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Abstract

In this article we consider a graded version of categ@ryVe reprove some results of [Beilinson
et al., J. Amer. Math. Soc. 9 (1996) 473-527] using a different approach. Furthermore, we define a
graded version of translation functors and duality. This provides the construction of various graded
modules. On the other hand, we describe how to get modules which are not ‘gradable.’
0 2003 Elsevier Inc. All rights reserved.

Introduction

For a finite-dimensional semisimple Lie algelgravith Borel and Cartan subalgebras
andb, respectively, we consider the so-called categBryoriginally defined in [BGG]).

This category decomposes into blocks indexed by dominant weights, where eactbhlock
has as objects certagamodules with a fixed generalized central character.

For any weight. there is a universal object, the so-caldefma modulevith highest
weight A. We denote it byA(1). Each Verma modulei (1) has a simple head, denoted
by L()). All simple objects inO arise in this way.

A famous problem was to determine the multipliciigs1) : L(x)], how often a simple
module L(i) occurs in a composition series df(A). This problem was turned into a
combinatorial problem by a conjecture [KL, Conjecture 1.5] of Kazhdan and Lusztig. The
conjecture states that the multiplicity is given by certain inductively defined polynomials
evaluated at 1 and was subsequently proved in [BB1,BK].

The question now was, if there is also an interpretation of the exponents occurring in
these Kazhdan—Lusztig polynomials. One answer to this problem is given in the article
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[BGS] of Beilinson, Ginzburg, and Soergel. They consider each block of cat€g@y

a category of right modules over a finite-dimensional algehhnaamely the endomorphism
ring of a minimal projective generator. This algebra is (see [Sol]) isomorphic to an
algebra of self-extensions of some module; so it inherits a nafisgriading. In [BGS,
3.11] it is shown that a Verma module(i) has a graded lift, i.e., that there is a graded

A-moduleM such that = Z(VA) after forgetting the grading. Hez@ﬂ/) denotes the right
A-module corresponding ta (1). On the other hand, all simple modules have graded lifts
concentrated in one single degree.

Since by definition the ringd is positively graded, the filtration associated to such
a graded module is in fact a filtration by submodules. Moreover, the exponents of the
Kazhdan-Lusztig polynomials indicate in which layer of this filtration a certain simple
module occurs [BGS, Theorem 3.11.4]. By the results of [BBZ2], this filtration coincides for
Verma modules with the Jantzen filtration (see [Jal]). This observation was the motivation
for us to ask whether there are other interesting object3 imhich are ‘gradable’ in the
sense described above. And if so, whether there is a combinatorial description of their
filtrations induced by the grading in terms of Kazhdan—Lusztig polynomials.

For this reason we describe another approach to the graded version of category
using Soergel's functoW (defined in [Sol]). In this approach, it is straightforward to
define graded versions of translation functors. Inductively, this yields graded versions of
‘important’ modules, such as Verma modules, dual Verma modules and principal series in
general. For Verma modules, it is just the same lift as described in [BGS]. For principal
series, the combinatorics of these graded modules coincide with the ones described (in a
geometric setup) in [CC].

We prove an Adjointness Theorem (8.4) for these graded translation functors. It turns
out that the graded versions of translatmmandout of the wall are adjoint to each other
up to a shift. Therefore these graded functors carry more information than the ‘usual’
translation functors. An easy implication of these adjointness properties is the fact that,
for type A1, these graded versions of Verma modules are Koszul modules in the sense of
[BGS]. We also explain what happens to the graded versions of Verma modules and simple
modules when translatetirough onto or out of the wall. We show the existence of a
graded duality, which is a lift of the usual duality ¢h This gives the graded version of
the Bernstein—Gelfand—Gelfand reciprocity (see also [BGS, Theorem 3.11.4]). Our main
result is a combinatorial description of our graded versions of translation functors in terms
of elements in the corresponding Hecke algebra (Theorem 7.1).

The advantage of our approach is that it provides a way to construct lifts of principal
series. The motivation to define such lifts was given by A. Joseph’s article [Jo] where he
describes the connection between filtered versions of principal series and primitive ideals
in the universal enveloping algebra @f Details of how to construct graded versions of
principal series from the graded versions of translation functors and why this is useful to
determine composition factors of quotients of the universal enveloping algebtayahe
annihilator of some simplg-module can be found with some explicit examples in [St2].
Another advantage of our approach is that it can easily be generalized to the categories
of Harish-Chandra bimodules with generalized trivial central character from both sides,
whose power is fixed from one side. We do not know, however, how to deduce a graded
duality.
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We briefly summarize the content of this paper. In the first section we recall some
facts about categor®, translation functors and graded modules. In Section 2 we describe
how to consider an integral block @ as a category of modules over a ring which is
graded. This is done without using the main result of [BGS]. In Section 3 we introduce the
notation of gradable modules and functors and give the main examples (Verma modules
and translation trough the wall). How to find objects for which there exists no graded lift
is described in Section 4. A graded version of duality can be found in Section 6. Our
main results are the descriptions of graded translation functors in Section 3.2 and Section 8
which implies the short exact sequences given in Section 5. These results are summarized
in the combinatorial description of Theorem 7.1. An Adjointness Theorem is proved in
Section 8.

1. Thecategory O and its main properties

Let g > b D h be a semisimple complex Lie algebra with a chosen Borel and
a fixed Cartan subalgebra. Lgt=n_ ® b=n_ ® h ® n be the corresponding Cartan
decomposition. The corresponding universal enveloping algebras are denotéd=by
U(g), U(b), etc.

We consider the categoi® which is a full subcategory of the category of &llg)-
modules and defined by the following set of objects:

M is finitely generated asid(g)-module
O(0) := { M e U(g)-mod| M is locally finite forn, ,
b acts diagonally o/

where the second condition means that @i(n) - m < oo for all m € M and the last
says thatM = @ueh* M, whereM, ={m e M | h-m = u(h)m forall h € h} denotes
the u-weight space oM.

Many results about this category can be found, for example, in [BGG,Jal,Ja2]. The
category© decomposes into a direct sum of full subcategotigsindexed by central
characterg of U =U(g). Let S(h) = U (h) be the symmetric algebra ovgrconsidered
as regular functions oh*, together with the dot-action of the Weyl groi, defined as
w-A =w(A+p)—pfor i € h*, wherep is the half-sum of positive roots. L&t = Z (/) be
the center o#/. Using the so-called Harish-Chandraisomorphism (see, e.g., [Jal, Satz 1.5],
[Di, Theorem 7.4.5])Z — %" and the fact tha$ is integral oveis"" [Di, Theorem 7.4.8]
we get an isomorphisra: h*/(W-) — MaxZ. Here MaxZ denotes the set of maximal
ideals inZ. This yields the following decomposition:

o= P o,= P o (1.1)

yeMax 2 reb* /(W)

whereO, denotes the subcategory 6f consisting of all objects killed by some power
of x. It denotes the same block &5 if £(A) = .
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0, is called aregular blockof the categong if A is regular, that is, il + p is not zero
at any corootr belonging tob. We denote by, = {w € W | w - A = A} the stabilizer o,
in W.

