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1 Introduction

1.1 The big picture

Khovanov and Lauda ([KL09]) and Rouquier ([Rou08]) associated to a datum consisting of a
quiver and a dimension vector certain infinite-dimensional algebras. They have become known as
Khovanov-Lauda-Rouquier (KLR) or quiver Hecke algebras. We will use these names interchange-
ably. Khovanov and Lauda defined KLR algebras using a calculus of braid-like plane diagrams of
interacting strings labelled by the vertices of a quiver. The resulting algebra, as an abelian group,
consists of finite linear combinations of such diagrams modulo certain relations, which can also be
described diagramatically. Multiplication in this algebra is given by concatenation of diagrams.
Rouquier, on the other hand, took a different approach and defined KLR algebras directly by
generators and relations.

The motivation for studying KLR algebras is twofold - they categorify quantum groups and yield
non-trivial gradings on affine Hecke algebras. Let g be a simply-laced Kac-Moody Lie algebra with
Dynkin diagram I'. It admits a triangular decomposition g = nt @ h @ n~. Let U,(g) denote the
quantized universal enveloping algebra of g over the field Q[g, ¢~ !]. The triangular decomposition
of g induces a corresponding decomposition U,(g) = U,(n™) ® U,(h) ® Uy(nt) of the quantized
universal enveloping algebra.

We are primarily interested in the categorification of a certain subring of the algebra U,(n~),
defined over A = Z[g,q '], called Lusztig’s integral form of U,(n~). Let 4f denote Lusztig’s
integral form of U,(n~) and let 4f* denote the graded dual of 4f. Before we can explain the
connection between Lusztig’s integral form of the negative half of the quantum group and KLR
algebras we need to introduce some notation. Let H(I',d) be the KLR algebra associated to the
quiver I' with vertex set I and dimension vector d. Let K(d) denote the Grothendieck group of
the category of finitely generated graded projective modules over H(T',d) and let K*(d) denote
the Grothendieck group of the category of finite-dimensional graded modules over H(T,d). We
can now state the main categorification results. Khovanov and Lauda ([KL09]) have shown using
combinatorial and algebraic methods that there exist graded twisted bialgebra isomorphisms

viaf= P K@), v :af*= P K(d).

deNI deNI

Varagnolo and Vasserot ([VV11]) have refined this result by proving that y~! maps classes of

indecomposable projective modules to the canonical basis of 4f and that (y*)~! maps classes of
simple modules to the dual canonical basis of 4f*. Their results required the use of geometric
methods. Kato ([Kat13]) and McNamara ([McN13|) have also constructed modules which cat-
egorify PBW and dual PBW bases of the quantum group. Furthermore, it has been shown by
Kang and Kashiwara ([KK12]) that there exists an isomorphism between each integrable highest
weight module over U,(g) and the Grothendieck group of the category of finitely generated graded
projective modules over a certain cyclotomic quotient of the corresponding KLR algebra.

There also exists a connection between cyclotomic KLR algebras and certain quotients of affine
Hecke algebras called cyclotomic Hecke (or sometimes Ariki-Koike) algebras. The latter include
group algebras of Coxeter groups and Iwahori-Hecke algebras. Brundan and Kleshchev ([BK09])
have constructed an explicit isomorphism between blocks of (possibly degenerate) cyclotomic Hecke
algebras and a sign-modified version of cyclotomic KLR algebras associated to the infinite linear
quiver or a cyclic quiver (i.e. in types Ao, and A.). This isomorphism yields interesting Z-gradings
on blocks of symmetric groups and the associated Iwahori-Hecke algebras, thus paving the way to
the study of graded representation theory of these algebras. Furthermore, Webster ([Web14]) and
Miemietz and Stroppel ([MS15]) have constructed an isomorphism between certain completions of

KLR algebras and affine Hecke algebras in types A, and Ee.



In this thesis we are primarily interested in the geometric construction of KLR algebras due to
Varagnolo and Vasserot. To prove that indecomposable projectives over a KLR algebra categorify
the canonical basis of 4f, they identified KLR algebras with certain convolution algebras in equiv-
ariant Borel-Moore homology. This geometric construction is rather complex but it enables us
to apply powerful sheaf-theoretic tools such as the BBD decomposition theorem to study KLR
algebras and their representation theory. Convolution algebras provide a uniform approach to the
construction of many familiar objects such as group algebras of Weyl groups, affine Hecke algebras,
degenerate affine Hecke algebras as well as quotients of universal enveloping algebras and quantized
loop algebras. We will now briefly review the classical setting in which convolution algebras occur
and explain how this framework can be modified to construct KLR algebras.

Let G be a complex semisimple algebraic group and let g denote its Lie algebra. Let N be the closed
subvariety of g consisting of all nilpotent elements, i.e., all elements x € g such that adxz : g — g is
a nilpotent endomorphism. The group G acts on N by conjugation and C* acts on N by dilations.
Let B denote the variety of all Borel subalgebras of g. It is isomorphic to the homogeneous space
G/B. The interplay between the varieties N and 9B is encoded in the following "incidence variety"
B := {(2,b) € N xB | z € b}. If G = SL,(C) then we can identify 9B with the variety of complete
flags in C™. Moreover, g = sl,, acts naturally on C™ by matrix multiplication. Let F' = (V},)}!_, be
the flag corresponding to a Borel subalgebra b under this identification. The condition x € b can
then be interpreted as saying that x(V}) C Vi_; for each k, i.e., that the flag F is stable under the
endomorphism z. We have two canonical projections

N/ \%.

The map u, called the Springer resolution, is proper and the map 7 is a G-equivariant vector
bundle. The fibred product Z := B xr B, called the Steinberg variety, is one of the central
objects of study in geometric representation theory. Using convolution in Borel-Moore homology
or equivariant K-theory of this variety (and related varieties) one can construct many interesting
algebras of fundamental importance in representation theory, for example the group algebra of
a Weyl group, quotients of the universal enveloping algebra of sl,, and the affine Hecke algebra.
One can also construct all the irreducible modules over these algebras as quotients of convolution
modules in the Borel-Moore homology of fibres of the Springer resolution.

A deeper study of convolution algebras involves intersection cohomology methods. There is an
algebra isomorphism H,(Z) = Ext” (1.Cg, 1+Cg) between the convolution algebra H,(Z) and the

geometric extension algebra associated to the direct image of the constant perverse sheaf on B. One
can therefore apply the Beilinson-Bernstein-Deligne decomposition theorem to deduce many deep
representation-theoretic consequences, for example the classification and construction of simple
modules or Bernstein-Gelfand-Gelfand-type reciprocities.

We apply this framework to study KLR algebras. The main departure from the classical setting
explained above is the introduction of a quiver grading. We replace the variety 28 with a suitably
defined quiver flag variety and replace N with the space of representations of the chosen quiver
I' with dimension vector d. Varagnolo and Vasserot have shown in [VV11] that the equivariant
Borel-Moore homology of the resulting Steinberg variety, equipped with the convolution product,
is isomorphic to the quiver Hecke algebras defined diagramatically by Khovanov and Lauda and
algebraically by Rouquier. The main idea of the proof is to construct and explicitly calculate a
faithful representation of the convolution algebra HY(Z), and show that this faithful representation
agrees with the faithful representation of the diagramatic quiver Hecke algebra on a direct sum of
polynomial rings.



1.2

Overview of the thesis

The thesis has two main objectives. The first is to give a detailed and self-contained account of
the geometric construction of KLR algebras due to Varagnolo and Vasserot. Their paper [VV11]
was the main inspiration for us in writing this thesis. We note that [VV11] does not contain much
detail and many proofs and calculations are left out. We remedy this by supplying detailed proofs
and calculations in this thesis. Our second objective is to use the geometric construction to study
certain aspects of the representation theory of KLR algebras.

We now briefly summarize the contents of each chapter.

Chapter 2: Homology and cohomology.

We recall the definitions and basic properties of equivariant cohomology and Borel-Moore
homology. We also calculate some fundamental examples of equivariant cohomology groups.

Chapter 3: Quivers.

The definition of a KLR algebra depends on a quiver and a dimension vector. The purpose
of this chapter is introduce various notations pertaining to these input data. We also discuss
related objects, for example the space Repy of representations of our quiver and an associated
reductive linear algebraic group Gq. B

Chapter 4: Quiver flag varieties.

To a quiver and a dimension vector we associate a "quiver flag variety" Fq4, which can be
characterized as a certain disjoint union of products of ordinary flag varieties. We also
investigate the connections between quiver flag varieties and Lie-theoretic objects such as
Weyl groups and root systems.

Chapter 5: The Steinberg variety.

We study the interplay between representations of our quiver and the quiver flag variety.
We begin by defining what it means for a flag to be stabilized by a representation of the
quiver. We then define a vector bundle Fgq over the quiver flag variety whose fibre consists
of representations stabilizing a given flag. Finally, we define a quiver analogue Zq of the
Steinberg variety. We also prove some basic properties of these varieties. For example, we

show that H*G i(.7?g) is isomorphic to a direct sum of polynomial rings.

Chapter 6: Convolution.

We first recall the definition of the convolution product from [CG97, Chapter 2.6-2.7] and
adapt it to the equivariant setting. We then apply it to our Steinberg variety Zq. Thereby
we obtain the main object of study in this thesis - the convolution algebra bios 4(Z4). We
also show that the algebra HC ¢(Z4) naturally acts by convolution on HE 4(Fa). We call it
the "polynomial representation" of Hy' Y Zq).

Chapter 7: Stratifications.

Our goal here is to gain a better understanding of the structure of the convolution algebra
Hf %4(Zq). In particular, we want to determine a basis of this algebra over the equivariant
cohomology ring of a point. To do this, we adapt the theory of affine stratifications of an
algebraic variety to take account of the presence of a quiver grading. We define various
"quiver Schubert cells" and show that equivariant fundamental classes of their closures form

a basis of H. f %(Zq). Subsequently we show that the stratification of the variety Z4 which we
defined induces a filtration on the convolution algebra oo %(Zq). At the end of the chapter
we also describe the centre of HY 2(Z24) and show that the variety Zgq is Gg-equivariantly



formal. We will need these results later when we study the graded representation theory of
Gga
H.%(Za).

Chapter 8: Relationship between Gq4- and Ty4-equivariant (co)homology.

We choose a maximal torus Tq in the reductive algebraic group Gg4. We then recall the
standard fact that Gg-equivariant homology is isomorphic to the invariants of Tq-equivariant
homology under the action of the associated Weyl group.

Chapter 9: Euler classes and convolution.

We begin by recalling the "clean intersection formula" which, under appropriate assumptions,
allows us to explicitly calculate the convolution product. The formula involves multiplicites
which can be identified with Euler classes of certain vector bundles. Our goal in this chapter
is to determine these multiplicities for quiver flag varieties and the Steinberg variety. We
show that the Euler class in the clean intersection formula can also be identified with a
product of the weights of the tangent space to a quiver Schubert variety at a torus fixed
point, considered as a module over the Lie algebra of the torus Tyq. The rest of the chapter
is devoted to the computation of these Euler classes.

Chapter 10: Localization to Ty-fixed points.

We apply the localization theorem for equivariant cohomology and the results of chapter 9
to compute the convolution product on torus fixed points. We then use this calculation to
show that the polynomial representation of H*G 9(Z4q) is faithful. The main results of this

chapter are due to Varagnolo and Vasserot ([VV11]). However, most of the calculations and
detailed proofs are ours.

Chapter 11: Generators and relations.

The purpose of this chapter is to translate the geometric results from the previous chapters
into algebraic terms. We first define certain elements in H*GQ(ZQ) and show that these

elements generate H. *G %(Z4) as an algebra. We then give an explicit description of the faithful

polynomial representation of H*G 9(Z4). We use this representation to find a complete set of
relations in our convolution algebra. The presentation in terms of generators and relations
which we obtain implies that H. *G %(Z4q) is isomorphic as a graded algebra to the quiver Hecke
algebras defined by Rouquier and Khovanov-Lauda. The main results of this chapter are also
due to Varagnolo and Vasserot ([VV11]).

Chapter 12: Representation theory of convolution algebras.

We now turn our attention to the representation theory of KLR algebras. We also adopt a
geometric approach. The purpose of chapter 12 is to give a succinct yet rigorous overview
of the main technical tools we require. We carefully define perverse sheaves, intersection co-
homology complexes and state the Beilinson-Bernstein-Deligne decomposition theorem. Our
next objective is to derive a somewhat stronger version of the decomposition theorem which
we will apply to study representations of KLR algebras. To do this we exploit additional
information which is contained in the equivariant decomposition theorem of Bernstein-Lunts.
We then explain how one can use the decomposition theorem to classify graded simple mod-
ules over a convolution algebra. The chapter ends with a discussion of standard modules and
their relation to graded simple modules.

Chapter 13: Representation theory of KLR algebras.

We begin by applying the results of chapter 12 to KLR algebras, always carefully checking
that the relevant assumptions are satisfied. We next turn our attention to the special case of
the equioriented A,, quiver and study in detail the interplay between geometry and represen-
tation theory. The chapter contains two important results. The first results says that all the
graded simple modules obtained from the decomposition theorem are non-zero. Our proof



is inspired by a proof of the corresponding result for affine Hecke algebras due to Ginzburg
([CG97, Section 8.8]). The second result states that every standard module over a KLR
algebra associated to an equioriented A,, quiver is indecomposable with simple head. This
result has been proved by Kato ([Kat12]) using sheaf-theoretic and homological methods.
We give a different proof which is more geometric in nature.



2 Homology and cohomology

In this chapter we review the definitions and fundamental properties of equivariant cohomology
and Borel-Moore homology.

2.1 The homotopy quotient

We first define the homotopy quotient of a manifold by a group action and discuss examples for
tori and general linear groups.

Definition 2.1. Let G be a topological group. A principal G-bundle is a fibre bundle p: E — B
together with a continuous G-action E x G — FE such that G preserves fibres and acts freely
and transitively on each fibre. A wuniversal principal G-bundle, denoted EG — BG, is a principal
G-bundle such that for every paracompact manifold X the map

[X, BG] = G-PBund(X)/ ~

[f] = ["EG

(from the set of homotopy classes of maps from X to BG to the set of isomorphism classes of
principal G-bundles) is a set isomorphism. In other words, every principal G-bundle over X is
isomorphic to the pullback of the universal bundle along some continuous map f : X — BG,
and the correspondence between isomorphism classes of principal G-bundles and homotopy classes
of maps f : X — BG is bijective. The space BG is called the classifying space for principal
G-bundles. The following theorem is standard.

Theorem 2.2. Let G be a topological group. Then:

(i) The space EG exists and is unique up to equivariant homotopy equivalence.

(ii) EG is contractible and the action of G on EG is free.

(iii) Conversely, if E is contractible and G acts freely on E, then E — E/G is a universal principal
bundle.

Proof. See e.g. [Hus91, Chapter 4]. O

Remark 2.3. Let M be a G-manifold. We want to study the cohomology of the orbit space
M/G. In general, M/G does not admit the structure of a manifold. However, if the action of G is
free, then M /G exists as a manifold. If G doesn’t act freely, we want to replace M by a homotopy
equivalent space on which G does act freely. Since E'G is contractible, M is homotopy equivalent to
EG x M. Moreover, since G acts freely on EG, the diagonal action of G on EG x M is free as well
and the quotient by this action exists as a manifold. This motivates the following definition. A
Definition 2.4. Suppose that G acts on EG from the right and on M from the left. Let G act
diagonally on the product space EG x M by the formula (e,m).g = (eg~*,g.m). We call the

quotient

EG x% M := (EG x M)/G
of EG x M by this diagonal action the homotopy quotient of M by G, the homotopy orbit space,
or the Borel construction. A

Example 2.5. The most important examples for us will be tori and GL,,.

(i) Let G = C*. The group G acts freely on C™\{0} by scalar multiplication. The quotient
(C™\{0})/G is isomorphic to CP"~!. We obtain a principal bundle (C"\{0}) — CP"~! whose
total space is (2n — 2)-connected, i.e., the homotopy groups m;(C™\{0}) vanish for i = 1,...,2n — 2.
We can define the universal bundle by taking direct limits of the total space and the base space:

EC* =1lm(C"\{0}) =C>\{0}  and  BC* =lmCP""' =CP~.

10



(ii) Let G = T™ = (C*)™ be a torus. Then
ET™ = (EC*)™ = (C=\{o}h™ and BT™ = (BC*)™ = (CP*)™.

(iii) Let G = GL,(C) and m > n be an integer. Let Mat(m x n) denote the space of all m x n
matrices with complex entries, and Mat™**(m x n) denote the subset of matrices of maximal rank
n. The group GL,,(C) acts on Mat(m x n) from the right preserving Mat"**(m x n). Let Gr(n,m)
denote the Grassmannian of linear subspaces of C™ of dimension n. Define a map

Mat™**(m x n) = Gr(n,m)

A Im(A).

We can interpret matrices of maximal rank as injective C-linear homomorphisms, i.e., Mat m X
n) = Hom¢"” (C™,C™). Precomposing such a homomorphism with a linear automorphism of C”
does not change its image. On the other hand, if two such homomorphisms have the same image,
we can precompose one of them with a linear automorphism of C" to obtain the other. Hence
Mat™**(m x n)/GL, = Gr(n,m) and Mat™**(m x n) — Gr(n,m) is a principal GL,-bundle.
Taking the limit m — oo we obtain the principal GL,, bundle

max (

Mat™** (0o x n) = Gr(n, 00).

The action of GL,, on Mat™**(co x n) is clearly free, and one can check without much difficulty
that Mat™**(co x n) is contractible. Hence

EGL,, = Mat™** (oo x n) and BGL,, = Gr(n, o).

Proposition 2.6. Let H be a closed subgroup of G. Then the quotient EG/H exists and the map
EG — EG/H is a universal bundle for H.

Proof. See [Bri98, p.4]. O

2.2 Equivariant cohomology

In this section we define equivariant cohomology rings and discuss examples for a point and for
homogeneous spaces. For a more thorough treatment of equivariant cohomology the reader is
referred to [Bri98].

Definition 2.7. Let M be a topological manifold endowed with a continuous action of a topological
group G. Let R be a commutative ring.
(i) We define the equivariant cohomology ring HE.(M; R) to be

H}(M;R) := H*(EG x M;R),

where H*(—; R) denotes singular cohomology with coefficients in R.
(i) In particular, if M = {pt} is a point, then

H;({pt}; R) = H'(EG/G: R) = H'(BG: R).

We set
S¢(R) := H*(BG; R), Kg(R) := Frac(Sg(R)).

If we work with a fixed coefficient ring R, we will often abbreviate Sg, K¢g.
(iii) Let N be a G-stable subspace of M. Then we define

HY(M,N;R) := H*(EG x% M, EG x% N; R)

to be the relative equivariant cohomology ring of the pair (M, N). A
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Remark 2.8. Even though we have given a general definition of equivariant cohomology for any
topological manifold and topological group, we will most often work with manifolds which are also
smooth and groups which are also Lie groups.

Example 2.9. Let M = {pt} be a point.
(i) We have
Hex ({pth R) = H*(BC™; R) = H*(CP™; R) = R[t],

where degt = 2. We also have the following concrete description of this cohomology ring. Let
X*(C*) denote the character group of C*. We let C* act on Cy from the left with weight A, i.e.,
tw = thv, for t € C*,v € Cy. Moreover, C* acts naturally on C>\{0} from the right by scalar

multiplication (or matrix multiplication). We let C* act on the product space (C®\{0}) x©" Cy
diagonally according to the formula (m,v).t = (m.t~!,t.v) = (m.t~!,t*v). The quotient

Ocp= () := (C¥\{0}) " Cx = ((C*\{0}) x C)/C
is a line bundle over CP°. It is well-known that the following composition
Z = X*(C*) — Pic(CP>®) — H*(CP>;Z)

A = Ocpes (A) = ¢1(Ocpe (A)),

where the last map is the first Chern class, is an isomorphism. In particular, the first Chern class
¢1(Ocp= (1)) of the canonical line bundle generates H*(CP>;Z) as an algebra.

(ii) We have Hx..({pt}; R) = H*(BT™; R) = H*((CP>*)™; R) = R[t1,...,tm], where degt;, = 2.
As before, we have isomorphisms

7™M = X*(T™) — Pic((CP>®)™) — H?((CP>)™; 7).
We set
O(cpoeym (ks p) 1= Ocpooym (A),

where A = (0,...,0, 1,0, ...,0) with p in the k-th position. Then the first Chern classes of the line
bundles O(cpeeym (1;1), ..., O(cpoeym (m; 1) generate H*((CP>°)™;Z) as an algebra.

(iii) Hgy, ({pt}; R) = H*(BGLy; R) = H*(Gr(n,00); R) = R[ty, ..., t,], where degt; = 2i. We can
interpret this as the algebra of symmetric polynomials.

Example 2.10. Let H be a closed subgroup of G. Proposition 2.6 allows us to calculate the
G-equivariant cohomology ring of the space G/H. We have

H:(G/H;R) = H*(EG x ¢ G/H;R)= H*(EG/H;R) = H*(BH;R) = Hy;({pt}; R).
Let G = GL,, and let H = T be a maximal torus. Then
H¢y (GL,/T; R) = Hy({pt}; R) = H*(BT; R) = H*((CP*)"; R) = R|[t1, ..., tn],

where degt; = 2.

Definition 2.11. Let G be a topological group. We define {(m, : E"G — B"G,pn,qn) | n > 0},
where p,, : E"'G — E"G, q,, : B**'G — B™G are continuous maps, to be an approzimation of
the universal principal G-bundle EG — BG if:

e ecach 7, : E"G — B"@ is a principal G-bundle and each p,, : E"T'G — E"G is a morphism
of principal G-bundles,

e cach space E"(G is n-connected,

® T,110(q, = pp o, for each n > 0,

o {(E"G,py) | n >0}, {(B"G,q,) | n> 0} form direct systems,
e EG =lim E"G, BG =lim B"G.

12



We call E"G — B"G an n-th approximation of EG — BG. A
Proposition 2.12. Let n > 0 and let E"G — B"G be an n-th approzimation of EG — BG.
Then for allm <n

HIM(M;R) = H"(EG x% M; R) = H™(E"G x¢ M;R),

for any compact topological G-manifold M of dimension at most n.

Proof. See [Bri98, p.4-5] and [Hus91, Chapter 4, Theorem 13.1]. O

2.3 Borel-Moore homology

In this section we define non-equivariant Borel-Moore homology and review its basic properties.
For a more detailed but accessible treatment of this topic the reader is referred to [CG97, Chapter
2.6].

2.3.1 Definition of BM homology

Let X be a locally compact topological space which has the homotopy type of a finite CW-
complex and admits a closed embedding into a smooth manifold. All homology groups below have
coefficients in some fixed ring R.

Definition 2.13. Let X = X U {oo} be the one-point compactification of X. We define the i-th
Borel-Moore homology group H;(X) of X to be

Hi(X) = H™(X, {oo}),

where H:"(—, —) denotes relative singular homology. A

Remark 2.14. It is also possible to define Borel-Moore homology as the homology of a certain
chain complex of locally finite infinite singular chains or the homology of a distribution de Rham
complex. Also note that our definition immediately implies that Borel-Moore homology coincides
with singular homology for compact spaces.

Proposition 2.15 (Poincaré duality). Let M be a smooth oriented manifold of real dimension m.
Let X be a closed subset of M which has an open neighbourhood U C M such that X is a proper
deformation retract of U. Then there is a canonical isomorphism

where H*(—, —) denotes relative singular cohomology. In particular, we have
H;(M) = H™"(M). (2)

2.3.2 Properties of BM homology

2.3.2.1 Proper pushforward. We claim that Borel-Moore homology is a covariant functor
with respect to proper maps. Let f : X — Y be a proper map. We can extend f to a map
f: X =Y by setting f(co) = oc. Since f is proper, f is continuous. Then, by the functoriality of
relative singular homology, we obtain the induced map

fiime s HEM9(X, {oo}) — HE™(Y, {o0}).

We now apply the one-point compactification definition of Borel-Moore homology to obtain a
map
fe Ho(X) = H.(Y).

We call f, the proper pushforward along f.
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2.3.2.2 Kiinneth formula. Let M, M be arbitrary CW-complexes. Then there is a natural
isomorphism
X H*(M1) ® H*(MQ) — H*(Ml X MQ)

2.3.2.3 Smooth pullback. Let X be alocally compact space and p : X3 Xa locally trivial
fibration with smooth oriented fibre F'. Assume that p is an oriented fibration, i.e., all transition
functions of the fibration preserve the orientation of the fibre. Let d = dim F. There exists a
natural pullback morphism

P Ho(X) = Hoyg(X).

If the fibration is trivial, then the morphism p* is given by ¢ — ¢® [F]. In general, if U is an open
subset in which p is trivial, then p* restricts to the map ¢ — ¢ ® [F].

2.3.2.4 Intersection pairing. Let M be a smooth oriented manifold of real dimension m and
Z,7Z two closed subsets of M. Consider the cup product in singular relative cohomology

U: H™ WM, M\Z) x H" (M, M\Z) — H*™ =% (M, M\(Z N Z)).
By the Poincaré duality definition of Borel-Moore homology we obtain a bilinear map
N:H(Z)x Hi(Z) = Hirj-m(ZNZ).

We call N the intersection pairing.

2.4 Equivariant Borel-Moore homology

We now define equivariant Borel-Moore homology using approximations to a homotopy quotient
and show that (under some assumptions) equivariant Borel-Moore homology is Poincaré dual to
equivariant cohomology. Standard references for equivariant Borel-Moore homology are [Bri00]
and [Gra99].

Definition 2.16. Let G be a Lie group. Let {E™"G — B"G | n > 0} be an approximation of the
universal bundle EG — BG. Let X be a topological space satisfying the conditions in Section
2.3.1. Further assume that X is also a complex algebraic variety of pure dimension z/2. Let
n = dimg E"G and g = dimg G. The inclusions

i B"G x% X - E"TIG xC X
induce Gysin pullback maps

() HHm_g(E"“G x%X) = Hiim4(E"G x¢ X). (3)

Therefore, for each ¢ € Z,
{(Hissi—g(E"G X9 X), (1n)") | n > 0} (4)

forms an inverse system. We define the i-th equivariant Borel-Moore homology group to be the
inverse limit

?

HE (M) = lim H 5 y(E"G <% X)

of the inverse system (4). This inverse system stabilizes for n > « — i (i.e. the maps (3) become
isomorphisms), so for i > = — 71 we can identify

HE (M) = Hiymy(E"G x9 X).
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Proposition 2.17 (Equivariant Poincaré duality). Let M be a smooth oriented manifold of real
dimension m. Let X be a closed G-stable subset of M which has an open neighbourhood U C M
such that X is a proper deformation retract of U. Then there is a canonical isomorphism

HE(X) =2 HEY H(M, M\X). (5)
In particular, we have

HE (M) = HE~Y(M). (6)

K2

Proof. Choose n so that i > x —n. Then E"G xG M is a manifold of real dimension m + 1 — g.
We can now apply the non-equivariant Poincaré duality isomorphism (1) and the fact that

(E"G x% M)/(E"G x% X) = E" x% (M\X)
to calculate
H{(X) = Hiyno(E"G x¢ X)
= grinmomHn=9(EnG <9 M, (E"G x9 M)/(E"G x© X))
= H™"Y(E"G x% M,E" x% (M\X))
= HJ (M, M\X).
O

Remark 2.18. We can now compare the different notations we use for the various homology
and cohomology groups. We use H,(—), HS(—) to denote non-equivariant, resp. equivariant,
Borel-Moore homology. On the other hand H*(—), Hj(—) denote singular, resp. equivariant,
cohomology. We use H:™ to denote singular homology.

2.5 Sg-action on cohomology and BM homology

We now show that equivariant homology and cohomology are naturally endowed with an action
of the cohomology of a point. Let M be smooth oriented manifold of real dimension m endowed
with an action of a Lie group G. Consider the map

M — {pt}.
After taking homotopy quotients it becomes the projection
pu i EG x¢ M — BG

onto the first factor. It is a fibration with fibre M. The map pj; induces a homomorphism of
cohomology rings
2 H*(BG) — H*(EG x% M)

or, equivalently, a homomorphism of G-equivariant cohomology rings
P He({pt}) — He(M).

Hence H{ (M) is an algebra over the equivariant cohomology ring of a point Hf({pt}). More
explicitly, we have the following action map

HE({pt}) x HE(M) — HE (M) (7)
(a,b) = ppr(a) UD. (8)

By applying the Poincaré duality isomorphism (6) to H{ (M) and H{ (M) we get an action of
He({pt}) on HE(M):

HE({pt}) x Hy (M) = Hy . (M). (9)
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2.6 H}(M)-action on HE(M)

Equivariant cohomology acts on equivariant Borel-Moore homology. This action arises as follows.
We have the cup product on cohomology

U: H5(M) x HL(M) — H57 (M). (10)
By applying the Poincaré duality isomorphism (6), we get

Hy_ (M) = HL(M),  HS

m—i—j

(M) = HS (M).

Setting k = m — j, the cup product in (10) gives rise, by means of the identifications above, to the
following action map

- HG (M) x HE (M) —Hi (M) (11)
(a,b) —a-b . (12)
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3  Quivers

The purpose of this chaper is to introduce notations for quivers, their representations and related
objects. We will use these notations throughout the thesis so it’s vital that the reader becomes
familiar with them.

3.1 Quivers and dimension vectors

By a quiver we mean a quadruple I' = (I, H, s, t), where I is a set of vertices, H is a set of arrows,
s: H — Iis a source function, i.e., it associates to each arrow h its source s(h) and t : H —»Tis a
target function, i.e., it associates to each arrow h its target t(h).

For each i,j € I, we set
H,;j:={h€H|s(h) =i,t(h) =j},  hi;=[H,
(1,5) = —(hij + hjs) if i #j, (i,1) = 2.
A dimension vector for a quiver T is a function
d: I—-N={0,1,2,...}

We can also view it as an |I|-tuple d = (d;);cr or an element d = -, ; d;i € NI of the semigroup
NI. We call
d=|d/=) d;eN
iel
the cardinality of the dimension vector d. To a pair (I',d) we associate a complex I-graded d-
dimensional vector space

V=EV: suchthat dimV,=d;
iel
The fact that V has I-graded dimension d can also be written more compactly as

grdimV =d.

By the dimension of a vector space we will always mean its dimension as a complez vector space.
On the other hand, when we talk about the dimension of a variety or a manifold, we will mean its
real dimension, unless otherwise indicated.

3.2 Representations of quivers

To a triple (T',d, V) we can associate a complex vector space
Repq = @ Home(Vg(ny, Ven))-
heH

If H = @, we set Repg = {0}, the trivial vector space. Elements of Repy, which we will usually
denote as B B

p = (pn)ren = (pn),

are called representations of the quiver T with dimension vector d. To the triple (I',d, V) we can
also associate the following complex algebraic groups

Gdi = GL(Vz),
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Ga = [[GL(V:) =[] Ga.-

i€l i€l

Elements of Gg will usually be denoted as

9= (9i)ier = (9:)-

The natural action of G4 on V induces a "simultaneous conjugation" action of Gg4 on the vector
space Repy. This action admits the following explicit description. Let p € Repyq and g € Ggq.
Then B B

9-p = (9:)-(pr) = (9e(n)PhYa(y)-
We also recall that the quotient Repy/Gg parametrizes the isomorphism classes of representations

of the quiver I with dimension vector d, i.e., there is a bijective correspondence between elements
of Repq/Gq and such classes.

We also set

Gd = GL(V)
The notation reflects the fact that G4 does not depend on the dimension vector d, but only its car-
dinality d. We now present some examples to illustrate the notation we have just introduced.

Example 3.1. Let I be the quiver A; with one vertex ¢ and no arrows. Let d = ni. Since H = @,
Repyq = {0} is the trivial vector space. Moreover, Gq = GL(n,C) = Gq is the full general linear
group.

Example 3.2. Let T' be the equioriented quiver A,,

i1—>i2—)...—>in
with dimension vector d = i1 + %2 + ... +¢,. Then

Repyq = @ Homg(C,C) = (C)" .
heH

Moreover, Gg, = GL(1,C) = C* for each ¢ € I and so Gg = (C*)™ is a torus. We also have
Gq = GL(n,C).

Example 3.3. Consider the quiver Dy

13

/!
N

14

11 —> I3

with dimension vector d = d = i1 + 2is + 2i3 + 74. We have
Repy = Home(V1, Va) @ Home(V2, Vi) @ Home(Va, Vi) = C? @ C* @ C* = C°,

Ga = (C*)? x (GL(2,C))? and G4 = GL(6,C).

3.3 Compositions of a dimension vector

To a quiver and a dimension vector we are going to associate a flag variety and a Steinberg variety.
The connected components of this flag variety correspond to certain sequences of vertices of the
quiver. These sequences can also be regarded as compositions of the chosen dimension vector. In
this section we define the notion of a composition and explain how it’s related to quiver-graded
flags.
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Definition 3.4. Let d € Nyj. Let
="y

be a sequence such that
k
yla“'7yk GI\I>07 Zyl =d.
1=1
We call § a composition of the natural number d and k the length of the composition j. We set
Compy, := {7 | ¥ is a composition of d}.

Remark 3.5. Compositions of d correspond to the different types of partial flags in a d-dimensional
vector space. More specifically, they describe the dimensions of the quotients of the successive
subspaces in a flag. In particular, the composition (1, ...,1) of length d corresponds to the complete
flag type. This will be explained more thoroughly in Section 4.1. A

We now generalize this definition to the quiver-graded setting.

Definition 3.6. Let I be a quiver with finitely many vertices and let d be a dimension vector.
(i) Let
7=y

be a sequence such that

k
y' = Whiet, o ¥F = Wier NI, V1<I<k3Jielwithy!#0 and > 3 =d.
=1

We call 5§ a composition of the dimension vector d and k the length of the composition 7. We set
Compg := {¥ | ¥ is a composition of d}.

(ii) A composition ¥ is called multiplicity-free if for all 1 <1 <k and i € I we have y} =0 or 1.
(iii) A composition 7 is called strictly multiplicity-free if for all 1 < [ < k, there exists a unique
i € Isuch that y} = 1 and y} = 0 for j # i. Note that a strictly multiplicity-free composition is just

a sequence (i1, ...,1q) of vertices of I such that 27:1 i = d. Strictly multiplicity-free compositions
are therefore precisely the compositions of length d. We let

Ya := {7 € Compy | 7 is strictly multiplicity-free}
denote the set of all strictly multiplicity-free compositions of d. Note that

d!
Hz’el di!-

(iv) We call a composition § simple if for all 1 < [ < k, y' = yli for some vertex i € I, or,

[Ya| =

equivalently, if for all 1 <[ < k, there exists a unique i € I with ! # 0. A

Remark 3.7. (i) A composition is strictly multiplicity-free if and only if it is both simple and
multiplicity-free.

(ii) Compositions of d correspond to the different types of quiver-graded partial flags in the I-
graded vector space V. They describe the graded dimensions of the quotients of the successive
graded subspaces in a flag. Strictly multiplicity-free compositions correspond to the different types
of complete flags. This will be explained in more detail in Section 4.1.

(iii) Let ¢ € I. If d; # 0 then the sequence

(TN
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becomes, after deleting the y! equal to zero, a composition of the natural number d;. This sequence
describes the type of a flag restricted to the graded component V.

(iv) The sequence
(Tt

i€l i€l
is a composition of the natural number d. It describes the type of a quiver-graded flag considered
as an ungraded flag.

Example 3.8. Consider the quiver A,
17
with dimension vector d = 2¢ + 2j. Then
Ya = {(4,4,4,7), (i, 7, 4,9), (i, 4,4, 3), (4, 3, 1, 8), (4, 4, 5, 8), (4, 4,4, 5) }

are all the six strictly multiplicity-free compositions. The remaining seven (not strictly) multiplicity-
free compositions are

(i 44,4.9), (04 4,4, 0), (i 4 4,), (i + 5, 8), (6,8 + ), (G d i+ ), (04 4 d 4 ).
The eight simple but not strictly multiplicity-free compositions are
(24,5,3), (4,24, 4), (4, 3, 24), (24,4, 9), (1, 2, 9), (4, 4, 25), (24, 27), (24, 24).
There are five remaining compositions
(26 +4,7), (4,20 + 4), (2] +4,4), (4, 2] + 1), (20 + 25)

which are neither multiplicity-free nor simple. In total we get twenty-six compositions.
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4 Quiver flag varieties

Let us fix once and for all a quiver T' = (I, H,s, t). All the notations we introduce later will refer
to this choice of quiver. Let us assume that I' is non-empty, i.e., I # &, finite, i.e., |I|,|H| < oo,
and without loops, i.e., there is no h € H such that s(h) = t(h). However, multiple edges and
cycles (of length at least 2) are allowed.

We also fix once and for all a dimension vector d = (d;);e1 for the quiver T' and a complex vector
space
V=@V: suchthat dimV;=d,
iel

4.1 Flag varieties

4.1.1 Definitions

L. yF) € Comp,

Definition 4.1. Let V be a complex vector space of dimension d and let § = (y
be a composition of d.

(i) An ordinary or ungraded flag F of type 7 in V is a sequence
{o}=vlcvlic..cvklcvt=v

of (ungraded) linear subspaces of V such that for each 1 <1 <k, V!/V!~1 is an (ungraded) vector
space with
dim VI/VI=t =/,

We call an ordinary flag F' complete or of complete type if it is a flag of type (1,...,1). Otherwise
we call F' partial or of partial type.

(ii) The ordinary or ungraded flag variety of type 7 is the variety of all ordinary flags F' of type 7 in
V. We let F(V) denote the ordinary flag variety of all complete flags in V| i.e., the ordinary flag
variety of type (1,...,1). Since we are primarily interested in ordinary flag varieties of complete
type, we do not introduce special notation for ordinary flag varieties of arbitrary type. VAN

Definition 4.2. Let y = (yl7 ...7yk) € Compy be a composition of d.
i) A quiver-graded flag F' of type 5 in V is a sequence
(i)Ag g 9 ype J q

{0}=vVcvlic..cvFlcvri=v
of I-graded linear subspaces of V such that for each 1 <1 <k,

Vl/vl—l
is an I-graded vector space with
grdim V! /vt = gl.
ii) A quiver flag variety of type 7, denoted F7, is the variety of all quiver graded flags F' of type
] g g

7in V. A

The natural action of G4 on V induces a transitive action on flags which preserves the type of a
flag. Hence G4 acts transitively on each 3. The isotropy group of any flag of type 7 is a parabolic
subgroup of Gq, so Fy is a smooth projective variety. This is explained in more detail in Section
4.3.2. We now define one of the central objects of study in this thesis.

Definition 4.3. We define the quiver flag variety F4 to be the finite disjoint union of the quiver
flag varieties of types corresponding to all possible strictly multiplicity-free compositions of d, i.e.:

Fa=[] 7

yeYa
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We would now like to study the relationship between ordinary and quiver-graded flags. We can
obtain ordinary flags from quiver-graded flags in two ways: by restriction to a graded component
or by forgetting the grading.

4.1.2 Restrictions of flags

Consider a quiver-graded flag F’
{0}=VcVvlc.cvFilicvri=v (13)
of type 7 = (gl, ...,yk) in V. Since each subspace V! is I-graded, we have, for each 1 < [ < k,

decompositions

vi=Vvi.

i€l

Definition 4.4. Let ¢ € I. We define F|; to be the restriction of the flag F' to the graded
component V; C 'V, ie.,

Fl;=FnNV,
Explicitly, F|; is the sequence

{o}=vlcvlc.cvkicvi=v, (14)

of linear subspaces of V. A

Although some of the inclusions in (14) may not be strict, we can always contract the sequence
by deleting repeated occurrences of the same subspace to obtain a shorter sequence with strict
inclusions. After such a contraction F|; is an ordinary, i.e., ungraded flag in the ungraded vector
space V;. In fact, since dim Vil/‘/'il*1 = yé, we have:

Fact 4.5. F|; is an ordinary flag in V; of type ¥, := (y}, ..., y¥) (with y! = 0 deleted). A
Moreover, 7 is a multiplicity-free composition if and only if each y! = 0 or 1. But the latter
condition is equivalent to each restriction F'|; being a complete flag. Hence:

Fact 4.6. For each i € I, F|; is a complete ordinary flag <= the composition 7 is multiplicity-
free. A

4.1.3 Forgetting the grading

We again consider the quiver-graded flag F' from (13) of type § = (g17 ...,gk) in V.

