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We show that the Brauer algebra Brd(δ) over the complex numbers for an integral parameter δ can be equipped with a

grading. In case δ ≠ 0 it becomes a graded quasi-hereditary algebra which is moreover Morita equivalent to a Koszul

algebra. These results are obtained by realizing the Brauer algebra as an idempotent truncation of a certain level two

VW-algebra ⩔
cycl
d (N) for some large positive integral parameter N . The parameter δ appears here in the choice of a

cyclotomic quotient. This cyclotomic VW-algebra arises naturally as an endomorphism algebra of a certain projective

module in parabolic category O of type D. In particular, the graded decomposition numbers are given by the associated

parabolic Kazhdan-Lusztig polynomials.

1 Introduction

We fix as ground ring the complex numbers C. Given an integer d ≥ 1 and δ ∈ C, the associated Brauer algebra

Brd(δ) is a diagrammatically defined algebra with basis all Brauer diagrams on 2d points, that is all possible

matchings of 2d points with d strands, such that each point is the endpoint of exactly one strand. In other

words, the basis elements correspond precisely to subdivisions of the set of 2d points into subsets of order 2.

Here is an example of such a Brauer diagram (with d = 11):

(1.1)

The multiplication is given on these basis vectors by a simple diagrammatic rule: we fix the positions of the 2d

points as in the diagram (1.1) with d points at the bottom and d points at the top. Then the product bb′ is equal

to δk(b′ ○ b), where b′ ○ b is the Brauer diagram obtained from the two basis elements b and b′ by stacking b′ on

top of b (identifying the bottom points of b′ with the top points of b in the obvious way) and then turning the

result into a Brauer diagram by removing all internal circles; hereby, k is the number of such circles removed.
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For instance:

● = δ
(1.2)

Brauer algebras form important examples of cellular diagram algebras in the sense of [18]. In particular we have

cell modules (or Specht modules) ∆(λ) indexed by λ ∈ Λd. Here

Λd = ⋃
m∈Z≥0∩(d−2Z≥0)

Par(m),

with Par(m) denoting the partitions of the integer m. We have simple modules L(λ) for λ ∈ Λδd, where Λδd = Λd

in case of δ ≠ 0 and Λδd = Λd ∖Par(0) in case of δ = 0, see [9].

Although the Brauer algebra can be defined for arbitrary δ ∈ C it turns out that it is always semi-simple

for δ ∉ Z, see [31] or [27]. For our purposes these cases are trivial, hence we will always assume δ ∈ Z.

Brauer algebras were originally introduced by Brauer [6] in the context of classical invariant theory as

centralizer algebras of tensor products of the natural representation of orthogonal and symplectic Lie algebras.

More precisely, assuming d < n there is a canonical isomorphism of algebras

Endg(V
⊗d) ≅ Brd(N), (1.3)

where g is an orthogonal or symplectic Lie algebra of rank n with vector representation V of dimension N in

the orthogonal case and dimension −N in the symplectic case, see e.g. [11] or [17] for details.

As an algebra, the Brauer algebra is generated by the following elements ti, gi, with 1 ≤ i ≤ d − 1,

ti

i+1i

gi

i i+1

(1.4)

and ti acts on V ⊗d in (1.3) by permuting the ith and (i + 1)st tensor factor, and the element gi acts by applying

to the ith and (i + 1)st factor the evaluation morphism V ⊗ V = V ∗ ⊗ V → C followed by its adjoint.

The realization (1.3) as centralizers includes the cases Brd(δ) for δ ∈ Z integral and δ large enough in

comparison to d. Hence the Brauer algebra is semisimple in these cases. In fact it was shown by Rui, see [27],

that Brd(δ) is semisimple except for δ integral of small absolute value, see also [1, Theorem 7.1] for an explicit

statement and more detailed proofs. For arbitrary δ ∈ Z and d ≥ 1 the Brauer algebras still appear as centralizers

of the form (1.3) if we replace g by an orthosymplectic Lie superalgebra such that its vector representation has

super dimension k∣2n with δ = k − 2n, see [16]. This also gives an explanation why Brauer algebras might not

be semisimple in general.

Whereas the semisimple cases were studied in detail in many papers, including for instance the

semiorthogonal form in [26], the non-semisimple cases are still not well understood. In the pioneering work
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of Cox, De Visscher and Martin, [9], it was observed that the multiplicity [∆(λ) ∶ L(µ)] how often a simple

module L(µ) indexed by µ (that is the simple quotient of ∆(µ)) appears in a Jordan-Hölder series of the

cell module ∆(λ), is given by a certain parabolic Kazhdan-Lusztig polynomial nλ,µ of type D with maximal

parabolic of type A, [5], [23], i.e.

[∆(λ) ∶ L(µ)] = nλ,µ(1). (1.5)

This result connects the combinatorics of Brauer algebras with Kazhdan-Lusztig combinatorics of type D Lie

algebras, i.e. with multiplicities of simple (usually infinite dimensional) highest weight modules appearing in

a parabolic Verma module. Here two obvious questions arise: Is there an interpretation of the variable q in

the Kazhdan-Lusztig polynomial nλ,µ(q) ∈ Z[q]? Is there an equivalence of categories between modules over

the Brauer algebra Brd(δ) for integral δ and some subcategory of the Bernstein-Gelfand-Gelfand (parabolic)

category O for type D explaining the mysterious match in the combinatorics? In this paper we will give an

answer to both questions.

Let us explain the results in more detail. Given a finite dimensional algebra A we denote by A −mod its

category of finite dimensional modules. If the algebra A is Z-graded we denote by A − gmod its category of finite

dimensional graded modules with degree preserving morphisms, and by F ∶ A − gmod→ A −mod the grading

forgetting functor. For i ∈ Z let ⟨i⟩ ∶M ↦M⟨i⟩ denote the autoequivalence of A − gmod which shifts the grading

by i, i.e. F (M⟨i⟩) = FM and (M⟨i⟩)j =Mj−i for any M ∈ A − gmod. As an application of our main theorem

below we obtain the following refinement of (1.5), summing up the results obtained in Section 5:

Theorem A. Let δ ∈ Z. The Brauer algebra Brd(δ) can be equipped with a Z-grading turning it into a Z-graded

algebra Brgrd (δ). Moreover, it satisfies the following:

1.) Brgrd (δ) is Morita equivalent to a Koszul algebra if and only if δ /= 0 or if δ = 0 and d odd.

2.) Brgrd (δ) is graded cellular.

3.) Brgrd (δ) is graded quasi-hereditary if and only if δ /= 0 or if δ = 0 and d odd. Moreover, in this case

a.) There are distinguished graded lifts of standard modules and simple modules in the following sense: For

the cell module ∆(λ) of Brd(δ), λ ∈ Λd, there exists a module ∆̂(λ) for Brgrd (δ) such that F ∆̂(λ) = ∆(λ).

For a simple module L(µ) of Brd(δ), for µ ∈ Λδd, there exists a module L̂(µ) for Brgrd (δ) such that

FL̂(µ) = L(µ). Furthermore L̂(µ) is the simple quotient of ∆̂(µ) concentrated in degree 0, making the

choice of these lifts unique (up to isomorphism).

b.) The ∆̂(λ) form the graded standard modules.

4.) The modules ∆̂(λ) have a Jordan-Hölder series in Brgrd (δ) − gmod with multiplicities given by

[∆̂(λ) ∶ L̂(µ) < i >] = nλ,µ,i, where nλ,µ(q) = ∑
i≥0
nλ,µ,iq

i.
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For instance, Brgr2 (δ) is isomorphic to the algebra C⊕C⊕C in case δ /= 0 whereas it is isomorphic to

C⊕C[x]/(x2) with x in degree 2 in case δ = 0, see Section 7.

The above theorem is based on our main theorem which realizes Brd(δ) for integral δ as an idempotent

truncation of a level 2 cyclotomic quotient of a VW-algebra ⩔d(Ξ), see Definition 3.1 for the exact parameter

set Ξ. Here, the VW-algebra ⩔d(Ξ) is as a vector space isomorphic to Brd(N) ⊗C[y1, . . . yd] with both factors

being in fact subalgebras. The defining relations imply that there is a surjective homomorphism of algebras

⩔d(Ξ) Ð→ Brd(N), (1.6)

which extends the identity on Brd(N) and sends y1 to 0. The polynomial generators yk are then sent to the

famous Jucys-Murpy elements ξk in the Brauer algebra, see Proposition 4.4 for a definition. These elements form

a commutative subalgebra which plays an important role in the theory of semiorthogonal forms for the Brauer

algebras. In this way, the Brauer algebra Brd(N) can be realized as a level 1 cyclotomic quotient of ⩔d(Ξ).

The connection to Lie theory is based however on a more subtle realization of the Brauer algebra as follows:

Let n ∈ Z be large (say N = 2n ≥ 2d) and consider the type Dn Lie algebra so(N) of rank n with its vector

representation V . Let $0 be the fundamental weight corresponding to a spin representation (that is to one of

the fork ends in the Dynkin diagram) and let p ⊂ so(N) be the (type A) maximal parabolic corresponding to

the simple roots orthogonal to $0. For any fixed δ ∈ Z let Mp(δ) be the associated parabolic Verma module

with highest weight δω0, see [20]. Then [15, Theorem 3.1] gives a natural isomorphism of algebras

Endso(N)(M
p(δ) ⊗ V ⊗d)opp ≅⩔

cycl

d (1.7)

where ⩔
cycl
d = ⩔d(Ξ)/(y1 − α)(y1 − β) with α = 1

2
(1 − δ) and β = 1

2
(δ +N − 1). The finite dimensional algebra

⩔
cycl
d decomposes into simultaneous generalized eigenspaces with respect to C[y1, . . . yd]. Let f be the idempotent

of ⩔
cycl
d which projects onto all common generalized eigenspaces with small eigenvalues γj with respect to yj ,

i.e. where γj satisfy ∣γj ∣ < β for 1 ≤ j ≤ d.

Our main result, Theorem 4.3, is then the following:

Theorem B. For any fixed δ ∈ Z, there is an isomorphism of algebras

Φδ ∶ Brd(δ) Ð→ f⩔
cycl

d f

given on the standard generators of the Brauer algebra by

tk z→ −QkskQk +
1

bk
f , and gk z→ QkekQk, (1.8)
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for certain elements Qk and bk, defined in (3.9) and (4.2), which can be expressed in term of the polynomial

generators yj , 1 ≤ j ≤ d and β.

Note that the the Brauer algebra on the left hand side is independent of N , but the right hand side as well

as the map Φδ do in fact depend on N . In particular, the parameter N on the right hand side changes into the

parameter δ on the left hand side. Under the isomorphism, the Jucys-Murphy elements ξk of the Brauer algebra

are sent to −ykf inside f⩔
cycl
d f , see Definition 4.4. In particular, generalized eigenspaces for Jucys-Murphy

elements coincide with generalized eigenspaces of the polynomial generators yk.