For all A € b* we have a standard module, the Verma modtile) = U ®(p) Ci,
whereC, denotes the irreduciblg-module with weightr. enlarged by the trivial action
to a module over the Borel subalgebra. This Verma module is a highest weight module of
highest weighi and has central charactgi:). We denote by. (1) the unique irreducible
guotient of A(A). Let » denote the duality 0O, i.e., M* is the maximalh-semisimple
submodule of the contragradient representatléfi with the g-action twisted by the
Chevalley antiautomorphism. We denote¥g) the dual Verma modulé (1)*.

The categon® has enough projectives. We denote the projective covéref 1) by
P(x-2) and its injective hull by (x - 1). Thus the indecomposable projective object®jn
are in bijection withW /W, . By convention we choose far a representative of minimal
length.

1.1. Translation functors and their combinatorial description

Let A, u € b* be such that — u is integral. The translation functor from the blo€k
to O, is the functor

9;\":01 —> OM’
M pr, (M ®E(u—»),

where py, is the projection onta@),, and E(x — 1) is the finite-dimensional simplg-
module with extremal weight — . Let s be a simple reflection an®?,, = {1, s}; then
translatiorthroughthe s-wall is the composition of functos = Gﬁ o Gi‘. For more details
concerning these functors see [Jal,Ja2].

For an abelian categoryl we denote by{.A] the Grothendieck group oft, i.e., it
is the free abelian group generated by the isomorphism cldggesf objectsA in A
modulo relationdC] = [A] + [B] whenever there is a short exact sequence of the form
A — C — B. Consider the case wheré is a blockO, of O. Each of the three sets
{IL(x- )] xe W/ Wi}, {[AGx -] | x € W/ Wi, {[P(x - V)] | x € W/W,} forms a basis
of the Grothendieck group ;.

Let us look at the situation where is a regular and integral dominant weight. The
translation functorg; are exact functors and so they induce a group homomorphism
the Grothendieck group of the trivial blocRg, giving rise to actions of the Weyl group on
each side. FofM] € Og ands a simple reflection, the two actions are defined by

s[M]=[6;M]—[M] and [M].s:@sr[M]—[M],
whered][A(x - 0)] =[A(x - 0)] + [A(sx - O)].

Remarks 1.1. The notationd; should indicate that in fact this group homomorphism
is induced via the Bernstein—Gelfand equivalence [BG,Ja2] by some translation functor
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acting from the right-hand side on Harish-Chandra bimodules. The Grothendieck group
of the trivial block is isomorphic to the group ring[W] of W over Z via the map

[A(x - 0)] = x~L. Using this isomorphism the left and right action sofare just given
respectively by the left and right multiplication eon W.

We denote by H the Hecke algebraWif[Bo2, 1V, 2, Example 22]. This is by definition
the freeZ[v, v—1]-module with basi§H, | x € W} together with the relations

H?=H.+ (v ' —v)H, forasimple reflection and
HyHy = Hyy, i 100 +100) =1(x).

With v = 1, the additive group of H is isomorphic to the Grothendieck group and the
translation functors fit in the following commuting diagrams:

Hy—[A(x-0)] —[A(x-0)]
H T> [OO] H—— [OO]
~(H:+v>l l[@;] , (Hy+v)- i l[@.{] . (L2
Hy>[A(x-0)] —[A(x-0)]
H [Oo] H——— [O0]

1.2. Gradings

In this section we introduce first of all some notation and also recall some general results
about graded modules which are important for the subsequent sections. In the following the
word ‘graded’ always mearig-graded. So le#d be a graded ring and léf = P,,., M,
be a gradedi-module. Let f denote the grading forgetting functor.

Form € Z let M (m) be the graded module defined b§(m), := M,_,, with the same
module structure a&/, i.e., f(M (m)) = f(M). Given two gradedi-modulesM andN we
denote by

Hom4 (M, N) = {A-linear maps fromM to N}
the set of non-graded morphisms. This contains the set
Homy (M, N); = {¢ € Homy (M, N) | ¢(M;) € Nji, ¥j € Z}
of all morphisms which are homogeneous of degrdeom the definitions we get
Homy (M (i), N),=Homa(M, N); = Homy (M, N(—i)),. (1.3)

Therefore, the ring End M) inherits a natural grading. We denote by gmbfthe
category of all finitely generated graded rightmodules with homogeneous morphisms
of degree zero. For any ring we denote by moR the category of finitely generated right
R-modules.

The following fact about tensor products is needed later:
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Lemmal.2. LetR, S be graded rings and le¥ be a gradedR-S-bimodule andV a grad-
ed S-module. Then the modul ®s N is a gradedR-module.

Proof. The R-moduleM ®z N can be equipped with a grading, by setting

(M ®z N); 2=ZM1< ®z Ni-k SM ®z N.
X

Here,M; ®7 N;_; denotes the subspace of (the tensor product of abelian grdtigs) N
generated by all elements of the foim® n with m € My andn € N;_;. Obviously,
this is compatible with theR-module structure. We consider the canonical surjection
of R-modulesM ®7 N —» M ®g N. The kernel is generated by elements of the form
ms @ n —m @ sn, SO it is generated by homogeneous elements.

If we consider a category of graded modules over a graded algebra as a ‘graded
category’ in the sense of [AJS], we have also the notion of ‘functors of graded categories’
or ‘Z-functors.’ The exact definition can be found in [AJS, E.3]. The previous lemma gives
a standard example of such a functor.

Example 1.3. Let R and S be graded rings and léf be a finitely generated gradeéd S-
bimodule. The functor

o ®r X :gmof-R — gmof-S

is a functor of graded categories, where the natural transformations are given by the natural
isomorphisms

Mn) Qg X = (M ®g X)(n).
To construct a graded version of the categ@rythe following lemma is crucial.

Lemma 1.4. Let M and N be finite-dimensional modules over a riSgvhich is graded.
Let N be indecomposable and I8t and M @ N be gradedS-modules. Then the module
M inherits a grading.

