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Introduction

English introduction

In 1988 Shelton computed the dimensions of the Ext-spaces Extk(M(λ),M(µ)) of
Verma modules M(λ) and M(µ) in the parabolic category O in the Hermitian sym-
metric cases [She88]. More recently Biagioli reformulated these recursion formulas
combinatorially and gave a closed formula [Bia04]. A nice feature of (parabolic)
Verma modules is that they form an exceptional sequence in the sense that there is
a partially ordered set (Λ,≤) of highest weights labelling these Verma modules such
that for all i ≥ 0 holds:

Hom(M(λ),M(λ)) = C and Exti(M(λ),M(µ)) = 0 unless λ ≤ µ.

The set Λ is infinite, but the category Op decomposes into indecomposable sum-
mands, so-called blocks, which each contain only finitely many parabolic Verma
modules. In particular, restriction to the principal block yields finitely many Verma
modules. Moreover, taking M to be the direct sum of all Verma modules in this
block leads to an algebra Ext(M,M) =

⊕
eµExt(M(µ),M(λ))eλ with idempotents

eµ and eλ. Therefore, we have much more structure if we regard it as an algebra
than only looking at each vector space. The algebra structure can be obtained by
viewing Ext(M,M) as the homology of the algebra Hom(P•, P•) with P• a projective
resolution of M . In this situation multiplication reduces to the composition of maps
between complexes. The construction of these projective resolutions and chain maps
requires a deeper knowledge of the projective modules and morphisms between them.
Note that already the question about non-vanishing Hom-spaces between parabolic
Verma modules is non-trivial (cf. [Boe85] or [Hum08, Theorem 9.10]).

In [BS08b] Brundan and Stroppel developed a combinatorial description of the
category Op via a slight generalization of Khovanov’s diagram algebra in the case
of g = gln+m and p the parabolic subalgebra with Levi component gln ⊕ glm (cf.
Theorem 3.1). Using these combinatorial techniques along with classical Lie the-
oretical results, in the first part of this thesis we are able to compute projective
resolutions and their morphisms. One crucial technical result, which is needed later,
is a new proof of a version of the Delorme-Schmid theorem (cf. [Del77], [Sch81]) in
our situation.

The main results of the first part are Theorems 5.9 and 5.33:
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• an explicit description of the Ext-algebra in terms of a path algebra of a quiver
with relations in the case for n = 1 and n = 2, respectively.

The first algebra also occurs while analysing Floer Homology, as Khovanov and Seidel
point out in [KS02] (for more details cf. [AK08]). Since we finally want to obtain
the algebra with all its structure as an algebra over the field C, we carefully worked
out the signs of the multiplication, too.

In the context of Fukaya categories these algebras come along with a natural
A∞-structure. A∞-algebras are a generalization of algebras encoding more infor-
mation about the object. An A∞-algebra, also known in topology as a strongly
homotopic associative algebra, has higher multiplications satisfying so-called Stash-
eff relations (cf. [Kel01]). For example Keller points out that working with minimal
models provides the possibility to recover the algebra of complexes filtered by a fam-
ily of modules M(i) from some A∞-structure on Ext(

⊕
M(i),

⊕
M(i)). This A∞-

structure is constructed as a minimal model, i.e. deduced from the algebra structure
onH∗(Hom(

⊕
P (i)•,

⊕
P (i)•)). This kind of A∞-structure becomes interesting and

is a natural structure on Ext(
⊕
M(i),

⊕
M(i)).

Therefore, in the second part of the thesis we construct minimal models for our
Ext-algebras from above. Since we already viewed Ext(M,M) as the Hom-algebra of
the projective resolutions, the previous results allow us to analyse the higher multi-
plications. For the construction of the minimal models we use a similar approach as
it is worked out in [LPWZ09]. We combine formulas obtained by Merkulov [Mer99]
(for the case of superalgebras) and Kontsevich and Soibelman [KS01](for the F2-
case). Again we have to keep track of the signs (which sometimes yields to tedious
computations).

As a result, for n = 1 we achieve the first vanishing theorem (Theorem 7.3). In
this theorem we prove the formality of the Ext-algebra, i.e. we construct a minimal
model with vanishing mk for k ≥ 3.

For n = 2 in the second vanishing theorem (Theorem 7.7) we get an A∞-
structure with non-vanishing m3 but vanishing mk for k ≥ 4. Therefore, we obtain
an example of an A∞-algebra with non-trivial higher multiplications.

The main result of this thesis is presented in the general vanishing theorem
(Theorem 7.2). It says that for arbitrary n we get a minimal model with vanishing
mk for k ≥ n2 + 2. The tools used for this proof are developed throughout the entire
thesis.

Structure of the thesis: Part I of the thesis presents as the main result the alge-
bra structure. In Chapter 1 the properties of the categories O and Op are stated. A
review of the tools needed from homological algebra is given in Chapter 2. Chapter
3 starts with the basic theorem about the equivalence between Op and Kn

m −mod.
Later on the required definitions about Kn

m are introduced and results about the
grading, the endomorphisms of projective modules and the shape of projective reso-
lutions are proved. In Chapter 4 we state Shelton’s results and work them out for the
Hermitian pair (slm+n, (glm⊕ gln)∩ slm+n). Subsequent, in Chapter 5, we compute
the algebra structure for n = 1 and n = 2. For ease of presentation most of the



English introduction 3

tedious computations are performed in the Appendix. At the end of the first part in
Chapter 6 the achieved results together with Koszul duality are used to give a proof
of a graded version of Verma’s Theorem in special cases.

The second part of the thesis deals with the A∞-structure. A short introduction
and some basic ideas are given in Chapter 6.4. Finally in Chapter 7 results from
the first part and the previous chapter are combined to prove the main theorems
mentioned above.

Acknowledgements: I would like to thank all those who supported me during the
writing progress. My special gratitude belongs to my advisor Professor Catharina
Stroppel for her encouraging support and helpful advice.



4 Introduction

German introduction

1988 hat Shelton die Dimension der Ext-Räume Ext(M(λ),M(µ)) von Vermamoduln
M(λ) undM(µ) in der parabolischen Kategorie O im hermitisch symmetrischen Fall
berechnet (s. [She88]). Später hat Biagioli diese Rekursionsformeln umformuliert und
in einer geschlossene Formel angegeben (s. [Bia04]). Eine besondere Eigenschaft von
(parabolischen) Vermamoduln ist, dass diese eine exzeptionelle Folge bilden, das
heißt, dass es eine partiell geordnete Menge (Λ,≤) gibt, welche diese Vermamoduln
indiziert und für alle i ≥ 0 gilt:

Hom(M(λ),M(λ)) = C und Exti(M(λ),M(µ)) = 0 außer für λ ≤ µ.

Die Menge Λ ist nicht endlich, aber die Kategorie Op zerfällt in unzerlegbare
Summanden, so genannte Blöcke, wovon jeder nur endlich viele Vermamoduln ent-
hält. Insbesondere erhält man durch Einschränkung auf den prinzipalen Block eine
Kategorie mit endlich vielen Vermamoduln. Wenn man M als die direkte Summe
aller Vermamoduln in diesem Block wählt, so erhält man eine Algebra Ext(M,M) =⊕
eµExt(M(µ),M(λ))eλ mit Idempotenten eµ und eλ. Wenn wir diesen Raum nun

also als Algebra und nicht nur als Vektorraum betrachten, haben wir mehr Struk-
tur, welche man erhalten kann, indem man die Homologie der Algebra Hom(P•, P•)
bestimmt, wobei P• eine projektive Auflösung von M ist. In dieser Situation wird
die Multiplikation zur Verknüpfung von Abbildungen zwischen Komplexen. Die Kon-
struktion dieser Auflösung und der Kettenabbildungen erfordert detaillierte Kenntnis
der projektiven Moduln. Schon die Frage, ob Abbildungen zwischen parabolischen
Vermamoduln existieren, ist nicht trivial (s. [Boe85] oder [Hum08, Theorem 9.10]).

In [BS08b] entwickeln Brundan und Stroppel mit Hilfe einer leichten Verallge-
meinerung von Khovanovs Diagrammalgebra eine kombinatorische Beschreibung der
Kategorie Op für den Fall g = gln+m und p einer parabolischen Unteralgebra mit
Levikomponente gln ⊕ glm (s. Theorem 3.1). Unter Benutzung dieser kombinato-
rischen Techniken und klassischer Lie-theoretischer Resultate können wir im ersten
Teil der Arbeit projektive Auflösungen und Morphismen zwischen diesen bestimmen.
Ein wichtiges Resultat, welches wir später verwenden, ist ein Beweis einer Version
des Delorme-Schmid Theorems (s. [Del77], [Sch81]) in unserem Fall.

Die Hauptresultate des ersten Teils sind die Theoreme 5.9 und 5.33:

• Eine explizite Beschreibung der Ext-Algebra mit Hilfe von Wegealgebren eines
Köchers mit Relationen für die Fälle n = 1 bzw. n = 2.

Wie Khovanov und Seidel in [KS02] erwähnen, taucht die erste Algebra auch
bei der Analyse von Floer Homologie auf (für mehr Details s. [AK08]). Da wir die
Algebren mit ihrer gesamten Struktur als Algebren über C berechnen wollen, ist es
notwendig, dass wir auch die Vorzeichen in den Multiplikationsregeln bestimmen.

Im Zusammenhang von Fukaya-Kategorien tragen diese Algebren natürliche A∞-
Strukturen. A∞-Algebren sind eine Verallgemeinerung von Algebren, welche mehr
Information über das Objekt beinhalten. Eine A∞-Algebra besitzt höhere Multi-
plikationen, welche die sogenannten Stasheff-Relationen erfüllen (s. [Kel01]). Keller
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zeigt in seiner Arbeit, dass es mithilfe der Theorie der minimalen Modelle möglich
ist, aus einer A∞-Struktur auf Ext(

⊕
M(i),

⊕
M(i)) die Kategorie der Komplexe,

welche durch eine Familie von Moduln M(i) filtriert sind, wiederzugewinnen. Diese
A∞-Struktur wird als minimales Modell konstruiert, d.h. sie kommt von einer A∞-
Struktur auf H∗(Hom(

⊕
P (i)•,

⊕
P (i)•)). Eine solche A∞-Strukturen ist natürlich

auf Ext(
⊕
M(i),

⊕
M(i)).

Aufgrund dieser Betrachtungen konstruieren wir im zweiten Teil der Arbeit mi-
nimale Modelle für unsere Ext-Algebra. Da wir diese schon zuvor als die Homologie
der Hom-Algebra der projektiven Auflösungen betrachtet haben, können wir die Re-
sultate aus dem ersten Teil nutzen um die höheren Multiplikationen zu analysieren.
Zunächst konstruieren wir minimale Modelle mit einem ähnlichen Ansatz wie in
[LPWZ09]. Dazu kombinieren wir Merkulovs Formeln [Mer99] (im Fall für Superal-
gebren) und die von Kontsevich und Soibelman [KS01] (im F2-Fall). Auch hier müs-
sen wir auf die Vorzeichen achten (was manchmal zu sehr langwierigen Rechnungen
führt).

Als Ergebnis zeigen wir für n = 1 das „first vanishing theorem“(Theorem 7.3).
In diesem Satz beweisen wir die Formalität der Ext-Algebra, d.h. wir konstruieren
ein minimales Modell bei dem alle mk mit k ≥ 3 verschwinden.

Für n = 2 erhalten wir im „second vanishing theorem“ (Theorem 7.7) eine
A∞-Struktur mit nichtverschwindenen m3, jedoch mk = 0 für k ≥ 4. Daher haben
wir ein Beispiel für eine A∞-Algebra mit nicht trivialen höheren Multiplikationen
konstruiert.

Das Hauptresultat dieser Arbeit ist das „general vanishing theorem“ (Theo-
rem 7.2). Es besagt, dass es für beliebiges n ein minimales Modell gibt, so dass mk

für k ≥ n2 + 2 verschwindet. Die für den Beweis benötigten Hilfsmittel werden in
der gesamten Arbeit entwickelt.

Struktur der Arbeit: Im ersten Teil der Arbeit werden die Hauptresultate über die
Struktur der Algebra erarbeitet. In Kapitel 1 wird eine Einführung in die Kategorien
O and Op gegeben. Einen Überblick über die wichtigsten Hilfsmittel aus der homo-
logischen Algebra findet man in Kapitel 2. Kapitel 3 beginnt mit dem wichtigen Satz
über die Äquivalenz der Kategorien Op und Kn

m − mod. Im Folgenden werden die
benötigten Definitionen über Kn

m eingeführt und Resultate über die Graduierung,
Endomorphismen von projektiven Moduln und die Form der projektiven Auflösun-
gen bewiesen. In Kapitel 4 stellen wir Sheltons Ergebnisse vor und arbeiten diese
für das hermitische Paar (slm+n, (glm ⊕ gln) ∩ slm+n) aus. Anschließend, in Kapitel
5, berechnen wir die Algebrenstruktur für n = 1 und n = 2. Um die Lesbarkeit zu
erhöhen, sind die meisten aufwändigen Rechnungen in den Anhang ausgelagert. Am
Ende des ersten Teils werden in Kapitel 6 die erzielten Resultate mit der Koszul-
Dualität in Verbindung gesetzt und eine graduierte Version von Vermas Theorem in
diesem speziellen Fall bewiesen.

Der zweite Teil der Arbeit beschäftigt sich mit der A∞-Struktur. Zunächst wird
in Kapitel 6.4 eine kurze Einleitung gegeben und grundlegende Ideen präsentiert.
Abschließend verwenden wir in Kapitel 7 Ergebnisse aus dem ersten Teil und dem
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vorhergehenden Kapitel um die oben erwähnten Hauptresultate zu beweisen.

Danksagung: An dieser Stelle möchte ich mich bei allen bedanken, die mich wäh-
rend meiner Diplomarbeit unterstützt haben. Mein besonderer Dank gilt meiner
Professorin Catharina Stroppel für die umfangreiche und unermüdliche Betreuung.



Part I

Algebra structure



Chapter 1

Categories O and Op

1.1 Notation

We just resume some basic notations about semisimple and reductive Lie algebras.
For a more detailed explication see [Hum08] for the semisimple case and [MP95]
for the more general case of a reductive Lie algebra. Note that since a reductive
Lie algebra is the direct sum of a semisimple Lie algebra and its center, there are
only slight differences if one generalizes the theory from semisimple to reductive Lie
algebras.

Let g be a reductive Lie algebra over C and h ⊂ b ⊂ g fixed Cartan and Borel
subalgebras. Let p be a parabolic subalgebra, i.e. b ⊂ p ⊂ g. From now on fix h and
b. If g = gln or sln we take the standard subalgebras, i.e. for b the upper triangular
matrices and for h the diagonal matrices.

Denote by Φ ⊂ h∗ the root system of g relative to h. By choosing b as above we
get a system of simple roots ∆ ⊂ Φ and a positive system Φ+ ⊂ Φ respectively, such
that we have the Cartan decomposition

g = n− ⊕ h⊕ n

with n =
⊕

α∈Φ+ gα and h acting on gα as α(h), such that b = n⊕ h.
We always work with a standard basis of n and n− consisting of root vectors

xα ∈ gα and yα ∈ g−α, α > 0 and vectors hα = [xα, yα] ∈ h for α ∈ ∆ so that all
α(hα) = 2. Note that for a semisimple Lie algebra the hα already give a basis of h.
In the reductive case there can be an additional direct summand from the center of
the Lie algebra.

We define a dual root system Φˇ satisfying the condition

〈β, α 〉̌ = β(hα) for all α ∈ Φ.

Denote by ρ = 1
2

∑
α∈Φ+ α the special weight satisfying 〈ρ, α 〉̌ = 1 ∀ α ∈ ∆ and by

λ0 the zero weight.
The symmetric group attached to Φ is its Weyl group W , the group generated by

all reflections sα with α ∈ ∆. On W we define a length function l(w), which gives
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us the smallest number of simple reflections needed to get w. If w = s1 . . . sn with
si simple reflections and l(w) = n we call such an expression reduced. Define the
Chevalley-Bruhat ordering of W as follows

w′ ≤ w ⇔ w′ occurs as a subexpression in a reduced expression for w.

We get a natural action of W on h∗ with fixed point zero.
We also work with the dot-action where the action is shifted by −ρ, i.e.

for w ∈W, λ ∈ h∗ define w · λ = w(λ+ ρ)− ρ.

Later on we will need the integral weight lattice defined as

Λ := {λ ∈ h∗|〈λ, α 〉̌ ∈ Z for all α ∈ Φ}.

Its elements are called integral weights. This space is stable under the action of W .
There is a natural partial ordering on Λ defined by µ ≤ λ if and only if λ − µ is a
Z+-linear combination of simple roots. Write ∆ = {α1, . . . , αk}, then the group Λ
is free abelian of rank k. The basis elements {ε1, . . . εk} satisfying 〈εi, αj 〉̌ = δij are
called the fundamental weights.

Also define the dominant weights by

Λ+ := {λ ∈ h∗|〈λ, α 〉̌ ≥ 0 for all α ∈ Φ+}.

The universal enveloping algebra U(a) of a Lie algebra a is an essential tool in
the construction of representations of the Lie algebra a which are the same as U(a)-
modules. Note that every unital associative algebra A is a Lie algebra with the Lie
bracket given by the commutator AB −BA.

Definition 1.1. The universal enveloping algebra U(a) of a Lie algebra a is an asso-
ciative unital algebra together with a Lie algebra morphism σ : a→ U(a) satisfying
the following universal property:

For any unital associative C-algebra A and Lie algebra morphism f : a→ A there
exists a unique morphism of unital associative algebras f̃ : U(a)→ A with f̃ ◦σ = f .

a
∀f //

σ
��

A

U(a)
∃f̃

==

By standard arguments for universal properties the universal enveloping algebra
is unique up to unique isomorphism.
One may also write down the algebra explicitly by taking the tensor algebra T (a)
and dividing out the ideal I = 〈a⊗ b− b⊗ a− [a, b]|a, b ∈ a〉.
The adjoint action of a on itself induces an action of a on U(a). For x ∈ a this action
is given by x · u = xu− ux for u ∈ U(a).
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In the following we work with left U(g)-modules. Denote the category by U(g)−
Mod.

For an arbitrary U(g)-moduleM we define the weight space relative to the action
of the Cartan subalgebra h. For λ ∈ h∗ the weight space of weight λ is defined as

Mλ := {v ∈M |h · v = λ(h)v ∀ h ∈ h}.

1.2 The category O

1.2.1 Definition

Definition 1.2. The BGG-category O is defined to be the full subcategory of U(g)−
Mod whose objects M are satisfying the following conditions:

O1) M is a finitely generated U(g)-module

O2) M is h-semisimple, i.e., M is a direct sum of its weight spaces M =
⊕

λ∈h∗Mλ

O3) M is locally n-finite: for each v ∈ M , the subspace U(n) · v of M is finite
dimensional

Lemma 1.3 ([Hum08, Theorem 1.1 and Theorem 1.11]). O is an artinian, noethe-
rian, abelian category with finite dimensional morphism spaces.

1.2.2 Special modules in O

In the category O as in the other categories we will see later, there are three distin-
guished classes of modules whose isomorphism classes give a basis of the Grothendieck
group of O and which can be labelled by weights λ ∈ h∗. To avoid confusion and
because we are later mostly working in Op, we label the modules in O by an extra
upper index, for instance MO.

The Verma modules MO(λ) are so-called highest weight modules of highest
weight λ.

Definition 1.4. For λ ∈ h∗ let Cλ be the 1-dimensional b-module with trivial n-
action (so for h ∈ h h · x = λ(h)x ∀ x ∈ Cλ). The Verma module MO(λ) is defined
to be

MO(λ) := U(g)⊗U(b) Cλ
which has a natural structure of a left U(g)-module.

Lemma 1.5 ([Hum08, Theorem 1.2], [MP95, §2.3, Prop. 4]). The Verma module
MO(λ) has a unique maximal submodule and hence it has a simple head.

Definition 1.6. For λ ∈ h∗ denote the simple head of MO(λ) by LO(λ).

The third class of modules we are interested in are the projective modules.

Theorem 1.7 ([Hum08, Theorem 3.8], [MP95, §2.10, Prop. 17]). Category O has
enough projectives.



1.3 The category Op 11

Definition 1.8. For λ ∈ h∗ denote by PO(λ) the projective cover of LO(λ).

Lemma 1.9 ([Hum08, Theorem 3.9], [MP95, §2.10, Prop. 10]). Every indecompos-
able projective module in O is isomorphic to some PO(λ).

1.2.3 Blocks

Theorem 1.10 ([Hum08, Prop. 1.12], [MP95, §2.12 Prop.1, §6.7 Prop 4]). The
above category splits into direct summands (so-called “blocks” ) Oµ such that

O =
⊕
µ

Oµ

where µ runs over a complete system of representatives for orbits under the dot action
and Oλ the summand generated by the simple modules L(µ) with µ ∈W · λ.

Note that for integral weights λ ∈ Λ the subcategory Oλ is a block in the usual
sense [Hum08, Prop. 1.13].

One can show that M(µ) and P (µ) are lying in Oµ.
Note that since an element of the center of g operates by a scalar on M(µ)

and this central character χ(z) is invariant under the dot-action of W (cf [Hum08,
Chapter 1.7]) the center acts by χ(z) on the whole block.

Note that ExtiO(M,N) = 0 forM , N in different blocks. O0 is called the principal
block since it is the block containing the trivial representation.

1.3 The category Op

1.3.1 Notations

We work with a standard parabolic subalgebra p. For a subset I ⊂ ∆ we get a root
system ΦI ⊂ Φ and the standard parabolic subalgebra p = pI = lI ⊕ uI which is the
Lie algebra with the chosen root system and l = lI the corresponding Levi subalgebra
(l = h ⊕

⊕
α∈ΦI

gα). For I = ∅ we get p = b, for I = ∆ we get pI = g. Let Wl

be the Weyl group generated by all α ∈ I. Denote by W l the set of minimal-length
coset representatives for Wl\W , that is

W l = {w ∈W | ∀ α ∈ I : l(sαw) > l(w)}.

We also have p-dominant weights

Λ+
I := {λ ∈ h∗|〈λ, α 〉̌ ∈ Z+ for all α ∈ I} (1.1)

Denote by E(λ) the finite dimensional lI -module with highest weight λ ∈ Λ+
I .

1.3.2 Definition

Definition 1.11. The category Op is the full subcategory of O consisting of all
modules which are locally p-finite.
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1.3.3 Special modules in Op

A simple module in Op must be simple in O. Moreover we get

Proposition 1.12 ([Hum08, Prop 9.3. and Theorem 9.4.]). The simple module
LO(λ) lies in Op if and only if λ ∈ Λ+

I . Denote those modules just by L(λ).

Now we proceed with the parabolic Verma modules.

Definition 1.13. For λ ∈ Λ+
I we define the parabolic Verma module

M(λ) := U(g)⊗U(pI) E(λ)

M(λ) has unique simple quotient L(λ). Sometimes it might be easier to work
with the following identification

Proposition 1.14 ([Str05, Corollary 1.3]). For λ ∈ Λ+
I there is an isomorphism

M(λ) ∼= MO(λ)/M , where M denotes the smallest submodule containing all compo-
sition factors not contained in Op.

Now we are left to define the projective modules.

Definition 1.15. For λ ∈ Λ+
I define P (λ) to be the projective cover of L(λ).

Similar to the Verma modules the projective modules in Op are quotients of those
in O.

Proposition 1.16 ([Str05, Proposition 1.2]). Let Q ∈ Op with projective cover
P ∈ O. Then the projective cover of Q in Op is (up to isomorphism) the quotient
P/M , where M is the smallest submodule of P containing all composition factors of
P not contained in Op.

Using the Proposition one easily shows that Op has enough projectives.
Let Op

0 be the principal block of Op such that all M ∈ Op only have composition
factors L(µ) with µ ∈W · λ0 ∩ Λ+

i .
Note that these weights are exactly those given by w ·λ0 with w ∈W p. Since we

work with left cosets, for better readability we write P (x · λ) =: P (λ.x) and similar
for simple and Verma modules.

1.4 Blocks of O(sln) versus blocks of O(gln)
Later on we want to combine results obtained for O(gln) with those obtained for
O(sln). To make sure that this is possible we want to stress that on the level of
blocks the two categories are almost the same. Making this more precise is the
purpose of this section.

Note that since gln only differs from sln by the span of one more central element
(the identity matrix E), they have the same root space decomposition and only differ
in the Cartan subalgebra. If h is a Cartan for sln, then h′ = h⊕ CE is a Cartan for
gln. In our setup h is the Lie algebra of diagonal matrices with trace zero and h′ is
the space of all diagonal matrices.
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Definition 1.17. For a U(gln)-module M denote by res(M) the corresponding
U(sln)-module.

For a U(sln)-module M and a ∈ C denote by Fa(M) the U(gln)-module with

E.m = a ·m ∀ m ∈M.

Lemma 1.18. If M is in O(gln), then res(M) lies in O(sln).
The functor res maps a Verma module M(λ′) with λ′ ∈ h′ to the Verma module

M(λ) with λ = λ′|h.

Proof. We check the properties O1−O3.

O1) The module res(M) is still finitely generated, since a central element does not
generate anything.

O2) As the subalgebra h′ is restricted to a smaller one, semisimplicity holds.

O3) U(n) does not change.

The second statement follows then directly from the definitions and the facts that
a highest weight vector is sent to a highest weight vector and that U(n) does not
change.

Lemma 1.19. If M is in O(sln), then Fa(M) lies in O(gln).
The functor Fa maps the Verma module M(λ) with λ ∈ h∗ to the Verma module

M(λ′) with λ′ ∈ h′∗ such that λ′(h) = λ(h) ∀h ∈ h and λ′(E) = a.

Proof. Again, we check the properties O1−O3 without any difficulties appearing.
By the definition of Fa(M) the highest weight vector v ∈ M(λ) is mapped to a

highest weight vector in Fa(M(λ)) with E.v = a · v.

Lemma 1.20. res(Fa(M)) = M for all a ∈ C.

Now we can check that these functors map blocks to blocks. Therefore recall
from Section 1.2.3 that each element z in the center acts by a scalar χ(z) on the
modules in a block. Especially for an element in Z(U(g)) ∩ h this scalar has to be
λ(z) since z.v = λ(z)v for a highest weight vector.

Lemma 1.21. For a module M ∈ O(gln)λ′ with λ′ ∈ h′∗ we have Fa(resM) = M
with a = λ′(E) .

Theorem 1.22. There is an equivalence of categories

Fa : O(sln)λ → O(gln)λ′ (1.2)

with λ′ ∈ h′∗ such that λ′(h) = λ(h) ∀h ∈ h and λ′(E) = a. The inverse functor is
given by

res : O(gln)λ′ → O(sln)λ. (1.3)

In particular, the principal blocks of both categories are equivalent.
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Proof. The theorem follows immediately by Lemma 1.20 and Lemma 1.21.

Remark 1.23. Since the parabolic category O is a Serre subcategory of the ordinary
category O given by all modules with composition factors from a prescribed set of
simple highest weight modules, the above result also holds in the parabolic setting.
Particularly, we can derive the result for the principal block which we are going to
use later on.

Corollary 1.24. The functor F0 induces an equivalence of categories

Op′

0 (glm+n) ∼= Op
0(slm+n)

where p′ is the parabolic subalgebra with corresponding Levi component glm⊕gln and
p = p′ ∩ slm+n.



Chapter 2

Notations and homological algebra

For later use we recall some notations and definitions from homological algebra.

2.1 Complexes

Definition 2.1. Let A be a graded algebra. A chain complex C• of graded A-
modules is a family of graded A-modules {Cn}n∈Z together with degree zero A-
module morphisms dn : Cn → Cn−1 such that dn−1 ◦ dn = 0. The object Cn is often
called the nth component of C•. A complex is called acyclic or exact if its homology
is zero.

Notation 2.2. We have to define different kinds of shifts.
For a complex C• define C[i]• by C[i]j = Cj−i. The differential is d[i]j = (−1)idj .

For explicit calculations in Section 5 we want to define a shift functor [ ]Hom where
C[i]Hom• is precisely as above but leaving the differential unchanged.
For M a graded A-module define the internal shift M〈i〉 by M〈i〉j = Mj−i.
We denote by C•〈i〉 the (internally) shifted complex C• which one obtains just by
shifting each object. Hence the internal grading is shifted up, the differential maps
stay to be of degree zero.

2.2 Projective resolutions

Definition 2.3. Choose A as above and let M be a graded A-module. A projective
resolution P• of A is a chain complex consisting of projective modules with Pi =
0 ∀ i < 0 such that the complex P≥0 →M → 0 is acyclic.

Definition 2.4. A projective resolution P• is called linear if the nth part Pn is
generated in degree n.

Lemma 2.5. Given an exact sequence of graded A-modules

0 // L〈1〉 f //M
g // N // 0
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and finite linear projective resolutions PL• , PM• of L and M respectively, one may
construct a linear projective resolution PN• of N . The construction works as follows:
Set f• : PL• 〈1〉 → PM• the map induced by f and choose PN• = C(f•) where C(f•)
denotes the cone of the chain map f•. The map PN0 → N is given by the composition
of the maps PM0 →M → N .

Proof. Writing down the induced map f , we get a commuting diagram

· · · // PLk 〈1〉

fk
��

dLk // · · · // PL0 〈1〉

f0

��

dL0 // L〈1〉

f

��

// 0

· · · // PMk
dMk // · · · // PM0

dM0 //M // 0

The cone of this complex is an acyclic complex

· · · // PLk−1〈1〉 ⊕ PMk
d̃Nk // · · · // PL0 〈1〉 ⊕ PM1

d̃N1 // L〈1〉 ⊕ PM0
d̃N0 //M // 0

with d̃Nk =

(
−dLk−1 0
fk−1 dMk

)
. There is an obvious map between complexes

· · · // 0

��

// · · · // 0 //

��

L〈1〉 //

��

L〈1〉 //

��

0

· · · // PLk−1〈1〉 ⊕ PMk
d̃Nk // · · · // PL0 〈1〉 ⊕ PM1

d̃N1 // L〈1〉 ⊕ PM0
d̃N0 //M // 0

Taking the quotient by the upper complex, we get a new acyclic complex

· · · // PLk−1〈1〉 ⊕ PMk
dNk // · · · // PL0 〈1〉 ⊕ PM1

dN1 // PM0
dN0 // N // 0

with the differentials dNk =


d̃Nk for k ≥ 2,

(f0, d
M
1 ) for k = 1,

g ◦ d0 for k = 0
which are the differentials assumed in the Lemma.

Since the part belonging to PL• is shifted in both directions, it occurs as PL• 〈1〉[1].
The terms belonging to PM• stay unchanged and so this projective resolution is
linear.

2.3 The algebra structure on Ext

2.3.1 Ext-spaces

We shortly review different ways to define Ext(A,B) with A,B ∈ Ob(A) and A an
abelian category.
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If A = R −Mod is the category of modules over a ring R, the most usual way
is defining ExtkR(_, B) as the kth right derived functor of HomR(_, B). For this
one chooses a projective resolution P• of the module A and computes ExtkR(A,B) =
Hn(HomR(P•, B)).

From now on assume that A and B have finite projective dimension. For Q•
a finite projective resolution of B, we define a differential graded structure on
Hom(P•, Q•) with Hom(P•, Q•)

r =
∏
p Hom(Pp, Qp+r) and the differential dp(f) =

d◦f − (−1)pf◦d (c.f. [GM96, chapter III.6.13]). Now we are able to compute Ext
using the derived category (for the arguments see [GM96, Chapter III]):

Extk(A,B) = HomD(A)(A[0], B[k])

= HomD(A)(P [0], Q[k])

= HomK(A)(P [0], Q[k]) since P• is projective and bounded

= HomK(A)(P•, Q•)[k]

= H0(Hom(P•, Q•)[k])

= Hk(Hom(P•, Q•))

Therefore, one can also compute the homomorphism spaces of the projective res-
olutions and afterwards take its cohomology.
Cycles in Hom(P•, Q•) are chain maps (according to the degree commuting or anti-
commuting) and boundaries are homotopies (up to sign). If one regards them as chain
maps between translated complexes (i.e. in HomDb(A)(P [0], Q[k])) the sign conven-
tion from Notation 2.2 leads to cycles being commuting chain maps and boundaries
being usual homotopies.

For getting less confused with the signs in the complexes, in our computations
we do not change signs while shifting (i.e. we use the [ ]Hom-shift), but therefore we
have to check that the maps are commutative or anticommutative, respectively.

Note that for A =
⊕

αAα and B =
⊕

β Bβ two finite direct sums one has

Extk(A,B) =
⊕
α,β

Extk(Aα, Bβ).

2.3.2 Multiplication

From now on we choose A = B and compute Extk(A,A) = Hk(Hom(P•, P•)). For
the ease of presentation, multiplication in the algebra Hom(P•, P•), which is given
by composing of chain maps, is written from left to right, i.e. for α, β ∈ Hom(P•, P•)
we have (α · β)(x) = β(α(x)). The multiplication in Ext(A,A) is the induced mul-
tiplication, therefore it is also given by composing the corresponding chain maps.
If A =

⊕
α∈I

Aα, Pα• is a projective resolution of Aα and P• =
⊕
α∈I

Pα•, we have

Idα = [id] ∈ Ext0(Aα, Aα).
The Idα form a system of mutual orthogonal idempotents, hence we can write

Extk(A,A) =
⊕
α,β∈I

Idα Extk(Aα, Aβ) Idβ .
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Therefore, it is enough to compute Extk(Aα, Aβ) and to look at products of elements
x ∈ Extk(Aα, Aβ) and y ∈ Extl(Aβ, Aγ) interpreting their product

x · y = Idα x Idβ Idβ y Idγ ∈ Extk+l(A,A).



Chapter 3

Op via Khovanov’s diagram
algebra

Now we want to specify our situation. Let g = glm+n(C) and p the parabolic
subalgebra associated to the Levi subalgebra l = glm(C)⊕gln(C). The key ingredient
of the whole work is the main theorem from [BS08b].

Theorem 3.1 ([BS08b, Corollary 8.21.]). There is an equivalence of categories

E : O(m,n, I)→ K(m,n, I)−mod

such that E(L(λ)) ∼= L(λ), E(M(λ)) ∼= M(λ) and E(P (λ)) ∼= P (λ) for each λ ∈
Λ(m,n, I).

Here O(m,n, I) is an infinite sum of certain blocks of Op and K(m,n) is an
infinity algebra given by the direct sum of finite dimensional algebrasKΛ (cf. [BS08b,
Section 2]). Here KΛ is the algebra defined diagrammatically in [BS08b] with an
explicit basis given by certain diagrams and a multiplication defined by an explicit
“surgery” construction. The basis is in fact a (graded) cellular basis in the sense
of Graham and Lehrer [GL04] in the graded version of Hu and Mathas [HM10].
The algebra is shown to be quasi-hereditary in [BS08a, Section 5]. Hence we have
standard modulesM(λ), their projective covers P (λ) and irreducible quotients L(λ).
This is meant by the notation used in the theorem. These terms will be explained
in detail below.

Since we are not going to work in this general setting, we do not introduce the
notation in detail. We only need certain finite dimensional summands corresponding
to the principal block of Op which we will introduce below.
The theorem simplifies by restriction to the principal block of Op and we deduce the
following corollary

Corollary 3.2. There is an equivalence of categories of the principal block of Op to
the category of finite dimensional left modules over the Khovanov diagram algebra,
Kn
m−mod, sending the simple module L(λ) ∈ Op to the simple module L(λ) ∈ Kn

m−
mod, the Verma modules M(λ) to the cell modules M(λ) and the indecomposable
projectives to the corresponding indecomposable projectives.
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Figure 3.1: the zero weight for n = 2 and m = 3

∧ ∧
∨ ∨ ∨· · ·

−2−1 5 6 · · ·

Remark 3.3. As we will see in the following sections, Kn
m−mod possesses a natural

grading (cf. [BS08a, Theorem 5.3]). Using the above equivalence from Corollary 3.2
this gives rise to a graded version of the principal block of Op, denoted by OpZ

0 . Using
the grading from K(m,n)−mod which will not be explained in this thesis, one obtains
a graded category OpZ. By the unicity of Koszul gradings [BGS96, Section 2.5] this is
equivalent to the graded version of Op one can define geometrically [BGS96, Section
3.11] (and [Str05] for the principal block).

