0, v1) being a basis of V1). Then 1 ↑S2
S1×S1

is a right S2-module

and 2-dimensional as C-vector space with basis given by the transversal {1, s = (1, 2)} and the

operation of (1, 2) in this basis is given by (
0 1

1 0

)
,

so (1, 0).(1, 2) = 0(1, 0) + Id(0, 1) = (0, 1) and vice versa. Thus the S2-module < (1, 0), (0, 1) >

corresponds to 1 ↑S2
S1×S1

(which is a sum of sign representations for S2, namely < (0, 1)+(1, 0) >

⊕ < (0, 1)− (1, 0) >). As S2 × S0 ∼= S2 has transversal {(1)} in S2, 1 ↑S2
S2×S0

((1, 2)) = 1(1, 2) =

Id. and similar for S0 × S2, so < (0, 0) > and < (1, 1) > correspond to the induced trivial

representations of S2 × S0 and S0 × S2. The operation of Hs1 on the Hd-module induced from

the trivial representation of H(S1 × S1) in the basis {1⊗He, 1⊗H(1,2)} is given by(
0 1

1 v−1 − v

)
.

So a nice basis (the standard basis) for the induced modules is given by the Si × Sd−iπj . I have

precisly

Wi = Sd/(Si × Sd−i) = {π1, · · · , πl}

(V (i,d−i) = C{Si × Sd−iπ1, · · · , Si × Sd−iπl}, where {π1, · · · , πl} is a transversal of Si × Sd−i in

Sd) and the isomorphism φ in (2) is defined as sending Vw to Si × Sd−iw.

Proposition 4.8. The map defined thus is indeed an isomorphism.

Proof: E.V i
w = Bi,i+1⊗Bi V i

w is a Bi+1-module and can thus be decomposed into a direct sum of

simple Bi+1-modules. Then V i+1
w′ is a summand if and only if f i+1

w′ ∈ B
i+1 acts nontrivially on

E.V i
w. Since the action of Bi+1 on Bi,i+1 is defined as f i+1.g(x) = f i+1(πi+1(x)) for f i+1 ∈ Bi+1,

g ∈ Bi,i+1 and x ∈Wi,i+1, it follows that f i+1
w′ B

i,i+1⊗BiV i
w = fπ−1

i+1(w
′)⊗BiV

i
w = 1⊗Bifπi◦π−1

i+1(w
′).

I have E.V i
w

!
=
∑

τ=(i+1,j),j≥i+1 V
i+1
wτ = Φ−1(E.Si × Sd−i.w), so all the f i+1

wτ and no other f i+1
w′

should act nontrivially on E.V i
w. Therefore one wj in fπi◦π−1

i+1(wτ)
=
∑

j f
i
(wj)

should equal w

and none for w′ 6= wτ ∀τ = (i+ 1, j), j ≥ i+ 1.
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Now Wi=̂{∧,∨}-sequences of length d with i-times ∧ and d−i-times ∨ (identify e=̂∧· · ·∧∨ · · · ∨

and let Wi act by permuting elements of the sequence). Then Wi
πi+1◦π−1

i→ Wi+1, where a {∧,∨}-
sequence of length d with i-times ∧ and d−i-times ∨ is mapped to the sum of all {∧,∨}-sequences

of length d with i + 1-times ∧ and d − i − 1-times ∨ obtained from the original sequence by

converting one ∨ to a ∧. Similarly forWi+1

πi◦π−1
i+1→ Wi. Then

∑
τ=(i+1,j),j≥i+1 f

i+1
wτ = fπi+1◦π−1

i (w)

and
∑

ν=(i+1,j),j≤i+1 f
i
wν = fπi◦π−1

i+1(w)
. The desired result follows for the action of E (since

fπi◦π−1
i+1(wτ)

=
∑

ν=(i+1,j),j≤i+1 f
i
wτν =

∑
ν=(i+1,j),j<i+1 f

i
wτν + f iwτ and f iwτ = f iw, and for w′ 6=

wτ in Wi+1 with τ as before, w′ν 6= w in Wi) and the analogous result for F follows using∑
τ=(i+1,j),j≥i+1 f

i+1
wτ = fπi+1◦π−1

i (w).

