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1 Introduction

To a Coxeter group (W, S) one can define the Hecke algebra H which is a deformation
of the group algebra of W. One usually considers two bases in this algebra, the stand-
ard basis and the Kazhdan—Lusztig basis. The coefficients of the base change matrix
between these two bases are known as the Kazhdan-Lusztig polynomials. Kazhdan and
Lusztig conjectured [KL79] that these polynomials can be used to describe characters of
simple highest weight modules over complex semisimple Lie algebras and this was later
proven by Beilinson—Bernstein [BB81] and Brylinski-Kashiwara [BK8&1] in 1981. This
justifies the importance of the Kazhdan—Lusztig polynomials.

A consequence of these results is, that if W is a Weyl group, the sum of all coefficients in a
given Kazhdan—Lusztig polynomial is a non-negative number, since it can be interpreted
as a certain Jordan—Holder multiplicity in Lie theory. The Kazhdan—Lusztig positivity
conjecture states that all coefficients of these polynomials (for arbitrary Coxeter groups)
are positive. In order to prove this conjecture Soergel considered a certain category SBim
of special bimodules attached to a Coxeter system which are nowadays called Soergel
bimodules. He proved [Soe92, [Soe07] that this monoidal category categorifies the Hecke
algebra H and he also proved that the indecomposable bimodules are classified by the
elements of the Coxeter group W. Indecomposable Soergel bimodules are exactly direct
summands of the so-called Bott—Samelson bimodules which are much easier to describe.
They categorify monomials in the Kazhdan—Lusztig generators of H. It is the passage
to direct summands which makes the category of Soergel bimodules extremely hard to
understand.

Soergel conjectured that under his categorification these indecomposable bimodules cor-
respond to the Kazhdan—Lusztig basis of H. Assuming this conjecture he was able
to prove the Kazhdan—Lusztig positivity conjecture by relating the coefficients of the
Kazhdan—Lusztig polynomials to dimensions of certain homomorphism spaces [Soe(07].
However, Soergel could only prove his conjecture for some Coxeter groups (in particular
Weyl groups) [Soe92].

Soergel’s conjecture yields more far reaching consequences than just a proof of the
Kazhdan—Lusztig positivity conjecture. For instance it provides a natural “geometry”
for arbitrary Coxeter groups. Soergel (bi)modules were originally introduced by Soergel
to better understand category O and Harish-Chandra bimodules. In particular Soergel’s
conjecture also implies the Kazhdan—Lusztig conjecture on characters of simple highest
weight modules. The recent courses [EMTW20] and [Str20b] give an overview about
such details.

Soergel’s conjecture was proven for arbitrary Coxeter groups by Elias and Williamson
[EW14]. The catalyst to this advancement was their diagrammatic theory for Soergel
bimodules. They introduced a diagrammatic category by generators and relations and



proved that this category is equivalent to Soergel bimodules (at least under some tech-
nical assumptions for the general case). This was done in [EW16] which is also the main
source for this thesis. Objects in this category are sequences of points on a line which
are labelled or “coloured” by elements of S. The morphisms encode all the information
and are coloured graphs between two such sequences. They are built out of certain

generators including

(end)dot (start)dot spht merge

(see Definition and could for example look as following.

[

This diagrammatic category can be considered independently of Soergel bimodules. The
definition is much more elementary, it is better suited for generalisations and special-
isations and allows to make explicit calculations which are even harder in the algebraic
setting of Soergel bimodules. Moreover, one can use it as a categorification of the Hecke
algebra in the same way as Soergel bimodules, but it works already under very weak
assumptions. The diagrammatic theory also led to many more advancements than just
the proof of Soergel’s conjecture. In fact the diagrammatic category is a strictification of
the monoidal category of Soergel bimodules and is therefore much more rigid and easier
to handle, in particular in view of higher categories, and extremely useful in terms of
categorification.

Hecke algebras arise naturally in representation theory, but even nicer is an enlargement,
the so-called Hecke algebroid, and the Schur algebras sitting inside there. They arise for
instance naturally from the representation theory of the general linear group. Based on
works of Soergel [Soe92] and Stroppel [Str04] who introduced singular Soergel bimod-
ules which are a generalization of Soergel bimodules Williamson introduced [Willl] the
2-category of singular Soergel bimodules. He proved that this 2-category categorifies the
Hecke algebroid in a similar fashion as Soergel bimodules categorify the Hecke algebra.
Since the diagrammatic theory helped significantly to understand Soergel bimodules it
is now natural to ask whether it is possible to generalize the diagrammatic theory to
singular Soergel bimodules. In this thesis we will investigate this task for the symmetric
group W = 5,,.




We will start with the diagrammatical Soergel calculus of Elias and Williamson [EW16]
and try to improve it step by step to fit it into the setup of singular Soergel bimodules.
While Soergel bimodules are certain (R, R)-bimodules for a certain ring R depending on
W, singular Soergel bimodules are certain (R!, R’)-bimodules where R!, R’ are subrings
of invariants for varying parabolic subsets I, J C S. To develop a suitable diagrammatic
approach we first need to incorporate the (R!, R’)-bimodule structure into the setup.
This will be done in Definition where we fix some I,J C S and generalize an idea
of Elias [Eli16, Section 5] to define a new diagrammatic category ;7. The objects will
be the same as before. To describe the morphisms we follow an idea of Elias for one-
sided Soergel bimodules. Namely, the restriction to the action to invariants is encoded
by including a (black/grey) membrane on one side. We will do this now and will also
include a membrane on the other side, and thus the main difference in the pictures will
be two membranes. A morphism then looks for instance as follows.

3

As a slight generalization of [Eli16, Theorem 5.6] we obtain the first result which connects
177 to a subcategory of singular Soergel bimodules.

Theorem There is an equivalence of categories ;F; : ;T3 — [BSBim;, where
/BSBim; is the category of Bott-Samelson bimodules viewed as (R, R”)-bimodules.

Singular Soergel bimodules form a 2-category with objects parabolic subsets (I, J, etc.)
of S, 1-morphisms the bimodules and 2-morphisms the bimodule morphisms. We will
therefore similarly also collect all the categories ;7 (for all choices of I, J C S) together
into a 2-category 7. Then we will incorporate the analogue of passing from Bott—
Samelson bimodules to Soergel bimodules by using the concept of partial idempotent
completion. This basically means that we add some direct summands to define a new
diagrammatic 2-category s7 (Definition .

The objects will now be sequences of dots labelled by subsets of S and the spaces in-
between are also labelled by subsets of S (under some conditions). We have to include
thicker lines into the morphisms which are similar to the two membranes and were also
introduced by Elias [Elil6]. They capture the transition from elements of S to subsets
of S in the labelling of the dots. Moreover, we introduce coloured areas into the pictures
in order to capture the labelling of the spaces in-between the dots. This is all mirroring
the transition from simple reflections to parabolic subsets in the definitions of regular
and singular Soergel bimodules. A morphisms in s7 will then look as follows.




Our first main result is then an equivalence between s7 and singular Bott—Samelson
bimodules (whose Karoubian closure are singular Soergel bimodules).

Theorem [6.27 There is an equivalence of 2-categories sF : sT — sBSBim.

Partial idempotent completions allow us to construct more complicated categories like
sT. However, to understand this category we secretly use a trick which transfers calcula-
tions to the original category plus the knowledge of idempotents. This is quite convenient
for abstract arguments, but in practice the idempotents are hopeless to compute. Our
dream would be a complete understanding of all idempotents and their interactions.
This is a hard problem. We solve it completely at least for the case W = S3 where we
define another 2-category s¥ by generators and relations (Definition and prove

Theorem The 2-category s% is equivalent to sT, and hence gives a presentation
of sT.

We will now give a short summary of each chapter of this thesis.

e In Chapter 2 we will recall some basic notions which are fundamental for all up-
coming chapters. We recall the definitions of Coxeter groups (W, S) and the Hecke
algebra H and some basic properties. We continue by recalling the definition of
the Hecke algebroid and calculate some examples. We finish this chapter with the
definition of graded bimodules and graded categories and collect some basic facts
about them. For proofs we refer to the literature.

e We recall the concept of a realization h of (W, S) in Chapter 3 which allows us to
define the ring R = S(h) on which W acts naturally. Then the structure of R as
a module over the rings of invariants R” is will be examined where J C S. First,
we do this for general Coxeter systems (W, S) and then we construct an explicit
basis in the case W = 5,,.
After that we finally define the category of Soergel bimodules and state the main
theorems for them. Afterwards the same is done for singular Soergel bimodules.

e Chapter 4 is an introduction to the diagrammatics of Elias and Williamson [EW16].
We begin with defining the diagrammatic category D for W = S,, and then explain
what changes in the general case. In this chapter we only recollect statements
and results from [EWI6]. In the second part we present results of Elias [EL16].
He generalized the diagrammatics to a category gD by using partial idempotent
completion.

e In Chapter 5 we step away from the diagrammatics to do some calculations on
the algebraic side. We give a complete description of the 2-category of singular
Soergel bimodules for S3. More precisely, we classify all indecomposable bimodules
and explain how every bimodule decomposes into them. Then we compute all the
homomorphism spaces between any pair of indecomposable bimodules.



e Chapter 6 contains the main results of this thesis. In the first section we generalize
the ideas of Elias [Eli16] section 5] to get the diagrammatic category ;7 and prove
that it is equivalent to a category of Bott—Samelson bimodules ;BSBim ;.

In the second section we use the concept of partial idempotent completion to define
the 2-category s7 which is a generalisation of ;7;. We identify morphisms in s7
with new pictures and present some new relations for these. Moreover, we prove
the equivalence between s7 and the category of singular Bott—Samelson bimodules.

e In Chapter 7 we restrict ourselves again to the case W = S3. First we give a
description for gD by generators and relations (without complicated idempotent
relations and inclusion or projection morphisms) and prove Theorem In the

second part we give a description for s7 by generators and relations and prove
Theorem [Z.13]
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2 Basics

2.1 Coxeter groups

In this section we will give the definition of Coxeter groups and state some standard
facts about them. Standard references are [Bou81] and [Hum90].

Definition 2.1. A pair (W, S) of a group W and a finite subset S C W is called Coxeter
system if there are mg € NU {oo} for all s,t € S such that

1. mgs=1for s € S;

2. mg =22ifs#£teS,

3. W = (s €S| (st)™t = e) (in particular S generates W), where e € W is the
neutral element.

The condition mg = oo means that no relation of the form (st)™ = e should be imposed.
The group W is then called Cozeter group with set of generators (or simple reflections)
S. O
Remark 2.2. Note that for s,t € S we have mg = mys, since ts = (:st)_1 and st need
to have the same order.

Since S is a finite set we will identify it with the set {1,...,|S]|}, i.e. we fix a map
S —{1,...,|S[}. We will write the elements of S as 51, 52, . . ., 5|g| Via this identification
and sometimes write ¢ € S for a natural number ¢ by which we mean s;. O

Ezxample 2.3. Our main example for a Coxeter group will be S,,. We know that W = S5,
becomes a Coxeter system (W, .S) via the following choice of S

S = {simple transpositions} = {(i,7+1) e W |1 <i<n—1}.
We have an obvious identification S = {1,...,n—1} via s; = (¢,741). Now the numbers
mjj = Ms,s; are given as follows:
e my;=1forl<i<n—1;
e m;; =2 for [i — j| > 1;
e miiy1=3forl<i<n—2.

Definition 2.4. Let w € W and write w = s;, - - - 5;,. We call (s;,,...,s;,) an expression
for w. We call an expression (s;,, ..., s;,;) reduced if there is no expression (sj,,...,s;,)
for w with d’ < d.

We define the length function ¢ : W — Ny by ¢(w) = d if there is a reduced expression
(Siyy- ., 8iy) for w (including the empty expression for e). O



Remark 2.5. Note that for w € W we have f(w) = 0 <= w = e and f(w) =
1 <= w € S. Moreover, one can check that £(w™!) = ¢(w) for all w € W. Indeed, if
w = 8;, -8, is a reduced expression, then w™! = s; -+ s;, and thus f(w™!) < f(w).
This implies that ¢(w) = ¢ <(w*1)71> < L(w™1), and hence £(w™t) = £(w).

In the definition we distinguished between the expression (s;,,...,s;,) and the element
Siy -+ 8i; € W which is necessary, since w = s;, ---s;, might have many expressions.
However, we won’t be so precise from now on. Instead we will often write “let w =
si; -+ 8;i, be an (reduced) expression” and mean by it that (s;;,...,s;,) is an (reduced)
expression for w. O

The following is a result of Matsumoto [Mat64].

Lemma 2.6. Let w = s;, ---8;, = 5, - - 5j, be two reduced expressions for an element
w € W. Then one can transform s;, ---s;, to sj ---s;, by repeatedly applying so-called
braid moves which transform

sts--- to Ist---
SN—— S——

mst factors mst factors
for some s,t € S. These braid moves are allowed by the relation (st)™st = e.

Definition 2.7. Let (W, S) be a Coxeter system. Let s;, ---s;, and sj, ---s;, be two
expressions. We call sj, - -+ s; , a subexpression of s;, - - - s;, if there is a strictly increasing
function ¢ : {1,...,d'} — {1,...,d} such that s;, = Siyq forallk=1,... ,d. O
Definition 2.8. We define a partial ordering on the elements of W, called Bruhat order.
For w,u € W we write u < w if there are reduced expressions w = s;, ---s;, and
u = 85, -+~ 8j, such that s;, ---s; , is a subexpression of s;, - - - s;;. O
Ezample 2.9. We consider W = S3 with the set generators S = {s1,s2} where s; =
(1,2),s9 = (2,3) are the simple transpositions. Now we can write down the Bruhat
order for this Coxeter system as follows.

/\
e
/

5152 5251

T

515281 = 525182

An arrow means that the element at the source of the arrow is greater than the element
at the target of the arrow in the Bruhat order. This picture together with transitivity
then give the complete Bruhat order.

Remark 2.10. One can show that for w,u € W one has u < w if and only if for any
reduced expression w = s;, - - - 8;, there is a reduced expression u = s;, - - s; , such that
Sjy *+* 84, 18 a subexpression of s;, - - - s;,. O



Theorem 2.11 (Strong exchange condition). Let w = s;, ---s;, be an expression (not
necessarily reduced) for w € W. Let t be a reflection, i.e. t = usu™' for some s €
S,u € W. Suppose L(wt) < l(w), then there is an index 1 < k < d for which wt =
Siyt e sik%@;sikﬂ .-+ s, (where the hat means that this factor has been omitted). If the
expression for w is reduced, then k is unique.

Corollary 2.12 (Deletion property). Let w = s;, ---s;, be an expression for w € W
such that £(w) < d. Then there exist 1 <1< k < d such that w = s;, -+ 8, - Sip - * - Siy-

Lemma 2.13. Let (W,S) be a Cozeter system such that W is finite. Then W has a
unique longest element wqy with respect to the length function £. This element is self-
inverse and is greater than any other element of W in the Bruhat order. Moreover, for
w € W we have £(wwg) = L(wow) = £(wg) — L(w).

The longest element in S, is the permutation that reverses the order of 1,..., n.

Corollary 2.14. Let (W, S) be a Coxeter system such that W is finite. Let s € S, then

there are reduced expressions wy = s;, - -+ 8;, and wy = sj, - - - 55, such that s = s;, = sj,.

Definition 2.15. We call a subset I C S a parabolic subset and denote by Wj the
subgroup of W generated by I. We call such subgroups of W parabolic subgroups. We
call a parabolic subset I C S finitary if Wy is finite. In this case we denote by wy the
longest element of W7i. O

Lemma 2.16. Let I C S be a parabolic subset, then (Wy,I) becomes a Cozeter system
with the relations induced from (W,S). Moreover, the length functions of W and Wi
agree on Wr.

Remark 2.17. Let W = S,, and let J C S = {simple transpositions} be a parabolic
subset. Then Wj; =S¢, X S, X -+ X S, where for example S, = (s1,...,8¢,—1) and
Se; ¢ J. Then the longest element wy of W; can be written as wy = wWe, Wey * - * We,,
where w,, are the longest elements of the S, viewed as elements of S,,. Moreover, for
w = (wy,...,wy,) we have

Uw) =D b (wy)

where ¢}, is the length function on S, . O
Definition 2.18. For a finitary subset I C S we define

w(I) = v*wn . Z p 2t W)

weWr

and call it Poincaré polynomial of Wi. O

Ezample 2.19. Let W = S4 with S = {simple transpositions} and I = {s1,s2}. Then
W7 has one element of length 0, two elements of length 1, two elements of length 2 and
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one (longest) element of length 3. This is due to the fact that W7y is isomorphic to Ss.
Thus, the Poincaré polynomial is given by

rI)=v* (1+207 24207 +0 %) =0 + 20+ 2071 4072
If we consider the parabolic subset J = {s1,s3}, then W consists of the elements
1,s1,583,5183, since s; and s3 commute. Thus, it has one element of length 0, two
elements of length 1 and one element of length 2. Hence, in this case the Poincaré
polynomial is given by

7(J) =v*- (1+ 2072 +v ) =0 + 24072

Definition 2.20. Let I C S be a parabolic subset. We define

Di={weW |ws>wforallsel} and ;D= (D;) .
If I C S is finitary we define

DI ={weW |ws<wforallse I} and D= (DI)_l.

The elements of Dy and D! (respectively ;D and ID) are called the minimal and maz-
imal left (respectively right) coset representatives.
Given two subsets I, J C S we define

D;=;DNDy
and if I and J are finitary we define

D’ ='pn D’
We call the elements of ;D ; and D7 minimal and mazximal double coset representatives
respectively. O

Proposition 2.21. Let I,J C S be two parabolic subsets. FEvery double coset p =
WixWy (for some x € W) contains a unique element of ;D; and this is the unique
element of smallest length in p.
If I and J are finitary p also contains a unique element of 1D’ and this is the unique
element of maximal length in p.

Proof. A proof can be found in [Str20al. O
Example 2.22. Let us consider S3 with simple transpositions si,so again and choose
I = {s1},J = {s2}. Let us first compute the double coset p which contains e. We have
that s; = sie, s = esy and s1s2 = sjesy are in p. Thus, p = {e, s1, s2,5152}. The
remaining elements of S3 form the other double coset ¢ = {s2s1, s15251}. We have that
Dy ={w e S| siw>w,wsy >w} = {e, s2s1}
I'pJ = {w € S5 | sjw < w,wse < w} = {s152,515251}.
Now one can observe that p and ¢ both contain exactly one element out of each of these

sets. Namely, p contains e and s1so which are the unique shortest and longest elements
of p respectively.

11



Remark 2.23. Given a double coset p € W;\W/W; we denote by p_ the unique element
of minimal length in p. If I and J are finitary we denote by p; the unique element
of maximal length in p. We call p_ and py the minimal and maximal double coset
representatives.

We call the polynomial

77(]?) = ,UZ(er)—&-é(p,) . Z,U—Zl(x)
xeEpP

Poincaré polynomial of p. O
The following result is due to Howlett, see e.g. [Willll, Theorem 2.1.3].

Theorem 2.24. Let I,.J C S and p € W \W/W;. Define K = INp_Jp_'. Then the
map

(Dx NW1) x Wy — p
(u,v) — up_v
is a bijection satisfying £(up_v) = £(u) + €(p-) + £(v).

Definition 2.25. We extend the Bruhat order to double cosets. For p,q € W \W/W;
we define p < ¢ if and only if p_ < ¢_. %

2.2 The Hecke algebra

Definition 2.26. Let (W, S) be a Coxeter system. The Hecke algebra H = H(W,S)
is the free Z[v,v~!]-algebra generated by symbols Hy for s € S, modulo the following
relations:

H? =1+ (v —v)H, for all s € S, (2.1)
HHH, ---=HHH,;--- forall s At € S. (2.2)

me: factors me: factors
If mg = oo we have no relation of the form . O
For w € W we define H,, = HSZ.1 --~H3id where w = s;, -+ s;, is a reduced expression
for w. By convention this definition includes H, = 1. Note that this definition is

independent of the choice of reduced expression by Lemma and (2.2)).

Lemma 2.27. H is a free Z[v,v™'|-module with basis {H, | w € W}. This basis is
called standard basis.

Remark 2.28. The following multiplication formula holds.

Hy, if sw > w

Hs - Hy, = { (,U—l — ’U)Hw + Hgp if sw < w.

(2.3)

One can alternatively define the Hecke algebra as the free Z[v, v_l]—algebra with basis
given by the standard basis and the multiplication given by (2.3)). O

12



Remark 2.29. With the multiplication formula (2.3)) it is easy to check that H is
invertible with inverse H = H,+v+v!. Thus, H, is also invertible. O

Definition 2.30. We define the Z-linear bar involution H — H,h — h to be the
unique algebra homomorphism specified by v +— v~ !and Hg — H; L.
We call an element h € H self-dual if h = h. O

Remark 2.31. The bar involution is well-defined, i.e. it respects relations ([2.1)) and (2.2]).
For (2.2)) this is obvious and for (2.1]) this is an easy calculation.
It is easy to check that the elements Cs = Hg + v are self-dual. O

Theorem 2.32. There exists a unique self-dual basis {H,, | w € W} of H as a Z[v,v™1]-
module which satisfies

Ew = Hy + Z hm,wH:r
TFWw

where hy . € VZ[v]. This basis is called Kazhdan—Lusztig basis and the polynomials hy 4,
are called Kazhdan—Lusztig polynomials.

Remark 2.33. For s € S the Kazhdan-Lusztig basis element is given by H, = Cs. One
can prove that hy,, = 0 if 2 £ w.

For an expression w = (s;,, ..., S;,) we define
Hy,=H, - H, .
Warning! In general we have H,, # H,, for most w € W. O

Example 2.34. The Kazhdan—Lusztig basis for S3 with generators s; and s is given by

H, =1

H, =H, +v

H,, =Hs, +v
H,, =H,, +vH, +vH, +v*=H, -H,
H,, =Hss +vHy +vHy, +v*=H, -H,

H,, = Hg 55, + VHg sy + 0Hgys, + v Hy + 0*Hy, + 0%,
For the expression wy = (s1, $2,51) we see an example of the warning in the last remark.
H,y = Hs 555, +0Hsys, + vHgys, + (V2 + 1) Hy, +0°Hg, +0° + 0 # H, .
Lemma 2.35. If (W, S) is a finite Coxeter system and wy its longest element, we have

ﬂwo e Z fve(wo)_e(m)Hx
xeW

-1
Hsﬁwo = ﬂwo’

13



Remark 2.36. If I C S is finitary we get from this and Lemma that

H, = Z ptwn—4@) (2.4)

W r
zeWr

If x € W; we can check inductively that

—l(x
H, H, =v'@H,. (2.5)
It follows that
ﬂwK : ﬂw; = ﬂ-(K) : Ew] (26)
for K C I. O

Remark 2.37. As a Z[v,v™']-algebra # is also generated by the elements H, (s € S).
However, the relations are less intuitive. One relation is

H?=(v+v HH

s =

(2.7)

s*

The other relations connect expressions of the form H _H,H, --- for s,t € S. For instance

Mgt = 2 : HH, = H,H, (2.8)
are the first examples of these relations. O

Definition 2.38. We define a trace e on ‘H by ¢ (Ewew cwHw) = ¢.. We call € standard
trace.

We also define w to be the Z[v,v™!]-antilinear (i.e. w(v) = v™!) antiinvolution for which
w(H,) = H, holds. ¢
Remark 2.39. A trace on H is a Z[v,vil]—linear map tr : H — Z[U, vil] satisfying
tr(hh') = tr(h'h) for all h,h' € H. The standard trace is a trace on H.

Note that w is not the same as the bar involution, since w is an antiinvolution. That

means w(hh') = w(h') - w(h) while hh/ = h - B/ for all h,h' € H. O
Definition 2.40. We define a pairing (—,—) : H x H — Z[v,v!] by (h,1) =
€ (h" - w(h)). This pairing will be called standard pairing. O

Remark 2.41. The standard pairing is Z[v, U_l]—antﬂinear in the first component and
Z[v,v™!]-linear in the second component; that is (v=th, k') = (h,vh') = v (h, h') for all
h,h' € H. The element H | is self-biadjoint under this pairing, i.e.

(ﬂsx’ y) = (SU, ﬁsy) ) (Iﬂsa y) = ('1"7 yﬂs) .
One can define the standard pairing alternatively via
(Hza Hy) = 5m,y (2.10)

for all z,y € W. O
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2.3 The Hecke algebroid

In this section we will recall the definition of the Hecke algebroid and collect some basic
facts. A reference for this is [Mat99].

