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German introduction vV

Eine graphische Beschreibung
von (A,_1, D,) Kazhdan-Lusztig-Polynomen

Ubersicht und Beweisideen

Die Klassifikation endlich-dimensionaler Moduln iiber einer komplexen, halbeinfa-
chen Liealgebra ist bekannt. Nach einem Satz von Weyl [Hum72, 6.3] ist jeder solche
Modul Summe von irreduziblen Moduln. Die Isomorphieklassen irreduzibler Moduln
werden von den hochsten Gewichten, die dominant und integral sein miissen, indi-
ziert. Eine Berechnungsmethode fiir die Dimension dieser Moduln gibt es ebenfalls
[Hum?72, 21, 22|.

Genauer gesagt sind die Charaktere und somit insbesondere die Dimensionen der
Gewichtsrdume durch Weyl’s Charakterformel gegeben.

Die Situation ist bei unendlich-dimensionalen Héchstgewichtsmoduln um Léngen
schwieriger. In diesem Fall konnen Kazhdan-Lusztig-Polynome verwendet werden,
um Charakterformeln herzuleiten. Die Polynome wurden von Kazhdan und Lusztig
in [KL79] eingefiihrt.

Fiir einen irreduziblen Hochstgewichtsmodul L(A) von héchstem Gewicht A, der
moglicherweise unendlich-dimensional ist, zdhlen die Kazhdan-Lusztig-Polynome in
Abhéngigkeit von A und p die Vielfachheit [M (p) : L(A)] von L(\) in einer Jordan-
Holder-Reihe eines Vermamoduls M (p) mit hochstem Gewicht .

Kostant’s Partitionsfunktion, eine explizite kombinatorische Formel, liefert uns den
Charakter ch M (p) von M (u).

Mit Hilfe der bekannten Formel ch M (p) = > [M(u) : L(A\)] ch L(\) kann man dann
den Charakter von L(\) als alternierende Summe der ch M (x) ausdriicken. Dabei
kommen die Kazhdan-Lusztig-Polynome ins Spiel.

Also ist es moglich, die Charaktere von irreduziblen Hochstgewichtsmoduln auszu-
rechnen, sobald man die Kazhdan-Lusztig-Polynome kennt.

Im Allgemeinen ist die Berechnung der Kazhdan-Lusztig-Polynome allerdings recht
aufwendig, da diese induktiv definiert sind.

In dieser Arbeit werden wir die Kazhdan-Lusztig-Polynome in einem Spezialfall stu-
dieren und durch geschlossene Formeln beschreiben.

Wir betrachten dabei die Liealgebra g = s05, vom Typ D,, und irreduzible Hochst-
gewichtsmoduln die “fast” endlich-dimensional sind; genauer gesagt, die lokal endlich-
dimensional in Bezug auf eine parabolische Unteralgebra sind und reguldre Hochst-
gewichte haben. Diese Moduln sind Objekte in der Kategorie OP(s0s,,)o.

[hre Charaktere konnen als alternierende Summe der Charaktere parabolischer Ver-
mamoduln ausgedriickt werden. Dabei werden parabolische Kazhdan-Lusztig-Poly-
nome verwendet. Die Charaktere parabolischer Vermamoduln konnen dann mit Hilfe
der Formel [Soe97, Prop. 3.4| auf die Charaktere von Vermamoduln zuriickgefiihrt
werden.
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In dieser Arbeit werde ich

e cine explizite Formel fiir parabolische Kazhdan-Lusztig-Polynome im
(An—la Dn)—Fall,

e ein Diagrammbkalkiil,

e explizite Dimiensionsformeln,

e cine Verbindung zur Arbeit von Brenti

geben.

Wir beginnen in Kapitel 2 mit einer kurzen Einfiihrung der Grundlagen zum Thema
Coxetergruppen.

In dieser Arbeit beschiftigen wir uns mit der Weylgruppe W vom Typ D, mit
Erzeugern & = {sg, ..., Sp—1}. In W gibt es die maximale parabolische Untergruppe
W, vom Typ A, _1, erzeugt von S, = {s1,...,5,-1}.

Es gibt eine Bijektion zwischen dem Quotienten W,\WW und der Menge der
{+, —}-Sequenzen der Linge n mit einer geraden Anzahl von Minussen. Wir be-
zeichnen die Menge der kiirzesten Représentanten von W,\W mit WP.

Die Gruppe W lésst sich in die Gruppe Ss,, einbetten. Durch diese Einbettung wird
deutlich, dass wir eigentlich mit {+, —}-Sequenzen der Linge 2n, die antisymme-
trisch sind und eine gerade Anzahl von Minussen in der oberen Hilfte der Sequenz
aufweisen, arbeiten sollten.

Sowohl die Einbettung als auch die Bijektion zwischen den {+, —}-Sequenzen und
WP werden in Kapitel 3 explizit gegeben.

Die Bijektion wird mit Hilfe von Youngdiagrammen realisiert. Es stellt sich heraus,
dass ein kiirzester Reprisentant fiir eine Restklasse nichts anderes ist als eine Be-
schreibung fiir den Aufbau eines Youngdiagramms, wobei in jedem Bauschritt ein
neues Youngdiagramm entsteht. Auf der anderen Seite kann man den dufseren Pfad,
also die Linie, die die Boxen des Youngdiagramms von dem leeren Raum trennt,
leicht in eine {+, —}-Sequenz umwandeln indem man jeden Schritt nach rechts
durch ein "+4" und jeden Schritt nach oben durch ein "—" ersetzt. Diese beiden
Konstruktionen liefern Bijektionen zum einen zwischen WP und einer Menge von
gewissen Youngdiagrammen sowie zwischen dieser Menge von Youngdiagrammen
und der obigen Menge der {4+, —}-Sequenzen. Insgesamt erhilt man die gewiinschte
Bijektion.

In Kapitel 4 wird die Heckealgebra H zu unserer Weylgruppe WV iiber dem Ring
L := Z[v,v™!] eingefiihrt. Die Standardbasis wird mit { H,|w € W} bezeichnet. Auf
‘H gibt es eine antilineare Involution. Die Kazhdan-Lusztig-Basis ist die eindeutige
Basis von H, deren Elemente selbst-dual, also von der Involution auf sich selbst
abgebildet werden, sind und sich als Linearkombination der Standardbasis mit Ko-
effizienten in Z[v] schreiben lassen.

In H gibt es die Unteralgebra H, zu unserer Untergruppe W,. £ wird zu einem
H,-Modul indem man H durch —v fiir alle s € S, operierent ldsst. Den paraboli-
schen Heckemodul A erhélt man, indem man £ iiber H, mit H tensoriert. Er hat



German introduction VII

die Standardbasis {N,, = 1 ® H,|w € WF}.

Die Involution auf H# kann auf A iibertragen werden und fiihrt zu einer parabolische
Version der Kazhdan-Lusztig-Basis, die wir mit { N, |w € W*} bezeichnen.

Die Kazhdan-Lusztig-Polynome n,s,, € Z[v] beschreiben den Basiswechsel von
der Standardbasis zur Kazhdan-Lusztig-Basis, insbesondere ist N,, = > 1y 1y Ny

Diese Resultate finden sich beispielsweise in [Soe97].

Den Elementen in WP ordnen wir zwei Objekte zu: Gewichte und Cupdiagramme.
Die Gewichte erhidlt man, indem man die {+,—}-Sequenz, die einem Element
w € WP zugeordnet ist, mit n Plussen nach links und n Minussen nach rechts
erweitert und anschlieflend jedes "+" durch ein "V" und jedes "—" durch ein "A"
ersetzt. Die n oberen und n unteren Punkte bezeichnen wir als “eingefroren” da die
Orientierung hier aufgrund der Erweiterung festgelegt ist.

Wir betrachten den freien £-Modul Mp mit diesen Gewichten als Basis. Dieser Mo-
dul ist als £-Modul isomorph zu AN durch Fortsetzung der Bijektion aus Kapitel 3.
Diesen Isomorphismus bezeichnen wir mit ®. Durch die von ihm induzierte Opera-
tion von H wird Mp zu einem H-Modul.

Bis zu diesem Punkt sind die meisten Resultate Standardresultate. Ab Kapitel 5
sind alle Resultate, abgesehen von dem kurzen Exkurs in Brenti’s Arbeit, neu und
originar.

In Kapitel 5 werden Cupdiagramme eingefiihrt und das Haupttheorem bewiesen.
Ein Cupdiagramm entsteht aus der erweiterten {+, —}-Sequenz dadurch, dass zu-
erst Plusse und Minusse durch Bbgen, so genannte “Cups”, verbunden werden. Da-
bei wird so verbunden, dass jeder Bogen bei einem "+" beginnt und an einem "—"
aufhort und keine Uberschneidungen auftreten. AnschlieRend werden aufeinander-
folgende Cups, die die Mitte iiberqueren, jeweils zu zweit “verkniipft”. Beginnend
in der Mitte werden dabei von je zwei aufeinanderfolgenden “Cups”, die die Mitte
iiberqueren, die Startpunkte vertauscht. Eine Uberschneidung entsteht, die mit ei-
nem Punkt markiert wird, und die beiden Cups sind “verkniipft”. Das so entstehende
Cupdiagramm wird mit C'(w) bezeichnet.

Ein Gewicht kann nun oben auf ein solches Cupdiagramm gesetzt werden. Eine Cup
der Form X oder A heifit orientiert. Ein Cupdiagramm heifst orientiert falls alle
Cups orientiert sind. Die Anzahl der im Uhrzeigersinn orientierten Cups wird mit
cl(w'C(w)) bezeichnet.

Jedem Cupdiagramm C(w) ordnen wir ein Element in Mp zu.

/
O(w)MD — ZU 1( 2C( )w/

wobei die Summe iiber alle Gewichte lauft, die C(w) orientieren.
Das Haupttheorem besagt, dass

O(C(w)ny) = N

w )

also das Bild eines Cupdiagramms C'(w) in N das Kazhdan-Lusztig-Basiselement
N, ist.

w
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Der Beweis basiert auf der Proposition, dass der Koeffizient eines Gewichtes w’ in
C(w)nm,, gerade das Kazhdan-Lusztig-Polynom n,, ,, ist, also insbesondere gilt:

cl(w/ C (w) : N
S X ) falls w'C(w) ist orientiert
o 0 falls w'C(w) ist nicht orientiert .

Der Beweis der Proposition basiert auf dem Algorithmus zur Berechnung der
Kazhdan-Lusztig-Polynome. Im Algorithmus wird die Operation der Heckealgebra
auf den bereits gegebenen Kazhdan-Lusztig-Basiselementen und insbesondere auf
der Standardbasis verwendet. Diese Operation wird mit der Operation der Hecke-
algebra auf der Basis des Moduls Mp, also den Gewichten, sowie den Cupdiagram-
men verglichen. Es zeigt sich, dass beide Operationen iibereinstimmen. Dies liefert
den Beweis.

Ein &hnliches Resultat fiir den Typ A Fall wurde von Brundan und Stroppel in
[BSO08a, 5.12| bewiesen. Sie benutzen ebenfalls Cupdiagramme und Gewichte.

In Kapitel 4 wurde der H-Modul Mp eingefiihrt. H operiert allerdings nicht treu
auf Mp. Die graphischen Beschreibung der Kazhdan-Lusztig-Basis ermoglicht es uns,
die Operation ebenfalls graphisch zu beschreiben. Dies liefert eine Beschreibung des
Quotienten von H, der treu operiert. Es stellt sich heraus, dass dieser Quotient ein
Quotient der verallgemeinerten Temperley-Lieb-Algebra vom Typ D,, ist. All diese
Ergebnisse finden sich in Kapitel 6.

Die graphische Beschreibung des Quotienten erfolgt mit Hilfe von dekorierten, das
heifst mit Punkten versehenen, Tanglediagrammen. Ein Tanglediagramm ist eine
Sammlung sich nicht iiberschneidender Linien und Kreise, wobei eine Linie immer
zwei Punkte, die auf dem oberen oder unter Rand eines Rechteckes liegen, verbin-
det. Linien und Kreise diirfen auf gewisse Art und Weise “dekoriert” werden. Dies
geschieht durch Punkte, die auf die Linie oder den Kreis gezeichnet werden. Green
beschreibt in [Gre98| die verallgemeinterte Temperley-Lieb-Algebra vom Typ D,
mit Hilfe dieser dekorierten Tanglediagramme.

Unsere Cupdiagramme werden in dekorierte Tanglediagramme umgewandelt indem
der untere Teil der oberen Hilfte “herausgeschnitten” wird. Zwischen —1 und 1 so-
wie zwischen n und n+ 1 wird das Cupdiagramm senkrecht zerschnitten. Linien, die
anschlieffend nur mit einem Punkt verbunden sind werden zu senkrechten Strahlen,
Verkniipfungen werden zu Punkten, also zu Dekorationen.

Die Operation von H ist dann durch Konkatenation von Tanglediagrammen und
herausfaktorisieren gewisser Relationen gegeben.

Hier erfolgt der Beweis, dhnlich wie vorher, durch Vergleich der neu definierten Ope-
ration mit der der Heckealgebra auf .

Im letzten Kapitel werden die Ergebnisse iiber Kazhdan-Lusztig-Polynome und
deren graphische Beschreibung durch Cupdiagramme auf die Berechnung der Di-
mension der Homomorphismenriaume zwischen irreduziblen projektiven Objekten in
der parabolischen Kategorie Of angewendet. In diesem Zusammenhang haben die
Kazhdan-Lusztig-Polynome eine interessante Lietheoretische Interpretation. Ausge-
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wertet an 1 zdhlen sie die Vielfachheit einfacher Objekte als Subquotienten in eine
Jordan-Holder-Reihe eines parabolischen Vermamoduls. Diese Information ermog-
licht es uns, die Dimension dim hom(P(w), P(z)) = > 1y (1)1 (1) mit Hilfe der

Kazhdan-Lusztig-Polynome zu berechnen.

Mit den vorhergehenden Ergebnissen sieht man, dass das Produkt ngy ., (1)n, (1)
das Resultat 1 hat, falls das Gewicht w’ die Cupdiagramme C'(w) und C(z) simultan
orientiert und in allen anderen Féllen zu 0 wird. Also miissen wir nur herausfinden,
wie viele Gewichte beide Cupdiagramme simultan orientieren.

Um dies zu sehen wird eines der Cupdiagramme vertikal gespiegelt und anschliefend
auf das andere Cupdiagramm geklebt. Dies gibt uns ein Kreisdiagramm. Beide Cup-
diagramme simultan zu orientieren ist dann dquivalent dazu das Kreisdiagramm zu
orientieren.

Es stellt sich heraus, dass wir drei Arten von Kreisen unterscheiden miissen: Zu-
erst gibt es Kreise, die sich beliebig, also in beide Richtungen, orientieren lassen.
Zum Zweiten gibt es Kreise, die sich nicht orientieren lassen und zuletzt Kreise,
deren Orientierung aufgrund der eingefrorenen Punkte festgelegt ist. Die drei Arten
von Kreisen kénnen leicht daran unterschieden werden durch wie viele eingefrorene
Punkte sie laufen und auf welche Art und Weise sie durch verkniipfte Cups laufen.
Die Berechnung der Dimension lduft dann auf ein Zihlen der verschiedenartigen
Kreise hblkr(lgy)s Falls ein Kreis zweiter Art entsteht ist die Dimension 0. Ansonsten
ist sie 27 2 | wobei bk(w, z) die Anzahl der Kreise erster Art ist.

Zum Abschluss wird diese Berechnung noch in dekorierte Tanglediagramme iiber-
setzt.
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1 Introduction

1.1 Overview

Finite-dimensional modules for a complex semisimple Lie algebra are quite well un-
derstood. Weyl’s Theorem [Hum?72, 6.3| tells us that such a module is the sum of
irreducible modules. The isomorphism classes of these irreducible modules are in-
dexed by highest weights, which have to be dominant integral, and their dimensions
are known [Hum?72, 21, 22|.

More precisely we know their characters, i.e. the dimension of the weight spaces, by
Weyl’s character formula.

For infinite-dimensional highest weight modules the situation is much harder.
Kazhdan-Lusztig polynomials can be used to deduce such character formulas. They
were introduced by Kazhdan and Lusztig in [KLT79].

