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Exam Foundations of Representation Theory
�Solutions�

Exercise 1 (10 points). True or false? Please explain your answers brie�y.

(i) If Q is a quiver such that s(α) = t(α) for every α ∈ Q1 then kQ is commutative.

(ii) In the category Set of sets, every object is projective.

(iii) If P is a projective object of an abelian category A , then every short exact sequence in A of

the form 0→ P → Y → Z → 0 splits.

(iv) Let Q be a �nite quiver and let M and N be left kQ-modules which are �nite-dimensional over

k. Then (R1HomkQ( , N))(M) is a �nite-dimensional k-vector space.

(v) Let A be a ring. Then every projective A-module is free.

Solution. (i) False. A counterexample is the quiver Q with one vertex and two arrows α and β.
By de�nition βα 6= αβ because these are di�erent paths.

(ii) True. Let P be a set, let f : X → Y be an epimorphism, i.e. a surjective map, and let g : P → Y
be a map. For every y ∈ Y , choose an inverse image xy under f . The map g′ : P → X de�ned

by g′(p) = xg(p) does the job.

(iii) False. The exact sequence of abelian groups 0 → Z → Z → Z/2Z → 0 is exact but not split;

there can't be an injective homomorphism Z/2Z→ Z.

(iv) True. Consider the standard projective resolution 0 → P1 → P0 → M → 0. An appli-

cation of HomkQ( , N) yields a surjection
⊕

α∈Q1
Homk(Ms(α), Nt(α)) = HomkQ(P1, N) →

(R1HomkQ( , N))(M). As M and N are �nite-dimensional, so is
⊕

α∈Q1
Homk(Ms(α), Nt(α)).

(v) False. Consider the quiver 1 → 2 and A = kQ = kε1 ⊕ kα ⊕ kε2. Then dimk A = 3 but

P (1) = kε1 ⊕ kε2 is projective and dimk P (1) = 2. This shows it cannot be free.

Exercise 2 (8 points). Let Q be a quiver. Let M be a left kQ-module and let N ′, N ′′ ⊆M be two

submodules. Assume that (R1HomkQ( ,M))(M) = 0. Show

(R1HomkQ( ,M/N ′′))(N ′) = 0.

Hint: You may use without a proof the isomorphism of k-vector spaces (RiHomkQ( , Y ))(X) ∼=
(RiHomkQ(X, ))(Y ) for left kQ-modules X and Y and all i ≥ 0.

Solution. Consider the exact sequences 0→ N ′ →M →M/N ′ → 0 and 0→ N ′′ →M →M/N ′′ →
0. Apply Hom( ,M) to the �rst sequence and obtain the long exact sequence

. . .→ (R1Hom( ,M))(M/N ′)→ (R1Hom( ,M))(M)︸ ︷︷ ︸
=0

→ (R1Hom( ,M))(N ′)→ 0.

Note that RiHom( ,M) vanishes for i ≥ 2. We deduce

0 = (R1Hom( ,M))(N ′) ∼= (R1Hom(N ′, ))(M).



Now apply Hom(N ′, ) to the second exact sequence. This yields the long exact sequence

. . .→ (R1Hom(N ′, ))(N ′′)→ (R1Hom(N ′, ))(M)︸ ︷︷ ︸
=0

→ (R1Hom(N ′, ))(M/N ′′)→ 0.

Note again that (RiHom(N ′, ))(Y ) ∼= (RiHom( , Y ))(N ′) = 0 for all i ≥ 2. We conclude

0 = (R1Hom(N ′, ))(M/N ′′) ∼= (R1HomkQ( ,M/N ′′))(N ′).

Exercise 3 (8 points). Consider the k-algebra A = k[X,Y ]/(XY ) and the A-module M = A/(X).
Compute the k-dimension of (RiHomA( ,M))(M) for all i ≥ 0.

Solution. Compute a projective resolution of M . For this let mA(X) : A→ A be the multiplication

with X and similarly mA(Y ). We get ker(mA(X)) = (Y ) and ker(mA(Y )) = (X). This shows that

the sequence

. . .
mA(X)−−−−→ A

mA(Y )−−−−→ A
mA(X)−−−−→ A→M → 0

is exact. The complex P∗ : . . .
mA(X)−−−−→ A

mA(Y )−−−−→ A
mA(X)−−−−→ A→ 0 is hence a projective resolution of

M as AA is free and thus projective. If we apply HomA( ,M), we obtain

0 HomA(A,M) HomA(A,M) HomA(A,M) . . .

0 M M M . . .

mA(X)∗

∼=

mA(Y )∗

∼=

mA(X)∗

∼=
mM (X) mM (Y ) mM (X)

The isomorphism HomA(A,M) ∼= M is provided by h 7→ h(1). The commutativity of the above

diagram follows from the identity X · h(1) = h(X · 1) (and the corresponding equation for Y ). But

on M ∼= k[Y ] the element X ∈ A acts as 0, while ker(mM (Y )) = 0 and im(mM (Y )) = YM = (Y ).
This shows

(R0HomA( ,M))(M) = ker(mM (X)) =M = k[Y ]

(R2i−1HomA( ,M))(M) = ker(mM (Y ))/ im(mM (X)) = 0

(R2iHomA( ,M))(M) = ker(mM (X))/ im(mM (Y )) = k[Y ]/(Y ) = k.

