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Introduction

In his seminal paper [KhoO0] Khovanov introduced his celebrated cawgori cation of the
Jones polynomial [Jon8Y5, Kau87] for links. More precisely, to a generic planprojection

D of alink L in R® Khovanov constructs a bigraded chain complexCKh(D) whose graded
Euler characteristic is the Jones polynomial ofL. Given two diagrams D and D° repre-
senting the same linkL, i.e. D and D9 are related by a sequence of Reidemeister moves,
the corresponding chain complexes turn out to be homotopy equivalentin particular, the
homology groups of the chain complexCKh(D) are invariants of the link L.

In [KhoO2] this homological link invariant was extended to tangles with an even num-
ber of top and bottom endpoints categorifying the Reshetkikhin-Turaev invariant [RT90]
associated with the quantum groupUgq(sl2). The original construction of this tangle ho-
mology theory is of combinatorial nature. All the chain groups are obtained by appying
a two-dimensional TQFT to smoothings of a generic plane projection of tle tangle, after
closing it up by certain matchings on top and bottom to create a collection of circles.
Cobordisms between these smoothings induce the di erentials.

From an algebraic point of view the extension of Khovanov homology from links o
tangles is interesting because the chain groups of the complex can bewgped with a left
and right action of a graphically-de ned algebra, nowadays often referredo as Khovanov's
arc algebra, thereby turning them into bimodules. In the case of liks these actions
degenerate into the action of the ground ring and therefore the additionaktructure is lost.
Although the basic arc algebra rst appeared in the context of tangle homology [[kho0Z] it
has been generalized and studied extensively outside the eld of \o-dimensional topology
from a purely combinatorial and representation theoretic point of view (cf. |[BS11| Str09]).

Khovanov himself found a connection to the geometry of ag varieties byproving that
the center of the arc algebra is isomorphic to the cohomology ring of a two-lolck Springer
ber [Kho04]. Given a nilpotent endomorphism x of C", the Springer ber FI* associated
with this operator is the complex projective variety of full ags

fog Fi. F, @i Fp=0C"

in C" xed by the endomorphism x, i.e. we demand inclusionsx(F;) Fi 1 for all
i 2f1;2;:::;ng (set Fo := f0g) (partial ag varieties xed by a nilpotent operator are
referred to as Spaltenstein varieties). In general, these varietis are not smooth and have
many irreducible components. The structure of the irreducible @omponents is poorly
understood for arbitrary nilpotent operators (cf. also [FM10]). Howeve, if we restrict
ourselves to two-block Springer bers, i.e. ag varieties xed by a nilpotent operator with
two Jordan blocks, then the irreducible components can be writtendown explicitly using
the combinatorics of cup diagrams. This goes back to the work of Spaltensie [Spa76],
Vargas [Var79] and Fung [Fun03].

In their recent paper [SW1Z] Stroppel and Webster extend Khovanows result on the
center of the algebra by providing a geometric construction of the erite algebra as a
convolution algebra using the irreducible components of two-block Spnger bers. In fact,
their results are much stronger than that since they also provide geomtric constructions
of interesting generalized Khovanov algebras (cf| [BS11, Str09]) and thequasi-hereditary
covers. Based on the work of Stroppel and Webster we want to ask the folaing question:

Question. Is it possible to extend the geometric construction of the arc algebrad a new
geometric construction of Khovanov's chain complex (in which the TQFT does not occur
anymore) using Springer bers or the more general Spaltenstein variees?



In this thesis we give an a rmative answer to this question. More precisely, we con-
struct subvarieties inside a nite product of Spaltenstein varieties such that after taking
the cohomology of these varieties we are able to recover the chain groups ohivanov's
complex. These subvarieties sit inside each other in an interesig way. In particular, we
prove that the di erentials of the complex can be given a natural geometic meaning by
realizing them via pullback or pushforward maps in cohomology induced bythe inclusions
of these subvarieties. This main result is documented in Theorer8.34.

One possible motivation for the question above might be the goal of nding gorecise con-
nection between Khovanov homology (respectively its Lie-theoreticversion [StrO5] which
is known to agree with Khovanov homology) and the link homology theories by @utis
and Kamnitzer [CKO08]| via coherent sheaves and the ones by Seidel and &m[SS06] and
Manolescu [Man07] via symplectic geometry. An explicit categorical conngtion between
all these theories is not yet established. Since Springer bers gl a crucial role in the work
of Cautis and Kamnitzer as well as Seidel and Smith, our geometric constietion of Kho-
vanov homology might provide another small step in comparing all three catgori cations
in the future.

Structure of the thesis: In the following we outline the contents of our work. This
thesis is subdivided into three major parts.

The main agenda of the rst part is to identify and describe the topological space
underlying the two-block Spaltenstein variety equipped with the analytic topology. A
topological description of the equal-block Springer berF 12°2 as a certain subspace of a
n-fold product of spheres was conjectured by Khovanov [Kho(4] and prove by Russell
and Tymoczko [RT11], and independently by Wehrli [Weh09]. This was &ter generalized
by Russell to the general two-block-case [Rus11]. It turns out that the topological model
from [Rus11] can also be used to describe the topology of two-block Spaltstein varieties.
This is Theorem[1.15.

In the second part we explain how to assign a subvariety inside a nie product of
Spaltenstein varieties to a given tangle diagram. We also provide a siple topological
model (cf. Proposition[2.26). If two tangle diagrams are related by a local stgery then
the associated varieties are related by an inclusion map, i.e. one of the sits inside the
other one as a subvariety (cf. Proposition[2.35). In Theoren| 2.51 (Theoren) 2.5@s
the topological equivalent) we explicitly compute the pullback and pushforward of these
inclusions in cohomology and relate the result to the maps obtained by apping a TQFT
to certain surgery cobordisms between the tangle diagrams. This requés genuine work
and is therefore considered as one of the central results.

In the nal part we recall the de nition of Khovanov's arc algebra as de n ed in [Kho02]
and sketch the construction of the convolution algebras of Stroppel and Wester [SW1Z2]
in the equal-block-case. Then we use the machinery developed imé second part of this
thesis to construct some important bimodules and bimodule homomorplsms geometrically
via Spaltenstein varieties and pullback and pushforward maps. In Therem[3.37 this
culminates in the promised geometric construction of Khovanov's chai complex associated
with a tangle diagram (cf. also Theorem|[3.34 for the topological equivalent).

Notation and conventions: Once and for all we x the following notation and conven-
tions valid throughout this thesis:

Let X be a topological space. Then we denote by (X) its singular cohomology
with F,-coe cients, i.e. we use the notation H (X) for H (X ;F2) (which among
topologists is usually reserved for cohomology withZ-coe cients). Similarly, we

write H (X) for the homology of X with F»-coe cients.



A vector space or an algebra will always be d&»-vector space or aF,-algebra, respec-
tively. Moreover, all tensor products are de ned overF, i.e. we use the notation
for F,, unless stated otherwise.

If V is a graded vector space (\graded" always meansZ-graded") we write Vfjg
for the graded vector space whosé-th component is given by (Vfjg)i = Vfi jag.

Acknowledgements:  The author would like to thank his advisor Prof. Dr. Catharina
Stroppel for her continuous support in all matters related to this project.



1 Topology of two-block Spaltenstein varieties

1.1 Two-block Spaltenstein varieties: Structure of irreducible
components and a topological model

We begin this section by providing the basic de nitions. Then we recall some struc-
tural results concerning the irreducible components of two-blockSpaltenstein varieties
including the involved combinatorics. Moreover, a simple topologicalmodel for two-block
Spaltenstein varieties is introduced at the end of this subsectin.

suchthat 0<iji<i,<::<im=n. Dene FI, to be the set consisting of all sequences

Fi, Fi, = F,=C",
where Fj, C" is a subspace, dinfj, = ij, for all | 2 f1;:::;mg. Such a sequence of
subspaces is called partial ag of type | and we will write (Fi,;:::;Fj, ) to denote such

a ag. Let Gr( k;n) be the Grassmannian ofk-planes insideC". Then there is an obvious
embedding
Fl, V' Gr(ig;n)  Gr(ig;n) i Gr(im;n);

which can be used to prove thatF |, is a smooth complex projective variety called thepar-
tial ag manifold of type |. Alternatively, one could realize F |, as the homogeneous space
GL(n; C)=P, whereP is the parabolic subgroup of GL{; C) given by all matrices with all
entries zero below the block diagonal where the blocks are squares sifeiy;iz;:::;im.

Let g = sl(C") be the Lie algebra of traceless endomorphisms &" and let N g be
the nilcone consisting of all elements which act nilpotently in all representatons of g. By
the general theory of Lie algebras these elements coincide with the elents which are
nilpotent as linear endomorphisms in the sense of linear algebra.

For everything that follows it will be convenient to set ip:=0 and Fo:= fOg C".

De nition 1.1.  The Spaltenstein variety of typel associated with some xed nilpotent
operator x 2 N is the variety

FI = (Fij;anFg)2F jxFi, Fj, foralll2f1;:;mg ;
consisting of all ags in FI; xed under x.

Remark 1.2. In the case of full ags, i.e. if | consists of all integers between 1 and, the
index | is dropped from the notation and we simply write FI*. In this case we refer to
the Spaltenstein variety asSpringer ber.

Spaltenstein varieties are rich geometric objects and they arise natally as the bers
of a resolution of singularities of the nilcone; see e.g. [CGY97, Section233.5, 3.7, 4.1 and
4.4] for details. In general they are not smooth and have many irreducibleomponents.

In this work we will only study two-block Spaltenstein varietiesi.e. the case wherex is
of Jordan type (n  k;k), where 0 2k n. More explicitly, this means that there exists
an ordered basise;; i€, k:f1; i f of CM such that

x(g)=e 1 and x(fj)="fi 1

where we seteg = fg = 0. One can easily show that the Spaltenstein variety does not
depend (up to isomorphism) on the particular choice ofx, but only on the Jordan type

of x. This allows us to speak of the i k; k)-Spaltenstein variety of type |, which we

denote by F IIn k;k, without further specifying the nilpotent operator x.



Notice that for a ag ( Fi,;::;;Fi,) 2 F I, where x is of Jordan type (n  k;k), the
rank-nullity theorem vyields inequalities

dimFj, =dimker xjg, +dim xF;,  2+dimFj

forall | 2f1;::;;mg. Thus FI will be empty if ij ij 1> 2 for some index in the family! .
In order to exclude these trivial cases from the beginning we will alays restrict ourselves
to the following special type of integer-sequence.

De nition 1.3. A family of increasing positive integers (1;::;;im) is called admissibleif
the conditions O<i; i, 1 2aresatisedforalll2f1;::;mg.

Given an admissible family |, one can associate to it a word of lengtm, consisting of
letters from the alphabetf ; g , by putting a dot at position i, of the word, if i} i} 1 =1,
and a cross at positionsi; and iy 1ifi; i 1 =2. Such a word is called adot-cross
sequence Any word obtained in this way consists of 2(1  m) crosses and &h  n dots.

Example 1.4. The dot-cross sequence associated with {3; 4; 5; 6; 7) is given by

Schafer proved in [Sch12] that the irreducible components of therf  k; k)-Spaltenstein
variety of type | are in one-to-one correspondence with cup diagrams of typen( k; k)
on the dot-cross sequence corresponding tio (cf. Proposition below).

De nition 1.5. A cup diagram of type(n K; k) on the dot-cross sequence corresponding
to some admissiblel = (i1;:::;im) is a planar diagram which is obtained by attaching
n 2k downward-pointing rays andk (n m) arcs to the dots of the dot-cross sequence.
Arcs only pass below the symbols of the dot-cross sequence and we reguihat every dot
is connected to precisely one cup or ray. Moreover, we think of theays as being \in nitely
long", so arcs do not pass below rays. The set of all cup diagrams of typen( k;Kk) is
denoted by B/ ¥,

Remark 1.6. In order to tie in with the notation from Remark 1.2lwe omit the index |
and simply write B" Kk if the family | consists of all integers between 1 andh.

Example 1.7. Here is a complete list of cup diagrams of type (43) on the dot-cross sequence
considered in Example 1.4

Given a 2 Bln kK the notation (i;j)) 2 a, wherei < j , means that the symbols at
positionsi and j in the dot-cross sequence corresponding tb are connected by an arc in
the diagram a. We write (i) 2 a if there is a ray in a connected to the dot at positioni.

If we slightly modify the cup diagram then it contains all the necessay information to
write down explicit relations de ning all the ags which lie in the corresponding irreducible
component. In order to make these modi cations precise let 2 B/’ “K e a cup diagram.
For certain arguments it is convenient to think of the crosses at positonsi; andi; 1
as being connected by a dashed arc if i} ; = 2. Such a dashed arc is callednvisible
because it does not appear in the usual cup diagrams from De nitiof 1]5. If w want to



include invisible arcs in the cup diagrama, we will denote this by & Notice that invisible
arcs only connect neighboring crosses. In particular, they are neverasted inside each
other.

Example 1.8. This is a cup diagram from Example[1.7 including invisible arcs:

De nition 1.9.  Given a cup diagrama 2 B]' ¥ we obtain a map
a:f1;,2::0ng! Z g

by de ning 4(i) to be the number of rays ina which are left of the i-th symbol in the dot-
cross sequence corresponding tio. We use the convention that a ray is always considered
as being left of itself.

Example 1.10. Consider the following cup diagram:

= N | T\

Then we have 4(3)=0and ,(12)= 4(9)=3.
The following proposition is essentially [Sch12, Theorem 6.11].

Proposition 1.11. Let | be an admissible family andx a nilpotent operator of Jordan
type (n  k;k). Then the irreducible componentK, F [ corresponding toa 2 B,n Ik
consists of precisely those agq(Fi,;:::;Fi,) 2 F I} which satisfy the following conditions

imposed by the cup diagrans:

(i) If (i;j) 2 & (the arc connecting the symbols and j might be an invisible arc), then
Fj =X %(j i+1) Fi 1
@i) If (i) 2 & then we have

Proof. The proof is omitted here (see|[Sch12x6] for a detailed argument). The rough
idea is to reduce the statement of the proposition to the case of Spriger bers which is
treated in the work of Fung [Fun03]. O

Remark 1.12 The original version of Propositionu in [Sch12] is formulated using the
combinatorics of dependence graphs In order to avoid confusion we remark that these
graphs di er slightly from the cup diagrams used here. Our cup diagrams orrespond to
what Schafer calls extended cup diagramsf we replace the rays bygreen arcs

Let S R3 be the two-dimensional standard unit sphere and letp = (0;0;1) be its
north pole. Given a cup diagrama 2 B" ¥k, de ne a smooth submanifoldS;  (S?)" of
the n-fold cartesian product of the sphere with itself by

Sa = (X155 %Xn) 2 Sznjxizxj if (i;j)2aandx; =( 1'pif(i)2a:



Following Russell [Rus11,x2] we de ne the (n  k; k) topological Springer ber as

gn Kk | Sa SN

a2Bn kK

De nition 1.13.  For a2 B]' “* let a,q denote the reduced extended cup diagram ob-
tained by erasing all crosses. In particular, this assignment inducg a map

red: Bln k;k I BM km+k n
to which we refer as areduction map.

Example 1.14 The reduced version of the diagram in Examplg 1]7 is the following:

U %/\Y/‘

The main result of the rst part is the following theorem:

Theorem 1.15. The irreducible componentK 4 of the Spaltenstein varietyF I,n kK corre-
n kik

sponding toa 2 B, is homeomorphic toS,,, and we have a homeomorphism
. [
F Iln k:k — Sared (SZ)Zm n:

a2B/ Ik

A proof of this theorem is provided in section[1.4. For the reader's conenience we
summarize the main ideas of the argument to motivate the next sections.

Sketch of proof (Theorem 1.15): |
Our proof closely follows and generalizes the train of thought of Wehrlis argument in

[Weh09] for the (5; 5)-Springer ber. The general idea is as follows: In secti02 we

introduce a smooth projective variety Y, which contains the Spaltenstein variety F IIn kik,

We prove that Y, is homeomorphic to a (n n)-fold product projective spaces P 2™ ",

cf. Corollary [£.20. Proposition[1.1] above enables us to explicitly computéhe images
1 (Ka) of the irreducible componentsK 5 under this homeomorphism in sectior{ 1.3. The
most important result in this context is Proposition In the last section we introduce

another homeomorphism om n: P! 2™ ™M= 2 2™ " gych that the composition

YI!I I312mn!2mn S22mn

In k;k
|

maps the irreducible componentsK, F Y| to the sets S, . In particular, this

homeomorphism mapsF I,n kK which is just the union of its irreducible components, to
the subset [
Sared (SZ)Zm n;
a2B! Kk

which will prove the theorem.

1.2 A smooth space containing the Spaltenstein variety

In this section the rst step in proving Theorem is provided by embedding the Spal-
tenstein variety into a smooth space homeomorphic to a nite produd of projective spaces.



1.2.1 Some linear algebra

Let N> Obea Iarga integer and letz: C2N I C2N be a nilpotent linear endomorphism
with two equally-sized Jordan blocks, i.e. there exists a basig;::;;en;fq; 5 fy of CN
such that

z(e)=& 1 and z(fi)=fi g,

foralli2f1;2;::;;Ng, whereeg = fo =0. We equip C2N with the structure of a unitary
vector space by de ning

he;gi = Hifji= 4; he;fji=0

forall i;j 2f1;2;:::;Ng, where jj is the Kronecker delta.
Let e;f denote the canonical basis of£2. De ne a linear map C: CN 1 C2? by

C(e)=e and C(fj)=f

for all i 2 f1;:::;;Ng. Notice that C? has the structure of a unitary vector space coming
from the standard Hermitian inner product.

In general it does not make sense to ask whether the ma@ is unitary, i.e. whether the
equality hC(v); C(w)i = hv;wi holds for all v;w 2 C2N, because this would imply that
C is injective, which cannot be the case ifN > 1. However, it is meaningful to ask for
two-dimensional subspaced) C2N such that the restriction of C to U yields a unitary
isomorphism. The following lemma contained in |[CK08, Lemma 2.2] (cf. alg [Weh09,
Lemma 2.1]) constructs important examples of such spaces.

Lemma 1.16. Let U C?N be az-stable subspace, i.ezU U, such thatU im(z).
Then C restricts to a unitary isomorphism

Cc:z U\ u”1~ cz
Before going into the proof of the lemma, let us record the following geeral fact:

Lemma 1.17. If U C2N is a subspace contained inm(z), then dim(z *U) dim(U) =
2. Similarly one obtains dim(U) dim(zU) =2 if a subspaceU C?N contains ker(z).

