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1 Introduction

To a Coxeter group (W,S) one can define the Hecke algebra H which is a deformation
of the group algebra of W . One usually considers two bases in this algebra, the stand-
ard basis and the Kazhdan–Lusztig basis. The coefficients of the base change matrix
between these two bases are known as the Kazhdan–Lusztig polynomials. Kazhdan and
Lusztig conjectured [KL79] that these polynomials can be used to describe characters of
simple highest weight modules over complex semisimple Lie algebras and this was later
proven by Beilinson–Bernstein [BB81] and Brylinski–Kashiwara [BK81] in 1981. This
justifies the importance of the Kazhdan–Lusztig polynomials.
A consequence of these results is, that if W is a Weyl group, the sum of all coefficients in a
given Kazhdan–Lusztig polynomial is a non-negative number, since it can be interpreted
as a certain Jordan–Hölder multiplicity in Lie theory. The Kazhdan–Lusztig positivity
conjecture states that all coefficients of these polynomials (for arbitrary Coxeter groups)
are positive. In order to prove this conjecture Soergel considered a certain category SBim
of special bimodules attached to a Coxeter system which are nowadays called Soergel
bimodules. He proved [Soe92, Soe07] that this monoidal category categorifies the Hecke
algebra H and he also proved that the indecomposable bimodules are classified by the
elements of the Coxeter group W . Indecomposable Soergel bimodules are exactly direct
summands of the so-called Bott–Samelson bimodules which are much easier to describe.
They categorify monomials in the Kazhdan–Lusztig generators of H. It is the passage
to direct summands which makes the category of Soergel bimodules extremely hard to
understand.
Soergel conjectured that under his categorification these indecomposable bimodules cor-
respond to the Kazhdan–Lusztig basis of H. Assuming this conjecture he was able
to prove the Kazhdan–Lusztig positivity conjecture by relating the coefficients of the
Kazhdan–Lusztig polynomials to dimensions of certain homomorphism spaces [Soe07].
However, Soergel could only prove his conjecture for some Coxeter groups (in particular
Weyl groups) [Soe92].
Soergel’s conjecture yields more far reaching consequences than just a proof of the
Kazhdan–Lusztig positivity conjecture. For instance it provides a natural “geometry”
for arbitrary Coxeter groups. Soergel (bi)modules were originally introduced by Soergel
to better understand category O and Harish-Chandra bimodules. In particular Soergel’s
conjecture also implies the Kazhdan–Lusztig conjecture on characters of simple highest
weight modules. The recent courses [EMTW20] and [Str20b] give an overview about
such details.
Soergel’s conjecture was proven for arbitrary Coxeter groups by Elias and Williamson
[EW14]. The catalyst to this advancement was their diagrammatic theory for Soergel
bimodules. They introduced a diagrammatic category by generators and relations and
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proved that this category is equivalent to Soergel bimodules (at least under some tech-
nical assumptions for the general case). This was done in [EW16] which is also the main
source for this thesis. Objects in this category are sequences of points on a line which
are labelled or “coloured” by elements of S. The morphisms encode all the information
and are coloured graphs between two such sequences. They are built out of certain
generators including

(end)dot (start)dot split merge

(see Definition 4.1) and could for example look as following.

This diagrammatic category can be considered independently of Soergel bimodules. The
definition is much more elementary, it is better suited for generalisations and special-
isations and allows to make explicit calculations which are even harder in the algebraic
setting of Soergel bimodules. Moreover, one can use it as a categorification of the Hecke
algebra in the same way as Soergel bimodules, but it works already under very weak
assumptions. The diagrammatic theory also led to many more advancements than just
the proof of Soergel’s conjecture. In fact the diagrammatic category is a strictification of
the monoidal category of Soergel bimodules and is therefore much more rigid and easier
to handle, in particular in view of higher categories, and extremely useful in terms of
categorification.
Hecke algebras arise naturally in representation theory, but even nicer is an enlargement,
the so-called Hecke algebroid, and the Schur algebras sitting inside there. They arise for
instance naturally from the representation theory of the general linear group. Based on
works of Soergel [Soe92] and Stroppel [Str04] who introduced singular Soergel bimod-
ules which are a generalization of Soergel bimodules Williamson introduced [Wil11] the
2-category of singular Soergel bimodules. He proved that this 2-category categorifies the
Hecke algebroid in a similar fashion as Soergel bimodules categorify the Hecke algebra.
Since the diagrammatic theory helped significantly to understand Soergel bimodules it
is now natural to ask whether it is possible to generalize the diagrammatic theory to
singular Soergel bimodules. In this thesis we will investigate this task for the symmetric
group W = Sn.
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We will start with the diagrammatical Soergel calculus of Elias and Williamson [EW16]
and try to improve it step by step to fit it into the setup of singular Soergel bimodules.
While Soergel bimodules are certain (R,R)-bimodules for a certain ring R depending on
W , singular Soergel bimodules are certain (RI , RJ)-bimodules where RI , RJ are subrings
of invariants for varying parabolic subsets I, J ⊆ S. To develop a suitable diagrammatic
approach we first need to incorporate the (RI , RJ)-bimodule structure into the setup.
This will be done in Definition 6.1 where we fix some I, J ⊆ S and generalize an idea
of Elias [Eli16, Section 5] to define a new diagrammatic category ITJ . The objects will
be the same as before. To describe the morphisms we follow an idea of Elias for one-
sided Soergel bimodules. Namely, the restriction to the action to invariants is encoded
by including a (black/grey) membrane on one side. We will do this now and will also
include a membrane on the other side, and thus the main difference in the pictures will
be two membranes. A morphism then looks for instance as follows.

I J

As a slight generalization of [Eli16, Theorem 5.6] we obtain the first result which connects

ITJ to a subcategory of singular Soergel bimodules.

Theorem 6.10. There is an equivalence of categories FI J : ITJ −→ BSBimI J , where
BSBimI J is the category of Bott–Samelson bimodules viewed as (RI , RJ)-bimodules.

Singular Soergel bimodules form a 2-category with objects parabolic subsets (I, J , etc.)
of S, 1-morphisms the bimodules and 2-morphisms the bimodule morphisms. We will
therefore similarly also collect all the categories ITJ (for all choices of I, J ⊆ S) together
into a 2-category T . Then we will incorporate the analogue of passing from Bott–
Samelson bimodules to Soergel bimodules by using the concept of partial idempotent
completion. This basically means that we add some direct summands to define a new
diagrammatic 2-category sT (Definition 6.21).
The objects will now be sequences of dots labelled by subsets of S and the spaces in-
between are also labelled by subsets of S (under some conditions). We have to include
thicker lines into the morphisms which are similar to the two membranes and were also
introduced by Elias [Eli16]. They capture the transition from elements of S to subsets
of S in the labelling of the dots. Moreover, we introduce coloured areas into the pictures
in order to capture the labelling of the spaces in-between the dots. This is all mirroring
the transition from simple reflections to parabolic subsets in the definitions of regular
and singular Soergel bimodules. A morphisms in sT will then look as follows.

J1
J2

I J
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Our first main result is then an equivalence between sT and singular Bott–Samelson
bimodules (whose Karoubian closure are singular Soergel bimodules).

Theorem 6.27. There is an equivalence of 2-categories sF : sT −→ sBSBim.

Partial idempotent completions allow us to construct more complicated categories like
sT . However, to understand this category we secretly use a trick which transfers calcula-
tions to the original category plus the knowledge of idempotents. This is quite convenient
for abstract arguments, but in practice the idempotents are hopeless to compute. Our
dream would be a complete understanding of all idempotents and their interactions.
This is a hard problem. We solve it completely at least for the case W = S3 where we
define another 2-category sT by generators and relations (Definition 7.8) and prove

Theorem 7.13. The 2-category sT is equivalent to sT , and hence gives a presentation
of sT .

We will now give a short summary of each chapter of this thesis.

� In Chapter 2 we will recall some basic notions which are fundamental for all up-
coming chapters. We recall the definitions of Coxeter groups (W,S) and the Hecke
algebra H and some basic properties. We continue by recalling the definition of
the Hecke algebroid and calculate some examples. We finish this chapter with the
definition of graded bimodules and graded categories and collect some basic facts
about them. For proofs we refer to the literature.

� We recall the concept of a realization h of (W,S) in Chapter 3 which allows us to
define the ring R = S(h) on which W acts naturally. Then the structure of R as
a module over the rings of invariants RJ is will be examined where J ⊂ S. First,
we do this for general Coxeter systems (W,S) and then we construct an explicit
basis in the case W = Sn.
After that we finally define the category of Soergel bimodules and state the main
theorems for them. Afterwards the same is done for singular Soergel bimodules.

� Chapter 4 is an introduction to the diagrammatics of Elias and Williamson [EW16].
We begin with defining the diagrammatic category D for W = Sn and then explain
what changes in the general case. In this chapter we only recollect statements
and results from [EW16]. In the second part we present results of Elias [Eli16].
He generalized the diagrammatics to a category gD by using partial idempotent
completion.

� In Chapter 5 we step away from the diagrammatics to do some calculations on
the algebraic side. We give a complete description of the 2-category of singular
Soergel bimodules for S3. More precisely, we classify all indecomposable bimodules
and explain how every bimodule decomposes into them. Then we compute all the
homomorphism spaces between any pair of indecomposable bimodules.
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� Chapter 6 contains the main results of this thesis. In the first section we generalize
the ideas of Elias [Eli16, section 5] to get the diagrammatic category ITJ and prove
that it is equivalent to a category of Bott–Samelson bimodules BSBimI J .
In the second section we use the concept of partial idempotent completion to define
the 2-category sT which is a generalisation of ITJ . We identify morphisms in sT
with new pictures and present some new relations for these. Moreover, we prove
the equivalence between sT and the category of singular Bott–Samelson bimodules.

� In Chapter 7 we restrict ourselves again to the case W = S3. First we give a
description for gD by generators and relations (without complicated idempotent
relations and inclusion or projection morphisms) and prove Theorem 7.5. In the
second part we give a description for sT by generators and relations and prove
Theorem 7.13.
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2 Basics

2.1 Coxeter groups

In this section we will give the definition of Coxeter groups and state some standard
facts about them. Standard references are [Bou81] and [Hum90].

Definition 2.1. A pair (W,S) of a group W and a finite subset S ⊂W is called Coxeter
system if there are mst ∈ N ∪ {∞} for all s, t ∈ S such that

1. mss = 1 for s ∈ S;

2. mst > 2 if s 6= t ∈ S;

3. W = 〈s ∈ S | (st)mst = e〉 (in particular S generates W ), where e ∈ W is the
neutral element.

The condition mst =∞ means that no relation of the form (st)m = e should be imposed.
The group W is then called Coxeter group with set of generators (or simple reflections)
S. ♦

Remark 2.2. Note that for s, t ∈ S we have mst = mts, since ts = (st)−1 and st need
to have the same order.
Since S is a finite set we will identify it with the set {1, . . . , |S|}, i.e. we fix a map

S
∼=−→ {1, . . . , |S|}. We will write the elements of S as s1, s2, . . . , s|S| via this identification

and sometimes write i ∈ S for a natural number i by which we mean si. ♦

Example 2.3. Our main example for a Coxeter group will be Sn. We know that W = Sn
becomes a Coxeter system (W,S) via the following choice of S

S = {simple transpositions} = {(i, i+ 1) ∈W | 1 6 i 6 n− 1}.

We have an obvious identification S ∼= {1, . . . , n−1} via si = (i, i+1). Now the numbers
mij = msisj are given as follows:

• mii = 1 for 1 6 i 6 n− 1;

• mij = 2 for |i− j| > 1;

• mi,i+1 = 3 for 1 6 i 6 n− 2.

Definition 2.4. Let w ∈W and write w = si1 · · · sid . We call (si1 , . . . , sid) an expression
for w. We call an expression (si1 , . . . , sid) reduced if there is no expression (sj1 , . . . , sjd′ )
for w with d′ < d.
We define the length function ` : W −→ N0 by `(w) = d if there is a reduced expression
(si1 , . . . , sid) for w (including the empty expression for e). ♦
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Remark 2.5. Note that for w ∈ W we have `(w) = 0 ⇐⇒ w = e and `(w) =
1 ⇐⇒ w ∈ S. Moreover, one can check that `(w−1) = `(w) for all w ∈ W . Indeed, if
w = si1 · · · sid is a reduced expression, then w−1 = sid · · · si1 , and thus `(w−1) 6 `(w).

This implies that `(w) = `
((
w−1

)−1
)
6 `(w−1), and hence `(w−1) = `(w).

In the definition we distinguished between the expression (si1 , . . . , sid) and the element
si1 · · · sid ∈ W which is necessary, since w = si1 · · · sid might have many expressions.
However, we won’t be so precise from now on. Instead we will often write “let w =
si1 · · · sid be an (reduced) expression” and mean by it that (si1 , . . . , sid) is an (reduced)
expression for w. ♦

The following is a result of Matsumoto [Mat64].

Lemma 2.6. Let w = si1 · · · sid = sj1 · · · sjd be two reduced expressions for an element
w ∈ W . Then one can transform si1 · · · sid to sj1 · · · sjd by repeatedly applying so-called
braid moves which transform

sts · · ·︸ ︷︷ ︸
mst factors

to tst · · ·︸ ︷︷ ︸
mst factors

for some s, t ∈ S. These braid moves are allowed by the relation (st)mst = e.

Definition 2.7. Let (W,S) be a Coxeter system. Let si1 · · · sid and sj1 · · · sjd′ be two
expressions. We call sj1 · · · sjd′ a subexpression of si1 · · · sid if there is a strictly increasing
function ϕ : {1, . . . , d′} −→ {1, . . . , d} such that sjk = siϕ(k) for all k = 1, . . . , d′. ♦

Definition 2.8. We define a partial ordering on the elements of W, called Bruhat order.
For w, u ∈ W we write u 6 w if there are reduced expressions w = si1 · · · sid and
u = sj1 · · · sjd′ such that sj1 · · · sjd′ is a subexpression of si1 · · · sid . ♦

Example 2.9. We consider W = S3 with the set generators S = {s1, s2} where s1 =
(1, 2), s2 = (2, 3) are the simple transpositions. Now we can write down the Bruhat
order for this Coxeter system as follows.

e

s1 s2

s1s2 s2s1

s1s2s1 = s2s1s2

An arrow means that the element at the source of the arrow is greater than the element
at the target of the arrow in the Bruhat order. This picture together with transitivity
then give the complete Bruhat order.

Remark 2.10. One can show that for w, u ∈ W one has u 6 w if and only if for any
reduced expression w = si1 · · · sid there is a reduced expression u = sj1 · · · sjd′ such that
sj1 · · · sjd′ is a subexpression of si1 · · · sid . ♦
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Theorem 2.11 (Strong exchange condition). Let w = si1 · · · sid be an expression (not
necessarily reduced) for w ∈ W . Let t be a reflection, i.e. t = usu−1 for some s ∈
S, u ∈ W . Suppose `(wt) < `(w), then there is an index 1 6 k 6 d for which wt =
si1 · · · sik−1

ŝiksik+1
· · · sid (where the hat means that this factor has been omitted). If the

expression for w is reduced, then k is unique.

Corollary 2.12 (Deletion property). Let w = si1 · · · sid be an expression for w ∈ W
such that `(w) < d. Then there exist 1 6 l < k 6 d such that w = si1 · · · ŝil · · · ŝik · · · sid.

Lemma 2.13. Let (W,S) be a Coxeter system such that W is finite. Then W has a
unique longest element w0 with respect to the length function `. This element is self-
inverse and is greater than any other element of W in the Bruhat order. Moreover, for
w ∈W we have `(ww0) = `(w0w) = `(w0)− `(w).

The longest element in Sn is the permutation that reverses the order of 1, . . . , n.

Corollary 2.14. Let (W,S) be a Coxeter system such that W is finite. Let s ∈ S, then
there are reduced expressions w0 = si1 · · · sid and w0 = sj1 · · · sjd such that s = si1 = sjd.

Definition 2.15. We call a subset I ⊂ S a parabolic subset and denote by WI the
subgroup of W generated by I. We call such subgroups of W parabolic subgroups. We
call a parabolic subset I ⊂ S finitary if WI is finite. In this case we denote by wI the
longest element of WI . ♦

Lemma 2.16. Let I ⊂ S be a parabolic subset, then (WI , I) becomes a Coxeter system
with the relations induced from (W,S). Moreover, the length functions of W and WI

agree on WI .

Remark 2.17. Let W = Sn and let J ⊂ S = {simple transpositions} be a parabolic
subset. Then WJ = Se1 × Se2 × · · · × Sem where for example Se1

∼= 〈s1, . . . , se1−1〉 and
se1 /∈ J . Then the longest element wJ of WJ can be written as wJ = we1we2 · · ·wem
where wei are the longest elements of the Sei viewed as elements of Sn. Moreover, for
w = (w1, . . . , wm) we have

`(w) =
m∑
k=1

`k(wk)

where `k is the length function on Sek . ♦

Definition 2.18. For a finitary subset I ⊂ S we define

π(I) = v`(wI) ·
∑
w∈WI

v−2`(w).

and call it Poincaré polynomial of WI . ♦

Example 2.19. Let W = S4 with S = {simple transpositions} and I = {s1, s2}. Then
WI has one element of length 0, two elements of length 1, two elements of length 2 and
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one (longest) element of length 3. This is due to the fact that WI is isomorphic to S3.
Thus, the Poincaré polynomial is given by

π(I) = v3 ·
(
1 + 2v−2 + 2v−4 + v−6

)
= v3 + 2v + 2v−1 + v−3.

If we consider the parabolic subset J = {s1, s3}, then WJ consists of the elements
1, s1, s3, s1s3, since s1 and s3 commute. Thus, it has one element of length 0, two
elements of length 1 and one element of length 2. Hence, in this case the Poincaré
polynomial is given by

π(J) = v2 ·
(
1 + 2v−2 + v−4

)
= v2 + 2 + v−2.

Definition 2.20. Let I ⊂ S be a parabolic subset. We define

DI = {w ∈W | ws > w for all s ∈ I} and DI = (DI)
−1 .

If I ⊂ S is finitary we define

DI = {w ∈W | ws < w for all s ∈ I} and DI =
(
DI
)−1

.

The elements of DI and DI (respectively DI and DI ) are called the minimal and max-
imal left (respectively right) coset representatives.
Given two subsets I, J ⊂ S we define

DI J = DI ∩DJ

and if I and J are finitary we define

DI J = DI ∩DJ .

We call the elements of DI J and DI J minimal and maximal double coset representatives
respectively. ♦

Proposition 2.21. Let I, J ⊂ S be two parabolic subsets. Every double coset p =
WIxWJ (for some x ∈ W ) contains a unique element of DI J and this is the unique
element of smallest length in p.
If I and J are finitary p also contains a unique element of DI J , and this is the unique
element of maximal length in p.

Proof. A proof can be found in [Str20a].

Example 2.22. Let us consider S3 with simple transpositions s1, s2 again and choose
I = {s1}, J = {s2}. Let us first compute the double coset p which contains e. We have
that s1 = s1e, s2 = es2 and s1s2 = s1es2 are in p. Thus, p = {e, s1, s2, s1s2}. The
remaining elements of S3 form the other double coset q = {s2s1, s1s2s1}. We have that

DI J = {w ∈ S3 | s1w > w,ws2 > w} = {e, s2s1}
DI J = {w ∈ S3 | s1w < w,ws2 < w} = {s1s2, s1s2s1}.

Now one can observe that p and q both contain exactly one element out of each of these
sets. Namely, p contains e and s1s2 which are the unique shortest and longest elements
of p respectively.
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Remark 2.23. Given a double coset p ∈WI\W/WJ we denote by p− the unique element
of minimal length in p. If I and J are finitary we denote by p+ the unique element
of maximal length in p. We call p− and p+ the minimal and maximal double coset
representatives.
We call the polynomial

π(p) = v`(p+)+`(p−) ·
∑
x∈p

v−2`(x)

Poincaré polynomial of p. ♦

The following result is due to Howlett, see e.g. [Wil11, Theorem 2.1.3].

Theorem 2.24. Let I, J ⊂ S and p ∈ WI\W/WJ . Define K = I ∩ p−Jp−1
− . Then the

map

(DK ∩WI)×WJ −→ p

(u, v) 7−→ up−v

is a bijection satisfying `(up−v) = `(u) + `(p−) + `(v).

Definition 2.25. We extend the Bruhat order to double cosets. For p, q ∈ WI\W/WJ

we define p 6 q if and only if p− 6 q−. ♦

2.2 The Hecke algebra

Definition 2.26. Let (W,S) be a Coxeter system. The Hecke algebra H = H(W,S)
is the free Z[v, v−1]-algebra generated by symbols Hs for s ∈ S, modulo the following
relations:

H2
s = 1 + (v−1 − v)Hs for all s ∈ S, (2.1)

HsHtHs · · ·︸ ︷︷ ︸
mst factors

= HtHsHt · · ·︸ ︷︷ ︸
mst factors

for all s 6= t ∈ S. (2.2)

If mst =∞ we have no relation of the form (2.2). ♦

For w ∈ W we define Hw = Hsi1
· · ·Hsid

where w = si1 · · · sid is a reduced expression
for w. By convention this definition includes He = 1. Note that this definition is
independent of the choice of reduced expression by Lemma 2.6 and (2.2).

Lemma 2.27. H is a free Z
[
v, v−1

]
-module with basis {Hw | w ∈ W}. This basis is

called standard basis.

Remark 2.28. The following multiplication formula holds.

Hs ·Hw =

{
Hsw if sw > w
(v−1 − v)Hw +Hsw if sw < w.

(2.3)

One can alternatively define the Hecke algebra as the free Z
[
v, v−1

]
-algebra with basis

given by the standard basis and the multiplication given by (2.3). ♦

12



Remark 2.29. With the multiplication formula (2.3) it is easy to check that Hs is
invertible with inverse H−1

s = Hs + v + v−1. Thus, Hw is also invertible. ♦

Definition 2.30. We define the Z-linear bar involution H −→ H, h 7−→ h to be the
unique algebra homomorphism specified by v 7−→ v−1 and Hs 7−→ H−1

s .
We call an element h ∈ H self-dual if h = h. ♦

Remark 2.31. The bar involution is well-defined, i.e. it respects relations (2.1) and (2.2).
For (2.2) this is obvious and for (2.1) this is an easy calculation.
It is easy to check that the elements Cs = Hs + v are self-dual. ♦

Theorem 2.32. There exists a unique self-dual basis {Hw | w ∈W} of H as a Z
[
v, v−1

]
-

module which satisfies

Hw = Hw +
∑
x 6=w

hx,wHx

where hx,w ∈ vZ[v]. This basis is called Kazhdan–Lusztig basis and the polynomials hx,w
are called Kazhdan–Lusztig polynomials.

Remark 2.33. For s ∈ S the Kazhdan–Lusztig basis element is given by Hs = Cs. One
can prove that hx,w = 0 if x 
 w.
For an expression w = (si1 , . . . , sid) we define

Hw = Hsi1
· · ·Hsid

.

Warning! In general we have Hw 6= Hw for most w ∈W . ♦

Example 2.34. The Kazhdan–Lusztig basis for S3 with generators s1 and s2 is given by

He = 1

Hs1 = Hs1 + v

Hs2 = Hs2 + v

Hs1s2 = Hs1s2 + vHs1 + vHs2 + v2 = Hs1 ·Hs2

Hs2s1 = Hs2s1 + vHs1 + vHs2 + v2 = Hs2 ·Hs1

Hw0
= Hs1s2s1 + vHs1s2 + vHs2s1 + v2Hs1 + v2Hs2 + v3.

For the expression w0 = (s1, s2, s1) we see an example of the warning in the last remark.

Hw0
= Hs1s2s1 + vHs1s2 + vHs2s1 + (v2 + 1)Hs1 + v2Hs2 + v3 + v 6= Hw0

.

Lemma 2.35. If (W,S) is a finite Coxeter system and w0 its longest element, we have

Hw0
=
∑
x∈W

v`(w0)−`(x)Hx

HsHw0
= v−1Hw0

.

13



Remark 2.36. If I ⊂ S is finitary we get from this and Lemma 2.16 that

HwI
=
∑
x∈WI

v`(wI)−`(x)Hx. (2.4)

If x ∈WI we can check inductively that

Hx ·HwI
= v−`(x)HwI

. (2.5)

It follows that

HwK
·HwI

= π(K) ·HwI
(2.6)

for K ⊂ I. ♦

Remark 2.37. As a Z
[
v, v−1

]
-algebra H is also generated by the elements Hs (s ∈ S).

However, the relations are less intuitive. One relation is

H2
s = (v + v−1)Hs. (2.7)

The other relations connect expressions of the form HsHtHs · · · for s, t ∈ S. For instance

mst = 2 : HsHt = HtHs (2.8)

mst = 3 : HsHtHs +Ht = HtHsHt +Hs (2.9)

are the first examples of these relations. ♦

Definition 2.38. We define a trace ε on H by ε
(∑

w∈W cwHw

)
= ce. We call ε standard

trace.
We also define ω to be the Z

[
v, v−1

]
-antilinear (i.e. ω(v) = v−1) antiinvolution for which

ω(Hs) = Hs holds. ♦

Remark 2.39. A trace on H is a Z
[
v, v−1

]
-linear map tr : H −→ Z

[
v, v−1

]
satisfying

tr(hh′) = tr(h′h) for all h, h′ ∈ H. The standard trace is a trace on H.
Note that ω is not the same as the bar involution, since ω is an antiinvolution. That
means ω(hh′) = ω(h′) · ω(h) while hh′ = h · h′ for all h, h′ ∈ H. ♦

Definition 2.40. We define a pairing (−,−) : H × H −→ Z
[
v, v−1

]
by (h, h′) =

ε (h′ · ω(h)). This pairing will be called standard pairing. ♦

Remark 2.41. The standard pairing is Z
[
v, v−1

]
-antilinear in the first component and

Z
[
v, v−1

]
-linear in the second component; that is (v−1h, h′) = (h, vh′) = v · (h, h′) for all

h, h′ ∈ H. The element Hs is self-biadjoint under this pairing, i.e.

(Hsx, y) = (x,Hsy) , (xHs, y) = (x, yHs) .

One can define the standard pairing alternatively via

(Hx, Hy) = δx,y (2.10)

for all x, y ∈W . ♦
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2.3 The Hecke algebroid

In this section we will recall the definition of the Hecke algebroid and collect some basic
facts. A reference for this is [Mat99].

Definition 2.42. Let I, J ⊂ S be finitary subsets. We define

HI = HwI
H

HJ = HHwJ

HI J = HI ∩HJ .

Given a third finitary subset K ⊂ S we define a multiplication as follows

HI J × HJ K −→ HI K

(h1, h2) 7−→ h1 ∗J h2 =
1

π(J)
h1h2.

This is well-defined by (2.6). If J = ∅ we write the normal multiplication · instead of ∗∅,
since they agree. ♦

Definition 2.43. The Hecke algebroid is the Z
[
v, v−1

]
-linear category defined as follows.

The objects are finitary subsets I ⊂ S. The morphisms between I and J are given by
HI J . Composition between morphisms HI J× HJ K −→ HI K is given by ∗J . This defines

a Z
[
v, v−1

]
-linear category with the identity endomorphism for I ⊂ S given by HwI

. ♦

Remark 2.44. We can check that h =
∑

w∈W awHw ∈ HI J if and only if, asw = vaw
and awt = vaw for all w ∈W, s ∈ I and t ∈ J such that sw < w and wt < w. We define
for all p ∈WI\W/WJ

HI J
p =

∑
x∈p

v`(p+)−`(x)Hx.

It follows that if h =
∑

w∈W awHw ∈ HI J , then

h =
∑

p∈WI\W/WJ

ap+ HI J
p .

The set { HI J
p | p ∈WI\W/WJ} is obviously linear independent over Z

[
v, v−1

]
, and thus

it forms a basis for HI J over Z
[
v, v−1

]
. We will call it standard basis.

For a Kazhdan–Lusztig basis element we have Hw ∈ HI J if and only if w is maximal in
its (WI ,WJ)-double coset. That is why we define for p ∈WI\W/WJ

HI J
p = Hp+ .

We have

HI J
p = HI J

p +
∑
q<p

hq+,p+ HI J
q .

It follows that { HI J
p | p ∈ WI\W/WJ} also forms a basis for HI J over Z

[
v, v−1

]
. We

call this basis Kazhdan–Lusztig basis. ♦
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Remark 2.45. For all finitary subsets I, J ⊂ S satisfying I ⊂ J or J ⊂ I we define

HI J = HI J
p where p = WIWJ .

We call elements of the form HI J ∈ HI J standard generators. The standard generators
have the following property:
Let { ZI J ⊂ HI J} be the smallest collection of subsets such that

1. If I ⊂ J or J ⊂ I we have HI J ∈ ZI J ;

2. ZI J is a Z
[
v, v−1

]
-submodule of HI J ;

3. The collection { ZI J} is closed under composition in the Hecke algebroid.

Then ZI J = HI J for all finitary subsets I, J ⊂ S. We say that the standard generators
generate the Hecke algebroid. ♦

Remark 2.46. Recall the antiinvolution ω we defined previously. One can check that
ω
(
HwI

)
= HwI

for all finitary I ⊂ S. Hence, ω restricts to an isomorphism of Z
[
v, v−1

]
-

modules

ω : HI J −→ HJ I .

Now we can extend our standard pairing to

(−,−) : HI J × HI J −→ Z
[
v, v−1

]
(h1, h2) 7−→ 〈h1, h2〉 = ε (h1 ∗J ω(h2)) .

Note that one has for h1, h2 ∈ HI J the connection to the standard pairing given by
π(J) · 〈h1, h2〉 = (h1, h2) where we regard h1 and h2 as elements in H in the second
expression. One can check that for I, J,K ⊂ S finitary and h1 ∈ HI J , h2 ∈ HJ K , h3 ∈
HI K we have

〈h1 ∗J h2, h3〉 = 〈h1, h3 ∗K ω(h2)〉.