Proof. Let i:N — N @& M and p:N & M — N be the canonical inclusion and
projection, respectively. Let=}_;i; andp = }_; p; be the grading decompositions.
The compositiorp oi =), p, o i, is the identity onN. By assumption Eng(N) is a
local ring. So at least one of the summands, payo i_,,, should be invertible. Denote
by ¢ its inverse. This yields a splitting @f o p,,: M & N — N{—ng), namelyi_,,. The
kernel of this morphism is a lift o#/ we are looking for. Moreover, it shows that the direct
sum of the constructed lift o/ and N is just the given liftofM & N. O

For indecomposable modules these graded lifts are unique up to isomorphism and shift:
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Lemma 1.5 (Uniqueness of the gradind)et B be a graded ring and lelv € mof-B be
indecomposable. Furthermore we assume there exists # liftgmof-B of N. Then for
eachM’ € gmof-B such thatf(M) = f(M’) = N there is an isomorphismy = M’ (n) for
somen € Z.

In the situation of the lemma, we will say, a bit sloppy, ‘the grading is unique up to
a shift.

Proof. See [BGS, Lemma 2.5.3].0
1.3. The combinatorial functdy

Fix 2 € h* a dominant and integral weight. The centrof the universal enveloping
algebral{ yields by multiplication a maE — Endg(P(wé “A)), Wherewé denotes the
longest element oW/ W,. On the other hand, we have a ma&p— S — S/(ij’) by
composing the Harish-Chandra isomorphism and the natural projection SHatenotes
the maximal ideal of consisting of all regular functions vanishing at zero aﬁﬂ) is the
ideal generated by polynomials without a constant term and invariant under the (usual!)
action of the Weyl group. Fax = 0, both of these maps are surjective and have the same
kernel. This gives the following key result.

Theorem 1.6 ([Sol, Endomorphismensatz] and [Be] for reguigr Let A € h* be an
integral and dominant weight and 1&, be its stabilizer under the dot-action of the Weyl
group. Letwé be the longest element 8f/ W, . Then there is an isomorphism of algebras

Endy (P (wg - 2)) = (s/(s¥))"™.

Remark. The algebraS/(S}ﬁ’)) is the so-called ‘algebra of coinvariants’ and its dimension
(as a complex vector space) is just the order of the Weyl group (see [Bo1]). In the following,
we denote it byC and its invariant€ "> by C*. This algebra is commutative, so we can
consider rightC-modules also as letf-modules.

Convention 1.7. In order to be consistent with the literature, we consigler S(h) as an
evenly graded algebra, sb= @, S%. We also assume th&f = h holds. The algebra
of coinvariantC inherits a grading.

The previous Endomorphism Theorem makes it possible to define the following
combinatorial functo®.

Theorem 1.8 [Sol, Struktursatz 9].et A € h* be an integral and dominant weight. The
exact functor

V=V,:0, - C*-mof,
M +— Homg (P (wf - 1), M)
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is fully faithful on projective objects. In other words, fory € W/ W,, there is an isomor-
phism of vector spaces

Homg (P (x - 1), P(y - A)) ZHomex (VP (x - 1), VP(y - 1)).

For x € W with x = s, ---s3s251 a reduced expression ainddominant, the module
P(x - 1) is isomorphic to a direct summand @, - - - 65, M (»). Moreover, it is the unique
indecomposable direct summand Mf(A) not isomorphic to some(y - A) with y < x
(more details can be found, e.g., in [Ja2,BG,So01]).

Translation through the wall and the functdiare related by the algebra of coinvariants
in the following way.

Theorem 1.9 [Sol, Theorem 10]Let A € h* be regular and let be a simple reflection.
Denote byC* the invariants ofC under the action of. There is a natural equivalence of
functors©, — C-mof

V0, =C ®cs V.

Corollary 1.10. Letx = s, ...s3s2s1 be a reduced expression ofe W. Then the module
VP (x-A)isisomorphic to the unique direct summandopcs1 C Qc¢s2 C Qc¢sz - - - Qcs C
which is not isomorphic to soméP (y - 1) with y < x.

Remark. The theorem is also true for singulaif we replaceC by C*.

2. Thecategory O asa category of modules over agraded ring

Let A € h* be an integral weight. The obje&}, := @xew/m P(x - 1) is a (minimal)
projective generator a;, . So there is (see [Ba]) an equivalence of categories

O; —> mof-End,(Py), (2.1)
M — Homy (P, M).

Now we are ready to explain how, := End,(P;) can be considered as a graded ring.

Theorem 2.1. Let A be an integral dominant weight and 1€, Q' € O, be projective
objects. The functo¥ induces a grading ofdom, (Q, Q'). In particular, Endy (P;) can
be considered as a graded ring.

Proof. A proof can be found in [BGS]. Since we do not need the stronger results of [BGS],
we also give a proof for the assertion.

By Convention 1.7 the endomorphism ring of the antidominant projective module in
0, can be considered as a graded ring. We assume for the momerit ihatgular.
Given a simple reflection, the subseC* c C of C is a graded subring, 6 is a graded
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C*-module. On the other hand, the trivial moddkeis also a graded’*-module. By
Lemma 1.2, the modul€ ®¢s C is a gradedC-module. All projective objects in a
block are given by direct summands of direct sums of such successive tensor products.
Therefore, by Lemma 1.4 aWQ with Q projective are graded. Using (1.3) gives a
natural grading on Hog(VQ, VQ’) for projective modules) and Q’. The property

of faithfulness (see Proposition 1.8) induces therefore a grading ongHoMw’). In
particular, Eng(P;) becomes a graded ring. For singulahe algebraC has to be replaced

by the invariant<*. 0O

Convention 2.2. By the proof of Theorem 2.1, the modul&P (x - A) becomes a graded
C-module. In the following, we considéV P(x - A) as a graded_-module with the
convention that its highest degred {s). For A singular,x should be chosen of minimal
possible length. In the following , has then the grading given by Theorem 2.1. Fer 0
we omit the subindex of A and P.

By this convention the endomorphism ridg is in fact a positively graded ring. Details
for this can be found in [So4] and [BGS, Theorem 1.1.3].

3. Gradablemodules and functors

In the following section we introduce lifts of Verma modules and their duals and also
define a graded version of translation functors.

3.1. Lifts of objects ir©,,

Definition 3.1 (Gradable modules). L&t be a graded ring. We call a modulé € mof-B
gradableif there exists a graded moduié € mof-B such that {/7) = M. In this case, the
moduleA is alift of M.

An object M € O, is gradableif Homg (P, M) is a gradableA;-module, where
A, = Enq,(P,) is graded via Conventions 2.2 and 1.7. By abuse of language, a lift of
Homy (P;, M) is often called dift of M.

