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Introduction

In his seminal paper [Kho00] Khovanov introduced his celebrated categori�cation of the
Jones polynomial [Jon85, Kau87] for links. More precisely, to a generic plane projection
D of a link L in R3 Khovanov constructs a bigraded chain complexCKh(D) whose graded
Euler characteristic is the Jones polynomial ofL . Given two diagrams D and D 0 repre-
senting the same linkL , i.e. D and D 0 are related by a sequence of Reidemeister moves,
the corresponding chain complexes turn out to be homotopy equivalent.In particular, the
homology groups of the chain complexCKh(D) are invariants of the link L .

In [Kho02] this homological link invariant was extended to tangles with an even num-
ber of top and bottom endpoints categorifying the Reshetkikhin-Turaev invariant [RT90]
associated with the quantum groupUq(sl2). The original construction of this tangle ho-
mology theory is of combinatorial nature. All the chain groups are obtained by applying
a two-dimensional TQFT to smoothings of a generic plane projection of the tangle, after
closing it up by certain matchings on top and bottom to create a collection ofcircles.
Cobordisms between these smoothings induce the di�erentials.

From an algebraic point of view the extension of Khovanov homology from links to
tangles is interesting because the chain groups of the complex can be equipped with a left
and right action of a graphically-de�ned algebra, nowadays often referredto as Khovanov's
arc algebra, thereby turning them into bimodules. In the case of links these actions
degenerate into the action of the ground ring and therefore the additionalstructure is lost.
Although the basic arc algebra �rst appeared in the context of tangle homology [Kho02] it
has been generalized and studied extensively outside the �eld of low-dimensional topology
from a purely combinatorial and representation theoretic point of view (cf. [BS11,Str09]).

Khovanov himself found a connection to the geometry of 
ag varieties byproving that
the center of the arc algebra is isomorphic to the cohomology ring of a two-block Springer
�ber [Kho04]. Given a nilpotent endomorphism x of Cn , the Springer �ber F lx associated
with this operator is the complex projective variety of full 
ags

f 0g � F1 � F2 � ::: � Fn = Cn

in Cn �xed by the endomorphism x, i.e. we demand inclusionsx(Fi ) � Fi � 1 for all
i 2 f 1; 2; : : : ; ng (set F0 := f 0g) (partial 
ag varieties �xed by a nilpotent operator are
referred to as Spaltenstein varieties). In general, these varieties are not smooth and have
many irreducible components. The structure of the irreducible components is poorly
understood for arbitrary nilpotent operators (cf. also [FM10]). However, if we restrict
ourselves to two-block Springer �bers, i.e. 
ag varieties �xed by a nilpotent operator with
two Jordan blocks, then the irreducible components can be writtendown explicitly using
the combinatorics of cup diagrams. This goes back to the work of Spaltenstein [Spa76],
Vargas [Var79] and Fung [Fun03].

In their recent paper [SW12] Stroppel and Webster extend Khovanov's result on the
center of the algebra by providing a geometric construction of the entire algebra as a
convolution algebra using the irreducible components of two-block Springer �bers. In fact,
their results are much stronger than that since they also provide geometric constructions
of interesting generalized Khovanov algebras (cf. [BS11,Str09]) and their quasi-hereditary
covers. Based on the work of Stroppel and Webster we want to ask the following question:

Question. Is it possible to extend the geometric construction of the arc algebra to a new
geometric construction of Khovanov's chain complex (in which the TQFT does not occur
anymore) using Springer �bers or the more general Spaltenstein varieties?
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In this thesis we give an a�rmative answer to this question. More precisely, we con-
struct subvarieties inside a �nite product of Spaltenstein varieties such that after taking
the cohomology of these varieties we are able to recover the chain groups of Khovanov's
complex. These subvarieties sit inside each other in an interesting way. In particular, we
prove that the di�erentials of the complex can be given a natural geometric meaning by
realizing them via pullback or pushforward maps in cohomology induced bythe inclusions
of these subvarieties. This main result is documented in Theorem3.34.

One possible motivation for the question above might be the goal of �nding aprecise con-
nection between Khovanov homology (respectively its Lie-theoreticversion [Str05] which
is known to agree with Khovanov homology) and the link homology theories by Cautis
and Kamnitzer [CK08] via coherent sheaves and the ones by Seidel and Smith [SS06] and
Manolescu [Man07] via symplectic geometry. An explicit categorical connection between
all these theories is not yet established. Since Springer �bers play a crucial role in the work
of Cautis and Kamnitzer as well as Seidel and Smith, our geometric construction of Kho-
vanov homology might provide another small step in comparing all three categori�cations
in the future.

Structure of the thesis: In the following we outline the contents of our work. This
thesis is subdivided into three major parts.

The main agenda of the �rst part is to identify and describe the topological space
underlying the two-block Spaltenstein variety equipped with the analytic topology. A
topological description of the equal-block Springer �ber F l

n
2 ; n

2 as a certain subspace of a
n-fold product of spheres was conjectured by Khovanov [Kho04] and proven by Russell
and Tymoczko [RT11], and independently by Wehrli [Weh09]. This was later generalized
by Russell to the general two-block-case [Rus11]. It turns out that the topological model
from [Rus11] can also be used to describe the topology of two-block Spaltenstein varieties.
This is Theorem 1.15.

In the second part we explain how to assign a subvariety inside a �nite product of
Spaltenstein varieties to a given tangle diagram. We also provide a simple topological
model (cf. Proposition 2.26). If two tangle diagrams are related by a local surgery then
the associated varieties are related by an inclusion map, i.e. one of them sits inside the
other one as a subvariety (cf. Proposition 2.35). In Theorem 2.51 (Theorem 2.50is
the topological equivalent) we explicitly compute the pullback and pushforward of these
inclusions in cohomology and relate the result to the maps obtained by applying a TQFT
to certain surgery cobordisms between the tangle diagrams. This requires genuine work
and is therefore considered as one of the central results.

In the �nal part we recall the de�nition of Khovanov's arc algebra as de�n ed in [Kho02]
and sketch the construction of the convolution algebras of Stroppel and Webster [SW12]
in the equal-block-case. Then we use the machinery developed in the second part of this
thesis to construct some important bimodules and bimodule homomorphisms geometrically
via Spaltenstein varieties and pullback and pushforward maps. In Theorem 3.37 this
culminates in the promised geometric construction of Khovanov's chain complex associated
with a tangle diagram (cf. also Theorem 3.34 for the topological equivalent).

Notation and conventions: Once and for all we �x the following notation and conven-
tions valid throughout this thesis:

� Let X be a topological space. Then we denote byH � (X ) its singular cohomology
with F2-coe�cients, i.e. we use the notation H � (X ) for H � (X ; F2) (which among
topologists is usually reserved for cohomology withZ-coe�cients). Similarly, we
write H � (X ) for the homology of X with F2-coe�cients.
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� A vector space or an algebra will always be aF2-vector space or aF2-algebra, respec-
tively. Moreover, all tensor products are de�ned over F2, i.e. we use the notation

for 
 F2 , unless stated otherwise.

� If V is a graded vector space (\graded" always means \Z-graded") we write V f j g
for the graded vector space whosei -th component is given by (V f j g) i = V f i � j g.

Acknowledgements: The author would like to thank his advisor Prof. Dr. Catharina
Stroppel for her continuous support in all matters related to this project.
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1 Topology of two-block Spaltenstein varieties

1.1 Two-block Spaltenstein varieties: Structure of irreducible
components and a topological model

We begin this section by providing the basic de�nitions. Then we recall some struc-
tural results concerning the irreducible components of two-blockSpaltenstein varieties
including the involved combinatorics. Moreover, a simple topologicalmodel for two-block
Spaltenstein varieties is introduced at the end of this subsection.

Let n > 0 be a natural number and let I = ( i 1; : : : ; im ) 2 Nm be a family of integers
such that 0 < i 1 < i 2 < ::: < i m = n. De�ne F l I to be the set consisting of all sequences

Fi 1 � Fi 2 � ::: � Fi m = Cn ;

where Fi l � Cn is a subspace, dimFi l = i l , for all l 2 f 1; : : : ; mg. Such a sequence of
subspaces is called apartial 
ag of type I and we will write ( Fi 1 ; : : : ; Fi m ) to denote such
a 
ag. Let Gr( k; n) be the Grassmannian ofk-planes insideCn . Then there is an obvious
embedding

F l I ,! Gr( i 1; n) � Gr( i 2; n) � ::: � Gr( i m ; n);

which can be used to prove thatF l I is a smooth complex projective variety called thepar-
tial 
ag manifold of type I . Alternatively, one could realize F l I as the homogeneous space
GL(n; C)=P, whereP is the parabolic subgroup of GL(n; C) given by all matrices with all
entries zero below the block diagonal where the blocks are squares ofsize i 1; i 2; : : : ; im .

Let g = sl(Cn ) be the Lie algebra of traceless endomorphisms ofCn and let N � g be
the nilcone consisting of all elements which act nilpotently in all representations of g. By
the general theory of Lie algebras these elements coincide with the elements which are
nilpotent as linear endomorphisms in the sense of linear algebra.

For everything that follows it will be convenient to set i 0 := 0 and F0 := f 0g � Cn .

De�nition 1.1. The Spaltenstein variety of typeI associated with some �xed nilpotent
operator x 2 N is the variety

F lxI :=
�

(Fi 1 ; :::; Fi m ) 2 F l I j xF i l � Fi l � 1 for all l 2 f 1; :::; mg
	

;

consisting of all 
ags in F l I �xed under x.

Remark 1.2. In the case of full 
ags, i.e. if I consists of all integers between 1 andn, the
index I is dropped from the notation and we simply write F lx . In this case we refer to
the Spaltenstein variety asSpringer �ber .

Spaltenstein varieties are rich geometric objects and they arise naturally as the �bers
of a resolution of singularities of the nilcone; see e.g. [CG97, Sections 3.2, 3.5, 3.7, 4.1 and
4.4] for details. In general they are not smooth and have many irreduciblecomponents.

In this work we will only study two-block Spaltenstein varieties, i.e. the case wherex is
of Jordan type (n � k; k), where 0� 2k � n. More explicitly, this means that there exists
an ordered basise1; :::; en� k ; f 1; :::; f k of Cn such that

x(ei ) = ei � 1 and x(f i ) = f i � 1;

where we sete0 = f 0 = 0. One can easily show that the Spaltenstein variety does not
depend (up to isomorphism) on the particular choice ofx, but only on the Jordan type
of x. This allows us to speak of the (n � k; k)-Spaltenstein variety of type I , which we
denote by F ln� k;k

I , without further specifying the nilpotent operator x.
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Notice that for a 
ag ( Fi 1 ; :::; Fi m ) 2 F lxI , where x is of Jordan type (n � k; k), the
rank-nullity theorem yields inequalities

dim Fi l = dim ker xjF i l
+ dim xF i l � 2 + dim Fi l � 1

for all l 2 f 1; :::; mg. Thus F lxI will be empty if i l � i l � 1 > 2 for some index in the familyI .
In order to exclude these trivial cases from the beginning we will always restrict ourselves
to the following special type of integer-sequence.

De�nition 1.3. A family of increasing positive integers (i 1; :::; im ) is called admissibleif
the conditions 0 < i l � i l � 1 � 2 are satis�ed for all l 2 f 1; :::; mg.

Given an admissible family I , one can associate to it a word of lengthn, consisting of
letters from the alphabet f� ; �g , by putting a dot at position i l of the word, if i l � i l � 1 = 1,
and a cross at positionsi l and i l � 1 if i l � i l � 1 = 2. Such a word is called adot-cross
sequence. Any word obtained in this way consists of 2(n � m) crosses and 2m � n dots.

Example 1.4. The dot-cross sequence associated with (1; 3; 4; 5; 6; 7) is given by ������� .

Sch•afer proved in [Sch12] that the irreducible components of the (n � k; k)-Spaltenstein
variety of type I are in one-to-one correspondence with cup diagrams of type (n � k; k)
on the dot-cross sequence corresponding toI (cf. Proposition 1.11 below).

De�nition 1.5. A cup diagram of type(n � k; k) on the dot-cross sequence corresponding
to some admissibleI = ( i 1; :::; im ) is a planar diagram which is obtained by attaching
n � 2k downward-pointing rays and k � (n � m) arcs to the dots of the dot-cross sequence.
Arcs only pass below the symbols of the dot-cross sequence and we require that every dot
is connected to precisely one cup or ray. Moreover, we think of the rays as being \in�nitely
long", so arcs do not pass below rays. The set of all cup diagrams of type (n � k; k) is
denoted by B n� k;k

I .

Remark 1.6. In order to tie in with the notation from Remark 1.2 we omit the index I
and simply write B n� k;k if the family I consists of all integers between 1 andn.

Example1.7. Here is a complete list of cup diagrams of type (4; 3) on the dot-cross sequence
considered in Example 1.4:

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � �

Given a 2 B n� k;k
I the notation ( i; j ) 2 a, where i < j , means that the symbols at

positions i and j in the dot-cross sequence corresponding toI are connected by an arc in
the diagram a. We write ( i ) 2 a if there is a ray in a connected to the dot at position i .

If we slightly modify the cup diagram then it contains all the necessary information to
write down explicit relations de�ning all the 
ags which lie in the corresponding irreducible
component. In order to make these modi�cations precise leta 2 B n� k;k

I be a cup diagram.
For certain arguments it is convenient to think of the crosses at positions i l and i l � 1
as being connected by a dashed arc ifi l � i l � 1 = 2. Such a dashed arc is calledinvisible
because it does not appear in the usual cup diagrams from De�nition 1.5. If we want to
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include invisible arcs in the cup diagrama, we will denote this by ~a. Notice that invisible
arcs only connect neighboring crosses. In particular, they are never nested inside each
other.

Example 1.8. This is a cup diagram from Example 1.7 including invisible arcs:

� � � � � � �

De�nition 1.9. Given a cup diagrama 2 B n� k;k
I we obtain a map

� a : f 1; 2; : : : ; ng ! Z � 0

by de�ning � a(i ) to be the number of rays in a which are left of the i -th symbol in the dot-
cross sequence corresponding toI . We use the convention that a ray is always considered
as being left of itself.

Example 1.10. Consider the following cup diagram:

� � � � � � � � � � � � �
a =

Then we have� a(3) = 0 and � a(12) = � a(9) = 3.

The following proposition is essentially [Sch12, Theorem 6.11].

Proposition 1.11. Let I be an admissible family andx a nilpotent operator of Jordan
type (n � k; k). Then the irreducible componentK a � F lxI corresponding to a 2 B n� k;k

I
consists of precisely those 
ags(Fi 1 ; :::; Fi m ) 2 F l I which satisfy the following conditions
imposed by the cup diagram~a:

(i) If (i; j ) 2 ~a (the arc connecting the symbolsi and j might be an invisible arc), then

Fj = x � 1
2 (j � i +1) Fi � 1:

(ii) If (i ) 2 ~a, then we have

Fi = Fi � 1 + span
�

e1
2 (i + � a (i ))

�
:

Proof. The proof is omitted here (see [Sch12,x6] for a detailed argument). The rough
idea is to reduce the statement of the proposition to the case of Springer �bers which is
treated in the work of Fung [Fun03].

Remark 1.12. The original version of Proposition 1.11 in [Sch12] is formulated using the
combinatorics of dependence graphs. In order to avoid confusion we remark that these
graphs di�er slightly from the cup diagrams used here. Our cup diagrams correspond to
what Sch•afer calls extended cup diagramsif we replace the rays bygreen arcs.

Let S2 � R3 be the two-dimensional standard unit sphere and letp = (0 ; 0; 1) be its
north pole. Given a cup diagram a 2 B n� k;k , de�ne a smooth submanifold Sa � (S2)n of
the n-fold cartesian product of the sphere with itself by

Sa :=
�

(x1; :::; xn ) 2
�
S2� n

j x i = x j if ( i; j ) 2 a and x i = ( � 1)i p if ( i ) 2 a
	

:
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Following Russell [Rus11,x2] we de�ne the (n � k; k) topological Springer �ber as

Sn� k;k :=
[

a2 B n � k;k

Sa �
�
S2� n

:

De�nition 1.13. For a 2 B n� k;k
I let ared denote the reducedextended cup diagram ob-

tained by erasing all crosses. In particular, this assignment induces a map

red: B n� k;k
I ! B m� k;m + k� n

to which we refer as areduction map.

Example 1.14. The reduced version of the diagram in Example 1.7 is the following:

� � � � � � �
reduce //

� � � � �

The main result of the �rst part is the following theorem:

Theorem 1.15. The irreducible componentK a of the Spaltenstein varietyF ln� k;k
I corre-

sponding to a 2 B n� k;k
I is homeomorphic toSared and we have a homeomorphism

F ln� k;k
I

�=
[

a2 B n � k;k
I

Sared � (S2)2m� n :

A proof of this theorem is provided in section 1.4. For the reader's convenience we
summarize the main ideas of the argument to motivate the next sections.

Sketch of proof (Theorem 1.15):
Our proof closely follows and generalizes the train of thought of Wehrli's argument in
[Weh09] for the (n

2 ; n
2 )-Springer �ber. The general idea is as follows: In section 1.2 we

introduce a smooth projective variety YI which contains the Spaltenstein varietyF ln� k;k
I .

We prove that YI is homeomorphic to a (2m � n)-fold product projective spaces
�
P1

� 2m� n ,
cf. Corollary 1.20. Proposition 1.11 above enables us to explicitly computethe images
� I (K a) of the irreducible componentsK a under this homeomorphism in section 1.3. The
most important result in this context is Proposition 1.35. In the last section we introduce
another homeomorphism
 2m� n :

�
P1

� 2m� n �=�!
�
S2

� 2m� n such that the composition

YI
� I�!

�
P1� 2m� n 
 2m � n����!

�
S2� 2m� n

maps the irreducible componentsK a � F ln� k;k
I � YI to the sets Sared . In particular, this

homeomorphism mapsF ln� k;k
I , which is just the union of its irreducible components, to

the subset [

a2 B n � k;k
I

Sared � (S2)2m� n ;

which will prove the theorem.

1.2 A smooth space containing the Spaltenstein variety

In this section the �rst step in proving Theorem 1.15 is provided by embedding the Spal-
tenstein variety into a smooth space homeomorphic to a �nite product of projective spaces.
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1.2.1 Some linear algebra

Let N > 0 be a large1 integer and let z : C2N ! C2N be a nilpotent linear endomorphism
with two equally-sized Jordan blocks, i.e. there exists a basise1; :::; eN ; f 1; :::; f N of C2N

such that
z(ei ) = ei � 1 and z(f i ) = f i � 1;

for all i 2 f 1; 2; :::; N g, where e0 = f 0 = 0. We equip C2N with the structure of a unitary
vector space by de�ning

hei ; ej i = hf i ; f j i = � ij ; hei ; f j i = 0

for all i; j 2 f 1; 2; :::; N g, where � ij is the Kronecker delta.
Let e; f denote the canonical basis ofC2. De�ne a linear map C : C2N ! C2 by

C(ei ) = e and C(f i ) = f

for all i 2 f 1; :::; N g. Notice that C2 has the structure of a unitary vector space coming
from the standard Hermitian inner product.

In general it does not make sense to ask whether the mapC is unitary, i.e. whether the
equality hC(v); C(w)i = hv; wi holds for all v; w 2 C2N , because this would imply that
C is injective, which cannot be the case ifN > 1. However, it is meaningful to ask for
two-dimensional subspacesU � C2N such that the restriction of C to U yields a unitary
isomorphism. The following lemma contained in [CK08, Lemma 2.2] (cf. also [Weh09,
Lemma 2.1]) constructs important examples of such spaces.

Lemma 1.16. Let U � C2N be a z-stable subspace, i.e.zU � U, such that U � im(z).
Then C restricts to a unitary isomorphism

C : z� 1U \ U? �=�! C2:

Before going into the proof of the lemma, let us record the following general fact:

Lemma 1.17. If U � C2N is a subspace contained inim(z), then dim(z� 1U) � dim(U) =
2. Similarly one obtains dim(U) � dim(zU) = 2 if a subspaceU � C2N contains ker(z).

Proof. The inclusion U � im(z) implies that z restricts to a surjection z : z� 1U � U.
Applying the rank-nullity theorem to this map yields

dim(z� 1U) � dim(U) = dim (ker( zjz� 1U )) = 2 ;

where the last equality follows from the inclusion ker(z) = z� 1(0) � z� 1U. An analogous
argument for the map z: U � zU proves the second claim.

Proof (Lemma 1.16). There is an isomorphismz� 1U\ U? �= z� 1U=U by elementary linear
algebra. Thus one obtains

dim(z� 1U \ U? ) = dim( z� 1U=U) = dim( z� 1U) � dim(U)
(1:17)

= 2 :

Hence the domain and target space ofC : z� 1U \ U? ! C2 are equidimensional and it only
remains to show unitarity because unitary maps are always injective. Let v; w 2 z� 1U\ U?

and write
v = v1 + ::: + vN ; w = w1 + ::: + wN

1See also Remark 1.18 for a more accurate description of what is meant by the word \large".

9



with vj ; wj 2 span(ej ; f j ). Since the restriction C : span(ej ; f j ) ! C2 is easily seen to be
unitary, we deduce

hv; wi =
NX

i =1

hvi ; wi i =
NX

i =1

hC(vi ); C(wi )i :

Comparing this to the equality

hC(v); C(w)i =
X

i;j

hC(vi ); C(wj )i ;

we see that it su�ces to show
X

i 6= j

hC(vi ); C(wj )i = 0 (1)

to complete the proof.
For w 2 z� 1U and v 2 U? we havehv; zl wi = 0 for all l � 1 becauseU is z-stable by

assumption. A calculation shows

hv; zl wi = hC(v1); C(wl+1 )i + ::: + hC(vN � l ); C(wN )i

for all l � 1. Adding up all these equations for everyl gives

0 =
X

i<j

hC(vi ); C(wj )i : (2)

Interchanging the roles ofv and w (i.e. interpreting v as an element ofz� 1U and w as an
element ofU? ), we obtain

0 =

0

@
X

i<j

hC(wi ); C(vj )i

1

A

y

=
X

i<j

hC(wi ); C(vj )i y =
X

i<j

hC(vj ); C(wi )i ; (3)

where the daggery denotes complex conjugation. Adding up (2) and (3) yields (1) and
therefore the second claim.

1.2.2 The variety YI

Fix an admissible family I = ( i 1; :::; im ) and let N � m. For every q 2 f 1; 2; :::; mg de�ne
a complex projective variety

Yi 1 i 2 :::i q :=
�

(Fi 1 ; :::; Fi q ) j Fi l � C2N has dimensioni l ; Fi 1 � ::: � Fi q ; zFi l � Fi l � 1

	

and set Yi 0 to be the one-point space. We equip all these varieties with the analytic
topology. In particular, they are compact Hausdor� spaces.

