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Abstract. For each integer k ≥ 4 we describe diagrammatically a pos-
itively graded Koszul algebra Dk such that the category of finite di-
mensional Dk-modules is equivalent to the category of perverse sheaves
on the isotropic Grassmannian of type Dk or Bk−1, constructible with
respect to the Schubert stratification. The algebra is obtained by a
(non-trivial) “folding” procedure from a generalized Khovanov arc alge-
bra. Properties like graded cellularity and explicit closed formulas for
graded decomposition numbers are established by elementary tools.
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1. Introduction

This is the first of four articles studying some generalizations DΛ of (gen-
eralized) Khovanov arc algebras from [26] and [7] to types D and B.

In this article we introduce these algebras and prove that for the special

choice of a principal block, Λ = Λ0
k, the category of finite dimensional mod-

ules over Dk := DΛ is equivalent to the category Pervk of perverse sheaves on
the isotropic Grassmannian X of type Dk or Bk−1 constructible with respect
to the Schubert stratification. The equivalence in type D will be established
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by giving an explicit isomorphism to the endomorphism algebra of a projec-
tive generator described in [4]. Then we observe that type Bn+1 can in fact
be deduced immediately by an isomorphism of varieties. Hence we stick for
now to type Dn. Since we have X = G/P for G = SO(2k,C) and P the
parabolic subgroup of type Ak−1, these categories are then also equivalent
to the Bernstein-Gelfand-Gelfand parabolic category Op

0(so(2k,C)) of type
Dk with parabolic of type Ak−1, see [24] for the definition.

The algebras DΛ are constructed in an elementary way, purely in terms of
diagrams; they come naturally equipped with a grading. As a vector space
they have an explicit homogeneous basis given by certain oriented circle di-
agrams similar to [7]. Under our isomorphism, Braden’s algebra inherits a
grading from Dk which agrees with the geometric Koszul grading from [1].

To be more specific, recall that Schubert varieties, and hence the sim-
ple objects in Pervk are labelled by symmetric partitions fitting into a box
of size k × k, or equivalently by the representatives of minimal length for
the cosets Sk\W (Dk) of the Weyl group W (Dk) of type Dk modulo a par-
abolic subgroup isomorphic to the symmetric group Sk. We first identify
in Section 2.1 these cosets with diagrammatic weights λ (i.e. with {∧,∨}-
sequences of length k with an even number of ∧’s) and then associate to
each such diagrammatic weight a (decorated) cup diagram λ on k points, see
Definition 3.7. For instance, the eight possible decorated cup diagrams for
k = 4 are displayed in Example 1.1 below. Such a cup diagram λ can be
paired with a second cup diagram µ by putting µ upside down on top of λ
to obtain a (decorated) circle diagram λµ, see Example 4.6 for such circle di-
agrams. Adding additionally a compatible weight diagram in between gives
us an oriented circle diagram, see for instance Example 9.10. Let Dk be the
vector space spanned by these decorated circle diagrams for fixed k.

The following theorem collects some of our main results.

Theorem A. 1.) The vector space Dk can be equipped with a diagrammat-
ically defined associative algebra structure such that Dk is isomorphic to
the endomorphism algebra of a minimal projective generator of Pervk
(see Theorem 9.1).

2.) The multiplication is compatible with the grading (Proposition 5.19),
such that Dk becomes a graded algebra (see Theorem 6.2).

3.) The underlying graph of the quiver Qk of Pervk is a finite graph with
vertices labelled by the cup diagrams on k points. Each cup C in a cup
diagram λ defines an outgoing and an ingoing arrow to respectively from
a cup diagram µ, where µ is obtained from λ by swapping ∧ with ∨ at
the points connected by C (see Lemma 3.9 and Corollary 9.14).

4.) The graded Cartan matrix Ck of Dk is indexed by the cup diagrams λ
and the entries count the number of possible orientations of the circle
diagram λµ with their gradings (see Lemma 8.1).
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In case k = 4 we obtain the following:

1.1. An explicit example. The quiver Q4 looks as follows:

b1a1

1

a2

b2

2

a3

b3

b4
a4

3
4

5

a5

b5

b6
a6

a7

b7

6

a8 b8

a10

b10

7

a9 b9

8

(1.1)
The algebra D4 is the path algebra of this quiver Q4 modulo the following
defining relations:

I Diamond relations: Let x, y be two distinct vertices from one of the
following four sets, called diamonds in Definition 9.9:

( 3 , 4 , 6 , 5 ), ( 3 , 4 , 6 , 7 ), ( 3 , 5 , 6 , 7 ), ( 2 , 3 , 7 , 8 ).

Then any two paths of length two from x to y involving only vertices
inside the same diamond are equal.

I Non-extendibility relations: The following compositions are zero

a1a2, b2b1, a2a3, b3b2, a2a4, b4b2, a7a8, b8b7.

I Loop relations: The following elements are zero

a1b1, b1a1 + a2b2, a9b9, b2a2 − a3b3, b5a5 + b6a6 + a7b7,
a10b10, a5b5, a6b6, a3b3 − a4b4, b7a7 + a8b8 + 2b10a10.

The grading of the algebra is just given by the length of the paths. (Note
that all relations are homogeneous). Observe moreover that the algebra is
quadratic, i.e. generated in degrees zero and one with relations in degree
two, see Theorem 6.10 for a direct proof of the fact that Dk is generated in
degrees zero and one.

With the idempotents numbered as in (1.1), the graded Cartan matrix is

1 q 0 0 0 0 0 q2

q 1 + q2 q 0 0 0 q2 q + q3

0 q 1 + q2 q q q2 q + q3 q2

0 0 q 1 + q2 q2 q + q3 q2 0
0 0 q q2 1 + q2 q + q3 q2 0
0 0 q2 q + q3 q + q3 1 + 2q2 + q4 q + q3 0
0 q2 q + q3 q2 q2 q + q3 1 + 2q2 + q4 q + q3

q2 q + q3 q2 0 0 0 q + q3 1 + 2q2 + q4
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1.2. Definition of the algebra. The definition of the multiplication on
DΛ is similar to the type A version, i.e. to Khovanov’s original definition,
[26] with its generalization in [39] and [7], which used the fact that the
Frobenius algebra R = C[x]/(x2) defines a 2-dimensional TQFT T , hence
assigns in a functorial way to a union (S1)n of n circles the tensor product
T ((S1)n) = R⊗n of n copies of R and to a cobordisms (S1)n → (S1)m

between two finite union of circles a linear map T ((S1)n) → T ((S1)m). A
basis vector in our algebra DΛ corresponds to a fixed orientation of some
circle diagram with, say n, circles and so can be identified canonically with
a standard basis vector of T ((S1)n), see Proposition 4.5. This allows to use
the linear maps attached to the cobordisms to define the multiplication of
DΛ. In contrast to the type A case, this construction needs however some
additional signs incorporated in a subtle way (encoded by the decorations
on the diagrams), see Section 6.2. Depending on the viewpoint these signs
destroy either the locality or force to consider the circles to be embedded
in the plane. Therefore, general topological arguments using the TQFT-
structure cannot be applied (for instance to deduce the associativity).

We give in Section 4.3 the main idea of the multiplication, but then have
to work hard to show the associativity by algebro-combinatorial methods,
see Theorem 5.34. For the understanding of the multiplication itself, it
is enough to have a look at the algebraic definition of the vector space
underlying DΛ in Section 4.1 and at the explicit rule for the multiplication
in the algebraic context in Section 6.2 with Examples in Section 6.3. We
recommend to skip Section 5 completely for the first reading.

The framework here is set up slightly more general than actually needed,
but allows to work with more involved diagrams, similar to [7], [8]. In this
framework it is straight forward to define also bimodules over our algebras
which correspond to projective functors on the category O side. A detailed
study of these functors will appear in a subsequent paper.

1.3. Origin of the decorated cup diagrams. The resemblance of our
construction here with [7], but also its technical subtleties appear in fact
from a (non-trivial) folding of the type A setup. Our type D weights of
length k could be seen as antisymmetric type A weights of length 2k and
our cup diagrams as certain symmetric (with respect to a middle vertical
axis) type A cup diagrams. It was already observed in [30] that such sym-
metric cup diagrams can be used to describe the parabolic Kazdhan-Lusztig
polynomials of type (Dk,Ak−1). To obtain our decorated cup diagrams from
a symmetric cup diagram of type A one could follow [30, 5.2] and fold the
diagram along its mirror axis to obtain a cup diagram of half the size. The
folding identifies each cup/ray with its mirror image if it does not cross
the vertical reflection line, and folds it into itself otherwise. More precisely,
given a symmetric cup diagram with 2k endpoints of cups/rays (called ver-
tices), numbered by 1, 2, . . . , 2k from left to right, then folding removes first
all vertices labelled 1, 2, . . . , k and all cups/rays with at least one endpoint
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amongst these points. If i1 < i2 < . . . < ir are the number of the vertices not
attached to a cup/ray anymore, then we reconnect these vertices by putting
a cup decorated with a • connecting i1 with i2, i3 with i4 etc. and finally
put a ray decorated with a • at vertex ir in case r is odd. For instance,

In the following, we just record the folded diagram. To make this unambigu-
ous we mark the cups (or rays) which got folded into itself by a dot, •. By
construction, dots can only occur on cups which are not nested and always
to the left of possible rays, see Definition 3.5 for a precise definition. Such
types of decorations are well-known tools in the theory of diagram algebras,
see e.g. [21], [32]. In [30] it was also shown that on the space of such cup
diagrams we have a natural action of the type D Temperley-Lieb algebra as
defined in [21]. This algebra contains the type A Temperley-Lieb algebra
as a subalgebra, plus one more generator which is usually displayed by a
cap-cup diagram with a • on its cap and on its cup. The above mentioned
bimodules can be used to categorify the type D Temperley-Lieb algebra.
The underlying combinatorics was developed in [30].

1.4. Important properties of the algebras. In Section 7 we study in
detail the structure of the associative algebra DΛ. We establish its cellular-
ity in the sense of Graham and Lehrer [20] in the graded version of [23] and
determine explicitly the decomposition matrices Mk by an easy counting for-
mula in terms of parabolic Kazhdan-Lusztig polynomials of type (Dk,Ak−1),
see Lemma 8.6. It allows us to identify the Cartan matrix Ck = M t

kMk with
the Cartan matrix of Braden’s algebra A(Dk). This is then used in Sec-
tion 9 to show that the explicit assignment in Theorem 9.16 defines indeed
an isomorphism Φk. Note that our generators are obtained from Braden’s
by some formal logarithm. This fact is responsible for two major advantages
of our presentation in contrast to Braden’s which will play an important role
in the subsequent papers:

I the nice positive (Koszul) grading of Dk (which becomes invisible
under the exponential map Φ−1

k ); and
I the Cartan matrix and decomposition numbers are totally explicit

in our setup (but not really computable in terms of Braden’s gener-
ators).

To emphasize that our results should not just be seen as straightforward
generalizations of known results, let us indicate some applications and con-
nections which will appear in detail in the subsequent papers of the series.
For the reader interested mainly in this application we recommend to skip
Sections 5–8 and pass to Section 9.
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1.5. Connections to cyclotomic VW-algebras and Brauer algebras.
In part II of this series, [13], we develop in detail the graded versions of level
2 cyclotomic Nazarov-Wenzl algebras and show their blocks are isomorphic
to certain idempotent truncations of the algebras DΛ. In particular, they
inherit a positive Koszul grading and a geometric interpretation in terms of
perverse sheaves on isotropic Grassmannians. In the same paper together
with [15], we also relate them to non-semisimple versions of Brauer algebras
[11], [12] proving that Brauer algebras are Morita equivalent to idempotent
truncations of sums of our algebras DΛ. This gives in particular a conceptual
explanation of why all the Brauer algebras are determined by the combina-
torics of Weyl groups of type D, an amazing phenomenon first observed by
Martin, Cox and DeVisscher, [10]. As an application we show in [15] that
Brauer algebras for non-zero parameter δ are always Koszul.

1.6. Categorified coideal subalgebras. In the same paper [13] we also
study the action of translation functors in some detail. Here a completely
new phenomenon appears. Besides their natural categorifications of Hecke
algebras, translation functors were usually used in type A to categorify ac-
tions of (super) quantum groups, see for instance [8], [17], [35] for specific
examples in this context, or [33] for an overview. In particular, they give
standard examples of 2-categorifications of Kac-Moody algebras in the sense
of [34] and [27] and the combinatorics of the quantum group and the Hecke
algebras are directly related, see e.g. [18], [8] and [35]. This coincidence fails
outside type A. Instead we obtain the action of a quantized fixed point Lie
algebra gl(n)σ for an involution σ. Although these algebras were studied
in quite some detail by algebraic methods under the name coideal subalge-
bras, [31], [28] it seems a geometric approach is so far missing. Our main
Theorem A will finally provide such a geometric approach and also gives,
together with [13], an instance of a categorification of modules for these
algebras. For these coideal subalgebras the graded versions of cyclotomic
VW-algebras play the analogous role to cyclotomic quiver Hecke algebra or
Khovanov-Lauda algebras attached to the universal enveloping algebra U(g)
in [34], [27]. On the uncategorified level, the precise connection between
these coideal subalgebras and the geometry of type D flag varieties was
developed in [16].

1.7. Hermitian symmetric pairs. Our focus on the type D case might
look artificial. Instead one could consider all G/P for classical pseudo her-
mitian symmetric cases, [3], [2]. In fact, the natural inclusions of alge-
braic groups SO(2n + 1,C) ↪→ SO(2n + 2,C) and Sp(2n,C) ↪→ SL(2n,C)
induce isomorphisms of the partial flag varieties for the pairs (G,P ) of
type (Bn,An−1) and (Dn+1,An) respectively (Cn,Cn−1) and (A2n−1,A2n−2)
which are compatible with the Schubert stratification, [5, 3.1]. Hence the
corresponding categories of perverse sheaves are naturally isomorphic.

Therefore, our algebras Dk together with the generalized Khovanov alge-
bras from [7] govern these cases as well, see Section 9.7. Moreover it provides
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an easy closed formula for the type (Bn,An−1) Kazhdan-Lusztig polynomi-
als, (9.81). In particular, the non-simply laced case can be “unfolded” to
the simply laced case for larger rank. For the remaining classical symmetric
pairs, apart from type (Dn,Dn−1) one might use the fact that the principal
blocks of category O for type Bn and Cn are equivalent via Soergel’s com-
binatorial description, [37]. There is also a, in some sense, Langlands’ dual
picture of this unfolding relating different Springer fibres and Slodowy slices.
To connect it with our algebras we want to stress that Dk has an alternative
description as a convolution algebra using the cohomology of pairwise inter-
sections of components of Springer fibres of type Dk, see [14]. In particular,
the centre of our algebras Dk can be identified with the cohomology ring of
some type D Springer fibre, see [6], [39] for an analogous result in type A.
For a detailed analysis of the corresponding cup diagram combinatorics and
the folding procedure in terms of Springer theory we refer to [40].

Acknowledgements. We like to thank Jon Brundan, Ngau Lam, Anto-
nio Sartori and Vera Serganova for many helpful discussions and Daniel
Tubbenhauer for comments on the manuscript. We are in particular grate-
ful to the referee for his/her extremely careful reading of the manuscript and
for several helpful suggestions.

2. The isotropic Grassmannian, weight and cup diagrams

For the whole paper we fix a natural number k and set n = 2k.

2.1. The isotropic Grassmannian. We start by recalling the isotropic
Grassmannian and some of its combinatorics.

We consider the group SL(n,C) with standard Borel B given by all up-
per triangular matrices. Let Pk,k be the standard parabolic subgroup given
by all matrices A = (ai,j)1≤i,j≤n where ai,j = 0 for i > k, j ≤ k, and let
Xk,k = Grk(Cn) = SL(n,C)/Pk,k be the corresponding Grassmann variety
of k-dimensional subspaces in Cn.

Now fix on Cn the non-degenerate quadratic form

Q(x1, . . . , x2k) = x1xn + x2xn−1 + · · ·+ xkxk+1.

Then the space {V ∈ Xk,k | Q|V = 0} has two connected components
(namely the equivalence classes for the relation V ∼ V ′ if dim (V ∩ V ′)− k
is even). The (isotropic) Grassmannian of type Dk is the component Yk
containing the point {xk+1 = · · · = xn = 0}. The subgroup SO(n,C) of
SL(n,C) of transformations preserving Q acts on Yk. Moreover we have

Yk ∼= SO(n,C)/(SO(n,C) ∩ Pk,k).
The group BD = SO(n,C) ∩ B is a Borel subgroup of SO(n,C) and we
fix the stratification of Yk by BD-orbits. Note that the latter are just the
intersections Yλ = Ωλ ∩ Yk of the Schubert cells Ωλ of Xk,k with Yk. Fix
the common labelling of Schubert cells of Xk,k by partitions whose Young
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diagrams fit into a k × k-box (such that the dimension of the cell equals
the number of boxes).1 Then Ωλ 6= ∅ precisely if its Young diagram is
symmetric in the sense that it is fixed under reflection about the diagonal
and the number of boxes on the diagonal is even. Let Ωk be the set of
symmetric Young diagrams fitting into a k×k-box. For instance, the set Ω4

labelling the strata of Y4 is the following.

∅ (2.2)

We encode λ ∈ Ωk by an {∧,∨}-sequence s(λ) of length k as follows: starting
at the top right corner of the k × k-square walk along the right boundary
of the diagram to the bottom left corner of the square - each step either
downwards, encoded by a ∨, or to the left, encoded by an ∧. We write the
sequence from the right to the left. For instance, the leftmost and rightmost
Young diagram in (2.2) give rise to the sequences

∧ ∧ ∧ ∧ ∨ ∨ ∨∨ respectively ∨ ∨ ∨ ∨ ∧ ∧ ∧ ∧ .

If the diagram λ labels a BD-orbit Yλ then the sequence obtained in this
way is automatically antisymmetric of length 2k. In particular, it is enough
to omit the second half and remember only the first (right) half which is
then our s(λ). We denote by Sk = {s(λ) | λ ∈ Ωk} the set of such sequences
of length k. For instance the diagrams (2.2) correspond to the elements in
S4 as follows:

∨ ∨ ∨∨ , ∧ ∧ ∨∨ , ∧ ∨ ∧∨ , ∨ ∧ ∧∨ , ∧ ∨ ∨∧ , ∨ ∧ ∨∧ , ∨ ∨ ∧∧ , ∧ ∧ ∧∧ (2.3)

We now put these s(λ) onto a general framework of diagrammatic weights
and then connect them with the usual combinatorics of the Weyl group.

2.2. Weights and linkage. In the following we identify Z>0 with integral
points, called vertices, on the positive numberline. A (diagrammatic) weight
λ is a diagram obtained by labelling each of the vertices by × (cross), ◦
(nought), ∨ (down) or ∧ (up) such that the vertex i is labelled ◦ for i� 0.
For instance,

λ =
1
∨

2
∧

3
∧

4
∧

5
∧

6
∨

7
∨

8
∨

9
∨

10
∧

11
◦

12
◦ · · · , (2.4)

λ = ∧ ×× ∧ ◦ ∨ ∨ ◦ ∧ ∧ ◦ ◦ · · · , (2.5)

are examples of weights. The · · · ’s indicate that all further entries of the
sequence equal ◦ and the label above the symbols indicates the positions.
As in (2.5) we will usually omit these numbers. We denote by X the set of
diagrammatic weights. To λ ∈ X we attach the sets

P?(λ) = {i ∈ Z>0 | λi =?}, where ? ∈ {∧,∨,×, ◦} . (2.6)

1see e.g. [19, 9.4] with the notation Ω̃λ there.
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For the weights (2.4) respectively (2.5) these subsets of Z>0 are

P∧(λ) = {2, 3, 4, 5, 10}, P∨(λ) = {1, 6, 7, 8, 9}, P×(λ) = ∅, P◦(λ) = {i | i ≥ 11};
P∧(λ) = {1, 4, 9, 10}, P∨(λ) = {6, 7}, P×(λ) = {2, 3}, P◦(λ) = {5, 8, i | i ≥ 11}.

Two diagrammatic weights λ, µ ∈ X are linked if µ is obtained from λ by
finitely many combinations of basic linkage moves of swapping neighboured
labels ∧ and ∨ (ignoring symbols × and ◦) or swapping the pairs ∧∧ and ∨∨
at the first two positions (again ignoring symbols × and ◦) in the sequence.
The equivalence classes of the linkage relation are called blocks.

Example 2.1. The weight λ from (2.4) is linked to µ = ∨∨∧∨∧∨∨∨∨∧
◦ ◦ · · · but not to µ′ = ∨ ∨ ∧ ∧ ∧ ∨ ∨ ∨ ∨ ∧ ◦ ◦ · · · , since the parities of ∧’s
don’t agree.

A block Λ is hence given by fixing the positions of all × and ◦ and the
parity |P∧(λ)| of the number of ∧’s. Formally a block Λ is the data of a
parity, either 0 or 1, and a block diagram Θ, that is a sequence Θi of symbols
×, ◦, �, indexed by i ∈ Z>0 with the same conditions as for diagrammatic
weights, i.e. all but finitely many Θi are equal to ◦. Let P?(Θ) for ? ∈
{�,×, ◦} be defined analogously to (2.6). Then the block Λ is the equivalence
class of weights

Λ = ΛεΘ =


P∧(λ) ∪ P∨(λ) = P�(Θ),

λ ∈ X P×(λ) = P×(Θ), P◦(λ) = P◦(Θ),

|P∧(λ)| = ε.

 (2.7)

For a block Λ with its block diagram Θ define P×(Λ) = P×(Θ), P◦(Λ) =
P◦(Θ), and P�(Λ) = P�(Θ).

A block Λ is called regular if P×(Λ) = ∅ and principal (of type Dk) if
additionally P�(Λ) = {1, . . . , k}. A weight λ is called regular if it belongs to a
regular block. For instance (2.4) is a principal weight, and thus also a regular
weight. For fixed k the set of principal weights of type Dk decomposes into

exactly two blocks, the even block Λ0
k, where each weight has an even number

of ∧’s, and the odd block Λ1
k, where each weight has an odd number of ∧’s.

Both blocks correspond to the same block diagram

Θ = � · · · �︸ ︷︷ ︸
k

◦ ◦ · · · .

From now on we will identify the set Sk = {s(λ) | λ ∈ Ωk} with a subset
of principal weights by adding ◦’s at the vertices i > k. Then the following
example shows the two regular blocks for k = 4.

Example 2.2. For k = 4 we get the following set of even regular weights

with the set C0
k of cup diagrams associated via Definition 3.7 below,

∨ ∨ ∨∨ ∧ ∧ ∨∨ ∧ ∨ ∧∨ ∨ ∧ ∧∨ ∧ ∨ ∨∧ ∨ ∧ ∨∧ ∨ ∨ ∧∧ ∧ ∧ ∧∧

(2.8)
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and odd regular weights with the set C1
k of corresponding cup diagrams:

∧ ∨ ∨∨ ∨ ∧ ∨∨ ∨ ∨ ∧∨ ∧ ∧ ∧∨ ∨ ∨ ∨∧ ∧ ∧ ∨∧ ∧ ∨ ∧∧ ∨ ∧ ∧∧

(2.9)

Note, Cp
k is precisely the set of diagrams, where the number of dotted rays

plus undotted cups is even respectively odd, depending if p = 0 or p = 1.