3.1 The algebra Kn
m and its basic properties

3.1.1 Basic definitions

For the construction of elements in Kn
m, we recall the notions of weights, cup/cap

diagrams and finally circle diagrams in our situation (cf. [BS08a, Section 2]).
A weight λ in the block Λnm := Λ(m,n;m + n) belonging to Kn

m = KΛn
m

is
an element obtained by permuting n ∧’s and m ∨’s placed at the (m + n) places
i ∈ I = {0, . . . ,m+n− 1} on the number line. The zero weight λ0 is the one having
all ∧’s on the left and all ∨’s on the right (cf. figure 3.1).

The connection with our previously defined weights is given by a weight dictionary
similar to the one in [BS08b, Section 1]. For the ease of presentation we shift the
weight ρ used to define the zero weight:
Take

ρ = εm+n−1 + 2εm+n−2 + · · ·+ (m+ n− 1)ε1 ∈ h∗

and for λ in Λ+
I from equation (1.1) define

I∨(λ) := {(λ+ ρ, ε1), . . . , (λ+ ρ, εm)}
I∧(λ) := {(λ+ ρ, εm+1), . . . , (λ+ ρ, εm+n)}.

Now label the ith vertex of the numberline by{
∨ if i belongs to I∨(λ)

∧ if i belongs to I∧(λ)

respectively. The obtained weight is the weight λ ∈ Λnm. The weights are partially
ordered by the Bruhat order, i.e. an element becomes bigger by swapping ∨’s to the
right.

The symmetric group Sm+n acts transitively on the set of weights by permuting
the symbols. Since the zero weight has stabilizer Sm×Sn, we get a bijection between
W l and the set of weights. Observe that the elements sn · . . . · sin · sn−1 · . . . · sin−1 ·
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Figure 3.2: the Weyl group operating on the zero weight for n = 2 and m = 3

λ0

∧ ∧ ∨ ∨ ∨
s2

λ0.s2

∧ ∨ ∧ ∨ ∨
s3

λ0.s2s3

∧ ∨ ∨ ∧ ∨
s1

λ0.s2s3s1

∨ ∧ ∨ ∧ ∨

Figure 3.3: an oriented cup diagram

∧ ∨ ∨ ∧ ∨ ∧ ∨

. . . · s1 · . . . · si1 with n+m ≥ in > in−1 > . . . > i1 ≥ 0 give a set of shortest elements
(First permute the nth ∧, then the (n− 1)st and so on, cf. figure 3.2). The order of
the elements in Λnm corresponds precisely to the Bruhat order on the Weyl group via
Corollary 3.2 and the part after Prop 1.16 and the explicit description given above.
For λ = λ0.x with x ∈W l we write l(λ) for l(x).
For each index i define the relative length

li(λ, µ) :=#{j ∈ I | j ≤ i and vertex j of λ is labelled ∨}
−#{j ∈ I | j ≤ i and vertex j of µ is labelled ∨}

=#{j ∈ I | j ≤ i and vertex j of µ is labelled ∧}
−#{j ∈ I | j ≤ i and vertex j of λ is labelled ∧}.

and note that by [BS08a, Section 5]

l(λ)− l(µ) =
∑
i∈I

`i(λ, µ). (3.1)

A cup diagram is a diagram obtained by attaching rays and finitely many cups (lower
semicircles) to the line of length m + n, so that rays join vertices down to infinity
and do not intersect cups.
A cap diagram is the mirror image of a cup diagram, so caps (i.e. upper semicircles)
instead of cups are used. The mirror image of a cup (resp. cap) diagram c is denoted
by c∗.
If c is a cup diagram and λ a weight in Λnm, we can glue c and λ and obtain a new
diagram denoted cλ. cλ is called oriented cup diagram if

• each cup is oriented, i.e. one of the vertices is labelled ∨ and the other one ∧

• there are not two rays in c labelled ∨∧ in this order from left to right.

An example is given in figure 3.3.
If c is a cap diagram, it is called oriented cap diagram if c∗λ is an oriented cup

diagram.
A circle diagram is obtained by gluing a cup and a cap diagram. It consists of circles
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Figure 3.4: an oriented circle diagram

∧ ∨ ∨ ∧ ∨ ∧ ∨

Figure 3.5: The cup diagram associated to a weight λ

λ

λ

∧ ∨ ∧ ∨ ∨ ∧ ∨

and lines.
An oriented circle diagram aλb is the diagram obtained by gluing the oriented cup
diagram aλ underneath the oriented cap diagram λb. For an example look at figure
3.4.

The degree of an oriented cup/cap diagram aλ (or λb) means the total number
of oriented cups (caps) that it contains. So in Kn

m one has deg(aλ) ≤ n, since there
are at most n cups (caps). The degree of an oriented circle diagram aλb is defined as
the sum of the degree of aλ and the degree of λb.

The cup diagram associated to a weight λ is the unique cup diagram λ such that
λλ is an oriented cup diagram of degree 0. The construction works as follows: Look
for two neighboured vertices labelled by ∨∧ and connect them by a cup. Proceed
this procedure ignoring vertices which are already joined to others. Finally draw
rays to all vertices which are left. An example is given in figure 3.5.
The cap diagram associated to a weight λ is defined as λ := (λ)∗.

In a cup (cap) diagram we number the cups (caps) by the order of their right
ending points from left to right.

For a cup (cap) diagram a we denote by nesa(i) for 1 ≤ i ≤ #{cups} the number
of cups nested in the ith cup.

3.1.2 The algebra

The underlying vector space leading to Kn
m has a basis

{(aλb) |for all oriented circle diagrams with λ ∈ Λnm} .

We take the grading given by the degree defined above.
eλ is defined to be the diagram λλλ. The product of two circle diagrams aλb and

cµd is zero except for b = c∗. The multiplication of aλb and b∗µd works by the rules
of the generalised surgery procedure defined below, with the first diagram drawn
below the second and all rays stitched together. An example for the multiplication
is given in figure 3.6.

Definition 3.4 ([BS08a, Section 3 and Theorem 6.1.]). Given two circle diagrams
aλb and b∗µd, the first one drawn below the second and all corresponding rays
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stitched together (i.e. one has a diagram with a symmetric middle part) the gener-
alised surgery procedure works by the following steps:

1. Choose a symmetric pair of a cup and a cap in the middle section of the diagram
that can be connected without crossings.

2. Check if these cup and cap belong to one circle/line segment and if it applies
note down 1 (anti-clockwise oriented circle), x (clockwise oriented circle) or y
(line segment), respectively.

3. If they belong to different circles/line segments note down their kind for each
of them (1, x or y).

4. Delete the orientations from the circles/line segments these cup and cap are
belonging to. Cut open the cup and the cap and stitch the loose ends together
to form a pair of vertical line segments.

5. Re-orient the obtained circle diagram using the following rules:

(a) If one has cut one circle/line segment into two parts, one uses the rules:

1 7→ 1⊗ x+ x⊗ 1, x 7→ x⊗ x, y 7→ x⊗ y

where the first rule means that the diagram goes to a sum of two, with one
of the two new circles oriented clockwise and the other anti-clockwise in
each of these two diagrams, the rule x 7→ x⊗ x means that the clockwise
oriented circle transforms into two clockwise oriented circles and the rule
y 7→ x ⊗ y indicates that the line segment becomes a clockwise oriented
circle and a line segment.

(b) If one has made one circle/line segment out of two, one has to use these
rules:

1⊗ 1 7→ 1, 1⊗ x 7→ x, x⊗ 1 7→ x, x⊗ x 7→ 0,

1⊗ y 7→ y, y ⊗ 1 7→ y, x⊗ y 7→ 0, y ⊗ x 7→ 0

y ⊗ y 7→


y ⊗ y if both rays from one of the lines are oriented ∧

and both rays from the other line are oriented ∨
0 otherwise

For instance, the rule x⊗1 7→ x here indicates that an anti-clockwise and
a clockwise circle transform to one clockwise circle.

6. Iterate the procedure on all summands until there are no cups and caps left in
the middle part, then identify the two numberlines.

The vectors {eα|α ∈ Λnm} form a complete set of mutual orthogonal idempotents
in Kn

m. We get

Kn
m =

⊕
α,β∈Λn

m

eαK
n
meβ
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Figure 3.6: Multiplication of two elements
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1
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1⊗ 1 7→ 1
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∧ ∨ ∧ ∨ ∨

1

∧ ∨ ∧ ∨ ∨

and the summand eαKn
meβ has a basis{

(αλβ) |λ ∈ Λnm the diagram is oriented} .

3.1.3 Modules

Following [BS08a, Section 5], we look at graded unital left Kn
m-modules M . As

mentioned already there are different types of important modules which we describe
now in more detail:

• The simple modules L(λ) with λ ∈ Λnm.
x ∈ Kn

m operates on L(λ) by 1 if x = eλ and by 0 otherwise. Note that these
are onedimensional modules.
By shifting the degree one gets all isomorphism classes of simple graded Kn

m-
modules.

• The projective covers of the simple modules L(λ) denoted by P (λ) := Kn
meλ,

which have a basis{
(αµλ) | for all α, µ ∈ Λnm such that the diagram is oriented} . (3.2)

By shifting the degree one gets a full set of indecomposable projective modules.

• The cell or standard modules M(µ) with basis{
(cµ|

∣∣ for all oriented cup diagrams cµ
}

and (aλb)(cµ|) = (aµ|) or 0 depending on the elements.

Remark 3.5. Under the equivalence from Corollary 3.2 these modules correspond
to simples, projectives and Verma modules in the principal block of Op.

3.1.4 q-decomposition numbers

We have the following theorems about cell module filtrations of projectives and
Jordan-Hoelder filtrations of cell modules, which say that Kn

m is quasi-hereditary in
the sense of Cline, Parshall and Scott [CPS88].
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Theorem 3.6 ([BS08a, Theorem 5.1]). For λ ∈ Λnm, enumerate the elements of the
set {µ ∈ Λnm |λµ is oriented} as µ1, µ2, . . . , µn = λ so that µi > µj implies i < j. Let
M(0) := {0} and for i = 1, . . . , n define M(i) to be the subspace of P (λ) generated
by M(i− 1) and the vectors{

(cµiλ)
∣∣ for all oriented cup diagrams cµi

}
.

Then
{0} = M(0) ⊂M(1) ⊂ · · · ⊂M(n) = P (λ)

is a filtration of P (λ) as a Kn
m-module such that

M(i)/M(i− 1) ∼= M(µi)〈deg(µiλ)〉

for each i = 1, . . . , n.

Theorem 3.7 ([BS08a, Theorem 5.2]). For µ ∈ Λnm, let N(j) be the submodule of
M(µ) spanned by all graded pieces of degree ≥ j. Then

M(µ) = N(0) ⊇ N(1) ⊇ N(2) ⊇ · · ·

is a filtration of M(µ) as a Kn
m-module such that

N(j)/N(j + 1) ∼=
⊕

λ⊂µwith
deg(λµ)=j

L(λ)〈j〉

for each j ≥ 0. Moreover, we have that N(j) = 0 for j � 0, i.e. M(µ) is finite
dimensional.

By the BGG reprocity [Hum08, Theorem 9.8(f)] the two numbers diλ,µ(q) :=
[M(µ) : L(λ)〈i〉] and [P (λ) : M(µ)〈i〉] are equal.

If we define the polynomial

dλ,µ(q) :=
∑

diλ,µ(q) · qi =

{
qdeg(λµ) if λµ is oriented,
0 otherwise

we get the q-decomposition matrix D which encodes the multiplicities in the above
filtrations and is defined as

DΛn
m

(q) = (dλ,µ(q))λ,µ∈Λn
m
. (3.3)

So in terms of the Grothendieck group, the theorems above tell us

[M(µ)] =
∑
λ∈Λn

m

dλ,µ(q)[L(λ)], (3.4)

[P (λ)] =
∑
µ∈Λn

m

dλ,µ(q)[M(µ)]. (3.5)

Note that there are no higher multiplicities by the theorems. This multiplicity free-
ness is a general phenomenon of symmetric hermitian pairs (see [BC90, Theorem
1.1]), here reproved and illustrated nicely in terms of diagrams.
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Lemma 3.8. The radical filtration of the projective modules and the cell modules
agrees with their grading filtration.

Moreover, in the case of the cell modules the filtration also coincides with the
socle filtration, i.e. they are rigid.

Proof. By Theorem 3.6 and Theorem 3.7 the projective and cell modules have simple
heads. By [BS10, Corollary 5.7.] the algebra Kn

m is Koszul. Using [BGS96, Prop
2.4.1.] the two gradings agree.

By [BS10, Corollary 6.7.] the cell modules are rigid, i.e. the filtration also
coincides with the socle filtration.

Now we analyse the structure given by the filtration more detailly and work out
some technical Lemmas.

Lemma 3.9. The highest degree where a simple can occur in P (µ) is 2n.

Proof. Since deg(λµ) ≤ n, one obtains that the highest degree of M(µ), where a
simple could occur, is n. Putting the two formulas (3.4) and (3.5) together, we
obtain the the stated result.

We also look at the q-Cartan matrix

CΛn
m

(q) = (cλ,µ(q))λ,µ∈Λn
m

(3.6)

where

cλ,µ(q) :=
∑
j∈Z

qj dim HomKΛn
m

(P (λ), P (µ))j ∈ Z((q)).

We obtain the following results

Lemma 3.10. In Kn
m we have cλ,µ(q) = 0 for q > 2n, i.e.

HomKΛn
m

(P (λ)〈i〉, P (µ))0 = 0

unless 0 ≤ i ≤ 2n.

Proof. We know that a nonzero morphism f ∈ HomKΛn
m

(P (λ)〈i〉, P (µ))0 maps the
head of P (λ)〈i〉 to a simple sitting in degree i in P (µ). As we proved in Lemma 3.9
this can only exist for 0 ≤ i ≤ 2n.

The following provides lower and upper bounds for the decomposition numbers.

Lemma 3.11. In Kn
m we have dλ,µ = 0 unless

0 ≤ l(λ)− l(µ) ≤ n+ 2
∑
i

nesλ(i) ≤ n2.

In particular we get cλ,µ = 0 unless

l(λ)− l(µ) ≤ n+ 2
∑
i

nesλ(i) ≤ n2.
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Proof. Assume dλ,µ(q) 6= 0 for some q. This means that λµ is oriented. By [BS08a,
Lemma 2.3.] it follows that λ ≤ µ in the Bruhat ordering, which leads to l(λ) ≥ l(µ).
Now we want to find λ and µ such that l(λ) − l(µ) is maximal and λµ is oriented.
Assume λ is fixed. We have to look for the weight µ with the smallest length such
that λµ is oriented. This is obviously obtained if all ∧’s and ∨’s on the end of a
cup in λ are interchanged. Since a ∧ on the ith cup has been moved 1 + 2nesλ(i)
positions to the right, the length is changed by

∑
i(2nesλ(i) + 1).

Therefore, we obtain

0 ≤ l(λ)− l(µ) ≤ n+ 2
∑
i

nesλ(i).

Since
∑

i nesa(i) for any cup diagram becomes the biggest, if all cups are nested
(and then the first cup contains no other, the second one and so on), in that case we
obtain

2
∑
i

nesa(i) = 2
n∑
i=1

(i− 1) = (n− 1)n

and therefore the inequality is shown.
For cλ,µ one has to look for a simple L(λ) occurring in P (µ), especially occurring

in some M(ν), i.e. dλ,ν 6= 0 and dµ,ν 6= 0. This yields

l(λ)− l(ν) ≤ n+ 2
∑
i

nesλ(i)

and 0 ≤ l(µ)− l(ν) and therefore

l(λ)− l(µ) ≤ l(λ)− l(ν) ≤ n+ 2
∑
i

nesλ(i).

Remark 3.12. Later on in Section 5 we will deduce and use stronger inequalities
which however require an explicit and detailed knowledge of the structure of Vermas
and projectives and are obtained by combining the information one has about the
shifts with those about the decomposition numbers.

3.2 End(
⊕

P (λ))

Taking the above description for projective modules, we see that a minimal projec-
tive generator of KΛn

m
−Mod is

⊕
P (λ) ∼= KΛn

m
. Any endomorphism is given by

multiplication with an element of the algebra. Writing down the Hom-spaces (cf.
[BS08a, equation (5.9)]) we get:

HomKΛn
m

(P (λ), P (µ)) = HomKΛn
m

(KΛn
m
eλ,KΛn

m
eµ) = eλKΛn

m
eµ

and eλKΛn
m
eµ has basis{
(λνµ)

∣∣ ν ∈ Λnm such that λνµ is an oriented circle diagram
}
.
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Figure 3.7: Λ2
3Λ1

2-matching λt3λ′

∨ ∧ ∨

∨ ∧ ∨ ∧ ∨

We are now interested in the degree 1 component of HomKΛn
m

(P (λ), P (µ)), i.e. we
look for elements ν s.t. deg(λνµ) = 1:
Since then 1 = deg(λνµ) = deg(λν) + deg(νµ), one summand has to be 0 and the
other one has to be 1.

1. deg(λν) = 0, i.e. λ = ν, so we look for an oriented cap diagram λµ of degree 1.
It exists iff λ > µ and µ = λ.w with w changing the ∧ and ∨ (in this ordering)
at the end of a cup into a ∨ and ∧.

2. deg(νµ) = 0, i.e. µ = ν, so we look for an oriented cup diagram λµ of degree
1. It exists iff µ > λ and λ = µ.w with w changing the ∨ and ∧ at the end of
a cap.

So we get dim(HomKΛn
m

(P (λ), P (µ))1) ≤ 1.
Our first goal is to write down explicitly the morphisms corresponding to the multi-
plication by λνµ in terms of their action on basis vectors. In this way we determine
all relations between compositions of degree 1 morphisms. (Note that this deter-
mines the algebra completely, since it is Koszul [BS10, Theorem 5.6.], in particular
quadratic by [BGS96, Corollary 2.3.3.]).

3.3 Projective functors

3.3.1 Crossingless matchings and Kt
ΛΓ

In [BS10] the new category of geometric bimodules for KΛ is defined. We will cite
some general results and then only work in detail with two specific examples. For
the general construction look in [BS10, chapter 2 and 3].

Definition 3.13. For Λ = Λnm and Γ = Λn
′
m′ , an oriented ΛΓ-matching is a diagram

λtµ with λ ∈ Λ, µ ∈ Γ such that

• t is obtained as cup diagram drawn above a cap diagram with connected rays

• All cups, caps and rays in t are oriented.

Example 3.14 (The ΛnmΛn−1
m−1-matching λtiλ

′). There is an oriented ΛnmΛn−1
m−1-

matching λtiλ′ with λ′ obtained from λ by deleting the ith and i + 1st vertex and
ti matching the ith and i+ 1st vertex by a cap. An example is given in figure 3.7.

Similarly one defines the Λn−1
m−1Λnm-matching λ′t∗iλ (figure 3.8).
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Figure 3.8: Λ1
2Λ2

3-matching λ′t∗3λ

∨ ∧ ∨ ∧ ∨

∨ ∧ ∨

Figure 3.9: The upper reduction of tλb

∨ ∨ ∧ ∧ ∨

∨ ∧ ∨
∨ ∧ ∨

Definition 3.15. An oriented ΛΓ-circle diagram is a diagram obtained by gluing
a cup diagram a ∈ Λ and a cap diagram b ∈ Γ below and on top of an oriented
ΛΓ-matching such that everything is oriented.

The set of these diagrams is denoted by Kt
ΛΓ. Similarly to KΛ one defines a

bimodule structure via a surgery procedure from the top and bottom on this space
(cf. [BS10, chapter 3]). Therefore, one also obtains a graded structure.

The upper reduction of a diagram tλb means the oriented cap diagram obtained
by removing the upper number line and all upper circles and lines, i.e. those that
do not cross the bottom number line. An example is given in figure 3.9.

3.3.2 Projective functors

We want to study functors obtained by tensoring with geometric bimodules. In
[BS10, Chapter 4] the functor

GtΛΓ := Kt
ΛΓ〈− caps(t)〉⊗KΓ

? : modKΓ → modKΛ (3.7)

between graded module categories is defined.

Remark 3.16. In the special case of t = ti defined above and Λ = Λnm and Γ =
Λn−1
m−1 the functor GtΛΓ is a functor well-known in Lie Theory. It is obtained as

the composition of Jantzen’s translation functors ψαi : O(m,n, 0) → O(m,n, i)
(tensoring with a finite dimensional module and projecting to another block, cf.
[ES87, chapter 10], [Jan79, Chapter 2]) and the Enright-Shelton equivalence (cf.
[ES87, Prop. 11.2]) O(m,n, i)→ O(m− 1, n− 1, 0).
The functor in the case t = t∗i defined above and Λ = Λn−1

m−1 and Γ = Λnm is the
composition of the Enright-Shelton equivalence O(m−1, n−1, 0)→ O(m,n, i) with
the translation functor ϕαi : O(m,n, i)→ O(m,n, 0).
Having in mind this translation to classical Lie theory in these examples, the following
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theorems can be understood as a generalization of structure theorems for the special
projective functors.

First we give a theorem which justifies the name “projective functor”, since it
sends projective modules to projectives:

Theorem 3.17 ([BS10, Theorem 4.2]). Let t be a proper ΛΓ-matching and γ ∈ Γ.

(i) We have that GtΛΓP (γ) ∼= Kt
ΛΓeγ〈− caps(t)〉 as left KΛ-modules.

(ii) The module GtΛΓP (γ) is non-zero if and only if the rays of each upper line in
tγγ are oriented so that one is ∧ and one is ∨.

(iii) Assuming the condition from (ii) is satisfied, define λ ∈ Λ by declaring that λ
is the upper reduction of tγ, and let n be the number of upper circles removed
in the reduction process. Then

GtΛΓP (γ) ∼= P (λ)⊗R⊗n〈cups(t)− caps(t)〉.

as graded left KΛ-modules (where the KΛ-action on P (λ) ⊗ R⊗n comes from
its action on the first tensor factor and R = C[x]/(x2)).

Brundan and Stroppel also prove that projective functors preserve the category
of modules with graded cell module filtration. More precisely

Theorem 3.18 ([BS10, Theorem 4.5(i)]). Let t be a proper ΛΓ-matching and γ ∈ Γ.
The KΛ-module GtΛΓM(γ) has a filtration

{0} = N(0) ⊂ N(1) ⊂ · · · ⊂ N(n) = GtΛΓM(γ)

such that N(i)/N(i − 1) ∼= M(µi)〈deg(µitγ) − caps(t)〉 for each i. Here µ1, . . . , µn
denote the elements of the set {µ ∈ Λ | µtγ is oriented} ordered so that µi > µj
implies i < j.

3.3.3 Construction of linear projective resolutions of cell modules

In this part we give an explicit way to construct projective resolutions of cell modules
in Kn

m −mod using tools from the proof of [BS10, Theorem 5.3]. This construction
works by an interesting simultaneous induction varying the underlying algebra and
the highest weights. We assume that we know the resolutions in Kn−1

m−1−mod. Note
that for K0

m and Kn
0 we only have one indecomposable module, which is projective,

simple and cell module at once. We want to compute the projective resolution of
M(λ), assuming that we also know the projective resolutions for M(µ) with µ > λ.
We start with a general definition.

Definition 3.19 ([BS10, (5.6)]). For an index 0 ≤ i < m+ n− 1 define

Λ∨∧i,i+1 :=

{
ν ∈ Λnm

∣∣∣∣∣ the ith vertex of ν is labelled ∨
the (i+ 1)st vertex of ν is labelled ∧

}
. (3.8)



3.3 Projective functors 31

Now we are able to compute linear projective resolutions of cell modules.

Theorem 3.20. Each cell module M(λ) in Kn
m has a linear projective resolution

which can be constructed inductively from knowing the resolutions in Kn−1
m−1 and those

of M(µ) for µ > λ ∈ Λnm.

Proof. To start the induction, first note that for the dominant weight in Kn
m we

have M(λ0) = P (λ0) and hence a projective resolution is given by 0 → P (λ0) →
M(λ0)→ 0. We also know that in K0

m−mod and Kn
0 −mod there only exists one cell

module which is a simple projective cell module, so there we know the resolution for
this module and hence for all cell modules in K0

m−mod and Kn
0 −mod, respectively.

So we may assume that for a fixed λ ∈ Kn
m we already have resolutions for all cell

modules in Kn−1
m−1 −mod and for all M(µ) with µ > λ.

Set Λ = Λnm and Γ = Λn−1
m−1. For λ ∈ Λ∨∧i,i+1 let λ′ ∈ Γ be the weight obtained

from λ by deleting the ith and (i+ 1)st vertex.
Let ti be the ΛΓ-matching given in Example 3.14 with a cap joining the ith and
(i+ 1)st position and lines on the others. By the definition of λ it equals the upper
reduction of tiλ′ and no circles are removed, hence

GtiΛΓP (λ′) ∼= P (λ)〈−1〉 (3.9)

by Theorem 3.17.
Define λ′′ to be the weight one gets by interchanging the ith and (i+ 1)st vertex in
λ (i.e. λ′′ = λ.si), then Theorem 3.18 provides a short exact sequence

0 //M(λ′′)〈1〉 f // GtΛΓM(λ′)〈1〉 //M(λ) // 0 . (3.10)

Now by our induction hypothesis, we already have constructed linear projective res-
olutions P•(λ′′) of M(λ′′) for λ′′ ∈ Λ and P•(λ′) of M(λ′) with λ′ ∈ Γ. Denote the
differential maps by d•(λ′′) and d•(λ′).
Applying the exact functor GtiΛΓ to the second complex, we get a resolution of
GtiΛΓM(λ′) by the complex GtiΛΓP•(λ

′) with differentials GtiΛΓd•(λ
′). By (3.9) and

the hypothesis that we already have a smaller linear projective resolution, we know
that all GtΛΓPk(λ

′)〈1〉 are sums of projective modules with the head sitting in degree
k. Now we are in the situation of Lemma 2.5 and can apply the lemma to the com-
plexes P•(λ′′)→M(λ′′) and GtiΛΓP•(λ

′)〈1〉 → GtiΛΓM(λ′)〈1〉.
By this a projective resolution of M(λ) is given by the cone

C(f•) = GtiΛΓP•(λ
′)〈1〉 ⊕ P•(λ′′)〈1〉[1].

Putting d0(λ′′) = 0, for n ≥ 1 we have the differentials

dn(λ) =

(
−dn−1(λ′′) 0

fn−1 GtΛΓ(dn(λ′))

)
and the map d(λ) : P0(λ)→M(λ) equals to P0(λ)→ GtiΓΛM(λ′)→M(λ).



32 Op via Khovanov’s diagram algebra

Corollary 3.21. For two cell modules M(µ) and M(λ) in Kn
m − mod and their

projective resolutions P•(µ) and P•(λ) constructed as in Theorem 3.20, we have

Homk(P•(λ), P•(µ)〈j〉) = 0 unless 0 ≤ k − j ≤ 2n.

Proof. Since P•(µ) and P•(λ) are linear projective resolutions, we know that the
head of the ith component of P•(λ)〈j〉[k] sits in degree i − k + j. Therefore, an
element of Homk(P•(λ), P•(µ)〈j〉) is a morphism from a projective P (ν) in the ith
component of P•(λ) to a projective P (ν ′)〈j − k〉, i.e. a morphism in

HomKΛ
(P (ν)〈k − j〉, P (ν ′))0

which is only unequal zero for 0 ≤ k − j ≤ 2n by Lemma 3.10.

3.3.4 The combinatorial Kazhdan-Lusztig polynomials

In this section we recall the definition of the combinatorial Kazhdan-Lusztig polyno-
mials which describe the terms occurring in the projective resolution of cell modules.
We first give the recursive definition stated in [BS10, Lemma 5.2.], going back origi-
nally to work of Lascoux and Schuetzenberger [LS81].

Definition 3.22. Let pλ,µ(q) ∈ Z[q] be the polynomials defined by the following
recursion formulas:

(i) If λ = µ then pλ,µ(q) = 1 and if λ 6≤ µ then pλ,µ(q) = 0.

(ii) If λ < µ, pick some index i such that λ ∈ Λ∨∧i,i+1. Then

pλ,µ(q) =

{
pλ′,µ′(q) + qpλ′′,µ(q) if µ ∈ Λ∨∧i,i+1,
qpλ′′,µ(q) otherwise,

where λ′ and µ′ denote the weights in Λn−1
m−1 obtained from λ and µ by delet-

ing vertices i and i + 1 (as above), and λ′′ is the weight obtained from λ by
interchanging the labels on vertices i and i+ 1.

For easier calculation we also restate the direct construction of pλ,µ given in
[BS10, chapter 5]. First of all, set pλ,µ = 0 if λ 6≤ µ. A labelled cap diagram C is a
cap diagram whose unbounded chambers are labelled by zero and given two chambers
separated by a cap, the label in the inside chamber is greater than or equal to the
label in the outside chamber.

Denote by D(λ, µ) all labelled cap diagrams obtained by labelling the chambers
of µ in such a way that the label inside every inner cap (a cap containing no smaller
one) is less than or equal to li(λ, µ) (defined in (3.1)), where i is the index of the
vertex of the cap labelled by ∨. Now define |C| to be the sum of all labels in C. The
polynomials are given by

pλ,µ(q) := ql(λ)−l(µ)
∑

C∈D(λ,µ)

q−2|C|.

In [BS10, Lemma 5.2.] it is shown that both definitions agree.
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Figure 3.10: the labelled cap diagram

µ ∨ ∧ ∨ ∨ ∧ ∨
li 0 1

0 0/1

λ ∨ ∨ ∨ ∨ ∧ ∧

Example 3.23. For λ and µ the possibilities for the labelled cap diagrams C ∈
D(λ, µ) are presented in figure 3.10. The possible values for C therefore are 0 and
1. Since (λ)− l(µ) = 4, we get pλ,µ(q) = q4 + q2.

Now we have the tools to write down the terms occurring in the projective reso-
lution constructed in 3.3.3.

Theorem 3.24 ([BS10, Theorem 5.3]). For λ ∈ Λnm, the resolution of M(λ) con-
structed in 3.3.3

· · · d1−→ P1(λ)
d0−→ P0(λ)

ε−→M(λ) −→ 0

consists of P0(λ) := P (λ) and Pi(λ) :=
⊕

µ∈Λn
m
p

(i)
λ,µP (µ)〈i〉 for i ≥ 0.

Using the above definition we can already make some explicit restrictions on
terms occurring in the resolution.

Lemma 3.25. If a projective module P (ν) occurs as a direct summand in Pi(λ) with
P•(λ) being the projective resolution constructed above, one has

l(λ)− i− (n2 − n− 2
∑
i

nesν(i)) ≤ l(ν) ≤ l(λ)− i

Proof. To get p(i)
λ,ν we have to compute the possible C ∈ D(λ, ν). Look on the cap

belonging to the jth ∧ occurring in ν, which is numbered by kj if the caps are counted
by their endpoints, and this cap having starting point i. For the label of this cap we
get

li(λ, ν) ={k| k ≤ i and vertex k of ν is labelled ∧}
− {k| k ≤ i and vertex k of λ is labelled ∧}
≤ {k| k ≤ i and vertex k of ν is labelled ∧}

So we have to count the number of ∧’s to the left edge of the cap. There are
j − 1− nesν(kj) ∧’s to the left, i.e. all which are left to the jth ∧ (at the end of the
cap) without those lying inside the cap.

For this we get

0 ≤ |C| ≤
∑

j∈{1,...n}
a cap ending on the jth ∧

(j − 1− nesν(kj))

≤ n(n− 1)

2
−
∑
i

nesν(i).
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If a term occurs in the resolution, one has p(i)
λ,ν > 0, i.e. there is a C such that

i = l(λ)− l(ν)− 2|C|. Taking the upper and lower bound for C obtained before, one
gets

l(λ)− i− (n2 − n− 2
∑
i

nesν(i)) ≤ l(ν) ≤ l(λ)− i

and the claim of the Lemma follows.

3.3.5 Possible maps between projective resolutions

Using what we have obtained so far about our projective resolutions, we deduce the
following result:

Lemma 3.26. For λ, µ ∈ Kn
m we have

Homk(P•(λ), P•(µ)) = 0 unless l(λ) ≤ l(µ) + n2 + k (3.11)

Proof. A map between P•(λ) and P•(µ)[k] is in each component a morphism between
projectives. Including the shift we look for morphisms between projectives P (ν)
occurring in Pi(λ) and projectives P (ν ′) in Pi−k(µ). By Lemma 3.25 we know

l(λ)− i−

(
n2 − n− 2

∑
i

nesν(i)

)
≤ l(ν)

and
l(ν ′) ≤ l(µ)− (i− k).

Therefore, we have:

l(λ)− i−

(
n2 − n− 2

∑
i

nesν(i)

)
− (l(µ)− (i− k)) ≤ l(ν)− l(ν ′) (3.12)

Since we have a morphism between these projectives we get from Lemma 3.11

l(ν)− l(ν ′) ≤ n+ 2
∑
i

nesν(i). (3.13)

Combining the two inequalities (3.12) and (3.13), we obtain

l(λ)− i−

(
n2 − n− 2

∑
i

nesν(i)

)
− (l(µ)− (i− k)) ≤ n+ 2

∑
i

nesν(i)

which gives

l(λ) ≤ l(µ) + n2 + k.

Remark 3.27. In Lemma 5.14 we will deduce this Lemma again in a special case
by also incorporating the grading shifts. The results in Section 5.2.2 imply amongst
other things that the inequality in (3.11) is sharp.
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The Ext-algebra of
⊕

M(λ)

In this section we introduce a tool which is not necessarily needed for the compu-
tations below but which simplifies them. Knowing the dimension of the Ext-spaces
will be quite convenient later. Namely when we construct explicitly extensions it
will save us from showing that we have constructed enough of them.

In [She88], Shelton computes the dimensions of these spaces in the hermitian
symmetric cases, to which our case belongs to. In general, there is no explicit formula,
not even a candidate.

4.1 The proof of the dimension formulas by Shelton and
results about embeddings

4.1.1 Notation

For the sake of better readability we are comparing Shelton’s notation to ours. As
we do, he takes p to be a parabolic subalgebra in a complex semisimple Lie algebra
g. u is the nilradical of p and m its complement, i.e. p = u ⊕ m. In our notation m
is denoted by l. W is the Weyl group of g and Wm the Weyl group of m. This is
notated by Wl in our notation. The set of shortest elements W l Shelton denotes by
Wm. ω0 is the longest element in W and ωm the longest element in Wm.
For a fixed antidominant integral weight λ ∈ h∗ the parabolic Verma module of
highest weight ωmyλ − ρ is denoted by Ny. If we take instead of λ antidominant a
dominant weight λ0 = ω0λ then Ny = M(ωmyω0 · λ0) in our notation. The labelling
sets agree by the following observation:

Lemma 4.1. For arbitrary y, x ∈W the following holds:

1. ωmyω0 ∈Wm ⇔ y ∈Wm

2. ωmyω0 < ωmxω0 ⇔ y > x in the Bruhat order

Proof. The basic ingredients of the proof are the knowledge, that inW multiplication
with ω0 changes the order (i.e. x < y ⇔ xω0 > yω0), that for x ∈ Wm and
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y1 < y2 ∈ Wm we have y1x < y2x and that for x1 < x2 ∈ Wm and y ∈ Wm we have
yx1 < yx2.

1. First we show that for a root s ∈ Wm we have: s simple ⇔ s′ = ωmsωm is
simple.
Since Wm is generated by a subset of simple reflections out of W , a reflection
lying in Wm is simple in Wm if and only if it is simple in W . So we can use
the ordinary length function on Wm. Since ωm is the longest element in Wm

it must become shorter by multiplication with another element w. We obtain
the following equality for the length function:

l(w · ωm) = l(ωm · w) = l(ωm)− l(w)

in Wm and by this also in W .
Therefore, we get

l(s′) = l((ωms)ωm) = l(ωm)− (l(ωms)) = l(ωm)− (l(ωm)− l(s)) = l(s).

