
J. London Math. Soc. (2) 70 (2004) 643–658 C�2004 London Mathematical Society
DOI: 10.1112/S0024610704005708

COMPOSITION FACTORS OF QUOTIENTS OF THE
UNIVERSAL ENVELOPING ALGEBRA

BY PRIMITIVE IDEALS

CATHARINA STROPPEL

Abstract

Graded versions of the principal series modules of the category O of a semisimple complex Lie
algebra g are defined. Their combinatorial descriptions are given by some Kazhdan–Lusztig poly-
nomials. A graded version of the Duflo–Zhelobenko four-term exact sequence is proved. This gives
results about composition factors of quotients of the universal enveloping algebra of g by primitive
ideals; in particular an upper bound is obtained for the multiplicities of such composition factors.
Explicit descriptions are given of principal series modules for Lie algebras of rank 2. It can be seen
that these graded versions of principal series representations are neither rigid nor Koszul modules.

Introduction

Let g be a semisimple complex Lie algebra of finite dimension and let U(g) denote its
universal enveloping algebra. A longstanding open problem is to describe primitive
ideals of U(g). Although there is no classification of simple U(g)-modules, the
primitive ideals are all given (see [16, 7.4]) by annihilators of simple objects inside
the so-called category O which was introduced in [7]. For any weight λ there is a
universal object in O, the so-called Verma module with highest weight λ, denoted
by ∆(λ). It is an object of the subcategory Oλ consisting of all objects with a fixed
generalised central character χλ. Each Verma module ∆(λ) has a simple head,
denoted by L(λ). All simple objects in O are constructed in this way.

In general, there is not yet a satisfactory description of the annihilators of simple
U(g)-modules. In the case when the simple module L in question is also a Verma
module, the annihilator is given by a theorem of Duflo [12, 8.4.3]. In this special case
even the composition factors of U(g)/AnnU(g) L can be computed by Kazhdan and
Lusztig’s [20] inductively defined polynomials. These polynomials can also be used
to compute the number of distinct primitive ideals of U(g) which are annihilators
of simple modules in a fixed block.

This paper was motivated by the results and ideas of [19], where A. Joseph gives
some indications on how a Jantzen filtration of the principal series modules should
imply some results about composition factors of primitive quotients. Here the term
‘primitive quotient’ stands for a quotient of the form U(g)/AnnU(g) L for some
simple U(g)-module L.

Instead of defining a Jantzen filtration of a principal series module we introduce
a graded version of this module; we consider a (regular) integral block Oλ of O
as a category of right modules over a finite dimensional algebra A (which is the
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endomorphism ring of a minimal projective generator of Oλ). This algebra appears
with a Z-grading (see [5, Theorem 1.1.1]). Let M be an object of Oλ and let M be
the corresponding right A-module. Then a graded version of M is a lift of M , that
is, a graded right A-module M̃ such that M̃ ∼= M when we forget the grading. For
any simple module in Oλ, there is a lift or graded version, concentrated in a single
degree. Using a graded version of translation functors, as introduced in [26], it is
possible to define graded versions of principal series modules. Since these modules
are indecomposable, their lifts are unique up to isomorphism and grading shift [5,
Lemma 2.5.3].

A combinatorial description of translation functors [26] gives rise to an explicit
formula for the combinatorics of these graded versions of principal series modules
in terms of elements of the Hecke algebra corresponding to the Weyl group of g

(Theorem 3.1). This combinatorial description gives as our main result an upper
bound for the multiplicity of a simple module L in a given primitive quotient.

More precisely, given two elements x and y of the Weyl group we introduce a
graded version P(x,y) of the principal series module HomC(∆(x · 0),∇(y · 0))adf

⊗
U

∆(0)∈O0, where ∇(y · 0) is the dual Verma module with simple socle L(y · 0). (For
M any U(g)-bimodule, Madf denotes the submodule consisting of ‘finite vectors’
for the adjoint action of g.)

On the other hand, we have a graded version of the simple composition factor
L(x · 0), say L̃(x · 0)〈i〉, which is concentrated in degree i. In [26] we proved that
there is an isomorphism (of Z[v, v−1]-modules) from the Hecke algebra to the
Grothendieck group of gmof −A. We prove (Theorem 3.1) that P(wo x,wo y) corres-
ponds under this isomorphism to the Hecke algebra element Hx−1Hy, a product of
two (standard) basis elements such that[

P(wo x,wo y) : L̃(z · 0)〈i〉
]

= mx,y,z,i,

where
∑

i∈Z
mx,y,z,iv

i is the coefficient of some Kazhdan–Lusztig basis element D′
z

which occurs in the expression of Hx−1Hy written in the Kazhdan–Lusztig basis.
Therefore, these multiplicities can be (in principle) computed explicitly.

The primitive quotients (or rather their images in O under the equivalence
between some category of Harish–Chandra bimodules and some subcategory of
O described in [6]) are determined by homomorphisms (or intertwining maps)
between the projective Verma module and some principal series representation.
In our setup, these homomorphisms can be considered as homogeneous maps of
graded modules. The combinatorics of both the Verma module and the principal
series representation in question are, as we already mentioned, determined by
some Kazhdan–Lusztig polynomials. Therefore we get an upper bound for the
multiplicities of composition factors occurring in the images which describe the
primitive quotients (Theorem 4.1):[

(U(g)/Ann L(x · 0))
⊗

U(g) ∆(0) : L(y · 0)
]

�
∑
i∈Z

min
{[
P(wo ,wo) : L̃(y · 0)〈i〉

]
,
[
P(x,x) : L̃(y · 0)〈i〉

]}
.

