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WITH ADDITIONAL NOTES TO THE PAPER AS AN APPENDIX
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Abstract. We use the theory of Uq-tilting modules to construct cellular bases for centralizer
algebras. Our methods are quite general and work for any quantum group Uq attached to a
Cartan matrix and include the non-semisimple cases for q being a root of unity and ground
fields of positive characteristic. Our approach also generalizes to certain categories containing
infinite-dimensional modules. As applications, we give a new semisimplicty criterion for
centralizer algebras, and recover the cellularity of several known algebras (with partially new
cellular bases) which all fit into our general setup.
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1. Introduction

Fix any field K and set K∗ = K− {0,−1} if char(K) > 2 and K∗ = K− {0} otherwise. Let
Uq(g) be the quantum group over K for a fixed, arbitrary parameter q ∈ K∗ associated to a
simple Lie algebra g. The main result in this paper is the following.
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of Moduli Spaces (QGM)” from the “Danish National Research Foundation (DNRF)”. C.S. was supported by
the Max–Planck-Gesellschaft. D.T. was partially supported by a research funding of the “Deutsche Forschungs-
gemeinschaft (DFG)” during the last part of this work.
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Theorem. (Cellularity of endomorphism algebras.) Let T be a Uq(g)-tilting module.
Then EndUq(g)(T ) is a cellular algebra in the sense of Graham and Lehrer [38]. �

It is important to note that cellular bases are not unique. In particular, a single algebra can
have many cellular bases. As a concrete application, see Section 5B, we construct (several) new
cellular bases for the Temperley–Lieb algebra depending on the ground field and the choice
of deformation parameter. These bases differ therefore for instance from the construction in
[38, Section 6] of cellular bases for the Temperley–Lieb algebras. Moreover, we also show that
some of our bases for the Temperley–Lieb algebra can be equipped with a Z-grading which is
in contrast to Graham and Lehrer’s bases. Our bases also depend heavily on the characteristic
of K (and on q ∈ K∗). Hence, they see more of the characteristic (and parameter) depended
representation theory, but are also more difficult to construct explicitly.

We stress that the cellularity itself can be deduced from general theory. Namely, any
Uq(g)-tilting module T is a summand of a full Uq(g)-tilting module T̃ . By [72, Theorem

6] EndUq(g)(T̃ ) is quasi-hereditary and comes equipped with an involution as we explain in
Section 3C. Thus, it is cellular, see [55]. By their Theorem 4.3, this induces the cellularity
of the idempotent truncation EndUq(g)(T ). In contrast, our approach provides the existence
and a method of construction of many cellular bases. It generalizes to the infinite-dimensional
Lie theory situation and has other nice consequences that we will explore in this paper. In
particular, our results give a novel semisimplicity criterion for EndUq(g)(T ), see Theorem 4.13.
This together with the Jantzen sum formula give rise to a new way to obtain semisimplicity
criteria for these algebras (we explain and explore this in [9] where we recover semisimplicity
criteria for several algebras using the results of this paper). Here a crucial fact is that the
tensor product of Uq-tilting modules is again a Uq-tilting module, see [68]. This implies that
our results also vastly generalize [94] to the non-semisimple cases (where our main theorem is
non-trivial).

The framework. Given any simple, complex Lie algebra g, we can assign to it a quantum de-
formation Uv = Uv(g) of its universal enveloping algebra by deforming its Serre presentation.
(Here v is a generic parameter and Uv is an Q(v)-algebra.) The representation theory of Uv

shares many similarities with the one of g. In particular, the category1 Uv-Mod is semisimple.
But one can spice up the story drastically: the quantum group Uq = Uq(g) is obtained

by specializing v to an arbitrary q ∈ K∗. In particular, we can take q to be a root of unity2.
In this case Uq-Mod is not semisimple anymore, which makes the representation theory
much more interesting. It has many connections and applications in different directions, e.g.
the category has a neat combinatorics, is related to the corresponding almost-simple, simply
connected algebraic group G over K with char(K) prime, see for example [4] or [60], to the
representation theory of affine Kac–Moody algebras, see [50] or [87], and to (2+1)-TQFT’s
and the Witten–Reshetikhin–Turaev invariants of 3-manifolds, see for example [92].

Semisimplicity in light of our main result means the following. If we take K = C and q = ±1,
then our result says that the algebra EndUq(T ) is cellular for any Uq-module T ∈ Uq-Mod

1For any algebra A we denote by A-Mod the category of finite-dimensional, left A-modules. If not stated
otherwise, all modules are assumed to be finite-dimensional, left modules.

2In our terminology: The two cases q = ±1 are special and do not count as roots of unity. Moreover, for
technical reasons, we always exclude q = −1 in case char(K) > 2.
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because in this case all Uq-modules are Uq-tilting modules. This is no surprise: when T is a
direct sum of simple Uq-modules, then EndUq(T ) is a direct sum of matrix algebras Mn(K).
Likewise, for any K, if q ∈ K∗ − {1} is not a root of unity, then Uq-Mod is still semisimple
and our result is (almost) standard. But even in the semisimple case we can say more: we
get an Artin–Wedderburn basis as a cellular basis for EndUq(T ), i.e. a basis realizing the
decomposition of EndUq(T ) into its matrix components, see Section 5A.

On the other hand, if q = 1 and char(K) > 0 or if q ∈ K∗ is a root of unity, then Uq-Mod
is far from being semisimple and our result gives many interesting cellular algebras.

For example, if G = GL(V ) for some n-dimensional K-vector space V , then T = V ⊗d is a
G-tilting module for any d ∈ Z≥0. By Schur–Weyl duality we have

(1) ΦSW : K[Sd]� EndG(T ) and ΦSW : K[Sd]
∼=−→ EndG(T ), if n ≥ d,

where K[Sd] is the group algebra of the symmetric group Sd in d letters. We can realize this
as a special case in our framework by taking q = 1, n ≥ d and g = gln (although gln is not
a simple, complex Lie algebra, our approach works fine for it as well). On the other hand,
by taking q arbitrary in K∗ − {1} and n ≥ d, the group algebra K[Sd] is replaced by the
type Ad−1 Iwahori–Hecke algebra Hd(q) over K and our theorem gives cellular bases for this
algebra as well. Note that one underlying fact why (1) stays true in the non-semisimple case
is that dim(EndG(T )) is independent of the characteristic of K (and of the parameter q in the
quantum case), since T is a G-tilting module.

Of course, both K[Sd] and Hd(q) are known to be cellular (these cases were one of the main
motivations of Graham and Lehrer to introduce the notion of cellular algebras), but the point
we want to make is, that they fit into our more general framework.

The following known cellularity properties can also be recovered directly from our approach.
And moreover: in most of the examples we either have no or only some mild restrictions on
K and q ∈ K∗.

• As sketched above: the algebras K[Sd] and Hd(q) and their quotients under ΦSW.
• The Temperley–Lieb algebras T Ld(δ) introduced in [88].
• Other less well-known endomorphism algebras for sl2-related tilting modules appearing

in more recent work, e.g. [5], [10] or [73].
• Spider algebras in the sense of [56].
• Quotients of the group algebras of Z/rZoSd and its quantum versionHd,r(q), the Ariki–

Koike algebras introduced in [12]. This includes the Ariki–Koike algebras themselves
and thus, the Hecke algebras of type B. This also includes Martin and Saleur’s blob
algebras BLd(q,m) [64] and (quantized) rook monoid algebras (also called Solomon
algebras) Rd(q) in the spirit of [85].
• Brauer algebras Bd(δ) introduced in [15] in the context of classical invariant theory,

and related algebras, e.g. the walled Brauer algebras Br,s(δ) as in [54] and [91], and
the Birman–Murakami–Wenzl algebras BMWd(δ), in the sense of [14] and [66].

Note our methods also apply for some categories containing infinite-dimensional modules.
For example, with a little bit more care, one could allow T to be a not necessarily finite-
dimensional Uq-tilting module. Moreover, our methods also include the BGG category O, its
parabolic subcategories Op and its quantum cousin Oq from [6]. For example, using the “big
projective tilting” in the principal block, we get a cellular basis for the coinvariant algebra of
the Weyl group associated to g. In fact, we get a vast generalization of this, e.g. we can fit
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generalized Khovanov arc algebras (see e.g. [19]), sln-web algebras (see e.g. [62]), cyclotomic
Khovanov–Lauda and Rouquier algebras of type A (see [52] and [53] or [74]), for which we
obtain cellularity via the connection to cyclotomic quotients of the degenerate affine Hecke
algebra, see [16], cyclotomic

∨
d

∨
-algebras (see e.g. [33]) and cyclotomic quotients of affine

Hecke algebras Hs
K,d (see e.g. [75]) into our framework as well, see Section 5A. However,

we will for simplicity focus on the finite-dimensional world. Here we provide all necessary
arguments in great detail, sometimes, for brevity, only in an extra file [8]. See also Remark 1.

Following Graham and Lehrer’s approach, our cellular bases for EndUq(T ) provide also
EndUq(T )-cell modules, the classification of simple EndUq(T )-modules etc. We give an inter-
pretation of this in our setting as well, see Section 4. For instance, we deduce a new criterion
for semisimplicity of EndUq(T ), see Theorem 4.13.

Remark 1. Instead of working with the infinite-dimensional algebra Uq, we could also work
with a finite-dimensional, quasi-hereditary algebra (with a suitable anti-involution). By using
results summarized in [30, Appendix], our constructions will go through very much in the same
spirit as for Uq. However, using Uq has some advantages. For example, we can construct an
abundance of cellular bases (for the explicit construction of our basis we need “weight spaces”
such that e.g. (2) or Lemma 3.4 work). Having several cellular bases is certainly an advantage,
although calculating these is in general a non-trivial task. (For example, getting an explicit
understanding of the endomorphisms giving rise to the cellular basis is a tough challenge, but
see [70] for some crucial steps in this direction.) As a direct consequence of the existence
of many cellular bases: most of the algebras appearing in our list of examples above can be
additionally equipped with a Z-grading. The basis elements from Theorem 3.9 can be chosen
such that our approach leads to a Z-graded cellular basis in the sense of [41]. We make this
more precise in case of the Temperley–Lieb algebras, but one could for instance also recover
the Z-graded cellular bases of the Brauer algebras from [34] from our approach. We stress
that in both cases the cellular bases in [38, Sections 4 and 6] are not Z-graded. To keep the
paper within reasonable boundaries, we do not treat the graded setup in detail. N

Acknowledgements. We would like to thank Ben Cooper, Michael Ehrig, Matt Hogan-
camp, Johannes Kübel, Gus Lehrer, Paul Martin, Andrew Mathas, Volodymyr Mazorchuk,
Steen Ryom-Hansen and Paul Wedrich for helpful comments and discussions, and the referees
for further useful comments. H.H.A. would like to thank the Institut Mittag-Leffler for the
hospitality he enjoyed there during the final stages of this work. C.S. is very grateful to the
Max-Planck Institute in Bonn for the extraordinary support and excellent working conditions.
A large part of her research was worked out during her stay there. D.T. would like to thank
the dark Danish winter for very successfully limiting his non-work options and the Australian
long blacks for pushing him forward.

2. Quantum groups, their representations and tilting modules

We briefly recall some facts we need in this paper. Details can be found e.g. in [7] and
[47], or [30] and [48]. For notations and arguments adopted to our situation see [8]. See also
[72] and [29] for the classical treatment of tilting modules (in the modular case). As in the
introduction, we fix a field K over which we work throughout.
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2A. The quantum group Uq. Let Φ be a finite root system in an Euclidean space E. We
fix a choice of positive roots Φ+ ⊂ Φ and simple roots Π ⊂ Φ+. We assume that we have
n simple roots that we denote by α1, . . . , αn. For each α ∈ Φ, we denote by α∨ ∈ Φ∨ the
corresponding coroot. Then A = (〈αi, α∨j 〉)ni,j=1 is called the Cartan matrix.

By the set of (integral) weights we mean X = {λ ∈ E | 〈λ, α∨i 〉 ∈ Z for all αi ∈ Π}. The
dominant (integral) weights X+ are those λ ∈ X such that 〈λ, α∨i 〉 ≥ 0 for all αi ∈ Π.

Recall that there is a partial ordering on X given by µ ≤ λ if and only if λ − µ is an
Z≥0-valued linear combination of the simple roots, that is, λ− µ =

∑n
i=1 aiαi with ai ∈ Z≥0.

We denote by Uq = Uq(A) the quantum enveloping algebra attached to a Cartan matrix A
and specialized at q ∈ K∗, where we follow [7] with our conventions. Note Uq always means
the quantum group over K defined via Lusztig’s divided power construction. (Thus, we have
generators Ki, Ei and Fi for all i = 1, . . . , n as well as divided power generators.) We have a
decomposition Uq = U−q U0

qU
+
q , with subalgebras generated by F ’s, K’s and E’s respectively

(and some divided power generators, see e.g. their Section 1). Note we can recover the generic
case Uv = Uv(A) by choosing K = Q(v) and q = v.

It is worth noting that Uq is a Hopf algebra, so its module category is a monoidal category
with duals. We denote by Uq-Mod the category of finite-dimensional Uq-modules (of type 1,
see [7, Section 1.4]). We consider only such Uq-modules in what follows.

Recall that there is a contravariant, character-preserving duality functor D that is defined
on the K-vector space level via D(M) = M∗ (the K-linear dual of M) and an action of Uq on
D(M) is defined as follows. Let ω : Uq → Uq be the automorphism of Uq which interchanges

Ei and Fi and interchanges Ki and K−1
i (see e.g. [47, Lemma 4.6], which extends to our setup

without difficulties). Then define uf = m 7→ f(ω(S(u))m) for u ∈ Uq, f ∈ D(M),m ∈ M .
Given any Uq-homomorphism f between Uq-modules, we also write i(f) = D(f). This duality
gives rise to the involution in our cellular datum from Section 3C.

Assumption 2.1. If q is a root of unity, then, to avoid technicalities, we assume that q is
a primitive root of unity of odd order l. A treatment of the even case, that can be used to
repeat everything in this paper in the case where l is even, can be found in [3]. Moreover, in
case of type G2 we additionally assume that l is prime to 3. N

For each λ ∈ X+ there is a Weyl Uq-module ∆q(λ) and a dual Weyl Uq-module ∇q(λ)
satisfying D(∆q(λ)) ∼= ∇q(λ). The Uq-module ∆q(λ) has a unique simple head Lq(λ) which is
the unique simple socle of ∇q(λ). Thus, there is a (up to scalars) unique Uq-homomorphism

(2) cλ : ∆q(λ)→ ∇q(λ) (mapping head to socle).

This relies on the fact that ∆q(λ) and ∇q(λ) both have one-dimensional λ-weight spaces. The
same fact implies that EndUq(Lq(λ)) ∼= K for all λ ∈ X+, see [7, Corollary 7.4]. This last
property fails for quasi-hereditary algebras in general when K is not algebraically closed.

Theorem 2.2. (Ext-vanishing.) We have for all λ, µ ∈ X+ that

ExtiUq
(∆q(λ),∇q(µ)) ∼=

{
Kcλ, if i = 0 and λ = µ,

0, else. �
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We have to enlarge the category Uq-Mod by non-necessarily finite-dimensional Uq-modules

to have enough injectives such that the ExtiUq
-functors make sense by using q-analogs argu-

ments as in [48, Part I, Chapter 3]. However, Uq-Mod has enough injectives in characteristic
zero, see [1, Proposition 5.8] for a treatment of the non-semisimple cases.

Proof. Similar to the modular analog treated in [48, Proposition II.4.13] (a proof in our nota-
tion can be found in [8]). �

2B. Tilting modules and Ext-vanishing. We say that a Uq-module M has a ∆q-filtration
if there exists some k ∈ Z≥0 and a finite descending sequence of Uq-submodules

M = M0 ⊃M1 ⊃ · · · ⊃Mk′ ⊃ · · · ⊃Mk−1 ⊃Mk = 0,

such that Mk′/Mk′+1
∼= ∆q(λk′) for all k′ = 0, . . . , k−1 and some λk′ ∈ X+. A ∇q-filtration is

defined similarly, but using a finite ascending sequence of Uq-submodules and ∇q(λ)’s instead
of ∆q(λ)’s. We denote by (M : ∆q(λ)) and (N : ∇q(λ)) the corresponding multiplicities,
which are well-defined by Corollary 2.3. Note that a Uq-module M has a ∆q-filtration if and
only if its dual D(M) has a ∇q-filtration.

A corollary of the Ext-vanishing theorem is the following, whose proof is left to the reader or
can be found in [8]. (Note that the proof of Corollary 2.3 therein gives, in principle, a method
to find and construct bases of HomUq(M,∇q(λ)) and HomUq(∆q(λ), N) respectively.)

Corollary 2.3. Let M,N ∈ Uq-Mod and λ ∈ X+. Assume that M has a ∆q-filtration and
N has a ∇q-filtration. Then

dim(HomUq(M,∇q(λ))) = (M : ∆q(λ)) and dim(HomUq(∆q(λ), N)) = (N : ∇q(λ)).

In particular, (M : ∆q(λ)) and (N : ∇q(λ)) are independent of the choice of filtrations. �

Proposition 2.4. (Donkin’s Ext-criteria.) The following are equivalent.

(a) An M ∈ Uq-Mod has a ∆q-filtration (respectively N ∈ Uq-Mod has a ∇q-filtration).

(b) We have ExtiUq
(M,∇q(λ)) = 0 (respectively ExtiUq

(∆q(λ), N) = 0) for all λ ∈ X+

and all i > 0.
(c) We have Ext1

Uq
(M,∇q(λ)) = 0 (respectively Ext1

Uq
(∆q(λ), N) = 0) for all λ ∈ X+. �

Proof. As in [48, Proposition II.4.16]. A proof in our notation can be found in [8]. �

A Uq-module T which has both, a ∆q- and a ∇q-filtration, is called a Uq-tilting module.
Following Donkin [29], we are now ready to define the category of Uq-tilting modules that we
denote by T . This category is our main object of study.

Definition 2.5. (Category of Uq-tilting modules.) The category T is the full subcategory
of Uq-Mod whose objects are given by all Uq-tilting modules. N

From Proposition 2.4 we obtain directly an important statement.

Corollary 2.6. Let T ∈ Uq-Mod. Then

T ∈ T if and only if Ext1
Uq

(T,∇q(λ)) = 0 = Ext1
Uq

(∆q(λ), T ) for all λ ∈ X+.

When T ∈ T , the corresponding higher Ext-groups vanish as well. �
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The indecomposable Uq-modules in T , that we denote by Tq(λ), are indexed by λ ∈ X+.
The Uq-tilting module Tq(λ) is determined by the property that it is indecomposable with λ
as its unique maximal weight. In fact, (Tq(λ) : ∆q(λ)) = 1, and (Tq(λ) : ∆q(µ)) 6= 0 only if
µ ≤ λ. (Dually for ∇q-filtrations.)

Note that the duality functor D from above restricts to T . Moreover, as a consequence
of the classification of indecomposable Uq-modules in T , we have D(T ) ∼= T for T ∈ T . In
particular, we have for all λ ∈ X+ that

(T : ∆q(λ)) = dim(HomUq(T,∇q(λ))) = dim(HomUq(∆q(λ), T )) = (T : ∇q(λ)).

It is known that T is a Krull–Schmidt category, closed under finite direct sums, taking sum-
mands and finite tensor products (the latter is a non-trivial fact, see [68, Theorem 3.3]).

For a fixed λ ∈ X+ we have Uq-homomorphisms

∆q(λ) �
� ιλ // Tq(λ)

πλ // // ∇q(λ),

where ιλ is the inclusion of the first Uq-submodule in a ∆q-filtration of Tq(λ) and πλ is the
surjection onto the last quotient in a ∇q-filtration of Tq(λ). Note that these are only defined

up to scalars and we fix scalars in the following such that πλ ◦ ιλ = cλ (where cλ is again the
Uq-homomorphism from (2)).

Remark 2. Let T ∈ T . An easy argument (based on Theorem 2.2) shows the following
crucial fact:

(3) Ext1
Uq

(∆q(λ), T ) = 0 = Ext1
Uq

(T,∇q(λ))⇒ Ext1
Uq

(coker(ιλ), T ) = 0 = Ext1
Uq

(T, ker(πλ))

for all λ ∈ X+. Consequently, we see that any Uq-homomorphism g : ∆q(λ) → T extends to
a Uq-homomorphism g : Tq(λ) → T whereas any Uq-homomorphism f : T → ∇q(λ) factors

through Tq(λ) via some f : T → Tq(λ). N
Remark 3. In [8] it is described in detail how to compute (Tq(λ) : ∆q(µ)) for λ, µ ∈ X+.
This can be done algorithmically in case q is a complex, primitive l-th root of unity, i.e. one
can use Soergel’s version of the affine parabolic Kazhdan–Lusztig polynomials. For brevity, we
do not recall the definition of these polynomials here, but refer to [84, Section 3] where the
relevant polynomials are denoted ny,x (and where all the other relevant notions are defined).
The main point for us is the following theorem due to Soergel [81, Theorem 5.12] (see also
[84, Conjecture 7.1]): Suppose K = C and q is a complex, primitive l-th root of unity. For
each pair λ, µ ∈ X+ with λ being an l-regular Uq-weight (that is, Tq(λ) belongs to a regular
block of T ) we have (with nµλ equal to the relevant ny,x)

(Tq(λ) : ∆q(µ)) = nµλ(1) = (Tq(λ) : ∇q(µ)).

