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Introduction

In the late 19th century and throughout the 20th century, the theory of finite dimensional
semisimple Lie algebras and their representations has been extensively studied, and is by
now well-established, see e.g. [6] or [7] for an introduction. If g is a finite dimensional
semisimple Lie algebra over C, some of the classical results in this theory are:

FD1 Schur’s Lemma, which says that dimhomg(M,M) = C for any simple finite dimensional
g−module M ;

FD2 Weyl’s complete reducibility theorem, which says that any finite dimensional g−module
decomposes into a direct sum of simple submodules;

FD3 there exists a full classification of the finite dimensional simple g−modules as highest
weight modules;

FD4 if M is a finite dimensional simple g−module, then so is its algebraic dual M∗.

In the ’90s, an extension of this theory to certain limit Lie algebras, not necessarily only
over C found its origins, see e.g. [1], [2], [3], [4], [5]. The most prominent examples of
this theory are the infinite dimensional Lie algebras sl(∞), o(∞), and sp(∞), which can be
constructed as limits of the classical Lie algebras sl(n), o(n), and sp(n) respectively, and
can thus be rightly regarded as their infinite dimensional versions. For instance, given a
vector space of countable dimension V over a field k, then sl(∞, k) can be realized as the
Lie subalgebra of End(V ) consisting of matrices with trace 0, and which have only finitely
many non- zero entries. One can also establish similar realizations of o(∞) and sp(∞).
More precisely, there exist natural inclusions of Lie algebras sl(n, k)Ð→ sl(∞, k) such that
the diagram

sl(n, k) sl(∞, k)

sl(n + 1, k)

commutes, where the morphisms sl(n, k) Ð→ sl(n + 1, k) are the canonical ones. In this
scenario, we have that sl(∞, k) is the direct limit of the sl(n, k), thus we have

sl(∞, k) = limÐ→ sl(n, k) = ⋃
n∈N

sl(n, k)

and sl(∞) will in fact be the union of all these Lie subalgebras sl(n, k) with n ∈ N. This
already indicates that the well-known existing theory of finite dimensional semisimple Lie
algebras and their representations should generalize to some extent to this infinite dimen-
sional setting. This thesis describes several such instances, but also indicates phenomena
which do not transfer nicely to our setting.
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A study of representations of certain limit Lie algebras over C, called locally semisim-
ple Lie algebras, and in particular of the three infinite dimensional classical Lie algberas
sl(∞), o(∞), and sp(∞) is carried out in the paper [10] by Penkov and Serganova. As
the category of all representations of these Lie algebras is vast, one is inclined to restrict
it to something more accessible with the tools at hand. The standard approach towards
doing this is by imposing certain finiteness conditions on representations, and sometimes
considering weight modules. This approach is analogous to the one for finite dimensional
semisimple Lie algebras, the general simple representations of which have not been fully
classified, as opposed to the finite dimensional ones as FD3 listed above indicates.. The
main category introduced in [10] is Intg, namely the category of integrable g−modules. This
category is defined with the theme of imposing finiteness conditions in mind, more pre-
cisely by considering those representations M of g such that for any g ∈ g, and m ∈M , the
subspace span{m,g.m, g2.m, g3.m,⋯} of M is finite dimensional. This can be seen as the
natural generalization of the finite dimensional representation theory in the semisimple case.

The aim of this thesis is to present an extensive account of the representations of what
are called locally semisimple Lie algebras (denote g), with special focus on the classical
examples mentioned above. The framework for this is laid out in [10]. The two standard
approaches used here towards accomplishing this are:

i) define and study categories of representations of g whose objects satisfy some finiteness
condition;

ii) investigate whether there exist analogues for the classical results for finite dimensional
semisimple Lie algebra representations in these categories, in particular FD1-FD4 listed
above.

Following i) we define explicitly a category Locg consisting of very naturally arising repre-
sentations of g, called local modules. This category makes precise a class of modules which
goes back to [10]. We will prove the following result which gives a nice characterization of
the simple objects of Intg:

Theorem 2.8. All simple objects of Intg are local modules.

We also give a description of Locg in terms of Intg, namely:

Theorem 2.9. The countable integrable g−modules are precisely the local g−modules.

In Subsection 1.2.3 we show that there exists a Schur’s Lemma for a class of simple objects
of Locg. In Subsection 2.1.3 we generalize this statement to all of the simple objects of Intg.
This way we establish that FD1 listed above generalizes nicely to our infinite dimensional
setting.

In Subsection 1.2.4 we show that already Locg contains objects that are not semisimple,
so we see that in particular FD2 fails to generalize to our new setting even in a category
as reasonable as Locg. In Example 2.5 we provide another example of a non-splitting short
exact sequence in Intg, and actually show that the example there is of an integrable g−module
that is of uncountable dimension. This indicates that even though Intg has been defined to
resemble the finite dimensional representations of semisimple Lie algebras, there still exist
very large objects in this category.

In [10], via tools of homological algebra, it is shown that Intg contains enough injectives.
In particular it is shown there that given a module M ∈ Intg, then there exists an integrable
submodule of M∗, denoted by Γg(M∗) which is an injective object of Intg. In Subsection
2.2.1 we show that for M ≠ 0, the injective object Γg(M∗) of Intg will also be non-zero.
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Note however that as will be indicated in the following paragraph, Intg is not closed under
algebraic dualization.

In Section 2.3 we give an account of weight g−modules with respect to a splitting Cartan
subalgebra h, denoted by gwt

h . Particular emphasis will be put on the integrable weight
g−modules, the category consisting of which we denote by Intwt

g,h. For objects M of gwt
h one

can define a restricted dual M∨ ∶= ⊕λ∈h(Mλ)∗. In Subsection 2.3.3 we show that if M is
an integrable weight module, whose weight spaces are all of finite dimension, then M∨ will
also be integrable. We also show that if this M is simple, M∨ is simple as well. Following
[10], we then define the category Intfin

g which consists of those integrable weight g−modules
whose weight spaces are finite dimensional. In particular we prove the following remarkable
result.

Theorem 2.32. The category Intfin
g is semisimple.

In this way we establish a category of g−modules where FD2 listed above holds.
To see whether the other two classical results listed above, namely FD3 and FD4 general-

ize to our infinite dimensional setting, turns out to be a rather challenging task. In Example
2.2 we construct a local module whose dual is not integrable. This shows that FD4 does
not translate well even to Locg, while FD3 is in general a difficult question even for infinite
dimensional simple representations of finite dimensional semisimple Lie algebras.

Chapter 3 is dedicated towards seeing how FD4 can be generalized in our infinite dimen-
sional setting, namely we study the integrability of duals of integrable modules. In Section
3.1 we state and prove a theorem from [10] which gives a necessary and sufficient condition
for M∗ to be integrable when M ∈ Intg. This condition is quite tedious to check in practice,
but it is useful in showing that the property of having an integrable algebraic dual is closed
under tensor products, and algebraic dualization. The approach we take in studying the
integrability of the dual is the one laid out in i) above, namely we impose some finiteness
condition on the g−modules M . More precisely, in Section 3.2 we introduce and study the
socle functors, and the socle filtration of a g−module. Using the tools developed there, in
Subsection 3.2.3 we show that for a certain class of simple integrable modules Q, their dual
Q∗ will contain a unique simple submodule.

In Section 3.3 we further investigate properties of the socle functors, and we show in
particular that the property of having finite socle length is preserved under many algebraic
operations, e.g. arbitrary direct sums, quotients, and extensions. In particular, in Corol-
lary 3.25 we give a computational result on quotients of objects in the socle filtration of
a g−module. The work done in Section 3.3 lays out the groundwork which will be used
in Section 3.4 in studying the final category to be mentioned in this thesis, namely Tensg,
where g = sl(∞), o(∞), sp(∞). In particular we prove the following result.

Theorem 3.30. Tensg is the largest full subcategory of Intg closed under algebraic dualiza-
tion, and such that every object in it has finite socle length.

In particular we show that this category Tensg contains the natural and conatural repre-
sentations of g. Thus, we exhibit a very reasonable category where the classical result listed
as FD4 above translates very nicely.

We also prove the following result, which shows that in Tensg, FD3 obtains a nice
generalization:

Corollary 3.46. Every simple object of Tensg is a b−highest weight module.

In Subsection 3.4.4 we give a partial account of the injective objects of Tensg. In partic-
ular we show that if M ∈ Tensg, and IM is an injective hull of M in Intg, then IM ∈ Tensg
as well.

4



One should observe that thus far we have not mentioned the category of finite dimensional
representations of g. This is no accident, as using the theory developed throughout the thesis,
and especially the content of Section 3.4, we prove the following result.

Theorem 3.54. Let g = sl(∞), o(∞), sp(∞). Let M ∈ g−mod be finite dimensional. Then
M is a trivial g−module.

One can interpret this as that for the classical locally semisimple Lie algebras, their
non-trivial representation theory is infinite dimensional.

This thesis was based mostly on the paper [10] by Penkov and Serganova, and Section
3.4 uses developments in [11] as well. The goal has been to study the material in [10] and
to present a detailed account of it which should make the material more accessible to the
reader. Most of the main results stated and proved here, all come from [10]. Some novelties
which appear here, if one can call them such, are the more concise treatment of the countable
integrable modules, for which we define their own category Locg; the treatment of certain
functors g−modÐ→ g−mod in Section 1.3 which creates a template for studying many such
functors to appear throughout the thesis; and the treatment in Section 3.3 where we study
the socle filtration of g−modules. In particular, via examples, we have also tried to put an
emphasis in comparing the different categories of g−modules that appear here.

While the structuring and proofs in some parts of the thesis are original, they mainly
came to fruition by trying to understand the proofs in [10].
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Notation and conventions

In this thesis, by N we will denote the set of natural numbers i.e. N = {0,1,2, . . .}, and
by N0 = {0} ∪ N. All the vector spaces appearing in this thesis, i.e. also Lie algebras, and
representations of Lie algebras, are over the base field C. As a convention, by countable set
we will mean a set S which injects into N.

In some occasions, we will use results from well-known theories. As indicated in the
Introduction, in a few instances we will make comparisons of the results appearing in this
thesis with results of the already known theory of finite dimensional Lie algebras. We will
adopt the following notation for these two types of notes appearing here:

ref. result X. = results from well-known theories
Comparison remark X. = notes comparing the finite and infinite dimensional theories

For results denoted by ’ref. result’ we will cite a source where one can find proofs of them,
but we will not present those proofs here. For notes denoted by ’Comparison remark’ we
will not provide proofs, but they will rather be presented as logical conclusions/summaries
of the discussions preceding them. These results will be numbered independently from the
rest of the results in this thesis, so as to not interfere with the continuation of the exposition
of the main contents.
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Chapter 1

Locally semisimple Lie algebras,
and local modules

In this chapter, we will introduce a particular class of infinite Lie algebras, namely locally
semisimple Lie algebras, the representations of which are the main object of study in this the-
sis. We then introduce a category of naturally arising representations of these Lie algebras,
namely Locg, and we will see in Chapter 2 that this category can be nicely characterized
in terms of a larger category of g-modules Intg. Furthermore, we give an account of a class
of simple objects of Locg, and we also compare how some classical results on the finite di-
mensional representations of finite dimensional Lie algebras translate to our situation. In
particular, in Subsection 1.2.3 we see that an analogue of Schur’s Lemma holds for class of
simple objects in Locg. In the next chapter, more precisely in Subsection 2.1.3, we will see
that Schur’s Lemma actually holds for all simple objects of Locg. We also see that not all
the short exact exact sequences in this category split in Subsection 1.2.4, meaning that Locg
is not semisimple.

In Section 1.3 we prove result which will be useful throughout the thesis in order to show
that certain subcategories of g−mod have enough injectives.

We conclude this chapter with an overview of the universal enveloping algebra in Section
1.4.

The exposition here is based on the early part of [10].

1.1 Locally semisimple Lie algebras
We start off with the most fundamental definition of this thesis, the notion of local Lie
algebras. Let (gi, ai)i∈N be a direct system in the category Lie of Lie algebras over C, with
gi finite dimensional Lie algebras, and ai ∶ gi Ð→ gi+1 injective Lie algebra homomorphisms.
One can think of this direct system as a sequence of inclusions

g1 ⊂ g2 ⊂ ⋯ ⊂ gn ⊂ ⋯. (1.1)

The limit of such a direct system g in LieC is called a local Lie algebra, and a sequence like
(1.1) is called an exhaustion of g. As g = limÐ→gi and the maps ai are inclusions, we have
g = ∪igi. The general class of local Lie algebras is too broad for the purposes of this thesis,
so our focus here will be on the following type of local Lie algebras:

Definition 1.1. A local Lie algebra which admits an exhaustion as in (1.1), with all gi
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being semisimple, is called a locally semisimple Lie algebra. If all the gi are simple, we call
g a locally simple Lie algebra.

Whenever we work with a locally semisimple Lie algebra, we will always assume that it
comes with an exhaustion as in (1.1), without necessarily mentioning it.

A standard example for a local Lie algebra is gl(∞) = limÐ→gl(i), where the injections
gl(i)Ð→ gl(i + 1) are the canonical ones.

Remark 1.1. Note that by taking a finite dimensional semisimple Lie algebra g, and setting
gi = g for all i, we see that all finite dimensional semisimple Lie algebras are also locally
semisimple. This means that whatever theory will be developed here, one can apply it to
finite dimensional semi-simple Lie algebras as well.

We will not be too concerned with the locally semisimple Lie algebras themselves, but
rather we will study their representations. However, we do give a couple of results which
show that, to an extent, these locally semisimple Lie algebras do behave in a similar fashion
to their finite dimensional counterparts.

Proposition 1.1. Let g = limÐ→gi be a local Lie algebra, and a ⊂ g. Then a is an ideal of g if
and only if there exist ideals ai ⊂ gi such that ai ⊂ ai+1 and a = limÐ→ai.

Proof. If a = limÐ→ai, then given any a ∈ a and g ∈ g, one can find some i, j ∈ N such that a ∈ ai
and g ∈ gj . If k > i, j, we will have a ∈ ak and g ∈ gk, and as ak is an ideal in gk, we have
[a, g] ∈ ak ⊂ a. So a ⊂ g will be an ideal.

Conversely, let a ⊂ g be an ideal. Set ai = a∩gi. Then ai ⊂ gi will be ideals, and ai ⊂ ai+1,
so limÐ→ai will be an ideal of g by the previous part of the proof. But for any a ∈ a, we have
some k such that a ∈ gk ⇒ a ∈ a ∩ gk = ak, hence a = limÐ→ak.

Let g be a local algebra, and let rad(g) = r ⊂ g be the largest solvable ideal of g. In the
spirit of [6], call g semisimple if r = 0, and call g simple if its only ideals are 0 and g itself.
Then from Proposition 1.1 we have the immediate

Corollary 1.2. A locally semisimple (simple) Lie algebra is semisimple (simple).

Remark 1.2. While from Corollary 1.2 we see that a locally simple Lie algebra is a simple
local Lie algebra, the converse does not hold. In [1] one can find constructions of local Lie
algebras that are simple, but do not admit an exhaustion as in (1.1) with all gi simple.

We now define three certain locally simple Lie algebras, which are extensions of the
classical finite dimensional Lie algebras.

Definition 1.2. The three classical locally simple Lie algebras are sl(∞) ∶= ∪sl(i), o(∞) ∶=
∪o(i), and sp(∞) ∶= ∪sp(2i), and are respectively called the infinite special linear, orthogo-
nal, and symplectic Lie algebra.

The theory presented in this thesis will apply to general locally semisimple Lie algebras.
In the later parts of Chapter 3, the exposition will be unique to the three classical locally
simple Lie algebras. We shall be careful to always distinguish the type of locally semisimple
Lie algebras the discussion is about.

Call a locally semisimple Lie algebra diagonal if it admits an exhaustion (1.1) with all gi
being classical Lie algebras, and for any i ∈ N there exist non-negative integers ki, li, si such
that Vi+1∣gi

= kiVi ⊕ l1V
∗
i ⊕Csi , where Vi is the natural representation of gi.

If Vi is the natural representation of sl(i), then one has Vi+1∣sl(i) = Vi⊕C so one can see that
sl(∞) is diagonal. Similarly one sees that o(∞) and sp(∞) are also diagonal. There exists
a full classification of diagonal locally simple Lie algebras, see [5], and while the classical
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examples in Definition 1.2 fit this description, they are not the only ones. For instance
sl (2∞) = ∪i∈Nsl (2i) with the inclusion maps given by

sl (2i)Ð→ sl (2i+1) ; Az→ (A 0
0 A,

)

is a locally simple diagonal Lie algebra non-isomorphic to sl(∞), o(∞) or sp(∞).
Call a locally semisimple Lie algebra g finitary if it admits a faithful representation M

of countable dimension, and a map π ∶ g Ð→ ∪m,nMatm×n(C) such that there exists a basis
{m1,m2, . . .} of M , for which g.mi = π(g)mi, for all g ∈ g and i ∈ N, i.e. g acts on a
basis of M via finite matrices. It is clear that g = sl(∞), o(∞), sp(∞) act on their natural
representations V (to be introduced in Example 1.2 below) via finite matrices, so they are
finitary. It actually turns out that these are the only finitary locally simple Lie algebras, [4],
[3].

1.2 Local modules
The focus in this thesis will not be on studying the structure theory of locally semisimple
Lie algebras, but rather the study of their representation theory. We will be particularly
interested in the three classical locally semisimple Lie algebras sl(∞), sp(∞), o(∞). We
start by defining a naturally arising class of g-modules.

1.2.1 Definition and examples
Definition 1.3. Call a g-module M a locally finite module (or just a local module for
convenience) if there exists an exhaustion (1.1) of g and finite dimensional gi-modules Mi

such that Mi ⊂ Mi+1∣gi as gi-modules and M = limÐ→Mi. We call {Mi}i∈N an exhaustion for
M . If all Mi can be chosen to be simple gi-modules, we call M locally simple.

Given a local g-module M with exhaustion {Mi}i∈N, one can write the inclusions Mi ⊂
Mi+1∣gi simultaneously, and just think of it as a sequence of inclusions

M1 ⊂M2 ⊂ ⋯ ⊂Mn ⊂ ⋯,

with Mi finite dimensional gi-submodules of M , and then clearly M = ⋃i∈NMi.
Remark 1.3. It is clear that as Mi are finite dimensional, and M is a union of countably
many finite dimensional g−modules, then M will be of countable dimension. In Theorem
2.9 we will see that countable dimension is the characterizing property of local modules in
the context of what are called integrable modules, defined in Chapter 2.

Denote now by Locg the largest full subcategory of g-mod consisting of local modules.
Remark 1.3 shows all objects of this category are of countable dimension.

Example 1.1.

a) Let g = sl(∞). We have seen earlier that if Vi is the natural representation of sl(i),
then Vi+1∣gi

= Vi ⊕ C, thus we have natural inclusions Vi Ð→ Vi+1. Then the local
module defined by V ∶= limÐ→Vi is called the natural representation of sl(∞). As all
these Vi’s are simple, it is clear that this natural module is a locally simple g-module.

b) Again if g = sl(∞), we have Vi+1∣gi
= Vi ⊕C. If we dualize this, as everything is finite

dimensional, we get V ∗i+1∣gi
= V ∗i ⊕C, hence we also have natural injections V ∗i Ð→ V ∗i+1.

Then the local module defined by V∗ ∶= limÐ→V ∗i is called the conatural representation
of sl(∞). As Vi’s are simple, so are V ∗i , hence V∗ will be a locally simple module as
well.
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c) Given any locally semisimple Lie algebra with exhaustion as in (1.1), one can consider
the adjoint representation adg given by the same exhaustion as g.

We note that one can similarly define the natural and conatural representations for o(∞)
and sp(∞) as well. These representations will play a very important part in Chapter 3 in
the study of a particular class of simple g-modules.

1.2.2 Simple objects in Locg
Now we proceed to investigate the nature of local modules, and the category Locg. In
particular, we will give an account of a certain type of simple objects in Locg. Let us begin
with the following result, similar in nature to Proposition 1.1.

Proposition 1.3. Let L be a locally simple g−module, with exhaustion {Li}i∈N. Then L is
a simple g−module.

Proof. Let N ⊂ L be a non-zero g−submodule, say with exhaustion {Ni}i∈N. As L = ∪i∈NLi

and N1 ∩L = N1 ≠ 0, we have that there exists some natural number i such that N1 ∩Li ≠ 0.
Note now that for any k > i, since N1 ⊂ Nk, we get 0 ≠ (N1 ∩ Li) ⊂ (Nk ∩ Lk). As Lk is a
simple gk−module, we get that Lk ⊂ Nk for all k > i. So in particular we get

N = ⋃
i∈N

Ni = ⋃
k>i

Nk = ⋃
k>i

Lk ⊃ ⋃
i∈N

Li = L,

hence we have L = N . Thus the only g−submodules of L are L itself, and the zero module,
hence L is a simple g−module.

Remark 1.4. Similar to 1.3, the converse of Proposition 1.3 does not hold in general, i.e.
there exist simple objects of Locg which are not locally simple. See [2],[1].
Remark 1.5. In the category of Z−modules, the Z−module Z contains no simple submodule.
Indeed, the Z−submodules of Z are all of the form kZ for k ∈ N0. Given any submodule
kZ one sees that, for instance, (2k)Z is a proper non-zero submodule. In other words, the
category Z−mod contains objects which have no simple submodules. The same is true for
Locg, and for g = sl(∞), one can construct such examples via the branching rules for sl(n).

As per the previous two remarks, in this Chapter we will be focusing on the locally simple
objects of Locg. We now give a result which describes what kind of category Locg is.

Proposition 1.4. Locg is closed under taking submodules, quotients, finite direct sums,
tensor products, and extensions. In particular, Locg is an abelian subcategory of g−mod.

Instead of giving a direct argument we will however deduce these properties from a similar
statement for larger category of g-modules to be introduced in Chapter 2 (Proposition 2.3).

Given a local g-module M , define a relation in the class of its exhaustions by saying
{Mi} ∼ {M ′

i} if there exists some natural n such that Mi =M ′
i for all i > n. One can easily

see that this ∼ is an equivalence relation. If M admits only one exhaustion up to ’∼’, we will
say that M admits an essentially unique exhaustion. The following result gives shows that
all locally simple objects of Locg have this property.

Proposition 1.5. Every locally simple object L of Locg admits an essentailly unique ex-
haustion {Li}i∈N with Li simple gi−modules.

Proof. Let L ∈ Locg be locally simple, with an exhaustion {Li}i∈N of simple gi−modules.
Let now {L′i}i∈N be a different exhaustion of L, with L′i simple gi−modules. We have

L = ⋃
i∈N

Li = ⋃
i∈N

L′i. (1.2)

11



Set Ni ∶= Li ∩L′i. We clearly have Ni ⊂ Ni+1, so by setting N = limÐ→Ni, we get that N ⊂ L is
a submodule. From (1.2) we see that for some i we have Li ∩ L′i ≠ 0, hence we get N ≠ 0.
From the proof of Proposition 1.3 we see that N = L, and there exists some i ∈ N such that
Nk ⊃ Lk for all k > i. Since both Lk and L′k are simple, we get that Lk = L′k for all k > i, i.e.
get {Li}i∈N ∼ {L′i}i∈N, which proves the claim of the proposition.

From this result, given a locally simple module L, we can always assume that it comes
along with its unique exhaustion {Li}i∈N consisting of simple gi−modules. For convenience,
we will call such an exhaustion the simple exhaustion of L.

1.2.3 Schur’s Lemma for locally simple modules
The following result shows that morphisms from a locally simple module to a local modules
behave locally in a nice way.

Proposition 1.6. Let L,M ∈ Locg, with L locally simple. Let {Li} be the simple exhaustion
of L, and {Mi} an exhaustion for M . Then for any non-zero morphism f ∶ L → M there
exists some n ∈ N such that f(Li) ⊂Mi for all i > n, and f = limÐ→ fi, where fi ∶= f ∣Li .

Proof. As L is simple from Proposition 1.3, f is injective. Looking at f as a morphism of
gi−modules, we see that f ∣Li ∶ Li Ð→ f(Li) will still be injective. This clearly means that
f(Li) ≅ Li as gi−modules. Now for each i ∈ N set

s(i) ∶=min{j ∈ N ∣ i ≤ j and f(Li) ⊂Mj}

Note that i ≤ s(i) ≤ s(i + 1). Assume that for all i we have i < s(i). In particular we
have 1 < s(1), and there exists i(= s(1)) for which s(1) < s(i). Let now 1,2, . . . , k be
such that s(1) = s(k) < s(k + 1). This means that f(Lk) ⊂ Ms(k), f(Lk+1) /⊂ Ms(k), and
f(Lk+1) ⊂ Ms(k+1). Since i < s(i) for all i, we have s(k + 1), s(k) ≥ k + 1 so Ms(k) and
Ms(k+1) are also gk+1-modules. But this would imply that T = (f(Lk+1) ∩Ms(k)) is a
gk+1−submodule of f(Lk+1) that is non-zero, because f(Lk) ⊂ T , and T ≠ f(Lk+1). Since
f(Lk+1) ≅ Lk+1 is simple, this is impossible, thus the assumption that i < s(i) for all i ∈ N is
wrong.

Let now i such that s(i) = i. Now if s(i + 1) > i + 1, we would have f(Li+1) /⊂ Mi+1,
thus we f(Li) ⊂ T = (f(Li+1 ∩Mi+1) ≠ f(Li+1), i.e. T ⊂ f(Li+1) would be a non-trivial
gi+1-submodule of f(Li+1) ≅ Li+1, which is impossible as Li+1 is a simple gi+1−module. So
we must have s(i + 1) = i + 1. The conclusion then follows by induction on i.

We now use Proposition 1.6 to prove that Schur’s Lemma holds for locally simple
g−modules.

Corollary 1.7. (Schur’s Lemma for locally simple g-modules) Let L,N ∈ Locg be simple.
Then

homg(L,N) =
⎧⎪⎪⎨⎪⎪⎩

C if M ≅ N,

0 otherwise.

Proof. Note first that given a map f ∶ L Ð→ N , we have that ker f ⊂ L is a submodule,
hence ker f = 0 or ker f = L. If L and N are not isomorphic, we cannot have ker f = 0, as
then L ≅ f(L) ⊂ N would be a non-trivial submodule of N , which cannot happen due to
the simplicity of N . Hence we have f(L) ≠ 0, which implies f(L) = N , i.e. f = 0. Therefore
homg(L,N) = 0 if L /≅ N .

Assume now that L ≅ N . Here it suffices to check homg(L,L). Let {Li}i∈N be the
exhaustion of L. Let f ∶ L Ð→ L be a non-zero map. As ker f ≠ L, we must have ker f = 0.
From Proposition 1.6, there exists some n ∈ N such that for all i > n− 1 we have f(Li) ⊂ Li,
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and f = limÐ→ fi. Clearly the maps fi ∶= f ∣Li ∶ Li Ð→ Li are such that ker fi ≠ 0, in particular
fi are non-zero maps from Li to itself as a gi-module. From Schur’s Lemma for the finite
dimensional case, we get that there exist some ci ∈ C such that fi(m) = cim for all m ∈ Li.
Let now m ∈ Ln be some non-zero element. We then have cnm = fn(m). Looking at m as an
element in Li for i > n we have fi(m) = cim. As f = limÐ→ fi, we get f(m) = fn(m) = fi(m).
So there exists some c ∈ C such that fi(m) = cm for all i > n, and in particular f(m) = cm =
cIdM . Thus we obtain

homg(L,L) = C,

which is what we wanted to show.

Remark 1.6. Here we have shown that Schur’s Lemma holds for locally simple g−modules.
From Remark 1.2 we know that there exist simple local modules which are not locally simple.
The proof presented above uses Proposition 1.6 which is a statement about locally simple
modules only, thus it does not work for general simple objects of Locg. However, in Chapter
2 we will introduce a category denoted by Intg, and Corollary 2.4 will show that Locg is
a full subcategory of Intg. In Subsection 2.1.3 we will show that Schur’s Lemma holds for
simple modules in Intg, and thus also for all simple objects of Locg.

1.2.4 Splitting of short exact sequences in Locg
We now prove a result which shows a general construction of non-splitting short exact
sequences in Locg.

Proposition 1.8. Let M ∈ Locg with exhaustion {Mi}i∈N, and assume that there exists some
natural number n and simple gi-submodules Li ⊂M with i > n such that dimhomgi

(Li, Li+1) >
2. Then there exists a locally simple module L = limÐ→Li ∈ Locg, and a local module Z ∈ Locg
which fit into a non-splitting short exact sequence

0Ð→M
αÐ→ Z

βÐ→ LÐ→ 0 (1.3)

Proof. Denote by ei ∶ Mi Ð→ Mi+1 the structure maps for M . Fix a sequence of non-zero
gi-module maps fi ∶ Li Ð→ Li+1, which will naturally be injective, and let L = limÐ→Li with
respect to these maps. Let now ti ∶ Li Ð→ Mi+1 be a sequence of injective maps. Set
Zi ∶= Li ⊕Mi as gi-modules, and define ai ∶ Zi Ð→ Zi+1 by

ai((x,m)) ∶= (fi(x), ti(x) + ei(m)) (1.4)

for x ∈ Li and m ∈ Mi, and set Z = limÐ→Zi. As ai((0,m)) = (0, ei(m)), we can see that
M ⊂ Z is a submodule, and the map Z Ð→ L given by z = (x,m) z→ x is well defined, has
kernel M , and is surjective. Thus M,Z and L indeed fit in a short exact sequence as in
(1.3). If this sequence splits, we then have γ ∶ LÐ→ Z such that β ○ γ = idX . For any x ∈X
we have γ(x) ∈ Z, i.e. there exists some x′ ∈ L and m ∈M such that γ(x) = (x′,m). Since
β ○ γ = idL, we must have x = x′. Denote this m corresponding to x by p(x), so we obtain a
map p ∶ LÐ→M . An easy check will show that this p is actually a morphism of g−modules.
From Proposition 1.6 we get that there exist morphisms pi ∶ Li Ð→Mi of gi- modules such
that p = limÐ→pi for large enough i. Then for x ∈ Li we have γ(x) = (x, p(x)) = (x, pi(x)).
Now since x = fi(x) ∈ L, we have γ(x) = γ(fi(x)), i.e.

(x, pi(x)) = (fi(x), pi+1(fi(x))).

As the left hand side of this equality lies in Zi and the right hand side in Zi+1, we obtain

(fi(x), pi+1(fi(x)) = γ(fi(x)) = ai(γ(x)) = ai(x, pi(x)) = (fi(x), ti(x) + ei(pi(x))),
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which in particular from the second coordinate gives us

ti(x) = pi+1(fi(x)) − ei(pi(x)),

i.e.
ti = pi+1 ○ fi − ei ○ pi. (1.5)

Assume now that for any choice of {ti}’s, our sequence (1.3) splits. Set now ni ∶=
= dimhomgi

(Li,Mi). As fi and ei are fixed, (1.5) gives us

dimhomgi
(Li,Mi+1) ≤ ni + ni+1.

But on the other hand, if we set ki ∶= dimhomgi(Li, Li+1) we have dimhomgi(Li,Mi+1) ≥
kini. But then ni + ni+1 ≥ kini+1 which gives us ni ≥ (ki − 1)ni+1 > ni+1, as ki > 2, and since
ni > 0 for all i, this is not possible, hence a contradiction. Thus there exists a choice of
injections {ti} such that (1.3) is non-split. This completes the proof of the proposition.