Given an irreducible highest weight module L()\) of highest weight A, possibly
infinite-dimensional, the Kazhdan-Lusztig polynomials, depending on A and u, de-
termine the multiplicities [M(p) : L(\)] of how often it occurs in a Jordan-Holder
series of a Verma module M (i) of highest weight .

The character ch M (p) of M(p) is known by Kostant’s partition function, an ex-
plicite combinatorial formula.

Then using the formula ch M (p) = > [M(p) : L(N)] ch L(A), it is possible to express
ch L(A) as an alterning sum of characters ch M (u) involving the Kazhdan-Lusztig
polynomials.

Hence knowing the Kazhdan-Lusztig polynomials it is possible to compute the char-
acters of the irreducible highest weight modules.

The problem is that the calculation of Kazhdan-Lusztig polynomials is rather cum-
bersome in general, since they are defined inductively.

In this thesis we will study the Kazhdan-Lusztig polynomials in a special case and
give a closed formula.

Consider the Lie algebra g = so09, of type D,, and irreducible highest weight modules
which are “almost” finite-dimensional; precisely, which are locally finite-dimensional
for the standard parabolic subalgebra of type A,_, and have regular highest weights.
These modules are objects in the parabolic category OP(s50,,)o-

Their characters can be then expressed as an alternating sum containing the char-
acters of parabolic Verma modules using parabolic Kazhdan-Lusztig polynomials.
Characters of parabolic Verma modules can be written in terms of characters of
ordinary Verma modules using an explicit formula [Soe97, Prop. 3.4]|.

In this thesis I will give:

e Explicit formulas for parabolic Kazhdan-Lusztig polynomials
in the case (D, A,_1),

e a diagram calculus,

e explicit dimension formulas,

e a connection with the work of Brenti.
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We start out in Chapter 2 with a short introduction to Coxeter groups.

The group which we are interested in is the Weyl group W of type D,, with a set of
generators S = {sg,...,S,_1}. In W there we have a maximal parabolic subgroup
W, of type A,_; generated by S, = {s1,...,5,-1}

The quotient W,\W is in bijection to {4, —}-sequences of length n with an even
number of minuses. We denote the set of shortest representatives by W¥.

Via an embedding of W into the symmetric group Sy, it becomes apparent that we
actually deal with {4+, —}-sequences of length 2n which are antisymmetric and have
an even number of minuses on the upper half of the sequence.

This embedding and the bijection between the {+, —}-sequences and W*¥ will be
given explicitly in Chapter 3.

Chapter 4 introduces the Hecke algebra H attached to our Weyl group W over the
ring £ := Z[v,v"!]. The standard basis is given by {H,|w € W}. On H we have
an antilinear involution. The Kazhdan-Lusztig basis is the basis for H consisting
of elements that are invariant under said involution and can be written as linear
combinations of the standard basis with coefficients in Z[v].

Inside H we have the subalgebra H, attached to our subgroup W,. By defining H,
to act as —v on L for all s € S, £ becomes an H,-module. Tensoring this module
over H, with H gives us N. This module has a standard basis consisting of the
elements {N,, = 1 ® H,|w € WP}.

The involution on H can be transfered to A and gives us a parabolic version of the
Kazhdan-Lusztig basis, denoted by { N, |w € WP}. The Kazhdan-Lusztig polynomi-
als are defined by the transformation from the standard basis to the Kahdan-Lusztig
basis, i.e. N, = > Ny Ny with ny,, € Z[v]. All these are standard results which

can be found for example in [Soe97].

To the elements in WP we attach two types of objects, weights and cup diagrams.
The weights are obtained from an element w € WP by considering the
{+, —}-sequence associated to w, extending this sequence by n pluses to the left
and n minuses to the right and then replacing every "+" by a "V" and every "—"
by an "A". We can consider the free L-module M with these weights as basis. This
module is isomorphic as an £-module to the module N by extending the bijection
from Chapter 3. This isomorphism is called ® and induces an action of H on Mp
which makes Mp into an H-module.

Up to this point the results are pretty standard. From Chapter 5 on the results are,
apart from the digression into some of Brenti’s work, new and original.

In Chapter 5 cup diagrams are introduced and the main theorem is proven.

A cup diagram is obtained from the extended {4, —}-sequence by connecting pluses
and minuses with cups such that a cup starts at a "+" and ends at a "—" and no
crossings occur. Then the cups crossing the middle are linked pairwise. Starting
in the middle, the starting points of two consecutive cups crossing the middle are
switched, linking them together. The cup diagram is denoted C'(w).
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A weight can be glued on top of such a cup diagram. A cup diagram is called
oriented if every cup is labeled by exactly one "V" and one "A". The number of
clockwise oriented cups is denoted cl(w'C(w)).

To each cup diagram we associate an element in Mp.

/
C(w)MD — Z’U 1( 2C( )w/

where the sum runs over all weights w’ such that «w'C(w) is oriented.
The main theorem states that

O(C(w)mp) = Ny,
i.e. the image of a cup diagram C(W),,, in N is the Kazhdan-Lusztig basis element
N,.
In particular, the coefficient in C'(W)y,, of a weight w' is the Kazhdan-Lusztig
polynomial, i.e.

cw'Clw) S
{v 2 if w'C(w) is oriented
Ny 0y =

0 if w'C'(w) is not oriented .

A similar result for type A has been proven by Jonathan Brundan and Catharina
Stroppel in [BS08a, 5.12|. They also use the language of cup diagrams and weights.
Note that the Kazhdan-Lusztig polynomials are all monomials which is a special
feature of the Hermitian symmetric case, see e.g. [Boe88].

In Chapter 4 the H-module Mp was introduced. The action of H on Mp is not
faithful. Having the graphical desription of the Kazhdan-Lusztig basis, we can give
a graphical description of this action. Besides this, a description of the quotient of
‘H which acts faithfully on Mp will be given in Chapter 6. This quotient turns out
to be a quotient of the generalized Temperley-Lieb algebra of type D,,.

The graphical description will be given in terms of decorated tangles. A tangle is
a collection of non-intersecting lines and circles, where the lines connect a given
number of points at the top and bottom face of a rectangle. Decorations are simply
dots on these circles or lines. Green described in [Gre98| the generalized Temperley-
Lieb algebra of type D,, in terms of these tangles.

Our cup diagrams are transformed into decorated tangles by cutting out the lower
part of the upper half of the tangle. This happens by cutting the cup diagram
between —1 and 1 and between n and n + 1. Free lines, connected to a point
between 1 and n become traversing lines in the tangle. The dots indicating linked
cups become decorations. In a way the decorated tangles are just the essential part
of a cup diagram, i.e. the part that holds all the information to construct the cup
diagram.

The action of H on the tangle basis is then given by concatenation of tangles and
factoring out a certain set of relations.
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In the final chapter the results about Kazhdan-Lusztig polynomials and the language
of cup diagrams will be applied to the calculation of the dimension of homomorphism
spaces between irreducible projective objects in the parabolic category Of. In this
setting the Kazhdan-Lusztig polynomials have a nice Lie theoretic interpretation.
Evalutated at 1 they count the multiplicities of simple objects as subquotients in
a composition series of parabolic Verma modules. This can be used to see that
dim hom(P(w), P(x)) = an@w(l)nw@x(l).

With the previous results it becomes clear that the product 1y, (1)n, (1) is 1 if
the weight w’ orients both cup diagrams C'(w) and C(z) simultaneously and is 0
otherwise.

To see how many weights orient both cup diagrams simultaneously one cup dia-
gram is transformed into a cap diagram by reflecting it vertically. Glueing this cap
diagram on top of the cup diagram we get a circle diagram. Orienting both cup
diagrams then is equivalent to orienting the circle diagram.

It turns out that we have to distinguish between three types of circles: First of all,
circles which can be oriented freely. Second, circles which can not be oriented and
third, circles which have a fixed orientation. These three types are easily distin-
guished via the number of outer points they traverse and in which way they cross
the middle.

Then calculating the dimension comes down to counting different types of circles.
If a circles of the second kind appears the dimension is 0. Otherwise it is Qbk(éﬂ’z),
where bk(w, x) is the number of circles of the first kind.

As a final step the calculation of the dimension is done in the language of decorated
tangles.
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2 Preliminaries: Coxeter groups of type D

We start out with some standard results and notations concerning Coxeter groups.
For further information and details I refer the reader the books of Bjoerner and
Brenti [BB05] or Humphreys [Hum92].

Let Z be the set of integers and the subset {—n,—(n —1),...,—=1,1,...,n— 1,n}
for some n € Z-y. We denote by S5, the group of all permutations of this set.
This group is a Coxeter group corresponding to the Dynkin diagram of type As, ;.
We denote the elements in such a permutation group by w. As generators we take

{t:}—(n-1)<i<n—1 where

(1,94 1) for1<i<n-1
ti=1{ (—i,—(i+1)) for —(n—1)<i<-—1
(~1,1) for i = 0

There several different ways of specifying an element in S5,. The notations we will
use in this thesis are:

e Generators: w =t;, - - -t;,, which we will read from left to right, meaning that
t;, is first applied, then ¢;, and so forth.

. . — —(n—-1) ... =1 1 ... —1
e Two line notation: w = " (n ) " " ,
a_n a_(n—1) ..o Q1 Ay ... Qp—1 Qp
meaning that w(i) = q;
e One line notation: w = [a_p, a_(—_1),...,0_1,a1,. .., Ay_1,ay), simply omitting

the upper line.

Consider the subgroup of all signed permutations in Ss,, i.e. the group consisting of
all elements in Sy, satisfying w(—i) = —w(i). This group is isomorphic to the Weyl
group of type B,,. A proof of this can be found in [BB05, Prop. 8.1.3|.

Writing these elements in one line notation we will introduce a | between a_; and
a; indicating the antisymmetry.

We call the elements a; to a, the upper or right half and in turn a_, to a_; the
lower or left half. Since the left half is determined by the right half we also write
elements in half line notation |ay, ..., a,|, omitting the left half.

In this thesis we will work with the Coxeter group of type D,,. This group embeds
into Sy, and, in particular, into the subgroup of signed permutations, which we will
prove in Chapter 3.2.

1
. .. 2 3 n—1 .
Consider the Dynkindiagram of type D,,: >—W -+ =0 with n points.

0
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Let W be the associated Weyl group. This is a Coxeter group. We denote the set of

generators by S = {so, s1,...,S,-1}. All the relations are of the form (s;s;)" =e
with
1 i=j
m;; = 3 if 7 and j are connected in the Dynkindiagram

2 otherwise

The cardinality of the group W is known to be n!-2""! [BB05, Appendix Al,
Table 1].

Remark 2.1. The element sy should not be confused with the element associated to
the added point in the affine Dynkin diagram of type D.

Write Zs for the multiplicative group {+1, —1}. In the following we omit the 1s and
only write down the signs.

Definition 2.2. Consider the group G := S, x (Z5/(][as = 1)) where the com-
position in G is defined to be (0,«) o (1,8) = (0 o 7,7(a) - 5), where 7(«) is the
permutation of the «; given by 7.

A {+,—}-sequence o may be written down set theoretically. We will write
{i1, ..., %9}, meaning oy, ..., q;, are "—" and the other «; are "+". The empty
set & corresponds to the sequence where all «; are "+".

The cardinality of G is n!- 2771,

Lemma 2.3. The Weyl group W 1is isomorphic to the group G via the map

pv: W — G
si = ((1i+1),9) forl<i<n-—1
so = ((1,2),{1,2})

Proof. The map ¢ is defined on generators. So first, we have to check that ¢ extends
to a well-defined group homomorphism, i.e. that it is compliant with the relations.
The subgroup generated by {si,...,s,_1} is isomorphic to S,. On this subgroup
¢ is the inclusion into the subgroup S, X {e}. In particular, all the relations not
involving s, are satisfied. So we only have to check the relations involving sy.

For ¢ > 2 all the ¢(s;) commute with ¢(sg) since the simple transpositions (1, 2)
and (4,7 + 1) commute and {1,2} is not changed by (7,7 + 1).

For i =1 we get

o(s0)p(s1) =
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For ¢ = 2 we get

90(50)90(32)90(50) = ((172)’{172})((273)’®)((1’2)7{1’2})
= ((172)(273)7 (273)'{172})((172)7{172})
= ((172)(273)(172)7{(172)'{173}} ) {172})
= ((273)(172)(273)’{173}
(2,3
(2,3

So ¢ is a well-defined group homomorphism.

Next we prove the surjectivity of (.

It suffices to show that (e, {i,i + 1}) € Im(yp):

Given an element (7, ) € G, 7 can be written as a composition of simple transposi-
tions o; := (4,74 1) and « can be written as a composition of elements two adjacent
minuses p; = {4, + 1}. Let now 7 = oy, ---0;, and a = pu;, - - - 15, be two such
expressions. Then it is obvious that (7, a) = ¢(s;,) - - - @(si, ) (e, pg,) - - - (e, pj,)-
Claim: (e,{i,1+ 1}) € Im(yp)

Proof of Claim by induction:

Induction basis, i = 1: ¢(so)¢(s1) = (e, {1,2})

Induction step, i ~» i + 1: Let g; = (e, {7,i + 1}) € Im(¢). Then

i 0 p(8i) © p(sit1) 0 p(5:) 0 P(sit1) © p(si) © gi 0 P(si1) = (e, {i + 1,0+ 2})

as calculation shows.
Since ¢ is a well-defined surjective group homomorphism, by comparing cardinalities
we see that ¢ is an isomorphism. O

Let W, be the parabolic subgroup of W generated by S, = {s1,...,s,-1}. Our goal
is to describe W,\W, the right cosets of W, in W.

In the previous proof we saw that the isomorphism above sends W, to the subgroup
S, x {e}. Consequently, W,\W = (S,, x {e})\(Sn x (Z5/]]as = 1)) bijects to
Zy/ ] = 1. These are {+, —}-sequences of length n with an even number of
minuses.

Definition 2.4. We denote the set of {+, —}-sequences of length n with an even
number of minuses by Ssym(n).

Elements are written down as |+, £,..., %]

n

Remark 2.5. The reason for using this notation will become clear in Chapter 3.2.
An explicit bijection will be given in Chapter 3.1.

We denote the set of shortest representatives for WW,\W by WP?, that means w € W?
if and only if [(sw) > l(w) for all s; € S,,.
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3 The bijection WP <5 Ssym(n) and an embedding
of W into 5,

3.1 Young diagrams

We can visualize {+, —}-sequences as diagrams of boxes drawn in the plane, so-
called Young diagrams. I will give the relevant definition and afterwards show that
the {4, —}-sequences in S, (n) are in bijection with a certain subset of the Young
diagrams.

Definition 3.1.1. A Young diagram is a finite set of boxes, arranged in left-justified
rows with weakly decreasing row length. To make descriptions clearer we assume
boxes to be of size 1 x 1 and the upper left corner to be the point (0,0).

The associated partition (A1, Az, ..., Ak)a>r>.>r, 1S the collection of the row
lengths written in decreasing order.

This notation of Young diagrams is called English notation.

Example. The partition (4,2, 1) is visualized by

In the following discussion all diagonals are considered to have slope —1. The main
diagonal is the diagonal going through the point (0,0).

Definition 3.1.2. Yj,,,(n) is the set of Young diagrams that are symmetric with
respect to the main diagonal, have an even number of boxes on the main diagonal
and fit into an n X n square.

Example.

| i 11 Yym(3).

| : is not in Ysym(3) because the number of squares on the main diagonal is

odd.
The partition (4,2,1) from the example before is not in Yy, (4) because it is not
symmetric with respect to the main diagonal.
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We can identify Sy, (n) and Yy, (n) via the following rule.

Consider the path from the lower left corner of the n X n square to the upper right
corner of the square such that all the boxes of the Young diagram are to the left
of the path and the empty space is to the right. Go to the middle of this path,
i.e. the point where the main diagonal intersects with the path. From this point go
along the path to the upper right corner and set pluses resp. minuses for every step
of length one. Set a minus for a step in vertical direction and a plus for a step in
horizontal direction.

Given a {+, —}-sequence we get our Young diagram the following way: Start at the
upper right corner of an n x n-square. Reading the sequence from right to left go
one step down for a minus and one step left for a plus. Reflect this path on the main
diagonal and fill the space to the left of this path with boxes. Denote the diagram
associated to a sequence « by y(«).

| + |-
Example. Consider € Ysym(3). The path looks like this: - So we

have the {+, —}-sequence |—, +, —] € Ssym(3).