We will be most interested in the variety Yi 1 :::i m , for which we also use the short notation
YI , because we can obviously identifyF ln� k;k

I with the subset

f (Fi 1 ; :::; Fi m ) 2 YI j Fi m = span(e1; :::; en� k ; f 1; :::; f k )g (4)

and thus obtain an embeddingF ln� k;k
I ,! YI .

Before we prove that YI is homeomorphic to a �nite product of projective spaces we
make the following important remark.

10



Remark 1.18. Notice that the conditions zFi l � Fi l � 1 imply

Fi m � z� 1Fi m � 1 � ::: � z� m (0) = span(e1; :::; em ; f 1; :::; f m ):

In particular, the variety YI is independent of the choice ofN as long asN � m because
the spacesFi l � C2N of the 
ags in YI never \see" the basis vectorsel and f l for l > m .
This turns out to be extremely useful because we can always assume (by increasing N if
necessary) that all the subspaces of a 
ag inYI are contained in the image ofz.

Proposition 1.19. Let q 2 f 1; :::; mg. If i q � i q� 1 = 1 , then the projection map

� q : Yi 1 :::i q ! Yi 1 :::i q� 1 ; (Fi 1 ; :::; Fi q ) 7! (Fi 1 ; :::; Fi q� 1 )

de�nes a trivial �ber bundle with �ber P1. More precisely, the map

� q : Yi 1 i 2 :::i q ! Yi 1 i 2 :::i q� 1 � P1 ; (Fi 1 ; :::; Fi q ) 7!
�

Fi 1 ; :::; Fi q� 1 ; C(Fi q \ F ?
i q� 1

)
�

de�nes a homeomorphism such that the following diagram commutes:

Yi 1 i 2 :::i q

� q //

� q
%%

Yi 1 i 2 :::i q� 1 � P1

pr 1
ww

Yi 1 i 2 :::i q� 1

If i q � i q� 1 = 2 , then � q : Yi 1 :::i q ! Yi 1 :::i q� 1 is a homeomorphism.

Proof. Let q 2 f 1; :::; mg such that i q � i q� 1 = 1. We clearly have � q = pr1 � � q and � q is
a continuous map between compact Hausdor� spaces. Hence it will be a homeomorphism
if it is bijective.

Notice that the vector spaceFi q� 1 � C2N is z-stable and by Remark 1.18 we may assume
that it is contained in the image of z. Hence Lemma 1.16 yields and isomorphism

C : z� 1Fi q� 1 \ F ?
i q� 1

�=�! C2:

For given (Fi 1 ; :::; Fi q� 1 ; l ) 2 Yi 1 :::i q� 1 � P1 it is easy to check that the 
ag
 

Fi 1 ; :::; Fi q� 1 ;
�

Cjz� 1F i q� 1 \ F ?
i q� 1

� � 1

(l ) � Fi q� 1

!

(5)

is a well-de�ned preimage under� q. Let (Fi 1 ; :::; Fi q ) 2 Yi 1 :::i q be another preimage, i.e.
we have

� q(Fi 1 ; :::; Fi q ) =
�

Fi 1 ; :::; Fi q� 1 ; C(Fi q \ F ?
i q� 1

)
�

= ( Fi 1 ; :::; Fi q� 1 ; l ):

Since Fi q \ F ?
i q� 1

� z� 1Fi q � 1 \ F ?
i q� 1

is the unique one-dimensional subspace which is
mapped to l under the isomorphismC we have

Fi q \ F ?
i q� 1

=
�

Cjz� 1F i q� 1 \ F ?
i q� 1

� � 1

(l );

which implies

Fi q =
�

Cjz� 1F i q� 1 \ F ?
i q� 1

� � 1

(l ) � Fi q� 1 :

11



Thus the preimage (5) is unique which proves that� q is indeed bijective.
In the casei q� i q� 1 = 2, the map � q : Yi 1 :::i q ! Yi 1 :::i q� 1 is clearly a continuous surjection

between compact Hausdor� spaces and it su�ces to show injectivity to prove the claim.
By de�nition we have Fi q � z� 1Fi q� 1 for every 
ag in ( Fi 1 ; :::; Fi q ) 2 Yi 1 :::i q . By the
assumption i q � i q� 1 = 2, Lemma 1.17 and Remark 1.18 we obtain

dim(z� 1Fi q� 1 ) = dim( Fi q� 1 ) + 2 = i q;

showing that this inclusion is in fact an actual equality. Thus the vector space Fi q

is completely determined by Fi q� 1 . In particular, there is precisely one preimage of
(Fi 1 ; :::; Fi q� 1 ) 2 Yi 1 :::i q� 1 under � q.

As a corollary we obtain a slight generalization of [CK08, Theorem 2.1] which alsocovers
partial 
ags inside C2N corresponding to admissibleI .

Corollary 1.20. Let (i j 1 ; :::; i j 2m � n ) be the subfamily ofI consisting of all entries where
i j l � 1 = i j l � 1, i.e. i j 1 ; :::; i j 2m � n are precisely the places of the dots in the dot-cross-
sequence. Then the map� I : YI ! (P1)2m� n de�ned by

(Fi 1 ; :::; Fi m ) 7!
�

C(Fi j 1
\ F ?

i j 1 � 1
); C(Fi j 2

\ F ?
i j 2 � 1

); :::; C(Fi j 2m � n
\ F ?

i j 2m � n � 1
)
�

is a homeomorphism.

Proof. Fix j l for some l 2 f 1; :::; 2m � ng and set q = j l and p = j l � 1, where j 0 = 0, to
simplify notation. Let � i p :::i q denote the composition:

Yi 1 :::i q� 1

� i q� 1
���! Yi 1 :::i q� 2

� i q� 2
���! :::

� i p+1
���! Yi 1 :::i p :

Notice that all the projections in this composition are homeomorphisms bythe de�nition
of the sequence (j 1; :::; j 2m� n ) and the second part of Proposition 1.19.

For the particular choice q = j 1 and p = j 0 we can apply the �rst part of Proposition
1.19 and obtain a homeomorphism

� i 1 :::i q : Yi 1 :::i q

� q
�! Yi 1 :::i q� 1 � P1 � i p :::i q � id

������! Yi 0 � P1 �= P1

which is explicitly given by

(Fi 1 ; :::; Fi q ) 7! C
�

Fi q \ F ?
i q � 1

�
:

If q = j l and p = j l � 1 and we assume that the homeomorphism� i 1 :::i p : Yi 1 :::i p !
�
P1

� l � 1

given by
(Fi 1 ; :::; Fi p ) 7!

�
C(Fi j l � 1

\ F ?
i j l � 1 � 1

); :::; C(Fi j 1
\ F ?

i j 1 � 1
)
�

is already constructed, then we de�ne� i 1 :::i q as the composition

Yi 1 :::i q

� q
�! Yi 1 :::i q� 1 � P1 � i p :::i q � id

������! Yi 1 :::i p � P1 � i 1 :::i p � id
������!

�
P1� l

:

The reader easily veri�es that this homeomorphism is given by

(Fi 1 ; :::; Fi q ) 7!
�

C(Fi j l
\ F ?

i j l � 1
); :::; C(Fi j 1

\ F ?
i j 1 � 1

)
�

:

Thus the claim of the corollary follows (after reversing the order of the factors).

Remark 1.21. If the sequenceI consists of all integers between 1 andn we will also write
Yn instead of YI and similarly � n instead of � I .
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1.3 Topology of irreducible components

By the results of the last section we have a homeomorphism� I : YI
�=�! (P1)2m� n . More-

over, the (n � k; k)-Spaltenstein variety of type I sits inside YI via the identi�cation (4).
For the rest of this section the notation F ln� k;k

I will always refer to this embedded Spal-
tenstein variety. The next goal is to see what the images of the irreducible components
look like under � I .

1.3.1 Technical preliminaries

We begin by proving some statements which will simplify some of thearguments later on.
Notice that we have an explicit description of the irreducible components of the embed-

ded Spaltenstein variety F ln� k;k
I � YI by replacing the map x in condition (i) of Proposi-

tion 1.11 with the map zn� k;k de�ned to be the restriction of z to span(e1; :::; en� k ; f 1; :::; f k ).
A priori it is necessary to work with this restricted map because preimages underz might
not be contained in span(e1; :::; en� k ; f 1; :::; f k ) anymore. The following lemma shows that
this does not happen.

Lemma 1.22. The irreducible componentK a � F ln� k;k
I � YI corresponding toa 2 B n� k;k

I
consists of precisely those 
ags(Fi 1 ; :::; Fi m ) 2 YI which satisfy the following conditions
imposed by the cup diagram~a:

(i') If (i; j ) 2 ~a (the arc connecting the symbolsi and j might be an invisible arc), then

Fj = z� 1
2 (j � i +1) Fi � 1:

(ii') If (i ) 2 ~a, then we have

Fi = Fi � 1 + span
�

e1
2 (i + � a (i ))

�
:

Before we prove the above lemma, it is useful to note the following (trivial) fact:

Lemma 1.23. Let U; U0 � C2N be two subspaces. Then we have

z(U + U0) = zU + zU0:

If we additionally assumeU; U0 � im(z), then we also get

z� 1(U + U0) = z� 1U + z� 1U0: (6)

The reader is invited to make up examples showing that the assumption about the
containment of U; U0 in the image of z is indeed necessary for equation (6) to be true.

Proof (Lemma 1.22). Assume (Fi 1 ; :::; Fi m ) 2 K a � F ln� k;k
I � YI . By condition (i) of

Proposition 1.11 we have an inclusion

Fj = z
� 1

2 (j � i +1)
n� k;k Fi � 1 � z� 1

2 (j � i +1) Fi � 1; (7)

whenever (i; j ) 2 ~a. We obtain a chain of equation

dim
�

z� 1
2 (j � i +1) Fi � 1

�
= j � i + 1 + dim( Fi � 1) = dim( Fj );

13



where the �rst equation follows from Lemma 1.17 and Remark 1.18. Hence the inclusion
(7) is in fact an equality and we obtain (i'). Moreover, condition (ii) cl early implies (ii').

For the converse take a 
ag (Fi 1 ; :::; Fi m ) 2 YI satisfying conditions (i') and (ii') of the
lemma. Again, condition (ii) trivially holds. In order to prove conditi on (i) for this 
ag,
it su�ces to show that

Fi m = span(e1; :::; en� k ; f 1; :::; f k ); (8)

because this equality implies

Fj = Fj \ span(e1; :::; en� k ; f 1; :::; f k )

= z� 1
2 (j � i +1) Fi \ span(e1; :::; en� k ; f 1; :::; f k )

= z
� 1

2 (j � i +1)
n� k;k Fi ;

whenever (i; j ) 2 ~a.
Let r1; :::; rn� 2k be the positions of the dots in ~a to which the rays are connected,

numbered from left to right. We additionally set r0 := 0. So for �xed s 2 f 0; 1; :::; n �
2k � 1g, the diagram consists of arcs only in between nodesr s and r s+1 . In particular,
there is a sequence of outermost arcs (some of which might be invisible)

(p1; q1); :::; (pt ; qt )

such that p1 = r s + 1, qt = r s+1 � 1 and ql + 1 = pl+1 for all l 2 f 1; :::; t � 1g. By (i') we
have relations

Fql = z� 1
2 (ql � pl +1) Fpl � 1

for all l 2 f 1; :::; tg. We claim that

Fql = z� 1
2 (ql � p1+1) Fp1 � 1 (9)

holds for all l 2 f 1; :::; tg. This is obviously true for l = 1. So suppose (9) holds forl � 1,
l > 1. Sinceql � 1 = pl � 1 we calculate

Fql = z� 1
2 (ql � pl +1) Fpl � 1

= z� 1
2 (ql � pl +1) z� 1

2 (ql � 1 � p1+1) Fp1 � 1

= z� 1
2 (ql � p1+1) Fp1 � 1;

which proves (9) by induction. Setting l = t one obtains the equation

Fqt = z� 1
2 (qt � p1+1) Fp1 � 1 = z� 1

2 (qt � p1+1) Fr s (10)

which we will use below.
After these local considerations the next step is to relate the vector spaces of a 
ag

beyond the con�nes of two subsequent rays, too. From now on setqs := r s+1 � 1 for
s 2 f 0; 1; :::; n � 2k � 1g and qn� 2k := n. The next claim will be the following:

Fqs = z� 1
2 (qs � s) (0) +

sX

� =1

span
�

e1
2 (qs � s)+ �

�
(11)

For s = 0 this claim is obviously true, because equation (11) reduces to equation (10).
Now assume that the claim holds for all 0� l � s. Then we have

Fqs+1 = z� 1
2 (qs+1 � r s+1 )Fr s+1

= z� 1
2 (qs+1 � r s+1 )

�
Fqs + span(e1

2 (r s+1 + s+1) )
�

= z� 1
2 (qs+1 � r s+1 )Fqs + z� 1

2 (qs+1 � r s+1 ) span(e1
2 (r s+1 + s+1) );
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and inserting the induction hypothesis into the �rst summand yie lds

z� 1
2 (qs+1 � r s+1 )Fqs = z� 1

2 (qs+1 � r s+1 )
�

z� 1
2 (qs � s) (0)

�
+

sX

� =1

z� 1
2 (qs+1 � r s+1 ) span

�
e1

2 (qs � s)+ �

�

= z� 1
2 (qs+1 � (s+1)) (0) +

sX

� =1

span
�

e1
2 (qs � s)+ � + 1

2 (qs+1 � r s+1 )

�

= z� 1
2 (qs+1 � (s+1)) (0) +

sX

� =1

span
�

e1
2 (qs � (s+1))+ �

�
;

where we used the relationr s+1 = qs + 1. The second summand simpli�es to

z� 1
2 (qs+1 � r s+1 ) span(er s+1 + s+1 ) = span( e1

2 (qs+1 +( s+1)) )

and hence we get

Fqs+1 = z� 1
2 (qs+1 � (s+1)) (0) +

s+1X

� =1

span
�

e1
2 (qs � (s+1))+ �

�

which proves the claim.
Inserting s = n � 2k into (11) yields

Fi m = Fn = z� k (0) +
s+1X

� =1

span(ek+ � )

= span(e1; :::ek ; f 1; :::; f k ) + span( ek+1 ; :::; en� k )

= span(e1; :::en� k ; f 1; :::; f k );

which �nishes the proof of the lemma.

For admissible I = ( i 1; :::; im ) and p 2 f 1; :::; ng such that p � 1; p + 1 2 f i 1; :::; im g, i.e.
p� 1 = i q and p+1 = i q0 for someq and q0, we can de�ne a new admissible family denoted
by I � f p; p+ 1g = ( i 0

1; :::; i0
m� (q0� q) ), where

i 0
l :=

(
i l ; if l � q;

i l+( q0� q) � 2 if l > q:

It is easy to verify that we have inequalities 0< i 0
l � i 0

l � 1 � 2 for all l 2 f 1; :::; m � (q0� q)g.
Passing fromI to I � f p; p+1g can be understood combinatorially by deleting the symbols
at positions p and p + 1 in the dot-cross sequence corresponding toI .

Example 1.24. ConsiderI = (1 ; 3; 4; 5; 6; 7) as in Example 1.4 with corresponding dot-cross
sequence� � � � � � � . If we choosep = 2, then q � q0 = 1 and the family I � f 2; 3g is
given by (1; 2; 3; 4; 5). For p = 4 we have q � q0 = 2 and the family I � f 4; 5g is given by
(1; 3; 4; 5). From the combinatorial point of view we have:

I � f 2; 3g = � � � � � I � f 4; 5g = � � � � � :

Sincep � 1; p + 1 2 f i 1; :::; im g, it makes sense to de�ne

X I;p := f (Fi 1 ; :::; Fi m ) 2 YI j Fp+1 = z� 1Fp� 1g: (12)
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Lemma 1.25. The map  I;p : X I;p ! YI �f p;p+1 g given by the assignment

(Fi 1 ; :::; Fi m ) 7!
�

F 0
i 0
1
; :::; F 0

i 0
m � ( q0� q)

�
;

where

F 0
i 0
l

:=

(
Fi l ; if l � q;

zFi l +( q0� q)
if l > q:

(13)

is a well-de�ned surjection.

Proof. Let (Fi 1 ; :::; Fi m ) 2 X I;p be a 
ag and let

 I;p (Fi 1 ; :::; Fi m ) =
�

F 0
i 0
1
; :::; F 0

i 0
m � ( q0� q)

�

be its image. By Lemma 1.17 and Remark 1.18 we have

dim
�

zFi l +( q0� q)

�
= dim

�
Fi l +( q0� q)

�
� 2 = i l+( q0� q) � 2;

which implies dim(F 0
i 0
l
) = i 0

l for every l 2 f 1; :::; m � (q0 � q)g by the de�nition of

(i 0
1; :::; i0

m� (q0� q) ) and (13). Thus the vector spaces of the 
ag I;p (Fi 1 ; :::; Fi m ) have the
right dimensions.

Notice that we have inclusions

zF 0
i 0
l

= z
�

zFi l +( q0� q)

�
� zFi l � 1+( q0� q)

= F 0
i 0
l � 1

(14)

for every l > q + 1 and
zF 0

i 0
l

= zFi l � Fi l � 1 = F 0
i 0
l � 1

; (15)

if l � q. In particular, (14) and (15) together with

zF 0
i 0
q+1

= zFi q0+1
� zFi q0 = Fi q = F 0

i 0
q

show that there are inclusionszF 0
i 0
l

� F 0
i 0
l � 1

for every l 2 f 1; :::; m � (q0� q)g.

We omit the easy check that the 
ag (Fi 1 ; :::; Fi m ) 2 X I;p given by

Fi l =

8
<

:

F 0
i 0
l
; if l � q;

z� 1F 0
i 0
l � ( q0� q)

if l > q;

de�nes a preimage of (F 0
i 0
1
; :::; F 0

i 0
m � ( q0� q)

) under  I;p . Hence I;p is surjective.

Remark 1.26. In order to tie in with the notation introduced in Remark 1.21, we will w rite
X n;p and  n;p in the case of full 
ags.

The following lemma is a bit technical and not well-motivated at this point. In some
sense it shows that  I;p respects the relations de�ning the irreducible components of
F ln� k;k

I . Reading the proofs of Lemma 1.28 and Lemma 1.34, where everything is a bit
more explicit, will probably be a great help for the reader in cherishing its generality and
power.
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Lemma 1.27. Let (Fi 1 ; :::; Fi m ) 2 X I;p be a 
ag and let i s1 ; i s2 2 f i 1; :::; im g � f p; p+ 1g
such that s1 < s 2. If we de�ne

r j :=

(
sj if sj � q;

sj � (q0� q) if sj > q;

for j = 1 ; 2, then the following equivalence holds:

Fi s2
= z� 1

2 (i s2 � i s1 +1) Fi s1
, F 0

i 0
r 2

= z� 1
2 (i 0

r 2
� i 0

r 1
+1) F 0

i 0
r 1

: (16)

Moreover, if i s 2 f i 1; :::; im g � f p; p+ 1g and

r :=

(
s if s � q;

s � (q0� q) if s > q;

then there is an equivalence

Fi s = Fi s� 1 + span
�

e1
2 (i s + � )

�
, F 0

i 0
r

= F 0
i 0
r � 1

+ span
�

e1
2 (i 0

r + � )

�
; (17)

where � is an integer such thati s + � is even and 1
2(i s + � ) � N .

Proof. The proof of equivalence (16) is divided into three cases:

� If s1 < s 2 � q, then we haver j = sj and

F 0
i 0
r j

= F 0
i 0
sj

= Fi sj

for j = 1 ; 2. In particular, both sides of (16) are exactly the same statements.

� If s1 � q < q0 < s 2, then

F 0
i 0
r 1

= Fi s1
and F 0

i 0
r 2

= F 0
i 0
s2 � ( q0� q)

(13)
= zFi s2

:

Moreover, we have

i 0
r 2

� i 0
r 1

= i 0
s2 � (q0� q) � i 0

s1
= i s2 � i s1 � 2:

Thus we only have to show

Fi s2
= z� 1

2 (i s2 � i s1 +1) Fi s1
, zFi s2

= z� 1
2 (i s2 � i s1 +1)+1 Fi s1

to prove (16). But this follows by applying z (respectively z� 1) to the left (respec-
tively right) side of the equivalence.

� If q0 < s 1 < s 2, then we have

F 0
i 0
r j

= F 0
i 0
sj � ( q0� q)

= zFi sj

for j = 1 ; 2 and

i 0
r 2

� i 0
r 1

= i 0
s2 � (q0� q) � i 0

s1 � (q0� q) = i s2 � 2 � (i s1 � 2) = i s2 � i s1 :

Hence (16) is the same statement as

Fi s2
= z� 1

2 (i s2 � i s1 +1) Fi s1
, zFi s2

= z� 1
2 (i s2 � i s1 +1)+1 Fi s1

;

which we already treated in the case above.
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In order to prove equivalence (17), two cases have to be considered.

� If i s � p� 1, i.e. s � q, there is nothing to show because both sides of the equivalence
are the same statements similar to the �rst case in the proof of (16).

� If i s > p + 1, i.e. s > q0, we have to show the equivalence

Fi s = Fi s� 1 + span
�

e1
2 (i s + � )

�
, F 0

i 0
s� ( q0� q)

= F 0
i 0
s� ( q0� q) � 1

+ span
�

e1
2

�
i 0
s� ( q0� q)

+ �
�

�
;

(18)
becauser = s � (q0� q).

Now suppose the left hand side of (18) holds. Sinces� (q0� q) > q in the case under
consideration, we obtain

F 0
i 0
s� ( q0� q)

(13)
= zFi s = z

�
Fi s� 1 + span(e1

2 (i s + � ) )
�

(1:23)
= zFi s� 1 + z

�
span(e1

2 (i s + � ) )
�

:

Sincei 0
s� (q0� q) = i s � 2 we obtain

z
�

span(e1
2 (i s + � ) )

�
= span(e1

2 (i s + � )� 1)

= span(e1
2 (( i s � 2)+ � ) )

= span(e1
2 (i 0

s� ( q0� q)
+ � ) )

and thus it remains to prove

zFi s� 1 = F 0
i 0
s� ( q0� q) � 1

;

in order to deduce the right hand side of equivalence (18). Ifs > q0+ 1 this is an
immediate consequence of (13) and ifs = q0+ 1 we calculate

F 0
i 0
s� ( q0� q) � 1

= F 0
i 0
q

= Fi q = zFi q0 = zFi s� 1 ;

where we used the fact that (Fi 1 ; :::; Fi m ) 2 X I;p for the third equality. We leave
it to the reader to check that the right hand side of (18) implies the left hand side
(simply apply z� 1 to the equation and argue similarly as above).