Proof. The inclusion U  im(z) implies that z restricts to a surjection z: z U u.
Applying the rank-nullity theorem to this map yields

dim(z U) dim(U) = dim (ker( zj, 1y)) =2;

where the last equality follows from the inclusion ker¢) = z 1(0) z U. An analogous
argument for the mapz: U  zU proves the second claim. O

Proof (Lemma[1.16). There is an isomorphismz U\ U? = z 1U=U by elementary linear
algebra. Thus one obtains

dim(z U\ U?)=dim(z U=U)=dim(z U) dim(u) &22.

Hence the domain and target space o€ : z U\ U? | C? are equidimensional and it only
remains to show unitarity because unitary maps are always injective Let v;w 2 z U\ U?
and write

V=Vt it vy, WS Wt o+ wy

'See also Remark 1.1B for a more accurate description of what is meahby the word \large".



with vj;w; 2 span(g;fj). Since the restriction C : span(g;f;) ! C? is easily seen to be
unitary, we deduce

X X
hv; wi = hvi;wii = hC(vi); C(w;)i:
i=1 i=1
Comparing this to the equality
X
hC(v); C(w)i = hC(vi); C(wj)i;
B]
we see that it su ces to show
X
hC(vi); C(w;)i =0 (2)

i6]

to complete the proof.
Forw?2 z U andv 2 U? we havehv;zZ'wi =0 for all | 1 becauseU is z-stable by
assumption. A calculation shows

hv; Zwi = hC(v1); C(Wis1)i + i+ hC(vn 1); C(wy )i
forall | 1. Adding up all these equations for everyl gives
X
0= hC(vi);C(w))i: 2)
i<j

Interchanging the roles ofv and w (i.e. interpreting v as an element oz U and w as an
element of U?), we obtain

0 1
X Y X X
0=@ rC(Wi);C(v,-)iA = hC(w;); C(v;)iY = hC(v;j); C(wi)i; 3)

i<j i<j i<j
where the daggery denotes complex conjugation. Adding up [(2) and [(8) yields [(1L) and
therefore the second claim. O
1.2.2 The variety Y
Fix an admissible family | = (iq;:::im) andlet N m. For every q2f 1;2;:::;mg de ne
a complex projective variety
Yisiziq = (FiyiiFig)iFi, C™Nhas dimensioni;Fi, = FigzFi,  Fi

and set Yj, to be the one-point space. We equip all these varieties with the analc
topology. In particular, they are compact Hausdor spaces.

We will be most interested in the variety Y, i, , for which we also use the short notation
Y, because we can obviously identifyF I ¥ with the subset

f(Fi,; o Fin) 2 Y jFi, =span(er;:isen i faiinfe)g 4)

and thus obtain an embeddingF I|" Kk 1y,
Before we prove thatY, is homeomorphic to a nite product of projective spaces we
make the following important remark.

10



Remark 1.18 Notice that the conditions zF;, F;, , imply

Fi z 1Fim .z ™(0)=span(ey;em;frinfm):

m

In particular, the variety Y, is independent of the choice ofN as long asN m because
the spacesF;, C?N of the ags in Y, never \see" the basis vectorsg and f| for | >m .
This turns out to be extremely useful because we can always assumby(increasingN if
necessary) that all the subspaces of a ag irY; are contained in the image ofz.

Proposition 1.19. Letq2f1;:;mg. If iqg iq 1 =1, then the projection map
g Yigmiq ! Yigmiq o0 (Figs i Fig) 78 (Figs i Fig o)
de nes a trivial ber bundle with ber P!. More precisely, the map
a Yisiguiq ! Yisigmiq 1« PY (FigsinFig) 70 FisinFig 5 C(Fig\ FY )

de nes a homeomorphism such that the following diagram commutes:

Pl

Yijizmig : Ik,

x%% pri

Yiliz:::iq 1

1i2222iq 1

Ifiqg iqg1=2,then g: Yiguiq ! Yiguigq o is a homeomorphism.

Proof. Let q2f 1;::;;mgsuchthatiq iq 1=1. We clearly have 4= pr1 qand 4is
a continuous map between compact Hausdor spaces. Hence it will be a homearphism
if it is bijective.
Notice that the vector spaceFi, , C?V is z-stable and by Remark/1.18 we may assume
that it is contained in the image of z. Hence Lemmg 1.1p yields and isomorphism
C:z 'R, ,\ F? !7 C%
For given (Fi ;i Fig 151) 2 Yigig o P! it is easy to check that the ag

!
1

\F? (1) Fig s ®)

1V Fig 1

Fi.; o Fig 10 Cly F

is a well-de ned preimage under 4. Let (Fi,;:;Fi,) 2 Yi.i, be another preimage, i.e.
we have
q(Fips i Fig) = Figs i Fig 15 C(Fig ) Fiz D = (Fig s Fig )

Since Fi, \ Fi'-; .z YR 1)\ Fi'-; _ is the unique one-dimensional subspace which is
mapped to | under the isomorphismC we have

1
Fig \ Fiz .= Cj, Fig \FT (1);
which implies
1
qu = CJZ lFiq 1\ FI’) . (I) qu 1

11



Thus the preimage @) is unique which proves that q is indeed bijective.

Inthe caseiq iq 1=2,themap g: Yiguiq ! Yigmigq o is clearly a continuous surjection
between compact Hausdor spaces and it su ces to show injectivity to prove the claim.
By de nition we have Fiq z 1Fiq , for every ag in (Fil;:::;Fiq) 2 Yiyuig- BY the
assumptioniq iq 1 =2, Lemma[L.17 and Remark1.18 we obtain

dim(z 'Fi, ) =dim(Fi, ,)+2= ig;

showing that this inclusion is in fact an actual equality. Thus the vector space Fj,
is completely determined by Fi, ,. In particular, there is precisely one preimage of
(Fiy; 5 Fig 1) 2 Yiguig o Under g O

As a corollary we obtain a slight generalization of|[CKO8, Theorem 2.1] which alsgovers
partial ags inside C?N corresponding to admissiblel .

Corollary 1.20. Let (ij,; 5 ij,, o) be the subfamily ofl consisting of all entries where
ij, 1= 1, le. Jdj;:5lj,, , are precisely the places of the dots in the dot-cross-

sequence. Then the map, : Y, ! (PY)?™ " de ned by

(Fiy; 5 Fig) 70 C(Fi, \ F7)iC(Fi, \ F7 )i CFi, VR )

iiZm n 1
is a homeomorphism.

Proof. Fix j, for somel 2 f1;::;;2m ngand setg=j, andp=j, 1, wherejo =0, to

simplify notation. Let .., denote the composition:

ig 1 iq 2 ip+1
A A el
YI;|_...Iq 1 - Yll...lq 2 - e

Yi1:::ip:

Notice that all the projections in this composition are homeomorphisms bythe de nition
of the sequencej(s;:::;jam n) and the second part of Proposition[1.19.

For the particular choice q= j; and p = jo we can apply the rst part of Proposition
[1.19 and obtain a homeomorphism

ip:i id
ipig: Yigig ! ‘ Yiyigq 1 pl e Yio pl=pt

which is explicitly given by
(Fiy i Fig) 71 C O Fig\ F?

If g=jyandp=j; 1 and we assume that the homeomorphism, .., : Yi, i, ! pr 1
given by
(Fiy; i Fi,) 70 C(Fyy, Fh?. i C(Fi Fh?l )
is already constructed, then we de ne g @S the composition
id

q 1, ipwig 1, i1ip id
Yi1:::iq! Yi1:::iq 1 P! Yi1:::ip P!

pt !

The reader easily veri es that this homeomorphism is given by

(Fiy; o Fig) 7 C(Fij,\ Fii?| Qi C(Fi N FiTI )

Thus the claim of the corollary follows (after reversing the order of the factors). O

Remark 1.21 If the sequencel consists of all integers between 1 andi we will also write
Y, instead of Y, and similarly , instead of .
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1.3 Topology of irreducible components

By the results of the last section we have a homeomorphism, : Y;!~ (P})2™ " More-
over, the (n  k; k)-Spaltenstein variety of type | sits inside Y, via the identi cation (
For the rest of this section the notation F 1} Kk will always refer to this embedded Spal-
tenstein variety. The next goal is to see what the images of the irreduible components
look like under .

1.3.1 Technical preliminaries

We begin by proving some statements which will simplify some of thearguments later on.

Notice that we have an explicit description of the irreducible comporents of the embed-
ded Spaltenstein variety F I,n kik Y, by replacing the map x in condition (i) of Proposi-
tion with the map z, .k de ned to be the restriction of z to span(es; ::;; ey «;f1; 55 fk).
A priori it is necessary to work with this restricted map because peimages underz might
not be contained in spang; ::;; ey «;f1;:::;fk) anymore. The following lemma shows that
this does not happen.

Lemma 1.22. The irreducible componentk, F 1" * Y, corresponding toa2 B **
consists of precisely those ags(Fi,;:::;Fi,) 2 Y, which satisfy the following conditions
imposed by the cup diagrans:
(i If (i;j) ) 2 & (the arc connecting the symbols and j might be an invisible arc), then
Fi=z 20 i+ F 1

(i) If (i) 2 &, then we have

Before we prove the above lemma, it is useful to note the followingt(ivial) fact:
Lemma 1.23. Let U;U® C?N be two subspaces. Then we have
z(U+ UY = zU + zU®
If we additionally assumeU;U° im(z), then we also get
zW+U%=z u+z W@ (6)

The reader is invited to make up examples showing that the assumptin about the
containment of U; U%in the image of z is indeed necessary for equatiorﬂB) to be true.

Proof (Lemma[L1.22). Assume (i ;5 Fi) 2 Ko F 1M *€ v, By condition (i) of
Proposition we have an inclusion

L i L
Fi=z, 0 CFi1 oz 20 UE g (7)
whenever (;j ) 2 a&. We obtain a chain of equation

dim z 20 DE =] i+1+dim(F 1)=dim(Fj);

13



where the rst equation follows from Lemma|[1.17 and Remark 1.IB. Hence the ilusion
(@ is in fact an equality and we obtain (i'). Moreover, condition (ii) cl early implies (ii").

For the converse take a ag (i, ;:::; Fi,,) 2 Y, satisfying conditions (i) and (ii") of the
lemma. Again, condition (ii) trivially holds. In order to prove conditi on (i) for this ag,
it su ces to show that

Fin =span(er; e k:farify); (8)
because this equality implies
Fi = Fj \ span(er;::;en k:fa; i)
=z 20 i+ Fi\ span(es;::;en «;f1;nfk)
1
=7 2ng " Fis

whenever (;j ) 2 a.

Let rq;::5rn ok be the positions of the dots ina-to which the rays are connected,
numbered from left to right. We additionally set rg := 0. So for xed s 2 f0;1;:::;;n
2k 1g, the diagram consists of arcs only in between nodess and rss1. In particular,
there is a sequence of outermost arcs (some of which might be invisé)l

(P an); =5 (P @)
suchthatp; = rs+1, g =rss1 landqg+1= p4 forall2f1;::t 1g. By (i") we

have relations .
- (a4 pi+l)
Fq =z 2% 7 Fpu 1

Fq =7 %(QI p1+1) Fp1 1 (9)

holds for all | 2 f 1;:::;tg. This is obviously true for | = 1. So suppose ) holds fol 1,
> 1. Sinceq 1=p 1 we calculate
Fq =2 La p+1) Fo 1

-5 = +1), % +1
=z 3@ p+l) 5, (@ 1 P )Fp1 1

_ 1 +1 .
=z 2@ m )Fpl 1]

which proves @) by induction. Setting | = t one obtains the equation
Fqe =12 3(@ pi+l) Fpi 1= 2 3(@ pi+l) Fr. (10)

which we will use below.

After these local considerations the next step is to relate the veair spaces of a ag
beyond the con nes of two subsequent rays, too. From now on setg := rs:s1 1 for
s2f0;1;::;n 2k 1gand g, o := n. The next claim will be the following:

x
i s
Fg = 2 2% 9)(0) + . span (g oy (11)
For s = 0 this claim is obviously true, because equation [(1]L) reduces to equain ([L0).
Now assume that the claim holds for all0 | s. Then we have

1
Fqs+1 =z 2(Gr1 Ton )Frs+1
1
- 5(0s+1 Ts+1)
= Z7Z 2 + S+ Fqs + Span(e%(rs”- + S+l) )

1 1
=z 2(&n Te)p 4 7z 2(%u rs*l)SPan(e%(rsﬂ +s+1) )

14



and inserting the induction hypothesis into the rst summand yields

1 1 1 1
Z 2(q5+1 Is+1 )Fqs =7z 2(q5+1 Is+1) Z z(qS s) (o) + Z 2(q5+1 Is+1) Span e%(qs s+
=1

- l(qs+ (S+1))
7 3G+ 0) + . span e%(qs St +2(Gse1 Tse1)
— l(C|s+ (s+1)) + a ;
Z 2 1 (O) . Sp n e%(qs (S+l))+ 1

where we used the relationrs+1 = g + 1. The second summand simpli es to

1
z 2(%1 Tsi) span(&r,,, +s+1) = Span(e%(qsﬂ +( s+1)) )

and hence we get

1

. Span €1 (g (s+1)+

FqS+l =z %(qsﬂ (s+1)) (0)+

which proves the claim.
Inserting s= n 2k into (1) yields
x-1
Fi.=Fn=12 k(0)+ span(ex+ )
=1
= span(ey; e f1; o i) + span(exsr; i en k)
=span(er;::en k;f1;fk);

which nishes the proof of the lemma. O

For admissible!l = (iq;::;im)and p2f1;:;ngsuchthatp L,p+1 2fiq;:img, i.e.
p l=igandp+1= iqfor someqand a® we can de ne a new admissible family denoted
by I f pp+1g=(i%;usid @ ) Where
¢ .
0. i ifl q;
T e g 2 ifl>q

It is easy to verify that we have inequalities 0<i{ i? , 2foralll2f1:5m (® o)g.
Passing froml to | f p;p+1gcan be understood combinatorially by deleting the symbols
at positions p and p+ 1 in the dot-cross sequence corresponding tb.

Example 1.24. Considerl =(1;3;4;5;6;7) as in Example with corresponding dot-cross
sequence . If we choosep = 2, then q ¢°= 1 and the family | f 2;3gis
given by (1;2;3;4;5). For p=4 we haveq ¢°=2 and the family | f 4;5gis given by
(1;3;4;5). From the combinatorial point of view we have:
| f 2,3g= | f 4,59=
Sincep 1;p+1 2fiy;::;img, it makes sense to de ne

Xip = F(Fiy;uuFin) 2 Y1 jFper = 2 'Fp 10 (12)
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Lemma 1.25. The map p: Xip ! Yif pps1g given by the assignment

(Fiy; i Fin) 70 BRI O

i0 (a0
m (q” q)
where (
F= i Thea (13)
" zZR if 1>q:
1+( g% q)

is a well-de ned surjection.

Proof. Let (Fi ;5 Fi,) 2 X;;p be a ag and let

i (Fins i Fig) = B FQ

m (a© q)
be its image. By Lemma[1.1}y and Remark 1.18 we have

dim zFi|+(qo o =dim Fi,+(qo 2:i|+(qo 9 2

a)

which implies dim(Fi?J) = iQfor every | 2 f1;:;m (¢ o)g by the de nition of

(%00 (@@ ) and . Thus the vector spaces of the ag i (Fi,;:;Fi,) have the
right dimensions.

Notice that we have inclusions

0_ _ _ — 0
ZFo=2 ZRi0q 2R g T FiP (14)
for everyl >qg +1 and
zFi?)z zFi, Fy, , = Fi?) K (15)
if | . In particular, ({4] and (15) together with
zFi%ﬂ = zFiy,,  zFip = Fi; = FQ

show that there are incIusionsti(lé Fi?’ foreveryl 2f1;:m (® 0)o.
We omit the easy check that the ag (Fi,;::; Fi,,) 2 Xy;p given by

8
<F$; if 1 q;
Fi, = ll .
'z Y if |>q;
I (a9 a)
de nes a preimage of Fi?f; o Fi% . ) under ;. Hence | is surjective. O
m (a” a)

Remark 1.26. In order to tie in with the notation introduced in Remark 1.21,|we will w rite
Xn;p @and p;p in the case of full ags.

The following lemma is a bit technical and not well-motivated at this point. In some
sense it shows that |, respects the relations de ning the irreducible components of
F IIn k. Reading the proofs of Lemm and Lemm4, where everything is a bit
more explicit, will probably be a great help for the reader in cherishing its generality and
power.
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Lemma 1.27. Let (Fi;:5Fi,) 2 Xyp be a ag and letis,;is, 2fig;:5img f pyp+1g
such thats; < s». If we de ne

Sj ifs; q;
s (@ o ifs>g;

for j =1;2, then the following equivalence holds:

Fi,=2z 202 DR, RS =z 0% PDES (16)
Moreover, if ig2fis; i img f p;p+1gand
- ( S ifs q;
s (g ifs>q;
then there is an equivalence
Fi. = Fi, , +span ey . ) , F9 = Fi?) +span eigo, ) i (17)

where is an integer such thatig+ is even and%(is + ) N.
Proof. The proof of equivalence [(1p) is divided into three cases:
If sy <s> @, then we haver; = s; and
Fi?)j = Fig)j = Fi,

for j = 1;2. In particular, both sides of (16) are exactly the same statements.

If s; g<q®<sy, then

(L3)
FO =F. and FY =F9 ZFi,;
"1 1 2 s2 (a0 q)
Moreover, we have
I, I =lg, (0 g 1T ls sy 2

Thus we only have to show

1. PP
- (i is;t1 — S(i is, +1)+1
Fisz =z 20z = )Fisl ! ZFisz =z 20z T Fisl

to prove ). But this follows by applying z (respectively z 1) to the left (respec-
tively right) side of the equivalence.

If ®<s;<s», then we have

FS = F2 = zF;,
i SERCER)

forj =1;2 and

.0 0 _ :0 .0 . ] . . '

Ity I, = |52 (¢ q |Sl (® q ~ Is, 2 (Isl 2) = s, is,:
Hence [16) is the same statement as

1 i 1/: .
Fisz =7 §(|52 |51+1) Fisl , ZFi52 =7z §(|sz Isl+1)+l Fisl;

which we already treated in the case above.
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In order to prove equivalence [(1f), two cases have to be considered.