Remark 1.7. If g = sl(∞) for instance, using the branching rules for sl(n) one can construct
finite dimensional sl(n)−modules (even simple ones) Mn with Mn ⊂ Mn+1∣sl(n), such that
there exist simple sl(n)−submodules Ln ⊂Mn with

dimhomsl(n)(Ln, Ln+1) > 2.

Then by setting M = limÐ→Mn, we obtain an sl(∞)−module which satisfies the conditions of
Proposition 1.8, and thus one can produce non-split short exact sequences in Locsl(∞).

We now provide a simple explicit example of a non-split short exact sequence in Locg.

Example 1.2. Let g = sl(∞), and V,V∗ respectively be the natural and conatural repre-
sentations for sl(∞), and consider the module M = V ⊗ V∗. Let {v1, v2, . . .} be the natural
basis of V . Let now m ∈ V ⊗ V∗ be any non-zero element. As V ⊗ V∗ = limÐ→Vi ⊗ (Vi)∗, let
n ∈ N be such that m ∈ Vn ⊗ (Vn)∗. Then there exist ai ∈ C and fi ∈ V ∗n such that

m =
n

∑
i=1

ai(vi ⊗ fi).

Without loss of generality, assume that an, fn ≠ 0. Set now g = En+1,n ∈ sl(n + 1), i.e. the
matrix with all entries equal to 0, except for the one in the n + 1-th row and n-th column,
which is equal to 1. We have

g.m = g.
n

∑
i=1

ai(vi ⊗ fi) =
n

∑
i=1

aig.(vi ⊗ fi) =
n

∑
i=1

ai(g.vi ⊗ fi) +
n

∑
i=1

ai(vi ⊗ g.fi).

Note that for i < n one has g.vi = 0, and g.vn = vn+1 ∈ Vn+1, so we get

g.m = an(vn+1 ⊗ fn) +
n−1
∑
i=1

ai(vi ⊗ g.fi).

Since an ≠ 0, and vn+1 is linearly independent of {vi ∣ 1 ≤ i ≤ n − 1}, we get that g.m ≠ 0.
This way we have shown that for any element of m ∈ M , there exists g ∈ sl(∞) such that
g.m ≠ 0, i.e. Msl(∞) = {m ∈ M ∣ g.m = 0 for all g ∈ sl(∞)} = 0. In particular, M does not
contain any trivial submodule.

Consider now the natural pairing map α ∶M Ð→ C given by α(v ⊗ f) = f(v), and then
extended linearly to all of M . Note that this definition makes sense, as given any elements
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v ∈ V and f ∈ V∗, one can find a large enough n ∈ N such that v ∈ Vn and f ∈ (Vn)∗. This
map is linear. For g ∈ sl(∞) and m = v ⊗ f one has

α(g.m) = α(g.v ⊗ f) + α(v ⊗ g.f) = f(g.v) + (g.f)(v) = f(g.v) − f(g.v) = 0 = g.α(m),

hence α is a map of sl(∞)-modules. For a given vi ∈ Vn for some i, n ∈ N with i < n, and
f = v∗i the linear functional in V ∗n corresponding to vi, one has v∗i (vi) = 1, hence α is a
surjective map. Thus, if we denote K = kerα, we get a short exact sequence:

0Ð→K Ð→M
αÐ→ CÐ→ 0

which does not split, as we saw that M contains no trivial submodules.

Proposition 1.8 and Example 1.2 show that Locg contains non-split short exact sequences,
i.e. there exist g−modules which are not semisimple, hence Locg is not semisimple. We
emphasise this in the following note.

Comparison remark I. As opposed to the finite dimensional theory of representations of
semisimple Lie algebras, for an infinite dimensional locally semisimple Lie algebra g, not
every g−module will be semisimple. In other words, there does not exist an analogue for
Weyl’s complete reducibility theorem for locally semisimple Lie algebras.

Remark 1.8. In Subsection 3.2.2 we will show, in particular, that if M is a simple local mod-
ule that satisfies the conditions of Proposition 1.8, then any injective integrable object (see
Chapter 2) which contains M as a submodule, is going to be such that for any g−submodule
J ⊂ I, I/J is not semisimple. This points to the fact that semisimplicity is a property that is
lost in even the most natural categories of representations of locally semisimple Lie algebras.

1.3 A categorical observation on a type of functors g-mod
Ð→ g-mod

In this section, we give a result of a categorical nature concerning a type of functors F ∶
g −mod Ð→ g −mod. The conclusions of this section will be useful later on to show that
some subcategories of g−mod have enough injectives.

Proposition 1.9. Let F ∶ g-modÐ→ g-mod be a functor and η ∶ F Ð→ idg−mod a natural
transformation of functors, such that

i) ηA ∶ F (A)Ð→ A is an injection for all A ∈ g−mod,

ii) for any injection i ∶ AÐ→ B in g-mod, we have

(ηB ○ F (i))(F (A)) = i(A) ∩ ηB(F (B)).

Then F is a left exact functor. Moreover, if by F (g-mod) we denote the full subcategory of
g-mod consisting of objects of the form F (A) for A ∈ g−mod, then the functor F ∶ g−modÐ→
F (g-mod) is right adjoint to the inclusion F (g-mod)Ð→ g −mod.

Proof. Note first of all that η being a natural transformation, we get that for any morphism
f ∶ AÐ→ B in g−mod, the diagram

F (A) F (B)

A B

F (f)

ηA ηB

f
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commutes. This gives us

kerF (f) = F (A) ∩ η−1A (ker f) = η−1A (ker f). (1.6)

Given a short exact sequence

0Ð→ A
iÐ→ B

pÐ→ C Ð→ 0,

consider the induced sequence

0Ð→ F (A)
F (i)
Ð→ F (B)

F (p)
Ð→ F (C). (1.7)

Since ηA is injective, we obtain from (1.6)

kerF (i) = η−1A (ker f) = η−1A (0) = 0,

hence F (i) will indeed be injective. Again from (1.6) we get

kerF (p) = η−1B (kerp).

As (1.6) is exact, we have kerp = i(A), and therefore

kerF (p) = η−1B (i(A)) (1.8)

Note now that since ηB is injective, from ii), and (1.8) we get

F (i)(F (A)) = η−1B (i(A) ∩ ηB(F (B))) = η−1B (i(A)) ∩ F (B) = η−1B (i(A)) = kerF (p).

Hence (1.7) is indeed an exact sequence, and F is a left exact functor.
Let now A be any g-module, and consider the injection ηA ∶ F (A) Ð→ A. From the

commutative diagram

F (F (A)) F (A)

F (A) A

F (ηA)

ηF (A) ηA

ηA

we get
ηA ○ F (ηA) = ηA ○ ηF (A) Ô⇒ F (ηA) = ηF (A)

since ηA is injective. Note now that from ii) we have

(ηA ○ F (ηA))(F (F (A))) = ηA(F (A)) ∩ ηA(F (A)) = ηA(F (A)).

From i) and these last two identities we get

F (A) = F (ηA)(F (F (A))) = ηF (A)(F (F (A))),

i.e. ηF (A) is actually surjective, hence it is bijective.
Let now s ∶ F (A)Ð→ B be a morphism in g-mod. Then from the commutative diagram

F (F (A)) F (B)

F (A) B

F (s)

ηF (A) ηB

s

,
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as ηF (A) is fact bijective, we get that

F (A) B

F (B)

u(s)

s

ηB

is also commutative, where u(s) = F (s) ○ F (ηA)−1. Consider now the map

u ∶ homg−mod(F (A),B)Ð→ homF (g−mod)(F (A), F (B))

given by u(s) = F (s) ○F (ηA)−1. If s1, s2 ∶ AÐ→ B are such that u(s1) = u(s2), by applying
ηB we get that s1 = ηB ○ u(s1) = ηB ○ u(s2) = s2, so u is an injective map. Let now
s′ ∶ F (A) Ð→ F (B) be any morphism in F (g −mod). Let s = ηB ○ s′. We then have that
u(s) is such that s = ηB ○ u(s). Since ηB is injective, we get that ηB ○ s′ = s = ηB ○ u(s)
implies u(s) = s′. Hence u is also a surjective map, so we get

homg−mod(F (A),B) ≅ homF (g−mod)(F (A), F (B)).

The naturality of these bijections can be easily checked. This way, we get that F ∶ g−modÐ→
F (g −mod) is right adjoint to the natural inclusion F (g −mod)Ð→ g −mod, which is what
we wanted to show.

If F is a left-exact functor, we know that it will preserve injectives. If F is also right
adjoint, F will also preserve injective objects. Since g-mod has enough injectives, we get the
following

Corollary 1.10. Let F ∶ g-mod Ð→ g − mod be a functor as in Proposition 1.9. Then
F (g −mod) has enough injectives.

Proposition 1.9 will be used throughout this thesis to invoke Corollary 1.10 for certain
subcategories of g-mod. The way Proposition 1.9 is presented here is quite tedious. When-
ever we will use this section to study certain functors, the injective maps ηA ∶ F (A)Ð→ A of
the natural transformation η will usually be evident, as in F (A) will be naturally identified
with a submodule of A, for A ∈ g-mod. By this argument, for practical purposes, we write
down this proposition in simpler language as follows.

Proposition 1.9’. Let F ∶ g-modÐ→ F (g-mod) be a functor such that:

i) F (A) ⊂ A,

ii) F (f) = f ∣F (A) for any morphism f ∶ AÐ→ B,

iii) F (A) = A ∩ F (B) if A ⊂ B,

then F is a left exact functor. Moreover, if F (g-mod) denotes the full subcategory of g-mod
consisting of objects of the form F (A) for A ∈ g −mod, then the functor F ∶ g −mod Ð→
F (g-mod) is right adjoint to the natural inclusion F (g-mod)Ð→ g −mod.

Note that under these conditions, for any g-module A, the inclusion F (A) ⊂ A implies

F (F (A)) = F (A) ∩ F (A) = F (A)

In particular we see that F is an essentially surjective functor.
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1.4 Universal enveloping algebra
Before we proceed with the next chapter, we give here a short account of a key concept in
Lie algebra theory which shall be used throughout, namely the universal enveloping algebra
of a given Lie algebra g. A more concise exposition of what appears in this section can be
found in most literature about Lie algebras. See [6] and [8] for instance.

Definition 1.4. Let g be a Lie algebra. A universal enveloping algebra of g is a pair (U, i),
where U is an associative algebra with 1 over C, and i ∶ gÐ→ U is a linear map that satisfies

i([x, y]) = i(x)i(y) − i(y)i(x) for all x, y ∈ g, (1.9)

and such that given any associative algebra A with 1, and a map j ∶ gÐ→ A satisfying (1.9)
for j, then there exists a unique homomorphism of algebras φ ∶ UÐ→ A such that ϕ ○ j = i.

Since the universal enveloping algebra satisfies a universal property, it will be unique.
We denote it by U(g).

This definition in this form is of a categorical nature, and not the most convenient to
work with. However, one can explicitly construct U(g) as follows.

Given a vector space V over C set

T 0(V ) ∶= C; Tn(V ) = V ⊗ V ⊗⋯⊗ V
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n−times

= V ⊗n,

called the tensor powers of V . Set now

T (V ) ∶= ⊕
n∈N0

Tn(V )

and define a product in T (V ) by setting

α ⋅m = αm for α ∈ T 0(V ) = C,

and for v1 ⊗⋯⊗ vn ∈ Tn(V ), w1 ⊗⋯⊗wm ∈ Tm(V ) set

(v1 ⊗⋯⊗ vn) ⋅ (w1 ⊗⋯⊗wm) = v1 ⊗⋯⊗ vn ⊗w1 ⊗⋯⊗wm.

Then once can check T (V ) with this product becomes an associative algebra with 1.
Now if g is a Lie algebra, as it is a vector space, one can form its tensor algebra T (g).

Consider now the two-sided ideal J ⊂ T (g) generated by

{x⊗ y − y ⊗ x − [x, y] ∣ x, y ∈ T 1(g) = g},

and set
U(g) = T (g)/J.

We have then that (U(g), i), where i ∶ g
igÐ→ T (g) pÐ→ T (g)/J = U(g) is the universal

enveloping algebra of g, where ig ∶ g Ð→ T (g) is the natural identification of g with T 1(g),
and p is the canonical map.

Let now g be a Lie algebra of at most countable dimension. Let B = {Xi}i∈I be a basis
of g. As B is at most countable, one can impose a total order on it. We now state a result
which gives a basis of the universal enveloping algebra U(g).

Theorem PBW. (Poincare-Birkhoff-Witt). Let g be a Lie algebra of at most countable
dimension, and let B = {Xi}i∈I be a totally ordered basis of it. Then the set of all monomials

i(Xi1)j1⋯i(Xik)
jk

with i1 < ⋯ < ik and all jk ≥ 0 is a basis of U(g). In particular, the canonical map i ∶ g Ð→
U(g) is injective.
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We now make a couple of observations that shall be useful in the context of the Lie
algebras that will be studied in this thesis.

Let g1 ⊂ g2 be Lie algebras of countable dimension, and let (U(g1), i1) and (U(g2), i2)
denote their respective universal enveloping algebras. Denote by i ∶ g1 Ð→ g2 the natural
inclusion. Since i2 ○ i ∶ g1 Ð→ U(g2) is a map satisfying the conditions of Definition 1.4, we
get that there exists a unique morphism j ∶ U(g1) Ð→ U(g2) of associative algebras with
unit such that the diagram

g1 g2

U(g1) U(g2)

i

i1 i2

j

commutes. Let now B1 and B2 be totally ordered basis of g1 and g2 respectively, such that
B1 ⊂ B2, and that the total orders on them are compatible with this inclusion. Let now X1

and X2 respectively be the basis of U(g1) and U(g2) as described in Theorem PBW. Note
then that for X ∈ B1 and the commutative diagram above we have

j(i1(X)) = i2(i(X)) ∈ X2.

As j is a morphism of associative algebras, we get that for any m ∈ X1, we have j(m) ∈ X2,
thus we get j(X1) ⊂ X2. In particular this implies that j is an injective map, so we get a
naturally induced inclusions

U(g1) ⊂ U(g2); X1 ⊂ X2.

Let us now look at a similar, but more general situation, which can be applied to locally
semisimple Lie algebras. Let g1 ⊂ g2 ⊂ ⋯gn ⊂ ⋯ ⊂ g be any local Lie algebra (not necessarily
semisimple), i.e. such that

g = ⋃
n∈N

gn.

Let Bn be totally ordered basis of gn such that Bn ⊂ Bn+1, and again the total orders on
them are compatible with the inclusions. Set now B = ⋃n∈N Bn. The total orders on the Bn
induce a total order on B which is compatible with all the inclusions Bn ⊂ B. Let now Xn

be the basis of U(gn), and X the basis of U(g) as indicated in Theorem PBW. From the
previous discussion we get that

U(g1) ⊂ U(g2) ⊂ ⋯ ⊂ U(gn) ⊂ ⋯ ⊂ U(g),

and
X1 ⊂ X2 ⊂ ⋯ ⊂ Xn ⊂ ⋯ ⊂ X

For convenience we avoid the notation of these inclusions as map. Let now m ∈ X , say

m =Xj1
i1
Xj2

i2
⋯Xjk

ik

As Xis ∈ B = ⋃n∈N Bn, for s = 1,2, . . . , k, there exist some ls ∈ N such that Xis ∈ Bls . Set now

l =max{ls ∣ s = 1,2, . . . , k}.

We then have Xis ∈ Bls ⊂ Bl ⊂ gl for s = 1,2, . . . , k, so in particular we get Xis ∈ gl, which
gives us m ∈ Xl. In other words, we have shown that given m ∈ X , there exists some natural
l ∈ N such that m ∈ Xl. This shows that

X = ⋃
n∈N
Xl; and U(g) = ⋃

n∈N
U(gn).

It is clear that this identification of U(g) can also be used for locally semimiple Lie
algebras, and we shall often make use of it in what follows.
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Chapter 2

Integrable modules and weight
modules

In this chapter, we introduce the main category of representations of locally semisimple
Lie algebras that we will study in this thesis, i.e. the category of integrable modules Intg.
Theorem 2.5 is a very important result, which in essence says that if M is integrable, then
for any finite dimensional Lie subalgebra g ⊂ f, M viewed as an f−module is semisimple,
and all its simple submodules are finite dimensional. This results makes integrable modules
easier to work with, and is vaguely in accordance with Weyl’s complete reducibility theorem.
In Subsection 2.1.2 we show that the simple objects of Intg are local modules in the sense
of Chapter 1. We also show there that the category Locg can be characterized as the full
subcategory of Intg consisting of modules of countable dimension. In 2.1.3 we generalize the
result of 1.2.3, and prove Schur’s Lemma for simple objects of Intg.

In Section 2.2 we define a natural functor Γg ∶ g − mod Ð→ Intg, and show that it is
a functor as discussed in Section 1.3. Thus we get that, in particular, Intg has enough
injectives. In Subsection 2.2.1 we show how given an integrable g−module M , one can
construct an injective object I ∈ Intg for which there exists an injection M Ð→ I.

In Section 2.3 we will study the category of weight modules, and especially its intersection
with Intg, which we denote by Intwt

g,h. In particular, we define a functor Γg,h ∶ g −mod Ð→
Intwt

g,h for which one can use the discussion in Section 1.3. We also show that there exists a
full subcategory of Intwt

g,h, namely Intfin
g,h, which is semisimple as seen in Theorem 2.32.

In this chapter, g will denote a general locally semisimple Lie algebra, unless otherwise
specified.

The exposition in this chapter is based on [10].

2.1 Integrable modules

2.1.1 Definitions and properties
Let M be a g−module. For any subset A ⊂M and g ∈ g, set

g(A) ∶= span{gi.m ∣ m ∈ A , i ≥ 0}.

If A = {m} then we write simply g(m) for g(A). Using linear algebra, one can immediately
get the following simple properties.
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Proposition 2.1. The following statements hold:

i) A ⊂ g(A) for any subset A ⊂M , and g ∈ g;

ii) g(A) ⊂ g(B) for any subsets A ⊂ B ⊂M , and g ∈ g;

iii) g(A) = ∑m∈A g(m) for any subset A ⊂M , and g ∈ g;

iv) g (∑n
i=1 cimi) ⊂ ∑n

i=1 g(mi) for any ci ∈ C, mi ∈M , and g ∈ g;

v) g(A) ⊂ U(f).A for any Lie subalgebra f ⊂ g, subset A ⊂M , and g ∈ f.

Definition 2.1. A g-module M is called integrable if for every g ∈ g and m ∈ M we have
dim g(m) <∞.

Remark 2.1.

a) The condition in Definition 2.1 can be interpreted as follows: for any m ∈ M and
g ∈ g we can find some n ∈ N such that there exists a non-trivial linear combination of
{m,g.m, g2.m,⋯, gn.m} which gives 0.

b) If we replace m by a finite subset A ⊂ M in Definition 2.1, we still get an equivalent
definition. Indeed, part iii) of Proposition 2.1 shows that if A ⊂M is a finite subset,
say A = {m1, . . . ,mn}, then g(A) = ∑n

i=1 g(mi). From here one gets

dim g(A) ≤
n

∑
i=1

dim g(mi),

and if M is integrable, then clearly we get dim g(A) <∞. The other direction is trivial,
by just setting A = {m}.

c) To check whether a g−module M is integrable, it suffices to find a basis B of M such
that for all m ∈ B one has dim g(m) <∞ for every g ∈ g. Indeed, if such a basis exists,
say B = {mi ∣ i ∈ I}, then given any element m ∈ M there exist i1, i2, . . . , ik ∈ I and
c1, c2, . . . , ck ∈ C such that m = ci1mi1 + ⋅ ⋅ ⋅ + ckmik . From property iv) above, we get

g(m) ⊂
k

∑
j=1

g(mij).

Clearly then

dim g(m) ≤
j

∑
j=1

dim g(mij) <∞,

hence M will indeed be integrable.

The following result shows that when testing the dimension of g(m), it suffices to check
g(a) for any a ∈ g(m).

Lemma 2.2. Let M ∈ g −mod, m ∈ M , and g ∈ g. Then dim g(m) < ∞ ⇐⇒ dim g(a) <
∞ for any a ∈ g(m)

Proof. The direction Ô⇒ is trivial, by just taking a =m.
Conversely, let a ∈ g(m) be such that dim g(a) < ∞. As a is in g(m), we have a =

∑k
i=0 xi(gi.m) with not all xi zero. We may assume that xk ≠ 0. Now from part c) of Remark

2.1, from dim g(a) <∞ we have some l ∈ N and yi not all zero so that ∑l
i=0 yi(gi.a) = 0. Here

we can also assume yl ≠ 0 without loss of generality. We then have
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0 =
l

∑
i=0

yi(gi.a) =
l

∑
i=0

yi(gi.
k

∑
j=0

xj(gj .m)) =
l,k

∑
i,j=0

yixj(gi+j .a),

with ylxk ≠ 0. Hence we have a non-trivial linear combination of {m,g.m,⋯, gk+l.m} which
gives 0, thus dim g(m) <∞, which is what we wanted to show.

Denote the full subcategory of g-mod consisting of integrable modules by Intg. As a small
general observation, note that if f ∶M Ð→ N is a map of g-modules, since f(gn.m) = gn.f(m)
for any m ∈ M and n ∈ N, we have that f(g(m)) = g(f(m)). In particular, f ∣g(m) factors
through the inclusion g(f(m)) ⊂ B.

Proposition 2.3. Intg is closed under taking submodules, quotients, tensor products, ex-
tensions, and arbitrary direct sums. In particular, Intg is an abelian subcategory of g−mod.

Proof. This is evident for submodules, quotients. For arbitrary direct sums, the result follows
directly from part iv) of 2.1. Let us now prove this for extensions and tensor products.

For extensions, let

0Ð→ A
iÐ→ B

pÐ→ C Ð→ 0

be an exact sequence in g-mod, with A,C ∈ Intg. Let g ∈ g and b ∈ B. Let c = p(b). As
g(b) is finite dimensional, from the small general observation right before the statement
of this proposition, we see that g(c) = g(p(b)) = p(g(b)) is also finite dimensional. If
p∣g(b) ∶ g(b) Ð→ g(c) is injective, then g(b) is also finite dimensional. If not, then there is
some non-zero x ∈ g(b) such that p(x) = 0. But this means x ∈ kerp = A, and since A is
integrable, we have dim g(x) <∞. From Lemma 2.2 we get that dim g(b) <∞. Hence B is
also integrable.

For tensor products, let M,N ∈ Intg, m ∈ M , n ∈ N , and g ∈ g. A simple computation
shows that

gk.(m⊗ n) =
k

∑
i=0
(k
i
)gk−i.m⊗ gi.n,

so we see that gk.(m ⊗ n) ∈ g(m) ⊗ g(n), i.e. g(m ⊗ n) ⊂ g(m) ⊗ g(n), which gives us
dim g(m⊗ n) <∞, hence M ⊗N is also integrable.

Let now M be a local module in the sense of Chapter 1, with exhaustion {Mi}i∈N. Then
for any m ∈M and g ∈ g, we have some i, j ∈ N such that m ∈Mi and g ∈ gj . For k ≥ i, j we
have m ∈Mk and g ∈ gk. Now as Mk is a gk-module, we have gi.m ∈Mk for all i, hence we
have g(m) ⊂Mk, so dim g(m) ≤ dimMk <∞. This way we obtain the following corollary of
Proposition 2.3.

Corollary 2.4. Locg is a full subcategory of Intg.

In what follows, we will give a result which tells us how integrable g-modules look like
when they are restricted to finite dimensional semisimple Lie subalgebras of g. Before we
do this, we give two identities which will be very useful in computations. One can prove by
induction that

gn.(h.m) =
n

∑
k=0
(n
k
)uk.(gn−k.m); g.(hn.m) =

n

∑
k=0
(n
k
)hn−k.(vk.m) (2.1)
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with m ∈M , g, h ∈ g, n ∈ N, and where u0 = h, v0 = g, and uk = [g, [g, [⋯[g, h]]]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k brackets

,

vk = [[[⋯[g, h], h],⋯h], h]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k brackets

for k > 0. Now we are ready to state and prove one of the main

results about integrable modules.

Theorem 2.5. A g-module M is integrable if and only if for any finite dimensional semisim-
ple Lie subalgebra f ⊂ g there exists an index set If and finite dimensional f-modules Mi for
i ∈ If such that:

M ∣f =⊕
i∈If

Mi (2.2)

Proof. Let M be a g-module, such that for any finite dimensional semisimple Lie subalgebra
f ⊂ g one has an index set If and finite dimensional f-modules Mi for i ∈ If such that (2.2)
holds. Let m ∈M and g ∈ g. Choose f ⊂ g finite dimensional semisimple such that g ∈ f (here
one can simply choose one of the gi’s which contains g). Then there exists a finite subset
S ⊂ If such that m ∈ ⊕i∈S Mi = M ′, which is also finite dimensional. As the Mi are finite
dimensional f−modules, for any g ∈ f we get g(m) ⊂ U(f).m ⊂M ′ from part v) of Proposition
2.1, hence g(m) will also be finite dimensional. Thus M is integrable.

Conversely, assume M is integrable. We will show that given a finite dimensional
semisimple Lie subalgebra f ⊂ g, and m ∈M , then there exists a finite dimensional f−submodule
R ⊂M such that m ∈ R. We first prove this for the case when f ≅ sl(2,C), and then extend
the result to general semisimple f ⊂ g via the well-known decomposition of f into root spaces.
Claim 1. Let sl(2,C) ≅ f ⊂ g be a finite dimensional semisimple Lie subalgebra, and A ⊂M
a finite dimensional subspace. Then U(f).A is finite dimensional.

Proof. We prove this for A = {m}, as the general case then follows from the fact that
U(f).A = ∑m∈AU(f).m immediately. Let f = sl(2,C) with the usual basis x, y and h. We
know that the Lie bracket here is given by [x, y] = h, [h,x] = 2x and [h, y] = −2y. Let us see
how the second formula in (2.1) looks like for g = x and h = h. We have v1 = [x,h] = −2x,
v2 = [v1, h] = 4x, and in this way we see that vk = (−2)kx for all k = 0,⋯, n. Thus we get

x.(hn.m) =
n

∑
k=0
(n
k
)hn−k.(vk.m) =

n

∑
k=0
(n
k
)(−2)khn−k.(x.m)

from which we see in particular that x.h(m) ⊂ h(x.m). From this, one obtains xn.h(m) ⊂
h(xn.m), thus we have x(h(m)) ⊂ h(x(m)). Now we look at h.(xn.m). Again in the second
formula in (2.1) for h instead of g, and x instead of h we have v0 = h, v1 = 2x and vk = 0 for
k ≥ 2. Thus we obtain

h.(xn.m) = xn.(h.m + 2nm)
In particular, one has that h.x(m) ⊂ x((h.m)). From this one obtains that hn.x(m) ⊂
x((hn.m)), so we get h(x(m)) ⊂ x(h(m)). Thus we have shown that

x(h(m)) = h(x(m))

In a completely similar way, one shows that

y(h(m)) = h(y(m)).

Note that from part iii) of Proposition 2.1 this still holds true if we replace m by any subset
A ⊂M . Now we investigate how x.(yn.m) looks like. Again, in the second formula in (2.1)
we have v1 = [x, y] = h, v2 = [h, y] = −2y, and vk = 0 for k ≥ 3. We thus get

x.(yn.m) = yn.(x.m) + nyn−1(h.m) − n(n − 1)yn−1.m
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and in particular we see that

x.(y(m)) ⊂ y(x.m) + y(h(m)) ⊂ y(x(h(m))). (2.3)

Again, from part iii) of Proposition 2.1 we see that this inclusion still holds if instead of m
we take any subset A ⊂M . Note now that from (2.3) we see that

x2.(y(m)) = x.(x.y(m)) ⊂ x.y(x(h(m))) ⊂ y(x(h(x(h(m))))) = y(x(h(m))).

This way, one obtains inductively that x(y(m)) ⊂ y(x(h(m))). In a completely similar way
one shows that y(x(m)) ⊂ x(y(h(m))). This implies

x(y(h(m))) ⊂ y(x(h(h(m)))) = y(x(h(m))),

and similarly
y(x(h(m))) ⊂ x(y(h(m)))

so we obtain the equality
y(x(h(m))) = x(y(h(m))). (2.4)

Denote the subspace of M in (2.4) by S. Note that every element of S can be written as a
linear combination of elements of the form

xn1 .yn2 .hn3 .m

with n1, n2, n3 ≥ 0. It is clear that every element that can be written as a linear combination
of elements of this form, also lies in S. Thus we have

S = span{xn1 .yn2 .hn3 .m ∣ n1, n2, n3 ≥ 0} (2.5)

Since B = {x, y, h} is a basis of f = sl(2,C, we may impose an order on B by setting x < y < h.
From Theorem PBW we see that {xn1yn2hn3 ∣ n1, n2, n3 ≥ 0} is a basis of U(f). Thus we
have

U(f) = span{xn1yn2hn3 ∣ n1, n2, n3 ≥ 0},
which together with (2.5) gives us

S = U(f).m
so we see that S is indeed an f−module.

Now we show that S is finite dimensional.Well as M is integrable and m ∈M , we have
that h(m) is finite dimensional as well. Then from part b) of Remark 2.1 we see that
y(h(m)) will also be finite dimensional, and thus so will be x(y(h(m))) = S = U(g).m.

The claim for any finite dimensional A ⊂M then follows from the remark at the beginning
of the proof of this claim.

Let now f be any finite dimensional semisimple Lie subalgebra of g. Let Φ = {α1,⋯, αn}
be the positive roots of f. For each i = 1,⋯, n denote by si the corresponding sl(2,C)-triple.
We know that

f =
n

∑
i=1

si.

Let m ∈M be any element, and consider the following subspace of M

R = ∑
π∈Sn

U(sπ(1)).U(sπ(2)).⋯.U(sπ(n)).m, (2.6)

where Sn denotes the symmetric group on n elements. We claim that R is a finite dimensional
f-module. From Claim 1 for A = {m}, we see that U(si).m are all finite dimensional. Again
by Claim 1 for A = U(si).m, we see that U(sj).U(si).m will also be finite dimensional for
any 1 ≤ j ≤ n. Thus all the summands that appear in (2.6) are also finite dimensional. As
this sum is over a finite index set, we get that R is indeed finite dimensional.

Now to show that R is an f-module, we first prove the following technical result.
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Claim 2. Let k ∈ N, and xj ∈ ⋃n
i=1 si for j = 1,2,⋯, k. Then:

x1.x2.⋯.xk.m ∈ R

Proof. We prove this by induction on k. If k = 0,1 it is trivially true. Assume now that the
claim is true for some k ∈ N. Let now xj ∈ ⋃n

i=1 for j = 0,⋯, k, and consider the element

x0.⋯.xk−1.xk.m.