This inequality becomes an equality for simple modules which do not occur with
higher multiplicities in a dominant Verma module (Theorem 4.1 and Corollary 4.5).
For higher multiplicities the situation is not that easy. At least we achieve a
lower bound for the multiplicities, which can occur, so one can hope that the
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upper and the lower bounds coincide. Unfortunately this is not always the case:
a counter-example can be found for type B3 (see [23]). Nevertheless, we are able
to prove a graded version of the Duflo–Zhelobenko four-step exact sequence (4.2)
which implies an even stronger (but also more technical) result than the formula
above (Theorem 4.3). Roughly speaking, it states that the composition factors of
U(g)/Ann L(x · 0)

⊗
U(g) ∆(0) are exactly those which occur in P(wo ,wo) and in

P(x,x) in the same degree (up to a certain permutation for higher multiplicities!).
In the last section we prove a general statement about translation functors and

Koszul modules. It turns out that graded versions of principal series modules are
neither rigid nor Koszul in general.

1. Principal series modules and graded category O

1.1. The category O
Let g ⊃ b ⊃ h be a semisimple complex Lie algebra with a chosen Borel and a

fixed Cartan subalgebra. Let g = n−⊕ b = n− ⊕ h⊕ n be the corresponding Cartan
decomposition. The corresponding universal enveloping algebras are denoted by
U = U(g), U(b) etc.

We consider the category O which is the full subcategory of the category of
U-modules whose objects are

(1) finitely generated;
(2) locally finite for n;
(3) acted on diagonally by h.

Standard references are [7, 15, 16].
We denote by W the Weyl group with longest element wo. Let ρ denote the

half-sum of positive roots. The ‘translated’ (or ‘dot’) action of W on h∗ is defined
by x · λ = x(λ + ρ) − ρ. The action of the centre Z = Z(U) of U decomposes the
category into direct summands indexed by maximal ideals of Z:

O =
⊕

χ∈MaxZ
Oχ =

⊕
λ∈h∗/(W ·)

Oλ, (1.1)

where Oχ denotes the subcategory of O consisting of all objects annihilated by some
power of χ. It denotes the same subcategory as Oλ if ξ(λ) = χ, where ξ denotes the
Harish–Chandra isomorphism. Here, the second sum runs over orbits of the trans-
lated action of W on h∗. The summand Oλ is called integral if λ is integral, that
is, if 〈λ + ρ, α̌〉 ∈Z for any coroot α̌. We denote by Wλ = {w∈W |w · λ = λ}
the stabiliser of λ in W and call λ (and Oλ respectively) regular if Wλ is trivial.

For all λ∈ h∗ we have a standard module, the Verma module ∆(λ) = U
⊗

U(b) Cλ,
where Cλ denotes the irreducible h-module with weight λ enlarged by the trivial
action of n to a module over the Borel subalgebra. This Verma module is a highest
weight module of highest weight λ and has central character ξ(λ). We denote
by L(λ) the unique irreducible quotient of ∆(λ). We denote by τ the Chevalley
antiautomorphism (see [16, 2.1]). Let � denote the duality of O, that is M� is
the maximal h-semisimple submodule of the contragredient representation M∗

with the τ -twisted action, that is (xf)(m)= f(τ(x)m) for all x∈ g, f ∈M∗ and
m∈M . We denote by ∇(λ) the dual Verma module ∆(λ)�.
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Let λ, µ∈ h∗ lying in the same Weyl chamber be such that µ−λ is integral. The
translation functor from Oλ to Oµ is the functor

θµ
λ : Oλ −→ Oµ

M 	−→ prµ(M ⊗ E(µ − λ)),

where prµ is the projection onto Oµ and E(µ − λ) is the finite dimensional simple
g-module with extremal weight µ − λ. Let s be a simple reflection, suppose that
Wµ = {1, s}, then translation through the s-wall is the composition of functors
θs = θλ

µ ◦ θµ
λ . For more details concerning these functors see [15, 16].

1.2. Gradings

For any graded ring R we denote by (g)mof −R the category of finitely generated
(graded) right R-modules. For a regular integral block, say O0, of O, let A denote
the endomorphism ring of a minimal projective generator P . In [5, Theorem 1.1.3]
it is explained how this ring becomes a Z-graded ring. In the following, we use the
term ‘graded’ instead of ‘Z-graded’. Let f be the grading-forgetting functor. For
m∈Z let M〈m〉 be the graded module defined by M〈m〉n := Mn−m with the same
module structure as M , that is f(M〈m〉) = f(M).

Definition 1.1. Let B and D be graded rings. We call a module M ∈ mof −B
gradable if there exists a graded module M̃ ∈ mof −B such that f(M̃)∼= M . In this
case, the module M̃ is a lift of M .