Lemma 2.3. The map λ 7→ s(λ) defines a bijection between Ωk and Λkk.

Proof. This follows directly from the definitions. �

The basic linkage moves induce a partial ordering on each block, the
Bruhat order, by declaring that changing a pair of labels ∧∨ to ∨∧ or a pair
∨∨ to ∧∧, ignoring any × or ◦ in between, makes a weight smaller in this
Bruhat order. Repeatedly applying the basic moves implies:

Lemma 2.4. Changing a (not necessarily neighboured) pair of labels ∧∨ to
∨∧ or a pair ∨∨ to ∧∧ makes a weight smaller in the Bruhat order.

If we denote the weights from (2.3) by λ1, . . . , λ8 then λ1 > λ2 > λ3 >
λ4, λ5 > λ6 > λ7 > λ8 in this Bruhat order.

2.3. The Weyl group of type Dk. To make the connection with the
Bruhat order on Coxeter groups, let W = W (k) ∼= (Z/2Z)k−1 o Sk be the
Weyl group of type Dk. It is generated by simple reflections si, 0 ≤ i ≤ k−1
subject to the relations s2

i = e for all i, and for i, j 6= 0 sisj = sjsi if
|i− j| > 1 and sisjsi = sjsisj if |i− j| = 1, and additionally s0s2s0 = s2s0s2

and s0sj = sjs0 for j 6= 2.
It has two parabolic subgroups isomorphic to the symmetric group Sk,

namely W0 generated by si, i 6= 0 and W1 generated by si, i 6= 1. Let W 0

and W 1 be the set of shortest coset representatives for W0\W and W1\W
respectively.

Let p ∈ {0, 1}. The group W acts from the right on the sets Λpk as follows:
si for i > 1 swaps the i-th and (i+1)-st label (from the left), and s1 swaps the
first two in case they are ∧∨ or ∨∧ and is the identity otherwise, whereas s0

turns ∧∧ into ∨∨ and vice versa at the first two positions and is the identity
otherwise. The sequence consisting of k ∨’s is fixed by the parabolic W0,
whereas the sequence consisting of one ∧ followed by k − 1 ∨’s is fixed by
W1. Sending the identity element e ∈ W to one of these sequences s and

then w to s.w defines canonical bijections Φp : W p −→ Λpk. The elements

from W p corresponding to the weights in (2.8) and (2.9) are respectively

e s0 s0s2 s0s2s1 s0s2s3 s0s2s3s1 s0s2s1s3s2 s0s2s1s3s2s0 (2.10)

e s1 s1s2 s1s2s0 s1s2s3 s1s2s3s0 s1s2s3s0s2 s1s2s3s0s2s1 (2.11)

More generally, blocks Λ with |P�(Λ)| = k can be identified with W -orbits,
where W acts on the vertices not labelled × or ◦.
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Consider the set Ωk as poset equipped with the partial order given by
containment of the corresponding Young diagrams, with the smaller diagram

corresponding to the smaller element, and the set Λkk equipped with the
Bruhat order and the sets W p with the reversed Bruhat order. Then the
definitions directly imply:

Lemma 2.5. The assignment λ 7→ s(λ) and the isomorphism Φk define

canonical bijections of posets between Ωk and Λkk, and W k.

Remark 2.6. Note that flipping the first symbol in s(λ) composed with
the map from Lemma 2.3 would alternatively give us an isomorphism of

posets between Ωk and Λk+1
k and then also W k+1. One should think of the

second choice as in fact passing to the second natural choice of parabolic
of Dynkin type Ak−1 in the complex semisimple Lie algebra g of type Dk.
It corresponds to different, but canonically equivalent parabolic category
O(g)’s. For the main results of the paper it is therefore not relevant which
parity we choose. The interplay of these two different equivalent parabolic
categories with other Zuckerman functors plays an important role in [13].
There, the above equivalences are used to categorify a skew Howe duality for
quantum symmetric pairs using special cases of Letzter’s coideal subalgebras
[31]. In that setup this canonical equivalence corresponds (after applying
Koszul duality) to the extra generator B0 in the coideal subalgebra defined
there. The grading of our algebras Dk is hereby crucial, since a shift in the
grading up by one corresponds to the action of the parameter q from the
coideal subalgebra.

3. Cup diagrams, λ-pairs and the quiver

The goal of this section is to introduce the required combinatorics to
define the type D generalized Khovanov algebra and describe the graph of
the quiver (Definition 3.10 and Corollary 9.13). Throughout this section we
fix a block Λ with its block diagram Θ. We abbreviate

P× = P×(Λ), P◦ = P◦(Λ), P� = P�(Λ).

3.1. Cup diagrams. Consider the semi-infinite strip

R =

{
(x, y) ∈ R≥0 × R

∣∣∣∣ 1

2
≥ y ≥ −1

2

}
⊂ R≥0 × R

as the union of the two smaller strips R− = {(x, y) ∈ R | 0 ≥ y ≥ −1
2}

and R+ = {(x, y) ∈ R | 1
2 ≥ y ≥ 0}. For ? ∈ {×, ◦, �} consider P? ⊂ R by

sending x ∈ P? ⊂ Z>0 to (x, 0).
Later on we will need the following statistic for i ∈ P�

p(i) = #{j ∈ P� | j ≤ i} ∈ Z>0. (3.12)

Note, for principal blocks p(i) = i, the position on the number line.
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Definition 3.1. A subset γ ⊂ R− is called an arc if there exists an injective
continuous map γ̃ : [0, 1]→ R with image γ such that

I γ̃(0) ∈ P�,
I γ̃(1) ∈ P� (cup condition) or γ̃(1) ∈ R≥0 × {−1

2} (ray condition),
I γ̃((0, 1)) ⊂ (R−)◦, the interior of R−.

It is called a cup if the cup condition is satisfied and is called a ray otherwise.

Definition 3.2. An undecorated cup diagram c (for the block diagram Θ)
is a finite union of arcs {γ1, . . . , γr}, such that

I γi ∩ γj = ∅ for i 6= j,
I for every (p, 0) ∈ P� there exists an arc γi(p) such that (p, 0) ∈ γi(p).

In the following we will always consider two diagrams as the same if they
differ only by an isotopy of R fixing R≥0×{0} pointwise and R≥0×{−1

2} as
a set. Hence we usually draw cup diagrams by drawing cups as half circles
and rays as straight lines.

We now introduce the notion of a decorated cup diagram, a generalisation
of the setup from [7]:

Definition 3.3. Let c be an undecorated cup diagram with set of arcs
{γ1, . . . , γr}. Then a decoration of c is a map

decoc : {γ1, . . . , γr} → {0, 1}.
If the value for γi is 1 we call the arc dotted, otherwise we call it undotted.

An undecorated cup diagram together with a decoration is called a deco-
rated cup diagram. We visualize this by putting a “•” at an arbitrary interior
point of the arc in the underlying undecorated cup diagram.

Example 3.4. The following shows two examples of possible decorations
for an undecorated cup diagram with the block diagram listed on the top.

� � � ◦ × × � � ◦ · · ·
i)

ii)

Definition 3.5. A decorated cup diagram c with set of arcs {γ1, . . . , γr}
and decoration decoc is called admissible if decoc(γi) = 1 implies that an
arbitrary point in the interior of γi can be connected with the left boundary
of R by a path not intersecting any other arc 2.

For instance putting a dot on the interior cup in i) or ii) in Example 3.4
would create decorated cup diagrams which are not admissible.

2This condition arises also in the context of blob algebras as studied for instance in
[32], and of generalized Temperley-Lieb algebras [21]. It is derived naturally from the
theory in [7] by a ‘folding’ procedure, see [30, 5.2].
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In the following we will refer to an admissible decorated cup diagram
simply as a cup diagram.

Remark 3.6. By definition, the following does not occur in a cup diagram:

I a dotted cup nested inside another cup, or
I a dotted cup or dotted ray to the right of a (dotted or undotted) ray.

Definition 3.7. For a weight λ ∈ Λ, the associated decorated cup diagram,
denoted λ is obtained by the following procedure.

(Cup 1) First connect neighboured vertices in P� labelled ∨∧ successively
by a cup (ignoring already joint vertices and vertices not in P�) as
long as possible. (Note that the result is independent of the order
the connections are made).

(Cup 2) Attach to each remaining ∨ a vertical ray.
(Cup 3) Connect from left to right pairs of two neighboured ∧’s by cups.
(Cup 4) If a single ∧ remains, attach a vertical ray.
(Cup 5) Finally define the decoration decoc such that all arcs created in

step (Cup 1) and (Cup 2) are undotted whereas the ones created
in steps (Cup 3) and (Cup 4) are dotted.

Note that, by construction, this is an admissible decorated cup diagram.

We denote by CΛ the set of cup diagrams associated with a block Λ.
We will see in Lemma 3.16 that each such cup diagram corresponds to
exactly one weight in Λ; for instance the cup diagram i) from Example 3.4
corresponds to ∨∨∧◦××∧∨◦ · · · , and the diagram ii) to ∧∨∧◦××∧∧◦ · · · .

3.2. λ-pairs and the arrows in the quiver. Recall that we want to
describe the quiver Qk of the category Pervk of perverse sheaves on isotropic
Grassmannians. Its vertices are labelled by Schubert varieties, respectively
their Young diagrams λ or associated weight s(λ), see Section 2.1. Hence
we can also label them by the cup diagrams s(λ) which we denote, by abuse
of notation, by λ as well. The arrows attached to a vertex λ will correspond
to so-called λ-pairs, a notion introduced in [4, 1.6] which we now adapt to
our setting.

Definition 3.8. Fix a block Λ. Let λ ∈ Λ be a weight and γ a cup in λ
connecting the vertices lγ < rγ in P�. With γ we associate a pair of integers
(α, β) ∈ Z× N called a λ-pair defined as

(α, β) =

{
(p(lγ), p(rγ)) if γ is undotted,

(−p(lγ), p(rγ)) if γ is dotted.
(3.13)

Given a λ-pair let λ′ be the weight obtained by changing ∨ into ∧ and ∧
into ∨ at the entries lγ and rγ of λ. In this case we write λ

(α,β)−→ λ′ or short
λ→ λ′ or equivalently λ′ ← λ. Note that this implies λ′ > λ. We abbreviate
λ↔ µ in case λ→ µ or λ← µ.
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The relation µ ← λ has a nice interpretation in terms of the associated
cup diagrams λ, µ:

Lemma 3.9. Given weights λ, µ. We have µ ← λ if and only if the corre-
sponding cup diagrams λ and µ differ precisely by one of the following local
moves µ← λ.

∨∧∨∧ ∨ ∧∨∧ ∧∧∨∧ ∧ ∧∨∧∧ ∧∨∧ ∨∧∧∧

∨ ∧∨∧ ∧∧∧∧

∧∧∨ ∧∨∧ ∧∨∧ ∨∧∧ ∨∧∨ ∨∨∧ ∨∨∧ ∧∧∧

∧∨ ∨∧ ∨∨ ∧∧

(3.14)
In particular λ and µ are from the same block.

Proof. This follows directly from the definitions. �

Definition 3.10. The quiver associated with a block Λ is the oriented graph
Q(Λ) with vertex set the weights λ ∈ Λ and arrows λ→ µ whenever λ↔ µ
in the sense of Definition 3.8. (For the example of a principal block for k = 4
we refer to (1.1), where the arrows labelled b correspond to the λ-pairs.)

Definition 3.11. An undecorated cap diagram (respectively decorated cap
diagram) c′ is obtained by reflecting an undecorated (respectively decorated)
cup diagram c along the horizontal line R≥0×{0} inside R. The image of a
cup in such a diagram is called a cap. It is dotted if the cup was dotted.

A decorated cap diagram is called admissible if c is admissible. In which
case we just call it a cap diagram.

We will denote the reflection at the horizontal line by ∗ and use the
notation c∗ to denote the cap diagram that we obtain from a given cup
diagram c. In particular, we obtain a cap diagram associated with λ, denoted
λ = λ∗ for any λ ∈ Λ.

Definition 3.12. A decorated circle diagram d = cc′ is the union of the
arcs contained in a decorated cup diagram c and the ones in a decorated
cap diagram c′, i.e., visually we stack the cap diagram c′ on top of the cup
diagram c. The decorations of c and c′ give the decoration for d.

It is called admissible if both c and c′ are admissible. Again we refer to
admissible decorated circle diagrams simply as circle diagrams.
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A connected component of a decorated circle diagram d with set of arcs
{γ1, . . . , γr} is a connected component of the subset

⋃
1≤i≤r γi ⊂ R. It is

always a circle or a line.

Definition 3.13. A line in a decorated circle diagram d is a connected
component of d that intersects the boundary of the strip R. A circle in
a decorated circle diagram d is a connected component of d that does not
intersect the boundary of the strip R. A line is propagating, if one endpoint
is at the top and the other at the bottom of the diagram.

3.3. Orientations, gradings and the space DΛ. An oriented cup dia-
gram, denoted cµ is obtained from a cup diagram c ∈ CΛ by putting a
weight µ ∈ Λ on top of c such that all arcs of c are ‘oriented’ in one of the
ways displayed in (3.15), and additionally we require that the vertices in µ
labelled ◦ agree with P◦ and the vertices labelled × agree with P×.

Similarly, an oriented cap diagram µc′ is obtained by putting such a weight
µ below a cap diagram with k vertices such that all arcs of c′ become ‘ori-
ented’ in one of the following ways:

degree 0 1 0 1 0 0

degree 0 1 0 1 0 0 (3.15)

Additionally, as displayed in (3.15), we assign a degree to each arc of
an oriented cup/cap diagram. The cups/caps of degree 1 are called clock-
wise and of degree 0 are called anticlockwise. To make sense of the word
orientation the • on a cup/cap should be seen as an orientation reversing
point.

Definition 3.14. The degree of an oriented cup diagram cµ (respectively
cap diagram c′µ) is the sum of the degrees of all arcs contained in µc (respec-
tively c′µ), i.e. the number of clockwise oriented cups in µc (respectively
clockwise oriented caps in c′µ).

Remark 3.15. The definition of “oriented diagram” and “degree” also ap-
plies to non-admissible cup/cap diagrams as well as to all types of circle
diagrams.

Note that λ (respectively λ) is precisely the unique cup (respectively cap)
diagram such that λλ (respectively λλ) is an oriented cup/cap diagram of
degree 0, i.e. all its cups/caps are anticlockwise. Conversely we have the
following:

Lemma 3.16. Given a cup diagram c with block sequence Θ one can find
a unique weight λ such that c = λ. The corresponding parity is unique; and
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if µ is a weight with the same block sequence such that λµ is oriented then
µ has the same parity, hence λ and µ are in the same block Λ.

The parity of Λ equals the number of dotted rays plus undotted cups in c
modulo two.

Proof. We choose λ to be the unique weight which induces the orientation
on c of degree zero. If λµ is oriented, then µ differs from λ by swapping
pairs of ∨∧ to ∧∨ or ∧∧ to ∨∨. In any case, µ has the same parity as λ, thus
they are in the same block . The number of ∧’s, hence the parity equals the
number of dotted rays plus undotted cups in c modulo two. �

Write λ ⊂ µ if λµ is an oriented cup diagram, then our combinatorics is
compatible with the Bruhat order in the following sense:

Lemma 3.17. Fix a block Λ and λ, µ ∈ Λ.

1.) If λ ⊂ µ then λ ≤ µ in the Bruhat order.
2.) If aλb is an oriented circle diagram then a = α and b = β for unique

weights α, β with α ⊂ λ ⊃ β.

Proof. For part 2.) we more precisely claim: if cλ is an oriented cup diagram
then c = α for a unique weight α with α ⊂ λ; if λc′ is an oriented cap diagram
then c′ = β for a unique weight β with λ ⊂ β. Indeed, α is the unique weight
obtained by reversing the labels at each clockwise cup into an anticlockwise
cup. Clearly, α = c and hence α ⊂ λ. Similarly for β. If λ ⊂ µ then λµ
is oriented, hence µ is obtained from λ by (possibly) changing some of the
anticlockwise cups into clockwise. This however means we either change a
pair ∨∧ into ∧∨ or ∧∧ into ∨∨. In either case the weight gets bigger in the
Bruhat order by Lemma 2.4 and 1.) holds. �

As in [7] we call the number of cups in λ the defect or degree of atypicality
of λ, denoted def(λ), and the maximum of all the defects of elements in
a block the defect of a block, (which equals k

2 or k−1
2 depending whether

k = |P�(Λ)| is even or odd). Note that in contrast to [7] we work with finite
blocks only, since infinite blocks would have automatically infinite defect.
Lemma 3.16 implies that the defect counts the number of possible orienta-
tions of a cup diagram λ, since each cup has precisely two orientations:

|{µ | λ ⊂ µ}| = 2def(λ). (3.16)

The following connects the notion of λ-pairs with the degree:

Proposition 3.18. If λ→ µ then λ and µ are in the same block. Moreover,
λ→ µ if and only if λµ has degree 1 and λ < µ in the Bruhat order.

Proof. Assume λ → µ. Then by definition of a λ-pair we have a cup C
connecting vertices i and j (i < j) such that if C is undotted (respectively
dotted) the weight µ differs from λ only at these places with an ∧ at position
i and ∨ at position j (respectively a ∨ at position i and ∨ at position
j). Hence, in λµ, the cup C becomes clockwise, while all other cups stay
anticlockwise and thus it has degree 1 and µ > λ.
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Assuming λµ has degree 1 and λ < µ. If C is the unique clockwise cup,
then µ equals λ except at the vertices of C where ∨∧ gets replaced by ∧∨
or ∧∧ gets turned into ∨∨. Hence the diagrams λ and µ look locally as in
Lemma 3.9. �

4. The graded vector space DΛ with homogeneous basis BΛ

Our goal is to introduce a type D analogue of the algebras studied in
[39], [7]. It is a diagrammatic algebra DΛ which, in the special choice of a
regular block Λ , will be isomorphic to the endomorphism ring of a minimal
projective generator in the category of perverse sheaves on the isotropic
Grassmannian Yk equipped with the stratification by BD-orbits. In this
section we define and explore the underlying graded vector space.

4.1. The space of circle diagrams. Let Λ be a fixed block.

Definition 4.1. Denote by

BΛ = {λνµ | λ, µ, ν ∈ Λ, λν and νµ are oriented} , (4.17)

the set of oriented circle diagrams associated with Λ. The degree of an
element in BΛ is the sum of the degrees of the cups and caps as displayed in
(3.15). The degree of a connected component in an oriented circle diagram
is the sum of the degrees of its cups and caps. We denote by DΛ the graded
complex vector space on the basis BΛ.

Note that the λλλ for λ ∈ Λ span the degree zero part of DΛ. For λ, µ ∈ Λ
let λ(DΛ)µ be the subspace spanned by all λνµ, ν ∈ Λ.

The most important special case will be the graded vector spaces Dk =

DΛ associated with the principal blocks Λ = Λ0
k equipped with its distinct

homogeneous basis Bk = B
Λ0
k
.

Example 4.2. For k = 4, the graded vector space Dk is already of dimension
66 with graded Poincare polynomial pD4(q) = 8 + 20q + 24q2 + 12q3 + 2q4,
and Cartan matrix given in Example 1.1.

The vector space DΛ has the following alternative description which will
be useful to describe the multiplication and to make the connection to ge-
ometry:

Definition 4.3. For a cup or cap diagram c and i, j ∈ P�(Λ) we write

I i j if c contains a cup/cap connecting i and j,
I i j if c contains a dotted cup/dotted cap connecting i and j,
I i if c contains a ray that ends at i,
I i if c contains a dotted ray that ends at i.

Definition 4.4. Let λ, µ ∈ Λ and assume the circle diagram λµ can be
oriented. Let I = Iλµ be the ideal in C[Xi | i ∈ P�(Λ)] generated by

X2
a , Xa +Xb if a b, and Xa −Xb if a b, and finally Xa if a or a .
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(Here the relations refer to both, µ and λ, and a, b ∈ P�(Λ).)

In the following we fix the grading on the rings C[Xi | i ∈ P�(Λ)] / Iλµ
induced by putting the Xi’s in degree 2.

Proposition 4.5. Let λ, µ ∈ Λ and consider the circle diagram λµ. If λµ
is not orientable we set M(λµ) = {0}, and otherwise

M(λµ) = C[Xi | i ∈ P�(Λ)] / Iλµ 〈mdeg(λµ)〉
with a shift 〈mdeg(λµ)〉 of grading by mdeg(λµ) given in Definition 4.12
(using the conventions on graded modules as in Section 8.1).

1.) There is an isomorphism of graded vector space

Ψλµ : µ(DΛ)λ −→ M(λµ),

λνµ 7−→
∏

C∈Cclock(λνµ)

Xt(C)

where Cclock(λνµ) is the set of clockwise oriented circle in λνµ and t(C)
is the rightmost vertex belonging to a circle C.

2.) If λµ is orientable, the monomials of the form Xi1 · · ·Xis ∈ M(λµ),
with ij ∈ P�(Λ) distinct and ij = t(Cj) for some circle Cj, correspond
under Ψλµ to the standard basis vectors from BΛ in µ(DΛ)λ.

The proof will be given at the end of the section.

Example 4.6. Consider the principal blocks Λpk for k = 4. The following
circle diagrams λµ have exactly two possible orientations, anticlockwise or
clockwise which are sent respectively to the elements 1, X4 ∈M(λµ) under
the isomorphism Ψλµ. Similar for µλ with M(µλ) =M(λµ).

 
M(λµ) = C[X1, X2, X3, X4]/I ∼= C[X4]/(X2

4 )

I = (X2
1 , X

2
2 , X

2
3 , X

2
4 , X1 +X2, X2 +X3, X3 +X4, X1 +X4)

 
M(λµ) = C[X1, X2, X3, X4]/I ∼= C[X4]/(X2

4 )

I = (X2
1 , X

2
2 , X

2
3 , X

2
4 , X1 −X2, X2 +X3, X3 −X4, X1 +X4)

 
M(λµ) = C[X1, X2, X3, X4]/I ∼= C[X4]/(X2

4 )

I = (X2
1 , X

2
2 , X

2
3 , X

2
4 , X1 −X2, X2 +X3, X3 +X4, X1 −X4)

 
M(λµ) = C[X1, X2, X3, X4]/I ∼= C[X4]/(X2

4 )

I = (X2
1 , X

2
2 , X

2
3 , X

2
4 , X1 +X2, X2 +X3, X3 −X4, X1 −X4)

Remark 4.7. In [14], see also [40], the case Λ = Λpk is studied from a
geometric point of view. Weights λ, µ are identified with fixed point of
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the natural C∗-action on the (topological) Springer fibre of type Dk for the
principal nilpotent of type Ak−1, and the cup diagrams λ, µ are canonically
identified with the cohomology of the closure of the corresponding attract-
ing cells Aλ, Aµ. The vector space M(µλ) is then the cohomology of the
intersection Aλ ∩ Aµ.