From the induction hypothesis, we have that x1.x2.⋯.xk.m ∈ R. Without loss of generality,
let us assume that x1.x2.⋯.xk.m ∈ U(s1).U(s2).⋯.U(sn).m. In this case, we may assume
that x1,⋯, xk1 ∈ s1, xk1+1,⋯, xk2 ∈ s2 and so forth for some ki ≤ k. If x0 ∈ s1, then we are
done. Assume now that x0 ∈ sl for some l > 1. We may assume that l = 2, as the argument
for general l is similar to what will be shown for l = 2. We then have

x0.⋯.xk.m = x1.x0.x2.⋯.xk.m + [x0, x1].x2.⋯.xk.m = x1.x0.x2.⋯.xk.m + r

with r = [x0, x1].x2.⋯.xk.m ∈ R due to the induction hypothesis. Doing now the same
reordering process for (x0, x2), (x0, x3) up to (x0, xk1), one obtains an expression of the
form

x0.⋯.xk.m = x1.⋯.xk1 .x0.xk1+1.⋯.xk.m + r
with r ∈ R. Note that the first summand in this expression lies in
U(s1).U(s2).⋯.U(sn).m ⊂ R, and thus we obtain

x0.⋯.xk.m ∈ R.

The claim then follows by induction on k.

What Claim 2 shows in particular, is that for any x ∈ si, with i = 1,⋯, n, we have
x.R ⊂ R. Now as f = ∑n

i=1 si, for any g ∈ f we get that g.R ⊂ R. Hence altogether we have
indeed showed that R is a finite dimensional f-module.

In particular, as all finite dimensional f-modules are semisimple, we have that every
element of M lies in some semisimple finite dimensional f-submodule of M . So if we set
C ∶= {finite dimensional simple f − submodules of M}, we get that

∑
S∈C

S =M. (2.7)

Note now that if S ≠ 0 is any simple f-submodule of M , for any m ∈ S non-zero, there
exists a finite dimensional f-submodule R ⊂M such that m ∈ R. Since R∩S ≠ 0, one has R∩
S = S, hence S is finite dimensional. Thus we actually have C = {simple f−submodules of M},
and then (2.7) shows that M is a semisimple f-module, i.e. there exists an index set If, and
Mi ∈ C for i ∈ If such that

M ∣f =⊕
i∈If

Mi

which concludes the proof of the theorem.

Remark 2.2. The f−module R defined in (2.6) is actually equal to U(f).m. This is evident
because given a permutation π ∈ Sn, and qi ∈ U(sπ(i)) for i = 1,2, . . . , n, we see that qi ∈
U(sπ(i)) ⊂ U(f), and thus q1q2⋯qn ∈ U(f), so we get

q1 ⋅ q2⋯qn.m ∈ U(f).m

This gives us R ⊂ U(f).m. Conversely, since R was shown to be a f−module and m ∈ R, we
have

U(f).m ⊂ R,

thus we indeed get R = U(f).m.

25



Remark 2.3. Note that the proof of Theorem 2.5 actually shows that f−modules Mi in (2.2)
are simple modules. However, we will often use a decomposition as in (2.2) without assuming
that the Mi are simple.

We note that the proof of Theorem 2.5 shows that every integrable module will be
semisimple as a f−module for any finite dimensional semismple Lie subalgebra f ⊂ g. We
emphasize this in the following note.

Comparison remark II. In a weak analogy to the finite dimensional theory of representa-
tions of semisimple Lie algebras, we see that Intg is a category of representations of locally
semisimple Lie algebras such that every object of it is semisimple as a representation of any
of its finite dimensional semisimple Lie subalgebras.

From Theorem 2.5 we get the following direct consequence.

Corollary 2.6. Let M ∈ Intg, n ∈ N, and S ⊂M a finite dimensional subspace of M . Then

dimU(gn).S <∞.

Moreover, if we denote U(gn).S = N , there exists a gn−submodule R ⊂M such that M ∣gn =
N⊕R.

Proof. From Theorem 2.5, let I be an index set, and Mi finite dimensional gn−modules such
that

M ∣gn =⊕
i∈I

Mi (2.8)

As S ⊂M is finite dimensional, there exists a finite subset of indices I0 = {i1, i2, . . . , ik} such
that S ⊂⊕i∈I0 Mi = T . It is clear that T is a finite dimensional gn−module. Note now that

U(gn).S ⊂ U(gn).T = T (2.9)

so we get dimU(gn).S ≤ dimT <∞, which proves the first part of the corollary.
From our definition of T , and (2.8), we get

M ∣gn = T ⊕ ⊕
i∈I/I0

Mi = T ⊕R′,

where R′ = ⊕i∈I/I0 Mi. From Weyl’s complete reducibility theorem, since N ⊂ T are finite
dimensional gn−modules, we have that there exists some gn−submodule U ⊂ T such that
T = U ⊕N . We then get

M ∣gn = T ⊕R′ = N ⊕U ⊕R′ = N ⊕R,

where R = U ⊕R′, which completes the proof of this corollary.

2.1.2 Integrable modules of countable dimension
In this section we study the countable dimensional integrable modules, and also the simple
objects of Intg. We start with the following observation.

Proposition 2.7. Every integrable g-module contains a local submodule.

Proof. Let i ∈ N and 0 ≠ m ∈ M non-zero. From Corollary 2.6 for S = Cm we see that is a
finite dimensional gi-module. Since gi ⊂ gi+1 we have Ni ⊂ Ni+1. By setting N = ∪Ni, we
get a local module which is a submodule of M such that m ∈ N .
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Remark 2.4. Note that the proof of Proposition 2.7 actually shows that given an integrable
g−module M , for any m ∈M there exists some local submodule N ⊂M such that m ∈ N .

From Proposition 2.7 we get the following direct consequence.

Theorem 2.8. All simple objects of Intg are local modules, i.e. we have

{simple objects of Intg} = {simple objects of Locg}.

Proof. If L ∈ Locg is a simple local module, from Corollary 2.4 we see that L ∈ Intg, hence
we get one of the inclusions.

Conversely, let L ∈ Intg be simple. From Proposition 2.7 we get that there exists a
non-zero g−submodule N ⊂ L with N ∈ Locg. As L is simple, we get that N = L, hence
L ∈ Locg

We have already seen in Corollary 2.4 that Locg is a full subcategory of Intg, and Remark
1.3 showed that all objects of Locg are of countable dimension. The following result shows
that these two properties are actually the characterizing properties of Locg as a subcategory
of Intg.

Theorem 2.9. The countable integrable g-modules are precisely the local g-modules.

Proof. If M ∈ Locg, we saw in the preceding discussion that M will be an integrable
g−module of countable dimension, thus we get

Locg ⊂ {integrable g −modules of countable dimension}.

Let now M ∈ Intg be of countable dimension. From Theorem 2.5, there exists an index
set I and non-zero finite dimensional g1−modules Ti such that

M ∣g1 =⊕
i∈I

Ti. (2.10)

As M is of countable dimension, we see that I has to be a countable set, so without loss of
generality we may assume that I = N. Thus we have

M ∣g1 = T1 ⊕ T2 ⊕⋯⊕ Tn ⊕⋯

Set now
Sn ∶=

n

⊕
i=1

Ti

as a vector subspace of M , and let

Mn = U(gn).Sn.

Since the Sn’s are clearly finite dimensional, from Corollary 2.6 we see that all the Mn’s will
be finite dimensional gn−modules. Note now that since gn ⊂ gn+1 and Sn ⊂ Sn+1 we have

Mn = U(gn).Sn ⊂ U(gn+1).Sn+1 =Mn+1.

Let us now set N = ⋃n∈NMn. We clearly see that N will be a local g−submodule of M .
Note also that since Sn ⊂ U(gn).Sn =Mn, we have

M =M ∣g1 = ⋃
n∈N

Sn ⊂ ⋃
n∈N

U(gn).Sn = N,

hence we get M = N = limÐ→Mi, thus M is also a local module. This proves the inclusion

{integrable g −modules of countable dimension} ⊂ Locg,

and thus completes the proof of the theorem.
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Remark 2.5. In Theorem 2.9 we have seen that

Locg = {integrable g −modules of countable dimension}g.

Since all submodules, quotients, extensions, finite direct sums, and tensor products of local
modules are integrable modules of countable dimension from Proposition 2.3 and Theorem
2.9, we get that they are all also local modules. This way we obtain Proposition 1.4.

Remark 2.6. We note here that for g = sl(∞), o(∞), sp(∞) in Theorem 3.54 we will see that
g−mod contains no non-trivial finite dimensional modules. Hence, for g a classical locally
semisimple Lie algebra, the representation theory for g is always infinite dimensional.

2.1.3 Schur’s Lemma in Intg
We now prove a Schur’s Lemma for the category Intg. We already saw in Subsection 1.2.3
that Schur’s Lemma holds for locally simple g−modules. However as noted in Remark 1.5,
not all simple local modules are locally simple, thus the proof presented there does not cover
all the simple objects of Locg. In particular, Theorem 2.8 shows that the result here will
generalize the result of Subsection 1.2.3 to all of simple objects of Locg.

Theorem 2.10. (Schur’s Lemma in Intg) Let L,N ∈ Intg be simple. Then

homg(L,N) =
⎧⎪⎪⎨⎪⎪⎩

C if M ≅ N,

0 otherwise.

Proof. Assume first that L /≅ N . Let f ∶ L Ð→ N be a g−module morphism. Since ker f ⊂ L
and L is simple, we have that ker f = 0 or ker f = L. Assume that ker f = 0. We then have
that f is injective, and f(L) ⊂ N is a non-zero submodule of N . Since L /≅ N , we cannot
have f(L) = N . But this would mean that N , as a simple module, contains a submodule
which is neither 0 nor N , and this is impossible. Hence we must have ker f = L. This gives
us f = 0, hence homg(L,N) = 0 in this case.

Assume now that L ≅ N . Without loss of generality, we may only consider homg(L,L).
From Theorem 2.8 we know that L as a simple integrable g−module is going to be a local
module. Pick x ∈ L non-zero, and set Li ∶= U(gi).x for i ∈ N which are clearly gi−modules.
Since L is integrable, from Corollary 2.6 we see that these Lis will all be finite dimensional.
From the discussion in Section 1.4 we see that Li ⊂ Li+1, and actually L = ⋃i∈NLi = U(g).x
(one can also see that this is true also from the fact that L is simple).

Let now f ∶ LÐ→ L be any map. Similar to the first paragraph of the proof, we see that
either f = 0, or f is an automorphism of the g−module L. Assume that f ≠ 0. We then
have f(x) ≠ 0, and since f(x) ∈ L = U(g).x = ⋃i∈NLi, there exists some n ∈ N such that
f(x) ∈ Ln = U(gn).x. Let now q ∈ U(gn) be such that f(x) = qx. Clearly we have q ≠ 0.
Note now that if y ∈ Ln, we have that L = rx for some r ∈ U(gn), and since f is a morphism
of g−modules, it is also a morphism of gn−modules, so we get

f(y) = f(rx) = rf(x) = rqx ∈ Ln

This means that f ∣Ln ⊂ Ln. As f is an automorphism, and Ln is finite dimensional we get
that f(Ln) ⊂ Ln, and dim f(Ln) = dimLn, thus f ∣Ln

∶ Ln Ð→ Ln is an automorphism of
finite dimensional gn−modules. In particular, it is an automorphism of finite dimensional
vector spaces. As f is an invertible linear map, it will have some non-zero eigenvalue, say
λ ∈ C, and some non-zero λ−eigenvector z ∈ Ln, i.e. we have

f(z) = λz
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As in the second paragraph of this proof, we have that L = U(g)z. Note now that for any
m ∈ L, there exists some s ∈ U(g) such that m = sz. We then have

f(m) = f(sz) = sf(z) = s ⋅ λz = λsz = λm.

This shows that there exists some λ ∈ C such that f(m) = λm for all m ∈ L. Hence we really
do have that

homg(L,L) = C

which is what we wanted to show, hence the proof of the theorem is complete.

This way we have generalized a classical result from the finite dimensional theory of Lie
algebras to the theory of locally semisimple Lie algebras. We emphasize this in the following
note.

Comparison remark III. Analogous to the finite dimensional theory of representations
of semisimple Lie algebras, there exists a Schur’s Lemma in a reasonable category of locally
semisimple Lie algebras.

2.2 The functor Γg ∶ g−modÐ→ Intg and injectives in Intg
Let M ∈ g −mod be any module. Define

Γg(M) ∶= {m ∈M ∣ dim g(m) <∞ for all g ∈ g}. (2.11)

Lemma 2.11. Γg(M) is an integrable submodule of M .

Proof. Let m ∈ Γg(M) and h ∈ g. We want to show that h.m ∈ Γg(M). For this, let
g ∈ g be any element, and let i be natural number such that g, h ∈ gi. As both gi and
g(m) are finite dimensional, we have that gi.g(m) is also finite dimensional. From (2.1) one
can see that gn.(h.m) ∈ gi.g(m), since uk ∈ gi. This means that g(h.m) ⊂ gi.g(m), so we
get dim g(h.m) < ∞. Thus we have h.m ∈ Γg(M), which proves that Γg(M) is indeed a
submodule of M . It is evidently integrable, and in fact it is the largest integrable submodule
of M .

Remark 2.7. We note here specifically the last sentence of the proof of Lemma 2.11. If
M ∈ g−mod, and N ⊂M is integrable, then N ⊂ Γg(M). Note that in particular this implies
that

Γg(M/Γg(M)) = 0

for any M ∈ g−mod.

Let now M,N be g-modules, and f ∶ M Ð→ N a morphism. From Proposition 2.3 we
get that f(Γg(M)) is also integrable (as a quotient of Γg(M)), hence it lies in Γg(N) from
Remark 2.7. Thus f restricted to Γg(M) factors through Γg(N). This allows us to make
the following definition.

Definition 2.2. The functor Γg ∶ g−modÐ→ g−mod as defined on objects via (2.11), and
by Γg(f) = f ∣Γg(M) on morphisms f ∶M Ð→ N , is called the functor of g-integrable vectors.

We now apply the theme set in Section 1.3 to this functor Γg.

Lemma 2.12. The following statements hold:

i) Γg(A) ⊂ A for any A ∈ g−mod;
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ii) Γg(f) = f ∣Γg(M) for any morphism f ∶ AÐ→ B in g−mod;

iii) Γg(A) = A ∩ Γg(B) if A ⊂ B in g-mod.

Proof. i) and ii) are clear from the definition of Γg as a functor. For iii), we have immediately
that Γg(A) ⊂ A, and as Γg(A) ⊂ B is an integrable module, from Remark 2.7 we have
Γg(A) ⊂ Γg(B). Thus we have

Γg(A) ⊂ A ∩ Γg(B).

For the other inclusion, note that A ∩ Γg(B) is an integrable module, as a submodule of
Γg(B), from Proposition 2.3. Then by Remark 2.7 we get that A ∩ Γg(B) ⊂ Γg(A) Thus
altogether we obtain

Γg(A) = A ∩ Γg(B)

which completes the proof of the lemma.

Lemma 2.12 says that Γg ∶ g-mod Ð→ g-mod satisfies the conditions of Proposition 1.9’.
Then, in particular, Γg will be essentially surjective, hence Γg(g-mod) = Intg. This gives us
the following result.

Proposition 2.13. Γg is a left-exact functor, and it is right-adjoint to the inclusion Intg Ð→
g −mod.

Applying now Corollary 1.10 in our situation with the functor Γg, we get the following
result.

Corollary 2.14. Intg has enough injectives.

While these arguments show the existence of enough injectives in Intg, they are not of a
constructive nature. However, there exists a nice way of producing injective objects in Intg
by looking at the duals of integrable modules. Before we do this, we digress into recalling
some facts from the homology and cohomology theories of finite dimensional representations
of semisimple Lie algebras. One can find these results in many treatments of Lie algebras,
for instance [12] and [7].

ref. result 2A. Let g be a finite dimensional Lie algebra, and C the trivial g-module. Then
Hi(g,C) = gab where gab = g/[g,g].

ref. result 2B. Let g be a finite dimensional semisimple Lie algebra, and M ≠ C a simple
g-module. Then Hi(g,M) =Hi(g,M) = 0.

Note that if g is any finite dimensional semisimple Lie algebra, and M a finite dimensional
g-module, by Weyl’s complete reducibility theorem we can write

M =
n

⊕
i=1

Mi ⊕Cs

for some n, s ∈ N0, where the Mi are non-trivial simple g-modules. We then have:

H1(g,M) =
n

⊕
i=1

H1(g,Mi)⊕H1(g,C)s = 0

as gab = 0 for g semisimple. So in particular we have H1(g,M) = 0 for all finite dimensional
g-modules. This result, also known as Whitehead’s Lemma, is a well known result. See [12]
for instance.
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ref. result 2C. (Poincare duality) Let g be any Lie algebra, and M a g-module. Then
there exists an isomorphism of vector spaces

Hn(g,M)∗ ≅Hn(g,M∗)∗.

Let’s now get back to our category of interest, namely Intg. Let M ∈ Intg. The homology
modules of M are computed via the chain complex

0Ð→M Ð→ g⊗M Ð→
2

⋀g⊗M Ð→ ⋯.

Since M is integrable, for any natural i, by Theorem 2.5 we get a decomposition

M ∣gi
=⊕

j∈Ii
Mij

for some index set Ij , such that all Mij are finite dimensional. Using the discussion following
ref. result 2B, we get

H1(gi,M ∣gi
) =⊕

j∈Ii
H1(gi,Mij) = 0.

As this is true for any natural i, by taking direct limits we see that H1(g,M) = 0, and by
Poincare duality we get that

H1(g,M∗) =H1(g,M)∗ = 0. (2.12)

Using this, we are ready to prove the following result.

Theorem 2.15. Let X,M ∈ Intg. Then the following holds:

Extg(X,M∗) = 0.

Proof. From Proposition 2.3, we have X⊗M ∈ Intg as well, and from (2.12) we get H1(g, (X⊗
M)∗) = 0. Then we have

Extg(X,M∗) ≅H1(g,homC(X,M∗)) =H1(g, (X ⊗M)∗) = 0,

which is what we wanted to show.

In other words, this result says that by dualizing integrable modules, we obtain objects
in g-mod which are Intg-injective. However M∗ may not necessarily be an object of Intg as
we shall see in Example 2.2. The following consequence of Theorem 2.15, shows that we can
actually obtain Intg-injective objects which lie in Intg.

Corollary 2.16. For any M ∈ Intg, Γg(M∗) is an injective object of Intg.

Proof. Let X ∈ Intg. Since Γg(M∗) ⊂M∗, we have the short exact sequence

0Ð→ Γg(M∗)Ð→M∗ Ð→M∗/Γg(M∗)Ð→ 0 (2.13)

in g-mod. Let now X ∈ Intg be any module. By applying homg(X,−) to (2.13), we obtain
the exact sequence

0Ð→ homg(X,Γg(M∗))Ð→ homg(X,M∗)Ð→ homg(X,M∗/Γg(M∗))Ð→

Ð→ Ext1g(X,Γg(M∗))Ð→ Ext1g(X,M∗) = 0.
Note that from Remark 2.7 we have that Γg(M∗/Γg(M∗) = 0. Since X ∈ Intg, from Propo-
sition 2.13 we get

homg(X,M∗/Γg(M∗)) = homg(X,Γg(M∗/Γg(M∗))) = homg(X,0) = 0.

This way we obtain that
0Ð→ Ext1g(X,Γg(M∗))Ð→ 0

is an exact sequence, thuswe get Ext1g(X,Γg(M∗)) = 0. As this is true for all X ∈ Intg, it
means that Γg(M∗) is indeed an injective object of Intg.
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2.2.1 Constructing injective objects for integrable module
In this subsection we show how given an integrable module M , one can find an injective
object I ∈ Intg such that there exists an injective map M Ð→ I. To do this, we first begin
with the following result.

Proposition 2.17. Let M ∈ Intg and m ∈ M any fixed non-zero element. If fm = m∗ ∶
M Ð→ C is given by f(m) = 1, and fm(M/Cm) = 0, then there exists a local submodule of
M∗ which contains fm. In particular Γg(M∗) ≠ 0.

Proof. From Remark 2.4, there exists a local module N = limNi ⊂M such that m ∈ N . As
M is integrable and Ni ⊂ M are gi-submodules, and from Corollary 2.6 we get that there
exist gi-modules Ri ⊂M such that

M ∣gi = Ni ⊕Ri.

As Ni are finite dimensional gi-modules, there exist gi-modules Si ⊂ Ni+1 such that

Ni+1∣gi = Ni ⊕ Si.

Dualizing these equalities, we get

M∗∣gi = N∗i ⊕R∗i ; and N∗i+1∣gi = N∗i ⊕ S∗i .

Note that these give us natural injective maps of gi-modules si ∶ N∗i Ð→ N∗i+1 and ti ∶ N∗i Ð→
M∗ given by

si(f)∣Ni = ti(f)∣Ni = f ; and si(f)(Si) = ti(f)(Ri) = 0.

for f ∈ N∗i . Since Ri = Ri+1 ⊕ Si, we get (ti+1 ○ si)(f)∣Ni
= f and (ti+1 ○ si)(f)(Ri) = 0.

Hence the diagram
N∗i M∗

N∗i+1

si

ti

ti+1

is commutative. This way we can set N∗ ∶= limÐ→N∗i and we get that this N∗ is a well defined
submodule of M∗. Clearly N∗ is a local g−module. Since m ∈ N , there exists some i ∈ N such
that m ∈ Ni. We then have fm ∈ N∗i , hence fm ∈ N∗. Thus, we have proved the existence of
a local module submodule of M∗ as indicated in the statement of the proposition.

Since N∗ is a local module, it is also integrable, hence we have N∗ ⊂ Γg(M∗), so in
particular Γg(M∗) ≠ 0, which completes the proof of the proposition.

This result shows that the injective objects produced in Corollary 2.16 are always non-
zero for M ≠ 0.

Using Corollary 2.16 and Proposition 2.17 we will now show how given an integrable
module M , one can produce an injective object I ∈ Intg such that there exists an injective
morphism of g−modules M Ð→ I.

Let M ∈ Intg. One then always has the natural injective map

i′ ∶M Ð→M∗∗ given by i′(m)(f) = f(m) for all f ∈M∗. (2.14)

As M is integrable, from Proposition 2.3 its image will also be integrable as a quotient
of M , thus i′ factors through the inclusion Γg(M∗∗) ⊂ M∗∗. Denote now i = Γg(i′) i.e.
i ∶ M Ð→ Γg(M∗∗) is given as in (2.14). Let now Γg(M∗) ⊂ M∗ be the natural inclusion,
and denote by

π′ ∶M∗∗ Ð→ Γg(M∗)∗
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its dual map, which is given by π′(F )(f) = F (f) for all F ∈ M∗∗ and f ∈ Γg(M∗) ⊂ M∗.
Denote now again by Γg(π′) = π ∶ Γg(M∗∗) Ð→ Γg(Γg(M∗)∗) the corresponding map of π′

in Intg, which again will be given by the same expression as π′. Composing now i with π
we get the following map

ϕ = π ○ i ∶M Ð→ Γg(M∗∗)Ð→ Γg(Γg(M∗)∗),

given by
ϕ(m)(f) = f(m) for m ∈M and f ∈ Γg(M∗). (⋆)

Note now that kerϕ = {m ∈ M ∣ f(m) = 0 for all f ∈ Γg(M∗)}. From Proposition 2.17
we saw that given a non-zero m ∈ M and fm = m∗ ∈ M∗ its corresponding linear map, we
have that fm ∈ Γg(M∗). Since fm(m) = 1, we see that m ∉ kerϕ. Hence we get kerϕ = 0.
This way we have proved the following corollary.

Corollary 2.18. Let M ∈ Intg. Then the map ϕ ∶ M Ð→ Γg(Γg(M∗)∗) given by (⋆) is
injective.

Corollary 2.18 shows that Intg has enough injectives in a constructive fashion, which is
something that Corollary 2.16 did not do.

2.2.2 Further examples
In this section we give two examples. The first is of a non-integrable g−module, while the
second one will be an integrable module whose dual is not integrable.

Example 2.1. Let g = sl(∞), and let M = U(g) be its universal enveloping algebra viewed
as a g−module. For clarity of exposition, we denote the elements of M = U(g) as tensors.
Here the action is given by

x.(x1 ⊗ x2 ⊗⋯⊗ . . . xn) = x⊗ x1 ⊗ x2 ⊗⋯⊗ xn

We claim that M is not integrable. For this, let x ∈ sl(∞) any non-zero element. From
Section 1.4, there exists a totally ordered basis B = {x1, x2, . . . , xn, . . .} of sl(∞), say with
order xi < xj if i < j for i, j ∈ N. Without loss of generality we may assume that x = x1.
From Theorem PBW the set consisting of monomials

xi1 ⊗ xi2 ⊗⋯⊗ xin (2.15)

with xi1 ≤ xi2 ≤ ⋯ ≤ xin and n ∈ N0 forms a basis X of M . As u ∈ M , u will be a linear
combination of elements of the form (2.15). Let now u ∈ X , say

u = xi1 ⊗ xi2 ⊗⋯⊗ xin

for some indices ij , j = 1,2, . . . , n. In particular, we have x = x1 ≤ xij for all j = 1,2, . . . , n.
Consider now the subspace x(u). Note that

xk.u = xk
1 .u = x1 ⊗ x1 ⊗⋯⊗ x1 ⊗ xi1 ⊗ xi2 ⊗⋯⊗ xin

and as x1 ≤ x1 ≤ ⋯ ≤ x1 ≤ xi1 ≤ ⋯ ≤ xin , we have that xk.u ∈ X is actually a basis vector for
M . This gives us x(u) ⊂ B, and as X is a basis, we have that x(u) is a linearly independent
set. As it is an infinite, we get that dimx(u) = ∞. Thus we have that X ∩ Γg(M) = 0, so
M cannot be integrable. Note that Remark 2.7 N =M/Γg(M) is a non-trivial module such
that Γg(N) = 0.
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We will now investigate an example of a local module, the dual of which will be shown
to not be integrable via a result to be proved later on in Chapter 3, namely Theorem 3.4.

Example 2.2. Let g = sl(∞). Denote, as earlier, by Vn the natural representation of sl(n),
and let {v1, . . . , vn} be its natural basis. Consider now the n-th symmetric power of Vn given
as a vector space by

Sn(Vn) ∶= V ⊗n/ ∼,

where the relation ∼ is generated linearly by the expressions

v1 ⊗ v2 ⊗⋯⊗ vn ∼ vσ(1) ⊗ vσ(2) ⊗⋯⊗ vσ(n)

for all permutations σ ∈ Sn, where Sn denotes the symmetric group on n elements. One can
show that a basis of Sn(Vn) consists of elements of the form

vi1 ⊗ vi2 ⊗⋯⊗ vin

with i1 ≤ i2 ≤ ⋅ ⋅ ⋅ ≤ in. By descending the action of sl(n) on V ⊗n, one makes Sn(Vn) into an
sl(n)−module. This action is described by

x.(vi1 ⊗⋯⊗ vin) = (x.vi1)⊗⋯⊗ vin + vi1 ⊗ (x.vi2)⋯⊗ vin +⋯ + vi1 ⊗⋯⊗ (x.vin).

Consider the map sn ∶ Sn(Vn)Ð→ Sn+1(Vn+1) given by sn(w) = w ⊗ vn+1. One can see that
this map is linear, and since for x ∈ sl(n) we have x.vn+1 = 0, we get that

x.sn(w) = (x.w)⊗ vn+1 +w ⊗ (x.vn+1) = (x.w)⊗ vn+1 = sn(x.w),

i.e. sn is a map of sl(n)−modules. This way we can define a local g−module by setting
S(V ) = limÐ→Si(Vi). Since S(V ) ∈ Locg, we have that S(V ) is integrable.

We now want to look at S(V ) as an sl(2)−module. For this, let us investigate Sn(Vn)
as sl(2)−modules. Denote the standard basis of sl(2) by h,x, and y. Recall first the action
of sl(2) on Vn

x.v1 = y.v2 = 0; y.v1 = v2; x.v2 = v1;

h.v1 = v1; h.v2 = −v2; sl(2).vi = 0 for i > 2

Consider now an element of the form

s = vi1 ⊗ vi2 ⊗⋯⊗ vin ∈ Sn(Vn).

Note that if i1 > 2, then in ≥ ⋅ ⋅ ⋅ ≥ i2 ≥ i1 > 2, so we have h.s = 0, thus we get an sl(2)−module
we have

span{vi1 ⊗ vi2 ⊗⋯⊗ vin ∣ i1 > 2} ⊂ Sn(Vn)0 ∶= Sn
0 (2.16)

where Sn(Vn)0 denotes the 0-weight space of Sn(Vn). Assume now that i1 ≤ 2. Let 1 ≤ l, k ≤
n be such that i1 = i2, ⋅ ⋅ ⋅ = il = 1 and il+1 = il+2 = ⋅ ⋅ ⋅ = il+k = 2 ≠ ik+1, so we have

s = v1 ⊗ ⋅ ⋅ ⋅ ⊗ v1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

l times

⊗ v2 ⊗ ⋅ ⋅ ⋅ ⊗ v2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k times

⊗w

where w is such that sl(2).w = 0. Note now that we have

x.s = v1 ⊗ ⋅ ⋅ ⋅ ⊗ v1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

l times

⊗ (x.v2)⊗ ⋅ ⋅ ⋅ ⊗ v2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k times

⊗w +⋯ + v1 ⊗ ⋅ ⋅ ⋅ ⊗ v1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

l times

⊗ v2 ⊗ ⋅ ⋅ ⋅ ⊗ (x.v2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k times

⊗w =

= v1 ⊗ ⋅ ⋅ ⋅ ⊗ v1 ⊗ v1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

l+1 times

⊗ v2 ⊗ ⋅ ⋅ ⋅ ⊗ v2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k−1 times

⊗w +⋯ + v1 ⊗ ⋅ ⋅ ⋅ ⊗ v1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

l times

⊗ v2 ⊗ ⋅ ⋅ ⋅ ⊗ v2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k−1 times

⊗v1 ⊗w =
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= k v1 ⊗ ⋅ ⋅ ⋅ ⊗ v1 ⊗ v1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

l+1 times

⊗ ⋅ ⋅ ⋅ ⊗ v2 ⊗⋯⊗ v2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k−1 times

⊗w.

Iterating this argument we see that

xk.s = v1 ⊗⋯⊗ v1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

l+k times

⊗w.

It is clear then that xk+1.s = 0. One can similarly show that

yl.s = v2 ⊗⋯⊗ v2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k+l times

⊗w,

and yl+1.s = 0. Set now

Sn
t = span{vi1 ⊗ vi2 ⊗⋯⊗ vin ∣ it ≤ 2 < it+1}.

From the previous calculations, we can see that for any s ∈ Sn
t we have sl(2,C).s = Sn

t , so
Sn
t is a simple sl(2,C)−submodule of Sn(V ). If we set st = v1 ⊗⋯⊗ v1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
t times

⊗w., since x.st = 0,

we see that st is the highest weight vector of Sn
t . Note that

h.st = tst

hence the highest weight of Sn
t is t, thus dimSn

t = t+ 1. It is clear that these st’s along with
{vi1 ⊗ vi2 ⊗⋯⊗ vin ∣ i1 > 2} generate Sn(Vn), thus we actually have an equality in (2.16)

span{vi1 ⊗ vi2 ⊗⋯⊗ vin ∣ i1 > 2} = S0

which is trivial as an sl(2)−module, hence the decomposition into simples of Sn(Vn) as an
sl(2)−module is

Sn(Vn)∣sl(2) = Sn(Vn)0 ⊕
n

⊕
t=1

St

In particular, the largest dimension of a simple submodule of Sn(Vn) is n + 1 = dimSn
n .