Definition 4.7. We define F' to be the flag F' with the I-grading forgotten. We call F' the ungraded
flag associated to F. A

For each 1 <1 <k, we have dim V!/V!=t =37, 4!, Hence:
Fact 4.8. F is an ordinary flag in the ungraded (or, more precisely, with the grading forgotten)

vector space V of type
Y= <Zyzl, ,ny) .

i€l i€l

Moreover, it is immediate that:

Fact 4.9. F is a complete ordinary flag <= the composition 7 is strictly multiplicity-free, i.e.,
Yy € Yq. A

We therefore introduce the following definition.

Definition 4.10. We call a quiver-graded flag F' in V of type 3 complete if the ordinary flag Fis
complete, or, equivalently, if ¥ € Yy. A
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4.1.4 The relationship between ordinary and quiver flag varieties

We have investigated the relationship between ordinary and quiver-graded flags. We would now
like to examine how ordinary flag varieties and quiver flag varieties are related. We first observe
that restriction of flags gives rise to an isomorphism between a quiver flag variety and a product
of ordinary flag varieties.

Corollary 4.11. If y is a multiplicity-free composition, then we have an isomorphism of Gq-
varieties

F=I1Fve),  Fe (Flia (15)
i€l
Proof. This follows directly from Fact 4.6. O

Let Z(Gq) denote the centre of Gq. Note that
Z(Ga) = [[ Z2(GL(V:)) =] c*.
i€l iel

Forgetting the grading yields an isomorphism between F4q and the closed subvariety of F(V)
consisting of all ordinary flags fixed under the action of Z(Gq).

Lemma 4.12. We have an isomorphism of Gq-varieties

Proof. Straightforward. O

4.2 Torus fixed points in Fyg
4.2.1 Choice of basis

Definition 4.13. (i) For each i € I, let us choose an ordered basis (e}, ...,eS") of V;. We also fix

PR A)

an ordering (i1, ...,4y) on the vertices in I. We set dj, := d;,. This gives us an ordered basis

1 d 1 djg
(eil,...,eill,...,eim,...,eim ) (16)
of V. We will refer to this basis as the chosen basis and to the vectors forming this basis as the
chosen basis vectors.

(ii) For each 1 < j < d, let e; denote the j-th element of our chosen ordered basis. Using this
notation, we can write this basis as

(ela~-~7€d)' (17)

Remark 4.14. We use the symbols i1, ...,%; as constants, or names of particular vertices, rather
than as variables. Similarly, the symbols dy, ..., d|y| are constants denoting specific natural numbers
and ey, ..., eq are constants denoting specific basis elements. On the other hand, we use the symbol
i as a variable ranging over I.

4.2.2 Gq and G4 as matrix groups
We can explicitly identify Gq = GL(V) with a matrix group:

Gq = GL(V) = GL(d, C),
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sending a linear transformation to the matrix representing it in our chosen ordered basis. This

isomorphism restricts to
||

Ga =[] GL(V,) = [] GL(ds,©),
i€l k=1
allowing us to explicitly identify Ggq with a product of matrix groups. Observe that there is a
canonical embedding G4 < Gq, so we can regard G4 as a subgroup of Gq.

4.2.3 Weyl groups Wq and Wy

All the definitions we introduce here relate to the choice of basis and the identification with matrix
groups from the previous two sections.

Definition 4.15. We let T4 denote the subgroup of G4 consisting of the diagonal matrices. It is
a maximal torus in Gq as well as in Gq. If t € Ty, we will write t = (/) or t = (t;), in accordance
with our two notations (16), (17) for the chosen basis. We let Bg denote the subgroup of Gq
consisting of the upper triangular matrices. It is a Borel subgroup of G4. We further let Bq denote
the subgroup of Ggq consisting of the upper triangular matrices. It is a Borel subgroup of Gq4. Note
that tori and Borel subgroups are unique up to conjugacy. A

Definition 4.16. We let
Wd = NGd(TQ)/TQ and Wg = NGQ(TQ)/TQ

denote the Weyl groups of the pairs (Gq,Tq) and (Gq,T4), respectively. A

Remark 4.17. The choice of notation reflects the fact that G4, Ba, Wa depend on the dimension
vector d while Gq,Bq, Wq depend only on its cardinality d. Even though our chosen maximal
torus Tq depends only on d, we use the notation Tg nonetheless because the choice of Ty is unique
up to conjugation by elements of Ggq. A

Since Gg C Gq and so Ng,(Tg) C Ng4(Ta), there is a canonical embedding Wg C Wq. Recall that
Ng,(Tq) consists of the monomial matrices in Gq and Ng,(Tq4) consists of the monomial matrices
in Gg. We can choose the permutation matrices in Gq resp. Gq as the coset representatives.
Therefore, we can also regard Wq resp. Wgq as a subgroup of Gq resp. Ggq.

It follows that Wq and Wy act naturally on the basis vectors in (16) by permutation. Recall that
e; denotes the j-th element in the ordered basis (16). We have a canonical isomorphism

Wq = g, w@ (18)
such that, for each 1 < j < d and w € Wy, w(e;) = eg(;). This isomorphism restricts to the
isomorphism

||
Wa = [] &a,
k=1

In the sequel we will freely identify w with w under the isomorphism (18) and forget the tilde in
the notation. Note that Wy consists of those permutations of the chosen basis vectors e! which fix
the lower index, i.e., those permutations that, for each i € I, send the chosen basis vectors in V;
to chosen basis vectors in V;.

4.2.4 Wgq and Wy as Coxeter systems

Definition 4.18. For 1 < < d —1, let s; € Wq be the simple transposition swapping e; and
er+1. Let IT = {s1, ..., sa—1 } denote the set of all simple transpositions in Wg4. Moreover, let

Hg =1IIN Wg = H\{Sd178d2, ey Sd|1|—1}
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be the set of simple transpositions in Wg. A

The groups Wq and Wy are generated by II and Ilq4, respectively. Moreover, (Wgq,II) and (Wq,I1q)
are Coxeter systems. Let
:Wyq — No

be the associated length function, which assigns to each w the number of simple transpositions in
some reduced decomposition of w (this is independent of the choice of reduced decomposition).
Let wy denote the unique element of Wy of maximal length and vy the unique element of Wgq of
maximal length. We recall the following lemma.

Lemma 4.19. (i) Each right coset Waqw contains a unique element u of minimal length. Moreover,
u is the unique element in the coset Waw such that, for each v € Wq, we have l(vu) = I(v) + I(u).
(i) The minimal length right coset representatives are precisely the (d;,, ...,d;,)-shuffles for the
left permutation action of Wyq.

We let Min(Wgq, Wq) denote the set of minimal length representatives of the right cosets of Wy
in Wq. By the lemma, these are precisely the permutations which, applied to our chosen ordered
basis in (16), yield another ordered basis which preserves the relative order of the chosen basis
vectors in each V. In terms of the Wy-action on the set of coordinate flags, which we explain
in the next section, the minimal length right coset representatives are precisely those elements u
which satisfy the condition that, for each i € I,

Fuli = Fel;.

4.2.5 The action of Wq on Yy

The group Wy, identified with the symmetric group G4, acts on Yy in the following way. We can
regard a composition § € Yg as a map {1,2,...,d} — I sending ! to gl. For each w € Wq, we

define

w(g)=7yo w

We then have
W(ye) = yw—l Yw € Wd,

where 7, is the composition of the coordinate flag F,, (see next section for the explanation of the
notation).

4.2.6 Torus fixed points

Definition 4.20. (i) A flag of the form
<ej > C<ej,e > C.. C<ej,ei,.,eiy >=V

where each e;, is a distinct chosen basis element, is called a coordinate flag.
(ii) We call the flag

<ep>C<ep,eg>C...C<ep,e9,..,eq>=V
the standard coordinate flag. We will denote it with F,. It is a flag of type
(1500 81,502, eeey 2y ey [T ooy D1]),
where each i; appears consecutively dim V; -many times.

(iii) Moreover, we call (i1, ..., 41,92, ..., i2, ..., 4|1, ---, 4|1)) the standard flag type or the standard com-
position of the dimension vector d. We will denote it with 7,. A
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We can also write a coordinate flag as
<egj, >C<e, >B<e,>C...C<e;, >B<e,>D...0<ej, > . (19)

Recall that Gq acts on the flag variety F(V) and its subgroup Gq acts on the quiver flag variety
F4. We now want to consider the restriction of the latter action to Tq and determine its fixed
points.

Lemma 4.21. We have
(]—'Q)Ti = {coordinate flags in Fq}.

Proof. Since each < e; > is a Tg-submodule by definition, coordinate flags are fixed under the
action of T4. On the other hand, suppose that F = (& C V! C ... C V4 = V) is not a coordinate
flag. Let

<ej >C<e, >D<e,>C...C<ej, >B<e,>@...0<e, >=V"

be its longest initial segment consisting of subspaces spanned by the chosen basis vectors. Let
Vrtl = Vg < f >. We can choose the vector f = 2(1::1 a;, €j, so that the coefficients a,, , ..., a;,
on the chosen basis vectors in V™ are 0. Moreover, since V™! is not spanned by the chosen basis
vectors, there must be two distinct nonzero coeflicients a;, a;~ in the sum. We can therefore write
[ = ajejr + ajrejn +rest. Now take t = (t;) € Tq with t; = 2 and t; = 1if j # j'. Then
t.f =2ayej +ajrejn +rest ¢ Vil O

4.2.7 Bijection between Wy and the torus fixed points

We have explained how the actions of Gq and Gg4 on the vector space V induce the permutation
actions of the Weyl groups Wq and Wgq on the chosen basis vectors. The groups Wq and Wy also

act by permutation on the set {< e; >,...,< eq >} of lines spanned by the chosen basis vectors.

These actions induce, by (19), actions on the set of coordinate flags, which equals the set (Fgq)Te

of torus fixed points. Note that the action of Wgq preserves the type of each coordinate flag.

Lemma 4.22. The action of Wq on (Fa)™2 is free and transitive. Hence there is a bijection
Wq — (.FQ)TQ, w — w(Fe).

In particular,
[(Fa)'d| = [Wq| = dl.

Proof. Obvious. O
Definition 4.23. Recall that F, denotes the standard coordinate flag. For each w € Wq, we set

F, .= w(F,).

4.2.8 Bijection between Wq\Wq and Yy
Recall that the standard coordinate flag F. has type

Yo = (il, ey 81519, ey 12, wen, i\1\7 ...,i|[|). (20)

Let i;, denote the k-th element in the standard composition (20). Recall that, under the isomor-
phism from (18), Wq can be identified with the symmetric group on d letters. For each w € Wgq,
the coordinate flag F, has type

Yy = (Z.jw(l)’ ) ijw(d))'
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Lemma 4.24. We have
weWyg = Y, =7,

Moreover, there is a bijection
Wg\Wd — Yg, Wgw = Y-

Proof. Obvious. O

To emphasize that 7, depends only on the coset Wqw, we will typically write ¥y; instead. We will
also typically take w to be the minimal coset representative.

Definition 4.25. (i) For each § € Yg, let W5 denote the Wq-coset
Wy i={weWl|y, =7}

(ii) For each w € Wq, we set
]:w = Y *

To emphasize dependence only on the coset Wyw, we will typically write F. We will also typically
take w to be the minimal coset representative. A

We can describe the torus fixed points of the connected component F3 of Fq as
(Fp)™ = {Fu | we Wy}

Moreover,
(Fu)'a = {F, | u € Wauw}.

4.3 Connections to Lie theory

4.3.1 Parabolic subgroups

Definition 4.26. For each w € Wy, we set
By = StabGQ(Fw) < Gg, B, := Stabg, (Fw) < Gq-

We let
Ny := Ry(By)

be the unipotent radical of B,,. Let s € II be a simple transposition such that wsw™1 € Wy. We
set
Py ws := (Bywsw™ ' By,) U By,

and let
Nw,ws = Ru(Pw,ws)

be the unipotent radical. A
Remark 4.27. (i) We have

—1 —1
Be = BQ, Bw = wBew ) P’uuws = wPe7sw ;

for w € Wy and
Be=Ba, B, =wBw ',

for w € Wy.
(ii) Each B,, is a Borel subgroup of Gq and each B,, is a Borel subgroup of G4. Each P, ,s is a
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parabolic subgroup of Gg4 containing B,,.
(iii) The Borel subgroups of Gg4 containing Ty are classified by Wg, i.e., there is a bijection

Wa — { Borel subgroups of Gq containing T4}

w — B, = wB.w .
(iv) Let u € Min(Wq, Wgq). Since u is a shuffle, B, also stabilizes the coordinate flag F,,. Hence
B. = B,. Moreover, if w = vu € Wq, where v € Wy and u € Min(Wgq, Wy), then vBqv~! is
the isotropy group of the coordinate flag F3,, i.e., B, = B,. Hence the Borel subgroups of G4
containing the maximal torus Ty are classified by Wy, i.e., there is a bijection

Wa — { Borel subgroups of Gq containing T4}

v — B, = vBevfl.

4.3.2 Quotients by a Borel subgroup

The group Ggq acts transitively on F(V). Moreover, for each w € Wy, the isotropy group of the
flag F, is B,,. Hence, for each w € Wq, we have an isomorphism of Gq-varieties

Ga/Bw — F(V),  gBuw/Buw — g.Fy.

Moreover, for each v € Wq and u € Min(Wq, Wq), we obtain in an analogous manner an isomor-
phism of Gg-varieties

Ga/B, — Fu, gBy/By — g.Fyy.
In particular, for each u € Min(Wq4, W4) we have an isomorphism

Ga/Ba = Fz,  gBa/Ba— g.F..

This implies that Fq is isomorphic to the disjoint union of |Wq\Wq|-many copies of Gq/Bgq.

4.3.3 Lie algebras

Definition 4.28. For each w € Wq and s € II such that wsw™! € Wy we set
g4 ‘= Lie(Gg)7 g:i= Lie(Gd),
tg:=Lie(Ty), by :=Lie(By), gy = Lie(Ny),

Pw,ws = Lie(Pw,ws)u Ny, ws += Lie(Nw,ws); My, ws += nw/nw,ws'

Recall that vy denotes the unique element of Wy of maximal length. We set
b, = Lie(Byyw); n,, = Lie(Nyyw);
Poows = Lie(Pogw vows ) My ws 7= Lie(Nyguw vgws ) Moy s 7= Ny /Ty s
Note that 1y ws = 1w MNNyws. We generalize the definitions of n,, s and m, 4, to arbitrary x,y € Wq

by setting
Ny gy 1= Ny n Ny, My zy = nm/nmﬂcy-
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4.3.4 Root systems

4.3.4.1 The root system A. Let A C t} denote the set of roots of the Lie algebra g with
respect to the Cartan subalgebra tq. It is a root system of type Aq_1. We write

g=ta® P ga,
aEA

where g, is the root space with weight o. Recall that for each 1 < j < d, the line C.e; spanned
by the chosen basis vector e; is a tg-module. Let x; € t] denote the weight of this module. Let
hi be the matrix whose (k, k)-th entry is 1 and all the other entries are 0. Then {hq, ..., ha} is the
standard basis of tq and we have x; = h;. Recall that

A={xj—xr[1<j#k<d}

We choose
Ali={y;—xj41|1<j<d-1}

as the base of the root system A. We refer to its elements as simple roots. We set
Bj = Xj = Xj+1-

Moreover, we let AT denote the set of the positive roots with respect to this choice of base.

Definition 4.29. If b is a Lie subalgebra of g and a tg-submodule of g then we set
A(h) ={a € Alga Ch}

Using this notation we have
AT = JI(Lie(Ba)) = {x; —xx | 1 <j <k <d}.
We also set A~ := —AT.

Let s, denote the reflection with respect to the simple root 8y := xx — xx+1 and let W(A) denote
the Weyl group of the root system A. We have W(A) = < sg, | 1 <k <d—1>. Thereis a
canonical isomorphism

Wq — W(A), Sk = 8B, -

From now on we will freely identify the two groups. If j # k, we have
wXj = Xk) = Xw() = Xuw(k)-

Remark 4.30. We have now seen three incarnations of the group Wq: as the Weyl group of the
pair (Gq, Tq), the symmetric group &4 and the Weyl group of the root system A. A

Note that, for each w € Wy,
w(AT) = O(Lie(Bw)) = {Xw() — Xww | 1 <j <k <d}.
Remark 4.31. Recall that there is an isomorphism
tg — H*((CP>)% k) = HE, ({pt})

sending xx to the Chern class of the line bundle O(cpec)a(xk), i-€., the canonical line bundle on
the k-th copy of CP*°. This isomorphism extends to the isomorphism

k[Xla "'7Xd] - H;g({pt})

Therefore from now on we will regard elements of Hy ({pt}) as polynomials in the weights
X1 -+ Xd- B A
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4.3.4.2 The root system Ayq. We let Aq C A denote the set of roots of the Lie algebra gq

with respect to the Cartan subalgebra tq. It is a root system of type Ag, —1 X ... X Adi”l—l' We
have
ga=ta® P ga-
aEAg
We set
Al = AgNAT, Ay =—-Af=AqNA", Af = AqN AL

Observe that Aé forms a base of the root system Aq and A:{ are the positive roots with respect
to this base. We have B
AE = J(be) = (ne).

The group Wy is canonically isomorphic to the Weyl group of the root system Aq4. If v € Wy,
then
v(Ag) = (by) = [i(n,).

Moreover, if w = vu € Wq with v € Wy, u € Min(Wq, Wq), then we also have

U<A£) = (by) = d(ny).
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5 The Steinberg variety

5.1 The incidence variety

We would like to study the interplay between representations of a quiver and the quiver flag variety
associated to a fixed dimension vector. The relation between the two is captured in the "incidence
variety", or variety of pairs, which we now proceed to define.

Definition 5.1. (i) Let 7 € Y4 and let
F={o}=VcVvlic..cvilcvi=vV) (21)

be a flag in 7. Let p = (pn)nen € Repg be a representation of our quiver I'. We call the flag F'
p-stable if
pn(Vigy) € Vipy  forall heH and le{l,..k}.

(ii) We define the incidence variety .)%g of type y to be the variety of all pairs (p, F') such that F’
is p-stable, i.e., B
Fy:=A{(p,F) | F'is p-stable} C Repgq x Fy.

It is a closed subvariety of Repgq x F7. For w € Wq, we set

]:w Z:]":yw.

(iii) We define the incidence variety fg to be the finite disjoint union of the incidence varieties of
types corresponding to all possible strictly multiplicity-free compositions:

yeYa

It is a closed subvariety of Repgq X Fa. A
Remark 5.2. Suppose that § = (4;,,...,4,). For each 1 <1 < d let us set

Fli:={0}=V'cVvic..cVvh.

It is a flag of type y|; := (ijy,...,i;,). The I-graded subspace V' of V has graded dimension
d); == Y_,ij,- If p € Repy and pr(Viny) © Vi for all h € H, then it is possible to restrict p
to the subspace V!. We set p|; := p|y:. We have pl|; € Repg,; i-e., pli is a subrepresentation of p.
We can now rephrase the definition of p-stability in the following way: a flag F' is p-stable if and
only if each restriction p|; is a subrepresentation of p. A

Lemma 5.3. If F € Fy is p-stable then p(V!) C V=1, for each 1 <1 <d.

Proof. Since T is a quiver without loops, we have p(V') = {0}. Arguing by induction, we can
suppose that p(V!I=1) C V=2 If § = (ij,,...,i;,), we can write V! = V=1 @ L, where L C Vi,
Then p(V!) = p(VI=t @ L) = p(VI=Y) @ p(L) € V=2 @ p(L). By p-stability, p(L) C V!. But
since I' has no loops, there is no arrow from i; to itself, and so p(L) N V;, = {0}. Since
Vi/Viml = L CV,, , we must have p(L) C VI~ O

Remark 5.4. We can interpret the last lemma as saying that a representation which stabilizes
a flag has to be nilpotent. Geometrically, this means that representations stabilizing a given flag
must lie inside a nilpotent cone in Repg.
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5.1.1 The action of Gg4
Ga acts diagonally on Repyq x JF by g: (p, ') = (g.p, g.F'). Since
(9-2n) (gs(n)-Vamy) = (gt(h)Phgg(i))(gs(h)~Vsl(h)) = (gemyPn) Vainy) = gem)-(on (Vi) € geiny- Vi

g.F' is g.p-stable and so the diagonal action of G4 descends to an action on ,7%.

5.1.2 The canonical projections

We now turn our attention to the two canonical projections

Repq Fy.
Proposition 5.5. (i) The first projection
pg + Fy — Repg

is a Gg-equivariant proper map.
(ii) The second projection
Ty - fg — J_'.g

is a Gq-equivariant vector bundle with fibre

Wy_l(F) ={(p, F') | F is p-stable} C Repgq x {F}.

In particular, for g € Gq, we have
ﬂ'yil(g.F) = g.ﬂgl(F).

Proof. (i) Gg-equivariance is obvious. The projection Repgq x Fy — Repy is proper because the
quiver flag variety Fy is compact (one can see this using the Iwasawa decomposition, for example).
But pg is the restriction of this projection to the closed subset ]T'g, S0 it is proper as well.

(ii) This is clear. O

Proposition 5.5 implies that the dimension of the fibres Wy_l(F) is constant with respect to F' € Fy
and that dimc¢ ]?g = dim¢ Fy + dim¢ Tl'g_l(F). While the dimension of 73 does not depend on the

choice of 7 (it is the same for all 7), the dimension of ]?y does vary with 5. Therefore, we introduce
the following definition.

Definition 5.6. For § € Yq, we let
(@) := dime(Fy)
denote the complex dimension of ]T'g. A

The fact that the dimension of .7% depends on 7 is illustrated in the following example.
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Example 5.7. Consider the quiver A,
11— 7
withd =i+ j. Let V=1V, @ V; = Ce; ® Ce; be the associated vector space. Then Yq = {7,7'}
with 7 = (4,j) and 7' = (j,i). We have F = F = {pt} and Repg = Cpy;, where p;; : e; — e;.
More precisely, Fy = {F'}, Fy = {F’}, where
F=({0}cV,cV),
F'=({0}cV,cV).

Since p;;(V;) = Vj, F is not p;;-stable. On the other hand F’ is p;;-stable. Let py be the zero
morphism in Repq. Then

Fy={(po, )} = {pt}  while  Fy ={(p,F’) | p € Repg} = Repg x Fy = C.

Note that fy is a variety of (complex) dimension 0 while .7%/ is a variety of (complex) dimension
1, i.e., v(y) =0 but y(¥') = 1. A

Definition 5.8. We will use the notation
ug:]?g% Repg, ma: fg—) Fa
for the projections from the whole incidence variety .7?9 . A

It follows immediately from Proposition 5.5 that jiq is proper and that mq is a disjoint union of
vector bundles (of various ranks).

Remark 5.9. The fact that the morphism ;g is proper is very important. It allows us to take
pushforwards along pq in Borel-Moore homology.

5.1.3 Another interpretation of j-:w

Let w e Wy. If § =7, we set
,uy:,uw:]?w%Repg, Ty = T : Fuw — Fu-
Definition 5.10. For each w € Wy, we set
ty = {p € Repgq | Fy is p-stable}.
Clearly, v, & m;}(F,) as tag-modules. For w,w’ € Wq, we also set

T = T M Tyt 0w, = tw/tw,w“

Let p € vy, and b € B,,. Then b.F,, = F}, is also b.p-stable, so the Gg4-action on Repy restricts to
an action of B,, on t,,. Therefore, we can endow the variety G4 x t,, with two actions. Firstly, we
let Gg4 act from the left by left multiplication on the first factor, i.e., g.(h, p) = (gh, p). Secondly,
we let B, act diagonally by the formula b : (h, p) — (hb,b=1.p). This action is free because the
action of B,, on Ggq by right multiplication is free. We let Gq xBv t,, denote the quotient (orbit
space) of G4 X t,, by this diagonal action of B,,. The left G4-action on Gg X t,, descends to a left
action on the quotient Gq xPv t,,.

Lemma 5.11. For each w € Wy, there is an isomorphism of Gq-varieties
Ga xB» v, = Fo, (g,p) = (9-Fuw,g.p).

Proof. Everything follows directly from the definitions. O
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5.1.4 Ty-fixed points in fg

Lemma 5.12. We have B
(]:Q)Tg = {(pOaF) | Fe ("T:Q)Tg}a

where py denotes the zero endomorphism in Repq.

Proof. Indeed, every flag F' is po-stable, so (pg, F') € fg. If t € Tq, then t.pg = po, so pg is fixed
by Tq. Hence if F € (Fq)"4 then the pair (po, F') is a fixed point under the diagonal action of
T4. On the other hand, suppose that py # p € Repq. Then there exists h € H such that p; # 0.
We can choose ¢ € Ty such that tgp) := tlv,,, = idv,, but tyn) = tlv,,, = A-idy,,,, where
1# X e C*. Then tt(h)pht;(}L) = App # pr. Hence p is not a fixed point of Tg. O

5.1.5 Canonical line bundles and the cohomology ring of fg

Definition 5.13. Let [ € {1,...,d}. Let F = ({0} =V c V! c..c Vil c Ve =V)be aflag
in 75 and p € Repy a representation such that F' is p-stable. We define the I-th canonical line
bundle over F

D O]:?(l) — .7:@

to be the Gg4-equivariant line bundle over Fy with fibre p; ' (F) = V!/V!~1. We also define the I-th
canonical line bundle over J3

POz (1) > Fy
to be the Gg4-equivariant line bundle over Fy with fibre p; *(p, F) = V!/V'~1. Note that the fibre
does not depend on p. It is obvious that

05 (1) Or, (1)

is itself a vector bundle with fibre Wy_l(F) at F. A

By taking homotopy quotients of both the total and base spaces we obtain the line bundles

Py OF4(1) = EGa x% O, (1) = EGa x%4 Fy,

B 0%4(1) == EGa x%¢ 0z (I) » EGq x%2 F.
a 4
Proposition 5.14. There exists a homotopy equivalence EGgq x“4 ]T'g — (CP>)4. This homo-
topy equivalence induces a homotopy equivalence from the line bundle (’)}g_f(l) to the canonical

(tautological) line bundle O(cpeya(l; 1) on (CP>)9, '
Proof. Step 1 Let us first construct the required homotopy equivalence. We choose

1
EGg = [[ Mat™* (0o x dy).
k=1

Then EGq/Tq = (CP*>)9. Let



be the map induced by the vector bundle projection my : fg — Fy. Recall that Gq/Tq — Ga/Ba
is a vector bundle with fibre R, (Bq). We have a commutative diagram

Ga/Ta —————— [ (L) L&) | L2 € CPI L ¢ P(LL, & ... LI 1)}

| |

Ga/Ba = TTRL (VL o V%) | Vi € Gr(n, dy), V™t € Vi)

* Vg ? Vg

Let us set
=Vt

[

Dn;C = VZkL N (V;»Z_l)orth-
. . . . 1
D7 is the unique line in V! orthogonal to the hyperplane V;Z . The map

So . GQ/BQ—) GQ/TQ
|1 11|

[TV v = H oo DY)

k=1

is the zero section of the vector bundle Gq/Tq — Ga/Ba. Let

EGQ ><Gg GQ/BQ E) EGQ ><Gg GQ/TQ

be the map induced by sy on homotopy quotients. We also have the obvious map

o

EGQ ><Gg GQ/TQ — (EGQ)/TQ = ((CIF)OO)d
If e € EGg4 is a matrix and £ := |I| (Lllk7 - L?’“) € Ga/Tq a sequence of lines, then this map
sends the equivalence class of (e,ﬁ) to e.L = \I\ (e.L} ..‘,e.L?k’“) € (CP>)4, where the dots
denote matrix multiplication.

It is clear that both o and 8 are homotopy equivalences. Hence the following composition is also
a homotopy equivalence:

EGd XGd ]: —) EGd XGd fy = EGd XGd Gd/Bd —) EGd XGd Gd/Td (EGd)/Td = ((CIPOO)

ir F =", v}

iy e J/;‘:’“) is a flag, then the composition above sends the equivalence class of the

triple (e, p, F') to the sequence of lines HLI‘: (e.D} e.D{*) € (CP>)9.

TR

Step 2 Let us define a canonical line bundle on Gq/Tq. We take a sequence of lines

I

L= T[ (e ) € G Ta
k=1

The composition 7 induces a total order on these lines, so we may write £ = (L1, ..., Lq). We define
the I-th canonical line bundle Og, 1, — Ga/Ta to be the Gg-equivariant line bundle over Ga/Tq

with fibre L; at £. Observe that Og, /1, — O, is itself a vector bundle with fibre R, (Bq). Let

Ogi /1, denote the homotopy quotient of Og, /7,

Step 3 We obtain a diagram of lines bundles

0% (1) OF () O 1, () ——— Ocpea(l: 1)

BG4 x%4 Fy — 5 EGg x% Fy —2 3 BGg x4 G /Ty — s (CP=)d.
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Now let F = (V1 ..., Vgq) = ‘kl'zl(Vl

L., V3) be a flag. The fibre of (e, p, F) is V!/V!~!. The
composition of lower horizontal maps sends (e, p, F') to £ = ‘,:lzl(e.D}k,...,e.Dik) € (CPp>)4.
The composition 7 induces a total order on these lines, so we may write £ = (Dy, ..., Dgq). On the
other hand, the composition of upper horizontal maps sends the fibre V!/V!~! to D;, which is the

fibre of O(cpe)(l) at D;. Hence the diagram commutes and preserves fibres. O

Corollary 5.15. Let z(l) denote the first Chern class of the line bundle O(cpoeya(l; 1) and let x5(1)
denote the first Chern class of the line bundle Ogi(l). The homotopy equivalence from Proposition
g

5.14 induces a k-algebra isomorphism

H*((CP=)% k) = k[2(1), .., 2(d)] = HE, (Fy) = klag(1), .., v5(d)]
z(1) = zg(1).
Proof. This follows directly from Example 2.9 and the fact that vector bundle pullback commutes
with taking Chern classes. O

Corollary 5.16. We have
HE, (Fa) = @ klag(1), ... ag(d)]

yeYa

as a k-algebra.

5.1.6 The action of W4 on H*Gg(}zg)

Recall that the group Wgq acts on Yg by w(y) =y o w™!. Moreover, Wq acts naturally on the set

{1, ...,d} by permutations. Combining these two actions we obtain an action of Wq on H*GQ(]?Q).
Each w € Wy acts by

w: HEY(Fy) = B Fum)s  F@g(D), oo ag(d) o f(@am (w(1), - 2o (w(d)))

for a polynomial f.

5.2 The Steinberg variety

We now have all the ingredients to define the Steinberg variety, whose Borel-Moore homology will
be the main object of study in this thesis.

Definition 5.17. (i) Let 3,7’ € Yq. We define the Steinberg variety of type (3,7’) to be the
reduced fibre product B _ _ _
Zy,yl I:FyXRepgfyl C‘ng fyl

relative to the maps iy and p .
(ii) We define the Steinberg variety to be the finite disjoint union of Steinberg varieties of all types
corresponding to all the possible strictly multiplicity-free compositions, i.e.,

ZQ = H Zy’y/ .
S EN

Note that the Steinberg variety of type (7,%’) is the universal object making the following pullback
diagram commute

Zyy ——Fy

T

Fyr *W Repgq.
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We also have the following explicit description
Zg’yl = ./T"g XRepg]:ﬂ’ = {((p,F),(pl,F/)) S ]:y X ./T"y/ | p = pl}
The variety Zy 3 is clearly isomorphic to the following variety of triples

Zyy = A{(p, F,F') € Repg x Fy x Fy | F,F' are p-stable }.

Ga acts diagonally on Repyq x F5 x Fy by the formula (p, F, F') + (g.p,g.F,g.F"). If F' and F’
are p-stable then g.F and g.F"’ are g.p-stable, so the diagonal action of Gq descends to an action
on Z§7§/.

We have two canonical Gg4-equivariant projections

/\

Repq 7 X Fyr.

Taking the disjoint union over the connected components Z3 7+ we obtain projections

N

Repd ]:d X ]:d'
Note that the first projection ;194 is proper while the second projection mq 4 is a Gg-equivariant
affine fibration over Fq x Fq (but it is in general not a vector bundle because the dimension of the

fibres is not constant, even upon restriction to a connected component, so local triviality does not
hold).

5.2.1 Ty4-fixed points in Z4

By the argument of section 5.1.4, pg is the only Tg4-fixed point in Repy. Since Tg acts diagonally
on Repgq X Fa x Fg, it follows that

(ZQ)TQ - {(pOaFvF/) | FvF/ € (]:Q)Tg}'

In particular,
[(Za)™e] = [(Fa)™[* = (a)*.
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6 Convolution

6.1 Fundamental classes

6.1.1 Non-equivariant fundamental classes

Let X be a connected oriented (but not necessarily compact) manifold of real dimension m. We
know that fundamental classes of compact oriented manifolds always exist in singular homol-
ogy. Let X = X U{oo} be the one-point compactification of X. Then the singular fundamental
class

[X]*"9 € Hymo(X)
exists and is a generator of the top singular homology group of X. The inclusion of pairs j :
(X,2) c (X,{oo}) gives an induced map

Ju: HIM(X) — H™(X, {o0}).

By the "one-point compactification" definition of Borel-Moore homology we obtain a homology

class
[X] = . ([X]*"9) € H"9(X,{o0}) = Hm(X),

which we call the Borel-Moore fundamental class of X. In the sequel we will simply refer to [X] as
the fundamental class of X. An important property of the fundamental class is that it is Poincaré
dual to the unity in the cohomology ring, i.e., we have

H,,(X)= H(X)
(X] =1,

under the Poincaré duality isomorphism from (2). If X = [[]_, X; is a finite disjoint union of
connected components, then we set [X] := Y7 [X;]. If Y is a closed submanifold of X of real
dimension k and i : Y — X denotes the inclusion, we have a pushforward map i, : H.(Y) —
H,(X). We call

i.([Y]) € Hy(X)

the fundamental class of the closed submanifold Y. For simplicity we will use the notation

¥] = i (1Y),

6.1.2 Equivariant fundamental classes

We now want to generalize these definitions to the equivariant setting. As usual, we apply the
non-equivariant concepts to the homotopy quotient of X. Since in singular homology theory the
notion of a fundamental class only makes sense for finite-dimensional manifolds, we have to use
approximation spaces. Suppose that X is endowed with an action of a Lie group G (or, if X is also
a complex algebraic variety, an algebraic action of a complex reductive algebraic group G). Let
g = dimg G and m = dimg X. Let {E"G — B"G | n > 0} be an approximation of the universal
bundle EG — BG and let n = dimg E"G. We define the G-equivariant fundamental class of X,
denoted [X]9, to be

[X]¢ = lm[E"G x X] € lim H, 17 (E"G x© X) = Hi(X),

n

where the limit is taken with respect to the inverse system

Hermig(E”“G X% X) = Hpysig(B"G x% X).
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Since the inverse system stabilizes, for n > 1 we can identify
[X]¢ = [E"G x¢ X].

Now suppose that Y is a G-stable closed submanifold of X of real dimension k. We have a
pushforward map in equivariant homology

i HY(Y) - HE (X)
induced by the closed embedding i : Y — X. We call
i([Y]9) € HY (X)

the G-equivariant fundamental class of the closed submanifold Y. For simplicity we will, as before,
use the notation
¥]€ = 0.([Y]°).

6.2 General theory of convolution

6.2.1 Non-equivariant convolution

6.2.1.1 The convolution product. Let My, My, M3 be oriented C'°°-manifolds and let Z;5 C
My x My and Zs3 C My x M3 be closed subsets. We define the set-theoretic composition of Zo
and Zs3 to be

19 0 Loz = {(ml,mg) € My x M3 ‘ dmg € M; s.t. (m1,m2) (S Z12, (mg,mg) S 223}.

Let p;; : My x My x My — M; x M, be the projection on the (i, j)-factor and let
P13 1 p1a (Z12) Moy (Zog) — My x My (22)

be the restriction of pi3 to the subset pry (Z12) N p2_31(Z23). Assume that pi3 is proper. We
have
Pia (Z12) Moy (Zaz) = (Z1a x M3) N (My x Zag) = Z12 Xag, Zos,

SO Z15 o Zs3 is the image of pi3. Since pi3 is proper, and therefore closed, Z15 o Za3 is a closed
subset of M7 x M3 and the pushforward (p13). exists. We let

P12t Pra (Z12) = Zia X Mz — Zia,

Po3 : Doy (Z23) = My X Zog — Zag,

denote restrictions of the projections pia,pa3 to prI(Zlg), p§31(Z23), respectively. Let m =
dimg M>. We define the convolution product in Borel-Moore homology

Hi(Zy2) x Hj(Z23) = Hiyj—m(Z12 0 Z23),

(€12, €23) — ci2 * Ca3

by
c12 * c23 = (P13)«((c12 ® [M3]) N ([M1] ® c23)) € Hy(Z12 © Z23),

where c12 ® [Mg] = ]3?2612 and [Mﬂ X co3 = ]333623.

Lemma 6.1. The convolution product is associative.

Proof. See [CG97, Section 2.7.18]. O
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6.2.1.2 The convolution algebra. Let M be a smooth complex manifold, N be a (possibly
singular) variety and p: M — N a proper map. We let Z = M xny M. Now set My = My = M3 =
M and

Zij = M; xn Mj = {(m,m) € M; x Mj | p(m) = p(m")},

for 1 <7< j<3. It is immediate that Z15 0 Z33 = Z135. We need to check that the map
D13 : My Xy Moy xn Mz — Zy3

is proper. Recall that for a continuous map f between locally compact Hausdorff spaces the
following conditions are equivalent: (1) f is proper (i.e. the preimage of every compact set is
compact), (2) f is universally closed, (3) f is closed and all the fibres of f are compact. The fact
that © : M — N is proper, and hence universally closed, immediately implies that pi3 is closed.
Now take (mi,m3) € Z13. We have pu(mi) = p(msz) = z for some x € N and pi3 (mq, m3) =
{(m1,m3)} x p~*(x). Since p is proper, u~'(x) is compact, and hence p 5 ((m1,m3)) is compact
as well. So P13 is closed and has compact fibres, and, therefore, it’s proper. Since Z12, Zo3 and Z13
are all canonically isomorphic to Z, we have a convolution product

H,(Z) x H.(Z) — H.(Z).

Corollary 6.2. H.(Z) endowed with the convolution product is a unital associative algebra. The
unit is given by the fundamental class of the diagonal Ma = {(x,2) € M x M} C Z.

Proof. Associativity follows from Lemma 6.1. We delay the proof of the fact that Ma is the unit
until we introduce the clean intersection formula, see Lemma 9.3. O

6.2.1.3 Convolution modules. We can apply the convolution construction to obtain interest-
ing modules over the convolution algebra H.(Z). Let M, N and Z be as in the previous paragraph.
We set M1 = M2 = M, M3 = {pt}, Zlg = M1 XN M2 and Zgg = MQ X {pt}, Zlg = M1 X {pt}
Then Z o Z33 = Z13. One can verify that the map

D13 : Zig X {pt} — Z13

is proper in the same way as in the previous paragraph. Since p : Ms — N is proper, it is
universally closed, so the map P13 : My Xy Ma = Z15 X {pt} — M; = Z3 is closed. If m € M;
then pr5 (m) = {(m,m’) | u(m) = p(m’)} = {m} x p=(u(m’)) is compact because p is proper.
Thus pi13 is closed with compact fibres, so it’s proper. Since Zjs is canonically isomorphic to Z
and Zs3, Z13 are canonically isomorphic to M, we get a convolution product

H.(Z) x H. (M) — H.(M).
Corollary 6.3. H.(M) is a module over H,(Z) under convolution.