Proposition 3.1.3. This construction yields a bijection

1:1

Ysym(") — Ssym (n)

Proof. We show that the construction assigns an element of S,,,,(n) to each element
of Yyym(n). Then it is obvious that one construction is inverse to the other. Hence
we have a bijection.

Consider a given element of Yy, (n). The number of boxes on the main diagonal
measures the distance from the last intersection of the main diagonal with the boxes
to the upper line of the square in which the diagram lies.

A wvisual example for this is

But this yields exactly the number of minuses occuring in the {+, —}-sequence
associated with the diagram. So the condition on the number of minuses resp. the
number of boxes on the diagonal is satisfied. The constructed {4, —}-sequence has
length n because the whole path has length 2n and we take half of the path. So our
sequence lies in Sy, (n).

The constructed Young diagram is by construction symmetric, and hence lies in
Ysym(n). So we get elements of the particular sets, and hence a bijection between
Ssym(n) and Ysym(n). O
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Together with the results of Chapter 2 we know there are bijections
1:1 1:1
Yoym(n) <= Sgym(n) <— WF.

We will now make these bijections explicit.

We start by describing an easy way to get reduced expressions for the elements in
WP, To do this we visualize the action of an s; on a Young diagram.

First, we examine the action of the s; on a {+, —}-sequence in Sy, (n). For
1 <4 < n—1 the element s; acts by switching the signs at positions ¢ and 7 + 1
while sg exchanges the first two entries and switches both signs.

Since the minuses are always generated at positions 1 and 2 an element gets longer
if a minus is switched with a plus to its right or if new minuses are generated. In our
{+, —}-sequence this means we have two cases. Either a switch (—,+) ~ (+, —)
appears, which translates into IS: or a switch (4, +) ~» (—, —) at positions 1 and 2

which translates into : on the main diagonal. Switches in the other direction,

- —— 4

of course, shorten the element and translate into the deletion of boxes. Getting an
element which is not in YW¥ means that the action does not change the sequence.
Now we describe the places where the boxes are added resp. deleted. From the
action of the s; we see that in the cases 1 < i < n — 1 the boxes are added resp.
deleted on the ¢th and —ith diagonal and in the case ¢« = 0 four boxes arranged in
a 2 x 2-array are added resp. deleted on the main diagonal.

To decide whether boxes are added or deleted one can simply try both. Only one
of the actions will yield a new Young diagram. That is the one we are looking for.
The notion zs ¢ W"* simply means “if the boxes are added or deleted the remaining
diagram is no longer a Young diagram”.

Consequence: A reduced expression for a shortest representative is simply an in-
struction how to add boxes to the empty Young diagram such that each step
yields a new Young diagram and the final diagram has the shape associated to our
{+, —}-sequence.

Denote the element in W associated to a Yound diagram y by w,.

Example. Take the Young diagram

To get our reduced expression we write the numbers of the diagonals on which they
are into the bores. On the main diagonal we work with boxes of size 2 X 2.

3

This gives us
—2|—-1

-3

So a shortest representative would be s9S953S1.
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With these results we get an explicit bijection between Sg,,,(n) and WP.

Proposition 3.1.4. We have a bijection

¢: Sym(n) 5 WP
« = Wy(a)
Proof. This is clear from the discussion above and Proposition 3.1.3. U

Remark 3.1.5. For w € W we denote the associated {4, —}-sequence by «,,. If the
meaning is clear from the context we will often write w instead of a,, and « instead
of Wy(a)-

Definition 3.1.6. The degree of antidominance of a {+, —}-sequence « is defined

d(|aq, ..., ap]) = Z i

Oti:—l

Applying Remark 3.1.5 we write d(w) instead of d(a,). In the next lemma we will
see how d gives us information about the change in cosets when multiplying an
element in W* by some s;. The previous consideration help us considerably with
the proof.

Lemma 3.1.7. Let w € W¥ and s € S. Then
1. d(w) < d(ws) implies that ws € WP and l(w) < l(ws).
2. d(s) > d(ws) implies that ws € WP and l(w) > l(ws)
3. d(w) = d(ws) implies ws ¢ WP.

Proof. First of all, we observe that if d(z) # d(y) then = and y represent different
cosets in W,\W. This is clear because the cosets are labelled by {+, —}-sequences
and d only depends on these sequences.

1. If d increases when multiplying w by s it means that either a "—" is switched
with a plus to its right or two minuses are generated at places 1 and 2. In both
cases the coset [ws] is different from [w]. In addition, we saw before that both
cases mean that a shortest representative for the coset [ws| is longer than a
sortest representative for [w]. Since [(ws) = [(w) £ 1, these facts imply that
l(ws) = l(w) 4+ 1 and ws has to be a shortest representative and hence in W¥.

2. In this case the argument follows the same pattern as in 1.

3. If d does not change when multiplying by a generator it means that no signs
are altered. A generator always operates on two places in the {+, — }-sequence.
Looking at how the s; operate we see that the degree of antidominance only
stays the same if s; does not change the sequence at all.

But this simply says that we stay in the same coset. Since w is a shortest
representative for this coset, [(ws) can not be I(w) — 1. This implies that
l(ws) = l(w) + 1 and hence ws is not in WP,
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Young diagram | {4, —}-sequence | Representative in WP

|+, +, +, +] e

‘_7_7+7+] S0

— ‘_7+7_7+] 5052

— ‘_>+>+7_] 505253

‘+a_7_a+] 505251

|+, —, +, -] 80525351

‘+7+7 _7_] 5052535152

BEREEEEE _] 505253515250

Figure 1: Illustration of Proposition 3.1.3 and Proposition 3.1.4

O

Example (Dy). The table in Figure 1 shows the elements in Ysym(n), Ssym(n) and
WP for n = 4 and illustrates which elements are associated by the bijections in
Proposition 3.1.3 and Proposition 3.1.4.

3.2 The embedding W — S5,

In this section we will describe how VW embeds into Ss,, and, in particular, into the
subgroup of signed permutations.
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Lemma 3.2.1. We can embed the group VV into S, via

v: W — Sgn
s; > tit; for1<i<n-—1
Sog — totit_1tg

Proof. First we show that U is well-defined. All relations not involving sq are satis-
fied in Sy,. Leaving out sy gives us W, which is isomorphic to S,. On W, the map
¥ is just a diagonal embedding of .S, into S,, x .S, C Sa,.

So we calculate the relations involving W(sy).

‘11(80)2 = totlt_ltototlt_lto = tot_ltltlt_lto =€

since t_; and t; commute.
If i > 2 then (W(s)¥(s;))? = e because all the elements in ¥(s;) commute with ¢,
t_1 and t;.
It remains to show that
U(s0)U(s1) = W(s1)¥(sp)
and
‘11(80)\11(82)‘11(80) = \I/(Sg)\II(SO)\I/(SQ).

\II(SO)\I’(Sl) :totltfltotltfl
= totlt_ltot_ltl
= totltot_ltotl
- tltotltfltotl
- tltotfltltotl
- tltotfltotlto
= tlt_ltot_ltlto
= \11(81)\1/(80)

@(80)‘1’(82)\1’(80) = @(80)‘1’(82)\1’(80)
& totit_1tol_otalolit_1ty = T_ololotit_1tot_oto
o tobit_ytolot _alatet 1to = Lot _olotyt_1t_oloto
=4 t1t_1t_olot1t_1 = t_otot1T_11_oto
=4 T_qt_ot _1t1tot1y = t_ot_11_olot o

t_lt_gt_l = t_gt_lt_g and tltgtl = tgtltg in Sgn. So ¥ is well defined.
Next we prove the injectivity of W. For this we find a combinatorial description of
the image of ¥ and calculate its cardinality. Comparing cardinalities we find that
U has to be injective.
Consider an element in S5, in one line notation

[y G (n1ys -y A1, Gy ey A, G
Claim. The image of ¥ is {o € S,|a; +a_; =0 and |[{t > 0:a; < 0}| is even} =: [.
Proof of claim. Obviously, the neutral element is in /.
Multiplying an element in I by W(s;)1<j<n—1 exchanges a_; and a_;_; as well as a;
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and a;q.

We denote the new elements by a;.

S0 a_j = a1, A_j—1 = G, Q; = a;1 and 5i+1 =a;. G j+a; =a_;_1+ aj+1 = 0.
This is the first condition for one of the new pairs. The calculation for the second
pair is done analogously. So the first condition is met. The second condition is still
statisfied because {ai,...,a,} is stabilised.

Multiplying an element with W(sq) exchanges (a_2,a_1) and (aq,as). A calculation
similar to the one above shows that the first condition is still satisfied.

From the first condition follows that if a_; is bigger than 0 then a; is smaller than
0 and vice versa. The same holds true for a_s and as. So we either exchange two
elements that are bigger than 0 for two that are smaller or we exchange one that
is bigger than 0 and one that is smaller than 0 for two elements with the same
property. But this does not change the parity of the set {i > 0: a; < 0}.

So applying ¥(s;) for any i to an element in I gives another element in I. Hence
the image of U is contained in /.

If we have an element in 7, we can construct this element from the W¥(s;). Start with
e. Use the U(s;) to move the entry a, to the place n. The condition a_; + a; = 0
ensures that the element, which ends up at the place —n is the right one. Do this
inductively down to 2. The second condition then ensures that the elements standing
at places +1 are the right ones. So our claim is proven.

Now we calculate the cardinality of I: Because of the second condition we can choose
2¢ numbers between —n and —1 that will be put at a place between 1 and n. By the
first condition this gives us also all the numbers between 1 and n which will be put
at a place between —n and —1. Consequently, we also know the positive numbers
that stay between 1 and n, and hence all the numbers that are at places 1 through
n. The remaining thing to do is choosing an order for these n elements. The order
of the other elements is defined by the first condition.

Counting choices we get

n n 2n
n n—1 n—1 n—1

I| = I =nl =nl =nl.2" 1

1 Zi:o (m)" ”;O(( 2i >+(2i+1>) ”;O( i ) "

The first sum should only run up to [%|. But all the other summands are 0 so the

2
upper bound does not matter as long as it is big enough, which is the case here.
Same goes for all the other sums. In the middle term we sum over the even and the
odd numbers. So alternatively we can sum over all numbers.

Thus we see that |I| = [JV| so ¥ has to be injective. O

Corollary 3.2.2. W can be realized as a proper subgroup of the group of signed
permutations.

Proof. The first condition on [ in our proof simply says that w(—i) = —w(i). This
is exactly the condition we have on the group of signed permutations. So the group
im(¥) is contained in the subgroup of signed permutations in Ss,. So we even get
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inclusion of the Weyl group of type D,, into the Weyl group of type B,,.

This is a proper inclusion since we have the additional condition that the number
of 1 > 0 with w(i) < 0 is even, which simply means that we get an even number of
minus signs in the right half of our permutation. O

With Corollary 3.2.2 the notation of {+, —}-sequences in Chapter 2 becomes clear.
With the previous chapter we see that in Sy, (n) we simply record the signs of the
upper half of a signed permutation w € S,, written down in one line notation. The
| on the left side indicates the antisymmetry of the full {4+, —}-sequence of length
2n.

4 The Hecke algebra and the Kazhdan-Lusztig
polynomials

We recall the standard setup of Hecke algebras and Kazhdan-Lusztig polynomials
which will then be applied to our special case in the following section.

4.1 Definitions and standard results

Kazhdan and Lusztig introduced in [KL79| the Kazhdan-Lusztig basis for Hecke
algebras and the Kazhdan-Lusztig polynomials. Since then, the Kazhdan-Lusztig
polynomials have proven to have many Lie theoretic interpretations and applica-
tions. The parabolic versions of Kazhdan-Lusztig polynomials were introduced and
studied by Deodhar in [Deo90].

As indicated in the introduction, we follow with our definitions, notation and con-
ventions Soergel [Soe97].

Let (W, S) be a Coxeter system. So W is a group with generators s; € S and re-
lations s? = e and (s;s;)™7 = e for some m;; € N\{0} U {oo}. Let [ : W — N
be the length function and < the Bruhat order, meaning that w’ < w if and only
if there exists a reduced expression for w such that the expression starts with an
expression for w’ [BB05, Def. 2.1.1]. We define £ to be the ring Z[v,v™!] of Lau-
rent polynomials in v. We consider the free £-module with basis {H,|w € W},
H=HW,S):= P LH,.

weWw
On this module there exists exactly one structure of an associative L-algebra sat-

isfying HyHy = Hyyw if [(w) + I(w') = [(ww') and H? = 1 + (v! — v)H,.
This can also be described via the braid relations H,H; ... H, = H;H, ... H, resp.
HH,.. H o =H/H,.. H/if st...t=1s...sresp. st...s=ts...tfors,te S. All
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the H, are invertible by H; ' = H, + (v —v~!) and, consequently, all the H,, are.

In the case of type D,,, the type we are interested in, we have the relations
s?=e 0<i<n-—1

SiSj = §;S; if ¢ —j| > 1, fori,5 > 1 or {i,j} = {0,1}

5i5;8; = 5j5;5; otherwise

On H we define an involution  : H — H, sending v to v~ and H,, to (H,-1)"'.
We call H € H self-dual if H = H.

The following theorem defines the Kazhdan-Lusztig basis elements. For convenience
we recall its proof.

Theorem 4.1.1 (Kazhdan-Lusztig). For allw € W there exists exactly one self-dual
H,eH with H, € H,+ ), vZv|H, (D).

Proof. Tt is easy to calculate that H, = H;' = H, + (v —v7!), ie. C,:= H, + v is
self-dual and satisfies (A).
Multiplication by Cs in ‘H is given by the formula

H.C. = H,, +vH, ?fws>w
H,« +v1'H, ifws<w.

We now prove the existence of H,, via induction on the Bruhat order. We prove the
stronger
Claim: For all w € W there exists a self-dual 4, € H with

H,€H,+ Z VZ[V|H

w!' <w

Obviously we can start our induction with H, = H, = 1.
Take now w € W and let H,, be known for all w’ < w. If w # e we find s € S such
that ws < w and by induction hypothesis we have

ﬂwscs =H, + Z P H oy

w!' <w

for some h,, € Z[v]. Now we get

ﬂw = ﬂwsos - Z hw’(o)ﬂw/‘

w! <w

H,, is self-dual since the H,,, Cs and h,s(0) are. In addition all coefficients lie in
vZ[v] since all the coefficients except the one in front of H,s in H, do and all the
absolut terms generated in H,, ,C; are subtracted.

This proves the existence. To prove uniqueness we prove the following

Claim: For H € Y vZ[v|H,, H = H already implies H = 0.
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Proof of Claim. With our previous calculations we see that H, € H,+ > LH,,
w! <w
and hence H, € H, + > LH, = H, + > LH, for all w € W. Writing
w!' <w w/ <w

H = > hy,H, we can choose w maximal with h, # 0. By taking H we do not
get any h, # 0 with z > w, consequently, we must have h, = h,,. But this is not
possible if h,, € vZ[v]. This proves the claim.

If we had two different elements satisfying the conditions of the proof we could
subtract one from the other and use the claim to see that the difference has to be
0. So our theorem is proven. O

The proof gives us an algorithm to compute the Kazhdan-Lusztig basis. The
parabolic version of the algorithm is used at the end of this section to compute
a parabolic version of the Kazhdan-Lusztig basis in an example.

Definition 4.1.2. For w,w’ € W we define the Kazhdan-Lusztig polynomials
hw’,w €L by ﬂw = Zw/ hw/,wHw/-

Remark 4.1.3. Although we have the inclusion W — S,,;, we do not have the corre-
sponding inclusion H(W) < H(S,) of Hecke algebras for generic v.
For example in (W) we have the relation

H? = H.+ (v' —v)H,,.

For 1 <i < n —1 this would be mapped to H, + (v"! —v)Hy, ,,.,. On the other
hand H,, would be mapped to Hy, ., ,. But with £,_; and ¢,,; commuting we have

2 _ 2
th—itn+i - (thfthnJri)

2 2
th—i th-&-i

= (He+ (v —v)Hy, )(He+ (v —v)H,,,,)
= He + (/U_l - ’U)(thfz + th+i) + (U_l - ’U)2th7itn+i'

However, specializing at v = 1 results in all relations being satisfied and we get an
inclusion of algebras.

We now pass to the parabolic case, which is our main interest.

