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1 Introduction & Recollection

1.1 Introduction

In this master thesis we study tilting modules of the quantized universal enveloping
algebra Uq(g) of a complex semisimple Lie algebra g and q ∈ C\{0} a root of unity. Of
key interest for us is the case g = sln+1 and especially the examples sl2 and sl3.

Quantum groups or quantized universal enveloping algebras play an important role
in representation theory. Starting from Lie theory, one may view the quantum group
Uq(g) as a deformation of the universal enveloping algebra U(g) of a Lie algebra g. Via
the so-called A-form or classical limit, where one specializes q 7→ 1, we get the universal
enveloping algebra back. Further, they are a standard example of a non-cocommutative
Hopf algebra. There are many different definitions, depending on which setup one is
interested in (Kac-Moody algebras or Lie algebras, q an indeterminate or q ∈ k\{0}
with q2 6= 1, ...).

Tilting modules are a class of modules over a quasi-hereditary algebra. They were
first introduced as a quotient of a projective module by another projective module with
some further properties. In this thesis, we will construct them (in the category of
integrable modules over the quantum group) with the extension functor. Tilting modules
in contrast to e.g. simple modules might be harder to construct, but they have some
nice properties, e.g. they are self dual and they are closed under direct sums and tensor
products. In particular, the full subcategory of tilting modules is semisimple.

It is a known fact, that the category of finite dimensional Uq(g)-modules for q not a
root of unity is semisimple. This makes its theory about tilting modules not as inter-
esting, since then every module is tilting. In contrast, for q a root of unity the category
is not semisimple. In particular, we have indecomposable modules which are not neces-
sarily simple. Important examples are the so-called Weyl modules, dual Weyl modules
and indecomposable tilting modules.

Here, we will consider complete sets of pairwise non-isomorphic indecomposable mod-
ules, which are classified by their highest weight, where we will denote by X+ the dom-
inant integral weights:
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1 1 Introduction & Recollection

{
L(λ) | λ ∈ X+

}

{
∇(λ) | λ ∈ X+

} {
∆(λ) | λ ∈ X+

}

{
T (λ) | λ ∈ X+

}

The dual Weyl module ∇(λ)
has simple socle L(λ).

The Weyl module ∆(λ)
has simple head L(λ).

The tilting module T (λ)
has a dual Weyl filtration.

The tilting module T (λ)
has a Weyl filtration.

∇(λ) and ∆(λ) are
the twisted dual of each other.

In the rest of this section we give a short recollection of some facts about the Lie
algebra sln+1, which is our main example, in particular sl2 and sl3.

In the second section we give the definition of the quantum group Uq(g) and the
category of integrable modules C. Furthermore, we will define the above mentioned
modules and prove some properties. In particular, we construct the indecomposable
tilting modules.

In the third section, we introduce the “quotient” category C−` . This category is in
some sense a quotient of the category of all tilting modules by the so-called negligible
modules. These modules can be characterized in two ways: They are in the span of fixed
modules by the action of simple reflections, and they have quantum dimension zero. By
the second fact, one can easily deduce that they form an ideal in the Grothendieck ring,
so we also have a new tensor product in C−` . Another property of this category is, that
now we have a finite number of weights (namely the weights in the fundamental alcove
of the affine Weyl group) and that our indecomposable tilting modules coincide with the
simple modules.

In the last section, we will give a combinatorial description for the category C−` for
g = gln+1. But by taking a quotient, we will again be in the case g = sln+1. At the very
end, we do brief introduction to the combinatorial description in Lie type C.

In the whole thesis, we only work over the complex numbers C, q ∈ C will be a
primitive `th root of unity, ` ∈ N odd and ` > h, where h is the Coxeter number of
g. Here the natural numbers N are meant as being the strictly positive integers, i.e.
N = {1, 2, 3, 4, ...}. If we want to include 0, we denote this set by Z≥0.
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1.2 The Lie Algebra sln+1 1

1.2 The Lie Algebra sln+1

Before we start with the general definition of the quantum group Uq(g) for a complex
semisimple Lie algebra g, we introduce (very briefly) the Lie algebra sln+1 over the
complex numbers C. This is to recollect and to fix notation. For more details see e.g.
[10].

Let n ∈ N. Then the Lie algebra gln+1 consists of all (n+ 1)× (n+ 1)-matrices over
C with the Lie bracket being the standard matrix commutator, i.e. for B,C ∈ gln+1:

[B,C] = BC − CB,

where BC and CB are the ordinary matrix products.
The Lie algebra sln+1 is the Lie subalgebra of gln+1 consisting of matrices with trace

0, i.e.
sln+1 =

{
B ∈ gln+1 | tr(B) = 0

}
.

In other words, the Lie algebra sln+1 consists of (n + 1) × (n + 1)-matrices over C,
whose diagonal entries add up to 0, with the Lie bracket being the standard matrix
commutator.

For i, j ∈ {1, ..., n+1}, we denote by Ei,j the (n+1)× (n+1)-matrix, which has as a
single non-zero entry 1 at the (i, j)th spot. Then the following elements generate sln+1:

fi : = Ei+1,i, hi : = Ei,i − Ei+1,i+1, ei : = Ei,i+1,

for i ∈ {1, ..., n}.
Further, we fix the standard Cartan subalgebra h of sln+1, namely the diagonal

matrices contained in sln+1, i.e.

h = spanC(h1, ..., hn),

and the standard Borel subalgebra b, the upper triangular matrices contained in sln+1,
i.e. b is generated by the elements {hi, ei}i∈{1,...,n} as a Lie algebra.

We denote by Π = {α1, ..., αn} ⊂ h∗ the set of simple roots. They satisfy for
i, j ∈ {1, ..., n}:

αj(hi) = aij ,

where the aij are the entries of the Cartan matrix

An =



2 −1 0 · · · 0

−1 2 −1
...

0 −1 2 . . .
... . . . . . . −1
0 · · · −1 2


∈Mn×n(C).

So the hi’s are our co-roots, which we from now on denote by α∨i = hi for i ∈ {1, ..., n}.
Further, we have the following corresponding Dynkin diagram:
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1 1 Introduction & Recollection

1 2 3 n− 1 n...

If we take the standard basis of the dual D∗n+1 of the diagonal matrices, i.e. (εj)n+1
j=1

where εj of a diagonal matrix is its jth diagonal entry, we may write

αj = εj − εj+1.

Also note, that the simple roots form a basis of the dual of the Cartan subalgebra h∗.
We will denote by Φ the set of roots, and by Φ+, respectively Φ−, the positive roots,

respectively negative roots.

Example 1.2.1 For the cases n = 2 and n = 3 we can depict the root systems as
follows:

A1

−α α

A2
α1 + α2

−(α1 + α2)

α2

−α1

α1

−α2

where the root system of A1 is in R and the root system of A2 in R2.

The fundamental weights ω1, ..., ωn ∈ h∗ are characterized by:

〈ωi, α∨j 〉 = δi,j ,

for i, j ∈ {1, ..., n}.

Example 1.2.2 We have for our most important examples n = 1 and n = 2:

• For n = 1 we have
ω1 = 1

2 · α1.

• For n = 2 we have

ω1 = 1
3 · (2α1 + α2), ω2 = 1

3 · (α1 + 2α2),

or alternatively

α1 = 2ω1 − ω2, α2 = −ω1 + 2ω2.

5



1.2 The Lie Algebra sln+1 1

For αi ∈ Π, we define the simple reflection si : h∗ → h∗ via

∀λ ∈ h∗ : si(λ) := λ− λ(hi)αi. (1)

Graphically, the simple reflection si is the reflection along the hyperplane orthogonal to
αi with respect to the symmetric bilinear form given by (αk, αl) = akl for k, l ∈ {1, ..., n}.

The Weyl groupW of sln+1 is generated by the simple reflections si for i ∈ {1, ..., n}.
It can be identified with the symmetric group Sn+1, where the si are identified with the
transposition (i, i+ 1). Hence written as a Coxeter group, we have:

W =
〈
s1, ..., sn

∣∣∣∣∣ ∀i ∈ {1, ..., n}, j ∈ {1, ..., n− 1}, |i− j| > 1 :
s2
i = id, (sjsj+1)3 = id, (sisj)2 = id

〉

There are two important actions of the Weyl group on h∗: the standard action, which
is given by the definition of the simple reflections as in (1), and the dot-action. The dot-
action is defined as a shift of the standard action by ρ := 1

2
∑
α∈Φ+ α, the half-sum of

positive roots, namely:

∀i ∈ {1, ..., n}, λ ∈ h∗ : si •λ = si(λ+ ρ)− ρ

So under the standard action 0 is a fixed point, under the dot-action −ρ is a fixed
point.

Example 1.2.3 For n = 2 we can depict the actions of W on h∗:

standard action
α1α2 0

s1 s2

dot-action
−ρ

s1s2

The connected components of h∗\
⋃
i∈{1,...,n}H0,αi , where H0,αi is the hyperplane

along which reflects si, i.e. H0,αi = {λ ∈ h∗ | 〈λ, α∨i 〉 = 0}, are called alcoves. In the rest
of this thesis, by alcoves we mean the alcoves corresponding to the dot-action, i.e. they
are shifted by −ρ.

In Example 1.2.3, one can see that there are six alcoves for g = sl3.
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2 2 The Quantum Group Uq(g)

2 The Quantum Group Uq(g)
We will now define the quantum group (or quantized universal enveloping algebra) of
a complex semisimple Lie algebra g. There are more general definitions (for example
for infinite dimensional Lie algebras), but those are not of interest for us right now.
For a more detailed introduction to quantized universal enveloping algebras we refer for
instance to [12].

2.1 Quantum Numbers

To define the quantum group we need some “q-calculus”.
First we consider the ring A = Z[v, v−1] of Laurent polynomials with integer coeffi-

cients and formal parameter v.
For r ∈ Z, we define the v-integer or quantum number [r]v ∈ A by

[r]v := vr − v−r

v − v−1 =


vr−1 + vr−3 + ...+ v1−r, if r ∈ N,
0, if r = 0,
−vr+1 − vr+3 − ....− v−r−1, else.

For r ∈ N we define

[r]v! := [r]v · [r − 1]v · ... · [1]v, [0]v! := 1,

and for r ≥ s ≥ 0, r, s ∈ Z the v-binomial coefficient[
r

s

]
v

:= [r]v!
[s]v! · [r − s]v!

.

Later on, we use the same notation with a different index, e.g. [r]q for some q ∈
C\{0}, by inserting q in the place of v into the formulas. But we have to be careful,
since the binomial coefficient might not be well defined (the quantum number [r]q is 0
for some cases). In particular this happens in the case for some roots of unity.

We obtain the following:

Lemma2.1.1 Let r ≥ s+ 1 ∈ N. It holds:
(i)

[
r+1
s

]
v

= vs
[
r
s

]
v

+ vs−r−1
[

r
s−1

]
v
,

(ii)
[
r
s

]
v
∈ A,

(iii) [r]v 7→ r and
[
r
s

]
v
7→
(
r
s

)
as v 7→ 1.

Proof. (i) Direct calculation.

(ii) Follows from (i) by induction.

(iii) Follows from [r]v = vr−1 + vr−3 + ...+ v1−r.
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2.2 Definition

To define the quantum group, we use the following setup.
Given a complex semisimple Lie algebra g, we denote by Φ the corresponding set

of roots in some Euclidean space E, by Φ+ ⊂ Φ a fixed set of positive roots and by
Π = {α1, α2, ..., αn} ⊂ Φ+ the set of simple roots for some n ∈ N. For each α ∈ Φ, we
denote by α∨ ∈ Φ∨ the corresponding co-root and by ρ = 1

2
∑
α∈Φ+ α the half-sum of

all positive roots. Further, let aij = 〈αj , α∨i 〉 for i, j ∈ {1, 2, ..., n} and A = (aij)ni,j=1 be
the Cartan matrix. Let D = diag(d1, d2, ..., dn) be the diagonal matrix with all di ∈ N
minimal, such that DA = (diaij)ni,j=1 is symmetric.

For i ∈ {1, ..., n}, we denote vi := vdi (and similarly later on for qi := qdi).
In the special case g = sln+1 we have seen in the first section that di = 1 for all

i ∈ {1, ..., n}. Hence, for sln+1 we do not need to distinguish between v and the vi’s or
q and the qi’s.

Furthermore, let X be the set of (integral) weights, i.e.

X = {λ ∈ E | ∀αi ∈ Π : 〈λ, α∨i 〉 ∈ Z},

and let X+ ⊂ X be the set of dominant (integral) weights, i.e.

X+ = {λ ∈ X | ∀αi ∈ Π : 〈λ, α∨i 〉 ≥ 0}.

We have a partial order on X defined for λ, µ ∈ X as follows

µ ≤ λ ⇐⇒ λ− µ =
n∑
i=1

ciαi for some ci ∈ Z≥0.

The fundamental weights ωi ∈ X for i ∈ {1, 2, ..., n} are characterized by

〈ωi, α∨j 〉 = δi,j for j ∈ {1, ..., n}.

Definition 2.2.1 The quantum group Uv(g) is the associative unital algebra over Q(v)
with the following generators and relations:

• generators: {
Ei, Fi,Ki,K

−1
i | i ∈ {1, ..., n}

}
• relations:

(1) ∀i, j ∈ {1, ..., n} : KiK
−1
i = 1 = K−1

i Ki, KiKj = KjKi

(2) ∀i, j ∈ {1, ..., n} : KiEjK
−1
i = v

aij
i Ej

(3) ∀i, j ∈ {1, ..., n} : KiFjK
−1
i = v

−aij
i Fj

(4) ∀i, j ∈ {1, ..., n} : EiFj − FjEi = δi,j
Ki−K−1

i

vi−v−1
i

(5) ∀i 6= j ∈ {1, ..., n} : ∑1−aij
k=0 (−1)k

[
1−aij
k

]
vi
E

1−aij−k
i EjE

k
i = 0

8



2 2 The Quantum Group Uq(g)

(6) ∀i 6= j ∈ {1, ..., n} : ∑1−aij
k=0 (−1)k

[
1−aij
k

]
vi
F

1−aij−k
i FjF

k
i = 0

where the aij are the entries of the Cartan matrix A.

Remark 2.2.2 • The relations (5) and (6) are called quantum Serre relations.

• The generators Ei and Fi for i ∈ {1, ..., n} are called Chevalley generators.

Since we want to consider quantum groups at roots of unity, we need to specialize
v 7→ q for q ∈ C some root of unity. This we can do via the so-called A-form UA(g):

Definition 2.2.3 For r ∈ N, i ∈ {1, ..., n} we define the divided power elements:

E
(r)
i = 1

[r]vi !
Eri , F

(r)
i = 1

[r]vi !
F ri .

The A-subalgebra UA(g) of Uv(g) is defined as the A-subalgebra generated by the

elements
{
E

(r)
i , F

(r)
i ,Ki,K

−1
i

}
i∈{1,...,n},r∈N

.

Remark 2.2.4 Note, that we changed the generators. Later we specialize v 7→ q to
some root of unity, such that the quantum numbers sometimes are 0 and therefore the
quantum binomial coefficients are not well-defined. In particular, the quantum Serre
relations in the definition of Uv(g) would not be well-defined. However, by Lemma 2.1.1
one can still use the quantum binomial coefficients in formulas.

We rewrite the quantum Serre relations in a way with the divided power generators,
such that we do not need the quantum binomial coefficients, e.g. we have:

∀i 6= j ∈ {1, ..., n} :
1−aij∑
k=0

(−1)k
[
1− aij

]
vi

! E(1−aij−k)
i EjE

(k)
i = 0

Now to specialize v 7→ q, for any q ∈ C\{0} we can consider C as A-module by letting
v ∈ A act as multiplication by q.