Now let x € N and set M, = /,L_l(l‘). If we set My = My = M, M3 = {pt}, Z19 = My Xy My and
Z23 = (MQ)x X {pt}, Zlg = (Ml)x X {pt}, then Z12 OZ23 = Zgg. One can verify that the map

P13 : Zi2 X {pt} = Z13

is proper as before. Since Z15 is canonically isomorphic to Z and Zs3, Z13 are canonically isomorphic
to M,, we get a convolution product

Ho(Z) x Ho(M,) — H,(M,).

Corollary 6.4. H.(M,) is a module over H.(Z) under convolution.
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6.2.1.4 The diagonal subalgebra. Let Ma = {(z,2) € M x M} C Z be the diagonal in
Z =M xny M. We set M1 = My = M3 = M and
Zij = {(m,m) S Mz X Mj},
for 1 <i< j<3. Then Zy5 0 Zy3 = Z13. Since Z15, Z3 and Zy3 are all canonically isomorphic to
Ma (and M), we obtain a convolution product
H*(MA) X H*(MA) — }I*(]\fA)7

which endows H,(Ma) with the structure of a k-subalgebra of H,(Z). Moreover, one can see from
the definitions that the convolution product in this case reduces to the intersection pairing, which
is simply the Poincaré dual of the cohomology cup product. Hence H,.(Ma) is, under Poincaré
duality, isomorphic to the cohomology algebra H*(Ma). Note that the diagonal embedding M — Z

with image Ma also induces an isomorphism H*(Ma) =N H*(M).

Corollary 6.5. H.(Ma) is a k-subalgebra of H.(Z) under convolution. Moreover, there is a
(grading-reversing) k-algebra isomorphism H,(Ma) = H*(M).

Therefore, H.(M) plays two roles in the convolution framework - it is both a module over H,(Z)
and a subalgebra of H.(Z).

6.2.2 Equivariant convolution

Now suppose that My, My, M3 also have the structure of complex algebraic varieties and are en-
dowed with an algebraic action of an algebraic group G. We equip the products M; x My x Ms
and M; x M; (1 <i < j < 3) with the diagonal actions. Assume that Z12, Zo3 are closed G-stable
subvarieties.

We now want to define equivariant analogues of set-theoretic composition and the convolution
product. The first idea that comes to mind is to replace all the manifolds by their homotopy
quotients. But this leads to problems with product spaces because the product of homotopy
quotients is not the homotopy quotient of a product. For example, if M; = My = {pt}, then
EG x% (M x M) = BG but (EG x¢ M) x (EG x% M,) = BG x BG.

The right approach is to consider homotopy quotients of the product spaces My x My x M3, M; x
M; (1 < i< j <3) and the subvarieties Zy2, Zo3 rather than the factors M, My, M3 themselves.
We can also give the following, perhaps more elegant, interpretation, in which we take the homotopy
quotient only once. Indeed, we take the homotopy quotient EG x & (M; x My x M3) of the ambient
manifold M; x My x Ms, and consider EG x¢ (M; x M;) (1 <1i < j < 3) as images of respective
projections. We also consider EG x¢ Z15, EG x© Zy3 as closed subsets of these images.

We define the G-equivariant set-theoretic composition of Z15 and Zs3 to be
(EG XG Z12) o (EG XG 223) =
{(a,ml,mg) € EG xC (M; x Ms) |

3 ms € Mo with (a,my,ma) € EG x€ Zy5 and (a, ma, m3) € EG x© 223}.
It is immediate that
(EG xC Z13) 0 (EG XY Zy3) = EG xY (Z13 0 Zs3).
We now have projections
% 1 BEG <% (Z13 x M3) — EG x% (M; x M),
PSs - EG xC (M) x Zaz) — EG x© (M x My),
% EG xC (Z1a X a1, Zo3) — EG x© (My x My),
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Let m = dimg Ms. We define the G-equivariant convolution product in G-equivariant Borel-Moore
homology

HE (Z12) x H{ (Za3) = HS j_(Z12 0 Zas),

+j—m
(c12, 623) = C12 * Ca3

by
c12 % Cag = (PT3)« ((c12 ® [M3]9) N ([M1]9 @ c23)) € HE (Z13 0 Za3).

where 15 ® [M3]¢ = (pf3)*(c12) and [M1]9 @ ca3 = (§53)* (c23)-

Corollary 6.6. The convolution product is Sg-linear. Hence, in the set-up of Sections 6.2.1.2,
6.2.1.3 and 6.2.1.4, HE(Z) endowed with the G-equivariant convolution product has the structure
of a unital associative Sg-algebra. The unit is given by the G-equivariant fundamental class [Ma]®
of the diagonal Ma = {(z,2) € M x M} C Z. Moreover, HE(Ma) forms an Sg-subalgebra of
HE(Z) isomorphic to the G-equivariant cohomology algebra HE(M). Furthermore, HE (M) and
HE(M,), for x € N, are HE(Z)-modules under G-equivariant convolution.

Proof. Since pullbacks, pushforwards and the intersection pairing are maps of Sg-modules, the

equivariant convolution product must also be Sg-linear. The other assertions follow straightfor-
wardly from the analogous assertions about non-equivariant convolution. O

6.3 Application to the Steinberg variety
6.3.1 The convolution algebra H*GQ(ZQ; k)

We work in the set-up of Section 6.2.2. Let k be a field and M; = My = M3 = fg. Since
Zq C Fq x Fq we have the closed embeddings

M1 X M2
Ji2

ZQ$M1XM3

My x Ms.
Set-theoretic composition gives
J12(Za) © j23(2a) = j13(Za)-
Hence we obtain an equivariant convolution product
i HEH(Zg5 k) x HE(Zg; k) — HE (243 k), (23)

which equips H*GQ(ZQ; k) with the structure of an associative unital Sg,-algebra.

6.3.2 The convolution module H*Gg(]?g; k)

Now set My, = My = fg and M3 = {pt}. We have a closed embedding

Z4 gz My x M,
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and isomorphisms
M1 X {pt} = M1 X M3

My x {pt} = My x Ms.
Set-theoretic composition gives
j12(Za) © jas(Fa) = jrs(Fa)-
Hence we obtain an equivariant convolution product
o1 HIY(Zg1k) x HO® (Fay k) — HE A (Fas k), (24)

which equips H*GQ(JFQ; k) with the structure of an H*GQ(ZQ; k)-module.

Remark 6.7. We remark that H g(fg ; k) also has a natural Sg,-algebra structure when consid-
ered as the equivariant cohomology ring of j':g under Poincaré duality. In the next paragraph we
show that it can also be regarded as an Sg,-subalgebra of the convolution algebra H*G Y Za; k).

6.3.3 The convolution subalgebra H*GQ(Z&; k)

Let Z5 denote (Fa)a = {(m,m) | m € Fq} C Zq, ie., the diagonal in Zg. The reason for
this notation will become clear in the next chapter, where we discuss cellular fibrations - Z§ is
the first stratum in the cellular fibration of Z4 and the strata are indexed by the Weyl group

Wq. Corollaries 6.5 and 6.6 imply that HEQ(Z&) is an Sg,-subalgebra of H*GQ(ZQ) and that the

diagonal embedding f"g — Zgq with image Z§ induces an isomorphism

G ~ * € = *
H.H(Zg) = HE, (2§) — Hg, (Fa)-

6.3.4 Algebras and modules associated to connected components

The decompositions into connected components

Zg:z H Z@yl, }:QZ: Hj:v'g

y’yleyg yEYg
induce Sg,-module decompositions in homology

HI*(Za:k) = @@ HI*(Z5y:k),
7,9’ €Ya

HI*(Fak) = @ HI(Fyik).
yeYa

We now want to see how the convolution product behaves with respect to these decompositions.
Let Ml = fg, M2 = fy’, M3 = fﬂ”' Then

Z@ﬁg/ = ]:g XRepi ]:y’ C M] X MQ, Z§/7g// = ]:gl XRepi ]:g’/ C M2 X ,2\437

43



Zy@// = fg xRepQ ./T'.g// - M1 X Mg.

Set-theoretic composition gives
Zyy o Zy g = Zyy-

Hence we have an equivariant convolution product

i HOY(Zygi k) x HON(Zy g k) — HEN(Zgg05 k).

Y.y Yy CRCAN

Now set My = .}Eg, My = .7%/, Ms = {pt}. We have isomorphisms

fg — .fg X {pt} = M, x Mg, j}yl — ]'N-y' X {pt} = My x Msj.

Set-theoretic composition yields
Zyy o (Fg x {pt}) = Fy x {pt}.
We thus obtain an equivariant convolution product

o HON(Zyik) x HI(Fyik) = HO (Fgi k).
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7 Stratifications

The goal of this chapter is to describe a convenient (i.e. Schubert class) basis of H*Gg(]?g) and

H *G 9(Z24). We first recall the theory of cellular decompositions and cellular fibrations and later
adapt it to the quiver-graded setting. Our main tool will be the "cellular fibration lemma'". At
the end of the chapter we also discuss how stratifications interact with the convolution product,
describe the centre of HEQ(ZQ) and show that H*GQ(ZQ) ~ g4 @y, H.(Zq).

7.1 Cellular decompositions and cellular fibrations

7.1.1 Definitions and examples: cellular decomposition

We begin by defining a cellular decomposition and a cellular fibration. We also show that a flag
variety G/B, resp. a product of flag varieties G/B x G/ B, satisfy these definitions.

Definition 7.1. Let X be an algebraic variety endowed with an algebraic action of an algebraic
group A.
(i) An A-equivariant partial cellular decomposition of X is a filtration

X=X,2X,12..2X02X_1=0

satisfying the following conditions:

e (C1) Each X, is a closed A-stable subvariety of X.

e (C2) Each X, = X, — X,_, is a (possibly empty) finite disjoint union of A-stable subvarieties
of X, each isomorphic to A", called r-cells.

e (C3) The closure U of each r-cell U is the disjoint union of U and some [-cells with [ < r.
We call U a closed cell.

(ii) An A-equivariant complete cellular decomposition of X is a filtration
X=X, 2Xn12..20XpD2X 1=0

satisfying condition (C'1) and the following two conditions:

e (C2') Each X, =X,—X,_,isa nonempty, A-stable subvariety of X isomorphic to A*, for
some k > 0. We call X, the r-stratum.

e (C3') The closure of X, is the disjoint union of X, and some [-strata of lower dimension (as
varieties) such that [ < 7.

A filtration satisfying ounly conditions (C1), (C2) resp. (C1),(C2') is called a (partial resp. com-
plete) weak cellular decomposition. A

Remark 7.2. (i) One can obtain a complete cellular decomposition from a partial decomposition
X=X,2X,_12..2 Xy 2D X_; = @in the following way. First delete all the X, equal to X,._;
from the filtration and renumber. Subsequently choose an ordering on the cells {U7, ..., U] } in Xy,

and define a new filtration by setting Yo = U7, Y1 = U UUY, ..., ¥}, = U U...UU). Then choose
an ordering on the cells {U], ..., UZ}I} in X;, and extend the filtration by setting Y, 41 = Y,, UU},
Ypotpr = Ypotpi—1 U U, . Continue inductively until all cells have been attached. Note that
this procedure is not canonical - it depends on the choice of ordering of the cells.

ceey

On the other hand, given a complete cellular decomposition X = X,, D X,,_ 1 2 .. 2 Xg 2 X_; =
@, we can obtain a partial decomposition by setting Y. equal to the disjoint union of those strata
X, which have dimension r. This procedure does not depend on any choices.
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(ii) We will need the notion of a complete cellular decomposition to calculate homology. While the
notion of a partial cellular decomposition is not needed for this purpose, we have decided to define
it because many spaces have a natural partial decomposition yet they lack a canonical complete
decomposition. This is the case, for examples, in flag varieties. The transformation of a partial
decomposition into a complete one corresponds, in this case, to extending the Bruhat order on a
Weyl group to a total one.

(iii) Observe that an A-equivariant cellular decomposition is also an A’-equivariant cellular decom-
position for any subgroup A’ of A. A

We now discuss the key example of a space with a cellular decomposition, namely a flag vari-
ety.

Lemma 7.3. Let G be a complez reductive connected linear algebraic group with a Borel subgroup
B and a mazimal torus T contained in B. Let W = Ng(T)/T be the Weyl group of the pair (G, T)
and let Q,, = BwB/B. Moreover, let < denote the Bruhat order on W. Then

(G/B)" = {wB/B |we W}

and
G/B= ][] Qu Qp = Al Q= J]
weWw ulweWw
Moreover,
X=]] @ X=]] %
Ww)=r l(w)<r

gives a B-equivariant partial cellular decomposition of G/B.

Proof. See [Prz14, Theorem 3.21]. O
Definition 7.4. In the setting of the lemma above, we call the {2, | w € W} Schubert cells and
the {Q, | w € W} Schubert (sub)varieties. A

Example 7.5. Let G = SL(2,C) and let B be the standard Borel subgroup consisting of invertible
upper triangular matrices. Then G/B = CP'. The Weyl group W is isomorphic to Z, = {e, s}.
Our flag variety has two cells: the one-point cell B/B and BsB/B = C.

7.1.2 Definitions and examples: cellular fibration

A cellular decomposition is a way of decomposing a variety into affine spaces. We now define a
more general notion, that of a cellular fibration, which is a way of decomposing a variety into
vector bundles.

Definition 7.6. Let X,Y be algebraic varieties endowed with algebraic actions of an algebraic
group A. Let m: X — Y be an A-equivariant morphism of varieties.
(i) An A-equivariant partial cellular fibration structure on X over Y is a filtration

X=X,0X,12..0Xy>0X_1=0

satisfying the following conditions:

e (D1) Each X, is a closed A-stable subvariety of X and each restriction 7 : X,, — Y is an
A-equivariant fibre bundle.

e (D2) Each X, = X, — X,_, is a finite disjoint union of subvarieties U; of X such that each
restriction 7 : U; — Y is a A-equivariant vector bundle of rank r. We also call the U; r-cells.

e (D3) The closure of each r-cell U; is the disjoint union of U; and some I-cells with | < 7.
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(ii) An A-equivariant complete cellular fibration structure on X over Y is a filtration
X=X, 2Xn12..20XpD2X 1=0

satisfying condition (D1) and the following two conditions:

e (D2') Each X, =X,—X,_jisa nonempty, A-stable subvariety of X such that the restriction

7 : X, — Y is an A-equivariant vector bundle of rank k, for some & > 0. We call )?T the
r-stratum.

e (D3') The closure of X, is the disjoint union of X, and some [-strata of lower rank (as vector
bundles) such that [ < r.

A filtration satisfying only conditions (D1), (D2) resp. (D1),(D2') is called a (partial resp. com-
plete) weak cellular fibration structure. A

Remark 7.7. (i) A cellular decomposition is a cellular fibration with Y = {pt}.

(ii) Analogous observations regarding the relationship between partial and complete cellular fibra-
tions apply as in the previous remark about cellular decompositions. A

We will now discuss the key example of a space with a cellular fibration structure, namely a
product of two flag varieties. As before, let G be a complex reductive connected linear algebraic
group and let B be a Borel subgroup containing a maximal torus 7. Let 7 : G/B x G/B — G/B
be the projection onto the first factor. Let W = Ng(T')/T be the Weyl group of the pair (G, T).
Then

(G/B x G/B)' = {(wB/B,w'B/B) | w,w' € W}

and we have bijections:

w — {B-orbits on G/B} — {G-diagonal orbits on G/B x G/B}.
w — Quw — Q..

We already explained the first bijection in Lemma 7.3. Let us now define Q,, and explain the
second bijection.

Definition 7.8. Let Q,, be a Schubert cell in G/B.

(i) Let g € G. We call g.Q,, C G/B the translation of ,, by g.

Note that we still have ¢.Q, = A!®. Moreover, if g,g’ € G belong to the same coset, i.e.,
gB = ¢'B, then ¢.Q,, = ¢’.Q,, because Schubert cells are B-stable. Therefore it also makes sense
to regard ¢.Q, C G/B as a translation of §2,, by the element g := gB/B € G/B.

(il) We set

Q, = H (gag-Qw)'
geG/B

The definition directly implies that €2, is stable under the diagonal G-action. We call @, a
diagonal Schubert cell and its closure €2, a diagonal Schubert variety. A

Remark 7.9. We use standard font to denote Schubert cells in G/B and bold font to denote
diagonal Schubert cells in G/B x G/B.

Lemma 7.10. Q,, is the G-orbit of the T-fized point (B/B,wB/B) and it contains precisely the
T-fized points {(uB/B,uwB/B) | u € W}.
Proof. This follows directly from the definitions. O

Lemma 7.11. Let G be a complex reductive connected linear algebraic group and B be a Borel
subgroup. Let w : G/B x G/B — G/B be the projection onto the first factor. Then G/B x G/B
has a natural structure of a G-equivariant partial cellular fibration over G/B.

47



More specifically, if G/B is endowed with the partial cellular decomposition from Lemma 7.3, with
Schubert cells {Qy, | w € W}, then each restriction

Tw : Qy — G/B

of the projection m to a diagonal Schubert cell Q,, is a vector bundle of rank l(w). Moreover,

G/BxG/B= [] Qu, Q= J]

weWw u<weWw

Xo= ][] Q. Xo= [

l(w)=r l(w)<r

and

gives a G-equivariant partial cellular fibration of G/B.

Proof. We first prove that, for each w € W,
Tw : Qy — G/B (27)

is a vector bundle of rank I(w). Let g :== gB/B € G/B and let F := 7n~1(g) be a fibre of
the projection 7. The restriction €, |r = 2, N F of Q,, to F is the translated Schubert cell
9.Qy = AW In particular, each fibre is affine. It remains to be shown that (27) satisfies local
triviality. Recall that G/B contains a unique cell of highest dimension, the so-called "big cell".
This cell is an open subvariety of G/B. There exists an open covering of the base space G/B by
translations of the big cell. It is not difficult to check that this covering gives a local trivialization
of (27). Hence (27) is indeed a vector bundle of rank I(w).

G/BxG/B is a disjoint union of the diagonal Schubert cells because they are precisely the G-orbits.
The closure of €2,, is the disjoint union of closures of each fibre. The fact that

u<weWw

now follows from the corresponding claim about (non-diagonal) Schubert cells.
It is now completely straightforward to verify the axioms (D1)-(D3). We conclude that = : G/B x
G/B — G/B, endowed with the filtration

G/BxG/B=X,2Xp-1D2..2XoD>X 1=0,

is indeed a partial cellular fibration over G/B. O

Example 7.12. Let G = SL(2,C) and B be the standard Borel subgroup. Then G/B x G/B =
CP' x CP'. This "double flag variety" contains two diagonal Schubert cells. One cell is the
diagonal in CP! x CP!. It is isomorphic to CP! and contains the torus fixed points (B/B, B/B)
and (sB/B,sB/B). The other cell is its complement. It is a complex vector bundle over CP! of
rank 1 and contains the torus fixed points (B/B,sB/B) and (sB/B, B/B).

7.1.3 Further cellular decompositions

Our goal is to give a H({pt})-basis of the homology group HS(G/B x G/B). For this purpose
we need to define some more cells in G/B x G/B.

Definition 7.13. Let {Q,, | w € W} be the Schubert cells in G/B and {2, | w € W} the diagonal
Schubert cells in G/B x G/B. Recall that the projection

7m:G/BxG/B— G/B
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onto the first factor restricts to a vector bundle
Ty : Qy — G/B (28)

with fibre 71 (¢B/B) = gQ,. Now let Q,, be a Schubert cell in the base space. Consider the
restriction of the bundle (28) to the Schubert cell Q.. Its total space is

W;I(Qw/) = Wﬁl(Qw/) N Q.
We denote it by ., .. It is isomorphic to the affine space Al@)+I(w") A
Note that (w’B/B,w'wB/B) is the only T-fixed point in €, ..
Lemma 7.14. We have decompositions
G/B X G/B = H Qw,w’a Qw = H Qw/,un ﬂ'il(Qw’) = H Qw/,w-
w'  , weW w' eW weWw
Proof. This is immediate from the definitions. O
Proposition 7.15. (i) Let w € W and n = |W|. If we set
)?r = H Qw/,wa Xr = H Qw’,w
l(w")=r l(w")<r

then
Q,=X, 020X, 1D0..0XgD>X_1=0

is a T-equivariant partial cellular decomposition of €.
(ii) Let w' € W. If we set

Xr: H Qw/,wa Xr: H Qw’,w
l(w)=r l(w)<r

then
T Q) =X, DX, 1D...0X0D0X_1=0

is a T-equivariant partial cellular decomposition of ™= ().
(iii) The closure of Qy 4 s

Qw/,w = H Qu’,u-

u<w,u’ <w’

Proof. This is also clear from the definitions. O

7.1.4 Thom isomorphism

An important property of cellular fibrations is that their homology can be recovered from the
homology of the affine cells. Moreover, the filtration associated to a complete cellular fibration
induces a filtration on homology. To show this we will need the Thom isomorphism.

Proposition 7.16 (Thom isomorphism). Suppose that 7 : E — X is a smooth real vector bundle
of rank k and that i : X — FE is the inclusion of the zero section. Then the pullback homomorphisms

7 H(X) > How(E), i H(E) = H._1(X)

are mutually inverse isomorphisms. Similarly, if m : E — X is in addition o G-equivariant bundle,
then
mt s HE(X) = HEG(B), i HE(B) —» HE (X)

are mutually inverse isomorphisms.

Proof. See [CG97, Proposition 2.6.23]. O
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7.1.5 The cellular fibration lemma

In this section we will prove a technical result of fundamental importance. It will allow us to
connect the geometry of flag varieties and products of flag varieties with their homology. We will
work in the following set-up.

Let A be an algebraic group, and let 7 : X — Y be an A-equivariant map of algebraic varieties
endowed with an algebraic A-action, and suppose that the filtration X = X,, D X,,_1 D ... D X¢ D
X_1 = & defines a weak A-equivariant complete cellular fibration structure on X over Y. We have
the following diagram of nested fibre bundles.

X=X,D X,.1D ..D_Xp
Y/

Let E, = X,\X,_1 and let E, denote the closure of E,.. Note that E, is a closed subset of X, but
needn’t equal X,.. Let us further introduce the following notation.

X, x, «l opcr g L x (29)
%

Lemma 7.17 (Cellular fibration lemma). (i) For each r = 1,...,n there is a canonical short exact
sequence

0= HAX,_1) 2 HAX,) L5 HAE,) — 0. (30)

(ii) Moreover, if HA(Y) is a free Sa-module with basis 1, ..., ym then each short ezact sequence
(30) is (non-naturally) split and H2(X,) is a free Sa-module with basis {B,. 7 (y;) | 1 <1 <
m,1 <r <n}.

Proof. Recall that we have the following inclusions

erlci_> X, @Eh

where ¢ is a closed embedding. Suppose that m = dim X, and that the bundle «, : E,. — Y has
rank k. Then we get a long exact sequence in equivariant Borel-Moore homology

0 HAX,_1) = HAX,) 25 HAE) & HA(X,_1) = .

m—1

We need to show that all the boundary maps O vanish, or, equivalently, that the maps j* are
surjective. Consider the following diagram.

HAB) —2 5 HA (X)) — ...

m—1

0 HA(X,_,) —" HA(X,)

R

HA

m—k

(¥)

Since the pullback maps commute and 7 : HA ,(Y) — HA(E,) is an isomorphism, it follows
that j* is surjective, as desired. The same argument works in each degree, so all boundary maps
vanish.
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For the second part, we argue by induction on r. Since Xy = Fy, Thom isomorphism implies
HA(Xo) = HA(Y). Now assume the result holds for X, ;. Let 8} denote the following closed
embedding

65 : Ek — Xp.

Note that 8} is obtained from () by restricting its range to X,. We have i o 5271 = f;.
induction H2(X,_1) is a free Sa-module with basis {(8; ). Tr(y) |1 <1< m,1 <k <r—1}.
By the Thom isomorphism HA(E,) = HA(Y), and so HA(E,) is a free Sy-module with basis
{7 (y1)s ..., ™5 (ym)}. Since both the left and the right ends of the exact sequence (30) are free
Sa-modules, it follows that the sequence splits. If s is a section of j*, then {(5]).75(y;) | 1 <
I <ml <k <r—1}U{sn*(y1),.., 57 (ym)} is a basis of HA(X,). We thus need to find an
appropriate section so that s7(y;) = 7 (y;) holds for each I.

Now observe that the cellular fibration structure on X induces a cellular fibration structure on the
closed subvariety X,., which also induces a cellular fibration structure on the closed subvariety E,.,
by axiom (C3’) in the definition of a cellular fibration. We can choose a filtration of X, so that
the filtration of E, forms an initial segment of the filtration of X,. Repeating the argument of the
first part of the proof we can conclude that the map (85)* : HA(E,) — HA(X,) is injective, so
we can regard HA(E,) as a subgroup of H”(X,). Moreover, we can choose a section s so that its
image is contained in H2(E,). We can therefore regard s as a section of a*. Now let

Er:FrDFrfl;)Fr72;)'~;)FO

be a filtration of E,.. Let i’ denote the closed embedding i’ : F._; < E,.. Repeating the argument
of the first part of the proof for the cellular fibration of F.., we conclude that there is a split short
exact sequence

0 — H(Fr1) = HNE,) =5 HME,) — 0. (31)

Note that the commutativity of diagram (29) implies that for each I, 7} (y;) = a7 (y;). We can
now choose a section s of o such that for each I, 7" (y;) = sa7:(y;) = sm*(y;). But this is the
section we were looking for. O

We have the following immediate corollaries of the cellular fibration lemma.

Corollary 7.18. Suppose that the total filtration of X has length n, i.e., X contains n cells and
that HA(Y) is a free Sa-module of rank m. Then HA(X) is a free Sa-module of rank n - m.
Moreover, the filtration of X induces a filtration on homology

HA(X) > HMX,_1) D ... D HA(Xy).

Corollary 7.19. We have

H.(G/B)= P k], H.(G/BxG/B)= P k[Quw],

weWw w,w' €W
HI(G/B) = QB ., HIG/BxG/B)= P Sr([Qu.] ,
ew w,w'eEW

7.2 Stratification of 74 and F4 x F4
7.2.1 The cells QY QZ’H and QZ}Z

We first apply the results of the previous section to G = Ggq,B = Bq,T = Tq,W = Wq. We get
bijections

Wgq <— {Bg-orbits on Gq/Bq4} <— {Gqa-diagonal orbits on Gq/Bq X Ga/Ba}-
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This applies to every connected component of the quiver flag variety Fq. Recall that Fq =
ngyd F3 and that there are bijections

Y «— Wa\Wq «— Min(Wgq, Waq).

Furthermore, we have fixed a Ty4-fixed flag, which we called the standard coordinate flag, F, of
type .. We have set, for each w € Wq, F, = w.F, and, for each w € Min(Wq, Wa), Fz =
Fu,)-

Definition 7.20. For each u,u’ € Min(Wq, Wq) and w,w" € Wq we set

’

Qg = Bg.qu, Qﬂ o = Gg.(Fu/,qu),

w

Let
ﬂﬂl

=l

: ]'-a/ X fﬁ — Fa’
denote the projection onto the first factor. We set

QLT = (r )TN QD) QT
The notation has been chosen in such a way that the upper indices indicate the connected com-
ponent in which the cell is contained, and lower indices indicate relative position within that

connected component. Bold font is used for diagonal cells. VAN

Then for each u, v’ € Min(Wq, Wq) we have bijections

Wau — {Bg-orbits on Fz} — {Gq-diagonal orbits on Fz X Fg}.
wu — Qe — Qg}/ o,
We have

(QZ)Ti = {qu}a (QZE)Ti = {(Fvu’vFku) lve Wg}, (QZ/’Z)TQ = {(Fw’u’a Fw’wu)}-

7.2.2 The cells §,,0,,0, and O,

For each connected component F3» x Fz we have a projection
R Fa X Fg — Fg
onto the first factor, which, for each w € Wy, restricts to a vector bundle
T QU T (32)
Summing over all the connected components we get the projection
m: Fa X Fa — Fa. (33)

We want to combine the cells Q%7 to obtain "quiver Schubert cells" in Fyq x Fq satisfying the
following properties:

e they are disjoint unions of the cells Q% %,

e they are stable under the diagonal Gg4-action,

e the projection (33), restricted to a quiver Schubert cell, constitutes a vector bundle over Fyq,

e it is possible to define an ordering on the quiver Schubert cells which encodes closure relations.
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Observe that for each connected component Fz in the base space Fgq, the fibre 7~ (Fz) =
I eminewa,wy) Fa % Fa consists of [Wa\Wa|-many connected components. Therefore, to deter-
mine a quiver diagonal Schubert cell, we need to make two kinds of choices. In each fibre, we need

to choose a connected component, and in that connected component, we need to choose a diagonal
Schubert cell.

There is a natural way to make these choices. Recall that Fq4 is a closed subvariety of the flag
variety Gq/Bqgq. We can apply the analysis from the previous section (with G = Gq,B = Bq,T =
Ta, W = Wq) to obtain bijections

Wq +— {Bg-orbits on Gq/Bg} +— {Gga-diagonal orbits on Gq/Bg X Gq/Bq}.

Let

w . Gd/Bd X Gd/Bd — Gd/Ed
denote the projection onto the first factor.
Definition 7.21. For each w € Wy, we set

Uy = Bq.Fy, Uy :=Gq.(F.,F,), Opw =@ (Uy) NV

U, is a Schubert cell in Gq/Bg and U,, is a diagonal Schubert cell in Gq/Bg x Gq/Bg. We
now obtain the desired quiver Schubert cells by restricting the Schubert cells in Gq/Bq resp.
Gd/Bd X Gd/Bd to fg resp. .FQ X fg:

Ow = Uwﬁ]:ga Ow = Uwﬂ(]:gx]:g), Ow,w’ = Uw,w’ ﬂ(]:QX]:g)a
We also set

ng = H Ow/, ng = H Ow/.

w!' <w w!' <w

We have
(Ow)Tg = {Fw}v (Ow)Tg = {(Fw’,Fw/w) | w' e Wd}v (Ow,w’)Tg = {(FwaFww’)}'

Remark 7.22. If we set X, = [];,)<, Ow and n = l(wo), where wo is the unique longest element
of Wy, then -
Ga/Ba xGa/Ba=X,2X,-12..2X02X 1 =0

is a partial cellular fibration structure on Gq/Bg X Ga/Bq over Gq/Bq. Now set X, = Hl(w)<r O,.
Then -
GQ/BQX GQ/BQ: Xpn2X,12...0Xg2 X 1 =0

is only a partial weak cellular fibration structure on Gq/Bq X Ga/Bd over Ga/Bg (i.e. the closure
of a cell may be a disjoint union of proper subsets of cells rather than entire cells). This is due to
the fact that in general

0, C O<,.

This fact can be explained as follows. There is a difference between restricting a cell G, to Fgq x Fg
and subsequently taking (Zariski) closure on the one hand, and taking (Zariski) closure of U,, first

and then restricting U,, to Fq x Fq. We have
Oiw:Uwﬂ(fQX]:Q) - mﬂ(fgxfg) :ng
and this inclusion is in most cases proper. We believe that this point was overlooked in Section

2.5 of [VV11]. For example, let T' be the quiver with two vertices and no arrows and let d = (1, 1).
Then F(V) = CP! and Fq consists of two flags F' and F’. We have Wq = G, = {e, s}, Wq = {e}.
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The double flag variety F(V) x F(V) =2 CP! x CP' decomposes into two cells U, and U;. The cell
U, is the diagonal and Uy is its complement. We have

U.=0., U,=CP!xCP'.
The double quiver flag variety Fq x Fgq consists of four points, i.e.,
Fax Fa= {(FvF)v(F/’F/)a(FvF/)v(F/aF)}'

We have
O, =0, ={(F,F),(F',F')},

OSZOS:{(F7FI)( )} {(FF) (F/,F/),(F7F/),(F/,F)}ZUisﬂ(]:gX}—g).

7.2.3 The cells OE

We would like to see how the cells O,,, inherited from the cellular fibration of G4/Bg x Ggq/Ba,
behave with respect to the decomposition of F4q x Fgq into connected components. In particular,
we would like to decompose each cell O, into cells of the form Q% and each cell O,, into cells of
the form Q%™ . The former is easy - if w = zu, with z € Wy and u € Min(Wg4, Wy), then we
have

Ow =9

8 g

The latter is more complicated.
Definition 7.23. For each v € Min(Wgq, Wq) and w € Wq, we set

ol =

Ga.(Fu, Fuw)-

It is immediate that
Ou

w

O, N (Fa X Faw) = Oy N 1 (Fy)

o,= J[ o

uw€EMin(Wq,Wa)

and

Suppose that uw = zu’, where © € Wy and v’ € Min(Wq, Wgq). Then
07 := Ga.(Fy, Fuw) = Ga.(Fy, Fpu ) = Q57

Definition 7.24. The transition between the notations O% and Q%% can be expressed by the
following functions:

Ky @ Wq x Min(Wq, Wye) — Wa
(w,u
Ko Wd X Min(Wd,

(w,

where vw = zu'. A

a)
) =
4) — Mln(W’d7 Wa)
u) =

Then
_ i< (w,u)
o,= JI e
uEMin(Wq,Wq)

Unfortunately it is difficult to describe the functions 1, s explicitly.
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Example 7.25. Consider the quiver

11—
with dimension vector d = i + 2j. Then Wyq = &3 = < s,t > and Wyq = G, = < t >, where
t = (1)(23) and s = (12)(3). The following diagram illustrates the Bruhat ordering on Wy, the
cosets with respect to Wy (the cosets are elements designated with the same colour) and the
minimal length coset representatitves (the elements designated with bold font).

sts

N
>
N

We have three compositions 57, jii and jij in Y4. The coset {st, sts} corresponds to the composi-
tion jji, the coset {s,ts} corresponds to jij and the coset {e,t} to ijj. Let u,u’ € Min(Wq, Wa).
We have Fy x Fpr & CP! x CP'. We set

(Fa x Fa)a = {(F,2u'u™'F) | F € Fg} = Ga.(Fy, Fu),

(Fax Fa)v ={(F,F") | F € Fo, F € Fr, F' # u'u"'F} = Gq.(Fy, Furt).

We have
O° = (Fz x Fe)a = Q°° Of = (Fax Fo)yv = QF°
Of = (Fs x Fs)a = ° Of = (Fsx Fyp)a = Q0™
O = (Fa x Fap)a= @ Of' = (Fa x Fo)a = Q'F
0% = (Fex Fs)a = Q%° 0f, = (Fex Fo)v = QO°
0% = (Fs x Fo)a = Q° O}, = (Fs x Fo)v = Q'
O = (Fiz x Fr)v= " Off = (Fiz x Fe)a = '°
0%, = (Fe x Fap)a= Q0 0%, = (Fex Fo)v = Q"
0%, = (Fs x Fo)v = O;° 0%, = (FsxFs)v= 9°
0% = (Fag x Fs)y= Q;*F 0%, = (F x Fo)v = Q5%

The closures of the quiver Schubert cells O,, are given by

0. =0, =0°LO’LO?

0, =0,u0° =0 LOJLUOLO°
0,=0,u0" =0°LO0sUOTLOT

0, = 0,LU0°LO} =0, UOLUO L0t Lo}

0, =0, U0 L0 = 0% LU0% U0t uosuOof
045 = 04, UOZ, UOI U0}, =0f, U0, U0, U0, U0 U0
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7.3 Stratification of fg and Z4

We have considered in detail the stratifications of 74 and Fgq x Fgq. Recall that we have projec-
tions _
WQZ.FQ-)]'_Q, TI'QQ:ZQ—}.FQX}_Q

forgetting the stabilizing representations. We are going to use these projections to obtain stratifi-
cations on Fgq and Z4.
Definition 7.26. Let us set

0, = ’/TQ_}Q(OM), oY = 7'(';73(02}), (N)w,w/ = Wg_é(ow,w/),

2y =0, 25"=J 2y =] Ou

w’' <w w!' <w
W . Zw _ <w . _ z<w _
2V =28 N2y,  Eiw =23V NZy.

Note that |J,, ., 24" is in general not a disjoint union.

Remark 7.27. It is important to note that there is a difference between pulling back a cell along
7a,a and subsequently taking (Zariski) closure on the one hand, and taking (Zariski) closure of
a cell and then pulling back a closed cell along 74,4 on the other hand. In other words, taking
closure does not commute with pulling back along the projection mq 4. We have

28 =m134(0u) C g4 (Ou)

and this inclusion is in most cases proper. This holds because a pair of flags in a cell O, with
w’' < w may have a higher-dimensional fibre of stabilizing representations than a pair of flags
in the cell O,. This entire higher-dimensional fibre would be included in 7Tg_71g (Ow), but only a

lower-dimensional subspace would be included in 7@71@(010). A

Suppose that p € Repy stabilizes flags F' and I". Let g € Gq. Then g.p stabilizes flags g.F" and
g.F’. In particular, for each g € Gq,u € Min(Wq4, Wq) and w € Wy, we have an isomorphism of
vector spaces

Cuuw — Tg g((9-Fur 9-Fuw)),  pr>g.p
(see Definition 5.10 for the definition of v, ). This implies that the restricted projection

. O w
ﬂ—QvQ : Ow — Ow

has fibers of constant dimension and is a vector bundle over O%

w

(which is itself a vector bundle
over F,). In particular, OY is smooth.

7.3.1 HA({pt})-basis

We are now going to use the stratifications we have defined to obtain bases of homology groups
of Fq and Z4. The following result is a corollary of the cellular fibration lemma (Lemma 7.17).

Recall that we set Sp, = HI2({pt}).
Corollary 7.28. We have

H(F)= @ k[On]. M= @ k|[Ouw|.

weWq w,w' EWq
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Ta

HE = @ sn[0.]" HPE) = @ Sn[0u ]

wEWY w,w €Wy
In particular, Hzi(]?g) is an St,-module of rank |Wq| and HEQ(ZQ) is an Sty-module of rank
[Wal?.
Proof. Let us extend the Bruhat order on Wy to a total order w; < wy < ... < wq;- Then
Fa D Ocuyy Do D Ocuy D Ocyy

is a Tg-equivariant complete weak cellular decomposition of ]?g in the sense of Definition 7.1 and

24D Z3V4 S LD 25 5 5

is a Tg-equivariant complete weak cellular fibration of Zq in the sense of Definition 7.6. The
statement now follows from Lemma 7.17. O

7.3.2 HA (]—N'g)-basis

To prove the next proposition we will need some tools (reduction to the torus and the clean
intersection formula) which we discuss in the later sections.

Proposition 7.29. (i) Let ¢ : 24 — .fg be the projection onto the first factor, i.e., ¢(F, p, F', p) =
(F,p). Then for each w € Wy, A € {{e},Ta,Ga} the diagram

HA(25) x HA(23") —— HA(Z25")

q*Xq*T Tq*
HA(Fa) x HAN(Fa) —— HA (Fa)

commutes.
(ii) We have
- A
HNZE) = P AT+ 28]

ueEWq,u<w

~ A
i.e. Hf(Zgw) is a free left H2(Fa)-module with basis {{Zg] |u <w,ue Wd}.

Proof. (i) Let A € {{e},Ta}. The pullbacks ¢* and convolution maps * are maps of S4-modules.
Therefore, it suffices to check commutativity on an S-basis of H;“(]—"Q), for example the basis

{{@]AL%GWd}. We have

o ([0:]"+[0,]") = ([ 0:06,]") =41 [(@.n G x Farn 257] ",

(q* {ar*q* [@J}A> = [@]A*[éy,gw }Azc’. [((57057) X]?Q)nggwr,

where ¢ € HA(Fa),¢ € HA(Z5") are A-equivariant Euler classes of vector bundles 7,7 as in
Lemma 9.3. Tt is straightforward to check that q*(c) = ¢’. To prove commutativity for A = Ggq,
take Wq-invariants in the Ty-equivariant diagram.