1.3.2 Review of the Springer �ber case

In the following we only consider the special case of full 
ags. We prove that � n maps the
irreducible componentK a � F ln� k;k corresponding to the cup diagrama 2 B n� k;k to the
set Ta �

�
P1

� n (cf. Proposition 1.32 below) de�ned by

Ta :=
�

(l1; :::; ln ) 2
�
S2� n

j l?i = l j if ( i; j ) 2 a and l i = span(e) if ( i ) 2 a
	

:

For a �xed cup diagram a 2 B n� k;k with k � 1 there always existsp 2 f 1; :::; n � 1g
such that the dots p and p + 1 are connected by an arc ina. Removing this arc yields a
new cup diagram in B n� k� 1;k� 1 which we denote bya � f p; p+ 1g.
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Corresponding to the choice ofp consider the set

X n;p := f (F1; :::; Fn ) 2 Yn j Fp+1 = z� 1Fp� 1g

and the map  n;p : X n;p ! Yn� 2 given by

(F1; :::; Fn ) 7! (F1; :::; Fp� 1; zFp+2 ; :::; zFn )

as introduced in (12) and Lemma 1.25. The following lemma generalizes [Weh09, Lemma
3.2] from the equal-row case to the general two-row case.

Lemma 1.28. There is an equality of sets:

K a =  � 1
n;p (K a�f p;p+1 g):

Proof. By assumption there is an arc in a connecting the dots p and p + 1. Hence the
equality Fp+1 = z� 1Fp� 1 holds for every (F1; :::; Fn ) 2 K a by Lemma 1.22 and K a is
contained in X n;p .

SinceK a =  � 1
n;p (K a�f p;p+1 g) is equivalent to the statement

(F1; :::; Fn ) 2 K a ,  n;p (F1; :::; Fn ) 2 K a�f p;p+1 g;

we have to prove that a 
ag (F1; :::; Fn ) 2 X n;p satis�es the conditions of Lemma 1.22
for the cup diagram a, if and only if the 
ag ( F 0

1; :::; F 0
n� 2) satis�es the conditions of the

lemma for a � f p; p+ 1g. Being totally explicit, it remains to show the equivalence

Fs2 = z� 1
2 (s2 � s1+1) Fs1 , F 0

r 2
= z� 1

2 (r 2 � r 1+1) F 0
r 1

;

where

r j :=

(
sj if sj � p � 1;

sj � 2 if sj > p � 1;

for j = 1 ; 2 and the equivalence

Fs = Fs� 1 + span
�

e1
2 (s+ � a (s))

�
, F 0

r = F 0
r � 1 + span

�
e1

2 (r + � a�f p;p +1 g (r ))

�
:

where

r :=

(
s if s � p � 1;

s � 2 if s > p � 1:

The reader easily sees that this is just the statement of Lemma 1.27 (with � = � a(s) =
� a�f p;p+1 g(r )) in the special case considered here.

In the following lemma we recall results contained in [CK08, Theorem2.1], [Weh09,
Lemma 2.4].

Lemma 1.29. The homeomorphism� n maps X n;p to the set

An;p := f (l1; :::; ln ) 2 (P1)n j lp+1 = l?p g

and the following diagram commutes:

X n;p
 n;p ////

� n jX n;p �=
��

Yn� 2

� n � 2�=
��

An;p f n;p jA n;p

////(P1)n� 2

where f n;p : (P1)n � (P1)n� 2 is the map which forgets the coordinatesp and p + 1 .
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Before we can prove the lemma we have to introduce some more linear algebra. The
following result was �rst proved in [Weh09, Lemma 2.2].

Lemma 1.30. Let U � C2N be az-stable subspace such thatker(z) � U � im (z). Then
z maps z� 1U \ U? isomorphically to U \ (zU)? , and the following diagram commutes:

z� 1U \ U? z //

C
%%

U \ (zU)?

Czz
C2

Proof. In order to see that z actually maps elements inz� 1U\ U? to elements ofU\ (zU)? ,
notice that for v 2 z� 1U \ U? we clearly havez(v) 2 U (because in particular v 2 z� 1U).
For the proof that z(v) 2 (zU)? pick any u 2 U and write

v = v1 + ::: + vN ; u = u1 + ::: + uN

with vj ; uj 2 span(ej ; f j ). Since span(e1; f 1) = ker( z) � U by assumption and v 2 U? we
deduce that v1 = 0. It is easy to see that z : span(ej ; f j ) ! span(ej � 1; f j � 1) is unitary for
j � 2. Thus one gets

hzv; zui =
NX

i =2

hzvi ; zui i =
NX

i =2

hvi ; ui i = hv; ui = 0 ;

which proves zv 2 (zU)? .
To check the commutativity of the diagram let v 2 z� 1U \ U? and decomposev =

v2 + ::: + vN with vj 2 span(ej ; f j ) as above. One easily checks thatC(vj ) = C(zvj ) for
all j � 2 and hence obtains

C(zv) =
NX

j =2

C(zvj ) =
NX

j =2

C(vj ) = C(v):

Our assumptions together with Lemma 1.16 imply that C : z� 1U \ U? ! C2 is an
isomorphism and soz : z� 1U \ U? ! U \ (zU)? must be injective by the commutativity
of the diagram. By Lemma 1.17 we have

dim(U) = 2 + dim( zU): (19)

Basic linear algebra tells us that U \ (zU)? �= U=zU and hence U \ (zU)? is two-
dimensional by (19) and thusz : z� 1U \ U? ! U \ (zU)? is an isomorphism.

Corollary 1.31. Let U � U0 � C2N be two subspaces such thatdim U0 = dim U + 1 and
ker(z) � U � im(z). If U is z-stable andzU0 � U, then

C(U0\ U? ) = C(zU0\ (zU)? ):

Proof. By our assumptions we can apply Lemma 1.30 toU and obtain an isomorphism

z: z� 1U \ U? �=�! U \ (zU)? :

Notice that the inclusion zU0 � U together with the assumption on the dimension onU0

imply that U0 \ U? � z� 1U \ U? is a one-dimensional subspace. The same is true for
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zU0 \ (zU)? � U \ (zU)? . Moreover, it is easy to see that for everyv 2 U0 \ U? we
have zv 2 zU0\ (zU)? which implies z(U0\ U? ) = zU0\ (zU)? by the above dimensional
considerations. Hence, one obtains the desired equality

C(U0\ U? ) = C(z(U0\ U? )) = C(zU0\ (zU)? );

becauseC(v) = C(z(v)) for all v 2 z� 1U \ U? by Lemma 1.30.

Proof (Lemma 1.29). Let (F1; :::; Fn ) 2 X n;p be a 
ag. Both vector spacesFp+1 \ F ?
p and

Fp \ F ?
p� 1 are contained in z� 1Fp� 1 \ F ?

p� 1 and they are clearly orthogonal. By Lemma
1.16 the map

C : z� 1Fp� 1 \ F ?
p� 1

�=�! C2

is a unitary isomorphism. Hence we deduce that the imageslp+1 = C(Fp+1 \ F ?
p ) and

lp = C(Fp \ F ?
p� 1) are orthogonal.

In order to check the commutativity of the square we calculate

f n;p (� n (F1; :::; Fn )) = f n;p

�
C(F1 \ F ?

0 ); C(F2 \ F ?
1 ); :::; C(Fn \ F ?

n� 1)
�

= ( l1; :::; ln� 2) 2
�
P1� n� 2

;

where

l j =

(
C(Fj \ F ?

j � 1) if j < p;

C(Fj +2 \ F ?
j +1 ) if j � p:

(20)

On the other hand one gets

� n� 2 ( n;p (F1; :::; Fn )) = � n� 2 (F1; :::; Fp� 1; zFp+2 ; :::; zFn )

= ( l01; :::; l0n� 2) 2
�
P1� n� 2

;

where

l0j =

(
C(Fj \ F ?

j � 1) if j < p;

C(zFj +2 \ (zFj +1 )? ) if j � p:
(21)

Notice that in the case j = p we inserted the equalityFp+1 = z� 1Fp� 1 to obtain the above
result.

Comparing (20) and (21), we see that it su�ces to prove that

C(Fj +2 \ F ?
j +1 ) = C(zFj +2 \ (zFj +1 )? )

for all j � p to complete the argument. But this follows from Corollary 1.31 by setting
U := Fj +1 and U0 := Fj +2 , because

ker(z) = z� 1(0) � z� 1Fp� 1 = Fp+1 � Fj +1

and Fj +1 � im(z) by increasing N if necessary (all the other hypotheses of the lemma are
obviously satis�ed).

Proposition 1.32. There is an equality of sets:

� n (K a) = Ta:
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Proof. Let n � 1 and consider the Springer �ber F ln;0. This variety has one irreducible
component corresponding to the matching consisting ofn rays and no arcs. The relations
of Proposition 1.22 imply that this irreducible component consists of precisely one 
ag,
namely

(span(e1); span(e1; e2); :::; span(e1; :::; en )) :

Now it is easy to check that � n maps this 
ag to (span(e); :::; span(e)) 2
�
P1

� n .
Notice also that by Lemma 1.29 we obtain the claim forF l1;1.
For the general case we proceed by induction, assuming that the claim ofthe proposition

is true for the irreducible components ofF ln� k� 1;k� 1. Let a 2 B n� k;k be a cup diagram
and �x an arc connecting dots p and p + 1. By Lemma 1.29 there is an equality of maps

 n;p � � n� 2 = f n;p jA n;p � � n jX n;p :

In particular, we have an equality of sets

� n jX n;p

�
 � 1

n;p (K a�f p;p+1 g)
�

= f n;p j � 1
A n;p

�
� n� 2(K a�f p;p+1 g)

�
:

Applying Lemma 1.28 and the induction hypothesis to this equality yields

� n jX n;p (K a) = f n;p j � 1
A n;p

(Ta�f p;p+1 g):

But we clearly have
f n;p j � 1

A n;p
(Ta�f p;p+1 g) = Ta;

which �nishes the proof.

1.3.3 Extension to Spaltenstein varieties

Let I = ( i 1; :::; im ) be admissible and let i p be an integer in the sequence such that
i p � i p� 1 = 2, i.e. there is a cross ati p and i p � 1 in the dot-cross sequence. By Lemma
1.25 we obtain a well-de�ned map I;i p � 1 : X I;i p � 1 ! YI �f i p � 1;i p g given by

(Fi 1 ; :::; Fi m ) 7!
�
Fi 1 ; :::; Fi p� 1 ; zFi p+1 ; :::; zFi m

�
:

Lemma 1.33. The following diagram commutes:

X I;i p � 1

� I jX I;i p � 1 %%

 I;i p � 1 //YI �f i p � 1;i p g

� I �f i p � 1;i p gxx�
P1

� 2m� n

Proof. Let (Fi 1 ; :::; Fi m ) 2 X I;i p � 1 be a 
ag and let (i j 1 ; :::; i j 2m � n ) be the subsequence of
I consisting of all entries wherei j l � 1 = i j l � 1. Then we have

� I �f i p � 1;i p g �  I;i p � 1 (Fi 1 ; :::; Fi m ) = � I �f i p � 1;i p g
�
Fi 1 ; :::; Fi p� 1 ; zFi p+1 ; :::; zFi m

�

= ( l1; :::; l2m� n ) 2
�
P1� 2m� n

;

where

ls =

(
C(Fi j s

\ F ?
i j s � 1

) if j s � p � 1;

C(zFi j s
\ (zFi j s � 1 )? ) if j s � p + 1 :

(22)

The same argument as in the proof of Lemma 1.29 shows that

C(zFi j s
\ (zFi j s � 1 )? ) = C(Fi j s

\ (Fi j s � 1 )? );

for j s � p + 1 and hence we have� I jX I;i p � 1 = � I �f i p � 1;i p g �  I;i p � 1.
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Lemma 1.34. There is an equality of sets:

K a =  � 1
I;i p � 1

�
K a�f i p � 1;i p g

�
:

Proof. Since there is an invisible arc in ~a connecting the crosses at positionsi p � 1 and
i p in the dot cross sequence corresponding toI , we have Fi p = z� 1Fi p� 1 for every 
ag
(Fi 1 ; :::; Fi m ) 2 K a and thus K a � X I;i p � 1.

Similar to the proof of Lemma 1.28 it remains to prove that a 
ag (Fi 1 ; :::; Fi m ) 2 X I;i p � 1

satis�es the conditions of Lemma 1.22 for the cup diagram ~a, if and only if the 
ag
(F 0

i 0
1
; :::; F 0

i 0
m � 1

) satis�es the conditions of the lemma for ~a � f i p � 1; i pg. More explicitly,

we have to show the equivalence

Fi s2
= z� 1

2 (i s2 � i s1 +1) Fi s1
, F 0

i 0
r 2

= z� 1
2 (i 0

r 2
� i 0

r 1
+1) F 0

i 0
r 1

;

where

r j :=

(
sj if sj � p � 1;

sj � 1 if sj > p;

for j = 1 ; 2, and the equivalence

Fi s = Fi s� 1 + span
�

e1
2 (i s + � ~a (i s ))

�
, F 0

i 0
r

= F 0
i 0
r � 1

+ span
�

e1
2 ( i 0

r + � ~a�f i p � 1;i p g (i 0
r ))

�
:

where

r :=

(
s if s � p � 1;

s � 1 if s > p:

The reader easily sees that this is just the statement of Lemma 1.27 (with � = � ~a(i s) =
� ~a�f i p � 1;i p g(i 0

r )) in the special case considered here.

Proposition 1.35. There is an equality of sets:

� I (K a) = Tared :

Proof. We induct on the number of indices in I satisfying i l � i l � 1 = 2. If i l � i l � 1 = 1 for
all l 2 f 1; :::; mg the claim was proved in Proposition 1.32.

Now let a 2 B n� k;k
I be a cup diagram and leti p be an index such that i p � i p� 1 = 2.

Then we have

� I (K a)
(1:34)

= � I

�
 � 1

I;i p � 1

�
K a�f i p � 1;i p g

� �
(1:33)

= � I �f i p � 1;i p g
�
K a�f i p � 1;i p g

�
;

and by the induction hypothesis we have

� I �f i p � 1;i p g
�
K a�f i p � 1;i p g

�
= Tared :

1.4 Gluing the irreducible components

In this section we �nalize the proof of Theorem 1.15. The essential ingredient will be the
construction of a homeomorphism
 2m� n :

�
P1

� 2m� n �=�!
�
S2

� 2m� n such that the composi-
tion

YI
� I�!

�
P1� 2m� n 
 2m � n����!

�
S2� 2m� n
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maps the irreducible componentK a to the set Sa as de�ned at the end of section 1.1.
Consider the stereographic projection� : S2nf pg ! C and its analog for projective space

� : P1nf span(e)g ! C ; span(�e + �f ) 7!
�
�

:

We can use� and � to de�ne a homeomorphism � : P1 ! S2 by

span(�e + �f ) 7!

(
� � 1 (� (span(�e + �f ))) if span( �e + �f ) 6= span(e);

p = (0 ; 0; 1) if span(�e + �f ) = span( e):

This induces a homeomorphism �n :
�
P1

� n !
�
S2

� n on the n-fold products by setting

� n (l1; :::; ln ) := (�( l1); :::; �( ln )) :

Moreover, de�ne an involutive homeomorphismI n :
�
S2

� n !
�
S2

� n by

(x1; :::; xn ) 7! (� x1; x2; � x3; :::; (� 1)nxn )

and set 
 n := I n � � n .

Proposition 1.36. There is an equality of sets
 n (Ta) = Sa for every a 2 B n� k;k .

Proof. From the de�nition of � n it is easy to see that � n (Ta) consists of precisely those
elements which satisfy the conditions

� x i = � x j if ( i; j ) is a pair in a

� x i = p if ( i ) is a ray

Notice that if the dots i and j are connected by an arc, then eitheri is odd and j even ori
is even andj is odd. HenceI n (� n (Ta)) is the set of elements (x1; :::; xn ) 2

�
S2

� n satisfying

� x i = x j if ( i; j ) is a pair in a

� x i = ( � 1)i p if ( i ) is a ray

which shows
 n (Ta) = I n (� n (K a)) = Sa.

Proof (Theorem 1.15). We can write the (n � k; k)-Spaltenstein variety of type I as the
union of its irreducible components

F ln� k;k
I =

[

a2 B n � k;k
I

K a

and view it is a subvariety of YI . Pushing this union through the homeomorphism

YI
� I�!

�
P1� 2m� n 
 2m � n����!

�
S2� 2m� n

yields


 2m� n (� I (F ln� k;k
I )) =

[

a2 B n � k;k
I


 2m� n (� I (K a))
(1:35)

=
[

a2 B n � k;k
I


 2m� n (Tared )

(1:36)
=

[

a2 B n � k;k
I

Sared ;
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and hence we obtain the desired homeomorphism

F ln� k;k
I

�=
[

a2 B n � k;k
I

Sared :

Example 1.37. Let I = (1 ; 3; 4; 6; 7) and consider F lxI where x is of Jordan type (4; 3).
Then the dot-cross sequence ofI is given by � � � � � � � and the set B 4;3

I consists of the
following cup diagrams:

� � � � � � �
a =

� � � � � � �

b =

If we delete the crosses we obtain the following reduced diagrams:

� � �
ared =

� � �

bred =

Thus the Spaltenstein variety F lxI is homeomorphic the union of the following two sets:

Sared = f (x; x; � p) j x 2 S2g �
�
S2� 3

Sbred = f (� p; x; x ) j x 2 S2g �
�
S2� 3

:

Each of these submanifolds is homeomorphic to a two-sphere and their intersection is given
by Sared \ Sbred = f (� p; � p; � p)g. Thus, topologically, the Spaltenstein variety F l4;3

I is a
wedge of two spheres:

2 A 2d TQFT via Spaltenstein varieties

The following material is at the heart of this work. After discussing the combinatorics
of tangle and circle diagrams in the �rst subsection we use these diagramsto de�ne sub-
varieties inside a �nite product of Spaltenstein varieties in the second subsection. If two
diagrams are related by a certain graphical operation called local surgery, then the corre-
sponding varieties are related by an inclusion map, i.e. one of them sits inside the other
one. Finally, in the last subsection, we compute the pullback and pushforward of these
inclusions in cohomology and relate them to the TQFT associated with thering of dual
numbers equipped with a Frobenius algebra structure. The obtained results provide the
basis for the geometric constructions and applications in the third part of this work.

2.1 Combinatorics of tangle and circle diagrams

We begin by extending our combinatorial tool kit, introduce cap diagramsand explain how
to combine them with cup diagrams in order to get tangle and circle diagrams. Similar
combinatorial structures also occur in the work of Brundan and Stroppel[BS10,BS11].
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Let us remark right from the beginning that whenever we draw cup, cap,tangle and
circle diagrams we think of these as means of visualizing combinatorial structures. In
particular, we do not distinguish between diagrams related by a planar isotopy leaving the
dot-cross sequences in the diagrams �xed.

In the following I = ( i 1; : : : ; im ) and I 0 = ( i 0
1; : : : ; i0

m0) are admissible sequences with
highest integer n and n0 respectively, i.e. i m = n and i 0

m0 = n0. We say that the sequences
I and I 0 have length m and length m0, respectively.

De�nition 2.1. Let a 2 B n� k;k
I be a cup diagram. Then we obtain the corresponding

cap diagram a by re
ecting the diagram a in the horizontal line containing the dots and
crosses.

Example 2.2. The diagram on the right side is the cap diagram corresponding to the cup
diagram on the left:

� � � � � � �
re
ect //

� � � � � � �

Notice that the order of the symbols in a dot-cross sequence induces an order on the rays
of a cup diagram on this dot-cross sequence. In particular, if two cup diagramsa 2 B n� k;k

I ,

b 2 B n0� k0;k0

I 0 have the same number of rays, i.e. the equalityn � 2k = n0� 2k0 holds, then
there is a unique order-preserving bijection between the raysin the two diagrams.

De�nition 2.3. Let a 2 B n� k;k
I , b 2 B n0� k0;k0

I 0 be two cup diagrams having the same
number of rays. Then we de�ne a new diagramba by placing the cup diagram b on top of
the cap diagrama (with both dot-cross sequences left-aligned) and connect the loose ends
of the rays in b with the ones in a pairwise according to the order-preserving bijection.
The resulting diagram ba can be drawn in the plane without crossings and it is called a
(combinatorial) tangle diagram of type (I; I 0). The glued pairs of rays are referred to as
the strands of the tangle diagram.

Example 2.4. The following picture shows the process of building a combinatorial tangle
diagram from two given cup diagrams as explained in De�nition 2.3:

� � � � � � � � � � � �
re
ect �rst diagram

and glue rays
//

� � � � �

� � � � � � �

The rays in the two cup diagrams are glued at their endpoints to obtain the strand
connecting the third dot on the bottom with the �rst dot on top.

De�nition 2.5. Let a 2 B n� k;k
I , b 2 B n� k0;k0

I be cup diagrams. We de�neba to be the
diagram obtained by sticking the cap diagramb on top of the cup diagram a, i.e. we glue
the two diagrams along their common dot-cross sequence (respecting the ordering of the
sequence). This diagram is called acircle diagram of type I .

Remark 2.6. The term \circle diagram" might be a bit deceiving because in general circle
diagrams consist of both circles and line segments (cf. the following example). A circle
diagram does not contain any line segments if and only if the two cup diagramsinvolved
in its construction do not contain any rays.

26



Example 2.7. Here is an example illustrating the gluing process of a cup and cap diagram
in order to obtain a circle diagram:

� � � � � � � � � � � � � �
re
ect second diagram

and glue
// � � � � � � �

The resulting diagram consists of one circle and two line segments.

Once we know how to stick cup diagrams on top of cap diagrams and vice versa we can
easily construct more complicated diagrams by iterating the gluing process explained in
De�nition 2.3 and De�nition 2.5.

For the remaining subsection we �x a collection I 1; : : : ; I s of at least two admissible
sequences. Letm1; m2; : : : ; ms be the respective lengths of the admissible sequences and
n1; : : : ; ns denote the respective heighest integers.

De�nition 2.8. Let bi ai be a combinatorial tangle diagrams of type (I i ; I i +1 ) for every
i 2 f 1; : : : ; s � 1g. Using the gluing procedure from De�nition 2.5 we can de�ne a diagram

bs� 1as� 1 : : : b2a2b1a1

called a (combinatorial) tangle diagram of type (I 1; : : : ; I s). The set of all combinatorial
tangle diagrams of type (I 1; : : : ; I s) is denoted by T (I 1; :::; I s).

Notice that for s = 2 the set T (I 1; I 2) consists of the diagrams from De�niton 2.3.