Definition 2.42. Let I, J C S be finitary subsets. We define

H=H,H
H,=HH,,
[HJ - IH N HJ.

Given a third finitary subset K C S we define a multiplication as follows
My x Hg — Mg

1
hi,ho) —> h ho = ——hiho.
(h1, ho) 1 *g N2 7T(J)12
This is well-defined by (2.6]). If J = () we write the normal multiplication - instead of g,
since they agree. O

Definition 2.43. The Hecke algebroid is the Z [v, vil] -linear category defined as follows.
The objects are finitary subsets I C S. The morphisms between I and J are given by
;H ;. Composition between morphisms ;H ; X ;H - — ;Hj is given by * ;. This defines
a Z[v, v_l}—linear category with the identity endomorphism for I C S given by H,, . O
Remark 2.44. We can check that h = ZwEW awHy, € H; if and only if, as = vay
and a.; = va, for all w € W, s € I and t € J such that sw < w and wt < w. We define
for all p € W \W/W;,

IrrJ 14 —{(x
o, :ZU (p)—t=) g

Tep
It follows that if h = awHyw € H ;, then
h = Z ap, IH];].
PEWI\W/W;

The set {'H;] | p € W/\W/W} is obviously linear independent over Z[v,v™!], and thus
it forms a basis for ;H ; over Z[v, v_l}. We will call it standard basis.

For a Kazhdan-Lusztig basis element we have H,, € ;H; if and only if w is maximal in
its (W, Wy)-double coset. That is why we define for p € W \W/W;

Irrd _
ﬂp - ﬂp+'
We have
Iﬂg = IHIZ'] + Z hai ps IH&]'
q<p
It follows that {Iﬁg | p € W\W/W;} also forms a basis for ;H ; over Z[v,v_l]. We
call this basis Kazhdan—Lusztig basis. O

15



Remark 2.45. For all finitary subsets I, J C S satisfying I C J or J C I we define
'H? = TH] where p = W;W.

We call elements of the form 'H” ¢ [H; standard generators. The standard generators
have the following property:
Let {;Z; C ;H;} be the smallest collection of subsets such that

1. IfIC JorJCIwehave TH' € ,Z;
2. ;Z;is a Z[v,v_l]—submodule of /H;
3. The collection {;Z,} is closed under composition in the Hecke algebroid.

Then ;Z; = /H; for all finitary subsets I,.J C S. We say that the standard generators
generate the Hecke algebroid. %

Remark 2.46. Recall the antiinvolution w we defined previously. One can check that
w (ﬁwj) = H,,, for all finitary I C S. Hence, w restricts to an isomorphism of Z [v, v_l]—
modules

w IHJ — JHI'
Now we can extend our standard pairing to

(—7—) : IHJ X IHJ —>Z|:'U,'U71:|

(hl,hQ) — <h1,h2> 6(h1 * 7 w(hg)).

Note that one has for hy,hy € ;H; the connection to the standard pairing given by
w(J) - (hi,he) = (h1,hy) where we regard h; and hs as elements in #H in the second
expression. One can check that for I, J, K C S finitary and hy € ;/H ;,ha € ;Hy, h3 €
H e we have

(h1 %7 ha, hg) = (h1, hs K w(ha)).
We can also describe the standard pairing on the standard basis of ;H ;. We have
<IH};J’ IH;) — ptp+)—tp-) Opg

for p,q € W\W/Wj. O

2.3.1 Some S;-type relations

In this section we want to understand the Kazhdan—Lusztig bases in the Hecke algebroid
for S3 better. Let (W, S) be a Coxeter system with s;, s; € S such that m;; = 3. Then the
parabolic subgroup U generated by s; and s; is isomorphic to S3 and the Hecke algebra
H(W,S) has H(S3,{si,s;}) as a subalgebra. Let now I and J be parabolic subsets of U
(and thus also of W), then we want to understand the U-part of the Kazhdan—Lusztig
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basis in ;# ;. More precisely, if we consider a Kazhdan-Lusztig basis element H ., z € U,
we can force it into ;H ; via

ijﬂ:pﬁuu € IHJ

Now we can decompose such an element in to our Kazhdan—Lusztig basis given by
double cosets TH g . For this we only need double cosets p C U. Hence, we may assume
W =U = S3 and s; = s1,5; = s2 and the calculations will also hold in the general case
described above.

We will do these calculations for four choices of I and J. When we write ;H ; or 'H g
we will write 1 instead of {s1} and 2 instead or {s2}, for example we will write ;H,.

Proposition 2.47. Consider ;H, and label the double cosets Wi\W /Wy by

p={e,s1,82,8182},  q= {s2s1,wo}.
Then we get the following decompositions.
1. H, HH, = "H2
2. H H, H, = (v+v7t) 'H2
8. HyH, H, = (v+v7t) 'H2
4. H H, H,=*+2+v?)'H2.

5. ﬂslﬂ3251ﬂ32 = 1&?) + ('U + ’U_l) . 1ﬂ2

6. H, H,H, =" +2+v7) 'Hj.

Proof. Recall that 1&% =H and 'H 2 = H, . We will use the resolution of the

==5182 — =wo

Kazhdan—Lusztig basis into the standard basis from Example [2.34]
1. We compute

H HH,=H,  -H,=(Hs +v)-(Hg+v)
= H,,, + vH,, +vH,, +0* = 'H].

2. Using the first part we get

H, H, H, = (Hg +v)-(Hy) H, = ((v"' —v)Hy, +1+20H,, +v%) - H

82 82
= ('U + U_l) .Esl .ESQ = ('U + U_l) ! IEZQJ
3. Again using the first part we get
H51E52E82 = Hs1 ’ (HS2 + ’U) ’ (HSQ) - Esl : ((v_l - U>H52 +1+ 2’UH32 + Uz)
=H, -(v+v ') H,=(@w+v!

52
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4. Using the calculations from the last three parts we compute

ﬂ81E8152E82 = ﬂsl ' ﬂsl ' ﬂ52 : ﬂ52 = (U + U_l) ' ﬂsl ' (U + v_l) .ESQ
= (7)2 +2+ ,0—2) 'ﬁs1 .ﬁSQ = (7) + v_l) ’ lﬂg

5. Here we compute that

H H, H, = (H +v) (Hys +vHs +vH,, +0°) - H,
B ( Hyy +v(v™! —v)Hg, +v+vHg s, +v2Hg, ) g

~\ HvHsys, + v Hg, + v H,, + 03 =2

= (Hy, +H,,) H,,

= (Huy + vHs s, + vHsys, + v Hy, +v2Hy, +0°) - (Hgy +0)
+Hy .,

= (v —0)Hyy 4+ Heps, +v(v™ 1 —0)Hy, sy + vHy, + vHy,
+ 02H3152 + 0% (vt — v)Hs, + v? + ’U3H32 + vHy, + 02H3132
+ U2H5231 + U3H51 + U3H82 +ot 4+ lﬂz

= (v+v ) Hy, + Hy = "Hy + (v+07") - "HE.

6. Using our last calculations we compute

Hy H, H,, = H, - (Hy, +vHes, +vH, ) - Hy,

=H, - (Hyy +vHgs) - (Hsy +v) + v(v?+2+0 1) “Hy

=H, - ((v7' —v)Hy, + Hyys, + vHyy + vHyy + 02 Hy,s,)
+ v(v2 + 2+ v_l) "Hy o,

=H, -(v+ vil) - (Hy, + vHsys,) + v(v2 + 2+ vil) H

=(@+v ) (v = v)Hyy + Heysy + vHuyy + vHyy + 02 Hy,s, )
+o(?+2+07Y) "Hy o,

= (0 +2+0v7%) (Hyy + vHoys, +vH, )

=W +2+07%) H, =@ +2+0v7%) 'H. O

Analogously one can for instance also verify the following equalities. We omit the details.
Proposition 2.48. Consider {1, and label the double cosets Wi\W /W7 by
p={e s1}, q = {s2, 8182, 281, wp }.
Then we get the following decompositions.
1. H HH, = (v+v?') 'H,.

2. H H H, =" +2+v7) 'H,,.
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5.

6.

H H,H, ='H.+'H).

CH H,  H, =@w+v ) "H +(w+v!) 'H,.

—=S8182=—

H, H, H, =@w+v)-"H +(@w+ovt) 'H.

2L 598125

Eaﬂwoﬂa = (U2 +2+ U_Q) ’ lﬂé

Proposition 2.49. Consider {H and label the double cosets Wi\W by

p={e,s1}, q = {s2, 5152}, r = {sg51,wp}.

Then we get the following decompositions.

1.

2.

5.

6.

H H ='H,

H, H, =@w+v!): 1ﬂp.

H, H, ='H,
CHyH,,,=(v+v!)-H,

H H, ='H,+'H,.

H,H, =@+v")-'H,.

Proposition 2.50. Consider H, and label the double cosets W /Wi by

p={e,s1}, q = {s2, 5251}, r = {s152,wp}.

Then we get the following decompositions.

1.

2.

HH, = ﬂ,l,-
H, H, =(@w+v?) H,.
H,H, =Hj.

CHy G Hy = (v+v) - Hy,

H,,, H, =H}+H}.

2L 598128

Hy H, = (v+uvt) HL.

Wo==51
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2.4 Graded bimodules

In the upcoming chapters we will work with graded bimodules. In this section we will fix
some general terminology and observe some basic facts. We will always consider rings
R satisfying

R= @ Ry, is a finitely generated, positively graded commutative
k=0
k-algebra with Rg =k

where k is some fixed commutative ring (in most cases k will be a field of characteristic
zero). We denote by (R, S) — Bim the category of graded (R, S)-bimodules:
objects: (R,S)-bimodules M with a decomposition M = P, ., My where
a) The left and right action of k agrees.
b) The My is a free k-module for all k£ € Z.
c) Rj- My C My O My - S for all k,1 € Z.

morphisms: homomorphisms f : M — N of (R, S)-bimodules preserving degrees,
i. e. f(My) C Ny, for all k € Z.

Remark 2.51. As all our rings are commutative we have an equivalence of categories
between (R, S) — Bim and R ® S — Mod, the category of graded R ®y S-modules. This
can be helpful sometimes to transfer known results for modules to bimodules. %

Definition 2.52. A category C is called a graded category if it is a k-linear category
enriched in k — Mod, the category of graded k-modules. O

Remark 2.53. This basically means that the morphism spaces are graded k-modules
and the composition of morphisms is compatible with the grading. %

Lemma 2.54. The category (R,S) — Bim is a graded category.

Proof. We say that a morphism f € Homg g)(M, N) is homogeneous of degree d if
f(Mg) C Niyq for all k € Z. This defines a grading on morphism spaces which is
compatible with compositions. ]

Definition 2.55. In (R, S) — Bim we have grading shifting functors (I € Z)
(l) : (R,S) — Bim — (R, S) — Bim
M — M(l)
f—1f

where M (l) = M as an (R, S)-bimodule, but (M(l))r = M;;,. These functors define a
free (this means that the stabilizer of objects is trivial) Z-action on (R, S) — Bim. ¢

A discussion on the following theorem can be found in e.g. [Str20b].
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Theorem 2.56. There is an equivalence of categories

{ k-linear categories with

free Z-action } «— {graded categories} .

Proof. We define two functors
Dr— D/ 7
cl—sC.

The graded category D/Z is defined as follows. The objects are Z-orbits M of objects
M in D. The morphisms are given by

o P Homp(X,Y)
HomD/Z(M, N) = XeM,YeN U

where U is generated by f —[.f for all [ € Z. Note that this implies
Homp, (M, N) = @HomD(M, I.N).
€

The category C” is defined as follows. The objects are pairs (M,l) € ob(C) x Z. The
morphisms are given by

HOIHCZ ((M, l), (N, k’)) = HOInc(M, N)l—k'

One then can check that these functors are inverse and give us the desired equivalence
of categories. O

Remark 2.57. We will quickly write down the key differences between (R, S) — Bim
and (R, S) - Bim/Z:

(R,S) — Bim | (R, ) - Bim ,,
graded (R, S)-bimodules with graded (R, S)-bimodules
grading shifting functors and | (pick one up to grading shift)

morphisms of degree zero and morphisms of all degrees.

We will treat C and C/Z as “the same” from now on. This means that we will sometimes
talk about degrees of morphisms and other times we will talk about different shifts
of objects while talking about the same category. This is justified by the previous
theorem. O

Definition 2.58. We call an (R, S)-bimodule indecomposable if there are no non-trivial
(R, S)-bimodules M; and Mj such that M = My @ M as (R, S)-bimodules. O

Lemma 2.59. Let M be a graded (R, S)-bimodule. Let k € Z be the smallest number
such that My, # 0. Suppose that My, has rank 1 and suppose that M is generated by some
m € My as a bimodule. Then M is indecomposable.
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Proof. Suppose that there are (R, S)-bimodules N, L such that ¢ : M = N & L. Then
also My, =2 N, @ L. As M, has rank one and N, and Lj are free k-modules we
conclude that either Ny = My or Ly = M. W.l.o.g assume that Ny = Mj. Then let
x = p(m) € Ni. Now let y € M. Since M is generated by m as a bimodule we find
some r; € R, s; € S such that

This implies that

N N N
=1 =1 =1

Hence, cp_1| y N — M is surjective and obviously also injective. Thus, M = N and
the decomposition was trivial. Hence, M is indecomposable. O
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3 Soergel bimodules

In this chapter we will recall the definition and properties of Soergel bimodules. We will
explain the connection between Soergel bimodules and the Hecke algebra and look at a
few examples. This originally goes back to Soergel [Soe07, [Soe92]. We will follow here
the later treatments [EWI16l Section 3]. We start with the definition of a realization of
a Coxeter system.

3.1 Realizations

Definition 3.1. Let k be a commutative ring. A realization of a Coxeter system (W, 5)
over k is a free finite rank k-module h to together with subsets {aY | s € S} C b and
{as | s € S} C h* = Homyg(h, k), satisfying:

1. (o), a5) =2 for all s € S;
2. the assignment s(v) = v — (v, as)a) for all v € b yields a representation of W;
3. [Mmstlay = [Mst]a,, =0 for all s,t € S.

The brackets in the third point stand for the 2-coloured quantum number and ag =
(Y, ). For more details on this, see [EW16, Section 3.1]. O

Remark 3.2. In order for Soergel bimodules to behave well or for the theorems we will
state to hold, one needs to put some assumptions on k and the realization. However,
since we are only interested in the case S5,, we will not discuss this in detail. We will
soon come across a realization for S, that is good in that sense and will mainly work
with this. We just wanted to show the general definition to make the whole picture more
clear. The details for the general case can be found in [EW16, Chapter 3]. %

Ezample 3.3. Suppose that W is finite. Let k = R and h = @, g Ray. Define elements
{as} C b* by

\Y = _9 ™
(o, a) Cos —

(by convention mgss = 1). Then b is a realization of (W, S), called the geometric repres-
entation. Note that the subset {as} C b* is linearly independent and W acts faithfully
on h and hence also on h*. This will be the main realization we will use for W = §,,.
We can extend this realization to a realization C ®g h over C by base change. So we
may choose k =R or k =C.

Note that we have another realization of S, namely the natural n-dimensional repres-
entation §’. This is just an R™ where S,, acts by permuting the basis vectors. We can
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pick az\/ = v; — vj+1 Where v; are the standard basis vectors. Then we pick a; = e; —e; 41
where the e; are defined by ej(v;) = 0, for 1 < k,1 < n — 1. This gives us the desired
realization.

This realization is connected to the geometric representation via b’ = h & R where S,
acts trivially on the extra summand R. This comes simply from the fact that .S,, is the
Weyl group of sl,, as well as gl,,. The geometric representation comes from sl,, and the
natural representation comes from gl,, which immediately gives us the connection above.
While we will mostly work with the geometric representation for the general theorems
and definitions, we will use the natural representation for some examples as it is a bit
nicer for explicit calculations. We will always state when we switch to the natural rep-
resentation, so if nothing else is said the geometric representation is the one that is
used.

Definition 3.4. For a fixed realization (b, {a)}, {as}) of (W, S) denote by
R=50b") =P s"07)

m=0
the symmetric algebra on h*, which we view as a graded k-algebra with deg(h*) = 2.
Then W acts on h* via s(y) = v — (a),7)as for all v € h and this extends to an action
of W on R by graded automorphisms. We think of R as polynomial functions on h. ¢

Ezample 3.5.

1. For a finite Coxeter system (W,S) with the geometric representation from Ex-
ample we have R 2~ k[zy,... ,z‘g‘] where the z; correspond to the o). This
gives us for W = S, that R 2 k[z1, ... 2,-1].

2. For W = S,, with the natural representation from Example [3.3| we have R = R =2
k[z1,...,x,] where S, acts by permuting variables. Note that for the geometric
representation we would have Ry = Kk[z1,. .., z,—1] and we have an inclusion Ry <
Ry where z; is sent to x; — x;+1. In this way these two realizations are connected
and it does not really matter which one is used.

3.2 Demazure operators and rings of invariants

In this section we will recall the definition and basic properties of Demazure operators
and investigate the rings of invariants of R under the action of W. These operators
go back to Demazure [Dem73]. We will use them to understand how these rings are
structured as modules over each other. A reference for this section is e.g. [Man98| and
some topics are also covered nicely in [Str19]. Throughout the section we assume that
k is a field of characteristic 0.

Definition 3.6. Let I C S be a parabolic subset and W7 the corresponding parabolic
subgroup. We define
R =R"r = {r ¢ R|w(r) =r for all w € Wy}
={reR|s(r)=rforall sel}
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to be the ring of Wj-invariant elements of R. If I = {i} is a singleton we will write R’
instead of R!. O

Remark 3.7. Note that R’ is actually a ring, since W acts by ring automorphisms on
R. Moreover, we have R/ C R! if I C J, and thus R’ is even an R”-algebra in this case.
Also recall that the action of W on R preserves the grading. Thus, R! is graded and
the inclusion R! < R preserves the grading. %

Ezample 3.8. We consider (W, S) = (S3,{s1, s2}) with the natural representation from
Example Then we have Ry = k[x1,x9,x3]. If we now consider rings of invariants
the fundamental theorem of symmetric polynomials tells us that
{s1} _
Ry =k[r1 + 72, 1172, 73]
RiSQ} = k[:Ul, x9 + X3, .2321‘3]
Risl"”} = k[z1 + 22 + x3, x122 + T123 + T23, T1T2T3).

Thus, we can observe that the inclusions of rings Risl’”} C Risl}, RiSQ} C Ry hold true.

This presentation can be generalized. Consider (W, S) = (Sp, {s1,...,8,—1}) with the
natural representation from Example [3.3] Then we have for instance

{si}
Ry =K@y, ... i1, i 4 T 1, Tiig 1, Tig2, - - Ty

Remark 3.9. Consider W = S, and let J C S = {simple transpositions} be a parabolic
subset. Recall that W = S, X Se, X -+ - X Se,, asin Remark Let Ry =2 Kk[x1,...,zy]
be the ring corresponding to the natural representation of S,,. Now we can write R; a
bit differently via

R = k[$1, R ,l’el} Rk - Pk k[$n—em+1> R ,Cbn].

Since Wy =S¢, X --- xS, we get that

RV 2 K[zy,. .., 06]% @k Ok K[@n_epi1s- .- Tn] . (3.1)
Hence, if we let R, = k[z1,...,z.,| be the polynomial ring in e, variables viewed as a
module over k[z1, ..., 2., ], then we have as R{-modules

Ri = Re, Q-+ Qk Re,,

where R{ acts on the right hand side via (3.1). O
Definition 3.10. For i € S the Demazure operator 8; : R — R’ is defined by
r— s;(r
9i(r) = aZ( )
for all r € R. O
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Proposition 3.11. The following hold:
1. 0; is well-defined for alli € S, i.e. 7 — 5;(r) € ;R for all ¥ € R and im(9;) C R’;
2. ker(0;) = R';
3. 0i(rire) = 0;(r1)ra + si(r1)0i(r2) for all ri,r9 € R;
4. 0; is R'-linear.

Proof. 1. First we check that im(9;) € R'. Let r € R, then we need to check that
$i(0;(r)) = 0i(r). We compute that

5:(04(r)) = 55 (7‘ - si(r)> _ si(r) — si(si(r)) _ si(r) —r P

&%) Si(ai) —Qy

Now we check that r —s;(r) € a;R. Recall that R is defined to be the symmetric algebra
S(h*) of h*. So by linearity of s; it is enough to consider r = 1 ® xa ® --- @ xy. We
know that s;(x;) = x; — Ny for some A; € k. Thus, we compute that

r—si(r)=r—si(z1) @ si(xz2) ® - @ si(xn)
N
:T—:L’l®"'®$N+Z$1®"‘®l’l_1®/\lai®si($l+1)®"'®Si(xN)
=1

I
WE

T1 @ @ L1 O Ny ® 8i(T141) @ -+ ® si(2n) € 4R

N
Il
—

2. Since 7 — si(r) =7 —r = 0 for r € R" we have R’ C ker(9;). Now let r € ker(9;),
then 0 = 9;(r) = % which implies r — s;(r) = 0. This says that r = s;(r), and thus
r € R'. Hence, we have R’ = ker(9;).

3. Let 71,79 € R, then we compute that

By(r1rs) — riry — si(rire) _ T2 — si(r1)re + si(r1)re — si(r1)si(re)

a; &
— Tla‘W “r9 + si(r1) - 7’2;(?“2) = 0i(r1)r2 + 5i(11)0i(r2).

4. Let r € R and r; € R?, then we compute that
ai(’l“i’l“) = 8,'(7“7;)7“ + 82(7"1)81(7“) = 7“@81(’!”)
Thus, 0; is R'-linear. O

Definition 3.12. Let W = §,, with the usual realization. For w € W pick a reduced
expression w = s;, - - - ;,. We define the Demazure operator 0,, : R — R by

8w:8i108,-20--'08idj.

For J C S a parabolic subset, let wy € W be the unique longest element. Then we
write 0 for Oy, . ¢
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Proposition 3.13. Let W = S, and let w € W. Suppose J C S is a parabolic subset,
then the following hold:

1. Oy is well-defined for all w € W, i.e. it is independent of the choice of reduced
expression;

2. im(9y) C R‘];
3. ker(95) 2 R’;
4. Oy is R’ -linear.

Proof. 1. If we can prove that

m;; terms mij};rms

for all 4, 7 € S, then we be done by Lemma [2.6] since this would mean that the Demazure
operators respect braid moves and every two reduced expressions for w € W can be
transformed into one another via braid moves. We only have to check for m;; = 2
and m;; = 3, since we are in the case W = §,.

Let first m;; = 2, then we compute for r € R that

o0, = o (=)

@j

r—s;(r) o r—s;(r)
= ()
Q;
r—sj(r) si(r) = (sios;)(r)
ozjai si(aj)ai
r—s;(r) —si(r) + (si 0 s;)(r)
ozjai .

Here we used that s;(cj) = . The last expression if symmetric in ¢ and j, since
s;05; = sj0s; for m;; = 2, and thus it follows that 0;(9;(r)) = 0;(09;(r)) for all r € R.
Now let m;; = 3. We can compute that s;(a;) = a; + o; and s;(a;) = a; + ;. We can
compute the following for all » € R.

(0 00;00;)(r)
(e () (s ()

= — J— SJ
Q; (67 (673

_ 1 (7“ —s5(r)  si(r) = (sisj)(r)  si(r) —r  (s58)(r) — (Sjsisj)(T)>
o o a;si() sj(a)s;(ay) sj(aq)(sjs:)(a;)
_ 1 (7“ —si(r) _ silr) = (sis)(r) _si(r) = (s8i)(r) = (Sjsisj)(r)>

Q0 ozi(ozj + O[i) —(Ozl' + aj)aj (CMZ' + aj)ai
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_ 1. (?“-8;(7“) ( 1 1 ) _ silr) = (sisy)(r) | (s580)(r) = (8j8z‘8j)(7“))

o Q; «; a; + o Oéi(aj + Oéi) ai(aj + ai)
_ 1. < rosi(r) _ sir) = (sisy)(r) | (sysi)(r) = (Sjsisj)(T)>
Q; ai(aj + ai) Oéi(Oéj + Oéz‘) ai(aj + ai)

r—85(r) = si(r) + (sis;)(r) + (s8:) (1) — (s58i85)(r)
ajoi(oy + o)

The last expression is again symmetric in ¢ and j, since s;s;s; = s;5;5; for m;; = 3, and
thus we are done.