We can also describe the standard pairing on the standard basis of HI J . We have

〈 HI J
p , H

I J
q 〉 = v`(p+)−`(p−) · δp,q

for p, q ∈WI\W/WJ . ♦

2.3.1 Some S3-type relations

In this section we want to understand the Kazhdan–Lusztig bases in the Hecke algebroid
for S3 better. Let (W,S) be a Coxeter system with si, sj ∈ S such that mij = 3. Then the
parabolic subgroup U generated by si and sj is isomorphic to S3 and the Hecke algebra
H(W,S) has H(S3, {si, sj}) as a subalgebra. Let now I and J be parabolic subsets of U
(and thus also of W ), then we want to understand the U -part of the Kazhdan–Lusztig
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basis in HI J . More precisely, if we consider a Kazhdan–Lusztig basis element Hx, x ∈ U ,
we can force it into HI J via

HwI
HxHwJ

∈ HI J

Now we can decompose such an element in to our Kazhdan–Lusztig basis given by
double cosets HI J

p . For this we only need double cosets p ⊂ U . Hence, we may assume
W = U = S3 and si = s1, sj = s2 and the calculations will also hold in the general case
described above.
We will do these calculations for four choices of I and J . When we write HI J or HI J

p

we will write 1 instead of {s1} and 2 instead or {s2}, for example we will write H1 2.

Proposition 2.47. Consider H1 2 and label the double cosets W1\W/W2 by

p = {e, s1, s2, s1s2}, q = {s2s1, w0}.

Then we get the following decompositions.

1. Hs1HeHs2 = H1 2
p.

2. Hs1Hs1Hs2 = (v + v−1) · H1 2
p.

3. Hs1Hs2Hs2 = (v + v−1) · H1 2
p.

4. Hs1Hs1s2Hs2 = (v2 + 2 + v−2) · H1 2
p.

5. Hs1Hs2s1Hs2 = H1 2
p + (v + v−1) · H1 2

q.

6. Hs1Hw0
Hs2 = (v2 + 2 + v−2) · H1 2

q.

Proof. Recall that H1 2
p = Hs1s2 and H1 2

q = Hw0
. We will use the resolution of the

Kazhdan–Lusztig basis into the standard basis from Example 2.34.

1. We compute

Hs1HeHs2 = Hs1 ·Hs2 = (Hs1 + v) · (Hs2 + v)

= Hs12 + vHs1 + vHs2 + v2 = H1 2
p.

2. Using the first part we get

Hs1Hs1Hs2 = (Hs1 + v) · (Hs1) ·Hs2 =
(
(v−1 − v)Hs1 + 1 + 2vHs1 + v2

)
·Hs2

= (v + v−1) ·Hs1 ·Hs2 = (v + v−1) · H1 2
p.

3. Again using the first part we get

Hs1Hs2Hs2 = Hs1 · (Hs2 + v) · (Hs2) = Hs1 ·
(
(v−1 − v)Hs2 + 1 + 2vHs2 + v2

)
= Hs1 · (v + v−1) ·Hs2 = (v + v−1) · H1 2

p.
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4. Using the calculations from the last three parts we compute

Hs1Hs1s2Hs2 = Hs1 ·Hs1 ·Hs2 ·Hs2 = (v + v−1) ·Hs1 · (v + v−1) ·Hs2

= (v2 + 2 + v−2) ·Hs1 ·Hs2 = (v + v−1) · H1 2
p.

5. Here we compute that

Hs1Hs2s1Hs2 = (Hs1 + v) ·
(
Hs2s1 + vHs1 + vHs2 + v2

)
·Hs2

=

(
Hw0 + v(v−1 − v)Hs1 + v + vHs1s2 + v2Hs1

+vHs2s1 + v2Hs1 + v2Hs2 + v3

)
·Hs2

=
(
Hw0

+Hs1

)
·Hs2

=
(
Hw0 + vHs1s2 + vHs2s1 + v2Hs1 + v2Hs2 + v3

)
· (Hs2 + v)

+Hs1s2

= (v−1 − v)Hw0 +Hs2s1 + v(v−1 − v)Hs1s2 + vHs1 + vHw0

+ v2Hs1s2 + v2(v−1 − v)Hs2 + v2 + v3Hs2 + vHw0 + v2Hs1s2

+ v2Hs2s1 + v3Hs1 + v3Hs2 + v4 + H1 2
p

= (v + v−1)Hw0
+ H1 2

p = H1 2
p + (v + v−1) · H1 2

q .

6. Using our last calculations we compute

Hs1Hw0
Hs2 = Hs1 ·

(
Hw0 + vHs2s1 + vHs1s2

)
·Hs2

= Hs1 · (Hw0 + vHs2s1) · (Hs2 + v) + v(v2 + 2 + v−1) ·Hs1s1

= Hs1 ·
(
(v−1 − v)Hw0 +Hs2s1 + vHw0 + vHw0 + v2Hs2s1

)
+ v(v2 + 2 + v−1) ·Hs1s1

= Hs1 · (v + v−1) · (Hw0 + vHs2s1) + v(v2 + 2 + v−1) ·Hs1s1

= (v + v−1) ·
(
(v−1 − v)Hw0 +Hs2s1 + vHw0 + vHw0 + v2Hs2s1

)
+ v(v2 + 2 + v−1) ·Hs1s1

= (v2 + 2 + v−2) ·
(
Hw0 + vHs2s1 + vHs1s1

)
= (v2 + 2 + v−2) ·Hw0

= (v2 + 2 + v−2) · H1 2
q .

Analogously one can for instance also verify the following equalities. We omit the details.

Proposition 2.48. Consider H1 1 and label the double cosets W1\W/W1 by

p = {e, s1}, q = {s2, s1s2, s2s1, w0}.

Then we get the following decompositions.

1. Hs1HeHs1 = (v + v−1) · H1 1
p.

2. Hs1Hs1Hs1 = (v2 + 2 + v−2) · H1 1
p.
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3. Hs1Hs2Hs1 = H1 1
p + H1 1

q.

4. Hs1Hs1s2Hs1 = (v + v−1) · H1 1
p + (v + v−1) · H1 1

q.

5. Hs1Hs2s1Hs1 = (v + v−1) · H1 1
p + (v + v−1) · H1 1

q.

6. Hs1Hw0
Hs1 = (v2 + 2 + v−2) · H1 1

q.

Proposition 2.49. Consider H1 and label the double cosets W1\W by

p = {e, s1}, q = {s2, s1s2}, r = {s2s1, w0}.

Then we get the following decompositions.

1. Hs1He = H1 p.

2. Hs1Hs1 = (v + v−1) · H1 p.

3. Hs1Hs2 = H1 q.

4. Hs1Hs1s2 = (v + v−1) · H1 q.

5. Hs1Hs2s1 = H1 p + H1 r.

6. Hs1Hw0
= (v + v−1) · H1 r.

Proposition 2.50. Consider H1 and label the double cosets W/W1 by

p = {e, s1}, q = {s2, s2s1}, r = {s1s2, w0}.

Then we get the following decompositions.

1. HeHs1 = H1
p.

2. Hs1Hs1 = (v + v−1) ·H1
p.

3. Hs2Hs1 = H1
q.

4. Hs1s2Hs1 = (v + v−1) ·H1
q.

5. Hs2s1Hs1 = H1
p +H1

r.

6. Hw0
Hs1 = (v + v−1) ·H1

r.
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2.4 Graded bimodules

In the upcoming chapters we will work with graded bimodules. In this section we will fix
some general terminology and observe some basic facts. We will always consider rings
R satisfying

R =
⊕
k=0

Rk is a finitely generated, positively graded commutative

k-algebra with R0 = k

where k is some fixed commutative ring (in most cases k will be a field of characteristic
zero). We denote by (R,S)− Bim the category of graded (R,S)-bimodules:

objects: (R,S)-bimodules M with a decomposition M =
⊕

k∈ZMk where

a) The left and right action of k agrees.

b) The Mk is a free k-module for all k ∈ Z.

c) Rl ·Mk ⊆Ml+k ⊇Mk · Sl for all k, l ∈ Z.

morphisms: homomorphisms f : M −→ N of (R,S)-bimodules preserving degrees,
i. e. f(Mk) ⊆ Nk for all k ∈ Z.

Remark 2.51. As all our rings are commutative we have an equivalence of categories
between (R,S)−Bim and R⊗k S −Mod, the category of graded R⊗k S-modules. This
can be helpful sometimes to transfer known results for modules to bimodules. ♦

Definition 2.52. A category C is called a graded category if it is a k-linear category
enriched in k−Mod, the category of graded k-modules. ♦

Remark 2.53. This basically means that the morphism spaces are graded k-modules
and the composition of morphisms is compatible with the grading. ♦

Lemma 2.54. The category (R,S)− Bim is a graded category.

Proof. We say that a morphism f ∈ Hom(R,S)(M,N) is homogeneous of degree d if
f(Mk) ⊆ Nk+d for all k ∈ Z. This defines a grading on morphism spaces which is
compatible with compositions.

Definition 2.55. In (R,S)− Bim we have grading shifting functors (l ∈ Z)

〈l〉 : (R,S)− Bim −→ (R,S)− Bim

M 7−→M〈l〉
f 7−→ f

where M〈l〉 = M as an (R,S)-bimodule, but (M〈l〉)k = Ml+k. These functors define a
free (this means that the stabilizer of objects is trivial) Z-action on (R,S)− Bim. ♦

A discussion on the following theorem can be found in e.g. [Str20b].
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Theorem 2.56. There is an equivalence of categories{
k-linear categories with

free Z-action

}
←→ {graded categories} .

Proof. We define two functors

D 7−→ D�Z
CZ 7−→ C.

The graded category D�Z is defined as follows. The objects are Z-orbits M of objects
M in D. The morphisms are given by

HomD�Z
(M,N) =

 ⊕
X∈M,Y ∈N

HomD(X,Y )


�U

where U is generated by f − l.f for all l ∈ Z. Note that this implies

HomD�Z
(M,N) =

⊕
l∈Z

HomD(M, l.N).

The category CZ is defined as follows. The objects are pairs (M, l) ∈ ob(C) × Z. The
morphisms are given by

HomCZ ((M, l), (N, k)) = HomC(M,N)l−k.

One then can check that these functors are inverse and give us the desired equivalence
of categories.

Remark 2.57. We will quickly write down the key differences between (R,S) − Bim

and (R,S)− Bim�Z:

(R,S)− Bim (R,S)− Bim�Z
graded (R,S)-bimodules with
grading shifting functors and

morphisms of degree zero

graded (R,S)-bimodules
(pick one up to grading shift)
and morphisms of all degrees.

We will treat C and C�Z as “the same” from now on. This means that we will sometimes
talk about degrees of morphisms and other times we will talk about different shifts
of objects while talking about the same category. This is justified by the previous
theorem. ♦

Definition 2.58. We call an (R,S)-bimodule indecomposable if there are no non-trivial
(R,S)-bimodules M1 and M2 such that M ∼= M1 ⊕M2 as (R,S)-bimodules. ♦

Lemma 2.59. Let M be a graded (R,S)-bimodule. Let k ∈ Z be the smallest number
such that Mk 6= 0. Suppose that Mk has rank 1 and suppose that M is generated by some
m ∈Mk as a bimodule. Then M is indecomposable.
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Proof. Suppose that there are (R,S)-bimodules N,L such that ϕ : M ∼= N ⊕ L. Then
also Mk

∼= Nk ⊕ Lk. As Mk has rank one and Nk and Lk are free k-modules we
conclude that either Nk

∼= Mk or Lk ∼= Mk. W.l.o.g assume that Nk
∼= Mk. Then let

x = ϕ(m) ∈ Nk. Now let y ∈ M . Since M is generated by m as a bimodule we find
some rl ∈ R, sl ∈ S such that

y =
N∑
l=1

rl ·m · sl.

This implies that

ϕ−1
∣∣
N

(
N∑
l=1

rl · x · sl

)
=

N∑
l=1

rl · ϕ−1
∣∣
N

(x) · sl =
N∑
l=1

rl ·m · sl = y.

Hence, ϕ−1
∣∣
N

: N −→ M is surjective and obviously also injective. Thus, M ∼= N and
the decomposition was trivial. Hence, M is indecomposable.
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3 Soergel bimodules

In this chapter we will recall the definition and properties of Soergel bimodules. We will
explain the connection between Soergel bimodules and the Hecke algebra and look at a
few examples. This originally goes back to Soergel [Soe07, Soe92]. We will follow here
the later treatments [EW16, Section 3]. We start with the definition of a realization of
a Coxeter system.

3.1 Realizations

Definition 3.1. Let k be a commutative ring. A realization of a Coxeter system (W,S)
over k is a free finite rank k-module h to together with subsets {α∨s | s ∈ S} ⊂ h and
{αs | s ∈ S} ⊂ h∗ = Homk(h, k), satisfying:

1. 〈α∨s , αs〉 = 2 for all s ∈ S;

2. the assignment s(v) = v − 〈v, αs〉α∨s for all v ∈ h yields a representation of W ;

3. [mst]ast = [mst]ats = 0 for all s, t ∈ S.

The brackets in the third point stand for the 2-coloured quantum number and ast =
〈α∨s , αt〉. For more details on this, see [EW16, Section 3.1]. ♦

Remark 3.2. In order for Soergel bimodules to behave well or for the theorems we will
state to hold, one needs to put some assumptions on k and the realization. However,
since we are only interested in the case Sn we will not discuss this in detail. We will
soon come across a realization for Sn that is good in that sense and will mainly work
with this. We just wanted to show the general definition to make the whole picture more
clear. The details for the general case can be found in [EW16, Chapter 3]. ♦

Example 3.3. Suppose that W is finite. Let k = R and h =
⊕

s∈S Rα∨s . Define elements
{αs} ⊂ h∗ by

〈α∨t , αs〉 = −2 cos

(
π

mst

)
(by convention mss = 1). Then h is a realization of (W,S), called the geometric repres-
entation. Note that the subset {αs} ⊂ h∗ is linearly independent and W acts faithfully
on h and hence also on h∗. This will be the main realization we will use for W = Sn.
We can extend this realization to a realization C ⊗R h over C by base change. So we
may choose k = R or k = C.
Note that we have another realization of Sn, namely the natural n-dimensional repres-
entation h′. This is just an Rn where Sn acts by permuting the basis vectors. We can
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pick α∨i = vi− vi+1 where vi are the standard basis vectors. Then we pick αi = ei− ei+1

where the ei are defined by ek(vl) = δk,l for 1 6 k, l 6 n − 1. This gives us the desired
realization.
This realization is connected to the geometric representation via h′ = h ⊕ R where Sn
acts trivially on the extra summand R. This comes simply from the fact that Sn is the
Weyl group of sln as well as gln. The geometric representation comes from sln and the
natural representation comes from gln which immediately gives us the connection above.
While we will mostly work with the geometric representation for the general theorems
and definitions, we will use the natural representation for some examples as it is a bit
nicer for explicit calculations. We will always state when we switch to the natural rep-
resentation, so if nothing else is said the geometric representation is the one that is
used.

Definition 3.4. For a fixed realization (h, {α∨s }, {αs}) of (W,S) denote by

R = S(h∗) =
⊕
m>0

Sm(h∗)

the symmetric algebra on h∗, which we view as a graded k-algebra with deg(h∗) = 2.
Then W acts on h∗ via s(γ) = γ − 〈α∨s , γ〉αs for all γ ∈ h and this extends to an action
of W on R by graded automorphisms. We think of R as polynomial functions on h. ♦

Example 3.5.

1. For a finite Coxeter system (W,S) with the geometric representation from Ex-
ample 3.3 we have R ∼= k[z1, . . . , z|S|] where the zi correspond to the α∨s . This
gives us for W = Sn that R ∼= k[z1, . . . zn−1].

2. For W = Sn with the natural representation from Example 3.3 we have R1 = R ∼=
k[x1, . . . , xn] where Sn acts by permuting variables. Note that for the geometric
representation we would have R0

∼= k[z1, . . . , zn−1] and we have an inclusion R0 ↪→
R1 where zi is sent to xi − xi+1. In this way these two realizations are connected
and it does not really matter which one is used.

3.2 Demazure operators and rings of invariants

In this section we will recall the definition and basic properties of Demazure operators
and investigate the rings of invariants of R under the action of W . These operators
go back to Demazure [Dem73]. We will use them to understand how these rings are
structured as modules over each other. A reference for this section is e.g. [Man98] and
some topics are also covered nicely in [Str19]. Throughout the section we assume that
k is a field of characteristic 0.

Definition 3.6. Let I ⊂ S be a parabolic subset and WI the corresponding parabolic
subgroup. We define

RI = RWI = {r ∈ R | w(r) = r for all w ∈WI}
= {r ∈ R | s(r) = r for all s ∈ I}
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to be the ring of WI -invariant elements of R. If I = {i} is a singleton we will write Ri

instead of RI . ♦

Remark 3.7. Note that RI is actually a ring, since W acts by ring automorphisms on
R. Moreover, we have RJ ⊂ RI if I ⊂ J , and thus RI is even an RJ -algebra in this case.
Also recall that the action of W on R preserves the grading. Thus, RI is graded and
the inclusion RI ↪→ R preserves the grading. ♦

Example 3.8. We consider (W,S) = (S3, {s1, s2}) with the natural representation from
Example 3.3. Then we have R1

∼= k[x1, x2, x3]. If we now consider rings of invariants
the fundamental theorem of symmetric polynomials tells us that

R
{s1}
1 = k[x1 + x2, x1x2, x3]

R
{s2}
1 = k[x1, x2 + x3, x2x3]

R
{s1,s2}
1 = k[x1 + x2 + x3, x1x2 + x1x3 + x2x3, x1x2x3].

Thus, we can observe that the inclusions of rings R
{s1,s2}
1 ⊂ R{s1}1 , R

{s2}
1 ⊂ R1 hold true.

This presentation can be generalized. Consider (W,S) = (Sn, {s1, . . . , sn−1}) with the
natural representation from Example 3.3. Then we have for instance

R
{si}
1 = k[x1, . . . xi−1, xi + xi+1, xixi+1, xi+2, . . . , xn].

Remark 3.9. Consider W = Sn and let J ⊂ S = {simple transpositions} be a parabolic
subset. Recall that WJ = Se1×Se2×· · ·×Sem as in Remark 2.17. Let R1

∼= k[x1, . . . , xn]
be the ring corresponding to the natural representation of Sn. Now we can write R1 a
bit differently via

R1
∼= k[x1, . . . , xe1 ]⊗k · · · ⊗k k[xn−em+1, . . . , xn].

Since WJ = Se1 × · · · × Sem we get that

RWJ
1
∼= k[x1, . . . , xe1 ]Se1 ⊗k · · · ⊗k k[xn−em+1, . . . , xn]Sem . (3.1)

Hence, if we let Rek = k[x1, . . . , xek ] be the polynomial ring in ek variables viewed as a
module over k[x1, . . . , xek ]Sek , then we have as RJ1 -modules

R1
∼= Re1 ⊗k · · · ⊗k Rem

where RJ1 acts on the right hand side via (3.1). ♦

Definition 3.10. For i ∈ S the Demazure operator ∂i : R −→ Ri is defined by

∂i(r) =
r − si(r)

αi

for all r ∈ R. ♦

25



Proposition 3.11. The following hold:

1. ∂i is well-defined for all i ∈ S, i.e. r − si(r) ∈ αiR for all r ∈ R and im(∂i) ⊆ Ri;

2. ker(∂i) = Ri;

3. ∂i(r1r2) = ∂i(r1)r2 + si(r1)∂i(r2) for all r1, r2 ∈ R;

4. ∂i is Ri-linear.

Proof. 1. First we check that im(∂i) ∈ Ri. Let r ∈ R, then we need to check that
si(∂i(r)) = ∂i(r). We compute that

si(∂i(r)) = si

(
r − si(r)

αi

)
=
si(r)− si(si(r))

si(αi)
=
si(r)− r
−αi

= ∂i(r).

Now we check that r−si(r) ∈ αiR. Recall that R is defined to be the symmetric algebra
S(h∗) of h∗. So by linearity of si it is enough to consider r = x1 ⊗ x2 ⊗ · · · ⊗ xN . We
know that si(xl) = xl − λlαi for some λl ∈ k. Thus, we compute that

r − si(r) = r − si(x1)⊗ si(x2)⊗ · · · ⊗ si(xN )

= r − x1 ⊗ · · · ⊗ xN +
N∑
l=1

x1 ⊗ · · · ⊗ xl−1 ⊗ λlαi ⊗ si(xl+1)⊗ · · · ⊗ si(xN )

=

N∑
l=1

x1 ⊗ · · · ⊗ xl−1 ⊗ λlαi ⊗ si(xl+1)⊗ · · · ⊗ si(xN ) ∈ αiR.

2. Since r − si(r) = r − r = 0 for r ∈ Ri we have Ri ⊆ ker(∂i). Now let r ∈ ker(∂i),

then 0 = ∂i(r) = r−si(r)
αi

which implies r − si(r) = 0. This says that r = si(r), and thus

r ∈ Ri. Hence, we have Ri = ker(∂i).
3. Let r1, r2 ∈ R, then we compute that

∂i(r1r2) =
r1r2 − si(r1r2)

αi
=
r1r2 − si(r1)r2 + si(r1)r2 − si(r1)si(r2)

αi

=
r1 − si(r1)

αi
· r2 + si(r1) · r2 − si(r2)

αi
= ∂i(r1)r2 + si(r1)∂i(r2).

4. Let r ∈ R and ri ∈ Ri, then we compute that

∂i(rir) = ∂i(ri)r + si(ri)∂i(r) = ri∂i(r).

Thus, ∂i is Ri-linear.

Definition 3.12. Let W = Sn with the usual realization. For w ∈ W pick a reduced
expression w = si1 · · · sid . We define the Demazure operator ∂w : R −→ R by

∂w = ∂i1 ◦ ∂i2 ◦ · · · ◦ ∂idj .

For J ⊂ S a parabolic subset, let wJ ∈ WJ be the unique longest element. Then we
write ∂J for ∂wJ . ♦
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Proposition 3.13. Let W = Sn and let w ∈ W . Suppose J ⊂ S is a parabolic subset,
then the following hold:

1. ∂w is well-defined for all w ∈ W , i.e. it is independent of the choice of reduced
expression;

2. im(∂J) ⊆ RJ ;

3. ker(∂J) ⊇ RJ ;

4. ∂J is RJ -linear.

Proof. 1. If we can prove that

∂i ◦ ∂j ◦ ∂i ◦ · · ·︸ ︷︷ ︸
mij terms

= ∂j ◦ ∂i ◦ ∂j ◦ · · ·︸ ︷︷ ︸
mij terms

(3.2)

for all i, j ∈ S, then we be done by Lemma 2.6, since this would mean that the Demazure
operators respect braid moves and every two reduced expressions for w ∈ W can be
transformed into one another via braid moves. We only have to check (3.2) for mij = 2
and mij = 3, since we are in the case W = Sn.
Let first mij = 2, then we compute for r ∈ R that

∂i(∂j(r)) = ∂i

(
r − sj(r)

αj

)

=

r−sj(r)
αj

− si
(
r−sj(r)
αj

)
αi

=
r − sj(r)
αjαi

− si(r)− (si ◦ sj)(r)
si(αj)αi

=
r − sj(r)− si(r) + (si ◦ sj)(r)

αjαi
.

Here we used that si(αj) = αj . The last expression if symmetric in i and j, since
si ◦ sj = sj ◦ si for mij = 2, and thus it follows that ∂i(∂j(r)) = ∂j(∂i(r)) for all r ∈ R.
Now let mij = 3. We can compute that si(αj) = αj + αi and sj(αi) = αi + αj . We can
compute the following for all r ∈ R.

(∂j ◦ ∂i ◦ ∂j)(r)

=
1

αj
·

 r−sj(r)
αj

− si
(
r−sj(r)
αj

)
αi

− sj

 r−sj(r)
αj

− si
(
r−sj(r)
αj

)
αi


=

1

αj
·
(
r − sj(r)
αiαj

− si(r)− (sisj)(r)

αisi(αj)
− sj(r)− r
sj(αi)sj(αj)

+
(sjsi)(r)− (sjsisj)(r)

sj(αi)(sjsi)(αj)

)
=

1

αj
·
(
r − sj(r)
αiαj

− si(r)− (sisj)(r)

αi(αj + αi)
− sj(r)− r
−(αi + αj)αj

+
(sjsi)(r)− (sjsisj)(r)

(αi + αj)αi

)
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=
1

αj
·
(
r − sj(r)

αj
·
(

1

αi
− 1

αi + αj

)
− si(r)− (sisj)(r)

αi(αj + αi)
+

(sjsi)(r)− (sjsisj)(r)

αi(αj + αi)

)
=

1

αj
·
(

r − sj(r)
αi(αj + αi)

− si(r)− (sisj)(r)

αi(αj + αi)
+

(sjsi)(r)− (sjsisj)(r)

αi(αj + αi)

)
=
r − sj(r)− si(r) + (sisj)(r) + (sjsi)(r)− (sjsisj)(r)

αjαi(αj + αi)

The last expression is again symmetric in i and j, since sisjsi = sjsisj for mij = 3, and
thus we are done.
2. Let wJ = si1 · · · sid be a reduced expression. Let j ∈ J , then we may assume that
si1 = sj by Corollary 2.14. Hence, by Proposition 3.11 ∂J(r) = ∂j(r

′) ∈ Rj for all r ∈ R
where r′ = (∂i2◦· · ·◦∂id)(r). Since j ∈ J was arbitrary, we get that ∂J(r) ∈

⋂
j∈J R

j = RJ

for all r ∈ R.
3. Let r ∈ RJ , then r ∈ Rj for all j ∈ J . By definition we get ∂J(r) = (∂i1 ◦· · ·◦∂id)(r) =
0 which follows from Proposition 3.11. Thus, RJ ⊆ ker(∂J).
4. Let rJ ∈ RJ , r ∈ R. Then we compute by Proposition 3.11, since rJ ∈ Rj for all
j ∈ J , that

∂J(rJr) = (∂i1 ◦ · · · ◦ ∂id)(rJr) = rJ · (∂i1 ◦ · · · ◦ ∂id)(r) = rJ · ∂J(r).

Hence, ∂J is RJ -linear.

Lemma 3.14. Let I ⊂ S be finitary. Then R is a finitely generated RI-module.

Proof. Recall that R is defined to be the symmetric algebra of some vector space h∗.
Hence, R is isomorphic to the polynomial ring k[x1, . . . xN ] where N = dimk(h

∗) is finite.
Thus, we have R = k[a1, . . . aN ] for some ai ∈ R. Then obviously R is also generated by
a1, . . . , aN as RI -algebra, since k = RI0. Hence, R is of finite type over RI .
Now we will prove that R is integral over RI . Let r ∈ R and consider the polynomial
pr(t) =

∏
w∈WI

t−w(r). This polynomial is monic and has r as a zero. The coefficients
of pr are symmetric polynomials in w(r) for w ∈ WI . Thus, they are invariant under
the action of WI which implies pr ∈ RI [t]. Hence, r is integral over RI and so, R is also
integral over RI .
Since R is integral and of finite type over RI we get that R is a finitely generated
RI -module.

Lemma 3.15. Let J ⊂ S be finitary and I ⊂ J . Assume
∑m

i=1 gibi = 0 for some gi ∈ RJ
and homogeneous bi ∈ RI . If b1 /∈ R(I, J)+, where R(I, J)+ is the ideal in RI generated
by
⊕

k>0R
J
k , then

g1 =
m∑
i=2

higi

for some homogeneous hi ∈ RJ where deg(hi) = deg(bi)− deg(b1).
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Proof. We will do induction on d = deg(b1). If d = 0 then b1 ∈ k and g1 =
∑m

i=2
bi
b1
gi.

Then we can use that g1 ∈ RJ to get

g1 =
1

|WJ |
∑
w∈WJ

w(g1) =
1

|WJ |
∑
w∈WJ

w

(
m∑
i=2

bi
b1
gi

)
=

m∑
i=2

1
|WJ |

∑
w∈WJ

w(bi)

b1
gi.

Thus, hi =
1
|WJ |

∑
w∈WJ

w(bi)

b1
∈ RJ satisfy all conditions from the lemma, since they are

homogeneous and have the right degree.
Now let d > 0 and pick j ∈ J such that ∂j(b1) /∈ R(I, J)+. Then we get

0 = ∂j(0) = ∂j

(
m∑
i=1

gibi

)
=

m∑
i=1

gi∂j(bi),

where the last equality follows from Proposition 3.11. Now we are done by induction,
since ∂j(bi) is homogeneous and deg(∂j(b1)) = deg(b1)− 2.
So the only thing left to prove is that there exists a j ∈ J such that ∂j(b1) /∈ R(I, J)+.
Suppose that ∂j(b1) ∈ R(I, J)+ for all j ∈ J , then

b1 − sj(b1) = αj∂j(b1) ∈ R(I, J)+

or in other words b1 ≡ sj(b1)(mod R(I, J)+) for all j ∈ J . Hence,

b1 ≡ w(b1) (mod R(I, J)+)

for all w ∈ WJ . It follows that |WJ | · b1 ≡
∑

w∈WJ
w(b1) ≡ 0 (mod R(I, J)+), since

deg(b1) > 0 implies
∑

w∈WJ
w(b1) ∈ R(I, J)+. Thus, b1 ∈ R(I, J)+ which is a contra-

diction.

Theorem 3.16. Let J ⊂ S be a finitary subset and let I ⊂ J . Then RI is a free
RJ -module of rank |WJ |

|WI | .