Definition 2.2.5 Let ` ∈ N, ` odd, ` > h and q ∈ C a primitive `th-root of unity. (Here
h denotes the Coxeter number. For example in type An we have h = n+ 1.)

We define the quantum group Uq(g) as follows:

Uq(g) := UA(g)⊗A C

For u ∈ UA(g), we abbreviate u ⊗A 1 ∈ Uq(g) for simplicity by u and omit the tensor
symbol.

Remark 2.2.6 We want these assumptions on ` (and therefore q), since for ` ≤ h the
fundamental alcove would not include the fundamental weights (see Section 3) and q2

9



2.2 Definition 2

should also be a primitive `th root of unity (otherwise some calculations later on would
change).

Remark 2.2.7 In UA(g) and Uq(g) we have some additional relations to the relations
in the definition of Uv(g) (Definition 2.2.1):

• In UA(g), we have the relations:

F
(r)
i F

(s)
i = F ri

[r]vi !
F si

[s]vi !
= F r+si

[r]vi ![s]vi !
=
[
r + s

r

]
vi

F r+si

[r + s]vi !
=
[
r + s

r

]
vi

F
(r+s)
i ,

E
(r)
i E

(s)
i =

[
r + s

r

]
vi

E
(r+s)
i ,

for r, s ∈ N, i ∈ {1, .., n}.

• The quantum number [`]v ∈ A acts as 0 on C:

[`]v.1 =
(
v`−1 + vl−3 + ...+ v1−`

)
.1 =

∑̀
i=1

qi = 0,

so in particular we have in Uq(g) for all i ∈ {1, ..., n}, r ≥ `:

Eri = [r]q!E(r)
i = 0 = [r]q!F (r)

i = F ri .

We have in each of the following cases a triangular composition:

Uv(g) = U−v U
0
vU

+
v , UA(g) = U−AU

0
AU

+
A , Uq(g) = U−q U

0
qU

+
q ,

where:

• the subalgebra U−v of Uv(g) is generated by the set {Fi}i∈{1,...,n}, U0
v by the set{

Ki,K
−1
i

}
i∈{1,...,n}

and U+
v by the set {Ei}i∈{1,...,n}.

• the subalgebra U−A of UA(g) is generated as anA-algebra by the set
{
F

(r)
i

}
i∈{1,...,n},r∈N

,

U+
A by the set

{
E

(r)
i

}
i∈{1,...,n},r∈N

and U0
A by the set

{
Ki,K

−1
i , K̃i,t | t ∈ N, i ∈ {1, ..., n}

}
,

where

K̃i,t =
[
Ki

t

]
=

t∏
s=1

Kiv
(1−s)
i −K−1

i v
−(1−s)
i

vsi − v
−s
i

,

and similarly for U−q , U0
q and U+

q .

Definition 2.2.8 We denote U≤0
q := U−q U

0
q and U≥0

q := U0
qU

+
q .

Further, Uq(g) also admits a grading:

10



2 2 The Quantum Group Uq(g)

Proposition 2.2.9 The function deg : Uq(g)→ X defined on the generators by

deg
(
E

(r)
i

)
= rαi, deg

(
K±1
i

)
= 0, deg

(
F

(r)
i

)
= −rαi,

for i ∈ {1, ..., n} and r ∈ N defines a X-grading on Uq(g). It is given by conjugation by
the Ki’s.

Proof. Note, that by definition it holds for i, j ∈ {1, ..., n} and r ∈ N:

KjE
(r)
i K−1

j = q
r〈αi,α∨j 〉
j E

(r)
i , KjKiK

−1
j = Ki, KjF

(r)
i K−1

j = q
−r〈αi,α∨j 〉
j F

(r)
i .

In particular, the relations in Definition 2.2.1 and the additional relations are homogen-
ous. Hence, the grading given by deg is well-defined.

So, we may decompose Uq(g) =
⊕

γ∈X Uq(g)γ as a vector space, where Uq(g)γ = {u ∈
Uq(g) | deg(u) = γ} is the subspace of degree γ.

Furthermore, there are several Hopf algebra structures on Uq(g), for instance we use
the one given by the following co-multiplication ∆, co-unit ε and antipode S.

∆(Ei) = Ei ⊗ 1 +Ki ⊗ Ei, ε(Ei) = 0, S(Ei) = −K−1
i Ei,

∆(Fi) = Fi ⊗K−1
i + 1⊗ Fi, ε(Fi) = 0, S(Fi) = − FiKi,

∆(Ki) = Ki ⊗Ki, ε(Ki) = 1, S(Ki) = K−1
i .

In particular, we can tensor two Uq(g)-modules and we have an induced action on
the dual vector spaces of Uq(g)-modules.

Remark 2.2.10 In fact, Uq(g)-modules form a tensor category. For more information
about tensor categories see [14, Section X1.2].

2.3 The Category of Integrable Uq(g)-Modules C

The category of all Uq(g)-modules is too big. We only want to consider modules which
are integrable. That means, similar as in the non-quantized case U(g) in classical Lie
theory we want to have e.g. a weight space decomposition, so we can talk about highest
weight modules. The following definition can be found in [3, Section 3.6].

Definition 2.3.1 A Uq(g)-module M has a weight space decomposition if

M =
⊕
λ∈X

Mλ,

where Mλ =
{
m ∈M | ∀i ∈ {1, ..., n} : Ki.m = q〈λ,α

∨
i 〉m

}
.

A vector in Mλ\{0} is called a weight vector of weight λ.

11



2.3 The Category of Integrable Uq(g)-Modules C 2

Remark 2.3.2 We only consider so-called modules of type 1.
In general, one can have a more general weight space decomposition:

M =
⊕

ε∈{−1,+1}n,λ∈X
Mε,λ,

where
Mε,λ =

{
m ∈M | ∀i ∈ {1, ..., n} : Ki.m = εi · q〈λ,α

∨
i 〉m

}
.

Since the categories of different ε’s are equivalent , it is enough to just consider modules
of type 1, i.e. ε = (1, 1, ..., 1) (see e.g. [12, Section 5.2]).

Definition 2.3.3 The category of integrable Uq(g)-modules C is defined to be the full
subcategory of Uq(g)-modules consisting of all finitely generated modules which have a
weight space decomposition and where the F (r)

i and E
(r)
i act locally as zero for large

enough r, i.e. a Uq(g)-module M is by definition an object of C if:

• M is finitely generated as an Uq(g)-module.

• M =
⊕
λ∈XMλ.

• There exists N ∈ N, such that:

∀r > N, i ∈ {1, ..., n}, m ∈M : E
(r)
i .m = 0 = F

(r)
i .m.

Remark 2.3.4 The first and last condition imply that our objects are finite dimen-
sional: For each M ∈ Ob(C) we have M = Uq(g).m1 + ...+Uq(g).mr and each summand
Uq(g).mi is finite dimensional.

Lemma2.3.5 Let M ∈ Ob(C). Then it holds for i ∈ {1, ..., n}, r ∈ N, λ ∈ X and
m ∈Mλ:

E
(r)
i .m ∈Mλ+rαi , F

(r)
i .m ∈Mλ−rαi (2)

Proof. We only proof the first equation, the second follows analogously. Let j ∈ {1, ..., n}.

Kj .

(
E

(r)
i .m

)
=

(
KjE

(r)
i

)
.m =

(
q
r·aji
j E

(r)
i Kj

)
.m = q

r·〈αi,α∨j 〉
j E

(r)
i .

(
q
〈λ,α∨j 〉
j m

)
= q

〈rαi+λ,α∨j 〉
j ·

(
E

(r)
i .m

)
This proves the claim.

Remark 2.3.6 The category C is a Krull–Schmidt category, in particular submodules
and quotients have a weight space decomposition. The argument (here for the category
O) one can find e.g. in [11, Section 1.1 and 1.2].

12



2 2 The Quantum Group Uq(g)

2.3.1 Dual Weyl Modules

Since our main objective is to understand finite dimensional modules, we go an unusual
way of defining the Weyl modules and dual Weyl modules. (The ordinary construction of
Verma modules Uq(g)⊗

U≥0
q

Cλ is infinite dimensional and the F (r) would not act locally
nilpotently!) We follow therefore the construction in [6, Subsections 2.2 and 2.3].

Definition 2.3.7 For λ ∈ X+, we define the one-dimensional U≤0
q -module Cλ as fol-

lows: As a vector space Cλ is C with basis vector 1λ, where U0
q acts via

∀i ∈ {1, ..., n}, t ∈ N : Ki.1λ = q
〈λ,α∨i 〉
i · 1λ, K̃i,t.1λ =

[
〈λ, α∨i 〉

t

]
qi

· 1λ.

Further, we let the divided power elements F (r)
i act as 0.

Note: This is the only possible definition, since the F (r)
i ’s have to change the weight

spaces (see Equation (2)).

Definition 2.3.8 Now we recall the induction functor IndUq
U≤0
q

to get a finite dimensional
Uq(g)-module:

IndUq
U≤0
q

: U≤0
q -Mod → Uq(g)-Mod,

M 7→ F
(

Hom
U≤0
q

(Uq(g),M)
)
,

where:

• Uq(g) is a U≤0
q -module via (the embedding and) left-multiplication.

• For M ∈ U≤0
q -Mod, Hom

U≤0
q

(Uq(g),M) becomes a Uq(g)-module via:

For u, ū ∈ Uq(g), f ∈ Hom
U≤0
q

(Uq(g),M):

(u.f)(ū) = f(ūu)

• The functor F : Uq(g)-Mod → Uq(g)-Mod assigns to a Uq(g)-module M ′ the
submodule:

F(M ′) :=

m ∈ ⊕
λ∈X

M ′λ

∣∣∣∣∣ ∀i ∈ {1, ..., n}, r � 0 : E
(r)
i .m = 0 = F

(r)
i .m


The dual Weyl module (or co-standard module) of highest weight λ ∈ X+ is defined

as:
∇(λ) = IndUq

U≤0
q

(Cλ).

13



2.3 The Category of Integrable Uq(g)-Modules C 2

Remark 2.3.9 One should note, that the functor F sends a finitely generated module
M ′ to its maximal submodule which is an object in our category C.

Remark 2.3.10 • For λ ∈ X+ we have:

Hom
U≤0
q

(Uq(g),Cλ) = Hom
U≤0
q

(U−q U0
qU

+
q ,Cλ)

as vector spaces∼=
(
U+
q

)∗
.

Or alternatively, let ϕ ∈ Hom
U≤0
q

(Uq(g),Cλ), and u ∈ Uq(g). Write u = u−u0u+

where u− ∈ U−q , u0 ∈ U0
q and u+ ∈ U+

q . It holds

ϕ(u) = ϕ(u−u0u+) = u−u0(ϕ(u+)).

So each element in Hom
U≤0
q

(Uq(g),Cλ) is determined by its action on U+
q .

• Let ϕ ∈ Hom
U≤0
q

(Uq(g),Cλ)µ be a weight vector. Then there exists γ ∈ X such
that

ϕ(u) 6= 0 =⇒ u ∈ Uq(g)γ .

Further, it holds µ = λ− γ.

Proof. By the decomposition into homogenous subspaces of Uq(g), there exists
γ ∈ X and u ∈ Uq(g)γ with ϕ(u) 6= 0. Then it holds for i ∈ {1, ..., n}:

q
〈µ,α∨i 〉
i ϕ(u) = (Ki.ϕ)(u) = ϕ(uKi) = ϕ

(
q
−〈γ,α∨i 〉
i Kiu

)
= q
〈−γ,α∨i 〉
i Ki.(ϕ(u))

= q
〈λ−γ,α∨i 〉
i ϕ(u).

Hence we have µ = λ− γ and this is the only possible value for γ.

• A direct consequence of the above calculations is dim Hom
U≤0
q

(Uq(g),Cλ)λ = 1,
since ϕ ∈ Hom

U≤0
q

(Uq(g),Cλ)λ is determined by its action on U+
q , and the only

possible one-dimensional space of Uq(g)0, which is also in U+
q , is C · 1.

In particular, λ is the maximal weight of Hom
U≤0
q

(Uq(g),Cλ), since U+
q only has

degrees in X+.

• With further calculations, one can prove dim∇(λ)λ = 1 = dim∇(λ)−λ and the
dual Weyl module ∇(λ) is generated by a weight vector in ∇(λ)−λ.

Also, the dual Weyl modules have the following property (see [4, Corollary 6.2 and
Proposition 6.3]):

14



2 2 The Quantum Group Uq(g)

Proposition 2.3.11 For λ ∈ X+, the dual Weyl module ∇(λ) contains a unique simple
Uq(g)-module L(λ). It has highest weight λ.

Further, any simple module S ∈ Ob(C) is isomorphic to some L(λ) for some λ ∈ X+.

So we have a complete set of pairwise non-isomorphic simple modules
{
L(λ) | λ ∈ X+

}
.

They are characterized by their highest weight.

2.3.2 Weyl Modules

The dual Weyl module of highest weight λ ∈ X+ is, like the name suggests, the dual
of the Weyl module of highest weight λ ∈ X+. However, to define the Weyl module we
cannot just take the dual space, since that would flip our weights, so we also have to
twist it.

We define a homomorphism of algebras ω : Uq(g)→ Uq(g),

K±1
i 7→ K∓1

i , E
(r)
i 7→ F

(r)
i , F

(r)
i 7→ E

(r)
i

for i ∈ {1, ..., n}, r ∈ N. One can check, that this defines an automorphism. Further, it
holds ω2 = id, so it is self-inverse (i.e. ω is an involution).

For a Uq(g)-module M , we define the twisted module ωM to be the vector space M
with the twisted action:

∀u ∈ Uq(g),m ∈ ωM : u.m := ω(u).m′,

where m′ is the corresponding vector in the untwisted module M .

Definition 2.3.12 For M ∈ Ob(C), we define the twisted dual M? to be:

M? :=
⊕
λ∈X

ω((Mλ)∗),

so the action is given by: for λ ∈ X, f ∈ ω((Mλ)∗),m ∈Mλ, u ∈ Uq(g):

(u.f)(m) = f(ω(S(u)).m),

where the action in the argument of f on the right-hand side is the action of the un-
changed, original module M .

One should note, that the weight spaces Mλ are finite dimensional and therefore the
dual spaces M∗λ as well. Also the dual weight space M∗λ is now of weight −λ, so as
mentioned above, we flip the weights and with the twist with ω we flip it back.

Definition 2.3.13 For λ ∈ X+, we define the Weyl module (or standard module) of
weight λ to be the twisted dual of the dual Weyl module of weight λ, i.e.:

∆(λ) := (∇(λ))?.

15



2.3 The Category of Integrable Uq(g)-Modules C 2

Remark 2.3.14 The Weyl module of weight λ ∈ X+ can also be defined similar to the
more common construction of Verma modules:

Let Cλ be the one-dimensional U≥0
q -module by letting K±1

i act by multiplication
with q±〈λ,α∨i 〉 (i.e. it is of weight λ) and E(r)

i acts as 0 for i ∈ {1, ..., n}, r ∈ N. Then we
may define

∆(λ) = G
(
Uq(g)⊗

U≥0
q

Cλ
)
,

where G is the functor taking a (finitely generated) Uq(g)-module to its maximal finite
dimensional quotient.

Remark 2.3.15 The Weyl module ∆(λ) has the following properties:

• it is a highest weight module of weight λ.

• dim ∆(λ)λ = 1.

• it has a unique simple head L(λ) isomorphic to the unique simple socle of ∇(λ).