If we look now at S(V ) as an sl(2)−module, since Sn(Vn) ⊂ S(V ), we have that for any
natural number n, there exists a simple submodule Sn

n ⊂ S(V ) such that dimSn
n = n + 1. In

particular, S(V ) consists infinitely many non-isomorphic simple sl(2)−submodules.
To make this more precise, there exist infinitely many non-isomorphic sl(2,C)−modules

N such that homsl(2,C)(N,S(V )) ≠ 0. Theorem 3.4 which will be proved early on in Chapter
3 shows that in this situation, S(V )∗ will not be integrable.

We have this way exhibited the first example of an integrable g−module for which its
dual is not in Intg. We emphasize this in the following note.

Comparison remark IV. As opposed to the finite dimensional theory of representations
of semisimple Lie algebras, even a category as reasonable as Intg of representations of locally
semisimple Lie algebras is not closed under algebraic dualization.

This shows that algebraic dualization is an operation which can lead to wild behavior
even of local modules, as S(V ) illustrates this. In the next section we will introduce a
restricted dual which behave in a much nicer way under certain conditions. Chapter 3 will
mostly be devoted towards studying the integrability of the duals of objects in Intg.
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2.3 Weight modules
Here we will introduce the category of weight g-modules, and in particular study its inter-
section with Intg. In particular we will define a restricted dual for integrable modules, which
turns out to have some nice properties. Before we proceed with the main contents of this
section, let us first make note of a technical observation.

Let I be an index set, and Mi ∈ g−mod for all i ∈ I. Set now

M =⊕
i∈I

Mi.

For each i ∈ I let pi ∶ M Ð→ Mi be the natural projections. Note first that given m ∈ M ,
there exists a finite subset I0 = {i1, . . . , in} ⊂ I and mj ∈Mij such that

m =m1 +⋯ +mn.

It is clear that pij(m) = mj for j = 1, . . . , n and ij ∈ I0. We also see that pi(m) = 0 for
i ∈ I/I0. This means that

m =⊕
i∈I

pi(m).

Define now maps βi ∶ M∗ Ð→ M∗
i by βi(f) = f ∣Mi . These are clearly linear maps. We

want to show that they are actually g−module morphisms. For this purpose, let x ∈ g, and
f ∈M∗. Let m ∈Mi. Note now that

βi(x.f)(m) = (x.f)∣Mi(m) = (x.f)(m) = −f(x.m) = −f ∣Mi(x.m) =

= −βi(f)(x.m) = (x.βi(f))(m)
hence we really get βi(x.f) = x.βi(f), thus these βi’s are actually morphisms of g−modules.

Consider now the map
s ∶M∗ Ð→∏

i∈I
M∗

i (2.17)

given by s =∏i∈I βi = (βi)i∈I . One can see that this will be a morphisms of g−modules. We
claim that this is actually an isomorphism.

First let f ∈M∗ be such that s(f) = 0. Let now m ∈M , and let I0 ⊂ I consist of those
indices i such that pi(m) ≠ 0. Naturally I0 will be a finite subset of I. Note now that
s(f) = 0 means that βi(f) = 0 for all i ∈ I0. In particular for all i ∈ I0 we have that

0 = βi(f)(pi(m)) = f ∣Mi(pi(m)) = f(pi(m)),

thus we obtain f(m) = f (∑i∈I0 pi(m)) = 0. Since m ∈ M was arbitrary, we get that f = 0,
thus ker s = 0, so s is an injective map.

Let now (fi)i∈I ∈∏i∈I M
∗
i . Define f ∈M∗ by

f(m) =∑
i∈I

fi(pi(m)).

Since we have that pi(m) ≠ 0 for only finitely many indices i ∈ I, we can see that f is
well-defined. One can then easily compute to see that f is a linear map, and note that for
a given j ∈ I we have for m ∈Mj

βj(f)(m) = f ∣Mj(m) =∑
i∈I

fi(pi(m)) = fj(pj(m)) = fj(m),

because pj(m) =m for m ∈Mj . Thus we get that s(f) = (fi)i∈I , i.e. s is a surjective map.
Hence we really have that s in (2.17) is an isomorphism of g−modules.

Remark 2.8. We remark that this discussion still holds for any Lie algebra g.
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2.3.1 Definitions, properties, and examples
Let g be a semisimple Lie algebra. A subalgebra h ⊂ g is called a splitting Cartan subalgebra
if h is abelian, and g decomposes as

g = h⊕ ⊕
0≠α∈h∗

gα (2.18)

where
gα ∶= {g ∈ g ∣ [h, g] = α(h)g for all h ∈ h},

If α ∈ h∗ is such that gα ≠ 0, we call α a root of g. In other words, we say that g admits a
splitting Cartan subalgebra h as above if it decompososes as a direct sum of h and its root
spaces.

Example 2.3. Let g = sl(∞). One can naturally identify sl(∞) as a subspace of Mat∞(C) =
{(mij)i,j∈N ∣ mij ∈ C}. Let now h ⊂ sl(∞) be the subspace consisting of finitary diagonal
matrices, i.e. the diagonal matrices in Mat∞(C) which have only finitely many non-zero
entries. One can see that [h,h] = 0, hence h is an abelian subalgebra of sl(∞). Clearly a
natural basis of h is {hi = Eii −Ei+1,i+1 ∣ i ≥ 1}. For each natural i, define a map ϵi ∶ hÐ→ C
by

ϵi
⎛
⎝

n

∑
j=1

xjEjj

⎞
⎠
= xi.

Set now αij ∶= ϵi − ϵj ∶ hÐ→ C for i ≠ j. Assume that i < j. Then if i + 1 < j one has

αij(hk) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if k ∈ {i, j − 1},
−1 if k ∈ {i − 1, j},
0 otherwise.

and if i + 1 = j

αi,i+1(hk) = αi,i+1(hk) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−1 if k = i − 1,
2 if k = i,
1 if k = i + 1,
0 otherwise.

We now want to compute [hk,Eij]. First note that

[Ekk,Eij] = EkkEij −EijEkk = δkiEkj − δkjEik,

so we have

[Ekk,Eij] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Eij for k = i,
−Eij for k = j,
0 otherwise.

Using this, we obtain first for i + 1 < j:

[hk,Eij] = [Ekk,Eij] − [Ek+1,k+1,Eij] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Eij for k ∈ {i, j − 1},
−Eij for k ∈ {i − 1, j},
0 otherwise.

= αij(hk)Eij

and get for i + 1 = j

[hk,Ei,i+1] =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−Ei,i+1 if k = i − 1,
2Ei,i+1 if k = i,
Ei,i+1 if k = i + 1,
0 otherwise.

= αi,i+1(hk)Ei,i+1
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Thus for any i < j we have that Eij ∈ gαij . If j < i, one can similarly show that Eij ∈ gαij .
This actually shows that CEij = gαij and therefore

sl(∞) = h⊕ ⊕
1≤i≠j

gαij .

Hence sl(∞) admits a splitting Cartan subalgebra. Note that this root space decomposition
of sl(∞) is very similar to that of the finite dimensional special linear algebras. This is no
coincidence, as in fact one can obtain the root decomposition of sl(∞) with regards to this h
also from the analogous root decomposition in the finite dimensional case. Indeed, we know
that

sl(n) = hn ⊕ sl(n)
α
(n)
ij

where hn is the subalgebra of sl(n) consisting of diagonal matrices. Comparing this with
the root decomposition of sl(n+1), with the standard Cartan subalgebra hn+1, if i, j < n+1,
from

[hk,Eij] = α(n)ij (hk)Eij in sl(n) and

[hk,Eij] = α(n+1)ij (hk)Eij in sl(n + 1)

we get that
α
(n+1)
ij ∣sl(n) = α

(n)
ij .

Note that we also have sl(n)
α
(n)
ij

= CEij = sl(n + 1)α(n+1)ij

. This means that for the natural

inclusions in ∶ sl(n) Ð→ sl(n + 1), we have that in(hn) ⊂ hn+1, and in(sl(n)α(n)ij

) ⊂ sl(n +

1)
α
(n+1)
ij

. Now by setting h = limÐ→hn, αij = limÐ→α
(n)
ij , and gαij = limÐ→g

α
(n)
ij

, since sl(∞) =
limÐ→ sl(n) we get that

sl(∞) = h⊕ ⊕
1≤i≠j

gαij .

which gives another way of decomposing sl(∞) into a direct sum of its Cartan subalgebra,
and its root spaces.

Remark 2.9. In [11] it is shown that if a locally semisimple Lie algebra g admits a splitting
Cartan subalgebra, then there exists index sets I1, I2, I3, and I4 and finite dimensional
simple Lie algebras ri for i ∈ I4, such that

g =⊕
i∈I1

sl(∞)⊕⊕
i∈I2

o(∞)⊕⊕
i∈I3

sp(∞) ⊎⊕
i∈I4

ri.

However this result will not be particularly relevant in this thesis.

Let us note that for g1 ∈ gα and g2 ∈ gβ for all h ∈ h we have that [h[g1, g2]] =
[[h, g1], g2] + [g1, [h, g2]] = α(h)[g1, g2] + β(h)[g1, g2] = (α + β)(h)[g1, g2], which gives us
[g1, g2] ∈ gα+β .

Let now M be any g-module. For any λ ∈ h∗ define

Mλ ∶= {m ∈M ∣ h.m = λ(h)m for all h ∈ h}.

If λ ∈ h∗ is such that Mλ ≠ 0, we call λ a weight for M , and call Mλ the λ-weight space of
M . If λ is not a weight for M , clearly Mλ = 0. We first note some computational properties
of weight spaces.

Lemma 2.19. The following statements hold:
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i) [gα,gβ] ⊂ gα+β for any roots α,β of g;

ii) gα.Mλ ⊂Mα+λ for any root α of g, and weight λ of M ;

iii) Mλ ∩ (∑µ≠λMµ) = 0, for any weight λ of M , where µ runs over all the weights of M
different from λ.

Proof. Part i) follows directly from the earlier computation of [h, [g1, g2]]. For part ii), let
g ∈ gα, and m ∈Mλ. For any h ∈ h we have

h.(g.m) = g.(h.m) + [h, g].m = λ(h)(g.m) + α(h)(g.m) = (α + λ)(h)(g.m)

hence g.m ∈Mα+λ.
iii) Let us first note that for λ ≠ µ, one has Mλ ∩Mµ = 0. Indeed, let m ∈Mλ non-zero,

and let h ∈ h be such that λ(h) ≠ µ(h). We then have h.m = λ(h)m ≠ µ(h)m, i.e. m ∉Mµ,
thus Mλ ∩Mµ = 0. Assume now that Mλ ∩ (∑µ≠λMµ) ≠ 0, i.e. there is some m ∈Mλ so that
m ∈ ∑µ≠λMµ. One then has pariwise distinct µ1,⋯, µn ≠ λ, and mi ∈Mµi

all non-zero, such
that

m =m1 +⋯ +mn. (2.19)

Denote λ = µ0 for convenience. Let m0 ∈ Mλ be such that it can be written as in (2.19)
with n minimal. From the previous discussion, we have n > 1. Let k ∈ N be such that
µ′i = µi∣hk

≠ µj ∣hk
= µ′j for all i, j ∈ {0,1,⋯, n} with i ≠ j, where hk = h ∩ gk. This is possible

because of our assumption that the µi are pairwise distinct. Assume that µ′1 ≠ 0. If xµ′1 ≠ µ′i
for all x ∈ C, then kerµ′1 ≠ kerµ′i, so one can find some h1 ∈ hk such that µ′1(h1) = 1 and
µ′i(h1) = 0. Let 1 ≤ s ≤ n be such that for i = 1,⋯, s one has µ′i = xiµ

′
1 for some xi ∈ C, and

for i = s + 1,⋯, n one has µ′i ≠ xµ′1 for all x ∈ C. If s = 1, we have

λ(h1)m0 = h1.m0 = h1.m1 =m1

which cannot be possible, as λ ≠ µ1 implies Mλ ∩Mµ1 = 0 from the beginning of the proof
of iii). Assume now that s ≥ 2. Then we have

λ(h1)m0 = h1.m0 = h1.m1 +⋯ + h1.mk =m1 + x1m2 +⋯xkmk

i.e.
h1.m0 −m0 = (x2 − 1)m2 +⋯ + (xs − 1)ms (2.20)

But h1.m0 ∈Mλ from ii), so h1.m0 −m0 ∈Mλ as well. Since µ′1 ≠ µ′2, we have that x2 −1 ≠ 0,
hence in (2.20) we have exhibited an element of Mλ which admits an expression as in (2.19),
with s−1 < n summands, and this contradicts our assumption on the minimality of n. Thus
we indeed have

Mλ

⎛
⎝
∩∑

µ≠λ
Mµ

⎞
⎠
= 0,

which is what we wanted to show.

Note that from Lemma 2.19, if A,B ⊂ h∗ are such that A ∩B = ∅, we get

(∑
λ∈A

Mλ) ∩
⎛
⎝∑µ∈B

Mµ

⎞
⎠
= 0 (2.21)
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2.3.2 The category gwt
h and the functor Γwt

h ∶ g −modÐ→ gwt
h

Let now g be a locally semisimple Lie algebra that admits a splitting Cartan subalgebra h.
Let M be a g−module, and consider the subspace of M

Γwt
h (M) ∶= span{Mλ ∣ λ ∈ h∗}.

As g admits a decomposition as in (2.18), from (2.21) we can see that

Γwt
h (M) = ⊕

λ∈h∗
Mλ (2.22)

and part ii) of Lemma 2.19 shows that Γwt
h (M) will be a g-submodule of M . In fact

this decomposition is a decomposition into h-submodules. Call M an h-weight module if
Γwt
h (M) = M , and denote by gwt

h the largest full subcategory of g consisting of h-weight
modules. We then can define a functor Γwt

h ∶ g-mod Ð→ gwt
h given on objects by (2.22), and

Γwt
h (f) ∶= f ∣Γwt

h
(M) for morphisms f ∶ AÐ→ B.

In this thesis, we are not especially concerned with the category gwt
h as a whole, but

rather in its intersection with Intg. However, we shall note a few examples and properties
of it which are useful in our context.

Example 2.4. Let g = sl(∞). In Example 2.3 we saw that h = {diagonals in sl(∞)} is a
splitting Cartan subalgebra, and have the root space decomposition

sl(∞) = h⊕ ⊕
1≤i≠j

gαij

Let now V be the natural representaion of sl(∞). Let {v1, . . . , vn, . . .} be the standard basis
of V . Then we have

hk.v1 =
⎧⎪⎪⎨⎪⎪⎩

v1 if k = 1,
0 otherwise.

and for i > 1 we have:

hk.vi =
⎧⎪⎪⎨⎪⎪⎩

−vi if k = i − 1,
vi if k = i.

So we have that every vi is a weight vector, with weight λi ∶ hÐ→ C given by:

λ1(h1) = 1; λ1(hk) = 0 for k > 1

and for i > 1

λi(hk) =
⎧⎪⎪⎨⎪⎪⎩

−1 if k = i − 1,
1 if k = i.

This means that Vλi = Cvi, and thus

V = span{v1, v2, . . .} = span{Vλi
∣ i ∈ N} =

∞
⊕
i=1

Vλi

hence V is a weight module. One could actually obtain this weight space decomposition
of V from the well known weight space decompositions of the natural representations of
sl(n)’s, in a similar way to what we did with the root space decomposition of sl(∞). One
can also show similarly that the conatural representation V∗ is also a weight module, but
we will soon see this in Example 2.6 after having investigated the funtor Γwt

h more.

We now proceed with noting a few more properties of the category gwt
h .
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Proposition 2.20. gwt
h is closed under taking submodules, quotients, finite direct sums, and

tensors. In particular, gwt
h is an abelian subcategory of g−mod.

Proof. For direct sums this follows immediately from (M ⊕N)λ =Mλ ⊕Nλ.
We now prove the proposition for quotients. Let M ∈ gwt

h , so we have

M = ⊕
λ∈h∗

Mλ

and let N ⊂ M be a g-submodule of M . Consider the quotient M/N . Note that for every
λ ∈ h∗ we have that (Mλ +N)/N ⊂ (M/N)λ. Really, given s ∈ (Mλ +N)/N , say s =m +N
with m ∈ Mλ, one has for any h ∈ h that h.s = h.(m + N) = h.m + N = λ(h)m + N =
λ(h)(m +N) = λ(h)s, i.e. s ∈ (M/N)λ. This implies

M/N ⊃ ⊕
λ∈h∗
(M/N)λ ⊃ span{(Mλ +N)/N ∣ λ ∈ h∗} =

= span{Mλ +N ∣ λ ∈ h∗}/N =M/N,

i.e. M/N =⊕λ∈h∗(M/N)λ, so M/N will also be an h-weight module.
In fact from this proof one can also see that (Mλ +N)/N = (M/N)λ for all λ ∈ h∗, so in

particular we have that for any pairwise distinct λ1,⋯, λk ∈ h∗ we have

span{(Mλi +N)/N ∣ i = 1,⋯, k} =
k

⊕
i=1
(Mλi +N)/N.

We now show that any submodule N will also be an h-weight module. For this, let
m ∈ N ⊂ M . As M is an h-weight module, there exist pairwise distinct λ1,⋯, λk ∈ h∗, and
mi ∈Mλi for i = 1,⋯, k such that n =m1 +⋯ +mk. Consider now the image of this element
m under the canonical map p ∶M Ð→M/N . We have

0 = p(m) = p(m1) +⋯ + p(mk) ∈
k

⊕
i=1
(Mλi

+N)/N

with p(mi) ∈ (Mλi +N)/N . Clearly then one must have p(mi) = 0, i.e. mi +N = p(mi) = N ,
hence mi ∈ N . Thus we have that mi ∈ N ∩Mλi = Nλi , so n ∈⊕λ∈h∗ Nλ. This shows that

N = ⊕
λ∈h∗

Nλ

i.e. N is also an h-weight module.
As for tensor products, given M and N weight modules, one can easily compute to show

that Mλ ⊗Nβ ⊂ (M ⊗N)λ+β , hence we get

M ⊗N =
⎛
⎝⊕λ∈h∗

Mλ

⎞
⎠
⊗
⎛
⎝⊕λ∈h∗

Nλ

⎞
⎠
= ⊕

λ,µ∈h∗
(Mλ ⊗Nµ) ⊂ ⊕

λ∈h∗
(M ⊗N)λ

hence M ⊗N will also be an h-weight module.

If M is a g-module, since Γwt
h (M) ⊂M , we have Γwt

h (M)λ ⊂Mλ for any λ ∈ h∗. Moreover,
given m ∈Mλ, from Proposition 2.20 we have m ∈ Γwt

h (M) with h.m = λ(h)m for all h ∈ h,
hence m ∈ Γwt

h (M)λ. This shows that Mλ = Γwt
h (M)λ, thus we get Γwt

h (Γwt
h (M)) = Γwt

h (M).
Now if N ⊂M , one has Nλ = N ∩Mλ, hence Γwt

h (N) ⊂ Γwt
h (M). We note a consequence of

this in the following remark.
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Remark 2.10. Let N be an h-weight submodule of M We then have N = Γwt
h (N) ⊂ Γwt

h (M),
i.e. Γwt

h (M) is the largest h-weight submodule of M .

Now using Remark 2.10 we can prove the following result.

Lemma 2.21. The following statements hold:

i) Γwt
h (A) ⊂ A for any A ∈ g-mod;

ii) Γwt
h (f) = f ∣Γwt

h
(M) for any morphism f ∶ AÐ→ B in g-mod;

iii) Γwt
h (A) = A ∩ Γwt

h (B) if A ⊂ B in g-mod.

Proof. i) and ii) are direct consequences of the definition of Γwt
h . For iii), as Γwt

h (A) ⊂ B is
a weight module, from Remark 2.10 we see that Γwt

h (A) ⊂ Γwt
h (B). This gives us Γwt

h (A) ⊂
A∩Γwt

h (B). Conversely, note that from Proposition 2.20 we have that A∩Γwt
h (B) will be a

weight module, as a submodule of Γwt
h (B). Again by Remark 2.20 we have that

A ∩ Γwt
h (B) ⊂ Γwt

h (A).

This way, altogether we obtain

Γwt
h (A) = A ∩ Γwt

h (B),

which is what we wanted to show.

Lemma 2.21 says that the functor Γwt
h satisfies the conditions of Proposition 1.9’. Then

Γwt
h will also be essentially surjective, and Γwt

h (g-mod) = gwt
h . In particular, Proposition 1.9’

implies the following result.

Proposition 2.22. Γwt
h is a left-exact functor, and it is right adjoint to the inclusion ⊂∶

gwt
h Ð→ g-mod

Applying Corollary 1.10 to our situation for the functor Γwt
h we get:

Corollary 2.23. The category gwt
h has enough injectives.

This concludes our investigation of gwt
h −mod as a category in itself, as our main focus

will be on integrable modules which are also weight modules.

2.3.3 Integrable weight modules
We start off by the following result, which is not of high importance in the context of what
follows, but it shows a similarity of what we are doing here with a different well-known
theory.

Proposition 2.24. Let M ∈ gwt
h −mod, m ∈M and g ∈ gα with α ≠ 0. Then

dim g(m) <∞⇐⇒ gn.m = 0 for some n ∈ N.

Proof. If gn.m = 0 for some natural n, then clearly dim g(m) <∞.
Conversely, let dim g(m) < ∞. Assume that m ∈ Mλ. As g ∈ gα, we have from part ii)

of Lemma 2.19 that gi.m ∈ Mλ+iα. Since dim g(m) < ∞, from part a) of Remark 2.1 we
have that there exists some natural n ∈ N0 and xi ∈ C for i = 0,1,⋯, n not all zero such that
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∑n
i=1 xig

i.m = 0. Without loss of generality, we may assume that xn ≠ 0. Then by setting
yi = − xi

xn
we get

gn.m =
n−1
∑
i=0

yig
i.m.

The left hand side of this equation lies in Mλ+nα, while the right hand side lies in⊕n−1
i=0 Mλ+iα.

From Lemma 2.19 part iii), we then must have gn.m = 0, which proves the claim.

This shows that if a weight module M is integrable, then each g ∈ gα for α ≠ 0 acts
locally nilpotently on M . This echoes the definition of integrable weight modules in the
theory of quantum groups, see for instance [9], and can be thought of as a justification for
the terminology ’integrable module’ in the context of locally semisimple Lie algebras.

We define Intwt
g,h to be the largest full subcategory of Intg consisting of h-weight mod-

ules. Naturally one can describe Intwt
g,h also as the largest full subcategory of gwt

h con-
sisting of integrable modules. In fact let M be any g-module, and consider the modules
Γwt
h (Γg(M)) and Γg(Γwt

h (M)). As Γwt
h (Γg(M)) is an h-weight submodule of M , we have

that Γwt
h (Γg(M)) ⊂ Γwt

h (M), and as Γwt
h (Γg(M)) is also integrable, as a submodule of

Γg(M), we have that Γwt
h (Γg(M)) ⊂ Γg(Γwt

h (M)). Arguing symmetrically, we get that

Γwt
h (Γg(M)) = Γg(Γwt

h (M)).

We can then define a functor Γwt
g,h ∶ g −modÐ→ Intwt

g,h by

Γwt
g,h(M) ∶= Γwt

h (Γg(M))

on objects, and Γwt
g,h(f) = f ∣Γwt

g,h
(M) on morphisms. Note now that if N ⊂M ∈ g−mod, since

N ⊂M , from Lemma 2.12 we have

Γwt
g,h(N) = Γwt

h (Γg(N)) = Γwt
h (N ∩ Γg(M)),

and since N ∩ Γg(M) ⊂ Γg(M), from Lemma 2.21 we get

Γwt
g,h(N) = N ∩ Γg(M) ∩ Γwt

h (Γg(M)) = N ∩ Γwt
g,h(M),

because Γwt
g,h(M) ⊂ Γg(M). This way we have proved the following result.

Lemma 2.25. The following statements hold:

i) Γwt
g,h(A) ⊂ A for any A ∈ g-mod,

ii) Γwt
g,h(f) = f ∣Γwt

g,h
(M) for any morphism f ∶ AÐ→ B in g-mod,

iii) Γwt
g,h(A) = A ∩ Γwt

g,h(B) if A ⊂ B in g-mod.

Lemma 2.25 says that the functor Γwt
g,h satisfies the conditions of 1.9’. Then Γwt

g,h will also
be essentially surjective, and Γwt

g,h(g −mod) = Intwt
g,h. In particular, Proposition 1.9’ implies

the following result.

Proposition 2.26. Γwt
g,h is a left-exact functor, and it is right adjoint to the inclusion

⊂∶ Intwt
g,h Ð→ g −mod.

Applying Corollary 1.10 to our situation for the funtor Γwt
g,h we get the following result.

Corollary 2.27. The category Intwt
g,h has enough injectives.
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Remark 2.11. Note that given M ∈ Intg, Theorem 2.15 shows that M∗ is an Intg−injective
object. Since Γwt

g,h(M∗) ∈ Intwt
g,h ⊂ Intg and Γwt

g,h is right adjoint to the inclusion Intwt
g,h ⊂

g−mod, we have that Γwt
g,h(M∗) is going to be an injective object of Intwt

g,h.

We have seen that Intg is not a semisimple category, as we have exhibited non-splitting
exact sequences in it. The following example shows that the subcategory Intwt

g,h of Intg is
not semisimple.

Example 2.5. Let g = sl(∞), and denote by M = Mat∞(C) the vector space consisting
of all infinite complex matrices m = (mij)i,j∈N. Note that one embeds gl(n) Ð→M via the
identification

g z→ ( g 0
0 0

) .

Via this, one then gets natural embeddings of sl(∞) ⊂ gl(∞) as subspaces of M . M is
made into an sl(∞)-module naturally, by letting sl(∞) act on it via commutators, i.e. for
g ∈ sl(∞) and m ∈M , using the above identification sl(∞) ⊂M , we set

g.m ∶= [g,m] = gm −mg with the usual product of matrices in M

Denote by D the subspace of M consisting of diagonal matrices. Set now N = g +D. We
want to show that N ⊂M is a submodule, and actually

Γwt
h (M) = N.

Let us again take the standard root space decomposition of sl(∞). In that case, we have
h = {finitary matrices in D}. Note first that given any d = (dii)i∈N ∈D, for any h ∈ h as both
h and d are diagonal matrices, they commute, so we have

h.d = [h, d] = 0.

In other words, we have that 0 is a weight of M , and D ⊂M0. Let now m ∈M , such that
m ∈M0. For n ∈ N let m(n)1 ,m

(n)
2 ,m

(n)
3 ,m

(n)
4 be matrices such that m(n)1 is of type n×n and

m = ( m
(n)
1 m

(n)
2

m
(n)
3 m

(n)
4

) . (2.23)

Then for i ≤ n − 1 and hi = Eii −Ei+1,i+1 as in Example 2.3 we have

0 = hi.m = [hi,m] = (
hi 0
0 0

)( m
(n)
1 m

(n)
2

m
(n)
3 m

(n)
4

) − ( m
(n)
1 m

(n)
2

m
(n)
3 m

(n)
4

)( hi 0
0 0

) =

=
⎛
⎝
[hi,m

(n)
1 ] him

(n)
2

−m(n)3 hi 0

⎞
⎠
.

In particular we have [hi,m
(n)
1 ] = 0 for all i ≤ n − 1. Let m

(n)
1 = r + d, where d is a diagonal

matrix in gl(n), and r ∈ sl(n). We then have that for each i ≤ n − 1

0 = [hi,m
(n)
1 ] = [hi, r] + [hi, d] = [hi, r].

As the Cartan subalgebra hn is spanned by hi for i ≤ n − 1, and r ∈ sl(n), we have that r
is a 0-weight vector in sl(n). In particular, this means that r is a diagonal matrix, which
means that m

(n)
1 = r + d is also a diagonal matrix.
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Thus we have shown that given an element m ∈M0, writing it as in (2.23) for any natural
n, we get that m(n)1 is a diagonal matrix. This implies that m will itself be a diagonal matrix,
hence m ∈D. This proves

M0 =D.

Let us now compute the other weight spaces of M . Let λ ≠ 0 and assume that m ∈ M
is non-zero and such that m ∈Mλ. Let n be a natural number such that when m is written
as in (2.23), one has m

(n)
1 ≠ 0 and λ(hi) ≠ 0 for some i ≤ n − 1. Write mi = m(n)i for this n.

Computing λ(h)m = h.m for h ∈ h ∩ sl(n) = hn as we did above, we get

λ(h)( m
(n)
1 m

(n)
2

m
(n)
3 m

(n)
4

) =
⎛
⎝
[h,m(n)1 ] hm

(n)
2

−m(n)3 h 0

⎞
⎠
.

In particular we can see that λ(h)m1 = [h,m1] for all h ∈ hn+1. We have m1 ∈ gl(n) ⊂ M .
As λ∣hn ≠ 0, we get that m1 is a weight vector for gl(n) as an sl(n)-module, of non-zero
weight. The weight space decomposition of gl(n) as an sl(n)-module is

gl(n) = ⊕
α∈hn

∗
gl(n)α = d⊕⊕

α∈Φ
sl(n)α

where d ⊂ gl(n) is the subspace of diagonal matrices, and Φ is the root system for sl(n). In
particular, the weight spaces of gl(n) are CEij for 1 ≤ i ≠ j ≤ n. This means m1 = xEpq for
some non-zero x ∈ C, and 1 ≤ p ≠ q ≤ n, or in other words the only non-zero entry mij in m
for 1 ≤ i, j ≤ n is mpq = x

Let now now k > n, and write m as in (2.23) for k. Naturally this k satisfies the conditions
of m

(k)
1 ≠ 0, and α(hi) ≠ 0 for some i < k. This way, get m

(k)
1 = yEuv for some non-zero

y ∈ C and 1 ≤ u ≠ v ≤ k, and muv = y is the only non-zero entry in m with 1 ≤ u, v ≤ k. This
implies that u = p, v = q and y = x. This way we have shown that there exists a natural n
and p ≠ q ≤ n such that for any k ≥ n, the only non-zero entry mij of m with 1 ≤ i, j ≤ k is
Epq = x. This means that m has no non-zero entries mij with i, j > n. Hence we have:

Mλ = CEpq

for some natural p ≠ q, and from this we get

Γwt
h (M) =D ⊕ ⊕

α∈h∗
Mα = sl(∞) +D = N.

We claim now that N is an integrable module. Let g ∈ sl(∞) and m ∈ N . If m ∈ sl(∞),
then g(m) ⊂ sl(∞), so dim g(m) <∞, as sl(∞) is an integrable module. Let now m = d ∈D,
and let n be natural such that g ∈ sl(n). Write d as in (2.23) for n. We then have:

g.d = [( g 0
0 0

) ,( d1 0
0 d2

)] = ( [g, d1] 0
0 0

)

i.e. we have g.d ∈ sl(n) ⊂ N . Iterating this argument, we get g(d) ⊂ sl(n) ⊂ M , so in
particular we get dim g(d) < ∞. Now if m ∈ N is any element, there is some s ∈ sl(n) and
d ∈ D such that m = s + d. We then have g(s + d) ⊂ g(s) + g(d), hence g(s + d) is also finite
dimensional. This proves that N is indeed integrable.