Proof. Let R(I, J)+ again be the ideal in RI generated by
⊕

k>0R
J
k . Fix a homogeneous

k-basis B of R
I
�R(I, J)+

and let B ⊂ RI be a homogeneous lift of B. We will prove

that B is an RJ -basis for RI .
Generating: Let M ⊂ RI be the RJ -submodule generated by B. We will prove
inductively that RIk = Mk for all k ∈ N0. For k = 0 we have RI0 = k and M0 = k, since(
RI�R(I, J)+

)
0

= k = RJ0 , and thus M0 6= 0. Now let r ∈ RIk for some k ∈ N and

assume Ml = RIl for all l < k. Now we can write

r =
∑
b∈B

λbb+ a
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for some λb ∈ k and a ∈ R(I, J)+, because B is a homogeneous lift of a k-basis of
RI�R(I, J)+

. Since a ∈ R(I, J)+ we can write

a =
∑

aipi

for some homogeneous ai ∈ RI and pi ∈
⊕

k>0R
J
k with deg(aipi) = k. However, since

deg(pi) > 0 we get that deg(ai) < k, and thus ai ∈ M . This implies r ∈ M , and thus
RIk = Mk.
Linear independence: Consider all possible choices of bases (B,B) and take a relation

m∑
i=1

gibi = 0, gi ∈ RJ , bi ∈ B

such that m > 0 is minimal among choices of such relations and B,B. By Lemma 3.15
we have

g1 =
∑
i=2

higi

for some homogeneous hi ∈ RJ with deg(hi) = deg(bi) − deg(b1). Hence, we get the
smaller relation

m∑
i=2

gi(bi − hib1) = 0. (3.3)

Note that, since hi ∈ RJ we have either hi ∈ k = RJ0 or hi ∈ R(I, J)+. In the first case
this implies

bi − hib1 ≡ bi − hib1 (mod R(I, J)+), hi ∈ k

and in the second case we have

bi − hib1 ≡ bi (mod R(I, J)+).

Thus, the set

B1 =
(
B \ {b2, . . . , bm}

)
∪ {b2 − h2b1, . . . , bm − hmb1}

is a basis for R
I
�R(I, J)+

. Moreover, the set

B1 = (B \ {b2, . . . , bm}) ∪ {b2 − h2b1, . . . , bm − hmb1}

is a homogeneous lift of this basis, since deg(hi) = deg(bi) − deg(b1). Hence, (3.3) is
a possible relation for the choice (B1, B1) and has only m − 1 summands which is a
contradiction to the minimality of m. This implies that the elements of B are linear
independent over RJ .
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Rank: We know by Lemma 3.14 and the previous that R ∼=
(
RI
)N1 as RI -modules

and thus also as RJ -modules for some N1 ∈ N. By the same reasoning we get that

R ∼=
(
RJ
)N2 and RI ∼=

⊕
b∈B R

J as RJ -modules for N2 ∈ N and some set B. Together

this gives
(
RJ
)N2 ∼= R ∼=

(⊕
b∈B R

J
)N1 . Hence, B is finite, and thus RI is of finite rank

over RJ .
The proof about the exact value will be omitted. However, we will see later that the
rank is |WJ |

|WI | for W = Sn.

For the rest of this section we will consider the case W = Sn. The goal will be to
find a basis for R as an RJ -module which has some nice properties. In order to do
this we will consider the natural representation of Sn introduced in Example 3.3. This
means we consider two rings simultaneously, our normal ring R ∼= k[z1, . . . , zn−1] where
zi corresponds to αi and the ring R1 corresponding to the natural representation of Sn.
Recall that R1

∼= k[x1, . . . , xn] where Sn acts by permuting the xi.
First we will discuss how exactly these realizations are connected which will be handy
for understanding why we can switch between them. We can consider the inclusion map
φn : R ↪→ R1, zi 7−→ xi − xi+1. Note that this map is obviously injective.

Lemma 3.17. The map φn preserves the action of W . Moreover, R1
∼= R[t] where R

is included into R1 via φn and t is invariant under the action of W .

Proof. Since W acts on R by ring automorphisms it is enough to check that φn(si(zj)) =
si(φn(zj)) for all 1 6 i, j 6 n− 1. If |i− j| > 1 then, si(zj) = zj and

sj(φn(zj)) = si(xj − xj+1) = xj − xj+1 = φn(zj).

Thus, we have three cases left. Let j = i − 1, then si(zi−1) = zi−1 + zi. We have
si(xi−1 − xi) = xi−1 − xi+1 = φn(zi−1 + zi).
Now let j = i. Then si(zi) = −zi and si(xi − xi+1) = xi+1 − xi = φn(−zi).
At last let j = i+ 1. Then si(zi+1) = zi+1 + zi and

si(xi+1 − xi+2) = xi − xi+2 = φn(zi+1 + zi).

Hence, φn respects the action of W . In order to prove the second claim note that

R1
∼= k[x1 − x2, x2 − x3, . . . , xn−1 − xn, x1 + x2 + · · ·+ xn].

This follows from the observation that we can write xi as a k-linear combination of
x1 − x2, . . . , xn−1 − xn, x1 + · · ·+ xn. Indeed, we have

xi =
1

n

∑
j<i

−j(xj − xj+1) +
∑
j>i

(n− j)(xj − xj+1) + (x1 + · · ·+ xn)

 .

This implies that R1
∼= φn(R)[x1 + · · ·+ xn] which proves the claim since x1 + · · ·+ xn

is invariant under W .
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Remark 3.18. This lemma implies that the definition of Demazure operators for R1

coincides with the one for R via φ. Thus, we have the Demazure operator

∂i : R1 −→ Ri1, f 7−→ f − si(f)

xi − xi+1

for R1 as an extensions of ∂i : R −→ R. Obviously the same holds true for the Demazure
operators ∂w for w ∈W . We will abuse notation and write αi = xi − xi+1. ♦

Corollary 3.19. We have RW1 = RW [t].

Proof. Obviously RW [t] ⊆ RW1 as t is invariant under W . Now let f ∈ RW1 , then
f ∈ R1

∼= R[t]. Thus, we can write

f =

N∑
k=0

rkt
k, rk ∈ R.

As the action of W preserves the grading, we get rkt
k ∈ RW1 , and thus rk ∈ RW1 = RW .

This implies f ∈ RW [t] and hence proves the corollary.

Lemma 3.20. If B ⊂ R1 is a homogeneous RW1 -basis of R1, then B ⊂ im(φ) and
φ−1
n (B) is an RW -basis of R.

Proof. Let B ⊂ R1 be an RW1 -basis of R1. Consider B′ = φ−1
n (B) ⊂ R. We claim that

this is an RW basis for R. Let r ∈ R, then we can write

φn(r) =
∑
b∈B

fbb, fb ∈ RW1 , (3.4)

since B is a basis. By Corollary 3.19 we can write fb =
∑Nb

k=0 fb,kt
k with fb,k ∈ φn(R)W .

Now by looking at the degree of t in (3.4) we get that

φn(r) =
∑

b∈B,deg(b)=0

fb,0 · b =
∑
b′∈B′

fb,0 · φn(b′).

By the injectivity of φn we get that r =
∑

b′∈B′ φ
−1
n (fb,0) b′. Hence, B′ generates R as an

RW -module, as fb,0 ∈ φn(RW ). It remains to check that the elements of B′ are linearly
independent. Suppose that

0 =
∑
b′∈B′

rb′b
′, rb′ ∈ RW . (3.5)

By applying φn to (3.5) we get

0 =
∑
b′∈B′

φn (rb′) · φn
(
b′
)
.
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Since φn (b′) ∈ B and φn (rb′) ∈ RW1 we get φn (rb′) = 0, because B is a basis. Since φn
is injective, this implies rb′ = 0, and thus the elements of B′ are linearly independent
which makes B′ a basis.
Finally, we need to check that B ⊂ im(φn). Note that φn(B′) ⊆ B. Let f ∈ R1

∼=
φn(R)[t], then we can write f =

∑N
k=0 rkt

k and since rk ∈ φn(R) we can write

rk =
∑
b′∈B′

ab′,k · φn(b′), ab′,k ∈ φn(R)W .

Altogether we get that

f =
N∑
k=0

∑
b′∈B′

ab′,k · φn(b′) · tk =
∑
b′∈B

(
N∑
k=0

ab′,k · tk
)
φn(b′).

However,
∑N

k=0 ab′,k · tk ∈ φn(R)W [t] ∼= RW1 , and thus φ(B′) is a basis of R1 as an
RW1 -module. This implies that B = φn(B′).

Remark 3.21. In the last proof we also saw that if B′ ⊂ R is an RW -basis of R, then
φn(B′) generates R1 as an RW1 -module. It is also easy to observe that φn(B′) is a basis
of R1 as an RW1 -module. For this suppose that

0 =
∑
b∈B′

fbφn(b)

where fb ∈ RW1 . Then we can write fb =
∑Nb

k=0 φn(ab,k)t
k with ab,k ∈ RW . This gives

0 =
∑
b∈B′

fbφn(b) =
∑
b∈B′

max(Nb)∑
k=0

φn(ab,k)t
kφn(b)

=

max(Nb)∑
k=0

(∑
b∈B′

φn (ab,kb)

)
tk,

where ab,k = 0 if k > Nb. Then by comparing coefficients of tk we get

0 =
∑
b∈B′

φn (ab,kb) = φn

(∑
b∈B′

ab,kb

)

which implies ab,k = 0 for all b ∈ B′ and k = 0, . . . , Nb. This implies fb = 0 for all b ∈ B′,
and thus the elements of φn(B′) are linearly independent over RW1 . Hence, φn(B′) is a
basis of R1 over RW1 . ♦

Remark 3.22. Note that the proofs of Corollary 3.19 and Lemma 3.20 still work if we
replace W by a parabolic subgroup WJ , since WJ is again a Coxeter group (Lemma 2.16).

♦

Now we can begin to construct our basis for R. We will do this simultaneously for R
and R1 and will see soon that we can actually identify both bases via φn.
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Definition 3.23. There are elements {σw}w∈W ⊂ R1, called Schubert polynomials,
which are given by

σw = ∂w−1w0

(
xn−1

1 xn−2
2 · · ·xn−1

)
.

By Corollary 3.19 we can write σw =
∑N

k=0 φn(aw,k)t
k with aw,k ∈ R. We define

gw = aw,0. ♦

Example 3.24. Consider W = S3. We can now construct the Schubert polynomials step
by step.

σw0 = ∂e(x
2
1x2) = x2

1x2

σs1s2 = ∂s1(x2
1x2) = x1x2

σs2s1 = ∂s2(x2
1x2) = x2

1

σs1 = ∂s2s1(x2
1x2) = ∂s2(x1x2) = x1

σs2 = ∂s1s2(x2
1x2) = ∂s1(x2

1) = x1 + x2

σe = ∂s1s2s1(x2
1x2) = ∂s1(x1) = 1.

Lemma 3.25. σe = 1.

Proof. For n = 1 there is nothing to prove, as σe = σw0 = 1. Now let n > 1, then
consider wk = sk−1sk−2 · · · s1. Note that this is a reduced expression of wk. Moreover,
we have w0 = w2 · · ·wn and `(w0) = `(w2) + · · · + `(wn). Thus, ∂w0 = ∂w2 ◦ · · · ◦ ∂wn .
At last we note that

∂wk(xk−1
1 xk−2

2 · · ·xk−1) = ∂wns1

(
xk−2

1 xk−2
2 xk−3

3 · · ·xk−1

)
= ∂wks1s2

(
xk−2

1 xk−3
2 xk−3

3 xk−4
4 · · ·xk−1

)
= · · · = xk−2

1 xk−3
2 · · ·xk−2.

This implies that

σe = ∂w0(xn−1
1 · · ·xn−1) = (∂w2 ◦ · · · ◦ ∂wn) (xn−1

1 xn−2
2 · · ·xn−1)

= (∂w2 ◦ · · · ◦ ∂wn−1) (xn−2
1 xn−3

2 · · ·xn−2)

= · · · = ∂w2(x1
1) = 1.

Definition 3.26. Let {τw}w∈WJ
⊂ R be a set of homogeneous elements. Then we say

that {τw}w∈WJ
is Demazure generated if

∂u(τw) =

{
τwu−1 if `(wu−1) = `(w)− `(u)
0 otherwise

(3.6)

for all u ∈WJ and τe = 1. ♦
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Remark 3.27. Let {τw}w∈WJ
be Demazure generated. Since ∂s : R −→ R〈−2〉 reduces

the degree by 2 we have that ∂u reduces the degree by 2`(u). This implies, since

∂u(τu) = τe = 1,

that τu has degree 2`(u) for all u ∈WJ . ♦

Theorem 3.28. The elements {gw}w∈WJ
form a basis for R as RJ -module. Moreover,

{gw}w∈WJ
is Demazure generated.

Proof. Demazure generated: We will start by proving property (3.6) for the Schubert
polynomials σw. By Lemma 3.25 we have σe = 1. Now let w, u ∈WJ , then

∂u(σw) = ∂u
(
∂w−1w0

(σw0)
)

=
(
∂u ◦ ∂w−1w0

)
(σw0).

Now note that we have `(w) 6 `(wu−1) + `(u) as w = wu−1u. Suppose first that
`(w) < `(wu−1) + `(u) and let u = si1 · · · sid , w−1w0 = sj1 · · · sjc be reduced expressions.
Now note that

`(uw−1w0) = `(w0)− `(uw−1) = `(w0)− `(wu−1)

< `(w0)− (`(w)− `(u)) = `(w0)− `(w) + `(u) = `(w−1w0) + `(u).

This implies that the expression uw−1w0 = si1 · · · sidsj1 · · · sjc is not reduced. For simpler
notation set id+k = jk for k = 1, . . . , c. Then there must be some number k such that
`(si1 · · · sik−1

) > `(si1 · · · sik). Pick the smallest such k, then v = si1 · · · sik−1
is a reduced

expression. By Theorem 2.11 there is an index l such that vsik = si1 · · · ŝil · · · sik−1
.

Thus, v = si1 · · · ŝil · · · sik−1
sik is a reduced expression. This implies that

∂u ◦ ∂w−1w0
= ∂i1 ◦ · · · ◦ ∂id ◦ ∂j1 ◦ · · · ◦ ∂jc
= ∂i1 ◦ · · · ∂ic+d
= ∂v ◦ ∂ik ◦ · · · ◦ ∂ic+d
= ∂i1 ◦ · · · ∂̂il ◦ · · · ∂ik ◦ ∂ik ◦ · · · ◦ ∂ic+d = 0,

since ∂ik ◦ ∂ik = 0 by Proposition 3.11. Hence, ∂u(σw) = 0. Now suppose that `(w) =
`(wu−1) + `(u). Then

`(uw−1w0) = `(w0)− `(uw−1) = `(w0)− `(wu−1) = `(w0)− (`(w)− `(u))

= `(w0)− `(w) + `(u) = `(w−1w0) + `(u).

Hence, uw−1w0 = si1 · · · sidsj1 · · · sjc is a reduced expression. Thus,

∂u ◦ ∂w−1w0
= ∂i1 ◦ · · · ◦ ∂id ◦ ∂j1 ◦ · · · ◦ ∂jc = ∂uw−1w0

.

This implies

∂u(σw0) =
(
∂u ◦ ∂w−1w0

)
(σw0) = ∂uw−1w0

(σw0) = ∂(wu−1)−1w0
(σw0) = σwu−1 .
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Now we can check property (3.6) for the gw. Let again u,w ∈WJ , then by the previous

∂u

(
Nw∑
k=0

φn(aw,k)t
k

)
= ∂u(σw) =

{
σwu−1 if `(wu−1) = `(w)− `(u)
0 otherwise

=

{ ∑Nwu−1

k=0 φn(awu−1,k)t
k if `(wu−1) = `(w)− `(u)

0 otherwise.

This implies by comparing coefficients of t0, since gw = aw,0,

∂u(gw) =

{
gwu−1 if `(wu−1) = `(w)− `(u)
0 otherwise.

By definition we also have ge = σe = 1. Hence, {gw}w∈WJ
is Demazure generated. Next

we prove that {gw}w∈WJ
is a basis.

Linear independence: First we check linear independence. Suppose that

0 =
∑
w∈WJ

rwgw

for rw ∈ RJ . Choose u ∈ WJ of maximal length such that ru 6= 0. Note that ∂u is
RJ -invariant as it is the composition of RJ -invariant morphisms ∂j for some j ∈ J . Now
for all w ∈WJ with `(w) 6 `(u) we have `(w)− `(u) 6 0. Hence, `(wu−1) = `(w)− `(u)
is only possible if `(wu−1) = 0 which means w = u. This implies

∂u(0) = ∂u

 ∑
w∈WJ

rwgw

 = ∂u

 ∑
w∈WJ ,`(w)6`(u)

rwgw


=

∑
w∈WJ ,`(w)6`(u)

rw∂u(gw) = ruguu−1 = ru.

This is a contradiction and proves linear independence.
Generating: Now we prove that the gw generate. Let r ∈ R. We define elements
bw ∈ R for w ∈ WJ . Let ` = `(wJ) − `(w), we will define these elements by induction
on `:

bwJ = ∂wJ (r)

bw = ∂w

r − ∑
`(u)>`(w)

bugu

 .

Now we will prove by induction on ` that bw ∈ RJ . For ` = 0 we have bwJ = ∂wJ (r) ∈
im(∂wJ ) ⊆ RJ . Suppose now ` > 0. It is enough to prove that ∂j(bw) = 0 for all j ∈ J ,
since this would imply bw ∈

⋂
j∈J R

j = RJ by Proposition 3.11. So let j ∈ J , then we
have either `(sjw) < `(w) or `(sjjw) > `(w).
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First suppose `(sjw) < `(w). This implies `(w−1sj) = `(sjw) < `(w) = `(w−1). Let
w = si1 · · · sid be a reduced expression, then by Theorem 2.11 we get that w−1sj =
sid · · · ŝik · · · si1 for some k. This implies that w = sjsi1 · · · ŝik · · · sid is a reduced expres-
sion. Thus,

∂j(bw) = ∂j

∂w
r − ∑

`(u)>`(w)

bugu


=
(
∂j ◦ ∂j ◦ ∂i1 ◦ · · · ∂̂ik ◦ · · · ◦ ∂id

)r − ∑
`(u)>`(w)

bugu

 = 0,

as ∂j ◦ ∂j = 0.
Now suppose `(sjw) > `(w) and write w1 = sjw. Note that w1 = sjsi1 · · · sid is a
reduced expression for w1 which implies ∂j ◦ ∂w = ∂w1 . If `(u) = `(w1) for u ∈ WJ ,
then `(u) − `(w1) = 0. Thus, `(uw−1

1 ) = `(u) − `(w1) only if u = w1 which implies
∂w1(gu) = δu,w1 . Now we can compute that

∂j(bw) = ∂j

∂w
r − ∑

`(u)>`(w)

bugu


= ∂w1

r − ∑
`(u)>`(w)

bugu


= ∂w1(r)−

∑
`(u)=`(w1)

bu∂w1(gu)− ∂w1

 ∑
`(u)>`(w1)

bugu


= ∂w1(r)− ∂w1

 ∑
`(u)>`(w1)

bugu

− ∑
`(u)=`(w1)

bu · δu,w1

= ∂w1

r − ∑
`(u)>`(w1)

bugu

− bw1 = bw1 − bw1 = 0.

This concludes our induction, and hence bw ∈ RJ for all w ∈ WJ . Moreover, we have
that

RJ 3 be = ∂e

r − ∑
`(u)>`(e)

bugu

 = r −
∑

`(u)>`(e)

bugu

which implies that

r = be +
∑
u6=e

bugu =
∑
u∈WJ

bugu.

Since r ∈ R was arbitrary and bu ∈ RJ this proves that the gw generate. Hence,
{gw}w∈WJ

is a basis of R over RJ .
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Remark 3.29. Note that we could do the same proof if we replaced gw by σw. This
implies that {σw}w∈WJ

is an RJ1 -basis of R1. Hence, by Lemma 3.20 and Remark 3.22
we get that σw = φn(gw). This now gives us the right to switch between R and R1

whenever we want to prove something about this basis. Usually we want to state our
theorems using R and {gw}w∈WJ

, since this is the realization we will use in future
chapters. However, in the proofs we will often need to work with R1 and {σw}w∈WJ

,
since we can calculate explicitly there. ♦

Remark 3.30. Note that this finishes the proof of Theorem 3.16 for W = Sn. We have
proven that rkRJ (R) = |WJ |. Thus, we get that rkRJ (R) = rkRI (R) · rkRJ (RI) which
implies

rkRJ
(
RI
)

=
rkRJ (R)

rkRI (R)
=
|WJ |
|WI |

for I ⊆ J . ♦

We will now construct a dual basis to our basis {gw}w∈W and prove the duality. The
definitions will only be done for R and the gw, but work in the same way also for R1

and σw which we will use in the proofs.

Definition 3.31. We define {g∗w}w∈W ⊂ R by

g∗w = (−1)`(ww0)w0(gww0)

and call them dual Schubert polynomials. ♦

Lemma 3.32.

1. For u ∈W we have that w0 ◦ ∂u ◦ w0 = (−1)`(u)∂w0uw0.

2. For u ∈W we have that

∂u(g∗w) =

{
g∗wu−1 if `(wu−1) = `(w) + `(u)
0 otherwise.

Proof. 1. We begin with the case u = s ∈ S. Note that

`(w0sw0) = `(w0)− `(w0s) = `(w0)− (`(w0)− `(s)) = `(s) = 1.

Thus, w0sw0 = s̃ ∈ S. Moreover, w0(αs) = −αs̃. One can check this for example in R1:
Let s = (i, i+ 1). As w0 reverses the order of 1, . . . , n we get that s̃ = (n− i, n− i+ 1).
We compute that

w0(αs) = w0(xi − xi+1) = xn−i+1 − xn−i = −αs̃.

Bringing everything together we have for r ∈ R

(w0 ◦ ∂s ◦ w0) (r) = w0

(
w0(r)− sw0(r)

αs

)
=
r − w0sw0(r)

w0(αs)

=
r − s̃(r)
−αs̃

= −∂s̃(r) = −∂w0sw0(r).
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Now let u = si1 · · · sid be a reduced expression. Note that `(w0uw0) = `(u) = d as before
and `(w0sikw0) = 1. Hence,

w0uw0 = w0si1 · · · sidw0 = (w0si1w0)(w0si2w0) · · · (w0sidw0)

is a reduced expression. We compute that

w0 ◦ ∂u ◦ w0 = w0 ◦ (∂i1 ◦ · · · ◦ ∂id) ◦ w0

= (w0 ◦ ∂i1w0) ◦ (w0 ◦ ∂i2 ◦ w0) ◦ · · · ◦ (w0 ◦ ∂idw0)

=
(
−∂w0si1w0

)
◦
(
−∂w0si2w0

)
◦ · · · ◦

(
−∂w0sidw0

)
= (−1)d∂w0uw0 .

This finishes part 1, since `(u) = d.
2. Let w, u ∈W , then we just compute that

∂u (g∗w) = ∂u

(
(−1)`(ww0)w0(gww0)

)
= (−1)`(ww0) · (−1)`(u) · w0 (∂w0uw0(gww0))

=

 (−1)`(ww0)+`(u) · w0

(
gww0w0u−1w0

)
if

`(ww0w0u
−1w0)

= `(ww0)− `(w0uw0)
0 otherwise

=

{
(−1)`(w0)−`(w)−`(u) · w0

(
gwu−1w0

)
if `(wu−1w0) = `(ww0)− `(u)

0 otherwise

=

{
(−1)`(w0)−`(wu−1) · w0

(
gwu−1w0

)
if `(wu−1) = `(w) + `(u)

0 otherwise

=

{
g∗wu−1 if `(wu−1) = `(w) + `(u)
0 otherwise.

Here we used that `(wu−1w0) = `(w0)− `(wu−1) in the fourth line and Definition 3.26
in the second line.

Lemma 3.33. Let w, v ∈W and let us expand gwg
∗
v in the basis {gu}u∈W :

gwg
∗
v =

∑
u∈W

augu, au ∈ RW .

Suppose `(w) 6= `(v), then aw0 = 0.

Proof. By Remark 3.29 we may consider σw instead of gw and R1 instead of R. Thus,
we have σw0 = xn−1

1 xn−2
2 · · ·x1

n−1 and σ∗v = (−1)`(vw0)w0(σvw0). For v = w0 the result is
clear, since σ∗w0

= 1. Hence, it is enough to check that the coefficient of σw0 in σww0(σv)
is zero for all w ∈W, v ∈W \ {e}.
Now let v 6= e. We will prove that σw is a k-linear combination of monomials of the
form xb11 · · ·xbnn with bi 6 n − i. We will prove this by induction on ` = `(w0) − `(w).
For ` = 0 we have w = w0 and we know that σw0 = xn−1

1 · · ·x1
n−1.
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Now let ` > 0, then there is s ∈ S such that `(ws) > `(w). Thus, `(w0)− `(ws) < `. So
by inductions σws is a k-linear combination of such monomials. Since σw = ∂s(σws) it
is enough to check that polynomials built out of monomials of the form xb11 · · ·xbnn with
bi 6 n − i are closed under applying Demazure operators. Let s = (i, i + 1), then we
compute that

∂s

(
xb11 · · ·x

bn
n

)
= xb11 · · ·x

bi−1

i−1 · ∂s
(
xbii x

bi+1

i+1

)
· xbi+2

i+2 · · ·x
bn
n

= xb11 · · ·x
bi−1

i−1 · x
bi+2

i+2 · · ·x
bn
n · (xixi+1)bmin ·

(
±
b−1∑
k=0

xki · xb−1−k
i+1

)

= ±
b−1∑
k=0

xb11 · · ·x
bi−1

i−1 · x
bmin+k
i · xbmax−1−k

i+1 · xbi+2

i+2 · · ·x
bn
n

where bmin = min(bi, bi+1), bmax = max(bi, bi+1) and b = bmax− bmin. Now we obviously
still have bj 6 n− j for j /∈ {i, i+ 1}. We also have bmin +k 6 bmin + b− 1 = bmax− 1 6
n− i− 1 and bmax − 1− k 6 n− i− 1 which concludes our induction argument.
Recall that w0 is the permutation that reverses the order of 1, . . . , n. Then by the
previous observation we get that w0(σv) is a k-linear combination of monomials xc11 · · ·xcnn
where ci < i. Hence, we have that σww0(σv) is a k-linear combination of monomials of
the form

xb1+c1
1 xb2+c2

2 · · ·xbn+cn
n .

Note that 0 6 bi + ci < n − i + i = n. Thus, we only have n possible exponents for
n variables. This implies that two variables must have the same exponent, since the
only other possibility is that each exponent 0, . . . , n − 1 appears exactly once. Then∑n

i=1 bi+ci = n(n−1)
2 = deg(σw0), but then `(w)+`(vw0) = `(w0). Thus, since `(vw0) =

`(w0)− `(v), we get `(w) = `(v) which is not possible.
Hence, it is enough to prove that the coefficient of σw0 in such monomials (with the
same exponent for some xi, xj) is 0. Note that such a monomial is fixed by a reflection
(i, j) ∈ Sn (where xi and xj have the same exponent). So, it is enough to prove that
polynomials which are fixed by a reflection (i, j) have coefficient zero for σw0 when we
expand them in the basis {σu}u∈W .
Suppose i < j, then we can write

t = (i, j) = sisi+1 · · · sj−2sj−1sj−2 · · · si = (si · · · sj−2)sj−1(si · · · sj−2)−1,

and thus t is a reflection in the Coxeter group, i.e. of the form w̃sw̃−1. Let r ∈ R1 be a
polynomial with t(r) = r. We write

r =
∑
u∈W

auσu, au ∈ RW1 .

Then let us write

t(σx) =
∑
u∈W

zu,xσu, zu,x ∈ RW1 .
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Note that by degree reasons zw0,x = 0 if x 6= w0. Moreover, we get

t(r) =
∑
x∈W

axt(σx)

=
∑
x∈W

∑
u∈W

axzu,xσu

=
∑
u∈W

(∑
x∈W

axzu,x

)
σu.

This implies that aw0 = aw0zw0,w0 . If zw0,w0 6= 1, then aw0 = 0 and we would be done. So
this is all we need to prove. By Theorem 3.28 we have that ∂w0(σw0−t(σw0)) = 1−zw0,w0 .
Assume first t = s ∈ S, then

1− zw0,w0 = ∂w0(σw0 − s(σw0)) = ∂w0(αs · ∂s(σw0))

= ∂w0s (∂s(αs · ∂s(σw0))) = ∂w0s (2 · ∂s(σw0))

= 2 · ∂w0(σw0) = 2.

This gives zw0,w0 = −1. Here we used that by Corollary 2.14 w0 has a reduced expression
which ends in s. Now let t = si1 · · · sid be a reduced expression. Then we compute that

t(σw0) = (si1 · · · sid)(σw0) = (si1 · · · sid−1
) (−σw0 + lower terms)

= (si1 · · · sid−2
) (σw0 + lower terms) = · · · = (−1)dσw0 + lower terms,

where lower terms means polynomials of degree less than deg(σw0) (which are irrelevant
for the coefficient of σw0). Hence, zw0,w0 = (−1)`(t).
We have t = w̃sw̃−1. We will prove by induction on `(w̃) that `(t) is odd. For `(w̃) = 0
this is clear. Now write w̃ = s̃w̃1. Then by induction `(w̃1sw̃

−1
1 ) is odd. Then `(s̃w̃1sw̃

−1
1 )

is even. Thus, `(w̃sw̃−1) = `(s̃w̃1sw̃
−1
1 s) is odd. This finishes the induction.

Hence, `(t) is odd and it follows that zw0,w0 = −1 which finishes the proof by the
arguments above.

Corollary 3.34. ∂w0(gwg
∗
u) = δw,u for all w, u ∈W .

Proof. Note that ∂w0(gv) = 0 if v 6= w0, since the gw are Demazure generated. If
`(w) 6= `(u), then by Lemma 3.33

gwg
∗
u =

∑
v 6=w0

avgv, av ∈ RW .

Hence,

∂w0 (gwg
∗
u) = ∂w0

∑
v 6=w0

avgv

 =
∑
v 6=w0

av∂w0 (gv) = 0.
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Let’s suppose `(w) = `(u) now. Let r1, r2 ∈ R, i ∈ S, then have

∂w0 (∂i(r1) · r2) = ∂w0 (r1 · ∂i(r2)) . (3.7)

To see this let w0 = si1 · · · sid by a reduced expression. By Corollary 2.14 we may assume
id = i. Thus, ∂w0 = ∂w̃ ◦ ∂i. Hence, we compute that

∂w0 (∂i(r1) · r2) = ∂w̃ (∂i (∂i(r1) · r2)) = ∂w̃ (∂i(r1) · ∂i(r2))

= ∂w̃ (∂i (r1 · ∂i(r2))) = ∂w0 (r1 · ∂i(r2))

which proves (3.7). Note that we can generalize (3.7). Let v = sj1 · · · sjc be a reduced
expression. Then

∂w0 (∂v(r1) · r2) = ∂w0 ((∂j1 ◦ · · · ◦ ∂jc) (r1) · r2)

= ∂w0 ((∂j2 ◦ · · · ◦ ∂jc) (r1) · ∂j1(r2))

= ∂w0 ((∂j3 ◦ · · · ◦ ∂jc) (r1) · (∂j2 ◦ ∂j1) (r2))

= · · · = ∂w0 (r1 · (∂jc ◦ · · · ◦ ∂j1) (r2))

= ∂w0 (r1 · ∂v−1(r2)) .