Example 18. Let d = 3 and i = 1.

Then

W1 = S3/(S1 × S2)=̂{1S1 × S2, (1, 2)S1 × S2, (1, 3)S1 × S2}

= {{1, (2, 3)}, {(1, 2), (1, 2)(2, 3)}, {(1, 3), (1, 3)(2, 3) = (2, 3)(1, 2)}}

and

W2=̂{1S2 × S1, (2, 3)S2 × S1, (1, 3)S2 × S1}

= {{1, (1, 2)}, {(2, 3), (2, 3)(1, 2)}, {(1, 3), (1, 3)(1, 2) = (1, 2)(2, 3)}},

and W1,2 = S3.

Let w = (1, 2). Then fπi◦π−1
i+1(w)

= f iw + f i1 and fπi◦π−1
i+1(w(2,3))

= f iw(2,3) + f i(1,3) = f iw + f i(1,3) and

indeed E.V i
w =

∑
τ=(i+1,j),j≥i+1 V

i+1
wτ = V i+1

w + V i+1
w(2,3).

In order to restrict the isomorphism in (2) to Vd1 ⊗ · · · ⊗ Vdk and K0(C
′
func), I need to check

that the images of the projection maps on both sides correspond. Since the inclusion maps are

injective, it is enough to show that the isomorphism commutes with the composition, i.e.

φ ◦ ι ◦ π = ιd1 ⊗ · · · ⊗ ιdk ◦ πd1 ⊗ · · · ⊗ πdk ◦ φ.

Let va1 ⊗ · · · ⊗ vad=̂Si × Sd−iw, i.e a = (1, · · · , 1, 0, · · · , 0)w and va1 ⊗ · · · ⊗ vad = (v1 ⊗ · · · ⊗
v1 ⊗ v0 ⊗ · · · ⊗ v0)w. Then

πd1 ⊗ · · · ⊗ πdk(va1 ⊗ · · · ⊗ vad) =
k⊗
i=1

v|ai|

and
ιd1 ⊗ · · · ⊗ ιdk(

⊗k
i=1 v|ai|)

=
⊗k

i=1

∑
|âi|=|ai| vâi

=
∑

â=σ(a), σ∈Sd

⊗k
i=1 vâi

(Set a(i,j) = (ai, · · · , aj) and ai = a(d1+···+di−1+1,d1+···+di)), as σ ∈ Sd precisely means that

σ(a) = â in

ιd1 ⊗ · · · ⊗ ιdk(

k⊗
i=1

v|ai|) =

k⊗
i=1

∑
|âi|=|ai|

vâi .

Furthermore, π(V i
w) = V i

Sdw
with v ∈ V i

w and ι(V i
Sdw

) = ⊕σ∈SdwV
i
σ .
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Example 19. d = 3,d = (2, 1).

π2 ⊗ π1(v1 ⊗ v0 ⊗ v0) =
⊗2

i=1 v|ai|

= v1 ⊗ v0
.

Then
ι2 ⊗ ι1(v1 ⊗ v0) =

∑
|âi=1 vâi ⊗

∑
|âi|=0 vâi

= (v(1,0) + v(0,1))⊗ v(0)
= v1 ⊗ v0 ⊗ v0 + v0 ⊗ v1 ⊗ v0

.

Example 20. Let d = 3,d = (2, 1).

Then S(2,1) = {(1, 2)× (3), e} and ι(π(V i
e )) = V i

e + V i
(1,2)×(3).

So both maps correspond to one another up to constants and since ι is injective on both sides, the

images of the projections must already correspond to one another. Therefore the isomorphism

from (2) can be restricted as claimed.

4.2 A Similar Construction for Uq

Again, one can define bases of V ⊗d1 and K0(Cfunc) as well as their subspaces Vd1 ⊗ · · · ⊗ Vdk
and K0(C

′
func) as before. To pay reference to the modified action induced by the q in Uq, the

projection and inclusion maps however are changed sligthly.