Ifis p 1,i.e.s q, thereis nothing to show because both sides of the equivalence
are the same statements similar to the rst case in the proof of [(1p).

If is>p +1,ie. s>qg°%we have to show the equivalence

Fi; = Fi;, , tspan ey , FQ = F? +sSpan e, .
s s 1 2(is+ ) 's (@ @ 's (@ o 1 212 (@0 g7

(18)

becauser = s (q° Q).
Now suppose the left hand side of{ (I8) holds. Since (® q) > q in the case under
consideration, we obtain

@@
F9 = zFi, = z Fi, , +span(ey;_, )
s (a0 o) 2v's

)
— zF, ,+tz span(e%(iSJr )

Sinceig @ o = s 2 we obtain

z Span(e%(is+ ) =span(e%(is+ ) 1)
:Span(e%((is 2+ )

= span(ex o
205 @ 9* )

and thus it remains to prove

. — g0 :
2Fis 1 = Fig @ q 1

in order to deduce the right hand side of equivalence[(18). It > g%+ 1 this is an

immediate consequence of (§3) and i§ = ¢°+ 1 we calculate

F3 = F=Fi

i = ZFquZ zFig 4;

q

where we used the fact that € ;::;;Fi,) 2 Xy;p for the third equality. We leave
it to the reader to check that the right hand side of ) implies the left hand side
(simply apply z ! to the equation and argue similarly as above).

O

1.3.2 Review of the Springer ber case

In the following we only consider the special case of full ags. We prog that ,, maps the
irreducible componentK , F 1" ¥k corresponding to the cup diagrama 2 B" XK to the
setTa P! " (cf. Proposition below) de ned by

Ta:= (Iu5l)2 S "jI7 =15 if(i;j) 2 aandl; = span(e) if (i) 2 a :
For a xed cup diagram a 2 B" Kk with k 1 there always existsp 2 f 1;:::;n  1g

such that the dots p and p+ 1 are connected by an arc ina. Removing this arc yields a
new cup diagram inB" ¥ Lk 1 \hich we denote bya f p;p+1g.

18



Corresponding to the choice ofp consider the set
Xnp = F(F1;25Fn) 2 Yn j Fper = 2 *Fp 10
and the map np: Xnp ! Yn 2 given by
(FuinFa) 7V (Foy i Fp 13 2Fpe2s i zFn)

as introduced in (12) and Lemma[1.25. The following lemma generalizes [i@9, Lemma
3.2] from the equal-row case to the general two-row case.

Lemma 1.28. There is an equality of sets:

Ka= np(Kaf ppeig):
Proof. By assumption there is an arc ina connecting the dotsp and p+ 1. Hence the
equality Fpyy = z 'Fp 1 holds for every (Fi;::Fn) 2 Ka by Lemma[l.22 andK, is
contained in Xp.p.
SinceK 4 = n;I%(Kaf pp+1g) IS equivalent to the statement

(FiinFa) 2 Ka np(F1: 25 Fn) 2 Kat piprig

we have to prove that a ag (Fi;::;;Fn) 2 Xpyp satis es the conditions of Lemma|1.22
for the cup diagram a, if and only if the ag ( F{::;FQ ,) satis es the conditions of the
lemma fora f p;p+1g. Being totally explicit, it remains to show the equivalence

1 1
Fs, = 2 5(s2 s1+1) Fe, ’ Fro2 = 7 3(rz2 ri+l) Frol;

where (
- Sj ifs p 1L
Ty 2 difs>p L
for j = 1;2 and the equivalence

B 0_ 0
Fs= Fs 1+span 1(st 4(s) , Fr=F/ 1 +span €L+ ot ppe1g(D)

where (
S ifs p 1,
s 2 ifs>p 1L
The reader easily sees that this is just the statement of Lemm@ 1.27 (Wh = 4(s) =
af pp+1g(r)) in the special case considered here. O

r:=

In the following lemma we recall results contained in [[CKO8, Theorem2.1], [WehQ09,
Lemma 2.4].

Lemma 1.29. The homeomorphism , maps Xy, to the set
Anp = f(l1;51n) 2 (PH" ] lp+1 = I; g
and the following diagram commutes:
n U
><n;p : &n 2

ann;p = = n 2

Anp ———NPH" 2

frpianp

wherefn.,: (PH)" (P 2 is the map which forgets the coordinatep and p+ 1.
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Before we can prove the lemma we have to introduce some more lineargabra. The
following result was rst proved in [Weh09| Lemma 2.2].

Lemma 1.30. Let U C2N be az-stable subspace such thater(z) U im(z). Then
z mapsz U\ U? isomorphically to U\ (zU)?, and the following diagram commutes:

z WU\ u? ——2 U\ (zU0)?

Proof. In order to see thatz actually maps elements inz U\ U? to elements ofU\ (zU)?,
notice that for v2 z U\ U? we clearly havez(v) 2 U (because in particularv 2 z U).
For the proof that z(v) 2 (zU)? pick any u 2 U and write

V=Vi+ i+ VN, U= up+ i+ uy

with vj;uj 2 span(g ;fj). Since spang;f1) =ker(z) U by assumption andv 2 u? we
deduce thatvy = 0. It is easy to see thatz : span(g;fj) ! span(g 1;f; 1) is unitary for
j 2. Thus one gets

X X
hev; zui = hevi; zuji = hvi;uji = hv;ui =0;
i=2 i=2

which proveszv 2 (zU)?.

To check the commutativity of the diagram let v 2 z U\ U? and decomposev =
v + i+ vy with v; 2 span(g;fj) as above. One easily checks thaC(vj) = C(zv;) for
allj 2 and hence obtains

X X
C(zv) = C(zvj)) = C(vj) = C(v):
j=2 j=2

Our assumptions together with Lemma[1.16 imply that C: z U\ U? | C?is an
isomorphism and soz: z U\ U? ! U\ (zU)? must be injective by the commutativity
of the diagram. By Lemmal[1.1T we have

dim(U) = 2 + dim( zU): (19)

Basic linear algebra tells us thatU \ (zU)? = U=zU and henceU \ (zU)? is two-
dimensional by (19) and thusz: z *U\ U? ! U\ (zU)? is an isomorphism. O

Corollary 1.31. LetU U® C2N be two subspaces such thatim U%=dim U +1 and
ker(z) U im(2). If U is z-stable andzU® U, then

C(U% U?)= Cc(zU%\ (zU)?):
Proof. By our assumptions we can apply Lemma 1.30 tdJ and obtain an isomorphism
z:z U\ U717 U\ (zU)?:

Notice that the inclusion zU® U together with the assumption on the dimension onU°
imply that U°\ U? z U\ U? is a one-dimensional subspace. The same is true for
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zU% (zU)? U\ (zU)?. Moreover, it is easy to see that for everyv 2 U°\ U? we
have zv 2 zU% (zU)? which implies z(U%\ U?) = zU% (zU)? by the above dimensional
considerations. Hence, one obtains the desired equality

C(U%\ U?)= C(z(U%\ U?)) = C(zU% (zU)?);
becauseC(v) = C(z(v)) forall v2 z *U\ U? by Lemma[1.30. O

Proof (Lemma [1.29). Let (Fy;:::;Fn) 2 Xnp be a ag. Both vector spacesFp.1 \ Fp? and
Fp\ F; ; are contained inz 'F, 1\ FJ ; and they are clearly orthogonal. By Lemma

[1.1§ the map
C:z 'Fp 1\ FJ 17 C?

is a unitary isomorphism. Hence we deduce that the image$:1 = C(Fp+1 \ Fr}’) and
lp= C(Fp\ F; ,) are orthogonal.
In order to check the commutativity of the square we calculate

frp ( n(F1;:5Fn)) = frp C(F1\ Fg);C(F2\ F7 )i C(Fa\ FZ 1Y)
=(lyh 22 PP

where (
C(Fj\ F? if j <p;
C(Fj+2\ F%p) ifj  p:
On the other hand one gets
n 2( np(FuiinFn)) = n 2(F1 i Fp 15ZFpe2; i ZFy)
=190 )2 pt" 2,
where (

. C(zFj+2 \ (zFj«1)?) ifj

Notice that in the casej = p we inserted the equalityFp+1 = z 1FIO 1 to obtain the above
result.
Comparing (20) and (21), we see that it su ces to prove that

C(Fj+2 \ F41)= C(zFj2 \ (zFj+1)7)

for all j p to complete the argument. But this follows from Corollary .37 by setting
U := Fj+1 and U%:= Fj.,, because

kerz)=z Y0) z 'Fp 1= Fpur  Fju

and Fj+1  im(z) by increasing N if necessary (all the other hypotheses of the lemma are
obviously satis ed). O

Proposition 1.32. There is an equality of sets:

n(Ka) = Ta:
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Proof. Let n 1 and consider the Springer berF ™9, This variety has one irreducible
component corresponding to the matching consisting ofi rays and no arcs. The relations
of Proposition [1.23 imply that this irreducible component consists of pecisely one ag,
namely

(span(e1); span(ey; €2); :::; span(es; i €n)) :
Now it is easy to check that ,, maps this ag to (span(e);:::;span()) 2 P! "

Notice also that by Lemma[1.29 we obtain the claim forF |12,

For the general case we proceed by induction, assuming that the claim diie proposition
is true for the irreducible components of FI" k 1k 1 et a2 B" ¥k be a cup diagram
and x an arc connecting dots p and p+ 1. By Lemma there is an equality of maps

n;p n 2= fn;ijn;p ann;p :
In particular, we have an equality of sets

ann;p n;é(Kaf p;p+1g) = fn;ijnl;p n 2(Kaf p;p+1g) .
Applying Lemma [L.28 and the induction hypothesis to this equality yields
nixap (Ka) = frpiar (Tat pprig):
But we clearly have
fn;pJ'A:;p (Tat p;p+1g) = Ta;
which nishes the proof. O

1.3.3 Extension to Spaltenstein varieties

Let I = (ig;::im) be admissible and leti, be an integer in the sequence such that
ip ip 1=2,i.e. thereis across ati, andip 1 in the dot-cross sequence. By Lemma
@ we obtain a well-dened map i, 1: Xpi, 1! Yi¢ i, 1i,g given by

(Figs o Fig) 7 Fiy; oo Fip 1 ZFi.,g s in zFig

Lemma 1.33. The following diagram commutes:

L 1
Xiip 1 - M, ¢ ip Lipg
IJX“p\l%% )@dl;ipg
pl 2m n
Proof. Let (Fi ;5 Fi,) 2 Xy, 1 be a ag and let (ij, ;5 ij,, ,) be the subsequence of
I consisting of all entries whereij, 1= 1ij, 1. Then we have
Vi, Lipg Lip 1(FistBFin) = r¢ i, nipg FininFip o0 zFig, s unzFg,
= (I lom )2 PL2T T
where (
C(Fi, \ F? if | 1;
o= st Ry, ) oo e P (22)
C(zFi \ (zFi, ,)7) ifjs p+1:
The same argument as in the proof of Lemma 1.29 shows that
C(zFi \ (zFi,, )?)= C(Fi;,\ (Fi,, .)7);
forjs p+1 and hence we have .jx,;ip 1T 1f i Lipg i 1- O
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Lemma 1.34. There is an equality of sets:
- 1 .
Ka— Lip 1 Kaf ip Lipg -

Proof. Since there is an invisible arc ina-connecting the crosses at positions, 1 and
ip in the dot cross sequence corresponding tb, we haveFj, = z 1Fip , for every ag
(Fiy;iiFiy) 2 Kgand thus Ka o Xy, 1.

Similar to the proof of Lemma|[1.2§ it remains to prove thata ag (Fi ;= Fi,) 2 Xisi, 1
satis es the conditions of Lemma[I1.22 for the cup diagramas if and only if the ag
(Fi%; e Fi% ) satis es the conditions of the lemma fora f ip 1;ipg. More explicitly,
we have to show the equivalence

Fi

1, .
— (i is,+1) .
5 = Z 2\'s2 's1 |:Isl

1 . .
FQ =z 207 WD g
II’2 Irl,

where (

forj =1;2, and the equivalence

— 0_ g0
Fio = Fig ytspan e, o - Fie= Fo +span ey, 0 (o))
where (
- S ifs p 1,
s 1 ifs>p:
The reader easily sees that this is just the statement of Lemm@ 1.27 (Wh = g(is) =
af ip 1;ipg(i9)) in the special case considered here. O
Proposition 1.35.  There is an equality of sets:
| (Ka) = Ta,ed:
Proof. We induct on the number of indices inl satisfyingi;, i, 1=2.If iy i, 1=1for

all 1 2 f 1;:::;mg the claim was proved in Proposition[1.32.
Now let a 2 B!" ¥ be a cup diagram and leti, be an index such thati, i, 1 = 2.
Then we have

(o) &P

Ui, 1 Katip sipg = 11 ip Lipg Kaf iy wipg
and by the induction hypothesis we have

I fip Lipg Kat ip Lipg = Tared:

1.4 Gluing the irreducible components

In this section we nalize the proof of Theorem[1.15. The essential ingrdient will be the

construction of a homeomorphism zm n: P! 2™ "= 2 ®™ " gych that the composi-

tion
YI!I I:)12mn!2mn S22mn
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maps the irreducible componentK , to the set S; as de ned at the end of sectior 1.]L.
Consider the stereographic projection : S°nfpg! C and its analog for projective space

: Plnfspan@)g! C; span(e + f ) 7! —:

We can use and to de ne a homeomorphism : P! S by

1( (span(e + f))) if span( e + f ) 6span(e);

span(e + f ) 7! )
p=(0;01) if span(e + f )=span(e):

This induces a homeomorphism ,: P! "1 2" on the n-fold products by setting
n(l s 1n) =00 1) ()
Moreover, de ne an involutive homeomorphisml,: "1 2" py
(X135 %n) 78 xa3Xz; X305 (0 1)"xn)
and set , = I, n.
Proposition 1.36. There is an equality of sets ,(Ta) = Sa for everya2 B" Kk,

Proof. From the de nition of | it is easy to see that ,(T3) consists of precisely those
elements which satisfy the conditions

Xi = xj if (i;j)is apairin a
Xj = p if (i) is a ray

Notice that if the dots i andj are connected by an arc, then eitheii is odd andj even ori
is even andj is odd. Hencel n( n(Ta)) is the set of elements &1;::5;xp) 2 S? 5 satisfying

Xj = Xj if (i;j ) is a pair in a
xi=( 1)pif(i)is aray
which shows ,(Tg) = In( n(Kga)) = S;. O

Proof (Theorem [1.15). We can write the (n  k; k)-Spaltenstein variety of type | as the
union of its irreducible components

: [
FIr ko= Ka

a2B]
and view it is a subvariety of Y;. Pushing this union through the homeomorphism

YI!I I:‘.’12mn!2mn Smen

yields
. [ [
om (1 (FIM KKy = om o (1 (Ka)) &2 om 1 (Tasy)

n kk n kk
az2B, az2B,

(L:36) [
Sared ’

a2B/ kik
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and hence we obtain the desired homeomorphism

. [
n kk
FI,

= Sared :

O]

Example 1.37. Let | = (1;3;4;6;7) and considerF I} where x is of Jordan type (4;3).
Then the dot-cross sequence df is given by and the setBl“;?’ consists of the
following cup diagrams:

a= \__/ b= \_/
If we delete the crosses we obtain the following reduced diagrams:

_ A\
Ared = ‘

A\
Dred = ‘

Thus the Spaltenstein variety F I is homeomorphic the union of the following two sets:

Sa., = f(XX; pP)jx2S%g &° S, = f( pixx)jx2 g 2
Each of these submanifolds is homeomorphic to a two-sphere and theirtersection is. given
by Saee \ Sh = f( P; P; P)g. Thus, topologically, the Spaltenstein variety F I is a

wedge of two spheres:

2 A 2d TQFT via Spaltenstein varieties

The following material is at the heart of this work. After discussing the combinatorics
of tangle and circle diagrams in the rst subsection we use these diagram® de ne sub-

varieties inside a nite product of Spaltenstein varieties in the second subsection. If two
diagrams are related by a certain graphical operation called local surgeryhen the corre-
sponding varieties are related by an inclusion map, i.e. one of them stinside the other
one. Finally, in the last subsection, we compute the pullback and pukforward of these
inclusions in cohomology and relate them to the TQFT associated with thering of dual

numbers equipped with a Frobenius algebra structure. The obtaind results provide the

basis for the geometric constructions and applications in the third part of this work.

2.1 Combinatorics of tangle and circle diagrams

We begin by extending our combinatorial tool kit, introduce cap diagramsand explain how
to combine them with cup diagrams in order to get tangle and circle diagrams Similar
combinatorial structures also occur in the work of Brundan and Stroppel[BS10/BS11].
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Let us remark right from the beginning that whenever we draw cup, cap,tangle and
circle diagrams we think of these as means of visualizing combinatorial sictures. In
particular, we do not distinguish between diagrams related by a planar sotopy leaving the
dot-cross sequences in the diagrams xed.

In the following | = (ig;:::;im) and 19=(i$;:::;i%0) are admissible sequences with
highest integern and n°respectively, i.e.im = n andi%, = n® We say that the sequences
I and | have length m and length m® respectively.

De nition 2.1. Leta?2 BIn kK be a cup diagram. Then we obtain the corresponding
cap diagrama by re ecting the diagram a in the horizontal line containing the dots and
crosses.

Example 2.2. The diagram on the right side is the cap diagram corresponding to the cup
diagram on the left:

N Y e N | A

Notice that the order of the symbols in a dot-cross sequence induces ander on the rays
of a cup diagram on this dot-cross sequence. In particular, if two cup digramsa 2 BIn k; ,

b2 BI”(? k*k® have the same number of rays, i.e. the equalitn 2k = n® 2k®holds, then
there is a unique order-preserving bijection between the ray the two diagrams.

De nition 2.3. Let a2 Bln kk b2 B,”f k%k® be two cup diagrams having the same
number of rays. Then we de ne a new diagramba by placing the cup diagramb on top of

the cap diagrama (with both dot-cross sequences left-aligned) and connect the loosends

of the rays in b with the ones in a pairwise according to the order-preserving bijection.
The resulting diagram ba can be drawn in the plane without crossings and it is called a
(combinatorial) tangle diagram of type (1;1 9. The glued pairs of rays are referred to as
the strands of the tangle diagram.