(3.8)

Now we write gw = ∂w−1w0
(gw0) by Definition 3.26. Then we have `(w0w) + `(u) =

`(w0)−`(w)+`(u) = `(w0). Thus, `(uw−1w0) = `(w0w)+`(u) if and only if uw−1w0 = w0

which implies u = w. Hence, by Lemma 3.32

∂w0w(g∗u) =

{
g∗uw−1w0

if `(uw−1w0) = `(u) + `(w0w)

0 otherwise

=

{
g∗w0

if u = w
0 otherwise

Now we can compute that

∂w0 (gwg
∗
u) = ∂w0

(
∂w−1w0

(gw0) · g∗u
)

= ∂w0 (gw0 · ∂w0w (g∗u))

= ∂w0

(
gw0 · δw,ug∗w0

)
= δw,u · ∂w0 (gw0)

= δw,u.

Here we used (3.8) in the second line and Definition 3.26 in the last line. This finishes
the proof.

Now we have proven that we have a dual basis for the basis {gw}w∈W . However, we
would like to have a dual basis for {gw}w∈WJ

which is our basis for R as an RJ -module.
In order to get this we will forget our basis {gw}w∈WJ

and instead look at a slightly
different basis. The advantage is that we can then generalize the previous result to the
case where R is viewed as an RJ -module.
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Theorem 3.35. There is an RJ -basis {τw}w∈WJ
of R which is Demazure generated with

the following property. The set {τ∗w}w∈WJ
where τ∗w = (−1)`(wwJ )wJ(τwwJ ) is also an

RJ -basis of R and we have

∂wJ (τwτ
∗
u) = δw,u

for all w, u ∈WJ .

Proof. By Remark 3.29 we may consider R1 instead of R. Recall the notation from
Remark 3.9 where we had

R1
∼= Re1 ⊗k · · · ⊗k Rem

as RJ1 -modules. Each Rek has a basis {σu,ek}u∈Sek given by Schubert polynomials. Thus,

R1 has an RJ1 -basis given by

{σu1,e1 ⊗ · · · ⊗ σum,em}.

We define τu = τ(u1,...,um) = σu1,e1 ⊗ · · · ⊗ σum,em for u ∈ WJ where we identified u

with the tuple (u1, . . . , um) ∈ Se1 × · · · × Sem . Then {τw}w∈WJ
is an RJ1 -basis for R1.

Moreover, {τ∗w}w∈WJ
is also an RJ1 -basis for R1, since wJ is an RJ1 -linear isomorphism.

Since for 1 6 k 6= l 6 m the elements of Sek and Sel (viewed as elements of Sn) are
distant from one another, we get that the simple reflections sj ∈ J act only on one factor
Rek . Hence, if we consider a Demazure operator ∂j for j corresponding to (w.l.o.g.) Se1 ,
we compute

∂j (r1 ⊗ r2 ⊗ · · · ⊗ rm) =
r1 ⊗ r2 ⊗ · · · ⊗ rm − sj (r1 ⊗ r2 ⊗ · · · ⊗ rm)

αj

=
r1 ⊗ r2 ⊗ · · · ⊗ rm − sj(r1)⊗ r2 ⊗ · · · ⊗ rm

αj

=
r1 − sj(r1)

αj
⊗ r2 ⊗ · · · ⊗ rm

= ∂j(r1)⊗ r2 ⊗ · · · ⊗ rm.

Hence, Demazure operators ∂uk for uk ∈ Sek acting on R1 can be viewed as just acting
on Rek . Moreover, since ukul = uluk for uk ∈ Sek and ul ∈ Sel viewed as elements of Sn
we have that ∂uk and ∂ul commute with each other if we let them act on R1. Thus, if
we write u = (u1, . . . , um) ∈WJ = Se1 × · · · × Sem we get that

∂u = ∂u1 ⊗ · · · ⊗ ∂um .

From this we get that {τw}w∈WJ
is Demazure generated, as for w = (w1, . . . , wm), u =

(u1, . . . , um) ∈WJ = Se1 × · · · × Sem we have
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∂u(τw) = (∂u1 ⊗ · · · ⊗ ∂um) (σw1 ⊗ · · · ⊗ σwm)

= ∂u1(σw1)⊗ · · · ⊗ ∂um(σwm)

=

{
σw1u

−1
1
⊗ · · · ⊗ σwmu−1

m
if `(wku

−1
k ) = `(wk)− `(uk) for all 1 6 k 6 m

0 otherwise

=

{
τwu−1 if `(wu−1) = `(w)− `(u)
0 otherwise.

Moreover, since we have wJ = (we1 , . . . , wem) by Remark 2.17 we get that (for u =
(u1, . . . , um))

τ∗u = (−1)`(uwJ )wJ(τuwJ )

= (−1)`(u1we1 ,...,umwem) · (we1 , . . . , wem)
(
σu1we1 ⊗ · · · ⊗ σumwem

)
= (−1)`(u1we1 )+···+`(umwem ) · we1(σu1we1 )⊗ · · · ⊗ wem(σumwem )

= σ∗u1 ⊗ · · · ⊗ σ
∗
um .

Hence, we compute that

∂wJ (τw · τ∗u) =
(
∂we1 ⊗ · · · ⊗ ∂wem

) (
(σw1 ⊗ · · · ⊗ σwm) ·

(
σ∗u1 ⊗ · · · ⊗ σ

∗
um

))
=
(
∂we1 ⊗ · · · ⊗ ∂wem

) (
σw1 · σ∗u1 ⊗ · · · ⊗ σwm · σ

∗
um

)
= ∂we1

(
σw1 · σ∗u1

)
⊗ · · · ⊗ ∂wem

(
σwm · σ∗um

)
= δw1,u1 ⊗ · · · ⊗ δwm,um = δw,u

for w = (w1, . . . , wm), u = (u1, . . . , um) ∈ WJ = Se1 × · · · × Sem . This finishes the
proof.

3.3 (Regular) Soergel bimodules

Now we are set up to define Soergel bimodules. For i ∈ S, let Bi = R ⊗Ri R〈1〉. From
now on we will denote by ⊗ with no index the tensor product over R. If we consider
tensor products of Bi’s we will often omit the ⊗. Given a sequence w = si1si2 . . . sid the
corresponding Bott–Samelson bimodule is the tensor product

Bw = Bi1 ⊗Bi2 ⊗ · · · ⊗Bid = Bi1Bi2 · · ·Bid

viewed as an (R,R)-bimodule via left and right multiplication. Note that Bw is iso-
morphic to R⊗Ri1 R⊗Ri2 R⊗Ri3 · · · ⊗Rid R〈d〉.
Definition 3.36. We define BSBim to be the full monoidal subcategory of graded (R,R)-
bimodules whose objects are Bott–Samelson bimodules and all their grading shifts.
Now we define SBim to be the Karoubi envelope of the additive closure of BSBim.
SBim is called the category of Soergel bimodules. Note that SBim is additive but not
abelian. ♦
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For the next theorem to hold we need some assumptions on the realization. This is what
was discussed in Remark 3.2. The theorem was proven by Soergel [Soe07, Satz 6.14].

Theorem 3.37. There is a 1-to-1 correspondence

W
1:1←→

{
indecomposable Soergel bimodules

up to isomorphism and grading shift

}
w 7−→ Bw.

Here Bw is determined by being the only summand of Bw, where w = si1 . . . sid is a
reduced expression for w, which is not a summand of (some shift of) By for any shorter
sequence y.

Remark 3.38. One could construct Bw by finding all summands of Bw which occur
as shifts of summands of lower terms, removing them, and seeing what remains. The
theorem implies that Bw is uniquely determined as being a direct summand for all Bw
where w = si1 . . . sid is a reduced expression for w. ♦

Theorem 3.39 (Categorification Theorem). Let h a realization of W that behaves well,
then there is a unique isomorphism of Z[v, v−1]-algebras:

ε : H −→ [SBim]

H i 7−→ [Bi],

where [SBim] denotes the split Grothendieck group of SBim. [SBim] becomes a Z
[
v, v−1

]
-

algebra via v · [M ] = [M〈1〉].
Given two Soergel bimodules B and B′ the graded rank of Hom(R,R)(B,B

′) as a free left
(or right) R-module is given by

(
ε−1 ([B]) , ε−1 ([B′])

)
, where (−,−) denotes the standard

pairing in H.

This Categorification Theorem goes back to Soergel [Soe07, Theorem 5.3]. He con-
jectured that if char(k) = 0, then ε−1 ([Bw]) = Hw. Soergel was able to prove this
conjecture in particular for W = Sn [Soe92]. The general case was established by Elias
and Williamson [EW14].

3.4 Singular Soergel bimodules

We will present some results of Williamson [Wil11] in this section. This includes the
definition of singular Soergel bimodules. The category of singular Soergel bimodules is
a 2-category and we would like to view it in this context. In order to do that we will
now first give the definition and for us most important example of 2-categories.

Definition 3.40. A (strict) 2-category C consists of the following data.

1. A set of objects ob(C).
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2. For each pair of objects x, y ∈ ob(C) a category MorC(x, y). The objects of
MorC(x, y) are called 1-morphisms and will be denoted M : x −→ y. The morph-
isms between these 1-morphisms are called 2-morphisms and will be denoted
f : M −→ N . The composition of 2-morphisms will be called vertical compos-
ition and will be denoted f ◦ g for f : N −→ L, g : M −→ N .

3. For each triple x, y, z ∈ ob(C) a functor

? : MorC(y, z)×MorC(x, y) −→ MorC(x, z).

The image of a pair of 1-morphisms (M,N) on the left hand side will be called the
composition of M and N and denoted M ?N . The image of a pair of 2-morphisms
(f, g) will be called horizontal composition and denoted f ? g.

These data are to satisfy the following conditions:

1. The set of objects together with the set of 1-morphisms endowed with the com-
position of 1-morphisms forms a category.

2. Horizontal composition of 2-morphisms is associative.

3. The identity 2-morphism ididx of the identity 1-morphism idx is a unit for horizontal
composition. ♦

Example 3.41. The most important example for us will be Bim.
objects: rings R

1-morphisms: bimodules
2-morphisms: bimodule morphisms

This means that MorBim(R,S) is the category of (R,S)-bimodules. The horizontal com-
position is given by tensor products, i.e. MS R ◦ NP S = N ⊗S M (here this notation
means that M ∈ MorBim(R,S) for instance). The vertical composition is just the usual
composition of bimodule morphisms.
Warning! This 2-category is not strict (i.e. identities only hold up to coherent iso-
morphisms). One calls such 2-categories weak 2-categories or bicategories.
All 2-categories that we will consider are subcategories of Bim. This means that the
objects will be some set of rings and the categories Mor(R,S) will be subcategories of
MorBim(R,S).

For a more detailed introduction to 2-categories suitable for our purposes, see e.g.
[Str20b].

Definition 3.42. Let I, J ⊂ S be finitary parabolic subsets. We define the category
BSBimI J to be the full subcategory of (RI , RJ)-bimodules that contains all Bott–

Samelson bimodules (see Definition 3.36) viewed as (RI , RJ)-bimodules by restricting
the left and right action of R. ♦

Definition 3.43. We define the category sBSBimI J to be the full subcategory of (RI , RJ)-
bimodules that contains all shifts of objects of the form

RI1 ⊗RJ1 R
I2 ⊗RJ2 · · · ⊗RJn−1 R

In
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where I = I1 ⊂ J1 ⊃ I2 ⊂ J2 ⊃ · · · ⊂ Jn−1 ⊃ In = J are finitary subsets of S. Objects
of sBSBimI J are called singular Bott–Samelson bimodules.
Finally, we define SBimI J to be Karoubi envelope of the additive closure of sBSBimI J

and call its objects singular Soergel bimodules. ♦

Remark 3.44. One can prove that every singular Bott–Samelson bimodule is a direct
summand of some object in BSBimI J . This mainly follows from the fact that R is free
of finite rank over RJ for a finitary parabolic subset J ⊂ S and another fact which we
will come across in Section 4.3. This fact states that the objects R ⊗RJ R are direct
summands of some Bott–Samelson bimodules.
Altogether we get that SBimI J is also the Karoubi envelope of the additive closure of
BSBimI J . ♦

Definition 3.45. In the following we define the 2-category of singular Bott–Samelson
bimodules sBSBim. Objects are finitary parabolic subsets I ⊆ S. The categories
MorsBSBim(I, J) are given by sBSBimI J .
The 2-category of singular Soergel bimodules SBim (note that we abused notation here)
is defined similarly. Objects are finitary parabolic subsets I ⊆ S. The categories
MorSBim(I, J) are given by SBimI J . The composition of 1-morphisms and the hori-
zontal composition of 2-morphisms are induced from Bim. ♦

The following result is based on works of Soergel [Soe92] and Stroppel [Str04]. A proof
as well as a detailed discussion can be found in [Wil11, Theorem 7.4.2].

Theorem 3.46. There is a bijection

WI\W/WJ ←→


isomorphism classes of

indecomposable bimodules in SBimI J

(up to grading shifts).


Remark 3.47. We want to give a small indication how to find these indecomposable
bimodules. For a double coset p ∈WI\W/WJ choose an element w ∈ p and fix a reduced
expression w = si1 · · · sid . Then the indecomposable bimodule corresponding to p is a
direct summand of Bi1 · · ·Bid . Note that this bimodule is actually an (R,R)-bimodule,
but we can view it as an (RI , RJ)-bimodule via restricting the actions.
The next lemma will give a little justification why the indecomposable bimodules are
corresponding to double cosets and not just elements of W . ♦

Lemma 3.48. Let p ∈ WI\W/WJ and let w ∈ p. By Theorem 2.24 there are u ∈ WI

and v ∈ WJ such that w = up−v and `(w) = `(u) + `(p−) + `(v). Here p− denotes the
unique shortest element in p. Now by picking reduced expressions

u = sj1 · · · sje , p− = si1 · · · sid , v = sl1 · · · slf

we get a reduced expression w = sj1 · · · sjesi1 · · · sidsl1 · · · slf . Write

Bw = Bj1 · · ·BjeBi1 · · ·BidBl1 · · ·Blf
Bp− = Bi1 · · ·Bid
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viewed as (RI , RJ)-bimodules. Then

Bw ∼=
e+f⊕
k=0

(
Bp−〈e+ f − 2k〉

)⊕(e+fk )

as (RI , RJ)-bimodules.

Proof. Claim:

Bj1 · · ·Bje ∼=
e⊕

k=0

(R〈e− 2k〉)⊕(ek) as (RI , R)-bimodule,

Bl1 · · ·Blf ∼=
f⊕
k=0

(R〈f − 2k〉)⊕(fk) as (R,RJ)-bimodule.

Using this claim we can conclude the lemma, because Bw can be decomposed as a direct
sum of copies with certain shifts of R⊗Bp− ⊗R. Explicitly using

(
e+ f

k

)
=

k∑
k1, k2 = 0
k1 + k2 = k

(
e

k1

)
·
(
f

k2

)
.

The proof then goes as follows.

Bw = Bj1 · · ·BjeBi1 · · ·BidBl1 · · ·Blf

∼=

(
e⊕

k=0

(R〈e− 2k〉)⊕(ek)

)
⊗Bp− ⊗

(
f⊕
k=0

(R〈f − 2k〉)⊕(fk)

)

∼=
e⊕

k1=0

f⊕
k2=0

(
Bp−〈e+ f − 2k1 − 2k2〉

)⊕( ek1)·(
f
k2

)

∼=
e+f⊕
k=0

(
Bp−〈e+ f − 2k〉

)⊕(e+fk )
.

We now prove the claim. It suffices to do this for the first isomorphism as the second
proof is completely analogous. We do induction on e. For e = 0 there is nothing to do.
For e = 1 we have by Remark 3.27 and Theorem 3.28

Bj1 = R⊗Rj1 R〈1〉 ∼=
(
Rj1 ⊕Rj1〈−2〉

)
⊗Rj1 R〈1〉 ∼= R〈1〉 ⊕R〈−1〉

as (RI , R)-bimodules. Then we get by using first the case e = 1 and then applying
induction the following isomorphism of (RI , R)-bimodules (which is basically going from
one row in Pascal’s triangle to the next one)
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Bj1 · · ·Bje ∼= (R〈1〉 ⊕R〈−1〉)⊗Bj2 · · ·Bje
∼= Bj2 · · ·Bje〈1〉 ⊕Bj2 · · ·Bje〈−1〉

∼=

(
e−1⊕
k=0

(R〈e− 1− 2k〉)⊕(e−1
k )

)
〈1〉 ⊕

(
e−1⊕
k=0

(R〈e− 1− 2k〉)⊕(e−1
k )

)
〈−1〉

∼=

(
e−1⊕
k=0

(R〈e− 2k〉)⊕(e−1
k )

)
⊕

(
e−1⊕
k=0

(R〈e− 2− 2k〉)⊕(e−1
k )

)

∼= R〈e〉 ⊕

(
e−1⊕
k=1

(R〈e− 2k〉)⊕(e−1
k )+(e−1

k+1)

)
⊕R〈−e〉

∼=
e⊕

k=0

(R〈e− 2k〉)⊕(ek) .

This finishes the proof.

49



4 Soergel diagrammatics

4.1 Soergel diagrammatics for Sn

In this section we consider the Coxeter system (W,S) = (Sn, {simple transpositions}).
We label the elements of S with integers 1, . . . , n− 1 where i corresponds to the simple
transposition si = (i, i + 1). Elias and Khovanov [EK10a] develop a diagrammatic
presentation of a strictification of the monoidal category of Soergel bimodules SBim
for Sn. We will revisit this presentation, since it is the foundation on which further
diagrammatics in this thesis is based on. The main goal of this section is to define a
diagrammatic category D and explain the following result from [EK10a] which says

Theorem. There is a functor F : D −→ SBim which is an equivalence of monoidal
categories.

This will be done by defining an equivalence of monoidal categories F1 : D1 −→ BSBim
and then extending it abstractly to the Karoubian closure F : D = Kar(D1) −→
Kar(BSBim) = SBim.
Before we go into the abstract definition of D1 we would like to give some insights on
what the result will be. The objects in D1 will be sequences i = (i1, . . . , id) for ij ∈ S.
They will later correspond to the bimodule Bi = Bi1 ⊗ · · · ⊗Bid . A morphism could for
example be given by the following picture.

1 4 2 1

4 2 1 2 1

This would correspond to a morphism from
B1 ⊗B4 ⊗B2 ⊗B1 to B4 ⊗B2 ⊗B1 ⊗B2 ⊗B1.

Glueing pictures vertically is interpreted as the composition of the corresponding morph-
isms. Glueing pictures horizontally is interpreted as the tensor product of the corres-
ponding morphisms. This allows us to “build” each morphism out of small blocks. In
the example this looks as following.

1 4 2 1

4 2 1 2 1

= = ⊗ ⊗ ◦ ⊗ ⊗
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We will now give the definition for D1. Since our goal is the equivalence to SBim we
will already write the corresponding morphisms in SBim to some of the morphisms we
are about to define. This is technically not part of the definition, but it is nice to have
everything at one place.

Definition 4.1. We construct a monoidal category D1 by generators and relations.
It is generated on objects by S. This means that objects are sequences of indices
i = (i1, . . . , id) for ij ∈ S. We visualize them as points on the real line R, labelled
or “coloured” by the indices from left to right.
On morphisms D1 is generated by the following generating morphisms modulo the rela-
tions (4.1) to (4.19).

f

polynomial
generator

deg = deg(f)
(f ∈ R homogeneous)

R −→ R
r 7−→ f · r

i

(end)dot
deg = 1

Bi −→ R
r1 ⊗ r2 7−→ r1r2

i

(start)dot
deg = 1

R −→ Bi
r 7−→ r

2 · (αi ⊗ 1 + 1⊗ αi)

i

i i

trivalent vertex
(split)

deg = −1

Bi −→ BiBi
r1 ⊗ r2 7−→ r1 ⊗ 1⊗ r2
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i i

i

trivalent vertex
(merge)

deg = −1

BiBi −→ Bi
r1 ⊗ r2 ⊗ r3 7−→ r1∂i(r2)⊗ r3

j i

i j

4-valent vertex
deg = 0

(| i− j |> 1)

BjBi −→ BiBj
r1 ⊗ 1⊗ r2 7−→ r1 ⊗ 1⊗ r2

i i+ 1 i

i+ 1 i i+ 1

6-valent vertex
deg = 0

BiBi+1Bi −→ Bi+1BiBi+1

1⊗ 1⊗ 1⊗ 1 7−→ 1⊗ 1⊗ 1⊗ 1
1⊗ xi ⊗ 1⊗ 1 7−→ xi ⊗ 1⊗ 1⊗ 1

+xi+1 ⊗ 1⊗ 1⊗ 1
−1⊗ 1⊗ 1⊗ xi+2

i+ 1 i i+ 1

i i+ 1 i

6-valent vertex
deg = 0

Bi+1BiBi+1 −→ BiBi+1Bi
1⊗ 1⊗ 1⊗ 1 7−→ 1⊗ 1⊗ 1⊗ 1

1⊗ xi+2 ⊗ 1⊗ 1 7−→ 1⊗ 1⊗ 1⊗ xi+1

+1⊗ 1⊗ 1⊗ xi+2

−xi ⊗ 1⊗ 1⊗ 1

Thus, a morphism from i to j in D1 is given by a k-linear sum of pictures embedded in
the strip R× [0, 1]. The points in the line R×{0} correspond to i and the points on the
line R× {1} correspond to j. In-between are coloured graphs which are constructed by
glueing the above generating morphisms (horizontally and vertically). ♦

Before we give the complete list of relations, we will discuss some abbreviations we will
make. First, we will stop labelling the points on the boundary with explicit indices.
Instead there will just be different colours that represent different indices. Often we will
put some restrictions on the adjacency of colours. For example we could have introduced
both 6-valent vertices together as just one of the pictures without explicit labels on the
boundary by restricting the colours to being adjacent (however we wanted to state the
corresponding bimodule morphism which slightly differs for the two types of 6-valent
vertices).
Secondly, we need to define two abbreviating morphisms in order to state all relations.
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=
cup

deg = 0

=
cap

deg = 0

Relations

Now we give the complete list of relations. We will start with the Frobenius relations.

=
coassociativity

of split
(4.1)

=
associativity

of merge
(4.2)

= = counit (4.3)

= = unit (4.4)

= =
associativity(

Frobenius
condition

)
(4.5)

We will continue with the last one-colour relations that we need.
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= 0 (4.6)

= αi (4.7)

f = si(f) + ∂i(f) (4.8)

Remark 4.2. Relation (4.7) tells us that we can write every polynomial as k-linear
combination of many double dots (this is what we call the left side of (4.7)). Thus, the
polynomial generator is actually not needed. We decided to include it anyway because it
gives us a canonical way to give the morphism spaces the structure of an (R,R)-bimodule.
In this way we can easily understand how the double dots are used for this which is an
advantage. The disadvantage is that the pictures now contain these polynomials instead
of just colourful graphs. ♦

We continue with multiple colour relations. In the next relations red and green are
distant, i.e. the corresponding simple transpositions (i, i+1) and (j, j+1) satisfy |i−j| > 1
(otherwise we call the colours adjacent).

= = (4.9)

= (4.10)
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= (4.11)

= (4.12)

In the next relation red and blue are adjacent and green is distant from both of them.

= (4.13)

In the next relation all three colours are mutually distant.

= (4.14)

Remark 4.3. Relations (4.10) to (4.14) indicate that any part of the graph labelled i
and any part labelled j for i and j distant do not interact with each other. This means
we can slide the j-coloured part past the i-coloured part and it will not change the
morphism. We call this distant sliding property. ♦

In the next relations red and blue are adjacent.

= = (4.15)

= + (4.16)
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= − (4.17)

= (4.18)

In the next relation the three colours have the same adjacency as {1, 2, 3} (where red
corresponds to 2).

= (4.19)

This concludes the list of relations for D1.

Remark 4.4. In some of the relations there are horizontal lines and lines which end
neither in bottom or top. We will now explain how to interpret them.
Relations (4.1) to (4.5) turn the object i in D1 into a Frobenius object. They also
imply some other relations which are quite useful and will help us to understand these
horizontal lines. Therefore, we will also state them here.

= = biadjunction (4.20)

= = (4.21)

= = (4.22)
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= = (4.23)

= = (4.24)

Now relations (4.20) to (4.24), (4.9) and (4.15) imply that the morphism specified by a
particular graph embedding is independent of the isotopy class of the embedding. They
are called cyclicity relations.
This is the reason for the usage of horizontal lines. They can be interpreted as either
going up or going down (they just have to do the same on both sides of the equation).
In this way one picture can encode many different morphisms. It is just a shortcut
notation. For example we could rewrite (4.5) to

= (4.5)

which is a bit shorter and encodes even more information (think for example of the
horizontal line as a cup or a cap). ♦

Remark 4.5 (Warning!). The list of relations is not minimal. For instance (4.10) can
be proven using the other relations. However, it is often to have a variety of relations
to work with, since it makes it easier to simplify expressions and to prove things with
these relations. That is why we included more relations than one actually needs. ♦

Remark 4.6. Since one can use double dots to write polynomials we can look at some
consequences of (4.8) where we replace polynomials by double dots. In these relations
red and green are distant while red and blue are adjacent.

+ = 2 · (4.25)
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= (4.26)

− = −

− =
1

2
− 1

2

(4.27)

In the second equality of (4.27) one applies (4.25). ♦

Remark 4.7. There is a slight generalization of relation (4.6) which looks as follows.

= 0 (4.28)

We can generalize this relation to get the following two relations (where red and blue
are adjacent).

= 0 (4.29)

= 0 (4.30)

These relations tell us that if there is an empty area which is surrounded by lines of one
colour (up to some dots) then the morphism is already zero. ♦
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Definition 4.8. Note that D1 is a graded category (we have degrees for the morphisms).
Let D′1 be the corresponding k-linear category with free Z-action (via Theorem 2.56).
Then we define D2 to be the closure of D′1 under finite direct sums.
The category D then is the Karoubi envelope of D2. Thus, D is the closure of D′1 under
finite direct sums and taking direct summands. ♦

Definition 4.9. We define the monoidal functor F1 : D1 −→ BSBim on objects by
sending i to Bi and on morphisms via the bimodule morphisms we associated to our
generating morphisms in Definition 4.1.
The functor F : D −→ SBim is the functor which is induced from F1 after taking the
additive closure and the Karoubi envelope on both sides. ♦

The following is one of the main results in [EK10a] and also the main theorem of this
section.

Theorem 4.10. The functors F1 and F are equivalences of monoidal categories.

4.2 The general case

In this section we will see how to generalize this diagrammatic presentation to more
general Coxeter systems (W,S). This was done by Elias and Williamson [EW16] and
we will only present their results. We need to put some assumptions on (W,S) and k
for this to work. First there needs to be a realization of (W,S) over k in order to define
SBim and then we need to put a few assumptions on this realization in order for SBim
to behave well. For details we refer the reader to [EW16, Section 3].
Now we can define a diagrammatic category D1 in the same way as in the last section
and then the analogous of Definitions 4.8 and 4.9 and Theorem 4.10 hold. So we will
just say what kind of generators and what kind of relations we need.

Definition 4.11. The generators will consist out of the one-colour generators that we
already know: The two dots and the two trivalent vertices as well as the polynomial
generator. The last generators are two-colour generators, namely for each ordered pair
(i, j) ∈ S2 we have the (2mij)-valent vertex.

mij even

mij odd

Each of the bimodules Bi ⊗ Bj ⊗ Bi ⊗ · · · ⊗ Bj and Bj ⊗ Bi ⊗ Bj ⊗ · · · ⊗ Bi have the
same indecomposable bimodule as a summand and this summand appears only once. The
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morphisms in SBim corresponding to these two generators are given by the projection to
this summand composed with the inclusion of this summand into the other bimodule. ♦

The relations we require are all the one-colour relations that we have seen in the last
section and then two more types of relations.
The first type of relations are the two-colour relations. We have three relations for each
ordered pair (i, j) ∈ S2. These relations depend again slightly on the parity of mij .

= = mij even

= = mij odd

(4.31)

= mij even

= mij odd

(4.32)

= JWmij−1 mij even

= JWmij−1 mij odd

(4.33)

JWmij−1 is the Jones–Wenzl morphism. It is a k-linear combination of graphs construc-
ted only out of dots and trivalent vertices. For more details we refer the reader to [EW16,
Section 5.2].
The second type of relations are the three-colour relations. For a triplet forming a
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sub-Coxeter system of type A1 × I2(m), m <∞, we have the following relation.

= (4.34)

Then we have three relations corresponding to triplets forming sub-Coxeter systems
of types A3, B3 and H3. These relations are called Zamolodzhikov relations. For a
motivation behind this name see [Str20b]. The relation for type A3 is (4.19). The
relation for type B3 is the following.

= (4.35)

The relation for type H3 is quite complicated and was for a while not completely known.
It looks as follows.

− =
lower
terms

(4.36)

Here the ”lower terms” on the right hand side are morphisms that vanish if we localize.
These have been computed just recently. We will explain what localization means in the
next remark.

Remark 4.12. Let Q be the quotient field of R. Let BSBimQ be the full monoidal
subcategory of Q-bimodules generated by the bimodules Bi,Q = Q ⊗Qi Q. Let SBimQ

denote its Karoubi envelope. Then we have a faithful monoidal functor

SBim −→ SBimQ

given by induction with Q on the right. This is called localization. For more details on
this see [EW16, Section 3.6]. ♦

4.3 Thick lines

In this section we will give a diagrammatic presentation of the partial idempotent com-
pletion gBSBim of BSBim for W = Sn+1. This was done by Elias [Eli16, Chapter 4]
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and we will present his results here. First, we need to fix some terminology. For a more
detailed presentation of the following have a look at [Eli16, Chapter 2].