(ii) This follows from the cellular fibration lemma, where we now consider Hf(jfg), Hf(wa) as

HA(Fg)-modules. O
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7.3.3 Convolution preserves the stratification

We will later need the following result to determine a set of multiplicative generators of the con-
volution algebra HY %(Z4). It shows that the stratification of Z4 gives rise to a certain kind of

filtration on H*GQ(ZQ).
Lemma 7.30. (i) For each x € Wq, A € {{e},Ta,Ga} the closed embedding ZQSI C 24 induces
an injective left graded Sa-module homomorphism HA(Z5") — HA(Z4).

(i) For z,y € Wq such that I(zy) = I(x) + I(y), we have HA(Z5")» HA(Z5Y) € HA(Z5™).

Proof. (i) This follows directly from the cellular fibration lemma.
(ii) For o’ < z,y’ <y, we have

Gd.(Fe,Fz/) o) Gd.(Fe,Fy/) = Gd.(Fe7 Fw/) o Gd.(Fxl, Fm/y/) = Gd(Fe, Fx/y/).

Hence

zirozi'= (1100) o [TT0s] = IT 0un

' <z y'<y ' <z,y' <y

But 2’y < zy if l(xy) = I(x) + I(y). Hence
H 6a:’y’ g H 6z
z'<z,y' <y z<xy
and so

HMNZF") « HANZ23Y) € HA(Z5™).

7.3.4 The centre
We now want to determine the centre of the convolution algebra H. *G 4(Zq). We will identify it with
the Gq-equivariant cohomology of a point, i.e., with the algebra of symmetric polynomials.

~ G
Definition 7.31. Let 155 := [Z7 ] 15 := [Fy|. Further, let 3 denote H*Gg({pt}) {Z&] Y c
HEQ(ZQ). Here HO%({pt}) acts on HEQ(ZQ) as explained in Section 2.5. JAN

We will use the following lemma.

Lemma 7.32. Let5,7,y" € Ya. The maps

Gd Gd
H. N (Zyy) — H S (Zg47)
g = g x ly g = g,
Gg Gg
H. N (Zyy) — H S (Zg0 )
g Ly gx gy = gy

are 1njective.
Proof. Standard. Calculate the convolution product on Tg-equivariant Schubert classes by applying

the clean intersection formula (Lemma 9.3) and take Wg-invariants. See also [KL09, Theorem
2.9]. O
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We also need the following definition.

Definition 7.33. Let NH,, denote the NilHecke ring, i.e., the unital ring of endomorphisms of
kly(1),...,y(m)] generated by multiplication with y(1),...,y(m) and Demazure operators

J—suf
y() —y(l+1)’

for 1 <1 <m — 1, where s; is the transposition switching y(I) and y(I + 1). The endomorphisms
which act by multiplication with y(1),...,y(m) generate a subring which is canonically isomorphic
to kly(1),...,y(m)]. Moreover, it is well-known that the ring of endomorphisms which act by
mutiplication by a symmetric polynomial equals the centre of NH,,.

a(f) =

We are now ready to determine the centre of the convolution algebra HY 4(Z24). We follow the
proof of [KL09].

Proposition 7.34. 3 is the centre of H*GQ(ZQ).

G G
Proof. We have 3 = H*Gg({pt}) {Z&} *. But [Z&} * is the unity in the convolution algebra
HSQ(ZQ) and convolution is H%({pt})-linear, so 3 is contained in the centre of HSQ(ZQ).

We now prove the reverse inclusion, which is slightly more difficult. It follows from Example 11.28
that for each § € Yq we have an isomorphism of k-algebras

1]
HI%(Z55) = R) NHa,, (34)
=1

where the LHS is a convolution subalgebra of HEQ(ZQ). The image of Hfi(Zgg) under this

isomorphism is ®}I:‘1 Ely(1),...,y(d;)] = k[zg(1), ..., z5(d)], i.e., the subring consisting of endomor-
phisms acting by multiplication with a polynomial. It is well-known that the centre of a NilHecke
ring consists of the endomorphisms which act by multiplication with a symmetric polynomial.
The centre of a tensor product of NilHecke rings is isomorphic to the tensor product of centres of
NilHecke rings. Hence the centre of ®EI:|1 NHy, is k[zz(1), ..., xz(d)]"a.

Summing over connected components, we get a k-algebra isomorphism

I

P H*(255) = D Q) NHa,. (35)
YEYa yeYy I=1

If we set za(l) := 3 ey, 25(l), then the image of 3 is k[za(1),...,x

Suppose that z lies in the centre of H*GQ(ZQ). We can write

Ga
2= Y g, 2y € H(Z55).
Y,y €Ya

Let us pick ¥ # ¥ € Yq. We have

exlyy = ) Gy =lyyxi= ) Fg.
FIS €Y Y’ €Ya

where Z5 35 € H*G %(Z55)- The only common summand is Z5 3, so it’s the only possibly non-zero
summand. However, convolution with 1y 3 is injective. Hence, the fact that z; 3 = 0, for § # ¥,
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implies that zzy = 0 as well. Varying y we see that only the summands 235 can be non-zero.

Hence we can write .
_ _ _ d(=z _
z= E 25,5 25 € Hi(Zy3).

yeEYa

Since z is central in H*GQ(ZQ), zyy is central in H*GQ(ZM). Under the isomorphism (34), we can
identify 237 with a symmetric polynomial in k[z5(1),...,25(d)]"V4. Subtracting an appropriate
central element f € k[zg(1),...,24(d)]"4 we can assume that 27 = 0. For all ¥ € Yy, we have

O=zggrxlgy =2+xlgy =lggrxz =1y x 25 5.

But convolution with 135 is injective, so 2777 = 0. It follows that 3 = k[zg(1),...,zq(d)]"Ve
equals the centre of HSQ(ZQ). O

7.4 Equivariant formality

In this section we will show that the variety Z4 is Gq-equivariantly formal. This result will prove of
great importance in the study of graded finite-dimensional representation theory of the convolution
algebra H*GQ(ZQ). We will later show that the centre of HEQ(ZQ) acts trivially on any graded

simple module. This will allow us to identify graded finite-dimensional representations of H. *G 4(Zq)
with those of the finite-dimensional non-equivariant algebra H,.(Zq).

Definition 7.35. A G-space X is called G-equivariantly formal if HG(X) 2= HE ({pt}) @) H.(X).
Proposition 7.36. The variety Zq is Tq-equivariantly formal.

Proof. Recall that by the cellular fibration lemma, H.%(Zg) is a free H,*({pt})-module with

— T —
basis {[ (0 ] * | w,w' € Wd}. This basis restricts to a k-basis { [ Oy ] | w,w' € Wd} of

H,.(Z4). Hence, by the Leray-Hirsch theorem, we obtain the following explicit isomorphism of
Ta (.
H.<({pt})-modules

HI({pt}) @ Ho(Z4) — HI*(Z4)

- - Ta
a® {()wﬂy }Fé « {()wﬂﬂ/} .

Proposition 7.37. Z4 is Gq-equivariantly formal.

Proof. Recall that we can relate the homology of the total space of a fibre bundle to the homology

of the fibres and the base using the Leray-Serre spectral sequence. Consider the fibration
n:l?GgrxGiéal—>£%3g

with fibre Zg. The homology of the fibres forms a local coefficient system on BGgq, which we
denote by {H.(Za)}. There exists a spectral sequence (E}, ,) with

B2, = Hy(BGa; {Hy(Za)})

converging to
@ B, = Hi(EGa x% Za),
ptg=n
where the isomorphism is an isomorphism of H,(BGq)-modules. Since G4 is connected and EGq
is contractible, the long exact sequence of homotopy groups

1 =:ﬂj(EX;g)—%'W1(£ﬂ;g)—+ Woa;g)::l
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associated to the fibration FGq — BGq with fibre Gg4 implies that BGq is simply-connected.
But isomorphism classes of representations of m;(BGq) are in a one-to-one correspondence with
isomorphism classes of local systems on BGg4. Hence the only local system on BGyq is the constant
system H,(Zq). The universal coefficient theorem now implies that

Ef),q = Hy(BGg; Hy(Z4)) = Hp(BGa) @k Hy(Za).
Recall that (E? ,0%) forms a bigraded chain complex with the differential
P E > E 5
In our situation this translates to

0 : Hy(BGq) ®) Hy(Za) = Hy—2(BGa) @k Hyi1(Za).

Recall that the odd-dimensional homology of Z4 vanishes . Hence the differential % vanishes and
the spectral sequence degenerates at E2. In particular,

H,(EGa x9*Zq)= @@ Ey,= @ E},= P Hy(BGa) @k Hy(Za).
p+q=n p+q=n p+q=n
Thus G .
H,/%(2q) = H,*({pt}) @ H.(Za)
as modules over HC®({pt}). O

Recall that we have the fibration

Zg;) EGQ ><Gg ZQ i) BGQ.

The projection 7 induces an injective homomorphism n* H*Gg({pt}) — H*GQ(ZQ) with image
Sca[2a]92. Note that [Z4]9¢ is the unity in Y 2(Zq) regarded as the algebra endowed with the
intersection pairing N (i.e., the Pomcare dual of the cohomology algebra endowed with the cup
product), and [25]9 is the unity in He ¢(Zaq) regarded as a convolution algebra. Let Sg and 3~
denote the ideals of Sg,, resp. 3 generated by elements in strictly negative degrees. Then we have
the following equalities:

0 (HE({pt}) = Sg, [2a)% N HI%(2a) = S, [2)% « HI*(Za) = 37 HI*(Za).  (36)

Corollary 7.38. The quotient of the equivariant convolution algebra H YZa) by the mght ideal
generated by 3~ is isomorphic to the non-equivariant convolution algebra H.(Zq), i

HI%(24)/(37 « HO%(2q)) = H.(Z4q). (37)

as k-algebras.

Proof. By (36) we can identify the centre of H_ 4(Zq) with H. F4({pt}). The corollary now follows
directly from Proposition 7.37. O
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8 Relationship between G4- and T4-equivariant (co)homology

8.1 Schubert and Borel models of cohomology of a flag variety
Recall from Corollary 5.16 that

HE, (Fa) = P klag(1), ..., 25(d)] (38)

yeYa

as a k-algebra. It is also well-known that there is a k-algebra isomorphism
HE,(Fa)/(S&,HE, (Fa)) = H (Fa). (39)

One can prove it using a spectral sequence argument in an analogous way to Corollary 7.38.
The isomorphism (39) is often referred to as the Borel isomorphism. We will say that the two
isomorphisms (38) and (39) form the Borel model of the cohomology of a flag variety. We have
also shown in Corollary 7.28 that there is a k-vector space isomorphism

0= @ k[0 ] (40)

weWq

and an S7,-module isomorphism

H; (Fa) = @D STd[ “’}T . (41)

weWq

We will say that these two isomorphisms form the Schubert model of the cohomology of our flag
variety. The connection between these two models is not so easy to describe - see [BGGT73] for
details. The inclusions of a typical fibre in fibrations

]Afg — ETQ xTa fg — BTQ, fg — EGQ ><Gg fg — BGQ
induce homomorphisms
Hi,(Fa) = H'(Fa),  Hg,(Fa) = H* (Fa).

We refer to these maps as the forgetful maps because they "forget" equivariance. They admit a

more concrete description. The first map sends each equivariant Schubert class [ Oy } to the

correspoding non-equivariant Schubert class 671,, . The second map has kernel Sgde‘;d (fg)

and induces the Borel isomorphism (39). In particular, both the forgetful maps are surjective.
Unfortunately, it is difficult to give an explicit description of the first forgetful map in terms of
the Borel model, or an explicit description of the second forgetful map in terms of the Schubert
model.

The Borel model is therefore best suited to analyzing the Ggq-equivariant case. It has two advan-
tages. Firstly, it provides a concrete algebraic description of the Gg-equivariant and nonequivariant
cohomology rings. Secondly, the action of the Weyl group W4 on the Gg-equivariant cohomology
ring is very explicit in the Borel model - Wgq acts naturally by permuting indeterminates z(I) and
compositions . The main disadvantage of the Borel model is that it is useless for computing the
convolution product. The Schubert model is much better suited for this purpose. It yields a basis
consisting of fundamental classes, to which we can apply localization and the clean intersection
formula (Lemma 9.3). However, the Schubert model is only available in the Tg-equivariant case
because Schubert varieties are not Gg-stable. Therefore, we will perform most calculations using
the Schubert model and Tg4-equivariant homology. However, to use these calculations we need a
way to relate Tg-equivariant homology to Gq-equivariant homology.
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8.2 Reduction to the torus

In this section we will explain how Gg-equivariant homology can instead be derived from Ty-
equivariant homology.

Proposition 8.1. Let G be a connected reductive linear algebraic group with a mazimal torus T.
Let W = Ng(T)/T we the Weyl group of (G,T). Let X be a G-variety. Then W acts on HE(X)

and
HY(X)= HI (X)Y, HE(X) = Hiy (X)W,

Proof. See [Bri98, Proposition 1]. O
We now apply this proposition to X = {pt}, G = Gq, T = Tq and W = W4. Recall that
1, ({pt}) = S, 2 bta] = x1, - xal.
Wa acts on k[tq] by permuting the weights. More precisely, each w € Wq acts by
w: f=f(x1, 5 xa) = w(f) = F(Xw@): - Xuw()- (42)

This action restricts to an action of Wq. The cohomology ring H¢ ({pt}) consists of those poly-
nomials in the weights x1, ..., xa which are invariant under Wy.
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9 Euler classes and convolution

9.1 General theory

In this section we state an equivariant version of the so-called "clean intersection" formula and
apply it to calculate the convolution product of equivariant fundamental classes of closed subvari-
eties. At the end we will also explain the connection between topological Euler classes associated
to vector bundles and abstract Euler classes associated to certain representations of abelian Lie
algebras.

9.1.1 Topological Euler classes

Theorem 9.1. (i) Let 7w : E — B be an oriented real vector bundle of rankn. Then H(E, Eq; Z) =
0 fori <n and H"(E, Ey;Z) = Zu, where u is a unique cohomology class whose restriction

ul(F, Fo) € H"(F, Fy; Z)

is equal to the preferred generator up for every fibre F.
(ii) y = y U is an isomorphism H*(E;Z) — H**"(E, Ey;Z) for every k € Z.

Proof. See [MS74, Theorem 9.1]. O

Since 7 : E — B is a retraction, it is a homotopy equivalence. Hence we obtain the following
isomorphism, called the Thom isomorphism:

¢ HY(B;Z) — H*'™"(E, Ey; Z)

o(x) = (7*x) Uu.

The inclusion j : (E, @) C (E, Ep) induces a restriction homomorphism
j*:H*(E,Ey;Z) — H*(E;Z).

By applying this homomorphism to the class u we obtain j*(u) € H"(F;Z).

Definition 9.2. (i) We define the Euler class of the vector bundle 7 : E — B to be the cohomology
class

e(B) = (m) 715" (u).

(ii) If F and G are in addition endowed with algebraic actions of a complex linear algebraic group
G, and 7 is a G-equivariant vector bundle, then we define the G-equivariant Euler class ¢ (E) of
the vector bundle 7 : £ — B to be the Euler class of the vector bundle

7% EG x° E — EG x% B.

We will often make use of the following properties of the Euler class.

(Whitney sum formula) If E, E’ are two oriented real vector bundles over B, then e(E® E’) =
e(E)Ue(E").

(Top Chern class) If E is a complex vector bundle, then e(E) = ctop(E), i.e., the Euler class of
FE equals the top Chern class of E.
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9.1.2 Clean intersection formula

Lemma 9.3. Let X be a smooth oriented manifold and let Y1,Ys be two closed oriented submani-
folds. Assume that Y := Y, NYs is smooth. Let T be the quotient vector bundle

T:=TX|y/(TYi|ly + TYz2ly)
on'Y . Assume, moreover, that the intersection of Y1 and Ys is "clean” in the sense that
T,YiNnT,Y, =T,Y, VyeY.
Then
V1] N [Ya] = e(T).[Y],

where N : Ho (Y1) x H.(Y2) = H.(Y) is the intersection pairing (in the ambient space X ), e(T) is
the Euler class of the vector bundle T and the dot on the right hand side stands for the action of
H*(Y) on H.(Y).

Proof. See [CG97, Proposition 2.6.47], O

Corollary 9.4. Under the same assumptions as in Lemma 9.3 we have
[Y1]9 N Y] = e(T).[Y]%.

Proof. We apply the lemma to the approximation space E"G x¢ X instead of X, for n >> 0.
The approximations E"G x¢ Y, and E"G x¢ Y of the homotopy quotients of Y; and Y, are
closed oriented submanifolds of E"G x& X with smooth intersection E"G x¢Y . We also have the
approximation E"G x¢ T — E"G x“ Y to the homotopy quotient of the vector bundle 7. Note
that e(E"G x T) € H*(E"G x9Y) C H;(Y) is the G-equivariant Euler class ¢“(T) of 7. By
the lemma,

V1] N[Y2]9 = [E"G xC V1| N [E"G x9 Y3] = e(E"G x© T).[E"G x9 Y] = %(T).[Y]°.

9.1.3 Application to the equivariant convolution product

Now recall our general convolution set-up. We have three connected oriented smooth manifolds
My, My, M3 and two closed submanifolds Z1o C My x Ms and Zag C Mo x Ms. Let Yio C Zyo
and Ys3 C Zo3 be closed oriented submanifolds. We consider [Y12]%, [Ya3]¢ as classes in HE (Z12)
resp. HE(Zs3) and want to compute their convolution product [Y12]® x [Ya3]% € HE (Z13 0 Zo3).
We have
Pra([Yi2]9) = [Yia x Ms]®,  p3a([Yas]¥) = [My x Yas].

Now Y75 x M3, My X Ya3 are closed oriented submanifolds of M7 x My x Ms. Suppose that all the
assumptions of lemma 9.3 hold. Then

[Yiz x M3]% N [My x Ya3]¢ = e(T).[Yi2 X n, Ya3]%,

where
T(Ml X Mo x M3)‘Y12><M2Y23

(T(HQ X M3)|Y12><A12Y23 + T(Ml X Y23)|Y12><sz23).
But ﬁlg(ylz X Mo Y23) = Y12 o Y23. Hence

T:

(P13)«([Yiz Xaz, Y23]9) = [P13(Yi2 X s, Ya3)]€ = [Yi2 0 Yo3]©.
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Therefore we get
[Y12] # [Y23]% = ((pr3)«(e%(T))) [Y12 © Yas]“. (43)

It follows that the calculation of the equivariant convolution product reduces to the calculation
of equivariant Euler classes. We are eventually going to apply the framework we have developed
here to the special case in which G is the torus Tg, Y12 and Ys3 are closed subvarieties each
consisting of a single torus fixed point and 7 is a vector bundle over a point. The Euler class of the
bundle ETy x4 T will then define a cohomology class in St, := Hy, ({pt}; k), the Tyg-equivariant
cohomology ring of a point. Recall that there is an isomorphism ST; & kfta]. We will now define
some special elements in k[tq] arising from certain representations of the Lie algebra tq induced
by the action of Tq on X. We call these elements "abstract Euler classes". We will later show
that in the aforementioned special case these abstract Fuler classes coincide with the topological
Euler classes and provide us with a tool to compute the multiplicities in the clean intersection
formula.

9.1.4 Abstract Euler classes

Let G be a complex reductive linear algebraic group with maximal torus 7. Let t denote the Lie
algebra of T'. Suppose that M is a finite-dimensional t-module. Then M = @, My, where My
is the weight space associated to A. Let A = {\ € t* | M), # {0}}.

Definition 9.5. We define the Euler class of the T-module M to be

eu(M) = H A My e Qym (1) = K],
AEA

where Sym,,(t*) denotes the symmetric algebra of t* and k[t] the algebra of polynomials functions
on t. Note that eu(M) is a homogeneous polynomial of degree dim(M) on t. A

Recall there is a canonical isomorphism

k[t] = St := Hr({pt}; k)
which doubles degrees. We can therefore consider eu(M) as a homogeneous polynomial of degree
2 -dim(M) in St.

Now assume that X is a quasi-projective variety equipped with an algebraic action of T'. Let
r € XT be a smooth point of X. The tangent space T, X at z, i.e., the fibre of the tangent
bundle TX at x, naturally carries the structure of a T-module. Indeed, every ¢ € T defines an
automorphism

t: X —>X

of X which induces a linear automorphism
To(t) : To X = Ty X =T X

of the tangent space T, X since zx is a smooth fixed point. Hence T, X is a representation of 7. By
differentiating the map
T — GL(T,.X)

we obtain a representation
t—= gl(T. X)

of the Lie algebra t on T, X.
Definition 9.6. We define the abstract Fuler class eu(X, x) associated to the pair (X, z) to be

eu(X,z) :=eu(T, X) € k[t] = Sp.
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Remark 9.7. We have defined the homotopy quotient ET x7 X as the quotient of the product
ET x X by the diagonal action of T, where T acts by (e,x).t = (e.t~!,t.x). We could also have
defined the homotopy quotient as the quotient of the product ET x X by the diagonal action
(e,xz).t = (e.t,t~L.z). In that case the second factor is endowed with the dual of the T-action on
X. This is the convention adopted in [VV11]. If we worked with this convention, we would have to
make some adjustments to the framework introduced above. In particular, we would be interested
in the representation of t on the cotangent space 7, X. This representation is the dual of the
t-module 7, X. If T, X = @, V), then T X = @, V_,. Hence eu(T;X) = (—1)4mTeX ey (T, X).

9.2 Applications

We are primarily interested in abstract Euler classes associated to the varieties ]?g and 23, for
x € Wy, and Tg-fixed points.

Definition 9.8. For each w,w’,z € Wq we set

Ay = eu(Fgq, Fy), Aw = en(Fa, (po, Fu)).

AL = eu(Og, (Fy, Fur)), AL = eu(Z§, (po, Fu, Fur))

whenever the definition makes sense. If (Fy, Fur) ¢ O, then we set AY , = Xﬁ)’w/ =0. If
(Fu, Fur) € Oy but is not a smooth point we set AZ ,, = A%, = 1.

Since j':g and Zj are vector bundles, tangent spaces are direct sums of the tangent space to the
base space and the tangent space to the fibre.

Definition 9.9. For each w € Wy, we set

ty = {2 € Repy | Fy, is z-stable}.

Clearly, t,, = ng(Fw) as tg-modules, where mq : ]T'g — JFq is the obvious projection. For
w,w’ € Wq, we also set

Tww’ = tw M Ty Du),w’ = tw/tw,w“
Note that t, . is symmetric in w and w'. A
Lemma 9.10. We have
N ANz T
Ay =eu(ry) - Ay, AG o = (T ) - A -

Proof. Recall that the projection mq : j':g — Fa is a vector bundle with fibre 73 (F,,) = t,, at F,,.
Hence, by local triviality, we have an isomorphism of tg-modules B

T(Pme)]?Q i Tpoﬁg_l(Fw) S2) TFw}—Q'

Therefore _
eu(]:g, (p07 Fw)) = eu(ﬂ'g_l(Fw)a Po) : eu(fg, Fw);

ie., Kw = eu(ry) - Ay. The projection mqq : z23 — 0, is also a vector bundle with fibre
77(;711<(FwaFw’)) > ryr at (Fy, Fy ), provided that (F,, F,/) € O,. Hence, by local triviality,
we have an isomorphism of tg-modules

Tpo.Fu. Py 28 = TooTaa((Fus Fur)) ® Tg, £, (0x).

Therefore o
eu(Z&a (Pos P, Fur)) = eu(ﬂ—g_’lg((Fwa Fur))spo) - eu(Og, (Fu, Fur)),

ie., Kﬁ),w’ = eu(ty ) - AZ

w,w’*
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9.2.1 A lemma about Coxeter systems

Lemma 9.11. Let v € Min(Wgq, Wq) and s € II. Then:
o if us € Wqau, then us = su, for some s € Ilq,

o if us ¢ Wau, then us € Min(Wq, Wa).

Proof. First suppose that us € Wqu. Then I(us) > I(u). But s is a simple reflection, so I(us) =

I(u) £ 1. It follows that I(us) = l(u) + 1. Moreover, since us € Wqu, we have us = vu, for some
v € Wq. Then I(u)+1 = l(us) = l(vu) = [(v)+{(u). This implies that [(v) = 1, which is equivalent
to saying that v € Ilg.

Now suppose that us ¢ Wqu. Then us € Wqu, for some u # u € Min(Wq, Wq). Hence
us = v, (44)

for some v € Wq. Assume that v # e € Wy. We have I(vu) = I(us) = I(u) £ 1. Moreover, (44)

implies that v~ 'us = u. Hence
l(w) =1v) +1(u) £ 1 >1(u) £1 =1(us) = l(vu).
But this is a contradiction because u is the element of minimal length in the coset Wqu. Hence

v=e. O

9.2.2 Some isomorphisms of varieties

Our goal now is to compute the tangent spaces to varieties Fq and Oy at Ty-fixed points. Of
course, it suffices to consider the connected component in which a given fixed point is contained.
We will use the following isomorphisms in our calculations.

Lemma 9.12. Let w € Wq, s € II. Suppose that w = vu with v € Wq and u € Min(Wq, Wq).
(i) We have an isomorphism of Gq-varieties

Ga/B, — Fa, g g.Fy. (45)
(i1) Suppose that ws € Waw. Then there are isomorphisms of Gq-varieties
Ga x B (Pw,wS/Bw) - Oisﬂw (g:p) = (9-Fu, gp-Fu), (46)

Gg XBw (Pw,ws/Bws) — Oiga (gap) = (g'Fungp'Fws)- (47)

where Gq acts on the LHS through its natural action on the first factor and acts on the RHS
diagonally.

Proof. (i) The isomorphism follows from the fact that the group Gq acts on Fg transitively and
the isotropy group of the flag F,, is B,,.
(ii) By Lemma 9.11, ws = vsu, for some s € I1q. Hence

Pw,ws = Pv,v§a B, = Bv, Bys = BvE-

The isomorphisms (46), (47) now reduce to

GQ XBU (Pv,v§/Bv) — Obﬂa (gap) = (g'Fvuagp-Fvu)a (48)

GQ XBv (Pv,vg/ng) — Oga (gap) = (g'F”“’gp'Fvgu)' (49)
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respectively. We first show that (48) holds if v = e. We have

O =02

» g
o g
2|

It follows from Lemma 7.11 that Q2" is a fibre bundle over Gq/B, with fibre
OF = QZUQY = (Be3Be/B.) U (B./B.) = P.5/B.
at F,. This yields the desired isomorphism
Ga <7 (Pes/Be) = OF, (9,p) = (9-Fus gp-F). (50)

We obtain the isomorphism (48) by conjugating the LHS of (50) by v and acting on the RHS
diagonally by v. To be more precise, let aut(v) : G4 — G4 denote conjugation by v. Then we have
the following commutative diagram

GQXBS Pe,g/Be —>073 (gap)} (gFuvgpFu)
aut(v)xaut(v)J{ J{v.xv. I I
Ga xB P, ;s/By————— 4 OF (vgv=H vpr™!) s (vg.Fy, vgp.Fy),

where (vg.F,,vgp.F,) = (vgv=1.Fy,,vgv~topv~1.F,,). We have already established that the

upper horizontal arrow is an isomorphism and the vertical arrows are clearly isomorphisms as
well. Commutativity implies that the lower horizontal arrow is also an isomorphism, as desired.
Equivariance follows directly from the formula describing this isomorphism. Isomorphism (47)
follows in an analogous fashion from the following commutative diagram

GQXBE Pe,?/Be—>Osﬂ (g7p)| (gFuugpFu)
aut(v)xaut(vg)l v.xvgsg L. I I
Ga xB P, s/Bjs ——— OF (vgv=t vspsv™) ———— (vg.Fy,vg3p.F,).

Note that conjugating by s corresponds to a shift in the fibre, while conjugating by v corresponds
to a diagonal shift.

O

Lemma 9.13. For z,y € Wq we have isomorphisms of Gq-varieties
Ga/(Byy N B,) = OF = Ga.(Fy, Fyy), (51)
B./(B.N B,) = O, = B..F,. (52)

Proof. G4 acts transitively on Of with stabilizer B,y N B,. Similarly, B. acts transitively on O,
with stabilizer B, N B;. O]

9.2.3 Abstract Euler classes associated to Steinberg and flag varieties

We can now compute the tangent spaces at torus fixed point to the various Schubert varieties
considered in the previous section.
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Lemma 9.14. Let w €¢ Wy.
(i) We have
Ay =eu(ny).

(ii) Let x,y € Wq. Then

AY L, = eu(ny @ mg 4y). (53)
(iii) Let s € I1. If ws € Wqw, then
AG = eu(Mys w O Ny,), (54)
Ay ws = eu(My s S Nyy). (55)
If ws ¢ Waw then
A s = eulny,). (56)

Proof. (i) By (45)
Tr,Fa = Tr,Fa = T(cB,/B.)(Ga/Buw)
= Qg/bw =My,

Hence
Ay = eu(Faq, Fy) = eu(Tr, Fa) = eu(ny).

(i) Using the isomorphism (51), we get
T(Fw,ny)Oig/ = T(Fz,FIy)Of =Te(Ga/(Bzy N By)) = 8a/(bay Nby) = Mgz Dy
Hence

AY ., = eu(Oy, (Fy, Fry)) = eu(T(p, F,,)Oy) = eu(my oy & n;).

T, Ty
(iii) Suppose that ws € Wqw. The equality (55) is a special case of (53). We could also have
computed it using the isomorphism (47). Indeed, by (47), we have

T(Fw,Fws)Ois = pw,ws/bws 2] gi/bw = My, ws 2] n;-

Hence

A? = eu(Os, (Fy, Fus)) = eu(T(FwS’Fw)Ois) = eu(My, ws S Ny).

w,ws

To prove (54) we use the isomorphism (46). Indeed, we have
T(Fw,Fw)Ois = pw,ws/bw > gg/bw = Mys,w @ ‘ll;.

Hence o o
Ay = eu(Oy, (Fy, Fy)) = eu(T(p, F,)0s) = eu(Mys . S ny,).

Now suppose that ws ¢ Wqw. Then, by Lemma 9.11, B,, = B, and so n,, = n,,. Therefore,
My s = N/ (N N ys) = {0}. Then, by (53), we get

A2 = eu(n, & my, 4s) = eu(ny).

w,Wws
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9.2.4 Euler classes of tg-modules

We now compute the Euler classes of the tangent spaces from the previous section. If X is a set

of weights, then we set
H(X) = H T.

rzeX
Lemma 9.15. Let w € Wq and s = s; € I1.
o If ws € Waw, then
eu(nws) = _eu(nw)7 eu(mw,ws) = _eu(mws,w) = Xw(l) = Xw(i+1)-
o If ws ¢ Waw, then
Nws = Ny, eu(My ws) = eu(Mys,) = 0.

Proof. Suppose that w = vu, where v € Wg and v € Min(Wgq, Wa).
(i) Let ws € Wqw. Then ws = vus € Wqw = Wqu. Hence us € Wyu. Then, by Lemma 9.11, we
have us = su, for some 5 € Il4. Thus ws = vsu. Since vs,v € Wq and u € Min(Wq, Wy), we have

Z[(nws) = rH(nUE) = v:SV(AE), rﬂ(nw) = ﬂ(nv) = U(Aj) (57)

Hence
Any.ws) = A(nys) = v'sv(A;) N U(AE)' (58)

Since s € Ilg, it holds that s = sg for some simple root 5 € Aé. Then 5(8) = —f and the set
AE\{B} is stable under 5. Hence

S(Aa3) = A\BH U (-8}, (59)
uS(AF) = v((ALMBY U {-8)) = (BB} U {-v(8)}. (60)
(57) and (60) imply that
euny) = [T (v5(a0) = [T (D@D U {-v()}) = =] (v(ad)) = —euln),
which proves the first statement. Moreover, (58) and (60) imply that
M) = v5(AF) N0(AF) = v AD\{u(A)),

Amu,ws) = Ao \A(Mw,ws) ={v(B)}, AMws,w) = A(0ws) \A(wws) = {—v(8)}-

(
We have to compute the root v(5). Recall that us = su and s = s; = sg,. Hence su(8;) =
us(f) = u(—pB;) = —u(pf;), which means that s is the reflection with respect to the root u(3;).
Hence 8 = u(f;). It follows that v(8) = vu(5;) = w(B;). The equalities (61) now imply

61)

eu(My,ws) = v(B) = w(B) = Xw() — Xw(l+1) = —eu(Mys w)-
(ii) Let ws = vus ¢ Wgqw. Then, by Lemma 9.11, us € Min(Wq4, Wq). Hence
Nws = Ny = Ny (62)
and so eu(nys) = eu(n,). Moreover, (62) implies that n,s = n, = s NN, = Ny, 5. Hence

My, ws = Mws,w = {O} and
eu(mmws) = eu(mws,w) =0.
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Let s = s; € II. We fix a w € Wq and write
T = (19,0, ..., %), Diy(m) = < €w(m) > Vil = Dy(1) ® Dy2) ® .. ® Dy
We have, for each 1 < k <d,
Fo=WVScvic.cvi=vV),
Dy C Vi
Vi =V if k#L Vo =V ' @ Dugny.

Moreover, by Lemma 5.3, p(V.¥) C VE=1 for every p € v, and p(VE,) C VE=! for every p € tys.
In particular, if p € ty, s then p(V!,) C VISt = V-1 and so

P(Dwasn) SV, (63)
On the other hand, if p € t,, and (63) holds, then
p(qu)s) = p(qu)_l S Dw(l+1)) C qu}—l = qu};l’

SO p € Tty ws. Hence
tw = {p € Repg | Vk p(Vi5) C Vi~ '},

Cw,ws = {P €ty | p(Dw(lJrl)) - Vlzl;l}'

G
We will use the following lemma to describe the action of the fundamental classes [Zj@j} * on
HIA(Fy).
Lemma 9.16. We have

haw
eU(0uw,ws) = (Xw() — Xw(i+1)) '+

Proof. Consider the following map of T4-modules

ty — @ Hom(Dw(l+1)7 Vul;)a p—= (ph‘Dw(l+1))' (64)
heHw  w
1+1°4
The image of ty, s under this map is contained in @, cqy ., ., Hom(Dy41), Vi5™1). Moreover,
RESEY
@ Hom(Dw(Hl), ti) / @ Hom(Dw(l+1)7 Vé;_l) =
heH;w ,;w hEH,,zljF Gw

= @ Hom(Dy 141y, Vi / Vi)

heHap i

>~ P Hom(Dygi1), Dup)

heHap i

=~ P Diu®Dug

h€Hw w
T4+1071

as Tg-modules. Since the map (64) is surjective and its kernel is contained in t,, s, it follows that
the induced map of quotient modules

0w,ws = tw/tw,ws — @ D:;(H—l) ® Dw(l)' (65)

heHw w
1+1°71

is an isomorphism. Hence

w

h,i'(U ,’i
eu(aw,ws) = (Xw(l) - X'w(l-i—l)) IR
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Lemma 9.17. (i) Let ws € Waqw. Then

AS = eu(mws,w)Aw; = eu(mws7w)Awsa

w,w

(ii) Let ws ¢ Waw. Then

;W

s 1% hiw
(Aw,ws) 1Aw = eu(Dw’wS) = (Xw(l) - X’w(l+1)> IR

Proof. (i) Since ws € Wqw, 7,, = 5(7,,) and s0 i | = i}’. By (65) 04w is trivial since there is no
arrow joining i}, ; to i;" (because our quiver has no loops). Hence

Ty = Cyws = Cws- (66)

Equation (66) together with Lemmas 9.14 and 9.15 imply

A, = eu(vy)AS, , = eu(ty)eu(My, o )eu(ny,) = et(Muysw) A,

w,w

= eu(Muys,w) Aws,

ws)

AS = eu(ty,ws) Ay

s s = €U(Tws)eu(my, ,s)eu(n,) = eu(tys)eu(my, ,, )eu(n
/~\w = eu(ty)Ay = —eu(tys)Aws = —Ays.

(ii) By Lemma 9.14, A% == A,,. Hence

w,ws

(Kfu,ws)_lxw = (eu(tw,wS))_l(Afu,ws)_leu(tw)/\w
= (eu(Tw.ws))  teu(ty,)
= eu(ty/ty ws)
= eu(dy,ws)
hyw w
= (Xw()) = Xw(i+1)) V7.
The last equality follows from Lemma 9.16. O

Lemma 9.18. For all w,z,y € Wq such that l(zy) = l(z) + l(y) we have

eu(Oyy, (Fu, Fuay))eu(Fa, (Fue)) = eu(Oq, (Fu, Fue))eu(Oy, (Fue, Fuay)),
eu(tw,wxy b rwx) = eu(tw,wx S twa:,w:cy)~

Proof. See [VV11, Lemma 3.8]. O
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10 Localization to Ty-fixed points

Our goal now is to compute the convolution product. Moreover, we want to show that H. *G i(fg) is
a faithful module over H*GQ(ZQ), identify H*GQ(ZQ) with a subalgebra of Ends, (H*Gi(]?g)) and

use this fact to find a set of multiplicative generators of bips 4 Zq).

10.1 The localization theorem and the localization formula

Theorem 10.1 (Localization theorem). Let X be a complex algebraic variety which is also a
smooth oriented manifold endowed with an algebraic action of a torus T = (C*)™. Let XT be
the set of fized points under the action of T, and let i : XT — X denote the inclusion. Let
St = Hy({pt}; k) and let Kr be the field of fractions of St. Then the induced homomorphisms
ix,7% of ST-modules

HI (XT3 k) —— HI(X; k) —— HI (XT: k)
gJPD EJPD %JPD
HA(XT; k)~ Hi(X: k) —— H7(XT; k)

become isomorphisms after inverting finitely many characters of T. In particular, all horizontal
maps in the diagram below

HT(XT: k) @s, Kr —— HY (X k) @5, Kr —— HT(XT; k) @, Kr
’JlPD EJPD uLDD
Hi(XT: k) @5, K —— Hy(X:k) ®5, Kp —— Hy(X"3k) @5, Kr
are isomorphisms of Kr-vector spaces.

Proof. See [Bri98, Theorem 3|. O

Theorem 10.2 (Localization formula). Suppose that the same assumptions as in the theorem above
hold. Suppose that XT is finite and let X7 = {xq,...,x;,}. For each 1 <1 < mleti; : {x;} - X
denote the inclusion. Let « € HI (X;k) ®g, Kr = H:(X; k) ®s, Kr. Then

- (i)« (@)
“= ; eu(X,z;)’

More generally, if X is not necessarily smooth, we also have the following formula
X" =Y Al
1=1

where f; € Kt and f; = (eu(X, x;))~! whenever x; is a smooth point of X.
Proof. See [EG96, Theorem 3]. O

Let us denote
HI(X;k) = H (X k) @5, K, Hp(X;k) := Hp(X; k) ©g, K
If ¢ is a homology class in H! (X; k), then we will also abbreviate

c:=cal1ecH (X;k).
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10.2 Applications of localization
10.2.1 Change of basis

Now let X = .7-'d or Zq and T" = T4q. The isomorphisms from Corollary 7.28 become, after
localization (i.e., applying the functor K, ®s, ),

W)= @ Kn[00]", Wi = @ Kn[0u]”

weWq w,w’' €Wq

Recall that

(fg)Tg:{Fw ‘ wer}a (]AEQ)TQ:{(/)O;FU)) ‘ wgwd}v (ZQ)TQZ{<pO,Fw»Fw/) |w,w/ 6Vvd}'

For each w,w’ € Wq let

Yo = [{(pos Fo)}™ € HIA(Fa)™),  Ywnwr = {(p0, Fur Fur)}]™ € HI%((Z4)"™)

denote the Ty-equivariant fundamental classes of the singleton sets {(po, Fiy)} and {(po, Fuw, Fuw)}-
These fundamental classes generate the cohomology rings of (Fq)”4 and (Z4)74. After localization
we get

7‘[* @ KTdi/Jw, H* @ KTd w,w’ -

weWq w,w’ €Wq

Given the inclusions i : (]?Q)Ti — fg, i (24)Ta — Z4, we will also use the notation
ww = i*wwa ww,w’ = i*ww,w’

for the fundamental classes of the point subvarieties {(po, Fi)} and {(po, Fi, Fw )} of ]?g resp.
Z4.
We have the following immediate corollary of the localization theorem.