Example 2.3.16 Taking the description of the standard modules of Uq(g) for g = sl2
from [1, Definition 2.5], we have for the ith Weyl module ∆(i · ω) a basis given by
{m0,m1, ...,mi} as C-vector space and the actions: for k ∈ {0, ..., i}, r ∈ N:

K.mk = qi−2k ·mk, E(r).mk =
[
i− k + r

r

]
q

·mk−r, F (r).mk =
[
k + r

r

]
q

·mk+r,

where we set mj = 0 for j < 0 and j > i.
Graphically the modules have the form:

m0 m1 m2 mi−1 mi

qi·

[1]q ·

[i−1]q ·
qi−2·

[2]q ·

[i−2]q ·
qi−2· q−i+2·

[i−1]q ·

[1]q ·
q−i·

where the red arrows to the left show the action of E, the blue arrows the right the
action of F and the green arrows the action of K. (There are more arrows to consider
since we left out the higher divided power generators!)

Back to our general Weyl modules ∆(λ), they have further the following universal
property:

Proposition 2.3.17 (Universal property of Weyl modules) Let M ∈ Ob(C) be a
highest weight module of weight λ ∈ X+, i.e. there is a vector m ∈ M \ {0} with the
properties M = Uq(g).m, E(r)

i .m = 0 for all i ∈ {1, ..., n}, r ∈ N and m ∈ Mλ. Then
there exists a (up to scalars) unique non-zero morphism ηλ : ∆(λ) → M . Further, the
morphism ηλ is surjective.
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2 2 The Quantum Group Uq(g)

Proof. By Remark 2.3.14 the Weyl module ∆(λ) is the maximal quotient of the Verma
module V (λ) = Uq(g) ⊗

U≥0
q

Cλ in the category C. Let 1λ ∈ ∆(λ)λ be a weight vector.
Then it holds Uq(g).1λ = ∆(λ). We define the morphism ηλ : ∆(λ) → M by 1λ 7→ m.
This is a Uq(g)-morphism, since the Weyl module ∆(λ) is the maximal quotient of the
Verma module V (λ): By the universal property of Verma modules M is a quotient of
V (λ). Since ∆(λ) is the maximal quotient in the category C, the morphism ηλ must be
surjective.

The morphism ηλ is unique up to scalar, since dim ∆(λ)λ = 1.
This finishes the proof.

Corollary 2.3.18 For λ ∈ X+, M ∈ Ob(C) it holds:

HomUq(g)(∆(λ),M) 1:1←→
{
m ∈Mλ | ∀i ∈ {1, ..., n}, r ∈ N : E(r)

i .m

}
.

So we have for λ ∈ X+ a unique (up to scalars) morphism cλ : ∆(λ)→ ∇(λ), which
in particular sends the simple head of ∆(λ) to the simple socle of ∇(λ):

cλ : ∆(λ) � L(λ) ↪→ ∇(λ).

Remark 2.3.19 Another way to see this is via the (q-version) of the Frobenius reci-
procity, which is in a sense the generalized dual version of the universal property of the
Weyl modules (see [4, Section 2.12]):

For a module M ∈ Ob(C) and λ ∈ X+ it holds

HomUq(g)(M,∇(λ)) ∼= Hom
U≤0
q

(M,Cλ).

In particular:
HomUq(g)(∆(λ),∇(λ)) ∼= Hom

U≤0
q

(∆(λ),Cλ),

and by using ∆(λ)λ ∼= C, we get dim HomUq(g)(∆(λ),∇(λ)) = 1.

Remark 2.3.20 In the following, we will often utilize the ExtiC-functor, but one should
be careful. Our category C does not have enough injectives, so one needs to go to its
injective completion. One can find the definition of it in [13, Section 6.1] (here it is called
indization) and in [13, Section 15.3] it is shown, that the extension functor (in e.g. our
setup) is the same.

There are further properties of Weyl und dual Weyl modules. For example instead
of just looking at the morphisms between those, one can consider the extension functor
(see [6, Theorem 3.1]):

Theorem2.3.21 (Ext-vanishing) Let λ, µ ∈ X+. It holds:

ExtiC(∆(λ),∇(µ)) ∼=

Ccλ, if i = 0, λ = µ,

0, else.
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2.3 The Category of Integrable Uq(g)-Modules C 2

An important fact about the category C is the following (and without which we
cannot do the theory of tilting modules):

Theorem2.3.22 The category of integrable Uq(g)-modules C is a highest weight cat-
egory.

For details about highest weight categories see e.g. [9, Appendix].

2.3.3 Tilting Modules

Definition 2.3.23 (i) An object M ∈ Ob(C) has a Weyl filtration (or ∆-filtration),
if there exists a flag of submodules

0 = M0 ⊂M1 ⊂ ... ⊂Mr−1 ⊂Mr = M

for some r ∈ N, such that

∀i ∈ {1, ..., r} : Mi/Mi−1 ∼= ∆(λi)

for some λi ∈ X+.

(ii) Similarly, an objectM ∈ Ob(C) has a dual Weyl filtration (or ∇-filtration), if there
exists a flag of submodules

0 = M0 ⊂M1 ⊂ ... ⊂Mr−1 ⊂Mr = M

for some r ∈ N, such that

∀i ∈ {1, ..., r} : Mi/Mi−1 ∼= ∇(λi)

for some λi ∈ X+.

(iii) An object M ∈ Ob(C) is called a tilting module, if M has a Weyl filtration as well
as a dual Weyl filtration.

Remark 2.3.24 Note that by taking the twisted dual one takes a Weyl filtration to a
dual Weyl filtration and vice versa. In particular we have for a module M ∈ Ob(C):

M has a ∆-filtration ⇐⇒ M? has a ∇-filtration

Further, we can say more about the appearing weights λi in the filtrations, which is
a corollary of the Ext-vanishing theorem (Theorem 2.3.21) (see [6, Corollary 3.4]):

Corollary 2.3.25 Let M ∈ Ob(C) with a ∆-filtation, N ∈ Ob(C) with a ∇-filtration
and λ ∈ X+. It holds:

(i) dim HomUq(g)(M,∇(λ)) = |{i | λi = λ}|,

18



2 2 The Quantum Group Uq(g)

(ii) dim HomUq(g)(∆(λ), N) = |{i | λi = λ}|,

where the λi are from the respective filtrations (Mi/Mi−1 ∼= ∆(λi) respectively Ni/Ni−1 ∼=
∇(λi)). In particular, the multiplicities with the respect to a filtration is independent of
the choice of the filtration.

Proof. We will show (i), and (ii) follows by duality.
Let r ∈ N be the length of the ∆-filtration of M . We will use induction on r.
So if r = 1, then we have M = ∆(µ) for some µ ∈ X+ and

dim(HomUq(g)(M,∇(λ))) = (M : ∆(λ))

is given by the Ext-vanishing theorem.
Now let r > 1. Then we have a short exact sequence

0 −→Mr−1 ↪→M � ∆(λr) −→ 0

and we know that dim(HomUq(g)(M,∇(λ))) and (M : ∆(λ)) are additive regarding short
exact sequences, which gives us the claim by applying induction to Mr−1.

Also we have another consequence of the Ext-vanishing theorem, which gives us a
criteria to identify modules which have a ∆- or ∇-filtration. In particular we can identify
tilting modules using the extension functor (see [6, Proposition 3.5]):

Proposition 2.3.26 (Ext-criteria) Let M,N ∈ Ob(C). Then the following are equi-
valent:

(i) The Uq(g)-module M has a ∆-filtration (respectively N has a ∇-filtration).

(ii) It holds: ∀λ ∈ X+, i > 0 : ExtiC(M,∇(λ)) = 0 (respectively ExtiC(∆(λ), N) = 0).

(iii) It holds: ∀λ ∈ X+: Ext1
C(M,∇(λ)) = 0 (respectively Ext1

C(∆(λ), N) = 0).

So we have an alternative characterization for tilting modules:

Corollary 2.3.27 A Uq(g)-module T is a tilting module, if and only if:

∀λ ∈ X+ : Ext1
C(T,∇(λ)) = 0 = Ext1

C(∆(λ), T )

With this characterization we can easily deduce:

Corollary 2.3.28 Given non-zero modules D1, D2, D ∈ Ob(C) such that D = D1⊕D2.
Then it holds:

D is a tilting module if and only if D1 and D2 are tilting modules.
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2.3 The Category of Integrable Uq(g)-Modules C 2

Proof. For λ ∈ X+ we have:

Ext1
C(D,∇(λ)) = Ext1

C(D1 ⊕D2,∇(λ)) = Ext1
C(D1,∇(λ))⊕ Ext1

C(D2,∇(λ))

and

Ext1
C(∆(λ), D) = Ext1

C(∆(λ), D1 ⊕D2) = Ext1
C(∆(λ), D1)⊕ Ext1

C(∆(λ), D2).

So if one side is zero, then the other side is zero, too.

There are some additional facts about highest weight categories. In particular a
version of Ringel’s theorem (see [6, Proposition 3.11]):

Theorem2.3.29 There is a complete set of indecomposable, non-isomorphic tilting
modules

{
T (λ) | λ ∈ X+

}
such that for λ ∈ X+:

(i) every weight µ of T (λ) satisfies µ ≤ λ,

(ii) dimT (λ)λ = 1,

and every tilting module D ∈ Ob(C) can be written as a direct sum of these, i.e.:

∀λ ∈ X+ : ∃aDλ ∈ Z≥0 : D =
⊕
λ∈X+

T (λ)aDλ

Proof. First we construct the indecomposable tilting modules T (λ). So let λ ∈ X+ be
fixed.

If ∆(λ) is a tilting module, we set T (λ) := ∆(λ).
Otherwise ∆(λ) has no ∇-filtration, so by Corollary 2.3.27 there exists µ ∈ X+ with

the property dim(Ext1
C(∆(µ),∆(λ))) 6= 0. So let µ2 ∈ X+ be minimal with that property

and set m2 = dim(Ext1
C(∆(µ2),∆(λ))) 6= 0.

Note that we have µ2 < λ, sincem2 6= 0 implies Hom(∆(µ2),∆(λ)) 6= 0 and therefore
by Corollary 2.3.18 the µ2 weight space in ∆(λ) is not 0 (and all weights µ of ∆(λ) have
the property µ ≤ λ).

By the properties of the Ext1-functor we get a non-splitting extension:

0 −→ ∆(λ) ↪→M2 � ∆(µ2)m2 −→ 0.

If M2 is a tilting module, we set T (λ) = M2. Otherwise we choose (again by Corollary
2.3.27) µ3 ∈ X+ minimal with the property Ext1

C(∆(µ3),M2) = m3 6= 0 (since, by
construction, M2 has a ∆-filtration). Again we have µ3 < λ and µ3 < µ2. We get a
non-splitting extension:

0 −→M2 ↪→M3 � ∆(µ3)m3 −→ 0.

If M3 is a tilting module, we set T (λ) := M3. Otherwise we continue in this fashion and
get a filtration of the form:

0 = M0 ⊂ ∆(λ) =: M1 ⊂M2 ⊂M3 ⊂ ...
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2 2 The Quantum Group Uq(g)

with the property Mk+1/Mk
∼= ∆(µk+1)mk+1 and µk+1 < µk < ... < µ2 < λ for k ∈

{0, 1, ...}. Since there are only finitely many weights µ in X+ with the property µ < λ,
this process stops at some point, say at Mr. So we have a ∇-filtration (since we cannot
find µ ∈ X+ with dim(Ext1

C(∆(µ),Mr)) 6= 0) and by construction we have a ∆-filtration,
i.e. Mr is a tilting module. Also by construction we have dim(Mr)λ = 1 and it is
indecomposable. So we can set T (λ) = Mr.

Now suppose D ∈ Ob(C) is an indecomposable tilting module. We want to show
D ∼= T (λ) for some λ ∈ X+.

Let λ be a maximal weight in D. Then we get by the universal property of ∆(λ)
a non-zero Uq(g)-homomorphism ϕ : ∆(λ) → D. Also by duality we get a Uq(g)-
homomorphism ψ : D → ∇(λ) such that ψ ◦ ϕ 6= 0.

By definition of the indecomposable tilting module T (λ) we have an inclusion ι :
∆(λ) ↪→ T (λ) and a surjection π : T (λ) � ∇(λ). Consider the diagram:

∆(λ) T (λ) ∇(λ)

D

ϕ ψ

πι

Both ψ ◦ ϕ and π ◦ ι are non-zero, so we can scale one by a non-zero scalar, such that
the diagram commutes.

Further, since D is a tilting module, it holds:

Ext1
C(∆(λ), D) = 0 = Ext1

C(D,∇(λ)).

In particular, we get:

Ext1
C(coker(ι), D) = 0 = Ext1

C(D, ker(π)).

So ϕ extends to an Uq(g)-homomorphism ϕ̄ : T (λ)→ D and ψ factors through D via
ψ̄ : D → T (λ). Further, ψ̄ ◦ ϕ̄ is an isomorphism on T (λ)λ, hence it is an isomorphism
on the whole of T (λ). In particular, T (λ) embeds into D and therefore is a summand of
D. Since we assumed D to be indecomposable, it follows D ∼= T (λ).

By the Krull–Schmidt property, it follows that we can decompose every tilting module
into a direct sum of the constructed indecomposable tilting modules T (λ). This shows
the theorem.

Remark 2.3.30 The indecomposable tilting modules T (λ) have the property, that they
are selfdual, since taking the twisted dual sends a ∆-filtration to a ∇-filtration and a ∇-
filtration to a ∆-filtration. So the twisted dual T (λ)? is still a tilting module of the same
dimension and highest weight λ, which is, by the characterization above, isomorphic to
T (λ).
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The following fact about tilting modules is important, but since the proof is quite
lengthy, we will only state it. For the proof in type A see [6, Proposition 3.10]. In the
general case, the proof relies on Lusztig’s crystal bases (see [16]).

Theorem2.3.31 For two tilting modules D,D′ it holds: D ⊗D′ is a tilting module.

Remark 2.3.32 If one only considers tilting modules, one can easily deduce that the
tensor product is symmetric. We know that the character of a tilting module D chD =∑
λ∈X dimDλ·eλ ∈ Z(X) is multiplicative, i.e. ch(M⊗N) = chM ·chN , and by Theorem

2.3.29 we can deduce the decomposition of tilting modules into indecomposable tilting
modules from their character (starting by a maximal weight λ we can “subtract” T (λ)
and get a tilting module with a smaller dimension and so on). In particular we have
aνλ,µ = aνµ,λ, where aνλ,µ is the multiplicity of T (ν) in T (λ)⊗ T (µ).

2.3.4 The Grothendieck Ring R

As in [3, Subsection 3.19], we now consider the Grothendieck ring of the category of
integrable Uq(g)-modules C.

Definition 2.3.33 The Grothendieck group R = K0(C) of the category C is generated
by the set

{
[M ] |M ∈ Ob(C)

}
and the relations:

For every short exact sequence 0→ M ↪→ M ′ � M ′′ → 0 in C we have the relation
[M ′] = [M ] + [M ′′].

We can define a multiplication on R turning it into a ring via

[M ] · [N ] := [M ⊗N ] for M,N ∈ Ob(C).

Then we have for λ, µ ∈ X+ by Theorem 2.3.31 and Remark 2.3.32:

∀ν ∈ X+ ∃aνλ,µ ∈ Z≥0 :

[
T (λ)

]
·
[
T (µ)

]
=
[
T (λ)⊗ T (µ)

]
=

 ⊕
ν∈X+

T (ν)a
ν
λ,µ

 =
∑
ν∈X+

aνλ,µ
[
T (ν)

]
So it follows directly:

Corollary 2.3.34 The subset Rt = spanZ

{[
T (λ)

]
| λ ∈ X+

}
of the Grothendieck ring

R forms a commutative subring.