4.2. Properties of oriented circle diagrams. The following is a crucial
result linking orientability with decorations.

Lemma 4.8. Fix a block Λ and λ, µ ∈ Λ. Then the following holds:

1.) The circle diagram λµ is orientable if and only if the number of dots is
even on each of its circles and its propagating lines, and odd on each of
its non-propagating lines.

2.) In this case there are exactly 2c possible orientations, where c is the num-
ber of circles. They are obtained by choosing for each of the circles one
out of its two possible orientations and for each ray the unique possible
orientation.

Proof. We first prove part 1.) assuming that the diagram has an orientation.
Then the number of dots on each circle and each propagating line has to
be even, since each dot can be interpreted as an orientation reversing point.
For a non-propagating line we consider first the case where the labels at
the two rays are the same. Then, again by interpreting dots as orientation
reversing points the number of dots between them has to be odd. If they
are opposite, i.e. ∧ (attached to a ray with a dot) and ∨ (attached to an
undotted ray), the number of points between them has to be even, hence
altogether (with the dot attached to the ray) the total number is odd again.

To show the converse assume that the conditions on the number of dots
hold. Note that if we find an orientation by some weight ν, then ν ∈ Λ by
Lemma 3.16. First note that a possible orientation of a circle is determined
by the label (∧ or ∨) at one of its vertices. Hence there are at most two
orientations. That each choice defines in fact an orientation is clear if we
interpret the dots as orientation reversing points, since by assumption their
number is even. For lines we have at most one orientation defined uniquely
by the label on a vertex attached to a ray. Then the parity condition on the
dots ensures again that this extends to a orientation on the line with the
label at the second vertex attached to a ray the unique allowed one.

We implicitly already proved the second statement. �

Proposition 4.9. Fix a block Λ and λνµ ∈ BΛ. For a circle C contained
in λµ its induced degree equals:

1.) the number of its caps plus 1, if its rightmost label is ∨; and
2.) the number of its caps minus 1, if its rightmost label is ∧.
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Definition 4.10. We call C with the induced orientation clockwise respec-
tively anticlockwise depending whether the degree is maximal respectively
minimal possible 3.

Proof of Proposition 4.9. In case the circle C has no dots, the statement
follows by the same arguments as in [7, Lemma 2.1]: namely either C consists
out of precisely one cup and one cap, i.e.

deg

(
∨ ∧

)
= 0, deg

(
∧ ∨

)
= 2,

where the statement is clear, or it contains a kink which can be removed
using one of the following straightening rules:

∧ ∧∨ ∧ ∨ ∨∧ ∨

(4.18)

The result is a new oriented circle diagram with two fewer vertices than
before. It is oriented in the same way as before, except that the circle C has
either one clockwise cup and one anticlockwise cap less, or one anticlockwise
cup and one clockwise cap less. Hence both the degree as well as the number
of caps decreases by 1. Moreover we never change the label at the rightmost
vertex. The claim follows therefore by induction.

Assume now C has dots. The claim is obviously true for the circles
including two vertices:

deg

(
∧ ∧

)
= 0, deg

(
∨ ∨

)
= 2,

If there is a kink without dots as above then we remove it and argue
again by induction. We therefore assume there are no such kinks, i.e. each
occurring kink has precisely one dot (either on the cap or the cup), since
having a dot on both contradicts Remark 3.6 if the component is a closed
circle. Using Remark 3.6 again one easily verifies that a circle with more
than 2 vertices and no undotted kink contains at least one of the following
diagrams as subdiagram

∨ ∨ ∧ ∧ ∨ ∨ ∧ ∧ ∧ ∧ ∨ ∨ ∧ ∧ ∨ ∨

(4.19)

We claim that the degree equals the degree of the circle obtained by re-
moving the pair of dots and adjusting the orientations between them fixing

3In case C has no dots this agrees with the obvious notion of (anti)clockwise.
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the outer labels. Then by induction, we transferred our statements to the
undotted case and we are done, since we again do not change the rightmost
label. The possible orientations for (4.19) are as follows (where a stands for
anticlockwise and c for clockwise, cups/caps read from left to right):

I in the first two diagrams: with dots (c, a, a), without dots (a, c, a),
hence the total degree is 1;

I in the last two diagram: with dots (a, c, c), without dots (c, a, c),
hence the total degree is 2.

Then the claim follows. �

Remark 4.11. By removing successively kinks as shown in (4.18) we see
that any circle has an even total number of cups plus caps. Together with
Lemma 4.8 we obtain that every circle in an oriented circle diagram must
have an even total number of undotted cups plus undotted caps.

We are now also able to define the shift of grading in Proposition 4.5.

Definition 4.12. Let λµ be a circle diagram that can be equipped with an
orientation. The degree of the diagram λνµ where the orientation is chosen
such that all circles are oriented anticlockwise is called the minimal degree
of λµ and denoted by mdeg(λµ).

Proof of Proposition 4.5. If λµ is not orientable, the statement is trivial.
Assume otherwise. The map Ψλµ is a well-defined map of vector spaces.
Moreover the degree of λνµ equals mdeg(λµ) + 2|Cclock(λνµ)| by Proposi-
tion 4.9 which is by definition the same degree as its image under Ψλµ, hence
Ψλµ is homogeneous of degree zero. It only remains to show that the basis
BΛ ∩ µ(DΛ)λ of µ(DΛ)λ is mapped to a basis. The relations from Defini-
tion 4.3 imply that the monomials in the Xi’s, where i runs through the set
J of rightmost points of the circles in λµ generateM(λµ) as a vector space.
By Remark 4.11 the number of undotted cups plus undotted caps is even,
hence the relations imply that Xi for i ∈ J is non-zero in M(λµ). Since
the relations only couple indices in the same component of the diagram, the
monomials in the Xi’s with i ∈ J are linearly independent. �

4.3. The diagrammatic multiplication rule. We fix a block Λ. To de-
fine the product of two basis elements (aλb) and (cµd) in DΛ we describe
now what is called the decorated generalized surgery procedure.

Take the two circle diagrams (aλb) and (b∗µd) ∈ DΛ and put (b∗µd) on
top of (aλb) stitching all the lower vertical rays of (b∗µd) together with their
mirror images in the top part of (aλb). In case the rays are dotted, eliminate
these dots. Since dots will always be removed in pairs, the new diagram will
be orientable (in the obvious sense), see Definition 5.3. In fact it just inherits
an orientation from the original orientations.

Pick a symmetric pair γ of a cup and a cap (possibly dotted) in the middle
section of (aλb)(b∗µd) that can be connected without crossing rays or arcs
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and such that to the right of γ there are no dotted arcs. That means if we
replace γ by two vertical lines all involved diagrams remain admissible.

Now perform this replacement, i.e. forgetting orientations for a while, cut
open the cup and the cap in γ and stitch the loose ends together to form a
pair of vertical line segments (always without dots even if there were dots
on γ before):

(4.20)

Each time this procedure is performed, we define a linear map, surgD,D′ ,
from the vector space with basis all orientations of the diagram D we have
before the procedure to the the vector space with basis all orientations of
the diagram D′ we have after the procedure. Composing these maps until
we reach a situation without any cup-cap-pairs left in the middle part will
give the multiplication. That is the result of the multiplication of (aλb)
and (b∗µd) will be a linear combination of oriented diagrams where the
underlying shape is just obtained by applying (4.20) to all cup-cap pairs.

The definition of the map surgD,D′ depends on whether the number of
components increases, decreases or stays the same when passing from D to
D′. There are three possible scenarios:

I Merge: two components are replaced by one component, or
I Split: one component is replaced by two components, or
I Reconnect: two components are replaced by two new components.

To define the surgery map surgD,D′ attached to γ denote by i the left and
by j the right vertex of the cup (or equivalently the cap) in γ. Depending
on these numbers i < j we define surgD,D′ on the basis of orientations of D:

Merge: Assume components C1 and C2 are merged into component C.

I If both are clockwise circles or one is a clockwise circle and the
other a line, the result is zero.

I If both circles are anticlockwise, then apply (4.20) and orient
the result anticlockwise.

I If one component is anticlockwise and one is clockwise, apply
(4.20), orient the result clockwise and also multiply with (−1)a,
where a is defined in (4.21).

Split: Assume component C splits into Ci and Cj (containing the ver-
tices at i respectively j). If, after applying (4.20), the diagram is not
orientable, the map is just zero. Hence assume that the result is ori-
entable, then we have:
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I If C is clockwise, then apply (4.20) and orient Ci and Cj clock-

wise. Finally multiply with (−1)p(i)(−1)ar , where ar is defined
in (4.22).

I If C is anticlockwise, then apply (4.20) and take two copies of
the result. In one copy orient Cj anticlockwise and Ci clock-

wise and moreover multiply with (−1)p(i)(−1)ai ; in the other
copy orient Ci anticlockwise and Cj clockwise and multiply with

(−1)p(i)(−1)aj , where ai and aj are defined in (4.23).

Reconnect: In this case two lines are transformed into two lines by
applying (4.20). If the new diagram is orientable, necessarily with the
same orientation as before, do so, otherwise the result is zero.

For a component C in an orientable diagram D obtained by the above
procedure we denote by t(C) the rightmost vertex on C. For two vertices
r, s in D connected by a sequence of arcs let aD(r, s) be the total number
of undotted cups plus undotted caps on such a connection. (By Remark 5.8
this is independent of the choice of the connection.)

Then the signs are defined as follows: in the merge case in question

a = aD(t(Cr), t(C)), (4.21)

where Cr (r ∈ {1, 2}) is the clockwise component (necessarily a circle);
and for the split cases

ar = aD′(r, t(Cr)) + u, (4.22)

where r ∈ {i, j} such that Cr does not contain t(C) and u = 1 if γ is
undotted and u = 0 if it is dotted. Finally

aj = aD′(j, t(Cj)) and ai = aD′(i, t(Ci)) + u, (4.23)

where u = 1 if γ is undotted and u = 0 if γ is dotted.

For explicit examples see Section 6.3. Note that the involved signs depend
on the whole diagram and are responsible for the non-locality of the multi-
plication rule. In particular, the associativity of the multiplication becomes
a non-obvious fact. Moreover it needs to be shown that the result of the
multiplication does not depend on the chosen order of the cup-cap-pairs. For
instance in the Examples 6.5-6.8 we also compare different orderings. Both
facts follow for the type A version, from [26] and [7], easily from topological
arguments, which are not applicable here. The next two section will deal
with these two issues.

5. Diagrammatic and algebraic surgery

For the formal definition of the multiplication in the Khovanov algebra
DΛ we first introduce the notion of a stacked circle diagram, which is slightly
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more general than the notion of circle diagrams, since several of them can
be stacked on top of each other. Afterwards we define the combinatorial and
algebraic surgery maps and prove the commutativity theorem for surgeries as
in Theorem 5.34 which finally implies the associativity of the multiplication.

5.1. Stacked circle diagrams. We fix a block Λ with block diagram Θ.

Definition 5.1. Let h ∈ Z≥0. An (admissible) stacked circle diagram of
height h for Λ is a sequence, λ(a)µ, of circle diagrams of the form

λa∗1, a1a
∗
2, . . . , ah−1a

∗
h, ahµ,

such that λ, µ ∈ Λ and all as, for 1 ≤ s ≤ h, are cup diagrams for Θ. In
case h = 0 we just have an ordinary circle diagram λ(a)µ = λµ.

We represent stacked circle diagrams diagrammatically by vertically stack-
ing h+1 decorated circle diagrams on top of each other starting with λ in the
bottom and ending with µ at the top such that the vertices for the l-th dia-
gram have coordinates (x, l−1) with x ∈ Z>0 as in the circle diagram. Note
that the middle sections consists of symmetric diagrams a∗sas, 1 ≤ s ≤ h.
We call the cap and cup diagrams involved in these internal .

Remark 5.2. Note that the internal cup diagrams in a stacked circle dia-
gram need not be diagrams obtained from weights in the block Λ, but only
ones that are compatible with the block diagram Θ.

The following generalizes the notion of oriented circle diagrams.

Definition 5.3. Let D = λ(a)µ be a stacked circle diagram of height h for
Λ. By an orientation of D we mean a sequence ν = (ν0, . . . , νh) of weights
in Λ, such that if we label the vertices of asa

∗
s+1 by νs (with a0 = λ and

a∗h+1 = µ) all connected components in the vertically stacked diagram are
oriented, where again the •’s should be seen as orientation reversing points.
An oriented stacked circle diagram is a stacked circle diagram λ(a)µ together
with an orientation ν, denoted by λ(a,ν)µ. We call D orientable if there
exists an orientation of D.

To define the surgery procedure we introduce the notion of a surgery:

Definition 5.4. Let D and D′ be stacked circle diagrams of height h > 0,
say D = λ(a)µ and D′ = λ(b)µ. Then we say that D′ is obtained from D by
a surgery if there exists exactly one 1 ≤ l ≤ h such that bl 6= al, and this bl
is obtained from al by replacing exactly one cup connecting positions i < j
in al by two (undotted) rays. More precisely, in this case D′ is obtained
from D by a surgery at positions i < j on level l.

Note that in this case D and D′ differ only locally as in (4.20).

Definition 5.5. If the number of connected components decreases in a
surgery from D to D′ we call the surgery a merge, if the number increases
we call it a split, and if the number stays the same we call it a reconnect.
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As in the case of circle diagrams many of the formulas for stacked cir-
cle diagrams depend on a chosen rightmost vertex in each component, but
in contrast to the circle diagram case such vertices are not unique. The
restriction of only working with admissible diagrams ensures that at least
the rightmost vertices in all occurring circles have the same label. This will
allow us to define (anti)clockwise circles in oriented stacked circle diagrams.
We first introduce so-called tags:

Definition 5.6. Let D = λ(a)µ be a stacked circle diagram of height h for
Λ. A tag t of D is an assignment

t : C (D) −→ P�(Λ)× {0, . . . , h},
where C (D) is the set of all circles in D, such that for each C ∈ C (D) we
have t(C) = (i, l) ∈ C with i maximal amongst all vertices contained in C.
We call t(C) the tag of C (induced from t).

The following sign is independent of the choice of tags.

Lemma 5.7. Let D = λ(a)µ be an orientable stacked circle diagram of
height h for Λ with tag t. Let 0 ≤ l ≤ h and i ∈ P�(Λ) such that the
connected component C of D containing (i, l) is a circle. Define

signD(i, l) = (−1)#{j | deco(γj)=0 and γj is a cup/cap}

where γ1, . . . , γt is a sequence of arcs in D such that their concatenation is a
path from (i, l) to t(C). Then signD(i, l) is independent of t and the chosen
sequence of arcs.

Proof. Since the circle C is orientable, signD(i, l) does not depend on which
sequence of arcs one chooses from (l, i) to t(C) by Remark 4.11.

To show that it is independent of the chosen tag, note that if t′ is another
tag then by definition the first coordinate agrees, i.e. t(C)1 = t′(C)1 = imax.
Let tmax and tmin be tags such that, tmax(C)2 is maximal and tmin(C)2 is
minimal. If tmax(C)2 = tmin(C)2 then tmax(C) = tmin(C) and there is only
one possible image of C under a tag and there is nothing to prove. Hence
assume that the second coordinates are different.

We can decompose the circle C into two connected components, C1 and
C2, intersecting in tmax(C) and tmin(C) and chosen such that C1 contains
the cap containing tmax(C).

Since all vertices (j, l′) on the circle satisfy j ≤ imax by definition, the
only possibility is that C1 also contains the cup containing tmin(C) and all
vertices (j, l′) on C1 satisfy j < imax, except for tmax(C) and tmin(C). This
implies that t′(C) ∈ C2 for any tag t′. This implies that by admissibility C2

cannot contain any dotted cups or caps. Since C2 starts with an arc in the
cup diagram containing tmax(C) and ends with an arc in the cap diagram
containing tmin(C) it must contain an even total number of cups and caps.
A similar argument also holds for any other tag t′ using a sequence of arcs
connecting tmax(C) and t′(C). This implies that signD(i, l) does not change
when we change the tag. �
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Remark 5.8. In case two vertices (i, l) and (i′, l′) lie on a common circle,
the product signD(i, l)signD(i′, l′) has an alternative expression, namely

signD(i, l)signD(i′, l′) = (−1)#{j | deco(γj)=0 and γj is a cup/cap} (5.24)

where γ1, . . . , γt is a sequence of arcs connecting the two vertices. Hence it
can be computed by counting undotted cups and caps on a sequence of arcs
connecting the two vertices.

Corollary 5.9. Let D = λ(a,ν)µ be an oriented stacked circle diagram of
height h and C a circle in D. Let t, t′ be tags of D and let t(C) = (i, l) and
t′(C) = (i, l′). Then the symbols at the i-th vertex in νl and νl′ agree.

Proof. By the proof of Lemma 5.7 the total number of undotted cups and
caps between (i, l) and (i, l′) is even. Since these are the only arcs that force
a change from ∧ to ∨ or vice versa, the statement follows. �

Definition 5.10. For an oriented stacked circle diagram D and a tag t, a
circle C is called clockwise if the symbol at t(C) is ∨ and anticlockwise if it
is ∧. This is well-defined by Corollary 5.9. By definition we call the unique
orientation of a line anticlockwise. Moreover we call a circle small if it only
involves one cup and one cap.

The following is a direct generalization of Definition 4.12.

Definition 5.11. For an orientable stacked circle diagram D we denote
by mdeg(D) the degree of the unique orientation such that all circles are
oriented anticlockwise. (This exists by the same reason as in Lemma 4.8.)

Similar to the height 0 case, see (4.17), we define a vector space with a
basis consisting of all possible oriented stacked circle diagram with a fixed
internal part.

Definition 5.12. For a = (a1, . . . , ah) a sequence of cup diagrams for Θ set

Ba
Λ = {λ(a,ν)µ | oriented for λ, µ, νi ∈ Λ} .

By Da
Λ we denote the complex vector space with basis Ba

Λ and for fixed
λ, µ ∈ Λ by λ(Da

Λ)µ the subspace with basis consisting of oriented diagrams
of the form λ(a,ν)µ for arbitrary ν.

5.2. Diagrammatic surgery. We first describe the surgery map more
carefully diagrammatically, and afterwards give an algebraic interpretation
of all the involved spaces and maps. The principle idea of the multiplication
follows [7], but in contrast to the situation therein it can happen that the
resulting diagrams can not be oriented at all in which case the result of the
surgery procedure is declared to be zero.

Let still fix a block Λ. Let D = λ(a)µ and D′ = λ(b)µ be two stacked
circle diagrams of height h for Λ with D′ obtained from D by a surgery at
positions i < j on level l. We now define the surgery map

surgD,D′ : λ(Da
Λ)µ −→ λ(Db

Λ)µ, (5.25)
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separately for each of the three possible scenarios Merge, Split, Reconnect
in Definition 5.5. For illustrating examples we refer to Section 6.3.

5.2.1. Merge: Denote the component of D containing (i, l − 1) by Cl−1,
the component containing (i, l) by Cl, and the component in D′ containing
(i, l − 1) by C. The map surgD,D′ from (5.25) is given by

λ(a,ν)µ 7−→



λ(b,ν′)µ if Cl−1 and Cl are both anticlockwise,
σ1λ(b,ν′′)µ if Cl−1 is clockwise and

Cl is anticlockwise,
σ2λ(b,ν′′)µ if Cl−1 is anticlockwise and

Cl is clockwise,
0 if Cl−1 and Cl are both clockwise,

where ν′ respectively ν′′ are obtained by changing ν such that the com-
ponent C is oriented anticlockwise respectively clockwise. If C cannot be
oriented clockwise (i.e. it is a line) then the corresponding term is defined
to be zero. Furthermore the signs σ1, σ2 ∈ {±1} are given by

σ1 = signD(i, l − 1)signD′(i, l − 1) and

σ2 = signD(i, l)signD′(i, l).

Instances of surgery maps in the merge case are the maps surgD,E1
and

surgD,E2
in the two situations from Example 6.5.

Remark 5.13. The map surgD,D′ is based on the multiplication map of the

algebra C[x]/(x2) and the action on its trivial module C = Cy with basis y.

C[x]/(x2) 1⊗ 1 7→ 1, 1⊗ x 7→ x, x⊗ 1 7→ x, x⊗ x 7→ 0,
Cy 1⊗ y 7→ y, x⊗ y 7→ 0,

where 1 is interpreted as an anticlockwise circle, x as a clockwise circle and
y as a line, cf. [7]. Merging a line with a circle looks as follows

∧ ∧

∧ ∧

∧ ∧

∧ ∧

∧ ∧

∨ ∨

∨ ∨

∨ ∨

∨ ∨

∧ ∧

0

∨ ∨

∨ ∨
0

Here the dashed lines indicate that this piece of the diagram is contained
in a component that forms a line. The formulas for lines arise from the
formulas for the circles by remembering that lines can be only oriented
anticlockwise. In particular the last two pictures give zero.

5.2.2. Split: Denote by C and Ca respectively the components in D con-
taining (i, l) and in D′ containing (a, l) for a = i, j. The map surgD,D′ from
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(5.25) is then given by

λ(a,ν)µ 7−→



(−1)p(i) (σ1λ(b,ν′)µ+ σ2λ(b,ν′′)µ) if C is anticlockwise
and i j in D,

(−1)p(i) (σ1λ(b,ν′)µ− σ2λ(b,ν′′)µ) if C is anticlockwise
and i j in D,

(−1)p(i)σ3λ(b,ν′′′)µ if C is clockwise,

0 if D′ is not orientable,

where ν′ respectively ν′′ are obtained by changing ν such that the Cj is
oriented clockwise and Ci is oriented anticlockwise respectively Cj anticlock-
wise and Ci clockwise, ν′′′ is obtained by changing ν such that both Ci and
Cj are oriented clockwise. Furthermore the signs σi are given by

σ1 = signD′(j, l),

σ2 = signD′(i, l), and

σ3 = signD(i, l)signD′(i, l)signD′(j, l).

Remark 5.14. Using Remark 5.24, the first two cases can in fact be com-
bined into one case via the formula

λ(a,ν)µ 7−→ (−1)p(i)
(
σ1λ(b,ν′)µ+ signD(i, l)signD(j, l)σ2λ(b,ν′′)µ

)
,

because signD(i, l)signD(j, l) equals 1 if the cup-cap-pair is dotted and −1
if it is undotted.

Instances for surgery maps in the split case are the maps surgD,E1
and

surgD,E2
in the two situations in Example 6.6. Furthermore Example 6.8

shows a surgery map in a split case, namely surgD,E1
, where the resulting

diagram is not orientable.

Remark 5.15. In this case the surgery map is based on the comultiplication
map of the algebra C[x]/(x2) and its trivial comodule Cy

C[x]/(x2) 1 7→ 1⊗ x+ x⊗ 1, x 7→ x⊗ x,
Cy y 7→ y ⊗ x,

with the same interpretation of 1 and x as above in Remark 5.13. Again of
special note is the rule involving lines, for example

∨ ∨ ∧

∨ ∨ ∧

∨ ∧ ∨

∨ ∧ ∨

∧ ∧ ∨

∧ ∧ ∨

∧ ∧ ∨

∧ ∧ ∨

∧ ∨ ∧

∧ ∨ ∧

∧ ∧ ∨

∧ ∧ ∨

Again we can think of this as a degenerate case of the first rule in (5.26),
using that lines only admit anticlockwise orientations, which eliminates the
second term in the formula for the comultiplication.