An object M ∈O0 is gradable if Homg(P,M) is a gradable A-module, where
A = Endg(P ) is graded as described in [5, Theorem 1.1.4] or [26, Theorem 2.1].
By abuse of language, a lift of Homg(P,M) is often called a lift of M . Let B and
D be graded rings. We call a functor F : mof −B −→ mof −D gradable if there
exists a functor of graded categories F̃ : gmof −B −→ gmof −D (in the sense of [2,
Appendix E.3]) which induces F after forgetting the grading. If there is such a
functor F̃ , we call it a lift of F . We call a functor F on O0 gradable if it induces a
gradable functor on mof −A.

We recall two well-known facts concerning graded modules which will be used
several times in the following.

Lemma 1.2. Let M , N ∈O0 be gradable with lifts M̃ and Ñ ∈ gmof −A,
respectively.

(i) If M is indecomposable, then M̃ is uniquely defined up to isomorphism and
grading shift, that is, for any M̂ ∈ gmof −A such that f M̂ ∼= M , there exists an
isomorphism of graded modules M̃ ∼= M̂〈i〉 for some i∈Z.

(ii) Let dimC Hommof−A(M,N) � 1; then any morphism f ∈ Hommof−A(M̃, Ñ)
is a graded homomorphism, homogeneous of some degree i∈Z.

Proof. For the first statement see [5, Lemma 2.5.3]. Since we have naturally
Hommof−A(M,N)= Hommof−A(M̃, Ñ) =

⊕
i∈Z

Homgmof−A(M̃, Ñ〈i〉), it follows
from our assumption that Hommof−A(M,N)= Homgmof−A(M̃, Ñ〈i〉) for some
i∈Z. The second statement of the lemma follows.
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In [5] and also in [26, Lemma 3.2] it is proved that every simple module in
O0 is gradable. Every lift is concentrated in a single degree. All Verma modules
in O0 are gradable. Their standard lifts defined in [5] or [26, Theorem 3.6] are
denoted by ∆̃(x · 0). In [26, 3.2] a graded lift θ̃s of the translation through the wall
was introduced. It has the property that for any graded module M ∈ gmof −A the
canonical maps adj1(M) : M −→ θ̃sM and adj2(M) : θ̃sM −→M are homogeneous
of degree 1. This provides a combinatorial description in terms of the Hecke algebra.

1.3. Combinatorial description of graded translation functors

We denote the Grothendieck group [gmof −A] of gmof −A by [OZ
0 ] to indicate that

we are in fact interested in O0. A basis of this group is given by the isomorphism
classes of the graded lifts ∆̃(x · 0)〈n〉 of Verma modules in O0, where n∈Z and
x∈W . Moreover, [OZ

0 ] can be considered as a Z[v, v−1]-module defined by vn[M ] :=
[M〈n〉]. As a Z[v, v−1]-module it is isomorphic to the Hecke algebra H of W . This
is by definition (see [22] and [8, IV, 2, Ex. 22]) the free Z[v, v−1]-module with basis
{Hx |x∈W} subject to the relations

H2
s = He + (v−1 − v)Hs for a simple reflection s,

HxHy = Hxy if l(x) + l(y) = l(xy).

The main result in [26] is that the graded version θ̃s of the translation through
the s-wall satisfies the following combinatorial description given by the following
commuting diagram.

H

·(Hs +v)

��

vn Hx �−→[∆̃(x·0)〈n〉]
�� [OZ

0 ]

[θ̃s ]

��

H
vn Hx �−→[∆̃(x·0)〈n〉]

�� [OZ
0 ]

(1.2)

In [26] it is also explained how to define a graded version of duality. This is a functor
d on gmof −A which commutes with graded translation through the wall and which
becomes the usual duality, coming from the duality on O0, after forgetting the
grading. Moreover, for a simple module L in degree 0, we have d(L〈n〉) ∼= L〈−n〉.
In the graded Grothendieck group this duality is therefore described as the identity
on isomorphism classes of simple modules in degree 0 and the rule v 	−→ v−1.

Kazhdan and Lusztig defined an involutive automorphism (or duality) H 	−→ H
on H with the property Hx 	−→ (Hx−1)−1 and vHe 	−→ v−1He. A crucial result
of [20] is the existence of a self-dual Kazhdan–Lusztig basis, that is, a basis {Hx |
x∈W} uniquely defined by the properties Hx = Hx and Hx ∈Hx+

∑
y �=x vZ[v]Hy.

The (in the meantime proved) Kazhdan–Lusztig conjectures [20] and the results
of [5] imply that this duality corresponds to the duality d in diagram (1.2). It
is perhaps worth mentioning that the commutativity of the diagram above and
the definition of d do not require the truth of the Kazhdan–Lusztig conjectures,
which, however, are needed to describe the Hecke algebra elements corresponding
to isomorphism classes of simple and projective objects.

For M , L∈ gmof −A (or M , L∈ mof −A respectively), where L is a simple
object, we denote by [M : L] the multiplicity how often L occurs as a composition
factor in M . In other words, [M ] =

∑
[M : L][L] in the corresponding Grothendieck

group, where the sum runs over isomorphism classes of simple objects. Let L̃(x · 0)
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denote the (standard) lift of the simple module L(x · 0), concentrated in degree
zero. The following multiplicity formula holds for any simple reflection s such that
xs > x (see [26, Theorem 5.1]):

[θ̃sL̃(xs · 0) : L̃(xs · 0)〈j〉] =

{
1 if j = ±1,

0 otherwise.
(1.3)

Here, the simple module L̃(xs · 0)〈1〉 is a submodule and L̃(xs · 0)〈−1〉 is a quotient
of θ̃sL̃(xs · 0).