2. Let wy = s, ---s;, be a reduced expression. Let j € J, then we may assume that
sy, = s; by Corollary Hence, by Proposition Oy(r)=0;(r') € Ri forallr € R
where 1’ = (0;,0- - -00;,)(r). Since j € J was arbitrary, we get that 0,(r) € (;c; B/ = R’
for all r € R.

3. Let r € R/, then r € R/ for all j € J. By definition we get d5(r) = (8;,0---00;,)(r) =
0 which follows from Proposition Thus, R’ C ker(dy).

4. Let ry € R’,r € R. Then we compute by Proposition since ry € R’ for all
j € J, that

Oy(ryr) = (0, 0---00;,)(ryr) =71y (0, 0---00;,)(r) =ry-0s(r).
Hence, 0 is R’-linear. O
Lemma 3.14. Let I C S be finitary. Then R is a finitely generated R -module.

Proof. Recall that R is defined to be the symmetric algebra of some vector space h*.
Hence, R is isomorphic to the polynomial ring k[z1, ...z x] where N = dimg(h*) is finite.
Thus, we have R = k|ay, ...ay] for some a; € R. Then obviously R is also generated by
ai,...,ayn as Rl-algebra, since k = Ré. Hence, R is of finite type over R!.

Now we will prove that R is integral over R!. Let » € R and consider the polynomial
pr(t) = [lwew, t —w(r). This polynomial is monic and has r as a zero. The coefficients
of p, are symmetric polynomials in w(r) for w € W;. Thus, they are invariant under
the action of W; which implies p, € R![t]. Hence, r is integral over R! and so, R is also
integral over RI.

Since R is integral and of finite type over R! we get that R is a finitely generated
R!-module. O

Lemma 3.15. Let J C S be finitary and I C J. Assume Y ;- gib; = 0 for some g; € R’
and homogeneous b; € R'. If by ¢ R(I,J),, where R(I,J)y is the ideal in R' generated

by Dyo Ri, then
m
g1 =Y _higi
i=2

for some homogeneous h; € R’ where deg(h;) = deg(b;) — deg(by).
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Proof. We will do induction on d = deg(by). If d = 0 then b; € k and g1 = )", I%gi'
Then we can use that g1 € R’ to get

1 i b i %Zwe Jw(b")
9= g w<gl>:| Z (Zb):g'w .

W, 1

1 w w(b;)
Thus, h; = % > bele € R’ satisfy all conditions from the lemma, since they are

homogeneous and have the right degree.
Now let d > 0 and pick j € J such that 0;(b1) ¢ R(I,J)+. Then we get

0 = 8;(0) = 9 (Z gibz’> =" 6:0;(bi)
=1 =1

where the last equality follows from Proposition Now we are done by induction,
since 0;(b;) is homogeneous and deg(0;(b1)) = deg(b1) — 2.

So the only thing left to prove is that there exists a j € J such that 0;(b1) ¢ R(I,J)+.
Suppose that 0;(b1) € R(I,J)4 for all j € J, then

by —sj(b1) = ;0;(b1) € R(I, J)+
or in other words by = s;(b1)(mod R(I,J)4) for all j € J. Hence,
by = w(by) (mod R(I,J)4+)

for all w € Wy. It follows that |[Wy| b1 = > ey, w(b1) = 0 (mod R(I,J)4), since
deg(b1) > 0 implies >y, w(b1) € R(I,J)4. Thus, by € R(I,J)4 which is a contra-
diction. ]

Theorem 3.16. Let J C S be a finitary subset and let I C J. Then R is a free

R’ -module of rank ||¥/VVf|I'

Proof. Let R(I,.J), again be the ideal in R’ generated by @ >0 R]. Fix a homogeneous

_ I _
k-basis B of & / R(I,J)4 and let B C R! be a homogeneous lift of B. We will prove

that B is an R’-basis for R’.
Generating: Let M C R! be the R’-submodule generated by B. We will prove
inductively that Rl{; = M, for all kK € Ny. For £k = 0 we have R(I) =k and My =k, since

I
<R/R(]’ J)Jr)o =k = RJ, and thus My # 0. Now let 7 € RL for some k € N and

assume M; = RZI for all [ < k. Now we can write

r:Z)\blH-a
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for some N\, € k and a € R(I,J)4, because B is a homogeneous lift of a k-basis of
I
R/R(I J)y Since a € R(I,J)4+ we can write

a= Z a;pi

for some homogeneous a; € R’ and p; € @, Rj with deg(a;p;) = k. However, since
deg(p;) > 0 we get that deg(a;) < k, and thus a; € M. This implies » € M, and thus
RE = M.

Linear independence: Consider all possible choices of bases (B, B) and take a relation

Y gbi=0, g€RbeB
=1

such that m > 0 is minimal among choices of such relations and B, B. By Lemma
we have

g1=Y_ hig;
i=2

for some homogeneous h; € R’ with deg(h;) = deg(b;) — deg(b;). Hence, we get the
smaller relation

m

> " gi(bi — hiby) = 0. (3.3)

1=2

Note that, since h; € R’ we have either h; € k = RJ or h; € R(I,J). In the first case
this implies

b; — h;by = Fz — hza (mod R(I, J)+), h; €k
and in the second case we have
b; —hiby =b;  (mod R(I,J)y).

Thus, the set

By = (B\{b2,...,bp}) U{bs — hob1,... by — kb1 }
. . RI
is a basis for /R(I J)4 Moreover, the set

B1:(B\{bg,...,bm})U{bg—thl,...,bm—hmbl}

is a homogeneous lift of this basis, since deg(h;) = deg(b;) — deg(b;). Hence, is
a possible relation for the choice (By, Bi) and has only m — 1 summands which is a
contradiction to the minimality of m. This implies that the elements of B are linear
independent over R”.
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Rank: We know by Lemma and the previous that R = (RI )Nl as RI-modules
and thus also as R/-modules for some N; € N. By the same reasoning we get that

R= (R‘])N2 and R! = Drcr R’ as R’-modules for Ny € N and some set B. Together

this gives (R‘])N2 ~ R (Bpep RJ)Nl. Hence, B is finite, and thus R’ is of finite rank
over R”.
The proof about the exact value will be omitted. However, we will see later that the

rank is % for W = S,,. O

For the rest of this section we will consider the case W = S,,. The goal will be to
find a basis for R as an R7-module which has some nice properties. In order to do
this we will consider the natural representation of S,, introduced in Example [3.3| This
means we consider two rings simultaneously, our normal ring R = k[z1, ..., z,—1] where
z; corresponds to «; and the ring Ry corresponding to the natural representation of S,.
Recall that Ry = k[z1,...,x,] where S, acts by permuting the z;.

First we will discuss how exactly these realizations are connected which will be handy
for understanding why we can switch between them. We can consider the inclusion map
On : R — Ry,2; — x; — x;41. Note that this map is obviously injective.

Lemma 3.17. The map ¢, preserves the action of W. Moreover, Ry = R[t| where R
is included into Ry via ¢, and t is invariant under the action of W.

Proof. Since W acts on R by ring automorphisms it is enough to check that ¢, (si(z;)) =
si(Pn(z5)) for all 1 <i,j <n —1. If |[i — j| > 1 then, s;(2;) = 2z; and

$j(dn(25)) = si(xj — xj41) = 75 — Tjr1 = Pnl(zj).
Thus, we have three cases left. Let 7 = i — 1, then s;(z;—1) = z—1 + z;. We have
5i(im1 — x) = Ti—1 — Tig1 = On(zim1 + 2).
Now let j =i. Then s;(2;) = —z; and s;(x; — Tj+1) = Tiv1 — i = Pp(—2i).
At last let j =i+ 1. Then s;(2zi+1) = zi+1 + 2z and
5i(Tit1 — Tiv2) = T — Tig2 = On(Zip1 + 2).
Hence, ¢, respects the action of W. In order to prove the second claim note that

Ry = k() — 22,29 — 3,...,Tp_1 — T, T1 + T2 + - - + Ty

This follows from the observation that we can write x; as a k-linear combination of

T1—X9,...,Tn_1— Tp,T1 + -+ x,. Indeed, we have
1 . .
= D —i@i =) + Y (n =) —zi) + (@14 + )
J<i Jj=i

This implies that Ry = ¢, (R)[x1 + - - - + @] which proves the claim since x1 + - -+ +
is invariant under W. O
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Remark 3.18. This lemma implies that the definition of Demazure operators for Ry
coincides with the one for R via ¢. Thus, we have the Demazure operator

[ —si(f)

aiZRl —>Rli, f>—>
Tj — Tit+1

for R; as an extensions of 0; : R — R. Obviously the same holds true for the Demazure
operators 0, for w € W. We will abuse notation and write a; = x; — Tj41. O
Corollary 3.19. We have R}V = RV [t].

Proof. Obviously RV [t] € R} as t is invariant under W. Now let f € R}, then
f € Ry = RJt]. Thus, we can write

N
f= Zrktk, rr € R.
k=0

As the action of W preserves the grading, we get rt* € R}’V, and thus rg € R¥V = RW.
This implies f € R"[t] and hence proves the corollary. O

Lemma 3.20. If B C Ry is a homogeneous R} -basis of Ry, then B C im(¢) and
75 (B) is an RV -basis of R.

Proof. Let B C R; be an R}V -basis of R;. Consider B’ = ¢,;}(B) C R. We claim that
this is an RY basis for R. Let r € R, then we can write

dn(r)=>_fib,  freRY, (3.4)

beB

since B is a basis. By Corollary we can write f, = Zgio foxt® with fir € on(R)V.
Now by looking at the degree of ¢ in (3.4)) we get that

Sn(r) = D fro b= fro-éal®).

beB,deg(b)=0 b'enB’

By the injectivity of ¢,, we get that r = >, cp én' (fo,0) V. Hence, B’ generates R as an
RW-module, as f,o € ¢,(R"). It remains to check that the elements of B’ are linearly
independent. Suppose that

0= > mt, myeR". (3.5)
veB’

By applying ¢, to (3.5) we get

0="> ¢n(ry) on (V).

beB’
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Since ¢, (V') € B and ¢, (ry) € R} we get ¢y, (1) = 0, because B is a basis. Since ¢,
is injective, this implies 7y = 0, and thus the elements of B’ are linearly independent
which makes B’ a basis.

Finally, we need to check that B C im(¢,). Note that ¢,(B’) C B. Let f € R} =
én(R)[t], then we can write f = S°&_ 75t* and since 1 € ¢, (R) we can write

T = Z a’b/,k . ¢n<b/)7 a/b/Jg c ¢n(R)W
b/eB/
Altogether we get that
N N
/= Z Z ap' k- (b”(b/) = Z (Z ay k- tk> d)n(b/).
k=0b eB’ vVeB k=0

However, Z]kvzo ay i - t* € ¢ (R)V[t] = RV, and thus ¢(B’) is a basis of Ry as an
R}Y-module. This implies that B = ¢,,(B’). O

Remark 3.21. In the last proof we also saw that if B’ C R is an R"-basis of R, then
én(B') generates Ry as an R!V-module. It is also easy to observe that ¢, (B’) is a basis
of Ry as an R}-module. For this suppose that

0= fon(d)

beB’

where f, € RYY. Then we can write f, = Zgio ¢n(ab7k)tk with ap 1, € RY. This gives

max(Np)
0= Z Foon(b) = Z Z b (a1 )t" b ()
beB’ beB’ k=0
max(Ny)
— Z (Z bn (ab,kb)> ¢k,
k=0 beB’

where apj, = 0 if & > N;,. Then by comparing coefficients of tF we get

0= ¢n(aprb) = ¢n (Z ab,kb>
beB’ beB’

which implies a5, =0 for allb € B’ and k = 0,..., N,. This implies f, = 0 for all b € B,

and thus the elements of ¢, (B’) are linearly independent over R}. Hence, ¢,(B’) is a

basis of Ry over RV. 9

Remark 3.22. Note that the proofs of Corollary and Lemma [3.20] still work if we
replace W by a parabolic subgroup W, since W is again a Coxeter group (Lemma [2.16)).
¢

Now we can begin to construct our basis for R. We will do this simultaneously for R
and R, and will see soon that we can actually identify both bases via ¢,,.
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Definition 3.23. There are elements {0y, }wew C Ri, called Schubert polynomials,
which are given by

n—1_n—2
Tw = Oy—14, (331 i ---:En,l) .

By Corollary we can write o, = ZIJLO ¢n(aw7k)tk with a,, € R. We define
Guw = Gy ,0- O
Ezample 3.24. Consider W = S3. We can now construct the Schubert polynomials step
by step.

Owy = Oc(2329) = 2319

Osysy = O, (x%xg) = 2122
Osys1 — 852 (‘/E%l?) = l’%

Os1 = C{95281 (x%xQ) = 852 ($1$2) =1
Osy = a5182 (x%xQ) = 881 (m%) =T+ T2

Oe = 8515251 (x%$2) = 881 (33‘1) =L
Lemma 3.25. o, = 1.

Proof. For n = 1 there is nothing to prove, as 0. = oy, = 1. Now let n > 1, then
consider w¥ = s;_1Sx_2---s1. Note that this is a reduced expression of w*. Moreover,
we have wg = w? - --w" and £(wp) = £(w?) + -+ + (wy). Thus, Oy = Oy2 © -+ 0 Dyyn.
At last we note that

k—1_k—2 k—2 k-2 k-3
O (@] g "+ - Tp—1) = Ourss, (5”1 Ty T3 "‘xk%)

_ k—2 k-3 k-3, k—4
= Owksy sy (931 Lo X3 Ty "‘xk—1>

= e e s — 1,]{3—2!%,];—3 o .. $k72.
This implies that
O = a’u}o(m?_l . 'xn—l) - (81,(}2 O--+0 wn) (aj?_lxg_z .o .xn_l)
= (81112 ©--0 w"fl) (x?—Qx;L—?) T .Zn_z)
== Oya(x]) = 1. 0

Definition 3.26. Let {7, }wew, C R be a set of homogeneous elements. Then we say
that {7y }wew, is Demazure generated if

v if f(wuTt) = (w) — £(u)

otherwise

T

our) = {

for all w € Wj and 7. = 1. O
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Remark 3.27. Let {7, }.ew, be Demazure generated. Since d; : R — R(—2) reduces
the degree by 2 we have that 9, reduces the degree by 2¢(u). This implies, since

Ou(Ty) =Te =1,
that 7, has degree 2¢(u) for all u € Wj. O

Theorem 3.28. The elements {gu}wew, form a basis for R as R?-module. Moreover,
{9w}wew, is Demazure generated.

Proof. Demazure generated: We will start by proving property (3.6) for the Schubert
polynomials o,,. By Lemma we have g, = 1. Now let w,u € Wy, then

Ou(ow) = 0Oy (8w71w0 (Uwo)) = (au o 8w*1w0) (Twp)-

Now note that we have £(w) < l(wu~') + £(u) as w = wu~'u. Suppose first that
l(w) < Llwu~t)+£(u) and let u = s;, -+ 85,, w twg = sj, - - 55, be reduced expressions.
Now note that

C(uw ™ wg) = €(wp) — L(uw ™) = L(wg) — L(wu™r)
< U(wo) — (£(w) = £(u)) = £(wo) — L(w) +L(u) = L(w ™ wo) + £(u).

This implies that the expression uw ™ lwy = Siy " 8iySj -+ 84 is not reduced. For simpler

notation set i4yx = jx for k = 1,...,c. Then there must be some number k such that
0(siy -+ Sip_y) > U(siy -+ - 8;,, ). Pick the smallest such k, then v = s;, - -+ s, _, is a reduced
expression. By Theorem - 1| there is an index [ such that vs;, = si, ---5;, - - Si,_,-
Thus, v = 8;, *++ 8i, - - * Si,,_, Si,, 18 a reduced expression. This implies that

8u06w_1wOzailo-uo@ido@jlo---oajc

— Oy 00y,
zﬁvoaiko-'-oaic_m

—
=y 0 Byo-0y 0y 008, =0,

since 0;, o 0;, = 0 by Proposition Hence, 0y(0w) = 0. Now suppose that £(w) =
f(wu™t) + £(u). Then

C(uw ™ wp) = £(wp) — Lluw™) = L(wo) — L(wu™t) = £(wy) — (L(w) — £(u))
= l(wo) — £(w) + £(u) = £(w ™ wp) + £(u).
Hence, uw ™ wo = i, -+ 8;,8j, -+ * 85, is a reduced expression. Thus,
Oy 0 8uflwo = 8i1 -0 az'd ° ajl -0 ajc = 8uw*1wo'

This implies

BU(O'wO) = (3u o aw—lwo) (Uwo) = 8uw—1wo (Uwo) = a(wu—l)—lwo (Uwo) = Owy—1-
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Now we can check property (3.6|) for the g,,. Let again u,w € W, then by the previous

S if f(wu=t) = l(w) — L(u
Oy, (Z ¢n(aw7k)tk> = Ou(0w) = { gunr1 f4( ) =L(w) — £(u)
k=0

otherwise

otherwise.

_ { SN G (@ ) Cwu) = 6(w) — £(u)
0

This implies by comparing coefficients of t°, since g, = Q0,5

if f(wu™t) = b(w) — £(u)

otherwise.

8u(gw) :{ gwufl

By definition we also have g. = 0. = 1. Hence, {gy }wew, is Demazure generated. Next
we prove that {gy fwew, is a basis.
Linear independence: First we check linear independence. Suppose that

0= Z TwJw

weWy

for r, € R’. Choose u € Wy of maximal length such that r, # 0. Note that 0, is
R’-invariant as it is the composition of R’-invariant morphisms 0; for some j € J. Now
for all w € W with £(w) < £(u) we have £(w) — £(u) < 0. Hence, £(wu~"') = £(w) — £(u)
is only possible if £(wu~!) = 0 which means w = u. This implies

au(o) = Ou Z Tw9w | = Oy, Z Tw 9w

weW, wEW s, L(w)<b(u)

= Z TwOu(gw) = TuGyu—-1 = Tu-
weW s L(w)<L(u)

This is a contradiction and proves linear independence.

Generating: Now we prove that the g, generate. Let r € R. We define elements
by € R for w € Wj. Let £ = f(wy) — ¢(w), we will define these elements by induction
on /:

b, = an (7)

by = 0w | 7 — Z bugu
£(u)>0(w)

Now we will prove by induction on ¢ that b, € R’. For ¢ = 0 we have by, = Ouw,(r) €
im(dy,,) € R’. Suppose now £ > 0. It is enough to prove that 9;(b,) = 0 for all j € J,
since this would imply b, € N jeJ RI = R’ by Proposition So let j € J, then we
have either ¢(sjw) < {(w) or £(s;jjw) > L(w).
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First suppose E(sjw) < (w). This implies {(w™ts;) = l(s;w) < L(w) = L(w 1). Let

w = i , be a reduced expression, then by Theorem [2.11] l we get that w™ sj =
Siy " Sip sZl for some k. This implies that w = s;s;, - - - Si, + - iy is a reduced expres-
sion. Thus,

aj(bw) = aj Ow | 7 — Z bugu

L(u)>l(w)

= (900500, 0- B0 0dr,) [r— 3 bugu| =0
L(u)>L(w)

as 8j o 8]- = 0.

Now suppose {(s;w) > f(w) and write w; = s;jw. Note that w; = s;s;, -5, is a
reduced expression for w; which implies 0j 0 0y = Ou,. If L(u) = £(wy) for v € Wy,
then £(u) — £(wy) = 0. Thus, f(uw;') = £(u) — £(w;) only if u = w; which implies
Ow, (9u) = Ouw,- Now we can compute that

8j(bw) = aj 8w r— Z bugu
L(u)>L(w)

— 8w1 r—= Z bugu

(u)>L(w)

=0 (r) = Y bulun(9) = 0w | D buga

(u)=0(w1) £(uw)>L(w1)

= 0w, (1) — Ow, Z bugu | — Z bu - O

L(u)>£(w1) L(u)=£(w1)

= aw1 r—= Z bugu - bw1 = bw1 - bw1 = 0.
L(u)>£(w1)

This concludes our induction, and hence b,, € R’ for all w € W;. Moreover, we have
that

RJ 5be=0.|r— Z bugu | =1 — Z bugu

L(u)>L(e) L(u)>l(e)

which implies that

r = be +Zbugu = Z buGu-

u#e ueWJ

Since r € R was arbitrary and b, € R’ this proves that the g, generate. Hence,
{gw }wew, is a basis of R over R’. =
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Remark 3.29. Note that we could do the same proof if we replaced g,, by o,. This
implies that {0y }wew, is an R{-basis of R;. Hence, by Lemma and Remark
we get that o, = én(gw). This now gives us the right to switch between R and R;
whenever we want to prove something about this basis. Usually we want to state our
theorems using R and {gy fwew,, since this is the realization we will use in future
chapters. However, in the proofs we will often need to work with Ry and {ow }wew,,
since we can calculate explicitly there. %
Remark 3.30. Note that this finishes the proof of Theorem for W = S,,. We have
proven that rkps(R) = |[W;|. Thus, we get that tkps(R) = rkpi(R) - tkps (R!) which
implies

rkps(R) _ [Wy

rkpi(R) (Wi

for I C J. O

We will now construct a dual basis to our basis {gy, }wew and prove the duality. The
definitions will only be done for R and the g, but work in the same way also for Ry
and o, which we will use in the proofs.

Definition 3.31. We define {g. }ew C R by

gil = (_1)6(101%)“}0 (gwwo)

and call them dual Schubert polynomials. O

rkps (R') =

Lemma 3.32.
1. For uw € W we have that wg o Oy 0 wg = (—l)g(“)(‘)wouwo.
2. For u e W we have that
o G if ) = Cw) + ()
Oulgw) = { 0 otherwise.

Proof. 1. We begin with the case u = s € S. Note that
U(woswo) = £(wo) — L(wos) = L(wo) — (L(wo) — £(s)) = £(s) = 1.

Thus, woswy = s € S. Moreover, wp(as) = —agz. One can check this for example in R;:
Let s = (i,7+1). As wq reverses the order of 1,...,n we get that s = (n —i,n—i+1).
We compute that

wo(as) = wo(wz‘ - $i+1) = Tpn—i+1l — Tp—i = —Q3.

Bringing everything together we have for r € R

(wo o000 wo) (7") — wo (w(](?“) — S1U0(7“)> _ r— woswo(r)

Qg wo (o)

= Lg(r) = —8g(r) == _awoswo (T)

—az
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Now let u = s;, - - - s;, be a reduced expression. Note that {(wouwg) = ¢(u) = d as before
and ¢(wos;, wo) = 1. Hence,

Wouwy = WS, - - - Siy,Wo = (Wosi;, wo) (WoSi,wo) - -+ - (Wosi,wo)
is a reduced expression. We compute that

wo © Oy © wy = wp © (0, 0 ---00;,) 0wy

= (wo o 81’1“’0) 0] (wg [¢] (%2 o ’LUO) O---0 (’w() 9] 87;d’LU0)

= (—&umwo) o (—awOSiQwO) oo (—awosidwo)

= (_1)dawouwo-

This finishes part 1, since ¢(u) = d.
2. Let w,u € W, then we just compute that

0u (g2) = O (=1 w(gug) ) = (=1 - (1)) 1w (D (9urwa))

. L(wwowouLwy)

_ 1Y (wwo)+£(u) . 3 owo 0
— ( 1) 0 wo (gwwowou 1wo) if — E(U)'w()) - é(wguwo)

0 otherwise
(1) Hwo) W) =) . gy, (Guwu-1wo)  1f L(wu wo) = €(wwo) — £(uw)
10 otherwise
()0 g (1) B L(wuh) = L(w) + £(u)
o otherwise

0

G i ) = ) + ()
1 0 otherwise.

Here we used that £(wu™ wg) = £(wg) — £(wu™!) in the fourth line and Definition

in the second line. 0

Lemma 3.33. Let w,v € W and let us expand g,g,; in the basis {gy }uew:

gwg; = Z Ay Gus Ay € RW-
ueW

Suppose l(w) # €(v), then ay, = 0.

Proof. By Remark [3.29] we may consider o, instead of g,, and R; instead of R. Thus,
we have 0, = 27 12872zl | and of = (—1)" 0wy (0, ). For v = wy the result is
clear, since o, = 1. Hence, it is enough to check that the coefficient of o, in oy,wo(oy)
is zero for all w € W,v € W\ {e}.