We proved in Theorem 2.1 that all projective objects in any integral block are gradable.
Moreover (see Lemma 1.5), the grading is ‘unique up to a shift.” By Convention 2.2 the
grading is unique up to isomorphism.

Another example for gradable modules are the simple objects.

Lemma 3.2. Let A be an integral dominant weight. The simple object®gfare gradable.
Their lifts are pure, i.e., they are concentrated in one degree.

Proof. Considerin Horg(Py, P(x-1)) = Home. (V(Py), VP (x - 1)) the one-dimensional
subspace. generated by the canonical projection, i.e., the projection onto its simple head
as a rightA,-module. Any complement as vector spaces is also a (rigft3ubmodule
since the image of o f is in the radical ofP (x - 1) for any g € Homg(Py, P(x - 1)) and
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f € Ay. So the projection from Hop(V(Py), VP (x - A)) onto L is a homogeneous map
of degree zero. The quotient is concentrated in degree zero.

Note that the previous lemma implies that the inductively defined lil® 6f - 1) is up
to isomorphism independent of the choice of the reduced expressiarCmincerning the
notation, we do not distinguish between the projective or simple objects and their graded
lifts in the following.

3.2. Lifts of translation functors

Definition 3.3 (Lift of a gradable functor). LeB and D be graded rings. We call a functor
F :mof-B — mof-D gradable if there exists a functor of graded categoresgmof-B —
gmof-D (in the sense of [AJS]) which inducds If there is such a functoF, we call it
alift of F. In other wordsF is a lift of F, if it is a functor of graded categories such that
the following diagram commutes:

gmof-B . gmof-D
fl lf
mof-B . mof-D

For integral and dominant weighisand ., a functor fromO, to O, is gradableif it
induces a gradable functor from mdf; to mof-4,,.

The following lemma provides some gradable functors including the translation
functors.

Lemma 3.4. Let R and S be any rings. There is an equivalence of categories

right exact, compatible with direct su S~ R-(g)mof-§
functors: (g)mof-R — (g)mof-S ’ ’

F — F(R),
e R®r X <« X.

By definition,F (R) is a right S-module. The left multiplication @t defines the left module
structure onF'(R).

Proof. See [Ba, 2.2]. O

Considerd; : Og — O, the translation through the-wall. The functor induced by
Lemma 3.4 is the functar® 4 Hom(P, 65 P) on mof-A. This functor is (see Example 1.3)
gradable by Theorem 2.1 and Lemma 1.2. We choose the following lift:

e ®4 Home (VP, C ®¢s VP(-1))

and denote it also bg.
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Remarks 3.5. The graded versio6 is compatible with the Conventions 2.2 in the sense
that for exampled; P(0) = P(s - 0) holds as graded modules. More generally, there is an
isomorphism of graded modules

Home (VP, VP (x - 0)) ®4 Home (VP, C ®cs VP(-1))
— Home (VP, C ®cs VP (x - 0)(—1))
gR fr>(d®g)o f.

3.3. Lifts of Verma modules and their duals

The reason why we consider these graded versions of translation functors is the fact
that these functors provide a construction of gradable modules. We first show, by a very
general argument, that all Verma modules are gradable. Consideeftr ands a simple
reflection such thats > x the short exact sequence Afmodules

Homg (P, A(x - 0)) <L Homg (P. 6, A(x - 0)) % Homg (P, A(xs - 0). (3.1)

Consider inductively Hog( P, A(x - 0)) and (by Lemma 3.4) Hog(P,6;A(x - 0)) =
0s(Homg (P, A(x -0)) as graded modules. Since dim Hg (x - 0), 6, A(x - 0)) = 1 holds,
the morphismj is homogeneous. Therefore, the cokernel is gradable. Starting with the
projective Verma module, this method provides inductively lifts of all Verma modules.
By Lemma 1.5, these graded lifts are unique up to isomorphism and grading shift. The
lift of A(0) = P(0) is given by Convention 2.2. We choose the lift a{xs - 0) such
that the surjection in (3.1) is homogeneous of degree zero. So the canonical surjection
P(x -0) — A(x - 0) is homogeneous of degree zero and therefore the lifts do not depend
on the reduced expression.of

Concerning notation, we will not distinguish between Verma modules and their graded
lifts. These graded Verma modules fit in a short exact sequence of the following form.

Theorem 3.6. For x € W and s a simple reflection such thats > x, there is an exact
sequence of graded modules

A(x-0)(1) — 0,A(x - 0) = A(xs - 0).

Proof. We choose isomorphisnisP =V P* = Hom¢ (V P, C) of graded rightC-modu-

les, in particular, a graded isomorphigir= C°PP. The existence of such an isomorphism
and also the description of a canonical isomorphish®cs M)* = C ®cs M*(—2) can

be found in [So4, Lemma 2.9.2]. So we get the following isomorphisms of graded vector
spaces:

Home (VP, € ®cs VP(—1)) =Home ((C ®cs VP(—1))*, VP)

= Home ((C ®¢s VP)™(1), VP)
= Home ((C ®c¢s VP)(—1),VP). (3.2
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Multiplication yields a homogeneous map of degree zero:

mult: (C ®cs VP) — VP,
c®m>cm, (3.3)

so there is &-linear map

f:VP - C®cs VP(-1) (3.4)
which is homogeneous of degree 1. This induces a non-trivial morphism

Homg (P, A(x - 0)) - Homg (P, A(x - 0)) ®4 Home (VP, C ®cs VP(—1)),
P> o Q f (3.5)

Up to a scalar, it has to be the mapf (3.1). By definition it is homogeneous of degree 1.
So the theorem is proved.c

Corollary 3.7. Letx € W. Then the following multiplicity formulas hald

1 if j=0,

[ae-0:La-o] = {5 T/=0

Proof. The (up to a scaler unique) surjectid(y - 0) — A(y - 0) is homogeneous
of degree zero for any € W. On the other handP(y - 0) is the projective cover of
L(iy-0). O

Remarks 3.8.

(a) The graded versions of Verma modules can also be constructed by considering them
as projective objects in some ‘truncated’ subcategor§ ot his is explained in detalil
in [BGS]. These graded versions coincide with our lifts. In our approach no further
information such as ‘positively graded’ or the descriptiondoés an algebra of self-
extensions [BGS, Theorem 1.1.1] is needed.