1.4. Principal series modules

Recall that for a U-bimodule X the adjoint action of g is defined by g.x =
gx−xg for g ∈ g and x∈X. For M and N ∈O the set HomC(M,N) is a U-bimodule
in a natural way. The subspace L(M,N), consisting of vectors lying in a finite
dimensional subspace which is invariant under the adjoint action of g, is an object
of the category of Harish–Chandra bimodules (see [6, II, 16, Kapitel 6]). Let x,
y ∈W . Then the U-module L(∆(x · 0),∇(y · 0))

⊗
U ∆(0) is an object of O0 via the

Bernstein–Gelfand equivalence [6, 5.9]. These are the principal series modules.
These principal series modules have the following properties.
(A) (See [18, Corollary 2.9 and Lemma 2.10] and [17, Lemma 2.5].) For all x∈W

there are isomorphisms of U-bimodules:

L(∆(x · 0),∇(wo · 0)) ∼= L(∆(0),∆(x−1wo · 0)),

L(∆(x · 0),∇(0)) ∼= L(∆(0),∇(x−1 · 0)).

In the Grothendieck group of O0 the equality

[L(∆(x−1 · 0),∇(y · 0))
⊗

U ∆(0)] = [∆(xy · 0)]

holds for all x, y ∈W (by Frobenius reciprocity; see remark [18, 3.1] or for a proof
[11, 9.6.2]).

(B) All principal series modules are indecomposable [25].
In particular, all Verma modules and dual Verma modules in O0 are examples of
principal series modules.

2. Principal series modules as gradable objects

In the following section we show that all principal series representations are
gradable and we give a combinatorial description in terms of basis elements of
the Hecke algebra.

Theorem 2.1. For x, y ∈W the module L(∆(x−1 · 0),∇(y · 0))
⊗

U ∆(0)∈O0

is gradable. A lift is unique up to isomorphism and grading shift.

Proof. The short exact sequence in O0

∇(y · 0) ↪→ θs∇(y · 0)→→∇(ys · 0)

with ys < y gives an exact sequence

0−→L(∆(x · 0),∇(y · 0))
f−→L(∆(x · 0), θs∇(y · 0))

g−→ L(∆(x · 0),∇(ys · 0)) (2.1)



composition factors of primitive quotients 649

of Harish–Chandra bimodules with trivial central character from the right.
Therefore we get (by [16, 6.33 (6)]) the following short exact sequence in O0:

0 −→ L(∆(x · 0),∇(y · 0))
⊗

U ∆(0)
f
↪→ θs(L(∆(x · 0),∇(y · 0))

⊗
U ∆(0))

g→→ L(∆(x · 0),∇(ys · 0))
⊗

U ∆(0) −→ 0, (2.2)

if we can show that g is surjective. By property (A) in Subsection 1.4 we get
[θsL(∆(x ·0),∇(y ·0))

⊗
U ∆(0)] = [θs∆(x−1y ·0)] = [∆(x−1y ·0)]+[∆(x−1ys ·0)] =

[L(∆(x·0),∇(y ·0))
⊗

U ∆(0)]+[L(∆(x·0),∇(ys·0))
⊗

U ∆(0)]; hence the morphism
g has to be surjective. (Perhaps more conceptual is to say that L(∆(x · 0), •) is
exact on modules having a filtration with subquotients isomorphic to dual Verma
modules, since it commutes with tensoring with finite dimensional (left) g-modules
and ∇(0) is injective.)

If y = wo holds, the second term in (2.2) is by property (A) isomorphic to

L(∆(0),∆(x−1wo · 0))
⊗

U ∆(0) ∼= ∆(x−1wo · 0)

and is therefore gradable for all x∈W . Since translation through the wall has a
graded lift, the translated module is also gradable. Since the homomorphism space

Homg×g(L(∆(x · 0),∇(y · 0)),L(∆(x · 0), θs∇(y · 0)))

is one-dimensional [26, Endomorphism Theorem] for all x and y ∈W , the
homomorphism f has to be homogeneous considered as a map between graded
modules (Lemma 1.2), so the cokernel in (2.2) is gradable. Inductively the
gradability of all principal series modules follows. The uniqueness of the lifts follows
from Lemma 1.2 using property (B).

We choose a lift of principal series modules, such that the surjection in (2.2) is
homogeneous of degree zero. This does not depend on the reduced expression for x,
because the lift of the simple module corresponding to the longest element occurs in
the same degree for any chosen reduced expression by formula (1.3). We denote the
so-defined lift of L(∆(x · 0),∇(y · 0))

⊗
U ∆(0) by P(x,y). If x = y we just write Px.

For Verma modules, these lifts coincide by definition with the lifts defined in [26,
Theorem 3.6] and therefore also with the lifts in [5, Proposition 3.5.7].

We get the following short exact sequences of graded modules.

Theorem 2.2. Let y ∈W and let s be a simple reflection satisfying ys > y.
There are short exact sequences of graded modules

P(x,ys)〈1〉
adj1
↪→ θ̃sP(x,ys) →→ P(x,y),

P(x,ys) ↪→ θ̃sP(x,y)
adj2→→ P(x,y)〈−1〉.