De�nition 2.9. Let bs� 1as� 1 : : : b2a2b1a1 2 T (I 1; :::; I s) be a combinatorial tangle dia-
gram and let a 2 B n1 � k1 ;k1

I 1
; b 2 B ns � ks ;ks

I s
be cup diagrams. Then we can gluea to the

bottom of t and b onto the top to obtain a diagram

bta = bbs� 1as� 1 : : : b2a2b1a1a

called acircle diagram of type(I 1; : : : ; I s). The set of all circle diagrams of type (I 1; : : : ; I s)
is denoted byC(I 1; : : : ; I s). We write C(I ) for the set of all circle diagrams of typeI as in
De�nition 2.5.

Remark 2.10. As always, if I i is a sequence consisting of all integers between 1 andni we
will use the short notation T (: : : ; ni ; : : : ), respectively C(: : : ; ni ; : : : ), instead of writing
down the whole admissible sequence.

Example 2.11. The diagram depicted on the left is a combinatorial tangle diagram in
T ((1; 3; 4; 5); 5; (2; 3; 5; 6; 7)) and on the right we have a circle diagram inC(8; (2; 3; 4; 5; 6)):

� � � � � � �

� � � � �

� � � � �

� � � � � �

� � � � � � � �

27



Remark 2.12. When we refer to the symbol (�; � ) in a tangle or circle diagram, we mean
the � -th symbol (counted from left to right) in the � -th dot cross sequence (counted from
bottom to top). We think of the pairs of integers as being ordered lexicographically (the
order in the �rst and second component comes from the canonical order of thenatural
numbers). By identifying the symbols with pairs of integers we obtain a total order on the
set of all symbols in a tangle or circle diagram. This will be useful at theend of subsection
2.2.

The following subset ofT (I 1; : : : ; I s) plays an important role in the next subsection (cf.
De�nition 2.21 and Remark 2.23):

De�nition 2.13. De�ne T(I 1; :::I s) to be the set consisting of all tangle diagramst 2
T (I 1; : : : ; I s) which satisfy the following property: Whenever there is a strand in t con-
necting the dots (�; � ) and (� + 1 ; � 0), it follows that � = � 0, i.e. every strand in t is
vertical.

Example 2.14. Here is an example of a tangle diagram contained inT((2; 3; 5; 6; 7; 8); 8):

� � � � � � � �

� � � � � � � �

The tangle diagram from Example 2.11 provides a non-example because it is clearly not
contained in the subsetT((1; 3; 4; 5); 5; (2; 3; 5; 6; 7)).

Notice that we can easily extend the reduction operation for cup diagrams as introduced
in the �rst section to tangle and circle diagrams:

De�nition 2.15. Given a tangle diagram t = bs� 1as� 1 : : : b1a1 2 T (I 1; : : : ; I s) we de�ne
a reduced diagramt red by setting

t red := ( bs� 1)red(as� 1)red : : : (b1)red(a1)red;

where, on the right side, the subscript \red" refers to the reduction of cup diagrams from
De�nition 1.13. Thus we obtain a reduction map

red: T (I 1; : : : ; I s) ! T (2m1 � n1; : : : ; 2ms � ns)

by sending a tangle diagram to its reduced diagram.
Similarly, given a circle diagram bta 2 C(I 1; : : : ; I s), where t = bs� 1as� 1 : : : b1a1 2

T (I 1; : : : ; I s), a 2 B n1 � k1 ;k1
I 1

and b 2 B ns � ks ;ks
I s

, we de�ne

(bta)red := bred(bs� 1)red(as� 1)red : : : (b1)red(a1)redared

and thus we also have a map

red: C(I 1; : : : ; I s) ! C (2m1 � n1; : : : ; 2ms � ns):

For the simple circle diagramsba 2 C(I ) as in De�nition 2.5, where I is an admissible
sequence, we set (ba)red := bredared.
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Remark 2.16. Let t 2 T (I 1; : : : ; I s) be a tangle diagram. Suppose there is an arc int
connecting the dots (�; � ) and (�; � 0). Then there is a corresponding arcin t red connecting
the dots (�; 
 ) and (�; 
 0), where the number 
 (respectively 
 0) is the di�erence of �
(respectively � 0) and the number of crosses which are left of� (respectively � 0) in the
dot-cross sequence associated toI � . This de�nes a canonical bijection between the arcs in
t and the arcs in t red (excluding of course all invisible arcs). Similarly, given a strandin t
connecting the dots (�; � ) and (� +1 ; � 0), there is a corresponding strandin t red connecting
the dots (�; 
 ) and (� + 1 ; 
 0), where 
 and 
 0 can be calculated as in the case of arcs.
Again, this de�nes a canonical bijection between the strands int and the strands in t red.
Obviously, all these notions still make sense if we replace the tanglediagram by a circle
diagram. We will come back to this in the proof of Proposition 2.26.

Example 2.17. The following picture shows the reduction operation applied to thetangle
diagram from Example 2.11:

� � � � � � �

t = � � � � �

� � � � �

reduce diagram//

� � �

t red = � � � � �

� � �

The resulting diagram is an element ofT (3; 5; 3). The cup connecting the dots (3; 6) and
(3; 6) in t corresponds (in the sense of Remark 2.16) to the cup connecting the dots(3; 2)
and (3; 3) in t red and the strand from (1; 4) to (2; 2) in t corresponds to the strand from
(1; 2) to (2; 2) in t red.

De�nition 2.18. Let t = bs� 1as� 1 : : : b1a1 2 T (I 1; :::; I s) be a tangle diagram and �x
� 2 f 1; : : : ; s � 1g. Suppose there is an outermost arc in the cup diagrama� connecting
the dots at positions � and � 0 as well as an outermost arc inb� connecting the dots
 and

 0 such that � a� (� ) = � b� (
 ), i.e. the number of rays left of � in a� equals the number
of rays left of 
 in b� (cf. De�nition 1.9). So locally (using the indexing convention of
Remark 2.12) the tangle diagramt looks as follows:

(� +1 ;
 ) ( � +1 ;
 0)
: : : � : : : � : : :

: : : � : : : � : : :
(�;� ) ( �;� 0)

The assumption � a� (� ) = � b� (
 ) guarantees that there is neither a strand connecting
a dot left of ( �; � ) with a dot right of ( � + 1 ; 
 0) nor a strand connecting a dot left of
(� + 1 ; 
 ) with a dot right of ( �; � 0). In particular, we can perform the following local
surgery operation

� : : : �

� : : : �

cut arcs in the
middle and glue

//

� : : : �

� : : : �
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i.e. we cut the two arcs in the middle and reglue the resulting rays to obtain two strands.
The rest of the diagram remains unchanged. In particular, by the assumption � a� (� ) =
� b� (
 ), the result of this surgery operation is again an element inT (I 1; :::; I s).

Remark 2.19. Given a tangle diagram from the setT(I 1; : : : ; I s) a local surgery will often
result in a diagram which is not contained in T(I 1; : : : ; I s) because a non-vertical strand is
created. However, if we restrict to surgeries along cups which are opposite of each other,
i.e. one cup connects the dots (�; � ) and (�; � 0) while the other one connects the dots
(� + 1 ; � ) and (� + 1 ; � 0), then this problem does not occur.

Example 2.20. The following picture shows a concrete example of a local surgery. For the
reader's convenience the arcs and strands involved in the surgery aredoubled:

� � � � � � � � �

� � � � � �

perform surgery//

� � � � � � � � �

� � � � � �

2.2 Varieties and manifolds associated with tangle diagrams

In the following we use the combinatorics of tangle and circle diagrams from the last
subsection to de�ne subvarieties inside a �nite product of Spaltenstein varieties. We also
provide a topological model which is related to these varieties by a homeomorphism (cf.
Proposition 2.26). Moreover, the relationship between varieties associated to diagrams
which di�er by a local surgery is examined in Proposition 2.35.

Throughout this subsection we �x the following data: As in the previous subsection let
I 1; : : : ; I s be a family of admissible sequences. This time we additionally assume that all
sequences have the same heighest integern which is supposed to be even, i.e. we have
n = 2k for some positive integerk. Let m1; m2; : : : ; ms denote the respective lengths of
the admissible sequencesI 1; : : : ; I s. Independent of these data we also consider a collection
of even positive integersn1; : : : ; ns, i.e. ni = 2ki for every i 2 f 1; : : : ; sg.

Let N � max (m1; : : : ; ms) be a large integer. Then we can consider the smooth projec-
tive varieties YI 1 ; : : : ; YI s of partial 
ags inside C2N (we use the sameN for every variety)
�xed by the nilpotent operator z : C2N ! C2N as de�ned in subsection 1.2.2. At this
point the reader is advised to also recall the de�nition of the mapC : C2N ! C2 and the
hermitian products on the source and target space (cf. the beginning ofsubsection 1.2).
Notice that we obtain an embedding

F lk;k
I 1

� ::: � F lk;k
I s

� YI 1 � ::: � YI s

by using the identi�cation (4) from subsection 1.2.2 for every factor of the product. For
the rest of this section we writeF lk;k

I 1
� :::�F lk;k

I s
for this embedded product of Spaltenstein

varieties. For an s-tuple of 
ags F 2 F lk;k
I 1

� ::: � F lk;k
I s

we use the notationF�;� to denote
the � -dimensional vector space in the� -th 
ag of F .

Since all the vector spacesF�;� are subspaces of the same vector spaceC2N it is possible
to de�ne relations between vector spaces in di�erent 
ags of thes-tuple F , too. Relations
which produce interesting subvarieties ofF lk;k

I 1
� :::�F lk;k

I s
are encoded in the combinatorics

of tangle and circle diagrams.

De�nition 2.21. Let t 2 T(I 1; : : : ; I s) be a tangle diagram. Given two cup diagrams
a 2 B k;k

I 1
, b 2 B k;k

I s
, we assign a subvariety

bK (t)a � F lk;k
I 1

� � � � � F lk;k
I s
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to these data as follows: By de�nition bK (t)a consists of precisely thoses-tuples of 
ags
F 2 F lk;k

I 1
� ::: � F lk;k

I s
which satisfy the relations:

(R1) F�;� 0 = z� 1
2 (� 0� � +1) F�;� � 1, if the symbols at position (�; � ) and (�; � 0), � 0 > � ,

are connected by a (possibly invisible) arc in the circle diagrambta,

(R2) F�;� = F� +1 ;� , if the dots at positions (�; � ) and (� + 1 ; � ) are connected by a
vertical strand in bta.

Example 2.22. Consider the tangle diagram

� � � �

t = 2 T (4; (2; 3; 4))

� � � �

together with the following two cup diagrams:

a = � � � � 2 B 2;2 b = � � � � 2 B 2;2
(2;3;4)

Then the subvariety bK (t)a consists of all 
ags

((F1;1; F1;2; F1;3; F1;4); (F2;2; F2;3; F2;4)) 2 F l2;2 � F l2;2
(2;3;4)

satisfying the conditions

F1;2 = z� 1(0) F1;3 = F2;3 F1;4 = F2;4 F2;2 = z� 1(0)

imposed by the diagramt as well as the additional relations
�
F1;2 = z� 1(0)

�
F1;4 = z� 1(F1;2)

�
F2;2 = z� 1(0)

�
F2;4 = z� 1(F2;2)

coming from the diagramsa and b (the relations in brackets are redundant). All in all, we
have

bK (t)a =
� �

(F1;1; z� 1(0); F1;3; z� 2(0)
�

;
�
z� 1(0); F1;3; z� 2(0)

� 	
� F l2;2 � F l2;2

(2;3;4) :

Remark 2.23. We would like to point out that De�nition 2.21 does not extend to arbitrar y
diagrams in T (I 1; : : : ; I s), i.e. the restriction to tangle diagrams from the set T(I 1; : : : ; I s)
is necessary. In order to illustrate this consider the following diagram:

� � � �

t = 2 T (4; 4)

� � � �

Since there is a strand connecting the fourth dot on the bottom with the second dot on the
top the strand relation (R2) would tell us to make the identi�cation F1;4 = F2;2 in order
to obtain the variety bK (t)a (for some �xed cup diagrams a 2 B 2;2, b 2 B 2;2). Obviously,
this is nonsense because dimF1;4 6= dim F2;2.
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However, tangle diagrams with non-vertical strands will become extremely important
in subsections 3.2 and 3.3. Hence, it is desirable to be able to assign varieties to these
diagrams, too. There seem to be several possible solutions to this problem, e.g. one might
try to alter relation (R2) and replace it with a more complicated one which makes sense
for non-vertical strands, too. Our idea is to keep the simple relation and instead introduce
crosses (playing the role of \placeholders") in the combinatorics which make the strands
vertical, e.g. in the case of the above diagram we would make the replacement

� � � �

� � � �

insert crosses making

the strands vertical
//

� � � � � �

� � � � � �

and work with the right diagram instead of the left one. In the geometric world the
introduction of crosses in the combinatorics corresponds to passing from Springer �bers
to Spaltenstein varieties.

We can extend the topological model of Spaltenstein varieties from the �rst part of
this work to an easy topological model of the varieties from De�nition 2.21. One of the
advantages of working in the topological setting is that the issues explained in Remark
2.23 above do not occur, i.e. it is possible to de�ne manifolds insidea �nite product of
topological Springer �bers for diagrams with non-vertical strands by only making simple
coordinate identi�cations.

De�nition 2.24. Given a tangle diagram t 2 T (n1; : : : ; ns) and cup diagrams a 2
B k1 ;k1 ,b 2 B ks ;ks , we de�ne a manifold bS(t)a � S k1 ;k1 � ::: � S ks ;ks as the set of all
elements

((x1;1; : : : ; x1;n1 ); : : : ; (xs;1; : : : ; xs;ns )) 2 S k1 ;k1 � ::: � S ks ;ks

satisfying the coordinate equations

(R1') x �;� = x �;� 0, if the dots at position ( �; � ) and (�; � 0) are connected by an arc in
bta,

(R2') x �;� = x � +1 ;� 0, if the dots at positions (�; � ) and (� + 1 ; � 0) are connected by a
strand in bta.

Example 2.25. Consider the following combinatorial tangle diagram

� �

t = 2 T (4; 2)

� � � �

which is turned into a circle diagram by closing it up on top and bottom with the diagrams

a = � � � � 2 B 2;2 b = � � 2 B 1;1

respectively. Thus the manifold bS(t)a consists of all elements

((x1;1; x1;2; x1;3; x1;4); (x2;1; x2;2)) 2 S 2;2 � S 1;1
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satisfying the relations

x1;1 = x1;2 x1;3 = x2;1 x1;4 = x2;2

(coming from the arcs and rays int) and

[x1;1 = x1;2] x1;3 = x1;4 x2;1 = x2;2

(coming from the diagramsa and b). Thus we have

bS(t)a = (( x; x; y; y ); (y; y)) � S 2;2 � S 1;1:

The next goal is to prove that the varieties from De�nition 2.21 are related to the
manifolds from De�nition 2.24 via a homeomorphism (cf. Proposition 2.26 below), thereby
justifying the term \topological model".

Notice that we obtain a homeomorphism

YI 1 � ::: � YI s

� I 1 � :::� � I s�������!
�
P1� 2m1 � n

� ::: �
�
P1� 2ms � n

(23)

as the product of the homeomorphisms from Corollary 1.20 and a homeomorphism

�
P1� 2m1 � n

� ::: �
�
P1� 2ms � n 
 2m 1 � n � :::� 
 2m s � n

�������������!
�
S2� 2m1 � n

� ::: �
�
S2� 2ms � n

(24)

as the product of maps de�ned in subsection 1.4. In the following, we will write � I 1 ;:::;I s

for the map (23) and 
 2m1 � n;:::; 2ms � n for the map (24).
It follows immediately from Theorem 1.15 that the composition


 2m1 � n;:::; 2ms � n � � I 1 ;:::;I s = ( 
 2m1 � n � � I 1 ) � (
 2m2 � n � � I 2 ) � ::: � (
 2ms � n � � I s )

restricts to a homeomorphism

F lk;k
I 1

� ::: � F lk;k
I s

�=�! S m1 � k;m 1 � k � ::: � S ms � k;m s � k : (25)

Our task is to identify the image of the varieties bK (t)a � F lk;k
I 1

� ::: � F lk;k
I s

from
De�nition 2.21 under this homeomorphism.

Proposition 2.26. Let t = bs� 1as� 1 : : : b1a1 2 T(I 1; : : : ; I s) be a tangle diagram. Then
the homeomorphism (25) restricts to a homeomorphism


 2m1 � n;:::; 2ms � n � � I 1 ;:::;I s j
bK (t)a : bK (t)a

�=�! bred S(t red)ared

for every choice of cup diagramsa 2 B k;k
I 1

, b 2 B k;k
I s

.

Proof. Let us �x a s-tuple of 
ags F 2 bK (t)a � F lk;k
I 1

� ::: � F lk;k
I s

satisfying the relations
(R1) and (R2) with respect to the diagram bta and let

x = (( x1;1; : : : ; x1;2m1 � n ); : : : ; (xs;1; : : : ; xs;2ms � n )) = 
 2m1 � n;:::; 2ms � n � � I 1 ;:::;I s (F )

denote its image. In order to provex 2 bred S(t red)ared we have to show that this element
satis�es the relations (R1') and (R2') imposed by the diagram (bta)red.
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� Suppose there is an arc in (bta)red connecting the dots (�; 
 ) and (�; 
 0). Then there
is a corresponding arc inbta connecting the dots (�; � ) and (�; � 0) (cf. Remark
2.16). Since F lk;k

I �
is the union of its irreducible components there exists a cup

diagram c 2 B k;k
I �

such that the � -th 
ag of our �xed s-tuple lies in the component
K c. The assumed relations imply that we can choose ac which has an arc connecting
the dots � and � 0. In particular, we have

F 2 F lk;k
I 1

� ::: � F lk;k
I i � 1

� K c � F lk;k
I i +1

� ::: � F lk;k
I s

and by Theorem 1.15 it follows that

x 2 S m1 � k;m 1 � k � ::: � Scred � ::: � S ms � k;m s � k :

Since there is an arc incred connecting the dots 
 and 
 0 the de�nition of Scred

immediately implies the equality x �;
 = x �;
 0, i.e relation (R1') for the arc under
consideration.

� Next, assume that there is a strand in (bta)red connecting the dot (�; 
 ) with the dot
(� + 1 ; 
 0). Then there is a corresponding vertical strand inbta connecting the dots
(�; � ) and (� + 1 ; � ), i.e. we haveF�;� = F� +1 ;� for the respective vector spaces in
the s-tuple of 
ags F by (R2) .

We claim that we also have an equality F�;� � 1 = F� +1 ;� � 1. In order to see this
consider an outermost sequence of (possibly invisible) arcs in the cup diagrams a�

and b� between the ray starting at position � and the preceding ray, say at position
� 0 (since t = bs� 1as� 1 : : : b1a1 2 T(I 1; : : : ; I s) all the rays in a� and b� start at the
same positions). Thus, locally the tangle diagramt looks as follows:

(� +1 ;� 0)
...

... (� +1 ;� )

: : : � � : : : � : : : � : : : � � � � : : :

: : : � � : : : � : : : � : : : � � : : :
(�;� 0) ...

... (�;� )

By inductively inserting all the relations (R1) for the outermost arcs (similar as in
the proof of Lemma 1.22) and by using the equalityF�;� 0 = F� +1 ;� 0 (coming from
relation (R2) ) it follows that

F�;� � 1 = z� 1
2 (� � � 0� 1)F�;� 0 = z� 1

2 (� � � 0� 1)F� +1 ;� 0 = F� +1 ;� � 1

which is what we claimed.

Now the equationsF�;� � 1 = F� +1 ;� � 1 and F�;� = F� +1 ;� together obviously imply

C(F�;� \ F ?
�;� � 1) = C(F� +1 ;� \ F ?

� +1 ;� � 1); (26)

where C : C2N ! C2 is the map introduced at the beginning of subsection 1.2. By
the de�nition of the homeomorphism � I 1 ;:::;I s this equality is equivalent to saying

� I 1 ;:::;I s (F ) �;
 = � I 1 ;:::;I s (F ) � +1 ;
 0 ;

34



where the subscript�; 
 picks out the respective component, i.e. the one correspond-
ing to the 
 -th P1 in the � -th factor of the product ( P1)2m1 � n � ::: � (P1)2ms � n .

Finally, recall that the map 
 2m1 � n;:::; 2ms � n �rst identi�es � I 1 ;:::;I s (F ) �;
 2 P1 with
a point on the sphereS2 which is then sent to itself if 
 is even and to its antipode
if 
 is odd. Hence, it follows that


 2m1 � n;:::; 2ms � n � � I 1 ;:::;I s (F ) �;
 = 
 2m1 � n;:::; 2ms � n � � I 1 ;:::;I s (F ) � +1 ;
 0

because
 and 
 0 are easily seen to be either both even or both odd.

This proves x �;
 = x � +1 ;
 0, i.e. relation (R2') for the strand under consideration.

All in all, we thus have an inclusion


 2m1 � n;:::; 2ms � n � � I 1 ;:::;I s (bK (t)a) � bred S(t red)ared : (27)

In order to complete the argument let F 2 F lk;k
I 1

� ::: � F lk;k
I s

be a s-tuple of 
ags (not
necessarily contained inbK (t)a) whose image

x = (( x1;1; : : : ; x1;2m1 � n ); : : : ; (xs;1; : : : ; xs;2ms � n )) = 
 2m1 � n;:::; 2ms � n � � I 1 ;:::;I s (F )

is assumed to be contained inbred S(t red)ared . We want to prove that this implies F 2
bK (t)a, i.e. we have to show thatF satis�es the relations (R1) and (R2) imposed by the
diagram bta.

� Suppose there is an arc inbta connecting the dots (�; � ) and (�; � 0). If this arc is
invisible there is nothing to show because the relations for invisible arcs are auto-
matically satis�ed for every element F 2 F l k;k

I 1
� ::: � F lk;k

I s
. Hence, assume that

the arc is not invisible. Then there is a corresponding arc in (bta)red connecting the
dots (�; 
 ) and (�; 
 0). Then we argue similarly as in the proof of \(R1) ) (R1') "
above, i.e. there existsc 2 B k;k

I �
which has an arc connecting the dots� and � 0 such

that
x 2 S m1 � k;m 1 � k � � � � � Scred � � � � � S ms � k;m s � k

and hence we have

F 2 F lk;k
I 1

� � � � � F lk;k
I i � 1

� K c � F lk;k
I i +1

� � � � � F lk;k
I s

by Theorem 1.15 which provesF�;� 0 = z� 1
2 (� 0� � +1) F�;� � 1, i.e (R1) for the arc under

consideration.

� Assume there is a strand inbta connecting the dots (�; � ) and (� +1 ; � ). Then there
is a corresponding strand in (bta)red connecting the dots (�; 
 ) and (� + 1 ; 
 0). In
particular, we have x �;
 = x � +1 ;
 0 by (R2') which implies equation (26), i.e.

C(F�;� \ F ?
�;� � 1) = C(F� +1 ;� \ F ?