From this one obtains a method to find the indecomposable summands of Uq-tilting modules
with known characters (e.g. tensor products of minuscule representations). N

3. Cellular structures on endomorphism algebras

In this section we give our construction of cellular bases for endomorphism rings EndUq(T )
of Uq-tilting modules T and prove our main result, that is, Theorem 3.9.

The main tool is Theorem 3.1. The proof of the latter needs several ingredients which we
establish in the form of separate lemmas collected in Section 3B.
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3A. The basis theorem. As before, we consider the category Uq-Mod. Moreover, we fix
two Uq-modules M,N , where we assume that M has a ∆q-filtration and N has a ∇q-filtration.
Then, by Corollary 2.3, we have

(4) dim(HomUq(M,N)) =
∑

λ∈X+

(M : ∆q(λ))(N : ∇q(λ)).

We point out that the sum in (4) is actually finite since (M : ∆q(λ)) 6= 0 for only a finite
number of λ ∈ X+. (Dually, (N : ∇q(λ)) 6= 0 for only finitely many λ ∈ X+.)

Given λ ∈ X+, we define for (N : ∇q(λ)) > 0 respectively for (M : ∆q(λ)) > 0 the two sets

Iλ = {1, . . . , (N : ∇q(λ))} and J λ = {1, . . . , (M : ∆q(λ))}.

By convention, Iλ = ∅ and J λ = ∅ if (N : ∇q(λ)) = 0 respectively if (M : ∆q(λ)) = 0.

We can fix a basis of HomUq(M,∇q(λ)) indexed by J λ. We denote this fixed basis by

F λ = {fλj : M → ∇q(λ) | j ∈ J λ}. By Proposition 2.4 and (3), we see that all elements of F λ

factor through the Uq-tilting module Tq(λ), i.e. we have commuting diagrams

M

fλj ""

∃ fλj
// Tq(λ)

πλ

����

∇q(λ).

We call f
λ
j a lift of fλj . (Note that a lift f

λ
j is not unique.) Dually, we can choose a basis of

HomUq(∆q(λ), N) as Gλ = {gλi : ∆q(λ) → N | i ∈ Iλ}, which extends to give (a non-unique)

lift gλi : Tq(λ)→ N such that gλi ◦ ιλ = gλi for all i ∈ Iλ.
We can use this setup to define a basis for HomUq(M,N) which, when M = N , turns out

to be a cellular basis, see Theorem 3.9. For each λ ∈ X+ and all i ∈ Iλ, j ∈ J λ set

cλij = gλi ◦ f
λ
j ∈ HomUq(M,N).

Our main result here is now the following.

Theorem 3.1. (Basis theorem.) For any choice of F λ and Gλ as above and any choice of
lifts of the fλj ’s and the gλi ’s (for all λ ∈ X+), the set

GF = {cλij | λ ∈ X+, i ∈ Iλ, j ∈ J λ}

is a basis of HomUq(M,N). �

Proof. This follows from Proposition 3.3 combined with Lemma 3.6 and Lemma 3.7. �
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The basis GF for HomUq(M,N) can be illustrated in a commuting diagram as

∆q(λ)
� _

ιλ

��

gλi

""

M
f
λ
j
//

fλj ""

Tq(λ)

πλ
����

gλi

// N

∇q(λ)

.

Since Uq-tilting modules have both a ∆q- and a ∇q-filtration, we get as an immediate conse-
quence a key result for our purposes.

Corollary 3.2. Let T ∈ T . Then GF is, for any choices involved, a basis of EndUq(T ). �

3B. Proof of the basis theorem. We first show that, given lifts f
λ
j , there is a consistent

choice of lifts gλi such that GF is a basis of HomUq(M,N).

Proposition 3.3. (Basis theorem — dependent version.) For any choice of F λ and any
choice of lifts of the fλj ’s (for all λ ∈ X+) there exist a choice of a basis Gλ and a choice of

lifts of the gλi ’s such that GF = {cλij | λ ∈ X+, i ∈ Iλ, j ∈ J λ} is a basis of HomUq(M,N).�
The corresponding statement with the roles of f ’s and g’s swapped clearly holds as well.

Proof. We will construct GF inductively. For this purpose, let

0 = N0 ⊂ N1 ⊂ · · · ⊂ Nk−1 ⊂ Nk = N

be a ∇q-filtration of N , i.e. Nk′+1/Nk′
∼= ∇q(λk′) for some λk′ ∈ X+ and all k′ = 0, . . . , k− 1.

Let k = 1 and λ1 = λ. Then N1 = ∇q(λ) and {cλ : ∆q(λ) → ∇q(λ)} gives a basis of

HomUq(∆q(λ),∇q(λ)), where cλ is again the Uq-homomorphism chosen in (2). Set gλ1 = cλ

and observe that gλ1 = πλ satisfies gλ1 ◦ ιλ = gλ1 . Thus, we have a basis and a corresponding
lift. This clearly gives a basis of HomUq(M,N1), since, by assumption, we have that F λ gives

a basis of HomUq(M,∇q(λ)) and πλ ◦ fλj = fλj .
Hence, it remains to consider the case k > 1. Set λk = λ and observe that we have a short

exact sequence of the form

(5) 0 // Nk−1
� � inc // Nk

pro
// // ∇q(λ) // 0.

By Theorem 2.2 (and the usual implication as in (3)) this leads to a short exact sequence

(6) 0 // HomUq(M,Nk−1) �
� inc∗ // HomUq(M,Nk)

pro∗// // HomUq(M,∇q(λ)) // 0.

By induction, we get from (6) for all µ ∈ X+ a basis of HomUq(∆q(µ), Nk−1) consisting of
gµi ’s with lifts gµi such that

{cµij = gµi ◦ f
µ
j | µ ∈ X+, i ∈ Iµk−1, j ∈ J µ}(7)

is a basis of HomUq(M,Nk−1) (here we use Iµk−1 = {1, . . . , (Nk−1 : ∇q(µ))}). We define

gµi (Nk) = inc ◦ gµi and gµi (Nk) = inc ◦ gµi for each µ ∈ X+ and each i ∈ Iµk−1.
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We now have to consider two cases, namely λ 6= µ and λ = µ. In the first case we see that
HomUq(∆q(µ),∇q(λ)) = 0, so that, by using (5) and the usual implication from (3),

HomUq(∆q(µ), Nk−1) ∼= HomUq(∆q(µ), Nk).

Thus, our basis from (7) gives a basis of HomUq(∆q(µ), Nk) and also gives the corresponding
lifts. On the other hand, if λ = µ, then

(Nk : ∇q(λ)) = (Nk−1 : ∇q(λ)) + 1.

By Theorem 2.2 (and the corresponding implication as in (3)), we can choose gλ : ∆q(λ)→ Nk

such that pro ◦ gλ = cλ. Then any choice of a lift gλ of gλ will satisfy pro ◦ gλ = πλ.
Adjoining gλ to the basis from (7) gives a basis of HomUq(∆q(λ), Nk) which satisfies the

lifting property. Note that we know from the case k = 1 that

{pro ◦ gλ ◦ fλj = πλ ◦ fλj | j ∈ J λ}
is a basis of HomUq(M,∇q(λ)). Combining everything: we have that

{cλij = gλi (Nk) ◦ fλj | λ ∈ X+, i ∈ Iλ, j ∈ J λ}
is a basis of HomUq(M,Nk) (by enumerating gλ(N :∇q(λ))(Nk) = gλ in the λ = µ case). �

We assume in the following that we have fixed some choices as in Proposition 3.3.
Let λ ∈ X+. Given ϕ ∈ HomUq(M,N), we denote by ϕλ ∈ HomU0

q
(Mλ, Nλ) the induced

U0
q-homomorphism (that is, K-linear maps) between the λ-weight spaces Mλ and Nλ. In

addition, we denote by HomK(Mλ, Nλ) the K-linear maps between these λ-weight spaces.

Lemma 3.4. For any λ ∈ X+ the induced set {(cλij)λ | cλij ∈ GF} is a linearly independent

subset of HomK(Mλ, Nλ). �

Proof. We proceed as in the proof of Proposition 3.3.

If N = ∇q(λ) (this was k = 1 above), then cλ1j = πλ ◦ fλj = fλj and the cλ1j ’s form a basis of

HomUq(M,∇q(λ)). By the q-Frobenius reciprocity from [7, Proposition 1.17] we have

HomUq(M,∇q(λ)) ∼= HomU−q U0
q
(M,Kλ) ⊂ HomU0

q
(M,Kλ) = HomK(Mλ,K).

Hence, because Nλ = K in this case, we have the base of the induction.
Assume now k > 1. The construction of {cµij(Nk)}µ,i,j in the proof of Proposition 3.3 shows

that this set consists of two separate parts: one being the basis from (7) coming from a basis
for HomUq(M,Nk−1) and the second part (which only occurs when λ = µ) coming from a
basis from Hom HomUq(∆q(λ), Nk).

By (6) there is a short exact sequence

0 // HomK(Mλ, (Nk−1)λ) �
� inc∗ // HomK(Mλ, (Nk)λ)

pro∗ // // HomK(Mλ,K) // 0.

Thus, we can proceed as in the proof of Proposition 3.3. �

We need another piece of notation: we define for each λ ∈ X+

HomUq(M,N)≤λ = {ϕ ∈ HomUq(M,N) | ϕµ = 0 unless µ ≤ λ}.
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In words: a Uq-homomorphism ϕ ∈ HomUq(M,N) belongs to HomUq(M,N)≤λ if and only if
ϕ vanishes on all Uq-weight spaces Mµ with µ 6≤ λ. In addition to the notation above, we use

the evident notation HomUq(M,N)<λ. We arrive at the following.

Lemma 3.5. For any fixed λ ∈ X+ the sets

{cµij | c
µ
ij ∈ GF, µ ≤ λ} and {cµij | c

µ
ij ∈ GF, µ < λ}

are bases of HomUq(M,N)≤λ and HomUq(M,N)<λ respectively. �

Proof. As cµij factors through Tq(µ) and Tq(µ)ν = 0 unless ν ≤ µ (which follows using the

classification of indecomposable Uq-tilting modules), we see that (cµij)ν = 0 unless ν ≤ µ.

Moreover, by Lemma 3.4, each (cµij)µ is non-zero. Thus, cµij ∈ HomUq(M,N)≤λ if and only if

µ ≤ λ. Now choose any ϕ ∈ HomUq(M,N)≤λ. By Proposition 3.3 we may write

(8) ϕ =
∑

µ,i,j

aµijc
µ
ij , aµij ∈ K.

Choose µ ∈ X+ maximal with the property that there exist i ∈ Iλ, j ∈ J λ such that aµij 6= 0.

We claim that aνij(c
ν
ij)µ = 0 whenever ν 6= µ. This is true because, as observed above,

(cνij)µ = 0 unless µ ≤ ν, and for µ < ν we have aνij = 0 by the maximality of µ. We conclude

ϕµ =
∑

i,j a
µ
ij(c

µ
ij)µ and thus, ϕµ 6= 0 by Lemma 3.4. Hence, µ ≤ λ, which gives by (8) that

ϕ ∈ spanK{cµij | c
µ
ij ∈ GF, µ ≤ λ} as desired. This shows that {cµij | c

µ
ij ∈ GF, µ ≤ λ} spans

HomUq(M,N)≤λ. Since it is clearly a linearly independent set, it is a basis.
The second statement follows analogously, so the details are omitted. �

We need the following two lemmas to prove that all choices in Proposition 3.3 lead to bases
of HomUq(M,N). As before we assume that we have, as in Proposition 3.3, constructed

{gλi , i ∈ Iλ} and the corresponding lifts gλi for all λ ∈ X+.

Lemma 3.6. Suppose that we have other Uq-homomorphisms g̃λi : Tq(λ) → N such that

g̃λi ◦ ιλ = gλi . Then the following set is also a basis of HomUq(M,N):

{c̃λij = g̃λi ◦ f
λ
j | λ ∈ X+, i ∈ Iλ, j ∈ J λ}. �

Proof. As (gλi − g̃λi ) ◦ ιλ = 0, we see that gλi − g̃λi ∈ HomUq(Tq(λ), N)<λ. Hence, we have

cλij − c̃λij ∈ HomUq(M,N)<λ. Thus, by Lemma 3.5, there is a unitriangular change-of-basis

matrix between {cλij}λ,i,j and {c̃λij}λ,i,j . �

Now assume that we have chosen another basis {hλi | i ∈ Iλ} of the spaces HomUq(∆q(λ), N)

for each λ ∈ X+ and the corresponding lifts h
λ
i as well.

Lemma 3.7. The following set is also a basis of HomUq(M,N):

{dλij = h
λ
i ◦ f

λ
j | λ ∈ X+, i ∈ Iλ, j ∈ J λ}. �

Proof. Write gλi =
∑(N :∇q(λ))

k=1 bλikh
λ
k with bλik ∈ K and set g̃λi =

∑(N :∇q(λ))
k=1 bλikh

λ
k . Then the g̃λi ’s

are lifts of the gλi ’s. Hence, by Lemma 3.6, the elements g̃λi ◦f
λ
j form a basis of HomUq(M,N).
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Thus, this proves the lemma, since, by construction, {dλij}λ,i,j is related to this basis by the

invertible change-of-basis matrix (bλik)
(N :∇q(λ))

i,k=1;λ∈X+ . �

In total, we established Proposition 3.3.

3C. Cellular structures on endomorphism algebras of Uq-tilting modules. This sub-
section finally contains the statement and proof of our main theorem. We keep on working
over a field K instead of a ring as for example Graham and Lehrer [38] do. (This avoids
technicalities, e.g. the theory of indecomposable Uq-tilting modules over rings is much more
subtle than over fields. See e.g. [29, Remark 1.7].)

Definition 3.8. (Cellular algebras.) Suppose A is a finite-dimensional K-algebra. A cell
datum is an ordered quadruple (P, I, C, i), where (P,≤) is a finite poset, Iλ is a finite set for
all λ ∈ P, i is a K-linear anti-involution of A and C is an injection

C :
∐

λ∈P
Iλ × Iλ → A, (i, j) 7→ cλij .

The whole data should be such that the cλij ’s form a basis of A with i(cλij) = cλji for all λ ∈ P
and all i, j ∈ Iλ. Moreover, for all a ∈ A and all λ ∈ P we have

acλij =
∑

k∈Iλ
rik(a)cλkj (mod A<λ) for all i, j ∈ Iλ.(9)

Here A<λ is the subspace of A spanned by the set {cµij | µ < λ and i, j ∈ I(µ)} and the scalars

rik(a) ∈ K are supposed to be independent of j.
An algebra A with such a quadruple is called a cellular algebra and the cλij are called a

cellular basis of A (with respect to the K-linear anti-involution i). N
Let us fix T ∈ T in the following. We will now construct cellular bases of EndUq(T ) in the

semisimple as well as in the non-semisimple case.
To this end, we need to specify the cell datum. Set

(P,≤) = ({λ ∈ X+ | (T : ∇q(λ)) = (T : ∆q(λ)) 6= 0},≤),

where ≤ is the usual partial ordering on X+, see at the beginning of Section 2A. Note that
P is finite since T is finite-dimensional. Moreover, motivated by Theorem 3.1, for each λ ∈ P
define Iλ = {1, . . . , (T : ∇q(λ))} = {1, . . . , (T : ∆q(λ))} = J λ.

Recalling that we write i(·) = D(·) (for D being the duality functor from Section 2A that
exchanges Weyl and dual Weyl Uq-modules and fixes all Uq-tilting modules), the assignment
i : EndUq(T ) → EndUq(T ), φ 7→ D(φ) is clearly a K-linear anti-involution. Choose any basis

Gλ of HomUq(∆q(λ), T ) as above and any lifts gλi . Then i(Gλ) is a basis of HomUq(T,∇q(λ))

and i(gλi ) is a lift of i(gλi ). By Corollary 3.2 we see that

{cλij = gλi ◦ i(gλj ) = gλi ◦ f
λ
j | λ ∈ P, i, j ∈ Iλ}

is a basis of EndUq(T ). Finally let C : Iλ × Iλ → EndUq(T ) be given by (i, j) 7→ cλij .
Now we are ready to state and prove our main theorem.

Theorem 3.9. (A cellular basis for EndUq(T ).) The quadruple (P, I, C, i) defined above
is a cell datum for EndUq(T ). �
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Proof. As mentioned above, the sets P and Iλ are finite for all λ ∈ P. Moreover, i is a K-linear
anti-involution of EndUq(T ) and the cλij ’s form a basis of EndUq(T ) by Corollary 3.2. Because

the functor D(·) is contravariant, we see that

i(cλij) = i(gλi ◦ i(gλj )) = gλj ◦ i(gλi ) = cλji.

Thus, only the condition (9) remains to be proven. For this purpose, let ϕ ∈ EndUq(T ).

Since ϕ ◦ gλi ◦ ιλ = ϕ ◦ gλi ∈ HomUq(∆q(λ), T ), we have coefficients rλik(ϕ) ∈ K such that

(10) ϕ ◦ gλi =
∑

k∈Iλ
rλik(ϕ)gλk ,

because we know that the gλi ’s form a basis of HomUq(∆q(λ), T ). But this implies then that

ϕ ◦ gλi −
∑

k∈Iλ r
λ
ik(ϕ)gλk ∈ HomUq(Tq(λ), T )<λ, so that

ϕ ◦ gλi ◦ f
λ
j −

∑

k∈Iλ
rλik(ϕ)gλk ◦ f

λ
j ∈ HomUq(T, T )<λ = EndUq(T )<λ,

which proves (9). The theorem follows. �

4. The cellular structure and EndUq(T )-Mod

The goal of this section is to present the representation theory of cellular algebras for
EndUq(T ) from the viewpoint of Uq-tilting theory. In fact, most of the results in this section
are not new and have been proved for general cellular algebras, see e.g. [38, Section 3].
However, they take a nice and easy form in our setup. The last theorem, the semisimplicity
criterion from Theorem 4.13, is new and has potentially many applications, see e.g. [9].

4A. Cell modules for EndUq(T ). We study now the representation theory for EndUq(T ) via
the cellular structure we have found for it. We denote its module category by EndUq(T )-Mod.

Definition 4.1. (Cell modules.) Let λ ∈ P. The cell module associated to λ is the left
EndUq(T )-module given by C(λ) = HomUq(∆q(λ), T ). The right EndUq(T )-module given by
C(λ)∗ = HomUq(T,∇q(λ)) is called the dual cell module associated to λ. N

The link to the definition of cell modules from [38, Definition 2.1] is given via our choice of
basis {gλi }i∈Iλ . In this basis the action of EndUq(T ) on C(λ) is given by

(11) ϕ ◦ gλi =
∑

k∈Iλ
rλik(ϕ)gλk , ϕ ∈ EndUq(T ),

see (10). Here the coefficients are the same as those appearing when we consider the left action
of EndUq(T ) on itself in terms of the cellular basis {cλij}λ∈Pi,j∈Iλ , that is,

(12) ϕ ◦ cλij =
∑

k∈Iλ
rλik(ϕ)cλkj (mod EndUq(T )<λ), ϕ ∈ EndUq(T ).

In a completely similar fashion: the dual cell module C(λ)∗ has a basis consisting of {fλj }j∈Iλ
with fλj = i(gλj ). In this basis the right action of EndUq(T ) is given via

(13) fλj ◦ ϕ =
∑

k∈Iλ
rλkj(i(ϕ))fλk , ϕ ∈ EndUq(T ).
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We can use the unique Uq-homomorphism from (2) and the duality functor D(·) to define
the following cellular pairing in the spirit of Graham and Lehrer [38, Definition 2.3].

Definition 4.2. (Cellular pairing.) Let λ ∈ P. Then we denote by ϑλ the K-bilinear form
ϑλ : C(λ)⊗ C(λ)→ K determined by the property

i(h) ◦ g = ϑλ(g, h)cλ, g, h ∈ C(λ) = HomUq(∆q(λ), T ).