(b) The homomorphisny as introduced in (3.4), the multiplication map mult of (3.3)
and the identity (as a homogeneous map of degree 1) correspond under the following
isomorphisms of graded vector spaces

Home (VP, C ®cs VP(—1)) = Home ((C ®¢s VP)(—1), VP)
= Homes (VP, Home (C, VP)) (1)
= Homes (VP,VP)(1).
(c) The proof of Theorem 3.6 shows that the canonical m&p> 0;M for any M €

gmof-A is homogeneous of degree 1. The proof of Theorem 5.1 will show that the
canonical map; M — M is also homogeneous of degree 1.
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Lemma 3.9. For all x € W the dual Verma modul& (x - 0) and the indecomposable
injective moduld (x - 0) are gradable.

Proof. Consider the exact sequence

Vixs-0) <> 0,V (xs - 0) <> V(x - 0) (3.6)

with x € W ands a simple reflection such thatr > x holds. The simple Verma module
A(wo - 0) = V(wp - 0) is gradable. By induction we may assuéxs - 0) is gradable.
Hence so i9;V(xs - 0). Since

dimHomy (V(xs - 0), 6,V (xs - 0)) = dimHomy (V(xs - 0), 6,V (x - 0))
= dimHomy (6, V(xs - 0), V(x - 0))
=[6;V(xs-0):L(x-0)]
=1
holds, k can be considered as a homogeneous map between the graded lifts. (The third
equality holds, sinc& (x - 0) is the injective hull ofL (x - 0) in the full subcategory o
whose objects have only composition factors of the férm- 0) with z > x.) This induces
a grading on the cokernel. This grading is determined up to isomorphism by the requiring
thatk should be homogeneous of degree zero. Inductively this gives the first statement.
The gradability of the injective modules then follows inductively by starting with the

graded objec¥ (0). That the lifts are independent of the chosen reduced expression of
can easily be seen using Proposition 5.1, which is proven independently.

The dual statement to Theorem 3.6 is the following theorem.
Theorem 3.10. Let x € W and lets be a simple reflection such that > x. The lifts of

dual Verma modules defined in the proof of the previous lemma fit into the following graded
exact sequence

V(xs - 0)(1) <> 6,V (xs - 0) > V(x - 0).
Proof. The mapf as in (3.4) gives a non-trivial map

Homg (P, V(xs - 0)) - Homg (P, V(xs - 0)) ®4 Hom¢ (VP, C ®cs VP(—1)),
P> ¢ Q f,

which has to be, up to a scalar, the ntap (3.6). The surjection on the right is by definition
homogeneous of degree zero. This shows the assertion.
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4. Non-gradable objects

Although, all the ‘important’ objects of)y are gradable, there exist in general objects
which are not. The following theorem shows that the existence of such non-gradable
modules is guaranteed by the existence of an inhomogeneous id€alSfch an ideal
does not exist for all rank-two cases, but it is not difficult to find one in the daséWith
the notation of [St1] we can choose the ideal generated-byz.)

Theorem 4.1 (Non-gradability)Let 7 <V P (wg-0) = C be an ideal and) € Og gradable.
We also assum&Q = C/I. Then the ideal is homogeneous.

Proof. Assume the module HogP, Q) is a graded righd = Endc(VP) = End,(P)-
module. Via restriction Hog(P(wq - 0), Q) becomes a graded right Eg@ (wo - 0))-
module. Because of

Homg (P (wo - 0), Q) = Homg (P (wo - 0) ®c VP (wg - 0), Q) = Home (VP (wg - 0), C/I)

(see, e.g., [CR, 2.19]), the module := Hom¢ (VP (wg - 0), VP(wg - 0)/1) becomes
a graded right Enél(V P (wo - 0))-module, where Ene(V P (wg - 0)) = End, (P (wo - 0)) C
A inherits its grading fronA.

We have I = Annenqvpw,.0) X, hencel is homogeneous (see [Bol, Il, 11.3,
Proposition 4]). O

5. Someshort exact sequences

In Section 3 we described the behavior of Verma modulés - 0) and dual Verma
modulesV (xs - 0) for xs > x under translations through thewall. After forgetting the
gradings, there are isomorphistiyg (x -0) = 6, A(xs -0) and als®; V(x -0) = 6,V (xs-0).

So there is no difference between the translation through-tlall from ‘above’ or from
‘below’ the wall. In the graded case, with which we deal with in this section, the situation
is different.

Simple objects lying ‘above’ the-wall are sent to zero by applying translation through
this wall (see [Ja2]). For simple objects lying ‘below the wall,’ the situation is much more
complicated, but we can determine some multiplicities (see also Corollary 5.4).

Theorem 5.1. Let x € W and lets be a simple reflection satisfyings > x. Then the
formula

) a1 1 ifj =21,
[6:Lxs - 0 Lxs - 0)()] = {O otherwise
holds. Here, the simple modulgxs - 0)(1) is a submodule andl (xs - 0)(—1) is a quotient
of the translated module.
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Proof. It is well known (see, e.g., [Ja2, 4.13(3)]) that after forgetting the grading
[6sL(xs - 0): L(xs - 0)] = 2 holds. So it is sufficient to find two shifts such that the
multiplicities in question are not zero.

The mape ® f, as defined in (3.4), gives an inclusiérixs - 0) < 6;L(xs - 0) which
is homogeneous of degree 1. On the other hand, férraodule M the multiplication
mult:C ®cs M — M induces a morphism

multo

m:Home (VP, C ®cs VP{—1)) —— Home(VP, VP) = Endy(P) (5.1)
of degree-1. So the map
h:Homgy (P, L(xs -0)) ®4 Home (VP, C ®cs VP) — Homg (P, L(xs - 0)),
f®g— fom(g),

gives a surjection being homogeneous of degree 1 in the other directo® g5 Both
maps together yield the two required shiftsa

The previous theorem shows in particular that the inductively defined lifts of the Verma
modules and their duals do not depend (up to isomorphism). dime graded versions of
the dual Verma modules have the following multiplicity formulas

Corollary 5.2. For all x € W we have

[V(x«O):L(X'O)U)]:{g :Iiig

Proof. The statement follows inductively, starting with= wg, from Theorem 5.1 using
the results of Theorem 3.10.0

We are now ready to state some more graded short exact sequences.

Theorem 5.3. Let x € W and lets be a simple reflection such that > x holds. There
exist the following exact sequences of graded modules

Alx-0) s 6, A(xs - 0) = A(xs - 0)(—1). (5.2)
V(xs'O)fﬁ)HSV(xoO)—j;) V(x-0)(-1). (5.3)

Proof. All the maps in question are homogeneous, because of dimkpm(xs - 0),
A(xs - 0)) = 1. Consider the following map:

h:Homg(P, A(xs - 0)) ®4 Home (VP, C ®¢s VP(—1)) — Homg(P, A(xs - 0)),
f®gr fom(g),
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where m is defined as in (5.1). This is a morphism of rightnodules, homogeneous of
degree 1 and non-trivial. So it is, up to a scalar, the mapherefore, there is an exact
sequence of graded modules of the form

Alx-0)(n) <> B, A(xs - 0) = A(xs - 0)(—1),

for somen € Z. On the other hand, we know tha®fA(xs - 0)) = f(6;A(x - 0)) is an
indecomposable module. From Theorem 3.6 it follows that O and soj has to be
homogeneous of degree 0. The proof of the second statement is analogous.