Now let v # e. We will prove that o, is a k-linear combination of monomials of the
form z% - .- 2t with b; < n — i. We will prove this by induction on £ = £(wg) — £(w).

n
For £ = 0 we have w = wy and we know that o, = 27 -zl .
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Now let £ > 0, then there is s € S such that ¢(ws) > ¢(w). Thus, ¢(wg) — ¢(ws) < £. So
by inductions o, is a k-linear combination of such monomials. Since o,, = Os(ows) it
is enough to check that polynomials built out of monomials of the form xll’l -zl with
b; < n —i are closed under applying Demazure operators. Let s = (i,i 4 1), then we
compute that

00 (abt o oatn) =t atiy 0, (abaliy) i ol
b—

E  b-1-k
Ti *Ljpq )
k=0

b1
bie , ek b
=Y ot al gt bk b b
k=0

—_

_ b bi—1  bit2 b brni

i i+1 t 42 n

where by, = min(b;, bi+1), bmazr = max(b;, biy1) and b = byaz — bmin. Now we obviously
still have b; < n—j for j ¢ {i,i+1}. We also have byin +k < bpin +0—1 = bygr — 1 <
n—14—1and bypee — 1 — k <n—i— 1 which concludes our induction argument.

Recall that wg is the permutation that reverses the order of 1,...,n. Then by the
previous observation we get that wg(oy) is a k-linear combination of monomials z{* - - - x5
where ¢; < i. Hence, we have that o, wy(0,) is a k-linear combination of monomials of

the form

bi+c1 .bat+ca bn+c
T Tq seext T

Note that 0 < b; + ¢; < n— i+ i = n. Thus, we only have n possible exponents for
n variables. This implies that two variables must have the same exponent, since the
only other possibility is that each exponent 0,...,n — 1 appears exactly once. Then
S bt = "("2_1) = deg (o, ), but then £(w) + £(vwy) = (wp). Thus, since £(vwy) =
L(wg) — £(v), we get £(w) = £(v) which is not possible.

Hence, it is enough to prove that the coefficient of o,, in such monomials (with the
same exponent for some x;, x;) is 0. Note that such a monomial is fixed by a reflection
(7,7) € Sy (where x; and z; have the same exponent). So, it is enough to prove that
polynomials which are fixed by a reflection (i, 7) have coefficient zero for o,, when we
expand them in the basis {0y fuew .

Suppose i < j, then we can write

t=(i,7) = SiSi41 " Sj—28j-18j-2 8 = (8; - 8j_2)8j_1(s; "+ 8j_2) ",

and thus ¢t is a reflection in the Coxeter group, i.e. of the form wsw™!. Let r € Ry be a
polynomial with ¢(r) = r. We write
r= Z Ay Oy, Qy € R‘l’v.
ueWw
Then let us write

w
t(oz) = E ZuaOu, Zug € Ry .
ueW
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Note that by degree reasons zy,, = 0 if © # wo. Moreover, we get

tr) = ast(ox)

zeW

= 5 g Qg Zy,2x0u

zeW ueW

¥ (Z ) o

ueW \zeWw

This implies that ay, = GwoZwo,we- If Zwe,we 7 1, then a,,, = 0 and we would be done. So
this is all we need to prove. By Theorem we have that Oy, (Cw, —t(Tw,)) = 1= 2w wo-
Assume first t = s € S, then

1 = Zwowy = Owo (Owy — 8(0wy)) = Owg (s - Os(owy))
= Ouwys (Os(as - aS(Uwo))) = Owys (2 85(Jw0))
=2 Oyy(Ow,) = 2.

This gives 2w, = —1. Here we used that by Corollary wp has a reduced expression
which ends in s. Now let ¢ = s;, - - - s;, be a reduced expression. Then we compute that

t(owy) = (8iy -+ 8iy) (Owy) = (Siy -+ Siy_y ) (—Ow, + lower terms)

= (84, - 8iy_,) (0w, + lower terms) = - - - = (—1)%0, + lower terms,

where lower terms means polynomials of degree less than deg(o,) (which are irrelevant
for the coefficient of @, ). Hence, 2y, = (—1)“®.

We have t = wsw~!. We will prove by induction on ¢(w) that £(t) is odd. For ¢(w) = 0
this is clear. Now write @ = 3w;. Then by induction £(wsw; ') is odd. Then £(5wysw; ")
is even. Thus, £(wsw ') = ((3wysw; 's) is odd. This finishes the induction.

Hence, ¢(t) is odd and it follows that z,,., = —1 which finishes the proof by the
arguments above. O

Corollary 3.34. 0y, (9wgs) = dwu for all w,u € W.

Proof. Note that Oy,(gy) = 0 if v # wp, since the g, are Demazure generated. If
{(w) # £(u), then by Lemma [3.33]

gwgqj = Z Ay Gu, ay € RW

vFwWwo

Hence,

Aw (Gwgn) = Ow, Z AyGv | = Z ayOy, (9v) = 0.

vFwo vFwo
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Let’s suppose ¢(w) = £(u) now. Let r1,79 € R,i € S, then have
8w0 (82(7“1) . 7’2) = 8w0 (7‘1 . 8l(7‘2)) . (37)
To see this let wg = s;, - - - 84, by a reduced expression. By Corollary we may assume
iq = 1. Thus, 0y, = Oz o 0;. Hence, we compute that
Owq (05(r1) - 72) = 05 (9 (9i(11) - 12)) = O (0i(r1) - Di(r2))
= 05 (9 (r1 - 0i(r2))) = Ouwy (r1 - 95(r2))
which proves (3.7). Note that we can generalize (3.7). Let v = s;, ---s;, be a reduced
expression. Then
Owo (Ou(r1) - 12) = Ouy ( ++-00;.) (r1) - 12)
0 ((% o---08;)(r1) -8 (r2))
( 9j.)
o -

Il
o

>

i) (11) - (9 0 9j,) (72)) (3.8)
- 005) (r2))

J3

= 8w0 (Tl (6
= 8w0 (7’1 : 31171 (1“2)) .
Now we write gy = Oy—14,(gw,) by Definition Then we have ((wow) + £(u) =

O(wo)—L(w)+£(u) = £(wp). Thus, £(uw wg) = L(wew)+£(u) if and only if uw = twy = wo
which implies © = w. Hence, by Lemma |3.32

(g = G-ty i (uw ™ wo) = £(u) + £(wow)
wowlu) =7 otherwise
g, fu=w
10 otherwise

Now we can compute that

Il
S5

wo (aurlwo (Gwo) - g:)
o (Guwo * Owew (93,))
o (Guo * Ow,ull, )
wu * Owg (Guo)

Owo (Juwln)

[
® ®

I
> o

w,u-

Here we used (3.8]) in the second line and Definition in the last line. This finishes
the proof. O

Now we have proven that we have a dual basis for the basis {gy}wew. However, we
would like to have a dual basis for {g }wew, which is our basis for R as an R j-module.
In order to get this we will forget our basis {gy }wew, and instead look at a slightly
different basis. The advantage is that we can then generalize the previous result to the
case where R is viewed as an R’/-module.
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Theorem 3.35. There is an R -basis {Tw}twew, of R which is Demazure generated with
the following property. The set {1, }wew, where T = (—1)twws)
R’ -basis of R and we have

Wi (Tww,) s also an

8’11]] (TwT;) = 5w,u
for all w,u € Wj.

Proof. By Remark we may consider R; instead of R. Recall the notation from
Remark [3.9] where we had
Ri =R, ®- QR

€m

as Rl‘] -modules. Each R,, has a basis {0y, }uGSek given by Schubert polynomials. Thus,
R; has an Ri] -basis given by

{UU1751 K O'umye'm}'

We define 7, = T(y,,...um) = Ourer @+ ® Ouppe, for u € Wy where we identified u
with the tuple (u1,...,Uy) € Se; X -+ x Se,,. Then {7, }wew, is an R{-basis for R;.
Moreover, {7 }wew, is also an R{-basis for Ry, since wy is an R{-linear isomorphism.
Since for 1 < k # | < m the elements of S, and S, (viewed as elements of S,) are
distant from one another, we get that the simple reflections s; € J act only on one factor
R.,. Hence, if we consider a Demazure operator d; for j corresponding to (w.l.o.g.) Se,,
we compute

MAre® - Qrm —8; (r @ra®@ -+ ® 1)

8j(7°1®7’2®"'®7”m)=

Qi
_7“1®T2®"'®7‘m—8j(7“1)®7“2®"'®7’m
Qj
T — S;(Tr
ay

Zaj(r1)®7”2®---®rm.

Hence, Demazure operators 0, for u; € Se, acting on Ry can be viewed as just acting
on R, . Moreover, since uju; = wuy, for up € Se, and u; € S, viewed as elements of .S,
we have that 0,, and 0,, commute with each other if we let them act on R;. Thus, if
we write u = (u1,...,um) € Wj =8¢ X - x S, we get that

Ou =0y, @+ R0y,

From this we get that {7, }wew, is Demazure generated, as for w = (wy,...,wy),u =
(U, .oy Up) € Wy =85 X+ xS, we have
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= aul (Jw1) PRy aum(o'wm)

L) Ot @ @0y, if L(wyuy ') = O(wy) — L(ug) for all 1 <k <m
0 otherwise

o Tpur i L(wuTh) = L(w) — (u)

10 otherwise.

Moreover, since we have w; = (we,,...,We,,) by Remark we get that (for u =
(U1, .. um))

= (=D w (Ty)

= (- l)e(“””"l’ SUmWen, ) . (Weyy vy We,,) (Uulwel R Jum%m)
= (- 1)f<mwel>+ Humen) e (Guwe, ) @ ¢ @ Wey, (Cupwe,,)
=0, ® Qo .

Hence, we compute that

Ow, (T - T) = (&Uel @ 0Ou,,,) ((Ow, @+ @ow,) (08, @~ @0y )
(awpl - ® awem) (le O @ ® Oy a,jm)
= Ow, (O'w1 . 0':;1) R ® awem (me . J:‘Lm)
= Owr,u1 @ @ Owrmum = Ow,u

for w = (wi,...,wm),u = (u1,...,uy) € Wy =S¢, x -+ x Se,,. This finishes the
proof. O

3.3 (Regular) Soergel bimodules

Now we are set up to define Soergel bimodules. For i € S, let B; = R ®p: R(1). From
now on we will denote by ® with no index the tensor product over R. If we consider
tensor products of B;’s we will often omit the ®. Given a sequence w = s;,s;, ... s;, the
corresponding Bott-Samelson bimodule is the tensor product
BKZBi1 ®Bi2®"'®Bid :leBng

1d

viewed as an (R, R)-bimodule via left and right multiplication. Note that B, is iso-
morphic to R ®pi; R @piy R Qpis -+ Qpiqy R(d).

Definition 3.36. We define BSBim to be the full monoidal subcategory of graded (R, R)-
bimodules whose objects are Bott—Samelson bimodules and all their grading shifts.
Now we define SBim to be the Karoubi envelope of the additive closure of BSBim.
SBim is called the category of Soergel bimodules. Note that SBim is additive but not
abelian. O
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For the next theorem to hold we need some assumptions on the realization. This is what
was discussed in Remark The theorem was proven by Soergel [Soe07, Satz 6.14].

Theorem 3.37. There is a 1-to-1 correspondence

WMt indecomposable Soergel bimodules
up to isomorphism and grading shift
w — By

Here By, is determined by being the only summand of B, where w = s;, ...s;, is a
reduced expression for w, which is not a summand of (some shift of) B, for any shorter
sequence y.

Remark 3.38. One could construct B, by finding all summands of B,, which occur
as shifts of summands of lower terms, removing them, and seeing what remains. The
theorem implies that B,, is uniquely determined as being a direct summand for all B,,
where w = s;, ... s;, is a reduced expression for w. O

Theorem 3.39 (Categorification Theorem). Let b a realization of W that behaves well,
then there is a unique isomorphism of Z[v,v~!]|-algebras:

£ : H — [SBim)]

where [SBim| denotes the split Grothendieck group of SBim. [SBim] becomes a Z[v,v™!]-
algebra via v - [M] = [M(1)].

Given two Soergel bimodules B and B’ the graded rank of Hom g gr)(B, B') as a free left
(or right) R-module is given by (e~ ([B]) ,e~! ([B'])), where (—, —) denotes the standard
pairing in H.

This Categorification Theorem goes back to Soergel [Soe(07, Theorem 5.3]. He con-
jectured that if char(k) = 0, then ¢! ([By]) = H,. Soergel was able to prove this
conjecture in particular for W = S,, [Soe92]. The general case was established by Elias

and Williamson [EW14].

3.4 Singular Soergel bimodules

We will present some results of Williamson [Willl] in this section. This includes the
definition of singular Soergel bimodules. The category of singular Soergel bimodules is
a 2-category and we would like to view it in this context. In order to do that we will
now first give the definition and for us most important example of 2-categories.

Definition 3.40. A (strict) 2-category C consists of the following data.

1. A set of objects ob(C).
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2. For each pair of objects z,y € ob(C) a category Morc(z,y). The objects of
Mor¢(z,y) are called 1-morphisms and will be denoted M : © — y. The morph-
isms between these 1-morphisms are called 2-morphisms and will be denoted
f: M — N. The composition of 2-morphisms will be called vertical compos-
ition and will be denoted fog for f: N — L,g: M — N.

3. For each triple z,y, z € ob(C) a functor

* : More(y, z) X More(z,y) — More(z, 2).

The image of a pair of 1-morphisms (M, N) on the left hand side will be called the
composition of M and N and denoted M x N. The image of a pair of 2-morphisms
(f,g) will be called horizontal composition and denoted f * g.

These data are to satisfy the following conditions:

1. The set of objects together with the set of 1-morphisms endowed with the com-
position of 1-morphisms forms a category.

2. Horizontal composition of 2-morphisms is associative.

3. The identity 2-morphism id;q, of the identity 1-morphism id, is a unit for horizontal
composition. O

Ezxample 3.41. The most important example for us will be Bim.
objects: rings R

1-morphisms: bimodules

2-morphisms: bimodule morphisms
This means that Morg;, (R, S) is the category of (R, S)-bimodules. The horizontal com-
position is given by tensor products, i.e. ¢Mpo pNg = N ®g M (here this notation
means that M € Morpi, (R, S) for instance). The vertical composition is just the usual
composition of bimodule morphisms.
Warning! This 2-category is not strict (i.e. identities only hold up to coherent iso-
morphisms). One calls such 2-categories weak 2-categories or bicategories.
All 2-categories that we will consider are subcategories of Bim. This means that the
objects will be some set of rings and the categories Mor(R, S) will be subcategories of
Morgim (R, S).
For a more detailed introduction to 2-categories suitable for our purposes, see e.g.
[Str20D].

Definition 3.42. Let I,J C S be finitary parabolic subsets. We define the category
/BSBim; to be the full subcategory of (R, R”)-bimodules that contains all Bott—
Samelson bimodules (see Definition viewed as (R!, R’)-bimodules by restricting
the left and right action of R. O

Definition 3.43. We define the category ;sBSBim  to be the full subcategory of (R!, R”)-
bimodules that contains all shifts of objects of the form

R" @ps R @poy -+ ®@pa,y R
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where [ =1, CJ1 DI, CJys D+ C Jy_1 DI, = J are finitary subsets of S. Objects
of ;sBSBim; are called singular Bott-Samelson bimodules.

Finally, we define ;SBim; to be Karoubi envelope of the additive closure of ;sBSBim ;
and call its objects singular Soergel bimodules. O

Remark 3.44. One can prove that every singular Bott—Samelson bimodule is a direct
summand of some object in ;BSBim ;. This mainly follows from the fact that R is free
of finite rank over R” for a finitary parabolic subset J C S and another fact which we
will come across in Section This fact states that the objects R ®gs R are direct
summands of some Bott—Samelson bimodules.

Altogether we get that ;SBim; is also the Karoubi envelope of the additive closure of
/BSBim ;. O
Definition 3.45. In the following we define the 2-category of singular Bott—Samelson
bimodules sBSBim. Objects are finitary parabolic subsets I C S. The categories
Morggspim (1, J) are given by sBSBim ;.

The 2-category of singular Soergel bimodules SBim (note that we abused notation here)
is defined similarly. Objects are finitary parabolic subsets I C S. The categories
Morsgim (I, J) are given by ;SBim ;. The composition of 1-morphisms and the hori-
zontal composition of 2-morphisms are induced from Bim. O

The following result is based on works of Soergel [Soe92] and Stroppel [Str04]. A proof
as well as a detailed discussion can be found in [Willll Theorem 7.4.2].

Theorem 3.46. There is a bijection

isomorphism classes of
Wi\W/Wj <— < indecomposable bimodules in ;SBim
(up to grading shifts).

Remark 3.47. We want to give a small indication how to find these indecomposable
bimodules. For a double coset p € Wi \W/W choose an element w € p and fix a reduced
expression w = s;, ---8;,. Then the indecomposable bimodule corresponding to p is a
direct summand of B;, - - - B;,. Note that this bimodule is actually an (R, R)-bimodule,
but we can view it as an (R!, R’)-bimodule via restricting the actions.

The next lemma will give a little justification why the indecomposable bimodules are
corresponding to double cosets and not just elements of W. O

Lemma 3.48. Let p € W \W/W; and let w € p. By Theorem there are u € Wy
and v € Wy such that w = up_v and {(w) = £(u) + €(p_) + £(v). Here p_ denotes the
unique shortest element in p. Now by picking reduced expressions

u:5j1"'5jevp—:3i1"’3idaU:511"'5lf

we get a reduced eTpression w = Sj, -+ Sj Siy " SigSiy < S, Write

B, = j1"'BjeBi1"‘BidBl1"'Bl

B, =B ---B

f

id
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viewed as (R, R?)-bimodules. Then

et+f e+ f
52
By & (@L@+f—2@ e
k=0
as (R, R7)-bimodules.
Proof. Claim:
B;, 2@ (Rle — 2k))2()  as (R, R)-bimodule,
0
f
; = @ — 2k)) o () as (R, R”)-bimodule.

Using this claim we can conclude the lemma, because B,, can be decomposed as a direct
sum of copies with certain shifts of R ® B, ® R. Explicitly using

k
e+ f\ e f
(- 2 )
ki,ka =0
ki +ko =k
The proof then goes as follows.

By =Bj, -+ B;.B;, -+ B;,By, -+ By,

Il
ol
IP-
=
=
|
[\
3
v
®
m
®
VS
69*
|
[\
w
\_v/

(QL@+f—2m—2@0@m)%)

P-
P~

+f @(e+f)

k

We now prove the claim. It suffices to do this for the first isomorphism as the second
proof is completely analogous. We do induction on e. For e = 0 there is nothing to do.
For e = 1 we have by Remark and Theorem

Bj, = R®pi, R(1) = (R & R'(-2)) @i R(1) = R(1) ® R(—1)

s (R", R)-bimodules. Then we get by using first the case e = 1 and then applying
induction the following isomorphism of (R, R)-bimodules (which is basically going from
one row in Pascal’s triangle to the next one)
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This finishes the proof.
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4 Soergel diagrammatics

4.1 Soergel diagrammatics for 5,

In this section we consider the Coxeter system (W, S) = (S, {simple transpositions}).
We label the elements of S with integers 1,...,n — 1 where ¢ corresponds to the simple
transposition s; = (i,7 + 1). Elias and Khovanov [EK10a] develop a diagrammatic
presentation of a strictification of the monoidal category of Soergel bimodules SBim
for S,. We will revisit this presentation, since it is the foundation on which further
diagrammatics in this thesis is based on. The main goal of this section is to define a
diagrammatic category D and explain the following result from [EK10a] which says

Theorem. There is a functor F : D — SBim which is an equivalence of monoidal
categories.

This will be done by defining an equivalence of monoidal categories F; : D1 — BSBim
and then extending it abstractly to the Karoubian closure F : D = Kar(D;) —
Kar(BSBim) = SBim.

Before we go into the abstract definition of D; we would like to give some insights on
what the result will be. The objects in D; will be sequences i = (i1, ...,iq) for i; € S.
They will later correspond to the bimodule B; = B;, ® --- ® B;,. A morphism could for

example be given by the following picture.
2 1 2 1

This would correspond to a morphism from
Bi1®By® By ® By to By ® By ® B1 ® By ® Bj.

[

1 2 1

Glueing pictures vertically is interpreted as the composition of the corresponding morph-
isms. Glueing pictures horizontally is interpreted as the tensor product of the corres-
ponding morphisms. This allows us to “build” each morphism out of small blocks. In
the example this looks as following.

2 1 2 1

SNAAFTXT - RY
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We will now give the definition for D;. Since our goal is the equivalence to SBim we
will already write the corresponding morphisms in SBim to some of the morphisms we
are about to define. This is technically not part of the definition, but it is nice to have
everything at one place.

Definition 4.1. We construct a monoidal category D; by generators and relations.
It is generated on objects by S. This means that objects are sequences of indices
i = (i1,...,1q) for i; € S. We visualize them as points on the real line R, labelled
or “coloured” by the indices from left to right.

On morphisms Dj is generated by the following generating morphisms modulo the rela-

tions (1) to (-19).

polynomial
generator R— R
deg — deg(f) e for
(f € R homogeneous)
(end)dot Bi — R
deg =1 1 QT > T1T2
i
i
(start)dot R — B;
deg =1 r— 5 (®1+1® o)
; i
trlvalent‘vertex B; —» B;B;
(split)
deg — 1 rI®ror—ri@1Qry

o1



i
trivalent vertex B;B; — B;
(merge)
dog — 1 T @1y @13 > 110i(r2) ® T3

?
i
\ 4—vaclleegt _v%rtex B;B; — B;B;
\ (i=i1>1) netennelen
B i

B;B;1B; — Bi11B;Bi1
I11I®1I®xI—1R1®1I®1
6-valent vertex
197, 01901— ;010191
deg =0
+r®1lelel
-1®1®1®zi42
/ Bit1BiBiy1 — B;Bi11B;
I11I®R1I®1I—1I®1I®1I®1
6-valent vertex
1 102400101 — 10101Q T4
eg =0
+1R101Q x40
—01lelel

1+ 1 1 1+1

T
—

}-
_

Thus, a morphism from z to j in D; is given by a k-linear sum of pictures embedded in
the strip R x [0, 1]. The points in the line R x {0} correspond to i and the points on the
line R x {1} correspond to j. In-between are coloured graphs which are constructed by
glueing the above generating morphisms (horizontally and vertically). %

Before we give the complete list of relations, we will discuss some abbreviations we will
make. First, we will stop labelling the points on the boundary with explicit indices.
Instead there will just be different colours that represent different indices. Often we will
put some restrictions on the adjacency of colours. For example we could have introduced
both 6-valent vertices together as just one of the pictures without explicit labels on the
boundary by restricting the colours to being adjacent (however we wanted to state the
corresponding bimodule morphism which slightly differs for the two types of 6-valent
vertices).

Secondly, we need to define two abbreviating morphisms in order to state all relations.
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cup
deg =0

cap
deg =0

N
A

Y
aN

Relations

Now we give the complete list of relations. We will start with the Frobenius relations.

coassociativity
of split

_ associativity
N of merge

= = ) counit
= = \ unit

N .
assoclativity

= = Frobenius
( condition )
/ "\

We will continue with the last one-colour relations that we need.

.
(
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(4.1)

(4.3)

(4.4)

(4.5)



= si(f) |+ 9i(f) (4.8)
!

Remark 4.2. Relation tells us that we can write every polynomial as k-linear
combination of many double dots (this is what we call the left side of (4.7))). Thus, the
polynomial generator is actually not needed. We decided to include it anyway because it
gives us a canonical way to give the morphism spaces the structure of an (R, R)-bimodule.
In this way we can easily understand how the double dots are used for this which is an
advantage. The disadvantage is that the pictures now contain these polynomials instead
of just colourful graphs. O

We continue with multiple colour relations. In the next relations red and green are
distant, i.e. the corresponding simple transpositions (¢, i+1) and (j, j+1) satisfy [i—j| > 1
(otherwise we call the colours adjacent).

= (4.10)
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ROZ
e

_ (4.12)
\

In the next relation red and blue are adjacent and green is distant from both of them.

T

In the next relation all three colours are mutually distant.

KoL -

Remark 4.3. Relations to 1 4)) indicate that any part of the graph labelled ¢
and any part labelled j for i and j distant do not interact with each other. This means
we can slide the j-coloured part past the i-coloured part and it will not change the
morphism. We call this distant sliding property. O

NN

In the next relations red and blue are adjacent.

X -

A~
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_ _ (4.17)

(4.18)

N/
ZN

X

In the next relation the three colours have the same adjacency as {1,2,3} (where red

corresponds to 2).
l\/
/I (4.19)

iyl
—K /Y]

This concludes the list of relations for D;.

Remark 4.4. In some of the relations there are horizontal lines and lines which end
neither in bottom or top. We will now explain how to interpret them.

Relations (4.1) to turn the object ¢ in D; into a Frobenius object. They also
imply some other relations which are quite useful and will help us to understand these
horizontal lines. Therefore, we will also state them here.