Example 2.4. The following picture shows the process of building a combinatosl tangle
diagram from two given cup diagrams as explained in De nition[2.3:

‘ \/ ‘ \/ and glue rays /\

M

The rays in the two cup diagrams are glued at their endpoints to obtain the strand
connecting the third dot on the bottom with the rst dot on top.

De nition 2.5.  Let a2 B! ¥ b2 B" ***° pe cup diagrams. We de nebato be the
diagram obtained by sticking the cap diagramb on top of the cup diagram a, i.e. we glue
the two diagrams along their common dot-cross sequence (respectingehordering of the
sequence). This diagram is called &ircle diagram of typel .

Remark 2.6. The term \circle diagram" might be a bit deceiving because in general acle
diagrams consist of both circles and line segments (cf. the followingxample). A circle
diagram does not contain any line segments if and only if the two cup diagram#volved
in its construction do not contain any rays.
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Example 2.7. Here is an example illustrating the gluing process of a cup and cap diagram
in order to obtain a circle diagram:

\\/ % ‘ reect%rm /\ ‘ ‘ ‘
\/ ‘ ‘ ‘ and glue \\/

7

The resulting diagram consists of one circle and two line segments.

Once we know how to stick cup diagrams on top of cap diagrams and vice versaewcan
easily construct more complicated diagrams by iterating the gluing praess explained in
De nition Z:3Jand De nition 2[5.]

For the remaining subsection we x a collection|l;:::;ls of at least two admissible
sequences. Letmq;my;:::; mg be the respective lengths of the admissible sequences and
ni;:::;Ng denote the respective heighest integers.

De nition 2.8. Let g be a combinatorial tangle diagrams of type (;;li+1) for every

Notice that for s =2 the set T (l1;12) consists of the diagrams from De niton [2.3.

De nition 2.9. Let by 1as 1:::bpazbyay 2 T (I1;:::;1s) be a combinatorial tangle dia-
gram and leta 2 B! katki. 2 B ksks pe cup diagrams. Then we can glue to the
bottom of t and b onto the top to obtain a diagram

bta= by 13 1:::pabaa

called acircle diagram of type(l1;:::;1s). The set of all circle diagrams of type (1;:::;1s)
is denoted by C(l1;:::;1s). We write (1) for the set of all circle diagrams of typel as in
De nition Z.5]

Remark 2.10 As always, if I is a sequence consisting of all integers between 1 amg we
will use the short notation T (:::;n;j;:::), respectively C(:::;n;;:::), instead of writing
down the whole admissible sequence.

Example 2.11 The diagram depicted on the left is a combinatorial tangle diagram in
T((1;3;4;5);5;(2;3;5; 6; 7)) and on the right we have a circle diagram inC(8; (2; 3; 4; 5; 6)):

%

/AN
AL
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Remark 2.12 When we refer to the symbol (; ) in a tangle or circle diagram, we mean
the -th symbol (counted from left to right) in the  -th dot cross sequence (counted from
bottom to top). We think of the pairs of integers as being ordered lexicogaphically (the
order in the rst and second component comes from the canonical order of thenatural
numbers). By identifying the symbols with pairs of integers we obtin a total order on the
set of all symbols in a tangle or circle diagram. This will be useful at theend of subsection
[2.2.

De nition 2.21]and Remark R.23):

De nition 2.13. De ne T(lq;::ls) to be the set consisting of all tangle diagramst 2

T(11;:::;1s) which satisfy the following property: Whenever there is a strard in t con-
necting the dots (; )and ( +1; 9, it follows that = © ie. every strand int is
vertical.

Example 2.14. Here is an example of a tangle diagram contained i ((2; 3; 5; 6; 7; 8); 8):

MIRNY
M

The tangle diagram from Example[2.1] provides a non-example because it idearly not
contained in the subsetT((1; 3;4;5);5;(2; 3;5; 6; 7)).

Notice that we can easily extend the reduction operation for cup diagrams astroduced
in the rst section to tangle and circle diagrams:

De nition 2.15. Given a tangle diagramt = by 1as 1:::bar 2T (I1;:::;1s) we de ne
a reduced diagramt,eq by setting

tred == (Bs 1red(8s 1)red - (b1)red(a1)red;

where, on the right side, the subscript \red" refers to the redudion of cup diagrams from
De nition Thus we obtain a reduction map

Similarly, given a circle diagram bta 2 C(I1;:::;1s), wheret = by 1@ 1:::bag 2

(Bta)red = @(bs Dred(8@s 1)red - - (b1)red(@1) redred

and thus we also have a map

For the simple circle diagr@sBaZ C(l) as in De nition where | is an admissible
sequence, we seth@ eq := Bredared-
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connecting the dots (; )and (; 9. Then there is a corresponding arcin t;eq connecting
the dots (; ) and (; 9, where the number (respectively 9 is the dierence of
(respectively 9 and the number of crosses which are left of (respectively 9 in the
dot-cross sequence associated to . This de nes a canonical bijection between the arcs in
t and the arcs int,eq (excluding of course all invisible arcs). Similarly, given a strandin t
connecting the dots (; )and ( +1; 9, there is acorresponding strandin t;eq connecting
the dots (; )and ( +1; 9, where and ©can be calculated as in the case of arcs.
Again, this de nes a canonical bijection between the strands int and the strands in teq.
Obviously, all these notions still make sense if we replace the tangldiagram by a circle
diagram. We will come back to this in the proof of Proposition[2.26.

Example 2.17. The following picture shows the reduction operation applied to thetangle
diagram from Example[2.11:

/AN

t= tred =
A\

V4
/~\
V4

The resulting diagram is an element ofT (3;5; 3). The cup connecting the dots (3 6) and
(3;6) in t corresponds (in the sense of Rema6) to the cup connecting the dof8; 2)
and (3;3) in teg and the strand from (1;4) to (2;2) in t corresponds to the strand from
(1;2) to (2;2) in treq.

De nition 2.18. Lett = by 135 1:::wag 2 T (I1;:::;1¢) be a tangle diagram and X
2f1;:::;s 1g. Suppose there is an outermost arc in the cup diagrana connecting
the dots at positions and %as well as an outermost arc inb connecting the dots and
Osuchthat 5 ()= 1 (), i.e. the number of rays left of in a equals the number
of rays left of in b (cf. De nition 1.9). So locally (using the indexing convention of
Remark[2.12) the tangle diagramt looks as follows:

( +1;) (+1;9

The assumption 5 ( ) =  ( ) guarantees that there is neither a strand connecting
a dot left of (; ) with a dot right of ( +1; 9 nor a strand connecting a dot left of
( +1; ) with a dot right of ( ; 9. In particular, we can perform the following local
surgery operation

cut ares in the
/\ middle and glue
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i.e. we cut the two arcs in the middle and reglue the resulting rag to obtain two strands.
The rest of the diagram remains unchanged. In particular, by the assumpgbn 4 ( ) =
b (), the result of this surgery operation is again an element inT (I1; :::; 1's).

created. However, if we restrict to surgeries along cups which are gosite of each other,
i.e. one cup connects the dots ( ) and (; 9 while the other one connects the dots
( +1; Yand( +1; 9, then this problem does not occur.

Example 2.20. The following picture shows a concrete example of a local surgery.df the
reader's convenience the arcs and strands involved in the surgery adoubled:

2.2 Varieties and manifolds associated with tangle diagrams

In the following we use the combinatorics of tangle and circle diagrams &m the last
subsection to de ne subvarieties inside a nite product of Spaltenstein varieties. We also
provide a topological model which is related to these varieties by a tmeomorphism (cf.
Proposition [2.26). Moreover, the relationship between varieties assdéated to diagrams
which di er by a local surgery is examined in Proposition[2.35.

Throughout this subsection we x the following data: As in the previous subsection let

xed by the nilpotent operator z: C™N | C?N as dened in subsection[1.2.p. At this
point the reader is advised to also recall the de nition of the mapC: C?N | C2? and the
hermitian products on the source and target space (cf. the beginning osf;ubsection).
Notice that we obtain an embedding

FI P v, o,
by using the identi cation (4)] from subsection for every factor of the product. For

the rest of this section we write F I:‘ik o F I:‘S;k for this embedded product of Spaltenstein

varieties. For ans-tuple of ags F 2 F I,kik o F I:‘;k we use the notationF. to denote
the -dimensional vector space in the -th ag of F.

Since all the vector space§ . are subspaces of the same vector spa@ it is possible
to de ne relations between vector spaces in di erent ags of thes-tuple F, too. Relations
which produce interesting subvarieties ofF I:‘ik o F I:‘S;k are encoded in the combinatorics
of tangle and circle diagrams.

De nition 2.21. Lett 2 T(l1;:::;1s) be a tangle diagram. Given two cup diagrams
a2 B/, b2 B/, we assign a subvariety

oK (Da F |:‘ik F ok
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to these data as follows: By de nition yK (1), consists of precisely thoses-tuples of ags
F2FI18 B I which satisfy the relations:

(R1) F. o=z 2(° *DE. | if the symbols at positon (; )and (; 9, ©°> |,
are connected by a (possibly invisible) arc in the circle diagranbta,

(R2) F. =F 4, , if the dots at positions (; ) and ( +1; ) are connected by a
vertical strand in bta.

Example 2.22 Consider the tangle diagram

t= 2T(4,(2,3,4)

/N

together with the following two cup diagrams:

— 2;2 2,2
a= 2 B b 2 B(2;3;4)

vV N2

Then the subvariety K (t)a consists of all ags
((F11iF12i Fiai Fia); (F22; F23;F24)) 2F 172 F |(22;;23;4)
satisfying the conditions
Fio=2 '0) Fis=Fa3 Fia=Fas Fao=12z *(0)
imposed by the diagramt as well as the additional relations
F12=2 %(0) Fia=2z Y(Fu2) F22=2 *(0) F2a =z Y(F2p2)

coming from the diagramsa and b (the relations in brackets are redundant). All in all, we
have

bK(a=  (Fiuiz Y0);Fusiz %0) ; z Y0);Fusiz %0)  F I*2 F 152,
Remark 2.23 We would like to point out that De nition 2[21 does not extend to arbitrar y

is necessary. In order to illustrate this consider the following dagram:

A\

M\

Since there is a strand connecting the fourth dot on the bottom with the second dot on the
top the strand relation (R2) would tell us to make the identi cation Fi.4 = F2.2 in order

to obtain the variety pK (t)a (for some xed cup diagramsa 2 B%?, b2 B2?2). Obviously,

this is nonsense because diffi;.4 6 dim F2..
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However, tangle diagrams with non-vertical strands will become extrerely important
in subsections[ 3.2 and 3J3. Hence, it is desirable to be able to assign \eties to these
diagrams, too. There seem to be several possible solutions to this pri@m, e.g. one might
try to alter relation (R2) and replace it with a more complicated one which makes sense
for non-vertical strands, too. Our idea is to keep the simple relaton and instead introduce
crosses (playing the role of \placeholders") in the combinatorics whib make the strands
vertical, e.g. in the case of the above diagram we would make the replacemie

A\ A\
the strands vertical
/M o\

and work with the right diagram instead of the left one. In the geometric word the
introduction of crosses in the combinatorics corresponds to passingdm Springer bers
to Spaltenstein varieties.

We can extend the topological model of Spaltenstein varieties from the rst part of
this work to an easy topological model of the varieties from De nition [2.2]. Ore of the
advantages of working in the topological setting is that the issues explaied in Remark
[2.23 above do not occur, i.e. it is possible to de ne manifolds inside nite product of
topological Springer bers for diagrams with non-vertical strands by only making simple
coordinate identi cations.

De nition 2.24. Given a tangle diagramt 2 T (ny1;:::;ns) and cup diagramsa 2
Bkiki ph 2 Bksiks we dene a manifold pS(t)a S Kkt i S ksks as the set of all
elements

(X125 7055 Xeng )it (Xsit 1005 Xsing)) 2 SKuke o g keiks

satisfying the coordinate equations

(R1) x. =x. o ifthe dots at position (; )and (; 9 are connected by an arc in
bta,
(R2') X. =X 41. 0, if the dots at positions (; )and ( +1; 9 are connected by a

strand in bta.

Example 2.25. Consider the following combinatorial tangle diagram

t= 27T (4;2)

M\

which is turned into a circle diagram by closing it up on top and bottom with the diagrams

a= 2 B?? b= 2 it
vV \

respectively. Thus the manifold ,S(t)a consists of all elements

((X1:1; X1:2; X1:3; X1:4); (X2:15 X2:2)) 2 S%2 S Bl
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satisfying the relations
X1;1= X120 X1;3= X210 X1;4 = X22
(coming from the arcs and rays int) and
[X1:1 = X12]  X1;3= X4 X210 = X2
(coming from the diagramsa and b). Thus we have
bS(Da = (XX Y;y)i(yiy)) S %% s Bl

The next goal is to prove that the varieties from De nition 2.2I]are related to the
manifolds from De nition 2.24]via a homeomorphism (cf. Proposition[2.26 bebw), thereby
justifying the term \topological model".

Notice that we obtain a homeomorphism

Y, oy, !t opr@meno.. pl2msn (23)

as the product of the homeomorphisms from Corollary 1.20 and a homeomorphism

2m1 n 2ms N , 2m; n I 2ms n 2m1 n 2ms n
pt “mt SR = s S SIS (24)

as the product of maps de ned in subsectior] T]4. In the following, we Wi write ...

for the map ) and 2mi n;:i2ms n for the map )
It follows immediately from Theorem [L.15 that the composition

2m; n:i2ms N lnls =( 2my n 1.) (2my n 1) 0 (2me n <)
restricts to a homeomorphism
FI:‘ik = F Ilks;k!_S my kmy k... g ms kms k. (25)

Our task is to identify the image of the varieties ,K (t)a F I:‘l;k o F I:(S;k from
De nition 2.2TJunder this homeomorphism.

2mji n;:;2ms n Il sij (t)a - bK (t)a! - Bred S(tred)ared

for every choice of cup diagramsa 2 Blkl;k, b2 BIK,

I's

Proof. Letus x a s-tuple of ags F 2 pK (t)a F I:‘l;k o F I:‘S;k satisfying the relations
(R1) and (R2) with respect to the diagram bta and let

X=(( Xy 5 Xe2my n)iiin (Xsi1s 205 Xs2ms n)) = 2my nom2ms no dgls (F)

denote its image. In order to provex 2 p, S(tred)a,, We have to show that this element
satis es the relations (R1) and (R2") imposed by the diagram (©ta)eq.
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Suppose there is an arc injléta),ed connecting the dots (; ) and (; 9. Then there
is a corresponding arc inbta connecting the dots (; ) and (; 9 (cf. Remark
). SinceFI:‘;k is the union of its irreducible components there exists a cup

diagram c 2 Blk;k such that the -th ag of our xed s-tuple lies in the component
K. The assumed relations imply that we can choose awhich has an arc connecting
the dots and © In particular, we have

F2FI:‘ik  F I:‘i;kl Ke F IRk F I:‘S;k

li+1

and by Theorem[1.15 it follows that
x 28Me kmy kg o g Ms kims Kk

Since there is an arc inceg connecting the dots and ©the de nition of Se.eq
immediately implies the equality x. = X. o, i.e relation (R1") for the arc under
consideration.

Next, assume that there is a strand in pta),eq connecting the dot (; ) with the dot

( +1; 9. Then there is a corresponding vertical strand inbta connecting the dots
(; )and( +1; ), i.e. we haveF. = F 4. for the respective vector spaces in
the s-tuple of ags F by (R2) .

We claim that we also have an equalityF. 1 = F 41. 1. In order to see this
consider an outermost sequence of (possibly invisible) arcs in theup diagrams a
and b between the ray starting at position and the preceding ray, say at position

same positions). Thus, locally the tangle diagramt looks as follows:

(+1;9 5 ! (+1:)
G 9 : : G )

By inductively inserting all the relations (R1) for the outermost arcs (similar as in
the proof of Lemma[1.22) and by using the equalityF; o= F .1 o (coming from
relation (R2) ) it follows that

F. 122%( 01)F; o=z 20 " DF v1; 0= Foyg; g

which is what we claimed.
Now the equationsF. 1=F 4. jandF. = F 4. together obviously imply

C(F. \ Fr) 1)= C(F +1; \ I:?+1; 1) (26)

where C: CN | C?is the map introduced at the beginning of subsectior] 1.2. By
the de nition of the homeomorphism ... this equality is equivalent to saying

.....

Il;:::;ls(F); = s (F) +1: 05



where the subscript ;  picks out the respective component, i.e. the one correspond-
ing to the -th P! inthe -th factor of the product (P1)2™1 N (PY)2ms n,

Finally, recall that the map om;, n::2ms n rstidenties ... |5(F); 2 P! with

a point on the sphereS? which is then sent to itself if is even and to its antipode
if is odd. Hence, it follows that

2m; n;i;2ms n |1;:::;IS(F); = 2mp npin2ms n I1;:::;IS(F) +1; 0

because and Oare easily seen to be either both even or both odd.
This provesx. = X 41: o, i.e. relation (R2") for the strand under consideration.

All in all, we thus have an inclusion
2mi1 n;:2ms n l1;50s (bK (t)a) Bred S(tred)ared : (27)

In order to complete the argument letF 2 F I:‘ik o F I:‘;k be as-tuple of ags (not
necessarily contained inyK (t)5) whose image

X=((Xy i Xeemy n)iiini (Xsits ii Xs2ms n)) = 2my nn2ms n lypts (F)

is assumed to be contained iny_, S(tred)a,, - We want to prove that this implies F 2
bK (t)a, i.6. we have to show thatF satis es the relations (R1) and (R2) imposed by the
diagram bta.

Suppose there is an arc irbta connecting the dots (; ) and (; 9. If this arc is
invisible there is nothing to show because the relations for invible arcs are auto-
matically satis ed for every element F 2 FI:(ik F I:‘S;k. Hence, assume that
the arc is not invisible. Then there is a corresponding arc in Bta),eq connecting the
dots (; )and (; 9. Then we argue similarly as in the proof of (R1) ) (R1) "
above, i.e. there existsc 2 Blk;k which has an arc connecting the dots and Osuch
that
X 2 St kimi k SCred S Ms kims k

and hence we have

F2F Ik F oIk Ko F OIS Foogk
1 i1 i+1 S
by Theorem which provesF. o=z 2(° *DE. | ie(R1) for the arc under
consideration.

Assume there is a strand inthconnecting thedots (; )and( +1; ). Thenthere
is a corresponding strand in pta)eq connecting the dots (; )and ( +1; 9. In
particular, we have x; = x 41; o by (R2') which implies equation (28), i.e.