DIAGRAMS FOR PERVERSE SHEAVES ON ISOTROPIC GRASSMANNIANS 29

5.2.3. Reconnect: This situation can only occur if the cup and cap lie on
two distinct lines. In this case surgD,D′ is given by

λ(a,ν)µ 7−→

 λ(b,ν)µ if ν is an orientation for D′ and the
two lines in D were propagating,

0 otherwise.

Remark 5.16. In the notation from Remark 5.13, this is the rule

y ⊗ y 7→

 y ⊗ y if both lines propagate and reconnecting
as in (4.20) gives an oriented diagram,

0 otherwise.
(5.26)

Since lines have only one possible orientation, determined by the (forced)
label on the rays at the ends of the line, the shape of the bottom cup diagram
as well as the top cap diagram (in particular its rays) get not changed in
the surgery procedure; and therefore the labels don’t change either. Hence
the result is orientable if and only if we are in the first case of (5.26).

Example 5.17. We now show some non-zero surgery moves for two lines.

This completes the diagrammatic definition of the surgery procedure.

5.3. Reduction to circle diagrams without lines. By Definition 5.10
we call the unique orientation of a line anticlockwise. This is made precise
in the following observation, which also explains the special multiplication
rule for the reconnect case in a more conceptual way, see [39] for a similar
observation in type A.

Fix a block Λ = ΛεΘ with s = |P�(Λ)|. Define a new block sequence Θ̂ by
replacing s times the symbol ◦ by � to the far right, i.e. choose r minimal

with r > i for all i ∈ P×(Λ) ∪ P�(Λ) and set Θ̂r+j = � for 0 ≤ j < s and

Θ̂i = Θi otherwise. An example (with s = 2 and r = 4) would look like this

Θ = ��× ◦ ◦ ◦ ◦ · · ·  Θ̂ = ��× �� ◦ ◦ · · · . (5.27)

This procedure defines a new block Λ̂ = Λε+s
Θ̂

and any oriented cup diagram

λν for Λ can be turned into a diagram λ̂ν̂ for Λ̂ in the following way

Step 1: Set ν̂r+j = ∧ for 0 ≤ j < s and otherwise ν̂i = νi.
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Step 2: Starting from right to left replace any ray in λ by a cup connecting
the position for the ray with the first (from the left) free symbol ∧
at positions r, . . . , r+ s− 1. We choose the decoration of the cup to
be the decoration of the deleted ray.

Step 3: If there are symbols at positions r, . . . , r + s− 1 not connected to a
cup, then connect neighbouring symbols from left to right by dotted
cups.

Due to admissibility of the original diagram this procedure is well-defined,
and yields an (admissible) oriented cup diagram without rays. Here are two
examples for the block sequence in (5.27):

∨ ∨ ×  ∨ ∨ × ∧ ∧ ∨ ∨ ×  ∨ ∨ × ∧ ∧

By definition, all newly created cups will be oriented anticlockwise. This
construction can also be applied to cap diagrams. In the case of stacked circle
diagrams we perform this procedure only for the top cap diagram and the
bottom cup diagram, for all internal cup diagrams we simple add s undotted
rays at positions r, . . . , r + s − 1. In this case any newly created circles,
especially those obtained by replacing lines, are oriented anticlockwise. In
particular we have embeddings

ι : λ(Da
Λ)µ ↪→

λ̂
(Dâ

Λ̂
)µ̂, (5.28)

sending an oriented stacked circle diagram to its extension. The images have
as basis the oriented diagrams inside

λ̂
(Dâ

Λ̂
)µ̂ such that all labels at positions

(r, l), . . . , (r + s− 1, l) for 0 ≤ l ≤ h are ∧. We denote by π the projections
onto these subspaces sending oriented stacked circle diagrams not contained
in the images to zero.

The surgery rules Merge and Split applied to lines can now be replaced
by the surgery rule on these extended diagrams followed by a projection
onto the vector space spanned by diagrams where all the labels at positions
r, . . . , r + s− 1 are ∧.

The interpretation of the reconnect rule for two lines L,L′ needs some
further explanation. Observe that, because of admissibility, there are no
non-propagating lines to the right of a propagating line. This implies that
when extending the diagram, the propagating lines are connected in order
from right to left to the first new symbols in order from left to right and
each such line produces exactly one circle. Moreover, if a non-propagating
line connects positions i and j, there can be no further line attached to any
position between i and j by admissibility. This implies that the two ends of
non-propagating lines are connected to two neighbouring new vertices.
I If L and L′ are propagating then the surgery on the extended diagram is
a Merge and creates an anticlockwise circle (by the first observation). If the
orientations do not match already we need to change one of the orientation
of one of the original circles to obtain the new orientation, which changes
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one of the newly created labels to ∨ which is sent to zero by the projection.
I If L is propagating and L′ non-propagating then the surgery on the ex-
tended diagram is a Merge. Since the surgery is assumed to produce an
admissible diagram, there can’t be any dots to the right of the cup-cap-pair
on either of the two lines. This implies that the cup/cap belonging to the
propagating line is automatically oriented anticlockwise, whereas the one of
the non-propagating line is automatically oriented clockwise. In this case
we need to reorient, producing a diagram killed by the projection.
I If L and L′ are non-propagating both Merge and Split can occur. If the
surgery on the extended diagram is a Split, it always produces one clockwise
circle. The result is killed by the projection since the tag of the clockwise
circle is one of the newly created vertices. In the Merge situation we have
the following two possible scenarios (and their mirror images), where in case
i) the black dashed part can’t have any dots and is therefore not orientable,
while in case ii) some of the red dashed parts have to carry dots, but the
Merge reorients one of the circles, hence the result is again zero after apply-
ing the projection π.

i)

 
ii)

To summarise:

Proposition 5.18. Our original surgery procedure agrees with the following
procedure: first extend the diagrams using ι from (5.28), then perform the
extended surgery, followed by the projection π and finally take the preimage
ι−1 of the resulting diagram.

Let N(a, λ, µ) ⊂
λ̂
(Dâ

Λ̂
)µ̂ denote the complement spanned by the diagrams

where at least one of the labels at a vertex greater than r is ∨. Then by
definition of Merge and Split

surg
D̂,D̂′

(N(a, λ, µ)) ⊂ N(b, λ, µ),

where D′ = λ(a)µ and D′ = λ(b)µ. For the algebra D
Λ̂

from Theorem 6.2
this implies inclusions⊕

λ,µ∈Λ

N(∅, λ, µ) ⊂
⊕
λ,µ∈Λ

λ̂
(D

Λ̂
)µ̂ ⊂ D

Λ̂
,

the first as an ideal, and the second as a subalgebra. Hence

DΛ
∼=

⊕
λ,µ∈Λ

λ̂
(D

Λ̂
)µ̂ /

⊕
λ,µ∈Λ

N(∅, λ, µ) (5.29)
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as algebras. This isomorphism of algebras allows us (namely via the ex-
tended surgery rule) to express the multiplication in DΛ in terms of circle
diagrams without rays.

5.4. Surgery and grading. We show the following.

Proposition 5.19. Let D and D′ be stacked circle diagrams such that D′

is obtained from D by a surgery. Then the map surgD,D′ is of degree zero.

Proof. Let us first assume that the surgery is performed at an undotted
cup-cap-pair then we have one of the following situations:

i) ii) iii) iv) (5.30)

We distinguish between the cases Merge, Split and Reconnect.
Assume first that we have a merge from two circles, say C1 and C2 to

a circle C. Assume C1 contains the cup. If C1 and C2 are both oriented
clockwise, there is nothing to check since the map is zero. In case one of
the two components is a line we use Section 5.3 to think of the line as an
anticlockwise circle.
I Case i): If both circles are anticlockwise, the surgery sticks them together
and does not change the orientation. Removing the cup-cap-pair clearly
preserves the degree. If one, say Ca, is clockwise then by Lemma 5.20 below
it must contain all possible tags of C and the surgery does not change its
orientation, again removing the cup-cap-pair preserves the degree.
I Case ii): If both are anticlockwise, then by Lemma 5.20 both must contain
the possible tags of C, which is impossible. If one, say Ca, is clockwise, then
the other one, say Cb, contains all the possible tags. Hence surgery will
stick them together and for the orientation we need to change all labels of
vertices in both circles, preserving the degree and afterwards the cup-cap-
pair eliminated is of degree zero as well.
I Case iii): If both are anticlockwise, then by Lemma 5.20 C2 contains
all possible tags of C, thus to obtain the orientation of the image we need
to reorient C1 increasing the degree by 2, but afterwards the cup-cap-pair
eliminated is of degree 2 as well, giving us degree zero in total. If C1 is
clockwise and C2 is anticlockwise, then by Lemma 5.20 both contain all
tags, which is impossible. If on the contrary C1 is anticlockwise and C2

clockwise then no matter which of the two circles contains a tag of C we
need to reorient C1. We first increase the degree of the diagram by 2 and
afterwards delete a cup-cap-pair of degree 2. If one component is a line then
by definition this must be C2 thus the argument is valid as well.
I Case iv): This is done exactly analogous to Case iii) by just switching
the roles of C1 and C2.
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Since we only used Lemma 5.20 to see which circle must be reoriented,
putting dots on the cup-cap-pair in (5.30) and changing the left labels does
not change any of the arguments. Hence the claim follows for merges.

Assume now that the surgery is a split. Let C be the original circle and
assume the surgery is performed at positions i < j at level l and denote by
Ci the circle containing (i, l) and by Cj the circle containing (j, l) inside D′.
We can assume that D′ is orientable, otherwise the surgery is zero anyway.
Observe that due to orientability it follows that Cases iii) and iv) are not
possible. The general shapes of the possible configurations are

(5.31)

with possibly additionally some dots. Again if one of the two components
is a line we use Section 5.3 to reduce it to the circle case.
Consider the first shape in (5.31). Assume C is anticlockwise and the se-
quence of arcs connecting (i, l) and a tag of C contains an even number of
dots then the cup-cap-pair is of Case i). The split will create Ci anticlockwise
and Cj clockwise if we leave the orientation preserving the degree. Again,
to obtain the second term one reorients both circles without changing the
degree. If the original circle was the closure of a line then Ci would be after
the surgery, so the arguments are also valid in this case. If C is clockwise
and the condition on dots stays the same we see that the cup-cap-pair is of
Case ii). The split creates Ci clockwise and Cj anticlockwise if we leave the
orientation. Thus we need to reorient Cj increasing the degree by 2 which
cancels with the fact that we deleted a degree 2 cup-cap-pair. If we choose
an odd number of dots and C anticlockwise, then the cup-cap pair is of
Case ii) and both Ci and Cj are anticlockwise with the original orientation.
In this case we need to reorient one of them, but also deleted a degree 2
cup-cap pair, thus preserving the degree. If we choose an odd number of
dots and C clockwise, both circles would be clockwise automatically.

Now consider the second shape in (5.31). If the circle C is oriented an-
ticlockwise the cup-cap-pair is of Case i) and then Ci is clockwise and Cj
anticlockwise if stitched together with the same orientation and removing
the degree 0 cup-cap-pair. To obtain the second term in the surgery we need
to reorient both circles afterwards, but the two degree changed cancel. If
the circle is oriented clockwise the cup-cap-pair is of Case ii) we split into
Ci anticlockwise and Cj clockwise if we preserve the orientation. Thus we
need to change the label of all the vertices in Ci increasing the degree by 2,
but this cancels with the fact that we deleted a degree 2 cup-cap-pair. The
arguments for the third shape in (5.31) are analogous.
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In case our cup-cap-pair is dotted, then we just consider the shapes dis-
played in (7.49) and apply the same arguments.

Assume finally that we have a reconnect. In this case the map is only
non-zero for propagating lines where the orientations match. We leave it
to the reader to check that, since there are no dots to the right of the two
propagating lines, we are back in Case i) and the claim is clear. �

Lemma 5.20. Let λ(a,ν)µ be an oriented stacked circle diagram which
allows a Merge at positions i < j at level l resulting in a circle C ′. Denote by
γ one of the two arcs connecting (i, l) with (j, l) or (i, l−1) with (j, l−1) and
let C be the circle containing γ. Then if γ and C have different orientations
then C contains all possible tags of C ′.

Proof. Let us first assume γ is an undotted cup. Choose a tag (c, l′) for C
and look at a path α of arcs connecting (j, l) and (c, l′) not containing (i, l).
With α indicated by a dotted curve, the two possibilities for the non-ray
arc closest to (c, l′) in α are shown below, namely a cap in i) and a cup in
ii).

ii)
γ

α (c,l′)

i)
γ

α (c,l′)

(5.32)

In both cases the dashed connection indicates how the tag (c, l′) is connected
to (i, l). Since the point (c, l′) was assumed to be a tag of C, the dashed part
cannot contain any points to the right of (c, l′) resulting in the given shape.
In case i) it is obvious that all points of the circle containing the cap must
be strictly to the left of (c, l′) proving the claim in this case. In case ii) it
follows that the dotted segment must contain an odd number of dots since
the two vertices (j, l) and (c, l′) are assumed to be labelled differently. By
admissibility this implies that the dotted segment must contain at least one
dotted cup in as for s ≤ l− 1, which implies again that the circle containing
the cap can only contain vertices strictly to the left of (c, l′).

The case of the cap is done exactly in the same way and since we only
looked at the label of the right vertex of the cup respectively cap and how
it differs from the label at the tag it also makes no difference whether the
cup/cap is dotted or not. �

5.5. Algebraic surgery. In this section we present an alternative descrip-
tion of the surgery maps in terms of commutative algebra. This approach is
often better for general proofs and also connects to the geometry of Springer
fibres, see [14], [40]. We still fix a block Λ.
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Definition 5.21. Let D = λ(a)µ be a stacked circle diagram of height h
for Λ. We define the vector space M(D), where M(D) = {0} if D cannot
be equipped with an orientation, and otherwise set

M(D) = C[X(i,l) | 0 ≤ l ≤ h, i ∈ P�(Λ)]/I(D) 〈mdeg(D)〉
where mdeg is as in Definition 4.12 and the ideal I(D) is generated by the
following relations for 0 ≤ l ≤ h and i, j ∈ P�(Λ)

X2
(i,l)

X(i,l) +X(j,l) if i j in ala
∗
l+1,

X(i,l) −X(j,l) if i j in ala
∗
l+1,

X(i,h) if i or i in a∗h+1,
X(i,0) if i or i in a0,

X(i,l−1) −X(i,l) if i or i in al and l /∈ {0, h+ 1}.


(5.33)

Again we put for simplicity a0 = λ and a∗h+1 = µ.

Remark 5.22. For stacked circle diagrams of height 0 the definition agrees
with the one from Proposition 4.5 when identifying Xi with X(i,0).

Lemma 5.23. The dimension dim(M(D)) of M(D) equals the number of
possible orientations of D. In particular M(D) 6= {0} if D can be equipped
with an orientation.

Proof. By definition M(D) = {0} if D is not orientable. If D is orientable,
the defining relations (5.33) of M(D) only involve variables X(i,l), where
the indices (i, l) label vertices on the same component, the X(i,l)’s from
different components are linearly independent or zero. Similar to the proof
of Proposition 4.5 it follows that the indeterminants belonging to the same
component only differ by at most a sign and are non-zero in the case of
circles. Which implies thatM(D) is isomorphic to a tensor product of vector
spaces, one for each connected component of D, which are 1-dimensional for
lines and 2-dimensional for circles, proving the statement. �

The following generalises Proposition 4.5.

Proposition 5.24. Let D = λ(a)µ be an admissible stacked circle diagram
for Λ. Then there is a natural isomorphism of graded vector spaces

ΨD : λ(Da
Λ)µ −→ M(D)

λ(a,ν)µ 7−→
∏

C∈Cclock(λ(a,ν)µ)

Xt(C), (5.34)

where Cclock(λ(a,ν)µ) is the set of clockwise oriented circles in λ(a,ν)µ and
t is a tag for D.

Proof. That the map is independent from the chosen tag follows directly
from Corollary 5.9. That it is an isomorphism follows from Lemma 5.23 and
the same argument as in the proof of Proposition 4.5 which shows that the
image of the standard basis is a basis. �
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For two stacked circle diagrams D = λ(a)µ and D′ = µ(a′)η of height

h respectively h′ denote by D ◦ D′ = λ(b)η the stacked circle diagram of
height h + h′ + 1, where b = (a1, . . . , ah, b, a

′
1, . . . , a

′
h′), with b being equal

to µ except that all rays are undotted.

Lemma 5.25. Let D = λ(a)µ and D′ = µ(a′)η be stacked circle diagram of

height h respectively h′ and D ◦D′ = λ(b)η. Then there exists an injective
map of graded vector spaces

glueD,D′ : λ(Da
Λ)µ ⊗ µ(Da′

Λ )η −→ λ(Db
Λ)η,

λ(a,ν)µ⊗ µ(a′,ν′)η 7−→ λ(b,ν′′)η,

with ν′′ = (ν0, . . . , νh, ν
′
0, . . . , ν

′
h′).

Proof. By definition the map is well-defined, and obviously injective and of
degree zero. �

Remark 5.26. We avoid giving the algebraic definition of the glueing map,
since its definition is more involved than the one using the diagrammat-
ics. This is due to the fact that when stitching two stacked circle diagrams
together two non-propagating lines might combine to form a circle (auto-
matically oriented clockwise). This phenomenon is easy to describe in terms
of diagrams, but cumbersome in algebraic terms.

Internal parts consisting of rays only can be collapsed:

Lemma 5.27. Let D = λ(a)µ be a stacked circle diagram of height h such
that a1, . . . , ah only consist of rays. Then there exists an isomorphism of
graded vector spaces

collapseD : λ(Da
Λ)µ −→ λ(DΛ)µ,

λ(a,ν)µ 7−→ λν0µ.

Proof. That the map is well-defined follows directly from the definitions,
since ν0 = . . . = νh by assumption on D. It is obviously of degree zero. �

Lemma 5.28. Let D = λ(a)µ and D′ = λ(b)µ be stacked circle diagrams
such that D′ is obtained from D by a surgery at level l and positions i < j.
Assume that the surgery is a merge. Then under the identification (5.34)
the surgery map from (5.25) is given by

surgD,D′ : M(D) −→ M(D′)

X(s,a) 7−→ X(s,a)

Proof. Let Cl be the component of D containing (i, l), Cl−1 the one contain-
ing (i, l − 1), and C the component of D′ containing both. Let tD be a tag
of D and tD′ a tag of D′. Let first (s, a) be a vertex in Cl then using the
identification (5.34) and the diagrammatic surgery map

X(s,a) = signD(s, a)XtD(Cl)

7−→ signD(s, a)signD(i, l)signD′(i, l)XtD′ (C)

= signD′(s, a)signD′(i, l)signD(s, a)signD(i, l)X(s,a).
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This final coefficient is equal to 1, since there is a sequence of arcs connecting
(s, a) and (i, l) that is not changed by the surgery. The case (s, a) in Cl−1

is done in the same way. �

Lemma 5.29. Let D = λ(a)µ and D′ = λ(b)µ be stacked circle diagrams
such that D′ is obtained from D by a surgery at level l and positions i < j.
Assume that the surgery is a split. Then under the identification (5.34) the
surgery map is given by

surgD,D′ : M(D) −→ M(D′)

f 7−→


(−1)p(i)(X(j,l) −X(i,l))f if i j in al,

(−1)p(i)(X(j,l) +X(i,l))f if i j in al,

0 if D′ is not orientable,

where p is calculated with respect to the fixed block Λ.

Proof. The map is well-defined as a map from C[X(i,l) | 0 ≤ l ≤ h, i ∈ P�(Λ)]
toM(D′). We only need to check that those generators of I(D) that belong
to the cup-cap-pair between (i, l) and (j, l) respectively (i, l−1) and (j, l−1)
are sent to zero, since all other generators are also generators of I(D′) and
hence are sent to zero anyway. If the cup-cap-pair is undotted the generator
in I(D) corresponding to the cup is X(j,l) + X(i,l). Hence multiplied with
X(j,l) − X(i,l) it is zero in M(D′). Now the generator from the cap, i.e.
X(j,l−1) + X(i,l−1) gets multiplied with X(j,l) −X(i,l) which we verify to be
zero inM(D′) by using the relations X(i,l)−X(i,l−1) and X(j,l)−X(j,l−1) in
M(D′). The same holds for the dotted case, and so the map is well-defined.

In case that the resulting diagram is not orientable the maps agree by
definition. Thus assume that D′ is orientable. In the case of applying the
map to an anticlockwise component, one observes that the signs in the dia-
grammatic definition of the surgery are exactly the ones by which X(j,l) and
X(i,l) differ from a tag for their respective components; whereas in case of
a clockwise circle, the circle corresponds to signD(i, l)X(i,l) under identifica-

tion (5.34), which in both cases is mapped to (−1)p(i)signD(i, l)X(i,l)X(j,l).
Rewriting this in terms of tags for both circles gives the desired signs. �

Remark 5.30. As in the diagrammatic definition the signs in the first two
cases in Lemma 5.29 can be combined by using signD(i, l)signD(j, l) again.

5.6. Commutativity of surgeries. In this section we show that if two
successive surgeries can be performed in the opposite order then composing
the surgery maps in any orders will yield the same result. This will allow to
choose an arbitrary sequence of surgeries to define the multiplication.

Definition 5.31. Let D = λ(a)µ be a stacked circle diagram of height h
for Λ and J ⊂ P�(Λ)×{0, . . . , h}. Two elements x1 and x2 of J are directly
connected in D with respect to J if there exists a sequence of arcs in D
connecting x1 with x2 without containing any x ∈ J \ {x1, x2}.
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For a cup-cap-pair in a stacked circle diagram D connecting the vertices
of J = {(i, l − 1), (j, l − 1), (i, l), (j, l)}, we say that two distinct vertices in
J are neighboured if at least one of the two coordinates coincide, otherwise
we say they are opposite.

The next lemma is a technical tool to ensure that two vertices diago-
nally opposite of each other in a given outer cup-cap-pair cannot be directly
connected with respect to the vertices of the pair.

Lemma 5.32. Let D = λ(a)µ be a stacked circle diagram of height h for Λ.
Assume that the vertices i < j are connected by an outer cup in al for some
1 ≤ l ≤ h. Let J = {(i, l − 1), (j, l − 1), (i, l), (j, l)}. Then opposite vertices
in J are not directly connected with respect to J .

Proof. Without loss of generality, assume that (i, l) and (j, l−1) are directly
connected in D with respect to J . By assumption the cup-cap-pair is an
outer cup-cap-pair in al. Hence we can add in an (auxiliary) curve connect-
ing (i, l) and (j, l − 1) without intersecting any arc of D (see the dashed
curve in the pictures below).

But now (j, l) and (i, l − 1) cannot be connected without intersecting the
auxiliary curve, which contradicts that the cup-cap-pair was outer. �

Lemma 5.32 restricts the possible configurations of connections between
two distinct outer cup-cap-pairs.