Corollary 10.3. The inclusions ¢ : fjg — fg, 1 Zgg — Zq induce isomorphisms of Kr,-vector
spaces

D Kryvw =M (Fa)™) =1 (Fa) = @ Ky [00]
weWg weEWY
_q/Ta Tq) ‘= Ta
D Krybuw =HA(20)™) = = @ Kn[Oww ]
w,w’ EWq w,w €Wq

We now have two bases of the localized cohomology rings of fg and Z4: a basis consisting of
fundamental classes of the torus fixed points and a basis consisting of the fundamental classes of the
Schubert subvarieties. We would like to know more about how these two bases are related.

Corollary 10.4. For each w € Wy, let iy, : {(po, Fw)} — fg be the inclusion. We have

[]?Q]Tg = Z K;Ww-

weWq

Proof. By the localization formula,

Fal™ = > Ay (iw)sis, [ Fa]™.

weWqg

For each w € Wy, the projection formula yields

A (iw)sity[Fa)™ = A ([Fa)e 0 (i) thw) = Ap .
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Corollary 10.5. Let s € II. Then

287 = Y (A ) Wwws + D (A ) T (67)

weWq w | wseWqw

Proof. The variety Zj is smooth because it is a disjoint union of fibre bundles over flag varieties

with fibre trivial or isomorphic to CP!. Hence we can apply the localization formula 10.2 with
X = Zj. The Tg-fixed points in Z§ are

(Z3)™ = {(po, Fu, Fus) | w € Wa} U{(po, Fu, Fy) | w € Wq s.t. ws € Waw}.

Let iy.o : {(po, Fuw, Fy)} — 25, where x = w or ws, denote the inclusion. Then, by the projection
formula, B

(iTU,r)*iZ;,m[Zé]Tg = [ZE]TQ N (iw,m)*lﬁw,m = 7/1w,x-
Instead of using the projection formula, one could also simply observe that the class [Z&]Ti is the
unity in H*TQ(ZE), and since iy, , is a homomorphism of cohomology rings, it must map it to ¥,
the unity in H.2 ((Z&)Ti). The formula (67) for [Z3]74 in ’H:ZPQ(ZE) now follows directly from the
localization formula. But the cellular fibration lemma implies that there is a canonical inclusion
’H*TQ(ZE) < H14(24), so the formula (67) also holds in H1%(Zg). O

In general, Schubert varieties are not smooth, so we cannot apply the localization formula directly
to find an expression for their fundamental classes in the new basis. Instead, we would need to
embed them into a smooth variety, for example Zg4, and apply the localization formula to this
smooth variety. However, if we do that, the trick with the projection formula no longer works, and
in some cases it is rather hard to find explicit coefficients in the new basis.

10.2.2 Reduction to the torus revisited

Corollary 10.6. The image of the inclusion H*Tg(}:i) — H*TQ(}:Q) is

@ STQ[E}TQZ @ STQKL_UI’(/J,W. (68)

weWq weWq

Proof. By the localization formula,

For each u < w, the projection formula yields

Rats [00) =50 ([00] ™ nwev ) =Rit s,

for some f € St,. When (po, F,) is a smooth point of 5710, then f = Ku/eu(Ow, (po, Fu)), by the
— 1T,
localization formula or the clean intersection formula. We have therefore shown that [ Oy ] . can
be expressed in the {1, | w € Wq} basis with coefficients in STQT\;}. O
Wa acts on the fundamental classes {¢,, | w € W5} by permuting them, i.e., each w € Wy acts

by
W Py = Y, (69)
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where © € Wy. Combining (42), (69) and (68) we obtain the Wg-action on H*Tg(fg) Each w € Wy
acts by

w: fAL Wy = w () Ay un, (70)
for all f € STQ, u € Wy. Hence

(H;Tg(fy))% =1 D fwys o Xu@)Ay o | f € kltd]

weWs
We have an isomorphism
Ga /- a2\ Ve
HI(Fy) = (H*(Fy) (71)
Flag(l), o zg(@d) = D FXw(ys o Xu@) Ao w = D w(f)Ay Pu. (72)
weWy we W

Observe that this isomorphism is not canonical. For example, we could also have chosen

Fe Y w(f)Ag

weWz

for any u € Wq. In the sequel we will always use the isomorphism (72).

10.2.3 Calculation of the convolution product

Let %, ¢ also denote the convolution products
ot Hi%(Zaik) x HiY(Za3 k) — HI*(Zq; k),
o HI%(Za; k) x HI4(Fa; k) — HL4(Fa; k).

Our goal now is to compute convolution products of the basis elements 1)y, ,,» and v,. The following

important theorem will allow us to prove that the representation of bioe 4(Z4) on oY i(fg) is
faithful.

Theorem 10.7. For w,w’,w”,w"’

€ Wq we have
ww”',w” * ww’,w = dw”,w’Aw/¢w’”,w7 L/)w”,w/ ¢ ¢’w = 5w/,wAw¢w”a

where 0y 4, s the Kronecker delta.

Proof. We use the notation and results of section 9.1.3. Let M} = My = M3 = j':g and set
Zi2 = My XRepy M2 = Zq, Za3 = Mz XRepy M3 = Zq.

Then
Z12 e} Z23 = Zg

Moreover, set

Yiz = {((po, Fw), (po, Fuwrr))} C Z12, Ya3 = {((po, Fur), (po; Fuw))} C Zos.

Clearly
Yi2 0 Yoz = {((po, Fuwr), (pos Fuw))} C Z12 0 Zog = Zg

if w' = w” or is empty otherwise. Hence

[}/12 o }/23]71, = 6w”,w,ww”’,w-
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From now on suppose that w’ = w”. The equivariant clean intersection formula (43) implies that
Yttt * Pt o = [Yio] 4 x [Yaa] ' = T2(T). [V 0 Yos] ™ = €"4(T) Y -
We now need to calculate the vector bundle 7. Observe that
Yia X, Yoz = (Yiz x M3) N (M1 x Ya3) = {((po; Fuw), (po, Fur), (Pos Fuw))}-
Let us abbreviate
y = ((po; Fwr): (po, Fur), (po, Fu)),

y1 = (po, Fuwrr), Y2 = (po, Fur), ys = (po, Fw)-
We have
T(M1 X M2 X M3)|{’ll} = Ty1M1 D Ty2M2 D 71!/?’1\437

T(Y12 X M3)|{y} = Ty3M3, T(Ml X 1/23)|{y} = TylMl-
Hence
1M1 D Ty2M2 D Ty3M3

Tyl My + Ty3M3

7T is thus a bundle over a point, i.e., just a vector space. The vector space T}, M, is naturally

endowed with the structure of a Tg-module. It can be decomposed into one-dimensional represen-
tations of Tgq

T ~
T - Y = Ty2M2 = T(PoyFw/)‘FQ'

T=T,M= P Ci.
AeA(T)

We now want to calculate its equivariant Euler class. We pass to homotopy quotients and get the

following vector bundle
ETQ xTa T— BTQ.

It can be decomposed as a direct sum of line bundles:

ETQ XTQT: ETQ ><Tg @ (C)\ = @ (ETQ ><Tg (C)\) .
AeA(T) AeA(T)

We have
eTg(T) = e(ETQ XTQ T) = Ctop(ETg XTQ T)

= [ aEmax™c)= ] A=eu(Fa, (po,Fur)) = Au.
Ae(T) Ae(T)

The proof of the second formula is analogous. O

Remark 10.8. We have finally shown that in our special case topological Euler classes coincide
with the abstract Euler classes.

10.2.4 Implications for Gg4-equivariant convolution

The calculations above have implications for our original algebras H < 4(Z4), H = 9(Fq) in view of

the following lemma. B

Lemma 10.9. The forgetful maps
H (24) = B (20),  HO(Fa) » B (Fa).

commute with the convolution product x resp. ©.
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Proof. The pullback and pushforward maps in the definition of the convolution product are, in our
case, Wg-equivariant, so the convolution product commutes with taking invariants. O

Theorem 10.10. The left H*GQ(ZQ)—module HEY(Fy) is faithful.

Proof. First consider the Kr,-linear map
HI%(Za; k) — Endpg, (Hfg(ﬁg; k)) . (73)

Take a nonzero element 0 # w eWy ' wuw w € 'H*TQ(ZQ; k), where a. . € K,. Then there
exists at least one nonzero coefficient a, ,, # 0. By Theorem 10.7 We have

Z aw’,www’,w O/(/)u = Z aw’,uxuww’ 7& 0.

w,w’ EWgq w' €Wq

Therefore, the map (73) has trivial kernel, i.e., the left HfQ(ZQ; k)-module H*Tg(]?g; k) is faithful.
Since the St,-modules H. T 4(Zq; k) and HY g(]ﬁ-:g ; k) are free, we also obtain a faithful representation

HI%(Za;k) = Ends,,, (H*(Fai ).
Taking Wq-invariants yields a faithful representation

TQN

H4(Za: k) = (HI*(Za; )" < (Ends,, (B (Fas k)))WQ = Bnds,,, (H(Faik)).
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11 Generators and relations

The purpose of this chapter is to reinterpret the geometric results from the previous chapters in
algebraic terms. It contains two very important results about the convolution algebra H*G Y Zaq).
The first result is a description of its faithful polynomial representation H*G g(fg). The second

result, deduced from the first, is a presentation of H*G 2(Z4) in terms of generators and relations.
In particular, we give a complete list of relations for this algebra.

11.1 Generators of the convolution algebra

We begin by defining some elements in H*G 4(Zq). We will later show that these elements are
multiplicative generators of the convolution algebra H*G 4 Zq).

Definition 11.1. (i) Recall that for each § € Y4 we set 1y 5 = [Zgﬁg]ci.
(ii) Recall that IT = {sy,...,sq_1} denotes the set of simple reflections in W. Now fix a simple
reflection s = s;. Let 7 € Yq. We set

o5 (l) = 22 ]Gieﬂfé(zés )

5(9),9 s(9),y

(iii) Let k € {1,2,...,d} and § € Yq. Recall the k-th canonical line bundle (’)ﬁ?(k) over Fy. We
have defined o~
1 (07,(0) = a5(k) € HI(Fy).

Now consider the maps Z7 - < Fy x Fy 25 Fy. Let m = py 0. It is an isomorphism of varieties.
We define
7(k) = (ag(k)) € H* (Z55)
y =TTy * .9 -

Since H*Gg(Zig)@), H*GQ(Zgg) C HSQ(ZQ) by the cellular fibration lemma, we can regard o3(1), 35 (k)
as homology classes in H*GQ(ZQ).
We consider a provisional generating set consisting of the following elements:

* lzy

e oy(1),...,05(d — 1)

o s5(1),..., s5(d)

where 7 ranges over Yg.

Remark 11.2. The generating set defined above is the one most convenient to work with, but it
is not a smallest generating set. Let s = s; € II. Define

o(l) = [25)% € HI*(25Y).

Then for each § € Yq we have oy(l) = 1) ) * 0(l) * 15 5. Now let 1 <k < d. Define
(k) =Y (k).
TEYa
Then for each § € Yg we have se5(k) = 155 % 2(k) 1 5. Therefore, the following set

° lyy

e g(l),....,0(d—-1)
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where 7 ranges over Yy, generates the same subalgebra of Hf 9(Z4) as the generating set from
Definition 11.1.

11.2 Completeness of the generating set

We are now going to prove the following theorem.

Theorem 11.3. The elements {135 3,0(1), ...,0(d—1), (1),..., 22(d) | ¥ € Ya} generate H*GQ(ZQ; k)
as a k-algebra.

The proof relies on the following idea. Observe that the elements {15 7, 5¢(1), ..., 22(d) | ¥ € Ya} gen-
erate the subalgebra HY (29 = Heg,, (]—'d) Moreover, recall from Proposition 7.29 that H*GQ(ZQ)

G
is a free left H*GQ(ZE)—module with basis {[Z&”} ¢ | w e Wq p. Therefore, it suffices to express

these basis elements in terms of our generators. We will use the following lemma.
Lemma 11.4. Let s = s; € Il and w € Wq. If I(sw) = I(w) + 1 then [Z5]9¢ « [Z§]C = [Z3]Ca
in the quotient vector space HY 4%z <§“’)/HG"l (Z3°)-

Proof. By Lemma 7.30, there is a unique element ¢ € HSQ(ZE) such that
[25]9¢  [24]94 = ex [25*]7

. G4, »<sw Gd [ z<sw

in H,'9(Z3°")/H < (25°"). We need to show that ¢ = 1.

For each = € Wy we abbreviate [Z3]7e = [Zf]T ® 1 € 14 (Zq). We have

I

y,2€Wq

for some uniquely determined f;. € Kr,. Since Zg is the closure of the cell 61, each point

contained in the cell O, is a smooth point of Z3. In particular, for each y € Wq, the Ty-fixed
point (po, Fy, Fy.) is a smooth point of Z3. Hence, by the localization formula,

yym - (AZ ym)i (eu(Z&a (p()aFyaFyI)))il

Substituting sw for z, we deduce that if we expand the class [Z] w174 in the Kr,-basis {ty,- | y,2 €
Wa}, then, for each y € Wq, the coeflicient on ¢, s, is

;,lgu;sw - (Azu‘?};sw)i (eu(Z&“’, (pOa F Fysw))) 1'

We can also expand [Z&}TQ* [Zgw]Tg in the K -basis {1, . | y,z € Wqa}:

[ZS]Td * Zw Z gy,z'l/}y z

y,2€EWq

for some uniquely determined g, . € Kr,. We want to compare, for each y € Wq, f;%,, with
Jy.ysw and show that they are equal. Recall that

ZaT = Y (A ) et D> (A )y

yeEWq y | ys€Way
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Moreover,

(281 = Y iy

y,2€EWq
where f, ., = (eu(Z§, (po, Fy, Fyw))) ™", by our previous remarks about smoothness. Note that
since [(sw) > I(w), the fixed points (po, Iy, Fysw) are not contained in Z¥, so f,’, s, = 0. Hence,

by Theorem 10.7, for each y € Wq we have
Gy, ysw = (AZ,ySA’lyUs,ysw)_lAyS = (eu(Z&, (po, Fy, Fys)))_l(eu(Zé”, (Po; Fys, Fysw)))_lAyS'

The equality of f;% ., = gyysw now follows from Lemma 9.18. Therefore
[Za]"e * [24]"e = [23*]" (74)
: Ta( z<sw Ta z<sw Ta ( 7<sw Ta/ Z<swy:
in HoH(25°7)/H(23""). But the St,-module H, = (Z25°")/H.“(£3"") is free, so (74) also holds
in Hfg(Zisw)/Hfg(ngw). Since the forgetful maps commute with convolution, we conclude that
[23]94 % [2§]4 = [25"]% (75)
holds in Hy®(Z5™)/HS % (Z5). O

We can now return to the proof of Theorem 11.3.

Proof of Theorem 11.3. The elements {153, (1), ..., #(d) | ¥ € Yaq} generate the subalgebra H*GQ(ZE; k)
€]
as a k-algebra. Moreover, H*GQ(ZQ) is a free left H*GQ(ZE)—module with basis { [Zé”} ¢ | we Wd}.

So it suffices to show that, for each w € Wy,
Ga Ga s Ga 5o Ga
[zg] — P [z;} +3 s [zgl} o fS % ek O % [zgn“] w %, (76)

where each s¢ € I, n® > 1, f&, f% € H*GQ(ZS) and « ranges over a finite index set. We show this
by induction on the length of w. The claim obviously holds for the simple transpositions s € II.
Suppose that we have shown that (76) holds for all w € Wq with I(u) < m. Let l(w) = m + 1.
Then w = sv for some v € Wq with {(v) = m and s € II. Hence, by Lemma 11.4,

2310 (2% = [257)%

in H*GQ(ZQSS”) /Hfﬂ(zgv), ie.,

[25]% (23] —r = [231]4,  re HI4(Z5™). (77)

G
Since H*GQ(ZES”) is a free left H*GQ(ZE)—module with basis { [Z&} ° |u € Wq,u < sv} and since
I(v) = m, it follows by induction that both r and [24]“4 can be expanded as in the RHS of (76).

Therefore, by (77), the same holds for [Z&”]Gi. O

Using Lemma 11.4 we can also construct another basis of HEQ(ZQ) as a HSQ(Z&)—module.
Definition 11.5. For each w € Wy choose a reduced decomposition w = s, sq,...51,, where r > 0
and Iy, ..., € {1,...,d — 1}. Let § € Ygq. If » = 0 set oy(w) = 135. Otherwise set

O’g(w) = O’sl1 @) (ll) * 0512511 @) (lg) * Kk Oyy—1(7) (lr)

Moreover, set

o(w) = Z og(w) = o(ly) * ... %o (l,).

yeYa

Note that o(w) in general does depend on the choice of reduced decomposition of w.
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Corollary 11.6. HEQ(ZQ) is a free left H*GQ(ZE)-module with basis {o(w) | w € Wq}.

Proof. This follows directly from Lemma 11.4. O

11.3 Faithful polynomial representation of the convolution algebra

Recall that we have a k-vector space isomorphism Hoe (fg) = Dyey, klzg(1), ..., z5(d)] and
that HO® (fg) is a faithful H*GQ(ZQ)—module. We are now going to calculate the action of the

generators of H *G %(Zq) on H*G 4 (]—N'g). The following theorem was first proved by Varagnolo and
Vasserot in [VV11, Proposition 2.23].

Theorem 11.7. Fiz 3,y € Yq and a polynomial f € He (fg)

(i) We have 1y 57 o f =0 unless § =7 and 1350 f = f.

(ii) We have sey (k) o f =0 unless §' =7 and se5(k) o f = zg(k)f.

(iii) We have oy (1) o f = 0 unless § =7. Suppose that§ =7, and set s = s;.
If s(y) =7y then the action of oy(l) is given by the following Demazure operator

f—=s(f)

ol = T o)

If s(y) # Y then
og(l) o f = (zs()(1) — 2s() (L + 1) "0 5(f).

Proof. We have Zy 3 o ﬁg = @ unless § = 7'. This explains why 1y 5 o f =0 and s¢y (k) o f =0
unless 7 = 7. In the latter case we have the convolution product

o1 H* (Z5) x HI* (Fy) = H* (Fy) .
(i) By the definition of the convolution product and by the projection formula we get

Lyof = (p)« (2551901 () = (1) (1Z55194) N f = [Fl%en f = f.

(ii) We have
sg(k) o f = (p1)«(ix(eg()) N PT(S)) = (1)« (i Ge(R)))) N f,

where the second equality is implied by the projection formula. We can apply the projection
formula again to get

(1) (i (525(k))) = T (s2(k)) = (52 (k) N [25519)

Hence
sg(k) o f = ag(k) N f = ay(k) f,
where the second equality reinterprets the intersection product N as multiplication of polynomials.

(iii) The convolution product

o1 HO® (Z,q)y) x HO® (fy) — H* (fs@)
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gives rise to an St,-linear operator
Ga = Gq =
H (%) » 0 (Fg) . frorogof. (78)

Recall that we have a k-vector space isomorphism

Ho (f%) = klag(1), ..., 25(d)].

By Section 10.2.2, we have injective homomorphisms

1 (Fy) = @ Krabwr  flag)sag@) = fri= Y w(H)AS Y,

wEWy weWsy
G —_~ Nf
H*g(fs(w)% D Entwe.  fam)rm@) = fg = D, wlHAS bu. (79)
wEWy wEW,s ()

Under these injections, the operator (78) is given by

fﬂ = Z gw’wwﬁ Juw' = Z w(f)quu’,w' (80)
w €Wy () weWy
Observe that the RHS of (80) is the image g, of some g(w) (1), ..., 25 (d)) € HE (~S@>

under (79), i.e., -
Z Guw Y = Z wl(g)A;’lww" (81)

w'EWs(g) wEWs ()

We now compute the polynomial g. It follows from (81) that for each w’ € Wy,

gur = w'(9)Ay). (82)

Suppose that s(7) = 7. Then Wy = W) and for each w’ € Wy we have w's € Waw'. Hence, by
Corollary 10.5, the second sum in (80) reduces to

Juw' = w/(f)(Kfu’,w/)71 + wls(f)(xqsu’,w’s)il'

By Lemma 9.17 and (82) we have

Gur = W' (f)(eu(Mursw)) AL+ w's(f) (eu(murs ) AL
w ()AL +w's(ALL
Xw’ (141) — Xw'(1)
_ wW(HAL —w's(NA,)

Xw’ (141) — Xw'(1)
= w/(g)K;/l.
Hence
_J=sl)
Xi+1 — X1
Now suppose s(7) # 7. Then for each w’ € Wy we have w's ¢ Waw'. Hence, by Corollary 10.5,
the second sum in (80) reduces to

Gur = W' S(F) (NS ) ™ = w0 s(F)(ASyr ) R )AL
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By Lemma 9.17 and (82) we have

h ot ! ~
H @y = Xwrasry) AL

)AL

w

Ju' = w18<f)eu(aw’,w’s)x;’1
(

Hence
hiw/ ,'iw/
g=s(f)0xa—xi1) T
. . / . / . / . ’ p— p—
Since 7;” =11, 1% = 1" * and Y,y =Y, We get

i

9=s()xa—x1) T

h;u jw

11.4 The grading

We are now going to define two interesting gradings on the convolution algebra Hf %(Z4). To do
this we need the following definition.

Definition 11.8. Let § =7, € Yq. We write § = (i{’,...,34). Set

ho(l) = { hiww i s(@) #Y (e, if 4" #4,),
7 1 ifs1(7) =7 (e if i =i¥,).
—(@it,) i (@) A7,

aal0) = hyll) + () = { ST ) B 2D

If 5,(y) # Y then h;w v | is the number of arrows from ;" to 4;%; and ag(l) is the number of edges
between ¢;” and 7} | in the undirected graph obtained from the quiver I' by forgetting orientations
of the edges. A

First observe that the groups H. g 4(Za), H g 2(Fa) are endowed with a natural homological grading.
However, given this grading, H*GQ(]:Q) is not a graded module over H*GQ(ZQ). This motivates us
to define different gradings which make HY 4(Fa) a graded module over H < 4(Z4q).

Definition 11.9 (Grading 1). We endow HE 9(Fq) with the cohomological grading, i.e.,

deg; zg(k) = 2, y€eYq, ked{l,..,d}.

We now endow Hf 4(Z4) with the grading uniquely determined by setting

deg, 155 =0,  deg, s5(k) =2, deg; o (1) = 2hz(1).

Proposition 11.10. If we endow H*GQ(ZQ) and H*Gg(}'g) with the gradings from Definition 11.9,
the vector space H*Gg(}'g) is a graded module over H*GQ(ZQ).

Proof. The proposition follows directly from the explicit description of the faithful polynomial
representation in Theorem 11.7. O

It is also possible to define another grading on Hf %(Zq) which is more symmetric in the sense
that it does not depend on the orientation of the quiver.
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Definition 11.11 (Grading 2). Recall that H*Gg(]?d) =6 H (]?g) Let my := dim]?g be

a erg *
the dimension of .7?@ as a variety. We endow H*G g(fg) with the cohomological grading shifted by
my, ie., if f € Hfg(}:y) then we set

deg, f = deg, f — my.
We now endow Hf 4(Z4) with the grading uniquely determined by setting

degy 1355 =0, degy s5(k) = 2, degy o3 (1) = az(l).

Proposition 11.12. If we endow H*GQ(ZQ) and H*GQ(}'Q) with the gradings from Definition 11.11,
the vector space HY®(Fq) is a graded module over Hy *(Zq).

To prove the proposition we will use the following lemma.
Lemma 11.13. Let § = (i1, ...,%d) € Ya and set Y(I) := ;. We have

my = dim By = dim Py + Y hyy 5.
U<l

Proof. See [Lus91, Lemma 1.6(c)]. O
Proof of Proposition 11.12. By Lemma 11.13, for each § € Yq we have

M) — My = hy) ga+) — by go) = hg(l) = hag)(1)-
Let f € H*Gi( }) and suppose that s;(7) # y. Then

degs (05(1) © f) = degy f = degs (@) (1) = @0 ()"" V(1)) = degy |

= 2hz(l)
= 2hy(1)

+degy f — my) —degy f+my
— hy(l) + hg, @) (1) = hy(l) + hg, ) (1) = degy oy (l).

The fact that the other generators - 13 5 and »¢;(1) - act in a homogeneous way with respect to the
grading is obvious. O

From now on we will always consider H. *G 9(Z4) as a graded algebra endowed with the "symmetric"
grading from Definition 11.11. We finally remark that there is another reason for using this grading.

In the next chapter we will show that the convolution algebra H. *G 9(Z4) is isomorphic to a certain
naturally graded geometric extension algebra. This isomorphism is in fact an isomorphism of

graded algebras, if we endow HY %(Zq) with the grading from Definition 11.11.

11.5 Relations

We are now ready to give a complete list of relations for the convolution algebra H. f 4(Zq). We
will use the following lemma.

Lemma 11.14. Let 0y, denote the Demazure operator

[ =si(f)

BT D) - 1)

where f € H*Gg(]%) Then



We call the first relation the quadratic relation and the second relation the twisted derivation relation
for Demazure operators. Moreover, Demazure operators satisfy the following braid relations

Opi05r = Ogu0ge, if 1=V|>1 051110505001 = 0510514105,
Proof. Easy calculation left to the reader. O

The relations in our convolution algebra will involve the following polynomials which depend on
the quiver I" and dimension vector d.

Definition 11.15. Let § € Ygq be a composition of the dimension vector d and ! € {1,...,d — 1}.
We define the following polynomials

Qpa(u,v) = { (=1 O(u =) O if 51(7) £ 7

0 else.

Definition 11.15 says that the polynomial Qy;(u, v) is non-zero only if the I-th and I + 1-th vertices
in the composition 7 are distinct. In that case Qy;(u,v) equals (v — v) to the power of ag(l),
where ay(l) equals the number of edges between the vertices g(!) and F({ + 1), multiplied by —1 to
the power of hy(l), where hy(l) equals the number of arrows from %(l) to 7(! + 1). Note that the
polynomials Qy;(u,v) depend up to sign only on the underlying undirected graph of I', and not
on the orientation of T

We now state one of the main theorems about the convolution algebra Hf 4(Za).

Theorem 11.16. The following relations hold in the algebra HEQ(ZQ; k) (we omit the x signs for
ease of reading):

(1) Idempotents:

* lyylyy = dyylyy

o (1) = lygrg(Dlyy

* Ly@.@oy(k)lyy = oy(k).
(2) Polynomial subalgebra:

o seg(k)sy (K') = s (K') (k).
(3) The straightening rule:

“lyy k=1Ls(y) =7,
o oy(D)seg(k) — seq, ) (s1(k))og(l) = ¢ lgz  k=1+1,5(y) =7,
0 else.

(4) The quadratic relation:
o 05,7 (Dog(l) = Qga(se(1), 25(1 + 1)).

(5) "Braid relations”: let us write § = (i¥,...,i%), then
o oy, (Noy(l) =05, @ Dog(l') if [1-V]>1

® Osi5141(7) (l + 1)031+1(§)(l)0§(l + 1) - Usz+1$z(§)(l)081(§)(l + 1)0?(1) =

5.1 ey (142) 205 (141)) = Qy 1 (35 (1), 25 (141 . gy T .
Qp.1 ey (142), ;‘t?((?;;;fg?(llg roeg(HD) i =1i],4 # i/, and O otherwise.

Remark 11.17. We can interpret the quadratic relation as saying that (o(1))> = 0 up to a
polynomial. Similarly, the second "braid relation" says that o(l + 1)o(D)o(l + 1) = o(D)o(l +
1)o(l) modulo a polynomial. In this sense, these relations mirror the usual relations s? = e and
S14+1S1514+1 = S1S14+15; in the symmetric group Wq. Moreover, as one can easily see, all the relations

in the above theorem respect the grading on H*GQ(ZQ).
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Proof. (1) These relations follow directly from the definition of the convolution product.
(2) We have proven that He 4(2§) is a subalgebra isomorphic to H, (Fa). Hence the relation.

3) Let f € H*Gg F5). Suppose that k =1 and s;(y) =7y. Then
7

oy()se5(k) — 25, (s1(k))og(l) = og(1)75(1) — se5(1 + D)oy (1).-

By Lemma 11.14 (the twisted derivation rule for Demazure operators applied to o5(1)s5(l) © f) we
have

(og(D)se5(l) — 551 + V)og(l) o f = [(o5(1) 0 25(1)) f + 25(l + 1) (o5 (1) ©
= (og()oag())f = —f = —1gzo f.

Now suppose k =1+ 1 and s;(7) =7. Then

og()seg(k) — 35, (s1(k))og(l) = og(1)7e5(1 + 1) — se5(1) o (1)

By Lemma 11.14 we have
(og(D)se5(l + 1) — se5(1)og(l)) © [(0 ()0 xy(l + 1))f zy(1)(og(l) o f)] — 25(1)(og(l) o f)
1 .

N =g+ 1)(og(D) o f)

Suppose k ¢ {l,l + 1} and s;(y) = 7. Then

_ ag(k)f — s(zg(k)f) o
(og(1)seg(k) = se5(k)og(l)) o f = Ry - 7(k) —

Now suppose that s;(y) =7 # 7. Then
(o5 ()75 (k) = e (K)og(D)) o f =

= [y (1) = 2 (1 + 1) Os(ag(k) )] = [y (s1(k)) (2 (1) — 2 (L + 1) Ds(f)] = 0.
(4) Suppose s(y) = 7. Then
o5 (Doy(l) = oy(l)oy(l) =0
by Lemma 11.14 (the quadratic rule for Demazure operators). If s(7) # 7 then

) — 2yl + 1)) O Os[(@,q) (1) =z (L + 1)) s (f)]
rolD) — gL+ 1)) (a1 + 1) — (1) 1
5O a5(1) — g+ 1) O 40

1O ag1) — g1+ 1) f

= (=1)" O Ge(l) = 51 + 1))V o 1.

(5)(i) Let us write s; = s, sp = s'. First suppose that ¥’ := s(y) # v, 7" := s'(y) # 5,7 = s's(y).

Then

oy (Nog(l) o f = (wgn (I') = g (' + 1) 8 [(05 (1) — 251 + 1)) s(f)]
— (g lt') = g (1 1) W g (1) — o (14 1) O )

= (g () - l“y”'(l + 1) sy (1) — age (I + 1) (f)]
— o Dogll

The other cases are similar - one repeatedly has to use the commutation relation ss’ = s’s and the
fact that s(I') = U/, s(I'+1) = U'+1,s'(I) =1, s'(I'+1) = [4+1. We leave the calculation to the reader.
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(i) Suppose that i} = ilz_Q + ily_ﬂ.

X = 05l51+1(?) (l + 1)Usz+1(§) (Z)O'g(l + 1) ¢ f
- O-SlSL+1(§)(l + 1)USZ+1(§)(Z) < [[msz+1(y) (l + 1) — Ls111(7) (l + 2)]hg(l+1)sl+l(f):|

[msl+1(§)(l + 1) — Ls141(7) (l + 2)]h?(l+1) - [xsl+1(§)(l) - xSHl@)(Z + 2)]h?(l+1)

si+1(f)
o (1) = Za ) () i

= 08181+1(?)<l + 1) ©

25 (D) — 25, @ (L + 2)]w (1)
ISHl@)(Z +1)- Ls141(7) ()

(si1(f) — 8181+1(f))1

[z + 2) — ag(l + D)D) — [25(1) — 2g(l + 1)]Ps0+D
231 +2) — wy() !

= [[Iﬂ(l +1) - Iﬁ(l + 2)]h“"l+1<m(l+1)] {

() — o hy(1+1)
[ y(?y(z +y;l)tlx)i(l) (f — sl+1slsz+1(f))]
_ ()" @ (4 2) — gl + D)
w5(l +2) — a5(0)
[y (1 + 1) — gl 4+ )"0 @ Do (1) — arg(i 4 )]0
B w5(1 +2) = a5 (1)

sit18181+1(f).

Y = Jsl+151(§)(l)051@) (l + 1)0@(1) of
= Osias(7) (1)0'51@) (l + 1) © {[xsl(?)(l) — Tsi(7) (l + 1)]hy(l)sl(f)]
o | @0~ 2o O DI () a4 2
1+151(¥ Isl(y)(l+2) 75651@)(14»1)

o) = za @+ 20
Tam( +2) = 2@ +1)

= [la5(®) - 251 + V]P0 O)] [

o o b (1)
g ]
(1) Olag(1) — 2z + D]97D  [2g(l) — 2zl + D] 1@ Ozg(l + 1) — 251 + 2)]70

= xy(l +2) - my(l) f- :Uy(l T2) - mg(l) sisi+181(f)

s1(f)

_|_

(s1(f) — Sl+181(f))]

(251 + 1) — 2g(1)]"7O — [25(1 + 1) — z5(1 + 2)]7D
o3l +2) - 730) !

We have s;1818141(f) = sisi181(f). Moreover, since z? = i‘lzz, we have

hy(l) = he, @+ 1), he, @) (1) = hy(l + 1), az(l) = az(l+1).

Hence z z
X —Y = (—1)hs) g+ 2) — ay(l + 1)]*7D — [a5(1) — ag(l + 1)]7D f
2yl +2) — a5 (1)
We leave the other cases to the reader (use the braid relations for Demazure operators). O
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11.6 The main theorem

We now prove that the list of relations we have given is complete.

Theorem 11.18. The algebra H*GQ(ZQ) is generated by {155, 05(1), ...,oq9(d—1), 2¢5(1), ..., s25(d) |
y € Ya} subject to the relations in Theorem 11.16 (i.e., the relations in Theorem 11.16 generate
all the relations).

Proof. Let A be the k-algebra generated by {137, 05(1),...,05(d — 1), 5¢5(1), ..., 55(d) | ¥ € Ya}
subject to the relations in Theorem 11.16. Then there is an obvious surjective k-algebra homo-
morphism

A= HIA(Zy). (83)
We know that H*GQ(ZQ) is a H*GQ(ZE)—module of rank d! with basis {o(w) | w € Wq} (for some
choices of reduced decompositions). It is clear that the map (83) is HY ¢(2§)-linear. Therefore,
it suffices to show that A also has rank d! as a HSQ(ZE)—module. In fact, it is easy to show that

{o(w) |weWq}isa H*Gg(Zg)—basis of A. By the straightening rule, we know that we can express
any element a € A in the form

a= [T+ [ro()..o(),

where each I¢ € {1,....d — 1}, r* > 1, fo, ff € < lyg,s65(1), ..., se5(d) | T € Ya > = HY(Z28)
and « ranges over a finite index set. Let w € Wq and let w = s;,...s;, be its chosen reduced
decomposition. Now the quadratic and the braid relations imply that if w = s, ...s;, is another
reduced decomposition of w then

o(ty)...o(ty) = Z fuo(u)

u<w

for some polynomials f,, € < 153, s5(1), ..., 2¢5(d) |y € Yq > = H*GQ(ZE). Hence {o(w) | w € Wq}

generate A as a He 4(24)-module. They’re also Jins 4(Z2§)-linearly independent because they are
independent in H*GQ(ZQ). O

Corollary 11.19. The algebra H*GQ(ZQ) endowed with the grading from Definition 11.11 is iso-
morphic as a graded k-algebra to the algebra defined by Khovanov and Lauda in [KL09] and the
algebra defined by Rouquier in [Roul?2].

Proof. All three algebras have the same presentation in terms of generators and relations. O

In light of this corollary, we will from now on refer to the convolution algebra H. *G %(Zq) as the KLR

algebra or the quiver Hecke algebra associated to the quiver I' and dimension vector d.

11.7 Some corollaries

We now present some easy corollaries which follow from the presentation of our convolution algebra
in terms of generators and relations.

Corollary 11.20 (k-basis theorem). Choose a reduced decomposition for each element w € Wy.
The sets
{5(1)*152(2)*2...3¢(d) "o (w) 1y 5 | ¥ € Ya,w € Wy, oy, € N>g},

{o(w)s(1)*2(2)*2..2¢(d)¥ 155 | T € Ya,w € Wq, 0y, € N>}
form k-bases of H*GQ(ZQ).
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Proof. It is obvious that
{5e(1)* 5(2)*2 .. 5¢(d)* 155 | ¥ € Ya, am € N>o},

forms a k-basis of H*GQ(Z&). But HO%(Z4) is a left H*GQ(ZE)—module with basis {o(w) | w € Wq}.

Hence H*GQ(ZQ) is a k-module with basis
{56(1)*15¢(2)*2 ...32(d) " 15 go(w) | ¥ € Ya,w € Wy, ap, € N>}

Using the idempotents relations and the straightening rule one obtains the two bases in the state-
ment of the corollary. O

Definition 11.21. Let I'° denote the underlying unoriented graph of the quiver I'. We can view
it as a triple (I, H, st), where st is a function from H to the set of two-element (and one-element,
if we allow loops) subsets of I such that st(h) = {s(h),t(h)}. We say that the source and target
functions s, t are the orientation of the graph I'°. Let us denote a choice of orientation of I'® with
the symbol O. So far we have assumed that we are working with a fixed quiver I' and suppressed
it from the notation. Occasionally we will want to compare algebras and varieties arising from
different choices of a quiver or different choices of an orientation of a fixed underlying unoriented
graph. We therefore introduce the following notation. Let Z(T',d), F(I',d) and F(T',d) denote
the quiver Steinberg variety, the incidence variety and the quiver flag variety, resp., arising from
the quiver I with dimension vector d. Also let Z(T'°,0,d), F(T',0,d) and F(T, O, d) denote the
quiver Steinberg variety, the incidence variety and the quiver flag variety, resp., arising from the
unoriented graph I' with orientation O and dimension vector d. We set

H(T,d: k) == HOY(Z(T,d); k), H(T° 0,d;k) = H'(Z(T°,0,d);k).

Note that we have not defined anything new here - we have merely made the dependency on the
quiver and the orientation explicit. In the sequel we will continue to suppress the quiver and the
choice of orientation from the notation whenever we can assume that these choice are fixed, i.e.,
essentially when we are not directly comparing results for different choices of quivers or orientations.

Corollary 11.22 (Change of orientation). Let O = (s,t) and O’ = (s',t’) be two choices of
orientation of the unoriented graph T'°. Fori,j € I let

hij=[{h € H|s(h) =i,t(h) = j}I, hi; =[{heH|s'(h)=i,t'(h) = j},

o (_1)hi,y’+h§,j ifi# 5, ki > h;',j
B(i, j) = { 1 otherwise.

Then

HT,0,d;k) = HI®, 0, d;k), lyg— Ly sl) = (1), og(l) = BT, )ou(l)
is a k-algebra isomorphism (where {153, 5(1),05(m) |7 € Ya,1 <1 <d,1 <m < d— 1} are the
standard generators of H(T°,0,d; k) and {13 3, 5(1),00(m) | € Ya,1 <1< d, 1 <m <d -1}
are the standard generators of H(T?, 0, d; k) ).