One should also note an important fact: The Grothendieck ring R has the following
Z-bases:

•
{

[L(λ)] | λ ∈ X+
}

•
{

[∆(λ)] | λ ∈ X+
}
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2 2 The Quantum Group Uq(g)

The first follows by the definition of the Grothendieck ring, the second by the fact, that
our Weyl modules ∆(λ) have unique simple heads L(λ) and a finite filtration of simple
modules with smaller highest weights.
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3 The Category C−`
We only want to consider the tilting modules which have summands only of the form
T (λ) with λ ∈ Λ`, where Λ` =

{
λ ∈ X+ | ∀α ∈ Φ+ : 〈λ+ ρ, α∨〉 < `

}
. Note that Λ`

consists of the integrable weights in the fundamental alcove C of the affine Weyl group
of level k = `− h, where h is the Coxeter number.

Example 3.0.1 In the (for us) most important case g = sl3 it holds:

X+ =
{
m1ω1 +m2ω2 | m1,m2 ∈ Z≥0

}
.

Then we have for ` ∈ N:

Λ` =
{
λ ∈ X+ | ∀α ∈ Φ+ : 〈λ+ ρ, α∨〉 < `

}
=

{
λ ∈ X+ | ∀α ∈ Φ+ : 〈λ, α∨〉 ≤ k

}
=

{
m1ω1 +m2ω2 | m1,m2 ∈ Z≥0 : 0 ≤ 〈m1ω1 +m2ω2, α

∨
1 + α∨2 〉 ≤ k

}
=

{
m1ω1 +m2ω2 | m1,m2 ∈ Z≥0 : 0 ≤ m1 +m2 ≤ k

}
.

To this end, we have to change our category, otherwise our tensor products would
have too many summands (i.e. they could include summands of the form T (λ) with
λ ∈ X+\Λ`). The idea is to quotient out the so-called negligible modules, which are
given by the following definition.

Definition 3.0.2 A Uq(g)-module M ∈ Ob(C) is called negligible, if it may be written
in the form

M =
⊕

λ∈X+\Λ`

T (λ)aMλ .

In words, a tilting moduleM is negligible if aMλ = 0 for all λ ∈ Λ` (using the notation
in Theorem 2.3.29).

First, we recall what it means for a weight to be `-regular or `-singular (see [2, Section
3]):

Definition 3.0.3 A weight λ ∈ X is called `-singular, if there exists a root α ∈ Φ such
that 〈λ+ ρ, α∨〉 is divisible by `. Otherwise λ is called `-regular.

So in particular, the weights on the border of Λ` are `-singular and the weights in
Λ` are `-regular.

3.1 The Affine Weyl Group W` of sl3
The affine Weyl group W` is generated by the simple reflection {si | i ∈ {0, 1, ..., n}}.
Here we have one new generator s0 in comparison to the ordinary Weyl group W, which
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3 3 The Category C−`

reflects on the hyperplane Hk+1,θ =
{
λ ∈ h∗ | 〈λ, θ∨〉 = k + 1

}
, where θ is the highest

weight of the adjoint representation of g or alternatively the highest root. In the case of
g = sl3, we just have θ = ρ = α1 + α2.

This new reflections makes the affine Weyl group W` infinite. So instead having six
alcoves, we now have infinitely many:

−ρ

s0

s2s1

Here you see,
how the simple reflections act under the ordinary dot-action

and some explicit weights for k = 2 and ` = 5.

0

6ω1 − 5ω2

3(ω1 + ω2)

Remark 3.1.1 It is a known fact, that the affine Weyl groupW` acts simply transitive
on the alcoves. In particular we have a bijection

{alcoves} 1:1←→ {elements in W`}

Note that the alcove corresponding to the identity in the Weyl group W` is the funda-
mental alcove C.

For k = 4 one can depict the fundamental alcove (under the dot-action) C, where
the dots (except −ρ) represent elements in Λ`:
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3.1 The Affine Weyl Group W` of sl3 3

−ρ

0

ω2 ω1

ρ

3ω1 + ω2

α2 α1

Remark 3.1.2 One should note, that a weight is `-singular if and only if it lies on an
alcove wall. This follows easily, by visualizing the alcove walls by shifts by multiples of
` in the normalized orthogonal (i.e. α1, α2 or α1 + α2) direction to the original alcove
walls of the non-affine Weyl group W.

So in particular, the set of all `-singular weights is the union of fixed points under
the dot-action of the affine Weyl group W`.

3.1.1 The Right Action

Now we want to introduce a right action of the affine Weyl group W`. Instead of acting
by a reflection on a whole hyperplane, the action depends on in which alcove the element
the simple reflection acts on is located.

Each alcove has three walls. The idea is the following: depending on which simple
reflection acts the element will be reflected on one of the walls into a neighbored alcove.
In the fundamental alcove the actions of the simple reflections look the same, outside you
color the walls by reflecting the already colored ones on the hyperplanes, which would
look like this:
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3 3 The Category C−`

−ρ

s0

s2s1

So starting in the fundamental alcove (shaded in yellow above), we get paths where
crossing over one of the walls is the action of a simple reflection. Note that we can read
off the length of an element of the Weyl group from the alcove picture: Given an element
τ ∈ W`, the length l(τ) of τ is the minimal number of alcove walls a path crosses if it
starts in the fundamental alcove (e.g. 0) and ends at (0.τ).

Example 3.1.3 Here we have the actions for the words (s2s0s2s1s0s1) (solid path) and
(s0s1s0s2s0s2s1s0s1s2s0s2) (dashed path) applied to 0. Note that we defined this as a
right action, so we read the action from left to right, i.e. sisj acts first by si and then
by sj .

−ρ

s0

s2s1 0
0.s2

0.(s2s0)

0.(s2s0s2)
0.(s2s0s2s1)

0.(s2s0s2s1s0)
0.σ
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3.1 The Affine Weyl Group W` of sl3 3

One can easily check, that they are the same element σ and have the reduced ex-
pression (s0s2s1s0), which would be the shortest path to the point 0.σ:

s2s0s2s1s0s1 = s0s2s0s0s1s0

= s0s2s1s0,

s0s1s0s2s0s2s1s0s1s2s0s2 = s0s1s0s0s2s0s0s1s0s0s2s0

= s0s1s2s1s2s0

= s0s2s1s2s2s0

= s0s2s1s0.

So we have for the length l(σ) = 4, which is also the minimal number of alcove walls
one has to cross from 0 to 0.σ.

Remark 3.1.4 Note that the W`-orbits coincide for the right and left action.

Now we define the action on the Grothendieck group R of our category C. By
definition, the affine Weyl group W` acts on the set of alcoves, and hence we cannot
restrict the action to the set of integral weights. Thus, we need to introduce new elements
in R, where we will use the induction functor IndUq

U≤0
q

: U≤0
q -Mod → Uq(g)-Mod (see

Definition 2.3.8).
Note, that the induction functor IndUq

U≤0
q

is left exact but not right exact, since
Hom

U≤0
q

(Uq(g),−) is left exact but not right exact. Therefore, we may use its right
derivation.

Definition 3.1.5 For λ ∈ X we set

χ(λ) :=
∑
k≥0

(−1)k[Hk(Cλ)],

where Hk is the kth right derived functor of H0 = IndUq
U≤0
q

and for M ∈ Ob(C) [M]
denotes again the equivalence class of M in R (see Definition 2.3.33).

For us, we have the equality for λ ∈ X+: χ(λ) = [∆(λ)].

Definition 3.1.6 Now, for all λ ∈ X, τ ∈ W` we define the right action of the affine
Weyl group W` by

χ(λ).τ := χ(λ.τ),
where on the right-hand side we have the just in this section explained right action of
the affine Weyl group W` on the weight lattice X.

In particular, for τ ∈ W`, λ ∈ X+ with (λ.τ) ∈ X+ it holds

[∆(λ)].τ = [∆(λ.τ)].
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3 3 The Category C−`

3.1.2 The Linkage Principle

In Lie theory, the linkage principle gives a condition for the appearing weights in the
Jordan-Hölder composition series of a highest weight module. Namely, that if M is a
highest weight module of weight λ ∈ X, then the only weights occurring as highest
weight of composition factors are linked to λ, i.e. they are in the W-orbit of λ under
the dot-action (see [11, Section 1.8]).

The category of integrable modules C also has a form of the linkage principle for
quantum groups at roots of unity (see [2, Equation 1.2] and [4, Theorem 8.1]):

Definition 3.1.7 Let λ, µ ∈ X. Then we say µ is strongly linked to λ, if there exist
λ1, λ2, ..., λr ∈ X, β1, ..., βr−1 ∈ Φ+ and m1, ...,mr−1 ∈ Z≥0 such that

µ = λ1 ≤ sβ1•λ1 +m1`β1 = λ2 ≤ ... ≤ sβr−1•λr−1 +mr−1`βr−1 = λr = λ,

where sβj is the Weyl group element given by sβj : h∗ → h∗, λ 7→ λ− 〈λ, β∨j 〉βj .

Proposition 3.1.8 If λ, µ ∈ X+ and L(µ) is a composition factor of ∇(λ), then µ is
strongly linked to λ.

Remark 3.1.9 Note, that there exists an element of the affine Weyl group τ ∈ W` with
τ•λi = sβi•λi +mi`βi.

This gives us the nice consequence:

Proposition 3.1.10 Let λ, µ ∈ X+. If L(λ) and L(µ) both are composition factors of
an indecomposable module M ∈ C, then λ ∈ W`•µ, i.e. they are in the same W`-orbit
under the dot-action.

Example 3.1.11 • The smallest non-trivial example is for g = sl2 and ` = 3. One
can also find this example in [6, Example 2.13]. As in Example 2.3.16, the module
∆(3ω) can be visualized by

m0 m1 m2 m3

q3·

(+1)·

(+1)·

0·

q·

(−1)·

(−1)·

q−1·

0·

(+1)·

q−3·

where the red arrows to the left show the action of E, the blue arrows to the right
the action of F , the green arrows the action of K and the violet arrow to the left
the action of E(3), respectively to the right of F (3).
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3.1 The Affine Weyl Group W` of sl3 3

From this picture, we can see that the subspace spanned by m1 and m2 are stable
under the action of Uq(sl2). This submodule is isomorphic to the simple module
L(ω). In particular ∆(3ω) has the composition series 0 ⊂ L(ω) ⊂ ∆(3ω) and the
composition factors L(ω) and L(3ω).
Note, that we have s0•ω = 3ω for ` = 3:

−ρ 0 ω 3ω

s0

So like in the above proposition ω is in the W`-dot-orbit of 3ω.

• One can even generalize this for a general `, which satisfies our assumptions.
Namely, ∆(`ω) has the form

m0 m1 m2 m`−1 m`

q`·

(+1)·

0·

q`−2· q`−4· q−`+2·

0·

q−`·

Note, that we have for r ∈ {1, ..., `− 1}:

E(r).mr =
[
`− r + r

r

]
q

·m0 = [`]q!
[r]q![`− r]q!

·m0 = 0,

F (r).m(`−r) =
[
`− r + r

r

]
q

·m` = 0.

In particular, the subspace spanned by {m1,m2, ...,m`−1} is stable under the action
of Uq(sl2). Further, one can easily check that this submodule of ∆(`ω) is isomorphic
to the simple module L((` − 2)ω). So the module ∆(`ω) has composition factors
L(`ω) and L((` − 2)ω). The weights satisfy s0•`ω = (` − 2)ω, so they are in the
same W`-orbit under the dot-action.

Also, the above proposition gives us the following consequence for weights in the
fundamental alcove:

Corollary 3.1.12 Let λ ∈ Λ`. Then we have T (λ) = ∆(λ) = ∇(λ) = L(λ).
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3 3 The Category C−`

Proof. We only have to note (see Theorem 2.3.29), that T (λ) is indecomposable and
L(λ) is by definition a composition factor, and all other possible weights are in the
fundamental alcove (since T (λ) has highest weight λ, so all occuring weights µ fulfill
µ ≤ λ), but also all other weights in Λ` are in a different W`-orbit. Which gives us that
L(λ) is the only composition factor. It only occurs once, since dimT (λ)λ = 1.

3.1.3 The Subspace R′ Generated by Negligible Tilting Modules

We now will consider the subset R′ := spanZ

{
[T (λ)] | λ ∈ X+\Λ`

}
of the Grothendieck

ring R. Then following [3, Proposition 2.8], we obtain the property:

Proposition 3.1.13 It holds:

R′ ⊂ spanZ
{
[M ] ∈ R | [M ] · s = [M ] for some simple reflection s ∈ W`

}
=: R

To prove this, we need the following lemma (see [3, Subsection 2.7]):

Lemma3.1.14 For λ ∈ Λ`, τ, ω ∈ W` and s ∈ W` a simple reflection such that
ωs•λ, ω•λ, τ•λ ∈ X+ and ωτ•λ < ω•λ we have:

[
T (ω•λ) : ∆(τ•λ)

]
=


[
T (ω•λ) : ∆(τs•λ)

]
, if τs•λ ∈ X+,

0, else.

Remark 3.1.15 We have the following property for the left and right action of the
affine Weyl group on the fundamental weights: For λ ∈ Λ`, ω, τ ∈ W`:

(ω•λ).τ = (ωτ)•λ = ω•(λ.τ)

In particular, we can also formulate Lemma 3.1.14 as follows: For λ > µ ∈ X+, and
s ∈ W` being a simple reflection:

[
T (λ) : ∆(µ)

]
=


[
T (λ) : ∆(µ.s)

]
, if µ.s ∈ X+, µ ∈ W`•λ,

0, else.

Now we prove Proposition 3.1.13.

Proof of Proposition 3.1.13. Let λ ∈ X+\Λ`. If λ is `-singular, then we have:

[T (λ)] =
∑

µ∈X+, `-singular
aµ[∆(µ)],

for some aµ ∈ Z, since the linkage principle tells us, that all possible weights must be in
the W`-orbit of λ, which (in this case) does not contain any `-regular weight. Thus we
directly obtain:

[T (λ)] ∈ spanZ
{
[M ] ∈ R | [M ] · s = [M ] for some simple reflection s ∈ W`

}
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3.1 The Affine Weyl Group W` of sl3 3

On the other hand, if λ is `-regular, then by Lemma 3.1.14 we may write: For s ∈ W` a
fixed simple reflection with λ.s ∈ X+:

[T (λ)] =
∑

µ∈W`•λ∩X+

aµ[∆(µ)]

=
∑

µ∈W`•λ∩X+:
µ.s∈X+,µ<µ.s

aµ[∆(µ)] +
∑

µ∈W`•λ∩X+:
µ.s∈X+,µ<µ.s

aµ.s[∆(µ.s)]

=
∑

µ∈W`•λ∩X+:
µ.s∈X+,µ<µ.s

aµ([∆(µ)] + [∆(µ.s)])

Note that s fixes the summand [∆(µ)] + [∆(µ.s)]. So we have written the generators of
R′ as sums of elements in R, which are fixed under some simple reflection in W`, which
shows the claim.

If λ ∈ X+ and ω ∈ W` with λ.ω ∈ X+, we get by induction on the length of ω:

[∆(λ)] + (−1)l(ω)+1[∆(λ.ω)] ∈ R,

which actually gives us a basis for R, since the Z-span of{
[∆(λ)] | λ ∈ X+ `-singular

}
∪
{

[∆(λ)] + (−1)l(ω)+1[∆(λ.ω)] | λ ∈ Λ`, ω ∈ W` : λ.ω ∈ X+
}

is in R, the above set is clearly linearly independent and the Z-span of
{
[∆(λ)] | λ ∈ Λ`

}
intersects with R in zero.