= = biadjunction (4.20)

N

(4.21)

p]leb)

PANR
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Ny -0

g - & - U (4.24)

Now relations (4.20)) to (4.24), (4.9) and (4.15]) imply that the morphism specified by a
particular graph embedding is independent of the isotopy class of the embedding. They

are called cyclicity relations.

This is the reason for the usage of horizontal lines. They can be interpreted as either
going up or going down (they just have to do the same on both sides of the equation).
In this way one picture can encode many different morphisms. It is just a shortcut
notation. For example we could rewrite (4.5)) to

I

which is a bit shorter and encodes even more information (think for example of the
horizontal line as a cup or a cap). O

Remark 4.5 (Warning!). The list of relations is not minimal. For instance can
be proven using the other relations. However, it is often to have a variety of relations
to work with, since it makes it easier to simplify expressions and to prove things with
these relations. That is why we included more relations than one actually needs. O

Remark 4.6. Since one can use double dots to write polynomials we can look at some
consequences of (4.8) where we replace polynomials by double dots. In these relations
red and are distant while red and blue are adjacent.

[ ]
I N I _ 9. (4.25)
®
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SRS

(4.27)

In the second equality of (4.27) one applies (4.25)). O
Remark 4.7. There is a slight generalization of relation (4.6 which looks as follows.

=0 (4.28)

We can generalize this relation to get the following two relations (where red and blue
are adjacent).

oo
I
o

(4.29)

(4.30)

These relations tell us that if there is an empty area which is surrounded by lines of one
colour (up to some dots) then the morphism is already zero. ¢
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Definition 4.8. Note that D; is a graded category (we have degrees for the morphisms).
Let D} be the corresponding k-linear category with free Z-action (via Theorem [2.56)).
Then we define D to be the closure of D} under finite direct sums.

The category D then is the Karoubi envelope of Dy. Thus, D is the closure of D} under
finite direct sums and taking direct summands. O

Definition 4.9. We define the monoidal functor F; : D1 — BSBim on objects by
sending ¢ to B; and on morphisms via the bimodule morphisms we associated to our
generating morphisms in Definition

The functor F : D — SBim is the functor which is induced from F; after taking the
additive closure and the Karoubi envelope on both sides. %

The following is one of the main results in [EK10a] and also the main theorem of this
section.

Theorem 4.10. The functors F1 and F are equivalences of monoidal categories.

4.2 The general case

In this section we will see how to generalize this diagrammatic presentation to more
general Coxeter systems (W, S). This was done by Elias and Williamson [EW16] and
we will only present their results. We need to put some assumptions on (W, S) and k
for this to work. First there needs to be a realization of (W, S) over k in order to define
SBim and then we need to put a few assumptions on this realization in order for SBim
to behave well. For details we refer the reader to [EW16, Section 3].

Now we can define a diagrammatic category D7 in the same way as in the last section
and then the analogous of Definitions and and Theorem hold. So we will
just say what kind of generators and what kind of relations we need.

Definition 4.11. The generators will consist out of the one-colour generators that we
already know: The two dots and the two trivalent vertices as well as the polynomial
generator. The last generators are two-colour generators, namely for each ordered pair
(i,7) € S? we have the (2m;;)-valent vertex.

m;; even

mij odd

Each of the bimodules B; ® B; ® B; ® --- ® B; and B; ® B; ® B; ® --- ® B; have the
same indecomposable bimodule as a summand and this summand appears only once. The
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morphisms in SBim corresponding to these two generators are given by the projection to
this summand composed with the inclusion of this summand into the other bimodule. ¢

The relations we require are all the one-colour relations that we have seen in the last
section and then two more types of relations.

The first type of relations are the two-colour relations. We have three relations for each
ordered pair (i, j) € S?. These relations depend again slightly on the parity of m;;.

m;; even
(4.31)
mij odd
ms; even
(4.32)
mij odd
ms;; even
(4.33)
mij odd

JWip,;—1 is the Jones-Wenzl morphism. It is a k-linear combination of graphs construc-
ted only out of dots and trivalent vertices. For more details we refer the reader to [EW16],
Section 5.2].

The second type of relations are the three-colour relations. For a triplet forming a
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sub-Coxeter system of type A; x Ia(m), m < oo, we have the following relation.

Then we have three relations corresponding to triplets forming sub-Coxeter systems
of types Az, B3 and Hs. These relations are called Zamolodzhikov relations. For a
motivation behind this name see [Str20b]. The relation for type Ag is (£.19). The
relation for type Bs is the following.

T _
_ (4.35)
] 1T

The relation for type Hj is quite complicated and was for a while not completely known.
It looks as follows.

_ lower
terms

(4.36)

Here the ”lower terms” on the right hand side are morphisms that vanish if we localize.
These have been computed just recently. We will explain what localization means in the
next remark.

Remark 4.12. Let @ be the quotient field of R. Let BSBimg be the full monoidal
subcategory of ()-bimodules generated by the bimodules B; g = Q ®q: (. Let SBimy,
denote its Karoubi envelope. Then we have a faithful monoidal functor

SBim — SBimQ

given by induction with @ on the right. This is called localization. For more details on
this see [EW16, Section 3.6]. O

4.3 Thick lines

In this section we will give a diagrammatic presentation of the partial idempotent com-
pletion ¢gBSBim of BSBim for W = S,,;1. This was done by Elias [Elil6, Chapter 4]
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and we will present his results here. First, we need to fix some terminology. For a more
detailed presentation of the following have a look at [Elil6l Chapter 2].

Definition 4.13. Let J be a parabolic subset of S, the set of simple transpositions
in W = S,41. We write dj for length of the longest element wjy of Wj;. We define
B;=RQ®ps R<dJ>

For a sequence J = JiJa - - - J, of parabolic subsets we let By = By, --- Bj,.. These By
are called generalized Bott—Samelson bimodules. O

Lemma 4.14. Let J be a parabolic subset of S. Let wj = s;, - - - 8;, be a reduced expres-
sion where i1,...,i, € J. Then By is a direct summand of B;, ® --- ® B;,. Moreover,
the inclusion By — B;, ® --- @ B, s giwen by 1@1+—1®---® 1.

Proof. First consider the case J = S and W; = W. We know by Theorem [3.37] that
there is a unique summand B,,, of B;; ® --- ® B;,. One can prove that By, = Bg (see
for instance [Str20b, Theorem II.3]). Thus, we are done in this case.

Now consider an arbitrary subset J of S. For (W,S) we used a realization b to define
Soergel bimodules. This vector space b is also a realization for (W, J) with the induced
action, because all the conditions of Definition[3.1|are still satisfied. Then, in the category
of Soergel bimodules for (W, J), we get from the previous consideration that By is a
direct summand of B;, ®- - -® B, because J is the maximal parabolic subset for (W, J).
However, since the realization b is the same for (W, J) and (W, S) we get the B; and
By in the category of Soergel bimodules for (W, J) are the same bimodules as they are
in the category of Soergel bimodules for (W, S). This finishes the proof. O

Definition 4.15. We define the category gBSBim to be the full subcategory of (R, R)-
bimodules containing all grading shifts of the generalized Bott—-Samelson bimodules Bj.
This is a full monoidal graded subcategory of (R, R)-bimodules. By Lemma this is
also a full subcategory of SBim. O

We will now define a category gD which is a partial idempotent completion of D; and
hence a full subcategory of D. This means that we add some (not all) direct summands
to Dp. That is also what happens on the side of Soergel bimodules when transitioning
from BSBim to gBSBim. We will then observe that the equivalence of categories F :
D1 — BSBim extends to an equivalence of categories F : gD — gBSBim.

Definition 4.16. Let C be a full subcategory of some ambient module category. If S
is a set of objects in the idempotent completion for C we define C(S) to be the full
subcategory of the ambient module category whose objects are the objects of C as well
as §. We call this a partial idempotent completion of C. If S consists of a single object
M, we denote the partial idempotent completion by C(M). O

Definition 4.17. We call a collection of morphisms ¢, 3 : Xo — X3 in a category C
satisfying va~ = ¢8,9a,8 & consistent family of projectors. O

Remark 4.18. Given a collection of morphisms {¢, 3} we have that {¢, g} is a con-
sistent family of projectors if and only if the corresponding objects X, have a mutual
summand M. The morphisms ¢, 3 : Xo — Xg are then given by the composition

X, 2 M N 3 of projection and inclusion.
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If we then assume that we have a presentation for C we can obtain a presentation for
C(M) as follows. The generators will be the generators of C as well as the new morphisms
Po : Xo — M and i, : M — X,,. The relations will consist of those relations in C and

the new relations igp, = ¢a,g and p, ia = idps. O
Definition 4.19. A parabolic subset J is connected if for every i ¢ J either j ¢ J for
all j <iorj¢.Jforallj>i. 0O

Proposition 4.20. Let J be a connected parabolic subset. In Dy there is a family of
morphisms ¢ = {¢xy} for each pair (x,y) of reduced expressions for w; which satisfies
the following three properties.

1. The family ¢ is a consistent family of projectors, picking out a summand X.
2. The summand X satisfies X @ 1= X (1) ® X(—1) for each i € J.
3. The space Homp, (X, () is a cyclic R-module, generated in degree dj.

Moreover, X is indecomposable, and is sent to the Soergel bimodule By by the functor

F.
Proof. [Eli16], Proposition 2.16, Theorem 3.18|. O

Ezample 4.21. Let W = Sg and S = {s1, s2}. We consider the parabolic subset S C S.
There are two reduced expression for the longest element of W = Wg, namely wg =
518281 = S28182. Let us write x = (81, 82,81) and y = (s2, 81, 82). Then ¢g is given by
the following.

¢x,x =

¢y x and ¢y y are given by swapping colours above.

We will call the summand X € D in Proposition from now on J. Now we are ready
to define the diagrammatic category ¢D.

Remark 4.22. The elements of ¢; are constructed only out of 4-valent and 6-valent
vertices [Elil6, Definition 3.9]. O
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Definition 4.23. Let gD be the graded monoidal category presented diagrammatically
as follows. The generating objects are connected subsets J of S (thus, general objects
are sequences J = JiJo ... J, of connected subsets of S). When J = {j} is a singleton,
we write the element j instead of J and identify it with an object in D;. We draw the
identity of J as follows.

J

The generating morphisms are the usual generators of Dy, in addition to J-inclusions
and J-projections. The J-inclusion is a morphism from J to x where x is any reduced
expression for wy. The J-projection is a morphism in the other direction. Both have
degree 0.

The defining relations consist of

J
< _ (4.37)
J J
X
= by x (4.38)
y
together with the defining relations of Dj. O

Theorem 4.24. This category gD is equivalent to the partial idempotent completion of
D1 by the images of ¢; for J C S. The functor F from D1 to BSBim extends to a
functor gF from gD to gBSBim which is an equivalence of categories if F is one.

Proof. This follows from the discussion in Remark and Proposition O
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We will now identify some morphisms with more special pictures (like we did for cup
and cap) and give relations for them. This makes many statements more intuitive. We
will only cover a part of what is done in [Eli16, Chapter 4], since we only need some of
the morphisms for the next sections.

Definition 4.25. The first new morphisms are the thick cap and thick cup.

= /\ (4.39)

J J
J J
_ \/ (4.40)
They are independent of the choice of reduced expression. O

Note that one can check that the thick cap corresponds to the bimodule morphism

BJBJIR@RJR®RJR—)R
1 ® 1 ® 13— 1r10(r2)r3

and the thick cup corresponds to the bimodule morphism

R—>BJBJ:R®RJR®RJR
l—1®1®1.

The following relation is the important one for cap and cup.

Lemma 4.26. We have the following relation in gD.

_ _ (4.41)

J J J

Definition 4.27. The next morphisms are the thick dots. They are obtained by choosing
a reduced expression x for w; and composing J — x — (), where the latter morphism
consists of a dot on every strand.
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(4.42)

J
J
_ (4.43)
They are independent of the choice of reduced expression. O

Lemma 4.28. The two morphims above are both non-zero and independent of the choice
of x, so they are well defined. It is the generator of Homgyp(J,0) as an R-bimodule.

Proof. See [Eli16l, Proposition 3.49 and Claim 4.5]. O

Lemma 4.29. We have the following cyclicity relations for the thick dots.

_ _ (4.44)

_ _ (4.45)

IR )
t .

Definition 4.30. The thick trivalent verter exists only if ¢ € J. There are two versions
of the thick trivalent vertex, a right-facing one and a left-facing one.

B

(4.46)

(4.47)
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For the definition of a; see [Eli16], §3.4]. O

Note that we abused notation here by writing a; in both boxes, but meaning two different
morphisms (one with a right-facing strand ¢ and one with a left-facing strand 7). The
colour of ¢ in these pictures is red. Note that the reduced expression used for the J-
projections and J-inclusions starts with red, but this could be totally different and the
definition of a; depends on the reduced expression we choose.

The easiest way to understand a; is to choose a reduced expression that ends (respectively
starts) in 4. Then a; is just the identity and we have the usual trivalent vertex on the
right (respectively left).

In this way we can also observe what the thick trivalent vertex is on the bimodule side.
As a morphism By ® B; — By it is given by

1 ® 7T ® 13— 11 @ Oi(r2)73.
As a morphism By — By ® B; it is given by
r@rer—r1®1Qrs.

The analogous morphisms correspond to the left-facing thick trivalent vertex. Now we
can give some relations for the thick trivalent vertices. We will only draw the right-facing
versions of the relations. The left-facing versions are also true.

Lemma 4.31. We have the following relations in gD where red and are distant
while red and blue are adjacent.

— (4.48)

J J
- (4.49)

J J
s (4.50)

J J
- (4.51)

J J
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(4.53)

(4.54)

(4.55)

Y
2
7

Remark 4.32. Recall Remark says that ¢y is constructed only out of 4-valent
and 6-valent vertices. Thus, (4.50) and (4.51]) imply that if we write ¢y rotated by 90
degrees next to a thick line labelled J it will get sucked in completely and just changes
the ordering of the strings:

(4.52)
J
J
J
J

) Cor—

(4.57)

The same relation holds on the left side. O

Corollary 4.33. We have the following isotopy relations for the thick trivalent ver-
tex. We will again only show the right version, but the left version works completely
analogous.

68



_ (4.58)
J J
_ (4.59)
J | J
Proof. We use (4.48)) and (4.49) to get the following chain of equalities.
B @) @s)
J J J J
B (%) @s)
J J _ J J
This finishes the proof. O

Definition 4.34. The very thick trivalent vertex is constructed as follows. Rotate the
J-inclusion by 90 degrees, and then connect the output sequence x to another J-coloured
strand by a sequence of thick trivalent vertices. There are d; thick trivalent vertices, so
this morphism has degree —d .

= - (4.60)
J

Again this morphism is independent of the choice of reduced expression. %

1

J

We can again analyse what the very thick trivalent vertex corresponds to on the bimodule
side. First consider it as a morphism B; ® By — Bjy. If we look at an element
r1®ro®rsy € By® By, then this gets sent by the J-inclusion to 11 ® o @1 Q- Q1R 7r3.



Now we apply the d; thick trivalent vertices. Each of them will just apply a Demazure
operator 0; to ro and cancel on of the middle tensor signs. Thus, in the end we are left
with the following expression:

11 ® 03y (93 (- (Biy, (r2)) -+ ))ra = 11 @ O (ra)rs,

where the last equality comes from the fact that s;, ---s; 4, is a reduced expression for
w,y, since the 7; are coming from the J-inclusion. Hence, the very thick trivalent vertex
as a morphism B; ® By — By is given by

1 Q1o @13 — r1 Q dy(ra)rs.

If we consider the very thick trivalent vertex as a morphism By — By ® B we can do
a similar analysis and get that it is given by

T ®re——11®1RQ 7.

Lemma 4.35. We have the following relations for the very thick trivalent vertex.

_ _ (4.61)
J J, J

= = (4.62)
J J J

_ _ (4.63)

J J
_ _ (4.64)
J J J
_ _ (4.65)
J J J




Lemma 4.36. There are three more relations which we will state. For some of these
we need the bases {Tw fwew, and {74} wew, from Theorem[3.35 In the first of the three
relations we have f € R.

= 9;5(f) (4.66)

= Z T (4.67)

T weW

J
=2
weWy
J J

Remark 4.37. This diagrammatic presentation of gBSBim (see Definition only
contains thick strands for connected parabolic subsets J. Suppose that J is disconnected.
Then J = Jy U --- U J, for connected, mutually distant parabolic subsets J;. Thus,
Wy =Wy x---xWjy_, wy is the product of various wy,, and B is the tensor product
of the By, in SBim. So the object B is already isomorphic to an object in gD. %

(4.68)
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5 The case S;

In this chapter we are going to describe the 2-category of singular Soergel bimodules
(Definition for W = S5 with S = {s1,s2} where s; = (12) and s = (23). In
order to do so we need to understand the categories ;SBim; for all parabolic subsets
I,J C S. There are four parabolic subsets, namely (), {s1},{s2},S. Thus, there are
sixteen categories which we need to consider.

For each such category we will go by the same procedure. We only need to understand the
category ;BSBim; or the category sBSBim j, since ;SBimj is their Karoubi envelope.
We will find some indecomposable bimodules and show how each object in ;sBSBim ;
decomposes into these indecomposable bimodules. By doing so we also prove that these
then are all indecomposable bimodules and prove Theorem for Ss.

All that is left then is to understand the morphisms. We will compute bases for the
homomorphism spaces between two indecomposable bimodules. Together with the first
part we can then express every morphism between two arbitrary objects in ;sBSBim ; by
decomposing them into indecomposables and considering the morphisms on summands.
We put the sixteen categories in some classes depending on how many indecomposable
they have which roughly measures how hard it is to understand them.

1
2
3
4

SBim
SSB]H’I, SSBiml, SSBimQ, SSBlms,SBlms, 1SBims, 2SBlms
1SBim, 5SBim, SBim;, SBim,

(
(
(
( 1SBim;, {SBim,, sSBim;, ,SBim,

)
)
)
)

Here we wrote 1 instead of {s1}, 2 instead of {s2} and nothing instead of (). The first
class just contains the category of (regular) Soergel bimodules. This is already quite
well understood and we will only cite results of Libedinsky [Lib19]. The second class
is quite simple as there will only be one indecomposable bimodule. The third and the
fourth case will be the harder ones. We will do one category in detail and only give the
results for the other categories as the procedure is always the same.

5.1 (Regular) Soergel bimodules for S;

In this section we will describe the category of (regular) Soergel bimodules for Ss. This
will be the starting point for all our calculation in this chapter. For explicit calculations
in the regular case we refer the reader to [Lib19] and focus on the singular case instead.
We start by recalling some results from [Lib19].
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Definition 5.1. We have the following objects in SBim:
Bwo - R ®RS R<3>

B12:R®Rl R®R2 R<2> B21:R®R2 R®R1 R<2>
B =R®p R<1> By = RQp2 R<1>
B. = R.
For By, this follows from Lemma O

Remark 5.2. These six bimodules are generated by the 1-tensor (the element 1®---®1)
as bimodules. For Bjo and B»; this follows from the fact that R is generated by 1 as an
(R, R?)-bimodule or (R?, R')-bimodule respectively. For each of these bimodules the
graded component of minimal degree which is not zero is one-dimensional. Thus, they
are indecomposable by Lemma [2.59

Moreover, note that Bio = B; ® By and By = By ® Bj. O

Remark 5.3. Since by Theorem R is a free R'-module of finite rank for I =
0,{s1},{s2},S we get the following. Let

M =R ®@py R2@ps, -+ @psy RIVH
be an object of sSBSBim. Then we have
R®pn R@ps R®ps -+ @pay R MO
for some L € N. Hence, if we can decompose all objects of the form
R®psn ROps ROpr -+ @piy R

into direct sums of B, By, B, Bi2, Ba1, By,, then we can do this for all objects in
sBSBim. Note that J; € {0, {s1},{s2},S}. Thus, we can write

R®psy, R®psy - @piy R=By, ® Bj,®---® By,

where By, is one of the following for all i = 1,...,N: B., By, B, By,,. Hence, it would
be sufficient if we were able to decompose all bimodules of the form

My @ M,
for My, My € T = {Be., B1, B2, Bi2, Ba1, By, } into sums of elements of Z. This is what
we will do. O
We have by Remark and Theorem the following isomorphisms
R~ R'® R'(-2) as (R, R')-bimodules
R= R?>® R*(-2) as (R?, R?)-bimodules

(5.1)
RS @ RS(—2) ® R5(—2) ® R%(—4)
GRS (—4) ® R(—6)

We will now go through all the choices for My, My € Z. If M; = B, = R, then
My ® My = My and we are done. If we have M; = By or M1 = By we can use

Bis = B1 ® By and By = By ® Bj respectively to reduce it to the case M = By, Bs.
Let us start with M; = B,,,. We have B, ® Be = By,

R= as (RY, RS)-bimodules.

73



Lemma 5.4. We have the following isomorphisms in SBim.
1. By, @ B1 = By (1) @ By, (—1).
2. By, @ By = By (1) @ By (—1).
3. Buy @ Buy = Buy (3) @ (Bug (1)%2 & (Buy (—1))%% @ By (—3).
Proof. 1. We can compute that
By, ® B1 = R®ps R®@p1 R(4)
~ R@ps (R' ® R'(—2)) ®p1 R(4)

~ R®@ps R(4) & R®ps R(2)
= Bwo<1> ©® Bw0<_1>'

2. This is completely analogous to 1.
3. Here we compute that

Bwo ®Bw0 = R®RS R®RS R<6>

= R ®ps ( R o R;gﬁgfiﬁjgﬁg_eg)]%s<_4> ) ®ps R(6)
= R®ps R(6) ® R®ps R(4) ® RRps R(4) ® R ®ps R(2)
®R®ps R(2) ® RR®ps R
= Buy(3) ® (Buy (1))™* © (Buy (—1))* @ Buy(—3). O

Again we do not need to consider Ms = Bjs, Boy, since we can reduce to the case
Ms = By, By. At last we consider M7 = Bj. This is enough, since My = By works
completely analogous.

Lemma 5.5. We have the following isomorphisms in SBim.
1. B ® B. = B;.

By ® By = Bya.

B; ® By = Bi(1) ® B1(—1).

B ® Bz = Bya(1) @ Bia(—1).

S

Bl ® Bwo = Bwo<1> S Bw0<_1>'
6. B1 ® Bo1 = B1 @ By,-

Proof. 1. There is nothing to do here.
2. We already know this isomorphism.
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3. We compute that

B1®B1=R®p RRp R(2)
~ R@p (R @ RY(-2)) @1 R(2)
“RRp R2)®R®p R
= By{1) ® By(-1).

4. Here we can use part 3 to get

Bi1 ® B2 = By ® B1 ® By = (Bi(1) ® B1(—1)) ® By
= Bia(1) @ Bia(—1).
5. We compute similar to the previous Lemma that
B ® By, = R®p1 R®ps R(4)
~ R@p (R' @& R'(—2)) ®@ps R(4)
= R®ps R(4) ® R®ps R(2)
= By (1) ® By, (—1).

6. This is proven in [Lib19l 4.3]. The idempotent which picks out the summand Bj is
given by

R®R1R®R2R®R1R — R®R1R®R2R®RIR
rI®re®@r3®ry —> —r101(rers) @ ae @ 1 @1y — 1r101(r2r3) @ 1 ® ag @ ry.

Note that the other idempotent for B,,, is then given by 1 — e where e is the above
idempotent. ]

Now we have decomposed all products M7 ® My for My, Ms € T into sums of objects in
T which tells us how to decompose any object in sBSBim. Next we want to construct
bases for the morphism spaces. The construction is motivated from highest weight
theory. The outcome will be a so-called light leaves basis which encodes certain standard
and costandard filtrations of Soergel bimodules. The following combinatorics can be
understood without any knowledge of this theory, but may become more intuitive when
put into this context.

Definition 5.6. Let w = (s, Siy, ..., Siy) € SN be a fixed sequence of simple reflections.
We will construct a perfect binary tree Ty, (this is a tree in which all interior nodes have
exactly two children and all leaves have the same depth). The node at the top is labelled

()(Bi1Bi2 T BiN)'

Note that we wrote B;, B;, instead of B;, ® B;,. We will use this abbreviation from now
on. We will now construct this tree inductively. Let £ € N, then a node of depth k£ — 1
will be labelled

(Bjy By, = Bj))(Biy, - -+ Biy),

where | € N is some number. Let us call this node A'. Now we have two cases.
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1. If £(sj, -+~ 85,8i,) > L(sj, ---sj,), then the child nodes and child edges of N are

labelled in the following way.
(Bjy -~ Bj))(Biy, - - Biy)

. l .
id* ® dot%(@/ \

(le'”sz)(B' 'BiN) (B]i”'leBik)(B'

1 .. g1 .

