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1 Introduction

1.1 The big picture

Khovanov and Lauda ([KL09]) and Rouquier ([Rou08]) associated to a datum consisting of a
quiver and a dimension vector certain in�nite-dimensional algebras. They have become known as
Khovanov-Lauda-Rouquier (KLR) or quiver Hecke algebras. We will use these names interchange-
ably. Khovanov and Lauda de�ned KLR algebras using a calculus of braid-like plane diagrams of
interacting strings labelled by the vertices of a quiver. The resulting algebra, as an abelian group,
consists of �nite linear combinations of such diagrams modulo certain relations, which can also be
described diagramatically. Multiplication in this algebra is given by concatenation of diagrams.
Rouquier, on the other hand, took a di�erent approach and de�ned KLR algebras directly by
generators and relations.

The motivation for studying KLR algebras is twofold - they categorify quantum groups and yield
non-trivial gradings on a�ne Hecke algebras. Let g be a simply-laced Kac-Moody Lie algebra with
Dynkin diagram Γ. It admits a triangular decomposition g = n+ ⊕ h⊕ n−. Let Uq(g) denote the
quantized universal enveloping algebra of g over the �eld Q[q, q−1]. The triangular decomposition
of g induces a corresponding decomposition Uq(g) = Uq(n

−) ⊗ Uq(h) ⊗ Uq(n+) of the quantized
universal enveloping algebra.

We are primarily interested in the categori�cation of a certain subring of the algebra Uq(n
−),

de�ned over A = Z[q, q−1], called Lusztig's integral form of Uq(n−). Let Af denote Lusztig's
integral form of Uq(n−) and let Af∗ denote the graded dual of Af . Before we can explain the
connection between Lusztig's integral form of the negative half of the quantum group and KLR
algebras we need to introduce some notation. Let H(Γ,d) be the KLR algebra associated to the
quiver Γ with vertex set I and dimension vector d. Let K(d) denote the Grothendieck group of
the category of �nitely generated graded projective modules over H(Γ,d) and let K∗(d) denote
the Grothendieck group of the category of �nite-dimensional graded modules over H(Γ,d). We
can now state the main categori�cation results. Khovanov and Lauda ([KL09]) have shown using
combinatorial and algebraic methods that there exist graded twisted bialgebra isomorphisms

γ : Af ∼=
⊕
d∈NI

K(d), γ∗ : Af∗ ∼=
⊕
d∈NI

K∗(d).

Varagnolo and Vasserot ([VV11]) have re�ned this result by proving that γ−1 maps classes of
indecomposable projective modules to the canonical basis of Af and that (γ∗)−1 maps classes of
simple modules to the dual canonical basis of Af∗. Their results required the use of geometric
methods. Kato ([Kat13]) and McNamara ([McN13]) have also constructed modules which cat-
egorify PBW and dual PBW bases of the quantum group. Furthermore, it has been shown by
Kang and Kashiwara ([KK12]) that there exists an isomorphism between each integrable highest
weight module over Uq(g) and the Grothendieck group of the category of �nitely generated graded
projective modules over a certain cyclotomic quotient of the corresponding KLR algebra.

There also exists a connection between cyclotomic KLR algebras and certain quotients of a�ne
Hecke algebras called cyclotomic Hecke (or sometimes Ariki-Koike) algebras. The latter include
group algebras of Coxeter groups and Iwahori-Hecke algebras. Brundan and Kleshchev ([BK09])
have constructed an explicit isomorphism between blocks of (possibly degenerate) cyclotomic Hecke
algebras and a sign-modi�ed version of cyclotomic KLR algebras associated to the in�nite linear
quiver or a cyclic quiver (i.e. in types A∞ and Âe). This isomorphism yields interesting Z-gradings
on blocks of symmetric groups and the associated Iwahori-Hecke algebras, thus paving the way to
the study of graded representation theory of these algebras. Furthermore, Webster ([Web14]) and
Miemietz and Stroppel ([MS15]) have constructed an isomorphism between certain completions of
KLR algebras and a�ne Hecke algebras in types A∞ and Âe.

5



In this thesis we are primarily interested in the geometric construction of KLR algebras due to
Varagnolo and Vasserot. To prove that indecomposable projectives over a KLR algebra categorify
the canonical basis of Af , they identi�ed KLR algebras with certain convolution algebras in equiv-
ariant Borel-Moore homology. This geometric construction is rather complex but it enables us
to apply powerful sheaf-theoretic tools such as the BBD decomposition theorem to study KLR
algebras and their representation theory. Convolution algebras provide a uniform approach to the
construction of many familiar objects such as group algebras of Weyl groups, a�ne Hecke algebras,
degenerate a�ne Hecke algebras as well as quotients of universal enveloping algebras and quantized
loop algebras. We will now brie�y review the classical setting in which convolution algebras occur
and explain how this framework can be modi�ed to construct KLR algebras.

Let G be a complex semisimple algebraic group and let g denote its Lie algebra. LetN be the closed
subvariety of g consisting of all nilpotent elements, i.e., all elements x ∈ g such that adx : g→ g is
a nilpotent endomorphism. The group G acts on N by conjugation and C× acts on N by dilations.
Let B denote the variety of all Borel subalgebras of g. It is isomorphic to the homogeneous space
G/B. The interplay between the varieties N and B is encoded in the following "incidence variety"
B̃ := {(x, b) ∈ N ×B | x ∈ b}. If G = SLn(C) then we can identify B with the variety of complete
�ags in Cn. Moreover, g = sln acts naturally on Cn by matrix multiplication. Let F = (Vk)nk=0 be
the �ag corresponding to a Borel subalgebra b under this identi�cation. The condition x ∈ b can
then be interpreted as saying that x(Vk) ⊂ Vk−1 for each k, i.e., that the �ag F is stable under the
endomorphism x. We have two canonical projections

B̃
µ

��

π

  

N B.

The map µ, called the Springer resolution, is proper and the map π is a G-equivariant vector
bundle. The �bred product Z := B̃ ×N B̃, called the Steinberg variety, is one of the central
objects of study in geometric representation theory. Using convolution in Borel-Moore homology
or equivariant K-theory of this variety (and related varieties) one can construct many interesting
algebras of fundamental importance in representation theory, for example the group algebra of
a Weyl group, quotients of the universal enveloping algebra of sln and the a�ne Hecke algebra.
One can also construct all the irreducible modules over these algebras as quotients of convolution
modules in the Borel-Moore homology of �bres of the Springer resolution.

A deeper study of convolution algebras involves intersection cohomology methods. There is an
algebra isomorphism H∗(Z) ∼= Ext∗(µ∗CB̃, µ∗CB̃) between the convolution algebra H∗(Z) and the

geometric extension algebra associated to the direct image of the constant perverse sheaf on B̃. One
can therefore apply the Beilinson-Bernstein-Deligne decomposition theorem to deduce many deep
representation-theoretic consequences, for example the classi�cation and construction of simple
modules or Bernstein-Gelfand-Gelfand-type reciprocities.

We apply this framework to study KLR algebras. The main departure from the classical setting
explained above is the introduction of a quiver grading. We replace the variety B with a suitably
de�ned quiver �ag variety and replace N with the space of representations of the chosen quiver
Γ with dimension vector d. Varagnolo and Vasserot have shown in [VV11] that the equivariant
Borel-Moore homology of the resulting Steinberg variety, equipped with the convolution product,
is isomorphic to the quiver Hecke algebras de�ned diagramatically by Khovanov and Lauda and
algebraically by Rouquier. The main idea of the proof is to construct and explicitly calculate a
faithful representation of the convolution algebraHG

∗ (Z), and show that this faithful representation
agrees with the faithful representation of the diagramatic quiver Hecke algebra on a direct sum of
polynomial rings.
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1.2 Overview of the thesis

The thesis has two main objectives. The �rst is to give a detailed and self-contained account of
the geometric construction of KLR algebras due to Varagnolo and Vasserot. Their paper [VV11]
was the main inspiration for us in writing this thesis. We note that [VV11] does not contain much
detail and many proofs and calculations are left out. We remedy this by supplying detailed proofs
and calculations in this thesis. Our second objective is to use the geometric construction to study
certain aspects of the representation theory of KLR algebras.

We now brie�y summarize the contents of each chapter.

• Chapter 2: Homology and cohomology.

We recall the de�nitions and basic properties of equivariant cohomology and Borel-Moore
homology. We also calculate some fundamental examples of equivariant cohomology groups.

• Chapter 3: Quivers.

The de�nition of a KLR algebra depends on a quiver and a dimension vector. The purpose
of this chapter is introduce various notations pertaining to these input data. We also discuss
related objects, for example the space Repd of representations of our quiver and an associated
reductive linear algebraic group Gd.

• Chapter 4: Quiver �ag varieties.

To a quiver and a dimension vector we associate a "quiver �ag variety" Fd, which can be
characterized as a certain disjoint union of products of ordinary �ag varieties. We also
investigate the connections between quiver �ag varieties and Lie-theoretic objects such as
Weyl groups and root systems.

• Chapter 5: The Steinberg variety.

We study the interplay between representations of our quiver and the quiver �ag variety.
We begin by de�ning what it means for a �ag to be stabilized by a representation of the
quiver. We then de�ne a vector bundle F̃d over the quiver �ag variety whose �bre consists
of representations stabilizing a given �ag. Finally, we de�ne a quiver analogue Zd of the
Steinberg variety. We also prove some basic properties of these varieties. For example, we
show that H

Gd
∗ (F̃d) is isomorphic to a direct sum of polynomial rings.

• Chapter 6: Convolution.

We �rst recall the de�nition of the convolution product from [CG97, Chapter 2.6-2.7] and
adapt it to the equivariant setting. We then apply it to our Steinberg variety Zd. Thereby

we obtain the main object of study in this thesis - the convolution algebra H
Gd
∗ (Zd). We

also show that the algebra H
Gd
∗ (Zd) naturally acts by convolution on H

Gd
∗ (F̃d). We call it

the "polynomial representation" of H
Gd
∗ (Zd).

• Chapter 7: Strati�cations.

Our goal here is to gain a better understanding of the structure of the convolution algebra
H
Gd
∗ (Zd). In particular, we want to determine a basis of this algebra over the equivariant

cohomology ring of a point. To do this, we adapt the theory of a�ne strati�cations of an
algebraic variety to take account of the presence of a quiver grading. We de�ne various
"quiver Schubert cells" and show that equivariant fundamental classes of their closures form
a basis of H

Gd
∗ (Zd). Subsequently we show that the strati�cation of the variety Zd which we

de�ned induces a �ltration on the convolution algebra H
Gd
∗ (Zd). At the end of the chapter

we also describe the centre of H
Gd
∗ (Zd) and show that the variety Zd is Gd-equivariantly
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formal. We will need these results later when we study the graded representation theory of
H
Gd
∗ (Zd).

• Chapter 8: Relationship between Gd- and Td-equivariant (co)homology.

We choose a maximal torus Td in the reductive algebraic group Gd. We then recall the
standard fact that Gd-equivariant homology is isomorphic to the invariants of Td-equivariant
homology under the action of the associated Weyl group.

• Chapter 9: Euler classes and convolution.

We begin by recalling the "clean intersection formula" which, under appropriate assumptions,
allows us to explicitly calculate the convolution product. The formula involves multiplicites
which can be identi�ed with Euler classes of certain vector bundles. Our goal in this chapter
is to determine these multiplicities for quiver �ag varieties and the Steinberg variety. We
show that the Euler class in the clean intersection formula can also be identi�ed with a
product of the weights of the tangent space to a quiver Schubert variety at a torus �xed
point, considered as a module over the Lie algebra of the torus Td. The rest of the chapter
is devoted to the computation of these Euler classes.

• Chapter 10: Localization to Td-�xed points.

We apply the localization theorem for equivariant cohomology and the results of chapter 9
to compute the convolution product on torus �xed points. We then use this calculation to
show that the polynomial representation of H

Gd
∗ (Zd) is faithful. The main results of this

chapter are due to Varagnolo and Vasserot ([VV11]). However, most of the calculations and
detailed proofs are ours.

• Chapter 11: Generators and relations.

The purpose of this chapter is to translate the geometric results from the previous chapters
into algebraic terms. We �rst de�ne certain elements in H

Gd
∗ (Zd) and show that these

elements generate H
Gd
∗ (Zd) as an algebra. We then give an explicit description of the faithful

polynomial representation of H
Gd
∗ (Zd). We use this representation to �nd a complete set of

relations in our convolution algebra. The presentation in terms of generators and relations
which we obtain implies that H

Gd
∗ (Zd) is isomorphic as a graded algebra to the quiver Hecke

algebras de�ned by Rouquier and Khovanov-Lauda. The main results of this chapter are also
due to Varagnolo and Vasserot ([VV11]).

• Chapter 12: Representation theory of convolution algebras.

We now turn our attention to the representation theory of KLR algebras. We also adopt a
geometric approach. The purpose of chapter 12 is to give a succinct yet rigorous overview
of the main technical tools we require. We carefully de�ne perverse sheaves, intersection co-
homology complexes and state the Beilinson-Bernstein-Deligne decomposition theorem. Our
next objective is to derive a somewhat stronger version of the decomposition theorem which
we will apply to study representations of KLR algebras. To do this we exploit additional
information which is contained in the equivariant decomposition theorem of Bernstein-Lunts.
We then explain how one can use the decomposition theorem to classify graded simple mod-
ules over a convolution algebra. The chapter ends with a discussion of standard modules and
their relation to graded simple modules.

• Chapter 13: Representation theory of KLR algebras.

We begin by applying the results of chapter 12 to KLR algebras, always carefully checking
that the relevant assumptions are satis�ed. We next turn our attention to the special case of
the equioriented An quiver and study in detail the interplay between geometry and represen-
tation theory. The chapter contains two important results. The �rst results says that all the
graded simple modules obtained from the decomposition theorem are non-zero. Our proof
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is inspired by a proof of the corresponding result for a�ne Hecke algebras due to Ginzburg
([CG97, Section 8.8]). The second result states that every standard module over a KLR
algebra associated to an equioriented An quiver is indecomposable with simple head. This
result has been proved by Kato ([Kat12]) using sheaf-theoretic and homological methods.
We give a di�erent proof which is more geometric in nature.
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2 Homology and cohomology

In this chapter we review the de�nitions and fundamental properties of equivariant cohomology
and Borel-Moore homology.

2.1 The homotopy quotient

We �rst de�ne the homotopy quotient of a manifold by a group action and discuss examples for
tori and general linear groups.

De�nition 2.1. Let G be a topological group. A principal G-bundle is a �bre bundle p : E → B
together with a continuous G-action E × G → E such that G preserves �bres and acts freely
and transitively on each �bre. A universal principal G-bundle, denoted EG→ BG, is a principal
G-bundle such that for every paracompact manifold X the map

[X,BG]→ G-PBund(X)/ ∼

[f ] 7→ f∗EG

(from the set of homotopy classes of maps from X to BG to the set of isomorphism classes of
principal G-bundles) is a set isomorphism. In other words, every principal G-bundle over X is
isomorphic to the pullback of the universal bundle along some continuous map f : X → BG,
and the correspondence between isomorphism classes of principal G-bundles and homotopy classes
of maps f : X → BG is bijective. The space BG is called the classifying space for principal
G-bundles. The following theorem is standard.

Theorem 2.2. Let G be a topological group. Then:
(i) The space EG exists and is unique up to equivariant homotopy equivalence.
(ii) EG is contractible and the action of G on EG is free.
(iii) Conversely, if E is contractible and G acts freely on E, then E → E/G is a universal principal
bundle.

Proof. See e.g. [Hus91, Chapter 4].

Remark 2.3. Let M be a G-manifold. We want to study the cohomology of the orbit space
M/G. In general, M/G does not admit the structure of a manifold. However, if the action of G is
free, then M/G exists as a manifold. If G doesn't act freely, we want to replace M by a homotopy
equivalent space on which G does act freely. Since EG is contractible,M is homotopy equivalent to
EG×M . Moreover, since G acts freely on EG, the diagonal action of G on EG×M is free as well
and the quotient by this action exists as a manifold. This motivates the following de�nition. 4
De�nition 2.4. Suppose that G acts on EG from the right and on M from the left. Let G act
diagonally on the product space EG × M by the formula (e,m).g = (eg−1, g.m). We call the
quotient

EG×GM := (EG×M)/G

of EG×M by this diagonal action the homotopy quotient of M by G, the homotopy orbit space,
or the Borel construction. 4
Example 2.5. The most important examples for us will be tori and GLn.
(i) Let G = C×. The group G acts freely on Cn\{0} by scalar multiplication. The quotient
(Cn\{0})/G is isomorphic to CPn−1. We obtain a principal bundle (Cn\{0}) → CPn−1 whose
total space is (2n− 2)-connected, i.e., the homotopy groups πi(Cn\{0}) vanish for i = 1, ..., 2n− 2.
We can de�ne the universal bundle by taking direct limits of the total space and the base space:

EC× = lim−→(Cn\{0}) = C∞\{0} and BC× = lim−→CP
n−1 = CP∞.
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(ii) Let G = Tm = (C×)m be a torus. Then

ETm = (EC×)m = (C∞\{0})m and BTm = (BC×)m = (CP∞)m.

(iii) Let G = GLn(C) and m > n be an integer. Let Mat(m × n) denote the space of all m × n
matrices with complex entries, and Matmax(m×n) denote the subset of matrices of maximal rank
n. The group GLn(C) acts on Mat(m×n) from the right preserving Matmax(m×n). Let Gr(n,m)
denote the Grassmannian of linear subspaces of Cm of dimension n. De�ne a map

Matmax(m× n)→ Gr(n,m)

A 7→ Im(A).

We can interpret matrices of maximal rank as injective C-linear homomorphisms, i.e., Matmax(m×
n) = Hominj

C (Cn,Cm). Precomposing such a homomorphism with a linear automorphism of Cn
does not change its image. On the other hand, if two such homomorphisms have the same image,
we can precompose one of them with a linear automorphism of Cn to obtain the other. Hence
Matmax(m × n)/GLn = Gr(n,m) and Matmax(m × n) → Gr(n,m) is a principal GLn-bundle.
Taking the limit m→∞ we obtain the principal GLn bundle

Matmax(∞× n)→ Gr(n,∞).

The action of GLn on Matmax(∞× n) is clearly free, and one can check without much di�culty
that Matmax(∞× n) is contractible. Hence

EGLn = Matmax(∞× n) and BGLn = Gr(n,∞).

Proposition 2.6. Let H be a closed subgroup of G. Then the quotient EG/H exists and the map
EG→ EG/H is a universal bundle for H.

Proof. See [Bri98, p.4].

2.2 Equivariant cohomology

In this section we de�ne equivariant cohomology rings and discuss examples for a point and for
homogeneous spaces. For a more thorough treatment of equivariant cohomology the reader is
referred to [Bri98].

De�nition 2.7. LetM be a topological manifold endowed with a continuous action of a topological
group G. Let R be a commutative ring.
(i) We de�ne the equivariant cohomology ring H∗G(M ;R) to be

H∗G(M ;R) := H∗(EG×GM ;R),

where H∗(−;R) denotes singular cohomology with coe�cients in R.
(ii) In particular, if M = {pt} is a point, then

H∗G({pt};R) = H∗(EG/G;R) = H∗(BG;R).

We set
SG(R) := H∗(BG;R), KG(R) := Frac(SG(R)).

If we work with a �xed coe�cient ring R, we will often abbreviate SG, KG.
(iii) Let N be a G-stable subspace of M . Then we de�ne

H∗G(M,N ;R) := H∗(EG×GM,EG×G N ;R)

to be the relative equivariant cohomology ring of the pair (M,N). 4
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Remark 2.8. Even though we have given a general de�nition of equivariant cohomology for any
topological manifold and topological group, we will most often work with manifolds which are also
smooth and groups which are also Lie groups.

Example 2.9. Let M = {pt} be a point.
(i) We have

H∗C×({pt};R) = H∗(BC×;R) = H∗(CP∞;R) ∼= R[t],

where deg t = 2. We also have the following concrete description of this cohomology ring. Let
X∗(C×) denote the character group of C×. We let C× act on Cλ from the left with weight λ, i.e.,
t.v = tλv, for t ∈ C×, v ∈ Cλ. Moreover, C× acts naturally on C∞\{0} from the right by scalar
multiplication (or matrix multiplication). We let C× act on the product space (C∞\{0})×C× Cλ
diagonally according to the formula (m, v).t = (m.t−1, t.v) = (m.t−1, tλv). The quotient

OCP∞(λ) := (C∞\{0})×C× Cλ = ((C∞\{0})× Cλ)/C×

is a line bundle over CP∞. It is well-known that the following composition

Z ∼= X∗(C×)→ Pic(CP∞)→ H2(CP∞;Z)

λ 7→ OCP∞(λ) 7→ c1(OCP∞(λ)),

where the last map is the �rst Chern class, is an isomorphism. In particular, the �rst Chern class
c1(OCP∞(1)) of the canonical line bundle generates H∗(CP∞;Z) as an algebra.
(ii) We have H∗Tm({pt};R) = H∗(BTm;R) = H∗((CP∞)m;R) ∼= R[t1, ..., tm], where deg ti = 2.
As before, we have isomorphisms

Zm ∼= X∗(Tm)→ Pic((CP∞)m)→ H2((CP∞)m;Z).

We set
O(CP∞)m(k;µ) := O(CP∞)m(λ),

where λ = (0, ..., 0, µ, 0, ..., 0) with µ in the k-th position. Then the �rst Chern classes of the line
bundles O(CP∞)m(1; 1), ...,O(CP∞)m(m; 1) generate H∗((CP∞)m;Z) as an algebra.
(iii) H∗GLn

({pt};R) = H∗(BGLn;R) = H∗(Gr(n,∞);R) ∼= R[t1, ..., tn], where deg ti = 2i. We can
interpret this as the algebra of symmetric polynomials.

Example 2.10. Let H be a closed subgroup of G. Proposition 2.6 allows us to calculate the
G-equivariant cohomology ring of the space G/H. We have

H∗G(G/H;R) = H∗(EG×G G/H;R) = H∗(EG/H;R) = H∗(BH;R) = H∗H({pt};R).

Let G = GLn and let H = T be a maximal torus. Then

H∗GLn(GLn/T;R) = H∗T({pt};R) = H∗(BT;R) = H∗((CP∞)n;R) = R[t1, ..., tn],

where deg ti = 2.

De�nition 2.11. Let G be a topological group. We de�ne {(πn : EnG → BnG, pn, qn) | n > 0},
where pn : En+1G → EnG, qn : Bn+1G → BnG are continuous maps, to be an approximation of
the universal principal G-bundle EG→ BG if:

• each πn : EnG→ BnG is a principal G-bundle and each pn : En+1G→ EnG is a morphism
of principal G-bundles,

• each space EnG is n-connected,

• πn+1 ◦ qn = pn ◦ πn for each n > 0,

• {(EnG, pn) | n > 0}, {(BnG, qn) | n > 0} form direct systems,

• EG = lim−→EnG, BG = lim−→BnG.
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We call EnG→ BnG an n-th approximation of EG→ BG. 4
Proposition 2.12. Let n > 0 and let EnG → BnG be an n-th approximation of EG → BG.
Then for all m ≤ n

Hm
G (M ;R) = Hm(EG×GM ;R) = Hm(EnG×GM ;R),

for any compact topological G-manifold M of dimension at most n.

Proof. See [Bri98, p.4-5] and [Hus91, Chapter 4, Theorem 13.1].

2.3 Borel-Moore homology

In this section we de�ne non-equivariant Borel-Moore homology and review its basic properties.
For a more detailed but accessible treatment of this topic the reader is referred to [CG97, Chapter
2.6].

2.3.1 De�nition of BM homology

Let X be a locally compact topological space which has the homotopy type of a �nite CW-
complex and admits a closed embedding into a smooth manifold. All homology groups below have
coe�cients in some �xed ring R.

De�nition 2.13. Let X̂ = X ∪ {∞} be the one-point compacti�cation of X. We de�ne the i-th
Borel-Moore homology group Hi(X) of X to be

Hi(X) = Hsing
i (X̂, {∞}),

where Hsing
∗ (−,−) denotes relative singular homology. 4

Remark 2.14. It is also possible to de�ne Borel-Moore homology as the homology of a certain
chain complex of locally �nite in�nite singular chains or the homology of a distribution de Rham
complex. Also note that our de�nition immediately implies that Borel-Moore homology coincides
with singular homology for compact spaces.

Proposition 2.15 (Poincaré duality). Let M be a smooth oriented manifold of real dimension m.
Let X be a closed subset of M which has an open neighbourhood U ⊂ M such that X is a proper
deformation retract of U . Then there is a canonical isomorphism

Hi(X) ∼= Hm−i(M,M\X), (1)

where H∗(−,−) denotes relative singular cohomology. In particular, we have

Hi(M) ∼= Hm−i(M). (2)

2.3.2 Properties of BM homology

2.3.2.1 Proper pushforward. We claim that Borel-Moore homology is a covariant functor
with respect to proper maps. Let f : X → Y be a proper map. We can extend f to a map
f̂ : X̂ → Ŷ by setting f̂(∞) =∞. Since f is proper, f̂ is continuous. Then, by the functoriality of
relative singular homology, we obtain the induced map

f̂sing∗ : Hsing
∗ (X̂, {∞})→ Hsing

∗ (Ŷ , {∞}).

We now apply the one-point compacti�cation de�nition of Borel-Moore homology to obtain a
map

f∗ : H∗(X)→ H∗(Y ).

We call f∗ the proper pushforward along f .
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2.3.2.2 Künneth formula. Let M1,M2 be arbitrary CW-complexes. Then there is a natural
isomorphism

⊗ : H∗(M1)⊗H∗(M2)→ H∗(M1 ×M2).

2.3.2.3 Smooth pullback. Let X be a locally compact space and p : X̃ → X a locally trivial
�bration with smooth oriented �bre F . Assume that p is an oriented �bration, i.e., all transition
functions of the �bration preserve the orientation of the �bre. Let d = dimF . There exists a
natural pullback morphism

p∗ : H∗(X)→ H∗+d(X̃).

If the �bration is trivial, then the morphism p∗ is given by c 7→ c⊗ [F ]. In general, if U is an open
subset in which p is trivial, then p∗ restricts to the map c 7→ c⊗ [F ].

2.3.2.4 Intersection pairing. Let M be a smooth oriented manifold of real dimension m and
Z, Z̃ two closed subsets of M . Consider the cup product in singular relative cohomology

∪ : Hm−i(M,M\Z)×Hm−j(M,M\Z̃)→ H2m−j−i(M,M\(Z ∩ Z̃)).

By the Poincaré duality de�nition of Borel-Moore homology we obtain a bilinear map

∩ : Hi(Z)×Hj(Z̃)→ Hi+j−m(Z ∩ Z̃).

We call ∩ the intersection pairing.

2.4 Equivariant Borel-Moore homology

We now de�ne equivariant Borel-Moore homology using approximations to a homotopy quotient
and show that (under some assumptions) equivariant Borel-Moore homology is Poincaré dual to
equivariant cohomology. Standard references for equivariant Borel-Moore homology are [Bri00]
and [Gra99].

De�nition 2.16. Let G be a Lie group. Let {EnG→ BnG | n > 0} be an approximation of the
universal bundle EG → BG. Let X be a topological space satisfying the conditions in Section
2.3.1. Further assume that X is also a complex algebraic variety of pure dimension x/2. Let
ñ = dimRE

nG and g = dimRG. The inclusions

ιn : EnG×G X → En+1G×G X

induce Gysin pullback maps

(ιn)∗ : H
i+(̃n+1)−g

(En+1G×G X)→ Hi+ñ−g(E
nG×G X). (3)

Therefore, for each i ∈ Z,

{(Hi+ñ−g(E
nG×G X), (ιn)∗) | n > 0} (4)

forms an inverse system. We de�ne the i-th equivariant Borel-Moore homology group to be the
inverse limit

HG
i (M) := lim←−

n

Hi+ñ−g(E
nG×G X)

of the inverse system (4). This inverse system stabilizes for ñ ≥ x − i (i.e. the maps (3) become
isomorphisms), so for i ≥ x− ñ we can identify

HG
i (M) = Hi+ñ−g(E

nG×G X).
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Proposition 2.17 (Equivariant Poincaré duality). Let M be a smooth oriented manifold of real
dimension m. Let X be a closed G-stable subset of M which has an open neighbourhood U ⊂ M
such that X is a proper deformation retract of U . Then there is a canonical isomorphism

HG
i (X) ∼= Hm−i

G (M,M\X). (5)

In particular, we have
HG
i (M) ∼= Hm−i

G (M). (6)

Proof. Choose n so that i ≥ x − ñ. Then EnG ×GM is a manifold of real dimension m + ñ − g.
We can now apply the non-equivariant Poincaré duality isomorphism (1) and the fact that

(EnG×GM)/(EnG×G X) = En ×G (M\X)

to calculate

HG
i (X) := Hi+ñ−g(E

nG×G X)

∼= Hm+ñ−g−(i+ñ−g)(EnG×GM, (EnG×GM)/(EnG×G X))

= Hm−i(EnG×GM,En ×G (M\X))

= Hm−i
G (M,M\X).

Remark 2.18. We can now compare the di�erent notations we use for the various homology
and cohomology groups. We use H∗(−), HG

∗ (−) to denote non-equivariant, resp. equivariant,
Borel-Moore homology. On the other hand H∗(−), H∗G(−) denote singular, resp. equivariant,
cohomology. We use Hsing

∗ to denote singular homology.

2.5 SG-action on cohomology and BM homology

We now show that equivariant homology and cohomology are naturally endowed with an action
of the cohomology of a point. Let M be smooth oriented manifold of real dimension m endowed
with an action of a Lie group G. Consider the map

M → {pt}.

After taking homotopy quotients it becomes the projection

pM : EG×GM → BG

onto the �rst factor. It is a �bration with �bre M . The map pM induces a homomorphism of
cohomology rings

p∗M : H∗(BG)→ H∗(EG×GM)

or, equivalently, a homomorphism of G-equivariant cohomology rings

p∗M : H∗G({pt})→ H∗G(M).

Hence H∗G(M) is an algebra over the equivariant cohomology ring of a point H∗G({pt}). More
explicitly, we have the following action map

Hi
G({pt})×Hk

G(M)→ Hk+i
G (M) (7)

(a, b) 7→ p∗M (a) ∪ b. (8)

By applying the Poincaré duality isomorphism (6) to HG
k (M) and HG

k+i(M) we get an action of
H∗G({pt}) on HG

∗ (M):

Hi
G({pt})×HG

m−k(M)→ HG
m−k−i(M). (9)
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2.6 H∗
G(M)-action on HG

∗ (M)

Equivariant cohomology acts on equivariant Borel-Moore homology. This action arises as follows.
We have the cup product on cohomology

∪ : Hi
G(M)×Hj

G(M)→ Hi+j
G (M). (10)

By applying the Poincaré duality isomorphism (6), we get

HG
m−j(M) = Hj

G(M), HG
m−i−j(M) ∼= Hi+j

G (M).

Setting k = m− j, the cup product in (10) gives rise, by means of the identi�cations above, to the
following action map

· : Hi
G(M)×HG

k (M)→HG
k−i(M) (11)

(a, b) 7→a · b . (12)
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3 Quivers

The purpose of this chaper is to introduce notations for quivers, their representations and related
objects. We will use these notations throughout the thesis so it's vital that the reader becomes
familiar with them.

3.1 Quivers and dimension vectors

By a quiver we mean a quadruple Γ = (I,H, s, t), where I is a set of vertices, H is a set of arrows,
s : H→ I is a source function, i.e., it associates to each arrow h its source s(h) and t : H→ I is a
target function, i.e., it associates to each arrow h its target t(h).

For each i, j ∈ I, we set

Hi,j := {h ∈ H | s(h) = i, t(h) = j}, hi,j = |Hi,j |

(i, j) = −(hi,j + hj,i) if i 6= j, (i, i) = 2.

A dimension vector for a quiver Γ is a function

d : I→ N = {0, 1, 2, ...}
i 7→ di.

We can also view it as an |I|-tuple d = (di)i∈I or an element d =
∑
i∈I dii ∈ NI of the semigroup

NI. We call
d = |d| =

∑
i∈I

di ∈ N

the cardinality of the dimension vector d. To a pair (Γ,d) we associate a complex I-graded d-
dimensional vector space

V =
⊕
i∈I

Vi such that dim Vi = di.

The fact that V has I-graded dimension d can also be written more compactly as

grdimV = d.

By the dimension of a vector space we will always mean its dimension as a complex vector space.
On the other hand, when we talk about the dimension of a variety or a manifold, we will mean its
real dimension, unless otherwise indicated.

3.2 Representations of quivers

To a triple (Γ,d,V) we can associate a complex vector space

Repd :=
⊕
h∈H

HomC(Vs(h),Vt(h)).

If H = ∅, we set Repd = {0}, the trivial vector space. Elements of Repd, which we will usually
denote as

ρ = (ρh)h∈H = (ρh),

are called representations of the quiver Γ with dimension vector d. To the triple (Γ,d,V) we can
also associate the following complex algebraic groups

Gdi := GL(Vi),
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Gd :=
∏
i∈I

GL(Vi) =
∏
i∈I

Gdi .

Elements of Gd will usually be denoted as

g = (gi)i∈I = (gi).

The natural action of Gd on V induces a "simultaneous conjugation" action of Gd on the vector
space Repd. This action admits the following explicit description. Let ρ ∈ Repd and g ∈ Gd.
Then

g.ρ = (gi).(ρh) = (gt(h)ρhg
−1
s(h)).

We also recall that the quotient Repd/Gd parametrizes the isomorphism classes of representations
of the quiver Γ with dimension vector d, i.e., there is a bijective correspondence between elements
of Repd/Gd and such classes.

We also set
Gd := GL(V).

The notation re�ects the fact that Gd does not depend on the dimension vector d, but only its car-
dinality d. We now present some examples to illustrate the notation we have just introduced.

Example 3.1. Let Γ be the quiver A1 with one vertex i and no arrows. Let d = ni. Since H = ∅,
Repd = {0} is the trivial vector space. Moreover, Gd

∼= GL(n,C) ∼= Gd is the full general linear
group.

Example 3.2. Let Γ be the equioriented quiver An

i1 → i2 → ...→ in

with dimension vector d = i1 + i2 + ...+ in. Then

Repd =
⊕
h∈H

HomC(C,C) ∼= (C)n−1.

Moreover, Gdi
∼= GL(1,C) ∼= C× for each i ∈ I and so Gd = (C×)n is a torus. We also have

Gd
∼= GL(n,C).

Example 3.3. Consider the quiver D4

i3

i1 // i2

??

��

i4

with dimension vector d = d = i1 + 2i2 + 2i3 + i4. We have

Repd = HomC(V1,V2)⊕HomC(V2,V3)⊕HomC(V2,V4) ∼= C2 ⊕ C4 ⊕ C2 ∼= C8,

Gd
∼= (C×)2 × (GL(2,C))2 and Gd

∼= GL(6,C).

3.3 Compositions of a dimension vector

To a quiver and a dimension vector we are going to associate a �ag variety and a Steinberg variety.
The connected components of this �ag variety correspond to certain sequences of vertices of the
quiver. These sequences can also be regarded as compositions of the chosen dimension vector. In
this section we de�ne the notion of a composition and explain how it's related to quiver-graded
�ags.
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De�nition 3.4. Let d ∈ N>0. Let
y = (y1, ..., yk)

be a sequence such that

y1, ..., yk ∈ N>0,

k∑
l=1

yl = d.

We call y a composition of the natural number d and k the length of the composition y. We set

Compd := {y | y is a composition of d}.

Remark 3.5. Compositions of d correspond to the di�erent types of partial �ags in a d-dimensional
vector space. More speci�cally, they describe the dimensions of the quotients of the successive
subspaces in a �ag. In particular, the composition (1, ..., 1) of length d corresponds to the complete
�ag type. This will be explained more thoroughly in Section 4.1. 4

We now generalize this de�nition to the quiver-graded setting.

De�nition 3.6. Let Γ be a quiver with �nitely many vertices and let d be a dimension vector.
(i) Let

y = (y1, ..., yk)

be a sequence such that

y1 = (y1
i )i∈I, ..., y

k = (yki )i∈I ∈ NI, ∀ 1 ≤ l ≤ k ∃ i ∈ I with yli 6= 0 and
k∑
l=1

yl = d.

We call y a composition of the dimension vector d and k the length of the composition y. We set

Compd := {y | y is a composition of d}.

(ii) A composition y is called multiplicity-free if for all 1 ≤ l ≤ k and i ∈ I we have yli = 0 or 1.
(iii) A composition y is called strictly multiplicity-free if for all 1 ≤ l ≤ k, there exists a unique
i ∈ I such that yli = 1 and ylj = 0 for j 6= i. Note that a strictly multiplicity-free composition is just

a sequence (i1, ..., id) of vertices of Γ such that
∑d
l=1 il = d. Strictly multiplicity-free compositions

are therefore precisely the compositions of length d. We let

Yd := {y ∈ Compd | y is strictly multiplicity-free}

denote the set of all strictly multiplicity-free compositions of d. Note that

|Yd| =
d!∏
i∈I di!

.

(iv) We call a composition y simple if for all 1 ≤ l ≤ k, yl = ylii for some vertex i ∈ I, or,
equivalently, if for all 1 ≤ l ≤ k, there exists a unique i ∈ I with yli 6= 0. 4
Remark 3.7. (i) A composition is strictly multiplicity-free if and only if it is both simple and
multiplicity-free.
(ii) Compositions of d correspond to the di�erent types of quiver-graded partial �ags in the I-
graded vector space V. They describe the graded dimensions of the quotients of the successive
graded subspaces in a �ag. Strictly multiplicity-free compositions correspond to the di�erent types
of complete �ags. This will be explained in more detail in Section 4.1.
(iii) Let i ∈ I. If di 6= 0 then the sequence

(y1
i , ..., y

k
i )
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becomes, after deleting the yli equal to zero, a composition of the natural number di. This sequence
describes the type of a �ag restricted to the graded component Vi.
(iv) The sequence (∑

i∈I

y1
i , ...,

∑
i∈I

yki

)
is a composition of the natural number d. It describes the type of a quiver-graded �ag considered
as an ungraded �ag.

Example 3.8. Consider the quiver A2

i→ j

with dimension vector d = 2i+ 2j. Then

Yd = {(i, i, j, j), (i, j, j, i), (i, j, i, j), (j, j, i, i), (j, i, j, i), (j, i, i, j)}

are all the six strictly multiplicity-free compositions. The remaining seven (not strictly) multiplicity-
free compositions are

(i+ j, i, j), (i+ j, j, i), (i, i+ j, j), (j, i+ j, i), (i, j, i+ j), (j, i, i+ j), (i+ j, i+ j).

The eight simple but not strictly multiplicity-free compositions are

(2i, j, j), (j, 2i, j), (j, j, 2i), (2j, i, i), (i, 2j, i), (i, i, 2j), (2i, 2j), (2j, 2i).

There are �ve remaining compositions

(2i+ j, j), (j, 2i+ j), (2j + i, i), (i, 2j + i), (2i+ 2j)

which are neither multiplicity-free nor simple. In total we get twenty-six compositions.
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4 Quiver �ag varieties

Let us �x once and for all a quiver Γ = (I,H, s, t). All the notations we introduce later will refer
to this choice of quiver. Let us assume that Γ is non-empty, i.e., I 6= ∅, �nite, i.e., |I|, |H| < ∞,
and without loops, i.e., there is no h ∈ H such that s(h) = t(h). However, multiple edges and
cycles (of length at least 2) are allowed.

We also �x once and for all a dimension vector d = (di)i∈I for the quiver Γ and a complex vector
space

V =
⊕
i∈I

Vi such that dim Vi = di.

4.1 Flag varieties

4.1.1 De�nitions

De�nition 4.1. Let V be a complex vector space of dimension d and let y = (y1, ..., yk) ∈ Compd
be a composition of d.
(i) An ordinary or ungraded �ag F of type y in V is a sequence

{0} = V 0 ⊂ V 1 ⊂ ... ⊂ V k−1 ⊂ V k = V

of (ungraded) linear subspaces of V such that for each 1 ≤ l ≤ k, V l/V l−1 is an (ungraded) vector
space with

dimV l/V l−1 = yl.

We call an ordinary �ag F complete or of complete type if it is a �ag of type (1, ..., 1). Otherwise
we call F partial or of partial type.
(ii) The ordinary or ungraded �ag variety of type y is the variety of all ordinary �ags F of type y in
V. We let F(V ) denote the ordinary �ag variety of all complete �ags in V , i.e., the ordinary �ag
variety of type (1, ..., 1). Since we are primarily interested in ordinary �ag varieties of complete
type, we do not introduce special notation for ordinary �ag varieties of arbitrary type. 4
De�nition 4.2. Let y = (y1, ..., yk) ∈ Compd be a composition of d.
(i) A quiver-graded �ag F of type y in V is a sequence

{0} = V 0 ⊂ V 1 ⊂ ... ⊂ V k−1 ⊂ V k = V

of I-graded linear subspaces of V such that for each 1 ≤ l ≤ k,

V l/V l−1

is an I-graded vector space with
grdimV l/V l−1 = yl.

(ii) A quiver �ag variety of type y, denoted Fy, is the variety of all quiver graded �ags F of type
y in V. 4

The natural action of Gd on V induces a transitive action on �ags which preserves the type of a
�ag. Hence Gd acts transitively on each Fy. The isotropy group of any �ag of type y is a parabolic
subgroup of Gd, so Fy is a smooth projective variety. This is explained in more detail in Section
4.3.2. We now de�ne one of the central objects of study in this thesis.

De�nition 4.3. We de�ne the quiver �ag variety Fd to be the �nite disjoint union of the quiver
�ag varieties of types corresponding to all possible strictly multiplicity-free compositions of d, i.e.:

Fd =
∐
y∈Yd

Fy.
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We would now like to study the relationship between ordinary and quiver-graded �ags. We can
obtain ordinary �ags from quiver-graded �ags in two ways: by restriction to a graded component
or by forgetting the grading.

4.1.2 Restrictions of �ags

Consider a quiver-graded �ag F

{0} = V 0 ⊂ V 1 ⊂ ... ⊂ V k−1 ⊂ V k = V (13)

of type y = (y1, ..., yk) in V. Since each subspace V l is I-graded, we have, for each 1 ≤ l ≤ k,
decompositions

V l =
⊕
i∈I

V li .

De�nition 4.4. Let i ∈ I. We de�ne F |i to be the restriction of the �ag F to the graded
component Vi ⊂ V, i.e.,

F |i = F ∩Vi.

Explicitly, F |i is the sequence

{0} = V 0
i ⊆ V 1

i ⊆ ... ⊆ V k−1
i ⊆ V ki = Vi (14)

of linear subspaces of Vi. 4

Although some of the inclusions in (14) may not be strict, we can always contract the sequence
by deleting repeated occurrences of the same subspace to obtain a shorter sequence with strict
inclusions. After such a contraction F |i is an ordinary, i.e., ungraded �ag in the ungraded vector
space Vi. In fact, since dimV li /V

l−1
i = yli, we have:

Fact 4.5. F |i is an ordinary �ag in Vi of type yi := (y1
i , ..., y

k
i ) (with yli = 0 deleted). 4

Moreover, y is a multiplicity-free composition if and only if each yli = 0 or 1. But the latter
condition is equivalent to each restriction F |i being a complete �ag. Hence:
Fact 4.6. For each i ∈ I, F |i is a complete ordinary �ag ⇐⇒ the composition y is multiplicity-
free. 4

4.1.3 Forgetting the grading

We again consider the quiver-graded �ag F from (13) of type y = (y1, ..., yk) in V.

De�nition 4.7. We de�ne F̂ to be the �ag F with the I-grading forgotten. We call F̂ the ungraded
�ag associated to F . 4

For each 1 ≤ l ≤ k, we have dimV l/V l−1 =
∑
i∈I y

l
i. Hence:

Fact 4.8. F̂ is an ordinary �ag in the ungraded (or, more precisely, with the grading forgotten)
vector space V of type

ŷ :=

(∑
i∈I

y1
i , ...,

∑
i∈I

yki

)
.

Moreover, it is immediate that:

Fact 4.9. F̂ is a complete ordinary �ag ⇐⇒ the composition y is strictly multiplicity-free, i.e.,
y ∈ Yd. 4

We therefore introduce the following de�nition.

De�nition 4.10. We call a quiver-graded �ag F in V of type y complete if the ordinary �ag F̂ is
complete, or, equivalently, if y ∈ Yd. 4
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4.1.4 The relationship between ordinary and quiver �ag varieties

We have investigated the relationship between ordinary and quiver-graded �ags. We would now
like to examine how ordinary �ag varieties and quiver �ag varieties are related. We �rst observe
that restriction of �ags gives rise to an isomorphism between a quiver �ag variety and a product
of ordinary �ag varieties.

Corollary 4.11. If y is a multiplicity-free composition, then we have an isomorphism of Gd-
varieties

Fy
∼=−→
∏
i∈I

F(Vi), F 7→ (F |i)i∈I. (15)

Proof. This follows directly from Fact 4.6.

Let Z(Gd) denote the centre of Gd. Note that

Z(Gd) =
∏
i∈I

Z(GL(Vi)) =
∏
i∈I

C×.

Forgetting the grading yields an isomorphism between Fd and the closed subvariety of F(V)
consisting of all ordinary �ags �xed under the action of Z(Gd).

Lemma 4.12. We have an isomorphism of Gd-varieties

Fd

∼=−→ (F(V))Z(Gd), F 7→ F̂ .

Proof. Straightforward.

4.2 Torus �xed points in Fd

4.2.1 Choice of basis

De�nition 4.13. (i) For each i ∈ I, let us choose an ordered basis (e1
i , ..., e

di
i ) of Vi. We also �x

an ordering (i1, ..., i|I|) on the vertices in I. We set dk := dik . This gives us an ordered basis

(e1
i1 , ..., e

d1
i1
, ..., e1

i|I|
, ..., e

d|I|
i|I|

) (16)

of V. We will refer to this basis as the chosen basis and to the vectors forming this basis as the
chosen basis vectors.
(ii) For each 1 ≤ j ≤ d, let ej denote the j-th element of our chosen ordered basis. Using this
notation, we can write this basis as

(e1, ..., ed). (17)

Remark 4.14. We use the symbols i1, ..., i|I| as constants, or names of particular vertices, rather
than as variables. Similarly, the symbols d1, ...,d|I| are constants denoting speci�c natural numbers
and e1, ..., ed are constants denoting speci�c basis elements. On the other hand, we use the symbol
i as a variable ranging over I.

4.2.2 Gd and Gd as matrix groups

We can explicitly identify Gd = GL(V) with a matrix group:

Gd = GL(V)
∼=−→ GL(d,C),
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sending a linear transformation to the matrix representing it in our chosen ordered basis. This
isomorphism restricts to

Gd =
∏
i∈I

GL(Vi)
∼=−→

|I|∏
k=1

GL(dk,C),

allowing us to explicitly identify Gd with a product of matrix groups. Observe that there is a
canonical embedding Gd ↪→ Gd, so we can regard Gd as a subgroup of Gd.