Definition 4.13. Let J be a parabolic subset of S, the set of simple transpositions
in W = Sn+1. We write dJ for length of the longest element wJ of WJ . We define
BJ = R⊗RJ R〈dJ〉.
For a sequence J = J1J2 · · · Jr of parabolic subsets we let BJ = BJ1 · · ·BJr . These BJ

are called generalized Bott–Samelson bimodules. ♦

Lemma 4.14. Let J be a parabolic subset of S. Let wJ = si1 · · · sir be a reduced expres-
sion where i1, . . . , ir ∈ J . Then BJ is a direct summand of Bi1 ⊗ · · · ⊗ Bir . Moreover,
the inclusion BJ −→ Bi1 ⊗ · · · ⊗Bir is given by 1⊗ 1 7−→ 1⊗ · · · ⊗ 1.

Proof. First consider the case J = S and WJ = W . We know by Theorem 3.37 that
there is a unique summand Bw0 of Bi1 ⊗ · · · ⊗ Bir . One can prove that Bw0

∼= BS (see
for instance [Str20b, Theorem II.3]). Thus, we are done in this case.
Now consider an arbitrary subset J of S. For (W,S) we used a realization h to define
Soergel bimodules. This vector space h is also a realization for (WJ , J) with the induced
action, because all the conditions of Definition 3.1 are still satisfied. Then, in the category
of Soergel bimodules for (WJ , J), we get from the previous consideration that BJ is a
direct summand of Bi1⊗· · ·⊗Bir , because J is the maximal parabolic subset for (WJ , J).
However, since the realization h is the same for (WJ , J) and (W,S) we get the Bi and
BJ in the category of Soergel bimodules for (WJ , J) are the same bimodules as they are
in the category of Soergel bimodules for (W,S). This finishes the proof.

Definition 4.15. We define the category gBSBim to be the full subcategory of (R,R)-
bimodules containing all grading shifts of the generalized Bott–Samelson bimodules BJ.
This is a full monoidal graded subcategory of (R,R)-bimodules. By Lemma 4.14 this is
also a full subcategory of SBim. ♦

We will now define a category gD which is a partial idempotent completion of D1 and
hence a full subcategory of D. This means that we add some (not all) direct summands
to D1. That is also what happens on the side of Soergel bimodules when transitioning
from BSBim to gBSBim. We will then observe that the equivalence of categories F :
D1 −→ BSBim extends to an equivalence of categories F : gD −→ gBSBim.

Definition 4.16. Let C be a full subcategory of some ambient module category. If S
is a set of objects in the idempotent completion for C we define C(S) to be the full
subcategory of the ambient module category whose objects are the objects of C as well
as S. We call this a partial idempotent completion of C. If S consists of a single object
M , we denote the partial idempotent completion by C(M). ♦

Definition 4.17. We call a collection of morphisms ϕα,β : Xα −→ Xβ in a category C
satisfying ϕα,γ = ϕβ,γϕα,β a consistent family of projectors. ♦

Remark 4.18. Given a collection of morphisms {ϕα,β} we have that {ϕα,β} is a con-
sistent family of projectors if and only if the corresponding objects Xα have a mutual
summand M . The morphisms ϕα,β : Xα −→ Xβ are then given by the composition

Xα
pα−→M

iβ−→ Xβ of projection and inclusion.
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If we then assume that we have a presentation for C we can obtain a presentation for
C(M) as follows. The generators will be the generators of C as well as the new morphisms
pα : Xα −→M and iα : M −→ Xα. The relations will consist of those relations in C and
the new relations iβ pα = ϕα,β and pα iα = idM . ♦

Definition 4.19. A parabolic subset J is connected if for every i /∈ J either j /∈ J for
all j < i or j /∈ J for all j > i. ♦

Proposition 4.20. Let J be a connected parabolic subset. In D1 there is a family of
morphisms φJ = {φx,y} for each pair (x,y) of reduced expressions for wJ which satisfies
the following three properties.

1. The family φJ is a consistent family of projectors, picking out a summand X.

2. The summand X satisfies X ⊗ i ∼= X〈1〉 ⊕X〈−1〉 for each i ∈ J .

3. The space HomD1(X, ∅) is a cyclic R-module, generated in degree dJ .

Moreover, X is indecomposable, and is sent to the Soergel bimodule BJ by the functor
F .

Proof. [Eli16, Proposition 2.16, Theorem 3.18].

Example 4.21. Let W = S3 and S = {s1, s2}. We consider the parabolic subset S ⊆ S.
There are two reduced expression for the longest element of W = WS , namely w0 =
s1s2s1 = s2s1s2. Let us write x = (s1, s2, s1) and y = (s2, s1, s2). Then φS is given by
the following.

φx,y =

φx,x =

φy,x and φy,y are given by swapping colours above.

We will call the summand X ∈ D1 in Proposition 4.20 from now on J . Now we are ready
to define the diagrammatic category gD.

Remark 4.22. The elements of φJ are constructed only out of 4-valent and 6-valent
vertices [Eli16, Definition 3.9]. ♦
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Definition 4.23. Let gD be the graded monoidal category presented diagrammatically
as follows. The generating objects are connected subsets J of S (thus, general objects
are sequences J = J1J2 . . . Jr of connected subsets of S). When J = {j} is a singleton,
we write the element j instead of J and identify it with an object in D1. We draw the
identity of J as follows.

J

The generating morphisms are the usual generators of D1, in addition to J-inclusions
and J-projections. The J-inclusion is a morphism from J to x where x is any reduced
expression for wJ . The J-projection is a morphism in the other direction. Both have
degree 0.

x

J x

J

The defining relations consist of

x

J

J

=

J

(4.37)

y

x

J
=

y

x

φy,x (4.38)

together with the defining relations of D1. ♦

Theorem 4.24. This category gD is equivalent to the partial idempotent completion of
D1 by the images of φJ for J ⊂ S. The functor F from D1 to BSBim extends to a
functor gF from gD to gBSBim which is an equivalence of categories if F is one.

Proof. This follows from the discussion in Remark 4.18 and Proposition 4.20.
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We will now identify some morphisms with more special pictures (like we did for cup
and cap) and give relations for them. This makes many statements more intuitive. We
will only cover a part of what is done in [Eli16, Chapter 4], since we only need some of
the morphisms for the next sections.

Definition 4.25. The first new morphisms are the thick cap and thick cup.

J

=

J J

(4.39)

J

=

J J

(4.40)

They are independent of the choice of reduced expression. ♦

Note that one can check that the thick cap corresponds to the bimodule morphism

BJBJ = R⊗RJ R⊗RJ R −→ R

r1 ⊗ r2 ⊗ r3 7−→ r1∂J(r2)r3

and the thick cup corresponds to the bimodule morphism

R −→ BJBJ = R⊗RJ R⊗RJ R
1 7−→ 1⊗ 1⊗ 1.

The following relation is the important one for cap and cup.

Lemma 4.26. We have the following relation in gD.

J

=

J

=

J

(4.41)

Definition 4.27. The next morphisms are the thick dots. They are obtained by choosing
a reduced expression x for wJ and composing J −→ x −→ ∅, where the latter morphism
consists of a dot on every strand.
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J

=

J

(4.42)

J

=

J

(4.43)

They are independent of the choice of reduced expression. ♦

Lemma 4.28. The two morphims above are both non-zero and independent of the choice
of x, so they are well defined. It is the generator of HomgD(J, ∅) as an R-bimodule.

Proof. See [Eli16, Proposition 3.49 and Claim 4.5].

Lemma 4.29. We have the following cyclicity relations for the thick dots.

J

=

J

=

J

(4.44)

J

=

J

=

J

(4.45)

Definition 4.30. The thick trivalent vertex exists only if i ∈ J . There are two versions
of the thick trivalent vertex, a right-facing one and a left-facing one.

J

=

J

J

ai (4.46)

J

=

J

J

ai (4.47)
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For the definition of ai see [Eli16, §3.4]. ♦

Note that we abused notation here by writing ai in both boxes, but meaning two different
morphisms (one with a right-facing strand i and one with a left-facing strand i). The
colour of i in these pictures is red. Note that the reduced expression used for the J-
projections and J-inclusions starts with red, but this could be totally different and the
definition of ai depends on the reduced expression we choose.
The easiest way to understand ai is to choose a reduced expression that ends (respectively
starts) in i. Then ai is just the identity and we have the usual trivalent vertex on the
right (respectively left).
In this way we can also observe what the thick trivalent vertex is on the bimodule side.
As a morphism BJ ⊗Bi −→ BJ it is given by

r1 ⊗ r2 ⊗ r3 7−→ r1 ⊗ ∂i(r2)r3.

As a morphism BJ −→ BJ ⊗Bi it is given by

r1 ⊗ r2 7−→ r1 ⊗ 1⊗ r2.

The analogous morphisms correspond to the left-facing thick trivalent vertex. Now we
can give some relations for the thick trivalent vertices. We will only draw the right-facing
versions of the relations. The left-facing versions are also true.

Lemma 4.31. We have the following relations in gD where red and green are distant
while red and blue are adjacent.

J

=

J

(4.48)

J

=

J

(4.49)

J

=

J

(4.50)

J

=

J

(4.51)
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J

=

J

(4.52)

J

=

J

(4.53)

J

=

J

(4.54)

J

=

J

(4.55)

J

=

J

(4.56)

Remark 4.32. Recall Remark 4.22 says that φx,y is constructed only out of 4-valent
and 6-valent vertices. Thus, (4.50) and (4.51) imply that if we write φx,y rotated by 90
degrees next to a thick line labelled J it will get sucked in completely and just changes
the ordering of the strings:

J

φx,y

x y

=

J
y

(4.57)

The same relation holds on the left side. ♦

Corollary 4.33. We have the following isotopy relations for the thick trivalent ver-
tex. We will again only show the right version, but the left version works completely
analogous.
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J

=

J

(4.58)

J

=

J

(4.59)

Proof. We use (4.48) and (4.49) to get the following chain of equalities.

J

=

J

(4.49)
=

J

(4.48)
=

J

J

=

J

(4.49)
=

J

(4.48)
=

J

This finishes the proof.

Definition 4.34. The very thick trivalent vertex is constructed as follows. Rotate the
J-inclusion by 90 degrees, and then connect the output sequence x to another J-coloured
strand by a sequence of thick trivalent vertices. There are dJ thick trivalent vertices, so
this morphism has degree −dJ .

J

=
J

J

(4.60)

Again this morphism is independent of the choice of reduced expression. ♦

We can again analyse what the very thick trivalent vertex corresponds to on the bimodule
side. First consider it as a morphism BJ ⊗ BJ −→ BJ . If we look at an element
r1⊗ r2⊗ r3 ∈ BJ ⊗BJ , then this gets sent by the J-inclusion to r1⊗ r2⊗1⊗· · ·⊗1⊗ r3.
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Now we apply the dJ thick trivalent vertices. Each of them will just apply a Demazure
operator ∂i to r2 and cancel on of the middle tensor signs. Thus, in the end we are left
with the following expression:

r1 ⊗ ∂i1(∂i2(· · · (∂idJ (r2)) · · · ))r3 = r1 ⊗ ∂J(r2)r3,

where the last equality comes from the fact that si1 · · · sidJ is a reduced expression for
wJ , since the ij are coming from the J-inclusion. Hence, the very thick trivalent vertex
as a morphism BJ ⊗BJ −→ BJ is given by

r1 ⊗ r2 ⊗ r3 7−→ r1 ⊗ ∂J(r2)r3.

If we consider the very thick trivalent vertex as a morphism BJ −→ BJ ⊗BJ we can do
a similar analysis and get that it is given by

r1 ⊗ r2 7−→ r1 ⊗ 1⊗ r2.

Lemma 4.35. We have the following relations for the very thick trivalent vertex.

J

=

J

=

J

(4.61)

J

=

J

=

J

(4.62)

J

=

J

=

J

(4.63)

J

=

J

=

J

(4.64)

J

=

J

=

J

(4.65)
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Lemma 4.36. There are three more relations which we will state. For some of these
we need the bases {τw}w∈WJ

and {τ∗w}w∈WJ
from Theorem 3.35. In the first of the three

relations we have f ∈ R.

J

J

f =

J

∂J(f) (4.66)

J

J

=
∑
w∈WJ

J

τw τ∗w (4.67)

J J

=
∑
w∈WJ

J

τw

τ∗w

(4.68)

Remark 4.37. This diagrammatic presentation of gBSBim (see Definition 4.23) only
contains thick strands for connected parabolic subsets J . Suppose that J is disconnected.
Then J = J1 t · · · t Jr for connected, mutually distant parabolic subsets Ji. Thus,
WJ = WJ1 × · · · ×WJr , wJ is the product of various wJi , and BJ is the tensor product
of the BJi in SBim. So the object BJ is already isomorphic to an object in gD. ♦
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5 The case S3

In this chapter we are going to describe the 2-category of singular Soergel bimodules
(Definition 3.43) for W = S3 with S = {s1, s2} where s1 = (12) and s2 = (23). In
order to do so we need to understand the categories SBimI J for all parabolic subsets
I, J ⊆ S. There are four parabolic subsets, namely ∅, {s1}, {s2}, S. Thus, there are
sixteen categories which we need to consider.
For each such category we will go by the same procedure. We only need to understand the
category BSBimI J or the category sBSBimI J , since SBimI J is their Karoubi envelope.
We will find some indecomposable bimodules and show how each object in sBSBimI J

decomposes into these indecomposable bimodules. By doing so we also prove that these
then are all indecomposable bimodules and prove Theorem 3.46 for S3.
All that is left then is to understand the morphisms. We will compute bases for the
homomorphism spaces between two indecomposable bimodules. Together with the first
part we can then express every morphism between two arbitrary objects in sBSBimI J by
decomposing them into indecomposables and considering the morphisms on summands.
We put the sixteen categories in some classes depending on how many indecomposable
they have which roughly measures how hard it is to understand them.

(1) SBim

(2) SBimS , SBimS 1, SBimS 2, SBimS S , SBimS , SBim1 S , SBim2 S

(3) SBim1 , SBim2 ,SBim1,SBim2

(4) SBim1 1, SBim1 2, SBim2 1, SBim2 2

Here we wrote 1 instead of {s1}, 2 instead of {s2} and nothing instead of ∅. The first
class just contains the category of (regular) Soergel bimodules. This is already quite
well understood and we will only cite results of Libedinsky [Lib19]. The second class
is quite simple as there will only be one indecomposable bimodule. The third and the
fourth case will be the harder ones. We will do one category in detail and only give the
results for the other categories as the procedure is always the same.

5.1 (Regular) Soergel bimodules for S3

In this section we will describe the category of (regular) Soergel bimodules for S3. This
will be the starting point for all our calculation in this chapter. For explicit calculations
in the regular case we refer the reader to [Lib19] and focus on the singular case instead.
We start by recalling some results from [Lib19].
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Definition 5.1. We have the following objects in SBim:

Bw0 = R⊗RS R〈3〉
B12 = R⊗R1 R⊗R2 R〈2〉 B21 = R⊗R2 R⊗R1 R〈2〉

B1 = R⊗R1 R〈1〉 B2 = R⊗R2 R〈1〉
Be = R.

For Bw0 this follows from Lemma 4.14. ♦

Remark 5.2. These six bimodules are generated by the 1-tensor (the element 1⊗· · ·⊗1)
as bimodules. For B12 and B21 this follows from the fact that R is generated by 1 as an
(R1, R2)-bimodule or (R2, R1)-bimodule respectively. For each of these bimodules the
graded component of minimal degree which is not zero is one-dimensional. Thus, they
are indecomposable by Lemma 2.59.
Moreover, note that B12 = B1 ⊗B2 and B21 = B2 ⊗B1. ♦

Remark 5.3. Since by Theorem 3.16 R is a free RI -module of finite rank for I =
∅, {s1}, {s2}, S we get the following. Let

M = RI1 ⊗RJ1 R
I2 ⊗RJ2 · · · ⊗RJN RIN+1

be an object of sBSBim. Then we have

R⊗RJ1 R⊗RJ2 R⊗RJ3 · · · ⊗RJN R ∼= M⊕L

for some L ∈ N. Hence, if we can decompose all objects of the form

R⊗RJ1 R⊗RJ2 R⊗RJ3 · · · ⊗RJN R

into direct sums of Be, B1, B2, B12, B21, Bw0 , then we can do this for all objects in
sBSBim. Note that Ji ∈ {∅, {s1}, {s2}, S}. Thus, we can write

R⊗RJ1 R⊗RJ2 · · · ⊗RJN R = BJ1 ⊗BJ2 ⊗ · · · ⊗BJN
where BJi is one of the following for all i = 1, . . . , N : Be, B1, B2, Bw0 . Hence, it would
be sufficient if we were able to decompose all bimodules of the form

M1 ⊗M2

for M1,M2 ∈ I = {Be, B1, B2, B12, B21, Bw0} into sums of elements of I. This is what
we will do. ♦

We have by Remark 3.27 and Theorem 3.28 the following isomorphisms

R ∼= R1 ⊕R1〈−2〉 as (R1, R1)-bimodules

R ∼= R2 ⊕R2〈−2〉 as (R2, R2)-bimodules

R ∼= RS ⊕RS〈−2〉 ⊕RS〈−2〉 ⊕RS〈−4〉
⊕RS〈−4〉 ⊕RS〈−6〉 as (RS , RS)-bimodules.

(5.1)

We will now go through all the choices for M1,M2 ∈ I. If M1 = Be = R, then
M1 ⊗ M2 = M2 and we are done. If we have M1 = B12 or M1 = B21 we can use
B12 = B1 ⊗B2 and B21 = B2 ⊗B1 respectively to reduce it to the case M1 = B1, B2.
Let us start with M1 = Bw0 . We have Bw0 ⊗Be = Bw0 .
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Lemma 5.4. We have the following isomorphisms in SBim.

1. Bw0 ⊗B1
∼= Bw0〈1〉 ⊕Bw0〈−1〉.

2. Bw0 ⊗B2
∼= Bw0〈1〉 ⊕Bw0〈−1〉.

3. Bw0 ⊗Bw0
∼= Bw0〈3〉 ⊕ (Bw0〈1〉)

⊕2 ⊕ (Bw0〈−1〉)⊕2 ⊕Bw0〈−3〉.

Proof. 1. We can compute that

Bw0 ⊗B1 = R⊗RS R⊗R1 R〈4〉
∼= R⊗RS

(
R1 ⊕R1〈−2〉

)
⊗R1 R〈4〉

∼= R⊗RS R〈4〉 ⊕R⊗RS R〈2〉
= Bw0〈1〉 ⊕Bw0〈−1〉.

2. This is completely analogous to 1.
3. Here we compute that

Bw0 ⊗Bw0 = R⊗RS R⊗RS R〈6〉

∼= R⊗RS
(
RS ⊕RS〈−2〉 ⊕RS〈−2〉 ⊕RS〈−4〉

⊕RS〈−4〉 ⊕RS〈−6〉

)
⊗RS R〈6〉

∼= R⊗RS R〈6〉 ⊕R⊗RS R〈4〉 ⊕R⊗RS R〈4〉 ⊕R⊗RS R〈2〉
⊕R⊗RS R〈2〉 ⊕R⊗RS R

= Bw0〈3〉 ⊕ (Bw0〈1〉)
⊕2 ⊕ (Bw0〈−1〉)⊕2 ⊕Bw0〈−3〉.

Again we do not need to consider M2 = B12, B21, since we can reduce to the case
M2 = B1, B2. At last we consider M1 = B1. This is enough, since M1 = B2 works
completely analogous.

Lemma 5.5. We have the following isomorphisms in SBim.

1. B1 ⊗Be ∼= B1.

2. B1 ⊗B2
∼= B12.

3. B1 ⊗B1
∼= B1〈1〉 ⊕B1〈−1〉.

4. B1 ⊗B12
∼= B12〈1〉 ⊕B12〈−1〉.

5. B1 ⊗Bw0
∼= Bw0〈1〉 ⊕Bw0〈−1〉.

6. B1 ⊗B21
∼= B1 ⊕Bw0.

Proof. 1. There is nothing to do here.
2. We already know this isomorphism.
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3. We compute that

B1 ⊗B1 = R⊗R1 R⊗R1 R〈2〉
∼= R⊗R1

(
R1 ⊕R1〈−2〉

)
⊗R1 R〈2〉

∼= R⊗R1 R〈2〉 ⊕R⊗R1 R

= B1〈1〉 ⊕B1〈−1〉.

4. Here we can use part 3 to get

B1 ⊗B12
∼= B1 ⊗B1 ⊗B2

∼= (B1〈1〉 ⊕B1〈−1〉)⊗B2

∼= B12〈1〉 ⊕B12〈−1〉.

5. We compute similar to the previous Lemma that

B1 ⊗Bw0 = R⊗R1 R⊗RS R〈4〉
∼= R⊗R1

(
R1 ⊕R1〈−2〉

)
⊗RS R〈4〉

∼= R⊗RS R〈4〉 ⊕R⊗RS R〈2〉
= Bw0〈1〉 ⊕Bw0〈−1〉.

6. This is proven in [Lib19, 4.3]. The idempotent which picks out the summand B1 is
given by

R⊗R1 R⊗R2 R⊗R1 R −→ R⊗R1 R⊗R2 R⊗R1 R
r1 ⊗ r2 ⊗ r3 ⊗ r4 7−→ −r1∂1(r2r3)⊗ α2 ⊗ 1⊗ r4 − r1∂1(r2r3)⊗ 1⊗ α2 ⊗ r4.

Note that the other idempotent for Bw0 is then given by 1 − e where e is the above
idempotent.

Now we have decomposed all products M1 ⊗M2 for M1,M2 ∈ I into sums of objects in
I which tells us how to decompose any object in sBSBim. Next we want to construct
bases for the morphism spaces. The construction is motivated from highest weight
theory. The outcome will be a so-called light leaves basis which encodes certain standard
and costandard filtrations of Soergel bimodules. The following combinatorics can be
understood without any knowledge of this theory, but may become more intuitive when
put into this context.

Definition 5.6. Let w = (si1 , si2 , . . . , siN ) ∈ SN be a fixed sequence of simple reflections.
We will construct a perfect binary tree Tw (this is a tree in which all interior nodes have
exactly two children and all leaves have the same depth). The node at the top is labelled

()(Bi1Bi2 · · ·BiN ).

Note that we wrote Bi1Bi2 instead of Bi1 ⊗Bi2 . We will use this abbreviation from now
on. We will now construct this tree inductively. Let k ∈ N, then a node of depth k − 1
will be labelled

(Bj1Bj2 · · ·Bjl)(Bik · · ·BiN ),

where l ∈ N is some number. Let us call this node N . Now we have two cases.
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1. If `(sj1 · · · sjlsik) > `(sj1 · · · sjl), then the child nodes and child edges of N are
labelled in the following way.

(Bj1 · · ·Bjl)(Bik · · ·BiN )

(Bj1 · · ·Bjl)(Bik+1
· · ·BiN ) (Bj1 · · ·BjlBik)(Bik+1

· · ·BiN )

idl⊗ dotik ⊗ id id

Here dotik stands for the morphism Bik −→ R given by the enddot (see Defini-
tion 4.1). Note that we are in this case for the top node.

2. If `(sj1 · · · sjlsik) < `(sj1 · · · sjl), then the child nodes and child edges of N are
labelled in the following way (the arrows are the composition of the corresponding
dashed arrows).

(Bj1 · · ·Bjl)(Bik · · ·BiN )

Bt1 · · ·Btl−1
BikBik · · ·BiN

Bt1 · · ·Btl−1
Bik · · ·BiN

(Bt1 · · ·Btl−1
)(Bik+1

· · ·BiN ) (Bt1 · · ·Btl−1
Bik)(Bik+1

· · ·BiN )

F⊗id

idl−1⊗ trivalentik ⊗ id

idl−1⊗ dotik ⊗ id
id

Here trivalentik is the morphism BikBik −→ Bik given by the Merge (see Defini-
tion 4.1). In order to explain the morphism F we need some observations. First
note that the expression u = sj1 · · · sjl is always reduced which we can check in-
ductively. Now by Theorem 2.11 and the condition `(sj1 · · · sjlsik) < `(sj1 · · · sjl)
we have that usik = sj1 · · · ŝja · · · sjl , and thus u = sj1 · · · ŝja · · · sjlsik is a re-
duced expression. We write st1 · · · stl−1

for sj1 · · · ŝja · · · sjl . Now we have two
reduced expressions for u and by Lemma 2.6 we can get from one to the other by
braid moves s1s2s1 ←→ s2s1s2. For each such braid move we have a morphism
B1B2B1 −→ B2B1B2 (or the other way around) given by the 6-valent vertex (see
Definition 4.1). Applying a braid move to a reduced expression of u = sj1 · · · sjl
stands for applying the corresponding 6-valent vertex tensored with identities to
Bj1 · · ·Bjl . If we now compose all the morphisms corresponding to the braid moves
we get a morphism

F : Bj1 · · ·Bjl −→ Bt1 · · ·Btl−1
Bik .

This finishes the definition of Tw. ♦
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Remark 5.7. Note that the sequence of braid moves we apply to get from one reduced
expression to another is not unique. Thus, we could have multiple choices for the morph-
ism F . It doesn’t matter which one we choose, but we need to choose one once and for
all. However, since we are in S3 there is only one element with more than one reduced
expression, namely w0. For this we just choose F to be the 6-valent vertex.
Note that at the leaves of Tw we have expressions of the form (Bj1 · · ·BjL)(). So each
leave corresponds to a Bott–Samelson bimodule Bx where x = (sj1 , · · · , sjL) is a tuple
of simple reflections. Moreover, we already noticed that expressions in the first bracket
are reduced. Hence, x = sj1 · · · sjL is a reduced expression.
Each edge in Tw is labelled by a morphism between the two Bott–Samelson bimodules
adjacent to this edge. For each leave there is a unique path from the top node to this
leaf, and hence by composing the morphisms on the edges of this path we get a unique
morphism fx : Bw −→ Bx. Thus, each leaf encodes a pair (Bx, fx). ♦

Definition 5.8. We denote by Lw the set of all morphisms fx corresponding to a leaf
in Tw.
For each morphism fx ∈ Lw we have a morphism fax : Bx −→ Bw. If we write fx
in diagrammatic language, then fax is just the picture of fx flipped upside down (or
equivalently read from top to bottom). We denote by Law the set of all the morphisms
fax .
For x = (sj1 , · · · , sjL) we write x = sj1 · · · sjL . Let fx ∈ Lw and fay ∈ Lau. Then we

define

fay · fx =

{
fay ◦ F ◦ fx if x = y

∅ otherwise

where F : Bx −→ By is again the fixed morphism corresponding to a sequence of braid
moves from x to y. We call the set

Lau · Lw =
{
fay · fx | fay ∈ Lau, fx ∈ Lw

}
⊂ Hom(R,R)(Bw, Bu)

the double leaves basis of Hom(R,R)(Bw, Bu). ♦

The following is a theorem of Libedinsky [Lib19, Theorem 6.4].

Theorem 5.9. The double leaves basis Lau · Lw of Hom(R,R)(Bw, Bu) is a basis of
Hom(R,R)(Bw, Bu) as a left (or right) R-module.

Sketch. We will give the general idea of the proof. The rank of Hom(R,R)(Bw, Bu) can be
computed using Theorem 3.39. One can also count the elements of Lau · Lw and observe
that the two numbers are the same. Thus, it suffices to prove that the elements of Lau ·Lw
are linearly independent. This can be done, but is not easy.

Remark 5.10. This theorem gives us bases for all the homomorphism spaces of our
indecomposable bimodules I except for Bw0 , since all other elements of I are Bott-
Samelson bimodules. However, since we know the idempotent for the decomposition
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B1B2B1
∼= B1 ⊕Bw0 explicitly, we can use

Hom(R,R)(B1B2B1,M) ∼= Hom(R,R)(B1,M)⊕Hom(R,R)(Bw0 ,M)

to get bases for the remaining homomorphism spaces. ♦

5.2 Bases of homomorphism spaces

In this section we will observe some general results which let us understand the morph-
isms in SBimI J by tracing them back to the morphisms of SBim. The results and proofs
we will do work for W = Sn, but we only need them for S3 in this chapter.

Definition 5.11. Let BimI J be the category of (RI , RJ)-bimodules. We define three
functors that will help us to switch between categories:

• The restriction functor resI J : Bim −→ BimI J is defined by M 7→ MI J where
MI J is M viewed as an (RI , RJ)-bimodule with actions coming from the inclusions
RI , RJ ⊆ R.

• The induction functor indI J : BimI J −→ Bim is defined by M 7→ R⊗RIM ⊗RJ R
with R acting on the left and right by multiplication.

• The coinduction functor coindI J : BimI J −→ Bim is defined by

M 7→ Hom(RI ,RJ )(R⊗Z R,M)

where the actions are given by ri · f · rj = (r ⊗ r′ 7→ f(rir ⊗ r′rj)) for ri ∈ RI , rj ∈
RJ , f ∈ Hom(RI ,RJ )(R⊗Z R,M). ♦

There are some well-known adjunctions which we will use.

Lemma 5.12.

1. ( indI J , resI J) is an adjoint pair.

2. ( resI J , coindI J) is an adjoint pair.

3. indI J and coindI J are isomorphic.

4. ( resI J , indI J) is an adjoint pair.

Proof. The first two points are known adjunctions (the standard tensor-hom adjunction).
The fourth point follows immediately from the second and third. Thus, we will just prove
the third point.
To prove that induction and coinduction are isomorphic we need to find an isomorphism

R⊗RI M ⊗RJ R ∼= Hom(RI ,RJ )(R⊗Z R,M)
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for all M ∈ IBimJ which is natural in M . We will do this in two steps. First consider
the following map

HomRI (R,R
I)⊗RI M ⊗RJ HomRJ (R,RJ) −→ Hom(RI ,RJ )(R⊗Z R,M)

ϕ⊗m⊗ ψ 7−→ (r ⊗ r′ 7→ ϕ(r) ·m · ψ(r′)) .
(5.2)

Note that this is a morphism of (R,R)-bimodules and it is natural in M . We have the
following chain of isomorphisms

HomRI (R
I , RI)⊗RI M ⊗RJ HomRJ (RJ , RJ) ϕ⊗m⊗ ψ

RI ⊗RI M ⊗RJ RJ ϕ(1)⊗m⊗ ψ(1)

M ϕ(1) ·m · ψ(1)

Hom(RI ,RJ )(R
I ⊗Z RJ ,M) (r ⊗ r′ 7−→ rϕ(1) ·m · ψ(1)r′) .

