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Abstract

In this article we consider a graded version of categoryO. We reprove some results of [Beilinso
et al., J. Amer. Math. Soc. 9 (1996) 473–527] using a different approach. Furthermore, we d
graded version of translation functors and duality. This provides the construction of various g
modules. On the other hand, we describe how to get modules which are not ‘gradable.’
 2003 Elsevier Inc. All rights reserved.

Introduction

For a finite-dimensional semisimple Lie algebrag with Borel and Cartan subalgebrasb

andh, respectively, we consider the so-called categoryO (originally defined in [BGG]).
This category decomposes into blocks indexed by dominant weights, where each bloOλ

has as objects certaing-modules with a fixed generalized central character.
For any weightλ there is a universal object, the so-calledVerma modulewith highest

weight λ. We denote it by∆(λ). Each Verma module∆(λ) has a simple head, denot
by L(λ). All simple objects inO arise in this way.

A famous problem was to determine the multiplicities[∆(λ) :L(µ)], how often a simple
moduleL(µ) occurs in a composition series of∆(λ). This problem was turned into
combinatorial problem by a conjecture [KL, Conjecture 1.5] of Kazhdan and Lusztig
conjecture states that the multiplicity is given by certain inductively defined polynom
evaluated at 1 and was subsequently proved in [BB1,BK].

The question now was, if there is also an interpretation of the exponents occurr
these Kazhdan–Lusztig polynomials. One answer to this problem is given in the
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1 Partially supported by the EEC program ERB FMRX-CT97-0100.
0021-8693/$ – see front matter 2003 Elsevier Inc. All rights reserved.
doi:10.1016/S0021-8693(03)00308-9
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[BGS] of Beilinson, Ginzburg, and Soergel. They consider each block of categoryO as
a category of right modules over a finite-dimensional algebraA, namely the endomorphism
ring of a minimal projective generator. This algebra is (see [So1]) isomorphic t
algebra of self-extensions of some module; so it inherits a naturalZ-grading. In [BGS,
3.11] it is shown that a Verma module∆(λ) has a graded lift, i.e., that there is a grad
A-moduleM such thatM ∼= ∆̃(λ) after forgetting the grading. Herẽ∆(λ) denotes the righ
A-module corresponding to∆(λ). On the other hand, all simple modules have graded
concentrated in one single degree.

Since by definition the ringA is positively graded, the filtration associated to su
a graded module is in fact a filtration by submodules. Moreover, the exponents
Kazhdan–Lusztig polynomials indicate in which layer of this filtration a certain sim
module occurs [BGS, Theorem 3.11.4]. By the results of [BB2], this filtration coincide
Verma modules with the Jantzen filtration (see [Ja1]). This observation was the moti
for us to ask whether there are other interesting objects inO which are ‘gradable’ in the
sense described above. And if so, whether there is a combinatorial description o
filtrations induced by the grading in terms of Kazhdan–Lusztig polynomials.

For this reason we describe another approach to the graded version of categO
using Soergel’s functorV (defined in [So1]). In this approach, it is straightforward
define graded versions of translation functors. Inductively, this yields graded versio
‘important’ modules, such as Verma modules, dual Verma modules and principal se
general. For Verma modules, it is just the same lift as described in [BGS]. For prin
series, the combinatorics of these graded modules coincide with the ones describe
geometric setup) in [CC].

We prove an Adjointness Theorem (8.4) for these graded translation functors. It
out that the graded versions of translationon andout of the wall are adjoint to each othe
up to a shift. Therefore these graded functors carry more information than the ‘u
translation functors. An easy implication of these adjointness properties is the fac
for typeA1, these graded versions of Verma modules are Koszul modules in the se
[BGS]. We also explain what happens to the graded versions of Verma modules and
modules when translatedthrough, onto or out of the wall. We show the existence of
graded duality, which is a lift of the usual duality onO. This gives the graded version
the Bernstein–Gelfand–Gelfand reciprocity (see also [BGS, Theorem 3.11.4]). Our
result is a combinatorial description of our graded versions of translation functors in
of elements in the corresponding Hecke algebra (Theorem 7.1).

The advantage of our approach is that it provides a way to construct lifts of prin
series. The motivation to define such lifts was given by A. Joseph’s article [Jo] whe
describes the connection between filtered versions of principal series and primitive
in the universal enveloping algebra ofg. Details of how to construct graded versions
principal series from the graded versions of translation functors and why this is use
determine composition factors of quotients of the universal enveloping algebra ofg by the
annihilator of some simpleg-module can be found with some explicit examples in [S
Another advantage of our approach is that it can easily be generalized to the cat
of Harish-Chandra bimodules with generalized trivial central character from both
whose power is fixed from one side. We do not know, however, how to deduce a g
duality.
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We briefly summarize the content of this paper. In the first section we recall
facts about categoryO, translation functors and graded modules. In Section 2 we des
how to consider an integral block ofO as a category of modules over a ring which
graded. This is done without using the main result of [BGS]. In Section 3 we introduc
notation of gradable modules and functors and give the main examples (Verma m
and translation trough the wall). How to find objects for which there exists no grade
is described in Section 4. A graded version of duality can be found in Section 6
main results are the descriptions of graded translation functors in Section 3.2 and Se
which implies the short exact sequences given in Section 5. These results are summ
in the combinatorial description of Theorem 7.1. An Adjointness Theorem is prov
Section 8.

1. The category O and its main properties

Let g ⊃ b ⊃ h be a semisimple complex Lie algebra with a chosen Borel
a fixed Cartan subalgebra. Letg = n− ⊕ b = n− ⊕ h ⊕ n be the corresponding Carta
decomposition. The corresponding universal enveloping algebras are denoted bU =
U(g), U(b), etc.

We consider the categoryO which is a full subcategory of the category of allU(g)-
modules and defined by the following set of objects:

Ob(O) :=

M ∈ U(g)-mod

∣∣∣∣∣∣
M is finitely generated as aU(g)-module,
M is locally finite forn,
h acts diagonally onM


 ,

where the second condition means that dimC U(n) · m <∞ for all m ∈ M and the last
says thatM =⊕

µ∈h∗ Mµ, whereMµ = {m ∈M | h · m = µ(h)m for all h ∈ h} denotes
theµ-weight space ofM.

Many results about this category can be found, for example, in [BGG,Ja1,Ja2
categoryO decomposes into a direct sum of full subcategoriesOχ indexed by centra
charactersχ of U = U(g). Let S(h) = U(h) be the symmetric algebra overh considered
as regular functions onh∗, together with the dot-action of the Weyl groupW , defined as
w ·λ=w(λ+ρ)−ρ for λ ∈ h∗, whereρ is the half-sum of positive roots. LetZ =Z(U) be
the center ofU . Using the so-called Harish-Chandra isomorphism (see, e.g., [Ja1, Sat
[Di, Theorem 7.4.5])Z→ SW · and the fact thatS is integral overSW · [Di, Theorem 7.4.8]
we get an isomorphismξ :h∗/(W ·)→ MaxZ. Here MaxZ denotes the set of maxim
ideals inZ. This yields the following decomposition:

O =
⊕

χ∈MaxZ
Oχ =

⊕
λ∈h∗/(W ·)

Oλ, (1.1)

whereOχ denotes the subcategory ofO consisting of all objects killed by some pow
of χ . It denotes the same block asOλ if ξ(λ)= χ .
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Oλ is called aregular blockof the categoryO if λ is regular, that is, ifλ+ ρ is not zero
at any corooťα belonging tob. We denote byWλ = {w ∈W |w · λ= λ} the stabilizer ofλ
in W .