We call ϑλ the cellular pairing associated to λ ∈ P. N

Lemma 4.3. The cellular pairing ϑλ is well-defined, symmetric and contravariant. �

Proof. That ϑλ is well-defined follows directly from the uniqueness of cλ.
Applying i to the defining equation of ϑλ gives

ϑλ(g, h)i(cλ) = i(ϑλ(g, h)cλ) = i(i(h) ◦ g) = i(g) ◦ h = ϑλ(h, g)cλ,

and thus, ϑλ(g, h) = ϑλ(h, g), because cλ = i(cλ). (Recall that cλ : ∆q(λ) → ∇q(λ) is unique

up to scalars. Hence, we can fix scalars accordingly such that cλ = i(cλ).) Similarly, con-
travariance of D(·) gives

ϑλ(ϕ ◦ g, h) = ϑλ(g, i(ϕ) ◦ h), ϕ ∈ EndUq(T ), g, h ∈ C(λ),

which shows contravariance of the cellular pairing. �

Proposition 4.4. Let λ ∈ P. Then Tq(λ) is a summand of T if and only if ϑλ 6= 0. �

Proof. (See also [2, Proposition 1.5].) Assume T ∼= Tq(λ)⊕ rest. We denote by g : Tq(λ)→ T

and by f : T → Tq(λ) the corresponding inclusion and projection respectively. As usual, set

g = g ◦ ιλ and f = πλ ◦ f . Then we have f ◦ g : ∆q(λ) ↪→ Tq(λ) ↪→ T � Tq(λ)� ∇q(λ) = cλ

(mapping head to socle), giving ϑλ(g, i(f)) = 1. This shows that ϑλ 6= 0.
Conversely, assume that there exist g, h ∈ C(λ) with ϑλ(g, h) 6= 0. Then the commuting

“bow tie diagram”, i.e.

∆q(λ)
g

!!

� _

ιλ

��

Tq(λ)
g
// T

i(h)
//

i(h) !!

Tq(λ),

πλ

����

∇q(λ)

shows that i(h) ◦ g is non-zero on the λ-weight space of Tq(λ), because i(h) ◦ g = ϑλ(g, h)cλ.

Thus, i(h) ◦ g must be an isomorphism (because Tq(λ) is indecomposable and has therefore
only invertible or nilpotent elements in EndUq(Tq(λ))) showing that T ∼= Tq(λ)⊕ rest. �

In view of Proposition 4.4, it makes sense to study the set

(14) P0 = {λ ∈ P | ϑλ 6= 0} ⊂ P.
Hence, if λ ∈ P0, then we have T ∼= Tq(λ)⊕ rest for some Uq-tilting module called rest. Note
also that EndUq(T ) is quasi-hereditary if and only if P = P0, see e.g. [38, Remark 3.10].
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4B. The structure of EndUq(T ) and its cell modules. Recall that, for any λ ∈ P, we

have that EndUq(T )≤λ and EndUq(T )<λ are two-sided ideals in EndUq(T ) (this follows from
(9) and its right-handed version obtained by applying i), as in any cellular algebra. In our
case we can also see this as follows. If ϕ ∈ EndUq(T )≤λ, then ϕµ = 0 unless µ ≤ λ. Hence,
for any ϕ,ψ ∈ EndUq(T ) we have (ϕ ◦ ψ)µ = ϕµ ◦ ψµ = 0 = ψµ ◦ ϕµ = (ψ ◦ ϕ)µ unless µ ≤ λ.

As a consequence, EndUq(T )λ = EndUq(T )≤λ/EndUq(T )<λ is an EndUq(T )-bimodule.
Recall that, for any g ∈ C(λ) and any f ∈ C(λ)∗, we denote by g : Tq(λ) → T and

f : T → Tq(λ) a choice of lifts which satisfy g ◦ ιλ = g and πλ ◦ f = f , respectively.

Lemma 4.5. Let λ ∈ P. Then the pairing map

〈·, ·〉λ : C(λ)⊗ C(λ)∗ → EndUq(T )λ, 〈g, f〉λ = g ◦ f + EndUq(T )<λ,

with g ∈ C(λ), f ∈ C(λ)∗, is an isomorphism of EndUq(T )-bimodules. �

Proof. First we note that g ◦f + EndUq(T )<λ does not depend on the choices for the lifts f, g,
because the change-of-basis matrix from Lemma 3.6 is unitriangular (and works for swapped
roles of f ’s and g’s as well). This makes the pairing well-defined.

Note that the pairing 〈·, ·〉λ takes, by birth, the basis (gλi ⊗ fλj )i,j∈Iλ of C(λ)⊗C(λ)∗ to the

basis {cλij + EndUq(T )<λ}i,j∈Iλ of EndUq(T )λ (where the latter is a basis by Lemma 3.5).

So we only need to check that 〈ϕ ◦ gλi , fλj ◦ ψ〉λ = ϕ ◦ cλij ◦ ψ (mod EndUq(T )<λ) for any

ϕ,ψ ∈ EndUq(T ). But this is a direct consequence of (11), (12) and (13). �

The next lemma is straightforward by Lemma 4.5. Details are left to the reader.

Lemma 4.6. We have the following.

(a) There is an isomorphism of K-vector spaces EndUq(T ) ∼=
⊕

λ∈P EndUq(T )λ.

(b) If ϕ ∈ EndUq(T )≤λ, then we have rµik(ϕ) = 0 for all µ 6≤ λ, i, k ∈ I(µ). Equivalently,

EndUq(T )≤λC(µ) = 0 unless µ ≤ λ. �

In the following we assume that λ ∈ P0 as in (14). Define mλ via

(15) T ∼= Tq(λ)⊕mλ ⊕ T ′,
where T ′ is a Uq-tilting module containing no summands isomorphic to Tq(λ).

Choose now a basis of C(λ) = HomUq(∆q(λ), T ) as follows. For i = 1, . . . ,mλ let gλi
be the inclusion of Tq(λ) into the i-th summand of Tq(λ)⊕mλ and set gλi = gλi ◦ ιλ. Then

extend {gλ1 , . . . , gλmλ} to a basis of the cell module C(λ) by adding an arbitrary basis of

HomUq(∆q(λ), T ′). Thus, in our usual notation, we have cλij = gλi ◦ f
λ
j with f

λ
j = i(gλj ).

In particular, f
λ
j projects onto the j-th summand in Tq(λ)⊕mλ for j = 1, . . . ,mλ. Thus, the

cλii’s for i ≤ mλ are idempotents in EndUq(T ) corresponding to the i-th summand in Tq(λ)⊕mλ .

Since λ ∈ P0 (which implies 1 ≤ mλ), cλ11 is always such an idempotent. This is crucial for
the following lemma, which will play an important role in the proof of Proposition 4.8.

Lemma 4.7. In the above notation:

(a) cλi1 ◦ gλ1 = gλi for all i ∈ Iλ,
(b) cλij ◦ gλ1 = 0 for all i, j ∈ Iλ with j 6= 1. �
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Proof. We have f
λ
1 ◦ gλ1 = f

λ
1 ◦ gλ1 ◦ ιλ = ιλ. This implies cλi1 ◦ gλ1 = gλi ◦ ιλ = gλi . Next, if j 6= 1,

then f
λ
j ◦ gλ1 = 0, since f

λ
j is zero on Tq(λ). Thus, cλij ◦ gλ1 = 0 for all i, j ∈ Iλ with j 6= 1. �

Proposition 4.8. (Homomorphism criterion.) Let λ ∈ P0 and fix M ∈ EndUq(T )-Mod.
Then there is an isomorphism of K-vector spaces

HomEndUq (T )(C(λ),M) ∼= {m ∈M | EndUq(T )<λm = 0 and cλ11m = m}. �(16)

Proof. Let ψ ∈ HomEndUq (T )(C(λ),M). Then ψ(gλ1 ) belongs to the right-hand side, because,

by item (b) of Lemma 4.6, we get EndUq(T )<λC(λ) = 0, and we have cλ11 ◦gλ1 = gλ1 by item (a)
of Lemma 4.7. Conversely, if m ∈M belongs to the right-hand side in (16), then we may define
ψ ∈ HomEndUq (T )(C(λ),M) by ψ(gλi ) = cλi1m, i ∈ Iλ. Moreover, the fact that this definition

gives an EndUq(T )-homomorphism follows from (10), (11) and (12) via a direct computation,

since EndUq(T )<λm = 0. Clearly these two operations are mutually inverse. �
Corollary 4.9. Let λ ∈ P0. Then C(λ) has a unique simple head, denoted by L(λ). �
Proof. Set Rad(λ) = {g ∈ C(λ) | ϑλ(g, C(λ)) = 0}. As the cellular pairing ϑλ from Defini-
tion 4.2 is contravariant by Lemma 4.3, we see that Rad(λ) is an EndUq(T )-submodule of

C(λ). Since ϑλ 6= 0 for λ ∈ P0, we have Rad(λ) ( C(λ). We claim that Rad(λ) is the unique
maximal proper EndUq(T )-submodule of C(λ).

Let g ∈ C(λ) − Rad(λ). Moreover, choose h ∈ C(λ) with ϑλ(g, h) = 1. Then i(h) ◦ g = cλ

so that i(h) ◦ g = ιλ (mod EndUq(T )<λ). Therefore,

g′ = g′ ◦ i(h) ◦ g (mod EndUq(T )<λ), for all g′ ∈ C(λ).

This implies C(λ) = EndUq(T )≤λg. Thus, any proper EndUq(T )-submodule of C(λ) is con-
tained in Rad(λ) which implies the desired statement. �
Corollary 4.10. Let λ ∈ P0, µ ∈ P and assume that HomEndUq (T )(C(λ),M) 6= 0 for some

EndUq(T )-module M isomorphic to a subquotient of C(µ). Then we have µ ≤ λ. In particular,
all composition factors L(λ) of C(µ) satisfy µ ≤ λ. �
Proof. By Proposition 4.8 the assumption in the corollary implies the existence of an element
m ∈M with cλ11m = m. But if µ 6≤ λ, then cλ11 vanishes on the Uq-weight space Tµ and hence,

cλ11g kills the highest weight vector in ∆q(µ) for all g ∈ C(µ). This makes the existence of
such an m ∈M impossible unless µ ≤ λ. �
4C. Simple EndUq(T )-modules and semisimplicity of EndUq(T ). Let λ ∈ P0. Note that
Corollary 4.9 shows that C(λ) has a unique simple head L(λ). We then arrive at the following
classification of all simple modules in EndUq(T )-Mod.

Theorem 4.11. (Classification of simple EndUq(T )-modules.) The set {L(λ) | λ ∈ P0}
forms a complete set of pairwise non-isomorphic, simple EndUq(T )-modules. �
Proof. We have to show three statements, namely that the L(λ)’s are simple, that they are
pairwise non-isomorphic and that every simple EndUq(T )-module is one of the L(λ)’s.

Because the first statement follows directly from the definition of L(λ) (see Corollary 4.9),
we start by showing the second. Thus, assume that L(λ) ∼= L(µ) for some λ, µ ∈ P0. Then

HomEndUq (T )(C(λ), C(µ)/Rad(µ)) 6= 0 6= HomEndUq (T )(C(µ), C(λ)/Rad(λ)).
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By Corollary 4.10, we get µ ≤ λ and λ ≤ µ from the left and right-hand side. Thus, λ = µ.
Suppose that L ∈ EndUq(T )-Mod is simple. Then we can choose λ ∈ P minimal such that

(recall that EndUq(T )≤λ is a two-sided ideal)

(17) EndUq(T )<λL = 0 and EndUq(T )≤λL = L.

We claim that λ ∈ P0. Indeed, if not, then, by Proposition 4.4, we see that Tq(λ) is not a

summand of T . Hence, in our usual notation, all f
λ
j ◦ gλi′ vanishes on the λ-weight space. It

follows that cλijc
λ
i′j′ also vanish on the λ-weight space for all i, j, i′, j′ ∈ Iλ. This means that

we have EndUq(T )≤λEndUq(T )≤λ ⊂ EndUq(T )<λ making (17) impossible.
For λ ∈ P0 we see by Lemma 4.7 that

(18) cλi1c
λ
1j = cλij (mod EndUq(T )<λ).

Hence, by (17), there exist i, j ∈ Iλ such that cλijL 6= 0. By (18) we also have cλi1L 6= 0 6= cλ1jL.

This in turn (again by (18)) ensures that cλ11L 6= 0. Take then m ∈ cλ11L − {0} and observe
that cλ11m = m. Hence, by Proposition 4.8, there is a non-zero EndUq(T )-homomorphism
C(λ)→ L. The conclusion follows now from Corollary 4.9. �

Recall from Section 4B the notation mλ (the multiplicity of Tq(λ) in T ) and the choice of
basis for C(λ) (in the paragraphs before Lemma 4.7). Then we get the following connection
between the decomposition of T as in (15) and the simple EndUq(T )-modules L(λ).

Theorem 4.12. (Dimension formula.) If λ ∈ P0, then dim(L(λ)) = mλ. �
Note that this result is implicit in [38] and has also been observed in e.g. [37] and [82].

Proof. We use the notation from Section 4B. Since T ′ has no summands isomorphic to Tq(λ),
we see that HomUq(∆q(λ), T ′) ⊂ Rad(λ) (see the proof of Corollary 4.9). On the other hand,

gλi /∈ Rad(λ) for 1 ≤ i ≤ mλ because for these i we have fλi ◦ gλi = cλ by construction. Thus,
the statement follows. �
Theorem 4.13. (Semisimplicity criterion.) The cellular algebra EndUq(T ) is semisimple
if and only if T is a semisimple Uq-module. �
Proof. Note that the Tq(λ)’s are simple if and only if Tq(λ) ∼= ∆q(λ) ∼= Lq(λ) ∼= ∇q(λ). Hence,
T is semisimple as a Uq-module if and only if T =

⊕
λ∈P0

∆q(λ)⊕mλ with mλ as in Section 4B.
Thus, we see that, if T decomposes into simple Uq-modules, then EndUq(T ) is semisimple by

the Artin–Wedderburn theorem (since EndUq(T ) will decompose into a direct sum of matrix
algebras in this case).

On the other hand, if EndUq(T ) is semisimple, then we know, by Corollary 4.9, that the
cell modules C(λ) are simple, i.e. C(λ) = L(λ) for all λ ∈ P0. Then

(19) T ∼=
⊕

λ∈P0

Tq(λ)⊕mλ , mλ = dim(L(λ)) = dim(C(λ)) = dim(HomUq(∆q(λ), T ))

by Theorem 4.12. Assume now that there exists a summand Tq(λ
′) of T as in (19) with

Tq(λ
′) 6∼= ∆q(λ

′) and choose λ′ ∈ P0 minimal with this property.
Then there exists a µ < λ′ such that HomUq(∆q(µ), Tq(λ

′)) 6= 0. Choose also µ minimal
among those. By our usual construction this then gives in turn a non-zero Uq-homomorphism
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g ◦ f : Tq(λ
′)→ Tq(µ)→ Tq(λ

′). By (19), we can extend g ◦ f to an element of EndUq(T ) by
defining it to be zero on all other summands.

Clearly, by construction, (g ◦ f)C(µ′) = 0 for µ′ ∈ P0 with µ′ 6= λ′ and µ′ 6≤ µ. If µ′ ≤ µ,
then consider ϕ ∈ C(µ′). Then (g ◦ f) ◦ ϕ = 0 unless ϕ has some non-zero component
ϕ′ : ∆q(µ

′) → Tq(λ
′). This forces µ′ = µ by minimality of µ. But since ∆q(µ

′) ∼= Tq(µ
′), by

minimality of λ′, we conclude that f ◦ϕ = 0 (otherwise Tq(µ
′) would be a summand of Tq(λ

′)).
Hence, the non-zero element g ◦ f ∈ EndUq(T ) kills all C(µ′) for µ′ ∈ P0. This contradicts

the semisimplicity of EndUq(T ): as noted above, C(λ) = L(λ) for all λ ∈ P0 which implies

EndUq(T ) ∼=
⊕

λ∈P0
C(λ)⊕kλ for some kλ ∈ Z≥0. �

5. Cellular structures: examples and applications

In this section we provide many examples of cellular algebras arising from our main theorem.
This includes several renowned examples where cellularity is known (but usually proved case
by case spread over the literature and with cellular bases which differ in general from ours),
and also new ones. In the first subsection we give a full treatment of the semisimple case
and describe how to obtain all the examples from the introduction using our methods. In
the second subsection we focus on the Temperley–Lieb algebras T Ld(δ) and give a detailed
account how to apply our results to these.

5A. Cellular structures using Uq-tilting modules: several examples. In the following
let ωi for i = 1, . . . , n denote the fundamental weights (of the corresponding type).

5A.1. The semisimple case. Suppose the category Uq-Mod is semisimple, that is, q is not a
root of unity in K∗ − {1} or q = ±1 ∈ K with char(K) = 0.

In this case T = Uq-Mod and any T ∈ T has a decomposition T ∼=
⊕

λ∈X+ ∆q(λ)⊕mλ
with the multiplicities mλ = (T : ∆q(λ)). This induces an Artin–Wedderburn decomposition

(20) EndUq(T ) ∼=
⊕

λ∈X+

Mmλ(K)

into matrix algebras. A natural choice of basis for HomUq(∆q(λ), T ) is

Gλ = {gλ1 , . . . , gλmλ | g
λ
i : ∆q(λ) ↪→ T is the inclusion into the i-th summand}.

Then our cellular basis consisting of the cλij ’s as in Section 3C (no lifting is needed in this case)

is an Artin–Wedderburn basis, i.e., a basis that realizes the decomposition (20) in the following
sense. The basis element cλij is the matrix Eλ

ij (in the λ-summand on the right-hand side in

(20)) which has all entries zero except one entry equals 1 in the i-th row and j-th column.
Note that, as expected in this case, EndUq(T ) has, by the Theorem 4.11 and Theorem 4.12,
one simple EndUq(T )-module L(λ) of dimension mλ for all summands ∆q(λ) of T .

5A.2. The symmetric group and the Iwahori–Hecke algebra. Let us fix d ∈ Z≥0 and let us
denote by Sd the symmetric group in d letters and by Hd(q) its associated Iwahori–Hecke
algebra. We note that K[Sd] ∼= Hd(1). Moreover, let Uq = Uq(gln). The vector representation
of Uq, which we denote by V = Kn = ∆q(ω1), is a Uq-tilting module (since ω1 is minimal in

X+). Set T = V ⊗d, which is again a Uq-tilting module. Quantum Schur–Weyl duality (see
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[32, Theorem 6.3] for surjectivity and use Ext-vanishing for the fact that dim(EndUq(T )) is

obtained via base change from Z[v, v−1] to K for all K and q ∈ K∗) states that

(21) ΦqSW : Hd(q)� EndUq(T ) and ΦqSW : Hd(q)
∼=−→ EndUq(T ), if n ≥ d.

Thus, our main result implies that Hd(q), and in particular K[Sd], are cellular for any q ∈ K∗
and any field K (by taking n ≥ d).

In this case the cell modules for EndUq(T ) are usually called Specht modules SλK and our
Theorem 4.12 gives the following.

• If q = 1 and char(K) = 0, then the dimension dim(SλK) is equal to the multiplicity of

the simple U1-module ∆1(λ) ∼= L1(λ) in V ⊗d for all λ ∈ P0. These numbers are given
by known formulas (e.g. the hook length formula).
• If q = 1 and char(K) > 0, then the dimension of the simple head Dλ

K of SλK is the

multiplicity with which T1(λ) occurs as a summand in V ⊗d for all λ ∈ P0, see also
[37]. It is a wide open problem to determine these numbers. (See however [70].)
• If q is a complex, primitive root of unity, then we can compute the dimension of the

simple Hd(q)-modules by using the algorithm as in [8]. In particular, this connects
with the LLT algorithm from [57].
• If q is a root of unity and K is arbitrary, then not much is known. Still, our methods

apply and we get a way to calculate the dimensions of the simple Hd(q)-modules, if
we can decompose T into its indecomposable summands.

5A.3. The Temperley–Lieb algebra and other sl2-related algebras. Let Uq = Uq(sl2) and let T
be as in Section 5A.2 with n = 2. For any d ∈ Z≥0 we have T Ld(δ) ∼= EndUq(T ) by Schur–Weyl

duality, where T Ld(δ) is the Temperley–Lieb algebra in d-strands with parameter δ = q+q−1.
This works for all K and all q ∈ K∗ (this can be deduced from, for example, [32, Theorem
6.3]). Hence, T Ld(δ) is always cellular. We discuss this case in more detail in Section 5B.

Furthermore, if we are in the semisimple case, then ∆q(i) is a Uq-tilting module for all
i ∈ Z≥0 and so is T = ∆q(i1)⊗ · · · ⊗∆q(id). Thus, we obtain that EndUq(T ) is cellular.

The algebra EndUq(T ) is known to give a diagrammatic presentation of the (tensor) category
of Uq-modules, see [73], and can be used to define the colored Jones polynomial.

If q ∈ K is a root of unity and l is the order of q2, then, for any 0 ≤ i < l, ∆q(i) is

a Uq-tilting module (since its simple) and so is T = ∆q(i)
⊗d. The endomorphism algebra

EndUq(T ) is cellular. This reproves parts of [5, Theorem 1.1] using our general approach.
In characteristic 0: Another family of Uq-tilting modules was studied in [10]. For any

d ∈ Z≥0, fix any λ0 ∈ {0, . . . , l − 2} and consider T = Tq(λ0) ⊕ · · · ⊕ Tq(λd) where λk is the
unique integer λk ∈ {kl, . . . , (k + 1)l − 2} linked to λ0. We again obtain that EndUq(T ) is
cellular. Note that EndUq(T ) can be identified with the so-called (type A) zig-zag algebra
Ad, see [10, Proposition 3.9], introduced in [44]. These algebras are naturally graded making
EndUq(T ) into a graded cellular algebra in the sense of [41] and are special examples arising
from the family of generalized Khovanov arc algebras whose cellularity is studied in [19].