� +1 ;� � 1);

by reversing the argumentation from the case \(R2) ) (R2') " above (check that
every implication was in fact an equivalence).

We have already seen that thes-tuple F satis�es the arc relations (R1) for the
diagram bta. Moreover, by induction, we assume that the relation (R2 ) holds for
all strands which are left of the one under consideration, i.e. we haveequalities
F�;� 0 = F� +1 ;� 0 whenever there is a vertical strand inbta connecting the dots (�; � 0)
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and (� + 1 ; � 0), where � 0 < � . Thus, we can use an outermost sequence argument
(cf. the proof of the implication \ (R2) ) (R2') ") to deduce the equality F�;� � 1 =
F� +1 ;� � 1. If we combine this with equation (26) we get

C(F�;� \ F ?
�;� � 1) = C(F� +1 ;� \ F ?

�;� � 1): (28)

By Lemma 1.16C restricts to a unitary isomorphism on z� 1F�;� � 1 \ F ?
�;� � 1. Since

F�;� and F� +1 ;� are both contained in z� 1F�;� � 1 \ F ?
�;� � 1 the equation (28) implies

that F�;� = F� +1 ;� , thereby proving relation (R2) for the strand under considera-
tion.

This shows that the inclusion (27) is in fact an equality which �nishes the proof.

Example 2.27. Notice that the diagrams in Example 2.25 are the reduced diagrams of the
ones from Example 2.22. In particular, by Proposition 2.26, the complex variety from
Example 2.22 is homeomorphic to the manifold from Example 2.25.

Finally, we ask for a relationship between the varieties (respectively manifolds) asso-
ciated to two tangle diagrams which only di�er by a single local surgery. The answer is
provided in Proposition 2.35 below. As a preparation we introduce some more de�nitions
�rst.

For t 2 T (n1; : : : ; ns) a tangle diagram and cup diagramsa 2 B k1 ;k1 ; b 2 B ks ;ks (notice
there are only arcs ina and b and no rays) the circle diagrambta consists of circles only
and there are no loose endpoints in the diagram.

De�nition 2.28. Let t 2 T (n1; : : : ; ns) be a tangle diagram and let a 2 B k1 ;k1 and
b 2 B ks ;ks be cup diagrams. Then we writec(bta) to denote the number of circles in the
diagram bta.

Two dots in bta are said to beequivalentif there is a sequence of arcs and strands in the
diagram which connects the two dots. This clearly de�nes an equivalence relation on the
set of dots and the equivalence classes correspond bijectively to the circles in the diagram.
Henceforth, we will often be a bit sloppy and use the term \circle" when we actually mean
an equivalence class of dots. However, this should not cause any confusion.

Recall that there is a total order on the set of all dots in a circle diagram byidentifying
the dots with pairs of positive integers (�; � ) as explained in Remark 2.12.

De�nition 2.29. A dot is called a distinguished representativeof a circle in bta if it is
minimal (with respect to the order from Remark 2.12) among all the dots lying on the
circle under consideration.

This notion of a distinguished representative can be used to de�ne atotal order on the
set of all circles in bta.

De�nition 2.30. Let C1 and C2 be two distinct circles in the diagram bta. We say that
C1 is smaller than C2 if the distinguished representative ofC1 is smaller than the one of
C2.

From now on we stick to the following conventions: When we writeC1; : : : ; Cc(bta) for

the collection of circles of a circle diagrambta we assume that this collection is already
ordered in the sense of De�nition 2.30, i.e. we haveC1 < C 2 < ::: < C c(bta) . Moreover,

whenever we refer to thei -th circle in a circle diagram bta we always mean thei -th circle
with respect to this ordering.
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Remark 2.31. Notice that the above notions also make sense for the simplest kind of circle
diagram obtained by gluing a cap diagram on top of a cup diagram without a tangle
diagram sitting between the two (cf. De�nition 2.5). In particular, a circle C1 in such a
diagram is smaller than a circleC2 if the leftmost dot on the circle C1 is left of the leftmost
dot on the circle C2. Again, this yields a total order on the collection of all circles.

Example 2.32. Consider the circle diagram:

� � � � � � � �

� � � � � �

The set of dots is partitioned into the following four equivalence classes each of which
corresponds to a circle in the diagram:

C1 = f (1; 1); (1; 2)g C2 = f (1; 3); (1; 4); (1; 5); (1; 6); (2; 1); (2; 2)g

C3 = f (2; 3); (2; 4); (2; 5); (2; 6)g C4 = f (2; 7); (2; 8)g:

The distinguished representatives as in De�nition 2.29 are (1; 1), (1; 3), (2; 3) and (2; 7)
respectively. In particular, the circles are already indexed correctly according to the total
order from De�nition 2.30, i.e. we have C1 < C 2 < C 3 < C 4.

The following lemma describes to what extent a local surgery operation impacts the
combinatorial structure of a tangle diagram.

Lemma 2.33. Let t; t 0 2 T (n1; : : : ; ns) be tangle diagrams and suppose thatt0 is obtained
from t by performing a single local surgery. Then, for �xed cup diagramsa 2 B k1 ;k1 and
b 2 B ks ;ks , there exists a pair of positive integersi < j such that either thei -th circle in
bta splits into the i -th and j -th circle in bt0a, due to the local surgery, or thei -th and j -th
circle in bta merge and become thei -th circle in bt0a while the rest of the circles remain
unchanged.

Proof. There are two cases to be considered: Either the two arcs involved in the surgery
are parts of the same circle inbta or they are not. The two cases can be visualized as
follows:

� : : : �

� : : : �

� : : : �

� : : : �

The dashed connection lines represent the remaining arcs and strands on the respective
circles.

Let us treat the �rst case (left picture): Let us assume that the circle which contains the
two arcs involved in the surgery is at the i -th position in the ordering of all circles in bta.
Then the combinatorial structure of the diagram clearly forces the circle to split. Since the
rest of the circles remain unchanged one of the two created circles isstill at position i in the
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ordering of the circles inbt0a (namely the circle which contains the minimal representative
of the old circle) while the other one is at position j for somej > i .

In the second case the two arcs involved in the local surgery lie on twodi�erent circles,
say the i -th and j -th circle, where i < j . The surgery operation clearly forces the two
circles to merge. In particular, the new circle is the easily seento be the i -th circle in the
diagram bta because it contains the minimal representative of thei -th circle in bta and
the remaining circles are unchanged by the surgery.

Example 2.34. Here is an example of a local surgery which merges the second and fourth
circle in the diagram from Example 2.32 into the second circle of the diagram resulting
from the surgery, i.e. we havei = 2 and j = 4. As in Example 2.20 the arcs and strands
involved in the surgery operation are doubled in the following picture:

� � � � � � � �

� � � � � �

perform surgery//

� � � � � � � �

� � � � � �

Proposition 2.35. Let t; t 0 2 T(I 1; : : : ; I s) be two tangle diagrams, wheret0 is obtained
from t by a single local surgery, and leta 2 B k;k

I 1
, b 2 B k;k

I s
be two �xed cup diagrams.

Then we either have an inclusion

bK (t)a � bK (t0)a or bK (t0)a � bK (t)a

depending on whether a circle splits or two circles merge by passing from(bta)red to (bt0a)red

(a splitting circle corresponds to the �rst and two merging circles to the second inclusion).
Analogously, let t; t 0 2 T (n1; : : : ; ns) be two tangle diagrams, wheret0 is obtained from

t by a single local surgery. Then for �xed cup diagramsa 2 B k1 ;k1 , b 2 B ks ;ks we either
have an inclusion

bS(t)a � bS(t0)a or bS(t0)a � bS(t)a

depending on whether a circle splits or two circles merge by passing frombta to bt0a (again,
a splitting circle corresponds to the �rst and two merging circles to the second inclusion).

Proof. We start by proving the claim in the topological setting: Let t; t 0 2 T(n1; : : : ; ns)
be tangle diagrams as in the proposition. By Lemma 2.33 there exist integersi < j such
that the local surgery either merges thei -th and j -th circle in bta into the i -th circle in bt0a
or the i -th circle in bta splits into the i -th and j -th circle in bta. Without loss of generality
assume that the �rst case is true (otherwise exchanget and t0 in all that follows).

Let C1; : : : ; Cc(bta) be the classes of dots representing the respective circle inbta. Then
the sets

C1; : : : ; Ci [ Cj ; : : : ; Cj � 1; Cj +1 ; : : : ; Cc(bta) (29)

represent the circles inbt0a. It is a straightforward consequence of De�nition 2.24 that
bS(t)a (respectively bS(t0)a) consists of precisely those elements

((x1;1; : : : ; x1;n1 ); : : : ; (xs;1; : : : ; xs;ns )) 2
�
S2� n1 � ::: �

�
S2� ns

which satisfy coordinate equationsx �;� = x � 0;� 0 whenever the dots corresponding to (�; � )
and (� 0; � 0) lie on the same circle inbta (respectivelybt0a). Thus the circles partition the set
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of coordinates into groups of coordinates which are necessarily equal. Since the partition
corresponding to the circle diagrambta is clearly �ner than the one of bt0a (see (29) above)
we deduce thatbS(t0)a � bS(t0)a.

In the algebro-geometric setting we can deduce the claim from the topological case as
follows: Let t; t 0 2 T (I 1; : : : ; I s) be related by a local surgery as in the proposition. In
particular, t red; t0

red are related by a local surgery and we have

bred S(t red)ared � bred S(t0
red)ared or bred S(t0

red)ared � bred S(t red)ared

by the above argumentation. Without loss of generality assume that the �rst-mentioned
inclusion holds (otherwise exchanget and t0 in the notation). Then the injection obtained
as the composition

bK (t)a
�=�! bred S(t red)ared ,! bred S(t0

red)ared

�=�! bK (t0)a;

where the outer maps are given by the homeomorphisms


 2m1 � n;:::; 2ms � n � � I 1 ;:::;I s and (
 2m1 � n;:::; 2ms � n � � I 1 ;:::;I s ) � 1

restricted to bK (t)a and bred S(t0
red)ared respectively, clearly sends everys-tuple of 
ags to

itself. Hence, we deducebK (t)a � bK (t0)a.

Example 2.36. Consider the tangle diagram

� � � � � � � �

t = 2 T (6; 8)

� � � � � �

and the following two cup diagrams:

a = � � � � � � 2 B 3;3 b = � � � � � � � � 2 B 4;4

The circle diagram bta associated with these choices is depicted in Example 2.34. The
reader also �nds a picture of the circle diagrambt0a in this example, wheret0 is the tangle
diagram obtained by performing a local surgery on the two rightmost arcs oft.

Corresponding to these combinatorial data we have manifolds

bS(t)a =
�

((x; x; y; y; y; y ); (y; y; z; z; z; z; w; w)) j x; y; z; w 2 S2	
(30)

and

bS(t0)a =
�

((x; x; y; y; y; y ); (y; y; z; z; z; z; y; y)) j x; y; z 2 S2	
(31)

which are clearly related by an inclusionbS(t0)a � bS(t)a. Notice that this inclusion agrees
with the statement of Proposition 2.35 because the second and fourth circle in bta merge
into the second circle inbt0a.
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Since every dot in the circle diagrambta (respectively bt0a) corresponds to a sphere in
the product

�
S2

� 6 �
�
S2

� 8 we sometimes use the notation

y y z z z z y y

bS(t0)a =

x x y y y y

�• //

y y z z z z w w

bS(t)a =

x x y y y y

instead of writing down the sets as in (30) and (31). Each one of the small letters x; y; z; w
replacing the dots in the diagrams stands for the choice of an element inS2. This notation
is very intuitive and emphasizes the combinatorial nature of the manifolds bS(t)a and
bS(t0)a.

2.3 A 2d TQFT via pushforward and pullback maps in cohomology

The goal of this subsection is to provide an explicit description of the pullback and push-
forward map in cohomology of the inclusions from Proposition 2.35. As a main result
(cf. Theorem 2.50 and Theorem 2.51) we prove that these maps can be described via a 2d
TQFT. This provides a �rst connection between the geometry and topology of Spaltenstein
varieties and Khovanov's TQFT-based construction of tangle homology [Kho02].

We begin by establishing some notation and conventions which are used throughout this
subsection: Given a positive integerN , let Sym(f 1; 2; : : : ; N g) be the symmetric group of
all permutations of the set f 1; : : : ; N g. Moreover, let X be a topological space andV a
n-dimensional vector space with �xed basisb1; b2; : : : ; bn . We say that V together with
this basis is abased vector space.

The group Sym(f 1; 2; : : : ; N g) acts on the N -fold cartesian product of X with itself, i.e.
a permutation � induces a homeomorphism

� : X N ! X N ; (x1; x2; : : : ; xN ) 7! (x � (1) ; x � (2) ; : : : ; x � (N ) ) (32)

by permuting the coordinates. We also have an induced linear automorphism of the N -fold
tensor product of the based vector spaceV with itself given by

� : V 
 N ! V 
 N ; bi 1 
 bi 2 
 � � � 
 bi N 7! bi � (1) 
 � � � 
 bi � ( N ) ; (33)

where (i 1; : : : ; iN ) runs through all N -tuples of elements from the setf 1; : : : ; ng, thereby
specifying the linear map � completely. By abuse of notation we will always denote the
induced maps with the same letter as the permutation. Notice that the isomorphism (33)
is clearly grading-preserving ifV is a graded vector space.

Let � i 2 Sym(f 1; 2; : : : ; N g) be the transposition interchanging i and i + 1. For a triple
of positive integers i < j � N we de�ne a permutation � i;j 2 Sym(f 1; 2; : : : ; N g) as the
following composition of transpositions

� i;j := � j � 1 � � � � � � i +2 � � i +1 : (34)

If j = i + 1 this is the empty composition, i.e. we set� i;i +1 = id f 1;2;:::;N g in this case. The
permutation � i;j will play a crucial in the following section.

Last but not least, we also �x a collection n1; : : : ; ns of even positive integers, i.e.
ni = 2ki for all i 2 f 1; : : : ; sg.
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2.3.1 The 2d TQFT associated with the ring of dual numbers

Let us consider the truncated polynomial ring F2[X ]=(X 2), i.e. the ring of dual numbers.
As a F2-vector space this ring has a basis given by 1 andX . Throughout this work we
will always view the ring of dual numbers as a gradedF2-algebra with deg(X ) = 2 and
deg(1) = 0. In [Kho02], Khovanov works with a graded vector space

A := F2[X ]=(X 2)f� 1g;

obtained by shifting the grading down by 1, i.e. deg(X ) = 1 (this is not a graded algebra
anymore). This grading is motivated by knot theory since the graded dimension of A is
precisely the Jones polynomial (suitably normalized) of the unknot (cf. subsection 3.3 for
more on this).

We can equipA with the structure of a commutative Frobenius algebra with trace form

" : A ! F2 ; 1 7! 0; X 7! 1

and comultiplication

� : A ! A 
 A ; 1 7! X 
 1 + 1 
 X ; X 7! X 
 X:

In particular, we obtain a 2d TQFT associated with this algebra, i.e. a symmetric
monoidal functor F from the two-dimensional cobordism category2Cob to the category
of �nite-dimensional (graded) F2-vector spaces (cf. [Abr96,Koc03] for details on Frobenius
algebras and their relation to TQFTs).

The objects of 2Cob are �nite, ordered disjoint unions of the smooth manifold S1

which is assumed to be equipped with a �xed orientation. We write n for the disjoint
union consisting of n copies ofS1 (the empty set 0 is also allowed). A morphismn ! m
is given by an equivalence class of (not necessarily connected) compactoriented surfaces
(smooth 2-manifolds) which are equipped with an orientation-preserving di�eomorphism
from their boundary to the disjoint union n � t m (the upper star denotes a reversal of
orientation of all connected components). Two such surfaces �; � 0 are called equivalent
if there exists an orientation-preserving di�eomorphism � : � ! � 0 making the following
diagram commute:

@�
� j@� //

�= $$

@� 0

�=zz
n � t m

The reversal of orientation is used to distinguish between the in- and outboundary of the
manifold (notice that in order to have a morphism we need a well-de�ned source and
target). In the following we will always use the term \cobordism" to r efer to a morphism
in 2Cob . The composition of morphisms is de�ned by gluing cobordisms (more precisely
the representing surfaces) along their boundary and the monoidal structure is given by
ordered disjoint union.

It can be shown (e.g. by using Morse theory) that the category2Cob is generated by
the following elementary cobordisms(cf. e.g. [Abr96, Proposition 12] or [Koc03,x1.4.13]):

The word \generates" means that all cobordisms can be built from these elementary ones
by horizontal (gluing) and vertical composition (disjoint union). We use the convention
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that cobordism pictures are supposed to be read from bottom to top and leftto right. More
precisely, this means that the circles on the left side of a picture belong to the inboundary
and the circles on the right to the outboundary. Moreover, the i -th connected component
of an object in 2Cob is represented by thei -th circle counted from bottom to top. Notice
that the category 2Cob is combinatorial by nature. According to the classi�cation of
oriented surfaces with boundary (see e.g. [Hir76, Theorem 3.11]) a cobordism is completely
determined once we know the number of in- and outboundary components and the genus
of a representating surface. In particular, the pictures providea precise graphical tool
in the sense that they capture all the information from di�erential top ology necessary in
order to specify a cobordism uniquely.

The picture of the twist cobordism which seems to penetrate itself in the middle is
supposed to symbolize the fact that our surfaces are not embedded in an ambient space.
Hence, the notion of \over" and \under" does not exist. In particular, th e two connected
components represented by the picture do not really intersect. Instead the drawing em-
phasizes the fact that we do not prefer one component (the category2Cob is symmetric
and not just braided).

Example 2.37. Here is an example of a cobordism3 ! 2 of genus 1 decomposed into
elementary cobordisms:

Let � : F2 ! A be the unit map sending 1 to 1 and letm : A 
 A ! A be the multipli-
cation in A . Moreover, � : A 
 A ! A 
 A denotes the twist map given by� 
 � 7! � 
 � .
Then the TQFT F associated with the Frobenius algebraA sends a disjoint union ofN cir-
cles (compact 1-manifolds) to theN -fold tensor product A 
 N . On elementary cobordisms
F is given by

7�! m : A 
 A ! A 7�! � : F2 ! A

7�! � : A ! A 
 A 7�! " : A ! F2

7�! � : A 
 A ! A 
 A 7�! idA : A ! A

Notice that the monoidal functor F is completely determined by the above table. It
requires some more work to see that it is also well-de�ned. However,this follows from
the well-known folk theorem that in the case of a Frobenius algebra therelations between
compositions and tensor products of the linear maps in the above table precisely correspond
to the topological relations between cobordisms built from the elementary pieces by gluing
and disjoint union (cf. [Abr96, Theorem 3] or [Koc03, x3.3]).

Example 2.38. Applying the TQFT functor F to the cobordism from Example 2.37 yields
the linear map

A 
 A 
 A m
 id���! A 
 A m�! A ��! A 
 A m�! A ��! A 
 A :
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De�nition 2.39. For a �xed triple i < j � N of positive integers we de�ne two cobordisms
which we denote by

and (35)

as follows: The cobordism on the right merges thei -th and j -th circle in a disjoint union
of N circles into the the i -th circle in a disjoint union of N � 1 circles via a pair of pants.
The remaining circles are connected by identity cobordisms in an order-preserving manner.
Similarly, the right cobordism splits the i -th circle in a disjoint union of N � 1 circles into
the i -th and j -th circle in a disjoint union of N circles. Again, the remaining circles are
connected by identity cobordisms. We refer to these cobordisms assurgery cobordisms
(the choice of terminology is justi�ed below).

Example 2.40. The following picture shows the above cobordism (including a decomposi-
tion into elementary pieces) for the triple 2 < 4 � 5:

De�nition 2.41. Given a triple i < j � N of positive integers we de�ne linear maps
mi;j : A 
 N ! A 
 N � 1 by

mi;j =
�
id
 i � 1 
 m 
 id
 N � i � 1�

� � � 1
i;j

and � i;j : A 
 N � 1 ! A 
 N by

� i;j := � i;j �
�
id
 i � 1 
 � 
 id
 N � i � 1�

;

where � i;j is the permutation (34) introduced at the beginning of this section (it acts on
A 
 N as in (33) with respect to the basis 1,X of A ).

Lemma 2.42. Let i < j � N be a triple of positive integers. Then the cobordisms from
De�nition 2.39 induce the linear maps mi;j and � i;j respectively, i.e. we have

F

 !

= mi;j and F

 !

= � i;j :

Proof. This follows immediately by decomposing the respective cobordisms into elemen-
tary pieces.

We �nish our discussion of 2d TQFTs by relating the cobordisms from (35) to the
combinatorics of tangle diagrams. Given a tangle diagramt 2 T (n1; : : : ; ns) and cup
diagramsa 2 B k1 ;k1 , b 2 B ks ;ks , the diagram bta consists of an ordered collection of circles
C1; : : : ; Cc(bta) . Thus it makes sense to apply the functorF to the diagram bta (after

identifying bta with the c(bta)-fold disjoint union of S1) to obtain F (bta) = A 
 c(bta) ,
where the i -th tensor factor of A 
 N corresponds to the circleCi .
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In particular, if t0 2 T (n1; : : : ; ns) is obtained from t by a single local surgery, then
there exist positive integersi < j such that either the i th and j -th circle in bta merge and
become thei -th circle in bt0a or the i -th circle splits into the i -th and j -th circle in bt0a
(cf. Lemma 2.33). So the circle diagramsbta and bt0a are naturally connected via the
surgery cobordisms from De�nition 2.39. For future reference we summarize these ideas
in the following lemma.

Lemma 2.43. Let t; t 0 2 T (n1; : : : ; ns) be two tangle diagrams, wheret0 is obtained from
t by a single local surgery, and leta 2 B k1 ;k1 , b 2 B ks ;ks be cup diagrams.

If the i -th and j -th circle in bta merge and become thei -th circle in bt0a due to the
local surgery, then the circle diagramsbta and bt0a are naturally connected by the surgery
cobordism

bta �����! bt0a or bt0a ������! bta;

depending on whether we choosebta or bt0a as domain. Applying the TQFT F to these
cobordisms induces the maps

A 
 c(bta) m i;j
��! A 
 c(bt0a) and A 
 c(bt0a) � i;j

��! A 
 c(bta)

associated with the triplei < j � c(bta), respectively.
If the i -th circle in bta splits into the i -th and j -th circle in bt0a, then the circle diagrams

bta and bt0a are naturally connected by the surgery cobordism

bta ������! bt0a or bt0a �����! bta;

depending on whether we choosebta or bt0a as domain. Applying the TQFT F to these
cobordisms induces the maps

A 
 c(bta) � i;j
��! A 
 c(bt0a) and A 
 c(bt0a) m i;j

��! A 
 c(bta)

associated with the triplei < j � c(bt0a), respectively.