Remark 2.12. Note that this module N is of uncountable dimension, and it is the first
example of such an object of Intg in this thesis. This in particular shows that (see also
Theorem 2.9)

Locg ≠ Intg.
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Let us consider the action of sl(∞) on N a bit more. We saw that sl(∞).D ⊂ sl(∞), so
we get sl(∞).N ⊂ sl(∞). Consider now the short exact sequence

0Ð→ gÐ→ N Ð→ N/gÐ→ 0.

One can see that T = N/g = D/h, and from the previous discussion we have that T
is a trivial sl(∞)-module. An easy check will show that M does not contain any trivial
submodules, hence neither does N .

Remark 2.13. Note that this example is of a non-splitting short exact sequence in Intwt
g,h,

hence also in Intg. Example 2.4 showed that V ∈ Intwt
g,h, and Example 2.6 will showh that

V∗ ∈ Intwt
g,h as well. This means that the non-splitting short exact sequence in Example 1.2

is also an example in this category Intwt
g,h.

We will soon introduce a subcategory of Intwt
g,h which turns out to be semisimple, and

which will be introduced soon. Before we do it, let us collect some facts about duals of
weight modules, and integrable weight modules.

Let M ∈ gwt
h , i.e.

M = ⊕
λ∈h∗

Mλ.

From the discussion at the beginning of Section 2.3, viewing M and Mλ in this decomposition
of M as h−modules, we get that

M∗ = ∏
α∈h∗
(Mα)∗. (2.24)

This expression for the dual of a g-module which is a direct sum of a type of its subspaces
will also be used later. In this scenario, (2.24) coupled with the following lemma, gives us a
nice way of writing M∗ as a direct product of it weight spaces.

Lemma 2.28. Let M ∈ gwt
h -mod. Then (M∗)λ = (M−λ)∗ for any weight λ of M .

Proof. Let f ∈ (M−λ)∗, i.e. f ∈ M∗ such that f(m) = 0 for all m ∈ Mµ with µ ≠ −λ. One
naturally exhibits f as an element of M∗. Let h ∈ h be any element. For µ ≠ −λ, and
m ∈ Mµ, one has h.m ∈ Mµ, hence (h.f)(m) = −f(h.m) = 0 = λ(h)f(m). For m ∈ M−λ we
get

(h.f)(m) = −f(h.m) = λ(h)f(m).

As Mµ for µ ∈ h∗ span M , we get that (h.f)(m) = λ(h)m for all m ∈M , i.e. h.f = λ(h)f ,
so f ∈ (M∗)λ, which gives us (M−λ)∗ ⊂ (M∗)λ.

For the other inclusion, let f ∈ (M∗)λ. As f ∈M∗, from (2.24) one has f ∣Mµ = fµ ∈ (Mµ)∗
for µ ∈ h∗ are such that f = (fµ)µ∈h∗ . Let h ∈ h be any element, and let µ ≠ −λ. Now for
m ∈Mµ we have

µ(h)f(m) = f(µ(h)m) = f(h.m) = −h.f(m) = −(h.f)(m) = −λ(h)f(m).

As this is true for all h ∈ h, we must have f(m) = 0, i.e. fµ = f ∣Mµ = 0. Hence the determining
component of f is f−λ, and this is naturally unique. This way we get (M∗)λ ⊂ (M−λ)∗, thus
(M∗)λ ⊂ (M−λ)∗, which is what we wanted to show.

As an immediate consequence of Lemma 2.28, we get the following corollary.

Corollary 2.29. Let M ∈ gwt
h -mod. Then

Γwt
h (M∗) = ⊕

λ∈h∗
(Mλ)∗.
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Example 2.6. Let g = sl(∞) and let V∗ be the conatural representation of sl(∞). We know
that V∗ = limÐ→(Vn)∗, where Vn is the natural representation of sl(n). As {v1, . . . , vn} is a
basis for Vn, using Example 2.4 we get

Vn = Vλ1 ⊕ ⋅ ⋅ ⋅ ⊕ Vλn ,

and this gives us (Vn)∗ = V ∗λ1
⊕ ⋅ ⋅ ⋅ ⊕ V ∗λn

From Lemma 2.28, we get that

(Vn)∗ = (V ∗)−λ1 ⊕ ⋅ ⋅ ⋅ ⊕ (V ∗)−λn ⊂ Γwt
h (V ∗)

As V∗ is the direct limit of these V ∗n , we get that V ∗ ⊂ Γwt
h (V ∗). Now since Γwt

h (V ∗) is a
weight module by definition, from Proposition 2.20, we have that V∗, as a submodule of it,
will also be a weight module. Note that one has for all natural i

(V ∗)−λi
= (Vλi

)∗ ⊂ (Vi)∗ ⊂ V∗,

hence we get Γwt
h (V ∗) ⊂ V∗. This gives us

V∗ = Γwt
h (V ∗).

Let us now simplify the notation slightly. Given M ∈ gwt
h −mod, we denote

M∨ ∶= ⊕
α∈h∗
(Mα)∗ = Γwt

h (M∗)

and call it the restricted dual of M . Clearly M∨ is an h-weight module, and M∨
λ = (M−λ)∗.

In general, if M is integrable, we cannot expect that M∨ will also be integrable. However,
there exists a condition which allows us to deduce the integrability of M∨ in that situation.

Proposition 2.30. Let M ∈ Intg,h be such that dimMλ < ∞ for all λ ∈ h∗. Then M∨ is
integrable.

Proof. Let f ∈ (M∗)−λ ⊂M∨, and g ∈ gn. From Lemma 2.28 we see that (M∗)−λ = (Mλ)∗.
Since Mλ ⊂ M is a finite dimensional subspace, from Corollary 2.6 we have that N =
U(gn).Mλ ⊂ M is a finite dimensional gn−submodule, and there exists a gn−submodule
R ⊂M such that

M ∣gn = N ⊕R.

Since f ∈ (Mλ)∗, there exists some m ∈ Mλ such that f(m) = 1 and f(M/Cm) = 0. Since
m ∈ Mλ ⊂ N , we get that m ∈ N , hence f ∈ N∗. This means that for any r ∈ R we have
f(r) = 0.

Note now that for any r ∈ R, since gi.r ∈ U(gn).r ⊂ U(gn).R = R, we have

(gi.f)(r) = −f(gi.r) = 0.

This means that gi.f ∈ N∗ for all i ∈ N. This clearly implies

g(f) ⊂ N∗,

and since N∗ is finite dimensional, we get that dim g(f) <∞.
Let now Λ = {λ ∈ h∗ ∣ Mλ ≠ 0}. Let Bλ ⊂ (M∗)λ = (M−λ)∗ be a basis for (M−λ)∗.

Naturally Bλ are finite and Bλ∩Bµ = ∅ if λ ≠ µ. Set now B = ⋃λ∈ΛBλ, and one can see that
this will be a basis of M∨. Let now g ∈ g. In the first part of the proof we have shown that
dim g(f) <∞ for all f ∈ B, and from Remark 2.1 c), we get that M∨ is indeed integrable.

47



Next we prove another result regarding the modules M∨ for which M has finite dimen-
sional weight spaces. For this, we will take note of the fact that

(M∨)∨ = ⊕
α∈h∗
(M∨

α)∗ = ⊕
α∈h∗
(M∗

−α)∗ = ⊕
α∈h∗

Mα =M.

Note also that given two modules N ⊂ M ∈ Intwt
g,h which have finite dimensional weight

spaces, there exists a natural surjective map M∨ Ð→ N∨ given by

(Mλ)∗ ∋ f Ð→ f ∣N−λ

and then extended to M∨ linearly.

Proposition 2.31. Let L ∈ Intwt
g,h be such that dimLλ < ∞ for all λ ∈ h∗. If L is simple,

then so is L∨.

Proof. Let N ⊂ L∨ be a simpe submodule of L∨. From the discussion preceding this propo-
sition, we obtain a surjective map

s ∶ L = (L∨)∨ Ð→ N∨

But this means that L is a quotient of N , i.e. there exists some submodule S ⊂ N such that
M = N/S. As N is simple, we have S = 0 or S = N , hence we get N = 0 or N = L∨, which
proves that L∨ is indeed a simple module.

These two propositions show once again how by imposing finiteness conditions on rep-
resentations, we tend to get nicer objects. These results serve as motivation the following
definition.

Definition 2.3. Denote by Intfin
g,h the largest full subcategory of Intwt

g,h consisting of h-weight
modules M , such that for any λ ∈ h∗ one has dimMλ <∞.

We now prove the following result for Intfin
g,h.

Theorem 2.32. The category Intfin
g,h is semisimple.

Proof. Let L ∈ Intfin
g,h be a simple module. Note that

L∨ = Γwt
h (L∗) = Γg(Γwt

h (L∗)) = Γwt
h (Γg(L∗))

will be an injective object of Intwt
g,h from Remark 2.11, hence also of Intfin

g,h. From Proposition
2.30 and Proposition 2.31, we know that L∨ will also be a simple object of Intfin

g,h, hence we
get that L = (L∨)∨ will be an injective object of Intfin

g,h. Since every simple object of Intfin
g,h

turns out to be an injective object, we have that Intfin
g,h is indeed a semisimple category.

From Example 2.4 and Example 2.6 we saw that the natural and conatural representa-
tions V , and V∗ for g = sl(∞) are elements of Intfin

g,h. However in Example 1.2 we have seen
that V ⊗ V∗ is not a semisimple object, thus V ⊗ V∗ ∉ Intwt

g,h. One can also see that this is
true as follows. Let λ be a weight of V . We saw that −λ will be a weight of V∗. Note that
if v ∈ Vλ and f ∈ (V∗)−λ, for any h ∈ h we get

h.(v ⊗ f) = (h.v)⊗ f + v ⊗ (h.f) = λ(h)v ⊗ f − λ(h)v ⊗ f = 0.

This shows that Vλ ⊗ (V∗)−λ ⊂ (V ⊗ V∗)0, and as V has infinitely many weights λ, we get
that

dim(V ⊗ V∗)0 =∞,

thus really V ⊗ V∗ ∉ Intwt
g,h.
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Remark 2.14. This discussion shows Intfin
g,h is not closed under taking tensor products, and

is the first category of g−modules that we have mentioned so far which does not have this
property.

We now emphasize the importance of Theorem 2.32 in the following note.

Comparison remark V. Analogous to the finite dimensional theory of representations of
Lie algebras, every module in Intwt

g,h is semisimple. This establishes an analogue of Weyl’s
complete reducibility theorem for representations of locally semisimple Lie algebras.
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Chapter 3

Integrability of the dual, the socle
functors, and the category Tensg

In this chapter the main aim is to investigate the integrability of duals of integrable g−modules.
In Section 3.1 we give a necessary and sufficient condition for the integrability of M∗ when
M ∈ Intg. While useful, see for instance Example 2.2, this criterion is too difficult to imple-
ment in practice, and does not give too much information on what kind of subcategory of
Intg may be closed under algebraic dualization. It is however useful in deducing that the
property of having an integrable dual is closed under some algebraic operations.

In Section 3.2 we introduce the socle functors, and the socle filtration, and describe some
of their elementary properties. In Subsection 3.2.2 we give a generalization of Proposition
1.8, and for the case when M is simple we use this result to show how and injective object
I ∈ Intg containing M may look like. In particular we show that if a simple module L ∈ Intg
is such that Γg(L∗) has finite socle length, then its algebraic dual L∗ will contain a unique
simple submodule, which is integrable. The construction of this simple submodule, which
may be regarded as a restricted dual of M , is vaguely similar to the construction in 2.2.1.

In Section 3.3 we further investigate the socle functors, and in particular show that the
property of having finite socle length is preserved under many algebraic operations. We
also show how quotients of objects in the socle filtration of a g−module look like, and in
particular Corollary ?? gives a computational identity on the socle length of a g−module.

In Section 3.4 we introduce the final category of g−modules to appear in this thesis,
namely Tensg. This category is closed under algebraic dualization, and it turns that it
contains many g−modules that we have already encountered, including the natural repre-
sentation V . We give a characterization of the simple objects of this category. In partic-
ular, Tensg has the property that all of its simple objects are highest weight modules for
some Borel subalgebra. We conclude this chapter with Theorem 3.54, which shows that if
g ≅ sl(∞), o(∞), sp(∞), then the only finite dimensional g−modules are trivial.

Unless otherwise specified, in Subsection 3.2.1 and Section 3.3, g can be any Lie algebra.
In Section 3.4 g will be a classical locally semisimple Lie algebra. In all the other parts, g is
a general locally semisimple Lie algebra.

Sections 3.1, 3.2 are based on [10], while Section 3.4 also uses developments in [11].
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3.1 A criterion for integrability of the dual
We begin this chapter by stating and proving a result which gives a necessary and sufficient
condition for the dual of an integrable module to be integrable itself. In Example 2.2,
we constructed an integrable g−module M , whose dual M∗ contains infinitely many non-
isomorphic simple sl(2,C)−submodules. Theorem 3.4 shows why this fact leads to the non-
integrability of M∗. Before we state this result, we make a few observation on isomorphisms
of some g-modules and also prove a technical linear algebraic result.

Lemma 3.1. Let A,B be g-modules. One always has a natural inclusion morphism of
g-modules

A∗ ⊗B∗
ϕÐ→ (A⊗B)∗ given by ϕ(f ⊗ g)(a⊗ b) = f(a)g(b) (3.1)

This map is an isomorphism, unless both A and B are infinite dimensional.

Proof. We show first that this is a map of g-modules. Indeed, for x ∈ g, f ∈ A∗, g ∈ B∗ one
has

(x.ϕ(f ⊗ g))(a⊗ b) = −ϕ(f ⊗ g)(x.(a⊗ b)) = −ϕ(f ⊗ g)(x.a⊗ b + a⊗ x.b) =

= −f(x.a)g(b) − f(a)g(x.b) = (x.f)(a)g(b) + f(a)(x.g)(b) = ϕ(x.(f ⊗ g))(a⊗ b),

i.e. we have x.ϕ(f ⊗ g) = ϕ(x.(f ⊗ g)), so ϕ indeed is a map of g-modules. Note now that if
f, g ≠ 0, one can find a ∈ A and b ∈ B with f(a), g(b) ≠ 0, and we would have ϕ(f ⊗ g) ≠ 0.
This shows that ϕ is always an injective map.

Now if both A and B are of finite dimension, by cardinality reasons we have that ϕ will
be an isomorphism. Assume now that one of A or B is of finite dimension, say B. We show
now that ϕ is surjective. Pick a basis f1,⋯, fn of B∗. Let α ∈ (A⊗B)∗, and a ∈ A. Consider
αa ∈ B∗ given by αa(b) = α(a ⊗ b). An easy check will show that this map is linear. As
αa ∈ B∗, there exist xi(a) ∈ C such that αa = x1(a)f1 + ⋯ + xn(a)fn. As these coefficients
xi(a) are unique, one obtains maps xi ∶ A Ð→ C. Since αa1+a2

= αa1
+ αa2

, and αλa = λαa,
these maps are linear, i.e. xi ∈ A∗. On the other hand, for any a ∈ A and b ∈ B we have

α(a⊗ b) =∑
i

xi(a)fi(b) =∑
i

ϕ(xi ⊗ fi)(a⊗ b) = ϕ(∑
i

xi ⊗ fi)(a⊗ b),

hence α = ϕ(∑i xi ⊗ fi), so ϕ is indeed a surjective map.
Now if both A and B are of infinite dimension, then the cardinality of (A⊗B)∗ will be

strictly larger than that of A∗ ⊗B∗, so the map ϕ cannot be an isomorphism.

Next we prove another result which shows how one can express a certain direct sum of
simple g-modules in a slightly more convenient way.

Lemma 3.2. Let L ∈ Intg be a simple module, and I some index set. Set

N ∶=⊕
i∈I

Li; and P ∶= homg(L,N)

where Li ≅ L for all i ∈ I, and P is trivial as a g-module. Then the map ϕ ∶ P ⊗ L Ð→ N
given by ϕ(f ⊗m) = fi(m), for f ∈ P,m ∈ L, where fi ∶ L Ð→ Li are fixed isomorphisms for
all i ∈ I, is an isomorphism of g-modules.

Proof. As P is a trivial module, in order to understand how P looks like, it suffices to find
a basis of it as a vector space, i.e. want to find a basis of homg(L,N). We will show that
{fi ∣ i ∈ I} is a basis for P . Let us first treat a simpler case.

Case of finite I. Let I be finite, say I = {1, . . . , k}. In this case we have

N = L1 ⊕L2 ⊕⋯⊕Lk
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Now if fi ∶ L Ð→ N are the fixed maps fi ∶ L ≅ Li, one can see {f1,⋯, fk} ⊂ P is a linearly
independent set. Let now f ∶ L Ð→ N be any non-zero map. For each m ∈ L we have some
si(m) ∈ Li such that

f(m) = s1(m) +⋯ + sk(m). (3.2)

Note that these si(m) are well defined and unique, so we have maps si ∶ L Ð→ Li such
that (3.2) holds for every m ∈ L. One can see that these si will actually be morphisms of
g-modules. Indeed, linearity is obvious, and for x ∈ g we have

x.s1(m) +⋯ + x.sk(m) = x.f(m) = f(x.m) = s1(x.m) +⋯ + sk(x.m),

and as Li ⊂ N are submodules, we get x.si(m) = si(x.m) for all i = 1,2, . . . , k. Since L = Li

are simple integrable modules, from Schur’s Lemma for simple integrable g− modules, see
Theorem 2.10, we get si = 0 or si ∶ L ≅ Li and in particular there exist α1,⋯, αk ∈ C (not
all zero) such that si(m) = αifi(m). One then has f = ∑ si = ∑αifi. Thus every element
of homg(L,N) is a linear combination of {f1,⋯, fk}, which means that this set is actually
a basis of P , hence we get P ≅ Cn.

Case for general I. Let I be any index set. One can see that {fi ∣ i ∈ I} with fi ∶ L ≅ Li

is a linearly independent subset of P , as every finite subset of it will be linearly independent
by the first case. Then given any f ∈ P , one can again define si ∶ L Ð→ Li as above, and
show that they are maps of g-modules. Pick now any non-zero m ∈ L. As

f(m) =∑
i∈I

si(m),

we have that there exists a finite subset J ⊂ I such that si(m) = 0 for all i ∈ I/J . Since
ker si ≠ 0 for i ∉ J , and L is a simple g-module, we have ker si =M , hence si = 0. This gives
us

f = ∑
j∈J

sj .

As in the previous case, we have αj ∈ C for j ∈ J , not all zero, such that sj = αjfj(m), hence
we get that f really lies in span{fi ∣ i ∈ I}, i.e. P = span{fi ∣ i ∈ I} = CI .

Consider now the map
P ⊗L

ϕÐ→ N

given by ϕ(fi ⊗m) = fi(m), and then extended linearly to P ⊗L. A simple check will show
that this is a morphism of g-modules. Note that if 0 = ϕ(fi ⊗m) = fi(m), we get m = 0,
hence fi⊗m = 0. So kerϕ = 0, i.e. ϕ is injective. As for surjectivity, note that ϕ(fi⊗L) = Li,
hence we indeed see that ϕ is surjective. Hence the map ϕ is an isomorphism of g-modules.,
which is what we wanted to show.

The following is a technical result from linear algebra, which will be useful in the proof
of Theorem 3.4 below.

Lemma 3.3. Let V be a vector space, and S ⊂ V ∗ a finite subset consisting of non-zero
elements. Then there exists some v ∈ V such that f(v) ≠ 0 for all f ∈ S.

Proof. We prove this by induction on the cardinality of S, denoted #S. For #S = 1 the
result is clear. Assume now that we know the lemma holds if #S = n. Let now #S = n + 1.
Let S = S′ ∪ {g}, where #S′ = n. From the induction hypothesis, we have some v ∈ V such
that f(v) ≠ 0 or all f ∈ S′. If g(v) ≠ 0 we are done. If g(v) = 0, let w ∈ V such that g(w) ≠ 0.
For f ∈ S′ set Af ∶= {a ∈ C ∣ f(v+aw) = 0}. One can see that #Af ≤ 1. Pick then some a ∈ C
such that a ∉ Af for any f ∈ S′ and set v′ = v + aw. We then have f(v′) ≠ 0 for all f ∈ S′,
and g(v′) ≠ 0, thus the lemma is true for S with #S = n + 1 as well. The statement then
follows by induction.
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We are now ready to state and prove the main result of this section, which gives a
characterization of those integrable modules M which have integrable duals M∗.

Theorem 3.4. Let M ∈ Intg. Then M∗ is integrable if and only if for all i ∈ N there
exists only finitely many non-isomorphic finite dimensional simple gi-modules N such that
homgi

(N,M) ≠ 0

Proof. Let i ∈ N, and fix a Cartan subalgebra and Borel subalgebra hi ⊂ bi ⊂ gi. Adopt the
following notation

Λi = the set of dominant integral weights of gi,
V λ
i = the λ − highest weight simple gi −module,

Λi(M) = the subset of Λi consisting of those λ such that homgi
(V λ

i ,M) ≠ 0.

From Theorem 2.5 we know that we can write

M ∣gi
= ⊕

j∈Ij
Mij

for some index set Ij . We may assume these Mij to be simple, and by our definition of
Λi(M) we get a map sλ ∶ Ij Ð→ Λi(M) such that s(j) = λ⇐⇒Mij ≅ V λ

i . One then has

M ∣gi
= ⊕

j∈Ij
Mij = ⊕

λ∈Λi(M)
⊕

s(j)=λ
Mij .

Note that if we set Qλ ∶= homg(V λ
i ,M) = homg(V λ

i ,⊕s(j)=λMij), from Lemma 3.2 we get:

⊕
s(j)=λ

Mij = ⊕
s(j)=λ

V λ
i = Qλ ⊗ V λ

i

This gives us:
M ∣gi

= ⊕
λ∈Λi(M)

Qλ ⊗ V λ
i

As the V λ
i are finite dimensional, from the discussion at the beginning of Section 2.3 and

Lemma 3.1, we obtain

M∗ = ∏
λ∈Λi(M)

(V λ
i ⊗Qλ)∗ = ∏

λ∈Λi(M)
(V λ

i )∗ ⊗ (Qλ)∗.

Now we can start to prove the theorem. Assume that Λi(M) is finite. Then given any g ∈ g
one has a finite degree polynomial pλ ∈ C[z] such that for any g ∈ gi we have pλ(g).(V λ

i )∗ = 0.
Set then p(z) = ∏λ∈Λi(M) pλ(z), and one gets that p(g).M∗ = 0, hence M∗ will also be
integrable.

Conversely, let Λi(M) is infinite. Let now vλ ∈ V λ
i be a vector of weight λ, and set

wλ = vλ ⊗ q for some non-zero q ∈ Qλ. Note that for any h ∈ hi we have

h.wλ = h.(vλ ⊗ q) = h.vλ ⊗ q + vλ ⊗ (h.q) = λ(h)vλ ⊗ q = λ(h)wλ, (3.3)

i.e. wλ ∈ V λ
i ⊗Qλ is a λ-weight vector. Consider now the dual map w∗λ = fλ ∈ (V λ

i ⊗Qλ)∗
corresponding to wλ. As V λ

i is a finite dimensional gi−module, we know that it is a weight
module, with respect to a Cartan splitting subalgebra hi ⊂ gi. Since Qλ is a trivial gi-
module, we have that h.q = 0 for all h ∈ hi and q ∈ Qλ, thus Qλ is also a weight gi−module,
and in fact it has only one weight space, namely the 0-weight space. From Remark 1.1 we
see that Proposition 2.20 holds for gi as well, hence we have that V λ

i ⊗Qλ is also a gi-weight
module, and from (3.3)its weight space decomposition is

V λ
i ⊗Qλ =⊕

µ

(V λ
i )µ ⊗Qλ,
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where µ runs over the weights of V λ
i .

We now want to show that fλ as defined in the previous paragraph, is a −λ-weight vector
of (V λ

i ⊗Qλ)∗. To this end, note that for any h ∈ hi and m ∈ (V λ
i )λ ⊗Qλ we have

(h.fλ)(m) = −fλ(h.m) = −fλ(λ(h)m) = −λ(h)fλ(m),

and for m ∈ (V λ
i )µ⊗Qλ with µ ≠ λ we have that in particular m ∉ Cwλ, hence f(m) = 0. So

we indeed have that

(h.fλ)(m) = −µ(h)fλ(m) = 0 = −λ(h)fλ(m)

holds for all m ∈ V λ
i ⊗Qλ, hence h.fλ = −λ(h)fλ. Since h ∈ hi was arbitrary, we have that

fλ is a non-zero −λ weight vector of (V λ
i ⊗Qλ)∗.

Now using these weight vectors of (V λ
i ⊗Qλ)∗, we aim to investigate the integrability of

M∗. For this purpose, set f = (fλ)λ∈Λi(M). Note first that for any h ∈ hi we have

hi.v = (hi.fλ)λ∈Λi(M) = ((−λ(h))
ifλ)λ∈Λi(M).

Assume now that M∗ is integrable. Then as f ∈M∗, from Corollary 2.6, there exists a
finite dimensional gi-submodule R ⊂M∗ such that f ∈ R. Let n − 1 = dimR, and pick now
pairwise distinct λ1, . . . , λn ∈ Λi(M). Consider the set

S ∶= {αij = λi − λj ∣ 1 ≤ i < j ≤ n}.

From Lemma 3.3 we can find a non-zero hn ∈ hi such that αij(hn) ≠ 0 for all i < j, i.e.
such that λi(hn) ≠ λj(hn). Now as hn ∈ hi and f ∈ R, we have that hn(f) ⊂ R, hence
dimhn(f) ≤ dimR = n. In particular, the set {f, hn.f, h

2
n.f, . . . , h

n−1
n .f} ⊂ R, as it contains

more vectors than the dimension of R, is linearly dependent. Hence there exist α0, . . . , αn ∈ C
not all zero such that

0 =
n−1
∑
i=0

αih
i
n.f = (

k

∑
i=0

αi(−λ(hn))ifλ)
λ∈Λi(M)

i.e. we have for all λ ∈ Λi(M)
n−1
∑
i=0

λ(hn)iγi = 0 (3.4)

where γi = (−1)iαi, so not all γi are zero. In particular, for j = 1, . . . , n one can simultane-
ously write all the respective equalities as in (3.4) for λj , which looks like

Vanγ =
⎛
⎜⎜⎜
⎝

1 λ1(hn) ⋯ λ1(hn)n−1
1 λ2(hn) ⋯ λ2(hn)n−1
⋯ ⋯ ⋯ ⋯
1 λn(hn) ⋯ λn(hn)n−1

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

γ0
γ1
⋮
γn

⎞
⎟⎟⎟
⎠
= 0 (3.5)

But here Van is the Vandermonde matrix, for which one computes the determinant via

detVan =∏
i>j
(λi(hn) − λj(hn)).

Thus we see that detVan ≠ 0, which means that (3.5) has only one solution, the trivial
one, which contradicts the fact that not all γi are zero. Hence our assumption that M∗ is
integrable leads to a contradiction, thus Λi(M) being infinite indeed implies that M∗ cannot
be integrable. This concludes the proof of the theorem.
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Using this theorem, one gets the following consequence, which shows how in some cases
Intg can be closed under taking duals.

Corollary 3.5. Let M,N ∈ Intg. If M∗,N∗ ∈ Intg, then M ⊗N,M∗∗ ∈ Intg as well.

Proof. Let s ∈ N. As M,N ∈ Intg are such that M∗,N∗ ∈ Intg, from Theorem 2.5 and The-
orem 3.4 we get that there exist finite dimensional simple gs-modules M1,⋯,Mk,N1,⋯,Nl

and index sets I, J such that

M ∣gs =⊕
i∈I

Mi and N ∣gs =⊕
j∈J

Nj ,

where for each i ∈ I and j ∈ J we have Mi ∈ {M1,⋯,Mk} and Nj ∈ {N1,⋯,Nl}. Note now
that

(M ⊗N)∣gs =M ∣gs ⊗N ∣gs = ⊕
i∈I,j∈J

(Mi ⊗Nj) ,

and from the discussion at the beginning of Section 2.3, we have

M∗∣gs = (M ∣gi
)∗ =∏

i∈I
M∗

i .

By decomposing Mi⊗Nj ’s into direct sums of simple gs-modules, we see that all the possible
finite dimensional simple gs-modules K for which homgs(K,M ⊗ N) ≠ 0 are such that
homgs(K,Mi⊗Nj) ≠ 0 for some 1 ≤ i ≤ k and 1 ≤ j ≤ l. Clearly then there exist only finitely
many such possible K’s, and by virtue of the previous theorem, we must have M⊗N ∈ Intgi

.
As for M∗, we see that all the M∗

i are finite dimensional simple gs-modules. Let K be a
finite dimensional simple gs-module for which homgs

(K,M∗) ≠ 0, and let f ∈ homgi
(K,M∗)

non-zero. Since K simple and finite dimensional, f will be injective and f(K) finite dimen-
sional. Denote by pi ∶ M∗ Ð→ M∗

i the natural projections, which will in particular be
morphisms of gs−modules. Then there exists some i ∈ I such that pi(f(K)) ≠ 0. This means
that pi ○ f ∶ K Ð→ f(K) Ð→ M∗

i is a non-zero map of gs−modules, thus it will be an iso-
morphism, so we get that K ≅M∗

i . As there are finitely many non-isomorphic gs−modules
M∗

i , from Theorem 3.4, we get that (M∗)∗ will also be integrable.

Remark 3.1. Let M ∈ Intg. Adopt the notation

M∗0 =M ; M∗n = (M∗(n−1))
∗
,

i.e. M∗n is M dualized n times. Note that Corollary 3.5 says that if M satisfies the
conditions of Theorem 3.4, then so does M∗. Iterating this argument, we see that M∗n

satisfies the conditions of Theorem 3.4 for all n ∈ N0, so in particular we have

M∗n ∈ Intg

for all n ∈ N0.

3.2 The socle functors; socle length
Section 3.1 gives a nice result towards the problem of understanding when the dual of an
integrable module is itself integrable. However, the necessary and sufficient condition of
Theorem 3.4 can be a tedious one to check in practice. In this section, we first introduce
a class of functors and also a certain filtration for objects of g−mod. By imposing some
finiteness conditions on these filtrations, we will be able to give some conclusions on when
the dual of an integrable module is also integrable.
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3.2.1 Definitions and injective objects in soci(g −mod)
Let g be any Lie algebra.

Given M ∈ g−mod, set C(M) ∶= {S simple g − submodule of M}.

Definition 3.1. The functor soc ∶ g −modÐ→ g −mod given by

soc(M) ∶= ∑
S∈C(M)

S = largest semisimple g − submodule of M (3.6)

on objects, and soc(f) = f ∣soc(M) on morphisms f ∶M Ð→ N , is called the socle functor.
One sees immediately that if S ⊂ M is a semisimple submodule, then S ⊂ soc(M). We

can then also define the higher socle functors soci ∶ g − mod Ð→ g − mod inductively by
setting soc0 = soc and

soci+1(M) ∶= p−1i (soc(M/soci(M))),

on objects, where pi ∶M Ð→M/soci(M) is the canonical map. On morphisms f ∶M Ð→ N ,
we define the maps soci(f) to be just the adequate restrictions of f . Since pi(soci(M)) = 0,
we have soci(M) ⊂ soci+1(M), thus we obtain what we call the socle filtration of M

0 ⊂ soc(M) ⊂ soc1(M) ⊂ ⋯ ⊂ soci(M) ⊂ ⋯.