∼=

∼=

∼=

Since rϕ(1) = ϕ(r) and ψ(1)r′ = ψ(r′) this is the same morphisms as (5.2) just with RI

and RJ instead of R. As R is free over RI and RJ by Theorem 3.16 we get from this
that (5.2) is also bijective and hence an isomorphism of (R,R)-bimodules.
Now we just need to find an isomorphism R ∼= HomRI (R,R

I) to finish the proof. For
this we use the map

Φ : R −→ HomRI (R,R
I), r 7−→

(
r′ 7→ ∂I(rr

′)
)
.

This map is R-linear and well-defined by Proposition 3.13. Suppose that Φ(r) = 0.
Write r =

∑
w∈WI

βwτw where {τw}w∈WI
is the RI -basis of R from Theorem 3.35. Then

0 = Φ(r)(τ∗u) =
∑

w∈WI
βw∂I(τwτ

∗
u) = βu. Thus, r = 0 and Φ is injective.

Let ϕ ∈ HomRI (R,R
I). Then ϕ is determined by βw = ϕ(τ∗w). Now choose r =∑

w∈WI
βwτw, then Φ(r)(τ∗u) = βu as before, and hence Φ(r) = ϕ and Φ is surjective.

Now let M,N ∈ sBSBimI J . We would like to understand Hom(RI ,RJ )(M,N). If we
write

M = RI1 ⊗RJ1 R
I2 ⊗RJ2 · · · ⊗RJk R

Ik+1

N = RI
′
1 ⊗

RJ
′
1
RI
′
2 ⊗

RJ
′
2
· · · ⊗

R
J′
l
RI
′
l+1

we can consider the bimodules

M1 = R⊗RJ1 R⊗RJ2 · · · ⊗RJk R ∈ Bim

N1 = R⊗
RJ
′
1
R⊗

RJ
′
2
· · · ⊗

R
J′
l
R ∈ Bim

M̃ = resI J (M1)

Ñ = resI J (N1) .
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By Theorem 3.16 we have M̃ ∼= M⊕K and Ñ ∼= N⊕K
′

for some K,K ′ ∈ N, and thus it

suffices to understand Hom(RI ,RJ )

(
M̃, Ñ

)
.

Lemma 5.13. There is an isomorphism

Hom(RI ,RJ )

(
M̃, Ñ

)
∼= Hom(R,R)

(
R⊗RI M̃ ⊗RJ R,N1

)
(m 7−→ ϕ(1⊗m⊗ 1)) ←− [ ϕ.

Proof. We have the following chain of isomorphisms

Hom(RI ,RJ )

(
M̃, Ñ

)
∼= Hom(RI ,RJ )

(
M̃, resI J (N1)

)
∼= Hom(R,R)

(
indI J

(
M̃
)
, N1

)
.

Note that indI J

(
M̃
)

= R⊗RI M̃ ⊗RJ R. This finishes the proof.

This is a useful statement, because we understand the morphisms on the right already
by Section 4.1 and want to understand the morphims on the left.

Lemma 5.14. Suppose {ϕ1, . . . , ϕk} ⊂ Hom(R,R)

(
R⊗RI M̃ ⊗RJ R,N1

)
is basis as left

R-module. Define ψl,w ∈ Hom(RI ,RJ )

(
M̃, Ñ

)
for l = 1, . . . , k and w ∈WI by

ψl,w(m) = ϕl(τw ⊗m⊗ 1)

where {τw}w∈WI
is the basis from Theorem 3.35. Then {ψl,w | l = 1, . . . , k, w ∈ WI} is

a basis for Hom(RI ,RJ )

(
M̃, Ñ

)
as left RI-module.

Proof. We start by proving that this set is a generating set. Let ψ ∈ Hom(RI ,RJ )

(
M̃, Ñ

)
.

Then by Lemma 5.13 there is ϕ ∈ Hom(R,R)

(
R⊗RI M̃ ⊗RJ R,N1

)
such that ψ(m) =

ϕ(1⊗m⊗ 1). We can write

ϕ =
k∑
l=1

rlϕl

for some rl ∈ R. We have rl =
∑

w∈WI
rl,wτw where rl,w ∈ RI by Theorem 3.35. This

gives

ψ(m) = ϕ(1⊗m⊗ 1) =

k∑
l=1

rl · ϕl(1⊗m⊗ 1) =

k∑
l=1

∑
w∈WI

rw,l · τw · ϕl(1⊗m⊗ 1)

=

k∑
l1

∑
w∈WI

rw,l · ϕl(τw ⊗m⊗ 1) =

k∑
l1

∑
w∈WI

rw,l · ψl,w(m).
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Now we prove linear independence. Suppose

0 =

k∑
l=1

∑
w∈WI

rl,w · ψl,w

for some rl,w ∈ RI . This implies for all m ∈M

0 =
k∑
l=1

∑
w∈WI

rl,w · ψl,w(m) =
k∑
l=1

∑
w∈WI

rl,w · ϕl(τw ⊗m⊗ 1)

=

k∑
l=1

 ∑
w∈WI

rl,wτw

ϕl(1⊗m⊗ 1).

By multiplying with r from the left and r′ from the right, this gives

0 =
k∑
l=1

 ∑
w∈WI

rl,wτw

ϕl(r ⊗m⊗ r′)

for all r, r′ ∈ R,m ∈M , and thus

0 =
k∑
l=1

 ∑
w∈WI

rl,wτw

ϕl.

As {ϕ1, . . . , ϕk} is a basis this implies

0 =
∑
w∈WI

rl,wτw

for l = 1, . . . , k and since {τw}w∈WI
is a basis we get rl,w = 0. This gives us linear

independence and finishes the proof.

5.3 The category SBim1 2

We consider now SBim1 2 whose elements are (Rs1 , Rs2)-bimodules. In SBim1 2 we have
the following bimodules

I1 = R, I2 = R1 ⊗RS R2〈1〉.

As they are generated by 1 and 1 ⊗ 1 as bimodules Lemma 2.59 implies that these are
indecomposable.
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Remark 5.15. Let M ∈ sBSBim1 2. Then as in Remark 5.3 we get that

M⊕L ∼= R⊗RJ1 · · · ⊗RJN R.

The right hand side can be decomposed into the six indecomposable bimodules for SBim.
Since this decomposition is an isomorphism of (R,R)-bimodules it is also an isomorphism
of (R1, R2)-bimodules. Hence, it is enough to decompose the six indecomposables of
SBim into I1 and I2.
Note that this reduction works for all the categories SBimI J . So, for all the other
cases we will just decompose the six indecomposables for SBim and not repeat this
argument. ♦

Lemma 5.16. We have isomorphisms in SBim1 2:

1. Be ∼= I1.

2. B1
∼= I1〈1〉 ⊕ I1〈−1〉.

3. B2
∼= I1〈1〉 ⊕ I1〈−1〉.

4. B12
∼= I1〈2〉 ⊕ I⊕2

1 ⊕ I1〈−2〉.

5. B21
∼= I1 ⊕ I2〈1〉 ⊕ I2〈−1〉.

6. Bw0
∼= I2〈−2〉 ⊕ I2 ⊕ I2〈2〉.

Proof.

1. This is actually an equality.

2. We can use (5.1) to get

B1 = R⊗R1 R〈1〉 ∼= R1 ⊗R1 R〈1〉 ⊕R1〈−2〉 ⊗R1 R〈1〉
= I1〈1〉 ⊕ I1〈−1〉.

3. We again use (5.1) to get

B2 = R⊗R2 R〈1〉 ∼= R⊗R2 R2〈1〉 ⊕R⊗R2 R2〈−1〉
= I1〈1〉 ⊕ I1〈−1〉.

4. Similar to the previous points (5.1) implies

B12 = R⊗R1 R⊗R2 R〈2〉
∼=
(
R1 ⊕R1〈−2〉

)
⊗R1 R⊗R2

(
R2 ⊕R2〈−2〉

)
〈2〉

∼= I1〈2〉 ⊕ I⊕2
1 ⊕ I1〈−2〉.
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5. In this case we need write out the projections and inclusions explicitly. For this
we will use the presentation R ∼= k[x, y, z].

B21 = R⊗R2 R⊗R1 R〈2〉 −→ I1 = R
r1 ⊗ r2 ⊗ r3 7−→ −∂1(r1r2)r3

I1 = R −→ B21 = R⊗R2 R⊗R1 R〈2〉
r 7−→ (α2 ⊗ 1⊗ 1 + 1⊗ α2 ⊗ 1) · r2 .

This gives us the first summand. For the next morphisms let Pi : R −→ Ri, r 7−→
r+si(r)

2 for i ∈ S.

B21 = R⊗R2 R⊗R1 R〈2〉 −→ I2〈−1〉 = R1 ⊗RS R2

r1 ⊗ r2 ⊗ r3 7−→ A

I2〈−1〉 = R1 ⊗RS R2 −→ B21 = R⊗R2 R⊗R1 R〈2〉
r1 ⊗ r2 7−→ r1 ⊗ 1⊗ r2α2

where A is defined as follows.

A =
1

8
∂1(r1) ·

( (
x+ y ⊗ 2x+y+z

2

)
− (2xy ⊗ 1)

− (1⊗ xy + xz)

)
· ∂2 (∂1(r2)r3)

+
1

4
∂1(r1) ·

((
x+ y ⊗ 1

2

)
− (1⊗ x)

)
· P2 (∂1(r2)r3)

+
1

4
∂1(r1) · ((1⊗ x)− (z ⊗ 1)) · ∂2 (P1(r2)r3)

+
1

2
∂1(r1) · (1⊗ 1) · P2 (P1(r2)r3)

+
1

4
P1(r1) ·

(
(x+ y − z ⊗ 1)−

(
1⊗ y + z

2

))
· ∂2 (∂1(r2)r3)

+
1

2
P1(r1) ·

(
1⊗ 1

2

)
· P2 (∂1(r2)r3)

+
1

2
P1(r1) · (1⊗ 1) · ∂2 (P1(r2)r3)

This gives us the second summand. The last summand will be given by the fol-
lowing morphisms.

B21 = R⊗R2 R⊗R1 R〈2〉 −→ I2〈1〉 = R1 ⊗RS R2〈2〉
r1 ⊗ r2 ⊗ r3 7−→ A′

I2〈1〉 = R1 ⊗RS R2〈2〉 −→ B21 = R⊗R2 R⊗R1 R〈2〉
r1 ⊗ r2 7−→ r1 ⊗ 1⊗ r2

where
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A′ =
1

8
∂1(r1) ·

((
x+ y ⊗ (y − z)2

2

)
−
(
1⊗ x(y − z)2

))
· ∂2 (∂1(r2)r3)

+
1

4
∂1(r1) ·

( (
x+ y ⊗ 2x+y+z

2

)
− (2xy ⊗ 1)

− (1⊗ xy + xz)

)
· P2 (∂1(r2)r3)

+
1

4
∂1(r1) ·

(
1⊗ (y − z)2

)
· ∂2 (P1(r2)r3)

+
1

2
∂1(r1) · ((1⊗ x)− (z ⊗ 1)) · P2 (P1(r2)r3)

+
1

4
P1(r1) ·

(
1⊗ (y − z)2

2

)
· ∂2 (∂1(r2)r3)

+
1

2
P1(r1) ·

(
(x+ y − z ⊗ 1)−

(
1⊗ y + z

2

))
· P2 (∂1(r2)r3)

+ P1(r1) · (1⊗ 1) · P2 (P1(r2)r3) .

Now we can compose the projections and inclusions to get three idempotents. Then
one can check that these idempotents are orthogonal and their sum is the identity.
Thus,

B21
∼= I1 ⊕ I2〈1〉 ⊕ I2〈−1〉.

6. From (5.1) we get that

Bw0 = R⊗RS R〈3〉 ∼=
(
R1 ⊕R1〈−2〉

)
⊗RS

(
R2 ⊕R2〈−2〉

)
〈3〉

= I2〈−2〉 ⊕ I2 ⊕ I2〈2〉.

Remark 5.17. Note that via the identification

Bw ←→ Hw

I1 ←→ H1 2
p

I2 ←→ H1 2
q

this lemma categorifies Proposition 2.47. ♦

Now all that is left is to find bases for the homomorphism spaces between I1 and I2.
Let k, l ∈ {1, 2}. Since Ik is generated by the 1-tensor we get that every element of
Hom(R1,R2)(Ik, Il) is the determined by its image of the 1-tensor. This gives us the
following.

Theorem 5.18. We have isomorphisms in SBim1 2:

1. Hom(R1,R2)(I1, I1) ∼= I1, ϕ 7−→ ϕ(1).

2. Hom(R1,R2)(I2, I1) ∼= I1, ϕ 7−→ ϕ(1⊗ 1).
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3. Hom(R1,R2)(I2, I2) ∼= I2, ϕ 7−→ ϕ(1⊗ 1).

This does not work for Hom(R1,R2)(I1, I2), as for example the map 1 7−→ 1 ⊗ 1 is not
well-defined (it is not a morphism of (R1, R2)-bimodules). So, we need to do some work
to understand this homomorphism space.
By Lemma 5.13 and the discussion leading to this lemma we need to find a basis of
Hom(R,R)(R⊗R1R⊗R2R,R⊗RS R). We will use the fact that B1B2B1

∼= B1⊕R⊗RS R.
Thus, we want a basis of Hom(R,R)(B1B2, B1B2B1). For this we can use Theorem 5.9
and get the following basis.

ϕ1 : r1 ⊗ r2 ⊗ r3 7−→
1

8
r1r2r3 ·


α1 ⊗ α2 ⊗ α1 ⊗ 1 + α1 ⊗ α2 ⊗ 1⊗ α1

+α1 ⊗ 1⊗ α2α1 ⊗ 1 + α1 ⊗ 1⊗ α2 ⊗ α1

+1⊗ α1α2 ⊗ α1 ⊗ 1 + 1⊗ α1α2 ⊗ 1⊗ α1

+1⊗ α1 ⊗ α2α1 ⊗ 1 + 1⊗ α1 ⊗ α2 ⊗ α1


ϕ2 : r1 ⊗ r2 ⊗ r3 7−→

1

4
r1r2 ·

(
α1 ⊗ 1⊗ α1 ⊗ 1 + α1 ⊗ 1⊗ 1⊗ α1

+1⊗ α1 ⊗ α1 ⊗ 1 + 1⊗ α1 ⊗ 1⊗ α1

)
· r3

ϕ3 : r1 ⊗ r2 ⊗ r3 7−→
1

4
r1 ·

(
α1 ⊗ α2 ⊗ 1⊗ 1 + α1 ⊗ 1⊗ α2 ⊗ 1

+1⊗ α1α2 ⊗ 1⊗ 1 + 1⊗ α1 ⊗ α2 ⊗ 1

)
· r2r3

ϕ4 : r1 ⊗ r2 ⊗ r3 7−→
1

2
(r1 ⊗ r2 ⊗ α1 ⊗ r3 + r1 ⊗ r2 ⊗ 1⊗ α1r3)

ϕ5 : r1 ⊗ r2 ⊗ r3 7−→
1

4
r1r2r3 ·

(
α1 ⊗ α2 ⊗ 1⊗ 1 + α1 ⊗ 1⊗ α2 ⊗ 1

+1⊗ α2 ⊗ 1⊗ α1 + 1⊗ 1⊗ α2 ⊗ α1

)
ϕ6 : r1 ⊗ r2 ⊗ r3 7−→

1

2
r1 · (1⊗ α2 ⊗ 1⊗ 1 + 1⊗ 1⊗ α2 ⊗ 1) · r2r3

Let pr : B1B2B1 −→ R ⊗RS R be the projection. Then we can check that pr ◦ϕ5 =
pr ◦ϕ6 = 0. Hence, {pr ◦ϕ1,pr ◦ϕ2,pr ◦ϕ3,pr ◦ϕ4} is a basis of Hom(R,R)(R ⊗R1 R ⊗R2

R,R⊗RS R). By Lemma 5.14 we now get a basis as left R1-module

{ψ1, ψ2, ψ3, ψ4, ψ5, ψ6, ψ7, ψ8} ⊂ Hom(R1,R2)(R,R⊗RS R).

We can then use that R⊗RSR ∼=
(
R1 ⊗RS R2

)⊕4
via the projections P1⊗P2, P1⊗∂2, ∂1⊗

P2, ∂1 ⊗ ∂2. From this we get that Hom(R1,R2)(R,R
1 ⊗RS R2) has the following basis as

left R1-module

φ1 : r 7−→ P1(r) · ((1⊗ x)− (z ⊗ 1))
+1

2∂1(r) ·
((

1⊗ x2 + yz
)
− (xy ⊗ 1)− (z ⊗ x)

)
φ2 : r 7−→ P1(r) ·

((
1⊗ x2 + yz

)
− (xy ⊗ 1)− (z ⊗ x)

)
+1

2∂1(r)(x− y)2 · ((1⊗ x)− (z ⊗ 1)) .

(5.3)

5.4 The other categories

In this section we will only state the results. All the proofs work similar to the proofs
in the last section.
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5.4.1 SBim2 1

We can swap the roles of s1 and s2 in S3 and get S3 again. Via this symmetry the
category SBim2 1 is completely symmetric to SBim1 2.

5.4.2 SBim1 1 and SBim2 2

Again via the symmetry of s1 and s2 it is enough to state results for SBim1 1. We have
the following indecomposable bimodules in SBim1 1

I1 = R1〈−1〉, I2 = R1 ⊗RS R1〈1〉.

Theorem 5.19. We have isomorphisms in SBim1 1:

1. Be ∼= I1〈1〉 ⊕ I1〈−1〉.

2. B1
∼= I1〈2〉 ⊕ I⊕2

1 ⊕ I1〈−2〉.

3. B2
∼= I1 ⊕ I2.

4. B12
∼= I1〈1〉 ⊕ I1〈−1〉 ⊕ I2〈1〉 ⊕ I2〈−1〉.

5. B21
∼= I1〈1〉 ⊕ I1〈−1〉 ⊕ I2〈1〉 ⊕ I2〈−1〉.

6. Bw0
∼= I2〈2〉 ⊕ I⊕2

2 ⊕ I2〈−2〉.

Remark 5.20. Note that via the identification

Bw ←→ Hw

I1 ←→ H1 1
p

I2 ←→ H1 1
q

this theorem categorifies Proposition 2.48. ♦

Theorem 5.21.

1. The space Hom(R1,R1)(I1, I2) has rank 1 as left R1-module with basis given by

φ : ri 7−→ ri · ((xy − xz − yz ⊗ 1) + (1⊗ xy − xz − yz) + (2z ⊗ z)) .

2. The remaining spaces of the form Hom(R1,R1)(Ik, Il) for k, l ∈ {1, 2} are isomorphic
to Il via the mapping ϕ 7−→ ϕ(1⊗).
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5.4.3 SBim1 and SBim2

Again via the symmetry of s1 and s2 it is enough to state results for SBim1 . We have
the following indecomposable bimodules in SBim1

I1 = R, I2 = R⊗R2 R〈1〉, I3 = R1 ⊗RS R〈2〉.

Theorem 5.22. We have isomorphisms in SBim1 :

1. Be ∼= I1.

2. B1
∼= I1〈1〉 ⊕ I1〈−1〉.

3. B2
∼= I2.

4. B12
∼= I2〈1〉 ⊕ I2〈−1〉.

5. B21
∼= I1 ⊕ I3.

6. Bw0
∼= I3〈1〉 ⊕ I3〈−1〉.

Remark 5.23. Note that via the identification

Bw ←→ Hw

I1 ←→ H1 p

I2 ←→ H1 q

I3 ←→ H1 r

this theorem categorifies Proposition 2.49. ♦

Theorem 5.24.

1. The space Hom(R1,R)(I1, I2) has rank 2 as left R1-module with basis given by

φ1 : r 7−→ r · (α2 ⊗ 1 + 1⊗ α2)

φ2 : r 7−→ rα1 · (α2 ⊗ 1 + 1⊗ α2) .

2. The space Hom(R1,R)(I1, I3) has rank 2 as left R1-module with basis given by

φ1 : r 7−→ P1(r) · ((xy ⊗ 1) + (z ⊗ z)− (1⊗ xz + yz))
+1

2∂1(r) · ((xy ⊗ 1) + (z ⊗ z)− (1⊗ xz + yz)) · α1

φ2 : r 7−→ P1(r) · ((xy ⊗ 1) + (z ⊗ z)− (1⊗ xz + yz)) · α1

+1
2∂1(r)α2

1 · ((xy ⊗ 1) + (z ⊗ z)− (1⊗ xz + yz)) .
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3. The space Hom(R1,R)(I2, I3) has rank 4 as left R1-module with basis given by

φ1 : r1 ⊗ r2 7−→
P1(r1) · ((xy ⊗ 1) + (z ⊗ z)− (1⊗ xz + yz)) · r2

+1
2∂1(r1) · ((xy ⊗ 1) + (z ⊗ z)− (1⊗ xz + yz)) · α1r2

φ2 : r1 ⊗ r2 7−→
P1(r1) · ((xy ⊗ 1) + (z ⊗ z)− (1⊗ xz + yz)) · α1r2

+1
2∂1(r1)α2

1 · ((xy ⊗ 1) + (z ⊗ z)− (1⊗ xz + yz)) · r2

φ3 : r1 ⊗ r2 7−→
P1(r1) · ((1⊗ x)− (z ⊗ 1)) · r2

+1
2∂1(r1) ·

((
1⊗ x2 + yz

)
− (xy ⊗ 1)− (z ⊗ x)

)
· r2

φ4 : r1 ⊗ r2 7−→
P1(r1) ·

((
1⊗ x2 + yz

)
− (xy ⊗ 1)− (z ⊗ x)

)
· r2

+1
2∂1(r1)α2

1 · ((1⊗ x)− (z ⊗ 1)) · r2.

4. The remaining spaces of the form Hom(R1,R)(Ik, Il) for k, l ∈ {1, 2, 3} are iso-
morphic to Il via the mapping ϕ 7−→ ϕ(1⊗).

5.4.4 SBim1 and SBim2

Again via the symmetry of s1 and s2 it is enough to state results for SBim1. We have
the following indecomposable bimodules in SBim1

I1 = R, I2 = R⊗R2 R〈1〉, I3 = R⊗RS R1〈2〉.

Theorem 5.25. We have isomorphisms in SBim1:

1. Be ∼= I1.

2. B1
∼= I1〈1〉 ⊕ I1〈−1〉.

3. B2
∼= I2.

4. B12
∼= I2〈1〉 ⊕ I2〈−1〉.

5. B21
∼= I1 ⊕ I3.

6. Bw0
∼= I3〈1〉 ⊕ I3〈−1〉.

Remark 5.26. Note that via the identification

Bw ←→ Hw

I1 ←→ H1
p

I2 ←→ H1
q

I3 ←→ H1
r

this theorem categorifies Proposition 2.50. ♦
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Theorem 5.27.

1. The space Hom(R,R1)(I1, I2) has rank 1 as left R-module with basis given by

φ : r 7−→ r · (α2 ⊗ 1 + 1⊗ α2) .

2. The space Hom(R,R1)(I1, I3) has rank 1 as left R-module with basis given by

φ : r 7−→ r · ((z ⊗ z) + (xy ⊗ 1)− (1⊗ xz + yz)) .

3. The space Hom(R,R1)(I2, I3) has rank 2 as left R-module with basis given by

φ1 : r1 ⊗ r2 7−→ r1r2 · ((xy ⊗ 1) + (z ⊗ z)− (1⊗ xz + yz))

φ2 : r1 ⊗ r2 7−→
r1 · ((x⊗ 1)− (1⊗ z)) · P1(r2)
+r1 ·

((
x2 + yz ⊗ 1

)
− (x⊗ z)− (1⊗ xy)

)
· 1

2∂1(r2).

4. The remaining spaces of the form Hom(R,R1)(Ik, Il) for k, l ∈ {1, 2, 3} are iso-
morphic to Il via the mapping ϕ 7−→ ϕ(1⊗).

5.4.5 All remaining categories

We can consider all the remaining categories SBimI J together. They have one thing in
common, namely that I = S or J = S. There will only be one indecomposable bimodule

I = RI∩J〈−|I ∩ J |〉.

Then the space Hom(RI ,RJ )(I, I) is isomorphic to I via ϕ 7−→ ϕ(1). We have the following
decomposition lemma.

Lemma 5.28. If I = S or J = S, then all objects in SBimI J decompose into sums of
shifts of I.

One can observe this by decomposing the indecomposable bimodules for SBim into I
by using the RS-module structure from one side to erase all the tensor products. We
will do one example which makes clear what is meant by that. Consider SBimS 1 where
I = R1〈−1〉. We will decompose B21.

B21 = R⊗R2 R⊗R1 R〈2〉 ∼=
(
R2 ⊕R2〈−2〉

)
⊗R2 R⊗R1 R〈2〉

= R⊗R1 R〈2〉 ⊕R⊗R1 R

∼=
(
R1 ⊕R1〈−2〉

)
⊗R1 R〈2〉 ⊕

(
R1 ⊕R1〈−2〉

)
⊗R1 R

= R〈2〉 ⊕R⊕2 ⊕R〈−2〉
∼= R1〈2〉 ⊕

(
R1
)⊕3 ⊕

(
R1〈−2〉

)⊕3 ⊕R1〈−4〉
= I〈3〉 ⊕ I〈1〉⊕3 ⊕ I〈−1〉⊕3 ⊕ I〈−3〉.
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6 Diagrammatics in the singular case

6.1 Diagrammatics for (RI , RJ)-bimodules

In this section we want to develop a diagrammatic presentation for the category BSBimI J

of Bott–Samelson bimodules viewed as (RI , RJ)-bimodules via restriction for some para-
bolic subsets I and J . This is a good first step to finding a diagrammatic presentation
for singular Soergel bimodules as they are the Karoubi envelope of BSBimI J . The res-
ults in this section are a generalization of the results of Elias [Eli16, Section 5] and the
proofs are very similar to his work.

Definition 6.1. We define the category ITJ as follows. Objects are sequences i of indices
in S, just as for D1. Morphisms between i and j are again given by (k-linear combinations
of) coloured graphs in the strand R× [0, 1] with appropriate top and bottom boundary.
This time these pictures include a membrane on the left, labelled I, and a membrane
on the right, labelled J . The pictures are constructed out of the generators of D1 and
the thick trivalent vertex (see Definition 4.30) which is the only interaction with the
membranes. Strands running into a membrane (via the thick trivalent vertex) must be
labelled i ∈ I on the left and j ∈ J on the right.
The relations for the morphisms are given by those of D1 and the relations (4.48) to (4.51)
(where the thick lines are substituted by the membranes). ♦

For example a morphism in ITJ could look like this.

I J

We view the morphisms as being equipped with a left-RI -module structure and a right-
RJ -module structure by placing symmetric polynomials directly on the right of the
left membrane respectively directly on the left of the right membrane. This is well-
defined, i.e. it does not matter in which region directly next to a membrane we place the
polynomials. That is because the polynomials can slide (via (4.8)) through every strand
that is connected to the membrane, since such a strand is labelled with i ∈ I or j ∈ J
and the polynomials live in RI and RJ respectively.

Definition 6.2. There is a functor FI J : ITJ −→ BSBimI J defined as follows. The
object i is sent to Bi restricted on the left to RI and on the right side to RJ . Morphisms
in ITJ which do not interact with the membranes are sent to (R,R)-bimodule morphisms,
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which are also (RI , RJ)-bimodule morphisms, via F1 (see Definition 4.9). The images
of the thick trivalent vertices are the following.

I J

R −→ R⊗Ri R
r 7−→ 1⊗ r

I J

R⊗Ri R −→ R
r1 ⊗ r2 7−→ ∂i(r1)r2

I J

R −→ R⊗Rj R
r 7−→ r ⊗ 1

I J

R⊗Rj R −→ R
r1 ⊗ r2 7−→ r1∂j(r2)

FI J is required to respect compositions and tensor products and is thus defined for all
morphisms of ITJ . ♦

Definition 6.3. There is a functor GI J : ITJ −→ gD defined as follows. The object i in

ITJ is sent to I ⊗ i ⊗ J in gD. The functor is given on morphisms by interpreting the
two membranes as thick lines labelled I and J respectively. ♦

Proposition 6.4.

1. The functors FI J and GI J are well-defined and preserve the (RI , RJ)-bimodule
structure on Hom spaces.

2. The composition of functors gF ◦ GI J : ITJ −→ gD −→ gBSBim is equal to the
composition of functors indI J ◦ FI J : ITJ −→ BSBimI J −→ gBSBim where indI J

is induction from RI to R on the left and from RJ to R on the right.

Proof. The functor gF is well-defined as we know and the same is true for the induction
functor. For the functors FI J and GI J all we need to check is that the relations in ITJ
hold true when sent to BSBimI J and gD via FI J and GI J respectively. For GI J this is
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clear, since all relations in ITJ come from relations we derived for gD.
For FI J we already know that the relations coming from D are satisfied in BSBim, since
we know that F1 is well-defined. Thus, these relations also hold in BSBimI J , because
restricting the module action on the sides does not influence them. Hence, all we need
to check are the relations (4.48) to (4.51). This is done in Lemma 6.5.
For the two compositions to be equal we easily check that both of them sent the object
i to BIBiBJ = R⊗RI Bi ⊗RJ R, and thus they are equal on objects. Hence, all there is
to do is to check that the generating morphisms are sent to the same. This is done in
Lemma 6.6.
The (RI , RJ)-bimodule structure gets preserved by all four functors. For FI J and gF
this is true by definition. For GI J and the induction functor this follows from the fact that
symmetric polynomials slide through a thick line or a tensor product respectively.

Lemma 6.5. The relations (4.48) to (4.51) are preserved when passing to BSBimI J via
FI J .