Example 3.1.16 In the case g = sl2, we have as Z-basis {∆(λ) | λ ∈ X+} of R. Then
we can illustrate X+:

−ρ (`− 1)ω (2`− 1)ω (3`− 1)ω (4`− 1)ω

where the violet weights are `-singular, the magenta ones are in Λ`, the red dashed
arrows illustrate the action of s0 and the green dashed arrows the action of s1.

For the `-singular weights in X+ we may write
{
(m`− 1)ω | m ∈ Z≥0

}
.

For the second set we obtain{
[∆(mω)] + [∆((mω).(s0s1)r)] | 0 ≤ m ≤ `− 2, r ∈ Z≥0

}
∪
{
[∆(mω)]− [∆((mω).((s0s1)rs0))] | 0 ≤ m ≤ `− 2, r ∈ Z≥0

}
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3 3 The Category C−`

The weights of the form (mω).(s0s1)r are depicted above in yellow (for r > 0), the
weights of the form (mω).((s0s1)rs0) in orange. As one can see, for the yellow weights
one has to cross an even number of alcove walls (starting in the fundamental alcove) and
for the orange ones one has to cross an odd number of alcove walls.

Further, we need the following lemma, because the corresponding corollary is inter-
esting for our purposes (for a proof see [3, Subsection 2.9])

Lemma3.1.17 For any [M ] ∈ R, λ ∈ X+ and ω ∈ W` we have:

[L(λ)] · ([M ].ω) ≡ ([L(λ)] · [M ]).ω mod R

In particular, we have:

Corollary 3.1.18 The subset R′ forms an ideal in the Grothendieck subring Rt.

Proof. This follows directly from the Lemma 3.1.17, since for the basis
{
L(λ) | λ ∈ X+

}
of R and generators [M ] ∈ R′ with [M ].si = [M ] for some simple reflection si ∈ W` we
have:

([L(λ)] · [M ]).si ≡ [L(λ)] · ([M ].si) mod R
= [L(λ)] · [M ] mod R

So in particular, we have [L(λ)] · [M ] ∈ R by the definition of R (in Proposition 3.1.13).
Further, by restricting to the subring Rt we have proven the corollary.

3.2 The Definition of C−`
For λ, µ ∈ X+ we may write:

[
T (λ)⊗ T (µ)

]
=

∑
ν∈Λ`

aνλ,µ[T (ν)]

+ P,

for some rest P ∈ R′. With these structure constants aνλ,µ we define:

Definition 3.2.1 The category C−` is defined as the full subcategory of C with objects
whose maximal weights are only in the fundamental alcove, i.e. in Λ`. We make C−` into
a tensor category via:

∆(λ)⊗̄∆(µ) :=
⊕
ν∈Λ`

∆(ν)a
ν
λ,µ for λ, µ ∈ Λ`

Remark 3.2.2 Note, that by Corollary 3.1.12 we have L(λ) = ∆(λ) = T (λ) for λ ∈ Λ`.
In particular, every object in C−` is tilting and may be written as a direct sum of objects
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3.3 The Quantum Trace 3

of the form T (λ) = ∆(λ) for λ ∈ Λ`, so the above definition of the tensor product
suffices:

For general objects
(⊕

λ∈Λ` ∆(λ)bλ
)
,
(⊕

µ∈Λ` ∆(µ)cµ
)
∈ Ob(C−` ) it holds⊕

λ∈Λ`

∆(λ)bλ
 ⊗̄

⊕
µ∈Λ`

∆(µ)cµ
 =

⊕
ν∈Λ`

∆(ν)
∑

λ,µ∈Λ`
bλcµa

ν
λ,µ .

We denote the Grothendieck group (with the just defined multiplication turning it into
a ring) of the category C−` by F .

Example 3.2.3 Let us consider g = sl2 (instead of sl3) and ` = 5. Then we have

Λ5 =
{
mω | m ∈ Z≥0, 0 < 〈(m+ 1)ω, α∨〉 < `

}
= {0, ω, 2ω, 3ω}.

In the category C we have

∆(2ω)⊗∆(3ω) = T (2ω)⊗ T (3ω) = T (5ω)⊕ T (ω),

but in contrast in C−5 we have

∆(2ω)⊗̄∆(3ω) = T (ω) = ∆(ω), (3)

since 5ω /∈ Λ`.

3.3 The Quantum Trace

Following [7, Definition 2.3.3], we now define the quantum trace of an endomorphism in
a ribbon category (in the reference it is just called “trace”). Our goal is to characterize
the negligible tilting modules with the quantum dimension, namely we will prove the
following result (see [2, Theorem 3.4]):

Theorem The quantum dimension of T (λ) is zero for all λ ∈ X+\Λ`.

Recall 3.3.1 A ribbon category is a rigid and braided tensor category with functorial
isomorphismn δV : V → V ∗∗ satisfying some properties (see e.g. [7, Definition 2.2.1]).

Definition 3.3.2 Given a ribbon category, the quantum trace qtr(f) of an endomorph-
ism f : V → V is the composition of morphisms given by the definition of ribbon category
and the endomorphism f :

qtr(f) : 1iV−→V ⊗ V ∗f⊗idV ∗−−−−−→V ⊗ V ∗δV ⊗idV ∗−−−−−−→V ∗∗ ⊗ V ∗evV ∗−−−→1

In general for an endomorphism f , the quantum trace qtr(f) is an element in End(1).
Note that, in our setup of Uq(g)-modules, 1 is the trivial Uq(g)-module C of highest weight
0 and thus, End(1) is the ground field C.
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3 3 The Category C−`

Definition 3.3.3 The quantum dimension of an object V in a ribbon category is the
quantum trace of the identity morphism of V , i.e.:

qdim(V ) = qtr(idV )

Example 3.3.4 In the category of finite dimensional vector spaces over a field k, given
a vector space V and a fixed basis (v1, ..., vr) of V , let (v∗1, ..., v∗r ) be the corresponding
dual basis of V ∗ and (δ1, ..., δr) the corresponding evaluation maps in V ∗∗, i.e. for
i, j ∈ {1, ..., r} : δi(v∗j ) = v∗j (vi) = δi,j .

Then the morphisms iV , δV and evV ∗ are given by

iV : k → V ⊗ V ∗, 1 7→
r∑
i=1

vi ⊗ v∗i ,

δV : V → V ∗∗, vi 7→ δi for i ∈ {1, ...r},
evV ∗ : V ∗∗ ⊗ V ∗ → k, δi ⊗ v∗j 7→ δi(v∗j ) for i, j ∈ {1, ..., r}.

In particular we have for f = idV :

1 7→
r∑
i=1

vi ⊗ v∗i 7→
r∑
i=1

δi ⊗ v∗i 7→
r∑
i=1

δi(v∗i ) = r = dimk(V ).

Hence, the quantum dimension of V is just the ordinary dimension of V over k. Ana-
logously, the quantum trace of an endomorphism is the ordinary trace.

Remark 3.3.5 Back to Uq(g)-modules, for u ∈ Uq(g) it holds:

S2(u) = K−1
2ρ uK2ρ.

In words, S2 is the conjugation by K2ρ, and the morphism δV : V → V ∗∗ is given by

m 7−→ (f 7→ f(K−1
2ρ .m)).

With those we can calculate an explicit formula for Uq(g)-modules (see [7, Exercise
2.3.4] or by definition in [2, Definition 3.1]):

Proposition 3.3.6 In the category of integral Uq(g)-modules C, the quantum trace of
an endomorphism f : V → V and an object V ∈ Ob(C) is given by

qtr(f) = trV (K2ρf), qdim(V ) = trV (K2ρ),

where trV is the ordinary trace function of an endomorphism and K2ρ =
∏
α∈Φ+ Kα.

We use the notation: : Kα =
∏n
i=1K

cα,i
i for α ∈ Φ+, cα,i ∈ N with α =

∑n
i=1 cα,i ·αi.
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3.3 The Quantum Trace 3

In particular, since we have a weight space decomposition V =
⊕
λ∈X Vλ, we get for

the quantum trace:

qdim(V ) = trV (K2ρ)
=
∑
λ∈X

dimVλ · q2〈λ,ρ∨〉

=
∑
λ∈X

dimVλ · q
∑

α∈Φ∨ 〈λ,α
∨〉.

Proof. Let V ∈ Ob(C) with weight space decomposition V =
⊕

λ∈X Vλ. Let (mi,λ)dimVλ
i=1

be a basis of the respective weight space Vλ for λ ∈ X and (m∗i,λ)dimVλ
i=1 be the corres-

ponding dual basis of V ∗λ ⊂ V ∗. Further, let f be an endomorphism of V .
Then it holds:

qtr(f) : 1 7→
∑
λ∈X

dimVλ∑
i=1

mi,λ ⊗m∗i,λ 7→
∑
λ∈X

dimVλ∑
i=1

f(mi,λ)⊗m∗i,λ

7→
∑
λ∈X

dimVλ∑
i=1

δV (f(mi,λ))⊗m∗i,λ 7→
∑
λ∈X

dimVλ∑
i=1

δV (f(mi,λ))(m∗i,λ),

and we have

∑
λ∈X

dimVλ∑
i=1

δV (f(mi,λ))(m∗i,λ) =
∑
λ∈X

dimVλ∑
i=1

m∗i,λ(K−1
2ρ .(f(mi,λ)))

(∗)=
∑
λ∈X

dimVλ∑
i=1

m∗i,λ((K2ρf)(mi,λ))

= trV (K2ρf),

where we use:

(*) the symmetry of weight spaces (dimVλ = dimV−λ) and f preserves weight spaces.

This proves the claim for the quantum trace. In particular, for f = idV , we have

trV (K2ρ idV ) =
∑
λ∈X

dimVλ∑
i=1

m∗i,λ(K2ρ.mi,λ)

=
∑
λ∈X

dimVλ∑
i=1

q
∑

α∈Φ+ 〈λ,α∨〉m∗i,λ(mi,λ)︸ ︷︷ ︸
=1

=
∑
λ∈X

dimVλ · q
∑

α∈Φ+ 〈λ,α∨〉.

This finishes the proof of the proposition.
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3 3 The Category C−`

In particular, if we know the character of a module M , which is defined by chM =∑
λ∈X dimMλ · eλ ∈ Z(X), then we only have to substitute eλ by q2〈λ,ρ∨〉 to get the

quantum dimension of M .

Remark 3.3.7 Note that for q 7→ 1 we get the ordinary dimension back, i.e. qdimV 7→
dimV .

Example 3.3.8 Going back to our example g = sl2 (see Example 2.3.16). Recall that
the ith Weyl module ∆(iω) has the form:

m0 m1 m2 mi−1 mi

qi· qi−2· qi−2· q−i+2· q−i·

where the red arrows to the left show the action of E (up to a scalar), the blue arrows
the right the action of F (up to a scalar) and the green arrows the action of K (and
leaving out the action of the other generators).

So we get an easy formula for the quantum dimensions (noting K2ρ = K):

qdim(∆(i · ω)) =
i∑

k=0
qi−2k

One should observe, that since q is a root of unity, the quantum dimension sometimes
vanishes:

For example, take q = ei
2π
5 (i.e. ` = 5), i = 4, then

qdim(∆(4ω)) = q4 + q2 + 1 + q−2 + q−4 = 0.

Lemma3.3.9 The quantum trace is additive and multiplicative, in the sense that we
have for M,N ∈ Ob(C):

qdim(M ⊕N) = qdim(M) + qdim(N), qdim(M ⊗N) = qdim(M) · qdim(N).

In particular, the quantum dimension behaves quite similarly to the ordinary dimen-
sion.

Proof. The additivity is clear.
Regarding the multiplicativity, it is easy to check in our category C, using the fact that

the dimension of weight spaces are given by dim(M ⊗N)λ =
∑
µ∈X dimMµ · dimNλ−µ.
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3.3 The Quantum Trace 3

Then it follows directly by Proposition 3.3.6:

qdim(M ⊗N) =
∑
λ∈X

dim(M ⊗N)λ · q2〈λ,ρ∨〉

=
∑
λ∈X

∑
µ∈X

dimMµ · dimNλ−µ · q2〈µ,ρ∨〉 · q2〈λ−µ,ρ∨〉

=

∑
µ∈X

dimMµ · q2〈µ,ρ∨〉

 ·
∑
ν∈X

dimNν · q2〈ν,ρ∨〉


= qdimM · qdimN

Alternatively, one can use the fact that the characters are multiplicative.

Corollary 3.3.10 The Z-span of equivalence classes of modules with vanishing quantum
dimension form an ideal in the Grothendieck ring R.

Example 3.3.11 If we look back at Example 3.2.3, so ` = 5 and g = sl2, then it holds:

qdim
(
∆(2ω)⊗∆(3ω)

)
= (q2 + 1 + q−2)(q3 + q + q−1 + q−3)
= q5 + 2q3 + 3q + 3q−1 + 2q−3 + q−5

= q5 + 2q3 + 2q + 2q−1 + 2q−3 + q−5︸ ︷︷ ︸
=0=qdimT (5ω)

+q + q−1

= qdim ∆(ω)

This of course is predicted by Equation (3).

Remark 3.3.12 Also recall the Weyl’s character formula for λ ∈ X+ (see [10, Section
24.3]). There is a non-trivial fact that the characters of the dual Weyl modules (and by
duality of the Weyl modules) are given by Weyl’s character formula (for references see
[6, Section 2]), i.e.:

ch ∆(λ) =
∑
ω∈W(−1)l(ω)eω(λ+ρ)∑
ω∈W(−1)l(ω)eω(ρ) .

In particular, we have:

qdim ∆(λ) =
∏
α∈Φ+

q〈λ+ρ,α∨〉 − q−〈λ+ρ,α∨〉

q〈ρ,α∨〉 − q−〈ρ,α∨〉
.

The product is only 0 if one factor is 0 and this is only the case (for ` odd) if λ is
`-singular:

q〈λ+ρ,α∨〉 − q−〈λ+ρ,α∨〉 = 0 ⇔ q〈λ+ρ,α∨〉 = q−〈λ+ρ,α∨〉 ⇔ q2〈λ+ρ,α∨〉 = 1

Hence, we get

qdim ∆(λ) = 0 ⇐⇒ λ is `-singular (4)
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3 3 The Category C−`

Example 3.3.13 Just in the Example 3.3.8, we have seen, that for ` = 5 and g = sl2
it holds qdim ∆(4ω) = 0 and 4ω is `-singular (it holds 〈4ω + ρ, α∨〉 = 5):

0 ω α 4ω−ρ

s0s1

Λ5

Here the dots represents elements in X and the vertical lines the alcove walls as before.

In our case, g = sl3 one can even simplify the formula above:
Recall, that in the case g = sl3 we can write λ ∈ X as λ = m1ω1 + m2ω2 for

m1,m2 ∈ Z and if λ ∈ X+ we have m1,m2 ≥ 0. In this setup, there is an even easier
formula to calculate the quantum dimension of L(λ) = ∆(λ) for λ ∈ Λ` (see [7] and
[19]):

Theorem3.3.14 (Quantum Weyl dimension formula for sl3) For all (m1ω1 +
m2ω2) ∈ Λ` we have:

qdim(L(m1ω1 +m2ω2)) = 1
[2]q

[m1 + 1]q[m2 + 1]q[m1 +m2 + 2]q.

Proof. This follows directly by applying the Weyl character formula:

qdimL(λ) =
∏
α∈Φ+

q〈λ+ρ,α∨〉 − q−〈λ+ρ,α∨〉

q〈ρ,α∨〉 − q−〈ρ,α∨〉

= [〈λ+ ρ, α∨1 〉]q
[〈ρ, α1〉]q

· [〈λ+ ρ, α∨2 〉]q
[〈ρ, α2〉]q

· [〈λ+ ρ, α∨1 + α∨2 〉]q
[〈ρ, α1 + α∨2 〉]q

.