By this we have l(s) = l(s′) and s is simple in W if and only if s′ is simple in
W . But then they are also simple in Wm.
Now we can return to the statement needed to show:

y ∈Wm ⇔ sy > y ∀ simple s ∈Wm

⇔ ωmsy < ωmy ∀ simple s ∈Wm

⇔ s′ωmy < ωmy ∀ simple s′ ∈Wm

(
take s′ωm = ωms

)
⇔ s′ωmyω0 > ωmyω0 ∀ simple s′ ∈Wm

⇔ ωmyω0 ∈Wm

2. For x, y ∈Wm we have

x < y ⇔ ωmx < ωmy

⇔ ωmxω0 > ωmyω0

Taking g = slm+n and m = (glm ⊕ gln) ∩ slm+n we get W = Sm+n and Wm =
Sm × Sn.

We want to compute the bijective map

π : Wm →Wm

y 7→ ωmyω0

Lemma 4.2. An element w ∈Wm has the form w = sn · . . . ·sin ·sn−1 · . . . ·sin−1 · . . . ·
s1 · . . . · si1 and is send to the element w′ = sn · . . . · sm+n−1−i1 · sn−1 · . . . · sm+n−1−i2 ·
. . . · s1 · . . . · sm+n−1−in by π.
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Proof. For the first statement just look at [Str05, Appendix A].
The proof goes by induction on the length of w. We start with w = e, i.e.

ij = j − 1 and see that π(e) = ωmω0 is the longest element in Wm. For w′ from
above we get w′ = sn · . . . · sm+n−1 · sn−1 · . . . · sm+n−2 · . . . · s1 · . . . · sm+n−n, so the
hypothesis holds.

Assuming that the Lemma is true for all elements of length l, we have to show
that it holds for an element of length l+1. Take y = xsk = sn ·. . .·sin ·. . .·sl ·. . .·sij+1 ·
. . . · s1 · . . . · si1 ∈Wm with l(x) = l and l(y) = l+ 1 and ij + 1 = k. We want to show
that π(y) = sn · . . . · sm+n−1−i1 · . . . · sn−l+1 · . . . · sm+n−1−ij+1 · . . . · s1 · . . . · sm+n−1−in
which is the same as π(x)sm+n−1−k+1.

We see that π(y) = ωmxskω0 = ωmxω0s
′. So we only have to show that skω0 =

ω0sm+n−k.
For this, we write ω0 and sk in the matrix notation. We get

skω0 =

(
1 2 . . . k k + 1 . . . m+ n
1 2 . . . k + 1 k . . . m

)
◦
(

1 2 . . . m+ n− k m+ n− k + 1 . . . m+ n
m+ n m+ n− 1 . . . k + 1 k . . . 1

)
=

(
1 2 . . . m+ n− k m+ n− k + 1 . . . m+ n

m+ n m+ n− 1 . . . k k + 1 . . . 1

)
=

(
1 2 . . . m+ n− k m+ n− k + 1 . . . m+ n

m+ n m+ n− 1 . . . k + 1 k . . . 1

)
◦
(

1 2 . . . m+ n− k m+ n− k + 1 . . . m+ n
1 2 . . . m+ n− k + 1 m+ n− k . . . m

)
=ω0sm+n−k

This finished the explanation of the passage from the Shelton notation to ours.

4.1.2 Dimension formulas

Notation 4.3. For x, y ∈Wm write Ek(x, y) = dim Extk(M(x.λ0),M(y.λ0)).

Using our notation [She88, Theorem 1.3] translates into the following statement:

Theorem 4.4 (Dimension of Ext-groups). Take g and p as above. Let x, y ∈ W l

and let s be a simple reflection with x > xs and xs ∈W l. We can compute Ek(x, y)
by the formulas:

1. Ek(x, y) = 0 ∀ k unless y < x (4.1)

2. Ek(x, x) =

{
1 for k = 0

0 otherwise
(4.2)
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For y < x we get in addition the following recursion formulas:

3. Ek(x, y) = Ek(xs, ys) if y > ys and ys ∈W l (4.3)

4. Ek(x, y) = Ek−1(xs, y) if ys /∈W l (4.4)

5. Ek(x, y) = Ek−1(xs, y) + Ek(xs, y) if ys > y but xs 6> ys (4.5)

6. Ek(x, y) = Ek−1(xs, y)− Ek+1(xs, y)

+ Ek(xs, ys) if x > xs > ys > y (4.6)

4.2 Some Ext-vanishing

Later on we need some information about the Ext-spaces in general and do not want
to compute their dimensions in all cases. Therefore, we reprove the Delorme-Schmid
Theorem (cf. [Del77], [Sch81]) in our situation:

Lemma 4.5. For λ, µ ∈ Λnm we have

Extk(M(λ),M(µ)) = 0 ∀ k > l(λ)− l(µ).

Proof. Assume we have a chain map P•(λ) → P•(µ)[k] with k > l(λ) − l(µ). We
have to show that it is homotopic to zero.
On the kth component we would have a map fk : Pk(λ)→ P0(µ) = P (µ). For P (ν)
occurring as a direct summand in Pk(λ) we know by Lemma 3.25 that

l(ν) ≤ l(λ)− k < l(λ)− (l(λ)− l(µ)) = l(µ).

Hence by Lemma 3.11 L(ν) does not occur in M(µ) and therefore the composition
P (ν)→ P (µ)→M(µ) is zero. We denote by P T• (λ) the truncated complex with

P Ti (λ) =

{
0 i < 0

Pi+k(λ) i ≥ 0

which is a projective resolution of im dk. The truncation of the map f• delivers a
map

f̃• : P T• (λ)→ P•(µ)

Therefore, we are in the situation

0 // · · · //

��

P T0 (λ)

f̃0

��

// im dk //

0
��

// 0

0 // · · · // P (µ) //M(µ) // 0

and f̃ is a lift of the zero map. Since the zero map between the complexes is also a lift
of the zero map and two lifts of a map are equal up to homotopy (cf. [GM96, Theorem
III.1.3]) the map f̃ is nullhomotopic by a homotopy H : P T• (λ) → P•(µ)[−1]. This
extends to a homotopy H : P•(λ)→ P•(µ)[−1] by defining it to be zero on the other
terms. Therefore, it is obvious that the map f becomes nullhomotopic which proves
the Lemma.
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Remark 4.6. The result of Lemma 4.5 could also be deduced from Shelton’s formulas
or from the explicit formulas Biagioli computes in [Bia04, Theorem 3.4.].
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Special cases

Now we want to compute the Ext-algebra in two cases. The first one (Section 5.1),
when n = 1 and m = N , is easy to handle but it gives a good idea of what we have
to do. This algebra also becomes important while studying Floer cohomology (cf.
[KS02]). In the second case (Section 5.2) we take n = 2 and m = N − 1.

5.1 Modules in K1
N −mod

We label our reflections in W l by s1 · · · sj and denote the corresponding weight by
(j) = λ0.s1s2 . . . sj .

q-decomposition numbers in K1
N −mod

The first step is to compute the q-decomposition numbers and write down projectives
in terms of Vermas (Table 5.1) and Vermas in terms of simple modules (Table 5.2).
Since there is at most one cup, the decomposition numbers are either 0, 1 or q.
Combining the two tables, we write down projectives in terms of simples (Table 5.3).

Table 5.1: µ such that dλ,µ = _

λ = (j) 1 q

j 6= 0
· · · ∨ ∧ · · ·

(j) (j − 1)

j = 0

∧ · · ·

(0)

Table 5.2: λ such that dλ,µ = _

µ = (j) 1 q

j < N · · · ∨ ∧ ∨ · · · (j) (j + 1)

j = N · · · ∨ ∧ (N)
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Table 5.3: Filtration of projective module P (λ) by simple modules, same colour
belonging to the same Verma module

λ = (j) P (j)

j 6= 0
j 6= N

L(j)
L(j + 1)L(j − 1)

L(j)

j = 0
L(0)
L(1)

j = N
L(N)
L(N − 1)
L(N)

Table 5.4: P (λ)→ P (µ)→ P (λ) with λ > µ

λ µ λλµ · µλλ = λγλ γ

(j)
j ≥ 1

(j + 1)
· · · ∨ ∧ ∨ · · ·

· · · ∨ ∧ ∨ · · ·
· · · ∧ ∨ ∨ · · · (j − 1)

(0) (1)

∧ ∨ · · ·

∧ ∨ · · ·
0

Morphisms between projective modules

Recalling from Section 3.2 the results about degree one morphisms, we compute their
compositions. For this, take λ and µ as in Section 3.2, so we have λ > µ or µ > λ. In
the first case the morphism P (λ)→ P (µ) is given by the vector λλµ, in the second
case by λµµ. Composing such maps just means to multiply the vectors (viewed as
elements in the algebra). >From Table 5.3 we see that for ν 6= λ there is no degree
two morphism P (λ)→ P (ν) and so each composition P (λ)→ P (µ)→ P (ν) is zero.
Be careful that one has to read the diagrams form bottom to top, so multiplying aλb
with b∗µc, a is the lowest cap diagram, above one has λ, then b then b∗ on top, etc.

>From now on denote by P (λ) → P (µ) the degree one morphism computed in
Tables 5.9 - 5.23 (if it is nonzero). Note that these morphisms are only unique up to
scalar hence we have made a choice.

The quiver of End(P )

As it might be helpful for later work, we want to summarise the results in the quiver
of End(P ).
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Table 5.5: P (λ)→ P (µ)→ P (λ) with λ < µ

λ µ λλµ · µλλ = λγλ γ

(j)
j > 1

(j − 1)
· · · ∨ ∧ ∨ · · ·

· · · ∨ ∧ ∨ · · ·
· · · ∨ ∧ ∨ · · · (j − 1)

(1) (0)

∧ ∨ · · ·

∧ ∨ · · ·
∧ ∨ · · · (0)

For an introduction into the topic of quivers see [ARS97]. In our situation it is
enough to interpret an arrow in the quiver as a degree one morphism between the
corresponding projectives. Composing two arrows corresponds to the composition
of the maps in End(P ). The relations belong to the relations in End(P ). For ease
of presentation we denote the starting point of the relation by a bullet. By [ARS97,
Proposition 1.15] the opposed quiver is the one belonging to the Ext-algebra of the
simples.

Theorem 5.1. The algebra End(P ) is given as the path algebra of the quiver

(0)
**
(1)

**
jj (2)

,,
jj · · ·

--
kk (N − 1)

++
mm (N)mm

with relations

1. '' •ee = • %%gg

2. • %%gg = 0 for the map starting in (0)

3. • %% $$ = 0

4. ee •ee = 0

Terms occurring in the resolutions

Now we compute the combinatorial Kazhdan-Luztig polynomials and therefore de-
termine the terms of the resolution. We only have to look for µ ≥ λ. For µ = (s)
and λ = (j) we obtain:

µ · · · ∨ ∧· · ·
`i 0

0

λ · · · ∨· · · ∧ · · ·

and therefore we have pλ,µ = qj−s.
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Next we compute the terms occurring on the ith position of the resolution of
M(λ) with λ = (j) fixed. By Theorem 3.24 we have

Pi =
⊕
µ∈Λ1

N

p
(i)
λ,µP (µ)〈i〉.

By the above computation these are the projectives P (s) with j − s = i. Therefore,
the only term occurring is P (j − i).

The differentials in the projective resolution

For the computation of the differentials of the resolutions in K1
N −mod we first have

to remember those in K0
N−1−mod. Since this category only has one simple module

L = V = P which is a cell module and projective at once, the resolution of V = P
is 0→ P → 0.

Theorem 5.2. The chain complex

0→ P (0)→ P (1)→ · · · → P (n)→ 0

is a projective resolution of M(n) in K1
N−mod. Using the construction from Section

3.3.3 one can choose the sign of the differential dn−k(n) : P (k) → P (k + 1) to be
(−1)n+k+1.

Proof. In the previous section we have already seen that we get a resolution like
the one in the theorem and since there is only one term in each component, we can
choose any sign. Now we just recall the construction to point out, that it is the same
projective resolution as it is defined in Section 3.3.3. Using the construction from
Section 3.3.3 and the fact that M(0) is projective, inductively we have to take the
cone of

0→P (0)→ · · · →P (n− 1)→0yf0

0→ G
tn−1

ΛΓ P →0

.

Because f0 is the lift of a non-nullhomotopic morphism, it is itself nonzero.
Using equation (3.9) we know that Gtn−1

ΛΓ P = P (n). Therefore, we get the stated
result.

Dimensions in the Ext-algebra

Using the formulas (4.3)-(4.6) from Theorem 4.4, we compute the dimensions of the
Ext(M(λ),M(µ))-spaces for λ ≤ µ in our situation. This is not necessary (later it
is not hard to see that we have written down all possible elements) but in bigger
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situations it is a very helpful tool which we illustrate in this example.

Ek((j), (j)) =

{
1 k = 0

0 else
(5.1)

Ek((j), (j − 1))
(4.5)
= Ek−1((j − 1), (j − 1))

+ Ek((j − 1), (j − 1))

=

{
1 k ∈ {0, 1}
0 else

(5.2)

l < j − 1 : Ek((j), (l))
(4.4)
= Ek−1((j − 1), (l))

Ind
=

{
1 k ∈ {j − l − 1, j − l}
0 else

(5.3)

Lemma 5.3. The algebra is (N + 1)2-dimensional.

Proof. By the above computations we have N + 1 idempotents and for each i with
1 ≤ i ≤ N we have

dim
⊕
j<i

Ext∗(M(i),M(j)) = 2i.

Therefore we compute

dim
⊕
i,j

Ext∗(M(i),M(j))

= N + 1 +
N∑
i=1

2i

= N + 1 +N(N + 1)

= (N + 1)2.

The elements

In Ext1((j), (j)) we have the idempotent Id(j).
We have to determine a nonzero element in Ext1(P (j), P (j − 1)).

Proposition 5.4. There is an element Id
(j)
(j−1) ∈ Ext1(P (j), P (j − 1)) with

Id
(j)
(j−1) : P•(j)→ P•(j − 1)[1]〈1〉 (5.4)

P (s)→ P (s) (5.5)

Proof. Viewing Id
(j)
(j−1) as a map to the complex P•(j−1)[1]Hom〈1〉 with the [ ]Hom-

shift defined in Notation 2.2, we have to check that it is an anticommutative chain
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map, since the degree of the element is one. We are in the following situation:

0 // P (0)
(−1)j+1

//

��

P (1)

��

(−1)j // · · · 1 // P (j − 2)

��

−1 // P (j − 1)

��

1 // P (j)

��

// 0

0 // P (0)
(−1)j // P (1)

(−1)j+1

// · · · −1// P (j − 2)
1 // P (j − 1) // 0 // 0

Therefore the map is an anticommutative chain map, as it has to be.
The map is not nullhomotopic since otherwise there would exist a map H ∈

Hom0(P•(j), P•(j − 1)〈1〉). This contradicts Corollary 3.21 since 0 � 0− 1.

Proposition 5.5. There is an element F (j)
(j−1) ∈ Ext0(P (j), P (j − 1)) with

F
(j)
(j−1) : P•(j)→ P•(j − 1)〈−1〉 (5.6)

P (s)→ P (s− 1) (5.7)

Proof. Writing down the map, we obtain:

P (0)
(−1)j+1

//

��

P (1)

��

(−1)j // · · · 1 // P (j − 2)

��

−1 // P (j − 1)

��

1 // P (j)

��

// 0

0 // P (0)
(−1)j // P (1)

(−1)j+1

// · · · −1 // P (j − 2)
1 // P (j − 1) // 0

All squares in the diagram commute by the relations of End(P ) (cf. Section 5.1).
Therefore, it becomes a commutative chain map, as it has to be, since it is of degree
0.

The map is not nullhomotopic since otherwise there must exist a mapH : P•(j)→
P•(j − 1)[−1]〈1〉. This map cannot exist by Lemma 3.26 as j � (j − 1) + 12− 1.

The other elements are generated by these two types:

Proposition 5.6. For j ≥ l we have maps

Id
(j)
(l) ∈ Extj−l(P (j), P (l))

Id
(j)
(l) : P•(j)→ P•(l)[j − l]〈j − l〉 (5.8)

P (s)→ P (s) ∀s ≤ l (5.9)

and for j > l maps

F
(j)
(l) ∈ Extj−l−1(P (j), P (l))

F
(j)
(l) : P•(j)→ P•(l)[j − l − 1]〈j − l − 2〉 (5.10)

P (s)→ P (s− 1) ∀s ≤ l + 1 (5.11)
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Proof. By the definition of the maps, we see that

Id
(j)
(l) = Id

(j)
(j−1) · · · Id

(l+2)
(l+1) · Id

(l+1)
(l)

and
F

(j)
(l) = Id

(j)
(j−1) · · · Id

(l+2)
(l+1) ·F

(l+1)
(l) ,

so they are elements in the correct dimensions of the Ext-algebra.
We only have to show that they are unequal to zero:
For Id

(j)
(l) a homotopy would be a map H ∈ Homj−l−1(P•(j), P•(l)〈j − l〉). This

cannot exist by Corollary 3.21 since 0 � (j − l − 1) − (j − l). For F (j)
(l) a homotopy

would be a map H ∈ Homj−l−2(P•(j), P•(l)〈j− l−2〉) which cannot exist by Lemma
3.26 since j � l + 12 + (j − l − 2).

Now we have found all elements in Ext(
⊕
M(λ),

⊕
M(λ)) which can be checked

via the dimension formulas.

Multiplications

The following theorem describes the algebra structure completely:

Theorem 5.7. We have the following multiplication rules:

1. Id
(j)
(l) · Id

(l)
(m) = Id

(j)
(m)

2. Id
(j)
(l) ·F

(l)
(m) = F

(j)
(m)

3. F (j)
(l) · Id

(l)
(m) = F

(j)
(m)

4. F (j)
(l) · F

(l)
(m) = 0

Proof. The first three equations are trivial by the definition and the proof of Propo-
sition 5.6. As there is no element of degree 2 by the dimension formulas, the last
map must be zero.

For later computations notice that it is already zero as a map in Hom(P•, P•)
since the map is P (s) → P (s − 1) → P (s − 2) which is zero by the computations
above.

Remark 5.8. Note that all equalities in Theorem 5.7 are already equalities in Hom(P•, P•)
and not just up to homotopy.

Theorem 5.9. The algebra Ext(
⊕
M(λ),

⊕
M(λ)) for λ ∈ K1

N is given by the path
algebra of the quiver

· · ·
..
00 P•(n+ 1)

,,
22 P•(n)

..
00 P•(n− 1) 33

++ · · ·

with relations
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1.

• (( • (( • = 0

2.

• (( •
=

66 •

• 66 • (( •
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5.2 Modules in K2
N−1 −mod

In the second case we take n = 2 and m = N−1. Again, we index the weights by the
permutation used to obtain them from the maximal weight in the block. A shortest
representation is of the form s2 · . . . sk · s1 · · · · · sl with 0 ≤ l < k ≤ N . So the weight
we get has a ∧ at the lth position and another at the kth position (starting to count
with position zero). We denote the weight λ = λ0.s2 · . . . · sk · s1 · . . . · sl by (k|l).

5.2.1 q-decomposition numbers

Similar to the first case, we compute the q-decomposition numbers and write down
projectives in terms of Vermas (Table 5.6) and Vermas in terms of simples (Table
5.7). Since there are at most two cups, the decomposition numbers are either 0, 1, q
or q2. Combining the two tables, we write down projectives in terms of simples
(Table 5.8).

Table 5.6: µ such that dλ,µ = _

λ = (m|j) 1 q q2

j 6= m− 1
j 6= 0

· · · ∨ ∧ · · · ∨ ∧ · · ·
(m|j) (m− 1|j)

(m|j − 1)
(m− 1|j − 1)

j = m− 1
j 6= 0
j 6= 1

· · · ∨ ∨ ∧ ∧ · · ·

(m|m− 1)
(m− 1|m− 3)
(m|m− 2)

(m− 2|m− 3)

j = 1
m = 2

∨ ∧ ∧ · · ·

(2|1) (2|0)

j = 0
m = 1

∧ ∧ ∨ · · ·

(1|0)

j = 0
m 6= 1

∧ · · · ∨ ∧ · · ·

(m|0) (m− 1|0)
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Table 5.7: λ such that dλ,µ = _

µ = (m|j) 1 q q2

j 6= m− 1
j 6= m− 2
m 6= N

· · · ∨ ∧ ∨ · · · ∨ ∧ ∨ · · ·
(m|j) (m+ 1|j)

(m|j + 1)
(m+1|j+1)

j = m− 1
m < N − 1

· · · ∧ ∧ ∨ ∨ · · ·
(m|m− 1) (m+ 1|m− 1) (m+2|m+1)

j = m− 2
m 6= N

· · · ∧ ∨ ∧ ∨ · · ·
(m|m− 2)

(m+ 1|m− 2)
(m|m− 1)
(m+ 1|m)

(m+1|m−1)

j = m− 1
m = N − 1

· · · ∨ ∧ ∧ ∨
(N − 1|N − 2) (N |N − 2)

j = m− 1
m = N

· · · ∨ ∧ ∧
(N |N − 1)

j 6= m− 1
j 6= m− 2
m = N

· · · ∨ ∧ ∨ · · · ∨ ∧
(N |j) (N |j + 1)

j = m− 2
m = N

· · · ∧ ∨ ∧
(N |N − 2) (N |N − 1)
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Table 5.8: Filtration of projective module P (λ) by simple modules, same colour belonging to the same Verma module

λ = (m|j) P (m|j)

j < m− 3
j 6= 0
m 6= N

L(m|j)
L(m+ 1|j)L(m|j + 1) L(m− 1|j) L(m|j − 1)
L(m+ 1|j + 1)L(m|j)L(m− 1|j + 1)L(m− 1|j − 1)L(m+ 1|j − 1)L(m|j)

L(m|j + 1) L(m|j − 1)L(m− 1|j) L(m+ 1|j)
L(m|j)

j = m− 3
j 6= 0
m 6= N

L(m|m− 3)
L(m+ 1|m− 3)L(m|m− 2) L(m− 1|m− 3) L(m|m− 4)
L(m+ 1|m− 2)L(m|m− 3)L(m− 1|m− 2)L(m|m− 1)L(m− 1|m− 4)L(m+ 1|m− 4)L(m|m− 3)

L(m|m− 2) L(m|m− 4)L(m− 1|m− 3) L(m+ 1|m− 3)
L(m|m− 3)

j = m− 2
j 6= 0
m 6= N

L(m|m− 2)
L(m+ 1|m− 2)L(m|m− 1) L(m− 1|m− 2) L(m|m− 3)
L(m+ 1|m− 1) L(m|m− 2) L(m− 1|m− 3)L(m+ 1|m− 3)L(m|m− 2)

L(m+ 1|m)L(m|m− 3)L(m− 1|m− 2)L(m|m− 1)L(m+ 1|m− 2)
L(m|m− 2)

j = m− 1
j 6= 0
m < N − 1

L(m|m− 1)
L(m+ 1|m− 1) L(m|m− 2) L(m− 1|m− 3)
L(m+ 2|m+ 1)L(m+ 1|m− 2)L(m|m− 1)L(m+ 1|m)L(m− 2|m− 3)L(m|m− 3)L(m− 1|m− 2)L(m|m− 1)

L(m+ 1|m− 1) L(m− 1|m− 3)L(m|m− 2)
L(m|m− 1)

j < m− 3
j 6= 0
m = N

L(N |j)
L(N |j + 1) L(N − 1|j) L(N |j − 1)
L(N |j)L(N − 1|j + 1)L(N − 1|j − 1)L(N |j)

L(N |j + 1) L(N |j − 1)L(N − 1|j)
L(N |j)

j < m− 2
j = 0
m = N

L(N |0)
L(N |1) L(N − 1|0)

L(N |0)L(N − 1|1)
L(N |1)

j = m− 3
j 6= 0
m = N

L(N |N − 3)
L(N |N − 2) L(N − 1|N − 3) L(N |N − 4)
L(N |N − 3)L(N − 1|N − 2)L(N |N − 1)L(N − 1|N − 4)L(N |N − 3)

L(N |N − 2) L(N |N − 4)L(N − 1|N − 3)
L(N |N − 3)
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j = m− 2
j 6= 0
m = N

L(N |N − 2)
L(N |N − 1)L(N − 1|N − 2) L(N |N − 3)

L(N |N − 2)L(N − 1|N − 3)L(N |N − 2)
L(N |N − 3)L(N − 1|N − 2)L(N |N − 1)

L(N |N − 2)

j = m− 1
j 6= 0
m = N

L(N |N − 1)
L(N |N − 2) L(N − 1|N − 3)
L(N |N − 1)L(N − 2|N − 3)L(N |N − 3)L(N − 1|N − 2)L(N |N − 1)

L(N − 1|N − 3) L(N |N − 2)
L(N |N − 1)

j = m− 1
j 6= 0
m = N − 1

L(N − 1|N − 2)
L(N |N − 2) L(N − 1|N − 3) L(N − 2|N − 4)
L(N |N − 3)L(N − 1|N − 2)L(N |N − 1)L(N − 3|N − 4)L(N − 1|N − 4)L(N − 2|N − 3)L(N − 1|N − 2)

L(N |N − 2) L(N − 2|N − 4) L(N − 1|N − 3)
L(N − 1|N − 2)

j < m− 3
j = 0
m 6= N

L(m|0)
L(m+ 1|0)L(m|1) L(m− 1|0)

L(m+ 1|1)L(m|0)L(m− 1|1)
L(m|1)

j = 0
m = 3
m 6= N

L(3|0)
L(4|0)L(3|1) L(2|0)

L(4|1)L(3|0)L(2|1)L(3|2)
L(3|1)

j = 0
m = 2
m 6= N

L(2|0)
L(3|0)L(2|1)L(3|2) L(1|0)

L(3|1) L(2|0)
L(3|2)

j = 0
m = 1
m < N − 1

L(1|0)
L(2|0)
L(3|2)

j = 1
m = 2
m 6= N − 1

L(2|1)
L(3|1) L(2|0)
L(4|3)L(3|0)L(2|1)L(3|2)

L(3|1)
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5.2.2 Morphisms between projective modules

Using Table (5.8) we determine some general restrictions on morphisms between two
projective modules. Note that this sharpens the conditions obtained in Lemma 3.11.

Lemma 5.10. The following conditions are necessary for the existence of degree zero
morphisms P (s|t)〈i〉 → P (k|l):

i =0: (s|t) = (k|l)

i =1: s+ t ≤ k + l + 1

i =2: s+ t ≤ k + l + 2 or (s|t) = (a+ 1|a) and (k|l) = (a− 1|a− 2)

i =3: s+ t ≤ k + l + 1 or (s|t) = (a+ 1|a) and (k|l) = (a|a− 2)

i =4: (s|t) = (k|l)

Proof. Obvious by Table (5.8).

Similarly to the above computations for K1
N −mod, we determine degree 1 mor-

phisms between projectives. If we can cut both diagrams simultaneously into two
parts (i.e. without cutting a cup or a cap), we can multiply independently. Espe-
cially if one part of the diagram is an oriented circle diagram of degree zero and we
multiply it with itself, it stays unchanged.

In some cases one can use Table (5.8) to see that L(λ) does not appear in the
degree 2 part of P (ν), so each morphism P (λ) → P (µ) → P (ν) must be zero. As
before we read diagrams from bottom to top.

Again, we denote by P (λ)→ P (µ) the degree one morphism computed in Tables
5.9 - 5.23 (if it is nonzero) and call it the standard degree one morphism. Note that
since the morphisms are only unique up to scalar, we have made a choice.
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Table 5.9: P (λ) → P (µ) → P (λ) with λ > µ and in either case the first ∧ gets
swapped

λ µ λλµ · µλλ = λγλ γ

(n|m)
m ≥ 1
n > m+ 2

(n|m+ 1)
· · · ∨ ∧ ∨ · · · ∨ ∧ · · ·

· · · ∨ ∧ ∨ · · · ∨ ∧ · · ·
· · · ∧ ∨ ∨ · · · ∨ ∧ · · · (n|m− 1)

(n|n− 2)
n− 2 > 0

(n|n− 1)

· · · ∨ ∧ ∨ ∧ · · ·

· · · ∨ ∧ ∨ ∧ · · ·

· · · ∧ ∨ ∨ ∧ · · ·

+

· · · ∨ ∧ ∧ ∨ · · ·

(n|n− 3)
(n− 1|n− 2)

(n|0)

n > 2
(n|1)

∧ ∨ · · · ∧ · · ·

∧ ∨ · · · ∧ · · ·
0

(2|0) (2|1)
∧ ∨ ∧ · · ·

∧ ∨ ∧ · · ·
∧ ∧ ∨ · · · (1|0)
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Table 5.10: P (λ) → P (µ) → P (λ) with λ > µ and in either case the second ∧ gets
swapped

λ µ λλµ · µλλ = λγλ γ

(n|m)
m ≥ 0
n > m+ 1

(n+ 1|m)
· · · ∧ · · · ∨ ∧ ∨ · · ·

· · · ∧ · · · ∨ ∧ ∨ · · ·
· · · ∧ · · · ∧ ∨ ∨ · · · (n− 1|m)

(n|n− 1)
n > 2

(n+ 1|n−
1)

· · · ∨ ∨ ∧ ∧ ∨ · · ·

· · · ∨ ∨ ∧ ∧ ∨ · · ·
· · · ∧ ∨ ∧ ∨ ∨ · · · (n− 1|n− 3)

(2|1) (3|1)
∨ ∧ ∧ ∨ · · ·

∨ ∧ ∧ ∨ · · ·
0

(1|0) (2|0)
∧ ∧ ∨ · · ·

∧ ∧ ∨ · · ·
0

(n|n− 2)
n− 2 > 0

(n+ 1|n)

· · · ∨ ∧ ∨ ∧ ∨ · · ·

· · · ∨ ∧ ∨ ∧ ∨ · · ·

· · · ∧ ∨ ∨ ∧ ∨ · · · (n|n− 3)

(2|0) (3|2)

∧ ∨ ∧ ∨ · · ·

∧ ∨ ∧ ∨ · · ·

0
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Table 5.11: P (λ) → P (µ) → P (λ) with λ < µ and in either case the first ∧ gets
swapped

λ µ λµµ · µµλ = λγλ γ

(n|m)
m > 1
n > m+ 1

(n|m− 1)
· · · ∨ ∧ ∨ · · · ∨ ∧ · · ·

· · · ∨ ∧ ∨ · · · ∨ ∧ · · ·
· · · ∨ ∧ ∨ · · · ∨ ∧ · · · (n|m− 1)

(n|n− 1)
n− 2 > 0

(n|n− 2)

· · · ∨ ∧ ∨ ∧ · · ·

· · · ∨ ∧ ∨ ∧ · · ·

· · · ∨ ∧ ∨ ∧ · · ·

+

· · · ∧ ∨ ∧ ∨ · · ·

(n|n− 2)
(n− 1|n− 3)

(n|1)

n > 2
(n|0)

∧ ∨ · · · ∧ · · ·

∧ ∨ · · · ∧ · · ·
∧ ∨ · · · ∧ · · · (n|0)

(2|1) (2|0)
∧ ∨ ∧ · · ·

∧ ∨ ∧ · · ·
∧ ∨ ∧ · · · (2|0)
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Table 5.12: P (λ) → P (µ) → P (λ) with λ < µ and in either case the second ∧ gets
swapped

λ µ λµµ · µµλ = λγλ γ

(n|m)
m ≥ 0
n > m+ 2

(n− 1|m)
· · · ∧ · · · ∨ ∧ ∨ · · ·

· · · ∧ · · · ∨ ∧ ∨ · · ·
· · · ∧ · · · ∨ ∧ ∨ · · · (n− 1|m)

(n|n− 2)
n > 3

(n− 1|n−
2)

· · · ∨ ∨ ∧ ∧ ∨ · · ·

· · · ∨ ∨ ∧ ∧ ∨ · · ·

· · · ∨ ∨ ∧ ∧ ∨ · · · (n− 1|n− 2)

(3|1) (2|1)
∨ ∧ ∧ ∨ · · ·

∨ ∧ ∧ ∨ · · ·
∨ ∧ ∧ ∨ · · · (2|1)

(2|0) (1|0)
∧ ∧ ∨ · · ·

∧ ∧ ∨ · · ·
∧ ∧ ∨ · · · (1|0)

(n|n− 1)
n > 3

(n− 1|n−
3)

· · · ∨ ∧ ∨ ∧ ∨ · · ·

· · · ∨ ∧ ∨ ∧ ∨ · · ·
· · · ∨ ∧ ∨ ∧ ∨ · · · (n− 1|n− 3)

(3|2) (2|0)
∧ ∨ ∧ ∨ · · ·

∧ ∨ ∧ ∨ · · ·
∧ ∨ ∧ ∨ · · · (2|0)
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Table 5.13: P (λ) → P (µ) → P (ν) with λ > µ < ν and the first ∧ gets swapped
before the second

λ ,µ, ν λλµ · µνν = λγν γ

(n|m)
(n|m+ 1)
(n− 1|m+ 1)

m ≥ 1
n > m+ 3

· · · ∨ ∨ ∧ · · · ∨ ∧ ∨ · · ·

· · · ∨ ∧ ∨ · · · ∨ ∨ ∧ · · ·
· · · ∨ ∧ ∨ · · · ∨ ∧ ∨ · · · (n− 1|m)

(n|n− 3)
(n|n− 2)
(n− 1|n− 2)

n > 3

· · · ∨ ∨ ∧ ∧ ∨ · · ·

· · · ∨ ∧ ∨ ∨ ∧ · · ·
· · · ∨ ∧ ∨ ∧ ∨ · · ·

(n− 1|n− 3)

(n|0)
(n|1)
(n− 1|1)

n > 3

∨ ∧ · · · ∨ ∧ ∨ · · ·

∧ ∨ · · · ∨ ∨ ∧ · · ·
∧ ∨ · · · ∨ ∧ ∨ · · · (n− 1|0)

(3|0)
(3|1)
(2|1)

∨ ∧ ∧ ∨ · · ·

∧ ∨ ∨ ∧ · · ·
∧ ∨ ∧ ∨ · · · (2|0)

(n|n− 2)
(n|n− 1)
(n− 1|n− 3)

n > 3

· · · ∨ ∧ ∨ ∧ ∨ · · ·

· · · ∨ ∨ ∧ ∨ ∧ · · ·

· · · ∨ ∧ ∨ ∧ ∨ · · · (n− 1|n− 3)

(3|1)
(3|2)
(2|0)

∧ ∨ ∧ ∨ · · ·

∨ ∧ ∨ ∧ · · ·

∧ ∨ ∧ ∨ · · ·
(2|0)
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Table 5.14: P (λ) → P (µ) → P (ν) with λ > µ < ν and the second ∧ gets swapped
before the other

λ ,µ, ν λλµ · µνν = λγν γ

(n|m)
(n+ 1|m)
(n+ 1|m− 1)

m ≥ 2
n > m+ 1

· · · ∨ ∧ ∨ · · · ∨ ∨ ∧ · · ·

· · · ∨ ∨ ∧ · · · ∨ ∧ ∨ · · ·
· · · ∨ ∧ ∨ · · · ∨ ∧ ∨ · · · (n|m− 1)

(n|n− 1)
(n+ 1|n− 1)
(n+ 1|n− 2)

n > 2

· · · ∨ ∧ ∨ ∨ ∧ · · ·

· · · ∨ ∨ ∧ ∧ ∨ · · ·
· · · ∨ ∧ ∨ ∧ ∨ · · · (n|n− 2)

(n|1)
(n+ 1|1)
(n+ 1|0)

n > 2

∧ ∨ · · · ∨ ∨ ∧ · · ·

∨ ∧ · · · ∨ ∧ ∨ · · ·
∧ ∨ · · · ∨ ∧ ∨ · · · (n|0)

(2|1)
(3|1)
(3|0)

∧ ∨ ∨ ∧ · · ·

∨ ∧ ∧ ∨ · · ·
∧ ∨ ∧ ∨ · · · (2|0)

(n|n− 2)
(n+ 1|n)
(n+ 1|n− 1)

n > 2

· · · ∨ ∨ ∧ ∨ ∧ · · ·

· · · ∨ ∧ ∨ ∧ ∨ · · ·

· · · ∨ ∧ ∨ ∧ ∨ · · · (n|n− 2)

(2|0)
(3|2)
(3|1)

∨ ∧ ∨ ∧ · · ·

∧ ∨ ∧ ∨ · · ·

∧ ∨ ∧ ∨ · · · (2|0)
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Table 5.15: P (λ) → P (µ) → P (ν) with λ > µ > ν and the first ∧ gets swapped
before the other