By general theory on category O, [4], [3], the algebra ⩔
cycl
d can be equipped with a positive Z-grading, see

[15, Theorem 3.1]. Since the idempotent truncation f corresponds to successive projections onto blocks, see [15,

Section 4.1], Bd(δ) inherits a grading which is then the grading in Theorem A. In contrast to a general block

in category O, the grading can be made totally explicit in our case using the theory of generalized Khovanov

algebras of type D, [14], [13]. Note that the theorem implies that all of the combinatorics developed in [15] for

f⩔
cycl
d f are now applicable to the Brauer algebra.

As an application of our result note that understanding the degree of non-semisimplicity for Brauer

algebras and decomposition numbers in the non-semisimple cases gives some first insight into the structure of

the tensor product of the natural module for the orthosymplectic Lie superalgebra via the result from [16], or [22].

The idea and difficulty behind the formulas (1.8) stems from the fact that we connect directly the

semiorthogonal form for ⩔
cycl
d from [2] and for Brd(δ) from [26] by realizing the latter as obtained from

the first via a naive idempotent truncation to small eigenvalues corrected with some extra terms encoded

in the rather complicated elements Qk and bk. The correction terms seriously depend on the generalized weight

spaces. In the semisimple case, i.e if all generalized eigenvectors are actually proper eigenvectors, the formulas

simplify drastically, since the operators act on an eigenspace just by a certain number which can be expressed

combinatorially in terms of contents of tableaux. The point here is that our formulas also work in the non-

semisimple cases. The prize to pay is that the definitions of the correction terms involves (inverses) of square

roots. It is a non-trivial result, that the operators are well-defined and that the images of the generators of the

Brauer algebra satisfy the Brauer algebra relations.

We should mention that a similar result for walled Brauer algebras was obtained in [28]. The two results are

independent and, as far as we can see, neither of the two implies the other. In fact, the result [28, Lemma 8.1]

seriously simplifies the set-up treated there, but doesn’t hold in the Brauer algebra setting. As a result, the

Brauer algebra requires a very different treatment.

Another approach defining gradings on Brauer algebras arising from semiorthogonal forms was taken

independently in [24] and resulted in a KLR-type presentation of Brauer algebras. One can show that the

two algebras are actually isomorphic as graded algebras, see [25]. More general choices of parabolic category O

of type D should provide a general framework for higher level cyclotomic quotients of VW-algebras following
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the ideas of [15]. Moreover, they should give rise to a KLR-type presentation of these algebras similar to the

beautiful results in type A, see e.g. [7], [8], [19].

2 Brauer algebra and VW algebras

We start with the definition of the Brauer algebra in terms of generators and relations. Then we recall the

definition of its degenerate affine analogue, the so-called VW-algebra with its cyclotomic quotients. By an

algebra we always mean an associative unitary algebra with unit 1.

Definition 2.1. Let d ∈ N and δ ∈ C. The Brauer algebra Brd(δ) is the associative C-algebra generated by

elements ti, gi, 1 ≤ i ≤ d − 1 subject to the relations

t2i = 1, titj = tjti, titi+1ti = ti+1titi+1, tigi+1gi = ti+1gi,

g2i = δgi, gigj = gjgi, gigi+1gi = gi, ti+1gigi+1 = tigi+1,

tigi = gi = giti, gitj = tjgi, gi+1gigi+1 = gi+1,

whenever the terms in the expressions are defined and ∣i − j∣ > 1 holds.

Remark 2.2. Since gigjgi = gitigjgi = gitjgi if ∣i − j∣ = 1, one can replace the relation gigjgi = gi by the more

commonly used relation gitjgi = gi.

Definition 2.3. Let d ∈ N and Ξ = (ωi)i∈N0
with ωi ∈ C for all i. Then the associated VW-algebra ⩔d(Ξ) is the

algebra generated by

si, ei, yj for 1 ≤ i ≤ d − 1 and 1 ≤ j ≤ d, k ∈ N0, (2.1)

subject to the following relations (for 1 ≤ a, b ≤ d − 1, 1 ≤ c < d − 1, and 1 ≤ i, j ≤ d)

(VW.1) s2a = 1,

(VW.2) (a) sasb = sbsa for ∣ a − b ∣> 1,

(b) scsc+1sc = sc+1scsc+1,

(c) sayi = yisa for i /∈ {a, a + 1},

(VW.3) e2a = ω0ea,

(VW.4) e1y
k
1e1 = ωke1 for k ∈ N0,

(VW.5) (a) saeb = ebsa and eaeb = ebea for ∣ a − b ∣> 1,

(b) eayi = yiea for i /∈ {a, a + 1},

(c) yiyj = yjyi,
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(VW.6) (a) easa = ea = saea,

(b) scec+1ec = sc+1ec and ecec+1sc = ecsc+1,

(c) ec+1ecsc+1 = ec+1sc and sc+1ecec+1 = scec+1,

(d) ec+1ecec+1 = ec+1 and ecec+1ec = ec,

(VW.7) saya − ya+1sa = ea − 1 and yasa − saya+1 = ea − 1,

(VW.8) (a) ea(ya + ya+1) = 0,

(b) (ya + ya+1)ea = 0.

Remark 2.4. The VW-algebra ⩔d is a degeneration of the affine BMW-algebra∗, [10], hence plays the analogue

role for the Brauer algebra as the degenerate affine Hecke algebra plays for the symmetric group. It was introduced

originally by Nazarov in [26] under the name generalized Wenzl-algebra†.

Finally we introduce, following [2], the cyclotomic quotients of ⩔d of level `:

Definition 2.5. Given u = (u1, u2, . . . , u`) ∈ C` we denote by ⩔d(Ξ; u) the quotient

⩔d(Ξ,u) = ⩔d(Ξ)/
`

∏
i=1

(y1 − ui) (2.2)

and call it the cyclotomic VW-algebra of level ` with parameters u.

Remark 2.6. As explained in [2], the tuple Ξ must satisfy some admissibility condition for the algebra⩔d(Ξ) to

have a nice basis. Furthermore, the Ξ must satisfy some u-admissibility condition for this basis to be compatible

with the quotient, see [2, Theorem A, Prop. 2.15].

Inside the VW-algebra ⩔d(Ξ), the elements {yk ∣ 1 ≤ k ≤ d} generate a free commutative subalgebra,

hence we can consider the simultaneous generalized eigenspace decompositions for these elements. Any finite

dimensional ⩔d(Ξ)-module M has a decomposition

M = ⊕
i∈Cd

Mi, (2.3)

where Mi is the generalized eigenspace with eigenvalue i, i.e., (yk − ik)
rMi = 0 for r ≫ 0 sufficiently large. We

first describe how the generators ek and sk interact with this eigenspace decomposition.

Lemma 2.7. For all 1 ≤ k < d the following holds

ekMi ⊂

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

{0} if ik + ik+1 ≠ 0,

⊕i′∈IMi′ if ik + ik+1 = 0,

∗as every car lover can probably imagine easily ...
†which translated to German is Verallgemeinerte Wenzl Algebra, abbreviated as ⩔. It is also sometimes called Nazarov-Wenzl
algebra in the literature. Hence ⩔ can be viewed as composed of the letters N , W and V as well.
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where I = {i′ ∈ Cd ∣ i′j = ij for j ≠ k, k + 1 and i′k + i′k+1 = 0}.

Proof . Assume first that a ∶= ik + ik+1 ≠ 0. Then the endomorphism induced by (yk + yk+1 − a) is nilpotent on

Mi and hence yk + yk+1 induces an automorphism of Mi. Hence ekMi = ek(yk + yk+1)Mi = {0}, where for the

last equality (VW.8a) was used.

Now assume ik + ik+1 = 0. Since (yk + yk+1)ek = 0 we know by (VW.8b) that on the image of ek the

endomorphism induced by yk + yk+1 has eigenvalue 0, hence yk and yk+1 have eigenvalues that add up to 0.

The situation for sk is more complicated and we need some preparations. Let k, 1 ≤ k ≤ d − 1 be fixed for

the rest of this section.

Lemma 2.8. Set ψk = sk(yk − yk+1) + 1. Then it holds

ψkMi ⊂

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Mski if ik + ik+1 ≠ 0,

⊕i′∈IMi′ if ik + ik+1 = 0.

In case ik + ik+1 ≠ 0 and additionally ∣ik − ik+1∣ ≠ 1, the map ψk defines an isomorphism of vector spaces

Mi ≅Msk(i).

Proof . From (VW.7) we obtain ykψk = ψkyk+1 + ek(yk − yk+1) and by (VW.2c) then yjψk = ψkyj for ∣j − k∣ > 1.

Assume ik + ik+1 ≠ 0 and let m ∈Mi. Then by Lemma 2.7 we have ykψkm = ψkyk+1m and yk+1ψk = ψkykm,

hence (yi − isk(i))
rψkm = ψk(ysk(i) − isk(i))

rm for all r ≥ 1 and all i. Thus ψkMi ⊂Msk(i).

Relation (VW.7) implies (yk + yk+1)ψk = ψk(yk + yk+1). Assuming ik + ik+1 = 0 we have (yk + yk+1)rMi =

{0} for some r ≥ 1 and hence (yk + yk+1)rψkMi = ψk(yk + yk+1)rMi = {0}. Thus, on the image of ψk, the

endomorphism induced by yk + yk+1 has eigenvalue 0 and so yk and yk+1 have eigenvalues adding up to 0.

Assuming now ik + ik+1 ≠ 0 and furthermore ∣ik − ik+1∣ ≠ 1, then thanks to (VW.7) and Lemma 2.7 we have

ψ2
k = −(yk − yk+1)

2 + 1 as endomorphisms of Mi. Setting c = ik − ik+1 it follows ((yk − yk+1) − c)
r
Mi = {0} for

some r ≥ 1 by definition. In particular, as endomorphisms of Mi, this implies

ψ2
k = 1 − ((yk − yk+1) − c + c)

2
= 1 − c2 − ((yk − yk+1) − c)

2
− c((yk − yk+1) − c) = 1 − c2 − z

for some nilpotent endomorphism z. Since c2 ≠ 1 by assumption, ψ2
k is invertible and therefore also ψk. Note

that the concrete form of the inverse depends on i.

Corollary 2.9. Assume that ik ≠ ik+1, then

skMi ⊂

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Mski ⊕Mi if ik + ik+1 ≠ 0,

⊕i′∈IMi′ if ik + ik+1 = 0.
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Proof . Under the assumption that ik ≠ ik+1 we have that yk − yk+1 is an automorphism of Mi and the statement

follows directly from Lemma 2.8.

Corollary 2.10. Assume Mi ≠ {0} for some i = (i1, . . . , id−1, id) such that ik + id ≠ 0 and ∣ik − id∣ ≠ 1 for all k < d.

Let i′ = (id, i1, . . . , id−1), then

(yd − id)
rMi = {0} ⇐⇒ (y1 − id)

rMi′ = {0}

for all positive integers r.

Proof . By Lemma 2.8 the element ψ ∶= ψ1⋯ψd−1 acts as an isomorphism between Mi and Mi′ intertwining the

actions of y1 and yd, i.e. ψ(y1m) = ydψ(m) for any m ∈Mi.

3 Cyclotomic quotients and category O

Fix δ ∈ Z. Let g = so(2n) be the complex special orthogonal Lie algebra corresponding to the Dynkin diagram

Γ of type Dn and fix a triangular decomposition g = n− ⊕ h⊕ n+. Denote by εn, . . . , ε1 the standard basis of h∗.