Proof. The first sequence follows from the fact that the canonical map adj1(M)
is of degree 1 for all graded modules M and from the convention for the lifts of the
quotients.

Since the adjunction morphism adj2 is homogeneous of degree 1, the surjection

θ̃sP(x,y)→→P(x,y)〈−1〉
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is homogeneous of degree zero. The simple module ∆(wo · 0) occurs in P(x,y) as
a composition factor with multiplicity one. Let i be the degree in which it is
concentrated. Thus it occurs twice in θ̃sP(x,y), namely in degrees i+ 1 and i− 1
(see (1.3)). Comparing this with the first sequence it follows that θ̃sP(x,ys) has
this composition factor exactly in degree i+ 2 and in degree i, so it has to appear
in P(x,ys) in degree i+ 1. Hence we have proved that the injection of the second
sequence must be homogeneous of degree zero, and so we are done.

Corollary 2.3. With the same assumptions as in the theorem we get an
isomorphism of graded modules

θ̃sP(x,y)
∼= θ̃sP(x,ys)〈−1〉.

Proof. Note that there is an isomorphism after forgetting the grading. Property
(B) in Subsection 1.4 and Lemma 1.2 imply the existence of an isomorphism of
graded modules θ̃sP(x,y)

∼= θ̃sP(x,ys)〈j〉 for some j ∈Z. Comparing the two sequences
in Theorem 2.2 gives j = −1.

3. The combinatorics of principal series modules

The combinatorial description of translation functors provides a combinatorial
description of the graded lifts of principal series modules.

Theorem 3.1. Under the isomorphism in (1.2), the element[
P(wo x,wo y)

]
∈

[
OZ

0

]
corresponds to the following element of the Hecke algebra:

Hx−1Hy.

Proof. For y = e, the isomorphism class of the graded module P(wo x,wo )
∼=

P(e,x−1), corresponds to Hx−1 = Hx−1He by definition of the isomorphism in (1.2).
Let y ∈W and let s be a simple reflection such that ys > y holds. Theorem 2.2
gives a short exact sequence of graded modules of the form

0 −→ P(wo x,wo y)〈1〉 −→ θ̃sP(wo x,wo y) −→ P(wo x,wo ys) −→ 0.

Assuming that the assertion is true for y, the isomorphism class of P(wo x,wo ys)

corresponds to the element

(Hx−1Hy)(Hs + v) − (vHx−1Hy) = Hx−1HyHs = Hx−1Hys

of the Hecke algebra. This is just what we had to show.

Remark 3.2. (a) From the relation H2
s = He+(v−1−v)Hs it follows inductively

that the simple module corresponding to the dominant weight occurs in Px always
in degree zero.

(b) The Bernstein–Gelfand equivalence and the interchanging of right and left
module structures for Harish–Chandra bimodules gives also an equivalence of
categories between O0 and the category of Harish–Chandra bimodules with trivial
central character from the left-hand side. We can also define a graded version of
the translation functor through the wall (on the right-hand side) which implies
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an analogous diagram as in (1.2). It is then straightforward to see that it defines
the same combinatorics for principal series modules as described in Theorem 3.1.
Details can be found in [23].

The character formulae (A) of Subsection 1.4 can now be deduced purely
combinatorially (without using Kazhdan–Lusztig conjectures).

Corollary 3.3. All principal series modules Px define after forgetting the
grading the same elements in the Grothendieck group.

Proof. For any simple reflection s the equality H2
s = He + (v−1 − v)Hs holds.

Evaluating it at the point 1 yields the same composition factors of Pwo s as for
the projective Verma module. Let x∈W and let s be a simple reflection such that
x = sy with l(y) = l(x) − 1 holds. The equalities

Hx−1Hx = Hy−1H2
s Hy

= Hy−1HeHy + (v−1 − v)Hy−1HsHy

show that the composition factors (with multiplicities) of Px and of Py coincide
after forgetting the grading. Induction gives the desired result.

The motivation for the last result of this section was given by [19] where it is
proved that He gives the gradation dual to the one described by Hwo

Hwo
.

Theorem 3.4. There is an isomorphism of graded modules P(x,y)
∼= dP(wo x,wo y)

for all x, y ∈W .

Proof. By the duality theorem ([1, 3.4 and Corollary 2.1] or [25, Theorem 3.1]),
there is an isomorphism after forgetting the grading. Since the principal series
modules are indecomposable, their lifts are unique up to isomorphism and grading
shift (see Lemma 1.2). Since the composition factor corresponding to the dominant
weight occurs in any Px in degree zero, it also occurs in degree zero in dPx by
definition of d. This proves the claim. (We can also mimic the proof of the non-
graded duality theorem with graded exact sequences from Theorem 2.2.)

Corollary 3.5. For x, y ∈W the equality[
P(x,y)

]
=

[
dP(wo x,wo y)

]
(3.1)

holds in the graded Grothendieck group of O0.

Proof. This is in immediate consequence of the previous theorem. Nevertheless,
let us give an idea how to prove it using the conjectures and combinatorics of
Kazhdan and Lusztig. In the notation of [22], the self-dual element H̃y corresponds
to Cy in [20]. The formula [21, (5.1.8)], that is D′

x = Cxwo
Hwo

, shows that H̃yHwo

corresponds to [L(y · 0)] under the isomorphism (1.2). For x, y ∈W we define
Laurent polynomials hy by

Hx−1Hy =
∑
z∈W

hz(H̃zwo
Hwo

).
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Dualising and multiplying by H2
wo

on the right-hand side gives the formula∑
y

hyH̃ywo
Hwo

= Hx−1HyH2
wo

.