For all λ ∈ h∗ we have a standard module, the Verma module∆(λ) = U ⊗U(b) Cλ,
whereCλ denotes the irreducibleh-module with weightλ enlarged by the trivial action
to a module over the Borel subalgebra. This Verma module is a highest weight mod
highest weightλ and has central characterξ(λ). We denote byL(λ) the unique irreducible
quotient of∆(λ). Let � denote the duality ofO, i.e., M� is the maximalh-semisimple
submodule of the contragradient representationM∗ with the g-action twisted by the
Chevalley antiautomorphism. We denote by∇(λ) the dual Verma module∆(λ)�.

The categoryO has enough projectives. We denote the projective cover ofL(x · λ) by
P(x ·λ) and its injective hull byI (x ·λ). Thus the indecomposable projective objects inOλ

are in bijection withW/Wλ. By convention we choose forx a representative of minima
length.

1.1. Translation functors and their combinatorial description

Let λ, µ ∈ h∗ be such thatλ− µ is integral. The translation functor from the blockOλ

to Oµ is the functor

θ
µ
λ :Oλ→Oµ,

M �→ prµ
(
M ⊗E(µ− λ)

)
,

where prµ is the projection ontoOµ andE(µ − λ) is the finite-dimensional simpleg-
module with extremal weightλ − µ. Let s be a simple reflection andWµ = {1, s}; then
translationthroughthes-wall is the composition of functorsθs = θλ

µ ◦ θµ
λ . For more details

concerning these functors see [Ja1,Ja2].
For an abelian categoryA we denote by[A] the Grothendieck group ofA, i.e., it

is the free abelian group generated by the isomorphism classes[A] of objectsA in A
modulo relations[C] = [A] + [B] whenever there is a short exact sequence of the f
A ↪→ C →→ B. Consider the case whereA is a blockOλ of O. Each of the three set
{[L(x · λ)] | x ∈W/Wλ}, {[∆(x · λ)] | x ∈W/Wλ}, {[P(x · λ)] | x ∈W/Wλ} forms a basis
of the Grothendieck group ofOλ.

Let us look at the situation whereλ is a regular and integral dominant weight. T
translation functorsθs are exact functors and so they induce a group homomorphismθs on
the Grothendieck group of the trivial blockO0, giving rise to actions of the Weyl group o
each side. For[M] ∈O0 ands a simple reflection, the two actions are defined by

s.[M] = [θsM] − [M] and [M].s = θr
s [M] − [M],

whereθr
s [∆(x · 0)] = [∆(x · 0)] + [∆(sx · 0)].

Remarks 1.1. The notationθr
s should indicate that in fact this group homomorphi

is induced via the Bernstein–Gelfand equivalence [BG,Ja2] by some translation f
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acting from the right-hand side on Harish-Chandra bimodules. The Grothendieck
of the trivial block is isomorphic to the group ringZ[W ] of W over Z via the map
[∆(x · 0)] �→ x−1. Using this isomorphism the left and right action ofs are just given
respectively by the left and right multiplication ofs onW .

We denote by H the Hecke algebra ofW [Bo2, IV, 2, Example 22]. This is by definitio
the freeZ[v, v−1]-module with basis{Hx | x ∈W } together with the relations

H 2
s =He +

(
v−1− v

)
Hs for a simple reflections and

HxHy =Hxy, if l(x)+ l(y)= l(xy).

With v = 1, the additive group of H is isomorphic to the Grothendieck group and
translation functors fit in the following commuting diagrams:

H

·(Hs+v)

v=1

Hx �→[∆(x·0)] [O0]
[θs ]

H
v=1

Hx �→[∆(x·0)] [O0]
,

H

(Hs+v)·
v=1

Hx �→[∆(x·0)] [O0]
[θr

s ]

H
v=1

Hx �→[∆(x·0)] [O0]
. (1.2)

1.2. Gradings

In this section we introduce first of all some notation and also recall some general r
about graded modules which are important for the subsequent sections. In the follow
word ‘graded’ always meansZ-graded. So letA be a graded ring and letM =⊕

n∈Z
Mn

be a gradedA-module. Let f denote the grading forgetting functor.
Form ∈ Z let M〈m〉 be the graded module defined byM〈m〉n :=Mn−m with the same

module structure asM, i.e., f(M〈m〉)= f(M). Given two gradedA-modulesM andN we
denote by

HomA(M,N)= {A-linear maps fromM to N
}

the set of non-graded morphisms. This contains the set

HomA(M,N)i =
{
φ ∈HomA(M,N) | φ(Mj )⊆Nj+i , ∀j ∈ Z

}
of all morphisms which are homogeneous of degreei. From the definitions we get

HomA

(
M〈i〉,N)

0=HomA(M,N)i =HomA

(
M,N〈−i〉)0. (1.3)

Therefore, the ring EndA(M) inherits a natural grading. We denote by gmof-A the
category of all finitely generated graded rightA-modules with homogeneous morphis
of degree zero. For any ringR we denote by mof-R the category of finitely generated rig
R-modules.

The following fact about tensor products is needed later:
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Lemma 1.2. LetR, S be graded rings and letM be a gradedR-S-bimodule andN a grad-
edS-module. Then the moduleM ⊗S N is a gradedR-module.

Proof. TheR-moduleM ⊗Z N can be equipped with a grading, by setting

(M ⊗Z N)i :=
∑
k

Mk ⊗Z Ni−k ⊆M ⊗Z N.

Here,Mk⊗Z Ni−k denotes the subspace of (the tensor product of abelian groups)M⊗Z N

generated by all elements of the formm ⊗ n with m ∈ Mk and n ∈ Ni−k . Obviously,
this is compatible with theR-module structure. We consider the canonical surjec
of R-modulesM ⊗Z N →→ M ⊗S N . The kernel is generated by elements of the fo
ms ⊗ n−m⊗ sn, so it is generated by homogeneous elements.✷

If we consider a category of graded modules over a graded algebra as a ‘g
category’ in the sense of [AJS], we have also the notion of ‘functors of graded categ
or ‘Z-functors.’ The exact definition can be found in [AJS, E.3]. The previous lemma
a standard example of such a functor.

Example 1.3. Let R andS be graded rings and letX be a finitely generated gradedR-S-
bimodule. The functor

•⊗R X : gmof-R→ gmof-S

is a functor of graded categories, where the natural transformations are given by the
isomorphisms

M〈n〉 ⊗R X ∼= (M ⊗R X)〈n〉.

To construct a graded version of the categoryO, the following lemma is crucial.

Lemma 1.4. Let M andN be finite-dimensional modules over a ringS which is graded.
Let N be indecomposable and letN andM ⊕N be gradedS-modules. Then the modu
M inherits a grading.

Proof. Let i :N ↪→ N ⊕ M and p :N ⊕ M → N be the canonical inclusion an
projection, respectively. Leti = ∑

j ij andp =∑
j pj be the grading decomposition

The compositionp ◦ i =∑
n pn ◦ i−n is the identity onN . By assumption EndA(N) is a

local ring. So at least one of the summands, saypn0 ◦ i−n0, should be invertible. Denot
by φ its inverse. This yields a splitting ofφ ◦ pn0 :M ⊕N → N〈−n0〉, namelyi−n0. The
kernel of this morphism is a lift ofM we are looking for. Moreover, it shows that the dire
sum of the constructed lift ofM andN is just the given lift ofM ⊕N . ✷

For indecomposable modules these graded lifts are unique up to isomorphism an
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Lemma 1.5 (Uniqueness of the grading).Let B be a graded ring and letN ∈mof-B be
indecomposable. Furthermore we assume there exists a liftM ∈ gmof-B of N . Then for
eachM ′ ∈ gmof-B such thatf(M)∼= f(M ′)∼=N there is an isomorphismM ∼=M ′〈n〉 for
somen ∈ Z.

