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1 Introduction

Double affine Hecke algebras were introduced by Ivan Cherednik in order
to study Knizhnik-Zamolodchikov equations as described in [Che05]. Since
then a prolific branch of research has been developed around double af-
fine Hecke algebras and their applications range from special functions, over
Verlinde algebras to various topics in representation theory, such as Schur
algebras and quantum groups. The most famous example of such applica-
tions is presumably the proof of the Macdonald’s conjectures by Cherednik
[Che05, Chapter 0.2.4]. See also [Che05, Chapter 0] for an in-depth over-
view.

One can associate to any root system and any lattice @ C L C P a
double affine Hecke algebra as done in [Che05, Chapter 3.2]. In Chapter
4 we will consider an example of this construction for the root system A;
associated to SLo and the lattice L := P: the so-called one-dimensional
double affine Hecke algebra H(q%,t%). But for the main part of this thesis
we will work with a slightly different version, namely the double affine Hecke
algebra associated to GL, for n > 2, see Definition 3.1. Our definition is
equivalent the construction in [SV05, Definition 4.1], whereas compared to
the construction from [Che05, Chapter 3.7] one has to additionally demand
that the generator 7 is invertible to match our definition. We will denote the
double affine Hecke algebra associated to GL,, by Hn(q%,t%) to emphasize
the dependence of the algebra on two parameters ¢, t. This algebra is closely
related to the double affine Hecke algebra assogiatled to the root system
Ap—1. In fact, the latter is a subquotient of H,(q2,t2), see [Che05, Chapter
3.7].

1.1 Motivation: a topological construction

Let us give a topological motivation for the definition of the one-dimensional
double affine Hecke algebra H (q%,t%). We are following the outlines given
in [Che05, Chapter 2.7.3] and [Sim17, Lecture 2, Chapter 2.3]. The point
of this discussion is to recover via a topological construction the definition
of H(q%,t%) as a (C(q%,t%)—algebra with generators X*1, Y+ T subject to
the relations

(T): (T—t2)(T+t2)=0, (YT): TY 'T=Y,
(XT): TXT = X1, (XYT): ¢2Y XY XT2 =1,
given in Lemma 4.2.
Consider the lattice A := Z @ Zi C C and let E := C/A be the corres-
ponding elliptic curve. Let 0 € E be the zero point and let x € E be a

point with —z # x € E. Furthermore, let G := Z/27Z act on E \ {0} via
e — —e for e € E. We denote the orbifold fundamental group of (E\{0})/G



based at = by 7¢"°((E \ {0})/G,x). Tt is defined to be the group of homo-
topy classes of paths from x to £z in E \ {0}, where the product y;y2 of
1,72 € (B \ {0})/G, x) is defined to be 7o followed by =1 if 7o ends
in  and v, followed by —v; if 72 ends in —z. Since E \ {0} is homotopy
equivalent to the wedge of two circles, its (usual) fundamental group is gen-
erated by the homotopy classes of those two circles, which we denote by
X and Y. We obtain from the definition of 7¢"*((E \ {0})/G, ) that it is
generated as a group by X,Y and a path from z to —z, which we denote by
T. As in [Sim17] we can depict these elements graphically, where the next
and all upcoming pictures represent lifts of elements in 7¢"*((E \ {0})/G, )
to paths in C\ A connecting a fixed lift of 2 to some (possibly different) lift
of £x. For simplicity we will denote lifts of +a by +z as well.

Since C\ A — E \ {0} is a covering map, an element 7 in the orbifold
fundamental group 7$"°((E\{0})/G, x) equals 0 if and only if it lifts to a null-
homotopic loop in C\ A. It is easy to see that the elements X!, Y+ T ¢
7 ((E\ {0})/G, z) satisfy the following relations:

TXT=X"1', 17y 'T=Y, Y !X'vX1?=1 (1)

For example we can verify the last relation graphically, since the following
loop starting at x representing 7Y~ X 1Y X T is null-homotopic in C \ A.

QP Q- ¢
ek
1 T/ 1
O--]--f-0-fF----- o
| —1 |
\Y \T Y I
l X l
Xyl X |
O O-mm - o

orb

In fact, 7" ((E \ {0})/G, x) is already isomorphic to the group generated
by X+ Y+ TF! subject to the relations in (1). We sketch the idea. Let



v be a path equal to 0 in 7"°((E \ {0})/G,z) represented by a word in
X+ Y+l 7+l This means v is a null-homotopic loop at « € E. We have
to show that the word representing v can be reduced to the trivial word
using the relations in (1). We can suppose that no generator appears next
to its inverse and we will assume by induction that the claim holds for all
paths with shorter word-length in the generators X*!, Y+ T#1  Lift 4 to
a path 4 in C\ A which consists of path segments from above corresponding
to XL Y+L 7% Since v is a null-homotopic, the lift ¥ must be a null-
homotopic loop based at (a lift of) x in C\ A. We will now use the relations
from (1) to reduce ¥ to the constant path in . For this look at a top-right-
extremal 1-by-1-box B C C for 74, by which we mean that 4 passes through
this box, but not through any box to the top-right of it. Let (a,b) € A be
the bottom-left corner of this box and let £xpg be the lifts of &z in B. Our
aim is to use the relations from (1) to either reduce the word-length of 4 or
to reduce the number of times that 4 passes through B, so that by induction
we can assume that 5 does not pass through B at all. Since we assumed
B to be extremal only the following path-segments (or their inverses) are
possible whenever 74 passes through B:

(1): XT or TY ! passing through — zp,
(2): XT ' or T7'v~! passing through — zp, (2)
3): X'y tor XY passing through — xp or zp.

In the first case we can use the first two relations in (1) to reduce the number

of times 4 passes through B. For example if we have ¥ = %2 XT7,, we can
replace 7 with 4/ = 3,71 X 15, as follows.

In the other two cases the path segment seems to wind around (a,b) € A.
But since 4 is null-homotopic this winding must be resolved by a homotopy.
Since B is extremal this means we can find a path-segment 4, of 4, which
starts and ends in B and is homotopic to a path inside B from +zpg to
+xp. If 41 starts and ends in the same point, we can use induction on
the word-length to reduce 4; to the trivial path at +xp using the relations
from (1) and we are done by induction, since we also reduced the length of 4.



Otherwise, we have that 4, (Y XT)*! is a null-homotopic loop at +xp, where
the exponent depends on the start- and end-point of 4;. After inspecting
some cases for short word-lengths of 4 by hand we can assume that the
word-length of 7 is larger than the word-length of 41 (7Y ~' X ~1)*!. Hence,
by induction on the word-length, we can replace 4; by (TY !X 1Tl in
7. Now excluding some cases for short word-lengths of 41 by hand lets us
assume that this reduces the word-length of ¥ and we are done in this case
by induction. The other extremal cases (top-left, bottom-right, bottom-left)
can be handled similarly. If we do not reach a step where we can reduce the
word-length as above, we can cancel extremal boxes successively to shrink
our path until it lies in a 2-by-2 box. One can see now by inspection that
this implies v = (Y !X~V XT?)* for some k € Z, which shows the claim.

Now look at the group algebra H := C(q%,t%)[ﬁ?rb((]ﬂ \ {0})/G, x)].
Slet T = q_iT, X = in z}nd Y = q_iY. If necessary we add qi and
t1 to the base field. Then H is isomorphic to the unital and associative
C(q%,ti)—algebra generated by the elements X*!, Y+ T+! modulo the re-
lations (YT),(XT),(XYT) from the one-dimensional double affine Hecke
algebra given above. Therefore the one-dimensional double affine Hecke al-
gebra H(qi,t%) is a quotient of the group algebra of m{"°((E \ {0})/G,x)
by the quadratic (7")-relation, which concludes our topological motivation.
We refer to [Sim17, Section 2.4.3] for a similar construction for the double
affine Hecke algebra associated to GL,,.

1.2 Content of the thesis

In this thesis we will present some aspects of the representation theory of
double affine Hecke algebras, short DAHA. More preciselly, we study the
DAHA associated to GL,, for n > 2, denoted by Hn(q%,tﬁ), in Chapter 2
and Chapter 3 and its spherical version in Chapter 5. The construction of
Hn(q%,ti) is described in Definition 3.1. Furthermore, we will study the
so-called one-dimensional DAHA associated to SLy from Definition 4.1 in
Chapter 4.

Classification of irreducible X-semisimple modules in the gen-
eric case. The second and third chapters are based on results in [SV05]
and aim to classify irreducible X-semisimple Hn(q% , t%)—modules for generic

parameter ¢ and t = q% for some k € Z\ {0} by combinatorial means. We
start with recalling basic definitions and facts about the affine root system
(h*, (| ), R) and the extended affine Weyl group W of type A,_; associated
to é\ [,, in Section 2.1. This includes various statements about the length func-
tion in the extended affine Weyl group W (Theorem 2.6), an action of W on
Z (Proposition 2.12) and a discussion of parabolic subgroups W; (Definition
2.17). In Section 2.2 we describe the combinatorial theory of so-called peri-
odic skew diagrams and tableauxr (Definitions 2.21 and 2.25). These can be



seen as a generalization of (skew) Young diagrams and tableaux, which play
a central role in the classification of irreducible modules for the symmetric
group Sy, see for example [TCST10] or [Ful97, Notation and Chapter 7].
The ideas from the S,-theory gen?ralize quite nicely: to each periodic skew
diagram we associate an H,(q2,t2)-module (Theorem 3.15), whose basis is
indexed by the standard tableaux on the diagram (Definition 2.26), which
are defined to be the strictly row- and column-increasing tableaux. These
modules are irreducible and X'-semisimple (Theorem 3.16), which means
that they have a basis of weight vectors for the subalgebra Hn(q%,t%) gen-
erated by /)\(Z for 1 < ¢ < n. More precisely we construct for each skew
diagram \/p an irreducible Hn(q%,t%)—module V (A, ) such that

Vi) = P Cler,t2)er, (3)
TE€Tab%C (\/ 1)

where the sum is taken over all standard tableaux on (A, x). The action of
X, is then given by X;vr = tCT(i)vT, where Cr is the content function asso-
ciated to the tableau T', see Definition 2.32. We conclude this chapter with
the statement that these modules form a complete class of representatives of
irreducible X-semisimple modules for Hn(q% , t%) (Theorems 3.18 and 3.19).

Finite-dimensional irreducible modules for the one-dimensional
DAHA. In the fourth chapter we describe the one-dimensional DAHA
(Definition 4.1) associated to SLg, which we denote by H(q%,t%). The
goal is to classify its finite-dimensional irreducible modules following [Che05,
Chapters 2.8 and 2.9]. For this goal the polynomial representation (Propos-
ition 4.3) on the ring of Laurent polynomials P := K[X*!] is of funda-
mental importance. It enables us to deduce a PBW-basis theorem for the
one-dimensional DAHA (Corollary 4.5). We will show that many finite-
dimensional irreducible modules are quotients of P up to some twists de-
scribed in Lemma 4.22. Furthermore, it gives rise to the non-symmetric
polynomials (Definition 4.12), which can be seen as a non-symmetric ver-
sion of Macdonald’s polynomials appearing in the Macdonald’s conjectures.
Another important feature of P is the existence of a symmetric bilinear form
(Definition 4.17), whose radical Rad lets us construct finite-dimensional irre-
ducible modules via P/ Rad. Using that the non-symmetric polynomials are
Y -eigenvectors (Corollary 4.15) and the evaluation formula (Lemma 4.21)
will allow us to find an explicit description of Rad as an ideal with one gen-
erator, which is helpful to understand the structure of finite-dimensional ir-
reducible modules. The classification is highly dependent on the parameters
q,t of the DAHA. In particular, the generic case, where g € C is not a root
of unity, and the complementary special case will be treated separately in
Sections 4.3 and 4.4. Albeit the simple construction of the one-dimensional
DAHA its representation theory is quite non-trivial, as the main classific-
ation results of these sections in Theorem 4.28, Proposition 4.32 and the



following propositions, Corollary 4.40 and Proposition 4.42 show.
Spherical DAHA and an action on quantum cohomology rings.
In the fifth and final chapter we will study a certain idempotent truncation
eHn(q%,t%)e of the double affine Hecke algebra of GL,, for n > 2, which is
called the spherical double affine Hecke algebra (Definition 5.13). The goal
of this chapter is to endow the quantum cohomology ring ¢H*(Gry, n)¢=1
specialized at ¢ = 1 with a module structure for the spherical DAHA. Here
Gr,, v denotes the Grassmannian of n-planes in CN. This construction has
not been previously established in the literature. We begin the chapter by
transporting some results and constructions for the one-dimensional DAHA
from Chapter 4 to the DAHA of GL,, for n > 2. More precisely, we will
define the polynomial representation of Hn(q%, t%) on the ring of Laurent
polynomials P := ]K[leﬂ7 ..., X1 and look at the radical Rad of a certain
bilinear form (, ) on P (Proposition 5.1 and Definition 5.7). As in the one-
dimensional case P can be used to construct a PBW-type basis of Hn(q% , t%)

(Theorem 5.4). After that we will define the idempotent e € Hn(q%,t%) via

1 U(w)
¢y 2t T @

weWw

which can be seen as an analogue of the symmetrizing element ﬁ Y wew W
in C[Sy]. Unlike in the case of the symmetric group, e is not a priori well-
defined. In fact, it is only well-defined for certain choices of the parameters
q and t. One of these choices is to set ¢ =t to be a primitive N-th root of
unity for some N > n. This choice allows us to define the spherical DAHA
as eHn(q%,t%)e and construct a certain module M := eP/e Rad, which we
want to identify with the quantum cohomology ring ¢H*(Gry, n)g=1. Setting
q = t will have one more nice consequence: the Macdonald’s polynomials
Py, € P specialize to the (rational) Schur polynomials s) (Remark 5.24). Be-
cause the quantum cohomology ring (Equation (178)) and the eH,, (q% , t%)e—
module M (Proposition 5.16) can both be described in terms of symmetric
functions, this is an important result towards identifying them. Using one
central statement from the theory of Macdonald’s polynomials, namely that
the Macdonald’s polynomials are weight vectors for a certain subalgebra
Cly{L, .. Yy W C Hn(q%,t%) (Theorem 5.25), together with some well-
known facts from the theory of Schur polynomials will allow us to deduce
important results about the structure of M in Section 5.5. More precisely,
we will describe two bases of M consisting of weight vectors, once for the sub-
algebra eC[YE, ..., V;211W e and once for the subalgebra eC[XT!, ..., X F![We
(Theorem 5.34 and Theorem 5.38), where W = S, is the Weyl group. In
particular we will deduce that the dimension of M is (]X ) Finally, we
will identify M with the quantum cohomology ring ¢H®(Gry n)q=1 of the
Grassmannian Gr,, y specialized at ¢ = 1 in Theorem 5.40, which is the
main result of the last chapter. The quantum cohomology ring is a cer-



tain deformation of the ordinary cohomology ring of the Grassmannian. It
is studied in detail in [ST97] from an algebro-geometric point of view. In
[KS10] the quantum cohomology ring was studied from the perspective of
integrable systems. In this work the Bethe vectors, which from an eigen-
basis for a certain family of commutative operators, were determined and
used to describe the ring structure. Under the identification with the eHe-
module M these Bethe vectors correspond to the above mentioned basis of
e(C[Xlil, eooy X)W e-cigenvectors. The main result of the last chapter is the
construction of v in the following theorem.

Theorem 1.1. The following diagram of C-algebras commutes and the
morphism v is an isomorphism. In particular, we obtain an eH,e-action
on ¢H®*(Gry N)g=1-

0 I Clex,...,en] —— q¢H*(Grp N)g=1 —— 0
b ;
0 —— eRad eP M 0
Here eq, ..., e, are the elementary symmetric polynomials in n variables

and I := (AN—pt1,--s hn—1,hn + (=1)") C Clex, ..., en], where hy is the
k-th complete symmetric polynomial. The morphism ¢ is the inclusion of
Clex, ..., en] into eP = C[X:E . XY where W = S,,. Furthermore, -y
identifies the eC[Xlil, ooy XFW e-weight basis we constructed with the basis
of Bethe vectors constructed in [KS10].

This result fits nicely into the philosophy of Cherednik from [Che05,
Chapter 0.4], where he proposes a connection between double affine Hecke
algebras and so-called abstract Verlinde algebras. By the results in [KS10]
the quantum cohomology ring of the Grassmannian is an example of a Ver-
linde algebra. Thus, our construction of an action of the spherical DAHA
eHpe on ¢H®*(Gry n)g=1 can be seen as an example of an explicit realization
of Cherednik’s philosophy.

1.3 Acknowledgement

Without the helpful counselling by Prof. Dr. Catharina Stroppel, writing
this thesis would not have been possible for me. She gave me many insights
into the subject, provided references when I needed them and helped me
immensely to understand the concepts presented in this thesis. For this I
wholeheartedly thank her. Moreover, I want to thank Prof. Dr. Jan Schréer
for being the second advisor of this thesis.



2 Affine Weyl group and skew diagrams

2.1 Affine root system and affine Weyl group

In this section we recollect some facts about the affine root system and the
(extended) affine Weyl group of type A,,_1 assigned to the affine Kac-Moody
algebra gln. For a reference see [Car05], [Kac90] or [SV05, Chapter 2. In
particular, this section follows the outline given in the last reference. Some
familiarity with root systems and Coxeter groups will be assumed.

Let n > 2. We will describe the root system of g[ now, where g[ is an
affine Kac-Moody algebra defined in [KR87, Lecture 9. For this let b be
a (n + 2)-dimensional Q-vector space with basis {e7, ... ¢,d}. Define a
symmetric bilinear form on b via

(6;/’6}/):(57;j, (e/]c) = (¢]|d) =0 for 1 <i,j <,
(cld) =1,  (cle) = (d|d) = 0.
Note that this bilinear form is non-degenerate.

Let b* be the dual space of h and let ¢; for 1 < i < n, ¢* and § € h*
denote the dual vectors of e for 1 <1i <n, ¢ and d respectively. We define
h* to be the Q-span of ey, ..., e,. Denote by (| ) : h* x h — Q the natural
evaluation pairing. The assignment ¢* +— d,d — cand e; — ¢} for 1 <i<n
defines a Q-linear isomorphism ( )V : 6* — f~) Using this isomorphism we
transport the bilinear form (| ) to f:)* and denote the resulting bilinear form
on h* by (| ) as well. For {,n € h* we have (¢|n) = ((In") = (¢V[n") by
definition of ( )V.

We extend the definition of e; for 1 < ¢ < n to arbitrary ¢ € Z by setting
ej:=e; —ké for i =i+ kn with 1 <7 <nand k € Z. Set o; j := ¢; — e; for
i,J € Z and abbreviate a; := o ;41 for ¢ € Z. We call «; ; for 7,5 € Z a root
and oy for ¢ € Z a simple root. Note that this fits the well-known definition
a; = e; — e;41 from the finite case and furthermore ag = —av1,, + 9.

Definition 2.1. We define the set of finite simple roots I, the set of finite
roots R and the set of finite positive roots RT to be

777,’

(5)

II .= {al, ceey an—l}y
Ri={oi;|1<i#j<n}, (6)
R+ I:{OZZ'J | 1§z<]§n}
We also define the finite root lattice Q := @}, Zay, the finite weight lattice
P := @}, Ze; and furthermore the weight lattice P := P @ Zc*. Finally,
we define the set of simple roots 11, the set of (real) roots R and the set of
positive roots RT by
ﬁ = {a07 PR an71}7
R:= {ovijli,7€Z,i+# jmodn}, (7)
ti={a;;|i,j€Z, i+ jmodn and i< j}.



Note that the tuple (b*,( | ), R) matches the description of the affine
root system of type A,_; for GL,, attached to the generalized Cartan matrix
A = ((oy | @j))o<ij<n- The tuple (h*,( | )|s+, R) matches the (finite) root
system A,,_1 for GL,, attached to the Cartan matrix A" := ((¢; | ))1<i j<n-
The difference to the (affine) root system associated to SL,, is that for GL,,
we use a larger ambient space, which contains the (finite) weight lattice of
GL,,. In particular, we do not assume that the roots span the ambient space
in a root system. The finite and affine root systems of SL,, are described
in detail in [Car05, Appendix| and this description can be used analogously
for the GL,,-case.

Now we are prepared to define the affine Weyl group of A,_; and give
some well-known properties.

Definition 2.2. For « € R let the associated reflection sq : §* — §* be the
Q-linear map defined by

STz — (o] z)a for z € h*. (8)

We call the group W, = (50, ---, Sn—1) the affine Weyl group, where s; := sq,
for0<i<n-1.

Remark 2.3. We have s, € Wa for all @ € R. For this observe that the
definition of real roots in [Car05, Chapter 16.3] matches our definition of
roots by [Car05, Theorem 17.17] up to changing the ambient space. By the
definition in [Car05, Chapter 16.3] we can find for any o € R some w € W,
such that w(a;) = a for some 0 < i < n — 1. Then we have s, = wsq,w !
by the calculation in [Hum90, Chapter 5.7] and hence s, € W,.

Theorem 2.4. (a) The group W, is isomorphic to the Cozeter group ad-
mitting the following presentation via generators and relations:

Wa = <807...,5n_1 |Sl2 =1 foro S 1 S n — 1’
5i8j = 8j8; for i # j &1 mod n, (9)

5i5;8; = sjsi8; for j =i+ 1mod n).

Also, W := (s1,..., 8n—1) is the Weyl group of A,_1 and hence isomorphic
to the symmetric group Sy,.

(b) The subgroup W, C GL(G*) is a semi-direct product W, = W x 7(Q),
where 7 : P — GL(F)*) is a group monomorphism sending x € P to

ooyt Glie= (@l +5a0610)6 (o)

Forw € W and z € P we have wryw ™

sp = T9sy where 0 = e; — e, € R holds.

= Tw(z)- Moreover, the equality

10



Proof. Part (a) follows from [Car05, Theorem 16.17], where we assume that
the presentation of S, as a Coxeter group is known. Part (b) is mostly
shown in [Car05, Chapter 17.3]. The only thing left is the injectivity of T,
which follows easily from the description of 7, for x € P. Note that the
author works over C, but the proofs also work over Q. ]

Definition 2.5. For w € W, let [(w) denote the minimal length of a word in
the Coxeter generators {sy, ..., S,—1} representing w. We call an expression
for w in the Coxeter generators of length I(w) a reduced expression. Set

R(w) := RTnw }(R"), (11)
where R~ := —R* = R\ R*.

Theorem 2.6. (a) For any w € W, we have l(w) = |R(w)]. ‘
(b) For any o € R™ we have l(wsy) > l(w) if and only if w(a) € RT.
(¢) For w = s;,...8;,, a reduced expression we have

m

R(w) = {av, , 85, (i, 1), ee iy, onSin (i)} (12)

(d) The following so-called strong exchange condition holds. Let w =
iy .--84,, be a mot necessarily reduced expression and let s € Wa be a reflec-
tion. If l(wsqa) < l(w) then there exists j such that wse = iy...8;;...8i,, . If
the expression is reduced then j is unique and we have o = s;,,...5;, (v, ).

Proof. Part (a) is proven in [Hum90, Chapter 5.6], part (b) is proven in
[Hum90, Chapter 5.7] and part (c) can be easily deduced from part (a)
and (b) via induction on [(w). Part (d) is proven in [Hum90, Chapter
5.8]. Note that a = s;,,...si;,, (q;;) is not explicitly shown in the reference,
but follows from s, = Sipgee-Sij1Si;Sij 1 Sim and the computation in the
beginning of [Hum90, Chapter 5.7]. We have seen in Theorem 2.4 that
W, is a Coxeter group and furthermore our definition of (positive) roots
coincides with the one given in [Hum90, Chapter 5.4] if we set V' to be the
R-span of ay, ..., a,—1. This makes the proofs in [Hum90] applicable. O

We will be mostly interested in the so-called extended affine Weyl group,
which we obtain by replacing the root lattice inside W, by the weight lattice.

Definition 2.7. Using 7 : P — GL(bh*) from Theorem 2.4 we define the
extended affine Weyl group to be the group generated by W and 7(P).

Proposition 2.8. We have W = W x 7(P) as subgroups of GL(h*).

Proof. The subgroup W C W normalizes 7(P) by Theorem 2.4 part (b).
The group W is finite, whereas 7(P) is free abelian by the injectivity of 7
and because P is free abelian. Therefore we have W N 7(P) = 1 and the
claim follows. O

11



We want to give another description of W now. For this observe that
P/@Q = Z by sending 7 := [e1] € P/Q to 1 € Z.

Proposition 2.9. We have W = P/Q x W, and an explicit split is given
by s: P/Q — W sending T — m with T := Te,S1...8p—1.

Proof. The inclusion Q — P induces a monomorphism W, — W. Its
image is normal, because we have T,WT_; = T,_y ()W € W, for € P and
w € W, by Theorem 2.4 (b). By identifying P with 7(P) we get a surjective
morphism p : W — W /W, = P/Q. Since P/Q = Z and 7 lies in the
preimage of 7 under p, the above described map is actually a split, which
shows the claim.

O

Proposition 2.10. The group W is isomorphic to the group generated by
the elements T, sg, ..., Sp—1 subject to the relations

522:1 for0<i<n-—1,
5i8j = 8;5; for0<i,j<n—1andi—j+# +1 modn, (13)

sisjs; = 8;8;8; for0<i<n-—1andi— j= %1 modn,
TS; = ST for0<i<n—1andj=1i+1modn.
Proof. From Proposition Theorem 2.4 (a) and 2.9 we can deduce all relations

except ms; = sjm for 0 <7 <n—1and j =i+ 1 mod n. For this relation we
use the explicit description m = 7, s1...s,—1 and calculate for 1 <7 <n —2:

TS = Te1S1---Sn—15i = Te1 Si4151---Sn—1 = Si4+1Te1S1-+--Sn—1 = Si+1T. (14)

For i = 0 we have

TS) = Te1S1-+-Sn—1Te1 T—e, S = S1---Sn—1Te,, Te; T—e,, S0 = S1Te1 52---Sn—150 (15)

= S17,

where we used sg = 7ysg from Theorem 2.4 and sy = S,,_1...9251592...5,—2.
Lastly, for i =n — 1 we have

SOT = TeyT—e,50Te1S1++-Sn—1 = Te;5051...Sp—1 = Tey S1---Sp—2 (16)

= T8n—1,

where we used the equality sy = s1...8,_25p,_1Sn—2...51. This proves the
existence of a morphism from the group above to W. The inverse can be
constructed using the universal property of the semidirect product. O

The main use of this description of W for us is the construction of the
following action of W on Z.
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Definition 2.11. Let Per,(Z) denote the group of n-periodic permutations
of Z, in other words the group of all bijections ¢ : Z — Z for which ¢(z+n) =
d(z) +n for all z € Z.

Proposition 2.12. Setting for0 <i¢<n—1and j € Z

si(j)=j+1 ifj=1imodn,

5i(j)=7—1 ifj=1i+1modn, a7
si(j) =J if j #i,i+1mod n,

m(j) =7 +1,

defines a group isomorphism W — Per,(Z).

Proof. Verifying the relations is easily done and hence we only prove the
bijectivity. Recall from Proposition 2.9 that 7., = ms,—_1...s1 and hence 7,
acts on j € Z via

Te,(j)=j+mnif j=1modn, 7. (j)=j otherwise. (18)
Using Wiflrelﬂf”l = 7,, for 1 <14 < n, which is obtainable via the explicit
description of 7 in Proposition 2.9, we get for 1 <i<n and j € Z

Te,(j) =j+nif j=imodn, 7 (j)=j otherwise. (19)

To prove injectivity assume that an element w € W acts trivially. Write
w = T,w with x € P and w' € W. Note that w’ preserves the interval
{1,...,n} and acts on it via the corresponding permutation in S, = W.
By the description of 7., above we see that 7, only preserves this interval
if x = 0. But for w to act trivially it must preserve this interval and we
can deduce that x = 0. Hence w’ acts trivially on {1,...,n}, which means
w=w =1.

For the surjectivity let ¢ € Per,(Z) be an arbitrary element. Define
kiyri for 1 < i < n with r; € {1,...,n} and k; € Z via ¢(i) = r; + kn. If
r; = r;j for some i # j then ¢(j + (k; — k;j)n) = ¢(i) by the n-periodicity,
which contradicts the bijectivity of ¢. Let w’ € W C W correspond to the
permutation r; — ¢ in S,. We can replace ¢ by w'¢ and can now assume
that r; =4 for all 1 < i <mn. Setting z = kie1 + ... + kpe, € P gives ¢ = 7,
which shows surjectivity. O

Remark 2.13. Let us visualize the action of W on Z in the case n = 2.
Here we view Z as a subset of the real number line. The restriction of s; to
{1,2} is the transposition of 1 and 2. In fact, for arbitrary n we see from
the definition of the action that S, = W C W acts via the corresponding
permutations on {1,...,n} C Z.

13



So: A A A A A A A

We obtain an interplay between the actions of W on Z and on b*.
Lemma 2.14. For w € W we have
(a) w(e;) = ey forieZ,
(b) w(ay,j) = Qi) w() Jori# jE L.

Proof. Claim (b) follows directly from (a). We prove (a) for the generators
sifor1 <i¢<mn—1and 7, for 1 <¢ <mn. Take an arbitrary j € Z and write
J = j + kn for some uniquely determined 1 < j <n and k € Z. We have

(20)

si(ej) = siej) — ksi(0) = e5,(j) — k6 = eg,(jy for 1 <i <mn—1. (21)
With the Kronecker delta d;; we obtain

Te,(ej) = ej — (ei | €j)0 = €j — 040 = ejy5,n = €r,j) for 1 <i<n. (22)

This proves (a) and hence the lemma. O

We deduce now one of the most useful properties of the W-action on 6*

Lemma 2.15. The bilinear form (| ) is W -invariant.
Proof. Let x,y € 6* For 1 <1i <n we have
(7e: () | 7, (y)) = (@ | y) + (6 [ w)(ei | y) + (0| 2)(ei | @)
616 )es e = (e [0+ 5610)) 612)
(104 5612) 610 =@l

For 1 <i<mn —1 we have by using (a; | a;) =2

(si(2) | si(y)) = (¢ [ y) = 2(ei [ 2)(ai | y) + (i | y) (e [ z)(ei | o)

_(zy). 24

This proves the invariance for the generators of W and therefore for W
itself. O
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Remark 2.16. Recall [ and R from Definition 2.5. We extend the length
function [ from W, to W by setting I(7*w) = I(w) for arbitrary 7%w € W
with w € W, and k € Z. This is well-defined by the properties of the
semidirect product W = P/Q x W,. We also extend the definition of R to
arbitrary w = 7Fw’ € W. By Lemma 2.14 we have R(7*w’) = R(w'), since
7 preserves RT. In particular, Theorem 2.6 holds analogously for W.

Let us give a short discussion of parabolic subgroups of W.
Definition 2.17. For I C {0,...,n} define
Wi={(s; |iel)CW,
I :={o; | i€ I} CII, (25)
Rf ={a€R"|s, € Wi} CR".

We call W; the parqbolic subgroup corresponding to I. We also define the
following subset of W

W= {weW|Rw)N R} =0}. (26)
Lemma 2.18. For any I C {0,...,n} we have
W ={we W |l(wsy) > l(w) for all a € R} }. (27)

Proof. By Theorem 2.6 part (b) we have l(wso) > l(w) for all a € R
if and only if w(a) € R* for all a € R;r But this is then equivalent to
R~ Nw(R;]) = 0, which is equivalent to R(w)NR} = w L (R)NRf =0. O

We conclude this section with a description of the affine action of W
and its stabilizers.

Remark 2.19. Note that the action of W on b* fixes Q5 and hence we
can define the affine action of W on b* ® Qc* as the induced action action
on the quotient h* /Qd = b* @ Qc* . We will denote the affine action of
w e W on h € h*®Qc* by w(h). Let W[(] denote the stabilizer of a weight
¢ =Cle1 + ... + Cnen + Coc* € P with respect to the affine action. We also
define R[¢] :={a € R| (¢ ] a) = 0}.

Lemma 2.20. Let ¢ = (ie1 + ... + (nén + (€™ € P with (. # 0 and w €
WCI\ {1}. Then R(w)N R[C] # 0.

