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Introduction

Many fundamental objects in representation theory such as Lie algebras, Weyl
groups or Hecke algebras have an affine version. These affine algebras appear nat-
urally in various places. For example, affine Hecke algebras and affine Weyl groups
play an important role in the theory of p-adic groups (see for example [IM65]) but
they are also connected with various other objects in representation theory such as
affine Lie algebras, affine quantum groups or diagram algebras. In this thesis we
explore some of these connections by studying affine versions of Schur-Weyl duality.

The original version of Schur-Weyl duality goes back to Schur [Sch01] and is con-
cerned with the commuting actions of the general linear group GLn = GLn(C) and
the symmetric group Sr on tensor space:

GLn y V ⊗r x Sr. (1)

Here V = Cn is the natural representation of GLn and Sr acts on V ⊗r by permuting
the tensor factors. Usually this classical Schur Weyl duality also asserts that the
two actions generate each other’s centraliser. More categorically, this duality can
be rephrased as an equivalence between certain subcategories of GLn-mod and Sr-
mod. The action of GLn can also be replaced by SLn or the Lie algebras sln and gln
and one can also pass to other fields than C. This thesis looks at generalisations of
Schur-Weyl duality in various directions that involve affine and quantum algebras
of some kind. We collect some known results, sometimes with new proofs, but there
will also be new examples. The following picture illustrates some of these known
generalisations of Schur-Weyl duality which we take as the starting point of our
investigation:

Higher:

gln yM ⊗ V ⊗r x Hdeg
r

Quantum:
Uq(sln) y V ⊗rq x Hr

Classical:
sln y V ⊗r x Sr

Affine:
ŝln y V̂ ⊗r x Saff

r

Quantum affine:

Uq(ŝln) y V̂ ⊗rq x Haff
r .

Let us explain these in a bit more detail. Affine Schur-Weyl duality, which appears
in [CP96], can be obtained from classical Schur-Weyl duality by replacing Sr with
the affine Weyl group Saff

r = Zr o Sr. At the same time one has to take an affine
version of the Lie algebra sln and an affine version of the natural representation
V . Similarly, replacing Sr by its Hecke algebra Hr and sln by its quantum group
Uq(sln) yields quantum Schur-Weyl duality established by Jimbo in [Jim86]. This
takes place over the field of rational functions C(q) in the indeterminate q. Fusing
the two cases together, one obtains the quantum-affine case from [Gre97] and [CP96]
which involves the affine Hecke algebra Haff

r associated to Saff
r . All of these three

dualities have a double centraliser property and an induced categorical correspon-
dence which we will prove in this thesis.

These results are well-known but our exposition will sometimes deviate from the

2



standard literature in order to give more elementary arguments. In the classical and
the quantum case the double centraliser property and the categorical correspon-
dence is an easy consequence of the double centraliser theorem together with a few
calculations. In the (quantum) affine case, however, the underlying vector space is
infinite-dimensional so that we do not have the double centraliser theorem at our dis-
posal. We will therefore need to use other techniques. This will lead us to look at the
quantum and affine versions of the (classical) Schur algebra S(n, r) = EndSr(V

⊗r).
Our proofs will make use of their structure and the quantum and affine versions of
the functor V ⊗r ⊗C[Sr] −.

Higher Schur-Weyl duality, going back to [AS98] and then studied in detail in [BK08],
has a bit of a different flavour. It involves the so-called degenerate affine Hecke
algebra Hdeg

r introduced by Drinfeld [Dri86]. Roughly speaking, this algebra is con-
structed by formally adding generators to the group algebra C[Sr] which behave
very similar to the Jucys-Murphy elements of C[Sr]. These are elements generating
a maximal commutative subalgebra of C[Sr] which can be used to develop a weight
theory for Sr (similar to the highest weight theory for semisimple Lie algebras). As a
consequence, the degenerate affine Hecke algebra contains a lot of information about
the representation and weight theory of the symmetric group. At the same time,
higher Schur-Weyl duality replaces tensor space by M⊗V ⊗r where M is an arbitrary
(not necessarily finite-dimensional) gln-module and we will explain the construction

of commuting actions gln y M ⊗ V ⊗r x Hdeg
r . This is more flexible than classical

Schur-Weyl duality and makes it possible to connect the representation theory of
Hdeg
r or Sr with infinite-dimensional gln-representations like Verma modules.

All of the dualities above can be associated to some kind of Lie algebra of type A.
There are also generalisations of the duality from (1) for classical groups outside of
type A and also for the symmetric group. The respective actions on tensor space
are given by restricting the GLn-action:

GLn y V ⊗r x Sr

On y V ⊗r x Br(n)

Sn y V ⊗r x Pr(n).

(2)

Here the centralising partner of the orthogonal group On is the Brauer algebra
Br(n) for the parameter n ∈ N which was introduced by Brauer in [Bra37]. If we
replace the orthogonal group by the symplectic group Spn, the centralising partner
will be the Brauer algebra Br(−n). This type B,C,D duality also has a higher
version. To construct this, we will explain how the Jucys-Murphy elements of the
Brauer algebra can be used to define a degenerate affine version of the Brauer algebra
denoted by

∨∨
(Ξ). This algebra was introduced in [Naz96] and is nowadays called the

affine VW-algebra (or sometimes also the Nazarov-Wenzl algebra). The associated
higher Schur-Weyl duality was studied in [ES18] and we will explain part of this by
constructing commuting actions g y M ⊗ V ⊗r x

∨∨
(Ξ) where g is a simple Lie

algebra of type B, C or D and M is a highest weight module of g.

The duality at the bottom of (2) connects the symmetric group Sn with the partition
algebra Pr(n) for the parameter n ∈ N. This algebra was discovered independently
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by Martin [Mar91] and Jones [Jon94] and studied in detail by Martin and others
[MS94, Mar96, Mar00, HR05]. Both the Brauer algebra and the partition algebra
can be defined more generally for any parameter δ ∈ C as vector spaces with a
distinguished basis given by certain set partitions (usually drawn as diagrams) and
a pictorial multiplication rule. There are many more algebras of this kind which
are often referred to as diagram algebras. These diagram algebras will also play an
important role in this thesis and we will review some important examples and the
associated Schur-Weyl dualities. A more detailed overview of diagram algebras can
be found in [Koe08].

Our main new result:
As our main new result, we will construct an affine version of the duality between
the symmetric group and the partition algebra. For this, we first have to define an
action of the affine symmetric group Saff

n on V ⊗r extending the action on the bottom
of (2). This will be the diagonal action induced along the group homomorphism
Saff
n → GLn(C) which sends a permutation σ ∈ Sn to the corresponding permutation

matrix and (a1, ..., an) ∈ Zn to the diagonal matrix with diagonal entries xa1 , ..., xan

for a fixed x ∈ C×. Since this extends the diagonal action of the symmetric group,
the centralising partner of the Saff

n -action should be contained in the partition algebra
and we would to like understand this subalgebra. For this we will define a diagram
algebra P bal

r which is spanned by partition diagrams that are balanced in a certain
way and we call this the balanced partition algebra. The balanced partition algebra
does not depend on a parameter δ but there is a canonical inclusion P bal

r ⊂ Pr(δ)
for all δ ∈ C. In particular, there is an induced right action of P bal

r on V ⊗r. Our
main result is then the following.

Theorem 3.41. The actions Saff
n y V ⊗r x P bal

r commute. If the multiplicative
order of x is bigger than r, the two actions generate each other’s centraliser.

After we had proved this result, we found out that the balanced partition algebra
was already defined in [Har18], but for slightly different commuting actions. To
be more precise, it is shown in [Har18] that the P bal

r -action on V ⊗r generates the
algebra EndMn(V ⊗r)op whereMn ⊂ GLn is the set of invertible monomial matrices
acting diagonally on tensor space. We will recover this result by showing that Saff

n

and Mn generate the same subalgebra of EndC(V ⊗r) if the multiplicative order of
x exceeds r. This also establishes the following double centraliser property which
appears as a problem in [Har18, p. 21].

Corollary 3.42. The commuting actionsMn y V ⊗r x P bal
r generate each other’s

centraliser.

We will also look at a few properties of the balanced partition algebra P bal
r . In

particular, we show that P bal
r is semisimple and we will parametrise the irreducible

P bal
r -representations by certain multipartitions. Moreover, we give a presentation of
P bal
r by generators and relations.

An outlook on further generalisations:
It would also be desirable to have a higher version of the duality between Sn and
Pr(n). Motivated by this, we will define the Jucys-Murphy elements of the partition
algebra. These elements were already introduced by Halverson and Ram in [HR05],
but our construction will be slightly different. To be more precise, we will use Schur-
Weyl duality to define these elements for the partition algebras over large enough
positive integers and then interpolate to arbitrary values δ ∈ C. One advantage
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of this approach is that it makes computations with the Jucys-Murphy elements
very straightforward. In fact, one can prove formulas involving the Jucys-Murphy
elements first for δ ∈ N by acting on tensor space and then for all δ ∈ C by a basic
interpolation argument. We will use this idea to verify a few formulas which were
also obtained in [Eny13] by other techniques.
These formulas will also make it clear that the relations between the standard gen-
erators and the Jucys-Murphy elements of the partition algebra are not local. This
locality property is crucial in the definition of the degenerate affine Hecke alge-
bra and the affine VW-algebra, which explains why defining a degenerate affine
version of the partition algebra might be a more difficult task. In the Brauer alge-
bra Br(δ), for example, the Jucys-Murphy elements X̂1, ..., X̂r satisfy the relations
siX̂i − X̂i+1si = ei − 1 for i = 1, ..., r − 1 where si and ei are standard generators
of Br(δ). These relations involve only neighbouring indices and, more importantly,
they are stable under shifting indices. We will show that the analogous statement
for the Jucys-Murphy elements of the partition algebra does not hold.

The locality properties above are closely related to the fact that our diagram alge-
bras can be realised as endomorphism algebras in some monoidal diagram category.
The definition of these categories can be motivated by the observation that it is
actually unnatural to study Schur-Weyl duality on a fixed tensor space V ⊗r only.
Instead, it can be fruitful to look at all tensor spaces and morphisms between any
two of them at the same time. This categorical point of view has received a lot
of attention in recent years. In the last section of this thesis we will explain how
to generalise various diagram algebras into diagram categories and how to rephrase
their respective Schur-Weyl dualities in this categorical setting. In particular, we
will define a diagrammatic version of the balanced partition algebra and we give a
presentation of this category by generators and relations.

Here is a short summary of each section of this thesis.

Section 1: We recall the definitions of (affine) Hecke algebras and Weyl groups and
state a few basic properties. Proofs will be omitted.

Section 2: We give elementary proofs of quantum, affine and quantum affine Schur-
Weyl duality. We also explain how quantum Schur-Weyl duality can be used to link
the bar involutions of quantum groups and Hecke algebras.

Section 3: The main purpose of this section is to prove the Schur-Weyl duality be-
tween the symmetric group and the partition algebra as well as an affine version for
Saff
n . This will lead us to defining the balanced partition algebra. We will also out-

line a few Schur-Weyl dualities for other diagram algebras and some basic techniques
often used in the representation theory of the partition algebra and its diagram sub-
algebras.

Section 4: This section is mostly concerned with the construction of higher versions
of Schur-Weyl dualities for simple Lie algebras. Our exposition will focus on the
role of the Jucys-Murphy elements and we will briefly explain their applications to
towers of semisimple algebras via the Okounkov-Vershik approach. We also give
a simple construction of the Jucys-Murphy elements of the partition algebra using
Schur-Weyl duality. We then use an interpolation argument to prove a few formu-
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las involving the Jucys-Murphy elements of the partition algebra for any δ ∈ C by
checking them on tensor space.

Section 5: We introduce monoidal categories and explain how some of the diagram
algebras and Schur-Weyl dualities from this thesis fit into this setting by defining
their respective diagram categories. We also define the balanced partition category
which generalises the balanced partition algebra from section 3.

Acknowledgements:
I would like to thank my supervisor Prof. Dr. Catharina Stroppel for introducing
me to the world of Schur-Weyl dualities. Her explanations have greatly enhanced
my understanding of the subject and she has provided many useful references. I
would also like to thank Dr. Joanna Meinel for reading through an earlier version
of this thesis and for giving feedback.
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1 Preliminaries on Weyl groups and Hecke algebras

In this section we will give a brief introduction to (affine) Weyl groups and Hecke
algebras associated to simple Lie algebras. Many of the things we will talk about
here are not strictly necessary to understand the succeeding sections since we will
mostly be working with specific examples in type A. However, it is often useful to
have the bigger picture in mind which is why we give a brief outline of the general
set-up. For a self-contained introduction to Coxeter groups and Hecke algebras, we
refer to [Hum90].

1.1 Affine Weyl groups

Let Φ be a (crystallographic) root system in a Euclidean space E with inner product
(·, ·). Let Φ∨ be the dual root system in E consisting of the coroots α∨ = 2 α

(α,α) .

For any α ∈ Φ, let sα ∈ GL(E) be the reflection in the hyperplane perpendicular
to α. Then the (finite) Weyl group W (Φ) = W associated to Φ is the subgroup of
GL(E) generated by the sα (α ∈ Φ). This is the same as the Weyl group associated
to Φ∨. Let Aff(E) be the group of invertible affine transformations on E (i.e.
transformations of the form x 7→ Ax+d with A ∈ GL(E) and d ∈ E). Then there is
a group homomorphism E → Aff(E) sending any d ∈ E to the corresponding affine
translation map

T (d) : E → E, x 7→ x+ d.

Definition 1.1. The affine Weyl group W aff(Φ) = W aff associated to Φ is the
subgroup of Aff(E) generated by W and T (Φ∨).

Let L(Φ∨) ⊂ E be the coroot lattice, i.e. the abelian subgroup of E generated
by the coroots. We can identify this via the map T with a subgroup of W aff . Note
that T (L(Φ∨)) ∩W = {idE}. Moreover, the identity sαT (d)sα = T (sα(d)) tells us
that T (L(Φ∨)) ⊂W aff is a normal subgroup. This proves the following Proposition.

Proposition 1.2. The affine Weyl group is a semidirect product

W aff = T (L(Φ∨)) oW ∼= Zr oW

where r is the rank of Φ.

Example 1.3. Let Φ be the root system of type An−1. We realise this as the set
of roots Φ = {ei − ej | i 6= j} in the Euclidean space E = {

∑n
i=1 aiei ∈ Rn |∑n

i=1 ai = 0} with (ei, ej) = δi,j . Then Φ = Φ∨ and the associated Weyl group
W = Sn acts on E by permuting the coordinates. The coroot lattice is given by
L(Φ∨) = {

∑n
i=1 aiei ∈ E | ai ∈ Z}. Hence, we can realise W aff as the subgroup

of Zn o Sn consisting of those elements whose lattice coordinates sum up to zero
(where Sn acts on Zn by permuting lattice coordinates).

There also is a slightly different approach to affine Weyl groups through affine
reflection groups. For any k ∈ Z let

Hα,k := {x ∈ E | (x, α) = k}

and let sα,k ∈ Aff(E) be the reflection in the hyperplane Hα,k. It is straightforward
to check that T (kα∨)sα = sα,k. In particular, W aff can also be described as the
subgroup of Aff(E) generated by the affine reflections sα,k. Here is the analogue of
the Weyl chambers in the affine situation.
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Definition 1.4. The connected components of E \
⋃
α∈Φ
k∈Z

Hα,k are called alcoves.

Now assume that Φ is an irreducible root system and let us choose a set of
positive roots Φ+. Then there is a highest root α0 ∈ Φ+ uniquely determined by the
property that α0 − β is a sum of simple roots for any β ∈ Φ+ (including the empty
sum for β = α0).

Example 1.5. As in Example 1.3, we realise the roots of An−1 as Φ = {ei − ej |
i 6= j} in E = {

∑n
i=1 aiei ∈ Rn |

∑n
i=1 ai = 0}. If we choose the set of positive roots

Φ+ = {ei − ej | i < j}, then the simple roots are

α1 = e1 − e2, α2 = e2 − e3, ... αn−1 = en−1 − en.

In particular, ei − ej = αi + αi+1 + ... + αj−1 for any i < j. It now follows that
highest root is α0 = e1 − en = α1 + ...+ αn−1.

Theorem 1.6. Let α1, ..., αr be the simple roots of Φ and α0 the highest root.
Then S = {sα1 , ..., sαr , sα0,1} is a generating system of W aff . The affine Weyl group
W aff acts simply-transitively on the set of alcoves. Moreover, (W aff , S) is a Coxeter
system.

Proof. See [IM65, Prop. 1.2, Cor. 1.8, Cor. 1.16] or [Hum90, Section 4].

Next, we explain how to construct the Coxeter diagram of W aff . Given two roots
α, β ∈ Φ meeting at an angle θ 6= 0, π the product sα,isβ,j is an affine rotation by
2θ. If (α, β) ≤ 0, the 4 possible values of

4 cos(θ)2 = 4
(α, β)2

||α||2||β||2
= 〈α, β∨〉〈β, α∨〉 ∈ {0, 1, 2, 3}

correspond to the angles

θ = (1− 1/k)π with k ∈ {2, 3, 4, 6}

in this order. The order of sα,isβ,j is then k. Note that the Weyl group W is
generated by the simple reflections corresponding to the simple roots αi (i = 1, ..., r)
which satisfy (αi, αj) ≤ 0 for i 6= j. Thus, the Coxeter diagram of (W, {sα1 , ..., sαr})
is given by the Dynkin diagram of Φ with double and triple edges replaced by edges
with label 4 and 6. A similar strategy works for the affine Weyl group: We have
(−α0, αi) ≤ 0 for i = 1, ..., r since otherwise sαi(α0) = α0 − 〈α0, α

∨
i 〉αi would be a

higher root. Since sα0,1 = s−α0,−1, the Coxeter diagram of W aff can thus be read
off from the Dynkin diagram of Φ extended by the root −α0 .

Definition 1.7. The extended Dynkin diagram associated to Φ is the diagram with
vertices−α0, α1, ..., αr and an edge between two vertices α and β whenever (α, β) 6= 0
and α 6= β. The multiplicity of such an edge is 〈α, β∨〉〈β, α∨〉 and an arrow points
to the shorter root whenever this value is greater than 1.

Remark 1.8. Since 〈−α0, α
∨
i 〉〈αi,−α∨0 〉 = 〈α0, α

∨
i 〉〈αi, α∨0 〉 one can also construct

the extended Dynkin diagram by adding the root α0 instead of −α0. However,
it is more natural to work with −α0 so that (α, β) ≤ 0 for any distinct α, β ∈
{−α0, α1, ..., αr}.

Example 1.9. We determine the extended Dynkin diagram of the root system Φ
of type An−1 for n > 2. Keeping the notation from Example 1.5, the simple roots
of An−1 are α1 = e1 − e2, ..., αn−1 = en−1 − en with the associated Dynkin diagram

An−1 :
α1 α2 αn−2 αn−1

.
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The highest root is α0 = e1 − en and

〈−α0, α
∨
i 〉〈αi,−α∨0 〉 =

{
1 if i = 1, n− 1

0 if i = 2, ..., n− 2
.

The extended Dynkin diagram (and after relabelling of the vertices also the Coxeter
diagram of (W aff , S)) is thus given by

Ãn−1 :

−α0

α1 α2 αn−2 αn−1

.

1.2 Hecke algebras

Let us recall the definition and some basic properties of Hecke algebras for arbitrary
Coxeter groups. These algebras can be defined over the ring of Laurent polynomials
Z[q, q−1] but we are mostly interested in Hecke algebras over the ring of rational
functions C(q).

Definition 1.10. Let (W,S) be a Coxeter system. The (generic) Hecke algebra
H = H(W ) = H(W,S) of (W,S) is the C(q)-algebra with generators {Hs | s ∈ S}
and relations

(H1) H2
s = 1 + (q−1 − q)Hs for all s ∈ S

(H2) HsHtHs...︸ ︷︷ ︸
mst

= HtHsHt...︸ ︷︷ ︸
mst

for all s, t ∈ S with s 6= t

where mst is the order of st.

Note that (H1) is equivalent to Hs(Hs + q− q−1) = 1 or (Hs + q)(Hs− q−1) = 0.
In particular, Hs is invertible with H−1

s = Hs + q − q−1. For any w ∈ W , choose a
reduced expression w = s1 · ... · sl(w) and let

Hw := Hs1 · ... ·Hsl(w)
.

Proposition 1.11. The element Hw does not depend on the choice of a reduced
expression of w and {Hw | w ∈W} is a C(q)-basis of H. Moreover,

HwHw′ = Hww′ if l(w) + l(w′) = l(ww′)

HwHs = Hws + (q−1 − q)Hw if l(w) > l(ws).
(3)

for any w,w′ ∈W and s ∈ S.

Proof. See [Hum90, Sections 7.1-7.4].

The Hecke algebra H(W,S) has the same generators as the group algebra C[W ]
but the quadractic relation s2 = 1 is replaced by the twisted quadratic relation
H2
s = 1 + (q−1 − q)Hs. In fact, one recovers the quadratic relation of the group

algebra by replacing the indeterminate q by 1 and in light of that the Hecke algebra
H(W,S) is sometimes called a deformation of the group algebra C[W ]. To be more
precise, there is a specialisation homomorphism of C-algebras

ϕ : HC[q,q−1] −→ C[W ]

Hx 7−→ x

q 7−→ 1

9



where HC[q,q−1] is the C[q, q−1]-subalgebra of H generated by the Hs with s ∈ S.
The homomorphism ϕ is well-defined since it is compatible with the relations (H1)
and (H2) which are defined over C[q, q−1]. It follows from Proposition 1.11 that the
algebra HC[q,q−1] is also the C[q, q−1]-span of the basis {Hw | w ∈ W} in H. The
specialisation homomorphism ϕ can be used to prove some basic properties of the
Hecke algebra like semisimplicity.

Proposition 1.12. If W is a finite Coxeter group, the Hecke algebra H = H(W ) is
semisimple.

Proof. See also [Mat99, Cor. 1.17]. If H is not semisimple, we can find h 6= 0 in
the radical of H. After multiplying with some element of C(q)× and dividing by an
appropriate power of q − 1, we may assume that h ∈ HC[q,q−1] and ϕ(h) 6= 0. Since
HC[q,q−1]hHC[q,q−1] is contained in the radical of H, it is a nilpotent ideal. This shows
that C[W ]ϕ(h)C[W ] = ϕ(HC[q,q−1]hHC[q,q−1]) is a non-zero nilpotent ideal in C[W ]
which contradicts the semisimplicity of C[W ]. Hence, H must be semisimple.

For u ∈ {−q, q−1} there is a ringhomomorphism

ϕu : H → C(q), Hs 7→ u.

This defines a (right) H-module structure on C(q) which we denote by C(q)u. For
Sλ ⊂ S, let Wλ = 〈Sλ〉 ⊂W be the corresponding Coxeter group and let Hλ be the
corresponding Hecke algebra. Note that there is a canonical inclusion Hλ ↪→ H with
Hw 7→ Hw.

Definition 1.13. The (right) parabolic Hecke modules corresponding to the parabolic
subgroup Wλ ⊂W are the H-modules

Mλ := C(q)q−1 ⊗Hλ H
N λ := C(q)−q ⊗Hλ H.

Let λW be the set of shortest right coset representatives of Wλ in W . Recall
that for any w ∈W there is a unique decomposition w = wλ · λw with wλ ∈Wλ and
λw ∈ λW . These elements satisfy l(w) = l(wλ) + l(λw). By Proposition 1.11, we
also have Hw = HwλHλw. This implies that H is a free left Hλ module with basis
{Hw | w ∈ λW}. We thus obtain bases for parabolic Hecke modules.

Proposition 1.14. The parabolic Hecke module Mλ (resp. N λ) has the basis
{Mx := 1 ⊗ Hx ∈ Mλ | x ∈ λW} (resp. {Nx := 1 ⊗ Hx ∈ N λ | x ∈ λW}). The
generators of H act on these via

1⊗Hx ·Hs =


1⊗Hxs if xs ∈ λW , xs > x

1⊗Hxs + (q−1 − q)Hx if xs ∈ λW , xs < x

u⊗Hx if xs 6∈ λW

where u = q−1 (resp. u = −q) and where > is the Bruhat order on W .

Proof. This follows from the multiplication formulas in (3) and the fact that xs = rx
for some r ∈ Sλ if xs 6∈ λW (see for example [GP00, Lemma 2.1.2]).

There is another way to construct the parabolic Hecke modules. Let

xλ :=
∑
x∈Wλ

q−l(x)Hx.
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For any s ∈ Sλ, we have

xλHs =
∑
x∈Wλ
xs>x

q−l(x)Hxs +
∑
x∈Wλ
xs<x

q−l(x)(Hxs + (q−1 − q)Hx)

=
∑
x∈Wλ

q−l(x)−1Hx = q−1xλ.

In particular,

x2
λ =

∑
x∈Wλ

q−l(x)Hx

2

=

∑
x∈Wλ

q−l(x)Hx

∑
x∈Wλ

q−2l(x)

 =

∑
x∈Wλ

q−2l(x)

xλ

(4)
and C(q)xλ ∼= C(q)q−1 as Hλ-modules. Using Frobenius reciprocity, we obtain an
isomorphism of H-modules

Mλ ∼−→ xλH
1⊗Hx 7−→ xλHx.

(5)

In fact, this map is surjective by construction and for y ∈ λW we have xλHy =∑
x∈Wλ

q−l(x)Hxy. Hence, the xλHy are linearly independent (for y ∈ λW ) which
shows that the map above is injective.

Remark 1.15. Let yλ :=
∑

x∈Wλ
(−q)l(x)Hx. A similar argument to the one above

shows that N λ ∼= yλH.

Recall that a C-linear map ϕ : V → W of C(q)-vector spaces is called C(q)-
antilinear if ϕ(f(q)v) = f(q−1)ϕ(v) for all f(q) ∈ C(q) and v ∈ V . There is a unique
C(q)-antilinear ringhomomorphism

¯ : H → H with Hs = H−1
s = Hs + q − q−1

called the bar involution of H. This also extends to C(q)-antilinear bar involutions
on the parabolic Hecke modulesMλ and N λ via a⊗H 7→ a⊗H. This is well-defined
since

ϕu(Hs) = u = u+ q − q−1 = ϕu(Hs + q − q−1) = ϕu(Hs).

Theorem 1.16. For any x ∈ λW , there are unique elements

Mx ∈Mx +
∑
y

qZ[q]My ⊂Mλ, M̃x ∈Mx +
∑
y

q−1Z[q−1]My ⊂Mλ,

Nx ∈ Nx +
∑
y

qZ[q]Ny ⊂ N λ, Ñx ∈ Nx +
∑
y

q−1Z[q−1]Ny ⊂ N λ

invariant under the bar involution. The elements Mx (resp. M̃x, Nx, Ñx) for
x ∈ λW form a basis of Mλ (resp. N λ) called the parabolic Kazhdan-Lusztig basis.

Proof. See [Soe97, Thm. 3.1, Thm. 3.5].

Remark 1.17. For Wλ = {e} we have Mλ = N λ = H and Mx = Nx as well as
M̃x = Ñx for all x ∈ λW . The Mx (resp. M̃x) then form a basis of H called the
Kazhdan-Lusztig basis.
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1.3 The gln case

To any semisimple Lie algebra g we can associate a root system Φ. In the previous
sections, we have defined the associated

� Weyl group W

� affine Weyl group W aff

� finite Hecke algebra H(W )

� affine Hecke algebra H(W aff).

For our applications it will often be more natural to work with gln instead of its
semisimple cousin sln. In this section, we therefore define analogues of the above
notions for gln. Note that gln = sln ⊕ C · In is obtained from sln by adding a
one-dimensional center. This will be reflected in the definitions that follow.

Definition 1.18. The Weyl group associated to gln is the same as the Weyl group
W = Sn associated to sln. The affine Weyl group associated to gln is the affine
symmetric group Saff

n := Zn o Sn where Sn acts on Zn by permuting the lattice
coordinates.

By Example 1.3 the affine Weyl group W aff associated to sln is the subgroup
of Saff

n consisting of those elements whose lattice coordinates sum up to 0. By
Theorem 1.6 and Example 1.9 the group W aff can also be described as the Coxeter
group with Coxeter diagram

s0

s1 s2 sn−2 sn−1

.

To obtain a similar description of the affine symmetric group Saff
n we have to extend

the Coxeter group W aff by some diagram automorphisms. To be more precise, let G
be the group with generators s0, s1, ..., sn−1 and τ with the relations from the Coxeter
group W aff above together with τsiτ

−1 = si−1 for i ∈ Z where i ∈ {0, ..., n− 1} s.t.
i ≡ i mod n. Let ε1, ..., εn be the standard generators of the abelian group Zn.

Lemma 1.19. There is an isomorphism of groups

ϕ : G
∼−→ Saff

n

si 7→ si for i = 1, ..., n− 1

s0 7→ sn−1 · · · s2s1s2 · · · sn−1ε1ε
−1
n

τ 7→ sn−1 · · · s2s1ε1.

Proof. See also [MS19, Lemma 2.1]. Let

ψ : Saff
n → G

si 7→ si for i = 1, ..., n− 1

ε1 7→ s1s2 · · · sn−1τ.

One can show by direct computations that ϕ and ψ are well-defined mutually inverse
group homomorphisms.

12



For any field K, the Weyl group Sn of gln can be embedded into GLn(K) by
identifying an element σ ∈ Sn with the corresponding permutation matrix Pσ ∈
GLn(K). This can be extended to an embedding of the affine symmetric group as
follows (at least if K contains an element of infinite multiplicative order).

Lemma 1.20. For any x ∈ K×, there is a group homomorphism

ϕ : Saff
n −→ GLn(C)

Sn 3 σ 7−→ Pσ

Zn 3 (a1, ..., an) 7−→


xa1 0 · · · 0

0 xa2
. . .

...
...

. . .
. . . 0

0 · · · 0 xan

 .

The map ϕ is injective if and only if x is of infinite multiplicative order.

Proof. The assignments above define group homomorphisms Sn ↪→ GLn(K) and
Zn → GLn(K). The conjugation action of Sn ⊂ GLn(K) on the set of diagonal
matrices is the action that permutes the diagonal entries. This shows that ϕ re-
spects the semidirect product structure of Saff

n and hence ϕ is a well-defined group
homomorphism. Note that ker(ϕ) = {(a1, ..., an) ∈ Zn | xai = 1 for i = 1, ..., n}.
This proves the injectivity claim.

Remark 1.21. Using the embedding Sn ↪→ GLn(C), the well-known Bruhat de-
composition for GLn(C) states that

GLn(C) =
⊔
w∈Sn

BwB

where B = {A ∈ GLn(C) | aij = 0 for i > j} is the standard Borel (details on this
can be found in [Hum12b, §28]). There is a similar result for the group homomor-
phism Saff

n → GLn(K) from Lemma 1.20. For this, let K be a non-Archimedean
local field and x = π a uniformiser of the ring of integers O ⊂ K. Let

I := {A ∈ GLn(O) | aij ∈ (π) ⊂ O for i > j}

which is called an Iwahori subgroup of GLn(K). Then there is an Iwahori-Bruhat
decomposition

GLn(K) =
⊔

w∈Saff
n

IwI.

This explains why Saff
n is the natural candidate for an affine Weyl group of GLn or

gln. For more details, see [IM65].

Next, we define the finite and the affine Hecke algebra associated gln. The finite
Hecke algebra associated to gln is the same as the finite Hecke algebra associated
to sln, namely H(Sn). We construct the affine Hecke algebra of gln by associating
a Hecke algebra to the affine symmetric group Saff

n . For this we extend the Hecke
algebra of the affine Weyl group W aff of sln by a diagram automorphism as in
Lemma 1.19.

Definition 1.22. The (affine) Hecke algebra H(Saff
n ) associated to Saff

n is the C(q)-
algebra with generators Hs0 , Hs1 ..., Hsn−1 and H±1

τ subject to the relations

(AH1) H2
si

= 1 + (q−1 − q)Hsi
for i ∈ Z
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(AH2) Hsi
Hsi+1

Hsi
= Hsi+1

Hsi
Hsi+1

for i ∈ Z

(AH3) Hsi
Hsj

= Hsj
Hsi

for i, j ∈ Z with i− j 6= 0, 1, n− 1

(AH4) HτHsi
= Hsi−1

Hτ for i ∈ Z

(AH5) HτH
−1
τ = 1 = H−1

τ Hτ .

There is another presentation ofH(Saff
n ) which is more similar to the presentation

of Saff
n as a semidirect product Zn o Sn. Let B be the C(q)-algebra with generators

H1, ...,Hn−1 and X±1
1 , ..., X±1

n subject to the relations

(BER1) (i) H2
i = 1 + (q−1 − q)Hi for i = 1, ..., n− 1

(ii) HiHi+1Hi = Hi+1HiHi+1 for i = 1, ..., n− 2

(iii) HiHj = HjHi for |i− j| > 1

(BER2) (i) XiX
−1
i = 1 = X−1

i Xi for i = 1, ..., n

(ii) XiXj = XjXi for i, j = 1, ..., n

(BER3) (i) HiXiHi = Xi+1 for i = 1, ..., n− 1

(ii) HiXj = XjHi for j 6= i, i+ 1.

Proposition 1.23. There is an isomorphism

H(Saff
n )

∼−→ B
Hsi 7−→ Hi for i = 1, ..., n− 1

Hs0 7−→ X−1
1 Xn(Hn−1 · · ·H2H1H2 · · ·Hn−1)−1

Hτ 7−→ Hn−1 · · ·H2H1X1.

Proof. This is a rescaled version of [MS19, Lemma 3.2].

The defining presentation of B is often called the Bernstein presentation. There is
a canonical algebra homomorphism

H(Sn) −→ B ∼= H(Saff
n )

Hsi 7−→ Hi.

Using this, we can talk about the elements Hw ∈ H(Saff
n ) for any w ∈ Sn. For any

a = (a1, .., an) ∈ Zn let Xa = Xa1
1 · ... ·Xan

n . Moreover, let Zn x Sn act by permuting
the coordinates. Then by [Lus89, Prop. 3.6], the following holds.

Lemma 1.24. For any a ∈ Zn we have

HiX
a −Xa·siHi ∈ C(q)[X±1

1 , ..., X±1
n ].

Proof. For a, b ∈ Zn, we have

HiX
a+b −X(a+b)·siHi = (HiX

a −Xa·siHi)X
b +Xa·si(HiX

b −Xb·siHi).

Hence, the claim follows by induction if we can show the claim for Xa = X±1
j . For

j 6= i, i+1 the elements Hi and Xj commute and the claim is obvious. For Xa = Xi

this follows from the Bernstein relations:

HiXi −Xi+1Hi = Xi+1H
−1
i −Xi+1Hi

= Xi+1(Hi + (q − q−1))−HiXi+1

= (q − q−1)Xi+1.
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The Xa = X−1
i case also follows from this. In fact, multiplying with X−1

i+1 on the

left and with −X−1
i on the right in the equation above yields HiX

−1
i −X

−1
i+1Hi =

(q−1 − q)X−1
i . Now using

HiXi+1 −XiHi = HiXi+1 −H−1
i Xi+1

= HiXi+1 − (Hi + (q − q−1))Xi+1

= (q−1 − q)Xi+1

the Xa = X±1
i+1 case follows similarly.

Lemma 1.24 implies that the set {HwX
a | w ∈ Sn, a ∈ Zn} spans H(Saff

n ) as a
C(q)-vector space. In fact, this is even a basis.

Proposition 1.25. The set {HwX
a | w ∈ Sn, a ∈ Zn} is a C(q)-basis of H(Saff

n ).

Proof. This is also shown in [Lus89, Prop. 3.7]. Assume there is a linear dependence∑
w∈Sn, a∈Zn

pw,a(q) ·HwX
a = 0

with pw,a(q) ∈ C(q)× not all 0. After multiplying with some element of C(q)× and
dividing by some power of q−1, we may assume that pw,a(q) ∈ C[q, q−1] and pw,a(1)
not all 0. Let BC[q,q−1] be the C[q, q−1]-subalgebra of B generated by the Hi and

the Xi. Let ϕ : BC[q,q−1] → C[Saff
n ] be the evaluation at q = 1 with ϕ(Hi) = si and

ϕ(Xi) = εi. The C-algebra homomorphism ϕ is well-defined since it is compatible
with the relations (BER1)-(BER3) which are defined over C[q, q−1]. We get

0 = ϕ

 ∑
w∈Sn, a∈Zn

pw,a(q) ·HwX
a

 =
∑

w∈Sn, a∈Zn
pw,a(1) · wεa.

This is a contradiction since the wεa form a basis of C[Saff
n ]. Hence, the HwX

a are
linearly independent.

2 Quantum and affine versions of Schur-Weyl duality

In this section we want to look at affine and quantum generalisations of classical
type A Schur-Weyl duality. Schur-Weyl dualities are concerned with commuting
algebra actions A y W x B on a vector space W that generate each other’s
centraliser (meaning that the canonical algebra homomorphisms A→ EndB(W ) and
B → EndA(W )op are surjective). Very often this will induce an equivalence between
certain subcategories of A-mod and B-mod. We will explain four such dualities in
this section (classical, quantum, affine and quantum affine). The strategy will be
the same in all four cases:

Step 1: Construct commuting actions AyW x B.

Step 2: Show that EndB(W ) yW x B generate each other’s centraliser.

Step 3: Show that the induced map A→ EndB(W ) is surjective.

Together this implies a double centraliser property for the actions A y W x B.
Surprisingly, Step 2 is the easiest and follows from a general argument which exploits
the structure of the algebras EndB(W ) called Schur algebras. Step 2 also follows
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from the double centraliser theorem if B and W are finite-dimensional and B is
semisimple but this will not always be the case. The real work has to be done in
Step 1 and Step 3. This will usually boil down to a few explicit calculations.
The Schur-Weyl dualities from this section go back to [Jim86] in the quantum case
and to [CP96] and [Gre97] in the (quantum) affine case. However, some of our proofs
will be new (or at least a modification of the arguments in the sources above) since
we want to avoid using more complicated machinery. In particular, all our proofs
are self-contained and mostly rely on a few elementary calculations.

2.1 Classical Schur-Weyl duality

Before we look at the quantum or affine setting, let us briefly recall classical Schur-
Weyl duality. For V = Cn, we can equip V ⊗r with the structure of a left sln-module
and the structure of a right Sr-module (by permuting the tensor factors). Schur-
Weyl duality then states the following.

Theorem 2.1. The commuting actions sln y V ⊗r x Sr generate each other’s
centraliser.

Here the action of sln can also be replaced by SLn(C), GLn(C) or gln and the
statement still holds. Let us briefly outline the standard proof of classical Schur-
Weyl duality. Details can be found in [EGH+11, Section 5.18]. The main ingredient
is the double centraliser theorem.