Without using results of Kazhdan—Lusztig theory, we can prove the following result.

Corollary 5.4. With the assumptions of the previous theorem, the following equalities hold

1 ifj=0,

[0sL(xs - 0): Lx-0)(j)] = [o otherwise

(5.4)

Proof. It follows directly from the sequence (5.2) and Corollary 3.7

Corollary 5.5. With the assumptions from previous Theof®i®) there are isomorphisms
of graded modules
Os A(x - 0) = 6, A(xs - 0)(1), (5.5)
0,V (x - 0) = 0,V (xs - 0)(—1). (5.6)

Proof. The assertion follows directly from the Theorems 3.6 and 3.10.
Corollary 5.6. Letx € W. ThenI (x - 0) is the injective hull of_(x - 0) in gmof-A.

Proof. By definition/ (x - 0) is indecomposable and injective. The inductive construction

of these graded modules (see (3.6)) together with the previous corollary and Theorem 3.10
provides an injectiorV(x - 0) < I(x - 0) which is homogeneous of degree 0. So the
statement follows from Corollary 5.2.0

Corollary 5.7. With the assumption of Theorén8, the following formulas hold

1 ifj=1,

[A(x-0):L(xs-0)(j)] = 0 otherwise

Proof. Assume[A(x -0):L(xs-0){j)]# 0 for somej € Z. By Theorem 5.1 we have

1 ifk=j+1,

[65ACx-0): Lixs - 0) (k)] = [0 otherwise.

Hence, by Corollary 5.5,

1 ifk=j+1,

[6:ACrs - 0Dy : Lixs - O)(k)] = [ 0 otherwise.
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By functoriality we get
[AG@-0)(1):L(xs-0)(j+1)]=1 and [A(xs-0):L(xs-0)(j —1)]=1.

On the other hand, the simple moduléxs - 0) is the head ofA(xs - 0) by Corollary 3.7,
hencej = 1 and the statement follows.O

Corollary 5.8.

1 ifj=-1,

[V(x-0):L(xs-0)(j)] = {O otherwise

Proof. With analogous arguments as in Corollary 5.7 the statement follows.

6. Gradingsand duality

In the following section we define a duality functor d on gmoéorresponding to a reg-
ular integral block. Without any additional effort (but with more indices) this can also be
done for singular integral blocks.

6.1. A graded version of duality

The question is, whether there is a ‘graded duality, i.e., a functor d on gmafiich
induces the duality on Oy after forgetting the grading. It should also fulfill the following
conditions:We require that fixes the lift of the simple Verma module and commutes with
translation functors.

6.1.1. Properties of a ‘graded duality’
A ‘graded duality’ d (if it exists) is uniquely defined by the image of the dominant
Verma module. The whole information is given by the following lemma.

Lemma6.1. If there is a ‘graded dualityt of the dualityx on Og, the following statements
have to be true for alk € W and j € Z:

dA(x - 0)(j) = V(x-0)(—j),
dL(x-0)(j) = L(x-0)(—j), and
dP(x-0) = I(x - 0).

Proof. Dualizing (5.2) forxs = wq yields
d(A(wo - 0)(—1)) < 6,V (wo - 0) = V(wos - 0)(j)

for somej. Theorem 5.3 and Corollary 5.5 impligs= 0 and so we get(@ (wgs - 0)) =
V(wos - 0) and d A(wo - 0)(—1)) = V(wg - 0)(1). Inductively the first statement follows.
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The Lemmata 5.2 and 3.7 imply the second assertion.
For the last one, it is sufficient to show thatx - 0) is the injective hull ofL(x - 0),
becauseP (x - 0) is its projective cover. This is just Corollary 5.6

6.1.2. Existence of a ‘graded duality’

Recall the duality for graded-modules. GiverM € C-gmof, the duality is defined
as M* := Hom¢(M, C) = Homc(M, C) (note C is commutative). Due to [So4] all
the imagesVP(x - 0) of projectives modules undé¥ are self-dual. We fix for each
indecomposable projective such an isomorphism. This implies

End,(P) = End, < P P 0)) = Endc(@w(x : 0)> = Endc<@ VP (x- 0)*)

xeW xeW xeW
= End, (P)°FP. (6.1)

This provides a duality on mof-A defined asV* := Homy (M, A) for any M € mof-A
and even a dualityp on gmofA by setting(M®)_; := M.

This duality is contravariant and exact and maps a simple mab{e concentrated
in degreej to L{—j). Therefore, its projective cover is mapped to the injective hull of
L{—j). Moreover, this duality commutes with translation through the walls. To see this
take M € gmof-A and letV := Hom¢ (VP, C ®cs VP({—1)) be the gradedi-bimodule,
which describes the translatiép. We get the following isomorphisms of rightmodules

(95M®)® = Homy (M® ®4 V, A) = Homy (M®, Homa (V, A))
ZHOMu (A, M @4 VE)ZEM @A VEZ M4V =6, M.

We used the isomorphisivi = V®, which follows from the choices of isomorphisms in
(6.1).

7. Gradings, combinatorics, and Hecke algebra

In the following section we describe the combinatorics of graded translation functors.
This is a generalization of the results in (1.2).

We denote b){OOZ] = [gmof-A] the ‘graded’ Grothendieck group of)g, which is in
fact the Grothendieck group of the graded version gmaf-mof-A = Og. Each of the sets
{lAx-0){n)]|x e W,neZ}and{[L(x-0){n)] | x € W, n € Z} forms aZ-basis of[O%].
Moreover,[OF] can be considered asZiv, v—1]-module defined by"[M] := [M (n)].
We get isomorphisms of abelian groups

H [05] (@[v. v iw,
V' Hy > [AGx-0) )] > v"x 7L, (7.1)

which are in fact morphisms &[v, v~1]-modules.
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So far, the main results of the paper can be summarized in the following commuting
diagram.