The ordering on these basis vectors and on the simple roots is chosen such that the labels 1 and 2 correspond

to the two special nodes in the Dynkin diagram (at the fork end), whereas εn corresponds to the highest weight

of the vector representation.‡

Fix l, a Levi subalgebra obtained from an embedding of the type An−1 Dynkin diagram into Γ and denote

by p = l⊕ n+ the corresponding parabolic subalgebra.

By Op(n) = Op
int(so(2n)) we denote the integral parabolic BGG category O, i.e., the full subcategory of

U(g)-modules consisting of finitely generated U(g)-modules, semisimple over h with integral weights, and locally

finite for p, see [20, Chapter 9]. Let

Xp
n = {λ ∈ h∗ integral ∣ λ + ρ =

n

∑
i=1
λiεi where λ1 < λ2 < ⋯ < λn}, (3.1)

where ρ denotes the half-sum of the positive roots, ρ = ∑
n
i=1(i − 1)εi. Then Xp

n is precisely the set of highest

weights of simple objects in Op(n), see [20]. For an element λ ∈ Xp
n we denote by Mp(λ) the parabolic Verma

module with highest weight λ. Note that a weight λ = (λ1, λ2,⋯, λn) written in the ε-basis is integral, if either

λi ∈ Z, i.e. 2λi is even for all i, or λi ∈
1
2
+Z, i.e. 2λi is odd for all i.

As in [15], a crucial player in the following will be the parabolic Verma module Mp(δ) of highest weight

δ =
δ

2
(ε1 + . . . + εn), (3.2)

‡Note that this is not the usual Bourbakian choice, but it is a choice which is better adapted to the idea of taking a limit for n↦∞.
As a consequence dominant integral weights correspond to increasing sequences of (half)-integers.
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i.e., a multiple of the fundamental weight 1
2
(ε1 + . . . + εn). With an appropriate choice of parameters Ξδ, there

is, see [15], a natural (right) action of ⩔d(Ξδ) on Mp(δ) ⊗ V ⊗d by g-endomorphisms. Hence we have an

algebra homomorphism ⩔d(Ξδ) → Endg(M
p(δ) ⊗ V ⊗d)opp. The parameter set Ξδ = (ωa)a∈N0

appear as part

of the following definition:

Definition 3.1. For N = 2n, we define the cyclotomic parameters ωa, a ∈ N0 as follows

ω0 = N, ω1 = N
N−1
2
, ωa = (α + β)ωa−1 − αβωa−2 for a ≥ 2, (3.3)

where we set

α = 1
2
(1 − δ), β = 1

2
(δ +N − 1). (3.4)

(Observe that α is independent of N , whereas β depends linearly on N .)

With these definitions the following important result holds:

Theorem 3.2 ([15]). If n ≥ 2d, then the ⩔d(Ξδ)-action from above induces an isomorphism of algebras

Ψ(δ) ∶ ⩔d(Ξδ;α,β) Ð→ Endg(M
p(δ) ⊗ V ⊗d)opp. (3.5)

In the following we abbreviate ⩔
cycl
d = ⩔d(Ξδ;α,β).

Note that via (3.5), the space Mp(δ) ⊗ V ⊗d becomes a (right) module for ⩔
cycl
d with the action preserving

the finite dimensional g-weight spaces, hence we have a simultaneous generalized eigenspace decomposition (2.3).

In the following we will always work with left modules and identify Endg(M
p(δ) ⊗ V ⊗d) ≅ (⩔

cycl
d )opp = ⩔

cycl
d .

We describe now this decomposition Lie theoretically and then combinatorially using the notion of up-down

bitableaux and bipartitions. We start with the following well-known fact:

Lemma 3.3. Let µ ∈ Xp
n. Then Mp(µ) ⊗ V has a filtration (called Verma flag) with sections isomorphic to

precisely the Mp(µ ± εj) for all j = 1, . . . , n such that µ ± εj ∈ X
p
n. The sections are pairwise not isomorphic.

Proof . This is a standard consequence of the tensor identity; see e.g. [20, Theorem 3.6], noting that V has

precisely the weights ±εj for 1 ≤ j ≤ n.

In particular, Mp(δ) ⊗ V ⊗d has a Verma flag with sections isomorphic to precisely the Mp(λ) where

λ − δ = ∑
d
j=i ai and the (a1, a2, . . . , ad) run through all possible d-tuples with ai ∈ {±εj ∣ 1 ≤ j ≤ n}. Given such a

weight λ we can write

λ − δ =
n

∑
i=1
miεi =

s

∑
i=1
miεi +

n

∑
i=s+1

miεi, m1 ≤m2 ≤ . . . ≤mn
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with mi ≤ 0 for 1 ≤ i ≤ s and mi > 0 for i > s for some (uniquely defined) s. Then we assign to λ the bipartition

ϕ(λ) = (λ(1), λ(2)) with

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

λ
(1)
i = ∣mi∣, for 1 ≤ i ≤ s,

λ
(2)
i =mn−i+1 for 1 ≤ i ≤ n − s.

(3.6)

This will be seen as a pair of Young diagrams, which are both consisting of arrangements of boxes with left-

justified rows and the number of boxes per row weakly decreasing from top to bottom. Each box b in such a pair

of Young diagrams has a content c(b) defined as follows: let b be in the r-th row of its diagram and in the c-th

column (counting from top to bottom and from left to right, starting with 1 in both cases), then c(b) = r − c if b

is in λ(1) and c(b) = c − r if b is in λ(2). Here we display the pair of Young diagrams attached to the bipartition

(3, 2, 1, 1), (2, 2, 1) with the contents of each box written in the box

⎛
⎜
⎜
⎝

λ(1) =

0 -1 -2
1 0
2
3

, λ(2) =
0 1
-1 0
-2

⎞
⎟
⎟
⎠

(3.7)

To get back the weight λ we just add to δ the vector (−λ
(1)
1 ,−λ

(1)
2 , . . . ,−λ

(1)
s , 0, . . . , 0, . . . , λ

(2)
2 , λ

(2)
1 ). For

instance (3.7) corresponds to the weight δ + (−3,−2,−1,−1, 0, 0, . . . , 0, 1, 2, 2). Note that in this case s = n − 4

the decomposition from (3.6) and λ(1) = (∣ − 3∣, ∣ − 2∣, ∣ − 1∣, ∣ − 1∣, 0, . . . , 0) and λ(2) = (2, 2, 1).

Remark 3.4. To keep track of the contents it might be convenient to draw such a pair of Young diagrams ϕ(λ)

as a double Young diagram with a total of d boxes. For this consider a vertical infinite strip with n columns

crossing a horizontal line o. This horizontal line will split the strip into two regions, an upper and a lower part.

A double Young diagram consists of two Young diagrams, one placed in the upper half with center of gravity

on the lower right point of that region and a second one placed in the lower part with center of gravity on the

upper left such that no column contains boxes above and below the line o.

The double Young diagram attached to the weight λ is constructed as follows: the Young diagram at the

bottom is just the Young diagram for λ(1) transposed; the Young diagram at the top is obtained from the

Young diagram for λ(2) by transposing the diagram and then rotating it by 180 degrees. We denote the result

((λ(1))t, t(λ(2))). The contents for the boxes are transposed respectively rotated accordingly. Below, the double

Young diagram attached to the bipartition (3, 2, 1, 1), (2, 2, 1) from (3.7) is displayed.

⎛
⎜
⎜
⎝

λ(1) =

0 -1 -2
1 0
2
3

, λ(2) =
0 1
-1 0
-2

⎞
⎟
⎟
⎠

1 2 3 4 ⋯ n-2 n-1 n

α

0 1 2 3

−1 0

−2

−2 −1 0

0 1

β
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(Note that the contents just encode the corresponding diagonals; they increase by one when moving one box to

the right or up and decrease by one when moving one box to the left or down. Note moreover that the condition

n ≥ 2d ensures that the two diagrams do not overlap.) The associated weight λ is obtained by adding to δ the

n-tuple with entries the lengths of the columns read from left to right with a negative sign if the partition is

below o.

Definition 3.5. To incorporate some dependence on δ or better on the cyclotomic parameters (3.1), we

additionally shift the contents by α respectively β as indicated in the diagram. That is if a box b is in the first

component of a bipartition (i.e. inside the lower part of its double Young diagram) then define cδ(b) = c(b) + α,

while the shifted content of a box b in the second component (or the upper part of its double Young diagram)

is defined to be cδ(b) = c(b) + β.

Definition 3.6. An up-down bitableaux of length d is a sequence Y = (Y1,Y2, . . . ,Yd) of bipartitions such that

Y1 is the trivial bipartition (∅,∅) and two consecutive bipartitions differ just by one box (added or removed). Let

wt(Y) = (wt(Yi))1≤i≤d be the weight sequence attached to Y. The set of all corresponding up-down bitableaux

of length d is denoted by Td.

Example 3.7. Let us consider the case d = 1 (and n ≥ 4). Then we have δ + ρ = ( δ
2
, δ
2
+ 1, . . . , δ

2
+ (n − 1)) for

any δ ∈ Z, hence δ ∈ Xp
n. Now possible values for a1 are a1 = −ε1 and a1 = εn. In the first case the number

s in (3.6) equals n and in the second case s = n − 1. The bipartitions for λ = δ + a1 are ( ,∅), respectively

(∅, ). Their double diagrams have just one box below (with content α) respectively above the line o

(with content β). The corresponding up-down bitableaux are ((∅,∅), ( ,∅)) respectively ((∅,∅), (∅, ))

and form the set T1. In case d = 2 we additionally have a2, namely a2 ∈ {−ε1,−ε2, ε1, εn} if a1 = −ε1, and

a2 ∈ {−ε1, εn, εn−1,−εn} if a1 = −εn. They correspond to the bipartitions ( ,∅), ( ,∅), (∅,∅), ( , )

respectively ( , ), (∅, ), (∅, ), (∅,∅). The contents of the added/removed boxes are α − 1, α + 1,−α,β

respectively α,β + 1, β − 1,−β. The eight up-down bitableaux in T2 are just obtained from the d = 1 ones by

adding the additional bipartition given by the choice of a2.

The module M ∶=Mp(δ) ⊗ V ⊗d decomposes into a direct sum of submodules

M = ⊕
a∈Cd/Sd

MSda, (3.8)

where a runs through a fixed set of representatives for the Sd-orbits on Cd and MSda = ⊕w∈SdMw(a), with the

summands defined as in (2.3). These are then the subspaces of M where the multiset of occurring generalized

eigenvalues of all the individual yi’s is fixed.

Proposition 3.8. Assume n ≥ 2d. Then there is a canonical bijection between Td and the parabolic Verma

modules appearing as sections in a Verma filtration of Mp(δ) ⊗ V ⊗d counted with multiplicities such that the

following holds
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1.) The bijection is given by assigning to a up-down bitableau Y = (Y1,Y2, . . . ,Yd) the parabolic Verma module

M(δ +wt(Yd)).