C(F; \ F’) 1) = C(F +1; \ I:?+1; 1)
by reversing the argumentation from the case (R2) ) (R2") " above (check that

every implication was in fact an equivalence).

We have already seen that thes-tuple F satis es the arc relations (R1) for the
diagram bta. Moreover, by induction, we assume that the relation (R2) holds for
all strands which are left of the one under consideration, i.e. we havequalities
F. o= F ,1. o whenever there is a vertical strand inbta connecting the dots (; 9
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and ( +1; 9, where °< . Thus, we can use an outermost sequence argument
(cf. the proof of the implication \ (R2) ) (R2") ") to deduce the equality F. 1=
F +1; 1. If we combine this with equation (26) we get

C(F. \F? )= C(F 4, \F? ) (28)

By Lemma|L.16 C restricts to a unitary isomorphism onz *F, 1\ F? . Since
F, andF ., areboth containedinz 'F, 1\ F?  the equation (2§) implies
that F. = F .., thereby proving relation (R2) for the strand under considera-
tion.

This shows that the inclusion (27) is in fact an equality which nishes the proof. [

Example 2.27. Notice that the diagrams in Example[2.25 are the reduced diagrams of the
ones from Example[2.2R. In particular, by Proposition[2.26, the complex varieg from
Example[2.22 is homeomorphic to the manifold from Examplé 2.25.

Finally, we ask for a relationship between the varieties (respectiely manifolds) asso-
ciated to two tangle diagrams which only di er by a single local surgery. The answer is
provided in Proposition 2.35 below. As a preparation we introduce some wre de nitions
rst.

there are only arcs ina and b and no rays) the circle diagrambta consists of circles only
and there are no loose endpoints in the diagram.

De nition 2.28. Lett 2 T(n1;:::;ns) be a tangle diagram and leta 2 Bkik1 and
b2 Bks?"i be cup diagrams. Then we writec(bta) to denote the number of circles in the
diagram bta.

Two dots in bta are said to beequivalentif there is a sequence of arcs and strands in the
diagram which connects the two dots. This clearly de nes an equivaleoe relation on the
set of dots and the equivalence classes correspond bijectively toelcircles in the diagram.
Henceforth, we will often be a bit sloppy and use the term \circle" when we actually mean
an equivalence class of dots. However, this should not cause any confusion

Recall that there is a total order on the set of all dots in a circle diagram byidentifying
the dots with pairs of positive integers (; ) as explained in Remark[2.1p.

De nition 2.29. A dot is called a distinguished representativeof a circle in bta if it is
minimal (with respect to the order from Remark 2.12) among all the dots lying on the
circle under consideration.

This notion of a distinguished representative can be used to de ne dotal order on the
set of all circles inbta.

De nition 2.30.  Let C; and C, be two distinct circles in the diagram bta. We say that
C1 is smaller than C; if the distinguished representative of C; is smaller than the one of
Co.

the collection of circles of a circle diagrambta we assume that this collection is already
ordered in the sense of De nition[2.3D, i.e. we haveC; < Cz < 1 < C 5, Moreover,

whenever we refer to thei-th circle in a circle diagram bta we always mean thei-th circle
with respect to this ordering.
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Remark 2.31 Notice that the above notions also make sense for the simplest kind of aite
diagram obtained by gluing a cap diagram on top of a cup diagram without a tangle
diagram sitting between the two (cf. De nition 2.5). In particular, a circle C; in such a
diagram is smaller than a circleC; if the leftmost dot on the circle C; is left of the leftmost
dot on the circle C,. Again, this yields a total order on the collection of all circles.

Example 2.32 Consider the circle diagram:

/\ﬁ\\/\

NN
M M
NG
The set of dots is partitioned into the following four equivalence chsses each of which
corresponds to a circle in the diagram:

C1=1(1;1);(1;2)g Co=f(1;3);(1;4);(1;5);(1;6);(2;1);(2;2)9

C3=1(2;3);(2;4);(2;5);(2;6)g Ca=1(2,7);(2;8)0:

The distinguished representatives as in De nition[2.29 are (11), (1;3), (2;3) and (2;7)
respectively. In particular, the circles are already indexed corectly according to the total
order from De nition 2.30] i.e. we have C; <C,<C3<Ca.

The following lemma describes to what extent a local surgery operabn impacts the
combinatorial structure of a tangle diagram.

from t by performing a single local surgery. Then, for xed cup diagramsa 2 Bkik1 and
b2 Bksks there exists a pair of positive integersi < such that either thei-th circle in

bta splits into the i-th and j -th circle in bt%, due to the local surgery, or thei-th and j -th

circle in bta merge and become thé-th circle in bt%a while the rest of the circles remain
unchanged.

Proof. There are two cases to be considered: Either the two arcs involvediithe surgery
are parts of the same circle inbta or they are not. The two cases can be visualized as
follows:

e N
R )

The dashed connection lines represent the remaining arcs and strasdon the respective
circles.

Let us treat the rst case (left picture): Let us assume that the circle which contains the
two arcs involved in the surgery is at thei-th position in the ordering of all circles in bta.
Then the combinatorial structure of the diagram clearly forces the cirde to split. Since the
rest of the circles remain unchanged one of the two created circles &ill at position i in the
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ordering of the circles inbt% (namely the circle which contains the minimal representative
of the old circle) while the other one is at positionj for somej >i .

In the second case the two arcs involved in the local surgery lie on twdi erent circles,
say thei-th and j-th circle, where i < . The surgery operation clearly forces the two
circles to merge. In particular, the new circle is the easily seeto be the i-th circle in the
diagram bta because it contains the minimal representative of thei-th circle in bta and
the remaining circles are unchanged by the surgery. O

Example 2.34. Here is an example of a local surgery which merges the second and fourth
circle in the diagram from Example [2.32 into the second circle of the diagim resulting
from the surgery, i.e. we havei =2 and j = 4. As in Example the arcs and strands
involved in the surgery operation are doubled in the following picture:

A /AN A /\/\/\

(2 V/
A N
VA
Proposition 2.35. Let t;t92 T(l1;:::;1s) be two tangle diagrams, WherelO is obtained

from t by a single local surgery, and leta 2 B,klk, b2 Blksk be two xed cup diagrams.
Then we either have an inclusion

K (Da oK (1% or  pK(%a pK(b)a

depending on whether a circle splits or two circles merge by passing frofta) eq to (bt%) eq
(a splitting circle corresponds to the rst and two merging circles tothe second inclusion).
Analogously, lett;t®2 T (n1;::::ns) be two tangle diagrams, where® is obtained from
t by a single local surgery. Then for xed cup diagramsa 2 BXtk1 b2 Bksks we eijther
have an inclusion
SMa  vS(t% or  pS(ta  bS(D)a

depending on whether a circle splits or two circles merge by passing frdnta to bt% (again,
a splitting circle corresponds to the rst and two merging circles to he second inclusion).

Proof. We start by proving the claim in the topological setting: Let t;t°2 T(ny;:::;ns)
be tangle diagrams as in the proposition. By Lemmd 2.33 there exist integers<j such
that the local surgery either merges thei-th and j -th circle in btainto the i-th circle in bt%a
or the i-th circle in bta splits into the i-th and j -th circle in bta. Without loss of generality
assume that the rst case is true (otherwise exchange and t°in all that follows).

Let Cq;:::; Cy i be the classes of dots representing the respective circle bta. Then

Cuii, G Griiis G 1,C,+1;:::'CC(Bta) (29)

represent the circles inbt%. It is a straightforward consequence of De nition that
bS(t)a (respectively ,S(t%,) consists of precisely those elements

((CasiiiiXan )ittt (st X)) 2 & ™0 &2

which satisfy coordinate equationsx; = x o owhenever the dots correspondingto ¢ )
and (¢ 9 lie on the same circle inbta (respectively bt%). Thus the circles partition the set

38



of coordinates into groups of coordinates which are necessarily equalinge the partition
corresponding to the circle diagrambta is clearly ner than the one of bt (see ) above)
we deduce that,S(t9a  pS(19..

In the algebro-geometric setting we can deduce the claim from the topologal case as

particular, tred;t?eo| are related by a local surgery and we have

Pred S(tred)ared Dred S(t9ed)ared or Dred S(tlc‘)ed)ared bred S(tred)ared

by the above argumentation. Without loss of generality assume that the rst-mentioned
inclusion holds (otherwise exchange and t%in the notation). Then the injection obtained
as the composition

bK (D)a! ™ boy Stred)ay ! beg Std)ae! ~ bK (t9a;
where the outer maps are given by the homeomorphisms
2mjy n;:;2ms n Iyl and ( 2miy n;:2ms n I1;:::;Is) !

restricted to xK (t)a and y,, S(t?ed)ared respectively, clearly sends evens-tuple of ags to

itself. Hence, we deduceK (t)a pK (t9a. O

Example 2.36. Consider the tangle diagram

vV
t= 2T (6;8)

M\ M\

and the following two cup diagrams:

a= O w 2 B33 b= O \Y/ v 2 B44

The circle diagram bta associated with these choices is depicted in Examp4. The

reader also nds a picture of the circle diagrambt% in this example, wheret?is the tangle

diagram obtained by performing a local surgery on the two rightmost arcs oft.
Corresponding to these combinatorial data we have manifolds

bS(Ma= (X YYiYiY)i(YiyiZ: 22,2, Wi W) Xy 2w 2 SP (30)
and
bStha= (XYY YY) (Y:Yi2:2,2,2, ) [ Xy 2 2 S (31)

which are clearly related by an inclusion,S(t%a  pS(t)a. Notice that this inclusion agrees
with the statement of Proposition because the second and fourth cite in bta merge
into the second circle inbt%.
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Since every dot in the circle diagrambta (respectively bt%) corresponds to a sphere in
the product S ® <2 ® we sometimes use the notation

yyzzzzyy yyzzzzww

vV
509 - \\ / * L s(0n- \\

instead of writing down the sets as in [30) and [(31L). Each one of the small leérs x;y; z; w
replacing the dots in the diagrams stands for the choice of an element i6%. This notation
is very intuitive and emphasizes the combinatorial nature of the maniblds ,S(t), and

bS(t(ba-

2.3 A 2d TQFT via pushforward and pullback maps in cohomology

The goal of this subsection is to provide an explicit description of the pullback and push-
forward map in cohomology of the inclusions from Proposition 2.35. As a main result
(cf. Theorem|2.50 and Theorel) we prove that these maps can be desaibvia a A
TQFT. This provides a rst connection between the geometry and topology of Spaltenstein
varieties and Khovanov's TQFT-based construction of tangle homology|[KhoOZ2]

We begin by establishing some notation and conventions which are used thughout this
subsection: Given a positive integemMN , let Sym(f 1;2;:::; N g) be the symmetric group of
all permutations of the set f1;:::;Ng. Moreover, let X be a topological space andvV a
n-dimensional vector space Wlth xed basisby;bp;:::;b,. We say that V together with
this basis is abased vector space

The group Sym(f 1;2;:::; Ng) acts on the N -fold cartesian product of X with itself, i.e.
a permutation induces a homeomorphism

XN y (X1 X2, T XN) TH(X )3 X 2550 X () (32)

by permuting the coordinates. We also have an induced linear automorpism of the N -fold
tensor product of the based vector spac&/ with itself given by

v N1 v Nop b, by 7' b, B ) (33)

where (i1;:::;in) runs through all N -tuples of elements from the setf 1;:::;ng, thereby
specifying the linear map completely. By abuse of notation we will always denote the
induced maps with the same letter as the permutation. Notice that the somorphism [33)
is clearly grading-preserving ifV is a graded vector space.

Let ; 2 Sym(f1;2;:::;Ng) be the transposition interchangingi and i + 1. For a triple
of positive integersi < | N we de ne a permutation ; 2 Sym(f1;2;:::;Ng) as the
following composition of transpositions

T i+2  iell (34)

If j = i+1thisis the empty composition, i.e. we set jj+1 =id1.2...n g N this case. The
permutation i will play a crucial in the following section.

Last but not least, we also x a collection njy;:::;ns of even positive integers, i.e

nj =2k forall i 2f1;:::;s0.
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2.3.1 The 2d TQFT associated with the ring of dual numbers

Let us consider the truncated polynomial ring F2[X ]=(X 2), i.e. the ring of dual numbers.
As a F»-vector space this ring has a basis given by 1 an& . Throughout this work we
will always view the ring of dual numbers as a gradedr,-algebra with deg(X) = 2 and
deg(1) = 0. In [Kho02], Khovanov works with a graded vector space

A = FX]=(X?)f 1g;

obtained by shifting the grading down by 1, i.e. deg¥ ) = 1 (this is not a graded algebra
anymore). This grading is motivated by knot theory since the graded dimesion of A is
precisely the Jones polynomial (suitably normalized) of the unknot (d. subsection for
more on this).

We can equipA with the structure of a commutative Frobenius algebra with trace form

"TAlD Fy; 1710 XTI
and comultiplication
CATA A ;17X 141 X, X 7P X X

In particular, we obtain a 2d TQFT associated with this algebra, i.e. a symmetric
monoidal functor F from the two-dimensional cobordism category2Cob to the category
of nite-dimensional (graded) F»-vector spaces (cf. [Abr9G, Koc03] for details on Frobenius
algebras and their relation to TQFTS).

The objects of 2Cob are nite, ordered disjoint unions of the smooth manifold St
which is assumed to be equipped with a xed orientation. We write n for the disjoint
union consisting of n copies ofS! (the empty set 0 is also allowed). A morphismn! m
is given by an equivalence class of (not necessarily connected) compamtented surfaces
(smooth 2-manifolds) which are equipped with an orientation-presering di eomorphism
from their boundary to the disjoint union n t m (the upper star denotes a reversal of
orientation of all connected components). Two such surfaces ; ©are called equivalent
if there exists an orientation-preserving di eomorphism : ! O making the following
diagram commute:

@ lo /i ©

\$$ Z/Z:/

ntm

The reversal of orientation is used to distinguish between the in- ad outboundary of the
manifold (notice that in order to have a morphism we need a well-de red source and
target). In the following we will always use the term \cobordism" to r efer to a morphism
in 2Cob . The composition of morphisms is de ned by gluing cobordisms (more preisely
the representing surfaces) along their boundary and the monoidal strcture is given by
ordered disjoint union.

It can be shown (e.g. by using Morse theory) that the category2Cob is generated by
the following elementary cobordismd(cf. e.g. [Abr96, Proposition 12] or [Koc03,x1.4.13]):

© g0 0§ @ gl

The word \generates" means that all cobordisms can be built from these elmentary ones
by horizontal (gluing) and vertical composition (disjoint union). We use the convention
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that cobordism pictures are supposed to be read from bottom to top and lefto right. More
precisely, this means that the circles on the left side of a pictue belong to the inboundary
and the circles on the right to the outboundary. Moreover, thei-th connected component
of an object in 2Cob is represented by thei-th circle counted from bottom to top. Notice
that the category 2Cob is combinatorial by nature. According to the classi cation of
oriented surfaces with boundary (see e.g. [Hir76, Theorem 3.11]) a cobordisis completely
determined once we know the number of in- and outboundary components ahthe genus
of a representating surface. In particular, the pictures providea precise graphical tool
in the sense that they capture all the information from di erential top ology necessary in
order to specify a cobordism uniquely.

The picture of the twist cobordism which seems to penetrate itsdl in the middle is
supposed to symbolize the fact that our surfaces are not embedded in an dnent space.
Hence, the notion of \over" and \under" does not exist. In particular, th e two connected
components represented by the picture do not really intersect. nstead the drawing em-
phasizes the fact that we do not prefer one component (the categorCob is symmetric
and not just braided).

Example 2.37. Here is an example of a cobordisn8 ! 2 of genus 1 decomposed into
elementary cobordisms:

Let :F,!A bethe unitmap sending1tolandletm: A A!A be the multipli-
cation in A. Moreover, : A A!A A denotes the twist map given by 7!
Then the TQFT F associated with the Frobenius algebraA sends a disjoint union ofN cir-
cles (compact 1-manifolds) to theN -fold tensor product A N. On elementary cobordisms
F is given by

% 70 m:A AlA QO T FRlA
<§ 71 AIA A D> 7 "IAl R
% 71 A AIA A OO 7' ida:ALA

Notice that the monoidal functor F is completely determined by the above table. It
requires some more work to see that it is also well-de ned. Howeverthis follows from

the well-known folk theorem that in the case of a Frobenius algebra theelations between
compositions and tensor products of the linear maps in the above table @cisely correspond
to the topological relations between cobordisms built from the elemerdry pieces by gluing
and disjoint union (cf. [Abr96, Theorem 3] or [Koc03, x3.3]).

Example 2.38 Applying the TQFT functor F to the cobordism from Example[2.37 yields
the linear map

id

AAA !"MAA 'R rtAa A 1R 1AA

42



De nition 2.39.  Fora xed triple i<j N of positive integers we de ne two cobordisms

which we denote by

as follows: The cobordism on the right merges the-th and j -th circle in a disjoint union
of N circles into the the i-th circle in a disjoint union of N 1 circles via a pair of pants.
The remaining circles are connected by identity cobordisms in an ordr-preserving manner.
Similarly, the right cobordism splits the i-th circle in a disjoint union of N 1 circles into
the i-th and j -th circle in a disjoint union of N circles. Again, the remaining circles are
connected by identity cobordisms. We refer to these cobordisms asurgery cobordisms
(the choice of terminology is justi ed below).

Example 2.40. The following picture shows the above cobordism (including a deemposi-
tion into elementary pieces) for the triple 2< 4 5:

De nition 2.41.  Given a triple i < | N of positive integers we de ne linear maps
mij :A NTA N lpy

M id i1 m id N i 1 ___1
and i :A N 1A Npy
_ id i1 id N i 1.

where j; is the permutation ( introduced at the beginning of this section (it acts on
A N asin (33) with respect to the basis 1,X of A).

Lemma 2.42. Leti<] N be a triple of positive integers. Then the cobordisms from
De nition 2.39 induce the linear maps m;; and ; respectively, i.e. we have
! !

Proof. This follows immediately by decomposing the respective cobordisminto elemen-
tary pieces. O

We nish our discussion of 2 TQFTs by relating the cobordisms from (B5) to the

identifying bta with the c(bta)-fold disjoint union of S!) to obtain F(bta) = A c<b@)
where thei-th tensor factor of A N corresponds to the circleG;.
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there exist positive integersi <j such that either the ith and j -th circle in bta merge and
become thei-th circle in bt%a or the i-th circle splits into the i-th and j-th circle in btta

(cf. Lemma 2.33). So the circle diagramsbta and bt%a are naturally connected via the

surgery cobordisms from De nition 2.39. For future reference we summaree these ideas
in the following lemma.

t by a single local surgery, and lea 2 BX1k1 b2 B*siks be cup diagrams.