Let S, C S a subset and W, = (S,) C W the subgroup generated by S,. We denote
by WP C W the set of representatives of minimal length for the right cosets W,\IW
and by H, = H(W,,S,) C H the Hecke algebra of (W), S,). The quadratic relation
H? = H.+ (v™' —v)H, can be written as (H,+v)(Hs —v~') = 0. This implies that
by letting H act on £ as —v for all s € S, £ becomes a right-#,-module.

Now we induce and define the right H-module

N:NPZL:@HPH

This module is usually referred to as a parabolic Hecke module.
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Lemma 4.1.4. The elements N, = 1 ® H,, for w € WP form an L-basis of N.

Proof. We have a bijection of sets W, x WP — W via multiplication. So every
element H, € H can be written uniquely as H,,H,, with w" € W, and w € WP,
Since we tensor over H, we see that the N, generate N. Since the H,, for w € W?
are L-independent over H the N, are, too. O

Proposition 4.1.5. The multiplication rules for the Cy in NP are:

Nys + Ny, if ws € WP and ws > w
NuwCs =< Nys +v N, if ws € WP and ws < w
0 if ws ¢ WP

Proof. The first two cases are clear from the rules for the H,. For the last case we
need the following observation: If [(rws) < l(ws) then we have rws = w. Take a
reduced expression s;, - --s;, for w. Since [(rws) < l(ws) we know by the strong
exchange property [BB05, Thm. 1.4.3] that rws is equal to s;, - - s;, s with one of
the s;; or the s deleted. But since s;, - - - s;, is reduced the superfluous term has to
be the 5. Otherwise s;, - --5;, - - - 55, would be an expression for w of smaller length.
Now if ws ¢ WP means that there exists an r € S, with [(rws) < l(ws), i.e.
rws = w. But this means that rw = ws. Furthermore we have {(rw) > l(w) since
w € WP, and hence l(rw) = l(w) + 1 =1(r) + l(w).

Consequently, if ws > w, we have

N,Cs =19 H,Cs = 1®(Hys+vH,) = 1®(H.H,+vH,) = —v®H,+1®vH, = 0.

On the other hand, if ws < w we have rws = w and [(rws) = l(w) = [(ws) +1 =
[(r) + l(ws). So
N,Cs = 1® H,C;
1® (Hys + v 1H,)
= 1® (Hys +v 'H, Hys)
= 1@ Hys —v®@v 'H,, =0.

The proposition follows. 0

As on H we define an involution a ® H — a ® H on N. Elements n € N with
N = N are called self-dual. We have a theorem analogous to Theorem 4.1.1.

Theorem 4.1.6. For all w € WP there ezists a unique self-dual N,, € N with

N, € Ny, + ZUZ[U]Nw/.

w/

Proof. The proof is completely analogous to the one in H. O
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Definition 4.1.7. For w’,w € W? we define the parabolic Kazhdan-Lusztig polyno-
mials Ny € Z[v] by Ny = D N N

w’' WP

Example (Kazhdan-Lusztig polynomials in our parabolic D, case).
Consider the case where W is the Weyl group of type Dy and W, is the subgroup
isomorphic to Sy. Recall the list of shortest representatives for W,\W :

s I e B e B e e I e I e |++—-] |—-——-]
e S0 5052 505253 505251 50525351 5052535152 505253515250
We write Ny, i, for st-l---sz-,c-
We get:
ﬂe : ﬂe - Ne
Noy i NoCo = (No+vN)Cyo = NgCy +v  N.Cy = Npg +vNy = Ny,
~——
=0 da sa¢WP
Noos : NgoCs = (Noz + vN2)Cs5 = NpoCs + v NoCs = Nogz + vNg2 = Nog
=0
Noor : Nyoy = Noa1 + vNo2 analogous to Ny
N oz : Ngp3C1 = (Nozg + vNg2)Cr = NoasCi + vNgoCy
= Nozs1 + vNoas + vNoa1 + v Noz = Noosy
Noozia Nooz1Co = Noaz1Co + v NyazCo +v Nog1 Cy +v2 Noo Co
S~—— S~——

=0 —0
= Nogg12 + vNp231 + 712(]\70 + v No2)

= Nozs12 + vNo2s1 + vNog + v* Ny = Nos1o

Nogzizo © Noogi12Co = Nogsi12Co + v Noasi C +v NoaCoy +0* NoCo
=0 =0
= Nozs120 + vNozs12 + vNg + v°Ne = Npa199

So we get the following table of Kazhdan-Lusztig polynomials:

/

w' in H € ‘ So ‘ SpS2 ‘ 505253 ‘ 505251 ‘ S05253S51 ‘ 5052535152 ‘ 505253515250
e Ilv| 0 0 0 0 0 v?
S0 1 v 0 0 0 v? v
S0S9 1 v v v? v 0
S0S2S3 1 0 v 0 0
SpS251 1 v 0 0
50525351 1 v 0
5052535152 1 v
505253515250 1
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Remark 4.1.8. We see that the calculation of Kazhdan-Lusztig polynomials is not
that easy and involves rather cumbersome calculation.

This, of course, raises the question if there is any interpretation of the Kazhdan-
Lusztig basis or the Kazhdan-Lusztig polynomials that gives us an easier, maybe
even closed, formula.

Remark 4.1.9. Another observation is that the 7, ,, even lie in N[v]. This turns out
to be true in all our cases. In general however, this is a non-trivial result.

4.2 The parabolic type D case

From now on we consider the special case where W is our Weyl group W of type

Definition 4.2.1. The weight associated to an element w € WP is obtained from
oy, by first extending the {4, —}-sequence with n pluses to the left and n minuses
to the right and then replacing every "+" with a "V" and every "—" with an "A".
We call the n pluses and n minuses by which we extended the sequence frozen. The
weight is denoted by wy.

The reason for extending the weight to the left and right will become clear in the
next chapter.
Consider the free £-module Mp with basis consisting of these weights.

Lemma 4.2.2. The L-modules Mp and N are isomorphic via extending the bijec-
tion ¢ from Proposition 3.1.4 L-linearly.

Proof. ¢ is a bijection between Sy, (n) and WP and hence between the weights and
WP. This bijection sends a L-basis of Mp to a L-basis of A/. This bijection extends
to a L-module isomorphism. We call this isomorphism ® : Mp — N. O

Since N is a module for the Hecke algebra we get an induced action of H on Mp.
Define for m € Mp and h € H

m.h == & H(®(m).h).

This turns Mp into an H-module. Calculating the action of the H,, on the
{V, A}-sequences gives us

(w.8;)va if d(w) (w.s;)
wyn.Hs, = € (w.8;)yn + (v —v)wyn  if d(w) (w.s;)

—VWyA if d(a) = d(w.s;)

<d
> d
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The action of H on the {V,A}-sequences gives us also an action on the Young
diagrams.

Recall the action of the s; on the Young diagrams. With this information the actions
of H on N translate in terms of boxes into the rule:

"If you can add the boxes, simply add them. If you can delete the bozes,
remove them and add the old diagram (v=' — v) times. If you can do
neither just multiply by v."

Example (Some examples in case Dy).

The first picture depicts the desired action. The second picture shows the possibilities
of extending the diagram resp. deleting boxes. The blue boxes are the ones possibly
added, the red boxes with the D are the ones possibly removed. The last diagram is
the result.

Hy, = [~ H,, =
1
—1 1
Hy = IS Hy, =0
3
[ ] [D] | [ ]
] Hyy = 0 Hy, =[] +w™t =) 7
[ | D) [ |

5 A graphical description of Kazhdan-Lusztig
polynomials

In this chapter we will prove our main theorem and give a graphical way for calcu-
lating the Kazhdan-Lusztig polynomials in our parabolic case.

5.1 Cup diagrams

To define a cup diagram associated to a {+, —}-sequence we first define a matching
and modify this matching afterwards to get our cup diagram.

Definition 5.1.1. Let P :={-2n,...,—1,1,...,2n} C Z C R? be integers viewed
as points on the number line.
A matching is a diagram consisting of 2n non-intersecting arcs in the lower half
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plane R x R, connecting the 4n points without intersections. In particular any
point in P is connected with precisely one other point in P via an arc.

Definition 5.1.2. Given a {+, —}-sequence « the corresponding matching is de-
noted M («) and defined as follows:

First extend « by n pluses to the left and n minuses to the right. Then construct
the arcs in a way that each arc connects a "+" with a "—" and the index of the
point with the "+" is smaller than the index of the one with the "—".

The first question arising is of course the question if such a corresponding matching
is well-defined. The next lemma clarifies this question.

Lemma 5.1.3. Given a {+, —}-sequence « then M («) ezists and is well-defined.

Proof. Start with the points where a "+" is directly left of a "—".

Claim: These two points have to be connected.

Proof of Claim. If these two points were not connected then the minus would have
to be connected to another plus left of the first "+". This arc divides the lower half
plane into two connected components. All minuses to the right of the first "—" are
in one connected component, while our first "+" is in the other. But the first "+"
would have to be connected to one of these minuses without intersecting the given
arc and hence without leaving the connected component; a contradiction.

Since two points of the form above have to be joined, they can be connected and
then ignored. But this ignoring gives us again a {4+, —}-sequence where adjacent

points labeled with "+4" and "—" in this order have to be connected. This gives us
inductively our matching, which is obviously unique. O
Example.

Toke [+——+|—++—|. Extending givesus [+++++— —+|—-++—— — — — ].

Now we have to connect the pluses and minuses. We start with the places where a
plus is next to a minus. Working our way up we get

e B

N AN

Remark 5.1.4. The construction of extending the sequences was motivated by [Str09].

Definition 5.1.5. The cup diagram C(w) associated to an element in W* is obtained
from the matching M (a,,) by “pairing” the arcs crossing the middle. Starting from
the point (0,0) we take the first two arcs crossing the middle. We exchange their
starting points and put a decoration on the intersection indicating that they are
linked. We continue this process with the next two arcs until no unlinked arcs
crossing the middle are left.
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By “end” or “ending point” of a cup we mean the right end of the cup and conversely
by “start” or “starting point” the left end.
We denote the set of cup diagrams obtained from elements in W* by C'(WP).

The next lemma shows that the construction of such a cup diagram always works.

Lemma 5.1.6. For all w € WP the number of arcs crossing the middle in M (cv,)
s even.

Proof. The number of arcs crossing the middle is given by the formula 2n—2- 3 1.
a;=+1
i>0
The sum simply counts the number of pluses on the right half of the sequence. Every
plus there is connected to a minus on the right half. The remaining minuses have to
be connected to the left half and their number can obviously be calculated by the
formula. But the formula gives us an even number so the number of arcs crossing

the middle has to be even. O

Example.
Take the example from above. The first two arcs crossing the middle are the arcs 1
and 2, drawn in red.

e

\
&

Now we switch the starting points and get

+++++——+—+ —————

==

Doing the same with the two remaining arcs that cross the middle we get our final
diagram

ﬁ
\

To summarize:
Proposition 5.1.7. There is a bijection

wr — COWVP)
w = C(w)
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Proof. To two different elements in WP we associate two different {+, — }-sequences.
To these sequences we obviously associate two different matchings and as a con-
sequence two different cup diagrams. So the map is injective. It is surjective by
definition and hence a bijection. O

In Definition 4.2.1, to every element in W? we associated a weight. Because of the
extension we can glue the weight associated to a w’ € YW* on top of a cup diagram
C(w). This gives us a new diagram, denoted w'C(w).

Definition 5.1.8. A cup is called oriented if it is labeled by exactly one "A" and
one "V". This goes for linked cups, too. They are treated as if they were single
cups. The decoration has no meaning for the orientation.

A cup diagram w'C(w) is an oriented cup diagram if each cup is oriented.

We denote by cl(w'C(w)) the number of clockwise oriented cups in an oriented cup
diagram w'C(w), i.e. oriented cups of the form A_Y.

Remark 5.1.9. For linked cups the antisymmetry of the weights implies that both
cups are oriented in the same direction.

To every cup diagram we associate an element in Mp called C'(w),y,. Define

cl(w’ C(w))
C(w)uyp = Zv > w,

where the sum is over all w{,, € W” such that w'C(w) is oriented.

Example.
Taking our diagram C(w) from above and glueing the weight corresponding to
[—+ 4+ —|+——+] on top we get

This is not oriented because of the red arcs.
Glueing the weight corresponding to w' = [— 4+ — + | — + — +] on top gives us

which is oriented and has cl(w'C(w)) = 2.
So in C(w), the coefficient for the first weight would be 0 and the coefficient for
the second one would be v.
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Next we analyze the difference between the cup diagram C(w) and the cup diagram
C(ws;) in the case that [(ws;) > l(w) and w,ws; € WP. If multiplying w by s;
yields a longer element in W* | this means for the {4, —}-sequence we have either

@) |eim ]~ b =]

(b): [++..]~|——..]

Now we have to translate these changes into cup diagrams. For this we consider
the reflected antisymmetric part, too and add the pluses resp. minuses we need to
connect all the given pluses and minuses according to our construction rules for cup
diagrams.

In the first case we have to connect the minus in the first sequence to a plus to the
left. We have to distinguish whether this plus is on the upper or the lower half of
the full sequence. This gives us the cases (a.1) and (a.2).

+ -+ - -+ - + + - -+ + - -
R NNV
(a2) o jz 22117 a o :z ti117 a

In the second case we do not have to distinguish two cases. Completing the cups
gives us

1 2

ERSYACVAN P,

5.2 The Kazhdan-Lusztig basis described as cup diagrams

The following provides a graphical description of the Kazhdan-Lusztig basis from
Chapter 4.1 in our special case.
In this section we will prove our main

Theorem 5.2.1 (Graphical Kazhdan-Lusztig basis). The image of a cup diagram
under the isomorphism ® is the corresponding Kazhdan-Lusztig basis element.

O(Clw)ay) = N

—w

The crucial step for the proof is the following proposition which reveals the connec-
tion between the Kazhdan-Lusztig polynomials and the coefficients in front of the
weights in our cup diagrams.
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Proposition 5.2.2. The Kazhdan-Lusztig polynomial nyy ., s

Aw/Cw) o
{v 2 if W' C(w) is oriented

0 if w'C(w) is not oriented .

1 ifw =e
Proof. We prove this by induction, starting with N, = N, i.e. ny . = ) .
0 ifw #e

e=[—...—|+...4] so we get the cup diagram

n n

—2n —-n -1 1 n 2n

Now we determine the possible weights. First, we have to take the “frozen” orienta-
tions into account. Between —2n and —(n+1) we get n "V"s and between n+ 1 and
2n we get n "A"s. So the only possibility to get an oriented diagram is the weight
V...VA...A|V...VA...A] which corresponds to e. There are no clockwise ori-
—— —— \/—/W—/

N frozen n n frozen

ented cups so our formula gives us exactly the Kazhdan-Lusztig polynomials n, .,
and hence the basis for our induction.

Now we do the induction step case by case. Assume that the formula holds for all
w' < w=s;---s;. We have to calculate ﬂwsik Csik. We know how s;, acts on the
cup diagram C(ws;, ) and on the weights. We check that this action coincides with
the multiplication of N, by C, . So it comes down to checking the multiplication
of N, with C,, for all Nw/ appearmg in N, . From Proposition 4.1.5, which gave
us the multlphcatlon rules, we see that we have to check three cases.

L. w's;, > w' and w's;, € WP:
If w's;, > w'" we get the multiplication rule N,,Cs, = Ny, +vN,y. In terms of
oriented cups this means that we should have cl(w’s; C(w)) = cl(w'C(ws;,))
and cl(w'C(w)) = cl(w'C(ws;,)) + 2.
We recall that for a weight getting longer means exchanging an "A" at ¢;, with
a"V"at iy + 1 for 1 <ip < n —1resp. exchanging two "V"s at 1 and 2 for
two "A"s if i, = 0.
At the end of the previous chapter we saw, how the cup diagrams change when
the element gets longer. These are the three cases (a.1), (a.2) and (b) which
we have to work through.

(a.1) Z“Hl
For \U \J ‘ ) \(J to be oriented (because N, appears in N, k)

i i + 1
we have to have the orientation (' X ‘ X2 (. None of these
cups are oriented clockwise.
The part of the weight that is interesting for our calculation is
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VAV A|VAVA. Applying s;, to the old weight, the part of the new
weight is VVAA |V VA A. Now we set these parts of the weights on top
of our new cup diagram.

i + 1
For our new weight we get w w This diagram is ori-

ented and has no clockwise oriented cups. So the coefficient for Nus;,

does not change which is exactly what we wanted.
i 4 1

For our old weight we get w w This diagram is also ori-

ented and we have two additional clockwise oriented cups. This coincides
with the formula we expected.