2.) For 1 ≤ j ≤ d, let σj = 1 if Yj was obtained from Yj−1 by adding a box Bj and σj = −1 if Yj was obtained

from Yj−1 by removing a box Bj . Then the parabolic Verma module Mp(δ +wt(Yd)) associated to Y

appears as a subquotient of the summand in (3.8) containing the generalized eigenspace of the operator yk

for the eigenvalue σk cδ(Bk).

Proof . In case δ ≥ 0 this follows directly from [15] and the bijection between up-down bitableaux and Verma

paths describing the Verma modules appearing in a Verma filtration and their eigenvalues. For δ < 0 the

arguments are totally analogous.

Definition 3.9. We call an eigenvalue γ of yk small if ∣γ∣ < β and we call it large if ∣γ∣ ≥ β. For the eigenvalues

appearing in Proposition 3.8 the condition to be small is equivalent to the condition that the corresponding

boxes in the bipartition are all in the first component.

The idempotent we define now projects onto the generalized eigenspaces corresponding to small eigenvalues.

Definition 3.10. For 1 ≤ k ≤ d we denote by ηk ∈ ⩔
cycl
d the idempotent projecting onto the generalized

eigenspace of yk with eigenvalue different from β. Furthermore let fk = η1⋯ηk and f = fd.

Remark 3.11. Note that M f = (Mp(δ) ⊗ V ⊗d)f is a direct summand of M and has therefore an induced Verma

filtration. The occurring Verma modules are precisely those from M with small eigenvalues only. In case d = 2,

see Example 3.7, they correspond to the up-down bitableaux ending on ( ,∅), ( ,∅), (∅,∅), whereas all

eight bipartitions correspond to the parabolic Verma modules appearing in Mp(δ) ⊗ V ⊗2 (note that one of them

appears with multiplicity two).

It is clear from the definitions that if yk has a large eigenvalue on some Verma module in Mp(δ) ⊗ V ⊗d,

then some earlier polynomial generator already has eigenvalue β on it, that is there exists a j ≤ k such that yj

has eigenvalue β on this module. This means combinatorially that in an up-down bitableau we have to place the

first box into the second component before we place any further boxes into the second component. In particular,

the element f projects onto the common generalized eigenspaces of small eigenvalues for the commutative

subalgebra generated by the yj’s. The idempotent f is not central, so we first deduce some commutation relations.

For 1 ≤ k ≤ d define the following important elements of ⩔
cycl
d :

bk = β + yk and ck = β − yk. (3.9)

Lemma 3.12. In ⩔
cycl
d the following equalities hold for 1 ≤ k ≤ d − 1:

1.) We have bk+1sk = skbk − ek + 1, and fsk
1
bk

f = 1
bk+1

fskf −
1

bk+1
fek

1
bk

f + 1
bkbk+1

f ,
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2.) We have skbk+1 = bksk − ek + 1, and 1
bk

fskf = fsk
1

bk+1
f − 1

bk
fek

1
bk+1

f + 1
bkbk+1

f ,

3.) We have ck+1sk = skck + ek − 1, and fsk
1
ck

f = 1
ck+1

fskf +
1

ck+1
fek

1
ck

f − 1
ckck+1

f ,

4.) We have skck+1 = cksk + ek − 1, and 1
ck

fskf = fsk
1

ck+1
f + 1

ck
fek

1
ck+1

f − 1
ckck+1

f .

Proof . This follows from Relation (VW.7) on the nose or multiplied with the idempotent f from both sides,

assuming however that the occurring fractions are defined. By Remark 3.14 below it is enough to make these

expressions well-defined on each generalized eigenspaces fMi for the regular module M = ⩔
cycl
d . If ik + ik+1 /= 0

then 1
bk
ekf acts by zero thanks to 2.7, and skf is contained by Corollary 2.9 in the direct sum of all generalized

eigenspaces where bk acts non-zero. If ik + ik+1 = 0 then fMi /= 0 implies that ∣ir ∣ < ∣β∣ for all 1 ≤ r ≤ d − 1 and

hence ekfMi is, again by Lemma 2.7, contained in the sum of generalized eigenspaces for i such that ∣ir ∣ < β

for r < k and ∣ik∣ < β or ik = β. But in any case ik /= −β, hence 1
bk
ekf is well-defined. Similarly for skfMi using

Corollary 2.9. For the other expressions the arguments are analogous and omitted. (Note however that the

occurrence of f on the right is crucial.)

Proposition 3.13. In ⩔
cycl
d the following equalities hold:

1.) For 1 ≤ k ≤ d − 1

i) ckfskf = ckskf , iii) ckfekf = ckekf ,

ii) bk+1fskf = bk+1skf , iv) bk+1fekf = bk+1ekf .

2.) For 1 ≤ k < d − 1

i) ekfsk+1f = eksk+1f , iv) fskfsk+1f = fsksk+1f ,

ii) ekfek+1f = ekek+1f , v) fskfek+1f = fskek+1f ,

iii) fekfsk+1fekf = feksk+1ekf .

as well as all of these equalities with k and k + 1 swapped.

Proof . We start with part 1.). For case i) we claim that

ckfskf = ckskf − ck(1 − f)skf = ckskf .

We only have to justify the last equality. But this holds due to Lemma 2.8; since the image of (1 − f)skf is

either 0 or consists of generalized eigenvectors for yk with eigenvalue β. By Corollary 2.9 and the fact that y1

always acts by a scalar by the assumptions on n, these are honest eigenvectors and thus ck acts by zero. For ii)
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we calculate

bk+1fskf = bk+1fsk
ck+1
ck+1

f

(a)
= bk+1f(cksk + ek − 1)

1

ck+1
f

(b)
= bk+1cksk

1

ck+1
f + bk+1ek

1

ck+1
f −

bk+1
ck+1

f)

(c)
= bk+1(skck+1 − ek + 1)

1

ck+1
f + bk+1ek

1

ck+1
f −

bk+1
ck+1

f = bk+1skf

Here equalities (a) and (c) hold by Lemma 3.12, while equality (b) is due to the other cases of this lemma. The

expressions are well-defined by Remark 3.14 below. For case iii) we have

ckekf = ckfk−1ekf = ckfkfk−1ekf + ck(1 − fk)fk−1ekf = ckfkekf .

The final equality holds because the image of (1 − fk)fk−1 consists of eigenvectors for yk with eigenvalue β,

hence are annihilated by ck. That the image consists of eigenvectors follows as in case i). Furthermore, due to

Lemma 2.7, fkek = fk+1ek and the statement follows. Case iv) is the same since bk+1ek = ckek by (VW.8b).

For part 2.), we note that all of these are more or less proven in the same way using Lemma 2.7 and

Corollary 2.9. We will argue for ekfsk+1f = eksk+1f and leave the others to the reader. It holds

eksk+1f = ekfsk+1f + ek(1 − f)sk+1f .

If we now look at a generalized eigenspace Mi in the image of (1 − f)sk+1f , we see that, due to the diagram

combinatorics, this can only be non-zero if ik+1 = β and ik+2 = −β while all other eigenvalues are small. Applying

ek to this eigenspace is zero, due to Lemma 2.7 since ik is small and thus cannot be −β. Hence only the first

summand survives which proofs the claim. Similar arguments have to be applied to the other cases.

The following remark deals with the well-definedness of expressions involving fractions of the form 1
bk

f , 1
ck

f ,

1
bk
skf , 1

bk
ekf etc. This observation is very important for the whole paper.

Remark 3.14. To make sense of an expression like 1
bk

we first consider bk as a formal polynomial in yk

with non-zero constant term β. Hence this polynomial has an inverse in the ring of formal powers series in yk

which is however not a well-defined element of ⩔
cycl
d . Using Theorem 3.2 we realize bk as an endomorphism of

M =Mp(δ) ⊗ V ⊗d. By definition it preserves the decomposition (2.3). Hence it suffices to invert bk restricted

to Mi for each i. This is possible in case ik /= −β by formally expanding 1
bk

around ik noting that (yk − ik)
r acts

by zero for large enough r. In particular, 1
bk
g makes sense for any endomorphism g which has image in these

allowed generalized eigenspaces. Similarly for 1
ck

where ik /= β is allowed. In particular 1
bk

and 1
ck

are well-defined

on eigenspaces corresponding to small eigenvalues.
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4 The isomorphism theorem

In the isomorphism of the main theorem will appear some square roots. We start by recalling their definition

and the required setup from [28]. The crucial result is the following fact, see [28, Proposition 4.2]:

Lemma 4.1. Let f(x) ∈ C[x]. Assume B is a finite-dimensional algebra, and let x0 ∈ B. Suppose that

(x − a) ∤ f(x) for all a ∈ C which are generalized eigenvalues for the action of x0 on the regular representation.

Then f(x0) ∈ B has a (unique) inverse and a (non-unique) square root.

Let as above x0 ∈ B be an element of a finite-dimensional algebra, and let a ∈ C. If a is not a generalized

eigenvalue of x0 then by Proposition 4.1 we can write expressions like

1

x0 − a
,

√
x0 − a,

√
1

x0 − a
. (4.1)

The square root is not unique, but we make one choice once and for all, so that for example
√
x0 − a

√
1

x0−a = 1.

For more details we refer to [28]. Recalling the elements bk and ck from (3.9) set (for our choice of square root)

Qk =

√
bk+1
bk

f . (4.2)

Note that bk+1
bk

f is well-defined (in contrast to for instance bk+1
bk

) by definition of bk and f via Remark 3.14. By

the above arguments, also the square root (4.2) makes sense.

Definition 4.2. For 1 ≤ k ≤ d − 1 define

s̃k = −QkskQk +
1

bk
f and ẽk = QkekQk.

Note that these are well-defined elements in ⩔
cycl
d by Remark 3.14 and in fact contained in f⩔

cycl
d f .

Now we can finally state our main result:

Theorem 4.3 (Isomorphism theorem). The map

Φδ ∶ Brd(δ) Ð→ f⩔
cycl

d f .

given on the standard generators by

tk z→ s̃k = −QkskQk +
1

bk
f , and gk z→ ẽk = QkekQk. (4.3)

for 1 ≤ k ≤ d − 1 defines an isomorphism of algebras.

The proof will be given in the next section except of the well-definedness of the map Φδ which is proved

(independently of the other statements in the theorem) in Section 6.
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4.1 The isomorphism Φδ and Jucys-Murphy elements

We first assume, see Section 6, that the map Φδ is a well-defined algebra homomorphism. Before the proof of

the theorem we describe the preimages of the polynomial generators yk.

Definition 4.4. The Jucys-Murphy elements ξk, for 1 ≤ k ≤ d in the Brauer algebra Brd(δ) are defined as follows:

ξ1 = 0 and ξk+1 = tkξktk + tk − gk for all 1 < k < d.

Proposition 4.5. Let 1 ≤ k ≤ d. The map Φδ from Theorem 4.3 maps ξk − α to −ykf .