5A.4. Spider algebras. Let Uq = Uq(sln) (or, alternatively, Uq(gln)). One has for any q ∈ K∗
that all Uq-representations ∆q(ωi) are Uq-tilting modules (because the ωi’s are minimal in
X+). Hence, for any ki ∈ {1, . . . , n− 1}, T = ∆q(ωk1)⊗ · · · ⊗∆q(ωkd) is a Uq-tilting module.
Thus, EndUq(T ) is cellular. These algebras are related to type An−1 spider algebras as in
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[56], are connected to the Reshetikhin–Turaev sln-link polynomials and give a diagrammatic
description of the representation theory of sln, see [23], providing a link from our work to
low-dimensional topology and diagrammatic algebra. Note that cellular bases (which, in this
case, coincide with our cellular bases) of these were found in [36, Theorem 2.57].

More general: In any type we have that ∆q(λ) are Uq(g)-tilting modules for minuscule
λ ∈ X+, see [48, Part II, Chapter 2, Section 15]. Moreover, if q is a root of unity “of order
l big enough” (ensuring that the ωi’s are in the closure of the fundamental alcove), then the
∆q(ωi) are Uq(g)-tilting modules by the linkage principle (see [3, Corollaries 4.4 and 4.6]). So
in these cases we can generalize the above results to other types.

Still more generally: we may take (for any type and any q ∈ K∗) arbitrary λj ∈ X+ (for
j = 1, . . . , d) and obtain a cellular structure on EndUq(T ) for T = Tq(λ1)⊗ · · · ⊗ Tq(λd).
5A.5. The Ariki–Koike algebra and related algebras. Take g = glm1

⊕ · · · ⊕ glmr (which can
be easily fit into our context) with m1 + · · ·+mr = m and let V be the vector representation
of U1(glm) restricted to U1 = U1(g). This is again a U1-tilting module and so is T = V ⊗d.
Then we have a cyclotomic analog of (21), namely

(22) Φcl : C[Z/rZ o Sd]� EndU1(T ) and Φcl : C[Z/rZ o Sd]
∼=−→ EndU1(T ), if m ≥ d,

where C[Z/rZoSd] is the group algebra of the complex reflection group Z/rZoSd ∼= (Z/rZ)doSd,
see [65, Theorem 9]. Thus, we can apply our main theorem and obtain a cellular basis for
these quotients of C[Z/rZ o Sd]. If m ≥ d, then (22) is an isomorphism (see Lemma 11 loc.
cit.) and we obtain that C[Z/rZ o Sd] itself is a cellular algebra for all r, d. In the extremal
case m1 = m − 1 and m2 = 1, the resulting quotient of (22) is known as Solomon’s algebra
introduced in [85] (also called the algebra of the inverse semigroup or the rook monoid algebra)
and we obtain that Solomon’s algebra is cellular. In the extremal case m1 = m2 = 1, the
resulting quotient is a specialization of the blob algebra BLd(1, 2) (in the notation used in
[77]). To see this, note that both algebras are quotients of C[Z/rZ o Sd]. The kernel of the
quotient to BLd(1, 2) is described explicitly by Ryom-Hansen in [77, (1)] and is by [65, Lemma
11] contained in the kernel of Φcl from (22). Since both algebras have the same dimensions,
they are isomorphic.

Let Uq = Uq(g). We get in the quantized case (for q ∈ C− {0} not a root of unity)

(23) Φqcl : Hd,r(q)� EndUq(T ) and Φqcl : Hd,r(q)
∼=−→ EndUq(T ), if m ≥ d,

where Hd,r(q) is the Ariki–Koike algebra introduced in [12]. A proof of (23) can for example
be found in [78, Theorem 4.1]. Thus, as before, our main theorem applies and we obtain: the
Ariki–Koike algebra Hd,r(q) is cellular (by taking m ≥ d), the quantized rook monoid algebra
Rd(q) from [39] is cellular and the blob algebra BLd(q,m) is cellular (which follows as above).
Note that the cellularity of Hd,r(q) was obtained in [28], the cellularity of the quantum rook
monoid algebras and of the blob algebra can be found in [67] and in [76] respectively.

In fact, (23) is still true in the non-semisimple cases, see [43, Theorem 1.10 and Lemma
2.12] as long as K satisfies a certain separation condition (which implies that the algebra in
question has the right dimension, see [11]). Again, our main theorem applies.

5A.6. The Brauer algebras and related algebras. Consider Uq = Uq(g) where g is either an
orthogonal g = o2n and g = o2n+1 or the symplectic g = sp2n Lie algebra. Let V = ∆q(ω1)
be the quantized version of the corresponding vector representation. In both cases, V is a
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Uq-tilting module (for type B and q = 1 this requires char(K) 6= 2, see [46, Page 20]) and

hence, so is T = V ⊗d. We first take q = 1 and set δ = 2n in case g = o2n, and δ = 2n+ 1 in
case g = o2n+1 and δ = −2n in case g = sp2n respectively. Then (see [26, Theorem 1.4] and
[31, Theorem 1.2] for infinite K, or [35, Theorem 5.5] for K = C)

(24) ΦBr : Bd(δ)� EndU1(T ) and ΦBr : Bd(δ)
∼=−→ EndU1(T ), if n > d,

where Bd(δ) is the Brauer algebra in d strands (for g 6= o2n the isomorphism in (24) already
holds for n = d). Thus, we get cellularity of Bd(δ) by observing that in characteristic p we
can always assume that n is large because Bd(δ) = Bd(δ + p).

Similarly, let Uq = Uq(gln), q ∈ K∗ arbitrary and T = ∆q(ω1)⊗r ⊗ ∆q(ωn−1)⊗s. By [27,
Theorem 7.1 and Corollary 7.2] we have

(25) ΦwBr : Bnr,s([n])� EndUq(T ) and ΦwBr : Bnr,s([n])
∼=−→ EndUq(T ), if n ≥ r + s.

Here Bnr,s([n]) is the quantized walled Brauer algebra for [n] = q1−n + · · ·+ qn−1. Since T is a
Uq-tilting module, we get from (25) cellularity of Bnr,s([n]) and of its quotients under ΦwBr.

The walled Brauer algebra Bnr,s(δ) over K = C for arbitrary parameter δ ∈ Z appears as the

centralizer of Endgl(m|n)(T ) for T = V ⊗r ⊗ (V ∗)⊗s where V is the vector representation of the
superalgebra gl(m|n) with δ = m− n. That is, we have

(26) Φs : Bnr,s(δ)� Endgl(m|n)(T ) and Φs : Bnr,s(δ)
∼=−→ Endgl(m|n)(T ), if (m+1)(n+1) ≥ r+s,

see [18, Theorem 7.8]. It can be shown that T is a gl(m|n)-tilting module and thus, our main
theorem applies and hence, by (26), Bnr,s(δ) is cellular. Similarly for the quantized version.

Quantizing the Brauer case, taking q ∈ K∗, g, V = ∆q(ω1) and T as before (without the
restriction char(K) 6= 2 for type B) gives us a cellular structure on EndUq(T ). The algebra
EndUq(T ) is a quotient of the Birman–Murakami–Wenzl algebra BMWd(δ) (for appropriate
parameters), see [58, (9.6)] for the orthogonal case (which works for any q ∈ C−{0,±1}) and
[40, Theorem 1.5] for the symplectic case (which works for any q ∈ K∗ − {1} and infinite K).
Again, taking n ≥ d (or n > d), we recover the cellularity of BMWd(δ).

5A.7. Infinite-dimensional modules — highest weight categories. Observe that our main the-
orem does not use the specific properties of Uq-Mod, but works for any EndA-Mod(T ) where
T is an A-tilting module for some finite-dimensional, quasi-hereditary algebra A over K or
T ∈ C for some highest weight category C in the sense of [24]. For the explicit construction of
our basis we however need a notion like “weight spaces” such that Lemma 3.4 makes sense.

The most famous example of such a category is the BGG category O = O(g) attached
to a complex semisimple or reductive Lie algebra g with a corresponding Cartan h and fixed
Borel subalgebra b. We denote by ∆(λ) ∈ O the Verma module attached to λ ∈ h∗. In the
same vein, pick a parabolic p ⊃ b and denote for any p-dominant weight λ the corresponding
parabolic Verma module by ∆p(λ). It is the unique quotient of the Verma module ∆(λ) which
is locally p-finite, i.e. contained in the parabolic category Op = Op(g) ⊂ O (see e.g. [45]).

There is a contravariant, character preserving duality functor ∨ : Op → Op which allows us
to set ∇p(λ) = ∆p(λ)∨. Hence, we can play the same game again since the O-tilting theory
works in a very similar fashion as for Uq-Mod (see [45, Chapter 11] and the references therein).
In particular, we have indecomposable O-tilting modules T (λ) for any λ ∈ h∗. Similarly for
Op giving an indecomposable Op-tilting module T (λ) for any p-dominant λ ∈ h∗.
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We give a few examples where our approach leads to cellular structures on interesting al-
gebras. For this purpose, let p = b and λ = 0. Then T (0) has Verma factors of the form
∆(w.0) (for w ∈ W , where W is the Weyl group associated to g). Each of these appears
with multiplicity 1. Hence, dim(EndO(T (0))) = |W | by the analog of (4). Then we have
EndO(T (0)) ∼= S(h∗)/SW+ . The algebra S(h∗)/SW+ is called the coinvariant algebra. (For the
notation, the conventions and the result see [83] — this is Soergel’s famous Endomorphismen-
satz.) Hence, our main theorem implies that S(h∗)/SW+ is cellular, which is no big surprise
since all finite-dimensional, commutative algebras are cellular, see [55, Proposition 3.5].

There is also a quantum version of this result: replace O by its quantum cousin Oq from
[6] (which is the analog of O for Uq(g)). This works over any field K with char(K) = 0 and
any q ∈ K∗ − {1} (which can be deduced from Section 6 therein). There is furthermore a
characteristic p version of this result: consider the G-tilting module T (pρ) in the category of
finite-dimensional G-modules (here G is an almost simple, simply connected algebraic group
over K with char(K) = p). Its endomorphism algebra is isomorphic to the corresponding
coinvariant algebra over K, see [4, Proposition 19.8].

Returning to K = C, we can generalize the example of the coinvariant algebra. To this
end, note that, if T is an Op-tilting module, then so is T ⊗ M for any finite-dimensional
g-module M , see [45, Proposition 11.1 and Section 11.8] (and the references therein). Thus,
EndOp(T ⊗M) is cellular by our main theorem.

A special case is: g is of classical type, T = ∆p(λ) is simple (hence, Op-tilting), V is the
vector representation of g and M = V ⊗d. Let first g = gln with standard Borel b and parabolic
p of block size (n1, . . . , n`). Then one can find a certain p-dominant weight λI, called Irving-
weight, such that T = ∆p(λI) is Op-tilting. Moreover, EndOp(T ⊗ V ⊗d) is isomorphic to a
sum of blocks of cyclotomic quotients of the degenerate affine Hecke algebra Hd/Π`

i=1(xi−ni),
see [17, Theorem 5.13]. In the special case of level ` = 2, these algebras can be explicitly
described in terms of generalizations of Khovanov’s arc algebra (which Khovanov introduced
in [51] to give an algebraic structure underlying Khovanov homology and which categorifies
the Temperley–Lieb algebra T Ld(δ)) and have an interesting representation theory, see [19],
[20], [21] and [22]. A consequence of this is that, using the results from [79, Theorem 6.9] and
[80, Theorem 1.1], one can realize the walled Brauer algebra from Section 5A.6 for arbitrary
parameter δ ∈ Z as endomorphism algebras of some Op-tilting module and hence, using our
main theorem, deduce cellularity again.

If g is of another classical type, then the role of the (cyclotomic quotients of the) degenerate
affine Hecke algebra is played by (cyclotomic quotients of) degenerate BMW algebras or so-
called (cyclotomic quotients of)

∨
d

∨
-algebras (also called Nazarov–Wenzl algebras). These are

still poorly understood and technically quite involved, see [13]. In [33] special examples of level
` = 2 quotients were studied and realized as endomorphism algebras of some Op(so2n)-tilting
module ∆p(δ)⊗V ∈ Op(so2n) where V is the vector representation of so2n, δ = δ

2

∑n
i=1 εi and

p is a maximal parabolic subalgebra of type A (Theorem B loc. cit.). Hence, our theorem
implies cellularity of these algebras. Soergel’s theorem is therefore just a shadow of a rich
world of endomorphism algebras whose cellularity can be obtained from our approach.

Our methods also apply to (parabolic) category Op(ĝ) attached to an affine Kac–Moody
algebra ĝ over K and related categories. In particular, one can consider a (level-dependent)
quotient ĝκ of U(ĝ) and a category, denoted by Oν,κ

K,τ , attached to it (we refer the reader to
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[75, Sections 5.2 and 5.3] for the details). Then there is a subcategory Aν,κ
K,τ ⊂ Oν,κ

K,τ and a

Aν,κ
K,τ -tilting module TK,d defined in Section 5.5 loc. cit. such that

Φaff : Hs
K,d → EndAν,κ

K,τ
(TK,d) and Φaff : Hs

K,d
∼=−→ EndAν,κ

K,τ
(TK,d), if νp ≥ d, p = 1, . . . N,

see [75, Theorem 5.37 and Proposition 8.1]. Here Hs
K,d denotes an appropriate cyclotomic

quotient of the affine Hecke algebra. Again, our main theorem applies for Hs
K,d in case νp ≥ d.

5A.8. Graded cellular structures. A striking property which arises in the context of (para-
bolic) category O (or Op) is that all the endomorphism algebras from Section 5A.7 can be
equipped with a Z-grading as in [86] arising from the Koszul grading of category O (or of
Op). We might choose our cellular basis compatible with this grading and obtain a grading
on the endomorphism algebras turning them into graded cellular algebras in the sense of [41,
Definition 2.1].

For the cyclotomic quotients this grading is non-trivial and in fact is the type A KL–R
grading in the spirit of Khovanov and Lauda and independently Rouquier (see [52] and [53]
or [74]), which can be seen as a grading on cyclotomic quotients of degenerate affine Hecke
algebras, see [16]. See [21] for level ` = 2 and [42] for all levels where the authors construct
explicit graded cellular bases. For gradings on (cyclotomic quotients of)

∨
d

∨
-algebras see [33,

Section 5] and for gradings on Brauer algebras see [34] or [59].
In the same spirit, it should be possible to obtain the higher level analogs of the general-

izations of Khovanov’s arc algebra, known as sln-web (or, alternatively, gln-web) algebras (see
[62] and [61]), from our setup as well using the connections from cyclotomic KL–R algebras to
these algebras in [89] and [90]. Although details still need to be worked out, this can be seen
as the categorification of the connections to the spiders from Section 5A.4: the spiders provide
the setup to study the corresponding Reshetikhin–Turaev sln-link polynomials; the sln-web
algebras provide the algebraic setup to study the Khovanov–Rozansky sln-link homologies.
This would emphasize the connection between our work and low-dimensional topology.

5B. (Graded) cellular structures and the Temperley–Lieb algebras: a compari-
son. Finally we want to present one explicit example, the Temperley–Lieb algebras, which
is of particular interest in low-dimensional topology and categorification. Our main goal is
to construct new (graded) cellular bases, and use our approach to establish semisimplicity
conditions, and construct and compute the dimensions of its simple modules in new ways.

We start by briefly recalling the necessary definitions. The reader unfamiliar with these
algebras might consider for example [38, Section 6] (or [8], where we recall the basics in detail
using the usual Temperley–Lieb diagrams and our notation).

Fix δ = q + q−1 for q ∈ K∗.3 Recall that the Temperley–Lieb algebra T Ld(δ) in d strands
with parameter δ is the free diagram algebra over K with basis consisting of all possible
non-intersecting tangle diagrams with d bottom and top boundary points modulo boundary
preserving isotopy and the local relation for evaluating circles given by the parameter4 δ.

Recall from Section 5A.3 (whose notation we use now) that, by quantum Schur–Weyl du-
ality, we can use Theorem 3.9 to obtain cellular bases of T Ld(δ) ∼= EndUq(T ) (we fix the

3The sl2 case works with any q ∈ K∗, including even roots of unity, see e.g. [10, Definition 2.3].
4We point out that there are two different conventions about circle evaluations in the literature: evaluating

to δ or to −δ. We use the first convention because we want to stay close to the cited literature.
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isomorphism coming from quantum Schur–Weyl duality from now on). The aim now is to
compare our cellular bases to the one given by Graham and Lehrer in [38, Theorem 6.7],
where we point out that we do not obtain their cellular basis: our cellular basis depends for
instance on whether T Ld(δ) is semisimple or not. In the non-semisimple case, at least for
K = C, we obtain a non-trivially Z-graded cellular basis in the sense of [41, Definition 2.1],
see Proposition 5.8.

Before stating our cellular basis, we provide a criterion which tells precisely whether T Ld(δ)
is semisimple or not. Recall that there is a known criteria for which Weyl modules ∆q(i) are
simple, see e.g. [10, Proposition 2.7].

Proposition 5.1. (Semisimplicity criterion for T Ld(δ).) We have the following.

(a) Let δ 6= 0. Then T Ld(δ) is semisimple if and only if [i] = q1−i + · · ·+ qi−1 6= 0 for all
i = 1, . . . , d if and only if q is not a root of unity with d < l = ord(q2), or q = 1 and
char(K) > d.

(b) Let char(K) = 0. Then T Ld(0) is semisimple if and only if d is odd (or d = 0).
(c) Let char(K) = p > 0. Then T Ld(0) is semisimple if and only if d ∈ {1, 3, 5, . . . , 2p−1}

(or d = 0). �
Proof. (a): We want to show that T = V ⊗d decomposes into simple Uq-modules if and only if
d < l, or q = 1 and char(K) > d, which is clearly equivalent to the non-vanishing of the [i]’s.

Assume that d < l. Since the maximal Uq-weight of V ⊗d is d and since all Weyl Uq-modules

∆q(i) for i < l are simple, we see that all indecomposable summands of V ⊗d are simple.
Otherwise, if l ≤ d, then Tq(d) (or Tq(d − 2) in the case d ≡ −1 mod l) is a non-simple,

indecomposable summand of V ⊗d (note that this arguments fails if l = 2, i.e. δ = 0).
The case q = 1 works similarly, and we can now use Theorem 4.13 to finish the proof of (a).
(b): Since δ = 0 if and only if q = ± 2

√
−1, we can use the linkage from e.g. [10, Theorem

2.23] in the case l = 2 to see that T = V ⊗d decomposes into a direct sum of simple Uq-modules
if and only if d is odd (or d = 0). This implies that T Ld(0) is semisimple if and only if d is
odd (or d = 0) by Theorem 4.13.

(c): If char(K) = p > 0 and δ = 0 (for p = 2 this is equivalent to q = 1), then we have
∆q(i) ∼= Lq(i) if and only if i = 0 or i ∈ {2apn − 1 | n ∈ Z≥0, 1 ≤ a < p}. In particular, this
means that for d ≥ 2 we have that either Tq(d) or Tq(d− 2) is a simple Uq-module if and only

if d ∈ {3, 5, . . . , 2p − 1}. Hence, using the same reasoning as above, we see that T = V ⊗d is
semisimple if and only if d ∈ {1, 3, 5, . . . , 2p − 1} (or d = 0). By Theorem 4.13 we see that
T Ld(0) is semisimple if and only if d ∈ {1, 3, 5, . . . , 2p− 1} (or d = 0). �
Example 5.2. We have that [k] 6= 0 for all k = 1, 2, 3 is satisfied if and only if q is not a
fourth or a sixth root of unity. By Proposition 5.1 we see that T L3(δ) is semisimple as long as
q is not one of these values from above. The other way around is only true for q being a sixth
root of unity (the conclusion from semisimplicity to non-vanishing of the quantum numbers
above does not work in the case q = ± 2

√
−1). N

Remark 4. The semisimplicity criterion for T Ld(δ) was already already found, using quite
different methods, in [95, Section 5] in the case δ 6= 0, and in the case δ = 0 in [63, Chapter
7] or [71, above Proposition 4.9]. For us it is an easy application of Theorem 4.13. N

A direct consequence of Proposition 5.1 is that the Temperley–Lieb algebra T Ld(δ) for
q ∈ K∗ − {1} not a root of unity is semisimple (or q = ±1 and char(K) = 0), regardless of d.
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5B.1. Temperley–Lieb algebra: the semisimple case. Assume q ∈ K∗ − {1} is not a root of
unity (or q = ±1 and char(K) = 0). Thus, we are in the semisimple case.