Theorem 2.2 (Double Centraliser Theorem). Let K be a field and let E be a
finite-dimensional K-vector space. For any semisimple K-algebra A ⊂ EndK(E)
and B := EndA(E), the following hold:

1. The algebra B is semisimple;

2. EndB(E) = A;

3. E decomposes as a (A,B)-bimodule into

E ∼=
⊕

Vi ⊗Wi

where the Vi are the irreducible left A-modules and the Wi are the irreducible
right B-modules.

In light of this, it seems reasonable to look at EndSr(V
⊗r) in more detail.

Definition 2.3. The algebra S(n, r) := EndSr(V
⊗r) is called the Schur algebra.

Remark 2.4. We consider the Schur algebra S(n, r) as an endomorphism algebra
but it can also be constructed by dualising the coalgebra of degree r homogeneous
polynomials in n variables (see [Gre06, Section 2]). For a more complete description
of the Schur algebra which arises from viewing GLn(C) as an algebraic group, we
refer to [Don86].

Since C[Sn] is semisimple, the double centraliser theorem tells us that the com-
muting actions

S(n, r) y V ⊗r x Sr

generate each other’s centraliser. Classical Schur-Weyl duality then follows if one
can show that the algebra homomorphism U(sln) → S(n, r) induced by the sln-
action is surjective. This can be done by direct computation. The double centraliser
theorem also establishes a link between the representation theories of sln and Sr.
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Corollary 2.5. There is a bijection
iso. classes of

irreducible sln-representations
appearing in V ⊗r

 1:1←→


iso. classes of

irreducible Sr-representations
appearing in V ⊗r

 .

For the rest of this section, we look at a slightly different approach to Schur-Weyl
duality which relies on the structure of the Schur algebra S(n, r) but avoids finite-
dimensionality and semisimplicity arguments as in the double centraliser theorem.
This will be useful when we prove generalisations of classical Schur-Weyl duality.

Definition 2.6. For n, r ∈ N a composition of r with n parts is a sequence λ =
(λ1, λ2, ..., λn) ∈ Nn0 such that λ1 + λ2 + ...+ λn = r. We denote the set of all such
sequences by Λ(n, r) and l(λ) := (1, ..., 1︸ ︷︷ ︸

λ1

, ..., n, ..., n︸ ︷︷ ︸
λn

) ∈ {1, ..., n}r for any λ ∈ Λ(n, r).

For λ ∈ Λ(n, r) and V = Cn (with standard basis v1, ..., vn) let

(V ⊗r)λ := SpanC{vi = vi1 ⊗ ...⊗ vir | #{l | il = k} = λk}.

This is the (λ1 − λ2)h∗1 + (λ2 − λ3)h∗2 + ... + (λn−1 − λn)h∗n−1-weight space for the
sln(C)-action where h1, ..., hn−1 are the standard basis elements of the diagonal
Cartan subalgebra of sln. In other words,

(V ⊗r)λ = {v ∈ V ⊗r | hi · v = (λi − λi+1) · v}

and we have the weight space decomposition V ⊗r ∼=
⊕

λ∈Λ(n,r)(V
⊗r)λ. Since the sln-

action and the Sr-action on V ⊗r commute, the weight spaces are preserved by the
Sr-action. Hence, (V ⊗r)λ is a (right) Sr-submodule of V ⊗r. There is a distinguished
element

vl(λ) := v⊗λ1
1 ⊗ v⊗λ2

2 ⊗ ...⊗ v⊗λnn ∈ (V ⊗r)λ.

The element vl(λ) is stabilised by the Young subgroup

Sλ := Sλ1 × Sλ2 × ...× Sλr

and vl(λ) generates the weight space (V ⊗r)λ as an Sr-module. By Frobenius reci-
procity we get a surjective Sr-homomorphism

1λ ↑SrSλ −→ (V ⊗r)λ

1⊗ 1 7−→ vl(λ)

where 1λ is the trivial Sλ representation and 1λ ↑SrSλ= 1λ ⊗C[Sλ] C[Sr] denotes in-
duction. In fact, the map above is an isomorphism since both vector spaces have
dimension |Sr||Sλ| . Hence, there is an isomorphism of Sr-representations⊕

λ∈Λ(n,r)

1λ ↑SrSλ
∼−→ V ⊗r

1λ ↑SrSλ3 1⊗ σ 7−→ vl(λ)·σ.

(6)

There is another way we can realise a weight space as an Sr-module. Let

eλ :=
∑
σ∈Sλ

σ.
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Then Ceλ ∼= 1λ as Sλ-representations. By Frobenius reciprocity, there is an induced
homomorphism of Sr-representations

(V ⊗r)λ ∼= 1λ ↑SrSλ
∼−→ eλC[Sr]. (7)

and a dimension count shows that this in fact an isomorphism. Note that

e2
λ =

∑
σ∈Sλ

σ

2

=
∑

σ,τ∈Sλ

στ = |Sλ|eλ.

Lemma 2.7. Let K be field, A a K-algebra, M a right A-module and N a left A-
module. Let e ∈ A such that e2 = ce for some c ∈ K×. Then there are isomorphisms
of K-vector spaces

Me
∼−→ HomA(eA,M) eN

∼−→ HomA(Ae,N)

me 7−→ (ea 7→ (me) · (ea)) en 7−→ (ae 7→ (ae) · (en)).

Proof. The assignment ϕ 7→ 1
cϕ(e) is an inverse to the maps above.

By Lemma 2.7 there is an isomorphism of vector spaces

S(n, r)
(7)∼= EndSr

 ⊕
λ∈Λ(n,r)

eλC[Sr]


∼=

⊕
λ,µ∈Λ(n,r)

HomSr(eλC[Sr], eµC[Sr])

∼=
⊕

λ,µ∈Λ(n,r)

eµC[Sr]eλ.

(8)

For any σ ∈ Sr we have

eµσeλ = eµ ·
∑
τ∈σSλ

τ = |σSλσ−1 ∩ Sµ| ·

 ∑
τ∈SµσSλ

τ

 .

We see that {eµyeλ | y ∈ µSλr } is a basis of eµC[Sr]eλ where µSλr is the set of
(shortest) double coset representatives of Sµ\Sr/Sλ. We can use this to count the
dimension of the Schur algebra. In fact,

dimC(S(n, r)) =
∑

λ,µ∈Λ(n,r)

dimC(eµC[Sr]eλ) =
∑

λ,µ∈Λ(n,r)

|Sµ\Sr/Sλ|. (9)

Let us study the Schur algebra and its idempotents in more detail using the iso-
morphism from (8). For x ∈ eµC[Sr]eλ, let φxµ,λ ∈ HomSr(eλC[Sr], eµC[Sr]) be the
homomorphism induced by left multiplication with x. We can consider this as an
element of S(n, r) via the isomorphism V ⊗r ∼=

⊕
λ∈Λ(n,r) eλC[Sr] (so that φxµ,λ acts

by 0 on eλ′C[Sr] for λ′ 6= λ). Then φxµ,λ is the element corresponding to x under the
isomorphism from (8). Note that

φxµ,λ · φx
′
µ′,λ′ =

{
φxx

′
µ,λ′ if λ = µ′

0 otherwise.
(10)
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In particular, 1
|Sλ|φ

eλ
λ,λ = φ

1
|Sλ|

eλ

λ,λ ∈ S(n, r) an idempotent which is the projection

onto the weight space eλC[Sr] ∼= (V ⊗r)λ and 1 =
∑

λ∈Λ(n,r)
1
|Sλ|φ

eλ
λ,λ. Moreover,

φ
eµ
µ,µS(n, r)φeλλ,λ = HomSr((V

⊗r)λ, (V
⊗r)µ)

2.7
= {φxµ,λ | x ∈ eµC[Sr]eλ}.

For n ≥ r let
ω := (1, ..., 1︸ ︷︷ ︸

r

, 0, ..., 0︸ ︷︷ ︸
n−r

) ∈ Λ(n, r).

Then Sω ⊂ Sr is the trivial subgroup and φ1
ω,ω ∈ S(n, r) is an idempotent which is

the projection onto (V ⊗r)ω. By (10) there is an algebra isomorphism

φ1
ω,ωS(n, r)φ1

ω,ω = {φxω,ω | x ∈ C[Sr]}
∼−→ C[Sr]

φxω,ω 7−→ x.

In particular, we can consider V ⊗r as a right φ1
ω,ωS(n, r)φ1

ω,ω-module.

Lemma 2.8. We have V ⊗r ∼= S(n, r)φ1
ω,ω as (S(n, r), φ1

ω,ωS(n, r)φ1
ω,ω)-bimodules.

Proof. The isomorphism is given by

V ⊗r ∼=
⊕

λ∈Λ(n,r)

eλC[Sr]
∼−→

⊕
λ∈Λ(n,r)

φeλλ,λS(n, r)φ1
ω,ω
∼= S(n, r)φ1

ω,ω

eλx 7−→ φeλxλ,ω .

The formulas from (10) show that this is both S(n, r)-linear and φ1
ω,ωS(n, r)φ1

ω,ω-
linear, i.e. an isomorphism of bimodules.

This can be used to give a proof of the double centraliser property without using
semisimplicity.

Corollary 2.9. For n ≥ r the commuting action S(n, r) y V ⊗r x Sr generate
each other’s centraliser.

Proof. By definition, we have S(n, r) = EndSr(V
⊗r). We need to show that the ho-

momorphism C[Sr]→ EndS(n,r)(V
⊗r)op is surjective. By Lemma 2.8 this is equiva-

lent to showing that the homomorphism φ1
ω,ωS(n, r)φ1

ω,ω → EndS(n,r)(S(n, r)φ1
ω,ω)op

is surjective. Lemma 2.7 actually shows that this map is an isomorphism.

The representation theoretic correspondence from Corollary 2.5 can also be
proved using the structure of the Schur algebra. Let us first explain this approach
in a more general framework.

Let K be a field and let A be a K-algebra which is not necessarily finite-dimensional
(but unital).

Definition 2.10. We denote by A-Mod the category of (left) A-modules and by
A-mod the full subcategory consisting of the finite-dimensional (left) A-modules.

For any idempotent e ∈ A we can consider the algebra eAe with unit element e.
There are functors

F : A-Mod −→ eAe-Mod

M 7−→ eM

G : eAe-Mod −→ A-Mod

N 7−→ Ae⊗eAe N.

(11)
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There is an isomorphism of eAe-modules eAe ⊗eAe N ∼= N which is natural in N
and hence F ◦G ∼= ideAe-Mod. On the other hand, there is a natural transformation
η : G ◦ F → idA-Mod with

ηM : Ae⊗eAe eM −→M

ae⊗ em 7−→ aem.

Note, however, that ηM is not an isomorphism in general (for instance, ηM = 0 if
eM = 0). Still, we can make the following observation.

Lemma 2.11. We have e · ker(ηM ) = 0. Moreover, ηM is surjective if AeM = M .

Proof. Since ηM restricts to an isomorphism of eAe-modules e·(Ae⊗eAeeM)
∼→ eM ,

we get e · ker(ηM ) = 0. Moreover, im(ηM ) = Ae · eM = AeM which implies the
surjectivity claim.

Corollary 2.12. If AeA = A, then ηM is an isomorphism for all A-modules M .
In particular, G ◦ F ∼= idA-Mod and G and F are equivalences of categories. More-
over, if G sends finite-dimensional eAe-modules to finite-dimensional A-modules,
this descends to an equivalence A-mod ∼= eAe-mod.

Proof. We have
AeM = AeAM = AM = M.

so ηM is surjective by Lemma 2.11. Note that

ker(ηM ) = A ker(ηM ) = AeA ker(ηM ) = Ae ker(ηM ) = 0.

Hence, ηM is an isomorphism. This shows G ◦ F ∼= idA-Mod. We have already seen
that F ◦G ∼= ideAe-Mod proving that F and G are equivalences of categories. F clearly
preserves finite-dimensionality, so the equivalence descends to A-mod ∼= eAe-mod if
G preserves finite-dimensionality.

We want to apply Corollary 2.12 to the Schur algebra. For this, we claim that
S(n, r)φ1

ω,ωS(n, r) = S(n, r). In fact, this follows from 1 =
∑

λ∈Λ(n,r)
1
|Sλ|φ

eλ
λ,λ and

|Sλ|φeλλ,λ = (φeλλ,λ)2 = φeλλ,ωφ
1
ω,ωφ

eλ
ω,λ ∈ S(n, r)φ1

ω,ωS(n, r) (12)

for any λ ∈ Λ(n, r). Moreover, we have

V ⊗r ⊗C[Sr] (−) ∼= S(n, r)φ1
ω,ω ⊗φ1

ω,ωS(n,r)φ1
ω,ω

(−)

as functors from C[Sr]-mod to S(n, r)-mod by Lemma 2.8. Applying Corollary 2.12
yields the following.

Proposition 2.13. The functor

C[Sr]-mod −→ S(n, r)-mod

M 7−→ V ⊗r ⊗C[Sr] M

is an equivalence of categories.
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2.2 Jimbo’s quantum Schur-Weyl duality

We have already encountered the Hecke algebra as a deformation of the group al-
gebra. There is a similar construction for the universal enveloping algebra of a
semisimple Lie algebra (but recovering the original algebra in this case is more in-
volved than just specialising the parameter q → 1). These are called quantum
groups. In this section we define quantum sln and explain its connection with the
Hecke algebra. Recall the Serre presentation of the semisimple Lie algebra sln (see
for example [Hum12a, Thm. 18.3] for a proof).

Theorem 2.14. The Lie algebra sln is isomorphic to the Lie algebra with generators
ei, fi, hi (1 ≤ i ≤ n− 1) and relations

(S1) [hi, hj ] = 0

(S2) [hi, ej ] = aijej and [hi, fj ] = −aijfj

(S3) [ei, fj ] = δi,jhi

(S4) ad(ei)
1−aij (ej) = 0 and ad(fi)

1−aij (fj) = 0 for i 6= j

where A = (aij)1≤i,j≤n−1 = (〈αi, α∨j 〉)1≤i,j≤n−1 is the Cartan matrix of sln. The
relations above are called the Serre relations.

The defining relations of quantum sln are inspired by these relations.

Definition 2.15. The quantum group Uq(sln) is the C(q)-algebra with generators

Ei, Fi,K
±1
i (1 ≤ i ≤ n− 1)

and relations (whenever they make sense)

(UQ1) (i) KiK
−1
i = 1 = K−1

i Ki

(ii) KiKj = KjKi

(UQ2) (i) KiEj = qaijEjKi

(ii) KiFj = q−aijFjKi

(UQ3) [Ei, Fj ] = δi,j
Ki−K−1

i
q−q−1

(UQ4) (i) E2
i Ei±1 − (q + q−1)EiEi±1Ei + Ei±1E

2
i = 0

(ii) F 2
i Fi±1 − (q + q−1)FiFi±1Fi + Fi±1F

2
i = 0

(iii) EiEj = EjEi if |i− j| > 1

(iv) FiFj = FjFi if |i− j| > 1

where A = (aij)1≤i,j≤n−1 is the Cartan matrix of sln.

The quantum group Uq(sln) is a Hopf algebra with compultiplication

∆ : Uq(sln)→ Uq(sln)⊗C(q) Uq(sln)

Ei 7→ Ei ⊗K−1
i + 1⊗ Ei

Fi 7→ Fi ⊗ 1 +Ki ⊗ Fi
Ki 7→ Ki ⊗Ki.

21



Remark 2.16. There are various other normalisations of the comultiplication ∆.
We have chosen this specific normalisation since it will behave well with respect to
the bar involutions we study in the next section. The other normalisations, which
are often used in the literature, can be obtained from our normalisation by passing
to the opposite comultiplication or by twisting by an (anti-)automorphism. For
example, our comultiplication is obtained from the comultiplictation in [Jan96] by
twisting with the bar involution introduced in the next section (see also [Jan96, (4)])
and then passing to the opposite comultiplication.

Of course, one has to check that ∆ is a well-defined algebra homomorphism
(i.e. that this is compatible with (UQ1)-(UQ4)). These are some straightforward
calculations which will be omitted here. The comultiplication is also coassociative
which is easily checked on the generators. The comultiplication can be used to define
tensor products of Uq(sln)-representations. There also is a counit and an antipode
for Uq(sln) but we do not write these down since we will not use them explicitly.
For more details on the construction of quantum groups and their Hopf algebra
structure, we refer to [Jan96] and [Lus10].

Proposition 2.17. The quantum group Uq(sln) has the structure of a Hopf-algebra
with comultiplication ∆ defined above.

Proof. This can be found in [Jan96, Prop. 4.11] (but one has to use the twist from
Remark 2.16 to get the result in our normalisation).

There also is the notion of a natural representation. Consider the n-dimensional
vector space Vq = C(q)n with standard basis v1, ..., vn. Then Vq can be given the
structure of a Uq(sln)-module via

Ei · vj = δi+1,j · vj−1

Fi · vj = δi,j · vj+1

Ki · vj = qδi,j−δi+1,j · vj .

Again, one can check by hand that this is compatible with (UQ1)-(UQ4). Using the
comultiplication ∆ we can thus act with Uq(sln) on tensor powers of Vq. We can
now ask what the centralising partner of this action is

Uq(sln) y V ⊗rq x ?.

Since we have replaced the action of U(sln) used in the classical Schur-Weyl duality
by its quantum version Uq(sln), it is natural to take the quantum version of C[Sr]
on the other side as well, that is the Hecke algebra

Hr := H(Sr).

To make this work, we need to define a right Hr-module structure on V ⊗rq . This
will be done by ’deforming’ the permutation action of Sr on tensor space. In the
classical case, we were able to decompose our tensor space into weight spaces and
hence into a direct sum of induced representation V ⊗r ∼=

⊕
λ∈Λ(n,r) 1λ ↑SrSλ . Let us

investigate what the Hecke analogue of this construction would be. For Vq = C(q)n,
the space

(V ⊗rq )λ := SpanC(q){vi = vi1 ⊗ ...⊗ vir | #{l | il = k} = λk}

is the simultaneous eigenspace for the action of K1, ...,Kn−1 where the eigenvalue
of Ki is qλi−λi+1 . We call (V ⊗rq )λ a weight space (of the Uq(sln)-module V ⊗rq ). The
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analogue of the trivial Sλ-representation 1λ for the algebra Hλ := H(Sλ) is the
module C(q)q−1 and when inducing this up to Hr, we obtain the parabolic Hecke
module

Mλ = C(q)q−1 ⊗Hλ Hr.

Recall from Proposition 1.14 thatMλ has the basis {1⊗Hx | x ∈ λ(Sr)} where λ(Sr)
is the set of shortest right coset representatives of Sλ in Sr. So by identifying a basis
vector 1⊗Hx ∈ Mλ for x ∈ λ(Sr) with vl(λ)·x ∈ (V ⊗rq )λ we obtain an isomorphism
of vector spaces

Ψr = ⊕λ∈Λ(n,r)Ψ
(λ)
r :

⊕
λ∈Λ(n,r)

Mλ ∼−→ V ⊗rq . (13)

Remark 2.18. Note that the identification
⊕

λ∈Λ(n,r) 1λ ↑SrSλ
∼= V ⊗r from (6) takes

1 ⊗ σ, 1 ⊗ τ ∈ 1λ ↑SrSλ to the same basis vector vl(λ)·σ = vl(λ)·τ in tensor space if σ

and τ lie in the same coset of Sλ\Sr. However, for x ∈ λ(Sr) and y ∈ Sλ, we get

1⊗Hx
Ψ

(λ)
r7→ vl(λ)·x

1⊗Hyx = q−l(y) ⊗Hx
Ψ

(λ)
r7→ q−l(y) · vl(λ)·x

under the identification from (13). This means that in the quantum setting it does
actually matter what coset representatives we work with.

There is a (right) Hr-module structure on V ⊗rq induced along the identification
from (13). By construction, the Hr-action preserves weight spaces and hence the
action commutes with the elements K1, ...,Kn−1 on V ⊗rq . However, it is not obvious
from the construction how the elements Ei, Fi ∈ Uq(sln) interact with the Hecke
algebra. To understand this better, we derive explicit formulas for the Hr-action on
tensor space.

Lemma 2.19. For any k = 1, ..., r − 1 and i = (i1, i2, ..., ir) ∈ {1, ..., n}r we have

vi ·Hsk =


vi·sk if ik < ik+1

vi·sk + (q−1 − q)vi if ik > ik+1

q−1 · vi if ik = ik+1.

Proof. Let vi = vl(λ)·x = Ψ
(λ)
r (1 ⊗ Hx) for some λ ∈ Λ(n, r) and x ∈ λ(Sr). Then

using the multiplication formulas for parabolic Hecke modules from Proposition 1.14,
we obtain

vi ·Hsk = Ψ(λ)
r (1⊗HxHsk)

=


Ψ

(λ)
r (1⊗Hxsk) if xsk ∈ λ(Sr), xsk > x

Ψ
(λ)
r (1⊗Hxsk) + (q−1 − q)Ψ(λ)

r (1⊗Hx) if xsk ∈ λ(Sr), xsk < x

q−1 ·Ψ(λ)
r (1⊗Hx) if xsk 6∈ λ(Sr)

=


vi·sk if xsk ∈ λ(Sr), xsk > x

vi·sk + (q−1 − q)vi if xsk ∈ λ(Sr), xsk < x

q−1 · vi if xsk 6∈ λ(Sr).

The rest of the proof follows from some well-known facts about the (Coxeter) group
Sn: We have

ik = ik+1 ⇔ l(λ) · xsk = l(λ) · x⇔ Sλxsk = Sλx⇔ xsk 6∈ λ(Sr)
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where the last equivalence uses that xsk 6∈ λ(Sr) implies xsk = rx for some r ∈ Sλ
(see for example [GP00, Lemma 2.1.2]). Note that

l(xsk) =

{
l(x) + 1 if k · x−1 < (k + 1) · x−1

l(x)− 1 if k · x−1 > (k + 1) · x−1

(c.f. [Hum90, Thm. 5.4]). The entries of l(λ) are weakly increasing. Since ik and
ik+1 are the k-th (resp. (k+1)-st) entry of l(λ)·x = (l(λ)1·x−1 , l(λ)2·x−1 , ..., l(λ)r·x−1)
we get ik ≤ ik+1 if xsk > x and ik ≥ ik+1 if xsk < x. This finishes the proof.

Proposition 2.20. The actions Uq(sln) y V ⊗rq x Hr commute.

Proof. We first check the claim for r = 2. We have H2 = SpanC(q){He, Hs}. As
noted before, Hs preserves the weight spaces of V ⊗V and hence Hs commutes with
K1, ...,Kn−1. To prove that Hs commutes with the Ei and the Fi, we decompose
V ⊗ V into eigenspaces for the endomorphism Hs and show that these eigenspaces
are preserved by the Ei and the Fi. For any 1 ≤ j < k ≤ n the formulas from
Lemma 2.19 tell us that

vj ⊗ vj ·Hs = q−1 · vj ⊗ vj

(qvj ⊗ vk + vk ⊗ vj) ·Hs = qvk ⊗ vj + vj ⊗ vk + (q−1 − q)vk ⊗ vj
= q−1 · (qvj ⊗ vk + vk ⊗ vj)

(q−1vj ⊗ vk − vk ⊗ vj) ·Hs = q−1vk ⊗ vj − vj ⊗ vk − (q−1 − q)vk ⊗ vj
= (−q) · (q−1vj ⊗ vk − vk ⊗ vj).

Thus, we have the eigenspace decomposition

V ⊗ V = SpanC(q) ({vj ⊗ vj | 1 ≤ j ≤ n} ∪ {qvj ⊗ vk + vk ⊗ vj | 1 ≤ j < k ≤ n})
⊕ SpanC(q){q−1vj ⊗ vk − vk ⊗ vj | 1 ≤ j < k ≤ n}.

Recall that

∆(Ei) = Ei ⊗K−1
i + 1⊗ Ei

∆(Fi) = Fi ⊗ 1 +Ki ⊗ Fi.

Hence, the Ei and the Fi act on the bases of the eigenspaces found above as follows
(where 1 ≤ j < k ≤ n):

vj ⊗ vj
Ei7−→

{
qvi ⊗ vi+1 + vi+1 ⊗ vi if j = i+ 1

0 otherwise

qvj ⊗ vk + vk ⊗ vj
Ei7−→


qvi ⊗ vk + vk ⊗ vi if j = i+ 1

qvj ⊗ vi + vi ⊗ vj if j 6= i, k = i+ 1

(q + q−1)vi ⊗ vi if j = i, k = i+ 1

0 otherwise

q−1vj ⊗ vk − vk ⊗ vj
Ei7−→


q−1vi ⊗ vk − vk ⊗ vi if j = i+ 1

q−1vj ⊗ vi − vi ⊗ vj if j 6= i, k = i+ 1

0 otherwise.
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vj ⊗ vj
Fi7−→

{
qvi ⊗ vi+1 + vi+1 ⊗ vi if j = i

0 otherwise

qvj ⊗ vk + vk ⊗ vj
Fi7−→


qvj ⊗ vi+1 + vi+1 ⊗ vj if k = i

qvi+1 ⊗ vk + vk ⊗ vi+1 if j = i, k 6= i+ 1

(q + q−1)vi+1 ⊗ vi+1 if j = i, k = i+ 1

0 otherwise

q−1vj ⊗ vk − vk ⊗ vj
Fi7−→


q−1vj ⊗ vi+1 − vi+1 ⊗ vj if k = i

q−1vi+1 ⊗ vk − vk ⊗ vi+1 if j = i, k 6= i+ 1

0 otherwise.

We see that the Ei and the Fi preserve the eigenspaces of the Hs-action. This shows
the claim of the proposition for r = 2. For the general case, consider Hsk ∈ Hr with
k ∈ {1, ..., r − 1}. By Lemma 2.19 this acts on V ⊗rq via

id⊗k−1⊗Hs ⊗ idr−k−1 .

Since the comultiplication ∆ is coassociative, any x ∈ Uq(sln) acts on V ⊗rq as

(id⊗k−1⊗∆⊗ id⊗r−k−1)(y) ∈ Uq(sln)⊗r

for some y ∈ Uq(sln)⊗r−1. By the r = 2 case, Hs commutes with ∆(z) on V ⊗ V for
any z ∈ Uq(sln) and hence Hsk commutes with x on V ⊗rq . We have thus shown the
proposition for arbitrary r.

Remark 2.21. Our construction of the Hr-action is a straightforward ’by hand’
deformation of the classical permutation action on tensor space. However, the fact
that this commutes with the Uq(sln)-action is a bit mysterious when just checked
by brute force calculations as above. There is a more conceptual approach to the
Hecke algebra action on tensor space via the so-called universal R-matrix (we refer
to [Jan96, Section 7] for more details on R-matrices). Using this R-matrix the two
actions will commute pretty much by construction (see [Jim86]). We have chosen a
more computational approach instead since it highlights the analogy with classical
Schur-Weyl duality and requires less machinery.

Our next goal is a double centraliser property for the quantum case.

Definition 2.22. The algebra Sq(n, r) := EndHr(V
⊗r
q ) is called the quantum Schur

algebra or short the q-Schur algebra.

By Proposition 1.12, the Hecke algebra Hr is semisimple and by the double
centraliser theorem (Theorem 2.2) we get that

Sq(n, r) y V ⊗rq x Hr

generate each other’s centraliser. The Uq(sln)-action on V ⊗rq induces an algebra
homomorphism Uq(sln) → Sq(n, r) so proving a quantum Schur-Weyl duality boils
down to showing that this map is surjective. For this, we observe that the structure
of the q-Schur algebra is in many ways similar to that of the ordinary Schur algebra.
In fact, the isomorphism of Hr-modules

V ⊗rq
∼=

⊕
λ∈Λ(n,r)

Mλ
(5)∼=

⊕
λ∈Λ(n,r)

xλHr (14)
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together with Lemma 2.7 yields the isomorphism of vector spaces

Sq(n, r) ∼= EndHr

 ⊕
λ∈Λ(n,r)

xλHr

 ∼= ⊕
λ,µ∈Λ(n,r)

xµHrxλ.

Lemma 2.23. The set {xµHyxλ | y ∈ µSλr } is a C(q)-basis of xµHrxλ. In particular,
dimC(q)(Sq(n, r)) = dimC(S(n, r)).

Proof. Any x ∈ Sr is of the form x = ayb for some a ∈ Sµ, b ∈ Sλ and y ∈ µSλr with
l(x) = l(a) + l(y) + l(b) (see for example [GP00, Prop. 2.1.7]). Then Hx = HaHyHb

by Proposition 1.11 and xµHxxλ = q−l(a)−l(b)xµHyxλ. This implies that the xµHyxλ
with y ∈ µSλr span xµHrxλ. We claim that they are also linearly independent. If
not, there is a linear dependence∑

y∈µSλr

py(q) · xµHyxλ = 0

for some py(q) ∈ C(q) not all 0. After multiplying with an element of C(q)× and
dividing by some power of q−1, we may assume that py(q) ∈ C[q, q−1] and py(1) not
all 0. Let ϕ : HC[q,q−1](Sr) → C[Sr] be the specialisation homomorphism at q → 1.
Then ϕ(xµHyxλ) = eµyeλ and

0 = ϕ

 ∑
y∈µSλr

py(q) · xµHyxλ

 =
∑
y∈µSλr

py(1) · eµyeλ.

This contradicts the linear independence of the eµyeλ in eµC[Sr]eλ and the claim

follows. In particular, dimC(q) Sq(n, r) =
∑

λ,µ∈Λ(n,r) |Sµ\Sr/Sλ|
(9)
= dimC S(n, r).

Now, we are ready prove quantum Schur-Weyl duality which was first proved by
Jimbo [Jim86].

Theorem 2.24. The commuting actions Uq(sln) y V ⊗rq x Hr generate each other’s
centraliser.

Proof. Our proof is an adaptation of the arguments from [KS12, Section 8.6.3].
However, we avoid using facts about the representation theory of Uq(sln). The
actions sln y V ⊗r and Uq(sln) y V ⊗rq induce algebra homomorphisms

ψ : U(sln) −→ S(n, r) ⊂ EndC(V ⊗r)

ψq : Uq(sln) −→ Sq(n, r) ⊂ EndC(q)(V
⊗r
q ).

We know that ψ is surjective and we need to show that ψq is surjective. The space
EndC(q)(V

⊗r
q ) has the basis {Ei1,j1 ⊗ ....⊗Eir,jr | il, jl ∈ {1, ..., n}}. Let AC[q,q−1] be

the C[q, q−1]-span of this basis which is a C[q, q−1]-algebra. Let

ϕ : AC[q,q−1] −→ EndC(V ⊗r)

be the specialisation at q → 1. Clearly, ψq(Ei), ψq(Fi) ∈ AC[q,q−1] and

ϕ(ψq(Ei)) = ψ(ei)

ϕ(ψq(Fi)) = ψ(fi).
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This shows that S(n, r) = ψ(U(sln)) ⊂ ϕ ◦ ψq(UC[q,q−1]) where UC[q,q−1] is the
C[q, q−1]-subalgebra of Uq(sln) generated by the Ei, Fi. In particular, we can find
X1, ..., Xm ∈ UC[q,q−1] that map to a basis of S(n, r) under ϕ ◦ ψq. We claim that
ψq(X1), ..., ψq(Xm) are C(q)-linearly independent in Sq(n, r). If not, there is a linear
dependence

m∑
i=1

pi(q) · ψq(Xi) = 0

where the pi(q) ∈ C(q) are not all 0. By our standard division technique, we may
assume pi(q) ∈ C[q, q−1] for all i with pi(1) not all 0. Then

0 = ϕ

(
m∑
i=1

pi(q) · ψq(Xi)

)
=

m∑
i=1

pi(1) · ϕ(ψq(Xi))

contradicting the linear independence of ϕ(ψq(X1)), ..., ϕ(ψq(Xm)). This shows that
ψq(X1), ..., ψq(Xm) are linearly independent. The surjectivity of ψq now follows since

m = dimC(S(n, r))
Lemma 2.23

= dimC(q)(Sq(n, r)).

This finishes the proof.

Since Hr is semisimple, we can apply the double centraliser theorem to obtain
the following duality on the level of representations.

Corollary 2.25. There is a bijection
iso. classes of

simple Uq(sln)-modules
appearing in V ⊗rq

 1:1←→


iso. classes of

simple Hr-modules
appearing in V ⊗rq

 .

Remark 2.26. One can show that any finite-dimensional Uq(sln)-representations is
completely reducible (see [Jan96, Thm. 5.17]). Hence, by Corollary 2.25 there is an
equivalence between the subcategories of Uq(sln)-mod and mod-Hr which consist of
those finite-dimensional representations whose simple constituents appear in V ⊗rq .
Alternatively, there is a straightforward quantum version of the arguments we used
to establish Proposition 2.13. In particular, these arguments show that for n ≥ r the
functor V ⊗rq ⊗Hr (−) induces an equivalence of categories between Hr-mod and the
subcategory of Uq(sln)-mod consisting of those finite-dimensional representations
that are annihilated by ker(Uq(sln)→ Sq(n, r)).

2.3 Bar involutions

Recall the bar involution of the Hecke algebra which is the unique C(q)-antilinear
ring endomorphism of Hr with the property that Hs = H−1

s . There also is a bar
involution on Uq(sln) and its representations V ⊗rq . In [FKK98] a connection between
the bar involution of the Hecke algebra and the quantum group is established (see
also [FK97]). The involution on V ⊗rq is usually constructed using the so-called
quasi-R-matrix which is closely related to the R-matrix from Remark 2.21. The
general construction of the quasi-R-matrix is non-trivial and can be found in [Lus10,
Chapter 4]. We will focus on the n = 2 case so that we can keep things explicit. In
other words, we consider the quantum group Uq(sl2) with generators E,F,K±1 and
relations

KK−1 = 1 = K−1K, KE = q2EK, KF = q−2FK, [E,F ] =
K −K−1

q − q−1
. (15)
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In this section we will also use the notation

[m] :=
qm − q−m

q − q−1
= qm−1 + qm−3 + ...+ q1−m ∈ C[q, q−1]

for any m ∈ Z. This is sometimes called a quantum integer since one recovers the
integer m ∈ Z for q → 1. Similarly, we define the quantum factorial and the quantum
binomial coefficient

[m]! := [m] · [m− 1] · ... · [1],

[
n

k

]
:=

[n]!

[k]![n− k]!
.

Definition 2.27. The bar involution of Uq(sl2) is the C(q)-antilinear ring endomor-
phism

¯ : Uq(sl2) −→ Uq(sl2)

E 7−→ E

F 7−→ F

K 7−→ K−1.

It is easy to check that this is compatible with the relations from (15) and it
is clear that this is an involution. We also define an involution σVq on the natural
representation Vq = C(q)2 of Uq(sl2). This is the unique C(q)-antilinear map that
fixes the standard basis, i.e.

σVq(f1(q)v1 + f2(q)v2) = f1(q−1)v1 + f2(q−1)v2.

This is Uq(sl2)-antilinear in the following sense.

Definition 2.28. Let M be a Uq(sl2)-module and σM ∈ EndC(M). We say that
σM is Uq(sl2)-antilinear if σM (x ·m) = x ·m for all x ∈ Uq(sl2) and m ∈M .

We would like to construct a Uq(sl2)-antilinear involution on V ⊗rq . The obvi-

ous candidate is the C(q)-antilinear involution σ⊗rVq which fixes the standard basis.

However, this is not Uq(sl2)-antilinear.

Example 2.29. We have on Vq ⊗ Vq
E · σVq ⊗ σVq(v2 ⊗ v1) = E · v2 ⊗ v1 = (E ⊗K−1 + 1⊗ E) · v2 ⊗ v1 = q−1v1 ⊗ v1

σVq ⊗ σVq(E · v2 ⊗ v1) = σVq ⊗ σVq(q−1v1 ⊗ v1) = qv1 ⊗ v1.

This shows that σVq ⊗ σVq is not Uq(sl2)-antilinear.

To solve this problem, we will twist the involution σVq⊗σVq by an endomorphism
of Vq ⊗ Vq. For this, we extend the bar involution of Uq(sl2) to Uq(sl2)⊗Uq(sl2) via
x1 ⊗ x2 = x1 ⊗ x2. Then, we can consider the map

∆ : Uq(sl2)→ Uq(sl2)⊗ Uq(sl2), x 7→ ∆(x).

This is a coassociative comultiplication which is C(q)-linear. Specifically, we have

∆(E) = E ⊗K + 1⊗ E, ∆(F ) = F ⊗ 1 +K−1 ⊗ F, ∆(K) = K ⊗K.

Now let M , N be Uq(sl2)-modules equipped with Uq(sl2)-antilinear involutions σM ∈
EndC(M), σN ∈ EndC(N). For any ϕ ∈ EndC(q)(M ⊗N) define the bar conjugate

ϕ = (σM ⊗ σN ) ◦ ϕ ◦ (σM ⊗ σN ) ∈ EndC(q)(M ⊗N).

Since σM and σN are Uq(sl2)-antilinear, the bar involution of Uq(sl2)⊗ Uq(sl2) gets
identified with involution of EndC(q)(M ⊗ N) under the map Uq(sl2) ⊗ Uq(sl2) →
EndC(q)(M ⊗N). We can now give a general recipe to construct a Uq(sl2)-antilinear
involution σM⊗N for certain M and N .
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Proposition 2.30. Let Θ ∈ EndC(q)(M ⊗N) such that

∆(x) ◦Θ = Θ ◦∆(x) and Θ ◦Θ = 1

in EndC(q)(M ⊗N) for all x ∈ Uq(sl2). Then

σM⊗N := Θ ◦ (σM ⊗ σN ) ∈ EndC(M ⊗N)

is a Uq(sl2)-antilinear involution.

Proof. We have

σ2
M⊗N = Θ ◦ (σM ⊗ σN ) ◦Θ ◦ (σM ⊗ σN ) = Θ ◦Θ = 1

proving that σM⊗N is an involution. Moreover, we have

σM⊗N ◦∆(x) = Θ ◦ (σM ⊗ σN ) ◦∆(x)

= Θ ◦∆(x) ◦ σM ⊗ σN
= ∆(x) ◦Θ ◦ σM ⊗ σN
= ∆(x) ◦ σM⊗N

in EndC(M ⊗N) for any x ∈ Uq(sl2). This implies that σM⊗N is Uq(sl2)-antilinear.

The hard part is the construction of an element Θ as above. This will make use
of the following observation.

Lemma 2.31. For any m ≥ 0 we have

1) ∆(E) ·Em⊗Fm−Em⊗Fm ·∆(E) = Em⊗ [E,Fm] +pm(q)Em+1⊗ [E,Fm+1]

2) ∆(F ) ·Em⊗Fm−Em⊗Fm ·∆(F ) = [F,Em]⊗Fm + pm(q)[F,Em+1]⊗Fm+1

3) ∆(K) · Em ⊗ Fm − Em ⊗ Fm ·∆(K) = 0

where pm(q) = −qm(q−q−1)
[m+1] .