'BiN)

Here dot;, stands for the morphism B;, — R given by the enddot (see Defini-
tion . Note that we are in this case for the top node.

I l(sj - s5,84,) < €(Sj, -+ Sj,), then the child nodes and child edges of N are
labelled in the following way (the arrows are the composition of the corresponding
dashed arrows).

(le T )(Blk BiN)

F®id

- By, B, Bj,

|
|
lidt—t ®tr1valentlk ®id
|

By, By, Bi, -

<

ik iN
id'~! @ dot, ®id \‘\\ic\l\
i It

(Btl T Btlfl)(BikJrl T BiN) (Btl o 'Btlleik)(Bilvrl T BiN)

Here trivalent;, is the morphism B;, B;, — B, given by the Merge (see Defini-
tion . In order to explain the morphism F' we need some observations. First
note that the expression u = s]1 --+s;, is always reduced which we can check in-
ductively. Now by Theorem and the condition Z(s]1 o 85,80,) < A(sjy e 85,)
we have that us;, = sj,---5j, - sza and thus v = 5]1 -850 8,8, Is a re-
duced expression. We write s, ---sy , for sj ---5j, ---sj,. Now we have two
reduced expressions for v and by Lemma we can get from one to the other by
braid moves s;s281 <— $251S9. For each such braid move we have a morphism
B1ByBy — BB Bs (or the other way around) given by the 6-valent vertex (see
Definition . Applying a braid move to a reduced expression of u = s;, --- s
stands for applying the corresponding 6-valent vertex tensored with identities to
Bj, --- Bj,. If we now compose all the morphisms corresponding to the braid moves
we get a morphism

F:Bj ---Bj, — By, --- By, | B;, .

This finishes the definition of T,,. O

76



Remark 5.7. Note that the sequence of braid moves we apply to get from one reduced
expression to another is not unique. Thus, we could have multiple choices for the morph-
ism F. It doesn’t matter which one we choose, but we need to choose one once and for
all. However, since we are in S3 there is only one element with more than one reduced
expression, namely wg. For this we just choose F' to be the 6-valent vertex.

Note that at the leaves of T,, we have expressions of the form (Bj, --- B;,)(). So each
leave corresponds to a Bott-Samelson bimodule B, where z = (s;,,---,s;,) is a tuple
of simple reflections. Moreover, we already noticed that expressions in the first bracket
are reduced. Hence, x = s, ---s;, is a reduced expression.

Each edge in T,, is labelled by a morphism between the two Bott—Samelson bimodules
adjacent to this edge. For each leave there is a unique path from the top node to this
leaf, and hence by composing the morphisms on the edges of this path we get a unique
morphism f; : By, — Bg. Thus, each leaf encodes a pair (Bg, fz)- O
Definition 5.8. We denote by L,, the set of all morphisms f, corresponding to a leaf
in Ty.

For each morphism f, € L, we have a morphism f; : B, — By. If we write f;
in diagrammatic language, then f¢ is just the picture of f, flipped upside down (or
equivalently read from top to bott(;m). We denote by L% the set of all the morphisms
s

For z = (sj,, - ,sj,) we write z = sj, ---s;,. Let f; € Ly and fy € Lj. Then we
define

f;-fxz{ fioFof, ifz=y

0 otherwise

where F': By — By is again the fixed morphism corresponding to a sequence of braid
moves from z to y. We call the set

LE Ly, = {f; fol fEELY fue Lﬂ} C Homg, p)(Bu, Bu)

the double leaves basis of Hom (g py(Buy, By)- O
The following is a theorem of Libedinsky [Lib19, Theorem 6.4].

Theorem 5.9. The double leaves basis Ly - L, of Homg gy(Buw, By) is a basis of
Hom g gy (Buw, Bu) as a left (or right) R-module.

Sketch. We will give the general idea of the proof. The rank of Hom g g)(By, By) can be
computed using Theorem One can also count the elements of ILf, - IL,, and observe
that the two numbers are the same. Thus, it suffices to prove that the elements of L, - L,
are linearly independent. This can be done, but is not easy. SO

Remark 5.10. This theorem gives us bases for all the homomorphism spaces of our
indecomposable bimodules Z except for B,,,, since all other elements of Z are Bott-
Samelson bimodules. However, since we know the idempotent for the decomposition
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B1ByB; = B & By, explicitly, we can use
Hom(RR)(BlBQBl, M) = HOIH(R’R)(B17 M) D Hom(R’R) (me M)

to get bases for the remaining homomorphism spaces. O

5.2 Bases of homomorphism spaces

In this section we will observe some general results which let us understand the morph-
isms in ;SBim ; by tracing them back to the morphisms of SBim. The results and proofs
we will do work for W = S, but we only need them for Ss in this chapter.

Definition 5.11. Let ;Bim; be the category of (R!, R’)-bimodules. We define three
functors that will help us to switch between categories:

e The restriction functor jres; : Bim — ;Bim; is defined by M +— ;M ; where
;M is M viewed as an (R!, R”)-bimodule with actions coming from the inclusions

R! R’ CR.

e The induction functor ;ind;: ;Bim; — Bim is defined by M — R®pr M ®ps R
with R acting on the left and right by multiplication.

e The coinduction functor jcoind;: ;Bim; — Bim is defined by
M + Hompr pry (R ®z R, M)
where the actions are given by 7;- f -7; = (r @' = f(rir @ r'r;)) for r; € Rl r; €
R’, f € Hom(gr gry(R®z R, M). ¢
There are some well-known adjunctions which we will use.
Lemma 5.12.
1. (7ndy, jres;) is an adjoint pair.
2. (res;, rcoindj) is an adjoint pair.
3. 7nd; and jcoind; are isomorphic.
4. (resy, 7indj) is an adjoint pair.

Proof. The first two points are known adjunctions (the standard tensor-hom adjunction).
The fourth point follows immediately from the second and third. Thus, we will just prove
the third point.

To prove that induction and coinduction are isomorphic we need to find an isomorphism

R®pi M @ps R= HOH’I(RI’RJ)(R ®z R, M)
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for all M € ;Bimj; which is natural in M. We will do this in two steps. First consider
the following map

Homp: (R, RI) ®pr M @ps Homps (R, RJ) — HOHI(RlyRJ)(R ®z R, M)

90®m®1p — (T®T,'_>Q0(T)'m"lp(7‘/)), (52)

Note that this is a morphism of (R, R)-bimodules and it is natural in M. We have the
following chain of isomorphisms

Hompr (R!, RY) ® pr M & s Homps (R, R7) PRMRY
|
R ®pt M @ps R’ p(1) @m®y(1)
M: e(1) - }1 ~(1)
HOHI(RI7RJ)(;EI ®z R7, M) (rer — rgo(Jvi) -m - p(1)r').

Since r¢(1) = ¢(r) and (1)’ = ¢ (r’) this is the same morphisms as just with Rf
and R’ instead of R. As R is free over R and R’ by Theorem we get from this
that is also bijective and hence an isomorphism of (R, R)-bimodules.

Now we just need to find an isomorphism R = Homps (R, RY) to finish the proof. For
this we use the map

®: R — Hompi (R, R'), r— (r' = Or(rr')) .

This map is R-linear and well-defined by Proposition Suppose that ®(r) = 0.
Write r = ZweWI BuwTw Where {7, }wew, is the RI-basis of R from Theorem @ Then
0=0(r)(1;) = X wew, Buwlr(TwT;) = Bu. Thus, r =0 and @ is injective.

Let ¢ € Hompgr(R,RY). Then ¢ is determined by B, = ¢(7). Now choose r =
> wew; BuwTw, then @(r)(7;) = By as before, and hence ®(r) = ¢ and @ is surjective. [

Now let M,N € sBSBim;. We would like to understand Hompr psy(M,N). If we
write

M = Rll ®RJ1 RI2 ®RJ2 et ®RJk: le+1

_ pl 1 I
N=R1'® R2®RJ§.“®RJ{RZH

R1
we can consider the bimodules
My =R®psn R®ps, - @ps, R € Bim
Ny = R®RJ{ R®RJé o ®RJI/ R € Bim
M = resy (My)
N = jres; (Ny).
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By Theorem we have M = M®K and N = N®K for some K, K’ € N, and thus it
suffices to understand Homgr g7y (M N )

Lemma 5.13. There is an isomorphism

Homgr poy (M, ]\7) =  Homp ) (R QgI M@RJ R, Nl)
(mr— p(lem®l) «— o

Proof. We have the following chain of isomorphisms
Hom g1 gv) (M, ]\7) = Hompr poy (]/\Z, jresy (Nl))

= Hom g g) (IindJ (M) ,N1> .

Note that ;ind; (M) = R®ps M@RJ R. This finishes the proof. d

This is a useful statement, because we understand the morphisms on the right already
by Section and want to understand the morphims on the left.

Lemma 5.14. Suppose {p1,...,pr} C Hom(g g) (R QRr M@RJ R, N1> s basis as left
R-module. Define 1., € Hom pr gy (M, ]V) forl=1,....k and w € W by
Vrw(m) = @i(Tw ® m® 1)

where {Ty }wew, 15 the basis from Theorem . Then {1 | L =1,..., k,w € Wt} is
a basis for Hom g po (]\7, ]V) as left R'-module.

Proof. We start by proving that this set is a generating set. Let ¢ € Homgr gy (M , N ) .

Then by Lemma [5.13| there is ¢ € Hom(g g) (R QpRr M@RJ R, N1> such that ¢(m) =
e(l®@m®1). We can write

k
o => T
=1

for some 7, € R. We have r; = ZwGWI T1wTw Where 17, € R! by Theorem This
gives

k k
p(m) :g0(1®m®1):§:rl-<pl(1®m®l) :Z Z Twl Tw-PI(l®mM®1)
=1 1=1 weW;
k k
=2 2 rer el @mE ) =3 Y v via(m).
1 weW; 1 weWr
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Now we prove linear independence. Suppose

k

0= Z Z rl,w'wl,w

=1 weW;

for some 7y ,, € R!. This implies for all m € M

k k
OZZ Z Tl,w'wl,w(m)zz Z 7‘[7w-g0l(7'w®m®1)
=1 weWr =1 weWr
k
= Z Z TlwTw 4,0[(1®m®1)

=1 weWr
By multiplying with r from the left and 7’ from the right, this gives
0= Z Z TawTw | @i(r @ mer')
=1 weWr

for all r,7" € R,m € M, and thus

As {p1,...,pr} is a basis this implies

0= Z ’r’l’wTw

weWr

for | = 1,...,k and since {7y }wew, is a basis we get 7, = 0. This gives us linear

independence and finishes the proof.

5.3 The category ,SBim,

We consider now ;SBim, whose elements are (R®!, R°2)-bimodules. In ;SBim, we have

the following bimodules

I = R,Iz = R' ®ps R*(1).

As they are generated by 1 and 1 ® 1 as bimodules Lemma implies that these are

indecomposable.
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Remark 5.15. Let M € ;sBSBim,. Then as in Remark [5.3] we get that
MOL ~ R®ps - @piy R.

The right hand side can be decomposed into the six indecomposable bimodules for SBim.
Since this decomposition is an isomorphism of (R, R)-bimodules it is also an isomorphism
of (R!, R?)-bimodules. Hence, it is enough to decompose the six indecomposables of
SBim into II; and I.

Note that this reduction works for all the categories ;SBim;. So, for all the other
cases we will just decompose the six indecomposables for SBim and not repeat this
argument. O

Lemma 5.16. We have isomorphisms in ;SBim,:

1. Be=1.

2. B1 2L (1) &1 (—1).

3. By =T, (1) &1y (—1).

4. B 21, (2) @ IP? & I, (-2).
5. Bo1 = 1) & Ix(1) & Ix(—1).

6. By, =12(—2) &1y & 12(2).
Proof.
1. This is actually an equality.
2. We can use to get
By =R®pm R(1) 2 R' @m R(1) @ RY{—2) @m R(1)
=0L(1) &I (-1).
3. We again use to get
By=R®p R(1) 2 R@p2 R*(1) @ R®@pe R*(—1)
=0L{1) eI (-1).
4. Similar to the previous points implies

Bia = RQ@p1 R®pe R(2)
=~ (R' @ RY(~2)) @ R@pe (R @ R%(-2)) (2)
~T,(2) @192 @ I;(—2).
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. In this case we need write out the projections and inclusions explicitly. For this
we will use the presentation R = k|x,y, z].

By = R®R2 R®R1 R<2> — L1 =R
rI®ro®@ry — —01(rir2)rs

ILh=R — B21:R®R2R®R1R<2>
ro— (R1I1I+1®w®l)- .

This gives us the first summand. For the next morphisms let P, : R — R, r —
LFSQ"(T forie S.

Byl = R®pe R®p R(2) — Iy(—1) = R' ®ps R?
rRroRry — A
H2<—1> = Rl ®RS R2 — Bgl = R®R2 R®R1 R<2>
rIT®ry —> r1lRroas

where A is defined as follows.

A= é&(rl)- ( <x+y® QHTHZ) - Qay@1) ) + 02 (01(r2)r3)
—(1®@zy+z2)

- 301(7“1)' <<m+y® ;) - (1®33)> - Py (91(r2)r3)

+=01(r) - (1®x) = (2®1)) - 0o (P1(r2)r3)

— ]

~01(r1) - (1@ 1) - Py (Py(ro)r3)

ZPl(rl)- ((x+y—z®1) — <1® y—;z)) - 02 (O1(r2)r3)

=N

+ %Pl(m) : <1 ® ;) - Py (01(r2)r3)

F3Pr) - (1©1) - 8, (P(ra)rs)

This gives us the second summand. The last summand will be given by the fol-
lowing morphisms.

B21 - R®R2 R®Rl R<2>
r QroXrs

I(1) = R ®@ps R?(2)
A/

I(1) = R' ®ps R?(2)
T QT

By = R®p2 R®p1 R(2)
r1®1&ry

L1l

where
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A= é(%(h) : <<x +y® @_22)2> - (lozy— 2)2)> - 02 (O1(r2)13)

+ %81(7“1) . ( (a: Tye MT?HZ) ~ Ray@l) ) - Py (01(r2)r3)
- (1®zy+zz)
+ %&(n) (1® (y = 2)*) - 02 (Pi(r2)rs)

+5010m) - (192) = (81) - By (PL(ra)ro)
1
+ 4P1 (1 ® ) - 02 (O1(r2)r3)

(z+y—201) - <1®

Y+ z

>> . P2 (81(7"2)7"3)
+ Pi(r1) - (1@ 1) - Py (Pr(r2)rs) -

Now we can compose the projections and inclusions to get three idempotents. Then
one can check that these idempotents are orthogonal and their sum is the identity.
Thus,

By =1 @ Ix(1) @ I(—1).

6. From (5.1)) we get that
By, = R®ps R(3) = (R' ® R (—2)) ®ps (R* @ R*(-2)) (3)
:]I2<—2> @I ®H2<2>. ]

Remark 5.17. Note that via the identification

By «— H,,
I +— 'H?

Iy +— 'H?

this lemma categorifies Proposition O

Now all that is left is to find bases for the homomorphism spaces between I; and Is.
Let k,l € {1,2}. Since Ij is generated by the 1-tensor we get that every element of
Hom g1 gey(Ik,I;) is the determined by its image of the 1-tensor. This gives us the
following.

Theorem 5.18. We have isomorphisms in {SBim,:
1. Hom(R1’Rz)(I[1,]I1) = ]11, ©— go(l).

2. HOm(R17R2)(}12,H1) =T,p+— (,0(1 ® 1).
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3. Hom(R1ng)(H2,]Ig) =, p— p(1®1).

This does not work for Hom g1 p2)(I1,12), as for example the map 1 — 1 ® 1 is not
well-defined (it is not a morphism of (R!, R?)-bimodules). So, we need to do some work
to understand this homomorphism space.

By Lemma [5.13| and the discussion leading to this lemma we need to find a basis of
Homp p)(R®@p R®p2 R, R®ps R). We will use the fact that B1BaB1 = B1® R®ps R.
Thus, we want a basis of Hom( R, R)(BlBg, B1B3Bj). For this we can use Theorem
and get the following basis.

a1 @R a1®l4+a01Qar®1®ayg

. 1 Fo1 @1 Qa1 ®1+a1®1Qaz® o
¢1.r1®r2®r3r—>8r1r2r3 +1R®aaeRa; ®14+1Q0 a0 ®1®a;
+1lRaRa; ®1+1®a; ®as ® oy

R®1IRXa XL+ R1IR®1IRa o
+HlR®R1+100®1® 3
@11+ a®1Qar®1

©Tor3
+1R a1 T1+1Ra; Ras®1

1
9021T1®7“2®T3+—>17“17"2'

1
90327’1®7’2®7"3'—>47’1'<

1
s04:T1®r2®7“3»—>§(T1®r2®a1®r3+r1®r2®1®a1r3)

@7 @ T s Spipoe . [ 10 02@0101+ @18 ®1
PorEREIs T IR 110 wmelom +1010a0q
1
g06:7’1®T2®T3|—>57*1.(1®a2®1®1+1®1®a2®1).r27a3
Let pr : BiBaB; — R ®ps R be the projection. Then we can check that proys =
proys = 0. Hence, {propy, proys, proys, props} is a basis of Hom g g)(R @z R @pge
R,R ®ps R). By Lemma we now get a basis as left R!'-module

{7/}17 o, U3, e, V5, V6, Y1, wS} C Hom(Rl,R2) (R’ R ®Rs R)
We can then use that R®ps R = (Rl ®ps Rz)@4 via the projections P ® Py, PL®0, 01 ®

P3,81 ® 0. From this we get that Hom g1 g2y (R, R* ®ps R?) has the following basis as
left R'-module

L, P (o) - (ze1)

$rir— +301(r) - (1@ a® +yz) — (2y ®1) - (2 ® 7)) (5.3)
r Pi(r)- (1®a® +y2) = (ay®1) - (: @ 7)) |

P L)@ — g (Lo — (20 1),

5.4 The other categories

In this section we will only state the results. All the proofs work similar to the proofs
in the last section.
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5.4.1 ,SBim,

We can swap the roles of s; and s2 in S3 and get S3 again. Via this symmetry the
category oSBim; is completely symmetric to ;SBim,.

5.4.2 ,SBim, and ,SBim,

Again via the symmetry of s; and sy it is enough to state results for ;SBim;. We have
the following indecomposable bimodules in ;SBim;

I} = RY—1),Iy = R' @ps R (1).

Theorem 5.19. We have isomorphisms in {SBim,:

1.

GvoB e e

6.

Be =11 (1) ® L1 (-1).

B =1, (2) @ IT2 @1 (—-2).

By =1 @Iy,

Bia 2T, {1) & Ty (—1) & Ip(1) & Ip(—1).
By 2 Ti(1) @ 1) (—1) @ I (1) ® [r(~1).

By = 12(2) @152 @ Ig(—2).

Remark 5.20. Note that via the identification

By +— H,
I +— 'H,

Iy +— 'Hj

this theorem categorifies Proposition [2.48 %

Theorem 5.21.

1.

2.

The space Hom(R1,R1)(H1,H2) has rank 1 as left R'-module with basis given by
p:ri—ri-((ey—zz—yz@ )+ (1@ay —xz—yz)+ (22® 2)) .

The remaining spaces of the form Hom g1 g1y (I, 1;) for k,1 € {1,2} are isomorphic
to I via the mapping ¢ — p(1%).
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5.4.3 ,SBim and ,SBim

Again via the symmetry of s; and sz it is enough to state results for ;SBim. We have
the following indecomposable bimodules in ;SBim

I = Ry = R®p2 R(1),I3 = R' ®ps R(2).
Theorem 5.22. We have isomorphisms in {SBim:
1. B =21;.
2. B =L (1) o (-1).
3. By =15.
4. Bia = 1x(1) @ Ix(—1).
5 By 2l &ls.
6. By, =13(1) @ I3(—1).
Remark 5.23. Note that via the identification
By +— H,
I +— 'H,
Iy +— 'H,
I3« 'H,
this theorem categorifies Proposition [2.49 O
Theorem 5.24.

1. The space Hom g py(I1,l2) has rank 2 as left R-module with basis given by

pr:rr—r-(ae®1+1®ag)
¢2:r»—>ra1-(a2®1+1®a2)_

2. The space Hom(p1 gy (I1,13) has rank 2 as left R*-module with basis given by

Pi(r) (ay @)+ (9 2) ~ (1822 + y2)
o) (e @ 1) + (0 2) — (L@ az 4+ 92)) - o
| P (ay @ 1)+ (:©2) = (1922 +32) o

92T 1 (k- (ey® 1) + (20 2) — (1@ 22 +12).

¢1:7 —>
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3. The space Hom(p1 gy (I, I3) has rank 4 as left R*-module with basis given by

. Pi(r) - ((ry @)+ (2®2) - (1®@z2+yz2)) o
oLi1 T % 1(r) - (zy @ 1)+ (2®@2) — (1®@zz+yz)) - airy
. Pi(r) - ((ry @ 1) + (2 ® 2) — (1 @22 + y2)) - a172
QMO 15 )l (g © 1) + (2 ® %) — (1@ 22+ y2)) - 1

b ri@ry P (182) = o)y

i %1(7’1) (1®a?+yz) — (a;y®1)—(z®w))-r2
o Pi(r) - (1®a? +yz) (zy®1) — (z®a;))-r2

BN ET = Ly el (o) - (@ 1) v

4. The remaining spaces of the form Hom(RIVR)(]Ik,]Il) for k,1 € {1,2,3} are iso-
morphic to I; via the mapping ¢ — p(1%).

5.4.4 SBim, and SBim,

Again via the symmetry of s; and sg it is enough to state results for SBim;. We have
the following indecomposable bimodules in SBim,

I = BRI = R®p2 R(1),I3 = R®ps R'(2).

Theorem 5.25. We have isomorphisms in SBim, :

1. B. =1.

2. B =2 (1) o (-1).
By = 1.
Bia 2 15(1) @ I (—1).
By =11 @ 1.
6. By, = 13(1) @ I3(—1).

o

v

Remark 5.26. Note that via the identification

By +— H,
I «— H)
Iy +— H,

I3 «— H}

this theorem categorifies Proposition O
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Theorem 5.27.

1. The space Hom(R’Rg(Hl,Hg) has rank 1 as left R-module with basis given by
p:r—r-(®l+1®a).
2. The space Hom(R7R1)(H1,]I3) has rank 1 as left R-module with basis given by
p:r—r-(ze2)+(zy®1)— (1®xz+yz)).
3. The space HOm(R’Rl)(Hg,Hg) has rank 2 as left R-module with basis given by

pr:r@rar—rire- ((zy®1) + (2®2) — (1® 2z +yz))

r1- ((x & 1) — (1 &® Z)) . Pl(T'Q)

P2 171 @ Ty +r1- (P +yz®1) — (2®2) — (1@ ay)) - 301(r2).

4. The remaining spaces of the form Homp p1y(Ix,1;) for k,1 € {1,2,3} are iso-
morphic to I; via the mapping ¢ — p(1%).

5.4.5 All remaining categories

We can consider all the remaining categories ;SBim; together. They have one thing in
common, namely that I = S or J = 5. There will only be one indecomposable bimodule

I =R (—|InJ)).

Then the space Hom g gy (I, 1) is isomorphic to I via ¢ — ¢(1). We have the following
decomposition lemma.

Lemma 5.28. If [ = S or J =S, then all objects in ;SBim; decompose into sums of
shifts of 1.

One can observe this by decomposing the indecomposable bimodules for SBim into I
by using the R°-module structure from one side to erase all the tensor products. We
will do one example which makes clear what is meant by that. Consider ¢SBim; where
I = R'(—1). We will decompose Ba.

By = R®p2 R®pi R(2) = (R*® R*(—2)) ®pe R®@p R(2)
=R®p R2)®R®p R
=~ (R' @ R*(-2)) ®p1 R(2) @ (R* ® R"(-2)) ®p1 R
= R(2) ® R®?® R(-2)
~ R'2) @ (RN & (RY(-2))® @ R'(—4)
=1(3) ® {1)*® & I{—1)® @ I(-3).