Definition 4.9. For a = (a1, · · · , an) ∈ {0, 1}n, let va = va1 ⊗ · · · ⊗ van ∈ V ⊗n1 be the corres-

ponding basis vector.

Then define

πn : V ⊗n1 → Vn

by

πn(va) = q−l(a)
1[
n

|a|
]v|a| = q−l(a)v|a|

where l(a) is equal to the number of pairs i < j with ai < aj . This gives the projection

πd1 ⊗ · · · ⊗ πdk : V
(d1+···+dk)
1 → Vd1 ⊗ · · · ⊗ Vdk .

Furthermore define

ιn : Vn → V ⊗n1

by

ιn(vk) =
∑
|a|=k

qb(a)va

where b(a) = |a|(n− |a|)− l(a), i.e. the number of pairs i < j with ai > aj . Thus one obtaines

the inclusion

ιd1 ⊗ · · · ⊗ ιdk : Vd1 ⊗ · · · ⊗ Vdk → V
(d1+···+dk)
1 .

The composition ιn ◦ πn = pn is the Jones-Wenzl projector.
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Similarly, map the class of the Bi-module V i
w to the class of the Bi,i+1-module V i

Sdw
multiplied

by the same constant as
⊗k

j=1 v|aj | in the case of πd1⊗· · ·⊗πdk(va), where w should be choosen as

representative of minimal lenght of the coset in Wi and a = w(1, · · · , 1, 0, · · · , 0) and map V i
Sdw

to ⊕a∈SdwV
i
a (with some constants λa corresponding to the constants in the case of ιd1⊗· · ·⊗ιdk).

Example 21. d = 3,d = (2, 1).

π2 ⊗ π1(v1 ⊗ v0 ⊗ v0) =
⊗2

i=1 q
−l(ai) 1[

di
|ai|
]v|ai|

= q−2 1[
2
1

]v1 ⊗ q−1 1[
1
0

]v0
= q−3 1

[2]v1 ⊗ v0
= q−3 q−q−1

q2−q−2 v1 ⊗ v0

.

Then
ι2 ⊗ ι1(q−3 1

[2]v1 ⊗ v0) = q−3 1
[2]

∑
|âi|=1 q

b(âi)vâi ⊗
∑
|âi|=0 q

b(âi)vâi

= q−3 1
[2](q

b(1,0)v(1,0) + qb(0,1)v(0,1))⊗ qb(0)v(0)
= q−3 1

[2](qv(1,0) + v(0,1))⊗ v(0)
= q−2 1

[2]v1 ⊗ v0 ⊗ v0 + q−3 1
[2]v0 ⊗ v1 ⊗ v0

.

How should the action of Uq be defined such that so V i
w 7→ (Si×Sd−i)w remains an isomorphism?

E.(Si×Sd−i)w := ∆(d−1)E.(va1⊗· · ·⊗vad) =
∑d

j=1Kva1⊗· · ·⊗Kvaj−1⊗Evaj⊗vaj+1⊗· · ·⊗vad =∑d
j=1 q

α1va1 ⊗ · · · ⊗ qαj−1vaj−1 ⊗
[
1+αj
2 + 1

]
vaj+1 ⊗ vaj+1 ⊗ · · · ⊗ vad (Let αj = aj − δ0,aj , so

αj ∈ {1,−1}).
Then

E.V i
Id =

∑
(i+1,j)=τ∈Sd−i q

i−(j−1−i)
[
1+αj=0

2 + 1
]
V i+1
τ

=̂
∑d

j=i+1 q
i−(j−1−i)v1 ⊗ · · · ⊗ v1 ⊗ v0 ⊗ · · · ⊗ vaj−1=0

⊗vaj+1=1 ⊗ vaj+1=0 ⊗ · · · ⊗ vad=0

=
∑d

j=1 q
a1va1 ⊗ · · · ⊗ qaj−1vaj−1 ⊗ vaj+1 ⊗ vaj+1 ⊗ · · · ⊗ vad

(a = (1, · · · , 1, 0, · · · , 0), |a| = i)

and E.V i
w should be

E.V i
w =

∑
(w−1(i+1),w−1(j))=σ,(i+1,j)∈Sd−i q

i−(j−1−i−2bi+1,j(w))
[
1+αw(w−1(j))=0

2 + 1
]
V i+1
σw

=
∑

τ=(i+1,j)∈Sd−i q
i−(j−1−i−2bi+1,j(w))V i+1

wτ

=̂

∑
(w−1(i+1),w−1(j))=σ,(i+1,j)∈Sd−i q

αw(1)vaw(1)
⊗ · · · ⊗ qαw(w−1(j)−1)vaw(w−1(j)−1)