Proof . We prove this by induction on k; starting with Φδ(ξ1 − α) = Φδ(−α) = −αf = −y1f . For k + 1 > 1 we have

Φδ(ξk+1 − α) = Φδ(tkξktk + tk − gk − α) = Φδ(tk(ξk − α)tk + tk − gk)

= −s̃kyks̃k + s̃k − ẽk = QkskQkyks̃k + s̃k − ẽk −
1

bk
fyks̃k

= Qk(yk+1sk + ek − 1)Qks̃k + s̃k − ẽk −
1

bk
fyks̃k

= yk+1QkskQks̃k + ẽks̃k −
bk+1
bk

f s̃k + s̃k − ẽk −
1

bk
fyks̃k

= −yk+1s̃ks̃k +
yk+1
bk

f s̃k −
bk+1
bk

f s̃k + s̃k −
1

bk
fyks̃k

= −yk+1f .

The proposition is proved.

We finish this section with the proof of Theorem 4.3.

Proof . That Φδ is well-defined follows from a series of statements in Section 6. Namely altogether the

Lemmas 6.1 to 6.11 prove that the elements s̃k and ẽk for 1 ≤ k < d satisfy all the defining relations of the

Brauer algebra Brd(δ).

It suffices now to prove surjectivity of Φδ, since the algebras have the same dimension, namely (2d − 1)!!, by

[15, Proposition 4.4]. To prove surjectivity we use the description of a basis of ⩔
cycl
d from [2, Theorem 5.5], see

[15, Corollary 2.25] for our special case, which says in particular that any element in⩔
cycl
d is a linear combination

of elements of the form p1wp2, where p1, p2 ∈ C[y1, . . . , yd] with degree ≤ 1 in each variable and w = x1⋯xr where

xj ∈ {si, ei ∣ 1 ≤ i ≤ d − 1} for 1 ≤ j ≤ r. We will call such a presentation x1⋯xr for w a reduced word if r is chosen

minimally to present w in such a form.

Since by Lemma 4.5 all the elements ykf are in the image I of Φδ, it suffices to show that fx1⋯xrf ∈ I for

any reduced word x1⋯xr.
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We show this by two inductions on the sum of the length of the word and the number of s’s occurring in

the expression. For r = 0, 1 the claim is clear, since ykf ∈ I for all k and so are all polynomial expressions in the

y’s, e.g. Q−1
k f and 1

bk
f , and thus also fskf ∈ I and fekf for all k. Hence the claim is true for r ≤ 1.

For r > 1, we first assume that the expression fx1⋯xrf contains no s’s. In this case assume that xr = el for

some l, then by induction we know that

fx1⋯xr−1fclfxrf = (fx1⋯xr−1f)(fclf)(fxrf)

is in the image of Φδ, since all three factors are in the image by induction.

Moreover by Proposition 3.13 we have

fx1⋯xr−1fclfxrf = fx1⋯xr−1clxrf

= βfx1⋯xr−1xrf + fx1⋯xr−1yl+1xrf

= βfx1⋯xr−1xrf ±
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

yjfx1⋯xr−1xrf for some j or

fx1⋯xr−1xrfyj for some j.
(4.4)

The last equality is possible because the word was assumed to be reduced, thus the element yl+1 can be moved

to the outside by using repeatedly (VW.8a) and (VW.8b) - only creating a possible sign change. Since 1
β±yj f ∈ I,

it follows that fx1⋯xrf ∈ I. Assume now that fx1⋯xrf for a reduced word fx1⋯xrf contains a positive number,

say m, of s’s. Let l be such that xr ∈ {el, sl}. Then again by induction we know that fx1⋯xr−1fclfxrf ∈ I.

Using again Proposition 3.13 we obtain a similar expression as before, namely

fx1⋯xr−1fclfxrf = fx1⋯xr−1clxrf

= βfx1⋯xr−1xrf + fx1⋯xr−1yl+1xrf

= βfx1⋯xr−1xrf ±
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

yjfx1⋯xr−1xrf for some j or

fx1⋯xr−1xrfyj for some j
+ smaller summands.

The smaller summands do not contain any y’s in this case, see Relation (VW.7), and are moreover either of

length smaller than r, or of length r but then with strictly less than m s’s. Now by induction all these smaller

terms are contained in I and the claim follows also in this case. Thus Φδ is surjective and the theorem follows.

Remark 4.6. The main feature of our isomorphism is the change of the parameter N for ⩔
cycl
d to the

corresponding parameter δ of Brd(δ); the most important relation we have to verify is

(QkekQk)
2 = δ QkekQk.
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Essentially, this amounts to check that

Qkek
bk+1
bk

fekQk = (2β + 1)QkekQk −NQkekQk = δ QkekQk. (4.5)

see Lemma 6.3. By [26] we can take a formal variable u and write

ek
1

u − yk
ekf =

Wk(u)

u
ekf , (4.6)

where Wk(u) is a formal power series in u−1 as in [26]. We may now be tempted to replace u = −β, compute

Wk(−β) = β1, and hence obtain (4.5) from (4.6). Now, while this can be formalized in the semisimple case (by

using the eigenvalues of yk, as done several times in [26]), it gets much more tricky in the non-semisimple case.

Hence we need to take another way using the formalism from Section 3 and the beginning of this section.

Corollary 4.7. The algebra f⩔
cycl
d f is generated by the elements fsif , feif , ykf for 1 ≤ i < d and 1 ≤ k ≤ d.

Proof . By Theorem 4.3 the algebra is generated by the elements s̃k, ẽk for 1 ≤ k ≤ d − 1. Then the claim follows

from the definitions.

5 Consequences: Koszulity and graded decomposition numbers

We deduce now some non-trivial consequences of the main theorem. For the whole section d is a positive integer

and δ ∈ Z. First, one of the main results of [15] allows us to equip the Brauer algebra with a grading. To state the

result we need some additional notation for graded modules. Let A be a Z-graded algebra. For M ∈ A − gmod

we denote its graded endomorphism ring by

endA(M) =⊕
r∈Z

HomA−gmod(M,M ⟨r⟩),

which becomes a graded ring by putting endA(M)r = HomA−gmod(M,M ⟨r⟩). The composition of f ∈

HomA−gmod(M,M ⟨r⟩) and g ∈ HomA−gmod(M,M ⟨s⟩) is given by g ⟨r⟩ ○ f in the category of graded modules.

Note that for a graded lift M̂ ∈ A − gmod of M ∈ A −mod it holds

EndA−mod(M) ≅ endA(M̂)

as (ungraded) algebras.

Proposition 5.1. Let δ ∈ C. The Brauer algebra Brd(δ) can be equipped with a Z-grading turning it into a

Z-graded algebra Brgrd (δ).
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Proof . We again assume δ ∈ Z, since otherwise the statement is trivial. Recall from Section 3 the parabolic

category Op(n). Consider the endofunctor F =?⊗ V of Op(n). Following [15, Sections 4] we have the summand

G of this functor that corresponds to projecting onto blocks with small weights (in [15] this functor was denoted

by F̃) such that

Brd(δ) ≅ f⩔
cycl

d f ≅ fEndg(F
dMp(δ))f ≅ Endg(G

dMp(δ)),

as algebras. By choosing a minimal projective generator P of Op(n) we have an equivalence of categories

Op(n) ≅ mod −Endg(P ).

Following [14] we equip A ∶= Endg(P ) with a Koszul grading and denote by Ôp(n) ∶= A − gmod its associated

category of graded modules. In [15, Section 5] a graded lift F̂ of F is constructed by choosing graded lifts for

each summand obtained by projecting onto blocks, see [15, Lemma 5.3]. Thus it also yields a graded lift Ĝ of G

and gives

Brgrd (δ) ∶= endA(Ĝ
dM̂p(δ)),

where M̂p(δ) is the standard graded lift of the parabolic Verma module.

With this grading one can establish Koszulity.

Theorem 5.2. The Brauer algebra Brgrd (δ) is Morita equivalent to a Koszul algebra if and only if δ ≠ 0 or δ = 0

and d odd.

Proof . This follows directly from our main Theorem 4.3 together with [15, Theorem 5.1].

Proposition 5.3. The Brauer algebra Brgrd (δ) is graded cellular.

Proof . It follows from [21] that the idempotent truncation of the quasi-hereditary algebra ⩔
cycl
d is always

cellular. It is straightforward to see that this is compatible with the grading.

Theorem 5.4. The Brauer algebra Brgrd (δ) is graded quasi-hereditary if and only if δ /= 0 or δ = 0 and d odd.

Proof . By [15, Theorem 4.13 and Remark 4.14] the highest weight structure of ⩔
cycl
d induces a highest weight

structure on f⩔
cycl
d f if and only if δ /= 0 or δ = 0 and d odd. Since by [15, Definition 4.11] the labelling posets

of standard modules for f⩔
cycl
d f agrees with the one for the Brauer algebra from [9] the isomorphism from

Theorem 4.3 is an isomorphism of quasi-hereditary algebras. The result then follows from the general theory of

graded category O (see [30]) using [15, Theorem 4.9].

Denote by ∆(λ) for λ ∈ Λd the standard module for Brd(δ) and by L(λ) for λ ∈ Λδd the corresponding

simple quotient, see [9]. As in the introduction denote by F the grading forgetting functor from Brgrd (δ) − gmod

to Brd(δ) −mod.
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Theorem 5.5. Assume that δ ≠ 0 or δ = 0 and d is odd, i.e. the case where Brgrd (δ) is graded quasi-hereditary.

For any λ ∈ Λd there exists a unique modules ∆̂(λ) ∈ Brgrd (δ) − gmod such that F ∆̂(λ) ≅ ∆(λ) and for λ ∈ Λδd

there exists a unique L̂(λ) ∈ Brgrd (δ) − gmod such that FL̂(λ) ≅ L(λ), and both modules are concentrated in

non-negative degrees with non-vanishing degree zero.

Proof . From [30, Lemma 1.5] it follows that graded lifts, if they exist, are unique up to isomorphism and grading

shifts. With the assumption on the degree of the modules the graded lifts will be unique up to isomorphism in

our case. For ⩔
cycl
d the existence of graded lifts follows from [15, Theorem 4.9] and general theory of category

O, see [30]. The existence of the graded lifts for f⩔
cycl
d f then follows from [15, Theorem 4.13] via a quotient

functor construction.

We now match the multiplicities of simple modules L̂(µ)⟨i⟩ occurring in a standard module ∆̂(λ) with

the coefficients of certain Kazhdan-Lusztig polynomials. Denote by W the Weyl group of g and by Wp the

parabolic subgroup generated by all simple roots except α0, i.e. the one corresponding to the parabolic p from

the introduction and Section 3. By W p we denote the shortest coset representatives in Wp/W . For x, y ∈W p let

nx,y(q) ∈ Z[q] be the parabolic Kazhdan-Lusztig polynomial of type (Dn,An−1) in the normalization from [29,

Remark 3.2]; see [5] and in particular [23] for the special case needed here.

Given ν ∈ Xp
n there is a unique νdom ∈ Xp

n and xν ∈W
p such that νdom + ρ is dominant and

xν(νdom + ρ) = ν + ρ.

We now give a dictionary how to translate between the labelling set of standard modules and Weyl group

elements. To a partition λ we associate a double Young diagram Y (λ) via the bipartition (λ,∅) and a weight

wt(λ) = δ +wt(Y (λ)). For λ,µ ∈ Λd we put

nλ,µ(q) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

nxwt(λ),xwt(µ)(q) if wt(λ) + ρ ∈W ⋅ (wt(µ) + ρ),

0 otherwise.