Lemma 5.33. Let D = λ(a)µ be a stacked circle diagram of height h.
Assume that the vertices a < b are connected by an outer cup in al and
vertices c < d by an outer cup in al′ for some 1 ≤ l, l′ ≤ h. Define

J = {(a, l − 1), (b, l − 1), (a, l), (b, l)},
J ′ = {(c, l′ − 1), (d, l′ − 1), (c, l′), (d, l′)}. (5.35)

Then two neighbouring vertices in J are not directly connected to two oppo-
site vertices in J ′ with respect to J ∪ J ′.

Proof. Without loss of generality, assume that say (a, l) is directly connected
to (d, l′) and (b, l) is directly connected to (c, l′ − 1). This implies that
(d, l′) and (c, l′ − 1) are directly connected with respect to J ′, contradicting
Lemma 5.32. If we assume instead that (a, l − 1) is directly connected to
(c, l′ − 1), we first change the cup-cap-pair in D connecting (a, l) and (b, l)
in al into two lines (like in a surgery) and then argue as above. �
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We now show that surgeries commute if they fit into a square configuration
of four stacked circle diagrams obtained from each other by surgeries as
follows:

D
E2

E1

F

Theorem 5.34. Let D = λ(a)µ be a stacked circle diagram. Assume E1 =
λ(b(1))µ and E2 = λ(b(2))µ are obtained from D by a surgery. Moreover,
assume F = λ(c)µ is obtained from both, E1 and E2, by a surgery. Then

surgE1,F ◦ surgD,E1
= surgE2,F ◦ surgD,E2

.

Proof. The proof requires to distinguish between a number of cases depend-
ing on how the two surgeries interact with each other. Admissibility only
appears in the very last step of the proof to ensure that certain signs vanish.

Let l, a, b be such that E1 is obtained from D by a surgery at level l at
positions a < b (or equivalently F is obtained from E2 by a surgery at the
same level and positions) and let l′, c, d be such that E2 is obtained from D
by a surgery at level l′ at positions c < d (or the same statement for F and
E1). Define J and J ′ as in (5.35) of Lemma 5.33. In the following “directly
connected” always means directly connected with respect to J ∪J ′. We will
distinguish the cases by how (a, l) is connected to the other vertices in J∪J ′.
By Lemma 5.33 there are 6 cases (with some subcases):
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Case 1
a b c d

l

l−1

l′

l′−1

Case 2
a b c d

l

l−1

l′

l′−1

Case 3a
a b c d

Case 3b
a b c d

Case 6a
a b c d

Case 4a
a b c d

Case 4b
a b c d

Case 5a
a b c d

Case 5b
a b c d

Case 6b
a b c d

I Case 1: (a, l) is directly connected to (b, l): In this case surgD,E1
and

surgE2,F , the surgeries involving the cup-cap-pair around the indices in J ,
are both merges. Furthermore it is easy to check that the types of both
surgE1,F and surgD,E2

also agree. Thus the composites agree in both cases.
I Case 2: (a, l) is directly connected to (a, l − 1): In this case surgD,E1

and surgE2,F are both splits that multiply with the same expression, given
in Lemma 5.29, independent of the other surgery. Again it follows that
surgE1,F and surgD,E2

are both also of the same type and the two composites
agree.

These are the only two possibilities how (a, l) can be directly connected
to vertices in J by Lemma 5.32. These arguments are of course also valid
for any of the other vertices instead of (a, l). Hence we may assume

all vertices in J are directly connected to vertices in J ′. (5.36)

I Case 3: (a, l) is directly connected to (d, l′): By Lemma 5.33 there are
two possibilities how (b, l) can be connected to vertices in J ′, namely (b, l)
is directly connected to (d, l′− 1), see Case 3a, or (b, l) is directly connected
to (c, l′), see Case 3b. In the first case we are done by (5.36), since we
observe that the remaining two vertices in J or the remaining two in J ′

must be connected to each other. In the latter case Lemma 5.33 implies
that (a, l − 1) is connected to (d, l′ − 1), and (b, l − 1) to (c, l′ − 1). Then
surgD,E1

and surgD,E2
are merges, while surgE1,F and surgE2,F are splits.
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Using Lemmas 5.28 and 5.29 we know that if F is orientable

surgE1,F ◦ surgD,E1
(f) = (−1)p(c)(X(d,l′) + signD(c, l′)signD(d, l′)X(c,l′))f,

whereas

surgE2,F ◦ surgD,E2
(f) = (−1)p(a)(X(b,l) + signD(a, l)signD(b, l)X(a,l))f,

where we use the observation that the signs do not depend on whether we
determine them in D, E1 or E2. Using the assumption on how the vertices
are connected we know that in M(F ) the following equalities hold

X(d,l′) = signD(a,l′)signD(a,l)X(a,l), X(c,l′) = signD(c,l′)signD(b,l)X(b,l). (5.37)

We are allowed to determine the signs in D due to the fact that there are
connections between (d, l′) and (a, l) respectively (c, l′) and (b, l) which are
not changed by the surgeries. Substituting (5.37) into surgE1,F ◦surgD,E1

(f)
we see that it differs from surgE2,F ◦ surgD,E2

(f) by the scalar

(−1)p(c)−p(a)signD(b, l)signD(d, l′).

We will argue at the end of the proof why this term is 1 if we use that all
diagrams are admissible.
I Case 4: (a, l) is directly connected to (c, l′): By Lemma 5.33 there are
again two possibilities how (b, l) can be connected to vertices in J ′, namely
Case 4a, where (b, l) is directly connected to (d, l′) in which case we are done
by (5.36), or Case 4b, where (b, l) is directly connected to (c, l′ − 1). In this
case Lemma 5.33 forces that (a, l − 1) is connected to (d, l′) and (b, l − 1)
to (d, l′ − 1). Then surgD,E1

and surgD,E2
are splits, while surgE1,F and

surgE2,F are merges. In contrast to Case 3b, here we have to make sure that
if one of the two surgeries produces a non-orientable diagram then the result
of the other split map is zero as well. Let us first assume that both splits
produce orientable diagrams. Then we have

surgD,E1
(f) = (−1)p(a)(X(b,l) + signD(a, l)signD(b, l)X(a,l))f, (5.38)

surgD,E2
(f) = (−1)p(c)(X(d,l′) + signD(c, l′)signD(d, l′)X(c,l′))f. (5.39)

Again we use the assumptions on how the vertices are connected to obtain
for M(E2) the following equalities

X(d,l′) = signD(d,l′)signD(b,l−1)X(b,l−1), X(c,l′) = signD(c,l′)signD(b,l)X(b,l).

Substituting these into equality (5.39) and using additionally the relation
X(b,l−1) = signD(a,l−1)signD(b,l−1)X(a,l−1) in M(E2) we obtain

surgD,E2
(f) (5.40)

= (−1)p(c)(signD(d,l′)signD(b,l−1)X(b,l−1) + signD(d,l′)signD(b,l)X(b,l))f

= (−1)p(c)(signD(d,l′)signD(a,l−1)X(a,l−1) + signD(d,l′)signD(b,l)X(b,l))f.

Since we assumed that E1 is orientable, it holds

signD(d, l′)signD(a, l) = signD(d, l′)signD(a, l − 1).
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Applying the second surgery and using X(a,l−1) = X(a,l) inM(F ) we obtain

surgE2,F ◦ surgD,E2
= ((−1)p(c)−p(a)signD(b,l)signD(d,l′)) surgE1,F ◦ surgD,E1

.

We will deal with the expression involving signs at the end of the proof.
I Case 5: (a, l) is directly connected to (c, l′ − 1): Again, by Lemma 5.33
either (b, l) is directly connected to (c, l′), see Case 5a, in which case we are
done by (5.36), or (b, l) is directly connected to (d, l′− 1), see Case 5b. This
latter case is done analogously to Case 3b. As a result one obtains the same
expression involving signs.
I Case 6: (a, l) is directly connected to (d, l′ − 1): This behaves parallel to
Case 4. The Case 6a, where (b, l) is directly connected to (c, l′− 1), is again
done by assumption (5.36). The Case 6b, where (b, l) is directly connected
to (d, l′) is completely parallel to Case 4b; the two maps in question differ
by the same sign as in Case 4b. Moreover, we observe that only one of the
two sequences of surgeries might yield an orientable sequence of diagrams.
We now deal first with this orientability question.
I Orientability in Cases 4b and 6b: Let us consider Case 4b and assume
that E1 is not orientable (the proof for E2 being not orientable is exactly
analogous). We rewrite the surgery map from Case 4b by rewriting the last
line of (5.40) as

surgD,E2
(f)

= (−1)p(c)
signD(d,l′)signD(b,l−1)(X(b,l−1) + signD(b,l−1)signD(b,l)X(b,l))f.

Since both, (b, l− 1) and (b, l), are on the same connected component in D,
signD(b, l−1)signD(b, l) agrees with (−1)z where z is the number of undotted
arcs in the following sequence α of arcs: first take the direct connection from
(b, l−1) to (d, l′−1), then from (d, l′−1) to (c, l′−1) and finally from (c, l′−1)
to (b, l). By assumption this forms a sequence of arcs connecting (b, l − 1)
and (b, l) that will neither go through (a, l − 1) nor through (a, l). Since
we assumed that E1 is not orientable, z must be odd since α together with
the new arc in E1 connecting (b, l − 1) and (b, l) forms one of the two new
connected components in E1. But this implies surgE2,F surgD,E2

(f) = 0 and
we are done. For Case 6b one argues in exactly the same way.

To finish the proof we exploit the admissibility of all involved diagrams
and show that the total signs appearing in 3b, 4b, 5b, and 6b equal 1.
I Admissible diagrams and signs in Cases 3b, 4b, 5b, and 6b: In these cases
the two composites of surgery maps are either zero or differ by

(−1)p(c)−p(a)signD(b, l)signD(d, l′). (5.41)

We claim this equals 1. We only give the details for the Cases 3b and 4b,
since the other two (5b and 6b) are done completely analogously.

In Case 3b, the vertices in J∪J ′ are connected such that p(a)−p(c) is even.
Furthermore all direct connections (i.e. the sequence of arcs connecting two
vertices in J ∪ J ′ without going through any of the other vertices in J ∪ J ′)
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must contain an odd total number of cups and caps. This implies that

signD(b, l)signD(d, l′) = (−1)#{dotted cups on connection from(b,l) to (d,l′)}.

There are two possible connections from (b, l) to (d, l′), namely

(b, l)→ (c, l′)→ (d, l′) (5.42)

and (b, l)→ (a, l)→ (d, l′). (5.43)

Since (5.42) and (5.43) form an orientable circle in D, the parity of the total
number of dotted cups and caps on each must be the same by Lemma 4.8.
On the other hand there are the connections

(b, l − 1)→ (c, l′ − 1)→ (d, l′ − 1) (5.44)

and (b, l − 1)→ (a, l − 1)→ (d, l′ − 1). (5.45)

Assuming that F is orientable, as otherwise the surgery is zero, we obtain
that the parity of dotted cups and caps on (5.44) agrees with the one on
(5.42). Similarly the one for (5.45) and (5.43) agrees, hence all of them
agree. In this way we obtain two non-intersecting arc sequences from (b, l)
to (d, l′) and two from (b, l − 1) to (d, l′ − 1). An easy observation shows
that two of these sequences may not contain any dotted cups/caps since we
assumed both surgeries to be admissible. Which in turn implies that the
parity of number of dotted cups/caps is even and hence (5.41) equals 1.

In Case 4b we argue in a similar manner, the only difference is that now
p(c) − p(a) is odd and the total number of cups and caps in the following
four connections is odd

(b, l − 1)→ (d, l′ − 1), (b, l − 1)→ (a, l − 1)→ (d, l′),

(b, l)→ (c, l′ − 1)→ (d, l′ − 1), (b, l)→ (a, l)→ (c, l′)→ (d, l′).

Moreover, by orientability, they all have the same parity for the total number
of dotted cups and caps. But there are two connections that are not allowed
to have any dots due to admissibility. Therefore, the parity of the total
number of undotted cups and caps must be odd in each case. Hence the two
signs in (5.41) cancel and we obtain 1 again. Hence the claim is proved and
the theorem established. �

6. The generalized Khovanov algebra DΛ

In this section we finally finish the construction of the graded generalized
Khovanov algebra DΛ of type D and illustrate the multiplication rule in a
few examples. Again we fix a block Λ.



44 MICHAEL EHRIG AND CATHARINA STROPPEL

6.1. Multiplication in DΛ. The multiplication on DΛ can be illustrated
by the following commutative diagram:

λ0(Da(1)

Λ )λ1 ⊗ . . .⊗ λt−1(Da(t)

Λ )λt
mult //

� _

glue

��

λ0(DΛ)λt

λ0(Db
Λ)λt

surg //
λ0(De

Λ)λt

collapse

OO

Here b = (b1, . . . , bp) is the sequence (a(1), λ1
′,a(2), λ2

′, . . . , λt−1
′,a(t)) with

λi
′ being λi but with dots on rays removed, and e is the sequence of the

same length as b but with internal rays only.

Definition 6.1. For stacked circle diagrams D = λ(a)µ, D′ = η(a′)ν let

multD,D′ : λ(Da
Λ)µ ⊗ η(Da′

Λ )ν −→ λ(DΛ)ν

be the linear map defined as multD,D′ = 0 if µ 6= η and otherwise as follows:

let E0 = D ◦D′ = λ(b0)η and choose Ei = λ(bi)η for 1 ≤ i ≤ t, a sequence
of stacked circle diagrams such that Ei is obtained from Ei−1 by a surgery4

such that bt consists of cup diagrams containing only rays. Then

multD,D′ = collapseEt ◦ surgEt,Et−1
◦ . . . ◦ surgE0,E1

◦ glueD,D′ . (6.46)

By Theorem 5.34 this is independent of the choice of sequence of surgeries
and stacked circle diagrams Ei. By Proposition 5.19 it is of degree zero.

Using Da
Λ =

⊕
λ,µ∈Λ λ(Da

Λ)µ, the map (6.46) gives rise to

mult : Da
Λ ⊗ Da′

Λ −→ DΛ.

Specialising to the case of circle diagrams we obtain maps

multλµ,ην : λ(DΛ)µ ⊗ η(DΛ)ν −→ λ(DΛ)ν ,

for λ, µ, η, ν ∈ Λ which extend to a common map mult : DΛ ⊗ DΛ −→ DΛ.

Theorem 6.2. The map mult : DΛ⊗DΛ → DΛ defines a graded associative
unitary algebra structure on DΛ with pairwise orthogonal primitive idempo-
tents λ1λ = λλλ for λ ∈ Λ spanning the semisimple part of degree zero and
unit 1 =

∑
λ∈Λ λ1λ.

Proof. It is clear from the definitions that the only circle diagrams of degree
zero in BΛ are the diagrams of the form λ1λ and

λ1λ(aµb) =

{
(aµb) if λ = a,

0 otherwise,
(aµb)λ1λ =

{
(aµb) if b = λ,

0 otherwise,

4 The artificially looking choice of only allowing admissible surgeries between admissible
stacked circle diagrams becomes transparent and consistent with [7] if we use the approach
from [30]. Rewriting the dotted cup diagrams in terms of symmetric cup diagrams, as in
[30], turns neighboured cup-cap-pairs into nested ones and our admissibility assures that
we only use those that are applicable for surgery in the sense of [7].
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for λ ∈ Λ and any basis vector (aµb) ∈ DΛ. This implies that {λ1λ | λ ∈ Λ}
is a set of mutually orthogonal idempotents whose sum is the identity in DΛ.
The multiplication is graded by Proposition 5.19 above. The associativity
follows from Theorem 5.34. �

6.2. Explicit multiplication rules. Let us summarise the algebraic mul-
tiplication in the special case of circle diagrams.

To multiply two oriented circle diagrams rewrite both as polynomials
in the X(s,0)’s respectively X(s,1)’s using Proposition 4.5. Use the map
X(s,a) 7−→ Xs for all s and a ∈ {0, 1} and multiply the results. Then
perform the surgeries on the stacked circle diagram as in (4.20):

Merge: leave as it is,
Split: multiply with

i j

(−1)p(i)(Xj −Xi) if

i j

(−1)p(i)(Xj +Xi) if

Reconnect: if the lines are not propagating with
matching orientations, multiply with 0.

Corollary 6.3. The algebra DΛ depends up to canonical isomorphism only
on the atypicality or defect of the block, not on the block itself.

Proof. Given two blocks Λ and Λ′ with the same atypicality then |P�(Λ)| =
|P�(Λ′)| and hence the cup diagrams and basis vectors in DΛ and DΛ′ are
the same up to some vertices labelled ◦ or ×. If P�(Λ) = {i1 < . . . < ir} and
P�(Λ′) = {i′1 < . . . < i′k} then the identification Xis 7→ Xi′s for 1 ≤ s ≤ r
defines the canonical isomorphism. �

Corollary 6.4. The assignment aλb 7→ (aλb)∗ = b∗λa∗, on elements from
BΛ in (4.17), defines a graded algebra anti-automorphism of DΛ.

Proof. Note that b∗λa∗ is the diagram aλb reflected in the real line, but
with the weight λ fixed. According to the above multiplication rules the
product (d∗µc∗)(b∗λa∗) gives precisely the diagrams mirror the ones from
(a∗λb∗)(c∗µd∗), except that weights are kept, i.e. not reflected. Then the
claim is obvious. �

6.3. Examples for the multiplication. Since the definition of the mul-
tiplication is rather involved, we present here some explicit examples. For
simplicity we assume that the position of the leftmost vertex is 1. These
examples also illustrate the importance of Theorem 5.34.
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Example 6.5. The following gives an example of a multiplication and illus-
trates that it does not depend on the order we choose for the cup-cap-pairs.

∨ ∧ ∨ ∧

∨ ∧ ∨ ∧

su
rg D

,E
1

surg
D
,E
2

∨ ∧ ∨ ∧

∨ ∧ ∨ ∧

∨ ∧ ∨ ∧

∨ ∧ ∨ ∧

surg
E
1 ,F

su
rg E

2
,F

−
∧ ∨ ∧ ∨

∧ ∨ ∧ ∨
+

∨ ∧ ∨ ∧

∨ ∧ ∨ ∧

The next example is similar, but with a different number of dotted arcs.

∧ ∧ ∨ ∧

∧ ∧ ∨ ∧

su
rg D

,E
1

surg
D
,E
2

∧ ∧ ∨ ∧

∧ ∧ ∨ ∧

∧ ∧ ∨ ∧

∧ ∧ ∨ ∧

surg
E
1 ,F

su
rg E

2
,F

−
∨ ∨ ∧ ∨

∨ ∨ ∧ ∨
+
∧ ∧ ∨ ∧

∧ ∧ ∨ ∧

Note that we always multiply two degree 1 elements resulting in a linear
combination of degree 2 elements.

Example 6.6. In the previous Example 6.5 the first of the two involved
surgeries was always a merge while the second was a split. The following is
an example for the reversed situation.

∨ ∧ ∨ ∧ ∨ ∧
∨ ∧ ∨ ∧ ∨ ∧

su
rg
D
,E

1

surg
D
,E
2

−
∨ ∧ ∨ ∧ ∧ ∨

∨∧ ∨ ∧ ∨∧
−

∨∧ ∨∧ ∨ ∧
∨ ∧ ∨∧ ∨ ∧

−
∨∧∨∧ ∨∧
∨∧∨ ∧∨∧

+
∨ ∧ ∨ ∧ ∨ ∧
∨ ∧ ∨ ∧ ∨ ∧

surg
E
1 ,F

su
rg
E 2
,F

−2

∨∧ ∨∧ ∨∧
∨∧ ∨∧ ∨∧

We could also include some decorations (as long as we make sure that all
the diagrams stay admissible):
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∧ ∧ ∨ ∧ ∨ ∧

∧ ∧ ∨ ∧ ∨ ∧

su
rg
D
,E

1

surg
D
,E
2

−
∧ ∧ ∨ ∧ ∧ ∨

∨∨ ∨ ∧ ∨∧
−
∨ ∨ ∨∧ ∨ ∧

∧ ∧ ∨∧ ∨ ∧

−
∨∧∨∨ ∨∧
∨∧∨ ∧∨∨

+
∧ ∧ ∨ ∧ ∨ ∧

∧ ∧ ∨ ∧ ∨ ∧

surg
E
1 ,F

su
rg
E 2
,F

−2

∨ ∨ ∨∧ ∨∧
∨ ∨ ∨∧ ∨∧

Since we only defined the surgery maps for admissible diagrams, not all
surgery maps in the next example are formally defined. It should however
illustrate what goes wrong if one would ignore the admissibility assumptions
and define the surgery in the obvious way for all stacked circle diagrams.

Example 6.7. To illustrate that the admissibility assumptions are really
necessary to get a well-defined muliplication, we apply the surgery maps
formally ignoring whether we actually stay in admissible diagrams. One ob-
serves that the two maps differ exactly by a sign (namely the sign w which
in the proof of Theorem 5.34 turned out to be 1 for admissible diagrams).

∧ ∨ ∧ ∧

∧ ∨ ∧ ∧

su
rg D

,E
1

surg
D
,E
2

∧ ∨ ∧ ∧

∧ ∨ ∧ ∧

∧ ∨ ∧ ∧

∧ ∨ ∧ ∧

surgE1,F

surgE2,F

+

∨ ∨ ∧ ∨

∨ ∨ ∧ ∨
+
∧ ∧ ∨ ∧

∧ ∧ ∨ ∧

−
∨ ∨ ∧ ∨

∨ ∨ ∧ ∨
−
∧ ∧ ∨ ∧

∧ ∧ ∨ ∧

Here the surgery starting from a non-admissible diagram was a split, but
we could also have a merge:
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∧ ∨ ∧ ∧

∨ ∧ ∨ ∨

su
rg D

,E
1

surg
D
,E
2

∨ ∧ ∨ ∨

∨ ∧ ∨ ∨

∨ ∧ ∨ ∨

∨ ∧ ∨ ∨

surgE1,F

surgE2,F

+

∨ ∨∧ ∨

∨ ∨∧ ∨

−
∨ ∨∧ ∨

∨ ∨∧ ∨

The final example illustrates the problem with orientability when multiple
surgeries are possible, as discussed in the proof of Theorem 5.34.

Example 6.8. This example shows a special phenomenon which can occur
if we compare the two compositions of two surgeries.

∧ ∧ ∧ ∨ ∧ ∧

∧ ∧ ∨ ∧ ∨ ∧

su
rg
D
,E

1

surg
D
,E
2

0 since is not orientable

−
∧ ∧∨∨ ∨ ∨

∨∧∨ ∧∨∨
+
∧ ∧ ∨ ∨ ∧ ∧

∧ ∧ ∨ ∧ ∨ ∧
surgE2,F

0

In one order the first surgery produces a non-orientable diagram, hence is
zero, whereas in the other order the first surgery produces something non-
zero, but contained in the kernel of the second surgery.

6.4. Generating set. In addition to the idempotents λ1λ, the following
elements related to the notion of λ-pairs are of special importance. (For
their degrees see (3.15)).

Definition 6.9. Let λ, µ ∈ Λ and λ→ µ, see (3.14).