Proof. We will only check these relations for the left membrane as the calculations are
completely analogous for the right membrane. Also note that all four relations are stated
in a way that uses isotopy invariance, so we would need to check multiple iterations of
them (for example (4.50) could be a morphism BiBj −→ R, but could also be a morphism
R −→ BjBi). Instead we will check the relations (4.58) and (4.59) which give us the
isotopy invariance we need and then we just check one iteration of each of the relations
(4.48) to (4.51).
We begin with relation (4.58).

I J

=

I J

(4.58)

The right hand side is sent to

R −→ R⊗Ri R
r 7−→ 1⊗ r

under FI J . Now we just compute what the left hand side becomes under FI J .

R
cup−→ R⊗Ri R⊗Ri R −→ R⊗Ri R

r 7−→ (αi ⊗ 1⊗ 1 + 1⊗ 1⊗ αi) · r2 7−→ (2⊗ 1 + 0⊗ αi) · r2 = 1⊗ r

Here the second arrow was the image of the very thick trivalent vertex. Now we can
check relation (4.59).
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I J

=

I J

(4.59)

The right hand side is sent to

R⊗Ri R −→ R

r1 ⊗ r2 7−→ ∂i(r1)r2

under FI J . Now we compute what the left hand side becomes under FI J .

R⊗Ri R −→ R⊗Ri R⊗Ri R
cap−→ R

r1 ⊗ r2 7−→ 1⊗ r1 ⊗ r2 7−→ ∂i(r1)r2

Here the first arrow was the image of the very thick trivalent vertex. Next we check one
iteration of (4.48).

I J

=

I J

(4.48)

The right hand side is sent to the identity on R under FI J . The left hand side is sent
to the following composition under FI J .

R −→ R⊗Ri R
dot−→ R

r 7−→ 1⊗ r 7−→ r

We will continue with checking one iteration of (4.49).

I J

=

I J

(4.49)

The right hand side is just two thick trivalent vertices, and thus is sent to

R −→ R⊗Ri R −→ R⊗Ri R⊗Ri R
r 7−→ 1⊗ r 7−→ 1⊗ 1⊗ r
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under FI J . So we just have to observe what the left hand side becomes after applying
FI J .

R −→ R⊗Ri R −→ R⊗Ri R⊗Ri R
r 7−→ 1⊗ r 7−→ 1⊗ 1⊗ r

Here the first arrow is the image of the thick trivalent vertex and the second arrow is
the image of the normal trivalent vertex. We will continue with checking one iteration
of (4.50).

I J

=

I J

(4.50)

The right hand side is again just two thick trivalent vertices, and thus is sent to

R −→ R⊗Rj R −→ R⊗Ri R⊗Rj R
r 7−→ 1⊗ r 7−→ 1⊗ 1⊗ r

under FI J . We compute that the left hand side is sent to

R −→ R⊗Rj R⊗Ri R −→ R⊗Ri R⊗Rj R
r 7−→ 1⊗ 1⊗ r 7−→ 1⊗ 1⊗ r

under FI J . Here the first arrow is the image of two thick trivalent vertices and the
second arrow is the image of the 4-valent vertex. Now we are left with checking (4.51).

I J

=

I J

(4.51)

The right hand side is this time given by three thick trivalent vertices, and hence it is
sent to

R −→ R⊗Ri R −→ R⊗Ri R⊗Ri+1 R −→ R⊗Ri R⊗Ri+1 R⊗Ri R
r 7−→ 1⊗ r 7−→ 1⊗ 1⊗ r 7−→ 1⊗ 1⊗ 1⊗ r

under FI J . So we compute what the left hand side is sent under FI J .

R −→ R⊗Ri+1 R⊗Ri R⊗Ri+1 R −→ R⊗Ri R⊗Ri+1 R⊗Ri R
r 7−→ 1⊗ 1⊗ 1⊗ r 7−→ 1⊗ 1⊗ 1⊗ r

Here the first arrow is again the image of three thick trivalent vertices and the second
arrow is the image of the 6-valent vertex. To be precise we would need to do the same
calculation with i and i+ 1 swapped, but this is completely analogous, and thus we will
omit it. This finishes the proof.
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Lemma 6.6. The compositions gF ◦ GI J and indI J ◦ FI J , where indI J is the induction
functor, are the same on generating morphisms of ITJ .

Proof. We will abbreviate the compositions as G1 = gF ◦ GI J and G2 = indI J ◦ FI J . Let
first ϕ ∈ Hom

ITJ (i, j) be a generator from D. Then we compute G1(ϕ).

G1(ϕ) = (gF ◦ GI J) (ϕ) = gF (idI ⊗ϕ⊗ idJ)

= idBI ⊗F(ϕ)⊗ idBJ

Next we can compute G2(ϕ) and observe that the two values are equal.

G2(ϕ) = ( indI J ◦ FI J) (ϕ) = indI J (F(ϕ))

= idR⊗RIF(ϕ)⊗RJ idR = idBI ⊗F(ϕ)⊗ idBJ = G1(ϕ)

So all the is left to do is to check it for the thick trivalent vertices. We will only do this
for the left membrane, since the right side is completely analogous. Thus, we are left
with two thick trivalent vertices and just need to send them through G1 and G2.

G1 :

I J

GI J7−→

I J

gF7−→
(
R⊗RI ⊗R⊗RJ R −→ R⊗RI R⊗Ri R⊗RJ R

r1 ⊗ r2 ⊗ r3 7−→ r1 ⊗ 1⊗ r2 ⊗ r3

)

G2 :

I J

FI J7−→
(
R −→ R⊗Ri R
r 7−→ 1⊗ r

)

indI J7−→
(
R⊗RI ⊗R⊗RJ R −→ R⊗RI R⊗Ri R⊗RJ R

r1 ⊗ r2 ⊗ r3 7−→ r1 ⊗ 1⊗ r2 ⊗ r3

)

G1 :

I J

GI J7−→

I J

gF7−→
(
R⊗RI R⊗Ri R⊗RJ R −→ R⊗RI ⊗R⊗RJ R

r1 ⊗ r2 ⊗ r3 ⊗ r4 7−→ r1 ⊗ ∂i(r2)r3 ⊗ r4

)
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G2 :

I J

FI J7−→
(
R⊗Ri R −→ R
r1 ⊗ r2 7−→ ∂i(r1)r2

)

indI J7−→
(
R⊗RI R⊗Ri R⊗RJ R −→ R⊗RI ⊗R⊗RJ R

r1 ⊗ r2 ⊗ r3 ⊗ r4 7−→ r1 ⊗ ∂i(r2)r3 ⊗ r4

)
We observe that the thick trivalent vertices are sent to the same morphism under G1 and
G2. This finishes the proof.

Definition 6.7. We define the following k-linear map for i, j two sequences of indices
in S.

Φ :
R⊗RI Hom

ITJ (i, j)⊗RJ R −→ HomgD(IiJ, IjJ)

r1 ⊗ ϕ⊗ r2 7−→ r1 · GI J(ϕ) · r2
(6.1)

This map is well-defined, i.e. the symmetric polynomials which slide through the tensor
products also slide through GI J , because GI J respects the (RI , RJ)-bimodule structure
of Hom spaces. ♦

Lemma 6.8. For X,Y ∈ BSBimI J we have an (R,R)-bimodule isomorphism Ψ

Hom(R,R)(R⊗RI X ⊗RJ R,R⊗RI Y ⊗RJ R) ∼= R⊗RI Hom(RI ,RJ )(X,Y )⊗RJ R
(r̃1 ⊗ x⊗ r̃2 7−→ r1r̃1 ⊗ ϕ(x)⊗ r̃2r2) ←− [ r1 ⊗ ϕ⊗ r2.

Proof. Well-defined: We first observe that Ψ is obviously a homomorphism of (R,R)-
bimodules as r1 and r2 exactly act by the (R,R)-bimodule action on the left hand side.
Now we need to check that Ψ is well-defined. We compute that

Ψ(r1ri ⊗ ϕ⊗ rjr2) = (r̃1 ⊗ x⊗ r̃2 7−→ r1rir̃1 ⊗ ϕ(x)⊗ r̃2rjr2)

= (r̃1 ⊗ x⊗ r̃2 7−→ r1r̃1 ⊗ riϕ(x)rj ⊗ r̃2r2)

= Ψ(r1 ⊗ riϕrj ⊗ r2)

for r1, r2 ∈ R, ri ∈ RI , rj ∈ RJ and ϕ ∈ Hom(RI ,RJ )(X,Y ). So Ψ is well-defined if an
image of Ψ is actually a well-defined morphism of (R,R)-bimodules. Let r1, r2 ∈ R and
ϕ ∈ Hom(RI ,RJ )(X,Y ), then we easily observe that the map

R⊗RI X ⊗RJ R −→ R⊗RI Y ⊗RJ R, r̃1 ⊗ x⊗ r̃2 7−→ r1r̃1 ⊗ ϕ(x)⊗ r̃2r2

is a homomorphism of (R,R)-bimodules. Note that under this morphism we also have

r̃1r̃i ⊗ x⊗ r̃j r̃2 7−→ r1r̃1r̃i ⊗ ϕ(x)⊗ r̃j r̃2r2 = r1r̃1 ⊗ r̃iϕ(x)r̃j ⊗ r̃2r2

= r1r̃1 ⊗ ϕ(r̃ixr̃j)⊗ r̃2r2

r̃1 ⊗ r̃ixr̃j ⊗ r̃2 7−→ r1r̃1 ⊗ ϕ(r̃ixr̃j)⊗ r̃2r2
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if r̃i ∈ RI and r̃j ∈ RJ , and thus the morphism is well-defined. Hence, Ψ is well-defined.
It remains to prove that Ψ is bijective.
Injectivity: We start with injectivity. Let A =

∑N
k=1 r1k ⊗ ϕk ⊗ r2k ∈ ker(Ψ). By

Theorem 3.35 we know that R has an RI -basis given by {τw}w∈WI
and an RJ -basis

given by {πr}r∈WJ
together with dual bases {τ∗w}w∈WI

and {π∗r}r∈WJ
respectively which

have the property that ∂I(τwτ
∗
u) = δw,u and ∂J(πrπ

∗
t ) = δr,t. This implies that we can

write

A =
N∑
k=1

r1k ⊗ ϕk ⊗ r2k =
∑

w∈WI ,r∈WJ

τw ⊗ ϕw,r ⊗ πr

for some ϕw,r ∈ Hom(RI ,RJ )(X,Y ). Now we can compute that

0 = Ψ(A)

= Ψ

 ∑
w∈WI ,r∈WJ

τw ⊗ ϕw,r ⊗ πr


=

r̃1 ⊗ x⊗ r̃2 7−→ r̃1

 ∑
w∈WI ,r∈WJ

τw ⊗ ϕw,r(x)⊗ πr

 r̃2

 .

If we choose r̃1 = τ∗u and r̃2 = π∗t this implies

0 =
∑

w∈WI ,r∈WJ

τwτ
∗
u ⊗ ϕw,r(x)⊗ πrπ∗t

for all x ∈ X. If we now apply the k-linear map

∂I ⊗ idY ⊗∂J : R⊗RI Y ⊗RJ R −→ RI ⊗RI Y ⊗RJ RJ ∼= Y

to this, we get

0 =
∑

w∈WI ,r∈WJ

∂I(τwτ
∗
u)⊗ ϕw,r(x)⊗ ∂J(πrπ

∗
t )

= 1⊗ ϕu,t(x)⊗ 1 ∼= ϕu,t(x)

for all x ∈ X and all u ∈ WI , t ∈ WJ , where the last equality corresponds to the
isomorphism RI ⊗RI Y ⊗RJ RJ ∼= Y . So we have ϕu,t = 0 for all u ∈ WI , t ∈ WJ which
implies

A =

N∑
k=1

r1k ⊗ ϕk ⊗ r2k =
∑

w∈WI ,r∈WJ

τw ⊗ ϕw,r ⊗ πr = 0.

Thus, ker(Ψ) = 0 and Ψ is injective.
Surjectivity: Now we need to prove surjectivity. Let ψ ∈ Hom(R,R)(R ⊗RI X ⊗RJ
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R,R⊗RI Y ⊗RJR). We still have the RI -basis {τw}w∈WI
of R and the RJ -basis {πr}r∈WJ

of R. Hence, we can write ψ(1⊗ x⊗ 1) uniquely as

ψ(1⊗ x⊗ 1) =
∑

w∈WI ,r∈WJ

τw ⊗ ϕw,r(x)⊗ πr

for all x ∈ X, where ϕw,r(x) ∈ Y are some elements of Y that only depend on x. In
this way we have defined some maps ϕw,r : X −→ Y . Now we want to check that these
maps are homomorphisms of (RI , RJ)-bimodules. So let x, x′ ∈ X, then∑
w∈WI ,r∈WJ

τw ⊗ ϕw,r(x+ x′)⊗ πr = ψ(1⊗ x+ x′ ⊗ 1) = ψ(1⊗ x⊗ 1) + ψ(1⊗ x′ ⊗ 1)

=
∑

w∈WI ,r∈WJ

τw ⊗ ϕw,r(x)⊗ πr

+
∑

w∈WI ,r∈WJ

τw ⊗ ϕw,r(x′)⊗ πr

=
∑

w∈WI ,r∈WJ

τw ⊗ ϕw,r(x) + ϕr,w(x′)⊗ πr

and from this we get by the uniqueness of this description that ϕw,r(x+x′) = ϕw,r(x) +
ϕw,r(x

′) for all w ∈WI , r ∈WJ . Now let ri ∈ RI , rj ∈ RJ and x ∈ X, then we compute∑
w∈WI ,r∈WJ

τw ⊗ ϕw,r(rixrj)⊗ πr = ψ(1⊗ rixrj ⊗ 1) = ψ(ri ⊗ x⊗ rj)

= ri · ψ(1⊗ x⊗ 1) · rj

= ri ·

 ∑
w∈WI ,r∈WJ

τw ⊗ ϕw,r(x)⊗ πr

 · rj
=

∑
w∈WI ,r∈WJ

riτw ⊗ ϕw,r(x)⊗ πrrj

=
∑

w∈WI ,r∈WJ

τw ⊗ riϕw,r(x)rj ⊗ πr

and from this we get that ϕw,r(rixrj) = riϕw,r(x)rj for all w ∈ WI , r ∈ WJ again by
uniqueness of this description. Hence, ϕw,r ∈ Hom(RI ,RJ )(X,Y ). Now we can define

A =
∑

w∈WI ,r∈WJ

τw ⊗ ϕw,r ⊗ πr ∈ R⊗RI Hom(RI ,RJ )(X,Y )⊗RJ R

and apply Ψ to it:
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Ψ(A) = Ψ

 ∑
w∈WI ,r∈WJ

τw ⊗ ϕw,r ⊗ πr

 =
∑

w∈WI ,r∈WJ

Ψ (τw ⊗ ϕw,r ⊗ πr)

=
∑

w∈WI ,r∈WJ

(r̃1 ⊗ x⊗ r̃2 7−→ τwr̃1 ⊗ ϕw,r(x)⊗ r̃2πr)

=

r̃1 ⊗ x⊗ r̃2 7−→
∑

w∈WI ,r∈WJ

τwr̃1 ⊗ ϕw,r(x)⊗ r̃2πr


=

r̃1 ⊗ x⊗ r̃2 7−→ r̃1 ·

 ∑
w∈WI ,r∈WJ

τw ⊗ ϕw,r(x)⊗ πr

 · r̃2


= (r̃1 ⊗ x⊗ r̃2 7−→ r̃1 · (ψ(1⊗ x⊗ 1)) · r̃2)

= (r̃1 ⊗ x⊗ r̃2 7−→ ψ (r̃1 ⊗ x⊗ r̃2)) = ψ.

Thus, ψ ∈ im(Ψ) and Ψ is surjective and hence bijective. This finishes the proof.

Proposition 6.9. The map Φ from (6.1) is an isomorphism of (R,R)-bimodules.

Proof. It is obvious that Φ is a homomorphism of (R,R)-bimodules. So it is enough
to check that Φ is bijective. We begin to with looking at an arbitrary morphism ψ ∈
HomgD(IiJ, IjJ).

I

I

J

J

ψ
(4.41)

=

I

I

J

J

ψ

(4.68)
=

∑
w∈WI ,r∈WJ

I J

ψ

τ∗w

τw

π∗r

πr

=
∑

w∈WI ,r∈WJ

I J

ψτ∗wτw π∗r πr

(6.2)
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=
∑

w∈WI ,r∈WJ

I J

ψ̃w,rτw πr

=
∑

w∈WI ,r∈WJ

I J

ψw,rτw πr

Here we used the RI -bases {τw}w∈WI
and {τ∗w}w∈WI

of R and the RJ -bases {πr}r∈WJ

and {π∗r}r∈WJ
of R given by Theorem 3.35 again. The morphisms ψw,r are defined as

follows.

ψw,r = ψτ∗w π∗r (6.3)

Note that ψw,r is now a morphism between objects in D1 and thus can be written using
thin lines only. Thus, we can view ψw,r as a morphism in Hom

ITJ (i, j) if we let the lines
coming out from the sides run into the membranes. Note that this is possible, since they
form reduced expressions for wI and wJ respectively, and hence the indices lie in I and
J respectively. In this way we can define a k-linear map

Φ :
HomgD(IiJ, IjJ) −→ R⊗RI Hom

ITJ (i, j)⊗RJ R
ψ 7−→

∑
w∈WI ,r∈WJ

τw ⊗ ψw,r ⊗ πr.

The calculation (6.2) shows us that Φ◦Φ = id. So all that is left do is to prove the other
direction. For this let

A =
N∑
k=1

r1k ⊗ ϕk ⊗ r2k ∈ R⊗RI Hom
ITJ (i, j)⊗RJ R

be an arbitrary element. Again we can rewrite this element using the bases {τw}w∈WI

and {πr}r∈WJ
for R as an RI -module or RJ -module respectively.

A =
∑

w∈WI ,r∈WJ

τw ⊗ ϕw,r ⊗ πr

Before we start to apply Φ and Φ to A we need to make some observations about the
ϕw,r. We are interested in the lines that run into the membranes on the sides. We will
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only talk about the left membrane, the right one is completely analogous. The lines
running into the left membrane write a word with the elements of I (read from bottom
to top). This word corresponds to an element in WI .
We can then use relations (4.49) to (4.51) to change the order in which the lines hit the
membrane or reduce the number of lines. This corresponds to using all relations in the
group WI . Thus, we can reduce the word to a reduced expression for the corresponding
element. Now we can use relation (4.48) to increase the reduced expression to a reduced
expression of wI .
The upshot is now that we can w.l.o.g. assume that the lines running into the left
membrane form a reduced expression for wI and we will do this. The same goes for the
right membrane and wJ .
To observe that

(
Φ ◦ Φ

)
(A) = A it is enough to check that(

Φ ◦ Φ
)

(τw ⊗ ϕw,r ⊗ πr) = τw ⊗ ϕw,r ⊗ πr,

because Φ respects sums (since we have to extend it k-linearly anyway for a complete
definition). We have Φ(τw ⊗ϕw,r ⊗ πr) = τw · GI J(ϕw,r) · πr. In order to apply Φ to this
we need to calculate ψu,t = (τw · GI J(ϕw,r) · πr)u,t as in (6.3) for u ∈ WI , t ∈ WJ . This
would look like the following.

ψu,t = ϕw,r
τw πr

τ∗u π∗t

I J

Now we know that Φ (τw · GI J(ϕw,r) · πr) =
∑

u∈WI ,t∈WJ
τu⊗ψu,t⊗ πt. The next step is

to rewrite ψu,t in ITJ .

ψu,t = ϕw,r
τw πr

τ∗u π∗t

I J

I J

= ϕw,rτw · τ∗u πr · π∗t

I J

I J

(4.66)
= ϕw,r

∂I(τw · τ∗u) ∂J(πr · π∗t )

I J

I J
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(4.38)
= ϕw,r

δw,u δr,t

φy,y φx,x

I J

(4.57)
= δw,u · δr,t · ϕw,r

I J

= δw,u · δr,t · ϕw,r

Note that we have used that the lines coming out of the sides of ϕw,r form the same
reduced expressions for wI and wJ as the lines running into the membranes. This follows
from our discussion above which explained that we can use (4.50) and (4.51) to let the
lines running out of the sides of ϕw,r form reduced expressions of wI and wJ of our
choice. Now we can finish our calculation.(

Φ ◦ Φ
)

(τw ⊗ ϕw,r ⊗ πr) = Φ (τw · GI J(ϕw,r) · πr) =
∑

u∈WI ,t∈WJ

τu ⊗ ψu,t ⊗ πt

=
∑

u∈WI ,t∈WJ

τu ⊗ δw,u · δr,t · ϕw,r ⊗ πt = τw ⊗ ϕw,r ⊗ πr

This finally tells us that Φ ◦ Φ = id, and thus Φ is the inverse of Φ. Hence, Φ is an
isomorphism and the proof is finished.

Finally, we can prove the main theorem of this section.

Theorem 6.10. The functor FI J : ITJ −→ BSBimI J is an equivalence of categories.

Proof. FI J is obviously essentially surjective. If FI J would not be fully faithful, then
there would be i, j ∈ ITJ such that

Hom
ITJ (i, j) Hom(RI ,RJ )(Bi, Bj)

FI J

is not an isomorphism. So let us assume this and derive a contradiction. We consider
the following diagram.

R⊗RI Hom
ITJ (i, j)⊗RJ R R⊗RI Hom(RI ,RJ )(Bi, Bj)⊗RJ R

HomgD(IiJ, IjJ) Hom(R,R)(R⊗RI Bi ⊗RJ R,R⊗RI Bj ⊗RJ R)

id⊗ FI J⊗id

Φ Ψ

gF
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Here we used the isomorphisms Φ from (6.1) and Ψ from Lemma 6.8. Note that gF is
an equivalence of categories, and thus the bottom arrow is also an isomorphism. Also
note that Ψ(r1 ⊗ ψ ⊗ r2) = r1 · indI J(ψ) · r2 where indI J is the induction functor. We
check now that the diagram commutes, for this we need

(Ψ ◦ (id⊗ FI J ⊗ id)) (r1 ⊗ ϕ⊗ r2)
!

= (gF ◦ Φ) (r1 ⊗ ϕ⊗ r2)

⇐⇒ Ψ (r1 ⊗ FI J(ϕ)⊗ r2)
!

= gF (r1 · GI J(ϕ) · r2)

⇐⇒ r1 · ( indI J ◦ FI J) (ϕ) · r2
!

= r1 · (gF ◦ GI J) (ϕ) · r2

to hold. However, the last equation is true due to Proposition 6.4. So we have a
commutative diagram where three arrows are isomorphisms. Then the fourth arrow (the
top arrow) also needs to be an isomorphism. Hence,

R⊗RI Hom
ITJ (i, j)⊗RJ R R⊗RI Hom(RI ,RJ )(Bi, Bj)⊗RJ R

id⊗ FI J⊗id

is an isomorphism. Since R is free over RI and RJ we can write the left side as(
Hom

ITJ (i, j)
)N

and the right side as
(

Hom(RI ,RJ )(Bi, Bj)
)N

, where N = |WI | · |WJ |,
and the isomorphism above is then given by ( FI J)N . This implies that

Hom
ITJ (i, j) Hom(RI ,RJ )(Bi, Bj)

FI J

is an isomorphism and we have a contradiction. Thus, FI J is fully faithful and the proof
is finished.

6.2 Diagrammatics for singular Soergel bimodules

In this section we will use the concept of idempotent completions to obtain a new dia-
grammatic category which is equivalent to the category of singular Soergel bimodules.
This diagrammatic category will have the same problems as the category gD: In order
to understand these categories we need to understand how the complicated idempotents
behave. This makes these diagrammatic categories hard to work with, but they are still
a good starting point for calculations. In a later chapter we will give a diagrammatic
presentation of singular Soergel bimodules for S3 with generators and relations and use
the work from this chapter to achieve this.
Before we can construct the idempotents in ITJ we need some preparation.

Definition 6.11. We define the diagrammatic category IgTJ for I, J ⊆ S parabolic
subsets. This category is derived from ITJ in the same way as gD is derived from
D1. Objects are sequences J = J1J2 . . . Jr of connected subsets of S. The generating
morphisms are the generators of ITJ together with the J-inclusions and J-projections
(with membranes on both sides). The defining relations are the ones from ITJ as well
as relations (4.37) and (4.38) (with membranes on both sides). ♦
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Remark 6.12. Note that all morphisms in gD are (R,R)-bimodule morphisms and thus
become (RI , RJ)-bimodule morphisms via restriction. Hence, all the relations from gD
also hold in IgTJ . ♦

Theorem 6.13. The category IgTJ is equivalent to the partial idempotent completion
of ITJ by the images of φJ for J ⊂ S. The functor FI J from ITJ to BSBimI J extends
to a functor gFI J from IgTJ to gBSBimI J which is an equivalence of categories. Here

gBSBimI J is the full subcategory of (RI , RJ)-bimodules containing all grading shifts of
the generalized Bott–Samelson bimodules BJ.

Proof. This follows from the discussion in Remark 4.18 and Proposition 4.20.

Definition 6.14. Let K ⊆ S. If K ⊆ J we define the following morphism in IgTJ .

K

I J

=
K

I J

(6.4)

If K ⊆ I we have can define the same morphism on the other side.

K

I J

=
K

I J

(6.5)

We call these morphisms very thick trivalent vertices. ♦

Remark 6.15. Note that these morphisms are well-defined, i.e. they do not depend on
the reduced expression for wK which is chosen on the right hand side. This follows from
relation (4.57) (although one uses it with the membrane here which behaves like a thick
line) and the fact that applying φx,y after a J-inclusions just gives the J-inclusion to
y. ♦

Remark 6.16. One can compute what the images of (6.4) and (6.5) under gFI J are. If
(6.4) is going up it is sent to the morphism R −→ BK , r 7−→ r⊗1. If (6.4) is going down
it is sent to BK −→ R, r1 ⊗ r2 7−→ r1∂K(r2). The morphisms corresponding to (6.5) are
similar (just swapped left to right). ♦

Lemma 6.17. The following relations hold in IgTJ where K ⊆ J in the first and third
relation, K ⊆ I in the second and fourth relation and K ⊆ I, J in the fifth relation.

K

I J

=

K

K

I J

(6.6)

104



K

I J

=

K

K

I J

(6.7)

K

I J

=

I J

(6.8)

K

I J

=

I J

(6.9)

I J

=
K

I J

(6.10)

In the last relation the lines of the left hand side give a reduced expression for wK .

Proof. The first two relations can be checked in gBSBimI J and then hold in IgTJ because
of Theorem 6.13. For instance, if we consider the version of (6.6) were both strands end
in the top, the left hand side would be given by the following composition.

R −→ BK −→ BKBK
r 7−→ r ⊗ 1 7−→ r ⊗ 1⊗ 1.

The right hand side of (6.6) is given by the following composition.

R −→ BK −→ BKBK
r 7−→ r ⊗ 1 7−→ r ⊗ 1⊗ 1.

This proves this version of (6.6). The others can be done similar. The proof of the third
and fourth relation is basically the same. Thus, we will just prove the third relation.

K

I J

=
K

I J

(4.38)
= φx,x

I J
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(4.57)
=

I J

(4.48)
=

I J

The last relation follows from the following calculation.

K

I J

=
K

I J

(4.38)
= φx,x

I J

(4.57)
=

I J

This finishes the proof.

Lemma 6.18. Let K ⊆ S be such that K ⊆ I, J . Let {τw}w∈WK
be the RK-basis of

R from Theorem 3.35 and let {τ∗w}w∈WK
be its dual basis. Then we have the following

decomposition in pairwise orthogonal idempotents.

I J

=
∑

w∈WK τw

τ∗w

K

I J

(6.11)

Proof. We will first prove that the relation (6.11) is true.

∑
w∈WK τw

τ∗w

K

I J

(4.67)
=

KK

I J

∑
w∈WK

(6.8)
=

(6.9)

I J

106



Now we will prove that the summands on the right side of (6.11) are pairwise orthogonal
idempotents. For this let w, u ∈WK . We will compute the composition of the summand
corresponding to w and the summand corresponding to u.

τw

τ∗w τu

τ∗u

K

K

I J

(6.6)
=

(6.7)

τw

τ∗wτu

τ∗u

K

I J

(4.66)
=

τw

τ∗u

K

∂K (τ∗wτu)
I J

= δw,u ·
τw

τ∗w

K

I J

This finishes the proof.

Remark 6.19. These are exactly the diagrammatic pictures for the decomposition R ∼=(
RK
)|WK |. We will now use these idempotents to extend our category as we did for

gBSBim. ♦

The following is a crucial definition introducing an important category underlying all
further categories.

Definition 6.20. We construct a category ĨgTJ .
Objects: Objects are the same as in IgTJ and for each K ⊆ I, J we add another object
which is an empty sequence labelled K (we identify the original empty sequence with
the empty sequence labelled ∅). We draw the identity on the empty sequence labelled
K as follows.

I J

Morphisms: The generating morphisms are the same as in IgTJ as well as two new
morphisms for each K ⊆ I, J . These are morphisms between the empty sequence labelled
K and the empty sequence labelled ∅ and look as follows.

I J I J

(6.12)
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Relations: The defining relations are

τw

τ∗u

I J

= δw,u ·

I J

(6.13)

I J

=
K

I J

(6.14)

as well as the defining relations of IgTJ . ♦

As described in the introduction we will now put all the individual categories ĨgTJ for
fixed I, J ⊆ S together to obtain a 2-category in order to mirror the fact that singular
Soergel bimodules are a 2-category.

Definition 6.21. We define the collection of categories {IsTJ}I,J⊆S to be the smallest
(with respect to taking full subcategories) such collection with the following properties:

� For each I, J ⊆ S the category ĨgTJ is a full subcategory of IsTJ ;

� The set of subsets of S together with the arrangement Mor(I, J) = IsTJ forms a
2-category.