Proof. Let us prove 1) (the other cases are similar). We have

∆(E) · Em ⊗ Fm − Em ⊗ Fm ·∆(E)

= Em+1 ⊗K−1Fm + Em ⊗ EFm − Em+1 ⊗ FmK − Em ⊗ FmE
= Em+1 ⊗ (K−1Fm − FmK) + Em ⊗ [E,Fm].

Moreover,

pm(q)[E,Fm+1] =

m∑
k=0

pm(q)F k[E,F ]Fm−k

=

m∑
k=0

−qm

[m+ 1]
F k(K −K−1)Fm−k

=
m∑
k=0

−qm

[m+ 1]

(
q−2(m−k)FmK − q−2kK−1Fm

)
=
−qm

[m+ 1]

(
q−m[m+ 1]FmK − q−m[m+ 1]K−1Fm

)
= K−1Fm − FmK.

Together, these two calculations imply 1).
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We use a telescope sum argument and Lemma 2.31 to construct an element
Θ ∈ EndC(q)(M ⊗N) as it appears in Proposition 2.30. For this, let

Θ(k) :=
k∑

m=0

(−1)mp̂m(q)Em ⊗ Fm ∈ Uq(sl2)⊗ Uq(sl2).

with p̂m(q) =
∏m−1
i=0 pi(q). By Lemma 2.31 we get

∆(E)Θ(k) −Θ(k)∆(E) =
k∑

m=0

(−1)mp̂m(q)(Em ⊗ [E,Fm] + pm(q)Em+1 ⊗ [E,Fm+1])

=
k∑

m=0

(−1)mp̂m(q)Em ⊗ [E,Fm]

+

k∑
m=0

(−1)mp̂m+1(q)Em+1 ⊗ [E,Fm+1]

= (−1)kp̂k+1(q)Ek+1 ⊗ [E,F k+1],

∆(F )Θ(k) −Θ(k)∆(F ) = ... = (−1)kp̂k+1(q)[F,Ek+1]⊗ F k+1,

∆(K)Θ(k) −Θ(k)∆(K) = 0.

Now assume that Em ·M = 0 and Fm · N = 0 for m � 0. Then for k � 0 the
element Θ(k) defines a unique endomorphism (independent of k)

Θ :=
∑
m≥0

(−1)mp̂m(q)Em ⊗ Fm ∈ EndC(q)(M ⊗N) (16)

and ∆(x) ◦Θ = Θ ◦∆(x).

Lemma 2.32. We have Θ ◦Θ = 1.

Proof.

Θ ◦Θ =

∑
m≥0

(−1)mp̂m(q)Em ⊗ Fm
 ◦

∑
m≥0

(−1)mp̂m(q−1)Em ⊗ Fm


=
∑
m≥0

(−1)m

( ∑
k+s=m

p̂k(q)p̂s(q
−1)

)
Em ⊗ Fm.

Now p̂m(q) =
∏m−1
i=0 pi(q) =

∏m−1
i=0

−qi(q−q−1)
[i+1] = (−1)mqm(m−1)/2 (q−q−1)m

[m]! for m > 0.
Note that if k + s = m then

k(k − 1)− s(s− 1) = k2 − k − s2 + s = (k + s− 1)(k − s) = (m− 1)(2k −m)

and hence∑
k+s=m

p̂k(q)p̂s(q
−1) =

∑
k+s=m

(−1)k+sq
1
2

(k(k−1)−s(s−1)) (q − q−1)k(q−1 − q)s

[k]![s]!

=
∑

k+s=m

(−1)kq
1
2

(m−1)(2k−m) (q − q−1)k+s

[k]![s]!

= q−m(m−1)/2 (q − q−1)m

[m]!

m∑
k=0

(−1)kq(m−1)k

[
m

k

]
.

The quantum binomial theorem implies that
∑m

k=0(−1)kq(m−1)k
[
m
k

]
= 0 for m > 0

(see [Lus10, 1.3.4]). Hence Θ ◦Θ = p̂0(q)p̂0(q−1) = 1.
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We can now define the involutions σV ⊗rq
as follows. We have already constructed

σVq . Assume we have constructed σ
V ⊗r

′
q

for all r′ < r. Choose r1, r2 > 0 such that

r = r1 + r2. It is easy to check that Em · V ⊗kq = Fm · V ⊗kq = 0 for all k and m� 0.
Hence, we can define σV ⊗rq

by applying Proposition 2.30 with M = V ⊗r1q , N = V ⊗r2q

and Θ from (16).

Example 2.33. Let us look at Vq ⊗ Vq. We compute the action of the involution
σVq⊗Vq = Θ ◦ σVq ⊗ σVq on the standard basis. Since σVq ⊗ σVq fixes the standard
basis pointwise, this is the same as acting with Θ = 1 + (q − q−1)E ⊗ F + ... . Note
that F 2 · Vq = 0 = E2 · Vq. We have

Θ(v1 ⊗ v1) = v1 ⊗ v1 + (q − q−1)Ev1 ⊗ Fv1 = v1 ⊗ v1

Θ(v1 ⊗ v2) = v1 ⊗ v2 + (q − q−1)Ev1 ⊗ Fv2 = v1 ⊗ v2

Θ(v2 ⊗ v1) = v2 ⊗ v1 + (q − q−1)Ev2 ⊗ Fv1 = v2 ⊗ v1 + (q − q−1)v1 ⊗ v2

Θ(v2 ⊗ v2) = v1 ⊗ v1 + (q − q−1)Ev2 ⊗ Fv2 = v2 ⊗ v2.

This looks very similar to the bar involution of the Hecke algebra. In fact, the

isomorphism
⊕

λ∈Λ(2,2)Mλ ⊕λΨ
(λ)
2−→ Vq ⊗ Vq of right Hr-modules from (13) induces a

bar involution on Vq ⊗ Vq and we have

v1 ⊗ v1 = Ψ
(2,0)
2 (1⊗He) = Ψ

(2,0)
2 (1⊗He) = v1 ⊗ v1

v1 ⊗ v2 = Ψ
(1,1)
2 (1⊗He) = Ψ

(1,1)
2 (1⊗He) = v1 ⊗ v2

v2 ⊗ v1 = Ψ
(1,1)
2 (1⊗Hs) = Ψ

(1,1)
2 (1⊗ (Hs + (q − q−1)He)

= v2 ⊗ v1 + (q − q−1)v1 ⊗ v2

v2 ⊗ v2 = Ψ
(0,2)
2 (1⊗He) = Ψ

(0,2)
2 (1⊗He) = v2 ⊗ v2.

We see that the involution σVq⊗Vq and the bar involution on Vq ⊗ Vq are the same.

There is one more technical problem we need to address. In fact, our construction
of σV ⊗rq

depends on how we write r as a sum r = r1 + r2 or equivalently on how we

bracket V ⊗rq . It can be shown that the involution σV ⊗rq
is independent of this choice.

Lemma 2.34. Let M,M ′,M ′′ be Uq(sl2)-modules with Uq(sl2)-antilinear involu-
tions σM , σM ′ , σM ′′ and Em ·M = 0, Em ·M ′ = Fm ·M ′ = 0 and Fm ·M ′′ = 0
for m � 0. Then σM⊗(M ′⊗M ′′) = σ(M⊗M ′)⊗M ′′ for σM⊗(M ′⊗M ′′) and σ(M⊗M ′)⊗M ′′
constructed as in Proposition 2.30 with the Θ from (16).

Proof. See [Lus10, 27.3.6].

We can now extend the observations from Example 2.33 to arbitrary tensor
powers.

Proposition 2.35. The bar involution on V ⊗rq induced by
⊕

λ∈Λ(n,r)Mλ Ψr−→ V ⊗rq

is the same as the involution σV ⊗rq
.

Proof. The r = 1 case is obvious. The r = 2 is proved in Example 2.33. We proceed
by induction. Assume we have shown the claim for all r′ < r. The bar involution
on V ⊗rq is the C(q)-antilinear map uniquely determined by the properties

v⊗k1 ⊗ v⊗s2 = v⊗k1 ⊗ v⊗s2 and x ·Hsi = x ·Hsi
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whenever k + s = r, x ∈ V ⊗rq and i ∈ {1, ..., r − 1}. We have Θ(v1 ⊗ x) = v1 ⊗ x for
any x ∈ V ⊗r−1

q since E · v1 = 0. Similarly, we get Θ(x⊗ v2) = x⊗ v2 since F · v2 = 0
and by the induction hypothesis we have

σVq ⊗ σV ⊗r−1
q

(v⊗k1 ⊗ v⊗s2 ) = v⊗k1 ⊗ v⊗s2 = σV ⊗r−1
q

⊗ σVq(v⊗k1 ⊗ v⊗s2 ).

Since σV ⊗rq
= Θ◦σVq⊗σV ⊗r−1

q
= Θ◦σV ⊗r−1

q
⊗σVq we get σV ⊗rq

(v⊗k1 ⊗v
⊗s
2 ) = v⊗k1 ⊗v

⊗s
2 .

It remains to show that σV ⊗rq
(x ·Hi) = σV ⊗rq

(x) ·Hi. For i > 1 we have

σV ⊗rq
(x ·Hi) = Θ ◦ σVq ⊗ σV ⊗r−1

q
(x · (1⊗Hi−1))

(a)
= Θ((σVq ⊗ σV ⊗r−1

q
(x)) · (1⊗Hi−1))

(b)
= (Θ ◦ σVq ⊗ σV ⊗r−1

q
(x)) · (1⊗Hi−1)

= (σV ⊗rq
(x)) ·Hi

using the induction hypothesis in (a) and that Hi−1 commutes with the Uq(sl2)-
action on V ⊗r−1

q in (b). The i = 1 case follows from a similar argument using that
σV ⊗rq

= Θ ◦ (σV ⊗r−1
q

⊗ σVq).

By Theorem 1.16 the isomorphism
⊕

λ∈Λ(n,r)Mλ Ψr−→ V ⊗r also provides us with

bases {bi | i ∈ {1, 2}r} and {bi | i ∈ {1, 2}r} of V ⊗rq uniquely determined by the
properties

σV ⊗rq
(bi) = bi and bi = vi +

∑
j

qZ[q]vj

resp. σV ⊗rq
(bi) = bi and bi = vi +

∑
j

q−1Z[q−1]vj

where the sums run over all j ∈ {1, 2}r such that vi and vj lie in the same weight

space. These are called the canonical, respectively dual canonical basis of V ⊗rq . The
existence and uniqueness of the (dual) canonical bases can also be shown indepen-
dently (i.e. not using the Hecke algebra), see [Lus10, Thm. 27.3.2] and [FKK98,
Prop. 2.3’]. As an application of Proposition 2.35, we compute some parabolic
Kazhdan-Lusztig basis elements by computing (dual) canonical basis elements.

Example 2.36. We use the notation (i1, ..., ir)|(j1, ..., js) = (i1, ..., ir, j1, ..., js). If
E · bi = 0 or F · bj = 0, then

σV r+sq
(bi ⊗ bj) = Θ(bi ⊗ bj) = bi ⊗ bj

and hence bi|j = bi ⊗ bj . We immediately see that

b1|i = v1 ⊗ bi and bi|2 = bi ⊗ v2.

Moreover, it follows from Example 2.29 that b(2,1) = v(2,1) − q−1v(1,2). A direct

computation shows that E · b(2,1) = F · b(2,1) = 0 and hence

b(2,1)|i = b(2,1) ⊗ bi and bi|(2,1) = bi ⊗ b(2,1).

For example, we get

b(2,1,2,1) = b(2,1) ⊗ b(2,1) = (v(2,1) − q−1v(1,2))⊗ (v(2,1) − q−1v(1,2))

= v(2,1,2,1) − q−1v(1,2,2,1) − q−1v(2,1,1,2) + q−2v(1,2,1,2).
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On the parabolic Hecke modules side, this tells us that

M̃ s2s1s3 = Ms2s1s3 − q−1Ms2s3 − q−1Ms2s1 + q−2Ms2

in M(2,2).

Remark 2.37. There are recursive formulas that compute the (dual) canonical basis
in [FKK98]. These formulas are used in [FKK98] to derive recursive expressions for
Kazhdan-Lusztig polynomials corresponding to maximal parabolic subgroups which
were originally obtained in [LS81] using other techniques. There also is a graphical
calculus for the (dual) canonical basis introduced in [FK97] (see also [BS11, (5.12)]
and [BS10, (5.3)]) and the action of the elements E and F on the (dual) canonical
basis can be described explicitly in this graphical interpretation.

2.4 Affine Schur-Weyl duality

In this section we want to look at an affine version of classical Schur-Weyl duality.
The natural replacement for the Sr-action on tensor space will be an action of the
affine symmetric group Saff

r = Zr o Sr. The replacement for the Lie algebra sln
will be the affine Lie algebra ŝln which we will define now. Recall that sln can
be presented by taking generators ei, fi and hi subject to the Serre relations from
Theorem 2.14. The structure of these relations is encoded in the Cartan matrix of
sln or equivalently in its Dynkin diagram. We have already encountered the Dynkin
diagram of affine type A in Example 1.9. This is the diagram

−α0

α1 α2 αn−2 αn−1

.

We can associate a (generalised) Cartan matrix Ã = (ai,j)0≤i,j≤n−1 to this with
entries

aij = 〈αi, α∨j 〉
a0,j = 〈−α0, α

∨
j 〉

ai,0 = 〈αi,−α∨0 〉
a0,0 = 〈−α0,−α∨0 〉

(17)

for 1 ≤ i, j ≤ n− 1.

Definition 2.38. The affine Lie algebra ŝln is the Lie algebra with generators
ei, fi, hi (0 ≤ i ≤ n − 1) subject to the Serre relations from Theorem 2.14 with the
aij being the entries from the generalised Cartan matrix Ã defined above.

Note that there is a natural inclusion sln ↪→ ŝln with ei 7→ ei and fi 7→ fi. The
affine Lie algebra ŝln can also be constructed explicitly as follows. For a Lie algebra
g, the loop algebra of g is the (complex) Lie algebra

L(g) := g⊗C C[t, t−1]

with Lie bracket
[x⊗ p(t), y ⊗ q(t)] = [x, y]⊗ p(t)q(t).

We can extend the loop algebra of sln by a one-dimensional centre

L̂(sln) := L(sln)⊕ Cc
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with Lie bracket

[x⊗ p(t) + αc, y ⊗ q(t) + βc] = [x, y]⊗ p(t)q(t) + κ(x, y)nδn,−mc

where κ(·, ·) is the Killing form of sln.

Theorem 2.39. There is an isomorphism of Lie algebras ŝln ∼= L̂(sln) which iden-
tifies x ∈ sln ⊂ ŝln with x⊗ 1 ∈ L(sln) ⊂ L̂(sln).

Proof. This can be found in [Kac90, §0.3, §9.11].

Note that there is a natural representation of the loop algebra L(sln) (or in fact
even L(gln)) given by

V̂ := V ⊗C C[t, t−1]

with V = Cn and (x ⊗ p(t)) · (v ⊗ q(t)) = xv ⊗ p(t)q(t) for x ∈ sln, v ∈ V and
p(t), q(t) ∈ C[t, t−1]. This extends to a representation of L̂(sln) by letting c act by 0.
The vector space V̂ has the standard basis {vi | i ∈ Z} where (by abuse of notation)

vi+kn := vi ⊗ t−k

for any i ∈ {1, ..., n} and k ∈ Z.

Remark 2.40. The action ŝln ∼= L̂(sln) y V̂ can also be constructed using the
generators ei, fi and hi from Definition 2.38. In fact, one checks that

ei · vj = δi+1,j · vj−1

fi · vj = δi,j · vj+1

hi · vj = (δi,j − δi+1,j) · vj .

(where i ∈ {0, ..., n−1} such that i ≡ i mod n) is compatible with the Serre relations
and hence defines an action ŝln y V̂ . Note that acting with e0 (resp. f0) on V̂ is the
same as acting with En,1 ⊗ t ∈ L̂(sln) (resp. E1,n ⊗ t−1 ∈ L̂(sln)). Conversely, the

action of ei ⊗ tk, fi ⊗ tk ∈ L̂(sln) for 1 ≤ i ≤ n and k ∈ Z can easily be constructed
by acting with the ej , fj ∈ ŝln for 0 ≤ j ≤ n. This shows that one can use both

constructions of the ŝln-action interchangeably. In practice, we will only be working
with the loop algebra realisation of this action, though.

There is a natural (right) Sr-action on V̂ ⊗r (with tensor products taken over C)
given by permuting the tensor factors. We can also act with Zr on V̂ ⊗r by letting
the k-th standard basis vector εk ∈ Zr act by multiplying with t in the k-th factor
of the tensor product, i.e.

vi1 ⊗ ...⊗ vir · εk = vi1 ⊗ ...⊗ vik−n ⊗ ...⊗ vir .

One checks on the standard basis of V̂ ⊗r that sk ◦ εk ◦ sk = εk+1 in EndC(V̂ ⊗r).
Hence, we obtain an Saff

r -action on V̂ ⊗r. By construction, the actions

ŝln y V̂ ⊗r x Saff
r

commute. There is another way we can think about V̂ ⊗r.

Lemma 2.41. The action map

V ⊗r ⊗C[Sr] C[Saff
r ] −→ V̂ ⊗r (18)

is an isomorphism of (U(sln),C[Saff
r ])-bimodules. Similarly, the action map

V ⊗r ⊗C C[Zr] −→ V̂ ⊗r (19)

is an isomorphism of (U(sln),C[Zr])-bimodules.
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Proof. It is clear that the two maps above are bimodule homomorphisms. The map
from (19) is an isomorphism since it identifies the standard basis of V ⊗r ⊗C C[Zr]
with the standard basis of V̂ ⊗r. Note that the multiplication map

C[Sr]⊗C C[Zr] −→ C[Saff
r ]

is an isomorphism of (C[Sr],C[Zr])-bimodules. Then the composition

V ⊗r ⊗C[Sr] C[Saff
r ] ∼= V ⊗r ⊗C[Sr] C[Sr]⊗C C[Zr] ∼= V ⊗r ⊗C C[Zr] ∼→ V̂ ⊗r.

is the action map from (18). This shows that (18) is also an isomorphism.

Definition 2.42. The algebra Ŝ(n, r) := EndSaff
r

(V̂ ⊗r) is called the affine Schur
algebra.

We define

(V̂ ⊗r)λ := SpanC{vi1 ⊗ ...⊗ vir | #{l | il ≡ k mod n} = λk}
∼= (V ⊗r)λ ⊗C C[Zr] ∼= (V ⊗r)λ ⊗C[Sr] C[Saff

r ]

for any composition λ ∈ Λ(n, r). We can also interpret (V̂ ⊗r)λ as a permutation
module via

(V̂ ⊗r)λ ∼= (V ⊗r)λ ⊗C[Sr] C[Saff
r ]

(7)∼= eλC[Sr]⊗C[Sr] C[Saff
r ] ∼= eλC[Saff

r ].

Most of our arguments about the structure of the Schur algebra can be applied word
by word to the affine Schur algebra. In fact, by Lemma 2.7 there is an isomorphism
of vector spaces

Ŝ(n, r) = EndSaff
r

(V̂ ⊗r) ∼= EndSaff
r

 ⊕
λ∈Λ(n,r)

eλC[Saff
r ]

 ∼= ⊕
λ,µ∈Λ(n,r)

eµC[Saff
r ]eλ.

and for any x ∈ eµC[Saff
r ]eλ there is a corresponding element φxµ,λ ∈ Ŝ(n, r). These

multiply as in (10). For n ≥ r we can consider

ω := (1, ..., 1︸ ︷︷ ︸
r

, 0, ..., 0︸ ︷︷ ︸
n−r

) ∈ Λ(n, r).

The same arguments as in the classical case show that there is an algebra isomor-
phism

φ1
ω,ωŜ(n, r)φ1

ω,ω = EndSaff
r

((V̂ ⊗r)ω) = {φxω,ω | x ∈ C[Saff
r ]} ∼= C[Saff

r ]

and a corresponding isomorphism

V̂ ⊗r ∼=
⊕

λ∈Λ(n,r)

eλC[Saff
r ] ∼=

⊕
λ∈Λ(n,r)

φeλλ,λŜ(n, r)φ1
ω,ω
∼= Ŝ(n, r)φ1

ω,ω (20)

of (Ŝ(n, r), φ1
ω,ωŜ(n, r)φ1

ω,ω)-bimodules.

Proposition 2.43. For n ≥ r, the commuting actions Ŝ(n, r) y V̂ ⊗r x Saff
r

generate each other’s centraliser.
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Proof. The proof works exactly as in Corollary 2.9. In fact, by the definition of
the affine Schur algebra, we have Ŝ(n, r) = EndSaff

r
(V̂ ⊗r). Moreover, there is an

isomorphism φ1
ω,ωŜ(n, r)φ1

ω,ω
∼→ End

Ŝ(n,r)
(Ŝ(n, r)φ1

ω,ω)op by Lemma 2.7. It follows

from (20) that Saff
r generates End

Ŝ(n,r)
(V̂ ⊗r)op and the proof is complete.

This duality can also be made into a categorical equivalence.

Proposition 2.44. For n ≥ r, the functor

C[Saff
r ]-Mod −→ Ŝ(n, r)-Mod

M 7−→ V̂ ⊗r ⊗C[Saff
r ] M

is an equivalence of categories. Moreover, this descends to an equivalence of cate-
gories C[Saff

r ]-mod ∼= Ŝ(n, r)-mod.

Proof. The proof is the same as the proof of Proposition 2.13. In fact, we have
Ŝ(n, r)φ1

ω,ωŜ(n, r) = Ŝ(n, r) which follows from 1 =
∑

λ∈Λ(n,r)
1
|Sλ|φ

eλ
λ,λ together

with φeλλ,λ ∈ Ŝ(n, r)φ1
ω,ωŜ(n, r) (see (12)). It then follows from Corollary 2.12 that

V̂ ⊗r ⊗C[Saff
r ] (−) is an equivalence of categories since

V̂ ⊗r ⊗C[Saff
r ] (−) ∼= Ŝ(n, r)φ1

ω,ω ⊗φ1
ω,ωŜ(n,r)φ1

ω,ω
(−)

as functors from C[Saff
r ]-Mod to Ŝ(n, r)-Mod by (20). The equivalence of categories

C[Saff
r ]-mod ∼= Ŝ(n, r)-mod also follows from Corollary 2.12 using that the functor

V̂ ⊗r ⊗C[Saff
r ] (−) ∼= V ⊗C[Sr] C[Saff

r ]⊗C[Saff
r ] (−) ∼= V ⊗r ⊗C[Sr] (−)

preserves finite-dimensionality since V ⊗r is finite-dimensional.

We see that proving an affine Schur-Weyl duality involving the affine Lie algebra
ŝln boils down to showing that the map U(ŝln) −→ Ŝ(n, r) is surjective. Let us first
look at the Zr-endomorphisms on V̂ ⊗r in more detail.

Lemma 2.45. The natural algebra homomorphism EndC[t,t−1](V̂ )⊗r → EndZr(V̂
⊗r)

is an isomorphism.

Proof. There is a commutative diagram

EndC[t,t−1](V̂ )⊗r EndZr(V̂
⊗r)

HomC(V, V̂ )⊗r HomC(V ⊗r, V̂ ⊗r).

Res⊗rV
ResV⊗r

The two vertical maps are isomorphisms of vector spaces since V̂ = V ⊗C C[t, t−1]
and V̂ ⊗r ∼= V ⊗r⊗CC[Zr]. The horizontal map in the bottom row is an isomorphism
of vector spaces since {Ei1,j1 ⊗ ... ⊗ Eir,jr | jl ∈ {1, ..., n} and il ∈ Z} is a basis of

both HomC(V, V̂ )⊗r and HomC(V ⊗r, V̂ ⊗r). Hence, the horizontal map in the top
row is an isomorphism.

We can use this to compute the Saff
r -endomorphisms of V̂ ⊗r. In fact,

EndSaff
r

(V̂ ⊗r) =
(

EndZr(V̂
⊗r)
)Sr ∼= (EndC[t,t−1](V̂ )⊗r

)Sr
(21)

where Sr acts on EndC[t,t−1](V̂ )⊗r by permuting the tensor factors.
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Lemma 2.46. Let A be a C-algebra (not necessarily finite-dimensional). Then
(A⊗r)Sr is generated as an algebra by the elements

∆r(a) = a⊗ 1⊗r−1 + 1⊗ a⊗ 1⊗r−2...+ 1⊗r−1 ⊗ a

where a ∈ A.

Proof. This is well-known for A finite-dimensional but generalises to A infinite-
dimensional without problem. For example, the proof in [EGH+11, 5.18.3] uses
finite-dimensionality only to show that for a finite-dimensional C-vector space W
the Sr-invariants of W⊗r are spanned by the w ⊗ ... ⊗ w for w ∈ W . This extends
to W infinite-dimensional since any x ∈ W⊗r is contained in W̃⊗r for some finite-
dimensional subspace W̃ ⊂W .

Using Lemma 2.46 and (21), we see that Ŝ(n, r) = EndSaff
r

(V̂ ⊗r) is generated by

the action of the Lie algebra EndC[t,t−1](V̂ ) (with the commutator bracket) on V̂ ⊗r.

Lemma 2.47. The action L(gln) y V̂ induces an isomorphism of Lie algebras
L(gln)

∼−→ EndC[t,t−1](V̂ ) ⊂ EndC(V̂ ).

Proof. We have

EndC[t,t−1](V̂ ) ∼= HomC(V, V ⊗C C[t, t−1]) ∼= EndC(V )⊗C C[t, t−1] = L(gln).

We have thus shown the following.

Corollary 2.48. The commuting actions L(gln) y V̂ ⊗r x Saff
r generate each

other’s centraliser.

To be consistent with previous dualities we have seen, we would like to replace
L(gln) by L(sln). This is not quite as obvious as in the classical case since L(gln)
also contains the elements In ⊗ tk ∈ L(gln) for k 6= 0. In contrast to In ∈ gln, these
do not act by multiplying with a scalar.

Lemma 2.49. For n > r, the actions of the Lie algebras L(sln) and L(gln) generate
the same subalgebra of EndC(V̂ ⊗r).

Proof. Let λ ∈ Λ(n, r). By the classical Schur-Weyl duality, we can find an element
Xλ ∈ U(sln) such that Xλ acts as pr(V ⊗r)λ on V ⊗r. By Lemma 2.41, Xλ will then

act as pr
(V̂ ⊗r)λ

on V̂ ⊗r. Now let x ∈ gln and p(t) ∈ C[t, t−1]. Since n > r, we can

find some k ∈ {1, ..., n} such that λk = 0. Then x ⊗ p(t) induces the same action
on (V̂ ⊗r)λ as (x−Tr(x)Ek,k)⊗ p(t). Since x−Tr(x)Ek,k ∈ sln, we have shown that
x⊗p(t)◦pr

(V̂ ⊗r)λ
is induced by the L(sln)-action. We can do this for any λ ∈ Λ(n, r)

and
∑

λ∈Λ(n,r) pr
(V̂ ⊗r)λ

= 1. Hence the action of x ⊗ p(t) can be constructed from

the action of L(sln). This proves the claim.

We have thus shown the following.

Corollary 2.50. For n > r, the commuting actions ŝln y V̂ ⊗r x Saff
r generate

each other’s centraliser.

Proof. This follows from Lemma 2.49 and Corollary 2.48.

Using Proposition 2.44 this double centraliser property can also be rephrased as
the following categorical equivalence which also appears in [CP96, Thm. 4.9].

Corollary 2.51. For n > r, the functor V̂ ⊗r⊗C[Saff
r ] (−) induces a an equivalence of

categories between C[Saff
r ]-mod and the category of finite-dimensional ŝln-modules

annihilated by ker(U(ŝln)→ Ŝ(n, r)).
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2.5 Quantum affine Schur-Weyl duality

In the previous sections, we have seen a quantum and an affine version of classical
Schur-Weyl duality. In this section we want to combine the two and describe a
quantum affine version of Schur-Weyl duality. The quantum affine replacement of the
group Sr from the classical setting will be the affine Hecke algebra Haff

r := H(Saff
r ).

We still need to define quantum affine sln. For any i ∈ Z, let i ∈ {0, 1, ..., n − 1}
such that i ≡ i mod n.

Definition 2.52. The affine quantum group Uq(ŝln) is the C(q)-algebra with gen-
erators

E0, E1, ..., En−1, F0, F1, ..., Fn−1, K±1
0 ,K±1

1 , ...,K±1
n−1

and relations (for all i, j ∈ Z)

(ÛQ1) (i) KiK
−1
i

= 1 = K−1
i
Ki

(ii) KiKj = KjKi

(ÛQ2) (i) KiEj = qai,jEjKi

(ii) KiFj = q−ai,jFjKi

(ÛQ3) [Ei, Fj ] = δi,j
Ki−K

−1

i
q−q−1

(ÛQ4) (i) E2
i
Ei±1 − (q + q−1)EiEi±1Ei + Ei±1E

2
i

= 0

(ii) F 2
i
Fi±1 − (q + q−1)FiFi±1Fi + Fi±1F

2
i

= 0

(iii) EiEj = EjEi if i− j 6= 0, 1, n− 1

(iv) FiFj = FjFi if i− j 6= 0, 1, n− 1.

where A = (ai,j)0≤i,j≤n−1 is the (generalised) Cartan matrix of ŝln as in (17).

Note that there is a natural algebra homomorphism Uq(sln) → Uq(ŝln) with
Ei 7→ Ei, Fi 7→ Fi and Ki 7→ Ki. As for the quantum group Uq(sln), one can check
that

∆ : Uq(ŝln)→ Uq(ŝln)⊗C(q) Uq(ŝln)

Ei 7→ Ei ⊗K−1
i + 1⊗ Ei

Fi 7→ Fi ⊗ 1 +Ki ⊗ Fi
Ki 7→ Ki ⊗Ki.

defines a coassociative comultiplication on Uq(ŝln). There also is a natural repre-

sentation V̂q of Uq(ŝln). This is the C(q)-vector space with basis {vi | i ∈ Z} and
action

Ei · vj = δi+1,j · vj−1

Fi · vj = δi,j · vj+1

Ki · vj = qδi,j−δi+1,j · vj .

Hence, we have an action Uq(ŝln) y V̂ ⊗rq . We define a (right) Haff
r -action on V̂ ⊗rq

by mimicking the identifications from Lemma 2.41. More precisely, we start with
the isomorphism of vector spaces

V̂ ⊗rq
∼= V ⊗rq ⊗C(q) C(q)[X±1

1 , ..., X±1
r ]

vi1−k1n ⊗ ...⊗ vir−krn ←[ (vi1 ⊗ ...⊗ vir)⊗X
k1
1 · ... ·X

kr
r .

38



By Proposition 1.25, the multiplication map

Hr ⊗C(q) C(q)[X±1
1 , ..., X±1

r ] −→ Haff
r

is an isomorphism of (Hr,C(q)[X±1
1 , ..., X±1

r ])-bimodules and we get an Haff
r -action

on V̂ ⊗rq induced along the identifications

V̂ ⊗rq
∼= V ⊗rq ⊗C(q) C(q)[X±1

1 , ..., X±1
r ]

∼= V ⊗rq ⊗Hr Hr ⊗C(q) C(q)[X±1
1 , ..., X±1

r ]

∼= V ⊗rq ⊗Hr Haff
r .

Note that by construction, Xi acts on V̂ ⊗rq as the shift vk 7→ vk−n in the i-th

coordinate. Moreover, the action of Hr ⊂ Haff
r on V ⊗rq ⊂ V̂ ⊗rq is just the usual action

from quantum Schur-Weyl duality (i.e. given by the the formulas in Lemma 2.19).
However, the action of Hr on the whole space V̂ ⊗rq is more complicated than this.

To gain a better understanding of the Haff
r -module V̂ ⊗rq , let us first show that the

Haff
r -action is local in the following sense.

Lemma 2.53. For k ∈ {1, ..., r − 1} consider the algebra homomorphism

ιk : Haff
2 → Haff

r , ιk(X1) = Xk, ιk(X2) = Xk+1, ιk(H1) = Hk.

Then for any x ∈ Haff
2 , we have ιk(x) = id⊗k−1⊗x⊗ idr−k−1 as operators on V̂ ⊗rq .

Proof. Let A := {x ∈ Haff
2 | ιk(x) = id⊗k−1⊗x ⊗ idr−k−1 on V̂ ⊗rq }. This is a

subalgebra of Haff
2 and we need to show that A = Haff

2 . Since Xi acts on V̂ ⊗rq

as the shift vk 7→ vk−n in the i-th coordinate, we have X±1
1 , X±1

2 ∈ A and hence

C(q)[X±1
1 , X±1

2 ] ⊂ A. Next, we show that H1 ∈ A. The space V̂ ⊗rq is spanned by
the elements of the form v ·Xa where v ∈ V ⊗rq and a ∈ Zr so it suffices to show that

ιk(H1) acts as id⊗k−1⊗H1⊗ idr−k−1 on v ·Xa. Note that the elements ιk(H1) = Hk

and id⊗k−1⊗H1 ⊗ idr−k−1 both commute with the action of Xj for j 6= k, k + 1.
Hence we may assume Xa = Xm1

k Xm2
k+1 = ιk(X

m1
1 Xm2

2 ) = ιk(X
(m1,m2)) for some

m1,m2 ∈ Z. Then

v ·Xa · ιk(H1) = v · ιk(X(m1,m2)H1)

= v · (ιk(H1X
(m2,m1)) + ιk(X

(m1,m2)H1 −H1X
(m2,m1)))

(∗)
= v · id⊗k−1⊗H1X

(m2,m1) ⊗ idr−k−1

+ v · id⊗k−1⊗(X(m1,m2)H1 −H1X
(m2,m1))⊗ idr−k−1

= v · id⊗k−1⊗X(m1,m2)H1 ⊗ idr−k−1

= v ·Xa · id⊗k−1⊗H1 ⊗ idr−k−1 .

Here (∗) uses that X(m1,m2)H1−H1X
(m2,m1) ∈ C(q)[X±1

1 , X±1
2 ] ⊂ A by Lemma 1.24

and thatHk acts as id⊗k−1⊗H1⊗idr−k−1 on v ∈ V ⊗rq by the formulas in Lemma 2.19.

This shows that H1 ∈ A and hence A = Haff
2 which completes the proof.

By construction, the Haff
r -action on V̂ ⊗rq

∼= V ⊗rq ⊗Hr Haff
r commutes with the

Uq(sln)-action. However, it is not obvious from the definition that the Haff
r -action

commutes with the action of the whole affine quantum group Uq(ŝln). To prove this,
consider the endomorphism

L : V̂q −→ V̂q, vi 7→ vi+1 ∀i ∈ Z.
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Lemma 2.54. L⊗r commutes with theHaff
r action on V̂ ⊗rq , i.e. L⊗r ∈ EndHaff

r
(V̂ ⊗rq ).

Proof. It is clear that L⊗r commutes with the action of C(q)[X±1
1 , ..., X±1

r ] on V̂ ⊗rq .
Consider the vector space

W := {w ∈ V̂ ⊗rq | L⊗r · (w ·Hi) = (L⊗r · w) ·Hi for i = 1, ..., r − 1} ⊂ V̂ ⊗rq .

The lemma follows if we can show that W = V̂ ⊗rq .
Claim 1: V ⊗rq ⊂W .

By Lemma 2.53 the element Hk ∈ Haff
r acts as id⊗k−1⊗H1⊗idr−k−1 on V ⊗rq . Hence,

Hk commutes with L⊗r on V ⊗rq if H1 commutes with L ⊗ L on Vq ⊗ Vq. In other
words, we may assume r = 2. We show that vi ⊗ vj ∈ W for any 1 ≤ i, j ≤ n.
For 1 ≤ i, j < n, the claim follows directly from the formulas in Lemma 2.19. The
remaining cases can be checked by direct calculation. In fact, we have

L⊗2 · (vi ⊗ vn ·Hs) = L⊗2 · vn ⊗ vi
= vn+1 ⊗ vi+1

= v1 ⊗ vi+1 ·X−1
1

(BER3)
= v1 ⊗ vi+1 ·HsX

−1
2 Hs

= vi+1 ⊗ v1 ·X−1
2 Hs

= vi+1 ⊗ vn+1 ·Hs

= (L⊗2 · vi ⊗ vn) ·Hs

for 1 ≤ i < n, as well as

L⊗2 · (vn ⊗ vi ·Hs) = L⊗2 · (vi ⊗ vn + (q−1 − q)vn ⊗ vi)
= vi+1 ⊗ vn+1 + (q−1 − q)vn+1 ⊗ vi+1

= vi+1 · v1X
−1
2 + (q−1 − q)v1 ⊗ vi+1X

−1
1

= v1 ⊗ vi+1 · (HsX
−1
2 + (q−1 − q)X−1

1 )
(BER3)

= v1 ⊗ vi+1 · (X−1
1 H−1

s + (q−1 − q)X−1
1 )

= v1 ⊗ vi+1 ·X−1
1 Hs

= vn+1 ⊗ vi+1 ·Hs

= (L⊗2 · vn ⊗ vi) ·Hs

and finally

L⊗2 · (vn ⊗ vn ·Hs) = q−1L⊗2 · vn ⊗ vn
= q−1vn+1 ⊗ vn+1

= v1 ⊗ v1 ·HsX
−1
2 X−1

1

(BER3)
= v1 ⊗ v1 ·HsX

−1
2 Hs(HsX1Hs)

−1Hs

= v1 ⊗ v1 ·X−1
1 X−1

2 Hs

= vn+1 ⊗ vn+1 ·Hs

= (L⊗2 · vn ⊗ vn) ·Hs.

This shows Claim 1.
Claim 2: If w ∈W , then w ·Xa ∈W for any a ∈ Zr.
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L⊗r commutes with the C(q)[X±1
1 , ..., X±rr ]-action on V̂ ⊗rq and XaHi − HiX

a ∈
C(q)[X±1

1 , ..., X±1
r ] by Lemma 1.24. This implies

L⊗r · (w ·XaHi) = L⊗r · (w ·HiX
a·si) + L⊗r · (w · (XaHi −HiX

a·si))

= (L⊗r · w) ·HiX
a·si + (L⊗r · w) · (XaHi −HiX

a·si)

= (L⊗r · w) ·XaHi

= (L⊗r · (w ·Xa)) ·Hi

proving Claim 2.
Combining Claim 1 and Claim 2, we get V̂ ⊗rq = V ⊗rq · C[X±1

1 , ..., X±rr ] ⊂ W and

hence W = V̂ ⊗rq . This finishes the proof.

Corollary 2.55. The actions Uq(ŝln) y V̂ ⊗rq x Haff
r commute.