In the situation of the lemma, we will say, a bit sloppy, ‘the grading is unique u
a shift.’

Proof. See [BGS, Lemma 2.5.3].✷
1.3. The combinatorial functorV

Fix λ ∈ h∗ a dominant and integral weight. The centerZ of the universal envelopin
algebraU yields by multiplication a mapZ → Endg(P (wλ

0 · λ)), wherewλ
0 denotes the

longest element ofW/Wλ. On the other hand, we have a mapZ → SW · → S/(SW+ ) by
composing the Harish-Chandra isomorphism and the natural projection. HereS+ denotes
the maximal ideal ofS consisting of all regular functions vanishing at zero and(SW+ ) is the
ideal generated by polynomials without a constant term and invariant under the (u
action of the Weyl group. Forλ= 0, both of these maps are surjective and have the s
kernel. This gives the following key result.

Theorem 1.6 ([So1, Endomorphismensatz] and [Be] for regularλ). Let λ ∈ h∗ be an
integral and dominant weight and letWλ be its stabilizer under the dot-action of the W
group. Letwλ

0 be the longest element ofW/Wλ. Then there is an isomorphism of algebr

Endg
(
P

(
wλ

0 · λ
))∼= (

S
/(

SW+
))Wλ.

Remark. The algebra(S/(SW+ )) is the so-called ‘algebra of coinvariants’ and its dimens
(as a complex vector space) is just the order of the Weyl group (see [Bo1]). In the follo
we denote it byC and its invariantsCWλ by Cλ. This algebra is commutative, so we c
consider rightC-modules also as leftC-modules.

Convention 1.7. In order to be consistent with the literature, we considerS = S(h) as an
evenly graded algebra, soS =⊕

i∈N
S2i . We also assume thatS2 = h holds. The algebra

of coinvariantsC inherits a grading.

The previous Endomorphism Theorem makes it possible to define the follo
combinatorial functorV.

Theorem 1.8 [So1, Struktursatz 9].Let λ ∈ h∗ be an integral and dominant weight. Th
exact functor

V=Vλ :Oλ→Cλ-mof,

M �→Homg

(
P

(
wλ

0 · λ
)
,M

)
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is fully faithful on projective objects. In other words, forx, y ∈W/Wλ, there is an isomor
phism of vector spaces

Homg

(
P(x · λ),P (y · λ))∼=HomCλ

(
VP(x · λ),VP(y · λ)).

For x ∈ W with x = sr · · · s3s2s1 a reduced expression andλ dominant, the module
P(x · λ) is isomorphic to a direct summand ofθs1 · · ·θsrM(λ). Moreover, it is the unique
indecomposable direct summand ofM(λ) not isomorphic to someP(y · λ) with y < x

(more details can be found, e.g., in [Ja2,BG,So1]).
Translation through the wall and the functorV are related by the algebra of coinvaria

in the following way.

Theorem 1.9 [So1, Theorem 10].Let λ ∈ h∗ be regular and lets be a simple reflection
Denote byCs the invariants ofC under the action ofs. There is a natural equivalence
functorsOλ→C-mof

Vθs ∼= C ⊗Cs V.

Corollary 1.10. Let x = sr . . . s3s2s1 be a reduced expression ofx ∈W . Then the module
VP(x ·λ) is isomorphic to the unique direct summand ofC⊗Cs1 C⊗Cs2 C⊗Cs3 · · ·⊗Csr C
which is not isomorphic to someVP(y · λ) with y < x.

Remark. The theorem is also true for singularλ if we replaceC by Cλ.

2. The category O as a category of modules over a graded ring

Let λ ∈ h∗ be an integral weight. The objectPλ :=⊕
x∈W/Wλ

P (x · λ) is a (minimal)
projective generator ofOλ. So there is (see [Ba]) an equivalence of categories

Oλ
∼−→mof-Endg(Pλ), (2.1)

M �→ Homg(Pλ,M).

Now we are ready to explain howAλ := Endg(Pλ) can be considered as a graded ring.

Theorem 2.1. Let λ be an integral dominant weight and letQ, Q′ ∈ Oλ be projective
objects. The functorV induces a grading onHomg(Q,Q′). In particular, Endg(Pλ) can
be considered as a graded ring.

Proof. A proof can be found in [BGS]. Since we do not need the stronger results of [B
we also give a proof for the assertion.

By Convention 1.7 the endomorphism ring of the antidominant projective modu
Oλ can be considered as a graded ring. We assume for the moment thatλ is regular.
Given a simple reflections, the subsetCs ⊂ C of C is a graded subring, soC is a graded
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Cs -module. On the other hand, the trivial moduleC is also a gradedCs -module. By
Lemma 1.2, the moduleC ⊗Cs C is a gradedC-module. All projective objects in
block are given by direct summands of direct sums of such successive tensor pr
Therefore, by Lemma 1.4 allVQ with Q projective are graded. Using (1.3) gives
natural grading on HomC(VQ,VQ′) for projective modulesQ and Q′. The property
of faithfulness (see Proposition 1.8) induces therefore a grading on Homg(Q,Q′). In
particular, Endg(Pλ) becomes a graded ring. For singularλ the algebraC has to be replace
by the invariantsCλ. ✷
Convention 2.2. By the proof of Theorem 2.1, the moduleVP(x · λ) becomes a grade
C-module. In the following, we considerVP(x · λ) as a gradedC-module with the
convention that its highest degree isl(x). For λ singular,x should be chosen of minima
possible length. In the followingAλ has then the grading given by Theorem 2.1. Forλ= 0
we omit the subindexλ of A andP .

By this convention the endomorphism ringAλ is in fact a positively graded ring. Detai
for this can be found in [So4] and [BGS, Theorem 1.1.3].

3. Gradable modules and functors

In the following section we introduce lifts of Verma modules and their duals and
define a graded version of translation functors.

3.1. Lifts of objects inOλ

Definition 3.1 (Gradable modules). LetB be a graded ring. We call a moduleM ∈mof-B
gradableif there exists a graded modulẽM ∈mof-B such that f(M̃)∼=M. In this case, the
moduleM̃ is a lift of M.

An object M ∈ Oλ is gradable if Homg(Pλ,M) is a gradableAλ-module, where
Aλ = Endg(Pλ) is graded via Conventions 2.2 and 1.7. By abuse of language, a l
Homg(Pλ,M) is often called alift of M.

We proved in Theorem 2.1 that all projective objects in any integral block are grad
Moreover (see Lemma 1.5), the grading is ‘unique up to a shift.’ By Convention 2.
grading is unique up to isomorphism.

Another example for gradable modules are the simple objects.

Lemma 3.2. Letλ be an integral dominant weight. The simple objects ofOλ are gradable.
Their lifts are pure, i.e., they are concentrated in one degree.