Theorem 5.6. For λ ∈ Λd, the module ∆̂(λ) has a Jordan-Hölder series in Brgrd (δ) − gmod with multiplicities

given by

[∆̂(λ) ∶ L̂(µ) < i >] = nλ,µ,i,

where nλ,µ(q) = ∑i≥0 nλ,µ,iqi and µ ∈ Λδd.

Proof . Denote by ∆̃(λ) the standard module in ⩔
cycl
d − gmod that is sent to ∆̂(λ) via the quotient functor

Q ∶ ⩔
cycl
d f − gmod→ f⩔

cycl
d f − gmod and analogously by L̃(µ) the simple module in ⩔

cycl
d − gmod. Then the
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following equality holds

nλ,µ,i
(a)
= [∆̃(λ) ∶ L̃(µ) < i >]

(b)
= [Q∆̃(λ) ∶ QL̃(µ) < i >]

(c)
= [∆̂(λ) ∶ L̂(µ) < i >] ,

where (a) is due to [15, Theorem 4.9], (b) is due to [12, p.136 (4)(vii)], and (c) is due to [12, p.136 (4)(iv)] for

the simple module and [21, Prop. 4.3] for the standard module.

6 Well-definedness of Φδ

In this section we establish the remaining part of Theorem 4.3, namely show that the map Φδ is well-defined.

In other words, we have to verify that the s̃i and ẽi satisfy the Brauer relations. We will commence with a few

lemmas that will help in the calculations, allowing us to simplify various expressions.

Lemma 6.1. It holds ekηk+1 = ekηk for 1 ≤ k ≤ d − 1, hence also ekfk+1 = ekfk.

Proof . Let ⩔
cycl
d act on itself by the regular representation. By Lemma 2.7 it follows that if either side of the

equation acts non-trivially on some generalized eigenspace, then the eigenvalues of yk and yk+1 add up to zero.

Hence if one is small so is the other.

We often need to simplify expressions involving fractions, such as in the definitions of s̃k and ẽk. The

following proposition collects a few useful formulas for this.

Proposition 6.2. In ⩔
cycl
d the following equalities hold for 1 ≤ k ≤ d − 1:

i) ek
1
bk
skf =

1
2β
ek

1
bk

f , ii) fsk
1
bk
ekf =

1
2β

1
bk

fekf , iii) ek
1
bk
ekf = (1 + 1

2β
)ekf .

(For the well-definedness we again refer to Remark 3.14.)

Proof . Let us first assume iii) is proven already. To verify i) we calculate

ek
1

bk
skf

(a)
= eksk

1

bk+1
f − ek

1

bk
ek

1

bk+1
f + ek

1

bkbk+1
f

(b)
= eksk

1

bk+1
f − (1 +

1

2β
)ek

1

bk+1
f + ek

1

bkbk+1
f

= ek (
2β − bk

2βbkbk+2
) = ek (

ck

2βbkbk+1
) = ek (

bk+1
2βbkbk+1

) =
1

2β
ek

1

bk
f

where equality (a) holds by Lemma 3.12 and equality (b) is valid thanks to part iii) of this proposition.

Formula ii) is shown analogously, but note that since 1
bk+1

ek is in general not defined we have to multiply

the whole equation by f from the left to make it well-defined.
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Finally let us consider the formula iii) which we will prove by induction on k. If k = 1 then note that by

Definition 3.1 the element y1 has exactly two eigenvalues, namely α and β as in (3.4), with the projections y1−β
α−β

respectively y1−α
β−α onto the eigenspaces. Then we obtain

e1
1

b1
e1f = e1 (

1

α + β

y1 − β

α − β
+

1

2β

y1 − α

β − α
) e1f =

1

α − β
e1 (

y1 − β

α + β
+
α − y1

2β
) e1f

= e1
1

(α + β)2β
(−y1 + α + 2β) e1f

(3.4)
=

1

Nβ
(−e1y1e1 + (α + 2β)e21) f

=
1

2Nβ
(N(1 −N) +N2 + 2β) f = (1 +

1

2β
) e1f .

Now assume the formula holds for k and, by applying Lemma 3.12 repeatedly, we obtain

ek+1
1

bk+1
ek+1f = ek+1sk(sk

1

bk+1
)ek+1f

= ek+1sk (
1

bk
) skek+1f + ek+1sk (

1

bk
ek

1

bk+1
) ek+1f − ek+1sk (

1

bk

1

bk+1
) ek+1f (6.1)

by Lemma 3.12. Now the first summand in (6.1) equals, by (VW.6c),

ek+1eksk+1 (
1

bk
) sk+1ekek+1f = ek+1ek

1

bk
ekek+1f = (1 +

1

2β
) ek+1ekek+1f = (1 +

1

2β
) ek+1f

by induction, whereas the second summand equals

ek+1sk
1

bk
ek

1

bk+1
ek+1f

= ek+1 (sk
1

bk
) ekek+1

1

ck
f

= ek+1 (
1

bk+1
sk) ekek+1

1

ck
f − ek+1 (

1

bk+1
ek

1

bk
) ekek+1

1

ck
f + ek+1 (

1

bk+1
1

bk
) ekek+1

1

ck
f

=
1

ck
ek+1ekek+1

1

ck
f − (1 +

1

2β
)

1

ck
ek+1ekek+1

1

ck
f +

1

bkck
ek+1ekek+1

1

ck
f

= −
1

2β

1

c2k
ek+1f +

1

bkc
2
k

ek+1f

by (VW.8a) and (VW.5a), Lemma 3.12 and induction hypothesis. Finally the third summand in (6.1) equals

−ek+1 (sk
1

bk+1
) ek+1

1

bk
f

= −ek+1 (
1

bksk
) ek+1

1

bk
f − ek+1 (

1

bk
ek

1

bk+1
) ek+1

1

bk
f + ek+1 (

1

bkbk+1
) ek+1

1

bk
f

= −
1

b2k
ek+1f −

1

b2kck
ek+1f +

1

b2k
ek+1

1

bk+1
ek+1f .
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Hence altogether we obtain

(1 −
1

b2k
) ek+1

1

bk+1
ek+1f = (1 +

1

2β
) ek+1f + (−

1

2β

1

c2k
+

1

bkc
2
k

−
1

b2k
−

1

b2kck
) ek+1f

= (1 −
1

b2k
)(1 +

1

2β
) ek+1f + (

1

2β

1

b2k
−

1

2β

1

c2k
+

1

bkc
2
k

−
1

b2kck
) ek+1f .

Now one easily checks that the last coefficient in front of the final ek+1f is zero and since (1 − 1
b2
k

) is invertible

on the image of ek+1f we obtain

ek+1
1

bk+1
ek+1f = (1 +

1

2β
) ek+1f

which finishes the proof.

6.1 The key relation f⩔
cycl
d f

The following is the most crucial point of the proof (see also Remark 4.6):

Lemma 6.3. We have ẽ2k = δẽk for 1 ≤ k ≤ d − 1.

Proof . We compute

ẽ2k = Qkek
bk+1
bk

fekQk
(a)
= Qkek

ck
bk

fekQk
(b)
= Qkek

ck
bk
ekQk

(c)
= 2βQkek

1
bk
ekQk −Qke

2
kQk

(d)
= (2β + 1)QkekQk −NQkekQk = δẽk.

Where equality (a) follows from (VW.8b), equality (b) holds by Proposition 3.13, equality (c) just expands ck

as 2β − bk and equality (d) is valid thanks to Proposition 6.2.

6.2 Symmetric group relations in f⩔
cycl
d f

In this part we show that the s̃j ’s satisfy the defining relation of the symmetric group. One of the difficulties

in the following calculations is to use only manipulations that result in well-defined terms. In some situations

this will make it necessary to expand terms instead of directly simplifying them. However, the well-definedness

of all occurring terms follows easily from Remark 3.14.

Lemma 6.4. We have s̃2k = f for 1 ≤ k ≤ d − 1.
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Proof . We compute

s̃2k = Qk (sk
bk+1
bk

fsk − sk
1

bk
−

1

bk
fsk)Qk +

1

b2k
f

(a)
= Qk (sk

bk+1
bk

sk − sk
1

bk
−

1

bk
sk)Qk +

1

b2k
f

(b)
= Qk (skbk+1sk

1

bk+1
− sk

bk+1
bk

ek
1

bk+1
−

1

bk
sk)Qk +

1

b2k
f

(c)
= Qk (

bk

bk+1
+ (sk − ek)

1

bk+1
− sk

bk+1
bk

ek
1

bk+1
−

1

bk
sk)Qk +

1

b2k
f

(d)
= Qk (

bk

bk+1
+ (sk − ek)

1

bk+1
− bksk

1

bk
ek

1

bk+1
+ ek

1

bk
ek

1

bk+1
−

1

bk
ek

1

bk+1
−

1

bk
sk)Qk +

1

b2k
f

(e)
= Qk (

bk

bk+1
+ (sk − ek)

1

bk+1
−

1

2β
ek

1

bk+1
+ (1 +

1

2β
)ek

1

bk+1
−

1

bk
ek

1

bk+1
−

1

bk
sk)Qk +

1

b2k
f

(f)
= Qk (

bk

bk+1
−

1

bkbk+1
) fQk +

1

b2k
f = f

where (a) follows from Proposition 3.13 and the fact that f commutes with 1
bk

on the image of sk, (b) is due

to Lemma 3.12, (c) and (d) are applications of Relation (VW.7), (e) uses Proposition 6.2, and finally (f) uses

again Lemma 3.12.

Since fsif commutes with Qj and 1
bj

f in case ∣i − j∣ > 1, the following lemma holds.

Lemma 6.5. We have s̃is̃j = s̃j s̃i for 1 ≤ i, j ≤ d − 1 with ∣i − j∣ > 1.

We verify now the braid relations, which is a surprisingly non-trivial task.

Proposition 6.6. The braid relation s̃is̃i+1s̃i = s̃i+1s̃is̃i+1 holds for 1 ≤ i < d − 1.