If the i-th and j-th circle in bta merge and become theé-th circle in bt%a due to the
local surgery, then the circle diagramsbta and bt%a are naturally connected by the surgery
cobordism

bta! bt%a or bta! bta;

depending on whether we chooseta or bt%a as domain. Applying the TQFT F to these
cobordisms induces the maps

A c(bta) !mAJ' c(btla) and A c(Bth)! A c(bta)
associated with the triplei < | c(bta), respectively.

_ Ifthe i-th circle in bta splits into the i-th and j -th circle in bt%, then the circle diagrams
bta and bt%a are naturally connected by the surgery cobordism

bta! bt%a or bt%a ! bta;

depending on whether we chooseta or bt%a as domain. Applying the TQFT F to these
cobordisms induces the maps

A C(Bta)! A c(btla) and A c(btla) !mAi\i c(bta)
associated with the triplei < | c(bt%), respectively.

Proof. This is just a reformulation of Lemma 2.42. O

2.3.2 Explicit calculation of pullback and pushforward maps

Finally, we want to compute the pullback and pushforward in cohomology of the inclusions
from Proposition 2.35. In doing so, an important role is played by the diagonal erbedding

P P FP:xT(xx):
and the following generalization:
De nition 2.44.  Given a triple i <j N of positive integers, de ne
"SI Cob

to be the map which embeds thei-th factor of (S?)N ! diagonally into the i-th and j-
th factor of (S?)N. More precisely, let ; 2 Sym(f1;:::;Ng) be the permutation (34)
introduced at the beginning of subsection 2.3. Then we de ne

BT idi ! idN Pl ;

where i acts on (S?)N as in (32) by permuting coordinates.
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Example 2.45 If one chooses =2, j =4 and N =4 then the map p4: S °! S2°

is given by
(x;y;2) 7' (X;y;2;Y):

the diagram bta (cf. De nition 2.29). Thus it makes sense to de ne a homeomorphism
bl bS(al T S P

by throwing away redundant coordinates.
The following lemma shows that the inclusion maps from Proposition 2.35are related
to the maps ; via the homeomorphism ...

t by a single local surgery, and let 2 BX1k1 b2 Bksks pe two cup diagrams.
If the i-th and j -th circle in bta merge and become thé-th circle in bt% due to the local
surgery, then we have a commutative diagram

bS(t9a ———S(t)a
btOa | = = | bta

? c(btC%) i /I 2 c(bta)

where ; is de ned with respect to the triple i <j c(bta).
If the i-th circle in bta splits into the i-th and j-th circle in bt%, then the following
diagram commutes .
A
bs(t)a {)S(t()a
bta |~ = | btla

? c(bta) ii /I 2 c(bt%)

where ; is de ned with respect to the triplei <] c(bt%).

Proof. Let us assume that thei-th and j-th circle in bta merge into the i-th circle in

5a(X) = X iinx ) (36)

wherexy, = xy; (because the dots ; and ; lie on the same circle inbt%).
On the other hand we obtain

ij Btoa(x)z o X X 1;Xi+1;:::;xc(ﬁta)
X
c(bta)

which is the same as thec(bta)-tuple in (36). Hence, the rst diagram in the lemma
commutes.
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In case that the i-th circle in bta splits into the i-th and j -th circle in bt% one can simply
copy the above proof after replacingt with t°and thus obtain the commutativity of the
second diagram. m

The above lemma suggests to compute the pullback and pushforward of thmaps j;
(this is done in Proposition 2.47 and Proposition 2.48 below) and then relatehe result to
the pushforward and pullback of the inclusions via the induced isomagphisms

H ()@ 1% 4 (S()) and H (SHCB 1 "%y 519, :

Let N be a positive integer. By standard algebraic topology we have a natural isomer
phism of gradedF,-algebras

N N

'niH O ST =H § T = RX]IE(xH) N (37)
where the rst isomorphism is the inverse of the cross-product mapK from the Kunneth
theorem and the second one is theN -fold tensor product of the unique isomorphism
H (S?) = F2[X]=(X?) of graded F-algebras sending the non-vanishing top cohomology
class toX.

In the following we x the Fa-basis 1, X of the algebra Fo[X ]=(X 2). We also equip
H (S?) with the structure of a based vector space by taking the preimages of Bnd X

under the isomorphismH (S?) = Fo[X ]=(X 2). In particular, we obtain induced maps

it FaX]=(XAON 1 Fp[X]=(X?)N  and i H (AN H (SN
as de ned in (33) for every triple i < N.
We are ready to observe that that the pullback ;; and the map mj; from De nition

2.41 are compatible via the isomorphism (37) for aﬁy xed triple i <j N.

Proposition 2.47. Given a triple of positive integersi < j N, the following diagram
commutes:
H ()Y) H (N Y
! N | = = ' N 1

Mi;

Fa[X]=(X?) N JFaX1=(x?) N 1

Proof. We prove the claim by showing the commutativity of the following diagram:

(Idl 1 IdN i l)

H (HV) H (V) H (N Y
K 1|= ) K 1= = |k !
H () N 7 I L ()

1

FaX]E(X?) N 0 X j=(xy) N4 m 4T e X =(x?) N 1

Notice that the outer square is just the diagram from the proposition brokenup into four
pieces.

It is an easy calculation to prove that the cross-product isomorphism espects twists,
i.,e. we haveK | K 1= | where | is a simple transposition, 1 |<N (notice that
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the transposition on the right acts as in (32) and the one one the left as in (33)) By
contravariance of the cohomology functor we thus obtain

— - 1_ 1 1
i;j - i+l J 1~ K i+1 J 1 K - K K

and hence the commutativity of the left square in the top row.

The commutativity of the top square on the right is an immediate consequ&ce of
combining the following two facts: Firstly, by standard algebraic topology, we have a
commutative diagram

H (S <) b (s7)

\« i

H ($) H ()

Secondly, the cross product isomorphism is natural in the sense thathe pullback of
a cartesian product of maps corresponds to the tensor product of the glbacks of the
factors via K .

The commutativity of the two squares on the bottom of the diagram is clear (respectively
a straightforward calculation). O

For a triple i< N of positive integers we can also ask for the pushforward
Cip):H (Y HE H(SHYN

in cohomology.
For compact manifolds X;Y and a continuous mapf : X ! Y the pushforward f, is
de ned as the composition

P f Pyt
H X! H X)) H (Y)Y " H(Y);
wheref is the usual pushforward in homology and

Px:H (X)!IT H (X)

is the Poincae isomorphism given by cap-product with the unique (since we work overF;)
non-vanishing top homology class. Notice that pushforward in cohomology is furtorial,
i.e. for continuous mapsf: X ! Y, g:Y ! Z between compact topological manifolds
we clearly have

(9 fh=g fr (38)
Proposition 2.48. Given a triple of positive integersi < j N, the following diagram
commutes:
H (SN Y Lok H(SHY)
"N o1= - |'n
FaX]=(x2) N * fEaX1=(X?) M

Before we can prove this proposition we introduce some more isomorphiss and closely
examine the Poincae isomorphism in the case of a nite product of two-dimensional
spheres (cf. Lemma 2.49 below).
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Notice that the choice of basis 1,X for Fo[X ]=(X ?) yields a distinguished basis of the
2k-th graded component of the tensor productF,[X ]=(X?) N which we denote by A.
This basis is given by the following set of elementary tensors

1 N 12fFLXgand#f ) (=X;1 | Ng=k: (39)

The operator # in (39) returns the cardinality of a set. Corresponding to this basis we
obtain a linear isomorphism

()-:Ax!™ Homg, (Ap;F2); 1 =0 N7V (1 i N)-;

sending a basis vector to its dual, i.e. we have

(1 = N)-(1 i )= 1if = ;81 | N;
0 else.
Next, recall the Kronecker pairing
h i HZX(SN) Hx(SHN) ! Fo; [F1 [XI7Uh[F];[XT = f(x) (40)

satisfying the crucial property

HE [al\ [X]i = HE]T [g]; [X]i (41)

for all [f];[g] 2 HZ((SA)N) and [x] 2 Hx((S)N). One can check that in our case this
pairing is non-degenerate. In particular, the map

CHa((SHN)T Home, HZ((S)N);Fo 5 X170 ([F17! f(x)) (42)

is an isomorphism of vector spaces for ak 2 f 0;:::; N g.
In order to state the next lemma, we introduce a linear involution

inv: Fo[X]=(X2) 1 Fa[X]=(X ?)
given by 17! X and X 7! 1. This yields an involution
inv N:FX]E(X?) N1 F[X]=(X?) N:
This map sends elements of degreek2o elements of degree 20 k).
Lemma 2.49. For xed k 2f 0;:::;Ng, the following diagram commutes:

H2(GY) —Han (V) ————Home, (H2N J(SN);Fy)

L Homg, (' niF2)

inv Ny ()- .
Aok Ll Pon 1 "Home, (A ); F2)

Proof. By linearity we only need to check the commutativity of the diagram on the basis
(39) of Ax. Solet 1 i N 2 Ay be a basis element and let 2)N] 2 Hon ((SHN)
denote the generator of the top homology. In order to compute the linear funtional

P "1 = N)2Homg, (H2N ©(SHNY;F)
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it su ces to see what it does on a basis ofH2(N K ((S2)N). Let us x the basis consisting
of the images of the basis vectors of\,(y ) as de ned in (39) under the isomorphism’ Nl.
Hence a typical basis element has the form Nl( 1 0 N),Where 1 i N 2 AN k)
is a tensor such that

#f ] 1= X;1 | Ng= N k:
We can thus calculate
P 'yt o N MmN
=H (1 o NNt Cr o )N (SN
(41) ' : :
e I (TN | A G T O N (ol |
=H 11 o N NSV
where the last equation follows becausé \ is an isomorphism of algebras. Notice that
(
X Noifinv( )= ;81 | N;
11 N N —
0 else.
Hence we obtain
G T VD T (P YD B B (T VIR VO H (R
1 ifinv( )= ;81 | N;
0 else
On the other hand one gets
Home, (' niF2) ()- inv N( 1m0 n) (M1 o N))
= (inv( 1) oinv( N N (Rt ND)
=(inv( 1) oinv( N))-( 2 i N)
1 ifinv( )= ;81 | N;
0 else
which proves our claim. O

Proof (Proposition 2.48). The proof is subdivided into two parts.

Claim 1. The following diagram commutes:

(Idl 1 IdN i 1)!

H (" Y H (M)

"N 1= =|'N

90 X (x 2) N

FaXJ=(x?) N 19

Proof of Claim 1. By applying the Hom-functor to the diagram from Proposition 2.47 (in
the casej = i + 1) we obtain a commutative square:

OmFZ( i +1 iF2)

Home,(H (3" ):F2) Home,(H (G2)N); Fo)

Home, (" v 1;F2) Home, (" niF2)

ome, (Mi;i +1 ;F2)

Home, (F2[X]=(X?) N % F2) - 'Home, (F2[X 1=(X?) N:F2)
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If we combine this diagram with Lemma 2.49 we get a commutative diagram:

P ' 1 Homg,( i, iF2) P

H (HY 1 H(sH™)

inv N (0-) * Homg, (i 41 F2) (- inv N1
Fa[X]=(x?) N 1 : JFy[X]=(x?) N 1

By standard algebraic topology (homology and cohomology are dual) the map

Y Homg, (4 41 iF2)

H (N 11 H (SN

is precisely the map ( ii+1) . In particular, the composition in the upper row is the
pushforward ( i;+1): in cohomology.

Thus, it remains to calculate the composition in the lower row. An easydualization
exercise shows that the map

Homeg, (M +1 ;F2)

Homg, Fo[X]=(X?) ™ %F; ! Home, Fa[X]=(X?) M;F,

is explicitly given by
1o i1 101 e N 1)- if =1

(
(1 = i1 X 1 441 I N 1)-
+( 1 B i1 1 X i+1 e N 1)— if i = X:

N O

(1 N 1)- 7!

Y

Another simple calculation using this result shows that the compositon
(- inv N) 1 Home,(mij1;F) ()- inv N1

is precisely the map i+ =id' * idN ' 1 which proves the above claim.

Claim 2: We have a commutative diagram:

( i;jl)!

H (HV) H(HV)
Fa[X]=(X?) N JEo[X 1=(X ?) N

Proof of Claim 2. In order to see this notice that the map

H F

Homg, Fa[X]=(X?) M:F»
where | is a simple transposition interchangingl and | + 1, is given by
(1 = N7 (1 41| N

i.e. the vectors | and |41 change places. This easily implies that the map

(()- inv Ny ' Homg,(;F2) ()- inv N
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is given by | and by Lemma 2.49 we have a commutative diagram:

(@]

H ($HY) R (M)
Fa[X]=(X?) N IEaX1=(X?) N

Using the functoriality (38) of pushforward we obtain the commutativity of the diagram
from the second claim.

All in all, putting together the rst and second claim, the following d iagram commutes:

(idi ! idN oLy, (g

H(sHY b H((sHN) H((sHM)
FaX]=(x2) M 19T T X j(x 2) N EolX1=(X ?) N
This nishes the proof of Proposition 2.48. O

The observations of this section are summarized in the following mainesult:

Theorem 2.50 (Topological version).  Let t;t°2 T (ny;:::;ns) be two tangle diagrams
wheret®is obtained fromt by a single local surgery and lea 2 Bkiki, p2 B*sks pe cup
diagrams. We distinguish between two cases:

Suppose that thei-th and j-th circle in bta merge and become thé-th circle in bt%a
due to the local surgery. Then we have a commutative diagram

(bs(to)ay! bs(t)a)

H (bS(t)a) /H (bS(t%a)
"eba)  ma | = 0 ! =" c@%)  bia
F® X
F bta fc(bta)g Ik bt% fc(bth)g

of vector spaces. If we exchange the domain and codomain we obtain a coatative
diagram

(bS(t9Ya! bS(t)a),

H (bs(t()a) /H (bS(t)a)
" o(Bt0%) EIéa = 0 1 =1 co(bta) Bt:
F %
F bt fc(bt%)g /E bta fc(bta)g

of vector spaces.

Suppose that thei-th circle in bta splits into the i-th and j -th circle in bt%a due to
the surgery. Then we obtain the same commutative diagrams as in these above
with the only di erence that we have to exchangé and t®in both diagrams.
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Proof. Without loss of generality we assume that thei-th and j -th circle in the diagram
bta merge and become thé-th circle in bt% due to the local surgery. For the case of a
splitting circle one can simply copy the proof after exchangingt and t°in the notation.

If we apply the cohomology functor to the rst commutative diagram in Lemma 2.46
we obtain the following commutative diagram:

(6bS(t%a! bS(t)a)

H (bS(t)a) H (6S(t9a)
Eta1 = = (Bt‘l)a)
H R c(bta) ii I 2 c(bt%)

Sticking this diagram on top of the one from Proposition 2.47 proves the commiativity
of the diagram

(bS(tO)aj bs(t)a)

H (6S(t)a) H (6S(t9a)
o) ma |= = | oo (50)
A B@f c(bta)g il In Brat (bi%)g

where we used the obvious fact thaf,[X ]=(X 2) P = A <(b@)f(bta)g as graded vector
spaces. In particular, by Lemma 2.43, the lower map is precisely the mamduced by the
cobordism as claimed in the theorem.

On the other hand, we also have a commutative diagram:

H (6540a) ——H (:5(19) 5022200 gy (s(t)) P ()

(po) |= (po) |= = |(pw) = |(pw)
H ? c(bt%a) P K ? c(bt%a) (i) . 2 c(bta) P 1 I ? c(bta)

The middle square is obtained by applying the homology functor to the rst diagram from
Lemma 2.46 and the two outer squares commute by a simple calculation (usthe simple
fact that ( 50,) and ( ;) respectthe top homology classes).

Notice that the composition in the upper row is the pushforward of the inclusion
bS(t9a | pS(t)a and the composition in the lower row is the pushforward of ij - Thus
it follows from Proposition 2.48 that we have a commutative diagram:

(6S(1%a! bS(t)a),

H (,S(t9a) H (S
' c(bt%) Etéa = = c(bta) (Et;)
A Braf (bid)g - Ip <B@)f o(bta)g

Again, Lemma 2.43 shows that the lower map in this diagram is precisely thenap induced
by the cobordism as stated in the theorem. This nishes the argument. O

Using the homeomorphism from Proposition 2.26 we can easily translate the alve
theorem into the algebro-geometric world of ag varieties without much further work. Let
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Theorem 2.51 (Algebro-geometric version). Let t;t°2 T(l4;:::;1s) be two tangle
diagrams wheret? is obtained fromt by a single local surgery and let 2 Blkl;k, b2 B,"s;k
be cup diagrams. We distinguish between two cases:

Suppose that thei-th and j -th circle in (bta),eq merge and become thé-th circle in
(bt%) g due to the local surgery. Then we have a commutative diagram

(bK (to)av! pK (t)a)

H (bK (t)a) H (K (t9a)

F% %
F (bta)ed fc (bta)red 9 IE (bt%)req fc (bt%)req g

of vector spaces, where the vertical isomorphism are given by the maps

! 1 1 1
c((bta)eq ) (bta) req 2m; n;:2ms n l1;5ls (43)
and
! 1 1 1
c((bt%)req ) (Bt%) req 2m; n;i;2ms n [ETH IS (44)

respectively. Moreover, we also have a commutative diagram

(LK (19a! bK (t)a),

H (oK (t9a) H (6K (t)a)

F X
F (bt%)rea fc (bt%)req O IE (bta)req fc (bta)red 9

of vector spaces, where the right vertical isomorphism is given by (43) dnthe left
one by (44).

Suppose that the-th circle in (bta),eq Splits into the i-th and j -th circle in (bt%) eq
due to the surgery. Then we obtain the same commutative diagrams as the case
above with the only di erence that we have to exchangeand t°in both diagrams.