Inserting λ = m1ω1 +m2ω2 and ρ = ω1 + ω2 proves the theorem.

Example 3.3.15 For g = sl3, the two easiest examples are L(0) and L(ω1):
In the case λ = 0, L(λ) is one dimensional and K1 and K2 act as 1, E1, E2, F1 and

F2 as 0. So we have qdimL(0) = 1 and on the other hand the quantum Weyl dimension
formula tells us

qdimL(0) = [1]q[1]q[2]q
[2]q

= 1.

The module L(ω1) has a less trivial form, depicted in the following diagram

m0 m1 m2

K1.=q1·

F1.

K2.=1·

K1.=q−1·

F2.

E1.

K2.=q·

K1.=1·

E2.

K2.=q−1·
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3.3 The Quantum Trace 3

where we illustrate the action of the generators. If there is no arrow for the operators
starting at a basis vector, they act as 0. We have K2ρ = K2

1K
2
2 , and we obtain for the

quantum dimension: qdim(L(ω1)) = q2 + 1 + q−2.
On the other hand the quantum Weyl dimension formula tells us:

qdim(L(ω1)) = [2]q[1]q[3]q
[2]q

= [3]q = q2 + 1 + q−2.

Here, the quantum dimension could only be 0 if [3]q = 0, i.e. ` = 3, which is not
allowed for g = sl3 (since ` > h = 3 by assumption).

Now back to our tilting modules: The negligible modules have the following property
(see [2, Theorem 3.4]):

Theorem3.3.16 Let M ∈ Ob(C) be tilting module with no connected component of the
form T (λ) with λ ∈ Λ`. Then for any endomorphism f of M the quantum trace of f
vanishes.

Proof. By Theorem 2.3.29, it suffices to prove the theorem forM = T (λ) for λ ∈ X+\Λ`.
Further, if the endomorphism f is nilpotent, so is K2ρ.f (since we have a weight space
decomposition and f preserves the weights). So in particular, we have qtr(f) = 0.

Since T (λ) is indecomposable, we know that any endomorphism f of T (λ) is equal
to a multiple of the identity plus a nilpotent endomorphism (f is nilpotent if it is 0 on
T (λ)λ). So the theorem reduces to the following proposition.

Proposition 3.3.17 Let λ ∈ X+. It holds:

qdimT (λ) = 0 ⇐⇒ λ /∈ Λ`

So we have an alternative characterization for the ideal R′ ⊂ Rt:

Corollary 3.3.18 We may characterize R′ := spanZ

{
[T (λ)] | λ ∈ X+\Λ`

}
as follows:

R′ = spanZ

{
[M ] ∈ Rt |M ∈ Ob(C), qdim(M) = 0

}
.

By Corollary 3.3.10, we have shown: R′ forms an ideal in Rt.
To prove the proposition, we will use a few lemmas:

Lemma3.3.19 Let λ ∈ X+ be `-singular. Then the quantum dimension of T (λ) van-
ishes.

Proof. This follows easily from the linkage principle (3.1.10). Since λ is `-singular, so is
each µ, which appears in the ∆-filtration of T (λ). We also know by the application of
the Weyl character formula (4), that every appearing ∆(µ) has quantum dimension 0.
In particular, so does T (λ).
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3 3 The Category C−`

Now we have proven the claim of the proposition for the `-singular case. For the
`-regular one, we need a few more steps:

Lemma3.3.20 Let E,M ∈ Ob(C) and suppose the quantum trace vanishes for all
endomorphisms of M , i.e.

∀f ∈ EndUq(g)(M) : qtr(f) = 0.

Then it holds:
∀ϕ ∈ EndUq(g)(E ⊗M) : qtr(ϕ) = 0

In particular, we have qdim(N) = 0 for all summands of E ⊗M .

Remark 3.3.21 The conclusion qdim(N) = 0 for all summands of E ⊗ M follows
directly, since one may consider f = pN the projection onto the summand N . Then it
holds 0 = qtr(pN ) = qdim(N).

Proof. Let (e1, ..., er) be a basis for E and denote by (e∗1, ..., e∗r) (respectively (e∗∗1 , ..., e∗∗r ))
the dual (resprectively double dual) basis of E∗ (respectively E∗∗). Recall, we have an
isomorphism of Uq(g)-modules: δE : E → E∗∗, e 7−→ (f 7→ f(K−1

2ρ .e)) and we also have
Uq(g)-homomorphisms:

iE∗ : C → E∗ ⊗ E∗∗, evE : E∗ ⊗ E → C,

1 7→
r∑

k=1
e∗k ⊗ e∗∗k , e∗i ⊗ ej 7→ δi,j .

So for ϕ ∈ EndUq(g)(E ⊗M) we define ϕ̄ ∈ EndUq(g)(M) as the following composition:

ϕ̄ : M iE∗⊗idM−−−−−−→E∗ ⊗ E∗∗ ⊗M
idE∗ ⊗δ−1

E ⊗idM
−−−−−−−−−−−−→E∗ ⊗ E ⊗M idE∗ ⊗ϕ−−−−−→E∗ ⊗ E ⊗M evE ⊗ idM−−−−−−−→M.

Claim: qtr(ϕ) = qtr(ϕ̄)
The lemma follows from the claim, since by assumption qtr(ϕ̄) = 0.
Now to prove the claim, for m ∈M it holds:

ϕ̄(m) = evE ⊗ idM

 r∑
k=1

e∗k ⊗ ϕ
(
δ−1
E (e∗∗k )⊗m

) .
Note: δ−1

E (e∗∗k ) = K2ρ.ek
So we get:

K2ρϕ̄(m) = ϕ̄(K2ρ.m)

= evE ⊗ idM

 r∑
k=1

e∗k ⊗ ϕ
(
K2ρ.ek ⊗K2ρ.m

)
= evE ⊗ idM

 r∑
k=1

e∗k ⊗ (K2ρϕ) (ek ⊗m)

 .
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From this we can easily see the claim, since given a basis (mi)i of M :

tr(K2ρϕ̄) =
∑
i

m∗i

evE ⊗ idM

 r∑
k=1

e∗k ⊗ (K2ρϕ) (ek ⊗mi)




=
∑
i,k

(
e∗k ⊗m∗i

) (
K2ρ.ϕ(ek ⊗mi)

)
= tr(K2ρϕ),

which is the formula for the quantum trace by Proposition 3.3.6. This finishes the
proof.

Before the final step of our proof of the proposition, we need to introduce the trans-
lation functors T λµ .

3.4 Translation Functors

The idea of a translation functor is to make a highest weight module of say weight λ
into a highest weight module of weight µ.

Definition 3.4.1 Let µ ∈ Λ` and M ∈ Ob(C). We set pµ(M) to be the maximal
submodule of M whose composition factors have highest weight in W`•µ.

Now let µ, λ ∈ Λ̄` (where Λ̄l is the union of Λ` and all integral weights on the alcove
walls of the fundamental alcove). Further, let ω ∈ W such that ω•(µ− λ) ∈ X+. Then
we define the translation functor T µλ : C → C as follows for M ∈ Ob(C):

T µλ (M) := pµ
(
M ⊗ T (ω•(µ− λ))

)
,

and for morphisms f : M → N

T µλ (f) :=
(
f ⊗ idT (ω•(µ−λ))

) ∣∣∣
T µ
λ

(M)

Remark 3.4.2 • Note, that ω ∈ W exists and is unique, since it is an element in
the non-affine Weyl group.

• T µλ (f) is well-defined, since f preserves weight spaces.

• The translation functors T µλ take tilting modules to tilting modules by Theorem
2.3.31.

Now to the proof of Proposition 3.3.17:

Proof of Proposition 3.3.17. We have already proven the claim for `-singular weights
(see Lemma 3.3.19).

Now let λ ∈ X+ \ Λ` be `-regular. Then there exists a unique ω ∈ W` \ {id} such
that ω−1

•λ ∈ Λ`. Further, we choose µ ∈ Λ̄` such that stabW`
(µ) = {id, si} and λ.si < λ
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3 3 The Category C−`

for some simple reflection si. This way we have that ω•µ is on a lower alcove wall of the
alcove containing λ.

−ρ

Here you see an example for λ and µ in X+.

λ

ω−1
•λ

ω•µ

µ

We already know by the `-singular case, that qdimT (ω•µ) = 0 and therefore by Lemma
3.3.20, that T ω−1•λ

µ (T (ω•µ)) = pω−1•λ(T (ω•µ)⊗T (τ(ω−1
•λ−µ))) (for some τ ∈ W) has

quantum dimension 0 and also all its summands.
Now it is only left to note, that T (ω•µ) ⊗ T (τ(ω−1

•λ − µ)) has maximal weight λ,
and therefore also T ω−1•λ

µ (T (ω•µ)). So by our classification of tilting modules (Theorem
2.3.29), T (λ) is a direct summand of T ω−1•λ

µ (T (ω•µ)). So in particular qdimT (λ) = 0.
This finishes the proof of Proposition 3.3.17 and therefore also the proof of Theorem

3.3.16.

3.5 Associativity of the Tensor Product

In the definition of the category C−` , we have also defined a tensor product: Given(
aνλ,µ

)
λ,µ,ν∈X+

such that

T (λ)⊗ T (µ) =
⊕
ν∈X+

T (ν)a
ν
λ,µ ,

then we define:
∆(λ)⊗̄∆(µ) =

⊕
ν∈Λ`

∆(ν)a
ν
λ,µ

Now we can show, that this tensor product is associative (up to natural isomorphisms)
(see [2, Section 4]), but we will use a bit more general definition.

We have the following corollary:

Corollary 3.5.1 Let µ1, ..., µr ∈ Λl. Then:

∆(µ1)⊗∆(µ2)⊗ ...⊗∆(µr) = Z ⊕

⊕
λ∈Λ`

∆(λ)aλ

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for some aλ ∈ Z≥0 and some Uq(g)-module Z with the property that the quantum trace
vanishes for all endomorphisms of Z.

Proof. By the linkage principle (especially Corollary 3.1.12), we know that the ∆(µk)’s
are tilting and therefore by Theorem 2.3.31 ∆(µ1) ⊗ ∆(µ2) ⊗ ... ⊗ ∆(µr) is a tilting
module. So we may write by the characterization of tilting modules (Theorem 2.3.29):

∆(µ1)⊗∆(µ2)⊗ ...⊗∆(µr) =

⊕
λ/∈Λ`

T (λ)aλ

⊕
⊕
λ∈Λ`

T (λ)aλ


So we set Z =
⊕

λ/∈Λ` T (λ)aλ and by Theorem 3.3.16 every endomorphism of Z has
quantum trace 0.

Further, we define for a tilting module D the module D̄ as the maximal submodule
of D which is also an object in C−l , i.e. (with the characterization in Theorem 2.3.29):

D̄ =
⊕
λ∈Λ`

T (λ)aDλ

We define the reduced tensor product ⊗̄ as follows:

D1⊗̄D2 := D1 ⊗D2

for two tilting modulesD1 andD2. (Note, that this definition coincides with the previous
one in C−` if both modules M1 and M2 are objects in C−` .)

Proposition 3.5.2 The reduced tensor product ⊗̄ is associative, i.e. given tilting mod-
ules D1, D2 and D3 it holds:

(D1⊗̄D2)⊗̄D3 ∼= D1⊗̄(D2⊗̄D3)

Proof. By definition of the reduced tensor product we may write D1⊗D2 = (D1⊗̄D2)⊕
Z1,2 and D2 ⊗ D3 = (D2⊗̄D3) ⊕ Z2.3. Further, Z1,2 and Z2,3 have the property that
all endomorphism have quantum trace 0 (by Theorem 3.3.16). So by Lemma 3.3.20 we
have: The quantum trace of every endomorphism of D3 ⊗ Z1,2 (respectively D1 ⊗ Z2,3)
vanishes. In particular:

D3⊗̄Z1,2 = 0 = D1⊗̄Z2,3.

Hence we get:

(D1⊗̄D2)⊗̄D3 ∼=
(
(D1⊗̄D2)⊗̄D3

)
⊕
(
Z1,2⊗̄D3

)︸ ︷︷ ︸
=0

∼= (D1 ⊗D2)⊗̄D3
∼= (D1 ⊗D2)⊗D3
∼= D1 ⊗ (D2 ⊗D3)
∼= D1⊗̄(D2 ⊗D3)
∼= D1⊗̄(D2⊗̄D3).
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This proves the associativity of the tensor product.

Remark 3.5.3 In some sense we can say that the category C−` is a quotient of the full
subcategory Ct of the category C, which consists of all tilting modules.

3.6 Quantum Racah Formula for sl3

In this section, we only consider g = sl3. With the quantum Racah formula we can
compute the multiplicities of Weyl modules in the tensor product of two Weyl modules.
(For the proof see [18].)

Theorem3.6.1 (Quantum Racah formula) For λ, γ, ν ∈ Λ` it holds:
The constant aνλ,γ (from Definition 3.2.1) is given by

aνλ,γ =
∑
τ∈W`

(−1)l(τ)mγ(τ•ν − λ),

where l(τ) is the length of a reduced expression of τ ∈ W` in terms of s0, s1, s2 and mγ(µ)
is the dimension of the µ-weight space in the classical representation (i.e. representation
of U(sl3), i.e. non-quantized) of highest weight λ.

Example 3.6.2 For ` = 5, one has

Λ5 =
{
0, ω1, 2ω1, (ω1 + ω2), ω2, 2ω2

}
.

• Starting with the easiest possible example: ∆(0)⊗∆(0)
We have

m0(λ) =

1, if λ = 0,
0, else.

So each summand is 0, unless τ•ν = 0. Since ν ∈ Λ`, this is only the case for τ = id
and ν = 0, i.e.:

aν0,0 =

1, if ν = 0,
0, else.

• Consider now the example ∆(ω1)⊗∆(ω1).
It holds

mω1(λ) =

1, if λ = ω1 or λ = −ω1 + ω2 or λ = −ω2,

0, else.
(5)

So mω1(τ•ν − ω1) is unequal zero if τ•ν is one of the three values: 2ω1, ω2 and
ω1 − ω2

Note that τ•ν never takes the value ω1 − ω2 for ν ∈ Λ5, since it is on the wall
corresponding to s2 of the fundamental alcove. On the other hand, 2ω1 and ω2
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are in the fundamental alcove, so the only possible value for τ is the identity and
therefore for ν only 2ω1 and ω2, i.e.:

aνω1,ω1 =

1, if ν = 2ω1 or ν = ω2,

0, else.

• For a bit more complicated example, let us consider ∆(2ω1)⊗∆(ω1 + ω2).

(Note that the classical representation of weight (ω1 + ω2) = (α1 + α2) is actually
the adjoint representation of sl3.)

We have

m(ω1+ω2)(λ) =


2, if λ = 0,
1, if λ = ±(ω1 + ω2) or λ = ±(−ω1 + 2ω2) or λ = ±(2ω1 − ω2),
0, else.

So for m(ω1−ω2)(τ•ν − 2ω1) 6= 0, it holds:

τ•ν ∈
{
(3ω1 + ω2), (ω1 + 2ω2), (4ω1 − ω2), ω2, (ω1 − ω2), (3ω1 − 2ω2), 2ω1

}
,

where the last value has multiplicity 2.