Let us compare our cell datum (P, I, C, i) to the one of Graham and Lehrer (indicated by
a subscript GL) from [38, Section 6]. They have the poset PGL consisting of all length-two
partitions of d, and we have the poset P consisting of all λ ∈ X+ such that ∆q(λ) is a factor
of T . The two sets are clearly the same: an element λ = (λ1, λ2) ∈ PGL corresponds to
λ1−λ2 ∈ P. Similarly, an inductive reasoning shows that IGL (standard fillings of the Young
diagram associated to λ) is also the same as our I (to see this one can use the facts listed in
[10, Section 2]). One directly checks that the K-linear anti-involution iGL (turning diagrams
upside-down) is also our involution i. Thus, except for C and CGL, the cell data agree.

In order to state how our cellular bases for T Ld(δ) look like, recall that the so-called
generalized Jones–Wenzl projectors JW~ε are indexed by d-tuples (with d > 0) of the form

~ε = (ε1, . . . , εd) ∈ {±1}d such that
∑k

j=1 εj ≥ 0 for all k = 1, . . . , d, see e.g. [25, Section 2]. In

case ~ε = (1, . . . , 1), one recovers the usual Jones–Wenzl projectors introduced by Jones in [49]
and then further studied by Wenzl in [93].

Now, in [25, Proposition 2.19 and Theorem 2.20] it is shown that there exist non-zero
scalars a~ε ∈ K such that JW ′~ε = a~εJW~ε are well-defined idempotents forming a complete set
of mutually orthogonal, primitive idempotents in T Ld(δ). (The authors of [25] work over C,
but as long as q ∈ K∗ − {1} is not a root of unity their arguments work in our setup as well.)

These project to the summands of T = V ⊗d of the form ∆q(i) for i =
∑k

j=1 εj . In particular,

the usual Jones–Wenzl projectors project to the highest weight summand ∆q(d) of T = V ⊗d.

Proposition 5.3. ((New) cellular bases.) The datum given by the quadruple (P, I, C, i)
for T Ld(δ) ∼= EndUq(T ) is a cell datum for T Ld(δ). Moreover, C 6= CGL for all d > 1 and
all choices involved in the definition of im(C). In particular, there is a choice such that all
generalized Jones–Wenzl projectors JW ′~ε are part of im(C). �
Proof. That we get a cell datum as stated follows from Theorem 3.9 and the discussion above.

That our cellular basis C will never be CGL for d > 1 is due to the fact that Graham and
Lehrer’s cellular basis always contains the identity (which corresponds to the unique standard
filling of the Young diagram associated to λ = (d, 0)).

In contrast, let λk = (d− k, k) for 0 ≤ k ≤ bd2c. Then

(27) T = V ⊗d ∼= ∆q(d)⊕
⊕

0<k≤b d
2
c
∆q(d− 2k)⊕mλk

for some multiplicities mλk ∈ Z>0, we see that for d > 1 the identity is never part of any of

our bases: all the ∆q(i)’s are simple Uq-modules and each ckij factors only through ∆q(k). In

particular, the basis element cλ11 for λ = λd has to be (a scalar multiple) of JW(1,...,1).
As in Section 5A.1 we can choose for C an Artin–Wedderburn basis of T Ld(δ) ∼= EndUq(T ).

Hence, by the above, the corresponding basis consists of the projectors JW~ε. �
Note the following classification result (see for example [71, Corollary 5.2] for K = C).

Corollary 5.4. We have a complete set of pairwise non-isomorphic, simple T Ld(δ)-modules
L(λ), where λ = (λ1, λ2) is a length-two partition of d. Moreover, dim(L(λ)) = |Std(λ)|,
where Std(λ) is the set of all standard tableaux of shape λ. �
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Proof. This follows directly from Proposition 5.3 and Theorem 4.11 and Theorem 4.12 because
we have mλ = |Std(λ)|. �
5B.2. Temperley–Lieb algebra: the non-semisimple case. Let us assume that we have fixed
q ∈ K∗ − {1,± 2

√
−1} to be a critical value such that [k] = 0 for some k = 1, . . . , d. Then, by

Proposition 5.1, the algebra T Ld(δ) is no longer semisimple. In particular, to the best of our
knowledge, there is no diagrammatic analog of the Jones–Wenzl projectors in general.

Proposition 5.5. ((New) cellular basis — the second.) The datum (P, I, C, i) with C
as in Theorem 3.9 for T Ld(δ) ∼= EndUq(T ) is a cell datum for T Ld(δ). Moreover, C 6= CGL for
all d > 1 and all choices involved in the definition of our basis. Thus, there is a choice such
that all generalized, non-semisimple Jones–Wenzl projectors are part of im(C). �
Proof. As in the proof of Proposition 5.3 and left to the reader. �

Hence, directly from Proposition 5.5 and Theorem 4.11 and Theorem 4.12, we obtain:

Corollary 5.6. We have a complete set of pairwise non-isomorphic, simple T Ld(δ)-modules
L(λ), where λ = (λ1, λ2) is a length-two partition of d. Moreover, dim(L(λ)) = mλ, where mλ

is the multiplicity of Tq(λ1 − λ2) as a summand of T = V ⊗d. �
Note that we can do better: one gets a decompositions

(28) T ∼= T −1 ⊕ T 0 ⊕ T 1 ⊕ · · · ⊕ T l−3 ⊕ T l−2 ⊕ T l−1,

where the blocks T −1 and T l−1 are semisimple if K = C. (This follows from the linkage
principle. For notation and the statement see [10, Section 2].)

Fix K = C. As explained in [10, Section 3.5] each block in the decomposition (28) can be
equipped with a non-trivial Z-grading coming from the zig-zag algebra from [44]. Hence, we
have the following.

Lemma 5.7. The C-algebra EndUq(T ) can be equipped with a non-trivial Z-grading. Thus,
T Ld(δ) over C can be equipped with a non-trivial Z-grading. �
Proof. The second statement follows directly from the first using quantum Schur–Weyl duality.
Hence, we only need to show the first.

Note that T = V ⊗d decomposes as in (27), but with Tq(k)’s instead of ∆q(k)’s, and we can
order this decomposition by blocks. Each block carries a Z-grading coming from the zig-zag
algebra, as explained in [10, Section 3]. In particular, we can choose the basis elements cλij in
such a way that we get the Z-graded basis obtained in Corollary 4.23 therein. Since there is
no interaction between different blocks, the statement follows. �

Recall from [41, Definition 2.1] that a Z-graded cell datum of a Z-graded algebra is a cell
datum for the algebra together with an additional degree function deg :

∐
λ∈P Iλ → Z, such

that deg(cλij) = deg(i) + deg(j). For us the choice of deg(·) is as follows.

If λ ∈ P is in one of the semisimple blocks, then we simply set deg(i) = 0 for all i ∈ Iλ.
Assume that λ ∈ P is not in the semisimple blocks. It is known that every Tq(λ) has

precisely two Weyl factors. The gλi that map ∆q(λ) into a higher Tq(µ) should be indexed by

a 1-colored i whereas the gλi mapping ∆q(λ) into Tq(λ) should have 0-colored i. Similarly for

the fλj ’s. Then the degree of the elements i ∈ Iλ should be the corresponding color. We get

the following. (Here C is as in Theorem 3.9.)
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Proposition 5.8. (Graded cellular basis.) The datum (P, I, C, i) supplemented with the
function deg(·) from above is a Z-graded cell datum for the C-algebra T Ld(δ) ∼= EndUq(T ).�

Proof. The hardest part is cellularity which directly follows from Theorem 3.9. That the
quintuple (P, I, C, i,deg) gives a Z-graded cell datum follows from the construction. �

Remark 5. Our grading and the one found by Plaza and Ryom-Hansen in [69] agree (up to
a shift of the indecomposable summands). To see this, note that our algebra is isomorphic to
the algebra K1,n studied in [19] which is by (4.8) therein and [21, Theorem 6.3] a quotient of
some particular cyclotomic KL–R algebra (the compatibility of the grading follows for example
from [42, Corollary B.6]). The same holds, by construction, for the grading in [69]. N
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[5] H.H. Andersen, G. Lehrer, and R. Zhang. Cellularity of certain quantum endomorphism algebras. Pacific J.
Math., 279(1-2):11–35, 2015. URL: http://arxiv.org/abs/1303.0984, doi:10.2140/pjm.2015.279.11.

[6] H.H. Andersen and V. Mazorchuk. Category O for quantum groups. J. Eur. Math. Soc. (JEMS), 17(2):405–
431, 2015. URL: http://arxiv.org/abs/1105.5500, doi:10.4171/JEMS/506.

[7] H.H. Andersen, P. Polo, and K.X. Wen. Representations of quantum algebras. Invent. Math., 104(1):1–59,
1991. doi:10.1007/BF01245066.

[8] H.H. Andersen, C. Stroppel, and D. Tubbenhauer. Additional notes for the paper “Cellular struc-
tures using Uq-tilting modules”. 2015. URL: http://pure.au.dk/portal/files/100562565/cell_tilt_
proofs_1.pdf, http://www.math.uni-bonn.de/ag/stroppel/cell-tilt-proofs_neu.pdf, http://www.

math.uni-bonn.de/people/dtubben/cell-tilt-proofs.pdf.
[9] H.H. Andersen, C. Stroppel, and D. Tubbenhauer. Semisimplicity of Hecke and (walled) Brauer alge-

bras. J. Aust. Math. Soc., 103(1):1–44, 2017. URL: http://arxiv.org/abs/1507.07676, doi:10.1017/

S1446788716000392.
[10] H.H. Andersen and D. Tubbenhauer. Diagram categories for Uq-tilting modules at roots of

unity. Transform. Groups, 22(1):29–89, 2017. URL: https://arxiv.org/abs/1409.2799, doi:10.1007/

s00031-016-9363-z.
[11] S. Ariki. Cyclotomic q-Schur algebras as quotients of quantum algebras. J. Reine Angew. Math., 513:53–69,

1999. doi:10.1515/crll.1999.063.
[12] S. Ariki and K. Koike. A Hecke algebra of (Z/rZ) oSn and construction of its irreducible representations.

Adv. Math., 106(2):216–243, 1994. doi:10.1006/aima.1994.1057.
[13] S. Ariki, A. Mathas, and H. Rui. Cyclotomic Nazarov–Wenzl algebras. Nagoya Math. J., 182:47–134, 2006.

URL: http://arxiv.org/abs/math/0506467.
[14] J.S. Birman and H. Wenzl. Braids, link polynomials and a new algebra. Trans. Amer. Math. Soc.,

313(1):249–273, 1989. doi:10.2307/2001074.
[15] R. Brauer. On algebras which are connected with the semisimple continuous groups. Ann. of Math. (2),

38(4):857–872, 1937. doi:10.2307/1968843.
[16] J. Brundan and A. Kleshchev. Blocks of cyclotomic Hecke algebras and Khovanov–Lauda alge-

bras. Invent. Math., 178(3):451–484, 2009. URL: http://arxiv.org/abs/0808.2032, doi:10.1007/

s00222-009-0204-8.
[17] J. Brundan and A. Kleshchev. Schur–Weyl duality for higher levels. Selecta Math. (N.S.), 14(1):1–57, 2008.

URL: http://arxiv.org/abs/math/0605217, doi:10.1007/s00029-008-0059-7.

http://dx.doi.org/10.1016/S0012-9593(97)89924-7
http://dx.doi.org/10.1016/S0021-8693(02)00618-X
http://arxiv.org/abs/1303.0984
http://dx.doi.org/10.2140/pjm.2015.279.11
http://arxiv.org/abs/1105.5500
http://dx.doi.org/10.4171/JEMS/506
http://dx.doi.org/10.1007/BF01245066
http://pure.au.dk/portal/files/100562565/cell_tilt_proofs_1.pdf
http://pure.au.dk/portal/files/100562565/cell_tilt_proofs_1.pdf
http://www.math.uni-bonn.de/ag/stroppel/cell-tilt-proofs_neu.pdf
http://www.math.uni-bonn.de/people/dtubben/cell-tilt-proofs.pdf
http://www.math.uni-bonn.de/people/dtubben/cell-tilt-proofs.pdf
http://arxiv.org/abs/1507.07676
http://dx.doi.org/10.1017/S1446788716000392
http://dx.doi.org/10.1017/S1446788716000392
https://arxiv.org/abs/1409.2799
http://dx.doi.org/10.1007/s00031-016-9363-z
http://dx.doi.org/10.1007/s00031-016-9363-z
http://dx.doi.org/10.1515/crll.1999.063
http://dx.doi.org/10.1006/aima.1994.1057
http://arxiv.org/abs/math/0506467
http://dx.doi.org/10.2307/2001074
http://dx.doi.org/10.2307/1968843
http://arxiv.org/abs/0808.2032
http://dx.doi.org/10.1007/s00222-009-0204-8
http://dx.doi.org/10.1007/s00222-009-0204-8
http://arxiv.org/abs/math/0605217
http://dx.doi.org/10.1007/s00029-008-0059-7


28 HENNING HAAHR ANDERSEN, CATHARINA STROPPEL, AND DANIEL TUBBENHAUER

[18] J. Brundan and C. Stroppel. Gradings on walled Brauer algebras and Khovanov’s arc algebra. Adv. Math.,
231(2):709–773, 2012. URL: http://arxiv.org/abs/1107.0999, doi:10.1016/j.aim.2012.05.016.

[19] J. Brundan and C. Stroppel. Highest weight categories arising from Khovanov’s diagram algebra I: cellu-
larity. Mosc. Math. J., 11(4):685–722, 821–822, 2011. URL: http://arxiv.org/abs/0806.1532.

[20] J. Brundan and C. Stroppel. Highest weight categories arising from Khovanov’s diagram algebra II:
Koszulity. Transform. Groups, 15(1):1–45, 2010. URL: http://arxiv.org/abs/0806.3472, doi:10.1007/
s00031-010-9079-4.

[21] J. Brundan and C. Stroppel. Highest weight categories arising from Khovanov’s diagram algebra III:
categoryO. Represent. Theory, 15:170–243, 2011. URL: http://arxiv.org/abs/0812.1090, doi:10.1090/
S1088-4165-2011-00389-7.

[22] J. Brundan and C. Stroppel. Highest weight categories arising from Khovanov’s diagram algebra IV: the
general linear supergroup. J. Eur. Math. Soc. (JEMS), 14(2):373–419, 2012. URL: http://arxiv.org/

abs/0907.2543, doi:10.4171/JEMS/306.
[23] S. Cautis, J. Kamnitzer, and S. Morrison. Webs and quantum skew Howe duality. Math. Ann., 360(1-

2):351–390, 2014. URL: http://arxiv.org/abs/1210.6437, doi:10.1007/s00208-013-0984-4.
[24] E. Cline, B. Parshall, and L. Scott. Finite-dimensional algebras and highest weight categories. J. Reine

Angew. Math., 391:85–99, 1988.
[25] B. Cooper and M. Hogancamp. An exceptional collection for Khovanov homology. Algebr. Geom. Topol.,

15(5):2659–2707, 2015. URL: http://arxiv.org/abs/1209.1002, doi:10.2140/agt.2015.15.2659.
[26] R. Dipper, S. Doty, and J. Hu. Brauer algebras, symplectic Schur algebras and Schur–Weyl duality.

Trans. Amer. Math. Soc., 360(1):189–213 (electronic), 2008. URL: http://arxiv.org/abs/math/0503545,
doi:10.1090/S0002-9947-07-04179-7.

[27] R. Dipper, S. Doty, and F. Stoll. The quantized walled Brauer algebra and mixed tensor space. Al-
gebr. Represent. Theory, 17(2):675–701, 2014. URL: http://arxiv.org/abs/0806.0264, doi:10.1007/

s10468-013-9414-2.
[28] R. Dipper, G. James, and A. Mathas. Cyclotomic q-Schur algebras. Math. Z., 229(3):385–416, 1998. doi:

10.1007/PL00004665.
[29] S. Donkin. On tilting modules for algebraic groups. Math. Z., 212(1):39–60, 1993. doi:10.1007/

BF02571640.
[30] S. Donkin. The q-Schur algebra, volume 253 of London Mathematical Society Lecture Note Series. Cam-

bridge University Press, Cambridge, 1998. doi:10.1017/CBO9780511600708.
[31] S. Doty and J. Hu. Schur–Weyl duality for orthogonal groups. Proc. Lond. Math. Soc. (3), 98(3):679–713,

2009. URL: http://arxiv.org/abs/0712.0944, doi:10.1112/plms/pdn044.
[32] J. Du, B. Parshall, and L. Scott. Quantum Weyl reciprocity and tilting modules. Comm. Math. Phys.,

195(2):321–352, 1998. doi:10.1007/s002200050392.
[33] M. Ehrig and C. Stroppel. Nazarov–Wenzl algebras, coideal subalgebras and categorified skew Howe du-

ality. 2013. URL: http://arxiv.org/abs/1310.1972.
[34] M. Ehrig and C. Stroppel. Koszul Gradings on Brauer Algebras. Int. Math. Res. Not. IMRN, (13):3970–

4011, 2016. URL: http://arxiv.org/abs/1504.03924, doi:10.1093/imrn/rnv267.
[35] M. Ehrig and C. Stroppel. Schur–Weyl duality for the Brauer algebra and the ortho-symplectic Lie su-

peralgebra. Math. Z., 284(1-2):595–613, 2016. URL: http://arxiv.org/abs/1412.7853, doi:10.1007/

s00209-016-1669-y.
[36] B. Elias. Light ladders and clasp conjectures. 2015. URL: http://arxiv.org/abs/1510.06840.
[37] K. Erdmann. Tensor products and dimensions of simple modules for symmetric groups. Manuscripta Math.,

88(3):357–386, 1995. doi:10.1007/BF02567828.
[38] J.J. Graham and G. Lehrer. Cellular algebras. Invent. Math., 123(1):1–34, 1996. doi:10.1007/BF01232365.
[39] T. Halverson and A. Ram. q-rook monoid algebras, Hecke algebras, and Schur–Weyl duality. Zap. Nauchn.

Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 283(Teor. Predst. Din. Sist. Komb. i Algoritm.
Metody. 6):224–250, 262–263, 2001. URL: http://arxiv.org/abs/math/0401330, doi:10.1023/B:JOTH.
0000024623.99412.13.

[40] J. Hu. BMW algebra, quantized coordinate algebra and type C Schur–Weyl duality. Represent. Theory,
15:1–62, 2011. URL: http://arxiv.org/abs/0708.3009, doi:10.1090/S1088-4165-2011-00369-1.

http://arxiv.org/abs/1107.0999
http://dx.doi.org/10.1016/j.aim.2012.05.016
http://arxiv.org/abs/0806.1532
http://arxiv.org/abs/0806.3472
http://dx.doi.org/10.1007/s00031-010-9079-4
http://dx.doi.org/10.1007/s00031-010-9079-4
http://arxiv.org/abs/0812.1090
http://dx.doi.org/10.1090/S1088-4165-2011-00389-7
http://dx.doi.org/10.1090/S1088-4165-2011-00389-7
http://arxiv.org/abs/0907.2543
http://arxiv.org/abs/0907.2543
http://dx.doi.org/10.4171/JEMS/306
http://arxiv.org/abs/1210.6437
http://dx.doi.org/10.1007/s00208-013-0984-4
http://arxiv.org/abs/1209.1002
http://dx.doi.org/10.2140/agt.2015.15.2659
http://arxiv.org/abs/math/0503545
http://dx.doi.org/10.1090/S0002-9947-07-04179-7
http://arxiv.org/abs/0806.0264
http://dx.doi.org/10.1007/s10468-013-9414-2
http://dx.doi.org/10.1007/s10468-013-9414-2
http://dx.doi.org/10.1007/PL00004665
http://dx.doi.org/10.1007/PL00004665
http://dx.doi.org/10.1007/BF02571640
http://dx.doi.org/10.1007/BF02571640
http://dx.doi.org/10.1017/CBO9780511600708
http://arxiv.org/abs/0712.0944
http://dx.doi.org/10.1112/plms/pdn044
http://dx.doi.org/10.1007/s002200050392
http://arxiv.org/abs/1310.1972
http://arxiv.org/abs/1504.03924
http://dx.doi.org/10.1093/imrn/rnv267
http://arxiv.org/abs/1412.7853
http://dx.doi.org/10.1007/s00209-016-1669-y
http://dx.doi.org/10.1007/s00209-016-1669-y
http://arxiv.org/abs/1510.06840
http://dx.doi.org/10.1007/BF02567828
http://dx.doi.org/10.1007/BF01232365
http://arxiv.org/abs/math/0401330
http://dx.doi.org/10.1023/B:JOTH.0000024623.99412.13
http://dx.doi.org/10.1023/B:JOTH.0000024623.99412.13
http://arxiv.org/abs/0708.3009
http://dx.doi.org/10.1090/S1088-4165-2011-00369-1


CELLULAR STRUCTURES USING Uq-TILTING MODULES 29

[41] J. Hu and A. Mathas. Graded cellular bases for the cyclotomic Khovanov–Lauda–Rouquier algebras of
type A. Adv. Math., 225(2):598–642, 2010. URL: http://arxiv.org/abs/0907.2985, doi:10.1016/j.

aim.2010.03.002.
[42] J. Hu and A. Mathas. Quiver Schur algebras for linear quivers. Proc. Lond. Math. Soc. (3), 110(6):1315–

1386, 2015. URL: http://arxiv.org/abs/1110.1699, doi:10.1112/plms/pdv007.
[43] J. Hu and F. Stoll. On double centralizer properties between quantum groups and Ariki–Koike algebras.