4.2.3 Weyl groups Wd and Wd

All the de�nitions we introduce here relate to the choice of basis and the identi�cation with matrix
groups from the previous two sections.

De�nition 4.15. We let Td denote the subgroup of Gd consisting of the diagonal matrices. It is
a maximal torus in Gd as well as in Gd. If t ∈ Td, we will write t = (tji ) or t = (tj), in accordance
with our two notations (16), (17) for the chosen basis. We let Bd denote the subgroup of Gd

consisting of the upper triangular matrices. It is a Borel subgroup of Gd. We further let Bd denote
the subgroup of Gd consisting of the upper triangular matrices. It is a Borel subgroup of Gd. Note
that tori and Borel subgroups are unique up to conjugacy. 4
De�nition 4.16. We let

Wd := NGd
(Td)/Td and Wd := NGd

(Td)/Td

denote the Weyl groups of the pairs (Gd, Td) and (Gd, Td), respectively. 4
Remark 4.17. The choice of notation re�ects the fact that Gd, Bd,Wd depend on the dimension
vector d while Gd,Bd,Wd depend only on its cardinality d. Even though our chosen maximal
torus Td depends only on d, we use the notation Td nonetheless because the choice of Td is unique
up to conjugation by elements of Gd. 4

Since Gd ⊂ Gd and so NGd
(Td) ⊂ NGd

(Td), there is a canonical embeddingWd ⊂Wd. Recall that
NGd

(Td) consists of the monomial matrices in Gd and NGd
(Td) consists of the monomial matrices

in Gd. We can choose the permutation matrices in Gd resp. Gd as the coset representatives.
Therefore, we can also regard Wd resp. Wd as a subgroup of Gd resp. Gd.

It follows that Wd and Wd act naturally on the basis vectors in (16) by permutation. Recall that
ej denotes the j-th element in the ordered basis (16). We have a canonical isomorphism

Wd

∼=−→ Sd, w 7→ w̃ (18)

such that, for each 1 ≤ j ≤ d and w ∈ Wd, w(ej) = ew̃(j). This isomorphism restricts to the
isomorphism

Wd

∼=−→
|I|∏
k=1

Sdk .

In the sequel we will freely identify w with w̃ under the isomorphism (18) and forget the tilde in
the notation. Note that Wd consists of those permutations of the chosen basis vectors eji which �x
the lower index, i.e., those permutations that, for each i ∈ I, send the chosen basis vectors in Vi

to chosen basis vectors in Vi.

4.2.4 Wd and Wd as Coxeter systems

De�nition 4.18. For 1 ≤ l ≤ d − 1, let sl ∈ Wd be the simple transposition swapping el and
el+1. Let Π = {s1, ..., sd−1} denote the set of all simple transpositions in Wd. Moreover, let

Πd = Π ∩Wd = Π\{sd1
, sd2

, ..., sd|I|−1
}
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be the set of simple transpositions in Wd. 4

The groupsWd andWd are generated by Π and Πd, respectively. Moreover, (Wd,Π) and (Wd,Πd)
are Coxeter systems. Let

l : Wd → N0

be the associated length function, which assigns to each w the number of simple transpositions in
some reduced decomposition of w (this is independent of the choice of reduced decomposition).
Let w0 denote the unique element of Wd of maximal length and v0 the unique element of Wd of
maximal length. We recall the following lemma.

Lemma 4.19. (i) Each right cosetWdw contains a unique element u of minimal length. Moreover,
u is the unique element in the coset Wdw such that, for each v ∈Wd, we have l(vu) = l(v) + l(u).
(ii) The minimal length right coset representatives are precisely the (di1 , ...,di|I|)-shu�es for the
left permutation action of Wd.

We let Min(Wd,Wd) denote the set of minimal length representatives of the right cosets of Wd

in Wd. By the lemma, these are precisely the permutations which, applied to our chosen ordered
basis in (16), yield another ordered basis which preserves the relative order of the chosen basis
vectors in each Vi. In terms of the Wd-action on the set of coordinate �ags, which we explain
in the next section, the minimal length right coset representatives are precisely those elements u
which satisfy the condition that, for each i ∈ I,

Fu|i = Fe|i.

4.2.5 The action of Wd on Yd

The group Wd, identi�ed with the symmetric group Sd, acts on Yd in the following way. We can
regard a composition y ∈ Yd as a map {1, 2, ...,d} → I sending l to yl. For each w ∈ Wd, we
de�ne

w(y) = y ◦ w−1.

We then have
w(ye) = yw−1 ∀w ∈Wd,

where yu is the composition of the coordinate �ag Fu (see next section for the explanation of the
notation).

4.2.6 Torus �xed points

De�nition 4.20. (i) A �ag of the form

< ej1 > ⊂ < ej1 , ej2 > ⊂ ... ⊂ < ej1 , ej2 , ..., ejd >= V ,

where each ejk is a distinct chosen basis element, is called a coordinate �ag.
(ii) We call the �ag

< e1 > ⊂ < e1, e2 > ⊂ ... ⊂ < e1, e2, ..., ed >= V

the standard coordinate �ag. We will denote it with Fe. It is a �ag of type

(i1, ..., i1, i2, ..., i2, ..., i|I|, ..., i|I|),

where each ij appears consecutively dim Vij -many times.
(iii) Moreover, we call (i1, ..., i1, i2, ..., i2, ..., i|I|, ..., i|I|) the standard �ag type or the standard com-
position of the dimension vector d. We will denote it with ye. 4
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We can also write a coordinate �ag as

< ej1 > ⊂ < ej1 > ⊕ < ej2 > ⊂ ... ⊂ < ej1 > ⊕ < ej2 > ⊕ ... ⊕ < ejd > . (19)

Recall that Gd acts on the �ag variety F(V) and its subgroup Gd acts on the quiver �ag variety
Fd. We now want to consider the restriction of the latter action to Td and determine its �xed
points.

Lemma 4.21. We have
(Fd)Td = {coordinate �ags in Fd}.

Proof. Since each < ej > is a Td-submodule by de�nition, coordinate �ags are �xed under the
action of Td. On the other hand, suppose that F = (∅ ⊂ V 1 ⊂ ... ⊂ V d = V ) is not a coordinate
�ag. Let

< ej1 > ⊂ < ej1 > ⊕ < ej2 > ⊂ ... ⊂ < ej1 > ⊕ < ej2 > ⊕ ... ⊕ < ejn >= V n

be its longest initial segment consisting of subspaces spanned by the chosen basis vectors. Let
V n+1 = V n⊕ < f >. We can choose the vector f =

∑d
k=1 ajkejk so that the coe�cients aj1 , ..., ajn

on the chosen basis vectors in V n are 0. Moreover, since V n+1 is not spanned by the chosen basis
vectors, there must be two distinct nonzero coe�cients aj′ , aj′′ in the sum. We can therefore write
f = aj′ej′ + aj′′ej′′ + rest. Now take t = (tj) ∈ Td with tj′ = 2 and tj = 1 if j 6= j′. Then
t.f = 2aj′ej′ + aj′′ej′′ + rest /∈ V n+1.

4.2.7 Bijection between Wd and the torus �xed points

We have explained how the actions of Gd and Gd on the vector space V induce the permutation
actions of the Weyl groups Wd and Wd on the chosen basis vectors. The groups Wd and Wd also
act by permutation on the set {< e1 >, ..., < ed >} of lines spanned by the chosen basis vectors.
These actions induce, by (19), actions on the set of coordinate �ags, which equals the set (Fd)Td

of torus �xed points. Note that the action of Wd preserves the type of each coordinate �ag.

Lemma 4.22. The action of Wd on (Fd)Td is free and transitive. Hence there is a bijection

Wd → (Fd)Td , w 7→ w(Fe).

In particular,
|(Fd)Td | = |Wd| = d!.

Proof. Obvious.

De�nition 4.23. Recall that Fe denotes the standard coordinate �ag. For each w ∈Wd, we set

Fw := w(Fe).

4.2.8 Bijection between Wd\Wd and Yd

Recall that the standard coordinate �ag Fe has type

ye = (i1, ..., i1, i2, ..., i2, ..., i|I|, ..., i|I|). (20)

Let ijk denote the k-th element in the standard composition (20). Recall that, under the isomor-
phism from (18), Wd can be identi�ed with the symmetric group on d letters. For each w ∈Wd,
the coordinate �ag Fw has type

yw := (ijw(1)
, ..., ijw(d)

).
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Lemma 4.24. We have
w ∈Wd ⇐⇒ yw = ye.

Moreover, there is a bijection
Wd\Wd → Yd, Wdw 7→ yw.

Proof. Obvious.

To emphasize that yw depends only on the coset Wdw, we will typically write yw instead. We will
also typically take w to be the minimal coset representative.

De�nition 4.25. (i) For each y ∈ Yd, let Wy denote the Wd-coset

Wy := {w ∈W | yw = y}.

(ii) For each w ∈Wd, we set
Fw := Fyw .

To emphasize dependence only on the cosetWdw, we will typically write Fw. We will also typically
take w to be the minimal coset representative. 4

We can describe the torus �xed points of the connected component Fy of Fd as

(Fy)Td = {Fw | w ∈Wy}.

Moreover,
(Fw)Td = {Fu | u ∈Wdw}.

4.3 Connections to Lie theory

4.3.1 Parabolic subgroups

De�nition 4.26. For each w ∈Wd, we set

Bw := StabGd
(Fw) < Gd, Bw := StabGd

(Fw) < Gd.

We let
Nw := Ru(Bw)

be the unipotent radical of Bw. Let s ∈ Π be a simple transposition such that wsw−1 ∈ Wd. We
set

Pw,ws := (Bwwsw
−1Bw) ∪Bw,

and let
Nw,ws = Ru(Pw,ws)

be the unipotent radical. 4
Remark 4.27. (i) We have

Be = Bd, Bw = wBew
−1, Pw,ws = wPe,sw

−1,

for w ∈Wd and
Be = Bd, Bw = wBew−1,

for w ∈Wd.
(ii) Each Bw is a Borel subgroup of Gd and each Bw is a Borel subgroup of Gd. Each Pw,ws is a
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parabolic subgroup of Gd containing Bw.
(iii) The Borel subgroups of Gd containing Td are classi�ed by Wd, i.e., there is a bijection

Wd ←→ { Borel subgroups of Gd containing Td}
w 7→ Bw = wBew−1.

(iv) Let u ∈ Min(Wd,Wd). Since u is a shu�e, Be also stabilizes the coordinate �ag Fu. Hence
Be = Bu. Moreover, if w = vu ∈ Wd, where v ∈ Wd and u ∈ Min(Wd,Wd), then vBdv

−1 is
the isotropy group of the coordinate �ag Fw, i.e., Bw = Bv. Hence the Borel subgroups of Gd

containing the maximal torus Td are classi�ed by Wd, i.e., there is a bijection

Wd ←→ { Borel subgroups of Gd containing Td}
v 7→ Bv = vBev

−1.

4.3.2 Quotients by a Borel subgroup

The group Gd acts transitively on F(V). Moreover, for each w ∈ Wd, the isotropy group of the
�ag Fw is Bw. Hence, for each w ∈Wd, we have an isomorphism of Gd-varieties

Gd/Bw
∼=−→ F(V), gBw/Bw 7→ g.Fw.

Moreover, for each v ∈ Wd and u ∈ Min(Wd,Wd), we obtain in an analogous manner an isomor-
phism of Gd-varieties

Gd/Bv
∼=−→ Fu, gBv/Bv 7→ g.Fvu.

In particular, for each u ∈ Min(Wd,Wd) we have an isomorphism

Gd/Bd

∼=−→ Fu, gBd/Bd 7→ g.Fu.

This implies that Fd is isomorphic to the disjoint union of |Wd\Wd|-many copies of Gd/Bd.

4.3.3 Lie algebras

De�nition 4.28. For each w ∈Wd and s ∈ Π such that wsw−1 ∈Wd we set

gd := Lie(Gd), g := Lie(Gd),

td := Lie(Td), bw := Lie(Bw), nw := Lie(Nw),

pw,ws := Lie(Pw,ws), nw,ws := Lie(Nw,ws), mw,ws := nw/nw,ws.

Recall that v0 denotes the unique element of Wd of maximal length. We set

b−w := Lie(Bv0w), n−w := Lie(Nv0w),

p−w,ws := Lie(Pv0w,v0ws), n−w,ws := Lie(Nv0w,v0ws), m−w,ws := n−w/n
−
w,ws.

Note that nw,ws = nw∩nws. We generalize the de�nitions of nw,ws and mx,xy to arbitrary x, y ∈Wd

by setting
nx,xy := nx ∩ nxy, mx,xy := nx/nx,xy.
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4.3.4 Root systems

4.3.4.1 The root system ∆. Let ∆ ⊂ t∗d denote the set of roots of the Lie algebra g with
respect to the Cartan subalgebra td. It is a root system of type Ad−1. We write

g = td ⊕
⊕
α∈∆

gα,

where gα is the root space with weight α. Recall that for each 1 ≤ j ≤ d, the line C.ej spanned
by the chosen basis vector ej is a td-module. Let χj ∈ t∗d denote the weight of this module. Let
hk be the matrix whose (k, k)-th entry is 1 and all the other entries are 0. Then {h1, ..., hd} is the
standard basis of td and we have χj = h∗j . Recall that

∆ = {χj − χk | 1 ≤ j 6= k ≤ d}.

We choose
∆1 := {χj − χj+1 | 1 ≤ j ≤ d− 1}

as the base of the root system ∆. We refer to its elements as simple roots. We set

βj := χj − χj+1.

Moreover, we let ∆+ denote the set of the positive roots with respect to this choice of base.

De�nition 4.29. If h is a Lie subalgebra of g and a td-submodule of g then we set

Ä(h) = {α ∈ ∆ | gα ⊂ h}.

Using this notation we have

∆+ = Ä(Lie(Bd)) = {χj − χk | 1 ≤ j < k ≤ d}.

We also set ∆− := −∆+.

Let sβk denote the re�ection with respect to the simple root βk := χk−χk+1 and let W (∆) denote
the Weyl group of the root system ∆. We have W (∆) = < sβk | 1 ≤ k ≤ d − 1 >. There is a
canonical isomorphism

Wd →W (∆), sk 7→ sβk .

From now on we will freely identify the two groups. If j 6= k, we have

w(χj − χk) = χw(j) − χw(k).

Remark 4.30. We have now seen three incarnations of the group Wd: as the Weyl group of the
pair (Gd, Td), the symmetric group Sd and the Weyl group of the root system ∆. 4

Note that, for each w ∈Wd,

w(∆+) = Ä(Lie(Bw)) = {χw(j) − χw(k) | 1 ≤ j < k ≤ d}.

Remark 4.31. Recall that there is an isomorphism

t∗d → H2((CP∞)d; k) = H2
Td

({pt})

sending χk to the Chern class of the line bundle O(CP∞)d(χk), i.e., the canonical line bundle on
the k-th copy of CP∞. This isomorphism extends to the isomorphism

k[χ1, ..., χd]→ H∗Td
({pt}).

Therefore from now on we will regard elements of H∗Td
({pt}) as polynomials in the weights

χ1, ..., χd. 4
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4.3.4.2 The root system ∆d. We let ∆d ⊂ ∆ denote the set of roots of the Lie algebra gd

with respect to the Cartan subalgebra td. It is a root system of type Adi1−1 × ... × Adi|I|−1 . We
have

gd = td ⊕
⊕
α∈∆d

gα.

We set
∆+

d := ∆d ∩∆+, ∆−d := −∆+
d = ∆d ∩∆−, ∆1

d := ∆d ∩∆1.

Observe that ∆1
d forms a base of the root system ∆d and ∆+

d are the positive roots with respect
to this base. We have

∆+
d = Ä(be) = Ä(ne).

The group Wd is canonically isomorphic to the Weyl group of the root system ∆d. If v ∈ Wd,
then

v(∆+
d ) = Ä(bv) = Ä(nv).

Moreover, if w = vu ∈Wd with v ∈Wd, u ∈ Min(Wd,Wd), then we also have

v(∆+
d ) = Ä(bw) = Ä(nw).
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5 The Steinberg variety

5.1 The incidence variety

We would like to study the interplay between representations of a quiver and the quiver �ag variety
associated to a �xed dimension vector. The relation between the two is captured in the "incidence
variety", or variety of pairs, which we now proceed to de�ne.

De�nition 5.1. (i) Let y ∈ Yd and let

F = ({0} = V 0 ⊂ V 1 ⊂ ... ⊂ V d−1 ⊂ V d = V) (21)

be a �ag in Fy. Let ρ = (ρh)h∈H ∈ Repd be a representation of our quiver Γ. We call the �ag F
ρ-stable if

ρh(V ls(h)) ⊆ V
l
t(h) for all h ∈ H and l ∈ {1, ..., k}.

(ii) We de�ne the incidence variety F̃y of type y to be the variety of all pairs (ρ, F ) such that F
is ρ-stable, i.e.,

F̃y := {(ρ, F ) | F is ρ-stable} ⊂ Repd ×Fy.

It is a closed subvariety of Repd ×Fy. For w ∈Wd, we set

F̃w := F̃yw .

(iii) We de�ne the incidence variety F̃d to be the �nite disjoint union of the incidence varieties of
types corresponding to all possible strictly multiplicity-free compositions:

F̃d :=
∐
y∈Yd

F̃y.

It is a closed subvariety of Repd ×Fd. 4
Remark 5.2. Suppose that y = (ij1 , ..., ijd). For each 1 ≤ l ≤ d let us set

F |l := ({0} = V 0 ⊂ V 1 ⊂ ... ⊂ V l).

It is a �ag of type y|l := (ij1 , ..., ijl). The I-graded subspace V l of V has graded dimension
d|l :=

∑l
k=1 ijk . If ρ ∈ Repd and ρh(V ls(h)) ⊆ V lt(h) for all h ∈ H, then it is possible to restrict ρ

to the subspace V l. We set ρ|l := ρ|V l . We have ρ|l ∈ Repd|l , i.e., ρ|l is a subrepresentation of ρ.
We can now rephrase the de�nition of ρ-stability in the following way: a �ag F is ρ-stable if and
only if each restriction ρ|l is a subrepresentation of ρ. 4
Lemma 5.3. If F ∈ Fy is ρ-stable then ρ(V l) ⊆ V l−1, for each 1 ≤ l ≤ d.

Proof. Since Γ is a quiver without loops, we have ρ(V 1) = {0}. Arguing by induction, we can
suppose that ρ(V l−1) ⊆ V l−2. If y = (ij1 , ..., ijd), we can write V l = V l−1 ⊕ L, where L ⊂ Vijl

.
Then ρ(V l) = ρ(V l−1 ⊕ L) = ρ(V l−1) ⊕ ρ(L) ⊆ V l−2 ⊕ ρ(L). By ρ-stability, ρ(L) ⊂ V l. But
since Γ has no loops, there is no arrow from ijl to itself, and so ρ(L) ∩ Vijl

= {0}. Since
V l/V l−1 ∼= L ⊂ Vijl

, we must have ρ(L) ⊂ V l−1.

Remark 5.4. We can interpret the last lemma as saying that a representation which stabilizes
a �ag has to be nilpotent. Geometrically, this means that representations stabilizing a given �ag
must lie inside a nilpotent cone in Repd.
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5.1.1 The action of Gd

Gd acts diagonally on Repd ×Fy by g : (ρ, F ) 7→ (g.ρ, g.F ). Since

(g.ρh)(gs(h).V
l
s(h)) = (gt(h)ρhg

−1
s(h))(gs(h).V

l
s(h)) = (gt(h)ρh)(V ls(h)) = gt(h).(ρh(V ls(h))) ⊆ gt(h).V

l
t(h),

g.F is g.ρ-stable and so the diagonal action of Gd descends to an action on F̃y.

5.1.2 The canonical projections

We now turn our attention to the two canonical projections

F̃y
µy

}}

πy

  

Repd Fy.

Proposition 5.5. (i) The �rst projection

µy : F̃y → Repd

is a Gd-equivariant proper map.
(ii) The second projection

πy : F̃y → Fy
is a Gd-equivariant vector bundle with �bre

π−1
y (F ) = {(ρ, F ) | F is ρ-stable} ⊆ Repd × {F}.

In particular, for g ∈ Gd, we have

π−1
y (g.F ) = g.π−1

y (F ).

Proof. (i) Gd-equivariance is obvious. The projection Repd × Fy → Repd is proper because the
quiver �ag variety Fy is compact (one can see this using the Iwasawa decomposition, for example).
But µy is the restriction of this projection to the closed subset F̃y, so it is proper as well.
(ii) This is clear.

Proposition 5.5 implies that the dimension of the �bres π−1
y (F ) is constant with respect to F ∈ Fy

and that dimC F̃y = dimC Fy + dimC π
−1
y (F ). While the dimension of Fy does not depend on the

choice of y (it is the same for all y), the dimension of F̃y does vary with y. Therefore, we introduce
the following de�nition.

De�nition 5.6. For y ∈ Yd, we let

γ(y) := dimC(F̃y)

denote the complex dimension of F̃y. 4

The fact that the dimension of F̃y depends on y is illustrated in the following example.
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Example 5.7. Consider the quiver A2

i→ j

with d = i + j. Let V = Vi ⊕ Vj = Cei ⊕ Cej be the associated vector space. Then Yd = {y, y′}
with y = (i, j) and y′ = (j, i). We have Fy ∼= Fy′ ∼= {pt} and Repd = Cρij , where ρij : ei 7→ ej .
More precisely, Fy = {F},Fy′ = {F ′}, where

F = ({0} ⊂ Vi ⊂ V ),

F ′ = ({0} ⊂ Vj ⊂ V ).

Since ρij(Vi) = Vj , F is not ρij-stable. On the other hand F ′ is ρij-stable. Let ρ0 be the zero
morphism in Repd. Then

F̃y = {(ρ0, F )} ∼= {pt} while F̃y′ = {(ρ, F ′) | ρ ∈ Repd} = Repd ×Fy′ ∼= C.

Note that F̃y is a variety of (complex) dimension 0 while F̃y′ is a variety of (complex) dimension
1, i.e., γ(y) = 0 but γ(y′) = 1. 4
De�nition 5.8. We will use the notation

µd : F̃d → Repd, πd : F̃d → Fd

for the projections from the whole incidence variety F̃d. 4

It follows immediately from Proposition 5.5 that µd is proper and that πd is a disjoint union of
vector bundles (of various ranks).

Remark 5.9. The fact that the morphism µd is proper is very important. It allows us to take
pushforwards along µd in Borel-Moore homology.

5.1.3 Another interpretation of F̃w

Let w ∈Wd. If y = yw, we set

µy = µw : F̃w → Repd, πy = πw : F̃w → Fw.

De�nition 5.10. For each w ∈Wd, we set

rw := {ρ ∈ Repd | Fw is ρ-stable}.

Clearly, rw ∼= π−1
w (Fw) as td-modules. For w,w′ ∈Wd, we also set

rw,w′ = rw ∩ rw′ , dw,w′ = rw/rw,w′ .

Let ρ ∈ rw and b ∈ Bw. Then b.Fw = Fw is also b.ρ-stable, so the Gd-action on Repd restricts to
an action of Bw on rw. Therefore, we can endow the variety Gd× rw with two actions. Firstly, we
let Gd act from the left by left multiplication on the �rst factor, i.e., g.(h, ρ) = (gh, ρ). Secondly,
we let Bw act diagonally by the formula b : (h, ρ) 7→ (hb, b−1.ρ). This action is free because the
action of Bw on Gd by right multiplication is free. We let Gd ×Bw rw denote the quotient (orbit
space) of Gd × rw by this diagonal action of Bw. The left Gd-action on Gd × rw descends to a left
action on the quotient Gd ×Bw rw.

Lemma 5.11. For each w ∈Wd, there is an isomorphism of Gd-varieties

Gd ×Bw rw
∼=−→ F̃w, (g, ρ) 7→ (g.Fw, g.ρ).

Proof. Everything follows directly from the de�nitions.
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5.1.4 Td-�xed points in F̃d

Lemma 5.12. We have
(F̃d)Td = {(ρ0, F ) | F ∈ (Fd)Td},

where ρ0 denotes the zero endomorphism in Repd.

Proof. Indeed, every �ag F is ρ0-stable, so (ρ0, F ) ∈ F̃d. If t ∈ Td, then t.ρ0 = ρ0, so ρ0 is �xed
by Td. Hence if F ∈ (Fd)Td then the pair (ρ0, F ) is a �xed point under the diagonal action of
Td. On the other hand, suppose that ρ0 6= ρ ∈ Repd. Then there exists h ∈ H such that ρh 6= 0.
We can choose t ∈ Td such that ts(h) := t|Vs(h)

= idVs(h)
but tt(h) := t|Vt(h)

= λ · idVt(h)
, where

1 6= λ ∈ C×. Then tt(h)ρht
−1
s(h) = λρh 6= ρh. Hence ρ is not a �xed point of Td.

5.1.5 Canonical line bundles and the cohomology ring of F̃d

De�nition 5.13. Let l ∈ {1, ...,d}. Let F = ({0} = V 0 ⊂ V 1 ⊂ ... ⊂ V d−1 ⊂ V d = V) be a �ag
in Fy and ρ ∈ Repd a representation such that F is ρ-stable. We de�ne the l-th canonical line
bundle over Fy

pl : OFy (l)→ Fy

to be the Gd-equivariant line bundle over Fy with �bre p−1
l (F ) = V l/V l−1.We also de�ne the l-th

canonical line bundle over F̃y
p̃l : OF̃y (l)→ F̃y

to be the Gd-equivariant line bundle over F̃y with �bre p̃−1
l (ρ, F ) = V l/V l−1. Note that the �bre

does not depend on ρ. It is obvious that

OF̃y (l)→ OFy (l)

is itself a vector bundle with �bre π−1
y (F ) at F . 4

By taking homotopy quotients of both the total and base spaces we obtain the line bundles

p
Gd

l : OGd

Fy (l) := EGd ×Gd OFy (l)→ EGd ×Gd Fy,

p̃
Gd

l : OGd

F̃y
(l) := EGd ×Gd OF̃y (l)→ EGd ×Gd F̃y.

Proposition 5.14. There exists a homotopy equivalence EGd ×Gd F̃y → (CP∞)d. This homo-

topy equivalence induces a homotopy equivalence from the line bundle OGd

F̃y
(l) to the canonical

(tautological) line bundle O(CP∞)d(l; 1) on (CP∞)d.

Proof. Step 1 Let us �rst construct the required homotopy equivalence. We choose

EGd =

|I|∏
k=1

Matmax(∞× dk).

Then EGd/Td = (CP∞)d. Let

EGd ×Gd F̃y
α−→ EGd ×Gd Fy
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be the map induced by the vector bundle projection πy : F̃y → Fy. Recall that Gd/Td → Gd/Bd

is a vector bundle with �bre Ru(Bd). We have a commutative diagram

Gd/Td

∼= //

��

∏|I|
k=1{(L1

ik
, ..., Ldk

ik
) | Lnik ∈ CP

dk , Lnik /∈ P(L1
ik
⊕ ...⊕ Ln−1

ik
)}

��

Gd/Bd ∼=
//
∏|I|
k=1{(V 1

ik
, ..., V dk

ik
) | V nik ∈ Gr(n,dk), V n−1

ik
⊂ V nik}.

Let us set
D1
ik

:= V 1
ik
, Dn

ik
:= V nik ∩ (V n−1

ik
)orth.

Dn
ik
is the unique line in V nik orthogonal to the hyperplane V n−1

ik
. The map

s0 : Gd/Bd → Gd/Td

|I|∏
k=1

(V 1
ik
, ..., V dk

ik
) 7→

|I|∏
k=1

(D1
ik
, ..., Ddk

ik
)

is the zero section of the vector bundle Gd/Td → Gd/Bd. Let

EGd ×Gd Gd/Bd
β−→ EGd ×Gd Gd/Td

be the map induced by s0 on homotopy quotients. We also have the obvious map

EGd ×Gd Gd/Td

∼=−→ (EGd)/Td = (CP∞)d.

If e ∈ EGd is a matrix and L :=
∏|I|
k=1(L1

ik
, ..., Ldk

ik
) ∈ Gd/Td a sequence of lines, then this map

sends the equivalence class of (e,L) to e.L :=
∏|I|
k=1(e.L1

ik
, ..., e.Ldk

ik
) ∈ (CP∞)d, where the dots

denote matrix multiplication.

It is clear that both α and β are homotopy equivalences. Hence the following composition is also
a homotopy equivalence:

EGd ×Gd F̃y
α−→ EGd ×Gd Fy = EGd ×Gd Gd/Bd

β−→ EGd ×Gd Gd/Td

∼=−→ (EGd)/Td = (CP∞)d.

If F =
∏|I|
k=1(V 1

ik
, ..., V dk

ik
) is a �ag, then the composition above sends the equivalence class of the

triple (e, ρ, F ) to the sequence of lines
∏|I|
k=1(e.D1

ik
, ..., e.Ddk

ik
) ∈ (CP∞)d.

Step 2 Let us de�ne a canonical line bundle on Gd/Td. We take a sequence of lines

L :=

|I|∏
k=1

(L1
ik
, ..., Ldk

ik
) ∈ Gd/Td.

The composition y induces a total order on these lines, so we may write L = (L1, ..., Ld). We de�ne
the l-th canonical line bundle OGd/Td

→ Gd/Td to be the Gd-equivariant line bundle over Gd/Td

with �bre Ll at L. Observe that OGd/Td
→ OFy is itself a vector bundle with �bre Ru(Bd). Let

OGd

Gd/Td
denote the homotopy quotient of OGd/Td

.

Step 3 We obtain a diagram of lines bundles

OGd

F̃y
(l)

��

// OGd

Fy (l)

��

// OGd

Gd/Td
(l)

��

∼= // O(CP∞)d(l; 1)

��

EGd ×Gd F̃y
α // EGd ×Gd Fy

β
// EGd ×Gd Gd/Td

∼= // (CP∞)d.
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Now let F = (V 1, ..., Vd) =
∏|I|
k=1(V 1

ik
, ..., V dk

ik
) be a �ag. The �bre of (e, ρ, F ) is V l/V l−1. The

composition of lower horizontal maps sends (e, ρ, F ) to L =
∏|I|
k=1(e.D1

ik
, ..., e.Ddk

ik
) ∈ (CP∞)d.

The composition y induces a total order on these lines, so we may write L = (D1, ..., Dd). On the
other hand, the composition of upper horizontal maps sends the �bre V l/V l−1 to Dl, which is the
�bre of O(CP∞)(l) at Dl. Hence the diagram commutes and preserves �bres.

Corollary 5.15. Let z(l) denote the �rst Chern class of the line bundle O(CP∞)d(l; 1) and let xy(l)

denote the �rst Chern class of the line bundle OGd

F̃y
(l). The homotopy equivalence from Proposition

5.14 induces a k-algebra isomorphism

H∗((CP∞)d; k) = k[z(1), ..., z(d)]
∼=−→ H∗Gd

(F̃y) = k[xy(1), ..., xy(d)]

z(l) 7→ xy(l).

Proof. This follows directly from Example 2.9 and the fact that vector bundle pullback commutes
with taking Chern classes.

Corollary 5.16. We have

H∗Gd
(F̃d) =

⊕
y∈Yd

k[xy(1), ..., xy(d)]

as a k-algebra.

5.1.6 The action of Wd on H
Gd
∗ (F̃d)

Recall that the group Wd acts on Yd by w(y) = y ◦ w−1. Moreover, Wd acts naturally on the set

{1, ...,d} by permutations. Combining these two actions we obtain an action of Wd on H
Gd
∗ (F̃d).

Each w ∈Wd acts by

w : H
Gd
∗ (F̃y)→ H

Gd
∗ (F̃w(y)), f(xy(1), ..., xy(d)) 7→ f(xw(y)(w(1)), ..., xw(y)(w(d)))

for a polynomial f .

5.2 The Steinberg variety

We now have all the ingredients to de�ne the Steinberg variety, whose Borel-Moore homology will
be the main object of study in this thesis.

De�nition 5.17. (i) Let y, y′ ∈ Yd. We de�ne the Steinberg variety of type (y, y′) to be the
reduced �bre product

Zy,y′ := F̃y ×Repd
F̃y′ ⊂ F̃y × F̃y′

relative to the maps µy and µy′ .
(ii) We de�ne the Steinberg variety to be the �nite disjoint union of Steinberg varieties of all types
corresponding to all the possible strictly multiplicity-free compositions, i.e.,

Zd :=
∐

y,y′∈Yd

Zy,y′ .

Note that the Steinberg variety of type (y, y′) is the universal object making the following pullback
diagram commute

Zy,y′ //

��

F̃y

µy

��

F̃y′ µy′
// Repd.
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We also have the following explicit description

Zy,y′ := F̃y ×Repd
F̃y′ = {((ρ, F ), (ρ′, F ′)) ∈ F̃y × F̃y′ | ρ = ρ′}.

The variety Zy,y′ is clearly isomorphic to the following variety of triples

Zy,y′ ∼= {(ρ, F, F ′) ∈ Repd ×Fy ×Fy′ | F, F ′ are ρ-stable }.

Gd acts diagonally on Repd × Fy × Fy′ by the formula (ρ, F, F ′) 7→ (g.ρ, g.F, g.F ′). If F and F ′

are ρ-stable then g.F and g.F ′ are g.ρ-stable, so the diagonal action of Gd descends to an action
on Zy,y′ .

We have two canonical Gd-equivariant projections

Zy,y′
µy,y′

{{

πy,y′

%%

Repd Fy ×Fy′ .

Taking the disjoint union over the connected components Zy,y′ we obtain projections

Zd

µd,d

}}

πd,d

$$

Repd Fd ×Fd.

Note that the �rst projection µd,d is proper while the second projection πd,d is a Gd-equivariant
a�ne �bration over Fd×Fd (but it is in general not a vector bundle because the dimension of the
�bres is not constant, even upon restriction to a connected component, so local triviality does not
hold).

5.2.1 Td-�xed points in Zd

By the argument of section 5.1.4, ρ0 is the only Td-�xed point in Repd. Since Td acts diagonally
on Repd ×Fd ×Fd, it follows that

(Zd)Td = {(ρ0, F, F
′) | F, F ′ ∈ (Fd)Td}.

In particular,
|(Zd)Td | = |(Fd)Td |2 = (d!)2.
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6 Convolution

6.1 Fundamental classes

6.1.1 Non-equivariant fundamental classes

Let X be a connected oriented (but not necessarily compact) manifold of real dimension m. We
know that fundamental classes of compact oriented manifolds always exist in singular homol-
ogy. Let X̂ = X ∪ {∞} be the one-point compacti�cation of X. Then the singular fundamental
class

[X̂]sing ∈ Hsing
m (X̂)

exists and is a generator of the top singular homology group of X̂. The inclusion of pairs j :
(X̂,∅) ⊂ (X̂, {∞}) gives an induced map

j∗ : Hsing
∗ (X̂)→ Hsing

∗ (X̂, {∞}).

By the "one-point compacti�cation" de�nition of Borel-Moore homology we obtain a homology
class

[X] := j∗([X̂]sing) ∈ Hsing
m (X̂, {∞}) = Hm(X),

which we call the Borel-Moore fundamental class of X. In the sequel we will simply refer to [X] as
the fundamental class of X. An important property of the fundamental class is that it is Poincaré
dual to the unity in the cohomology ring, i.e., we have

Hm(X) ∼= H0(X)

[X] 7→ 1,

under the Poincaré duality isomorphism from (2). If X =
∐p
l=1Xl is a �nite disjoint union of

connected components, then we set [X] :=
∑p
l=1[Xl]. If Y is a closed submanifold of X of real

dimension k and i : Y → X denotes the inclusion, we have a pushforward map i∗ : H∗(Y ) →
H∗(X). We call

i∗([Y ]) ∈ Hk(X)

the fundamental class of the closed submanifold Y . For simplicity we will use the notation

[Y ] := i∗([Y ]).

6.1.2 Equivariant fundamental classes

We now want to generalize these de�nitions to the equivariant setting. As usual, we apply the
non-equivariant concepts to the homotopy quotient of X. Since in singular homology theory the
notion of a fundamental class only makes sense for �nite-dimensional manifolds, we have to use
approximation spaces. Suppose that X is endowed with an action of a Lie group G (or, if X is also
a complex algebraic variety, an algebraic action of a complex reductive algebraic group G). Let
g = dimRG and m = dimRX. Let {EnG → BnG | n ≥ 0} be an approximation of the universal
bundle EG → BG and let ñ = dimRE

nG. We de�ne the G-equivariant fundamental class of X,
denoted [X]G, to be

[X]G := lim←−
n

[EnG×G X] ∈ lim←−
n

Hm+ñ−g(E
nG×G X) = HG

m(X),

where the limit is taken with respect to the inverse system

H
m+(̃n+1)−g

(En+1G×G X)→ Hm+ñ−g(E
nG×G X).
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Since the inverse system stabilizes, for n ≥ 1 we can identify

[X]G = [EnG×G X].

Now suppose that Y is a G-stable closed submanifold of X of real dimension k. We have a
pushforward map in equivariant homology

i∗ : HG
∗ (Y )→ HG

∗ (X)

induced by the closed embedding i : Y → X. We call

i∗([Y ]G) ∈ HG
k (X)

the G-equivariant fundamental class of the closed submanifold Y . For simplicity we will, as before,
use the notation

[Y ]G := i∗([Y ]G).

6.2 General theory of convolution

6.2.1 Non-equivariant convolution

6.2.1.1 The convolution product. LetM1,M2,M3 be oriented C∞-manifolds and let Z12 ⊂
M1 ×M2 and Z23 ⊂ M2 ×M3 be closed subsets. We de�ne the set-theoretic composition of Z12

and Z23 to be

Z12 ◦ Z23 = {(m1,m3) ∈M1 ×M3 | ∃m2 ∈M2 s.t. (m1,m2) ∈ Z12, (m2,m3) ∈ Z23}.

Let pij : M1 ×M2 ×M3 →Mi ×Mj be the projection on the (i, j)-factor and let

p̂13 : p−1
12 (Z12) ∩ p−1

23 (Z23)→M1 ×M3 (22)

be the restriction of p13 to the subset p−1
12 (Z12) ∩ p−1

23 (Z23). Assume that p̂13 is proper. We
have

p−1
12 (Z12) ∩ p−1

23 (Z23) = (Z12 ×M3) ∩ (M1 × Z23) = Z12 ×M2
Z23,

so Z12 ◦ Z23 is the image of p̂13. Since p̂13 is proper, and therefore closed, Z12 ◦ Z23 is a closed
subset of M1 ×M3 and the pushforward (p̂13)∗ exists. We let

p̂12 : p−1
12 (Z12) = Z12 ×M3 → Z12,

p̂23 : p−1
23 (Z23) = M1 × Z23 → Z23,

denote restrictions of the projections p12, p23 to p−1
12 (Z12), p−1

23 (Z23), respectively. Let m =
dimRM2. We de�ne the convolution product in Borel-Moore homology

Hi(Z12)×Hj(Z23)→ Hi+j−m(Z12 ◦ Z23),

(c12, c23) 7→ c12 ∗ c23

by
c12 ∗ c23 = (p̂13)∗((c12 ⊗ [M3]) ∩ ([M1]⊗ c23)) ∈ H∗(Z12 ◦ Z23),

where c12 ⊗ [M3] = p̂∗12c12 and [M1]⊗ c23 = p̂∗23c23.

Lemma 6.1. The convolution product is associative.

Proof. See [CG97, Section 2.7.18].
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6.2.1.2 The convolution algebra. Let M be a smooth complex manifold, N be a (possibly
singular) variety and µ : M → N a proper map. We let Z = M ×NM . Now setM1 = M2 = M3 =
M and

Zij = Mi ×N Mj = {(m,m′) ∈Mi ×Mj | µ(m) = µ(m′)},

for 1 ≤ i < j ≤ 3. It is immediate that Z12 ◦ Z23 = Z13. We need to check that the map

p̂13 : M1 ×N M2 ×N M3 → Z13

is proper. Recall that for a continuous map f between locally compact Hausdor� spaces the
following conditions are equivalent: (1) f is proper (i.e. the preimage of every compact set is
compact), (2) f is universally closed, (3) f is closed and all the �bres of f are compact. The fact
that µ : M → N is proper, and hence universally closed, immediately implies that p̂13 is closed.
Now take (m1,m3) ∈ Z13. We have µ(m1) = µ(m3) = x for some x ∈ N and p̂−1

13 (m1,m3) =
{(m1,m3)} × µ−1(x). Since µ is proper, µ−1(x) is compact, and hence p̂−1

13 ((m1,m3)) is compact
as well. So p̂13 is closed and has compact �bres, and, therefore, it's proper. Since Z12, Z23 and Z13

are all canonically isomorphic to Z, we have a convolution product

H∗(Z)×H∗(Z)→ H∗(Z).

Corollary 6.2. H∗(Z) endowed with the convolution product is a unital associative algebra. The
unit is given by the fundamental class of the diagonal M∆ = {(x, x) ∈M ×M} ⊂ Z.

Proof. Associativity follows from Lemma 6.1. We delay the proof of the fact that M∆ is the unit
until we introduce the clean intersection formula, see Lemma 9.3.

6.2.1.3 Convolution modules. We can apply the convolution construction to obtain interest-
ing modules over the convolution algebra H∗(Z). LetM , N and Z be as in the previous paragraph.
We set M1 = M2 = M , M3 = {pt}, Z12 = M1 ×N M2 and Z23 = M2 × {pt}, Z13 = M1 × {pt}.
Then Z ◦ Z23 = Z13. One can verify that the map

p̂13 : Z12 × {pt} → Z13

is proper in the same way as in the previous paragraph. Since µ : M2 → N is proper, it is
universally closed, so the map p̂13 : M1 ×N M2

∼= Z12 × {pt} → M1
∼= Z13 is closed. If m ∈ M1

then p̂−1
13 (m) = {(m,m′) | µ(m) = µ(m′)} = {m} × µ−1(µ(m′)) is compact because µ is proper.

Thus p̂13 is closed with compact �bres, so it's proper. Since Z12 is canonically isomorphic to Z
and Z23, Z13 are canonically isomorphic to M , we get a convolution product

H∗(Z)×H∗(M)→ H∗(M).

Corollary 6.3. H∗(M) is a module over H∗(Z) under convolution.

Now let x ∈ N and set Mx = µ−1(x). If we set M1 = M2 = M , M3 = {pt}, Z12 = M1 ×N M2 and
Z23 = (M2)x×{pt}, Z13 = (M1)x×{pt}, then Z12 ◦Z23 = Z23. One can verify that the map

p̂13 : Z12 × {pt} → Z13

is proper as before. Since Z12 is canonically isomorphic to Z and Z23, Z13 are canonically isomorphic
to Mx, we get a convolution product

H∗(Z)×H∗(Mx)→ H∗(Mx).

Corollary 6.4. H∗(Mx) is a module over H∗(Z) under convolution.
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6.2.1.4 The diagonal subalgebra. Let M∆ = {(x, x) ∈ M ×M} ⊂ Z be the diagonal in
Z = M ×N M . We set M1 = M2 = M3 = M and

Zij = {(m,m) ∈Mi ×Mj},
for 1 ≤ i < j ≤ 3. Then Z12 ◦ Z23 = Z13. Since Z12, Z23 and Z13 are all canonically isomorphic to
M∆ (and M), we obtain a convolution product

H∗(M∆)×H∗(M∆)→ H∗(M∆),

which endows H∗(M∆) with the structure of a k-subalgebra of H∗(Z). Moreover, one can see from
the de�nitions that the convolution product in this case reduces to the intersection pairing, which
is simply the Poincaré dual of the cohomology cup product. Hence H∗(M∆) is, under Poincaré
duality, isomorphic to the cohomology algebraH∗(M∆). Note that the diagonal embeddingM → Z

with image M∆ also induces an isomorphism H∗(M∆)
∼=−→ H∗(M).

Corollary 6.5. H∗(M∆) is a k-subalgebra of H∗(Z) under convolution. Moreover, there is a
(grading-reversing) k-algebra isomorphism H∗(M∆) ∼= H∗(M).

Therefore, H∗(M) plays two roles in the convolution framework - it is both a module over H∗(Z)
and a subalgebra of H∗(Z).

6.2.2 Equivariant convolution

Now suppose that M1,M2,M3 also have the structure of complex algebraic varieties and are en-
dowed with an algebraic action of an algebraic group G. We equip the products M1 ×M2 ×M3

and Mi ×Mj (1 ≤ i < j ≤ 3) with the diagonal actions. Assume that Z12, Z23 are closed G-stable
subvarieties.

We now want to de�ne equivariant analogues of set-theoretic composition and the convolution
product. The �rst idea that comes to mind is to replace all the manifolds by their homotopy
quotients. But this leads to problems with product spaces because the product of homotopy
quotients is not the homotopy quotient of a product. For example, if M1 = M2 = {pt}, then
EG×G (M1 ×M2) = BG but (EG×GM1)× (EG×GM2) = BG×BG.

The right approach is to consider homotopy quotients of the product spaces M1 ×M2 ×M3,Mi ×
Mj (1 ≤ i < j ≤ 3) and the subvarieties Z12, Z23 rather than the factors M1,M2,M3 themselves.
We can also give the following, perhaps more elegant, interpretation, in which we take the homotopy
quotient only once. Indeed, we take the homotopy quotient EG×G (M1×M2×M3) of the ambient
manifold M1 ×M2 ×M3, and consider EG×G (Mi ×Mj) (1 ≤ i < j ≤ 3) as images of respective
projections. We also consider EG×G Z12, EG×G Z23 as closed subsets of these images.

We de�ne the G-equivariant set-theoretic composition of Z12 and Z23 to be

(EG×G Z12) ◦ (EG×G Z23) :={
(a,m1,m3) ∈ EG×G (M1 ×M3) |

∃ m2 ∈M2 with (a,m1,m2) ∈ EG×G Z12 and (a,m2,m3) ∈ EG×G Z23

}
.

It is immediate that

(EG×G Z12) ◦ (EG×G Z23) = EG×G (Z12 ◦ Z23).

We now have projections

p̂G12 : EG×G (Z12 ×M3)→ EG×G (M1 ×M2),

p̂G23 : EG×G (M1 × Z23)→ EG×G (M1 ×M2),

p̂G13 : EG×G (Z12 ×M2
Z23)→ EG×G (M1 ×M2),
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Let m = dimRM2. We de�ne the G-equivariant convolution product in G-equivariant Borel-Moore
homology

HG
i (Z12)×HG

j (Z23)→ HG
i+j−m(Z12 ◦ Z23),

(c12, c23) 7→ c12 ∗ c23

by
c12 ∗ c23 = (p̂G13)∗((c12 ⊗ [M3]G) ∩ ([M1]G ⊗ c23)) ∈ HG

∗ (Z12 ◦ Z23).

where c12 ⊗ [M3]G = (p̂G12)∗(c12) and [M1]G ⊗ c23 = (p̂G23)∗(c23).