An easy computation shows that H2
wo

is central in H; hence

Hx−1HyH2
wo

= (Hx)−1H2
wo

(Hy−1)−1 = Hx−1wo
Hwo y = H(wo x)−1Hwo y.

Since the polynomials hy decode the multiplicities of the graded composition
factors, the assertion follows.

4. Primitive quotients and their composition factors

We consider AnnU L(x ·0), the annihilator of the simple module L(x ·0)∈O0. By
a theorem of Duflo [12, Proposition 10] the corresponding primitive quotient can
be described as the image of some homomorphism between certain principal series
modules. More precisely, in our setup it means that there is a morphism

ψx : ∆(0) −→ L(∆(x),∇(x))
⊗

U ∆(0) (4.1)

such that im ψx
∼= U/AnnU L(x)

⊗
U ∆(0). Therefore, the image of the Duflo map

ψx corresponds to the primitive quotient U/AnnU L(x) via the Bernstein–Gelfand
equivalence of categories [6].

The following theorem confirms the ideas and conjectures of A. Joseph [19].

Theorem 4.1 (upper bound for composition factors). For all x∈W , the
(unique up to a scalar non-trivial) morphism

ψx : Pwo
−→Px

is homogeneous of degree zero.
In particular, there is an upper bound for the multiplicities

[(U/Ann L(x · 0))
⊗

U ∆(0) : L(y · 0)]�
∑
i∈Z

min{[Pwo
: L̃(y · 0)〈i〉], [Px : L̃(y · 0)〈i〉]}.

Remark 4.2. Using the combinatorial description of Theorem 3.1, these upper
bounds for the multiplicities can be computed explicitly.

Proof of Theorem 4.1. All principal series modules Px (with x∈W ) have the
same non-graded characters because of property (A) in Subsection 1.4. Therefore,
the homomorphism space between ∆(0) and L(∆(x · 0),∇(x · 0))

⊗
U ∆(0) is one-

dimensional for all x, since ∆(0)∈O0 is projective. Hence (by Lemma 1.2) the map
ψx between their graded lifts is homogeneous. On the other hand, the simple module
L(0) is always in the image of each Duflo map, because its annihilator is maximal
in the set of all primitive ideals with the inclusion ordering (see [16, Corollary 7.2]).
By Theorem 3.1 and Remark 3.2(a) the lift of this simple module occurs in each Px

in degree zero. Therefore, ψx is homogeneous of degree zero. Hence, the statement
follows immediately from the result (4.1) of Duflo.

It turns out (see Corollary 4.5) that the previous theorem provides all the
information for a simple module occurring with single multiplicity in the dominant
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Verma module ∆(0). In particular, the result gives all composition factors of
primitive quotients for Lie algebras of rank at most 2 in a purely combinatorial
way. For type A3 with a given involution x, the composition factors of imψx are
(with multiplicities!) just the ones which occur in Pwo

and in Px in the same
degree. However, it is not the case in general. Detailed examples can be found
in [23].

We need some tool to ‘distinguish’ composition factors in the case of higher
multiplicities. This is (as suggested in [19]) somehow given by the following graded
version of the four-step exact sequence.

Theorem 4.3 (graded Duflo–Zhelobenko sequence). (i) Let x∈W and let s be
a simple reflection such that sx > x. There is a short exact sequence of graded
modules

0 −→ P(x,sx)〈1〉−→ P(sx,sx)
fsx,x−→ P(x,x) −→ P(x,sx)〈−1〉 −→ 0. (4.2)

(ii) Moreover, the homomorphism space between two consecutive modules in
the sequence is one-dimensional. In particular, after forgetting the grading, this is
just the Duflo–Zhelobenko exact sequence from [19].

Proof. The existence of such a sequence in the non-graded case is given by the
Duflo–Zhelobenko sequence [19]. Since all the homomorphism spaces in question
are one-dimensional [25, Endomorphism Theorem], all maps are homogeneous
(Lemma 1.2). The only thing one has to check is the degree of these maps. The
map in the middle has to be of degree zero, since in its image the finite-dimensional
simple module appears as composition factor and its graded lift always occurs in
degree zero in all principal series modules Px (see Remark 3.2(a)). The others are
given by an easy calculation inside the Hecke algebra using Theorem 3.1.

The graded four-step exact sequence gives us a lower bound for multiplicities for
composition factors of primitive quotients as follows. Let L be a simple module in
gmof −A concentrated in degree zero. We denote by mL,x the maximal integer i
such that [Px : L〈i〉] �= 0 and set mL,x = −∞ if [f Px : f L] = 0. The main result is
given by the following.

Theorem 4.4 (lower bounds for composition factors). (i) Let x∈W with
reduced expression x̂. Let s1 . . . srx̂ be a reduced expression of wo. Then the
Duflo map ψx is up to a non-zero scalar the composition fsr x,x ◦ fsr−1sr x,sr x ◦ . . . ◦
fs1wo ,s2s1wo

◦ fwo ,s1wo
of maps arising in the four-term exact sequences (4.2).