We call the 2-category from the second property sT . ♦

Remark 6.22. This 2-category is well-defined, i.e. there exists a unique such collection
of categories. Existence of such a collection is given, since the 2-category Bim satisfies
both properties if we restrict ourselves to the objects RI for I ⊆ S. For uniqueness
assume that we would have two such collections {IsTJ}I,J⊆S and {ĨsTJ}I,J⊆S . Then let

ÎsTJ be the full subcategory of IsTJ which only contains objects that are also contained
in ĨsTJ . Then the collection {ÎsTJ}I,J⊆S has both properties and is smaller than both
of our original collections. ♦

Definition 6.23. We define the category gBSBimI J to be the full subcategory of
(RI , RJ)-bimodules that contains all objects of gBSBimI J as well as the bimodules
RK for K ⊆ I, J . ♦

Definition 6.24. We define the collection of categories { sBSBimI J}I,J⊆S to be the
smallest (with respect to taking full subcategories) such collection with the following
properties:

� For each I, J ⊆ S the category gBSBimI J is a full subcategory of sBSBimI J ;

� The set of subsets of S together with the arrangement Mor(I, J) = sBSBimI J

forms a 2-category.
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We call the 2-category from the second property sBSBim. ♦

Lemma 6.25. The equivalences gFI J extends to an equivalence of 2-categories sF :
sT −→ sBSBim.

Proof. It follows from Remark 6.19 that the category ĨgTJ formally adds pictures for
the inclusions and projections between RK and R. Then Remark 4.18 implies that ĨgTJ
is equivalent to the partial idempotent completion of gBSBimI J by the decompositions

R ∼=
(
RK
)|WK |. However, this is exactly the category gBSBimI J , and thus ĨgTJ and

gBSBimI J are equivalent.

Since sT and sBSBim are built in the same way from ĨgTJ and gBSBimI J respectively
it follows that these two 2-categories need to be equivalent as well.

Theorem 6.26. The 2-categories sBSBim and sBSBim coincide.

Proof. Obviously both categories have the same sets of objects. Moreover, all the com-
positions are induced from Bim and thus are the same. Hence, it is enough to prove that

sBSBimI J and sBSBimI J are the same. Note that the collection { sBSBimI J}I,J⊆S
satisfies both conditions of Definition 6.24. Thus, sBSBimI J is a full subcategory of

sBSBimI J . It is now enough to check that every object of sBSBimI J lies in sBSBimI J .
Let

RI1 ⊗RJ1 R
I2 ⊗RJ2 · · · ⊗RJn−1 R

In

be an arbitrary object of sBSBimI J where I = I1 ⊂ J1 ⊃ I2 ⊂ J2 ⊃ · · · ⊂ Jn−1 ⊃ In = J
are subsets of S. Then we have RIl ∈ sBSBimJl−1 Jl

where J0 = I, Jn = J . Now we can

use that sBSBim is closed under composition of 1-morphisms to successively get

RI1 ∈ sBSBimI J1

RI1 ⊗RJ1 R
I2 ∈ sBSBimI J2

...

RI1 ⊗RJ1 R
I2 ⊗RJ2 · · · ⊗RJn−1 R

In ∈ sBSBimI Jn .

This finishes the proof.

From the previous discussions we can easily deduce the following result which is also the
main result of this chapter.

Corollary 6.27. The equivalences gFI J extend to an equivalence of 2-categories

sF : sT −→ sBSBim.

Remark 6.28. The definition of sT we gave is rather abstract and might seem hard
to work with. This is in opposition to our goal to use these diagrammatic categories to
better understand Soergel bimodules. That is why we will now give a different description
of sT which is more concrete. We will first show an example of a morphism in sT and
afterwards give the alternative description while relating it to the example.
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J1
J2

I J

The category IsTJ can be described with generators and relations.
Objects: The objects of IsTJ are sequences of parabolic subsets J ⊆ S where the gaps
between two subsets J1, J2 in such a sequence are labelled by some parabolic subset
K ⊆ J1, J2. Such a sequence would look like this:

K0

J1
K1

J2
K2

· · ·
Kl−1

Jl
Kl

. Note that

the beginning and the end also count as gaps (we require K0 ⊆ I,Kl ⊆ J). Such a
sequence will be viewed as dots (labelled J1, · · · , Jl) on a line in the plane and the gaps
between the dots are labelled/coloured with the Ki’s. In the example this can especially
be seen with the very thin green, blue, red and yellow lines on the boundary.
Morphisms: The generating morphisms are the same as for IgTJ together with the two
generators (6.12). However, the two membranes in the pictures (6.12) can be replaced
by two thick lines labelled J1, J2 as long as K ⊆ J1, J2. Basically we consider these
generators locally between two thick lines. We have four of them in the example above,
namely the green, blue, red and yellow areas.
Relations: The relations are the ones for IgTJ as well as the relations (6.13) and (6.14)
where we again allow the two membranes to be replaced by two thick lines labelled J1, J2

as long as K ⊆ J1, J2 is satisfied. This concludes the description. ♦

As we did for gD we will now identify some morphisms with new pictures and show some
extra relations that hold in sT .

Definition 6.29. We define the coloured trivalent vertices by the following pictures.

J1

I J

= J1τ∗e
π∗e

I J

(6.15)

J1

I J

= J1
τ∗e

π∗e

I J

(6.16)

Here {τ∗w}w∈WK1
and {π∗w}w∈WK2

are the dual bases for R over RK1 and RK2 respectively
(from Theorem 3.35) where K1 is the subset corresponding to the green coloured plane
and K2 is the subset corresponding to the blue coloured plane. We also define the same
morphisms where the thick strand ends in the left membrane analogously. ♦

Remark 6.30. Note that with this definition we have already defined another morphism
as follows.
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J1 J2

J2
I J

= J1

I J2

?

J2 J

We will call this morphism coloured trivalent vertex as well. ♦

We have the following relations.

J1

J1

I J

= J1

I J

(6.17)

J1

I J

= J1

I J

(6.18)

J1

I J

= J1

I J

(6.19)

Here we used the shortcut notation that we got from the isotopy invariance relations
again (note that we do not have proven isotopy invariance in this setting, but we can
still use this notation as a shortcut). The two lines in each picture that end nowhere
could end in either bottom, top or the other membrane as long as they do the same
thing on both sides of the equation. Moreover, by using Remark 6.30 we could replace
the membrane by an appropriately labelled thick line again. By symmetry we also have
the same relations with everything at the left membrane. There are two more relations
for the coloured trivalent vertex.

K

K

I J

=
K

I J

(6.20)
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K

I J

=

I J

(6.21)

Note that we required that the blue thick line is labelled K which is also the label of the
blue coloured area. We could again replace the membranes with appropriately labelled
thick lines.

Definition 6.31. We define the coloured polynomial morphism for a polynomial f ∈ RK
(where the blue area is labelled K) as follows.

f

I J

= f τ∗e

I J

(6.22)

Here {τ∗w}w∈WK
is again the dual basis for R over RK from Theorem 3.35. ♦

We have the following relations for f ∈ R.

J1

f

I J

=

J1

∂J1(f)

I J

(6.23)

J1

f

I J

=

J1

∂J1(f)

I J

(6.24)

J1

f

I J

=

J1

∂i(f)

I J

(6.25)

J1

f

I J

=

J1

∂i(f)

I J

(6.26)
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In the first relation we require that K1 ⊆ J1 where K1 is the label of the green area. In
the second relation we require K2 ⊆ J1 where K2 is the label of the blue area. In the
third relation we require that the green area is labelled with i, the colour of the green
strand. In the last relation we require that the blue area is labelled with i, the label of
the blue strand.

Examples of morphisms for S3

We will finish this chapter by applying this diagrammatic presentation of sBSBim to
our calculation from Chapter 5. There we calculated various bases for homomorphisms
spaces between indecomposable bimodules. We will now observe which morphisms in
sT correspond to these morphisms in sBSBim.
We first fix some notation. We are now in the case W = S3 and S = {s1, s2}. The strands
and areas labelled s1 will be coloured red. The strands labelled s2 will be coloured blue.
Thick black lines will always be labelled S.

Lemma 6.32. Under the sF the two morphisms from (5.3) correspond (up to some
scalars in k) to the following morphisms in sT .

φ1 =̂

s1 s2

φ2 =̂

s1 s2

Lemma 6.33. The morphism from the first point of Theorem 5.21 corresponds under
sF (up to some scalar in k) to the following morphism in sT .

φ =̂

s1 s1

Lemma 6.34.

1. The morphisms from the first point of Theorem 5.24 correspond under sF (up to
some scalars in k) to the following morphisms in sT .

φ1 =̂

s1

φ2 =̂

s1

113



2. The morphisms from the second point of Theorem 5.24 correspond under sF (up
to some scalars in k) to the following morphisms in sT .

φ1 =̂

s1

φ2 =̂

s1

3. The morphisms from the third point of Theorem 5.24 correspond under sF (up to
some scalars in k) to the following morphisms in sT .

φ1 =̂

s1

φ2 =̂

s1

φ3 =̂

s1

φ4 =̂

s1

Lemma 6.35.

1. The morphism from the first point of Theorem 5.27 corresponds under sF (up to
some scalar in k) to the following morphism in sT .

φ =̂

s1

2. The morphism from the second point of Theorem 5.27 corresponds under sF (up
to some scalar in k) to the following morphism in sT .

φ =̂

s1
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3. The morphisms from the third point of Theorem 5.27 correspond under sF (up to
some scalars in k) to the following morphisms in sT .

φ1 =̂

s1

φ2 =̂

s1
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7 Diagrammatics for S3

In this chapter we will consider the case W = S3. Our goal is to give new descriptions
for the categories gD and sT . We would like to describe these categories by generators
and relations without using rather abstract inclusion and projection morphisms and the
complicated idempotent relations.
Before start to give such descriptions and prove that they are equivalent to the definition
we know we will fix some notations. Note that for W = S3 we have S = {s1, s2} and
only the four subsets ∅, {s1}, {s2}, S. We will use the colours red and blue for the
strands labelled s1 and s2. We will not specify which colour corresponds to which simple
transposition as everything is symmetric under swapping these two transpositions. We
will use the colour violet if we mean a strand which is allowed to be blue or red. We
will use the colour black for thick strands labelled S. If we colour certain areas in the
description for sT we will use the colour white for ∅ and red, blue and black for the
other subsets according to our colouring of the strands.

7.1 gD by generators and relations

We will now define a category gD1 by generators and relations and later prove that this
category is equivalent to gD.

Definition 7.1. We define a monoidal category gD1 by generators and relations. It is
generated on objects by s1, s2 and S viewed as coloured dots on a line. On morphisms
it is generated by the following morphisms

f

polynomial generator
deg = deg(f)

(f ∈ R homogeneous)

(end)dot
deg = 1
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(start)dot
deg = 1

trivalent vertex (split)
deg = −1

trivalent vertex (merge)
deg = −1

thick (end)dot
deg = 3

thick (start)dot
deg = 3

very thick trivalent vertex (split)
deg = −3

very thick trivalent vertex (merge)
deg = −3

117



thick trivalent vertex (right-facing)
deg = −1

thick trivalent vertex (left-facing)
deg = −1

modulo the relations (7.1) to (7.27). ♦

Relations (cup and cap are defined as usual)

= (7.1)

= (7.2)

= = (7.3)

= = (7.4)

= = (7.5)
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= 0 (7.6)

= αi (7.7)

f = si(f) + ∂i(f) (7.8)

= = (7.9)

= = (7.10)

= = (7.11)

= = (7.12)

= = (7.13)
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= = (7.14)

= = (7.15)

= = (7.16)

= = (7.17)

= (7.18)

= (7.19)

= (7.20)

= (7.21)
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= (7.22)

= (7.23)

= (7.24)

= (7.25)

= (7.26)

= + (7.27)

Remark 7.2. This list of relations is not minimal! For instance (7.23) and (7.24) are
consequences of (7.21), (7.22) and (7.25). However, since we want to use all these re-
lations and most of them are also very intuitive we put them in the definition. In this
way we do not need to spend time on proving some of these relations as consequences
of others and can instead concentrate on our main goal which is the equivalence (The-
orem 7.5). ♦

Definition 7.3. We define a functor G1 : gD1 −→ gD. On objects G1 is just the
identity (gD and gD1 have the same objects). On morphisms each of the generators
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from Definition 7.1 is sent to the same picture in gD. Note that this is possible as we
defined the thick dots, thick trivalent vertices and very thick trivalent vertices in gD. ♦

Definition 7.4. We define a functor G2 : gD −→ gD1. On objects G2 is just the identity
(gD and gD1 have the same objects). On morphisms we define the image for each of the
generators of gD.

7−→

S

7−→

S

7−→

The remaining generators are the 1-colour generators from D1. They are just sent to
there counterparts in gD1. ♦

Theorem 7.5. Assume that the functors G1 and G2 are well-defined. Then they are in-
verse to each other and yield an equivalence (even an isomorphism) of categories between
gD1 and gD.

Proof. All we need to prove is that G1 ◦ G2 and G2 ◦ G1 are the identity functors on
gD and gD1 respectively. On objects this is obvious. Hence, we only need to check
it on generating morphisms. We start with G1 ◦ G2. Both functors send the 1-colour
morphisms to their respective version in the other category. Thus, G1 ◦ G2 is obviously
the identity on them. So we just need to check this for the other three generators. We
have the following.

G27−→ G17−→ ∈ gD
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S

G27−→ G17−→ ∈ gD

S

G27−→ G17−→ ∈ gD

Thus, we have three equations to prove. We will start with the last one. Note that
since we assumed that the functors are well-defined we know that all the relations from
Definition 7.1 hold in gD.

(7.25)
=

(4.64)
= =

(4.38)
=

(4.16)
= +

(4.30)
=

(4.3)

(4.16)
= +

(4.30)
=

(4.3)

(4.16)
= +

(4.30)
=

(4.3)
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Note that the last application of (4.30) has an S-inclusion instead of a 6-valent vertex
at the bottom. However, by the nature of the S-inclusion we can always replace it by
an S-inclusion composed with a 6-valent vertex and then we could use (4.30). That is
what happened there.
The proof for the second equation for the S-projection is exactly the same as for the
S-inclusion just everything turned upside down. Thus, we are left with the first equation
for the 6-valent vertex.

(4.52)
=

(4.64)
=

(4.65)

(4.52)
=

=
(4.38)

=

This finishes the proof that G1 ◦ G2 is the identity functor. We proceed with proving the
same for G2 ◦ G1. We need to check that G2 ◦ G1 is the identity functor on the generating
morphisms of gD1. This is obvious for the (thin) 1-colour generators as they are sent to
their respective versions by G1 as well as G2. We now need to check this for the thick
dots, the very thick trivalent vertices and the thick trivalent vertices. We will only do
this only for one of the two iterations of each of these because the other ones can be
done in the exact same way. We will start with the thick trivalent vertex.

G17−→ =
G27−→

We have to prove that the first and the last picture above are the equal in gD1. This
follows from the following chain of equalities.

(7.19)
=

(7.21)
=

(7.20)
=

(7.25)
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(7.26)
=

(7.15)
=

We will continue with the very thick dot and the very thick trivalent vertex. First we
need to compute their images under G2 ◦ G1.

G17−→ =
G27−→

G17−→ =
G27−→

Note that we used the fact that G2 sends the thick trivalent vertex to its counterpart in
gD1 when we computed the image of the very thick trivalent vertex. This is however no
problem as we checked exactly this in our last calculation. Now we just need to prove
the remaining two equations which arise from the above computations.

(7.26)
=

(7.15)
=

(7.17)
=

(7.15)
=

This finishes the proof.

Lemma 7.6. The functor G1 is well-defined.

Proof. For G1 to be well-defined we need that all relations from gD1 hold in gD when
sent there by G1. However, we have seen almost all relations from gD1 in gD already.
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The only exceptions are the relations (7.25) to (7.27). Thus, we only have to prove that
these hold in gD. For this we compute in gD.

=
(4.52)

= =

(4.51)
=

(4.38)
= =

(4.48)
= =

(4.16)
= +

(4.3)
=

(4.24)
+

Note that we used the proof of Theorem 7.5, where we saw a way to rewrite the 6-valent
vertex with thick lines, in the proof of the last relation (the second equality there).

Lemma 7.7. The functor G2 is well-defined.

Proof. For G2 to be well-defined we need that all relations from gD hold in gD1 when
sent there by G2. Recall that the relations for gD are the relations for D1 as well as the
relations (4.37) and (4.38). We know that G2 sends the one-colour relations from D1 to
their respective versions in gD1. Thus, we don’t have to check anything for the one-
colour relations. The remaining relations in D1 are the four relations (4.15) to (4.18).
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They are sent to the following equations by G2.

= =

= +

= −

=

Now we will prove these relations in gD1.

(7.21)
=

(7.20)

(7.21)
=

(7.20)

(7.17)
=

(7.21)

(7.18)
=

(7.27)
= +
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(4.24)
=

(4.20)
+

Note that we used in the last step that (4.20) and (4.24) are consequences of the other
one-colour relations and thus also hold in gD1. We continue with the third equation.

(7.26)
=

(7.25)
=

(7.15)
=

(7.21)
=

(7.19)
=

(7.27)
= +

(7.3)
=

(7.5)
+

Now we just need to check the last equation.

=
(7.21)

=
(7.18)

(7.26)
=

(7.21)

(7.26)
=

(7.18)
=

(7.20)

(7.18)
=
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(7.26)
=

(7.21)

(7.26)
=

(7.21)

(7.18)
=

(7.20)

Hence, we have checked that all relations from D1 still hold when sent to gD1 by G2. All
that is left to do is to prove that the same is true for (4.37) and (4.38) which are the
last relations for gD. They are sent to the following equations by G2.

=

=

=

Now we will prove these relations in gD1.

(7.26)
=

(7.3)
=

(7.25)
=

(7.15)
=
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(7.26)
=

This finishes the proof.

7.2 sT by generators and relations

Before we begin with the definitions we fix some notation. We keep our colouring of the
strands as in the last section. In this section we will also colour areas. The colours red,
blue and black represent the same subsets of S for areas as they do for strands. White
represents the empty subset of S. We use the colours green and yellow to indicate that
the area is allowed to be coloured with any subset of S (as long as all conditions that
may be imposed are satisfied).

Definition 7.8. We define a 2-category sT. The objects are the sets ∅, {s1}, {s2}, S.
The 1-morphisms will be generated by labelled empty sequences of dots. Namely the
generating 1-morphisms in IsTJ = MorsT(I, J) are ∅K whereK ⊆ I, J and the horizontal
composition of 1-morphisms will be written as

∅K1 ? ∅K2 =
K1

J1
K2

∈ IsTJ

for ∅K1 ∈ IsTJ1 , ∅K2 ∈ J1sTJ . So the resulting objects are sequences

K0

J1
K1

J2
K2

· · ·
Kl−1

Jl
Kl
∈ IsTJ

with Ki ⊆ Ji, Ji+1 for i = 0, . . . , l where J0 = I, Jl+1 = J .
The 2-morphisms will be generated by the following morphisms modulo the relations we
list at the end.

• All generators from gD,
but with membranes
on the sides.

f

I J

coloured polynomial generator
deg = deg(f)

(f ∈ RK homogenous)
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I J
coloured trivalent vertex

deg = `(wK)− 1
(where K corresponds to the yellow area)

i ∈ J is required

I J
coloured trivalent vertex

deg = `(wK)− 1
(where K corresponds to the yellow area)

i ∈ J is required

I J
coloured trivalent vertex

deg = `(wK)− 1
(where K corresponds to the yellow area)

i ∈ I is required

I J
coloured trivalent vertex

deg = `(wK)− 1
(where K corresponds to the yellow area)

i ∈ I is required

I S

coloured thick trivalent vertex
deg = `(wK)− 3

(where K corresponds to the yellow area)

I S

coloured thick trivalent vertex
deg = `(wK)− 3

(where K corresponds to the yellow area)

S J

coloured thick trivalent vertex
deg = `(wK)− 3

(where K corresponds to the yellow area)
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S J

coloured thick trivalent vertex
deg = `(wK)− 3

(where K corresponds to the yellow area)

The relations are all relations from gD with membranes on the sides together with the
relations (7.28) to (7.50). The horizontal composition of such 2-morphisms will be given
by the following relation.

ϕ1

I J1

? ϕ2

J1 J

=

J1

ϕ1 ϕ2

I J

If J1 = ∅, then a line labelled ∅ is just no line. ♦

Relations

I J

=

I J

(7.28)

I J

=

I J

(7.29)

I S

=

I S

(7.30)

S J

=

S J

(7.31)

S S

=

S S

(7.32)
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I J

=

I J

(7.33)

I J

=

I J

(7.34)

I S

=

I S

(7.35)

S J

=

S J

(7.36)

I S

=

I S

(7.37)

S J

=

S J

(7.38)

I S

=

I S

(7.39)

S J

=

S J

(7.40)
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I J

=

I J

(7.41)

S S

=

S S

(7.42)

I J

=

I J

(7.43)

S S

=

S S

(7.44)

f

I J

= ∂i(f)

I J

(7.45)

f

I J

= ∂i(f)

I J

(7.46)

f

I J

= ∂i(f)

I J

(7.47)

f

I J

= ∂i(f)

I J

(7.48)
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f

I S

= ∂S(f)

I S

(7.49)

f

S J

= ∂S(f)

S J

(7.50)

Definition 7.9. We define a functor G3 : sT −→ sT as follows. On objects G3 is just
the identity (sT and sT have the same objects). On morphisms each of the generators
from gD in sT is sent to the corresponding generator from gD in sT. The images of the
remaining generators are defined as follows.

I J

7−→

I J

I J

7−→

I J

I J

7−→

I J

S S

7−→

S S

S S

7−→

S S
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In the first picture the image is the coloured trivalent vertex with white colouring. We
also use the same definition if the red strand would end in the left membrane or the top
boundary. ♦

Definition 7.10. We define a functor G4 : sT −→ sT as follows. On objects G4 is just
the identity (sT and sT have the same objects). On morphisms each of the generators
from gD in sT is sent to the corresponding generator from gD in sT . The coloured
polynomial generator is sent to its corresponding version is sT (see Definition 6.31).
The coloured (thick) trivalent vertices are sent to there respective versions in sT (see
Definition 6.29). ♦

Lemma 7.11. The functor G3 is well-defined.

Proof. For G3 to be well-defined we need that any relation from sT holds in sT when
sent there by G3. We know the G3 sends any relation from gD in sT to their respective
version in sT and there it holds by definition of sT. Thus, there is nothing to check in
this case. Then we have three relations coming from ITJ in sT , namely the following
(and their left-side versions).

I J

=

I J

I J

=

I J

I S

=

I S

These relations get sent to the same equations in sT. The first two relations follow from
(7.28) and (7.33). The third relations can be proven as follows.

I S

=

I S

(7.32)
=

I S
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(7.25)
=

I S

(7.25)
=

I S

(7.39)
=

I S

(7.30)
=

I S

The last relations for sT are the relations (6.13) and (6.14). The will be sent to the
following equations in sT.

τw

τ∗u

I J

= δw,u ·

I J

πw

π∗u

S S

= δw,u ·

S S

I J

=

I J

S S

=

S S

In the first equation {τw}w∈Wi and {τ∗w}w∈Wi are the dual bases for R over Ri from
Theorem 3.35. In the second equation {πw}w∈W and {π∗w}w∈W are the dual bases for
R over RS from Theorem 3.35. The third and the fourth equation follow immediately
from (7.41) and (7.42). For the other two equations we have.
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τw

τ∗u

I J

(7.34)
=

(7.33) τw

τ∗u

I J

(7.45)
=

∂i (τwτ
∗
u)

I J

(7.43)
= δw,u ·

I J

πw

π∗u

S S

(7.35)
=

(7.36) πw

π∗u

S S

(7.49)
=

∂S (πwπ
∗
u)

S S

(7.44)
= δw,u ·

S S

This finishes the proof.

Lemma 7.12. The functor G4 is well-defined.

Proof. For G4 to be well-defined we need that any relation from sT holds in sT when
sent there by G4. We know that G4 sends any relation from gD in sT to their respective
version in sT and there it holds by definition of sT . Thus, there is nothing to check
in this case. The other relations of sT are sent to respective equations with the same
pictures in sT . However, we have already seen that all these relations hold in sT . Thus,
there is nothing to do here.

Theorem 7.13. The functors G3 and G4 are inverse to each other and yield an equival-
ence (even an isomorphism) of 2-categories between sT and sT.

Proof. All we need to prove is that G3 ◦ G4 and G4 ◦ G3 are the identity functors on
sT and sT respectively. On objects this is obvious. Hence, we only need to check it
on generating morphisms. We start with G3 ◦ G4. Both functors send the morphisms
from gD to their respective version in the other category. Thus, G3 ◦ G4 is obviously
the identity on them. So we just need to check this for the other generators. It will be
enough to check this for one of the coloured trivalent vertices and one of the coloured
thick trivalent vertices, since the proofs for the rest of them will be a symmetric version
of the proof we are about to show. We have the following.
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f

I J

G47−→ f

I J

= f τ∗e

I J

G37−→
f

τ∗e

I J

Here {τw}w∈WK
and {τ∗w}w∈WK

are dual bases for R over RK from Theorem 3.35 where
K corresponds to the green area. Note that the thick green line should be interpreted
as corresponding to s1, s2 or S (and the green area to the same). We will now do the
prove where we think of this green line as corresponding to S. However, the proof works
in the same way for s1 and s2 and we will state at the end which relations one needs to
replace.

f

τ∗e

I J

(7.35)
=

(7.36) f

τ∗e

I J

(7.49)
=

∂K (fτ∗e )

I J

(7.44)
= f

I J

If green represents s1 or s2 one needs to exchange the relations (7.35), (7.36), (7.44)
and (7.49) with the relations (7.33), (7.34), (7.43) and (7.45). We will continue with the
coloured trivalent vertex.

I J

G47−→

I J

= τ∗e
π∗e

I J

G37−→ τ∗e
π∗e

I J
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Here {τw}w∈K1 and {τ∗w}w∈K1 are again dual bases for R over RK1 from Theorem 3.35
where K1 corresponds to the green area. Similarly, {πw}w∈K2 and {π∗w}w∈K2 are dual
bases for R over RK2 from Theorem 3.35 where K2 corresponds to the yellow area. Note
that the green and the yellow areas are next to a thin red strand. Thus, by definition
of sT they can only be white or red. If they are white the (local) calculation is trivial.
Hence, we will now assume that the green and the yellow areas are red. Then we
compute.

τ∗e
π∗e

I J

= τ∗e
τ∗e

I J

(7.33)
=

τ∗e τ∗e

I J

(7.33)
=

(7.34)
τ∗e τ∗e

I J

(7.45)
=

(7.46)

∂i (τ∗e )

∂i (τ∗e )

I J

(7.43)
=

I J

=

I J

We continue with the coloured thick trivalent vertex.

I S

G47−→

I S

= τ∗e
π∗e

I S

G37−→ τ∗e
π∗e

I S

Here {τw}w∈K1 and {τ∗w}w∈K1 are again dual bases for R over RK1 from Theorem 3.35
where K1 corresponds to the green area. Similarly, {πw}w∈K2 and {π∗w}w∈K2 are dual
bases for R over RK2 from Theorem 3.35 where K2 corresponds to the yellow area.
Note that the thick green lines and thick yellow line should again be interpreted as
corresponding to s1, s2 or S (and the green and yellow areas to the same respectively).
We will now do the prove where we think of the green and yellow lines as corresponding
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to S. However, the proof works in the same way for s1 and s2 and we will state at the
end which relations one needs to replace.

τ∗e
π∗e

I S

(7.35)
=

τ∗e π∗e

I S

(7.35)
=

(7.36)
τ∗e π∗e

I S

(7.49)
=

(7.50)

∂S (τ∗e )

∂S (π∗e)

I S

(7.44)
=

I S

If green or yellow were corresponding to s1 or s2 one would need to replace the relations
as follows: In the first equality we need to replace (7.35) with (7.37) for green and with
(7.39) for yellow. In the second equality we need to replace (7.35) and (7.36) with (7.33)
and (7.34) for green (nothing happens with yellow). In the third equality we need to
replace (7.50) with (7.46) for green and (7.49) with (7.47) for yellow. In the last equality
we need to replace (7.44) with (7.43) for green (again nothing happens with yellow).
Hence, we are finished proving that G3 ◦ G4 is the identity functor.
We proceed with proving the same for G4◦G3. We need to check that G4◦G3 is the identity
functor on the generating morphisms of sT . Again both functors send the morphisms
from gD to their respective versions in the other category. Thus, there is nothing to
check for them. Then there are the generators coming from ITJ . However, for these it
is trivial that G4 ◦ G3 is the identity on them. For instance, we have the following.

I J

G37−→

I J

G47−→

I J

So all that is left to do is to check that G4 ◦ G3 is the identity functor on the generators
(6.12). It is enough to check it on one of the two generators, since the proof for the
other one is symmetrical. We will once more use the colour green to represent s1, s2 or
S. Then we have the following.

I J

G37−→

I J

G47−→

I J
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We will now do the proof thinking of the green lines and areas as corresponding to S.
After that we state how to replace the relations if green corresponds to s1 or s2.

I J

=

τ∗e

τ∗e

I J

(6.14)
=

τ∗e

τ∗e

I J

(6.6)
=

τ∗e

τ∗e

I J

(4.66)
=

τ∗e

∂S (τ∗e )
I J

(6.14)
=

τ∗e

I J

(6.13)
=

I J

Here {τw}w∈W and {τ∗w}w∈W are again dual bases from Theorem 3.35 (replace W with
Wi if green corresponds to s1 or s2). If green corresponds to s1 or s2 one would just
need to replace (6.6) with (4.49) and (4.66) with (4.3), (4.8) and (4.28). This finishes the
proof that G4 ◦ G3 is the identity functor, and hence the theorem is proven as well.
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généralisés. C. R. Acad. Sci. Paris, 258:3419–3422, 1964.

[Mat99] Andrew Mathas. Iwahori-Hecke algebras and Schur algebras of the symmet-
ric group, volume 15 of University Lecture Series. American Mathematical
Society, Providence, RI, 1999.

[Soe92] Wolfgang Soergel. The combinatorics of Harish-Chandra bimodules. J.
Reine Angew. Math., 429:49–74, 1992.

[Soe07] Wolfgang Soergel. Kazhdan-Lusztig-Polynome und unzerlegbare Bimoduln
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