Corollary 6.6. The convolution product is SG-linear. Hence, in the set-up of Sections 6.2.1.2,
6.2.1.3 and 6.2.1.4, HG

∗ (Z) endowed with the G-equivariant convolution product has the structure
of a unital associative SG-algebra. The unit is given by the G-equivariant fundamental class [M∆]G

of the diagonal M∆ = {(x, x) ∈ M ×M} ⊂ Z. Moreover, HG
∗ (M∆) forms an SG-subalgebra of

HG
∗ (Z) isomorphic to the G-equivariant cohomology algebra H∗G(M). Furthermore, HG

∗ (M) and
HG
∗ (Mx), for x ∈ N , are HG

∗ (Z)-modules under G-equivariant convolution.

Proof. Since pullbacks, pushforwards and the intersection pairing are maps of SG-modules, the
equivariant convolution product must also be SG-linear. The other assertions follow straightfor-
wardly from the analogous assertions about non-equivariant convolution.

6.3 Application to the Steinberg variety

6.3.1 The convolution algebra H
Gd
∗ (Zd; k)

We work in the set-up of Section 6.2.2. Let k be a �eld and M1 = M2 = M3 = F̃d. Since
Zd ⊂ F̃d × F̃d we have the closed embeddings

M1 ×M2

Zd
j13 //

j12

66

j23

((

M1 ×M3

M2 ×M3.

Set-theoretic composition gives

j12(Zd) ◦ j23(Zd) = j13(Zd).

Hence we obtain an equivariant convolution product

? : H
Gd
∗ (Zd; k)×HGd

∗ (Zd; k)→ H
Gd
∗ (Zd; k), (23)

which equips H
Gd
∗ (Zd; k) with the structure of an associative unital SGd

-algebra.

6.3.2 The convolution module H
Gd
∗ (F̃d; k)

Now set M1 = M2 = F̃d and M3 = {pt}. We have a closed embedding

Zd
j12 // M1 ×M2
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and isomorphisms
M1 × {pt} = M1 ×M3

F̃d

j13

77

j23

''

M2 × {pt} = M2 ×M3.

Set-theoretic composition gives

j12(Zd) ◦ j23(F̃d) = j13(F̃d).

Hence we obtain an equivariant convolution product

� : H
Gd
∗ (Zd; k)×HGd

∗ (F̃d; k)→ H
Gd
∗ (F̃d; k), (24)

which equips H
Gd
∗ (F̃d; k) with the structure of an H

Gd
∗ (Zd; k)-module.

Remark 6.7. We remark that H
Gd
∗ (F̃d; k) also has a natural SGd

-algebra structure when consid-

ered as the equivariant cohomology ring of F̃d under Poincaré duality. In the next paragraph we

show that it can also be regarded as an SGd
-subalgebra of the convolution algebra H

Gd
∗ (Zd; k).

6.3.3 The convolution subalgebra H
Gd
∗ (Zed; k)

Let Zed denote (F̃d)∆ = {(m,m) | m ∈ F̃d} ⊂ Zd, i.e., the diagonal in Zd. The reason for
this notation will become clear in the next chapter, where we discuss cellular �brations - Zed is
the �rst stratum in the cellular �bration of Zd and the strata are indexed by the Weyl group

Wd. Corollaries 6.5 and 6.6 imply that H
Gd
∗ (Zed) is an SGd

-subalgebra of H
Gd
∗ (Zd) and that the

diagonal embedding F̃d → Zd with image Zed induces an isomorphism

H
Gd
∗ (Zed) ∼= H∗Gd

(Zed)
∼=−→ H∗Gd

(F̃d).

6.3.4 Algebras and modules associated to connected components

The decompositions into connected components

Zd :=
∐

y,y′∈Yd

Zy,y′ , F̃d :=
∐
y∈Yd

F̃y

induce SGd
-module decompositions in homology

H
Gd
∗ (Zd; k) =

⊕
y,y′∈Yd

H
Gd
∗ (Zy,y′ ; k),

H
Gd
∗ (F̃d; k) =

⊕
y∈Yd

H
Gd
∗ (F̃y; k).

We now want to see how the convolution product behaves with respect to these decompositions.
Let M1 = F̃y, M2 = F̃y′ , M3 = F̃y′′ . Then

Zy,y′ = F̃y ×Repd
F̃y′ ⊂M1 ×M2, Zy′,y′′ = F̃y′ ×Repd

F̃y′′ ⊂M2 ×M3,

43



Zy,y′′ = F̃y ×Repd
F̃y′′ ⊂M1 ×M3.

Set-theoretic composition gives
Zy,y′ ◦ Zy′,y′′ = Zy,y′′ .

Hence we have an equivariant convolution product

? : H
Gd
∗ (Zy,y′ ; k)×HGd

∗ (Zy′,y′′ ; k)→ H
Gd
∗ (Zy,y′′ ; k). (25)

Now set M1 = F̃y, M2 = F̃y′ , M3 = {pt}. We have isomorphisms

F̃y → F̃y × {pt} = M1 ×M3, F̃y′ → F̃y′ × {pt} = M2 ×M3.

Set-theoretic composition yields

Zy,y′ ◦ (F̃y′ × {pt}) = F̃y × {pt}.

We thus obtain an equivariant convolution product

� : H
Gd
∗ (Zy,y′ ; k)×HGd

∗ (F̃y′ ; k)→ H
Gd
∗ (F̃y; k). (26)

44



7 Strati�cations

The goal of this chapter is to describe a convenient (i.e. Schubert class) basis of H
Gd
∗ (F̃d) and

H
Gd
∗ (Zd). We �rst recall the theory of cellular decompositions and cellular �brations and later

adapt it to the quiver-graded setting. Our main tool will be the "cellular �bration lemma". At
the end of the chapter we also discuss how strati�cations interact with the convolution product,
describe the centre of H

Gd
∗ (Zd) and show that H

Gd
∗ (Zd) ∼= H

Gd
∗ ⊗k H∗(Zd).

7.1 Cellular decompositions and cellular �brations

7.1.1 De�nitions and examples: cellular decomposition

We begin by de�ning a cellular decomposition and a cellular �bration. We also show that a �ag
variety G/B, resp. a product of �ag varieties G/B ×G/B, satisfy these de�nitions.

De�nition 7.1. Let X be an algebraic variety endowed with an algebraic action of an algebraic
group A.
(i) An A-equivariant partial cellular decomposition of X is a �ltration

X = Xn ⊇ Xn−1 ⊇ ... ⊇ X0 ⊇ X−1 = ∅

satisfying the following conditions:

• (C1) Each Xr is a closed A-stable subvariety of X.

• (C2) Each X̃r = Xr−Xr−1 is a (possibly empty) �nite disjoint union of A-stable subvarieties
of X, each isomorphic to Ar, called r-cells.

• (C3) The closure U of each r-cell U is the disjoint union of U and some l-cells with l < r.
We call U a closed cell.

(ii) An A-equivariant complete cellular decomposition of X is a �ltration

X = Xm ⊃ Xm−1 ⊃ ... ⊃ X0 ⊃ X−1 = ∅

satisfying condition (C1) and the following two conditions:

• (C2′) Each X̃r = Xr −Xr−1 is a nonempty, A-stable subvariety of X isomorphic to Ak, for
some k ≥ 0. We call X̃r the r-stratum.

• (C3′) The closure of X̃r is the disjoint union of X̃r and some l-strata of lower dimension (as
varieties) such that l < r.

A �ltration satisfying only conditions (C1), (C2) resp. (C1), (C2′) is called a (partial resp. com-
plete) weak cellular decomposition. 4
Remark 7.2. (i) One can obtain a complete cellular decomposition from a partial decomposition
X = Xn ⊇ Xn−1 ⊇ ... ⊇ X0 ⊇ X−1 = ∅ in the following way. First delete all the Xr equal to Xr−1

from the �ltration and renumber. Subsequently choose an ordering on the cells {U0
1 , ..., U

0
p0} in X̃0,

and de�ne a new �ltration by setting Y0 = U0
1 , Y1 = U0

1 ∪U0
2 , ..., Yp0 = U0

1 ∪ ...∪U0
p . Then choose

an ordering on the cells {U1
1 , ..., U

1
p1} in X̃1, and extend the �ltration by setting Yp0+1 = Yp0 ∪U1

1 ,
..., Yp0+p1 = Yp0+p1−1 ∪ U1

p1 . Continue inductively until all cells have been attached. Note that
this procedure is not canonical - it depends on the choice of ordering of the cells.

On the other hand, given a complete cellular decomposition X = Xn ⊇ Xn−1 ⊇ ... ⊇ X0 ⊇ X−1 =
∅ , we can obtain a partial decomposition by setting Yr equal to the disjoint union of those strata
X̃r which have dimension r. This procedure does not depend on any choices.
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(ii) We will need the notion of a complete cellular decomposition to calculate homology. While the
notion of a partial cellular decomposition is not needed for this purpose, we have decided to de�ne
it because many spaces have a natural partial decomposition yet they lack a canonical complete
decomposition. This is the case, for examples, in �ag varieties. The transformation of a partial
decomposition into a complete one corresponds, in this case, to extending the Bruhat order on a
Weyl group to a total one.

(iii) Observe that an A-equivariant cellular decomposition is also an A′-equivariant cellular decom-
position for any subgroup A′ of A. 4

We now discuss the key example of a space with a cellular decomposition, namely a �ag vari-
ety.

Lemma 7.3. Let G be a complex reductive connected linear algebraic group with a Borel subgroup
B and a maximal torus T contained in B. Let W = NG(T )/T be the Weyl group of the pair (G,T )
and let Ωw = BwB/B. Moreover, let ≤ denote the Bruhat order on W . Then

(G/B)T = {wB/B | w ∈W}

and
G/B =

∐
w∈W

Ωw, Ωw ∼= Al(w), Ωw =
∐

u≤w∈W

Ωu.

Moreover,

X̃r =
∐

l(w)=r

Ωw, Xr =
∐

l(w)≤r

Ωw

gives a B-equivariant partial cellular decomposition of G/B.

Proof. See [Prz14, Theorem 3.21].

De�nition 7.4. In the setting of the lemma above, we call the {Ωw | w ∈W} Schubert cells and
the {Ωw | w ∈W} Schubert (sub)varieties. 4
Example 7.5. Let G = SL(2,C) and let B be the standard Borel subgroup consisting of invertible
upper triangular matrices. Then G/B ∼= CP1. The Weyl group W is isomorphic to Z2 = {e, s}.
Our �ag variety has two cells: the one-point cell B/B and BsB/B ∼= C.

7.1.2 De�nitions and examples: cellular �bration

A cellular decomposition is a way of decomposing a variety into a�ne spaces. We now de�ne a
more general notion, that of a cellular �bration, which is a way of decomposing a variety into
vector bundles.

De�nition 7.6. Let X,Y be algebraic varieties endowed with algebraic actions of an algebraic
group A. Let π : X → Y be an A-equivariant morphism of varieties.
(i) An A-equivariant partial cellular �bration structure on X over Y is a �ltration

X = Xn ⊃ Xn−1 ⊃ ... ⊃ X0 ⊃ X−1 = ∅

satisfying the following conditions:

• (D1) Each Xr is a closed A-stable subvariety of X and each restriction π : Xr → Y is an
A-equivariant �bre bundle.

• (D2) Each X̃r = Xr −Xr−1 is a �nite disjoint union of subvarieties Ui of X such that each
restriction π : Ui → Y is a A-equivariant vector bundle of rank r. We also call the Ui r-cells.

• (D3) The closure of each r-cell Ui is the disjoint union of Ui and some l-cells with l < r.
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(ii) An A-equivariant complete cellular �bration structure on X over Y is a �ltration

X = Xm ⊃ Xm−1 ⊃ ... ⊃ X0 ⊃ X−1 = ∅

satisfying condition (D1) and the following two conditions:

• (D2′) Each X̃r = Xr−Xr−1 is a nonempty, A-stable subvariety of X such that the restriction
π : X̃r → Y is an A-equivariant vector bundle of rank k, for some k ≥ 0. We call X̃r the
r-stratum.

• (D3′) The closure of X̃r is the disjoint union of X̃r and some l-strata of lower rank (as vector
bundles) such that l < r.

A �ltration satisfying only conditions (D1), (D2) resp. (D1), (D2′) is called a (partial resp. com-
plete) weak cellular �bration structure. 4
Remark 7.7. (i) A cellular decomposition is a cellular �bration with Y = {pt}.

(ii) Analogous observations regarding the relationship between partial and complete cellular �bra-
tions apply as in the previous remark about cellular decompositions. 4

We will now discuss the key example of a space with a cellular �bration structure, namely a
product of two �ag varieties. As before, let G be a complex reductive connected linear algebraic
group and let B be a Borel subgroup containing a maximal torus T . Let π : G/B ×G/B → G/B
be the projection onto the �rst factor. Let W = NG(T )/T be the Weyl group of the pair (G,T ).
Then

(G/B ×G/B)T = {(wB/B,w′B/B) | w,w′ ∈W}

and we have bijections:

W ←→ {B-orbits on G/B} ←→ {G-diagonal orbits on G/B ×G/B}.
w 7−→ Ωw 7−→ Ωw.

We already explained the �rst bijection in Lemma 7.3. Let us now de�ne Ωw and explain the
second bijection.

De�nition 7.8. Let Ωw be a Schubert cell in G/B.
(i) Let g ∈ G. We call g.Ωw ⊂ G/B the translation of Ωw by g.

Note that we still have g.Ωw ∼= Al(w). Moreover, if g, g′ ∈ G belong to the same coset, i.e.,
gB = g′B, then g.Ωw = g′.Ωw because Schubert cells are B-stable. Therefore it also makes sense
to regard g.Ωw ⊂ G/B as a translation of Ωw by the element g := gB/B ∈ G/B.

(ii) We set

Ωw :=
∐

g∈G/B

(g, g.Ωw).

The de�nition directly implies that Ωw is stable under the diagonal G-action. We call Ωw a
diagonal Schubert cell and its closure Ωw a diagonal Schubert variety. 4
Remark 7.9. We use standard font to denote Schubert cells in G/B and bold font to denote
diagonal Schubert cells in G/B ×G/B.
Lemma 7.10. Ωw is the G-orbit of the T -�xed point (B/B,wB/B) and it contains precisely the
T -�xed points {(uB/B, uwB/B) | u ∈W}.

Proof. This follows directly from the de�nitions.

Lemma 7.11. Let G be a complex reductive connected linear algebraic group and B be a Borel
subgroup. Let π : G/B × G/B → G/B be the projection onto the �rst factor. Then G/B × G/B
has a natural structure of a G-equivariant partial cellular �bration over G/B.
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More speci�cally, if G/B is endowed with the partial cellular decomposition from Lemma 7.3, with
Schubert cells {Ωw | w ∈W}, then each restriction

πw : Ωw → G/B

of the projection π to a diagonal Schubert cell Ωw is a vector bundle of rank l(w). Moreover,

G/B ×G/B =
∐
w∈W

Ωw, Ωw =
∐

u≤w∈W

Ωu

and
X̃r :=

∐
l(w)=r

Ωw, Xr :=
∐

l(w)≤r

Ωw

gives a G-equivariant partial cellular �bration of G/B.

Proof. We �rst prove that, for each w ∈W ,

πw : Ωw → G/B (27)

is a vector bundle of rank l(w). Let g := gB/B ∈ G/B and let F := π−1(g) be a �bre of
the projection π. The restriction Ωw|F = Ωw ∩ F of Ωw to F is the translated Schubert cell
g.Ωw ∼= Al(w). In particular, each �bre is a�ne. It remains to be shown that (27) satis�es local
triviality. Recall that G/B contains a unique cell of highest dimension, the so-called "big cell".
This cell is an open subvariety of G/B. There exists an open covering of the base space G/B by
translations of the big cell. It is not di�cult to check that this covering gives a local trivialization
of (27). Hence (27) is indeed a vector bundle of rank l(w).

G/B×G/B is a disjoint union of the diagonal Schubert cells because they are precisely the G-orbits.
The closure of Ωw is the disjoint union of closures of each �bre. The fact that

Ωw =
∐

u≤w∈W

Ωu

now follows from the corresponding claim about (non-diagonal) Schubert cells.

It is now completely straightforward to verify the axioms (D1)-(D3). We conclude that π : G/B×
G/B → G/B, endowed with the �ltration

G/B ×G/B = Xn ⊃ Xn−1 ⊃ ... ⊃ X0 ⊃ X−1 = ∅,

is indeed a partial cellular �bration over G/B.

Example 7.12. Let G = SL(2,C) and B be the standard Borel subgroup. Then G/B ×G/B ∼=
CP1 × CP1. This "double �ag variety" contains two diagonal Schubert cells. One cell is the
diagonal in CP1 × CP1. It is isomorphic to CP1 and contains the torus �xed points (B/B,B/B)
and (sB/B, sB/B). The other cell is its complement. It is a complex vector bundle over CP1 of
rank 1 and contains the torus �xed points (B/B, sB/B) and (sB/B,B/B).

7.1.3 Further cellular decompositions

Our goal is to give a H∗G({pt})-basis of the homology group HG
∗ (G/B × G/B). For this purpose

we need to de�ne some more cells in G/B ×G/B.
De�nition 7.13. Let {Ωw | w ∈W} be the Schubert cells in G/B and {Ωw | w ∈W} the diagonal
Schubert cells in G/B ×G/B. Recall that the projection

π : G/B ×G/B → G/B
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onto the �rst factor restricts to a vector bundle

πw : Ωw → G/B (28)

with �bre π−1
w (gB/B) = gΩw. Now let Ωw′ be a Schubert cell in the base space. Consider the

restriction of the bundle (28) to the Schubert cell Ωw′ . Its total space is

π−1
w (Ωw′) = π−1(Ωw′) ∩Ωw.

We denote it by Ωw′,w. It is isomorphic to the a�ne space Al(w)+l(w′). 4

Note that (w′B/B,w′wB/B) is the only T -�xed point in Ωw′,w.

Lemma 7.14. We have decompositions

G/B ×G/B =
∐

w′,w∈W
Ωw,w′ , Ωw =

∐
w′∈W

Ωw′,w, π−1(Ωw′) =
∐
w∈W

Ωw′,w.

Proof. This is immediate from the de�nitions.

Proposition 7.15. (i) Let w ∈W and n = |W |. If we set

X̃r =
∐

l(w′)=r

Ωw′,w, Xr =
∐

l(w′)≤r

Ωw′,w

then
Ωw = Xn ⊃ Xn−1 ⊃ ... ⊃ X0 ⊃ X−1 = ∅

is a T -equivariant partial cellular decomposition of Ωw.
(ii) Let w′ ∈W . If we set

X̃r =
∐

l(w)=r

Ωw′,w, Xr =
∐

l(w)≤r

Ωw′,w

then
π−1(Ωw′) = Xn ⊃ Xn−1 ⊃ ... ⊃ X0 ⊃ X−1 = ∅

is a T -equivariant partial cellular decomposition of π−1(Ωw′).
(iii) The closure of Ωw′,w is

Ωw′,w =
∐

u≤w,u′≤w′
Ωu′,u.

Proof. This is also clear from the de�nitions.

7.1.4 Thom isomorphism

An important property of cellular �brations is that their homology can be recovered from the
homology of the a�ne cells. Moreover, the �ltration associated to a complete cellular �bration
induces a �ltration on homology. To show this we will need the Thom isomorphism.

Proposition 7.16 (Thom isomorphism). Suppose that π : E → X is a smooth real vector bundle
of rank k and that i : X → E is the inclusion of the zero section. Then the pullback homomorphisms

π∗ : H∗(X)→ H∗+k(E), i∗ : H∗(E)→ H∗−k(X)

are mutually inverse isomorphisms. Similarly, if π : E → X is in addition a G-equivariant bundle,
then

π∗ : HG
∗ (X)→ HG

∗+k(E), i∗ : HG
∗ (E)→ HG

∗−k(X)

are mutually inverse isomorphisms.

Proof. See [CG97, Proposition 2.6.23].
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7.1.5 The cellular �bration lemma

In this section we will prove a technical result of fundamental importance. It will allow us to
connect the geometry of �ag varieties and products of �ag varieties with their homology. We will
work in the following set-up.

Let A be an algebraic group, and let π : X → Y be an A-equivariant map of algebraic varieties
endowed with an algebraic A-action, and suppose that the �ltration X = Xn ⊃ Xn−1 ⊃ ... ⊃ X0 ⊃
X−1 = ∅ de�nes a weak A-equivariant complete cellular �bration structure on X over Y . We have
the following diagram of nested �bre bundles.

X = Xn ⊃

π

��

Xn−1 ⊃
π

||

... ⊃ X0

π

uu
Y

Let Er = Xr\Xr−1 and let Er denote the closure of Er. Note that Er is a closed subset of Xr but
needn't equal Xr. Let us further introduce the following notation.

Xr−1
� � i // Xr Er

� � αr //

πr

��

? _
j
oo Er

πr
~~

� � βr // X

Y

(29)

Lemma 7.17 (Cellular �bration lemma). (i) For each r = 1, ..., n there is a canonical short exact
sequence

0→ HA
∗ (Xr−1)

i∗−→ HA
∗ (Xr)

j∗−→ HA
∗ (Er)→ 0. (30)

(ii) Moreover, if HA
∗ (Y ) is a free SA-module with basis y1, ..., ym then each short exact sequence

(30) is (non-naturally) split and HA
∗ (Xr) is a free SA-module with basis {βr∗π∗r(yl) | 1 ≤ l ≤

m, 1 ≤ r ≤ n}.

Proof. Recall that we have the following inclusions

Xr−1
� � i // Xr Er,? _

j
oo

where i is a closed embedding. Suppose that m = dimXr and that the bundle πr : Er → Y has
rank k. Then we get a long exact sequence in equivariant Borel-Moore homology

0→ HA
m(Xr−1)

i∗−→ HA
m(Xr)

j∗−→ HA
m(Er)

∂−→ HA
m−1(Xr−1)

i∗−→ ...

We need to show that all the boundary maps ∂ vanish, or, equivalently, that the maps j∗ are
surjective. Consider the following diagram.

0→ HA
m(Xr−1)

i∗ // HA
m(Xr)

j∗
// HA

m(Er)
∂ // HA

m−1(Xr−1)
i∗ // ...

HA
m−k(Y )

π∗r

ee

π∗r

∼=
99

Since the pullback maps commute and π∗r : HA
m−k(Y ) → HA

m(Er) is an isomorphism, it follows
that j∗ is surjective, as desired. The same argument works in each degree, so all boundary maps
vanish.

50



For the second part, we argue by induction on r. Since X0 = E0, Thom isomorphism implies
HA
∗ (X0) ∼= HA

∗ (Y ). Now assume the result holds for Xr−1. Let βpk denote the following closed
embedding

βpk : Ek ↪→ Xp.

Note that βpk is obtained from βk by restricting its range to Xp. We have i ◦ βr−1
k = βrk. By

induction HA
∗ (Xr−1) is a free SA-module with basis {(βr−1

k )∗π
∗
k(yl) | 1 ≤ l ≤ m, 1 ≤ k ≤ r − 1}.

By the Thom isomorphism HA
∗ (Er) ∼= HA

∗ (Y ), and so HA
∗ (Er) is a free SA-module with basis

{π∗r (y1), ..., π∗r (ym)}. Since both the left and the right ends of the exact sequence (30) are free
SA-modules, it follows that the sequence splits. If s is a section of j∗, then {(βrk)∗π

∗
k(yl) | 1 ≤

l ≤ m, 1 ≤ k ≤ r − 1} ∪ {sπ∗r (y1), ..., sπ∗r (ym)} is a basis of HA
∗ (Xr). We thus need to �nd an

appropriate section so that sπ∗r (yl) = π∗r(yl) holds for each l.

Now observe that the cellular �bration structure on X induces a cellular �bration structure on the
closed subvariety Xr, which also induces a cellular �bration structure on the closed subvariety Er,
by axiom (C3') in the de�nition of a cellular �bration. We can choose a �ltration of Xr so that
the �ltration of Er forms an initial segment of the �ltration of Xr. Repeating the argument of the
�rst part of the proof we can conclude that the map (βrr )∗ : HA

∗ (Er) → HA
∗ (Xr) is injective, so

we can regard HA
∗ (Er) as a subgroup of HA

∗ (Xr). Moreover, we can choose a section s so that its
image is contained in HA

∗ (Er). We can therefore regard s as a section of α∗r . Now let

Er = Fr ⊃ Fr−1 ⊇ Fr−2 ⊇ ... ⊇ F0

be a �ltration of Er. Let i′ denote the closed embedding i′ : Fr−1 ↪→ Er. Repeating the argument
of the �rst part of the proof for the cellular �bration of Er, we conclude that there is a split short
exact sequence

0→ HA
∗ (Fr−1)

i′∗−→ HA
∗ (Er)

α∗r−−→ HA
∗ (Er)→ 0. (31)

Note that the commutativity of diagram (29) implies that for each l, π∗r (yl) = α∗rπ
∗
r(yl). We can

now choose a section s of α∗r such that for each l, π∗(yl) = sα∗rπ
∗
r(yl) = sπ∗r (yl). But this is the

section we were looking for.

We have the following immediate corollaries of the cellular �bration lemma.

Corollary 7.18. Suppose that the total �ltration of X has length n, i.e., X contains n cells and
that HA

∗ (Y ) is a free SA-module of rank m. Then HA
∗ (X) is a free SA-module of rank n · m.

Moreover, the �ltration of X induces a �ltration on homology

HA
∗ (X) ⊃ HA

∗ (Xn−1) ⊃ ... ⊃ HA
∗ (X0).

Corollary 7.19. We have

H∗(G/B) ∼=
⊕
w∈W

k
[
Ωw
]
, H∗(G/B ×G/B) ∼=

⊕
w,w′∈W

k
[
Ωw,w′

]
,

HT
∗ (G/B) ∼=

⊕
w∈W

ST
[
Ωw
]T
, HT

∗ (G/B ×G/B) ∼=
⊕

w,w′∈W
ST
[
Ωw,w′

]T
,

7.2 Strati�cation of Fd and Fd ×Fd

7.2.1 The cells Ωuw,Ω
u′,u
w and Ωu′,u

w′,w

We �rst apply the results of the previous section to G = Gd, B = Bd, T = Td,W = Wd. We get
bijections

Wd ←→ {Bd-orbits on Gd/Bd} ←→ {Gd-diagonal orbits on Gd/Bd ×Gd/Bd}.
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This applies to every connected component of the quiver �ag variety Fd. Recall that Fd =∐
y∈Yd

Fy and that there are bijections

Yd ←→Wd\Wd ←→ Min(Wd,Wd).

Furthermore, we have �xed a Td-�xed �ag, which we called the standard coordinate �ag, Fe of
type ye. We have set, for each w ∈ Wd, Fw = w.Fe and, for each w ∈ Min(Wd,Wd), Fw =
Fw(ye)

.

De�nition 7.20. For each u, u′ ∈ Min(Wd,Wd) and w,w′ ∈Wd we set

Ωuw := Bd.Fwu, Ωu′,u
w := Gd.(Fu′ , Fwu),

Let
πu
′,u : Fu′ ×Fu → Fu′

denote the projection onto the �rst factor. We set

Ωu′,u
w′,w := (πu

′,u)−1(Ωu
′

w′) ∩Ωu′,u
w .

The notation has been chosen in such a way that the upper indices indicate the connected com-
ponent in which the cell is contained, and lower indices indicate relative position within that
connected component. Bold font is used for diagonal cells. 4

Then for each u, u′ ∈ Min(Wd,Wd) we have bijections

Wdu ←→ {Bd-orbits on Fu} ←→ {Gd-diagonal orbits on Fu′ ×Fu}.

wu 7−→ Ωuw 7−→ Ωu′,u
w .

We have

(Ωuw)Td = {Fwu}, (Ωu′,u
w )Td = {(Fvu′ , Fvwu) | v ∈Wd}, (Ωu′,u

w′,w)Td = {(Fw′u′ , Fw′wu)}.

7.2.2 The cells fw,fffw, Ow and Ow

For each connected component Fu′ ×Fu we have a projection

πu
′,u : Fu′ ×Fu → Fu′

onto the �rst factor, which, for each w ∈Wd, restricts to a vector bundle

πu
′,u
w : Ωu′,u

w → Fu′ . (32)

Summing over all the connected components we get the projection

π : Fd ×Fd → Fd. (33)

We want to combine the cells Ωu′,u
w to obtain "quiver Schubert cells" in Fd × Fd satisfying the

following properties:

• they are disjoint unions of the cells Ωu′,u
w ,

• they are stable under the diagonal Gd-action,

• the projection (33), restricted to a quiver Schubert cell, constitutes a vector bundle over Fd,

• it is possible to de�ne an ordering on the quiver Schubert cells which encodes closure relations.
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Observe that for each connected component Fu′ in the base space Fd, the �bre π−1(Fu′) =∐
u∈Min(Wd,Wd) Fu′ × Fu consists of |Wd\Wd|-many connected components. Therefore, to deter-

mine a quiver diagonal Schubert cell, we need to make two kinds of choices. In each �bre, we need
to choose a connected component, and in that connected component, we need to choose a diagonal
Schubert cell.

There is a natural way to make these choices. Recall that Fd is a closed subvariety of the �ag
variety Gd/Bd. We can apply the analysis from the previous section (with G = Gd, B = Bd, T =
Td,W = Wd) to obtain bijections

Wd ←→ {Bd-orbits on Gd/Bd} ←→ {Gd-diagonal orbits on Gd/Bd ×Gd/Bd}.

Let
$ : Gd/Bd ×Gd/Bd → Gd/Bd

denote the projection onto the �rst factor.

De�nition 7.21. For each w ∈Wd, we set

fw := Bd.Fw, fffw := Gd.(Fe, Fw), fffw,w′ = $−1(fw) ∩fffw′ .

fw is a Schubert cell in Gd/Bd and fffw is a diagonal Schubert cell in Gd/Bd × Gd/Bd. We
now obtain the desired quiver Schubert cells by restricting the Schubert cells in Gd/Bd resp.
Gd/Bd ×Gd/Bd to Fd resp. Fd ×Fd:

Ow := fw ∩ Fd, Ow := fffw ∩ (Fd ×Fd), Ow,w′ := fffw,w′ ∩ (Fd ×Fd),

We also set

O≤w :=
∐
w′≤w

Ow′ , O≤w :=
∐
w′≤w

Ow′ .

We have

(Ow)Td = {Fw}, (Ow)Td = {(Fw′ , Fw′w) | w′ ∈Wd}, (Ow,w′)
Td = {(Fw, Fww′)}.

Remark 7.22. If we set Xr =
∐
l(w)≤r fw and n = l(w0), where w0 is the unique longest element

of Wd, then
Gd/Bd ×Gd/Bd = Xn ⊇ Xn−1 ⊇ ... ⊇ X0 ⊇ X−1 = ∅

is a partial cellular �bration structure on Gd/Bd×Gd/Bd over Gd/Bd. Now set Xr =
∐
l(w)≤r Ow.

Then
Gd/Bd ×Gd/Bd = Xn ⊇ Xn−1 ⊇ ... ⊇ X0 ⊇ X−1 = ∅

is only a partial weak cellular �bration structure on Gd/Bd×Gd/Bd over Gd/Bd (i.e. the closure
of a cell may be a disjoint union of proper subsets of cells rather than entire cells). This is due to
the fact that in general

Ow $ O≤w.

This fact can be explained as follows. There is a di�erence between restricting a cell fffw to Fd×Fd

and subsequently taking (Zariski) closure on the one hand, and taking (Zariski) closure of fffw �rst
and then restricting fffw to Fd ×Fd. We have

Ow = fffw ∩ (Fd ×Fd) ⊆ fffw ∩ (Fd ×Fd) = O≤w

and this inclusion is in most cases proper. We believe that this point was overlooked in Section
2.5 of [VV11]. For example, let Γ be the quiver with two vertices and no arrows and let d = (1, 1).
Then F(V) = CP1 and Fd consists of two �ags F and F ′. We have Wd

∼= S2 = {e, s},Wd = {e}.
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The double �ag variety F(V)×F(V) ∼= CP1×CP1 decomposes into two cells fffe and fffs. The cell
fffe is the diagonal and fffs is its complement. We have

fffe = fffe, fffs = CP1 × CP1.

The double quiver �ag variety Fd ×Fd consists of four points, i.e.,

Fd ×Fd = {(F, F ), (F ′, F ′), (F, F ′), (F ′, F )}.

We have
Oe = Oe = {(F, F ), (F ′, F ′)},

Os = Os = {(F, F ′), (F ′, F )} $ {(F, F ), (F ′, F ′), (F, F ′), (F ′, F )} = fffs ∩ (Fd ×Fd).

7.2.3 The cells Ou
w

We would like to see how the cells Ow, inherited from the cellular �bration of Gd/Bd × Gd/Bd,
behave with respect to the decomposition of Fd × Fd into connected components. In particular,
we would like to decompose each cell Ow into cells of the form Ωux and each cell Ow into cells of
the form Ωu,u′

x . The former is easy - if w = xu, with x ∈ Wd and u ∈ Min(Wd,Wd), then we
have

Ow = Ωux.

The latter is more complicated.

De�nition 7.23. For each u ∈ Min(Wd,Wd) and w ∈Wd, we set

Ou
w := Gd.(Fu, Fuw).

4

It is immediate that
Ou
w = Ow ∩ (Fu ×Fuw) = Ow ∩ π−1(Fu)

and
Ow =

∐
u∈Min(Wd,Wd)

Ou
w.

Suppose that uw = xu′, where x ∈Wd and u′ ∈ Min(Wd,Wd). Then

Ou
w := Gd.(Fu, Fuw) = Gd.(Fu, Fxu′) = Ωu,u′

x .

De�nition 7.24. The transition between the notations Ou
w and Ωu,u′

x can be expressed by the
following functions:

æ1 : Wd ×Min(Wd,Wd)→ Wd

(w, u) 7→ x,

æ2 : Wd ×Min(Wd,Wd)→ Min(Wd,Wd)

(w, u) 7→ u′,

where uw = xu′. 4

Then
Ow =

∐
u∈Min(Wd,Wd)

Ω
u,æ2(w,u)
æ1(w,u) .

Unfortunately it is di�cult to describe the functions æ1,æ2 explicitly.
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Example 7.25. Consider the quiver
i→ j

with dimension vector d = i + 2j. Then Wd
∼= S3 = < s, t > and Wd

∼= S2 = < t >, where
t = (1)(23) and s = (12)(3). The following diagram illustrates the Bruhat ordering on Wd, the
cosets with respect to Wd (the cosets are elements designated with the same colour) and the
minimal length coset representatitves (the elements designated with bold font).

sts

}} !!

st

�� ((

ts

vv
��

s

!!

t

}}
e .

We have three compositions ijj, jii and jij in Yd. The coset {st, sts} corresponds to the composi-
tion jji, the coset {s, ts} corresponds to jij and the coset {e, t} to ijj. Let u, u′ ∈ Min(Wd,Wd).
We have Fu ×Fu′ ∼= CP1 × CP1. We set

(Fu ×Fu′)∆ = {(F, u′u−1F ) | F ∈ Fu} = Gd.(Fu, Fu′),

(Fu ×Fu′)∇ = {(F, F ′) | F ∈ Fu, F ∈ Fu′ , F ′ 6= u′u−1F} = Gd.(Fu, Fu′t).

We have

Oe
e = (Fe ×Fe)∆ = Ωe,e

e Oe
t = (Fe ×Fe)∇ = Ωe,e

t

Os
e = (Fs ×Fs)∆ = Ωs,s

e Os
t = (Fs ×Fst)∆ = Ωs,st

e

Ost
e = (Fst ×Fst)∆= Ωst,st

e Ost
t = (Fst ×Fs)∆ = Ωst,s

e

Oe
s = (Fe ×Fs)∆ = Ωe,s

e Oe
ts = (Fe ×Fs)∇ = Ωe,s

t

Os
s = (Fs ×Fe)∆ = Ωs,e

e Os
ts = (Fs ×Fst)∇ = Ωs,st

t

Ost
s = (Fst ×Fst)∇= Ωst,st

t Ost
ts = (Fst ×Fe)∆ = Ωst,e

e

Oe
st = (Fe ×Fst)∆= Ωe,st

e Oe
sts = (Fe ×Fst)∇ = Ωe,st

t

Os
st = (Fs ×Fe)∇ = Ωs,e

t Os
sts = (Fs ×Fs)∇ = Ωs,s

t

Ost
st = (Fst ×Fs)∇= Ωst,s

t Ost
sts = (Fst ×Fe)∇ = Ωst,e

t .

The closures of the quiver Schubert cells Ow are given by

Oe = Oe = Oe
e tOs

e tOst
e

Ot = Ot tOe
e = Oe

t tOs
t tOst

t tOe
e

Os = Os tOst
e = Oe

s tOs
s tOst

s tOst
e

Ots = Ots tOe
s tOs

t = Oe
ts tOs

ts tOst
ts tOe

s tOs
t

Ost = Ost tOs
s tOst

t = Oe
st tOs

st tOst
st tOs

s tOst
t

Osts = Osts tOe
st tOs

e tOst
ts = Oe

sts tOs
sts tOst

sts tOe
st tOs

e tOst
ts.
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7.3 Strati�cation of F̃d and Zd

We have considered in detail the strati�cations of Fd and Fd × Fd. Recall that we have projec-
tions

πd : F̃d → Fd, πd,d : Zd → Fd ×Fd

forgetting the stabilizing representations. We are going to use these projections to obtain strati�-
cations on F̃d and Zd.

De�nition 7.26. Let us set

Õw := π−1
d (Ow), Õ≤w :=

∐
w′≤w

Õw′ ,

Õw := π−1
d,d(Ow), Õu

w := π−1
d,d(Ou

w), Õw,w′ := π−1
d,d(Ow,w′),

Zwd := Õw, Z≤wd :=
⋃
w′≤w

Zw
′

d =
∐
w′≤w

Õw,

Zwy,y′ := Zwd ∩ Zy,y′ , Z≤wy,y′ := Z≤wd ∩ Zy,y′ .

Note that
⋃
w′≤w Zw

′

d is in general not a disjoint union.

Remark 7.27. It is important to note that there is a di�erence between pulling back a cell along
πd,d and subsequently taking (Zariski) closure on the one hand, and taking (Zariski) closure of
a cell and then pulling back a closed cell along πd,d on the other hand. In other words, taking
closure does not commute with pulling back along the projection πd,d. We have

Zwd = π−1
d,d(Ow) ⊆ π−1

d,d

(
Ow

)
and this inclusion is in most cases proper. This holds because a pair of �ags in a cell Ow′ with
w′ < w may have a higher-dimensional �bre of stabilizing representations than a pair of �ags
in the cell Ow. This entire higher-dimensional �bre would be included in π−1

d,d

(
Ow

)
, but only a

lower-dimensional subspace would be included in π−1
d,d(Ow). 4

Suppose that ρ ∈ Repd stabilizes �ags F and F ′. Let g ∈ Gd. Then g.ρ stabilizes �ags g.F and
g.F ′. In particular, for each g ∈ Gd, u ∈ Min(Wd,Wd) and w ∈ Wd, we have an isomorphism of
vector spaces

ru,uw
∼=−→ π−1

d,d((g.Fu, g.Fuw)), ρ 7→ g.ρ

(see De�nition 5.10 for the de�nition of ru,uw). This implies that the restricted projection

πd,d : Õu
w → Ou

w

has �bers of constant dimension and is a vector bundle over Ou
w (which is itself a vector bundle

over Fu). In particular, Õu
w is smooth.

7.3.1 HA
∗ ({pt})-basis

We are now going to use the strati�cations we have de�ned to obtain bases of homology groups
of F̃d and Zd. The following result is a corollary of the cellular �bration lemma (Lemma 7.17).

Recall that we set STd
= H

Td
∗ ({pt}).

Corollary 7.28. We have

H∗(F̃d) ∼=
⊕
w∈Wd

k
[
Õw

]
, H∗(Zd) ∼=

⊕
w,w′∈Wd

k
[

Õw,w′

]
,
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H
Td
∗ (F̃d) ∼=

⊕
w∈Wd

STd

[
Õw

]Td

, H
Td
∗ (Zd) ∼=

⊕
w,w′∈Wd

STd

[
Õw,w′

]Td

,

In particular, H
Td
∗ (F̃d) is an STd

-module of rank |Wd| and H
Td
∗ (Zd) is an STd

-module of rank
|Wd|2.

Proof. Let us extend the Bruhat order on Wd to a total order w1 < w2 < ... < wd!. Then

F̃d ⊃ Õ≤wd!−1
⊃ ... ⊃ Õ≤w2

⊃ Õ≤w1

is a Td-equivariant complete weak cellular decomposition of F̃d in the sense of De�nition 7.1 and

Zd ⊃ Z
≤wd!−1

d ⊃ ... ⊃ Z≤w2

d ⊃ Z≤w1

d

is a Td-equivariant complete weak cellular �bration of Zd in the sense of De�nition 7.6. The
statement now follows from Lemma 7.17.

7.3.2 HA
∗ (F̃d)-basis

To prove the next proposition we will need some tools (reduction to the torus and the clean
intersection formula) which we discuss in the later sections.

Proposition 7.29. (i) Let q : Zd → F̃d be the projection onto the �rst factor, i.e., q(F, ρ, F ′, ρ) =
(F, ρ). Then for each w ∈Wd, A ∈ {{e}, Td, Gd} the diagram

HA
∗ (Zed)×HA

∗ (Z≤wd )
? // HA

∗ (Z≤wd )

HA
∗ (F̃d)×HA

∗ (F̃d)
? //

q∗×q∗
OO

HA
∗ (F̃d)

q∗

OO

commutes.
(ii) We have

HA
∗ (Z≤wd ) =

⊕
u∈Wd,u≤w

HA
∗ (F̃d) ?

[
Zud
]A
,

i.e. HA
∗ (Z≤wd ) is a free left HA

∗ (F̃d)-module with basis

{[
Zud
]A
| u ≤ w, u ∈Wd

}
.

Proof. (i) Let A ∈ {{e}, Td}. The pullbacks q∗ and convolution maps ? are maps of SA-modules.
Therefore, it su�ces to check commutativity on an SA-basis of HA

∗ (F̃d), for example the basis{[
Õx

]A
| x ∈Wd

}
. We have

q∗
([

Õx

]A
?
[
Õy

]A)
= q∗

(
c.
[
Õx ∩ Õy

]A)
= q∗(c).

[
((Õx ∩ Õy)× F̃d) ∩ Z≤wd

]A
,

(
q∗
[
Õx

]A
? q∗

[
Õy

]A)
=
[

Õx,e

]A
?
[

Õy,≤w

]A
= c′.

[
((Õx ∩ Õy)× F̃d) ∩ Z≤wd

]A
,

where c ∈ HA
∗ (F̃d), c′ ∈ HA

∗ (Z≤wd ) are A-equivariant Euler classes of vector bundles T , T ′ as in
Lemma 9.3. It is straightforward to check that q∗(c) = c′. To prove commutativity for A = Gd,
take Wd-invariants in the Td-equivariant diagram.
(ii) This follows from the cellular �bration lemma, where we now consider HA

∗ (F̃d), HA
∗ (Z≤wd ) as

HA
∗ (F̃d)-modules.
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7.3.3 Convolution preserves the strati�cation

We will later need the following result to determine a set of multiplicative generators of the con-
volution algebra H

Gd
∗ (Zd). It shows that the strati�cation of Zd gives rise to a certain kind of

�ltration on H
Gd
∗ (Zd).

Lemma 7.30. (i) For each x ∈ Wd, A ∈ {{e}, Td, Gd} the closed embedding Z≤xd ⊂ Zd induces

an injective left graded SA-module homomorphism HA
∗ (Z≤xd )→ HA

∗ (Zd).

(ii) For x, y ∈Wd such that l(xy) = l(x) + l(y), we have HA
∗ (Z≤xd ) ? HA

∗ (Z≤yd ) ⊆ HA
∗ (Z≤xyd ).

Proof. (i) This follows directly from the cellular �bration lemma.
(ii) For x′ ≤ x, y′ ≤ y, we have

Gd.(Fe, Fx′) ◦Gd.(Fe, Fy′) = Gd.(Fe, Fx′) ◦Gd.(Fx′ , Fx′y′) = Gd(Fe, Fx′y′).

Hence

Z≤xd ◦ Z≤yd =

∐
x′≤x

Õx′

 ◦
∐
y′≤y

Õy′

 =
∐

x′≤x,y′≤y

Õx′y′ .

But x′y′ ≤ xy if l(xy) = l(x) + l(y). Hence∐
x′≤x,y′≤y

Õx′y′ ⊆
∐
z≤xy

Õz

and so
HA
∗ (Z≤xd ) ? HA

∗ (Z≤yd ) ⊆ HA
∗ (Z≤xyd ).

7.3.4 The centre

We now want to determine the centre of the convolution algebra H
Gd
∗ (Zd). We will identify it with

the Gd-equivariant cohomology of a point, i.e., with the algebra of symmetric polynomials.

De�nition 7.31. Let 1y,y′ := [Zey,y′ ], 1y := [F̃y]. Further, let Z denote H
Gd
∗ ({pt})

[
Zed
]Gd

⊂

H
Gd
∗ (Zd). Here H

Gd
∗ ({pt}) acts on HGd

∗ (Zd) as explained in Section 2.5. 4

We will use the following lemma.

Lemma 7.32. Let y, y′, y′′ ∈ Yd. The maps

H
Gd
∗ (Zy,y′)→ H

Gd
∗ (Zy,y′′)

zy,y′ 7→ zy,y′ ? 1y′,y′′ =: z̃y,y′′ ,

H
Gd
∗ (Zy,y′)→ H

Gd
∗ (Zy′′,y′)

zy,y′ 7→ 1y′′,y ? zy,y′ =: z̃y′′,y′

are injective.

Proof. Standard. Calculate the convolution product on Td-equivariant Schubert classes by applying
the clean intersection formula (Lemma 9.3) and take Wd-invariants. See also [KL09, Theorem
2.9].
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We also need the following de�nition.

De�nition 7.33. Let NHm denote the NilHecke ring, i.e., the unital ring of endomorphisms of
k[y(1), ..., y(m)] generated by multiplication with y(1), ..., y(m) and Demazure operators

∂l(f) =
f − slf

y(l)− y(l + 1)
,

for 1 ≤ l ≤ m − 1, where sl is the transposition switching y(l) and y(l + 1). The endomorphisms
which act by multiplication with y(1), ..., y(m) generate a subring which is canonically isomorphic
to k[y(1), ..., y(m)]. Moreover, it is well-known that the ring of endomorphisms which act by
mutiplication by a symmetric polynomial equals the centre of NHm.

We are now ready to determine the centre of the convolution algebra H
Gd
∗ (Zd). We follow the

proof of [KL09].

Proposition 7.34. Z is the centre of H
Gd
∗ (Zd).

Proof. We have Z = H
Gd
∗ ({pt})

[
Zed
]Gd

. But
[
Zed
]Gd

is the unity in the convolution algebra

H
Gd
∗ (Zd) and convolution is H

Gd
∗ ({pt})-linear, so Z is contained in the centre of H

Gd
∗ (Zd).