Proof. This is obviously a vector space isomorphism. To prove that this is also an algebra ho-
momorphism, we directly check the relations. It is clear that the idempotents and polynomial
relations as well as the straightening rule are preserved. Let us check the quadratic relation. If
s1(y) =7 then oy, (og(l) = 0 = 0 (D)og(1). So suppose that s,(y) # 7. Let i := i}, j := i ;.
If hi,j Z h;d then

B, 1), ) (DB, o) = (= 1) e (e (1) =5e (141)) 7Y = (=1)"7 (s (1) =54 (1+1)) 7.
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If h;j < hj; then

B, 1), ) (DB, F)og(1) = (= 1) a5 (5 (1) =52 (141)) T = (=1)"07 (35(1) =363 (14-1)) 7V

because h; j + hj; = hi ; +h}; and so h; j = hi ; + h’;; + h;; mod 2. We leave checking the braid
relations to the reader. O

Remark 11.23. The corollary implies that up to isomorphism the graded algebra H(I'°, O, d;k)
depends only on the underlying undirected graph I'°. Note, however, that these isomorphisms do
not commute with the faithful polynomial representation (as can easily be seen from the description
of this representation).

Corollary 11.24. Given y € Yy, let y* € Y4 be such that zly = ig+1_l. There is an involutive
algebra automorphism

H(T,d;k) = H(T,d;k), lyg— lyg, () = s (d+1-1), og(l) » —og-(d—1).

Proof. A straightforward calculation left to the reader. O

Remark 11.25. There is also an involutive graded vector space automorphism
Ga, = = Ga, =
H/ % (Fa; k) — H 4 (Fa; k), zg(l) = zg=(d+1-1).

These automorphisms commute with the action of H(T',d;k) on Hfg(]?g; k).
Corollary 11.26. There is an isomorphism

o

H(F,Q, k) — H(F,Q, k)Opp, 1@)@ — 1@)@7 %ﬂ(l) — %y(l), O'g(l) — US;(@) (l)

Proof. A straightforward calculation left to the reader. O

11.8 Examples

We can obtain some familiar algebras as quiver Hecke algebras, for example, matrix rings with
polynomial entries and NilHecke rings.

Example 11.27 (Matrix ring with polynomial entries). Set I = {i1,...,i,}, H = & and d =
i1+ ... +in. Then Wy = &,,, Wy = {e}, |Ya| = n!, Gq = Tg = (C*)" and Repyg = {0}. Moreover,
Fy = {pt} for each § € Y4, Fa = Fa and 24 = Fq x Fa. We have Sg, = St, = klza(1), ..., za(n)]
and H*Gg(]-'g) is a free Sg,-module of rank n! with basis {13 | 7 € Ya}. Let ¢35 be the Sg,-linear
endomorphism of HY ¢(Fa) sending 17 to 1y and all the other basis elements 1z to 0. Then
Ends, (H*Gg(]-'g)) is a free S -module of rank (n!)? with basis {¢55 | 7,7 € Ya}. Since for
each s; € IT and § € Yy, we have s,(y) # 7, the elements oy(!) never act as Demazure operators.
Moreover, since hyp(l) = 0 for each § € Yy and [, we have og(l) o f = si1(f), for f € H*Gg(}'y).
Hence, if 7' = w(y), then oy(w) = ¢y 5 as Sq,-linear operators on H*Gg(]:g). It follows that

{oy7 | 9,7 € Ya} = {oy(w) | § € Ya,w € Wa}

and thus
HE(24) = Endg

d Gq

(H*Gg(]-"g)> = Mat(n! x nl, k[z(1), ..., 2(n))).
In particular, if n = 1 then H*GQ(ZQ) = k[z]. Now let us consider in detail the case n = 2. We

have Yq = {7,7'}, where ¥ = (i1,i2) and ¥’ = (i2,41). We consider H*Gg(]?g) = klzy(1), z5(2)] &
klzg (1), 25 (2)] as a free module over klzy(1) + z5(1), 25(2) + 25 (2)] with ordered basis 1y, 1.
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Setting z(1) = z5(1) + 7 (1), (2) = 25(2) + x5 (2) we can thus interpret an element of Hfg(fg)
as a two-row vector with entries in k[z(1),z(2)]. We want to explicitly describe the isomorphism

HE(24) = Mat(2 x 2, klz(1), 2(2)]).

It is given by the following map

1y,y'—><(1) g>’ 1?/4/'_)(8 (1)>’
se(l) = (xél) 8) sy (1) = (g x(()l))’
Uy(l)l—><(1) 8) ay/um(g é)

forl=1,2.

Example 11.28 (NilHecke ring). Set I = {i}, H = @ and d = ni. Then Wyq = Wy = &,
[Ya| = 1, Yq = {7}, where § = (4,4,...,7), Ga = Ga = GL(n,C) and Repq = {0}. Moreover,
]?g = Fa = Fy, Hfi(]-'g) = k[zz(1),...,z5(n)] and Zq = Fy x Fy. Since for each s; € II,
we have s(y) = ¥, the elements oy(l) always act as Demazure operators. Hence He 4(Zq) is

the ring of endomorphisms of k[zz(1), ..., z5(n)] generated by endomorphisms s¢;(1) which act by
multiplication with z(l) and Demazure operators oy(l). Therefore

H%(24) = NH,,

i.e., the convolution algebra ue %(Zq) is isomorphic to the NilHecke ring (see Definition 7.33).
Note that the quadratic relation and the "braid relations" for elements o(I) simplify to the braid
relations for Demazure operators.

It is well known that the NilHecke ring N H,, is also isomorphic to the matrix algebra
Mat (n! x n!, k[z(1),...,2(n)]°") (see for example [KLO9|, p.11). Let us set n = 2 and construct
an isomorphism

HSQ(ZQ) >~ Mat (2 x 2, k[z(1)x(2), z(1) + z(2)]) . (84)
We consider the polynomial ring k[z(1), (2)] as a k[x(1)z(2), z(1) +x(2)]-module of rank 2 with or-
dered basis 1, 2(1). The algebra Mat (2 x 2, k[z(1)z(2), z(1) + x(2)]) acts naturally on k[z(1), 2(2)]
endowed with this basis by matrix multiplication. Consider the map

H%(Z9) — Mat (2 x 2, k[z(1)2(2), 2(1) + 2(2)]) (85)

defined by

e (509) e (1 0S),

oo(1) ( 0 0 ) 2 (2) s (x(1)+1x(2) a:(l)om(2) )

This map intertwines the actions of HEQ(ZQ) and Mat (2 x 2, k[z(1)x(2),z(1) + z(2)]) on k[z(1), z(2)].
Indeed, we have, for example, (1) 0 1 = z(1), s¢7(1) o x(1) = (1)? and

(0w (1)=(9) =
< (1) x_(ic)(azzi(é)) > ( (1) ) N < x_(f)(lﬁfc(g) ) = —z(1)z(2) + (z(1) + z(2)z(1) = z(1)*.
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It follows that the map (85) is injective (since the elements 1y, s65(1), 55(2), 05(1) and their
images act in the same way on k[z(1),2(2)]). To show surjectivity, we find pre-images of a basis of
Mat (2 x 2, k[z(1)z(2), (1) 4+ 2(2)]) over its centre (which is isomorphic to k[z(1)z(2), 2(1)+x(2)]):

)

Let us also look at some examples with arrows.

Example 11.29. Set I = {i,j}, H= {i = j} (n arrows from i to j) and d = i+j. Then Wq = Gy,
Wa = {e}, |Ya| =2, Ya = {7 = (,7),7 = (j,i)}, Ga = Ta = (C*)* and Repg = C". Moreover,
Fy &= Fy = {pt}, Fy = Fy, Fyp 2 C", and Zyy = Zyy = Zyy = {pt}, Zyy = C*. We have
Scq = Sy = klza(1),24(2)] and H*Gg(]?g) is a free Sg,-module of rank 2 with basis {1y, 13 }.
The convolution algebra HEQ(ZQ) is generated by the idempotents, s¢;(1), 2¢5(2), 555 (1), 525 (2)
and oy(1), 05 (1). We have

oy(1)s5(2) = o og(1)s5(1)oy(1) —
(s 0) (

). e (

—_o o
oo oo

1
0
0
1

oo oo

—og(1) — (

oy(1) o f = (oy (1) =2y @) (), | € H(Fy),

Gy~
op()of=s(f), feH(Fy).

Note that, unlike in the previous two examples, H*G %(Z4q) is isomorphic to a proper subring of

Ends,, (Hfi(fg)) > Mat (2 x 2, k[z4(1), 24(2)]). The inclusion

H*GQ(ZQ) — Mat(2 x 2,k[za(1),za(2)])

is given by
1y,y'—><(1) 8>7 1y’,y'H(8 (1)),
e (70, o (0 0 )
0 0 0 1
7 (o Laeyr 0)0 w0 (00
for1=1,2.

Example 11.30. Set I = {i,5}, H = {i = j} and d = 2i + j. Then Wy = &3, Wy = &,
|YQ| =3, YQ = {y = (iviaj)7y/ = (i7j7i)ay/, = (jaivi)}a GQ = GL(Q’C) X CX? TQ = ((CX)3 and
Repq = C?". Moreover, Fy =2 Fy =2 Fyr & CP! = ]t'g, fg/ is a complex vector bundle over Fy
of rank n and .7%// is a complex vector bundle over F3~ of rank 2n. Furthermore, Zy 5 = Zy 5 =
Zyl@ = Z@//’g = Z@@H = CP! x (C]Pﬂ, Zyl@/ = Zyl@w = Zy//@/ is a complex vector bundle over
CP* x CP' of rank n and Zy» gz is a complex vector bundle over CP* x CP! of rank 2n. We
have STQ = k[$g(1),$g(2),$g(3)},5@i = k[$g(1)$g(2),xg(l) + xQ(Q),xQ(3)] and Hfg(j':g) is a
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free Sg4-module of rank 6. We now have several different kinds of o operators:

ay(l)Of—Mv /& H*(Fp),

o f = ot e HOFy),

o3(2) 0 f = (a7 (2) — 2y (3))"s2(f), | € HI(Fy),
o (1) o f = (agr (1) = 20 (2)"s1(f),  f € HI*(Fy),
oy (2) o f = sa2(f), feH*Gg(}zﬂ')v

o (o f=si(f), feH Fyp)

11.9 Quivers with loops

We are now going to generalize the results of this section to quivers with loops. Suppose that T is
now a quiver which may have loops. Let H = H® LUH™, where H® = {h € H | s(h) = t(h)} is
the set of loops and H™ = {h € H | s(h) # t(h)} is the set of all the other arrows.

Let p = (pn) € Repg. Define p=~ = (p;7), p° = (p3) by setting

o | pn iftheH7, o _J 0 ifheH7,
P =Y 0 ifheHO?, Ph =0\ pn if h € HO.

We of course have p = p~ + p©. We further define
Repg = {p~" | p € Repg}, Rep§ = {p® | p € Repy}-

Let F = (V!) be a quiver flag. We call F p-stable if p(V!) C V!=1 for each I. This is equivalent
to requiring that p= (V') C V! and p©(V!) C V!~ for each [ and hence consistent with our prior
definition of stability. For each w € Wy we also define

t,, =ty NRepy’, o = t,, N Repg.

O =
We of course have

Repg = Repg” @ Repg7 ty =1, D,
Observe that Lemma 9.16 still holds for quivers with loops. Let us recall it here.
Lemma 11.31. We have

eu(aw,ws) = (Xw(l) - Xw(l+1)) REEHUS

We now modify the statement and proof of Lemma 9.17.
Lemma 11.32. (i) Let ws € Wqw. Then

Kfv,w = (eu(awywS))ileu(mwS,w)Kw = _(Xw(l) - Xw(l+1))17hi2u’i}'uj Kun

~ _ ~ 1thyuw jw .
s = (€0(0us,)) ™ e(Mus ) Auss = (=1) 7 () = Xwen) ™ R,
Ry = (=) R,

A? LI—hjw 0 ¥
Aw,ws = (Xw(l) - Xw(l+1)) 0 Ay
(ii) Let ws ¢ Wqw. Then
A% ) THA hiw  w
(Aw‘r“’S) 1A“’ = eu(aw,ws) = (Xw(l) - Xw(l+l)) [
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Proof. (i) Since ws € Waw, 7,, = s(7,,) and so i}, ; = i;".We have

Tw = Yw,ws S Dw,wsa Tws = Cw,ws S Dws,wa

h;w

i

w0 hiw juw
eu(bw,ws) = (Xw(l) - Xw(l—i—l)) L= (71) v eu(aws,w)v

eu(ty) = (1) eu(tys).
Lemmata 9.14 and 9.15 imply

A% = eu(tuws) A = (U@, ws)) eu(ty Jeu(mys o )eu(ny)

= (eu(duws)) ~ eu(Myps.00) A

1=hjw jw ¥
= ~(Xw@) = Xwa+1)) A

w s

Kfu’ws = eu(tw,ws)Afv,ws = eu(bws’w)’leu(tws)eu(mw ws)eu(ng)
= eU(Dus,w) et (tys)eu(Mys o )eu(ny,)
= eu(aw&,w)’leu(m,ws,w)/~\u,s
_ (_1)1+hiw i

i

Jw 1—hsw 0 %
L (Xw(l) - Xw(l+1)) Lo A’w57

Ay = eu(ry) Ay = —eu(tys)(eu(ty)/eu(tys)) Aws

= — (eu(tw)/eu(tws))st
_ (,1)1"‘}”2”#” )

(ii) The calculation is the same as for quivers without loops in this case. O

The action of HS 4(Z24) on He i(]?g) is the same as for quivers without loops except the following
modification.

Proposition 11.33. Letj =7, € Yq, i €1I, f € H*Gg(]?g) Suppose that s;(g) =Y. Then

og(l) o f = (Xw) — Xw(l+1))(hi;u’iiu)71(5(f) - f)

Proof. The proof is the same as in Theorem 11.7(iii) but one uses Lemma 11.32 rather than Lemma
9.17. Ll

We invite the reader to work out how the relations change.

Example 11.34 (The skew group ring). Let I' be the Jordan quiver, i.e., I = {i}, H = {i — i}.
Let d = ni. Everything is as in Example 11.28 (the NilHecke ring) except that the elements o(l)
don’t act as Demazure operators. In fact,

og() o f=s1(f)—f, (og(l) +1g5) o f=s(f), f € HO%(Fy) = HI*(Fa).

The skew group ring of &,,, denoted k[z1, ..., 2,| xS, is defined to be the abelian group k[x1, ..., 2,] %
S, endowed with the product (p,w) - (r,u) = (pw(r), wu). We have the following algebra isomor-
phism

HIY(Z9) = k21, ooy 0] X Gy se5(1) > (21,€),  og(l) + 1g.5 — (1, 1)
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12 Representation theory of convolution algebras

12.1 Perverse sheaves and the decomposition theorem

12.1.1 Derived categories

We will only consider complex algebraic varieties, even though some of the definitions and results
we state hold more generally. Let Y be a complex algebraic variety. We first fix notation pertaining
to the various categories we will consider. Let Sh(Y) denote the abelian category of sheaves of
complex vector spaces on Y and let D’(Y) denote the bounded derived category of Sh(Y). We
denote the constant sheaf on Y by Cy. A sheaf G € Sh(Y) is called constructible if there exists an
algebraic stratification of Y = LI5S such that the restriction of G to each stratum S} is a locally
constant sheaf of finite dimensional complex vector spaces, i.e., a local system. If Q € D*(Y) is a
complex of sheaves then let #¢(Q) denote the i-th cohomology sheaf of this complex. We call a
complex Q € D*(Y) constructible if all the cohomology sheaves H!(Q) are constructible. Finally,
let Db(Y') be the full subcategory of D®(Y) whose objects are constructible complexes.

We follow a standard convention and do not distinguish in notation between functors F' : Sh(X) —
Sh(Y) and the corresponding derived functors RF : D*(X) — D*(Y) or LF : D*(X) — D*(Y).
Let f : X — Y be a (proper) morphism of algebraic varieties. We let f,, fi, f*, f* denote the
derived direct image, proper direct image, inverse image and proper (or exceptional) inverse image
functors. Moreover, let ® and Hom denote the derived internal tensor product and internal Hom
functors. When referring to these functors, we will typically omit the word "derived" and just call
them them "direct image", "proper direct image", etc.

We take for granted and do not explicitly recall basic definitions and facts concerning sheaves,
derived categories and triangulated categories. We do however recall that main concepts and
results needed for a precise statement of the decomposition theorem.

12.1.2 Local systems

Definition 12.1. By a local system on a complex algebraic variety Y we mean a locally free sheaf
of finite dimensional complex vector spaces on Y. We denote by Loc(Y) the category of local
systems on Y.

Proposition 12.2. Suppose that Y is path-connected, locally path-connected and locally simply
connected. Let us choose a base-point y € Y. Then there is an equivalence of categories

Loc(Y) +—  {finite-dimensional representations of m (Y, y)}
L — L

sending a local system to its stalk at y. The fundamental group m1(Y,y) acts naturally on L, by
monodromy.

Proof. See [Rie03, Proposition 1.5] O

Definition 12.3. The fundamental group (Y, y) acts on a local system L on Y by automor-
phisms, i.e., we have a group homomorphism ¢ : 71 (Y, y) — Aut(L). We say that the local system
L has finite monodromy if ¢(m1(Y,y)) is a finite group.

12.1.3 Perverse sheaves

Recall that the support of a sheaf is the closure of the set of points where the sheaf has non-trivial
stalks.
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Definition 12.4. Let Y be a complex algebraic variety and let @ € D%(Y) be a constructible
complex. It satisfies the support condition if

e (SUP) dimsupp (K~ %(Q)) <i forall icZ.

The complex Q satisfies the cosupport condition if its Verdier dual QV satisfies the support condi-
tion, i.e., if

e (COSUP) dimsupp (K~ (QV)) <i forall i€ Z.

A perverse sheaf on Y is a constructible complex @ € D%(Y) which satisfies the support and
cosupport conditions. Let Perv(Y') denote the full subcategory of D%(Y') whose objects are perverse
sheaves. Moreover, let PD=9(Y) (resp. PDZ°(Y) ) denote the full subcategory of D5(Y") whose
objects are constructible complexes which satisfy the support (resp. cosupport) condition. A

We obviously have * D=0(Y)N*DZ%(Y) = Perv(Y). The category of perverse sheaves can also be
characterised in the following way.

Proposition 12.5. The pair (P D=°(Y),? DZ°(Y)) is a t-structure (truncation structure) on D8(Y")
and Perv(Y) is the heart PD=0(Y) NP DZO(Y) of this t-structure.

Proof. See [HTTO08, Theorem 8.1.27]. O
Corollary 12.6. The category Perv(Y') is abelian.

Proof. 1t is well known that the heart of a t-structure on a derived category forms an abelian
category (see [HTTO08, Theorem 8.1.9]). O

Definition 12.7. The t-structure (PD=°(Y),?DZ%(Y)) is called the middle perversity t-structure
on Db(Y). We set PDZH(Y) := P D=0(Y)[—i] and PDZ4(Y) := P DZO(Y)[—i]. Let

Prei: DA(Y) = PDEUY), Prei: DY) = PDZ(Y)

be the truncation functors associated to our t-structure. The functor Pr<; is right adjoint to the
inclusion P D54 (Y) — D2(Y) and Pr>; is left adjoint to the inclusion P DZ*(Y) — D:(Y). We also
define a functor _

PHT: DY) — Perv(Y), Q+ P7<goP1>0(Qli])
called the i-th perverse cohomology functor.

Definition 12.8. Let j: U — Y be a locally closed embedding and let i : U\U =: Z — Y be the
inclusion of the boundary Z of U. Let @ € Perv(U) be a perverse sheaf on U. Considering @ as
an object in D%(U), we have a natural map 5iQ — j.Q. It induces a map in perverse cohomology
a:PH(51Q) — PH(j.Q). The intermediate extension of Q is the perverse sheaf

Jix@ = Im(a) € Perv(U) C Perv(Y).
The intermediate extension ji.() can also be characterized as the unique extension of @) to . Perv(U)
with neither subobjects nor subquotients supported on Z, or as the unique extension @) of @ to
Perv(U) such that i*Q € PD="1(Z) and i'Q € *DZ'(Z).
Definition 12.9. Let X,Y be algebraic varieties. Suppose that F : D%(Y) — D%(X) is a functor
of triangulated categories. We define a functor PF : Perv(Y) — Perv(X) to be the composite of
the functors
b F. b PO
Perv(Y) — D(Y) — DJ(X) —— Perv(X).
More generally, for k € Z we define a functor PH*(F) : Perv(Y') — Perv(X) to be the composite
of the functors
b F b Pk
Perv(Y) — D(Y) = DJ(X) —— Perv(X).
We have PF = PHO(F). If X — Y is a (proper) morphism of algebraic varieties, we will be
particularly interested in the functors P f.,? fi,? f*,? f' and P®,?Hom, which we call the perverse
direct image, perverse proper direct image, etc.
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12.1.4 Intersection cohomology complexes

Definition 12.10 (Axiomatic definition). Let Y be a complex algebraic variety of dimension n.
Let L be a local system on a smooth Zariski dense open subvariety U of Y. The intersection coho-
mology complex IC(Y, L) is defined to be an object in D2(Y) satisfying the following conditions:

o H{(IC(Y,L)) =0 if i< -n,
o H "(IC(Y,L))|lv =L,
e dim supp (H'(IC(Y,L))) < —i if i> —n,

e dim supp (H'(IC(Y,L)V)) < —i if i>—n.
Proposition 12.11. (i) For any local system L on U there exists a unique, up to isomorphism,
object in D%(Y') satisfying the conditions in Definition 12.10.
(ii) The complex IC(Y, L) does not depend, up to canonical isomorphism, on the choice of U. That
is, if U and U’ are smooth Zariski dense open subvarieties of Y, L is a local system on U, L' is
a local system on U’ and Llyny = L'|ynus then the associated intersection cohomology complexes
are canonically isomorphic.
(iii) If Y is smooth and connected, and L = Cy is the constant sheaf on a Zariski dense open
subset of Y, then IC(Y,Cy) is isomorphic to Cy[n], the shift of the constant sheaf on'Y by the
dimension of Y.
(iv) IC(Y, L) is an object in Perv(Y).

Proof. One can prove (i) and (ii) using the explicit constructions of IC(Y, L) given below. For (iii)
one can check directly that Cy [n] satisfies the conditions of Definition 12.10. Part (iv) is obvious -
the conditions in Definition 12.10 are strictly stronger then the support and cosupport conditions
in Definition 12.4. O

Definition 12.12 (Explicit definition 1). Let Y be a complex algebraic variety of dimension n and
let j: U < Y be the inclusion of a smooth Zariski dense open subvariety U of Y. Let L € Loc(U)
be a local system on U. We can regard it as an object in D8(U), i.e., as a constructible complex
concentrated in one degree. We define IC(Y, L) to be the intermediate extension of the complex
L[n]:
1C(Y, L) = ji(L[n]).
Definition 12.13 (Explicit definition 2). Choose a Whitney stratification Y = [ |, ., Y of Y such
that U is the unique open stratum in this stratification. Set Y3 = | |4, Vi<t YA for each k € Z.
We have a filtration
gCYyCc..CcY,1CY,=Y

of Y by closed subvarieties. Set Uy, = Y\Yy—1 = ||y, v, >, Yo- We have the following sequence

U=U, 20U, 225 20, 85 0,=v
of inclusions of open subsets in Y. The category D%(Y) admits, beside the middle perversity
t-structure, also the standard t-structure (D=(Y), DZ°(Y)), where
DY) :={Q € D5(Y) | H*(Q) = 0 for all k > 0},
DZ9(Y) :={Q € D2’(Y) | H*(Q) = 0 for all k < 0}.

Let 7<j, 7>k be the truncation functors associated to the standard t-structure on D%(Y'). Finally,
we define

IC(Y,L) i= (<_1 0 j1.) 0 w0 (Te—n 0 ju) (L[n).

Proposition 12.14. Definitions 12.12 and 12.18 are equivalent, i.e., there exists an isomorphism
in D%(Y):
Jis(Lln]) = (t<—10j1,) © .. 0 (T<—n © jn,) (L[n]).
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Proof. See [HTTO08, Proposition 8.2.11]. O

Definition 12.15. We are particularly interested in the intersection cohomology complex IC(X, Cy),
where X is an irreducible complex algebraic variety of dimension n and Cy is the constant sheaf
on a smooth Zariski dense open subvariety of X. Since this complex is independent of the choice
of U, we will also denote it by IC(X,Cx). We call IC(X,Cyx) the constant perverse sheaf on X.
Note that if X is smooth then IC(X,Cx) = Cx|[n] by Proposition 12.11.

Lemma 12.16. Suppose that Y is an irreducible complex algebraic variety of dimension n and
let L be an irreducible local system on a Zariski dense open subset U. Then IC(Y,L) is a simple
object in Perv(Y').

Proof. Let j: U — Y be the inclusion. The locally constant perverse sheaf L[n] on U is a simple
object in Perv(U) by [HTTO08, Lemma 8.2.24]. But the intermediate extension j.(L[n]) of a simple
object is again a simple object in Perv(Y), by [HTTO08, Corollary 8.2.10]. O

Proposition 12.17. Let i : Y — X be an inclusion of a closed subvariety Y. Then the functor
i« = 1 1S t-exact with respect to the middle perversity t-structure and induces an exact functor

Pi, = P4 Perv(Y) — Perv(X).

Let Pervy (X) denote the full subcategory of Perv(X) whose objects are perverse sheaves on X
whose support is contained in'Y . Then the functor Pi, induces an equivalence of categories between
Perv(Y) and Pervy (X). The quasi-inverse of Pi, is Pi*.

Proof. See [HTTO08, Corollary 8.1.44]. O

In light of Proposition 12.17, we can naturally regard a perverse sheaf on a closed subvariety
Y of X as a perverse sheaf on X. To simplify notation, if @ € Perv(Y) we will also denote
Pi.Q € Perv(X) by Q. Informally, we can think of Pi,.Q as an extension by zero of the perverse
sheaf @ to X.

Theorem 12.18. Let X be a complez algebraic variety. The simple objects in Perv(X) are pre-
cisely the intersection cohomology complezes IC(Y, L), where Y is an irreducible closed subvariety
of X and L is an irreducible local system on a smooth Zariski dense open subvariety U of Y.

Proof. This is [BBD82, Theorem 4.3.1]. The theorem is stated in the context of l-adic sheaves,
but it is explained in Section 6 of [BBD&82] how to deduce corresponding results for the complex
case. O

The following proposition summarizes the main properties of the category Perv(X).

Proposition 12.19. Let X be a complez algebraic variety. The category Perv(X) is noetherian
and artinian. In particular, every object is of finite length, i.e., it admits a composition series.

Proof. See [BBD82, Theorem 4.3.1]. O
Definition 12.20. Let @ € Perv(X). Let
Q=0Q125022..0@,=0

be a composition series of Q. We call the simple subquotients @;/Q;+1 the constituents of the
perverse sheaf . This definition is obviously independent of the choice of composition series.

By Theorem 12.18 every constituent of ) is of the form IC(Y, L), for some irreducible closed
subvariety Y of X and a simple local system on a smooth Zariski dense open subvariety U of
Y.
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12.1.5 Semi-simple complexes of geometric origin

Definition 12.21. Let X be a complex algebraic variety. Let Q € Perv(X) be a simple perverse
sheaf on X. We say that @ is of geometric origin if it belong to the smallest set which

e contains the constant sheaf on a point
and is stable under the following operations:

e for every morphism f of varieties, take the constituents of PH*(f*)(—), PH*(f)(-),
PH* (£ (=), PH(D(-),
e take the constituents of PH*(®)(—, —), PH* (Hom)(—, —).

Now suppose that @@ € Perv(X) is an arbitrary perverse sheaf. We say that @ is semi-simple of
geometric origin if it is a finite direct sum of simple perverse sheaves of geometric origin. More
generally, if K € D%(X) is a constructible complex on X, we say that K is semi-simple of geometric
origin if there is an isomorphism K = @, _, "H*(K)[—i] in D5(X) and each perverse sheaf PH*(K)
is semi-simple of geometric origin.

Lemma 12.22. Let Y be an n-dimensional irreducible subvariety of X and suppose that L is an
irreducible local system on a smooth Zariski dense open subvariety U of Y with finite monodromy.
Then IC(Y, L) is a simple perverse sheaf of geometric origin.

Proof. Since L has finite monodromy, there exists a finite etale morphism 7 : U—>U trivializing
L,ie., 7L = ((Cﬁ)@”. Since 7* and 7, form an adjoint pair we have Homp,q(1) (L, w*(Cﬁ)@”)) =]
Homy 7 (m*L,(Cz)®") = Homy 7y ((C5)®™, (C5)®™) # {0}. Because L is simple, it is a
subobject of 7, (Cg)®" (by an analogue of Schur’s lemma). But we have ,(Cg)®" = (W*Cﬁ)@n
so, again by the simplicity of L, it follows that L is in fact a subobject of 7.Cg.

Let p: U — {pt} be the projection. By Theorem 12.18 we know that Cg[n] is a simple perverse
sheaf on U. Moreover, it is of geometric origin because PH"™(p*)(Cypey) = PH  (p*)(Crpey[n]) =
p*Cipy[n] = Cz[n] (since the map p is semi-small). Since C is a locally free sheaf and = is finite
and flat, 7.Cg is also a locally free sheaf. Hence m.Cz[n] is a perverse sheaf on U. Therefore
7.Cg[n] = PH°(7,)(Cy[n]). But we have shown that L[n] is a subobject of . Cg[n]. Since L[n]
is simple, it is in fact a constituent of m.Cy[n] = PH%(m,)(C[n]), and so it is simple of geometric
origin.

Let j : U < Y be the inclusion. The intersection cohomology complex IC(Y, L) := ji.(L[n]) is
defined as the image of the natural map PH°(ji)(L[n]) — PH°(j.)(L[n]). In particular, IC(Y, L)
is a subobject of PH°(j.)(L[n]). By Theorem 12.18 we know that IC(Y, L) is simple, so it is
a constituent of PHC(j.)(L[n]). But since L[n] is simple of geometric origin, the constituents of
PHO(5.)(L[n]) are also simple of geometric origin (by definition). Hence IC(Y, L) is simple of
geometric origin. O

Corollary 12.23. Suppose that X is an irreducible complex algebraic variety. Then IC(X,Cx)

is a simple perverse sheaf of geometric origin.

Proof. The constant sheaf has trivial monodromy, so the corollary follows immediately from Lemma
12.22. O

12.1.6 The decomposition theorem

Now we can state the original decomposition theorem ([BBD82, Theorem 6.2.5]).

Theorem 12.24. Let f : Z — X be a proper morphism of complex algebraic varieties. Suppose
that K € DY(Z) is semisimple of geometric origin. Then f.K € D%(X) is also semisimple of
geometric origin.
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Proof. There are three known approaches to proving this theorem. The original proof of Beilinson,
Bernstein, Deligne and Gabber ([BBD82]) uses etale cohomology of [-adic sheaves and arithemtic
properties of varieties defined over finite fields. There is also a proof of Saito ([Sai90]) which uses
mixed Hodge modules and a proof by Cataldo and Migliorini ([CMO05]) based on classical Hodge
theory. We refer the reader to these publications for details. O

Corollary 12.25. Let f : Z — X be a proper morphism of complex algebraic varieties. Suppose
that Z 1s irreducible. Then there is an isomorphism

FI0(Z,C2)) = D PH (. (IC(Z,C2))) [] (86)
1€EZ

in D%(X). Moreover, each perverse sheaf PH! (f. (IC(Z,Cz))) is semi-simple of geometric origin,
i.e., for each i € 7 there exists an isomorphism

PH! (f. (IC(Z,Cy))) = @ Vv, (i) @ IC(Y, L) (87)
(Y.L)

in Perv(X), where

e (A1) Y ranges over irreducible closed subvarieties Y of X and L ranges over irreducible local
systems on a smooth Zariski dense open subvariety U of Y,

o (A2) each IC(Y, L) is of geometric origin,
o (A3) each Viy,1(i) is a finite-dimensional complex vector space which is nonzero for only
finitely many pairs (Y, L).

The wvector space V(y (i) encodes the multiplicity with which IC(Y,L) occurs in the decom-
position (87), i.e., we have Viy,)(i) ® IC(Y,L) = IC(Y, L)®dm V(@) - Now set Vivip) =
Dicz Viv,p)(@)[—i]. It is a Z-graded vector space. We can combine the two decompositions (86)
and (87) to obtain an isomorphism

£ (IC(2,Cz)) = €D Viy,py ® IC(Y, L) (88)
(L)

in DY(X), where Y and L satisfy (A1) and (A2) and each Viy 1) is a finite-dimension Z-graded
complex vector space which is nonzero for only finitely many pairs (Y, L). The vector space Viy 1,
encodes the graded multiplicity with which IC (Y, L) occurs in the decomposition (88), i.e., Viy,1)®

IC(Y,L) = @,,(IC(Y, L)[—i])®dim Vv (@),

Proof. This is immediate from Theorem 12.24 and the description of simple perverse sheaves in
Theorem 12.18. O

Lemma 12.26. Let f : Z — X be a surjective proper morphism of complex algebraic varieties
which is also a locally trivial topological fibration. Let Z be smooth of dimension n. Then each co-
homology sheaf H' (f.(IC(Z,Cz))) is locally trivial and its stalk at v € X is canonically isomorphic
to H="(f~1(x),

Proof. Since Z is smooth of dimension n we have IC(Z,Cz) = Cz[n], by Proposition 12.11. Recall
that there is a canonical isomorphism (f.Cz), = T'(f~'(z),Cz|s-1(,)). Hence

H, (f.(IC(Z,C2))) = M., (f.Cz[n]) = Hi " (f.Cz)
= (R""f.Cz)s
= R7"T(f (), Calp1(a)
= H'""(f 1 (2),Cpr(a)) = H ([ (2)).
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Since f is a locally trivial topological fibration, in a sufficiently small connected open neighbourhood

U of x we have . o
H (f.(IC(2,C2))) v = (Cy) im0 @)

so H (f.(IC(Z,Cyz))) is locally trivial. O

Corollary 12.27. Let f : Z — X be a surjective proper morphism of complez algebraic varieties.
Let Z be smooth. Suppose that there exists an algebraic stratification X = | |yc, Xx of X such that
f: 7YX\ — X, is a locally trivial topological fibration. Then f.(IC(Z,Cgz)) is constructible
with respect to the stratification X = | |,.y Xx. Hence there is an isomorphism

[ IC(2,C2)) = @ Vigry ® IC(Xy, L) (89)
(Xx,0)

in D%(X), where \ ranges over A and L ranges over irreducible local systems on X.

Proof. The constructibility of f.(IC(Z,Cz)) with respect to the stratification X = | |\, X
follows by applying Lemma 12.26 to the restriction of each cohomology sheaf H' (f.(IC(Z,Cz)))
to each stratum X,. If Z is connected, by Corollary 12.25 we have a decomposition

£ (I0(Z,C2)) = @@ Viv.ry @ IC(Y, L). (90)
(Y,L)

Since the complex on the LHS of (90) is constructible with respect to the stratification X =
Llxea X, each intersection cohomology complex on the RHS of (90) must also be constructible with
respect to this stratification. But only intersection cohomology complexes of the form IC(Xy, L)
are constructible with respect to the aforementioned stratification.

Now suppose that Z is not connected and Z = | |Zy is a decomposition of Z into connected
components. Then f.(IC(Z,Cz)) = f.(DIC(Zy,Cz,)) = @ f«(IC(Zy,Cz,)) so we can apply
the preceding argument to each f.(IC(Zy,Cz,)). O

The importance of the corollary lies in the fact that it puts a restriction on the intersection coho-
mology complexes which can occur in the decomposition (88). They are precisely the intersection
cohomology complexes associated to closures of the strata X.

12.1.7 Equivariant sheaves

Our goal now is to derive an even stronger statement about the decomposition (88) which also
imposes some restrictions on the local systems L. We will show that under appropriate hypotheses
the only intersection cohomology complexes which can occur in the decomposition (88) are those
associated to the constant sheaf on each stratum X,. To do this we will need to exploit equivariant
techniques. In the next few sections we briefly discuss the equivariant derived category of Bernstein
and Lunts, state the equivariant decomposition theorem, and finally deduce the version of the
decomposition theorem which we will apply to study the finite-dimensional representation theory
of quiver Hecke algebras.

Let G be a reductive complex linear algebraic group. All varieties we consider in this section are
complex algebraic varieties endowed with a left algebraic action of G.

Definition 12.28. We call a complex algebraic variety endowed with an algebraic action of G a
G-variety. We call a G-variety X free if G acts freely on X and the quotient map X — G\X is a
locally trivial fibration with fibre G.
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Definition 12.29. Let X be a G-variety. We have natural maps

din G"xX 5>G"1x X, s:X—>GxX

’

defined by

ng"'agnagl_lx)a
di,n(glv vy Gny ) = g1y -5 GiGi+1, ~--7gn7x)’ 1 S { S n— 1a

)= (
)= (
)= (
)= (

dO,n(glv vy Gn, L) =

dn,n(.gh ooy gn, ) =

A G-equivariant sheaf on X is a pair (F,0), where F € Sh(X) is a sheaf on X and 6 is an
isomorphism
0:dy  F=dy,F

in Sh(G x X) satistying the following cocycle condition
dy o0 0 ds o0 = di 50, 46 =idF,

where o stands for composition of morphisms. A morphism of G-equivariant sheaves is a morphism
of sheaves which commutes with 6. Let Shg(X) denote the category of G-equivariant sheaves on
X. We have a forgetful functor

For: Shg(X) — Sh(X), (F,0)— F.

We call a G-equivariant sheaf (F,0) on X a G-equivariant local system if F is a local system on
X. Let Locg(X) denote the full subcategory of Shg(X) whose objects are G-equivariant local
systems.

Suppose that G acts freely on X. Consider the quotient map ¢ : X — G\X. Let F € Sh(G\X).
Then ¢*(F) is naturally a G-equivariant sheaf. This defines a functor

q* : Sh(G\X) = Sha(X).

Now let H € Shg(X). Then ¢.H € Sh(G\X) has a natural action of G. Let ¢¢H = (¢.H)“
denote the subsheaf of G-invariants of ¢, H. This defines a functor

q% : Sha(X) — Sh(G\X).

Lemma 12.30. Let X be a free G-variety. Then the functor ¢* : Sh(G\X) — Shg(X) is an
equivalence of categories with quasi-inverse ¢¢ : Sha(X) — Sh(G\X)
Proof. See [BL94, Lemma 0.3]. O

Remark 12.31. If G acts freely on X, one can identify Shq(X) with Sh(G\X). It is then possible
to define the equivariant derived category as the derived category of the abelian category Shg(X),
ie., Dg(X) := D(Sha(X)) = D(Sh(G\X)). In general, this approach is too naive and does not
yield the right equivariant derived category.

Now let H be a closed subgroup of G and let X = G/H be a homogeneous space. The fibration
H — G — G/H gives rise to a long exact sequence of homotopy groups

we. = m(GQ) = m(G/H) = mo(H) — mo(G) — mo(G/H) — 1.

Suppose that G is connected. Then we have a surjective map 71 (G/H) — mo(H) = H/H°. Note
that the identity component H° is a normal subgroup of H so H/H? is actually a group.
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Lemma 12.32. Let H be a closed subgroup of a connected reductive complex linear algebraic group
G and let X = G/H be a homogeneous space. Let us choose a base-point x € G/H. Suppose that
L € Loc(G/H) is a local system on G/H. The local system L is G-equivariant if and only if the
monodromy representation of w1 (G/H,x) on the stalk L, is the pullback of a finite-dimensional
representation of H/H° by means of the map 7 (G/H,x) — H/H°. In particular, there is a
one-to-one correspondence

simple G-equivariant simple representations of
local systems on G/H the component group H/H®

Proof. See [Jan04, Proposition 12.10]. O

12.1.8 The equivariant derived category

Definition 12.33. (i) Suppose that X is a G-variety and P a free G-variety. We call a G-
equivariant morphism p : P — X of varieties a resolution of X.
(ii) Let n > 0. We say that a morphism f : X — Y of varieties is n-acyclic if:

e (a) for any sheaf B € Sh(Y) the adjunction morphism B — R f, f*(B) is an isomorphism and
Rif.f*(B)=0for 1 <i<n.

e (b) for any base change Y — Y the induced map f : X = X xy Y — Y satisfies property (a).