I Let µ1λ = µµλ. Note that deg(µ1λ) = mdeg(µλ) = 1.
I Let λ1µ = λµµ. Note that deg(λ1µ) = mdeg(λµ) = 1.
I Let µXλ, respectively λXµ, be the basis vector obtained from µ1λ,

respectively µ1λ, by reversing the orientation of the circle containing
the cup defining the relation λ→ µ.

I Let Xi,λ be the basis vector obtained from λ1λ by reversing the
orientation of the circle containing the vertex i and multiplying with
signλλ(i, 0). If there is no such circle we declare Xi,λ = 0.
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By Proposition 3.18 the elements of degree 1 in DΛ are precisely the
elements µ1λ attached to λ-pairs. In fact, together with the idempotents

λ1λ they generate DΛ:

Theorem 6.10. The algebra DΛ is generated by its degree 0 and 1 part, i.e.
by {λ1λ | λ ∈ Λ} ∪ {λ1µ | λ, µ ∈ Λ and λ↔ µ}.

The first step of the proof is the following observation.

Lemma 6.11. Let λ ∈ Λ and i ∈ P�(Λ). Then Xi,λ is contained in the
subalgebra of DΛ generated by the elements of degree 1.

Proof. Assume that Xi,λ 6= 0 and let γ denote the cup in λ containing i and

let C be the circle in λλ containing γ.
Assume first that the C is an outer circle, i.e. it is not contained in any

other circle and there are no dotted circles to the right of C and no lines to
the left of C 5. Then there exists a unique µ ∈ Λ such that λ→ µ and such
that the endpoints of γ are precisely the positions where λ and µ differ and
this is given by a local move as displayed in the last row of (3.14). Checking
the multiplication one sees that in this case

λ1µ · µ1λ = ±Xi,λ.

If on the other hand C is not an outer circle, that means nested in some
other circle C ′ or to the left of some dotted circle C ′. Assume that the claim
is already shown for all Xj,λ where j is in such a C ′. Then there exists µ ∈ Λ
such that λ→ µ and such that the endpoints of γ are precisely the positions
where λ and µ differ and the differences is given by a local move as in the
first three rows of (3.14). Going through all the cases one observes that the
multiplication gives

λ1µ · µ1λ = ±Xi,λ ±Xj,λ,

for j contained in a component that also contains C. But since the second
summand is already in the subalgebra, the claim follows by induction. �

Proof of Theorem 6.10. Denote by A the subalgebra generated by the degree
0 and 1 elements. It suffices to show that if λ, µ, ν ∈ Λ such that λνµ is
oriented, then it is contained in A. If λµ contains lines we use Section 5.3
and embed DΛ into D

Λ̂
. In this way we can restrict ourselves to consider

diagrams involving circles only. To not overburden the notation we will omit
the ·̂ in all notations throughout the proof.

By Lemma 6.11 it holds that Xi,λ ∈ A, which together with the multi-
plcation rules for merges immediately implies that the claim follows if we
show that λνminµ ∈ A where νmin is the orientation such that all circles
in λµ are oriented anticlockwise, since λνµ can be obtained by multiplying
λνminµ with various Xi,λ’s from the left. Hence we assume that ν is such
that all circles are oriented anticlockwise.

5This definition of outer circle makes sense when we work with symmetric diagrams as
in [30] where it would turn just into a circle which is not nested inside any other circle.



50 MICHAEL EHRIG AND CATHARINA STROPPEL

We prove the claim by induction on the minimal degree of λµ.
I Case mdeg(λµ) = 0: Then µ = λ and λνµ = λ1λ ∈ A by definition of A.
I Case mdeg(λµ) ≥ 1: Then λµ must contain a non-small circle C, i.e. a
circle containing at least two cups respectively caps. Hence C must contain
a pair of cups or a pair of caps γ1 and γ2 nested in each other. Without
loss of generality we assume it is a pair of cups. Choose γ1 such that it is
not contained in any other cup of C and γ2 such that it is only contained in
γ1. Then there exists an η ∈ Λ such that λ↔ η and the cups γ1 and γ2 are
part of the local move as shown in the first two rows of (3.14). In particular
deg(λ1η) = 1, hence it is by induction in A. Observe that in ηµ the circle C
is replaced by two circles and furthermore mdeg(ηµ) = mdeg(λµ) − 1. By
induction, all oriented diagrams in η(DΛ)µ of this degree are contained in
A. Let ην ′µ denote the element of minimal degree, i.e. all circles oriented
anticlockwise. Then

λ1η · ην ′µ = λνµ,

since the multiplication just involves merges and they are all merging two
anticlockwise circles. The claim follows since λ1η ∈ A by induction.

In case of strictly positive degree one must be a bit more careful if one or
both right endpoints of γ1 and γ2 are in the “extended” part of the diagram,
i.e. positions r, . . . , r + s− 1 in Section 5.3. In this case one must choose η
in such a way that the orientation at these endpoints does not need to be
changed, which is always possible, to make sure that λ1η and ην ′µ are again
contained in the subalgebra given in Section 5.3. �

7. Cellularity and projective-injective modules for DΛ

The following theorem is an analogue of [7, Theorem 3.1] and the proof
follows in principle the proof there. However, because of non-locality and
signs the arguments are slightly more involved.

7.1. Cellularity. We still fix a block Λ and consider the algebra DΛ with
homogeneous basis BΛ from (4.17).

Theorem 7.1. Let (aλb) and (cµd) be basis vectors of DΛ. Then,

(aλb)(cµd) =

 0 if b 6= c∗,
saλb(µ)(aµd) + (†) if b = c∗ and aµ is oriented,
(†) otherwise,

where

1.) (†) denotes a linear combination of basis vectors from BΛ of the form
(aνd) for ν > µ;

2.) the scalar saλb(µ) ∈ {0, 1,−1} depends on aλb and µ but not on d.

We first state an easy fact and deduce a few consequences of the theorem:

Corollary 7.2. The product (aλb)(cµd) of two basis vectors of DΛ is a linear
combination of vectors of the form (aνd) ∈ BΛ with λ ≤ ν ≥ µ.
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Proof. By Theorem 7.1(i), (aλb)(cµd) is a linear combination of (aνd)’s for
various ν ≥ µ and (d∗µc∗)(b∗λa∗) is a linear combination of (d∗νa∗)’s for
various ν ≥ λ. Applying the anti-automorphism ∗ from Corollary 6.4 to the
latter statement gives that (aλb)(cµd) is a linear combination of (aνd)’s for
various ν ≥ λ too. �

Corollary 7.3. The algebra DΛ is a cellular algebra in the sense of [20] with
cell datum (Λ,M,C, ∗) where

i) M(λ) denotes {α ∈ Λ | α ⊂ λ} for each λ ∈ Λ;
ii) C is defined by setting Cλα,β = (αλβ) for λ ∈ Λ and α, β ∈M(λ);

iii) ∗ is the anti-automorphism from Corollary 6.4.

Before we prove the corollary let us first recall the relevant definitions
from [20]. A cellular algebra means an associative unital algebra H together
with a cell datum (Λ,M,C, ∗) such that

(C-1) Λ is a partially ordered set and M(λ) is a finite set for each λ ∈ Λ;

(C-2) C :
⋃̇
λ∈ΛM(λ)×M(λ)→ H, (α, β) 7→ Cλα,β is an injective map whose

image is a basis for H;
(C-3) the map ∗ : H → H is an algebra anti-automorphism such that

(Cλα,β)∗ = Cλβ,α for all λ ∈ Λ and α, β ∈M(λ);

(C-4) if µ ∈ Λ and γ, δ ∈M(λ) then for any x ∈ H we have that

xCµγ,δ ≡
∑

γ′∈M(µ)

rx(γ′, γ)Cµγ′,δ (mod H(> µ))

where the scalar rx(γ′, γ) is independent of δ and H(> µ) denotes the
subspace of H generated by {Cνγ′′,δ′′ | ν > µ, γ′′, δ′′ ∈M(ν)}.

Proof of Corollary 7.3. Condition (C-1) is clear as Λ itself is a finite set;
Condition (C-2) is a consequence of the definition of BΛ from (4.17); and
since ∗ is an anti-automorphism we get (C-3). Finally to verify (C-4) it
suffices to consider the case that x = Cλα,β for some λ ∈ Λ and α, β ∈M(λ).

If β = γ and α ⊂ µ, then Theorem 7.1 1.) and 2.) shows that

Cλα,βC
µ
γ,δ ≡ sαλβ(µ)Cµα,δ (mod DΛ(> µ))

where sαλβ(µ) is independent of δ; otherwise, we have that

Cλα,βC
µ
γ,δ ≡ 0 (mod DΛ(> µ)).

Taking

rx(γ′, γ) =

{
sαλβ(µ) if γ′ = α, β = γ and α ⊂ µ,

0 otherwise,

we deduce that (C-4) holds. �

Remark 7.4. Corollary 7.3 together with the definition of the grading di-
rectly implies that our cellular basis is in fact a graded cellular basis in the
sense of Hu and Mathas, [23].
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The following is the analogue of the Khovanov arc algebra from [7] and
appears in the context of Springer fibres and resolutions of singularities, [14]
as well as in the representation theory of Lie superalgebras, [13].

Corollary 7.5. Let Λ be a block and e =
∑

λ1λ, where λ runs over all
weights λ ∈ Λ such that the associated cup diagram has def(Λ) cups, see
(3.16). Then the algebra HΛ = eDΛe is again cellular.

Proof. The first part follows from the cellularity of DΛ, since cellularity
behaves well under idempotent truncation, see e.g. [29, Proposition 4.3]. �

Corollary 9.3 will identify the algebra HΛ as the endomorphism ring of
the sum of all indecomposable projective-injective DΛ-modules.

Remark 7.6. The formulation of Theorem 7.1 differs from [7, Theorem 3.1]
slightly, since we omitted the analogue of [7, Theorem 3.1(iii)]. This is
because that statement is in fact erroneous as stated. It holds however in
case µ = λ with the notation there also in our case here.

For the next Lemma we assume that we are given an oriented stacked
circle diagram λ(a,ν)µ of height 1 which appears on the way in the mul-
tiplication in Definition 6.1 (before applying the last collapsing map) and
that C is an oriented circle in λ(a,ν)µ. We use the Bruhat order from
Lemma 2.4.

Lemma 7.7. Assume C is anticlockwise and let ν be the subsequence of ν0

or of ν1 attached to the vertices in C. Then swapping the orientation of C
makes ν bigger in the Bruhat order.

Proof. The statement is clear if the circle is small, Definition 5.10. Indeed,
ν moves from ∨∧ to ∧∨ in the undotted case and from ∧∧ to ∨∨ in the
dotted case. Otherwise we first remove all undotted kinks at the cost of an
extra small anticlockwise circle according to the rules (7.47) (i)-(ii) below
not changing ν. As a result we created from C only small circles, or at least
one kink of the form (7.47) (iii)-(iv). Again we remove these kinks using the
rules (iii)-(iv) below. Observe that the weight stays the same and the newly
created small circles are all anticlockwise.

i) ∧ ∧∨ ∧ ∧∨ ii) ∨ ∨∧ ∨ ∨∧

iii) ∨ ∧∧ ∨ ∧∧ iv) ∨ ∨ ∧ ∨ ∨ ∧

(7.47)
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The result is a collection of small anticlockwise circles and swapping the
orientation of C means swapping the orientation of all these new circles.
But this obviously increases the weight. �

For the next proposition we assume again that we are given an oriented
stacked circle diagram D = λ(a,ν)µ of height 1 which appears on the way
in the multiplication (6.46) of (aλb)(cµd). Let τ = ν1 be its top weight (the
weight on the top number line). Assume there is at least one more surgery to
apply to λ(a,ν)µ and let γ be the corresponding cup-cap-pair. Let cup(γ)
and cap(γ) the cup respectively the cap in γ. In this setup we claim the
following crucial step for the proof of Theorem 7.1 with the Bruhat order
from Lemma 2.4.

Proposition 7.8. The top weight of each diagram obtained at the end of
the surgery procedure at γ is greater than or equal to τ in the Bruhat order.

Proof of Proposition 7.8. Let us first assume that all the diagrams involved
do not contain any lines or rays.

Case 1: Merge. We consider the case where two circles get merged. In this
case either the result is zero or the merge produces a unique diagram.
I Assume γ is undotted. Consider the four possible orientations of γ:

i) ii) iii) iv) (7.48)

In case both involved circles are clockwise the merge gives zero and there is
nothing to do.

Otherwise start with Cases i) and iii). If the original circles are both an-
ticlockwise, then the merge just joins them together preserving the weights.
In case one is anticlockwise and the other is clockwise replacing γ by two
straight lines produces a circle which could be clockwise (in which case this
is the result of the merge and the weights are preserved) or anticlockwise.
In the latter case we swap its orientation and are done by Lemma 7.7.

Consider now Cases ii) and iv). Pick a tag of the merged circle. If both
circles are anticlockwise let C be the original circle not containing this tag.
Then the merge can be obtained by first swapping the orientation of C
and then joining the circles by replacing γ by two straight lines. Again by
Lemma 7.7 the weight can only increase or stay the same. If exactly one
circle was anticlockwise we first swap the orientation of this circle and then
replace γ by two straight lines. We claim that the result agrees with the
merge. Indeed, choose a tag of the merged circle. If it lies on the clockwise
circle then it determines the orientation of the merged circle. If not, then
the orientation of the merged circle is the opposite of this circle. In any
case, our claim holds. By Lemma 7.7 the weight increases.
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I Assume γ is dotted. We now have the following possible orientations of γ

i) ii) iii) iv) (7.49)

and we can argue exactly as in the undotted case.

Case 2: Split. Now let us assume that the surgery is a Split. Fix a tag t(C)
of the circle C containing γ. We assume that the split creates orientable
circles, since otherwise there is nothing to do. Assume first γ is of the form
i) or iii) in (7.48) or (7.49). If C is anticlockwise, then replacing γ by two
straight lines creates either two anticlockwise circles or one anticlockwise
and one clockwise. In the first case changing the orientation of either one of
the circles gives the resulting two diagrams of the split and we are done by
Lemma 7.7. In the second case the created diagram is one of the diagrams
which appear in the split. The second diagram is obtained by changing the
orientation of both circles. But this is the same as changing the orientation
of C from anticlockwise to clockwise before replacing γ by two straight lines.
Hence again Lemma 7.7 gives the result. If C is clockwise then replacing γ by
two straight lines creates either two clockwise circles preserving the weight
or one anticlockwise and one clockwise circle in which case we should swap
the orientation of the anticlockwise one to obtain the same result as Split.
Then we can again apply Lemma 7.7. Assume now γ is of the form ii) or iv)
in (7.48) or (7.49). Observe that the orientability of C implies that replacing
γ by two straight lines creates non-orientable circles and the result of the
surgery is zero. In any case the resulting diagrams have top weights smaller
or equal to the original weight ν1 on the top. In case multiple oriented circle
diagrams appear each weight appears at most once by construction (consider
the orientation of cup(γ)). The general case involving lines can be reduced
to the case of circles only using Section 5.3. The proposition follows. �

To keep the proof of the following proposition slightly simpler we assume
that the order of our multiplication (6.46) is such that we take in each step

the rightmost cup-cap pair where surgery can be applied. (7.50)

Proposition 7.9. In the setup of Proposition 7.8 and (7.50) we have that
the weight τ appears after a single surgery procedure if and only if we are in
one of the following two situations

(τ1) both cup(γ) and cap(γ) are oriented anticlockwise, or
(τ2) cup(γ) is clockwise and cap(γ) is anticlockwise and the component con-

taining cap(γ) does not intersect the top weight line.

Moreover, τ appears here exactly once. In all other cases the occurring
weights are strictly smaller than τ .

Corollary 7.10. In the notation of Proposition 7.8 we have that the total
number of diagrams produced with top weight equal to τ is either zero or
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one, independent of the cap diagram d. It appears with a sign depending on
whether γ is dotted or not.

Proof. This follows from Proposition 7.9 and the multiplication rules, Sec-
tion 6.2, noting that the conditions (τ1) and (τ2) are independent of d. �

We first deduce Theorem 7.1 and then prove Proposition 7.9.

Proof of Theorem 7.1. By definition, (aλb)(cµd) = 0 if b 6= c∗, so assume b =
c∗ from now on. By applying Proposition 7.8 repeatedly, starting with τ = µ
at the first step, it follows that (aλb)(cµd) is a linear combination of (aνd)’s
for ν ≥ µ. Assuming aµ is oriented, Corollary 7.10 applied repeatedly
implies that the coefficient saλb(µ) of the basis vector (aµd) in the product
is zero or ±1 independent of the cap diagram d. Note also that the result
does not depend on the specific choice (7.50) for the order of the surgeries
by Theorem 5.34. This proves 1.) and 2.) in Theorem 7.1. �

Proof of Proposition 7.9. We first assume that no involved diagram contains
rays. For our surgery on γ we are then in one of the 6 basic situations:

i) ii) iii) iv) v) vi)

These diagrams should be interpreted only up to homeomorphism; in par-
ticular the circles represented in the pictures may well cross both weight
lines many more times than indicated and moreover might have many dots.

We distinguish three situations depending on the orientation of γ.

I Case 1: cap(γ) is clockwise: We claim here that the result will never have
τ as its top weight. For i) we distinguish the two possible orientations

of the internal circle. In the first diagram the internal circle is clockwise,
hence the other circle must be anticlockwise to get something non-zero.
But then the labels on the outer circle, and thus also τ , change during the
merge, as the outer circle contains all tags of the merged circle. Applying
the merge to the second diagram will swap the labels on one circle, hence
τ is not preserved. The same arguments apply also to ii). For the third
diagram the following is easy to verify using (7.50): Given a tag t(C) for
the circle C and consider the oriented diagram D obtained by replacing γ
by two straight lines. Then out of the two new circles created from C, the
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circle not containing t(C) is anticlockwise. But then the orientation of D
cannot occur at the end of the split and thus also τ must have been changed.
Indeed, if C was anticlockwise then the split creates two oppositely oriented
circles, and so either the one with the tag or the one without the tag must
have a different orientation than in D. If it was clockwise, then the circle
without the tag must have a different orientation than in D. In iv) and v)
the split creates an inner and an outer circle. If τ is preserved, the inner
circle must be anticlockwise. But since the outer circle contains any tag of
the original circle C we are done by the same argument as in iii). In vi)
let C1 be the circle containing cap(γ) and C2 containing cup(γ). If C2 is
clockwise, then the result of the merge is either zero or the orientation of
C1 gets swapped and so τ is not preserved. In case C2 is anticlockwise one
easily checks using (7.50) that C2 crosses the top weight line and contains
all tags. Now if C1 is clockwise, the merge changes the orientation of C1

and thereby also τ . If it is anticlockwise, then cup(γ) must be anticlockwise,
hence its orientation gets switched during the merge. The claim is proved.

I Case 2: cap(γ) and cup(γ) are both anticlockwise. Here we claim that the
weight τ appears in exactly one of the resulting diagrams as a top weight.
In i) and ii), the orientation of the internal circle is anticlockwise. Hence the
result of the merge agrees with just replacing γ by two straight lines and
so τ is preserved. For the diagram iii) the following is easy to verify using
(7.50): Given a tag t(C) for the circle C consider the oriented diagram D
obtained by replacing γ by two straight lines. Then out of the two new circles
produced from C, the circle not containing t(C) is clockwise. Independent of
the orientation of C, the diagram D appears as a result of the Split (either as
a summand in case C was anticlockwise) or on its own (if C was clockwise).
In iv) and v) the split creates an inner and an outer circle. Replacing γ by
two straight lines creates a diagram D with top weight τ and such that the
internal circle is clockwise. Again independent of the orientation of C, the
diagram D appears as a result of the Split (either as a summand in case C
was anticlockwise) or on its own (if C was clockwise). In vi) the result of
the merge is either zero or just obtained by replacing γ by two straight lines
and so τ is preserved. The claim follows.

I Case 3: cap(γ) is anticlockwise and cup(γ) is clockwise. We claim that
the result will have exactly one diagram with top weight τ if the circle
containing cap(γ) does not intersect the top weight line, and will produce
no diagram with top weight τ otherwise. In i) the inner circle is clockwise,
hence to get non-zero the outer circle must be anticlockwise, and so changes
its orientation during the merge. Thus τ is not preserved as claimed. In
ii) the inner circle is anticlockwise, hence the merged circle would inherit
the orientation of the outer circle and the inner circle swaps orientation.
Therefore the top weight τ is preserved if and only if the inner circle does
not cross the top weight line. In iii)-v) the diagram resulting from the
split is not orientable, hence the map is zero. In vi) one can check easily
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that if the circle C containing cap(γ) does not cross the top line then it
is anticlockwise and our merge would just replace γ by two straight lines,
preserving τ . Otherwise C contains any tag of the merged circle and the
other circle must be clockwise. So the merge either gives zero or the top
weight changes under the merge (that is in case C is anticlockwise). The
claim follows.

Note that our arguments also work in general for arbitrary circle diagrams
using Section 5.3. The proposition follows. �

8. Quasi-hereditarity of DΛ and graded decomposition numbers

We briefly describe the representation theory of the algebras DΛ for any
block Λ, construct their cell modules and provide explicit closed formulae for
q-decomposition numbers which simultaneously describe composition mul-
tiplicities of cell modules and cell filtration multiplicities of projective inde-
composable modules. We will deduce that the category DΛ- mod of finite
dimensional graded DΛ-modules is a graded highest weight category.

8.1. Graded modules, projectives and irreducibles. If A is a Z-graded
finite dimensional algebra and M =

⊕
j∈ZMj is a graded A-module, i.e.

AiMj ⊆ Mi+j , then we write M〈j〉 for the same module but with new
grading defined by M〈j〉i = Mi−j . For graded modules M and N , we define

homA(M,N) =
⊕
j∈Z

homA(M,N)j (8.51)

where homA(M,N)j denotes all homogeneous A-module homomorphisms of
degree j, meaning that they map Mi into Ni+j for each i ∈ Z. Later we
might also work with (not necessarily unital) Z-graded algebras with many
idempotents (which means they come with a given system {eλ | λ ∈ Λ′}
of mutually orthogonal idempotents such that A =

⊕
λ,µ∈Λ′ eλAeµ.) By an

A-module we mean then a left A-module M such that M =
⊕

λ∈Λ′ eλM ;
and the notions about graded modules generalize. (Note that if A is finite
dimensional, our definitions of A-modules agree).

Let A- gmod be the category of all finite dimensional graded A-modules
M =

⊕
j∈ZMj . Together with degree zero morphisms this is an abelian

category.
Now fix an arbitrary block Λ and consider the graded algebra A = DΛ.