We now prove the reverse inclusion, which is slightly more di�cult. It follows from Example 11.28
that for each y ∈ Yd we have an isomorphism of k-algebras

H
Gd
∗ (Zy,y) ∼=

|I|⊗
l=1

NHdl , (34)

where the LHS is a convolution subalgebra of H
Gd
∗ (Zd). The image of H

Gd
∗ (Zey,y) under this

isomorphism is
⊗|I|

l=1 k[y(1), ..., y(dl)] ∼= k[xy(1), ..., xy(d)], i.e., the subring consisting of endomor-
phisms acting by multiplication with a polynomial. It is well-known that the centre of a NilHecke
ring consists of the endomorphisms which act by multiplication with a symmetric polynomial.
The centre of a tensor product of NilHecke rings is isomorphic to the tensor product of centres of
NilHecke rings. Hence the centre of

⊗|I|
l=1NHdl is k[xy(1), ..., xy(d)]Wd .

Summing over connected components, we get a k-algebra isomorphism

⊕
y∈Yd

H
Gd
∗ (Zy,y) ∼=

⊕
y∈Yd

|I|⊗
l=1

NHdl . (35)

If we set xd(l) :=
∑
y∈Yd

xy(l), then the image of Z is k[xd(1), ..., xd(d)]Wd .

Suppose that z lies in the centre of H
Gd
∗ (Zd). We can write

z =
∑

y,y′∈Yd

zy,y′ , zy,y′ ∈ H
Gd
∗ (Zy,y′).

Let us pick y 6= y′ ∈ Yd. We have

z ? 1y,y′ =
∑
y∈Yd

z̃y,y′ = 1y,y′ ? z =
∑
y′∈Yd

z̃y,y′ ,

where z̃y,y′ ∈ H
Gd
∗ (Zy,y′). The only common summand is z̃y,y′ , so it's the only possibly non-zero

summand. However, convolution with 1y,y′ is injective. Hence, the fact that z̃y,y′ = 0, for y 6= y,
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implies that zy,y = 0 as well. Varying y we see that only the summands zy,y can be non-zero.
Hence we can write

z =
∑
y∈Yd

zy,y, zy,y ∈ H
Gd
∗ (Zy,y).

Since z is central in H
Gd
∗ (Zd), zy,y is central in H

Gd
∗ (Zy,y). Under the isomorphism (34), we can

identify zy,y with a symmetric polynomial in k[xy(1), ..., xy(d)]Wd . Subtracting an appropriate
central element f ∈ k[xd(1), ..., xd(d)]Wd we can assume that zy,y = 0. For all y′ ∈ Yd, we have

0 = zy,y ? 1y,y′ = z ? 1y,y′ = 1y,y′ ? z = 1y,y′ ? zy′,y′ .

But convolution with 1y,y′ is injective, so zy′,y′ = 0. It follows that Z ∼= k[xd(1), ..., xd(d)]Wd

equals the centre of H
Gd
∗ (Zd).

7.4 Equivariant formality

In this section we will show that the variety Zd is Gd-equivariantly formal. This result will prove of
great importance in the study of graded �nite-dimensional representation theory of the convolution
algebra H

Gd
∗ (Zd). We will later show that the centre of H

Gd
∗ (Zd) acts trivially on any graded

simple module. This will allow us to identify graded �nite-dimensional representations of H
Gd
∗ (Zd)

with those of the �nite-dimensional non-equivariant algebra H∗(Zd).

De�nition 7.35. A G-space X is called G-equivariantly formal if HG
∗ (X) ∼= HG

∗ ({pt})⊗kH∗(X).

Proposition 7.36. The variety Zd is Td-equivariantly formal.

Proof. Recall that by the cellular �bration lemma, H
Td
∗ (Zd) is a free H

Td
∗ ({pt})-module with

basis

{[
Õw,w′

]Td

| w,w′ ∈Wd

}
. This basis restricts to a k-basis

{[
Õw,w′

]
| w,w′ ∈Wd

}
of

H∗(Zd). Hence, by the Leray-Hirsch theorem, we obtain the following explicit isomorphism of

H
Td
∗ ({pt})-modules

H
Td
∗ ({pt})⊗k H∗(Zd)→ H

Td
∗ (Zd)

α⊗
[

Õw,w′

]
7→ α

[
Õw,w′

]Td

.

Proposition 7.37. Zd is Gd-equivariantly formal.

Proof. Recall that we can relate the homology of the total space of a �bre bundle to the homology
of the �bres and the base using the Leray-Serre spectral sequence. Consider the �bration

η : EGd ×Gd Zd → BGd

with �bre Zd. The homology of the �bres forms a local coe�cient system on BGd, which we
denote by {H∗(Zd)}. There exists a spectral sequence (Erp,q) with

E2
p,q = Hp(BGd; {Hq(Zd)})

converging to ⊕
p+q=n

E∞p,q
∼= Hn(EGd ×Gd Zd),

where the isomorphism is an isomorphism of H∗(BGd)-modules. Since Gd is connected and EGd

is contractible, the long exact sequence of homotopy groups

1 = π1(EGd)→ π1(BGd)→ π0(Gd) = 1
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associated to the �bration EGd → BGd with �bre Gd implies that BGd is simply-connected.
But isomorphism classes of representations of π1(BGd) are in a one-to-one correspondence with
isomorphism classes of local systems on BGd. Hence the only local system on BGd is the constant
system H∗(Zd). The universal coe�cient theorem now implies that

E2
p,q = Hp(BGd;Hq(Zd)) ∼= Hp(BGd)⊗k Hq(Zd).

Recall that (E2
p,q, ∂

2) forms a bigraded chain complex with the di�erential

∂2 : E2
p,q → E2

p−2,q+1.

In our situation this translates to

∂2 : Hp(BGd)⊗k Hq(Zd)→ Hp−2(BGd)⊗k Hq+1(Zd).

Recall that the odd-dimensional homology of Zd vanishes . Hence the di�erential ∂2 vanishes and
the spectral sequence degenerates at E2. In particular,

Hn(EGd ×Gd Zd) ∼=
⊕
p+q=n

E∞p,q =
⊕
p+q=n

E2
p,q =

⊕
p+q=n

Hp(BGd)⊗k Hq(Zd).

Thus
H
Gd
∗ (Zd) ∼= H

Gd
∗ ({pt})⊗k H∗(Zd)

as modules over H
Gd
∗ ({pt}).

Recall that we have the �bration

Zd ↪→ EGd ×Gd Zd
η−→ BGd.

The projection η induces an injective homomorphism η∗ : H
Gd
∗ ({pt}) → H

Gd
∗ (Zd) with image

SGd
[Zd]Gd . Note that [Zd]Gd is the unity in H

Gd
∗ (Zd) regarded as the algebra endowed with the

intersection pairing ∩ (i.e., the Poincaré dual of the cohomology algebra endowed with the cup

product), and [Zed]Gd is the unity in H
Gd
∗ (Zd) regarded as a convolution algebra. Let S−Gd

and Z−

denote the ideals of SGd
, resp. Z generated by elements in strictly negative degrees. Then we have

the following equalities:

η∗(H
Gd

− ({pt}) = S−Gd
[Zd]Gd ∩HGd

∗ (Zd) = S−Gd
[Zed]Gd ? H

Gd
∗ (Zd) = Z− ? H

Gd
∗ (Zd). (36)

Corollary 7.38. The quotient of the equivariant convolution algebra H
Gd
∗ (Zd) by the right ideal

generated by Z− is isomorphic to the non-equivariant convolution algebra H∗(Zd), i.e.,

H
Gd
∗ (Zd)/(Z− ? H

Gd
∗ (Zd)) ∼= H∗(Zd). (37)

as k-algebras.

Proof. By (36) we can identify the centre of H
Gd
∗ (Zd) with H

Gd
∗ ({pt}). The corollary now follows

directly from Proposition 7.37.
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8 Relationship between Gd- and Td-equivariant (co)homology

8.1 Schubert and Borel models of cohomology of a �ag variety

Recall from Corollary 5.16 that

H∗Gd
(F̃d) ∼=

⊕
y∈Yd

k[xy(1), ..., xy(d)] (38)

as a k-algebra. It is also well-known that there is a k-algebra isomorphism

H∗Gd
(F̃d)/(S+

Gd
H∗Gd

(F̃d)) ∼= H∗(F̃d). (39)

One can prove it using a spectral sequence argument in an analogous way to Corollary 7.38.
The isomorphism (39) is often referred to as the Borel isomorphism. We will say that the two
isomorphisms (38) and (39) form the Borel model of the cohomology of a �ag variety. We have
also shown in Corollary 7.28 that there is a k-vector space isomorphism

H∗(F̃d) ∼=
⊕
w∈Wd

k
[
Õw

]
(40)

and an STd
-module isomorphism

H∗Td
(F̃d) ∼=

⊕
w∈Wd

STd

[
Õw

]Td

. (41)

We will say that these two isomorphisms form the Schubert model of the cohomology of our �ag
variety. The connection between these two models is not so easy to describe - see [BGG73] for
details. The inclusions of a typical �bre in �brations

F̃d ↪→ ETd ×Td F̃d → BTd, F̃d ↪→ EGd ×Gd F̃d → BGd

induce homomorphisms

H∗Td
(F̃d)→ H∗(F̃d), H∗Gd

(F̃d)→ H∗(F̃d).

We refer to these maps as the forgetful maps because they "forget" equivariance. They admit a

more concrete description. The �rst map sends each equivariant Schubert class
[
Õw

]Td

to the

correspoding non-equivariant Schubert class
[
Õw

]
. The second map has kernel S+

Gd
H∗Gd

(F̃d)

and induces the Borel isomorphism (39). In particular, both the forgetful maps are surjective.
Unfortunately, it is di�cult to give an explicit description of the �rst forgetful map in terms of
the Borel model, or an explicit description of the second forgetful map in terms of the Schubert
model.

The Borel model is therefore best suited to analyzing the Gd-equivariant case. It has two advan-
tages. Firstly, it provides a concrete algebraic description of the Gd-equivariant and nonequivariant
cohomology rings. Secondly, the action of the Weyl group Wd on the Gd-equivariant cohomology
ring is very explicit in the Borel model -Wd acts naturally by permuting indeterminates xy(l) and
compositions y. The main disadvantage of the Borel model is that it is useless for computing the
convolution product. The Schubert model is much better suited for this purpose. It yields a basis
consisting of fundamental classes, to which we can apply localization and the clean intersection
formula (Lemma 9.3). However, the Schubert model is only available in the Td-equivariant case
because Schubert varieties are not Gd-stable. Therefore, we will perform most calculations using
the Schubert model and Td-equivariant homology. However, to use these calculations we need a
way to relate Td-equivariant homology to Gd-equivariant homology.
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8.2 Reduction to the torus

In this section we will explain how Gd-equivariant homology can instead be derived from Td-
equivariant homology.

Proposition 8.1. Let G be a connected reductive linear algebraic group with a maximal torus T .
Let W = NG(T )/T we the Weyl group of (G,T ). Let X be a G-variety. Then W acts on HG

∗ (X)
and

HG
∗ (X) ∼= HT

∗ (X)W , H∗G(X) ∼= H∗T (X)W .

Proof. See [Bri98, Proposition 1].

We now apply this proposition to X = {pt}, G = Gd, T = Td and W = Wd. Recall that

H∗Td
({pt}) =: STd

∼= k[td] = k[χ1, ..., χd].

Wd acts on k[td] by permuting the weights. More precisely, each w ∈Wd acts by

w : f = f(χ1, ..., χd) 7→ w(f) = f(χw(1), ..., χw(d)). (42)

This action restricts to an action of Wd. The cohomology ring H∗Gd
({pt}) consists of those poly-

nomials in the weights χ1, ..., χd which are invariant under Wd.
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9 Euler classes and convolution

9.1 General theory

In this section we state an equivariant version of the so-called "clean intersection" formula and
apply it to calculate the convolution product of equivariant fundamental classes of closed subvari-
eties. At the end we will also explain the connection between topological Euler classes associated
to vector bundles and abstract Euler classes associated to certain representations of abelian Lie
algebras.

9.1.1 Topological Euler classes

Theorem 9.1. (i) Let π : E → B be an oriented real vector bundle of rank n. Then Hi(E,E0;Z) =
0 for i < n and Hn(E,E0;Z) = Zu, where u is a unique cohomology class whose restriction

u|(F, F0) ∈ Hn(F, F0;Z)

is equal to the preferred generator uF for every �bre F .
(ii) y 7→ y ∪ u is an isomorphism Hk(E;Z)→ Hk+n(E,E0;Z) for every k ∈ Z.

Proof. See [MS74, Theorem 9.1].

Since π : E → B is a retraction, it is a homotopy equivalence. Hence we obtain the following
isomorphism, called the Thom isomorphism:

φ : Hk(B;Z)→ Hk+n(E,E0;Z)

φ(x) = (π∗x) ∪ u.

The inclusion j : (E,∅) ⊂ (E,E0) induces a restriction homomorphism

j∗ : H∗(E,E0;Z)→ H∗(E;Z).

By applying this homomorphism to the class u we obtain j∗(u) ∈ Hn(E;Z).

De�nition 9.2. (i) We de�ne the Euler class of the vector bundle π : E → B to be the cohomology
class

e(E) = (π∗)−1j∗(u).

(ii) If E and G are in addition endowed with algebraic actions of a complex linear algebraic group
G, and π is a G-equivariant vector bundle, then we de�ne the G-equivariant Euler class eG(E) of
the vector bundle π : E → B to be the Euler class of the vector bundle

πG : EG×G E → EG×G B.

We will often make use of the following properties of the Euler class.

(Whitney sum formula) If E,E′ are two oriented real vector bundles over B, then e(E⊕E′) =
e(E) ∪ e(E′).
(Top Chern class) If E is a complex vector bundle, then e(E) = ctop(E), i.e., the Euler class of
E equals the top Chern class of E.
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9.1.2 Clean intersection formula

Lemma 9.3. Let X be a smooth oriented manifold and let Y1, Y2 be two closed oriented submani-
folds. Assume that Y := Y1 ∩ Y2 is smooth. Let T be the quotient vector bundle

T := TX|Y /(TY1|Y + TY2|Y )

on Y . Assume, moreover, that the intersection of Y1 and Y2 is "clean" in the sense that

TyY1 ∩ TyY2 = TyY, ∀y ∈ Y.

Then
[Y1] ∩ [Y2] = e(T ).[Y ],

where ∩ : H∗(Y1)×H∗(Y2)→ H∗(Y ) is the intersection pairing (in the ambient space X), e(T ) is
the Euler class of the vector bundle T and the dot on the right hand side stands for the action of
H∗(Y ) on H∗(Y ).

Proof. See [CG97, Proposition 2.6.47],

Corollary 9.4. Under the same assumptions as in Lemma 9.3 we have

[Y1]G ∩ [Y2]G = eG(T ).[Y ]G.

Proof. We apply the lemma to the approximation space EnG ×G X instead of X, for n >> 0.
The approximations EnG ×G Y1 and EnG ×G Y2 of the homotopy quotients of Y1 and Y2 are
closed oriented submanifolds of EnG×GX with smooth intersection EnG×G Y . We also have the
approximation EnG×G T → EnG×G Y to the homotopy quotient of the vector bundle T . Note
that e(EnG ×G T ) ∈ H∗(EnG ×G Y ) ⊂ H∗G(Y ) is the G-equivariant Euler class eG(T ) of T . By
the lemma,

[Y1]G ∩ [Y2]G = [EnG×G Y1] ∩ [EnG×G Y2] = e(EnG×G T ).[EnG×G Y ] = eG(T ).[Y ]G.

9.1.3 Application to the equivariant convolution product

Now recall our general convolution set-up. We have three connected oriented smooth manifolds
M1,M2,M3 and two closed submanifolds Z12 ⊂ M1 ×M2 and Z23 ⊂ M2 ×M3. Let Y12 ⊂ Z12

and Y23 ⊂ Z23 be closed oriented submanifolds. We consider [Y12]G, [Y23]G as classes in HG
∗ (Z12)

resp. HG
∗ (Z23) and want to compute their convolution product [Y12]G ? [Y23]G ∈ HG

∗ (Z12 ◦ Z23).
We have

p̂∗12([Y12]G) = [Y12 ×M3]G, p̂∗23([Y23]G) = [M1 × Y23]G.

Now Y12 ×M3,M1 × Y23 are closed oriented submanifolds of M1 ×M2 ×M3. Suppose that all the
assumptions of lemma 9.3 hold. Then

[Y12 ×M3]G ∩ [M1 × Y23]G = eG(T ).[Y12 ×M2
Y23]G,

where

T =
T (M1 ×M2 ×M3)|Y12×M2

Y23

(T (Y12 ×M3)|Y12×M2
Y23 + T (M1 × Y23)|Y12×M2

Y23)
.

But p̂13(Y12 ×M2
Y23) = Y12 ◦ Y23. Hence

(p̂13)∗([Y12 ×M2 Y23]G) = [p̂13(Y12 ×M2 Y23)]G = [Y12 ◦ Y23]G.
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Therefore we get
[Y12]G ? [Y23]G =

(
(p̂13)∗(e

G(T ))
)
.[Y12 ◦ Y23]G. (43)

It follows that the calculation of the equivariant convolution product reduces to the calculation
of equivariant Euler classes. We are eventually going to apply the framework we have developed
here to the special case in which G is the torus Td, Y12 and Y23 are closed subvarieties each
consisting of a single torus �xed point and T is a vector bundle over a point. The Euler class of the
bundle ETd ×Td T will then de�ne a cohomology class in STd

:= H∗Td
({pt}; k), the Td-equivariant

cohomology ring of a point. Recall that there is an isomorphism STd
∼= k[td]. We will now de�ne

some special elements in k[td] arising from certain representations of the Lie algebra td induced
by the action of Td on X. We call these elements "abstract Euler classes". We will later show
that in the aforementioned special case these abstract Euler classes coincide with the topological
Euler classes and provide us with a tool to compute the multiplicities in the clean intersection
formula.

9.1.4 Abstract Euler classes

Let G be a complex reductive linear algebraic group with maximal torus T . Let t denote the Lie
algebra of T . Suppose that M is a �nite-dimensional t-module. Then M =

⊕
λ∈t∗Mλ, where Mλ

is the weight space associated to λ. Let Λ = {λ ∈ t∗ |Mλ 6= {0}}.
De�nition 9.5. We de�ne the Euler class of the T -module M to be

eu(M) :=
∏
λ∈Λ

λdimMλ ∈ Symk(t∗) ∼= k[t],

where Symk(t∗) denotes the symmetric algebra of t∗ and k[t] the algebra of polynomials functions
on t. Note that eu(M) is a homogeneous polynomial of degree dim(M) on t. 4

Recall there is a canonical isomorphism

k[t]→ ST := H∗T ({pt}; k)

which doubles degrees. We can therefore consider eu(M) as a homogeneous polynomial of degree
2 · dim(M) in ST .

Now assume that X is a quasi-projective variety equipped with an algebraic action of T . Let
x ∈ XT be a smooth point of X. The tangent space TxX at x, i.e., the �bre of the tangent
bundle TX at x, naturally carries the structure of a T -module. Indeed, every t ∈ T de�nes an
automorphism

t : X → X

of X which induces a linear automorphism

Tx(t) : TxX → Tt(x)X = TxX

of the tangent space TxX since x is a smooth �xed point. Hence TxX is a representation of T . By
di�erentiating the map

T → GL(TxX)

we obtain a representation
t→ gl(TxX)

of the Lie algebra t on TxX.

De�nition 9.6. We de�ne the abstract Euler class eu(X,x) associated to the pair (X,x) to be

eu(X,x) := eu(TxX) ∈ k[t] ∼= ST .
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Remark 9.7. We have de�ned the homotopy quotient ET ×T X as the quotient of the product
ET ×X by the diagonal action of T , where T acts by (e, x).t = (e.t−1, t.x). We could also have
de�ned the homotopy quotient as the quotient of the product ET × X by the diagonal action
(e, x).t = (e.t, t−1.x). In that case the second factor is endowed with the dual of the T -action on
X. This is the convention adopted in [VV11]. If we worked with this convention, we would have to
make some adjustments to the framework introduced above. In particular, we would be interested
in the representation of t on the cotangent space T ∗xX. This representation is the dual of the
t-module TxX. If TxX =

⊕
λ Vλ, then T

∗
xX =

⊕
λ V−λ. Hence eu(T ∗xX) = (−1)dimTxXeu(TxX).

9.2 Applications

We are primarily interested in abstract Euler classes associated to the varieties F̃d and Zxd, for
x ∈Wd, and Td-�xed points.

De�nition 9.8. For each w,w′, x ∈Wd we set

Λw := eu(Fd, Fw), Λ̃w := eu(F̃d, (ρ0, Fw)),

Λxw,w′ := eu(Ox, (Fw, Fw′)), Λ̃xw,w′ := eu(Zxd, (ρ0, Fw, Fw′))

whenever the de�nition makes sense. If (Fw, Fw′) /∈ Ox then we set Λxw,w′ = Λ̃xw,w′ = 0. If

(Fw, Fw′) ∈ Ox but is not a smooth point we set Λxw,w′ = Λ̃xw,w′ = 1.

Since F̃d and Zxd are vector bundles, tangent spaces are direct sums of the tangent space to the
base space and the tangent space to the �bre.

De�nition 9.9. For each w ∈Wd, we set

rw := {x ∈ Repd | Fw is x-stable}.

Clearly, rw ∼= π−1
d (Fw) as td-modules, where πd : F̃d → Fd is the obvious projection. For

w,w′ ∈Wd, we also set
rw,w′ = rw ∩ rw′ , dw,w′ = rw/rw,w′ .

Note that rw,w′ is symmetric in w and w′. 4
Lemma 9.10. We have

Λ̃w = eu(rw) · Λw, Λ̃xw,w′ = eu(rw,w′) · Λxw,w′ .

Proof. Recall that the projection πd : F̃d → Fd is a vector bundle with �bre π−1
d (Fw) ∼= rw at Fw.

Hence, by local triviality, we have an isomorphism of td-modules

T(ρ0,Fw)F̃d

∼=−→ Tρ0π
−1
d (Fw)⊕ TFwFd.

Therefore
eu(F̃d, (ρ0, Fw)) = eu(π−1

d (Fw), ρ0) · eu(Fd, Fw),

i.e., Λ̃w = eu(rw) · Λw. The projection πd,d : Zxd → Ox is also a vector bundle with �bre

π−1
d,d((Fw, Fw′)) ∼= rw,w′ at (Fw, Fw′), provided that (Fw, Fw′) ∈ Ox. Hence, by local triviality,

we have an isomorphism of td-modules

T(ρ0,Fw,Fw′ )
Zxd

∼=−→ Tρ0π
−1
d,d((Fw, Fw′))⊕ T(Fw,Fw′ )

(Ox).

Therefore
eu(Zxd, (ρ0, Fw, Fw′)) = eu(π−1

d,d((Fw, Fw′)), ρ0) · eu(Ox, (Fw, Fw′)),

i.e., Λ̃xw,w′ = eu(rw,w′) · Λxw,w′ .

67



9.2.1 A lemma about Coxeter systems

Lemma 9.11. Let u ∈ Min(Wd,Wd) and s ∈ Π. Then:

• if us ∈Wdu, then us = s̃u, for some s̃ ∈ Πd,

• if us /∈Wdu, then us ∈ Min(Wd,Wd).

Proof. First suppose that us ∈ Wdu. Then l(us) > l(u). But s is a simple re�ection, so l(us) =
l(u) ± 1. It follows that l(us) = l(u) + 1. Moreover, since us ∈ Wdu, we have us = vu, for some
v ∈Wd. Then l(u)+1 = l(us) = l(vu) = l(v)+ l(u). This implies that l(v) = 1, which is equivalent
to saying that v ∈ Πd.

Now suppose that us /∈Wdu. Then us ∈Wdũ, for some u 6= ũ ∈ Min(Wd,Wd). Hence

us = vũ, (44)

for some v ∈ Wd. Assume that v 6= e ∈ Wd. We have l(vũ) = l(us) = l(u) ± 1. Moreover, (44)
implies that v−1us = ũ. Hence

l(ũ) = l(v) + l(u)± 1 > l(u)± 1 = l(us) = l(vũ).

But this is a contradiction because ũ is the element of minimal length in the coset Wdũ. Hence
v = e.

9.2.2 Some isomorphisms of varieties

Our goal now is to compute the tangent spaces to varieties Fd and Os at Td-�xed points. Of
course, it su�ces to consider the connected component in which a given �xed point is contained.
We will use the following isomorphisms in our calculations.

Lemma 9.12. Let w ∈Wd, s ∈ Π. Suppose that w = vu with v ∈Wd and u ∈ Min(Wd,Wd).
(i) We have an isomorphism of Gd-varieties

Gd/Bw → Fu, g 7→ g.Fw. (45)

(ii) Suppose that ws ∈Wdw. Then there are isomorphisms of Gd-varieties

Gd ×Bw (Pw,ws/Bw)→ Ou
s , (g, p) 7→ (g.Fw, gp.Fw), (46)

Gd ×Bw (Pw,ws/Bws)→ Ou
s , (g, p) 7→ (g.Fw, gp.Fws). (47)

where Gd acts on the LHS through its natural action on the �rst factor and acts on the RHS
diagonally.

Proof. (i) The isomorphism follows from the fact that the group Gd acts on Fu transitively and
the isotropy group of the �ag Fw is Bw.
(ii) By Lemma 9.11, ws = vs̃u, for some s̃ ∈ Πd. Hence

Pw,ws = Pv,vs̃, Bw = Bv, Bws = Bvs̃.

The isomorphisms (46), (47) now reduce to

Gd ×Bv (Pv,vs̃/Bv)→ Ou
s , (g, p) 7→ (g.Fvu, gp.Fvu), (48)

Gd ×Bv (Pv,vs̃/Bvs̃)→ Ou
s , (g, p) 7→ (g.Fvu, gp.Fvs̃u). (49)
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respectively. We �rst show that (48) holds if v = e. We have

Ou
s = Ωu,u

s̃ .

It follows from Lemma 7.11 that Ωu,u
s̃ is a �bre bundle over Gd/Be with �bre

Ωus̃ = Ωus̃ ∪ Ωue = (Bes̃Be/Be) ∪ (Be/Be) = Pe,s̃/Be

at Fu. This yields the desired isomorphism

Gd ×Be (Pe,s̃/Be)→ Ou
e , (g, p) 7→ (g.Fu, gp.Fu). (50)

We obtain the isomorphism (48) by conjugating the LHS of (50) by v and acting on the RHS
diagonally by v. To be more precise, let aut(v) : Gd → Gd denote conjugation by v. Then we have
the following commutative diagram

Gd ×Be Pe,s̃/Be //

aut(v)×aut(v)

��

Ou
s

v.×v.
��

Gd ×Bv Pv,vs̃/Bv // Ou
s

(g, p)
� //

_

��

(g.Fu, gp.Fu)
_

��

(vgv−1, vpv−1) � // (vg.Fu, vgp.Fu),

where (vg.Fu, vgp.Fu) = (vgv−1.Fvu, vgv
−1vpv−1.Fvu). We have already established that the

upper horizontal arrow is an isomorphism and the vertical arrows are clearly isomorphisms as
well. Commutativity implies that the lower horizontal arrow is also an isomorphism, as desired.
Equivariance follows directly from the formula describing this isomorphism. Isomorphism (47)
follows in an analogous fashion from the following commutative diagram

Gd ×Be Pe,s̃/Be //

aut(v)×aut(vs̃)

��

Ou
s

v.×vgs̃g−1.

��

Gd ×Bv Pv,vs̃/Bvs̃ // Ou
s

(g, p) � //
_

��

(g.Fu, gp.Fu)
_

��

(vgv−1, vs̃ps̃v−1)
� // (vg.Fu, vgs̃p.Fu).

Note that conjugating by s̃ corresponds to a shift in the �bre, while conjugating by v corresponds
to a diagonal shift.

Lemma 9.13. For x, y ∈Wd we have isomorphisms of Gd-varieties

Gd/(Bxy ∩Bx)
∼=−→ Ox

y = Gd.(Fx, Fxy), (51)

Be/(Be ∩Bx)
∼=−→ Ox = Be.Fx. (52)

Proof. Gd acts transitively on Ox
y with stabilizer Bxy ∩ Bx. Similarly, Be acts transitively on Ox

with stabilizer Be ∩Bx.

9.2.3 Abstract Euler classes associated to Steinberg and �ag varieties

We can now compute the tangent spaces at torus �xed point to the various Schubert varieties
considered in the previous section.
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Lemma 9.14. Let w ∈Wd.
(i) We have

Λw = eu(n−w).

(ii) Let x, y ∈Wd. Then
Λyx,xy = eu(n−x ⊕mx,xy). (53)

(iii) Let s ∈ Π. If ws ∈Wdw, then

Λsw,w = eu(mws,w ⊕ n−w), (54)

Λsw,ws = eu(mw,ws ⊕ n−w). (55)

If ws /∈Wdw then
Λsw,ws = eu(n−w). (56)

Proof. (i) By (45)

TFwFd = TFwFu = T(eBw/Bw)(Gd/Bw)

= gd/bw = n−w .

Hence
Λw = eu(Fd, Fw) = eu(TFwFd) = eu(n−w).

(ii) Using the isomorphism (51), we get

T(Fx,Fxy)Oy = T(Fx,Fxy)O
x
y = Te(Gd/(Bxy ∩Bx)) = gd/(bxy ∩ bx) = mx,xy ⊕ n−x .

Hence

Λyx,xy = eu(Oy, (Fx, Fxy)) = eu(T(Fx,Fxy)Oy) = eu(mx,xy ⊕ n−x ).

(iii) Suppose that ws ∈ Wdw. The equality (55) is a special case of (53). We could also have
computed it using the isomorphism (47). Indeed, by (47), we have

T(Fw,Fws)Os = pw,ws/bws ⊕ gd/bw = mw,ws ⊕ n−w .

Hence
Λsw,ws = eu(Os, (Fw, Fws)) = eu(T(Fws,Fw)Os) = eu(mw,ws ⊕ n−w).

To prove (54) we use the isomorphism (46). Indeed, we have

T(Fw,Fw)Os = pw,ws/bw ⊕ gd/bw = mws,w ⊕ n−w .

Hence
Λsw,w = eu(Os, (Fw, Fw)) = eu(T(Fw,Fw)Os) = eu(mws,w ⊕ n−w).

Now suppose that ws /∈ Wdw. Then, by Lemma 9.11, Bw = Bws and so nw = nws. Therefore,
mw,ws = nw/(nw ∩ nws) ∼= {0}. Then, by (53), we get

Λsw,ws = eu(n−w ⊕mw,ws) = eu(n−w).
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9.2.4 Euler classes of td-modules

We now compute the Euler classes of the tangent spaces from the previous section. If X is a set
of weights, then we set ∏

(X) :=
∏
x∈X

x.

Lemma 9.15. Let w ∈Wd and s = sl ∈ Π.

• If ws ∈Wdw, then

eu(nws) = −eu(nw), eu(mw,ws) = −eu(mws,w) = χw(l) − χw(l+1).

• If ws /∈Wdw, then
nws = nw, eu(mw,ws) = eu(mws,w) = 0.

Proof. Suppose that w = vu, where v ∈Wd and u ∈ Min(Wd,Wd).
(i) Let ws ∈ Wdw. Then ws = vus ∈ Wdw = Wdu. Hence us ∈ Wdu. Then, by Lemma 9.11, we
have us = s̃u, for some s̃ ∈ Πd. Thus ws = vs̃u. Since vs̃, v ∈Wd and u ∈ Min(Wd,Wd), we have

Ä(nws) = Ä(nvs̃) = vs̃(∆+
d ), Ä(nw) = Ä(nv) = v(∆+

d ). (57)

Hence
Ä(nw,ws) = Ä(nvs̃,v) = vs̃(∆+

d ) ∩ v(∆+
d ). (58)

Since s̃ ∈ Πd, it holds that s̃ = sβ for some simple root β ∈ ∆1
d. Then s̃(β) = −β and the set

∆+
d \{β} is stable under s̃. Hence

s̃(∆+
d ) = (∆+

d \{β}) ∪ {−β}, (59)

vs̃(∆+
d ) = v((∆+

d \{β}) ∪ {−β}) = (v(∆+
d )\{v(β)}) ∪ {−v(β)}. (60)

(57) and (60) imply that

eu(nws) =
∏(

vs̃(∆+
d )
)

=
∏(

(v(∆+
d )\{v(β)}) ∪ {−v(β)}

)
= −

∏(
v(∆+

d )
)

= −eu(nw),

which proves the �rst statement. Moreover, (58) and (60) imply that

Ä(nw,ws) = vs̃(∆+
d ) ∩ v(∆+

d ) = v(∆+
d )\{v(β)},

Ä(mw,ws) = Ä(nw)\Ä(nw,ws) = {v(β)}, Ä(mws,w) = Ä(nws)\Ä(nw,ws) = {−v(β)}. (61)

We have to compute the root v(β). Recall that us = s̃u and s = sl = sβl . Hence s̃u(βl) =
us(βl) = u(−βl) = −u(βl), which means that s̃ is the re�ection with respect to the root u(βl).
Hence β = u(βl). It follows that v(β) = vu(βl) = w(βl). The equalities (61) now imply

eu(mw,ws) = v(β) = w(βl) = χw(l) − χw(l+1) = −eu(mws,w).

(ii) Let ws = vus /∈Wdw. Then, by Lemma 9.11, us ∈ Min(Wd,Wd). Hence

nws = nv = nw (62)

and so eu(nws) = eu(nw). Moreover, (62) implies that nws = nw = nws ∩ nw = nw,ws. Hence
mw,ws = mws,w = {0} and

eu(mw,ws) = eu(mws,w) = 0.
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Let s = sl ∈ Π. We �x a w ∈Wd and write

yw = (iw1 , i
w
2 , ..., i

w
d ), Dw(m) = < ew(m) >, V kw = Dw(1) ⊕Dw(2) ⊕ ...⊕Dw(k).

We have, for each 1 ≤ k ≤ d,

Fw = (V 0
w ⊂ V 1

w ⊂ ... ⊂ V d
w = V),

Dw(k) ⊂ Viwk
,

V kw = V kws if k 6= l, V lws = V l−1
w ⊕Dw(l+1).

Moreover, by Lemma 5.3, ρ(V kw ) ⊆ V k−1
w for every ρ ∈ rw and ρ(V kws) ⊆ V k−1

ws for every ρ ∈ rws.
In particular, if ρ ∈ rw,ws then ρ(V lws) ⊆ V l−1

ws = V l−1
w and so

ρ(Dw(l+1)) ⊆ V l−1
w . (63)

On the other hand, if ρ ∈ rw and (63) holds, then

ρ(V lws) = ρ(V l−1
w ⊕Dw(l+1)) ⊂ V l−1

w = V l−1
ws ,

so ρ ∈ rw,ws. Hence
rw = {ρ ∈ Repd | ∀k ρ(V kw ) ⊂ V k−1

w },

rw,ws = {ρ ∈ rw | ρ(Dw(l+1)) ⊆ V l−1
w }.

We will use the following lemma to describe the action of the fundamental classes
[
Zss(y),y

]Gd

on

H
Gd
∗ (F̃d).

Lemma 9.16. We have
eu(dw,ws) = (χw(l) − χw(l+1))

hiw
l+1

,iw
l .

Proof. Consider the following map of Td-modules

rw →
⊕

h∈Hiw
l+1

,iw
l

Hom(Dw(l+1), V
l
w), ρ 7→ (ρh|Dw(l+1)

). (64)

The image of rw,ws under this map is contained in
⊕

h∈Hiw
l+1

,iw
l

Hom(Dw(l+1), V
l−1
w ). Moreover,⊕

h∈Hiw
l+1

,iw
l

Hom(Dw(l+1), V
l
w) /

⊕
h∈Hiw

l+1
,iw
l

Hom(Dw(l+1), V
l−1
w ) ∼=

∼=
⊕

h∈Hiw
l+1

,iw
l

Hom(Dw(l+1), V
l
w/V

l−1
w )

∼=
⊕

h∈Hiw
l+1

,iw
l

Hom(Dw(l+1), Dw(l))

∼=
⊕

h∈Hiw
l+1

,iw
l

D∗w(l+1) ⊗Dw(l)

as Td-modules. Since the map (64) is surjective and its kernel is contained in rw,ws, it follows that
the induced map of quotient modules

dw,ws = rw/rw,ws →
⊕

h∈Hiw
l+1

,iw
l

D∗w(l+1) ⊗Dw(l). (65)

is an isomorphism. Hence
eu(dw,ws) = (χw(l) − χw(l+1))

hiw
l+1

,iw
l .
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Lemma 9.17. (i) Let ws ∈Wdw. Then

Λ̃sw,w = eu(mws,w)Λ̃w, Λ̃sw,ws = eu(mws,w)Λ̃ws,

Λ̃w = −Λ̃ws.

(ii) Let ws /∈Wdw. Then

(Λ̃sw,ws)
−1Λ̃w = eu(dw,ws) = (χw(l) − χw(l+1))

hiw
l+1

,iw
l .

Proof. (i) Since ws ∈Wdw, yw = s(yw) and so iwl+1 = iwl . By (65) dw,ws is trivial since there is no
arrow joining iwl+1 to iwl (because our quiver has no loops). Hence

rw = rw,ws = rws. (66)

Equation (66) together with Lemmas 9.14 and 9.15 imply

Λ̃sw,w = eu(rw)Λsw,w = eu(rw)eu(mws,w)eu(n−w) = eu(mws,w)Λ̃w,

Λ̃sw,ws = eu(rw,ws)Λ
s
w,ws = eu(rws)eu(mw,ws)eu(n−w) = eu(rws)eu(mws,w)eu(n−ws) = eu(mws,w)Λ̃ws,

Λ̃w = eu(rw)Λw = −eu(rws)Λws = −Λ̃ws.

(ii) By Lemma 9.14, Λsw,ws = Λw. Hence

(Λ̃sw,ws)
−1Λ̃w = (eu(rw,ws))

−1(Λsw,ws)
−1eu(rw)Λw

= (eu(rw,ws))
−1eu(rw)

= eu(rw/rw,ws)

= eu(dw,ws)

= (χw(l) − χw(l+1))
hiw
l+1

,iw
l .

The last equality follows from Lemma 9.16.

Lemma 9.18. For all w, x, y ∈Wd such that l(xy) = l(x) + l(y) we have

eu(Oxy, (Fw, Fwxy))eu(Fd, (Fwx)) = eu(Ox, (Fw, Fwx))eu(Oy, (Fwx, Fwxy)),

eu(rw,wxy ⊕ rwx) = eu(rw,wx ⊕ rwx,wxy).

Proof. See [VV11, Lemma 3.8].
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10 Localization to Td-�xed points

Our goal now is to compute the convolution product. Moreover, we want to show that H
Gd
∗ (F̃d) is

a faithful module over H
Gd
∗ (Zd), identify H

Gd
∗ (Zd) with a subalgebra of EndSGd

(H
Gd
∗ (F̃d)) and

use this fact to �nd a set of multiplicative generators of H
Gd
∗ (Zd).

10.1 The localization theorem and the localization formula

Theorem 10.1 (Localization theorem). Let X be a complex algebraic variety which is also a
smooth oriented manifold endowed with an algebraic action of a torus T ∼= (C∗)m. Let XT be
the set of �xed points under the action of T , and let i : XT → X denote the inclusion. Let
ST := H∗T ({pt}; k) and let KT be the �eld of fractions of ST . Then the induced homomorphisms
i∗, i
∗ of ST -modules

HT
∗ (XT ; k)

i∗ //

PD∼=
��

HT
∗ (X; k)

i∗ //

PD∼=
��

HT
∗ (XT ; k)

PD∼=
��

H∗T (XT ; k)
i∗ // H∗T (X; k)

i∗ // H∗T (XT ; k)

become isomorphisms after inverting �nitely many characters of T . In particular, all horizontal
maps in the diagram below

HT
∗ (XT ; k)⊗ST KT

i∗ //

PD∼=
��

HT
∗ (X; k)⊗ST KT

i∗ //

PD∼=
��

HT
∗ (XT ; k)⊗ST KT

PD∼=
��

H∗T (XT ; k)⊗ST KT
i∗ // H∗T (X; k)⊗ST KT

i∗ // H∗T (XT ; k)⊗ST KT

are isomorphisms of KT -vector spaces.

Proof. See [Bri98, Theorem 3].

Theorem 10.2 (Localization formula). Suppose that the same assumptions as in the theorem above
hold. Suppose that XT is �nite and let XT = {x1, ..., xm}. For each 1 ≤ l ≤ m let il : {xl} → X
denote the inclusion. Let α ∈ HT

∗ (X; k)⊗ST KT
∼= H∗T (X; k)⊗ST KT . Then

α =

m∑
l=1

(il)∗i
∗
l (α)

eu(X,xl)
.

More generally, if X is not necessarily smooth, we also have the following formula

[X]T =

m∑
l=1

fl[{xl}]T ,

where fl ∈ KT and fl = (eu(X,xl))
−1 whenever xl is a smooth point of X.

Proof. See [EG96, Theorem 3].

Let us denote

HT∗ (X; k) := HT
∗ (X; k)⊗ST KT , H∗T (X; k) := H∗T (X; k)⊗ST KT

If c is a homology class in HT
∗ (X; k), then we will also abbreviate

c := c⊗ 1 ∈ HT (X; k).
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10.2 Applications of localization

10.2.1 Change of basis

Now let X = F̃d or Zd and T = Td. The isomorphisms from Corollary 7.28 become, after
localization (i.e., applying the functor KTd

⊗STd _),

HTd
∗ (F̃d) =

⊕
w∈Wd

KTd

[
Õw

]Td

, HTd
∗ (Zd) =

⊕
w,w′∈Wd

KTd

[
Õw,w′

]Td

.

Recall that

(Fd)Td = {Fw | w ∈Wd}, (F̃d)Td = {(ρ0, Fw) | w ∈Wd}, (Zd)Td = {(ρ0, Fw, Fw′) | w,w′ ∈Wd}.

For each w,w′ ∈Wd let

ψw := [{(ρ0, Fw)}]Td ∈ HTd
∗ ((F̃d)Td), ψw,w′ := [{(ρ0, Fw, Fw′)}]Td ∈ HTd

∗ ((Zd)Td)

denote the Td-equivariant fundamental classes of the singleton sets {(ρ0, Fw)} and {(ρ0, Fw, Fw′)}.
These fundamental classes generate the cohomology rings of (F̃d)Td and (Zd)Td . After localization
we get

HTd
∗ ((F̃d)Td) =

⊕
w∈Wd

KTd
ψw, HTd

∗ ((Zd)Td) =
⊕

w,w′∈Wd

KTd
ψw,w′ .

Given the inclusions i : (F̃d)Td → F̃d, i : (Zd)Td → Zd, we will also use the notation

ψw = i∗ψw, ψw,w′ = i∗ψw,w′

for the fundamental classes of the point subvarieties {(ρ0, Fw)} and {(ρ0, Fw, Fw′)} of F̃d resp.
Zd.

We have the following immediate corollary of the localization theorem.

Corollary 10.3. The inclusions i : F̃Td

d → F̃d, i : ZTd

d → Zd induce isomorphisms of KTd
-vector

spaces ⊕
w∈Wd

KTd
ψw = HTd

∗ ((F̃d)Td)
i∗−→ HTd

∗ (F̃d) =
⊕
w∈Wd

KTd

[
Õw

]Td

,

⊕
w,w′∈Wd

KTd
ψw,w′ = HTd

∗ ((Zd)Td)
i∗−→ HTd

∗ (Zd) =
⊕

w,w′∈Wd

KTd

[
Õw,w′

]Td

.

We now have two bases of the localized cohomology rings of F̃d and Zd: a basis consisting of
fundamental classes of the torus �xed points and a basis consisting of the fundamental classes of the
Schubert subvarieties. We would like to know more about how these two bases are related.

Corollary 10.4. For each w ∈Wd, let iw : {(ρ0, Fw)} → F̃d be the inclusion. We have

[F̃d]Td =
∑
w∈Wd

Λ̃−1
w ψw.

Proof. By the localization formula,

[F̃d]Td =
∑
w∈Wd

Λ̃−1
w (iw)∗i

∗
w[F̃d]Td .

For each w ∈Wd, the projection formula yields

Λ̃−1
w (iw)∗i

∗
w[F̃d]Td = Λ̃−1

w ([F̃d]Td ∩ (iw)∗ψw) = Λ̃−1
w ψw.
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Corollary 10.5. Let s ∈ Π. Then

[Zsd]Td =
∑
w∈Wd

(Λ̃sw,ws)
−1ψw,ws +

∑
w | ws∈Wdw

(Λ̃sw,w)−1ψw,w. (67)

Proof. The variety Zsd is smooth because it is a disjoint union of �bre bundles over �ag varieties
with �bre trivial or isomorphic to CP1. Hence we can apply the localization formula 10.2 with
X = Zsd. The Td-�xed points in Zsd are

(Zsd)Td = {(ρ0, Fw, Fws) | w ∈Wd} ∪ {(ρ0, Fw, Fw) | w ∈Wd s.t. ws ∈Wdw}.

Let iw,x : {(ρ0, Fw, Fx)} ↪→ Zsd, where x = w or ws, denote the inclusion. Then, by the projection
formula,

(iw,x)∗i
∗
w,x[Zsd]Td = [Zsd]Td ∩ (iw,x)∗ψw,x = ψw,x.

Instead of using the projection formula, one could also simply observe that the class [Zsd]Td is the

unity in H
Td
∗ (Zsd), and since i∗w,x is a homomorphism of cohomology rings, it must map it to ψw,x,

the unity in H
Td
∗

(
(Zsd)Td

)
. The formula (67) for [Zsd]Td in HTd

∗ (Zsd) now follows directly from the

localization formula. But the cellular �bration lemma implies that there is a canonical inclusion
HTd
∗ (Zsd) ↪→ HTd

∗ (Zd), so the formula (67) also holds in HTd
∗ (Zd).

In general, Schubert varieties are not smooth, so we cannot apply the localization formula directly
to �nd an expression for their fundamental classes in the new basis. Instead, we would need to
embed them into a smooth variety, for example Zd, and apply the localization formula to this
smooth variety. However, if we do that, the trick with the projection formula no longer works, and
in some cases it is rather hard to �nd explicit coe�cients in the new basis.

10.2.2 Reduction to the torus revisited

Corollary 10.6. The image of the inclusion H
Td
∗ (F̃d) ↪→ HTd

∗ (F̃d) is

⊕
w∈Wd

STd

[
Õw

]Td

=
⊕
w∈Wd

STd
Λ̃−1
w ψw. (68)

Proof. By the localization formula,[
Õw

]Td

=
∑
u≤w

Λ̃−1
u (iu)∗i

∗
u

[
Õu

]Td

.