Proof. Since the Uq(sln)-action and the Haff
r -action on V̂ ⊗rq commute, we only need

to show that the Haff
r -action commutes with E0, F0 and K0. To see this, we observe

that

L−1E1L · vi = L−1E1vi+1 = δ2,i+1L
−1vi = δ1,ivi−1 = E0 · vi

and by a similar argument L−1F1L · vi = F0 · vi and L−1K1L · vi = K0 · vi. It follows
that (L⊗r)−1◦E1◦L⊗r = E0, (L⊗r)−1◦F1◦L⊗r = F0 and (L⊗r)−1◦K1◦L⊗r = K0 in
EndC(q)(V̂

⊗r
q ). Since L⊗r and E1, F1,K1 commute with the Haff

r -action, E0, F0,K0

also commutes with the Haff
r action. This proves the claim.

Our next goal is establishing a double centraliser property.

Definition 2.56. The algebra Ŝq(n, r) := EndHaff
r

(V̂ ⊗rq ) is called the affine quantum
Schur algebra or short the affine q-Schur algebra.

We define

(V̂ ⊗rq )λ := SpanC{vi1 ⊗ ...⊗ vir | #{l | il ≡ k mod n} = λk}
∼= (V ⊗rq )λ ⊗C(q) C(q)[X±1

1 , ..., X±1
r ] ∼= (V ⊗rq )λ ⊗Hr Haff

r

for any λ ∈ Λ(n, r). Then

(V̂ ⊗rq )λ ∼= (V ⊗rq )λ ⊗Hr Haff
r

(14)∼= xλHr ⊗Hr Haff
r
∼= xλHaff

r

and therefore

Ŝq(n, r) = EndHaff
r

(V̂ ⊗rq ) ∼= EndHaff
r

 ⊕
λ∈Λ(n,r)

xλHaff
r

 ∼= ⊕
λ,µ∈Λ(n,r)

xµHaff
r xλ (22)

by Lemma 2.7. For y ∈ xµHaff
r xλ there is a corresponding element

φyµ,λ ∈ HomHaff
r

(xλHaff
r , xµHaff

r ) ⊂ Ŝq(n, r) (23)

under the isomorphism from (22) which acts on xλHaff
r by multiplying with y on

the left (and by 0 on xλ′Haff
r for λ′ 6= λ). The φyµ,λ multiply as in (10). Note

that pr
(V̂ ⊗rq )λ

= 1∑
x∈Wλ

q−2l(x)φ
xλ
λ,λ by (4). The double centraliser property for the

affine q-Schur algebra now follows from the same argument as for the (affine) Schur
algebra.
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Proposition 2.57. For n ≥ r, the commuting actions Ŝq(n, r) y V̂ ⊗rq x Haff
r

generate each other’s centraliser.

Proof. See also [Gre97, Thm 2.3.3]. The proof works exactly as the proof of Corol-
lary 2.9 and Proposition 2.43. In fact, using the identificationHaff

r
∼= φ1

ω,ωŜq(n, r)φ
1
ω,ω

with y 7→ φyω,ω we get the isomorphism

V̂ ⊗rq
∼=

⊕
λ∈Λ(n,r)

xλHaff
r
∼=

⊕
λ∈Λ(n,r)

φxλλ,λŜq(n, r)φ
1
ω,ω
∼= Ŝq(n, r)φ

1
ω,ω

of (Ŝq(n, r), φ
1
ω,ωŜq(n, r)φ

1
ω,ω)-bimodules. Now Lemma 2.7 implies that the canonical

map Haff
r → End

Ŝq(n,r)
(V̂ ⊗rq )op is an isomorphism.

Similar to the affine situation, this duality can also be made into a categorical
equivalence.

Proposition 2.58. For n ≥ r, the functor

Haff
r -Mod −→ Ŝq(n, r)-Mod

M 7−→ V̂ ⊗rq ⊗Haff
r
M

is an equivalence of categories. This also descends to an equivalence of categories
Haff
r -mod ∼= Ŝq(n, r)-mod.

Proof. This follows from Corollary 2.12 using Ŝq(n, r)φ
1
ω,ωŜq(n, r) = Ŝq(n, r) and

the isomorphism of (Ŝq(n, r), φ
1
ω,ωŜq(n, r)φ

1
ω,ω)-bimodules V̂ ⊗rq

∼= Ŝq(n, r)φ
1
ω,ω. The

details work exactly as in the proofs of Proposition 2.44 and Proposition 2.13.

We see that proving a Schur-Weyl duality involving Uq(ŝln) boils down to showing

that the homomorphism Uq(ŝln) −→ Ŝq(n, r) is surjective. This will use the structure
of the affine q-Schur algebra.

Lemma 2.59. For n ≥ r, the affine q-Schur algebra Ŝq(n, r) is generated by the
φ
xµxλ
µ,λ and the φyω,ω from (23) with y ∈ Haff

r and λ, µ ∈ Λ(n, r).

Proof. By Lemma 2.7 we have HomHaff
r

(xλHaff
r , xµHaff

r ) = {φyµ,λ | y ∈ xµHaff
r xλ}.

This shows that Ŝq(n, r) is spanned by the φyµ,λ with y ∈ xµHaff
r xλ and λ, µ ∈ Λ(n, r).

This implies the lemma using that φ
xµ
µ,ω ◦ φyω,ω ◦ φxλω,λ = φ

xµyxλ
µ,λ = p(q)φyµ,λ with

p(q) =
(∑

x∈Wµ
q−2l(x)

)(∑
x∈Wλ

q−2l(x)
)
∈ C(q)× by (4).

Now, we are ready to prove quantum affine Schur-Weyl duality.

Theorem 2.60. For n > r, the commuting actions Uq(ŝln) y V̂ ⊗rq x Haff
r generate

each other’s centraliser.

Proof. We use ideas from [Gre97, Section 3.3]. By the quantum Schur-Weyl duality
we can find X ∈ Uq(sln) such that X acts as φ

xµxλ
µ,λ on V ⊗rq for any λ, µ ∈ Λ(n, r).

This already uniquely determines X as an element of Ŝq(n, r) and hence X acts as

φ
xµxλ
µ,λ on V̂ ⊗rq . The claim now follows from Lemma 2.59 if we can show that the φyω,ω

are induced by the Uq(ŝln)-action where y ∈ Haff
r . For y ∈ Hr this follows again from
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the quantum Schur-Weyl duality. Note that xω ∈ xωHaff
r
∼= (V̂ ⊗rq )ω corresponds to

the basis vector vl(ω) := v1 ⊗ v2 ⊗ ...⊗ vr. We then have

Er · ... · En−1Er−1 · ... · E0 · vl(ω) = Er · ... · En−1 · v0 ⊗ v1 ⊗ ...⊗ vr−1

= vr−n ⊗ v1 ⊗ ...⊗ vr−1

= vr ⊗ v1 ⊗ ...⊗ vr−1 ·X1

= vl(ω) ·Hr−1 · ... ·H1X1

and hence
Er · ... · En−1Er−1 · ... · E0 ◦ φ1

ω,ω = φHr−1·...·H1X1
ω,ω

on V̂ ⊗rq . Similarly, we have

F0Fn−1 · ... · Fr+1F1 · ... · Fr · vl(ω) = F0Fn−1 · ... · Fr+1 · v2 ⊗ v3 ⊗ ...⊗ vr+1

= v2 ⊗ ...⊗ vr ⊗ vn+1

= v2 ⊗ ...⊗ vr ⊗ v1 ·X−1
r

= vl(ω) ·H1 · ... ·Hr−1X
−1
r

and hence
F0Fn−1 · ... · Fr+1F1 · ... · Fr ◦ φ1

ω,ω = φH1·...·Hr−1X
−1
r

ω,ω .

Note that EndHaff
r

(xωHaff
r )→ Haff

r , φyω,ω 7→ y is an algebra isomorphism. Moreover,

the Bernstein relations imply that Haff
r is generated as an algebra by Hr, X1 and

X−1
r . In particular, EndHaff

r
(xωHaff

r ) is generated by φ
Hr−1·...·H1X1
ω,ω , φ

H1·...·Hr−1X
−1
r

ω,ω

and the φyω,ω with y ∈ Hr. We see that any φyω,ω ∈ EndHaff
r

(xωHaff
r ) is induced by

the action Uq(ŝln) for any y ∈ Haff
r . This finishes the proof.

Using Proposition 2.58, this double centraliser property can also be rephrased as
the following categorical equivalence which also appears in [CP96, Thm. 4.2].

Corollary 2.61. For n > r, the functor V̂ ⊗rq ⊗Haff
r

(−) induces an equivalence of

categories between Haff
r -mod and the category of finite-dimensional Uq(ŝln)-modules

annihilated by ker(Uq(ŝln)→ Ŝq(n, r)).

3 Diagram algebras

In this section we look at more generalisations of Schur-Weyl duality which are
still fairly classical in flavour. To this end, we will introduce several algebras with
a distinguished basis given by certain partition diagrams. In particular, we will
introduce the partition algebra which was defined and studied in detail by Martin
[Mar91, MS94, Mar96, Mar00]. We will also explain a known Schur-Weyl duality
between the partition algebra and the symmetric group. Motivated by this, we will
prove a new Schur-Weyl duality in Section 3.3 involving the diagonal action of the
affine symmetric group Saff

n on tensor space. For this we will introduce a diagram
subalgebra of the partition algebra which we will refer to as the balanced partition
algebra. The balanced partition algebra was also defined in [Har18] in a slightly
different context but we will look at the structure of this algebra in more detail. In
particular, we will show that the balanced partition algebra is semisimple and we
will parametrise its irreducible representations. We will also give a presentation of
the balanced partition algebra by generators and relations.
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3.1 A Schur-Weyl duality for Sn

Recall that classical Schur-Weyl duality states that for V = Cn, the commuting
actions

GLn(C) y V ⊗r x Sr

generate each other’s centraliser. One can also consider the symmetric group as
a subgroup Sn ⊂ GLn(C) so that Sn acts diagonally on tensor space (instead of
permuting the tensor factors). Explicitly, this action is given by

σ · vi1 ⊗ ...⊗ vir = vσ(i1) ⊗ ...⊗ vσ(ir)

for any σ ∈ Sn where v1, ..., vn is the standard basis of V . A natural question to ask
is what the centralising partner of this action is

Sn y V ⊗r x ?.

This is what we study in this section.

Definition 3.1. Let r be a non-negative integer. A (set) partition is an equivalence
relation on the set {1, 2, ..., r, 1′, 2′, ..., r′}. The equivalence classes will be referred
to as blocks.

We define
Ar := {partitions of {1, 2, ..., r, 1′, 2′, .., r′}}.

The partitions in Ar are usually drawn as diagrams with 2r dots which are aligned in
two rows each containing r dots corresponding to the sets {1, 2, ..., r} and {1′, 2′, .., r′}.
We indicate the blocks by connecting the dots that lie in the same block.

Example 3.2. Here are two partitions and diagrams representing them for r = 5:

d1 = {{1, 2′, 3′, 5}, {1′}, {2, 3}, {4, 4′}, {5′}}, d2 = {{1, 5}, {1′, 2′}, {2, 3, 3′, 4′}, {4, 5′}}

1 2 3 4 5

1’ 2’ 3’ 4’ 5’

1 2 3 4 5

1’ 2’ 3’ 4’ 5’ .

When drawing partition diagrams, we will usually omit the labels of the dots.
Given two partitions d1, d2 ∈ Ar, we can define their concatenation d1 ? d2. This is
given by stacking d1 on top of d2 (i.e. connecting the bottom row of d1 with the top
row of d2) and removing all components of that stack that are not connected with
the top and the bottom row. We refer to the components removed in the middle of
the stack as free blocks.

Example 3.3. Let d1, d2 be the two partitions from Example 3.2. Then

d1 ? d2 = = (24)
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is the concatenation of d1 and d2. Note that we have removed exactly one free block
to compute d1?d2 which contains the dots {1′, 5′} in the bottom row of d1 and {1, 5}
in the top row of d2.

We now use this concatenation rule for partitions to construct the partition
algebra which was introduced in [Mar91].

Definition 3.4. For δ ∈ C, the partition algebra Pr(δ) is the C-vector space with
basis Ar. On diagrams d1, d2 ∈ Ar ⊂ Pr(δ) the multiplication is defined by

d1 · d2 := δr(d1,d2)(d1 ? d2)

with r(d1, d2) := |{free blocks removed in d1 ? d2}| and we extend this bilinearly to
the whole vector space Pr(δ).

It is easy to check that Pr(δ) is an associative C-algebra with unit element

1Pr(δ) = {{1, 1′}, {2, 2′}, ..., {r, r′}} = .

Example 3.5. For the partitions d1, d2 ∈ A5 ⊂ P5(δ) from Example 3.2 and Ex-
ample 3.3, we have

d1 · d2 = δr(d1,d2)d1 ? d2
(24)
= δ .

Remark 3.6. The reader is probably familiar with the diagrammatic calculus used
in the definition of the multiplication of Pr(δ) in another example: Consider the
symmetric group Sr with its right action on {1, ..., r}. Then a permutation σ ∈ Sr
can be interpreted as a diagram with r dots on the top and r dots on the bottom
and i in the top row connected with j′ in the bottom row if i · σ = j. For example,
the element σ ∈ S5 with 1

·σ7→ 2
·σ7→ 5

·σ7→ 1 and 3
·σ7→ 4

·σ7→ 3 is represented by the
diagram

.

Multiplication in the symmetric group then just corresponds to stacking diagrams
on top of each other. This induces an inclusion C[Sr] ↪→ Pr(δ) for any δ ∈ C.

We will now explain how to equip V ⊗r with the structure of a right Pr(n)-
module (where n is the dimension of V = Cn). For this we denote the standard
basis elements of V ⊗r by

vi := vi1 ⊗ vi2 ⊗ ...⊗ vir
where i = (i1, i2, ..., ir) ∈ {1, 2, ..., n}r. Then EndC(V ⊗r) is spanned by the matrices
Ej,i with Ej,i · vk = δk,ivj . For any d ∈ Ar and i = (i1, ..., ir), i

′ = (i1′ , ..., ir′) let

i
d−→ i′ :⇔ (t ∼ s in d⇒ it = is) for any t, s ∈ {1, ..., r, 1′, ..., r′}. (25)

In other words, we have i
d−→ i′ if labelling the top row of d with i and the bottom

row of d with i′ induces a well-defined labelling of the blocks of d. We call this the
(i, i′)-labelling of d.
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Example 3.7. Let r = 5 and n = 4. Consider the partition

d =

from Example 3.2. We have (1, 2, 2, 3, 1)
d−→ (2, 1, 1, 3, 4) since each block has a

unique label with respect to this labelling:

1 2 2 3 1

2 1 1 3 4 .

On the other hand, (1, 2, 3, 3, 1) 6 d−→ (2, 1, 4, 3, 4) since there are two blocks with more
than one label with respect to this labelling:

1 2 3 3 1

2 1 4 3 4 .

Lemma 3.8. There exists a unique right Pr(n)-module structure on V ⊗r such that
d ∈ Ar acts as

∑
i
d−→j

Ej,i ∈ EndC(V ⊗r).

Proof. Uniqueness is clear, since defining the action on the basis Ar already deter-
mines the action on the whole algebra. It remains to show that the action from the
lemma is well-defined. For this, we need to verify that (v ·d1) ·d2 = v · (d1 ·d2) where
d1, d2 ∈ Ar and v ∈ V ⊗r. This follows from a calculation in EndC(V ⊗r)op:

d1 ◦op d2 =

∑
i
d1−→j

Ej,i

 ◦op

 ∑
j
d2−→k

Ek,j


=

∑
i
d1−→j

d2−→k

Ek,i

(∗)
= nr(d1,d2) ·

∑
i
d1?d2−−−→k

Ek,i

= nr(d1,d2) · (d1 ? d2) = d1 · d2.

For
(∗)
=, observe that a sequence i

d1−→ j
d2−→ k corresponds to a labelling of the blocks

of d1 ?d2 where we also assign a label to each free block removed in d1 ?d2. For fixed
i and k there are nr(d1,d2) ways to label the free blocks proving the equality.

Our next goal is to deduce the Schur-Weyl from the bottom row of (2).
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Theorem 3.9. The actions Sn y V ⊗r x Pr(n) commute and generate each other’s
centraliser.

Proof. The proof will be done later in this section - see also [HR05, Theorem 3.6].

Let us introduce another basis of Pr(δ) which behaves well with respect to the
action on tensor space. For this, we introduce a partial order on Ar via

d1 ≤ d2 :⇔ d1 is coarser than d2 ⇔ (t ∼ s in d2 ⇒ t ∼ s in d1). (26)

Definition 3.10. The C-basis {xd | d ∈ Ar} of Pr(δ) uniquely determined by the
property

∑
d′≤d xd′ = d is called the orbit basis.

Note that this is a well-defined basis since the base-change is given by a unitri-
angular matrix with entries in Z.

Example 3.11. Consider the partition algebra P1(δ). We have A1 = {id, p1} where

id = and p1 = . Then id ≤ p1 and hence id = xid and p1 = xid + xp1 . In

particular, we get xp1 = p1 − id.

We can also describe the action of the orbit basis on tensor space explicitly. For
any d ∈ Ar and i = (i1, ..., ir), i

′ = (i1′ , ..., ir′) let

i
xd−→ i′ :⇔ (t ∼ s in d⇔ it = is) for any t, s ∈ {1, ..., r, 1′, ..., r′}. (27)

In other words, we have i
xd−→ i′ if the (i, i′)-labelling of d induces a well-defined

labelling of the blocks of d and labels for distinct blocks are distinct. In particular,

i
xd−→ i′ implies i

d−→ i′. Note that for any i, i′ ∈ {1, ..., n}r there is a unique partition

d(i, i′) ∈ Ar such that i
xd(i,i′)−−−−→ i′. This partition is given by

d(i, i′) := (t ∼ s⇔ it = is). (28)

Lemma 3.12. With respect to the action V ⊗r x Pr(n) defined in Lemma 3.8, the
element xd acts as

∑
i
xd−→j

Ej,i ∈ EndC(V ⊗r).

Proof. We have

i
d−→ i′

(25)⇔ (t ∼ s in d⇒ it = is)
(28)⇔ (t ∼ s in d⇒ t ∼ s in d(i, i′))

(26)⇔ d(i, i′) ≤ d.

Thus, we get in EndC(V ⊗r):∑
d′≤d

xd′ = d =
∑
i
d−→j

Ej,i =
∑
i,j

d(i,j)≤d

Ej,i =
∑
d′≤d

∑
i
xd′−−→j

Ej,i.

It then follows by upwards induction along the partial order that xd =
∑

i
xd−→j

Ej,i

in EndC(V ⊗r).

We will often make use of the following observation when working with the orbit

basis. Let y =
∑

d∈Ar cdxd ∈ Pr(n) and i
d′−→ j. Since d′ ∈ Ar is the unique element

with i
xd′−−→ j, the coefficient of Ej,i in y (considered as an operator on V ⊗r) is cd′ .

Corollary 3.13. The kernel of the homomorphism Pr(n) → End(V ⊗r)op induced
by the action V ⊗r x Pr(n) is spanned by {xd | d ∈ Ar has more than n blocks}.
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Proof. If d has more than n blocks, then there are no i, j with i
xd−→ j. This shows

that xd acts by 0 on V ⊗r. Conversely, if d has at most n blocks, then there exist i, j

such that i
xd−→ j and xd is the unique orbit basis element with non-zero coefficient

for Ej,i. This shows that the xd with at most n blocks are linearly independent in

EndC(V ⊗r).

We can now show that Sn y V ⊗r x Pr(n) commute and generate each other’s
centraliser.

Proof of Theorem 3.9. For σ ∈ Sn, we have σ · vi = vσ·i. Hence, σ ◦ Ej,i ◦ σ−1 =

Eσ·j,σ·i in EndC(V ⊗r). It follows that EndSn(V ⊗r) is spanned by the orbit sums∑
(i,j)∈O Ej,i where O is an orbit of the diagonal action Sn y {1, ..., n}r×{1, ..., n}r.

Note that

(i, i′)
Sn∼ (j, j′)⇔ (it = is ⇔ jt = js) ∀t, s ∈ {1, ..., r, 1′, ..., r′} ⇔ d(i, i′) = d(j, j′).

This shows that
∑

(i,j)∈O Ej,i =
∑

i
xd−→j

Ej,i = xd for the unique d ∈ Ar with i
xd−→ j

for some (and then all) (i, j) ∈ O. The xd which do not correspond to an orbit O as
above act by 0 by Corollary 3.13. Since the xd form a basis of Pr(n), we have shown
that the actions Sn y V ⊗r x Pr(n) commute and Pr(n) generates EndSn(V ⊗r).
Since C[Sn] is semisimple, the double centraliser theorem implies that Sn generates
EndPr(n)(V

⊗r). We have thus shown that the two actions generate each other’s
centraliser.

We conclude this section with a few extra remarks about the relation between Pr(n)
and Pr(δ) for arbitrary δ ∈ C. To be more precise, we explain an interpolation
technique which allows to lift information obtained from acting on tensor space to
arbitrary δ. The following lemma, puts this into a formal framework.

Lemma 3.14. Let B1(δ), ..., Bl(δ), C1(δ), ..., Cm(δ) ∈ Pr(δ) such that

Bi(δ) =
∑
d∈Ar

pdi (δ)d

Ci(δ) =
∑
d∈Ar

qdi (δ)d

for some pdi (x), qdi (x) ∈ C[x]. Assume we are given p(x1, ..., xl) ∈ C[x1, ..., xl] and
q(y1, ..., ym) ∈ C[x1, ..., xm] such that p(B1(n), ..., Bl(n)) = q(C1(n), ..., Cm(n)) as
operators on V ⊗r for infinitely many n (with n = dimV ). Then p(B1(δ), ..., Bl(δ)) =
q(C1(δ), ..., Cm(δ)) in Pr(δ) for all δ ∈ C.

Proof. Since the multiplication table of the basis Ar has entries which are polynomial
in δ, there are polynomial pd(x), qd(x) ∈ C[x] such that

p(B1(δ), ..., Bl(δ)) =
∑
d∈Ar

pd(δ)d

q(C1(δ), ..., Cm(δ)) =
∑
d∈Ar

qd(δ)d.

By Corollary 3.13 the homomorphism Pr(n)→ EndC(V ⊗r)op is injective for n� 0.
Hence, we get pd(n) = qd(n) for infinitely many n. This already implies pd(x) =
qd(x) which proves the claim.
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As an application of the interpolation technique from Lemma 3.14 we compute
some products of orbit basis elements. We start with a basic example.

Example 3.15. Consider the partition id = {{1, 1′}, {2, 2′}, ..., {r, r′}} =

in Ar. By (27), we have i
xid−−→ j if and only if i = j and ik 6= il for k 6= l.

By Lemma 3.12 this implies that xid acts on V ⊗r as the projection onto the basis
vectors vj with ik 6= il for k 6= l. In particular, we have x2

id = xid as operators on

V ⊗r for all n = dimV ∈ N. Now, the orbit basis is a Z-linear combination of the
standard basis Ar so we can apply Lemma 3.14 to obtain x2

id = xid in Pr(δ) for any
δ ∈ C.

The ideas from Example 3.15 can be easily generalised to compute products of
orbit basis elements for so-called propagating partitions.

Definition 3.16. For d ∈ Ar, we call a block B of d propagating if B∩{1, ..., r} 6= ∅
and B∩{1′, .., r′} 6= ∅. We say that d is propagating if all its blocks are propagating.
For d1, d2 ∈ Ar, we say that d1 and d2 match if (i′ ∼ j′ in d1)⇔(i ∼ j in d2) for all
i, j ∈ {1, ..., r}.

Proposition 3.17. Let d1, d2 ∈ Ar such that d1 or d2 is propagating. Then

xd1xd2 =

{
xd1?d2 if d1 and d2 match

0 otherwise.
(29)

in Pr(δ) for any δ ∈ C.

Proof. For i ∈ {1, ..., n}r we have

vi · xd1xd2 =
∑
i
xd1−−→j

vj · xd2 =
∑

i
xd1−−→j

xd2−−→k

xk.

A sequence i
xd1−−→ j

xd2−−→ k corresponds to a well-defined labelling of the blocks of d1

and d2 such that distinct blocks of d1 (resp. d2) have distinct labels and the labels of
the bottom row of d1 and the labels of the top row of d2 match. If d1 and d2 do not
match this is not possible and then xd1xd2 = 0 on V ⊗r. If d1 and d2 do match and

i
xd1−−→ j

xd2−−→ k then j is uniquely determined by i and k since the blocks of d1 or d2

are all propagating. Hence, such a sequence corresponds to a labelling of the blocks

of d1 ? d2 which assigns to each block a unique label or equivalently i
xd1?d2−−−−→ k. We

get

vi · xd1xd2 =
∑

i
xd1?d2−−−−→k

vk = vi · xd1?d2 .

We have thus shown that (29) holds as operators on V ⊗r. The claim then follows
from Lemma 3.14 using that the orbit basis is Z-linear combination of the standard
basis Ar of Pr(δ).

Products of orbit basis elements for non-propagating partitions are more com-
plicated than the formula in (29) but they can still be computed using the same
techniques, at least for specific examples. To illustrate this, let us start with a
low-dimensional example.
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Example 3.18. Consider the partition algebra P1(δ) with the orbit basis xid = id
and xp1 = p1 − id from Example 3.11. Then

x2
p1

= (p1 − id)2 = p1
2 − 2p1 + id = (δ − 2)p1 + id

= (δ − 2)(xp1 + xid) + xid = (δ − 2)xp1 + (δ − 1)xid.

We can also verify this equation using Lemma 3.14. In fact, Lemma 3.12, tells us
that

vi · x2
p1

=
∑
j 6=i

vj · xp1 =
∑
j 6=i

∑
k 6=j

vk

= (n− 1)vi +
∑
k 6=i

(n− 2)vk = vi · ((n− 1)xid + (n− 2)xp1).

Then applying Lemma 3.14 yields x2
p1

= (δ − 1)xid + (δ − 2)xp1 for all δ ∈ C.

Here is a generalisation of Example 3.18 which will be useful later on.

Lemma 3.19. Consider the partition diagram

d = ∈ Ar (30)

with 2r blocks. For d′ ∈ Ar let |d′| be the number of blocks of d′. Then

x2
d =

∑
d′

(
r∏
i=1

(δ − |d′|+ 1− i)

)
xd′ (31)

where the sum runs over all d′ ∈ Ar with |B∩{1, ..., r}| ≤ 1 and |B∩{1′, ..., r′}| ≤ 1
for each block B of d′. For δ = 2r − 1, this formula becomes x2

d = (−1)rr!xd.

Proof. Let x2
d =

∑
d′∈Ar cd′(δ)xd′ for some cd′(δ) ∈ C. For n � 0 we can find

i, j ∈ {1, ...n}r such that i
xd′−−→ j. Then the coefficient of Ej,i in x2

d ∈ EndC(V ⊗r) is
cd′(n). By Lemma 3.12 this is the same as the number of possible ways to label the
middle row of

i1

j1

i2

j2

ir

jr

with labels k1, ..., kr ∈ {1, ..., n} such that the i1, .., ir, k1, ..., kr are pairwise distinct
and the k1, ..., kr, j1, ..., jr are pairwise distinct. If it = is or jt = js for some
t 6= s, it is impossible to find k1, ..., kr with this property and then cd′(n) = 0.

Otherwise, there are cd′(n) = (n−m)!
(n−(r+m))! possible ways to choose k1, ..., kr where

m = |{i1, ..., ir, j1, ..., jr}| = |d′|. This proves (31) for δ = n � 0. We then get (31)
for all δ ∈ C by Lemma 3.14. Note that |d′| ∈ {r, r + 1, ..., 2r} for any d′ ∈ Ar
with |B ∩ {1, ..., r}| ≤ 1 and |B ∩ {1′, ..., r′}| ≤ 1 for each block B of d′. On the
other hand, we have

∏r
i=1(2r − 1 − |d′| + 1 − i) = 0 if |d′| = r, r + 1, ..., 2r − 1 and∏r

i=1(2r − 1 − |d′| + 1 − i) = (−1)rr! if |d′| = 2r. This shows that (31) becomes
x2
d = (−1)rr!xd for δ = 2r − 1.
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3.2 The structure of the partition algebra

In this section we summarise a few known facts about the representation theory and
the structure of the partition algebra Pr(δ). To be consistent with the Schur-Weyl
duality from Theorem 3.9, we will work with right Pr(δ)-modules. Actually, it does
not matter whether one prefers left or right modules here since there is an algebra
isomorphism Pr(δ) ∼= Pr(δ)

op given by flipping diagrams upside down. Note that

dimC Pr(δ) = |Ar| = B(2r)

where B(m) is the number of partitions of the set {1, ...,m}. The number B(m) is
often called the m-th Bell number.

Remark 3.20. The Bell numbers can be written as B(m) =
∑m

k=1 S(m, k) where
S(m, k) is the number of partitions of the set {1, ...,m} with k blocks. The numbers
S(m, k) are often called the Stirling numbers of the second kind. The S(m, k) can
be computed using the recursive formula S(m, k) = S(m− 1, k− 1) +mS(m− 1, k)
and there even is an explicit expression: S(m, k) = 1

k!

∑k
j=0(−1)k−j

(
k
j

)
jm. This

can be used to compute the Bell numbers. Alternatively, the Bell numbers can be
computed using the recursion B(m) =

∑m−1
k=0

(
m−1
k

)
B(k). These formulas can be

found in many text books (see for example [HHM08, (2.96), (2.100) and (2.105)]).

By definition, the d ∈ Ar generate Pr(δ) as an algebra. Clearly, this generating
set is far from being minimal and we want to give a more efficient presentation of
Pr(δ).

Definition 3.21. For δ ∈ C we define Cr(δ) to be the C-algebra with generators

s1, .., sr−1 and p1, p 3
2
, p2, p 5

2
, ..., pr− 1

2
, pr

and relations (whenever they make sense)

(P1) (i) s2
i = 1

(ii) sisj = sjsi for |i− j| > 1

(iii) sisi+1si = si+1sisi+1

(P2) (i) p2
i = δpi for i = 1, 2, .., r

(ii) p2
i = pi for i = 3

2 ,
5
2 , ..., r −

1
2

(iii) pipi± 1
2
pi = pi

(iv) pipj = pjpi for |i− j| > 1
2

(P3) (i) sipipi+1 = pipi+1si = pipi+1

(ii) sipi+ 1
2

= pi+ 1
2

= pi+ 1
2
si

(iii) sipisi = pi+1

(iv) sisi+1pi+ 1
2
si+1si = pi+ 3

2

(v) sipj = pjsi for j 6= i− 1
2 , i, i+ 1

2 , i+ 1, i+ 3
2 .
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Theorem 3.22. There is an isomorphism of algebras

Cr(δ)
∼−→ Pr(δ)

si 7→
i’

i

(i+1)’

i+1

pi 7→
i’

i

pi+ 1
2
7→

i’

i

(i+1)’

i+1

.

Proof. See [HR05, Thm 1.11]

Remark 3.23. Even though the generating set of the presentation above is much
smaller than the set Ar, it is still not minimal. For example, the elements p2, ..., pr
can be omitted since pi+1 = sipisi by (P3)-(iii).

Next, we study semisimplicity of Pr(δ). By the double centraliser theorem
EndSn(V ⊗r)op is always semisimple and Pr(n) ∼= EndSn(V ⊗r)op for n ≥ 2r by
Corollary 3.13. This argument can be extended to n = 2r− 1 as follows: By Corol-
lary 3.13 the kernel K of the action V ⊗r x Pr(2r − 1) is one-dimensional and
spanned by xd where d is the partition with 2r blocks as in (30). Since Pr(2r−1)/K
is semisimple we have Rad(Pr(2r − 1)) ⊂ K and hence Rad(Pr(2r − 1)) = K or
Rad(Pr(2r − 1)) = 0. By Lemma 3.19 we have x2

d = (−1)rr!xd in Pr(2r − 1). Since
Rad(Pr(2r − 1)) is nilpotent we get Rad(Pr(2r − 1)) = 0 and hence Pr(2r − 1) is
semisimple. We have thus shown the following.

Proposition 3.24. The partition algebra Pr(n) is semisimple for any integer n with
n ≥ 2r − 1.

Seeing this argument, one might think that Pr(δ) is always semisimple or at least
for positive integers δ = n. However, this is not the case.

Proposition 3.25. The algebra Pr(1) is not semisimple for any r > 1.

Proof. There is an algebra homomorphism Pr(1)
ev1−→ C, d 7→ 1. This is well-defined

since d ·d′ ∈ Ar ⊂ Pr(1) for any d, d′ ∈ Ar. The homomorphism ev1 defines a (right)
Pr(1)-module structure on C which we denote by L(r)(∅). The result then follows if
we can show the following claim.
Claim: The homomorphism of right Pr(1)-modules Pr(1)

ev1−→ L(r)(∅) does not split.
Proof of claim: If the homomorphism does split, we can find a non-zero element
y =

∑
cdd ∈ Pr(1) such that y · d′ = y for all d′ ∈ Ar. For any d ∈ Ar we have

1′ ∼ 2′ in d ? p 3
2
. Since y = y · p 3

2
, we get that cd = 0 if 1′ 6∼ 2′ in d. On the other

hand, 1′ 6∼ 2′ in d ? p1 for any d ∈ Ar. Since y = y · p1 we get cd = 0 if 1′ ∼ 2′ in d.
This implies y = 0 which is a contradiction.

There also is a general semisimplicity result for the partition algebra.
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Theorem 3.26. For any δ ∈ C the partition algebra Pr(δ) is semisimple if and only
if δ 6∈ {0, 1, ..., 2r − 2}

Proof. It is not hard to prove that Pr(δ) is semisimple for all but finitely many
δ ∈ C (see for example [CO11, proof of Thm. 3.15]). The key idea is to use
that a finite-dimensional algebra A is semisimple if and only if its trace form is
non-degenerate. One then uses that the trace form of Pr(δ) is represented by a
matrix whose entries are polynomial in δ. This is degenerate for only finitely many
δ where the determinant of this matrix vanishes. Finding the explicit values where
the algebra is not semisimple is a bit harder. This was done in [MS94].

Our next goal is to parametrise the irreducible representations of Pr(δ). Let A
be a finite-dimensional algebra and let e ∈ A be an idempotent. If AeA = A there
is an equivalence of categories eAe-mod∼= A-mod by Corollary 2.12. In particular,
if AeA = A we have a bijection

iso. classes
of simple
A-modules

 1:1←→


iso. classes
of simple

eAe-modules

 .

For AeA 6= A, there are more simple A-modules than simple eAe-modules. In fact,
the next result states that we are missing exactly the simple A-modules which are
the restriction of a simple A/(e)-module along the projection A → A/(e) (where
(e) = AeA is the two-sided ideal generated by e). We formulate this result for right
modules which is more natural in the partition algebra setting.

Lemma 3.27. Let A be a finite-dimensional C-algebra and e ∈ A an idempotent.
Then there is a bijection

iso. classes
of simple right
A-modules

 1:1←→


iso. classes

of simple right
A/(e)-modules

 t


iso. classes
of simple right
eAe-modules


Res

A/(e)
A (S)←− [ S ∈ mod-A/(e)

Head(S ⊗eAe eA)←− [ S ∈ mod-eAe.

Proof. The simple right A/(e)-modules are in a 1:1 correspondence with the simple
right A-modules that are annihilated by e. One can show that the simple right
A-modules S with Se 6= 0 are in a 1:1 correspondence with the simple right eAe-
modules using the functors M 7→ Me and N 7→ N ⊗eAe eA from (11). Details can
be found in [Gre06, Thm 6.2g].

Consider the idempotent e = pr− 1
2

of Pr(δ). There is an algebra isomorphism

ePr(δ)e
∼−→ Pr−1(δ), d 7→ d\{r, r′} (32)

where d\{r, r′} is the partition in Ar−1 obtained from d by forgetting the dots with
label r and r′. Hence, we can describe the irreducible representations of Pr(δ)
inductively using Lemma 3.27 if we can describe the irreducible representations of
the algebra Pr(δ)/(e).

Lemma 3.28. For the idempotent e = pr− 1
2
, we have (e) = SpanCAr\Sr.

Proof. Let d ∈ Ar\Sr. If d has a block B with |B∩{1, ..., r}| > 1 we can find σ ∈ Sr
such that r ∼ r− 1 in σd. Then d = σ−1eσd ∈ (e). Similarly, if |B ∩ {1′, ..., r′}| > 1
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we can find σ ∈ Sr such that r′ ∼ (r − 1)′ in dσ and then d = dσeσ−1 ∈ (e). If
all blocks of d satisfy |B ∩ {1, ..., r}| ≤ 1 and |B ∩ {1′, ..., r′} ≤ 1 there must be a
block B of d with |B| = 1. Then d = pid

′ if B = {i} and d = d′pi if B = {i′}
where d′ ∈ Ar is the partition obtained from d by connection i with i′. We have
pr = prepr and pi = σprσ for some σ ∈ Sr. This shows that pi ∈ (e) and hence
d ∈ (e). This proves SpanCAr\Sr ⊂ (e). For d ∈ Ar let pn(d) be the number of
propagating blocks of d. Then pn(d?d′) ≤ min{pn(d), pn(d′)} since any propagating
block of d ? d′ is obtained by merging at least one propagating block of d with at
least one propagating block of d′. Moreover, pn(d) = r ⇔ d ∈ Sr and hence
SpanCAr\Sr = SpanC{d ∈ Ar | pn(d) < r} is an ideal containing e. This shows
that (e) = SpanCAr\Sr.

Here is the classification theorem of the simple Pr(δ)-modules.

Theorem 3.29. For δ 6= 0 there is a bijection
iso. classes

of simple right
Pr(δ)-modules

 1:1←→
{

Young diagrams λ
with 0 ≤ |λ| ≤ r

}
.

For δ = 0 and r > 0, there is a bijection
iso. classes

of simple right
Pr(0)-modules

 1:1←→
{

Young diagrams λ
with 0 < |λ| ≤ r

}
.

Proof. See also [Mar96, Corollary 5.1] or [CO11, Theorem 3.4]. The claim is obvi-
ous for r = 0 since P0(δ) = C. We have P1(δ) = SpanC{1, p1} ∼= C[X]/(X2 − δX).
For δ 6= 0 this has two irreducible representations which we can be identified with
{∅, }. For δ = 0 we have P1(0) ∼= C[X]/(X2). This has one irreducible repre-
sentation which we identify with { }. Hence, we have shown the claim for r = 1.
The composition C[Sr] → Pr(δ) → Pr(δ)/(e) is an isomorphism by 3.28 and the
irreducible representations of Sr are indexed by Young diagrams λ with |λ| = r.
Moreover ePr(δ)e ∼= Pr−1(δ) by (32). Lemma 3.27 then tells us that

iso. classes
of simple right
Pr(δ)-modules

 1:1←→


iso. classes

of simple right
Pr−1(δ)-modules

 t
{

Young diagrams λ
with |λ| = r

}
.