Theorem 7.1 (Graded combinatoricsThe following diagram commutes

V" Hy—[A(x-0)(n)]

[OF]

(Hs+v) l 0] - (7.2)
V" Hyt>[A(x-0) ()]

(O]
Proof. This follows from the isomorphism (7.1), Theorems 3.6 and 5:3.
7.1. Projectives and the graded reciprocity formula
Our next aim is to compute multiplicities for the lifts of indecomposable projective

modules. Letf € gmof-A. The ‘multiplicities of graded Verma modulgg¥f : A(x - 0)(i)]
are defined by the following equality:

(M]=EP[M: Ax-0)i)][A-0)()]. (7.3)

xeW

A moduleM e gmof-A has a graded Verma fla@r has a graded dual-Verma-flad there

is a filtration of gradedi-modules forM whose subquotients are all isomorphic to lifts of
Verma modules (or dual Verma modules, respectively). The multiplicities (7.3) are in fact
the number of times a Verma module occurs in a graded Verma flag:

Theorem 7.2 (see [Ja3])Let1\7I € Op be gradable with liftM. Assume that for alt € W
andj € Z

EXtgmor (M. V(x - 0)(j)) =0
holds. ThenV has a graded Verma flag.
Proof. The proofis just a mimic of [Ja3, Il, 4.16]. Details can be found in [St2}1
Corollary 7.3. All graded lifts of the projective objects have a graded Verma flag.

Proof. Given two gradedi-modulesM andN there is an isomorphism of vector spaces

@ EX%mof-A (M(.]>7 N) ;) EXt,’-Ihof_A (fM, fN)
J

So the projective objects fulfill the assertion of the theorem.
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Corallary 7.4. All graded lifts of injective modules have a graded dual-Verma-flag. More
precisely, forx, y € W and j € Z the following multiplicities hold

[Px-0):AQ-O)(N]=[1(x-0: V(-0 {=))]
Proof. The proofis given by dualizing the arguments above.
The following lemma is a graded version of a well-known result.

Lemma 7.5. Letx, y € W andi € Z. Then the following formula is true

1 if x=yandi=0,

dim Homymot.4 (A(x - 0), V(y - 0)(i)) = {o otherwise

Proof. Standard argumentation (see, e.g., [KK]) shows that for the existence of such a ho-
momorphism, it is necessary that= y holds. Then the Lemmata 3.7 and 5.2 imply also
i=0. O

Now we are ready to prove the graded version of the so-called BGG-reciprocity (see
[BGS, Theorem 3.11.4]).

Theorem 7.6 (Reciprocity).For x, y € W andi € Z, the following reciprocity formulae
hold:

[PGc-0):AG-0)i)] 2 [V(y-0): Lix - 0)(—i)] o [A(y-0):L(x-0)(i)].

Proof. If y £ x, the statement is trivial. So lgt< x. The Lemma 7.5 implies

dimHomymot-a (P (x - 0), V(y - 0)(i))
= Z[P(x -0): Az 0)(j) ] dimHomymot. (A(z - 0)(j), V(y - 0)(i))

z.j

=[P(x-0):A(y-0)(i)].
So this leads to
[P(x-0):A(y-0)(i)] = dimHomymota (P (x - 0), V(y - 0)(i))

=[V( 0)i):L(x-0)]
=[V(y-0):L(x-0)(—i)].

Thus statementa) is proven. The second statement, by Lemma 6.1, is just the dual of the
firstone. O



C. Stroppel / Journal of Algebra 268 (2003) 301-326 321

So far, we have not used the results of the Kazhdan—Lusztig theory or the fact, that
the endomorphism ring of a projective generator of a blocRiis positively graded (see
[BGS]). We can reprove the latter using Kazhdan—Lusztig theory.

Lemma 7.7. All the inductively defined lifts of Verma modules and projective modules are
positively graded. In particular, the projective generator is positively graded.

Proof. One result of Kazhdan—Lusztig theory is that for a reduced expressien; -

- -5, for any x € W the coefficients ol Hy, + v) - --- - (Hs, + v), expressed in the
standard basis, are polynomials, i.e., elementé[of. By Theorem 7.1 and Lemma 7.6,
all Verma modules and all projective modules are positively graded.

Remarks7.8.

(a) Using the results of Kazhdan—Lusztig theory it is also possible to prove that our graded
versions of indecomposable projective modules correspond via Theorem 7.1 to the
elements of the self-dual Kazhdan—Lusztig bdsis (in the notation of [So3]).

(b) In [So2] a generalized functdV is defined for the category of Harish-Chandra
bimodules with generalized trivial central character from both sides. The subcategory
of all bimodules with fixed generalized trivial character from one side has enough
projectives and can also be considered as a module category over some graded ring.
But in general, the images of the projective modules are not necessarily self-dual. That
means that graded versions of translation functors can be defined, but it is not obvious
how to get a graded duality.

8. Trandationsonto and out of the wall

Let » be a semi-regular integral weight, i.8W,| = |{1, s}| = 2 for some simple
reflections. We denote by res- resgA the restriction functor. The righ#i; -module

Homg (P;, 93P) = Hom:.(V Py, resV P) becomes via composition a left-module, i.e.,
g.f=Nf)ogforge A=End;(P) andf € Home:.(VP;,resVP).

Theorem 8.1 (Translation onto the wall).
(1) Letx be as above. Then the functgy is gradable with lift
e ®4 HOoM: (VP resvVP). (8.1)

(2) The lifts for the simple modules concentrated in degree zero are annihilated or are
mapped to a simple module concentrated in degrédy the functor defined i8.1).

(3) Letxs > x for somex € W and a simple reflection. Concerning Verma modules,
there are isomorphisms of graded modules as follows

0A(x-0)=A(x-2) and
O A(xs -0) = A(xs - A)(—1) = A(x - 1) (—1).
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Proof. The first statement follows directly from Lemma 3.4.

To prove the second statement, we can assume that the given lift of a simple module is
not annihilated by the functor. So we can assume that x holds. By construction, the
moduleP (xs - 0) is a direct summand @ P (x - 0). More precisely, there is a decomposi-
tion as graded’-modules of the form

VP(xs-0)(1) ®VR=C Qcs VP(x - 0)
for some graded’-module R. Restriction t@*-modules yields a decomposition

VP(xs-0)(1) ®VR=VP(x -0)® VP (x -0)(2)
=Vi(P(x 1)@ Vi(Px- 1) dN (8.2)

for someN. (The second equality comes from the fact tRgk - 1) is a direct summand
of «93P(x -0), henceV, (P(x - 1)) is a direct summand d&"@{}P(x 0= resgA VP(x-0),
see [Sol, Theorem 10].)

Using these decompositions, it is possible to define a morphisd*ehodules as
follows:

V(P = Vi (P(x - 2) =5 V(PG - 1))(2) L5 VP (xs - 0)(1),

where the first map is the canonical projection and whgiie given by the decomposi-
tion (8.2). The composition with the natural inclusion provides a homogeneous morphism
h:V,(Py) — VP of degree-1.