Proof. This is just a reformulation of Lemma 2.42.

2.3.2 Explicit calculation of pullback and pushforward maps

Finally, we want to compute the pullback and pushforward in cohomology of the inclusions
from Proposition 2.35. In doing so, an important role is played by the diagonal embedding

� : S2 ,! S2 � S2 ; x 7! (x; x ):

and the following generalization:

De�nition 2.44. Given a triple i < j � N of positive integers, de�ne

� i;j : (S2)N � 1 ! (S2)N

to be the map which embeds thei -th factor of ( S2)N � 1 diagonally into the i -th and j -
th factor of ( S2)N . More precisely, let � i;j 2 Sym(f 1; : : : ; N g) be the permutation (34)
introduced at the beginning of subsection 2.3. Then we de�ne

� i;j := � i;j �
�
id i � 1 � � � idN � i � 1�

;

where � i;j acts on (S2)N as in (32) by permuting coordinates.
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Example 2.45. If one choosesi = 2, j = 4 and N = 4 then the map � 2;4 :
�
S2

� 3 !
�
S2

� 4

is given by
(x; y; z) 7! (x; y; z; y):

Let t 2 T (n1; : : : ; ns) be a tangle diagram and let a 2 B k1 ;k1 , b 2 B ks ;ks be cup
diagrams. Moreover, let � 1; : : : ; � c(bta) be the minimal representatives of the circles in

the diagram bta (cf. De�nition 2.29). Thus it makes sense to de�ne a homeomorphism

� bta : bS(t)a
�=�!

�
S2

� c(bta)

((x1;1; x1;2; : : : ; x1;n1 ); : : : ; (xs;1; : : : ; xs;ns )) 7! (x � 1 ; : : : ; x � c( bta )
)

by throwing away redundant coordinates.
The following lemma shows that the inclusion maps from Proposition 2.35are related

to the maps � i;j via the homeomorphism� bta.

Lemma 2.46. Let t; t 0 2 T (n1; : : : ; ns) be two tangle diagrams, wheret0 is obtained from
t by a single local surgery, and leta 2 B k1 ;k1 , b 2 B ks ;ks be two cup diagrams.

If the i -th and j -th circle in bta merge and become thei -th circle in bt0a due to the local
surgery, then we have a commutative diagram

bS(t0)a

� bt 0a
�=��

�• //bS(t)a

� bta
�= ��

�
S2

� c(bt0a) � i;j //
�
S2

� c(bta)

where � i;j is de�ned with respect to the triple i < j � c(bta).
If the i -th circle in bta splits into the i -th and j -th circle in bt0a, then the following

diagram commutes
bS(t)a

� bta
�=��

�• //bS(t0)a

� bt 0a
�= ��

�
S2

� c(bta) � i;j //
�
S2

� c(bt0a)

where � i;j is de�ned with respect to the triple i < j � c(bt0a).

Proof. Let us assume that the i -th and j -th circle in bta merge into the i -th circle in
bt0a and let � 1; : : : ; � c(bta) be the minimal representatives of the circles inbta. Then the

minimal representatives of the circles inbt0a are given by � 1; : : : ; � j � 1; � j +1 ; : : : ; � c(bta) , i.e.
� j is deleted.

Given an elementx = (( x1;1; : : : ; x1;n1 ); : : : ; (xs;1; : : : ; xs;ns )) 2 bS(t0)a we have

� bta(x) =
�

x � 1 ; : : : ; x � c( bta )

�
; (36)

where xvi = xvj (because the dots� i and � j lie on the same circle inbt0a).
On the other hand we obtain

� i;j � � bt0a(x) = � i;j

�
x � 1 ; : : : ; x � j � 1 ; x � j +1 ; : : : ; x � c( bta )

�

=
�

x � 1 ; : : : ; x � j � 1 ; x � i ; x � j +1 ; : : : ; x � c( bta )

�

which is the same as thec(bta)-tuple in (36). Hence, the �rst diagram in the lemma
commutes.
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In case that the i -th circle in bta splits into the i -th and j -th circle in bt0a one can simply
copy the above proof after replacingt with t0 and thus obtain the commutativity of the
second diagram.

The above lemma suggests to compute the pullback and pushforward of themaps � i;j

(this is done in Proposition 2.47 and Proposition 2.48 below) and then relatethe result to
the pushforward and pullback of the inclusions via the induced isomorphisms

H �
�

(S2)c(bta)
� � �

bta��! H � (bS(t)a) and H �
�

(S2)c(bt0a)
� � �

bt 0a���! H � �
bS(t0)a

�
:

Let N be a positive integer. By standard algebraic topology we have a natural isomor-
phism of gradedF2-algebras

' N : H �
� �

S2� N
�

�= H � �
S2� 
 N �= F2[X ]=(X 2) 
 N ; (37)

where the �rst isomorphism is the inverse of the cross-product mapK from the K•unneth
theorem and the second one is theN -fold tensor product of the unique isomorphism
H � (S2) �= F2[X ]=(X 2) of graded F2-algebras sending the non-vanishing top cohomology
class toX .

In the following we �x the F2-basis 1, X of the algebra F2[X ]=(X 2). We also equip
H � (S2) with the structure of a based vector space by taking the preimages of 1and X
under the isomorphismH � (S2) �= F2[X ]=(X 2). In particular, we obtain induced maps

� i;j : F2[X ]=(X 2)N ! F2[X ]=(X 2)N and � i;j : H � (S2)N ! H � (S2)N

as de�ned in (33) for every triple i < j � N .
We are ready to observe that that the pullback � �

i;j and the map mi;j from De�nition
2.41 are compatible via the isomorphism (37) for any �xed triple i < j � N .

Proposition 2.47. Given a triple of positive integers i < j � N , the following diagram
commutes:

H � ((S2)N )
� �

i;j //

�=' N

��

H � ((S2)N � 1)

�= ' N � 1

��
F2[X ]=(X 2) 
 N m i;j //F2[X ]=(X 2) 
 N � 1

Proof. We prove the claim by showing the commutativity of the following diagram:

H � ((S2)N )
� �

i;j //

K � 1 �=
��

H � ((S2)N )
(id i � 1 � � � idN � i � 1 ) �

//

�=K � 1

��

H � ((S2)N � 1)

�= K � 1

��
H � (S2) 
 N

� � 1
i;j //

�=
��

H � (S2) 
 N id 
 i � 1 
[
 id 
 N � i � 1
//

�=
��

H � ((S2)N � 1)

�=
��

F2[X ]=(X 2) 
 N
� � 1

i;j //F2[X ]=(X 2) 
 N id 
 i � 1 
 m
 id 
 N � i � 1
//F2[X ]=(X 2) 
 N � 1

Notice that the outer square is just the diagram from the proposition brokenup into four
pieces.

It is an easy calculation to prove that the cross-product isomorphism respects twists,
i.e. we haveK � � l � K � 1 = � l , where � l is a simple transposition, 1� l < N (notice that
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the transposition on the right acts as in (32) and the one one the left as in (33)). By
contravariance of the cohomology functor we thus obtain

� �
i;j = � �

i +1 � ::: � � �
j � 1 = K � � i +1 � ::: � � j � 1 � K � 1 = K � � � 1

i;j � K � 1

and hence the commutativity of the left square in the top row.
The commutativity of the top square on the right is an immediate consequence of

combining the following two facts: Firstly, by standard algebraic topology, we have a
commutative diagram

H � (S2 � S2) � �
//

�=

K � 1 ((

H � (S2)

H � (S2) 
 H � (S2)

[

77

Secondly, the cross product isomorphism is natural in the sense thatthe pullback of
a cartesian product of maps corresponds to the tensor product of the pullbacks of the
factors via K .

The commutativity of the two squares on the bottom of the diagram is clear (respectively
a straightforward calculation).

For a triple i < j � N of positive integers we can also ask for the pushforward

(� i;j )! : H � ((S2)N � 1) ! H � ((S2)N )

in cohomology.
For compact manifolds X; Y and a continuous mapf : X ! Y the pushforward f ! is

de�ned as the composition

H � (X )
PX��! H � (X )

f ��! H � (Y )
P � 1

Y���! H � (Y );

where f � is the usual pushforward in homology and

PX : H � (X )
�=�! H � (X )

is the Poincar�e isomorphism given by cap-product with the unique (since we work overF2)
non-vanishing top homology class. Notice that pushforward in cohomology is functorial,
i.e. for continuous mapsf : X ! Y , g: Y ! Z between compact topological manifolds
we clearly have

(g � f )! = g! � f !: (38)

Proposition 2.48. Given a triple of positive integers i < j � N , the following diagram
commutes:

H � ((S2)N � 1)
(� i;j ) ! //

�=' N � 1

��

H � ((S2)N )

�= ' N

��
F2[X ]=(X 2) 
 N � 1 � i;j //F2[X ]=(X 2) 
 N

Before we can prove this proposition we introduce some more isomorphisms and closely
examine the Poincar�e isomorphism in the case of a �nite product of two-dimensional
spheres (cf. Lemma 2.49 below).
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Notice that the choice of basis 1,X for F2[X ]=(X 2) yields a distinguished basis of the
2k-th graded component of the tensor productF2[X ]=(X 2) 
 N which we denote byA2k .
This basis is given by the following set of elementary tensors

�
� 1 
 ::: 
 � N j � l 2 f 1; X g and # f � l j � l = X; 1 � l � N g = k

	
: (39)

The operator # in (39) returns the cardinality of a set. Corresponding to this basis we
obtain a linear isomorphism

( )_ : A2k
�=�! HomF2 (A2k ; F2) ; � 1 
 ::: 
 � N 7! (� 1 
 ::: 
 � N )_ ;

sending a basis vector to its dual, i.e. we have

(� 1 
 ::: 
 � N )_ (� 1 
 ::: 
 � N ) :=

(
1 if � l = � l 81 � l � N;

0 else.

Next, recall the Kronecker pairing

h� ; �i : H 2k ((S2)N ) 
 H2k ((S2)N ) ! F2 ; [f ] 
 [x] 7! h[f ]; [x]i := f (x) (40)

satisfying the crucial property

h[f ]; [g] \ [x]i = h[f ] [ [g]; [x]i (41)

for all [f ]; [g] 2 H 2k ((S2)N ) and [x] 2 H2k ((S2)N ). One can check that in our case this
pairing is non-degenerate. In particular, the map

� : H2k ((S2)N )
�=�! HomF2

�
H 2k ((S2)N ); F2

�
; [x] 7! ([f ] 7! f (x)) (42)

is an isomorphism of vector spaces for allk 2 f 0; :::; N g.
In order to state the next lemma, we introduce a linear involution

inv : F2[X ]=(X 2) ! F2[X ]=(X 2)

given by 1 7! X and X 7! 1. This yields an involution

inv 
 N : F2[X ]=(X 2) 
 N ! F2[X ]=(X 2) 
 N :

This map sends elements of degree 2k to elements of degree 2(N � k).

Lemma 2.49. For �xed k 2 f 0; :::; N g, the following diagram commutes:

H 2k ((S2)N ) P //H2(N � k) ((S2)N )
� //HomF2 (H 2(N � k) ((S2)N ); F2)

A2k

' � 1
N

OO

inv 
 N
//A2(N � k)

( ) _
//HomF2 (A2(N � k) ; F2)

HomF2 ( ' N ;F2 )

OO

Proof. By linearity we only need to check the commutativity of the diagram on the basis
(39) of A2k . So let � 1 
 ::: 
 � N 2 A2k be a basis element and let [(S2)N ] 2 H2N ((S2)N )
denote the generator of the top homology. In order to compute the linear functional

� � P � ' � 1
N (� 1 
 ::: 
 � N ) 2 HomF2 (H 2(N � k) ((S2)N ); F)
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it su�ces to see what it does on a basis ofH 2(N � k) ((S2)N ). Let us �x the basis consisting
of the images of the basis vectors ofA2(N � k) as de�ned in (39) under the isomorphism' � 1

N .
Hence a typical basis element has the form' � 1

N (� 1 
 :::
 � N ), where � 1 
 :::
 � N 2 A2(N � k)
is a tensor such that

# f � l j � l = X ; 1 � l � N g = N � k:

We can thus calculate

� � P � ' � 1
N (� 1 
 ::: 
 � N )

�
' � 1

N (� 1 
 ::: 
 � N )
�

= h' � 1
N (� 1 
 ::: 
 � N ); ' � 1

N (� 1 
 ::: 
 � N ) \ [(S2)N ]i
(41)
= h' � 1

N (� 1 
 ::: 
 � N ) [ ' � 1
N (� 1 
 ::: 
 � N ); [(S2)N ]i

= h' � 1
N (� 1� 1 
 ::: 
 � N � N ); [(S2)N ]i ;

where the last equation follows because' N is an isomorphism of algebras. Notice that

� 1� 1 
 ::: 
 � N � N =

(
X 
 N if inv( � l ) = � l 81 � l � N;

0 else.

Hence we obtain

� � P � ' � 1
N (� 1 
 ::: 
 � N )

�
' � 1

N (� 1 
 ::: 
 � N )
�

= h' � 1
N (� 1� 1 
 ::: 
 � N � N ); [(S2)N ]i

=

(
1 if inv( � l ) = � l 81 � l � N;

0 else:

On the other hand one gets
�
HomF2 (' N ; F2) � ( )_ � inv 
 N (� 1 
 ::: 
 � N )

�
(' � 1

N (� 1 
 ::: 
 � N ))

=
�
(inv( � 1) 
 ::: 
 inv( � N ))_ � ' N

�
(' � 1

N (� 1 
 ::: 
 � N ))

=(inv( � 1) 
 ::: 
 inv( � N ))_ (� 1 
 ::: 
 � N )

=

(
1 if inv( � l ) = � l 81 � l � N;

0 else;

which proves our claim.

Proof (Proposition 2.48). The proof is subdivided into two parts.

Claim 1: The following diagram commutes:

H � ((S2)N � 1)
(id i � 1 � � � idN � i � 1 ) ! //

�=' N � 1

��

H � ((S2)N )

�= ' N

��
F2[X ]=(X 2) 
 N � 1 id 
 i � 1 
 � 
 id 
 N � i � 1

//F2[X ]=(X 2) 
 N

Proof of Claim 1. By applying the Hom-functor to the diagram from Proposition 2.47 (in
the casej = i + 1) we obtain a commutative square:

HomF2 (H � ((S2)N � 1); F2)
HomF2 (� �

i;i +1 ;F2 )
//HomF2 (H � ((S2)N ); F2)

HomF2 (F2[X ]=(X 2) 
 N � 1; F2)
HomF2 (m i;i +1 ;F2 )

//

HomF2 ( ' N � 1 ;F2 )

OO

HomF2 (F2[X ]=(X 2) 
 N ; F2)

HomF2 ( ' N ;F2 )

OO
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If we combine this diagram with Lemma 2.49 we get a commutative diagram:

H � ((S2)N � 1)
P � 1 � � � 1 � HomF2 (� �

i;i +1 ;F2 )� � � P
//

�=' N � 1

��

H � ((S2)N )

�= ' N

��
F2[X ]=(X 2) 
 N � 1

inv 
 N � (() _ ) � 1 � HomF2 (m i;i +1 ;F2 )� () _ � inv 
 N � 1

//F2[X ]=(X 2) 
 N � 1

By standard algebraic topology (homology and cohomology are dual) the map

H �
�
(S2)N � 1� � � 1 � HomF2 (� �

i;i +1 ;F2 )� �
����������������! H �

�
(S2)N �

is precisely the map (� i;i +1 ) � . In particular, the composition in the upper row is the
pushforward (� i;i +1 )! in cohomology.

Thus, it remains to calculate the composition in the lower row. An easydualization
exercise shows that the map

HomF2

�
F2[X ]=(X 2) 
 N � 1; F2

� HomF2 (m i;i +1 ;F2 )
�����������! HomF2

�
F2[X ]=(X 2) 
 N ; F2

�

is explicitly given by

(� 1 
 ::: 
 � N � 1)_ 7!

8
><

>:

(� 1 
 ::: 
 � i � 1 
 1 
 1 
 � i +1 
 ::: 
 � N � 1)_ if � i = 1 ;

(� 1 
 ::: 
 � i � 1 
 X 
 1 
 � i +1 
 ::: 
 � N � 1)_

+( � 1 
 ::: 
 � i � 1 
 1 
 X 
 � i +1 
 ::: 
 � N � 1)_ if � i = X:

Another simple calculation using this result shows that the composition

(( ) _ � inv 
 N ) � 1 � HomF2 (mi;i +1 ; F2) � ( )_ � inv 
 N � 1

is precisely the map� i;i +1 = id i � 1 
 � 
 idN � i � 1 which proves the above claim.

Claim 2: We have a commutative diagram:

H � ((S2)N )
(� � 1

i;j ) ! //

�=' N

��

H � ((S2)N )

�= ' N

��
F2[X ]=(X 2) 
 N

� � 1
i;j //F2[X ]=(X 2) 
 N

Proof of Claim 2. In order to see this notice that the map

HomF2

�
F2[X ]=(X 2) 
 N ; F2

� HomF2 (� l ;F2 )
��������! HomF2

�
F2[X ]=(X 2) 
 N ; F2

�
;

where � l is a simple transposition interchangingl and l + 1, is given by

(� 1 
 ::: 
 � N )_ 7! (� 1 
 � � � 
 � l+1 
 � l 
 � � � 
 � N )_ ;

i.e. the vectors � l and � l+1 change places. This easily implies that the map

(( ) _ � inv 
 N ) � 1 � HomF2 (� l ; F2) � ( )_ � inv 
 N
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is given by � l and by Lemma 2.49 we have a commutative diagram:

H � ((S2)N )
(� l ) ! //

�=' N

��

H � ((S2)N )

�= ' N

��
F2[X ]=(X 2) 
 N � l //F2[X ]=(X 2) 
 N

Using the functoriality (38) of pushforward we obtain the commutativity of the diagram
from the second claim.

All in all, putting together the �rst and second claim, the following d iagram commutes:

H � ((S2)N � 1)
(id i � 1 � � � idN � i � 1 ) ! //

�=' N � 1

��

H � ((S2)N )

�= ' N

��

(� i;j ) ! //H � ((S2)N )

�= ' N

��
F2[X ]=(X 2) 
 N � 1 id 
 i � 1 
 � 
 id 
 N � i � 1

//F2[X ]=(X 2) 
 N � i;j //F2[X ]=(X 2) 
 N

This �nishes the proof of Proposition 2.48.

The observations of this section are summarized in the following main result:

Theorem 2.50 (Topological version). Let t; t 0 2 T (n1; : : : ; ns) be two tangle diagrams
where t0 is obtained from t by a single local surgery and leta 2 B k1 ;k1 , b 2 B ks ;ks be cup
diagrams. We distinguish between two cases:

� Suppose that thei -th and j -th circle in bta merge and become thei -th circle in bt0a
due to the local surgery. Then we have a commutative diagram

H � (bS(t)a)
(bS(t0)a ,! bS(t)a ) �

//

�=' c( bta ) �
�

� � 1
bta

� �

��

H � (bS(t0)a)

�= ' c( bt 0a) �
�

� � 1
bt 0a

� �

��
F

�
bta

�
f c(bta)g

F

0

B
@

1

C
A

//F
�
bt0a

�
f c(bt0a)g

of vector spaces. If we exchange the domain and codomain we obtain a commutative
diagram

H � (bS(t0)a)
(bS(t0)a ,! bS(t)a ) ! //

�=' c( bt 0a) �
�

� � 1
bt 0a

� �

��

H � (bS(t)a)

�= ' c( bta ) �
�

� � 1
bta

� �

��
F

�
bt0a

�
f c(bt0a)g

F

0

B
@

1

C
A

//F
�
bta

�
f c(bta)g

of vector spaces.

� Suppose that thei -th circle in bta splits into the i -th and j -th circle in bt0a due to
the surgery. Then we obtain the same commutative diagrams as in the case above
with the only di�erence that we have to exchanget and t0 in both diagrams.
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Proof. Without loss of generality we assume that thei -th and j -th circle in the diagram
bta merge and become thei -th circle in bt0a due to the local surgery. For the case of a
splitting circle one can simply copy the proof after exchangingt and t0 in the notation.

If we apply the cohomology functor to the �rst commutative diagram in Lemma 2.46
we obtain the following commutative diagram:

H � (bS(t)a)
(bS(t0)a ,! bS(t)a ) �

//

�
� � 1

bta

� �
�=

��

H � (bS(t0)a)

(� � 1
bt 0a

) ��=
��

H �
� �

S2
� c(bta)

� � �
i;j //H �

� �
S2

� c(bt0a)
�

Sticking this diagram on top of the one from Proposition 2.47 proves the commutativity
of the diagram

H � (bS(t)a)
(bS(t0)a ,! bS(t)a ) �

//

' c( bta ) �
�

� � 1
bta

� �
�=

��

H � (bS(t0)a)

' c( bt 0a) � (� � 1
bt 0a

) ��=
��

A 
 c(bta) f c(bta)g
m i;j //A 
 c(bt0a) f c(bt0a)g

where we used the obvious fact thatF2[X ]=(X 2) 
 c(bta) = A 
 c(bta) f c(bta)g as graded vector
spaces. In particular, by Lemma 2.43, the lower map is precisely the mapinduced by the
cobordism as claimed in the theorem.

On the other hand, we also have a commutative diagram:

H � (bS(t0)a) P //H � (bS(t0)a)

(� bt 0a ) � �=
��

(bS(t0)a ,! bS(t)a ) � //H � (bS(t)a)

(� bta ) ��=
��

P � 1
//H � (bS(t)a)

H �
� �

S2
� c(bt0a)

�
(� bt 0a ) � �=

OO

P //H �

� �
S2

� c(bt0a)
� (� i;j ) � //H �

� �
S2

� c(bta)
�

P � 1
//H �

� �
S2

� c(bta)
�

(� bta ) ��=

OO

The middle square is obtained by applying the homology functor to the �rst diagram from
Lemma 2.46 and the two outer squares commute by a simple calculation (usethe simple
fact that ( � bt0a) � and (� bta) � respect the top homology classes).

Notice that the composition in the upper row is the pushforward of the inclusion
bS(t0)a ,! bS(t)a and the composition in the lower row is the pushforward of � i;j . Thus
it follows from Proposition 2.48 that we have a commutative diagram:

H � (bS(t0)a)
(bS(t0)a ,! bS(t)a ) ! //

' c( bt 0a) �
�

� � 1
bt 0a

� �
�=

��

H � (bS(t)a)

' c( bta ) � (� � 1
bta

) ��=
��

A 
 c(bt0a) f c(bt0a)g
� i;j //A 
 c(bta) f c(bta)g

Again, Lemma 2.43 shows that the lower map in this diagram is precisely themap induced
by the cobordism as stated in the theorem. This �nishes the argument.