−ρ

0

ω2 ω1

ρ

We should stress that the values (ω1 + 2ω2), (4ω1−ω2) and (ω1−ω2) lie on alcove
walls and are not possible for ν ∈ Λ5. Further, we can see for ν = ω2 that we have
only one summand:

aω2
2ω1,(ω1+ω2) = (−1)l(id)m(ω1+ω2)(ω2 − 2ω1) = 1.
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The most interesting value for ν is 2ω1 (the others have only summands which are
0):

a2ω1
2ω1,(ω1+ω2) =

∑
τ∈W5

(−1)l(τ)m(ω1+ω2)(τ•(2ω1)− 2ω1)

= (−1)l(id)m(ω1+ω2)(2ω2 − 2ω2)
+ (−1)l(s0)m(ω1+ω2)(3ω1 + ω2 − 2ω2)
+ (−1)l(s2)m(ω1+ω2)(3ω1 − 2ω2 − 2ω2)

= 2− 1− 1
= 0

So we have:

aν2ω1,(ω1+ω2) =

1, if ν = ω2,

0, else.

We can check that the quantum dimensions of L(2ω1) ⊗ L(ω1 + ω2) and L(ω2)
really coincide for q a 5th root of unity, namely:

qdim
(
L(2ω1)⊗ L(ω1 + ω2)

)
= qdim(L(2ω1)) · qdim(L(ω1 + ω2))
= (q−4 + q−2 + 2 + q2 + q4) · (q−4 + 2q−2 + 2 + 2q2 + q4)
= q−8︸︷︷︸

=q2

+ 3q−6︸ ︷︷ ︸
=3q4

+6q−4 + 9q−2 + 10 + 9q2 + 6q4 + 3q6︸︷︷︸
=3q−4

+ q8︸︷︷︸
=q−2

= q−2 + 1 + q2 + (9q−4 + 9q−2 + 9 + 9q2 + 9q4)︸ ︷︷ ︸
=0

= qdim(L(ω2)).

Example 3.6.3 Now, let us do an example for a general odd ` > h . We want to
compute ∆(λ)⊗̄∆(ω1) for any λ ∈ Λ`.

Again, as in Equation (5) we have

mω1(τ•ν − λ) =

1, if τ•ν − λ ∈ {ω1,−ω1 + ω2,−ω2},
0, else,

=

1, if τ•ν ∈ {ω1 + λ,−ω1 + ω2 + λ,−ω2 + λ},
0, else.

Further, we note that for any λ ∈ Λ` the weights ω1 + λ,−ω1 + ω2 + λ and −ω2 + λ
lie in the closure of the fundamental alcove. Hence, the only possibility for a non-zero
summand in the quantum Racah formula is τ = id.

Thus it holds:

∆(λ)⊗̄∆(ω1) =
⊕

ν∈{ω1+λ,−ω1+ω2+λ,−ω2+λ}∩Λ`

∆(ν)
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3.6 Quantum Racah Formula for sl3 3

Example 3.6.4 The quantum Racah formula has a well-understood and explicit variant
for sl2 as well. Then going back to Example 3.2.3, so ` = 5 and Λ` = {0, ω, 2ω, 3ω} and
we want to calculate arω2ω,3ω for r ∈ {0, 1, 2, 3}.

We have

m3ω(µ) =

1, if µ ∈ {3ω, ω,−ω,−3ω},
0, else.

Hence, we have

m3ω(τ.rω − 2ω) 6= 0 ⇐⇒ τ.rω ∈ {5ω, 3ω, ω,−ω}

Note −ω = −ρ is `-singular, and thus not a possible value!

0 ω α 3ω 4ω−ρ 5ω

s0s1

The only possible values for τ are id (here r ∈ {1, 3} possible) and s0 (here r = 3
possible). Thus, we get:

a3ω
2ω,3ω = (−1)l(id)m3ω(3ω − 2ω)︸ ︷︷ ︸

=1

+ (−1)l(s0)m3ω(5ω − 2ω)︸ ︷︷ ︸
=−1

= 0,
aω2ω,3ω = (−1)l(id)m3ω(ω − 2ω)

= 1.

Hence, we have the same constants arω2ω,3ω as in Example 3.2.3.
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4 A Combinatorial Description for g = gln+1

In this last section, we discuss a combinatorial description of the category C−` (gln+1) for
g = gln+1. By taking a quotient of this, one gets a description of the category C−` (sln+1)
for g = sln+1. For this last section, we follow [5, Section 3].

4.1 The Setup for gln+1

For gln+1, we have the standard Cartan subalgebra given by all diagonal matrices, i.e.
h = Dn+1, and as in Section 1 we have the standard basis (εj)n+1

j=1 of the dual D∗n+1,
where εj(Ei,i) = δi,j . Via this basis, we can identify the weight lattice X with Zn+1 and
we may write λ ∈ X as λ =

∑n+1
j=1 λjεj or alternatively λ = (λ1, λ2, ..., λn+1). Further,

the positive roots Φ+ for gln+1 are given by the set {εi − εj | 1 ≤ i < j ≤ n + 1} (and
the simple roots again by αi = εi − εi+1). Thus, λ = (λ1, λ2, ..., λn+1) ∈ X is dominant
integral if and only if λ1 ≥ λ2 ≥ ... ≥ λn+1.

Remark 4.1.1 The main difference to the sln+1 case is that the dimension of the Cartan
subalgebra increases by one. In particular, the dual Cartan subalgebra has as basis ε1,
ε2, ..., εn+1 instead of the differences ε1 − ε2, ε2 − ε3, ..., εn − εn+1. Accordingly, the
definition of the quantum group Uq(gln+1) has the generators

(
D±1
i

)n+1

i=1
instead of the

generators
(
K±1
i

)n
i=1

. Note however that Uq(sln+1) is a Hopf subalgebra of Uq(gln+1)
generated by the usual Chevalley generators Ei, Fi and Ki = DiD

−1
i+1 for i ∈ {1, ..., n}.

For a more detailed account see e.g. [8, Section 2].

Remark 4.1.2 Note, the theory about tilting modules in section 2 can be shown ana-
logously for the case g = gln+1. So we assume the construction and statements hold for
Uq(gln+1).

Further, the integral weights in the fundamental alcove Λ` are given by the set

Λ` =
{
λ ∈ X+ | λ1 − λn+1 ≤ `− n− 1 = k

}
,

and explicitly, the fundamental weights ω1, ω2, ..., ωn+1 are the following

ωi = ε1 + ε2 + ...+ εi for i ∈ {1, ..., n+ 1}.

Then the weights of the dual Weyl module ∇(ωi) are {εj1 + εj2 + ...+ εji | 1 ≤ j1 <
j2 < .... < ji ≤ n+ 1} where all occurring weights have multiplicity 1, since the ωi’s are
minuscule.

Further, observe that for µ ∈ Λ` it holds µ+ ν ∈ Λ̄` for all weights ν of ∇(ωi).
We have the following fact for such weights (see [5, Corollary 2.3]):

Lemma4.1.3 Suppose λ, µ ∈ Λ̄` are such that η + µ ∈ Λ̄` for all weights η of ∇(λ).
Then for any ν ∈ Λ` we have

aνλ,µ = dim∇(λ)ν−µ
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In particular, here we get:

Corollary 4.1.4 Let i ∈ {1, 2, ..., n+ 1} and µ ∈ Λ`. Then it holds

[∆(ωi)][∆(µ)] =
∑

[∆(εj1 + εj2 + ...+ εji + µ)], (6)

where the sum runs over those i-tuples 1 ≤ j1 < j2 < ... < ji ≤ n + 1 for which
εj1 + εj2 + ...+ εji + µ ∈ Λ`.

Corollary 4.1.5 Let µ ∈ Λ`, r ∈ Z. Then it holds

[∆(rωn+1)][∆(µ)] = [∆(µ+ rωn+1)].

Proof. It holds [∆(ωn+1)][∆(λ)] = [∆(λ+ωn+1)] for all λ ∈ Λ` by Corollary 4.1.4. Hence
we get by induction on r for r > 1:

[∆(rωn+1)][∆(µ)] = [∆(ωn+1)][∆((r − 1)ωn+1)][∆(µ)]
= [∆(ωn+1)][∆(µ+ (r − 1)ωn+1]
= [∆(µ+ rωn+1)].

We also note [∆(ωn+1)] has multiplicative inverse [∆(−ωn+1)]. In particular, the claim
also holds for r < 0. This finishes the proof.

4.1.1 A Presentation of Weights

The action of the operators ai, which we define in the next subsection, can be realized
graphically in two ways. But first let us discuss the presentation of weights by a formal
factor zλn+1 and a configuration.

Given a weight λ ∈ Λ`, the differences mi = λi − λi+1 and λn+1 encode λ =
(λ1, ..., λn+1) in the basis of fundamental weights:

λ = λn+1ωn+1 +
n∑
i=1

miωi.

Further, it holds for a weight λ ∈ X+ (i.e. m1, ...,mn ≥ 0):

λ ∈ Λ` ⇐⇒ m =
n∑
i=1

mi ≤ k.

Also we set m0 = k −m.

Example 4.1.6 Let n = 4 and λ = (12, 10, 10, 8, 6). We can write λ as

λ = 6ω5 + 4ω1 + 0ω2 + 2ω3 + 2ω4,

and here it holds m = 6 and m0 = k − 6.
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4 4 A Combinatorial Description for g = gln+1

A weight λ ∈ Λ` can be viewed as a configuration of k particles on a circle with
n+ 1 marked points with mi particles at place i and an additional formal factor zλn+1 ,
which we use to distinguish between multiples of ωn+1. The circle can be viewed as an
extended Dynkin diagram of type Ãn.

Example 4.1.7 Here are some configurations with z-factor for some different values of
k, n and λ.

k = 5
n = 3

λ = ω2 + 3ω3 − 7ω4

0

1

2

3

z−7·

k = 6
n = 4

λ = ω1 + ω2 + 2ω3 + 3ω5

1 2

34

0z3·

k = 4
n = 4

λ = 2ω2 + 2ω4

1 2

34

01·

4.2 The Operators ai
In the following we will consider the free Z-module Z(Λ`) with basis set Λ`. We denote
its basis elements by eλ for λ ∈ Λ`.

Definition 4.2.1 Let 0 ≤ i ≤ n. We define the linear operator ai on Z(Λ`) on the basis
elements eλ for λ ∈ Λ` via

ai(eλ) =

eλ+εi+1 , if λ+ εi+1 ∈ Λ`,
0, else.

Remark 4.2.2 If we write λ ∈ Λl in terms of the fundamental weights, then we have

e
∑n+1

j=1 mjωj ai7−→ e
∑i−1

j=1 mjωj+(mi−1)ωi+(mi+1+1)ωi+1+
∑n+1

j=i+2 mjωj ,

if mi ≥ 1 and it is sent to 0 otherwise.

Now, we discuss two different ways to view the operators ai’s.

I. We may represent an arbitrary λ = (λ1, ..., λn+1) ∈ X by n+1 rows of boxes where
the ith row is infinite to the left and stops at number λi (which may be negative).
The weights in Λ` are exactly the weights where the rows are non-increasing and
there are at most k more boxes in the first row than in the last.

Example 4.2.3 As in Example 4.1.6, let n = 4, λ = (12, 10, 10, 8, 6).
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4.2 The Operators ai 4

..........

..........

..........

..........

..........

0

In this presentation of the weights, the operator ai adds a box in the (i+ 1)th row
if after adding it is still an element in Λ`. Otherwise the weight is killed.

II. The second presentation of the operator ai is on the set of configurations with
formal z-factor (described in Subsubsection 4.1.1).
Then the operators ai act on such a configuration by taking a particle at the ith
node to the (i+ 1)th node (identifying the (n+ 1)th node with the 0th node) and if
there is no particle at the ith node, it kills the configuration. Further, the operator
an acts additionally by multiplication by z to the z-factor. This way the operators
can be viewed as “particle hopping” from one node to the next in a clockwise
direction.

Remark 4.2.4 Starting at a particle and sending it with the operators ai’s clock-
wise around the circle does not change the configuration, but one would have added
ωn+1 to λ. Hence, one cannot differentiate between adding multiples of ωn+1 by
only looking at the configuration, but then we can distinguish them by the exponent
of z.

Remark 4.2.5 In the reference [5] one should be careful, since they forgot to
mention the factor z.

Example 4.2.6 Consider k = 4, n = 2 and λ = ω1 + 3ω2. Then the configuration
corresponding to λ is the following:

0

21

a1

a2
z·

where the operator a0 would act by 0, since there is no particle at the node 0.

Remark 4.2.7 Note, that the operators do not commute in general! One can easily
see in the above example, namely a2a0(λ) = 0 but a0a2(λ) = 2ω1 + 2ω2 + ω3.

In general, it is easy to see that ai and aj commute if and only if i and j are not
neighbors in the circle (i.e. |i− j| 6= 1 mod n+ 1).
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4 4 A Combinatorial Description for g = gln+1

More precisely, if one ignores the additional factor z of the action of an, then they
generate the affine local plactic algebra Pl(A) (see [15, Section 5.1]), which can be defined
as the free algebra generated by the elements of A = {a0,a1, ...,an} modulo the relations

aiaj − ajai = 0 if i 6= j ± 1,
ai+1a2

i = aiai+1ai,
a2
i+1ai = ai+1aiai+1

for i, j ∈ {0, 1, ..., n} and read cyclically, i.e. mod(n+ 1).

4.3 The Combinatorial Fusion Ring F c` (gln+1)

The combinatorial fusion ring Fc` (gln+1) has as a Z-basis the weights in Λ`, but for
the multiplication we need to use non-commutative Schur polynomials with argument
a = (a0,a1, ...,an).

The following definitions can be found in [5, Section 3.1], which also uses references
to [15, Section 5.3].

Definition 4.3.1 Set a = (a0,a1, ...,an). Further, let I ( {0, 1, ..., n}. We define aI as
the product over I of its elements in anticlockwise cyclical order, i.e.:

A monomial aj1aj2 ...ajr is in anticlockwise cyclical order, if for any two indices ji
and jl with ji = jl + 1 mod n+ 1 the variable ajl occurs to the right of aji .

Further, we define the non-commutative elementary symmetric polynomials e1(a),
e2(a), ..., en(a) by

er(a) =
∑

I⊂{0,1,...,n}:
|I|=r

aI .

By convention we set er(a) = 0 for r < 0 and r > n + 1, e0(a) = 1 is defined as the
identity and en+1(a) = z · 1 the multiplication by the indeterminate z.

Example 4.3.2 • Let n = 2. Then

e1(a) = a0 + a1 + a2,

e2(a) = a1a0 + a2a1 + a0a2.

• Let n = 3. Then

e1(a) = a0 + a1 + a2 + a3,

e2(a) = a1a0 + a2a0 + a0a3 + a2a1 + a1a3 + a3a2,

e3(a) = a2a1a0 + a1a0a3 + a0a3a2 + a3a2a1.

• Let n = 4. Then

e3(a) = a2a1a0 + a1a0a3 + a1a0a4 + a0a3a2 + a2a0a4 + a0a4a3

+a3a2a1 + a2a1a4 + a1a4a3 + a4a3a2.
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Even though the operators ai and aj for neighbored i and j do not commute, we
have the following fact about the just defined polynomials (see [15, Corollary 5.14] or
[17]).

Lemma4.3.3 The elementary symmetric polynomials pairwise commute.

With the non-commutative elementary symmetric polynomials we can now define
the non-commutative Schur polynomials, which are well-defined because of the above
lemma.

Definition 4.3.4 Let λ ∈ Λ`, m, m1, ..., mn as above. Then λt denotes the partition
with mi rows of length i for each i ∈ {1, ..., n}.

The non-commutative Schur polynomial of λ is given by

sλ(a) = zλn+1 · det
(
eλti−i+j(a)

)m
i,j=1

,

and if λt is the empty partition, we set sλ(a) = zλn+1 .

Example 4.3.5 • Let n ∈ N, i ∈ {1, ..., n} and λ = ωi. Then we have m = 1 and
λt1 = i. Hence,

sλ(a) = det(ei(a)) = ei(a).