The claim now follows by induction.

Remark 3.30. Lemma 3.27 also gives a recipe to recursively construct the simple
Pr(δ)-modules. For r = 1 the irreducible P1(δ)-modules are

L(1)(∅) := P1(δ)/(p1 − δ)
L(1)( ) := P1(δ)/(p1)

(which are equal for δ = 0). Now assume we have constructed the simple Pr−1(δ)-
modules L(r−1)(λ) for 0 ≤ |λ| ≤ r − 1. Then the simple Pr(δ)-modules are defined
as:

L(r)(λ) :=

{
Res

C[Sr]
Pr(δ)

S(λ) if |λ| = r

Head(L(r−1)(λ)⊗ePr(δ)e ePr(δ)) if |λ| < r.

Here e = pr− 1
2
, the module S(λ) is the Specht module of Sr corresponding to λ and

the restriction is along the algebra homomorphism Pr(δ)→ Pr(δ)/(e) ∼= C[Sr].
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The double centraliser theorem tells us that decomposing V ⊗r as a (Sn, Pr(n))-
bimodule gives a bijection between simple C[Sn]-modules and simple Pr(n)-modules
appearing in V ⊗r. We can now ask what this bijection does with respect to the
indexing set from Theorem 3.29. Let λ = (λ1, ..., λl) be a Young diagram with
0 ≤ |λ| ≤ r. We define

λ[n] := (n− |λ|, λ1, λ2, ..., λl)

which defines a Young diagram if and only if n− |λ| ≥ λ1.

Example 3.31. We decompose V as a (C[Sn], P1(n))-bimodule for n ≥ 2. Note
that v1 + ... + vn spans a copy of the trivial representation which corresponds to
the Young diagram (n). On the other hand, (v1 + ...+ vn) · p1 = n(v1 + ...+ vn) so
v1 + ...+ vn spans a copy of the P1(n)-representation L(1)((0)) = L(1)(∅). The space
W := {

∑n
i=1 aivi |

∑n
i=1 ai = 0} ⊂ V is also an irreducible Sn-representation which

corresponds to the Young diagram (n−1, 1) (see Example 4.16). Note that x ·p1 = 0
for all x ∈W . Hence, W is a direct sum of n− 1 copies of the P1(n)-representation
L(1)((1)) = L(1)( ). This shows that

V ∼=
(
S ((n))⊗ L(1)((0))

)
⊕
(
S ((n− 1, 1))⊗ L(1)((1))

)
as (C[Sn], P1(n))-bimodules. Note that (n) = (0)[n] and (n − 1, 1) = (1)[n], so

V ∼=
⊕

0≤|λ|≤1 S(λ[n])⊗ L(r)(λ).

Here is the bimodule decomposition of V ⊗r for general r ∈ N0.

Proposition 3.32. There is an isomorphism of (C[Sn], Pr(n))-bimodules

V ⊗r ∼=
⊕
λ

S(λ[n])⊗ L(r)(λ)

where the sum runs over all Young diagrams λ with 0 ≤ |λ| ≤ r and n− |λ| ≥ λ1.

Proof. This is a bit technical. Nonetheless, we outline the main ideas of the proof
since this is omitted in the literature. By the double centraliser theorem, we have a
decomposition of the (C[Sn], Pr(n))-bimodule

V ⊗r ∼=
⊕

0≤|λ|≤r

A(r)(λ)⊗ L(r)(λ)

where the A(r)(λ) are distinct simple C[Sn]-modules or 0. We need to show that

A(r)(λ) =

{
S(λ[n]) if n− |λ| ≥ λ1

0 otherwise.
(33)

For r = 0, 1 the claim can be checked by hand as in Example 3.31. We proceed by
induction. It is not hard to check that

L(λ)(r)pr− 1
2

∼=

{
L(r−1)(λ) if |λ| < r

0 if |λ| = r

as right pr− 1
2
Pr(n)pr− 1

2

∼= Pr−1(n)-modules. In particular⊕
0≤|λ|<r

A(r−1)(λ)⊗ L(r−1)(λ) ∼= V ⊗r−1 ∼= V ⊗r · pr− 1
2

∼=
⊕

0≤|λ|<r

A(r)(λ)⊗ L(r−1)(λ)
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as (C[Sn], Pr−1(n))-bimodules. This proves (33) for 0 ≤ |λ| < r using the induction
hypothesis. Let

W := SpanC{vi | ij 6= ik for j 6= k} ⊃ {v ∈ V ⊗r | v · (pr− 1
2
) = 0}.

Then A(r)(λ)⊗ L(r)(λ) ⊂ W for |λ| = r since L(r)(λ) · (pr− 1
2
) = 0. A combinatorial

argument as in [Del07, Prop. 6.4] shows that

W ∼=
⊕
λ,µ

S(µ)⊗ S(λ)

as (C[Sn],C[Sr])-bimodules where the sum runs over all λ, µ with |λ| = r, |µ| = n
such that λ ⊂ µ and µ/λ is a horizontal strip. The S(µ) appearing together with

S(λ) = Res
Pr(n)
Sr

L(r)(λ) are then of the form S(µ) = S(λ′[n]) where |λ′| < r or λ′ = λ.

Here the latter case occurs if and only if n− |λ| ≥ λ1. Since we already know that
S(λ′[n]) = A(r)(λ′) if |λ′| < r, we get A(r)(λ) = S(λ[n]) if n−|λ| ≥ λ1 and A(r)(λ) = 0
otherwise. This proves the claim.

3.3 A Schur-Weyl duality for Saff
n

Recall the affine symmetric group Saff
n := ZnoSn from Section 1.3. In Lemma 1.20

we have seen that for any x ∈ C× the inclusion Sn ↪→ GLn(C) sending σ ∈ Sn to
the corresponding permutation matrix Pσ extends to a group homomorphism

Saff
n → GLn(C)

Sn 3 σ 7→ Pσ

Zn 3 (a1, ..., an) 7→


xa1 0 · · · 0

0 xa2
. . .

...
...

. . .
. . . 0

0 · · · 0 xan

 .

This induces a diagonal action of Saff
n on tensor space and we can ask as before what

the centralising partner of this action is

Saff
n y V ⊗r x ?. (34)

This is what we study in this section.

Let Φx : C[Saff
n ]→ EndC(V ⊗r) be the homomorphism induced by the Saff

n -action on
V ⊗r. The first thing we have to worry about is how the answer to (34) depends on
x. For this, we look at the action of Zn ⊂ Saff

n on V ⊗r. The abelian group Zn is
generated by the standard basis vectors ε1, ε2, ..., εn. These act on V ⊗r via

εk · (vi1 ⊗ ....⊗ vir) = x#{l|il=k} · vi1 ⊗ ....⊗ vir . (35)

For x ∈ C×, we denote by ord(x) the multiplicative order of x.

Lemma 3.33. Let x′ ∈ C×. Then we have Im(Φx′) ⊂ Im(Φx) for any x ∈ C× with
ord(x) > r. In particular, Im(Φx) = Im(Φx′) whenever ord(x′) > r and ord(x) > r.

Proof. Let k ∈ {1, ..., n}, m ∈ {0, ..., r} and

Wm = SpanC{vi1 ⊗ ...⊗ vir ∈ V ⊗r | #{l | il = k} = m}.
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Then V ⊗r =
⊕r

m=0Wm is the eigendecomposition of V ⊗r with respect to the endo-
morphism Φx(εk) where Wm is the eigenspace corresponding to the eigenvalue xm .
We then have

Φx(εk) =

r∑
m=0

xm prWm
and prWm

=
∏

0≤l≤r
l 6=m

Φx(εk)− xl

xm − xl
.

This shows that the subalgebra of EndC(V ⊗r) generated by Φx(εk) is the same the
subalgebra generated by the projections prW0

, ...,prWm
. Note that

Φx′(εk) =
r∑

m=0

(x′)m prWm

so Φx′(εk) is contained in the subalgebra of EndC(V ⊗r) generated by Φx(εk). More-
over, Φx(σ) = Φx′(σ) for all σ ∈ Sn. Since Saff

n is generated by Sn and the εk we get
Im(Φx′) ⊂ Im(Φx).

Let Mn ⊂ GLn(C) be the set of invertible monomial matrices acting diagonally
on V ⊗r. Let Φ : Mn → EndC(V ⊗r) be the induced algebra homomorphism. We
can use Mn to reinterpret the Saff

n -action in a way that is independent of x.

Corollary 3.34. Let x ∈ C× with ord(x) > r. Then Im(Φx) = Im(Φ).

Proof. We have Saff
n ↪→Mn, so Im(Φx) ⊂ Im(Φ). On the other hand, Mn is gener-

ated by Sn and the diagonal matrices with exactly one diagonal entry y 6= 1. The
homomorphism Φ maps such a diagonal matrix into Im(Φy) and Im(Φy)⊂ Im(Φx)
for all y ∈ C× by Lemma 3.33. This shows that Im(Φ) ⊂ Im(Φx) and the claim
follows.

Let us now return to the question what the centralising partner of the Saff
n -action

(for ord(x) > r) or equivalently the Mn-action is. By (35), we have in EndC(V ⊗r):

εkEj,iε
−1
k = x#{l|jl=k}−#{l|il=k}Ej,i. (36)

If i
xd−→ j for a partition d ∈ Ar, we have

#{l | jl = k} −#{l | il = k} = |B ∩ {1′, ..., r′}| − |B ∩ {1, ..., r}| (37)

where B is the block of d with label k in the (i, j)-labelling of d (and B = ∅ if the
label k does not occur). Hence, Ej,i ∈ EndC(V ⊗r) commutes with the Zn-action on

V ⊗r if |B ∩ {1, ..., r}| = |B ∩ {1′, ..., r′}| for all blocks B of d.

Definition 3.35. A block B of a partition d ∈ Ar is called balanced if contains the
same number of dots from the top row of d as from the bottom row of d, i.e.

|B ∩ {1, ..., r}| = |B ∩ {1′, ..., r′}|.

We call d ∈ Ar balanced if all blocks of d are balanced and we denote the set of
balanced partitions by Abal

r .

Example 3.36. The following two partitions are balanced:

.
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On the other hand, the following two partitions are not balanced and we have marked
the non-balanced blocks in red:

.

Here are a few basic properties of balanced partitions.

Lemma 3.37. For any two balanced partitions d1, d2 ∈ Abal
r the following hold:

1) The concatenation d1 ? d2 is balanced.

2) In the concatenation d1 ? d2 no blocks have to be removed, i.e. r(d1, d2) = 0.

3) If d ∈ Ar and d ≤ d1 then d is balanced.

Proof. Since d1 and d2 are balanced, their blocks are propagating. Hence, any block
B of d1 is connected with the top row of d1 and thus it cannot be removed in d1 ?d2.
Similarly, any block B of d2 is connected to the bottom row of d2 and thus it cannot
be removed from d1 ?d2 either. Hence, we have r(d1, d2) = 0 which proves 2). Let B
be a block of d1 ? d2. Then B is obtained by fusing a collection of blocks B1, ..., Bk
of d1 with a collection of blocks B̃1, ..., B̃k′ of d2. We then have

|B ∩ {1, ..., r}| = |(B1 ∪ ... ∪Bk) ∩ {1, ..., r}|
= |(B1 ∪ ... ∪Bk) ∩ {1′, ..., r′}|

= |(B̃1 ∪ ... ∪ B̃k′) ∩ {1, ..., r}|

= |(B̃1 ∪ ... ∪ B̃k′) ∩ {1′, ..., r′}| = |B ∩ {1′, ..., r′}|.

This proves 1). For 3), observe that any block of d is a union of blocks of d1 which
are all balanced. Hence the blocks of d are also balanced.

Definition 3.38. The balanced partition algebra P bal
r is the C-vector space with

basis Abal
r and multiplication d1 · d2 := d1 ? d2 for d1, d2 ∈ Abal

r , extended bilinearly
to the vector space P bal

r .

By Lemma 3.37, balanced partitions are closed under concatenation, so the mul-
tiplication of P bal

r is well-defined. P bal
r is also associative and unital. In fact, we

can consider P bal
r as a subalgebra of Pr(δ) in the obvious way for any δ ∈ C. This

inclusion is compatible with the multiplication since free blocks never occur when
multiplying two balanced partitions.

Remark 3.39. We have seen in Remark 3.20 that the dimension of the partition
algebra can be computed recursively. A similar technique works for the balanced
partition algebra. For this, let

Bbal(r) := |Abal
r | = dimC P

bal
r

be the r-th balanced Bell number. There is a map Abal
r →

⊔
0≤k<r A

bal
k which sends

d ∈ Abal
r to the partition obtained by removing the block of d that contains the dot

r• in the top right corner. For example, for r = 5 we have

7−→ .
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We claim that the fibre of an element d′ ∈ Abal
k under the map above has size(

r−1
k

)(
r
k

)
. In fact, any d ∈ Abal

r in the fibre of d′ differs from d′ by a single block

which contains the dot
r• as well as r− k− 1 other dots from the top of d and r− k

other dots from the bottom of d. There are
(
r−1

r−k−1

)
=
(
r−1
k

)
possible ways to choose

the position of the r − k − 1 dots on the top and
(
r

r−k
)

=
(
r
k

)
ways to choose the

position of the r − k dots on the bottom. This proves the claim about the size of
the fibre. In particular, we get the recursion

Bbal(r) =

r−1∑
k=0

(
r − 1

k

)(
r

k

)
Bbal(k).

Using this recursion, one can check that the values of Bbal(r) = dimC P
bal
r for

r = 0, 1, 2, 3, 4, 5, 6, ... are 1, 1, 3, 16, 131, 1496, 22482, ....

For δ = n ∈ C, we have defined an action V ⊗r x Pr(n) and via the inclusion
P bal
r ↪→ Pr(n), this induces an action V ⊗r x P bal

r . We now show that this is the
centralising partner of the Saff

n -action. For this we make use of the orbit basis of
Pr(δ) from Definition 3.10 which was denoted by {xd | d ∈ Ar}.

Lemma 3.40. For any balanced partition d ∈ Abal
r we have xd ∈ P bal

r . Moreover,
{xd | d ∈ Abal

r } is a basis of P bal
r .

Proof. We have d =
∑

d′≤d xd′ in Pr(δ). By Lemma 3.37 the d′ occurring in this
sum are balanced if d is balanced. It then follows by upwards induction along the
partial order that xd ∈ P bal

r . The {xd | d ∈ Abal
r } form a basis of P bal

r since the base
change to the standard basis Abal

r is unitriangular.

We now come to the main theorem of this section.

Theorem 3.41. The actions Saff
n y V ⊗r x P bal

r commute. If ord(x) > r the two
actions generate each other’s centraliser.

Proof.

Step 1: The actions commute.
For d ∈ Abal

r and i
xd−→ j, we have that seen in (36) and (37) that Ej,i

commutes with the Zn-action. Moreover, xd =
∑

i
xd−→j

Ej,i in EndC(V ⊗r)op

and thus xd commutes with the Zn-action. Since xd also commutes with the
Sn-action we get that xd commutes with the Saff

n -action. By Lemma 3.40
the xd span P bal

r , so Step 1 follows.

Step 2: P bal
r generates EndSaff

n
(V ⊗r)op if ord(x) > r.

Let y ∈ EndSaff
n

(V ⊗r)op. By Theorem 3.9 the endomorphism y is induced
by an element

∑
d∈Ar cdxd ∈ Pr(n) for some cd ∈ C. By Corollary 3.13 the

element xd acts by multiplying with 0 if d has more than n blocks, so in this
case we may assume cd = 0. For d ∈ Ar with at most n blocks and cd 6= 0,
we can find i, j ∈ {1, ..., n}r such that i

xd−→ j. Using (36) and (37) we see

that the coefficient of Ej,i in εkyε
−1
k = y is

cdx
|B∩{1′,...,r′}|−|B∩{1,...,r}| = cd 6= 0

where B is the block with label k in the (i, j)-labelling of d. Since

|B ∩ {1′, ..., r′}| − |B ∩ {1, ..., r}| ∈ {−r, ...,−1, 0, 1, ..., r}

and ord(x) > r, the block B has to be balanced. Since k and hence also the
block of B was arbitrary, we deduce that d is a balanced partition. This
shows that

∑
d∈Ar cdxd ∈ P

bal
r proving Step 2.
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Step 3: Saff
n generates EndPbal

r
(V ⊗r) if ord(x) > r.

If r < ord(x) <∞, then Φx : C[Saff
n ]→ EndC(V ⊗r) factors through

C[Saff
n ] EndC(V ⊗r)

C[(Z/m)n o Sn]

Φx

where m = ord(x). Since (Z/m)noSn is a finite group, we see that Im(Φx)
is semisimple. The result then follows from the double centraliser theorem.
If ord(x) =∞, we pick x′ ∈ C× with r < ord(x′) <∞. By Lemma 3.33, we
have Im(Φx) = Im(Φx′) and the result follows from the previous case.

We can also rephrase this as the following duality for the monomial matrices
Mn.

Corollary 3.42. The commuting actions Mn y V ⊗r x Saff
r generate each other’s

centraliser.

Proof. Let x ∈ C× with ord(x) > r. Then the actions of Mn and Saff
n on V ⊗r

generate the same subalgebra of EndC(V ⊗r) by Corollary 3.34. The result now
follows from Theorem 3.41.

Let us briefly outline a Schur-Weyl duality for the Saff
n -action where x ∈ C× is

root of unity of order m (possibly ≤ r).

Definition 3.43. A block B of a partition d ∈ Ar is called m-balanced if

|B ∩ {1, ..., r}| ≡ |B ∩ {1′, ..., r′}| mod m.

We call d ∈ Ar m-balanced if all blocks of d are m-balanced and we denote the set
of m-balanced partitions by Am−bal

r .

Clearly, balanced partitions are also m-balanced for any m ∈ N. However, free
blocks can occur when concatenating m-balanced partitions. For example, we have
to remove r(d, d) = 1 free block to compute d ? d where

d =
1

1’ 2’

2

m’

m

∈ Am−bal
m .

Apart from this, the analogous statements of Lemma 3.37 hold for m-balanced
partitions.

Lemma 3.44. For any two m-balanced partitions d1, d2 ∈ Am−bal
r the following

hold:

1) The concatenation d1 ? d2 is m-balanced.

2) If d ∈ Ar and d ≤ d1 then d is m-balanced.

Proof. The proof is word by word the same as the proof of Lemma 3.37 when re-
placing equalities by equalities mod m.
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Hence, we can define the m-balanced partition algebra

Pm−bal
r (δ) := SpanCA

m−bal
r ⊂ Pr(δ)

for any δ ∈ C. We then have the following Schur-Weyl duality.

Proposition 3.45. Let x ∈ C× be a root of unity of order m. Then the actions
Saff
n y V ⊗r x Pm−bal

r (n) commute and generate each other’s centraliser.

Proof. The proof is essentially the same as the proof of Theorem 3.41 when replacing
balanced by m-balanced.

Remark 3.46. 1. If m > r any m-balanced partition d is balanced since we have
|B ∩ {1, ..., r}|, |B ∩ {1′, ..., r′}| ∈ {0, ..., r} for each block B of d. In this case
Proposition 3.45 recovers the Schur-Weyl duality from Theorem 3.41

2. If m = 1 (i.e. x = 1), any partition is m-balanced and the Sn and Saff
n -actions

generate the same subalgebra of EndC(V ⊗r). Hence, we recover the duality
Sn y V ⊗r x Pr(n) = P 1−bal

r (n) in this case.

3.4 A presentation of the balanced partition algebra

This section is devoted to deriving an efficient presentation of the balanced partition
algebra similar to the one given in Theorem 3.22. The first step will be to derive a
presentation for a sublagebra of P bal

r .

Definition 3.47. A partition d ∈ Ar is called horizontal if k ∼ k′ in d for k = 1, ..., r.

Let

Ahor
r := {d ∈ Ar | d is horizontal}

P hor
r := SpanC{d | d ∈ Ahor

r }.

Note that horizontal partitions are always balanced and a concatenation of horizontal
partitions is again horizontal. Hence, P hor

r ⊂ P bal
r inherits an algebra structure from

P bal
r .

Definition 3.48. We call P hor
r the horizontal partition algebra.

We want to derive a presentation of the horizontal partition algebra.

Definition 3.49. Chor
r is the C-algebra with generators

qi,j = qj,i for 1 ≤ i < j ≤ r

and relations

(HOR1) q2
i,j = qi,j for 1 ≤ i < j ≤ r;

(HOR2) qi,jqk,l = qk,lqi,j for 1 ≤ i < j ≤ r, 1 ≤ k < l ≤ r;

(HOR3) qi,jqj,k = qi,kqj,k = qi,jqi,k for 1 ≤ i < j < k ≤ r.

Proposition 3.50. There is an isomorphism of algebras

Φhor
r : Chor

r
∼−→ P hor

r

qi,j 7→
i

i’ j’

j

.
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Proof.

� Φhor
r is well-defined:

It is straightforward to check that the Φhor
r is compatible with (HOR1)-(HOR3).

� Φhor
r is surjective:

The standard basis of P hor
r is indexed by partitions of the set {1, ..., r}. Let Q

be a partition of this set and dQ ∈ Ahor
r the corresponding basis element. Let

qQ :=
∏

i<j s.t.
i∼j in Q

qi,j .

Then Φhor
r (qQ) = dQ.

� Φhor
r is injective:

The map Φhor
r sets up a bijection between the basis Ahor

r of P hor
r and the

qQ ∈ Chor
r as above. It suffices to show that the qQ span Chor

r as a vector
space since then the qQ must also be a basis of Chor

r and Φhor
r must be an

isomorphism. Monomials of the form q = qi1,j1 · ... · qim,jm span Chor
r and

Φhor
r (q) = dQ for some Q. Hence, it suffices to prove the following claim.

Claim: We have q = qQ.
By (HOR1) and (HOR3), we may assume that the qik,jk are pairwise distinct.
Then all the factors of the product q appear also in the product qQ since
Φhor
r (q) = dQ implies ik ∼ jk in Q. We show that multiplying q with the extra

factors from qQ gives the same element in Chor
r . If {il, jl} ∩ {ik, jk} 6= 0 the

qa,b with a < b and a, b ∈ {il, jl, ik, jk} appear in qQ. These can inserted in the
product q using (HOR1)-(HOR3). In fact, for i < j < k, we have

qi,jqj,k
(HOR3)

= qi,kqj,k
(HOR3)

= qi,jqi,k
(HOR1)

= q2
i,jq

2
i,k

(HOR2)
= (qi,jqi,k)

2

(HOR3)
= qi,jqi,kqi,jqj,k

(HOR2)
= q2

i,jqi,kqj,k
(HOR1)

= qi,jqi,kqj,k.

Repeating this argument, wee see that multiplying q with all the qi,j where
i ∼ j in Q gives the same element in Chor

r . This shows that q = qQ.

We can now return to our original goal, which was to give a presentation of P bal
r

by generators and relations.

Definition 3.51. Cbal
r is the C-algebra with generators

s1, ..., sr−1 and p 3
2
, p 5

2
, ...., pr− 1

2

and relations

(BAL1) (i) s2
i = 1 for i = 1, ..., r − 1;

(ii) sisj = sjsi for |i− j| > 1;

(iii) sisi+1si = si+1sisi+1 for i = 1, ..., r − 2;

(BAL2) (i) (pi+ 1
2
)2 = pi+ 1

2
for i = 1, ..., r − 1;

(ii) pi+ 1
2
pj+ 1

2
= pj+ 1

2
pi+ 1

2
for i, j = 1, ..., r − 1;

(BAL3) (i) sipi+ 1
2

= pi+ 1
2

= pi+ 1
2
si for i = 1, ..., r − 1;
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(ii) sisi+1pi+ 1
2
si+1si = pi+ 3

2
for i = 1, ..., r − 2;

(iii) sipj+ 1
2

= pj+ 1
2
si for j 6= i− 1, i, i+ 1.

There is an algebra homomorphism

Φbal
r : Cbal

r −→ P bal
r

si 7→
i’

i

(i+1)’

i+1

pi+ 1
2
7→

i’

i

(i+1)’

i+1

.

One can check by hand that this is compatible with the defining relations of Cbal
r .

However, it is probably easier to observe that the generators of Cbal
r are a subset

of the generators of the algebra Cr(δ) (from Definition 3.21) and the relations of
Cbal
r are a subset of the relations from Cr(δ). Hence, there is a natural algebra

homomorphism Cbal
r → Cr(δ) and the map Φbal

r is the composition Cbal
r → Cr(δ)

∼→
Pr(δ) whose image is contained in P bal

r ⊂ Pr(δ). There also is an inclusion

C[Sr] ↪→ Cbal
r , si 7→ si.

This is injective since the composition C[Sr] → Cbal
r

Φbal
r→ P bal

r is the diagrammatic
inclusion from Remark 3.6. Let Br be the subalgebra of Cbal

r generated by the
σpi+ 1

2
σ−1 where σ ∈ Sr and i = 1, ..., r − 1. We then have σBrσ

−1 = Br for any

σ ∈ Sr. Moreover, Cbal
r is generated by Br and Sr. In particular,

Cbal
r = Br · C[Sr] and P bal

r = P hor
r · C[Sr]. (38)

where the second equality follows from the fact that any balanced partition has
a decomposition q · σ with a unique (upper) horizontal part q ∈ Ahor

r and a (not
necessarily unique) permutation part σ ∈ Sr. For example,

=

We will use (38) to prove that Φbal
r is an isomorphism. For this we analyse the

restriction of Φbal
r to Br. Note that Φbal

r (σ)P hor
r Φbal

r (σ−1) = σP hor
r σ−1 = P hor

r for
all σ ∈ Sr. Since Φbal

r (pi+ 1
2
) ∈ P hor

r we get Im(Φbal
r |Br) ⊂ P hor

r . In fact, we even

have Im(Φbal
r |Br) = P hor

r since

xi,j = xj,i := sj−1sj−2...si+1pi+ 1
2
si+1...sj−2sj−1 ∈ Br. (39)

is a preimage of qi,j ∈ Chor
r
∼= P hor

r under Φbal
r for 1 ≤ i < j ≤ r.
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Lemma 3.52. For 1 ≤ i < j ≤ r and σ ∈ Sr, we have σxi,jσ
−1 = xσ(i),σ(j).

Proof. It suffices to prove the claim for σ = sk a simple reflection.

Case 1: k < i− 1 or k > j.
In this case sk commutes with pi+ 1

2
, si+1, ..., sj−1 and hence also with xij .

We then get skxi,jsk = xi,j = xsk(i),sk(j).

Case 2: i < k < j − 1.
In this case, we have

skxi,jsk = sj−1...sk+2sksk+1sk...si+1pi+ 1
2
si+1...sksk+1sksk+2...sj−1

= sj−1...sk+1sksk+1sk−1...si+1pi+ 1
2
si+1...sk−1sk+1sksk+1...sj−1

= sj−1sj−2...si+1pi+ 1
2
si+1...sj−2sj−1

= xi,j = xsk(i),sk(j).

Case 3: k = i 6= j − 1 or k = i− 1.
This case follows from

sixi,jsi = sj−1...si+2sisi+1pi+ 1
2
si+1sisi+2...sj−1

= sj−1...si+2sisi+1sipi+ 1
2
sisi+1sisi+2...sj−1

= sj−1...si+2si+1sisi+1pi+ 1
2
si+1sisi+1si+2...sj−1

= sj−1...si+2si+1pi+ 3
2
si+1si+2...sj−1

= sj−1...si+2pi+ 3
2
si+2...sj−1 = xi+1,j .

Case 4: k = j or k = j − 1 6= i.
This case follows from sjxi,jsj = sjsj−1...si+1pi+ 1

2
si+1...sj−1sj = xi,j+1.

Case 5: k = i = j − 1.
Here, skxi,i+1sk = sipi+ 1

2
si = pi+ 1

2
= xi+1,i = xsk(i),sk(i+1).

The claim now follows for σ = sk.

Corollary 3.53. The restriction of Φbal
r to Br induces an isomorphism

Φbal
r |Br : Br

∼→ P hor
r .

Proof. We have already seen that Im(Φbal
r |Br) = P hor

r using the elements from (39).
It remains to show that Φbal

r |Br is injective.
Claim: Ψ : P hor

r
∼= Chor

r → Br, qi,j 7→ xi,j is a well-defined algebra homomorphism.
Assuming this claim, we get

Ψ(Φbal
r (σpi+ 1

2
σ−1)) = Ψ(σqi,i+1σ

−1)

= Ψ(qσ(i),σ(i+1))

= xσ(i),σ(i+1)

3.52
= σxi,i+1σ

−1 = σpi+ 1
2
σ−1

for any σ ∈ Sr and i = 1, ..., r − 1. This shows that Ψ ◦ Φbal
r |Br = idBr and hence

Φbal
r |Br is injective. It remains to show the claim that Ψ is well defined, i.e. that

the xij satisfy (HOR1)-(HOR3). We have

x2
1,2 = (p 3

2
)2 = p 3

2
= x1,2.
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Let σ ∈ Sr such that σ(1) = i and σ(2) = j. Then, by Lemma 3.52 we have

x2
i,j = (σx1,2σ

−1)2 = σx1,2σ
−1 = xi,j

so the xij satisfy (HOR1). Similarly, (HOR2) follows from

x1,2x3,4 = p 3
2
p 7

2
= p 7

2
p 3

2
= x3,4x1,2

x1,2x2,3 = p 3
2
p 5

2
= p 5

2
p 3

2
= x2,3x1,2

and (HOR3) follows from

x1,2x2,3 = p 3
2
p 5

2
= p 5

2
p 3

2
= s2p 5

2
p 3

2
= s2p 3

2
p 5

2
= s2p 3

2
s2p 5

2
= x1,3x2,3

by conjugating with an appropriate σ ∈ Sr. We have thus shown that Ψ is well-
defined. This finishes the proof.

Now, we have all the ingredients to prove the presentation theorem.

Theorem 3.54. The map Φbal
r : Cbal

r → P bal
r is an isomorphism of algebras.

Proof. We have already seen that Φbal
r is well-defined so it remains to show that

Φbal
r is an isomorphism. Note that Φbal

r is the identitiy on C[Sr] and an isomorphism
on Φbal

r |Br : Br
∼→ P hor

r by Corollary 3.53. We have P bal
r = P hor

r · C[Sr] as well as
Cbal
r = Br ·C[Sr] by (38), so Φbal

r is surjective. Hence, Φbal
r is an isomorphism if and

only if we can lift the basis Abal
r of P bal

r to a spanning set (and then also a basis) of
Cbal
r . We prove that such a lift exists:

By (38) the algebra Cbal
r is spanned by the elements q · σ where q ∈ (Φbal

r )−1(Ahor
r )

and σ ∈ Sr. These elements satisfy Φbal
r (q · σ) ∈ Abal

r and any d ∈ Abal
r has a lift of

this form. Hence, it suffices to show that each d ∈ Abal
r has at most one lift of this

form, i.e.
Φbal
r (qσ) = Φbal

r (q′σ′)⇒ qσ = q′σ′.

for any q, q′ ∈ (Φbal
r )−1(Ahor

r ) and σ, σ′ ∈ Sr. After multiplying with σ′−1 on the right
in both equations, we may assume σ′ = 1. Note that Φbal

r (q)σ = Φbal
r (qσ) = Φbal

r (q′)
implies Φbal

r (q) = Φbal
r (q′) since the (upper) horizontal part of a balanced partition

is unique. This shows that q = q′ by Corollary 3.53. Let Q be the partition of
{1, ..., r} corresponding to the element Φbal

r (q) ∈ Ahor
r . We can then find τ ∈ Sr such

that τ ·Q = {{1, ..., i1}, {i1 + 1, ..., i1 + i2}, ...}. Then Φhor
r (τqτ−1) is the horizontal

partition corresponding to τ ·Q which can be written as

τqτ−1 = (p 3
2
· ... · pi1− 1

2
) · (pi1+ 3

2
· ... · pi1+i2− 1

2
) · ... .

Then Φbal
r (τqτ−1)τστ−1 = Φbal

r (τqτ−1) implies τστ−1 ∈ Si1 × Si2 × ... and we get
(τqτ−1) · (τστ−1) = τqτ−1 by (BAL3)-(i). This shows that qσ = q = q′σ′ and the
proof is complete.

3.5 The representation theory of the balanced partition algebra

By Corollary 3.13 and Lemma 3.40 the kernel of the action V ⊗r x P bal
r is spanned

by the xd where d ∈ Abal
r has more than n blocks. Since any balanced partition has at

most r blocks, P bal
r acts faithfully on V ⊗r for n ≥ r. In this case EndSaff

n
(V ⊗r)op ∼=

P bal
r is semisimple by the double centraliser theorem. We have thus shown the

following.

Proposition 3.55. The balanced partition algebra P bal
r is semisimple for any r ∈ N.
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Our next goal is to parametrise the irreducible P bal
r -representations. To any

d ∈ Abal
r we can assign a partition λ(d) := (1l1 , 2l2 , ..., ) (meaning a partition of an

integer and not a set) where li is the number of blocks B of d with |B| = 2i. Note
that

|λ(d)| =
∑

li · i =
∑

B block of d

|B|/2 = r.

Since balanced blocks are always propagating, Proposition 3.17 tells us that

xdxd′ =

{
xd?d′ if d and d′ match

0 otherwise
(40)

for any d, d′ ∈ Abal
r . Note that d and d′ can only match if λ(d) = λ(d′). Hence, P bal

r

decomposes into a product of algebras

P bal
r =

∏
λ`r

Bλ (41)

where Bλ = SpanC{xd | d ∈ Abal
r with λ(d) = λ}. Moreover, for any λ ` r there is a

distinguished element eλ ∈ Ahor
r corresponding to the set partition

Q(λ) := {{1, ..., λ1}, {λ1 + 1, ..., λ1 + λ2}, ...}

of {1, ..., r}. The element eλ is an idempotent in P bal
r and xeλ is an idempotent in

Bλ by (40).

Lemma 3.56. We have Bλ = BλxeλBλ.

Proof. Let d ∈ Abal
r with λ(d) = λ. The top row of d corresponds to a partition of

the set {1, ..., r} and hence to an idempotent q ∈ Ahor
r such that q and d match with

qd = d. In particular, xd = xqxd by (40). We can then find σ ∈ Sr with σeλσ
−1 = q.

Note that
q = σeλ · eλσ−1 = σeλ · eλ · eλσ−1.

Moreover, σeλ and eλσ
−1 (resp. σeλ and eλ) match. Hence,

xd = xqxd = xσeλxeλσ−1xd = xσeλxeλxeλσ−1xd ∈ P bal
r xeλP

bal
r

(41)
= BλxeλBλ

by (40). This shows that Bλ = BλxeλBλ.

As a direct consequence, Corollary 2.12 (or the analogous statement for right
modules to be precise) tells us that there is an equivalence of categories

mod-Bλ ∼= mod-xeλBλxeλ . (42)

The following proposition determines the right hand side of this equivalence.

Proposition 3.57. There is an algebra isomorphism

xeλBλxeλ
∼= C[Sl1 × Sl2 × ...× Slm ]

where λ = (1l1 , 2l2 , ...,mlm).

Proof. Let d ∈ Abal
r with λ(d) = λ. By (40) we have that xeλxd = xd if the top

row of d is given by the set partition Q(λ) and xeλxd = 0 otherwise. Similarly,
xdxeλ = xd if the bottom row of d is given by the set partition Q(λ) and xdxeλ = 0
otherwise. Hence xeλBλxeλ is spanned by all those xd where the top and the bottom
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row of d ∈ Abal
r are given by Q(λ). Since the blocks of d are propagating, we see that

d connects each block of Q(λ) in the top row of d with a unique block of Q(λ) in
the bottom row of d. In other words, d permutes the blocks of Q(λ). The fact that
d is balanced is equivalent to the fact that d only permutes blocks of Q(λ) which
are of the same size. Moreover, the composition of two such diagrams d and d′ is
just given by composing the corresponding permutations of the blocks of Q(λ). This
shows that xeλBλxeλ

∼= C[Sl1 × Sl2 × ... × Slm ] since there are li blocks of size i in
Q(λ).

This already completely determines the representation theory of P bal
r . In fact,

we get equivalences of categories

mod-P bal
r

(41)∼=
⊕
λ`r

mod-Bλ
(42)∼=

⊕
λ`r

mod-xeλBλxeλ

3.57∼=
⊕

λ=(1l1 ,2l2 ,...)`r

mod-C[Sl1 × Sl2 × ...].
(43)

Remark 3.58. This gives another proof of the fact that P bal
r is semisimple from

Proposition 3.55.

To give a nice parametrisation of the irreducible P bal
r -representations, we need

the following definition.

Definition 3.59. A multipartition is a tuple of partitions λ = (λ(1), λ(2), ...) such
that |λ(i)| = 0 for i� 0.

Corollary 3.60. There is a bijection
iso. classes

of simple right
P bal
r -modules

 1:1←→


multipartitions

λ = (λ(1), λ(2), ...)

with
∑
|λ(i)| · i = r

 .

Proof. The irreducible representations of C[Sl1 ×Sl2 × ...×Slm ] are parametrised by
multipartitions λ = (λ(1), λ(2), ..., λ(m)) with |λ(i)| = li. Moreover,∑

|λ(i)| · i =
∑

li · i = |(1l1 , 2l2 , ...,mlm)|.

so
∑
|λ(i)| · i = r if and only if (1l1 , 2l2 , ...,mlm) is a partition of r. The claim now

follows from (43).

3.6 Dualities for other diagram algebras

We have already seen a few dualities with diagram algebras like the symmetric group
algebra or the (balanced) partition algebra. More generally, we refer to any subalge-
bra of the partition algebra as a diagram algebra if it is spanned by a set of diagrams
S ⊂ Ar. In this section we briefly discuss a few more important examples of diagram
algebras and their associated Schur-Weyl dualities. Explaining all of these in detail
would be beyond the scope of this thesis so proofs will be omitted.

The Brauer algebra: Having seen classical Schur-Weyl duality for sln and GLn(C),
the first question one might ask (putting the affine and quantum generalisations we
already explained aside) is whether there are similar dualities for other simple Lie
algebras or algebraic groups. In type B,C,D, this can be answered using the Brauer
algebra which was introduced in [Bra37].

67



Definition 3.61. For any δ ∈ C, the Brauer algebra Br(δ) is the subalgebra of
Pr(δ) spanned by all diagrams d ∈ Ar with |B| = 2 for each block B of d.

Clearly this algebra contains the symmetric group algebra C[Sr] (when consid-
ered as a subalgebra of Pr(δ) as in Remark 3.6). It is not hard to see that Br(δ) is
generated as an algebra by C[Sr] and the elements

ei =

i’

i

(i+1)’

i+1

.

In fact, there is the following presentation of the Brauer algebra.