Using the homeomorphism from Proposition 2.26 we can easily translate the above
theorem into the algebro-geometric world of 
ag varieties without much further work. Let
I 1; : : : ; I s be a collection of admissible sequences each of which has highest integer n = 2k
and let m1; : : : ; ms be the respective lengths.
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Theorem 2.51 (Algebro-geometric version). Let t; t 0 2 T(I 1; : : : ; I s) be two tangle
diagrams wheret0 is obtained from t by a single local surgery and leta 2 B k;k

I 1
, b 2 B k;k

I s

be cup diagrams. We distinguish between two cases:

� Suppose that thei -th and j -th circle in (bta)red merge and become thei -th circle in
(bt0a)red due to the local surgery. Then we have a commutative diagram

H � (bK (t)a)
(bK (t0)a ,! bK (t)a ) �

//

�=

��

H � (bK (t0)a)

�=

��
F

�
(bta)red

�
f c

�
(bta)red

�
g

F

0

B
@

1

C
A

//F
�
(bt0a)red

�
f c

�
(bt0a)red

�
g

of vector spaces, where the vertical isomorphism are given by the maps

' c((bta) red ) �
�

� � 1
(bta) red

� �
�

�

 � 1

2m1 � n;:::; 2ms � n

� �
�

�
� � 1

I 1 ;:::;I s

� �
(43)

and
' c((bt0a) red ) �

�
� � 1

(bt0a) red

� �
�

�

 � 1

2m1 � n;:::; 2ms � n

� �
�

�
� � 1

I 1 ;:::;I s

� �
(44)

respectively. Moreover, we also have a commutative diagram

H � (bK (t0)a)
(bK (t0)a ,! bK (t)a ) ! //

�=

��

H � (bK (t)a)

�=

��
F

�
(bt0a)red

�
f c

�
(bt0a)red

�
g

F

0

B
@

1

C
A

//F
�
(bta)red

�
f c

�
(bta)red

�
g

of vector spaces, where the right vertical isomorphism is given by (43) and the left
one by (44).

� Suppose that thei -th circle in (bta)red splits into the i -th and j -th circle in (bt0a)red

due to the surgery. Then we obtain the same commutative diagrams as in the case
above with the only di�erence that we have to exchanget and t0 in both diagrams.

Proof. Let us assume that thei -th and j -th circle in ( bta)red merge and become thei -th
circle in (bt0a)red (as in the proof of Theorem 2.50 the case of a splitting circle follows by
exchangingt and t0). By Proposition 2.35 we have inclusions

bK (t0)a � bK (t)a and bred S(t0
red)ared � bred S(t red)ared

which are related by the homeomorphism from Proposition 2.26, i.e. the diagram on
the left of the following picture, where the two vertical homeomorphisms are given by
the respective restrictions of the map
 2m1 � n;:::; 2ms � n � � I 1 ;:::;I s , clearly commutes and we
obtain the commutative diagram on the right by applying the cohomology functor:

bK (t)a

�=
��

bK (t0)a

�=
��

?_�oo

bred S(t red)ared bred S(t0
red)ared

?_�oo

H �
//

H � (bK (t)a) � �
//H � (bK (t0)a)

H � (bred S(t0
red)ared ) � �

//

�=

OO

H � (bred S(t red)ared )

�=

OO
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Now the claim follows by sticking the diagram on the right on top of the diagram obtained
by applying Theorem 2.50 to the tangle and cup diagramst red, t0

red and ared, bred.
Alternatively, we can consider the commutative diagram

H � (bK (t0)a) P //H � (bK (t0)a)

�=
��

� � //H � (bK (t)a)

�=
��

P � 1
//H � (bS(t)a)

H � (bred S(t0
red)ared )

�=

OO

P //H � (bred S(t0
red)ared )

� � //H � (bred S(t red)ared ) P � 1
//H � (bred S(t red)ared )

�=

OO

where the vertical isomorphisms are the usual pushforward and pullback of the homeo-
morphism 
 2m1 � n;:::; 2ms � n � � I 1 ;:::;I s in homology and cohomology. The commutativity of
the middle square is clear and as in the proof of Theorem 2.50 the outer squares are easily
seen to be commutative, too.

The map in the upper row is by de�nition the pushforward of the inclu sion bK (t0)a �
bK (t)a in cohomology. Similarly, the map in the lower row is the pushforward of the
inclusion bred S(t0

red)ared � bred S(t red)ared . Again, we can apply Theorem 2.50 to the tangle
and cup diagramst0

red, t red and ared, bred and combine the resulting diagram with the one
above in order to deduce the claim.

Remark 2.52. For completeness, we remark that all the results in this subsectionare still
true if we replaceF2 by the more natural coe�cient ring Z or C. However, this requires a
careful choice of orientations of all the involved manifolds in order to getthe correct signs.
This is rather technical and therefore avoided in this work.

3 A geometric construction of Khovanov homology

3.1 Khovanov's arc algebra as a convolution algebra

We begin by recalling the de�nition of the basic arc algebra as introduced in [Kho02, x2.4].
Interesting generalizations motivated by Lie theory can be found in [BS11] and [Str09].
We also review a result by Stroppel and Webster [SW12] who reconstructed these algebras
geometrically by realizing them as convolution algebras using Springer �bers.

We set H 0 = F2 (viewed as an algebra over itself). Given a positive integerk, it makes
sense to de�ne a graded vector space

H k :=
M

(a;b)2 (B k;k )2

b(H k )a;

whereb(H k )a := F (ba)f kg, becauseba is an ordered collection of circles (cf. Remark 2.31)
to which we can apply the TQFT functor F as explained in subsection 2.3.1.

Let a; b; c; d2 B k;k be cup diagrams. In order to de�ne a collection of multiplication
maps

md;c;b;a : d(H k )c 
 b(H k )a ! d(H k )a (45)

turning H k into an associative graded algebra with unit, set (45) to be the zero map
unlessb = c. In the latter case consider the tangle diagramt0 := bb and choose an order
on the cups ofb compatible with the nesting. Then we inductively obtain a sequence of
tangle diagramst0; t1; : : : ; tk as follows: The diagramt i is obtained from the diagram t i � 1

by performing a local surgery on thei -th cup of b. In particular, we obtain a sequence
of circle diagramsdt0a; : : : ; dtka which are connected by natural surgery cobordisms (cf.
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Lemma 2.43). By applying the TQFT functor F to the resulting chain of cobordisms we
obtain a map

md;b;b;a: F (db) 
 F (ba) �= F (dt0a) ! F (dtka) �= F (da):

The collection of mapsmd;c;b;a de�nes the multiplication of Khovanov's algebra.

Example 3.1. If we choose

� � � �
a = d =

b = c = � � � �

then the multiplication map F (ab) 
 F (ba) ! F (aa) for H 2 is obtained by applying F to
the following cobordism:

� � � �

� � � �
//

� � � �

� � � �
//

� � � �

� � � �

The induced linear map is given by

A 
 A m�! A ��! A 
 A :

In the work of Stroppel and Webster [SW12] the algebraH k was rede�ned as a convolu-
tion algebra using the irreducible components of the (k; k)-Springer �bers. More precisely,
they de�ne a graded vector space by setting

H k
Geo :=

M

(a;b)2 (B k;k )2

b(H k
Geo)a;

where

b(H k
Geo)a := H � (Sa \ Sb)f k �

1
2

dim(Sa \ Sb)g

and dim(Sa \ Sb) denotes the dimension ofSa \ Sb viewed as a real manifold. The graded
vector spaceH k

Geo can be equipped with a convolution product. In order to explain this
consider the diagram

H � (Sa \ Sb)
� �
ab

((
H � (Sa \ Sb \ Sc)

(� ac ) ! //H � (Sa \ Sc)

H � (Sb \ Sc)
� �
bc

66

where the maps�ab; �bc and �ac are the respective inclusions and �x a cohomology class
f 2 H � (Sa \ Sb \ Sc). We de�ne a linear map

H � (Sa \ Sb) 
 H � (Sb \ Sc) ! H � (Sa \ Sc)
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by the formula
� � f � := ( �ac) � (f [ � �

ab(� ) [ � �
bc(� )) (46)

where � 2 H � (Sa \ Sb) and � 2 H � (Sb \ Sc).
For general f this algebra behaves very badly, i.e. it might neither be associative nor

graded (cf. [SW12, Section 4] for an interesting non-associative algebra corresponding to a
\nested TQFT"). The following theorem states the existence of a particular nice choice of
f . It is the topological equivalent to the algebro-geometric version [SW12, Theorem 35].

Theorem 3.2. There exists a cohomology classf 2 H � (Sa \ Sb \ Sc) such that the algebra
H k

Geo with the convolution product (46) de�ned above is isomorphic to Khovanov's arc
algebraH k as a graded algebra.

Remark 3.3. The class f is constructed inductively in the proof. Its precise geometric
meaning remains mysterious to the author. It would be nice to have an explicit description
in terms of characteristic classes of a certain vector bundle. It can be shown that the degree
of f corresponds to the number of handles in Khovanov's cobordism. However, we refrain
from making this precise.

Proof (Sketch). The general idea of the proof is to use Theorem 2.50 and interpret the
chain of cobordism as a chain of pullbacks and pushforward maps in cohomology. Once this
chain is constructed one can use the well-known clean intersectionformula (cf. e.g. [Qui71]
or [Ron80]) to inductively replace pullbacks with pushforwards and vice versa (this is where
the cohomology classf comes from) until the composition can be described as a single
pullback to the intersection followed by a pushforward.

3.2 Geometric bimodules via Spaltenstein varieties

Our goal is to use the general machinery developed in the second part of this work to extend
the results from [SW12] by providing a geometric construction of what Khovanov calls \ge-
ometric bimodules" in [Kho02]. These geometric bimodules are certain combinatorially-
de�ned vector spaces equipped with an action of a suitable arc algebra from the left and
right, respectively. Despite their name, there is no geometry involved in the original con-
struction of these bimodules. In Proposition 3.7 and Proposition 3.10 we realize these
bimodules by de�ning a left and right action of an arc algebra on a sum of cohomology
rings. Moreover, we construct some important bimodule maps using pushforward and
pullback in cohomology (cf. Proposition 3.8 and Proposition 3.11).

Throughout this subsection we �x a collection n1 = 2k1; : : : ; ns = 2ks of positive inte-
gers.

3.2.1 Khovanov's bimodules via a 2d TQFT

We begin by reviewing some of the basic de�nitions and results on geometric bimodules
contained in [Kho02]. More general bimodules associated with the generalized arc algebras
from [BS11] can be found in [BS10,x3].

Let t 2 T (n1; : : : ; ns) be a tangle diagram. Then we de�ne a graded vector space

F (t) :=
M

a2 B k 1 ;k 1 ; b2 B k s ;k s

bF (t)a;

where bF (t)a := F (bta)f k1g, i.e. the summands ofF (t) are obtained by applying the
TQFT functor F to the circle diagram bta as explained at the end of subsection 2.3.1.
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In [Kho02, x2.7], Khovanov de�nes a (H ks ; H k1 )-bimodule structure on F (t). In order
to explain the left H ks -action we �x cup diagrams a 2 B k1 ;k1 and b; c2 B ks ;ks . Consider
the tangle diagram t0 := bbt. By choosing an order on the cups ofb compatible with
the nesting (as in the de�nition of the multiplication of the arc algebr a) we inductively
obtain a sequence of tangle diagramst0; : : : ; tks , where the diagramt i is obtained from the
diagram t i � 1 by performing a local surgery on thei -th cup of b. In particular, we obtain
a sequence of circle diagramsct0a; : : : ; ctks a. By Lemma 2.43 there is a natural surgery
cobordism from the diagramcti � 1a to the diagram cti a. If we apply the TQFT F to this
chain of cobordisms we obtain a linear map

lc;b;a : c(H ks )b 
 bF (t)a
�= F (ct0a) �! F (ctks a) �= cF (t)a;

The collection of all such maps (varying over all choices of cup diagramsa; b; c) de�nes
the left H ks -action l : H ks 
 F (t) ! F (t).

Similarly, the right H k1 -action on F (t) is de�ned. The resulting bimodule F (t) is
�nitely-generated and projective as a left and as a right module (cf. [Kho02, Prop.3]).

Example 3.4. Consider the following list of diagrams:

� � � �

t =

� �

a = � � b = � � � � c =
� � � �

Then the map lc;b;a : c(H 2)b 
 dF (t)c ! dF (t)b associated with these data is obtained by
applying the TQFT functor F to the following sequence of circle diagrams and surgery
cobordisms:

� � � �

� � � �

� �

//

� � � �

� � � �

� �

//

� � � �

� � � �

� �

Thus, being totally explicit, the map lc;b;a is precisely the compositionA 
 A m�! A ��!
A 
 A .

Following Khovanov [Kho02, x2.8], we call a graded (H k ; H k0
)-bimodule a geometric

bimodule if there exists a grading-preserving isomorphism to a �nite direct sum of bi-
modules F (t) (possibly with an extra grading shift), where t can be any tangle diagram
whose bottom dot-cross sequence consists of 2k0 dots and whose top dot-cross sequence
consists of 2k dots. In particular, we have an additive categoryGB(k; k0) whose objects are
the geometric (H k ; H k0

)-bimodules and whose morphisms are grading-preserving bimodule
homomorphisms.

In subsection 3.3 we will be interested in bimodule homomorphismsinduced by surgery
cobordisms.

Proposition 3.5. Let t; t 0 2 T (n1; : : : ; ns) be tangle diagrams, wheret0 is obtained from t
by a single local surgery. Then the direct sum of the linear mapsF (bta)f k1g ! F (bt0a)f k1g
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(one summand for every pair of cup diagramsa 2 B k1 ;k1 , b 2 B ks ;ks ) induced by the natural
surgery cobordism from the diagrambta to the diagram bt0a (cf. Lemma 2.43) de�nes a
grading-preserving homomorphism

F (t) ! F (t0)f� 1g (47)

of (H ks ; H k1 )-bimodules.
Similarly, we also obtain a grading-preserving bimodule homomorphism

F (t0) ! F (t)f� 1g: (48)

in the other direction. In particular, the maps (47) and (48) are morphisms in the category
GB(ks; k1).

Proof. It is clear that the linear maps (47) and (48) are indeed bimodule homomorphisms
(see also the more general statement [Kho02, Proposition 5] in Khovanov's paper). More-
over, notice that the maps F (bta)f k1g ! F (bt0a)f k1g have degree 1 for every choice of
cup diagramsa 2 B k1 ;k1 and b 2 B ks ;ks (the multiplication and comultiplication in A have
degree 1). Hence, the direct sum of the maps is grading-preserving after shifting down the
grading of the bimodule in the codomain by 1.

3.2.2 Geometric and topological construction of bimodules

For the rest of this subsection we �x a tangle diagramt 2 T (n1; : : : ; ns). The next goal is
to reconstruct the associated bimoduleF (t) topologically. In order to do that we de�ne a
graded vector space

G(t) :=
M

a2 B k 1 ;k 1 ;b2 B k s ;k s

bG(t)a;

where the bG(t)a are the shifted cohomology rings

bG(t)a := H � (bS(t)a) f k1 �
1
2

dim(bS(t)a)g

of the manifolds from De�nition 2.24. In this context the word \dim" denote s the real
dimension of the manifold enclosed in parentheses.

Lemma 3.6. There is an isomorphism of graded vector spaces� t : G(t) �= F (t) which is
explicitly given as the sum of the isomorphisms

' dim( bS(t)a ) �
�

� � 1
bta

� �
: H � (bS(t)a) f k1 �

1
2

dim(bS(t)a)g
�=�! F (bta)f k1g: (49)

Proof. This is part of Theorem 2.50. Since dim(bS(t)a) = 2 �c(bta) the linear isomorphisms
(49) are grading-preserving for every choice of cup diagramsa 2 B k1 ;k1 and b 2 B ks ;ks .

We can use the isomorphism from Lemma 3.6 to de�ne a leftH ks -action on G(t) as
follows:

H ks 
 G (t) id 
 � t����! H ks 
 F (t) l�! F (t)
� � 1

t��! G (t): (50)

Similarly, we can also de�ne a right H k1 action, thereby turning the graded vector space
G(t) into a ( H ks ; H k1 )-bimodule.

Proposition 3.7. The isomorphism of graded vector spaces� t : G(t)
�=�! F (t) from Lemma

3.6 becomes an isomorphism of(H ks ; H k1 )-bimodules if we equipG(t) with the bimodule
structure de�ned above. In particular, � t is an isomorphism in the categoryGB(ks; k1).
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Proof. Notice that we obviously have a commutative diagram:

H ks 
 G (t)
id 
 � t //

id 
 � t
��

H ks 
 F (t) l //

id 
 id
��

F (t)
� � 1

t //

id
��

G(t)

� t

��
H ks 
 F (t)

id 
 id //H ks 
 F (t) l //F (t) id //F (t)

By the de�nition of the left H ks -action (50) on G(t) the commutativity of this diagram is
equivalent to saying that the map � t is an isomorphism of leftH ks -modules. Proving that
� t is also an isomorphism of rightH k1 -modules follows completely analogously.

Proposition 3.8. Let t; t 0 2 T (n1; : : : ; ns) be tangle diagrams, wheret0 is obtained from t
by a single local surgery. Then we obtain a grading-preserving homomorphism of bimodules

G(t) ! G (t0)f� 1g (51)

as the direct sum of the linear maps

H � (bS(t)a) f k1 �
1
2

dim(bS(t)a)g ! H � �
bS(t0)a

�
f k1 �

1
2

dim(bS(t0)a)g

obtained by pullback or pushforward in cohomology depending on whether bS(t0)a � bS(t)a

or bS(t)a � bS(t0)a.
Similarly, we also obtain a grading-preserving homomorphism of bimodules

G(t0) ! G (t)f� 1g (52)

in the other direction. The maps (51) and (52) are morphisms in the categoryGB(ks; k1).

Proof. The following diagram is commutative:

G(t)
(51) //

� t �=
��

G(t0)f� 1g

� t 0�=
��

F (t)
(47) //F (t0)f� 1g

By linearity it su�ces to check this on a summand of G(t). But then the claimed commu-
tativity follows directly from Theorem 2.50. By Proposition 3.5 and Proposition 3.7 the
map (47) and the isomorphism � t are morphisms in the category of geometric bimodules.
Hence, by the commutativity of the above diagram, so is the upper mapG(t) ! G (t0)f� 1g.
The same argument proves that the map (52) is a bimodule homomorphism, too.

For the reader who prefers to work with 
ag varieties we sketch how these bimodules
can also be constructed in the algebro-geometric picture. Since all the statements can be
deduced from the corresponding statements in the topological world by precomposing with
the homeomorphism from Proposition 2.26 we omit the proofs (cf. the proof ofTheorem
2.51 for a detailed example of such a reduction argument).

Fix a tangle diagram t 2 T (n1; : : : ; ns). Then there exist an even positive integer
n = 2k and admissible sequencesI 1; : : : ; I s, each of which has heighest integern, and a
tangle diagram text 2 T(I 1; : : : ; I s) with the property that ( text )red = t, i.e. the tangle
diagram text is obtained from t by adding pairs of crosses making the strands in the
diagram vertical. We call text an extension of t (this explains the subscript). It is clear
that extensions always exist but they are obviously not unique, e.g. we can always add
crosses at the end of the dot-cross sequences and still end up with an extension of the
diagram we started with.
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Example 3.9. On the left we have an example of a tangle diagram inT (4; 4; 4) and on the
right we have an extension:

� � � �

� � � �

� � � �

extend //

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

The extension is not minimal, e.g. it is possible to delete the fourth and �fth cross in all
of the three dot-cross sequences and we still have a well-de�ned extension of the tangle
diagram we started with. For reasons of e�ciency it is preferable to work with minimal
extensions. However, this is not necessary.

For the remaining subsection we �x an extension text 2 T(I 1; : : : ; I s) of the tangle
diagram t 2 T (n1; : : : ; ns). De�ne a graded vector space

GGeo(text ) :=
M

a2 B
n
2 ; n

2
I 1

; b2 B
n
2 ; n

2
I s

bGGeo(text )a;

where the bGGeo(text )a are the shifted cohomology rings

bGGeo(t)a := H � (bK (text )a) f k1 � dim(bK (text )a)g

of the varieties from De�nition 2.21 (here, the word \dim" stands for the complex dimen-
sion of the respective variety).

As in the topological case we obtain a left and right action of an arc algebra on the
vector spaceGGeo(text ) via the isomorphism of graded vector spacesGGeo(text ) �= F (t)
obtained as the sum of the grading-preserving linear isomorphisms

H � (bK (text )a) f k1 � dim(bK (text )a)g
�=�! F (bredtared)f k1g (53)

as in Theorem 2.51, wherea 2 B
n
2 ; n

2
I 1

and b 2 B
n
2 ; n

2
I s

. Thus, it makes sense to formulate
the following algebro-geometric analog of Proposition 3.7:

Proposition 3.10. The sum of the isomorpisms 53 of graded vector spaces de�nes an
isomorphism of geometric bimodulesGGeo(text ) �= F (t).

We also have an analog of Proposition 3.5 and Proposition 3.8.

Proposition 3.11. Let t; t 0 2 T (n1; : : : ; ns) be tangle diagrams, wheret0 is obtained from
t by a single local surgery, and lettext ; t0

ext 2 T(I 1; : : : ; I s) be extensions. Then we obtain
a grading-preserving homomorphism of bimodules

GGeo(text ) ! G Geo(t0
ext )f� 1g (54)

as the direct sum of the linear maps

H � (bK (text )a) f k1 � dim(bK (text )a)g ! H � �
bK (t0

ext )a
�

f k1 � dim(bK (t0
ext )a)g

(one summand for every pair of cup diagramsa 2 B
n
2 ; n

2
I 1

, b 2 B
n
2 ; n

2
I s

) obtained by pullback
or pushforward in cohomology depending on whether we havebK (t0

ext )a � bK (text )a or
bK (text )a � bK (t0

ext )a.
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Similarly, we also obtain a grading-preserving homomorphism of bimodules

GGeo(t0
ext ) ! G Geo(text )f� 1g (55)

in the other direction. The maps (54) and (55) are morphisms in the categoryGB(ks; k1).

Thus we have constructed a representative of each isomorphism classof objects in the
category of geometric bimodules purely in terms of Spaltenstein varieties. The distin-
guished bimodule homomorphisms from Proposition 3.8 (respectively Proposition 3.11)
play a crucial role in the following subsection.

3.3 A geometric construction of Khovanov homology

So far we have only dealt with planar tangle diagrams which can be embeddedin R2. In
this last section we add one dimension and study tangles inR3. Whereas the algebraic data
associated with the two-dimensional world lives inside an additive category (the category
of geometric bimodules) we have to pass to a triangulated category (the homotopy category
of complexes of geometric bimodules) in order to describe the three-dimensional objects
algebraically.