Definition 12.34. (i) Let p : P — X be a resolution of a G-variety X. Consider the following
diagram of G-varieties
xX&pPLP=G\P

We define the category D% (X, P) in the following way:

e an object F of D% (X, P) is a triple (Fx, F, 8) where Fx € D*(X),F € D*(P) and 3 : p*Fx =
¢*F is an isomorphism in D°(P),

e a morphism o : F — H in D%(X, P) is a pair (ax, @), where ay : Fx - Hy and @ : F — H
satisfy 8o p*(ax) = ¢*(a) o .
Let
Forp:DY%(X) — D¥X), F — Fx

denote the forgetful functor.

(i) Let I = [a,b] C Z and let p : P — X be a resolution. Let DI(X) be the full subcategory
DZ%(X)ND=(X) of D*(X), i.e., the full subcategory of D?(X) consisting of objects @ satisfying
H{(Q) =0fori>band i< a We define D5(X, P) to be the full subcategory of D%(X, P) whose
objects F satisfy Forp(F) = Fx € DI(X).

(iii) Let I = [a,b] C Z and let p : P — X be some n-acyclic resolution of X with n > |I|. We
define the category DL(X) to be DL(X, P). One can show that this definition is independent of
the choice of the resolution P, up to a canonical equivalence of categories. If J C I, we have an
obvious fully faithful functor DZ(X) — DL (X) defined uniquely up to a canonical isomorphism.
We finally define the equivariant derived category D%(X) to be the limit

DY (X) = lim DL(X).

Let For : D%(X) — D*(X) be the associated forgetful functor.

Remark 12.35. We could also describe the category D%(X) in the following way. We regard
the space FG as a free G-ind-variety. The projection EG x X — X is an oo-acyclic resolution
of X. Therefore we have D%(X) = D%(X,EG x X). Recall that we also have the projection
EGx%X — G\BG with fibre X. An object of D% (X) is then essentially an object in D*(EG x% X))
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whose restrictions to all fibres are isomorphic. For example, the category D% ({pt}) is equivalent to
the full subcategory of D?(BG) consisting of complexes with locally constant cohomology sheaves.
If G is a connected Lie group, then this subcategory consists of complexes with constant cohomology
sheaves (see [BL94, Proposition 2.7.2] for a proof).

If f: X — Y is a G-equivariant map one can define functors f*, f', f., fi, ®, Hom," between/in
the categories D% (X) and DZ%(Y) (see [BL94, Section 3]).

Definition 12.36. We define the constructible equivariant derived category Dg,C(X) in the same
way as in Definition 12.34, replacing D®(X), D*(P) and D! (X) everywhere by D%(X), D%(P), D1(X),
respectively.

Definition 12.37. Let p : EG x X — X and ¢ : EG x X — EG x% X be the canonicaal
projections. There is a natural functor

v DY(Sha(X)) = DY J(X), (F,0)— (F.qSp*F,B),

where 8 : p*F — ¢*¢p*F = p*F is the identity.

12.1.9 Equivariant perverse sheaves

We are now ready to define the category of equivariant perverse sheaves on X.

Definition 12.38. We define Pervg(X) to be the full subcategory of DgyC(X) consisting of those
Fe D%’C(X) which satisfy For(F) € Perv(X).

The category Pervg(X) has the same basic properties as the non-equivariant category Perv(X).
In particular, it is the heart of a perverse t-structure, it is abelian and every object in it has finite
length.

Definition 12.39. Let Y be a closed G-stable irreducible subvariety of X and let L € Locg(U)
be a G-equivariant local system on a G-stable smooth Zariski dense open subvariety U of Y.
Let j : U — X be the inclusion. We define the equivariant intersection cohomology complex
ICq(Y,L) € Pervg(X) to be the intermediate extension ji.(¢(L)[n]) (where j, is a functor ji. :
Pervg(U) — Pervg(X) between equivariant categories).

We have an analogous result to the non-equivariant case (see [BL94, Section 5.2]).
Proposition 12.40. The simple objects in Pervg(X) are precisely the equivariant cohomology

complezes IC(Y, L), where Y is a G-stable irreducible subvariety of X and L is an irreducible
G-equivariant local system on a G-stable smooth Zariski dense open subvariety U of Y.

We also have an equivariant version of the decomposition theorem. We call an object Q) € D& LX)
semi-simple if it is isomorphic to a direct sum of shifts of simple G-equivariant perverse sheaves
on X, ie., Q = PICs(Y,L)nyL], or equivalently, if For(Q) is semi-simple. We say that @ is
semi-simple of geometric origin if For(Q) € D%(X) is semi-simple of geometric origin.

Theorem 12.41. Let f : Z — X be a proper G-equivariant morphism of complex algebraic va-
rieties. Let F € DbG’C(Z) be semi-simple of geometric origin. Then f.F € D% (X) is also
semi-simple of geometric origin. l

Proof. See [BL94, Theorem 5.3]. O

Corollary 12.42. Suppose that G is connected. Let f : Z — X be a surjective G-equivariant
proper morphism of complex algebraic varieties. Let Z be smooth. Let X = | ] .\ X be an
algebraic stratification of X by finitely many G-orbits. Then there is an isomorphism

£ IC(Z,C2) = @ Vi © 10(Kn. L) (91)
(Xx,L)
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in D%(X), where X ranges over A and L ranges over G-equivariant irreducible local systems on Xy.

Proof. Let A € A and =, € X,. Then f : f71(X,) — X, = G/Stab(z,) is a locally trivial
topological fibration with fibre Stab(zy). By Corollary 12.27 we have an isomorphism

foIC(2,C2)) = @ Vixg ) ® IC(Xn, L) (92)
(Xx,L)

in DY%(X), where A ranges over A and L ranges over irreducible local systems on X,. On the
other hand, we can apply Theorem 12.41 to the pushforward f, (IC¢(Z,Cz)) of the G-equivariant
constant perverse sheaf ICq(Z,Cyz) to deduce that f. (ICc(Z,Cy)) is semi-simple in D¢, (X),
i.e., there is an isomorphism

fe(IC(Z,C2)) = P ICa (Y. L)]i], (93)

for some irreducible closed subvarieties Y and G-equivariant irreducible local systems L on smooth
Zariski dense open subvarieties U of Y. We now apply the forgetful functor to both sides of (93)
to get an isomorphism

£ (IC(Z,Cz)) = @ IC(Y, L)[i], (94)

in Db(X), where all the local systems L are G-equivariant. But the intersection cohomology com-
plexes occurring in the decomposition (92) and their graded multiplicities are uniquely determined,
so the two decompositions (92) and (94) must agree. In particular, every local system L in (92)
must be G-equivariant. O

We can finally deduce the version of the decomposition theorem which we will use.

Corollary 12.43. Suppose that G is connected and that for every x € X the isotropy group Stab(x)
is connected. Let f : Z — X be a surjective G-equivariant proper morphism of complex algebraic
varieties. Let Z be smooth. Let X = | |\, X be an algebraic stratification of X by finitely many
G-orbits. Then there is an isomorphism

£ (IC(Z,Cz)) = P Vi ® IC(X,,Cx,) (95)
AEA

in Db(X), where Vy describes the graded multiplicity with which IC(Xy,Cx,) occurs in the de-
composition (95), i.e. Vx = @, ., Va(i)[—i] and

~ ~ . dim by i
Vi@ IC(Xx,Cx,) = @ (IC(X, Cx, ) [-i]) ™ P
iE€EL

Proof. Since every stabilizer Stab(z) is connected, Lemma 12.32 implies that there is only one
G-equivariant local system on each orbit X, the constant sheaf Cx,. The corollary now follows
directly from Corollary 12.42. O

12.2 Geometric extension algebras

We will now work in the following framework. Let G be a connected complex reductive linear
algebraic group, M and N be complex G-varieties, let M be smooth (but not necessarily connected),
and let u : M — N be a proper G-equivariant morphism. Moreover, assume that N has finitely
many G-orbits. Later we will make the additional assumption that for each z € N the stabilizer
group Stab(z) is connected. Set Z = M xy M. Recall that the G-equivariant Borel-Moore
homology HE(Z;C) of Z with complex coefficients, endowed with the convolution product, has
the structure of an associative algebra. We are now going to identify this algebra with a certain
geometric extension algebra, which we define below.
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Let Let Ay, Ay, A3 € D°(N). The composition of morphisms in D’(N) yields a bilinear prod-
uct
Hom( Ay, As[p]) x Hom(As[p], Aa[p + q]) — Hom(A1, As[p + q)).

This composition can also be expressed as a bilinear product of Ext-groups, called the Yoneda
product:

Eti(Al, Ag) X Ext? (AQ, Ag) — EtiJrq (Al, Ag)
Definition 12.44. Let A € D°(N). We call Ext*(4, A), endowed with the Yoneda product, the

Yoneda algebra or geometric extension algebra associated to A. A

Analogously, we have a G-equivariant Yoneda product
EX'E% (Al, AQ) ® EthG(A2’ Ag) — EXt%+q (Ah 143)7

where Ay, Ag, As € DE(N)

Definition 12.45. Let A € D%(N). We call Ext(; (A, A), endowed with the Yoneda product, the
G-equivariant Yoneda algebra or geometric extension algebra associated to A. A

We are particularly interested in the Yoneda algebra Exty; (u.[C(M,Car), e IC(M,Cyy)) associ-
ated to the direct image of the constant perverse sheaf IC(M,Cys) on M.

12.2.1 Geometric extension algebras and convolution algebras

Theorem 12.46. There is an HE({pt})-algebra isomorphism
HE(Z;C) = Extg (s IC(M,Car), n:IC(M, Car)) (96)

where the LHS is endowed with the convolution product and the RHS is endowed with the Yoneda
product. Similarly, there is a C-algebra isomorphism

H.(Z;C) = Ext* (u,IC(M,Cyy), s IC(M, Cyy)) . (97)

Proof. The proof is not difficult but rather long and technical. See [CG97, Proposition 8.6.35]. O

Remark 12.47. We will never consider the convolution algebras H,(Z;C), H%(Z;C) endowed
with the homological grading. Instead we use the isomorphisms from Theorem 12.46 to import
the gradings from the corresponding geometric extension algebras. From now on we will always
consider H,(Z;C), HY(Z;C) as graded algebras endowed with this "geometric extension algebra"
grading.

Let A be a set parametrizing the G-orbits in N, i.e., N = [ ] ., Ox. From now on assume that
for each z € N the stabilizer group Stab(z) is connected. In light of Corollary 12.43 we have an
isomorphism

i« (IC(M,Cap)) = P Va © IC(Dy, Co,) (98)
A€EA

in D%(N). To simplify notation let us set, for each A € A, ICy = IC(0y,Cg, ).

We can use the isomorphism (98) together with Theorem 12.46 to obtain the following isomorphism
of algebras. We will later use it to find all simple modules over HE(Z).

Lemma 12.48. We have the following isomorphism of C-algebras

H,(Z;C) = (@ Endc VA) b P  Homc(Vy, Vy) @ Ext*(IC,ICy) |, (99)

A€A k>0, ¢, peA

where the LHS is endowed with the convolution product and the RHS is endowed with the Yoneda
product (note that the direct sums in the formula are direct sums of vector spaces, not algebras).
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Proof.

H.(Z;C)= @ Ext*(u.C(M,Cy), pIC(M,Car))
keZ
~ P Home(Vy, Vi) ® Ext*(I1C,, 1C,)
keZ, ¢, peEN
P Home(Vy,Vy) @ Ext*(IC,, IC,)
k>0, ¢,peN

(@ Endc V,\> b P  Home(Vy,Vy) @ Ext"(ICy, ICy,)

A€A k>0, ¢,9eP

In the first equality we used Theorem 12.46, in the second equality we used the isomorphism (98),
in the third equality we used the fact that Ext® (IC4,ICy) =0 for k < 0 and in the fourth equality
we used the fact that dim Hom(ICy, ICy) = 4 4. The last two facts follow from the fact that the
intersection cohomology complexes are simple objects in the category Perv(N). O

12.2.2 Classification of simple modules over a convolution algebra

We first classify simple modules over the non-equivariant convolution algebra H,(Z).

Theorem 12.49. The non-zero members of the set {Vy | A € A} form a complete and irredundant
set of representatives of isomorphism classes of simple modules over H.(Z).

Proof. By Lemma 12.48 we have a C-algebra isomorphism

H,(Z;C) = (EB Endc VA> S5 P Home(Vy,Vy) @ Ext*(ICy, ICy) | . (100)

AEA k>0, ¢,pEA

Observe that the second direct summand on the RHS of (100) is an ideal of the geometric extension
algebra. Let us denote this ideal with Z. Using the isomorphism (100) we can also regard it as
an ideal of H,.(Z;C). Since the geometric extension algebra is finite-dimensional over C (because
H,(Z;C) is), there exists an m > 0 such that Ext"(ICy4,ICy) = {0} for all n > m, ¢,9 € A.
Now let us take any m elements aq, ..., a,, of the ideal Z such that each q; € Homc(V@,VmH) ®
Ext* (ICy,,ICy, . ) for some ki, ...,km >0, ¢1,..., pm41 € A. Then

a1as...0ay, € Home(Vy,, V¢m+1) @ ExtXi=1 ki (ICy,, IC¢m+1) = {0}

because >, k; > m. Therefore Z™ = {0}, i.e., the ideal Z is nilpotent. Therefore Z is contained
in the Jacobson radical of H,(Z;C). Since the quotient of H,(Z;C) by this ideal is isomorphic to
a direct sum of matrix algebras (by (100)) and hence semisimple, our ideal equals the Jacobson
radical of H.(Z;C).

Since the Jacobson radical annihilates every simple module, the action of H.(Z;C) on every simple
module factors over the maximal semi-simple quotient H.(Z)/Z = @, Endc Vx. But we know
that all simple modules over P, , Endc Vj; are of the form V. For each ¢) € A we now obtain an
irreducible representation of H,(Z) on V, by composing the obvious projections:

H.(Z) - @ Endc Vi — Endc V.
AEA
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We are most interested in graded simple modules over the equivariant convolution algebra HE(Z).
We are now going to show that under appropriate hypotheses {V, | A € A} also form a complete and
irredundant set of representatives of isomorphism classes of graded simple modules over HE(Z),
up to grading shifts. We will use the following general lemma about graded algebras.

Lemma 12.50. Let A = @, , A; be a Z-graded algebra such that there exists a j € Z with
A = {0} for allk < j. Let B =&, , Bi C A be its centre and assume that By, = {0} for k < 0.
Then B, = @,., B annihilates any left graded simple A-module M. Moreover, M is a graded
simple module over A/B1 A.

Proof. Let M = @,.;, M; be a left graded simple A-module. We claim that the grading of M
must be bounded from below, i.e., there exists a d € Z such that My = {0} for k < d. Let us pick
an integer e such that M>. = @, M; # {0}. Then A.M>. is a graded submodule of M. Since
M is simple we have A.M>, = M. But we also have A.M>. C M.y because the grading of A
is bounded from below. This proves the claim.

Since B lies in the centre of A, we have ABy.M = B{yAM C By.M, so B..M is a graded
submodule of M. Since M is simple, we deduce that B;.M = M or {0}. Suppose that B,.M = M.
Since the grading of M is bounded from below, there exists a uniquely determined minimal integer
d such that My # {0}. But B is positively graded, so (By+.M)4s = {0}. This contradicts the
equality By.M = M. Hence B;.M = {0}.

It follows that the ideal By A = By A annihilates M. Hence the action of A on M factors over the
quotient algebra A/B; A. O

Corollary 12.51. Suppose that the variety Z is G-equivariantly formal, i.e., HE(Z) = HE ({pt})®c
H.(Z), and that the centre of HE(Z) is isomorphic as a graded algebra to H({pt}). Then the
non-zero members of the set {V\ | A € A} form a complete and irredundant set of representatives
of isomorphism classes of graded simple modules over HE(Z), up to grading shifts. In particular,
there are, up to isomorphism and grading shifts, finitely many graded simple modules over HE (Z)
and every such module is finite-dimensional.

Proof. Since the centre of HE(Z) is isomorphic as a graded algebra to H({pt}) it is concentrated
in non-negative degrees. Hence Lemma 12.50 implies that the action of H%(Z) on any graded
simple module factors over the quotient algebra HE(Z)/H/, ({pt})HE(Z). But, by equivariant
formality, this quotient algebra is isomorphic to the non-equivariant convolution algebra H,(Z).
By Theorem 12.49 we know that the non-zero members of the set {Vy | A € A} form a complete and
irredundant set of representatives of isomorphism classes of simple modules over H,(Z). Moreover,
it is clear by the definition of these modules that they are graded. This proves the first part of the
corollary.

The fact that the set {V) | A € A} is finite follows from the fact that, by assumption, there are
only finitely many G-orbits in N. The fact that each V) is finite-dimensional follows from the fact
that Vy is a simple module over the finite-dimensional algebra H.(Z). O

Definition 12.52. From now on we will change the notation and denote, for each A € A, the
module V) as Ly. We do this in order to emphasise that L, is a graded module over H& (Z) rather
than merely a graded vector space. By using the new notation we also comply with the quite
widespread convention to use the letter L to denote simple modules over a geometric extension
algebra. Please note that this new notation has nothing to do with our rather similar notation for
local systems in Section 12.1.2. There will fortunately be no scope for confusion since we will not
explicitly discuss local systems again.
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12.2.3 Standard modules over a convolution algebra

We have classified the graded simple modules over HE(Z). This raises the following question: can
we, in principle, also construct these modules? In fact, this is possible. The graded simple modules
L) can be constructed as quotients of the so-called standard modules K. The standard modules
admit a beautiful geometric interpretation as convolution modules in the homology of the fibres
of the map p : M — N. In this section we will define standard modules and state their main
properties.

Recall that N = [ ], ., Oy is the decomposition of N into finitely many G-orbits.

Definition 12.53. Let A € A and 2 € Q). We define the standard module K, to be the vector
space
Ky = H.(p"'(2);C)

endowed with the convolution action of H.(Z) (see paragraph 6.2.1.3). We consider K as a
module over H&(Z) by composing the projection HS(Z) — H,(Z) with the convolution action:

H{(Z) - H.(Z) — Endc(K)).

In other words, we let the ideal H/, ({pt})HE(Z) act trivially on K. Note that K is a finite-
dimensional module.

Proposition 12.54. The definition of K does not, up to isomorphism, depend on the choice of
z € O,.

Proof. See [CG97, Theorem 3.5.7(b)]. O

Proposition 12.55. Suppose that M is connected and let m be the dimension of m as a variety.
Let z € Oy and let iy : {x} < N be the inclusion. Then there is a vector space isomorphism

Ky = H.(p " (2)) = H* " (ilnIC(M, Car)).

Moreover, it is possible to define an action of the geometric extension algebra
Ext* (1 IC(M,Cps), e IC(M,Cpr)) on H*=™(i' . IC(M,Cyr)) such that the isomorphism (97)
intertwines this action with the convolution action of H.(Z) on H,(u *(x)).

Proof. See [CG97, Proposition 8.6.16]. O

To establish the relationship between standard and simple modules we need the notion of a trans-
verse slice.

Definition 12.56. Let X be an algebraic variety which admits an embedding into some smooth
algebraic variety. Let us fix an algebraic stratification of X, i.e., a finite partition X = | | ;e Xj into
smooth locally closed subvarieties (called strata) such that the closure of each stratum is a disjoint
union of strata. More precisely, for each j € J there exists a J' C J such that fj = ;es Xi.

Let j € Jand y € X,;. A locally closed (in the Hausdorff topology) complex analytic subset S C X
containing y is called a transverse slice to X; at y if there exists an open neighbourhood U C X

of y (in the Hausdorff topology) and an analytic isomorphism f: (X; NU) x S =, U such that

e f restricts to the tautological maps

oy

F{ytx83SS, (X;nU)x{y} = X,;NU.

e for each 7 € J we have
f((XJﬂU) x(SﬂXz))ngﬂU
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The following general proposition guarantees that for each G-orbit Q) C N and any point ) € Oy
there exists a transverse slice to Q) at xy.

Proposition 12.57. Let X be a smooth algebraic G-variety and X C X a G-stable algebraic
subvariety consisting of finitely many G-orbits. Then for each G-orbit O and any y € O there
ezists a transverse slice to Q at y.

Proof. See [CG97, Proposition 3.2.24]. O

Eix A € A and choose an element z) € Q). Let Sy be a_transverse slice to @, at =, and let
Sy := p~1(S)). We have an inclusion iy : p~*(zy) < Sx. This inclusion induces a map on
homology R

(ix)- + Ho (1™ (p2)) = H.(S)). (101)

Let M = | | M, be the decomposition of M into connected components and let p, : My — N
denote the restriction of u to M,. Let m(a) denote the dimension of S\ N M, as a variety. For
each a we have a bilinear pairing

<, >SA: Hm(a)-i—*(p“(;l(x)\)) X Hm(a)—*(p“(;l(z)\)) 1> C

given by intersection in the ambient space S » N M, (see paragraph 2.3.2.4 for the definition of the
intersection pairing). The following crucial result says that every simple module L is a quotient
of the corresponding standard module K.

Proposition 12.58. The image of the map (iy). equals Ly and the kernel of (i)« equals the
radical of the bilinear form < , > on H,(u"'(zy)). Hence we have a natural isomorphism

Ho(p Nzy)/rad < , > = L,
Moreover, this is an isomorphism of modules over HE(Z).

Proof. See [CGI7, Proposition 8.5.10]. O
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13 Representation theory of KLR algebras

In this chapter we are going to apply the general results from the previous chapter to study graded
simple modules and standard modules over KLR algebras associated to Dynkin quivers.

13.1 Graded simple modules over KLR algebras

We work in the framework of Section 12.2. Let us fix a Dynkin quiver (i.e. a quiver whose
underlying undirected graph is of type ADE) and a dimension vector. We set

M:]?g, N =Repq, Z = Za, ,u:ug:]?g%Repg, G =Gq.
To apply the results of Section 12.2 we need to check that the following assumptions hold:
(1) the map pgq : ]-:Q — Repy is proper and Gg-equivariant,
2) the variety ]T'g is smooth,

3) there are finitely many Gg-orbits in Repy,

(2)
(3)
(4) for each p € Repy the stabilizer group Stabg, (p) is connected,
(5) the variety Z4 is Gg-equivariantly formal,

(6)

6) the centre of H*GQ(ZQ) is isomorphic as a graded algebra to HE ({pt})-

We know that the map pq : j':g — Repq is proper and Gg-equivariant by Proposition 5.5. The

variety ]-'g is smooth because fg is a disjoint union of vector bundles over complete flag varieties.
The variety Zq is Gg-equivariantly formal by Proposition 7.37. We also know that the centre of

bind %(Za) is isomorphic to H_ ({pt}) as a graded algebra by Proposition 7.34 and the description
of the grading on H*GQ(ZQ) in Definition 11.11.

Therefore, it only remains to check (3) and (4). We first check that there are finitely many Gq-
orbits in Repg.

Let g be the complex semisimple Lie algebra corresponding to the quiver I'. Let us choose a
Cartan subalgebra and a Borel subalgebra of g and let A be the corresponding root system, A° the
corresponding set of simple roots and A™ the corresponding set of positive roots. We can identify
the vertices of the quiver I' with the simple roots, i.e., identify I with A°. We can then view the
dimension vector d as an element in the root semilattice NA?,

Definition 13.1. (i) Let us choose an order on the set of positive roots AT. A partition of a
dimension vector d is a non-decreasing (with respect to the chosen order) sequence (s, ..., ) of
positive roots such that Zle ay, = d. Alternatively, without choosing an ordering on A™, we can
define a partition of d to be a function p : AT — N such that .+ p(«) - a = d. Informally, we
think of a partition as a way to write the dimension vector as a sum of positive roots.

(ii) Kostant’s partition function, denoted kpf, is a function kpf : NAY — N which assigns to a
dimension vector d the number of partitions of d.

Definition 13.2. A quiver is called of finite type if it has only finitely many isomorphism classes
of indecomposable representations.

Theorem 13.3 (Gabriel’s theorem). A connected quiver T' is of finite type if and only if it is
a Dynkin quiver. Moreover, the assignment dim sending an indecomposable representation to its
dimension vector establishes a one-to-one correspondence between the set of isomorphism classes
of indecomposable representations of T' and the set of positive roots AT,

Proof. See for example [Kra07, Theorem 5.1.1]. O
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Corollary 13.4. There are finitely many Gq-orbits in Repg.

Proof. The space Repy is the space of representations of the Dynkin quiver I' with dimension
vector d. The Gg—orbfts in Repy are in one-to-one correspondence with isomorphism classes of
representations of I' with dimension vector d. The latter are, in turn, in one-to-one correspondence
with partitions of the dimension vector d into positive roots, by Gabriel’s theorem. But the number
of such partitions is obviously finite. O

We now check that for each p € Repy the stabilizer group Stabg, (p) is connected.
Proposition 13.5. For each p € Repy, the isotropy group Stabg,(p) is connected.

Proof. The group Stabg, (p) is isomorphic to the group Autr(p) of automorphisms of the repre-
sentation p of the quiver T'. But the latter is an open dense subset of the affine space Endr(p) of
endomorphisms of the representation p, defined by the non-vanishing of the determinant. Hence
it is connected. O

We have hereby verified that all the relevant assumptions from Section 12.2 hold.

Definition 13.6. Let A(T",d) denote the set of partitions of the dimension vector d into positive
roots. By Gabriel’s theorem, we can identify A(T',d) with the set of isomorphism classes of repre-
sentations of I' with dimension vector d. If A € A(T',d), let O, denote the corresponding Gg4-orbit
in Repy. More precisely, for each o € AT let p, be an indecomposable representation of T' with
dimension vector a. Set px = @, ca+ M@)pa- Then Oy is the set of all representations of I' which
are isomorphic to py.

We can now deduce the classification of graded simple modules over KLR algebras associated to
Dynkin quivers.

Theorem 13.7. Let T' be a Dynkin quiver and d a dimension vector.

(i) There is an isomorphism

(ha)e (IC(FaCz,)) = @ LrIC(OxCo,) (102)
B AEA(T,d)

in D%(Repy)-

(i) The non-zero members of the set {Ly | A € A(T,d)} form a complete and irredundant set
of representatives of isomorphism classes of graded simple modules over H*GQ(ZQ), up to grading
shifts. In particular, there are, up to isomorphism and grading shifts, finitely many graded simple
modules over H*GQ(ZQ) and every such module is finite-dimensional.

Proof. The theorem follows directly from Corollary 12.42 and Corollary 12.51 because we have
verified that all the assumptions of these corollaries are satisfied in the KLR setting when T is a
Dynkin quiver. O

13.2 The equioriented A, quiver

We are now going to study in more detail graded simple modules and standard modules over
KLR algebras associated to the equioriented A, quiver. In particular, our goal is to prove that
each graded simple module L) is non-zero and that each standard module K is indecomposable
and has simple head Ly. We emphasize that these facts do not follow from the general theory of
convolution algebras in [CG97, Chapter 8]. Our proof that each module Ly is non-zero is similar in
flavour to the corresponding proof for affine Hecke algebras (JCG97, Proposition 8.1.14, Theorem
8.8.1, Proposition 8.8.2]). The fact that each standard module K is indecomposable with simple
head L) follows from results proved by Kato ([Kat12, Theorem 1.8(2)]). He proved these results
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using sheaf-theoretic and homological methods. We give a different proof which relies on a study
of the geometry of fibers of the map g : F4 — Repg.

13.2.1 The order on orbits

We begin with some more general remarks about the algebraic stratification of Repgq. Recall
that
Repg = |_| @)\.
AEA(T )

Definition 13.8. The set A(T',d) is naturally endowed with a partial order. Suppose that A, A" €
A(T,d). We set o
N <Ai<= Oy CO;,. (103)

We call this partial order the closure ordering.

We will find the following easy lemmata useful.

Lemma 13.9. There is a unique mazimal and minimal stratum in Repgq with respect to the closure
ordering.

Proof. The variety Repy is isomorphic to an affine space, so it’s irreducible. If there existed
two or more maximal strata then their closures would constitute distinct irreducible components,
contradicting irreducibility. The unique minimal stratum is the one-point stratum containing the
zero representation. O

Lemma 13.10. The map pq : ]t'g — Repq maps each conneted component .7?@ onto the closure of

some orbit Oy, i.e., pa(Fyz) = Oy for some X € A(T,d).

Proof. Recall that we also have a vector bundle projection 74 : Fg — Fa. Let F € Fy be a flag.
The fibre 73" (F) = {F} x pa(r3"(F)) = pa(rg'(F)) consists of representations stabilizing F.
Regarded as a vector subspace of Repg, it inherits a stratification

pa(rg'(F) = [ oF,
AEA(T,d)

where OF := 0, N /@(wil(F)). Since Mg(?‘(‘;l(F)) is a vector space and is therefore irreducible, it
must contain a unique nonempty maximal stratum Q. Let p € Of. If g € Gq then g.F € 7 and
g.F is g.p-stable. Therefore, g.p € pa(Fy). This implies that Oy C pa(Fy). Now suppose that

A > X or that X is unrelated to A. Suppose further that pq(Fy) N Oy # @. Then there exists a
flag F' € ]t'g and representation p’ € Oy stabilizing F’. Since Gq acts transitively on Fy, there
exists a ¢’ € Gq with ¢'.F’ = F. But then F is ¢’.p'-stable. Since ¢’.p’ € Oy, this contradicts the
fact that OF is the unique maximal stratum in pq (73" (F)). Therefore, O, is the unique maximal

stratum in ﬂg(fy). Now, since the map pg is proper and hence closed, and fy is a connected

component, we can conclude that uq(Fy) is also closed. Hence pg(Fy) = O,. O

13.2.2 The equioriented A, quiver

A deeper insight into the representation theory of KLR algebras requires a good understanding of
the partial order (103), i.e., an understanding of the closure relations between orbits. It is difficult
to describe these relations explicitly for arbitrary Dynkin quivers and orientations. Zwara has
proven the following result.
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Theorem 13.11. Let A, N € A(T',d) and p € Oy, p' € Oy. Then A < XN if and only if there exists
a short exact sequence
O—oz—zdp - p—=0

for some representation x of the quiver I'.
Proof. See [Zwa00]. O

There are no known bounds on the size of x, so this theorem is not very useful to us in practice.
It is, however, possible to describe closures of orbits explicitly for the A,, quiver with some special
choices of orientation. In particular, the equioriented A,, quiver

Ty = i1 20— ... =iy

n

admits an elegant description of orbit closures. Let d = (d1,...,d,) be a dimension vector for this
quiver. Let us also assign to each vertex i; a complex vector space V; of dimension d;.

Definition 13.12. (i) A rank matriz for the equioriented A,, quiver I'y with dimension vector
d is an n x n matrix r = (ry;) such that r;; = d;, r; = 0 if k£ > [ and ry; is a non-negative integer
if k<.
(ii) We say that a rank matrix r = (ry;) weakly dominates another rank matrix r’ = (r},;), denoted
r >r’if ryy >, for each 1 < k,1 < n. A rank matrix r strictly dominates r’, denoted r > r’, if
r > r’ and there exist 1 < k <1 < n such that ry; > r},.
(iii) If p € Repy is a representation of the quiver I'4, with dimension vector d, we can write it
as a sequence p = (p1,p2,..., pn_1), Where each p; is a linear map p; : V; — V4. If for each
1<k<l<nweset

Trr = tk(pj_1 0 p1_2 0 ... © pg),

ry = d; and rg; = 0 otherwise then the resulting matrix (rg;) is a rank matrix. We will denote it
with Rk(p) and refer to it as the rank matriz for the representation p. The rank matrix depends
only on the isomorphism class of p. Therefore, if p € Oy we will also write Rk(\) for Rk(p).
(iv) We define

Y(r) := {p € Repq | Rk(p) =1}

Note that for some choices of r these sets may be empty.

Proposition 13.13. Let I' =T 4 be the equioriented A, quiver.
(i) The Ga-orbits in Repy are precisely the sets Y (r) for a rank matriz v = (ry;) such that

Thi— Thi+l — Th=1,0 +Th—1,0+1 =0 forall 1<k<l<n.
(i) The Zariski closure of Y (r) is
Y(r) = {p € Repq | Rk(p) < r}.

Proof. See e.g. [LRO8, Prop. 13.5.3.1]. O

We now have two classifications of orbits for the equioriented A,, quiver - by rank and by partitions
of the dimension vector. We want to relate them to each other. If o and § are positive roots, we
call « a subroot of B if B = a4+ v and y is a sum of positive roots. Recall that positive roots in
type A, correspond to segments in the corresponding Dynkin diagram. A subroot corresponds to
a subsegment.

Proposition 13.14. Let oy, be the simple root corresponding to the vertex i; in the quiver I 4.
We have
Y(I‘) = ©>\

if and only if, whenever k <, ri; equals the number of positive roots (including each instance of a
root which occurs several times) in the partition A for which the positive root ay + agy1 + ... + g
is a subroot.
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Proof. Let m; ; be the number of times the positive root o;; := a; + a;+1 + ... + o occurs
in the partition A\. If p € O, then we have an isomorphism of quiver representations p =
Di<icj<nlPa;,;)®™9. Therefore,

rk(propicio.opr) = > miitk((Pa,,)1© (Pay, )11 00 (pa, k) = D mijlicklic;,

1<i<j<n 1<i<j<n

where 1<, is the indicator function taking value 1 if ¢ < k and 0 otherwise. But a4, is a subroot
of o; ; if and only if 1 < k < [ < j so the last expression is precisely the number of positive roots in
the partition A of which cy; is a subroot. Since p € Y (r) if and only if rk(p; 0 g1 0...0 pg) =
for each k < [, this proves the proposition. O

From now on we let I" be the equioriented A,, quiver.

Example 13.15. Let us consider the quiver
i —j—k

with dimension vector d = i42j+k. The Lie algebra corresponding to this quiver is sly. Let o, 8,7
be the simple roots corresponding to the vertices i, j, k, respectively. There are five partitions of the
dimension vector d: Ao = (o, 8, 8,7), A1 = (a+5,8,7), 2 = (o, 8, 8+7), A3 = (a+5,8+7), s =
(a+ B+, 5). The corresponding rank matrices are

100 110 100
Rk(A)=| 0 2 0 |, RkA)=[0 2 0 |, Rk(\)=[ 0 2 1 |,
00 1 00 1 00 1

110 11 1

Rk(As)=| 0 2 1 |, RkA)=[ 0 2 1

00 1 00 1

The closure ordering on the partitions therefore is

A

|

A / )\3 \\ A2
N

It is also not hard to give an explicit description of the Gg-orbits on Repy. We have Repy =
Hom(C,C?) ® Hom(C?,C) = C*. We can identify it with the set of all pairs of complex matrices

of the form )
(L)t =)

We have

aorb;«éO},




aorb#0, cord#0, ac—l—bdZO},

L —
SR

e 0)
e o)

aorb#0, cord##0, ac—l—bd#O}.

&)
>
<
I
—N
/N
L—
SR

13.2.3 Weights

Recall that {15 5 | ¥ € Ya} forms a complete set of primitive orthogonal idempotents of HY Y Zq).

Definition 13.16. Let M be a graded H*GQ(ZQ)—module and let ¥ € Yg. Define the y-weight

space My of M to be 155 M. Let & be the C-subalgebra of H*GQ(ZQ) generated by the idempotents
{135 | ¥ € Ya}. The vector space My is a €-submodule of M. We have an equality of ¢-modules:

M= EBM@

yeYa
We call 5 a weight of M if My # {0}. We call the set of weights of M
suppM :={y € Ya | Iy5M # {0}}
the support of M.
It follows from the relations in Hy' 4(Zq) that
o(r).My C My, 5, (r).Myz C M.

Moreover, 135 acts on Mg by the identity endomorphism and if ¥’ # 7 then 1 3 acts by zero on

M.

13.2.4 The order on weights

Definition 13.17. (i) Recall that i1, ..., 4, are the vertices of our quiver. We set i1 > ia > ... > iy,
and extend this ordering on I to a total lexicographic order on Y4. If 3,7 € Yq and ¥ is greater
than 7 in this ordering we write ¥’ = 7.

(ii) We say that 7' is accessible from g, denoted ¥ < 7', if there exist simple transpositions
Skys oo Sk, € Il such that 7' = s, 0...0s;, (7) and sy, 0 s, 0....05p, (F) < 8k, ©..o.0 8k, (7) in
the lexicographic ordering, for each 1 <! < m. This defines a partial order on Yy, which we call
the accessibility ordering.

(iii) We say that ' is directly accessible from 7, denoted 7 <1 7' if there exists a simple transposition
s € I such that ¥ = s(y) and s(y) < ¥, i.e., if 7 is an immediate predecessor of 7' in the accessibility
ordering.

Example 13.18. Let us again consider the quiver

i —j—k
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with dimension vector d =i + 2j + k. The accessibility ordering on Yg looks as follows

jkji/kjji\kjij
jjki/ \jkij/ \kijj
Jlk )}W Zgj
| \jijk/ \Z’jkj/
N

ijjk.
13.2.5 The functions ® and ¥

Definition 13.19. We set
®:Yy — P(AI,d)), y— {Ae A(l',d) | there exist p € Oy, F € Fy s.t. F is p-stable},
U: A, d) = P(Ya), A+ {7 € Yq]|thereexist pc Oy, F € Fy s.t. F is p-stable}.
We have
®(7) = {\ € A(T,d) | O C pa(Fy)}, ¥(\) = {7 € Ya | O C pa(Fp)}-
Example 13.20. Let us again consider the quiver
1—>j—k

with dimension vector d = i + 2j 4+ k. One easily sees that

®(ijjk) ={Ao}, D(jijk) ={ Ao, A1}, D(ijkj) ={Ao, A2},

®(jjik) ={Xos A1}, ®(jikj) ={Xos A1, A2, Az}, ®(ikjj) ={Xo, A2},

®(jjki) ={Ao, A1}, D(jkij) ={ o, A1, A2, Az}, ®(kijj) ={ o, A2},

(P(jkjl) {>\07)‘13)‘27)\37)\4} (I)(kjlj) :{)‘07>\17)‘21)‘37>\4}7 (I)(k]“') :{)‘07)‘17>\27)‘37A4}7
¥(Ao) =Ya, W(A) =Ya\{ijik, ikij kiji}, W) =Ya\[ijjk, jijk, jjki},

U(As) ={jikj, jkij, jikji, kyij, kjjit, W(Aa) ={jkij, kjij, kjji}.
Lemma 13.21. Suppose that § < ¥ = s;(y). If F € Fy is p-stable then s;.F is also p-stable.
Hence s;.(mq o ,uy_l(p)) Cmqo My_,l(p) and 14 © Wg_l(F) C g o wg_l(sl.F).

Proof. We can write F = (Vk), where V¥ = D; @ ... ® D, and each D,, is a one-dimensional

subspace in some graded component V; of V. We want to show that s;.F is still p-stable. Let
us write s;.F = (WF). It is clear that V¥ = WP unless k = I. Therefore, we need to check that
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,D(Wl) - Wi=1 and p(Wl+1) - Wt We have W! = D1 &...®Di_1& Dy = Vi-lg Diyq.
Moreover,
p(W') = p(V!=' @ Diy1) € p(VIY) + p(Diga) S V72 + p(Dig). (104)

We know that p(D;;1) C V! = V=1 @ D;. We also have D; C Vi, Div1 € Vi41)- Now since
y <1y = 5(y), we get y(I) > y(l +1). This implies that in our quiver there is no arrow from
7(l+ 1) to y(I). Hence p(Dyy1) N D; = {0} and so p(Dyy1) € VI~ This, together with (104),
implies that p(W') C VI=1 = W'~ Furthermore,

pWHY) = p(V! @ Diya) € p(V!) + p(Diyr) SV = WL
Therefore, s;.F is p-stable. O
Lemma 13.22. Let § € Yq. There exists a A € A(T,d) such that

o(y) ={N e AT, d) | X' < A}

Proof. This follows directly from Lemma 13.10 . O

Lemma 13.23. The functions ®,V have the following "monotonicity” properties
(0) if § <Y then (y) C S(Y),
(b) if X < X then T(X) C T(N).