(ii) Let x∈W and s be a simple reflection such that sx > x. Let L∈ gmof −A
be a simple object. Then

[im fsx,x : L〈j〉] = 0, if j > mL,sx or j �≡ mL,sx mod 2,

and for any k∈Z,

[im fsx,x : L〈mL,x − 2k〉] = [Px : L〈mL,x − 2k〉] +
k−1∑
j=0

([Px : L〈mL,x − 2j〉]

− [Psx : L〈mL,x − 2j〉]). (4.3)
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(iii) Moreover, if j > mL,wo
or j �≡ mL,wo

mod 2 then

[im ψx : L〈j〉] = 0

and otherwise

[im ψx : L〈j〉] � min


[Px : L〈j〉], [Psx : L〈j〉] −

l(wo x)∑
k

([Px : L〈j + 2k〉])


.

(iv) Let C(x,L) be the multiset of composition factors of Px isomorphic to
some L〈j〉, j ∈Z. There is a bijection c : C(wo, L)−→C(x,L) such that

[im ψx : L〈j〉] = |{L〈j〉 | c(L〈j〉) = L〈j〉}|.

Proof. (i) The composition of maps is obviously non-zero, since its image always
contains the simple composition factor corresponding to the dominant highest
weight. On the other hand, the homomorphism space in question is one-dimensional.

(ii) The first statement follows directly from the definition of a graded homo-
morphism. For the second statement we refer to the next section (Theorem 6.1).
We prove the last formula by induction on k. Let f = fsx,x and m = mL,sx.
If k = 0, we get by the four-term exact sequence and the definition of mL,sx

[im f : L〈m〉] = [Px : L〈m〉] − [coker f : L〈m〉]
= [Px : L〈m〉] − [ker f : L〈m + 2〉]
= [Px : L〈m〉].

This is exactly (4.3) (with the convention for k = 0 that the occurring sum is zero).
We now assume the formula to be true for k; hence

[im f : L〈m − 2(k + 1)〉]
= [Px : L〈m − 2(k + 1)〉] − [coker f : L〈m − 2(k + 1)〉]
= [Px : L〈m − 2(k + 1)〉] − [ker f : L〈m − 2k〉]
= [Px : L〈m − 2(k + 1)〉] − [Psx : L〈m − 2k〉] + [im f : L〈m − 2k〉]
= [Px : L〈m − 2(k + 1)〉] − [Psx : L〈m − 2k〉] + [Px : L〈m − 2k〉]

+
k−1∑
j=0

(
[Px : L〈m − 2j〉] − [Psx :L〈m − 2j〉]

)

= [Px : L〈m − 2(k + 1)〉] +
k∑

j=0

(
[Px : L〈m − 2j〉] − [Psx : L〈m − 2j〉]

)
,

which is the required formula.
(iv) Because of the four-term exact sequence (4.2), the morphism fsx,x provides

a bijection csx,x : C(sx, L) −→ C(x,L) such that csx,x(L〈j〉)∈{L〈j〉, L〈j − 2〉} and
[im fx,sx : L〈j〉] = |{L〈j〉 | csx,x(L〈j〉) = L〈j〉}|. The claim follows then inductively
using the composition from (i).

(iii) The first part is true, since ψx is homogeneous of degree zero. For the
parity condition we refer to Theorem 6.1. The second part follows directly from
the construction of the bijection c from (iv).

Corollary 4.5. Let y ∈W and suppose that [∆(0) : L(y · 0)] = 1. Then we
have equality in Theorem 4.1 for any x∈W .
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Proof. This follows directly from equation (4.3).

Note that the bijection in Theorem 4.4(iv) distinguishes somehow the
composition factors occurring with higher multiplicities, so that for a Duflo
involution x the composition factors of U/AnnU L(x)

⊗
U ∆(0) are just those which

appear in the corresponding principal series representation Px and in Pwo
in the

same degree.

5. Principal series modules: some explicit examples

For Lie algebras of rank 2 it is possible to describe explicitly the principal series
modules via representations of a quiver. The quivers with relations can be found in
[24]. An explanation on how to compute these representations is included in [23].
A module is called rigid if its socle and radical filtrations coincide (see [14]). It
is a non-obvious fact that Verma modules are rigid (see [3–5, 13]). We now give
examples where the principal series modules are not rigid. We list the socle, radical
and grading filtrations denoted by S, R and G respectively. (Note that at this point
we use the fact that the algebra A is positively graded so that the grading filtration
is well-defined.)

For type A2, all the Px are rigid. In type G2 we get a similar picture as for B2.
For higher ranks there should also be some principal series representation for which
no two of these filtrations coincide.

5.1. The case B2

We denote the two simple reflections by s and t. (For our purpose it is not
important which reflection corresponds to the long root.) We list the composition
factors occurring in each layer of the filtration. The layers are separated by the
symbol ‘<’ and Lx denotes the simple module corresponding to L(x · 0). By the
duality Theorem 3.4 it is sufficient to consider the following four modules.