The considerations for the other cases follow the same pattern. So I will
give only the relevant information, namely the old oriented cup diagram, the
new weights and the new oriented cup diagrams plus the changes in clockwise
oriented cups.

(a.2)

i i+ 1
no clockwise ori-
ented cups

Old oriented diagram:

Weights: VVAV|AVAA ~ VVVA|IVAAA

New diagrams:

New weight: U U N N oriented and no
new clockwise

oriented cups

Old weight: U U N N oriented and two
additional  clock-

wise oriented cups

Old oriented diagram: w w no clockwise ori-

ented cups
Weights: VVAA|[VVAA ~ VVVV|IAAAA

New diagrams:
1

2
NNNA
New weight: &:&/ oriented and no
new clockwise

oriented cups
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additional  clock-
wise oriented cups

AN A VN
Old weight: g‘:y) oriented and two

So in all the cases we get only oriented cup diagrams and the number of
clockwise oriented cups changes exactly as required.

. w's;, <w' and w's;, € WP:

In this case we have the multiplication rule Nw/Csik = Nw/s% + v !Ny In
terms of oriented cups this means that cl(w’s; C(w)) = cl(w'C(ws;,)) and
c(w'C(w)) = cl(w'C(ws;,)) — 2.

We recall that getting shorter for a weight means exchanging an "A" from
1 + 1 with a "V" at 7 for 1 < i, <n — 1 resp. exchanging two "A"s at 1 and
2 for two "V"s if i, = 0.

The considerations are analogous to the ones before. So again I will give
only the old oriented cup diagram, the new weight and the new oriented cup
diagrams plus the changes in clockwise oriented cups.

Again we work through our cases (a.1), (a.2) and (b).

(a.1) ik 1

Old oriented diagram: U U ‘U U 4  clockwise ori-

ented cups
Weights: AVAV|AVAV ~ AAVV|[AAVV

New diagrams:
i i + 1

New weight: w w oriented and 4
clockwise oriented
cups

i + 1

Old weight: w w oriented and only 2

clockwise oriented

cups
(a.2) .
i 141
ANANY A A
Old oriented diagram: w 4 clockwise ori-
ented cups

Weights: AAVA|[VAVV ~ AAAV|IAVVYV
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New diagrams:

i 1+1
New weight: A A U U oriented and 4
clockwise oriented
cups

i 141

Old weight: AANXD | W oriented and only 2
clockwise oriented
cups

(b) o

Old oriented diagram: w A A 4  clockwise ori-

ented cups

Weights: AAVV|AAVV ~ AAAA|VVVYV

New diagrams:

1 2
ANANANA
New weight: \&% oriented and 4
clockwise oriented
cups
1 2
A A AN A
Old weight: \&J oriented and only 2
clockwise oriented
cups
3. w's;, ¢ WF:

This time the multiplication rule is Nw/C’Sik = 0. This means that all the
diagrams we get are not oriented. If w’ after multiplication with s;,_ is not in
WP this means that the associated weight does not change. For 1 <, <n—1
this means we have either two "V"s or two "A"s at 4 and ¢+ 1. If i, = 0 we
have either a "V" at 1 and an "A" at 2 or vice versa. Since we get the second
cases simply by inverting the first ones I will describe only the first cases.
The considerations are similar to the ones before. So again I will give the
old oriented cup diagram and show the new diagram with the old weight.
According to our multiplication rule this should not be oriented.

(a.1) o
Old oriented diagram: A ‘ X 2 clockwise ori-
ented cups
ipip + 1

New diagram: w w not oriented
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(a.2) :
i 1+ 1
A A A A
Old oriented diagram: w 2 clockwise ori-
ented cups
i 1+ 1
New diagram: A AN U N not oriented
(b) L

Old oriented diagram: w w 2 clockwise ori-

ented cups
1

A \&‘L N
New diagram: not oriented

N

>

So our formula matches our multiplication rule. The only thing left is the ques-
tion whether there are any weights which give us an oriented diagram besides those
coming from the calculations above. But looking at cases 1. and 2. we see that all
possible orientations of the new diagram occur. So no additional weights occur.

Finally, we may have to subtract those terms having a constant term in the coeffi-
cient. In terms of diagrams this would mean that we would have an oriented cup
diagram with no clockwise oriented cups. But there is exactly one weight leading
to such an oriented cup diagram, namely the weight corresponding to w. Hence
there does not occur any other polynomials with constant terms and we get that
N, = ﬁws% Cs,, - This finishes our proof. O

Proof of the Theorem 5.2.1. Proposition 5.2.2 tells us that the coefficients in C'(w) py,,
are the Kazhdan-Lusztig polynomials. Hence the image of a cup diagram is the
Kazhdan-Lusztig basis element. O

Remark 5.2.3. From the proof of Proposition 5.2.2 we see that in our case for all
w € WP with w = s;, ---s;, an arbitrary but fixed reduced expression we have
Mw = Mecsil o Oszk

Elements for which the Kaszhdan-Lusztig basis element has this property are called
Deodhar. They were first studied in [Deo90|. In joint work with Warrington and
Jones respectively, Billey classified Deodhar elements first for type A in [BW01| and
then for general type in [BJO7].

k
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Example. We now calculate some Kazhdan-Lusztig basis elements for n = 4. We
already did this the old fashioned way at the end of Chapter 4.1. We will now do
two examples using cup diagrams.

The weights are:

Element in WP Weight

e ANAN|[VVVV
S0 AANVV|ANAVV
S0S2 AVAV|AVAV
S05283 VAAV|AVVA

[ ]
[ ]
[ ]
[ ]
508281 ANVVAIVAAV]
[ ]
[ ]
[ ]

S0825381 VAVA[VAVA
5052535152 VVAA ’ VVAA
505253515250 VVVYV ’ ANNN

Consider the cup diagrams associated to SoSos3 and S9S2S381S2:

The gray line indicates the middle. The frozen orientations are to the left of the left
dashed gray line and to the right of the right dashed gray line.

Now we set the weights on top of the cup diagrams. The pictures are shown on
page 32 and page 33. The first column indicates the weight while the middle column
shows the cup diagram with the weight. Cups that are not oriented are drawn in red
while cups that are clockwise oriented are marked in green. In the last column the
Kazhdan-Lusztig polynomial is calculated via the formula in Proposition 5.2.2.

Figure 2 gives us the Kazhdan-Lusztig basis element

N = Nisgsyss T VNsgs,.

=2 505283

Figure 3 gives us the Kazhdan-Lusztig basis element

2
N = N80825381 + /UNS()stl + UN805283 +v N8052‘

£¥ 50528381

These results coincide with the results in the example at the end of Chapter 4.1.
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Element in W*

Cup diagram C/(sps2s3) with weight

Kazhdan-Lusztig

polynomial

e 0
S0 0

2
S0S2 v2 =0

0
S052S3 v2 =1
505251 0
505925351 0
5052535152 0
505253515250 0

Figure 2: Example w = 505253
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33

Element in W?

Cup diagram C/(sps28381) with weight

Kazhdan-Lusztig

polynomial

e 0
S0 0

4 2
5052 V2 =0

2
505253 v2 =0

2
505251 v2 =0V

0
50525351 v2 =1
5052535152 0
505253515250 0

Figure 3: Example w = 509525351
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5.3 Connection with Brenti’'s work

Brenti calculated the Kazhdan-Lusztig polynomials for our case already in [Bre09].
He approached the calculation via certain diagrams of boxes. He used skew shifted
partitions and a property called s-Dyck. In the following I give a short overview and
relate it to my work.

We get a shifted partition from one of our Young diagrams in Y, (n) by deleting
all the boxes on and below the main diagonal and rotating the remaining diagram
by %w counterclockwise. If A and p are shifted partitions and all the boxes of y are
also boxes in A\ we get a skew shifted partition \\p by deleting all the boxes in
from \.

Example.

A= € Yaym(6) ~ =

We have the obvious notion of “above” and “below” for the boxes in a skew shifted
partition. A skew shifted partition that contains no two boxes stacked one directly
below the other is called a border strip. If the border strip is connected it is called
a cbs. In a cbs we enumerate the boxes from left to right as shown in the next
example. If n is a skew shifted partition the top boxes form a border strip called
0(n).

For example the skew shifted partition A\x in our example is a border strip but is
not connected.

The next thing we need is the notion of the level of a box, which is nothing else
than the height of the box above the baseline.

Now let € be a cbs. We say that 6 is almost Dyck if the level of all boxes is higher
or equal the level of the first box. It is called Dyck if the level of the rightmost box
is the same as the level of the first box.

To a cbs 6 we associate fg. Let x be the box with highest number such that its level
is the same as the level of the first one. For all boxes with higher index than x the
box directly below is added to 6. This gives us fg.
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Example.

The bozes with the same level are: boxes 1, 3, 5 of level 1; boxes 2, 4, 6 of level 2;
bozes 7, 9 of level 3 and box 8 of level 4.

Bozx five is the rightmost having the same level as box one. Hence we add the boxes
below siz through 9 which leads to the diagram

Os =

The crucial definition of the paper is the notion of being s-Dyck. A skew shifted
partition 7 is defined to be shifted Dyck or s-Dyck in the following inductive way:

1. nis s-Dyck if and only if each one of its connected components is s-Dyck
2. if n is connected, then 7 is s-Dyck if and only if:

a) the outer border strip 0 of 7 is almost Dyck, 05 C 7, and |0s\0)| is even
b) n\bs is s-Dyck

Finally, we need the notion of the depth of an s-Dyck skew shifted partition. Let n
be such a partition then the depth dp(n) is defined to be the sum of the depths of its
connected components and if 7 is connected dp(n) = 1 + dp(n\bs) with dp(2) = 0.
Brenti works with the conventions of Kazhdan and Lusztig for the Kazhdan-Lusztig
polynomials. His polynomials are called P, , and corresponds to our n,,, via

nw/,w(v) _ Pwl’w(,l)72)vl(w)fl(w/).
Brenti proves the formula

P B q%(‘)‘\ﬂ‘*dp()‘\ﬂ)) if )\\Iu is S_Dyck
whw\d) = 0 otherwise

with A the partition corresponding to w and p the partition corresponding to w'.

Example. Consider N, . .. s,s0 € H(D4). By the results in the ezample at the end
of Chapter 4.1 this is the element N s,s5s15050 + VNspsaszsiss T VINsy +VNe. We have
the corresponding shifted partitions

W = 505283515259 — W1 ‘= 5052535159 = S = <>
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The element e corresponds to the empty partition.
Now we calculate the polynomials Py, and -

Pyw: A\ is oviously the empty partition and has cardinality 0 and depth 0. Hence
the polynomial is 1. In comparison, our formula this gives us 1y, = 1-v° = 1.

Py, w: AN\ has only one box. The depth of one box is one and hence our polynomial

1-1) 6-5

. 1( .
1S q2 = 1. In comparison, for n,, ., we get 1-v°~° = .

Py w: A\ is

The gray bozxes form the outer border strip. This is almost Dyck and the
rightmost box having the same level as the first is the first itself. Hence we
have to add the bozxes directly below the two following boxes. These are exactly
the two other bozes. Hence Og is equal to AN\u. So the depth of N\ is 1.

The cardinality is 5 and we get Py, ,,(q) = ¢*. Calculating our ng, ., gives us
(v=2)2 - 01 = o,

P,y AN\ is

The gray boxes are the first 0g, with the same considerations as in Py, ,,. Taking

this away gives us a single box. So the depth is 2. The cardinality is 6. So our
1

polynomial is qz6=2 = ¢2. For New we get P ,(v72) - 0570 =02,

These results confirm our calculations in the example at the end of Chapter 4.1.
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6 The action of H on N described
diagrammatically

In this chapter we will describe the action of H on A in terms of decorated tangles.
This action will turn out to be actually an action of a quotient of the generalized
Temperley-Lieb algebra of type D,. In the end it will turn out that this quotient
acts faithfully on V.

6.1 Generalized Temperley-Lieb algebras and decorated
tangles

We start with some definitions and results about Temperley-Lieb algebras. The
notation and statements can be found in [Gre98].

Definition 6.1.1. The generalized Temperley-Lieb algebra TL(W) is the quotient
of the Hecke algebra H (W) obtained by factoring out the Ideal (W) generated by
elements of the form

> L

BISECH

where the sum runs over all sets {s;, s;} such that the points ¢ and j are connected
in the associated Dynkin diagram.

Definition 6.1.2 (Tangle). Let m,n € Ny such that m + n is even. Consider
m + n points contained in a rectangle such that m points are on the top face of the
rectangle and n points are on the bottom face of the rectangle. An (m,n)-tangle is
a collection of lines and circles contained in the interior of the rectangle, such that
the lines connect all the points and no intersections occur. Two such tangles are
called the same if they are homotopy equivalent.

Lines connecting two points at the top face are called cups and lines connecting two
points at the bottom face are called caps. Lines connecting a point at the top with
one at the bottom are called edges.

A decorated tangle is a tangle with some "e"s on the lines and/or circles such that
every "e" is accessible from the left side of the rectangle, meaning there exists a line
in the rectangle connecting the left face with "e'" not intersecting the tangle.

Remark 6.1.3. We use the term “tangle” for tangles without crossings. Usually
tangles are allowed to have crossings.
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Example.

12 3 4 5 6
U

is a (6,4)-tangle.

is a decorated (6,4)-tangle since all the "e"s can be con-

nected to the left face of the rectangle via the blue, dotted
lines.

1s not a decorated tangle since the red dots can not be con-
nected to the left face without crossing one of the green
lines.

Now we define a concatenation of tangles. We can concatenate a (m, n)-tangle with a
(n,r)-tangle vertically which will result in a an (m, r)-tangle. We do this by writing
the (m,n)-tangle on top of the (n,r)-tangle. The n points at the top of the (n,r)-
tangle are then connected one to one from left to right to the n points at the bottom
of the (m, n)-tangle. The resulting picture can be viewed as an (m,r)-tangle.

Remark 6.1.4. Often, the decorated tangles are introduced as a category. The ob-
jects are the natural numbers. Morphisms from m to n are just (m,n)-tangles and
composition of morphisms is given by the vertical concatenation of the tangles.

Let R be a commutative ring. DT, is defined to be the free R-algebra with basis
consisting of all (n, n)-tangles and multiplication given by the concatenation of tan-
gles.

For 1 <i < n — 1 define the tangle ¢; to be the (n,n)-tangle connecting the points
7 and 7+ 1 at the north resp. south face and the point k£ on the north face with the
point k£ at the south face.

Define the tangle eg to be the tangle e; with two decorations, one on the cup con-
necting point 1 with point 2 at the top face and one on the cap connecting 1 and 2
at the bottom face.

A SR TR EE T

|
|
|
|
|
:._ N N 0 W N S e W DU I N N
The (7,7)-tangle ey The (7,7)-tangle eq
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O = (v+vh

O =

Figure 4: Relations TL(W)

Taking R to be L consider the unitary subalgebra of DT,, generated by ey, ..., e, 1.
In [Gre98, Thm. 4.2] Green shows that factoring out the relations in Figure 4
gives us an isomorphism to the generalized Temperley-Lieb algebra TL(W). The
isomorphism sends the diagram e; to our Cj..

Remark 6.1.5. The lines involved in the relations of Figure 4 are not necessarily
edges in the tangle but might also be part of a circle.

The first relation means we can remove an undecorated circle and instead multiply
with (v+v~1). The second relation allows us to delete an even number of decoration
from any line or circle. The last relations tells us that in presence of a circle with
just one decoration, possibly after the removal of an even number of decorations, all
other decorations in the tangle may be deleted.

6.2 From cup diagrams to decorated tangles

Next we will construct a decorated tangle from a cup diagram.

All the information necessary to build a cup diagram is located at the points 1 to
n. So we “cut out” this portion of the diagram. This cutting operation will give us
a decorated tangle.