Due to the work of Khovanov [Kho02] we know how to assign a complex of geometric bi-
modules to a tangle inR3 in such a way that isotopy of tangles corresponds to isomorphism
in the homotopy category of complexes. Thus, we have a tangle invariant (cf. also The-
orem 3.30 below) which is known to categorify the Reshetikhin-Turaev invariant [RT90]
associated with the quantum group Uq(sl2). In Theorem 3.34, the main result of this
thesis, we prove that Khovanov's homological invariant can be reconstructed without a 2d
TQFT only using cohomological methods and the topology of Spaltenstein varieties.

3.3.1 Tangles, planar projections and resolutions

We begin by recalling the notion of a tangle and the notion of a planar projection. Then
we explain how to assign a collection of combinatorial tangle diagrams to a given planar
projection. This connects the combinatorics of tangles in a three-dimensional space to the
familiar planar combinatorics from subsection 2.1.

De�nition 3.12. A geometric tangle is the image a proper, smooth embedding of a
compact, smooth 1-manifold (this is just a �nite disjoint union of circ les S1 and intervals
[0; 1]) in R2 � [0; 1]. An oriented geometric tangleis a geometric tangle together with an
orientation of each connected component.

By de�nition, a proper embedding maps the boundary to the boundary and the interior
to the interior. In particular, the intersection of the image of the embedding with the set
@(R2 � [0; 1]) consists of a �nite number of points in R2 � f 0g, called the bottom endpoints
of the geometric tangle, and a �nite number of points in R2 � f 1g, called the top endpoints.
Throughout this work we only consider geometric tangles with an even number of top and
bottom endpoints.

De�nition 3.13. A geometric tangle is called ageometric(k; k0)-tangle if it has 2k0bottom
and 2k top endpoints.

Remark 3.14. A geometric tangle without any endpoints is just a knot (if the domain of
the embedding consists of a singleS1) or a link.

It is natural to identify geometric tangles which are related by a smooth isotopy.
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De�nition 3.15. A tangle as a smooth isotopy class of geometric tangles. Anoriented
tangleis a smooth isotopy class of oriented geometric tangles, where we additionally assume
that the isotopies are orientation-preserving.

Let D be a generic plane projection ofT. This is just a planar drawing of the tangle
without \singularities" such as triple intersections, tangencies and cusps. If we are dealing
with oriented tangles we will often decorate the pictures with orientation arrows.

Example 3.16. The picture on the left is a plane projection of an oriented Hopf link. The
one on the right represents a (1; 1)-tangle.
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����
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Obviously there are many di�erent possible ways of representing atangle by a planar
projection. The answer to the question about a precise relationshipbetween a tangle and
its planar projections goes back to the early work of Reidemeister [Rei26].

Proposition 3.17. Two planar projections represent isotopic geometric tangles if and only
if they are related by a planar isotopy and/or a �nite sequence of Reidemeister moves:

Proof. This is a well-known result from elementary knot theory. Detailed proofs can be
found in [KT08,Kas95] or many other standard textbooks on the subject.

A given planar projection D can be sliced up and written (after performing an appro-
priate planar isotopy if necessary) as a vertical composition of elementary projections, i.e.
a plane projection of a tangle which does not contain any circles and has at most one
crossing.

Example 3.18. Here is an example of a Hopf link sliced up into elementary projections:

We would like to associate a collection of tangle diagrams (as in subsection2.1) to a
plane projection D with a �xed decomposition. Motivated by elementary skein-theory we
can resolve the crossings ofD in two possible ways:

0-resolutionoo 1-resolution //
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A resolution of D is a resolution of each crossing ofD . This yields a combinatorial tangle
diagram (or a circle diagram if D represents a knot or link) if we mark the gluing points
of the elementary projections in the decomposition with a dot.

Example 3.19. Here is a complete list of resolutions for a plane projection of a Hopf link
decomposed as in Example 3.18:

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

3.3.2 The category of commutative cubes and a functor to chain complexes

We proceed by introducing a category of commutative cubes and explainhow to assign
a chain complex to an object of this category in a functorial way. Most of thematerial
presented in this subsection is standard (see e.g. [Kho00, Kho02, BN02]), except maybe
for the extensive use of categorical language (inspired by the work of Everitt and Turner
[ET09] on generalized Khovanov cube constructions). The categorical viewpoint seems
to be appropriate for our purposes because our focus of interest lies on the morphisms
between commutative cubes and the induced morphisms between thechain complexes
associated with these cubes rather than the cubes and complexes themselves.

Given a positive integer N , we can consider the setf 1; 2; : : : ; N g and its power set
P(f 1; 2; : : : ; N g), i.e. the set of all subsets off 1; 2; : : : ; N g. We will always view the power
set as a partially ordered set (poset), where the order relation is given by inclusion. For
two sets X; Y 2 P (f 1; : : : ; N g) we write X � Y if Y covers X , i.e. Y can be obtained
from X by adding a single element.

A useful tool for visualizing the structure of the posetP(f 1; : : : ; N g) is its Hasse diagram.
This is the oriented graph which has a vertex for every subset off 1; : : : ; N g and an edge
between the vertices corresponding toX; Y 2 P (f 1; : : : ; N g) wheneverX � Y . The edges
are oriented towards the subset with larger cardinality.

Example 3.20. Here is the Hasse diagram of the posetP(f 1; 2; 3g):

f 1g //

""

f 1; 2g

$$
;

??

��

//f 2g

<<

""

f 1; 3g //f 1; 2; 3g

f 3g //

<<

f 2; 3g

::

Notice that we use the convention to arrange subsets of the same cardinality in columns
when depicting a Hasse diagram. This is motivated by Bar-Natan's paper on Khovanov
homology [BN02] (cf. also Example 3.27).
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In the following, we will view the poset of subsets off 1; : : : ; N g as a category denoted by
PosN . More precisely, the objects ofPosN are the elements of the power setP(f 1; : : : ; N g)
and the morphism space HomP osN (X; Y ) between two objectsX; Y 2 P (f 1; : : : ; N g) either
consists of a single element, ifX is a subset ofY , or is the empty set in all other cases.
In terms of the Hasse diagram we can say that HomP osN (X; Y ) 6= ; if and only if there is
an oriented path from X to Y .

The next de�nition can be found in [Kho00, De�nition 1] or [Kho02, De�nition 2] in a
slightly disguised form.

De�nition 3.21. Let C be a category. A commutative N -cube in C is given by a func-
tor F : PosN ! C . This is equivalent to specifying an object F (X ) 2 C for every set
X 2 P (f 1; : : : ; N g) and a morphism F (X ) ! F (Y ) for every pair of sets X � Y . By
functoriality these data must be subject to the following condition: The diagram

F (X [ f xg)

((
F (X )

88

&&

F (X [ f x; yg)

F (X [ f yg)
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commutes for every triple (X; x; y ), where X 2 P (f 1; : : : ; N g) and x; y 2 f 1; : : : ; N gnX ,
x 6= y.

Remark 3.22. The notion of a commutative N -cube is not as abstract as it sounds. Es-
sentially, this is just a commutative diagram in the category C whose shape is given by
the Hasse diagram of the posetP(f 1; : : : ; N g).

We would like to go one step further than what is usually presented inthe standard
literature and de�ne a category whose objects are the commutativeN -cubes as de�ned
above. A natural choice for such a category is the functor categoryFun (PosN ; C). Written
out explicitly, we thus have the following morphisms in Fun (PosN ; C):

De�nition 3.23. A morphism between two commutative N -cubesF , G in C is a natural
transformation of functors � : F ! G, i.e. we have a morphism� X : F (X ) ! G(Y ) in C
for every set X 2 P (f 1; : : : ; N g) such that the diagram

F (X ) //

� X

��

F (Y )

� Y

��
G(X ) //G(Y)

is commutative for every pair X � Y .

In the following we set C = GB(k; k0), the category of geometric (H k ; H k0
)-bimodules.

Let Ch GB(k;k 0) denote the category of chain complexes of geometric bimodules.

De�nition 3.24. We de�ne a functor Fun (PosN ; GB(k; k0)) ! Ch GB(k;k 0) as follows:

� An object F 2 Fun (PosN ; GB(k; k0)), i.e. a commutative N -cube F : PosN !
GB(k; k0), is sent to the complex

� � � ! 0 ! F (; ) @�! : : : @�!
M

X 2P ( f 1;:::;N g) ;
#( X )= i

F (X )

| {z }
homological degree i

@�! : : : @�! F (f 1; : : : ; N g) ! 0 ! : : : ;
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where the di�erential @i in homological degreei is the sum of all maps in the cube
from a bimodule associated with a set of cardinalityi to a bimodule associated with
a set of cardinality i + 1.

� A morphism of cubes � : F ! G is sent to the chain map whosei -th component
is the direct sum of the natural transformation maps � X : F (X ) ! G(X ), where
#( X ) = i :

: : : //L X 2P ( f 1;:::;N g) ;
#( X )= i

F (X ) @ //

� X 2P ( f 1;:::;N g) ;
#( X )= i

� X

��

L
X 2P ( f 1;:::;N g) ;

#( X )= i +1
F (X ) //

� X 2P ( f 1;:::;N g) ;
#( X )= i +1

� X

��

: : :

: : : //L X 2P ( f 1;:::;N g) ;
#( X )= i

G(X ) @ //L X 2P ( f 1;:::;N g) ;
#( X )= i +1

G(X ) //: : :

Lemma 3.25. The functor Fun (PosN ; GB(k; k0)) ! Ch GB(k;k 0) from De�nition 3.24 is
well-de�ned.

Proof. In order to prove that the alleged chain complex associated to a commutative N -
cube F is indeed an object ofCh GB(k;k 0) we have to show that @� @= 0. By linearity
it su�ces to check this on a summand of the i -th chain group. Let � 2 F (X ) be an
element, whereX 2 P (f 1; : : : ; N g is a set with cardinality i . Then it follows from the
commutativity relation in De�nition 3.21 that

@� @(� ) 2
M

Y 2P (f 1;:::;N g); #( Y )= i +2

F (Y )

is a sum of elements in which each summand occurs exactly twice. Since we work overF2

it follows that @� @(� ) = 0.
One easily sees that the map induced by a morphism ofN -cubes is indeed a chain map.

This follows immediately from the commutative square in the De�nit ion of a morphism of
N -cubes. Thus the functor from De�nition 3.24 is well-de�ned on objects and morphisms.

We omit the easy veri�cation that the functor respects compositions andidentities.

Remark 3.26. If we work over a �eld F with char( F) 6= 2 (or more generally a ring in which
1+1 6= 0) the above constructions still make sense after replacing commutative cubes with
skew-commutative cubesas in Khovanov's original construction (cf. e.g. [Kho00,x3.3]).
More precisely, we would have to add signs to some of the maps in the cube in a consistent
way such that the summands cancel.

Example 3.27. As already mentioned in Remark 3.22 it is useful to think of aN -cube as a
commutative diagram. If we follow the convention of Example 3.20 and draw the diagram
in such a way that objects associated with sets of the same cardinalityoccur in columns,
then the chain complex in De�nition 3.24 can be obtained by simply summing the objects
and morphisms along the columns. As an example consider a functorF : Pos3 ! GB (k; k0),
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i.e. a commutative diagram

F (f 1g) //

&&

F (f 1; 2g)

''
F (; )

::

$$

//F (f 2g)

88

&&

F (f 1; 3g) //F (f 1; 2; 3g)

F (f 3g) //

88

F (f 2; 3g)

77

of objects and morphisms inGB(k; k0). Applying the functor to the category of chain
complexes yields

F (; ) ! F (f 1g) � F (f 2g) � F (f 3g) ! F (f 1; 2g) � F (f 1; 3g) � F (f 2; 3g) ! F (f 1; 2; 3g):

More concrete examples and applications of these abstract notions are provided in the
following subsection.

3.3.3 The complexes CKh and CKhGeo and an explicit isomorphism

In the following we explain two interesting ways of assigning a commutative cube to a plane
projection of a tangle. The �rst one is a review of Khovanov's original construction [Kho02,
x3.4] and the second one uses the cohomology of the manifolds introduced in De�nition
2.24. The resulting cubes are compared and proven to be isomorphic in Proposition 3.33.
This yields a new construction of Khovanov's chain complex (cf. Theorem 3.34; Theorem
3.37 is the algebro-geometric version).

For the remaining subsection we �x a generic plane projectionD of a (k; k0)-tangle
together with a decomposition into elementary pieces. Let us assume that the projection
D has N crossings. By labelling each crossing with a di�erent element fromthe set
f 1; : : : ; N g, i.e. we order the crossings ofD , we obtain a bijection

P(f 1; : : : ; N g) 1:1��! f resolutions of Dg (56)

by sending a setX 2 P (f 1; : : : ; N g) to the tangle diagram obtained by 1-resolving all the
crossings ofD whose label is contained inX and 0-resolving all the others. We writet(X )
for the tangle diagram associated with the setX via this bijection.

De�nition 3.28. De�ne a commutative N -cube Kh-Cube: PosN ! GB (k; k0) in the
category of geometric bimodules as follows:

� The functor Kh-Cube sends an objectX 2 P osN , i.e. a setX 2 P (f 1; : : : ; N g), to
the geometric bimodule

Kh-Cube(X ) := F (t(X )) f #( X )g (57)

associated with the tangle diagramt(X ) (cf. subsection 3.2.1), where the grading is
shifted according to the cardinality of X .

� Given a pair of objects X; Y 2 P (f 1; : : : ; N g) such that X � Y , then either the
tangle diagrams t(X ) is obtained from t(Y ) by a single local surgery or vice versa
(a 0-resolution in t(X ) is replaced by a 1-resolution int(Y )). In any case, we obtain
a homomorphism of bimodules

F (t(X )) f #( X )g ! F (t(Y )) f #( Y )g (58)

as the sum of the linear maps induced by natural surgery cobordisms as in Proposi-
tion 3.5.

66



Lemma 3.29. The functor Kh-Cube: PosN ! GB (k; k0) from De�nition 3.28 is a well-
de�ned commutative N -cube in the category of geometric bimodules.

Proof. We already know that (57) is indeed a geometric bimodule and that (58) is a homo-
morphism of bimodules (cf. Proposition 3.5). Since #(Y ) = #( X )+1 this homomorphism
is grading-preserving and thus a morphism inGB(k; k0). The commutativity condition
in the de�nition of a cube follows immediately from the functorialit y of the TQFT F
(cf. [Lee05,x2.1.4] for a detailed case-by-case analysis using cobordism pictures).

Hence, we can apply the functor from De�nition 3.24 to the N -cube from De�nition
3.28 and obtain a chain complex denoted byCKh(D). This is Khovanov's chain complex
associated with the plane projectionD as constructed in [Kho02, x3.4]. It becomes an
invariant of oriented tangles after shifting the bimodule and homologicalgrading according
to the number of positive crossingsx(D) and the number of negative crossingsy(D) in D :

x(D) = #

 ??__ !

y(D ) = #

 ??__ !

More precisely, we have the following famous result due to Khovanov [Kho02, Theorem 2]:

Theorem 3.30. Let D and D 0 be two plane projections of the same oriented tangleT, i.e.
D and D 0 are related by a �nite sequence of Reidemeister moves. Then there is a chain
homotopy equivalence

CKh(D)[x(D )]f 2x(D) � y(D )g ��! CK h(D 0)[x(D 0)]f 2x(D 0) � y(D 0)g

of complexes of(H k ; H k0
)-bimodules. The number in squared brackets shifts the homological

grading to the left. In particular, the isomorphism class in the homotopy category of
complexes of geometric bimodules is independent of the chosen planar projection of an
oriented tangle and therefore an invariant.

Proof. The proof consists of constructing explicit homotopy equivalences between the
complexes associated with diagrams related by a Reidemeister move (cf. [Kho02, x4]).

We want to see that this homological tangle invariant can be interpreted geometrically
in terms of Spaltenstein varieties.

De�nition 3.31. De�ne a commutative N -cube KhGeo-Cube: PosN ! GB (k; k0) in the
category of geometric bimodules as follows:

� The functor KhGeo-Cube sends an objectX 2 P osN , i.e. a setX 2 P (f 1; : : : ; N g),
to the geometric bimodule

KhGeo-Cube(X ) := G(t(X )) f #( X )g (59)

associated with the tangle diagramt(X ) (cf. subsection 3.2.2), where the grading is
shifted according to the cardinality of X .

� Given a pair of objects X; Y 2 P (f 1; : : : ; N g) such that X � Y , then either the
tangle diagrams t(X ) is obtained from t(Y ) by a single local surgery or vice versa.
In any case, we obtain a homomorphism of bimodules

G(t(X )) f #( X )g ! G (t(Y )) f #( Y )g (60)

as the sum of the linear maps induced by pullback or pushforward as in Proposition
3.8.
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Lemma 3.32. The functor KhGeo-Cube: PosN ! GB (k; k0) from De�nition 3.31 is a
well-de�ned commutative N -cube in the category of geometric bimodules.

Proof. By Proposition 3.7 the vector spaces (59) are objects inGB(k; k0) and by Proposi-
tion 3.8 the maps (60) are morphisms inGB(k; k0) (because #(Y ) = #( X ) + 1). Hence, in
order to prove the lemma, it remains to show the commutativity condition for every �xed
triple ( X; x; y ) as in De�nition 3.21.

Notice that this is equivalent to proving the commutativity of the fol lowing diagram
because the outer square is precisely the

G(t(X )) id //

id
��

G(t(X ))
(60) //

� t ( X )

��

G(t(X [ f xg)) id //

� t ( X [f x g)

��

G(t(X [ f xg))

id
��

G(t(X ))
� t ( X ) //

(60)
��

F (t(X ))
(58) //

(58)
��

F (t(X [ f xg))

(58)
��

G(t(X [ f xg))
� t ( X [f x g)oo

(60)
��

G(t(X [ f yg))
� t ( X [f y g)//

id
��

F (t(X [ f yg))
(58) //F (t(X [ f x; yg)) G(t(X [ f x; yg))

id
��

� t ( X [f x;y g)oo

G(t(X [ f yg)) id //G(t(X [ f yg))
(60) //

� t ( X [f y g)

OO

G(t(X [ f x; yg)) id //

� t ( X [f x;y g)

OO

G(t(X [ f x; yg))

The middle square commutes by Lemma 3.29 and the commutativity of the squares in the
corners of the diagram is trivial. In order to check the commutativity of the remaining
squares it su�ces (by linearity) to check the commutativity summ andwise. But by the
de�nition of the involved maps this reduces the argument to the statement of Theorem
2.50 which �nishes the proof.

Proposition 3.33. Let � X denote the bimodule isomorphism associated with the tangle
diagram t(X ) from Proposition 3.7, i.e. � X = � t (X ) . Then the collection of maps� =
(� X )X 2P (f 1;:::;N g) de�nes a natural isomorphism KhGeo-Cube ! K h-Cube of functors,
i.e. an isomorphism in the categoryFun (PosN ; GB(k; k0)) of commutative N -cubes in
GB(k; k0).

Proof. Let X; Y 2 P (f 1; : : : ; N g) such that X � Y . We have already seen several times
that the following diagram commutes:

G(t(X )) f #( X )g
(60) //

� X =� t ( X ) �=
��

G(t(Y )) f #( Y )g

� Y =� t ( Y )�=
��

F (t(X )) f #( X )g
(58) //F (t(Y )) f #( Y )g

Thus, the commutativity condition in the de�nition of a morphism of N -cubes is satis�ed.
Since the maps� X are isomorphisms in the category of geometric bimodules for ev-

ery X 2 P (f 1; : : : ; N ), it follows that � : KhGeo-Cube
�=�! K h-Cube is an isomorphism in

Fun (PosN ; GB(k; k0)).

Theorem 3.34. The chain complexesCKh(D) and CKhGeo(D ) induced by applying the
functor from De�nition 3.24 to the N -cubesKh-Cube and KhGeo-Cube, respectively, are
isomorphic in the category of chain complexesCh GB(k;k 0) of geometric bimodules. In par-
ticular, the complexesCKh(D) and CKhGeo(D ) are isomorphic in the homotopy category
of chain complexes of geometric bimodules.
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Proof. By Proposition 3.33 we have an isomorphism of cubesKhGeo-Cube �= Kh-Cube.
Hence, applying the functor from De�nition 3.24 induces an isomorphismof chain com-
plexesCKhGeo(D ) �= CKh(D).

Corollary 3.35. The chain complexCKhGeo(D ) is an invariant of oriented tangles in the
homotopy category of complexes of geometric bimodules.

Proof. This follows immediately from combining Theorem 3.30 with Theorem 3.34.

Thus, we have a description of Khovanov homology for tangles purely in terms of coho-
mology, pushforward and pullback maps. The 2d TQFT used in the original construction
does not occur (at least not explicitly) in this picture anymore. In particular, Theorem
3.34 is our answer to the question from the introduction.

For completeness we also provide (without a proof) the analogous versionof Theorem
3.34 using 
ag varieties. Consider the collection of tangle diagramst(X ) obtained by
resolving the crossings ofD in all possible ways. Take the diagramt(X ) with the maximal
number of strands and construct an extensiontext (X ) 2 T(I 1; : : : ; I s) (as explained at the
end of subsection 3.2.2), whereI 1; : : : ; I s are appropriate admissible sequences with the
same heighest integern = 2k. Then it is easy to see that we also have extensions of the
other diagrams in T(I 1; : : : ; I s).

Now we can de�ne a commutativeN -cube as in the topological setting and prove that
it is well-de�ned:

De�nition 3.36. De�ne a commutative N -cube KhAlgGeo -Cube: PosN ! GB (k; k0) in
the category of geometric bimodules as follows:

� The functor KhAlgGeo -Cube sends an objectX 2 P osN , i.e. a setX 2 P (f 1; : : : ; N g),
to the geometric bimodule

KhAlgGeo -Cube(X ) := GGeo (text (X )) f #( X )g (61)

associated with the tangle diagramtext (X ) (cf. subsection 3.2.2), where the grading
is shifted according to the cardinality of X .

� Given a pair of objects X; Y 2 P (f 1; : : : ; N g) such that X � Y , then either the
tangle diagrams text (X ) is obtained from text (Y ) by a single local surgery or vice
versa. In any case, we obtain a homomorphism of bimodules

GGeo (text (X )) f #( X )g ! G Geo (text (Y )) f #( Y )g (62)

as the sum of the linear maps induced by pullback or pushforward as in Proposition
3.11.

Theorem 3.37. The chain complexCKhAlgGeo (D ) obtained by applying the functor from
De�nition 3.24 to the commutative N -cube in De�nition 3.36 is isomorphic to the chain
complexesCKhGeo(D ) and CKh(D) in the category of chain complexes of geometric bi-
modules.

Proof. Essentially, this follows from the homeomorphism in Proposition 2.26.
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