⊗vaw(w−1(j))+1=1 ⊗ vaw(w−1(j)+1)
⊗ · · · ⊗ vaw(d)

=
∑d

j=1 q
αw(1)vaw(1)

⊗ · · · ⊗ qαw(j−1)vaw(j−1)
⊗
[
1+αw(j)

2 + 1
]
vaw(j)+1 ⊗ vaw(j+1)

⊗ · · · ⊗ vaw(d)

(a = (1, · · · , 1, 0, · · · , 0), |a| = i).

(let bi,j(w) denote the number of l < i such that w(l) > j, and σw = wτ ).

This shows how the action ought to be defined in order for (3) to be a commutative diagram

and φ an isomorphism. It remains to interprete this action in some natural way. By adapting

the action of Bi, Bi+1 from left and right on Bi,i+1, the action of E,F on Bi, Bi+1 can be

deformed such that E can again act as E.V i
w = Bi,i+1 ⊗Bi V i

w (let f i+1
w .g := qi+1fπ−1

i+1(w)
,
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g.f iw := q1+2bi+1,i+1(w)fπ−1
i

to obtain the action of E, and use an analogous approach for the

action of F ; I need fπi◦π−1
i+1(wτ)

= q2i+1−j−2bi+1,j(w)f iw+
∑

l<i+1,ν=(l,i+1) q
λlf iwτν for w = (i+1, j),

and use bi+1,j(w) = bi+1,i+1(wτ) for τ = (i+ 1, j)).

Remark 22. (this was used in the calculations above)

a = (a1 = 1, · · · ,
w−1(j)th

aw−1(j) , · · · , ai = 1,
i+1th

ai+1 = 0, · · · ,
jth

aj = 0, · · · ,
w−1(i+1)th

aw−1(i+1) , · · · , ad = 0)

wa = (aw(1), · · · ,
w−1(j)th

aj = 0 , · · · , aw(i),
i+1th
aw(i+1), · · · ,

jth

aw(j), · · · ,
w−1(i+1)th

ai+1 = 0 , · · · , aw(d))

σwa = (aw(1), · · · ,
w−1(j)th

ai+1 = 0, · · · , aw(i),
i+1th
aw(i+1), · · · ,

jth

aw(j), · · · ,
w−1(i+1)th

aj = 0 , · · · , aw(d))

E.vwa =
∑

(w−1(i+1),w−1(j))=σ,(i+1,j)∈Sd−i K.vaw(1)
⊗ · · · ⊗

w−1(j)th

E.vaj=0 ⊗ · · · ⊗ vaw(i)

⊗ i+1th
vaw(i+1)

⊗ · · · ⊗
jth

vaw(j)
⊗ · · · ⊗

w−1(i+1)th

vai+1=0 ⊗ · · · ⊗ vaw(d)

=
∑

(w−1(i+1),w−1(j))=σ,(i+1,j)∈Sd−i K.vaw(1)
⊗ · · · ⊗

w−1(j)th

E.vaσ(w(w−1(i+1)))=j=0 ⊗ · · · ⊗ vaw(i)

⊗ i+1th
vaw(i+1)

⊗ · · · ⊗
jth

vaw(j)
⊗ · · · ⊗

w−1(i+1)th

vaσ(w(w−1(j)))=i+1=0 ⊗ · · · ⊗ vaw(d)

(of course the position of w−1(j) will vary and may e.g. lie to the right of the ith position...

(w−1(i+ 1), w−1(j)) = σ, (i+ 1, j) ∈ Sd−i precisely means that the action of E on the w−1(j)th

position is not zero, i.e. the basis vector in this position is v0 and not v1).