Proof. Consider in Homg(Pλ,P (x ·λ))=HomCλ(V(Pλ),VP(x ·λ)) the one-dimensiona
subspaceL generated by the canonical projection, i.e., the projection onto its simple
as a rightAλ-module. Any complement as vector spaces is also a (right)Aλ-submodule
since the image ofg ◦ f is in the radical ofP(x · λ) for anyg ∈ Homg(Pλ,P (x · λ)) and
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f ∈ Aλ. So the projection from HomC(V(Pλ),VP(x · λ)) ontoL is a homogeneous ma
of degree zero. The quotient is concentrated in degree zero.✷

Note that the previous lemma implies that the inductively defined lift ofP(x · λ) is up
to isomorphism independent of the choice of the reduced expression ofx. Concerning the
notation, we do not distinguish between the projective or simple objects and their g
lifts in the following.

3.2. Lifts of translation functors

Definition 3.3 (Lift of a gradable functor). LetB andD be graded rings. We call a funct
F : mof-B→mof-D gradable, if there exists a functor of graded categoriesF̃ : gmof-B→
gmof-D (in the sense of [AJS]) which inducesF . If there is such a functor̃F , we call it
a lift of F . In other words,̃F is a lift of F , if it is a functor of graded categories such th
the following diagram commutes:

gmof-B

f

F̃
gmof-D

f

mof-B
F

mof-D

For integral and dominant weightsλ andµ, a functor fromOλ to Oµ is gradableif it
induces a gradable functor from mof-Aλ to mof-Aµ.

The following lemma provides some gradable functors including the transl
functors.

Lemma 3.4. LetR andS be any rings. There is an equivalence of categories{
right exact, compatible with direct sums
functors: (g)mof-R→ (g)mof-S

}
∼←→ R-(g)mof-S,

F �→ F(R),

• ⊗R X ← X.

By definition,F(R) is a rightS-module. The left multiplication ofR defines the left modul
structure onF(R).

Proof. See [Ba, 2.2]. ✷
Considerθs :O0 → O0, the translation through thes-wall. The functor induced by

Lemma 3.4 is the functor•⊗A Hom(P, θsP ) on mof-A. This functor is (see Example 1.3
gradable by Theorem 2.1 and Lemma 1.2. We choose the following lift:

•⊗A HomC

(
VP,C ⊗Cs VP 〈−1〉)

and denote it also byθs .
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Remarks 3.5. The graded versionθs is compatible with the Conventions 2.2 in the se
that for exampleθsP (0) ∼= P(s · 0) holds as graded modules. More generally, there i
isomorphism of graded modules

HomC

(
VP,VP(x · 0))⊗A HomC

(
VP,C ⊗Cs VP 〈−1〉)

→HomC

(
VP,C ⊗Cs VP(x · 0)〈−1〉)

g⊗ f �→ (id⊗ g) ◦ f.

3.3. Lifts of Verma modules and their duals

The reason why we consider these graded versions of translation functors is th
that these functors provide a construction of gradable modules. We first show, by
general argument, that all Verma modules are gradable. Consider forx ∈W ands a simple
reflection such thatxs > x the short exact sequence ofA-modules

Homg

(
P,∆(x · 0)) j

↪→Homg

(
P, θs∆(x · 0)) k→→Homg

(
P,∆(xs · 0)). (3.1)

Consider inductively Homg(P,∆(x · 0)) and (by Lemma 3.4) Homg(P, θs∆(x · 0)) ∼=
θs(Homg(P,∆(x ·0)) as graded modules. Since dimHomg(∆(x ·0), θs∆(x ·0))= 1 holds,
the morphismj is homogeneous. Therefore, the cokernel is gradable. Starting wit
projective Verma module, this method provides inductively lifts of all Verma modu
By Lemma 1.5, these graded lifts are unique up to isomorphism and grading shif
lift of ∆(0) = P(0) is given by Convention 2.2. We choose the lift of∆(xs · 0) such
that the surjection in (3.1) is homogeneous of degree zero. So the canonical sur
P(x · 0)→→∆(x · 0) is homogeneous of degree zero and therefore the lifts do not de
on the reduced expression ofx.

Concerning notation, we will not distinguish between Verma modules and their g
lifts. These graded Verma modules fit in a short exact sequence of the following form

Theorem 3.6. For x ∈ W and s a simple reflection such thatxs > x, there is an exac
sequence of graded modules

∆(x · 0)〈1〉 ↪→ θs∆(x · 0)→→∆(xs · 0).

Proof. We choose isomorphismsVP ∼= VP ∗ = HomC(VP,C) of graded rightC-modu-
les, in particular, a graded isomorphismC ∼= Copp. The existence of such an isomorphis
and also the description of a canonical isomorphism(C ⊗Cs M)∗ ∼= C ⊗Cs M∗〈−2〉 can
be found in [So4, Lemma 2.9.2]. So we get the following isomorphisms of graded v
spaces:

HomC

(
VP,C ⊗Cs VP 〈−1〉)∼=HomC

((
C ⊗Cs VP 〈−1〉)∗,VP

)
∼=HomC

((
C ⊗Cs VP

)∗〈1〉,VP
)

∼=HomC

((
C ⊗Cs VP

)〈−1〉,VP
)
. (3.2)
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Multiplication yields a homogeneous map of degree zero:

mult :(C ⊗Cs VP)→VP,

c⊗m �→ cm, (3.3)

so there is aC-linear map

f :VP →C ⊗Cs VP 〈−1〉 (3.4)

which is homogeneous of degree 1. This induces a non-trivial morphism

Homg

(
P,∆(x · 0))→Homg

(
P,∆(x · 0))⊗A HomC

(
VP,C ⊗Cs VP 〈−1〉),

φ �→ φ ⊗ f. (3.5)

Up to a scalar, it has to be the mapj of (3.1). By definition it is homogeneous of degree
So the theorem is proved.✷
Corollary 3.7. Let x ∈W . Then the following multiplicity formulas hold:

[
∆(x · 0) :L(x · 0)〈j 〉]= {

1 if j = 0,
0 otherwise.

Proof. The (up to a scaler unique) surjectionP(y · 0) →→ ∆(y · 0) is homogeneou
of degree zero for anyy ∈ W . On the other hand,P(y · 0) is the projective cover o
L(y · 0). ✷
Remarks 3.8.

(a) The graded versions of Verma modules can also be constructed by considerin
as projective objects in some ‘truncated’ subcategory ofO. This is explained in deta
in [BGS]. These graded versions coincide with our lifts. In our approach no fu
information such as ‘positively graded’ or the description ofA as an algebra of self
extensions [BGS, Theorem 1.1.1] is needed.

(b) The homomorphismf as introduced in (3.4), the multiplication map mult of (3
and the identity (as a homogeneous map of degree 1) correspond under the fo
isomorphisms of graded vector spaces

HomC

(
VP,C ⊗Cs VP 〈−1〉)∼=HomC

(
(C ⊗Cs VP)〈−1〉,VP

)
∼=HomCs

(
VP,HomC(C,VP)

)〈1〉
∼=HomCs (VP,VP)〈1〉.

(c) The proof of Theorem 3.6 shows that the canonical mapM → θsM for any M ∈
gmof-A is homogeneous of degree 1. The proof of Theorem 5.1 will show tha
canonical mapθsM→M is also homogeneous of degree 1.
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Lemma 3.9. For all x ∈ W the dual Verma module∇(x · 0) and the indecomposab
injective moduleI (x · 0) are gradable.