@3

89



6 Diagrammatics in the singular case

6.1 Diagrammatics for (R!, R’)-bimodules

In this section we want to develop a diagrammatic presentation for the category ;BSBim
of Bott-Samelson bimodules viewed as (R!, R/)-bimodules via restriction for some para-
bolic subsets I and J. This is a good first step to finding a diagrammatic presentation
for singular Soergel bimodules as they are the Karoubi envelope of ;BSBim ;. The res-
ults in this section are a generalization of the results of Elias [Elil6, Section 5] and the
proofs are very similar to his work.

Definition 6.1. We define the category ;7 as follows. Objects are sequences i of indices
in S, just as for Dy. Morphisms between i and j are again given by (k-linear combinations
of) coloured graphs in the strand R x [0, 1] with appropriate top and bottom boundary.
This time these pictures include a membrane on the left, labelled I, and a membrane
on the right, labelled J. The pictures are constructed out of the generators of D; and
the thick trivalent vertex (see Definition which is the only interaction with the
membranes. Strands running into a membrane (via the thick trivalent vertex) must be
labelled ¢ € I on the left and j € J on the right.

The relations for the morphisms are given by those of D; and the relations (4.48]) to (4.51))
(where the thick lines are substituted by the membranes). O

For example a morphism in ;77 could look like this.

3

We view the morphisms as being equipped with a left- R-module structure and a right-
R’-module structure by placing symmetric polynomials directly on the right of the
left membrane respectively directly on the left of the right membrane. This is well-
defined, i.e. it does not matter in which region directly next to a membrane we place the
polynomials. That is because the polynomials can slide (via (4.8))) through every strand
that is connected to the membrane, since such a strand is labelled with ¢ € I or j € J
and the polynomials live in R! and R’ respectively.

Definition 6.2. There is a functor ;F; : ;77 — ;BSBim; defined as follows. The
object i is sent to B; restricted on the left to R! and on the right side to R’. Morphisms
in ;77 which do not interact with the membranes are sent to (R, R)-bimodule morphisms,
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which are also (R!, R’)-bimodule morphisms, via Fi (see Definition . The images
of the thick trivalent vertices are the following.

r—1®r

Ro&p R — R
7 & ro — 81'(7“1)7"2

RHR@R]'R
r—rl

BRIZEIBS
et i e

R&p R— R
1 & rog — 7“1(93'(7“2)

;F; is required to respect compositions and tensor products and is thus defined for all
morphisms of ;7. O
Definition 6.3. There is a functor ;G ; : ;77 — gD defined as follows. The object i in
1Ty is sent to I ® i ® J in gD. The functor is given on morphisms by interpreting the
two membranes as thick lines labelled I and J respectively. O

Proposition 6.4.

1. The functors ;F; and ;G; are well-defined and preserve the (R!, R7)-bimodule
structure on Hom spaces.

2. The composition of functors gF o ;G; : 1T; — gD — gBSBim is equal to the
composition of functors jnd;o;F;: Ty — [BSBim; — gBSBim where ;ind;
is induction from R! to R on the left and from R’ to R on the right.

Proof. The functor gF is well-defined as we know and the same is true for the induction
functor. For the functors ;F 7 and 19 s all we need to check is that the relations in 1Ty
hold true when sent to ;BSBim; and gD via ;F; and ;G ; respectively. For ;G ; this is
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clear, since all relations in ;77 come from relations we derived for gD.

For ; F; we already know that the relations coming from D are satisfied in BSBim, since
we know that Fi is well-defined. Thus, these relations also hold in ;BSBim ;, because
restricting the module action on the sides does not influence them. Hence, all we need
to check are the relations (4.48) to . This is done in Lemma

For the two compositions to be equal we easily check that both of them sent the object
i1 to BiB;Bj = R®pr B; ®ps R, and thus they are equal on objects. Hence, all there is
to do is to check that the generating morphisms are sent to the same. This is done in
Lemma [6.61

The (R!, R’)-bimodule structure gets preserved by all four functors. For ;Fyand gF
this is true by definition. For ;G ; and the induction functor this follows from the fact that
symmetric polynomials slide through a thick line or a tensor product respectively. [

Lemma 6.5. The relations to are preserved when passing to [BSBim; via
F.
17 J

Proof. We will only check these relations for the left membrane as the calculations are
completely analogous for the right membrane. Also note that all four relations are stated
in a way that uses isotopy invariance, so we would need to check multiple iterations of
them (for example could be a morphism B; B; — R, but could also be a morphism
R — B;B;). Instead we will check the relations and which give us the
isotopy invariance we need and then we just check one iteration of each of the relations

(.59) to @51)

We begin Wlth rela‘mon

E L

The right hand side is sent to

R— R®pgi R

r—1®r
under ; ;. Now we just compute what the left hand side becomes under ;7.
cup
ro— (uR1Ie1I+1®l®w)-§ — (2R1+00w)-5=1®r

Here the second arrow was the image of the very thick trivalent vertex. Now we can

check relation (4.59).
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Ll -

The right hand side is sent to

R®pi R— R
r1 ® 1o —> 0;i(11)T2
under ;F;. Now we compute what the left hand side becomes under ;F ;.
cap

R@RzR — R®R1R®R1R — R
M Qry — 1®r ®ry — 0i(r1)ra

Here the first arrow was the image of the very thick trivalent vertex. Next we check one

iteration of (4.48 -

Pl

The right hand side is sent to the identity on R under ;F;. The left hand side is sent
to the following composition under ;F;.

R — RemR 2% R

ro—  1®r = r

We will continue with checking one iteration of (4 -

Vv

The right hand side is just two thick trivalent vertices, and thus is sent to

R — R®p R — RRp RIp R
ro— 1®r — I1®R1®r
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under ;F;. So we just have to observe what the left hand side becomes after applying
F.
17

R — R®r R — RQ®r RQpr R
oo 1®r — 1®1®r

Here the first arrow is the image of the thick trivalent vertex and the second arrow is
the image of the normal trivalent vertex. We will continue with checking one iteration

of (E50).

-

The right hand side is again just two thick trivalent vertices, and thus is sent to

R — R®RjR — R®RiR®RjR
roo— 1®r — 1®1xr

under ;F;. We compute that the left hand side is sent to

R — R®RjR®RiR — R@RiR®RjR
roo— 11®r — 11er

under ;F;. Here the first arrow is the image of two thick trivalent vertices and the
second arrow is the image of the 4-valent vertex. Now we are left with checking (4.51).

R

The right hand side is this time given by three thick trivalent vertices, and hence it is
sent to

R — R®r R — RQrR®pr+1 R — ROp RQpi+1 RQp R
r —  1®r +— 1®ler — 1®11er

under ; F;. So we compute what the left hand side is sent under ;7.

R — RQ®pi+1 ROpr RQpit1 R — RQpi RQpit1 RQpi R
T Ileler — I1oleler

Here the first arrow is again the image of three thick trivalent vertices and the second
arrow is the image of the 6-valent vertex. To be precise we would need to do the same
calculation with ¢ and ¢ + 1 swapped, but this is completely analogous, and thus we will
omit it. This finishes the proof. O

94



Lemma 6.6. The compositions gF o ;G; and jind;o;F;, where jind; is the induction
functor, are the same on generating morphisms of 17T;.

Proof. We will abbreviate the compositions as G1 = gF 0 ;G; and G2 = ;ind;o; F;. Let
first ¢ € Hom, 7, (4, j) be a generator from D. Then we compute Gi(¢).

Gi(p) = (9F 0 1G5) (@) = gF (id; @p @ id )
= idp, ®F(¢) ®idp,

Next we can compute Ga(¢) and observe that the two values are equal.

Ga(p) = (find; o; F)) () = fnd; (F(p))
= idr ®@prF(p) ®ps idr = idp, ®F (¢) ® idp, = G1(p)

So all the is left to do is to check it for the thick trivalent vertices. We will only do this
for the left membrane, since the right side is completely analogous. Thus, we are left
with two thick trivalent vertices and just need to send them through G; and Gs.

< R®pr @QR®@ps R —> R®R1R®RZR®RJR)

f

i
I

TT®ra®@ry —> 1M1 R®ra @13

R — R®p R
r — 1®r

Ide R®pri QRQps R — RQp RQ®p RQprs R
rM®ro®ry — 1M R1Rro @13

J

R®RIR®R2R®RJR — R®R1®R®RJR
rIRre®@r3®@ry +—> 11 0i(re)r3 @1y

Q

I

I

gF
'—>
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G, : £$<R®MR’>R >

" ®re —— 82'(7’1)7’2

Ii,Ld;I R®R1R®RiR®RJR — R@RI ®R®RJR
rM®ro@Rr3@®ry —— 11 ®8¢(7’2)T3 X 14

We observe that the thick trivalent vertices are sent to the same morphism under G; and
Gs. This finishes the proof. OJ

Definition 6.7. We define the following k-linear map for 4, j two sequences of indices
in S.
R ®pr Hom, 7, (i, j) ®gs R — Homgp(IiJ, 1jJ)

(O
MmRery — -G (p) T

(6.1)

This map is well-defined, i.e. the symmetric polynomials which slide through the tensor
products also slide through ;G ;, because ;G respects the (R!, R”)-bimodule structure
of Hom spaces. O

Lemma 6.8. For X,Y € ;BSBim; we have an (R, R)-bimodule isomorphism ¥

HOH](R’R)(R(X)RIX@RJ R,R®R1Y®RJ R) = R®RI HOHI(RIJ{J)(X,Y) ®RJR
(M @rRT — 1171 @ 9(x) @Tar2) +— 718 P T
Proof. Well-defined: We first observe that ¥ is obviously a homomorphism of (R, R)-

bimodules as 1 and 19 exactly act by the (R, R)-bimodule action on the left hand side.
Now we need to check that ¥ is well-defined. We compute that

U(rir @ o @rjra) = (M @ & ® 1y — i1 @ o(x) @ rar;ra)
= (F1 ® T ® Ty — 1171 @ 130(x)rj @ T2rs)
= V(r; ® ripr; @ o)
for 11,79 € R,7; € RI,rj € R and ¢ € Hompr psy(X,Y). So V¥ is well-defined if an

image of VU is actually a well-defined morphism of (R, R)-bimodules. Let 1,72 € R and
¢ € Hompr psy(X,Y), then we easily observe that the map

RO®p X ®ps R— RRp Y Qps R, M ®T Ry — 1171 ® 9(x) @ 1219
is a homomorphism of (R, R)-bimodules. Note that under this morphism we also have

FiTi @ & ® T2 — 11717 ® () @ TTare = ri71 ® fip(x)rj @ Targ
= 7171 ® P(T5275) @ T212
T Q rar; ® Ty — 11 © @(15275) ® Targ

96



if 7; € R! and rj € R’ and thus the morphism is well-defined. Hence, ¥ is well-defined.
It remains to prove that W is bijective.

Injectivity: We start with injectivity. Let A = Zi\;l Tk ® 0k ® o, € ker(¥). By
Theorem we know that R has an R!-basis given by {7, }wew, and an R’-basis
given by {m, }rew, together with dual bases {7, }wew, and {7} },cw, respectively which
have the property that 0r(7,7;) = 6w and 0;(m,m}) = ;. This implies that we can
write

N
A:Zr1k®¢k®r2k: Z Tw @ Pw,r @ My
k=1 weWr,reW;

for some ¢y, € Hompr sy(X,Y). Now we can compute that

0=U(A)

=v E Tw @ P, @ Ty
weWr,reW;

=|mM®r@ry—> 1] E Tw ® Puw,r(T) @ T | 72
’wEW[,T’EWJ

If we choose 1 = 7,7 and 79 = 7} this implies

0= Y @ pu@) @ mn
’U)EW[,TEWJ

for all x € X. If we now apply the k-linear map
0 ®idy ®05: RQp1 Y Qps R—)RI(X)RI Y Qg R~y

to this, we get

0= > 9ilrwms) ® purle) @ dy(mmy)
weWrreW;

=1® SOU,t(fE) ®l= SOU,t(fE)

for all x € X and all uw € Wy, t € Wy, where the last equality corresponds to the
isomorphism R! ®p1 Y ®@ps R7 2 Y. So we have ¢, ; = 0 for all u € Wy, t € W, which
implies

N
Azzrlk(@‘pk@'@k: Z Tw®‘10w,r®777"20-
k=1 weWr,reW;y

Thus, ker(¥) = 0 and ¥ is injective.
Surjectivity: Now we need to prove surjectivity. Let ¢ € Hom(g g) (R®pt X Qps
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R, R@p1Y ®ps R). We still have the RI-basis {7, }wew, of R and the R/-basis {m, },ew,
of R. Hence, we can write ¢(1 ® z ® 1) uniquely as

PY1lezel) = Z Tw @ Qur(x) @ T
weWr,reWy

for all x € X, where ¢, ,(z) € Y are some elements of Y that only depend on z. In
this way we have defined some maps ¢y, : X — Y. Now we want to check that these
maps are homomorphisms of (R!, R”)-bimodules. So let z,2’ € X, then

Y m@euetd)om=v(lort+dol)=yp(lorel)+d(lod ®1)
weWr,reWy

= Z Tw & O r (33) @ Ty
wEW],TEWJ

+ Z Tw @ Puwr(z)) @ T
weWr,reW;y

= Y O pu@) + ol @
weWr,reWy

and from this we get by the uniqueness of this description that ¢, ,(x +2) = @y r(z) +
wr(z') for all w € Wy, r € W,;. Now let 7; € RI r; € R7 and 2 € X, then we compute

Z Tw @ Puwr(rizry) @m = Y1 @rar; ®1) =Y(r; @@ 1))
weWr,reW;y

:7’1'-1/1(1@.%'@1)-7’3'

=r;- Z Tw @ Puwr(x) @M | - 15

’wEW[,TGWJ

— Z TiTw @ Puwr(T) @ mpr;)
weWr,reW;y

= § Tw & Ti%w,r (1‘)7’j @
’LUGW[,TGWJ

and from this we get that . (r27;) = 0w, (z)r; for all w € Wi, r € W; again by
uniqueness of this description. Hence, ¢y, € Hompr, RJ)(X ,Y). Now we can define

A= Z Tw @ Pur @ T € R®pr Homypr gy (X,Y) @ps R
weWr,reWy

and apply ¥ to it:
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\I/(A) = \Ij Z T’w ® (p’u]//‘ ® 7T’I’ == Z \I] (Tw ® SOU],T ® 7Tr)

’LUGW[,T‘GWJ wEW],T‘EWJ
= g (TNI Kr& Fé — TwrNI X Sow,r(w) & 7?2777')
wEW[,TEWJ

=|"n®rery— Z Tw7:v1®4pw,r(x)®7:v27rr

’wGW[,TEWJ
=|MRrRry —> 17 - E Tw @ Qur(x) @m0 | -T2
’LUEW],TGWJ

—(Meren— - @P1lerel)- rm)
=R Y (M reTr))=1.

Thus, ¥ € im(¥) and W is surjective and hence bijective. This finishes the proof. O

Proposition 6.9. The map ® from is an isomorphism of (R, R)-bimodules.

Proof. 1t is obvious that ® is a homomorphism of (R, R)-bimodules. So it is enough
to check that ® is bijective. We begin to with looking at an arbitrary morphism ¢ €
Homgp(1iJ,1jJ).

Ll

(6.2)

weWr,reWw,
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weWr,reWy

weWr,reWy

Here we used the R!-bases {Tw}wew, and {7} }ew, of R and the R -bases {m}rew,
and {7} },ew, of R given by Theorem again. The morphisms 1, , are defined as

follows.

Note that v, is now a morphism between objects in D; and thus can be written using
thin lines only. Thus, we can view 1, as a morphism in Hom 7 (4, j) if we let the lines
coming out from the sides run into the membranes. Note that this is possible, since they

form reduced expressions for w; and w; respectively, and hence the indices lie in I and
J respectively. In this way we can define a k-linear map

3. Homyp(IiJ, IjJ) — R®p Hom,7,(i,j) ®ps R
. w — ZwEWI,TEWJ Tw ® ww,r ® Tp.

The calculation (6.2) shows us that ® o® = id. So all that is left do is to prove the other
direction. For this let

N

A= Zrlk R YL @ rog € R®RI HOHIITJ(Z,J) QR R
k=1

be an arbitrary element. Again we can rewrite this element using the bases {7, }wew,
and {m, }rew, for R as an R!'-module or R’-module respectively.

A= Z Tw @ Puwr @ Ty
weWr,reWy

Before we start to apply ® and ® to A we need to make some observations about the
Yw,r- We are interested in the lines that run into the membranes on the sides. We will
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only talk about the left membrane, the right one is completely analogous. The lines
running into the left membrane write a word with the elements of I (read from bottom
to top). This word corresponds to an element in Wi.

We can then use relations to to change the order in which the lines hit the
membrane or reduce the number of lines. This corresponds to using all relations in the
group W;. Thus, we can reduce the word to a reduced expression for the corresponding
element. Now we can use relation to increase the reduced expression to a reduced
expression of wy.

The upshot is now that we can w.l.o.g. assume that the lines running into the left
membrane form a reduced expression for wy and we will do this. The same goes for the
right membrane and w.

To observe that (® o ®) (4) = A it is enough to check that

(5 o <I>) (Tw ® Puwr Q) = Ty ® Py r @ T,

because ® respects sums (since we have to extend it k-linearly anyway for a complete
definition). We have ®(7y ® Yur @ 1) = T+ ;G (pw,r) - 7. In order to apply @ to this
we need to calculate ¢y ; = (T - ;G (Puwyr) - 7rT)u7t as in for u € Wr,t € Wj;. This
would look like the following.

T
Py !
:f_f_l_"]l

Now we know that ® (1, - ;G (pw,r) - Tr) = ZUGWI,tGWJ Tu @ Yyt @ mp. The next step is
to rewrite v, ¢ in 7.

1/}u,t
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L1
T e T

[TTT ]:

111

1

1

i

1

Pwr
|

1

=
Ilo
L3

= 5w,u : 5r,t s Pw,r

Note that we have used that the lines coming out of the sides of ¢,,, form the same
reduced expressions for wy and wj as the lines running into the membranes. This follows
from our discussion above which explained that we can use and to let the
lines running out of the sides of ¢, form reduced expressions of w; and w; of our
choice. Now we can finish our calculation.

(50(1)) (Tw®§0w,r®7rr):a(Tw'IgJ(QPw,r)'Wr): Z Tu ® Yy @ T
ueWr teWy
= Z Ty & 6w,u : 67",75 CPwr QT = Ty @ Qo r @ Ty
ueWyr teWy

This finally tells us that ® o ® = id, and thus @ is the inverse of ®. Hence, ® is an
isomorphism and the proof is finished. O

Finally, we can prove the main theorem of this section.
Theorem 6.10. The functor ;F;: T; — BSBim; is an equivalence of categories.

Proof. ;F; is obviously essentially surjective. If ;F; would not be fully faithful, then
there would be 7, j € ;T such that

f
HomITJ(Q, l) SRR HOHI(RI’RJ)(BZ, Bl)

is not an isomorphism. So let us assume this and derive a contradiction. We consider
the following diagram.

L id®1.7'—J®id
R®RI Homlﬁ(z,l) ®RJ R _— R®RI Hom(RI7RJ)(Bi,Bi) ®RJ R

0| |#

Homgyp(IiJ, 1jJ) g_]-') Hom(R’R)(R ®Qpr Bi @rs R, R ®pr Bj ®ps R)
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Here we used the isomorphisms ® from and ¥ from Lemma Note that gF is
an equivalence of categories, and thus the bottom arrow is also an isomorphism. Also
note that ¥(r; ® ¢ @ ro) = 11 - jind ;(¢)) - ro where jind; is the induction functor. We
check now that the diagram commutes, for this we need

(To (id @, Fy @id)) (r ® ¢ @ 19) = (9F 0 ®) (11 @ ¢ @ 19)
— U (11 @ 1 Fy () @ 12) = gF (r1 - 1G5(¢) - 7o)
— r1 - (fdndj o Fy) (@) - 12 = r1-(9F 0 1Gy) () - 12

to hold. However, the last equation is true due to Proposition [6.4 So we have a
commutative diagram where three arrows are isomorphisms. Then the fourth arrow (the
top arrow) also needs to be an isomorphism. Hence,

id®,F,®id
—

R®@pr HOHlITJ(Li) Qps R R ®pr HOm(leRJ)(Bi, Bl) ®prs R

is an isomorphism. Since R is free over R! and R’ we can write the left side as
N
(HomITJ(Ll’))N and the right side as <HOH1(RI7RJ)(BD Bi)) , where N = |Wj| - |[Wjy|,

and the isomorphism above is then given by (;F;)". This implies that
N 1
Hom, 7, (i, j) — Homgr pry (Bi, Bl)

is an isomorphism and we have a contradiction. Thus, ;F; is fully faithful and the proof
is finished. O

6.2 Diagrammatics for singular Soergel bimodules

In this section we will use the concept of idempotent completions to obtain a new dia-
grammatic category which is equivalent to the category of singular Soergel bimodules.
This diagrammatic category will have the same problems as the category ¢D: In order
to understand these categories we need to understand how the complicated idempotents
behave. This makes these diagrammatic categories hard to work with, but they are still
a good starting point for calculations. In a later chapter we will give a diagrammatic
presentation of singular Soergel bimodules for S3 with generators and relations and use
the work from this chapter to achieve this.

Before we can construct the idempotents in ;7; we need some preparation.

Definition 6.11. We define the diagrammatic category ;g7; for I,J C S parabolic
subsets. This category is derived from ;7; in the same way as ¢D is derived from
D1. Objects are sequences J = J1Js ... J,. of connected subsets of S. The generating
morphisms are the generators of ;7; together with the J-inclusions and J-projections
(with membranes on both sides). The defining relations are the ones from ;7; as well

as relations (4.37)) and (4.38)) (with membranes on both sides). O
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Remark 6.12. Note that all morphisms in gD are (R, R)-bimodule morphisms and thus
become (R!, R7)-bimodule morphisms via restriction. Hence, all the relations from gD
also hold in ;¢77. %

Theorem 6.13. The category 197 is equivalent to the partial idempotent completion
of 1Ty by the images of ¢y for J C S. The functor ;F; from ;T; to BSBim; extends
to a functor ;gF; from ;g7 to ;gBSBim ; which is an equivalence of categories. Here
eBSBim ; is the full subcategory of (R, R”)-bimodules containing all grading shifts of
the generalized Bott-Samelson bimodules By .

Proof. This follows from the discussion in Remark and Proposition [4.20 O

Definition 6.14. Let K C S. If K C J we define the following morphism in ;g7;.

EIE

If K C I we have can define the same morphism on the other side.

F1b |

We call these morphisms very thick trivalent vertices. O

Remark 6.15. Note that these morphisms are well-defined, i.e. they do not depend on
the reduced expression for wx which is chosen on the right hand side. This follows from
relation (although one uses it with the membrane here which behaves like a thick
line) and the fact that applying ¢« after a J-inclusions just gives the J-inclusion to
y- O
Remark 6.16. One can compute what the images of and under ;gF; are. If
is going up it is sent to the morphism R — Bg,r — r®1. If is going down
it is sent to Bx — R, 11 ® ro — 110k (r2). The morphisms corresponding to are
similar (just swapped left to right). O

Lemma 6.17. The following relations hold in 1gT; where K C J in the first and third
relation, K C I in the second and fourth relation and K C I,J in the fifth relation.

ETE
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(6.7)

(6.9)

ﬁﬁ-rr

MM#”

= (6.10)

In the last relation the lines of the left hand side give a reduced expression for wg .

Proof. The first two relations can be checked in ;gBSBim ; and then hold in ;g7 because
of Theorem For instance, if we consider the version of were both strands end
in the top, the left hand side would be given by the following composition.

R — BK — BKBK
r o — rl — relel.

The right hand side of is given by the following composition.

R — Bg — Bi Bk
r o o— r®l — rlel.

This proves this version of . The others can be done similar. The proof of the third
and fourth relation is basically the same. Thus, we will just prove the third relation.

e i

-
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The last relation follows from the following calculation.

=
&

This finishes the proof. g

Lemma 6.18. Let K C S be such that K C I,J. Let {7y }wew, be the RX -basis of
R from Theorem and let {7} wew, be its dual basis. Then we have the following
decomposition in pairwise orthogonal idempotents.

(6.11)

Proof. We will first prove that the relation (6.11)) is true.

weWg
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Now we will prove that the summands on the right side of (6.11]) are pairwise orthogonal
idempotents. For this let w,u € Wg. We will compute the composition of the summand
corresponding to w and the summand corresponding to u.

This finishes the proof. O

Remark 6.19. These are exactly the diagrammatic pictures for the decomposition R =

(RK )IWK 3 We will now use these idempotents to extend our category as we did for
gBSBim. O

The following is a crucial definition introducing an important category underlying all
further categories.