So I have
K0(C

′
func)

�
↪→ K0(Cfunc)

?∼=
φ∼=

Vd1 ⊗ · · · ⊗ Vdk
�
↪→ V ⊗d1

. (3)

In order to restrict the isomorphism in (3) to Vd1 ⊗ · · · ⊗ Vdk and K0(C
′
func), I need to check

that the images of the projection maps on both sides correspond. Since the inclusion maps are

injective, it is enough to show that the isomorphism commutes with the composition, i.e.

φ ◦ ι ◦ π = ιd1 ⊗ · · · ⊗ ιdk ◦ πd1 ⊗ · · · ⊗ πdk ◦ φ.

Let va1 ⊗ · · · ⊗ vad=̂wSi × Sd−i, i.e a = w(1, · · · , 1, 0, · · · , 0) and va1 ⊗ · · · ⊗ vad = w(v1 ⊗ · · · ⊗
v1 ⊗ v0 ⊗ · · · ⊗ v0). Then

πd1 ⊗ · · · ⊗ πdk(va1 ⊗ · · · ⊗ vad) =

k⊗
i=1

q−l(a
i) 1[

di
|ai|

]v|ai|
and

ιd1 ⊗ · · · ⊗ ιdk(
⊗k

i=1 q
−l(ai) 1[

di
|ai|
]v|ai|)

=
⊗k

i=1 q
−l(ai) 1[

di
|ai|
]∑|âi|=|ai| qb(âi)vâi

=
∑

â=σ(a), σ∈Sd

⊗k
i=1

1[
di
|ai|
]qb(âi)−l(ai)vâi
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(Set a(i,j) = (ai, · · · , aj) and ai = a(d1+···+di−1+1,d1+···+di)), as σ ∈ Sd precisely means that

σ(a) = â in

ιd1 ⊗ · · · ⊗ ιdk(

k⊗
i=1

q−l(a
i) 1[

di
|ai|

]v|ai|) =

k⊗
i=1

q−l(a
i) 1[

di
|ai|

] ∑
|âi|=|ai|

qb(â
i)vâi .

Furthermore, π(V i
w) = V i

Sdw
with v ∈ V i

w and ι(V i
Sdw

) = ⊕σ∈SdwV
i
σ .

So both maps correspond to one another as for the U -case, and since ι is injective on both sides,

the images of the projections must already correspond to one another (in fact, the projection

and inclusion map for K0(C
′
func) was chosen precisely so that it would correspond). Therefore

the isomorphism from (3) can be restricted as claimed.

5 A Construction for a Uq(so2n)-Module

A similar construction is possible for type D.

Definition 5.1. The (even) special orthogonal Lie algebra so2n, the finite dimensional simple

Lie algebra of type Dn (n ≥ 4), is defined as

so2n =

{
T =

(
A B

C D

)
∈M2n×2n(C) | A,B,C,D ∈Mn×n(C), At = −D, Bt = −B, Ct = −C

}
.

The associated quantum group, the quantum special orthogonal algebra Uq(so2n), is defined

as the quotient of the k = C(q)-algebra with unit generated by Ea, Fa,Ka,K
−1
a , a ∈ I =

{i, k, j1 . . . , jn−2} with relations

KaK
−1
a = 1 KaEb = qCabEbKa EaFb − FbEa = δab

Ka−K−1
a

q−q−1

KaKb = KbKa KaFb = q−CabFbKa ∀a, b ∈ I

by the ideal generated by

E2
aEb − (q − q−1)EaEbEa + EbE

2
a F 2

aFb − (q − q−1)FaFbFa + FbF
2
a Cab = 1

EaEb − EbEa FaFb − FbFa Cab = 0.

Caa = 2 and Cab = −1 if there is an edge between a and b in the Dynkin diagramm of type Dn,

else Cab = 0.

Remark 23. The Dynkin diagramm of type Dn is given by

k = jn−1

jn−3 · · · j1

i = jn

jn−2

Now define the vector representation for Uq(so2n):
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Definition 5.2. [9] Let V =
(⊕n

j=1 kvi

)
⊕
(⊕n

j=1 kvi

)
be a 2n-dimensional vector space.