For each u ≤ w, the projection formula yields

Λ̃−1
u (iu)∗i

∗
u

[
Õu

]Td

= Λ̃−1
u

([
Õu

]Td

∩ (iu)∗ψu

)
= Λ̃−1

u fψu,

for some f ∈ STd
. When (ρ0, Fu) is a smooth point of Õw, then f = Λ̃u/eu(Õw, (ρ0, Fu)), by the

localization formula or the clean intersection formula. We have therefore shown that
[
Õw

]Td

can

be expressed in the {ψw | w ∈Wd} basis with coe�cients in STd
Λ̃−1
w .

Wd acts on the fundamental classes {ψw | w ∈ Wy} by permuting them, i.e., each w ∈ Wd acts
by

w : ψu 7→ ψwu, (69)
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where u ∈Wy. Combining (42), (69) and (68) we obtain theWd-action on H
Td
∗ (F̃y). Each w ∈Wd

acts by
w : f Λ̃−1

u ψu 7→ w(f)Λ̃−1
wuψwu, (70)

for all f ∈ STd
, u ∈Wy. Hence

(
H
Td
∗ (F̃y)

)Wd

=

 ∑
w∈Wy

f(χw(1), ..., χw(d))Λ̃
−1
w ψw

∣∣∣∣∣∣ f ∈ k[td]

 .

We have an isomorphism

H
Gd
∗ (F̃y)→

(
H
Td
∗ (F̃y)

)Wd

(71)

f(xy(1), ..., xy(d)) 7→
∑
w∈Wy

f(χw(1), ..., χw(d))Λ̃
−1
w ψw =

∑
w∈Wy

w(f)Λ̃−1
w ψw. (72)

Observe that this isomorphism is not canonical. For example, we could also have chosen

f 7→
∑
w∈Wy

w(f)Λ̃−1
uwψuw

for any u ∈Wd. In the sequel we will always use the isomorphism (72).

10.2.3 Calculation of the convolution product

Let ?, � also denote the convolution products

? : H
Td
∗ (Zd; k)×HTd

∗ (Zd; k)→ H
Td
∗ (Zd; k),

� : H
Td
∗ (Zd; k)×HTd

∗ (F̃d; k)→ H
Td
∗ (F̃d; k).

Our goal now is to compute convolution products of the basis elements ψw,w′ and ψw. The following

important theorem will allow us to prove that the representation of H
Gd
∗ (Zd) on H

Gd
∗ (F̃d) is

faithful.

Theorem 10.7. For w,w′, w′′, w′′′ ∈Wd we have

ψw′′′,w′′ ? ψw′,w = δw′′,w′Λ̃w′ψw′′′,w, ψw′′,w′ � ψw = δw′,wΛ̃wψw′′ ,

where δw′,w is the Kronecker delta.

Proof. We use the notation and results of section 9.1.3. Let M1 = M2 = M3 = F̃d and set

Z12 = M1 ×Repd
M2
∼= Zd, Z23 = M2 ×Repd

M3
∼= Zd.

Then
Z12 ◦ Z23

∼= Zd.

Moreover, set

Y12 = {((ρ0, Fw′′′), (ρ0, Fw′′))} ⊂ Z12, Y23 = {((ρ0, Fw′), (ρ0, Fw))} ⊂ Z23.

Clearly
Y12 ◦ Y23 = {((ρ0, Fw′′′), (ρ0, Fw))} ⊂ Z12 ◦ Z23

∼= Zd

if w′ = w′′ or is empty otherwise. Hence

[Y12 ◦ Y23]Td = δw′′,w,ψw′′′,w.
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From now on suppose that w′ = w′′. The equivariant clean intersection formula (43) implies that

ψw′′′,w′ ? ψw′,w = [Y12]Td ? [Y23]Td = eTd(T ).[Y12 ◦ Y23]Td = eTd(T ).ψw′′′,w.

We now need to calculate the vector bundle T . Observe that

Y12 ×M2
Y23 = (Y12 ×M3) ∩ (M1 × Y23) = {((ρ0, Fw′′′), (ρ0, Fw′), (ρ0, Fw))}.

Let us abbreviate
y := ((ρ0, Fw′′′), (ρ0, Fw′), (ρ0, Fw)),

y1 = (ρ0, Fw′′′), y2 = (ρ0, Fw′), y3 = (ρ0, Fw).

We have
T (M1 ×M2 ×M3)|{y} = Ty1M1 ⊕ Ty2M2 ⊕ Ty3M3,

T (Y12 ×M3)|{y} = Ty3M3, T (M1 × Y23)|{y} = Ty1M1.

Hence

T =
Ty1M1 ⊕ Ty2M2 ⊕ Ty3M3

Ty1M1 + Ty3M3
= Ty2M2 := T(ρ0,Fw′ )

F̃d.

T is thus a bundle over a point, i.e., just a vector space. The vector space Ty2M2 is naturally
endowed with the structure of a Td-module. It can be decomposed into one-dimensional represen-
tations of Td

T = Ty2M2 =
⊕

λ∈Ä(T )

Cλ.

We now want to calculate its equivariant Euler class. We pass to homotopy quotients and get the
following vector bundle

ETd ×Td T → BTd.

It can be decomposed as a direct sum of line bundles:

ETd ×Td T = ETd ×Td

 ⊕
λ∈Ä(T )

Cλ

 =
⊕

λ∈Ä(T )

(
ETd ×Td Cλ

)
.

We have

eTd(T ) = e(ETd ×Td T ) = ctop(ETd ×Td T )

=
∏

λ∈Ä(T )

c1(ETd ×Td Cλ) =
∏

λ∈Ä(T )

λ = eu(F̃d, (ρ0, Fw′)) = Λ̃w′ .

The proof of the second formula is analogous.

Remark 10.8. We have �nally shown that in our special case topological Euler classes coincide
with the abstract Euler classes.

10.2.4 Implications for Gd-equivariant convolution

The calculations above have implications for our original algebras H
Gd
∗ (Zd), H

Td
∗ (F̃d) in view of

the following lemma.

Lemma 10.9. The forgetful maps

H
Gd
∗
(
Zd

)
→ H

Td
∗
(
Zd

)
, H

Gd
∗

(
F̃d

)
→ H

Td
∗

(
F̃d

)
.

commute with the convolution product ? resp. �.
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Proof. The pullback and pushforward maps in the de�nition of the convolution product are, in our
case, Wd-equivariant, so the convolution product commutes with taking invariants.

Theorem 10.10. The left H
Gd
∗ (Zd)-module H

Gd
∗ (F̃d) is faithful.

Proof. First consider the KTd
-linear map

HTd
∗ (Zd; k)→ EndKTd

(
HTd
∗ (F̃d; k)

)
. (73)

Take a nonzero element 0 6=
∑
w,w′∈Wd

aw′,wψw′,w ∈ H
Td
∗ (Zd; k), where aw′,w ∈ KTd

. Then there
exists at least one nonzero coe�cient au′,u 6= 0. By Theorem 10.7 We have∑

w,w′∈Wd

aw′,wψw′,w � ψu =
∑

w′∈Wd

aw′,uΛ̃uψw′ 6= 0.

Therefore, the map (73) has trivial kernel, i.e., the left HTd
∗ (Zd; k)-module HTd

∗ (F̃d; k) is faithful.

Since the STd
-modules H

Td
∗ (Zd; k) and H

Td
∗ (F̃d; k) are free, we also obtain a faithful representation

H
Td
∗ (Zd; k) ↪→ EndSTd

(
H
Td
∗ (F̃d; k)

)
.

Taking Wd-invariants yields a faithful representation

H
Gd
∗ (Zd; k) = (H

Td
∗ (Zd; k))Wd ↪→

(
EndSTd

(
H
Td
∗ (F̃d; k)

))Wd

= EndSGd

(
H
Gd
∗ (F̃d; k)

)
.
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11 Generators and relations

The purpose of this chapter is to reinterpret the geometric results from the previous chapters in
algebraic terms. It contains two very important results about the convolution algebra H

Gd
∗ (Zd).

The �rst result is a description of its faithful polynomial representation H
Gd
∗ (F̃d). The second

result, deduced from the �rst, is a presentation of H
Gd
∗ (Zd) in terms of generators and relations.

In particular, we give a complete list of relations for this algebra.

11.1 Generators of the convolution algebra

We begin by de�ning some elements in H
Gd
∗ (Zd). We will later show that these elements are

multiplicative generators of the convolution algebra H
Gd
∗ (Zd).

De�nition 11.1. (i) Recall that for each y ∈ Yd we set 1y,y = [Zey,y]Gd .
(ii) Recall that Π = {s1, ..., sd−1} denotes the set of simple re�ections in W . Now �x a simple
re�ection s = sl. Let y ∈ Yd. We set

σy(l) := [Zss(y),y]Gd ∈ HGd
∗

(
Z≤ss(y),y

)
.

(iii) Let k ∈ {1, 2, ...,d} and y ∈ Yd. Recall the k-th canonical line bundle OF̃y (k) over F̃y. We
have de�ned

eGd

(
OF̃y (k)

)
=: xy(k) ∈ HGd

∗ (F̃y).

Now consider the maps Zey,y
i
↪−→ F̃y × F̃y

p1−→ F̃y. Let π = p1 ◦ i. It is an isomorphism of varieties.
We de�ne

κy(k) := π∗(xy(k)) ∈ HGd
∗
(
Zey,y

)
.

SinceH
Gd
∗ (Z≤ss(y),y), H

Gd
∗ (Zey,y) ⊂ HGd

∗ (Zd) by the cellular �bration lemma, we can regard σy(l),κy(k)

as homology classes in H
Gd
∗ (Zd).

We consider a provisional generating set consisting of the following elements:

• 1y,y

• σy(1), ..., σy(d− 1)

• κy(1), ...,κy(d)

where y ranges over Yd.

Remark 11.2. The generating set de�ned above is the one most convenient to work with, but it
is not a smallest generating set. Let s = sl ∈ Π. De�ne

σ(l) := [Zsd]Gd ∈ HGd
∗ (Z≤sd ).

Then for each y ∈ Yd we have σy(l) = 1s(y),s(y) ? σ(l) ? 1y,y. Now let 1 ≤ k ≤ d. De�ne

κ(k) =
∑
y∈Yd

κy(k).

Then for each y ∈ Yd we have κy(k) = 1y,y ? κ(k) ? 1y,y. Therefore, the following set

• 1y,y

• σ(1), ..., σ(d− 1)
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• κ(1), ...,κ(d),

where y ranges over Yd, generates the same subalgebra of H
Gd
∗ (Zd) as the generating set from

De�nition 11.1.

11.2 Completeness of the generating set

We are now going to prove the following theorem.

Theorem 11.3. The elements {1y,y, σ(1), ..., σ(d−1),κ(1), ...,κ(d) | y ∈ Yd} generate H
Gd
∗ (Zd; k)

as a k-algebra.

The proof relies on the following idea. Observe that the elements {1y,y,κ(1), ...,κ(d) | y ∈ Yd} gen-
erate the subalgebra H

Gd
∗ (Zed) ∼= H∗Gd

(F̃d). Moreover, recall from Proposition 7.29 that H
Gd
∗ (Zd)

is a free left H
Gd
∗ (Zed)-module with basis

{[
Zwd
]Gd

| w ∈Wd

}
. Therefore, it su�ces to express

these basis elements in terms of our generators. We will use the following lemma.

Lemma 11.4. Let s = sl ∈ Π and w ∈Wd. If l(sw) = l(w) + 1 then [Zsd]Gd ? [Zwd ]Gd = [Zswd ]Gd

in the quotient vector space H
Gd
∗ (Z≤swd )/H

Gd
∗ (Z<swd ).

Proof. By Lemma 7.30, there is a unique element c ∈ HGd
∗ (Zed) such that

[Zsd]Gd ? [Zwd ]Gd = c ? [Zswd ]Gd

in H
Gd
∗ (Z≤swd )/H

Gd
∗ (Z<swd ). We need to show that c = 1.

For each x ∈Wd we abbreviate [Zxd]Td = [Zxd]Td ⊗ 1 ∈ HTd
∗ (Zd). We have

[Zxd]Td =
∑

y,z∈Wd

fxy,zψy,z,

for some uniquely determined fxy,z ∈ KTd
. Since Zxd is the closure of the cell Õx, each point

contained in the cell Õx is a smooth point of Zxd. In particular, for each y ∈ Wd, the Td-�xed
point (ρ0, Fy, Fyx) is a smooth point of Zxd. Hence, by the localization formula,

fxy,yx = (Λ̃xy,yx)−1 = (eu(Zxd, (ρ0, Fy, Fyx)))−1.

Substituting sw for x, we deduce that if we expand the class [Zswd ]Td in the KTd
-basis {ψy,z | y, z ∈

Wd}, then, for each y ∈Wd, the coe�cient on ψy,ysw is

fswy,ysw = (Λ̃swy,ysw)−1 = (eu(Zswd , (ρ0, Fy, Fysw)))−1.

We can also expand [Zsd]Td ? [Zwd ]Td in the KTd
-basis {ψy,z | y, z ∈Wd}:

[Zsd]Td ? [Zwd ]Td =
∑

y,z∈Wd

gy,zψy,z,

for some uniquely determined gy,z ∈ KTd
. We want to compare, for each y ∈ Wd, fswy,ysw with

gy,ysw and show that they are equal. Recall that

[Zsd]Td =
∑
y∈Wd

(Λ̃sy,ys)
−1ψy,ys +

∑
y | ys∈Wdy

(Λ̃sy,y)−1ψy,y.
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Moreover,
[Zwd ]Td =

∑
y,z∈Wd

fwy,zψy,z,

where fwy,yw = (eu(Zwd , (ρ0, Fy, Fyw)))−1, by our previous remarks about smoothness. Note that
since l(sw) > l(w), the �xed points (ρ0, Fy, Fysw) are not contained in Zwd , so fwy,ysw = 0. Hence,
by Theorem 10.7, for each y ∈Wd we have

gy,ysw = (Λ̃sy,ysΛ̃
w
ys,ysw)−1Λ̃ys = (eu(Zsd, (ρ0, Fy, Fys)))

−1(eu(Zwd , (ρ0, Fys, Fysw)))−1Λ̃ys.

The equality of fswy,ysw = gy,ysw now follows from Lemma 9.18. Therefore

[Zsd]Td ? [Zwd ]Td = [Zswd ]Td (74)

inHTd
∗ (Z≤swd )/HTd

∗ (Z<swd ). But the STd
-moduleH

Td
∗ (Z≤swd )/H

Td
∗ (Z<swd ) is free, so (74) also holds

in H
Td
∗ (Z≤swd )/H

Td
∗ (Z<swd ). Since the forgetful maps commute with convolution, we conclude that

[Zsd]Gd ? [Zwd ]Gd = [Zswd ]Gd (75)

holds in H
Gd
∗ (Z≤swd )/H

Gd
∗ (Z<swd ).

We can now return to the proof of Theorem 11.3.

Proof of Theorem 11.3. The elements {1y,y,κ(1), ...,κ(d) | y ∈ Yd} generate the subalgebraH
Gd
∗ (Zed; k)

as a k-algebra. Moreover, H
Gd
∗ (Zd) is a free leftH

Gd
∗ (Zed)-module with basis

{[
Zwd
]Gd

| w ∈Wd

}
.

So it su�ces to show that, for each w ∈Wd,[
Zwd
]Gd

= fβ ?
[
Zed
]Gd

+
∑
α

fα1 ?
[
Zs

α
1

d

]Gd

? fα2 ? ... ? fαnα ?
[
Zs

α
nα

d

]Gd

? fαnα+1, (76)

where each sαk ∈ Π, nα ≥ 1, fαk , f
β ∈ HGd

∗ (Zed) and α ranges over a �nite index set. We show this
by induction on the length of w. The claim obviously holds for the simple transpositions s ∈ Π.
Suppose that we have shown that (76) holds for all u ∈ Wd with l(u) ≤ m. Let l(w) = m + 1.
Then w = sv for some v ∈Wd with l(v) = m and s ∈ Π. Hence, by Lemma 11.4,

[Zsd]Gd ? [Zvd]Gd = [Zsvd ]Gd

in H
Gd
∗ (Z≤svd )/H

Gd
∗ (Z<svd ), i.e.,

[Zsd]Gd ? [Zvd]Gd − r = [Zsvd ]Gd , r ∈ HGd
∗ (Z<svd ). (77)

Since H
Gd
∗ (Z<svd ) is a free left H

Gd
∗ (Zed)-module with basis

{[
Zud
]Gd

| u ∈Wd, u < sv

}
and since

l(v) = m, it follows by induction that both r and [Zvd]Gd can be expanded as in the RHS of (76).
Therefore, by (77), the same holds for [Zsvd ]Gd .

Using Lemma 11.4 we can also construct another basis of H
Gd
∗ (Zd) as a H

Gd
∗ (Zed)-module.

De�nition 11.5. For each w ∈Wd choose a reduced decomposition w = sl1sl2 ...slr , where r ≥ 0
and l1, ..., lr ∈ {1, ...,d− 1}. Let y ∈ Yd. If r = 0 set σy(w) = 1y,y. Otherwise set

σy(w) = σsl1 (y)(l1) ? σsl2sl1 (y)(l2) ? ... ? σw−1(y)(lr).

Moreover, set
σ(w) =

∑
y∈Yd

σy(w) = σ(l1) ? ... ? σ(lr).

Note that σ(w) in general does depend on the choice of reduced decomposition of w.
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Corollary 11.6. H
Gd
∗ (Zd) is a free left H

Gd
∗ (Zed)-module with basis {σ(w) | w ∈Wd}.

Proof. This follows directly from Lemma 11.4.

11.3 Faithful polynomial representation of the convolution algebra

Recall that we have a k-vector space isomorphism H
Gd
∗

(
F̃d

)
∼=
⊕

y∈Yd
k[xy(1), ..., xy(d)] and

that H
Gd
∗

(
F̃d

)
is a faithful H

Gd
∗ (Zd)-module. We are now going to calculate the action of the

generators of H
Gd
∗ (Zd) on H

Gd
∗

(
F̃d

)
. The following theorem was �rst proved by Varagnolo and

Vasserot in [VV11, Proposition 2.23].

Theorem 11.7. Fix y, y′ ∈ Yd and a polynomial f ∈ HGd
∗

(
F̃y
)
.

(i) We have 1y′,y′ � f = 0 unless y′ = y and 1y,y � f = f .
(ii) We have κy′(k) � f = 0 unless y′ = y and κy(k) � f = xy(k)f .
(iii) We have σy′(l) � f = 0 unless y′ = y. Suppose that y = yw and set s = sl.
If s(y) = y then the action of σy(l) is given by the following Demazure operator

σy(l) � f =
f − s(f)

xy(l + 1)− xy(l)
.

If s(y) 6= y then
σy(l) � f = (xs(y)(l)− xs(y)(l + 1))h(iwl ,i

w
l+1)s(f).

Proof. We have Zy′,y′ ◦ F̃y = ∅ unless y = y′. This explains why 1y′,y′ � f = 0 and κy′(k) � f = 0
unless y = y′. In the latter case we have the convolution product

� : H
Gd
∗ (Zy,y)×HGd

∗

(
F̃y
)
→ H

Gd
∗

(
F̃y
)
.

(i) By the de�nition of the convolution product and by the projection formula we get

1y � f = (p1)∗
(
[Zey,y]Gd ∩ p∗1(f)

)
= (p1)∗

(
[Zey,y]Gd

)
∩ f = [F̃y]Gd ∩ f = f.

(ii) We have
κy(k) � f = (p1)∗(i∗(κy(k)) ∩ p∗1(f)) = ((p1)∗(i∗(κy(k)))) ∩ f,

where the second equality is implied by the projection formula. We can apply the projection
formula again to get

(p1)∗(i∗(κy(k))) = π∗(κy(k)) =π∗(κy(k) ∩ [Zey,y]Gd)

=π∗(π
∗(xy(k)) ∩ [Zey,y]Gd)

=xy(k) ∩ π∗([Zey,y]Gd) = xy(k) ∩ [F̃y]Gd = xy(k).

Hence
κy(k) � f = xy(k) ∩ f = xy(k)f,

where the second equality reinterprets the intersection product ∩ as multiplication of polynomials.

(iii) The convolution product

� : H
Gd
∗
(
Zs(y),y

)
×HGd

∗

(
F̃y
)
→ H

Gd
∗

(
F̃s(y)

)
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gives rise to an STd
-linear operator

H
Gd
∗

(
F̃y
)
→ H

Gd
∗

(
F̃s(y)

)
, f 7→ σy � f. (78)

Recall that we have a k-vector space isomorphism

H
Gd
∗

(
F̃y
)

= k[xy(1), ..., xy(d)].

By Section 10.2.2, we have injective homomorphisms

H
Gd
∗

(
F̃y
)
→

⊕
w∈Wy

KTd
ψw, f(xy(1), ..., xy(d)) 7→ fy :=

∑
w∈Wy

w(f)Λ̃−1
w ψw,

H
Gd
∗

(
F̃s(y)

)
→

⊕
w∈Wy′

KTd
ψw, f(xs(y)(1), ..., xs(y)(d)) 7→ fs(y) :=

∑
w∈Ws(y)

w(f)Λ̃−1
w ψw. (79)

Under these injections, the operator (78) is given by

fy 7→
∑

w′∈Ws(y)

gw′ψw′ , gw′ =
∑
w∈Wy

w(f)Λ̃sw′,w. (80)

Observe that the RHS of (80) is the image gs(y) of some g(xs(y)(1), ..., xs(y)(d)) ∈ HGd
∗

(
F̃s(y)

)
under (79), i.e., ∑

w′∈Ws(y)

gw′ψw′ =
∑

w′∈Ws(y)

w′(g)Λ̃−1
w′ ψw′ . (81)

We now compute the polynomial g. It follows from (81) that for each w′ ∈Wy,

gw′ = w′(g)Λ̃−1
w′ . (82)

Suppose that s(y) = y. Then Wy = Ws(y) and for each w′ ∈ Wy we have w′s ∈ Wdw
′. Hence, by

Corollary 10.5, the second sum in (80) reduces to

gw′ = w′(f)(Λ̃sw′,w′)
−1 + w′s(f)(Λ̃sw′,w′s)

−1.

By Lemma 9.17 and (82) we have

gw′ = w′(f)(eu(mw′s,w′))
−1Λ̃−1

w′ + w′s(f)(eu(mw′s,w′))
−1Λ̃−1

w′s

=
w′(f)Λ̃−1

w′ + w′s(f)Λ̃−1
w′s

χw′(l+1) − χw′(l)

=
w′(f)Λ̃−1

w′ − w′s(f)Λ̃−1
w′

χw′(l+1) − χw′(l)
= w′(g)Λ̃−1

w′ .

Hence

g =
f − s(f)

χl+1 − χl
.

Now suppose s(y) 6= y. Then for each w′ ∈ Wy we have w′s /∈ Wdw
′. Hence, by Corollary 10.5,

the second sum in (80) reduces to

gw′ = w′s(f)(Λ̃sw′,w′s)
−1 = w′s(f)((Λ̃sw′,w′s)

−1Λ̃w′)Λ̃
−1
w′ .
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By Lemma 9.17 and (82) we have

gw′ = w′s(f)eu(dw′,w′s)Λ̃
−1
w′

= w′s(f)(χw′(l) − χw′(l+1))
h
iw
′

l+1
,iw
′

l Λ̃−1
w′

= w′(g)Λ̃−1
w′ .

Hence

g = s(f)(χl − χl+1)
h
iw
′

l+1
,iw
′

l .

Since iw
′

l = iw
′s

l+1, i
w′

l+1 = iw
′s

l and yw′s = yw we get

g = s(f)(χl − χl+1)
hiw
l
,iw
l+1 .

11.4 The grading

We are now going to de�ne two interesting gradings on the convolution algebra H
Gd
∗ (Zd). To do

this we need the following de�nition.

De�nition 11.8. Let y = yw ∈ Yd. We write y = (iw1 , ..., i
w
d ). Set

hy(l) =

{
hiwl ,iwl+1

if sl(y) 6= y (i.e., if iwl 6= iwl+1),

−1 if sl(y) = y (i.e., if iwl = iwl+1).

ay(l) = hy(l) + hsl(y)(l) =

{
−(iwl , i

w
l+1) if sl(y) 6= y,

−2 if sl(y) = y.

If sl(y) 6= y then hiwl ,iwl+1
is the number of arrows from iwl to iwl+1 and ay(l) is the number of edges

between iwl and iwl+1 in the undirected graph obtained from the quiver Γ by forgetting orientations
of the edges. 4

First observe that the groups H
Gd
∗ (Zd), H

Gd
∗ (Fd) are endowed with a natural homological grading.

However, given this grading, H
Gd
∗ (Fd) is not a graded module over H

Gd
∗ (Zd). This motivates us

to de�ne di�erent gradings which make H
Gd
∗ (Fd) a graded module over H

Gd
∗ (Zd).

De�nition 11.9 (Grading 1). We endow H
Gd
∗ (F̃d) with the cohomological grading, i.e.,

deg1 xy(k) = 2, y ∈ Yd, k ∈ {1, ...,d}.

We now endow H
Gd
∗ (Zd) with the grading uniquely determined by setting

deg1 1y,y = 0, deg1 κy(k) = 2, deg1 σy(l) = 2hy(l).

Proposition 11.10. If we endow H
Gd
∗ (Zd) and H

Gd
∗ (Fd) with the gradings from De�nition 11.9,

the vector space H
Gd
∗ (Fd) is a graded module over H

Gd
∗ (Zd).

Proof. The proposition follows directly from the explicit description of the faithful polynomial
representation in Theorem 11.7.

It is also possible to de�ne another grading on H
Gd
∗ (Zd) which is more symmetric in the sense

that it does not depend on the orientation of the quiver.
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De�nition 11.11 (Grading 2). Recall that H
Gd
∗ (F̃d) =

⊕
y∈Yd

H
Gd
∗ (F̃y). Let my := dim F̃y be

the dimension of F̃y as a variety. We endow H
Gd
∗ (F̃y) with the cohomological grading shifted by

my, i.e., if f ∈ H
Gd
∗ (F̃y) then we set

deg2 f = deg1 f −my.

We now endow H
Gd
∗ (Zd) with the grading uniquely determined by setting

deg2 1y,y = 0, deg2 κy(k) = 2, deg2 σy(l) = ay(l).

Proposition 11.12. If we endow H
Gd
∗ (Zd) and H

Gd
∗ (Fd) with the gradings from De�nition 11.11,

the vector space H
Gd
∗ (Fd) is a graded module over H

Gd
∗ (Zd).

To prove the proposition we will use the following lemma.

Lemma 11.13. Let y = (i1, ..., id) ∈ Yd and set y(l) := il. We have

my := dim F̃y = dimFy +
∑
l′≤l

hy(l),y(l′).

Proof. See [Lus91, Lemma 1.6(c)].

Proof of Proposition 11.12. By Lemma 11.13, for each y ∈ Yd we have

ms(y) −my = hy(l),y(l+1) − hy(l+1),y(l) = hy(l)− hsl(y)(l).

Let f ∈ HGd
∗ (F̃y) and suppose that sl(y) 6= y. Then

deg2(σy(l) � f)− deg2 f = deg2

(
(xsl(y)(l)− xsl(y))

hy(l)sl(f)
)
− deg2 f

= 2hy(l) + deg1 f −ms(y) − deg1 f +my

= 2hy(l)− hy(l) + hsl(y)(l) = hy(l) + hsl(y)(l) = deg2 σy(l).

The fact that the other generators - 1y,y and κy(l) - act in a homogeneous way with respect to the
grading is obvious.

From now on we will always consider H
Gd
∗ (Zd) as a graded algebra endowed with the "symmetric"

grading from De�nition 11.11. We �nally remark that there is another reason for using this grading.
In the next chapter we will show that the convolution algebra H

Gd
∗ (Zd) is isomorphic to a certain

naturally graded geometric extension algebra. This isomorphism is in fact an isomorphism of
graded algebras, if we endow H

Gd
∗ (Zd) with the grading from De�nition 11.11.

11.5 Relations

We are now ready to give a complete list of relations for the convolution algebra H
Gd
∗ (Zd). We

will use the following lemma.

Lemma 11.14. Let ∂y,l denote the Demazure operator

∂y,l : f 7→ f − sl(f)

xy(l + 1)− xy(l)
,

where f ∈ HGd
∗ (F̃y). Then

∂2
y,l = 0, ∂y,l(fg) = ∂y,l(f)g + s(g)∂y,l(g).
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We call the �rst relation the quadratic relation and the second relation the twisted derivation relation
for Demazure operators. Moreover, Demazure operators satisfy the following braid relations

∂y,l∂y,l′ = ∂y,l′∂y,l, if |l − l′| > 1, ∂y,l+1∂y,l∂y,l+1 = ∂y,l∂y,l+1∂y,l.

Proof. Easy calculation left to the reader.

The relations in our convolution algebra will involve the following polynomials which depend on
the quiver Γ and dimension vector d.

De�nition 11.15. Let y ∈ Yd be a composition of the dimension vector d and l ∈ {1, ...,d− 1}.
We de�ne the following polynomials

Qy,l(u, v) =

{
(−1)hy(l)(u− v)ay(l) if sl(y) 6= y
0 else.

De�nition 11.15 says that the polynomial Qy,l(u, v) is non-zero only if the l-th and l+1-th vertices
in the composition y are distinct. In that case Qy,l(u, v) equals (u − v) to the power of ay(l),
where ay(l) equals the number of edges between the vertices y(l) and y(l+ 1), multiplied by −1 to
the power of hy(l), where hy(l) equals the number of arrows from y(l) to y(l + 1). Note that the
polynomials Qy,l(u, v) depend up to sign only on the underlying undirected graph of Γ, and not
on the orientation of Γ.

We now state one of the main theorems about the convolution algebra H
Gd
∗ (Zd).

Theorem 11.16. The following relations hold in the algebra H
Gd
∗ (Zd; k) (we omit the ? signs for

ease of reading):

(1) Idempotents:

• 1y,y1y′,y′ = δy,y′1y,y

• κy(l) = 1y,yκy(l)1y,y

• 1sl(y),sl(y)σy(k)1y,y = σy(k).

(2) Polynomial subalgebra:

• κy(k)κy′(k′) = κy′(k′)κy(k).

(3) The straightening rule:

• σy(l)κy(k)− κsl(y)(sl(k))σy(l) =

 −1y,y k = l, sl(y) = y,
1y,y k = l + 1, sl(y) = y,
0 else.

(4) The quadratic relation:

• σsl(y)(l)σy(l) = Qy,l(κy(l),κy(l + 1)).

(5) "Braid relations": let us write y = (iy1, ..., i
y
d), then

• σsl(y)(l
′)σy(l) = σsl′ (y)(l)σy(l′) if |l − l′| > 1.

• σslsl+1(y)(l + 1)σsl+1(y)(l)σy(l + 1)− σsl+1sl(y)(l)σsl(y)(l + 1)σy(l) =
Qy,l(κy(l+2),κy(l+1))−Qy,l(κy(l),κy(l+1))

κy(l+2)−κy(l) if iyl = iyl+2 6= iyl+1 and 0 otherwise.

Remark 11.17. We can interpret the quadratic relation as saying that (σ(l))2 = 0 up to a
polynomial. Similarly, the second "braid relation" says that σ(l + 1)σ(l)σ(l + 1) = σ(l)σ(l +
1)σ(l) modulo a polynomial. In this sense, these relations mirror the usual relations s2

l = e and
sl+1slsl+1 = slsl+1sl in the symmetric groupWd. Moreover, as one can easily see, all the relations
in the above theorem respect the grading on H

Gd
∗ (Zd).
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Proof. (1) These relations follow directly from the de�nition of the convolution product.

(2) We have proven that H
Gd
∗ (Zed) is a subalgebra isomorphic to H∗Gd

(F̃d). Hence the relation.

(3) Let f ∈ HGd
∗ (F̃y). Suppose that k = l and sl(y) = y. Then

σy(l)κy(k)− κsl(y)(sl(k))σy(l) = σy(l)κy(l)− κy(l + 1)σy(l).

By Lemma 11.14 (the twisted derivation rule for Demazure operators applied to σy(l)κy(l) � f) we
have

(σy(l)κy(l)− κy(l + 1)σy(l)) � f = [(σy(l) � xy(l))f + xy(l + 1)(σy(l) � f)]− xy(l + 1)(σy(l) � f)

= (σy(l) � xy(l))f = −f = −1y,y � f.

Now suppose k = l + 1 and sl(y) = y. Then

σy(l)κy(k)− κsl(y)(sl(k))σy(l) = σy(l)κy(l + 1)− κy(l)σy(l).

By Lemma 11.14 we have

(σy(l)κy(l + 1)− κy(l)σy(l)) � f = [(σy(l) � xy(l + 1))f + xy(l)(σy(l) � f)]− xy(l)(σy(l) � f)

= (σy(l) � xy(l + 1))f = f = 1y,y � f.

Suppose k /∈ {l, l + 1} and sl(y) = y. Then

(σy(l)κy(k)− κy(k)σy(l)) � f =
xy(k)f − s(xy(k)f)

xy(l + 1)− xy(l)
− xy(k)

f − s(f)

xy(l + 1)− xy(l)
= 0.

Now suppose that sl(y) = y′ 6= y. Then

(σy(l)κy(k)− κy′(k)σy(l)) � f =

= [(xy′(l)− xy′(l + 1))hy(l)s(xy(k)f)]− [xy′(sl(k))(xy′(l)− xy′(l + 1))hy(l+1)s(f)] = 0.

(4) Suppose s(y) = y. Then
σs(y)(l)σy(l) = σy(l)σy(l) = 0

by Lemma 11.14 (the quadratic rule for Demazure operators). If s(y) 6= y then

σs(y)(l)σy(l) = (xy(l)− xy(l + 1))hs(y)(l)s[(xs(y)(l)− xs(y)(l + 1))hy(l)s(f)]

= (xy(l)− xy(l + 1))hs(y)(l)(xy(l + 1)− xy(l))hy(l)f

= (−1)hy(l)(xy(l)− xy(l + 1))hs(y)(l)+hy(l)f

= (−1)hy(l)(xy(l)− xy(l + 1))ay(l)f

= (−1)hy(l)(κy(l)− κy(l + 1))ay(l) � f.

(5)(i) Let us write sl = s, sl′ = s′. First suppose that y′ := s(y) 6= y, y′′ := s′(y) 6= y, y′′′ := s′s(y).
Then

σy′(l
′)σy(l) � f = (xy′′′(l

′)− xy′′′(l′ + 1))hy′ (l
′)s′[(xy′(l)− xy′(l + 1))hy(l)s(f)]

= (xy′′′(l
′)− xy′′′(l′ + 1))hy′ (l

′)(xy′′′(l)− xy′′′(l + 1))hy(l)s′s(f)

= (xy′′′(l)− xy′′′(l + 1))hy′ (l
′)s[(xy′′(l

′)− xy′′(l′ + 1))hy(l)s′(f)]

= σy′′(l)σy(l′) � f.

The other cases are similar - one repeatedly has to use the commutation relation ss′ = s′s and the
fact that s(l′) = l′, s(l′+1) = l′+1, s′(l) = l, s′(l′+1) = l+1. We leave the calculation to the reader.
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(ii) Suppose that iyl = iyl+2 6= iyl+1.

X := σslsl+1(y)(l + 1)σsl+1(y)(l)σy(l + 1) � f

= σslsl+1(y)(l + 1)σsl+1(y)(l) �
[
[xsl+1(y)(l + 1)− xsl+1(y)(l + 2)]hy(l+1)sl+1(f)

]
= σslsl+1(y)(l + 1) �

[
[xsl+1(y)(l + 1)− xsl+1(y)(l + 2)]hy(l+1) − [xsl+1(y)(l)− xsl+1(y)(l + 2)]hy(l+1)

xsl+1(y)(l + 1)− xsl+1(y)(l)
sl+1(f)

+
[xsl+1(y)(l)− xsl+1(y)(l + 2)]hy(l+1)

xsl+1(y)(l + 1)− xsl+1(y)(l)
(sl+1(f)− slsl+1(f))

]

=
[
[xy(l + 1)− xy(l + 2)]hsl+1(y)(l+1)

] [ [xy(l + 2)− xy(l + 1)]hy(l+1) − [xy(l)− xy(l + 1)]hy(l+1)

xy(l + 2)− xy(l)
f

+
[xy(l)− xy(l + 1)]hy(l+1)

xy(l + 2)− xy(l)
(f − sl+1slsl+1(f))

]
=

(−1)hsl+1(y)(l+1)[xy(l + 2)− xy(l + 1)]ay(l+1)

xy(l + 2)− xy(l)
f

− [xy(l + 1)− xy(l + 2)]hsl+1(y)(l+1)[xy(l)− xy(l + 1)]hy(l+1)

xy(l + 2)− xy(l)
sl+1slsl+1(f).

Y := σsl+1sl(y)(l)σsl(y)(l + 1)σy(l) � f

= σsl+1sl(y)(l)σsl(y)(l + 1) �
[
[xsl(y)(l)− xsl(y)(l + 1)]hy(l)sl(f)

]
= σsl+1sl(y)(l) �

[
[xsl(y)(l)− xsl(y)(l + 1)]hy(l) − [xsl(y)(l)− xsl(y)(l + 2)]hy(l)

xsl(y)(l + 2)− xsl(y)(l + 1)
sl(f)

+
[xsl(y)(l)− xsl(y)(l + 2)]hy(l)

xsl(y)(l + 2)− xsl(y)(l + 1)
(sl(f)− sl+1sl(f))

]

=
[
[xy(l)− xy(l + 1)]hsl(y)(l)

] [ [xy(l + 1)− xy(l)]hy(l) − [xy(l + 1)− xy(l + 2)]hy(l)

xy(l + 2)− xy(l)
f

+
[xy(l + 1)− xy(l + 2)]hy(l)

xy(l + 2)− xy(l)
(f − slsl+1sl(f))

]
=

(−1)hy(l)[xy(l)− xy(l + 1)]ay(l)

xy(l + 2)− xy(l)
f − [xy(l)− xy(l + 1)]hsl(y)(l)[xy(l + 1)− xy(l + 2)]hy(l)

xy(l + 2)− xy(l)
slsl+1sl(f)

We have sl+1slsl+1(f) = slsl+1sl(f). Moreover, since iyl = iyl+2, we have

hy(l) = hsl+1(y)(l + 1), hsl(y)(l) = hy(l + 1), ay(l) = ay(l + 1).

Hence

X − Y = (−1)hy(l) [xy(l + 2)− xy(l + 1)]ay(l) − [xy(l)− xy(l + 1)]ay(l)

xy(l + 2)− xy(l)
f.

We leave the other cases to the reader (use the braid relations for Demazure operators).
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11.6 The main theorem

We now prove that the list of relations we have given is complete.

Theorem 11.18. The algebra H
Gd
∗ (Zd) is generated by {1y,y, σy(1), ..., σy(d−1),κy(1), ...,κy(d) |

y ∈ Yd} subject to the relations in Theorem 11.16 (i.e., the relations in Theorem 11.16 generate
all the relations).

Proof. Let A be the k-algebra generated by {1y,y, σy(1), ..., σy(d − 1),κy(1), ...,κy(d) | y ∈ Yd}
subject to the relations in Theorem 11.16. Then there is an obvious surjective k-algebra homo-
morphism

A→ H
Gd
∗ (Zd). (83)

We know that H
Gd
∗ (Zd) is a H

Gd
∗ (Zed)-module of rank d! with basis {σ(w) | w ∈ Wd} (for some

choices of reduced decompositions). It is clear that the map (83) is H
Gd
∗ (Zed)-linear. Therefore,

it su�ces to show that A also has rank d! as a H
Gd
∗ (Zed)-module. In fact, it is easy to show that

{σ(w) | w ∈Wd} is a H
Gd
∗ (Zed)-basis of A. By the straightening rule, we know that we can express

any element a ∈ A in the form

a = fβ +
∑
α

fασ(lα1 )...σ(lαrα),

where each lαk ∈ {1, ...,d − 1}, rα ≥ 1, fα, fβ ∈ < 1y,y,κy(1), ...,κy(d) | y ∈ Yd > ∼= H
Gd
∗ (Zed)

and α ranges over a �nite index set. Let w ∈ Wd and let w = sl1 ...slr be its chosen reduced
decomposition. Now the quadratic and the braid relations imply that if w = st1 ...str is another
reduced decomposition of w then

σ(t1)...σ(tr) =
∑
u≤w

fuσ(u)

for some polynomials fu ∈ < 1y,y,κy(1), ...,κy(d) | y ∈ Yd > ∼= H
Gd
∗ (Zed). Hence {σ(w) | w ∈Wd}

generate A as a H
Gd
∗ (Zed)-module. They're also H

Gd
∗ (Zed)-linearly independent because they are

independent in H
Gd
∗ (Zd).

Corollary 11.19. The algebra H
Gd
∗ (Zd) endowed with the grading from De�nition 11.11 is iso-

morphic as a graded k-algebra to the algebra de�ned by Khovanov and Lauda in [KL09] and the
algebra de�ned by Rouquier in [Rou12].

Proof. All three algebras have the same presentation in terms of generators and relations.

In light of this corollary, we will from now on refer to the convolution algebra H
Gd
∗ (Zd) as the KLR

algebra or the quiver Hecke algebra associated to the quiver Γ and dimension vector d.

11.7 Some corollaries

We now present some easy corollaries which follow from the presentation of our convolution algebra
in terms of generators and relations.

Corollary 11.20 (k-basis theorem). Choose a reduced decomposition for each element w ∈ Wd.
The sets

{κ(1)α1κ(2)α2 ...κ(d)αdσ(w)1y,y | y ∈ Yd, w ∈Wd, αm ∈ N≥0},
{σ(w)κ(1)α1κ(2)α2 ...κ(d)αd1y,y | y ∈ Yd, w ∈Wd, αm ∈ N≥0}

form k-bases of H
Gd
∗ (Zd).
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Proof. It is obvious that

{κ(1)α1κ(2)α2 ...κ(d)αd1y,y | y ∈ Yd, αm ∈ N≥0},

forms a k-basis of H
Gd
∗ (Zed). But H

Gd
∗ (Zd) is a left H

Gd
∗ (Zed)-module with basis {σ(w) | w ∈Wd}.

Hence H
Gd
∗ (Zd) is a k-module with basis

{κ(1)α1κ(2)α2 ...κ(d)αd1y,yσ(w) | y ∈ Yd, w ∈Wd, αm ∈ N≥0}.

Using the idempotents relations and the straightening rule one obtains the two bases in the state-
ment of the corollary.

De�nition 11.21. Let Γ0 denote the underlying unoriented graph of the quiver Γ. We can view
it as a triple (I,H, st), where st is a function from H to the set of two-element (and one-element,
if we allow loops) subsets of I such that st(h) = {s(h), t(h)}. We say that the source and target
functions s, t are the orientation of the graph Γ0. Let us denote a choice of orientation of Γ0 with
the symbol O. So far we have assumed that we are working with a �xed quiver Γ and suppressed
it from the notation. Occasionally we will want to compare algebras and varieties arising from
di�erent choices of a quiver or di�erent choices of an orientation of a �xed underlying unoriented
graph. We therefore introduce the following notation. Let Z(Γ,d), F̃(Γ,d) and F(Γ,d) denote
the quiver Steinberg variety, the incidence variety and the quiver �ag variety, resp., arising from
the quiver Γ with dimension vector d. Also let Z(Γ0,O,d), F̃(Γ,O,d) and F(Γ,O,d) denote the
quiver Steinberg variety, the incidence variety and the quiver �ag variety, resp., arising from the
unoriented graph Γ with orientation O and dimension vector d. We set

H(Γ,d; k) := H
Gd
∗ (Z(Γ,d); k), H(Γ0,O,d; k) := H

Gd
∗ (Z(Γ0,O,d); k).

Note that we have not de�ned anything new here - we have merely made the dependency on the
quiver and the orientation explicit. In the sequel we will continue to suppress the quiver and the
choice of orientation from the notation whenever we can assume that these choice are �xed, i.e.,
essentially when we are not directly comparing results for di�erent choices of quivers or orientations.

Corollary 11.22 (Change of orientation). Let O = (s, t) and O′ = (s′, t′) be two choices of
orientation of the unoriented graph Γ0. For i, j ∈ I let

hi,j = |{h ∈ H | s(h) = i, t(h) = j}|, h′i,j = |{h ∈ H | s′(h) = i, t′(h) = j}|,

β(i, j) =

{
(−1)hi,j+h

′
i,j if i 6= j, hi,j ≥ h′i,j

1 otherwise.

Then

H(Γ0,O,d; k)
∼=−→ H(Γ0,O′,d; k), 1y,y 7→ 1′y,y, κy(l) 7→ κ′y(l), σy(l) 7→ β(iyl , i

y
l+1)σ′y(l)

is a k-algebra isomorphism (where {1y,y,κy(l), σy(m) | y ∈ Yd, 1 ≤ l ≤ d, 1 ≤ m ≤ d− 1} are the
standard generators of H(Γ0,O,d; k) and {1′y,y,κ′y(l), σ′y(m) | y ∈ Yd, 1 ≤ l ≤ d, 1 ≤ m ≤ d − 1}
are the standard generators of H(Γ0,O′,d; k) ).

Proof. This is obviously a vector space isomorphism. To prove that this is also an algebra ho-
momorphism, we directly check the relations. It is clear that the idempotents and polynomial
relations as well as the straightening rule are preserved. Let us check the quadratic relation. If
sl(y) = y then σsl(y)(l)σy(l) = 0 = σ′sl(y)(l)σ

′
y(l). So suppose that sl(y) 6= y. Let i := iyl , j := iyl+1.

If hi,j ≥ h′i,j then

β(j, i)σ′sl(y)(l)β(i, j)σ′y(l) = (−1)h
′
i,j+hi,j+h

′
i,j (κ′y(l)−κ′y(l+1))ay(l) = (−1)hi,j (κ′y(l)−κ′y(l+1))ay(l).
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If hi,j < h′i,j then

β(j, i)σ′sl(y)(l)β(i, j)σ′y(l) = (−1)h
′
i,j+hj,i+h

′
j,i(κ′y(l)−κ′y(l+1))ay(l) = (−1)hi,j (κ′y(l)−κ′y(l+1))ay(l)

because hi,j + hj,i = h′i,j + h′j,i and so hi,j = h′i,j + h′j,i + hj,i mod 2. We leave checking the braid
relations to the reader.

Remark 11.23. The corollary implies that up to isomorphism the graded algebra H(Γ0,O,d; k)
depends only on the underlying undirected graph Γ0. Note, however, that these isomorphisms do
not commute with the faithful polynomial representation (as can easily be seen from the description
of this representation).

Corollary 11.24. Given y ∈ Yd, let y
∗ ∈ Yd be such that iy

∗

l = iyd+1−l. There is an involutive
algebra automorphism

H(Γ,d; k)
∼=−→ H(Γ,d; k), 1y,y 7→ 1y,y, κy(l) 7→ κy∗(d + 1− l), σy(l) 7→ −σy∗(d− l).

Proof. A straightforward calculation left to the reader.

Remark 11.25. There is also an involutive graded vector space automorphism

H
Gd
∗ (F̃d; k)

∼=−→ H
Gd
∗ (F̃d; k), xy(l) 7→ xy∗(d + 1− l).