J. Algebra, 275(1):397–418, 2004. doi:10.1016/j.jalgebra.2003.10.026.
[44] R.S. Huerfano and M. Khovanov. A category for the adjoint representation. J. Algebra, 246(2):514–542,

2001. URL: https://arxiv.org/abs/math/0002060, doi:10.1006/jabr.2001.8962.
[45] J.E. Humphreys. Representations of semisimple Lie algebras in the BGG category O, volume 94 of Graduate

Studies in Mathematics. American Mathematical Society, Providence, RI, 2008. doi:10.1090/gsm/094.
[46] J.C. Jantzen. Darstellungen halbeinfacher algebraischer Gruppen und zugeordnete kontravariante Formen.

Bonn. Math. Schr., (67):v+124, 1973.
[47] J.C. Jantzen. Lectures on quantum groups, volume 6 of Graduate Studies in Mathematics. American Math-

ematical Society, Providence, RI, 1996.
[48] J.C. Jantzen. Representations of algebraic groups, volume 107 of Mathematical Surveys and Monographs.

American Mathematical Society, Providence, RI, second edition, 2003.
[49] V.F.R. Jones. Index for subfactors. Invent. Math., 72(1):1–25, 1983. doi:10.1007/BF01389127.
[50] D. Kazhdan and G. Lusztig. Tensor structures arising from affine Lie algebras. I, II, III, IV. J. Amer.

Math. Soc., 6,7(4,2):905–947, 949–1011, 335–381, 383–453, 1993,1994.
[51] M. Khovanov. A functor-valued invariant of tangles. Algebr. Geom. Topol., 2:665–741, 2002. URL: http:

//arxiv.org/abs/math/0103190, doi:10.2140/agt.2002.2.665.
[52] M. Khovanov and A.D. Lauda. A diagrammatic approach to categorification of quantum groups

I. Represent. Theory, 13:309–347, 2009. URL: http://arxiv.org/abs/0803.4121, doi:10.1090/

S1088-4165-09-00346-X.
[53] M. Khovanov and A.D. Lauda. A diagrammatic approach to categorification of quantum groups II.

Trans. Amer. Math. Soc., 363(5):2685–2700, 2011. URL: http://arxiv.org/abs/0804.2080, doi:10.

1090/S0002-9947-2010-05210-9.
[54] K. Koike. On the decomposition of tensor products of the representations of the classical groups: by means

of the universal characters. Adv. Math., 74(1):57–86, 1989. doi:10.1016/0001-8708(89)90004-2.
[55] S. König and C. Xi. On the structure of cellular algebras. In Algebras and modules, II (Geiranger, 1996),

volume 24 of CMS Conf. Proc., pages 365–386. Amer. Math. Soc., Providence, RI, 1998.
[56] G. Kuperberg. Spiders for rank 2 Lie algebras. Comm. Math. Phys., 180(1):109–151, 1996. URL: http:

//arxiv.org/abs/q-alg/9712003.
[57] A. Lascoux, B. Leclerc, and J.-Y. Thibon. Hecke algebras at roots of unity and crystal bases of quantum

affine algebras. Comm. Math. Phys., 181(1):205–263, 1996.
[58] G. Lehrer and R. Zhang. The second fundamental theorem of invariant theory for the orthogonal group.

Ann. of Math. (2), 176(3):2031–2054, 2012. URL: http://arxiv.org/abs/1102.3221, doi:10.4007/

annals.2012.176.3.12.
[59] G. Li. A KLR grading of the Brauer algebras. 2014. URL: http://arxiv.org/abs/1409.1195.
[60] G. Lusztig. Modular representations and quantum groups. In Classical groups and related topics (Beijing,

1987), volume 82 of Contemp. Math., pages 59–77. Amer. Math. Soc., Providence, RI, 1989. doi:10.1090/
conm/082/982278.

[61] M. Mackaay. The sln-web algebras and dual canonical bases. J. Algebra, 409:54–100, 2014. URL: http:
//arxiv.org/abs/1308.0566, doi:10.1016/j.jalgebra.2014.02.036.

[62] M. Mackaay, W. Pan, and D. Tubbenhauer. The sl3-web algebra. Math. Z., 277(1-2):401–479, 2014. URL:
http://arxiv.org/abs/1206.2118, doi:10.1007/s00209-013-1262-6.

[63] P. Martin. Potts models and related problems in statistical mechanics, volume 5 of Series on Advances in
Statistical Mechanics. World Scientific Publishing Co., Inc., Teaneck, NJ, 1991. doi:10.1142/0983.

[64] P. Martin and H. Saleur. The blob algebra and the periodic Temperley-Lieb algebra. Lett. Math. Phys.,
30(3):189–206, 1994. URL: http://arxiv.org/abs/hep-th/9302094, doi:10.1007/BF00805852.

[65] V. Mazorchuk and C. Stroppel. G(`, k, d)-modules via groupoids. J. Algebraic Combin., 43(1):11–32, 2016.
URL: http://arxiv.org/abs/1412.4494, doi:10.1007/s10801-015-0623-0.

http://arxiv.org/abs/0907.2985
http://dx.doi.org/10.1016/j.aim.2010.03.002
http://dx.doi.org/10.1016/j.aim.2010.03.002
http://arxiv.org/abs/1110.1699
http://dx.doi.org/10.1112/plms/pdv007
http://dx.doi.org/10.1016/j.jalgebra.2003.10.026
https://arxiv.org/abs/math/0002060
http://dx.doi.org/10.1006/jabr.2001.8962
http://dx.doi.org/10.1090/gsm/094
http://dx.doi.org/10.1007/BF01389127
http://arxiv.org/abs/math/0103190
http://arxiv.org/abs/math/0103190
http://dx.doi.org/10.2140/agt.2002.2.665
http://arxiv.org/abs/0803.4121
http://dx.doi.org/10.1090/S1088-4165-09-00346-X
http://dx.doi.org/10.1090/S1088-4165-09-00346-X
http://arxiv.org/abs/0804.2080
http://dx.doi.org/10.1090/S0002-9947-2010-05210-9
http://dx.doi.org/10.1090/S0002-9947-2010-05210-9
http://dx.doi.org/10.1016/0001-8708(89)90004-2
http://arxiv.org/abs/q-alg/9712003
http://arxiv.org/abs/q-alg/9712003
http://arxiv.org/abs/1102.3221
http://dx.doi.org/10.4007/annals.2012.176.3.12
http://dx.doi.org/10.4007/annals.2012.176.3.12
http://arxiv.org/abs/1409.1195
http://dx.doi.org/10.1090/conm/082/982278
http://dx.doi.org/10.1090/conm/082/982278
http://arxiv.org/abs/1308.0566
http://arxiv.org/abs/1308.0566
http://dx.doi.org/10.1016/j.jalgebra.2014.02.036
http://arxiv.org/abs/1206.2118
http://dx.doi.org/10.1007/s00209-013-1262-6
http://dx.doi.org/10.1142/0983
http://arxiv.org/abs/hep-th/9302094
http://dx.doi.org/10.1007/BF00805852
http://arxiv.org/abs/1412.4494
http://dx.doi.org/10.1007/s10801-015-0623-0


30 HENNING HAAHR ANDERSEN, CATHARINA STROPPEL, AND DANIEL TUBBENHAUER

[66] J. Murakami. The Kauffman polynomial of links and representation theory. Osaka J. Math., 24(4):745–758,
1987.

[67] R. Paget. Representation theory of q-rook monoid algebras. J. Algebraic Combin., 24(3):239–252, 2006.
doi:10.1007/s10801-006-0010-y.

[68] J. Paradowski. Filtrations of modules over the quantum algebra. In Algebraic groups and their generaliza-
tions: quantum and infinite-dimensional methods (University Park, PA, 1991), volume 56 of Proc. Sympos.
Pure Math., pages 93–108. Amer. Math. Soc., Providence, RI, 1994.

[69] D. Plaza and S. Ryom-Hansen. Graded cellular bases for Temperley–Lieb algebras of type A and
B. J. Algebraic Combin., 40(1):137–177, 2014. URL: http://arxiv.org/abs/1203.2592, doi:10.1007/

s10801-013-0481-6.
[70] S. Riche and G. Williamson. Tilting modules and the p-canonical basis. 2015. https://

hal-clermont-univ.archives-ouvertes.fr/hal-01249796/document. URL: http://arxiv.org/abs/

1512.08296.
[71] D. Ridout and Y. Saint-Aubin. Standard modules, induction and the structure of the Temperley–Lieb

algebra. Adv. Theor. Math. Phys., 18(5):957–1041, 2014. URL: http://arxiv.org/abs/1204.4505.
[72] C.M. Ringel. The category of modules with good filtrations over a quasi-hereditary algebra has almost

split sequences. Math. Z., 208(2):209–223, 1991. doi:10.1007/BF02571521.
[73] D.E.V. Rose and D. Tubbenhauer. Symmetric webs, Jones–Wenzl recursions, and q-Howe duality. Int.

Math. Res. Not. IMRN, (17):5249–5290, 2016. URL: http://arxiv.org/abs/1501.00915, doi:10.1093/
imrn/rnv302.

[74] R. Rouquier. 2-Kac–Moody algebras. 2008. URL: http://arxiv.org/abs/0812.5023.
[75] R. Rouquier, P. Shan, M. Varagnolo, and E. Vasserot. Categorifications and cyclotomic rational double

affine Hecke algebras. Invent. Math., 204(3):671–786, 2016. URL: http://arxiv.org/abs/1305.4456, doi:
10.1007/s00222-015-0623-7.

[76] S. Ryom-Hansen. Cell structures on the blob algebra. Represent. Theory, 16:540–567, 2012. URL: http:
//arxiv.org/abs/0911.1923, doi:10.1090/S1088-4165-2012-00424-1.

[77] S. Ryom-Hansen. The Ariki–Terasoma–Yamada tensor space and the blob algebra. J. Algebra,
324(10):2658–2675, 2010. URL: http://arxiv.org/abs/math/0505278, doi:10.1016/j.jalgebra.2010.
08.018.

[78] M. Sakamoto and T. Shoji. Schur–Weyl reciprocity for Ariki–Koike algebras. J. Algebra, 221(1):293–314,
1999. doi:10.1006/jabr.1999.7973.

[79] A. Sartori. The degenerate affine walled Brauer algebra. J. Algebra, 417:198–233, 2014. URL: http://

arxiv.org/abs/1305.2347, doi:10.1016/j.jalgebra.2014.06.030.
[80] A. Sartori and C. Stroppel. Walled Brauer algebras as idempotent truncations of level 2 cyclotomic

quotients. J. Algebra, 440:602–638, 2015. URL: http://arxiv.org/abs/1411.2771, doi:10.1016/j.

jalgebra.2015.06.018.
[81] W. Soergel. Character formulas for tilting modules over Kac–Moody algebras. Represent. Theory, 2:432–

448 (electronic), 1998. doi:10.1090/S1088-4165-98-00057-0.
[82] W. Soergel. Character formulas for tilting modules over quantum groups at roots of one. In Current

developments in mathematics, 1997 (Cambridge, MA), pages 161–172. Int. Press, Boston, MA, 1999.
[83] W. Soergel. Kategorie O, perverse Garben und Moduln über den Koinvarianten zur Weylgruppe. J. Amer.

Math. Soc., 3(2):421–445, 1990. doi:10.2307/1990960.
[84] W. Soergel. Kazhdan–Lusztig polynomials and a combinatoric[s] for tilting modules. Represent. Theory,

1:83–114 (electronic), 1997. doi:10.1090/S1088-4165-97-00021-6.
[85] L. Solomon. The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a

finite field. Geom. Dedicata, 36(1):15–49, 1990. doi:10.1007/BF00181463.
[86] C. Stroppel. Category O: gradings and translation functors. J. Algebra, 268(1):301–326, 2003. doi:10.

1016/S0021-8693(03)00308-9.
[87] T. Tanisaki. Character formulas of Kazhdan–Lusztig type. In Representations of finite dimensional algebras

and related topics in Lie theory and geometry, volume 40 of Fields Inst. Commun., pages 261–276. Amer.
Math. Soc., Providence, RI, 2004.

http://dx.doi.org/10.1007/s10801-006-0010-y
http://arxiv.org/abs/1203.2592
http://dx.doi.org/10.1007/s10801-013-0481-6
http://dx.doi.org/10.1007/s10801-013-0481-6
https://hal-clermont-univ.archives-ouvertes.fr/hal-01249796/document
https://hal-clermont-univ.archives-ouvertes.fr/hal-01249796/document
http://arxiv.org/abs/1512.08296
http://arxiv.org/abs/1512.08296
http://arxiv.org/abs/1204.4505
http://dx.doi.org/10.1007/BF02571521
http://arxiv.org/abs/1501.00915
http://dx.doi.org/10.1093/imrn/rnv302
http://dx.doi.org/10.1093/imrn/rnv302
http://arxiv.org/abs/0812.5023
http://arxiv.org/abs/1305.4456
http://dx.doi.org/10.1007/s00222-015-0623-7
http://dx.doi.org/10.1007/s00222-015-0623-7
http://arxiv.org/abs/0911.1923
http://arxiv.org/abs/0911.1923
http://dx.doi.org/10.1090/S1088-4165-2012-00424-1
http://arxiv.org/abs/math/0505278
http://dx.doi.org/10.1016/j.jalgebra.2010.08.018
http://dx.doi.org/10.1016/j.jalgebra.2010.08.018
http://dx.doi.org/10.1006/jabr.1999.7973
http://arxiv.org/abs/1305.2347
http://arxiv.org/abs/1305.2347
http://dx.doi.org/10.1016/j.jalgebra.2014.06.030
http://arxiv.org/abs/1411.2771
http://dx.doi.org/10.1016/j.jalgebra.2015.06.018
http://dx.doi.org/10.1016/j.jalgebra.2015.06.018
http://dx.doi.org/10.1090/S1088-4165-98-00057-0
http://dx.doi.org/10.2307/1990960
http://dx.doi.org/10.1090/S1088-4165-97-00021-6
http://dx.doi.org/10.1007/BF00181463
http://dx.doi.org/10.1016/S0021-8693(03)00308-9
http://dx.doi.org/10.1016/S0021-8693(03)00308-9


CELLULAR STRUCTURES USING Uq-TILTING MODULES 31

[88] H.N.V. Temperley and E.H. Lieb. Relations between the “percolation” and “colouring” problem and other
graph-theoretical problems associated with regular planar lattices: some exact results for the “percolation”
problem. Proc. Roy. Soc. London Ser. A, 322(1549):251–280, 1971.

[89] D. Tubbenhauer. sl3-web bases, intermediate crystal bases and categorification. J. Algebraic Combin.,
40(4):1001–1076, 2014. URL: https://arxiv.org/abs/1310.2779, doi:10.1007/s10801-014-0518-5.

[90] D. Tubbenhauer. sln-webs, categorification and Khovanov–Rozansky homologies. 2014. URL: http://

arxiv.org/abs/1404.5752.
[91] V.G. Turaev. Operator invariants of tangles, and R-matrices. Izv. Akad. Nauk SSSR Ser. Mat., 53(5):1073–

1107, 1135, 1989. Translation in Math. USSR-Izv. 35:2 (1990), 411-444.
[92] V.G. Turaev. Quantum invariants of knots and 3-manifolds, volume 18 of de Gruyter Studies in Mathe-

matics. Walter de Gruyter & Co., Berlin, revised edition, 2010. doi:10.1515/9783110221848.
[93] H. Wenzl. On sequences of projections. C. R. Math. Rep. Acad. Sci. Canada, 9(1):5–9, 1987.
[94] B.W. Westbury. Invariant tensors and cellular categories. J. Algebra, 321(11):3563–3567, 2009. URL: http:

//arxiv.org/abs/0806.4045, doi:10.1016/j.jalgebra.2008.07.004.
[95] B.W. Westbury. The representation theory of the Temperley–Lieb algebras. Math. Z., 219(4):539–565,

1995. doi:10.1007/BF02572380.

H.H.A.: h.haahr.andersen@gmail.com

C.S.: stroppel@math.uni-bonn.de

D.T.: dtubben@math.uni-bonn.de

https://arxiv.org/abs/1310.2779
http://dx.doi.org/10.1007/s10801-014-0518-5
http://arxiv.org/abs/1404.5752
http://arxiv.org/abs/1404.5752
http://dx.doi.org/10.1515/9783110221848
http://arxiv.org/abs/0806.4045
http://arxiv.org/abs/0806.4045
http://dx.doi.org/10.1016/j.jalgebra.2008.07.004
http://dx.doi.org/10.1007/BF02572380
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USING Uq-TILTING MODULES”

HENNING HAAHR ANDERSEN, CATHARINA STROPPEL, AND DANIEL TUBBENHAUER

Abstract. This eprint contains additional notes for the paper “Cellular structures using
Uq-tilting modules”. We recall some basic notions about representation and tilting theory
for Uq(g), and give some proofs are omitted in the published version.
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1. Introduction

In this note we first recall some facts, notions and notations about the representation theory
of quantum enveloping algebras attached to some Cartan datum. (In particular, results that
are useful to understand the construction in [6].) This is done in Section 2 and Section 3,
where we stress that almost all results are known, but, to the best of our knowledge, were
never collected in one document before.

Second, we give a more detailed construction of the cellular bases for the Temperley–Lieb
algebras given in [6, Section 6B], which we also use to deduce semi-simplicity criteria as well
as dimension formulas for the simple modules of the Temperley–Lieb algebras. This is done
in Section 4. Again, no of the results are new, but might be helpful to understand the novel
cellular bases obtained in [6, Section 6B].

We stress that we throughout have (almost no) restriction on the underlying field or the
quantum parameter q.
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Additional remarks. We hope that this note provides an easier access to the basic facts on
tilting modules adapted to the special quantum group case than currently available (spread
over different articles) in the literature. The paper [6] – as well as [5] – follow the setup here.

We might change this note in the future by adding extra material or by im-
proving the exposition.

The first two sections of this note can be read without knowing any results or notation
from [6], but Section 4 depends on the construction from [6] in the sense that we elaborate the
arguments given therein (we only recall the main results). We hope that all of this together
will make [6] (and [5]) reasonably self-contained.

2. Quantum groups and their representations

In the present section we recall the definitions and results about quantum groups and their
representation theory in the semisimple and the non-semisimple case. From now on fix a field
K and set K∗ = K− {0,−1}, if char(K) > 2, and K∗ = K− {0}, otherwise.

2A. The quantum groups Uv and Uq. Let Φ be a finite root system in an Euclidean space
E. We fix a choice of positive roots Φ+ ⊂ Φ and simple roots Π ⊂ Φ+. We assume that we
have n simple roots that we denote by α1, . . . , αn. For each α ∈ Φ, we denote by α∨ ∈ Φ∨ the
corresponding coroot, and we let ρ = 1

2

∑
α∈Φ+ α be the half-sum of all positive roots. Then

A = (〈αi, α∨j 〉)ni,j=1 is called the Cartan matrix.
As usual, we need to symmetrize A and we do so by choosing for i = 1, . . . , n minimal

di ∈ Z>0 such that (diaij)
n
i,j=1 is symmetric. (The Cartan matrix A is already symmetric in

most of our examples. Thus, di = 1 for all i = 1, . . . , n.)
By the set of (integral) weights we mean X = {λ ∈ E | 〈λ, α∨i 〉 ∈ Z for all αi ∈ Π}. The

dominant (integral) weights X+ are those λ ∈ X such that 〈λ, α∨i 〉 ≥ 0 for all αi ∈ Π.
The fundamental weights, denoted by ωi ∈ X for i = 1, . . . , n, are characterized by

〈ωi, α∨j 〉 = δij for all j = 1, . . . , n.

Recall that there is a partial ordering on X given by µ ≤ λ if and only if λ − µ is an
Z≥0-valued linear combination of the simple roots, that is, λ− µ =

∑n
i=1 aiαi with ai ∈ Z≥0.

Example 2.1. One of the most important examples is the standard choice of a Cartan datum
(A,Π,Φ,Φ+) associated with the Lie algebra g = sln+1 for n ≥ 1. Here E = Rn+1/(1, . . . , 1)
(which we identify with Rn in calculations) and Π = {αi = εi− εi+1 | i = 1, . . . , n}, where the
εi’s denote the standard basis of E. The positive roots are Φ+ = {εi− εj | 1 ≤ i < j ≤ n+ 1}
with maximal root α0 = ε1 − εn+1. Moreover,

ρ = 1
2

n+1∑

i=1

(n− 2(i− 1))εi =
n+1∑

i=1

(n− i+ 1)εi − 1
2(n, . . . , n).