Introduce a linear ordering on the index set by

1 ≺ 2 ≺ · · · ≺
n
n≺ · · · ≺ 2 ≺ 1

(Notice that the order between n and n is not defined). The Uq(so2n)-module action is defined

as follows:

Kavj =



qvj if j = a

q−1vj if j = a+ 1

qvj if j = n− 1, a = n

q−1vj if j = a

qvj if j = a+ 1

q−1vj if j = n− 1, a = n

vj else

Eavj =



va if j = a+ 1, a 6= n

va+1 if j = a, a 6= n

vn if j = n− 1, a = n

vn−1 if j = n, a = n

0 else

Favj =



va+1 if j = a, a 6= n

va if j = a+ 1, a 6= n

vn−1 if j = n, a = n

vn if j = n− 1, a = n

0 else

(so EaFavj = vj = FaEavj or zero and Kavj = q〈ha,wt(vj)〉 for wt(vj) = εj , wt(vj) = −εj where

εi(A) = aii for a 2n× 2n-matrix A and ha the ath diagonal generator of so2n).

Then a basis of V ⊗d is given by the va = vai⊗· · ·⊗vad , with ai ∈ {1 ≺ 2 ≺ · · · ≺
n
n≺ · · · ≺ 2 ≺ 1}.

Again, Sd can act by permuting the indicies and if x = (|{ai = 1}|, . . . , |{ai = 1}|) denotes

the type of a, then V ⊗d =
⊕

x{va | type(a) = x}k is a decomposition into Sd-submodules.

Such a submodule {va | type(a) = x}k is isomorphic to 1 ↑SdSx
(Sx = Sx1 × · · · × Sx2n), as

in the case of sl2. Furthermore, I can again identify a basis element wSx with a simple Bx-

module V x
w , where Bx is the space of maps Sd/Sx → C, as before. Furthermore, I can define

πx : Sd/Sx ∩ Sx′ = Wx,x′ →Wx.

How do the elements of Uq act on these modules? The comultiplication is given by

∆ :

K±1a 7→ K±1a ⊗K±1a
Ea 7→ Ka ⊗ Ea + Ea ⊗ 1

Fa 7→ 1⊗ Fa + Fa ⊗K−1a

and so

∆(d−1)(Ea) =

d−1∑
j=1

Ka ⊗ · · · ⊗Ka ⊗ Ea ⊗ 1⊗ · · · ⊗ 1
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and similar for the other generators, as in the Uq(sl2)-case. So va of type x is mapped by

Ea to a sum of va′ of type x′ = (x1, . . . , xa + (1 − δ0,xa+1),max{xa+1 − 1, 0}, . . . , x2n−a + (1 −
δ0,x2n−a+1),max{x2n−a+1−1, 0}, . . . , x2n), or to zero if xa+1 = 0 = x2n−a+1, if a 6= n, and of type

x′ = (x1, . . . , xn−1+(1−δ0,xn+1), xn+(1−δ0,xn+2),max{xn+1−1, 0},max{xn+2−1, 0}, . . . , x2n),

or to zero if xn+1 = 0 = xn+2, if a = n. Then a submodule {va | type(a) = x}k ∼= 1 ↑SdSx
is a

weight space and the type x again determines the weight.

Similarly, Bx-modules can be mapped by Ea to Bx′-modules as in the Uq(sl2)-case, but of course

this ought to be interpreted in some fashion perhaps similar to the case of sl2 (If I consider the

case of U(som) rather than Uq(som), Ei acts as Ei.Vx = Vx′ = Bxx′ ⊗Bx Vx; one must of course

choose the x′ accordingly.).

Remark 24. In the case of som, the Schur-Weyl duality becomes a duality between the Lie

algebra and the Brauer algebra (instead of the group algebra of Sd or the corresponding Weyl

group for type D) [8, section 10.1]. The Brauer algebra is slightly larger than the group algebra

of the symmetric group. For the quantum case, it is an open question how the problem may be

solved in general.
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