Proof. Let us assume that thei-th and j -th circle in (bta),eg merge and become the-th
circle in (bt%)eq (as in the proof of Theorem 2.50 the case of a splitting circle follows by
exchangingt and t9. By Proposition 2.35 we have inclusions

bK (t(ba bK (t)a and Bred S(tPQd)ared Bred S(tred)ared

which are related by the homeomorphism from Proposition 2.26, i.e. the diagtm on
the left of the following picture, where the two vertical homeomorphisms are given by
the respective restrictions of the map am; n::2me n 1516, Clearly commutes and we

..........

obtain the commutative diagram on the right by applying the cohomology functor:

pK (t)a 00 ?BK (t%a ' H (bKOQa) /H (bde%a)

bred S(t red)ared QD—?ﬁed S(t(r)ed)ared H (bred S(t?ed)ared ) 4“* (bred S(t rEd)ared )
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Now the claim follows by sticking the diagram on the right on top of the diagram obtained
by applying Theorem 2.50 to the tangle and cup diagramdeq, t?ed and areq, bred-
Alternatively, we can consider the commutative diagram

H (K 9a) ——IH (K (19a) H (oK ()a) ———H (63()

/ / 1y
H (bred S(t?(i'd)ared) £ H (bred S(t?ed)ared) H (bred S(tred)ared) F H (bred S(trEd)ared )

where the vertical isomorphisms are the usual pushforward and pullbdc of the homeo-
morphism 2m; nic2ms n 1,215 IN homology and cohomology. The commutativity of
the middle square is clear and as in the proof of Theorem 2.50 the outer sques are easily
seen to be commutative, too.
The map in the upper row is by de nition the pushforward of the inclu sion pK (192

pK (t)a in cohomology. Similarly, the map in the lower row is the pushforward of he

inclusion b, S(t%y)ae  bes S(tred)aes - Again, we can apply Theorem 2.50 to the tangle
and cup diagramst?ed, tred @nd areq, beq @and combine the resulting diagram with the one
above in order to deduce the claim. O

Remark 2.52 For completeness, we remark that all the results in this subsectiorare still

true if we replaceF; by the more natural coe cient ring Z or C. However, this requires a
careful choice of orientations of all the involved manifolds in order to getthe correct signs.
This is rather technical and therefore avoided in this work.

3 A geometric construction of Khovanov homology

3.1 Khovanov's arc algebra as a convolution algebra

We begin by recalling the de nition of the basic arc algebra as introdued in [Kho02, x2.4].
Interesting generalizations motivated by Lie theory can be found in [B21] and [Str09].
We also review a result by Stroppel and Webster [SW12] who reconstiied these algebras
geometrically by realizing them as convolution algebras using Springer bers.

We setH? = F, (viewed as an algebra over itself). Given a positive integek, it makes
sense to de ne a graded vector space

M
H¥ = p(H k)a;
(ab)2(BkK )?

wherep(H¥), := F (ba)f kg, becausebais an ordered collection of circles (cf. Remark 2.31)
to which we can apply the TQFT functor F as explained in subsection 2.3.1.
Let a;b;c;d2 B¥k be cup diagrams. In order to de ne a collection of multiplication
maps
Mgepa d(H)e  b(Ha! a(H¥)a (45)

turning HK into an associative graded algebra with unit, set (45) to be the zero map
unlessb = c. In the latter case consider the tangle diagramtgy := bb and choose an order
on the cups ofb compatible with the nesting. Then we inductively obtain a sequene of
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Lemma 2.43). By applying the TQFT functor F to the resulting chain of cobordisms we
obtain a map

Mapba: F(dY F (ba) = F(dtea) ! F (dtka) = F(da):

The collection of mapsmgy.c.p:a de nes the multiplication of Khovanov's algebra.
Example 3.1 If we choose

azd= \Y/ VoV

then the multiplication map F(ab) F (ba ! F (aa) for H? is obtained by applying F to
the following cobordism:

> C
> C
>

>
>
&b

C
C

The induced linear map is given by
AAITR 1AA

In the work of Stroppel and Webster [SW12] the algebraH* was rede ned as a convolu-
tion algebra using the irreducible components of the K; k)-Springer bers. More precisely,
they de ne a graded vector space by setting

M
HIC(Beo = b(ch(seo)a;
(a;b)2(B Kk )2

where 1
o(Héeo)a = H (Sa\ S)fk S dim(Sa\ Su)g

and dim(S;\ Sp) denotes the dimension ofS;\ Sy, viewed as a real manifold. The graded

vector spaceH("3eo can be equipped with a convolution product. In order to explain this

consider the diagram
H (Sa\ Sp)

H (S5\ Sv\ S “2UH (Sa\ )

bc

H (Sp\ Sc)

where the maps ap; pc and ¢ are the respective inclusions and x a cohomology class
f2H (Sa\ Sp\ Sc). We de ne a linear map
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by the formula

t =(ac) (FL al )l bl ) (46)

where 2 H (Sa\ Sp)and 2 H (Sp\ S).

For general f this algebra behaves very badly, i.e. it might neither be associatie nor
graded (cf. [SW12, Section 4] for an interesting non-associative algebrawesponding to a
\nested TQFT"). The following theorem states the existence of a particular nice choice of
f. It is the topological equivalent to the algebro-geometric version [SW12, heorem 35].

Theorem 3.2. There exists a cohomology clasé 2 H (Sa\ Sp\ Sc) such that the algebra
H'(geo with the convolution product (46) de ned above is isomorphic to Kiovanov's arc

algebraHk as a graded algebra.

Remark 3.3. The classf is constructed inductively in the proof. Its precise geometric
meaning remains mysterious to the author. It would be nice to have an xplicit description
in terms of characteristic classes of a certain vector bundle. It can & shown that the degree
of f corresponds to the number of handles in Khovanov's cobordism. Howevewe refrain
from making this precise.

Proof (Sketch). The general idea of the proof is to use Theorem 2.50 and interpret the
chain of cobordism as a chain of pullbacks and pushforward maps in conomology. ©e this
chain is constructed one can use the well-known clean intersectidiormula (cf. e.g. [Qui71]
or [Ron80]) to inductively replace pullbacks with pushforwards and vice versa (this is where
the cohomology classf comes from) until the composition can be described as a single
pullback to the intersection followed by a pushforward. O

3.2 Geometric bimodules via Spaltenstein varieties

Our goal is to use the general machinery developed in the second part ofigwork to extend

the results from [SW12] by providing a geometric construction of what Khovanov calls \ge-
ometric bimodules" in [Kho02]. These geometric bimodules are certai combinatorially-

de ned vector spaces equipped with an action of a suitable arc algebra &m the left and

right, respectively. Despite their name, there is no geometry inolved in the original con-
struction of these bimodules. In Proposition 3.7 and Proposition 3.10 we ealize these
bimodules by de ning a left and right action of an arc algebra on a sum of cohorology
rings. Moreover, we construct some important bimodule maps using pshforward and
pullback in cohomology (cf. Proposition 3.8 and Proposition 3.11).

gers.

3.2.1 Khovanov's bimodules via a 2d TQFT

We begin by reviewing some of the basic de nitions and results on geomet bimodules
contained in [Kho02]. More general bimodules associated with the geneiaéd arc algebras
from [BS11] can be found in [BS10x3].

M
F(t):= bF (t)a;
a2Bkik1;p2Bksiks

where yF (t)a = F(bta)fkig, i.e. the summands ofF (t) are obtained by applying the
TQFT functor F to the circle diagram bta as explained at the end of subsection 2.3.1.
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In [Kho02, x2.7], Khovanov de nes a (H*s; HK1)-bimodule structure on F (t). In order
to explain the left HKs-action we x cup diagrams a 2 B*tK1 and b;c2 B*sks, Consider
the tangle diagram to := bbt. By choosing an order on the cups ofo compatible with
the nesting (as in the de nition of the multiplication of the arc algebr a) we inductively

cobordism from the diagramtct; ia to the diagram ctja. If we apply the TQFT F to this
chain of cobordisms we obtain a linear map

lcib:at c(Hks)b bF (t)a = F(Ctoa) ' F (Tt @) = cF (t)a;

The collection of all such maps (varying over all choices of cup diagrama; b;Q de nes
the left Hks-action |: Hks F (1) ' F (t).

Similarly, the right Hki-action on F(t) is de ned. The resulting bimodule F (t) is
nitely-generated and projective as a left and as a right module (cf.[Kho02, Prop.3]).

Example 3.4. Consider the following list of diagrams:

N\
= a= b= C= N4
S W VA

Then the map lepa: «(H?)p oF (1)c ! 4F (t)p associated with these data is obtained by
applying the TQFT functor F to the following sequence of circle diagrams and surgery
cobordisms:

Thus, being totally explicit, the map lcp.4 IS precisely the compositionA A 1A
A A .

Following Khovanov [Kho02, x2.8], we call a graded Kd¥; HK")-bimodule a geometric
bimodule if there exists a grading-preserving isomorphism to a nite dire¢ sum of bi-
modules F (t) (possibly with an extra grading shift), where t can be any tangle diagram
whose bottom dot-cross sequence consists ok®dots and whose top dot-cross sequence
consists of X dots. In particular, we have an additive category GB(k; k% whose objects are
the geometric H*; H ko)—bimodules and whose morphisms are grading-preserving bimodule
homomorphisms.

In subsection 3.3 we will be interested in bimodule homomorphismgduced by surgery
cobordisms.

Proposition 3.5. Let t;t°2 T (nq;:::;ns) be tangle diagrams, Wpereois obtained fromt
by a single local surgery. Then the direct sum of the linear mapis (bta)fkig ! F (bt%)fkig
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(one summand for every pair of cup diagrams 2 B*1*1, b2 B*s*s) induced by the natural
surgery cobordism from the diagrambta to the diagram bt% (cf. Lemma 2.43) de nes a
grading-preserving homomorphism

F()!'F (t%f 1g (47)

of (Hks; Hk1)-bimodules.
Similarly, we also obtain a grading-preserving bimodule homomorggm

FY1F (Of 1g: (48)

in the other direction. In particular, the maps (47) and (48) are morphisms in the category
GB(ks; k1).

Proof. It is clear that the linear maps (47) and (48) are indeed bimodule homomorprsms
(see also the more general statement [Kho02, Proposition 5] in Khovanov'sgper). More-
over, notice that the maps F (bta)fk,g ! F (bt%)fkyg have degree 1 for every choice of
cup diagramsa 2 Bkt and b2 Bksks (the multiplication and comultiplication in A have
degree 1). Hence, the direct sum of the maps is grading-preserving aftehifting down the
grading of the bimodule in the codomain by 1. O

3.2.2 Geometric and topological construction of bimodules

to reconstruct the associated bimoduleF (t) topologically. In order to do that we de ne a
graded vector space

M
G(t) := bG(t)a;

a2Bkik1:ppBksiks

where the ,G(t)4 are the shifted cohomology rings

1 .
bG(t)a := H (pS(t)a) fk1 > dim(,S(t)a)g
of the manifolds from De nition 2.24. In this context the word \dim" denote s the real

dimension of the manifold enclosed in parentheses.

Lemma 3.6. There is an isomorphism of graded vector spaces;: G(t) = F(t) which is
explicitly given as the sum of the isomorphisms

1 . — _
CamGs0) g H (SO Tk SdmGSMagF  (b@)ikg  (49)

Proof. This is part of Theorem 2.50. Since dim{S(t)a) =2 c(bta) the linear isomorphisms
(49) are grading-preserving for every choice of cup diagrams2 B*1k1 andb2 Bksks, O

We can use the isomorphism from Lemma 3.6 to de ne a leftHs-action on G(t) as
follows:

. 1
He gyl ' * F @QF @©'6 (1): (50)
Similarly, we can also de ne a right H* action, thereby turning the graded vector space
G(t) into a (H*s; H*1)-bimodule.

Proposition 3.7.  The isomorphism of graded vector spaces;: G(t)! F  (t) from Lemma
3.6 becomes an isomorphism ofH*s; H1)-bimodules if we equipG(t) with the bimodule
structure de ned above. In particular, { is an isomorphism in the categoryGB(ks; k1).
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Proof. Notice that we obviously have a commutative diagram:

Hks G (t) —2 " JHk F (1) — () — )
id ¢ id id id t
Hks Fo(t) —9 9 ks F (1) /=0 J— R—/ oy

By the de nition of the left HXs-action (50) on G(t) the commutativity of this diagram is
equivalent to saying that the map  is an isomorphism of leftH*s-modules. Proving that
¢ is also an isomorphism of rightH K1-modules follows completely analogously. O

Proposition 3.8. Let t;t°2 T (nq;:::;ns) be tangle diagrams, where®is obtained fromt
by a single local surgery. Then we obtain a grading-preserving homomotigm of bimodules

G(t) ! G (t9f 1g (51)

as the direct sum of the linear maps
1. 1 .
H (1S(a)fky S dim(sS(M)a)g! H 1S(tha fki 3 dim(sS(t9a)g

obtained by pullback or pushforward in cohomology depending on whet ,S(t%,  ,S(t)a

or pS(t)a  bS(tYa.
Similarly, we also obtain a grading-preserving homomorphism of biodules

G(tY1G (O)f 1g (52)
in the other direction. The maps (51) and (52) are morphisms in the categoryGB(Kks; k1).

Proof. The following diagram is commutative:

o) — 0 JE(19f 19

t|= = t0

Fi)— 7 JE9f 1g

By linearity it su ces to check this on a summand of G(t). But then the claimed commu-
tativity follows directly from Theorem 2.50. By Proposition 3.5 and Proposition 3.7 the
map (47) and the isomorphism  are morphisms in the category of geometric bimodules.
Hence, by the commutativity of the above diagram, so is the upper maps(t) ! G (t9f 1g.
The same argument proves that the map (52) is a bimodule homomorphism, to. O

For the reader who prefers to work with ag varieties we sketch how tese bimodules
can also be constructed in the algebro-geometric picture. Since all thstatements can be
deduced from the corresponding statements in the topological world by ppcomposing with
the homeomorphism from Proposition 2.26 we omit the proofs (cf. the proof ofTheorem
2.51 for a detailed example of such a reduction argument).

Fix a tangle diagram t 2 T (n1;:::;ng). Then there exist an even positive integer
n = 2k and admissible sequencek;;:::;ls, each of which has heighest integen, and a
tangle diagram teyxs 2 T(l1;:::;1s) with the property that ( text)req = t, i.€. the tangle

diagram tey is obtained from t by adding pairs of crosses making the strands in the
diagram vertical. We call tex; an extension oft (this explains the subscript). It is clear
that extensions always exist but they are obviously not unique, e.g. & can always add
crosses at the end of the dot-cross sequences and still end up with amtension of the
diagram we started with.
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Example 3.9. On the left we have an example of a tangle diagram inT (4; 4; 4) and on the
right we have an extension:

A\

/N

S\

exend
N

/N

The extension is not minimal, e.g. it is possible to delete the fourth and fth cross in all

of the three dot-cross sequences and we still have a well-de nedkiension of the tangle
diagram we started with. For reasons of e ciency it is preferable to work with minimal

extensions. However, this is not necessary.

For the remaining subsection we X an extensiontey 2 T(I1;:::;ls) of the tangle
diagramt 2 T (nq;:::;ns). De ne a graded vector space
M
Goeo(text) = bGeeo(text)a;

::128,511;%;bZBI%S;’nz
where the 1Ggeo(text)a are the shifted cohomology rings

bGseo(t)a = H (bK (text)a) fki  dim(pK (text)a)d

of the varieties from De nition 2.21 (here, the word \dim" stands for the complex dimen-
sion of the respective variety).

As in the topological case we obtain a left and right action of an arc algebra on the
vector space Gseo(text) Via the isomorphism of graded vector spaceSGgeo(text) = F (1)
obtained as the sum of the grading-preserving linear isomorphisms

H (6K (text)a) fki  dim(pK (text)a)d F (Bredtared)f kig (53)

as in Theorem 2.51, wherea 2 B, 2 ki and b2 B, z 2. Thus, it makes sense to formulate
the following algebro-geometric analog of Proposmon 3.7.

Proposition 3.10. The sum of the isomorpisms 53 of graded vector spaces de nes an
isomorphism of geometric bimoduleSGgeo(text) = F ().

We also have an analog of Proposition 3.5 and Proposition 3.8.

Proposition 3.11. Let t;t°2 T (ny;:::;ns) be tangle diagrams, where®is obtained from
t by a single local surgery, and letey; text 2 T(l1;:::;1s) be extensions. Then we obtain
a grading-preserving homomorphism of bimodules

Goeo(text) ! G Geo(tgxt)]c 19 (54)

as the direct sum of the linear maps

H (oK (text)a) fka  dim(pK (tex)a)g ! H oK (te)a fki  dim(pK (t3«)a)g

o=

(one summand for every pair of cup diagramsa 2 Bg 2, b2 B2 2) obtained by pullback
or pushforward in cohomology depending on Whether we ha\ﬁK (t%)a oK (text)a OF
bK (text)a bK (text)a
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Similarly, we also obtain a grading-preserving homomorphism of biodules

GGeo(tgxt) 'G Geo(text)f 19 (55)
in the other direction. The maps (54) and (55) are morphisms in tte categoryGB(ks; k1).

Thus we have constructed a representative of each isomorphism clas$ objects in the
category of geometric bimodules purely in terms of Spaltenstein vartées. The distin-
guished bimodule homomorphisms from Proposition 3.8 (respectively ®position 3.11)
play a crucial role in the following subsection.

3.3 A geometric construction of Khovanov homology

So far we have only dealt with planar tangle diagrams which can be embeddeidh R?. In
this last section we add one dimension and study tangles iR3. Whereas the algebraic data
associated with the two-dimensional world lives inside an additive ategory (the category
of geometric bimodules) we have to pass to a triangulated category (thedmotopy category
of complexes of geometric bimodules) in order to describe the thregimensional objects
algebraically.

Due to the work of Khovanov [Kho02] we know how to assign a complex of geometr bi-
modules to a tangle inR3 in such a way that isotopy of tangles corresponds to isomorphism
in the homotopy category of complexes. Thus, we have a tangle invariant (cfalso The-
orem 3.30 below) which is known to categorify the Reshetikhin-Turag invariant [RT90]
associated with the quantum group Ug(sl2). In Theorem 3.34, the main result of this
thesis, we prove that Khovanov's homological invariant can be reconstrated without a 2d
TQFT only using cohomological methods and the topology of Spaltenstein variges.

3.3.1 Tangles, planar projections and resolutions

We begin by recalling the notion of a tangle and the notion of a planar projecion. Then
we explain how to assign a collection of combinatorial tangle diagrams to a giveplanar
projection. This connects the combinatorics of tangles in a three-dnensional space to the
familiar planar combinatorics from subsection 2.1.