Proof. Let 1 # w = w € W[¢] with w' € W and z = z1e; + ... + Znen.
Then w € W] implies

G = Gu1p + @i for 1< <. (28)

For 1 <i < nset O; := {i,w(4),...,w" (i)} for appropriate k; € Z~¢ to be
the w'-orbit of 7. If all z; = 0 for 1 <4 < n, then w’ = w # 1 and we can
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find 1 <i < n and j € O; such that w'(j) > j and w'~'(j) > j. But then
Q1) € RYNR[¢] and W' (1)) = Qur(5),5 € R~ N R[¢], which shows
our claim. Now assume that some z; # 0. We have z; + ;) o Tk () =
0 by Equation (28) and since (. # 0. Thus we can find some 1 < j < k; and

some 1 < b < k; such that
Lori (5) < 0, Topli+1 () = oo = Loptitb=1(;) = 0, Topti+b (i) > 0. (29)

By Equation (28) we have cv,yj+s-1(;) wi—1(s) = Twi(i)0 € R[¢]. By Tyrigy <0
we even have

Oéw/b—1+j(i)’w/j—1(i) — xw/j(i)é S R[C] N R+. (30)
Applying w = 1w’ we obtain

W(Olyb =143 (3,1 (3) — Twtd (1)0) = Qa3 () %4 (i)
- (:L‘w/j(l-) + Layrb+i (i) — 1‘w/j(i))5 (31)

= aw’b+j(i),w’j(i) - xw/bﬂ-(i)&

and since Z,m+;5(;) > 0 this element lies in R~, which shows the claim.

O]

2.2 Periodic skew diagrams and tableaux

In the representation theory of .S,, Young diagrams and tableaux play a very
important role. To each Young diagram a certain irreducible S,-module, the
so-called Specht module, is associated, whose basis is given by the standard
tableaux on the diagram. Furthermore, the action of S,, with respect to
this basis can be described using an action of S, on the Young tableaux.
For an overview of this theory see [Ful97], especially Chapter 7. The goal
of this and the following sections is to mimic these ideas in a ‘double affine
context’. In this section we will generalize the notion of Young diagrams
and (standard) tableaux and define an action of the extended affine Weyl
group W on the tableaux. We will again fix n > 2. The discussion presented
in this and the following sections is based on [SV05].

Recall that a skew Young diagram A is a subset of Z? such that if (a, b) €
A and (a+i,b+ j) € A for some 4,j € Z>; then also the full rectangle
[(a,b),(a+i,b+ j)] lies in A. See Definition 5.19 for a description of the
non-skew version. The following definition can be seen as a double affine
analogue.

Definition 2.21. Let m € Z>1, 1 € Z>¢ and v = (m, —1). A v-periodic skew
diagram of degree n is a subset of A C Z? with the following properties.

(D1) We have A = A + .
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(D2) The set {(a,b) € A |1 <a <m} has size n.

(D3) For (a,b) and (a+1i,b+j) € A with é,j € Z>; we have (a+7',b+j") € A
forall1 < <iand1<j <j.

Let Dy, _; denote the set of all ~-periodic skew diagrams of degree n for
v = (m,—1) and let

D* 1= {A € Dy, | Ya € Z: 3b such that (a,b) € A} (32)
denote the subset of «-periodic skew diagrams with no empty rows.
From now on we will assume m € Z>1, [ € Z>o and v = (m, 1) € Z2.

Example 2.22. The following picture shows the ~-periodic skew diagram
for v = (m,—1l) = (2,—4) and the boldly framed fundamental domain
{(1,5),(1,6),(1,7),(1,8),(1,9),(2,4),(2,5),(2,6)} for the translation by ~.

0.0 b [

For two nested partitions A = (A\y > ... > \p,) and g = (u1 > ... > pim)
with A\; > p; for all ¢ one can construct a skew Young diagram by taking the
complement of 4 in A as described in [Ful97, Notation]. In a similar fashion
we want to use a generalized form of partitions to construct periodic skew
diagrams.

Definition 2.23. Define the set of m-partitions of width  to be

Poi= A= (s i) €Z™ [ 1 2 oo > iy 12> g — pm}. - (33)

We define the set of (strictly) nested m-partitions of width [ to be

m={ ) € Pl x P TN > for all i, Y (A — ) =n}, (34)
i=1

T i =L\ ) € 77:;’[ X Pnt,l | A; > p; for all 4, Z()‘Z — ;) =n}. (35)
i=1
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To each (A, u) € Tm, we want to associate a 7y-periodic skew diagram
for v = (m, —1). For this we define the following subsets of Z2.

Mup:={(a,b) €Z* |1 <a<m, u,+1<b< N}, (36)

A plk] == N p+ kv for k € Z, (37)

M= Mulk). (38)
keZ

We also extend the definition of A\, and p, to all a € Z by writing a € Z
as a = a + km with a € {1,...,m}, k € Z and setting \, = A\, — kl.

Similarly we set pg, = po — kl. We obtain that the a-th row of )\//71 equals
{(a, pa +1),..., (a; Aa) }-

Proposition 2.24. Let m € Z>1, | € Z>o and v = (m, —1).
(a) Sending (A, 1) to )T/TL defines a surjective map ® : J", — DI _,.
(b) ® restricts to a bijective map ®* : J*7, ; — D*}, . 7 7
Pictured as a diagram the proposition reads as:

Strictly nested m-partitions P* y-periodic skew diagrams
of width 1 without empty rows

M M

Nested m-partitions —»CI) -periodic skew diagrams
of width 1 TP 7
Proof. First we have to show that for any (A, u) € Ty we have /\//71, €
D _,. We see that property (D1) follows directly from the definition of

)T/\M as the union of \/ulk] for k € Z. Since v = (m,—[) we obtain that
AN ({1, ...;m} xZ) = A/pu[0] = A/p. This set has size n as \/p € J;7, ; and
(D2) follows. To prove (D3) let (a,b),(a +i,b+ j) € m with i,j € Z>o.

Note that for (a1, b1), (a2, bs) € m with a1 > ag we have Ay, < Aq,. Indeed,
if (a1,b1), (a2, b2) € A/pulk] then this holds by definition of A/u[k] = A/u+k~.
Otherwise we can use that A\/p and hence any A/u[k| is not empty and by
transitivity we only need to prove the claim for some fixed k and for some
(a1,b1) € A/ plk+1] and (az,b2) € A/plk]. Weusel > A=A = Ay (p1)ym—
)‘m+(k+1)m and obtain )\al < )\1+(k+1)m < )\m+(k+1)m +1 = Amtkm < Aag-
Analogously we obtain g, < g, for a; > as. In our setting this implies
e+ 1<p,+1<band b+ j < Agq; < \; for all a € {a,...,a+ i}. Hence
(a,b) € )T/\,u for all a < @ < a+4 and b < b < b+ j, which shows (D3).
Now we prove the surjectivity of ®. Take any A € Dy, - Pick an

18



i0 € Z<o such that the ip-th row of A is not empty. For ¢ > i define

max{b | (7,b) € A} if the i-th row is not empty,

A = _ (39)
Ai_1 otherwise,
min{b | (i,0) € A} — 1 if the i-th row is not empty,

i = : (40)
Ai—1 otherwise.

Set A = (A1,..,A\m) and p = (g1, .. pim). We want to show (A, u) €

™ - Using condition (D3) we obtain that the a-th row of A is {(a, jta +
1), ..., (a, A\q)}, where emptiness of this set is possible. Also, we immediately
obtain p, < A, for a € Z. Let a,d’ € {1,...,m} with a < a’. We claim
that Ay, > Ay/. If the row of a or @’ is empty we can replace a respectively
a’ by the greatest a < a respectively a’ < a’ such that the corresponding
row is not empty. Note that @ < @’. But then by condition (D3) we have
(a,Aa) € A and since Az is the maximal b for which (a,b) € A we have
Ao = Ay for all @ < @ in {1,...,m}. Similarly we obtain pg > po. Using
(D1) we obtain A\ < A9 = A, +1 and using (D2) we obtain that the union of
the rows 1 up to m has size n, which altogether shows (X, u) € J7 ,. It now
follows that ®((A, u)) agrees with A on the rows 1 up to m and hence by
periodicity on all rows, which proves the surjectivity. For the injectivity on
J* m, note that if the i-th row of ®((A, uz)) for 1 <i < m is not empty then
A; and p; are uniquely determined by the maximal and minimal element in
the ¢-th row. O

We want to generalize the notion of a Young tableau on a (skew) Young
diagram from [Ful97, Notation| to our context.

Definition 2.25. Let (A, ;) € J _;. A bijective map T : )\//TL — 7 with

T(u+ ) =T (u)+ n is called a y-tableau. The set of all y-tableaux on )T/TL
is denoted by Tab. (A/p). We call T'(a,b) for (a,b) € A\/u the label of (a,b).

—

By the periodicity constraint a tableau on A\/u is uniquely determined
by its values on A/u. As in the finite case described in [Ful97, Notation
and Chapter 7] we are mostly interested in a certain subset of the peri-
odic tableaux, the so-called standard tableaux, which will index bases of our
irreducible representations by Theorem 3.15.

Definition 2.26. Let (A, ) € J. ;. A y-tableau T is called row increasing
(respectively column increasing) if (a b), (a,b+1) € )T/\,u implies T'(a,b) <

T(a,b+1) (respectively (a,b), (a+1,b) € )\/,u implies T'(a,b) < T'(a+1,b)). A
~-tableau which is column increasing and row increasing is cz called a standard
~v-tableau. The set of all row increasing y-tableaux on )\/ 1 is denoted by
TabR()\/ w) and the set of all standard ~-tableaux on )\/ p is denoted by

Tabf?c()\/u).
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Definition 2.27. Let (A, p) € J; ;. We define a standard tableau T on
A/ by setting

i—1

To(a, pi+j) == (Z(Ak — Mk)) +jforie{l,...,m}and j € {1,.... \i—p;}.
k=1
(41)

on the fundamental domain \/p C )T/TL and then extending the assignment
to A/p via v = (m,—1). Note that this is possible, because To(A/u) =
{1,...,n}. We call Ty the ground state tableau or row reading tableau.

Example 2.28. Here is an example of the ground state tableau on m for
n=_8,v=(m,—l)=(2,-4), A= (9,6) and = (4, 3).

=

—7/—6
0.0 —— Aull]
112131415
“ AEE Aul0
9 110(11/12|13
14]15|16
A1

We want to study an action of the extended affine Weyl group W from
Definition 2.7 on the set Tab. (\/p). It is induced by the action of W on Z
described in Proposition 2.12.

Proposition 2.29. Let (A, u) € J, ;. Then W acts on Taby(m) via
(wT)(u) := w(T(u)) for all u € )T/TL, (42)

Proof. The element w € W acts via Per,,(Z) on Z and hence w1 : )\//IL —7Z
is a bijection with wT'(u +v) = w(T(u) + n) = wT'(u) + n for all u € \/p,
therefore it is again a ~-tableaux. O

Proposition 2.30. Let (A\,u) € Jy, ;. The action of W on Tabw(m) is
sitmply transitive.

Progf.\ Let Tp denote the ground state tableau and .S any «-periodic tableau
on A/u. Then So TO_1 : Z, — 7 is a n-periodic permutation on Z and hence
by Proposition 2.12 there exists a unique w € W such that w acts on Z via
SoTy ! Precomposing with the bijective Ty this shows that there exists a
unique w € W such that wTy = S, which implies the simple transitivity. O
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Remark 2.31. Observe that Proposition 2.30 implies that in general W
does not preserve the set of standard tableaux on a given ~y-periodic skew
diagram \/u. Take for example n =9, m =3,1 =5, u = (9,8,8) and A =
(13,11, 10). The corresponding periodic skew diagram is depicted below with
a standard tableau T on it. Take w € W such that the element in Perg(Z)
corresponding to w via Proposition 2.12 permutes 7 and 29 periodically
modulo 9 and is the identity otherwise. The action of w on the tableau T'
is depicted below and one sees that w7 is not column increasing and hence
not a standard tableau.

—9—5442m

(0,0) & 8316
17
0[4]5 29 3
a 1/12[15
816 :
9[13[14/38
10[21]24
17]25

2.3 Standard tableaux and Z:(FA/ 2

In order to understand the action of the DAHA on certain irreducible mod-
ules defined later in Theorem 3.15 we will need to know for which w € W
and T a given standard tableau w7 is again a standard tableau. On the fol-
lowing pages we will deduce via some technical work that the set of such w

coincides with Z;’\’“ ) defined below. For this task the content function C’%/ K
plays a crucial role. We still assume n > 2, m > 1,1 > 0 and v = (m, —1).

Definition 2.32. Let (\, ) € J",;. The diagonal function C : Z* — 7Z is
defined via C(a,b) = b — a for (a,b) € Z?. For any y-periodic tableau T

on m define the content of T to be the function which associates to each
element in Z the diagonal value of its position in 7T'. In formulas:

i,
Cy" 2 — 7, (43)
u—s C(T(u)).
We also define the associated weight of C’%/ * to be
(r:= Z C%/“(i)ei +(+m)c* e P. (44)

i=1
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Furthermore we set
Z2 = {w e W | (¢r | @) & {—1,1} for all a € R(w)}. (45)

Lemma 2.33. Let (A\,p) € J, and T € Tab,y()\//p). We have
(a) Cr(i +n) = Cp(i) — (I+m) for alli € Z,
(b) Cour(i) = Cr(w=2(i)) for alli € Z and w € W,
(c) (Cr | ;) = Cr(i) for alli € Z,
(d) ©(¢r) = Cor and in particular (w(lr) | @) = (Cor | @) for all o € R.

Proof. For (a) we calculate for i € Z

Cr(i+n)=C(T 7 i+n)) =C(T i)+ (m, =) =C(T(i)) — (1 + Z),)
6
which proves the claim using C(T~1(i)) = Cp(i). For (b) we have

Cur(i) = C((wT) (i) = C(T™ w ™ (i) = Cr(w™(i)). (47)

Claim (c) follows directly from the definition of ( | ) in Equation (5) and the
definition of (7. Finally, the first part of (d) can be easily deduced from (a),
(b) and the definition of the affine action from Remark 2.19. The second
part then follows since (w(¢) | @) = (@(¢) | @) for a € R. O

We will first deal with the row increasing case and find out for which
w € W we have wTj € Tabf”(m), where T is the ground state tableau
of )\//71 from Definition 2.27. For this we associate to each (A,n) € J, a
parabolic subgroup W( ) © W.

Definition 2.34. Let (\,p) € J;;. We define n; := 22:1(/\3' — pj) for
i€ {l,...,m} and set

I =11 onf \{n1,...,nm}. (48)

Furthermore, we define W(A,u) = WI)\;N REC\ 0 = R;F(A )
) ) WM

W | where we use the notation from Definition 2.17.

and WK .=

The group W()w) is nothing but the subgroup containing the w € W
that act on T by permuting the labels inside each row. Indeed, any of the
generators s; for ¢ € Iy ,) only permutes the labels inside each row, hence
this holds for any w € Wy . Also, any element w € W which permutes
only labels inside the rows of Tg lies in W( Au)» @s one can deduce by going
through the rows 1,...,m and writing the permutation in each row via the
generators s; € W( PWHE

In the following we will frequently use Theorem 2.6 in the context of the
extended affine Weyl group. This is justified by Remark 2.16.
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Proposition 2.35. Let (A, ) € Jy,; and let Ty be the ground state tableau
on )T/7L For w € W we have wTp € Tabf(m) if and only if w € WM,
Moreover we have WM Ty = Tab,lf()\/,u).

Proof. First let w € W) and let (a,b), (a,b+1) € m We have to show
wlp(a,b) < wlp(a,b+1). Let i := Tp(a,b). By definition of Ty we have
i+ 1= Ty(a,b+ 1) and since (a,b), (a,b+ 1) € m we have i € Iy . If
wTIp(a,b) > wIp(a,b+ 1) then w(i) > w(i + 1) and hence by Lemma 2.14
w(o;) € R~. Then by Theorem 2.6 part (a) we have [(ws;) < I(w), which
contradicts w € W) by Lemma 2.18. -

For the other direction assume 7' := w71 € Tabff(A/,u) and w ¢ WO,

Lemma 2.18 implies that we can find o;; € R? W for some i,j € Z with
i # jmodn and i < j such that I(ws,, ;) < l(w). Now a;; € R?‘ . implies
Sai, € W( au) and therefore the labels i and j appear in the same row of

)\/u By setting (a,b) := Ty *(i) we obtain Ty *(j) = (a,b+ j — ). But
now l(wsg, ;) < l(w) implies w( ) > w(j ) by Theorem 2.6 and Lemma 2.14.
Therefore we have T'(a,b) = w(i) > w(j) = T(a,b+ j — i) contradicting
T ¢ Tabf()\/u).
The last statement foll/ox\ivs immediately from the simple transitivity of
the action of W on Tab. (\/u) from Proposition 2.30.
O

The first step in proving an analogue for standard tableaux instead of
just row increasing tableaux is the following lemma.

Lemma 2.36. Let (A, ) € T, ; and Ty the ground state tableau on m Let
0<i<n—1andwe W such that wTy € Tabffc(m) and l(s;w) < l(w).
Then also s;wTy € Tabﬁc()\/,u).

Proof. Since wT} is row increasing we have w € W) by Proposition
2.35. Set x := s;w. Then from Theorem 2.6 part (c) and I(z) < I(w)
it follows that R(z) € R(w) = R(z) U {z~'(a;)} and hence z € WA,
which implies 2T} € Tabf(m). Assume xTp is not be a standard tableau,
which by the above implies that it is not column increasing. Hence we can
find (a,b),(a + 1,b) € A/p such that 2Tp(a,b) > xTo(a + 1,b). By wlp €
Tabfc(m) we have wTy(a,b) < wTp(a+ 1,b). Since w = s;x we therefore
must have 2Ty(a,b) =i+ 1+ kn and zTy(a + 1,b) = i + kn for some k € Z.
But we also have 2~ (a;) € R(w) C R*, hence (i) < = (i + 1) and the
periodicity of 27! implies #7(i + kn) < 27(i + 1 + kn). This now gives
To(a,b) > To(a + 1,b), which is impossible as Tp is column increasing. [

23



As an intermediate step we prove that ZFEF;\’“ ) from Definition 2.32 sends

the ground state tableau T on A/u to row increasing tableaux.

Lemma 2.37. Let (A, u) € .77271. Then we have

Z9H < W, (49)

)

In other words, w € Zj(%\’“ implies that w1y is row increasing.

Proof. Let w € W\W®X#), Then by Lemma 2.18 there exists s; € W(A,u) for
some 1 < j <n—1 such that [(ws;) < I(w). By Theorem 2.6 part (c) it fol-
lows that a; € R(w), since we can take a reduced expression ws; = 7¥s;, ...s;,
and by l(ws;) < (w) we have that 7"s;,...s;,s; is a reduced expression for
w. Furthermore, s; € W(A,u) implies that the labels j and j + 1 appear in
the same row of the tableau Ty and hence by Lemma 2.33

(CTD ‘ aj) = CTo(j) - CTo(j + 1) = -1, (50)

which shows w ¢ Z:(Fi;’“) and thus Zj(%"”) C W) | The reformulation in the
end of the statement follows now directly from Proposition 2.35. O

We are now able to deduce the aforementioned goal.

Theorem 2.38. Let (A, pu) € T, For T € Tabﬁc()\//ﬁ) and w € W we
have -
wl € Tabfc(/\/u) if and only if w € Zg““). (51)

In particular, for all T’ € Tabffc(m) there exists a unique w € Zg"“) such
that wT =T'.

Proof. First we will deal with T' = Ty and deduce the gﬁgeral case after-
wards. Let w € Z%"“). We want to show wTp € Tabffc()\/u) by induction
on the length of w. If I(w) = 0 then by definition of the length function
we have w = 7% and hence the claim is obvious, since wT} is just the row
reading tableau with k added to each label. Now assume w = Trksil...sil
with [(w) = [ > 0 and that the claim has been proven for elements with
length less than [. Let iy € {0,...,n — 1} defined by ip + k = i; mod n.
We have s;,w = wksiQ...sil and [(s;,w) = [ — 1. Setting = := s;,w we ob-
tain from Theorem 2.6 part (c) that R(w) = R(x) U {z~(as)}. Hence
we have R(z) C R(w) and therefore = € Z%"” ), which by the induction

hypothesis gives us Ty € Tabfc()\//p). If wlp & Tabﬁc()\//p) then by Pro-
position 2.35 and Lemma 2.37 wTp is not column increasing. So we can
find (a,b),(a + 1,b) € A\/p such that wTp(a,b) > wlp(a + 1,b). But since
2Ty is column increasing by induction hypothesis we also have xTy(a,b) <
xTy(a + 1,b). As w = s;,x this is only possible if 2Ty(a,b) = ig + rn and
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xTo(a+ 1,b) = ig + 1 + rn for some r € Z. We can calculate the following
using Lemma 2.14 and also using o;,4rn = 4, by definition of the simple
roots «;.

(CTO ‘ x_l(aio)) - (CT() ‘ axfl(io—l-rn))
= Cpy(x7 (io +rn)) = Cpy (& (io +1+7n))  (52)
=b—a—(b—a—-1)=1.

Since (e, ) € R(w) this contradicts w € Zq({)\’”).

For the other direction let w € W be such that wTj € Tabfc(m).

We argue again by induction on the length of w to prove that w € Z%"“ ),

If I(w) = 0 then R(w) is empty and the claim follows. Therefore assume
that I[(w) = 1 > 0 and that the claim has been proven for all elements
with length less than [. As before we can find s;, such that for z := s;,w
we have [(z) = [(w) — 1 and R(w) = R(x) U {z ' (ay,)}. Thus we can use
Lemma 2.36 and deduce 2Ty € Tabffc(m) and by the induction hypothesis

we have x € Zi(pf)"“ ). By the above description of R(w) we only have to prove

o= (Cn | M) # £, (53)
)

in order to obtain w € Zj(%"“ . Assume o0 = 1. The case ¢ = —1 works
analogously and is omitted. Let T := 2T and (a,b) := T~ 1(ig). We deduce
from Lemma 2.33 (c) that T-'(ig +1) = (a +j + 1,b+ j) for some j € Z,
since 0 = 1. If 7 < 0 then by property (D3) in Definition 2.21 we have
(a,b—1) € A/pand then ig+1 = T(a+j+1,b+5) < T(a,b—1) < T(a,b) = ig
gives a cont@giction to T being column increasing. If j > 0 we obtain
(a+1,b) € \/u and therefore ig +1 =T(a+j+ 1,0+ 7) > T(a+1,b) >
T'(a,b) = ig, which again is a contradiction. Thus we must have j = 0 and
we calculate

wTp(a,b) = s, T(a,b) =ig+1>ig = s;,T(a+1,b) = wTp(a+ 1,b), (54)

which contradicts that wTj is column increasing. This and the simple trans-
itivity of the W-action from Proposition 2.30 finishes the claim for T = Tj.
Now let T € Tabffc(/\ /1) be arbitrary. By the proof so far we can find

an element wr € Z%"“ ) such that wrTy =T. We want to show that the map
z — zwy gives a bijection between Z;)"“) and Z:(Fz’“) with inverse 2’ — z’w;l.
Once we have this, we can argue that 27T = zwrTp € Tabffc()\//p) if and
only if zwr € Z%"“ ) if and only if z € Z}A’“ ) , which together with the simple
transitivity from Proposition 2.30 finishes the proof.

Let us show that zwpr € Z%"“ ) for all z € Zg"“ ). If there exists z

such that this is not the case then there exists an o € R(zwr) such that
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(¢r, | @) = £1. By definition of R(zwr) we can find o/ € R~ such that
(zwr) (/) = a. If @ € wi'RT then set 8 := wr(a) € RT. We have by
definition 8 = z~'(a’) and hence 8 € R(z). Now we see using Lemma 2.15
and Lemma 2.33 (d) (¢r | B) = (wi'lr | @) = (03¢ | @) = (Cw;lT | o) =

(Cry | @) = £1 by assumption. This contradicts z € Z}A’” ). Otherwise we
have o € w;'R™ and hence a € R(wr). Then ({1, | ) = £1 contradicts

wp € Zi(pi)"“ ). Therefore we obtain zwr € Z%"“ ). Similarly one can show

that zw}l € ZJQ"”) for all z € Zj(%\’”), which shows that the map described
above is a bijection and hence our claim follows. O

2.4 Properties of the content function

We still assume n > 2, m >, 1 > 0 and v = (m,—[). Let (A\,u) € T .
We have seen in Theorem 2.38 that the content functions Cr for T 15
Tabffc()\/ 1) play an important role in understanding the interplay between
the extended affine Weyl group W and the standard tableaux. The content
functions will continue to be of importance in the upcoming sections, when
we study certain irreducible representations associated to skew diagrams.
Therefore let us exhibit two properties of content functions, which in fact
characterize them as we will see in Theorem 2.39. Let x := m + 1. We say
that a function F': Z — Z has property (C1) respectively (C2) if

(C1) We have F(i+n) = F(i) — k for all i € Z.

(C2) For any p € Z and i,j € F~Y(p) with i < j and F~1(p)N{i,...,5} =
{i,j} there exists a unique k_ € F~1(p — 1) and a unique ky € F~1(p+1)
such that ¢ < ky < j.

It follows directly from the periodicity of T' that Cp satisfies (C1), since
Cr(i+mn) = C(T7Y(i+n)) = C(T4) + (m,—1)) = Or(i) — (I + m) =
Cr(i) — k. To prove that Cp satisfies (C2) observe that the set-up just says
that ¢ and j are two consecutive labels in the same diagonal p, say on the
elements (a,b) and (a + 1,0+ 1). Then by properiy\(D?)) from Definition
2.21 we have that (a + 1,b) and (a,b + 1) lie in A/p and because T is a
standard tableau the labels kL on these elements lie between ¢ and j. The
uniqueness also follows by the row and column increasing property of T,
since any other label in C.*(p — 1) or Cn'(p+1) lies to the top left of (a, b)
or to the bottom right of (a 4+ 1,b+ 1).

Theorem 2.39. Let n € Z>2, K € Z>1 and F : Z + Z be a map with
properties (C1) and (C2) from above. Then there exist m € {1,....k}, | =

K=m, (A p) € Ty and T € Tabffc(/\//p) such that F = Crp.

Proof. Let F : 7Z — Z have properties (C1) and (C2). For p in the image
of F set d, := |F~!(p)|. Note that property (C1) implies that for each
i € {1,...,n} there exits at most one j € F~1(p) with j = i mod n, hence
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dy is finite. For each p in the image of F we let F~!(p) = {iy, ..., igp} with
iy < .. < z'z". Also from (C1) we get that d, = d,—,. and i;_ﬁ = i} +n for
j=1..,dp=dp.

We want to study the behaviour of F~1(p) U F~!(p + 1) now. For this
let us order this set by the standard order < on Z. Directly from property
(C2) it follows, that then the elements must alternate between F~!(p) and
F~l(p+1). We get dpy1 —d, € {—1,0,1} and the value —1 is only possible
if i:,l) < ill, 1 while the value 1 is only possible if izlj > ill, +1- In particular,
FY(p+1)=0or F~*(p—1) =0 implies that d, = 0 or 1.

We want to associate for any pg € F'(Z) and any r € Z a skew diagram
without empty rows A, p, to F in order to prove F' = Cr for an appropriate
standard tableau T" on A,.,,. For any p in the image of F' we will denote by
p" the minimum of F(Z)NZxp, in other words p* is the next element in the
image of F. Similarly let p~ denote the maximum of F'(Z)NZ,. Note that
p* is finite, as F/(Z) N Z<, respectively F(Z)NZ-, are never empty because
of (C1). We define a subset {(ay,by) | p € F(Z)} C Z* as follows. First set
(apy,bp,) = (r,po+7) and define (a}, b)) recursively for p € F(Z) N Zsp, by
setting

5 by +1) if pt =p+ 1,4, <ip,q,
(ap4,bp) = < (ab —1,b) if pt =p+1,i) >il (55
s— L0 +pT—p—1) ifpt >p+1.

One can visualize the three cases appearing in the recursion as follows.

p |p+1 p+1 pT
b b
Case 1 Case 2 Case 3

We extend this recursive relation to F(Z) N Z<p, by setting

o (ap, bl —1) if p~ =p—1,i | <ip,
(ah- by ) == (al +1,b}) ifp~ =p—1,i, | >ip, (56)
(ap+1,bp—p~ +p+1) ifp- <p-—1

We also set (ap, by) := (ap+j—1,bL+j—1) forallp € F(Z) and 2 < j < d,
and put o
Argo 1= {(ah ) | p € F(Z),1< j < dy} C 72, (57)

Note that the p-diagonal of A, for p € F(Z) is {(a},b}), ..., (ag”, bgp)} and
empty for p & F(Z). Set for p € F(Z)

my = s € {prop+ i =1} (55 =+ Lk > i) or s > s+ 1} (58)
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and [, := kK — m,. The cases in the recursive construction of A, ,, appear
k-periodically: if (a;+,b;+) was constructed using case 1,2 or 3, then the

same is true for (a%p )+ b%b Jr,‘i)Jr). This follows from the x-periodicity of the

i[l) discussed in the beginning of the proof. This periodicity also shows that
m :=my and [ := [, are independent of p. Using the definition of m we see
that m = a,—a,,, . for any p € F(Z). Thus we set v = (m, —). We will now
verify conditions (D1) - (D3) to see that A, ,, defines a y-skew diagram.
(D1): We have to show that (a, b)) € Ay, implies (ad4+m,bh—1) € Arpo-
By construction and the periodicity of the d,, we can reduce to the claim for
j = 1. We already know m = a}, —a}ﬂm. We have b},—a}, = p, since this holds

P
for the initial element (r, po+7r) € A, and is preserved under the three cases

appearing in the recursive relations. Therefore (b, —by) — (ay, . —ay) = &
or equivalently b}, — b}g + = —K+m = —I, which shows the claim.

(D2): Set E = {(a},b)) | p € {1,....6} N F(Z), j € {1,...,dy}}. Since
we have (a, b)) = (af,+,{,b§+ﬂ) + v for all p € F(Z) and j € {1,...,dp},
this defines a fundamental domain for 7. Sending (a%, bf,) € E to i% gives
a bijection from E to F~1({1,...,x}). Define a map ¢ : F~1({1,....x}) —
{1,...,n} by sending z € F~({1,...,k}) to zmod n. By (C1) this map is
injective, because i, i + jn € F~1({1,...,x}) would imply that F(i) and
F(i) — jr lie in {1,...,x} and hence j = 0. If ¢ was not surjective, then
F~'({1,...,x}) would not contain any element with n-modulus z for some
z € {1,...,n}. By (C1) this would also imply that F~1(Z) = Z would not
contain any such element, which is absurd. Hence the fundamental domain
has size n from which (D2) follows.

(D3): The description of the diagonals above shows that if we have
(al,bL), (al,+1,0L+1) € Ay, then (al+1,b,+1) = (ab™,b5). We have in
that case d, > 1 and hence by the consideration in the beginning p~ =p—1
and pt = p + 1. Furthermore, izl) > izl) o1 implies dpy1 > dp respectively
i[ljfl < i[l, implies d,—1 > d,. By construction of A, ,, we therefore obtain
(afo + l,bfy), (aé,bfy — 1) € Ayp,. Suppose now that (D3) does not hold.
Then we can find (a}, b)) = (a,b) € App, and (i,j) € Zzo x Zxq with
(1,7) # (0,0),(0,1), (1,0) such that for all 0 <4’ <4 and 0 < j' < j we have

(a+7,b+j") € Ay, if and only if (i, 5") = (0,0) or (4, 7). (59)

Assume that j—i = 0. Then (a+i,b+7) = (aé‘”, bé‘”) andonlyi=j=1
is possible. But then the above discussion gives a contradiction.
Now assume that j—i > 0 and let (al, b}) = (a+1i,b+7). By construction

R
we have that s — p and j — i both give the distance in the direction of the
north-east diagonal between these two points and hence s —p =j — ¢ > 0.
Assume r = 1. By construction we have for [ > 1 that aﬁ, > a}, > al.
Since 0 < i = (a+1i) —a = al — aé, we need both of these inequalities
to be equalities. This is only possible for [ = 1, p,p+1,...,s € F(Z) and
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) U+t Optj!
J') € App, for 0 < j/ < j and our assumption in (59) to obtain

j= and hence a contradiction to our choice of (7,j) # (0,1). If » > 1 then
(am=1, 0071y = (a+i—1,b+j—1) € Ay, and hence also (a+1i,b+j—1) € Ay p,
by the discussion at the beginning of (D3). Because we have j > 0, this is
a contradiction to assumption (59). The case i — j > 0 works analogously
and hence (D3) holds as well.

Assume A, p, contains an empty row. By the recursive construction of
the points (a}),b})) this is only possible if there exists p; such that for all
p > p1 with p € F(Z) we have p™ = p+1 and i;) < z'p+1 or if there exits a D2
such that for all p < po with p € F(Z) we have p~ = p—1 and z < z . In
p—k = zp —|— n.
Hence A;j, € D*;, _; and we can find (A, ) € J*7,; such that A, p, = m
by Proposition 2.24.