Proposition 3.62. The Brauer algebra Br(δ) is the algebra with generators

s1, ..., sr−1, e1, ..., er−1

and relations (whenever they make sense)

(BR1) (i) s2
i = 1

(ii) sisi+1si = si+1sisi+1

(iii) sisj = sjsi if |i− j| > 1

(BR2) (i) e2
i = δei

(ii) eiei±1ei = ei

(BR3) (i) siei = ei = eisi

(ii) siej = ejsi if |i− j| > 1

(iii) siei±1ei = si±1ei

(iv) eiei±1si = eisi±1

Proof. See [GW09, Section 9 and 10].

Let V be an n-dimensional C-vector space with a non-degenerate bilinear form
〈·, ·〉 : V ⊗ V → C. Let

g := {x ∈ gl(V ) | 〈xv,w〉+ 〈v, xw〉 = 0 ∀v, w ∈ V }.

Assume further that 〈x, y〉 = εg〈y, x〉 where εg ∈ {±1}. If εg = 1, then g = son and
if εg = −1 then n is even and g = spn. Pick a basis v1, ..., vn of V and let v1, ..., vn

be the basis defined by 〈vi, vj〉 = δi,j . Let Sr act on V ⊗r by permuting the tensor
factors and ei as id⊗i−1⊗e⊗ idr−i−1 where

v ⊗ w · ei := εg〈v, w〉 ·
n∑
i=1

vi ⊗ vi (44)

One can check that this extends uniquely to an action V ⊗r x Br(εgn).

Remark 3.63. If g = son and 〈vi, vj〉 = δi,j , the Br(n)-action on V ⊗r is just the
restriction of the Pr(n)-action on V ⊗r along the inclusion Br(n) ↪→ Pr(n). Note that
C[Sr] ⊂ Br(n) ⊂ Pr(n) all act on V ⊗r. On the other hand Sn ⊂ On(C) ⊂ GLn(C)
and we get

C[Sr] ∼= EndGLn(C)(V
⊗r)op ⊂ EndOn(C)(V

⊗r)op ⊂ EndSn(V ⊗r)op ∼= Pr(n)

for n� 0. This is already a hint that the Brauer algebra might be a good candidate
for the centralising partner of the On(C)-action.
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Let x ∈ g and xvi =
∑n

j=1 xjivj . Then xji = 〈xvi, vj〉 and

xvi =

n∑
j=1

〈vj , xvi〉 · vj = −
n∑
j=1

〈xvj , vi〉 · vj =

n∑
j=1

−xijvj .

Hence,

x · (v ⊗ w · e) = εg〈v, w〉x ·
n∑
i=1

vi ⊗ vi

= εg〈v, w〉 ·
n∑

i,j=1

xjivj ⊗ vi − εg〈v, w〉 ·
n∑

i,j=1

xijvi ⊗ vj

= 0.

(45)

and
(x · v ⊗ w) · e = (xv ⊗ w + v ⊗ xw) · e

= εg(〈xv,w〉+ 〈v, xw〉) ·
n∑
i=1

vi ⊗ vi

= 0.

(46)

It follows that the Br(εgn)-action commutes with the g-action on V ⊗r. Actually,
one can prove the following Schur-Weyl duality

Theorem 3.64. For εg ∈ {±1}, the commuting actions g y V ⊗r x Br(εgn)
generate each other’s centraliser.

Proof. See [GW09, Chapter 10].

Similar to the partition algebra, the Brauer algebra Br(δ) is almost always
semisimple.

Proposition 3.65. The Brauer algebra Br(δ) is semisimple for δ 6∈ Z.

Proof. See [Wen88, Cor. 3.3].

Remark 3.66. It can be shown that Br(δ) is not semisimple for some integers
δ ∈ Z. For more precise semisimplicity criteria we refer to [Rui05] and [AST17].

There is a nice explanation for the failure of semisimplicity of Br(n) using another
kind of Schur-Weyl duality. For this wee need to dive into the world of Lie super
algebras.

Super Schur-Weyl duality for gl(V ):

Definition 3.67. A vector superspace V = V0 ⊕ V1 is a Z/2-graded vector space.
For v ∈ V homogeneous, let |v| ∈ Z/2 denote the degree of v. A Lie superalgebra
g = g0 ⊕ g1 is a vector superspace with a Lie superbracket [·, ·] : g × g → g. This
means that [gi, gj ] ⊂ gi+j and that [·, ·] satisfies super skew-symmetry

[x, y] = −(−1)|x||y|[y, x]

and the super Jacobi identity

(−1)|x||z|[x, [y, z]] + (−1)|y||x|[y, [z, x]] + (−1)|z||y|[z, [x, y]] = 0.

with x, y, z ∈ g homogeneous. For Lie superalgebras g, g′ a homomorphism of Lie
superalgebras is a linear map f : g→ g′ satisfying f([x, y]) = [f(x), f(y)].
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The most prominent example of a Lie superalgebra is the Lie superalgebra gl(V )
where V = V0 ⊕ V1 is a vector superspace. The grading on gl(V ) is given by

gl(V )0 := gl(V0)⊕ gl(V1)

gl(V )1 := HomC(V0, V1)⊕HomC(V1, V0)

and we equip gl(V ) with the super commutator bracket

[x, y] := xy − (−1)|x||y|yx

for x, y ∈ gl(V ) homogeneous extended bilinearly to the whole space gl(V ).

Definition 3.68. For a Lie superalgebra g and a vector superspace V , a g-module
structure on V is a Lie superalgebra homomorphism g → gl(V ). We then also call
V a (super) representation of g.

Given two g-modules V,W we can define a g-module structure on V ⊕W via
x · (v + w) = xv + xw and on V ⊗W via x · v ⊗ w = xv ⊗ w + (−1)|x||v|v ⊗ xw.
Hence we have an action of gl(V ) on V ⊗r and we can resume to our business of
constructing commuting actions and Schur-Weyl dualities. In fact, defining the
super swap operator s ∈ End(V ⊗ V ) by

v ⊗ w · s := (−1)|v||w|w ⊗ v (47)

induces a right action of Sr on V ⊗r. With the same techniques as in the classical
case (but keeping track of signs) one can prove the following Schur-Weyl duality.

Theorem 3.69. For any vector superspace V the actions gl(V ) y V ⊗r x Sr com-
mute and generate each other’s centraliser. Moreover, V ⊗r is completely reducible
as a gl(V )-module.

Proof. See [CW12, Thm. 3.10].

This might not look surprising, given the dualities we have seen so far. However,
the category of completely reducible representations of a Lie superalgebra is usually
not closed under taking tensor products and V ⊗r may not be completely reducible
for some other Lie superalgebras (like for the duality that follows next).

Super Schur-Weyl duality for osp(V ): Let us now investigate the super analogue of
the classical dualities in types B,C,D. For this, let 〈·, ·〉 be a non-degenerate bilin-
ear form on the vector superspace V such that 〈·, ·〉 is symmetric on V0 × V0, skew
symmetric on V1 × V1 and 0 on mixed products. We define the orthosymplectic Lie
superalgebra to be

osp(V ) := {x ∈ gl(V ) | 〈xv,w〉+ (−1)|x||v|〈v, xw〉 = 0 ∀v, w ∈ V homogeneous}.

It is easy to check that this inherits the structure of a Lie superalgebra from gl(V )
and we have an action osp(V ) y V ⊗r. Let {vi | i ∈ I} be a homogeneous basis of V
and denote by {vi | i ∈ I} the basis with 〈vi, vj〉 = δi,j . The action of the symmetric
group algebra C[Sr] on V ⊗r from (47) can be extended to an action of the Brauer
algebra Br(dimV0 − dimV1) by letting ei acts as id⊗i−1⊗e⊗ idr−i−1 where

v ⊗ w · e := 〈v, w〉 ·
∑
i∈I

(−1)|vi|vi ⊗ vi.

A direct computation (c.f. [ES16, Section 3]) shows that the osp(V )-action and
the Br(dimV0 − dimV1)-action commute. This means that there is a canonical
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homomorphism Br(dimV0 − dimV1) → Endosp(V )(V
⊗r)op. Note that V ⊗r is in

general not completely reducible as a osp(V )-module. In particular, the bimodule
V ⊗r will not decompose into a sum of outer tensor products of simples as in the
double centraliser theorem. Nonetheless, one can prove the following.

Theorem 3.70. Let m,n ∈ N0 such that dimV0 ∈ {2m, 2m+ 1} and dimV1 = 2n.
If (dimV0,dimV1) 6= (2m, 0) and r ≤ n + m, the canonical algebra homomorphism
Br(dimV0 − dimV1)→ Endosp(V )(V

⊗r)op is an isomorphism.

Proof. This was proved by Ehrig and Stroppel [ES16].

Remark 3.71. There is a nice explanation for the failure of semisimplicity of Br(n)
for some n ∈ Z (c.f. Remark 3.66) using the duality from Theorem 3.70: By choosing
V0 and V1 with dimV0 − dimV1 = n and dimV0 + dimV1 large enough, the Brauer
algebra Br(n) can be realised as the endomorphism algebra of the osp(V )-module
V ⊗r. Br(n) not being semisimple then corresponds to V ⊗r not being completely
reducible as an osp(V )-module. It would be interesting to have a similar explanation
for the failure of semisimplicity of the partition algebra Pr(δ) for some δ ∈ N0 but
no such argument is known to the author.

The walled Brauer algebra: We want to talk about one more type of Schur-Weyl
duality fitting into the classical setting. The motivation for this comes from the ob-
servation that not every irreducible representation of the (algebraic) group GLn(C)
appears in some tensor power of V = Cn. On the other hand, it is known that
any finite-dimensional GLn(C)-representation appears in V ⊗r ⊗V ∗⊗s for some non-
negative integers r, s. We explain how to construct a Schur-Weyl duality for these
mixed tensor powers.

Definition 3.72. The walled Brauer algebra Br,s(δ) is the subalgebra of the Brauer
algebra Br+s(δ) spanned by all diagrams d with the property that any block B of d
contains elements from both {1, ..., r, 1′, ..., r′} and {r+1, ..., r+s, (r+1)′, ..., (r+s)′}
if and only if B is not propagating.

This is called the walled Brauer algebra since it has a standard basis which can be
interpreted as Brauer diagrams with a wall separating the dots in {1, ..., r, 1′, ..., r′}
from the dots in {r + 1, ..., r + s, (r + 1)′, ..., (r + s)′} such that strands cross the
wall if and only if they are not propagating. Here is an example of a walled Brauer
diagram in B3,2(δ)

.

Clearly C[Sr × Ss] is a subalgebra of Br,s(δ) and there is a distinguished diagram

er =

r’

r

(r+1)’

r+1

∈ Br,s(δ).
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In fact, it is not hard to see that Br,s(δ) is generated by C[Sr,×Ss] and the element
er. Let v1, ..., vn be a basis of V and let v1, ..., vn be the dual basis in V ∗. We
can act with Sr × Ss on V ⊗r ⊗ V ∗⊗s by letting Sr permute the tensor factors of
V ⊗r and letting Ss permute the tensor factors of V ∗⊗s. This extends uniquely to
an action V ⊗r ⊗ V ∗⊗s x Br,s(n) by letting er act as id⊗r−1

V ⊗e ⊗ id⊗s−1
V ∗ where

e ∈ EndC(V ⊗ V ∗) acts by

v ⊗ f · e = f(v) ·
n∑
i=1

vi ⊗ vi

Remark 3.73. Identifying vi with vi gives (non-canonical) isomorphisms of vector
spaces V ∼= V ∗ and V ⊗r ⊗ V ∗⊗s ∼= V ⊗r+s. The induced action of Br,s(n) on V ⊗r+s

is then just the restriction of the Pr+s(n) along the inclusion Br,s(n) ⊂ Pr+s(n).

One can show by direct computation that the GLn(C)-action and the Br,s(n)-
action on V ⊗r ⊗ V ∗⊗s commute. We even have the following mixed Schur-Weyl
duality

Theorem 3.74. The commuting actions GLn(C) y V ⊗r⊗V ∗⊗s x Br,s(n) generate
each other’s centraliser.

Proof. The endofunctors V ⊗ (−) and V ∗ ⊗ (−) on Rep(GLn(C)) form a biadjoint
pair. This induces an isomorphism EndGLn(C)(V

⊗r+s) ∼= EndGLn(C)(V
⊗r ⊗ V ∗⊗s).

One can check that on diagrams this is the same as flipping the subdiagram on the
dots {r + 1, ..., r + s, (r + 1)′, ..., (r + s)′} upside down. Hence, this isomorphism
identifies permutation diagrams with walled Brauer diagrams and the result follows
from classical Schur-Weyl duality. For more details see [Nik07].

Remark 3.75. There also is a super version of mixed Schur-Weyl duality (see [BS12,
Thm 7.8]).

4 Towers of algebras and Jucys-Murphy elements

Most of the diagram algebras from the previous sections come in the form of a
tower. For example, there is the tower C[S0] ⊂ C[S1] ⊂ C[S2] ⊂ C[S3] ⊂ ... of
symmetric group algebras induced by the inclusions Si ↪→ Si+1 with sk 7→ sk. We
will explain how the structure of towers like this can be analysed using the so-called
Jucys-Murphy elements. Moreover, these elements can be used to construct so-called
higher Schur-Weyl dualities which also involve infinite-dimensional representations of
Lie algebras like Verma modules. Our main sources in Section 4.1 will be [OV96] and
[CSST10] and in Section 4.2 (resp. Section 4.3) we will follow [AS98, BK08] (resp.
[ES18]). Motivated by the results from Section 4.1-Section 4.3, we will study the
Jucys-Murphy elements of the partition algebra in Section 4.4. These elements were
introduced by [HR05] but our construction will be slightly different using Schur-Weyl
duality. We then use an interpolation argument to give new proofs of some formulas
for the Jucys-Murphy elements (in particular Lemma 4.54 and Proposition 4.55)
which were also verified in [Eny13] using other techniques. We will also show that
the relations between the Jucys-Murphy elements and the standard generators of
the partition algebra are not local (see Proposition 4.56) explaining why deriving a
higher Schur-Weyl duality for the partition algebra might be a more difficult task.

72



4.1 The Okounkov-Vershik approach

The representation theory of a semisimple Lie algebra g is usually developed by
analysing the action of a Cartan subalgebra h ⊂ g on the representations of g. In
fact, h is a maximal abelian subalgebra of g and any finite-dimensional representa-
tion decomposes into simultaneous eigenspaces for the action of h. These eigenspaces
are called weight spaces and any finite-dimensional irreducible g-representation is
uniquely determined by its weight space decomposition. One can try and imitate
this approach to develop the representation theory of a finite-dimensional semisim-
ple algebra A. The strategy is to look at the action of a maximal commutative
subalgebra of A on the irreducible representation of A. In [OV96], Okounkov and
Vershik used this approach (which was pioneered by Nazarov) to develop the rep-
resentation theory of Sn only assuming a few basic facts about the representation
theory of finite groups. In this thesis, we are less interested in the Okounkov-Vershik
approach as a new way to develop the representation theory of the symmetric group
but rather as a general framework to study finite-dimensional semisimple algebras
(whose irreducible representations might already be known by other methods). Let
us explain these ideas in a bit more detail.

Consider an arbitrary tower of finite-dimensional semisimple algebras

C ∼= A0 ⊂ A1 ⊂ A2 ⊂ A3 ⊂ ... (48)

Let Âi be an indexing set of the simple Ai-modules V λ (λ ∈ Âi)

Definition 4.1. The branching graph of a tower as in (48) of finite-dimensional
semisimple algebras is the multigraph with vertices

Â0 t Â1 t Â2 t Â3 t ...

such that [ResAiAi−1
V λ : V µ] is the number of edges between µ ∈ Âi−1 and λ ∈ Âi.

We say that the branching is multiplicity-free if no multiple edges occur.

Remark 4.2. Note that

[ResAnAn−1
V λ : V µ] = dim HomAn−1(V µ,ResAnAn−1

V λ)

= dim HomAn(IndAnAn−1
V µ, V λ)

= [IndAnAn−1
V µ : V λ]

by Frobenius reciprocity. Hence, the branching graph encodes both the decomposi-
tion of restriction and induction applied to irreducible representations.

In what follows, we make the following assumption:

(A): The tower of semisimple algebras A0 ⊂ A1 ⊂ ... has multiplicity-free branching.

In other words, we assume that for any λ ∈ Âi there is a multiplicity-free decompo-
sition

V λ =
⊕
µ↗λ

V µ

where µ ↗ λ means that µ ∈ Âi−1 and there is an edge between µ and λ in the
branching graph. Note that A0

∼= C has a unique irreducible representation V λ0
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which is one-dimensional. Applying the branching rule recursively, we get that any
irreducible representation V λ of An has a canonical decomposition

V λ =
⊕
T

VT

where the sum runs through all paths T = λ0 ↗ λ1 ↗ ... ↗ λn in the branching
graph starting at λ0 ∈ Â0 and terminating at λn = λ. VT is the one-dimensional
subspace of V λ uniquely determined by the property that VT lies in the V λi-isotypical
component of V λ for all i = 0, 1, ..., n.

Definition 4.3. By choosing non-zero vectors vT ∈ VT for each path T as above,
we get a basis of V λ that is unique up to scaling. This is called the Gelfand-Tsetlin
basis.

Note that

An ∼=
⊕
λ∈Ân

EndC(V λ) ⊂ EndC

⊕
λ∈Ân

V λ


and we can consider the Gelfand-Tsetlin basis of

⊕
λ∈Ân V

λ. This basis is indexed
by the set of all n-step paths in the branching graph

Path(n) := {λ0 ↗ λ1 ↗ ...↗ λn | λi ∈ Âi}.

Let Z(n) be the centre of An.

Definition 4.4. The Gelfand-Tsetlin algebra GZ(n) is the subalgebra of An gener-
ated by Z(1), ..., Z(n).

Lemma 4.5. The algebra GZ(n) ⊂ An ⊂ EndC

(⊕
λ∈Ân V

λ
)

is the algebra of

C-linear operators on
⊕

λ∈Ân V
λ that are diagonal in the Gelfand-Tsetlin basis.

Moreover, GZ(n) ⊂ An is a maximal commutative subalgebra.

Proof. See [OV96, Prop. 1.1] or [CSST10, Thm. 2.2.2].

Assume now that we are given generators X1, ..., Xm of GZ(n). In particular,
we have Xi · vT = aivT for some ai ∈ C and we call

α(vT ) := (a1, ..., am)

the weight of vT . Let Spec(n) = {α(vT ) | T ∈ Path(n)} be the set of weights.
Since the Xi generate GZ(n), we see that vT is uniquely determined (up to scaling)
by its weight. In fact, if α(vT ) = α(vT ′) and X ∈ GZ(n), then X · vT = cvT
and X · vT ′ = cvT ′ for the same c ∈ C. In particular, prVT (vT ) = vT implies that
prVT (vT ′) = vT ′ and hence vT ′ ∈ VT . We see that there is a bijection

Path(n)
1:1←→ Spec(n)

T 7−→ α(vT ).

If we equip the set Path(n) with an equivalence relation where T ∼ T ′ if T and T ′

terminate at the same vertex, we get an induced equivalence relation ∼ on Spec(n)
such that the equivalence classes parametrise the irreducible An-modules. This can
be used to study the representation theory of An by looking at the weight structure
of irreducible representations. The art is of course to find a particularly nice gener-
ating set X1, ..., Xm of GZ(n) for which there is a good combinatorial description of
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Spec(n). Here, ’particularly nice’ is not a term we can make mathematically precise
and its meaning will depend on the application. Hence, from this point onwards,
we have to work with specific examples (though there are still some similarities in
most applications).

As a first example, let us look at the tower of symmetric group algebras

C ∼= C[S0] ⊂ C[S1] ⊂ C[S2] ⊂ C[S3] ⊂ ... (49)

induced by the inclusions Si ↪→ Si+1, sk 7→ sk. One can show that this tower satisfies
assumption (A).

Proposition 4.6. The branching graph of the tower (49) is multiplicity-free, i.e.
[ResSnSn−1

V λ : V µ] ∈ {0, 1} for any n ≥ 1.

Proof. This can be done by elementary methods using the fact that A ⊂ B has
multiplicity-free branching if and only if Z(B,A) := {b ∈ B | ab = ba ∀a ∈ A} is
commutative. For more details see [OV96] or [CSST10, Thm. 2.1.20, Cor. 3.2.2].

For 0 ≤ k ≤ n let
Zk :=

∑
1≤i<j≤k

(i j) ∈ C[Sk] (50)

with Z0 = Z1 = 0.

Definition 4.7. For 1 ≤ i ≤ n the elements

Xi := Zi − Zi−1 = (1 i) + (2 i) + ...+ (i− 1 i).

are called the Jucys-Murphy elements of C[Sn].

Note that X1 = 0. Clearly, Zi lies in the centre Z(i) of C[Si] and hence we have
Xi ∈ GZ(n) for all 1 ≤ i ≤ n. One can even show the following.

Proposition 4.8. The Jucys-Murphy elements X1, ..., Xn generate the Gelfand-
Tsetlin algebra GZ(n).

Proof. See [OV96] or [CSST10, Cor. 3.2.7].

It follows from the general set-up that any Gelfand-Tsetlin basis vector is uniquely
determined (up to scaling) by its weight for the action of the Jucys-Murphy elements.
To see what weights can occur, one needs to understand how the Jucys-Murphy el-
ements interact with the standard generators s1, ..., sn−1 of C[Sn].

Lemma 4.9. We have siXj = Xjsi if j 6= i, i+ 1 and siXisi + si = Xi+1.

Proof. Xj commutes with C[Sj−1] since Xj = Zj−Zj−1 and Zk is a central element
of C[Sk]. This proves that si and Xj commute for i < j − 1. The generator si
commutes with C[Si−1] and hence with Xj for j < i. Finally, we have

siXisi + si =
i−1∑
j=1

(j i+ 1) + si =
i∑

j=1

(j i+ 1) = Xi+1.

Here is an example that illustrates how the relations above may be used to study
the weight structure of the Jucys-Murphy elements.
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Proposition 4.10. Let V be a finite-dimensional representation of Sn. Then the
eigenvalues of Xi on V are all integral for i = 1, ..., n.

Proof. The claim is obvious for i = 1 since X1 = 0. We proceed by induction.
Assume we have shown the claim for Xi. The commuting operators Xi and Xi+1

diagonalise simultaneously in the Gelfand-Testlin basis of V . Let v ∈ V be such a
simultaneous eigenvector with Xiv = av and Xi+1v = bv for a, b ∈ C. Then

Xi((a− b)siv + v) = (a− b)Xisiv +Xiv
4.9
= (a− b)(siXi+1 − 1)v +Xiv

= (a− b) · bsiv − (a− b)v + av = b((a− b)siv + v).

If (a−b)siv+v 6= 0 this shows that b is an eigenvalue of Xi. In this case b is integral
by the induction assumption. If (a − b)siv + v = 0, then siv = cv for some c ∈ C
and since s2

i = 1, we get siv = ±v. Then (a− b)v = ±v and hence b = a± 1. Since
a is integral by induction assumption, we get that b is integral.

The relations from Lemma 4.9 can also be studied in the following more formal
set-up.

Definition 4.11. The degenerate affine Hecke algebra Hdeg
n is the C-algebra with

generators s1, .., sn−1, x1, ..., xn and relations

(HDEG1) (i) s2
i = 1 for i = 1, ..., n− 1

(ii) sisi+1si = si+1sisi+1 for i = 1, ..., n− 2

(iii) sisj = sjsi if |i− j| > 1

(HDEG2) (i) sixisi + si = xi+1 for i = 1, ..., n− 1

(ii) sixj = xjsi if j 6= i, i+ 1

(iii) xixj = xjxi for i, j = 1, ..., n.

Remark 4.12. There also is a diagrammatic interpretation of the degenerate affine
Hecke algebra (which is also explained in [Kho14, Section 2]). We still interpret the
elements of the symmetric group as permutation diagrams. However, in contrast to
the partition algebra, we omit the dots at the end of strands which usually indicate
the elements of a block. Instead, the generator xi corresponds to the identity diagram
with a dot on the i-th strand, i.e.

xi =

i

.

Similarly, a monomial xki corresponds to the identity diagram with k dots on the
i-th strand. The defining relations of the degenerate affine Hecke algebra can then
be read as the constraint that dots may be moved freely along strands but an error
term has to be introduced when passing through a crossing. In fact, (HDEG2)-(i)
can be rewritten as sixi = xi+1si − 1 which can be interpreted (locally) as

= − .
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By Lemma 4.9 there is a surjective algebra homomorphism

Hdeg
n −→ C[Sn]

si 7−→ si

xi 7−→ Xi.

(51)

Note that there is an inclusion C[Sn] ↪→ Hdeg
n with si 7→ si. This is injective since

the composition C[Sn]→ Hdeg
n

(51)→ C[Sn] is the identity.

Lemma 4.13. The kernel of the canonical homomorphism Hdeg
n → C[Sn] from (51)

is generated by x1. In particular, we have Hdeg
n /(x1) ∼= C[Sn].

Proof. Clearly, the ideal I = (xi −Xi | 1 ≤ i ≤ n) ⊂ Hdeg
n is contained in the kernel

of the homomorphism from (51). Moreover, Hdeg
n is generated by C[Sn] and the

xi which are identified with the Xi ∈ C[Sn] after modding out I. Hence, Hdeg
n /I

is generated by C[Sn] and the canonical map Hdeg
n /I → C[Sn] is an isomorphism.

Note that x1 −X1 = x1 and

si(xi −Xi)si = sixisi − siXisi = (xi+1 − si)− (Xi+1 − si) = xi+1 −Xi+1.

This shows that I = (x1) and the claim follows.

Using the algebra homomorphism from (51), any C[Sn]-module can be considered

as a Hdeg
n -module by letting xi ∈ Hdeg

n act by multiplying with the Jucys-Murphy
element Xi. Using the relations of the degenerate affine Hecke algebra, one can give
a complete combinatorial description of the set Spec(n). Moreover, this can be used
to determine the branching graph of the tower in (49). To state this result, we need
to define the Young graph.

Definition 4.14. The Young graph is the graph with vertices indexed by partitions

{λ ` 0} t {λ ` 1} t {λ ` 2} t {λ ` 3} t ...

and an edge between µ ` i− 1 and λ ` i if and only if µ ⊂ λ.

Here are the first 5 layers of the Young graph

∅

.

To any box (x, y) in a Young diagram λ ` n, we can associate content c((x, y)) = y−x
(where by convention the x-coordinate increases from top to bottom and the y

77



coordinate increases from left to right). For example, the contents of the boxes in
the diagram (4, 4, 3, 2, 1, 1) are given by

0 1 2 3

−1 0 1 2

−2 −1 0

−3 −2

−4

−5

To any path T = λ0 ↗ λ1 ↗ ...↗ λn in the Young graph we can associate a content
vector c(T ) ∈ Cn where c(T )i is the content of the box of λi/λi−1. Let Cont(n) be
the set off all contents c(T ) of n-step paths T in the Young graph. The Sn-orbits
define an equivalence relation ≈ on Cont(n), i.e.

(a1, ..., an) ≈ (b1, ..., bn) :⇔ ∃σ ∈ Sn such that ai = bσ(i) for all i.

Using the Jucys-Murphy elements, the following is shown in [OV96] (see also [CSST10,
Thm. 3.3.7]).

Theorem 4.15. The Young graph is the branching graph of the symmetric group.
We have Cont(n) = Spec(n) and the content vector c(T ) of a path T is the same as
the weight α(T ). Moreover, the equivalence relations ∼ and ≈ coincide.

This is now an explicit tool that can be used to decompose a representation of
Sn into irreducibles once it has been decomposed into simultaneous eigenspaces for
the action of the Jucys-Murphy elements.

Example 4.16. Consider the permutation representation V = Cn of Sn with stan-
dard basis v1, ..., vn. For i = 1, ..., n− 1, the vectors

wi = v1 + v2 + ...+ vi − ivi+1

are common eigenvectors of the Jucys-Murphy elements. In fact, one can check that

Xk · wi =


(k − 1)wi if k ≤ i
−wi if k = i+ 1

(k − 2)wi if k > i+ 1.

Hence, V contains an irreducible representation corresponding to a Young diagram
whose boxes have content {−1, 0, 1, ..., n− 2}. This is the Young diagram

0 1 2 . . . n−3 n−2

−1
.

The vector
wn = v1 + v2 + ...+ vn

is also a common eigenvector with Xk · wn = (k − 1)wn. This correspond to the
Young diagram

0 1 2 . . . n−2 n−1
.
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The vectors w1, ..., wn form a basis of V and their respective weights are given by

(0,−1, 1, 2..., n− 1), (0, 1,−1, 2, ..., n− 1), ..., (0, 1, ..., n− 1,−1), (0, 1, ..., n).

Since these weights are pairwise distinct, every irreducible in V appears with mul-
tiplicity 1. This shows that there is a decomposition

V = SpanC{w1, ..., wn−1} ⊕ SpanC{wn} ∼= S

(
. . .

)
⊕ S ( . . . ) .

4.2 Higher Schur-Weyl duality

As mentioned in the previous section, the degenerate affine Hecke algebra Hdeg
r plays

an important role in the representation theory of the symmetric group via the ring
homomorphism Hdeg

r → C[Sr], x1 7→ 0. In this section, we consider a generalisation
of classical Schur-Weyl duality, often called higher Schur-Weyl duality, that relates
the degenerate affine Hecke algebra with gln. Apart from the algebra Hdeg

r being
interesting by itself, this generalisation can also be motivated by a desire to look
at infinite-dimensional representations of gln like Verma modules. In fact, following
[AS98], we will construct commuting actions

gln yM ⊗ V ⊗r x Hdeg
r

where M is an arbitrary (not necessarily finite-dimensional) gln-module and V = Cn
is the defining gln-representation. For the gln-action on M ⊗ V ⊗r we just take the
usual action on tensor products. The more difficult part is the construction of an
interesting Hdeg

r -action on M ⊗ V ⊗r that commutes with the gln-action.

For this, recall the construction of the Casimir element: Assume we are given a
non-degenerate symmetric invariant bilinear form (·, ·) of gln where invariant means
that ([x, y], z) = (x, [y, z]) for all x, y, z ∈ gln. Pick a basis {Xγ | γ ∈ B} of gln and
let {Xγ | γ ∈ B} be the dual basis with respect to (·, ·). Then the Casimir element
for (·, ·) is defined as

C :=
∑
γ∈B

XγX
γ ∈ U(gln).

It follows from the invariance of (·, ·) that C is a central element of U(gln). Moreover,
C is independent of the choice of a basis which follows from the next lemma (using
the multiplication map gl⊗ gln → U(gln)).

Lemma 4.17. Let V be a finite-dimensional vector space with a basis v1, ..., vm.
Let v1, ..., vm ∈ V ∗ be the dual basis. Then

∑m
i=1 vi ⊗ vi ∈ V ⊗ V ∗ does not depend

on the choice of the basis v1, ..., vm.

Proof. The canonical isomorphism V ⊗ V ∗ ∼= EndC(V ) sends
∑m

i=1 vi ⊗ vi to the
element idV ∈ EndC(V ). This is independent of the chosen basis.

As a central element of U(gln), the Casimir operator defines a gln-endomorphism
of any gln-module M . We would like to have a similar element that induces a gln-
endomorphisms on tensor products M ⊗N .

Definition 4.18. The pseudo Casimir element in U(gln)⊗ U(gln) is defined as

Ω :=
∑
γ∈B

Xγ ⊗Xγ .
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By Lemma 4.17 the pseudo Casimir element Ω is independent of the choice of
the basis. In particular, we have Ω =

∑
γ∈BX

γ ⊗Xγ . Using this, we can relate the
Casimir element with the pseudo Casimir element via

∆(C)− C ⊗ 1− 1⊗ C =
∑
γ∈B

(Xγ ⊗ 1 + 1⊗Xγ)(Xγ ⊗ 1 + 1⊗Xγ)

−
∑
γ∈B

XγX
γ ⊗ 1−

∑
γ∈B

1⊗XγX
γ

=
∑
γ∈B

(Xγ ⊗Xγ +Xγ ⊗Xγ)

= 2Ω.

(52)

Lemma 4.19. The pseudo Casimir element Ω commutes with ∆(x) for any x ∈ gln.

Proof. The Casimir element C ∈ U(gln) is central. Hence, C⊗1 and 1⊗C are central
elements of U(gln)⊗ U(gln) and therefore they commute with ∆(x). Moreover,

∆(x)∆(C) = ∆(xC) = ∆(Cx) = ∆(C)∆(x).

This shows that ∆(x) commutes with Ω
(52)
= 1

2(∆(C)− C ⊗ 1− 1⊗ C) .

This also shows that Ω commutes with the gln action on an arbitrary tensor
productM⊗N of gln-modules. This is already a hint that Ω might play an important
role in the construction of the Hdeg

r -action on M ⊗ V ⊗r. We now take a specific
choice for the invariant bilinear form (·, ·), namely

(x, y) := Tr(xy).

The Lie algebra gln has the standard basis {Eij | 1 ≤ i, j ≤ n} and Eji is the dual
basis vector of Eij with respect to (·, ·). Hence, we can express the pseudo Casimir
element as

Ω =
∑

1≤i,j≤n
Eij ⊗ Eji. (53)

Considered as an operator on V ⊗ V , this is very familiar.

Lemma 4.20. The pseudo Casimir element Ω acts as the swap operator on V ⊗V .

Proof. It suffices to check this on the standard basis of V ⊗ V . There we have
Ω · vi ⊗ vj = vj ⊗ vi by (53) which is the swap.

We can use the pseudo Casimir element to describe the action of the Jucys-
Murphy elements of C[Sr] on M ⊗ V ⊗r (where Sr acts on M ⊗ V ⊗r by permuting
the tensor factors of V ⊗r). For 0 ≤ j < i ≤ r, we define

Ωji = 1⊗j ⊗Xγ ⊗ 1⊗i−j−1 ⊗Xγ ⊗ 1⊗r−i ∈ U(gln)⊗r+1.

By Lemma 4.20 the element Ωji acts as (j i) ∈ Sr on M ⊗ V ⊗r for 1 ≤ j < i ≤ r
where Sr acts on M ⊗ V ⊗r by permuting the tensor factors of V ⊗r. Hence,

Xi =
∑

1≤j<i
Ωji (54)

as operators on M ⊗ V ⊗r where Xi = (1 i) + ...+ (i− 1 i) is the i-th Jucys-Murphy

element of C[Sr]. To construct an Hdeg
r -action that also interacts with the M com-

ponent of M ⊗ V ⊗r, we will add the element Ω0i the sum in (54).
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Theorem 4.21. There is a unique right action of Hdeg
r on M ⊗ V ⊗r such that

1) the Hdeg
r -action extends the C[Sr]-action on M ⊗ V ⊗r

2) xi ∈ Hdeg
r acts as

∑
0≤j<i Ωji.

Moreover, the actions gln yM ⊗ V ⊗r x Hdeg
r commute.

Proof. Uniqueness is clear since Hdeg
r is generated by C[Sr] and the xi. We need to

verify that the actions of the generators of Hdeg
r are compatible with the defining

relations of Hdeg
r . For the symmetric group relations, this is obvious. Note that xi

acts as Ω0i +Xi on M ⊗ V ⊗r. We then get in EndC(M ⊗ V ⊗r) that

sixisi + si = siΩ0isi + siXisi + si = Ω0si(i) +Xi+1 = xi+1

by Lemma 4.9 and

sjxisj = sjΩ0isj + sjXisj = Ω0i +Xi = xi

for j 6= i, i+ 1. It remains to show that the actions of the xi commute. This follows
if we can show that Ωji commutes

∑
0≤k<l Ωkl for any 0 ≤ j < i < l ≤ r. If

i, j 6= k then Ωji and Ωkl commute. We claim that Ωji also commutes with Ωjl+Ωil.
Without loss of generality we have r = 2, j = 0, i = 1 and l = 2. Then

Ω02 + Ω12 =
∑
γ∈B

Xγ ⊗ 1⊗Xγ +
∑
γ∈B

1⊗Xγ ⊗Xγ =
∑
γ∈B

∆(Xγ)⊗Xγ .

This commutes with Ω01 = Ω⊗ 1 by Lemma 4.19. This proves that the Hdeg
r -action

is well-defined.
For the statement about the commuting actions, observe that the C[Sr]-action on
M⊗V ⊗r clearly commutes with the gln-action. The Ωji commute with the gln-action
by Lemma 4.19. This finishes the proof.

Example 4.22. 1. For M = C the trivial gln-module we can interpret M ⊗V ⊗r
as the tensor space V ⊗r. Then the element Ω0i acts by 0 and xi acts by
multiplying with the i-th Jucys-Murphy element Xi ∈ C[Sr] (see (54)). We

conclude that the Hdeg
r -action on V ⊗r is induced by the Sr-action along the

algebra homomorphism Hdeg
r � C[Sr] from (51) and we recover the classical

Schur-Weyl duality
gln y V ⊗r x C[Sr] � Hdeg

r .

2. For M = V we have M ⊗ V ⊗r = V ⊗r+1. By classical Schur-Weyl duality, the
canonical C[Sr+1]-action on V ⊗r+1 is a centralising partner of the gln-action.

By (54) the xi ∈ Hdeg
r act by multiplying with Xi+1 ∈ C[Sr+1]. Note that x1

acts as X2 = s1. On the other hand, the si ∈ Hdeg
r act as si+1 ∈ C[Sr+1].

Hence, the Hdeg
r -action is induced along the surjective algebra homomorphism

Hdeg
r � C[Sr+1] with si 7→ si+1 and xi 7→ Xi+1. Note that this homomorphism

is well-defined by Lemma 4.9.

Remark 4.23. Given a gln-module M , it is natural to ask whether there is a
(double) centraliser property for the commuting actions gln y M ⊗ V ⊗r x Hdeg

r .
It is of course hopeless to establish such a property for arbitrary M . However, it
turns out that Hdeg

r → Endgln(M ⊗V ⊗r)op is surjective for certain parabolic Verma
modules M . Moreover, one can show that the kernel of this map is generated by a
polynomial of the form p(x1) =

∏l
i=1(x1−ui) for some l ∈ N and ui ∈ C. Hence, we
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obtain an isomorphismHdeg
r /p(x1) ∼= Endgln(M⊗V ⊗r)op establishing a link between

the representation theory of the degenerate affine Hecke algebra and parabolic Verma
modules. The algebrasHdeg

r /p(x1) are also often referred to as degenerate cyclotomic

Hecke algebras and one calls l the level of Hdeg
r /p(x1) (see [BK08, Introduction

and Section 3]). As we have already seen in Example 4.22, classical Schur-Weyl
duality can be interpreted as a duality for the degenerate cyclotomic Hecke algebra
Hdeg
r /(x1) ∼= C[Sr] of level 1. For other parabolic Verma modules M , one will

encounter degenerate cyclotomic Hecke algebras of higher levels. This explains why
we refer to the construction in this section as higher Schur-Weyl duality. More
details on this and proofs can be found in [BK08].