Pe
∼= dPstst : Le < Ls, Lt < Lst, Lts < Lsts, Ltst < Lstst (SRG)

Ps
∼= dPtst : Ls < Le, Lts, Lst < Lt, Ltst, Lsts < Lstst (SG)

Ls < Lts, Lst < Le, Ltst, Lsts < Lt, Lstst (R)
Pt

∼= dPsts : Lt < Le, Lts, Lst < Ls, Ltst, Lsts < Lstst (SG)
Lt < Lts, Lst < Le, Ltst, Lsts < Ls, Lstst (R)

Pst
∼= dPts : Lt, Ltst < Le, Lts, Lst, Lstst < Ls, Lsts. (SRG).

6. Rigidity, parity property and Koszul modules

Let us have a closer look at the three filtrations. A general necessary and sufficient
condition for coincidence of all three filtrations is given in [5, Proposition 2.4.1] (see
also [23, Lemma 5.3.1]). The geometric approach in [10] and [9, (3.1)] gives the same
filtration on principal series modules as the one associated to our grading. This was
the motivation for us to prove the following parity property of the grading filtration
using the graded four-step exact sequence (4.2) and the fact that the lift Pwo

of the
projective Verma module has this property.
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Theorem 6.1 (parity property). Let x∈W . The (graded) composition factors
of Px satisfy the condition

[Px : L̃(y · 0)〈i〉] �= 0 =⇒ l(y) − i ≡ 0mod 2.

In particular, in each layer of the grading filtration, there appear only simple
modules corresponding to elements of the Weyl group whose lengths are all of
the same parity.

Proof. The graded version of the Duflo–Zhelobenko sequence (4.2) gives the
proof inductively, since the result is well known for the projective Verma module
(see for example [5]).

Let N ∈ gmof −A (or more generally a graded module over some positively
graded ring A where A0 is semisimple) be called a Koszul module if

Exti
gmof−A(M,L) = 0

holds for all simple modules L not concentrated in degree i. In [5] it is shown that
the standard lifts of all Verma modules are Koszul modules. This is not the case for
principal series modules in general. A counter-example is given in type B2: the head
of Ps is not concentrated in one single degree; in particular it is not concentrated
in degree zero.

Although principal series modules do not satisfy the assumption of the following
theorem, the theorem seems nevertheless to be quite natural and provides also an
application of the adjointness theorem of graded translation functors. For a semi-
regular weight λ∈W we denote by θ̃λ

0 the graded version of translation onto the
wall (see [26, Theorem 8.1]).

Theorem 6.2. Let M ∈ gmof −A be Koszul and assume that θ̃λ
0 M is also

Koszul with Wλ = {1, s}. Moreover, we assume the existence of a short exact
sequence of graded modules of the form

M〈1〉 ↪→ θ̃sM→→N. (6.1)

Then the quotient N is also a Koszul module.

Proof. Recall the adjointnesses(
θ̃λ
0 , θ̃0

λ〈−1〉
)

and
(
θ̃0

λ, θ̃λ
0 〈1〉

)
of [26, Theorem 8.4]. The exact sequence (6.1) implies an exact sequence in gmof −A
of the form

Exti(M〈1〉, L〈n〉)←− Exti(θ̃sM,L〈n〉)←− Exti(N,L〈n〉)←− Exti−1(M〈1〉, L〈n〉)
(6.2)

for some simple module L〈n〉 concentrated in degree n. The second term can be
reformulated using the adjointness property as

Exti(θ̃sM,L〈n〉) ∼= Exti
(
θ̃λ
0 M, θ̃λ

0 L〈n + 1〉
)
. (6.3)

Either θ̃λ
0 L = 0, and therefore the right-hand side of (6.3) is zero or θ̃λ

0 L is a simple
module (see [16, 4.12, (3)]). In the latter case (6.3) is equal to Exti(θ̃λ

0 M, L̃〈n〉) for
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some simple module L̃ of degree zero (see [26]). Provided furthermore that n �= i,
the extension (6.3) is trivial by the assumptions of the theorem.

Hence, with the assumptions on M and for n �= i, the sequence (6.2) yields an
exact sequence of the form

0 ←− Exti(N,L〈n〉) ←− 0. (6.4)

Therefore, all the extensions of a simple module L of degree i by the module N
have to be of degree i. That is, N is a Koszul module.

Corollary 6.3. Let x∈W and let s be a simple reflection. The exact sequence

Px,wo
〈1〉 ↪→ θ̃sPx,wo

→→Px,wo s

of Theorem 2.2 implies that Px,wo s is a Koszul module.

Proof. In this case the module on the left is the (standard) lift of a Verma
module, and therefore Koszul. Translation onto the wall gives a lift of a Verma
module with simple head in degree zero (see [26]). Therefore in this case the
assumptions of the theorem are fulfilled and the statement follows.

Remark 6.4. In [1], the authors defined a filtration on principal series modules.
We conjecture that the filtration associated to our grading induces exactly the
filtration of [1]. This is well known for Verma modules [4] and hence for dual
Verma modules. In general, the result might follow using techniques from [10].
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9. L. Casian and D. Collingwood, ‘Complex geometry and the asymptotics of Harish–Chandra

modules of real reductive Lie groups. III: Estimates on n-homology’, J. Algebra 116 (1988)
415–456.

10. L. Casian and D. Collingwood, ‘Weight filtrations for induced representations of real
reductive Lie groups’, Adv. Math. 73 (1989) 79–144.



658 composition factors of primitive quotients

11. J. Dixmier, Enveloping algebras, Graduate Studies in Mathematics 11 (American
Mathematical Society, Providence, RI, 1996).
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