Proof. Suppose that ¥ < 3’. Let A € ®(y). There exist p € Oy, F € Fy such that F is p-stable.
Since § < 7/, there exists a simple transposition s; € II such that ¥’ = s;(7). By Lemma 13.21,
s1.F is p-stable. Since s;.F € Fy we have A € ©(y).

Now suppose that A < X'. Let y € U()\). We have Oy C pa(Fy). Since A < X, Lemma 13.10
implies that @) C ug(j}g). Hence 5y € ¥(\). O
Corollary 13.24. (i) Let A € A(T',d). Then the set U(X) is closed from above in the following
sense. If g € U(A\) andy > 7 theny € WU(N).

(ii) Let y € Yq. Then the set ®(7) is closed from below in the following sense. If A € ®(\) and
N < X then N € ®(7).

Definition 13.25. Let us set

By Lemma 13.23, the definition makes sense.
Lemma 13.26. Let A € A(T',d). Then

T(A) = {y € Ya | A is the unique mazimal element in ©(7)}.

Proof. This is clear. O

Lemma 13.27. We have a disjoint union decomposition

Ya= || . (105)
AEA(T,d)

Proof. Let us first prove disjointness. It is immediately clear from the definition that if A < \’
then W(A) and ¥(\') are disjoint. So suppose A and )\ are unrelated. Let 7 € U(\) N T(N).

Then pq(Fy) contains both @y and Oy,. Moreover, these two orbits are maximal in pq (Fz), which

contradicts Lemma 13.10 (the Lemma implies there is a unique maximal orbit in pq(Fy)).

Now let us prove the equality in (105). For each § € Yq there exists a unique maximal A € ®(7),
by Lemma 13.10 . Hence 5 € U(\) and 5 ¢ ¥()) for any X > A. Therefore, 57 € U(\). O
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Corollary 13.28. We have a disjoint union decomposition

N>\

Proof. This follows directly from the definitions and the disjointness in the decomposition (105).
O

Example 13.29. Let us again consider the quiver
i —j—k

with dimension vector d = i + 2j 4+ k. We designate W(\g) with black colour, W(\;) with red,
U(\g) with green, ¥(A3) with pink and ¥(A4) with blue:

kjji

Jkji kjij

e
N

/N

N/ N\

jiki jkij
jiik jikj

AN
J
S

Jijk

/N

1j7k.

Definition 13.30. If A, B C Yy, we write A < B if for all a € A,b € B we have a # b and there
exist a € A,b € B such that a < b.

Lemma 13.31. Let X' > \. Then U(X) > U()).

Proof. Let € U(A) and 7 € W(N). Since U(N), W()\) are disjoint, by Lemma 13.27, we can’t
have 7 = 7. Suppose that 7 > 7. By Lemma 13.23, ®(y’) C ®(¥). But A is the unique maximal
element in ®(7), which contradicts the fact that X € ®(y') C ®(y). Hence y 2 7.

To prove that there exist 7 € \TJ(/\) and 7 € U(X) such that < 7 we need to develop some more
theory. This fact will follow immediately from Lemma 13.47. O

Definition 13.32. Let A € A(T',d). We define

B(n) |_| Fy — Repg
FET(N)

to be the restriction of the map pgq : fg — Repq to u@e@(A) f"g.
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13.2.6 Characteristic compositions

Definition 13.33. Let A € A(T',d). We call § € Y4 a A-characteristic composition, and Fy a
A-characteristic component, if 7 satisfies the following two properties:

(P1) 7 is a minimal (but not necessarily the least) element in W(\),

(P2) X is a maximal element in ®(7).

Note that if A is a maximal element in ®(y) then it is automatically the unique maximal (i.e.
the greatest) element. Moreover, (P2) is equivalent to requiring that § € W(\). Therefore, 7 is a
A-characteristic composition if and only if 7 is a minimal element in WU(\).

Example 13.34. Let us return to the quiver
i —j—k

with dimension vector d = i+2j+k. The A\g-characteristic composition is ijjk, the A;-characteristic
composition is jijk, the Ay-characteristic composition is ijkj, the Az-characteristic composition is
jikj and the A\s-characteristic compositions are jkji and kjij.

Proposition 13.35. For each A, the set \TJ(/\) is non-empty. In particular, a A-characteristic
composition exists.

Proof. By Lemma 13.10, it suffices to find a sequence y € Yq such that O, is a maximal orbit in

pa(Fy). Let oy be the simple root corresponding to the vertex iy in the quiver 'y, . We identify
the isomorphism class of quiver representations A\ with the corresponding partition of d, i.e., we
regard it as a function A : AT — N.

We first define a total order on AT by induction. Let A$ be the subset of AT consisting of
those positive roots which do not contain ag,...,ax as a subroot. We have Ajhl = {an}, so
there is a unique choice of ordering on A" ;. Assuming that we have defined the order on A
we extend it to A:;_l_l by setting ap—1—1 < Ap—j—1 + Wy < Up—j—1 + g+ g1 < ... <
Qp—j—1+p_i+ap_i41+ ...+ an < a,—y, where a,—; is (by induction) the least element in A:_l.

Let us denote concatenation of sequences with o. If o := o + g1+ ...+ is a positive root, we
associate to it the sequence of vertices ¢(a,1) := (i1, 11, .., ip41,%%). Let f1 < Ba < ... < Bpns1)/2
be the enumeration of the elements of AT in the order we have just defined. We finally define the
sequence g in the following way

7= 6(81)°) 0 ¢(82)°2P) 0 .. 0 §(Br g1y 2) NP2

We encourage the reader to look at the example following the proof to build an intuition for
the various constructions and deﬁ~nitions we introduce here. We now have to check that Oy
is in fact a maximal orbit in pq(Fy) (by Lemma 13.10 such an orbit is automatically unique).

We first show that Ox C pa(Fy). Let us choose a representation p € Oy and decompose it
into indecgmposable representations p = @;‘SH)/Q @gz‘(ﬁj) P(imy- Here the pg;1y, .- pinB,))
are A\(B;) indecomposable subrepresentations of p with dimension vector 3; (obviously the choice
of subrepresentations is not unique, but the number of isomorphism classes of indecomposable
representations corresponding to each positive root occurring in this decomposition is uniquely
determined). Now fix j and m. Suppose that 3; = ar; = ar + ag41 + ... + a5 For k < p <1 let
W @mp) — pj,m)p] be the one-dimensional vector subspace of V that p(; ) assigns to the vertex
ip- We define sequences of one-dimensional I-graded subspaces of V as follows

BUm — (WGmD jpGmi-0 pimby i = gD o g o o BUAG)),

E=E'oFE?c..0 Ernt1/2 = (U, .. U?),
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where U" is the r-th member of the sequence E. Let F = (V;), be the flag defined by V; =
@'_, U”. One can easily see from the definition of the flag F' that F € Fy and that F is indeed

p-stable. Therefore p € pa(Fy). By Ga-equivariance of pq, it follows that Oy C pa(Fy).

We now show that Q) is a maximal orbit in pg(F5). For the sake of contradiction suppose that Oy
were not maximal. Then there would exist A’ > X, p’ € Oy and F € Fj such that F is p’-stable.
Let 74, = (Rk(p))x,; and rfml = (Rk(p'))k,. The fact that \’ > X implies that forall1 <k <l <n
we have r; ; > 7y and there exist 1 < k <1 <n such that rj ; > rg .

Observe that the maximal possible value of rfg,l equals the maximal number of mutually disjoint
subsequences of g of the form (i,4;—1,...,7;). But we constructed the sequence ¥ in such a way
that the maximal number of mutually disjoint subsequences of 7 of the form (i;,4;1, ..., i) equals
Tkl-

Indeed, we can easily prove this by induction on the inductive definition of . Let T, be the
sequence obtained from 7 by deleting all the subsequences ¢(f) containing the vertex i; and let
Y, be the sequence obtained from g by deleting all the subsequences ¢(5) which do not contain
the vertex i;. We have § = g, o y,. Similarly, we can decompose p as p = p, @ p», Where p, is a
direct sum of indecomposable representations pg such that a; is a subroot of § = dim pg and p,
is a direct sum of indecomposable representations pg such that a; is not a subroot of 8 = dim pg.
By induction, we can assume that (Rk(pp))r,; equals the maximal number of mutually disjoint
subsequences of g, of the form (i;,4;—1,...,4%). Now observe that

Ta = (11)°2) 0 (i2,01) NOHD 0 (i iy, ey iy ) A1 T F 0

and p, = @?:1(,0a1+...+aj)@’\(a1+"‘+0‘f), where dim po, 4. 4o, = 01 + ... + ;. Hence (Rk(pq))r,
also equals the maximal number of mutually disjoint subsequences of 7, of the form (i;,4;—1, ..., ix).
We conclude that r;; equals the maximal number of mutually disjoint subsequences of § of the
form (4;,4;-1, ..., i) by observing that r;; = (Rk(pa))k, + (Rk(pp))x, and the maximal number of
mutually disjoint subsequences of g of the form (i;,4;—1, ..., ix) equals the sum of maximal numbers
of such mutually disjoint subsequences in 7, and ¥,. O

Example 13.36. Consider the quiver

1 —j—k
with dimension vector d = 2i + 3j + 2k. The Lie algebra corresponding to this quiver is sly. Let
«, 3,7 be the simple roots corresponding to the vertices i, j, k, respectively. The positive roots,
given in the order we defined in the proof above, are: a < a+ < a++y<B<B+7v <.
Let us consider for example a representation pa4+s @ pa+p+y ® pg @ p of our quiver associated
to the partition A\ = (a + ,a + 8+, 8,7). The corresponding A-characteristic composition is
(jai7k7j7i?j7k)'
Corollary 13.37. For each A\ € A(T',d) there exists a connected component fg such that ,ug(]?g) =
Oy.

Proof. By the preceding proposition, some A-characteristic composition 7 exists. By the definition
of a A-characteristic composition, Q) is the unique maximal orbit in puq(Q,). But by Lemma 13.10

pa(Fy) equals the closure of some orbit. This proves the corollary. O

We can now prove that every graded simple module L) is non-zero.

Theorem 13.38. Let T be the equioriented A,, quiver. Then for every A € A(T,d), the graded
simple module Ly is non-zero.

Proof. Let A € A(T',d). By Corollary 13.37, there exists a connected component fg such that

Mg(fﬁ = 0,. Let ]-zﬂl = Upgrev, ]%/. We have

IC(Fa,Cy,) = IC(F3,Cx ) @ IC(Fy,Cyo).
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Therefore _ _ _
(1a)-IC(Fa,Cz,) = (1a) IC(F5, Cz)) & (pa)«IC(Fy, Cz.).

Let us investigate the direct summand (pq).IC (]?g, Cz ). We can apply the decomposition theo-
rem (Corollary 12.43) to the restricted map pgq : .7?@ — O, to obtain

(1a)-1C(Fy,Cy ) = (ZA ® IC(0y, (C@A)) ® (EB Ly ® IC((O),\/,(C@A,)> : (106)
A <A

where the L,/ are finite-dimensional graded vector spaces encoding the graded multiplicity with
which each intersection cohomology complex IC(Oy,Cp,,) occurs in the decomposition (106).
Now let 2 € Oy and let i, : {x} — O, denote the inclusion. Since, for each X’ < )\, the complex
IC(0y/,Cp,,) is supported on the boundary of 0,, we have ixIC(Oy,Cq,,) = 0. Hence if we
apply the functor H*i% to the decomposition (106) we get

H™ (ug" (@) = H* (i} (1a) - IC(Fy, Cz ) = Ly @ H*(i310(0y, Coy)), (107)

where m = dim ]?g (for the proof of the first isomorphism above see [CG97, Lemma 8.5.4]). But
pa(Fy) = Oy so the fibre pg'(x) is non-trivial and so the cohomology group H™*(ug'(x)) is

non-trivial too. We conclude from the isomorphism (107) that Ly must be non-zero as well.

Since (ug)*IC’(fg, (C];?) is a direct summand of (pa)«I/C(Fa,Cg,), we have Ly C Ly, so Ly is
nonzero. a O

Corollary 13.39. There are exactly kpf(d) isomorphism classes of graded simple modules over
the KLR algebra H*GQ(ZQ) associated to the equioriented A,, quiver.

Proof. We have shown that the non-zero members of {L) | A € A(T,d)} form a complete and

irredundant set of representatives of isomorphism classes of graded simple modules over H *G 4(Za).
But by Theorem 13.38 each module Ly is non-zero. Hence there are exactly |A(T',d)|-many iso-

morphism classes of graded simple modules over HSQ(ZQ). But A(T',d) is the set of partitions of
d into positive roots, and therefore its cardinality equals kpf(d). O

Corollary 13.40. Theorem 13.38 also holds for A, quivers with an arbitrary orientation.
Proof. By Corollary 11.22, the algebra H. ¢ 9(Z4) is already determined, up to isomorphism, by the

underlying graph of I" and dimension vector d. In particular, the number of isomorphism classes
of graded simple modules is independent of the choice of orientation. O

13.2.7 Composition series of a standard module

Let A\ € A(T',d). From now on let us fix py € Oy and set K\ = H,(u3"'(py)). By Prop. 12.58,
there is a HSQ(ZQ)—module isomorphism K, /(rad < , >§A) >~ L. Let us choose a vector space
complement of rad < , >S5 in K A in such a way that this complement is Yg-graded and denote it
with ZA. In other words, EA is a complement of rad < , >5% as a @-module.

Lemma 13.41. The surjection Ky — Ly restricts to an isomorphism of €-modules E,\ = L.
Proof. This is obvious. O
Recall that for each y € Yy, the map puy : ]-} — Repy is the restriction of ug to the connected

component ]?g.
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Lemma 13.42. Let j € Yq. Then H*(ugl(pA)) is the y-weight space of H*(Mil(m)), i.e.,

(Ho(ug ' (p2))g = Hilpig ™ (p2))-

Proof. This is also obvious. O

~

Lemma 13.43. Let 5 € U()\). Then H*(uy_l(pA)) C Ly. In particular, W(\) C suppLy.

Proof. Let Sy be a transverse slice to Q) at py and let :S’\,\ = ugl(SA). The slice S inherits an
algebraic stratification from Repg. More specifically, let us set Sf\‘/ := Oy N Sy. Then

Ss= || s

NeA(T,d)

By the definition of a transverse slice, we have S3 = {p»} and S} = @ if X' < A.

Now recall that rad < , >5 is the kernel of the map H*(u;(p,\)) — H*(u;(S,\)) = H.(5))

induced by the inclusion ,u;(p,\) — ,u;(S,\). Let 7 € W()\). This means that flags in JFy are only
stabilized by (some) representations in @, and orbits lying in the closure of @,. In particular, if
M > Xor M and X are unrelated then u;(@,\f) N Fy = @. This implies that

150 = pg (Sx N Ox) = pg ' (pa)-

Therefore, the inclusion ,u;l(pA) — u;l(S)\) restricts to the identity map u;l(pA) — ,uyfl(SA).
Hence the induced map on homology H. (uy_l(p,\)) — H.(py 1(S\)) must also be the identity.
Hence (rad < |, >§*) N H, (u;l(p,\)) = {0}. Since L, is a complement of (rad < , >§*) as a
¢-module, we must have H., (i Y(px)) C L. O

Proposition 13.44. Suppose that \' < X\ or that A\ and X are unrelated. Then [Ky : Ly] = 0.
Moreover, [Ky : Ly] = 1.

Proof. We first prove that [K : Ly] = 1. By Proposition 12.58, [K)\ Ly >1 Letye \/I}()\) By
Proposition 13.2.6 such a y exists. Lemma 13.43 implies that H, (ug (pr)) C L. Since Ly and L
are isomorphic as &-modules, dim(Ly)y = dim(zA)g = dim H*(ugl(pk)) = dim(K)y. Therefore,
[K)\ : L)\] =1.

Now suppose that A < A or A and X are unrelated. Let ' € WU()). Then pgt(pa) N }~'g/ =0.
Therefore 3’ ¢ suppKy. But Lemma 13.43 implies that 3’ € suppLy,. Hence [Ky : Ly/] = 0. O

We immediately obtain the folllowing corollary. It is a geometric analogue of [KR09, Corollary
7.5].

Corollary 13.45. If ) is the unique mazimal partition in A(T',d) then Ky = L.

Let ¢(A\, X)) = [Ky : Ly]. Each HEQ(ZQ)—module Ly occurring in the composition series of K
can be realized as a subquotient of K. We can lift these subquotients to E-submodules of K.

These lifts are of course not necessarily unique. For each \' > X let It Moo Ef\(/\’/\/) be the lifts of
the ¢(\, A')-many copies of the simple module L) occurring in the composition series of K. We
have an equality of E-modules

Ky = @ ..

N>X1<I<e(AN)
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13.2.8 Preparations for the inductive step

We collect some lemmas for a proposition which will play a crucial role in the inductive step of our
main proof. Let 75(1) = (27} /] € H.(Za).

=/

Lemma 13.46. Suppose that §' is directly accessible fromy # ¥ and ¥ = s,(y). Let [Y] €
H,(uy " (pr)). Then G5(1) o [Y] = [{(s1.F, pa) | F € n(Y)}].

Proof. Let us recall the convolution setup. The ambient manifold is ﬁgl X fg. By the clean
intersection formula, we have

122 10 [Fy x Y] = e(T).[{((s1.F, pr), (F, pr)) | F € w(Y)}]. (108)

Let us abbreviate Y := {((s;.F, p»), (F, px)) | F € m(Y)}. Using this notation, 7 is the following
vector bundle _ _
_ T(Fy x Fyly
(27 )l + T(Fy xY)|s

over Y. Let y=((si.F,pr), (F,px)) € Y (note that this y has nothing to do with 7 and 3’ despite
the similarity of notation). We have

s &T
Tl = . T(Fg) (51 Fpn)y © T(FD (R o)} _ (109)
T(Zm)|{y}+( (Fg )l s ppny @ T(Y )|{<F,px>}>

Moreover,
2o ={(s1.F\F,p) | F € F, F' is p-stable}. (110)

Let e = {p | F is p-stable} and ¢’ = {p | s;.F is p-stable}. We have ¢ C ¢ by Lemma 13.21. The
map B N
fg-)fy', F— s.F

induces a pushforward isomorphism on tangent bundles T(fg) — T(]?y/). Let us denote this
isomorphism with &. It follows from (110) that

T(22 )y = {(€0),0) |0 € T(Fplgey} @ T(©)lgpny- (111)

Moreover, _
T(Fg)l((si.F.p0)) = T(Fg)l (s 8y © T(&)| (13- (112)
Therefore
T(Z5 iy ® T( MNisi.Fopr)y = T(}—*/)|{sl F} @ T(]:*)|{F} DT ) (pry ®T(e)|(py)
= T(Fg)l (s k.00 © T (R o)1

It now follows directly from (109) that T |,y = {0}. Therefore T is a trivial zero-dimensional vector
bundle over Y. In other words, 7 is isomorphic to Y. Hence the Euler class of T is 1 € H*(Y).

Therefore (108) reduces to [Z7) -] N []-'y/ x Y] = [Y]. Let p; be the projection p; : ¥ — F5. Then

(25 gl o Y] = (p1)s ([Zéf,y] N [Fy x Y]) = (p)[Y] = [ (V)] = [{(s1-F. p) | F € w(Y)}]-

O

Lemma 13.47. Let N > \. Suppose that §' € Yq is a N -characteristic composition. Then for
every flag F € mo p%,l(pA) there exists a simple transposition s € 11 such that § := s(y') <y and

s.F is px-stable, i.e., s.F € mo /Lg_l(px)-
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Proof. Let F € mo ug_,l(pA). Let us choose a py such that py» € Oy and F'is py. Let vy () :=
tk((px)i—1 ©...0 (pa)r)- By Proposition 13.13, this is independent of the choice of py € Q). Since
A > X there exist [ > k such that r ;(A') > ri()). Hence there exists a one-dimensional subspace

D C V;, such that (px)i—1 0 ... o (pr)x(D) = {0} but (px)i—1 0 ... o (pa)k(D) # {0}. Letting
a = | — k, we have, in particular, (p))*(D) = {0} but (px)*(D) # {0}. Let W be the smallest
subspace in the flag F such that D C W. Writing F' = (V")3_, suppose that W = V! = V!*=1gD.
Since the flag F' is py-stable, we have

() (W) = (p2)" (V) + (p2)*(D) = (pa)* (VT c VIl
Let b be the smallest natural number such that (p))°(W) C V*~*=1. We have
VL=V @ pa (D), .., VI =V (p0)" (D).
Moreover, since py (D) # {0} and 3’ is a X'-characteristic composition, we have ¥/ (t) = iy, 7' (t —
1) = igs1, ...,y/(t —a) =igyrq =i

We choose s = s;—p. Since b < a we have (s(¥'))(t—b) =7 (¢t —b+1) = tgto—1 > ixto =7 (¢ — D),
so s(7') = ¥ in the lexicographic ordering. Hence s(7') <<%’ in the accessibility ordering. We now
show that s.F' is py-stable. We write s.F' = (U™). It is clear that U™ = V"™ unless n = ¢t — b. We
need to check that py(U'="T1) C Ut=" and p)(U*~%) c U*~"~1. We have

pAU) = pa (V) = pa (VTP @ (02)" (D))
p)\(Vt_b)—‘r(p)\)b(D) Cvt b—1 Ut b—1
because (p)*(W) C V*t=*=1 by our choice of b. Since Ut~ C U'~**+! we also have p)(U'™?) C
Ut—b—l' O
Proposition 13.48. Let N > X and let §' be a N -characteristic composition. Then

69,\9\”0\, H, (#é(l/\,,)(m)) C K generates, under the action of H*GQ(ZQ), the homology group
H. (i7" (pr)) C K.

Proof. Let Il denote the set of all simple transpositions s in II such that s(7’) < 7' and
us_(lg/)(px) # {0}. If s € Tl then representations in O do not stabilize any flags in Fyy)
because 7' is a N-characteristic composition. Hence the greatest element A" in ®(s(7’)) must sat-
isfy A < X (it is not possible that A’ and A’ are unrelated - in that case ¢(7’) would contain both
A and )\’, and so would not contain a greatest element, contradicting Lemma 13.22). It follows

that if s € Il then s(7') € T (X" for some A < N < A.

For each s € ILy let us define a map
oo Fogy = Fgs (Fyp) = (s.F,p).

This map is clearly an isomorphism of varieties. Let us also define X, = us_(lg,)(p,\). By Lemma
13.21, (5(Xs) C Mg,l (px)- Moreover, by Lemma 13.47,

U Cs s - (p)\)

SEH /

Observe that X is a closed subvariety of -7?3(@')- Hence (4(X;) is a closed subvariety of ug_,l (pr)-
Let ﬁ\g/ be a subset of Il such that

U (X)) =nzt () and [ G(Xo) # nst (on)

seﬁ;/ seA
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for any proper subset A of ﬁ;, It follows that . (s(Xs) = ug_,l (pa) is a decomposition of
Y

uy_,l (px) into (possibly unions of) irreducible components. We have a corresponding decomposition
in homology

S0 HL(G(X0) = Ha(ig (o). (113)

seﬁ;

Note that the sum is not necessarily direct. Decomposition (113) implies that in order to generate
H, (ug_,l(pk)) it suffices to generate each homology group H.((s(Xs)). Let s = s; € ﬁ;/ IfYisa
closed subvariety of X, then &, (1) ¢ [Y] = [(s(Y)], by Lemma 13.46 . But H,(X,) can be given
a basis consisting of fundamental classes of closed subvarieties, so the map

581(?’)(1) : H*(Xs) — H*(CS(XS))

takes a basis of H,(Xs) to a basis of H.((s(Xs)), i.e., it is a linear isomorphism. In partic-
ular, H,.(¢s(Xs)) can be generated from H,.(X,) under the action of the element o, 5 (I) =
1®ao,@H () € H*GQ(ZQ). Finally, it follows from the remarks at the very beginning of the proof
that
H(X)C @ Ho(ngl,, ().
AN <N

This completes the proof.

Example 13.49. Let us consider the quiver
1—j—k

with dimension vector d = 2i4-254-2k. Let us fix a complex graded vector space V = V;&V; @V,
with dim V; = 2,dim V; = 2 and dim V;, = 2. The Lie algebra corresponding to the quiver is sl;.
Let «, 3,7 be simple roots corresponding to the vertices i, j, k, respectively. We define the following
partitions A\ = (a+ SB,a+ 8,7,7), A2 = (o, + 3, 8,7,7) of d. Let us choose a representation
p € O,,. We consider the \;-characteristic composition jijikk. Note that this composition has
two immediate predecessors in the accessibility ordering:

jijikk

N

ijjikk jiijkk.

We now want to determine the fibre uj_i;ikk(p).

Note that to describe a flag F' € Fj;jirr uniquely it suffices to give one-dimensional subspaces
D;,D;, Dy of Vj, V; and Vy, respectively. The corresponding flag F' is (D;,D; & D;, V,; @&
D, V; ®V,;,V; ®V,; ® Dy, V). To simplify notation we will therefore identify every flag with
the corresponding triple (D;, D;, Di). We will use similar notation for flags in other connected
components we consider.

Let us write p = (pa, p»), where p, : V; = Vj and pp : V; = V. We have

Td (:uj_i;'ikk(p)) =
= {(Dj,kerpa,Dk) | D] S P(V]>,Dk € P(Vk)} U {(Impa,Di,Dk) | D, e ]P)(Vj),Dk S P(Vk)}
>~ (CP'vCP') x CP".
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We now determine the fibres ui_j;ikk(p) and u;i}jkk (p). We have

7a (b () = {(ker pa, Dy, Dy) | D; € B(V;), Dy € B(Vi)}
~ CP' x CP'.

7a (15itjer(p)) = {(Im pa, Di, D) | Dy € B(V;), Dy € B(V,)}
=~ CP! x CP'.

Now let s1 = (12)(3)(4)(5)(6) and s3 = (1)(2)(34)(5)(6) be simple transpositions in Sg. Then
S1- (Wg (M;;Zkk(p)>) U 53. (Fg (N;ijkk(P))) = Td (uj_qj;ikk(p))

is a decomposition of mq (u;izkk(p)) into irreducible components. We have a corresponding de-

composition in homology
1. s (s (501))) 8 (o (r (a09) = 1. s (7000

13.2.9 The main argument

We will argue by induction on the poset {\ € A(T,d) | N > A}. This poset has a least and
greatest element. The least element is A, the greatest element is the same as the greatest element
in A(T',d). We have an equality of &-modules

Ky = Ho(ng (o) = @ 1. (151, (1))
N>

The idea of the proof is to show inductively that each subspace H,( \%(1/\,)
(under the action of HSQ(ZQ)) from Ly.

Theorem 13.50. Let A € A(T',d). The standard module Ky is generated by the subspace EA.
Therefore, K is indecomposable and has simple head L.

(px)) can be generated

Proof. By Lemma 13.43, H,( \%(1)\) (px)) C Ly. Therefore, H*(u‘%(lz\)(pk)) can (trivially) be gen-

erated from L,. Moreover, by Proposition 13.2.6, we know that \f/(/\) is non-empty. Therefore,
Hgix (PA) # @ and Ho(ug .\ (p2)) # {0}

Now let \' > X and inductively assume that for all A < X < X and 1 <1 < ¢(A, \’) the subspaces
fl/\,, and H., (/,Lé(l)\”)(pA)) have already been generated. We want to generate H., (ué(l/\,)(m\)) and
L.

We first show that we can generate all the El/\, Let 5 be a M-characteristic composition. By
Proposition 13.48, we can generate H, (uy_l(p,\)) Since 7 € W(\) C suppLy/, we know that each
L, intersects H, (,ug_ 1(p,\)) non-trivially. But L, is a lift of a simple module, so it is generated
by any non-trivial subspace. Hence we can generate all the subspaces Ef\,

1 1
) ()\,)(p/\)) can Only

non-trivially intersect some Zl)\// if A < X < X because supleE = suppLy» C suppKy» =
)\//

We now show that we can generate H, (,ué (p,\)). The vector space H, (u\%
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T(N') and U(X) C U(N’) only if N > A’. Foreach A < X < XN and 1 < [ < ¢(\,\) let
O ( -1 (,0,\)) = H, (Néz)\’)(p/\)> N L.,. We have an equality of vector spaces

“@(A’)
H(nghne0) = @ H (ugh, (00)
* @(A/) P * M@(X) P .
AN SN 1<I<e(AN)

By induction, we can assume to have already generated H,EA”’I) (u‘%(lx)(/b\)) for A < X < X,

1 <1 <e(MA). We can also generate the subspaces MY (uég/\/)(p)\)), for 1 <1 < e\ N),

because we have already generated the subspaces El/\, This completes the inductive step.

It follows that L A generates all the lifts El/\, of the simple modules in the composition series of K},
so it generates all of K. Therefore, K is indecomposable and has simple head L. O

Let us finish with a simple but non-trivial example which brings together the various threads of
our argument.

Example 13.51. Let us consider the quiver
17

with dimension vector d = 2i + 2j. Let us fix a complex graded vector space V. = V; ® V;
with dimV; = 2,dimV; = 2. The Lie algebra corresponding to the quiver is sl3. Let o, be
the simple roots corresponding to the vertices i, j, respectively. There are three partitions of d:
2o = (a,0,6,8), M = (a,a+ 8,8), \a = (a+ S, + 8). The closure ordering on these partitions
is A2 > A1 > \g. We have Repyq = Hom(C?,C?) = C*. The orbit Q) consists of representations
of rank m, for 0 < m < 2. The following diagram illustrates the ordering on the weights:

Jju

|

PN
N
|

iijj

where (I\/()\O) is designated with red colour, \/I\l()\l) with green colour and ¥(\y) with blue colour.
For each 5 € Yg we have Fy = CP' x CP'. Moreover, .7?“-”- = Fiij; and ]t'ijij is a vector bundle
over Fjj;; of rank one, ﬁjji and fjiij are vector bundles over Fj;;; resp. Fj;i; of rank two, fjiji
is a vector bundle over Fj;;; of rank three and .%jjii is a vector bundle over Fj;;; of rank four.
Suppose that F' = (D', D* @ D?, D' ® D? @ D?, D' ® D? @ D* ® D*) € F4 is a flag, where each
D¥ is a one-dimensional subspace of V; or V. Let m; be the lowest integer such that D" C V;
and let m; be the lowest integer such that D™/ C V;. Since the vector spaces V;, V; are two-
dimensional, the flag F' is already determined uniquely by D™ and D™i. To simplify the notation
in what follows we will therefore identify the flag F' with the tuple (D™, D™) if m; < m; or the
tuple (D™, D™#) if m; > m;.
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Let po be the unique representation of rank zero and let us choose p; € Oy, and py € O),. We
describe the fibers of the map uq : Fg — Repg in the table below. It should be read in the

following manner. The entry in row 3 = ijij and column p, for example, is the fibre ﬂg(pgl(pl))
restricted to the connected component Fjj;;. N

(7 [po | p | p2 |

iijj fiijj (%) %]

ijij | Fijij | {(kerp1,Impy)} = {pt} 1%}

1l]1 ]:ijji {(ker P1, D) | D e P(Vj)} ~ CPp! %)

jilj | Fjisj | {Impy, D) | D € P(V;)} = CP! %)

jiji | Fjii | {(lmpy,D) | D € P(Vy)} V| {(D,p;"(D)|DeP(V;)}=CP

{(D,kerp1) | D € P(V;)} = CP! v CP!
B | Fijii | Fjii Fijii

Note that 7a(uj;5:(p1)) =2 CP* vV CP! is not smooth and is the wedge sum of sy. (ma(u;;5;(p1)))
and s3. (wg(uj_i}j(pl))), where s1 = (12)(3)(4), s3 = (1)(2)(34) are simple transpositions in &y.

We are now going to work out the composition series of the standard modules, compute their
dimensions, compute the dimensions of the corresponding simple modules as well as the dimensions
of the different weight spaces.

There are three simple graded modules over the KLR algebra Hf %(Zq). Since g is the top
partition, the simple module L(\2) is isomorphic (up to a shift in the grading) to the standard
module K(X2) = H.(ug"(p2)) = H.(CP') ® H,(CP! x CP'). In particular, it follows that L()2)
is six-dimensional. Thgjjii—weight space L(A2);ji; is four-dimensional and the jiji-weight space
L(A2);iji is two-dimensional.

Let us now consider the standard module K (\;). We have an isomorphism K (A1) = H.(ug"(p1)) =
H.({pt})® H.(CP')® H.(CP')® H.(CP*vCP") & H,(CP! x CP!). It follows that K (A1) is twelve-
dimensional. Since [K (A1) : L(A1)] = 1 it follows from dimension considerations (dim L(A;)+x-6 =
dim L(A1) + « - dim L(A2) = dim K (A1) = 12 for some x > 0) that [K(\1) : L(A2)] = 1 and that
L(\1) is a six-dimensional simple module. The ijij-weight space L(A1);j;; is one-dimensional, the
weight spaces L(A1)ij;; and L(A1);i; are two-dimensional and the jiji-weight space L(A1); 45 is
one-dimensional.

Finally, let us consider the standard module K (Ag). We have an isomorphism K (Ag) = H. (uil (po))

H,(Fq) = (H.(CP! x (C}P’l))@ﬁ. Therefore, the standard module K (\g) is 24-dimensional. We can
now analyze the dimensions of the weight spaces of the simple modules L()A;) and L(A2) to conclude
that [K (M) : L(A1)] = 2 and [K(\g) : L(A2)] = 1. This implies that L(\g) is six-dimensional.
The #ijj-weight space L(\o)ij; is four-dimensional and the ijij-weight space L(Xg)iji; is two-
dimensional.
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14 Notation

For the reader’s convenience we collect some of the frequently used notations here.

1. Homology and cohomology

EG - the universal principal G-bundle (unique up to homotopy)

BG = EG/G - the classifying space for principal G-bundles

EG x% M := (EG x M)/G - the homotopy quotient of a manifold M by a group G
Gr(n, m) - the Grassmannian of linear n-dimensional subspaces of C™

H*(M) - singular cohomology ring of M

HY(M) := H*(EG x% M) - the equivariant cohomology ring of M

Se = H({pt}) = H*(BG)

K¢ :=Frac(Sq)

E"G — B™(G - an n-th approximation to the universal principal G-bundle EG — BG
H:™ (M) - singular homology of M

H.(M) - Borel-Moore homology of M

HEY (M) - G-equivariant Borel-Moore homology of M

2. Quivers

T'=(I,H,s,t) - a quiver (vertices, arrows, source function, target function)
d = (d;);er - dimension vector for T'

V =@, Vi - fixed vector space with grdimV =d

Repg 1= @), Home (V) Viny)

Gq = Hiel GL(V;) = HiEI Ga,
(Grd = GL(V)

7= (y',...,y*) - a composition of d

¥ =(y',...,y") - a composition of d

Compy - the set of compositions of the natural number d
Compy - the set of compositions of the vector d

Yq - the set of strictly multiplicity-free compositions of d

3. Flag varieties

F' - generic notation for flags

Fy - the quiver flag variety of type

F(V) - the ordinary flag variety of all complete flags in V'
Fa = ey, F - the quiver flag variety

F|; = FN'V; - restriction of a flag F' to the graded component V; of V
F - the ungraded flag associated to a quiver-graded flag F’
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Z(Gaq) - the centre of Ga

4. Weyl groups and torus fixed points

(i1,...,7)1)) - a fixed chosen ordering of the vertices in I

(el ...,e?ll, ...,e}m,...,ez'll") - a fixed chosen basis of V

T4 - the subgroup of diagonal matrices in Ggq wrt. the chosen basis

Bg - the subgroup of upper triangular matrices in Gq wrt. the chosen basis
Bq - the subgroup of upper triangular matrices in Gq wrt. the chosen basis
Wa := Ngy(Ta)/Ta

Wa = Ny (Ta)/Ta

G,, - the symmetric group on n letters

IT = {51, ..., 84} - the set of simple transpositions in Wq

IIq = IIN Wyq - the set of simple transpositions in Wgq

l:Wgq — N>q - the length function

F, - the standard coordinate flag

Min(Wq, Wq) - the set of minimal length right coset representatives

F, = w(F,)

Y, - the type of the standard coordinate flag

Y, - the type of the coordinate flag F,

]:ﬁ = ./—'vyw

5. Algebraic groups and Lie algebras

B,, = Stabg, (F.,)

B,, := Stabg, (Fy)

Ny := Ry (By,) - the unipotent radical of B,

Py ws = (Bywsw ' By,) U By,

Ny ws := Ru(Puyws) - the unipotent radical of Py, s

g4 := Lie(Gq)
g := Lie(Gq)
fg = Lie(Tg)

by := Lie(By)
Ny = Lie(Ny,)
Pw,ws = Lie(Puy,ws)
Ny ws = Lie(Ny ws)

My, ws = nw/nwﬂvs

6. Root systems

A - the set of roots of g wrt. tq
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e g, - the root space of weight «
e X, - the weight of the tg-module C.e;
o A':={x; — xj41|1<j<d—1} - the base of A
e (3 :=X;j — Xj+1 - simple root
e AT - the set of positive roots in A wrt. base Al
e A~ - the set of negative roots in A wrt. base A!
o J() = fa € Al g C b}
e Ag4 - the set of roots of gg wrt. tq
° AE = AgNAT
o Ay i=—-Aj =AgNA"
° Aé = Ag NA!
7. The Steinberg variety

o Fy:={(p,F)| Fis p-stable} C Repgq x Fy - the incidence variety of type 3

o Fy = -7?%

* Ja:= Hyeygj':ﬂ

o [y .7?5 — Repyq - first projection
o 7y : Fy — JFy - second projection
o 7(7) = dime(Fy)

o [i4: ]?Q — Repq - first projection
® Tg: .7?@ — Fqa - second projection
e v, :={p € Repy | Fy, is p-stable}
® Ty 1= Ty M Ty

® Dy =ty /T

o p: 0z (I) = Fy - the I-th canonical line bundle over Fy

o (1) = Cl(ogg(l))

v
o Zyy = ]?g XRepy f@ - fg X .7%/ - the Steinberg variety of type (7,7')
* Zg:= Hg,@’ng Zyy
o Uy Zyy — Repy - first projection
7 fg X ],:_y/ - first projection

* Ty ¢ 2y,

® tad: Zad — Repy - first projection

® Tdd:2Zdd — Fa X ﬁg - first projection
8. Convolution

e [X] - (Borel-Moore) fundamental class of X
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e [X]% - G-equivariant fundamental class of X

o x: HSQ(ZQ; k) x H*GQ(ZQ; k) — HEQ(ZQ; k) - convolution product

° o H*GQ(ZQ; k) x H*Gg(]?g; k) — H*Gi(]?g; k) - convolution product
9. Generic notation for Schubert cells

e O, := BwB/B - Schubert cell

e Q, :=G.(B/B,wB/B) - diagonal Schubert cell

o Dy =7 HQyr) Ny
10. Cells in the quiver flag and Steinberg varieties

o O := By.F,,

o QU7 :=Gya.(Fu, Fuu)

¢ QU7 = (77 T)HQT) N QT T

e U, :=Bq.F,

e Uy :=Gq.(Fe, Fy)

o Uy =@ (Uy) NUy

e O, :=0,NFg

e O, :=0,N(Fa x Fq)

e O,y =0y N(Fa x Fa)

<w o, w' _ O
i Zg T Uw’gw Zg _Hw’gw O'UU
W gw -
o 2V = ZYN Zyy

<w ,_ Z<w -
o 250 = 25" N Zy
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