(Seen as a sln+1-weight, i.e. we can drop the −1
2(n, . . . , n).)

The set of fundamental weights is {ωi = ε1 + · · ·+ εi | 1 ≤ i ≤ n}. For explicit calculations
one often identifies

λ =
n∑

i=1

aiωi ∈ X+

with the partition λ = (λ1 ≥ · · · ≥ λn ≥ 0) given by λk =
∑n

i=k ai for k = 1, . . . , n. N
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As some piece of notation, for a ∈ Z and b, d ∈ Z≥0, [a]d denotes the a-quantum integer
(with [0]d = 0), [b]d! denotes the b-quantum factorial. That is,

[a]d =
vad − v−ad
vd − v−d , [a] = [a]1 and [b]d! = [1]d · · · [b− 1]d[b]d, [b]! = [b]1!

(with [0]d! = 1, by convention) and
[
a

b

]

d

=
[a]d[a− 1]d · · · [a− b+ 2]d[a− b+ 1]d

[b]d!
,

[
a

b

]
=

[
a

b

]

1

denotes the (a, b)-quantum binomial. Observe that [−a]d = −[a]d.
Next, we assign an algebra Uv = Uv(A) to a given Cartan matrix A. Abusing notation,

we also write Uv(g) etc. if no confusion can arise. Here and throughout, v always means a
generic parameter, while q ∈ K∗ will always mean a specialization (to e.g. a root of unity).

Definition 2.2. (Quantum enveloping algebra — generic.) Given a Cartan matrix A,
then the quantum enveloping algebra Uv = Uv(A) associated to it is the associative, unital
Q(v)-algebra generated by K±1

1 , . . . ,K±1
n and E1, F1, . . . , En, Fn, where n is the size of A,

subject to the relations

KiKj = KjKi, KiK
−1
i = K−1

i Ki = 1,

KiEj = vdiaijEjKi, KiFj = v−diaijFjKi,

EiFj − FjEi = δi,j
Ki −K−1

i

vdi − v−di ,
∑

r+s=1−aij
(−1)s

[
1− aij
s

]

di

EriEjE
s
i = 0, if i 6= j,

∑

r+s=1−aij
(−1)s

[
1− aij
s

]

di

F ri FjF
s
i = 0, if i 6= j,

with the quantum numbers as above. N
It is worth noting that Uv is a Hopf algebra with coproduct ∆ given by

∆(Ei) = Ei ⊗ 1 +Ki ⊗ Ei, ∆(Fi) = Fi ⊗K−1
i + 1⊗ Fi, ∆(Ki) = Ki ⊗Ki.

The antipode S and the counit ε are given by

S(Ei) = −K−1
i Ei, S(Fi) = −FiKi, S(Ki) = K−1

i ,

ε(Ei) = ε(Fi) = 0, ε(Ki) = 1.

We want to “specialize” the generic parameter v of Uv to be, for example, a root of unity
q ∈ K∗. In order to do so, let A = Z[v, v−1].

Definition 2.3. (Lusztig’s A -form UA .) Define for all j ∈ Z≥0 the j-th divided powers

E
(j)
i =

Eji
[j]di !

and F
(j)
i =

F ji
[j]di !

.

Then UA = UA (A) is defined as the A -subalgebra of Uv generated by Ki,K
−1
i , E

(j)
i and

F
(j)
i for i = 1, . . . , n and j ∈ Z≥0. N
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Lusztig’s A -form originates in [25] and is designed to allow specializations.

Definition 2.4. (Quantum enveloping algebras — specialized.) Fix q ∈ K∗. Consider
K as an A -module by specializing v to q. Define

Uq = Uq(A) = UA ⊗A K.

Abusing notation, we will usually abbreviate E
(j)
i ⊗ 1 ∈ Uq with E

(j)
i . Analogously for the

other generators of Uq. N
Note that we can recover the generic case Uv by choosing K = Q(v) and q = v.

Example 2.5. In the sl2 case and the datum A as in Example 2.1 above, the Q(v)-algebra
Uv(sl2) = Uv(A) is generated by K and K−1 and E,F subject to the relations

KK−1 = K−1K = 1,

EF − FE =
K −K−1

v − v−1
,

KE = v2EK and KF = v−2FK.

We point out that Uv(sl2) already contains the divided powers since no quantum number
vanishes in Q(v). Let q be a complex, primitive third root of unity. Thus, q+ q−1 = [2] = −1,
q2 + 1 + q−2 = [3] = 0 and q3 + q1 + q−1 + q−3 = [4] = 1. More generally,

[a] = i ∈ {0,+1,−1}, i ≡ a mod 3.

Hence, Uq(sl2) is generated by K,K−1, E, F,E(3) and F (3) subject to the relations as above.

(Here E(3), F (3) are extra generators since E3 = [3]!E(3) = 0 because of [3] = 0.) This is
precisely the convention used in [18, Chapter 1], but specialized at q. N

It is easy to check that UA is a Hopf subalgebra of Uv, see [23, Proposition 4.8]. Thus, Uq

inherits a Hopf algebra structure from Uv.
Moreover, it is known that all three algebras—Uv, UA and Uq—have a triangular decom-

position

Uv = U−v U0
vU

+
v , UA = U−A U0

A U+
A , Uq = U−q U0

qU
+
q ,

where U−v ,U
−
A ,U

−
q denote the subalgebras generated only by the Fi’s (or, in addition, the

divided powers for U−A and U−q ) and U+
v ,U

+
A ,U

+
q denote the subalgebras generated only by

the Ei’s (or, in addition, the divided powers for U+
A and U+

q ). The Cartan part U0
v is as usual

generated by Ki,K
−1
i for i = 1, . . . , n. For the Cartan part U0

A one needs to be a little bit
more careful, since it is generated by

(1) K̃i,t =

[
Ki

t

]
=

t∏

s=1

Kiv
di(1−s) −K−1

i v−di(1−s)

vdis − v−dis

for i = 1, . . . , n and t ∈ Z≥0 in addition to the generators Ki,K
−1
i . Similarly for U0

q .
Roughly: the triangular decomposition can be proven by ordering F ’s to the left and E’s

to the right using the relations from Definition 2.2. (The hard part here is to show linear
independence.) Details can, for example, be found in [18, Chapter 4, Section 17] for the
generic case, and in [25, Theorem 8.3(iii)] for the other cases.
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Note that, if q = 1, then Uq modulo the ideal generated by {Ki − 1 | i = 1, . . . , n} can be
identified with the hyperalgebra of the semisimple algebraic group G over K associated to the
Cartan matrix, see [19, Part I, Chapter 7.7].

2B. Representation theory of Uv: the generic, semisimple case. Let λ ∈ X be a
Uv-weight. As usual, we identify λ with a character of U0

v (an algebra homomorphism to
Q(v)) via

λ : U0
v = Q(v)[K±1 , . . . ,K

±
n ]→ Q(v), K±i 7→ v±di〈λ,α

∨
i 〉, i = 1, . . . , n.

Abusing notation, we use the same symbols for the Uv-weights λ and the characters λ.
Moreover, if ε = (ε1, . . . , εn) ∈ {±1}n, then this can be viewed as a character of U0

v via

ε : U0
v = Q(v)[K±1 , . . . ,K

±
n ]→ Q(v), K±i 7→ ±εi, i = 1, . . . , n.

This extends to a character of Uv by setting ε(Ei) = ε(Fi) = 0.
Every finite-dimensional Uv-module M can be decomposed into

M =
⊕

λ,ε

Mλ,ε,

Mλ,ε = {m ∈M | um = λ(u)ε(u)m,u ∈ U0
v}

(2)

where the direct sum runs over all λ ∈ X and all ε ∈ {±1}n, see [18, Chapter 5, Section 2].
Set M1 =

⊕
λMλ,(1,...,1) and call a Uv-module M a Uv-module of type 1 if M1 = M .

Example 2.6. If g = sl2, then the Uv(sl2)-modules of type 1 are precisely those where K has
eigenvalues vk for k ∈ Z whereas type −1 means that K has eigenvalues −vk. N

Given a Uv-module M satisfying (2), we have M ∼=
⊕

εM1 ⊗ ε. Thus, morally it suffices
to study Uv-modules of type 1, which we will do in this paper:

Assumption 2.7. From now on, all appearing Uv-modules are assumed to be of type 1 and
we omit to mention this in the following. Similarly for Uq-modules later on. N
Proposition 2.8. (Semisimplicity: the generic case.) The category Uv-Mod consisting
of finite-dimensional Uv-modules is semisimple. �
Proof. This is [4, Corollary 7.7] or [18, Theorem 5.17]. �

The simple modules in Uv-Mod can be constructed as follows. For each λ ∈ X+ set

∇v(λ) = IndUv

U−v U0
v
Q(v)λ,

called the dual Weyl Uv-module associated to λ ∈ X+. Here Q(v)λ is the one-dimensional
U−v U0

v-module determined by the character λ (and extended to U−v U0
v via λ(Fi) = 0) and

IndUv

U−v U0
v
(·) is the induction functor from [4, Section 2], i.e. the functor

IndUv

U−v U0
v

: U−v U0
v-Mod→ Uv-Mod, M ′ 7→ F(HomU−v U0

v
(Uv,M

′))

obtained by using the standard embedding of U−v U0
v ↪→ Uv. Here the functor F—as given in

[4, Section 2.2]—assigns to an arbitrary Uv-module M the Uv-module

F(M) =
{
m ∈⊕λ∈XMλ | E(r)

i m = 0 = F
(r)
i m for all i ∈ Z≥0 and for r � 0

}
.
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(Which thus, defines F(M) for M = HomU−v U0
v
(Uv,M

′).)
It turns out that the ∇v(λ) for λ ∈ X+ form a complete set of non-isomorphic, simple

Uv-modules, see [18, Theorem 5.10]. Moreover, all M ∈ Uv-Mod have a Uv-weight space
decomposition, cf. (2), i.e.:

M =
⊕

λ∈X
Mλ =

⊕

λ∈X
{m ∈M | um = λ(u)m,u ∈ U0

v}.(3)

Remark 1. One can show that the category Uv(g)-Mod is equivalent to the well-studied
category of finite-dimensional U(g)-modules, where U(g) is the universal enveloping algebra
of the Lie algebra g. N

By construction, the Uv-modules ∇v(λ) satisfy the Frobenius reciprocity, that is, we have

(4) HomUv(M,∇v(λ)) ∼= HomU−v U0
v
(M,Q(v)λ) for all M ∈ Uv-Mod.

Moreover, if we let ch(M) denote the (formal) character of M ∈ Uv-Mod, that is,

ch(M) =
∑

λ∈X
(dim(Mλ))yλ ∈ Z[X][y].

(Recall that the group algebra Z[X], where we regard X to be the free abelian group generated
by the dominant (integral) Uv-weights X+, is known as the character ring.) Then we have

(5) ch(∇v(λ)) = χ(λ) ∈ Z[X][y] for all λ ∈ X+.

Here χ(λ) is the so-called Weyl character, which completely determines the simple Uv-mo-
dules. In fact, χ(λ) is the classical character obtained from Weyl’s character formula in the
non-quantum case (cf. Remark 1). A proof of the equation from (5) can be found in [4,
Corollary 5.12 and the following remark], see also [18, Theorem 5.15].

In addition, we have a contravariant, character-preserving duality functor

(6) D : Uv-Mod→ Uv-Mod

that is defined on the Q(v)-vector space level via D(M) = M∗ (the Q(v)-linear dual of M)
and an action of Uv on D(M) is defined by

uf = m 7→ f(ω(S(u))m), m ∈M,u ∈ Uv, f ∈ D(M).

Here ω : Uv → Uv is the automorphism of Uv which interchanges Ei and Fi and interchanges
Ki and K−1

i , see for example [18, Lemma 4.6]. Note that the Uv-weights of M and D(M)
coincide. In particular, we have D(∇v(λ)) ∼= ∆v(λ), where the latter Uv-module is called
the Weyl Uv-module associated to λ ∈ X+. Thus, the Weyl and dual Weyl Uv-modules are
related by duality, since clearly D2 ∼= idUv-Mod.

Example 2.9. If we have g = sl2, then the dominant (integral) sl2-weights X+ can be
identified with Z≥0.

The i-th Weyl module ∆v(i) is the i+ 1-dimensional Q(v)-vector space with a basis given
by m0, . . . ,mi and an Uv(sl2)-action defined by

(7) Kmk = vi−2kmk, E
(j)mk =

[
i− k + j

j

]
mk−j and F (j)mk =

[
k + j

j

]
mk+j ,
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with the convention that m<0 = m>i = 0. For example, for i = 3 we can visualize ∆v(3) as

m3

[1]
//

v−3

��
m2

[3]
oo

[2]
//

v−1

��
m1

[3]
//

[2]
oo

v+1

��
m0,

[1]
oo

v+3

��

Character: y−3 + y−1 + y1 + y3,

(8)

where the action of E points to the right, the action of F to the left and K acts as a loop.
Note that the Uv(sl2)-action from (7) is already defined by the action of the generators

E,F,K±1. For Uq(sl2) the situation is different, see Example 2.13. N
2C. Representation theory of Uq: the non-semisimple case. As before in Section 2A,
we let q denote a fixed element of K∗.

Let λ ∈ X be a Uq-weight. As above, we can identify λ with a character of U0
A via

λ : U0
A → A , K±i 7→ v±di〈λ,α

∨
i 〉, K̃i,t 7→

[〈λ, α∨i 〉
t

]

di

, i = 1, . . . , n, t ∈ Z≥0,

which then also gives a character of U0
q . Here we use the definition of K̃i,t from (1). Abusing

notation again, we use the same symbols for the Uq-weights λ and the characters λ.
It is still true that any finite-dimensional Uq-module M is a direct sum of its Uq-weight

spaces, see [4, Theorem 9.2]. Thus, if we denote by Uq-Mod the category of finite-dimensional

Uq-modules, then we get the same decomposition as in (3), but replacing U0
v by U0

q .
Hence, in complete analogy to the generic case discussed in Section 2B, we can define the

(formal) character χ(M) of M ∈ Uq-Mod and the (dual) Weyl Uq-module ∆q(λ) (or ∇q(λ))
associated to λ ∈ X+.

Using this notation, we arrive at the following which explains our main interest in the root
of unity case. Note that we do not have any restrictions on the characteristic of K here.

Proposition 2.10. (Semisimplicity: the specialized case.) We have:

Uq-Mod is semisimple ⇔
{
q ∈ K∗ − {1} is not a root of unity,

q = ±1 ∈ K with char(K) = 0.

Moreover, if Uq-Mod is semisimple, then the ∇q(λ)’s for λ ∈ X+ form a complete set of
pairwise non-isomorphic, simple Uq-modules. �
Proof. For semisimplicity at non-roots of unity, or q = ±1, char(K) = 0 see [4, Theorem 9.4]
(and additionally [24, Section 33.2] for q = −1). To see the converse: (most of) the ∇q(λ)’s
are not semisimple in general (compare to Example 2.13). �
Remark 2. In particular, if K = C, q = 1 and the Cartan datum comes from a simple
Lie algebra g, then, U1-Mod is equivalent to the well-studied category of finite-dimensional
U(g)-modules. This is as in the generic case, cf. Remark 1. N

Thus, Proposition 2.10 motivates the study of the case where q is a root of unity.

Assumption 2.11. If we want q to be a root of unity, then, to avoid technicalities, we assume
that q is a primitive root of unity of odd order l (a treatment of the even case, that can be used
to repeat everything in this paper in the case where l is even, can be found in [2]). Moreover,
if we are in type G2, then we, in addition, assume that l is prime to 3. N
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In the root of unity case, by Proposition 2.10, our main category Uq-Mod under study is no
longer semisimple. In addition, the Uq-modules ∇q(λ) are in general not simple anymore, but
they have a unique simple socle that we denote by Lq(λ). By duality (note that the functor
D(·) from (6) carries over to Uq-Mod), these are also the unique simple heads of the ∆q(λ)’s.

Proposition 2.12. (Simple Uq-modules: the non-semisimple case.) The socles Lq(λ)
of the ∇q(λ)’s are simple Uq-modules Lq(λ)’s for λ ∈ X+. They form a complete set of
pairwise non-isomorphic, simple Uq-modules in Uq-Mod. �

Proof. See [4, Corollary 6.2 and Proposition 6.3]. �

Example 2.13. With the same notation as in Example 2.9 but for q being a complex, primitive
third root of unity, we have [3] = 0 and we can thus visualize ∆q(3) as

m3

+1
//

q−3

��
m2

0
oo

−1
//

q−1

��
m1

0 //

−1
oo

q+1

��
m0,

+1
oo

q+3

��

77

+1

gg

Character: y−3 + y−1 + y1 + y3,

(9)

where the action of E points to the right, the action of F to the left and K acts as a loop. In
contrast to Example 2.9, the picture in (9) also shows the actions of the divided powers E(3)

and F (3) as a long arrow connecting m0 and m3 (recall that these are additional generators
of Uq(sl2), see Example 2.5). Note also that, again in contrast to (8), some generators act on

these basis vectors as zero. We also have F (3)m1 = 0 and E(3)m2 = 0. Thus, the C-span of
{m1,m2} is now stable under the action of Uq(sl2).

In particular, Lq(3) is the Uq(sl2)-module obtained from ∆q(3) as in (9) by taking the
quotient of the C-span of the set {m1,m2}. The latter can be seen to be isomorphic to Lq(1).

We encourage the reader to work out its dual case ∇q(3). Here the result, using the same
conventions as before:

m3
oo

+1

q−3

��
m2//

0

oo
−1

q−1

��
m1
oo 0

//
−1

q+1

��
m0,//

+1

q+3

��

77

+1

gg

Character: y−3 + y−1 + y1 + y3,

Note that ∇q(3) has the same character as ∆q(3), but one can check that they are not equiv-
alent. This has no analog in the generic sl2 case.

It turns out that Lq(1) is a Uq-submodule of ∆q(3) and Lq(3) is a Uq-submodule of ∇q(3)
and these can be visualized as

Lq(1) ∼= m2

−1
//

q−1

��
m1−1

oo

q+1

��
and Lq(3) ∼= m∗3

+1
//

q−3

��

m∗0,
+1
oo

q+3

��

where for Lq(3) the displayed actions are via E(3) (to the right) and F (3) (to the left). Note
that Lq(1) and Lq(3) have both dimension 2. Again, this has no analogon in the generic sl2
case where all simple Uv-modules Lv(i) ∼= ∆v(i) ∼= ∇v(i) have different dimensions. N
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A non-trivial fact (which relies on the q-version of the so-called Kempf’s vanishing theorem,
see [32, Theorem 5.5]) is that the characters of the ∇q(λ)’s are still given by Weyl’s character
formula as in (5). (By duality, similar for the ∆q(λ)’s.) In particular, dim(∇q(λ)λ) = 1 and
dim(∇q(λ)µ) = 0 unless µ ≤ λ. (Again similar for the ∆q(λ)’s.)

Example 2.14. We have calculated the characters of some (dual) Weyl Uv-modules in Ex-
ample 2.9, and in case of Uq in Example 2.13. They agree, although the modules behave
completely different. N

On the other hand, the characters of the Lq(λ)’s are only known if char(K) = 0 (and
“big enough” l). In that case, certain Kazhdan–Lusztig polynomials determine the character
ch(Lq(λ)), see for example [36, Theorem 6.4 and 7.1] and the references therein.

3. Tilting modules

In the present section we recall a few facts from the theory of Uq-tilting modules. In the
semisimple case all Uq-modules in Uq-Mod are Uq-tilting modules. Hence, the theory of
Uq-tilting modules is kind of redundant in this case. In the non-semisimple case however the
theory of Uq-tilting modules is extremely rich and a source of neat combinatorics. For brevity,
we only provide some of the proofs. For more details see for example [13].

3A. Uq-modules with a ∆q- and a ∇q-filtration. As recalled above Proposition 2.12, the
Uq-module ∆q(λ) has a unique simple head Lq(λ) which is the unique simple socle of ∇q(λ).
Thus, there is a (up to scalars) unique Uq-homomorphism

(10) cλ : ∆q(λ)→ ∇q(λ) (mapping head to socle).

To see this: by Frobenius reciprocity from (4)—to be more precise, the q-version of it which
can be found in [4, Proposition 2.12]—we have

HomUq(∆q(λ),∇q(λ)) ∼= HomU−q U0
q
(∆q(λ),Kλ)

which gives dim(HomUq(∆q(λ),∇q(λ))) = 1. This relies on the fact that ∆q(λ) and ∇q(λ)
both have one-dimensional λ-weight spaces. The same fact implies that EndUq(Lq(λ)) ∼= K
for all λ ∈ X+, see [4, Corollary 7.4]. (Note that this last property fails for quasi-hereditary
algebras in general when K is not algebraically closed.)