λ ,µ, ν λλµ · µµν = λγν γ

(n|m)
(n|m+ 1)
(n+ 1|m+ 1)

m ≥ 1
n > m+ 2

· · · ∨ ∨ ∧ · · · ∨ ∧ ∨ · · ·

· · · ∨ ∧ ∨ · · · ∨ ∧ ∨ · · ·
· · · ∨ ∧ ∨ · · · ∨ ∧ ∨ · · · (n|m)

(n|n− 2)
(n|n− 1)
(n+ 1|n− 1)

n > 2

· · · ∨ ∨ ∧ ∧ ∨ · · ·

· · · ∨ ∧ ∨ ∧ ∨ · · ·

· · · ∨ ∧ ∨ ∧ ∨ · · · (n|n− 2)

(n|0)
(n|1)
(n+ 1|1)

n > 2

∨ ∧ · · · ∨ ∧ ∨ · · ·

∧ ∨ · · · ∨ ∧ ∨ · · ·
∧ ∨ · · · ∨ ∧ ∨ · · · (n|0)

(2|0)
(2|1)
(3|1)

∨ ∧ ∧ ∨ · · ·

∧ ∨ ∧ ∨ · · ·
∧ ∨ ∧ ∨ · · · (2|0)

(n|n− 3)
(n|n− 2)
(n|n− 1)

n > 3

· · · ∨ ∨ ∧ ∨ ∧ · · ·

· · · ∨ ∧ ∨ ∨ ∧ · · ·
· · · ∨ ∧ ∨ ∧ ∨ · · ·

(n− 1|n− 3)

(3|0)
(3|1)
(3|2)

∨ ∧ ∨ ∧ · · ·

∧ ∨ ∨ ∧ · · ·
∧ ∨ ∧ ∨ · · ·

(2|0)

(n|m)
(n|m+ 1)
(n|m+ 2)

n > m+ 3

0

(n|n− 3)
(n|n− 2)
(n+ 1|n)

0

(n|n− 2)
(n+ 1|n)
(n+ 2|n)

0
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Table 5.16: P (λ) → P (µ) → P (ν) with λ > µ > ν and the second ∧ gets swapped
before the other

λ ,µ, ν λλµ · µµν = λγν γ

(n|m)
(n+ 1|m)
(n+ 1|m+ 1)

m ≥ 1
n > m+ 1

· · · ∨ ∧ ∨ · · · ∨ ∨ ∧ · · ·

· · · ∨ ∧ ∨ · · · ∨ ∧ ∨ · · ·
· · · ∨ ∧ ∨ · · · ∨ ∧ ∨ · · · (n|m)

(n|n− 1)
(n+ 1|n− 1)
(n+ 1|n)

n > 2

· · · ∨ ∨ ∧ ∨ ∧ · · ·

· · · ∨ ∨ ∧ ∧ ∨ · · ·
· · · ∨ ∧ ∨ ∧ ∨ · · · (n|n− 2)

(n|0)
(n+ 1|0)
(n+ 1|1)

n > 1

∧ ∨ · · · ∨ ∧ ∨ · · ·

∧ ∨ · · · ∨ ∧ ∨ · · ·
∧ ∨ · · · ∨ ∧ ∨ · · · (n|0)

(2|1)
(3|1)
(3|2)

∨ ∧ ∨ ∧ · · ·

∨ ∧ ∧ ∨ · · ·
∧ ∨ ∧ ∨ · · ·

(2|0)

(1|0)
(2|0)
(2|1)

0

(n|m)
(n+ 1|m)
(n+ 2|m)

0
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Table 5.17: P (λ)→ P (µ)→ P (ν) with λ > µ > ν including a big shift

λ ,µ, ν λλµ · µµν = λγν γ

(n|n− 1)
(n|n− 2)
(n+ 1|n)

n > 2

· · · ∨ ∧ ∨ ∧ ∨ · · ·

· · · ∨ ∧ ∨ ∧ ∨ · · ·
· · · ∨ ∧ ∨ ∧ ∨ · · · (n|n− 2)

(2|1)
(2|0)
(3|2)

∧ ∨ ∧ ∨ · · ·

∧ ∨ ∧ ∨ · · ·
∧ ∨ ∧ ∨ · · ·

(2|0)

(n|n− 1)
(n+ 1|n− 1)
(n+ 2|n+ 1)

n > 2

· · · ∨ ∨ ∧ ∨ ∧ ∨ · · ·

· · · ∨ ∨ ∧ ∧ ∨ ∨ · · ·
· · · ∨ ∨ ∧ ∧ ∨ ∨ · · · (n|n− 1)

(2|1)
(3|1)
(4|3)

∨ ∧ ∨ ∧ ∨ · · ·

∨ ∧ ∧ ∨ ∨ · · ·
∨ ∧ ∧ ∨ ∨ · · ·

(2|1)

(1|0)
(2|0)
(3|2)

∧ ∨ ∧ ∨ · · ·

∧ ∧ ∨ ∨ · · ·
∧ ∧ ∨ ∨ · · ·

(1|0)
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Table 5.18: P (λ) → P (µ) → P (ν) with λ < µ > ν and the first ∧ gets swapped
before the other

λ ,µ, ν λµµ · µµν = λγν γ

(n|m)
(n|m− 1)
(n+ 1|m− 1)

m ≥ 2
n > m+ 1

· · · ∨ ∧ ∨ · · · ∨ ∧ ∨ · · ·

· · · ∨ ∧ ∨ · · · ∨ ∧ ∨ · · ·
· · · ∨ ∧ ∨ · · · ∨ ∧ ∨ · · · (n|m− 1)

(n|n− 1)
(n|n− 2)
(n+ 1|n− 2)

n > 2

· · · ∨ ∧ ∨ ∧ ∨ · · ·

· · · ∨ ∧ ∨ ∧ ∨ · · ·
· · · ∨ ∧ ∨ ∧ ∨ · · · (n|n− 2)

(n|1)
(n|0)
(n+ 1|0)

n > 1

∧ ∨ · · · ∨ ∧ ∨ · · ·

∧ ∨ · · · ∨ ∧ ∨ · · ·
∧ ∨ · · · ∨ ∧ ∨ · · · (n|0)

(2|1)
(2|0)
(3|0)

∧ ∨ ∧ ∨ · · ·

∧ ∨ ∧ ∨ · · ·
∧ ∨ ∧ ∨ · · · (2|0)



5.2 Modules in K2
N−1 −mod 63

Table 5.19: P (λ) → P (µ) → P (ν) with λ < µ > ν and the second ∧ gets swapped
the other

λ ,µ, ν λµµ · µµν = λγν γ

(n|m)
(n− 1|m)
(n− 1|m+ 1)

m ≥ 1
n > m+ 3

· · · ∨ ∧ ∨ · · · ∨ ∧ ∨ · · ·

· · · ∨ ∧ ∨ · · · ∨ ∧ ∨ · · ·
· · · ∨ ∧ ∨ · · · ∨ ∧ ∨ · · · (n− 1|m)

(n|n− 3)
(n− 1|n− 3)
(n− 1|n− 2)

n > 3

· · · ∨ ∧ ∨ ∧ ∨ · · ·

· · · ∨ ∧ ∨ ∧ ∨ · · ·
· · · ∨ ∧ ∨ ∧ ∨ · · ·

(n− 1|n− 3)

(n|0)
(n− 1|0)
(n− 1|1)

n > 3

∧ ∨ · · · ∨ ∧ ∨ · · ·

∧ ∨ · · · ∨ ∧ ∨ · · ·
∧ ∨ · · · ∨ ∧ ∨ · · · (n− 1|0)

(3|0)
(2|0)
(2|1)

∧ ∨ ∧ ∨ · · ·

∧ ∨ ∧ ∨ · · ·
∧ ∨ ∧ ∨ · · · (2|0)
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Table 5.20: P (λ)→ P (µ)→ P (ν) with λ < µ > ν including a big shift

λ ,µ, ν λµµ · µµν = λγν γ

(n|n− 1)
(n− 1|n− 3)
(n− 1|n− 2)

n > 3

· · · ∨ ∧ ∨ ∧ ∨ · · ·

· · · ∨ ∧ ∨ ∧ ∨ · · ·
· · · ∨ ∧ ∨ ∧ ∨ · · · (n− 1|n− 3)

(3|2)
(2|0)
(2|1)

∧ ∨ ∧ ∨ · · ·

∧ ∨ ∧ ∨ · · ·
∧ ∨ ∧ ∨ · · · (2|0)

(n|n− 1)
(n− 1|n− 3)
(n|n− 3)

n > 3

· · · ∨ ∧ ∨ ∧ ∨ · · ·

· · · ∨ ∧ ∨ ∧ ∨ · · ·
· · · ∨ ∧ ∨ ∧ ∨ · · · (n− 1|n− 3)

(3|2)
(2|0)
(3|0)

∧ ∨ ∧ ∨ · · ·

∧ ∨ ∧ ∨ · · ·
∧ ∨ ∧ ∨ · · · (2|0)

(n|n− 3)
(n− 1|n− 3)
(n|n− 1)

n > 3

· · · ∨ ∧ ∨ ∧ ∨ · · ·

· · · ∨ ∧ ∨ ∧ ∨ · · ·
· · · ∨ ∧ ∨ ∧ ∨ · · · (n− 1|n− 3)

(3|0)
(2|0)
(3|2)

∧ ∨ ∧ ∨ · · ·

∧ ∨ ∧ ∨ · · ·
∧ ∨ ∧ ∨ · · · (2|0)
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Table 5.21: P (λ) → P (µ) → P (ν) with λ < µ < ν and the first ∧ gets swapped
before the other

λ ,µ, ν λµµ · µνν = λγν γ

(n|m)
(n|m− 1)
(n− 1|m− 1)

m ≥ 2
n > m+ 1

· · · ∨ ∧ ∨ · · · ∨ ∧ ∨ · · ·

· · · ∨ ∧ ∨ · · · ∨ ∨ ∧ · · ·
· · · ∨ ∧ ∨ · · · ∨ ∧ ∨ · · · (n− 1|m− 1)

(n|n− 1)
(n|n− 2)
(n− 1|n− 2)

n > 3

· · · ∨ ∨ ∧ ∧ ∨ · · ·

· · · ∨ ∨ ∧ ∨ ∧ · · ·
· · · ∨ ∧ ∨ ∧ ∨ · · · (n− 1|n− 3)

(n|1)
(n|0)
(n− 1|0)

n > 1

∧ ∨ · · · ∨ ∧ ∨ · · ·

∧ ∨ · · · ∨ ∨ ∧ · · ·
∧ ∨ · · · ∨ ∧ ∨ · · · (n− 1|0)

(3|2)
(3|1)
(2|1)

∨ ∧ ∧ ∨ · · ·

∨ ∧ ∨ ∧ · · ·
∧ ∨ ∧ ∨ · · · (2|0)

(n|n− 1)
(n|n− 2)
(n|n− 3)

n > 3

· · · ∨ ∧ ∨ ∨ ∧ · · ·

· · · ∨ ∨ ∧ ∨ ∧ · · ·
· · · ∨ ∧ ∨ ∧ ∨ · · · (n− 1|n− 3)

(3|2)
(3|1)
(3|0)

∧ ∨ ∨ ∧ · · ·

∨ ∧ ∨ ∧ · · ·
∧ ∨ ∧ ∨ · · · (2|0)

(2|1)
(2|0)
(1|0)

0

(n|m)
(n|m− 1)
(n|m− 2)

n > m+ 1

0
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Table 5.22: P (λ) → P (µ) → P (ν) with λ < µ < ν and the second ∧ gets swapped
before the other

λ ,µ, ν λµµ · µνν = λγν γ

(n|m)
(n− 1|m)
(n− 1|m− 1)

m ≥ 2
n > m+ 2

· · · ∨ ∧ ∨ · · · ∨ ∧ ∨ · · ·

· · · ∨ ∨ ∧ · · · ∨ ∧ ∨ · · ·
· · · ∨ ∧ ∨ · · · ∨ ∧ ∨ · · · (n− 1|m− 1)

(n|n− 2)
(n− 1|n− 2)
(n− 1|n− 3)

n > 3

· · · ∨ ∧ ∨ ∧ ∨ · · ·

· · · ∨ ∨ ∧ ∧ ∨ · · ·

· · · ∨ ∧ ∨ ∧ ∨ · · · (n− 1|n− 3)

(n|1)
(n− 1|1)
(n− 1|0)

n > 3

∧ ∨ · · · ∨ ∧ ∨ · · ·

∨ ∧ · · · ∨ ∧ ∨ · · ·
∧ ∨ · · · ∨ ∧ ∨ · · · (n− 1|0)

(3|1)
(2|1)
(2|0)

∧ ∨ ∧ ∨ · · ·

∧ ∨ ∧ ∨ · · ·
∧ ∨ ∧ ∨ · · ·

(2|0)

(n|m)
(n− 1|m)
(n− 2|m)

0
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Table 5.23: P (λ)→ P (µ)→ P (ν) with λ < µ < ν including a big shift

λ ,µ, ν λµµ · µνν = λγν γ

(n|n− 1)
(n− 1|n− 3)
(n− 2|n− 3)

n > 4

· · · ∨ ∨ ∧ ∧ ∨ ∨ · · ·

· · · ∨ ∨ ∧ ∨ ∧ ∨ · · ·
· · · ∨ ∨ ∧ ∧ ∨ ∨ · · · (n− 2|n− 3)

(4|3)
(3|1)
(2|1)

∨ ∧ ∧ ∨ ∨ · · ·

∨ ∧ ∨ ∧ ∨ · · ·
∨ ∧ ∧ ∨ ∨ · · · (2|1)

(3|2)
(2|0)
(1|0)

∧ ∧ ∨ ∨ · · ·

∧ ∨ ∧ ∨ · · ·
∧ ∧ ∨ ∨ · · · (1|0)

(n|n− 2)
(n− 1|n− 2)
(n− 2|n− 4)

0

(n|n− 1)
(n− 1|n− 3)
(n− 1|n− 4)

0
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5.2.3 The quiver of End(P )

For ease of presentation we summarise the relations from the tables and write down
the quiver of End(P ).

Theorem 5.11. The algebra End(P ) is given as the path algebra of the quiver (mid-
dle part, for n > m+ 3,m ≥ 1)

· · ·





· · ·





· · ·




· · ·

00
P (n+ 1|m+ 1)

		

kk

HH

..
P (n|m+ 1)

		

nn

HH

..
P (n− 1|m+ 1)

		

nn

HH

++ · · ·pp

· · ·
..
P (n+ 1|m)

		

kk

II

--
P (n|m)

		

nn

II

..
P (n− 1|m)

		

mm

II

++ · · ·nn

· · ·
00
P (n+ 1|m− 1)

��

kk

II

..
P (n|m− 1)

��

nn

II

..
P (n− 1|m− 1)

��

nn

II

++ · · ·pp

· · ·

II

· · ·

II

· · ·

II

At the corners the quiver is given by

. . .
//
P (m|m− 1)kk

		

��

· · ·
//
P (m|m− 2)

..
kk

		

II

P (m− 1|m− 2)

		

nn

· · ·
//
P (m|m− 3)

..
kk

��

II

P (m− 1|m− 3)nn
..

��

II

]]

P (m− 2|m− 3)

��

nn

· · ·

II

. . .

II

· · ·

II

with relations (in case that both sides of the relation exist)

1.

• (( • (( • = 0

always 2.

•

��
•

��
•

= 0

for the first
arrow starting
in P (n|m) with
n > m+ 1



5.2 Modules in K2
N−1 −mod 69

3.

• •hh •hh = 0

always

4.

•

•

HH

•

HH

= 0

for the first
arrow starting
in P (n|m) with
n > m+ 3

5.

•
=

(( • •

•

HH

• (( •

HH

always

6.

•
=

��

•hh •

��
• • •hh

always

7.

•
=

(( •

��

•

��
• • (( •

always

8.

•
=

•hh •

•

HH

•

HH

•hh

always

9.

'' •ee = • %%gg

always

10. =
��
•

FF

•

��

GG
for the
arrows
starting in
P (n|m) with
n > m− 2

These are all cases occuring in the middle of the quiver, i.e. in the upper diagram.
We also have to look for those at the corner part.

11.

•

=
��

•

��

•

��
• • •hh

with the arrows starting in
P (m|m− 1)

12.

•

=

•

•

HH

•

HH

• (( •

SS

with the arrows starting in
P (m|m− 3)
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13.

=
��
•

FF

• +

��

• %%ggGG

starting in P (m|m− 2)

14.

'' •ee •

��

=

RR

with the arrows starting in
P (m|m− 1)

15.

��
•

RR

= •

��

GG

with the arrows starting in
P (m|m− 2)

16.

•
=

•

•

��

•

HH

•hh

•

SS

starting in P (m|m− 1)

17.

•
=

��

•

HH

•

��
• • (( •

starting in P (m|m− 2)

18.

•
=

��
• •

•

SS

•

HH

•hh

starting in P (m|m− 2)

19.

• •hh

•

SS = 0

20.

•

•

SS

•

HH

= 0

21.

• (( •

��
•

= 0
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22.

•

��
•

��
•

= 0

23.

•
=

��

•

��
• • (( •

•

VV

starting in P (m|m− 2)

24. A few extra relations at the lower bound of the quiver (which can easily be seen
in the tables).

5.2.4 Terms occurring in the projective resolutions of Vermas

To determine the terms occurring in the projective resolution of Vermas we first
compute the combinatorial Kazhdan-Luztig polynomials in Table 5.24.

For the terms occurring at the ith position of the resolution of M(λ) with λ =
(n|m) fixed we get by Theorem 3.24

Pi =
⊕
µ∈Λn

m

p
(i)
λ,µP (µ)〈i〉.

Using Table 5.24 we see, that all µ = (s|t) with µ ≥ λ (i.e. s ≤ n, t ≤ m) and
m+ n− (s+ t) = i occur. These terms we call A-terms. So the A-term part of Pi is⊕

s+t+i=m+n
t≤m
s≤n

P (s|t).

There are also other terms occurring, the so-called B-terms, for which s ≤ n, l ≤ m,
s ≤ m and s 6= t+ 1 with m+ n− (s+ t)− 2 = i. The B-term part of Pi is⊕

s+t+i+2=m+n
s 6=t+1
s≤m

P (s|t)

>From now on, for a fixed λ = (m|n) we denote by P (s|t)A the projective module
P (s|t) occurring in the A-term part and by P (s|t)B the one occurring in the B-term
part.
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T
able

5.24:
K
azhdan-Lustig

polynom
ials

µ
=

(s|t)
λ

=
(n|m

)
|C
|

p
λ
,µ

t6=
s
−

1
t6=

0
t≤

m
<
s

µ
···∨

∧
···∨

∧
···

li
0

0

0
0

λ
···∨

···∧
···∧

···
{
0}

q
(m

+
n

)−
(s+

t)

t6=
s
−

1
t6=

0
s
≤
m

µ
···∨

∧
···∨

∧
···

li
0

1

0
0
/
1

λ
···∨

∨
···∨

···∧
···∧

{0
,1}

q
(m

+
n

)−
(s+

t)
+
q

(m
+
n

)−
(s+

t)−
2

t
=

0
s
6=

1
m
<
s

µ
∧
···∨

∧
···

li
0

0

λ
···∧

···∧
···

{
0}

q
(m

+
n

)−
(s+

t)

t
=

0
s
6=

1
s
≤
m

µ
∧
···∨

∧
···

li
1 0

/
1

λ
∨
···∨

···∧
···∧

{
0,1}

q
(m

+
n

)−
(s+

t)
+
q

(m
+
n

)−
(s+

t)−
2

t
=
s
−

1
all

µ
...∧

∧
∨
∨
···

li
0

0
0

λ
···∨

∨
···∧

···∧
{
0}

q
(m

+
n

)−
(s+

t)
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5.2.5 The differentials in the projective resolution

For the computation of the differentials in the resolutions in K2
N−1−mod we use the

resolutions in K1
N−2−mod which we know from Theorem 5.2. Inductively we prove:

Theorem 5.12. All possible degree one maps between Pi+1 and Pi occur as differ-
entials. Because they are unique up to scalar, the maps can be chosen the following
way:

Maps between the A-terms:

i) P (s|t)A → P (s+ 1|t)A (−1)n+m+s+t+1

ii) P (s|t)A → P (s|t+ 1)A (−1)m+t+1

Maps between the B-terms:

iii) P (s|t)B → P (s+ 1|t)B (−1)m+s+1

iv) P (s|t)B → P (s|t+ 1)B (−1)n+m+s+t+1

Maps from A-terms to B-terms:

v) P (s|t)A → P (s− 1|t)B (−1)(s+t+1)(n+s)+n+m+1

vi) P (s|t)A → P (s|t− 1)B (−1)(s+t+1)(n+s)+m+s

Maps from B-terms to A-terms:

vii) P (s|s− 2)B → P (s+ 1|s)A (−1)n+m+1

Proof. Recall from paragraph 3.3.3 the way we construct the projective resolutions
which is done inductively. In our situation we have Λ = Λ2

N−1 and Γ = Λ1
N−2.

For m = 0 we first construct the resolutions fixing i = n− 1.
We know that 0 → P (1|0) → M(1|0) → 0 is exact (the morphism is an

isomorphism), so we may assume n ≥ 2. λ′′ = (0), so we get the resolution
0→ Gt0ΛΓP (0)→ Gt0ΛΓM(0)→ 0 and by equation (3.9) we know Gt0ΛΓP (0) = P (n|0).

By the structure of the projective resolution we also know that each term of the
resolution of M(n|0) equals some P (s|0)A, so we only get differentials of type i).
Using the cone construction all differentials P (s|0) → P (s + 1|0) with s + 1 < n
equal those in the resolution of M(n − 1) multiplied by (−1). Taking the formulas
in i) we see that changing n− 1 to n multiplies the formula by (−1).

The map P (n − 1|0)A → P (n|0)A by construction has sign 1, which equals
(−1)n+0+n−1+0+1. So we have shown the theorem for all Vermas of the formM(n|0).
For m > 0 we fix i − 1 = m and construct the resolution for λ′ = (n|m − 1) and
λ′′ = (n− 2).
We already know the projective resolution of M(n− 2) ∈ K1

N−2 −mod which gives
us the resolution of Gtm−1

ΛΓ M(n− 2)

0→ G
tm−1

ΛΓ P (0)→ G
tm−1

ΛΓ P (1)→ · · · → G
tm−1

ΛΓ P (n−2)→ G
tm−1

ΛΓ M(n−2)→ 0 (5.12)
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By equation (3.9) we know, that Gtm−1

ΛΓ P (j) equals the projective module one gets
by putting ∨∧ on the (m− 1)st and mth position. So we obtain

G
tm−1

ΛΓ P (j) =

{
P (m|j) for j < m− 1

P (j + 2|m) for j ≥ m− 1
(5.13)

Following the cone construction for the differentials we get

G
tm−1

ΛΓ P (j)
G

tm−1
ΛΓ dj(λ′)
−→ G

tm−1

ΛΓ P (j + 1)G
tm−1

ΛΓ dj(λ
′) = (−1)n+j+1d (5.14)

where d is the map between the two projective modules defined in Section 5.2.2.
Using the cone construction one first observes that all maps which do not end in
G
tm−1

ΛΓ P•(n − 2) are the differential maps from P•(n|m − 1) multiplied with (−1).
One easily checks that by changing (m − 1) to m all maps in the theorem become
multiplied by (−1). Of course, by induction all these maps occur.

For the maps between A-terms we just have to look for those ending in A-terms
belonging to Gtm−1

ΛΓ P•(n− 2), i.e. those going to a projective module P (s|m)A.
(i) We have to look at P (s|m)A → P (s+1|m)A. This map occurs in the resolution

G
tm−1

ΛΓ P•(n− 2) as the map Gtm−1

ΛΓ P (s− 2)→ G
tm−1

ΛΓ P (s− 1) and by (5.14) the sign
is (−1)n+s+1 = (−1)n+s+m+m+1 so (i) holds.

(ii) In this case we have to determine the map P (s|m−1)A → P (s|m)A which we
get from lifting the chain map M(n|m− 1)

f→ G
tm−1

ΛΓ M(n− 2). In the construction
we take f such that the map P (n|m − 1)A → G

tm−1

ΛΓ P (n − 2) = P (n|m)A is the
morphism obtained by the multiplication in the algebra (cf. Section 5.2.2). Now we
check that all the other maps appear and the signs are equal to (−1)m+m−1+1 = 1.
Given the map P (s+ 1|m− 1)A → P (s+ 1|m)A with s ≥ m+ 1 we get a map

P (s|m− 1)A
(−1)n+s+1

−→ P (s+ 1|m− 1)A → P (s+ 1|m)A.

There is no other morphism from P (s|m − 1) → Pn−s−1 → P (s + 1|m) and by the
relations obtained in Section 5.2.2 we know that the above map equals the map

P (s|m− 1)A → P (s|m)A
(−1)n+s+1

−→ P (s+ 1|m)A.

Thus, the map P (s|m− 1)A → P (s|m)A must occur and has sign 1.
For the B-terms all terms without P (m|t)B already exist in P•(n|m − 1). We only
have to look for those maps going to P (m|t)B.

iv) The map P (m|t)B → P (m|t + 1)B comes from the map G
tm−1

ΛΓ P (t) →
G
tm−1

ΛΓ P (t+ 1) so it has the sign (−1)n+t+1 = (−1)n+t+m+m+1.
vii) We just have to look for the map P (m|m−2)B → P (m+1|m)A which comes

from the map Gtm−1

ΛΓ P (m− 2)→ G
tm−1

ΛΓ P (m− 1) and therefore has sign (−1)n+m+1.
Now we are left to show iii), v) and vi) for those maps ending in P (m|t)B. Those
come from the lift of the chain map f (see above). The terms from Pn−t−1(n|m− 1)
possibly mapping to P (m|t)B are P (m+ 1|t)A, P (m|t+ 1)A and P (m− 1|t)B (this
one only exists for t 6= m− 2).
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First check the assertion for t = m− 2 and for t = m− 3.

P (m+ 1|m− 3)A P (m+ 1|m− 2)A P (m+ 1|m− 1)A

P (m|m− 2)A P (m|m− 1)A

P (m− 1|m− 3)B

P (m|m− 3)B P (m|m− 2)B P (m+ 1|m)A

1

(−1)n+m+1

(−1)n+m+1

−1

(−1)n+m

1

(−1)n+m 1d1

d2 d3

x2

x1

(−1)n+m

In the right part of the diagrams, the squares commute by Section 5.2.2 and we
get the signs

x1 = (−1)n+m+1 = (−1)(m+1+m−2+1)(n+m−2)+n+m+1

and

x2 = 1 = (−1)(m+m−1+1)(n+m−1)+m+m.

Now we look at the left square. The part belonging to P (m + 1|m − 3) commutes
and the sign is

d1 = (−1)1+n+m+1+n+m = 1 = (−1)(m+1+m−3+1)(n+m+1)+n+m+1.

By Section 5.2.2 the morphism

P (m|m− 2)→ P (m|m− 1)→ P (m|m− 2)

occurring with the sign 1 equals the sum of the morphisms

P (m|m− 2)→ P (m+ 1|m− 2)→ P (m|m− 2)

and

P (m|m− 2)→ P (m|m− 3)→ P (m|m− 2).

The first one occurs with sign (−1)n+m+n+m+1 = −1, so it cancels with the other
morphism. The second one yields the existence and the sign of d2 which is

d2 = (−1)n+m = (−1)(m+1+m−3+1)(n+m+1)+m+m+1.

The square including P (m− 1|m− 3)B commutes and yields

d3 = 1 = (−1)m+m−1+1.

For the last step we check the signs and existence for arbitrary t, assuming we know
them for t+ 1. The situation is the following:
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P (m+ 1|t)A P (m+ 1|t+ 1)A

P (m|t+ 1)A P (m|t+ 2)A

P (m− 1|t)B P (m− 1|t+ 1)B

P (m|t)B P (m|t+ 1)B

(−1)m+t

(−1)n+t+1

(−1)m+t+1

(−1)(m+t)(n+m)+n+m

(−1)n+t+1d1

d2
d3 x3 x1

x2

(−1)n+t+1

By induction we get the signs x1 = (−1)(m+t)(n+m+1), x2 = (−1)(m+t+1)(n+m)

and x3 = 1. The maps P (m|t + 1) → P (m|t + 2) → P (m|t + 1) (occurring
with sign (−1)n+t+1+(m+t)(n+m+1)) and P (m|t + 1) → P (m|t) → P (m|t + 1) (sign
(−1)(m+t)(n+m)+n+m) are the same and appear with opposite signs, so their sum is
zero.

The square including P (m+ 1|t)A commutes and yields

p1 = (−1)m+t+(m+t)(n+m+1)+n+t+1

= (−1)(m+1+t)(n+m+1)

= (−1)(m+1+t+1)(n+m+1)+n+m+1

The square including P (m|t+ 1)A commutes and yields

p2 = (−1)m+t+1+(m+t+1)(n+m)+n+t+1

= (−1)(m+t)(n+m)

= (−1)(m+t+1+1)(n+m)+m+m

The square including P (m− 1|t)B commutes and yields

p3 = (−1)n+t+1+n+t+1

= 1

= (−1)m+m−1+1

So we have proved iii), v), vi).

Remark 5.13. Note that the way we have chosen the smaller weight λ′ in the con-
struction involves a choice. For λ = (n|m) we have chosen λ′ = (n|m− 1) if m > 0.
Therefore, by the way of the construction we get a map P•(n|m) → P•(n|m − 1).
Anyway, we could have chosen λ′ = (n− 1|m) if n− 1 > m. This possibility delivers
us a nonzero map M(n|m) → M(n − 1|m) in the derived category and therefore a
nonzero map P•(n|m)→ P•(n− 1|m).

>From now on we fix the projective resolutions constructed in Theo-
rem 5.12.
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Combining our knowledge about these projective resolutions with Lemma 5.10,
similar to Lemma 3.26 we obtain the following lemma:

Lemma 5.14. Homk(P•(a|b), P•(c|d)〈j〉)0 = 0 unless we are in one of the below
cases:

1. k − j = 0 and a+ b ≤ c+ d+ k + 2

2. k − j = 1 and a+ b ≤ c+ d+ k + 3

3. k − j = 2 and a+ b ≤ c+ d+ k + 4

4. k − j = 3 and a+ b ≤ c+ d+ k + 3

5. k − j = 4 and a+ b ≤ c+ d+ k + 2

Proof. Assume we have a map L : P•(a|b) → P•(c|d)〈j〉[k], i.e. in each component
a morphism Pi(c|d) → Pi−k(c|d)〈j〉. Since our resolutions are linear, we look for
morphisms P (s|t)〈i〉 → P (s′|t′)〈i− k + j〉 fulfilling the following conditions:

1. s+ t = a+ b− i (A-terms) or s+ t = a+ b− i− 2 and s 6= t+ 1 (B-terms)

2. s′ + t′ = c+ d− (i− k) (A-terms) or s′ + t′ = c+ d− (i− k)− 2 and s 6= t+ 1
(B-terms)

Using Lemma 5.10 one notices that there are only maps for 0 ≤ k − j ≤ 4 and that
there cannot be any if a+ b and c+ d differ too much.

Start with maps from B-terms of P•(a|b) to A-terms of P•(c|d), i.e. we look for
maps P (s|t)→ P (s′|t′) with s+ t = a+ b− i− 2 and s′ + t′ = c+ d− (i− k). Note
that the two special cases in Lemma 5.10 cannot occur, since P (s|s−1) cannot occur
as a B-term. Therefore from Lemma 5.10 we get as a condition

1. k − j = 0 and a+ b− i− 2 ≤ c+ d− (i− k)

2. k − j = 1 and a+ b− i− 2 ≤ c+ d− (i− k) + 1

3. k − j = 2 and a+ b− i− 2 ≤ c+ d− (i− k) + 2

4. k − j = 3 and a+ b− i− 2 ≤ c+ d− (i− k) + 1

5. k − j = 4 and a+ b− i− 2 ≤ c+ d− (i− k)

Now we look for maps mapping A-terms to A-terms. Doing the same as in the
previous case, one observes that the conditions become stricter (since the left side of
the inequality becomes a+b−i). One only has to verify that for the two special cases
occurring in Lemma 5.14 with t = s−1 and k−j = 2 or k−j = 3 the conditions stay
unchanged. In these cases one obtains (s′|t′) = (s− 2|s− 3) or (s′|t′) = (s− 1|s− 3),
respectively. Putting in s + t = a + b − i and s′ + t′ = c + d − (i − k) the above
conditions in the needed cases stay unchanged.

Analogously to the previous arguments one checks that mapping to a B-term
makes the conditions stricter, which proves the lemma.
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Corollary 5.15. If we denote a+ b− (c+ d) = s, we can rewrite the conditions in
Lemma 5.14 for a morphism

f ∈ Homs+k(P•(a|b), P•(c|d)〈s+ j〉)0

as follows:

1. k − j = 0 and −2 ≤ k

2. k − j = 1 and −3 ≤ k

3. k − j = 2 and −4 ≤ k

4. k − j = 3 and −3 ≤ k

5. k − j = 4 and −2 ≤ k

Proof. We only have to check that the inequalities for k encode the same information
as those above. Therefore, we write

a+ b ≤ c+ d+ s+ k + i

⇔ 0 ≤ −s+ s+ k + i

⇔ −i ≤ k

5.2.6 Dimensions of the Ext-algebra

Using the formulas (4.3)-(4.6) from Theorem 4.4 again, we now compute the dimen-
sions of the Ext-spaces in our situation.

Ek((n|m), (n|m)) =

{
1 k = 0

0 else
(5.15)

Ek((n|m), (n− 1|m))
(4.5)
= Ek−1((n− 1|m), (n− 1|m))

+ Ek((n− 1|m), (n− 1|m))

=

{
1 k ∈ {0, 1}
0 else

(5.16)

j < n− 1 : Ek((n|m), (j|m))
(4.4)
= Ek−1((n− 1|m), (j|m))

Ind
=

{
1 k ∈ {n− j − 1, n− j}
0 else

(5.17)

Ek((n|m), (n|m− 1))
(4.5)
=

{
1 k ∈ {0, 1}
0 else

(5.18)

j < m− 1 : Ek((n|m), (n|j)) (4.4)
= Ek−1((n|m− 1), (n|j))

Ind
=

{
1 k ∈ {m− j − 1,m− j}
0 else

(5.19)
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m < n− 1 : Ek((n|m), (n− 1|m− 1))
(4.5)
= Ek−1((n− 1|m), (n− 1|m− 1))

+ Ek((n− 1|m), (n− 1|m− 1))

=


1 k = 2

2 k = 1

1 k = 0

0 else

(5.20)

j < l − 1
l < n
m < l
j < m

: Ek((n|m), (l|j)) (4.4)
= Ek−(m−j)+1((n|j + 1), (l|j))

(4.4)
= Ek−(m−j)−(n−l)+2((l + 1|j + 1), (l|j))

Ind
=


1 k = n+m− (l + j)

2 k = n+m− (l + j)− 1

1 k = n+m− (l + j)− 2

0 else
(5.21)

Ek((n|m), (l|l − 1))
(4.5)
= Ek−(m−l)((n|l), (l|l − 1))

(4.5)
= Ek−(m−l)+1((n|l − 1), (l|l − 1))

Ind
=


1 k = (n+m)− 2l + 1

1 k = (n+m)− 2l

0 else
(5.22)

j < m− 1 : Ek((n|m), (n|j)) (4.4)
= Ek−1((n|m− 1), (n|j))

Ind
=

{
1 k ∈ {m− j − 1,m− j}
0 else

(5.23)

m < n− 1 : Ek((n|m), (n− 1|m− 1))
(4.5)
= Ek−1((n− 1|m), (n− 1|m− 1))

+ Ek((n− 1|m), (n− 1|m− 1))

=


1 k = 2

2 k = 1

1 k = 0

0 else

(5.24)

Ek((n|n− 1), (n− 1|n− 2))
(4.4)
= Ek−1((n|n− 2), (n− 1|n− 2))

=

{
1 k ∈ {1, 2}
0 else

(5.25)

m < n− 1 : Ek((n|m), (m|m− 1))
(4.4)
= Ek−(n−m)+1((m+ 1|m), (m|m− 1))

=

{
1 k ∈ {n−m,n−m+ 1}
0 else

(5.26)
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Ek((n|m), (m|j)) (4.3)
= Ek((n|j + 1), (j + 1|j))

=

{
1 k ∈ {n− j − 1, n− j}
0 else

(5.27)

Ek((n|n− 1), (n− 2|m))
(4.6)
= Ek−1((n|n− 2), (n− 2|m))

− Ek+1((n|n− 2), (n− 2|m))

+ Ek((n|n− 2), (n− 1|m))

=



1− 0 + 0 = 1 k = n−m+ 1

1− 0 + 0 = 1 k = n−m
0 + 1− 1 = 0 k = n−m− 1

0 + 2− 1 = 1 k = n−m− 2

0− 0 + 1 = 1 k = n−m− 3

0 else
(5.28)

i 6= j
l < m

: Ek((n|m), (l|j)) (4.4)
= Ek−(m−(l+1))−(n−(l+2))((l + 2|l + 1), (l|j))

=



1 k = (n+m)− (l + j)

1 k = (n+m)− (l + j)− 1

0 k = (n+m)− (l + j)− 2

1 k = (n+m)− (l + j)− 3

1 k = (n+m)− (l + j)− 4

0 else

(5.29)

Note that the dimensions are all at most two.