Take a cup diagram and draw vertical lines between —1 and 1 as well as between n
and n + 1. Now we “cut” the cups along the two lines with these rules:

1. Cups connecting two points between 1 and n are not cut but stay the way
they are.

2. Cups connecting a point between 1 and n to one between n+ 1 and 2n become
an edge connecting the point between 1 and n to the “bottom face”

3. Two linked cups both ending at points between 1 and n are replaced by a
decorated cup connecting the two endpoints.
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4. Two linked cups of which only one ends at a point between 1 and n are replaced
by a decorated edge from the point between 1 and n to the “bottom face”.
5. Two linked cups ending both at a number bigger than n are removed.

It is easy to see that to each cup connected to a point between 1 and n there is
exactly one rule that applies, depending on the start and endpoint of the cup and
the ones of the linked cup if the cup crosses the middle. Denote the tangle associated
to C'(w) by T(w).

Example. Consider the following cup diagram for n = 6.

1 6
U
N

The black cup is covered by rule 1, the green one by 2, the orange one by 3, the blue
one by 4 and the red ones by 5. Applying these rules gives us the following decorated
tangle: o 4 - _ g

-
|
|
|
|

L _ L1

Definition 6.2.1. We define DT(n) to be the set of decroated (n, k)-tangles with
1 < k < n where all points at the bottom face are connected to one at the top face
and the sum of the number of decorated edges and the number of undecorated cups
is even.

Lemma 6.2.2. The cutting operation gives us a decorated tangle in DT (n).

Proof. We cut our cup diagram before 1 and after n. Each point between 1 and n
is again connected to another point by the rules 1 through 5. Since no caps appear
when applying any of the rules we get an (n, k)-tangle where k is the number of
cups resp. linked pairs of cups to which we applied rule 2 or rule 4.

We only have to make sure that the placing of decorations does not violate the rule
for decorations in decorated tangles. To do this we rule out all other possibilities.

L
This can not happen because it would mean that in our cup diagram the cups
ending at k£ and [ cross the middle and would therefore have to cross the other

cup. But the only crossing cups by construction of the cup diagram are cups
that go over the middle.
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For our cup diagram this would mean that all the cups ending at one of the
points would cross over the middle. But the pairing rule for cups says that
these cups are paired consecutively. Pairing & with ¢ would violate this rule.

3.‘+or++or

The arguments here follow from the ones in 1 and 2.
Comparing the cups in the cup diagram from which these would arise with the
ones in 1 and 2, one would notice the same conflicts.

\o/or+\o/

From this we see that our tangles are in fact decorated tangles in accordance with
the definition.

The sum property is fulfilled since the number of cups ending between 1 and n is even.
But ending cups become either undecorated cups, decorated edges or decorated cups.
So the total of these elements is even. But decorated cups mean that two cups which
cross the middle end there. So subtracting this number does not change the parity.
This completes our proof. O

Lemma 6.2.3. We have a bijection between Sgym(n) and DT(n).

Proof. We prove this by constructing a {+, —}-sequence from a decorated tangle in
DT(n).

We just consider the top face of the rectangle. Since we have no connections between
two points at the bottom face, the connections at the top face completely determine
our tangle.

An undecorated cup connecting i; and i, with i; < i3 becomes a "+" at ¢; and a
"—" at i5. A decorated cup connecting i3 with 74 is exchanged for two minuses at
13 and 4. An undecorated edge starting at ¢5 leads to a "+" at this place while a
decorated edge at ig leads to a "—" at this place in the {4+, —}-sequence.

Since the sum of the number of decorated edges and the number of undecorated
cups is even, we get a {+, —}-sequence of length n with an even number of minuses.
Going through the construction of cup diagrams and the cutting rules it is easily
checked that this operation and constructing the decorated tangle from the cup
diagram associated to a given {4+, —}-sequence are inverse to one another. Thus, we
have a bijection between the two sets. O

Example. Applying Lemma 6.2.3 to our example before, we get the sequence
| — — 4+ — — +] as expected.

Remark 6.2.4. The bijection in Lemma 6.2.3 is compatible with the bijection
between Sy, (n) and C(VP) that can be obtained from Proposition 3.1.4 and Propo-
sition 5.1.7.
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Remark 6.2.5. The proof of Lemma 6.2.3 also shows that there is a bijection between
our cup diagrams and the decorated tangles in DT(n). It is easy to give an inverse
operation for every cutting rule and thus to construct a cup diagram to a given
decorated tangle.

6.3 Description of the action of % on N/

Although we have an explicit description of the Kazhdan-Lusztig basis, the action
of H on a basis element is still not easy to calculate. But there is an easy way to
multiply some N, with a C, in a diagrammatic way.

Consider the free £-module N; with the tangles in DT(n) as basis. Because of
Lemma 6.2.3, the module N, is isomorphic to N as an L-module. We fix this
isomorphism given in the proof of the lemma.

We now define the action of an algebra of tangles on N;. It will turn out that this
models the action of H on N.

Definition 6.3.1. Consider the unitary algebra over £ generated by the e;. This
algebra operates on DT (n) and hence on N; via tangle multiplication. We factor out
the following relations. The X in the relations are drawn to indicate that the tangle
intersects the rectangle at this point, i.e. relations 4 and 5 may not be applied to
any line in the tangle.

=
I
—~
4
_|._
4
L
~—

3. €)=0
.Q:o
(=1

Remark 6.3.2. The first relation states that any circle with no decorations can be
removed and, in turn, the diagram is multiplied by (v + v~!). The second relation
means that from any circle or line an even number of decorations can be removed.
The third relation says that the presence of a circle with only one decoration mul-
tiplies the whole diagram by 0 and hence annihilates the whole diagram.

These first three relations can be viewed as relations in the algebra which operates
on our module. The last two relations are relations which are applied after multi-
plying a basis element by a tangle.

The fourth and fifth relation refer to parts of the tangle which connect two points at
the bottom of the rectangle. Together with relation 2 we get that if the number of

.

ot
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decorations is even the entire diagram becomes 0 and if the number of decorations
is odd we can simply remove this part of the tangle.

Remark 6.3.3. The first two relations coincide with the first two relations for our
generalized Temperley-Lieb algebra in Chapter 6.1 Figure 4. Relation 3 ensures that
the last relation for our Temperley-Lieb algebra is complied, too.

Hence, the action defined above is actually the action of a quotient of the generalized
Temperley-Lieb algebra and it makes sense to compare this action to the action of

H on N.

Because of Remark 6.3.3 the following diagram makes sense. The main theorem in
this section says that the diagram

commutes, i.e. N and N; are isomorphic as H-modules.

For the proof we need one more preparation. In our proofs we do not work with the
whole cup diagram but rather with cup subdiagrams. This method can be applied
to weights, too.

If we want to understand an action on cup diagrams, usually it is enough to consider
those parts of the cup diagram that change under an action. To be able to handle
these cup subdiagrams in Mp we define the relative Kazhdan-Lusztig elements.

Definition 6.3.4. Let w € WP. A cup subdiagram is any part of the cup diagram
which in itself is again a diagram of cups. Let SC(w) be a symmetric cup subdiagram
of C'(w).

The relative Kazhdan-Lusztig element associated to SC(w)is ) UMNW where
the sum runs over all different subweights w’ such that SP(w) is oriented.

A subweight is obtained from a weight by taking the subset

P = {i]i is the starting or ending point of a cup in SP(w)} C {1,...,2n}
and considering only the orientations at these points.

Remark 6.3.5. Given a symmetric cup subdiagram different weights may lead to
the same subweights. In our definition we sum over different subweights. So every
subweight appears only once in our sum even if there is more than one weight having
this subweight.

Remark 6.3.6. In our notation of weights we sometimes wrote only the part between
1 and n knowing the rest of the weight because of the antisymmetry and the frozen
"V'"s and "A"s. We do the same with our subweights, distinguishing only the ori-
entation at those i that lie between 1 and n. We indicate this by writing | at the
start and | at the end of the sequence.
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Remark 6.3.7. If we write a cup diagram as a disjoint union of symmetric cup subdi-
agrams we are able to calculate our Kazhdan-Lusztig basis element from the relative
Kazhdan-Lusztig elements.

The Kazhdan-Lusztig polynomial in front of a weight is the product of the coef-
ficients of the subweights in the relative Kazhdan-Lusztig elements to which the
weight restricts.

The example below shows the calculation step by step.

That we can calculate the Kazhdan-Lusztig polynomial in this way is clear from the
formula in Proposition 5.2.2. To get our Kazhdan-Lusztig polynomial we have to
count clockwise oriented cups in our cupdiagram. But if we write our cup diagram
as a disjoint union of symmetric cup subdiagrams the total number of clockwise
oriented cups in our cup diagram is the sum of clockwise oriented cups in each
cup subdiagram. Multiplying the coefficients simply adds up the numbers of ori-
ented cups in each cup subdiagram or gives 0 if one of the cups in any of the cup
subdiagrams is not oriented.

Ezample.
Consider the cup diagram

The Kazhdan-Lusztig basis element is N,, = Njayyn] + VNavav) as calculated in
several examples before.
We can write the cup diagram as a disjoint union of

The relative Kazhdan-Lusztig elements are
K= N
and

K3 = Niyva] + 0N vavy,
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where the dots are only drawn to indicate, that this orientation is left out.

If we now wanted to calculate the coefficient in front of Niayav in our Kazhdan-
Lusztig basis element using the relative Kazhdan-Lusztig elements we first have to
determine to which subweights the weight | AV A V] in all of the cup subdiagrams
restricts.

In the first cup subdiagram the weight restricts to |A] and in the second diagram it
restricts to | V AV].

So to get our coefficient we have to multiply the coefficient of N in Ky and the
coefficient of Nyyav) in Ky, As a result we get that the coefficient of Niayav) 48
1-v =w, which we already knew.

We can consider the action of the C, on our subweights even though our subweights
need not lie in some W? for some smaller n.
Given a cup subdiagram SP(w) we have a map from

{weights} — {subweights associated to SP(w)}.

From the multiplication rules in Proposition 4.1.5 we see that the action of some
Cs, on some weight N, is determined by d(ws;) and is described using only ws; and
w. But s; operates on the weight w by changing at most two points, namely ¢ and
i+ 1forl <i<mn-—1,or1land2ifi=0. Since the action of s; only depends on
the two points and changes at most these points we can define the action of C, on
a subweight if it contains both points.

We define the action of (5, on a subweight by taking a weight that restricts to the
subweight, operate with Cf, on this weight according to the multiplication rules and
then restrict the result.

Example. Consider the subweight N|yav) from the example before. This could be
multiplied by Cs, since sy exchanges the orientations at the points 2 and 3 which
both are contained in the subweight. A weight that restricts to this subweight would
be N\/\V/\v]-

By the multiplication rules we have

N|/\V/\v]052 = N|/\/\vv] + UN\/\V/\V]‘
Restricting this result we get

NivaviCsy = Niavy) + vN|vay)-

With these preparations we can prove this section’s main theorem.
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Theorem 6.3.8. The multiplication of N, with Cs, is given by multiplying T (w)
with e; and factoring out the relations 1 through 5.

Proof. In this proof we repeatedly use Proposition 5.2.2 without explicitely refering
to it.

Also, throughout the whole proof we are going to consider only the “relevant” parts
of the diagrams, meaning the cup subdiagrams consisting of those parts that are
involved in the change of the cup diagram. Since all the parts in e; except for
the cups and caps are straight lines multiplying e; by some tangle changes nothing
except for the parts connected to the caps. So we can concentrate on these parts
and observe the changes.

We prove the theorem by considering three cases:

L. ws; € WP and l(ws;) > l(w)
2. ws; € WP and l(ws;) < l(w)
3. ws; ¢ WP

1. ws; € WP and l(ws;) > l(w)

In this case we know that N ,C,, = N, . So multiplying 7'(w) with e; should
resemble the changes given at the end of Chapter 5.1. We check this case by
case.

In all the following pictures, above the gray line we have the involved part of
the tangle e; while below the relevant part of the tangle T'(w) is shown. We
start with 1 <4 < n — 1 and the associated cases (a.1) and (a.2) and finish
with the case i = 0 and the associated case (b).

(a.1)

—1 i i+1 s —1 i 1+1 s
In terms of decorated tangles this is one of the following cases, depending
on s being greater or less or equal n:

s<n:
i 41 i i1
RN
On the other hand, multiplication by e; gives us
o/
-\
S > n: i P41 i P41

-/
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Multiplication by e; gives us

/

This time, we get three cases when translating into decorated tangles
depending on the values of s and ¢:

s, t < n:

i i1 i i1
TR
Multiplication by e; gives us

/
= U \¢/

s<n,t>n:
i P41 i i41

to o

Multiplication by e; gives us

S

-/

s, >n:
i it 1
i 141

~

Multiplication by e; gives us
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(b) u 1 U t 1 2 s t
N\
Again we get three possible decorated tangles depending on the values of
s and t:
s,tsm 12 12
-
Multiplication by eq gives us
\o/
= o ¢
s<n,t>n:
1 2 1 2
Multiplication by eq gives us
\o’
_ +
s, t>mn:

1 2
>\’

Multiplication by eq gives us

\e’

rel.5

= \¢

2. ws; € WP and l(ws;) < l(w)

Decreasing in length but staying in WP means, first of all, that we have a
representative of w ending with s;, i.e. w = w's; for some w’ € WP. Hence
N, = N,C,,. Consequently, we have N, C;, = N,C2 = (v+v "N
because CZ = (v+v")C,,.

w

For the effect on our cups we first consider the case 1 < i < n.
For our {4, —}-sequence getting shorter through multiplication by an s; means
that we have a "+" at place ¢ and a "—" at place 7 + 1, which get exchanged
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by s;. So in T'(w) we have a cup going from i to ¢ + 1. Multiplying by e; gives

us
U

_@_ = (U+U_1)' /

So our tangle stays the same but is multiplied by (v + v~!) which is exactly
what we wanted.

Now consider the case i = 0.

Getting shorter through multiplication by sy means that we have two "—"s
at places 1 and 2 which are exchanged for two "+"s. So our cup diagram has
two linked cups going from —1 to 2 and from —2 to 1. In decorated tangles
this translates into a decorated cup connecting 1 and 2.

Multiplying this by ey gives us

b GCEID- G NN
o/ /

Again we get back our old tangle multiplied by (v + v™1).

This proves our second case.

3. ws; ¢ WP
This case turns out to be the one requiring the most work. In this case it is
not easy to describe the action of a (s, on an N,,. We rather have to think in
terms of oriented cup subdiagrams and relative Kazhdan-Lusztig elements.
We distinguish four cases:

a) 1 <i<n—1and pluses at ¢ and i + 1

b) 1 <i<n—1and minuses at ¢ and 7 + 1
¢c) i=0and "+" at 1, "—" at 2

d) i=0and "—" at 1, "+" at 2

a) 1 <i<n—1and pluses at ¢ and i + 1:

In our full cup diagram the relevant parts look like this:
i 1+1 s t

I\

The relative Kazhdan-Lusztig element associated to this is

K = N\vaA} + UN\VAVA} + UN|/\\//\\/] + U2N|AAvv]-

Depending on the endings of the cups, some terms become 0 because of
restrictions on the weights.

Multiplying the partial KL-polynomial by C, the first and the last term
become 0. The second one gets shorter, the third one longer. This leaves
us with

Kpew = Nyyava] + N|avva] + ONvaay) + U2N|AVAV]-
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This is the relative KL-element associated to the cup subdiagram
i i+1 s ot
N AN A A
Depending on the values of s and ¢ there are three possibilities of deco-
rated tangles and designs of the multiplication respectively.
s, t < n:
Then the part in our decorated tangle is the same as the right half
in the cup subdiagram. Multiplying by e; we get
/
= U Y
This is exactly what we want.
s<n,t>n:
We must restrict to the case that the orientation at ¢ has to be "A".
So the last two terms in K and K., disappear. This agrees with
the cup subdiagrams.
In terms decorated tangles we get the multiplication
/
Y
S, 0> mn:

This time, the weights have to have an "A" at s and ¢. In K only
the first term survives and K., is just 0. This agrees with the cup
subdiagrams since the new diagram is not a cup subdiagram of any
cup diagram: otherwise we would have to have a "+" at s, which is
not possible, since s is greater than n.