We say that the socle filtration of M is exhaustive if

limÐ→ soci(M) =⋃
i

soci(M) =M.

Say that M has finite socle length if there exists some k ∈ N0 such that sock(M) = M . In
that case, denote by ll(M) the smallest natural number k such that sock(M) =M , and call
it the socle length of M . Note that Remark 1.5 says that for g a locally semisimple Lie
algebra, there exist non-zero g−modules, even local ones, such that their socle filtration is
just 0. Let us now note a property of the socle filtration of a g-module.

Proposition 3.6. Let i ∈ N0. Then for any M ∈ g−mod, the following holds

soci+1(M)/soci(M) = soc(M/soci(M)),

Proof. By definition, we have

soci+1(M) = p−1i (soc(M/soci(M))),

where pi ∶M Ð→M/soci(M) is the canonical map. The restriction of this pi to soci+1(M)
gives us a surjective map

p′i = pi∣soci+1(M) ∶ soci+1(M)Ð→ soc(M/soci(M)).

As p′i is the restriction of pi, we get

kerp′i = kerpi ∩ soci+1(M) = soci(M) ∩ soci+1(M) = soci(M),

hence we get really get that p′i induces the equality

soci+1(M)/soci(M) = soc(M/soci(M)),

which is what we wanted to show.
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Remark 3.2. Proposition 3.6 says that the appropriate quotient of any two neighboring
elements in the socle filtration of a g−module M is a semisimple module. In Proposition
3.23 we will give a generalization of the result in Proposition 3.6.

We now want to study the socle functors. Before we do this, we give a technical result
from commutative algebra, which will be useful in proving Proposition 3.8.

Lemma 3.7. Let A ⊂ B, P ⊂ A, and Q ⊂ B be g−modules with Q∩A = P . Then there exists
a natural injection α ∶ A/P Ð→ B/Q. Let f ∶ AÐ→ A/P , and g ∶ B Ð→ B/Q be the canonical
maps. If R ⊂ A/P and S ⊂ B/Q are such that S∩α(A/P ) = α(R), then f−1(R) = A∩g−1(S).

Proof. Consider the map α′ ∶ A Ð→ B/Q given by α(a) = a +Q. Note that if α′(a) = 0, we
have a+Q = Q, i.e. a ∈ Q. This means a ∈ A∩Q = P . Thus kerα′ = P , so we get an induced
injection α ∶ A/P Ð→ B/Q.

Let now R ⊂ A/P and S ⊂ B/Q be such that

α(R) = S ∩ α(A/P )

Note first that we have
α(R) = (f−1(R) +Q)/Q.

Indeed, if r ∈ R, we have some x ∈ f−1(R) such that r = f(x) = x+P . Then α(r) = x+Q, so
we see that α(R) ⊂ (f−1(R) +Q)/Q. Conversely let u ∈ (f−1(R) +Q)/Q. This means that
there exists some x ∈ f−1(R) and q ∈ Q such that u = x+q+Q. But note that since q ∈ Q, we
have u = x+Q = α(x+P ) = α(f(x)) ∈ α(R). So we indeed get that α(R) = (f−1(R)+Q)/Q.
Applying this argument for R = A/P , we see that we also have α(A/P ) = (A +Q)/Q. Note
now that since S = g−1(S)/Q, we have

S ∩ α(A/P ) = g−1(S)/Q ∩ (A +Q)/Q = (g−1(S) ∩ (A +Q))/Q,

thus g−1(S ∩ α(A/P )) = g−1(S) ∩ (A +Q). Now since α(R) = g−1(α(R))/Q, from α(R) =
S ∩ α(A/P ) we obtain

f−1(R) +Q = g−1(α(R)) = g−1(S ∩ α(A/P )) = g−1(S) ∩ (A +Q).

Let now U ⊂ A any subspace. If x ∈ (U +Q) ∩A, we have that there exists some u ∈ U
and q ∈ Q such that x = u + q. Since x ∈ A, we get that q = x − u ∈ A, i.e. q ∈ Q ∩ A = P .
Thus we get that x ∈ U + P . This gives us (U + Q) ∩ A ⊂ U + P . If P ⊂ U , it is clear
that (U + Q) ∩ A ⊂ U + P = U ⊂ (U + Q) ∩ A, thus (U + Q) ∩ A = U in that case. Since
P ⊂ f−1(R) ⊂ A, intersecting both sides of(3.2.1) with A, and using the discussion here for
U = f−1(R), and U = A since P ⊂ U in both cases, we get

f−1(R) = g−1(S) ∩ (A +Q) ∩A = g−1(S) ∩A,

which is what we wanted to show.

We are now ready to prove the following result

Proposition 3.8. For any i ∈ N, the following statements hold:

i) soci(M) ⊂M for any M ∈ g−mod;

ii) soci(f) = f ∣soci(M) for any morphism f ∶ AÐ→ B in g−mod;

iii) soci(M) =M ∩ soci(N) if M ⊂ N in g−mod.
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Proof. i) and ii) are evident by the definition of soci. We now prove iii) by induction on
i. For i = 0, we have that soc(M) is a semisimple submodule of M , hence also of N , so
we have soc(M) ⊂ M ∩ soc(N). Conversely, we have that M ∩ soc(N) is a submodule
of M , and is actually semisimple as a submodule of soc(N), and as such, we will have
M ∩ soc(N) ⊂ soc(M), i.e. soc(M) =M ∩ soc(N).

Assume now that this result holds for i ∈ N, i.e. that soci(N) ∩M = soci(M). We want
to show that our claim is also true for i + 1. In the context of Lemma 3.7, set

A =M ; B = N ; P = soci(M) ⊂M = A; Q = soci(N) ⊂ N = B;

pi ∶M Ð→M/P ; qi ∶ N Ð→ N/Q the canonical maps

From the induction hypothesis, we have Q ∩ A = soci(N) ∩M = soci(M) = P . Set now
R = soc(A/P ) and S = soc(B/Q). Note that as our canonical map α ∶ A/P Ð→ B/Q is
injective, we have that α(A/P ) ⊂ B/Q. Now using the statement of iii) for i = 0 which we
proved above, we see that

S ∩ α(A/P ) = soc(B/Q) ∩ α(A/P ) = soc(α(A/P )).

Consider α ∶ A/P Ð→ α(A/P ), which is an isomorphism of g−modules. As soc(A/P ) is a
semisimple submodule of A/P , we have α(soc(A/P )) ⊂ soc(α(A/P )). If L ⊂ soc(α(A/P )) is
simple, as α is an isomorphism, we have that α−1(L) ⊂ A/P is also simple, hence α−1(L) ⊂
soc(A/P ). This means that α−1(soc(α(A/P ))) ⊂ soc(A/P ). Thus we indeed get

α(soc(A/P )) = soc(α(A/P )),

which gives us
S ∩ α(A/P ) = α(soc(A/P )) = α(R).

Since all the conditions of the Lemma 3.7 are satisfied, we get

soci+1(M) = p−1i (R) = A ∩ q−1i (S) =M ∩ soci+1(N).

The proposition then follows by induction on i, which is what we wanted to show.

Proposition 3.47 says that the functors soci satsify the conditions of Proposition 1.9’.
Then soci will also be essentially surjective. In particular, Proposition 1.9’ implies the
following result.

Corollary 3.9. soci ∶ g −mod Ð→ g −mod are left-exact functors, and right adjoint to the
inclusions ⊂∶ soci(g −mod)Ð→ g −mod, i ∈ N.

Applying Corollary 1.10 to our situation for the functors soci we get

Corollary 3.10. soci(g −mod) has enough injectives, i ∈ N.

Remark 3.3. Let S ⊂ g−mod denote the full subcategory of g−mod consisting of semisimple
submodules. Note that if M is semisimple, then soc(M) =M , so we have soc(g−mod) = S.
Then from Corollary 3.10 we get that S has enough injectives.

Note now that if one has M ⊂ N ∈ g-mod, and sock(N) = N , then sock(M) = M ∩
sock(N) =M ∩N =M . From this observation one gets the following consequence of Propo-
sition 3.47

Corollary 3.11. Let M ∈ g-mod have finite socle length. Then every submodule K ⊂ M
also has finite socle length, and ll(K) ≤ ll(M) for any submodule K ⊂M .
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3.2.2 A generalization of Proposition 1.8
From now on in this section, let g be a locally semisimple Lie algebra.

We will now give a stronger result from the setting of Proposition 1.8, and use it to try
and understand how injective hulls of a particular type of simple integrable modules might
look like. There, we saw that given a local module M = limÐ→Mi, with Mi’s containing simple
gi-submodules Li such that dimhomgi(Li, Li+1) > 2, there will then exist a local module
Z = limÐ→Zi which fits into a non-split short exact sequence

0Ð→M Ð→ Z Ð→ LÐ→ 0,

where Zi = Mi ⊕ Li, and L = limÐ→Li for some already fixed morphisms fi ∶ Li Ð→ Li+1 of
gi−modules. Denote Z(−1) ∶= 0, Z(0) ∶= M , and Z(1) ∶= Z. Iterating this process for the
newly obtained extensions we obtain non-split short exact sequences

0Ð→ Z(k) Ð→ Z(k+1) Ð→ LÐ→ 0. (3.7)

Note that can use the same L on (3.7) for all k ∈ N0 ∪ {−1}. We will soon show that under
the conditions of Proposition 1.8, one can get an even stronger conclusion for the short exact
sequences in (3.7).

For this purpose, let us digress shortly into an observation from commutative algebra.
Let

0Ð→ AÐ→ B
pÐ→ C Ð→ 0 (⋆)

be a short exact sequence in g−mod, and let D ⊂ A be a g−submodule. Consider now
the map α′ ∶ A Ð→ B/D given by α′(a) = a + D. Clearly we have kerα′ = D, so this
induces an injective map α ∶ A/D Ð→ B/D. Consider now the map β ∶ B/D Ð→ C given by
β(b +D) = p(b). Note that if b1 +D = b2 +D, there exists some d ∈ D such that b2 = b1 + d.
This gives us

β(b2 +D) = p(b2) = p(b1 + d) = p(b1) = β(b1 +D)

because p(d) = 0 since d ∈ A. This means that β is well defined. Note that (β ○ α)(a +D) =
β(a +D) = p(a) = 0, hence we have imα ⊂ kerβ. Note also that from 0 = β(b +D) = p(b),
we get that b ∈ kerp, hence b ∈ A, thus we have b +D ∈ A/D. This shows what kerβ ⊂ imα.
Hence we have obtain the following sequence

0Ð→ A/D Ð→ B/D Ð→ B/AÐ→ 0 (⋆⋆)

which is also short exact. Assume now that (⋆) splits, i.e. that B = A⊕C. Note then that

B/D = (A⊕C)/D = A/D ⊕C

since D ∩ C ⊂ A ∩ C = 0, thus we have that (⋆⋆) also splits. This way we have proved the
following result.

Lemma 3.12. If (⋆) splits, then (⋆⋆) also splits.

Applying this discussion to (3.7) for the inclusion Z(k−1) ⊂ Z(k) one gets a new short
exact sequence:

0Ð→ L = Z(k)/Z(k−1) Ð→ Z(k+1)/Z(k−1) Ð→ L = Z(k+1)/Z(k) Ð→ 0. (3.8)

We are now ready to state and prove a generalization of Proposition 1.8.
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Proposition 3.13. Let M ∈ Intg be a local module with exhaustion {Mi}i∈N, and assume
that there exists some natural number n and simple gi−modules Li ⊂Mi with i > n such that
dimhomgi(Li, Li+1) > 2. Then there exists a locally simple module L = limÐ→Li ∈ Intg, and
local modules Z(k) ∈ Intg which fit into a short exact sequence as in (3.7). Furthermore, one
can choose Z(k) such that (3.7) and (3.8) are non-split.

Proof. Set Z(0) =M . As we did in Proposition 1.8, one can get Z(1) = Z such that

0Ð→ Z(0) Ð→ Z(1) Ð→ LÐ→ 0

is a non-split short exact sequence, and since Z(1)/Z(−1) ≅ Z(1), we get that (3.8) for k = 0
is the same as (3.7), hence it will also be non-split. We note now how (⋆) and (⋆⋆) in the
context of our situation look like

0Ð→ Z(k−1) Ð→ Z(k) Ð→ LÐ→ 0, (3.7′)

0Ð→ LÐ→ Z(k)/Z(k−2) pÐ→ LÐ→ 0 (3.8′)

for k ∈ N. Assume now that k ∈ N is such that (3.7′) and (3.8′) do not split for l = 1, . . . , k−1.
From the discussion at the beginning of this subsection, we know that these extensions were
defined via

Z
(l)
i ∶= Li ⊕Z

(l−1)
i = Li ⊕ (Li ⊕Z

(l−2)
i )

and the structure maps a
(l)
i ∶ Z

(l)
i Ð→ Z

(l+1)
i given by

a
(l)
i (x,x

′, z) = (fi(x), r(l−1)i (q) + fi(x′), t(l−2)i (x′) + a(l−2)i (z)),

where x,x′ ∈ Li, z ∈ Z(l−2)i ,fi ∶ Li Ð→ Li+1 are the structure maps for L, while t
(l−2)
i ∶

Li Ð→ Z
(l−2)
i+1 and r

(l−1)
i ∶ Li Ð→ Li+1 are the chosen injective morphisms (in the spirit of

Proposition 1.8) that make (3.7′) and (3.8′) non-split.
Let us now set, as previously

Z
(k)
i ∶= Li ⊕Z

(k−1)
i = Li ⊕ (Li ⊕Z

(k−2)
i ),

and define the structure maps

a
(k)
i (x,x

′, z) = (fi(x), r(k−1)i (x) + fi(x′), t(k−2)i (x′) + a(k−2)i (z)),

where x,x′ ∈ Li, z∈ Z(k−2)i , and again t
(k−2)
i ∶ Li Ð→ Z

(k−2)
i+1 and r

(k−1)
i ∶ Li Ð→ Li+1 being

non-zero injections. An easy check will show that a
(k)
i are injective maps, so one can set

Z(k) = limÐ→Z
(k)
i . We then get two short exact sequences as in (3.7′) and (3.8′). We want to

find {t(k−2)i }i>n and {r(k−1)i }i>n such that these two sequences do not split. From Lemma
3.12, we see that it suffices to find families of maps {t(k−2)i }i>n and {r(k−1)i }i>n so that (3.8′)
does not split.

Let us assume for a moment that (3.8′) does split. We then have a map α ∶ L Ð→
Z(k)/Z(k−2) such that

idL = σ ∶ L
αÐ→ Z(k)/Z(k−2) pÐ→ L.

From Proposition 1.6, as L is locally simple, we may assume that α(Li) ⊂ Z(k)i /Z
(k−2)
i . We

now want to describe this map α in more explicit terms. Given x ∈ L, say x ∈ Li we have
α(x) = z + Z(k−2)i for some z ∈ Z(k)i , say z = (a, b, c) for some a, b ∈ Li and c ∈ Z(k−2)i . We
then have σ(x) = p(z + Z(k−2)i ) = (a, b, c) + Z(k−1)i = (a,0,0) + Z(k−1)i as b, c ∈ Z(k−1). As
σ = idL, we get that (x,0,0)+Z(k−1)i = idL(x) = σ(x) = (a,0,0)+Z(k−1)i , so we obtain x = a.
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Thus far we have that for every x ∈ L there exists some b ∈ L, and c ∈ Z(k−2) such that

α(x) = (x, b, c) +Z(k−2)

Assume now that (x, b, c) + Z(k−2) = (x, b′, c′) + Z(k−2) for some b, b′ ∈ L and c, c′ ∈ Z(k−2).
Again passing to the local gi−module for which x ∈ Li, we get that (0, b− b′, c− c′)+Z(k−2)i ,
which gives us b− b′ ∈ Z(k−2)i . As b− b′ ∈ Li, and Li ∩Z(k−2)i = 0, we get that b = b′. Hence for
any x ∈ L, there exists a unique b ∈ L such that α(x) = (x, b,0)+Z(k−2), where have removed
c from the notation, as c ∈ Z(k−2). Thus we have a map β ∶ LÐ→ L such that for every x ∈ L
we have

α(x) = (x,β(x),0) +Z(k−2).

An easy check shows that β is indeed a map of g−modules. From Proposition 1.6, for large
enough i we have β(Li) ⊂ Li, hence we get maps βi ∶ Li Ð→ Li such that β = limÐ→βi. Let
now x ∈ Li. Since (x,0,0) +Z(k−2) = (fi(q),0,0) +Z(k−2), we get

(x,βi(x),0) +Z(k−2) = α(x) = α(fi(x)) = (fi(x), βi+1(fi(x)),0) +Z(k−2).

Hence, there exists some z ∈ Z(k−2) (may as well assume z ∈ Z(k−2)i for large enough i) such
that (x,βi(x),0) = (fi(x), βi+1(fi(x)), z) in Z(k). From the structure maps of Z(k), we get

(fi(x), βi+1(fi(x)), z) = a(k)i (x,βi(x),0) = (fi(q), r(k−1)i (x) + fi(βi(x)),⋯)

which in particular from the second coordinates gives us r(k−1)i (x)+fi(βi(x)) = βi+1(fi(x)),
i.e.

ri = βi+1 ○ fi − fi ○ βi. (3.9)

From Schur’s Lemma from the finite dimensional theory of representations of Lie algebras,
we have dimhomgi(Li, Li) = 1. If by Si ⊂ homgi(Li, Li+1) we denote the subspace of maps
r
(k−1)
i ∶ Li Ð→ Li+1 which make (3.8′) split (hence also (3.7′)), knowing that the fi are fixed,

from (3.9) we get that dimSi ≤ 2 < dimhomgi(Li, Li+1). Hence not all choices of {r(k−1)i }i>n
make these (3.7′) split. Thus there exists a choice of {t(k−2)i }i>n and {r(k−1)i }i>n which make
(3.7′) and (3.8′) for k non-split.

The statement of the theorem then follows by induction on k.

This, in itself, is a tedious proposition to prove. However, one can see it as a stronger
version of Proposition 1.6. The importance of this technical result lies in that it tells us
something about injective hulls of certain simple g-modules in Intg.

Note first that Proposition 3.13 gives us a sequence of non-split inclusions

0 ⊂M ⊂ Z(1) ⊂ Z(2) ⊂ ⋯ ⊂ Z(n) ⊂ ⋯. (3.10)

The following result discusses the socle lengths of these g−modules Z(n) in (3.10).

Proposition 3.14. Let Q ∈ Intg be a simple module that satisfies the conditions of Propo-
sition 3.13. Then the following statements hold:

i)
0 ⊂ Q ⊂ Z ⊂ ⋯ ⊂ Z(n)

is a sequence consisting of all the submodules of Z(n) for any n ∈ N0;

ii) soci(Z(n)) = Z(i) for all i, n;

iii) ll(Z(n)) = n.
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Proof. i) We prove this by induction on n. For n = 0, we have Z(0) = Q simple so the claim
is trivially true.

Let n = 1. We then have Z(1) = Z fits in a non-split short exact sequence

0Ð→ QÐ→ Z Ð→ LÐ→ 0.

Let M ⊂ Z be any submodule, and consider N =M +Q ⊂ Z. We then have N/Q ⊂ Z/Q ≅ L,
so we must have N/Q = 0 or N/Q = L, i.e. N = Q or N = Z. If N = Q we have that M ⊂ Q,
hence we get M ∈ {0,Q}. Let now N = Z. Since M +Q = Z, and the short exact sequence
above does not split, we cannot have M ∩Q = 0, so we get Q∩M ≠ 0, and since Q is simple,
we get Q ⊂M . But then Z = N =M +Q =M . So really the only submodules of Z are 0,Q,
and Z.

Assume now that the statement i) is true for n ∈ N0, so that

0 ⊂ Q ⊂ Z ⊂ ⋯ ⊂ Z(n)

is a sequence consisting of all the submodules of Z(n). We now want to look at the sub-
modules of Z(n+1). Let M ⊂ Z(n+1) be a submodule. Let N =M + Z(n) ⊂ Z(n+1). We then
have N/Z(n) ⊂ L, hence we get N/Z(n) = 0 or N/Z(n) = L, i.e. N = Z(n) or N = Z(n+1).
If N = Z(n), we have M + Z(n) = N = Z(n), i.e. get M ⊂ Z(n), hence M ∈ {0,Q, . . . , Z(n)}
by the induction hypothesis. If N = Z(n+1), we get that M + Z(n) = N = Z(n+1). Now
since the inclusion Z(n) Ð→ Z(n+1) is non-split, we have M ∩ Z(n) ≠ 0. We want to show
that M ∩ Z(n) ∈ {M,Z(n)}. Assume not. Then M ∩ Z(n) is a submodule of Z(n) differ-
ent from Z(n), hence we have M ∩ Z(n) ⊂ Z(n−1) from the induction hypothesis. Set now
R =M + Z(n−1). We then get R + Z(n) =M + Z(n) = Z(n+1) and since R ∩ Z(n) is a proper
submodule of Z(n) (as equality would imply M ⊂ Z(n), which we have assumed to not be
true) which contains Z(n−1), we have R ∩Z(n) = Z(n−1) . But this would imply

Z(n+1)/Z(n−1) = R/Z(n−1) ⊕Z(n)/Z(n−1) = R/Z(n−1) ⊕L

with both summands being non-zero, as we have M /⊂ Z(n−1). This however is impossible,
as by assumption the inclusion L Ð→ Z(n+1)/Z(n−1) does not split. Hence we indeed have
M ∩Z(n) ∈ {M,Z(n)}. If M ∩Z(n) =M , we get that M ⊂ Z(n), hence M ∈ {0,Q, . . . , Z(n)}.
If M ∩ Z(n) = Z(n), we get that Z(n) ⊂M . Then as we did for the case n = 1, one will see
that this implies M ∈ {Z(n), Z(n+1)}. So really we get that

0 ⊂ Q ⊂ Z ⊂ ⋯ ⊂ Z(n)

is a sequence consisting of all the submodules of Z(n+1). The claim then follows by induction
on n.

ii) For n = 0 this is trivially true. For n = 1, we know that the inclusion Q ⊂ Z does not
split, hence Z is not semisimple. Since Q ⊂ soc(Z) ≠ Z, from i) we get that soc(Z) = Q.
Note now that

soc1(Z) = p−1(soc(Z/Q)) = p−1(soc(L)) = p−1(L) = Z,

where p ∶ Z Ð→X is the canonical map. Hence the claim of ii) is also true for n = 1.
Fix now i, and assume that ii) holds for n. From Z(n) ⊂ Z(n+1) and Proposition 3.8 we

have
Z(i) = soci(Z(n)) = Z(n) ∩ soci(Z(n+1))

Since soci(Z(n+1)) is a submodule of of Z(n+1), from i) we can see that this implies soci(Z(n+1)) =
Z(i). The claim then follows by induction, and by noting that this works for any natural i.

iii) Since soci(Z(n)) = Z(i), we can see that the sequence in i) is actually the socle
filtration for Z(n), so in particular we see that ll(Z(n)) = n.
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3.2.3 Socle length of Γg(M∗)
We now use the discussion of the previous subsection to show how given a simple Q ∈ Intg,
the socle length of Γg(M∗) can impact its behavior. This theme will be explored even more
in Section 3.4. In particular, the following result discusses integrable injective modules I for
which there exists an inclusion QÐ→ I with Q as in the statement of Proposition 3.13.

Corollary 3.15. Let Q ∈ Intg be as in the statement of Proposition 3.13, and I ∈ Intg an
injective module such that there exists an injection q ∶ QÐ→ I. Then for any n ∈ N we have
natural injections fn ∶ Z(n) Ð→ I such that fn∣Q = q for all natural n. In particular I does
not have finite socle length.

Proof. We prove this by induction on n. For n = 0 this is trivially true. For n = 1, we have
the inclusions Q ⊂ Z and Q ⊂ I. Since I is an injective object, there exists a morphism
f1 ∶ Z Ð→ I such that f1∣Q = q. We want to show that this f1 is injective. Since f1∣Q = q, we
have that f1 ≠ 0, hence ker f1 ≠ Z. As ker f1 ⊂ Z is a submodule, and from Proposition 3.14
we get that ker f1 ⊂ Q so ker f1 = ker(f1∣Q) = ker q = 0. Hence f1 is indeed an injective map.

Assume now that the claim is true for n ∈ N. Again, from the inclusion Z(n) ⊂ Z(n+1)
and the map fn ∶ Z(n) Ð→ I we get a map fn+1 ∶ Z(n+1) Ð→ I such that fn+1∣Z(n) = fn. As fn
is injective, we clearly have that ker fn+1 ≠ Z(n+1). Again from Proposition 3.14, we get that
ker fn+1 ⊂ Z(n+1), i.e. ker fn+1 = ker(fn+1∣Z(n+1)) = ker fn = 0, hence fn+1 is injective. Note
that we also have fn+1∣Q = (fn+1∣Z(n))∣Q = fn∣Q = q. Thus the first part of the proposition
follows by induction.

This way we have shown that in the setting of the statement of this corollary, we obtain
a sequence of inclusions

0 ⊂ Q ⊂ Z ⊂ ⋯ ⊂ Z(n) ⊂ ⋯ ⊂ I.

It is clear then that if I were of finite socle length, from Corollary 3.11 we would get
ll(I) ≥ ll(Z(n)) for all natural n. Since ll(Z(n)) from part iii) of Proposition 3.14, we get
that ll(I) ≥ ll(Z(n)) = n for all natural n, which is impossible. Hence I is indeed not a
g−module of finite socle length.

Remark 3.4. In Remark 1.5 we noted that one can construct g−modules M that satisfy the
conditions of Proposition 3.13. In fact one can also construct such modules M = Q that are
simple. If Q is such a module, from Corollary 2.18, we know that I = Γg(Γg(Q∗)∗) is an
injective object of Intg for which there exists an injective morphism QÐ→ I. From Corollary
3.15 we see that I will not be of finite socle length. This shows how algebraic dualization of
even simple integrable modules can lead to wild behavior of g−modules.

Corollary 3.15 shows that given a simple module Q which satisfies the conditions of
Proposition 3.13, then it can not be embedded into any injective module of finite socle
length. The following result, the proof of which one can find in [10], gives a result on a
contrapositive assumption to that of Proposition 3.13.

Lemma 3.16. Let Q ∈ Intg be a simple module which admits an embedding into an injective
object I ∈ Intg with ll(I) <∞. Then there exists a simple exhaustion {Qi}i∈N of Q and n ∈ N
such that for any j > i > n we have

dimhomgi(Qi,Qj) = 1.

Remark 3.5. Lemma 3.16 says in particular that if Q ∈ Intg is simple, such that Γg(Γg(Q∗)∗)
has finite socle length, then Q is a locally simple module. In Remark 1.4 we noted that not
all simple local modules are locally simple, so this result gives a conditional converse of
Proposition 1.3.

63



We now want to look at the duals of simple modules Q which satisfy the conclusion of
Lemma 3.16.

Lemma 3.17. Let Q ∈ Intg be a simple module that admits a simple exhaustion {Qi}i∈N
such that for some natural n, we have dimhomgi(Qi,Qj) = 1 for all j > i > n0. Then Q∗

has a unique simple submodule Q∗, and Q∗ ∈ Intg.

Proof. For convenience, let all the indices i that appear in what follows be such that i > n.
Let now f, g ∶ Qi Ð→ Q be non-zero maps of gi−modules. Since Qi is finite dimensional and
Q = limÐ→Qi is a simple exhaustion of Q, there exists some j > i such that f(Qi), g(Qi) ⊂
Qj , i.e. f and g factor through the inclusion qj ∶ Qj ⊂ Q. This means that there exist
maps of gi−modules f ′, g′ ∶ Qi Ð→ Qj such that f = qj ○ f ′ and g = qj ○ g′. But since
dimhomgi(Qi,Qj) = 1, we have that there exist x, y ∈ C not both zero such that xf ′+yg′ = 0.
But then we have

xf + yg = qj ○ (xf ′ + yg′) = 0.

This shows that we have
dimhomgi(Qi,Q) = 1. (3.11)

From (3.11) and Theorem 2.5, we get that

Q∣gi = Qi ⊕⊕
t∈T

Mt

for some index set T , and Mt simple finite dimensional gi−modules such that Mt /≅ Qi for
all t ∈ T . Dualizing this equality, we get

Q∗∣gi = Q∗i ⊕∏
t∈T

M∗
t . (3.12)

By an argument similar to that in the last part of the proof of Corollary 3.5, we get that

dimhomgi(Q∗i ,Q∗) = 1. (3.11’)

Completely analogously we get that dimhomgi(Q∗i ,Q∗j ) = 1 for all j > i > n0, hence we
can define a submodule Q∗ = limÐ→Q∗i ⊂ Q∗ uniquely. Clearly this Q∗ is a locally simple
module, hence it is simple and Q∗ ∈ Intg. We do not show here that Q∗ is the unique simple
submodule of Q∗, and we refer to [10] for the proof of this.

With all of these results, we are now able to state and prove the main result of this
section.

Theorem 3.18. Let Q ∈ Intg be simple such that ll(Γg(Q∗)) < ∞. Then there exists a
simple exhaustion {Qi}i∈N of Q and a natural number n such that for all i > n we have
dimhomgi(Qi,Qj) = 1 for all j > i > n0.

Proof. Note that as Γg(Q∗) has finite socle length, we get in particular that soc(Γg(Q∗)) ≠ 0,
so Γg(Q∗) contains some simple submodule L. As this L is a submodule of Γg(Q∗), it is
in fact simple integrable submodule of Q∗. As Γg(Q∗) is an injective object of Intg from
Corollary 2.16, has finite socle length, and contains S, we get that this simple integrable
module S satisfies the conditions of Lemma 3.16. Hence it also satisfies the conditions of
Lemma 3.17, thus we have that S∗ has a unique simple submodule S∗, and S∗ ∈ Intg. Note
that the morphism obtained by composing the natural injection QÐ→ Q∗∗ as in Subsection
2.2.1 with the dual of the map S Ð→ Q∗, i.e. the morphism

α ∶ QÐ→ Q∗∗ Ð→ S∗
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is given by
α(q)(f) = f(q).

As S ≠ 0, there exists some non-zero f ∈ S. Let now q ∈ Q be such that f(q) ≠ 0. We then
have α(q)(f) = f(q) ≠ 0, i.e. α(q) ≠ 0. Since Q is simple, and α ≠ 0, we have that this α
is an injective map. In particular, α(Q) ⊂ S∗ is a simple integrable module. From Lemma
3.17 we have Q ≅ α(Q) = S∗. By the same lemma, we know that S∗ admits an exhaustion
as we desire to find for Q, and since they are isomorphic modules, the proof of this theorem
is completed.

One can see that the condition on Q in Theorem 3.18 implies the condition on Q in
Lemma 3.17, so we get the following consequence.

Corollary 3.19. Let Q ∈ Intg be a simple module such that Γg(Q∗) has finite socle length.
Then Q∗ has a unique simple submodule Q∗, and Q∗ ∈ Intg.