Definition 6.20. We construct a category [/g\T/J

Objects: Objects are the same as in ;g7; and for each K C I, J we add another object
which is an empty sequence labelled K (we identify the original empty sequence with
the empty sequence labelled (). We draw the identity on the empty sequence labelled
K as follows.

Morphisms: The generating morphisms are the same as in ;g7 as well as two new
morphisms for each K C I, J. These are morphisms between the empty sequence labelled
K and the empty sequence labelled () and look as follows.

e
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Relations: The defining relations are

Tu — G - (6.13)
’
as well as the defining relations of ;¢77;. %

As described in the introduction we will now put all the individual categories 1/9_7'; for
fixed I,J C S together to obtain a 2-category in order to mirror the fact that singular
Soergel bimodules are a 2-category.

Definition 6.21. We define the collection of categories {757} scs to be the smallest
(with respect to taking full subcategories) such collection with the following properties:

e For each I,J C S the category Eﬁ is a full subcategory of ;s7y;

e The set of subsets of S together with the arrangement Mor (I, J) = ;s7; forms a
2-category.

We call the 2-category from the second property s7T . O
Remark 6.22. This 2-category is well-defined, i.e. there exists a unique such collection
of categories. Existence of such a collection is given, since the 2-category Bim satisfies
both properties if we restrict ourselves to the objects R! for I C . S. For uniqueness
assume that we would have two such collections {;s7;}7,7cs and {rs7;}rcs. Then let
Iﬁl\lge the full subcategory of ;s7; which only contains objects that are also contained
in ;s7;. Then the collection {;s7;}r scs has both properties and is smaller than both
of our original collections. O
Definition 6.23. We define the category ;gBSBim; to be the full subcategory of
(R!, R7)-bimodules that contains all objects of ;gBSBim; as well as the bimodules
RE for K CI,J. O
Definition 6.24. We define the collection of categories { ;sBSBim;}; jcs to be the
smallest (with respect to taking full subcategories) such collection with the following
properties:

e For each I,J C S the category ;gBSBimj is a full subcategory of sBSBim j;

e The set of subsets of S together with the arrangement Mor(/,J) = ;sBSBim;
forms a 2-category.
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We call the 2-category from the second property sBSBim. O

Lemma 6.25. The equivalences ;gF; extends to an equivalence of 2-categories sF :
sT — sBSBim.

Proof. 1t follows from Remark [6.19| that the category IgNT] formally adds pictures for
the inclusions and projections between RX and R. Then Remark implies that ;g7
is equivalent to the partial idempotent completion of ;gBSBim ; by the decompositions

R = (RK )'WK 3 However, this is exactly the category ;gBSBim;, and thus E’f; and
/gBSBim ; are equivalent.

Since sT and sBSBim are built in the same way from I/g;ﬁ and ;gBSBim ; respectively
it follows that these two 2-categories need to be equivalent as well. O

Theorem 6.26. The 2-categories sSBSBim and sBSBim coincide.

Proof. Obviously both categories have the same sets of objects. Moreover, all the com-
positions are induced from Bim and thus are the same. Hence, it is enough to prove that
SBSBim ; and ;sBSBim; are the same. Note that the collection { ;sBSBim;}; jcs
satisfies both conditions of Definition Thus, ;sBSBimj; is a full subcategory of
sSBSBim ;. It is now enough to check that every object of ;sBSBim lies in ;sBSBim.
Let

R" @ps R @poy -+ ®@pa,y R

be an arbitrary object of ;sBSBim; where/ =11 C J1 Db CJoD---CJp1 D1y =J
are subsets of S. Then we have R € J,_,SBSBim j where Jo = I, J,, = J. Now we can

use that sBSBim is closed under composition of 1-morphisms to successively get

R" € ;sBSBim,
R" ®pn R € sBSBim,

R" ®@pn R ®pay -+ @pa, s R € sBSBim .
This finishes the proof. O

From the previous discussions we can easily deduce the following result which is also the
main result of this chapter.

Corollary 6.27. The equivalences ;gF ; extend to an equivalence of 2-categories
sF : 8T — sBSBim.

Remark 6.28. The definition of s7T we gave is rather abstract and might seem hard
to work with. This is in opposition to our goal to use these diagrammatic categories to
better understand Soergel bimodules. That is why we will now give a different description
of sT which is more concrete. We will first show an example of a morphism in s7 and
afterwards give the alternative description while relating it to the example.
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The category ;sT; can be described with generators and relations.
Objects: The objects of ;s7T; are sequences of parabolic subsets J C S where the gaps
between two subsets Ji,Js in such a sequence are labelled by some parabolic subset

K C Ji,J5. Such a sequence would look like this: J Jo - J; . Note that
Ko K1 "Ko K1 K

the beginning and the end also count as gaps (we require Ky C I, K; C J). Such a
sequence will be viewed as dots (labelled Ji,--- ,J;) on a line in the plane and the gaps
between the dots are labelled/coloured with the K;’s. In the example this can especially
be seen with the very thin green, blue, red and yellow lines on the boundary.
Morphisms: The generating morphisms are the same as for ;¢7T; together with the two
generators . However, the two membranes in the pictures can be replaced
by two thick lines labelled Ji,Js as long as K C Jp,Jo. Basically we consider these
generators locally between two thick lines. We have four of them in the example above,
namely the green, blue, red and yellow areas.

Relations: The relations are the ones for ;g7 as well as the relations and
where we again allow the two membranes to be replaced by two thick lines labelled J1, Jo
as long as K C Jy, Jo is satisfied. This concludes the description. O

As we did for gD we will now identify some morphisms with new pictures and show some
extra relations that hold in s7.

Definition 6.29. We define the coloured trivalent vertices by the following pictures.

Ji _ Jy (6.15)
] |\[] (6.16)

Here {7, }wewy, and {my, }wewy, are the dual bases for R over RX1 and RE2 respectively
(from Theorem [3.35) where K is the subset corresponding to the green coloured plane
and K> is the subset corresponding to the blue coloured plane. We also define the same
morphisms where the thick strand ends in the left membrane analogously. %

Remark 6.30. Note that with this definition we have already defined another morphism
as follows.
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J:
*
J1

We will call this morphism coloured trivalent vertex as well. O

t

We have the following relations.

giof
414
I

Here we used the shortcut notation that we got from the isotopy invariance relations
again (note that we do not have proven isotopy invariance in this setting, but we can
still use this notation as a shortcut). The two lines in each picture that end nowhere
could end in either bottom, top or the other membrane as long as they do the same
thing on both sides of the equation. Moreover, by using Remark we could replace
the membrane by an appropriately labelled thick line again. By symmetry we also have
the same relations with everything at the left membrane. There are two more relations
for the coloured trivalent vertex.

(6.20)

i
I
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= (6.21)

Note that we required that the blue thick line is labelled K which is also the label of the
blue coloured area. We could again replace the membranes with appropriately labelled
thick lines.

Definition 6.31. We define the coloured polynomial morphism for a polynomial f € R
(where the blue area is labelled K') as follows.

= ] l (6.22)

Here {7 }wew, is again the dual basis for R over R¥ from Theorem @ O
We have the following relations for f € R.

(=]

p—

(6.24)

1]
1]
[
I

(6.26)

B B E—
=/ =]
_F-_
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In the first relation we require that Ky C J; where K is the label of the green area. In
the second relation we require Ko C J; where K» is the label of the blue area. In the
third relation we require that the green area is labelled with ¢, the colour of the green
strand. In the last relation we require that the blue area is labelled with ¢, the label of
the blue strand.

Examples of morphisms for S;

We will finish this chapter by applying this diagrammatic presentation of sBSBim to
our calculation from Chapter [5| There we calculated various bases for homomorphisms
spaces between indecomposable bimodules. We will now observe which morphisms in
sT correspond to these morphisms in sBSBim.

We first fix some notation. We are now in the case W = S3 and S = {s1, s2}. The strands
and areas labelled s; will be coloured red. The strands labelled s9 will be coloured blue.
Thick black lines will always be labelled S.

Lemma 6.32. Under the sF the two morphisms from correspond (up to some
scalars in k) to the following morphisms in sT .

AT

Lemma 6.33. The morphism from the first point of Theorem [5.21] corresponds under
sF (up to some scalar in k) to the following morphism in sT .

149

1. The morphisms from the first point of Theorem correspond under sF (up to
some scalars in k) to the following morphisms in sT .

l l

¢2 = !

Lemma 6.34.

1R

$1

113



The morphisms from the second point of Theorem correspond under sF (up

to some scalars in k) to the following morphisms in sT

Ail il

3. The morphisms from the third point of Theorem correspond under sF (up to
some scalars in k) to the following morphisms in ST

LT

$1
°

I

IR

I
o

¢4

IR

¢3

Lemma 6.35.
1. The morphism from the first point of Theorem corresponds under sF (up to

some scalar in k) to the following morphism in sT .

l

-
I

2. The morphism from the second point of Theorem corresponds under sF (up

to some scalar in k) to the following morphism in sT .
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3. The morphisms from the third point of Theorem correspond under sF (up to

some scalars in k) to the following morphisms in sT .

L
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7 Diagrammatics for S;

In this chapter we will consider the case W = S3. Our goal is to give new descriptions
for the categories gD and s7. We would like to describe these categories by generators
and relations without using rather abstract inclusion and projection morphisms and the
complicated idempotent relations.

Before start to give such descriptions and prove that they are equivalent to the definition
we know we will fix some notations. Note that for W = S5 we have S = {s1, s2} and
only the four subsets (), {s1},{s2},S. We will use the colours red and blue for the
strands labelled s; and so. We will not specify which colour corresponds to which simple
transposition as everything is symmetric under swapping these two transpositions. We
will use the colour violet if we mean a strand which is allowed to be blue or red. We
will use the colour black for thick strands labelled S. If we colour certain areas in the
description for s7 we will use the colour white for () and red, blue and black for the
other subsets according to our colouring of the strands.

7.1 ¢D by generators and relations

We will now define a category gD; by generators and relations and later prove that this
category is equivalent to gD.

Definition 7.1. We define a monoidal category gD; by generators and relations. It is
generated on objects by s1,s2 and S viewed as coloured dots on a line. On morphisms
it is generated by the following morphisms

polynomial generator

deg = deg(f)

(f € R homogeneous)

(end)dot
deg =1
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l (start)dot
deg =1

\ / trivalent vertex (split)

deg = —1

trivalent vertex (merge)
deg = —1

thick (start)dot
deg =3

very thick trivalent vertex (split)
deg = —3

very thick trivalent vertex (merge)
deg = —3
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thick trivalent vertex (right-facing)
deg = —1

thick trivalent vertex (left-facing)
deg = —1

1

modulo the relations (7.1f) to (7.27)).

Relations (cup and cap are defined as usual)

— |

ST T
ptbe
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(7.2)

(7.4)

(7.5)
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(7.9)

(7.10)

(7.11)

(7.12)

(7.13)
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(7.22)

(7.23)

%

g
e
H

(7.25)

(7.26)

= + (7.27)

iy (1

Remark 7.2. This list of relations is not minimal! For instance and are
consequences of (7.21)), (7.22)) and (7.25)). However, since we want to use all these re-
lations and most of them are also very intuitive we put them in the definition. In this
way we do not need to spend time on proving some of these relations as consequences
of others and can instead concentrate on our main goal which is the equivalence (The-

orem |7.5). O

Definition 7.3. We define a functor G; : ¢D; — ¢D. On objects G is just the
identity (¢D and ¢gD; have the same objects). On morphisms each of the generators
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from Definition is sent to the same picture in gD. Note that this is possible as we
defined the thick dots, thick trivalent vertices and very thick trivalent vertices in ¢D. ¢

Definition 7.4. We define a functor Gy : ¢D — ¢gD;. On objects Go is just the identity
(¢D and gD; have the same objects). On morphisms we define the image for each of the
generators of ¢gD.

1]

S

The remaining generators are the 1-colour generators from D;. They are just sent to
there counterparts in gD;. O

Theorem 7.5. Assume that the functors Gi and Go are well-defined. Then they are in-
verse to each other and yield an equivalence (even an isomorphism) of categories between
gDy and gD.

Proof. All we need to prove is that G; o Go and Gy o G are the identity functors on
gD and ¢D; respectively. On objects this is obvious. Hence, we only need to check
it on generating morphisms. We start with G; o Go. Both functors send the 1-colour
morphisms to their respective version in the other category. Thus, G; o Go is obviously
the identity on them. So we just need to check this for the other three generators. We
have the following.
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S
o, ,
2, ,
S

€ gD

€ gD

Thus, we have three equations to prove. We will start with the last one. Note that
since we assumed that the functors are well-defined we know that all the relations from

Definition [7.1] hold in ¢D.

> o \% | w ] ?@
*—o

(4.38) (14.16

(4.30 4.16 /
3 ) ( 1 ) i

(7))

(4.30] 4.16]
30) (19) N

(4.3)

[E30)

(.3)
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Note that the last application of has an S-inclusion instead of a 6-valent vertex
at the bottom. However, by the nature of the S-inclusion we can always replace it by
an S-inclusion composed with a 6-valent vertex and then we could use . That is
what happened there.

The proof for the second equation for the S-projection is exactly the same as for the
S-inclusion just everything turned upside down. Thus, we are left with the first equation
for the 6-valent vertex.

o o & (5 E52)
(14.65))
(14.38)

This finishes the proof that G; o Gy is the identity functor. We proceed with proving the
same for Go 0 G1. We need to check that Gs o Gy is the identity functor on the generating
morphisms of gD;. This is obvious for the (thin) 1-colour generators as they are sent to
their respective versions by Gy as well as Go. We now need to check this for the thick
dots, the very thick trivalent vertices and the thick trivalent vertices. We will only do
this only for one of the two iterations of each of these because the other ones can be
done in the exact same way. We will start with the thick trivalent vertex.

We have to prove that the first and the last picture above are the equal in gD;. This
follows from the following chain of equalities.
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(7.26) (7.15)

We will continue with the very thick dot and the very thick trivalent vertex. First we
need to compute their images under Gs o Gy.

=

I I e i » Gz, ? i ?

T N T - Q i 92, %
Note that we used the fact that Gy sends the thick trivalent vertex to its counterpart in
gD1 when we computed the image of the very thick trivalent vertex. This is however no

problem as we checked exactly this in our last calculation. Now we just need to prove
the remaining two equations which arise from the above computations.

G1
g

This finishes the proof. O
Lemma 7.6. The functor Gi is well-defined.

Proof. For G; to be well-defined we need that all relations from ¢D; hold in ¢D when
sent there by G;. However, we have seen almost all relations from ¢D; in gD already.
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The only exceptions are the relations (7.25)) to (7.27). Thus, we only have to prove that
these hold in ¢D. For this we compute in gD.

R R
.
Tl

Note that we used the proof of Theorem [7.5] where we saw a way to rewrite the 6-valent
vertex with thick lines, in the proof of the last relation (the second equality there). [J

Lemma 7.7. The functor Gy is well-defined.

Proof. For Gy to be well-defined we need that all relations from ¢D hold in ¢gD; when
sent there by Go. Recall that the relations for gD are the relations for D; as well as the
relations (4.37) and (4.38). We know that Gy sends the one-colour relations from D; to
their respective versions in ¢D;. Thus, we don’t have to check anything for the one-
colour relations. The remaining relations in D; are the four relations to .
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They are sent to the following equations by Gs.

.

!

il

Now we will prove these relations in ¢D;.

=B
Al
=l

13) 64 !\é

=IN=
98
SIS

1
(7.21))

L1

._l_.

|
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Note that we used in the last step that (| and ( - are consequences of the other
one-colour relations and thus also hold in ng We continue with the third equation.

(7.15)

o0

=
o
=

24

BB
oy M Lol

.
N
!

Now we just need to check the last equation.

it

N

[21)
(7.18)

BN
[
(@)

BN
N}
=)

[, x
[N R
(] B fo'e]

s
=
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Hence, we have checked that all relations from D; still hold when sent to ¢D; by Go. All
that is left to do is to prove that the same is true for (4.37) and (4.38)) which are the
last relations for ¢D. They are sent to the following equations by Gs.

0 HAE

H
H
H

Now we will prove these relations in ¢D;.

-
13

(7.25)

D o o

HAE
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This finishes the proof. O

7.2 sT by generators and relations

Before we begin with the definitions we fix some notation. We keep our colouring of the
strands as in the last section. In this section we will also colour areas. The colours red,
blue and black represent the same subsets of S for areas as they do for strands. White
represents the empty subset of S. We use the colours and to indicate that
the area is allowed to be coloured with any subset of S (as long as all conditions that
may be imposed are satisfied).

Definition 7.8. We define a 2-category sT. The objects are the sets 0, {s1}, {s2}, S.
The 1-morphisms will be generated by labelled empty sequences of dots. Namely the
generating 1-morphisms in ;s ; = Morgz ([, J) are Ok where K C I, J and the horizontal
composition of 1-morphisms will be written as

O, x0i, = J € 18%
K, Ky K 1K2 152

for Ok, € 15%,,0K, € 5,53 7. So the resulting objects are sequences

J1

Ja Jl S IS‘ZJ
Ko K1 K2 K1 K

with Kl - Ji,z]i+1 for i = O,...,l where Jo = I,Jl+1 =J.
The 2-morphisms will be generated by the following morphisms modulo the relations we
list at the end.

e All generators from gD,
but with membranes
on the sides.

coloured polynomial generator

deg = deg(f)

(f € R" homogenous)
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dEIRAPY

coloured trivalent vertex
deg = l(wg) — 1
(where K corresponds to the yellow area)
1 € J is required

coloured trivalent vertex
deg = f(wk) — 1
(where K corresponds to the yellow area)
1 € J is required

coloured trivalent vertex
deg = l(wg) — 1
(where K corresponds to the yellow area)
1 € I is required

coloured trivalent vertex
deg = l(wg) — 1
(where K corresponds to the yellow area)
1 € I is required

coloured thick trivalent vertex
deg = (wk) — 3
(where K corresponds to the yellow area)

coloured thick trivalent vertex
deg = f(wk) — 3
(where K corresponds to the yellow area)

coloured thick trivalent vertex
deg = l(wg) — 3
(where K corresponds to the yellow area)
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coloured thick trivalent vertex
deg = l(wk) — 3
(where K corresponds to the yellow area)

The relations are all relations from ¢D with membranes on the sides together with the
relations (7.28) to ([7.50)). The horizontal composition of such 2-morphisms will be given
by the following relation.

©
no
Il
N
A
~
N
AS)
[\
-/

If J; = 0, then a line labelled @ is just no line. %
Relations
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_ I (7.49)

|
OIF ]

Definition 7.9. We define a functor Gs : sT — s% as follows. On objects Gs is just
the identity (s7 and sT have the same objects). On morphisms each of the generators
from gD in s7 is sent to the corresponding generator from gD in sT. The images of the
remaining generators are defined as follows.

1

P W—

WAL
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In the first picture the image is the coloured trivalent vertex with white colouring. We
also use the same definition if the red strand would end in the left membrane or the top
boundary. %
Definition 7.10. We define a functor G4 : s¥ — s7 as follows. On objects G4 is just
the identity (s7 and sT have the same objects). On morphisms each of the generators
from ¢D in s¥ is sent to the corresponding generator from gD in s7. The coloured
polynomial generator is sent to its corresponding version is s7 (see Definition .
The coloured (thick) trivalent vertices are sent to there respective versions in s7 (see

Definition [6.29)). o
Lemma 7.11. The functor Gs is well-defined.

Proof. For G to be well-defined we need that any relation from s7 holds in s when
sent there by G3. We know the G3 sends any relation from gD in s7 to their respective
version in sT and there it holds by definition of sT. Thus, there is nothing to check in
this case. Then we have three relations coming from ;77 in s7, namely the following

(and their left-side versions).

These relations get sent to the same equations in s%. The first two relations follow from
(7.28) and ([7.33)). The third relations can be proven as follows.

1 EH

SliNSiEE
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7.39)

7l
N

The last relations for s7T are the relations (6.13) and (6.14). The will be sent to the
following equations in s¥.

In the first equation {7y }wew, and {7 }uew, are the dual bases for R over R' from
Theorem In the second equation {my, }wew and {7} },ew are the dual bases for
R over R® from Theorem The third and the fourth equation follow immediately

from ([7.41)) and (7.42)). For the other two equations we have.
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This finishes the proof. O
Lemma 7.12. The functor G4 is well-defined.

Proof. For G4 to be well-defined we need that any relation from s¥ holds in s7 when
sent there by G4. We know that G4 sends any relation from ¢D in s% to their respective
version in s7 and there it holds by definition of s7. Thus, there is nothing to check
in this case. The other relations of s are sent to respective equations with the same
pictures in s7. However, we have already seen that all these relations hold in s7. Thus,
there is nothing to do here. O

Theorem 7.13. The functors Gs and G4 are inverse to each other and yield an equival-
ence (even an isomorphism) of 2-categories between sT and s¥.

Proof. All we need to prove is that G3 o G4 and G4 o G3 are the identity functors on
s% and sT respectively. On objects this is obvious. Hence, we only need to check it
on generating morphisms. We start with G3 o G4. Both functors send the morphisms
from ¢D to their respective version in the other category. Thus, G3 o G4 is obviously
the identity on them. So we just need to check this for the other generators. It will be
enough to check this for one of the coloured trivalent vertices and one of the coloured
thick trivalent vertices, since the proofs for the rest of them will be a symmetric version
of the proof we are about to show. We have the following.
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Here {7y }wewy and {7 }wew, are dual bases for R over RX from Theorem where
K corresponds to the green area. Note that the thick green line should be interpreted
as corresponding to si,s9 or S (and the green area to the same). We will now do the
prove where we think of this green line as corresponding to S. However, the proof works
in the same way for s; and so and we will state at the end which relations one needs to
replace.
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If green represents s; or s one needs to exchange the relations (7.35), (7.36), (7.44)
and ([7.49)) with the relations (7.33)), (7.34]), (7.43) and (7.45). We will continue with the
coloured trivalent vertex.

Ga —
g3 T;
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Here {7y wek, and {7} }wek, are again dual bases for R over R¥! from Theorem m
where K corresponds to the green area. Similarly, {m, }wer, and {7} }wek, are dual
bases for R over R? from Theorem where K5 corresponds to the yellow area. Note
that the green and the yellow areas are next to a thin red strand. Thus, by definition
of sT they can only be white or red. If they are white the (local) calculation is trivial.
Hence, we will now assume that the green and the yellow areas are red. Then we
compute.

We continue with the coloured thick trivalent vertex.

Here {7y }wer, and {7} }wek, are again dual bases for R over Rt from Theorem m
where K corresponds to the green area. Similarly, {m, }wer, and {7} }werk, are dual
bases for R over RX2 from Theorem where K5 corresponds to the yellow area.
Note that the thick green lines and thick yellow line should again be interpreted as
corresponding to si,s2 or S (and the green and yellow areas to the same respectively).
We will now do the prove where we think of the green and yellow lines as corresponding
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to S. However, the proof works in the same way for s; and so and we will state at the
end which relations one needs to replace.

If green or yellow were corresponding to s; or s2 one would need to replace the relations
as follows: In the first equality we need to replace with @ for green and with
for yellow. In the second equality we need to replace ([7.35)) and (|7.36|) with
and for green (nothing happens with yellow). In the third equality we need to
replace with for green and ((7.49) with ((7.47) for yellow. In the last equality
we need to replace with for green (again nothing happens with yellow).
Hence, we are finished proving that Gs o G4 is the identity functor.

We proceed with proving the same for G40Gs. We need to check that G40Gs is the identity
functor on the generating morphisms of s7. Again both functors send the morphisms
from ¢D to their respective versions in the other category. Thus, there is nothing to
check for them. Then there are the generators coming from ;7;. However, for these it
is trivial that G4 o G3 is the identity on them. For instance, we have the following.

LA A

So all that is left to do is to check that G4 o G3 is the identity functor on the generators
. It is enough to check it on one of the two generators, since the proof for the
other one is symmetrical. We will once more use the colour green to represent si,ss or
S. Then we have the following.

IRSER
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We will now do the proof thinking of the green lines and areas as corresponding to S.
After that we state how to replace the relations if green corresponds to s; or ss.

(6.14) 16.13))

Here {7y }wew and {75 }wew are again dual bases from Theorem [3.35] (replace W with
W; if green corresponds to 51 or $3). If green corresponds to s1 or so one would just

need to replace (6.6]) with (4.49)) and (4.66]) with (4.3 ., and (4.28 - This finishes the

proof that G4 o Gg is the 1dent1ty functor and hence the theorem is proven as well. [
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