As decorated tangles we get

b) 1 <7 <n—1and two minuses at i and 7 + 1:
This is by far the most extensive case. The two minuses mean that
two cups end at places ¢ and 7 4+ 1 in our cup diagram. There are four
possibilities what this could look like.
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s t i 141

i. \\y \\y with s, > 1

The associated relative KL-element is
K = Njyuan + vNvava] + UN|avay) + UZN\AAW}-
Multiplying this by Cj, kills the first and the last term and gives us

Kiew = Niyava] + vNaav) + 0Njavva) + UQN\A\/A\/}'

i i+ 1

s t
The tangle associated to this relative KL-element is \ \U/ .
Multiplication by e; gives us

s i i+ 1 ¢t

i\ | S itz

The relative KL-element is
K = Nyyaan) + VN avan) + Nvavy) + UZN\Avvv}-
Multiplying by C, kills the first and last term and gives us
Kiew = Niavan] + vNjaava] + 0Nwvay) + UQN\VAW}-

This is the relative KL-element associated to

s i 1+1 ¢t
NAEY
Now we have to distinguish two cases
t < n:

In this case the change of decorated tangles is
i P41

v U=\

Multiplying the left tangle by e; gives us

-
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t>n:
In this case the orientation at ¢ has to be A and hence the last two
terms in K disappear as do the last two terms in K,,.,. This still
coincides with our cup subdiagrams. The change of decorated

tangles is i i1 P i1
\o/ - + -/
Multiplication by e; gives us
/
. + /
i 141

iii.
The associated relative KL-element here is
K= N|/\/\] +UN|\/\/].
Multiplying this by C, gives us 0 because both subweights do not

change under the action of s;.
The tangle multiplication is

N
rel.3
_@_ =0
s i 14+ 1 t

iv. \&I&/ with s > 1

The associated relative KL-element is

K = Nipann) + vNwvan) + 0N A + 02N|vvvv]-
Multiplication by e; kills the first and the last term and gives us
Kpew = N|VV/\/\] + UN\V/\V/\} + UN\/\V/\V} + UQN\/\/\VV}‘

This is the relative KL-element associated with

s i i+ 1t

CTARCY,

Again for the tangle multiplication we have to distinguish two cases:
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t < n:
In this case the change of decorated tangles is
Qi1 ot
W o \
Multiplying the left tangle by e; gives us

~ 1.2
AN

t>n:

In this case the orientation at ¢ has to be "A", and hence, the
last two terms in K disappear as do the last two terms in K,,.,.
This still coincides with our cup subdiagrams. The change of
decorated tangles is

¢c) i=0and "+" at 1, "—" at 2 L
In our cup diagram this looks like \o/ |\ .
Our relative KL-element is Ny + vNay). Multiplying this by Cj,; gives
us 0 since both subweights do not change.
In terms of decorated tangles we get

which is exactly what we wanted.
d) i=0and "—" at 1, "4+" at 2 . .

In our cup diagram this looks like w

The relative KL-element is
K = N\AvAA} + UN\AAVA} + UN|\/v/\v] + U2N|vAvv]-
Multiplying by Cj, kills the first and last term and leaves us with

Kpew = Niaava] + VNvwva] + ON|aaay) + U2N|vVAv]-
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This is the relative KL-element associated to \_/ .
Depending on s and ¢ we get three different cases for the tangle multipli-
cation.

s,t < n:

In this case the change of decorated tangle looks like

&~

Multiplying by e; gives us
\o’

rel.2

:\./u

s<n,t>n:
In this case the orientation at ¢ has to be "A". So in our K the last
two terms disappear as in K. This agrees with the cup subdia-
grams.
The change in our tangle looks like

to -7

Multiplying by eq gives us
\o’
re:l.2 \./ ‘

s, t>mn:
This time the orientation at s and ¢ has to be A. Hence the only term
surviving in our K is the first which gets killed by multiplication with
Cs,- So our tangle multiplication should result in 0, too.

\e’ \e’
: re:l.2 ﬂ re:l.4 0

which is again exactly what we want.

So in all our cases the action of the tangles coincides with the action of Hecke
algebra. This proves our theorem. O

Corollary 6.3.9. The action of H on N is an action of a quotient of the Temperley-
Lieb algebra TL(W) on N .

This result can be viewed as a graphical analogue of [Str05, Thm. 4.1].
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6.4 Faithfulness of the action

We finally establish the faithfulness of the above action.
In [Gre98, Thm. 4.2], Green gives an explicit descripition of a basis B of TL(W) in
terms of decorated tangles.

Theorem 6.4.1 (Green). The basis B consists of (n,n)-tangles with at most one
decoration on each loop or edge satisfying one of the following conditions:

1. The diagram contains one loop which is decorated, and no other loops or dec-
orations. Also, there is at least one non-propagating edge in the diagram.
2. The diagram contains no loops and the total number of decorations is even.

Because of Relation 3 in Definition 6.3.1 the elements of the first kind are 0 while
the other survive. We denote the elements in this basis by b;.

Proposition 6.4.2. The action of the quotient of TL(W) described above is faithful.

Proof. Let b := Y a;b; be an element in our quotient. We denote the decorated tan-

gles in DT(n) by d;. Let d := ) 8;d;. Then d.b =) y,dy where v, = > ;5.
d;j.bi=dy,

Now assume that b operates as 0 on N;. We want to show that b = 0.

We will prove this by induction over the number of cups in dy.

But first, we start with some observations:

If we have a cup in b; and d;.b; # 0 this cup is a cup in d,.b;, too.

For all b; there exists such a d; with d;.b; # 0. Take the lower half of b; and reflect
it vertically. Set or remove a decoration on the leftmost edge depending on the
number of undecorated cups to satisfy the second condition on tangles in DT(n).
Multiplying this tangle by b; all loops at the bottom of b; are closed into loops with
an even number of decorations. The propagating edges are still propagating edges,
maybe with some decorations on the leftmost edge. None of these things kills our
diagram. Each loop results in a multiplication by (v 4+ v™!). So we get a non-zero
element in N.

Now we do our induction.

Induction basis: number of cups in dy is 0:

Since cups in b; are still cups in d;.b;, b; may not have any cups. But there is only
one b; without cups, namely e. If multiplying some d; by e does not result in any
cups the d; must not have any cups either. But there is only one such d; in DT(n),
the one with only undecorated edges from the top face to the bottom face. Call this
one d.. So the coefficient in front of d..e has to be 0. But b operates as 0 on all of
N; by assumption. So the coefficient in front of d. can be varied and still the result
would have to be 0. This works only if the coefficient in front of e is 0.

Induction step: m — 1 cups ~» m cups:
By our induction hypothesis the coefficient in front of all b; involved in creating
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some b, with m — 1 or less cups is 0. These are all b; with m — 1 or less cups.

All cups in our b; remain unchanged when multiplying by some d;. Consequently, if
di has m cups only b; with m cups are involved. Furthermore if we want to know
which b; are involved in creating a certain dj the cups in b; have to match those in
dk.

So let dj, be a tangle with m cups and b; ;, the b; involved in creating this dj. Assume
there is a non-zero coefficient. Let oy, be a non-zero coefficient of highest degree.
Take d;, to be the tangle obtained by reflecting the lower half of b;, ; vertically and
setting the decoration on the leftmost edge such that we get a tangle in DT (n).
Multiplying d;, » by b;, x gives us another tangle in DT (n) which has the same cups
as dj, and hence has to be dj. Since d,, i, is the vertical reflection of b;, 5, all caps in
bi, 1 become a circle with an even number of decorations. Since we have n cups in
bi, x We have to have n caps, too. So all in all we get a multiplication by (v + v~1)"
and we get ;, x - (v+v~')" as a summand of the coefficient of dj,. This has degree
deg(a;,) + n.

Claim: All the other summands of dj are of strictly lower degree.

Proof of Claim. If another b, involved in creating d; has the same caps as by, i it
has to differ in the decorations. But the decorations of the cups are fixed. Since
only one edge can have a decoration and the total number of decorations has to be
even at least one of the decorations of a cap has to differ from the one in b;, ;. Every
cap has at most one decoration and hence multiplying by d;, i gives us a circle with
an uneven number of decorations. But this results in 0 and the coefficient of this
b;r does not contribute to the coefficient of dj.

So, if b contributes to the coefficient of dj;, the degree of its coefficient has to be
smaller or equal the degree of a;, ;. To get the same degree as ay, - (v + v~ 1)"
we would have to multiply by v™ or even something of higher degree. But we only
multiply by v if we remove a circle with an even number of decorations. But the
caps in b;j differ from those in b, ;. This implies that the number of circles in
d; 1-b; ;. has to be smaller than n. Hence the degree of the resulting contribution to
the coefficient for dy, is strictly smaller than deg(a;, ) +n. Thus our claim is proven.
With our claim we know that the coefficient of d, in d;, ;.b has degree deg(a;, ) +n
and is not equal to 0. But the coefficient should be 0; a contradiction. This completes
our induction step and our proof. O

To summarize: We know that the action of H on N is actually an action of the
described quotient of the Temperley-Lieb algebra and that this action is faithful.
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7 Dimensions of homomorphism spaces between
projectives in category O}

In this chapter we apply our results about Kazhdan-Lusztig polynomials and our
language of cup diagrams. As indicated in the introduction, the Kazhdan-Lusztig
polynomials have an interpretation in the parabolic category Of and our language
of cup diagrams can be used to calculate the dimension between projective objects
quite easily.

I will just state the results necessary for our application. For details the reader may
consult the book of Humphreys on category O [Hum08|.

7.1 The parabolic category O}

The parabolic Kazhdan-Lusztig polynomials have a nice Lie theoretic interpretation:
evaluated at 1 they count the multiplicity of simple highest weight modules occuring
as subquotients in a composition series of a parabolic Verma module. This goes
back to a conjecture by Kazhdan and Lusztig in [KL79, Conj. 1.5] which was later
generalized to the parabolic case and proven by Casian and Colingwood in [CC87].
Consider the semisimple Lie algebra g = so0,, of type D,, with the standard Cartan
subalgebra b of diagonal matrices and Weyl group W. Fix the Borel subalgebra b
of upper triangular matrices and the parabolic subalgebra p with Weyl group W,
that contains b.

Definition 7.1.1. The category OF is the full subcategory of the category of U(g)-
modules whose objects M satisfy the following conditions:

1. M is a finitely generated U(g)-module.

2. M has a weight space decomposition with finite-dimensional weight spaces, i.e.
M = @ M, where My, = {m € M|h.m = A(h)m Yh € h} and dim M, < cc.
AEh*
3. M is locally p-finite, i.e. each m € M lies in a finite-dimensional subspace of

M stable under the action of p.

We consider the subcategory OF of OF of all modules with generalized trivial central
character.

In this category we have three classes of distinguished objects. The elements of each
class are indexed by w € WP,

We have a complete set of representatives L(w.0) for the isomorphism classes of sim-
ple objects in Of [HumO08, p.187, A = 0|. These are the irreducible highest weight
modules L(w) of highest weight w.0.

They are the unique irreducible quotients of the parabolic Verma modules
M(w) = M(w.0) [HumO8, p.186, p.45, Thm. 9.4].
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A complete set of representatives for the isomorphism classes of indecomposable
projectives is given by the projective covers P(w.0) of the L(w.0) [Hum08, Thm.
9.8].

Each module M in OP possesses a finite composition series with simple quotients
isomorphic to various L(w). The multiplicity of L(w) is independent of the choice
of the composition series and is denoted by [M : L(w)].

The Kazhdan-Lusztig conjecture, or better: theorem, states that

Nurw(1) = [M(w') : L(w)].

Each projective module P(w) has a so called Verma flag, i.e. sequence of submodules
such that the subquotients are isomorphic to various M (w'). As with the composi-
tion series before, the multiplicity of an M (w’) is independent of the chosen Verma
flag. It is denoted by (P(w) : M(w’)).

The BGG Reciprocity connects the two multiplicities and can be found in [Humo08,
Thm. 9.8(f)]. It states that

(P(w) : M(w')) = [M(w') : L(w)).

The final crucial information connects [P(x) : L(w)] with the the dimension of the
homomorphism space from a projective P(w) to another projective P(x) [HumoO8,
p.192|. They are connected via

[P(z) : L(w)] = dim homp (P(w), P(x)).

To count the multiplicity of some L(w) in a composition series is obviously the same
as first counting the multiplicity of a M(w’) in a Verma flag for P(z), multiplying
this number by the multiplicity of L(w) in this M (w’) and finally summing over all
different w’ in W¥:

Piecing all the information together we get that
dim homey (P(z), P(w)) = [P(w): L(z)]
= D (Pw): M(")[M(w') : L(x)]

wl

Oy M) L@)M@), L@ ()

recip

w/
KL
Y U (1):

wl

For the maximal parabolic case in type A,,, the above formulas were used by Strop-
pel [Str09] and then more generally by Brundan and Stroppel [BSO8b]. In their



7 Dimensions of hom spaces between projectives in category O 59

case the diagrammatic approach was extended to a diagrammatical description of
the endomorphism algebra End(€ P(w)). The dimenstions were calculated there
similarly.

Using Proposition 5.2.2 we see that

(1) 1 if w'C(w) is oriented
TNy ! =
’ 0 if w'C(w) is not oriented

This means that the product 7, ., (1)n, . (1) is 1 if the weight w’ orients both cup
diagrams C'(w) and C(x) and is 0 if at least one of the cup diagrams is not oriented.

Hence we can identify the vector space End( @ P(w)) with the span of all oriented
weWP
circle diagrams obtained from pairs of oriented cup diagrams (see [BS08a| for a

similar situation). This will be done in detail in the next section.

7.2 Colored circle diagrams and hom spaces of projectives in
@

The number of weights orienting two cup diagrams simultaneously can be calculated
easily via circle diagrams arising from the two cup diagrams. In this section we will
construct circle diagrams from two cup diagrams and color them. This coloring
makes it possible to easily calculate the dimension of the homomorphism space be-
tween the respective projective modules.

Definition 7.2.1. The cap diagram associated to w € W?" is defined to be the
vertical reflection of C'(w) and denoted by C(w).
Glueing a weight w’ below the cap diagram gives us C'(w)w’.

Remark 7.2.2. All the notions we had for oriented cup diagrams can be applied to
cap diagrams, too.

C(w)w' is oriented if and only if w'C(w) is oriented and the number of clockwise
oriented caps coincides with the one of clockwise oriented cups.

As pictured below, this is obvious:

A s [V s VON

Definition 7.2.3. The circle diagram associated to two cup diagrams C(w) and
C(z) w,z € WP is obtained by glueing the cap diagram C(x) on top of the cup
diagram C'(w). This circle diagram is denoted C(z)C(w).

Writing a weight w’ between the cup and the cap diagram gives us the diagram
C(z)w'C(w). We call this an oriented circle diagram if all circles are oriented.
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The next lemma connects the orientation of two cup diagrams with the orientation
of the circle diagram and follows directly from the definitions.

Lemma 7.2.4. A circle diagram is oriented by a weight if and only if both cup
diagrams are oriented simultaneously by this weight.

The next lemma shows that all possible orientations of such a circle diagram, if
antisymmetric and with the right frozen orientations, give us actually a weight in
Ssym(n). So we do not have to check if a constructed weight actually is a valid
weight,.

Lemma 7.2.5. All antisymmetric weights with n "A"s from n + 1 to 2n occuring
as an orientation of any C(w) are in Ssym(n), i.e. the number of "A"’s between 1
and n is even.

Proof. Consider the first part of the upper half of w, i.e. the points 1 through n.
All pluses not connected to a minus between 1 and n are connected to a minus
between n 4+ 1 and 2n. Assume a plus of the second kind occurs at place i. The
orientation of a weight at a point between n + 1 and 2n is "A". Consequently, to
get an oriented cup diagram the weight has to have a "V" at 7. So these places do
not contribute to the number of "A"’s between 1 and n and can be ignored.

The number of minuses occuring in the first part of the upper half of w is even.
Hence there is an even number of cups ending between 1 and n.

If two of these cups are linked because they both come from the lower half of w,
then because of the antisymmetry they have to be oriented in the same direction.
Hence they do not change the parity of the number of minuses and can be ignored,
too. In addition ignoring them does not change the parity of the number of cups
ending between 1 and n.

Now we have to consider two cases: Either all the other cups are connected within
the first part of the upper half of w or one cup is linked to one going to a place
between n + 1 and 2n.

In the first case to get an oriented cup diagram every cup gets exactly one "A" and
one "V". Since the number of cups ending between 1 and n is even, the number of
cups connected within this interval has to be even. So the number of "A'"’s is even
and the first case is finished.