We consider the map

Home (VP, VP (xs - 0)) ®4 Homex (Vi (Py), resV P)
— Homg (V3 (Py), Vi (P (x - M)(D)),
f®gr p2o(regf)og), (8.3)

where p denotes the projection onto the second summand of (8.2). This map is well
defined and homogeneous of degree 0. Takingffahe canonical projection onto the
directsumman® P (xs - 0), the image off ® i is non-trivial. More precisely, the canonical
projectionP, — P(x - 1) is of degree-1. So the second assertion is proven.

The third statement is well-known after forgetting the grading. So we have to find the
correct shifts. Using the result

. 1 ifj=1,
[A(x-0):L(xs-0)(j)] = {0 otﬁerwise (8.4)
of Corollary 5.7 and the second statement, we get the following multiplicities:
; 1 ifj=
[03AG-0):Lx - 2)(j)] = {o :)t{]ervsfse (8.5)
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So, the existence of the first of these isomorphisms is proven. For the existence of the
second the arguments are similac

The following theorem describes translation out of the wall.
Theorem 8.2 (Translation out of the wall).
(1) With x as above, the functcﬂf is gradable with lift
e ®4, Home (VP, C ®cr VP (—1)).
(2) For xs > x, there are natural isomorphisms of graded modules
OFA(x - 1) Z0;A(x-0) and 69A(xs - 1) (—1) =6, A(xs - 0).
(3) Letxs > x for somex € W and a simple reflectiox. Then there is an isomorphism of

graded module8?P (x - 1) = P(xs - 0).
(4) Considering the simple modules far > x the following statements hald

0 . N1 it =1,
[07L(x-2):L(x-0)(j)] = {0 otherwise and
07 (v 3y ov il [1 ifjef0,2}
(03102 : Lxs 0)(])]_{0 otherwise

Proof. The first statement follows from Lemma 3.4.
To show the second one, we use induction on the length. ¢f x = ¢, the natural
isomorphisms are given by the composition

Home (V P, VA(L)) ®a, Home (VP, C ®cr VP (—1)) f®g
Ji |
Home (VP, C ®cr VA(L)(—1)) (d® f)og
|
Home (VP, C ®cx VA(0)(—1)) (d® flog
2} j
Homex (V P, VA(0)) ®4, Home (VP, C ®ci VP (—1)) f®g

Let x € W be such thaks > x holds and let be a simple reflection satisfyingt > x.
There are two cases to consider:

t #s: Inthis case there are canonical inclusions

At -0)(1) = A(x-0) and A(xr-A) (1) = A(x - A).
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Hence, the induced isomorphisinA (xz - 0) = GSA(xt - A) is homogeneous of
degree 0.
t =s: Inthis case, there is an isomorphism of graded modules

O, A(xt - 0)(1) Z 02 A(xt - 1).

Inductively the second statement follows.

The assertion concerning the projective objects is well-known after forgetting the
grading. The second statement gives also the graded version.

Using Theorems 8.1, 5.1, and Corollary 5.4, the following statements for simples are
true:

[GSL(x-)\):L(x-0)(j>]=[esL(xs-0)<1>:L(x-0)(j>]={é gt{;;\;i’se
and
[09L(x - 2): L(xs - 0)(j)] = [sL(xs - O)(1): L(xs - 0)(j)] = [é gtﬂ:nfv?’si}’

So the theorem is proved.O
The translation functors are related to each other by the following

Corollary 8.3. There is a natural equivalence of functamof-A — gmof-A:

6s = 02605
Proof. The previous theorem shows that the natural isomorphisms are compatible with the
grading. O

The following Adjointness Theorem is a very strong tool. On the one hand, itis a gener-
alization of the non-graded case, but on the other hand, the adjointness property is satisfied
only up to a grading shift.

Theorem 8.4 (Adjointness).There are the following two adjoint pairs of graded versions
of translation functors

(6,62(-1)) and (62,6%(1)).

Proof. Let M € gmof-A and N € gmof-A,. There are isomorphisms of graded vector
spaces

Homgmot-a, (M ® 4 Homex (V Py, resV P), N) = HoMgmot-a (M, X)

with X = HomMgmot.4, (Home.. (V Py, resVP), N). SettingY = Home» (V P, resV P), we
get the following isomorphisms of graded vector spaces:
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X= HomAA—gmof(N®, Y®) = HomAA—gmof(NGB, Homgmof-4, (¥, Ak))
= Homy,-gmof(¥ ®4, N, 4;) = (Y ®4, N®)® = N @,, Y©. (8.6)

With fixed isomorphism& Q = dV Q for each indecomposable projective modglehis
yields isomorphisms of graded vector spaces

Y® = HoMgmot-a, (Y, A;) = Home (resV P, VPy) = Homg: (V Py, resV P)

= Home (C ®¢r VP, VP) = Home (VP, C ®¢i VP (—2))

=Hom¢(VP, C ®ci VP (—1))(1).
For the second and the fourth isomorphism we used the self-dualifyofor projective
modules Q0 and the canonical isomorphistC ®. M)* = C ®c» (M*)(—-2) (see
Section 6.1.2 and [So4]). The third step is just the adjointness property of restriction and
induction. Altogether, we get an isomorphism compatible with the grading

Homgmot-a, (8¢ M., N) = Homgmor-a (M, 67N (—1)).

To see the second adjunction lte gmof-A, andN € gmof-A. There is an isomorphism
of graded vector spaces

HoMgmof.4 (M ® 4 Home(VP, C ®¢i VP)(—1), N) = Homgmot-a (M, X)

with X = HoMgmot-4, (Homc (VP, C ®@c» VP (—1)), N). Setting = Homc (VP, C Q¢
VP, (—1)), we get in a similar way to (8.6) an isomorphism

XNy We,
On the other hand,

‘/V® = Honbmof.A(W, A) = HOn']Cv(C ®C)‘ VP)L(_]_)’ VP)
= Homg: (VP,.(—1), resVP) = Homg (V Py, resV P) (—1)

holds. This gives the desired isomorphism of graded vector spaces:
Homgmor.a (9M, N) = Homgmor.a, (M, 05 N(1)). O
Corollary 8.5. The functom; (as a functor ogmof-A) is self-adjoint.
Proof. The previous theorem together with Theorem 8.3 implies natural isomorphisms
HomMgmot.a (0s M, N) = HoMgmor. (64 M, 05 N (1)) = HoMgmof.a (M, 65 N)

of graded vector spaces
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