The dimensions of these k-vector spaces are hence ∞, 0, and 1 in the respective cases.

Exercise 4 (8 points). Let A be an abelian category. Let P∗ ∈ Ch∗(A ) be a complex

P∗ : . . .
dn+2−−−→ Pn+1

dn+1−−−→ Pn
dn−→ . . .

which consists of projective objects of A .

(i) Suppose that P∗ ∈ Ch≥0(A ), i.e. Pn = 0 for all n < 0. Show that P∗ is acyclic if and only if

the identity idP∗ is null-homotopic.

(ii) Is the asserted equivalence of (i) still true if P∗ is unbounded?

Solution. (i) Suppose that P∗ is acyclic. Then P∗ is a projective resolution of 0. Consider the

morphism 0 → 0. By the comparison theorem for projective resolutions there exists a chain

morphism f : P∗ → P∗ which extends 0 → 0 and which is unique up to homotopy. But both

idP∗ and 0P∗ extend the zero morphism. So they must be homotopic.

Conversely assume that idP∗ is null-homotopic. Then Hn(idP∗) : Hn(P∗)→ Hn(P∗) is the zero
morphism (by Lem. 4.21). But homology is a functor, so Hn(idP∗) = idHn(P∗). This implies

Hn(P∗) = 0.



(ii) Consider the category of Z/4Z-modules and the acyclic complex

P∗ : . . .
2−→ Z/4Z 2−→ Z/4Z 2−→ Z/4Z 2−→ . . . .

As a Z/4Z-module, Z/4Z is free, hence projective. Then idP∗ is not null-homotopic. For if there

were sn : Z/4Z→ Z/4Z such that idZ/4Z = sn−1dn + dn+1sn = 2sn−1 + 2sn, then the image of

the identity would be contained in 2Z/4Z.

Exercise 5 (8 points). (i) Let C and D be categories. Let (F,G, ϕ) be an adjunction from C
to D , so F : C → D and G : D → C . Assume that G is faithful. Show that for every object

Y ∈ D the counit-morphism εY : FGY → Y is an epimorphism.

(ii) Let P be a projective object in the category of groups. Show that there exists a retraction onto

P from a free group.

Solution. (i) Let g1, g2 : Y ⇒ Z be morphisms in D such that g1εY = g2εY . By de�nition

ϕGY,Y (εY ) = idGY . We obtain

G(g1) = G(g1)ϕGY,Y (εY ) = ϕGY,Z(g1εY ) = ϕGY,Z(g2εY ) = G(g2).

As G is assumed to be faithful, this implies g1 = g2.

(ii) We apply (ii) to the adjunction (F, V, ϕ) from Set to Grp where V : Grp→ Set is the forgetful
functor and F assigns to a set the free group over it. Note that (ii) is applicable as the forgetful

functor is faithful. This shows that FV P → P is an epimorphism. As P is projective, it is a

retraction.

Exercise 6 (8 points). Let C be a category and let F : C → Set be a functor.

(i) Suppose that F is representable. Show that there exists an object R ∈ C and an element

u ∈ F (R) such that the following holds: for every object A ∈ C and every element x ∈ F (A)
there exists a unique morphism f : R→ A with (F (f))(u) = x.

(ii) Now, let C = CommRing be the category of commutative rings and let F be de�ned by

F (A) := {a ∈ A | a nilpotent}

for A ∈ C and F (f) : F (A)→ F (B), a 7→ f(a) for f ∈ C (A,B). Is F representable?

Solution. (i) Suppose that F is representable. That means there exists an object R and an

isomorphism η : C (R, ) → F of functors. De�ne u := ηR(idR). Let X ∈ C be an object and

x ∈ F (X). Via the bijection ηX : C (R,X)→ F (X) we get a unique morphism f : R→ X such

that ηX(f) = x. From the commutative diagram

C (R,R) C (R,X)

F (R) F (A)

C (R,f)

ηR ηX

F (f)

we obtain

x = ηX(f) = (ηX ◦ C (R, f))(idR) = (F (f) ◦ ηR)(idR) = (F (f))(u).

If f ′ is another morphism satisfying (F (f ′))(u) = x then ηX(f) = ηX(f
′), whence f = f ′.



(ii) Suppose that F were representable. That means there would exist a commutative ring R
and a nilpotent Element u ∈ R with the universal property formulated in (i). So for any

commutative ring A and any nilpotent element a ∈ A there exists a unique ring homomorphism

f : R → A such that f(u) = a. As u is nilpotent, there exists m > 0 such that um = 0. Now

choose a commutative ring A and a nilpotent element a ∈ A for which am 6= 0 (for instance

A = Z[X]/(Xm+1) and a = X). Then there can be no ring homomorphism f : R → A for

which f(u) = a. This shows F is not representable.