Let DΛ
+ be the sum of all components of strictly positive degree, so

DΛ/DΛ
+ ∼=

⊕
λ∈Λ

C (8.52)

as an algebra, with a basis given by the images of all the idempotents eλ,
λ ∈ Λ. The image of eλ spans a one dimensional graded DΛ-module which
we denote by L(λ). Thus, L(λ) is a copy of the field concentrated in degree
0, and (aµb) ∈ DΛ acts on L(λ) as multiplication by 1 if aµb = λλλ, or as
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zero otherwise. The modules

{L(λ)〈j〉 | λ ∈ Λ, j ∈ Z} (8.53)

give a complete set of isomorphism classes of simple modules in DΛ- gmod.
For any graded DΛ-module M we let M~ denote its graded dual, which
means that (M~)j = homC(M−j ,C) and x ∈ DΛ acts on f ∈ M~ by
(xf)(m) = f(x∗m), where ∗ is the antiautomorphism from Corollary 6.4.
Clearly we have for each λ ∈ Λ

L(λ)~ ∼= L(λ). (8.54)

For λ ∈ Λ, let P (λ) = DΛeλ. This is a graded DΛ-module with basis{
(νµλ)

∣∣ for all ν, µ ∈ Λ such that ν ⊂ µ ⊃ λ
}

and is with the natural surjection a projective cover of L(λ). The modules

{P (λ)〈j〉 | λ ∈ Λ, j ∈ Z} (8.55)

give a full set of indecomposable projective objects in DΛ- gmod.

8.2. Grothendieck groups. The Grothendieck group of DΛ- gmod, denoted
K0(DΛ), is the free Z-module on isomorphism classes [M ] of objects M in
DΛ- gmod modulo the relation [M ] = [M ′] + [M ′′] whenever there is a short
exact sequence in DΛ- gmod with M as middle and M ′, M ′′ as outer terms;
then K0(DΛ) has a basis given by the {L(λ)〈j〉|λ ∈ Λ, j ∈ Z}. Let [proj(DΛ)]
be the subgroup generated by the classes of the projective indecomposable
modules from (8.55). They both carry a free Z[q, q−1]-module structure by
setting

qj [M ] = [M〈j〉].
In particular, there are cλ,µ(q) ∈ Z[q, q−1] such that

[P (µ)] =
∑
λ∈Λ

cλ,µ(q)[L(λ)]. (8.56)

The matrix CΛ(q) = (cλ,µ(q))λ,µ∈Λ is called the q-Cartan matrix of DΛ.

Lemma 8.1. The entries in the Cartan matrix of DΛ are explicitly given
as follows:

cλ,µ(q) =
∑

λ⊂ν⊃µ
qdeg(λνµ). (8.57)

Proof. To determine its entries note first that

cλ,µ(q) =
∑
j∈Z

qj dim homDΛ
(P (λ), P (µ))j . (8.58)

Since homDΛ
(P (λ), P (µ)) = homDΛ

(DΛeλ,DΛeµ) = eλDΛeµ and eλDΛeµ has
basis

{
(λνµ)

∣∣ ν ∈ Λ such that λ ⊂ ν ⊃ µ
}

the claim follows. �
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Note that cλ,µ(q) is in fact a polynomial in N[q] with constant coefficient
equal to 1 if λ = µ and equal to 0 otherwise, see Example 1.1.

Now we introduce cell modules in the sense of [20]. The construction is
totally analogous to [7], hence we just recall the results.

Definition 8.2. For µ ∈ Λ, define V (µ) to be the vector space on homoge-
neous basis {

(cµ|
∣∣ for all oriented cup diagrams cµ

}
, (8.59)

where the degree of the vector (cµ| is the degree deg(cµ) of the oriented
cup diagram. We make V (µ) into a graded DΛ-module by declaring for any
basis vector (aλb) of DΛ that

(aλb)(cµ| =
{
saλb(µ)(aµ| if b∗ = c and aµ is oriented,
0 otherwise.

(8.60)

where saλb(µ) ∈ {0,±1} is the scalar from Theorem 7.1; hence the action is
well-defined. We call V (µ) the cell module of highest weight µ.

Theorem 8.3 (Cell module filtration of projectives). For λ ∈ Λ, enumerate

the 2def(λ) distinct elements of the set {µ ∈ Λ | µ ⊃ λ} as µ1, µ2, . . . , µr = λ
so that µi > µj implies i < j. Let M(0) = {0} and for i = 1, . . . , r define
M(i) to be the subspace of P (λ) generated by M(i− 1) and the vectors{

(cµiλ)
∣∣ for all oriented cup diagrams cµi

}
.

Then {0} = M(0) ⊂M(1) ⊂ · · · ⊂M(r) = P (λ) is a filtration of P (λ) as a
DΛ-module such that for each i = 1, . . . , r:

M(i)/M(i− 1) ∼= V (µi)〈deg(µiλ)〉.

Proof. Just apply the same arguments as in [7, Theorem 5.1]. �

Theorem 8.4 (Composition factors of cell modules). For µ ∈ Λ, let N(j)
be the submodule of V (µ) spanned by all graded pieces of degree ≥ j. Then
we have a filtration

V (µ) = N(0) ⊇ N(1) ⊇ N(2) ⊇ · · ·

as a DΛ-module with N(j)/N(j + 1) ∼=
⊕

λ⊂µwith
deg(λµ)=j

L(λ)〈j〉 for each j ≥ 0.

Proof. Apply the same arguments as in [7, Theorem 5.2]. �

These polynomials and the resulting q-decomposition matrix

MΛ(q) = (dλ,µ(q))λ,µ∈Λ (8.61)

encode by Theorems 8.3 and 8.4 the multiplicities of cell modules in projec-
tives and of irreducibles in cell modules; we have

[V (µ)] =
∑
λ∈Λ

dλ,µ(q)[L(λ)], [P (λ)] =
∑
µ∈Λ

dλ,µ(q)[V (µ)], (8.62)

in the Grothendieck group K0(DΛ).
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The q-decomposition matrix MΛ(q) is upper unitriangular when rows
and columns are ordered in some way refining the Bruhat order since by
Lemma 3.17 λ ⊂ µ implies λ ≤ µ. Note that

dλ,µ(q) =

{
qd if λµ is oriented of degree d, and

0 if λµ is not oriented.
(8.63)

Example 8.5. The decomposition matrix for the principal block of type
D4 is given as follows (where we again omit the ◦’s in the weight diagrams):

∨∨∨∨ ∧∧∨∨ ∧∨∧∨ ∨∧∧∨ ∧∨∨∧ ∨∧∨∧ ∨∨∧∧ ∧∧∧∧
∨∨∨∨ 1 q 0 0 0 0 0 q2

∧∧∨∨ 0 1 q 0 0 0 q2 q
∧∨∧∨ 0 0 1 q q q2 q 0
∨∧∧∨ 0 0 0 1 0 q 0 0
∧∨∨∧ 0 0 0 0 1 q 0 0
∨∧∨∧ 0 0 0 0 0 1 q 0
∨∨∧∧ 0 0 0 0 0 0 1 q
∧∧∧∧ 0 0 0 0 0 0 0 1

(8.64)

We can restrict ourself to study the principal blocks:

Lemma 8.6. 1.) The q-decomposition matrix MΛ(q) depends (up to rela-
belling rows and columns) only on the atypicality of the block.

2.) In case Λ = Λpk, the entries of MΛ(q) are the parabolic Kazhdan-Lusztig

polynomials, denoted nx,y(q) in [38] for x, y ∈W p from Section 2.3.

Proof. By Corollary 6.3 the algebras for two different blocks with the same
atypicality are isomorphic and hence the decomposition numbers are of
course the same. The second statement is the main result of [30]. �

As in [7, Theorem 5.3.] we deduce

Theorem 8.7. The category DΛ- mod is a positively graded highest weight
category with duality in the sense of Cline, Parshall and Scott [9].

For λ ∈ Λ (the weight poset), the irreducible, standard, costandard, inde-
composable projective and indecomposable injective objects are respectively
the modules L(λ), V (λ), V (λ)~, P (λ) and P (λ)~. In particular, the algebra
DΛ is a positively graded quasi-hereditary algebra.

We also like to state the following observation

Corollary 8.8. Let Λ be a block and λ ∈ Λ. The endomorphism ring
EndΛ(P (λ)) of P (λ) is a non-negatively graded commutative algebra.

Proof. As a summand of a positively graded algebra it is positively graded.
By definition of the multiplication, see Definition 6.1, it is commutative (the
multiplication is just a composition of merges). �
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9. The categories Perv and Op
0(so(2k)) diagrammatically

Let us finally turn back to the isotropic Grassmannian Yk from Section 2.1.
Let Pervk be the category of perverse sheaves on Yk constructible with re-
spect to the Schubert stratification, that is with respect to BD-orbits, see
[4] for details. By the localization theorem and Riemann-Hilbert correspon-
dence, see [22], this category is equivalent to the principal block Op

0(g) of
the parabolic category Op(g) for the semisimple Lie algebra g = so(2k) of
type Dk, where p is one of our maximal parabolic subalgebras, say the one
corresonding to W0. For details we refer to [24]. The simple objects in either

category are naturally labelled by W 0. Attached to w ∈ W 0 we have the
simple intersection cohomology complex Iw corresponding to the Schubert
variety labelled w via (2.2) and the simple module L(w) with highest weight
w ·0. (As usual W acts on weights via the ‘dot-action’ w ·λ = w(λ+ρ)−ρ).
Let P (w) be the projective cover of L(w). Then

P =
⊕
w∈W 0

P (w)

is a minimal projective generator of Op
0(g), see [24] for more details.

9.1. The isomorphism theorem. The main theorem is the following

Theorem 9.1. Let k ≥ 4. There is an isomorphism of algebras Endg(P ) ∼=
D

Λ0
k
, hence there are equivalences of categories

Op
0(so(2k)) ∼= Pervk ∼= D

Λ0
k

-mod (9.65)

which identify the simple objects L(w), Iw and L(w) and their projective
covers respectively.

Remark 9.2. Note that, although the theorem only deals with the principal

block Λ0
k, by Corollary 6.3 it gives in fact a geometric description for all

blocks Λ. Also note that our equivalence ends up naturally in right Endg(P )-
modules or Endg(P )opp-modules, but using the duality in category O we can
identify Endg(P )opp = Endg(P ) which we will do from now on.

The following is a type D analogue of Khovanov’s original arc algebra.

Corollary 9.3. Let Λ = Λ0
k then the algebra HΛ from Lemma 7.5 is the

endomorphism algebra of the sum of all indecomposable projective-injective
DΛ-modules.

Proof. Let λ ∈ Λ be of maximal defect with indecomposable projective
module P (λ). Under the equivalence of Theorem 9.1 it corresponds to an
indecomposable projective module P (λ) in Op

0(g). Let λ = w · µ with µ the

dominant weight in the same block and w ∈ W 0. By Irving’s characteriza-
tion of projective-injective modules in parabolic category O, [25, 4.3] P (λ)
is projective-injective, if and only if w is in the same Kazhdan-Lusztig right
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cell as the longest element w0
0 in W 0. Hence the indecomposable projective-

injective modules P (x · µ) are precisely those which can be obtained from

P (w0
0 ·µ) by applying the Hecke algebra action given by translation functors

and taking summands.
By [30, Theorem 3.10] the action of the Hecke algebra factors through the

type D Temperley-Lieb algebra and we can identify the Kazhdan-Lusztig
basis with our cup diagrams and the action of the Temperley-Lieb algebra
purely diagrammatically. Note that P (w1

0 ·µ) corresponds to the cup diagram
C of maximal defect with all cups dotted and we ask which cup diagrams
can be obtained from it by acting with the Temperley-Lieb algebra. It is
obvious that the defect cannot decrease. On the other hand one can easily
verify that every cup diagram of maximal defect can be obtained, see [30,
Remark 5.24]. Then the lemma follows. �

9.2. Braden’s algebra A(Dk). To prove Theorem 9.1 we will identify Dk
with Braden’s algebra A(Dk) defined below and use [4, Theorem 1.7.2]:

Theorem 9.4. Let k ≥ 4. There is an equivalence of categories

A(Dk) -mod ∼= Pervk

which identifies A(Dk) with the endomorphism ring of a minimal projective
generator of Pervk.

We first define the algebra A(Dk) and then state the explicit Isomorphism
Theorem, see Theorem 9.16, from which Theorem 9.1 then follows.

Definition 9.5. Let Λ be a block and λ ∈ Λ be a weight. Given a λ-pair
(α, β) corresponding to a cup C (see Definition 3.8), we say it has a parent,
if C is nested in another (dotted or undotted) cup or if otherwise there is
a dotted cup to the right of C. We call then the minimal cup containing
C respectively the leftmost dotted cup to the right of C and its associated
λ-pair the parent of C; we denote them by C ′ and (α′, β′) respectively. All
the possible examples are shown in (9.73)-(9.76).

Definition 9.6. I A diamond in Λ0
k is a quadruple (λ(1), λ(2), λ(3), λ(4))

of elements in Λ0
k such that λ(1) ↔ λ(2) ↔ λ(3) ↔ λ(4) ↔ λ(1) and all

elements are pairwise distinct. We depict them as follows

λ(1)

λ(2) λ(4)

λ(3)

A diamond of the form (λ(σ(1)), λ(σ(2)), λ(σ(3)), λ(σ(4))) for σ ∈ S4

such that σ(1) ≡ σ(3) mod 2 and σ(2) ≡ σ(4) mod 2 is said to be
equivalent to (λ(1), λ(2), λ(3), λ(4)).
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I For fixed k, a triple λ(1) ↔ λ(2) ↔ λ(3) in Λ0
k cannot be extended to a

diamond if there is no diamond (λ(1), λ(2), λ(3), λ(4)) in Λ0
k.

I For fixed k, a triple λ(1) ↔ λ(2) ↔ λ(3) in Λ0
k can be enlarged to a di-

amond if it cannot be extended but, after extending the weights

λ(i) to λ̂(i) by adding some fixed number of ∨’s to the left and
∧’s to the right, the resulting triple can be extended to a diamond

(λ̂(1), λ̂(2), λ̂(3), λ̂(4)) in Λ0
m for some m > k.

Example 9.7. The triple (∨∨∨∨,∧∧∨∨,∧∨∧∨) can not be extended to

a diamond in Λ0
4, but it can be enlarged to a diamond (∨ ∨ ∨ ∨ ∧∧,∧ ∧ ∨ ∨

∧∧,∧ ∨ ∧ ∨ ∧∧,∨ ∨ ∧ ∨ ∧∨) ∈ Λ0
6. In other words, the Young diagrams

(9.66)

fit into a 6× 6-box, but only three of them into a 4× 4-box.

Example 9.8. For instance, up to equivalence the diamonds in (1.1) are
( 3 , 4 , 6 , 5 ), ( 3 , 4 , 6 , 7 ), ( 3 , 5 , 6 , 7 ), ( 2 , 3 , 7 , 8 ), whereas here are the
triples that cannot be extended to a diamond, but can be enlarged:

( 1 , 2 , 3 ), ( 3 , 2 , 1 ), ( 2 , 3 , 4 ), ( 4 , 3 , 2 ),

( 2 , 3 , 5 ), ( 5 , 3 , 2 ), ( 6 , 7 , 8 ), ( 8 , 7 , 6 ).

Definition 9.9. Braden’s algebraA(Dk) is the unitary associative C-algebra
with generators

{eλ | λ ∈ Λ0
k} ∪ {p(λ, λ′) | λ, λ′ ∈ Λ0

k, λ↔ λ′} ∪ {tα,λ | λ ∈ Λ0
k, α ∈ Z− {0}}

subject to relations (for all λ, µ, ν ∈ Λ0
k and α, β ∈ Z):

(R-1) Idempotent relations:

a.) eλeν = δλ,νeλ, b.)
∑

λ∈Λ0
k
eλ = 1,

c.) eνp(λ, µ) = δν,λp(λ, µ), d.) p(λ, µ)eν = δµ,νp(λ, µ),
e.) eνtλ,α = δν,λtλ,α, f.) tλ,αeν = δν,λtλ,α;

(R-2) The commutative subalgebra:

a.) tα,λ = eλ if |α| > k, b.) tλ,αtν,β = tν,βtλ,α,
c.) tα,λt−α,λ = eλ, d.) tα,λtβ,λ = eλ if (α, β) is a λ-pair;

(R-3) Arrow relations: p(λ, µ)tα,µ = tα,λp(λ, µ);

(R-4) Loop relations: Suppose λ
(α,β)−→ λ′. Then

m(λ′, λ)(−1)β = tα,λ′tζ,λ′ and m(λ, λ′)(−1)β = tα,λtζ,λ

where m(λ, λ′) = eλ + p(λ, λ′)p(λ′, λ) and

ζ =

{
−α′, if α < −β′ < β < −α′
β′ otherwise,
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in case the parent (α′, β′) of (α, β) exists, and tζ,λ = eλ otherwise.
(R-5) Diamond relations:

i) If (λ(1), λ(2), λ(3), λ(4)) is a diamond in Λ0
k then

p(λ(3), λ(2))p(λ(2), λ(1)) = p(λ(3), λ(4))p(λ(4), λ(1)).

ii) Given a triple λ(1) ↔ λ(2) ↔ λ(3) in Λ0
k which cannot be extended

but can be enlarged to a diamond then

p(λ(3), λ(2))p(λ(2), λ(1)) = 0. (9.67)

iii) Given a triple λ(1)
(α,β)→ λ(2)

(γ,δ)→ λ(3) in Λ0
k such that

I α < 0 (hence (α, β) corresponds to a dotted cup),
I (γ, δ) is not a λ(1)-pair, and
I the triple cannot be extended to a diamond, then

p(λ(3), λ(2))p(λ(2), λ(1)) = 0 = p(λ(1), λ(2))p(λ(2), λ(3)).

Example 9.10. The triple (λ(1), λ(2), λ(3)) = (∧ ∧ ∧∧,∨ ∨ ∧∧,∨ ∧ ∨∧), or
equivalently ( 8 , 7 , 6 ) in (1.1)), satisfies all conditions from (R-5) iii). In
particular it cannot be extended to a diamond. If we replace however λ(3)

by µ = ∧ ∨ ∧∨, that is 3 in (1.1), then λ(1) → λ(2) → µ still satisfies the
first two conditions in (R-5) iii), but now can be extended to the diamond
(λ(1), λ(2), µ, η) with η = ∧ ∧ ∨∨ ( 2 in (1.1)). Moreover we have in the
notation from Theorem 6.10:

λ(1)1λ(2) =∨ ∨ ∧ ∧ λ(2)1λ(3) =∨ ∧ ∨ ∧ λ(1)λ(3) =

Since λ(1)λ(3) is not orientable, it follows λ(1)1λ(2) · λ(2)1λ(3) = 0 and since
λ(1) 6= λ(3) it holds λ(2)1λ(3) · λ(1)1λ(2) = 0. While for the diamond we have

λ(2)1µ = ∧ ∨ ∧ ∨ λ(1)1η = ∧ ∧ ∨ ∨ η1µ = ∧ ∧ ∨ ∨

which gives λ(1)1λ(2) · λ(2)1µ = λ(1)ηµ = λ(1)1η · η1µ. This is an example for
the diagrammatic analogue of Relation (R-5) i).

9.3. λ-pairs and the quiver. The formulation in Definition 9.9 is already
adapted to our setup and slightly different from the original definition in
[4]. To match Definition 9.9 with [4, 1.7] we need the following key tech-
nical lemma which compares our notion of λ-pair from Definition 3.8 with
Braden’s.

We start with some notation. Given a weight λ ∈ Λ0
k recall the associated

antisymmetric sequence s(λ) = (si)−k≤i≤k from Section 2.1. We extend this
sequence by infinitely many ∨’s to the left and infinitely many ∧’s to the
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right to get an infinite sequence λ̃ indexed by half-integers such that the

anti-symmetry line L passes between -1
2 and 1

2 , in formulas λ̃ = (Si)i∈Z+ 1
2
,

where

Si− 1
2

=


− if i < −k,
− if si = ∨ and − k ≤ i ≤ k,
+ if si = ∧ and − k ≤ i ≤ k,
+ if i > k.

We switch notations from ∧ and ∨ to + and − in the sequence λ̃ to make
the comparison to [4] more convenient.

For the next lemma and its proof recall the Definitions 3.7-3.9 for λ-pairs.

Lemma 9.11. Let λ, λ′ ∈ Λ0
k and −k ≤ i, j ≤ k then

λ
(i,j)−→ λ′ if and only if λ̃

(i′,j′)−→ λ̃′ (9.68)

with the right hand side in the terminology of [4] where i′ = i− 1
2 , j′ = j− 1

2 .

Proof. For a weight λ with associated sequence (Si)i∈Z+ 1
2

and a, b ∈ Z + 1
2

with a < b, we set b(±, a, b) = |{r | a < r < b, Sr = ±}|. A λ-pair in the
sense of [4] is a pair (α, β) ∈ (Z + 1

2)2 such that either

i) 0 < α < β and Sα = − and Sβ = + and b(−, α, β) = b(+, α, β), or

ii) 0 < −α < 0 < β with α + 1
2 even and Sα = Sβ = + and moreover

b(+, α, β + 1) = b(−, α, β + 1) − 1 and b(−, γ, ν) = b(±, γ, ν) for the
pairs (γ, ν) ∈ {(−α, α), (−β, β)}.
(In this case we automatically have S−α = S−β = −)

For λ, λ′ ∈ Λ0
k, the case i) obviously corresponds precisely to cups of type

(Cup 1), hence to our λ pairs (i, j) for 0 < i < j. We claim case ii)
corresponds to cups of type (Cup 3), hence to our λ pairs (−i, j) for 0 <
−i < j. The conditions on the pairs (−α, α), (−β, β) means they correspond
to two cups crossing the middle line L in the symmetric cup diagrams from
[30]. Since α+ 1

2 is even, these two cups get turned into a dotted cup using
the rules from [30, 5.2]. �

Remark 9.12. One should note that Braden has an infinite number of λ-
pairs for a single non-truncated weight λ, but only a finite number with

λ′ ∈ Λ0
k as well. Our definition of λ-pairs produces only these relevant pairs.

Corollary 9.13. Let k ≥ 4 and Λ = Λ0
k. The algebra A(Dk) agrees with

the algebra defined in [4, 1.7]. The Cartan matrix of A(Dk) agrees with the
Cartan matrix of DΛ.

Proof. The first part follows from Lemma 9.11 and the definitions.6 The
second statement follows directly from the fact that both Cartan matrices
are of the form CΛ = M t

ΛMΛ, where the entries of the decomposition matrix
MΛ are parabolic Kazhdan-Lusztig polynomials of type (Dk,Ak−1), see [1,
Theorem 3.11.4 (i)] and Lemma 8.6 respectively. �

6We tried to clarify the misleading formulation of the analogue of (R-5) iii) in [4].
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We directly deduce that the underlying graph of the quiver describing the
category Pervk is precisely determined by the λ=pairs. ( For the definition
of Q(Λ) see Definition 3.10.)

Corollary 9.14. The graph Qk underlying the quiver of A(Dk) is Q(Λ0
k).

In case k = 4 the quiver is explicitly given in (1.1).

9.4. Diamonds. We now classify the possible diamonds diagrammatically.

Proposition 9.15. 1.) Up to equivalence and any possible decorations with
dots the following local configurations are the only possible diamonds
where the relevant parts do not contain any rays.

(9.69)

(9.70)

2.) The possible diamonds with rays are obtained from these by allowing
only vertices in a fixed smaller interval and forgetting cups connecting
not allowed vertices only and turn cups which connect an allowed with
a not allowed vertex into dotted or undotted rays depending if the vertex
which gets removed is to the left or to the right of the allowed interval.