Finally, we define T" : A, ;,, — Z by setting T(ai;, bj) = 'j Then T is a
bljectlon since the 4}, are pairwise different and any i € Z = F (Z) equals
i}, for appropriate j and p. We have T~'(i}) = (a}, b)) and C(a),b}) =
b, — ag; = bl —al = p. Hence F = Cp. The fact that T is a tableau

follows from z?, . = i) + n deduced in the beginning of the proof and since

(@ bi) p) = (ap, b)) 4. Also, the fact that T is standard follows from the
description of F~!(p)UF~!(p+1) from the beginning of the proof: if (a,b) =

(a), b)) and (a,b+ 1) lie in Arp0 then necessarily (a,b+ 1) = (algﬂ,blgﬂ)
with either £k = j and zp < 2p+1 or k =35+ 1 and zll) > 2p+1. Since the
elements in F~1(p) U F~1(p + 1) alternate between F~1(p) and F~1(p+ 1)
we get in both cases T'(a,b) < T'(a,b+ 1). Analogously one shows that 7" is

also column increasing, which finishes the proof. O

< ... < il. In that case i = O and we can use the elements (a!, .,,b, ) =
b

both cases we get a contradiction to the periodicity property i’

Let us deduce when two content functions are identical. We will need
the automorphisms w,,; : Z™ — Z™ for m > 1 and [ > 0 defined on
A= (A1, 0y Ap) €2 via

WA = (A F 1L+ 1L, + 1,0, A1 + 1), (60)

Note that under the diagonal action wp,; preserves J, and J*}, ;. One
can visualize the action as cutting off the bottom ‘row’ of (A p) € j » ., and
putting it on top shifted by [ to the right, while simultaneously shiftiﬂg the
whole pa/rﬁtion/bz 1 to the right. One can see that this corresponds to
sending A/p to A/p+ (1,1) under ® from Proposition 2.24.

Proposition 2.40. Let m,m’ € {1,...,n} and l,I' > 0. For (\,pn) € T*I';
and (n, ) \7*;‘1, v the following are equivalent:

(a) C’\/” Cn/ for some T € Tab( ()\/M) and S € Tabgg,—l’)(;/;)’

(b)) m=m/1=1 and)\/u 77/1/+(7“ 1") for some r € Z,
(c) m = m,l—l/ and (n,v) = w;, (A, ) for some r € Z.
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Proof. Concluding (b) = (a) is trivial. To prove (a) = (b) choose any py €

C’%/ *(Z). We now note some facts about m and compare them with the
construction of A,.,, from Theorem 2.39 to prove that these skew diagrams
coincide up to translation on the (z, z)-diagonal. We put d, = |C."(p)| for

all p € Or(Z) and let C'(p) = {i;,...,igp} with i}a < ... < igp. We also
set (ab, b)) := T~1(i}). We then have (a}, b)) = (a}),b;) +(j—1,j—1) for
all j € {1,...,d,}, since these elements have the same diagonal value and
by definition of zi, We check that the (azly, bzl)) satisfy the recursion relation
(55): if pt = p+1 and i) < iéﬂ then the (p + 1)-th diagonal of m is
not empty and T’ _1(2'; 1) must be the top left entry of this diagonal. Since
iy < z']lgﬂ, the point T_l(illjﬂ) must be lower and strictly right of T-*(il).
Then by (D3) from Definition 2.21 we have T~1(i%) + (0,1) € A/u, which
must therefore equal T‘l(z}, +1)- The second case works similar. For the
third case let Tfl(illﬁ) = (a,b). This is the top left entry of the p*-th

diagonal. We just have to show that a = azlj —1. Ifa > a; — 1 then we
have b > by and we can use (D3) for the elements (a),b}), (a,b) to obtain

a contradiction to p™ > p+ 1. If a < azl, — 1 we can use that )\//71 has no
empty rows and find an element (a, —1,V') in the (a, — 1)-th row. If &' < b,
we can use (D3) for (a) — 1,b'),(a},b;) to obtain a contradiction to the
minimal choice of p* > p. If b}, < V' < b we directly obtain a contradiction
to the minimal choice of p™ > p,. If b} < b > b we can use (D3) for
(a,b), (ap — 1,') to again obtain a contradiction to the minimal choice of
p™ > p. This shows that the relations from (55) are satisfied. Furthermore,
T (ip) — T_l(illj_,,b) = r, which matches the construction of v for A, ,,. If
we choose r now so that (azlm, bzl,o) = (r,po + ), which is possible because
(r,po +7) and (al ,bl ) both have py as the diagonal value, we obtain that

Po’ “Po
A= Ay p,. Doing the same for C'g shows that (a) implies (b).
For (b) < (c) by the bijection from Proposition 2.24 we only need to show
(Wi A /W)™ = A/p+ (1,1). This follows from putting in the definitions.
O

3 DAHA for GL,

3.1 DAHA and X-semsimiple irreducible modules

We will now give the definition of the double affine Hecke algebra of GL,,.
The definition goes back to Ivan Cherednik, who introduced double affine
Hecke algebras in order to study (quantum) Knizhnik-Zamolodchikov equa-
tions [Che05, Chapter 0.2]. For the rest of this chapter we will work over
the field K := C(q%, t%), where t = ¢* for some fixed k € C\ {0} and ¢ # 0.
The element ¢ can be transcendental over C or it can lie in C from which
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K = C follows. We fix again n > 2 and note that the discussion in this
chapter is based on [SV05].

Definition 3.1. The double affine Hecke algebra of GL,, (or short DAHA)

denoted by Hn(q%,t%) is the unital, associative K-algebra generated by the
elements Ty, ..., Tn,l,ﬂil,Xlﬂ, ...,X,fl subject to the relations:

(T1) (T, —t2)(T;+t2) for 0<i<n—1,

(T2) T/T{T; = TyT;T; for i = j + 1 mod n,

(T3) T,Tj = T;T; for i # j + 1 mod n,

(PT) nTym=t =T, for j =i+ 1mod n,

(X) X;X; = X;X; for 1 <i,j <n,

(XT1) T;X;T; = Xs41 for 1 <i<n—1 and ToX,Tp = q¢ 1 X1,
(XT2) T,X; = X;T; for j #i,i+ 1 mod n,

(PX) nX;m ' =Xy for 1 <i<n—1and nX,7 ! = ¢ 'X;.

Remark 3.2. For any v = Y /" | vie; + v4d € 6* with v;, vy € Z we define
XY= X{'... XPrg%. Also, for any w = m*w’ with v’ € W, choose a reduced
expression v’ = s;,...s; and define T, := ﬂ'kTil...Tim. Note that the k& in
the decomposition of w does not depend on any choices. To show that T,
also does not depend on the choice of the reduced expression for v’ € W, it
is enough to see that any two reduced expressions for w’ are related via braid
relations, which are the relations in the affine Weyl group corresponding to
(T2) and (T3) above. This fact is proven in [IM65, Proposition 1.15] for
affine Weyl groups.

Proposition 3.3. Any element h € Hn(q%,t%) can be written as

h= Z Twaa (61)

weW
for some F,, € K[Xi, ..., X;F1].

Proof. Using the relations it is easy to see that we can arrange the 7 to
the left and the X; to the right in any monomial in the generators. Hence
the claim reduces to showing that any monomial in the 7T; is a sum of T,.
Look at a monomial T;,...T;, and set w = s;,...s;,. By induction on k we
can assume that w’ = s;,...s;,_, is reduced. If s;,...s;, is also reduced we
are done. Otherwise, we have by the strong exchange condition in The-
orem 2.6 that w = w's;, = s;,...5;;...5;,_, for some 1 < j < k — 1. Hence
w = Sz‘l---§z'j---$z‘k,1$ik is a reduced expression. By Remark 3.2 we know
1. T, , = Elﬁszk Multiplying by T;, from the right finishes the
proof by relation (T1) and the induction hypothesis for k —1 and k—2. O
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By Remark 5.5 the elements {T,,X" | w € W,v € P} in fact form a
K-basis of Hn(q%,t%).

Definition 3.4. An Hn(q%,t%)—module M is called X-semisimple if it ad-
mits a K-vector space decomposition M = @Cepn M, where Kk = % for k
such that t = ¢*,

P = {Cle1+ ... + Cnen + kex | G € Z for 1 < i < n}, (62)
and M; is the weight space for (, in other words
Mg :={me M | (X; —tCl¢)ym =0 for all 1 <i <n}. (63)

If M # 0 we say that ¢ € P, is a weight of M. We also define the generalized
weight space of ¢ € Py to be

M = | J{m e M | (X; — t'l)}¥m = 0 for all 1 <i < n}. (64)
k>0

Note that (¢* | e;) = 0 for 1 < i < n and hence the choice of Py instead
of P seems to not make a difference now. But in the theory described below
it will become necessary to index the weights over P, and not over P.

The goal of this chapter is to classify the irreducible X'-semisimple mod-
ules of Hn(q%, t%) For this the intertwining operators will play an essential
role, because they allow us to move between the weight spaces, as described
later in Propositions 3.8 and 3.9.

Definition 3.5. We define the intertwining operators ¢; € Hn(q%,t%) by
b= Ti(1 — X))+ (t72 —2) for 0<i<n—1 (65)
Lemma 3.6. The following equations hold in Hn(q%,t%):
(a) p7 =t71(1 —tX2)(1 —tX %) for0<i<n-—1,
(b) ¢idj = @j; for 0 <i,j <n—1,4i%# j+1modn,
(¢c) $itpjdi = Qjpipj for 0 <i<m—1 and j=1i+1modn.

Proof. The following identities for 0 < i < n — 1 follow from (T1) and turn
out to be useful during the proof:

[NIE
[N

T2=(t2 —t )T, +1, T, =T, + (2 —t2). (66)
(a) and (b) can be easily verified using the relations of Hn(q% , t%) We omit
these calculations. The computation for (c) is more involved. We will go
through it in the case i # 0,n—1 and j = ¢+ 1. The other cases work in the

same way, but pose a notational inconvenience, because of the additional ¢
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coming from (XT1) and ag. Multiplying ¢;¢;¢; respectively ¢;¢;¢; gives us
8 terms for each of them:

¢ijpi = Ti(1 — X¥)T(1 — X9)T;(1 — X*)  (A)
+ (72 — £2)T(1 - X)Tj(1 — X)
(T —12)T(1 — X9)Ty(1 — X™)
+(t? t?)Tz(le"”)E(le‘”) (B) (67
+ (72 —t2)2T5(1 — X)
F (2 —2)2T5(1 — X)
+ (73— t2)?T3(1 - X) (©)
+ (72 =),
¢jdip; = Tj(1 = X¥)T;(1 — X)T;(1 — X)) (A
+(#72 = £2)T(1 - X Tj(1 — X)
F (T —12)T(1 — X9)Ty(1 — X™)
+(t tf)@(l—x%ma—xm (B) o
+ (72 —t2)°T(1 — X*)
F (2 —2)2T5(1 — X)
+(t72 — 12)2T;(1 - X) ()
+ (7T —12),

Cancelling leaves us with showing that (L) = (R), where we set (L) :=
(A) + (B) + (C) and (R) := (A") + (B’) + (C"). From the second part of
Equation (66) we see

=

(L) = Ti(1 = X*)(T; " = T X %) Ti(1 — X*) + (t2 — t2)2T(1 — X)),
(R) = Tj(1 — X)(T; " — TyX*)T;(1 — X%) + (t72 — t2)Tj(1 — X).
By multiplication this leads to:
(L) = (TT T, = T X T = TX T T+ TX T X9 T) (1 — X&)
(T —12)2T(1 — X,
(R) = (T ' Ty — Ty T X T — Ty X T, M Ty + Ty X 9T X T) (1 — X9)

(2
1

(2 — £2)2Ty(1 — X9).

To bring (L) into a form where the T; and T; appear only in the beginning
we need the three equalities below. We omit all but the first calculation,
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because they are very similar in nature.

A _ _ _ 1 _1 _
XONT = X X hTh = Xt X = X (T + (17 —t72)) XY

1 1 _1 —1
=X X 5+ (2 —t72) X1 X,

(69)
XazTi+11Ti = T¢+17}Xi+1X¢+12 —(t2 —t 2)ﬂ+1Xi+1Xi+12’ (70)
XOT XOHT, = (82 — ¢ 2) T X X (71)
1 1
— (2 =172’ X X + T TiX X X5,

This gives us:

(L) = (nmm —(t7 —t73)
1 1
- ﬂTz‘HTz‘Xz‘X;lg —(t2 — t_i)ﬂn-l-lXi-i-lXijrlQ
1 1
~ BT TiXin Xh + (17 — )T X X
+(t7 - t_%)EQXi+1X7;112

(13 — 32T X, XL T Y X X2 (1 — X XL
(tz t 2) EXerlXi_;,_Q‘l‘TzE+1TzXzXz+1XZ‘+2 (1 XlXi+1)

- (TiTiHTi — (12 —t72) (72)

— T T, X X
— Ty T X1 X5

1 _1 -1
+ (2 —t72) Xip1 X

+ Tiﬂ+1T¢Xz‘Xi+1Xifg) (1- XX }h).

Analogously we use for (R):

‘ _ 1 _
XU = T XiXjh + (12 — 7 2) Xi X 5, (73)
o _ 1 -
XOMT Ty =TT XX — (12 — 7)) TX XY, (74)
Xai"'lTiXaiTi-i-l = (t% — tfé)TH_lXiX;_ll (75)
1 1
— (2 — 2P X X + T X2X X
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We deduce:

(R) :<Ti+1TiTi+1 — (tz —177)

_ 1 _1 _
— T T Xo X — (12 — 7 2) T T X X

_ 1 _1 _
- i+1Tz’Ti+1XiX,-+11 + (t2 — ¢ 2)E+1EX1'X¢+11

1 _
+(t2 =t T XaX

1 1 _ _ _ _
— (2 =72 T XX + E+1ﬂﬂ+1Xi2Xi+11Xi+l2> (1 - Xit1 X 5)

1 1
= <n+1nﬂ+1 — (tz —172) (76)
- i+1TiTi+1Xz‘Xi112
— T Tl X XY
1 _1 -1
+ (t2 —t 2)X¢XZ»+1
+ n—HTiE—O—lXiQXijrlle:rlQ) (1= Xin1 X 75).

Comparing the expressions in (72) and (76) using T;T;+17; = T;1 T Tiv1
shows that (L) = (R) and hence ¢;¢;¢0; = ¢;0i0;. O

The braid relations in Proposition 3.6 imply by [IM65, Proposition 1.15],
as before for T, in Remark 3.2, that we can associate to any w € W with
reduced expression w = 7Tk$i1 ...8;,, a well-defined element ¢,, := wk@l...qﬁik €
Hn(q%, t%) independent of the choice of reduced expression. Also note that
rpim = ¢r(i)- These operators have the following properties.

Lemma 3.7. Let w € W and v = Z?:l vie; +vgd € 6* with v;, vq € 7.

(a) buX® = X"y,

(b) pu = Ty HaeR(w)(l = X+ 2 v y<w LyFy, where the sum ranges
over all reduced subexpressions of some reduced expression for w and we
have F, € K[Xlil, o X

Proof. For (a) we can easily reduce by induction to the case w = s; for some
0<i<n-—1andv==*e; for some 1 < j < n. Note that for ¢ = 7 the
claim follows from (PX). For simplicity let us assume j ¢ {1,n} and i # 0.
The calculations for the other cases only involve some additional g. We have

1

_ _ 1
¢iX; = Ti(1 - XX )X+ (77 —t2) X (77)

If j #4,i4+ 1 we can just pull X].il to the left and we are done. If j =4 and
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the exponent of X; is positive we have

1 1 — 1 1
$iXi = Xip1(Ti+ (172 —t2))(1 - X; X 1) + (172 —t2) X,

= XinTi(1 - Xi X 1)+ (72 =) (X — X+ X;)  (78)
= X, (i) Pi-

The remaining cases for j =i + 1 or for X, ! work similar and are omitted.

Statement (b) is proven via induction on [(w). We will not give an
explicit proof, but only remark that it uses (a) and Theorem 2.6 (c) in the
computation. ]

3.2 Classification of X-semisimple modules

In this section we will give a classification of X-semisimple Hn(q%,t%)—
modules using the combinatorial tools developed in Section 2. Let again
n > 2. We assume from now on that t = ¢* for k = % and kK € Z~q. Further-
more, we assume that ¢, hence also ¢, is not a root of unity. In Remark 3.20
we will see how to extend the results to x € Z<o. Let (A, u) € J , be a nes-
ted partition as in Definition 2.23 with m > 0 and [ > 0 such that k= m+1.
We will associate to (A, 1) an irreducible X'-semisimple Hn(q%,t%)—module
V (A, 1) in Theorem 3.15, whose basis is given by the standard tableaux

—L

on A/p from Definition 2.26. We will show that any irreducible and X-
semisimple Hn(q%,t%)—module is isomorphic to V (A, u) for an appropriate
choice of (A, 1) € J*3,; in Theorem 3.18. Finally, we will describe the iso-
morphism classes of the modules V' (A, ) in Theorem 3.19, which finishes
the classification.

Let us start by looking at the intertwining operators ¢,, from Defini-
tion 3.5 again to obtain a first hint of the connection to the combinatorics of
skew diagrams. For this recall the definition of weights from Definition 3.4
and the definition of the affine action of W from Remark 2.19.

Proposition 3.8. Let M be an Hn(q%,t%)—module, v e M, for some ( € P,
and w € W. We have
(a) pwMc C My(e) and ¢ M C M,

(b) Guw-1000 = [lae i tH(1 = D) (1 — 1=y,

Proof. Statement (a) follows from Lemma 3.7 (a) and since (w(¢) | v) =
(w(¢) | v) for any v = > | vie; + vgd. To prove (b) one can argue by
induction on [(w). Using Lemma 3.6 (a) together with the fact that v € M,
and hence X+ (v) = tT(%)y gives the claim immediately for I(w) € {0,1}.
For I(w) > 1 we can write ¢, = ¢,y for some w’ with I(w') = I[(w)—1 and
0 <i <n—1. The claim then follows by statement (a) and Lemma 3.7 part
(a) together with the explicit description of R(w) from Theorem 2.6. O
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From (b) we can deduce in the following proposition a sufficient condition
for ¢y, : M¢ — Mg(¢) to be an isomorphism. For ¢ € P set

Ze={weW | ((|a)# =+l for all a € R(w)}. (79)

For T a ~-tableau on some 7y-skew diagram m we have Z.,. = Z:(F’\’“ ), where

(r and Zj(f\’“ ) are described in Definition 2.32. This aligns very nicely with
the theory developed in Section 2.3 and in fact can be seen as a central
reason why the combinatorics of g)erilodic skew diagrams are applicable to
the representation theory of H,(qz,t2).

Proposition 3.9. Let M be an Hn(q%,t%)—module, CeP, andw e Z.
Then ¢y, : M¢ — Mgy is a linear isomorphism.

Proof. The claim directly follows from Proposition 3.8, since w € Z; implies
HaeR(w) t= 11—+ C)) (1—¢1 =) £ 0, because ¢ is not a root of unity. [

Lemma 3.10. Let M be an X-semisimple Hn(q%,t%)—module. If (¢ | i) =
0 for some 0 < i <n—1, we have My = 0.

Proof. Let v € M¢\{0}. We obtain via a simple computation (X% —1)T;v =
2(t_% — t%)v # 0 as t # 1. From this we conclude (X% — 1)?T;v = 0 and
hence T;v is a generalized X “i-eigenvector, which is not a proper eigenvector.
Write
Tiv = ZCj’Uj with v; € ng,Cj e K, (80)
jeI
where the (; are pairwise different weights of M. This is possible since
M is X-semisimple. Now (X% — 1)2(Tjv) = 0 implies (t{Gl*) —1)2 = 0
for all j € I with ¢; # 0 and hence (+(%1%) — 1) = 0, which contradicts
(X% —1)T;jv # 0. Therefore we have M, = 0.
O

The following proposition shows that the intertwining operators can be
used to construct a K-linear spanning set of any irreducible X-semisimple
Hn(q% , ts )-module. Hence, the structure of any such module essentially only
depends on the action of the intertwining operators on it, which will turn
out to be an important idea for the proof of the classification. As we will
see later we can not expect the constructed spanning set to be a basis in
general.

Proposition 3.11. Let M be an irreducible X -semisimple Hn(q% , ts )-module
and v € M a non-zero weight vector. Then M =3 i Koy,
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Proof. Let ¢ € P, be the weight of v. Set N := ) i, K¢,v C M. Since
v is a non-zero weight vector and since M is irreducible, we only have to
show that T,,v € N for all w € W by Proposition 3.3. We will do this by
induction on [ = I(w). Since ¢,» = 7% the induction start is trivial. Let
now [ > 0 and w = 7"s;,...s;, be a reduced expression. Using part (b) of

Lemma 3.7 and using that v is a weight vector of weight ( we have

O = Ty H (o)) + Z fyTyv for some f, € K. (81)
aGR(w) yEW,y<w

If [Tae gy (X — t(€2)) 5£ 0 we see that

Too= [ @=t<N7{ > T,f0—guwv|. (82)

a€R(w) yeEW y<w

Since all the y appearing in the sum are subexpressions of w and hence have
shorter length, this proves the claim by induction. Otherwise we can find
1 < p <[ such that for the subword y := s;,,...5; of w = Wksil...si ...8;, We

P 1
have

H (1 — ¢y £ 0, H (1 -ty = . (83)

aeR(y) QGR(Sipy)

By Theorem 2.6 (c) we have R(sipy) \ R(y) = {y~'(c,)}. This shows
€y Hay,)) = (gj(() | @;,) = 0. By Lemma 3.10 we have My = 0 and
hence 0 = ¢yv € My((). As before we can write

0=¢pv="T, [[ -t““pw+ > ghovwithgeK (84
a€cR(y) zeW ,z<y

Multiplying by 7*T;, ..T;, from the left gives

H (1 —tCleN T = — Z 9Ty, .. Ty Ty, (85)
a€R(y) TEW x=<y

where the coefficient on the left hand side is not zero by choice of y. Note
that the Weyl group elements s;,...s;,x corresponding to the terms on the
right hand side have length less than [. The inductive construction in Pro-
position 3.3 now shows that we can write the T;,..T; T, as a sum of Ty
with [(w') < I. This implies T,,v € N and thus finishes the proof. O

Let ¢ € P, and recall the definition of the stabilizer with respect to the
affine action from Remark 2.19: W[(] = {w € W | w(¢) = (}.

Lemma 3.12. Let M be an X-semisimple Hn(q%,t%)-module. Let v € M¢
for some ¢ € P, and w € W[C]\ {1}. Then ¢,v = 0.
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Proof. Let w = m"s;,...s;, be a reduced expression. By Lemma 2.20 we
can find o € R(w) N R[(], since k # 0. We then have s, € W] and
hence ws, = 7¥sj;...8;;...8;,, € W[¢]. Here we used Theorem 2.6 (b) and
(d) to rewrite ws,. Set y := s;,,,...5;,. Then by Theorem 2.6 (d) we have
o =y *(ai;) and hence 0 = (¢ | @) = (5(¢) | @,). Therefore by Lemma 3.10
we have My =0 and ¢yv = ek siy s, pyv = 0. O]

Proposition 3.13. Let M be an wrreducible X -semisimple Hn(q% , t%)-module.
Then dim(M¢) < 1 for all ¢ € P.

Proof. This follows directly from Proposition 3.11 and Lemma 3.12. O

Lemma 3.14. Let M be an irreducible X-semisimple Hn(q%,t%)—module.
Let ¢ € P, such that (( | o) = £1 for some 0 < i <n—1. Then ¢;v =0
for all v e M.

Proof. Suppose ¢pjv # 0. Let Wi := {w € W | ws; € W[¢]}. We have
v = Zwewi QO @iv for some constants a,, € K by Proposition 3.11 and
since ¢;v is a weight vector by Proposition 3.8. If for some w in the sum
we have [(ws;) < l(w), we can find by the strong exchange condition from
Theorem 2.6 a reduced word for w ending in s; and hence ¢, = @ys,¢;. But
then ¢upiv = dus, 20 = t~H(1 — 1T Cle)) (1 — ¢1=Cle))p, v by Lemma 3.6
and hence ¢, ¢;v = 0 by the assumption on i. If [(ws;) > [(w) for some w
appearing in the sum, we have ¢,¢;v = ¢y, v = 0 by Lemma 3.12 and since
we have that ws; € W[¢]\ {1}. This shows that v = 0 and hence ¢;u = 0,
which is a contradiction. O

We will now associate to each (A, u) € J" , with m 4+ 1 =x, m > 0 and

I >0an Hn(q%, t%)—module structure on the K-vector space spanned by the

standard tableaux on the associated skew diagram A/p. In the remainder
of this section we will see that these modules for (A, u) € J*7,; constitute

a full list of representatives of irreducible X-semisimple H,, (q%,t%)—modules
up to isomorphism and in the end of this section we describe when two of
these modules are isomorphic.

Theorem 3.15. Let m >0 and 1 > 0 with k =m+1 and let (\, i) € Ty, ;.
We define

Viaw = @ Kor (86)

TETab,Ifc ()T/TI,)

as a K-vector space. The following assignment describes an Hn(q%,t%)—
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module structure on V/(X, p):

Xjvr = tCrWyp for 1 < j <, (87)
U 1= Vg, (88)
11—t 11—t ) RC/
2 v — 12 T VT if siT € Taby™ (\/p),
Tivr == 1;t£ - (89)
11— , RC (Y 7/,
—t732 T T if siT & Taby™ (\/p),

where 0 <i<n—1and 1 :=Cr(i) —Cr(i +1) = ({1 | ).

Proof. Observe that for T' a standard tableau we have that the labels ¢ and
i+ 1 cannot lie in the same diagonal by property (D3) from Definition 2.21,
hence 1 — ™ # 0 for 0 < i < n — 1 and the description of the T;-action
is well-defined. We will omit the calculation of the defining relations of
Hn(q%,t%) and only give a reference to [Ram03, Theorem 4.1], where the
most computation intensive relation T;1;T; = T;T;T; for j = i+ 1 is verified.
In the reference the author describes an action of the affine Hecke algebra,
but the proof is still applicable to the dO}lble affine Hecke algebra, albeit
one has change ¢ from Ram’s paper to t2 to match our convention. We
remark that the theorem is also stated in [SV05, Theorem 4.17], where the
authors use a different, but isomorphic, definition of Hn(q%,t%), which is
why we obtain an additional normalization factor =3 for our T;-action.
The isomorphism from our version of Hn(q%,t%) to the construction from
[SV05, Definition 4.1] is obtained by sending 7; — 3T, for 0 <i<n-—1,
Xj— Xjfor1 <j<nandrm+ m. Furthermore, they denote our ¢ by ¢
and our ¢ by &. O

Theorem 3.16. Let m > 0 andl > 0 with k = m+1l and (A, p) € T ;. Then
V(A u) is irreducible and X -semisimple with weight space decomposition
given by

V= @D Ve with VA g, =Kor. (90)
T€Tab%C (\/p)

Proof. The X-semisimplicity and the description of the weight spaces follow
immediately from Lemma 2.33 (c) and the description of the X; action
in Theorem 3.15. For the irreducibility let M C V(A u) be a non-trivial
submodule. We want to show that M contains a weight vector. Let 0 #
v € M with v = v1 + ... + v, where v; € Kvy, with T; pairwise different
standard tableaux and k minimal. If £ = 1 we are done. Otherwise we can
find 1 < j < n such that ¢t () £ tOT (@), Indeed, if t°110) = €10 for
all 1 < j < n we can deduce C7, = Cp, using that ¢ is not a root of unity
and the periodicity of 71 and T5. Then 77 and T5 assign the same set of
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labels to any diagonal, but this set must appear in the correct order on the
diagonal, since T and T5 are standard tableaux. We obtain 77 = T5, which
is not possible by assumption. Hence

v = (X =T DYy = (1972 (§) =t () g+ ...+ (7 () — 971 (7)) oge (91)

contradicts the minimality of k, since t“72(j) # t“T1(j) and therefore v/ €
M is not zero. Thus we have a weight vector in M and by rescaling we
can assume vy € M for some T € Tabffc(/\/ w). For any other standard

tableau 7" we can find some w € Z;)"“) = Z¢, such that wT = T’ by
Theorem 2.38. By Proposition 3.9 and the previous description of the weight
space decomposition we have vy € M. Here we used that w({r) = (ur by
Lemma 2.33. Hence M = V(A u) and V' (\, p) is irreducible. O

We want to show that these are all irreducible X'-semisimple modules up
to isomorphism, for which we need the following lemma.

Lemma 3.17. Let M be an irreducible X -semisimple module. Let ¢ € P,
be a weight of M and i,j € Z with i < j such that (¢ | o j) = 0. Then there
exist ki, k_ € {i+1,...,j—1} such that (( | ;) = —1 and (¢ | ajp_) = 1.

Proof. We work by induction on j — 4. When j —¢ = 1 we have that
(¢ | @) # 0 by Lemma 3.10 and hence the induction start is trivial. Now
assume j — ¢ = r and that the statement holds for all ' < r. If there
exists i +1 < k < j — 1 such that (¢ | ;) = 0 then the statement holds
by our induction hypothesis. Hence we assume that no such k exists. Let
0#ve MC

1. Case: Assume (¢ | o) = (¢ | aj—1) = 1. Then the we have for
ky =j—1land k- =i+1that ((|ajp,) = (¢]asj)— (¢ |, ;) =—1and
(¢ | @ig_) = 1. Similarly the claim follows for (¢ | a;) = (¢ | aj_1) = —1
with k- =j—1and k; =4+ 1.

2. Case: Assume (¢ | o) = —1l and (¢ | @j—1) = 1. Then (¢ | ®it1,j-1) =
0. Ifi+1 < 7—1 then we can find by induction hypothesis i+1 < k¥’ < j—1
such that (¢ | a;41 4 ) = 1 and therefore (¢ | a; ;s ) = 0, which contradicts
our assumption that such k" does not exist. Hence i +1 = j — 1 and we
have (¢ | @) = —1 and (¢ | aj4+1) = 1. By Lemma 3.10 this implies ¢;v =
¢iy1v = 0. Thus, using v € M; we obtain Tjv = t2v and Tip1v = 3w
and therefore —t%v =T TinTiv =T, TiTis1v = t_%v, which contradicts
the assumption that ¢ is not a root of unity. The case (¢ | ;) = 1 and
(¢ ] aj—1) = —1 can be handled similarly.

3. Case: Assume (¢ | ;) # £1. Proposition 3.9 gives that ¢;v # 0
and hence M,y # 0. Then (5;(C) | aiy15) = (¢ | i j) = 0. Applying the
induction hypothesis to the weight 5;(¢) produces i +2 < ky < j — 1 for
which we have F1 = (5;(¢) | ®i+1,65) = (¢ | @ik, ). The claim follows. The
case (C | oj—1) # %1 works similar and thus the proof is completed. O

41



Theorem 13.118. Letn>2, k>1 and M be an X-semisimple and irredu-
cible Hy,(q2,t2)-module. Then for some 1 < m < k and |l = kK — m there
exists (A, p) € T "5, such that M = V(A ).