In the second case we first make some observations. The way the linked cups are
nested implies that at most one cup crossing the middle is linked to one going to a
place between n + 1 and 2n. Suppose there is exactly one cup of this kind called
c. Then all the other relevant cups are connected within the first part of the upper
half of w. The number of these is odd since the only other relvant cup is ¢ and the
total number of relevant cups is even.

The cup ¢ and its linked cup look like this:

PN
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Obivously, to get an oriented cup diagram, we have to have the orientation

N

So we get an "A" for the cup c. The other cups are again oriented with exactly one
plus and one minus. So the total number of "A"s again is even. O

Every circle can a priori be oriented in two different directions and the orientation
of a circle defines a weight.

Because of Lemma 7.2.5 every antisymmetric weight the right frozen orientations is
a weight in S,,,(n). So if we ensure these two properties it is enough to count the
possible orientation of single circles and multiply these numbers.

These properties restrict the possiblities for orienting circles. Some circles may
only have one possible orientation and some circles even may not be oriented. To
distiguish these cases we color the circles.

Definition 7.2.6. Following [Str09] we call the points bigger than n upper outer
points and the points smaller than —n lower outer points.

Definition 7.2.7. We color each circle in a circle diagram
C(z)C(w) according to the following rules:

Black If a circle does not go through any outer points and the number of different
linked pairs it traverses is even we color it black.

Red If a circle goes through more than one upper outer point, more than one lower
outer point or the number of different linked pairs it traverses is odd we color
it red.

Green If a circle is neither black nor red we color it green.

We denote the number of black circles by bk(w, z) and the number of red circles by
rd(w, z).

Obviously, these three cases are disjoint and each circle gets colored.

Example.

The dashed lines separate the inner points from the outer points. The coloring of the
circles follows the rules above. It is easily checked that the coloring is done correctly.



62 A graphical description of (A,,_1, D,,) Kazhdan-Lusztig polynomials

In our coloring rules, we considered the number of linked pairs a circle traverses and
also if a circle traverses both cups or caps that are linked. The next lemma explores
the importance of this information.

Lemma 7.2.8.

1. If a circle crosses the middle, it either always traverses both cups or caps of a
linked pair or it traverses always only one of the linked cups and caps.

2. If a circle always traverses only one of the linked cups or caps, then the number
of different linked pairs that are part of the circle is even.

3. If a circle always traverses both cups or caps, that are linked then the number
of different linked pairs that are traversed is odd.

Proof.

1. Assume a circle traverses only one of the cups or caps in a linked pair A and

traverses both linked cups or caps in another linked pair B.
This means that the traversed cup or cap in A has to be connected to one cup
or cap in B. Then, because of the symmetry of the diagram the other linked
cup in B has to be connected to the cup or cap in A which is not traversed.But
this means that the not traversed cup or cap in A is connected to the same
circle; a contradiction.

2. For every circle, the number of times it crosses the middle is even. If it crosses
the middle from left to right it has to cross it back to get a circle and vice
versa.

But this implies that if a circle traverses only single cups or caps of linked
pairs, the number of different pairs involved has to be even.

3. Consider two pairs of linked cups and caps.

If we start connecting them without crossing the middle we could either con-
nect —j7 with —j and because of the symmetry 7 with j or we could connect —j
of the bottom cup with —i of the cap, and proceed analogously in the positive
part.

But concerning our circle and crossings of the middle the first picture would
be the same as having —i connected directly with —¢ on the left half of the
picture without crossing the middle. The second picture would be the same as
having —j of the top connected with —i of the bottom omitting the loops. In
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both cases the parts in the positive half have to be connected symmetrically.

JL /I

Hence, in terms of circles and the parity of crossings of the middle, an even
number of crossings can be transformed into connections between two points
on each side of the middle. The pictures also show that connecting the two
points without crossing any other cup or cap is possible.

Connecting one of these pictures into one circle gives us two lines which cross
the middle. These would have to be paired. Hence the total number of different
pairs of linked cups and caps has to be odd if the circle goes through both
cups or caps that are linked. 0

Corollary 7.2.9. All circles with self-intersections are colored red.

Proof. Since intersections only occur in linked pairs that cross the middle, a self-
intersection would mean that we have a linked pair in which the circle traverses
both cups or caps. But then Lemma 7.2.8.1 says that the circle would always go
through both parts of the linked pairs it traverses. Then Lemma 7.2.8.3 says that
the number of different linked pairs traversed by the circle is odd. This means that
the circle has to be colored red. O

The next lemma gives us information about the relation between the color of circles
and the possibilities of orienting them.

Lemma 7.2.10. Red circles can not be oriented. Black circles can be oriented in
two directions. Green circles can be oriented in exactly one direction.

Proof. We prove this case by case.

Red If a circle goes throught more than one upper outer point, this means two
upper outer points have to be connected in some way. But the orientation at
both points is "A". This prohibits orientation of the circle. A picture of this
is:

where the squiggly line may be any connection between the two upper outer
points.

The same argument works analogously for two lower outer points.

We know that for any oriented circle the number of times it crosses the middle
from left to right is the same as the number of crossings from right to left. If
the number of different linked pairs is odd, then this implies that the circle
always has to traverse both cups or caps that are linked. Otherwise the number



64

A graphical description of (A,,_1, D,,) Kazhdan-Lusztig polynomials

Black

Green

of crossings would be odd which would be a contradiction to being an oriented
circle. We also know that linked cups are always oriented in the same direction.
But this implies that the numbers of crossings from left to right resp. from
right to left can not be the same.

By Corollary 7.2.9, a black circle has no self-intersections. For all linked pairs
it traverses, it only goes through one part of the pair. Also, it does not go
through any outer points. These two things together imply, first of all, that
the circle can be oriented and second, that the orientation can be chosen freely
since no weight is fixed by any precondition.

Green circles go through at least one outer point. Otherwise, the number of
different linked pairs the circle traverses would be either even which would
lead to a black coloring or it would be odd which would lead to a red coloring.
The orientation of the weight at this outer point is fixed. Hence such a circle
can be oriented at most in one direction. If it goes through no other outer
point then the orientation of the weight at all other points can be chosen freely
since the circle only goes through single cups or caps of linked pairs because of
Lemma 7.2.8. Hence it is possible to orient this circle in the given direction.
If the circle goes through one outer point at each side, we have a picture like

IRY

-3 i

with ¢ # j. If 7 was equal to j, then, because of the symmetry of the diagram,
for all cups and caps traversed by the circle the reflected counterpart has to be
traversed also. But there has to be one cup crossing the middle. Its reflected
counterpart is the other part of the linked pair. Hence we get a self-intersection
which would, according to Corollary 7.2.9, lead to a red coloring and not to a
green one.

If we wanted to connect the upper end of the left line with the lower end of
the right line, to get an unoriented circle, we would have to connect the upper
end of the left line with the lower end of the right line. But this would lead
to a self-intersection of the circle, which would again lead to a red coloring
instead of a green one. So we can rule out this case, too, and orient our circle
in the given way. 0

Remark 7.2.11. As in the part of the proof of the lemma concerning the green circles,
it can be shown that if a circle traverses a cup and its mirrored cup then the circle
has to be colored red. The antisymetrie of the {+, —}-sequences and the way the
starting points of cups crossing the middle are exchanged ensure that the mirrored
cup exists and is different from the original cup. If now a circle traverses a cup
and its mirrored cup than it has to cross the middle somewhere. So the first cup
is connected to a cup crossing the middle. Because of the reflection symmetrie the
mirrored cup is connected to the linked cup to the one crossing the middle. But this
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is a self-intersection which by Corollary 7.2.9 leads to a red coloring.
In particular, this means that reflecting a black circle C' always yields a circle which
is different from C, since the circle can not go through any of its mirrored cups.

Although a black circle can be oriented in both directions this does not mean that
we can orient all circles independently. Because of the antisymmetry of the weights
any black oriented circle determines the orientation of its reflected counterpart. So
only half the black circles can be oriented without any limitations.

The next theorem states how the Formula 1 for the dimension of the homomorphism
spaces can be expressed in terms of colored circles.

Theorem 7.2.12. The dimension of hom(P(w), P(x)) is

2% i Ord(w,x)

with 0° := 1.

Proof. We know that the dimension of hom(P(w), P(x)) is the number of weights
w’ such that C'(w)w'C(x) is oriented, i.e. all circles are oriented. If a red circle
appears this means by the previous lemma that this circle can not be oriented by
any weight. Hence the dimension has to be 0.

If no circle is colored red this means the diagram can be oriented since green and
black circles can be oriented. The only open question is how many weights orient
the diagram. By the previous discussion half of the black circles can be oriented
freely in both directions while green circles can only be oriented in one direction.

This gives us 93 possible weights.

Orienting only half of the black circles takes care of the antisymmetry of the weight
and orienting the green circles only counterclockwise ensures the orientation of the
weight at the points bigger than n and smaller than —n. Thus by Lemma 7.2.5 each
orientation gives us a weight in Sy, (n).

This proves our formula. O

Remark 7.2.13. Of course green circles contribute a factor 18“?) where gr(w, z) is
the number of green circles. But since this factor always equals 1 it is left out in the
theorem.

The formula of Theorem 7.2.12 resembles [Str09, 5.4]. There a “colored” version of
a 2-dim TQFT was introduced to describe the algebra structure.
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7.3 Weights on tangles

It seems sensible to describe the rules above in the language of decorated tangles.

Definition 7.3.1. The decorated (k,n)-tangle associated to a cap diagram C(w) is
the vertical reflection of the decorated tangle associated to the cup diagram C(w).

Now we transfer the language of weights to tangles. To do this, we look at the
weights on the cup diagram and examine what happens when applying the cutting
rules.

1. Cups to which rule 1 applies can be oriented two ways. Since they do not
change in the tangle, nothing about their behaviour concerning weights changes.

So we get the two possible orientations X or A

2. Cups which are connected to a place between n + 1 and 2n have only one
possible orientation because of the orientation of the weight at places bigger
than n. Since this orientation is counterclockwise the resulting line in the
tangle has to be oriented downwards to be oriented.

-]
3. A cup with one decoration emerges when two linked cups end both at a place
between 1 and n. These two linked cups have to be oriented in the same

direction. Hence our decorated cup is not oriented in the usual sense but
rather when both arrows point either towards or away from the decoration.

So we get either w or R .

4. As in the case before, both linked cups have to have the same orientation to
be oriented. But since one of the cups ends at a point greater than n, its
orientation is determined to be counterclockwise. Hence the line with one

A
decoration has to be oriented upwards. So we get i .

5. The last cutting rule just deletes the cups completely. Consequently, there is
nothing to orient.

We transfer over the notions of oriented and unoriented to tangles. As in the case of
cups, we can glue a weight under a reflected tangle and adopt the notions of oriented
etc. Obviously, a reflected tangle is oriented if and only if the unreflected tangle
itself is oriented. We can put the reflected tangle on top of an unreflected tangle,
since the unreflected tangle has n points at the top and the reflected tangle has n
points at the bottom. In analogy to the cups we call the reflected tangle T'(w) and
the composition of two tangles T'(w)T'(z).
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Again we have to count the possibilities for weights orienting both tangles or equiv-
alently the orientations of the tangle arising from putting a reflected tangle on top
of an unreflected one.

The next lemma gives us a first insight in the impact of decorations on the possibil-
ities for the orientation of a T'(w)T'(x).

Lemma 7.3.2. An even number of decoration on a line has no impact on the pos-
stbilities for the orientation of the line and can hence be removed.

Proof. Since decorations can be moved on a line, it suffices to consider adjacent
decorations. There are three possibilities for adjacent decorations. In all three cases
we work with decorated cups. Changing one or both cups to a cap does not have
any effect on the argument.

1. & where the squiggly line stands for some connection without any dec-

orations. This diagram can be oriented in two ways. First,

N

But for the whole circle this is basically the same as having

R1¢

The second orientation is the inverse of the first, i.e. all the orientations are
inverted. Inverting the orientation in the pictures, we see that removing the
two decorations does not affect the orientability.

2. and it reflected counterpart Jﬁ . The squiggly part again rep-

resents a connection without decorations. For both diagrams there is only one

possible orientation, namely,
Uﬁ Aﬂ}

Concerning orientability, this is the same as

ig
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This coincides with our rules for the orientation of lines without decorations
ending at the rectangle.

3. This diagram can be oriented in exactly one way

(0

But concerning orientability this is the same as

§

This again coincides with our rules for orienting lines without decorations
ending at the rectangle.

O

Remark 7.3.3. The lemma only makes a statement about the influence of decorations
on the orientability of a tangle. It does not make any statement about the weight
iteself. It is possible that a weight is no longer in S, if one deletes two decorations.
For example if our tangle contains the part

W

with an admissible weight deleting the two decorations would give us

AY N

which obviously changes the parity of A’s and V’s. This would mean we would have
an odd number of A’s which is not allowed. The number of possible orientations,
however, does not change.

Another way of approaching the subject is to think of the decorations as “direc-
tion changing”. If we cross a decoration the direction of the orientation of our line
changes. In terms of lines starting at the rectangle one has to think of the line going
in at the top of the rectangle and going out at the bottom. It is easily checked on
the pictures of the previous proof that this point of view is correct.

In this line of thought, it is obvious why two decorations on a line can be removed.
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Changing the direction twice gives us our original direction. Removing two decora-
tions simply means inverting the direction of all lineparts separated by decorations
between the two deleted decorations.

In T(x) and T(w) every line is connected with the top resp. bottom face of the
rectangle. This means that every part occuring in 7'(w)7T(x) crosses the middle
line where we write our weight. So every occuring part has to be oriented in some
way. With Lemma 7.3.2 we can remove an even number of decorations from every
line or circle. So the possible parts that occur in T'(w)7T (z) after deleting as many
decorations as possible are:

DICRORY,

i
W) w [ olUJo )

1. a) can be oriented in two directions.
b) can not be oriented since the decoration changes the direction of a line
and, consequently, the circle would have to have both orientations.
2. a) has to be oriented from top to bottom.
b) can not be oriented since the decoration changes the direction but the
direction at the top and at the bottom has to be "V".
3. a) can not be oriented since the direction at top resp. at the bottom always
has to be down.
b) has a unique orientation since the direction at the top resp. bottom is
fixed and the decoration changes the direction.
c¢) can not be oriented since the direction at top resp. at the bottom always
has to be down.
d) has a unique orientation since the direction at the top resp. bottom is
fixed and the decoration changes the direction.

—_

[\]

w

In a tangle diagram any circle can be oriented independently of all the other circles
since we do not have any restriction on the weights like antisymmetry or fixed weights
in a circle. Call the number of circles without decorations circ(w, z).

These considerations give us our dimension formula formulated with tangles.

Theorem 7.3.4. The dimension of hom(P(w), P(x)) is
geirew,z) if cases 1b), 2b) 3a) and Sc)

do not appear

0 otherwise
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Proof. If one of the cases 1b), 2b) 3a) or 3c¢) appears the discussion above shows
that the tangle can not be oriented. Hence the dimension is 0.
In the other case, the orientation of all parts except the circles is fixed. The circles

can be oriented independently in both directions. This gives us the desired formula.
O

Outlook and questions

The endomorphism algebras End(€ P(w)) for the parabolic types A and D was
described by Braden in [Bra02] in terms of generators and relations.

In [Str09], Stroppel described this algebra diagrammatically for type A, using circle
diagrams and a 2-dimensional TQFT. An explicit isomorphism to Braden’s algebra
was given. More work for type A was done in a series of articles by Brundan and
Stroppel [BS08a].

Obviously, the question is if a similar approach using our results could lead to

a diagrammatical description of the endomorphism algebra End( €@ P(w.0)) for
weWP
type D.

In addition the Kazhdan-Lusztig polynomials hold much more information which
could be used. For example in the previous chapter we used that they count certain
multiplicities, ignoring that they even give a graded version of the multiplicities,
showing in which orders these quotients have to turn up in a composition series.
This may help to see the Koszulity of the endomorphism algebra and get a better
picture of this property.

Also we worked with a very specific parabolic subgroup. This raises the question
if given a different parabolic subgroup the Kazhdan-Lusztig polynomials may also
be described diagrammatically. The situation here was manageable because all the
Kazhdan-Lusztig polynomials are a power of v. This is not the case in general. So
the problem there is much harder.
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