5.2.7 The explicit elements in the Ext-algebra

Elements generating the algebra

The next step is to determine elements in the Ext-spaces explicitly and to show, that they
are not homotopic to zero or (if the dimension of the space is greater one) not homotopic to
the other element. We are working in two steps. First we determine a few elements which
are the generators of the Ext-algebra. To get all elements we compute the multiplication
rules. Afterwards we will use the dimension formulas from Section 5.2.6 to check that we
generated enough elements in the Ext-algebra.

As already mentioned in Section 2.3.1, for verifying that a map f : P• → Q•[k] is a map
between chain complexes (and therefore a cycle in the Ext-algebra), we check if the map
f : P• → Q•[k]Hom is commutative or anticommutative for k even or odd, respectively. Here
the [ ]Hom-shift denotes the shift without changing the differential defined in Notation 2.2.

The first elements we are looking for are the so-called Identities already mentioned in
Remark 5.13.
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Theorem 5.16. The following chain maps determine nonzero elements in the Ext-algebra:

Id
(n|m)
(n|m−1) : P•(n|m)→ P•(n|m− 1)〈1〉[1] (5.30){

P (s|t)A → P (s|t)A
P (s|t)B → P (s|t)B

(5.31)

Id
(n|m)
(n−1|m) : P•(n|m)→ P•(n− 1|m)〈1〉[1] (5.32){

P (s|t)A → (−1)m+tP (s|t)A
P (s|t)B → (−1)m+sP (s|t)B

(5.33)

Proof. The first morphism pops out of the construction of P (n|m) for m ≥ 1. All signs in
P•(n|m− 1) are opposite to those in P•(n|m), so we get an anticommuting map as required
since its degree in the Hom-algebra is 1 (so it is a cycle).

For the second morphism we check that it anticommutes with all seven cases in Theo-
rem 5.12. This is done in the Appendix A. By these computations Id

(n|m)
(n−1|m) is a cycle in

the Hom-algebra.
Both elements cannot be nullhomotopic, because a homotopy would be a map

H : P•(n|m)→ P•(λ
′)〈1〉 with λ′ = (n|m− 1) or λ′ = (n− 1|m)

which cannot exist by Lemma 5.14.

Theorem 5.17. There are two non-nullhomotopic degree zero maps:

F
(n|m)
(n|m−1) : P•(n|m)→ P•(n|m− 1)〈−1〉

P (s|t)A → P (s|t− 1)A t ≤ m
P (s+ 2|s)A → (−1)n+sP (s+ 1|s)A s ≤ m− 1

P (s+ 1|s)A → (−1)n+sP (s|s− 2)B s ≤ m− 1

P (s|t)B → P (s− 1|t)B s ≤ m
P (s|s− 2)B → P (s|s− 1)A s ≤ m

(5.34)

F̃
(n|m)
(n−1|m) : P•(n|m)→ P•(n− 1|m)〈−1〉

P (s|t)A → P (s− 1|t)A s ≤ n
P (s|t)B → P (s|t− 1)B t ≤ m
P (s+ 1|s)A → P (s|s− 2)B s ≤ m

(5.35)

Proof. First we prove the assertion for F (n|m)
(n|m−1). We need to check that these maps are

commuting chain maps. In other words we need to verify that all diagrams of the form

V //

��

W

��
X // Y

(5.36)

with V all possible terms occurring in P•(n|m) commute. The cases to consider are the
following:

F1) V = P (s|t)A and s > t+ 3
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F2) V = P (s+ 3|s)A
F3) V = P (s+ 2|s)A
F4) V = P (s+ 1|s)A
F5) V = P (s|t)B and s > t+ 3

F6) V = P (s|s− 2)B

F7) V = P (s|s− 3)B

which are treated in detail in Appendix A.
Hence, we have verified that F (n|m)

(n|m−1) is a cycle. We are left to show that it is not
nullhomotopic. A homotopy would be a morphism

H : P•(n|m)→ P•(n|m− 1)〈−1〉[−1].

There is no difficulty to prove that this map cannot exist. In Theorem 5.21 we will define a
family of maps to which the above map belongs and proof that they are not nullhomotopic.
Since the proof in this special case is contained in the more general case, we only refer to
the proof of Theorem 5.21.

Now consider the map F̃ (n|m)
(n−1|m), where we have less special cases to deal with. In fact

we only have to check

V //

��

W

��
X // Y

(5.37)

with V being one of the following modules:

F̃1) V = P (s|t)A and s > t+ 2

F̃2) V = P (s+ 2|s)A

F̃3) V = P (s+ 1|s)A

F̃4) V = P (s|t)B and s > t+ 2

F̃5) V = P (s|s− 2)B

As it is computed in Appendix A, the map F̃ (n|m)
(n−1|m) is a cycle. To prove that the element

is not nullhomotopic we refer to the proof of Theorem 5.22.

Theorem 5.18. The following map defines a non-trivial element in
Ext1(M(m+ 1|m),M(m− 1|m− 2)):

G
(m+1|m)
(m−1|m−2) : P•(m+ 1|m)→ P•(m− 1|m− 2)[1] (5.38)

P (s|t)A → 0 t 6= s− 1

P (s|s− 1)A → (−1)P (s− 1|s− 3)A

P (s|t)B → (−1)(m+t)(m+s+1)+s+tP (s− 1|t)A
+(−1)(m+t)(m+s)+s+tP (s|t− 1)A s < m

P (m|t)B → P (m− 1|t)A

(5.39)
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Proof. Similar to the above computations, we check that the map anticommutes. Here we
have to check the cases:

G1) V = P (s|t)A and s > t+ 2

G2) V = P (s+ 2|s)A

G3) V = P (s+ 1|s)A

G4) V = P (s|t)B and s > t+ 2

G5) V = P (s|s− 2)B

what is done in Appendix A. Since the diagrams in all cases anticommute one only has to
show that the map is not nullhomotopic. A homotopy would be a morphism

H : P•(m+ 1|m)→ P•(m− 1|m− 2)

which cannot exist by Lemma 5.14 case 1, since m+ 1 +m � m− 1 +m− 2 + 2.

Theorem 5.19. The following assignment defines a non-trivial element in
Ext0(M(m+ 1|m),M(m− 1|m− 2)):

K
(m+1|m)
(m−1|m−2) : P•(m+ 1|m)→ P•(m− 1|m− 2)〈−2〉 (5.40)

P (s|t)A → 0 t 6= s− 1

P (s|s− 1)A → (−1)m+s+1P (s− 2|s− 3)A

P (s|t)B → (−1)(m+s)(m+t+1)P (s− 1|t− 1)A

(5.41)

where the degree two maps are chosen to be any nonzero composition of a pair of standard
degree one morphisms.

Proof. Note that the map is well-defined since for λ 6= µ we have
Hom(P (λ), P (µ))i ≤ 1 and so there is (up to scalar) only one possible choice for the maps
above. There are no scalars occurring in the compositions of standard maps in 5.2.2, so one
may choose any composition of standard maps.

Again, we have to check that the map is a commutative chain map and for it to check
that diagrams of the form

V //

��

W

��
X // Y

(5.42)

commute.
We simplify the situation by some general computations. Assume we are given a com-

position where

P (s|t)A
differential // B-terms K // Y = A-Terms

and the terms P (k|l)A in Y satisfy k + l = s + t − 3 (by the assignments given in the
definition of K). The problem reduces to the question whether a degree 3 morphism between
projectives exists. By Lemma 5.10 this is only possible for s = t + 1 (treated below).
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Otherwise the composition must be zero. Since the map K maps P (s|t)A with s > t+ 1 to
zero, the diagram always commutes for V = P (s|t)A and s > t+ 1.

Another general idea is to determine the degree 2 maps as composition of degree one
maps. Writing down all other possible cases one obtains the below possibilities for the
starting point:

K1) V = P (s+ 1|s)A

K2) V = P (s|t)B and s > t+ 2

K3) V = P (s|s− 2)B

The computations are carried out in Appendix A.
We are left to show that the map is not nullhomotopic. This holds since a homotopy

would be a map
H : P•(m+ 1|m)→ P•(m− 1|m− 2)〈−2〉[−1]

which cannot exist by Lemma 5.14 case 2, since m+ 1 +m � m− 1 +m− 2 + 3− 1.

Elements obtained as products of generators

It remains to define a bunch of other elements which one introduces in Theorems 5.20-5.26
as products (up to sign) from the above ones.

Theorem 5.20. For all m,n, k, l ∈ {0, . . . N} with m < n, l < k and l ≤ m, k ≤ n consider
the product of generators from Theorem 5.16

Id
(n|m)
(n|m−1) · · · Id

(n|m−1)
(n|m−2) · Id

(n|l+1)
(n|l) · Id(n|l)

(n−1|l) · · · Id
(k+1|l)
(k|l) (5.43)

where Id
(a|b)
(a|b) denotes the identity morphism on the complex. Then the following holds:

1. These maps are exactly given by

Id
(n|m)
(k|l) : P•(n|m)→ P•(k|l)〈(n+m)− (k + l)〉[(n+m)− (k + l)]{

P (s|t)A → P (s|t)A (−1)(n+k)(l+t)

P (s|t)B → P (s|t)B (−1)(n+k)(l+s)
. (5.44)

2. They are not nullhomotopic, hence they define nonzero elements in the Ext-space
Ext(n+m)−(k+l)(M(n|m),M(k|l)).

Proof. By computing the signs in the product

Id
(n|m)
(n|m−1) · · · Id

(n|m−1)
(n|m−2) · Id

(n|l+1)
(n|l) · Id(n|l)

(n−1|l) · · · Id
(k+1|l)
(k|l)

one gets the appropriate sign in formula (5.44).
It remains to show that the element is not nullhomotopic. If it was, we would have a

map
H : P•(n|m)→ P•(k|l)〈(n+m)− (k + l)〉[(n+m)− (k + l)− 1]

which cannot exist by Lemma 5.14.
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Theorem 5.21. For all m,n, k, l ∈ {0, . . . N} with m < n, l + 1 < k and l < m, k ≤ n
consider the map

Id
(n|m)
(k|l+1) ·F

(k|l+1)
(k|l) . (5.45)

Again the following holds:

1. The map is exactly given by

F
(n|m)
(k|l) : P•(n|m)→ P•(k|l)〈(n+m)− (k + l)− 2〉[(n+m)− (k + l)− 1]

P (s|t)A → P (s|t− 1)A (−1)(n+k)(l+t+1) t ≤ l
P (s+ 2|s)A → P (s+ 1|s)A (−1)(n+k)(l+s+1)+k+s s ≤ l
P (s+ 1|s)A → P (s|s− 2)B (−1)(n+k)(l+s+1)+k+s s ≤ l
P (s|t)B → P (s− 1|t)B (−1)(n+k)(l+s+1) s ≤ l + 1

P (s|s− 2)B → P (s|s− 1)A (−1)(n+k)(l+s+1) s ≤ l + 1

(5.46)

2. The map defines a nonzero element in Ext(n+m)−(k+l)−1(M(n|m),M(k|l)).

Proof. It is obvious that the product Id
(n|m)
(k|l+1) ·F

(k|l+1)
(k|l) provides the map in equation (5.46).

To show that F is not nullhomotopic we consider a homotopy

H : P•(n|m)→ P•(k|l)〈(n+m)− (k + l)〉[(n+m)− (k + l)].

Since both resolutions are linear, H must map the head of a projective to the head of
another, so up to scalar it must be the identity on these objects. Therefore, we focus on the
first map occurring and show that H cannot exist:

· · · // P (k|l + 1)A

f

��

//

x

yy

Y

y
yy

X // P (k|l)A〈−1〉 // · · ·

We have to find maps x and y such that yd+ dx = f .

1. We look at x and show that is has to be zero. Since the map has to be the identity on
objects up to a scalar factor it has to map P (k|l+ 1)A to P (k|l+ 1) in X. This does
not exist since for all P (s|t) occuring in X we have s+ t = k+ l−1 or s+ t = k+ l−3.
Therefore, x is the zero map.

2. If the map y exists, it sends P (k|l) to P (k|l)A. This projective occurs as a B-Term
in the needed position of the upper resolution for k ≤ m < n, so we would have
P (k|l)B → P (k|l)A. Assume this map exists, then we would also get a nonzero map
P (k + 1|l)A → P (k|l)B → P (k|l)A. Therefore, we are in the situation

· · · // P (k + 1|l)A //

x′

yy

Y

y+y′yy
X // P (k|l)A〈−1〉 // · · ·

and have to find x′ and y′ such that dx′ + (y + y′)d = 0. y′ has to be zero, since as
mentioned before, the only possible map from Y to P (k|l) is y. x′ also has to be zero
by arguments similar to the above ones. This leads to a contradiction, since yd 6= 0.
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So we have shown that H cannot exist and the theorem follows.

Theorem 5.22. For all m,n, k, l ∈ {0, . . . N} with m < n, l < k and l ≤ m, k < n consider
the product of generators

Id
(n|m)
(k+1|l) ·F̃

(k+1|l)
(k|l) . (5.47)

Then the following holds:

1. These maps are exactly given by

F̃
(n|m)
(k|l) : P•(n|m)→ P•(k|l)〈(n+m)− (k + l)− 2〉[(n+m)− (k + l)− 1]

P (s|t)A → P (s− 1|t)A : (−1)(n+k+1)(l+t) s ≤ k + 1

P (s|t)B → P (s|t− 1)B : (−1)(n+k+1)(l+s) t ≤ l
P (s+ 1|s)A → P (s|s− 2)B : (−1)(n+k+1)(l+s) s ≤ l

. (5.48)

2. Again they are not nullhomotopic, hence they define nonzero elements in the space
Ext(n+m)−(k+l)−1(M(n|m),M(k|l)).

Proof. Again we only have to verify that the map is not nullhomotopic. Since this is similar
to the arguments in the previous proof we only sketch the argument:

Assuming we have

H : P•(n|m)→ P•(k|l)〈(n+m)− (k + l)〉[(n+m)− (k + l)],

we are in the situation:

· · · // P (k|l + 1)A

f

��

//

x

yy

Y

y
yy

X // P (k|l)A〈−1〉 // · · ·

and have to find maps x and y such that yd+ dx = f .

1. x has to be the zero map (same reason as above).

2. If the map y is nonzero, it sends P (k|l) to P (k|l)A. If P (k|l)B occurs as a B-term
then k 6= l+1, so we would also get a nonzero map P (k|l+1)A → P (k|l)B → P (k|l)B .
This yields a contradiction.

Hence, the theorem is proved.

Theorem 5.23. For all m,n, k, l ∈ {0, . . . N} with m < n, l < k and k < m consider the
product

Id
(n|m)
(k+2|k+1) ·G

(k+2|k+1)
(k|k−1) · Id(k|k−1)

(k|l) . (5.49)

Then the following holds:

1. These maps are exactly given by

G
(n|m)
(k|l) : P•(n|m)→ P•(k|l)〈(n+m)− (k + l)− 4〉[(n+m)− (k + l)− 3]

P (s|t)A → 0 t 6= s− 1

P (s|s− 1)A → (−1)(n+k)(k+s)+1P (s− 1|s− 3)A s− 1 ≤ k
P (s|t)B → (−1)(k+s+1)(n+t)P (s− 1|t)A

+(−1)(k+s+1)(n+t+1)+s+tP (s|t− 1)A s < k + 1

P (k + 1|t)B → P (k|t)A

(5.50)
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2. They define nonzero elements in Ext(n+m)−(k+l)−3(M(n|m),M(k|l)).

Proof. The signs are obtained by writing down the product

Id
(n|m)
(k+2|k+1) ·G

(k+2|k+1)
(k|k−1) · Id(k|k−1)

(k|l)

explicitly.
Let us assume that G is nullhomotopic, i.e. there is a map

H : P•(n|m)→ P•(k|l)〈(n+m)− (k + l)− 4〉[(n+m)− (k + l)− 4].

It cannot exist by Corollary 5.15 case 1, since −2 � −4.

Theorem 5.24. For all m,n, k, l ∈ {0, . . . N} with m < n, l < k and k < m consider the
product

Id
(n|m)
(k+2|k+1) ·K

(k+2|k+1)
(k|k−1) · Id(k|k−1)

(k|l) . (5.51)

Then the following holds:

1. These maps are exactly given by

K
(n|m)
(k|l) : P•(n|m)→ P•(k|l)〈(n+m)− (k + l)− 6〉[(n+m)− (k + l)− 4]

P (s|t)A → 0 t 6= s− 1

P (s|s− 1)A → (−1)(n+k+1)(k+s)P (s− 2|s− 3)A s− 1 ≤ k
P (s|t)B → (−1)(n+t)(k+s+1)P (s− 1|t− 1)A s− 1 ≤ k

(5.52)

2. Again, they define nonzero elements in Ext(n+m)−(k+l)−4(M(n|m),M(k|l)).

Proof. Writing down the product

Id
(n|m)
(k+2|k+1) ·K

(k+2|k+1)
(k|k−1) · Id(k|k−1)

(k|l)

one obtains the signs.
Assume that K is nullhomotopic, i.e. there is a map

H : P•(n|m)→ P•(k|l)〈(n+m)− (k + l)− 6〉[(n+m)− (k + l)− 5].

This cannot exist by Corollary 5.15 case 2, since −3 � −5.

Remark 5.25. Note that the maps from Theorems 5.20-5.24 in particular contain the maps
constructed already in Theorems 5.16-5.19.

The last family of elements we define is special in some sense. First, this class only
appears as products of at least two non-idempotent elements. Second, we determine maps
which seem to belong to this class but later on we will show that they are nullhomotopic.
For a benefit of notation, we do not exclude these maps in the definition, but we have to be
careful later on.

Theorem 5.26. For all m,n, k, l ∈ {0, . . . N} with m < n, l < k and k < n, l < m consider
the product

F
(n|m)
(k+1|l) · F̃

(k+1|l)
(k|l) . (5.53)

The following holds:
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1. These maps are exactly given by

J
(n|m)
(k|l) : P•(n|m)→ P•(k|l)〈(n+m)− (k + l)− 4〉[(n+m)− (k + l)− 2]{

P (s|t)A → (−1)(n+k+1)(l+t+1)P (s− 1|t− 1)A s− 1 ≤ k, t− 1 ≤ l
P (s|t)B → (−1)(n+k+1)(l+s+1)P (s− 1|t− 1)B s− 1 ≤ l

(5.54)

2. For m < k they define nonzero elements in Ext(n+m)−(k+l)−4(M(n|m),M(k|l)).

Proof. The maps are well-defined since we know that for λ 6= µ we have Hom(P (λ), P (µ))i ≤
1 and by this there is (up to scalar) only one possible choice for the degree two maps above.

For the first assertion we check all compositions occuring in the product of the maps F
and F̃ , i.e. analyse all compositions of assignments in the definitions of F and F̃ , respectively.

First, we have

P (s|t)A
(−1)(n+k+1)(l+t+1)

// P (s|t− 1)A // P (s− 1|t− 1)A

where the second assignment is the only possible one, since P (s|t− 1) 6= P (s|s− 1).
Secondly, we compute

P (s+ 2|s)A // P (s+ 1|s)A // P (s|s− 2)A

which equals zero by Lemma 5.10.
Next, we see

P (s+ 1|s)A // P (s− 2|s)B // P (s|s− 3)B

equals zero, too.
Turning to the B-terms, we have

P (s|t)B
(−1)(n+k+1)(l+s+1)

// P (s− 1|t)B // P (s− 1|t− 1)B

as asserted.
Last we consider

P (s|s− 2)B
(−1)(n+k+1)(l+s+1)

// P (s|s− 1)A // P (s− 1|s− 3)B

which is contained in the second case.
Now we turn to the question whether J is nullhomotopic or not. In the theorem it is

only claimed that it is not for m < k. Therefore, assume m < k and assume we have a
homotopy

H : P•(n|m)→ P•(k|l)〈(n+m)− (k + l)− 4〉[(n+m)− (k + l)− 3]

which leads us to the situation reflected in the diagram:

· · · // P (k + 1|l + 1)A

f

��

//

x

xx

Y

y
xx

X // P (k|l)A〈−2〉 // · · ·
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1. x has to be the zero map since for all projectives in X (note that their heads sit in
degree 1 higher than the ones of P (k|l) i.e. we look for maps from P (k + 1|l + 1) →
P (s|t)〈−1〉) we have s + t ≤ k + l − 1 and by Lemma 5.10 a map could just exist if
k + 1 + l + 1 ≤ s+ t+ 1.

2. If the map y is nonzero, it is a map Y 〈1〉 → P (k|l)〈−1〉. One has to care about the
matter that in Y the degree of the heads of the projectives is one higher than the one
in P (k+1|l+1), so we look for morphisms P (s|t)→ P (k|l)〈−1〉. By Lemma 5.10 this
may only exist if s+ t ≤ k + l + 1. All A-terms in Y have to fulfil s+ t = k + l + 3,
therefore, the map must start in a B-term. Since we assume f = yd y must start in a
B-term such that the differential from P (k+ 1|l+ 1) maps to this term and therefore
the only possibilities are P (k + 1|l)B or P (k|l + 1)B . But we assumed k > m and
these B-terms cannot occur (remember that for B-terms P (s|t)B we have s ≤ m). By
this y has to be zero.

Summing up the above computations, we have shown that there is no such homotopy H
and therefore the theorem is proved.

Lemma 5.27. For m < k the maps F (n|m)
(k|l) and ±F̃ (n|m)

(k|l) are not homotopic.

Proof. Assume we have a homotopy between these two maps,

H : P•(n|m)→ P•(k|l)〈(n+m)− (k + l)〉[(n+m)− (k + l)].

Similar to the above computations, we notice that the head of a projective has to be mapped
to the head of another projective (so H has to map P (s|t) to P (s|t)) and we are in the
situation

· · · // P (k + 1|l)A
P (k|l + 1)A

f−f ′

��

//

x

{{

Y

y

{{
X // P (k|l)A〈−1〉 // · · ·

with f : P (k + 1|l) → P (k|l) and f ′ : P (k|l + 1) → P (k|l). We have to find maps x and y
such that yd+ dx = f ± f ′.

1. x has to be the zero map (same reason as in the proof of Theorem 5.21).

2. If the map y is nonzero, it has to send the P (k|l) to P (k|l)A. But if P (k|l) occured
as a summand of Y , by Lemma 5.10 it would be a B-term. However, since m < k,
P (k|l) cannot occur as a B-term in P•(m|n).

Hence, there is no such homotopy and the lemma follows.

Comparison with the expected dimensions of the Ext-spaces

Comparing our results to the dimension list we computed in Section 5.2.6 one can deduce
two important results.

Corollary 5.28. 1. The objects Id
(n|m)
(k|l) , F (n|m)

(k|l) , F̃ (n|m)
(k|l) , G(n|m)

(k|l) , K(n|m)
(k|l) and J

(n|m)
(k|l) ,

with n,m, k, l fulfilling the assumptions from the above theorems, form a basis of
Ext(

⊕
M(λ),

⊕
M(λ)).
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2. For k ≤ m the element J (n|m)
(k|l) is nullhomotopic and F (n|m)

(k|l) is homotopic to a multiple

of F̃ (n|m)
(k|l) .

Proof. The first assertion is checked by comparing the list in Section 5.2.6 with the elements
defined above (and using the fact that they are not nullhomotopic in the occurring cases).

To see that J (n|m)
(k|l) ' 0 observe that E(n+m)−(k+l)−4((m|n), (k|l)) is zero for k ≤ m

by the list in Section 5.2.6. Similarly, E(n+m)−(k+l)−1((m|n), (k|l)) is onedimensional for
k ≤ m. Since neither F (n|m)

(k|l) ' 0 nor F (n|m)
(k|l) ' 0, a linear combination of them has to be

homotopic to zero. By this the assertion of the corollary holds.

Remark 5.29. In Section 5.2.10 we will determine these homotopies explicitly.

5.2.8 The algebra structure
Now we compute the algebra structure. Therefore, we determine all possible products of
the elements from above. For later use, we also compute those which are nullhomotopic.
Therefore, we have to define two more families of elements in Hom(P•, P•) vanishing in the
Ext-algebra.

Definition 5.30. For b < m− 1, b+ 2 < a, m < n define the map

A
(n|m)
(a|b) : P•(n|m)→ P•(a|b)〈(n+m)− (a+ b)− 4〉[(n+m)− (a+ b)− 2]

P (s+ 1|s)A → (−1)(n+a)(b+s)P (s+ 1|s− 2)A

P (s+ 2|s)A → (−1)(n+a)(b+s)+a+sP (s+ 1|s− 1)A

P (s+ 1|s− 2)B → (−1)(n+a)(b+s+1)P (s|s− 1)A

P (s|s− 2)B → (−1)(n+a)(b+s)+a+s+1P (s− 1|s− 3)B

+(−1)(n+a)(b+s)P (s|s− 2)A

(5.55)

with the map from P (s|s− 2)B to P (s|s− 2)A being chosen as the composition

P (s|s− 2)→ P (s|s− 1)→ P (s|s− 2)

and the map

B
(n|m)
(a|b) : P•(n|m)→ P•(a|b)〈(n+m)− (a+ b)− 6〉[(n+m)− (a+ b)− 3]{

P (s+ 1|s)A → (−1)(n+a+1)(b+s)P (s|s− 2)A

P (s+ 1|s− 1)B → (−1)(n+a+1)(b+s+1)P (s|s− 1)A
(5.56)

Lemma 5.31. The maps A(n|m)
(a|b) and B(n|m)

(a|b) are nullhomotopic.

Proof. The assertion follows immediately from the fact that the dimension of the corre-
sponding Ext-spaces is zero by the computations in Section 5.2.6.

Theorem 5.32. In the algebra Ext(
⊕
M(λ),

⊕
M(λ)) we get the products listed in Table

5.25.
Moreover,

B
(n|m)
(a|b) = A

(n|m)
(a+1|b) · F̃

(a+1|b)
(a|b) .

Proof. The proof is an easy direct calculation based on the previous theorems which can be
found in Appendix B.



5.2 Modules in K2
N−1 −mod 91

T
ab

le
5.
25

:
P
ro
du

ct
x
·y

of
th
e
el
em

en
ts
x
an

d
y

x
\y

Id
(k
|l)

(a
|b

)
F

(k
|l)

(a
|b

)
F̃

(k
|l)

(a
|b

)
G

(k
|l)

(a
|b

)
K

(k
|l)

(a
|b

)
J

(k
|l)

(a
|b

)

Id
(n
|m

)
(k
|l)

(−
1)

(n
+
k
)(
l+
b)

Id
(n
|m

)
(a
|b

)

(−
1)

(n
+
k
)(
l+
b+

1
)

F
(n
|m

)
(a
|b

)

(−
1)

(n
+
k
)(
l+
b)

F̃
(n
|m

)
(a
|b

)

(−
1)

(n
+
k
)(
l+
a
+

1
)

G
(n
|m

)
(a
|b

)

(−
1)

(n
+
k
)(
l+
a
+

1
)

K
(n
|m

)
(a
|b

)

(−
1)

(n
+
k
)(
l+
b+

1
)

J
(n
|m

)
(a
|b

)

a
≤
m '

0

F
(n
|m

)
(k
|l)

(−
1)

(n
+
k
)(
l+
b)

F
(n
|m

)
(a
|b

)

(−
1)

(n
+
k
)(
l+
b+

1
)

A
(n
|m

)
(a
|b

)
'

0

(−
1)

(n
+
k
)(
b+
l)

J
(n
|m

)
(a
|b

)

a
≤
m '

0

(−
1)

(n
+
k
)(
l+
a
)+
a
+
k
+

1

K
(n
|m

)
(a
|b

)

0
(−

1)
(n

+
k
)(
l+
b+

1
)

B
(n
|m

)
(a
|b

)
'

0

F̃
(n
|m

)
(k
|l)

(−
1
)(n

+
k
+

1
)(
l+
b)

F̃
(n
|m

)
(a
|b

)

(−
1)

(n
+
k
+

1
)(
b+
l+

1
)

J
(n
|m

)
(a
|b

)

a
≤
m '

0
0

(−
1)

(n
+
k
+

1
)(
l+
a
+

1
)

K
(n
|m

)
(a
|b

)

0
0

G
(n
|m

)
(k
|l)

(−
1)

(a
+
k
)(
b+
n

)

G
(n
|m

)
(a
|b

)

(−
1
)(a

+
k
)(
b+
n

+
1
)

K
(n
|m

)
(a
|b

)

(−
1)

(a
+
k
+

1
)(
b+
n

)+
a
+
n

K
(n
|m

)
(a
|b

)

0
0

0

K
(n
|m

)
(k
|l)

(−
1
)(a

+
k
)(
b+
n

+
1
)

K
(n
|m

)
(a
|b

)

0
0

0
0

0

J
(n
|m

)
(k
|l)

(−
1
)(n

+
k
+

1
)(
b+
l)

J
(n
|m

)
(a
|b

)

a
≤
m '

0

(−
1)

(n
+
k
+

1
)(
l+
b+

1
)

B
(n
|m

)
(a
|b

)
'

0
0

0
0

0



92 Special cases

5.2.9 The quiver of Ext(
⊕

M(λ),
⊕

M(λ))

Determining the quiver we obtain

Theorem 5.33. The algebra Ext(
⊕
M(λ),

⊕
M(λ)) is given as the path algebra of the

quiver
n > m+ 2:

· · ·

		��

· · ·

		��

· · ·

		��
· · ·

//
// P•(n+ 1|m+ 1)

		��

..
00 P•(n|m+ 1)

		��

..
00 P•(n− 1|m+ 1)

		��

33++ · · ·

· · ·
..
00 P•(n+ 1|m)

		��

--
11 P•(n|m)

		��

..
00 P•(n− 1|m)

		��

++33 · · ·

· · ·
//
// P•(n+ 1|m− 1)

����

..
00 P•(n|m− 1)

����

..
00 P•(n− 1|m− 1)

����

++33 · · ·

· · · · · · · · ·

and in the other cases:

. . .
//
// P•(m|m− 1)

		��

�� ��

· · ·
//
// P•(m|m− 2)

..
00

		��

P•(m− 1|m− 2)

		��
· · ·

//
// P•(m|m− 3)

..
00

����

P•(m− 1|m− 3)
..
00

����

P•(m− 2|m− 3)

����
· · · . . . · · ·

with relations given in Table 5.25.

5.2.10 Homotopies
In this section we explicitly determine the before-mentioned homotopies, i.e. find boundaries
to elements becoming zero. Recall that by dHom we denote the differential on the Hom-
algebra defined in Section 2.3.1.

Notation 5.34. Given a nullhomotopic chain map

C
(n|m)
(a|b) ∈ Homk(P•(n|m), P•(a|b)〈j〉)

we denote by H(C)
(n|m)
(a|b) the homotopy, i.e.

H(C)
(n|m)
(a|b) ∈ Homk−1(P•(n|m), P•(a|b)〈j〉)

and
C = dHom(H(C)

(n|m)
(a|b) ).
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Lemma 5.35. For m ≥ k we have

F
(n|m)
(k|l) − (−1)n+lF̃

(n|m)
(k|l) = dHom(H(F − (−1)n+lF̃ )

(n|m)
(k|l) ) (5.57)

with

H(F − (−1)n+lF̃ )
(n|m)
(k|l) =

{
P (s|t)A → 0

P (s|t)B → (−1)(s+t)(k+s)+(n+k+1)(l+s+1)+n+m+1P (s|t)A

Proof. We first check the property for H(F −(−1)k+l+1F̃ )
(k+1|k)
(k|l) . As in the previous proofs,

we just have to check diagrams, which is done in Appendix C.
Now one observes that

Id
(n|m)
(k+1|k) ·H(F − (−1)k+l+1F̃ )

(k+1|k)
(k|l)

=(−1)(n+k+1)(k+l+1)+n+m+1H(F − (−1)n+lF̃ )
(n|m)
(k|l)

and

dHom(H(F − (−1)n+lF̃ )
(n|m)
(k|l)

=(−1)(n+k+1)(k+l+1)+n+m+1dHom(Id
(n|m)
(k+1|k) ·H(F − (−1)k+l+1F̃ )

(k+1|k)
(k|l) )

=(−1)(n+k+1)(k+l+1)+n+m+1dHom(Id
(n|m)
(k+1|k)) ·H(F − (−1)k+l+1F̃ )

(k+1|k)
(k|l)

+ (−1)(n+k+1)(k+l+1) Id
(n|m)
(k+1|k) ·dHom(H(F − (−1)k+l+1F̃ )

(k+1|k)
(k|l) )

=(−1)(n+k+1)(k+l+1) Id
(n|m)
(k+1|k) ·dHom(H(F − (−1)k+l+1F̃ )

(k+1|k)
(k|l) )

=(−1)(n+k+1)(k+l+1) Id
(n|m)
(k+1|k) ·(F

(k+1|k)
(k|l) − (−1)k+l+1F̃

(k+1|k)
(k|l) )

=F
(n|m)
(k|l) − (−1)n+lF̃

(n|m)
(k|l)

using the fact that dHom(Id
(n|m)
(k+1|k)) = 0. Therefore, the assertion follows.

Lemma 5.36. For k ≤ m, m < n, l < k we get a homotopy such that

J
(n|m)
(k|l) = dHom(H(J)

(n|m)
(k|l) ) (5.58)

with

H(J)
(n|m)
(k|l) =


P (s|t)A → 0 s > t+ 1

P (s+ 1|s)A → (−1)(n+k)(l+s+1)P (s|s− 2)A

P (s|t)B → (−1)(n+k)(l+t)+(s+t+1)(n+s)P (s|t− 1)A

(5.59)

Proof. The computations are done in Appendix C.

Lemma 5.37. For the map A(n|m)
(k|l) defined above we have

A
(n|m)
(k|l) = dHom(H(A)

(n|m)
(k|l) ) (5.60)

with

H(A)
(n|m)
(k|l) =


P (s|t)A → 0 s > t+ 1

P (s|t)B → 0 s > t+ 2

P (s+ 1|s)A → (−1)(n+k)(l+s+1)+n+l+1P (s|s− 2)A

P (s+ 2|s)B → (−1)(n+k)(l+s)+k+lP (s+ 1|s)A

(5.61)
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Proof. The computations are done in Appendix C.

Lemma 5.38. For the map B(n|m)
(k|l) defined above we have

B
(n|m)
(k|l) = dHom(H(B)

(n|m)
(k|l) ) (5.62)

with

H(B)
(n|m)
(k|l) =


P (s|t)A → 0 s > t+ 1

P (s|t)B → 0

P (s+ 1|s)A → (−1)(n+k+1)(l+s+1)+n+l+1P (s− 1|s− 2)A
(5.63)

Proof. One checks that

H(B)
(n|m)
(k|l) = H(A)

(n|m)
(k+1|l) · F̃

(k+1|l)
(k|l)

This map is a homotopy for B since

dHom(H(B)
(n|m)
(k|l) )

=dHom(H(A)
(n|m)
(k+1|l) · F̃

(k+1|l)
(k|l) )

=dHom(H(A)
(n|m)
(k+1|l)) · F̃

(k+1|k)
(k|l)

+ (−1)n+m+k+l+1H(A)
(n|m)
(k+1|l) · dHom(F̃

(k+1|k)
(k|l) )

=A
(n|m)
(k+1|l) · F̃

(k+1|k)
(k|l)

=B
(n|m)
(k|l)

since dHom(F̃
(k+1|k)
(k|l) ) = 0. Therefore, the lemma is proved.