Proof. Pick a weight ¢ € P. of M and define Fe 1 Z — Z by Fe(i) =
(¢ | €) for i € Z. We want to show that F¢ is a content function, which
by Theorem 2.39 corresponds to verifying properties (C1) and (C2). We
have Fe(i +n) = (¢ | €i4n) = (¢ | &s —6) = F¢(i) — £ and hence Fy
satisfies condition (C1). To prove (C2) let p be in the image of F; and
i,J € Fgl(p) with ¢ < j and {i,...5} N Fgl(p) = {i,j}. Then we have
(¢ | @,j) = Fe(i) = F¢(j) = 0 and by Lemma 3.17 we obtain i < k+ < j with
(¢ | ajr,)=—1and (¢ | a;r_) = 1. Therefore ky € Fgl(p +1). To obtain
the required uniqueness assume there exist ¢ < ky+ < k' < j with F¢ (k') =
Fe(k+) =p+1. We have (¢ | g ) = 0. By Lemma 3.17 we find ¢’ with
i <ky <t <k <jsuchthat ((|a;i)=(|ip, +op, ) =FLE1=0
and hence i’ € Fc_l(p). This contradicts {,...,7} N Fc_l(p) = {i,j}. Thus
(C2) holds. By Theorem 2.39 we find 1 <m <k, l =Kk —m, (\, ) € T,

and T € Tab,lfc(m) such that Fir = C7p. Thus we also have (7 = (. Our
aim is to show M = V/(A, u1) for this choice of (A, 1) € J*7, ;-

Let uw € M \ {0}. Recall the definition of Z;)"“) from Definition 2.32.
For each w € Zq(ﬂ)"“) = Z; we define

o= ]] 31— ) €K, wy = 0y dpu € My, (92)
a€R(w)

Note that o, # 0 by definition of Z; and u, # 0 by Proposition 3.9.
Set N := ZwGZT Ku, € M. Since uy € Mgy and these weight spaces
are pairwise different the sum is direct. By Theorem 2.38 we can define
wg € Zr for all S € Tabf“(A/u) via wsT = S and then define a lin-
ear map p : V(A u) — M by p(vs) = uyg. Since the vg get mapped to
different weight spaces this gives an injective map with image N. Once
we have shown that p is an Hn(q%,t%)-module morphism the theorem fol-
lows, since M is irreducible. For this let w € Zp and 0 < i < n —1
such that [(s;w) < l(w). Then Theorem 2.6 (c) gives that s;w € Zr and

Ow = t_%(l — t1+(4|(5iw)71(ai)))asiw. We calculate using Lemma 3.6 (a):
Pittw = 03, Pidutt = 03 B bsw
=711 — ¢+ GOy (1 — =GOl yo=1g  u
(1— tl—(@(C)lsz‘(ai)))Js—“lu(bsiwu
(1 — tHH@Ole)yy, .

- (93)

SIS SIS

-

Let now w € Zf(p’\’“) and 0 < ¢ < n — 1 with I(s;w) > l(w). If s;w &
Zq(ﬂ)"“) then (w(¢) | i) = (¢ | w™(y)) = £1 and hence Lemma 3.14 gives
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diuy = 0. If s;w € er,,)"“) then again by Theorem 2.6 (¢) we have that
Osw = t_%(l — ¢l @), and

ity = 0 Gidutt = 0 Paru = 72 (1 — @Ol o (ga)

So overall we obtain for 0 <i<n—1

(95)

Qb’iuw =

t—%(l _ t1+(@(C)Iai))usiw if s;w € Zp,
if S;w ¢ ZT.

Unwinding the definition of ¢; from Definition 3.5 and using the fact that wu,,
is a weight vector of weight w(({) by construction we can deduce p(Tjvg) =
Tiuwg = Tip(vg) for all 0 <i<n—1and S € Tabﬁc()\//;). The equality
p(Xivs) = X;p(vg) follows since vg and w4 are both (g-weight vectors. For
7 note that p(mvg) = p(Vrs) = Urwg = Prllwg = TUywg = T(p(vs)), which
finishes the proof. O

The last step of the classification of irreducible X-semisimple modules is
to give a condition for V(\, u) = V(v,n).

Theorem 3.19. Let m,m' > 1, I,I' > 0 with xk = m+1 =m' +1'. Let
(M) € Ty and (v,m) € Ty - The following are equivalent:
WV =V,
(b)) m=m/l=1 and \/u=v/n+ (r,r) for somer € Z,
(¢)m=m"l=1"and (v,n) = w,, (A, p) for somer € Z.

Proof. We have already seen the equivalence of (b) and (c) in Proposi-
tion 2.40. For the equivalence with (a) from this theorem note that by
the proof of the previous theorem V(A u) = V(v,n) is equivalent to the
fact that both modules have the same weight/(\ € P, which IS equivalent to
Cr = Cg for some standard tableaux T on A/u and S on n/v. But this is
just condition (a) from Proposition 2.40, which finishes the proof. O

Remark 3.20. In this section we restricted to the case K € Z>1 and k = %,
where klis tlie parametler sluch that ¢* = t. By the following isomorphism
v: Hp(q2,t72) = Hyp(q2,t2) we can extend the statements to kK € Z<_;.

(1) =-Tifor0<i<n—1, X;)=X;forl<i<n, m)=nm.
(96)

One can easily check that this defines an algebra isomorplllismland hence
we obtain an isomorphism between the categories of H,(q2,t™2)-modules

and Hn(q%,t%)—modules, which preserves X-semisimplicity and irreducibil-
ity. Therefore we can translate our results to the case kK < —1 and k = %
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4 One-dimensional DAHA

The goal of this chapter is to study and classify finite-dimensional irreducible
modules of the so-called one-dimensional double affine Hecke algebra (or
one-dimensional DAHA) denoted by H(q%,t%). Most of the necessary tools
and ideas will be developed in Sections 4.1 and 4.2 and then applied to
the generic and the special case of ¢ in Sections 4.3 respectively 4.4. Here
generic means that the parameter ¢ is an element in C that is not a root of
unity, while special means that ¢ is a root of unity.

4.1 One-dimensional DAHA and the polynomial represent-
ation

Let us start with the definition of the one-dimensional DAHA. We will work
over the base field K := (C(q%,t%) with t = ¢* for some k € C and ¢ # 0. In
this chapter we explicitly allow the case that ¢ is a root of unity. Later, when
we study the representation theory of the DAHA, we will always assume
g € C\ {0} and hence K = C, but for the discussion in this chapter it is
important to explicitly allow the case of transcendental ¢. This section and
the following one are based on the results in [Che05, Chapter 2.5 and 2.6].

Definition 4.1. The (one-dimensional) double affine Hecke algebra (or

short DAHA), denoted by H (q%,t%), is defined to be the associative and
unital K-algebra with generators X*! 7+l T subject to the relations:

(T): (T—t2)(T+t2)=0, (P): 72=1,
(XT): TXT = X!, (PX): nXn l =gz XL

This definition is taken from [Che05, Lemma 2.5.7]. In [Che05, Chapter
3.2] for any finite root system and any lattice Q C L C P an associated
double affine Hecke is constructed. Our definition is the special case of the
double affine Hecke algebra associated to Ay and L := P, where P is the
weight lattice of SLy. This is shown in [Sim17, Chapter 2.3.1]. Here P = Zp,
where p := § for the (choice of) positive root a of the root system Aj.
For SLg the Weyl group W is isomorphic to S = Z/2 and the non-trivial
reflection s acts on the root lattice P = Zp by sending p to —p. The extended
affine Weyl group W is generated by the elements 7 and s, where 7 := 7(p)s
and 7 is the SLo-analogue of 7 from Theorem 2.4.

For the convenience of the reader we point out that one obtains the
following equalities from relation (T).

T2=(t2—t2)T+1, T =T+ (t2—t2). (97)

Using Y := 7T one can deduce the following description of H (q%, t%)
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Lemma 4.2. The K-algebra H(q%,t%) s 1somorphic to the associative and
unital K-algebra with generators X1, Y*L T subject to the relations:

(T): (T—t2)(T+t2)=0, (YT): TY 'T=Y,
(XT): TXT = X1, (XYT): q2Y X 'Y XT? = 1.

Proof. Sending Y +— 7T, X — X, T — T respectively 7 — YT7!, X — X,
T — T produces inverse morphisms, as one easily checks by verifying the
relations. O

We will now define the polynomial representation P of H(q%,t%). The
first use of it will be to deduce the existence of a PBW-type basis for
H(gz2,t2) in Corollary 4.5. Furthermore, many finite-dimensional irredu-
cible modules will turn out to be (twisted) quotients of P, which is why
we will spend most of this and the next section studying the structure of
this representation. We set P := K[¢%, ¢~ 7] to be the K-algebra of Laurent
polynomials in ¢*. We define two K-algebra automorphisms m, s of P, which
in fact can be seen to define an action of the extended affine Weyl group
W = (r,s) on P. We set on the basis elements ¢"* for n € Z

m: P— P, s: P—P,

¢ q2q ", g

In other words 7(f)(z) = f(3 — z) and s(f)(z) = f(—x) for f € P. Fur-
thermore, let ¢*- denote the (left-)multiplication with ¢* on P.

(98)

nr

ProPoslition 4.3. The following assignment defines a K-representation of
H(q2,t2) on P:

11
= —1
Proof. Let f € P. Then s(f) — f is divisible by ¢* — ¢~ or equivalently by
¢** — 1 in P, hence T(f) € P. We verify the relations from Definition 4.1.

To check (T) we calculate for n € Z

(s—1), X — ¢, T . (99)

[n|—1
T(g") = t3q" —sgn(n)(t2 —t72) Y ¢*lbe, (100)
i=0
We obtain for n € Z
—nx l nx —nx
(" +q ™) =t2(¢"" +¢ ") (101)

and therefore any symmetric function is a T-eigenvector of eigenvalue t3,
Furthermore, using Equation (100) we compute for n € Z

In|—1

(T +173)(q") = 83 (" 4 ¢™") —sgn(n)(t2 —¢73) Y ¢ Ihe,
=1
(102)
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which is a symmetric function. Therefore (7" — t%)(T + tfé)(qm) = 0 for all
n € Z, which shows (T). We verify (XT) now. For n € Z we have

[n+1|—1
TX(qnm) _ T(q(n+1)z) _ ﬁq(_"_l)”—sgn(n—kl t2 = 2 Z q (2i—|n+1))x

(103)
This equals by a case distinction for the signs of n and n + 1
|n|—1
X—IT—I(qn;v) — x1 (t;q—nw o Sgn(n)(t% o t—%) z q(2i—\n|)ax
i=0
1 1
#h =)
(104)
In]—1
_ t%q(—n—l)x - sgn(n)(t% o t—%) Z q(2i—|n\—1)a¢
i=0

+ (t_% — t%)q(n—l)w'

Here we used T-! = T + (¢t~ 2 — t2). The verification of the remaining
relations (P) and (PX) is an easy calculation and hence omitted. Note in
particular that the X-action is invertible. O

Prop051t10n 4.4. For g not a root of unity P is a faithful representation
of H(qz 7).

1

Proof. By the defining relations any element h # 0 in H(q % t2) can be
written as h = Y, .; ¢ XJT“Y™i for some finite index set I, ¢; € K\ {0},
Ji,m; € Z and ¢; € {0,1} with ¢ # ¢ implying (j;, €;, m;) # (jir, €1, M4r).
Indeed, we can first use (XT) and (XYT) to write h as a sum of monomials
in X+ 7+ Y+ guch that no Y*! or T#! appears to the left of any X*!.
Then using (YT) we can assume that no Y*! appears to the left of any 7F!
and finally (T) allows us to assume that the exponent of 7" is 0 or 1. Now
suppose that h =} .., c; X JiT€Y™i as above acts trivially on P. Since Y is
invertible, we can assume that all exponents of Y are positive by multiplying
with Y for large enough m from the right. Let

Jmax = max{j; | i € I}. (105)

If for all i € I with j; = jmax we have ¢; = 1 then let iy be the unique
index such that j;, = jmax and m;, is minimal. Replace h with hY =™ T
Note that h acts trivially on P if and only if AY "™ T~! acts trivially, since
Y and T are invertible. This replacement does not change jnax, since we
only need to apply relations (YT) and (T) to bring RY "™ T~ into the
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PBW-form from above. More precisely the terms of h with top X-exponent
Jmax are

'max my —my -1
> XY™y T (106)

7::ji:jmax
By induction on m > 0 we obtain

TY™T~! = (TY™ 7)Y~ = (TY™ 7)Yy 4 (12 — ¢t~ 2)TYy™ 2
1 1 m—! 1 1
=(T+(t2 =t 2))Y ™+ Y (t2 =t 2)TY™ %,
=1
(107)

We see that one of the terms appearing in the sum is just ¢;, X’m>x and hence

we can assume that there exists at least one ¢ € I with j; = jmax such that

€; = 0. Furthermore, by multiplying with a large enough power of Y from

the right we can without loss of generality assume again m; > 0 for all ¢ € [.
For any f=ci¢™ + ...+ c_q7™ € P with n > 0 we have

T(f) = t3e_q™ + ... + (t%c+ F(tE — ) (e — c+)) T (108)

n.

Using this we can calculate the coefficients of ¢"* and ¢~™* in the following

expressions for m > 0 and n > 0.

Y(g") = (¢ Et72)¢" + ..+ 07", (109)
Y™(™) = (¢ T2 ) g™ + ...+ 0", (110)
TY™(q") = 04" + ..+ (¢~ 243 )g ", (111)

Our assumptions on h together with this description of the Y™ and TY™
action allows us to use a comparison of coefficients in h(¢"*) = 0 for n > 0
to deduce

Z cz-q*m%nf% =0. (112)

1:j;=Jmax,€; =0

This is a Laurent polynomial in q%. Because ¢ is not a root of unity qg
takes infinitely many pairwise different values for n > 0. As this Laurent
polynomial must vanish for all q% with n > 0 and because the m; appearing
in the sum are pairwise different we have cit_% = 0, which implies ¢; =0
for all ¢ appearing in the sum. This contradicts our assumption that ¢; # 0
all 4 € I and in particular ¢;, # 0. Hence h does not act trivially on P.

O

In the desclription ?f the PBW-basis the Iwahori-Hecke algebra Hy :=
K[T]/(T 4+t 2)(T —tz)) of type A; will appear. See [Mat99] for an intro-
duction to Iwahori-Hecke algebras.
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Corollary 4.5. For any parameters q and t = ¢~ the set
{XITY™ | j,m € Z,e € {0,1}} (113)
is a K-basis of H(q% %) In other words the multiplication map
m : KX*] @k H1 @x K[Y ] — H(q2,t2) (114)
s an isomorphism of K-vector spaces.

Proof. The proof of the faithfulness of the polynomial representation P in
Proposition 4.3 shows the claim for any ¢, t = ¢* with ¢ not a root of unity.
Let now ¢,t = ¢* be parameters with ¢ a root of unity and §,t = G~ be
parameters with ¢ transcendental over C. Define the C-algebra H'(qz, t2)
to be generated by X*+! T YjEl ,q +3 ti2 via the same relations as in Defini-
tion 4.1 and requiring ¢+ > s 3 to be central. Then v1rtuall¥ the same proof
as in Proposmon 4.3 w1th P replaced by P’ := C[¢Fz,t%2][¢%, %] shows
that H' (q2,t2) is a free C[g" é,ti 2]-module with basis given by X/T¢y™
for j,m € Z and € € {0,1}. The evaluation (jé — q%,t% s 13 induces a
C-algebra morphism p : H’((j%,t%) — H(q%,t%), whose kernel is the ideal
(cﬁ - q%,t% — t%) Using the basis of H’(q%,t%) from above we see that any
element in the kernel can be uniquely written as a (C[(ji%,fi%]—linear com-
bination of elements of the form ((}’% — q%)XjTEYm and (f% - t%)XjTEYm
for j,m € Z, e € {0,1}. Since we have ¢,t € C, any element h € H(q%,t%)
can be written as h = ), ; ¢; X/ T“Y ™ with ¢; € C as we have seen in
the beginning of the proof of Prog)osmlon 4.3. If such a term was zero, then
its lift >, o, ¢ X7 T9Y™ € H'(q2, t2) would lie in the kernel of p. By the
description of the kernel this implies ¢; = 0 for all 4, which shows that the
XITY™ for j,m € Z and € € {0,1} are C-linearly independent and hence
they form a basis of H(q%,t%). O

Corollary 4.6. Let f € P be an eigenvector for T and Y. Then the ideal
(f) € P isan H(q2 t2) submodule.

Proof. This follows directly from the PBW-Theorem in Corollary 4.5. [

Let (T, Y*!) be the K-subalgebra of H(q% , t%) generated by T and Y+,
From the PBW-basis theorem in Corollary 4.5 it follows that (T, Y*1!) is
isomorphic to the algebra generated by the elements T, Y*! subject to the
relations (T) and (YT). We can endow K with a (T, Y*!)-module structure

by letting 7" and Y act by t2. Tt is easy to check that this is actually a
(T, Y*')-module by verifying the relations (T) and (YT).
Corollary 4.7. The H( %, %)—module P is canonically isomorphic to the
1
11 H(qZ t2
H(q2 , t2 )-module Ind<T(§,i1§)(K).
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Proof. Let V be an H(q%,t%)—module and let v € V be a T, Y -eigenvector
of eigenvalue t2. We have to show that there exists a unique morphism
P — V mapping 1 to v. Define this morphism by sending ¢"* to X™(v) for
m € Z. From the PBW-basis theorem it follows that this defines a H (q% 3 )-
module morphism and it is uniquely determined, since X" (1) = ¢"™* and
these elements for m € Z form a basis of P. O

4.2 e-polynomials and intertwining operators

We define a total order < on Z by setting 0 <1 < -1 <2< —-2.... We
also define P<,, C P respectively P, C P for n € Z to be the K-span of
the elements ¢ with m < n respectively m < n. We have P = {J,,cz P=n-
Note that Y preserves the finite-dimensional spaces P<,, for all n € Z and
hence P decomposes as generalized Y-eigenspaces.

Definition 4.8. Let V be an H(q%,t%)—module which admits a generalized
Y-eigenspace decomposition. We define the intertwining operators A,, for
m < 0 and B via

Ay V —V, B:V —V,

_m 1 5 — 73 (115)
v—q 2 X7w(v), v o t2 T—I—ﬁ (v),

where V' is the sum of the generalized Y—eige{lspaces for eigenvalues not
equal to lor —1ift# 1. If t =1 weset B:=t2T and V' :=V.

Note that (Y =2 — 1)~! is well-defined on V’. These intertwining op-
erators can be seen as a SlLg-version of the previously used intertwining
operators for GL,, from Definition 3.5. Note that now Y takes the role of
the X; in these operators. Compared to the ‘naive’ translation from GL,, to
SLy we are using slightly adapted versions. These adapted versions will be

necessary to construct the so-called non-symmetric polynomials e,, € P in
Definition 4.12.

Lemma 4.9. Let V be an H(q% , t%)—module with a generalized Y -eigenspace
decomposition. Let A € C and set

)\m;:—)\—%form>0, )\m::)\—%formgo. (116)

Let m € Z and v € V be a Y -eigenvector with eigenvalue ¢™ and v’ be
a generalized Y -eigenvector with eigenvalue ¢™ of rank k, in other words
(Y =) () = 0 and (Y — g*)* 1 (v) #0.

(a) Let m < 0. Then A, (v) is a Y -eigenvector with eigenvalue gM—m
and A, (V') is a generalized Y -eigenvector of eigenvalue ¢M—m and rank k.
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(b) Let m > 0 and ¢**» # 1. Then B(v) is a Y -eigenvector with ei-
genvalue ¢* =™ or possibly zero if ¢’ = t¥1. Also, B(v') is a generalized
Y -eigenvector with eigenvalue ¢*™ and rank less or equal k or possibly zero
Zf q2)\m — tj:l_

Proof. The case of the B-intertwining operators in (b) is very similar to
the calculations done in Lemma 3.7 and Proposition 3.8 and hence mostly
omitted. We only show that B(v) and B(v') are not zero for ¢?*m # 1. For
v this follows directly from relation (T) in the double affine Hecke algebra,
since (T + ¢) is invertible for all ¢ € K with ¢ # 72 and ¢ # —t2. For v/ we
have that v := (Y —¢*)¥=1(v') is a Y-eigenvector with eigenvalue ¢*. The
omitted calculations show as in Lemma 3.7 that BY = Y !B and therefore
B(Y —g*m )1 = (Y1 — ¢*)k~1 B, Hence the claim for v’ follows from the
claim for v. For the A-case in (a) we calculate

AY =q 2 XnY =q 2 XT =q 2T X' =g 2y lnx!

. (117)
= q_%Y_lXW = q_%Y_lAm.
From this the claim can be deduced easily as in the B-case. O

Definition 4.10. Let V be an H(q%,t%)—module and let v € V with Y-
eigenvalue ¢*. Assume V has a generalized Y-eigenspace decomposition.
We denote by B,, the restriction of B to the generalized Y-eigenspace of
eigenvalue g™ for m > 0. For t # 1 this element is well-defined whenever
¢ # 1 and invertible whenever ¢**» # t*1. When restricted to proper
eigenvectors we have

IS
=

1 t% —t_%
Bm:tQ TﬁLm GH(q , T ) (118)

If ¢**» =1 we set B, := 3T and we say that tlhe B-intertwining operator
is not well-defined at m. If t = 1 we set B,,, = t2T for all m > 0.

We define the so-called chain of intertwining operators.

Definition 4.11. Let V be an H(q%,t%)—module and v9 € V be a Y-
eigenvector with eigenvalue ¢* for A € C. Assume that V has a generalized
Y-eigenspace decomposition. As long as ¢ # 1 and ¢** # t*! for m > 0
we define inductively using < the following elements v, € V:

U = A1 (Viem),  V—m = B(vp) = By (vm). (119)

This sequence can be pictured as follows.

— A~ A — A~ A~ A
*———o —0— ——e—0 —o—
Vo U1 V-1 Vi—n Un VU—_n Unp4l
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From Lemma 4.9 we obtain that v,, is a Y-eigenvector with eigenvalue ¢g*m.

In the case that V' = P is the polynomial representation we will construct
a more sophisticated version in the upcoming lemma.

Definition 4.12. Let P be the polynomial representation of H(q%,t
vg ;= 1 and X\ = g Then vy has Y-weight A, in other words Y (vp)

qgvo = t%vo. Define inductively for m > 0 via the order < on Z:

1
2),

Um = A1_m(Vi—m),  V—m = Bm(vm). (120)
Also, set Vj := Kvg. We define inductively via <

B (Vin) if g?m £ 1,

Vin = Al—m(vl—m)a Vom = .
Vin + Bn(Vin) = Vi + T(Vy,)  otherwise.

If v, for m € Z is a Y-eigenvector we set e,, := v, and call it the m-th non-
symmetric polynomial or m-th e-polynomial. If v, is not a Y-eigenvector
we do not define e,,.

We still have to show that v, and V,, for m € Z are well-defined.
This will follow from the upcoming Lemma 4.13, which is based on [Che05,
Lemma 2.9.4]. For P and vg = 1 we have \,,, = —my, where

m + sgn(m)k
my =

k
form #0, 0= —5 (121)

We note that the diagram from Remark 4.14 might be a helpful picture
to have in mind while going through the upcoming proof.

Lemma 4.13. (a) We have that vy, and Vi, for m € Z are well-defined.
The vector vy, has top term q™* with respect to < with coefficient 1. The
space Vp, is either one- or two-dimensional. If it is one-dimensional, it is
spanned by vy, = em, which is a Y -eigenvector with eigenvalue ¢ . If Vi,
is two-dimensional, it contains a Y -eigenvector of eigenvalue ¢™™, which is
unique up to scalar. It is proportional to e, for some p < m with sgn(u) =
—sgn(m), where sgn(0) = —1. We have (Y — ¢*)(vmm) = ce, for some
constant ¢ € K\ {0} and in particular v, is a generalized Y -eigenvector
with eigenvalue g™ .

(b) Let m > 0 and t # 1 and ¢*> = t respectively t='. Then V_,,
is one-dimensional. If Vi, is also one-dimensional or if t = —1 then (T +
t_%)(e_m) = 0 respectively (T — t%)(e_m) = 0. If V,, is two dimensional
and t # —1 then (T + t_%)(e_m) respectively (T — t%)(e_m) is proportional
to the unique Y -eigenvector e, in Vi,.
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Proof. We assume t # 1. We omit the much simpler case ¢t = 1, but remark
that in this case the B-intertwining operator exists on all of V and is in-
vertible and hence all V,,, are one-dimensional. Furthermore, in that case
we have e, = ¢"* for m € Z.

We prove the statements by induction on <. For m = 0 we have that
vo = 1is a Y-eigenvector with eigenvalue ¢*0 = t3 and V0 is one-dimensional.
Hence the claims hold for m = 0. Now assume the statements are verified
up to 0 < m and let m’ be minimal with m < m/, which means m’ = —m if
m>0orm' =1—mif m <0.

Consider the case that V,, is one-dimensional first. Then by induction V,,
is spanned by the Y-eigenvector e,, = v, with eigenvalue ¢g*». If ¢**» # 1
then Lemma 4.9 shows that V,,; = By, (Vi) respectively A,,(V,,) is spanned
by the non-zero Y-eigenvector v,,, with eigenvalue ¢*= or that v, = 0. If
vy = 0 then again by Lemma 4.9 we must have ¢**» = t*! and m > 0.
But then B, (vy,) = 0 implies that vy, is a not only a Y-eigenvector, but
also a T-eigenvector and hence a 7 eigenvector. This contradicts that the
top term of v, with respect to < is ¢"* with m > 0. Therefore v, # 0.
Furthermore, if ¢*™ = t or t~! then B,, equals t%(T — t%) respectively
t%(T + f%) on Vp,, since t # 1. Hence the claim from (b) for V,» follows
from relation (T) in H(q%,t%). Now assume ¢>*» = 1 and m > 0. Then
vm can not be a T-eigenvector by relation (YT) and because ¢t # 1. Hence
Vi = Vin + T(Vy,) is two-dimensional. Also, it contains e, = v,,, which
is a Y-eigenvector with sgn(m) = —sgn(m’). A quick calculation shows
(Y=L — ) (Tvy,) = ¢ (t_% —t%)vm # 0, since t # 1. Therefore v, € V,,s
is up to scalar the unique Y-eigenvector in V,, and (Y — ¢*»')(v,) = cem
for some ¢ € K\ {0}. Finally, in all cases one can easily calculate that the
top term of v, is ¢™'*, because the top term of v, is ¢™*. This shows the
claims for V,,, one-dimensional.

Now assume that V;,, is two-dimensional. Let ™ < m maximal such
that Vi, is one-dimensional. This implies that ¢ = 1 and m > 0. If
¢ =1 as well, we can find m < n < m and n > 0 such that ¢**» = t+1,
since \g = % By induction part (b) gives a contradiction to the maximality
of m. It follows that V,,; has dimension less or equal than two. Assume
for now that the intertwining operator at m is invertible, which means we
exclude the case that ¢ = t*! and m > 0. Then the dimension of V,,
is two. From Lemma 4.9 we see that V,, satisfies (Y — ¢*»/)2(V,) = 0.
We show now that V,,» contains an up to scalar unique Y-eigenvector e,
with sgn(y') = —sgn(m'). By induction V;,, contains some e, for u < m
with sgn(u) = —sgn(m). Since e, is a Y-eigenvector with eigenvalue g
we must have ¢™ = ¢*, hence ¢** # t*! and e, is the image of some
previous e-polynomial under one of the intertwining operators by induction.
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If m > 0 we have p < 0 and

3 32
+t (1 + (q_%ﬁ - f)(qQ)Am - 1)> (e—p)

IR ST VI A

(122)

where the last term is non-zero, since ¢’ £ t*1. If m < 0 we have p > 0

—m—1+pu —m+

Am(ep) = Am(Ai—p(er—p)) =q— 7 XmXw(e1—p) =q 2 Melfu- (123)

Therefore V;,,, contains e_, respectively e;_,,, whose index also has the sign
as claimed, since sgn(m) = —sgn(u). Using the inverse of the intertwining
operator we can show that for some ¢ # 0 we have (Y — ¢* vy, = ceyy
as in the proof of Lemma 4.9, since the analogous statement holds for m
by induction. If the intertwining operator is not invertible then ¢?*» = t*!
and we must be in the B,,-case, that means m > 0. First assume that ¢ is
not a root of unity. By going through the chain of intertwining operators
and looking at the appearing Y-weights A,, = —my we see that this case
is only possible if k& < 0 is an integer. Then ¢**» = 1 for m > 0 can
only appear at m = —k and the intertwining operators are invertible up to
m = —2k when ¢’ = #3. This must therefore be the m we are looking at.
Note that the e-polynomials are reflected at m’ = —k by the calculations in
(122) and (123). We see that the unique e-polynomial in V;,, is 1 € P. The
element 1 is a T- and Y-eigenvector with eigenvalue #3. From this all claims
can be deduced, similarly to the more complicated case where ¢ a root of
unity, which we handle now. Let N > 0 be minimal such that ¢ = 1.
Furthermore, we can assume k to be an integer, since we have found n such
that ¢*>*» = 1, since we are in the two-dimensional case. To conclude the
proof of (b) look at the maximal sequence of 2-dimensional V,, ending at
Vim, in other words we look at V,,, Vi_,, ..., Vi, with n minimal such that for
all n = n < m the space Vj is 2-dimensional. Similarly let V,,...,V_, be
the sequence of 1-dimensional Vi preceding n. Note that n < 0. Assume
first t # —1. We want to show that the unique e-polynomial e, € V, is
a T-eigenvector. Since t # —1 we have k # % mod N. Then ¢**¢ = t*!
happens for four different values of ¢ mod N. From this we can deduce by
going through the chain of intertwining operators and by looking at the
appearing Y -eigenvalues that one of the following two cases holds. Either
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kmod N € {—%, vy %} is a negative integer and 1 < m = —2k mod N
is minimal with ¢**» = t*! and m > 0. Furthermore, we have n’ = 1 and
the sequence of one-dimensional spaces starting at V,,» has the same length
as the sequence of two-dimensional spaces starting at V,,. Otherwise, the
sequence of one-dimensional spaces starting at V,,/ is strictly longer than the
sequence of two-dimensional spaces starting at V,,. By induction and using
the proof thus far we see that for the unique e-polynomial e, € V;,, we have
= n — m, since the e-polynomials are reflected at n. Ther?fore we see in
the first case that e, = 1 is a T-eigenvector of eigenvalue t2 = +¢*. In
the second case e, spans one of the spaces in the 1-dimensional sequence
Vo, ...V_y from above, but not V,,;. Therefore e, = B_,(e_,) is also a T-
eigenvector of eigenvalue +¢* by same calculation as in Equation (122).
For t = —1 we can use the same argumentation, but now we have that the
sequence Vi, ...,V_, and V,,...,V,, have the same length. From this we
obtain that e, € V,, equals e,y and by induction using statement (b) for
t = —1 and the induction start at e, = 1 we can deduce that e, is also in
this case a T-eigenvector of eigenvalue +¢*». In particular we have in all
cases By, (e,) = 0. By induction we have that e, € Vi, equals (Y —¢*™)(vyy,)
up to scalar and hence 0 = B, (Y — ¢*)(vi) = (Y1 — ¢*) By (). This
shows (Y — ¢*')Bp,(vy,) = 0. Therefore v,y = Bp,(vy,) is either 0 or a
Y -eigenvector of eigenvalue ¢*m’. Next we show that (T + t*%)Bm(vm) if
¢**m = t respectively (T — t%)Bm(vm) if ¢>*» = t~! is a non-zero multiple
of e, if t # —1 and 0 otherwise. We can find ¢ € K\ {0} such that {ce,,vm}
is a basis of V,,, on which Y restricted to V,,, has Jordan-Normalform, since
all appearing Y-eigenvalues ¢ lie in K. Then we can calculate

t7 — 73 47 —¢3 A R
- = ¢T3 (g~ Pm—1) 124
Y21 P10\ | " ( 0 1 ) (124)
0 q’\m B

Note that e, is a T-eigenvector of eigenvalue 153 by the discussion above.
We obtain

1 141 1 1 2q~Am
(T £75) By (om) =~ 5P 5e(t2 + 07 3) S0 v

(125)
We have (t% + t*%) = 0 if and only if ¢ = —1, which gives the missing claim
from (b). Again showing that the top term of v, is ¢"* with coefficient 1
follows by induction using that ¢™? is the top term of v,, and in particular
we can deduce v, # 0 for t = —1. This finishes the case that V,, is two-

dimensional and hence the whole proof.
O

Remark 4.14. Let us visualize the general picture of the chain of inter-
twining operators for the polynomial representation P. Here n and m are
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Am — ¢+1 The splitting

22m — qfk:fm —

some positve integers with ¢?*» = 1 respectively ¢2
appears when ¢ = ¢ = 1 and the merging when ¢
t+1 = ¢tk If ¢ is a primitive N-th root of unity the splitting (and merging)
appear N-periodically at ey, eé,+n,. ... Otherwise they only appear at most
once and only if kK = —n for some n > 0.

A_pn

/?6‘1 . \
*———o —0— :;
€0 €1 €1 €n U—n Un+1

~_ Y —_

A B A, B, A B

Corollary 4.15. Whenever e, for m € Z exists we have Ye,, = ¢~ ey,
where my 1= mn(mk for m # 0 and Oy := %

Proof. The element 1 € P is a Y-eigenvector with eigenvalue qg. Hence
we have A, = —my in Lemma 4.9 which shows the claim by definition of
em.- L]

In fact, if f € P has top degree | with respect to < and if f is a Y-
eigenvector, then one already knows that its Y-eigenvalue is ¢, which can
be deduced from Equation (109) for { > 0 and similarly for [ < 0.