De nition 3.12. A geometric tangleis the image a proper, smooth embedding of a
compact, smooth 1-manifold (this is just a nite disjoint union of circ les St and intervals
[0;1]) in R? [0;1]. An oriented geometric tangleis a geometric tangle together with an
orientation of each connected component.

By de nition, a proper embedding maps the boundary to the boundary andthe interior
to the interior. In particular, the intersection of the image of the embedding with the set
@R? [0;1]) consists of a nite number of points in R? f 0Og, called the bottom endpoints
of the geometric tangle, and a nite number of points in R? f 1g, called the top endpoints
Throughout this work we only consider geometric tangles with an even numbr of top and
bottom endpoints.

De nition 3.13. A geometric tangle is called ageometric (k; k9-tangleif it has 2k®bottom
and 2k top endpoints.

Remark 3.14. A geometric tangle without any endpoints is just a knot (if the domain of
the embedding consists of a singl&) or a link.

It is natural to identify geometric tangles which are related by a smoot isotopy.
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De nition 3.15. A tangle as a smooth isotopy class of geometric tangles. Anriented
tangleis a smooth isotopy class of oriented geometric tangles, where we additialty assume
that the isotopies are orientation-preserving.

Let D be a generic plane projection ofT. This is just a planar drawing of the tangle
without \singularities" such as triple intersections, tangencies ard cusps. If we are dealing
with oriented tangles we will often decorate the pictures with oriertation arrows.

Example 3.16. The picture on the left is a plane projection of an oriented Hopf link. The
one on the right represents a (11)-tangle.

J uu \\LL_J

E

N

Obviously there are many di erent possible ways of representing aangle by a planar
projection. The answer to the question about a precise relationshipetween a tangle and
its planar projections goes back to the early work of Reidemeister [R26].

Proposition 3.17.  Two planar projections represent isotopic geometric tangles if and dy
if they are related by a planar isotopy and/or a nite sequence of Ralemeister moves:

Proof. This is a well-known result from elementary knot theory. Detailed proofs can be
found in [KT08, Kas95] or many other standard textbooks on the subject. O

A given planar projection D can be sliced up and written (after performing an appro-
priate planar isotopy if necessary) as a vertical composition of elementgrprojections, i.e.
a plane projection of a tangle which does not contain any circles and has at ost one
crossing.

Example 3.18 Here is an example of a Hopf link sliced up into elementary projections

NN
/
[
[

vV
We would like to associate a collection of tangle diagrams (as in subsectiod.1) to a

plane projection D with a xed decomposition. Motivated by elementary skein-theory we
can resolve the crossings db in two possible ways:

/

N - / ] i
esolution m/
s X
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A resolution of D is a resolution of each crossing ob. This yields a combinatorial tangle
diagram (or a circle diagram if D represents a knot or link) if we mark the gluing points
of the elementary projections in the decomposition with a dot.

Example 3.19 Here is a complete list of resolutions for a plane projection of a Hopf link
decomposed as in Example 3.18:

> OO

3.3.2 The category of commutative cubes and a functor to chain complexes

We proceed by introducing a category of commutative cubes and explaithow to assign
a chain complex to an object of this category in a functorial way. Most of the material
presented in this subsection is standard (see e.g. [Kho00, Kho02, BNO2])x&pt maybe
for the extensive use of categorical language (inspired by the work of Evit and Turner
[ETO9] on generalized Khovanov cube constructions). The categorical vigpoint seems
to be appropriate for our purposes because our focus of interest lies omé morphisms
between commutative cubes and the induced morphisms between thehain complexes
associated with these cubes rather than the cubes and complexes theelves.

Given a positive integer N, we can consider the setf 1;2;:::;Ng and its power set
P(f1,2;:::;NQg), i.e. the set of all subsets off 1;2;:::;Ng. We will always view the power
set as a partially ordered set (poset), where the order relation is give by inclusion. For
two sets X;Y 2 P(f1;:::;Ng) we write X Y if Y coversX, i.e. Y can be obtained

are oriented towards the subset with larger cardinality.
Example 3.20. Here is the Hasse diagram of the pose® (f 1; 2; 3g):

hlg— L2

\$$

 —Jf2g f1,39—7* 1,239

N <

f3g—/f2:3g
Notice that we use the convention to arrange subsets of the same cardinajitin columns

when depicting a Hasse diagram. This is motivated by Bar-Natan's paper on Klvanov
homology [BNOZ2] (cf. also Example 3.27).
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consists of a single element, iX is a subset ofY, or is the empty set in all other cases.
In terms of the Hasse diagram we can say that Homs, (X;Y ) 6 ; if and only if there is
an oriented path from X to Y.

The next de nition can be found in [KhoQO0, De nition 1] or [Kho02, De nition 2] in a
slightly disguised form.

De nition 3.21. Let C be a category. Acommutative N -cube in Cis given by a func-
tor F: Posy ! C . This is equivalent to specifying an objectF(X) 2 C for every set
X 2P(f1;:::;Ng) and a morphism F(X) ! F(Y) for every pair of sets X Y. By
functoriality these data must be subject to the following condition: The diagram

F (gl f x0)

/ \((

F(X) FXf xy0)

SN

F(X [f yg)

X6 y.

Remark 3.22 The notion of a commutative N -cube is not as abstract as it sounds. Es-
sentially, this is just a commutative diagram in the category C whose shape is given by

We would like to go one step further than what is usually presented inthe standard
literature and de ne a category whose objects are the commutativeN -cubes as de ned
above. A natural choice for such a category is the functor categorjrun (P osy ; C). Written
out explicitly, we thus have the following morphisms in Fun (Posy ; O):

De nition 3.23. A morphism between two commutative N -cubesF, G in Cis a natural
transformation of functors : F ! G, i.e. we have a morphism x : F(X)! G(Y)in C

F(X) —F(Y)
G(X) —I6(Y)

is commutative for every pair X Y.

Y

In the following we set C = GB(k; k9, the category of geometric HX; H"O)—bimodules.
Let Ch gpuko denote the category of chain complexes of geometric bimodules.

De nition 3.24.  We de ne a functor Fun (Posy ;GBKk; k%) ! Ch GB(kk9 as follows:

An object F 2 Fun (Posy;GBk;k9), i.e. a commutative N-cube F: Posy !
GB(k: k9, is sent to the complex

M
I 0! F(;)!@::!@ F(X)!@::i@F(fl;:::;Ng)! or
X 2P (f1;:5N 9);
|——{z—}

homological degree i
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where the di erential @ in homological degreei is the sum of all maps in the cube
from a bimodule associated with a set of cardinalityi to a bimodule associated with
a set of cardinality i + 1.

A morphism of cubes : F ! G is sent to the chain map whosei-th component
is the direct sum of the natural transformation maps x : F(X) ! G(X), where
#(X)=i:

M 4/}_ X 2P (f1;:5N @) F(X) L}_ X 2P (f1;:5N g); F(X) 4// -

#OX)=i #(X)= i+l

X 2P (f1;:5N g); X X 2P (f1;u3N g); X
#( X )= i #X )= i+l

M 4/}— X 2P (f1;:5N g); G(X) ﬁl}— X 2P (f1;:5N g); G(X) g/ .

#OX)=i # X )= i+l

Lemma 3.25. The functor Fun (Posy;GBKk;k9) ! Ch Gk from De nition 3.24 is
well-de ned.

Proof. In order to prove that the alleged chain complex associated to a commutave N -
cube F is indeed an object ofCh ggy.x0 we have to show that@ @= 0. By linearity
it su ces to check this on a summand of the i-th chain group. Let 2 F(X) be an

commutativity relation in De nition 3.21 that

M
@@)?2 F(Y)

Y 2P (f L;sN @) #( Y)= i+2

is a sum of elements in which each summand occurs exactly twice. ritie we work overF;
it follows that @ @ ) =0.

One easily sees that the map induced by a morphism dfl -cubes is indeed a chain map.
This follows immediately from the commutative square in the De nit ion of a morphism of
N -cubes. Thus the functor from De nition 3.24 is well-de ned on objeds and morphisms.

We omit the easy veri cation that the functor respects compositions andidentities. [

Remark 3.26. If we work over a eld F with char(F) 6 2 (or more generally a ring in which
1+1 6 0) the above constructions still make sense after replacing commutave cubes with
skew-commutative cubess in Khovanov's original construction (cf. e.g. [Kho00, x3.3]).
More precisely, we would have to add signs to some of the maps in the cabn a consistent
way such that the summands cancel.

Example 3.27. As already mentioned in Remark 3.22 it is useful to think of aN -cube as a
commutative diagram. If we follow the convention of Example 3.20 and draw tte diagram
in such a way that objects associated with sets of the same cardinalitgccur in columns,
then the chain complex in De nition 3.24 can be obtained by simply sumning the objects
and morphisms along the columns. As an example consider a funct®: Posz ! GB (k; k9,
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i.e. a commutative diagram
F.(f19) —/F {£1;29)

FG)—JF () FyEL30) —IF (11:2:3)

\$$ ><&& /

F (f3g) —/F (f2;30g)

of objects and morphisms inGB(k; k9. Applying the functor to the category of chain
complexes yields

FG)! F(flg) F(f2g) F(f3g)! F(f1;,29) F(f1;3g) F(f2,39)! F(f1;2;30):

More concrete examples and applications of these abstract notions are priled in the
following subsection.

3.3.3 The complexes CKh and CKhgeo and an explicit isomorphism

In the following we explain two interesting ways of assigning a commtative cube to a plane
projection of atangle. The rst one is a review of Khovanov's original corstruction [Kho02,
x3.4] and the second one uses the cohomology of the manifolds introduced in Dition
2.24. The resulting cubes are compared and proven to be isomorphic in Bposition 3.33.
This yields a new construction of Khovanov's chain complex (cf. Therem 3.34; Theorem
3.37 is the algebro-geometric version).

For the remaining subsection we x a generic plane projectionD of a (k; k9-tangle
together with a decomposition into elementary pieces. Let us assumehat the projection
D has N crossings. By labelling each crossing with a di erent element fromthe set

P(f1:::;Ng) 1 resolutions ofDg (56)

crossings ofD whose label is contained inX and O-resolving all the others. We writet(X)
for the tangle diagram associated with the setX via this bijection.

De nition 3.28. De ne a commutative N -cube Kh-Cube: Posy ! GB (k;k9 in the
category of geometric bimodules as follows:

the geometric bimodule
Kh-Qube(X) := F (t(X)) f#( X)g (57)

associated with the tangle diagramt(X) (cf. subsection 3.2.1), where the grading is
shifted according to the cardinality of X .

Given a pair of objects X;Y 2 P (f1;:::;Ng) such that X Y, then either the

tangle diagramst(X) is obtained from t(Y) by a single local surgery or vice versa
(a O-resolution in t(X) is replaced by a 1-resolution int(Y)). In any case, we obtain
a homomorphism of bimodules

FaX) f#(X)g!tF (t(Y) f#(Y)g (58)

as the sum of the linear maps induced by natural surgery cobordisms as inrBposi-
tion 3.5.
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Lemma 3.29. The functor Kh-Cube: Posy ! GB (k; k9 from De nition 3.28 is a well-
de ned commutative N -cube in the category of geometric bimodules.

Proof. We already know that (57) is indeed a geometric bimodule and that (58) is a bmo-
morphism of bimodules (cf. Proposition 3.5). Since #(Y) = #( X)+1 this homomorphism
is grading-preserving and thus a morphism inGB(k; k9. The commutativity condition

in the de nition of a cube follows immediately from the functorialit y of the TQFT F
(cf. [Lee05,x2.1.4] for a detailed case-by-case analysis using cobordism pictures). [

Hence, we can apply the functor from De nition 3.24 to the N -cube from De nition
3.28 and obtain a chain complex denoted byCKh(D). This is Khovanov's chain complex
associated with the plane projectionD as constructed in [Kho02,x3.4]. It becomes an
invariant of oriented tangles after shifting the bimodule and homologicalgrading according
to the number of positive crossingsx(D) and the number of negative crossingy(D) in D:

25 2b
i ya i < 7
x(D)=# /\ y(D)=# K\

More precisely, we have the following famous result due to Khovano[Kho02, Theorem 2]:

Theorem 3.30. Let D and D°be two plane projections of the same oriented tangl€, i.e.
D and DCare related by a nite sequence of Reidemeister moves. Then there is a chain
homotopy equivalence

CKh(D)[x(D)]f2x(D) y(D)g'CK h(D9[x(DYf2x(DY y(D%Yg

of complexes of H¥; H ko)-bimodules. The number in squared brackets shifts the homological
grading to the left. In particular, the isomorphism class in the honotopy category of
complexes of geometric bimodules is independent of the chosen planar prijon of an
oriented tangle and therefore an invariant.

Proof. The proof consists of constructing explicit homotopy equivalences étween the
complexes associated with diagrams related by a Reidemeister movef([Kho02, x4]). [

We want to see that this homological tangle invariant can be interpreted georetrically
in terms of Spaltenstein varieties.

De nition 3.31. De ne a commutative N -cube Khgeo-Cube: Posy ! GB (k; k9 in the
category of geometric bimodules as follows:

to the geometric bimodule
Khgeo-Cube(X) := G(t(X)) f#( X)g (59)

associated with the tangle diagramt(X) (cf. subsection 3.2.2), where the grading is
shifted according to the cardinality of X .

Given a pair of objects X;Y 2 P(f1;:::;Ng) such that X Y, then either the
tangle diagramst(X) is obtained from t(Y) by a single local surgery or vice versa.
In any case, we obtain a homomorphism of bimodules

G(t(X)) f#(X)g! G (t(Y)) f#(Y)g (60)

as the sum of the linear maps induced by pullback or pushforward as in Progsition
3.8.
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Lemma 3.32. The functor Khgeo-Cube: Posy ! GB (k;k9 from De nition 3.31 is a
well-de ned commutative N -cube in the category of geometric bimodules.

Proof. By Proposition 3.7 the vector spaces (59) are objects itGB(k; k% and by Proposi-
tion 3.8 the maps (60) are morphisms inGB(k; k9 (because #(Y) = #( X)+1). Hence, in
order to prove the lemma, it remains to show the commutativity condition for every xed
triple ( X;x;y ) as in De nition 3.21.

Notice that this is equivalent to proving the commutativity of the fol lowing diagram
because the outer square is precisely the

G(t(X)) — I (t(X ) — 2B (X [f xg) ———IB(A(X [f xQ))
id t(X) t(X [f xg) id
G (X)) — 2 E (1(X)) — 2 (t(X [f xg)) 20X G(t(X [f xg))
(60) (58) (58) (60)
G(t(X [f yg) " (t(X Foyd) —F (X [ya) 2% G(t(x [f xyg)
id t(X[f yg) t(X[f xy g) id

G(t(X [f yg) —4I6(t(X [ yg) —I6(t(X [f xyg) — o I6(t(X [f x;yg))

The middle square commutes by Lemma 3.29 and the commutativity of the sgares in the
corners of the diagram is trivial. In order to check the commutativity of the remaining
squares it su ces (by linearity) to check the commutativity summ andwise. But by the
de nition of the involved maps this reduces the argument to the statement of Theorem
2.50 which nishes the proof. O

Proposition 3.33. Let x denote the bimodule isomorphism associated with the tangle
diagram t(X) from Proposition 3.7, i.e. x = x). Then the collection of maps =

that the following diagram commutes:

G(L(X ) F#( X )g 2 E(t(Y )T #( Y)g
X= ¢x)|= =| YT t(y)

F (LX) F4( X )g -~ (1(Y ) F#( Y)g

Thus, the commutativity condition in the de nition of a morphism of N -cubes is satis ed.
Since the maps x are isomorphisms in the category of geometric bimodules for ev-

ery X 2 P(f1;:::;N), it follows that : Khgeo-Cube! K h-Cube is an isomorphism in

Fun (Posy ; GBk;k9). O

Theorem 3.34. The chain complexesCKh(D) and CKhgeo(D) induced by applying the
functor from De nition 3.24 to the N-cubesKh-Cube and Khgeo-Cube, respectively, are
isomorphic in the category of chain complexe€h gg.ko of geometric bimodules. In par-
ticular, the complexesCKh(D) and CKhgeo(D) are isomorphic in the homotopy category
of chain complexes of geometric bimodules.
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Proof. By Proposition 3.33 we have an isomorphism of cube& hgeo-Cube = Kh-Cube.
Hence, applying the functor from De nition 3.24 induces an isomorphismof chain com-
plexesCKhgeo(D) = CKh(D). O

Corollary 3.35. The chain complexCKhgeo(D) is an invariant of oriented tangles in the
homotopy category of complexes of geometric bimodules.

Proof. This follows immediately from combining Theorem 3.30 with Theorem 3.34. [J

Thus, we have a description of Khovanov homology for tangles purely in tens of coho-
mology, pushforward and pullback maps. The 2 TQFT used in the original construction
does not occur (at least not explicitly) in this picture anymore. In particular, Theorem
3.34 is our answer to the question from the introduction.

For completeness we also provide (without a proof) the analogous versioof Theorem
3.34 using ag varieties. Consider the collection of tangle diagramg(X) obtained by
resolving the crossings oD in all possible ways. Take the diagramt(X ) with the maximal

Now we can de ne a commutative N -cube as in the topological setting and prove that
it is well-de ned:

De nition 3.36. De ne a commutative N -cube Khageeo-Cube: Posy ! GB (k; k9 in
the category of geometric bimodules as follows:

to the geometric bimodule
KhAIgGeo -Cube(X) := Ggeo (text(X)) f#( X)g (61)

associated with the tangle diagramtex: (X ) (cf. subsection 3.2.2), where the grading
is shifted according to the cardinality of X .

Given a pair of objects X;Y 2 P (f1;:::;Ng) such that X Y, then either the
tangle diagramstex(X) is obtained from tey(Y) by a single local surgery or vice
versa. In any case, we obtain a homomorphism of bimodules

GGeo (text(x )) f#( X )g 'G Geo (text(Y)) f#( Y)g (62)

as the sum of the linear maps induced by pullback or pushforward as in Propsition
3.11.

Theorem 3.37. The chain complexCKhpgceo (D) obtained by applying the functor from
De nition 3.24 to the commutative N -cube in De nition 3.36 is isomorphic to the chain
complexesCKhgeo(D) and CKh(D) in the category of chain complexes of geometric bi-
modules.

Proof. Essentially, this follows from the homeomorphism in Proposition 2.26. O
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