These automorphisms commute with the action of H(Γ,d; k) on H
Gd
∗ (F̃d; k).

Corollary 11.26. There is an isomorphism

H(Γ,d; k)
∼=−→ H(Γ,d; k)opp, 1y,y 7→ 1y,y, κy(l) 7→ κy(l), σy(l) 7→ σsl(y)(l).

Proof. A straightforward calculation left to the reader.

11.8 Examples

We can obtain some familiar algebras as quiver Hecke algebras, for example, matrix rings with
polynomial entries and NilHecke rings.

Example 11.27 (Matrix ring with polynomial entries). Set I = {i1, ..., in}, H = ∅ and d =
i1 + ...+ in. Then Wd

∼= Sn, Wd = {e}, |Yd| = n!, Gd = Td
∼= (C×)n and Repd = {0}. Moreover,

Fy ∼= {pt} for each y ∈ Yd, F̃d = Fd and Zd = Fd×Fd. We have SGd
= STd

= k[xd(1), ..., xd(n)]

and H
Gd
∗ (Fd) is a free SGd

-module of rank n! with basis {1y | y ∈ Yd}. Let φy,y′ be the SGd
-linear

endomorphism of H
Gd
∗ (Fd) sending 1y to 1y′ and all the other basis elements 1y′′ to 0. Then

EndSGd

(
H
Gd
∗ (Fd)

)
is a free SGd

-module of rank (n!)2 with basis {φy,y′ | y, y′ ∈ Yd}. Since for

each sl ∈ Π and y ∈ Yd, we have sl(y) 6= y, the elements σy(l) never act as Demazure operators.

Moreover, since hy(l) = 0 for each y ∈ Yd and l, we have σy(l) � f = sl(f), for f ∈ H
Gd
∗ (Fy).

Hence, if y′ = w(y), then σy(w) = φy,y′ as SGd
-linear operators on H

Gd
∗ (Fd). It follows that

{φy,y′ | y, y′ ∈ Yd} = {σy(w) | y ∈ Yd, w ∈Wd}

and thus
H
Gd
∗ (Zd) ∼= EndSGd

(
H
Gd
∗ (Fd)

)
∼= Mat(n!× n!, k[x(1), ..., x(n)]).

In particular, if n = 1 then H
Gd
∗ (Zd) ∼= k[x]. Now let us consider in detail the case n = 2. We

have Yd = {y, y′}, where y = (i1, i2) and y′ = (i2, i1). We consider H
Gd
∗ (F̃d) ∼= k[xy(1), xy(2)] ⊕

k[xy′(1), xy′(2)] as a free module over k[xy(1) + xy(1), xy(2) + xy′(2)] with ordered basis 1y, 1y′ .
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Setting x(1) = xy(1) + xy′(1), x(2) = xy(2) + xy′(2) we can thus interpret an element of H
Gd
∗ (F̃d)

as a two-row vector with entries in k[x(1), x(2)]. We want to explicitly describe the isomorphism

H
Gd
∗ (Zd) ∼= Mat(2× 2, k[x(1), x(2)]).

It is given by the following map

1y,y 7→
(

1 0
0 0

)
, 1y′,y′ 7→

(
0 0
0 1

)
,

κy(l) 7→
(
x(l) 0

0 0

)
, κy′(l) 7→

(
0 0
0 x(l)

)
,

σy(1) 7→
(

0 0
1 0

)
, σy′(1) 7→

(
0 1
0 0

)
,

for l = 1, 2.

Example 11.28 (NilHecke ring). Set I = {i}, H = ∅ and d = ni. Then Wd = Wd
∼= Sn,

|Yd| = 1, Yd = {y}, where y = (i, i, ..., i), Gd = Gd
∼= GL(n,C) and Repd = {0}. Moreover,

F̃d = Fd = Fy, H
Gd
∗ (Fy) = k[xy(1), ..., xy(n)] and Zd = Fy × Fy. Since for each sl ∈ Π,

we have sl(y) = y, the elements σy(l) always act as Demazure operators. Hence H
Gd
∗ (Zd) is

the ring of endomorphisms of k[xy(1), ..., xy(n)] generated by endomorphisms κy(l) which act by
multiplication with xy(l) and Demazure operators σy(l). Therefore

H
Gd
∗ (Zd) ∼= NHn,

i.e., the convolution algebra H
Gd
∗ (Zd) is isomorphic to the NilHecke ring (see De�nition 7.33).

Note that the quadratic relation and the "braid relations" for elements σy(l) simplify to the braid
relations for Demazure operators.

It is well known that the NilHecke ring NHn is also isomorphic to the matrix algebra
Mat

(
n!× n!, k[x(1), ..., x(n)]Sn

)
(see for example [KL09], p.11). Let us set n = 2 and construct

an isomorphism
H
Gd
∗ (Zd) ∼= Mat (2× 2, k[x(1)x(2), x(1) + x(2)]) . (84)

We consider the polynomial ring k[x(1), x(2)] as a k[x(1)x(2), x(1)+x(2)]-module of rank 2 with or-
dered basis 1, x(1). The algebra Mat (2× 2, k[x(1)x(2), x(1) + x(2)]) acts naturally on k[x(1), x(2)]
endowed with this basis by matrix multiplication. Consider the map

H
Gd
∗ (Zd)→ Mat (2× 2, k[x(1)x(2), x(1) + x(2)]) (85)

de�ned by

1y,y 7→
(

1 0
0 1

)
, κy(1) 7→

(
0 −x(1)x(2)
1 x(1) + x(2)

)
,

σy(1) 7→
(

0 0
−1 0

)
, κy(2) 7→

(
x(1) + x(2) x(1)x(2)
−1 0

)
.

This map intertwines the actions ofH
Gd
∗ (Zd) and Mat (2× 2, k[x(1)x(2), x(1) + x(2)]) on k[x(1), x(2)].

Indeed, we have, for example, κy(1) � 1 = x(1), κy(1) � x(1) = x(1)2 and(
0 −x(1)x(2)
1 x(1) + x(2)

)(
1
0

)
=

(
0
1

)
= x(1),

(
0 −x(1)x(2)
1 x(1) + x(2)

)(
0
1

)
=

(
−x(1)x(2)
x(1) + x(2)

)
= −x(1)x(2) + (x(1) + x(2))x(1) = x(1)2.

93



It follows that the map (85) is injective (since the elements 1y,y,κy(1),κy(2), σy(1) and their
images act in the same way on k[x(1), x(2)]). To show surjectivity, we �nd pre-images of a basis of
Mat (2× 2, k[x(1)x(2), x(1) + x(2)]) over its centre (which is isomorphic to k[x(1)x(2), x(1)+x(2)]):

σy(1)κy(2) 7→
(

1 0
0 0

)
, σy(1)κy(1)σy(1) 7→

(
0 1
0 0

)
,

−σy(1) 7→
(

0 0
1 0

)
, −κy(1)σy(1) 7→

(
0 0
0 1

)
.

Let us also look at some examples with arrows.

Example 11.29. Set I = {i, j}, H = {i n−→ j} (n arrows from i to j) and d = i+j. ThenWd
∼= S2,

Wd = {e}, |Yd| = 2, Yd = {y = (i, j), y′ = (j, i)}, Gd = Td
∼= (C×)2 and Repd = Cn. Moreover,

Fy ∼= Fy′ ∼= {pt}, F̃y ∼= Fy, F̃y′ ∼= Cn, and Zy,y ∼= Zy,y′ ∼= Zy′,y ∼= {pt}, Zy′,y′ ∼= Cn. We have

SGd
= STd

= k[xd(1), xd(2)] and H
Gd
∗ (F̃d) is a free SGd

-module of rank 2 with basis {1y, 1y′}.
The convolution algebra H

Gd
∗ (Zd) is generated by the idempotents, κy(1),κy(2),κy′(1),κy′(2)

and σy(1), σy′(1). We have

σy(1) � f = (xy′(1)− xy′(2))nsl(f), f ∈ HGd
∗ (F̃y),

σy′(1) � f = sl(f), f ∈ HGd
∗ (F̃y′).

Note that, unlike in the previous two examples, H
Gd
∗ (Zd) is isomorphic to a proper subring of

EndSGd

(
H
Gd
∗ (F̃d)

)
∼= Mat(2× 2, k[xd(1), xd(2)]). The inclusion

H
Gd
∗ (Zd) ↪→ Mat(2× 2, k[xd(1), xd(2)])

is given by

1y,y 7→
(

1 0
0 0

)
, 1y′,y′ 7→

(
0 0
0 1

)
,

κy(l) 7→
(
x(l) 0

0 0

)
, κy′(l) 7→

(
0 0
0 x(l)

)
,

σy(1) 7→
(

0 0
(x(1)− x(2))n 0

)
, σy′(1) 7→

(
0 1
0 0

)
,

for l = 1, 2.

Example 11.30. Set I = {i, j}, H = {i n−→ j} and d = 2i + j. Then Wd
∼= S3, Wd

∼= S2,
|Yd| = 3, Yd = {y = (i, i, j), y′ = (i, j, i), y′′ = (j, i, i)}, Gd

∼= GL(2,C) × C×, Td
∼= (C×)3 and

Repd = C2n. Moreover, Fy ∼= Fy′ ∼= Fy′′ ∼= CP1 ∼= F̃y, F̃y′ is a complex vector bundle over Fy′
of rank n and F̃y′′ is a complex vector bundle over Fy′′ of rank 2n. Furthermore, Zy,y ∼= Zy,y′ ∼=
Zy′,y ∼= Zy′′,y ∼= Zy,y′′ ∼= CP1 × CP1, Zy′,y′ ∼= Zy′,y′′ ∼= Zy′′,y′ is a complex vector bundle over
CP1 × CP1 of rank n and Zy′′,y′′ is a complex vector bundle over CP1 × CP1 of rank 2n. We

have STd
= k[xd(1), xd(2), xd(3)], SGd

= k[xd(1)xd(2), xd(1) + xd(2), xd(3)] and H
Gd
∗ (F̃d) is a
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free SGd
-module of rank 6. We now have several di�erent kinds of σ operators:

σy(1) � f =
f − s1(f)

xy(2)− xy(1)
, f ∈ HGd

∗ (F̃y),

σy′′(2) � f =
f − s2(f)

xy′′(3)− xy′′(2)
, f ∈ HGd

∗ (F̃y′′),

σy(2) � f = (xy′(2)− xy′(3))ns2(f), f ∈ HGd
∗ (F̃y),

σy′(1) � f = (xy′′(1)− xy′′(2))ns1(f), f ∈ HGd
∗ (F̃y′),

σy′(2) � f = s2(f), f ∈ HGd
∗ (F̃y′),

σy′′(1) � f = s1(f), f ∈ HGd
∗ (F̃y′′).

11.9 Quivers with loops

We are now going to generalize the results of this section to quivers with loops. Suppose that Γ is
now a quiver which may have loops. Let H = H� tH→, where H� = {h ∈ H | s(h) = t(h)} is
the set of loops and H→ = {h ∈ H | s(h) 6= t(h)} is the set of all the other arrows.

Let ρ = (ρh) ∈ Repd. De�ne ρ
→ = (ρ→h ), ρ� = (ρ�h ) by setting

ρ→h =

{
ρh if h ∈ H→,
0 if h ∈ H�,

ρ�h =

{
0 if h ∈ H→,
ρh if h ∈ H�.

We of course have ρ = ρ→ + ρ�. We further de�ne

Rep→d = {ρ→ | ρ ∈ Repd}, Rep�
d = {ρ� | ρ ∈ Repd}.

Let F = (V l) be a quiver �ag. We call F ρ-stable if ρ(V l) ⊆ V l−1 for each l. This is equivalent
to requiring that ρ→(V l) ⊆ V l and ρ�(V l) ⊆ V l−1 for each l and hence consistent with our prior
de�nition of stability. For each w ∈Wd we also de�ne

r→w = rw ∩ Rep→d , r�w = rw ∩ Rep�
d .

We of course have
Repd = Rep→d ⊕ Rep�

d , rw = r→w ⊕ r�w .

Observe that Lemma 9.16 still holds for quivers with loops. Let us recall it here.

Lemma 11.31. We have
eu(dw,ws) = (χw(l) − χw(l+1))

hiw
l+1

,iw
l .

We now modify the statement and proof of Lemma 9.17.

Lemma 11.32. (i) Let ws ∈Wdw. Then

Λ̃sw,w = (eu(dw,ws))
−1eu(mws,w)Λ̃w = −(χw(l) − χw(l+1))

1−hiw
l
,iw
l Λ̃w,

Λ̃sws,w = (eu(dws,w))−1eu(mws,w)Λ̃ws = (−1)
1+hiw

l
,iw
l (χw(l) − χw(l+1))

1−hiw
l
,iw
l Λ̃ws,

Λ̃w = (−1)
1+hiw

l
,iw
l Λ̃ws,

Λ̃sw,ws = (χw(l) − χw(l+1))
1−hiw

l
,iw
l Λ̃w.

(ii) Let ws /∈Wdw. Then

(Λ̃sw,ws)
−1Λ̃w = eu(dw,ws) = (χw(l) − χw(l+1))

hiw
l+1

,iw
l .
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Proof. (i) Since ws ∈Wdw, yw = s(yw) and so iwl+1 = iwl .We have

rw = rw,ws ⊕ dw,ws, rws = rw,ws ⊕ dws,w,

eu(dw,ws) = (χw(l) − χw(l+1))
hiw
l
,iw
l = (−1)

hiw
l
,iw
l eu(dws,w),

eu(rw) = (−1)
hiw
l
,iw
l eu(rws).

Lemmata 9.14 and 9.15 imply

Λ̃sw,w = eu(rw,ws)Λ
s
w,w = (eu(dw,ws))

−1eu(rw)eu(mws,w)eu(n−w)

= (eu(dw,ws))
−1eu(mws,w)Λ̃w

= −(χw(l) − χw(l+1))
1−hiw

l
,iw
l Λ̃w,

Λ̃sw,ws = eu(rw,ws)Λ
s
w,ws = eu(dws,w)−1eu(rws)eu(mw,ws)eu(n−w)

= eu(dws,w)−1eu(rws)eu(mws,w)eu(n−ws)

= eu(dws,w)−1eu(mws,w)Λ̃ws

= (−1)
1+hiw

l
,iw
l (χw(l) − χw(l+1))

1−hiw
l
,iw
l Λ̃ws,

Λ̃w = eu(rw)Λw = −eu(rws)(eu(rw)/eu(rws))Λws

= −(eu(rw)/eu(rws))Λ̃ws

= (−1)
1+hiw

l
,iw
l .

(ii) The calculation is the same as for quivers without loops in this case.

The action of H
Gd
∗ (Zd) on H

Gd
∗ (F̃d) is the same as for quivers without loops except the following

modi�cation.

Proposition 11.33. Let y = yw ∈ Yd, sl ∈ Π, f ∈ HGd
∗ (F̃y). Suppose that sl(y) = y. Then

σy(l) � f = (χw(l) − χw(l+1))
(hiw

l
,iw
l

)−1
(s(f)− f).

Proof. The proof is the same as in Theorem 11.7(iii) but one uses Lemma 11.32 rather than Lemma
9.17.

We invite the reader to work out how the relations change.

Example 11.34 (The skew group ring). Let Γ be the Jordan quiver, i.e., I = {i}, H = {i → i}.
Let d = ni. Everything is as in Example 11.28 (the NilHecke ring) except that the elements σy(l)
don't act as Demazure operators. In fact,

σy(l) � f = sl(f)− f, (σy(l) + 1y,y) � f = sl(f), f ∈ HGd
∗ (F̃y) = H

Gd
∗ (F̃d).

The skew group ring ofSn, denoted k[x1, ..., xn]oSn, is de�ned to be the abelian group k[x1, ..., xn]×
Sn endowed with the product (p, w) · (r, u) = (pw(r), wu). We have the following algebra isomor-
phism

H
Gd
∗ (Zd)→ k[x1, ..., xn]oSn, κy(l) 7→ (xl, e), σy(l) + 1y,y 7→ (1, sl).
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12 Representation theory of convolution algebras

12.1 Perverse sheaves and the decomposition theorem

12.1.1 Derived categories

We will only consider complex algebraic varieties, even though some of the de�nitions and results
we state hold more generally. Let Y be a complex algebraic variety. We �rst �x notation pertaining
to the various categories we will consider. Let Sh(Y ) denote the abelian category of sheaves of
complex vector spaces on Y and let Db(Y ) denote the bounded derived category of Sh(Y ). We
denote the constant sheaf on Y by CY . A sheaf G ∈ Sh(Y ) is called constructible if there exists an
algebraic strati�cation of Y = tλSλ such that the restriction of G to each stratum Sλ is a locally
constant sheaf of �nite dimensional complex vector spaces, i.e., a local system. If Q ∈ Db(Y ) is a
complex of sheaves then let Hi(Q) denote the i-th cohomology sheaf of this complex. We call a
complex Q ∈ Db(Y ) constructible if all the cohomology sheaves Hi(Q) are constructible. Finally,
let Db

c(Y ) be the full subcategory of Db(Y ) whose objects are constructible complexes.

We follow a standard convention and do not distinguish in notation between functors F : Sh(X)→
Sh(Y ) and the corresponding derived functors RF : Db(X) → Db(Y ) or LF : Db(X) → Db(Y ).
Let f : X → Y be a (proper) morphism of algebraic varieties. We let f∗, f!, f

∗, f ! denote the
derived direct image, proper direct image, inverse image and proper (or exceptional) inverse image
functors. Moreover, let ⊗ and Hom denote the derived internal tensor product and internal Hom
functors. When referring to these functors, we will typically omit the word "derived" and just call
them them "direct image", "proper direct image", etc.

We take for granted and do not explicitly recall basic de�nitions and facts concerning sheaves,
derived categories and triangulated categories. We do however recall that main concepts and
results needed for a precise statement of the decomposition theorem.

12.1.2 Local systems

De�nition 12.1. By a local system on a complex algebraic variety Y we mean a locally free sheaf
of �nite dimensional complex vector spaces on Y . We denote by Loc(Y ) the category of local
systems on Y .

Proposition 12.2. Suppose that Y is path-connected, locally path-connected and locally simply
connected. Let us choose a base-point y ∈ Y . Then there is an equivalence of categories

Loc(Y ) ←→ {�nite-dimensional representations of π1(Y, y)}
L 7−→ Ly

sending a local system to its stalk at y. The fundamental group π1(Y, y) acts naturally on Ly by
monodromy.

Proof. See [Rie03, Proposition 1.5]

De�nition 12.3. The fundamental group π1(Y, y) acts on a local system L on Y by automor-
phisms, i.e., we have a group homomorphism φ : π1(Y, y)→ Aut(L). We say that the local system
L has �nite monodromy if φ(π1(Y, y)) is a �nite group.

12.1.3 Perverse sheaves

Recall that the support of a sheaf is the closure of the set of points where the sheaf has non-trivial
stalks.
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De�nition 12.4. Let Y be a complex algebraic variety and let Q ∈ Db
c(Y ) be a constructible

complex. It satis�es the support condition if

• (SUP) dim supp
(
H−i(Q)

)
≤ i for all i ∈ Z.

The complex Q satis�es the cosupport condition if its Verdier dual Q∨ satis�es the support condi-
tion, i.e., if

• (COSUP) dim supp
(
H−i(Q∨)

)
≤ i for all i ∈ Z.

A perverse sheaf on Y is a constructible complex Q ∈ Db
c(Y ) which satis�es the support and

cosupport conditions. Let Perv(Y ) denote the full subcategory ofDb
c(Y ) whose objects are perverse

sheaves. Moreover, let pD≤0
c (Y ) (resp. pD≥0

c (Y ) ) denote the full subcategory of Db
c(Y ) whose

objects are constructible complexes which satisfy the support (resp. cosupport) condition. 4

We obviously have pD≤0
c (Y )∩ pD≥0

c (Y ) = Perv(Y ). The category of perverse sheaves can also be
characterised in the following way.

Proposition 12.5. The pair (pD≤0
c (Y ), pD≥0

c (Y )) is a t-structure (truncation structure) on Db
c(Y )

and Perv(Y ) is the heart pD≤0
c (Y ) ∩ pD≥0

c (Y ) of this t-structure.

Proof. See [HTT08, Theorem 8.1.27].

Corollary 12.6. The category Perv(Y ) is abelian.

Proof. It is well known that the heart of a t-structure on a derived category forms an abelian
category (see [HTT08, Theorem 8.1.9]).

De�nition 12.7. The t-structure (pD≤0
c (Y ), pD≥0

c (Y )) is called the middle perversity t-structure
on Db

c(Y ). We set pD≤ic (Y ) := pD≤0
c (Y )[−i] and pD≥ic (Y ) := pD≥0

c (Y )[−i]. Let
pτ≤i : Db

c(Y )→ pD≤ic (Y ), pτ≥i : Db
c(Y )→ pD≥ic (Y )

be the truncation functors associated to our t-structure. The functor pτ≤i is right adjoint to the
inclusion pD≤ic (Y )→ Db

c(Y ) and pτ≥i is left adjoint to the inclusion pD≥ic (Y )→ Db
c(Y ). We also

de�ne a functor
pHi : Db

c(Y )→ Perv(Y ), Q 7→ pτ≤0 ◦ pτ≥0(Q[i])

called the i-th perverse cohomology functor.

De�nition 12.8. Let j : U → Y be a locally closed embedding and let i : U\U =: Z → Y be the
inclusion of the boundary Z of U . Let Q ∈ Perv(U) be a perverse sheaf on U . Considering Q as
an object in Db

c(U), we have a natural map j!Q→ j∗Q. It induces a map in perverse cohomology
a : pH0(j!Q)→ pH0(j∗Q). The intermediate extension of Q is the perverse sheaf

j!∗Q := Im(a) ∈ Perv(U) ⊆ Perv(Y ).

The intermediate extension j!∗Q can also be characterized as the unique extension of Q to Perv(U)
with neither subobjects nor subquotients supported on Z, or as the unique extension Q of Q to
Perv(U) such that i∗Q ∈ pD≤−1

c (Z) and i!Q ∈ pD≥1
c (Z).

De�nition 12.9. Let X,Y be algebraic varieties. Suppose that F : Db
c(Y )→ Db

c(X) is a functor
of triangulated categories. We de�ne a functor pF : Perv(Y ) → Perv(X) to be the composite of
the functors

Perv(Y ) ↪→ Db
c(Y )

F−→ Db
c(X)

pH0

−−−→ Perv(X).

More generally, for k ∈ Z we de�ne a functor pHk(F ) : Perv(Y )→ Perv(X) to be the composite
of the functors

Perv(Y ) ↪→ Db
c(Y )

F−→ Db
c(X)

pHk−−−→ Perv(X).

We have pF = pH0(F ). If X → Y is a (proper) morphism of algebraic varieties, we will be
particularly interested in the functors pf∗,

pf!,
pf∗, pf ! and p⊗, pHom, which we call the perverse

direct image, perverse proper direct image, etc.
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12.1.4 Intersection cohomology complexes

De�nition 12.10 (Axiomatic de�nition). Let Y be a complex algebraic variety of dimension n.
Let L be a local system on a smooth Zariski dense open subvariety U of Y . The intersection coho-
mology complex IC(Y,L) is de�ned to be an object in Db

c(Y ) satisfying the following conditions:

• Hi(IC(Y,L)) = 0 if i < −n,

• H−n(IC(Y,L))|U = L,

• dim supp
(
Hi(IC(Y,L))

)
< −i if i > −n,

• dim supp
(
Hi(IC(Y,L)∨)

)
< −i if i > −n.

Proposition 12.11. (i) For any local system L on U there exists a unique, up to isomorphism,
object in Db

c(Y ) satisfying the conditions in De�nition 12.10.
(ii) The complex IC(Y,L) does not depend, up to canonical isomorphism, on the choice of U . That
is, if U and U ′ are smooth Zariski dense open subvarieties of Y , L is a local system on U , L′ is
a local system on U ′ and L|U∩U ′ ∼= L′|U∩U ′ then the associated intersection cohomology complexes
are canonically isomorphic.
(iii) If Y is smooth and connected, and L = CU is the constant sheaf on a Zariski dense open
subset of Y , then IC(Y,CU ) is isomorphic to CY [n], the shift of the constant sheaf on Y by the
dimension of Y .
(iv) IC(Y,L) is an object in Perv(Y ).

Proof. One can prove (i) and (ii) using the explicit constructions of IC(Y, L) given below. For (iii)
one can check directly that CY [n] satis�es the conditions of De�nition 12.10. Part (iv) is obvious -
the conditions in De�nition 12.10 are strictly stronger then the support and cosupport conditions
in De�nition 12.4.

De�nition 12.12 (Explicit de�nition 1). Let Y be a complex algebraic variety of dimension n and
let j : U ↪→ Y be the inclusion of a smooth Zariski dense open subvariety U of Y . Let L ∈ Loc(U)
be a local system on U . We can regard it as an object in Db

c(U), i.e., as a constructible complex
concentrated in one degree. We de�ne IC(Y, L) to be the intermediate extension of the complex
L[n]:

IC(Y,L) := j!∗(L[n]).

De�nition 12.13 (Explicit de�nition 2). Choose a Whitney strati�cation Y =
⊔
λ∈Λ Yλ of Y such

that U is the unique open stratum in this strati�cation. Set Yk =
⊔

dimYλ≤k Yλ for each k ∈ Z.
We have a �ltration

∅ ⊂ Y0 ⊂ ... ⊂ Yn−1 ⊂ Yn = Y

of Y by closed subvarieties. Set Uk = Y \Yk−1 =
⊔

dimYα≥k Yα. We have the following sequence

U = Un
jn−→ Un−1

jn−1−−−→ ...
j2−→ U1

j1−→ U0 = Y

of inclusions of open subsets in Y . The category Db
c(Y ) admits, beside the middle perversity

t-structure, also the standard t-structure (D≤0
c (Y ), D≥0

c (Y )), where

D≤0
c (Y ) := {Q ∈ Db

c(Y ) | Hk(Q) = 0 for all k > 0},
D≥0
c (Y ) := {Q ∈ Db

c(Y ) | Hk(Q) = 0 for all k < 0}.

Let τ≤k, τ≥k be the truncation functors associated to the standard t-structure on Db
c(Y ). Finally,

we de�ne
IC(Y, L) := (τ≤−1 ◦ j1∗) ◦ ... ◦ (τ≤−n ◦ jn∗) (L[n]).

Proposition 12.14. De�nitions 12.12 and 12.13 are equivalent, i.e., there exists an isomorphism
in Db

c(Y ):
j!∗(L[n]) ∼= (τ≤−1 ◦ j1∗) ◦ ... ◦ (τ≤−n ◦ jn∗) (L[n]).
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Proof. See [HTT08, Proposition 8.2.11].

De�nition 12.15. We are particularly interested in the intersection cohomology complex IC(X,CU ),
where X is an irreducible complex algebraic variety of dimension n and CU is the constant sheaf
on a smooth Zariski dense open subvariety of X. Since this complex is independent of the choice
of U , we will also denote it by IC(X,CX). We call IC(X,CX) the constant perverse sheaf on X.
Note that if X is smooth then IC(X,CX) = CX [n] by Proposition 12.11.

Lemma 12.16. Suppose that Y is an irreducible complex algebraic variety of dimension n and
let L be an irreducible local system on a Zariski dense open subset U . Then IC(Y,L) is a simple
object in Perv(Y ).

Proof. Let j : U ↪→ Y be the inclusion. The locally constant perverse sheaf L[n] on U is a simple
object in Perv(U) by [HTT08, Lemma 8.2.24]. But the intermediate extension j!∗(L[n]) of a simple
object is again a simple object in Perv(Y ), by [HTT08, Corollary 8.2.10].

Proposition 12.17. Let i : Y ↪→ X be an inclusion of a closed subvariety Y . Then the functor
i∗ = i! is t-exact with respect to the middle perversity t-structure and induces an exact functor

pi∗ = pi! : Perv(Y )→ Perv(X).

Let PervY (X) denote the full subcategory of Perv(X) whose objects are perverse sheaves on X
whose support is contained in Y . Then the functor pi∗ induces an equivalence of categories between
Perv(Y ) and PervY (X). The quasi-inverse of pi∗ is

pi∗.

Proof. See [HTT08, Corollary 8.1.44].

In light of Proposition 12.17, we can naturally regard a perverse sheaf on a closed subvariety
Y of X as a perverse sheaf on X. To simplify notation, if Q ∈ Perv(Y ) we will also denote
pi∗Q ∈ Perv(X) by Q. Informally, we can think of pi∗Q as an extension by zero of the perverse
sheaf Q to X.

Theorem 12.18. Let X be a complex algebraic variety. The simple objects in Perv(X) are pre-
cisely the intersection cohomology complexes IC(Y,L), where Y is an irreducible closed subvariety
of X and L is an irreducible local system on a smooth Zariski dense open subvariety U of Y .

Proof. This is [BBD82, Theorem 4.3.1]. The theorem is stated in the context of l-adic sheaves,
but it is explained in Section 6 of [BBD82] how to deduce corresponding results for the complex
case.

The following proposition summarizes the main properties of the category Perv(X).

Proposition 12.19. Let X be a complex algebraic variety. The category Perv(X) is noetherian
and artinian. In particular, every object is of �nite length, i.e., it admits a composition series.

Proof. See [BBD82, Theorem 4.3.1].

De�nition 12.20. Let Q ∈ Perv(X). Let

Q = Q1 ⊃ Q2 ⊃ ... ⊃ Qn = 0

be a composition series of Q. We call the simple subquotients Qi/Qi+1 the constituents of the
perverse sheaf Q. This de�nition is obviously independent of the choice of composition series.

By Theorem 12.18 every constituent of Q is of the form IC(Y,L), for some irreducible closed
subvariety Y of X and a simple local system on a smooth Zariski dense open subvariety U of
Y .
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12.1.5 Semi-simple complexes of geometric origin

De�nition 12.21. Let X be a complex algebraic variety. Let Q ∈ Perv(X) be a simple perverse
sheaf on X. We say that Q is of geometric origin if it belong to the smallest set which

• contains the constant sheaf on a point

and is stable under the following operations:

• for every morphism f of varieties, take the constituents of pHk(f∗)(−), pHk(f !)(−),
pHk(f∗)(−), pH(f!)(−),

• take the constituents of pHk(⊗)(−,−), pHk(Hom)(−,−).

Now suppose that Q ∈ Perv(X) is an arbitrary perverse sheaf. We say that Q is semi-simple of
geometric origin if it is a �nite direct sum of simple perverse sheaves of geometric origin. More
generally, if K ∈ Db

c(X) is a constructible complex on X, we say that K is semi-simple of geometric
origin if there is an isomorphism K ∼=

⊕
i∈Z

pHi(K)[−i] in Db
c(X) and each perverse sheaf pHi(K)

is semi-simple of geometric origin.

Lemma 12.22. Let Y be an n-dimensional irreducible subvariety of X and suppose that L is an
irreducible local system on a smooth Zariski dense open subvariety U of Y with �nite monodromy.
Then IC(Y,L) is a simple perverse sheaf of geometric origin.

Proof. Since L has �nite monodromy, there exists a �nite etale morphism π : Ũ → U trivializing
L, i.e., π∗L = (CŨ )⊕n. Since π∗ and π∗ form an adjoint pair we have HomLoc(U)

(
L, π∗(CŨ )⊕n)

) ∼=
HomLoc(Ũ)

(
π∗L, (CŨ )⊕n

)
= HomLoc(Ũ)

(
(CŨ )⊕n, (CŨ )⊕n

)
6= {0}. Because L is simple, it is a

subobject of π∗(CŨ )⊕n (by an analogue of Schur's lemma). But we have π∗(CŨ )⊕n =
(
π∗CŨ

)⊕n
so, again by the simplicity of L, it follows that L is in fact a subobject of π∗CŨ .

Let p : Ũ → {pt} be the projection. By Theorem 12.18 we know that CŨ [n] is a simple perverse
sheaf on U . Moreover, it is of geometric origin because pHn(p∗)(C{pt}) = pH0(p∗)(C{pt}[n]) =
p∗C{pt}[n] = CŨ [n] (since the map p is semi-small). Since CŨ is a locally free sheaf and π is �nite
and �at, π∗CŨ is also a locally free sheaf. Hence π∗CŨ [n] is a perverse sheaf on U . Therefore
π∗CŨ [n] = pH0(π∗)(CŨ [n]). But we have shown that L[n] is a subobject of π∗CŨ [n]. Since L[n]
is simple, it is in fact a constituent of π∗CŨ [n] = pH0(π∗)(CŨ [n]), and so it is simple of geometric
origin.

Let j : U ↪→ Y be the inclusion. The intersection cohomology complex IC(Y, L) := j!∗(L[n]) is
de�ned as the image of the natural map pH0(j!)(L[n]) → pH0(j∗)(L[n]). In particular, IC(Y, L)
is a subobject of pH0(j∗)(L[n]). By Theorem 12.18 we know that IC(Y,L) is simple, so it is
a constituent of pH0(j∗)(L[n]). But since L[n] is simple of geometric origin, the constituents of
pH0(j∗)(L[n]) are also simple of geometric origin (by de�nition). Hence IC(Y, L) is simple of
geometric origin.

Corollary 12.23. Suppose that X is an irreducible complex algebraic variety. Then IC(X,CX)
is a simple perverse sheaf of geometric origin.

Proof. The constant sheaf has trivial monodromy, so the corollary follows immediately from Lemma
12.22.

12.1.6 The decomposition theorem

Now we can state the original decomposition theorem ([BBD82, Theorem 6.2.5]).

Theorem 12.24. Let f : Z → X be a proper morphism of complex algebraic varieties. Suppose
that K ∈ Db

c(Z) is semisimple of geometric origin. Then f∗K ∈ Db
c(X) is also semisimple of

geometric origin.
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Proof. There are three known approaches to proving this theorem. The original proof of Beilinson,
Bernstein, Deligne and Gabber ([BBD82]) uses etale cohomology of l-adic sheaves and arithemtic
properties of varieties de�ned over �nite �elds. There is also a proof of Saito ([Sai90]) which uses
mixed Hodge modules and a proof by Cataldo and Migliorini ([CM05]) based on classical Hodge
theory. We refer the reader to these publications for details.

Corollary 12.25. Let f : Z → X be a proper morphism of complex algebraic varieties. Suppose
that Z is irreducible. Then there is an isomorphism

f∗ (IC(Z,CZ)) ∼=
⊕
i∈Z

pHi (f∗ (IC(Z,CZ))) [−i] (86)

in Db
c(X). Moreover, each perverse sheaf pHi (f∗ (IC(Z,CZ))) is semi-simple of geometric origin,

i.e., for each i ∈ Z there exists an isomorphism

pHi (f∗ (IC(Z,CZ))) ∼=
⊕
(Y,L)

V(Y,L)(i)⊗ IC(Y,L) (87)

in Perv(X), where

• (A1) Y ranges over irreducible closed subvarieties Y of X and L ranges over irreducible local
systems on a smooth Zariski dense open subvariety U of Y ,

• (A2) each IC(Y,L) is of geometric origin,

• (A3) each V(Y,L)(i) is a �nite-dimensional complex vector space which is nonzero for only
�nitely many pairs (Y, L).

The vector space V(Y,L)(i) encodes the multiplicity with which IC(Y,L) occurs in the decom-

position (87), i.e., we have V(Y,L)(i) ⊗ IC(Y,L) ∼= IC(Y, L)⊕ dimV(Y,L)(i). Now set V(Y,L) =⊕
i∈Z V(Y,L)(i)[−i]. It is a Z-graded vector space. We can combine the two decompositions (86)

and (87) to obtain an isomorphism

f∗ (IC(Z,CZ)) ∼=
⊕
(Y,L)

V(Y,L) ⊗ IC(Y, L) (88)

in Db
c(X), where Y and L satisfy (A1) and (A2) and each V(Y,L) is a �nite-dimension Z-graded

complex vector space which is nonzero for only �nitely many pairs (Y, L). The vector space V(Y,L)

encodes the graded multiplicity with which IC(Y,L) occurs in the decomposition (88), i.e., V(Y,L)⊗
IC(Y,L) ∼=

⊕
i∈Z(IC(Y, L)[−i])⊕ dimV(Y,L)(i).

Proof. This is immediate from Theorem 12.24 and the description of simple perverse sheaves in
Theorem 12.18.

Lemma 12.26. Let f : Z → X be a surjective proper morphism of complex algebraic varieties
which is also a locally trivial topological �bration. Let Z be smooth of dimension n. Then each co-
homology sheaf Hi (f∗(IC(Z,CZ))) is locally trivial and its stalk at x ∈ X is canonically isomorphic
to Hi−n(f−1(x)).

Proof. Since Z is smooth of dimension n we have IC(Z,CZ) = CZ [n], by Proposition 12.11. Recall
that there is a canonical isomorphism (f∗CZ)x ∼= Γ(f−1(x),CZ |f−1(x)). Hence

Hix (f∗(IC(Z,CZ))) = Hix (f∗CZ [n]) = Hi−nx (f∗CZ)

= (Ri−nf∗CZ)x
∼= Ri−nΓ(f−1(x),CZ |f−1(x))

= Hi−n(f−1(x),Cf−1(x)) = Hi−n(f−1(x)).
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Since f is a locally trivial topological �bration, in a su�ciently small connected open neighbourhood
U of x we have

Hi (f∗(IC(Z,CZ))) |U ∼= (CU )dimHi−n(f−1(x))

so Hi (f∗(IC(Z,CZ))) is locally trivial.

Corollary 12.27. Let f : Z → X be a surjective proper morphism of complex algebraic varieties.
Let Z be smooth. Suppose that there exists an algebraic strati�cation X =

⊔
λ∈ΛXλ of X such that

f : f−1(Xλ) → Xλ is a locally trivial topological �bration. Then f∗(IC(Z,CZ)) is constructible
with respect to the strati�cation X =

⊔
λ∈ΛXλ. Hence there is an isomorphism

f∗ (IC(Z,CZ)) ∼=
⊕

(Xλ,L)

V(Xλ,L) ⊗ IC(Xλ, L) (89)

in Db
c(X), where λ ranges over Λ and L ranges over irreducible local systems on Xλ.

Proof. The constructibility of f∗(IC(Z,CZ)) with respect to the strati�cation X =
⊔
λ∈ΛXλ

follows by applying Lemma 12.26 to the restriction of each cohomology sheaf Hi (f∗(IC(Z,CZ)))
to each stratum Xλ. If Z is connected, by Corollary 12.25 we have a decomposition

f∗ (IC(Z,CZ)) ∼=
⊕
(Y,L)

V(Y,L) ⊗ IC(Y,L). (90)

Since the complex on the LHS of (90) is constructible with respect to the strati�cation X =⊔
λ∈ΛXλ, each intersection cohomology complex on the RHS of (90) must also be constructible with

respect to this strati�cation. But only intersection cohomology complexes of the form IC(Xλ, L)
are constructible with respect to the aforementioned strati�cation.

Now suppose that Z is not connected and Z =
⊔
Zφ is a decomposition of Z into connected

components. Then f∗(IC(Z,CZ)) = f∗(
⊕
IC(Zφ,CZφ)) =

⊕
f∗(IC(Zφ,CZφ)) so we can apply

the preceding argument to each f∗(IC(Zφ,CZφ)).

The importance of the corollary lies in the fact that it puts a restriction on the intersection coho-
mology complexes which can occur in the decomposition (88). They are precisely the intersection
cohomology complexes associated to closures of the strata Xλ.

12.1.7 Equivariant sheaves

Our goal now is to derive an even stronger statement about the decomposition (88) which also
imposes some restrictions on the local systems L. We will show that under appropriate hypotheses
the only intersection cohomology complexes which can occur in the decomposition (88) are those
associated to the constant sheaf on each stratum Xλ. To do this we will need to exploit equivariant
techniques. In the next few sections we brie�y discuss the equivariant derived category of Bernstein
and Lunts, state the equivariant decomposition theorem, and �nally deduce the version of the
decomposition theorem which we will apply to study the �nite-dimensional representation theory
of quiver Hecke algebras.

Let G be a reductive complex linear algebraic group. All varieties we consider in this section are
complex algebraic varieties endowed with a left algebraic action of G.

De�nition 12.28. We call a complex algebraic variety endowed with an algebraic action of G a
G-variety. We call a G-variety X free if G acts freely on X and the quotient map X → G\X is a
locally trivial �bration with �bre G.
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De�nition 12.29. Let X be a G-variety. We have natural maps

di,n : Gn ×X → Gn−1 ×X, s0 : X → G×X

de�ned by

d0,n(g1, ..., gn, x) = (g2, ..., gn, g
−1
1 x),

di,n(g1, ..., gn, x) = (g1, ..., gigi+1, ..., gn, x), 1 ≤ i ≤ n− 1,

dn,n(g1, ..., gn, x) = (g1, ..., gn−1, x),

s0(x) = (e, x).

A G-equivariant sheaf on X is a pair (F, θ), where F ∈ Sh(X) is a sheaf on X and θ is an
isomorphism

θ : d∗1,1F
∼= d∗0,1F

in Sh(G×X) satisfying the following cocycle condition

d∗0,2θ ◦ d∗2,2θ = d∗1,2θ, s∗0θ = idF ,

where ◦ stands for composition of morphisms. A morphism of G-equivariant sheaves is a morphism
of sheaves which commutes with θ. Let ShG(X) denote the category of G-equivariant sheaves on
X. We have a forgetful functor

For : ShG(X)→ Sh(X), (F, θ) 7→ F.

We call a G-equivariant sheaf (F, θ) on X a G-equivariant local system if F is a local system on
X. Let LocG(X) denote the full subcategory of ShG(X) whose objects are G-equivariant local
systems.

Suppose that G acts freely on X. Consider the quotient map q : X → G\X. Let F ∈ Sh(G\X).
Then q∗(F ) is naturally a G-equivariant sheaf. This de�nes a functor

q∗ : Sh(G\X)→ ShG(X).

Now let H ∈ ShG(X). Then q∗H ∈ Sh(G\X) has a natural action of G. Let qG∗ H = (q∗H)G

denote the subsheaf of G-invariants of q∗H. This de�nes a functor

qG∗ : ShG(X)→ Sh(G\X).

Lemma 12.30. Let X be a free G-variety. Then the functor q∗ : Sh(G\X) → ShG(X) is an
equivalence of categories with quasi-inverse qG∗ : ShG(X)→ Sh(G\X)

Proof. See [BL94, Lemma 0.3].

Remark 12.31. If G acts freely on X, one can identify ShG(X) with Sh(G\X). It is then possible
to de�ne the equivariant derived category as the derived category of the abelian category ShG(X),
i.e., DG(X) := D(ShG(X)) = D(Sh(G\X)). In general, this approach is too naive and does not
yield the right equivariant derived category.

Now let H be a closed subgroup of G and let X = G/H be a homogeneous space. The �bration
H ↪→ G� G/H gives rise to a long exact sequence of homotopy groups

...→ π1(G)→ π1(G/H)→ π0(H)→ π0(G)→ π0(G/H)→ 1.

Suppose that G is connected. Then we have a surjective map π1(G/H) � π0(H) = H/Ho. Note
that the identity component Ho is a normal subgroup of H so H/Ho is actually a group.
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Lemma 12.32. Let H be a closed subgroup of a connected reductive complex linear algebraic group
G and let X = G/H be a homogeneous space. Let us choose a base-point x ∈ G/H. Suppose that
L ∈ Loc(G/H) is a local system on G/H. The local system L is G-equivariant if and only if the
monodromy representation of π1(G/H, x) on the stalk Lx is the pullback of a �nite-dimensional
representation of H/Ho by means of the map π1(G/H, x) � H/H0. In particular, there is a
one-to-one correspondence{

simple G-equivariant
local systems on G/H

}
←→

{
simple representations of

the component group H/Ho

}
Proof. See [Jan04, Proposition 12.10].

12.1.8 The equivariant derived category

De�nition 12.33. (i) Suppose that X is a G-variety and P a free G-variety. We call a G-
equivariant morphism p : P → X of varieties a resolution of X.
(ii) Let n ≥ 0. We say that a morphism f : X → Y of varieties is n-acyclic if:

• (a) for any sheaf B ∈ Sh(Y ) the adjunction morphism B → R0f∗f
∗(B) is an isomorphism and

Rif∗f
∗(B) = 0 for 1 ≤ i ≤ n.

• (b) for any base change Ỹ → Y the induced map f : X̃ = X ×Y Ỹ → Ỹ satis�es property (a).

De�nition 12.34. (i) Let p : P → X be a resolution of a G-variety X. Consider the following
diagram of G-varieties

X
p←− P q−→ P = G\P.

We de�ne the category Db
G(X,P ) in the following way:

• an object F of Db
G(X,P ) is a triple (FX , F , β) where FX ∈ Db(X), F ∈ Db(P ) and β : p∗FX ∼=

q∗F is an isomorphism in Db(P ),

• a morphism α : F → H in Db
G(X,P ) is a pair (αX , α), where αX : FX → HX and α : F → H

satisfy β ◦ p∗(αX) = q∗(α) ◦ β.

Let
ForP : Db

G(X)→ Db(X), F → FX

denote the forgetful functor.

(ii) Let I = [a, b] ⊂ Z and let p : P → X be a resolution. Let DI(X) be the full subcategory
D≥a(X)∩D≤b(X) of Db(X), i.e., the full subcategory of Db(X) consisting of objects Q satisfying
Hi(Q) = 0 for i > b and i < a. We de�ne DI

G(X,P ) to be the full subcategory of Db
G(X,P ) whose

objects F satisfy ForP (F ) = FX ∈ DI(X).

(iii) Let I = [a, b] ⊂ Z and let p : P → X be some n-acyclic resolution of X with n ≥ |I|. We
de�ne the category DI

G(X) to be DI
G(X,P ). One can show that this de�nition is independent of

the choice of the resolution P , up to a canonical equivalence of categories. If J ⊂ I, we have an
obvious fully faithful functor DJ

G(X) → DI
G(X) de�ned uniquely up to a canonical isomorphism.

We �nally de�ne the equivariant derived category Db
G(X) to be the limit

Db
G(X) = lim

I
DI
G(X).

Let For : Db
G(X)→ Db(X) be the associated forgetful functor.

Remark 12.35. We could also describe the category Db
G(X) in the following way. We regard

the space EG as a free G-ind-variety. The projection EG × X → X is an ∞-acyclic resolution
of X. Therefore we have Db

G(X) = Db
G(X,EG × X). Recall that we also have the projection

EG×GX → G\BG with �breX. An object ofDb
G(X) is then essentially an object inDb(EG×GX)
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whose restrictions to all �bres are isomorphic. For example, the category Db
G({pt}) is equivalent to

the full subcategory of Db(BG) consisting of complexes with locally constant cohomology sheaves.
IfG is a connected Lie group, then this subcategory consists of complexes with constant cohomology
sheaves (see [BL94, Proposition 2.7.2] for a proof).

If f : X → Y is a G-equivariant map one can de�ne functors f∗, f !, f∗, f!,⊗,Hom,∨ between/in
the categories Db

G(X) and Db
G(Y ) (see [BL94, Section 3]).