Corollary 4.16. For the polynomial representation P and vg =1 € P the
set {vy, | m € Z} forms a basis of P. Also, any Y -eigenvector in P lies in
the K-linear span of the en,.

Proof. The v, span P, since vy, exists for all m € Z and has leading term
q™* by Lemma 4.13. For the second claim note that, again by Lemma 4.13,
all vy, are generalized Y -eigenvectors. Hence they form a basis of generalized
Y-eigenvectors of P and by definition the e,, are the proper eigenvectors in
this basis. This shows the claim. O

We will now define Rad, the qadilcal of P. It will turn out that many
finite-dimensional irreducible H(q2,¢2)-modules are quotients of P via this
radical.

Definition 4.17. We define a bilinear form on P by setting for any two
Laurent polynomials f,g € P

_ _k
(f.9) = F(Y ") (9)(a2). (126)
Denote by Rad the radical of this bilinear form, that is
Rad :={f e P|(f,9) = (9, f) =0 for all g € P} (127)

and call it the radical of P.
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Define a K-linear anti-isomorphism ¢ : H (g % %) — H(q2, %) via
HX)=Y"", ¢(Y)=X"", ¢(T)=T. (128)

By verifying the relations in Definition 4.1 it is easy to see that this actually
defines an anti-morphism, which means ¢(hiha) = ¢(ha)p(h) for all Ay, hy €
H(q%,t%). Note that ¢? = Id

Proposition 4.18. (a) The bilinear form { , ) is symmetric.

(b) For H € H(q?,t2) and f,g € P we have (H(f),g) = (f,6(H)(9)).
(¢) The radical Rad C P is an H(qi,t%)—submodule.

=

Proof. Let f,g € P, which we identify Wlth the corresponding Laurent poly-
nomials in the variables X*! inside H (q2 t2) This is possible by the PBW-
basis theorem in Corollary 4.5. Note that for ¢ defined above we have for
any H € H(q%,t%) and 1 € P that d)(H)(l)(q_g) = H(l)(q_g). One can
check this easily on the PBW-basis elements. Hence we obtain using ¢? = Id

k

(f,9) = o(N(@)1)(a™2) = d(6(£)(9)) (1)(g2)
$(9)(f)1)(a™2) = g, f),

which shows the symmetry of (
For any H € {X*! Y*1} C
(, ) and by its symmetry

(H(f),9) = {f,0(H)g)- (130)

To prove the same for T' observe that for n € Z and X" € P = K[X*!] C
H(q%,t%) we have

(129)

I

)-
H(q 2 %) we obtain from the definition of

T(X™) = TX" — X "(T — t2), (131)

in H (q%,t%), which can be verified using Equation (100) and induction on
|n|. Then we have for g € P and n € Z:

(T(q"), 9) = $(T(X >)<g><1><q*%>

But by definition of the T-action on P we have (T' — t%)(g')(ff%) = 0 for
all ¢ € P. Hence the second term vanishes and we obtain (T'(¢"*),g) =
(@, 6(T)(9)) = (¢"*,T(g)), from which statement (b) follows. Statement

(c) is a direct consequence of (a) and (b).
O

o6



The following three lemmas are known as duality formula, Pieri for-
mula respectively evaluation formula in [Che05, Chapter 2.5 and 2.6]. They
should be treatled as results about meromorphic complex valued functions in
the variables ¢2, k, z on (C\ {0}) x C? , where we think of P as a subspace of
such functions. In particular we will assume ¢,¢ = ¢* to be transcendental
over C now. Note that e,, can always be defined for transcendental ¢ and
k using the intertwining operators as in Lemma 4.13. Then specializing ¢
and k gives the e-polynomials for the respective values of ¢ and k, if all
appearing formulas are well-defined. In particular, we can still deduce the
same statements for ¢,t € C by evaluating the formulas, if all appearing

terms are well-defined. In the formulas the element ¢, := . ‘zm Fy appears,
m(—3

which is always a well-defined meromorphic function, since e,, is never the
zero-function.

Lemma 4.19. For m,n € Z we have €,(my) = €,(ny).

Proof. By definition of the bilinear form on P and since e,, is a Y -eigenvector
of eigenvalue ¢~ by Corollary 4.15 we have

k

(ewsem) = eaV Den(X) g ) = enlimgen(—5), (132

The symmetry of the bilinear form from Proposition 4.18 and dividing by
em(—g)en(—g) proves the claim. O

Lemma 4.20. Let m € Z and v =1 if m <0 and v = —1 otherwise. Then
we have

1 1 1 1
tatvgTmtl e tz —t72
-1 .
X em = trg—m+l _ 1 €m—1— Wq_m’ (133)
1 1 1 1
tT2tgTm 3 t72 —t2
Xem = g — 1 €m+1 — mﬁl—m- (134)

Proof. Let m < 0. The case m > 0 follows analogously and is omitted.
Recall that for n € Z by Corollary 4.15 the e-polynomial e, and hence
€n = ﬁ is a Y-eigenvector of eigenvalue ¢~ ™. Since Y = «n'I" and since
n(=3

my — 1 = (m — 1); we obtain

g (el = D)) — (1= m),).

(135)

g en(my) = trea((m — 1)) +
Applying the duality formula from Lemma 4.19 shows

,n L t7— 73
q ﬁem(nﬁ) =12 Gm_l(nﬁ) + m(ﬁm_l(nﬁ) — Gl_m(nﬁ)). (136)
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From this it follows, that the first formula holds for points x = ny for all
n € Z. This is an infinite set. Hence the formula also holds in general,
since the appearing functions are rational functions in ¢® and since ¢ is
transcendental, in particular not a root of unity. For the second formula note
that from the construction of the e-polynomials we have e;_,, = q% Xm(em)
for m <0. Using X X7 = q% gives us e;, = qufl Xme1_m. Then using the
duality formula and €1 = ngx we obtain

k k 1+k& k L—mtk

(Xrerm)(—5) =0 S m(——) =q S m(ly) =g 55 (137)

m—1—k m—k

Hence we have €¢,, = ¢ 2 Xmwe1_p,. We apply ¢ 2 X to the left hand

side of the first Pieri formula at index 1—m and obtain quik Xr X YHeom) =

Xeép. Applying quik X7 to the right hand side of the first Pieri formula at
the index 1 — m yields

t—lqm 1 t—lqm
_tTagm -t -t L, (138)
U R v
1 1 1
tz2q™™m — {2 72 —¢3
B R RO Te T
This shows the second formula for m < 0. The case m > 0 is similar. O
Lemma 4.21. For m € Z set /m|' :==m if m > 0 and |m|' :== 1 —m if

m < 0. We have
k _lm| 1— ¢7t?
0<j<|m|’

Proof. By Lemma 4.13 the leading term of e, with respect to < is ¢"*.
Hence by comparing the leading terms in the first Pieri formula from Lemma
4.20 we obtain for m <0

3 1
1 tag—mtl — 73 1
kY . —m+1 kY (140)
em(—73) tq -1 en-1(-3)
Similarly, we deduce from the second Pieri-formula for m > 0
3 1
1 tT2q7 ™ —t2 1
_ L i (141)

€m(—§) St -1 €m+1(—§)'

The claim now follows by rearranging these terms and using induction start-
ing at eo(—g) =1 and 61(—5) =t 2. O
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Finally, we introduce three isomorphisms of double affine Hecke algebras,
which will allow us to twist representations and thereby construct new ones.

Lemma 4.22. The following maps define C(q % %)-algebm isomorphisms
of the respective double affine Hecke algebras.

1 1 1 _l

L:H(q2,t2)—>H( 2 t72), X —» XY =Y Tw— —T, (142)
H(q2,t2) — H(q2,t2),X = X,Y > —Y,T > T, (143)
H(q2,t7) = H(q2,12), X —» —X,Y » Y, T » T. (144

[SIE

Here we consider H(q algebra via the obvious ‘identity’

2) to (q2,12).

Proof. This is an easy check of the relations and hence omitted. O

,* ) as a C(q 3 t%)
1 %t

map (C(q2 t2) — C(q2,t™2) sending (q

NI ol
-

Let A and B be two rings and ¢ : A — B an isomorphism between
them. For a B-module M we will denote the A-module obtained by pre-
composing with ¢ by ?M. We will use these twists often for A and B two
one-dimensional Hecke algebras and ¢ some composition of the isomorph-
isms from Lemma 4.22. These morPhlsms commute if we denote the ones
for H(q2 t2) and the ones for H(q2,t~ 2) by the same symbol ¢, ¢, or (,.
With this convention we also have that these isomorphisms are idempotent.

Remark 4.23. Note that from the construction of the e-polynomials we
obtain (z(e,) = (—1)*le,. Also, we can use (, to define a bilinear form
(, )— on P by precomposing ( , ) with ¢, in both components. Then
Rad_ := (;(Rad) is the radical of (, )_. For both of these statements we
treat P as the subalgebra of H (q%,t%) generated by X*!, which is possible
by the PBW-Theorem from Corollary 4.5.

4.3 Finite-dimensional irreducible modules for generic q

The parameter ¢ of the one-dimensional DAHA H (q%,t%) is called generic
if g € C\ {0} and ¢ is not a root of unity. If ¢ € C\ {0} is a root of unity we
say that ¢ is special. The goal of thls sectlon is to describe and classify the
finite-dimensional irreducible H (q2 t2) modules for generic gq. This section
is based on the results from [Che05, Chapter 2.8].

As already indicated the polynomial representation P from Proposition
4.3 plays an important role. In fact, the followmg proposition shows that
any finite-dimensional irreducible H (q2 t2) module is a quotient of P or a
quotient of a twist of the polynomial representation by ¢, ¢, or (y¢ from
Lemma 4.22.

Proposition 4i241' Let q be generic. Then non- trwwl finite-dimensional
irreducible H(qz,t2)-modules exist only for t = q £(3+n) form € Z>q or
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t = —q*2 for n € Zsgy. Every such module is a quotient of P, WP, ‘P or
_ 1 1 _
P, where P is the polynomial representation of H(q2,t2) and P is the

polynomial representation of H(q% , tfé).

Proof. Let V be a finite-dimensional irreducible module of H (q%,t%). The
isomorphisms from Lemma, 4.22 are all idempotent, therefore we can equival-
ently show that V, <V respectively ‘V or %V is a quotient of P respectively
P, which we will do now. Since V is finite-dimensional and Y is invertible
we can find a Y-eigenvector vy € V of eigenvalue ¢* for some X € C. As in
Definition 4.11 and Lemma 4.9 we use the chain of intertwining operators
to construct the Y-eigenvectors v, of eigenvalue ¢*, where \,,, = —\ — 5
for m > 0 and A\, = A — 5 for m < 0. We can apply the lemma, since
V' is finite-dimensional and thus has a generalized Y -eigenspace decompos-
ition. We can construct these v, up to m > 0 where B,, is not invertible
or non-existent. If all B,, exist and are invertible, in particular if t = 1, the
sequence of v, is infinite and contains Y-eigenvectors for infinitely many
different eigenvalues ¢, since ¢ is not a root of unity. This contradicts V'
being finite-dimensional. Therefore we can find m > 0 such that ¢>*» = 1
and hence B,, does not exist or we can find m such that ¢**» = t*! and
hence B,, is not invertible. By replacing vy with v,, and therefore A with
Am We can assume one of the following:

(a) ¢¥ =1 = ¢* = £1 (non-existence),
(b) ¢P =t = ¢ = +tEs (non-invertibility).

For the proof of the proposition we can without loss of generality twist the
module V' by (y, ¢ or ¢y from Lemma 4.22. Replacing V' with WV lets us
replace ¢* with —¢*, while replacing V with “V lets us replace ¢ with ¢ 2
and also H(q% , t%) with H(q% , t_%) and P with P. Therefore we can assume
that V has a Y-eigenvector vy with one of the following eigenvalues by using
Gy, L OT LCy:

N

(a) * =1, (b) ¢* = t2. (145)
The chain of intertwining operators applied to the new vy with weight A as
above must again reach some m > 0 for which B,, is not invertible or not
defined, hence some m > 0 for which ¢**» = t*1 or ¢>*m» = 1. Because ¢
is not a root of unity and since A\, = —\ — only the following cases are
possible:

m
2

(a) t*1 = ¢™™ for some m > 0, (b) tT! =¢"1¢™™ for some m > 0. (146)

We start with the (b)-case. By solving for ¢ we can deduce t = +¢~ 7 for
m > 0, since ¢ is not a root of unity. Because of the assumption that v is a
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Y- elgenvector of eigenvalue ¢* = =3 in (145) a simple calculatmn shows that

0= (T — t2 )(vo) is either a Y-eigenvector of eigenvalue ¢* = ¢~ 2 or 9 =0.
If ¥ # 0 we apply the chain of mtertwmlng operators to v and look at the
appearing Y-eigenvalues q’\" = t2q 3 for n > 0. Since m > 0 and since q is
not a root of unity, we have q”‘” =4qg T " # 1l and q”‘“ £ t+ foralln > 0.
Hence all B,,-intertwining operators exist and are invertible. Therefore we
could generate infinitely many Y -eigenvectors of different eigenvalues via the
chain of intertwining operators in Definition 4.11, which contradicts that V' is
ﬁnlte-dunensmnal So ¥ must be zero. But then vg is a T-and Y -eigenvector
of eigenvalue t2 and we obtain by Corollary 4.7 a morphism P — V| which
must be surjective by the irreducibility of V.

If in case (b) we have t = ¢~ 2 for m = 2] with [ > 0, we can reduce to
case (a) by using the chain of intertwining operators. Indeed, the intertwin-

ing operators By, for n > 0 exist up to n = m when 2X\, = 7 — § = 0 and if
they exist they are invertible up to n = 2m when 2)\, = 5 —§ = —%. Hence

we can reach a Y-eigenvector with eigenvalue ¢* = 1 as in the assumption of
case (a) in (145). We will see now that case (a) does not produce any finite-
dimensional irreducible modules, hence this explains why the case t = ¢™
for integral m does not appear in the proposition.

In case (a) we apply the chain of intertwining operators again, but this
time to the space Vy := (T, Y*1)vg, where (T,Y*1!) is the subalgebra of
H(q%,t%) generated by T and Y*!. We have (Y — 1)Tvy = (t% —f%)v # 0,
since t # 1. Hence Vj is two-dimensional and Y is not semisimple on V{, but
(Y —1)%(Vo) = 0. By the conditions of case (a), we see that all intertwining
operators B, exist and that B,, is invertible, unless &k = n for some n > 0,
where k is such that ¢* = t. Because all B,, exist, we can define inductively
via the order < on Z:

Vien = A1 (V) for 1 = n <0, V_, := B,(V,) for n > 0. (147)

By Lemma 4.9 we deduce that V, is a Y-module and (Y — ¢**)%(V,,) = 0 for
all n > 0, since this holds for Vj. If all intertwining operators are invertible,
V is infinite dimensional by considering the infinitely many (generalized) Y-
eigenvalues ¢ for the two-dimensional V,,. Hence we can assume k = £n
for some n > 0. Then V,, is not Y-semisimple, since otherwise we could
use the inverse chain of invertible intertwining operators as in the proof of
Lemma 4.13 and deduce that Y is semisimple on V. If V_,, # 0, then V
is infinite dimensional, since all intertwining operators after n are invertible
as ¢ is not a root of unity and hence there does not exist an n’ > n with
@M = tT1. Choose some 0 # v € V,, that is not a Y-eigenvector. From
B, (V) = 0 we deduce by definition of B,

tz —¢2 5 — 13
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Observe that (Y2 — 1)1 is well defined on Vj,, since ¢?*» = t*1 £ 1. Using
relation (YT) gives us

1 1 1 1
£t th—t3
(Y—l L Y S 2) (v) = v (149)

and hence ) )
(t2 —t72) 20 = (Y1 = Y)%. (150)
An
We can assume that Y acts via the Jordan-Normalform <q0 q}‘"> on V,,

where the second column corresponds to v. A simple matrix computation
shows ¢* = ¢~*. This then implies t*! = ¢**» = 1 and by +k = n we
obtain a contradiction to g being generic. We conclude that case (a) does
not yield finite-dimensional H (q% , t%)—modules, which finishes the proof. [J

Proposition 4.25. Let g be genemc Non-trivial irreducible quotients of P
exist only for n € Z>o and t = q ~(+n) opp Zso and t = —q" 2.

Proof. Any non-trivial irreducible quotient would in particular be a quotient
as X*'-modules and hence finite-dimensional, since it is of the form P/(e)
for some e € P. By the previous Proposition 4.24 we can assume that
t= qi(hr”) forne€Zsgort= —qi% for n € Z~y. We only have to exclude
the cases with p051t1ve exponents to obtain the claim from the proposition.
Assume we have t = q2+" forn > 0ort = —q2 forn > 0. Apply the chain of
intertwining operators from Deﬁmtlon 4.11 respectively Lemma 4.13 to vo =
1 € P which has Y-eigenvalue ¢* = —t3. For m > 0 we have @ =t 2q 7.
Since ¢ is not a root of unity this implies that all intertwining operators
exist and are invertible, because we can never reach a Y-eigenvalue ¢
with q2Am =tlgm=¢q" 3nem (respectively ¢*'m = —¢ —5m = =1)or
¢ =t71g=™ = t*! for m > 0. Hence, all e-polynomials e,, for m € Z exist
by Lemma 4.13 and their Y-eigenvalues ¢*» = ¢~ are pairwise different,
since ¢ is not a root of unity and by the choice of t.

Assume V' := P/(e) is a non-trivial quotient. By multiplying e with an
appropriate power of the invertible element ¢® we can assume without loss
of generality that e = ¢4 ¢"* +...+c_q "™ or e = c+q(m+1)x 4. Fece_qg™™
and cy,c_ # 0. Note that then the dimension of V is 2m or 2m + 1 and
the difference between top and bottom degree for any element in (e) must
be larger or equal to 2m or 2m + 1, as otherwise the dimension would be
smaller than 2m or 2m + 1. But since Y preserves < and by choice of the
generator e this implies that e is a Y-eigenvector. Since all e; have pairwise
different eigenvalues we must have that e is proportional to e; for some i € Z.
Note that in this settmg all A;- and B;-intertwining operators are invertible
elements in H (q2 t2). Thus e; € (e) implies that 1 € (e) and hence P is
irreducible for such values of t. O
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Proposition 4.26. Let q be generic.

(a) For t = q_(%“‘) with n € Z>o the polynomial representation P
has an up to isomorphism unique mazximal non-trivial quotient given by
P/(e—on—1). There exist up to isomorphism two non-trivial irreducible quo-
tients of P. They are given by V;,EL_H =P/ (e*) where e* = e,11 it_%e_n.
The dimension of the irreducible quotients is 2n + 1. Furthermore, (e™) =
Rad and (e”) = Rad_.

(b) Fort = —qu with n > 0 the polynomial representation P has an
up to isomorphism unique non-trivial quotient given by Va, := P/(e_y,). In
particular, this quotient is irreducible. Its dimension is 2n. Moreover we

have (e_,) = Rad.

Proof. We use the chain of intertwining operators from Definition 4.11 start-
ing at 1 € P again. In the same manner as before we see that all B,, exist.
In case (a) all By, except Ba,1 are invertible; in case (b) all B,, except B,
are invertible. In particular, all e,, exist in both cases by Lemma 4.13. In
any non-trivial quotient the image of e_o,_1 respectively e_, must be zero.
Otherwise we could use the chain of invertible intertwining operators start-
ing from the image of e_o,_1 respectively e_,, and produce infinitely many
eigenvectors of different eigenvalues ¢* in the quotient. On the other hand
these e-polynomials are Y -eigenvectors by definition and also T-eigenvectors,
since in case (a) we have e_g,_1 = Bopt1(€2n41) = t%(T - t%)(€2n+1) and
in case (b) we have e_,, = By(e,) = t%(T — t%)(en). Hence the ideals gen-
erated by these elements are submodules by Corollary 4.6 and we see that
the corresponding quotients are maximal.

Let us finish case (a) first. Since the top degree with respect to < of
€_on_1 is —2n—1 and hence negative and because e_o,_1 is a T-eigenvector,
q(Q”H)x appears in e_g,_1 with non-zero coefficient. Hence P/(e_g,—1) has
dimension 4n + 2. For degree reasons and since the e,, span P, the quotient
has a basis given by the images of e,, for m < —2n — 1. Recall that —my =
—%n(mm for m # 0 and —0; = g is the Y-weight of e,,. We see that
—my = —my for m, m’ < 2n+1ifand only if m" = —2n—1+m. Any quotient
of P is of the form P/(e) for some Y-eigenvector e € P as shown in the proof
of Proposition 4.25. Hence any non-trivial quotient of P/(e_2,—1) must be of
the form P/(e) for e = ciem, + cae_2p,—14+m for some constants ¢, co € C and
0 <m < 2n+4 1. Since in this range all intertwining operators are invertible
elements of H(q%,t%), each Y-eigenspace of P/(e_2,—1) must have non-
trivial image in the quotient, hence the dimension is at least 2n 4+ 1. On
the other hand if some Y-eigenspace has two-dimensional image, then again
by using the invertible intertwining operators we see that each Y -eigenspace
has two-dimensional image and hence the quotient is trivial. Therefore the
dimension of P/(e) is 2n+1 and we can assume that e = ¢"T)* 4 4-¢/g~"®
for some non-zero constant ¢’. By the above description of the Y-spectrum
of P/(e—an—1) we see that e = e,y1 + ce—,, for some constant ¢ € C. If
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¢ =0, we see 1 € (e) by using the inverse chain of intertwining operators.
Therefore ¢ # 0. By assumption (e) C P must be a submodule, in particular
A_,(e) € (e). A quick computation using the definition of the e-polynomials
and relation (PX) shows

A_,(e) =tte_, + cenqr. (151)

This term must be proportional to e, since otherwise we can find a linear
combination of e and A_,(e) which kills ¢ *Y? and obtain a contradiction
to dimP/(e) = 2n + 1. Therefore ¢ = +¢~2. Note that (e1) coincides with
the radical Rad from Definition 4.17. Indeed, by the evaluation formula from
Lemma 4.21 we see that e (q_g) = 0 and since e™ is a Y-eigenvector we have
e’ € Rad. Because Rad is an H(q%,t%)—submodule by Proposition 4.18, we
have (e*) C Rad. If Rad Z (e*) then the H(qZ,¢2)-module P/Rad would
be a quotient of P/(e_ap—1) of dimension smaller than 2n + 1 and hence
trivial by the above consideration. But then we would have 1 € Rad, which
is clearly not the case. Therefore, we have (e™) = Rad. For (e™) recall the
automorphism (, of H (q%,t%) from Lemma 4.22, which sends X — —X
and e, for m € Z to (—1)™e,, by Remark 4.23. By the same remark we
have Rad_ = (;(Rad) = (,((e*)) = (¢x(eT)) = (e7). From this it follows

1

in particular that (e7) C P is an H(q2, %) module. Finally, these two
quotients are not isomorphic, since e™ and e~ are not proportional. Hence
we cannot even have an X-module morphism between the quotients.

For (b) note that all e, for m < —n have pairwise different eigenvalues.
Hence, similar as in case (a), we see by using the invertible intertwining oper-
ators that P/(e—_y) can not have a non-trivial quotient. Using the evaluation
formula we see (e_,) C Rad, which already implies equality as Rad C P is
a submodule by Proposition 4.18. O

Corollary 4.27. The Y -spectrum of the H(q % %)—module V;LH is given
by {¢7™ | —n < m < n} with cardinality 2n + 1. The module Va, has
Y -spectrum {¢7™ | —n 4+ 1 < m < n} with cardinality 2n. We have that
Cy(VQ;—:H) is not isomorphic to either V2J7FL+1 or Vo, .1, but W (Vap) =2 Vap
holds.

Proof. The description of the Y-spectra follows directly from the proof of
Proposition 4.26, where we show that Vi 41 1s spanned by the images of
the e-polynomials e, for —n < m < n and Vgn is spanned by the images
em for —n+1 < m < n. The Y- spectrum of V2n 41 is not invariant under
Y < —Y and hence Cy(VgnH) ¥ V2n+1, since this would imply that —1
is a rational power of ¢ in contradiction to ¢ being generic. To construct
the isomorphism < (Va,) = Vs, note that the image of e, in Vs, has Y-
eigenvalue ¢~ ™ = q_%t_% — —t2 and T-eigenvalue t%, since Bp(en) = €—pn
in P. Unwinding the definition of B,, gives T'(e,) = t%en mod (e_,). By
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the universal property of P from Corollary 4.7 we obtain a non-trivial and
therefore a surjective morphism P — % (Va,). Since ¢y does not change the
X-action, e_,, acts trivially on % (Va,) and the morphism factors through
P/(e—n), which then must become an isomorphism by the irreducibility of
the modules. O

Theorem 4.28. Let q be generic. The following gives a full list of possible
values of t for which finite-dimensional irreducible modules exist and lists
all possible such modules up to isomorphism.

Value of t Modules Dimension
t:q_%_" forn >0 VQjﬁbH, CyV;LH 2n+1
t=qr™ forn>0 | Vit |, SVt | 2041
t= —q_% formn >0 Von = Vs, 2n

t= —q% forn >0 Wop =2 “u Vs, 2n

Proof. This is clear from the previous discussion in Propositions 4.24, 4.25
and 4.26 and Corollary 4.27. O

4.4 Finite-dimensional irreducible modules for special q

Throughout this section let q% € C be a primitive 2N-th root of unity for
N > 1. We will not consider the representation theory for q% an odd root
of unity, but only refer to [Che05, Chapters 2.9 and 2.10] for some remarks
on it. The goal of this section is to classify all finite-dimensional irreducible
H (q%,t%)—modules with a Y-eigenvector of eigenvalue ¢* for some A € C.
Note that choosing an appropriate branch of the logarithm allows us to
always assume that a Y-eigenvalue in the exponential form ¢* for some
A € C exists. The results presented in this section are based on [Che05,
Chapters 2.8 and 2.9].

For the classification it will be useful to discern three possible classes of
weights .

Definition 4.29. An element A € C is called regular if 2A ¢ %Z, half-
singular if 2\ € % + Z and singular if 2\ € Z.

NI= N=
= Nl

Let V be a Y-cyclic H(q%,t%)—module, by which we mean an H(q2,t2)-
module with a Y-weight vector v € V that generates V' as an H(q2,t2)-
module. Let A € C be the weight of v, in other words Y (v) = ¢*v. We
will deduce in the upcoming Lemma 4.31 that if X is regular, half-singular
respectively singular then V' has a generalized weight space decomposition
with regular, half-singular respectively singular weights. For this we will
need a class of central elements, which will later also play a role in classifying
quotients of the polynomial representation P in Lemma 4.38.
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Lemma 4.30. The elements fXQiV + X 2N 4L Cand YN +Y 2N 4 C for
any C € C are central in H(qz,12).

Proof. For the X-case it is easy to calculate that X% +X =2V +C commutes
with any of the generators X*! 7+l T from Definition 4.1. One can use
Equation (131) for the calculation. The Y-case reduces to the X-case by
applying the anti-isomorphism ¢ from Equation (128). O

Lemma 4.31. Let V be a Y -cyclic H(q%,t%)-module with v € V' such that

H(q%,t%)v =V and Y (v) = ¢*v for some A € C. Then V has a generalized
Y -weight space decomposition such that the Jordan blocks are at most two-
dimensional and the Y -eigenvalues are of the form qi)‘+% for some 0 < j <
2N — 1. In particular, if X is regular, half-singular or singular, then the

same holds for all Y -weights of V.

N|=

):

Proof. We have the following equality in H (q% ,t

2N—1
_ J _ J _ _
—q 2N A H (Y_q)\-‘rQ)(Y l_qA+2):Y2N+Y 2N_q2N)\_q QN/\‘ (152)
7=0

This can be deduced from
2N—1 ] 2N-1 )
H Y — qH%) = V2N _ 2NN H (Yfl _ q’H%) =Y 2N _ 2N
=0 j=0

which is obtained by factoring Y2V — ¢2NA using its 2N distinct roots as

a polynomial in Y or Y~! on C. Denote the element from (152) by Z.
Let o = h(v) for some h € H(q%,t%) be an arbitrary element in V. As

we have seen in Lemma 4.30 Z is central and hence the claims follow from
Z(h(v)) = h(Z(v)) = 0. O

Unlike in the generic case for special ¢ not all finite-dimensional irredu-
cible H (q%,t%)—modules can be constructed via the polynomial representa-
tion P. We will first describe and classify these exceptional modules in the
upcoming three propositions. We start with the case that the module has
regular Y-weights. As always, we have ¢* = t for some k € C. For the
next proposition we need to use an equivalence relation ~ on C defined by
c1 ~ co if and only if ¢; = q% ¢y for some n € Z. For each equivalence class
we pick a representative and we denote the map from C to the set of these
representatives by [ .

Proposition 4.32. Let A € (; reqular with k & +2\ + Z. Any finite-
dimensional irreducible H(q2,t2)-module with Y -weight X is isomorphic to
one of the H(q%,t%)—modules V([¢}], K) for some K € C\ {0} defined in
the proof. Its dimension is 4N. We have V([¢"], K) = V([q)‘,},K’) if and
only if [¢*] = [¢"] and K = K.

66



Proof. Let V' be a finite-dimensional irreducible H (q%,t%)—module with a
Y -weight vector v € V of regular weight \ and k& &€ £2\ + Z. We apply the
chain of intertwining operators from Definition 4.11 to v. Since A is regular,
all intertwining operators exist and since k ¢ 2\ + Z, all intertwining
operators are invertible. Hence, [¢*] is a Y-eigenvalue of V' and we can
assume ¢* = [¢]. Set K := BonAj_op...Ag and let

Vor={ve V[ (Y —¢")(v) =0}

Lemma 4.9 shows that K preserves Vp. Hence we can find a K-eigenvector
vo € Vp of eigenvalue K for some K € C\ {0}. Now apply the chain of
intertwining operators to vy to obtain Y -eigenvectors v, of pairwise different
weights A, for 1 — 2N < m < 2N defined as in Lemma 4.9. Set V' :=
@fn]\i 1—onCvp, which we can depict as follows.

Baon

——————— 06— F0—H>0
Vo Ag U1 By V-1 A_; V2 V1-2NA;_on V2N

Note that Bon(van) = Kvg. The action of the B-intertwining operators
determines the action of T to be as follows:

1 t5 — 73
T(’Um) =t 2V_m — mvm fOI“ 0 <m< 2N,
1 1
— Kt> ot
T(von) = vy — mU2N7

(153)

- q72)\m -1
q—2>\0
O =
1 1
11 (t2 —t72)% 5y
+ tz K (1 - mq 0 Vo-

We can use the A-intertwining operators to determine the action of X

X7(vm) =q2v_ for 0 <m < 2N,
(vm) = ¢ v m+1 = (154)
X7(v_m) =q 2Vm41 for 0 <m < 2N,

Because (Xm)™, T and Y*!' generate H(q%,t%), it follows that V' is an
H (q%,t%)—submodule and hence V' equals V by the irreducibility of V.
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We want to show that there exists a unique H (q%,t%)—module structure
on the C-vector space V' such that vg is a Y-eigenvector of eigenvalue [q)‘],
f((vo) = Kuvy and such that A_,,(v_p,) = vpmy1 for 0 < m < 2N and
B(vm) = v_p, for 0 < m < 2N. We will denote this module by V ([¢"], K).
The above discussion shows that such a module structure is unique if it ex-
ists and describes the action of T, Y, X 7. Therefore we only have to verify
that the above assignment actually defines a module for all K € C\ {0}
by verifying the relations from Definition 4.1. We obtain relation (PX) dir-
ectly from the definition of the Xm-action. Relation (XT) is equivalent to
X7YXnY = 1 and follows by a short computation. To verify (T) note
that {vm,v_m} for 0 < m < 2N respectively {vg,ven} span a C-vector
space that is closed under the proposed action of T'. We can determine the
characteristic polynomial P,,(Z) for 0 < m < 2N of the T-action on these
two-dimensional spaces:

t% —t_% 1 1 q72)‘m
i (L 2) - (25 2

I P G ) S (155)
(g2 —1)2*
=72 (t2 -t 3)Z— 1.