Proof . We expand both sides of the asserted equality and show that their difference is zero. The left hand side

is equal to the following sum

s̃ks̃k+1s̃k =

−QkskQkQk+1sk+1Qk+1QkskQk (6.2)

+
1

bk
fQk+1sk+1Qk+1QkskQk (6.3)

+QkskQk
1

bk+1
fQkskQk (6.4)

+QkskQkQk+1sk+1Qk+1
1

bk
f (6.5)

−
1

bkbk+1
fQkskQk (6.6)

−
1

bk
fQk+1sk+1Qk+1

1

bk
f (6.7)

−QkskQk
1

bkbk+1
f (6.8)

+
1

b2kbk+1
f . (6.9)
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and the right hand side is equal to the sum of the following elements

s̃k+1s̃ks̃k+1 =

−Qk+1sk+1Qk+1QkskQkQk+1sk+1Qk+1 (6.10)

+
1

bk+1
fQkskQkQk+1sk+1Qk+1 (6.11)

+Qk+1sk+1Qk+1
1

bk
fQk+1sk+1Qk+1 (6.12)

+Qk+1sk+1Qk+1QkskQk
1

bk+1
f (6.13)

−
1

bkbk+1
fQk+1sk+1Qk+1 (6.14)

−
1

bk+1
fQkskQk

1

bk+1
f (6.15)

−Qk+1sk+1Qk+1
1

bkbk+1
f (6.16)

+
1

bkb
2
k+1

f . (6.17)

We first simplify some of these expressions using the abbreviation A ∶= Qk+1 1√
bk

f . To improve readability

we highlight those terms that are modified in each step, using either Lemma 3.12 to move terms past sj ’s,

Proposition 3.13 to eliminate f ’s or Proposition 6.2 to modify terms involving fractions. First we obtain from

(6.16) + (6.17) = −Ask+1
1

bk+1
fA +

1

bkb
2
k+1

f

= −A(
1

bk+2
fsk+1 −

1

bk+2
fek+1

1

bk+1
+

1

bk+1bk+2
)A +

1

bkb
2
k+1

f

= A
1

bk+2
fek+1

1

bk+1
A −A

1

bk+2
fsk+1A

and the calculation

(6.12) + (6.14) = A(sk+1
bk+2
bk+1

fsk+1 −
1

bk+1
fsk+1)A +A(sk+1bk+2

1

bk+1
sk+1 −

1

bk+1
sk+1)A

= A((bk+1sk+1 − ek+1 + 1)
1

bk+1
sk+1 −

1

bk+1
sk+1)A

= A(bk+1sk+1
1

bk+1
sk+1 − ek+1

1

bk+1
sk+1)A

= A(bk+1sk+1 (sk+1
1

bk+2
−

1

bk+1
ek+1

1

bk+2
+

1

bk+1bk+2
) −

1

2β
ek+1

1

bk+1
)A

= A(
bk+1
bk+2

− bk+1sk+1
1

bk+1
ek+1

1

bk+2
+ bk+1sk+1

1

bk+1bk+2
−

1

2β
ek+1

1

bk+1
)A

= A(
bk+1
bk+2

−
1

2β
ek+1

1

bk+2
+ bk+1sk+1

1

bk+1bk+2
−

1

2β
ek+1

1

bk+1
)A

= A(
bk+1
bk+2

− ek+1
1

bk+1bk+2
+ bk+1sk+1

1

bk+1bk+2
)A

= A(
bk+1
bk+2

− ek+1
1

bk+1bk+2
+ (sk+1bk+2 + ek+1 − 1)

1

bk+1bk+2
)A

= A(
bk+1
bk+2

+ sk+1
1

bk+1
−

1

bk+1bk+2
)A =

1

bk
f +Ask+1

1

bk+1
A −

1

bkb
2
k+1

f

=
1

bk
f +A(

1

bk+2
fsk+1)A −A(

1

bk+2
fek+1

1

bk+1
)A

the equality

(6.12) + (6.14) + (6.16) + (6.17) =
1

bk
f .
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For the left hand side of our equation we simplify

−(6.4) − (6.6) = A(−
bk+1
bk+2

fsk
1

bk
fskbk+1 +

1

bkbk+2
fskbk+1)A

= A(−bk+1sk
1

bk
fsk

bk+1
bk+2

+
1

bk
fsk

bk+1
bk+2

)A

= A(−(skbk − ek + 1)
1

bk
fsk

bk+1
bk+2

+
1

bk
fsk

bk+1
bk+2

)A

= A(−skfsk
bk+1
bk+2

+ ek
1

bk
fsk

bk+1
bk+2

)A

= A(−
bk+1
bk+2

+ sk(1 − f)sk
bk+1
bk+2

+ ek
1

bk
sk
bk+1
bk+2

− ek
1

bk
(1 − f)sk

bk+1
bk+2

)A

= −
1

bk
f +Ask(1 − f)sk

bk+1
bk+2

A +A
1

2β
ek

bk+1
bkbk+2

A −Aek
1

bk
(1 − f)sk

bk+1
bk+2

A.

Moreover we have

(6.15) − (6.8) − (6.9) = −
1

bk+1
fQksk

Qk

bk+1
f +Qksk

1

bk

Qk

bk+1
f −

1

b2kbk+1
f

= −
1

bk+1
fQksk

Qk

bk+1
f +Qk (

1

bk+1
fsk −

1

bk+1
fek

1

bk
+

1

bkbk+1
)
Qk

bk+1
f −

1

b2kbk+1
f

= Qk (−
1

bk+1
fek

1

bk
+

1

bkbk+1
)
Qk

bk+1
f −

1

b2kbk+1
f = −Qk

1

bk+1
fek

Qk

bkbk+1
f

= −Aek
1

bkbk+2
A.

To summarize, we showed that

(6.12) + (6.14) + (6.16) + (6.17) − (6.4) − (6.6) + (6.15) − (6.8) − (6.9)

= Ask(1 − f)sk
bk+1
bk+2

A +A
1

2β
ek

bk+1
bkbk+2

A −Aek
1

bk
(1 − f)sk

bk+1
bk+2

A −Aek
1

bkbk+2
A. (6.18)

Now consider the following expressions

(6.11) − (6.5) − (6.7) = A(skfsk+1 − bk+1skfsk+1
1

bk
f +

1

bk
fsk+1)A

= A(sksk+1 − bk+1sksk+1
1

bk
+

1

bk
sk+1)A

= A(sksk+1 − (skbk − ek + 1)sk+1
1

bk
+

1

bk
sk+1)A = Aeksk+1

1

bk
A, (6.19)
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and

(6.13) − (6.3) = Qk+1sk+1Qk+1QkskQk
1

bk+1
f −

1

bk
fQk+1sk+1Qk+1QkskQk

= A(sk+1fsk − sk+1
1

bk
fskbk+1)A

= A(sk+1sk − sk+1
1

bk
skbk+1)A

= A(sk+1sk − sk+1 (sk
1

bk+1
−

1

bk
fek

1

bk+1
+

1

bkbk+1
) bk+1)A

= A(sk+1
1

bk
fek − sk+1

1

bk
)A

= Ask+1
1

bk
ekA −Ask+1

1

bk
A. (6.20)

The only terms not dealt with so far are (6.2) and (6.10). Instead of simplifying them we will need to expand

them into a large number of terms which then cancel with the remaining terms from the previous calculations.

For the first term we obtain

−(6.2) = A(bk+1skfsk+1
1

bk
fskbk+1)A

= A(
bk+1
bk+2

fskbk+2sk+1
1

bk
fskbk+1)A

= A
bk+1
bk+2

f (sk
1

bk
sk+1bk+1fskbk+1 − sk

1

bk
ek+1fskbk+1 + sk

1

bk
fskbk+1)A

= A
bk+1
bk+2

fsk
1

bk
sk+1bk+1skbk+1A

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(a)

−A
bk+1
bk+2

fsk
1

bk
ek+1skbk+1A

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(b)

+A
bk+1
bk+2

fsk
1

bk
fskbk+1A

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(c)

. (6.21)

Similarly, for the other term we obtain

(6.10) = −A (sk+1fskbk+2fsk+1)A = −A(
1

bk+2
fbk+2sk+1fskbk+2sk+1)A

= −A
1

bk+2
fsk+1bk+1fskbk+2sk+1A +A

1

bk+2
fek+1fskbk+2sk+1A −Asksk+1A

= −A
1

bk+2
fsk+1bk+1skbk+2sk+1A +A

1

bk+2
fek+1skbk+2sk+1A −Asksk+1A

= −Ask+1skbk+2sk+1A −A
1

bk+2
fek+1skbk+2sk+1A +Asksk+1A +A

1

bk+2
fek+1sksk+1bk+1A

−A
1

bk+2
fek+1skek+1A +A

1

bk+2
fek+1skA −Asksk+1A

= −Ask+1sksk+1bk+1A +Ask+1skek+1A −Ask+1skA −A
1

bk+2
fek+1sksk+1bk+1A

+A
1

bk+2
fek+1skek+1A −A

1

bk+2
fek+1skA +A

1

bk+2
fek+1sksk+1bk+1A

−A
1

bk+2
fek+1skek+1A +A

1

bk+2
fek+1skA

= −Ask+1sksk+1bk+1A
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(a)

+Ask+1skek+1A
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(b)

−Ask+1skA.
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(c)

(6.22)



Koszul gradings on Brauer algebras 29

We examine the three terms in (6.21)) separately. For the first one we obtain

(6.21.a) = A
bk+1
bk+2

fsk
1

bk
sk+1bk+1skbk+1A

= A(
1

bk+2
fsksk+1bk+1sk −

1

bk+2
fek

1

bk
sk+1bk+1sk +

1

bk+2bk
fsk+1bk+1sk) bk+1A

= Asksk+1skbk+1A +A
1

bk
fskek+1skbk+1A −A

bk+1
bk+2

A (6.23)

−Aek
1

bk
sk+1skbk+1A −A

1

bk+2
ek

1

bk
ek+1skbk+1A +A

1

2β

1

bk+2
ek
bk+1
bk

A (6.24)

+A
1

bk
fsk+1skbk+1A +A

1

bk+2bk
fek+1skbk+1A −A

1

bk+2bk
fskbk+1A, (6.25)

whereas the second equals

(6.21.b) = −A(
bk+1
bk+2

fsk
1

bk
ek+1skbk+1)A

= −A
1

bk+2
fskek+1skbk+1A +A

1

bk+2
fek

1

bk
ek+1skbk+1A −A

1

bkbk+2
fek+1skbk+1A. (6.26)

The sum of the third term, denoted (c), in (6.21) and (6.18) simplifies to

(6.21.c) + (6.18) = A(
1

bk+2
fbk+1sk

1

bk
fskbk+1 + sk(1 − f)sk

bk+1
bk+2

A +A
1

2β
ek

bk+1
bkbk+2

− ek
1

bk
(1 − f)sk

bk+1
bk+2

A −Aek
1

bkbk+2
)A

= A(
1

bk+2
fskfskbk+1 −

1

bk+2
fek

1

bk
fskbk+1 +

1

bk+2bk
fskbk+1

+sk(1 − f)sk
bk+1
bk+2

+
1

2β
ek

bk+1
bkbk+2

− ek
1

bk
(1 − f)sk

bk+1
bk+2

− ek
1

bkbk+2
)A

= A(
bk+1
bk+2

− ek
1

bk
sk
bk+1
bk+2

+
1

bk+2bk
fskbk+1 +

1

2β
ek

bk+1
bkbk+2

− ek
1

bkbk+2
)A

=
1

bk
f

°
(a)

+A
1

bk
fsk

bk+1
bk+2

A

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(b)

−Aek
1

bkbk+2
A

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(c)

. (6.27)

We now compare all the results and see that the following summands cancel each other: The three summands

from (6.26) cancel with the second summand in (6.23), (6.24); and (6.25) respectively. Moreover, the first from

(6.27) cancels with the last from (6.23); the second from (6.27) with the last in (6.25); and (6.22.a) with the

first in (6.23).