Chapter 6

Excursion on the Koszul-Duality

In the previous section we explicitly determined elements of the Ext-algebra of Verma mod-
ules. Some of them have a very natural and simple interpretation when we apply Koszul
duality. To explain this we first recall some results of the ordinary category O and their
connection to Op.

6.1 Grading on O
Recall the notation from Section 1. In particular PO(λ) denotes the indecomposable module
which surjects onto the Verma module MO(λ) of highest weight λ. Let λ be maximal in
its dot-ordering and Oλ the corresponding block. Then POλ =

⊕
µ∈W ·λ P

O(λ) is a minimal
projective generator for Oλ.
In [BGS96] it is shown that A(λ) = End(Pλ) can be equipped with a positive Z-grading
which turns it into a Koszul-algebra. For basics on Koszul-algebras we refer to ([BGS96],
[MOS09], [PP05]). The Z-grading on A(λ) entitles us to consider the corresponding category
A(λ) − gmod of graded finite dimensional A(λ)-modules. Then we can consider a graded
version OZ

λ of Oλ by considering Aλ − gmod with the forgetful functor f : Aλ − gmod →
Aλ −mod which forgets the grading, cf. [Str03]. This construction is similar to the one of
the graded version of Op in Remark 3.3.

6.2 Koszul duality
Fix p a parabolic subalgebra with Levi component l and take λ such that the stabilizer under
the dot-action of W equals Wl. Let ω0 be the longest element in W . Then the following
Koszul-duality theorem holds:

Theorem 6.1 ([BGS96, Theorem 3.11.1.]). There exists a contravariant equivalence of
triangulated categories over C

Kd : Db(OZ
λ) −→ Db(OpZ)

such that

1. the graded modules PO(x · λ), MO(x · λ) and LO(x · λ) are sent to the modules
P (x−1ω0 · λ),M(x−1ω0 · λ) and L(x−1ω0 · λ), respectively

2. the internal grading shift becomes a diagonal homological-internal grading shift such
that Kd(M〈n〉) = (Kd(M))〈n〉[n] for all M .
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Remark 6.2. Since Kd is contravariant and triangulated we have in particular Kd(M [n]) =
Kd(M)[−n].

6.3 Proof of a graded version of Verma’s Theorem
As a corollary of the Koszul-duality we deduce a graded version of Verma’s Theorem (c.f.
[Hum08]) in our special case where g = glm+n and working in the principal block of Op.
(Note that the Koszulity for these blocks was established by elementary arguments in [BS10,
Section 5]).

Corollary 6.3. Let λ ∈W ·λ0 and Wλ = Wl. Given 0 < i < m+n such that µ = si ·λ < λ.
Then there exists a graded embedding MO(µ)〈1〉 ⊂MO(λ).

Proof. Write λ = x · λ− and µ = six · λ− with six > x and λ− = w0 · λ0. Using the
construction of the projective resolution of a Verma module in section 3.3.3 we get that

P•(λ0.x
−1) = P•(λ0.x

−1si)〈1〉[1]⊕ P•(λ0.(x
−1)′′)

the cone of a chain map. Therefore, we obtain a surjective map

P•(λ0.x
−1)→ P•(λ0.x

−1si)〈1〉[1].

Reading this map as a map in the derived category, it is equal to the map

M(λ0.x
−1)→M(λ0.x

−1si)〈1〉[1]

in Db(OpZ). Now we take the inverse of the Koszul-duality map Kd and get a morphism

Kd−1(M(λ0.x
−1si)〈1〉[1])→ Kd−1(M(λ0.x

−1))

which is by Theorem 6.1 a nonzero morphism

MO(six · λ−)〈1〉 →MO(x · λ−)

in Db(OZ
λ). Since the functor Q : OZ

λ → Db(OZ
λ) yields an equivalence on H0-complexes

(especially on those chains having just one component sitting in zero, cf. [GM96, Proposition
III.5.2.]) we get a nonzero morphism

MO(six · λ−)〈1〉 →MO(x · λ−)

in Oλ.
Since any morphism between Verma modules in O is injective [Hum08, Theorem 4.2],

the theorem is proved.

Remark 6.4. Using Theorem 3.1 and generalizing Section 3.3.3 similar to the proof of
[BS10, Theorem 5.3.] for general integral weights, the above proof goes through for all
integral weights λ.
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6.4 A∞-algebras
A∞-algebras are a generalization of associative algebras. Some historical and topological
motivation and basic material can be found in [Kel01]. A very detailed exposition with
most of the proofs is provided in [LH03].

6.4.1 Definitions
Definition 6.5. Let k be a field. An A∞-algebra over k is a Z-graded vector space

A =
⊕
p∈Z

Ap

endowed with a family of graded k-linear maps

mn : A⊗n → A, n ≥ 1

of degree 2− n satisfying the following Stasheff identities:∑
(−1)r+stmr+t+1(Id⊗r ⊗ms ⊗ Id⊗t) = 0 (6.1)

where for fixed n the sum runs over all decompositions n = r+s+ t with s ≥ 1, and r, t ≥ 0.

Example 6.6. For n = 1 the sum in (6.1) has only one summand and the identity becomes
m1m1 = 0. Hence the degree −1 map m1 is a differential on A.

The map m2 is a degree zero map and plays the role of a not necessarily associative
multiplication. Therefore, we write down the next relations:

m1m2 = m2(m1 ⊗ Id + Id⊗m1),

so m1 is a graded derivation with respect to our multiplication m2.
The third relation expresses the non-associativity of m2 since equation (6.1) results in

m2(Id⊗m2 −m2 ⊗ Id) = m1m3 +m3(m1 ⊗ Id⊗ Id + Id⊗m1 ⊗ Id + Id⊗ Id⊗m1)

for n = 3. If m1 or m3 is zero, then m2 is associative.
In general, one may interpret m3 as a chain homotopy up to which m2 is associative.

Following Keller, we use the so-called Koszul sign convention for tensor products

(f ⊗ g)(x⊗ y) = (−1)|g||x|f(x)⊗ g(y)

for x and y homogeneous elements. Note that only the parity of x becomes important.

Definition 6.7. Let A and B be two A∞-algebras. A morphism of A∞-algebras f : A→ B
is a family

fn : A⊗n → B

of graded k-linear maps of degree 1− n such that∑
(−1)r+stfr+t+1(Id⊗r ⊗ms ⊗ Id⊗t) =

∑
(−1)wmq(fi1 ⊗ · · · ⊗ fiq )

for all n ≥ 1 with the first sum running over all decompositions n = r+ s+ t and the second
sum running over all 1 ≤ q ≤ n and all decompositions n = i1 + · · ·+ iq with all is ≥ 1 and
the sign on the right-hand side is given by

w = (q − 1)(i1 − 1) + (q − 2)(i2 − 1) + · · ·+ 2(iq−2 − 1) + (iq−1 − 1).

A morphism f is a quasi-isomorphism if f1 is a quasi-isomorphism. It is strict if fi = 0
for all i 6= 1.
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6.4.2 Minimal models
Our ultimative goal in the whole chapter is to define an A∞-structure on the Ext-algebra
Ext(⊕M(λ),⊕M(λ)) from Section 2.3.1. The first step hereby is to introduce an A∞-
structure on the cohomology of an A∞-algebra (the so-called minimal model). Then we
explain how the Ext-algebra E = Ext(⊕M(λ),⊕M(λ)) can be viewed as the cohomology
of an A∞-algebra, namely the Hom-algebra introduced in Section 2.3.1. Later we shortly
review the advantages of these extra information.

The existence and construction of a minimal model

Theorem 6.8 ([Kad80]). Let A be an A∞-algebra and H∗(A) its cohomology. Then there
is an A∞-structure on H∗(A) such that m1 = 0 and m2 is induced by the multiplication
on A, and there is a quasi-isomorphism of A∞-algebras H∗(A) → A lifting the identity of
H∗(A).

Moreover, this structure is unique up to isomorphism of A∞-algebras.

The proof goes by construction and over the time several different approaches have been
worked out. We follow here Merkulov’s construction [Mer99]. In our situation we can restrict
ourself to the situation of a differential graded algebra. We do not need the full generality
of Merkulov’s setup.

Proposition 6.9. Take (A, d) a differential graded algebra with grading shift [ ]. Let
B ⊂ A be a subvectorspace of A and Π : A → B a projection commuting with d. Assume
that we are given a homotopy Q : A→ A[−1] such that

1−Π = dQ+Qd. (6.2)

Define λn : A⊗n → A for n ≥ 2 by

λ2(a1, a2) := a1 · a2

and recursively, (setting formally Qλ1 = − Id) for n ≥ 3

λn(a1, . . . , an)

= −
∑
k+l=n
k,l≥1

(−1)k+(l−1)(|a1|+···+|ak|)Q(λk(a1, . . . , ak)) ·Q(λl(ak+1, . . . , an)). (6.3)

Then the maps m1 = d and mn = Π(λn) define an A∞-structure for a minimal model on
B.

Proof. The proof is precisely Merkulov’s, except that he only works with a Z2-grading. As
the signs only depend on the parity we do not need to worry about them and can use [KS01,
chapter 6.4]. There, Kontsevich and Soibelman show that (up to the above mentioned signs)
Merkulov’s approach also works in the graded algebra setting. The Proposition follows.

Remark 6.10. Note that as in the definition, the maps mn are of degree 2−n and therefore
the λn are of degree 2− n, too.

As a consequence we have the following vanishing results:

Corollary 6.11. 1. If

Q(a1 · a2) = Q(λ2(a1, a2)) = 0 ∀ a1, a2 ∈ A

then λn = 0 and mn = 0 ∀n ≥ 3.



100

2. If

Q(λ3(a1, a2, a3)) = 0 and Q(a1 · a2) ·Q(a3 · a4) = 0 ∀ a1, a2, a3, a4 ∈ A

then λn = 0 and mn = 0 ∀n ≥ 4.

Proof. 1. Writing down the explicit formula for λ3 we obtain

λ3(a1, a2, a3) = (−1)deg a1+1a1 ·Q(a2 · a3) +Q(a1 · a2) · a3.

Since both summands are zero by assumption, λ3 equals zero, too. The same holds
for the higher λn, since all summands in (6.3) vanish.

2. This part follows by exactly the same argument.

The choice of the map Q

Choosing Q in a clever way simplifies computations. Note that since the minimal model
only is unique up to quasi-isomorphism, our result will depend on this choice. Our choices
and approach resemble the one in [LPWZ09, chapter 2].

To define Q, we first divide the degree n part An of A into three subspaces, for this,
denote by Zn the cocycles of A and by Bn the coboundaries. As we work over a field, we
can find subspaces Hn and Ln such that Zn = Bn ⊕Hn and

An = Bn ⊕Hn ⊕ Ln. (6.4)

We identify the nth cohomology group Hn(A) via (6.4) with Hn. We want to apply
Proposition 6.9 with the choice of a subspace B = H∗(A) and the projection Π being the
projection on the direct summand H∗.

We choose the map Q as follows:

1. When restricted to Zn by equation (6.2) and the condition that d|Zn equals to zero,
the map Q has to satisfy the relation

1−Π = dQ.

In particular, dQ|H has to be zero. We choose Q|H = 0.

2. On Bn the map Π is zero, and therefore the map Q|B has to satisfy 1 = dQ, i.e. Q
has to be a preimage of d. We want to choose this preimage as small as possible i.e.
with no non-trivial terms from Zn (they would anyway be annihilated by d). Since d
is injective on L, we can choose Q|B = (d|L)−1.

3. We briefly outline how to determine Q restricted to L (although it won’t play any role
in our computations later on). From (6.2) we get the restriction

1 = Qd+ dQ.

As d(a) ∈ B for all a ∈ A we see that Qd|L = (d|L)−1d|L = 1, so we can define
Q|L = 0.



Chapter 7

The A∞-structure on
Ext(

⊕
M(λ),

⊕
M(λ))

In this section we return to the space Ext(
⊕
M(λ),

⊕
M(λ)) which we already determined

as an algebra in Part I of the thesis. The construction of a minimal model from Section 6.4.2
applies to our situation if we choose A = Hom(P•, P•) and E = Ext(

⊕
M(λ),

⊕
M(λ)) =

H∗(A).
Recall that M(λ) are the parabolic Verma modules in the principal block of Op with

g = gln+m and p the parabolic subalgebra belonging to the Levi component glm ⊕ gln.
Moreover, these modules can be viewed as the cell modules in Kn

m−mod via the equivalence
in Corollary 3.2.

7.1 General results

In the following we give an upper bound for the l with ml 6= 0.
Already in the case n = 2 we will show that not all ml for l > 2 vanish and therefore our

specific model provides interesting examples of A∞-algebras with higher multiplications.
We start by stating the following Lemma generalizing the fact that the multiplication

of two morphisms only exists if they lie in appropriate Hom-spaces:

Lemma 7.1. Let ai, 1 ≤ i ≤ l be homogeneous elements of degree ki in
Ext(⊕M(λ),⊕M(λ)) of the form

ai ∈ Extki(M(µi),M(νi)) 1 ≤ i ≤ l.

Then we have

λl(a1, ..., al) = 0 unless νi = µi+1 ∀ 1 ≤ i ≤ l − 1.

If λl(a1, ..., al) 6= 0, i.e. the last condition holds, we have

λl(a1, ..., al) ∈ HomΣki+2−l(P•(µ1), P•(νl)).

Proof. The proof goes by induction on l. For all neighboured pairs i, i+ 1 we have

λ2(ai, ai+1) = ai · ai+1 = 0 unless µi+1 = νi.
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Especially

Q(λ2(ai, ai+1)) = 0 unless µi+1 = νi. (7.1)

By the construction the map Q yields a preimage for the differential, therefore

Q(λ2(ai, ai+1)) ∈ Homki+ki+1−1(P•(µi), P•(νi)). (7.2)

This yields a second assumption used in the induction step below.
Now for the induction assume that ∀s < l we know:

1. Q(λs(ai, ..., ai+s−1)) = 0 unless νt = µt+1 ∀ i ≤ t ≤ i+ s− 2

2. Q(λs(ai, ..., ai+s−1)) ∈ HomΣi+s−1
r=i ki+2−s−1(P•(µi), P•(νi))

For n = 2 the conditions are fulfilled by (7.1) and (7.2).
We compute

λl = −
∑
k+s=l
k,l≥1

(−1)k+(s−1)(|a1|+···+|ak|)Q(λk(a1, . . . , ak)) ·Q(λs(ak+1, . . . , al)).

Therefore, if λl 6= 0, at least one summand has to be nonzero. Assume this is the summand
belonging to k and s = l − k, i.e.

Q(λk(a1, . . . , ak)) ·Q(λs(ak+1, . . . , al)) 6= 0.

From the assumption we know that

νt = µt+1 ∀ 1 ≤ t ≤ k − 1 and k + 1 ≤ t ≤ l − 1

and the maps being in
HomΣk

r=1ki+2−k−1(P•(µ1), P•(νk))

and
HomΣl

r=k+1ki+2−s−1(P•(µk+1), P•(νl)),

respectively. So the composition is zero unless νk = µk+1 and

λl(a1, ..., al) ∈ HomΣki+2−l(P•(µ1), P•(νl)).

We also obtain Q(λl(a1, ..., al)) ∈ HomΣl
r=1ki+2−l−1(P•(µi), P•(νi)) as we assumed for the

induction and so we have proved the Lemma.

Theorem 7.2 (General Vanishing Theorem). Taking the above construction for a minimal
model on E = Ext(⊕M(λ),⊕M(λ)) withM(λ) ∈ Kn

m−mod, the A∞-structure on E satisfies

ml = 0 for all l > n2 + 2.

Proof. We prove that the degree 2− l map λl becomes zero for l > n2 + 2.
Since λl is linear, we show the assertion on nonzero homogeneous elements and therefore

by Lemma 7.1 we can take

ai ∈ Extki(M(µi),M(µi+1)) 1 ≤ i ≤ l.

By Lemma 4.5 there are di ≥ 0 such that

ki = l(µi)− l(µi+1)− di
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and therefore
l∑
i=1

ki = l(µ1)− l(µl+1)−
l∑
i=1

di. (7.3)

From Lemma 7.1 we know that

λl(a1, ..., al) ∈ HomΣki+2−l(P•(µ1), P•(νl)).

Assume λl 6= 0, so, by Lemma 3.26 about the morphisms between our chosen projective
resolutions, we know that

l(µ1) ≤ l(µl+1) + n2 +
∑

ki + 2− l. (7.4)

Combining 7.3 and 7.4, we have

l(µ1) ≤ l(µl+1) + l(µ1)− l(µl+1)−
l∑
i=1

di + 2− l + n2,

which is equivalent to

l∑
i=1

di ≤ n2 + 2− l.

However, since
∑l
i=1 di ≥ 0, we obtain 0 ≤ n2 + 2 − l or equivalently l ≤ n2 + 2. This

provides the asserted upper bound.

7.2 Explicit computation of the structure for K1
N and

K2
N−1

In the previous section we established general vanishing results for the higher multiplications.
In this section we study small examples in detail. Again we work in the two cases for n = 1
and n = 2 using results already obtained in Chapter 5.

7.2.1 Ext(
⊕

M(λ),
⊕

M(λ)) for M(λ) ∈ K1
N −mod

The first result in this situation is the following:

Theorem 7.3 (1st vanishing Theorem). For p the parabolic subalgebra belonging to l =
gl1 ⊕ glN the algebra Ext(⊕M(λ),⊕M(λ)) is formal, i.e. we have a minimal model such
that mn = 0 for all n ≥ 3.

Proof. Recall from Remark 5.8 that in this specific case all multiplications in the alge-
bra Ext(⊕M(λ),⊕M(λ)) are already obtained by the multiplications of the elements in
Hom(P•, P•). Therefore, for all elements a1, a2 ∈ Ext(⊕M(λ),⊕M(λ)) = H∗(Hom(P•, P•))
identified with the subspace H∗ via the decomposition from (6.4), the product a1 ·a2 also lies
in the subspace H∗ and has no boundary component in B∗. Since we have chosen Q|H = 0,
we obtain

Q(a1 · a2) = 0.

Therefore, we apply Corollary 6.11 and get

mn = 0 ∀ n ≥ 3

and the theorem is proved.
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7.2.2 Ext(
⊕

M(λ),
⊕

M(λ)) for M(λ) ∈ K2
N−1 −mod

The case of n = 2 and m = N − 1, which we deal with in this section, turns out to be more
interesting than the case studied in Section 7.2.1, since we have higher multiplications not
disappearing. In contrast to the previous example this phenomenon is possible, since from
Section 5.2.10 we know that some multiplications in Hom(P•, P•) are only homotopic to their
product in the Ext-algebra. Therefore, those elements also consist of a boundary part lying
in the direct summand B in the decomposition from (6.4). As explained in Section 6.4.2
the construction requires a choice of a minimal preimage of the differential for the boundary
part. It is obvious that the homotopies chosen in Section 5.2.10 are preimages. Since neither
they, nor their linear combinations are contained the kernel of dHom, they lie in the L-part
constructed in Section 6.4.2 and therefore they are minimal (in the above sense). Hence we
have constructed Q(λ2) as the homotopies from Section 5.2.10 and determine Q(x · y) using
Table 5.25. This is done in Table 7.1.

The procedure to determine the higher multiplications

We will now work in three steps:

1. Compute m3.

2. Show that Q(λ3) = 0.

3. Show that Q(λ2) ·Q(λ2) = 0.

Summing up these steps we conclude that there are no higher multiplications.

Remark 7.4. Recall from Corollary 5.15 that the space Homs+k(P•(m|n), P•(a|b)〈s+ j〉)0

is zero except when certain conditions (depending on k and j only) are satisfied. In particular
for

f1 ∈ Homs1+k1(P•(m|n), P•(a|b)〈s1 + j1〉)0

f2 ∈ Homs2+k2(P•(a|b), P•(c|d)〈s2 + j2〉)0

f ′1 ∈ Homs′1+k1(P•(m|n), P•(a
′|b′)〈s′1 + j1〉)0

f ′2 ∈ Homs′2+k2(P•(a
′|b′), P•(c|d)〈s′2 + j2〉)0

the products f1 · f2 and f ′1 · f ′2 are elements in

Homs+k(P•(m|n), P•(a|b)〈s+ j〉)0

with s = m+ n− (c+ d), k = k1 + k2, j = j1 + j2. This simplifies the calculations, since if
one of the two compositions has to vanish by the restrictions of the corollary, the other has
to vanish, too.

The multiplication m3

After this outline of the arguments we turn to the first lemma:

Theorem 7.5. There are non-vanishing m3 and we have Q(λ3) = 0.
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Proof. From Proposition 6.9 we know that

λ3(a1, a2, a3) = (−1)deg a1+1a1 ·Q(a2 · a3) +Q(a1 · a2) · a3 (7.5)

and

m3(a1, a2, a3) = Π(λ3(a1, a2, a3)). (7.6)

We first determine the possible j and k introduced in section 7.2.2 in case

a3 ∈ Homs1+k1(P•(m1|n1), P•(a1|b1)〈s1 + j1〉)0

and
Q(a1 · a2) ∈ Homs2+k2(P•(m2|n2)P•(a2|b2)〈s2 + j2〉)0.

Then their compositions a3 ·Q(a1 · a2) and Q(a1 · a2) · a3 are in

Homs+(k1+k2)(P•(m|n), P•(a|b)〈s+ (j1 + j2)〉)0

with s = m+n− (a+ b) and (m|n) and (a|b) appropriate. This is done in Table 7.2. We use
Remark 7.4 and therefore only have to write down the composition in one order. Assuming

λ3 ∈ Homs+k(P•(m|n), P•(a|b)〈s+ j〉)0

we would have
Q(λ3) ∈ Homs+k−1(P•(m|n), P•(a|b)〈s+ j〉)0.

Checking all cases from Table 7.2 together with Corollary 5.15 we obtain that Q(λ3) must
be zero in all cases, since for all possible pairs (j, k − 1) there exists no nonzero element in
Homs+k−1(P•(m|n), P•(a|b)〈s+ j〉)0. Hence the second part of the theorem follows.

To compute m3 using (7.6) we apply Π to the two summands from (7.5) i.e. we compute
Π(a1 ·Q(a2 · a3)) and Π(Q(a1 · a2) · a3). The result is presented as a linear combination of
the elements

{ Id
(n,m)
(a|b) , F

(n,m)
(a|b) , F̃

(n,m)
(a|b) , G

(n,m)
(a|b) ,K

(n,m)
(a|b) , J

(n,m)
(a|b) ,

H(A)
(n,m)
(a|b) , H(B)

(n,m)
(a|b) , H(J)

(n,m)
(a|b) , H(F − F̃ )

(n,m)
(a|b) }

from H, B and L introduced in Sections 5.2.7-5.2.10 plus the additional element:

L
(n|m)
(a|b) : P•(n|m)→ P•(a|b)〈(n+m)− (a+ b)− 6〉[(n+m)− (a+ b)− 3]

P (s|s− 2)B → P (s− 1|s− 3)A (7.7)

It is easy to see that the resulting set forms a linearly independent set of elements in
Hom(P•, P•).

Using Table 7.2 together with Corollary 5.15 we restrict the computations to those cases
where a nonzero element λ3 ∈ Homs+k(P•(m|n), P•(a|b)〈s + j〉)0 can exist. The possible
combinations for a1 and Q(a2 ·a3), and Q(a1 ·a2) and a3 respectively are listed in Table 7.3.
There their product is determined, too. We wrote ± where the signs were not important for
further computations.

Using the results from Table 7.1 and the results of the computations in Table 7.3 we
determine all triples (a1, a2, a3) with ai ∈ Ext(⊕M(λ),⊕M(λ)) such that at least one of the
terms Π(a1 ·Q(a2 · a3)) or Π(Q(a1 · a2) · a3) is unequal to zero. The result is listed in Table
7.4. We ignore from now on all signs except for the single special case where both terms
are nonzero. There we obtain (s1 + (−1)n+m+k+l+1s2) = ±(1 + (−1)n+m+k+d+b+a). If one
wants to know the signs in the other cases, one only has to multiply those in Table 7.1 with
the corresponding ones in Table 7.3.

Therefore, we have computed all m3 and the non-vanishing of some of them is shown.
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Table 7.2: j and k for the compositions x · y and y · x

x\y H(F − F̃ )
(n2|m2)
(a2|b2) H(J)

(n2|m2)
(a2|b2) H(A)

(n2|m2)
(a2|b2) H(B)

(n2|m2)
(a2|b2)

j2 = −2 j2 = −4 j2 = −4 j2 = −6
k2 = −2 k2 = −3 k2 = −3 k2 = −4

Id
(n1|m1)
(a1|b1)

j1 = 0 j = −2 j = −4 j = −4 j = −6
k1 = 0 k = −2 k = −3 k = −3 k = −4

F
(n1|m1)
(a1|b1)

j1 = −2 j = −4 j = −6 j = −6 j = −8
k1 = −1 k = −3 k = −4 k = −4 k = −5

F̃
(n1|m1)
(a1|b1)

j1 = −2 j = −4 j = −6 j = −6 j = −8
k1 = −1 k = −3 k = −4 k = −4 k = −5

G
(n1|m1)
(a1|b1)

j1 = −4 j = −6 j = −8 j = −8 j = −10
k1 = −3 k = −5 k = −6 k = −6 k = −7

K
(n1|m1)
(a1|b1)

j1 = −6 j = −8 j = −10 j = −10 j = −12
k1 = −4 k = −6 k = −7 k = −7 k = −8

J
(n1|m1)
(a1|b1)

j1 = −4 j = −6 j = −8 j = −8 j = −10
k1 = −2 k = −4 k = −7 k = −7 k = −8
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Table 7.3: Possible products for a1 and Q(a2 ·a3), and Q(a1 ·a2) and a3, respectively

F
(n|m)
(k|l) H(F − F̃ )

(k|l)
(a|b)

(−1)(n+a)(a+b)+(l+b)(n+k+1)G
(n|m)
(a|b)

+(−1)(l+b)(n+k+1)H(J)
(n|m)
(a|b)

+(−1)(l+b)(n+k+1)+n+bH(A)
(n|m)
(a|b)

F
(n|m)
(k|l) H(A)

(k|l)
(a|b)

±L(n|m)
(a|b)

+±H(B)
(n|m)
(a|b)

F
(n|m)
(k|l) H(J)

(k|l)
(a|b)

(−1)(l+a)n+(l+b+1)k+abK
(n|m)
(a|b)

+±H(B)
(n|m)
(a|b)

H(F − F̃ )
(n|m)
(k|l) F

(k|l)
(a|b)

(−1)(l+b+1)n+m+aH(J)
(n|m)
(a|b)

+(−1)(l+b)n+m+(k+1)l+bk+b+a+1H(A)
(n|m)
(a|b)

H(A)
(n|m)
(k|l) F

(k|l)
(a|b)

±L(n|m)
(a|b)

+±H(B)
(n|m)
(a|b)

H(J)
(n|m)
(k|l) F

(k|l)
(a|b) ±H(B)

(n|m)
(a|b)

F̃
(n|m)
(k|l) H(F − F̃ )

(k|l)
(a|b) ±H(J)

(n|m)
(a|b)

F̃
(n|m)
(k|l) H(A)

(k|l)
(a|b) 0

F̃
(n|m)
(k|l) H(J)

(k|l)
(a|b) 0

H(F − F̃ )
(n|m)
(k|l) F̃

(k|l)
(a|b)

(−1)(l+a+1)n+m+(k+1)l+(b+1)k+(a+1)b(G
(n|m)
(a|b)

+(−1)(b+a)(n+a)H(J)
(n|m)
(a|b) )

H(A)
(n|m)
(k|l) F̃

(k|l)
(a|b) ±H(B)

(n|m)
(a|b)

H(J)
(n|m)
(k|l) F̃

(k|l)
(a|b) (−1)(l+a)n+kl+(a+k+1)(b+1)K

(n|m)
(a|b)

J
(n|m)
(k|l) H(F − F̃ )

(k|l)
(a|b)

(−1)(l+a)n+kl+(b+1)(a+k+1)K
(n|m)
(a|b)

+±H(B)
(n|m)
(a|b)

H(F − F̃ )
(n|m)
(k|l) J

(k|l)
(a|b)

(−1)(l+a+1)n++m+(k+1)l+bk+(b+1)(a+1)

K
(n|m)
(a|b)

+±H(B)
(n|m)
(a|b)
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Table 7.4: The multiplication m3(a1, a2, a3), all other cases yield zero

a1 a2 a3 Π(a1Q(a2, a3)) Π(Q(a1, a2)a3) m3

a ≤ m Id
(n|m)
(k|l) F̃

(k|l)
(a|b) F

(a|b)
(c|d) 0 0 0

a ≤ m Id
(n|m)
(k|l) F̃

(k|l)
(a|b) F

(a|b)
(c|d) 0 ±G(n|m)

(c|d) ±G(n|m)
(c|d)

a ≤ m Id
(n|m)
(k|l) F̃

(k|l)
(a|b) J

(a|b)
(c|d) 0 ±K(n|m)

(c|d) ±K(n|m)
(c|d)

a ≤ m Id
(n|m)
(k|l) J

(k|l)
(a|b) F

(a|b)
(c|d) 0 0 0

a ≤ m Id
(n|m)
(k|l) J

(k|l)
(a|b) F̃

(a|b)
(c|d) 0 ±K(n|m)

(c|d) ±K(n|m)
(c|d)

F
(n|m)
(k|l) F

(k|l)
(a|b) F

(a|b)
(c|d) 0 0 0

c > l F
(n|m)
(k|l) F

(k|l)
(a|b) F̃

(a|b)
(c|d) 0 0 0

c ≤ l F
(n|m)
(k|l) F

(k|l)
(a|b) F̃

(a|b)
(c|d) 0 ±K(n|m)

(c|d) ±K(n|m)
(c|d)

a ≤ m F
(n|m)
(k|l) F̃

(k|l)
(a|b) F

(a|b)
(c|d) 0 0 0

a ≤ m
c ≤ l F

(n|m)
(k|l) F̃

(k|l)
(a|b) F

(a|b)
(c|d) 0 ±K(n|m)

(c|d) ±K(n|m)
(c|d)

F
(n|m)
(k|l) F̃

(k|l)
(a|b) F̃

(a|b)
(c|d) 0 ±K(n|m)

(c|d) ±K(n|m)
(c|d)

a ≤ m F̃
(n|m)
(k|l) Id

(k|l)
(a|b) F

(a|b)
(c|d) 0 0 0

a ≤ m
c > l

F̃
(n|m)
(k|l) Id

(k|l)
(a|b) F

(a|b)
(c|d) 0 ±G(n|m)

(c|d) ±G(n|m)
(c|d)

a ≤ m
c ≤ l F̃

(n|m)
(k|l) Id

(k|l)
(a|b) F

(a|b)
(c|d) 0 ±G(n|m)

(c|d) ±G(n|m)
(c|d)

a > m
c > l

F̃
(n|m)
(k|l) Id

(k|l)
(a|b) F

(a|b)
(c|d) 0 ±0 0

a ≤ m F̃
(n|m)
(k|l) Id

(k|l)
(a|b) J

(a|b)
(c|d) 0 ±K(n|m)

(c|d) ±K(n|m)
(c|d)

a ≤ m F̃
(n|m)
(k|l) F

(k|l)
(a|b) F

(a|b)
(c|d) 0 0 0

a > m F̃
(n|m)
(k|l) F

(k|l)
(a|b) F

(a|b)
(c|d) 0 0 0



110
T
he

A
∞
-structure

on
E

x
t( ⊕

M
(λ

), ⊕
M

(λ
))

a ≤ m
c > l

F̃
(n|m)
(k|l) F

(k|l)
(a|b) F̃

(a|b)
(c|d) 0 ±K(n|m)

(c|d) ±K(n|m)
(c|d)

a ≤ m
c ≤ l F̃

(n|m)
(k|l) F

(k|l)
(a|b) F̃

(a|b)
(c|d) 0 ±K(n|m)

(c|d) ±K(n|m)
(c|d)

a > m
c ≤ l F̃

(n|m)
(k|l) F

(k|l)
(a|b) F̃

(a|b)
(c|d) 0 0 0

a ≤ m J
(n|m)
(k|l) Id

(k|l)
(a|b) F

(a|b)
(c|d) 0 0 0

a ≤ m
c > l

J
(n|m)
(k|l) Id

(k|l)
(a|b) F̃

(a|b)
(c|d) 0 ±K(n|m)

(c|d) ±K(n|m)
(c|d)

a ≤ m
c ≤ l J

(n|m)
(k|l) Id

(k|l)
(a|b) F̃

(a|b)
(c|d) s1K

(n|m)
(c|d) s2K

(n|m)
(c|d) (s1 + (−1)n+m+k+l+1s2)K

(n|m)
(c|d)

a > m
c ≤ l J

(n|m)
(k|l) Id

(k|l)
(a|b) F̃

(a|b)
(c|d) ±K(n|m)

(c|d) 0 ±K(n|m)
(c|d)

c ≤ l F
(n|m)
(k|l) Id

(k|l)
(a|b) F̃

(a|b)
(c|d) ±G(n|m)

(c|d) 0 ±G(n|m)
(c|d)

c ≤ l F
(n|m)
(k|l) Id

(k|l)
(a|b) J

(a|b)
(c|d) ±K(n|m)

(c|d) 0 ±K(n|m)
(c|d)

c ≤ l F
(n|m)
(k|l) F̃

(k|l)
(a|b) Id

(a|b)
(c|d) ±G(n|m)

(c|d) 0 ±G(n|m)
(c|d)

c ≤ l F̃
(n|m)
(k|l) F̃

(k|l)
(a|b) Id

(a|b)
(c|d) 0 0 0

c ≤ l J
(n|m)
(k|l) F̃

(k|l)
(a|b) Id

(a|b)
(c|d) ±K(n|m)

(c|d) 0 ±K(n|m)
(c|d)

c ≤ l F̃
(n|m)
(k|l) F̃

(k|l)
(a|b) F

(a|b)
(c|d) 0 0 0

c ≤ l F
(n|m)
(k|l) J

(k|l)
(a|b) Id

(a|b)
(c|d) ±K(n|m)

(c|d) 0 ±K(n|m)
(c|d)

c ≤ l F̃
(n|m)
(k|l) J

(k|l)
(a|b) Id

(a|b)
(c|d) 0 0 0
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Table 7.5: j and k for the compositions of two homotopies

H(F − F̃ )
(n2|m2)
(a2|b2) H(J)

(n2|m2)
(a2|b2) H(A)

(n2|m2)
(a2|b2) H(B)

(n2|m2)
(a2|b2)

j2 = −2 j2 = −4 j2 = −4 j2 = −6
k2 = −2 k2 = −3 k2 = −3 k2 = −4

H(F − F̃ )
(n1|m1)
(a1|b1)

j1 = −2 j = −4 j = −6 j = −6 j = −8
k1 = −2 k = −4 k = −5 k = −5 k = −6

H(J)
(n1|m1)
(a1|b1)

j1 = −4 j = −6 j = −8 j = −8 j = −10
k1 = −3 k = −5 k = −6 k = −6 k = −7

H(A)
(n1|m1)
(a1|b1)

j1 = −4 j = −6 j = −8 j = −8 j = −10
k1 = −3 k = −5 k = −6 k = −6 k = −7

H(B)
(n1|m1)
(a1|b1)

j1 = −6 j = −8 j = −10 j = −10 j = −12
k1 = −4 k = −6 k = −7 k = −7 k = −8

More vanishing results

Before we are able to prove our main theorem, it is necessary to work out the third step
introduced in Section 7.2.2:

Lemma 7.6.

Q(λ2(a1, a2)) ·Q(λ2(a3, a4)) = 0 ∀ ai ∈ Ext(
⊕

M(λ),
⊕

M(λ)).

Proof. Again we argue by the Hom-spaces and their dimension. Similar to Table 7.2 in
Table 7.5 we determine the shifts of the product of

Q(λ2(a1, a2)) ∈ Homs+k1(P•(m|n), P•(a|b)〈s+ j1〉)0

and
Q(λ2(a3, a4)) ∈ Homs+k2(P•(m|n), P•(a|b)〈s+ j2〉)0.