This proves (T), since the roots of P, (Z) are Z = +t£3. To verify (P) or
the equivalent condition TY ~'T =Y we calculate for 0 < m < 2N

S yw—
—2)
Amp—td -1y 4 7™
=qmt 2(t2 —t )q72)‘mflv_m
11
P R AN (156)
(g=2m —1)2 "
LTt (t2 —t73)2
t Pm 11T e )2 Um

The remaining cases m = 2N and 1 — 2N < m < 0 are very similar and
hence omitted. This shows that V([¢}], K) is indeed an H (q%,t%)—module.
To prove V([¢*], K) = V([¢"], K’) if and only if K = K’ and [¢"] = [¢"]
note that any isomorphism preserves the one-dimensional Y-weight spaces
from which the claim easily follows. O

The next proposition deals with exceptional modules with half-singular
Y -weights.
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Proposition 4.33. Let k ¢ %JrZ. Any ﬁnite—dimensionalH(q%,t%)—module
with half-singular Y -weights is isomorphic to W(vy) for some v € C or

W(e, o) for e € {—1,1} and § € {c%,—c%}, where these modules and the
constant ¢ are defined in the proof. The module W () is 4N -dimensional
and W (e, d) is 2N -dimensional. Moreover, W (y1) = W (y2) if and only if
v1 =2 and W(e1,61) = Wieq, d2) if and only if €1 = €3 and 61 = 0a.

Proof. Let V be a finite-dimensional irreducible H (q% , t%)—module witha Y-
weight vector v of half-singular weight A. We apply the chain of intertwining
operators from Definition 4.11 to v. Since A is half-singular all intertwining
operators exist and since k & % + 7 all intertwining operators are invertible.
As X is half-singular we can thus reach a Y-weight vector vy of weight A =
—%. Set S := qfin and K := BoyAi_an...Ao. Let

Vor={veV | (Y —q 1)) =0} (157)

Note that S and K preserve Vjy, hence we can assume that vy is a K-
eigenvector of eigenvalue K € C\{0}. Define inductively vy,+1 := A_p (v_p,)
for0 <m <2N—-1land v_y, := Bp(vy) for 1 <m <2N-—landlet V' CV
be the C-span of these vectors. Similarly as in Proposition 4.32 we can
deduce V' = V. Hence, we only have to describe the module structure on
V' and classify finite-dimensional irreducible modules with known action of
the intertwining operators and known Y-action as on V’. By Lemma 4.9 the
vectors vg and v; are contained in Vy and v_,,, and ven4+1—p, for 0 < m < 2N
are contained in

Vini={ve V| (Y —q 17%)() =0} (158)

To avoid confusion we emphasize that vy and vy respectively v_,, and
VaN+1—m for 0 < m < 2N might be proportional. Using relation (PX)
we see 52 = Id. We shall deduce SK'SK = ¢ for some constant ¢ € C\ {0}.
Using (PX) we obtain 4pS = qi and A_;A;_on = q% for0 <i<2N—-1. We
only apply the B-intertwining operators to Y-eigenvectors with eigenvalue
¢* for some A € C, which allows us to replace the denominator Y =2 — 1 by
¢~?* — 1 in all upcoming calculations. We have

1 1 1 1
t2 —t72 tz2 —t 2
BiBan-it1 =t (T * q_»_1> (T * q—»zNH_l)

1, . 1
1—tqg 2m) (1 —tg2"
_ot At oo <o

(1—g¢ 7)1 —q27)
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With this we can calculate SKSK = SBon...B1AgSBoy...Ag by success-
ively cancelling out the pairs from above to obtain scalars starting with
ApS. We obtain

L 2N PR R
SKSK = ¢o= [[ 1102 )0t )
=1 =g 2™)(1—¢27)

which shows the claim that SKSK acts as a constant on Vy. The irre-
ducibility of V' as an H (q%,t%)—module is equivalent to the irreduciblity of
Vo as a (S, K)-module, where (S, K) is the subalgebra of H(q%,t%) gener-
ated by S and K. Indeed, assume Vj is irreducible and that V' C V is an
H (q%,t%)—submodule with v € V’ a Y-eigenvector. Since all intertwining
operators exist and are invertible and because all intertwining operators are
elements of H (q% , t%), as we are only looking at Y-eigenvectors, we can use
the chain of intertwining operators starting at v to obtain a non-zero ele-
ment in Vp N V’. By the irreducibility of Vj as an (S, K )-module V5 C V’
and hence vy € V/. We can use the chain of intertwining operators to see
that all v, for 1 — 2N < m < 2N lie in V/ and hence V' = V. On the
other hand if Vj is not irreducible as an (S, K)-module let Vj C V; be a
non-trivial submodule. We can apply the intertwining operators to VJ to

: (160)

generate an H (q%,t%)—submodule of V, similar to the construction of V'
in Proposition 4.32. Therefore we will now classify all finite-dimensional
irreducible (S, K)-modules up to isomorphism. Note that from the rela-
tions S? = Id and SKSK = ¢ any element in (S, K) can be written as
a C-linear combination of SK™ and K" for n € Z. Since we can find a
K-cigenvector in any finite-dimensional (S, K')-module M the dimension of
any non-trivial finite-dimensional irreducible (S, K)-module is 1 or 2. In the
one-dimensional case S must act via multiplicati(l)n by € := +1, since S = Id
and hence K acts via multiplication by § := 4c2. These four possible cases
clearly give non-isomorphic modules. Now for the two-dimensional case:
since S? = Id we can choose an appropriate basis and assume without loss
of generality that S = Id,S = —Id or S = <(1) _01> The irreducibility
of M implies the last case. Now assume that K acts with respect to this

basis by K = <ZH 212) Since M is irreducible we must have ko1 # 0
21 K22

and by scaling the first basis vector by ko1 we can without loss of generality
assume that ko3 = 1. Calculating SKSK = ¢ now gives k11 = koo and
k?, — ki = c. But this shows that the isomorphism class of the (K,S)-
module M depends only on one parameter v := k11 € C and all possible
choices give pairwise non-isomorphic modules. Now what is left to show is
that any (K, S)-module structure on Vj extends uniquely to an H(q%,t%)—
module structure on V. For this we again use the intertwining operators as
in the proof of Proposition 4.32, this time applied to the space Vj instead
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of the vector vy and furthermore we only use the intertwining operators
up to By. The proof idea and the calculations are similar to the previous
proposition and hence omitted. In particular one can show that the result-
ing modules depend only on the parameters v respectively § and e defined
above and the modules are only isomorphic if they coincide. As the inter-
twining operators give isomorphisms between the weight spaces, we obtain
that if Vj is two-dimensional each V,, is two-dimensional and hence V is
4N-dimensional, while the case that 1} is one-dimensional gives that each
Vi is one-dimensional and hence V' is 2N-dimensional. We call the result-
ing H(q%,t%)-module W (5) in the 4N-dimensional case and W (e, §) in the
2N-dimensional case, where v, d, € are dependent on the (S, K )-module M
and defined above. O

Remark 4.34. Let us sketch the modules W (v) and W (e, §) diagrammat-
ically using the intertwining operators.

We start with the 4 N-dimensional module W (). Two vectors lying
above each other in the diagram span one of the Y-eigenspaces V,,, for 0 <
m < 2N — 1. Also note that By (ven) = Kwvg, where K is the eigenvalue
of K on Vy. This is not depicted properly in the diagram. The parameter
~ determines the action of K on Vy = (vg,v1)¢ and using the intertwining
operators the whole H (q%,t%)—module structure. Each pair of intertwining
operators lying above each other (for example By, Boy) are inverse to each
other up to scalar by the calculations in the previous proposition.

V1 vV—_1 V2 V_2 UN V_N
x—)o—)o—)o —— 3¢
Bl A,1 BQ BN
A(] A—N
Bon Ai_onN Ban_1 Byy1 L
o(—o(—o(—o °
Vo V12N VaN-1 V_N-1 UN+1

Now we sketch the 2N-dimensional module W (e, §). Note that the bot-
tom intertwining operators, as well as Ag and A_ y, only map the involved v;
to each other up to scalar, which is again not depicted properly. The module
structure is again fully determined by the (S, K) action on Vp, which is now
one-dimensional and spanned by vy.

Cb@@ <>Q

Ai1_oN Ban_1 By 1

Finally, we look at exceptional modules with singular Y-weights
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ProPoslition 4.35. Let k ¢ Z. Ift = 1 any finite-dimensional irreducible
H(qz,t2)-module with singular weights is isomorphic to U(~y) for v € C or
Ule, ) for e,6 € {—1,1}, which are defined in the proof. The module U(v)
has dimension 4N and U(e, 9) has dimension 2N and these modules are pair-
wise not isomorphic. If t # 1 any finite-dimensional irreducible H(q%,t%)—
module with singular weights is isomorphic to some U'(vy) for v € C, which
is defined in the proof. The modules U'(7) are pairwise not isomorphic and
have dimension 4N .

Proof. Let V be a finite-dimensional irreducible H (q% , t%)—module and v’ €
V be a Y-weight vector of singular weight A\. Note that all intertwining
operators up to B) exist and whenever an intertwining operator exists it is
invertible. If ¢ = 1 we even have existence of all intertwining operators. In
all cases we can reach a Y-weight vector v of weight A = 0.

For t = 1 the proof now virtually works the same as the proof in Pro-
position 4.33 only with S replaced by T. The module is again 2/N- or 4N-
dimensional and in the same way as before its isomorphism class depends
only on the (T, K)-module Vy := {v € V | (Y — ¢°) = 0}. This module is
determined by one parameter v € C describing the K-action on V in the
4N-dimensional case respectively two parameters €,0 € {—1,1}. Note that
1 takes the place of the constant ¢ from the previous proposition.

For the case t # 1 define Vp := (v, Tw)c and set & := Twv. From the
relations in H(q%,t%) we can deduce (Y — ¢®)2(Vp) = 0 and (Y — ¢%) () =
(t% — t_%)v #£ 0. In particular, Vp is two-dimensional. By Lemma 4.9
we can use the invertible intertwining operators up to A;_pn to define for
0<m<N-1land -N<-m<0

Vi1 = A_n(Vop), Vo := Bp(Vin) (161)

and by Lemma 4.31 we obtain that each of these two-dimensional spaces are
Jordan blocks for the Y-weight A,,, which by Lemma 4.9 contain exactly
one proper weight vector up to scalar. Set V' := @%ZI_N‘N/m and L :=
A;_NBpn_1...Ag. The action of T sends Vi to some two-dimensional Jordan
block of the same Y-eigenvalue —1 by relation (YT). The Jordan blocks
are either equal or their intersection is trivial and thus 7Y ' = YT~ =
YT + Y(t_% — t%) shows that T maps Vi to itself. Hence, we see as in
the previous propositions that V' is an H (q%,t%)-submodule and by the
irreducibility of V' we have V/ = V. Therefore any module is of this type and
to determine the isomorphism classes we only have to classify the action of T'
on Vi, as everything else is fixed by the intertwining operators. To describe
this action we choose a basis vy, v of f/N such that Y acts with respect to

this basis via the Jordan normal form -1 . Assume T = fa e
0 -1 to1 o2

on Vy. The relation 7Y ! = YT! now leads to to; = t=2 — ¢2 and
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t11 +tog = t7 — t~2. The characteristic polynomial Pr(Z) of T on Vy is

Pr(Z) = Z? — (t11 + ta2)Z — tiatar + tiitan

1

=72 (t2 73 Z 4+ (17—t )t + (12—t 2ty — 13 1
By relation (T) we have Pp(Z) =0 for Z € {t%, —t_%} and for such Z we
have Z2 — (t% — t_%)Z = 1. But this shows that any choice of v :=1;; € C
determines t1o and thereby the action of T on Vi uniquely. What is left
to show is that any choice of v = t11 really defines a module structure on
@%:1_ N‘N/m. The calculation is similar to the one done in Proposition 4.32
and hence omitted. ]

Remark 4.36. Let us sketch the module U’(y). The diagrams for the mod-
ules U(7) and U (e, 6) look identical to the modules sketched in Remark 4.34,
except for the fact that the roles of the A- and B-intertwining operators are
exchanged. Therefore we will not depict these modules here. For U’(y) we
only have 2N generalized Y-weight spaces V;, and not proper weight spaces,
therefore the points now represent these two-dimensional weight spaces in-
stead of weight vectors. Each Vj, contains a unique proper Y-weight vector
v, and they are mapped by the intertwining operators to each other. The
last intertwining operator By is crossed out to emphasize that it does not

exist
AQ B, Al -N
——————————)e - °—>~%
Vo Vi V1 Vien VN

All remaining finite-dimensional irreducible H (q%,t%)—modules can be
obtained via quotients of the polynomial representation, as we will see now.
More precisely any finite-dimensional irreducible H (q%,t%)—module V not
treated in the exceptional cases above is a quotient of 713, C?lf P, C?/L75_or of “P.
Here P denotes the polynomial representation of H(g2,t2) and P denotes
the polynomial representation of H(q% , f%) and ¢, ¢, are as in Lemma 4.22.

Proposition 4.37. Let V be a finite-dimensional irreducible H(q%,t%)—
module and assume one of the following cases holds: V' has a reqular weight
Aand k € £2\+ Z or V' has half-singular weights and k € % +7Z orV has
singular weights and k € Z. Then V is a quotient of P, WP, *“P or “w'P.

Proof. Let V be as above and v € V be a Y-weight vector of weight A.
Note that the isomorphisms from Lemma 4.22 are all idempotent, hence the
statement is equivalent to showing that V, %V respectively ‘V or %‘V is
a quotient of P respectively P, which we will do now. Apply the chain of
invertible intertwining operators from Definition 4.11 to v. By the assump-
tions on X and k we can reach a Y-eigenvector v’ of eigenvalue N = +1£3
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or ¢ = +1. Let us look at the second case, which can only appear for
k € Z by the assumptions on the weights. We can use ¢, if necessary to
assume ¢» = 1. Then we apply the chain of intertwining operators again,
now to v’. Since k € Z the chain of intertwining operators reaches one of the
Y -eigenvalues ++%5 before it reaches the eigenvalue +1. Therefore we can
reduce the second case to the first one. In the first case we can use ¢, ¢ or
Gyt if necessary to assume q)‘/ — 3. If the B-intertwining operator applied
to v’ yields 0, we have that v’ is a T-eigenvector of eigenvalue t2. Otherwise
replace v’ by B(v'), which is a Y-eigenvector of eigenvalue 2 by Lemma 4.9
and T—eigemlfector of eigenvalue 73 by definition of B and since v’ has Y-
eigenvalue ¢2. By applying ¢ we can also in tlhe second case assume that we
have a Y- and T-eigenvector of eigenvalue t2 and the result follows by the
universal property of P (respectively P) from Corollary 4.7. O

Our next goal is to describe the non-trivial irreducible quotients of P.
For this the following lemma will prove useful.

Lemma 4.38. Any irreducible non-trivial quotient of P factors through
VCi=P/(¢*N® + ¢ 2N + C) for some unique C € C.

Proof. Let V be an irreducible non-trivial quotient of P. In particular V is
finite dimensional, because it is of the form P/(e) for some e € P. Since
X2N 4 X2V is central by Lemma 4.30 it acts via some scalar on V by
Schur’s Lemma. Hence, there exists a unique C € C such that X2V +
X 72N 4 C acts via 0 on V. Therefore, we obtain that V is a quotient of
P/(¢*N® 4 ¢72N® + O). If there exists another C’ # C with this property
then P — V would factor over (¢?V% +¢=2N* + C, ?N* 4 ¢~ 2Ne 1. C0') = P,
which contradicts that V is not trivial. O

We will first deal with the quotients of P with regular weight A and k €
+2X+7Z. In particular we have k ¢ %Z. In the proposition the e-polynomials
from Definition 4.12 and the radical Rad of P from Definition 4.17 will
appear.

Proposition 4.39. Let k & %Z.

(a) All e-polynomials in P exist. In particular we have e_n = q
and e_on = ¢*NT 4 q72NT 12,

(b) The H(q%,t%)—module V¢ is irreducible for C # 2 and has dimension
4AN. The module V? has a unique non-trivial irreducible quotient given by
Van = P/(¢N* 4+ ¢ N®) of dimension 2N. Moreover, the radical Rad is
generated as an ideal in P by ¢?N® 4 q72Ne N =N,

(¢) We have that Van is spanned by the images of the vectors e, for
m < —N. The module VC is spanned by the images of the vectors e,, for
m < —2N. In both cases the e,, have pairwise different Y -eigenvalues ¢~ ™.

Nx+q—Nx
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Proof. The existence of all e-polynomials follows from Lemma 4.13, since
we have k & %Z and in particular £ ¢ Z and hence the chain starting
from v = 1 with Y-weight g never reaches the Y-eigenvalue £1. We have
e n = ¢V + ¢ V% Indeed, ¢V + ¢ V" is a Y-eigenvector of eigenvalue
— 3 and a T-eigenvector of eigenvalue t3. By Lemma 4.13 we have e_ny =
¢ N+ .+ cgN® for some constant ¢ € C. By Corollary 4.15 e_y is a Y-
eigenvector of eigenvalue ¢Vt = —t3 and e_y = Bn(en) = t%(T—i-t_%)(eN)
implies that e_y is a T-eigenvector of eigenvalue t2. This implies that e_p is
symmetric by the definition of the T-action. Thus, p :==e_n —¢V*—q¢ V" is
also a Y-eigenvector of eigenvalue —t2 and a T-eigenvector of eigenvalue t3.
Then T'(p) = ts p shows that p is symmetric and therefore has leading term
cq~™® with respect to < for some m > 0 and ¢ € C. From the top coefficient
with respect to < we can deduce Y (p) = ¢™p, but we also have Y (p) = ¢™
and hence my = Ny mod N, which is not possible for any 0 < m < N.
This shows p = 0 and therefore e_y = ¢"¥* + ¢~ N®. A similar calculation,
together with the fact that 62_N = ¢*N* 4 ¢72N% 1 9 and a consideration of
the evaluation formula from Lemma 4.21 proves e_gn = ¢?N* 4+ ¢ 2N% 42,
The element e_p is a Y- and T-eigenvector, which implies by Corollary 4.6
that (e_n) is a submodule. We have e2 \, = ¢*V® 4 ¢72V% 4 2 and therefore
Von = P/(e_n) is a quotient of V2. Also, Vay is spanned by the images of
em for m < —N as one sees by looking at the top coefficients with respect to
<. These have Y-weights —my, which are pairwise different, since k£ ¢ %Z.
If 0 # M C Vap is a submodule it must contain a Y-weight vector and thus
one of the e,,. The existence and invertibility of all intertwining operators
in this implies that M also contains 1 and hence that Vo is irreducible.
We show that V2 — Viy is the only non-trivial quotient of any V.
Assume M C V¢ is a non-trivial submodule and let v € M be a Y-
eigenvector. The module V¢ is spanned by the images of the Y-weight
vectors e, for —2N < m < 2N, which have pairwise different Y-weights
—my, since k ¢ %Z. Therefore v is proportional to the image of some e,.

Note that all invertible intertwining operators are elements in H (q% ) t%) We
apply the inverse chain of invertible intertwining operators to e, until we
reach either 1 or e_ depending on whether m < —N or not, which implies
that 1 or ey lies in M. The first case implies that M = V¢ and the second
case implies that M equals the image of (e_y) in V¢ by the irreducibility
of Von. The claim follows from the uniqueness in Lemma 4.38.

Let C = —tV —t=N. To prove Rad = (¢*V* + ¢=2N* 4 C) observe
that ¢V* + ¢~ N* + C is a Y-eigenvector, since X2V + X2V 4 C is cent-
ral in H(q%,t%) by Lemma 4.30. Evaluating at —% shows that (¢*V® +
¢ 2N® 4 ) C Rad. For the other inclusion recall that V¢ is spanned by
Y -eigenvectors e, for m < —2N with pairwise different weights —my. Since
k & %Z none of the e, lies in the radical by the evaluation formula from
Lemma 4.21. But if Rad € (¢?N* +¢2¥% 4+ C) the non-trivial image of Rad
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in V¢ would contain one Y-eigenvector and hence the image of one of the
e-polynomials e,,, which is not possible. This shows the other inclusion. [J

’Il‘helfollowing corollary lists all remaining irreducible finite-dimensional
H(gz,tz)-modules for k ¢ %Z, which are not described in the Propositions
4.32, 4.33 and 4.35.

Corollary 4.40. Let k ¢ 1Z. Let V€ = P | (¢*N* + ¢ + O) for
C #2 and Vo = P/ (¢ 4+ ¢~ N*) denote the irreducible quotients of P for
H(q2,t2). Also, let Vay = P/(q* + ¢~ N*) and VE/(¢*N* + ¢~2V* 4 C)
denote the irreducible quotients for H(qi,t_%). Then up to isomorphism

-

=

the finite-dimensional irreducible H(q%,ti)—modules with (regular) weight A
such that k € £2\ + Z are

Von = %' Vo, “Von = Vi,

- _ 163
vezayC Wl wyY for C#£2. (165)

Proof. By Proposition 4.37 and Proposition 4.39 any finite-dimensional ir-
reducible H(qi,t%)—module with Y-weight A such that k& € +2\ + Z is
isomorphic to Vay, VC for C' # 2 or a twist of these modules by Gy or a
twist of Vay, V¢ for C # 2 by « or Gyt- By comparing the X-action we
only have to check whether Vo is isomorphic to ¢ Van, “Van or Vo and
whether V¢ is isomorphic to V¢, V¢ or VY. We apply the universal
property of P from Corollary 4.7. As the X-module structures coincide the
respective isomorphism exists if and ?nly if the modules in question have a
Y- and T-eigenvector of eigenvalue t2. By Proposition 4.39 we know that
Von is spanned by the images of the e-polynomials e, for 1 — N <m < N
with Y-eigenvalues ¢~ = t‘sgn(m)%q%, while V¢ is spanned by the e-
polynomials e, for 1 —2N < m < 2N also with Y-eigenvalues ¢~"4. There-
fore <vVon is spanned by the Y-eigenvectors Cy(em) for 1 = N < m < 2N
and VY is spanned by (y(en) for 1 — 2N < m < 2N with Y({y(en)) =
—t~ Sg“(m)%q_%cy(em). Analogously “Vay and <*V,y are spanned by the im-
ages of the e-polynomials &,, € P for 1—N < m < N and ‘V and %*VC are
spanned by the images of the e-polynomials &,, for 1 — 2N < m < 2N with
Y (u(Em)) = £80 207 1(e) and Y (Gye(Em)) = —202g7E (u(Em). As
k & %Z the correct Y-eigenvalue t5 is only obtained for positive exponent
of t. We can deduce that only (,(e—n) for ¢y, t(éan) for ¢ and (yi(en) for
¢yt have the correct eigenvalue 3. We only have to check whether these

elements have T-eigenvalue t2 in the respective quotient. For Von only the
case of (y¢ is possible, since the other elements are 0 in the quotient. Using
By(en) = f%(T + t%)(éN) = é_py we see that the image of ey in “'Von
is indeed a T-eigenvector of eigenvalue t2. For VC we see that the image
of éy is not a T-eigenvector, hence V¢ 2¢ %V, Since by Proposition 4.39
we have Byn(€an) = €_on = ¢*V* 4+ ¢72V* 42 and since this is a non-zero
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multiple of 1 in V¢ for C' # 2 the t-case is not possiPle. Finally, we have
that e_y = By(en) is a T-eigenvector of eigenvalue ¢2 in V¢, The claim
now follows.

O]

This finishes the discussion for k ¢ %Z. We will now describe the ir-
reducible quotients of P for k € %Z. To simplify the discussion observe

that X - X, Y =Y, T — —-T, t3 > —t7 defines an isomorphism from
H (q%,t%) to H (q%, —t%). This isomorphism leaves the intertwining oper-
ators Ai_,, and B,, for all m > 0 invariant and hence sends e,, to e,
for all m € Z. Therefore we can restrict our considerations to the case
—%Sk<%fork€%2amdt%:q§ .

The following lemma together with Lemma 4.38 show that we can reduce
to classifying all quotients of P/(¢?N® + ¢~ 2N* + C) for C € {£2}.

Lemma 4.41. The H(q%,t%)—module VO =P/ (¢*N* 4 q72NT + C) s irre-
ducible for C' # £2.

Proof. Recall that the intertwining operators A,, and By, from Definition 4.10
have the following form when restricted to Y-eigenvalues: we have A,, =

m 1 1
q 2 Xwform <0and By, = t2 (T + ;22;’1:1—21) for A € Cand Ay, = —A—5

for m > 0. In this form A,, and B,, are ¢-invariant, where ¢ is the
anti-automorphism from Equation (128). Therefore we can deduce that
the intertwining operators behave with respect to X-eigenvectors just as in
Lemma 4.9 described with respect to Y-eigenvectors.

Let C # +2 and choose ¢ € C\ {0} such that —C = é+ 1. From C # +2
we obtain 1 # & Fix a 2N-th root ¢* of é&. We deduce by comparing the

C
roots and the top coefficients that

2N-1 ) ‘
XN XN 4 0= M [T (X =My xt=gM2). (164)
7=0

We have A ¢ 17, since ¢ # +1. Hence the X-spectrum of P/(g*N®+¢ V7 +
('), which consists of the roots appearing above, is simple and all appearing
intertwining operators exist and are invertible. Therefore any submodule

must contain all X-eigenvectors and this gives the irreducibility of V¢ for
C # +2. O

Thus we will classify irreducible quotients of V2 now.

Proposition 4.42. Let k € %Z and —% <k< % The following gives
a full list of non-zero irreducible quotients of VC for C € {£2}, where in

the respective cases n > 0 is such that k = —1 —n and m = N — 2k. For

2
integral k we also assume —% < k< % and list the remaining case for
integral k = —% separately.
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Value of k Quotients of V2 dim | Quotients of V2 dim
k=0 Van 2N | P/(@""—q¢ ") | 2N
ket+N P/le_m) 2m V2 4N
ke—L—N|P/lep1tt e ,) | 2n+1 V2 AN
kel+N Van 2N P/(e—m) 2m
ke -1-N Van 2N | P/(en —e—n+ok) | 2N + 4k
k=-4 Van 2N V2 4N

Proof. Let k € %Z with —% <k< g Any non-trivial quotient of V¢ for
C € {£2} can be written as P/(e), where

(A)ie=q"+ .. 4cgor B):e=qH7 4 feg® (165)

for some 2N > 1> 0 and ¢ € C\ {0}. As in the proof of Proposition 4.25
we can assume that e is a Y-eigenvector and hence by Corollary 4.16 e is a
linear combination of e-polynomials. We split e into an even and odd part
by setting e = €¥ + e! where e®(—x) = (—1)%%(x) for a € {0,1}. Note
that in case (B) we have €%, e! # 0. The element Y preserves the odd and
even parts of P by definition of the Y-action and hence e’ and e' are Y-
eigenvectors of the same eigenvalue as e. Since e is even and e! is odd their
top degrees with respect to < form the set

(A): {1} or {—I,£m} for some 0 < m <l with | —m odd,
(B): {I+1,-1}.

For any Y-eigenvector in H (q%,t%) we can read off from the top-degree
j with respect to < by Equation (109), (and its counterpart for negative
exponent) that its Y-eigenvalue is ¢~7¢. Thus, we obtain for the set of
weights of e? and e!

(A): {l—l—k} or {H—k?i(m—i—k)

2 2 2
oy (LA
If the set has two elements, they must coincide modulo N, since the Y-
eigenvalue of € and e! must coincide with the the Y-eigenvalue of e = e%+-e!.
Since 2N > [ > 0 this implies that only the top degrees {—I,m} with m > 0
are possible in (A) if the decomposition is not trivial. In particular, if the
decomposition is not trivial we have k = —”Tm mod N in case (A) and
k=—3—lmod N in case (B).

}forsomeO§m<lwithl—modd,
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We will handle case (B) first. Since —% <k< % and 2N > 1 > 0 we
have three possible cases: k = —% -1l k= —% —Il+Nork= —% —[+2N.
Note that k € %JrZ implies that all e-polynomials exist by Lemma 4.13. We
have that e is a linear combination of e-polynomials of weight % mod N
that have degree smaller than —2 /N with respect to <. Since the coefficient of
q(l+1)x in e is 1 we obtain e = e;41+ce_; for some ¢ € C. From the evaluation
formula in Lemma 4.21 we obtain that em(—g) =0 for all m = N — 2k.
In particular, we see in the cases [ = —% —k+Nand !l = —% —k+2N
that (e) € Rad. We will describe Rad for £ > 0 later in the proof. For
k < 0 we will describe the radical now by looking at the remaining case
[l = —% — k and e = e;1 + ce—;. To match previous conventions we will set

n := [. As in the proof of Proposition 4.26 we see that only ¢ = 173 s
possible and that for these choices e is a T-eigenvector and therefore (e®)
is a submodule by Corollary 4.6. We have that P/(e™) has a basis given
by the images of e,, for m < n + 1. In particular, the dimension is 2n + 1.
These e, have pairwise different Y-eigenvalues ¢~ = ¢~ Sgn(m)%q_% and
they do not evaluate to zero on qu by the evaluation formula from Lemma
4.21. The evaluation formula also shows that (e*) C Rad and the previous
statement about the basis vectors shows that this is an equality. We obtain
the analogous results for (,(e*) = e~ and (,(Rad) = Rad_, where (, is
from Remark 4.23. Both quotients factor through P/(¢N* + ¢~V*) and
therefore also through P/(¢?N* 4+ ¢~2N* 1 2). This follows as ¢V* + ¢ V% is
a Y-eigenvector which evaluates on —% to zero and it is invariant under (.
Hence it lies in both radicals. The irreducibility of the quotient follows from
the the fact that all B,,-intertwining operators in the range 0 < m <n +1
exist and are invertible and since the weights ¢7™ for 0 < m < n + 1 are
pairwise different.

Now for the case (A). Since the top and bottom degree of e are [ respect-
ively —l we have that e is a T-eigenvector. Otherwise we could use a linear
combination of e and T'(e) to show that (e) contains a non-trivial element for
which the difference between top and bottom degree is less than 2[, which
contradicts that the dimension of the quotient is 2. By TY 'T =Y and
the quadratic T-relation we have four possibilities of eigenvalues:

(a): T(e) = tze = Y(e), (b): T(e) = t2e = —Y(e),

1 1 (166)
(c): T(e)=—-t2e=Y(e), (d):T(e)=—-t 2e=-Y(e).

Using the definition of the T-action we see that T'(e) = t3 implies that e

is s-invariant, where s(f)(x) = f(—=z) for f € P. Since the top degree of e

with respect to < is — we obtain that the Y-eigenvalue of e is ¢'. Hence

we have in the cases (a) and (b):

I+k kK

I+k k N
— ¥ mod N, wy%f=f+5mMN. (167)

(@) == =3 2
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This implies { = 0 in (a), since 2N > [ > 0. Hence this case does not yield
to non-trivial quotients. For (b) we have 7(e) = YT 1(e) = —e. Together
with the s-invariance this implies that e = ¢™* + ¢~ V. Since e is a Y and
T-eigenvector Corollary 4.6 shows that (e) is a submodule. We see later that
the quotient Vo := P/(¢V® + ¢~ V%) is irreducible, unless k is half-integral.
For half-integral £ < 0 we have already described a quotient of Von above.
For k integral it is not possible to find quotients of Vo as we see below.
Note that this finishes the discussion for k = —%, since then ¢t = —1 and
cases (c) and (d) become (a) and (b) respectively.

In the cases (c¢) and (d) we can write e as a sum of e-polynomials of
weight N — % respectively —g of degree < —2N. Since the top degree of e
with respect to < is negative at least one e-polynomial e,, with m < 0 must
appear with non-zero coefficient. We obtain

(c): e = e_nak + cen for some c € C, (168)
(d): e=e_onyorp if k>0 o0re=eg if £ <O0. (169)

By Lemma 4.13 part (b) the appearing e-polynomials e_ x4 ok, €_on42r and
eo) exist. The e-polynomial ey does not necessarily exist. First, assume
k = 0 and hence ¢t = 1. We must be in case (c). All e-polynomials exist
for kK = 0 and e, = ¢"* for m € Z. Then T(e) = —t"2e = e implies
that e is s-anti-invariant and hence ¢ = —1 and e = ¢ V* — ¢N*. By
e? = ¢®N* 4 ¢72N* _ 2 we see that P/(e) is a quotient of V=2, Together
with the above discussion of case (b), which lead to e = ¢"* 4+ ¢~ N*, we
have listed all possible non-trivial quotients for £ = 0 and hence we see that
they must be irreducible. As the dimensions are clearly 2/N this finishes the
case k = 0.

Now assume k # 0. The equation T'(e) = —t2e implies e € Rad.

Indeed, e is a Y-eigenvector and therefore we only have to show e(—g) = 0.