Proof. Consider the exact sequence

∇(xs · 0) k
↪→ θs∇(xs · 0) j→→∇(x · 0) (3.6)

with x ∈W ands a simple reflection such thatxs > x holds. The simple Verma modu
∆(w0 · 0) = ∇(w0 · 0) is gradable. By induction we may assume∇(xs · 0) is gradable.
Hence so isθs∇(xs · 0). Since

dimHomg

(∇(xs · 0), θs∇(xs · 0))= dimHomg

(∇(xs · 0), θs∇(x · 0))
= dimHomg

(
θs∇(xs · 0),∇(x · 0))

= [
θs∇(xs · 0) :L(x · 0)]

= 1

holds,k can be considered as a homogeneous map between the graded lifts. (Th
equality holds, since∇(x · 0) is the injective hull ofL(x · 0) in the full subcategory ofO0
whose objects have only composition factors of the formL(z ·0) with z � x.) This induces
a grading on the cokernel. This grading is determined up to isomorphism by the req
thatk should be homogeneous of degree zero. Inductively this gives the first statem

The gradability of the injective modules then follows inductively by starting with
graded object∇(0). That the lifts are independent of the chosen reduced expressionx

can easily be seen using Proposition 5.1, which is proven independently.✷
The dual statement to Theorem 3.6 is the following theorem.

Theorem 3.10. Let x ∈W and lets be a simple reflection such thatxs > x. The lifts of
dual Verma modules defined in the proof of the previous lemma fit into the following g
exact sequence:

∇(xs · 0)〈1〉 k
↪→ θs∇(xs · 0) j→→∇(x · 0).

Proof. The mapf as in (3.4) gives a non-trivial map

Homg

(
P,∇(xs · 0))→Homg

(
P,∇(xs · 0))⊗A HomC

(
VP,C ⊗Cs VP 〈−1〉),

φ �→ φ ⊗ f,

which has to be, up to a scalar, the mapk in (3.6). The surjection on the right is by definitio
homogeneous of degree zero. This shows the assertion.✷
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4. Non-gradable objects

Although, all the ‘important’ objects ofO0 are gradable, there exist in general obje
which are not. The following theorem shows that the existence of such non-gra
modules is guaranteed by the existence of an inhomogeneous ideal ofC. Such an idea
does not exist for all rank-two cases, but it is not difficult to find one in the caseA3. (With
the notation of [St1] we can choose the ideal generated byx + yz.)

Theorem 4.1 (Non-gradability).LetI �VP(w0 ·0)= C be an ideal andQ ∈O0 gradable.
We also assumeVQ∼= C/I . Then the idealI is homogeneous.

Proof. Assume the module Homg(P,Q) is a graded rightA = EndC(VP) = Endg(P )-
module. Via restriction Homg(P (w0 · 0),Q) becomes a graded right Endg(P (w0 · 0))-
module. Because of

Homg

(
P(w0 · 0),Q

)=Homg

(
P(w0 · 0)⊗C VP(w0 · 0),Q

)=HomC

(
VP(w0 · 0),C/I

)
(see, e.g., [CR, 2.19]), the moduleX := HomC(VP(w0 · 0),VP(w0 · 0)/I) becomes
a graded right EndC(VP(w0 ·0))-module, where EndC(VP(w0 ·0))= Endg(P (w0 ·0))⊂
A inherits its grading fromA.

We have I = AnnEnd(VP(w0·0)) X, hence I is homogeneous (see [Bo1, II, 11.
Proposition 4]). ✷

5. Some short exact sequences

In Section 3 we described the behavior of Verma modules∆(x · 0) and dual Verma
modules∇(xs · 0) for xs > x under translations through thes-wall. After forgetting the
gradings, there are isomorphismsθs∆(x ·0)∼= θs∆(xs ·0) and alsoθs∇(x ·0)∼= θs∇(xs ·0).
So there is no difference between the translation through thes-wall from ‘above’ or from
‘below’ the wall. In the graded case, with which we deal with in this section, the situ
is different.

Simple objects lying ‘above’ thes-wall are sent to zero by applying translation throu
this wall (see [Ja2]). For simple objects lying ‘below the wall,’ the situation is much m
complicated, but we can determine some multiplicities (see also Corollary 5.4).

Theorem 5.1. Let x ∈ W and let s be a simple reflection satisfyingxs > x. Then the
formula

[
θsL(xs · 0) :L(xs · 0)〈j 〉]= {

1 if j =±1,
0 otherwise,

holds. Here, the simple moduleL(xs ·0)〈1〉 is a submodule andL(xs ·0)〈−1〉 is a quotient
of the translated module.
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Proof. It is well known (see, e.g., [Ja2, 4.13(3’)]) that after forgetting the grad
[θsL(xs · 0) :L(xs · 0)] = 2 holds. So it is sufficient to find two shifts such that t
multiplicities in question are not zero.

The map• ⊗ f , as defined in (3.4), gives an inclusionL(xs · 0) ↪→ θsL(xs · 0) which
is homogeneous of degree 1. On the other hand, for aC-moduleM the multiplication
mult :C ⊗Cs M→M induces a morphism

m : HomC

(
VP,C ⊗Cs VP 〈−1〉) mult◦−−−−→HomC(VP,VP)= Endg(P ) (5.1)

of degree−1. So the map

h : Homg

(
P,L(xs · 0))⊗A HomC(VP,C ⊗Cs VP)→Homg

(
P,L(xs · 0)),

f ⊗ g �→ f ◦m(g),

gives a surjection being homogeneous of degree 1 in the other direction as• ⊗ f . Both
maps together yield the two required shifts.✷

The previous theorem shows in particular that the inductively defined lifts of the V
modules and their duals do not depend (up to isomorphism) onx. The graded versions o
the dual Verma modules have the following multiplicity formulas

Corollary 5.2. For all x ∈W we have

[∇(x · 0) :L(x · 0)〈i〉]= {
0 if i != 0,
1 if i = 0.

Proof. The statement follows inductively, starting withx = w0, from Theorem 5.1 using
the results of Theorem 3.10.✷

We are now ready to state some more graded short exact sequences.

Theorem 5.3. Let x ∈W and lets be a simple reflection such thatxs > x holds. There
exist the following exact sequences of graded modules:

∆(x · 0) j
↪→ θs∆(xs · 0) k→→∆(xs · 0)〈−1〉, (5.2)

∇(xs · 0) k′
↪→ θs∇(x · 0) j ′→→∇(x · 0)〈−1〉. (5.3)

Proof. All the maps in question are homogeneous, because of dimHomg(θs∆(xs · 0),
∆(xs · 0))= 1. Consider the following map:

h : Homg

(
P,∆(xs · 0))⊗A HomC

(
VP,C ⊗Cs VP 〈−1〉)→Homg

(
P,∆(xs · 0)),

f ⊗ g �→ f ◦m(g),
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where m is defined as in (5.1). This is a morphism of rightA-modules, homogeneous
degree 1 and non-trivial. So it is, up to a scalar, the mapk. Therefore, there is an exa
sequence of graded modules of the form

∆(x · 0)〈n〉 j
↪→ θs∆(xs · 0) k→→∆(xs · 0)〈−1〉,

for somen ∈ Z. On the other hand, we know that f(θs∆(xs · 0)) ∼= f(θs∆(x · 0)) is an
indecomposable module. From Theorem 3.6 it follows thatn = 0 and soj has to be
homogeneous of degree 0. The proof of the second statement is analogous.✷

Without using results of Kazhdan–Lusztig theory, we can prove the following resu

Corollary 5.4. With the assumptions of the previous theorem, the following equalities:

[
θsL(xs · 0) :L(x · 0)〈j 〉]= {

1 if j = 0,
0 otherwise.