Applying Corollary 5.15 the lemma follows.

Vanishing of higher multiplications

The following theorem is the main result in this section:

Theorem 7.7 (2nd Vanishing Theorem). For p the parabolic subalgebra belonging to l =
gl2 ⊕ glN−1 and Ext(⊕M(λ),⊕M(λ)) the A∞-algebra constructed as a minimal model we
have

mn = 0 ∀n ≥ 4.

Proof. By Lemma 7.5 we know that Q(λ3) = 0 and by Lemma 7.6 Q(λ2)Q(λ2) = 0. Using
Corollary 6.11 we obtain the result.
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7.3 Ideas how to proceed
In the previous section we proved that there is a minimal model with non-vanishing higher
multiplications but this does not answer the question if the algebra is formal. To show that
the algebra is not formal, we have to prove that no model exists such that mn = 0 for all
n ≥ 3.

As a tool we use Hochschild cohomology. Given a dg-Algebra A one can compute its
Hochschild cohomology by using the A∞-structure on a minimal model of A (cf. [LH03,
Lemma B.4.1] and [Kad88]). Especially for a model with mn = 0 for n ≥ 3 one obtains that
the Hochschild cohomology is trivial. Consequently, if we can prove that the Hochschild
cohomology of A is not trivial, there cannot exist a minimal model with mn = 0 for all
n ≥ 3 and therefore A cannot be formal.

Assume that we have found a minimal model on H∗(A) with mn = 0 for 3 ≤ n ≤ p− 1.
Then the multiplication mp defines a cocycle for the Hochschild cohomology of A by the
construction in [LH03, Lemma B.4.1]. If we can prove that this class is not trivial, we are
done and have shown, that the algebra is not formal. If we cannot, we have to modify our
model such that mp = 0, too and have to analyse if mp+1 vanishes.

A detailed discussion of this topic would go beyond the scope of this thesis. Therefore
we can only state the following conjecture:

Conjecture 7.8. In general the algebra Ext(
⊕
M(λ),

⊕
M(λ)) is not formal.
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Appendix A

Computations for the proofs in
Section 5.2.7

Computations for the proof of Theorem 5.16. The proof of Theorem 5.16 requires a verifi-
cation of the commutativity of the following diagrams:

i) P (s|t)A
(−1)n+m+s+t+1

//

m+t

��

P (s+ 1|t)A

m+t

��
P (s|t)A

(−1)n+m+s+t

// P (s+ 1|t)A

ii) P (s|t)A
(−1)m+t+1

//

m+t

��

P (s|t+ 1)A

m+t+1

��
P (s|t)A

(−1)m+t+1

// P (s|t+ 1)A

iii) P (s|t)B
(−1)m+s+1

//

m+s

��

P (s+ 1|t)B

m+s+1

��
P (s|t)B

(−1)m+s+1

// P (s+ 1|t)B

iv) P (s|t)B
(−1)n+m+s+t+1

//

m+s

��

P (s|t+ 1)B

m+s

��
P (s|t)B

(−1)n+m+s+t

// P (s|t+ 1)B

v) P (s|t)A
(−1)(s+t+1)(n+s)+n+m+1

//

m+t

��

P (s− 1|t)B

m+s+1

��
P (s|t)A

(−1)(s+t+1)(n+s+1)+n+m

// P (s− 1|t)B

vi) P (s|t)A
(−1)(s+t+1)(n+s)+m+s

//

m+t

��

P (s|t− 1)B

m+s

��
P (s|t)A

(−1)(s+t+1)(n+s+1)+m+s

// P (s|t− 1)B

vii) P (s|s− 2)B
(−1)n+m+1

//

m+s

��

P (s+ 1|s)A

m+s

��
P (s|s− 2)B

(−1)n+m

// P (s+ 1|s)A

All these diagrams obviously anticommute.

Computations for the proof of Theorem 5.17. We check that the diagrams F1)-F7) listed in
the proof of Theorem 5.17 commute.

F1) V = P (s|t)A and s > t+ 3:
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We have the following diagram:

P (s|t)A //

��

P (s+ 1|t)A
P (s|t+ 1)A
P (s− 1|t)B
P (s|t− 1)B

��

P (s|t− 1)A //

P (s+ 1|t− 1)A
P (s|t)A

P (s− 1|t− 1)B
P (s|t− 2)B
P (s− 2|t)B

(A.1)

with

P (s|t)A
(−1)n+m+s+t+1

// P (s+ 1|t)A

=

// P (s+ 1|t− 1)A

P (s|t)A // P (s|t− 1)A
(−1)n+m+s+t+1

// P (s+ 1|t− 1)A

for t > 0 we also have

P (s|t)A
(−1)m+t+1

// P (s|t+ 1)A

=

// P (s|t)A

P (s|t)A // P (s|t− 1)A
(−1)m+t+1

// P (s|t)A

and for t = 0 the upper line is zero.
For t+ 3 ≤ s ≤ m we also have

P (s|t)A
(−1)(s+t+1)(n+s)+m+s

// P (s|t− 1)B

=

// P (s− 1|t− 1)B

P (s|t)A // P (s|t− 1)A
(−1)(s+t)(n+s)+n+m

// P (s− 1|t− 1)B

and

P (s|t)A // P (s|t− 1)B

=

// P (s|t− 2)B

0

P (s|t)A // P (s− 1|t)B
=

// P (s− 2|t)B

0

Therefore diagram (A.1) commutes.
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F2) V = P (s+ 3|s)A:

P (s+ 3|s)A //

��

P (s+ 4|s)A
P (s+ 3|s+ 1)A
P (s+ 2|s)B

P (s+ 3|s− 1)B

��

P (s+ 3|s− 1)A //

P (s+ 4|s− 1)A
P (s+ 3|s)A

P (s+ 2|s− 1)B
P (s+ 3|s− 2)B

(A.2)

The only part of the diagram which differs from the general case is the part including
P (s+3|s+1)A and P (s+2|s)B . From these two terms, which only exist for s ≤ m−2,
we get apart from those maps we had before, two new maps:

P (s+ 3|s)A
(−1)n+m+1

// P (s+ 2|s)B

=

// P (s+ 2|s+ 1)A

−(P (s+ 3|s)A
(−1)m+s+1

// P (s+ 3|s+ 1)A
(−1)n+s+1

// P (s+ 2|s+ 1)A)

So the two maps cancel and the diagram (A.2) commutes.

F3) V = P (s+ 2|s)A:

1. s > 0:

We get the diagram

P (s+ 2|s)A //

��

P (s+ 3|s)A
P (s+ 2|s+ 1)A
P (s+ 2|s− 1)B

��

P (s+ 2|s− 1)A
P (s+ 1|s)A

//

P (s+ 3|s− 1)A
P (s+ 2|s)A

P (s+ 1|s− 1)B
P (s+ 2|s− 2)B

(A.3)

with

P (s+ 2|s)A
(−1)n+m+1

// P (s+ 3|s)A

=

// P (s+ 3|s− 1)A

P (s+ 2|s)A // P (s+ 2|s− 1)A
(−1)n+m+1

// P (s+ 3|s− 1)A
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P (s+ 2|s)A
(−1)m+s+1

// P (s+ 2|s+ 1)A

=

// P (s+ 2|s)A

P (s+ 2|s)A // P (s+ 2|s− 1)A

+

(−1)m+s+1

// P (s+ 2|s)A

P (s+ 2|s)A
(−1)n+s

// P (s+ 1|s)A
(−1)n+m+1

// P (s+ 2|s)A

and

P (s+ 2|s)A
(−1)m+s+1

// P (s+ 2|s+ 1)A

=

(−1)n+s+1

// P (s+ 1|s− 1)B

P (s+ 2|s)A
(−1)n+s

// P (s+ 1|s)A
(−1)m+s

// P (s+ 1|s− 1)B

and

P (s+ 2|s)A
(−1)n+m

// P (s+ 2|s− 1)B

=

// P (s+ 1|s− 1)B

P (s+ 2|s)A // P (s+ 2|s− 1)A
(−1)n+m

// P (s+ 1|s− 1)B

and

P (s+ 2|s)A // P (s+ 2|s− 1)A

=

// P (s+ 2|s− 2)B

0

We verified that diagram (A.3) commutes.

2. s = 0:

P (2|0)A //

��

P (3|0)A
P (2|1)A

��
P (1|0)A // P (2|0)A

(A.4)

with

P (2|0)A
(−1)m+1

// P (2|1)A

=

// P (2|0)A

P (2|0)A
(−1)n // P (1|0)A

(−1)n+m+1

// P (2|0)A

and (A.4) commutes.
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F4) V = P (s+ 1|s)A:

1. s > 0:
We get the diagram

P (s+ 1|s)A //

��

P (s+ 2|s)A
P (s+ 1|s− 1)B

��

P (s+ 1|s− 1)A
P (s|s− 2)B

//
P (s+ 2|s− 1)A
P (s+ 1|s)A

P (s+ 1|s− 2)B

(A.5)

with

P (s+ 1|s)A
(−1)n+m

// P (s+ 2|s)A

=

// P (s+ 2|s− 1)A

P (s+ 1|s)A // P (s+ 1|s− 1)A
(−1)n+m

// P (s+ 2|s− 1)A

P (s+ 1|s)A
(−1)n+m

// P (s+ 2|s)A

=

(−1)n+s

// P (s+ 1|s)A

P (s+ 1|s)A
(−1)n+s

// P (s|s− 2)B
(−1)n+m

// P (s+ 1|s)A

P (s+ 1|s)A
(−1)m+s+1

// P (s+ 1|s− 1)B

=

// P (s+ 1|s)A

P (s+ 1|s)A // P (s+ 1|s− 1)A
(−1)m+s+1

// P (s+ 1|s)A

and

P (s+ 1|s)A // P (s+ 1|s− 1)A

=

(−1)n+m+1

// P (s+ 1|s− 2)B

−(P (s+ 1|s)A
(−1)n+s

// P (s|s− 2)B
(−1)m+s

// P (s+ 1|s− 2)B)

These computations show that the diagram (A.5) commutes.

2. s = 0:

P (1|0)A //

��

P (2|0)A

��
0 // P (1|0)A

(A.6)

This diagram commutes.
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F5) V = P (s|t)B and s > t+ 3:

We get the diagram

P (s|t)B //

��

P (s+ 1|t)B
P (s|t+ 1)B

��

P (s− 1|t)B // P (s|t)B
P (s− 1|t+ 1)B

(A.7)

with

P (s|t)B
(−1)n+m+s+t+1

// P (s|t+ 1)B

=

// P (s− 1|t+ 1)B

P (s|t)B // P (s− 1|t)B
(−1)n+m+s+t+1

// P (s− 1|t+ 1)B

and for s ≤ m− 1

P (s|t)B
(−1)m+s+1

// P (s+ 1|t)B

=

// P (s|t)B

P (s|t)B // P (s− 1|t)B
(−1)m+s+1

// P (s|t)B

and the diagram (A.7) commutes.

F6) V = P (s|s− 2)B :

We get the diagram

P (s|s− 2)B //

��

P (s+ 1|s)A
P (s+ 1|s− 2)B

��

P (s|s− 1)A // P (s+ 1|s− 1)A
P (s|s− 2)B

(A.8)

with

P (s|s− 2)B
(−1)n+m+1

// P (s+ 1|s)A

=

// P (s+ 1|s− 1)A

P (s|s− 2)B // P (s|s− 1)A
(−1)n+m+1

// P (s+ 1|s− 1)A
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and for s ≤ m− 1

P (s|s− 2)B
(−1)n+m+1

// P (s+ 1|s)A

+

(−1)n+s

// P (s|s− 2)B

P (s|s− 2)B
(−1)m+s+1

// P (s+ 1|s− 2)B

=

// P (s|s− 2)B

P (s|s− 2)B // P (s|s− 1)A
(−1)m+s+1

// P (s|s− 2)B

The diagram (A.8) commutes.

F7) V = P (s|s− 3)B :

We get the diagram

P (s|s− 3)B //

��

P (s+ 1|s− 3)B
P (s|s− 2)B

��

P (s− 1|s− 3)B // P (s|s− 3)B
P (s|s− 1)A

(A.9)

with

P (s|s− 3)B
(−1)n+m

// P (s|s− 2)B

=

// P (s|s− 1)A

P (s|s− 3)B // P (s− 1|s− 3)B
(−1)n+m

// P (s|s− 1)A

and for s ≤ m− 1

P (s|s− 3)B
(−1)m+s+1

// P (s+ 1|s− 2)B

=

// P (s|s− 2)B

P (s|s− 2)B // P (s|s− 1)A
(−1)m+s+1

// P (s|s− 2)B

so the diagram (A.9) commutes and all cases for F are checked.

Now we proceed with the computations for the map F̃ :

F̃1) V = P (s|t)A and s > t+ 2:
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We have the following diagram:

P (s|t)A //

��

P (s+ 1|t)A
P (s|t+ 1)A
P (s− 1|t)B
P (s|t− 1)B

��

P (s− 1|t)A //

P (s− 1|t+ 1)A
P (s|t)A

P (s− 1|t− 1)B
P (s|t− 2)B
P (s− 2|t)B

(A.10)

with

P (s|t)A
(−1)m+t+1

// P (s|t+ 1)A

=

// P (s− 1|t+ 1)A

P (s|t)A // P (s− 1|t)A
(−1)m+t+1

// P (s− 1|t+ 1)A

for s < n we also have

P (s|t)A
(−1)n+m+s+t+1

// P (s+ 1|t)A

=

// P (s|t)A

P (s|t)A // P (s− 1|t)A
(−1)n+m+s+t+1

// P (s|t)A

P (s|t)A
(−1)(s+t+1)(n+s)+n+m+1

// P (s− 1|t)B

=

// P (s− 1|t− 1)B

P (s|t)A // P (s− 1|t)A
(−1)(s+t)(n+s)+m+s+1

// P (s− 1|t− 1)B

and

P (s|t)A // P (s|t− 1)B

=

// P (s|t− 2)B

0

P (s|t)A // P (s− 1|t)B
=

// P (s− 2|t)B

0

So the diagram (A.10) commutes.
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F̃2) V = P (s+ 2|s)A:
We get the diagram

P (s+ 2|s)A //

��

P (s+ 3|s)A
P (s+ 2|s+ 1)A
P (s+ 2|s− 1)B

��

P (s+ 1|s)A //
P (s+ 2|s)A

P (s+ 1|s− 1)B
P (s+ 2|s− 2)B

(A.11)

with

P (s+ 2|s)A
(−1)n+m+1

// P (s+ 3|s)A

=

// P (s+ 2|s)A

P (s+ 2|s)A // P (s+ 1|s)A
(−1)n+m+1

// P (s+ 2|s)A

P (s+ 2|s)A
(−1)m+s+1

// P (s+ 2|s+ 1)A

=

// P (s+ 1|s− 1)B

P (s+ 2|s)A // P (s+ 1|s)A
(−1)m+s+1

// P (s+ 1|s− 1)B

and

P (s+ 2|s)A // P (s+ 2|s− 1)B

=

// P (s+ 2|s− 2)B

0

By these computations diagram (A.11) commutes.

F̃3) V = P (s+ 1|s)A:
We get the diagram

P (s+ 1|s)A //

��

P (s+ 2|s)A
P (s+ 1|s− 1)B

��

P (s|s− 2)B // P (s+ 1|s)A
P (s+ 1|s− 2)B

(A.12)

with

P (s+ 1|s)A
(−1)n+m

// P (s+ 2|s)A

=

// P (s+ 1|s)A

P (s+ 1|s)A // P (s|s− 2)B
(−1)n+m

// P (s+ 1|s)A
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and

P (s+ 1|s)A
(−1)m+s+1

// P (s+ 1|s− 1)B

=

// P (s+ 1|s− 2)B

P (s+ 1|s)A // P (s|s− 2)B
(−1)m+s+1

// P (s+ 1|s− 2)B

By these computations diagram (A.12) commutes.

F̃4) V = P (s|t)B and s > t+ 2:

1. t > 0:
We get the diagram

P (s|t)B //

��

P (s+ 1|t)B
P (s|t+ 1)B

��

P (s|t− 1)B // P (s|t)B
P (s+ 1|t− 1)B

(A.13)

with

P (s|t)B
(−1)n+m+s+t+1

// P (s|t+ 1)B

=

// P (s|t)B

P (s|t)B // P (s|t− 1)B
(−1)n+m+s+t+1

// P (s|t)B

and for s ≤ m− 1

P (s|t)B
(−1)m+s+1

// P (s+ 1|t)B

=

// P (s+ 1|t− 1)B

P (s|t)B // P (s|t− 1)B
(−1)m+s+1

// P (s+ 1|t− 1)B

and the diagram (A.13) commutes.
2. t = 0:

We have the diagram

P (s|0)B //

��

P (s+ 1|0)B
P (s|1)B

��
0 // P (s|0)B

(A.14)

which commutes since

P (s|0)B // P (s|1)B

=

// P (s|0)B

0
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F̃5) V = P (s|s− 2)B :

1. s > 2:
We get the diagram

P (s|s− 2)B //

��

P (s+ 1|s)A
P (s+ 1|s− 2)B

��

P (s|s− 3)B // P (s+ 1|s− 1)A
P (s|s− 2)B

(A.15)

with

P (s|s− 2)B
(−1)n+m+1

// P (s+ 1|s)A

=

// P (s|s− 2)B

P (s|s− 2)B // P (s|s− 3)B
(−1)n+m+1

// P (s|s− 2)B

P (s|s− 2)B
(−1)m+s+1

// P (s+ 1|s− 2)B

=

// P (s+ 1|s− 3)B

P (s|s− 2)B // P (s|s− 3)B
(−1)m+s+1

// P (s+ 1|s− 3)B

The diagram (A.15) commutes.

2. s = 2:
We get the diagram

P (2|0)B //

��

P (3|2)A
P (3|0)B

��
0 // P (2|0)B

(A.16)

with

P (2|0)B // P (3|2)A

=

// P (2|0)B

0

Therefore, all diagrams commute.

Computations for the proof of Theorem 5.18. G1) V = P (s|t)A and s > t+ 2:
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We have the following diagram:

P (s|t)A //

��

P (s− 1|t)B
P (s|t− 1)B

��

0 //
P (s|t− 2)A
P (s− 2|t)A

P (s− 1|t− 1)A

(A.17)

with

P (s|t)A
(−1)(s+t+1)(m+s+1)

// P (s− 1|t)B

=

(−1)(m+t)(m+s+1)+s+t+1

// P (s− 1|t− 1)A

−(P (s|t)A
(−1)(s+t+1)(m+s+1)+m+s

// P (s|t− 1)A
(−1)(m+t+1)(m+s+1)+s+t+1

// P (s− 1|t)A)

since the upper sign equals (−1)(m+s+1)(m+s+1)+s+t+1 = (−1)m+t and the lower
(−1)(m+s)(m+s+1)+m+s+1+s+t+1 = (−1)m+t

P (s|t)A // P (s− 1|t)B
=

// P (s− 2|t)A

0

and

P (s|t)A // P (s|t− 1)B

=

// P (s|t− 2)A

0

So the diagram (A.17) commutes.

G2) V = P (s|s− 2)A:
We have the following diagram:

P (s|s− 2)A //

��

P (s|s− 1)A
P (s|s− 3)B

��

0 // P (s− 1|s− 3)A
P (s|s− 4)A

(A.18)

with

P (s|s− 2)A
(−1)m+s+1

// P (s|s− 1)A

=

−1 // P (s− 1|s− 3)A

−(P (s|s− 2)A
−1 // P (s|s− 3)A

(−1)m+s+1+1

// P (s− 1|s− 3)A)
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and

P (s|s− 2)A // P (s|s− 3)B

=

// P (s|s− 4)A

0

So the diagram (A.18) commutes.

G3) V = P (s|s− 1)A:

P (s|s− 1)A //

��

P (s+ 1|s− 1)A
P (s|s− 2)B

��

P (s− 1|s− 3)A // P (s− 1|s− 2)A
P (s|s− 3)A

(A.19)

with

P (s|s− 1)A
(−1)m+s

// P (s|s− 2)B

=

(−1)(m+s)(m+s+1)=−1 // P (s− 1|s− 2)A

−(P (s|s− 1)A
−1 // P (s− 1|s− 3)A

(−1)m+s

// P (s− 1|s− 2)A)

and

P (s|s− 1)A
(−1)m+s

// P (s|s− 2)B

=

(−1)m+s

// P (s|s− 3)A

P (s|s− 1)A
−1 // P (s− 1|s− 3)A

1 // P (s|s− 3)A)

so the diagram (A.19) anticommutes.

G4) V = P (s|t)B and s > t+ 2:
We are in the situation

P (s|t)B //

��

P (s|t+ 1)B
P (s+ 1|t)B

��

P (s− 1|t)A
P (s|t− 1)A

//
P (s− 1|t+ 1)A

P (s|t)A
P (s+ 1|t− 1)A

(A.20)

with

P (s|t)B
(−1)s+t

// P (s|t+ 1)B

=

(−1)(m+t+1)(m+s+1)+s+t

// P (s− 1|t+ 1)A

P (s|t)B
(−1)(m+t)(m+s+1)+s+t+1

// P (s− 1|t)A
(−1)m+t+1

// P (s− 1|t+ 1)A)



127

which are the onliest terms occurring if s = m. For s < m we also have:

P (s|t)B
(−1)m+s+1

// P (s+ 1|t)B

=

(−1)(m+t)(m+s)+s+t+1

// P (s|t)A

P (s|t)B
(−1)(m+t)(m+s+1)+s+t

// P (s− 1|t)A
(−1)s+t+1

// P (s|t)A)

and for t > 0 one has

P (s|t)B
(−1)m+s+1

// P (s+ 1|t)B

=

(−1)(m+t)(m+s+1)+s+t+1

// P (s+ 1|t− 1)A

P (s|t)B
(−1)(m+t)(m+s)+s+t

// P (s|t− 1)A
(−1)s+t+1

// P (s+ 1|t− 1)A)

which does not matter for t = 0 since the last term does not occur in this case. For
t > 0 we also have

P (s|t)B
(−1)s+t

// P (s|t+ 1)B

=

(−1)(m+t+1)(m+s)

// P (s|t)A

P (s|t)B
(−1)(m+t)(m+s)

// P (s|t− 1)A
(−1)m+t

// P (s|t)A)

and for t = 0

P (s|0)B // P (s|1)B

=

// P (s|0)A

0

So everything anticommutes.

G5) V = P (s|s− 2)B :

1. s 6= 2:
We are in the situation

P (s|s− 2)B //

��

P (s+ 1|s)A
P (s+ 1|s− 2)B

��
P (s|s− 3)A

P (s− 1|s− 2)A
// P (s|s− 2)A
P (s+ 1|s− 3)A

(A.21)

with

P (s|s− 2)B // P (s+ 1|s)A

=

−1 // P (s|s− 2)A

P (s|s− 2)B
(−1)m+s

// P (s|s− 3)A
(−1)m+s

// P (s|s− 2)A)
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and

P (s|s− 2)B
(−1)m+s+1

// P (s+ 1|s− 2)B

=

(−1)(m+s)(m+s+1)+1=−1// P (s+ 1|s− 3)A

P (s|s− 2)B
(−1)m+s

// P (s|s− 3)A
−1 // P (s+ 1|s− 3)A)

and

P (s|s− 2)B
(−1)m+s+1

// P (s+ 1|s− 2)B

=

(−1)m+s+1

// P (s|s− 2)A

P (s|s− 2)B
(−1)(m+s)(m+s+1)=1// P (s− 1|s− 2)A

−1 // P (s|s− 2)A)

2. s = 2:

P (2|0)B //

��

P (3|2)A
P (3|0)B

��
P (1|0)A // P (2|0)A

(A.22)

with

P (2|0)B
(−1)m+1

// P (3|0)B

=

(−1)m+1

// P (2|0)A

P (2|0)B
1 // P (1|0)A

−1 // P (2|0)A)

and

P (2|0)B // P (3|2)A

=

// P (2|0)A

0

Computations for the proof of Theorem 5.19. K1) V = P (s+ 1|s)A:
where we have to compute

P (s+ 1|s)A // P (s+ 1|s− 1)B // P (s|s− 2)A

and

P (s+ 1|s)A // P (s− 1|s− 2)A // P (s|s− 2)A

and to check whether any of these maps is zero or not. As in Section 5.2.2 we have
to multiply the corresponding elements in K2

N−1.
In the first case we get
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· · · ∨ ∧ ∨ ∧ ∨· · ·

· · · ∨ ∨ ∧ ∨ ∧· · ·
· · · ∨ ∧ ∧ ∨ ∨· · ·

and for the second morphism

· · · ∨ ∧ ∨ ∧ ∨· · ·

· · · ∨ ∧ ∨ ∧ ∨· · ·

· · · ∨ ∧ ∧ ∨ ∨· · ·

so the two maps commute. We just have to check the signs:

P (s+ 1|s)A
(−1)m+s+1

// P (s+ 1|s− 1)B

=

// P (s|s− 2)A

P (s+ 1|s)A
(−1)m+s

// P (s− 1|s− 2)A
−1 // P (s|s− 2)A

K2) V = P (s|t)B and s > t+ 2:

1. t > 0:

P (s|t)B //

��

P (s|t+ 1)B
P (s+ 1|t)B

��

P (s− 1|t− 1)A // P (s− 1|t)A
P (s|t− 1)A

(A.23)

We claim

P (s|t)B
(−1)s+t

// P (s|t+ 1)B

=

(−1)(m+t)(m+s)

// P (s− 1|t)A

P (s|t)B
(−1)(m+t+1)(m+s)

// P (s− 1|t− 1)A
(−1)m+t

// P (s− 1|t+ 1)A)

To prove this, we have to compute the compositions like we did in the
previous case. The morphism in the first line equals to the product

(a) s > t+ 3
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· · · ∨ ∧ ∨ · · · ∨ ∧ ∨ · · ·

· · · ∨ ∧ ∨ · · · ∨ ∨ ∧ · · ·
· · · ∧ ∨ ∨ · · · ∨ ∧ ∨ · · ·

(b) s = t+ 3

· · · ∨ ∧ ∨ ∧ ∨· · ·

· · · ∨ ∧ ∨ ∨ ∧· · ·
· · · ∧ ∨ ∨ ∧ ∨· · ·

and for the morphism in the second line we get

· · · ∨ ∧ ∨ · · · ∨ ∧ ∨ · · ·

· · · ∨ ∧ ∨ · · · ∨ ∧ ∨ · · ·
· · · ∨ ∧ ∨ · · · ∨ ∧ ∨ · · ·

so all these maps are unequal to zero and therefore the diagram (A.23)
commutes.

2. t = 0:

We have the situation

P (s|0)B //

��

P (s+ 1|0)B
P (s|1)B

��
0 // P (s− 1|0)A

(A.24)

Changing the images from above to the appropriate case one easily checks
that

P (s|0)B // P (s|1)B

=

// P (s− 1|0)A

0

and therefore the diagram (A.24) commutes.

K3) V = P (s|s− 2)B:

1. s 6= 2:
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We are in the situation

P (s|s− 2)B //

��

P (s+ 1|s)A
P (s+ 1|s− 2)B

��

P (s− 1|s− 3)A // P (s− 1|s− 2)A
P (s|s− 3)A

(A.25)

We first show that

P (s|s− 2)B // P (s+ 1|s)A
=

(−1)m+s

// P (s− 1|s− 2)A

P (s|s− 2)B
1 // P (s− 1|s− 3)A

(−1)m+s

// P (s− 1|s− 2)A)

We compute the products belonging to the compositions:

· · · ∨ ∨ ∧ ∧ ∨ ∨· · ·

· · · ∨ ∨ ∧ ∨ ∧ ∨· · ·

· · · ∨ ∧ ∨ ∧ ∨ ∨· · ·

and

· · · ∨ ∧ ∨ ∧ ∨· · ·

· · · ∨ ∧ ∨ ∧ ∨· · ·
· · · ∨ ∧ ∨ ∧ ∨· · ·

Since none of them is zero, the assumption holds.
Secondly we have to check that

P (s|s− 2)B
(−1)m+s+1

// P (s+ 1|s− 2)B

=

(−1)m+s+1

// P (s|s− 3)A

P (s|s− 2)B
1 // P (s− 1|s− 3)A

1 // P (s|s− 3)A)

We compute the products belonging to the compositions:

· · · ∨ ∧ ∨ ∨ ∧ ∨· · ·

· · · ∨ ∨ ∧ ∨ ∧ ∨· · · ∨ ∧ ∨ ∨ ∧ ∨· · ·
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and

· · · ∨ ∧ ∨ ∧ ∨· · ·

· · · ∨ ∧ ∨ ∧ ∨· · ·
· · · ∨ ∧ ∨ ∧ ∨· · ·

Since none of them is zero, the assumption holds.
Therefore, the diagram (A.25) commutes.

2. s = 2:
We are in the situation

P (2|0)B //

��

P (3|2)A
P (3|0)B

��
0 // P (1|0)

(A.26)

but by 5.8 there is no degree 3 morphism P (2|0)→ P (1|0), so the above
diagram commutes.



Appendix B

Computations of the
multiplications in Section 5.2.8

Proof of Theorem 5.32. For computing the products, we have to multiply the maps on each
projective occurring. Sometimes it might be helpful to use the associativity of the algebra
instead.

1. Multiplication with Id
(n|m)
(k|l) from the left:

• Id
(n|m)
(k|l) · Id

(k|l)
(a|b) (B.1)

=


P (s|t)A → (−1)(n+k)(l+t)P (s|t)A

→ (−1)(n+k)(l+t)+(k+a)(b+t)P (s|t)A
P (s|t)B → (−1)(n+k)(l+s)P (s|t)B

→ (−1)(n+k)(l+s)+(k+a)(b+s)P (s|t)B

(B.2)

To compute the sign of the product compared to the one of Id
(n|m)
(a|b) we have to

compute the difference of both modulo 2. We get

(n+ k)(l + t) + (k + a)(b+ t)− ((n+ a)(b+ t)) (mod 2)

≡(n+ k)(l + t) + (n+ k)(b+ t) (mod 2)

≡(n+ k)(b+ l) (mod 2)

and similarly by substituting t by s

(n+ k)(l + s) + (k + a)(b+ s)− ((n+ a)(b+ s)) (mod 2)

≡(n+ k)(b+ l) (mod 2)

This yields to
Id

(n|m)
(k|l) · Id

(k|l)
(a|b) = (−1)(n+k)(l+b)Id

(n|m)
(a|b) .

Id
(n|m)
(k|l) ·F

(k|l)
(a|b)

= Id
(n|m)
(k|l) · Id

(k|l)
(a|b+1) ·F

(a|b+1)
(a|b)

= (−1)(n+k)(b+l+1) Id
(n|m)
(a|b+1) ·F

(a|b+1)
(a|b) (associativity)

= (−1)(n+k)(b+l+1)F
(n|m)
(a|b)
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• Compute

Id
(n|m)
(k|l) ·F̃

(k|l)
(a|b)

= Id
(n|m)
(k|l) · Id

(k|l)
(a+1|b) ·F̃

(a+1|b)
(a|b)

= (−1)(n+k)(b+l) Id
(n|m)
(a+1|b) ·F̃

(a+1|b)
(a|b)

= (−1)(n+k)(b+l)F̃
(n|m)
(a|b)

• Similar,

Id
(n|m)
(k|l) ·G

(k|l)
(a|b)

= Id
(n|m)
(k|l) · Id

(k|l)
(a+2|a+1) ·G

(a+2|a+1)
(a|b)

= (−1)(n+k)(a+l+1) Id
(n|m)
(a+2|a+1) ·G

(a+2|a+1)
(a|b)

= (−1)(n+k)(a+l+1)G
(n|m)
(a|b)

• and

Id
(n|m)
(k|l) ·K

(k|l)
(a|b)

= Id
(n|m)
(k|l) · Id

(k|l)
(a+2|a+1) ·K

(a+2|a+1)
(a|b)

= (−1)(n+k)(a+l+1) Id
(n|m)
(a+2|a+1) ·K

(a+2|a+1)
(a|b)

= (−1)(n+k)(a+l+1)K
(n|m)
(a|b)

• Using the formulas computed for F (k|l)
(a|b) , we get

Id
(n|m)
(k|l) ·J

(k|l)
(a|b)

= Id
(n|m)
(k|l) ·F

(k|l)
(a+1|b) · F̃

(a+1|b)
(a|b)

= (−1)(n+k)(b+l+1)F
(n|m)
(a+1|b) · F̃

(a+1|b)
(a|b)

= (−1)(n+k)(b+l+1)J
(n|m)
(a|b)

2. Multiplication from the left with F (n|m)
(k|l)

For this we mostly will have to write down the products on the projectives:

• Multiplying with Id
(k|l)
(a|b) from the right only adds a summand to the exponent of

(−1). Writing down the appropriate signs, we obtain:

F
(n|m)
(k|l) · Id

(k|l)
(a|b)

=



P (s|t)A → (−1)(n+k)(l+t+1)+(a+k)(b+t+1)P (s|t− 1)A

P (s+ 2|s)A → (−1)(n+k)(l+s+1)+k+s+(a+k)(b+s)P (s+ 1|s)A
P (s+ 1|s)A → (−1)(n+k)(l+s+1)+k+s+(a+k)(b+s)P (s|s− 2)B

P (s|t)B → (−1)(n+k)(l+s+1)+(a+k)(b+s+1)P (s− 1|t)B
P (s|s− 2)B → (−1)(n+k)(l+s+1)+(a+k)(b+s+1)P (s|s− 1)A
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Adding the appropriate signs of F (n|m)
(a|b) and computing modulo 2 one gets (we

only compute the first one, it is easy to see that the others yield the same result)

(n+ k)(l + t+ 1) + (a+ k)(b+ t+ 1) + (n+ a)(b+ t+ 1)

≡(n+ k)(l + t+ 1) + (n+ k)(b+ t+ 1)

≡(n+ k)(b+ l) (mod 2)

So we have shown that

F
(n|m)
(k|l) · Id

(k|l)
(a|b) = (−1)(n+k)(b+l)F

(n|m)
(a|b) .