For this use (T + t_%)(e) = 0 to calculate

t2 —t 2

T+ h)e)(-5) = (t%s(e) "
= (2 +t—%)e(_g) =0, (170)

which shows the claim, since 34473 # (0 as we can assume t # —1. Thus all
quotients we can obtain from now on are quotients of P/ Rad. Calculating
(®N* 4 ¢ 2NT)(—5) = —2for k € 1 + Z and (¢*® + ¢72V%)(—£) = 2 for
k € Z shows that V2 is irreducible for k € %—i—Z and that V5 is irreducible
and the only non-trivial quotient of V2 for k € Z. This also completes the
discussion for k = —% —N, since then we know Rad = (e,,41 +t*%6_n). Now
we finish case (c¢) and in particular the unfinished case k > 0 and & half-
integral from the discussion of (B) will be dealt with. First assume k > 0.
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Then the evaluation formula from Lemma 4.21 shows e_ N+2k(—§) =0 and
hence e_n49r € Rad. Lemma 4.13 shows that e_pnyor has T-eigenvalue
—t_%, since £ > 0 and all V,, from Lemma 4.13 up to Vn_j are one-
dimensional. Hence (e_nox) is a submodule by Corollary 4.6. Now finally
Lemma 4.13 also shows that all e-polynomials up to e_ y o, exist and we can
use the evaluation formula to see that none of them lies in the radical. Since
they have pairwise different eigenvalues ¢~ this shows Rad C (e_nyor)
and hence we have an equality. The irreducibility of the quotient follows
as none of the quotients we described above can factor through this quo-
tient and the same holds for the quotients described below, since e € Rad
for all upcoming quotients P/(e). The dimension follows since e_p o is a
m-eigenvector and therefore ¢~ V2% and ¢’V ~2* both appear with non-zero
coefficient in e_ .y ok.

By the discussion above we can now assume k < 0 and k € Z, since the
half-integer case is already finished by the description of the radical in case
(B). Recall that we can assume k # —% or equivalently ¢t # —1. Then ey
exists by the chain of intertwining operators from Lemma 4.13. Indeed, ey
lies in the 1-dimensional part of the chain —N —k < ... <N < .. <N — k.
Lemma 4.21 shows that eN(—g) # 0 and e,NHk(—%) # 0. Hence, e is

proportional to ey — €_niok, Where €, := . e(mk). This is indeed a T-
m(=3

eigenvector of eigenvalue 73 , as we show now. Biy the chain of intertwining
operators from Lemma 4.13 we have that (T'+t2)(e_n42x) is proportional
to the unique e-polynomial e, in Vi_g,. By looking at the Y-eigenvalue

we must have e, = e_y = By(en) = (T'+ f%)(eN), since there exists no
other Y-eigenvector of eigenvalue ¢ with top degree < —N + 2k. Hence,
(T + t_%)(eN — €_N42k) is proportional to e_y. The evaluation formula
shows e,N(—g) # 0, but we also obtain by using Equation (170) that (7" +

t_%)(eN—e,NHk)(—%) = 0. Therefore we have (T—I—t_%)(eN—e,NHk) = 0.
Let us show that (ex —€e_ny2r) = Rad. The inclusion (exy —e_n19r) € Rad
is obvious. For the other inclusion note that P/(ex — e_n2r) is spanned
by the images of the spaces V,,, for m < —N + 2k from Lemma 4.13. They
correspond to the Y-weights —my. Assume Rad € (ey — e_nyor). Then
we can find a Y-eigenvector v € V N Rad, where V' := @, _niokVin C P.
Note this is possible, since V' is Y-stable. But we only have one unique
Y-eigenvector in V for each eigenvalue ¢=™¢ for m € Z. Indeed, Lemma
4.13 shows that the e, for m < —N + 2k only exist for 0 < m <X —k
and 2k < m X N — k. For the remaining m with ¥ < m <X —2k and
—N +k <m = N — 2k the space V,, is two-dimensional and e,, does not
exist. We see that the existing e,, have 2V pairwise different Y -eigenvalues
q~ ™. Therefore v is proportional to some e,,, but the evaluation formula
from Lemma 4.21 shows that none of these e, lie in the radical and hence
V N Rad = 0. Therefore (e — e_ny2r) = Rad. The irreducibility follows,
since none of the quotients above factors through P/(exy — €_niox) and
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below we only consider e in the radical. The dimension follows as before,
since e is a m-eigenvector.

Case (d) can not lead to new quotients since we have already seen that
e € Rad and above we described Rad in all cases.

O]

Lastly, we have to classify the isomorphism classes of the quotients of P
and their twists by ¢y, ¢ and (y¢. For this denote by P the polynomial repres-

entation for H (q%,t%) with t = ¢* and P the polynomial representation of
H(q%,t%), where 2 = t~2 and k = —k. We denote the m-th e-polynomial
in P by é,, Futhermore, C' € C\ {£2}.

Corollary 4.43.

The following gives a full list of isomorphism classes of

non-exceptional finite-dimensional irreducible H(q2,t2)-modules for the re-

spective k € %Z. Here we list again k = —% for integral k separately.
Value of k Irreducible modules dim
k=0 P/(gN" +qNT) =@ (P/(qVT +q7NT)), 2N
“(P/(aVF +q V7)) =P/ @V + ¢ N)), 2N
P/(a" — ) =P/l — V), | 2N
(P/(gY" = q V) =9 (P/(qNT — ¢ N)), 2N
VO =GV =y (yY) = ay(V0). 4N
kE%—I—N /(e m) =9 (P/(e_m)), 1 2m
YP)(Enpr £ 26_p)) = P/ (Epir £1726_0)), | 2n+1
VROV =iV ) = e (V) AN
Ve =W =V = e ve). AN
ke—3-N “(P/(e-m)) = “(P/(e-m)), 2m
P/len+1 £t Te_ n) 29 (P/(ens1 £ 2e_y)), 2n + 1
V22 (V2) 2y (V2) =2 W (V2) AN
VO =G (VO =2 (V) = w(VE) 4N
kel+N P/(e—m) =% (P/(e—m)), 2m
VeV =y (V) = a1V, AN
Von = 94 (Van), @ (Von) 2 4(Van), 2N
L75/(6N—6_N+2]€)%CL( _/(gN—E_N+2]€)). 2N + 4k
ke -1-N YP/(E—m)) =9 (P/(e—m)) 2m
VO =V = (VY) =2 ay(V0), 4N
Vaon =2 4 (Van), (Van) = “(Van), 2N
P/(en — e-nak) = @ (P/(en — e~ n21)); 2N + 4k
k=-4 VO GV 2y (V) 2 w(VO) 4N
Von = @t (Von), v (Van) = (Vo) 2N
VR (V) (Vo) = GV ) AN

Proof. By Proposition 4.37 we only have to classify the modules from Pro-
position 4.42 and their twists up to isomorphism. The proof idea is similar
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to the proof of Corollary 4.40: we apply the universal property of P from
Corollary 4.17 and decide whether there exists a T- and Y-eigenvector of
eigenvalue t2 in the modules. By comparing the X-module structure we
see that any quotient can only be isomorphic to its twisted counterpart and
not to any other (twisted) quotients. Let V' be a non-trivial quotient of P
and V the corresponding non-trivial quotient of P, if it exists. To find an
isomorphism from V to <V, ‘V or <V we need to find to find a Y- and
T-eigenvector v € V respectively © € V of the following eigenvalues:

¢y Tlv) = taw, Y (v) = —t2v, (171)
Lo T(0) = —t20 = —1 2, Y(0) =t2o =12, (172)
Cpr: T(D) = —t20 = —F 2, Y(0) = —t20 = — 2. (173)

Recall that Y preserves < on P and therefore any Y -eigenvector v respect-
ively ¥ in a quotient can be lifted to a Y-eigenvector v’ respectively o’ in
P respectively P. The lift must be a sum of e-polynomials by Corollary
4.16. We only need to consider e-polynomials of degree < —2N, since we
look at quotients of P/(¢*N* + ¢=2N* 4 ) for some C € C. We inspect the
Y -eigenvalues ¢—™ of e, respectively the Y-eigenvalues ¢~™ of €,,, where

my = %W. This leads to

Gy V' = cre_n + caen_ak, (174)
L0 = 185, + coan if k<0or (175)

v = c18_ynof + 282N if k>0, (176)

Gyt 0 = c18_ N of + C2€N, (177)

where ¢1,co € C and k = —k. Note that in all cases the e-polynomial with
negative index exists by Lemma 4.13.

First assume k = 0 and hence P = P. All e-polynomials exist and
we have e, = ¢™ for m € Z. Then ¢"® + ¢ N® is a T-eigenvector of
eigerllvalue t2 = —1, while ¢"* — ¢~V is a T-eigenvector of eigenvalue
—t72 = 1. Hence for C # +2 we obtain V¢ = & (V) = & (V) which
implies V¢ = 4(VY). We also obtain P/(¢V* 4 ¢N®) = @ (P/(¢™® + ¢"®))
and P/(¢V* — ¢N*) = (P /(¢N* — ¢V*)) by using v/ = ¢"V®. The twist ¢ is
not possible in these two1 quotienlts, since 1 = £¢?N? in the modules, which
has T-eigenvalue —1 =t2 # —t~ 2 = 1. Hence, also the twist ¢, respectively
Gyt is not possible.

Assume k # 0. Let us deal with ¢, and hence we consider vectors of
the form cie_n + coen_oi. Observe that ¢V* + ¢~ N® has the correct T
and Y-eigenvalues. Therefore we can replace e_y with ¢™¥* 4+ ¢~ V®, in case
that they are different elements. If ey_of exists then (7" — t%)(eN_gk) =
By_ok(en—2r) = e_Na1ok. By the chain of intertwining operators en_ok
exists if and only if &k is a half-integer or £ > 0. Look at ¢y =1 and ¢ =0
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and hence at the element v' = ¢V + ¢~ V. We obtain V¢ = & (V) for
all appearing C' and V = % (V) for all quotients V of V=2, This also shows
that Van 2% < (Vay), since ¢V® 4+ ¢~V% = 0 in Vo and en_op either does
not exist or is not a T-eigenvector in Von. Using v/ = e, = en_ar as a
target vector we can deduce P/(e_p) = % (P/(e_p)). Only the case P/
(ent1 £ f%e,n) remains. We have ey_or ¢ Rad and e_ni9r € Rad by
the evaluation formula and since (e,41 + t_%e,n) = Rad we obtain the
isomorphism P/(ep+1 + t_%e,n) =~ W (P/(epr1 + t—%e,n)). We also obtain
the isomorphism for Rad_ = (ep41 — t_%e,n) by applying (., which sends
Rad to Rad_ and {en_ok,e_n1ok} to £{en_ok,e_nNiok}

For ¢ and (¢ we can immediately exclude all cases except V¢ for C 2
and Vaon by dimension reasons, since all other modules do not have a P
counterpart. In the half-integer case we only have to look at V¢ for C # 2.
All e-polynomials exist and &, for k < 0 respectively €_,y_op for k > 0
has the correct T—eigegvalue f({r t, since they lie in the image of the B-
intertwining operator 2 (T — £2). From this V¢ = ¢(V?) and hence also
V2= w(VY) for all C # 2 follows. Now we treat the integer-case. Assume
first that & < 0 and k =+ —%. We can use €y — €_n4or € P as a target
vector. Indeed, we have already seen in the proof of Proposition 4.42 that
this is a T-eigenvector with eigenvalue —¢~2. Furthermore, it has non-trivial
image in V¢ and Von. For VC this is obvious and if it had zero image in
Van, then P/(éy — €_n2k) would not be irreducible. Therefore we obtain
VO ~ C?JL(VC) and Van = < (Vay) for integral k < 0 and k # % The
case k > 0 follows as well, since (,¢ is idempotent. Now we only have to
look at ¢yt for k = —% integral. But then —#3 = #3 and we can simply
use 1 as our target vector, hence V¢ = CyL(VC) and Vo = St (Vay). We
can conclude the discussion, since the remaining cases follow by a ‘two out

of three’ argument involving (y, ¢ and (ye.
O]
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5 Spherical DAHA

We will now look again at the double affine Hecke algebra Hn(q% , t%) associ-
ated to GL,, for n > 2, which is described in Definition 3.1. More precisely,
we will consider a certain idempotent truncation eHn(q% , t%)e in Hn(q% , t%),
the so-called spherical double affine Hecke algebra from Definition 5.13. We
will construct a particular module M of eHn(q%,t%)e and identify M with
the quantum cohomology ring C ®z ¢H®(Gry n)q=1 of the Grassmannian
Gr,, n of n-dimensional subspaces inside CN. Later on we will assume that
g = t is a primitive N-th root of unity for N > n, which is how the para-
meter N of the Grassmannian will connect to the parameters of Hn(q%, t%)
We emphasize that the parameter ¢ from the quantum cohomology is spe-
cialized to ¢ = 1 and in particular it does not match the parameter ¢ from
the DAHA.

We will not give an in-depth discussion of the quantum cohomology of
the Grassmannian. Instead, we will only use the following two facts, which
can be found in [KS10]. See also [ST97] for a detailed study of the quantum
cohomology ring from an algebro-geometric point of view.

(1) The quantum cohomology ring of the Grassmannian can be explicitly
described as a quotient of the ring of symmetric polynomials:

C ®7z qH'(GrmN)q:l = C[el, . en]/(hn+1, o hy + (—1)”), (178)

where e; for 1 < ¢ < n is the i-th elementary symmetric polynomial in n

variables and h; for j € Z~¢ is the j-th complete symmetric polynomial.
(2) Via the identification from (1) the C-algebra C ®z ¢H®*(Gry,N)g=1

obtains a C-basis given by the Schur polynomials sy for A € ,, y_,,, where

Bon-n={A=A1,.., ) | 0< N < N—nforl<i<n}CP". (179)

We will assume that the reader has some familiarity with the represent-
ation theory of GL,, and the theory of symmetric functions, see for example
[Ful97] as a reference.

5.1 Polynomial representation for Hn(q%,t%)

We set again K := (C(q%,t%) and fix n > 2. In this section we want to
transport some results from Sections 4.1 and 4.2 for the one-dimensional
DAHA to the DAHA of GL,,. In particular, we will give the definition of the
polynomial representation of Hn(q% , t%) on P := K[Xlﬂ, wry X:F1] and use it
to obtain a PBW-type basis for Hn(q%, t%) as described in Corollary 4.5 for
the one-dimensional DAHA.

As in Remark 3.2 we define for v = )" | vie; +v40 € h* with v;, vy € Z
the element XV := X}*.. X "¢"4. Letting v range over the weight lattice P =
>, Ze; we obtain the K-basis {XV | v € P} of the K-algebra of Laurent
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polynomials in n variables P := K[_Xlﬂ, ..., XF11. The group algebra K[W]
of the extended affine Weyl group W from Definition 2.7 acts via K-algebra
automorphisms on P by setting for w € W and for v € P:

w: P—P,

XV — X, (180)
When restricted to the finite Weyl group W C W this action is nothing but
the intuitive action of W = S,, on P = K[X:t ..., X;F1], where w € W sends
XijEl to le(li). Via this action we define P C P to be the K-subalgebra
of symmetric Laurent polynomials. Furthermore, the action of W on P will
be used in the following construction of the polynomial representation of

Hn(q%,t%) on P.

Proposition 5.1. The following assignment defines an Hn(q%,t%)—module
structure on P = K[XT', ..., X;F1]. Here X;- denotes the (left-)multiplication
by X; for1 <i<n.

T— T,

X, — X;- for1<i<mn, (181)

Tl-n—>t%5i+ (si—1) for0<i<n-—1.

Proof. We will only give a reference to the proof in [Che95, Theorem 2.3].
Note that the author uses the double affine Hecke algebra for SL,, while
we are working with the double affine Hecke algebra for GL,. The first is
a subquotient of the latter, where one has to replace the generators X; for
1 <i<nwith X% for 1 < i < n—1 and add the relation 7" = 1 as
described in [Che05, Chapter 3.7]. The proof for SL, in [Che95, Theorem
2.3] works analogously for GL,,. O

As in the one-dimensional case this representation is faithful for ¢ not
a root of unity, which is also proven in [Che95, Theorem 2.3]. The faith-
fulness will be used implicitly in the proof of the PBW-basis theorem in
Theorem 5.4, similar to the proof of Corollary 4.5. The operators by which
T; acts are called Demazure-Lusztig operators in [Che05, Chapter 3.2.3],
since they generalize the Demazure operators from [Dem?73].

In a similar way as for the one-dimensional DAHA in Corollary 4.5 the
polynomial representation gives rise to a PBW-type basis of Hn(q%,t%) for
n > 2. We will need certain elements Y; € Hn(q%,t%) for 1 <i < n.
To define them set w; := e; + ... +e¢; € P for 1 < i < n and recall that
by Definition 2.7 we have an embedding of the weight lattice P into the
extended affine Weyl group W via 7 from Theorem 2.4. Identifying 7(w;)
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with w; and using the definition of T, for w € W from Remark 3.2 we define
Y; following [Che05, Chapter 3.2.1]:

Y, =1, for 1 <i<n. (182)
These elements pairwise commute, as we show now.
Lemma 5.2. We have Y;Y; = Ty, +0; = Y;Y; for 1 <i,5 <n.

Proof. Choose 1 < 4,5 < n. By definition of the elements T;, we have for
w,w' € W with [(ww') = l(w) 4 I(w') that Ty = TTy. Therefore we
only have to show I(w; + wj) = l(w;) + l(w;). Let oy, 4, +md € R~ with
1 <41 #i9 < n be a negative root. By definition this means either i; > is
and m < 0 or i1 < 49 and m < 0. Using the definition of the action of 7,
for —v € P from Theorem 2.4 we calculate:

Too(Qiy iy +M0) = 0y ip + (M + (V| @i4y4,)) 0. (183)
This provides a description of R(7,):
R(m,) = R" N71_,(R7)

={aj i, +mé| (v| i) >m>0,i <ig, or (184)
('U ‘ ail,ig) >m > 0,41 > ig}.

For v € {wj,wj,w; + w;} only the first case with i; < iz can appear. We
obtain I(7(w;)) = i(n—1i), l(Tw;) = j(n—j) and [(7w, +w;) = i(n—i)+j(n—j),
which shows the claim. O

Remark 5.3. The lemma shows that for an arbitrary v = Y ;" | vjw; € P

the element YV := [[I, V" € Hn(q% , t%) is well-defined. Note that contrary
to the X-case, where X; = X¢, we have here Y; =Y for 1 <1i < n.

We can state the PBW-type basis theorem for Hn(q%,t%) now. In the
theorem the (finite) Iwahori-Hecke algebra #H,, of W = S, will appear. It is
for example defined in [Mat99], although the author uses a slightly different
version of the quadratic T-relations than we nleed. This can be taken care
of by a normalization of the T; by the factor ¢2.

Theorem 5.4. The set
{(Y'XVT, | v,0' € Pwe W} (185)
1s a K-basis of Hn(q%,t%). In other words, the K-linear multiplication map
m KYE, LY ox KIXE, . XE @k Ho — Ha(q2,t2)  (186)

is an isomorphism of K-vector spaces.
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Proof. The fact that {X"Y"V'T,, | v,v' € P,w € W} forms a K-basis is shown
in [Che95, Theorem 2.3] for generic ¢ and is extended to the case that ¢ is a
root of unity in [Che05, Theorem 3.2.1 (ii)]. Again this is done for SL,,, but
the proofs also work for GL,. The second statement follows immediately
from the first one, since H,, has a K-basis given by T,, for w € W as proven

in [Mat99, Theorem 1.13]. O

Remark 5.5. In fact similarly one could refine Proposition 3.3 to show that
{T,X" | we W,v e P}is a K-basis of Hy(q2,¢2). In [Kir97, Theorem 5.7]
it is shown that the elements in the set {X*T,, | w € W,v € P} are linearly
independent. The author shows this for the DAHA of SL,,, but the result
also holds for GL,,. Let w € W and v € P. By relations (XT1) and (XT?2)
from Definition 3.1 we have

T,X"=X"UT,+ Y FT,

wEW u<w’

(187)

where F, € K[XF!, ..., X*'] and the sum ranges over all reduced sub-words
of w. Using the result from [Kir97, Theorem 5.7] mentioned above this shows
that the elements in {7, X" | w € W,,v € P} are K-linearly independent

and hence they form a basis of Hn(q%,t%) by Proposition 3.3.

5.2 The bilinear form (, ) and its radical

Let us give the analogue of the bilinear-form ( , ) on P and its radical Rad
from Definition 4.17 for the DAHA for GL,, for n > 2. This bilinear form
is also considered in [Che05, Chapter 3.10.2], on which parts of this section
are based. For the definition we need the following well-known element in
h*, which also appears in the representation theory of GL,,.

Definition 5.6. We set

1 n—1 n—3 -n+1
p = 5 Z a= 5 el—l— 5 62+...+ 2 €n, (188)
a€Rt

where R™ is the set of finite positive roots from Definition 2.1. Furthermore,
for k € C we set p; := k- p.

Definition 5.7. For v, € P and k € C such that ¢* =t we set
(X7, X0 1= (Y™ (XM) (). (189)

In other words we apply Y ™" to X* via the action defined in Proposition 5.1
and evaluate the resulting Laurent polynomial on ¢~ ”*. Using that X" for
v € P form a basis of P we extend this definition K-bilinearly to arbitrary
elements in P in order to obtain a bilinear form ( , ) on P. We denote the
radical of (, ) by Rad. In formulas:

Rad:={feP|(f,g9) = (g, f) =0forall g € P}. (190)
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To study the bilinear form ( , ) we need some basic facts about the
elements Y for v € P from Remark 5.3.

Lemma 5.8. (a) Forv € PT an integral dominant weight we have YV = T,.
(b) Forv e P and1 <i<n wehave T, 'Y'T; 1 =YY~ if (v,0q) = 1
and T;Y" =Y T; if (v,a;) =0
(¢) We have Y¢ = Ti__ll...Tl_lﬂTn_l...ﬂ for 1 < i < n. Note that
Ti—1 # Ty for i =1, but in this case the product to the left of m is empty.
(d) For v € P we have YV(1) = ¢*IV) .1 for 1 € P, where k € C is such
that ¢* = t.

Proof. The computation from the proof of Lemma 5.2 can easily be extended
to obtain (a).

We will not prove statement (b) and only give a reference to [Che95,
Proposition 2.2], where Cherednik denotes our w; by b;.

Statement (c) for ¢ = 1 follows, since I(7¢,) = n — 1 by the calculation in
Lemma 5.2 and since 7, = ms,—1...51 by definition of 7 in Proposition 2.9,
which must therefore be a reduced expression. For 1 < i < n — 1 we can
apply induction and statement (b) to obtain

v = 7olyer = 1N T T T )T

1 e (191)
=T, T Ty T,

which shows (c).

For statement (d) we can clearly reduce to v = w;. Note that 7} for
0 < j < n acts by multiplication with t2onle P and m(l) = 1. By
writing Y¥i =Y; = 7Tsz-1...Til for a reduced expression 7(w;) = 7Fs;,...5;,
we only have to show I(7,,) = (2p,w;) for 1 < i < n. We calculate (2p,w;) =
m—1)+n—=3)+..+(n—2i)=n-i—1i>=(n—1i)i. As we have seen in
the proof of Lemma 5.2 we have [(7,,) = (n —4)i and (d) follows. O

We will see now that (, ) is symmetric and that Rad is an Hn(q%,t%)—
subm?dulle of P. For this we will need a K-linear anti-isomorphism of
H,(q2,t2), which is defined for v € P and 1 <1i < n by

(X") =Y, ¢(Y") = X" and ¢(T) = T:. (192)

In particular, ¢(X;) =Y ¢ for 1 <1i < n. We will not give the proof that
this actually defines an anti-automorphism of Hn(q%,t%) and only refer to
[Sim17, Lemma 2.4.9]. Note that the proof there can not directly be applied
to our setting, since the Y; the author uses do not correspond to our Y*.
But we can still make this proof applicable, by following [Sim17, Remark
2.4.7 and Theorem 2.4.8] with our definition of Y“ replacing the Y; from the
reference. In this way we obtain a presentation of Hn(qé,t%) involving the
Y< for 1 < i < n and one can verify that ¢ defines an anti-automorphism via
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explicit calculation. The following proposition can also be found in [Che05,
Lemma 3.10.3].

Proposition 5.9. (a) The bilinear form ( , ) on P is symmetric.
(b) For H € Hy(q2,t2) and f.g € P we have (H(f).g) = (f,6(H)(9)).
(¢) The radical Rad C P is an Hn(q%,t%)—submodule.

Proof. The proof is analogous to the proof of Proposition 4.18 after one
has deduced ¢(H)(1)(g~"*) = H(1)(g~?*) for H € H,(q?,t2). For this
we need a different version of the PBW-basis of Hn(q%,t%). In [Che05,
Theorem 3.2.1] it is stated that {XVT,,Y" | v,o’ € P,w € W} is a basis
of the DAHA of SL,,, which also holds for GL,,. Look at a fixed XVT,,Y"'.
By Lemma 5.8 (d) we have X'T, YV (1)(qg~"*) = q(”|_pk)t@q(”/‘pk) and

w1
DX Ty Yy )(1) (g™ Pr) = q(_”/‘_pk)tl( 2 )q(_”‘pk), which are equal. Thus, by

K-linearity we obtain ¢(H)(1)(g~**) = H(1)(g**) for all H € H(q2,t2).
0

5.3 Spherical DAHA

Our next goal is to define a certain idempotent e € Hn(q%,t%) and use it to
construct the so-called spherical double affine Hecke algebra (or short spher-
ical DAHA) eHn(q%,t%)e C Hn(q%,t%). We emphasize that the embedding
eHn(q%,t%)e C Hn(q%,t%) is not unital, since the unit of eHn(q%,t%)e is e.
As we will see in Theorem 5.11 and Corollary 5.12, the idempotent e is only
well-defined for cert?inlvalues of the parameters g and ¢ of the double affine
Hecke algebra H,(q2,t2). One possible choice, which we will employ for the
rest of this thesis, is to set

g=1t= e% for a fixed N > n. (193)

We simplify our notation by setting H,, := Hn(q%,t%) and since g € C we
have K = C. We remark that this section is based on [Sim17, Lecture 2,
Chapter 3.3].

As an intermediate step towards the definition of e € H, we need an
auxiliary element

gi= Y 5T, € H,, (194)
weW

where the sum ranges over all elements of the finite Weyl group W = §,, of
type A,_1 and [(w) is the (Coxeter-)length of w € W C W, from Defini-
tion 2.5. The element T}, € H,, for w € W C W is defined in Remark 3.2.

Lemma 5.10. For i € {1,...,n} we have T;é = 126 = eT;, € H,,.
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Proof. Let w € W and ¢ € {1,....,n}. Recall the well-known fact from
the theory of the symmetric group, that I(s;w) < I(w) implies that w has a
reduced expression of the form w = s;s;,...5;, () for some indices i9, ..., (w) €
{1,...,n}. This is just the dual version of the exchange condition from
[Hum90, Chapter 1.7], which one can obtain from the reference by applying
the anti-automorphism of S;, sending s; to s; for 1 < ¢ < n — 1. On the
other hand, if I(s;w) > l(w) and w = s;,...s;,,, is a reduced expression
for w then s;w = 8iSiy - -Siy,y 1S A reduced expression for s;w. Therefore
writing the relation (T) from the definition of H,, in Definition 3.1 as T7? =

(t% - t_%)Ti + 1 gives

Ts, if [(s;w) > l(w),
T,Ty =< """ 11 1 (siw) > {w) (195)
Tow+ (t2 —t72)T, if l(s;w) < l(w).
We obtain using € = >, v t@Tw
(w) (w)
Te= Y Tt > 7 (Tuu+ (12— )T,
weW, l(s;w)>l(w) weW, l(s;w)<l(w)
(196)
To prove the first equality we have to show that the coefficient of T}, on the
l(v)+1

right hand side equals t™ 2 for any v € W. Left-multiplication by s; is
simply transitive on W, hence we see that T, appears two times in the sum
on the right hand side if I(s;v) < l(v) and only one time if [(s;v) > [(v). If
l(s;v) < l(v) we can find a reduced expression v = ;s;,...8;,,, and set v’ =
SiV = Si.-.Siy,,- In the sum over w € W with [(sjw) > l(w) the element T,

appears once as T, with coefficient "2~ and in the sum over w € W with

. . W) 1 1
[(s;w) < l(w) the element T, appears once with coefficient ¢ 2 (té - t_%).
. O B 1) S B | W)+l .
Hence overall the coefficient of T, is t "2~ +t 2 (té -t é) =12 asdesired.

For I(s;v) > l(v) set v" = s;u. We have that T, only appears once on the

right hand side, namely as T,/ in the sum over w € W with [(s;w) < l[(w).
1(v") 1(v)+1

It appears with the appropriate coefficient t7 2= = ¢t~ 2 . The proof of
eT; = t2¢ works analogous and is omitted. O

From Lemma 5.10 we obtain

2= Y T, _( 3 tl(w)>é, (197)
weWw weW
since we have Ty, = T;,...T;,. | for w = Sig - eSiy(y) B reduced word. Therefore
—1

to construct an idempotent e € H,, we want to set e :z(ZweW ¢h(w) €,

l(w)

but this element is a priori not well-defined, since »  y- 1) might be zero.
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Recall that we set t = g to be an N-th primitive root of unity with N > n.
We define P(x) := > e 2!(®) In fact, this polynomial is well known in
the literature as the Poincaré polynomial of W, see [Sol66]. It admits a
factorization, which will let us deduce P(q) # 0 and hence that e € H, is
well-defined.

Theorem 5.11. With P(z) =3, o #'®) we have

n n

P)=]Ja+z+..+27)=]]

i=1 i=1

1— 2t

1—2a

(198)

Proof. The first equality follows from [Sol66, Corollary 2.3] if one knows
that for the exponents myq, ..., m, of W appearing in the reference we have
m; = ¢ — 1. But this holds, since m; = d; — 1 = i — 1, where d; is the
degree of the i-th elementary symmetric polynomial e;. See also [Sol66]
for the definition of the exponents of W. The second equality follows by
multiplying with (1 — x)™. O

Corollary 5.12. Setting

1 1 L(w)
e:=P(g) le= - Y gz Ty (199)

gives a well-defined idempotent element in H, called the symmetrizer or
symmetrizing element.

Proof. The well-definedness of e € H,, follows, since by Theorem 5.11 and
by the choice of ¢ = t as a N-th primitive root of unity with N > n we have
P(q) # 0. To show that e is idempotent we calculate using (197)

1 1

2
2 ~2 ~
e === e = —/— € =¢€. (200)
<Zw€W ql(w) ) Z’wGW ql(w)

O]

Any idempotent element ey € A, where A is any unital C-algebra, gives
rise to a unital algebra eqAe4 with unit e4. The C-algebra structure on
eaAey is induced from the C-algebra structure on A via the non-unital
inclusion e4 ey — A.

Definition 5.13. We call the C-algebra eH,e for e € H, the symmetrizin
element the spherical double affine Hecke algebra, short spherical DAHA.

It is known that an idempotent eq4 € A defines an exact functor from
the category of A-modules to the category of e Aes-modules. Indeed, Aey
is a submodule of the free A-module A and therefore projective. Hence, the
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functor Homy(Aey, ) : Modc A — ModcegAey is exact. For M an A-
module we can identify Hom 4 (Aea, M) = es M by f — f(ea) =eaf(ea) to
construct the desired functor. In our setting we obtain the following exact
functor:

®, : Modc H,, — Modc eH e,

(201)
M — eM.

Definition 5.14. Using the polynomial representation P of H,, from Pro-
position 5.1 and its radical Rad from Definition 5.7 we define

M := ®,(P/ Rad). (202)

Recall that Rad C P is an H,-submodule by Proposition 5.9. From
the exactness of ®. we obtain M = eP/eRad. Our goal for the rest of
this chapter is to identify M with the quantum cohomology ring of the
Grassmannian Gr, n of n-planes in CN specialized at ¢ = 1 denoted by
C®zqH*(Gryp N)q=1. Because the parameter ¢ in the quantum cohomology
is specialized to ¢ = 1 it does not match the parameter ¢ from the DAHA.
To achieve our goal we will use the description of the quantum cohomology
via symmetric polynomials, given in the beginning of Chapter 5. Our first
result in this direction is to show that eP = P" as C-subalgebras of P,
where the action of W on P is just the standard permutation action as
defined in (180).

Lemma 5.15. Let f € P. Then f € PV if and only if T;f = t%f for all
ie{l,..,n}.