4.3 The affine VW-algebra

There also is a version of higher Schur-Weyl duality in types B,C,D. To describe
this, we first need to explain what the Brauer analogue of the degenerate affine
Hecke algebra is. Our definition of the degenerate affine Hecke algebra was moti-
vated by certain relations between the standard generators and the Jucys-Murphy
elements of C[Sr]. We proceed in a similar way for the Brauer algebra. Recall the
standard generators s1, ..., sr−1, e1, ..., er−1 of Br(δ) subject to the relations from
Proposition 3.62. The Jucys-Murphy elements for the tower of algebras

C ∼= B0(δ) ⊂ B1(δ) ⊂ B2(δ) ⊂ B3(δ) ⊂ ...

were defined by Nazarov in [Naz96]. Here the inclusion Bi(δ) ⊂ Bi+1(δ) is given by
adding the strand {i+1, (i+1)′} to the diagrams in Bi(δ). This tower is semisimple
if δ 6∈ Z, but Br(δ) might not be semisimple for δ ∈ Z (see Proposition 3.65 and
Remark 3.66). Still, the definition of the Jucys-Murphy elements makes sense for
any δ ∈ C. For any 1 ≤ i < j ≤ r let

(j i) = (i j) :=
i

i’ j’

j

and
Ẑk :=

∑
1≤i<j≤k

(i j)−
∑

1≤i<j≤k
(i j) ∈ Bk(δ)

for any k ≥ 0 (with Ẑ0 = Ẑ1 = 0).

Definition 4.24. For 1 ≤ i ≤ r the elements

X̂i :=
δ − 1

2
+ Ẑi − Ẑi−1 =

δ − 1

2
+
∑

1≤j<i
(j i)−

∑
1≤j<i

(j i)

are called the Jucys-Murphy elements of Br(δ).

Note that X̂1 = δ−1
2 . The following observation is useful for understanding the

structure of the Jucys-Murphy elements.

Lemma 4.25. The element Ẑk lies in the centre of Bk(δ).

Proof. For any σ ∈ Sk, we have

σ(i j)σ−1 = (σ(i) σ(j)) and σ(i j)σ−1 = (σ(i) σ(j)). (55)
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This shows that Ẑk commutes with the elements of Sk. On the other hand, (a b)
commutes with (i j) and (i j) if {a, b}∩{i, j} = ∅. We claim that (a b) also commutes
with (a i)− (b i) for any distinct a, b, i ∈ {1, ..., k}. In fact, we show that

(a b) · ((a i)− (b i)) = 0 = ((a i)− (b i)) · (a b).

By (55) it suffices to prove this for a = 1, b = 2 and i = 3 . This case follows from

(1 2) · (1 3) = = = = (1 2) · (2 3)

and the equation (1 3)·(1 2) = (2 3)·(1 2) which is obtained by flipping the diagrams
above upside down. This proves that (a b) commutes with (a i) − (b i). By a
similar argument (a b) commutes with (b i)− (a i) and hence also with Ẑk. Since Sr
generates Br(δ) together with the (a b) we see that Ẑk lies in the centre of Br(δ).

Here are some relations between the X̂i, si and ei.

Lemma 4.26. The Jucys Murphy elements X̂1, .., X̂r of Br(δ) commute pairwise.
Moreover, X̂j commutes with si and ei for j 6= i, i+ 1 and

siX̂isi + si − ei = X̂i+1 ei(X̂i + X̂i+1) = 0 = (X̂i + X̂i+1)ei. (56)

Proof. The Ẑi are central in Bi(δ). Hence, the X̂i = Ẑi − Ẑi−1 commute pairwise
and X̂j commutes with si and ei for i < j − 1. Moreover si and ei commute with

Bi−1(δ). This shows that si and ei commute with X̂j for j < i. The relations from
(56) can be checked by direct computation (see [Naz96, Prop. 2.3])

This motivates the following definition.

Definition 4.27. Let r ∈ N and fix a system of complex parameters Ξ = (ωk)k≥0.
The affine VW-algebra

∨∨
r(Ξ) is the C-algebra with generators

s1, ..., sr−1, e1, ..., er−1, y1, ..., yr

subject to the Brauer algebra relations from Proposition 3.62 and the relations

(VW1) e1y
k
1e1 = ωke1 for k ≥ 0

(VW2) (i) siyj = yjsi for j 6= i, i+ 1

(ii) eiyj = yjei for j 6= i, i+ 1

(iii) yiyj = yjyi for i, j = 1, ..., n.

(VW3) (i) siyisi + si − ei = yi+1 for i = 1, ..., n− 1

(ii) ei(yi + yi+1) = 0 for i = 1, ..., n− 1

(iii) (yi + yi+1)ei = 0 for i = 1, ..., n− 1

Remark 4.28. We do not impose any conditions on the ωk in our definition of the
affine VW-algebra. However, it can be shown that the relations of

∨∨
r(Ξ) imply

that

ωke1 = e1y
k
1e1 = ... = (−ωk − ωk−1 +

k∑
j=1

(−1)j−1ωj−1ωk−j)e1
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for any odd positive integer k (see [Naz96, Lemma 2.5 and (4.6)]). In particular, we
have e1 = 0 in

∨∨
r(Ξ) unless the parameters ωk satisfy the admissibility condition

−2ωk = ωk−1 +
∑k

j=1(−1)jωj−1ωk−j for any odd positive integer k.

Remark 4.29. As for the degenerate affine Hecke algebra, there is a diagrammatic
interpretation of the affine VW-algebra. We interpret si and ei as the usual permu-
tation and Brauer diagrams (omitting the dots at the end of strands that usually
indicate the elements of the blocks). The element yi corresponds to the identity
diagram with a dot on the i-th strand. Then the relations (VW3) can be rewritten
as

siyi = yi+1si + ei − 1, eiyi = −eiyi+1, yiei = −yi+1ei

which have the diagrammatic interpretation

= + − ,

= − and = − .

In other words, we can move dots freely along strands but passing through crossings
introduces an error term and sliding trough cups or caps introduces a sign. Moreover,
(VW1) tells us how to remove bubbles, at least if the bubble is at the left end of the
underlying Brauer diagram:

k = ωk · .

For arbitrary bubbles one has to be a bit more careful. However, one can show that

the relations of
∨∨

r(Ξ) imply that eiy
k
i ei = ω

(i)
k ei for some ω

(i)
k ∈

∨∨
r(Ξ) (see [Naz96,

Prop. 4.2]).

For ω0 = δ there is an algebra homomorphism Br(δ)→
∨∨

r(Ξ) with si 7→ si and
ei 7→ ei. Moreover, if we have ωk = δ( δ−1

2 )k for all k ≥ 0 then there is a surjective
algebra homomorphism ∨∨

r
(Ξ) −→ Br(δ)

si 7−→ si

ei 7−→ ei

yi 7−→ X̂i.

(57)

It follows from e1X̂
k
1 e1 = e1

(
δ−1

2

)k
e1 = δ( δ−1

2 )ke1 and Lemma 4.26 that this homo-
morphism is well-defined. Let g be one of the type B,C,D Lie algebras and let V be
the defining representation of g. We would like to construct commuting actions

g yM ⊗ V ⊗r x
∨∨

r
(Ξ)

for a g-module M (which will not quite be arbitrary) and an appropriate choice of
parameters Ξ. As in type A, this will make use of the pseudo Casimir element. Let
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(·, ·) be a non-degenerate symmetric invariant bilinear form on g. Let {Xγ | γ ∈ B}
be a basis of g and {Xγ | γ ∈ B} the dual basis. Then C :=

∑
γ∈BXγX

γ is a central
element of U(g) called the Casimir element.

Definition 4.30. The pseudo Casimir element in U(g)⊗ U(g) is defined as

Ω :=
∑
γ∈B

Xγ ⊗Xγ ∈ U(g).

By the same arguments as in type A, one checks that

� Ω = 1
2(∆(C)− 1⊗ C − C ⊗ 1);

� Ω commutes with ∆(x) for all x ∈ g;

� Ω does not depend on the choice of the basis {Xγ | γ ∈ B}.

Let us now take a specific choice for the invariant bilinear form (·, ·), namely

(x, y) =
1

2
Tr(xy).

We determine the action of Ω on V ⊗ V . Let g be defined with respect to the non-
degenerate bilinear form 〈·, ·〉 on V ⊗ V . Recall that 〈x, y〉 = εg〈y, x〉 for all x, y ∈ g
where εg = 1 for g = son and εg = −1 for g = spn. Let {vi | i ∈ I} be a basis of V
and {vi | i ∈ I} the basis defined by 〈vi, vj〉 = δi,j .

Lemma 4.31. The pseudo Casimir element acts as s− e on V ⊗ V where s is the
swap operator and v ⊗ w · e = 〈v, w〉εg

∑
i∈I vi ⊗ vi.

Proof. See also [ES18, Remark 2.5]. To avoid having to deal with a lot of signs,
we assume g = so2m or g = so2m+1. The sp2m case works similarly. We work
with I := {−m, ...,−1, 1, ...,m} if g = so2m and I := {−m, ...,−1, 0, 1, ...,m} if
g = so2m+1. Assume that g is defined with respect to the the non-degenerate
bilinear form on V given by 〈vi, vj〉 = δi,−j . This implies vi = v−i. Let

Fi,j := Ei,j − E−j,−i ∈ g

for all i, j ∈ I. One can check that

2Ω =
∑
i,j∈I

Fi,j ⊗ Fj,i.

We have Fk,l⊗Fl,k ·vi⊗vj = 0 unless i ∈ {l,−k} and j ∈ {k,−l}. Hence, for i 6= −j,
we get

2Ω · vi ⊗ vj = (Fj,i ⊗ Fi,j + F−i,−j ⊗ F−j,−i) · vi ⊗ vj = 2vj ⊗ vi = 2vi ⊗ vj · (s− e)

Noting that F−k,k = 0, we get

2Ω · vi ⊗ v−i =

 ∑
k∈I\{−i}

Fk,i ⊗ Fi,k +
∑

k∈I\{i}

F−i,k ⊗ Fk,−i

 · vi ⊗ v−i
= −

∑
k∈I\{−i}

vk ⊗ v−k −
∑

k∈I\{i}

v−k ⊗ vk

= 2v−i ⊗ vi − 2
∑
k∈I

vk ⊗ v−k

= 2vi ⊗ v−i · (s− e).

This proves the claim.
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Recall the action of Br(εgn) on V ⊗r from Theorem 3.64 which induces an action
M ⊗ V ⊗r x Br(εgn) fixing the M component. Lemma 4.31 tells us that

X̂i =
εgn− 1

2
+
∑

1≤j<i
Ωji

as operators on M ⊗ V ⊗r. As in type A, we would like to add the element Ω0i to
this sum so that we also interact with M . There is one more technicality though
that did not appear in type A: We have to explain how to choose the parameter set
Ξ appearing in relation (VW1).

Lemma 4.32. If M is a highest weight module of g and y ∈ Endg(M ⊗ V ⊗ V ),
then there are complex numbers (αk(M))k≥0 with e1y

ke1 = αk(M)e1 as operators
on M ⊗ V ⊗ V .

Proof. The vector
∑

k∈I vi ⊗ vi ∈ V ⊗ V spans a copy of the trivial representation
and induces an inclusion L(0) ↪→ V ⊗ V . Consider the composition

M ⊗ L(0) ↪→M ⊗ V ⊗ V yk→M ⊗ V ⊗ V e1→M ⊗ L(0).

By general highest weight theory, this endomorphism (as any other endomorphism
of M ∼= M ⊗ L(0)) is of the form αk(M) · idM for some αk(M) ∈ C. Precomposing
with e1 yields e1y

ke1 = αk(M)e1 on M ⊗ V ⊗ V .

Note that e1y
0e1 = e2

1 = εgne1 and hence α0(M) = εgn in the setting of the
lemma above. It is now clear how to construct commuting actions for a higher
Schur-Weyl duality of g.

Theorem 4.33. Let M be a highest weight module of g and Ξ = (αk(M))k≥0 as in

Lemma 4.32 for y =
εgn−1

2 + Ω01. Then there is a unique right action of
∨∨

r(Ξ) on
M ⊗ V ⊗r such that

1) the
∨∨

r(Ξ)-action extends the Br(εgn)-action on M ⊗ V ⊗r

2) yi ∈
∨∨

r(Ξ) acts as
εgn−1

2 +
∑

0≤j<i Ωji.

Moreover, the actions g yM ⊗ V ⊗r x
∨∨

r(Ξ) commute.

Proof. It is clear that 1) and 2) uniquely determine the action of
∨∨

r(Ξ). Hence,
we need to prove this action is well defined, i.e. that it is compatible with the
defining relations of

∨∨
r(Ξ). (VW1) holds by Lemma 4.32. Observe that yi acts as

Ω0i + X̂i on M ⊗ V ⊗r. Relations (VW2)-(i), (VW2)-(ii) and (VW3)-(i) then follow
from Lemma 4.26 using that siΩ0j = Ω0si(j)sj and eiΩ0j = Ω0jei for j 6= i, i + 1.
(VW2)-(iii), (VW3)-(ii) and (VW3)-(iii) need a few extra calculations as in [ES18,
Appendix] (see also [DRV13, Thm. 2.2]).
The Br(εgn)-action commutes with the g-action by the classical type B,C,D Schur-
Weyl duality (Theorem 3.64). Moreover, yi commutes with the g-action since Ω
commutes with ∆(x) for all x ∈ g. Hence, the actions g y M ⊗ V ⊗r x

∨∨
r(Ξ)

commute.

Example 4.34. 1. For M = L(0) the trivial module, we can identify M ⊗ V ⊗r
with the tensor space V ⊗r. Then Ω0i acts by 0 and yi ∈

∨∨
r(Ξ) acts as the

i-th Jucys-Murphy element X̂i ∈ Br(εgn) by Lemma 4.31. Hence, the
∨∨

r(Ξ)-
action is induced along the algebra homomorphism

∨∨
r(Ξ) � Br(εgn) from

(57) and we recover the classical duality

g y V ⊗r x Br(εgn) �
∨∨

r
(Ξ).
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2. For M = V , we have M ⊗ V ⊗r = V ⊗r+1. The algebra Br+1(εgn) is a cen-
tralising partner for the g-action on V ⊗r+1. The element yi ∈

∨∨
r(Ξ) acts

as X̂i+1 ∈ Br+1(εgn) by Lemma 4.31 and si, ei ∈
∨∨

r(Ξ) act as si+1, ei+1 ∈
Br+1(εgn). In particular, the

∨∨
r(Ξ)-action is induced along the algebra ho-

momorphism
∨∨

r(Ξ) → Br+1(εgn) with yi 7→ X̂i+1, si 7→ si+1 and ei 7→ ei+1.
This homomorphism is well-defined by Lemma 4.26.

Remark 4.35. We already noted for type A that Hdeg
r surjects onto the algebra

Endgln(M ⊗ V ⊗r)op for certain parabolic Verma modules M (Remark 4.23). A
similar statement holds for the affine VW-algebra and the Lie algebra g = so2m. In
fact, one can show that for certain parabolic Verma modules M the homomorphism∨∨

r(Ξ)→ Endg(M⊗V ⊗r)op is surjective with kernel p(y1) =
∏l
i=1(y1−ui) for some

l ∈ N and ui ∈ C. This establishes a link between parabolic Verma modules and the
so-called cyclotomic affine VW-algebras

∨∨
r(Ξ)/p(y1). For more details, see [ES18].

4.4 Jucys-Murphy elements in the partition algebra

Having seen Jucys-Murphy elements and higher Schur-Weyl duality for C[Sr] and
Br(δ), it is natural to attempt a similar construction for the partition algebra. This
is surprisingly more difficult and to the knowledge of the author an analogue of the
degenerate affine Hecke algebra or the affine VW-algebra has not been defined in
the partition algebra setting, yet. In this section we introduce the Jucys-Murphy
elements of Pr(δ) and try to explain why these elements are more difficult than in
the previous examples.

Consider the tower of algebras

C = P0(δ) ⊂ P1(δ) ⊂ P2(δ) ⊂ P3(δ) ⊂ ... (58)

where Pi(δ) ⊂ Pi+1(δ) is the usual diagrammatic inclusion which adds the block
{(i + 1, (i + 1)′} to the diagrams in Ai ⊂ Pi(δ). Recall that these algebras are
semisimple for δ 6∈ N0 and also for δ ∈ N0 if δ ≥ 2r − 1. To apply the techniques
from the Okounkov-Vershik approach, we would like to have that the branching
of Pi(δ) ⊂ Pi+1(δ) is multiplicity free whenever Pi(δ) and Pi+1(δ) are semisimple.
Unfortunately, this is not the case.

Example 4.36. We show that P1(δ) ⊂ P2(δ) does not have multiplicity-free branch-
ing for any δ ∈ C such that P1(δ) and P2(δ) are semisimple. We use the fact that
an inclusion of semisimple algebras A ⊂ B has multiplicity-free branching if and
only if the centraliser Z(B,A) is commutative (c.f. [CSST10, Thm. 2.1.10]). For
P1(δ) = SpanC{1, p1} ⊂ P2(δ) we have p1p2 = p2p1 and

p1(δp 3
2
− p1p 3

2
− p 3

2
p1) = δp1p 3

2
− p2

1p 3
2
− p1p 3

2
p1

= −p1p 3
2
p1

= δp 3
2
p1 − p1p 3

2
p1 − p 3

2
p2

1

= (δp 3
2
− p1p 3

2
− p 3

2
p1)p1.

Hence, p2 and δp 3
2
− p1p 3

2
− p 3

2
p1 lie in Z(P2(δ), P1(δ)). On the other hand,

p2(δp 3
2
− p1p 3

2
− p 3

2
p1) = δ − −

and (δp 3
2
− p1p 3

2
− p 3

2
p1)p2 = δ − − .
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This shows that Z(P2(δ), P1(δ)) is not commutative and the branching P1(δ) ⊂ P2(δ)
is not multiplicity-free.

To get multiplicity-free branching, we need a finer filtration than the tower in
(58). For this we analyse the structure of V ⊗r as an Sn representation. Note that
V ∼= C[Sn/Sn−1] is a permutation module with basis {g | g ∈ Sn/Sn−1}.

Lemma 4.37. For any Sn representation M the map

IndSnSn−1
ResSnSn−1

M = C[Sn]⊗C[Sn−1] M −→M ⊗C V

g ⊗m 7−→ gm⊗ g.

is an isomorphism of Sn representations.

Proof. It is straightforward to check that this is a well-defined Sn-linear map with
inverse m⊗ g 7→ g ⊗ g−1m.

Hence, we have

V ⊗r ∼= IndSnSn−1
ResSnSn−1

V ⊗r−1 ∼= ... ∼= (IndSnSn−1
ResSnSn−1

)r1n (59)

where 1n is the trivial representation of Sn. We can therefore refine the tower of
partition algebras by inserting the centralising partners of Sn−1 y ResSnSn−1

V ⊗r for

r ∈ N0 into our tower. Note that ResSnSn−1
V ⊗r can be identified with the Sn−1-

representation V ⊗r ⊗ Cvn ⊂ V ⊗r+1.

Definition 4.38. We define the half tensor space by V ⊗r+
1
2 := V ⊗r⊗Cvn ⊂ V ⊗r+1.

We also define the set

Ar+ 1
2

:= {d ∈ Ar+1 | r + 1 and (r + 1)′ lie in the same block of d}.

Then any d ∈ Ar+ 1
2

stabilises V ⊗r+
1
2 and hence we can consider d as an element of

EndSn−1(V ⊗r+
1
2 ) which induces commuting actions Sn−1 y V ⊗r+

1
2 x SpanCAr+ 1

2
.

Definition 4.39. The algebra Pr+ 1
2
(δ) := SpanCAr+ 1

2
⊂ Pr+1(δ) is called the half

partition algebra.

Remark 4.40. It is easy to check that Pr+ 1
2
(δ) is a subalgebra of Pr+1(δ) which is

generated by Pr(δ) and pr+ 1
2
.

Recall that Ar+1 is partially ordered via d′ ≤ d if d′ is coarser than d. Note that,
d ∈ Ar+ 1

2
and d′ ≤ d imply that d′ ∈ Ar+ 1

2
. Recall also that {xd | d ∈ Ar+1} is the

unique basis of Pr+1(δ) such that d =
∑

d′≤d xd′ . It follows by induction along the
partial order that d ∈ Ar+ 1

2
implies xd ∈ Pr+ 1

2
(δ). Hence, {xd | d ∈ Ar+ 1

2
} is a basis

of Pr+ 1
2
(δ) which we call the orbit basis of Pr+ 1

2
(δ).

Example 4.41. Consider the algebra P 3
2
(δ) with basis A 3

2
= {id, p1, p 3

2
, p 3

2
p1, p1p 3

2
}

and partial order p 3
2
≤ p1p 3

2
, id, p 3

2
p1 ≤ p1. Then, using that xd = d −

∑
d′<d xd′ ,

the orbit basis can be computed as follows:

xp 3
2

= p 3
2
,

xp1p 3
2

= p1p 3
2
− xp 3

2

= p1p 3
2
− p 3

2
,

xid = id−xp 3
2

= id−p 3
2
,

xp 3
2
p1 = p 3

2
p1 − xp 3

2

= p 3
2
p1 − p 3

2
,

xp1 = p1 − xp1p 3
2

− xid − xp 3
2
p1 − xp 3

2

= p1 − p1p 3
2
− id−p 3

2
p1 − 4p 3

2
.
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Theorem 4.42. The commuting actions Sn−1 y V ⊗r+
1
2 x Pr+ 1

2
(n) generate each

other’s centraliser. Moreover, the set {xd | d ∈ Ar+ 1
2

has more than n blocks} spans

the kernel of the induced algebra homomorphism Pr+ 1
2
(n) → EndSn−1(V ⊗r+

1
2 )op.

In particular, we have Pr+ 1
2
(n) ∼= EndSn−1(V ⊗r+

1
2 )op if n ≥ 2(r + 1

2).

Proof. This is analogous to the proof of Theorem 3.9 (see also [HR05, Thm. 3.6]).

We can now study the refined tower of algebras

C ∼= P0(δ) ⊂ P 1
2
(δ) ⊂ P1(δ) ⊂ P 3

2
(δ) ⊂ P2(δ) ⊂ P 5

2
(δ) ⊂ ...

For δ = n and r ∈ N0, these algebras fit into the Schur-Weyl dualities

Sn y V ⊗r x Pr(n)

Sn−1 y V ⊗r+
1
2 x Pr+ 1

2
(n)

Sn y V ⊗r+1 x Pr+1(n).

(60)

Each of the dualities in (60) gives a bimodule decomposition into outer tensor prod-
ucts of simples

V ⊗r ∼=
∑
i

Ai ⊗Bi

V ⊗r+
1
2 ∼=

∑
j

A′j ⊗B′j

V ⊗r+1 ∼=
∑
k

A′′k ⊗B′′k

which satisfy the following property.

Proposition 4.43 (Seesaw resciprocity). We have

1) [Res
P
r+ 1

2
(n)

Pr(n) B′j : Bi] = [ResSnSn−1
Ai : A′j ]

2) [Res
Pr+1(n)
P
r+ 1

2
(n)B

′′
k : B′j ] = [ResSnSn−1

A′′k : A′j ].

Proof. See also [CSST10, Sections 7.5.3 and 7.5.4]. We prove 1) (the proof of 2) is
analogous). We can decompose V ⊗r as a (C[Sn−1], Pr(n))-bimodule in two ways.

Restricting from the (C[Sn−1], Pr+ 1
2
(n))-bimodule V ⊗r+

1
2 , we get

V ⊗r ∼=
∑
j,i

[Res
P
r+ 1

2
(n)

Pr(n) B′j : Bi] ·A′j ⊗Bi. (61)

Restricting instead from the (C[Sn], Pr(n))-bimodule V ⊗r, we get

V ⊗r =
∑
j,i

[ResSnSn−1
Ai : A′j ] ·A′j ⊗Bi. (62)

Comparing the coefficients in (61) and (62) implies 1).

89



For 2r ∈ {0, 1, ..., n} the Pr(n) action on tensor space is faithful by Theorem 3.9
and Theorem 4.42 and in this case Pr(n) is semisimple. Hence, the representation
theory of the (finite) tower of semisimple algebras

P0(n) ⊂ P 1
2
(n) ⊂ P1(n) ⊂ ... ⊂ Pn−1

2
⊂ Pn

2
(n) (63)

is completely determined by Schur-Weyl duality.

Proposition 4.44. Let 2r ∈ {0, 1, ..., n}. Then the irreducible Pr(n)-representations
V λ
r can be indexed by the partitions λ ` n (resp. λ ` n − 1 if r ∈ Z + 1

2) with the
property that the Specht module S(λ) appears in V ⊗r. Moreover, the branching of
the truncated tower in (63) is multiplicity-free with

Res
P
r+ 1

2
(n)

Pr(n) V λ
r+ 1

2

=



⊕
λ⊂µ
µ/λ=

V µ
r if r ∈ Z

⊕
µ⊂λ
λ/µ=

V µ
r if r ∈ Z +

1

2
.

Proof. The claim about the indexing set of the irreducible representations of Pr(n)
follows from the double centraliser theorem using that Pr(n) ∼= EndSn(V ⊗r)op (resp.
Pr(n) ∼= EndSn−1(V ⊗r)op if r ∈ Z + 1

2) for n ≥ 2r. The branching rule now follows
from Proposition 4.43 and the branching rule of Sn−1 ⊂ Sn.

Note that for r ∈ Z the irreducible Sn representations appearing in V ⊗r (resp.
the irreducible Sn−1-representations for r ∈ Z + 1

2) can be determined recursively
using the branching rule of Sn−1 ⊂ Sn. This can be used to determine the branching
graph of the tower from (63).

Example 4.45. The following graph is the branching graph of the tower from (63)
for n = 5.

P0(5)

P 1
2
(5)

P1(5)

P 3
2
(5)

P2(5)

P 5
2
(5)

Remark 4.46. We have already seen that the irreducible representations L(r)(λ) of
Pr(n) can be indexed by Young diagrams λ with 0 ≤ |λ| ≤ r. This can be connected
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with the set of irreducibles V µ
r from Proposition 4.44 which are indexed by the

partitions µ ` n such that S(µ) appears in V ⊗r. In fact, Proposition 3.32 tells us
that the irreducible representation L(r)(λ) for the first indexing set corresponds to

V
λ[n]
r for the second indexing set. The branching graph of Pr(n) with respect to

the first indexing set is then just obtained from the branching graph in the second
indexing set by deleting the first row of each partition.

We now use Schur-Weyl duality to construct Jucys-Murphy elements for the
algebras Pr(n) for n ≥ 2r. Recall the central elements Zn ∈ C[Sn] from (50).

Definition 4.47. Let 2r ∈ N0 and n ≥ 2r. Then Z̃r(n) = Z̃r is defined to be
the unique element of EndSn(V ⊗r)op ∼= Pr(n) that acts on V ⊗r by multiplying with
Zn ∈ C[Sn] if r ∈ N0 and by multiplying with Zn−1 ∈ C[Sn−1] if r ∈ N0 + 1

2 .

Note that Zn (resp Zn−1) commutes with both the Sn (resp. Sn−1)-action and
the Pr(n)-action on V ⊗r. This shows that Z̃r(n) is a well-defined central element of
Pr(n) for n ≥ 2r.

Definition 4.48. Let 2r ∈ N0 and n ≥ 2r. Then for i ∈ {1
2 , 1,

3
2 , ..., r} the elements

X̃i = X̃i(n) := Z̃i(n)− Z̃i− 1
2
(n) ∈ Pr(n)

are called the Jucys-Murphy elements of Pr(n).

Note that Zn (resp. Zn−1) acts as the scalar
(
n
2

)
(resp.

(
n−1

2

)
) on the trivial

representation V ⊗0 (resp. V ⊗
1
2 ). In particular, X̃ 1

2
(n) =

(
n−1

2

)
−
(
n
2

)
= −(n− 1) is

also just a scalar.

Remark 4.49. Our normalisation of the Jucys-Murphy differs from the normalisa-
tions in [HR05] and [Eny13] by a constant factor but agrees with the normalisation
in [CSST10, Rem. 8.3.19]. In fact, we will see that our normalistation is adapted
to the indexing set of the irreducible Pr(n)-modules from Proposition 4.44. The
normalisation in [HR05], on the other hand, is adapted to the indexing set of simple
Pr(n) modules from Theorem 3.29.

Lemma 4.50. For 2r ∈ N0 and n ≥ 2r. Let T = λ0 ↗ λ 1
2
↗ λ1 ↗ ... ↗ λr be a

path in the branching graph of Pr(n) as described in Proposition 4.44. Let vT be a
corresponding Gelfand-Tsetlin basis vector. Then

X̃i · vT =


c(λi/λi− 1

2
) if i ∈ Z

−c(λi− 1
2
/λi) if i ∈ Z +

1

2

(64)

were c(λ/µ) denotes the content of the box λ/µ (if λ and µ differ by a single box).

Proof. Let λ ` k and let S(λ) be the corresponding irreducible Sk-representation.
Then the element Zk = X1+X2+...+Xk acts as

∑
b∈λ c(b) on S(λ) by Theorem 4.15.

Now vT lies in the λi-isotypical component of Res
Pr(n)
Pi(n) V

⊗r and in the λi− 1
2
-isotypical

component of Res
Pr(n)
P
i− 1

2
(n) V

⊗r. Then the element Z̃i acts as
∑

b∈λi c(b) on vT and

Z̃i− 1
2

acts as
∑

b∈λ
i− 1

2

c(b) on vT . It follows that X̃i = Z̃i−Z̃i− 1
2

acts by the formulas

in (64).
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We have determined the branching graph, the Jucys-Murphy elements and the
weight structure of Pr(n) for integers n ≥ 2r. Now, we want to interpolate this
(or at least the Jucys-Murphy elements) to arbitrary δ ∈ C. The main ingredient is
the following lemma.

Lemma 4.51. For any 2r ∈ N0 there are polynomials pdr(x) ∈ C[x] such that
Z̃r(n) =

∑
d∈Ar p

d
r(n)d ∈ Pr(n) for all n ≥ 2r.

Proof. See also [CO11, Section 4.1]. We give the argument for r ∈ Z with the
r ∈ Z + 1

2 case being similar. Since the base change between the standard basis
and the orbit basis is unitriangular and integral, it suffices to show that there are
qdr (x) ∈ C[x] such that Z̃r(n) =

∑
d∈Ar q

d
r (n)xd for all n ≥ 2r. For this, write

Z̃r(n) =
∑
d∈Ar

cdr(n)xd.

with cdr(n) ∈ C. For d ∈ Ar let i, j ∈ {1, ..., 2r}r ⊂ {1, ..., n}r such that i
d→ j.

Then cdr(n) is the coefficient of vj in vi · Z̃r(n) = Zn · vi. This is the same as the
number of all pairs 1 ≤ a < b ≤ n such that (a b) · i = j. If i = j this number

is cdr(n) =
(
n−|d|

2

)
where |d| = |{i1, ..., ir, j1, ..., jr}| is the number of blocks of d. If

i 6= j then we can find k ∈ {1, ..., r} such that ik 6= jk. Then (a b) · i = j implies

{a, b} = {ik, jk}. We see that cdr(n) ∈ {0, 1} and this value is independent of n since
i and j are independent of n. In particular, cdr(n) is polynomial in n for all d ∈ Ar
as claimed. This finishes the proof.

We can use this to define Jucys-Murphy elements for arbitrary δ ∈ C using the
interpolated central elements

Z̃r = Z̃r(δ) :=
∑
d∈Ak

pdr(δ)d ∈ Pr(δ)

with the pdr(x) from Lemma 4.51.

Definition 4.52. Let 2r ∈ N0 and δ ∈ C. Then for i ∈ {1
2 , 1,

3
2 , ..., r} the elements

X̃i = X̃i(δ) := Z̃i(δ)− Z̃i−1(δ) ∈ Pr(δ)

are called the Jucys-Murphy elements of Pr(δ).

Note that by definition, the Jucys-Murphy elements are of the form

X̃i(δ) =
∑
d∈Ak

qdi (δ)d

for some qdi (x) ∈ C[x] and that this recovers the Jucys-Murphy elements from Def-

inition 4.48 for δ = n ∈ N with n ≥ 2r. Since X̃ 1
2
(n) = −(n − 1) for infinitely

many n, we get qd1
2

(x) = 0 for all d 6= id and qid
1
2

(x) = −(x − 1). This shows

that X̃ 1
2
(δ) = δ − 1 for all δ ∈ C. In fact, such deformation arguments (which we

formalised in Lemma 3.14) are generally useful to do computations with the Jucys-
Murphy elements X̃i. We use this to prove some basic properties of the X̃i for all
δ ∈ C. Most of these were also verified in [Eny13] by other methods.

Lemma 4.53. The element Z̃k(δ) ∈ Pk(δ) is central for any δ ∈ C. In particular,
the Jucys-Murphy elements X̃ 1

2
, X̃1, X̃ 3

2
, ..., X̃r ∈ Pr(δ) commute pairwise.
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Proof. We already know that the elements Z̃k(n) ∈ Pk(n) are central for n ≥ 2k.
Moreover, by construction, the element Z̃k(δ) is polynomial in the standard basis.
The equation dZ̃k(δ) = Z̃k(δ)d then follows for any δ ∈ C and d ∈ Ak by the
standard deformation argument from Lemma 3.14. Hence Z̃k(δ) ∈ Pk(δ) is central.
It is then clear that the Jucys-Murphy elements commute since X̃i = Z̃i− Z̃i−1.

Note that this implies that X̃ 1
2

+ X̃1 + ... + X̃r = Z̃r − Z̃0 is central in Pr(δ)

(keeping in mind that Z̃0 ∈ P0(δ) = C). One might also wonder whether there is a
degenerate affine version of the partition algebra. This would require some relations
involving the Jucys-Murphy elements and the standard generators of the partition
algebra. The following relations hold.

Lemma 4.54. For any i ∈ {1, 3
2 , 2,

5
2 , ..., r} and δ ∈ C we have

(X̃i− 1
2

+ X̃i)pi = 0 = pi(X̃i− 1
2

+ X̃i). (65)

in Pr(δ). Moreover,

X̃jpi = piX̃j if j 6= i− 1

2
, i

X̃jsi = siX̃j if j 6= i− 1

2
, i, i+

1

2
, i+ 1 and i ∈ Z.

Proof. Since the Z̃k ∈ Pk(δ) are central and X̃j = Z̃j − Z̃j− 1
2
, we see that X̃j

commutes with pi for j > i and si for j > i + 1. Moreover, pi and si commute
with Pi−1(δ) and hence with X̃j for j ≤ i − 1. It remains to prove (65). By our
standard interpolation argument (Lemma 3.14) it suffices to prove these equations
as operators on V ⊗i for n � 0. Note that X̃i− 1

2
+ X̃i = Z̃i − Z̃i−1. For i ∈ Z, let

j = (j1, ..., ji) ∈ {1, ..., n}i and j′ = (j1, ..., ji−1). Then

vj · (X̃i− 1
2

+ X̃i)pi = vj · (Z̃i − Z̃i−1)pi

4.47
=

∑
1≤a<b≤n

(v(a b)·j − v(a b)·j′ ⊗ vji) · pi

=
∑
a6=ji

(v(a ji)·j′ ⊗ va − v(a ji)·j′ ⊗ vji) · pi

=
∑
a6=ji

1≤k≤n

v(a ji)·j′ ⊗ vk − v(a ji)·j′ ⊗ vk = 0.

By Lemma 3.14 this implies (X̃i− 1
2

+ X̃i)pi = 0 in Pi(δ). Moreover, pi commutes

with Z̃i−1 and Z̃i and hence also with X̃i− 1
2

+ X̃i. This proves pi(X̃i− 1
2

+ X̃i) = 0

and (65) follows for i ∈ Z.
To prove (65) for i+ 1

2 (with i ∈ Z) it suffices to verify the equation as operators on

V ⊗i+
1
2 = V ⊗i ⊗ Cvn:

vj ⊗ vn · pi+ 1
2
(X̃i + X̃i+ 1

2
)

= vj ⊗ vn · pi+ 1
2
(Z̃i+ 1

2
− Z̃i− 1

2
)

= δji,n · vj′ ⊗ vn ⊗ vn · (Z̃i+ 1
2
− Z̃i− 1

2
)

= δji,n ·
∑

1≤a<b≤n−1

(v(a b)·j′ ⊗ v(a b)·n ⊗ vn − v(a b)·j′ ⊗ vn ⊗ vn) = 0.
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This proves pi+ 1
2
(X̃i + X̃i+ 1

2
) = 0 on V ⊗i+

1
2 . Moreover, pi+ 1

2
commutes with Z̃i+ 1

2

and Z̃i− 1
2

and hence also with X̃i+ 1
2

+ X̃i. This implies (X̃i + X̃i− 1
2
)pi+ 1

2
= 0 and

the proof is complete.

Lemma 4.54 gives us nearly all the relations one would like to have for a good
definition of a degenerate affine version of the partition algebra. The only relation
that is missing is a relation that tells us how the si commute/interact with X̃j for
j = i − 1

2 , i, i + 1
2 , i + 1. In fact, this is the crucial point where the analogy to

C[Sr] and Br(δ) breaks down. The main problem is that the quasi-commutator
siX̃j − X̃j+1si cannot be expressed locally for j = i− 1

2 , i. Let us make a bit more
precise what we mean by local here. The Jucys-Murphy elements of the symmetric
group satisfy the relation siXi − Xi+1si = −1 and in the Brauer algebra case we
have siX̂i− X̂i+1si = ei− 1. These are expressions which only involve neighbouring
indices. Moreover, we can consider the shift homomorphisms

Sk : Br(δ) −→ Br+k(δ)

si 7−→ si+k

ei 7−→ ei+k.

Then

si+kXi+k −Xi+k+1si+k = −1 = Sk(−1) = Sk(siXi −Xi+1si)

and si+kX̂i+k − X̂i+k+1si+k = ei+k − 1 = Sk(ei − 1) = Sk(siX̂i − X̂i+1si)

in C[Sr] and Br(δ) for all i and k. In pictures this means that the error term for the
expression

−

is a picture without dots which does not depend on where the crossing takes place
within the whole diagram (explaining why we call this local). The shift operator
above extends to the partition algebra via

Sk : Pr(δ) −→ Pr+k(δ)

si 7−→ si+k

pi 7−→ pi+k.

We will show that the expression siX̃i − X̃i+1si for the Jucys-Murphy elements of
the partition algebra is not local. Let us first derive a general formula for the action
of the X̃i on tensor space.