Remark 3.6. Let Q be as in Corollary 3.19. We saw in the proof of Lemma 3.17 that if
{Qi}i∈N is the simple exhaustion of Q, with dimhomgi(Qi,Qj) = 1 for all j > i > n, for some
n ∈ N, then {Q∗i }i∈N is an exhaustion of Q∗ with dimhomgi(Q∗i ,Qj∗) = 1 for all j > i > n.
Note that if Γg((Q∗)∗) has finite socle length, from the construction in the proof of Lemma
3.17 we see that we will have (Q∗)∗ ≅ Q. From Corollary 3.19, we get that the only simple
submodule of (Q∗)∗ is Q.

3.3 Further properties of the socle functors
In this section, let g be any Lie algebra.

In this section we give a survey of some properties of the socle functors. In particular
we will want to see how finite socle length behaves under algebraic operations, specifically
under taking arbitrary direct sums, quotients, and extensions.

Let us start first with the following simple observation.

Lemma 3.20. Let M be a g−module, and N ⊂M a g−submodule such that N ∈ soci(g−mod).
Then N ⊂ soci(M).

Proof. Since N ∈ soci(g − mod) we have that there exists some g−module A such that
N ≅ soci(A). Without loss of generality, we may assume that N ⊂ A. Note then that from
Proposition 3.8 we have

soci(N) = N ∩ soci(A) = N ∩N = N.

From this and Proposition 3.8 again we get

N = soci(N) = N ∩ soci(M),

which clearly gives us that N ⊂ soci(M), which is what we wanted to show.

In other words, Lemma 3.20 says that soci(M) is the largest submodule of M which lies
in soci(g −mod).
Remark 3.7. Note that a trivial consequence of Lemma 3.20 is that given an isomorphism
α ∶ A Ð→ B, the restriction of α to sock(A) induces an isomorphism sock(A) Ð→ sock(B).
Really, as α(sock(A)) is just a copy of sock(A), we have that α(sock(A)) ∈ sock(g −mod),
hence by the Lemma we have α(sock(A)) ⊂ sock(B). Arguing similarly for α−1 we get that
α−1(sock(B)) ⊂ sock(A). Thus really α(sock(A)) = sock(B).
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We now want to see under what algebraic operations will finite socle length be preserved.
Before we state and prove a result on the socle filtration of arbitrary direct sum, namely
Lemma 3.21, let us make the following observation. Let I be an index set, and Bi ⊂ Ui ⊂ Ai

be g−modules for all i ∈ I, and set

A =⊕
i∈I

Ai; B =⊕
i∈I

Bi.

Let now ri ∶ A Ð→ Ai and pi ∶ Ai Ð→ Ai/Bi be the natural projections. Consider now the
map

p ∶=⊕
i∈I
(pi ○ ri) ∶ AÐ→⊕

i∈I
(Ai/Bi) .

Since the pi and ri are surjective for all i ∈ I, it follows that p is also a surjective morphism.
Let now a ∈ A be such that p(a) = 0. This means that pi(ri(a)) = 0 for all i ∈ I, so we get
ri(a) ∈ Bi for all i ∈ I. Since we have a = ⊕i∈I ri(a), we get that a ∈ B. It is also evident
that p(B) = 0. Hence we get kerp = B, thus the map p induces a natural isomorphism

A/B ≡⊕
i∈I
(Ai/Bi) (3.13)

Let now u ∈ p−1 (⊕i∈I (Ui/Bi)). This means that

⊕
i∈I

pi(ri(u)) = p(u) ∈⊕
i∈I
(Ui/Bi)

so in particular we get that ri(u) ∈ Ui for every i ∈ I. Since Ui = p−1i (Ui/Bi), this gives us

u =⊕
i∈I

ri(u) ∈⊕
i∈I

Ui =⊕
i∈I

p−1i (Ui/Bi).

This way we have shown that with Ai and Bi as in our setting, for any submodules Si ⊂ Ai/Bi

for i ∈ I, we will have

p−1 (⊕
i∈I

Si) ⊂⊕
i∈I

p−1i (Si). (3.14)

Using this observation, we can now prove the following result.

Lemma 3.21. Let Ai ∈ g −mod for i ∈ I, where I is some index set, and set

A ∶=⊕
i∈I

Ai.

Then
sock(A) =⊕

i∈I
sock(Ai)

for all k ∈ N0.

Proof. First of all note that for any i ∈ I we have sock(Ai) ⊂ sock(A), as sock are left exact
functors from Corollary 3.9. This way we get

⊕
i∈I

sock(Ai) =∑
i∈I

sock(Ai) ⊂ sock(A),

thus one of the inclusions in the statement of the lemma is evident.
The other inclusion we prove by induction on k. Let k = 0, and let S ⊂ A be a simple

submodule. Denote by u ∶ S Ð→ A the natural inclusion, and by pi ∶ A Ð→ Ai the natural
projections. Set now

qi ∶= pi ○ u ∶ S Ð→ Ai; and qi(S) = Si.
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Note that as S is simple, we have Si = 0 or qi ∶ S Ð→ Si is an isomorphism. Let now s ∈ S
non-zero, and as s ∈ A, let I0 = {i1, . . . , in} be such that there exist non-zero aij ∈ Aij with
s = ai1 + ⋯ + ain . Clearly this means that aij = qij(s). Note now that if i ∈ I/I0 we have
qi(s) = 0, hence qi ∶ S Ð→ Si cannot be an isomorphism, thus it must be the zero map, so
we get qi = 0 and Si = 0 for i ∈ I/I0. This gives us that for any s′ ∈ S, we have qi(s′) = 0 for
all i ∈ I/I0. Since s′ =⊕i∈I qi(s′), this means that s′ =⊕i∈I0 qi(s′), thus we get

S ⊂⊕
i∈I0

Si.

As Si ⊂ Ai are simple, we have that Si ⊂ soc(Ai), and we get

S ⊂⊕
i∈I0

soc(Ai) ⊂⊕
i∈I

soc(Ai).

Clearly then we have
soc(A) = ∑

S⊂A simple
S ⊂⊕

i∈I
soc(Ai),

so indeed we get
soc(A) =⊕

i∈I
soc(Ai).

Assume now that the claim of the lemma is true for k ∈ N. Note now that from (3.13)
we have

A/sock(A) = (⊕
i∈I

Ai) /(⊕
i∈I

sock(Ai)) =⊕
i∈I
(Ai/sock(Ai))

and from first part of the proof of this lemma for k = 0 we get

soc (A/sock(A)) = soc(⊕
i∈I
(Ai/sock(Ai))) =⊕

i∈I
soc (Ai/sock(Ai)) .

Now if p ∶ A Ð→ A/sock(A) and pi ∶ Ai Ð→ Ai/sock(Ai) are the canonical quotient maps,
from (3.14), with Bi = sock(Ai), Si = soc (Ai/sock(Ai)) we see that

sock+1(A) = p−1(soc(A/sock(A)) = p−1 (⊕
i∈I

soc (Ai/sock(Ai)))

⊂⊕
i∈I

p−1i (Ai/sock(Ai)) =⊕
i∈I

sock+1(Ai),

which proves the inclusion in the other direction. From this and the first part of the proof
of this lemma, we indeed get

sock+1(A) =⊕
i∈I

sock+1(Ai).

The statement of the lemma then follows by induction.

Keeping with the theme of observing under which algebraic operations is finite socle
length preserved, we note the following direct consequence of Lemma 3.21.

Corollary 3.22. Let A1,A2, . . . ,An ∈ g−mod be modules of finite socle length. Then A =
A1 ⊕⋯⊕An also has finite socle length.
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Proof. As all Ai for 1 ≤ i ≤ n have finite socle length, let k ∈ N be such that for all such i we
have sock(Ai) = Ai. Then from Lemma 3.21 we have

sock(A) =
n

⊕
i=1

sock(Ai) =
n

⊕
i=1

Ai = A,

hence A does have finite socle length. In fact this proof shows that if

k =max{ll(Ai) ∣ i = 1, . . . , n},

then ll(A) = k.

Remark 3.8. Note that one can prove Corollary 3.22 via only the inclusion ⊕n
i=1 sock(Ai) ⊂

sock(A) shown in the first part of the proof of Lemma 3.21. Indeed, if k is as in the proof
of Corollary 3.22, we get

n

⊕
i=1

sock(Ai) =
n

⊕
i=1

Ai = A ⊂ sock(A),

which clearly gives us A = sock(A).
Next we will give a generalization of Proposition 3.6. Before we do this, let us make an

observation in the spirit of the one preceding Lemma 3.21. Let C ⊂ B ⊂ A be g−modules,
and let q ∶ A Ð→ A/B, p ∶ A/C Ð→ (A/C)/(B/C) be the canonical maps. Denote by
α ∶ (A/C)/(B/C) Ð→ A/B the canonical isomorphism. Let now S ⊂ (A/C)/(B/C) be a
g−submodule. Set P = p−1(S) so that we have P /(B/C) = S. As P ⊂ A/C is a submodule,
there exists some submodule R ⊂ A such that P = R/C. Note now that

α(S) = α(P /(B/C)) = α((R/C)/(B/C)) = R/B,

so in particular we get q−1(α(S)) = R. So in our setting, we obtain

p−1(S) = P = R/C = q−1(α(S))/C. (3.15)

We now proceed with two computational results of the socle functors. These results will
be useful in showing that finite socle length is preserved under further algebraic operations.

Proposition 3.23. Let k ∈ N. Then for any A ∈ g−mod we have

sock(A)/soc(A) = sock−1(A/soc(A)).

Proof. We prove this by induction on k. Proposition 3.6 shows that the statement is true
for k = 1. Assume now that the statement of the proposition holds for k ∈ N. Consider now
the case for k + 1. Note now that by definition and the induction hypothesis we have

sock(A/soc(A)) = p−1 [soc [(A/soc(A))/sock−1(A/soc(A))]]

= p−1 [soc [(A/soc(A))/(sock(A)/soc(A))]] ,
(3.16)

where p is the canonical map. Now by letting A = A, B = sock(A), C = soc(A), and
S = soc((A/soc(A))/(sock(A)/soc(A))) in the setting of the discussion preceding this propo-
sition, from (3.15) we get

sock(A/soc(A)) = p−1(S) = q−1(α(S))/C.

Note that as α is an isomorphism, from Remark 3.7 we get α(S) = soc(A/B), thus

sock(A/soc(A)) = q−1 [soc(A/sock(A))] /soc(A) = sock+1(A)/soc(A).

The proposition then follows by induction.
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Using this result, we can now write and prove an even more general statement on how
one can identify quotients in the socle filtration of a g−module.

Corollary 3.24. Let k, l ∈ N be such that k > l. Then for any A ∈ g−mod, we have

sock(A)/socl(A) = sock−l−1(A/socl(A)).

Proof. We prove this by induction on l. Proposition 3.23 shows that this is true for l = 0.
Assume now that this is true for l − 1 ∈ N. Consider now the case for l. Denote by α ∶
A/socl(A) Ð→ (A/soc(A))/(socl(A)/soc(A) the canonical isomorphism. Let now k > l, so
we have also in particular k − 1 > l − 1.Then by the induction hypothesis and Proposition
3.23 we have

sock(A)/socl(A)
α
≅ (sock(A)/soc(A))/(socl(A)/soc(A)) =

3.23= sock−1((A/soc(A))/socl−1(A/soc(A)) =
i.h.= soc(k−1)−(l−1)−1((A/soc(A))/socl−1(A/soc(A))) =

3.23= sock−l−1((A/soc(A))/(socl(A)/soc(A)))
α−1

≅ sock−l−1(A/socl(A)),

where ’i.h.’ indicates the induction hypothesis, and where the last isomorphism holds be-
cause of Remark 3.7. It is clear then that

sock(A)/socl(A) = sock−l−1(A/socl(A))

which is what we wanted to show. The corollary then follows by induction.

We can now use Corollary 3.24 to give a result which can be practically useful when one
wants to check the socle length of a g−module.

Corollary 3.25. Let A ∈ g−mod, and k ∈ N. Then A has finite socle length if and only if
A/sock(A) has finite socle length. In that case, if k ≤ ll(A), the following holds

ll(A) = ll(A/sock(A)) + k + 1.

Proof. From Corollary 3.24, for any natural n > k we have

socn(A)/sock(A) = socn−k−1(A/sock(A))

If A has finite socle length, there exists some natural t, which we may assume to be t > k
without loss of generality, such that soct(A) = A. We then get

soct−k−1(A/sock(A)) = soct(A)/sock(A) = A/sock(A),

so we get that A/sock(A) also has finite socle length. If A/sock(A) has finite socle length,
there exists some natural n0 > k such that socn0(A/sock(A)) = A/sock(A). Then for t =
n0 + k + 1 we get

soct(A)/sock(A) = soct−k−1(A/sock(A)) = socn0(A/sock(A)) = A/sock(A)

so we get soct(A) = A, hence A also does have finite socle length.
Assume now that A has finite socle length, say ll(A) = t. This means that soct−1(A) ≠

soct(A) = A. Note now that

soct−k−2(A/sock(A)) = soct−1(A)/sock(A) ≠ A/sock(A)
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and
soct−k−1(A/sock(A)) = soct(A)/sock(A) = A/sock(A)

so we get that ll(A/sock(A)) = t − k − 1, i.e.

ll(A) = ll(A/sock(A)) + k + 1,

which is what we wanted to show.

Remark 3.9. Let A be a g−module of finite socle length, say ll(A) = k. Note now that since
soc(A) is semisimple, we naturally have ll(soc(A)) = 0. Assume that l < k is such that
ll(socl(A)) = l. From Proposition 3.6 we have that socl+1(A)/socl(A) is semisimple, hence
has socle length 0. Applying Corollary 3.25 to socl+1(A) we get

ll(socl+1(A)) = ll(socl+1(A)/socl(A)) + l + 1 = l + 1.

Hence, by induction, we have that for any t ≤ k the following holds

ll(soct(A)) = t.

So far we have seen how finite socle length behaves with respect to direct sums. In what
follows, we want to show that:

i) finite socle length is preserved under taking extensions;

ii) finite socle length is preserved under taking quotients.

The proofs for these presented here follow a slightly unconventional route. More precisely,
we first prove a weaker version of i), from which ii) follows, which then in turn implies the
full version of i).

Lemma 3.26. Let
0Ð→ AÐ→ B Ð→ C Ð→ 0

be a short exact sequence in g−mod, with C semisimple, and ll(A) = k. Then ll(B) = k or
ll(B) = k + 1. In particular, B has finite socle length.

Proof. As ll(A) = k, we have A = sock(A) ⊂ sock(B). If sock(B) = B, we get ll(B) ≤ k.
Since A ⊂ B implies ll(A) ≤ ll(B) we get ll(B) = k and we are done. Assume now that
sock(B) ≠ B. If A = sock(B) we have that

B/sock(B) = B/A ≅ C

has finite socle length from Corollary 3.25, and we get

ll(B) = ll(B/sock(B)) + k + 1 = ll(C) + k + 1 = k + 1

so we are also done in this case.
Assume now that A ≠ sock(B) ≠ B. Since A ⊂ sock(B), we have that

sock(B)/A ⊂ B/A = C

is a non-trivial submodule of C. As C is semisimple, there exists some V ⊂ C, also semisim-
ple, such that

sock(B)/A⊕ V = C = B/A.

Note then that
B/sock(B) ≅ (B/A)/(sock(B)/A) ≅ V,
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which gives us
ll(B/sock(B)) = ll(V ) = 0

because 0 ≤ ll(V ) ≤ ll(C) = 0. Thus from Corollary 3.25 we get

ll(B) = ll(B/sock(B)) + k + 1 = k + 1,

which is what we wanted to show.

Now using this weaker version of i) above, we first prove the following slightly weaker
version of ii).

Lemma 3.27. Let B ∈ g−mod with ll(B) = k, and A ⊂ B a g−submodule with ll(A) < k.
Then ll(B/A) <∞.

Proof. We prove this by induction on k. Let first k = 1. Note that in this case, from Corollary
3.25 we have ll(B/soc(B)) = ll(B) − 0 − 1 = 1 − 1 = 0, hence B/soc(B) is semisimple. Since
ll(A) < 1 we have that A is also semisimple, hence A ⊂ soc(B). Then

0Ð→ soc(B)/AÐ→ B/AÐ→ B/soc(B)Ð→ 0

is a short exact sequence, where soc(B) and B/soc(B) are both semisimple. Then from
Lemma 3.26 we have that in particular B/A has finite socle length.

Assume now that the statement of the lemma is true for k ∈ N. Consider now B ∈ g−mod
with ll(B) = k + 1, and let A ⊂ B with ll(A) ≤ k. We then have A = sock(A) ⊂ sock(B) ≠ B.
Since sock(B) has socle length k by Remark 3.9, from the induction hypothesis we get that
sock(B)/A has finite socle length, and again by Proposition 3.6 we get that B/sock(B) =
sock+1(B)/sock(B) is semisimple. Then since B/A fits in a short exact sequence

0Ð→ sock(B)/AÐ→ B/AÐ→ B/sock(B)Ð→ 0

we get that B/A is also of finite socle length from Lemma 3.26.

Using this result, we are now ready to prove ii) in full.

Theorem 3.28. Let B ∈ g−mod have finite socle length, and A ⊂ B a g−submodule. Then
B/A also has finite socle length.

Proof. Since A ⊂ B, we have that A also has finite socle length. Let ll(A) = k. Pick now
B′ ∈ g−mod with ll(B′) > k. One can find such a module for example from the construction
in Subsection 3.2.2. We then have A ⊂ B ⊕B′. From Corollary 3.11 we see that

ll(B ⊕B′) ≥ ll(B′) > k.

Now since A ⊂ B ⊕B′ then ll(A) < ll(B ⊕B′) again by Corollary 3.11. From Lemma 3.27
we get that ll((B ⊕B′)/A) <∞. Clearly we have

(B ⊕B′)/A = B/A⊕B′,

and since B/A ⊂ (B ⊕B′)/A, we get that ll(B/A) <∞ as well from Corollary 3.11, which is
what we wanted to show.

Now using all of these results, we can prove i) in full as well.

Theorem 3.29. Let
0Ð→ AÐ→ B Ð→ C Ð→ 0

be a short exact sequence in g−mod, with A and C of finite socle lengths. Then B also has
finite socle length.
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Proof. Let ll(A) = k. If sock(B) = B then we are done. Assume now that sock(B) ≠ B. If
A = sock(B), we have

B/sock(B) = B/A ≅ C.
From Corollary 3.25 we get ll(B) = ll(B/sock(B))+ k + 1 = ll(C)+ k + 1 = k + 1 <∞, and we
are done.

Assume now that A ≠ sock(B) ≠ B. We then have

B/sock(B) ≅ (B/A)/(sock(B)/A) ≅ C/D,

where D is the submodule of C corresponding to sock(B)/A. Now since C has finite socle
length, from Theorem 3.28 we get that C/D also has finite socle length, hence we get
ll(B/sock(B)) < ∞, and from Corollary 3.25 we get ll(B) < ∞ also, which is what we
wanted to show.

3.4 Tensg
In this section we introduce a subcategory of Intg which turns out to be very useful in
studying the integrable modules whose duals are also integrable. The exposition in this
section follows [10]. In this section g will denote one of the classical locally semisimple
Lie algebras sl(∞), sp(∞), o(∞). However the discussion in 3.4.1 works for general locally
semisimple Lie algebras g.

3.4.1 Definition and properties
Let g be a locally semisimple Lie algebra.

Let us first recall the adopted notation as mentioned in Remark 3.1. We set

M∗0 ∶=M ; M∗n = (M∗(n−1))
∗
,

i.e. M∗n is the g−module when M is dualized n times.

Definition 3.2. Denote by Tensg the full subcategory of Intg consisting of those modules
M ∈ Intg that satisfy the two following properties

T1. M∗ ∈ Intg.

T2. ll(M∗n) <∞ for all n ∈ N.

It is clear that if M ∈ Tensg then M = M∗0 has finite socle length. Note also that
M ∈ Tensg gives us M∗ ∈ Intg, and from Corollary 3.5 we see that M∗∗ ∈ Intg, so M∗

also satisfies T1. Since (M∗)∗n = M∗(n+1) we get that M∗ also satisfies T2, hence we
get M∗ ∈ Tensg. This shows that Tensg is a full subcategory of Intg that is closed under
algebraic dualization, and such that every object in it has finite socle length. In fact there
exists a characterization of Tensg in these terms, as the following results shows.

Theorem 3.30. Tensg is the largest full subcategory of Intg closed under algebraic dualiza-
tion, and such that every object in it has finite socle length.

Proof. The previous discussion shows that Tensg indeed satisfies these two conditions. Let
now C ⊂ Intg be a full subcategory of Intg that is closed under algebraic dualization, and
that every object in C has finite socle length. Let M ∈ C. Since C is closed under algebraic
dualization, we have that M∗ ∈ C, so in particular M∗ ∈ Intg, hence M satisfies T1. We also
see that M∗n ∈ C for all n ∈ N, so in particular we have that ll(M∗n) <∞ for all n ∈ N. This
shows that M satisfies T2 as well, thus we have M ∈ Tensg. This implies that C is actually
a full subcategory of Tensg, and this proves the theorem.
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Before we proceed with stating and proving a few properties of the category Tensg, let
us now make an observation about the dualization of short exact sequences. TO this end,
let

0Ð→ AÐ→ B Ð→ C Ð→ 0

be a short exact sequence in g−mod. For convenience, we use C and B/A interchangeably.
Let now p ∶ B∗ Ð→ A∗ and s ∶ (B/A)∗ Ð→ B∗ be the induced dual maps of A Ð→ B and
B Ð→ B/A respectively, given as usual by

p(f)(a) = f(a); and s(F )(b) = F (b +A),

and consider the dualized sequence

0Ð→ C∗
sÐ→ B∗

pÐ→ A∗ Ð→ 0. (3.17)

Note that given F ∈ (B/A)∗, for any a ∈ A we have

(p ○ s)(F )(a) = p(s(F ))(a) = s(F )(a) = F (a +A) = F (A) = 0,

i.e. p(s(F )) = 0 for all F ∈ C∗, thus we have s(F ) ∈ kerp for all F ∈ C∗ which gives us
im(s) ⊂ ker(p). Let now f ∈ ker(p), i.e. f ∶ B Ð→ C linear such that f(a) = 0 for all a ∈ A.
Let us now define F ∶ B/A Ð→ C by F (b + A) = f(b). Note that for b1, b2 ∈ B such that
b1 +A = b2 +A, there exists some a ∈ A with b2 = b1 + a, thus we get

F (b1 +A) = f(b1) = f(b1 + a) = f(b2) = F (b2 +A)

because f(a) = 0. Hence this F is well defined. Note now that

s(F )(b) = F (b +A) = f(b)

for all b ∈ B, so we have s(F ) = f , thus im(s) = ker(p). Hence (3.17) is also a short exact
sequence.

Dualizing (3.17) repeatedly, we get short exact sequences:

0Ð→ A∗2n Ð→ B∗2n Ð→ C∗2n Ð→ 0;

0Ð→ C∗(2n−1) Ð→ B∗(2n−1) Ð→ A∗(2n−1) Ð→ 0.
(3.18)

Using this observation, we can now prove the following result.

Proposition 3.31. Tensg is closed under taking submodules, quotients, extensions, and
finite direct sums. In particular, Tensg is an abelian subcategory of Intg.

Proof. Let
0Ð→ AÐ→ B Ð→ C Ð→ 0 (3.19)

be a short exact sequence in g−mod. Assume first that B ∈ Tensg. Note that from (3.17) we
get that A∗ ≅ B∗/C∗. From Proposition 2.3, since B∗ ∈ Intg, we get that A∗ ∈ Intg as well,
hence A satisfies T1. Note that for n ∈ N, from (3.18) we have

A∗2n ⊂ B∗2n; A∗(2n−1) ≅ B∗(2n−1)/C∗(2n−1),

or in other words, A∗n is either a submodule or a quotient of B∗n. From Corollary 3.11 and
Theorem 3.28 we get that ll(A∗n) <∞ for all natural n, hence A satisfies T2 as well, thus
A ∈ Tensg. This proves that Tensg is closed under taking submodules.
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Note now that from (3.17) we have C∗ ⊂ B∗, which in combination with Proposition 2.3
implies that C∗ ∈ Intg, so C satisfies T1. Similar to the first paragraph of this proof, we
have

C∗(2n−1) ⊂ B∗(2n−1); C∗2n ≅ B∗2n/A∗2n,

or in other words C∗n is either a submodule or a quotient of B∗n. Again from Corollary
3.11 and Theorem 3.28 we get that ll(C∗n) < ∞ for all natural n, hence C satisfies T2 as
well, thus C ∈ Tensg. This proves that Tensg is closed under taking quotients.

Assume now that in (3.19) A,C ∈ Tensg. Since A∗,C∗ ∈ Intg, from Proposition 2.3 we
get that B∗ ∈ Intg as well, hence B satisfies T1. From (3.18) one can see that B∗n is always
an extension of two g−modules of finite socle length, and from Theorem 3.29 we get that
B∗n will also have finite socle length, hence B will satisfy T2 as well, thus B ∈ Tensg. This
proves that Tensg is closed under taking extensions.

As for finite direct sums, let A1, . . . ,Ak ∈ Tensg, and set

A =
k

⊕
i=1

Ai

Note first that as this is a finite direct sum, we have for all natural n

A∗n =
k

⊕
i=1

A∗ni

In particular, since A∗i ∈ Intg, from Proposition 2.3 we have A∗ ∈ Intg, hence A satisfies T1.
Now from ll(A∗ni ) < ∞ for i = 1,2, . . . , k, and Corollary 3.22, we get ll(A∗n) < ∞, hence A
satisfies T2 as well, thus A ∈ Tensg. This proves that Tensg is closed under finite direct
sums, and thus completes the proof of this proposition.

3.4.2 Tensor modules
From here on out, our locally semisimple Lie algebras g will be the classical ones, i.e.
g ≅ sl(∞), o(∞), sp(∞).

In this subsection we introduce a type of integrable g−modules, called tensor modules,
which turn out to be very important objects of Tensg. These modules have been studied in
[11], and the exposition in this subsection is meant mostly as an overview of the results in
that paper, and in [10].

For p, q ∈ N set
T p,q ∶= V ⊗p ⊗ V ⊗q∗ ,

and call such a module a tensor module. Since V and V∗ are local modules, from Proposition
2.3 we see that T p,q ∈ Intg for all p, q ∈ N. It is known, see [11], that these modules will be
of finite socle length. In particular, for g = sl(∞) we have

ll(T p,q) =min{p, q} + 1.

The simple modules which arise as subquotients of tensor modules will play a key role in
what follows, so we give the following definition.

Definition 3.3. A simple module M for which there exist natural numbers p, q and modules
A ⊂ B ⊂ T p,q with M ≅ B/A are called simple tensor modules.

In [11] it is shown that there exists a chain of nested Borel subalgebras bi ⊂ gi, such that
for b = limÐ→bi = ⋃i∈N bi, every simple tensor module is a b-highest weight module.
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Denote by Θ the set of all b-highest weights of simple tensor modules. For λ ∈ Θ, denote
by Vλ the simple tensor module with λ as its highest weight, and if one considers λ as a
weight of gi, denote by V i

λ the corresponding highest weight gi-module. In [11] it is shown
that there exists a finite set S = {γ1, . . . , γn} of linearly independent weights of the natural
representation V such that

Θ ⊂ spanZ{γ1, . . . , γn}.

Since S is linearly independent, for any λ ∈ Θ there exist unique integers a1, . . . , an such that
λ = a1γ1+⋯+anγn. Define now ∣λ∣ ∶= ∑n

i=1 ∣ai∣, and for a given k ∈ N set Θk ∶= {λ ∈ Θ ∣ ∣λ∣ ≤ k}.
It is clear then that these Θk are all finite, and

Θ = ⋃
k∈⋉

Θk.

Note that Example 1.2 shows that C is a simple quotient of T 1,1 = V ⊗ V∗, which means
that C is a simple tensor module. Assume that λ is the b−highest weight of C. Then for
x ∈ C non-zero, and any b ∈ b we have 0 = b.x = λ(b)x, hence we have λ = 0. This means that
V0 = C. In [11] it is shown that if µ ∈ Θ is such that Vµ is a simple subquotient of T p,q, we
have ∣µ∣ ≤ p + q, and if it is a submodule of T p,q we have ∣µ∣ = p + q. It is also known that
given a finite dimensional simple gi-module N such that homgi

(N,Vλ) ≠ 0, we have that
N ≅ V i

µ for some µ ∈ Θ with ∣µ∣ ≤ ∣λ∣. Using this last remark, we can prove that duals of
tensor modules are integrable.

To this end, we begin with the following result.

Lemma 3.32. Let A ⊂ B ∈ Intg and i > 0. Let N be a simple gi-module such that

homgi(N,A) = 0 ≠ homgi(N,B).

Then
homgi(N,B/A) ≠ 0.

Proof. As homgi(N,B) ≠ 0, let α ∶ N Ð→ B be a non-zero map of gi-modules, so that
N ≅ α(N) ⊂ B. If α(N) ∩ A ≠ 0, since α(N) is simple, we would have α(N) ⊂ A, hence
α ∈ homgi(N,A) which cannot be true, so we must have α(N)∩A = 0. This means that the
map

β = α ○ p ∶ N Ð→ B
pÐ→ B/A,

where p is the canonical map, is such that kerβ = α(N) ∩ kerp = α(N) ∩A = 0, hence β ≠ 0,
which gives us homgi(N,B/A) ≠ 0, which is what we wanted to show.

Lemma 3.33. Let A ∈ Intg be semisimple, k ∈ N, and N a simple gk-module such that
homgk

(N,A) ≠ 0. Then there exists a simple g−submodule Q ⊂ A such that homgk
(N,Q) ≠ 0.

Proof. As A is semisimple, let I be an index set and Qi simple g−modules for i ∈ I such that

A =⊕
i∈I

Qi.

For each i ∈ I, let pi ∶ A Ð→ Qi be the natural projection. Naturally this pi is a map of
g−modules, so in particular it is also a map of gk-modules. Let now α ∶ N Ð→ A be a
non-zero map of gk-modules, and let n ∈ N be non-zero. As N is simple, α will be injective,
so α(n) ∈ A is non-zero. This means that there exist indices {i1, . . . , is} ⊂ I and aj ∈ Qij

non-zero for j = 1, . . . , s such that α(n) = a1 + ⋅ ⋅ ⋅ + as. In particular we have

pi1(α(n)) = a1 ≠ 0.
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By setting Q = Qi1 and p = pi1 , we get that β = p ○ α ∶ N Ð→ Q is a non-zero map of
gk-modules, so we indeed get that

homgk
(N,Q) ≠ 0

which is what we wanted to show.

Now we prove a more general version of Lemma 3.33.

Proposition 3.34. Let M ∈ Intg have finite socle length, i ∈ N, and N a simple gi-module
such that homgi(N,M) ≠ 0. Then there exists a simple subquotient Q of M such that
homgi(N,Q) ≠ 0.

Proof. Let α ∶ N Ð→ M be a non-zero map of gi-modules, so we have α(N) ⊂ M . If
ll(M) = s, we have α(N) ⊂M = socs(M). Let us now set

k =min{n ∈ N ∣ α(N) ⊂ socn(M)}.