Proof. Let i € {1,...,n} and f € P. By definition of the action of 7; on P
in Proposition 5.1 we have

1 1
t2 —t 2

ﬂf:t%si(f)—i—ﬁ(si(f)—f). (203)

Clearly, if s;(f) = f we have T;f = t%f. On the other hand if T} f = t%f we
obtain
1 1
1 t2 —17 2

0= (“ + Xa—1> (si(f) = f)- (204)

Since P has no zero-divisors, we can look at the last equation as an equation

SR
inside the fraction field C(XT!, ..., XF') of P. Since t3 + sl # 0, we
obtain s;(f) = f. The claim follows, since f € PV if and only if s;(f) = f

for all i € {1,...,n}. O

Proposition 5.16. Let e € H,, be the symmetrizing element.
(a) We have eP = P" and eRad = Rad" as C-subalgebras of P.
(b) For g € PV we have g € eRad if and only (¢, g) = 0 for all g € PV
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Plroof. By Lemma 5.15 we have to show that f € eP is equivalent to T; f =
t2f for all i € {1,...,n}. If f € eP write f = ef’ for some f’ € P. Then by
Lemma 5.10 and since e = P(q)~'é we have

Tif = (Tie)f' = tsef =t:f. (205)
On the other hand if T; f = t%f for all i € {1,...,n} then we have
ef =P S T =Pt Y A f = . (206)

weW weW

Therefore, f = ef € eP. This shows eP = PV and e Rad = Rad" follows,
since Rad C P is an Hy-submodule. In all cases, the C-algebra structure
is defined by restricting the C-algebra structure of P, hence the equalities
really hold as C-subalgebras. For the last claim we have to show that for
g € PV we have that (¢’,g) = 0 for all ¢’ € PV already implies (f’,g) = 0
for all f/ € P. Note that ¢(e) = e, since ¢(T;) = T; for 1 < i < n and hence
¢ permutes the elements Ty, for w € W. Here ¢ is the anti-automorphism
of H, from (192). Therefore by Proposition 5.9 (b) we have

(f'.9) = (f',eq) = (d(e)f,9) = (ef'.9) =0, (207)
where the last equality follows by the assumption on g and since ef’ € eP =

PW. O

We will now see that C[XT!, ..., X" and C[Y{, ..., V;F]" embed
into the spherical DAHA, which will later on be important as we will discuss
weight-space decompositions with respect to these subalgebras. Note that W
does not act on C[Y{*!, ..., V;!] via permutation of the Y;, but by w(Y?) =
Y*®) for w € W and v € P, where Y is defined as in Remark 5.3.

Proposition 5.17. The C-linear map € : H, — eH,e sending h to ehe for
h € H, induces the following isomorphisms of C-algebras:

CIXTEL, .., XYW = eC[x T, ..., X We,
ClYE, .., VEYW = eyt .., v, Ve,
Proof. The second isomorphism follows from the first one by applying the
anti-automorphism ¢ from (192) to both sides, using that ¢(e) = e and that
for w € W and v € P we have
Pw(X") = (X)) =Y ) = w(Y ") = w($(X")). (209)

To obtain the first isomorphism we note that from relation (XT1) and (XT2)
in Definition 3.1 one can deduce for 1 <i <n and v = viey + ...vpe, € P

(208)

s:(v) _ yw
T.X° = X50T, 4+ (t% _ t_%)% (210)
by induction on |v| := |vi| + ... + |vy|. Using this we can calculate that
epe = pe for any p € (C[Xf[l, oy XYW C H,, from which the proposition
follows. O
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5.4 Rational Schur polynomials

Motivated by the previous section we want to study the C-algebra of sym-
metric Laurent polynomials C[Xlil, e XHW = PW . This will be done
using the so-called (rational) Schur polynomials sy for A € PT a dominant
integral weight. These polynomials are well-known from the representation
theory of GL,,, where they appear as the characters of the irreducible ra-
tional finite-dimensional GL,-modules, see for example [Ful97, Chapter 8].
The Schur polynomials also appear naturally in the theory of the double
affine Hecke algebra: for the parameters ¢ = ¢, which holds by our assump-
tions in (193), the famous (symmetric) Macdonald polynomials Py € P for
A € PT specialize to the rational Schur polynomials sy, as we will see in
Remark 5.24. Furthermore, the rational Schur polynomials form a basis of
the C-algebra of symmetric Laurent polynomials and have some other nice
properties, such as an explicit evaluation formula for s)(¢=*). We will as-
sume some knowledge about symmetric polynomials and the representation
theory of GL,, and refer to [Ful97] as a general reference.

To define the rational Schur polynomials we need some preliminary defin-
itions and need to fix some notation. As before we set P := )" | Ze; to be
the weight lattice, Q) := Z?:_ll Zay; to be the root lattice and

n n
Pt ;:{ Zviwi ’ V; € Z>0} :{ Zviei | V1 2 .o 2 Up,U; € Z}’

=1 =1
n—1

Q+ ::{ Zviai ‘ Vi € Zzo}.
=1

We will from now on also use a shorthand notation by writing A\ = Aje; +
it Anen € Pas A= (A1, ..., An).

Definition 5.18. Define a partial order on P by setting A > pif \—u € Q.
We transport this order to the basis of C[X{™, ..., X;}1] = P consisting of
the monomials X* for A\ € P by setting X* > X# if A > p. The C-algebra of
symmetric Laurent polynomials C[X:, ..., XF1W = PW has a basis given
by the monomial symmetric functions

my = Z XH for A € PT. (211)
HEW(N)

This follows, since any orbit W (u) for p € P contains a unique element
pt+ € Pt. We also transport the order to this basis by setting my > m, if
A > .

Definition 5.19. Let A = (Ay,..,\,) € PT with X, > 0. We define the
Young diagram \ associated to \ as the subset of Z? defined by

Ai={(, L) |i=1,..,n, 1<l <\}. (212)
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A (semistandard) Young tableau on X is a function T : A — {1,...,n} such
that T is strictly column-increasing and weakly row-increasing, in formulas:
T(i,§) > T(i = 1,5) for (i,5), (i = 1,5) € A,

(213)
T(i,j) > T(i,j — 1) for (i,5),(i,j — 1) €

>

We denote the set of all semistandard Young tableaux on A by Tab).

Definition 5.20. Let A = (A1, ..., \,) € P*. We define the (rational) Schur
polynomial sy € C[XT!, ..., X;F'] = P as follows. If A, > 0 we set

syi= )y X{LLXDn (214)
TeTaby

where t; for 1 < ¢ < n is number of times that T takes the value 7. For
A€ Pt with A\, <0 weset X' =X— X, (1,....,1) and define

Sy 1= (Xl Ceet Xn))\"S/\/. (215)

In [Ful97, Chapter 2.2] it is shown that (rational) Schur polynomials are
symmetric functions. In fact we will see now that they form a basis of the C-
algebra of symmetric Laurent polynomials. The coefficients K, appearing
in the following lemma are known as the Kostka numbers, see [Ful97].

Lemma 5.21. For A\ € PT we have sy = m) + > px Koumy, for some
K, € C. Therefore, {sx | X € P*} is a basis of (C[Xf[l, L, XEW =P

Proof. Let A € PT. We can clearly reduce to the case that A, > 0. Assume
the monomials X* and X" both appear in s, with non-zero coefficient.
Since both u and v are constructed using some tableaux on A we have
P14+ pp =vi+...+vy, = A +...+ A, and hence p—v € Q). Furthermore,
by definition of s it is clear that X* is the highest monomial which can
appear in sy and that it appears with coefficient 1 in s). Since we already
know that sy is symmetric this shows the first claim. The second claim
follows, because the my for A € PT form a basis of C[Xlil, LLXHEW O

From the representation theory of GL,, we know that s is the character
of the irreducible highest-weight representation of highest weight A\ € P™T,
see [Ful97, Chapter 8]. This allows us to apply Weyl’s character formula
and obtain

sy=AT1 Y (—1)w) x i), (216)
weWw

where A is the Weyl denominator defined to be

A= J] x2-Xx"%. (217)

acRt
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We will use Weyl’s character formula to calculate the evaluation sy(qg™")
and to prove that the sy are not only a basis of C[X:!, ..., XF!W but
even an orthonormal basis with respect to the bilinear form ( , )o, which
we will define now. For the definition of (, )¢ we need the C-linear map
“CIXTEL L X = CIXGE L XFY defined by X# = X ~# for € P and
we will also need the element A’ := AA € C[X{!, .. X F].

Definition 5.22. We define a C-bilinear form ( , )o on C[X{!, ..., X1] by
setting for f, g € C[XT!, ..., X'

(f.9)0: (fgA')o, (218)

!W\
where ( )o : C[Xi!, ..., XF!] — C is the function that associates to any

Laurent polynomial its constant term. We will also denote the restriction of
(, doto CIXTEY, .., XY by (, Vo.

Proposition 5.23. The elements sy for A\ € PT form an orthonormal basis
of CIXE, ., XEUW with respect to the bilinear form { , )o.

Proof. We have already seen in Lemma 5.21 that the s, form a basis. For
the orthonormality we use Weyl’s character formula from (216) and obtain
for \,u € PT

(82 8u)0 = “;/’ < Z <_1)l(w)Xw(/\+p) i Z (_1)l(w)X—w(u+p)> (219)
0

weW weW

From this we see that (sy,s,)o # 0 implies that there exists w € W such
that w(\ + p) = pu+ p. Since A\, u € PT this already implies A = p, because
for any v = vie1 + ... + vpe, € b with v; € Q there exists a unique element
v in the W-orbit of v such that v' = vie; + ... + v}, e, with v} > v} for i > j.
If A\ = pu we easily calculate (sy, sx)o = 1, which finishes the proof. O

Remark 5.24. The previous proposition together with Lemma 5.21 show
that we could define the Schur polynomials sy for A € Pt equivalently by
the two conditions

(1) sy =my+ Z;K/\ caxumy, for some ¢y, € C,

(2) (s, 8u)0 = Ox, for A\, p € PT.

In [Kir97, Theorem 2.1] two very similar conditions are employed to
uniquely define the so-called Macdonald’s polynomials. In fact, the only
difference if that A" appearing in (, )¢ is replaced by

oo
1— q2'LXa
Il —ax (220)

acR =0
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Specializing to ¢ = t gives back our A’ and hence for ¢ = t the Macdonald’s
polynomials specialize to the Schur polynomials. Note that in the literat-
ure often a slightly different bilinear form is used for the definition of the
Macdonald’s polynomials, but by the discussion in [Kir97, Lecture 6] these
definitions are actually equivalent.

This allows us to use one of the central theorems from the theory of
Macdonald’s polynomials and apply it to the Schur polynomials s). For
this recall the definition the elements YV for v € P from Remark 5.3 and
the definition of the polynomial representation of H,, in Proposition 5.1. As
before we set C[Ylﬂ, ., YW t0 be the C-algebra of W-invariant elements
where w € W acts via Y = Y*O for \ € P. Furthermore, for A € P denote
by A_ the unique element in the W-orbit of A that lies in P~ := —P™.

Theorem 5.25. Let f € C[YE!, ..., Y H YW C H,, and X € P*. Then we
have for sy € P, the Schur polynomial of A,

fon=flg 1) - s (221)

Proof. Here f(qg~*~1") is defined by setting Y*(q~*-1r) = ¢Hl=A~+¢) on
the basis elements Y# of C[Y;!, ..., Y,F!] and C-linear extension. We will
not give a proof and instead only refer to the proof in [Che95, Main Theorem
4.5]. Again, the author does not consider the double affine Hecke algebra
for GL,,, but the proof for GL,, works analogously. O

In particular, any f € C[Ylil, o YEIW preserves PV, which was not
obvious. This theorem and the upcoming evaluation formula for the sy (¢™")
in Proposition 5.29 will be the main tools in the explicit description of e Rad.

Motivated by the previous theorem we define the notion of (symmetric)
Y -weight spaces now. These are nothing but weight spaces for the subal-
gebra eC[Y!, .Y, F|We of eH,e from the second isomorphism in Proposi-
tion 5.17. We also give the analogue definition of X-weight spaces. Observe
the different role of the weight A in the two definitions.

Definition 5.26. Let M be an eH, e-module and let \ € P+.
(1) An element m € M is a Y -weight vector of weight X if we have for
all f € ClYH, ..., v W

efe(m) = f(g*=*) - m. (222)
We define the Y -weight space of weight X to be
MY :={m € M | mis a Y-weight vector of weight \}. (223)

(2) An element m € M is an X -weight vector of weight X if we have for
all g € C[XTY, ..., X F YW

ege(m) = g(¢*~ ") - m. (224)
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We define the X -weight space of weight A to be
M5¥ .= {m & M | m is an X-weight vector of weight A}. (225)

Proposition 5.27. The element sy for A € PT has Y -weight . In partic-
ular, the set {sy | X\ € P} is a basis of the eH,e-module eP consisting of
Y -weight vectors.

Proof. The idempotent e € H, from Corollary 5.12 acts via the identity
on PW. By Theorem 5.25 f € C[Y;!, ..., Y;F'|W preserves PV. Thus we
obtain efe(g) = f(g) for any g € PV = eP. From Theorem 5.25 we obtain
efe(sy) = flg*=FP)sy for A € P* and hence sy is a Y-weight vector of
weight A. In particular by Proposition 5.23 the Schur polynomials form a
basis consisting of Y-weight vectors. O

Remark 5.28. This begs the question, when two Schur polynomials lie in
the same Y-weight space, which we answer now. Since we have sy € (eP)y,
we have to find out when two Y-weight spaces of an eH,e-modules M are
identical. Let V := C™ be a n-dimensional vector space and let W = S, act
on it via permutation of the standard basis vectors. It is well-known that
f(v) = f(v') for all symmetric polynomials f € Sym(V*) if and only if we
have [v] = [v'] in V/S,. Hence, two non-trivial Y-weight spaces M) and
My agree if and only if ¢~*-1° = q_’\lj'p in V/S,,. Since ¢ is a primitive
N-th root of unity, this is equivalent to the existence of pairwise different
1 <j; <nforl<1i<nsuch that

n—142 —n—1+2j;
_)\i+u:_)\/,+u

5 i 5 mod N. (226)

Otherwise we have M) N My = 0. Since sy € (eP)y and sy € (eP)y,
this condition also tells us when two Schur polynomials lie in the same Y-
weightspace of eP.

The following evaluation formula is also considered in [Mac00, Section
12], where also the proof idea is from. We will use it to show when a Y-
weight vector lies in e Rad. Indeed, from Proposition 5.16 (b) we deduce
that a Y-weight vector f € eP lies in e Rad if and only if f(¢7?) = 0.

Proposition 5.29. The following equation holds for any A\ € P*:

sx(qgP) = ¢ H

a€R*

1 — gl

Proof. Let A € P*. We apply Weyl’s character formula to obtain

S (—1) @@l
sx(g™”) = - D) (228)
2

HaeRJrq 2 —dq
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Note that by assumption ¢ is a primitive N-th root of unity with N > n,
hence the denominator is not zero. Multiplying with the denominator shows
that we have to verify

(o] —p) _(a]=p)
_1)Hw) (wA+p)l=p) — ,—(Alp) ] —gOHple)y 2 2 —4 2
(229)
We can simplify the right hand side to
—(Alp) H (1 _ q(>\+p|a)) q_<p|2a>’ (230)

a€Rt
which becomes by using p = > cp+ § and then multiplying out the product
gAtel=r) H 1 — g tela) = g(Atel=p) Z DHlgAFP e (231)
a€Rt ICR*

Here I ranges over all subsets of RT. It is well-known that subsets of RT are
in bijection with W via I <> R(w), where R(w) := R* N w~(R™) coincides
with R(w) from Definition 2.5. Thus we can rewrite the last expression as

3 (—1)1@) Pl =P+ Eaeriw @) (232)
weWw
Now to prove Equation (227) we only have to verify

(WA +p) | =p)=A+pl=p+ Y a) (233)
a€R(w)

for which it suffices to show w=!(—p) = —p+ > acR(w) @ This follows using
pP= ZO&ER+ %' u

Example 5.30. Let us use the previous proposition to calculate the evalu-
ation at ¢” for the complete symmetric polynomials hy_p+1, ..., by, where
hi := s, for i > 0 and p; := (4,0, ...,0). Since ¢ is a primitive N-th root of
unity we obtain for Ay

1 — glewtela)

hn(q?) = g(—rle) H = (—1)m 1. (234)
a€Rt q

Forie {N —n+1,...N — 1} we obtain

1 — g(ritrla)
(P — o(—Hilp) L AR
hi(a™") =q I (235)
a€ERt
The denominator never vanishes, but for &; = a1 ny—iy1 € Rt we have

g tPldi) — 1 and hence hi(¢g™?) = 0. As noted before, a Y-weight vector
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f € €eP lies in eRad if and only if f(¢~?) = 0 and hence we deduce that
(AN —nsts - hn_1,hn + (=1)"} C eP = C[X{', ..., X;FIW. Furthermore,
we have that e Rad is an eH,e-module by Proposition 5.9 and in particular
closed under the action of eC[XT!, ..., X F|We = C[X:F, ..., XUV, where
we use the isomorphism from Proposition 5.17 and the fact that e acts via the
identity on eP = P". Hence we also have (hy_pni1, ..., An_1, Ay +(—1)") C
e Rad.

5.5 The structure of the spherical DAHA module M

By the results from the previous sections we can now give some insight into
the structure of the eH,e-module M = eP/eRad. More precisely, we will
show that its dimension is (]X ) and we prove the existence of two eigenbases:
one for the subalgebra eC[Ylil, .Y FWe C eH,e and one for the subalgebra
eC[XTF, .. X F1We C eH,e from Proposition 5.17.

We start by deducing a general condition for sy € eRad from the eval-
uation formula in Proposition 5.29.

Corollary 5.31. Let A € PT. We have sy € eRad if and only if there exist
1 <i# j < n such that \; + p; = A\j + pj mod N. Equivalently sy € eRad

if and only if gMP € Cly = {v € C* | 3i # j such that v; = v;}. In
particular we have dim(eP /e Rad)y = 0 if = C?mg.

Proof. The sy for A\ € PT form a basis of Y-weight vectors of eP by Pro-
position 5.27. Therefore the statements follow from the evaluation formula
in Proposition 5.29 and the fact that a Y-weight vector lies in the radical if
and only if it evaluates on ¢~ to 0. 0

This allows us to deduce a first formula for the dimension of M.

Proposition 5.32. Let A € P* such that ¢*** € C}},, := C"\ Cl,, . Then
dim(My) = 1. In particular,
dim(M) = [{g 1 | X e P NP e Cl,,} /Sl
= {7 [ X e PP e T}/ Shl.

reg

(236)

Proof. Let A € Pt with ¢** ¢ Creg- By Corollary 5.31 we have s, ¢ e Rad.
Thus, the image of sy in M is not zero and we have dim(M), > 1. If there
exists A as above such that the dimension of the Y-weight space M is at
least two, take two linearly independent elements vy, vy € M) and lift them
to Y-weight vectors 01,72 € (e€P)y. This is possible since eP has a basis
consisting of Y-weight vectors by Proposition 5.27. Since a Y-weight vector
lies in e Rad if and only if evaluates to zero on ¢~ we can find a non-trivial
linear combination c¢;v7 + cov9 € eRad. Hence we have cijv; + covg = 0

in contradiction to their linear independence. The first description of the
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dimension now follows from Corollary 5.31 and Remark 5.28. We have
g =FP = g #=*P in C"/S, if and only if there exist pairwise different
1 <j; <nforl<i<nsuchthat —)\i+_"%1+2i = —,ujﬂrw mod N.
By multiplying with —1 we see that this is equivalent to A\; + W =
Wi + % mod N and hence to ¢** = ¢#*+7 in C"/S,,. This shows the
second equality. O

Proposition 5.33. We have the following dimension formula

n

dim(M) = (N ) (237)

Proof. By Proposition 5.32 we only have to determine the cardinality of the
set
{7 | Xe PTgMP e, }/S,. (238)

reg

We can clearly replace p with p+ "TH -(1,...,1). Because q is a primitive N-th
root of unity and we work modulo S, we can find a bijection with elements
(v1 > ... > vy,) with 1 <v; < N and v; € Z by ordering the exponents. This
set bijects to elements (v > ... > v,) with 0 < v; < N — n by subtracting
our new p. The last set has cardinality (Jr\z ) as it is in bijection to the set of
monotone paths from the bottom left corner to the top right corner inside
an integral n x (N — n)-box. O

We can now describe the Y-weight basis of M. For this we set
PBom :={AePT|0< )\ <mfor1<i<n}. (239)

Theorem 5.34. A basis of M = eP/eRad is given by the images of sy for
A € By N—n- The image of sy hasY -weight X in the sense of Definition 5.26.
These weights are pairwise different.

Proof. By Proposition 5.27 we only need to show that the images of the s
for A\ € P nv—pn form a basis. We want to show that A # X for \, X €
PBn,N—rn implies that My # M,,. By Remark 5.28 we should first show
g At # ¢7FP in €"/S,. For all A\ € P, n_n we have that the i-th
entry of —A_ + p is given by —A,—; + % and the entries lie in the
interval [~ — N + n, ..., 251] of length N. Therefore, we do not need
to work modulo N. Furthermore, we have —A_ € P* and hence we see
that the entries of —A_ + p satisfy —\,_; + W > —Ap—j + % for
1 <4 < j < n. This shows that we can ignore the S,-action as well and we
obtain ¢ A-1° #£ ¢ AP for A £ N € P N—n. Hence My # My for X # X,
if the weight spaces are not zero. To show that they are not zero we can
argue similarly. Indeed, for all A € 3, y—,, we have that the entries of A+ p

are \; + 2F1=20 and they lie in the interval [=%t1 . 2=l 4+ N —n] of length
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N. For fixed A as above the entries A\; + % are pairwise different and
hence by Corollary 5.31 the images of these sy are not zero in the quotient.
Therefore, the (JZ ) many Schur polynomials sy for A € B,, y_,, are linearly
independent in the quotient and they form a basis by Proposition 5.33. [

We will now describe the second weight basis of M. This time we con-
sider the subalgebra eC[X{™, ... X;F1]We C eH,e from Proposition 5.17 and
X-weights as defined in Definition 5.26. In order to describe the X-weight
basis of M, we have to understand how the elementary symmetric polynomi-
als e1, ..., ep—1 and €', which generate C[de, L XENW act on the Schur
polynomials sy for A € B, y—,. For this we can apply the Pieri formulas
from [Ful97, Chapter 2.2]. They tell us that for A € P™ and 1 <4 < n we
have

eisx =Y _ Su, (240)
o
where the sum ranges over all Young diagrams, which can be obtained from
A by adding ¢ boxes to A with no two boxes in the same row. In particular,
we have
ensy = Sy,  €n S\ = S, (241)

where X' is defined by A, = X\; + 1 and X’ is defined by X/ = \; — 1 for
1 < ¢ < n. By the Pieri formulas we see that multiplication by e; for
1 <4 < n maps the Schur polynomials sy with A € 3, y—, to sums of Schur
polynomials s, with p € By, N—p41. In particular, to compute the image of
e;sy in M, we need to determine the images of s, in M with © € B, N—ny1
and p1 = N —n + 1. For this we associate to each A\ = (\y,..., \,) € P
with A\; — A\, < N —n a ‘rotated’ weight r(\) € Pt defined by

r(A)i=Aig1—lfor1<i<n-—1, r(A),:=A—-N+n-—1. (242)

We will now show that sy and s, () have the same Y-weight and the same
evaluation on ¢~*. In particular, they map to the same element in M.

Lemma 5.35. Let A € Pt with Ay — A\, < N —n.

(a) We have ¢ =17 = ¢7" -+ hence sy and sp(x) lie in the same
Y -weight space of €P.

(b) We have sx(¢7") = s, (q7").

(c) We have sx = s,(y) as elements in M.

Proof. For claim (a) note that

n—1 -n+1

At p= (At g Nt ) (243)
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and

-1
—r()\),+p=(—)\1+N—n+1+n2 , (o44)
244

n—3 -n+1
ey —Ag + 14 5 ).

~ A+ 1+

Thus ¢ =17 = ¢7"M-+¢ holds in C"/S,, and hence the Schur polynomials
sy and s,y lie in the same Y-weight space by Remark 5.28. To prove (b)
we employ the evaluation formula from Proposition 5.29 and thereby have
to show the following equality, after cancelling the denominators:

o) T 1— gOHle) = =0l T 1 - glr¥-+e),

a€Rt a€Rt
Equivalently:
_ Qo) Ala) _ () (rMle)
H g 2z —q 2 gl = H q 2 —q 2 gl
a€ERT a€ERt

We can cancel the terms in the product on the left corresponding to «; ; €
RT where 2 < i < j < n with the terms on the right corresponding to
a;’j € R where 1 <i < j < n — 1 by definition of the rotation r. Thus it
suffices to show

(Maq,i) Aleg) | _rNlejin)

(rMN)lajn) )
H q 2 —q 2 +i-1 _ H q 2 —q 2Jn+n7].

1=2,....,n 7j=1,...,n—1

Using the definition of the rotation r this is equivalent to

H q_(AI;Ai) B q(>\1;/\z‘)+i_1

1=2,...,n
(Ajp1—1-A1+N—n+1) (Ajp1—1-2A1+N—n+1)
= H q_ 2 —q 2 tn—
7j=1,....,n—1

The second line can be rewritten as

(n—1)n Ajg1=A1) g1 —A)
q 2 H q 2 T —q 2
j=1,...n—1

Aip1—A Aip1—A
_ H (J-H2 1) _(]+12 1)+j'

q —q
j=1,..n—1

The equality follows by re-indexing. This shows claim (b). Claim (c) follows
from (a) and (b), since s\ — s,(y) i3 a Y-weight vector which evaluates to
zero on g P. ]
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We now define certain elements bf\( for A € B, N—n, which already appear
in [KS10] as the so-called Bethe vectors. After the definition we prove that
bX is X-weight vector of weight A.

Definition 5.36. For \ € B,, n_,, we define
Y= > sulg1)s, € eP. (245)
HEPn,N—n
We will denote the image of l;i( in M by bf .
Proposition 5.37. For A € P, n—, and 1 <r < n we have
cere(by) = e (¢* ) - by, (246)

Proof. Let us first calculate eere(gf ) = er(i)f ) inside eP. Applying the
Pieri formulas gives us

e (55) = Z s P)eps, = Z sulg17) Z Sy

,Ueq-}n,an Memn,an U/
(247)

Here the inner sum ranges over all elements y/ € PT which can be obtained
from p by adding r boxes in pairwise different rows. We can rearrange the
sum to obtain

er(by) = Z Zs/ —A-FP)g

Nemn,N—n

+ > ZS s,

/‘eq:;n,N-kl—n\mn,N—n

(248)

Now the inner sums over p’ range over all ¢/ € B, ny_, such that p can
be obtained from p’ by adding r boxes in pairwise different rows. Note
that for p1 € P Nt1-n \ Pn,N—n With p, = 0 we have s, € eRad by the
evaluation formula from Proposition 5.29 and by using a similar argument
as in Example 5.30. For the remaining p € By n+1-n \ Pn,Ny—n we have
p1— pn < N —n and s, = s,(,) in M by Lemma 5.35. Thus, we obtain the
following equation inside M:

eT‘(bg\() = Z Zsu’ (q A +p Su | + Z Z )\7+p)sr(u)

HEPn N—n \ & W

Here the second sum over p now ranges over all g € Py ny1—n \ Bn,N-n
with p, > 0 and the other sums are indexed as before. From this we can
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calculate the coefficient of s, for u € B, y—,, on the right hand side to be
as follows. If y,, > 1 we can not obtain p as r(f) for any fi € By N—nt1-
Hence the coefficient of s, for such p is

S sl ), (249)
—

where the sum ranges over all i/ € B, y_,, such that p is obtainable from
i’ by adding r boxes in pairwise different rows. Since u,, > 1 all p/ € P
from which p can be obtained by adding of r boxes in pairwise different
rows must already lie in 33,, y_,,. Hence, we can index the sum above over
all such p/ € P* and not just over B, n—p.

If y, = 0 we can obtain x as the rotation r(ji) of a unique i = r~!(u) €
PBnN-n+1 \ BnN—n. This i must necessarily satisfy fi,, > 0. Then the
coefficient of y is

28“/ A +p —I—ZS " —A- +p (250)
'

where the first sum ranges over all ¢/ € P, y_,, such that we can add r boxes
to y/ in pairwise different rows to obtain x. The second sum ranges over
all ©” € P, N—pn such that we can add r boxes to p” in pairwise different
rows to obtain 7~!(u). In particular we must have pf = N —n and one
of the boxes must be added to the first row. But the set of such p” is via
r in bijection with the set of all i” such that i) = —1 and such that we
can obtain p from i’ by adding r boxes to pairwise different rows. We have
s (q 1) = s, (¢~ 1*). Indeed, since s, —s,(,) € e Rad by Lemma
5.35 we have

r(p

<5,u” = Sp(p)s sx) = (s,u” - Sr(u”))(q_A7+p) ~sa(g™") =0.

by Theorem 5.25 and Definition 5.7. Therefore s, — s,,(u//)(q)‘+p) =0,
because A € P, n_p and hence sy(¢~”) # 0. Overall we can go back to
(250), where we can replace " by r(¢”) in the indexing set and in the Schur
polynomials. We see now that the coefficient of s, is also in the case p, =0
equal to > s,/(q~*7") where the sum ranges over all i/ € PT such that p
can be obtained from p’ by adding r boxes in pairwise different rows.

To prove the proposition we only need to show the following equality for
all i1 € Py N—n, with p’ as above:

eT(qA’_p) 54 —>\ +p Zs o~ +ﬂ (251)

This follows from e,(¢*~ ") = en_r(¢ > T")en(¢"*~°)~1 and applying
the Pieri formulas.
O
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Theorem 5.38. The eH,e-module M has a basis consisting of the X -weight
vectors bf\( for A € B, N—p, with pairwise different weights \.

Proof. This follows immediately from the previous proposition as the ele-
ments q’\*_p for A\ € P, Ny, are pairwise different in C"/S,, since this
holds for the ¢=*=** by the proof of Theorem 5.34. Hence the (]X ) many
X-weights of the bf\( are pairwise different. Therefore these elements are
linearly independent and they must form a basis by Proposition 5.33. O

We close the discussion on the structure of M with the proof that M is
irreducible.

Proposition 5.39. The eH,e-module M is irreducible.

Proof. Assume M’ C M is a non-trivial submodule. The bilinear form (, )
on eP induces a non-degenerate bilinear form ( , ) on M = eP/eRad by
Proposition 5.16 (b). Therefore we can look at the orthogonal complement
(M")E of M with M = M’ @ (M')+. By Proposition 5.9 (b) we have that
(M")* is a submodule. But we know from Theorem 5.34 that the Y -weight
spectrum is simple. Therefore, we obtain weight space decompositions of
the two submodules and the Y-weight vector 1 € M must be an element in
M’ or in (M")L, but since 1 generates M this gives a contradiction. O

5.6 ¢H*(Gr,n)s=1 as an eH,e-module

Recall the two statements from the beginning of Chapter 5.
(1) We have

C @2 gH(Gran)gm1 = Clex, - enl /(AN _ni1, s v + (~1)")

as C-algebras. Here ey, ..., e, are the elementary symmetric polynomials in
n variables and h; for ¢ > 0 denote the complete symmetric polynomials.
(2) The dimension of C®zqH*(Gry, N)g=1 is (]X) and a C-basis is given by
the images of the elements s, € Cleq, ..., 5] for A € PT with 0 < \; < N—n.
These facts match the results from Example 5.30 and Proposition 5.33
very nicely. Therefore, we can now deduce the main result of this chapter
easily in the next theorem.

Theorem 5.40. Set I := (hy—_pn41,--,An—1,hny + (=1)") C Cleq, ..., en].
We have the following commutative diagram of C-algebras, where the rows
are short exact sequences. Moreover, v is an isomorphism.

0 1 (C[el, ...,en] E— qH.(Grn,N)qzl — 0
l‘\l lb l‘Y
0 —— eRad eP M 0
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Proof. The inclusion ¢ : Cley, ...,en] < ¢P = C[XT', ..., X W restricts
to an inclusion I — eRad by Example 5.30. Hence we obtain an induced
morphism ~ on the quotients. The bijectivity of  follows by statement (2)
above and from Theorem 5.34. O

We can use this theorem to obtain an explicit description of e Rad

Corollary 5.41. The submodule e Rad C eP = C[X:E ..., X W is gener-
ated as an ideal by hy_ny1, ..., An—1,hn + (=1)™.

Proof. We have alrady seen (hy_p+1,-.., An—1,hn + (—1)") C eRad in Ex-
ample 5.30. The other inclusion now follows from the diagram in The-
orem 5.40 by a diagram chase using that any element in C[Xlil, oy XEW

can be multiplied by a large enough power of e,, = X7 - ... - X, to obtain an
element in C[X7, ..., X,,]". O
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