• Now we can compute F (n|m)
(k|l) · F

(k|l)
(a|b) , where we have to take care which of the

maps will go to zero and which will not. We have to look for the following cases:
(a) P (s|t)A and s > t+ 2

There we get

P (s|t)A // P (s|t− 1)A

=

// P (s|t− 2)A

0

for s 6= t+ 1, especially in the given case.
(b) P (s|s+ 2)A

First we get the above composition, but in addition we have

P (s+ 2|s)A // P (s+ 1|s)A
=

// P (s|s− 2)B

0

and

P (s+ 2|s)A
(−1)(n+k)(l+s+1)+k+s

// P (s+ 1|s)A
(−1)(k+a)(b+s)

// P (s+ 1|s− 1)A

(c) P (s+ 1|s)A
We have

P (s+ 1|s)A
(−1)(n+k)(l+s+1)

// P (s+ 1|s− 1)A
(−1)(a+k)(b+s)

// P (s+ 1|s− 2)A

and

P (s+ 1|s)A
(−1)(n+k)(l+s+1)

// P (s+ 1|s− 1)A

=

(−1)(a+k)(b+s)+a+s+1

// P (s|s− 1)A

−(P (s+ 1|s)A
(−1)(n+k)(l+s+1)+k+s

// P (s|s− 2)B
(−1)(a+k)(b+s+1)

// P (s|s− 1)A)

(d) P (s|t)B , s > t+ 3
We have

P (s|t)B // P (s− 1|t)B
=

// P (s− 2|t)B

0
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(e) P (s+ 1|s− 2)B

P (s+ 1|s− 2)B
(−1)(n+k)(l+s)

// P (s|s− 2)B
(−1)(a+k)(b+s+1)

// P (s|s− 1)A

(f) P (s|s− 2)B
We have two maps

P (s|s− 2)B
(−1)(n+k)(l+s+1)

// P (s|s− 1)A
(−1)(a+k)(b+s)

// P (s|s− 2)A

and

P (s|s− 2)B
(−1)(n+k)(l+s+1)

// P (s|s− 1)A
(−1)(a+k)(b+s)+a+s+1

// P (s− 1|s− 3)B

Taking all nonzero maps together, we get

F
(n|m)
(k|l) · F

(k|l)
(a|b)

=



P (s+ 1|s)A → (−1)(n+k)(l+s+1)+(a+k)(b+s)P (s+ 1|s− 2)A

P (s+ 2|s)A → (−1)(n+k)(l+s+1)+k+s+(a+k)(b+s)P (s+ 1|s− 1)A

P (s+ 1|s− 2)B → (−1)(n+k)(l+s)+(a+k)(b+s+1)P (s|s− 1)A

P (s|s− 2)B → (−1)(n+k)(l+s+1)+(a+k)(b+s)+a+s+1P (s− 1|s− 3)B

+(−1)(n+k)(l+s+1)+(a+k)(b+s)P (s|s− 2)A

= (−1)(n+k)(l+b+1)A
(n|m)
(a|b)

For the last equation one just compares the signs similar to above.
• To multiply with F̃ we can use the results from above and get:

F
(n|m)
(k|l) · F̃

(k|l)
(a|b)

= F
(n|m)
(k|l) · Id

(k|l)
(a+1|b) ·F̃

(a+1|b)
(a|b)

= (−1)(n+k)(b+l)F
(n|m)
(a+1|b) · F̃

(a+1|b)
(a|b)

= (−1)(n+k)(b+l)J
(n|m)
(a|b)

• For the multiplication with G(k|l)
(a|b) we have to consider the following cases

(a) P (s|t)A
We compute

P (s|t)A // P (s|t− 1)A

=

// 0

0

(b) P (s+ 2|s)A
Here we also get

P (s+ 2|s)A // P (s+ 1|s)A
=

// P (s|s− 2)A

0
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(c) P (s+ 1|s)A
In addition to the first equation we get

P (s+ 1|s)A
(−1)(n+k)(l+s+1)+k+s

// P (s|s− 2)B
(−1)(a+s+1)(k+s)

// P (s− 1|s− 2)B

since for the second summand we get

P (s+ 1|s)A // P (s|s− 2)B

=

// P (s|s− 3)A

0

(d) P (s|t)Bs > t+ 2
Here we have two summands, for the first we get

P (s|t)B // P (s− 1|t)B
=

// P (s− 2|t)B

0

and for the second

P (s|t)B
(−1)(n+k)(l+s+1)

// P (s− 1|t)B
(−1)(a+s)(k+t+1)+s+t+1

// P (s− 1|t− 1)B

(e) P (s|s− 2)

P (s|s− 2)B
(−1)(n+k)(l+s+1)

// P (s|s− 1)A
(−1)(a+k)(k+s+1)+1

// P (s− 1|s− 3)B

Putting all of them together, we obtain

F
(n|m)
(k|l) ·G

(k|l)
(a|b)

=



P (s|t)A → 0s > t+ 1

P (s|s− 1)A →
(−1)(n+k)(l+s)+k+s+1+(a+s)(k+s+1)P (s− 2|s− 3)A

P (s|t)B →
(−1)(n+k)(l+s+1)+(a+s)(k+t+1)+s+t+1P (s− 1|t− 1)A

= (−1)(n+k)(a+l)+a+k+1K
(n|m)
(a|b)

• For multiplication with K(k|l)
(a|b) we can show that no map can exist, since

F
(n|m)
(k|l) ·K

(k|l)
(a|b) ∈ Hom(n+m)−(a+b)−5(P•(n|m), P•(a|b)〈(n+m)− (a+ b)− 8〉)

and by Lemma 5.15 this cannot exist, since −3 � −5. So by this the composition
is

F
(n|m)
(k|l) ·K

(k|l)
(a|b) = 0.

• Now we compute F (n|m)
(k|l) · J

(k|l)
(a|b).
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(a) P (s|t)A s > t+ 1

P (s|t)A // P (s|t− 1)A

=

// P (s− 1|t− 2)A

0

(b) P (s+ 2|s)A
Here in addition we have

P (s+ 2|s)A // P (s+ 1|s)A
=

// P (s|s− 1)A

0

(c) P (s+ 1|s)A
First we have

P (s+ 1|s)A
(−1)(n+k)(l+s+1)

// P (s+ 1|s− 1)A
(−1)(a+k+1)(b+s)

// P (s|s− 2)A

and

P (s+ 1|s)A // P (s|s− 2)B

=

// P (s− 1|s− 3)B

0

(d) P (s|t)B , s > t+ 2

P (s|t)B // P (s− 1|t)B
=

// P (s− 2|t− 1)B

0

(e) P (s+ 1|s− 1)B

P (s+ 1|s− 1)B
(−1)(n+k)(l+s)

// P (s+ 1|s)A
(−1)(a+k+1)(b+s+1)

// P (s|s− 1)A

All in all, we get

F
(n|m)
(k|l) · J

(k|l)
(a|b)

=

{
P (s+ 1|s)A → (−1)(n+k)(l+s+1)+(a+k+1)(b+s)P (s|s− 2)A

P (s+ 1|s− 1)B → (−1)(n+k)(l+s)+(a+k+1)(b+s+1)P (s|s− 1)A

= (−1)(n+k)(l+b+1)B
(n|m)
(a|b)

3. We compute multiplications with F̃ (n|m)
(k|l) :
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• For multiplication with Id
(k|l)
(a|b), one only has to change the appropriate signs, so

one computes:

F̃
(n|m)
(k|l) · Id

(k|l)
(a|b)

=


P (s|t)A → (−1)(n+k+1)(l+t)+(a+k)(b+t)P (s− 1|t)A
P (s|t)B → (−1)(n+k+1)(l+s)+(a+k)(b+s)P (s|t− 1)B

P (s+ 1|s)A → (−1)(n+k+1)(l+s)+(a+k)(b+s)P (s|s− 2)B

Adding the the signs to those of F̃ (n|m)
(a|b) one obtains in the first case (and the

others go similar):

(n+ k + 1)(l + t) + (a+ k)(b+ t) + (n+ a+ 1)(b+ t)

≡(n+ k + 1)(l + t) + (n+ k + 1)(b+ t)

≡(n+ k + 1)(b+ l) (mod 2)

So we have shown that

F̃
(n|m)
(k|l) · Id

(k|l)
(a|b) = (−1)(n+k+1)(b+l)F̃

(n|m)
(a|b) .

• Computing F̃ (n|m)
(k|l) · F

(k|l)
(a|b) we have to check cases:

(a) P (s|t) s > t+ 1

P (s|t)A
(−1)(n+k+1)(l+t)

// P (s− 1|t)A
(−1)(a+k)(b+t+1)

// P (s− 1|t− 1)A

(b) P (s+ 3|s)
Here we get in addition

P (s+ 3|s)A // P (s+ 2|s)A
=

// P (s+ 1|s)A

0

(c) P (s+ 2|s)A
Here we get the additional equation

P (s+ 2|s)A // P (s+ 1|s)A
=

// P (s|s− 2)B

0

(d) P (s+ 1|s)A
We have

P (s+ 1|s)A
(−1)(n+k+1)(l+s)

// P (s|s− 2)B
(−1)(a+k)(b+s+1)

// P (s|s− 1)A

(e) P (s|t)B
Here we only have to look at one possible case and obtain

P (s|t)B
(−1)(n+k+1)(l+s)

// P (s|t− 1)B
(−1)(a+k)(b+s+1)

// P (s− 1|t− 1)B
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Taking the above results together we obtain

F̃
(n|m)
(k|l) · F

(k|l)
(a|b)

=

{
P (s|t)A → (−1)(n+k+1)(l+t)+(a+k)(b+t+1)P (s− 1|t− 1)A

P (s|t)B → (−1)(n+k+1)(l+s)+(a+k)(b+s+1)P (s− 1|t− 1)B

= (−1)(n+k+1)(b+l+1)J
(n|m)
(a|b)

• To show that F̃ (n|m)
(k|l) · F̃

(k|l)
(a|b) = 0 we check:

(a) P (s|t)A, s > t+ 2

P (s|t)A // P (s− 1|t)A
=

// P (s− 2|t)A

0

(b) P (s+ 2|s)A

P (s+ 2|s)A // P (s+ 1|s)A
=

// P (s|s− 2)B

0

(c) P (s+ 1|s)A

P (s+ 1|s)A // P (s|s− 2)B

=

// P (s|s− 3)B

0

(d) P (s|t)B

P (s|t)B // P (s|t− 1)B

=

// P (s|t− 2)B

0

since s 6= t+ 1.

Therefore, the composition must be zero.

• For the multiplication with G(k|l)
(a|b) we have to consider the following cases

(a) P (s|t)A, s > t+ 2
We compute

P (s|t)A // P (s− 1|t)A
=

// 0

0
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(b) P (s+ 2|s)A
Here obtain

P (s+ 2|s)A // P (s+ 1|s)A
=

// P (s|s− 2)A

0

(c) P (s+ 1|s)A
Here we have

P (s+ 1|s)A
(−1)(n+k+1)(l+s)

// P (s|s− 2)B
(−1)(a+s+1)(k+s)

// P (s− 1|s− 2)A

since for the second summand we get

P (s+ 1|s)A // P (s|s− 2)B

=

// P (s|s− 3)A

0

(d) P (s|t)B
Here we have two summands, for the first we get

P (s|t)B // P (s|t− 1)B

=

// P (s|t− 2)A

0

and for the second

P (s|t)B
(−1)(n+k+1)(l+s)

// P (s|t− 1)B
(−1)(a+s+1)(k+t+1)

// P (s− 1|t− 1)A

Putting all of them together, we obtain

F
(n|m)
(k|l) ·G

(k|l)
(a|b)

=


P (s|t)A → 0s > t+ 1

P (s|s− 1)A → (−1)(n+k+1)(l+s+1)+(a+s)(k+s+1)P (s− 2|s− 3)A

P (s|t)B → (−1)(n+k+1)(l+s)+(a+s+1)(k+t+1)P (s− 1|t− 1)A

= (−1)(n+k+1)(a+l+1)K
(n|m)
(a|b)

• For multiplication with K
(k|l)
(a|b) as before we can show that no map can exist,

since

F̃
(n|m)
(k|l) ·K

(k|l)
(a|b) ∈ Hom(n+m)−(a+b)−5(P•(n|m), P•(a|b)〈(n+m)− (a+ b)− 8〉)

and by Lemma 5.15 this cannot exist, since −3 � −5.

• Last we have to show F̃
(n|m)
(k|l) · J

(k|l)
(a|b) = 0.
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(a) P (s|t)A s > t+ 1

P (s|t)A // P (s− 1|t)A
=

// P (s− 2|t− 1)A

0

(b) P (s+ 1|s)A
We get

P (s+ 1|s)A // P (s|s− 2)B

=

// P (s− 1|s− 3)B

0

(c) P (s|t)B

P (s|t)B // P (s|t− 1)B

=

// P (s− 1|t− 2)B

0

since s 6= t+ 1.

All in all, we have checked all cases to become zero.

4. Now we are going to compute the multiplication with G(n|m)
(k|l) .

• Again, multiplying with Id
(k|l)
(a|b ) only changes the signs, so we get

G
(n|m)
(k|l) · Id

(k|l)
(a|b)

=


P (s|t)A → 0 t 6= s− 1

P (s|s− 1)A → (−1)(n+k)(k+s)+1+(a+k)(b+s+1)P (s− 1|s− 3)B

P (s|t)B → (−1)(k+s+1)(n+t)+(a+k)(b+t)P (s− 1|t)A
+(−1)(k+s+1)(n+t+1)+s+t+(a+k)(b+t+1)P (s|t− 1)A

= (−1)(a+k)(b+n)G
(n|m)
(a|b)

• Multiplication with F (k|l)
(a|b) yields to

(a) P (s|t)A s > t+ 1
We compute

P (s|t)A // 0

(b) P (s+ 1|s)A
Here we obtain

P (s+ 1|s)A
(−1)(n+k)(k+s+1)+1

// P (s|s− 2)A
(−1)(a+k)(b+s+1)+a+s

// P (s− 1|s− 2)A
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since for the second summand we get

P (s+ 1|s)A // P (s|s− 2)A

=

// P (s|s− 3)A

0

(c) P (s|t)B
Here we have two summands, for the first we get

P (s|t)B // P (s|t− 1)A

=

// P (s|t− 2)A

0

and for the second

P (s|t)B
(−1)(k+s+1)(n+t)

// P (s− 1|t)A
(−1)(a+k)(b+t+1)

// P (s− 1|t− 1)A

(d) P (s|s− 3)B
Examining the composition one obtains in addition

P (s|s− 3)B // P (s− 1|s− 3)A

=

// P (s− 2|s− 3)A

0

(e) P (s|s− 2)B
And in this case

P (s|s− 2)B // P (s− 1|s− 2)A

=

// P (s− 2|s− 4)B

0

Putting all of them together, we obtain

G
(n|m)
(k|l) · F

(k|l)
(a|b)

=


P (s|t)A → 0s > t+ 1

P (s|s− 1)A → (−1)(n+k)(k+s)+(a+k)(b+s)+a+sP (s− 2|s− 3)A

P (s|t)B → (−1)(k+s+1)(n+t)+(a+k)(b+t+1)P (s− 1|t− 1)A

= (−1)(n+k+1)(a+l+1)K
(n|m)
(a|b)

• Now we are going to do the same with F̃ (k|l)
(a|b ):

(a) P (s|t)A s > t+ 1
We compute

P (s|t)A // 0
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(b) P (s+ 1|s)A
Here we obtain

P (s+ 1|s)A
(−1)(n+k)(k+s+1)+1

// P (s|s− 2)A
(−1)(a+k+1)(b+s)

// P (s− 1|s− 2)A

(c) P (s|t)B
Here we have two summands, for the first we get for s > t+ 2

P (s|t)B // P (s− 1|t)A
=

// P (s− 2|t)A

0

and for the second

P (s|t)B
(−1)(k+s+1)(n+t+1)+s+t

// P (s|t− 1)A
(−1)(a+k+1)(b+t+1)

// P (s− 1|t− 1)A

(d) P (s|s− 2)B
And in this case

P (s|s− 2)B // P (s− 1|s− 2)A

=

// P (s− 2|s− 4)B

0

Putting all of them together, we obtain

G
(n|m)
(k|l) · F̃

(k|l)
(a|b)

=


P (s|t)A → 0s > t+ 1

P (s|s− 1)A → (−1)(n+k)(k+s+1)+1+(a+k+1)(b+s)P (s− 2|s− 3)A

P (s|t)B → (−1)(k+s+1)(n+t+1)+s+t+(a+k+1)(b+t+1)P (s− 1|t− 1)A

= (−1)(a+k+1)(b+n)+a+nK
(n|m)
(a|b)

• For multiplication with G(k|l)
(a|b) we just look at the Hom-space and see

G
(n|m)
(k|l) ·G

(k|l)
(a|b)

∈ Hom(n+m)−(a+b)−6(P•(n|m), P•(a|b)〈(n+m)− (a+ b)− 8〉)

and by Lemma 5.15 case 3 this cannot exist, since −4 � −6 so the composition
is zero.

• For G(n|m)
(k|l) ·K

(k|l)
(a|b) we have

G
(n|m)
(k|l) ·K

(k|l)
(a|b)

∈ Hom(n+m)−(a+b)−7(P•(n|m), P•(a|b)〈(n+m)− (a+ b)− 8〉)

and by Lemma 5.15 case 2 this cannot exist, since −3 � −7.
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• The same argument holds for G(n|m)
(k|l) · J

(k|l)
(a|b) since we have

G
(n|m)
(k|l) · J

(k|l)
(a|b)

∈ Hom(n+m)−(a+b)−5(P•(n|m), P•(a|b)〈(n+m)− (a+ b)− 8〉)

and by Lemma 5.15 case 4 this cannot exist, since −3 � −5

5. Yet we can work out the multiplications with K(n|m)
(k|l) :

• Again, multiplying with Id
(k|l)
(a|b ) only changes the signs, so we get

K
(n|m)
(k|l) · Id

(k|l)
(a|b)

=


P (s|t)A → 0 t 6= s− 1

P (s|s− 1)A → (−1)(n+k+1)(k+s)+(a+k)(b+s+1)P (s− 2|s− 3)A

P (s|t)B → (−1)(n+t)(k+s+1)+(a+k)(b+t+1)P (s− 1|t− 1)A

= (−1)(a+k)(b+n+1)G
(n|m)
(a|b)

• Like above one sees

K
(n|m)
(k|l) · F

(k|l)
(a|b)

∈ Hom(n+m)−(a+b)−5(P•(n|m), P•(a|b)〈(n+m)− (a+ b)− 6〉)

and by Lemma 5.15 case 2 this cannot exist, since −3 � −5.

• The same holds for multiplication with F̃ (k|l)
(a|b) .

• K(n|m)
(k|l) ·G

(k|l)
(a|b)

∈ Hom(n+m)−(a+b)−7(P•(n|m), P•(a|b)〈(n+m)− (a+ b)− 8〉)

and by Lemma 5.15 case 2 this cannot exist since −3 � −7.

• Last we have

K
(n|m)
(k|l) · J

(k|l)
(a|b)

∈ Hom(n+m)−(a+b)−6(P•(n|m), P•(a|b)〈(n+m)− (a+ b)− 10〉)

and by Lemma 5.15 case 5 this cannot exist, since −2 � −6.

6. Last we can compute the multiplications with J (n|m)
(k|l) = F

(n|m)
(k+1|l) · F̃

(k+1|l)
(k|l)

• For multiplication with Id we can use results already computed:

J
(n|m)
(k|l) · Id

(k|l)
(a|b)

= F
(n|m)
(k+1|l) · F̃

(k+1|l)
(k|l) · Id(k|l)

(a|b)

= F
(n|m)
(k+1|l) · Id

(k+1|l)
(a+1|b) ·F̃

(a+1|b)
(a|b)

= (−1)(n+k+1)(b+l)F
(n|m)
(a+1|b) · F̃

(a+1|b)
(a|b)

= (−1)(n+k+1)(b+l)J
(n|m)
(a|b)
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• Next we get

J
(n|m)
(k|l) · F

(k|l)
(a|b)

= F
(n|m)
(k+1|l) · F̃

(k+1|l)
(k|l) · F (k|l)

(a|b)

= F
(n|m)
(k+1|l) · J

(k+1|l)
(a|b)

= (−1)(n+k+1)(b+l)B
(n|m)
(a|b)

• Using the associativity we get

J
(n|m)
(k|l) · F̃

(k|l)
(a|b)

= F
(n|m)
(k+1|l) · (F̃

(k+1|l)
(k|l) · F̃ (k|l)

(a|b))

= 0

• For the multiplication with G(k|l)
(a|b) one sees

J
(n|m)
(k|l) ·G

(k|l)
(a|b)

∈ Hom(n+m)−(a+b)−8(P•(n|m), P•(a|b)〈(n+m)− (a+ b)− 5〉)

and by Lemma 5.15 case 4 this cannot exist, since −3 � −5.

• Multiplying with K(k|l)
(a|b) delivers

J
(n|m)
(k|l) ·K

(k|l)
(a|b)

∈ Hom(n+m)−(a+b)−10(P•(n|m), P•(a|b)〈(n+m)− (a+ b)− 6〉)

and by Lemma 5.15 case 5 this cannot exist, since −2 � −10.

• Last one checks similarly

J
(n|m)
(k|l) · J

(k|l)
(a|b)

∈ Hom(n+m)−(a+b)−8(P•(n|m), P•(a|b)〈(n+m)− (a+ b)− 4〉)

which also is empty, since

n+m � a+ b+ (n+m)− (a+ b)− 4) + 2.

7. Last we check that
B

(n|m)
(a|b) = A

(n|m)
(a+1|b) · F̃

(a+1|b)
(a|b) .

Therefore write

B
(n|m)
(a|b)

= (−1)(n+k)(l+b+1) · F (n|m)
(k|l) · F

(k|l)
(a+1|b) · F̃

(a+1|b)
(a|b)

= A
(n|m)
(a+1|b) · F̃

(a+1|b)
(a|b)
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Computations of the homotopies
in Section 5.2.10

Proof of Lemma 5.35. We will only check the property for H(F−(−1)k+l+1F̃ )
(k+1|k)
(k|l) . Since

the degree of the map H is k + l + 1 we have to check that the diagrams of the form

· · · // V

��

//

}}

Y

(−1)k+l}}
X // W // · · ·

with V a projective module occurring in the resolution, commute with the diagonal arrows
behaving as a homotopy.
For V we have to check different cases (shortly write H for H(F − (−1)k+l+1F̃ )

(k+1|k)
(k|l) ):

H1) V = P (s|t), s > t+ 2:

Since H is zero on P (s|t)A we only have a diagram of the form

· · · // P (s|t)A

��

//

}}

P (s− 1|t)B
P (s|t− 1)B

(−1)k+l
zz

· · · // P (s− 1|t)A
P (s|t− 1)A

// · · ·

and we want the triangle to commute. Therefore we check the signs:

P (s|t)A
(−1)(s+t+1)(k+1+s)

// P (s− 1|t)B

=

(−1)(s+t+1)(k+s+1)+k+l

// P (s− 1|t)A

P (s|t)A
(−1)k+l

// P (s− 1|t)A
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and for s < k + 1

P (s|t)A
(−1)(s+t+1)(k+1+s)+k+s

// P (s|t− 1)B

=

(−1)(s+t+1)(k+s)+k+l

// P (s|t− 1)A

P (s|t)A
(−1)l+t+1

// P (s|t− 1)A

None of the involved terms here will occur for s = k + 1.

H2) V = P (s+ 2|s)A:
Here we have

· · · // P (s+ 2|s)A

��

//

zz

P (s+ 2|s− 1)B

(−1)k+lww

· · · // P (s+ 1|s)A
P (s+ 2|s− 1)A

// · · ·

If s+ 2 < k + 1 the diagram

P (s+ 2|s)A
−1 // P (s+ 2|s− 1)B

=

(−1)k+s+k+l

// P (s+ 2|s− 1)A

P (s+ 2|s)A
(−1)l+s+1

// P (s+ 2|s− 1)A

commutes as we have already seen above. Since we have two maps from P (s+2|s)A →
P (s+ 1|s)A, one comming from F and one from F̃ we obtain

P (s+ 2|s)A

=

(−1)l+s+1+k+s

// P (s+ 1|s)A

−(P (s+ 2|s)A
(−1)k+l

// P (s+ 1|s)A)

and by this the two maps cancel.

H3) V = P (s+ 1|s)A:
Here we have

· · · // P (s+ 1|s)A

��

//

zz

P (s+ 1|s− 1)B

(−1)k+lww

· · · // P (s|s− 2)B
P (s+ 1|s− 1)A

// · · ·

If s+ 1 < k + 1 the diagram

P (s+ 1|s)A
(−1)k+s+1

// P (s+ 1|s− 1)B

=

(−1)k+l

// P (s+ 2|s− 1)A

P (s+ 2|s)A
(−1)l+s+1

// P (s+ 2|s− 1)A
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commutes as we have already seen above. Again we have two maps from P (s+1|s)A →
P (s|s− 2)B , one comming from F and one from F̃ , so we have

P (s+ 1|s)A

=

(−1)l+s+1+k+s

// P (s|s− 2)B

−(P (s+ 1|s)A
(−1)k+l

// P (s|s− 2)B)

and by this the two maps cancel.

H4) V = P (s|t)B and s > t+ 2:

· · · // P (s|t)B

��

//

~~

P (s+ 1|t)B
P (s|t+ 1)B

(−1)k+l||

P (s|t)A //

P (s− 1|t)B
P (s|t− 1)B
P (s+ 1|t)A
P (s|t+ 1)A

// · · ·

and we have to check that the sum of the diagonal arrows equals the vertical one.
First we check those including two vertical arrows, there we have

P (s|t)B
(−1)s+t

// P (s|t+ 1)B

=

(−1)k+l+(s+t+1)(k+s)

// P (s|t+ 1)A

−(P (s|t)B
(−1)(s+t)(k+s)

// P (s|t)A
(−1)l+t+1

// P (s|t+ 1)A)

so the sum is zero.
Similar we check for s+ 1 ≤ k

P (s|t)B
(−1)k+s+1

// P (s+ 1|t)B

=

(−1)k+l+(s+t+1)(k+s+1)

// P (s+ 1|t)A

−(P (s|t)B
(−1)(s+t)(k+s)

// P (s|t)A
(−1)k+l+s+t+1

// P (s+ 1|t)A)

Next we check that the triangles involving one vertical arrow and one diagonal (the
left one) commute:

P (s|t)B
(−1)(s+t)(k+s)

// P (s|t)A

=

(−1)(s+t+1)(k+s)+k+l+1

// P (s− 1|t)B

P (s|t)B
(−1)l+s+1

// P (s− 1|t)B
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and

P (s|t)B
(−1)(s+t)(k+s)

// P (s|t)A

=

(−1)(s+t+1)(k+s)+l+s

// P (s|t− 1)B

P (s|t)B
(−1)k+l

// P (s|t− 1)B

H5) V = P (s|s− 2)B :

Last we have to check

· · · // P (s|s− 2)B

��

//

xx

P (s+ 1|s)A

(−1)k+lxx

P (s|s− 2)A //
P (s|s− 3)B

P (s+ 1|s− 2)A
P (s|s− 1)A

// · · ·

The one passing over P (s+ 1|s− 2)B is just commuting by the above computations,
so we only have to compute the triangles involving the left one. Here we get

P (s|s− 2)B // P (s|s− 2)A

=

(−1)l+s+1

// P (s|s− 1)A

P (s|s− 2)B
(−1)l+s+1

// P (s|s− 1)A

and

P (s|s− 2)B // P (s|s− 2)A

=

(−1)k+l

// P (s|s− 3)B

P (s|s− 2)B
(−1)k+l

// P (s|s− 3)B

So we have checked all possible cases.

Proof of Lemma 5.36. Since the degree of the map J is m + n − (k + l) − 2 and therefore
the degree of H is m+ n− (k + l)− 3, we have to check that the diagrams of the form

· · · // V

��

//

}}

Y

(−1)k+l+m+n}}
X // W // · · ·

with V a projective module occurring in the resolution, commute with the diagonal arrows
behaving as a homotopy.
For V we have to check different cases:

H1) V = P (s|t)A, s > t+ 2:



151

H is zero on P (s|t)A and on all possible terms A-terms occuring in Y , so the onliest
maps are

· · · // P (s|t)A

��

//

{{

P (s|t− 1)B
P (s− 1|t)B

(−1)k+l+m+n
yy

· · · // P (s− 1|t− 1)A
P (s|t− 2)

// · · ·

First check that

P (s|t)A // P (s|t− 1)B

=

// P (s|t− 2)A

0

so we are left to look for the triangle

P (s|t)A
(−1)(s+t+1)(n+s)+n+m+1

// P (s− 1|t)B

=

(−1)(n+k)(l+t)+(s+t)(n+s+1)+n+m+k+l

// P (s− 1|t− 1)A

P (s|t)A
(−1)(n+k+1)(l+t+1)

// P (s− 1|t− 1)A

which commutes, too. The B-term always exists if the A-term P (s− 1|t− 1)A exists,
since m ≥ k.

H2) V = P (s+ 2|s)A: 3 Here we have

· · · // P (s+ 2|s)A

��

//

{{

P (s+ 2|s− 1)B
P (s+ 2|s+ 1)A

(−1)k+l+m+n
xx

· · · // P (s+ 1|s− 1)A
P (s+ 2|s− 2)

// · · ·

First check that

P (s+ 2|s)A // P (s+ 2|s− 1)B

=

// P (s+ 2|s− 2)A

0

so we are left to look for the triangle

P (s+ 2|s)A
(−1)m+s+1

// P (s+ 2|s+ 1)A

=

(−1)(n+k)(l+s)+n+m+k+l

// P (s+ 1|s− 1)A

P (s+ 2|s)A
(−1)(n+k+1)(l+s+1)

// P (s+ 1|s− 1)A

which commutes, too.
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H3) V = P (s+ 1|s)A:
Here we have

· · · // P (s+ 1|s)A

��

//

xx

P (s+ 1|s− 1)B

(−1)m+n+k+lxx

P (s|s− 2)A //
P (s+ 1|s− 2)A
P (s|s− 1)A
P (s|s− 3)B

// · · ·

First we look at maps both belonging to H, one being the right diagonal arrow and
one the left

P (s+ 1|s)A
(−1)m+s+1

// P (s+ 1|s− 1)B

=

(−1)(n+k)(l+s+1)+(n+s+1)+m+n+k+l

// P (s+ 1|s− 2)A

−(P (s+ 1|s)A
(−1)(n+k)(l+s+1)

// P (s|s− 2)A
(−1)l+k+1

// P (s+ 1|s− 2)A)

and the two maps cancel.
Now we check that the triangle including the left diagonal map and A commutes:

P (s+ 1|s)A
(−1)(n+k)(l+s+1)

// P (s|s− 2)A

=

(−1)l+s+1

// P (s|s− 1)A

P (s+ 1|s)A
(−1)(n+k+1)(l+s+1)

// P (s+ 1|s− 2)A

Last check that

P (s+ 1|s)A // P (s|s− 2)A

=

// P (s|s− 3)A

0

and therefore we have checked this case completly.

H4) V = P (s|t)B and s > t+ 2:
Writing down only the terms where the maps are nonzero, we get

· · · // P (s|t)B

��

//

{{

P (s+ 1|t)B
P (s|t+ 1)B

(−1)k+l+m+n{{

P (s|t− 1)A //

P (s+ 1|t− 1)A
P (s|t)A

P (s− 1|t− 1)B
P (s|t− 2)B

// · · ·

First check that

P (s|t)B // P (s|t− 1)A

=

// P (s|t− 2)B

0
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Now we check that the two maps of H cancel

P (s|t)B
(−1)n+m+s+t+1

// P (s|t+ 1)B

=

(−1)(n+k)(l+t+1)+(s+t)(n+s)+n+m+k+l

// P (s|t)A

−(P (s|t)B
(−1)(n+k)(l+t)+(s+t+1)(n+s)

// P (s|t− 1)A
(−1)l+t

// P (s|t)A)

and

P (s|t)B
(−1)m+s+1

// P (s+ 1|t)B

=

(−1)(n+k)(l+t)+(s+t)(n+s+1)+n+m+k+l

// P (s+ 1|t− 1)A

−(P (s|t)B
(−1)(n+k)(l+t)+(s+t+1)(n+s)

// P (s|t− 1)A
(−1)k+l+s+t

// P (s+ 1|t− 1)A)

which commutes, too.
We have to check the left triangle, were we get

P (s|t)B
(−1)(n+k)(l+t)+(s+t+1)(n+s)

// P (s|t− 1)A

=

(−1)(s+t)(k+s)+l+k+1

// P (s− 1|t− 1)B

P (s|t)B
(−1)(n+k+1)(l+s+1)

// P (s− 1|t− 1)A

which obviously commutes.

H5) V = P (s|s− 2)B :
Last we have to check

· · · // P (s|s− 2)B

��

//

{{

P (s+ 1|s)A
P (s+ 1|s− 2)B

(−1)n+m+k+lzz

P (s|s− 3)A //

P (s− 1|s− 3)B
P (s|s− 4)B
P (s|s− 2)A

P (s+ 1|s− 3)A

// · · ·

All maps involving the right P (s + 1|s − 2)B commutate by the same computations
as in the previous case. Also the map A and H passing over P (s|s − 3) do. We are
left to check the case

P (s|s− 2)B
(−1)n+m+1

// P (s+ 1|s)A

=

(−1)(n+k)(l+s+1)+n+m+k+l

// P (s|t)A

−(P (s|s− 2)B
(−1)(n+k)(l+s)+(n+s)

// P (s|s− 3)A
(−1)l+s

// P (s|s− 2)A)

which commutes by the tables in section 5.2.2.

So we have checked all possible cases.
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Proof of Lemma 5.37. Since the degree of the map A is m + n − (k + l) − 2 and therefore
the degree of H is m+ n− (k + l)− 3 we have to check that the diagrams of the form

· · · // V

��

//

}}

Y

(−1)k+l+m+n}}
X // W // · · ·

with V a projective module occurring in the resolution, commute with the diagonal arrows
behaving as a homotopy.
For V we have to check different cases:

H1) V = P (s|t)A, s > t+ 3:

A is zero on P (s|t)A and H is zero on all possible terms occuring in Y , so there are
no nonzero maps occurring in the diagram and therefore the diagram commutes.

H2) V = P (s+ 3|s)A:
Here we have

· · · // P (s+ 3|s)A

��

//

yy

P (s+ 2|s)B

(−1)k+l+m+n
ww

· · · // P (s+ 1|s)A // · · ·

Again A is zero on P (s+ 3|s)A and we only check that

P (s+ 3|s)A // P (s+ 2|s)B
=

// P (s+ 1|s)A

0

what is true.

H3) V = P (s+ 2|s)A:
Here we have

· · · // P (s+ 2|s)A

��

//

xx

P (s+ 1|s)A

(−1)m+n+k+l
vv

· · · // P (s+ 1|s− 1)A // · · ·

since on all other terms the maps are zero. We get

P (s+ 2|s)A
(−1)m+s+1

// P (s+ 2|s+ 1)A

=

(−1)(n+k)(l+s)+n+l+1+m+n+k+l

// P (s+ 1|s− 1)A

P (s+ 2|s)A
(−1)(n+k)(l+s)+k+s

// P (s+ 1|s− 1)A

which commutes.
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H4) V = P (s+ 1|s)A:
Here we have

· · · // P (s+ 1|s)A

��

//

xx

P (s+ 1|s− 1)B

(−1)m+n+k+lxx

P (s|s− 2)A //
P (s+ 1|s− 2)A
P (s|s− 1)A
P (s|s− 3)B

// · · ·

First we look at maps both belonging to H, one being the right diagonal arrow and
one the left

P (s+ 1|s)A
(−1)m+s+1

// P (s+ 1|s− 1)B

=

(−1)(n+k)(l+s+1)+k+l+m+n+k+l

// P (s|s− 1)A

−(P (s+ 1|s)A
(−1)(n+k)(l+s+1)+n+l+1

// P (s|s− 2)A
(−1)l+s+1

// P (s|s− 1)A)

and the two maps cancel.
Now we check that the triangle including the left diagonal map and A commutes

P (s+ 1|s)A
(−1)(n+k)(l+s+1)+n+l+1

// P (s|s− 2)A

=

(−1)k+l+1

// P (s+ 1|s− 2)A

P (s+ 1|s)A
(−1)(n+k)(l+s)

// P (s+ 1|s− 2)A

Last check that

P (s+ 1|s)A // P (s|s− 2)A

=

// P (s|s− 3)A

0

and therefore we have checked this case completly.

H5) V = P (s|t)B and s > t+ 3:
As above H and A are zero on P (s|t)B and H is zero on all possible maps occuring
in Y , so there is nothing to check.

H6) V = P (s|s− 3)B :

· · · // P (s|s− 3)B

��

//

xx

P (s|s− 2)B

(−1)m+n+k+l
vv

· · · // P (s− 1|s− 2)A // · · ·

Here we have to check that this triangle commutes:

P (s|s− 3)B
(−1)n+m

// P (s|s− 2)B

=

(−1)(n+k)(l+s)+k+l+n+m+k+l

// P (s− 1|s− 2)A

P (s|s− 3)B
(−1)(n+k)(l+s)

// P (s− 1|s− 2)A
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H7) V = P (s|s− 2)B :
Last we have to check

· · · // P (s|s− 2)B

��

//

ww

P (s+ 1|s)A

(−1)n+m+k+lww

P (s− 1|s− 2)A // P (s− 1|s− 3)B
P (s|s− 2)A

// · · ·

Checking with the tables in section 5.2.2, one gets

P (s|s− 2)B
(n+k)(l+s)+k+l// P (s− 1|s− 2)A

=

(−1)k+l

// P (s|s− 2)A

−(P (s|s− 2)B
(−1)n+m+1

// P (s+ 1|s)A
(−1)(n+k)(l+s+1)+n+l+1+n+m+k+l

// P (s|s− 2)A)

+P (s|s− 2)B
(−1)(n+k)(l+s)

// P (s|s− 2)A

since the last morphism is passing over P (s|s− 1). Now we check that the morphism
involving only the left triangle commutes:

P (s|s− 2)B
(n+k)(l+s)+k+l// P (s− 1|s− 2)A

=

(−1)l+s+1

// P (s− 1|s− 3)B

P (s|s− 2)B
(−1)(n+k)(l+s)+k+s+1

// P (s|s− 3)B

So we have checked all possible cases.
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