(5.4)

Proof. It follows directly from the sequence (5.2) and Corollary 3.7.✷
Corollary 5.5. With the assumptions from previous Theorem5.3, there are isomorphism
of graded modules

θs∆(x · 0)∼= θs∆(xs · 0)〈1〉, (5.5)

θs∇(x · 0)∼= θs∇(xs · 0)〈−1〉. (5.6)

Proof. The assertion follows directly from the Theorems 3.6 and 3.10.✷
Corollary 5.6. Let x ∈W . ThenI (x · 0) is the injective hull ofL(x · 0) in gmof-A.

Proof. By definitionI (x · 0) is indecomposable and injective. The inductive construc
of these graded modules (see (3.6)) together with the previous corollary and Theore
provides an injection∇(x · 0) ↪→ I (x · 0) which is homogeneous of degree 0. So
statement follows from Corollary 5.2.✷
Corollary 5.7. With the assumption of Theorem5.3, the following formulas hold:

[
∆(x · 0) :L(xs · 0)〈j 〉]= {

1 if j = 1,
0 otherwise.

Proof. Assume[∆(x · 0) :L(xs · 0)〈j 〉] != 0 for somej ∈ Z. By Theorem 5.1 we have

[
θs∆(x · 0) :L(xs · 0)〈k〉]= {

1 if k = j ± 1,
0 otherwise.

Hence, by Corollary 5.5,

[
θs∆(xs · 0)〈1〉 :L(xs · 0)〈k〉]= {

1 if k = j ± 1,

0 otherwise.
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By functoriality we get[
∆(x · 0)〈1〉 :L(xs · 0)〈j + 1〉]= 1 and

[
∆(xs · 0) :L(xs · 0)〈j − 1〉]= 1.

On the other hand, the simple moduleL(xs · 0) is the head of∆(xs · 0) by Corollary 3.7,
hencej = 1 and the statement follows.✷
Corollary 5.8.

[∇(x · 0) :L(xs · 0)〈j 〉]= {
1 if j =−1,
0 otherwise.

Proof. With analogous arguments as in Corollary 5.7 the statement follows.✷

6. Gradings and duality

In the following section we define a duality functor d on gmof-A corresponding to a reg
ular integral block. Without any additional effort (but with more indices) this can als
done for singular integral blocks.

6.1. A graded version of duality

The question is, whether there is a ‘graded duality,’ i.e., a functor d on gmof-A which
induces the duality� onO0 after forgetting the grading. It should also fulfill the followin
conditions:We require thatd fixes the lift of the simple Verma module and commutes
translation functors.

6.1.1. Properties of a ‘graded duality’
A ‘graded duality’ d (if it exists) is uniquely defined by the image of the domin

Verma module. The whole information is given by the following lemma.

Lemma 6.1. If there is a ‘graded duality’d of the duality� onO0, the following statement
have to be true for allx ∈W andj ∈ Z:

d∆(x · 0)〈j 〉 ∼= ∇(x · 0)〈−j 〉,
dL(x · 0)〈j 〉 ∼= L(x · 0)〈−j 〉, and

dP(x · 0)∼= I (x · 0).

Proof. Dualizing (5.2) forxs =w0 yields

d
(
∆(w0 · 0)〈−1〉) ↪→ θs∇(w0 · 0)→→∇(w0s · 0)〈j 〉

for somej . Theorem 5.3 and Corollary 5.5 impliesj = 0 and so we get d(∆(w0s · 0))∼=
∇(w0s · 0) and d(∆(w0 · 0)〈−1〉)∼=∇(w0 · 0)〈1〉. Inductively the first statement follows
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The Lemmata 5.2 and 3.7 imply the second assertion.
For the last one, it is sufficient to show thatI (x · 0) is the injective hull ofL(x · 0),

becauseP(x · 0) is its projective cover. This is just Corollary 5.6.✷
6.1.2. Existence of a ‘graded duality’

Recall the duality for gradedC-modules. GivenM ∈ C-gmof, the duality is defined
as M∗ := HomC(M,C) ∼= HomC(M,C) (note C is commutative). Due to [So4] a
the imagesVP(x · 0) of projectives modules underV are self-dual. We fix for eac
indecomposable projective such an isomorphism. This implies

Endg(P )= Endg

( ⊕
x∈W

P(x · 0)
)
= EndC

( ⊕
x∈W

VP(x · 0)
)
= EndC

( ⊕
x∈W

VP(x · 0)∗
)

= Endg(P )opp. (6.1)

This provides a duality∗ on mof-A defined asM∗ := HomA(M,A) for anyM ∈mof-A
and even a duality� on gmof-A by setting(M�)−i :=M∗

i .
This duality is contravariant and exact and maps a simple moduleL〈j 〉 concentrated

in degreej to L〈−j 〉. Therefore, its projective cover is mapped to the injective hul
L〈−j 〉. Moreover, this duality commutes with translation through the walls. To see
takeM ∈ gmof-A and letV := HomC(VP,C ⊗Cs VP 〈−1〉) be the gradedA-bimodule,
which describes the translationθs . We get the following isomorphisms of rightA-modules

(
θsM

�)� ∼=HomA

(
M� ⊗A V,A

)∼=HomA

(
M�,HomA(V,A)

)
∼=HomA

(
A,M ⊗A V �)∼=M ⊗A V � ∼=M ⊗A V ∼= θsM.

We used the isomorphismV ∼= V �, which follows from the choices of isomorphisms
(6.1).

7. Gradings, combinatorics, and Hecke algebra

In the following section we describe the combinatorics of graded translation fun
This is a generalization of the results in (1.2).

We denote by[OZ

0 ] = [gmof-A] the ‘graded’ Grothendieck group ofO0, which is in
fact the Grothendieck group of the graded version gmof-A of mof-A∼=O0. Each of the set
{[∆(x · 0)〈n〉] | x ∈W,n ∈ Z} and{[L(x · 0)〈n〉] | x ∈W, n ∈ Z} forms aZ-basis of[OZ

0 ].
Moreover,[OZ

0 ] can be considered as aZ[v, v−1]-module defined byvn[M] := [M〈n〉].
We get isomorphisms of abelian groups

H−−−→ [
OZ

0

] −−−→ (
Z
[
v, v−1])[W ],

vnHx �→
[
∆(x · 0)〈n〉] �→ vnx−1, (7.1)

which are in fact morphisms ofZ[v, v−1]-modules.
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So far, the main results of the paper can be summarized in the following comm
diagram.

Theorem 7.1 (Graded combinatorics).The following diagram commutes:

H

·(Hs+v)

vnHx �→[∆(x·0)〈n〉] [OZ

0 ]
[θs ]

H
vnHx �→[∆(x·0)〈n〉] [OZ

0 ]

. (7.2)

Proof. This follows from the isomorphism (7.1), Theorems 3.6 and 5.3.✷
7.1. Projectives and the graded reciprocity formula

Our next aim is to compute multiplicities for the lifts of indecomposable projec
modules. LetM ∈ gmof-A. The ‘multiplicities of graded Verma modules’[M :∆(x ·0)〈i〉]
are defined by the following equality:

[M] =
⊕
x∈W

[
M :∆(x · 0)〈i〉][∆(x · 0)〈i〉]. (7.3)

A moduleM ∈ gmof-A has a graded Verma flag(or has a graded dual-Verma-flag) if there
is a filtration of gradedA-modules forM whose subquotients are all isomorphic to lifts
Verma modules (or dual Verma modules, respectively). The multiplicities (7.3) are in
the number of times a Verma module occurs in a graded Verma flag:

Theorem 7.2 (see [Ja3]).Let M̃ ∈O0 be gradable with liftM. Assume that for allx ∈W

andj ∈ Z

Ext1gmof-A
(
M,∇(x · 0)〈j 〉)= 0

holds. ThenM has a graded Verma flag.