Proposition 4.55. Let r ∈ N, i = (i1, ..., ir) ∈ {1, ..., n}r and i′ = (i1, ..., ir−1).
Then for n ≥ 2r and r ∈ N the Jucys-Murphy elements X̃r and X̃r− 1

2
act on V ⊗r as

vi · X̃r =
∑
j 6=ir

v(j ir)·i

vi · X̃r− 1
2

= −
∑
j 6=ir

v(j ir)·i′ ⊗ vir .

Proof. By Definition 4.47, we have

vi · Z̃r =
∑

1≤a<b≤n
v(a b)·i

vi · Z̃r−1 =
∑

1≤a<b≤n
v(a b)·i′ ⊗ vir
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We also need the action of Z̃r− 1
2

on V ⊗r. We claim that

vi · Z̃r− 1
2

=
∑

1≤a<b≤n
a,b 6=ir

v(a b)·i′ ⊗ vir .

In fact, the claim is true for ir = n by the definition of the element Z̃r− 1
2
. For

general ir ∈ {1, ..., n}, this then follows from the Sn-equivariance of Z̃r− 1
2
∈ Pr(n).

The proposition now follows since X̃r = Z̃r − Z̃r− 1
2

and X̃r− 1
2

= Z̃r− 1
2
− Z̃r−1.

Proposition 4.56. The expression siX̃i − X̃i+1si is not local. In fact, we have

si+kX̃i+k − X̃i+k+1si+k 6= Sk(siX̃i − X̃i+1si) (66)

in Pr+k+1(δ) for all k > 0, 1 ≤ i ≤ r − 1 and all but finitely many δ ∈ C.

Proof. If the expression siX̃i − X̃i+1si is local for infinitely many δ then it is local
for all δ by our standard interpolation argument. Hence it suffices to show (66)
for some δ ∈ C. We will show this by acting on tensor space for δ = n ≥ 2r.
Consider the vector v := v⊗i+k1 ⊗v⊗r+1−i

2 ·si+k ∈ V ⊗r+k+1. Using the formulas from
Proposition 4.55, we get

v · si+kX̃i+k = v⊗i+k1 ⊗ v⊗r+1−i
2 · X̃i+k =

∑
j 6=1

v⊗i+kj ⊗ v⊗r+1−i
2

v · X̃i+k+1si+k = v⊗i+k−1
1 ⊗ v2 ⊗ v1 ⊗ v⊗r−i2 · X̃i+k+1si+k

=
∑
j 6=1

v⊗i+k−1
(1 j)·1 ⊗ v(1 j)·2 ⊗ v(1 j)·1 ⊗ v⊗r−i2 · si+k

=
∑
j 6=1

v⊗i+k(1 j)·1 ⊗ v(1 j)·2 ⊗ v⊗r−i2

=
∑
j 6=1,2

v⊗i+kj ⊗ v⊗r+1−i
2 + v⊗i+k2 ⊗ v1 ⊗ v⊗r−i2 .

by Proposition 4.55 and hence

v · (si+kX̃i+k − X̃i+k+1si+k) = v⊗i+k+1
2 − v⊗i+k2 ⊗ v1 ⊗ v⊗r−i2 . (67)

On the other hand,
v · Sk(siX̃i − X̃i+1si) = v⊗k1 ⊗ w (68)

for some w ∈ V ⊗r+1−k. We see that (67)6=(68) for k > 0. This proves the claim.

Remark 4.57. Similar calculations to the ones above show that siX̃i− X̃i− 1
2
si and

siX̃i − X̃i+ 1
2
si are not local.

The only way out for a local expression of the error term for siX̃i − X̃i+1si
seems to be to allow other Jucys-Murphy elements (or pictorially dots) in the error
term. These should at least have index < i so that one can give a basis of the
corresponding degenerate affine algebra in terms of dotted diagrams. However, no
such nice relation is known to the author.

Remark 4.58. Recursive formulas for the Jucys-Murphy elements which also give
an expression for siX̃i − X̃i+1si can be found in [Eny13, (3.1), (3.3)] . However,
the error term in [Eny13] is not local (not even when allowing other Jucys-Murphy

95



elements) since they involve elements σk which are not local in the standard gen-
erators. These recursive formulas (and most other formulas in [Eny13]) can also
be verified using our standard interpolation technique after one has checked them
on tensor space and after one has shown that the matrix representing the action of
σk on tensor space (with respect to the standard basis) has entries which depend
polynomially on n.

We conclude this section by describing the action of the Jucys-Murphy elements
along the isomorphism

C[Sn]⊗C[Sn−1] C[Sn]⊗C[Sn−1] ...⊗C[Sn−1] 1n
∼−→ C[Sn/Sn−1]⊗r ∼= V ⊗r

gr ⊗ gr−1 ⊗ ...⊗ g1 ⊗ 1 7−→ grgr−1 · · · g1 ⊗ grgr−1 · · · g2 ⊗ ...⊗ gr.

from (59). For this we act on elements of the form

v = gr ⊗ ...⊗ g1 ⊗ g0 ∈ C[Sn]⊗C[Sn−1] ...⊗C[Sn−1] 1n ∼= V ⊗r

with gi ∈ Sn for i > 0 and g0 = 1 ∈ 1n.

Proposition 4.59. We have

v · X̃i = ...⊗ gi+1 ⊗ giXn ⊗ gi−1 ⊗ ...

v · X̃i− 1
2

= ...⊗ gi ⊗ (−Xn)gi−1 ⊗ gi−2 ⊗ ...

for i = 1, ..., r.

Proof. Recall that Z̃i acts on V ⊗i by multiplying with Zn on the left and Z̃i− 1
2

acts on

V ⊗i−
1
2 by multiplying with Zn−1 on the left. Note that for any C[Sn]-module M and

f ∈ EndSn(M) the isomorphism from Lemma 4.37 identifies idV ⊗f ∈ EndSn(V ⊗M)
with idC[Sn]⊗f ∈ EndSn(C[Sn]⊗C[Sn−1] M). In particular, we have

v · X̃i = v · (Z̃i − Z̃i− 1
2
)

= ...⊗ gi+1 ⊗ Zngi ⊗ gi−1 ⊗ ...− ...⊗ gi ⊗ Zn−1gi−1 ⊗ gi−2 ⊗ ...
= ...⊗ gi+1 ⊗ giZn ⊗ gi−1 ⊗ ...− ...⊗ gi+1 ⊗ giZn−1 ⊗ gi−1 ⊗ ...
= ...⊗ gi+1 ⊗ giXn ⊗ gi−1 ⊗ ...

and

v · X̃i− 1
2

= v · (Z̃i− 1
2
− Z̃i−1)

= ...⊗ gi ⊗ Zn−1gi−1 ⊗ gi−2 ⊗ ...− ...⊗ gi ⊗ Zngi−1 ⊗ gi−2 ⊗ ...
= ...⊗ gi ⊗ (−Xn)gi−1 ⊗ gi−2 ⊗ ...

The standard generators of Pr(n) can also be described explicitly as operators
on (IndSnSn−1

ResSnSn−1
)r1n.

Proposition 4.60. We have

1) v · pi− 1
2

= ...⊗ gi ⊗ prSn−1
(gi−1)⊗ gi−2 ⊗ ... for i = 2, ..., r

2) v · pi =
∑

g∈Sn/Sn−1
...⊗ gi+1 ⊗ g ⊗ g−1gigi−1 ⊗ gi−2 ⊗ ... for i = 1, ..., r

3) v · si = ...⊗ gi+2 ⊗ gi+1gi ⊗ g−1
i ⊗ gigi−1 ⊗ gi−2 ⊗ ... for i = 1, ..., r− 1
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where prSn−1
: C[Sn]→ C[Sn−1], g 7→

{
g if g ∈ Sn−1

0 otherwise
.

Proof. All of this can be done by direct calculation. We give the argument for
1). Recall that, pi− 1

2
acts on V ⊗r by projecting onto the basis vectors vj with

j ∈ {1, ..., n}r such that ji = ji−1. Note that v corresponds to the basis vector
vj ∈ V ⊗r with ji = grgr−1 · · · gi(n). In particular, we have

ji = ji−1 ⇔ grgr−1 · · · gi(n) = grgr−1 · · · gi−1(n)⇔ gi−1(n) = n⇔ gi−1 ∈ Sn−1

which implies 1).

Proposition 4.59 and Proposition 4.60 are an alternative to the formulas from
Proposition 4.55 if one wants to do calculations with Jucys-Murphy elements. For
example, we have

v · pi+ 1
2
(X̃i + X̃i+ 1

2
) = (...⊗ prSn−1

(gi)⊗ ...) · (X̃i + X̃i+ 1
2
)

= ...⊗ prSn−1
(gi)Xn ⊗ ...+ ...⊗ (−Xn) prSn−1

(gi)⊗ ...
(∗)
= ...⊗Xn prSn−1

(gi)⊗ ...+ ...⊗ (−Xn) prSn−1
(gi)⊗ ...

= 0

where (∗) uses that Xn commutes with C[Sn−1]. This gives another way to verify
the equations from Lemma 4.54.

Remark 4.61. The formulas from Proposition 4.60 might also be useful if one
is interested in quantising the duality between the symmetric group Sn and the
partition algebra Pr(n). The natural representation of the Hecke algebra is the
n-dimensional parabolic Hecke module

Vq := Hn ⊗Hn−1 q−1C(q) = Hn ⊗Hn−1 Hnxn

where xn =
∑

x∈Sn q
−l(x)Hx. However, defining a ’diagonal’ action of the Hecke

algebra on V ⊗rq is not straightforward, since we do not have an obvious candidate
for a comultiplication on Hn which specialises to the comultiplication of C[Sn] for
q → 1. On the other hand, restriction and induction alongHn−1 ⊂ Hn makes perfect
sense for the Hecke algebra and we can define the ’tensor space’ for the Hecke algebra
by

Tq(r) := Hn ⊗Hn−1 Hn ⊗Hn−1 ...⊗Hn−1 Hn︸ ︷︷ ︸
r

⊗Hn−1Hnxn.

We could now try to define a quantum partition algebra by finding analogues of the
elements pi, pi− 1

2
, si ∈ Pr(n) as described in Proposition 4.60. In fact, the map

prHn−1
: Hn → Hn−1, Hx 7→

{
Hx if x ∈ Sn−1

0 otherwise

is an (Hn−1,Hn−1)-bimodule homomorphism (which follows from Proposition 1.11)
and hence induces an endomorphism

Pi− 1
2

:= idr−i+1
Hn ⊗prHn−1

⊗ idi−1
Hn ∈ EndHn(Tq(r)).

Let D be the set of shortest left coset representatives of Sn−1 in Sn. Consider the
element

∑
x∈DHx ⊗Hx−1 ∈ Hn ⊗Hn−1 Hn. One can check that the map

Φ : Hn ⊗Hn−1 Hn → Hn ⊗Hn−1 Hn, a⊗ b 7→
∑
x∈D

Hx ⊗Hx−1ab
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is an (Hn,Hn)-bimodule homomorphism (see [LS13, Lemma 5.3]). In particular,
this induces an endomorphism

Pi := idr−iHn ⊗Φ⊗ idi−1
Hn ∈ EndHn(Tq(r)).

Unfortunately, defining an analogue of the element si ∈ Pr(n) is not that simple
since obvious candidates like the assignment Ha⊗Hx⊗Hb 7→ HaHx⊗Hx−1⊗HxHb

on Hn⊗Hn−1Hn⊗Hn−1Hn are not well-defined. For instance, if s ∈ Sn−1 is a simple
reflection and sx > x, then

Hs ⊗Hx ⊗ 1 7→ HsHx ⊗Hx−1 ⊗Hx

but 1⊗HsHx ⊗ 1 = 1⊗Hsx ⊗ 1 7→ Hsx ⊗H(sx)−1 ⊗Hsx = HsHx ⊗Hx−1 ⊗H2
sHx.

Nonetheless, one can construct a basis of EndHn(Tq(r)). Note that the endofunctor
V ⊗C (−) ∼= C[Sn] ⊗C[Sn−1] (−) on Rep(Sn) is self-adjoint since V ∼= V ∗ as Sn-
representations. Hence,

EndSn(V ⊗r) ∼= HomSn(1n, V
⊗2r)

∼= HomSn(enC[Sn],C[Sn]⊗C[Sn−1] ...⊗C[Sn−1] C[Sn]en)

∼= enC[Sn]⊗C[Sn−1] C[Sn]⊗C[Sn−1] ...⊗C[Sn−1] C[Sn]︸ ︷︷ ︸
2r−1

⊗C[Sn−1]C[Sn]en

by Lemma 2.7 where en =
∑

σ∈Sn σ. This space has basis {en⊗g1⊗ ....⊗g2r−1⊗en}
where the (g1, ...., g2r−1) are representatives of

{∗} ×Sn−1 Sn ×Sn−1 ....×Sn−1 Sn︸ ︷︷ ︸
2r−1

×Sn−1{∗}. (69)

A similar argument can be used to describe EndHn(Tq(r)). In fact, one can check
that IndHnHn−1

and ResHnHn−1
form a biadjoint pair of functors (see [LS13, Prop. 5.4]).

Hence, the endofunctor Hn ⊗Hn−1 (−) = IndHnHn−1
ResHnHn−1

(−) on Hn-mod is self-
adjoint. In particular,

EndHn(Tq(r)) ∼= HomHn(Hnxn, Tq(2r))
∼= xnHn ⊗Hn−1 Hn ⊗Hn−1 ...⊗Hn−1 Hn︸ ︷︷ ︸

2r−1

⊗Hn−1Hnxn.

This space is spanned by the elements {en ⊗ Hx1 ⊗ .... ⊗ Hx2r−1 ⊗ en} where the
(x1, ...., x2r−1) are representatives of (69). In fact, a straightforward specialisation
argument (as in the proof of Lemma 2.23) shows that these elements are linearly
independent and therefore form a basis. This shows that dimC(q) EndHn(Tq(r)) =
dimC EndSn(V ⊗r).

5 Diagram categories and their monoidal structure

This last section will serve as an outlook on applications of the monoidal category for-
malism to Schur-Weyl duality. This gives a more conceptual framework for studying
Schur-Weyl dualities for tensor spaces of varying size at the same time. Section 5.1
introduces monoidal categories and the partition category following [EGNO16] and
[CO11]. In Section 5.2 we introduce a new monoidal category which we call the
balanced partition category. This category generalises the balanced partition algebra
from Definition 3.38. We also give a presentation of the balanced partition category
by generators and relations.
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5.1 Monoidal categories

When studying Schur-Weyl dualities in the previous sections, we only considered
the morphism spaces HomA(V ⊗r, V ⊗s) for r = s where usually A is an alge-
bra/group/Lie algebra with a left action Ay V ⊗r for all r ∈ N0. In fact, for classical
Schur-Weyl duality it might seem that all the interesting information is already con-
tained in these endomorphism spaces. For example, HomGLn(C)(V

⊗r, V ⊗s) = 0 for
r 6= s since c · In acts by multiplying with cr on V ⊗r and by multiplying with cs on
V ⊗s for any c ∈ C× so that there are no non-zero homomorphisms that commute
with all c·In if r 6= s. However, thinking about it this way does not take into account
the additional structure that comes with the isomorphism of GLn(C)-representations

V ⊗r ⊗C V
⊗s ∼−→ V ⊗r+s

and the associated homomorphism of algebras

EndGLn(C)(V
⊗r)⊗C EndGLn(C)(V

⊗s) −→ EndGLn(C)(V
⊗r+s).

On top of that, the space HomA(V ⊗r, V ⊗s) will actually be non-zero for most other
Schur-Weyl dualities and some r 6= s. Forcing ourself to only look at the r = s case
is sometimes even a bit unnatural. Take for example the relation e2

1 = δe1 from the
Brauer algebra. In diagrams this is the bubble removal axiom

= δ

which should really have nothing to do with the cup and the cap that remain on the
top and on the bottom. Moreover, the action v⊗w · e1 = εg〈v, w〉

∑n
i=1 vi⊗ vi from

(44) is actually the composition of two actions, namely first computing the pairing
εg〈v, w〉 and then multiplying with

∑n
i=1 vi ⊗ vi. The better picture for the bubble

removal axiom would be

= δ · ∅.

As homomorphisms between tensor spaces this can be interpreted as

=

(
c 7→ c ·

n∑
i=1

vi ⊗ vi
)
∈ HomC(C, V ⊗ V )

= εg〈−,−〉 ∈ HomC(V ⊗ V,C)

∅ = idC ∈ HomC(C,C).

It follows from the calculations in (45) and (46) that these are actually g-module
homomorphisms (where g = son or g = spn). We can also interpret this as a categor-
ical approach to Schur-Weyl duality as follows: Where before we were just studying
one object V ⊗r and its endomorphisms, we are now looking at the collection of ob-
jects V ⊗r with r ∈ N0 and morphisms between any two objects of this kind, i.e. the
full subcategory of g-mod whose objects are the V ⊗r. Let us put this into a more
axiomatic framework to take full advantage these ideas.
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Recall that a category C is called C-linear if all its Hom-spaces have the struc-
ture of a C-vector space and composition of morphisms is bilinear. From now on,
all categories are assumed to be C-linear. Moreover, all functors are assumed to be
C-linear as well (i.e. C-linear on Hom-spaces).

Definition 5.1. A monoidal category T = (T ,⊗, a,1, l, r) is a category T together
with:

� a bifunctor ⊗ : T × T −→ T

� a natural isomorphism a : (−⊗−)⊗− ∼−→ −⊗ (−⊗−)

� an object 1 ∈ T

� two natural isomorphisms l : 1⊗− ∼−→ − and r : −⊗ 1
∼−→ −.

satisfying the pentagon axiom

((W ⊗X)⊗ Y )⊗ Z

(W ⊗ (X ⊗ Y ))⊗ Z (W ⊗X)⊗ (Y ⊗ Z)

W ⊗ ((X ⊗ Y )⊗ Z) W ⊗ (X ⊗ (Y ⊗ Z))

aW,X,Y ⊗idZ

aW⊗X,Y,Z

aW,X⊗Y,Z aW,X,Y⊗Z

idW ⊗aX,Y,Z

and the triangle axiom

(X ⊗ 1)⊗ Y X ⊗ (1⊗ Y )

X ⊗ Y

aX,1,Y

rX⊗idY

idX ⊗lY

for all W,X, Y, Z ∈ T . The functor ⊗ is often called the tensor bifunctor, 1 = (1, l, r)
is called the unit object and a is called the associator. The monoidal category T is
called strict if a, l and r are the identity transformations.
Given two monoidal categories (T ,⊗,1, a, l, r) and (T ′,⊗′,1′, a′, l′, r′), a (monoidal)
functor between these categories a pair F = (F, J) consisting of a functor F : T → T ′
and a natural isomorphism

J : F (−)⊗′ F (−)
∼−→ F (−⊗−)

with F (1) ∼= 1′ such that the following diagram commutes

(F (X)⊗′ F (Y ))⊗′ F (Z) F (X)⊗′ (F (Y )⊗′ F (Z))

F (X ⊗ Y )⊗′ F (Z) F (X)⊗′ F (Y ⊗ Z)

F ((X ⊗ Y )⊗ Z) F (X ⊗ (Y ⊗ Z)).

a′
F (X),F (Y ),F (Z)

JX,Y ⊗′idF (Z) idF (X)⊗′JY,Z

JX⊗Y,Z JX,Y⊗Z

F (aX,Y,Z)

We call (F, J) an equivalence of monoidal categories if F is an equivalence of the
underlying categories.
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Remark 5.2. One can define and study many interesting properties of monoidal
categories such as abelian, EndC(1) = C, symmetric (which means that ⊗ is symmet-
ric) or rigid (which means that objects have duals). A monoidal category satisfying
all of these properties (or some of these depending on the author) is called a tensor
category. Not all our monoidal categories will satisfy these properties (except for
symmetric and EndC(1) = C) and we will not talk about these in further detail to
not overcomplicate things. For an introduction to tensor categories and monoidal
categories in general, we refer to [EGNO16].

The usual tensor product constructions for rings, modules and representations
give rise to many examples of monoidal categories.

Example 5.3. LetG be a group and let Rep(G) be the category of finite-dimensional
representations of G. This is a monoidal category with the tensor bifunctor ⊗ = ⊗C,
i.e. the tensor product of representations with the diagonal G-action. The unit ob-
ject is the trivial representation.

Let us look at another example of a monoidal category that is adapted to the
Schur-Weyl duality setting. Let Cn be the full subcategory of Rep(Sn) whose objects
are the representations of Sn which are isomorphic to V ⊗r for some r ≥ 0. The
tensor bifunctor of Rep(Sn) restricts to a tensor bifunctor on Cn and the trivial
representation C = V ⊗0 is a unit object of Cn. It follows that Cn inherits the
structure of a monoidal category. We can think of Cn as a generalisation of all
the algebras EndSn(V ⊗r) at the same time. Let us now define the analogue of the
partition algebra in this categorical setting.

Definition 5.4. For any δ ∈ C, the partition category P(δ) is the category with
objects [r] indexed by integers r ≥ 0 and morphism spaces

HomP(δ)([r], [s]) := SpanCAs,r

where As,r is the set of all partitions of the set {1, ..., s} ∪ {1′, ..., r′}. We interpret
these as diagrams with r dots on the bottom and s dots on the top. For d1 ∈ As,r
and d2 ∈ Ar,t we define the composition

d1 ◦ d2 := δr(d1,d2)d1 ? d2

where d1 ?d2 is the diagram obtained from stacking d1 on top of d2 and removing all
free blocks in the middle where r(d1, d2) is the number of these free blocks removed.
This is a strict monoidal category with unit object [0] and tensor bifunctor

[r]⊗ [s] := [r + s]

where

⊗ : HomP(δ)([r], [s])×HomP(δ)([r
′], [s′])→ HomP(δ)([r + r′], [s+ s′])

is given by putting diagrams next to each other without overlapping.

Example 5.5. Here is an example of a composition and a tensor product of mor-
phisms in P(δ):

︸ ︷︷ ︸
∈HomP(δ)([4],[1])

◦

︸ ︷︷ ︸
∈HomP(δ)([2],[4])

= δ ·

︸ ︷︷ ︸
∈HomP(δ)([2],[1])
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︸ ︷︷ ︸
∈HomP(δ)([2],[4])

⊗

︸ ︷︷ ︸
∈HomP(δ)([4],[1])

=

︸ ︷︷ ︸
∈HomP(δ)([2+4],[4+1])

.

In the world of algebras, constructing a right action V ⊗r x Pr(n) corresponds
to the construction of an algebra homomorphism Pr(n) → EndSn(V ⊗r)op. In the
monoidal category setting this corresponds to a contravariant monoidal functor

F : P(n) −→ Cn

which is given by
F ([r]) := V ⊗r

on objects. To explain what this functor does on morphisms, consider d ∈ As,r.
Recall that for r = s this acts on V ⊗s as∑

i
d−→j

Ej,i ∈ HomSn(V ⊗s, V ⊗r) = HomCop
n

(V ⊗r, V ⊗s) (70)

with i ∈ {1, ..., n}s and j ∈ {1, ..., n}r. Here the notation i
d−→ j means that labelling

the top row of d with i and the bottom row d with j induces a well-defined labelling
of the blocks of d (see (25)). This notation extends without problem to the r 6= s
case and we can define F (d) ∈ HomSn(V ⊗r, V ⊗s)op by (70). The same argument as
in the r = s case shows that this is Sn-equivariant and compatible with composition.
It is also clear that this is monoidal functor.
Schur-Weyl duality states that the algebra homomorphism Pr(n) → EndSn(V ⊗r)op

is surjective. In the monoidal categorical set-up this is the following statement.

Theorem 5.6. The contravariant monoidal functor F : P(n)→ Cn is full, i.e.

F : HomP(n)([r], [s])→ HomSn(V ⊗s, V ⊗r)

is surjective for all r, s ≥ 0.

Proof. In the r = s case this is Theorem 3.9. For r 6= s the proof works exactly the
same.

Remark 5.7. Any finite-dimensional Sn-representation appears as a direct sum-
mand of a direct sum of some V ⊗r (this follows for example from the branching
rule in Theorem 4.15). In other words, closing up the category Cn under taking
direct sums and direct summands recovers the whole category Rep(Sn). More for-
mally, one can define the additive closure Add(C) of a category which consists of
formal direct sums X1 ⊕ ... ⊕ Xm with Xi ∈ C and HomAdd(C)(

⊕k
j=1Xj ,

⊕l
i=1 Yi)

consists of all l×k matrices where the (i, j)-th entry is an element of HomC(Xj , Yi).
This makes the notion of closing up a category under taking direct sums precise.
Similarly, one can define the Karoubian envelope Kar(C) of an additive category
C. The objects in this category are pairs (X, e) where e ∈ EndC(X) is an idempo-
tent morphism and HomKar(A)((X, e), (Y, f)) := f HomA(X,Y )e. This makes the
notion of closing up a category under taking direct summands precise (see [Kar08,
Section I-6] for more details). Moreover, if C is a monoidal category there is a canon-
ical monoidal structure on Add(C) and Kar(Add(C)). It is not hard to show that
Kar(Add(Cn)) ∼= Rep(Sn) as monoidal categories and there is a monoidal functor
F ′ : Kar(Add(P(n))) → Rep(Sn). The functor F ′ is not quite an equivalence of
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categories, but it is surjective on objects and morphisms. Hence, one can think of
Kar(Add(P(t))) as the category that interpolates Rep(St) for t ∈ C not necessarily
an integer. The category Kar(Add(P(t))) was introduced in [Del07] is nowadays
called a Deligne category. This Deligne category can be used to study properties of
Rep(St) which are stable under varying t. For more details, we refer to [Del07] and
[CO11].

One can also interpret other Schur-Weyl dualities and diagram algebras in the
monoidal category setting. For example, we can define the Brauer category B(δ) to
be the subcategory of P(δ) with the same objects but morphism spaces spanned by
Brauer diagrams, that is

HomB(δ)([r], [s]) = SpanC{d ∈ As,r | |B| = 2 for each block B of d}.

Note that HomB(δ)([r], [s]) = 0 unless r + s is even. It is straightforward to check
that B(δ) inherits the structure of a monoidal category from P(δ).

5.2 The balanced partition category

We now apply the techniques from the previous section to the balanced partition
algebra.

Definition 5.8. The balanced partition category Pbal is the strict monoidal category
with objects [r] for r ≥ 0 and morphism spaces

Hom([r], [s]) = SpanCA
bal
s,r

where Abal
s,r is the set of all d ∈ As,r such that

|{B ∩ {1, ..., s}| = |B ∩ {1′, ..., r′}|

for each block B of d. Composition is again defined by stacking diagrams on top of
each other and the the tensor bifunctor ⊗ puts diagrams next to each other.

Note that As,r = ∅ for r 6= s and hence the underlying category of Pbal decom-
poses as

Pbal =
⊔
r≥0

([r], P bal
r ) (71)

where ([r], P bal
r ) is the category with one object [r] and End([r]) = P bal

r . However,
this is not a decomposition of Pbal as a monoidal category since ([r], P bal

r ) is not
closed under the tensor bifunctor.

We can also write down diagram categories by generators and relations which is
more efficient than for the underlying algebras. In fact, it allows us to state relations
locally without repeating generators and relations over again. Let us explain this for
Pbal. Recall from Theorem 3.54 that the endomorphism algebra EndPbal([r]) = P bal

r

has generators s
(r)
1 , ..., s

(r)
r−1 and p

(r)
3
2

, p
(r)
5
2

, ..., p
(r)

r− 1
2

. Using our monoidal structure, we

can rewrite these as

s
(r)
i = id⊗i−1

1 ⊗s(2)
1 ⊗ id⊗r−i−1

1 and p
(r)

i+ 1
2

= id⊗i−1
1 ⊗p(2)

3
2

⊗ id⊗r−i−1
1 . (72)

We can also express the relations of P bal
r more efficiently using the monoidal struc-

ture. For example, it suffices to know the relation s
(r)
i p

(r)

i+ 1
2

= p
(r)

i+ 1
2

in the r = 2 case

103



since then

s
(r)
i p

(r)

i+ 1
2

= (id⊗i−1
1 ⊗s(2)

1 ⊗ id⊗r−i−1
1 ) ◦ (id⊗i−1

1 ⊗p(2)
3
2

⊗ id⊗r−i−1
1 )

= id⊗i−1
1 ⊗s(2)

1 ◦ p
(2)
3
2

⊗ id⊗r−i−1
1

= id⊗i−1
1 ⊗p(2)

3
2

⊗ id⊗r−i−1
1

= p
(r)

i+ 1
2

.

(73)

Let us now explain how to define a strict monoidal category by generators and
relations. First, we briefly outline the construction of a free strict monoidal category
F (for a rigorous construction we refer to [Kas12, Section XII.1]):

(i) Given a collection of generating objects ai for i ∈ I the objects of F are
formal tensor products ai1 ⊗ ...⊗ air (including the empty tensor product 1).
We define the tensor product of two such objects in the obvious way, i.e. by
juxtaposition of the two formal tensor products.

(ii) Given a collection of generating morphisms S(X,Y ) for all objects X,Y ∈
F , we construct from this a collection S(X,Y ) for all X,Y ∈ F . This is
obtained by closing up the S(X,Y ) under formal compositions and formal
tensor products (also including the empty composition idX). To be more
precise, we recursively introduce formal elements f ◦ g (when f and g are
composable) and f ⊗ g subject to the formal condition

(f ◦ f ′)⊗ (g ◦ g′) = (f ⊗ g) ◦ (f ′ ⊗ g′).

We define HomF (X,Y ) := SpanC S(X,Y ).

F is a strict monoidal category with the obvious composition and tensor bifunctor.
By construction the category F has the following universal property:

Let T be a strict monoidal category with a collection of objects F (ai) ∈ T for all
i ∈ I. Then there is a unique assignment on the level of objects F : F −→ T
with ai

F7→ F (ai) and F (X ⊗ Y ) = F (X)⊗ F (Y ) for all X,Y ∈ F . Assume further
that we are given a morphism F (f) ∈ HomT (F (X), F (Y )) for any X,Y ∈ F and
f ∈ S(X,Y ). Then F : F → T extends in a unique way to a monoidal functor with

f
F7→ F (f).

To introduce relations on the free category F , we explain what the analogue of an
ideal in our categorical setting is.

Definition 5.9. Let T be a monoidal category. A tensor ideal N of T is a collection
of subspaces N (X,Y ) ⊂ HomT (X,Y ) for all X,Y ∈ T with the property that N
is closed under left and right composition as well as left and right tensoring. More
precisely, we require for any W,X, Y, Z ∈ T and g ∈ N (X,Y ) that

f ◦ g ∈ N (X,Z) ∀f ∈ HomT (Y,Z)

g ◦ f ∈ N (W,Y ) ∀f ∈ HomT (W,X)

f ⊗ g ∈ N (W ⊗X,Z ⊗ Y ) ∀f ∈ HomT (W,Z)

g ⊗ f ∈ N (X ⊗W,Y ⊗ Z) ∀f ∈ HomT (W,Z).

Example 5.10. Let F : T → T ′ be a functor of monoidal categories and let
ker(F )(X,Y ) := {f ∈ HomT (X,Y ) | F (f) = 0}. Then ker(F ) is a tensor ideal in T .
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Given a tensor ideal N in a monoidal category T we can define the quotient
category T /N which is the category with the same objects as T but

HomT /N (X,Y ) := HomT (X,Y )/N (X,Y ).

It follows from the definition of tensor ideals that this inherits the structure of a
monoidal category from T . Furthermore, given tensor ideals N and N ′ of T we can
define their intersection N ∩N ′ by

(N ∩N ′)(X,Y ) := N (X,Y ) ∩N ′(X,Y ).

It is clear that this is again a tensor ideal. Hence it makes sense to talk about the
tensor ideal generated by a collection of morphisms by intersecting all tensor ideals
containing these morphisms. We now know how to make sense of a strict monoidal
category with generators and relations by constructing a free strict monoidal cat-
egory generated by a collection of objects and morphisms and then modding out
a tensor ideal generated by some relations. Let us explain this for the balanced
partition category

Definition 5.11. We define Fbal to be the free strict monoidal category generated
by a single object ∗ and two morphisms

s = ∈ HomF (∗ ⊗ ∗, ∗ ⊗ ∗),

p = ∈ HomF (∗ ⊗ ∗, ∗ ⊗ ∗).

Moreover, we define N bal to be the tensor ideal in Fbal generated by the relations

(CBAL1) (i) s ◦ s = id∗⊗∗

(ii) (s⊗ id1) ◦ (id1⊗s) ◦ (s⊗ id1) = (id1⊗s) ◦ (s⊗ id1) ◦ (id1⊗s)

(CBAL2) (i) p ◦ p = p

(ii) (p⊗ id1) ◦ (id1⊗p) = (id1⊗p) ◦ (p⊗ id1)

(CBAL3) (i) s ◦ p = p = p ◦ s
(ii) (id1⊗s) ◦ (p⊗ id1) ◦ (id1⊗s) = (s⊗ id1) ◦ (id1⊗p) ◦ (s⊗ id1)

Remark 5.12. The relations (CBAL1)-(CBAL3) have the following diagrammatic
interpretation:

(CBAL1) : = =

(CBAL2) : = =
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(CBAL3) : = = = .

The categorical analogue of the presentation Theorem 3.54 is then the following.

Theorem 5.13. There is an equivalence of monoidal categories

Fbal/N bal ∼−→ Pbal

∗ 7−→ [1]

s 7−→ s
(2)
1 = ∈ HomPbal([2], [2])

p 7−→ p
(2)
3
2

= ∈ HomPbal([2], [2]).

Proof. By the universal property of the free strict monoidal category Fbal there is

a monoidal functor G : Fbal → Pbal with G(∗) = [1], G(s) = s
(2)
1 and G(p) = p

(2)
3
2

.

Clearly, G is bijective on objects. G is also full since the standard generators of
EndPbal([r]) = P bal

r lie in the image of G by (72) and HomPbal([r], [s]) = 0 for
r 6= s. Hence, the induced functor Fbal/ ker(G) ∼= Pbal is an equivalence of monoidal
categories. The theorem follows if we can show that N bal = ker(G). Note that
N bal(X,Y ) = 0 = ker(G)(X,Y ) whenever X 6= Y since HomFbal(X,Y ) = 0 in this
case. The relations (CBAL1)-(CBAL3) clearly hold for G(s) and G(p) and hence
N bal(X,X) ⊂ ker(G)(X,X) for all X ∈ Fbal. By Theorem 3.54 we have that
ker(G)(X,X) is generated by the relations (BAL1)-(BAL3). Since these relations
can be built from (CBAL1)-(CBAL3) using the monoidal structure (as in (73)), we
get that ker(G)(X,X) ⊂ N bal(X,X) for all X ∈ Fbal. This proves the claim.

Remark 5.14. One can give similar persentations of other diagram categories like
the Brauer category B(δ) or the partition category P(δ). Defining a strict monoidal
category by generators and relations can also be very useful when it is not obvious
how to write down a diagrammatic basis with a multiplication table. For exam-
ple, this can be used to define a diagrammatic version of the affine VW-algebras∨∨

r(Ξ) (see [RS19]) which also gives a more natural framework for the admissibility
conditions from Remark 4.28 (see [RS19, Lemma 3.4]).

Remark 5.15. We can also apply the formalism of additive closures and Karoubian
envelopes from Remark 5.7 to Pbal. However, Kar(Add(Pbal)) should not be thought
of as the category that interpolates Rep(Saff

t ) (or Rep(Mt)) for t ∈ C since not all
irreducible representations of Saff

n (resp. Mn) appear as a direct summand of a
direct sum of some V ⊗r. Let us still say a few more words about the category
Kar(Add(Pbal)). Forgetting about the monoidal structure of Pbal, we have

Kar(Add(Pbal))
(71)
= Kar

Add

⊔
r≥0

(?, P bal
r )

 ∼= ⊕
r≥0

Kar
(

Add
(

(?, P bal
r )

))
where (?, P bal

r ) is the category with a single object ? and End(?) = P bal
r . One can

check that for an algebra A, the category Add((?,A)) is equivalent to the category of
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free right A-modules of finite rank and Kar(Add((?,A))) is equivalent to the category
of finitely-generated projective right A-modules (the latter follows for example from
[Kar08, Thm. I-6.12]). In particular, we have that

Kar(Add(Pbal)) ∼=
⊕
r≥0

mod-P bal
r

using that the balanced partition algebra is semisimple by Proposition 3.55. Note,
however, that this is not a decomposition of Kar(Add(Pbal)) as a monoidal category.
Nonetheless, this shows that the category Kar(Add(Pbal)) is abelian and semisimple.
Moreover, Corollary 3.60 implies that the simple objects of Kar(Add(Pbal)) are
indexed by the set of all multipartitions (of arbitrary size).
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[Del07] Pierre Deligne. La catégorie des représentations du groupe symétrique St,
lorsque t n’est pas un entier naturel. Algebraic groups and homogeneous
spaces, 19:209–273, 2007.

[Don86] Stephen Donkin. On Schur algebras and related algebras, I. Journal of
Algebra, 104(2):310–328, 1986.

[Dri86] Vladimir Drinfeld. Degenerate affine Hecke algebras and Yangians. Func-
tional Analysis and Its Applications, 20(1):58–60, 1986.

[DRV13] Zajj Daugherty, Arun Ram, and Rahbar Virk. Affine and degenerate
affine BMW algebras: Actions on tensor space. Selecta Mathematica,
19(2):611–653, 2013.

108



[EGH+11] Pavel Etingof, Oleg Golberg, Sebastian Hensel, Tiankai Liu, Alex
Schwendner, Dmitry Vaintrob, and Elena Yudovina. Introduction to rep-
resentation theory, volume 59 of Student Mathematical Library. Ameri-
can Mathematical Soc., 2011.

[EGNO16] Pavel Etingof, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik. Ten-
sor categories, volume 205 of Mathematical Surveys and Monographs.
American Mathematical Soc., 2016.

[Eny13] John Enyang. Jucys-Murphy elements and a presentation for partition
algebras. Journal of Algebraic Combinatorics, 37(3):401–454, 2013.

[ES16] Michael Ehrig and Catharina Stroppel. Schur-Weyl duality for the
Brauer algebra and the ortho-symplectic Lie superalgebra. Mathema-
tische Zeitschrift, 284(1-2):595–613, 2016.

[ES18] Michael Ehrig and Catharina Stroppel. Nazarov-Wenzl algebras, coideal
subalgebras and categorified skew Howe duality. Advances in Mathemat-
ics, 331:58–142, 2018.

[FK97] Igor Frenkel and Mikhail Khovanov. Canonical bases in tensor prod-
ucts and graphical calculus for Uq(sl2). Duke Mathematical Journal,
87(3):409–480, 1997.

[FKK98] Igor Frenkel, Mikhail Khovanov, and Alexander Kirillov. Kazhdan-
Lusztig polynomials and canonical basis. Transformation groups,
3(4):321–336, 1998.
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