De�nition 12.36. We de�ne the constructible equivariant derived category Db
G,c(X) in the same

way as in De�nition 12.34, replacingDb(X), Db(P ) andDI(X) everywhere byDb
c(X), Db

c(P ), DI
c (X),

respectively.

De�nition 12.37. Let p : EG × X → X and q : EG × X → EG ×G X be the canonicaal
projections. There is a natural functor

ι : Db
c(ShG(X))→ Db

G,c(X), (F, θ) 7→ (F, qG∗ p
∗F, β),

where β : p∗F → q∗qG∗ p
∗F = p∗F is the identity.

12.1.9 Equivariant perverse sheaves

We are now ready to de�ne the category of equivariant perverse sheaves on X.

De�nition 12.38. We de�ne PervG(X) to be the full subcategory of Db
G,c(X) consisting of those

F ∈ Db
G,c(X) which satisfy For(F ) ∈ Perv(X).

The category PervG(X) has the same basic properties as the non-equivariant category Perv(X).
In particular, it is the heart of a perverse t-structure, it is abelian and every object in it has �nite
length.

De�nition 12.39. Let Y be a closed G-stable irreducible subvariety of X and let L ∈ LocG(U)
be a G-equivariant local system on a G-stable smooth Zariski dense open subvariety U of Y .
Let j : U ↪→ X be the inclusion. We de�ne the equivariant intersection cohomology complex
ICG(Y,L) ∈ PervG(X) to be the intermediate extension j!∗(ι(L)[n]) (where j!∗ is a functor j!∗ :
PervG(U)→ PervG(X) between equivariant categories).

We have an analogous result to the non-equivariant case (see [BL94, Section 5.2]).

Proposition 12.40. The simple objects in PervG(X) are precisely the equivariant cohomology
complexes ICG(Y, L), where Y is a G-stable irreducible subvariety of X and L is an irreducible
G-equivariant local system on a G-stable smooth Zariski dense open subvariety U of Y .

We also have an equivariant version of the decomposition theorem. We call an object Q ∈ Db
G,c(X)

semi-simple if it is isomorphic to a direct sum of shifts of simple G-equivariant perverse sheaves
on X, i.e., Q =

⊕
ICG(Y,L)[nY,L], or equivalently, if For(Q) is semi-simple. We say that Q is

semi-simple of geometric origin if For(Q) ∈ Db
c(X) is semi-simple of geometric origin.

Theorem 12.41. Let f : Z → X be a proper G-equivariant morphism of complex algebraic va-
rieties. Let F ∈ Db

G,c(Z) be semi-simple of geometric origin. Then f∗F ∈ Db
G,c(X) is also

semi-simple of geometric origin.

Proof. See [BL94, Theorem 5.3].

Corollary 12.42. Suppose that G is connected. Let f : Z → X be a surjective G-equivariant
proper morphism of complex algebraic varieties. Let Z be smooth. Let X =

⊔
λ∈ΛXλ be an

algebraic strati�cation of X by �nitely many G-orbits. Then there is an isomorphism

f∗ (IC(Z,CZ)) ∼=
⊕

(Xλ,L)

V(Xλ,L) ⊗ IC(Xλ, L) (91)
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in Db
c(X), where λ ranges over Λ and L ranges over G-equivariant irreducible local systems on Xλ.

Proof. Let λ ∈ Λ and xλ ∈ Xλ. Then f : f−1(Xλ) → Xλ = G/Stab(xλ) is a locally trivial
topological �bration with �bre Stab(xλ). By Corollary 12.27 we have an isomorphism

f∗ (IC(Z,CZ)) ∼=
⊕

(Xλ,L)

V(Xλ,L) ⊗ IC(Xλ, L) (92)

in Db
c(X), where λ ranges over Λ and L ranges over irreducible local systems on Xλ. On the

other hand, we can apply Theorem 12.41 to the pushforward f∗ (ICG(Z,CZ)) of the G-equivariant
constant perverse sheaf ICG(Z,CZ) to deduce that f∗ (ICG(Z,CZ)) is semi-simple in Db

G,c(X),
i.e., there is an isomorphism

f∗ (ICG(Z,CZ)) ∼=
⊕

ICG(Y,L)[i], (93)

for some irreducible closed subvarieties Y and G-equivariant irreducible local systems L on smooth
Zariski dense open subvarieties U of Y . We now apply the forgetful functor to both sides of (93)
to get an isomorphism

f∗ (IC(Z,CZ)) ∼=
⊕

IC(Y,L)[i], (94)

in Db
c(X), where all the local systems L are G-equivariant. But the intersection cohomology com-

plexes occurring in the decomposition (92) and their graded multiplicities are uniquely determined,
so the two decompositions (92) and (94) must agree. In particular, every local system L in (92)
must be G-equivariant.

We can �nally deduce the version of the decomposition theorem which we will use.

Corollary 12.43. Suppose that G is connected and that for every x ∈ X the isotropy group Stab(x)
is connected. Let f : Z → X be a surjective G-equivariant proper morphism of complex algebraic
varieties. Let Z be smooth. Let X =

⊔
λ∈ΛXλ be an algebraic strati�cation of X by �nitely many

G-orbits. Then there is an isomorphism

f∗ (IC(Z,CZ)) ∼=
⊕
λ∈Λ

Vλ ⊗ IC(Xλ,CXλ) (95)

in Db
c(X), where Vλ describes the graded multiplicity with which IC(Xλ,CXλ) occurs in the de-

composition (95), i.e. Vλ =
⊕

i∈Z Vλ(i)[−i] and

Vλ ⊗ IC(Xλ,CXλ) ∼=
⊕
i∈Z

(
IC(Xλ,CXλ)[−i]

)⊕ dimVλ(i)
.

Proof. Since every stabilizer Stab(x) is connected, Lemma 12.32 implies that there is only one
G-equivariant local system on each orbit Xλ, the constant sheaf CXλ . The corollary now follows
directly from Corollary 12.42.

12.2 Geometric extension algebras

We will now work in the following framework. Let G be a connected complex reductive linear
algebraic group,M andN be complexG-varieties, letM be smooth (but not necessarily connected),
and let µ : M → N be a proper G-equivariant morphism. Moreover, assume that N has �nitely
many G-orbits. Later we will make the additional assumption that for each x ∈ N the stabilizer
group Stab(x) is connected. Set Z = M ×N M . Recall that the G-equivariant Borel-Moore
homology HG

∗ (Z;C) of Z with complex coe�cients, endowed with the convolution product, has
the structure of an associative algebra. We are now going to identify this algebra with a certain
geometric extension algebra, which we de�ne below.
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Let Let A1, A2, A3 ∈ Db(N). The composition of morphisms in Db(N) yields a bilinear prod-
uct

Hom(A1, A2[p])×Hom(A2[p], A2[p+ q])→ Hom(A1, A3[p+ q]).

This composition can also be expressed as a bilinear product of Ext-groups, called the Yoneda
product :

Extp(A1, A2)⊗ Extq(A2, A3)→ Extp+q(A1, A3).

De�nition 12.44. Let A ∈ Db(N). We call Ext∗(A,A), endowed with the Yoneda product, the
Yoneda algebra or geometric extension algebra associated to A. 4

Analogously, we have a G-equivariant Yoneda product

ExtpG(A1, A2)⊗ ExtqG(A2, A3)→ Extp+qG (A1, A3),

where A1, A2, A3 ∈ Db
G(N).

De�nition 12.45. Let A ∈ Db
G(N). We call Ext∗G(A,A), endowed with the Yoneda product, the

G-equivariant Yoneda algebra or geometric extension algebra associated to A. 4

We are particularly interested in the Yoneda algebra Ext∗G (µ∗IC(M,CM ), µ∗IC(M,CM )) associ-
ated to the direct image of the constant perverse sheaf IC(M,CM ) on M .

12.2.1 Geometric extension algebras and convolution algebras

Theorem 12.46. There is an H∗G({pt})-algebra isomorphism

HG
∗ (Z;C) ∼= Ext∗G (µ∗IC(M,CM ), µ∗IC(M,CM )) , (96)

where the LHS is endowed with the convolution product and the RHS is endowed with the Yoneda
product. Similarly, there is a C-algebra isomorphism

H∗(Z;C) ∼= Ext∗ (µ∗IC(M,CM ), µ∗IC(M,CM )) . (97)

Proof. The proof is not di�cult but rather long and technical. See [CG97, Proposition 8.6.35].

Remark 12.47. We will never consider the convolution algebras H∗(Z;C), HG
∗ (Z;C) endowed

with the homological grading. Instead we use the isomorphisms from Theorem 12.46 to import
the gradings from the corresponding geometric extension algebras. From now on we will always
consider H∗(Z;C), HG

∗ (Z;C) as graded algebras endowed with this "geometric extension algebra"
grading.

Let Λ be a set parametrizing the G-orbits in N , i.e., N =
⊔
λ∈ΛOλ. From now on assume that

for each x ∈ N the stabilizer group Stab(x) is connected. In light of Corollary 12.43 we have an
isomorphism

µ∗ (IC(M,CM )) ∼=
⊕
λ∈Λ

Vλ ⊗ IC(Oλ,COλ) (98)

in Db
c(N). To simplify notation let us set, for each λ ∈ Λ, ICλ = IC(Oλ,COλ).

We can use the isomorphism (98) together with Theorem 12.46 to obtain the following isomorphism
of algebras. We will later use it to �nd all simple modules over HG

∗ (Z).

Lemma 12.48. We have the following isomorphism of C-algebras

H∗(Z;C) ∼=

(⊕
λ∈Λ

EndC Vλ

)⊕ ⊕
k>0, φ,ψ∈Λ

HomC(Vφ, Vψ)⊗ Extk(ICφ, ICψ)

 , (99)

where the LHS is endowed with the convolution product and the RHS is endowed with the Yoneda
product (note that the direct sums in the formula are direct sums of vector spaces, not algebras).
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Proof.

H∗(Z;C) ∼=
⊕
k∈Z

Extk(µ∗IC(M,CM ), µ∗IC(M,CM ))

∼=
⊕

k∈Z, φ,ψ∈Λ

HomC(Vφ, Vψ)⊗ Extk(ICφ, ICψ)

=
⊕

k≥0, φ,ψ∈Λ

HomC(Vφ, Vψ)⊗ Extk(ICφ, ICψ)

=

(⊕
λ∈Λ

EndC Vλ

)⊕ ⊕
k>0, φ,ψ∈Φ

HomC(Vφ, Vψ)⊗ Extk(ICφ, ICψ)

 .

In the �rst equality we used Theorem 12.46, in the second equality we used the isomorphism (98),
in the third equality we used the fact that Extk(ICφ, ICψ) = 0 for k < 0 and in the fourth equality
we used the fact that dim Hom(ICφ, ICψ) = δφ,ψ. The last two facts follow from the fact that the
intersection cohomology complexes are simple objects in the category Perv(N).

12.2.2 Classi�cation of simple modules over a convolution algebra

We �rst classify simple modules over the non-equivariant convolution algebra H∗(Z).

Theorem 12.49. The non-zero members of the set {Vλ | λ ∈ Λ} form a complete and irredundant
set of representatives of isomorphism classes of simple modules over H∗(Z).

Proof. By Lemma 12.48 we have a C-algebra isomorphism

H∗(Z;C) ∼=

(⊕
λ∈Λ

EndC Vλ

)⊕ ⊕
k>0, φ,ψ∈Λ

HomC(Vφ, Vψ)⊗ Extk(ICφ, ICψ)

 . (100)

Observe that the second direct summand on the RHS of (100) is an ideal of the geometric extension
algebra. Let us denote this ideal with I. Using the isomorphism (100) we can also regard it as
an ideal of H∗(Z;C). Since the geometric extension algebra is �nite-dimensional over C (because
H∗(Z;C) is), there exists an m ≥ 0 such that Extn(ICφ, ICψ) = {0} for all n ≥ m, φ, ψ ∈ Λ.
Now let us take any m elements a1, ..., am of the ideal I such that each al ∈ HomC(Vφl , Vφl+1

) ⊗
Extkl(ICφl , ICφl+1

) for some k1, ..., km > 0, φ1, ..., φm+1 ∈ Λ. Then

a1a2...am ∈ HomC(Vφ1 , Vφm+1)⊗ Ext
∑m
l=1 kl(ICφ1 , ICφm+1) = {0}

because
∑m
l=1 kl ≥ m. Therefore Im = {0}, i.e., the ideal I is nilpotent. Therefore I is contained

in the Jacobson radical of H∗(Z;C). Since the quotient of H∗(Z;C) by this ideal is isomorphic to
a direct sum of matrix algebras (by (100)) and hence semisimple, our ideal equals the Jacobson
radical of H∗(Z;C).

Since the Jacobson radical annihilates every simple module, the action of H∗(Z;C) on every simple
module factors over the maximal semi-simple quotient H∗(Z)/I ∼=

⊕
λ∈Λ EndC Vλ. But we know

that all simple modules over
⊕

φ∈Λ EndC Vφ are of the form Vψ. For each ψ ∈ Λ we now obtain an
irreducible representation of H∗(Z) on Vψ by composing the obvious projections:

H∗(Z)�
⊕
λ∈Λ

EndC Vλ � EndC Vψ.

109



We are most interested in graded simple modules over the equivariant convolution algebra HG
∗ (Z).

We are now going to show that under appropriate hypotheses {Vλ | λ ∈ Λ} also form a complete and
irredundant set of representatives of isomorphism classes of graded simple modules over HG

∗ (Z),
up to grading shifts. We will use the following general lemma about graded algebras.

Lemma 12.50. Let A =
⊕

i∈ZAi be a Z-graded algebra such that there exists a j ∈ Z with
Ak = {0} for all k < j. Let B =

⊕
i∈ZBi ⊂ A be its centre and assume that Bk = {0} for k < 0.

Then B+ =
⊕

i>0Bi annihilates any left graded simple A-module M . Moreover, M is a graded
simple module over A/B+A.

Proof. Let M =
⊕

i∈ZMi be a left graded simple A-module. We claim that the grading of M
must be bounded from below, i.e., there exists a d ∈ Z such that Mk = {0} for k < d. Let us pick
an integer e such that M≥e =

⊕
i≥eMi 6= {0}. Then A.M≥e is a graded submodule of M . Since

M is simple we have A.M≥e = M . But we also have A.M≥e ⊆M≥(e+j) because the grading of A
is bounded from below. This proves the claim.

Since B+ lies in the centre of A, we have AB+.M = B+A.M ⊆ B+.M , so B+.M is a graded
submodule ofM . SinceM is simple, we deduce that B+.M = M or {0}. Suppose that B+.M = M .
Since the grading ofM is bounded from below, there exists a uniquely determined minimal integer
d such that Md 6= {0}. But B+ is positively graded, so (B+.M)d = {0}. This contradicts the
equality B+.M = M . Hence B+.M = {0}.

It follows that the ideal B+A = B+A annihilates M . Hence the action of A on M factors over the
quotient algebra A/B+A.

Corollary 12.51. Suppose that the variety Z is G-equivariantly formal, i.e., HG
∗ (Z) ∼= HG

∗ ({pt})⊗C
H∗(Z), and that the centre of HG

∗ (Z) is isomorphic as a graded algebra to H∗G({pt}). Then the
non-zero members of the set {Vλ | λ ∈ Λ} form a complete and irredundant set of representatives
of isomorphism classes of graded simple modules over HG

∗ (Z), up to grading shifts. In particular,
there are, up to isomorphism and grading shifts, �nitely many graded simple modules over HG

∗ (Z)
and every such module is �nite-dimensional.

Proof. Since the centre of HG
∗ (Z) is isomorphic as a graded algebra to H∗G({pt}) it is concentrated

in non-negative degrees. Hence Lemma 12.50 implies that the action of HG
∗ (Z) on any graded

simple module factors over the quotient algebra HG
∗ (Z)/H+

G ({pt})HG
∗ (Z). But, by equivariant

formality, this quotient algebra is isomorphic to the non-equivariant convolution algebra H∗(Z).
By Theorem 12.49 we know that the non-zero members of the set {Vλ | λ ∈ Λ} form a complete and
irredundant set of representatives of isomorphism classes of simple modules over H∗(Z). Moreover,
it is clear by the de�nition of these modules that they are graded. This proves the �rst part of the
corollary.

The fact that the set {Vλ | λ ∈ Λ} is �nite follows from the fact that, by assumption, there are
only �nitely many G-orbits in N . The fact that each Vλ is �nite-dimensional follows from the fact
that Vλ is a simple module over the �nite-dimensional algebra H∗(Z).

De�nition 12.52. From now on we will change the notation and denote, for each λ ∈ Λ, the
module Vλ as Lλ. We do this in order to emphasise that Lλ is a graded module over HG

∗ (Z) rather
than merely a graded vector space. By using the new notation we also comply with the quite
widespread convention to use the letter L to denote simple modules over a geometric extension
algebra. Please note that this new notation has nothing to do with our rather similar notation for
local systems in Section 12.1.2. There will fortunately be no scope for confusion since we will not
explicitly discuss local systems again.
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12.2.3 Standard modules over a convolution algebra

We have classi�ed the graded simple modules over HG
∗ (Z). This raises the following question: can

we, in principle, also construct these modules? In fact, this is possible. The graded simple modules
Lλ can be constructed as quotients of the so-called standard modules Kλ. The standard modules
admit a beautiful geometric interpretation as convolution modules in the homology of the �bres
of the map µ : M → N . In this section we will de�ne standard modules and state their main
properties.

Recall that N =
⊔
λ∈ΛOλ is the decomposition of N into �nitely many G-orbits.

De�nition 12.53. Let λ ∈ Λ and x ∈ Oλ. We de�ne the standard module Kλ to be the vector
space

Kλ := H∗(µ
−1(x);C)

endowed with the convolution action of H∗(Z) (see paragraph 6.2.1.3). We consider Kλ as a
module over HG

∗ (Z) by composing the projection HG
∗ (Z)� H∗(Z) with the convolution action:

HG
∗ (Z)� H∗(Z)→ EndC(Kλ).

In other words, we let the ideal H+
G ({pt})HG

∗ (Z) act trivially on Kλ. Note that Kλ is a �nite-
dimensional module.

Proposition 12.54. The de�nition of Kλ does not, up to isomorphism, depend on the choice of
x ∈ Oλ.

Proof. See [CG97, Theorem 3.5.7(b)].

Proposition 12.55. Suppose that M is connected and let m be the dimension of m as a variety.
Let x ∈ Oλ and let ix : {x} ↪→ N be the inclusion. Then there is a vector space isomorphism

Kλ := H∗(µ
−1(x)) ∼= H∗−m(i!xµ∗IC(M,CM )).

Moreover, it is possible to de�ne an action of the geometric extension algebra
Ext∗ (µ∗IC(M,CM ), µ∗IC(M,CM )) on H∗−m(i!xµ∗IC(M,CM )) such that the isomorphism (97)
intertwines this action with the convolution action of H∗(Z) on H∗(µ

−1(x)).

Proof. See [CG97, Proposition 8.6.16].

To establish the relationship between standard and simple modules we need the notion of a trans-
verse slice.

De�nition 12.56. Let X be an algebraic variety which admits an embedding into some smooth
algebraic variety. Let us �x an algebraic strati�cation ofX, i.e., a �nite partitionX =

⊔
j∈J Xj into

smooth locally closed subvarieties (called strata) such that the closure of each stratum is a disjoint
union of strata. More precisely, for each j ∈ J there exists a J ′ ⊆ J such that Xj =

⊔
i∈J′ Xi.

Let j ∈ J and y ∈ Xj . A locally closed (in the Hausdor� topology) complex analytic subset S ⊂ X
containing y is called a transverse slice to Xj at y if there exists an open neighbourhood U ⊂ X

of y (in the Hausdor� topology) and an analytic isomorphism f : (Xj ∩ U)× S
∼=−→ U such that

• f restricts to the tautological maps

f : {y} × S
∼=−→ S, (Xj ∩ U)× {y}

∼=−→ Xj ∩ U.

• for each i ∈ J we have
f ((Xj ∩ U)× (S ∩Xi)) ⊆ Xi ∩ U.
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The following general proposition guarantees that for each G-orbit Oλ ⊂ N and any point xλ ∈ Oλ
there exists a transverse slice to Oλ at xλ.

Proposition 12.57. Let X̃ be a smooth algebraic G-variety and X ⊂ X̃ a G-stable algebraic
subvariety consisting of �nitely many G-orbits. Then for each G-orbit O and any y ∈ O there
exists a transverse slice to O at y.

Proof. See [CG97, Proposition 3.2.24].

Fix λ ∈ Λ and choose an element xλ ∈ Oλ. Let Sλ be a transverse slice to Oλ at xλ and let
Ŝλ := µ−1(Sλ). We have an inclusion iλ : µ−1(xλ) ↪→ Ŝλ. This inclusion induces a map on
homology

(iλ)∗ : H∗(µ
−1(ρλ))→ H∗(Ŝλ). (101)

Let M =
⊔
Mα be the decomposition of M into connected components and let µα : Mα → N

denote the restriction of µ to Mα. Let m(α) denote the dimension of Ŝλ ∩Mα as a variety. For
each α we have a bilinear pairing

< , >Ŝλ : Hm(α)+∗(µ
−1
α (xλ))×Hm(α)−∗(µ

−1
α (xλ))

∩−→ C

given by intersection in the ambient space Ŝλ ∩Mα (see paragraph 2.3.2.4 for the de�nition of the
intersection pairing). The following crucial result says that every simple module Lλ is a quotient
of the corresponding standard module Kλ.

Proposition 12.58. The image of the map (iλ)∗ equals Lλ and the kernel of (iλ)∗ equals the

radical of the bilinear form < , >Ŝλ on H∗(µ
−1(xλ)). Hence we have a natural isomorphism

H∗(µ
−1(xλ))/rad < , >Ŝλ

∼=−→ Lλ.

Moreover, this is an isomorphism of modules over HG
∗ (Z).

Proof. See [CG97, Proposition 8.5.10].
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13 Representation theory of KLR algebras

In this chapter we are going to apply the general results from the previous chapter to study graded
simple modules and standard modules over KLR algebras associated to Dynkin quivers.

13.1 Graded simple modules over KLR algebras

We work in the framework of Section 12.2. Let us �x a Dynkin quiver (i.e. a quiver whose
underlying undirected graph is of type ADE) and a dimension vector. We set

M = F̃d, N = Repd, Z = Zd, µ = µd : F̃d → Repd, G = Gd.

To apply the results of Section 12.2 we need to check that the following assumptions hold:

(1) the map µd : F̃d → Repd is proper and Gd-equivariant,

(2) the variety F̃d is smooth,

(3) there are �nitely many Gd-orbits in Repd,

(4) for each ρ ∈ Repd the stabilizer group StabGd
(ρ) is connected,

(5) the variety Zd is Gd-equivariantly formal,

(6) the centre of H
Gd
∗ (Zd) is isomorphic as a graded algebra to H∗Gd

({pt}).

We know that the map µd : F̃d → Repd is proper and Gd-equivariant by Proposition 5.5. The

variety F̃d is smooth because F̃d is a disjoint union of vector bundles over complete �ag varieties.
The variety Zd is Gd-equivariantly formal by Proposition 7.37. We also know that the centre of

H
Gd
∗ (Zd) is isomorphic to H∗Gd

({pt}) as a graded algebra by Proposition 7.34 and the description

of the grading on H
Gd
∗ (Zd) in De�nition 11.11.

Therefore, it only remains to check (3) and (4). We �rst check that there are �nitely many Gd-
orbits in Repd.

Let g be the complex semisimple Lie algebra corresponding to the quiver Γ. Let us choose a
Cartan subalgebra and a Borel subalgebra of g and let ∆ be the corresponding root system, ∆0 the
corresponding set of simple roots and ∆+ the corresponding set of positive roots. We can identify
the vertices of the quiver Γ with the simple roots, i.e., identify I with ∆0. We can then view the
dimension vector d as an element in the root semilattice N∆0.

De�nition 13.1. (i) Let us choose an order on the set of positive roots ∆+. A partition of a
dimension vector d is a non-decreasing (with respect to the chosen order) sequence (α1, ..., αk) of
positive roots such that

∑k
i=1 αk = d. Alternatively, without choosing an ordering on ∆+, we can

de�ne a partition of d to be a function p : ∆+ → N such that
∑
α∈∆+ p(α) · α = d. Informally, we

think of a partition as a way to write the dimension vector as a sum of positive roots.
(ii) Kostant's partition function, denoted kpf, is a function kpf : N∆0 → N which assigns to a
dimension vector d the number of partitions of d.

De�nition 13.2. A quiver is called of �nite type if it has only �nitely many isomorphism classes
of indecomposable representations.

Theorem 13.3 (Gabriel's theorem). A connected quiver Γ is of �nite type if and only if it is
a Dynkin quiver. Moreover, the assignment dim sending an indecomposable representation to its
dimension vector establishes a one-to-one correspondence between the set of isomorphism classes
of indecomposable representations of Γ and the set of positive roots ∆+.

Proof. See for example [Kra07, Theorem 5.1.1].
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Corollary 13.4. There are �nitely many Gd-orbits in Repd.

Proof. The space Repd is the space of representations of the Dynkin quiver Γ with dimension
vector d. The Gd-orbits in Repd are in one-to-one correspondence with isomorphism classes of
representations of Γ with dimension vector d. The latter are, in turn, in one-to-one correspondence
with partitions of the dimension vector d into positive roots, by Gabriel's theorem. But the number
of such partitions is obviously �nite.

We now check that for each ρ ∈ Repd the stabilizer group StabGd
(ρ) is connected.

Proposition 13.5. For each ρ ∈ Repd, the isotropy group StabGd
(ρ) is connected.

Proof. The group StabGd
(ρ) is isomorphic to the group AutΓ(ρ) of automorphisms of the repre-

sentation ρ of the quiver Γ. But the latter is an open dense subset of the a�ne space EndΓ(ρ) of
endomorphisms of the representation ρ, de�ned by the non-vanishing of the determinant. Hence
it is connected.

We have hereby veri�ed that all the relevant assumptions from Section 12.2 hold.

De�nition 13.6. Let Λ(Γ,d) denote the set of partitions of the dimension vector d into positive
roots. By Gabriel's theorem, we can identify Λ(Γ,d) with the set of isomorphism classes of repre-
sentations of Γ with dimension vector d. If λ ∈ Λ(Γ,d), let Oλ denote the corresponding Gd-orbit
in Repd. More precisely, for each α ∈ ∆+ let ρα be an indecomposable representation of Γ with
dimension vector α. Set ρλ =

⊕
α∈∆+ λ(α)ρα. Then Oλ is the set of all representations of Γ which

are isomorphic to ρλ.

We can now deduce the classi�cation of graded simple modules over KLR algebras associated to
Dynkin quivers.

Theorem 13.7. Let Γ be a Dynkin quiver and d a dimension vector.
(i) There is an isomorphism

(µd)∗

(
IC(F̃d,CF̃d

)
)
∼=

⊕
λ∈Λ(Γ,d)

Lλ ⊗ IC(Oλ,COλ) (102)

in Db
c(Repd).

(ii) The non-zero members of the set {Lλ | λ ∈ Λ(Γ,d)} form a complete and irredundant set

of representatives of isomorphism classes of graded simple modules over H
Gd
∗ (Zd), up to grading

shifts. In particular, there are, up to isomorphism and grading shifts, �nitely many graded simple

modules over H
Gd
∗ (Zd) and every such module is �nite-dimensional.

Proof. The theorem follows directly from Corollary 12.42 and Corollary 12.51 because we have
veri�ed that all the assumptions of these corollaries are satis�ed in the KLR setting when Γ is a
Dynkin quiver.

13.2 The equioriented An quiver

We are now going to study in more detail graded simple modules and standard modules over
KLR algebras associated to the equioriented An quiver. In particular, our goal is to prove that
each graded simple module Lλ is non-zero and that each standard module Kλ is indecomposable
and has simple head Lλ. We emphasize that these facts do not follow from the general theory of
convolution algebras in [CG97, Chapter 8]. Our proof that each module Lλ is non-zero is similar in
�avour to the corresponding proof for a�ne Hecke algebras ([CG97, Proposition 8.1.14, Theorem
8.8.1, Proposition 8.8.2]). The fact that each standard module Kλ is indecomposable with simple
head Lλ follows from results proved by Kato ([Kat12, Theorem 1.8(2)]). He proved these results
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using sheaf-theoretic and homological methods. We give a di�erent proof which relies on a study
of the geometry of �bers of the map µd : F̃d → Repd.

13.2.1 The order on orbits

We begin with some more general remarks about the algebraic strati�cation of Repd. Recall
that

Repd =
⊔

λ∈Λ(Γ,d)

Oλ.

De�nition 13.8. The set Λ(Γ,d) is naturally endowed with a partial order. Suppose that λ, λ′ ∈
Λ(Γ,d). We set

λ′ ≤ λ :⇐⇒ Oλ′ ⊆ Oλ. (103)

We call this partial order the closure ordering.

We will �nd the following easy lemmata useful.

Lemma 13.9. There is a unique maximal and minimal stratum in Repd with respect to the closure
ordering.

Proof. The variety Repd is isomorphic to an a�ne space, so it's irreducible. If there existed
two or more maximal strata then their closures would constitute distinct irreducible components,
contradicting irreducibility. The unique minimal stratum is the one-point stratum containing the
zero representation.

Lemma 13.10. The map µd : F̃d → Repd maps each conneted component F̃y onto the closure of

some orbit Oλ, i.e., µd(F̃y) = Oλ for some λ ∈ Λ(Γ,d).

Proof. Recall that we also have a vector bundle projection πd : F̃d → Fd. Let F ∈ Fy be a �ag.
The �bre π−1

d (F ) = {F} × µd(π−1
d (F )) ∼= µd(π−1

d (F )) consists of representations stabilizing F .
Regarded as a vector subspace of Repd, it inherits a strati�cation

µd(π−1
d (F )) =

∐
λ∈Λ(Γ,d)

OFλ ,

where OFλ := Oλ ∩ µd(π−1
d (F )). Since µd(π−1

d (F )) is a vector space and is therefore irreducible, it

must contain a unique nonempty maximal stratum OFλ . Let ρ ∈ OFλ . If g ∈ Gd then g.F ∈ Fy and
g.F is g.ρ-stable. Therefore, g.ρ ∈ µd(F̃y). This implies that Oλ ⊂ µd(F̃y). Now suppose that
λ′ > λ or that λ′ is unrelated to λ. Suppose further that µd(F̃y) ∩ Oλ′ 6= ∅. Then there exists a
�ag F ′ ∈ F̃y and representation ρ′ ∈ Oλ′ stabilizing F ′. Since Gd acts transitively on Fy, there
exists a g′ ∈ Gd with g′.F ′ = F . But then F is g′.ρ′-stable. Since g′.ρ′ ∈ Oλ′ , this contradicts the
fact that OFλ is the unique maximal stratum in µd(π−1

d (F )). Therefore, Oλ is the unique maximal

stratum in µd(F̃y). Now, since the map µd is proper and hence closed, and F̃y is a connected
component, we can conclude that µd(F̃y) is also closed. Hence µd(F̃y) = Oλ.

13.2.2 The equioriented An quiver

A deeper insight into the representation theory of KLR algebras requires a good understanding of
the partial order (103), i.e., an understanding of the closure relations between orbits. It is di�cult
to describe these relations explicitly for arbitrary Dynkin quivers and orientations. Zwara has
proven the following result.
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Theorem 13.11. Let λ, λ′ ∈ Λ(Γ,d) and ρ ∈ Oλ, ρ′ ∈ Oλ′ . Then λ ≤ λ′ if and only if there exists
a short exact sequence

0→ x→ x⊕ ρ′ → ρ→ 0

for some representation x of the quiver Γ.

Proof. See [Zwa00].

There are no known bounds on the size of x, so this theorem is not very useful to us in practice.
It is, however, possible to describe closures of orbits explicitly for the An quiver with some special
choices of orientation. In particular, the equioriented An quiver

ΓAn = i1 → i2 → ...→ in

admits an elegant description of orbit closures. Let d = (d1, ...,dn) be a dimension vector for this
quiver. Let us also assign to each vertex il a complex vector space Vl of dimension dl.

De�nition 13.12. (i) A rank matrix for the equioriented An quiver ΓAn with dimension vector
d is an n× n matrix r = (rkl) such that rll = dl, rkl = 0 if k > l and rkl is a non-negative integer
if k < l.
(ii) We say that a rank matrix r = (rkl) weakly dominates another rank matrix r′ = (r′kl), denoted
r ≥ r′ if rkl ≥ r′kl for each 1 ≤ k, l ≤ n. A rank matrix r strictly dominates r′, denoted r > r′, if
r ≥ r′ and there exist 1 ≤ k < l ≤ n such that rkl > r′kl.
(iii) If ρ ∈ Repd is a representation of the quiver ΓAn with dimension vector d, we can write it
as a sequence ρ = (ρ1, ρ2, ..., ρn−1), where each ρl is a linear map ρl : Vl → Vl+1. If for each
1 ≤ k < l ≤ n we set

rkl = rk(ρl−1 ◦ ρl−2 ◦ ... ◦ ρk),

rll = dl and rkl = 0 otherwise then the resulting matrix (rkl) is a rank matrix. We will denote it
with Rk(ρ) and refer to it as the rank matrix for the representation ρ. The rank matrix depends
only on the isomorphism class of ρ. Therefore, if ρ ∈ Oλ we will also write Rk(λ) for Rk(ρ).
(iv) We de�ne

Y (r) := {ρ ∈ Repd | Rk(ρ) = r}.

Note that for some choices of r these sets may be empty.

Proposition 13.13. Let Γ = ΓAn be the equioriented An quiver.
(i) The Gd-orbits in Repd are precisely the sets Y (r) for a rank matrix r = (rkl) such that

rk,l − rk,l+1 − rk−1,l + rk−1,l+1 ≥ 0 for all 1 ≤ k < l ≤ n.

(ii) The Zariski closure of Y (r) is

Y (r) = {ρ ∈ Repd | Rk(ρ) ≤ r}.

Proof. See e.g. [LR08, Prop. 13.5.3.1].

We now have two classi�cations of orbits for the equioriented An quiver - by rank and by partitions
of the dimension vector. We want to relate them to each other. If α and β are positive roots, we
call α a subroot of β if β = α + γ and γ is a sum of positive roots. Recall that positive roots in
type An correspond to segments in the corresponding Dynkin diagram. A subroot corresponds to
a subsegment.

Proposition 13.14. Let αk be the simple root corresponding to the vertex il in the quiver ΓAn .
We have

Y (r) = Oλ
if and only if, whenever k < l, rkl equals the number of positive roots (including each instance of a
root which occurs several times) in the partition λ for which the positive root αk + αk+1 + ...+ αl
is a subroot.
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Proof. Let mi,j be the number of times the positive root αi,j := αi + αi+1 + ... + αj occurs
in the partition λ. If ρ ∈ Oλ then we have an isomorphism of quiver representations ρ ∼=⊕

1≤i≤j≤n(ραi,j )
⊕mi,j . Therefore,

rk(ρl ◦ ρl−1 ◦ ... ◦ ρk) =
∑

1≤i≤j≤n

mi,j rk((ραi,j )l ◦ (ραi,j )l−1 ◦ ... ◦ (ραi,j )k) =
∑

1≤i≤j≤n

mi,j1i≤k1l≤j ,

where 1i≤k is the indicator function taking value 1 if i ≤ k and 0 otherwise. But αk,l is a subroot
of αi,j if and only if 1 ≤ k < l ≤ j so the last expression is precisely the number of positive roots in
the partition λ of which αk,l is a subroot. Since ρ ∈ Y (r) if and only if rk(ρl ◦ ρl−1 ◦ ... ◦ ρk) = rkl
for each k < l, this proves the proposition.

From now on we let Γ be the equioriented An quiver.

Example 13.15. Let us consider the quiver

i→ j → k

with dimension vector d = i+2j+k. The Lie algebra corresponding to this quiver is sl4. Let α, β, γ
be the simple roots corresponding to the vertices i, j, k, respectively. There are �ve partitions of the
dimension vector d: λ0 = (α, β, β, γ), λ1 = (α+β, β, γ), λ2 = (α, β, β+γ), λ3 = (α+β, β+γ), λ4 =
(α+ β + γ, β). The corresponding rank matrices are

Rk(λ0) =

 1 0 0
0 2 0
0 0 1

 , Rk(λ1) =

 1 1 0
0 2 0
0 0 1

 , Rk(λ2) =

 1 0 0
0 2 1
0 0 1

 ,

Rk(λ3) =

 1 1 0
0 2 1
0 0 1

 , Rk(λ4) =

 1 1 1
0 2 1
0 0 1

 .

The closure ordering on the partitions therefore is

λ4

��

λ3

  ~~

λ1

  

λ2

~~

λ0.

It is also not hard to give an explicit description of the Gd-orbits on Repd. We have Repd
∼=

Hom(C,C2) ⊕ Hom(C2,C) ∼= C4. We can identify it with the set of all pairs of complex matrices
of the form ([

∗
∗

]
,
[
∗ ∗

])
.

We have

Oλ0
=

{([
0
0

]
,
[

0 0
])}

, Oλ1
=

{([
a
b

]
,
[

0 0
]) ∣∣∣∣ a or b 6= 0

}
,

Oλ2
=

{([
0
0

] [
c d

]) ∣∣∣∣ c or d 6= 0

}
,
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Oλ3 =

{([
a
b

]
,
[
c d

]) ∣∣∣∣ a or b 6= 0, c or d 6= 0, ac+ bd = 0

}
,

Oλ4
=

{([
a
b

]
,
[
c d

]) ∣∣∣∣ a or b 6= 0, c or d 6= 0, ac+ bd 6= 0

}
.

13.2.3 Weights

Recall that {1y,y | y ∈ Yd} forms a complete set of primitive orthogonal idempotents ofH
Gd
∗ (Zd).

De�nition 13.16. Let M be a graded H
Gd
∗ (Zd)-module and let y ∈ Yd. De�ne the y-weight

space My ofM to be 1y,yM . Let E be the C-subalgebra of HGd
∗ (Zd) generated by the idempotents

{1y,y | y ∈ Yd}. The vector space My is a E-submodule of M . We have an equality of E-modules:

M =
⊕
y∈Yd

My.

We call y a weight of M if My 6= {0}. We call the set of weights of M

suppM := {y ∈ Yd | 1y,yM 6= {0}}

the support of M .

It follows from the relations in H
Gd
∗ (Zd) that

σ(r).My ⊆Msr.y, κ(r).My ⊆My.

Moreover, 1y,y acts on My by the identity endomorphism and if y′ 6= y then 1y′,y′ acts by zero on
My.

13.2.4 The order on weights

De�nition 13.17. (i) Recall that i1, ..., in are the vertices of our quiver. We set i1 � i2 � ... � in
and extend this ordering on I to a total lexicographic order on Yd. If y, y′ ∈ Yd and y′ is greater
than y in this ordering we write y′ � y.
(ii) We say that y′ is accessible from y, denoted y < y′, if there exist simple transpositions
sk1 , ..., skm ∈ Π such that y′ = sk1 ◦ ... ◦ skm(y) and skl ◦ skl+1

◦ .... ◦ skm(y) ≺ skl+1
◦ .... ◦ skm(y) in

the lexicographic ordering, for each 1 ≤ l ≤ m. This de�nes a partial order on Yd, which we call
the accessibility ordering.
(iii) We say that y′ is directly accessible from y, denoted y C y′ if there exists a simple transposition
s ∈ Π such that y′ = s(y) and s(y) ≺ y, i.e., if y is an immediate predecessor of y′ in the accessibility
ordering.

Example 13.18. Let us again consider the quiver

i→ j → k

118



with dimension vector d = i+ 2j + k. The accessibility ordering on Yd looks as follows

kjji

|| ""

jkji

|| ""

kjij

|| ""

jjki

��

jkij

��

kijj

��

jjik

""

jikj

|| ""

ikjj

||

jijk

""

ijkj

||

ijjk.

13.2.5 The functions Φ and Ψ

De�nition 13.19. We set

Φ : Yd → P(Λ(Γ,d)), y 7→ {λ ∈ Λ(Γ,d) | there exist ρ ∈ Oλ, F ∈ Fy s.t. F is ρ-stable},
Ψ : Λ(Γ,d)→ P(Yd), λ 7→ {y ∈ Yd | there exist ρ ∈ Oλ, F ∈ Fy s.t. F is ρ-stable}.

We have

Φ(y) = {λ ∈ Λ(Γ,d) | Oλ ⊆ µd(F̃y)}, Ψ(λ) = {y ∈ Yd | Oλ ⊆ µd(F̃y)}.

Example 13.20. Let us again consider the quiver

i→ j → k

with dimension vector d = i+ 2j + k. One easily sees that

Φ(ijjk) ={λ0}, Φ(jijk) ={λ0, λ1}, Φ(ijkj) ={λ0, λ2},
Φ(jjik) ={λ0, λ1}, Φ(jikj) ={λ0, λ1, λ2, λ3}, Φ(ikjj) ={λ0, λ2},
Φ(jjki) ={λ0, λ1}, Φ(jkij) ={λ0, λ1, λ2, λ3}, Φ(kijj) ={λ0, λ2},
Φ(jkji) ={λ0, λ1, λ2, λ3, λ4}, Φ(kjij) ={λ0, λ1, λ2, λ3, λ4}, Φ(kjii) ={λ0, λ1, λ2, λ3, λ4},

Ψ(λ0) =Yd, Ψ(λ1) =Yd\{ijjk, ikjj, kijj}, Ψ(λ2) =Yd\{ijjk, jijk, jjki},
Ψ(λ3) ={jikj, jkij, jjkji, kjij, kjji}, Ψ(λ4) ={jkij, kjij, kjji}.

Lemma 13.21. Suppose that y C y′ = sl(y). If F ∈ Fy is ρ-stable then sl.F is also ρ-stable.
Hence sl.(πd ◦ µ−1

y (ρ)) ⊆ πd ◦ µ−1
y′ (ρ) and µd ◦ π−1

d (F ) ⊆ µd ◦ π−1
d (sl.F ).

Proof. We can write F = (V k), where V k = D1 ⊕ ... ⊕ Dk and each Dn is a one-dimensional
subspace in some graded component Vi of V. We want to show that sl.F is still ρ-stable. Let
us write sl.F = (W k). It is clear that V k = W k unless k = l. Therefore, we need to check that

119



ρ(W l) ⊆ W l−1 and ρ(W l+1) ⊆ W l. We have W l = D1 ⊕ ... ⊕ Dl−1 ⊕ Dl+1 = V l−1 ⊕ Dl+1.
Moreover,

ρ(W l) = ρ(V l−1 ⊕Dl+1) ⊆ ρ(V l−1) + ρ(Dl+1) ⊆ V l−2 + ρ(Dl+1). (104)

We know that ρ(Dl+1) ⊆ V l = V l−1 ⊕ Dl. We also have Dl ⊆ Vy(l), Dl+1 ⊆ Vy(l+1). Now since
y C y′ = sl(y), we get y(l) > y(l + 1). This implies that in our quiver there is no arrow from
y(l + 1) to y(l). Hence ρ(Dl+1) ∩ Dl = {0} and so ρ(Dl+1) ⊆ V l−1. This, together with (104),
implies that ρ(W l) ⊆ V l−1 = W l−1. Furthermore,

ρ(W l+1) = ρ(V l ⊕Dl+1) ⊆ ρ(V l) + ρ(Dl+1) ⊆ V l−1 = W l−1.

Therefore, sl.F is ρ-stable.

Lemma 13.22. Let y ∈ Yd. There exists a λ ∈ Λ(Γ,d) such that

Φ(y) = {λ′ ∈ Λ(Γ,d) | λ′ ≤ λ}.

Proof. This follows directly from Lemma 13.10 .

Lemma 13.23. The functions Φ,Ψ have the following "monotonicity" properties

(a) if y < y′ then Φ(y) ⊆ Φ(y′),

(b) if λ < λ′ then Ψ(λ′) ⊆ Ψ(λ).

Proof. Suppose that y C y′. Let λ ∈ Φ(y). There exist ρ ∈ Oλ, F ∈ Fy such that F is ρ-stable.
Since y C y′, there exists a simple transposition sl ∈ Π such that y′ = sl(y). By Lemma 13.21,
sl.F is ρ-stable. Since sl.F ∈ Fy′ we have λ ∈ Φ(y′).

Now suppose that λ < λ′. Let y ∈ Ψ(λ′). We have Oλ′ ⊆ µd(F̃y). Since λ < λ′, Lemma 13.10
implies that Oλ ⊆ µd(F̃y). Hence y ∈ Ψ(λ).

Corollary 13.24. (i) Let λ ∈ Λ(Γ,d). Then the set Ψ(λ) is closed from above in the following
sense. If y ∈ Ψ(λ) and y′ > y then y′ ∈ Ψ(λ).
(ii) Let y ∈ Yd. Then the set Φ(y) is closed from below in the following sense. If λ ∈ Φ(λ) and
λ′ < λ then λ′ ∈ Φ(y).

De�nition 13.25. Let us set

Ψ̂(λ) = Ψ(λ)\

( ⋃
λ′>λ

Ψ(λ′)

)
.

By Lemma 13.23, the de�nition makes sense.

Lemma 13.26. Let λ ∈ Λ(Γ,d). Then

Ψ̂(λ) = {y ∈ Yd | λ is the unique maximal element in Φ(y)}.

Proof. This is clear.

Lemma 13.27. We have a disjoint union decomposition

Yd =
⊔

λ∈Λ(Γ,d)

Ψ̂(λ). (105)

Proof. Let us �rst prove disjointness. It is immediately clear from the de�nition that if λ < λ′

then Ψ̂(λ) and Ψ̂(λ′) are disjoint. So suppose λ and λ′ are unrelated. Let y ∈ Ψ̂(λ) ∩ Ψ̂(λ′).
Then µd(F̃y) contains both Oλ and Oλ′ . Moreover, these two orbits are maximal in µd(F̃y), which
contradicts Lemma 13.10 (the Lemma implies there is a unique maximal orbit in µd(F̃y)).

Now let us prove the equality in (105). For each y ∈ Yd there exists a unique maximal λ ∈ Φ(y),
by Lemma 13.10 . Hence y ∈ Ψ(λ) and y /∈ Ψ(λ′) for any λ′ > λ. Therefore, y ∈ Ψ̂(λ).
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Corollary 13.28. We have a disjoint union decomposition

Ψ(λ) =
⊔
λ′≥λ

Ψ̂(λ).

Proof. This follows directly from the de�nitions and the disjointness in the decomposition (105).

Example 13.29. Let us again consider the quiver

i→ j → k

with dimension vector d = i + 2j + k. We designate Ψ̂(λ0) with black colour, Ψ̂(λ1) with red,
Ψ̂(λ2) with green, Ψ̂(λ3) with pink and Ψ̂(λ4) with blue:

kjji

|| ""

jkji

|| ""

kjij

|| ""

jjki

��

jkij

��

kijj

��

jjik

""

jikj

|| ""

ikjj

||

jijk

""

ijkj

||

ijjk.