Proof. The proof is just a mimic of [Ja3, II, 4.16]. Details can be found in [St2].✷
Corollary 7.3. All graded lifts of the projective objects have a graded Verma flag.

Proof. Given two gradedA-modulesM andN there is an isomorphism of vector space

⊕
j

Ext1gmof-A

(
M〈j 〉,N) ∼−→ Ext1mof-A(fM, fN).

So the projective objects fulfill the assertion of the theorem.✷
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Corollary 7.4. All graded lifts of injective modules have a graded dual-Verma-flag. M
precisely, forx, y ∈W andj ∈ Z the following multiplicities hold:

[
P(x · 0) :∆(y · 0)〈j 〉]= [

I (x · 0) :∇(y · 0)〈−j 〉].
Proof. The proof is given by dualizing the arguments above.✷

The following lemma is a graded version of a well-known result.

Lemma 7.5. Let x, y ∈W andi ∈ Z. Then the following formula is true:

dimHomgmof-A
(
∆(x · 0),∇(y · 0)〈i〉)= {

1 if x = y andi = 0,
0 otherwise.

Proof. Standard argumentation (see, e.g., [KK]) shows that for the existence of such
momorphism, it is necessary thatx = y holds. Then the Lemmata 3.7 and 5.2 imply a
i = 0. ✷

Now we are ready to prove the graded version of the so-called BGG-reciprocity
[BGS, Theorem 3.11.4]).

Theorem 7.6 (Reciprocity).For x, y ∈W and i ∈ Z, the following reciprocity formulae
hold:

[
P(x · 0) :∆(y · 0)〈i〉] (a)= [∇(y · 0) :L(x · 0)〈−i〉] (b)= [

∆(y · 0) :L(x · 0)〈i〉].
Proof. If y � x, the statement is trivial. So lety � x. The Lemma 7.5 implies

dimHomgmof-A
(
P(x · 0),∇(y · 0)〈i〉)

=
∑
z,j

[
P(x · 0) :∆(z · 0)〈j 〉]dimHomgmof-A

(
∆(z · 0)〈j 〉,∇(y · 0)〈i〉)

= [
P(x · 0) :∆(y · 0)〈i〉].

So this leads to

[
P(x · 0) :∆(y · 0)〈i〉]= dimHomgmof-A

(
P(x · 0),∇(y · 0)〈i〉)

= [∇(y · 0)〈i〉 :L(x · 0)]
= [∇(y · 0) :L(x · 0)〈−i〉].

Thus statement(a) is proven. The second statement, by Lemma 6.1, is just the dual o
first one. ✷
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So far, we have not used the results of the Kazhdan–Lusztig theory or the fac
the endomorphism ring of a projective generator of a block inO is positively graded (se
[BGS]). We can reprove the latter using Kazhdan–Lusztig theory.

Lemma 7.7. All the inductively defined lifts of Verma modules and projective module
positively graded. In particular, the projective generator is positively graded.

Proof. One result of Kazhdan–Lusztig theory is that for a reduced expressionx = s1 ·
· · · · sr for any x ∈ W the coefficients of(Hs1 + v) · · · · · (Hsr + v), expressed in th
standard basis, are polynomials, i.e., elements ofZ[v]. By Theorem 7.1 and Lemma 7.
all Verma modules and all projective modules are positively graded.✷
Remarks 7.8.

(a) Using the results of Kazhdan–Lusztig theory it is also possible to prove that our g
versions of indecomposable projective modules correspond via Theorem 7.1
elements of the self-dual Kazhdan–Lusztig basisH x (in the notation of [So3]).

(b) In [So2] a generalized functorV is defined for the category of Harish-Chand
bimodules with generalized trivial central character from both sides. The subcat
of all bimodules with fixed generalized trivial character from one side has en
projectives and can also be considered as a module category over some grad
But in general, the images of the projective modules are not necessarily self-dua
means that graded versions of translation functors can be defined, but it is not o
how to get a graded duality.

8. Translations onto and out of the wall

Let λ be a semi-regular integral weight, i.e.,|Wλ| = |{1, s}| = 2 for some simple
reflection s. We denote by res= resC

Cλ the restriction functor. The rightAλ-module

Homg(Pλ, θ
λ
0P) = HomCλ(VPλ, resVP) becomes via composition a leftA-module, i.e.,

g.f := (Vf ) ◦ g for g ∈A= Endg(P ) andf ∈HomCλ(VPλ, resVP).

Theorem 8.1 (Translation onto the wall).

(1) Letλ be as above. Then the functorθλ
0 is gradable with lift

• ⊗A HomCλ(VPλ, resVP). (8.1)

(2) The lifts for the simple modules concentrated in degree zero are annihilated o
mapped to a simple module concentrated in degree−1 by the functor defined in(8.1).

(3) Let xs > x for somex ∈ W and a simple reflections. Concerning Verma module
there are isomorphisms of graded modules as follows:

θλ
0∆(x · 0)∼=∆(x · λ) and

θλ
0∆(xs · 0)∼=∆(xs · λ)〈−1〉 ∼=∆(x · λ)〈−1〉.
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Proof. The first statement follows directly from Lemma 3.4.
To prove the second statement, we can assume that the given lift of a simple mo

not annihilated by the functor. So we can assume thatxs > x holds. By construction, th
moduleP(xs · 0) is a direct summand ofθsP (x · 0). More precisely, there is a decompo
tion as gradedC-modules of the form

VP(xs · 0)〈1〉 ⊕VR= C ⊗Cs VP(x · 0)

for some gradedC-module R. Restriction toCλ-modules yields a decomposition

VP(xs · 0)〈1〉 ⊕VR=VP(x · 0)⊕VP(x · 0)〈2〉
=Vλ

(
P(x · λ))⊕Vλ

(
P(x · λ))〈2〉 ⊕N (8.2)

for someN . (The second equality comes from the fact thatP(x · λ) is a direct summand
of θλ

0P(x · 0), henceVλ(P (x · λ)) is a direct summand ofVθλ
0P(x · 0)∼= resC

Cλ VP(x · 0),
see [So1, Theorem 10].)

Using these decompositions, it is possible to define a morphism ofCλ-modules as
follows:

h̃ :Vλ(Pλ)→→Vλ

(
P(x · λ)) id−→Vλ

(
P(x · λ))〈2〉 f−→VP(xs · 0)〈1〉,

where the first map is the canonical projection and wheref is given by the decompos
tion (8.2). The composition with the natural inclusion provides a homogeneous mor
h :Vλ(Pλ)→VP of degree−1.

We consider the map

HomC

(
VP,VP(xs · 0))⊗A HomCλ

(
Vλ(Pλ), resVP

)
→HomCλ

(
Vλ(Pλ),Vλ

(
P(x · λ))〈1〉),

f ⊗ g �→ p2 ◦
(
res(f ) ◦ g

)
, (8.3)

where p2 denotes the projection onto the second summand of (8.2). This map is
defined and homogeneous of degree 0. Taking forf the canonical projection onto th
direct summandVP(xs ·0), the image off ⊗h is non-trivial. More precisely, the canonic
projectionPλ →→ P(x · λ) is of degree−1. So the second assertion is proven.