Proof. One easily verifies that (9.70) and (9.69) give indeed diamonds and
also when we restrict the vertices to an interval. To see that these are all
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let us first consider the case where the relevant pieces are cups only, hence
the arrow correspond to λ-pairs of the form

(9.71)

with all possible configurations of dots. To simplify arguments we first ignore
all dots and consider the possible configurations

γ = {γ1, γ2} δ = {δ1, δ2}
λ(1)

λ(2) λ(4)

where we number, from left to right according to their endpoints, the cups
in λ(1) involved in either of the two moves and indicate by the pairs γ and δ
the two pairs of vertices where the labels get changed.

Then there are the following cases:

i) γ = δ: This would imply λ(2) = λ(4) which is not allowed.
ii) |γ ∩ δ| = 1: Then one can verify directly that the only possible config-

urations are the following

Table 1. Configurations for |γ ∩ δ| = 1

λ(1)

γ {1, 2} {1, 3} {1, 2} {1, 2} {1, 3} {1, 2}
δ {2, 3} {2, 3} {1, 3} {2, 3} {2, 3} {1, 3}

λ(3)

λ(1)

γ {1, 2} {1, 2} {1, 2}
δ {2, 3} {2, 3} {2, 3}

λ(3)

iii) γ ∩ δ = ∅: then all possible configurations are listed in the following
table.

Then part 1.) of the proposition follows by adding all possible configurations
of dots to the diamonds; while 2.) follows from the definitions and an easy
case-by-case argument which is left to the reader. �
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Table 2. Configurations for γ ∩ δ = ∅

λ(1)

γ {1, 2} {1, 2} {1, 4} {1, 2} {2, 3} {1, 2}
δ {3, 4} {1, 2} {2, 3} {3, 4} {1, 4} {3, 4}

λ(3)

λ(1)

α {1, 4} {1, 2} {3, 4}
β {2, 3} {3, 4} {1, 4}

λ(3)

9.5. The main Isomorphism Theorem. To prove Theorem 9.1 it is
enough to establish an isomorphism of algebras A(Dk) ∼= Dk = D

Λ0
k
.

Recalling the special elements from Definition 6.9, our Theorem 9.1 can
be refined as follows:

Theorem 9.16. Let k ≥ 4. The map Φ = Φk, defined on generators by

Φk : A(Dk) −→ Dk (9.72)

eλ 7−→ λ1λ,

tα,λ 7−→


λ1λ +Xα,λ if 1 ≤ α ≤ k,
λ1λ −X−α,λ if − k ≤ α ≤ −1,

λ1λ otherwise,

p(λ, µ) 7−→ λ1µ +
1

2
(−1)jλXµ if λ

(±i,j)←→ µ,

is a (well-defined) isomorphism of algebras, equipping Braden’s algebra A(Dk)
with a non-negative Z-grading.

Proof. The most involved part of the proof is the well-definedness of Φ which
follows from Proposition 9.18 below. By definition the image of Φ contains
all idempotents λ1λ and by looking at Φ(t2α,λ) also all Xα,λ. Since λ1µ is

contained in the vector space span of Φ(p(λ, µ)) and Xα,λΦ(p(λ, µ)) it is in
the image of Φ as well. Therefore, by Theorem 6.10 the map Φ is surjective.
But then it is already an isomorphism, since by Corollary 9.13 the two
algebras have the same dimension. �
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Example 9.17. We illustrate here Relation (R-5) i) by an explicit example
in D6 keeping carefully track of signs. Consider the diamond

λ(1) =

(2, 3) (1, 2)

λ(2) = = λ(4)

(1, 4) (3, 4)

λ(3) =

We now verify that the following diamond relation holds in D6.

Φ(p(λ(3), λ(2)))Φ(p(λ(2), λ(1))) = Φ(p(λ(3), λ(4)))Φ(p(λ(4), λ(1))).

For the left hand side we calculate(
∧∨∧∨∧∧+

1

2
∨∨∧∧∨∨

)(
∨∧∨∧∧∧− 1

2
∧∨∧∨∨∨

)
=
∧∨∧∨∧∧

+
∨∧∨∧∨∨

where the signs are determined by the second component in the λ-pairs. For
the right hand side we calculate∧∨∧∨∧∧+

1

2
∧∧∨∧∨∧

(∧∨∨∧∧∧+
1

2

∨∧∨∧∨∨
)

=
∧∨∧∨∧∧

+
∨∧∨∧∨∨

where now all signs are positive. Note for instance that the different signs
in the second factor for both sides are taken care of by the different signs in
the surgeries occurring on both sides.

9.6. Well-definedness of the map Φ. The final step is to show that Φ is
well-defined.

Proposition 9.18. The map Φ from Theorem 9.16 is well-defined.

Proof. We check that the map Φ respects all the relations of A(Dk).
I (R-1): Clearly the λ1λ’s form a set of pairwise orthogonal idempotents
with

∑
λ λ1λ = 1 by Theorem 6.2. Hence part a.) and b.) in (R-1) hold.

The others from (R-1) hold by definition.
I (R-2): By definition Φ(tα,λ) = λ1λ if |α| > k. That Φ(tα,λt−α,λ) =

λ1λ follows immediately since Φ(tα,λt−α,λ) = λ1λ −X2
α,λ and X2

α,λ = 0 by

definition. Hence parts a.) and c.) hold. We have (with the appropriate
sign choice)

Φ(tα,λtβ,µ) = (λ1λ ±Xα,λ) (µ1µ ±Xβ,µ)

=

{
0 if λ 6= µ

λ1λ ± αXα,λ ±Xβ,λ + (−1)α+βXα,λXβ,λ otherwise.
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and similarly for Φ(tβ,λtα,µ) with analogous signs. (We do not care which
signs we need, but know from Section 6.2 that we get the same in both
cases.) Hence to verify b.) it is enough to show Xα,λXβ,λ = Xβ,λXα,λ. But
this is obviously true by Lemma 8.8, thus Φ(tα,λtβ,µ) = Φ(tβ,µtα,λ).

Assume now that (α, β) is a λ-pair. We start with the first case in (3.13).
Then the vertices α and β are connected by an undotted cup in λλ and we
have by Proposition 4.5 Xα,λ = −Xβ,λ and thus

Φ(tα,λtβ,λ) = λ1λ −Xα,λXα,λ = λ1λ.

If instead we are in the second case of (3.13) then the vertices −α and β are
connected by a dotted cup and we obtain

Φ(t−α,λtβ,λ) = (λ1λ −Xα,λ) (λ1λ +Xβ,λ) .

But since α and β are connected by a dotted cup in λλ we have by Propo-
sition 4.5 Xα,λ = Xβ,λ and thus again

Φ(tα,λtβ,λ) = λ1λ −Xα,λXα,λ = λ1λ.

and so the last equality of (R-2) holds.

I (R-3): For λ
(±i,j)←→ µ and using the definition of Φ from Theorem 9.16, we

obtain

Φ(p(λ, µ)tα,µ) = λ1µΦ(tα,µ) +
1

2
(−1)jλXµΦ(tα,µ)

and

Φ(tα,λp(λ, µ)) = Φ(tα,λ)λ1µ +
1

2
(−1)jΦ(tα,λ)λXµ.

Since λ1µ and λXµ are basis vectors whose underlying cup diagram looks
like µ1µ except for a local change given by the λ-pair, the circle diagram λµ
contains only vertical lines obtained by gluing two rays, small circles and

one extra component C containing the defining cup for λ
(α,β)↔ µ. Assume

first that C is a circle. Then it involves 4 vertices, let us assume on positions
a1 < a2 < a3 < a4. We now compare multiplication of λ1µ and λXµ by the
image of tα,λ from the left or tα,µ from the right. There are two cases:

i) α 6∈ {a1, a2, a3, a4}: then both multiplications change the orientation of
one small anticlockwise circle and multiply with the same overall sign
or they both annihilate the diagram.

ii) α ∈ {a1, a2, a3, a4}: then both multiplications change the orientation of
C to clockwise with the same overall sign or both annihilate the diagram
in case C was already clockwise.

If C is not a circle, both multiplications annihilate the diagram. Hence (R-3)
holds.
I (R-4): Consider first the cases where the relevant changes from λ to
µ involve no rays. The possible λ1µλ, Xµ and µ1λ, µXλ are displayed in
Example 4.6 when putting anticlockwise respectively clockwise orientation
and possibly take the mirror image of the shape. We go now through all cases
µ← λ as displayed in Example 4.6 and describe the maps algebraically, see
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(9.73)-(9.76), via the identification from Proposition 4.5. Note that p(i) = i
holds since we are in the principal block. We start with the case

α′ β′α β

(9.73)

Then the image of m(µ, λ) = 1 + p(µ, λ)p(λ, µ) equals(
µ1λ +

1

2
(−1)βµXλ

)(
µ1µ +

1

2
(−1)βλXµ

)
which equals, using the surgery rules, the following expression in M(λλ):

1 + (−1)α(1 + (−1)βXβ′)(Xβ −Xα)

= 1 + (−1)α(Xβ −Xα)− (−1)α+βXαXβ′

= 1− (−1)α(Xβ′ +Xα) +XαXβ′

= 1 + (−1)β(Xβ′ +Xα) +XαXβ′

since α + β is odd. On the other hand Φ
(

(tα,λtβ′,λ)(−1)β
)

corresponds to

(1 + (−1)βXα)(1 + (−1)βXβ′) = 1 + (−1)β(Xβ′ +Xα) +XαXβ′ . Hence the
required relation for m(µ, λ) holds.
Similar calculations give

Φ(eλ + p(λ, µ)p(µ, λ)) = Φ
((
tα,λtβ′,λ

)(−1)β
)

corresponding to

1 + (−1)β(Xβ′ +Xα) +XαXβ′ = 1 + (−1)β(Xβ′ −Xβ)−XβXβ′

and so the claim follows in this case as well. For the remaining cases we just
list the corresponding polynomials inM(µµ) andM(λλ) respectively, since
the calculations are completely analogous:

α′ β′α β
{

1 + (−1)β(Xβ′ −Xβ)−Xβ′Xβ ∈M(µµ)

1 + (−1)β(Xα +Xβ′) +XαXβ′ ∈M(λλ)

(9.74)

α β α′β
′
{

1 + (−1)β(Xβ′ +Xα′) +Xβ′Xα′ ∈M(µµ)

1 + (−1)β(Xβ′ −Xβ)−XβXβ′ ∈M(λλ)

(9.75)
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α β α′β
′

{
1 + (−1)β(Xα +Xβ′) +Xα′Xβ′ ∈M(µµ)

1 + (−1)β(Xα′ −Xβ)−XβXβ′ ∈M(λλ)
(9.76)

The relations for λ-pairs involving also rays as the relevant pieces are the
same, except that the corresponding variables X should be set to zero and
so some of the generators of type tγ act by an idempotent, see Section 5.3.
I (R-5): These relations follow from Lemmas 9.19-9.21 below.
Hence the assignment (9.72) defines an algebra homomorphism. �

Lemma 9.19. Let k ≥ 4 and assume that (λ(1), λ(2), λ(3)) is a triple as in
Definition 9.9 (R-5) iii). With Φ as in (9.72) we have

Φ(p(λ(3), λ(2)))Φ(p(λ(2), λ(1))) = 0 = Φ(p(λ(1), λ(2)))Φ(p(λ(2), λ(3))).

Proof. Let us first assume that the corresponding cup diagrams λ(i) have
no rays. The restriction α < 0 forces λ(2) ← λ(1) to be locally of the form
(9.76). Let C1, C2 be the two cups (the outer and inner respectively) in
the left picture of (9.76). Since (γ, δ) is a λ(2)-pair, but not a λ(1)-pair, it
must be given by one of the cups C1 or C2. The triple (λ(1), λ(2), λ(3)) look
then locally like (λ(1), λ(2), λ(3)) respectively (µ(1), µ(2), µ(3)) in Example 9.10.
Hence in the case of C1 the compositions in the lemma are obviously zero,
whereas in case of C2 the triple is not of the required form. Obviously, (by
adding ∧’s to the left and ∨’s to the right of the diagram), the general case
can be deduced from the case where no rays occur. �

Lemma 9.20. Let k ≥ 4 and assume that (λ(1), λ(2), λ(3)) is a triple as in
Definition 9.9 (R-5) ii). With Φ as in (9.72) we have

Φ(p(λ(3), λ(2)))Φ(p(λ(2), λ(1))) = 0 = Φ(p(λ(1), λ(2)))Φ(p(λ(2), λ(3))).

Proof. By assumption the triple can not be extended to a diamond, but
can be enlarged to a diamond (λ̃(1), λ̃(2), λ̃(3), λ̃(4)). In particular, λ̃(4) must
contains at least one ∨ at position larger then k or at least one ∧ at position
smaller than 1 and only one of these two cases can occur. Assume we have
such an ∧, then there is only one, since assuming there are two or more we
have to find

λ̃(1) ↔ λ̃(4) ↔ λ̃(3) (9.77)

with both ↔ converting these ∧’s into ∨’s. But at most two ∧’s can be
switched and there is only one way to do so, which implies λ̃(1) = λ̃(3), a
contradiction. Hence we need two ↔’s as in (9.77) which either remove our
special (hence leftmost) ∧ or at least move it to the right. Without loss
of generality we may assume there are no rays. If we take one of the form
(9.73), then there is no second possibility. Hence they must be of the form
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(9.75) or (9.76) respectively. Then locally the enlarged diamond has to be
of the form displayed on the left

∧ ∨

(9.78)

with the triple (λ̃(1), λ̃(2), λ̃(3)) displayed next to it (the additional points are

to the left of the dashed line). In particular, the circle diagrams λ̃(1)λ̃(3) and

λ̃(3)λ̃(1) cannot be oriented, hence the claim of the lemma follows in this case.
Now assume we have a special ∨ (automatically the rightmost one) which

either has to be removed or be moved to the left. Then the possible moves
(with the position of our special ∨ indicated) are of the form

∨ ∨ ∨ ∨
(9.79)

One can easily verify that the possible extended diamonds must involve
the first move. (For instance the third move in (9.79) is only possible if
the special cup is nested inside a dotted cup, but then the second move
is impossible). We are left with the following diamonds and the second
diamond in (9.78) (the additional points are now to the right of the dashed
line).

∨ ∨

In all cases the circle diagrams λ̃(1)λ̃(3) and λ̃(3)λ̃(1) cannot be oriented. Since
the compositions are zero if no rays are involved they are obviously also zero
in the general case by Section 5.3. The lemma follows. �

The following will ensure the compatibility of Φk with Relation (R-5) i).
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Lemma 9.21. Let k ≥ 4 and assume that (λ(1), λ(2), λ(3), λ(4)) is a diamond

in Λ0
k. With Φ as in (9.72) we have

Φ(p(λ(3), λ(2)))Φ(p(λ(2), λ(1))) = Φ(p(λ(3), λ(4)))Φ(p(λ(4), λ(1))).

Proof. Given a diamond from (9.69) or (9.70), say

λ(1)

λ(2) λ(4)

λ(3)

(α1, β1) (α2, β2)

(α3, β3) (α4, β4)

(9.80)

we consider the four cup diagrams λ(1), λ(2), λ(3), λ(4) and number the in-
volved vertices from left to right by 1 to 6 respectively 1 to 8. Number in
each of them the cups from left to right according to their left endpoint.
Encode the dots via the four sets D(1), D(2), D(3), D(4) of dotted cups for the
top, middle left, middle right and bottom cup diagram. For a λ-pair (α, β)
we denote by m the position of the rightmost vertex of the component which
contains the cup-cap-pair involved in the surgery. For instance, in the no-
tation of (3.13), the first diagram in (9.69) without dots has the following
triples (αi, βi,mi) for i = 1, . . . , 4 of λ-pairs and maximal vertices :

(2, 3, 4), (2, 5, 6), (4, 5, 6), (3, 4, 5).

Then the composition of the maps on the left of (9.80) equals

1 +
1

2
(−1)3X4 +

1

2
(−1)5X6 = 1−X6

as elements ofM(λ(2)λ(4)) from Proposition 4.5 by the relations given by λ(4),
whereas the composition of the maps on the right equals 1 + 1

2(−1)5X6 +
1
2(−1)4X5 = 1−X6. The allowed composition of any other two maps in the
diamond is also equal to 1−X6. Note that all the involved surgery moves in
the diamonds (9.70) and (9.69) are merges, hence no additional signs appear
and we do not have to care about the actual positions, but only the relative
position of the cups.

The following three tables list all the possible decorations with the corre-
sponding resulting maps for the three cases in (9.69) where we abbreviate
the triples Pi = (αi, βi,mi).

D(1) D(2) D(3) D(4) P1 P2 P3 P4 result
{} {} {} {} (2, 3, 4) (2, 5, 6) (4, 5, 6) (3, 4, 5) 1−X6

{1, 3} {1, 3} {} {} (2, 3, 4) (1, 2, 6) (1, 4, 6) (3, 4, 5) 1 +X6

{1} {1} {1} {1} (2, 3, 4) (2, 5, 6) (4, 5, 6) (3, 4, 5) 1−X6

{3} {3} {1} {1} (2, 3, 4) (1, 2, 6) (1, 4, 6) (3, 4, 5) 1 +X6
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D(1) D(2) D(3) D(4) P1 P2 P3 P4 result
{} {} {} {} (4, 5, 6) (2, 5, 6) (2, 3, 6) (3, 4, 5) 1−X6

{3} {2} {1} {1} (3, 4, 6) (1, 2, 6) (1, 2, 6) (3, 4, 5) 1 +X6

{1} {1} {1} {1} (4, 5, 6) (2, 5, 6) (2, 3, 6) (3, 4, 5) 1−X6

{1, 3} {1, 2} {} {} (3, 4, 6) (1, 2, 6) (1, 2, 6) (3, 4, 5) 1 +X6

D(1) D(2) D(3) D(4) P1 P2 P3 P4 result
{} {} {} {} (2, 3, 4) (4, 5, 6) (4, 5, 6) (2, 3, 6) 1−X6

{1} {1} {1} {1} (2, 3, 4) (4, 5, 6) (4, 5, 6) (2, 3, 6) 1−X6

{2} {1} {1} {2} (1, 2, 4) (4, 5, 6) (4, 5, 6) (1, 2, 6) 1
{1, 2, 3} {3} {1} {1} (1, 2, 4) (3, 4, 6) (1, 4, 6) (2, 3, 6) 1
{3} {3} {1} {2} (2, 3, 4) (3, 4, 6) (1, 4, 6) (1, 2, 6) 1 +X6

{2, 3} {1, 3} {} {} (1, 2, 4) (3, 4, 6) (1, 4, 6) (2, 3, 6) 1
{1, 3} {1, 3} {} {1, 2} (2, 3, 4) (3, 4, 6) (1, 4, 6) (1, 2, 6) 1 +X6

{1, 2} {} {} {1, 2} (1, 2, 4) (4, 5, 6) (4, 5, 6) (1, 2, 6) 1

The claim is obviously true for the first two diamonds in (9.70) with all
possible decorations. The following five tables list all possible decorations
for the remaining five diamonds with the corresponding resulting maps:

D(1) D(2) D(3) D(4) result D(1) D(2) D(3) D(4) result
{} {} {} {} 1−X8 {1, 2, 4} {4} {1} {1} 1
{1, 2} {} {} {1, 2} 1 {2, 4} {1, 4} {} {} 1
{1, 4} {1, 4} {} {1, 2} 1 +X8 {1} {1} {1} {1} 1−X8

{2} {1} {1} {2} 1

D(1) D(2) D(3) D(4) result D(1) D(2) D(3) D(4) result
{} {} {} {} 1−X8 {1} {1} {1} {1} 1−X8

{1, 3} {} {} {1, 2} 1 +X8 {3} {1} {1} {2} 1 +X8

D(1) D(2) D(3) D(4) result D(1) D(2) D(3) D(4) result
{} {} {} {} 1−X8 {1, 4} {} {} {1, 4} 1 +X8

{1} {1} {1} {1} 1−X8 {4} {1} {1} {4} 1 +X8

D(1) D(2) D(3) D(4) result D(1) D(2) D(3) D(4) result

{} {} {} {} 1 + X7−X8
2 {1, 2} {} {} {1, 2} 1 + X7+X8

2

{1} {1} {1} {1} 1 + X7−X8
2 {2} {1} {1} {2} 1 + X7+X8

2

D(1) D(2) D(3) D(4) result D(1) D(2) D(3) D(4) result

{} {} {} {} 1 + X5−X8
2 {1, 4} {} {} {1, 4} 1 + X5+X8

2

{1} {1} {1} {1} 1 + X5−X8
2 {4} {1} {1} {4} 1 + X5+X8

2

Hence the claim follows. �
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We finally showed that Φ is a well-defined map of algebras. This estab-
lishes Theorem 9.16, showing that A(Dk) and Dk are isomorphic as algebras.

9.7. Passage to type Bk. Our result for Grassmannians of type Dk+1

transfers directly to Bk via the following observation. The natural inclu-
sions of algebraic groups SO(2k + 1,C) ↪→ SO(2k + 2,C), for k ≥ 2, induce
isomorphisms, compatible with the Schubert stratification, of the partial flag
varieties for the pairs (G,P ) of type (Bk,Ak−1) and (Dk+1,Ak), see [5, 3.1].
As a consequence, the corresponding categories, Pervk(B) and Pervk+1(D),
of perverse sheaves constructible with respect to the Schubert stratification
are equivalent, and hence both equivalent to the category Dk+1 -mod. To
match our algebra directly with the combinatorics of the type Bk Grass-
mannian note that its Schubert varieties are canonically labelled by the set
W p of shortest length coset representatives for Wp\W , where W denotes
the Weyl group of type Bk and Wp its parabolic subroup of type Ak−1. We
choose the standard generators s0, s1, . . . , sk−1 of W such that the si for
i > 0 generate Wp and s0, s1 form a Weyl group of type B2. Then W acts
naturally (from the right) on the set S of {∧.∨} sequences of length k, where
si for i > 0 acts by swapping the i-th and (i+ 1)-st symbol and s0 changes
the first symbol from ∧ to ∨ and from ∨ to ∧. Sending the identity element
to ∨∨ . . .∨ induces a bijection between W p and S. Now S can be identified

with the principal block Λ0
k+1 via the assignment

s 7−→ s† =

{
∨s if the parity of the number of ∧’s in s is even,

∧s if the parity of the number of ∧’s in s is odd,

One easily checks that it corresponds to a bijection W p ∼= W 0 sending
a reduced expression w = s0si1si2 · · · sir to s0sj1sj2 · · · sjr , where ja = ia if
ia 6= 0 and otherwise ja = 0 respectively ja = 1 depending whether there are
an even respectively odd number of s0’s strictly to the left of sja . Altogether
there is an equivalence of categories

Pervk(B) ∼= Dk+1 -mod

sending the simple module labelled by s to the the simple module labelled by
s†. Moreover it provides a direct closed formula for type (Bk,Ak−1) parabolic

Kazhdan-Lusztig polynomials dBk
s,t via Lemma 8.63, namely

dBk
s,t(q) =

{
qd if λµ is oriented of degree d,

0 if λµ is not oriented.
= dλ,µ(q) (9.81)

where λ and µ are the principal weights for Dk+1 given by s† and t†. This
simplifies the approach from [36] substantially, by reducing it to [30].
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