• Let n = 3, λ = (4, 3, 2, 2). Then we have m1 = 1, m2 = 1, m3 = 0 and m = 2. So
we have λt = (2, 1) and

sλ(a) = z2 · det
(
eλt1−1+1(a) eλt1−1+2(a)
eλt2−2+1(a) eλt2−2+2(a)

)

= z2 · det
(
e2(a) e3(a)
e0(a) e1(a)

)
= z2 · (e2(a)e1(a)− e0(a)︸ ︷︷ ︸

=1

e3(a)).

Using the non-commutative Schur polynomials we can now define the combinatorial
fusion ring:

Definition 4.3.6 The combinatorial fusion ring Fc` (gln+1) is defined as the free Z-
module Z(Λ`) with basis (eλ)λ∈Λ` equipped with the following multiplication for λ, µ ∈ Λ`

eλ ? eµ = sλ(a)(eµ).

Example 4.3.7 • Let n ∈ N, µ ∈ Λ` and 0 ∈ Λ` be the 0 weight. Then

e0 ? µ = s0(a)︸ ︷︷ ︸
=1

eµ = eµ.
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Thus, e0 ∈ Λ` is the multiplicative identity in Fc` (gln+1).

• Let n = 3, λ = ω2. Then by Example 4.3.5 we know sλ(a) = e2(a). Then for
I = {0, 2} and µ ∈ Λ` we have

aI(eµ) = a2a0(eµ) =

a2(eε1+µ), if ε1 + µ ∈ Λ`,
0, else,

=

eε3+ε1+µ if ε3 + ε1 + µ ∈ Λ`,
0, else.

Similarly, we get the analogous result for each summand of e2(a)(eµ). Hence, we
get

eλ ? eµ =
∑
j1<j2:

εj1+1+εj2+µ∈Λ`

eεj1+1+εj2+µ,

where the sum is the formal sum of weights and not the sum in the weights lattice.

• More general, as in Example 4.3.5, consider n ∈ N, i ∈ {1, ..., n} and λ = ωi. Then
for µ ∈ Λ` we have by definition

eλ ? eµ = sλ(a)(eµ) = ei(a)(eµ).

Let I = {j1 < j2 < ... < ji} ⊂ {0, 1, ..., n}. Then each consecutive row of
ajrajr−1...ajs (in anticlockwise cyclical order) adds εjr + ...+ εjs to µ if it is still a
weight in Λ` and it does not change if another consecutive row acted first. Hence,
in formulas we have

aI(eµ) =

eεj1+1+εj2+1+...+εji+1+µ, if εj1+1 + εj2+1 + ...+ εji+1 + µ ∈ Λ`,
0, otherwise.

In particular, it holds

eωi ? eµ = ei(a(eµ)) =
∑

j1<j2<....<ji:
εj1+...+εji+µ∈Λ`

eεj1+...+εji+µ.

Now that we defined the combinatorial fusion ring Fc` (gln+1), we want to identify it
with the Grothendieck ring F of C−` (gln+1) (see [5, Theorem 3.1]).

Theorem4.3.8 The map Ξ : F → Fc` (gln+1) taking each basis element [∆(λ)] ∈ F to
the basis element eλ ∈ Fc` (gln+1) is a ring isomorphism.

Proof. We prove Ξ([∆(λ)][∆(µ)]) = eλ ? eµ by induction on m = λ1 − λn+1.
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• The case m = 0 follows by Corollary 4.1.5, namely for λ = rωn+1 it holds

Ξ([∆(rωn+1)][∆(µ)]) = Ξ([∆(rωn+1 + µ)]) = erωn+1+µ = zr · eµ = erωn+1 ? eµ

For the cases m > 0 we only need to consider λ ∈ Λ` with λn+1 = 0. Otherwise
write [∆(λn+1ωn+1 + λ′)] = [∆(λn+1ωn+1)][∆(λ′)] and apply the case m = 0.

• Now let m = 1, i.e. λ = ωi for some i ∈ {1, ..., n}. Then by Corollary 4.1.4
and Example 4.3.7 the summands appearing in each product are the same, i.e.
Ξ([∆(ωi)][∆(µ)]) = eωi ? eµ.

• Now let m > 1. Then we may write λ = λ′ + ωi for some i ∈ {1, ..., n}. Let
i ∈ {1, ..., n} be minimal with this property. We prove the claim by induction on
i.

– For i = 1, it holds

[∆(λ′)][∆(ωi)] = [∆(λ)] +
∑
η

[∆(η)], (7)

for some η ∈ Λ`, where each η satisfies η1 − ηn+1 < m (since in equation (6)
in Corollary 4.1.4 there is only one summand where η1 > λ′1, namely λ).
Then by the induction hypothesis (of the induction on m) we have

Ξ([∆(λ)][∆(µ)]) = Ξ([∆(λ′)][∆(ωi)][∆(µ)])−
∑
η

Ξ([∆(η)][∆(µ)]) (8)

= eλ
′
? Ξ([∆(ωi)][∆(µ)])−

∑
η

eη ? eµ (9)

= eλ
′
? eωi ? eµ −

∑
η

eη ? eµ (10)

= eλ ? eµ. (11)

– For i > 1, the equality in (7) still holds, but the η ∈ Λ` might also have the
property η1−ηn+1 = m. But these latter ones may be written as η+ωj where
j < i. Hence, using both induction hypotheses the claim follows by the same
calculation as in (8).

This finishes the proof of the theorem.

4.4 The Combinatorial Fusion Ring F c` (sln+1)

To distinguish between gln+1 and sln+1, we write X(gln+1), X(sln+1), C−` (gln+1), ... .
In this last part, we only give the idea and the one important statement without

further details from [5, Section 3.2].
We may identify X(sln+1) =

{
λ ∈ X(gln+1) | λn+1 = 0

}
. Then any λ ∈ X(gln+1)

equals a unique element in X(sln+1) modulo a multiple of ωn+1. Similarly, we have
X+(sln+1) = X(sln+1) ∩X+(gln+1) and Λ`(sln+1) = X(sln+1) ∩ Λ`(gln+1).
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Note, that Λ`(sln+1) is finite, even though Λ`(gln+1) is not.
By restriction of gln+1 to sln+1, we get surjections of the Grothendieck rings of the

categories C−` (gln+1) and C−` (sln+1), namely F(gln+1) � F(sln+1) and of the combinat-
orial fusion rings Fc` (gln+1) � Fc` (sln+1).

In particular, we obtain the following isomorphisms:

Theorem4.4.1 We have ring isomorphisms

F(sln+1) ∼= F(gln+1)/([∆(ωn+1)]− 1)

and
Fc` (sln+1) ∼= Fc` (gln+1)/(eωn+1 − 1),

such that the isomorphism Ξ from Theorem 4.3.8 induces an isomorphism

F(sln+1) ∼= Fc` (sln+1).

Hence, to describe F(sln+1) combinatorially with the configurations and the operat-
ors a, we do not need to keep track of the z-factor since we set z = 1 via the isomorphism.
Thus, here the operator an has no additional multiplication by z. The Z-basis is solely
given by the configurations with k particles.

So instead of using the quantum Racah formula (Theorem 3.6.1), we can compute
the multiplicities in the combinatorial fusion ring Fc` (sln+1).

Example 4.4.2 • First, we may look at the Example 3.2.3/Example 3.6.4, i.e. n =
1 and ` = 5. We want to calculate e2ω ? e3ω.
For λ = 2ω we have m = m1 = 2. Hence, we get λt = (1, 1) and

sλ(a) = det
(
e1(a) e2(a)
e0(a) e1(a)

)
= (e1(a))2 − 1.

Further, we have e1(a) = a0 + a1 and for λ = 3ω we have m = m1 = 3 = k and
m0 = 0, in particular a0(e3ω) = 0. Thus, it holds:

e2ω ? e3ω = (a2
0 + a0a1 + a1a0 + a2

1 − 1) 0 1

= 0 1 + 0 1 − 0 1

= eω.
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• Going back to Example 3.6.2, i.e. n = 2 and ` = 5, we want to compute e2ω1 ?
eω1+ω2 . With the quantum Racah formula, the computation was rather lengthy.
For λ = 2ω1, we have m = m1 = 2 = k. Hence, as above we have λt = (1, 1). It
follows

sλ = det
(
e1(a) e2(a)
e0(a) e1(a)

)
= (e1(a))2 − e2(a)

= (a0 + a1 + a2)2 − a1a0 + a2a1 + a0a2

= a2
0 + a2

1 + a2
2 + a0a1 + a1a2 + a2a0.

For λ = ω1 + ω2, we have m1 = m2 = 1 and m0 = 0. Hence, the configuration
corresponding to ω1 + ω2 is:

0

21

Note:

a2
0(eω1+ω2) = a2

1(eω1+ω2) = a2
2(eω1+ω2) = a0a1(eω1+ω2) = a2a0(eω1+ω2) = 0.

Thus, it holds:

e2ω1 ? eω1+ω2 = a1a2

0

21

=

0

21

= eω2 .

Now we know two ways to compute the products in the fusion ring F(sln+1) of the
category C−` (sln+1), namely with the quantum Racah formula and in the combinatorial
fusion ring. In comparison, doing the computations in the combinatorial fusion ring
Fc` (sln+1) is for higher n and ` a more straightforward and less complicated calculation.
Further, we may always check our results by comparing the quantum dimensions, which
are given by the Weyl character formula.
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4.4.1 The Even Case in Type A

Up till now we worked with the assumption that ` is odd. In the case of ` even, we set
`′ = `

2 . Then we may replace ` by `′ and the statements remain true, since in type A all
roots have the same lengths. But we have to assume that ` ≥ 2n, since otherwise the
set of weights in the fundamental alcove is empty. For further information see e.g. [3,
Section 3] and [5, Subsection 3.2.1].

4.5 The Combinatorial Fusion Ring in Type C

We will finish by briefly discussing Fusion rings in Lie type C.
In the case g = sp2n, one can do a similar construction with operators ai’s to define

the combinatorial fusion ring Fc` (sp2n) (see [5, Section 4]).
For g = sp2n, we may again identify the integral weightsX with Zn with basis (εi)ni=1.

The positive roots are given by the set {εi−εj , εi+εj | 1 ≤ i < j ≤ n}∪{2εi | 1 ≤ i ≤ n}
and the simple roots are αi = εi − εi+1 for i ∈ {1, ..., n− 1} and αn = 2εn.

As in type A, the fundamental weights are given by ωi = ε1 + ε2 + ... + εi for
i ∈ {1, ..., n}. In particular, we have

ρ = 1
2

 ∑
1≤i<j≤n

(εi − εj + εi + εj) +
n∑
i=1

2εi

 =
n∑
i=1

(n+ 1− i)εi =
n∑
i=1

ωi.

A weight λ ∈ X may be expressed as a sum of the εi’s, say λ =
∑n
i=1 λiεi, and as a

sum of the fundamental weights, say λ =
∑n
i=1miωi, and again we have mi = λi − λi+1

for i ∈ {1, ..., n} (and setting λn+1 = 0). In this notation, we may identify the dominant
weights via

λ ∈ X+ ⇐⇒ λ1 ≥ λ2 ≥ ... ≥ λn ≥ 0 ⇐⇒ mi ≥ 0 for all i ∈ {1, ..., n}.

The highest short and the highest long root are

α0 = α1 + 2α2 + 2α3 + ...+ 2αn−1 + αn = ε1 + ε2,

β0 = 2α1 + 2α2 + 2α3 + ...+ 2αn−1 + αn = 2ε1.

For ` odd we have

Λ` = { λ ∈ X+ | 〈λ+ ρ, α∨0 〉 < `}
= {λ ∈ X+ | m1 + 2m2 + 2m3 + ...+ 2mn < `− 2n+ 1},

and for ` even (set `′ = `
2)

Λ` = {λ ∈ X+ | 〈λ+ ρ, β∨0 〉 < `′}
= {λ ∈ X+ | m1 +m2 + ...+mn < `′ − n}.

In both cases we need the assumption ` > 2n = h since otherwise Λ` = ∅.
In this setup, we now may define the operators ai, ei and s′λ as follows.
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4.5 The Combinatorial Fusion Ring in Type C 4

Definition 4.5.1 Consider the free Z-modules Z(X) and Z(Λ`) with bases (eλ)λ∈X
respectively (eλ)λ∈Λ` . We define the Z-linear map π` : Z(X) → Z(Λ`) on the basis
elements eλ via

π`(eλ) =

(−1)l(ω)eω•λ, if there exists ω ∈ W` with ω•λ ∈ Λ`,
0, else.

To define the operators ai’s, we set εn+i = −εi for i ∈ {1, ..., n}.
For j ∈ {1, 2, ..., 2n} we define the Z-linear operators aj on Z(X) on the basis element

eλ by
aj(eλ) = eλ+εj .

For each subset J = {j1 < j2 < ... < ji} ⊂ {1, 2, ..., 2n} we set aJ = aj1aj2 ...aji . Then
for 1 ≤ i ≤ n we define the Z-linear operators ei on Z(Λ`) on the basis element eλ by

ei(eλ) =
∑

J⊂{1,...,2n}: |J |=i
π`(aJ(eλ)).

Remark 4.5.2 • One may again view the operators as particle hopping on some
extended Dynkin diagram (see [5, Subsection 4.3]), but this we will not discuss
here any further.

• It holds again: The operators ei and ej commute for all 1 ≤ i, j ≤ n (see [5,
Proposition 4.1]).

Definition 4.5.3 We set e′0 = 1, e′1 = e1, e′i = ei − ei−2 for 2 ≤ i ≤ n and e′i = 0
otherwise. Then analogously to Definition 4.3.4 we consider for λ ∈ Λ` the transposed
partition λt consisting of mi rows of lengths i and we define the operators s′λ on Z(Λ`)
by

s′λ = det
(
e′λti−i+j

)m
i,j=1

.

Definition 4.5.4 We define the combinatorial fusion ring Fc` (sp2n) as the free Z-module
Z(Λ`) with the following multiplication for the basis elements eλ and eµ

eλ ? eµ = s′λ(eµ).

We have the result (see [5, Theorem 4.2]):

Theorem4.5.5 For any ` > 2n there is an isomorphism of rings F(sp2n)→ Fc` (sp2n)
taking each basis element [∆(λ)] to the basis element eλ.

The motivation for the operators e′i is given by the definition of s′ωi = e′i and the
Pieri rules for [∆(ωi)][∆(µ)], namely in type C we have

[∆(ωi)][∆(µ)] =


∑2n
j=1[∆(µ+ εj)], if i = 1,∑
J : |J |=i[∆(µ+ εJ)]−

∑
J : |J |=i−2[∆(µ+ εJ)], if i ≥ 2,

60



4 4 A Combinatorial Description for g = gln+1

where all J ’s are subsets of {1, ..., 2n} and we set εJ =
∑
j∈J εj .
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binatorial construction and a realisation as quotient of quantum cohomology. Adv.
Math., 225(1):200–268, 2010.

[16] Jan Paradowski. Filtrations of modules over the quantum algebra. In Algebraic
groups and their generalizations: quantum and infinite-dimensional methods (Uni-
versity Park, PA, 1991), volume 56 of Proc. Sympos. Pure Math., pages 93–108.
Amer. Math. Soc., Providence, RI, 1994.

[17] Daniel Peter Ludwig Rohde. Schur polynome in der lokalen affinen plaktischen
algebra. Master’s thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, 2011.

[18] Stephen F. Sawin. Quantum groups at roots of unity and modularity. J. Knot
Theory Ramifications, 15(10):1245–1277, 2006.

[19] Andrew Schopieray. Classification of sl3 relations in the Witt group of nondegen-
erate braided fusion categories. Comm. Math. Phys., 353(3):1103–1127, 2017.

63