The third statement is well-known after forgetting the grading. So we have to fin
correct shifts. Using the result

[
∆(x · 0) :L(xs · 0)〈j 〉]= {

1 if j = 1,
0 otherwise,

(8.4)

of Corollary 5.7 and the second statement, we get the following multiplicities:

[
θλ

0∆(x · 0) :L(x · λ)〈j 〉]= {
1 if j = 0, (8.5)

0 otherwise.



C. Stroppel / Journal of Algebra 268 (2003) 301–326 323

of the

of
So, the existence of the first of these isomorphisms is proven. For the existence
second the arguments are similar.✷

The following theorem describes translation out of the wall.

Theorem 8.2 (Translation out of the wall).

(1) Withλ as above, the functorθ0
λ is gradable with lift

•⊗Aλ HomC

(
VP,C ⊗Cλ VPλ〈−1〉).

(2) For xs > x, there are natural isomorphisms of graded modules

θ0
λ∆(x · λ)∼= θs∆(x · 0) and θ0

λ∆(xs · λ)〈−1〉 ∼= θs∆(xs · 0).

(3) Letxs > x for somex ∈W and a simple reflections. Then there is an isomorphism
graded modulesθ0

λP (x · λ)∼= P(xs · 0).
(4) Considering the simple modules forxs > x the following statements hold:

[
θ0
λL(x · λ) :L(x · 0)〈j 〉]= {

1 if j = 1,
0 otherwise,

and

[
θ0
λL(x · λ) :L(xs · 0)〈j 〉]= {

1 if j ∈ {0,2},
0 otherwise.

Proof. The first statement follows from Lemma 3.4.
To show the second one, we use induction on the length ofx. If x = e, the natural

isomorphisms are given by the composition

HomCλ

(
VPλ,V∆(λ)

)⊗Aλ HomC

(
VP,C ⊗Cλ VPλ〈−1〉)

#
f ⊗ g

HomC

(
VP,C ⊗Cλ V∆(λ)〈−1〉)

#
(id⊗ f ) ◦ g

HomC

(
VP,C ⊗Cλ V∆(0)〈−1〉) (id⊗ f ) ◦ g

HomCλ

(
VPλ,V∆(0)

)⊗Aλ HomC

(
VP,C ⊗Cλ VPλ〈−1〉)

#
f ⊗ g

Let x ∈W be such thatxs > x holds and lett be a simple reflection satisfyingxt > x.
There are two cases to consider:

t != s: In this case there are canonical inclusions

∆(xt · 0)〈1〉 ↪→∆(x · 0) and ∆(xt · λ)〈1〉 ↪→∆(x · λ).
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Hence, the induced isomorphismθs∆(xt · 0) ∼= θ0
λ∆(xt · λ) is homogeneous o

degree 0.
t = s: In this case, there is an isomorphism of graded modules

θs∆(xt · 0)〈1〉 ∼= θ0
λ∆(xt · λ).

Inductively the second statement follows.
The assertion concerning the projective objects is well-known after forgetting

grading. The second statement gives also the graded version.
Using Theorems 8.1, 5.1, and Corollary 5.4, the following statements for simple

true:

[
θ0
λL(x · λ) :L(x · 0)〈j 〉]= [

θsL(xs · 0)〈1〉 :L(x · 0)〈j 〉]= {
1 if j = 1,
0 otherwise,

and

[
θ0
λL(x · λ) :L(xs · 0)〈j 〉]= [

θsL(xs · 0)〈1〉 :L(xs · 0)〈j 〉]= {
1 if j ∈ {0,2},
0 otherwise.

So the theorem is proved.✷
The translation functors are related to each other by the following

Corollary 8.3. There is a natural equivalence of functorsgmof-A→ gmof-A:

θs ∼= θ0
λθ

λ
0 .

Proof. The previous theorem shows that the natural isomorphisms are compatible w
grading. ✷

The following Adjointness Theorem is a very strong tool. On the one hand, it is a g
alization of the non-graded case, but on the other hand, the adjointness property is s
only up to a grading shift.

Theorem 8.4 (Adjointness).There are the following two adjoint pairs of graded versio
of translation functors:

(
θλ

0 , θ0
λ 〈−1〉) and

(
θ0
λ, θ

λ
0 〈1〉

)
.

Proof. Let M ∈ gmof-A and N ∈ gmof-Aλ. There are isomorphisms of graded vec
spaces

Homgmof-Aλ

(
M ⊗A HomCλ(VPλ, resVP),N

)∼=Homgmof-A(M,X)

with X = Homgmof-Aλ(HomCλ(VPλ, resVP ),N). SettingY = HomCλ(VPλ, resVP), we
get the following isomorphisms of graded vector spaces:
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X ∼=HomAλ-gmof
(
N�, Y�)∼=HomAλ-gmof

(
N�,Homgmof-Aλ(Y,Aλ)

)
∼=HomAλ-gmof

(
Y ⊗Aλ N�,Aλ

)∼= (
Y ⊗Aλ N�)� ∼=N ⊗Aλ Y�. (8.6)

With fixed isomorphismsVQ∼= dVQ for each indecomposable projective moduleQ this
yields isomorphisms of graded vector spaces

Y� = Homgmof-Aλ(Y,Aλ)∼=HomCλ(resVP,VPλ)∼=HomCλ(VPλ, resVP )

∼= HomC(C ⊗Cλ VPλ,VP)∼=HomC

(
VP,C ⊗Cλ VPλ〈−2〉)

∼= HomC

(
VP,C ⊗Cλ VPλ〈−1〉)〈1〉.

For the second and the fourth isomorphism we used the self-duality ofVQ for projective
modulesQ and the canonical isomorphism(C ⊗Cλ M)∗ ∼= C ⊗Cλ (M∗)〈−2〉 (see
Section 6.1.2 and [So4]). The third step is just the adjointness property of restrictio
induction. Altogether, we get an isomorphism compatible with the grading

Homgmof-Aλ

(
θλ

0M,N
)∼=Homgmof-A

(
M,θ0

λN〈−1〉).
To see the second adjunction letM ∈ gmof-Aλ andN ∈ gmof-A. There is an isomorphism
of graded vector spaces

Homgmof-A
(
M ⊗A HomC(VP,C ⊗Cλ VPλ)〈−1〉,N)∼=Homgmof-A(M,X)

with X =Homgmof-Aλ(HomC(VP,C ⊗Cλ VPλ〈−1〉),N). SettingW =HomC(VP,C⊗Cλ

VPλ〈−1〉), we get in a similar way to (8.6) an isomorphism

X ∼=N ⊗A W�.

On the other hand,

W� =Homgmof-A(W,A)∼=HomC

(
C ⊗Cλ VPλ〈−1〉,VP

)
∼=HomCλ

(
VPλ〈−1〉, resVP

)=HomCλ

(
VPλ, resVP

)〈−1〉
holds. This gives the desired isomorphism of graded vector spaces:

Homgmof-A
(
θ0
λM,N

)∼=Homgmof-Aλ

(
M,θλ

0N〈1〉). ✷
Corollary 8.5. The functorθs (as a functor ongmof-A) is self-adjoint.

Proof. The previous theorem together with Theorem 8.3 implies natural isomorphis

Homgmof-A(θsM,N)∼=Homgmof-A
(
θλ

0M,θλ
0N〈1〉)∼=Homgmof-A(M,θsN)

of graded vector spaces.✷
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