If we take from the remaining summands the first, call it (6.25-1), in (6.25), (6.22.c) and (6.20) we get one

more cancelation:

(6.25-1) + (6.22) + (6.20) = A(sk+1
1

bk
skbk+1 − sk+1sk + sk+1

1

bk
ek − sk+1

1

bk
)A

= A(sk+1sk − sk+1
1

bk
ek + sk+1

1

bk
− sk+1sk + sk+1

1

bk
ek − sk+1

1

bk
)A = 0.
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Then we consider the first summands in (6.24), the second in (6.22), and (6.19)) and obtain

(6.24-1) + (6.22.b) + (6.19) = A(−eksk+1
1

bk
skbk+1 + sk+1skek+1 + eksk+1

1

bk
)A

= A(−eksk+1sk + eksk+1
1

bk
ek − eksk+1

1

bk
+ ekek+1 + eksk+1

1

bk
)A

= A(−ekek+1 + eksk+1
1

bk
ek + ekek+1)A

= Aeksk+1
1

bk
ekA (6.28)

Collecting all the remaining summands, i.e. the thirds in (6.24) and in (6.27) and the term (6.28), we get the

following expression:

(6.24-3) + (6.27.c) + (6.28) = A(
1

2β

1

bk+2
ek
bk+1
bk

− ek
1

bkbk+2
+ eksk+1

1

bk
ek)A

= A(
1

2β

1

bk+2
ek
bk+1
bk

− ek
1

bkbk+2
+ ekek+1fsk

1

bk
ek)A

= A(
1

2β

1

bk+2
ek
bk+1
bk

− ek
1

bkbk+2
+

1

2β

1

bk+2
ekek+1fek)A

= A(ek
bk+1 − 2β + bk

2βbk+2bk
)A = A(ek

yk+1 + yk
2βbk+2bk

)A = 0.

This proves the claim of the proposition.

6.3 Relations involving only ẽk’s in f⩔
cycl
d f

We continue with the defining relations that will only involve the ẽk’s. The key relation that ẽk squares to δẽk

was already proven in Lemma 6.3. We continue with the remaining relations:

Lemma 6.7. We have ẽiẽj = ẽj ẽi for 1 ≤ i, j < d with ∣i − j∣ > 1.

Proof . Since feif commutes with Qj when ∣i − j∣ > 1 the statement follows.

Lemma 6.8. We have ẽkẽk+1ẽk = ẽk and ẽk+1ẽkẽk+1 = ẽk+1 for 1 ≤ k < d − 1.

Proof . We only prove the first equality, the second is done in an analogous way. We compute

ẽkẽk+1ẽk = QkekQkQk+1ek+1Qk+1QkekQk

= Qk
√
bk+2fekfek+1

1

bk
fek

√
bk+2fQk

(a)
= Qk

√
bk+2fekfek+1

1

ck+1
fek

√
bk+2fQk

(b)
= Qk

√
bk+2fekfek+1

1

bk+2
fek

√
bk+2fQk

= Qk
√
bk+2fekfek+1fek

√
bk+2
bk+2

fQk
(c)
= ẽk
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Where (a) is due to (VW.8b), since 1
bk

fek =
1

ck+1
fek, and (b) follows from ek+1 1

ck+1
f = ek+1 1

bk+2
f due to (VW.8a).

Finally (c) is again a consequence of Lemma 3.12 and Relation (VW.6d).

6.4 Mixed relations in f⩔
cycl
d f

We are now left with proving the relations involving both s̃j ’s and ẽj ’s. Again we refer to Remark 3.14 for the

well-definedness of all occurring terms.

Lemma 6.9. We have ẽks̃k = ẽk = s̃kẽk for 1 ≤ k < d.

Proof . We compute

ẽks̃k = −Qkek
bk+1
bk

fskQk +QkekQk
1

bk
f

(a)
= −Qkek

bk+1
bk

skQk +QkekQk
1

bk
f

(b)
= −Qkek

1

bk
skbkQk +Qkek

1

bk
ekQk

(c)
= −

1

2β
QkekQk + (1 +

1

2β
)QkekQk = ẽk

where equality (a) is due to Proposition 3.13, (b) is due to (VW.7), and finally (c) is due to Proposition 6.2.

The second equality in the claim follows analogously.

Lemma 6.10. We have s̃iẽj = ẽj s̃i for 1 ≤ i, j < d with ∣i − j∣ > 1.

Proof . This follows by the same arguments as for Lemmas 6.5 and 6.7.

Lemma 6.11. We have s̃kẽk+1ẽk = s̃k+1ẽk and s̃k+1ẽkẽk+1 = s̃kẽk+1 for 1 ≤ k < d − 1.

Proof . We only prove the first equality, the second is done analogously,

s̃kẽk+1ẽk = −QkskQkQk+1ek+1Qk+1QkekQk +
1

bk
fQk+1ek+1Qk+1QkekQk

(a)
= −Qk

√
bk+2fsk

1

bk
ek+1ekf

√
bk+2fQk +

√
bk+2

bk
√
bk

√
bk+1

fek+1ekf
√
bk+2fQk

(b)
= −Qk+1

1
√
bk

fskek+1ekf
√
bk+2fQk +Qk+1

1
√
bk

fek
1

bk
ek+1ekf

√
bk+2fQk

(c)
= −Qk+1

1
√
bk

fsk+1ekf
√
bk+2fQk +

1

bk+2
Qk+1

1
√
bk

fekf
√
bk+2fQk

(d)
= −Qk+1sk+1Qk+1QkekQk +

1

bk+1
QkekQk = s̃k+1ẽk.

Where equality (a) follows from Proposition 3.13, (b) is a consequence of Lemma 3.12 and again Proposition

3.13. Equality (c) follows by using relations (8a) and (8b) to rewrite the second summand and then applying

relations (6b) and (6d). Finally equality (d) is using Proposition 3.13 and reordering the factors afterwards.
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7 Example: the graded Brauer algebras Brgr2 (δ)

In this section we will illustrate explicitly the construction of the isomorphism for the Brauer algebras Br2(δ)

and describe their graded version Brgr2 (δ).

7.1 Case δ ≠ 0

We first consider the case Br2(δ) for δ ≠ 0. By [27] this Brauer algebra is semisimple with basis 1, t = t1, and

g = g1. The set of orthogonal idempotents is

{
1 + t

2
−

1

δ
g,

1 − t

2
+

1

δ
g,

1

δ
g}

which gives rise to an isomorphism

Br2(δ) ≅ C⊕C⊕C.

Note that the grading on Br2(δ) needs to be trivial since all idempotents have to have degree 0. We now

want to illustrate the idempotent truncation of the level 2 cyclotomic quotient ⩔2(Ξ) with parameters from

Definition3.1.

We describe ⩔
cycl
2 in terms of the seminormal representation of ⩔

cycl
2 from [2, Theorem 4.13] by an action

of ⩔
cycl
2 on the vector space with basis given by all up-down bitableaux of length 2. Explicitly, this basis consists

of

v1 v2 v3 v4 v5 v6 v7 v8

(∅,∅) (∅,∅) (∅,∅) (∅,∅) (∅,∅) (∅,∅) (∅,∅) (∅,∅)

( ,∅) ( ,∅) ( ,∅) (∅, ) ( ,∅) (∅, ) (∅, ) (∅, )

( ,∅) ( ,∅) (∅,∅) (∅,∅) ( , ) ( , ) (∅, ) (∅, )

all of which are common eigenvectors for y1 and y2. The corresponding pairs of eigenvalues are the following:

v1 v2 v3 v4 v5 v6 v7 v8

(α,α − 1) (α,α + 1) (α,−α) (β,−β) (α,β) (β,α) (β, β − 1) (β, β + 1)
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where the first entry denotes the eigenvalue for y1 and the second for y2. Using these eigenvalues one can calculate

via [2, Theorem 4.13] the matrix of s1

s1 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 α+β−1
α−β

√
−(2β−1)(2α−1)

α−β 0 0 0 0

0 0
√
−(2β−1)(2α−1)

α−β −α+β−1
α−β 0 0 0 0

0 0 0 0 ⋆ ⋆ 0 0

0 0 0 0 ⋆ ⋆ 0 0

0 0 0 0 0 0 ⋆ 0

0 0 0 0 0 0 0 ⋆

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The ⋆’s indicate some further non-zero entries which are irrelevant for the construction. Similarly one obtains

the matrix for e1 as

e1 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 (2α − 1)α+β
α−β

√
−(2β − 1)(2α − 1)α+β

α−β 0 0 0 0

0 0
√
−(2β − 1)(2α − 1)α+β

α−β −(2β − 1)α+β
α−β 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Although tedious, it is of course straightforward to check that these matrices together with the action of y1, y2

satisfy all the defining relations of ⩔
cycl
2 .

For the isomorphism in Theorem 4.3 we first need to apply the idempotent f from both sides. In the chosen

basis this amounts to truncation with respect to the basis vectors where the second partition is always empty

(i.e. v1, v2 and v3) that means we look at the submatrices consisting of the first three columns in the first three

rows. Clearly, the submatrices fs1f and fe1f do not even satisfy the most basic Brauer algebra relations, i.e.

the relation for squares. This deficiency is overcome by the correction term Q = Q1 =
√

b2
b1

f and 1
b1

f from the

definition of the isomorphism in Theorem 4.3 as we show now explicitly. We have

Q =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

√
α+β−1
α+β 0 0

0
√

α+β+1
α+β 0

0 0
√

β−α
α+β

⎞
⎟
⎟
⎟
⎟
⎟
⎠

and
1

b1
f =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1
α+β 0 0

0 1
α+β 0

0 0 1
α+β

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.
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By multiplying fe1f from both sides with Q we obtain

Qfe1fQ =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0

0 0 0

0 0 δ

⎞
⎟
⎟
⎟
⎟
⎟
⎠

,

which is obviously a matrix that squares to δ times itself. The analogous construction for fs1f needs an extra

correction term (as given in Theorem 4.3):

Qfs1fQ =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

−α+β−1
α+β 0 0

0 α+β+1
α+β 0

0 0 −α+β−1
α+β

⎞
⎟
⎟
⎟
⎟
⎟
⎠

and −Qfs1fQ +
1

b1
f =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0

0 −1 0

0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

7.2 Case δ ≠ 0

If we try to do the same for the Brauer algebra Br2(0) we immediately encounter a problem, since the algebra

is not semisimple and so we cannot apply the formulas and constructions from [2]. The whole difficulty of our

proof is to show that the formulas in Theorem 4.3 still make sense and give the required correction terms even

in the non-semisimple case.

One can show that via the orthogonal idempotents { 1+t
2
, 1−t

2
} one obtains

Br2(0) ≅ C⊕C[x]/(x2), (7.1)

with the element x corresponding to the element g ∈ Br2(0) It becomes graded in the obvious way by putting

the idempotents in degree 0 and x in degree 2.

There is in fact a generalization of the up-down tableaux basis in the graded setting via the diagram

calculus developed in [15]. The explicit isomorphism between this description and the Brauer algebra itself is

being worked out in [25].

Remark 7.1. To make the connection from (7.1) to [15] we note that Brgr2 (0) can be realized as the subalgebra

of the generalized type D Khovanov algebra from [14] (using the notation from there) with the following diagrams

as basis

○ ∨ × ∨ ∨ ∧ ∨ ∨ ∧ ∨ ∨ ∨

Here the first diagram spans the copy of C under the identification with (7.1), while the other two span a copy

of C[x]/(x2), with the second diagram being the unit and the third one being the element of degree 2, i.e. it

corresponds to x.
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