Clearly k ≤ s. If k = 0, the claim follows directly from Lemma 3.33, by taking Q to be the
appropriate simple submodule. Assume now that k > 0. We then have α(N) /⊂ sock−1(M),
and since α(N) is simple, we get that

homgi(N, sock−1(M)) = 0 ≠ homgi(N, sock(M)).

From Lemma 3.32 we then get that

homgi(N, sock(M)/sock−1(M)) ≠ 0.

From Proposition 3.6 we have that sock(M)/sock−1(M) = soc(M/sock−1(M)) is semisimple,
so from Lemma 3.33 we get that there exists a simple submodule Q ⊂ soc(M/sock−1(M))
with homgi(N,Q) ≠ 0. Note that Q being a simple submodule in M/sock−1(M), we get that
there exists some U ⊂ M such that Q = U/sock−1(M), so in particular we get that Q is a
simple subquotient of M , and this concludes the proof of our proposition.

We are now ready to give a result on the integrability of duals of tensor modules.

Corollary 3.35. Let p, q ∈ N. Then (T p,q)∗ is integrable.

Proof. Fix i > 0. Let N be a simple finite dimensional gi−module such that

homgi(N,T p,q) ≠ 0.

Then from Proposition 3.34, we get that there exists a simple subquotient Q of T p,q such
that

homgi(N,Q) ≠ 0.
It is clear that this Q is a simple tensor module, so there exists some λ ∈ Θ such that Q ≅ Vλ.
From the discussion preceding Lemma 3.32, we see that ∣λ∣ ≤ p+q, and that homgi(N,Vλ) ≠ 0
implies that there exists some µ ∈ Θp+q such that N ≅ V i

µ. Since Θp+q is finite, this means
that homgi

(N,T p,q) ≠ 0 for only finitely many non-isomorphic simple finite dimensional gi-
modules N , and from Theorem 3.4 we get that (T p,q)∗ ∈ Intg, which is what we wanted to
show.

We also note here that in [11] it is shown that given λ ∈ Θ is non-zero, there exists some
n0 ∈ N such that for any i > n0, one has

dimhomgi
(V i

λ, Vλ) = 1,

and if ∣µ∣ < ∣λ∣ is such that homgi(V i
µ, Vλ) ≠ 0, then

dimhomgi
(V i

µ, Vλ) =∞. (3.20)
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Remark 3.10. Earlier in this subsection we saw that V0 = C is a simple tensor module. From
(3.20) one can see that if λ ∈ Θ is non-zero, we will have dimVλ = ∞. In other words, the
only simple tensor module of finite dimension in Tensg is the trivial g−module.

3.4.3 A sufficient condition for M ∈ Tensg
We have previously just seen that tensor modules have finite socle length, and integrable
duals, so that in particular they satisfy T1. In this subsection our goal is to give a sufficient
condition, consisting of two parts, which guarantees that a g−module M ∈ Intg is in Tensg.
In particular we will see that T p,q ∈ Tensg. To this end, we note the following two properties
that a module M ∈ Intg may satisfy.

P1. M has finite socle length.

P2. there exists a k ∈ N such that Q ∈ {Vµ ∣ µ ∈ Θk} for any simple subquotient Q of M .

Note that Corollary 3.11, Corollary 3.22, Theorem 3.28, and Theorem 3.29 show that
the property P1 is closed under taking submodules, quotients, extensions, and finite direct
sums. We now want to see that the same holds true for P2.

Proposition 3.36. Property P2 is closed under taking submodules, quotients, extensions,
and finite direct sums.

Proof. Let
0Ð→ A

iÐ→ B
pÐ→ C Ð→ 0 (3.21)

be a short exact sequence in Intg. Assume first that B satisfies P2 with k ∈ N. Let now
Q be a simple subquotient of A, i.e. there exists some V ⊂ U ⊂ A such that U/V ≅ Q is
simple. But clearly we have that V ⊂ U ⊂ B, hence Q is also a simple subquotient of B, so
Q = Vµ for some µ ∈ Θk, i.e. A also satisfies P2. Thus property P2 is closed under taking
submodules.

Let now Q be a simple subquotient of C, i.e there exist V ⊂ U ⊂ C such that U/V ≅ Q is
simple. Let now P = p−1(V ) and R = p−1(U), so that we have P /A = V , and R/A = U . We
then have Q ≅ U/V = (R/A)/(P /A) ≅ R/P , i.e. Q is isomorphic to a simple subquotient of
B, thus we have Q ≅ Vµ for some µ ∈ Θk, so C also satisfies P2. Thus property P2 is closed
under taking quotients.

Assume now that A and C satisfy P2 with k1 ∈ N and k2 ∈ N respectively. Let k =
max{k1, k2}. Let now Q be a simple subquotient of B, and let D ⊂ S ⊂ B be submodules
such that Q ≅ S/D. We now distinguish two cases of the intersection of A with D.

1○A ∩D = 0. Set now U = S ∩A. If U = 0, we have that

kerp∣D = kerp ∩D = A ∩D = 0; and kerp∣S = kerp ∩ S = A ∩ S = U = 0

hence we get that p ∶D ≅Ð→ p(D) and p ∶ S ≅Ð→ p(S). We then have that

Q ≅ S/D ≅ p(S)/p(D)

is a subquotient of C, hence Q ≅ Vµ for some µ ∈ Θk2 ⊂ Θk. Now if U ≠ 0, we have U,D ⊂ S
and U ∩D = S ∩A ∩D = 0, so we get U +D = U ⊕D ⊂ S. Since U ⊕D ≠D and S/D simple,
we get that (U ⊕D)/D ⊂ S/D implies U ⊕D = S. This gives us

Q ≅ S/D = (U ⊕D)/D ≅ U

is simple. Since U ⊂ A we get that U ≅ Vµ for some µ ∈ Θk1 ⊂ Θk.
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2○A ∩D ≠ 0. Set now again U = S ∩A, and V = D ∩A. Assume that V ≠ U . Consider
now the map

s ∶ U iUÐ→ S
p′Ð→ S/D.

where iU and p′ are the canonical injection and surjection respectively. We then have

ker s = iU(U) ∩ kerp′ = U ∩D = S ∩A ∩D = S ∩ V = V

hence we get an injection U/V Ð→ S/D with U/V ≠ 0. As S/D is simple, we must have
Q ≅ S/D ≅ U/V which is a subquotient of A, hence we get Q ≅ Vµ for some µ ∈ Θk1 ⊂ Θk.
Assume now that U = V . Note that

kerp∣S = S ∩ kerp = S ∩A = V,

thus we get that p induces an isomorphism i ∶ S/V Ð→ p(S), such that i(D/V ) = p(D). We
then have

Q ≅ S/D = (S/V )/(D/V ) ≅ p(S)/p(D)
which is a subquotient of C, hence we have Q ≅ Vµ for some µ ∈ Θk2 ⊂ Θk.

This way we have shown that given any simple subquotient Q of B, we always have
Q ≅ Vµ for some µ ∈ Θk, and this proves that B also satisfies P2. Thus, property P2 is
closed under taking extensions as well.

As for finite direct sums, note that if A,B ∈ Intg satisfy P2, since

0Ð→ AÐ→ A⊕B Ð→ B Ð→ 0

is a short exact sequence, and A ⊕B is an extension of modules that satisfy P2, from the
previous paragraph, we have that A ⊕ B also satisfies P2. It follows by induction that
property P2 is preserved under taking finite direct sums, and thus we complete the proof
of this proposition.

For convenience, say that M ∈ Intg satisfies property P if it satisfies both properties P1
and P2. Note now that Proposition 3.36 in combination with Corollary 3.11, Corollary 3.22,
Theorem 3.28, and Theorem 3.29 gives us the following consequence, which we note here,
again for convenience purposes.

Corollary 3.37. Property P is closed under taking submodules, quotients, extensions, and
finite direct sums.

Note now that given M ∈ Intg that satisfies P2 with k ∈ N, from Proposition 3.34 we see
that given i > 0 and N a finite dimensional simple gi-module such that homgi(N,M) ≠ 0,
there exists a simple subqoutient Q of M such that homgi(N,Q) ≠ 0. Since Q ≅ Vµ for some
µ ∈ Θk, we have homgi(N,Vµ) ≠ 0, and from the discussion in Subsection 3.4.2 we get that
N ≅ V i

µ. As Θk is finite, from Theorem 3.4 we get that M∗ ∈ Intg. This way we have proven
the following result.

Corollary 3.38. If M ∈ Intg satisfies property P2, it satisfies property T1 as well.

We have seen in Subsection 3.4.2 that the tensor modules T p,q satisfy property P. In
what follows we want to show that this property is closed under more algebraic operations
than listed in Corollary 3.37. To this end, we start by citing following result from [10].

Lemma 3.39. Let p, q ∈ N, I an index set, and Ti = T p,q for all i ∈. Then the g−modules

T ∶=∏
i∈I

Ti; (T p,q)∗

both satisfy property P.
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Let us now digress shortly into the following observation. Let I be an index set, and

0Ð→ Bi
siÐ→ Ai

piÐ→ Ci Ð→ 0

be short exact sequences for all i ∈ I. Set now

A =∏
i∈I

Ai; B =∏
i∈I

Bi; C =∏
i∈I

Ci,

and
s =∏

i∈I
si; and p =∏

i∈I
pi.

Note that p○s =∏i∈I(pi ○si) = 0, so that im(s) ⊂ ker(p). Now if b = (bi)i∈I ∈ ker(p), we have
0 = p(b) = ∏i∈I pi(bi), thus pi(bi) = 0 for all i ∈ I, hence we get bi ∈ im(si). If ai ∈ Ai are
such that si(ai) = bi, by setting a = (ai)i∈I we get s(a) = b, thus im(s) = ker(p), and we get
a short exact sequence

0Ð→ A
sÐ→ B

pÐ→ C Ð→ 0.

Note also that by setting A′ = ⊕i∈I Ai, the natural inclusions αi ∶ Ai Ð→ A induce an
injection α ∶ A′ Ð→ A.

We now apply this observation to the following situation. Let λ ∈ Θ. Then there exists
natural numbers p, q such that Vλ is a subquotient of T p,q. Let B ⊂ A ⊂ T p,q be such that
Vλ ≅ A/B. Let now I be an index set, T as in Lemma 3.39, and

S =∏
i∈I

A; R =∏
i∈I

B; U =∏
i∈I

Vλ,

i.e. as products of the same modules over the index set I. We can then fit these g−modules
into a short exact sequence

0Ð→ R Ð→ S Ð→ U Ð→ 0. (3.22)

Since S ⊂ T , from Lemma 3.39, and Corollary 3.37 for submodules, we get that S also
satisfies property P. Then again from the previous observation applied to (3.22), and from
Corollary 3.37 for subquotients (i.e. submodules and quotients) we get that U also satisfies
property P. This way we have proved one part of the following result.

Corollary 3.40. Let λ ∈ Θ, I an index set, and Ui = Vλ for all i ∈ I. Then

U =∏
i∈I

Ui and (Vλ)∗

both satisfy property P.

Proof. For U we saw that this holds in the discussion preceding this corollary.
Let now Vλ = A/B as above. We then have a short exact sequence

0Ð→ Vλ Ð→ T p,q/B Ð→X Ð→ 0,

where X is the appropriate quotient. Dualizing this, we get another short exact sequence

0Ð→X∗ Ð→ (T p,q/B)∗ Ð→ (Vλ)∗ Ð→ 0.

From the discussion in Subsection 3.4.1, particularly (3.17), by dualizing the surjection
T p,q Ð→ T p,q/B we get an injection (T p,q/B)∗ Ð→ (T p,q)∗. From Lemma 3.39 we know that
(T p,q)∗ satisfies property P, hence (T p,q/B)∗ will also satisfy property P. Now as V ∗λ is a
quotient of (T p,q/B)∗, from Corollary 3.37 we get that V ∗λ also satisfies property P, which
is what we wanted to show.
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We are now ready to give a result which shows than an integrable module M satisfying
property P will be in Tensg.

Theorem 3.41. Let M ∈ Intg satisfy property P. Let I be an index set, and Mi =M for all
i ∈ I. Then

i) S =∏i∈I Mi satisfies property P,
ii) M∗ satisfies property P,
iii) M ∈ Tensg.

Proof. Assume that M satisfies P2 for k ∈ N.
i) We prove this by induction on ll(M) = n. Assume first that ll(M) = 0, i.e. that M is

semisimple. As M satisfies P2, we have that if Q ⊂ M is simple, there exists some µ ∈ Θk

such that Q ≅ Vµ. We then have and index set J and simple submodules Qj ⊂ M for all
j ∈ J such that

M = soc(M) =⊕
j∈J

Qj = ⊕
µ∈Θk

⊕
j∈Jµ

Vµ, (3.23)

where Jµ = {j ∈ J ∣ Qj ≅ Vµ}. Note now that since Θk is finite, we have

S =∏
i∈I

M =∏
i∈I
⊕
µ∈Θk

⊕
j∈Jµ

Vµ = ⊕
µ∈Θk

∏
i∈I
⊕
j∈Jµ

Vµ.

One can see from the discussion following Lemma 3.39 that we have a natural inclusion
⊕j∈Jµ

Vµ ⊂∏j∈Jµ
Vµ, which gives us

∏
i∈I
⊕
j∈Jµ

Vµ ⊂ ∏
(i,j)∈I×Jµ

Vµ.

From Corollary 3.40 we see that ∏(i,j)∈I×Jµ
Vµ satisfies P, hence from Corollary 3.37 for

submodules we see that ∏i∈I⊕j∈Jµ
Vµ also satisfies P. Then, again from Corollary 3.37 for

finite direct sums we get that S, as a finite direct sum of modules who satisfy P, will also
satisfy this property, which proves the claim for ll(M) = 0.

Assume now that i) is true for M with ll(M) = n. Let now M ∈ Intg satisfy P, and
ll(M) = n + 1. From Remark 3.9 we know that N = socn(M) has socle length n, so by
induction hypothesis i) holds for N . Since M/N = soc(M/N) is semisimple from Proposition
3.6, we have that i) also holds for M/N by the previous paragraph. From the discussion
following Lemma 3.39 we obtain a short exact sequence

0Ð→∏
i∈I

N Ð→∏
i∈I

M Ð→∏
i∈I
(M/N)Ð→ 0.

Since i) holds for N and M/N , we have that both ∏i∈I N and ∏i∈I(M/N) satisfy P by the
induction hypothesis, so by Corollary 3.37 for extensions, we get that ∏i∈I M also satisfies
P. The claim then follows by induction.

ii) We prove this by induction on ll(M) = n as well. Let ll(M) = 0, so that M is
semisimple. From (3.23), the discussion at the beginning of Section 2.3, specifically (2.17),
we get

M∗ = ⊕
µ∈Θk

∏
i∈I
(Vµ)∗,

because Θk is finite. From Corollary 3.40 we see that (Vµ)∗ satisfies P for any µ ∈ Θk,
so from part i) of this theorem we get that ∏i∈I(Vµ)∗ satisfies P for any µ ∈ Θk. Using
Corollary 3.37 for finite direct sums we see that M∗ also does satisfy P.

Assume now that the claim is true for M with ll(M) = n. Let now M ∈ Intg be with
ll(M) = n + 1. By setting N as in i), we get a short exact sequence

0Ð→ N Ð→M Ð→M/N Ð→ 0.
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Dualizing this we obtain

0Ð→ (M/N)∗ Ð→M∗ Ð→ N∗ Ð→ 0.

As M/N is semisimple, and ll(N) = n, by the induction hypothesis we have that (M/N)∗
and N∗ satisfy P. Then by Corollary 3.37 for extensions we get that M∗ also satisfies P.
The claim then follows by induction.

iii) Let M ∈ Intg satisfy P. Since M satisfies P2, from Corollary 3.38 we have that M
satisfies T1. Note that part ii) of this theorem shows the implication

M satisfies P Ô⇒M∗ satisfies P,

and this clearly implies that M∗n satisfies P for all natural n. In particular, all M∗n satisfy
P1, so that ll(M∗n) <∞. In other words, M satisfies T2 as well. Thus we get M ∈ Tensg,
which is what we wanted to show.

Now from Lemma 3.39 and Theorem 3.41 we get the following immediate consequence.

Corollary 3.42. For any natural p, q ∈ Intg we have T p,q ∈ Tensg.

Example 3.1. From Corollary 3.42 we see that T 1,0 = V , and T 0,1 = V∗ are both objects of
Tensg. This means that V ∗, (V∗)∗ ∈ Intg. In particular we see that Γg(V ∗) = V ∗ has finite
socle length. As V is simple, from Corollary 3.19 we see that V∗ ⊂ V ∗ will be the unique
simple submodule of V ∗. Thus we get

soc(V ∗) = V∗

Note that Corollary 3.42 provides us with the first examples of Tensg. From Corollary
3.37 we see that every simple tensor module Vλ is an object of Tensg as well. In particular,
we have that the trivial representations C = V0 are also in Tensg, something that could be
noticed even by directly checking properties T1 and T2. As every simple tensor module is
a simple module by definition, we get the following result.

Corollary 3.43. Every simple tensor module is a simple module in Tensg.

The importance of Corollary 3.42 also stands in that it shows that Tensg is an inter-
esting category closed under algebraic dualization, i.e. it does not consist of only trivial
g−modules. As Example 3.1, this category contains even g−modules as basic as the natural
and conatural representations, so in a sense one can see that Tensg is a very reasonable
category of g−modules. We emphasize this in the following note.

Comparison remark VI. Analogous to the finite dimensional theory of representations
of semisimple Lie algebras, for g ≅ sl(∞), o(∞), sp(∞), there exists a reasonable category
Tensg of g−representations which is closed under algebraic dualization.

3.4.4 Simple objects and injective objects in Tensg
In Subsection 3.2.3 we gave an account of integrable modules Q for which Γ(Q∗) has finite
socle length. We now cite a result from [10] which characterizes all such simple modules.

Theorem 3.44. Let Q ∈ Intg be a simple module, so that Γ(Q∗) has finite socle length.
Then Q is a simple tensor module.

Note now that given a simple module Q ∈ Tensg, Q satisfies properties T1 and T2. From
T1 we get that Q∗ = Γg(Q∗), and from T2 we get that ll(Γg(Q∗)) = ll(Q∗) <∞. In other
words, Q satisfies the conditions of Theorem 3.44, so it must be a simple tensor module.
From this, and Corollary 3.43 we get the following result.
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Corollary 3.45. The following holds

{simple objects of Tensg} = {simple tensor modules} .

Remark 3.11. In other words, this corollary says that a simple module Q ∈ Intg is in Tensg
if and only if ll(Γ(Q∗)) <∞. Note that from Remark 3.5 we see that if Q ∈ Tensg is simple,
then Q is locally simple

In Subsection 3.4.2 we saw that all simple tensor modules are b−highest weight modules
for some Borel subalgebra b = limÐ→bi. This way we get the following direct consequence of
Corollary 3.45.

Corollary 3.46. Every simple object of Tensg is a b−highest weight module.g−module.

Remark 3.12. Let g = sl(∞), and let Q ∈ Intg be a simple module satisfying the conditions
of Proposition 3.23. In Remark 1.7 we noted that such modules can be constructed. In
Corollary 2.18 we have seen that there exists an injective map

QÐ→ Γg(Γg(Q∗)∗),

with Γg(Γg(Q∗)∗) = I and injective object of Intg. From Corollary 3.15, we know that
I will be a g−module of infinite socle length. If we had Q ∈ Tensg, then we would have
Q∗,Q∗∗ ∈ Tensg as well, so we would get I = Q∗∗. However, Q ∈ Tensg would imply that I
would have finite socle length, which is clearly not possible. Hence we get Q ∉ Tensg. This
way we have shown that

{simple objects of Tensg} ≠ {simple objects of Intg} .

We now emphasize the result in Corollary 3.46 in the following note.

Comparison remark VII. Analogous to the finite dimensional theory of representations
of semisimple Lie algebras, for g ≅ sl(∞), o(∞), sp(∞), there exists a reasonable category
Tensg of g−representations, every simple object of which is a highest weight module.

In what follows in this subsection we give an account of the injective objects in Tensg.
Note that if M ∈ Tensg is a non-zero module, T2 tells us that ll(M) < ∞. If we had
soc(M) = 0, we would have soc1(M) = p−1(soc(M/soc(M))) = p−1(soc(M)) = p−1(0) = 0
where p ∶M Ð→M/soc(M) is the canonical map. Inductively then one can show that this
implies socn(M) = 0 for all natural n ∈ N, which cannot be true. This proves the following.

Proposition 3.47. soc(M) ≠ 0 for all non-zero M ∈ Tensg.

Remark 3.13. In particular, every module in Tensg contains some simple submodule, which
is a statement that is not true even in Locg. Since T 1,1 = V ⊗ V∗ ∈ Tensg, and in Example
1.2 we saw that T 1,1 is not a semisimple g−module, we have that Tensg is not a semisimple
category. However, Proposition 3.47 shows that at least one does not have wild objects
which contain no simple submodules in Tensg.

Now using Proposition 3.47, we can prove the following result.

Corollary 3.48. Let I ∈ Tensg be an injective object, and let Q ⊂ I be simple. Then I is an
injective hull for Q if and only if Q = soc(I).

Proof. Assume that I is an injective hull for Q. We then have naturally Q ⊂ soc(I). Assume
that Q ≠ soc(I). Then there exists some simple sumbodule Q′ ⊂ I such that Q⊕Q′ ⊂ soc(I).
But then Q∩Q′ = 0, and Q′ ≠ 0, which would imply that I is not an essential extension of Q,
hence I is not an injective hull for Q. This is a contradiction, so we indeed get soc(I) = Q.
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Conversely, let Q = soc(I). Let now M ⊂ I be a submodule such that M ∩Q = 0. Assume
that M ≠ 0. Since M ∈ Tensg as a submodule of I, from Proposition 3.47 there exists some
simple submodule R ⊂ M . This implies R ⊂ soc(M) ⊂ soc(I) = Q, i.e. we would have
R ⊂ Q∩M , which cannot be possible. Hence we get M = 0. This shows that I is an essential
extension of Q, thus it is an injective hull for Q.

We now show that there exists a natural way of constructing injective hulls for the simple
objects of Tensg. Let Q ∈ Tensg be a simple module. Since Q satisfies T1 and T2, we get
that ll(Γ(Q∗)) = ll(Q∗) <∞. From Remark 3.6 we see that Q ≅ (Q∗)∗ is the unique simple
submodule of (Q∗)∗. We note this specifically in the following result.

Lemma 3.49. Let Q ∈ Tensg be a simple module. Then

soc(Q∗)∗ ≅ Q.

Note that for Q ∈ Tensg simple, from Q∗ ⊂ Q∗ we get that Q∗ ∈ Tensg as well. Using
this, we can now prove the following result.

Proposition 3.50. Let Q ∈ Tensg be a simple module. Then (Q∗)∗ is an injective hull of
Q in Tensg.

Proof. Since Q∗ ∈ Intg, from Corollary 2.16 we get that (Q∗)∗ is an injective object of Intg.
As Q∗ ∈ Tensg we get that (Q∗)∗ is also an injective object of Tensg. From Lemma 3.49 we
see that soc((Q∗)∗) ≅ Q. Then Lemma 3.48 shows that (Q∗)∗ is indeed an injective hull for
Q in Tensg.

We now give another characterization of injective modules of Tensg which have simple
socles.

Lemma 3.51. Let I ∈ Tensg be an injective object. Then I is indecomposable if and only if
soc(I) is simple.

Proof. Note that if I is decomposable, we have that I = A⊕B for some non-zero submodules
A,B ⊂ I. Since A,B ∈ Tensg as submodules, from Proposition 3.47 we get that there exist
simple submodules Q1 ⊂ A and Q2 ⊂ B. It is clear then that Q1 ⊕Q2 = Q1 +Q2 ⊂ soc(I),
hence soc(I) will not be simple. Thus if an injective object I ∈ Tensg has a simple socle, it
cannot be decomposable, hence it will indecomposable.

Conversely, assume that I is indecomposable. Let now Q ⊂ I be simple. From Proposition
3.50 let IQ = (Q∗)∗ be an injective hull of Q. Denote by j ∶ Q Ð→ IQ the natural inclusion.
Since I is injective, the inclusion i ∶ QÐ→ I induces a map s ∶ IQ Ð→ I such that s○j = i. Let
now R = ker s. If R ≠ 0, from Proposition 3.47 we have that 0 ≠ soc(j−1((R)) ⊂ soc(IQ) = Q,
thus we get Q = soc(j−1(R)) ⊂ j−1(R). But this would imply that for any q ∈ Q we would
have i(q) = (s ○ j)(q) = s(j(q)) = 0, which is impossible. Hence we really must have that
R = 0, i.e. that s is an injective map. Now since s ∶ IQ Ð→ I is an injective map of injective
modules, we know that the short exact sequence

0Ð→ IQ Ð→ I Ð→ I/IQ Ð→ 0

splits, i.e. I ≅ IQ ⊕ I/IQ. But since I is indecomposable, we must have I/IQ = 0, i.e. I = IQ.
It is clear from Lemma 3.49 then that soc(I) = Q is simple.

Note that Proposition 3.47, Corollary 3.48, and Lemma 3.51 show that an injective
object I ∈ Tensg is indecomposable if and only if it is an injective hull of its unique simple
submodule. Using this, we are now ready to give the following result which characterizes
indecomposable injective objects of Tensg.
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Corollary 3.52. i) Any indecomposable injective object I in Tensg is isomorphic to Q∗ for
some simple module Q ∈ Tensg.

ii) Let M ∈ Tensg and IM ∈ Intg an injective hull for M . Then IM ∈ Tensg.

Proof. i) Let I be an indecomposable injective object in Tensg. In the proof of Lemma 3.51
we saw that if Q′ = soc(I), then I ≅ (Q′∗)∗. If we set M = Q′∗, we see that I ≅M∗, and this
proves i).

ii) Let M ∈ Tensg, and let IM be an injective hull of M in Intg. From Corollary ?? we
know that there exists an injective map

ϕ ∶M Ð→ Γg(Γg(M∗)∗).

Since M ∈ Tensg, we have that M∗,M∗∗ ∈ Intg, thus this injection becomes

ϕ ∶M Ð→M∗∗

with M∗∗ = Γg(Γg(M∗)∗) an injective object of Tensg. Now since IM is an injective hull of
M , there exists a natural map s ∶ IM Ð→M∗∗ such that s∣M = ϕ. Note now that

0 = kerϕ = ker(s∣M) =M ∩ ker s,

and since IM is an essential extension of M , we have that ker s = 0. Now since s realizes IM
as a submodule of M∗∗ ∈ Tensg, we get that IM ∈ Tensg as well, which is what we wanted
to show.

3.4.5 Finite dimensional representations of g = sl(∞), o(∞), sp(∞)
Let g = sl(∞), o(∞), sp(∞).

In this subsection we want to use the theory we have developed so far about the repre-
sentations of the classical locally semisimple Lie algebras g = sl(∞), o(∞), sp(∞) to classify
their finite dimensional modules. In particular we will use Theorem 3.44.

Let us begin with the following result.

Lemma 3.53. Let M ∈ g−mod be finite dimensional. Then M ∈ Locg, and M is semisimple.

Proof. Note that for any g ∈ g and m ∈M we have g(f) ⊂M , hence

dim g(f) ≤ dimM <∞

so M ∈ Intg. Since M is an integrable g-module of countable dimension, from Theorem 2.9
we see that M will actually be a local module, hence M ∈ Locg, and this proves the first
part of the lemma.

As M is a local module, there exists an exhaustion {Mi}i∈N. Let us now set d = dimM
and di = dimMi for all i ∈ N. It is clear then that

d1 ≤ d2 ≤ ⋯ ≤ di ≤ ⋯ ≤ d.

As this is a bounded sequence of natural numbers, it stabilizes, i.e. there exists some n0 ∈ N
such that di = dj for all i, j ≥ n0. Since Mn0 ⊂Mi for i > n0 and dimMn0 = dn0 = di = dimMi,
we get that Mn0 =Mi for all i ≥ n0. Since {Mi}i∈N is an exhaustion for M , we get that

Mn0 = ⋃
i∈N
=M.

It is clear then that M ∣gi
=Mi for every i > n0.
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Given i > n0, from Theorem 2.5 let Li1, Li2, . . . , Lini be simple gi-modules such that

M ∣gi =Mi = Li1 ⊕Li2 ⊕ ⋅ ⋅ ⋅ ⊕Lini ,

so that M as a gi−module can be written as a direct sum of ni simple gi−submodules. We
know that this decomposition is not necessarily unique, however the ni will be a constant
throughout the different such decompositions. Consider now M as a gi+1−module, i.e. we
have

M ∣gi+1 =Mi = L(i+1)1 ⊕L(i+2)2 ⊕ ⋅ ⋅ ⋅ ⊕L(i+1)ni+1 .

Note that for any 1 ≤ k ≤ ni+1, we have that there exists some simple gi− submodule
L′ik ⊂ L(i+1)k ∣gi . It is clear then that

ni+1

∑
k=1

L′ik =
ni+1

⊕
k=1

L′ik ⊂M ∣gi .

This way we see that M ∣gi contains a direct sum of at least ni+1 simple gi−modules, so we
get that ni ≥ ni+1. This way we obtain an infinite sequence of natural numbers

ni ≥ ni+1 ≥ ⋯ ≥ nk ≥ ⋯ > 0

It is clear then that this sequence stabilizes, i.e. there exists some t ∈ N such that nt = nj

for all j ≥ t. Set now nt = n. From the previous construction, we see that for j ≥ t, we have
that L(j+1)k ∣gj for k = 1,2, . . . , n contains a unique simple gj−submodule Ljk, hence we get
L(j+1)k ∣gj = Ljk is simple as a gj−module. This gives us that for all j ≥ t and k = 1,2, . . . , n
we have Ljk = L′tk. Let us now set Lk ∶= ⋃j≥tLjk = L′tk, i.e. Lk are locally simple g−modules,
hence they are also simple g−modules. It is clear then that

M = L1 ⊕L2 ⊕⋯⊕Ln. (3.24)

As these Lk were shown to be simple, k = 1,2, . . . , n, (3.24) clearly shows that M is indeed
semisimple, which concludes the proof of this lemma.

Now using this result, we are able to classify all finite dimensional g−modules as follows.

Theorem 3.54. Let M ∈ g−mod be finite dimensional. Then M is a trivial g−module.

Proof. From Lemma 3.53, we have that M will be semisimple, i.e. there exist simple sub-
modules L1, L2, . . . , Ln ⊂M such that (3.24) holds. It is clear that if we prove that Li are
trivial g−modules, then M will also be a trivial g−module, so Lemma 3.53 reduces the proof
of this theorem to only the case where M is simple.

Consider the algebraic dual M∗ as a g−module. Since dimM < ∞, we have dimM∗ =
dimM < ∞. From 3.53 we know that M∗ ∈ Intg, and M∗ = Γ(M∗) is semisimple, so in
particular it has finite socle length. This shows that M satisfies the conditions of Theorem
3.44, so it must be a simple tensor module, so M ≅ Vλ for some λ ∈ Θ. From Remark 3.10
we have seen that if λ ≠ 0, Vλ will have infinite dimension, which cannot be the case for
our M , hence we have λ = 0. We saw in Subsection 3.4.2 that M = V0 = C, i.e. our M will
be the trivial simple g−module. The theorem than follows from the first paragraph of the
proof.
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