De�nition 13.30. If A,B ⊆ Yd, we write A < B if for all a ∈ A, b ∈ B we have a � b and there
exist a ∈ A, b ∈ B such that a < b.

Lemma 13.31. Let λ′ > λ. Then Ψ̂(λ′) > Ψ̂(λ).

Proof. Let y ∈ Ψ̂(λ) and y′ ∈ Ψ̂(λ′). Since Ψ̂(λ′), Ψ̂(λ) are disjoint, by Lemma 13.27, we can't
have y = y′. Suppose that y > y′. By Lemma 13.23, Φ(y′) ⊆ Φ(y). But λ is the unique maximal
element in Φ(y), which contradicts the fact that λ′ ∈ Φ(y′) ⊆ Φ(y). Hence y � y′.

To prove that there exist y ∈ Ψ̂(λ) and y′ ∈ Ψ̂(λ′) such that y < y′ we need to develop some more
theory. This fact will follow immediately from Lemma 13.47.

De�nition 13.32. Let λ ∈ Λ(Γ,d). We de�ne

µΨ̂(λ) :
⊔

y∈Ψ̂(λ)

F̃y → Repd

to be the restriction of the map µd : F̃d → Repd to
⊔
y∈Ψ̂(λ) F̃y.
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13.2.6 Characteristic compositions

De�nition 13.33. Let λ ∈ Λ(Γ,d). We call y ∈ Yd a λ-characteristic composition, and F̃y a
λ-characteristic component, if y satis�es the following two properties:

(P1) y is a minimal (but not necessarily the least) element in Ψ(λ),

(P2) λ is a maximal element in Φ(y).

Note that if λ is a maximal element in Φ(y) then it is automatically the unique maximal (i.e.
the greatest) element. Moreover, (P2) is equivalent to requiring that y ∈ Ψ̂(λ). Therefore, y is a
λ-characteristic composition if and only if y is a minimal element in Ψ̂(λ).

Example 13.34. Let us return to the quiver

i→ j → k

with dimension vector d = i+2j+k. The λ0-characteristic composition is ijjk, the λ1-characteristic
composition is jijk, the λ2-characteristic composition is ijkj, the λ3-characteristic composition is
jikj and the λ4-characteristic compositions are jkji and kjij.

Proposition 13.35. For each λ, the set Ψ̂(λ) is non-empty. In particular, a λ-characteristic
composition exists.

Proof. By Lemma 13.10, it su�ces to �nd a sequence y ∈ Yd such that Oλ is a maximal orbit in
µd(F̃y). Let αk be the simple root corresponding to the vertex ik in the quiver ΓAn . We identify
the isomorphism class of quiver representations λ with the corresponding partition of d, i.e., we
regard it as a function λ : ∆+ → N.

We �rst de�ne a total order on ∆+ by induction. Let ∆+
k be the subset of ∆+ consisting of

those positive roots which do not contain α1, ..., αk as a subroot. We have ∆+
n−1 = {αn}, so

there is a unique choice of ordering on ∆+
n−1. Assuming that we have de�ned the order on ∆+

n−l,
we extend it to ∆+

n−l−1 by setting αn−l−1 < αn−l−1 + αn−l < αn−l−1 + αn−l + αn−l+1 < ... <

αn−l−1 +αn−l +αn−l+1 + ...+αn < αn−l, where αn−l is (by induction) the least element in ∆+
n−l.

Let us denote concatenation of sequences with ◦. If αk,l := αk+αk+1 + ...+αl is a positive root, we
associate to it the sequence of vertices φ(αk,l) := (il, il−1, ..., ik+1, ik). Let β1 < β2 < ... < βn(n+1)/2

be the enumeration of the elements of ∆+ in the order we have just de�ned. We �nally de�ne the
sequence y in the following way

y := φ(β1)◦λ(β1) ◦ φ(β2)◦λ(β2) ◦ ... ◦ φ(βn(n+1)/2)◦λ(βn(n+1)/2).

We encourage the reader to look at the example following the proof to build an intuition for
the various constructions and de�nitions we introduce here. We now have to check that Oλ
is in fact a maximal orbit in µd(F̃y) (by Lemma 13.10 such an orbit is automatically unique).
We �rst show that Oλ ⊂ µd(F̃y). Let us choose a representation ρ ∈ Oλ and decompose it

into indecomposable representations ρ =
⊕n(n+1)/2

j=1

⊕m=λ(βj)
m=1 ρ(j,m). Here the ρ(j,1), ..., ρ(j,λ(βj))

are λ(βj) indecomposable subrepresentations of ρ with dimension vector βj (obviously the choice
of subrepresentations is not unique, but the number of isomorphism classes of indecomposable
representations corresponding to each positive root occurring in this decomposition is uniquely
determined). Now �x j and m. Suppose that βj = αk,l = αk + αk+1 + ... + αl. For k ≤ p ≤ l let
W (j,m,p) = ρ(j,m)[p] be the one-dimensional vector subspace of V that ρ(j,m) assigns to the vertex
ip. We de�ne sequences of one-dimensional I-graded subspaces of V as follows

E(j,m) = (W (j,m,l),W (j,m,l−1), ...,W (j,m,k)), Ej = E(j,1) ◦ E(j,2) ◦ ... ◦ E(j,λ(βj)),

E = E1 ◦ E2 ◦ ... ◦ En(n+1)/2 =: (U1, ..., Ud),
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where Ur is the r-th member of the sequence E. Let F = (Vt)
d
t=1 be the �ag de�ned by Vt =⊕t

r=1 U
r. One can easily see from the de�nition of the �ag F that F ∈ Fy and that F is indeed

ρ-stable. Therefore ρ ∈ µd(F̃y). By Gd-equivariance of µd, it follows that Oλ ⊂ µd(F̃y).

We now show that Oλ is a maximal orbit in µd(F̃y). For the sake of contradiction suppose that Oλ
were not maximal. Then there would exist λ′ > λ, ρ′ ∈ Oλ′ and F ∈ Fy such that F is ρ′-stable.
Let rk,l = (Rk(ρ))k,l and r′k,l = (Rk(ρ′))k,l. The fact that λ′ > λ implies that for all 1 ≤ k < l ≤ n
we have r′k,l ≥ rk,l and there exist 1 ≤ k < l ≤ n such that r′k,l > rk,l.

Observe that the maximal possible value of r′k,l equals the maximal number of mutually disjoint
subsequences of y of the form (il, il−1, ..., ik). But we constructed the sequence y in such a way
that the maximal number of mutually disjoint subsequences of y of the form (il, il−1, ..., ik) equals
rk,l.

Indeed, we can easily prove this by induction on the inductive de�nition of y. Let yb be the
sequence obtained from y by deleting all the subsequences φ(β) containing the vertex i1 and let
ya be the sequence obtained from y by deleting all the subsequences φ(β) which do not contain
the vertex i1. We have y = ya ◦ yb. Similarly, we can decompose ρ as ρ = ρa ⊕ ρb, where ρa is a
direct sum of indecomposable representations ρβ such that α1 is a subroot of β = dim ρβ and ρa
is a direct sum of indecomposable representations ρβ such that α1 is not a subroot of β = dim ρβ .
By induction, we can assume that (Rk(ρb))k,l equals the maximal number of mutually disjoint
subsequences of yb of the form (il, il−1, ..., ik). Now observe that

ya = (i1)◦λ(α1) ◦ (i2, i1)◦λ(α1+α2) ◦ (in, in−1, ..., i1)◦λ(α1+...+αn)

and ρa ∼=
⊕n

j=1(ρα1+...+αj )
⊕λ(α1+...+αj), where dim ρα1+...+αj = α1 + ...+ αj . Hence (Rk(ρa))k,l

also equals the maximal number of mutually disjoint subsequences of ya of the form (il, il−1, ..., ik).
We conclude that rk,l equals the maximal number of mutually disjoint subsequences of y of the
form (il, il−1, ..., ik) by observing that rk,l = (Rk(ρa))k,l+(Rk(ρb))k,l and the maximal number of
mutually disjoint subsequences of y of the form (il, il−1, ..., ik) equals the sum of maximal numbers
of such mutually disjoint subsequences in ya and yb.

Example 13.36. Consider the quiver
i→ j → k

with dimension vector d = 2i + 3j + 2k. The Lie algebra corresponding to this quiver is sl4. Let
α, β, γ be the simple roots corresponding to the vertices i, j, k, respectively. The positive roots,
given in the order we de�ned in the proof above, are: α < α + β < α + β + γ < β < β + γ < γ.
Let us consider for example a representation ρα+β ⊕ ρα+β+γ ⊕ ρβ ⊕ ργ of our quiver associated
to the partition λ = (α + β, α + β + γ, β, γ). The corresponding λ-characteristic composition is
(j, i, k, j, i, j, k).

Corollary 13.37. For each λ ∈ Λ(Γ,d) there exists a connected component F̃y such that µd(F̃y) =

Oλ.

Proof. By the preceding proposition, some λ-characteristic composition y exists. By the de�nition
of a λ-characteristic composition, Oλ is the unique maximal orbit in µd(Oλ). But by Lemma 13.10
µd(F̃y) equals the closure of some orbit. This proves the corollary.

We can now prove that every graded simple module Lλ is non-zero.

Theorem 13.38. Let Γ be the equioriented An quiver. Then for every λ ∈ Λ(Γ,d), the graded
simple module Lλ is non-zero.

Proof. Let λ ∈ Λ(Γ,d). By Corollary 13.37, there exists a connected component F̃y such that
µd(F̃y) = Oλ. Let F̃⊥y =

⊔
y 6=y′∈Yd

F̃y′ . We have

IC(F̃d,CF̃d
) = IC(F̃y,CF̃y )⊕ IC(F̃⊥y ,CF̃⊥y ).

123



Therefore
(µd)∗IC(F̃d,CF̃d

) ∼= (µd)∗IC(F̃y,CF̃y )⊕ (µd)∗IC(F̃⊥y ,CF̃⊥y ).

Let us investigate the direct summand (µd)∗IC(F̃y,CF̃y ). We can apply the decomposition theo-

rem (Corollary 12.43) to the restricted map µd : F̃y → Oλ to obtain

(µd)∗IC(F̃y,CF̃y ) ∼=
(
L̃λ ⊗ IC(Oλ,COλ)

)
⊕

(⊕
λ′<λ

L̃λ′ ⊗ IC(Oλ′ ,COλ′ )

)
, (106)

where the L̃λ′ are �nite-dimensional graded vector spaces encoding the graded multiplicity with
which each intersection cohomology complex IC(Oλ′ ,COλ′ ) occurs in the decomposition (106).
Now let x ∈ Oλ and let ix : {x} ↪→ Oλ denote the inclusion. Since, for each λ′ < λ, the complex
IC(Oλ′ ,COλ′ ) is supported on the boundary of Oλ, we have i∗xIC(Oλ′ ,COλ′ ) = 0. Hence if we
apply the functor H∗i∗x to the decomposition (106) we get

Hm+∗(µ−1
d (x)) ∼= H∗(i∗x(µd)∗IC(F̃y,CF̃y )) ∼= L̃λ ⊗H∗(i∗xIC(Oλ,COλ)), (107)

where m = dim F̃y (for the proof of the �rst isomorphism above see [CG97, Lemma 8.5.4]). But
µd(F̃y) = Oλ so the �bre µ−1

d (x) is non-trivial and so the cohomology group Hm+∗(µ−1
d (x)) is

non-trivial too. We conclude from the isomorphism (107) that L̃λ must be non-zero as well.
Since (µd)∗IC(F̃y,CF̃y ) is a direct summand of (µd)∗IC(F̃d,CF̃d

), we have L̃λ ⊆ Lλ, so Lλ is
nonzero.

Corollary 13.39. There are exactly kpf(d) isomorphism classes of graded simple modules over

the KLR algebra H
Gd
∗ (Zd) associated to the equioriented An quiver.

Proof. We have shown that the non-zero members of {Lλ | λ ∈ Λ(Γ,d)} form a complete and

irredundant set of representatives of isomorphism classes of graded simple modules over H
Gd
∗ (Zd).

But by Theorem 13.38 each module Lλ is non-zero. Hence there are exactly |Λ(Γ,d)|-many iso-

morphism classes of graded simple modules over H
Gd
∗ (Zd). But Λ(Γ,d) is the set of partitions of

d into positive roots, and therefore its cardinality equals kpf(d).

Corollary 13.40. Theorem 13.38 also holds for An quivers with an arbitrary orientation.

Proof. By Corollary 11.22, the algebra H
Gd
∗ (Zd) is already determined, up to isomorphism, by the

underlying graph of Γ and dimension vector d. In particular, the number of isomorphism classes
of graded simple modules is independent of the choice of orientation.

13.2.7 Composition series of a standard module

Let λ ∈ Λ(Γ,d). From now on let us �x ρλ ∈ Oλ and set Kλ = H∗(µ
−1
d (ρλ)). By Prop. 12.58,

there is a H
Gd
∗ (Zd)-module isomorphism Kλ/(rad < , >Ŝλ) ∼= Lλ. Let us choose a vector space

complement of rad < , >Ŝλ in Kλ in such a way that this complement is Yd-graded and denote it

with L̂λ. In other words, L̂λ is a complement of rad < , >Ŝλ as a E-module.

Lemma 13.41. The surjection Kλ � Lλ restricts to an isomorphism of E-modules L̂λ ∼= Lλ.

Proof. This is obvious.

Recall that for each y ∈ Yd, the map µy : F̃y → Repd is the restriction of µd to the connected

component F̃y.
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Lemma 13.42. Let y ∈ Yd. Then H∗(µ
−1
y (ρλ)) is the y-weight space of H∗(µ

−1
d (ρλ)), i.e.,

(H∗(µ
−1
d (ρλ))y = H∗(µ

−1
y (ρλ)).

Proof. This is also obvious.

Lemma 13.43. Let y ∈ Ψ̂(λ). Then H∗(µ
−1
y (ρλ)) ⊆ L̂λ. In particular, Ψ̂(λ) ⊆ suppLλ.

Proof. Let Sλ be a transverse slice to Oλ at ρλ and let Ŝλ := µ−1
d (Sλ). The slice Sλ inherits an

algebraic strati�cation from Repd. More speci�cally, let us set Sλ
′

λ := Oλ′ ∩ Sλ. Then

Sλ =
⊔

λ′∈Λ(Γ,d)

Sλ
′

λ .

By the de�nition of a transverse slice, we have Sλλ = {ρλ} and Sλ
′

λ = ∅ if λ′ < λ.

Now recall that rad < , >Ŝλ is the kernel of the map H∗(µ
−1
d (ρλ)) → H∗(µ

−1
d (Sλ)) = H∗(Ŝλ)

induced by the inclusion µ−1
d (ρλ) ↪→ µ−1

d (Sλ). Let y ∈ Ψ̂(λ). This means that �ags in Fy are only
stabilized by (some) representations in Oλ and orbits lying in the closure of Oλ. In particular, if
λ′ > λ or λ′ and λ are unrelated then µ−1

d (Oλ′) ∩ F̃y = ∅. This implies that

µ−1
y (Sλ) = µ−1

y (Sλ ∩Oλ) = µ−1
y (ρλ).

Therefore, the inclusion µ−1
d (ρλ) ↪→ µ−1

d (Sλ) restricts to the identity map µ−1
y (ρλ) ↪→ µ−1

y (Sλ).

Hence the induced map on homology H∗(µ
−1
y (ρλ)) → H∗(µ

−1
y (Sλ)) must also be the identity.

Hence (rad < , >Ŝλ) ∩ H∗(µ
−1
y (ρλ)) = {0}. Since L̂λ is a complement of (rad < , >Ŝλ) as a

E-module, we must have H∗(µ
−1
y (ρλ)) ⊆ L̂λ.

Proposition 13.44. Suppose that λ′ < λ or that λ and λ′ are unrelated. Then [Kλ : Lλ′ ] = 0.
Moreover, [Kλ : Lλ] = 1.

Proof. We �rst prove that [Kλ : Lλ] = 1. By Proposition 12.58, [Kλ : Lλ] ≥ 1. Let y ∈ Ψ̂(λ). By
Proposition 13.2.6 such a y exists. Lemma 13.43 implies that H∗(µ

−1
y (ρλ)) ⊆ L̂λ. Since L̂λ and Lλ

are isomorphic as E-modules, dim(Lλ)y = dim(L̂λ)y = dimH∗(µ
−1
y (ρλ)) = dim(Kλ)y. Therefore,

[Kλ : Lλ] = 1.

Now suppose that λ′ < λ or λ and λ′ are unrelated. Let y′ ∈ Ψ̂(λ′). Then µ−1
d (ρλ) ∩ F̃y′ = ∅.

Therefore y′ /∈ suppKλ. But Lemma 13.43 implies that y′ ∈ suppLλ′ . Hence [Kλ : Lλ′ ] = 0.

We immediately obtain the folllowing corollary. It is a geometric analogue of [KR09, Corollary
7.5].

Corollary 13.45. If λ is the unique maximal partition in Λ(Γ,d) then Kλ
∼= Lλ.

Let c(λ, λ′) = [Kλ : Lλ′ ]. Each H
Gd
∗ (Zd)-module Lλ′ occurring in the composition series of Kλ

can be realized as a subquotient of Kλ. We can lift these subquotients to E-submodules of Kλ.
These lifts are of course not necessarily unique. For each λ′ > λ let L̂1

λ′ , ..., L̂
c(λ,λ′)
λ′ be the lifts of

the c(λ, λ′)-many copies of the simple module Lλ occurring in the composition series of Kλ. We
have an equality of E-modules

Kλ =
⊕

λ′≥λ,1≤l≤c(λ,λ′)

L̂lλ′ .
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13.2.8 Preparations for the inductive step

We collect some lemmas for a proposition which will play a crucial role in the inductive step of our
main proof. Let σ̃y(l) = [Zsly′,y] ∈ H∗(Zd).

Lemma 13.46. Suppose that y′ is directly accessible from y 6= y′ and y′ = sl(y). Let [Y ] ∈
H∗(µ

−1
y (ρλ)). Then σ̃y(l) � [Y ] = [{(sl.F, ρλ) | F ∈ π(Y )}].

Proof. Let us recall the convolution setup. The ambient manifold is F̃y′ × F̃y. By the clean
intersection formula, we have

[Zsly′,y] ∩ [F̃y′ × Y ] = e(T ).[{((sl.F, ρλ), (F, ρλ)) | F ∈ π(Y )}]. (108)

Let us abbreviate Ỹ := {((sl.F, ρλ), (F, ρλ)) | F ∈ π(Y )}. Using this notation, T is the following
vector bundle

T =
T (F̃y′ × F̃y)|Ỹ

T (Zsly′,y)|Ỹ + T (F̃y′ × Y )|Ỹ

over Ỹ . Let y = ((sl.F, ρλ), (F, ρλ)) ∈ Ỹ (note that this y has nothing to do with y and y′ despite
the similarity of notation). We have

T |{y} =
T (F̃y′)|{(sl.F,ρλ)} ⊕ T (F̃y)|{(F,ρλ)}

T (Zsly′,y)|{y} +
(
T (F̃y′)|{(sl.F,ρλ)} ⊕ T (Y )|{(F,ρλ)}

) . (109)

Moreover,
Zsly′,y = {(sl.F, F, ρ) | F ∈ Fy, F is ρ-stable}. (110)

Let e = {ρ | F is ρ-stable} and e′ = {ρ | sl.F is ρ-stable}. We have e ⊂ e′ by Lemma 13.21. The
map

F̃y → F̃y′ , F 7→ sl.F

induces a pushforward isomorphism on tangent bundles T (F̃y) → T (F̃y′). Let us denote this
isomorphism with ξ. It follows from (110) that

T (Zsly′,y)|{y} = {(ξ(v), v) | v ∈ T (Fy)|{F}} ⊕ T (e)|{ρλ}. (111)

Moreover,
T (F̃y′)|{(sl.F,ρλ)} = T (Fy′)|{sl.F} ⊕ T (e′)|{ρλ}. (112)

Therefore

T (Zsly′,y)|{y} ⊕ T (F̃y′)|{(sl.F,ρλ)} = T (Fy′)|{sl.F} ⊕ T (Fy)|{F} ⊕ T (e′)|{ρλ} ⊕ T (e)|{ρλ}
= T (F̃y′)|{(sl.F,ρλ)} ⊕ T (F̃y)|{(F,ρλ)}.

It now follows directly from (109) that T |{y} = {0}. Therefore T is a trivial zero-dimensional vector

bundle over Ỹ . In other words, T is isomorphic to Ỹ . Hence the Euler class of T is 1 ∈ H∗(Ỹ ).
Therefore (108) reduces to [Zsly′,y] ∩ [F̃y′ × Y ] = [Ỹ ]. Let p1 be the projection p1 : Ỹ → F̃y. Then

[Zsly′,y] � [Y ] = (p1)∗

(
[Zsly′,y] ∩ [F̃y′ × Y ]

)
= (p1)∗[Ỹ ] = [p1(Ỹ )] = [{(sl.F, ρλ) | F ∈ π(Y )}].

Lemma 13.47. Let λ′ > λ. Suppose that y′ ∈ Yd is a λ′-characteristic composition. Then for
every �ag F ∈ π ◦ µ−1

y′ (ρλ) there exists a simple transposition s ∈ Π such that y := s(y′) C y′ and

s.F is ρλ-stable, i.e., s.F ∈ π ◦ µ−1
y (ρλ).
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Proof. Let F ∈ π ◦ µ−1
y′ (ρλ). Let us choose a ρλ′ such that ρλ′ ∈ Oλ′ and F is ρλ′ . Let rk,l(λ) :=

rk((ρλ)l−1 ◦ ... ◦ (ρλ)k). By Proposition 13.13, this is independent of the choice of ρλ ∈ Oλ. Since
λ′ > λ there exist l > k such that rk,l(λ′) > rk,l(λ). Hence there exists a one-dimensional subspace
D ⊆ Vik such that (ρλ)l−1 ◦ ... ◦ (ρλ)k(D) = {0} but (ρλ′)l−1 ◦ ... ◦ (ρλ′)k(D) 6= {0}. Letting
a = l − k, we have, in particular, (ρλ)a(D) = {0} but (ρλ′)

a(D) 6= {0}. Let W be the smallest
subspace in the �ag F such that D ⊂W . Writing F = (V n)d

n=0 suppose thatW = V t = V t−1⊕D.
Since the �ag F is ρλ-stable, we have

(ρλ)a(W ) = (ρλ)a(V t−1) + (ρλ)a(D) = (ρλ)a(V t−1) ⊆ V t−a−1.

Let b be the smallest natural number such that (ρλ)b(W ) ⊆ V t−b−1. We have

V t−1 = V t−2 ⊕ ρλ(D), ..., V t−b+1 = V t−b ⊕ (ρλ)b−1(D).

Moreover, since ρλ′(D) 6= {0} and y′ is a λ′-characteristic composition, we have y′(t) = ik, y
′(t −

1) = ik+1, ..., y
′(t− a) = ik+a = il.

We choose s = st−b. Since b ≤ a we have (s(y′))(t− b) = y′(t− b+ 1) = ik+b−1 > ik+b = y′(t− b),
so s(y′) � y′ in the lexicographic ordering. Hence s(y′) C y′ in the accessibility ordering. We now
show that s.F is ρλ-stable. We write s.F = (Un). It is clear that Un = V n unless n = t− b. We
need to check that ρλ(U t−b+1) ⊂ U t−b and ρλ(U t−b) ⊂ U t−b−1. We have

ρλ(U t−b+1) = ρλ(V t−b+1) = ρλ(V t−b ⊕ (ρλ)b−1(D))

⊂ ρλ(V t−b) + (ρλ)b(D) ⊂ V t−b−1 = U t−b−1

because (ρλ)b(W ) ⊆ V t−b−1 by our choice of b. Since U t−b ⊂ U t−b+1 we also have ρλ(U t−b) ⊂
U t−b−1.

Proposition 13.48. Let λ′ > λ and let y′ be a λ′-characteristic composition. Then⊕
λ≤λ′′<λ′ H∗

(
µ−1

Ψ̂(λ′′)
(ρλ)

)
⊂ Kλ generates, under the action of H

Gd
∗ (Zd), the homology group

H∗(µ
−1
y′ (ρλ)) ⊂ Kλ.

Proof. Let Πy′ denote the set of all simple transpositions s in Π such that s(y′) C y′ and
µ−1
s(y′)(ρλ) 6= {0}. If s ∈ Πy′ then representations in Oλ′ do not stabilize any �ags in Fs(y′)

because y′ is a λ′-characteristic composition. Hence the greatest element λ′′ in Φ(s(y′)) must sat-
isfy λ′′ < λ′ (it is not possible that λ′′ and λ′ are unrelated - in that case φ(y′) would contain both
λ′ and λ′′, and so would not contain a greatest element, contradicting Lemma 13.22). It follows
that if s ∈ Πy′ then s(y′) ∈ Ψ̂(λ′′) for some λ ≤ λ′′ < λ.

For each s ∈ Πy′ let us de�ne a map

ζs : F̃s(y′) → F̃y′ , (F, ρ) 7→ (s.F, ρ).

This map is clearly an isomorphism of varieties. Let us also de�ne Xs = µ−1
s(y′)(ρλ). By Lemma

13.21, ζs(Xs) ⊆ µ−1
y′ (ρλ). Moreover, by Lemma 13.47,⋃

s∈Πy′

ζs(Xs) = µ−1
y′ (ρλ).

Observe that Xs is a closed subvariety of F̃s(y′). Hence ζs(Xs) is a closed subvariety of µ−1
y′ (ρλ).

Let Π̃y′ be a subset of Πy′ such that⋃
s∈Π̃y′

ζs(Xs) = µ−1
y′ (ρλ) and

⋃
s∈A

ζs(Xs) 6= µ−1
y′ (ρλ)
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for any proper subset A of Π̃y′ . It follows that
⋃
s∈Π̃y′

ζs(Xs) = µ−1
y′ (ρλ) is a decomposition of

µ−1
y′ (ρλ) into (possibly unions of) irreducible components. We have a corresponding decomposition

in homology ∑
s∈Π̃y′

H∗(ζs(Xs)) = H∗(µ
−1
y′ (ρλ)). (113)

Note that the sum is not necessarily direct. Decomposition (113) implies that in order to generate
H∗(µ

−1
y′ (ρλ)) it su�ces to generate each homology group H∗(ζs(Xs)). Let s = sl ∈ Π̃y′ . If Y is a

closed subvariety of Xs then σ̃sl(y′)(l) � [Y ] = [ζs(Y )], by Lemma 13.46 . But H∗(Xs) can be given
a basis consisting of fundamental classes of closed subvarieties, so the map

σ̃sl(y′)(l) : H∗(Xs)→ H∗(ζs(Xs))

takes a basis of H∗(Xs) to a basis of H∗(ζs(Xs)), i.e., it is a linear isomorphism. In partic-
ular, H∗(ζs(Xs)) can be generated from H∗(Xs) under the action of the element σsl(y′)(l) =

1 ⊗ σ̃sl(y′)(l) ∈ H
Gd
∗ (Zd). Finally, it follows from the remarks at the very beginning of the proof

that
H∗(Xs) ⊆

⊕
λ≤λ′′<λ′

H∗

(
µ−1

Ψ̂(λ′′)
(ρλ)

)
.

This completes the proof.

Example 13.49. Let us consider the quiver

i→ j → k

with dimension vector d = 2i+2j+2k. Let us �x a complex graded vector space V = Vi⊕Vj⊕Vk

with dim Vi = 2,dim Vj = 2 and dim Vk = 2. The Lie algebra corresponding to the quiver is sl4.
Let α, β, γ be simple roots corresponding to the vertices i, j, k, respectively. We de�ne the following
partitions λ1 = (α + β, α + β, γ, γ), λ2 = (α, α + β, β, γ, γ) of d. Let us choose a representation
ρ ∈ Oλ2

. We consider the λ1-characteristic composition jijikk. Note that this composition has
two immediate predecessors in the accessibility ordering:

jijikk

zz $$

ijjikk jiijkk.

We now want to determine the �bre µ−1
jijikk(ρ).

Note that to describe a �ag F ∈ Fjijikk uniquely it su�ces to give one-dimensional subspaces
Dj , Di, Dk of Vj , Vi and Vk, respectively. The corresponding �ag F is (Dj , Dj ⊕ Di,Vj ⊕
Di,Vj ⊕ Vi,Vj ⊕ Vi ⊕ Dk,V). To simplify notation we will therefore identify every �ag with
the corresponding triple (Dj , Di, Dk). We will use similar notation for �ags in other connected
components we consider.

Let us write ρ = (ρa, ρb), where ρa : Vi → Vj and ρb : Vj → Vk. We have

πd

(
µ−1
jijikk(ρ)

)
=

= {(Dj , ker ρa, Dk) | Dj ∈ P(Vj), Dk ∈ P(Vk)} ∪ {(Im ρa, Di, Dk) | Di ∈ P(Vj), Dk ∈ P(Vk)}
∼= (CP1 ∨ CP1)× CP1.
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We now determine the �bres µ−1
ijjikk(ρ) and µ−1

jiijkk(ρ). We have

πd

(
µ−1
ijjikk(ρ)

)
= {(ker ρa, Dj , Dk) | Dj ∈ P(Vj), Dk ∈ P(Vk)}
∼= CP1 × CP1.

πd

(
µ−1
jiijkk(ρ)

)
= {(Im ρa, Di, Dk) | Di ∈ P(Vj), Dk ∈ P(Vk)}
∼= CP1 × CP1.

Now let s1 = (12)(3)(4)(5)(6) and s3 = (1)(2)(34)(5)(6) be simple transpositions in S6. Then

s1.
(
πd

(
µ−1
ijjikk(ρ)

)) ⋃
s3.
(
πd

(
µ−1
jiijkk(ρ)

))
= πd

(
µ−1
jijikk(ρ)

)
is a decomposition of πd

(
µ−1
jijikk(ρ)

)
into irreducible components. We have a corresponding de-

composition in homology

H∗

(
s1.
(
πd

(
µ−1
ijjikk(ρ)

)))
+H∗

(
s3.
(
πd

(
µ−1
jiijkk(ρ)

)))
= H∗

(
πd

(
µ−1
jijikk(ρ)

))
.

13.2.9 The main argument

We will argue by induction on the poset {λ′ ∈ Λ(Γ,d) | λ′ ≥ λ}. This poset has a least and
greatest element. The least element is λ, the greatest element is the same as the greatest element
in Λ(Γ,d). We have an equality of E-modules

Kλ = H∗(µ
−1
d (ρλ)) =

⊕
λ′≥λ

H∗

(
µ−1

Ψ̂(λ′)
(ρλ)

)
.

The idea of the proof is to show inductively that each subspace H∗(µ
−1

Ψ̂(λ′)
(ρλ)) can be generated

(under the action of H
Gd
∗ (Zd)) from L̂λ.

Theorem 13.50. Let λ ∈ Λ(Γ,d). The standard module Kλ is generated by the subspace L̂λ.
Therefore, Kλ is indecomposable and has simple head Lλ.

Proof. By Lemma 13.43, H∗(µ
−1

Ψ̂(λ)
(ρλ)) ⊆ L̂λ. Therefore, H∗(µ

−1

Ψ̂(λ)
(ρλ)) can (trivially) be gen-

erated from L̂λ. Moreover, by Proposition 13.2.6, we know that Ψ̂(λ) is non-empty. Therefore,
µ−1

Ψ̂(λ)
(ρλ) 6= ∅ and H∗(µ

−1

Ψ̂(λ)
(ρλ)) 6= {0}.

Now let λ′ > λ and inductively assume that for all λ ≤ λ′′ < λ′ and 1 ≤ l ≤ c(λ, λ′′) the subspaces
L̂lλ′′ and H∗

(
µ−1

Ψ̂(λ′′)
(ρλ)

)
have already been generated. We want to generate H∗

(
µ−1

Ψ̂(λ′)
(ρλ)

)
and

L̂lλ′ .

We �rst show that we can generate all the L̂lλ′ . Let y be a λ′-characteristic composition. By

Proposition 13.48, we can generate H∗
(
µ−1
y (ρλ)

)
. Since y ∈ Ψ̂(λ′) ⊆ suppLλ′ , we know that each

L̂lλ′ intersects H∗
(
µ−1
y (ρλ)

)
non-trivially. But L̂lλ′ is a lift of a simple module, so it is generated

by any non-trivial subspace. Hence we can generate all the subspaces L̂lλ′ .

We now show that we can generate H∗
(
µ−1

Ψ̂(λ′)
(ρλ)

)
. The vector space H∗

(
µ−1

Ψ̂(λ′)
(ρλ)

)
can only

non-trivially intersect some L̂lλ′′ if λ ≤ λ′′ ≤ λ′ because suppLl
L̂λ′′

= suppLλ′′ ⊆ suppKλ′′ =
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Ψ(λ′′) and Ψ̂(λ′) ⊆ Ψ(λ′′) only if λ′ ≥ λ′′. For each λ ≤ λ′′ ≤ λ′ and 1 ≤ l ≤ c(λ, λ′′) let

H
(λ′′,l)
∗

(
µ−1

Ψ̂(λ′)
(ρλ)

)
= H∗

(
µ−1

Ψ̂(λ′)
(ρλ)

)
∩ L̂lλ′′ . We have an equality of vector spaces

H∗

(
µ−1

Ψ̂(λ′)
(ρλ)

)
=

⊕
λ≤λ′′≤λ′,1≤l≤c(λ,λ′′)

H
(λ′′,l)
∗

(
µ−1

Ψ̂(λ′)
(ρλ)

)
.

By induction, we can assume to have already generated H
(λ′′,l)
∗

(
µ−1

Ψ̂(λ′)
(ρλ)

)
for λ ≤ λ′′ < λ′,

1 ≤ l ≤ c(λ, λ′′). We can also generate the subspaces H(λ′,l)
∗

(
µ−1

Ψ̂(λ′)
(ρλ)

)
, for 1 ≤ l ≤ c(λ, λ′),

because we have already generated the subspaces L̂lλ′ . This completes the inductive step.

It follows that L̂λ generates all the lifts L̂lλ′ of the simple modules in the composition series of Kλ,
so it generates all of Kλ. Therefore, Kλ is indecomposable and has simple head Lλ.

Let us �nish with a simple but non-trivial example which brings together the various threads of
our argument.

Example 13.51. Let us consider the quiver

i→ j

with dimension vector d = 2i + 2j. Let us �x a complex graded vector space V = Vi ⊕ Vj

with dim Vi = 2,dim Vj = 2. The Lie algebra corresponding to the quiver is sl3. Let α, β be
the simple roots corresponding to the vertices i, j, respectively. There are three partitions of d:
λ0 = (α, α, β, β), λ1 = (α, α+ β, β), λ2 = (α+ β, α+ β). The closure ordering on these partitions
is λ2 > λ1 > λ0. We have Repd

∼= Hom(C2,C2) ∼= C4. The orbit Oλm consists of representations
of rank m, for 0 ≤ m ≤ 2. The following diagram illustrates the ordering on the weights:

jjii

��

jiji

|| ""

ijji

""

jiij

||

ijij

��

iijj

where Ψ̂(λ0) is designated with red colour, Ψ̂(λ1) with green colour and Ψ̂(λ2) with blue colour.
For each y ∈ Yd we have Fy ∼= CP1 × CP1. Moreover, F̃iijj ∼= Fiijj and F̃ijij is a vector bundle
over Fijij of rank one, F̃ijji and F̃jiij are vector bundles over Fijji resp. Fjiij of rank two, F̃jiji
is a vector bundle over Fjiji of rank three and F̃jjii is a vector bundle over Fjjii of rank four.

Suppose that F = (D1, D1 ⊕D2, D1 ⊕D2 ⊕D3, D1 ⊕D2 ⊕D3 ⊕D4) ∈ Fd is a �ag, where each
Dk is a one-dimensional subspace of Vi or Vj . Let mi be the lowest integer such that Dmi ⊂ Vi

and let mj be the lowest integer such that Dmj ⊂ Vj . Since the vector spaces Vi,Vj are two-
dimensional, the �ag F is already determined uniquely by Dmi and Dmj . To simplify the notation
in what follows we will therefore identify the �ag F with the tuple (Dmi , Dmj ) if mi < mj or the
tuple (Dmj , Dmi) if mi > mj .
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Let ρ0 be the unique representation of rank zero and let us choose ρ1 ∈ Oλ1
and ρ2 ∈ Oλ2

. We
describe the �bers of the map µd : F̃d → Repd in the table below. It should be read in the
following manner. The entry in row y = ijij and column ρ1, for example, is the �bre πd(µ−1

d (ρ1))
restricted to the connected component Fijij .

y ρ0 ρ1 ρ2

iijj Fiijj ∅ ∅
ijij Fijij {(ker ρ1, Im ρ1)} ∼= {pt} ∅
ijji Fijji {(ker ρ1, D) | D ∈ P(Vj)} ∼= CP1 ∅
jiij Fjiij {(Im ρ1, D) | D ∈ P(Vi)} ∼= CP1 ∅
jiji Fjiji {(Im ρ1, D) | D ∈ P(Vi)} ∨

{(D, ker ρ1) | D ∈ P(Vj)} ∼= CP1 ∨CP1
{(D, ρ−1

2 (D)) | D ∈ P(Vj)} ∼= CP1

jjii Fjjii Fjjii Fjjii

Note that πd(µ−1
jiji(ρ1)) ∼= CP1 ∨ CP1 is not smooth and is the wedge sum of s1.

(
πd(µ−1

ijji(ρ1))
)

and s3.
(
πd(µ−1

jiij(ρ1))
)
, where s1 = (12)(3)(4), s3 = (1)(2)(34) are simple transpositions in S4.

We are now going to work out the composition series of the standard modules, compute their
dimensions, compute the dimensions of the corresponding simple modules as well as the dimensions
of the di�erent weight spaces.

There are three simple graded modules over the KLR algebra H
Gd
∗ (Zd). Since λ2 is the top

partition, the simple module L(λ2) is isomorphic (up to a shift in the grading) to the standard
module K(λ2) = H∗(µ

−1
d (ρ2)) ∼= H∗(CP1) ⊕H∗(CP1 × CP1). In particular, it follows that L(λ2)

is six-dimensional. The jjii-weight space L(λ2)jjii is four-dimensional and the jiji-weight space
L(λ2)jiji is two-dimensional.

Let us now consider the standard moduleK(λ1). We have an isomorphismK(λ1) = H∗(µ
−1
d (ρ1)) ∼=

H∗({pt})⊕H∗(CP1)⊕H∗(CP1)⊕H∗(CP1∨CP1)⊕H∗(CP1×CP1). It follows that K(λ1) is twelve-
dimensional. Since [K(λ1) : L(λ1)] = 1 it follows from dimension considerations (dimL(λ1)+x·6 =
dimL(λ1) + x · dimL(λ2) = dimK(λ1) = 12 for some x ≥ 0) that [K(λ1) : L(λ2)] = 1 and that
L(λ1) is a six-dimensional simple module. The ijij-weight space L(λ1)ijij is one-dimensional, the
weight spaces L(λ1)ijji and L(λ1)jiij are two-dimensional and the jiji-weight space L(λ1)jiji is
one-dimensional.

Finally, let us consider the standard moduleK(λ0). We have an isomorphismK(λ0) = H∗(µ
−1
d (ρ0)) ∼=

H∗(Fd) ∼=
(
H∗(CP1 × CP1)

)⊕6
. Therefore, the standard module K(λ0) is 24-dimensional. We can

now analyze the dimensions of the weight spaces of the simple modules L(λ1) and L(λ2) to conclude
that [K(λ0) : L(λ1)] = 2 and [K(λ0) : L(λ2)] = 1. This implies that L(λ0) is six-dimensional.
The iijj-weight space L(λ0)iijj is four-dimensional and the ijij-weight space L(λ0)ijij is two-
dimensional.
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14 Notation

For the reader's convenience we collect some of the frequently used notations here.

1. Homology and cohomology

• EG - the universal principal G-bundle (unique up to homotopy)

• BG = EG/G - the classifying space for principal G-bundles

• EG×GM := (EG×M)/G - the homotopy quotient of a manifold M by a group G

• Gr(n,m) - the Grassmannian of linear n-dimensional subspaces of Cm

• H∗(M) - singular cohomology ring of M

• H∗G(M) := H∗(EG×GM) - the equivariant cohomology ring of M

• SG := H∗G({pt}) = H∗(BG)

• KG := Frac(SG)

• EnG→ BnG - an n-th approximation to the universal principal G-bundle EG→ BG

• Hsing
∗ (M) - singular homology of M

• H∗(M) - Borel-Moore homology of M

• HG
∗ (M) - G-equivariant Borel-Moore homology of M

2. Quivers

• Γ = (I,H, s, t) - a quiver (vertices, arrows, source function, target function)

• d = (di)i∈I - dimension vector for Γ

• V =
⊕

i∈I Vi - �xed vector space with grdim V = d

• Repd :=
⊕

h∈H HomC(Vs(h),Vt(h))

• Gdi := GL(Vi)

• Gd :=
∏
i∈I GL(Vi) =

∏
i∈IGdi

• Gd := GL(V)

• y = (y1, ..., yk) - a composition of d

• y = (y1, ..., yk) - a composition of d

• Compd - the set of compositions of the natural number d

• Compd - the set of compositions of the vector d

• Yd - the set of strictly multiplicity-free compositions of d

3. Flag varieties

• F - generic notation for �ags

• Fy - the quiver �ag variety of type y

• F(V ) - the ordinary �ag variety of all complete �ags in V

• Fd =
∐
y∈Yd

Fy - the quiver �ag variety

• F |i = F ∩Vi - restriction of a �ag F to the graded component Vi of V

• F̂ - the ungraded �ag associated to a quiver-graded �ag F
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• Z(Gd) - the centre of Gd

4. Weyl groups and torus �xed points

• (i1, ..., i|I|) - a �xed chosen ordering of the vertices in I

• (e1
i1
, ..., ed1

i1
, ..., e1

i|I|
, ..., e

d|I|
i|I|

) - a �xed chosen basis of V

• Td - the subgroup of diagonal matrices in Gd wrt. the chosen basis

• Bd - the subgroup of upper triangular matrices in Gd wrt. the chosen basis

• Bd - the subgroup of upper triangular matrices in Gd wrt. the chosen basis

• Wd := NGd
(Td)/Td

• Wd := NGd
(Td)/Td

• Sn - the symmetric group on n letters

• Π = {s1, ..., sd} - the set of simple transpositions in Wd

• Πd = Π ∩Wd - the set of simple transpositions in Wd

• l : Wd → N≥0 - the length function

• Fe - the standard coordinate �ag

• Min(Wd,Wd) - the set of minimal length right coset representatives

• Fw := w(Fe)

• ye - the type of the standard coordinate �ag

• yw - the type of the coordinate �ag Fw

• Fw := Fyw
5. Algebraic groups and Lie algebras

• Bw := StabGd
(Fw)

• Bw := StabGd
(Fw)

• Nw := Ru(Bw) - the unipotent radical of Bw

• Pw,ws := (Bwwsw
−1Bw) ∪Bw

• Nw,ws := Ru(Pw,ws) - the unipotent radical of Pw,ws

• gd := Lie(Gd)

• g := Lie(Gd)

• td := Lie(Td)

• bw := Lie(Bw)

• nw := Lie(Nw)

• pw,ws := Lie(Pw,ws)

• nw,ws := Lie(Nw,ws)

• mw,ws := nw/nw,ws

6. Root systems

• ∆ - the set of roots of g wrt. td
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• gα - the root space of weight α

• χj - the weight of the td-module C.ej
• ∆1 := {χj − χj+1 | 1 ≤ j ≤ d− 1} - the base of ∆

• βj := χj − χj+1 - simple root

• ∆+ - the set of positive roots in ∆ wrt. base ∆1

• ∆− - the set of negative roots in ∆ wrt. base ∆1

• Ä(h) := {α ∈ ∆ | gα ⊂ h}

• ∆d - the set of roots of gd wrt. td

• ∆+
d := ∆d ∩∆+

• ∆−d := −∆+
d = ∆d ∩∆−

• ∆1
d := ∆d ∩∆1

7. The Steinberg variety

• F̃y := {(ρ, F ) | F is ρ-stable} ⊂ Repd ×Fy - the incidence variety of type y

• F̃w := F̃yw
• F̃d :=

∐
y∈Yd

F̃y

• µy : F̃y → Repd - �rst projection

• πy : F̃y → Fy - second projection

• γ(y) := dimC(F̃y)

• µd : F̃d → Repd - �rst projection

• πd : F̃d → Fd - second projection

• rw := {ρ ∈ Repd | Fw is ρ-stable}

• rw,w′ := rw ∩ rw′

• dw,w′ = rw/rw,w′

• p̃l : OF̃y (l)→ F̃y - the l-th canonical line bundle over F̃y

• xy(l) := c1(OGd

F̃y
(l))

• Zy,y′ := F̃y ×Repd
F̃y′ ⊂ F̃y × F̃y′ - the Steinberg variety of type (y, y′)

• Zd :=
∐
y,y′∈Yd

Zy,y′

• µy,y′ : Zy,y′ → Repd - �rst projection

• πy,y′ : Zy,y′ → F̃y × F̃y′ - �rst projection

• µd,d : Zd,d → Repd - �rst projection

• πd,d : Zd,d → Fd × F̃d - �rst projection

8. Convolution

• [X] - (Borel-Moore) fundamental class of X
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• [X]G - G-equivariant fundamental class of X

• ? : H
Gd
∗ (Zd; k)×HGd

∗ (Zd; k)→ H
Gd
∗ (Zd; k) - convolution product

• � : H
Gd
∗ (Zd; k)×HGd

∗ (F̃d; k)→ H
Gd
∗ (F̃d; k) - convolution product

9. Generic notation for Schubert cells

• Ωw := BwB/B - Schubert cell

• Ωw := G.(B/B,wB/B) - diagonal Schubert cell

• Ωw′,w := π−1(Ωw′) ∩Ωw

10. Cells in the quiver �ag and Steinberg varieties

• Ωuw := Bd.Fwu

• Ωu,u′

w := Gd.(Fu′ , Fwu)

• Ωu′,u
w′,w := (πu

′,u)−1(Ωu
′

w′) ∩Ωu′,u
w

• fw := Bd.Fw

• fffw := Gd.(Fe, Fw)

• fffw,w′ := $−1(fw) ∩fw′fw′fw′

• Ow := fw ∩ Fd

• Ow := fffw ∩ (Fd ×Fd)

• Ow,w′ := fffw,w′ ∩ (Fd ×Fd)

• Õw := π−1
d (Ow)

• Õw := π−1
d,d(Ow)

• Õw,w′ := π−1
d,d(Ow,w′)

• O≤w :=
∐
w′≤w Ow′

• O≤w :=
∐
w′≤w Ow′

• Ou
w := Gd.(Fu, Fuw)

• Zwd := Õw

• Z≤wd :=
⋃
w′≤w Zw

′

d =
∐
w′≤w Õw

• Zwy,y′ := Zwd ∩ Zy,y′

• Z≤wy,y′ := Z≤wd ∩ Zy,y′
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