Theorem 3.1. (Ext-vanishing.) We have for all λ, µ ∈ X+ that

ExtiUq
(∆q(λ),∇q(µ)) ∼=

{
Kcλ, if i = 0 and λ = µ,

0, else. �

Although the category Uq-Mod has enough injectives in characteristic zero, see [1, Propo-
sition 5.8] for a treatment of the non-semisimple cases, this does not hold in general. Hence,
in the following, we will use the extension functors ExtiUq

in the usual sense by passing to

the injective completion of Uq-Mod. One can find the precise definition of this completion
in [22, Definition 6.1.1] (where it is called indization). In this framework one can then work
as usual thanks to [22, Theorem 8.6.5 and Corollary 15.3.9 and its proof], and so our formal
manipulations in the following make sense.
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Proof. Denote by W0 and W0− the categories of integrable U0
q and U0

qU
−
q -modules respec-

tively. Then, for any U0
q-module M :

M ∈W0 ⇔M =
⊕

λ∈X
Mλ.

Similarly, for any U0
qU
−
q -module M ′:

M ′ ∈W0− ⇔M ′ ∈W0 and

{
for all m′ ∈M ′ there exists r ∈ Z≥0

such that F
(r)
i m′ = 0 for all i = 1, . . . , n

}
holds.

Moreover, let W denote the category of integrable Uq-modules1.
Below we will need a certain induction functor. To this end, recall the functor F which to

an arbitrary U0
q-module M ∈W0 assigns

F(M) = {m ∈⊕λ∈XMλ | F (r)
i m = 0 for all i ∈ Z≥0 and for r � 0},

see [4, Section 2.2]. Then set

(11) IndW0−
W0 : W0 →W0−, M 7→ F(HomW0(U0

qU
−
q ,M)).

(Obtained by using the standard embedding of U0
q ↪→ U0

qU
−
q , see [4, Section 2.4].)

Recall from [4, Section 2.11] that this functor is exact and that

IndW0−
W0 (M) =

⊕

λ∈X
(Mλ ⊗K[U−q ]−λ).

Here K[U−q ] is the quantum coordinate algebra for U−q (see [4, Section 1.8]). Note in particular

that the weights λ ∈ X of K[U−q ] satisfy λ ≥ 0 with λ = 0 occurring with multiplicity 1.

If λ ∈ X, then we denote by Kλ ∈ W0 the corresponding one-dimensional U0
q-module.

This modules extends to U0
qU
−
q by letting all F

(r)
i ’s act trivially for r > 0 and we, by abuse

of notation, denote this U0
qU
−
q -module also by Kλ.

Claim3.1. We claim that

(12) ExtiW0−(K0,Kλ) ∼=
{
K, if i = 0 and λ = 0,

0, if i > 0 and λ 6< 0,

for all λ ∈ X.

Proof of Claim3.1. The i = 0 part of this claim is clear. To check the i > 0 part, we construct
an injective resolution of Kλ as follows.

We set I0(λ) = IndW0−
W0 (Kλ). Note that Kλ is a U0

qU
−
q -submodule of I0(λ). Thus, we may

define the quotient Q1(λ) = I0(λ)/Q0(λ) by setting Q0(λ) = Kλ.
This pattern can be repeated: define for k > 0 recursively

Ik(λ) = IndW0−
W0 (Qk(λ)), with Qk(λ) = Ik−1(λ)/Qk−1(λ)

1We need to go to the categories of integrable modules due to the fact that the injective modules we use are
usually infinite-dimensional. Furthermore, we take U0

qU
−
q here instead of U−q U

0
q, since we want to consider

U0
qU
−
q as a left U0

q-module for the induction functor.
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and obtain

(13) 0 ↪→ Kλ ↪→ I0(λ) −→ I1(λ) −→ · · · .
All U0

q-modules in W0 are clearly injective and the functor from (11) takes injective U0
q-mo-

dules to injective U0
qU
−
q -modules (see [4, Corollary 2.13]). Thus, (13) is an injective resolution

of Kλ in W0−. Moreover, by the above observation on the weights of K[U−q ], we get

I0(λ)µ = 0 for all µ 6≥ 0,

Ik(λ)µ = 0 for all µ 6> 0, k > 0.

It follows that HomW0−(K0, Ik(λ)) = 0 for k > 0 which shows the second line in (12).

Note now that

(14) ExtiW0−(Kµ,Kλ) ∼= ExtiW0−(K0,Kλ−µ)

for all i ∈ Z≥0 and all λ, µ ∈ X.
Let M ∈W0− be finite-dimensional such that no weight of M is strictly bigger than λ ∈ X.

Then (12) and (14) imply

(15) ExtiW0−(M,Kλ) = 0 for all k > 0.

We are now aiming to prove the Ext-vanishing theorem. Recall that ∇q(λ) = IndW
W0−Kλ.

From the q-version of Kempf’s vanishing theorem—see [32, Theorem 5.5]—we get

(16) ExtiW(∆q(λ),∇q(µ)) ∼= ExtiW0−(∆q(λ),Kµ).

Thus, the Ext-vanishing follows for µ 6< λ from (15). So let µ < λ. Recall from above
that the character-preserving duality functor D(·) as in (6) satisfies D(∇q(λ)) ∼= ∆q(λ) and
D(∆q(λ)) ∼= ∇q(λ) for all λ ∈ X+. This gives

ExtiW(∆q(λ),∇q(µ)) ∼= ExtiW(∆q(µ),∇q(λ)).

Thus, we can conclude as before, since now λ 6< µ. Finally, if i = 0, then (16) implies

HomW(∆q(λ),∇q(µ)) ∼= HomW0−(∆q(λ),Kµ) =

{
K, if λ = µ,

0, µ 6≤ λ.
If µ < λ, then we apply D as before which finally shows that

HomW(∆q(λ),∇q(µ)) ∼=
{
Kcλ, λ = µ,

0, else,

for all λ, µ ∈ X+. This proves the statement since Uq-Mod is a full subcategory of W . �
Definition 3.2. (∆q- and ∇q-filtration.) We say that a Uq-module M has a ∆q-filtration
if there exists some k ∈ Z≥0 and a finite descending sequence of Uq-submodules

M = M0 ⊃M1 ⊃ · · · ⊃Mk′ ⊃ · · · ⊃Mk−1 ⊃Mk = 0,

such that Mk′/Mk′+1
∼= ∆q(λk′) for all k′ = 0, . . . , k − 1 and some λk′ ∈ X+.

A ∇q-filtration is defined similarly, but using ∇q(λ) instead of ∆q(λ) and a finite ascending
sequence of Uq-submodules, that is,

0 = M0 ⊂M1 ⊂ · · · ⊂Mk′ ⊂ · · · ⊂Mk−1 ⊂Mk = M,
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such that Mk′+1/Mk′
∼= ∇q(λk′) for all k′ = 0, . . . , k − 1 and some λk′ ∈ X+. N

We denote by (M : ∆q(λ)) and (N : ∇q(λ)) the corresponding multiplicities, which are
well-defined by Corollary 3.4 below. Clearly, a Uq-module M has a ∆q-filtration if and only
if its dual D(M) has a ∇q-filtration.

Example 3.3. The simple Uq-module Lq(λ) has a ∆q-filtration if and only if Lq(λ) ∼= ∆q(λ).
In that case we have also Lq(λ) ∼= ∇q(λ) and thus, Lq(λ) has a ∇q-filtration as well. N

A corollary of the Ext-vanishing Theorem 3.1 is:

Corollary 3.4. Let M,N ∈ Uq-Mod and λ ∈ X+. Assume that M has a ∆q-filtration and
N has a ∇q-filtration. Then

dim(HomUq(M,∇q(λ))) = (M : ∆q(λ)) and dim(HomUq(∆q(λ), N)) = (N : ∇q(λ)).

In particular, (M : ∆q(λ)) and (N : ∇q(λ)) are independent of the choice of filtrations. �
Note that the proof of Corollary 3.4 below gives a method to find and construct bases of

HomUq(M,∇q(λ)) and HomUq(∆q(λ), N), respectively.

Proof. Let k be the length of the ∆q-filtration of M . If k = 1, then

(17) dim(HomUq(M,∇q(λ))) = (M : ∆q(λ))

follows from the uniqueness of cλ from (10). Otherwise, we take the short exact sequence

0 // M ′ �
�

// M // // ∆q(µ) // 0

for some µ ∈ X+. Since both sides of (17) are additive with respect to short exact sequences
by Theorem 3.1, the claim in for the ∆q’s follows by induction.

Similarly for the ∇q’s, by duality. �
Fix two Uq-modules M,N , where we assume that M has a ∆q-filtration and N has a

∇q-filtration. Then, by Corollary 3.4, we have

(18) dim(HomUq(M,N)) =
∑

λ∈X+

(M : ∆q(λ))(N : ∇q(λ)).

We point out that the sum in (18) is actually finite since (M : ∆q(λ)) 6= 0 for only a finite
number of λ ∈ X+. (Dually, (N : ∇q(λ)) 6= 0 for only finitely many λ ∈ X+.)

In fact, following Donkin [12] who obtained the result below in the modular case, we can
state two useful consequences of the Ext-vanishing Theorem 3.1.

Proposition 3.5. (Donkin’s Ext-criteria.) The following are equivalent.

(a) An M ∈ Uq-Mod has a ∆q-filtration (respectively N ∈ Uq-Mod has a ∇q-filtration).

(b) We have ExtiUq
(M,∇q(λ)) = 0 (respectively ExtiUq

(∆q(λ), N) = 0) for all λ ∈ X+

and all i > 0.
(c) We have Ext1

Uq
(M,∇q(λ)) = 0 (respectively Ext1

Uq
(∆q(λ), N) = 0) for all λ ∈ X+. �

Proof. As usual: we are lazy and only show the statement about the ∆q-filtrations and leave
the other to the reader.

Suppose the Uq-module M has a ∆q-filtration. Then, by the results from Theorem 3.1,

ExtiUq
(M,∇q(λ)) = 0 for all λ ∈ X+ and all i > 0—which shows that (a) implies (b).
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Since (b) clearly implies (c), we only need to show that (c) implies (a).
To this end, suppose the Uq-module M satisfies Ext1

Uq
(M,∇q(λ)) = 0 for all λ ∈ X+. We

inductively, with respect to the filtration (by simples Lq(λ)) length `(M) of M , construct the
∆q-filtration for M .

So, by Proposition 2.12, we can assume that M = Lq(λ) for some λ ∈ X+.
Consider the short exact sequence

(19) 0 // ker(proλ) �
�

// ∆q(λ)
proλ
// // Lq(λ) // 0.

By Theorem 3.1 we get from (19) a short exact sequence for all µ ∈ X+ of the form

0 HomUq(ker(proλ),∇q(µ))oo HomUq(∆q(λ),∇q(µ))oooo HomUq(Lq(λ),∇q(µ))? _oo 0.oo

By Theorem 3.1, HomUq(∆q(λ),∇q(µ)) is zero if µ 6= λ and one-dimensional if µ = λ. By con-

struction, HomUq(Lq(λ),∇q(λ)) is also one-dimensional. Thus, HomUq(ker(proλ),∇q(µ)) = 0

for all µ ∈ X+ showing that ker(proλ) = 0. This, by (19), implies ∆q(λ) ∼= Lq(λ).
Now assume that `(M) > 1. Choose λ ∈ X+ minimal such that HomUq(M,Lq(λ)) 6= 0. As

before in (19), we consider the projection proλ : ∆q(λ)� Lq(λ) and its kernel ker(proλ).

Note now that Ext1
Uq

(M,∇q(λ)) = 0 implies Ext1
Uq

(M, ker(proλ)) = 0:

Assume the contrary. Then we can find a composition factor Lq(µ) for µ < λ of ker(proλ)
such that Ext1

Uq
(M,Lq(µ)) 6= 0. Then the exact sequence

HomUq(M,∇q(µ)/Lq(µ)) // Ext1
Uq

(M,Lq(µ)) 6= 0 // Ext1
Uq

(M,∇q(µ)) = 0

implies that HomUq(M,∇q(µ)/Lq(µ)) 6= 0. Since µ < λ, this gives a contradiction to the
minimality of λ.

Hence, any non-zero Uq-homomorphism pro ∈ HomUq(M,Lq(λ)) lifts to a surjection

pro: M � ∆q(λ).

By assumption and Theorem 3.1 we have Ext1
Uq

(M,∇q(µ)) = 0 = Ext1
Uq

(∆q(λ),∇q(µ)) for

all µ ∈ X+. Thus, we have Ext1
Uq

(ker(pro),∇q(µ)) = 0 for all µ ∈ X+ and we can proceed by

induction (since `(ker(pro)) < `(M), by construction). �

Example 3.6. Let us come back to our favorite example, i.e. q being a complex, primitive
third root of unity for Uq = Uq(sl2). The simple Uq-module Lq(3) does neither have a ∆q-
nor a ∇q-filtration (compare Example 2.13 with Example 3.3). This can also be seen with
Proposition 3.5, because Ext1

Uq
(Lq(3), Lq(1)) is not trivial: by Example 2.13 from above we

have ∆q(1) ∼= Lq(1) ∼= ∇q(1), but

0 // Lq(1) �
�

// ∆q(3) // // Lq(3) // 0

does not split. Analogously, Ext1
Uq

(Lq(1), Lq(3)) 6= 0, by duality. N

3B. Uq-tilting modules. A Uq-module T which has both, a ∆q- and a ∇q-filtration, is
called a Uq-tilting module. Following Donkin [12], we are now ready to define the category of
Uq-tilting modules that we denote by T . This category is our main object of study.
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Definition 3.7. (Category of Uq-tilting modules.) The category T is the full subcategory
of Uq-Mod whose objects are given by all Uq-tilting modules. N

From Proposition 3.5 we obtain directly an important statement.

Corollary 3.8. Let T ∈ Uq-Mod. Then

T ∈ T if and only if Ext1
Uq

(T,∇q(λ)) = 0 = Ext1
Uq

(∆q(λ), T ) for all λ ∈ X+.

When T ∈ T , the corresponding higher Ext-groups vanish as well. �
Recall the contravariant, character preserving functor D : Uq-Mod → Uq-Mod from (6).

Clearly, by Corollary 3.8, T ∈ T if and only if D(T ) ∈ T . Thus, D(·) restricts to a functor
D : T → T . In fact, we show below in Corollary 3.12, that the functor D(·) restricts to (a
functor isomorphic to) the identity functor on objects of T .

Example 3.9. The Lq(λ) are Uq-tilting modules if and only if ∆q(λ) ∼= Lq(λ) ∼= ∇q(λ).
Coming back to our favourite example, the case g = sl2 and q is a complex, primitive third

root of unity: a direct computation using similar reasoning as in Example 2.13 (that is, the
appearance of some actions equals zero as in (9)) shows that Lq(i) is a Uq-tilting module if
and only if i = 0, 1 or i ≡ −1 mod 3. More general: if q is a complex, primitive l-th root of
unity, then Lq(i) is a Uq-tilting module if and only if i = 0, . . . , l − 1 or i ≡ −1 mod l. N
Proposition 3.10. T is a Krull–Schmidt category, closed under duality D(·) and under finite
direct sums. Furthermore, T is closed under finite tensor products. �
Proof. That T is Krull–Schmidt is immediate. By [6, Corollary 3.8] we see that T is closed
under duality D(·) and under finite direct sums.

Only that T is closed under finite tensor products remains to be proven. By duality, this
reduces to show the statement that, given M,N ∈ Uq-Mod where both have a ∇q-filtration,
then M ⊗N has a ∇q-filtration. In addition, this reduces further to the following claim.

Claim3.10.1. We have:

(20) ∇q(λ)⊗∇q(µ) has a ∇q-filtration for all λ, µ ∈ X+.

In this note we give a proof of (20) in type A where it is true that the ωi’s are minuscule.
The idea of the proof goes back to [37]. (We point out, this case and the arguments used here
are enough for most of the examples considered in [6].) For the general case the only known
proofs of (20) rely on crystal bases, see [28, Theorem 3.3] or alternatively [21, Corollary 1.9].

Claim3.10.2. Is suffices to show

(21) ∇q(λ)⊗∇q(ωi) has a ∇q-filtration for all λ ∈ X+ and all i = 1, . . . , n.

(Note that our proof of the fact that (21) implies (20) works in all types.)

Proof of Claim3.10.2. To see that (21) implies (20) we shall work with the the Q≥0-version
of the partial ordering ≤ on X given by µ ≤Q λ if and only if λ − µ is a Q≥0-valued linear
combination of the simple roots, that is, λ − µ =

∑n
i=1 aiαi with ai ∈ Q≥0. Clearly µ ≤Q λ

implies µ ≤ λ. Note that 0 ≤Q ωi for all i = 1, . . . , n which means that 0 is the unique minimal
Uq-weight in X+ with respect to ≤Q.
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Assume now that (21) holds. We shall prove (20) by induction with respect to ≤Q. For
λ = 0 we have ∇q(λ) ∼= K and there is nothing to prove.

So let λ ∈ X+ − {0} and assume that (20) holds for all µ <Q λ. Note that there exists a
fundamental Uq-weight ω such that µ = λ − ω. This means that, by (21), we have a short
exact sequence of the form

(22) 0 // M �
�

// ∇q(µ)⊗∇q(ω) // // ∇q(λ) // 0.

Here the Uq-module M has a ∇q-filtration. By induction, ∇q(λ′)⊗∇q(µ) has a ∇q-filtration
for all λ′ ∈ X+ and so, by (21), has ∇q(λ′)⊗∇q(µ)⊗∇q(ω). Moreover, the ∇q-factors of M
have the form ∇q(ν) for ν <Q λ. Hence, by the induction hypothesis, we have that ∇q(λ′)⊗M
has a ∇q-filtration for all λ′ ∈ X+. Thus, tensoring (22) with ∇q(λ′) from the left gives a
∇q-filtration for the two leftmost terms. Therefore, also the third has a ∇q-filtration (by
Proposition 3.5). This shows that (21) implies (20).

Proof of Claim3.10.1 in types A. Assume that the fundamental Uq-weights are minuscule. By
the above, it remains to show (21). For this purpose, recall that

∇v(λ) = IndUv

U−v U0
v
Kλ.

By the tensor identity (see [4, Proposition 2.16]) this implies

∇q(λ)⊗∇q(ωi) ∼= IndUv

U−v U0
v
(Kλ ⊗∇q(ωi))

for all i = 1, . . . , n. Now take a filtration of Kλ ⊗∇q(ωi) of the form

(23) 0 = M0 ⊂M1 ⊂ · · · ⊂Mk′ ⊂ · · · ⊂Mk−1 ⊂Mk = Kλ ⊗∇q(ωi),
such that for all k′ = 0, . . . , k − 1 we have Mk′+1/Mk′

∼= Kλk′+1
for some λk′ ∈ X+. Thus,

the set {λk′ | k′ = 1, . . . , k} is the set of Uq-weights of Kλ ⊗ ∇q(ωi). But the Uq-weights of
∇q(ωi) are of the form {w(ωi) | w ∈W} where W is the Weyl group associated to Uq. Hence,
λk′ = λ+ wk′(ωi) for some wk′ ∈W . We get2

〈λk′ , α∨j 〉 = 〈λ, α∨j 〉+ 〈ωi, w−1
k′ (α∨j )〉 ≥ 0 + (−1) = −1

for all j = 1, . . . , n. Said otherwise, λk′ + ρ ∈ X+. Hence, the q-version of Kempf’s vanishing
theorem (see [32, Theorem 5.5]) shows that we can apply the functor IndUv

U−v U0
v
(·) to (23) to

obtain a ∇q-filtration of ∇q(λ)⊗∇q(ωi). Thus, we obtain (21). �

In particular, for g of type A, the proof of Proposition 3.10 gives us the special case that
T = ∆q(ωi1) ⊗ · · · ⊗ ∆q(ωid) is a Uq-tilting module for any ik ∈ {1, . . . , n}. Moreover, the
proof of Proposition 3.10 generalizes: using similar arguments, one can prove that, given the
vector representation V = ∆q(ω1) and g of type A, C or D, then T = V ⊗d is a Uq-tilting mod-
ule. Even more generally, the arguments also generalize to show that, given the Uq-module

V = ∆q(λ) with λ ∈ X+ minuscule, then T = V ⊗d is a Uq-tilting module.

Next, we come to the indecomposables of T . These Uq-tilting modules, that we denote
by Tq(λ), are indexed by the dominant (integral) Uq-weights λ ∈ X+ (see Proposition 3.11

2Here we need that the ωi’s are minuscule because we need that 〈ωi, w−1
k′ (α∨j )〉 ≥ −1.
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below). The Uq-tilting module Tq(λ) is determined by the property that it is indecomposable
with λ as its unique maximal weight. Then λ appears in fact with multiplicity one.

The following classification is, in the modular case, due to Ringel [31] and Donkin [12].

Proposition 3.11. (Classification of the indecomposable Uq-tilting modules.) For
each λ ∈ X+ there exists an indecomposable Uq-tilting module Tq(λ) with Uq-weight spaces
Tq(λ)µ = 0 unless µ ≤ λ. Moreover, Tq(λ)λ ∼= K.

In addition, given any indecomposable Uq-tilting module T ∈ T , then there exists λ ∈ X+

such that T ∼= Tq(λ).
Thus, the Tq(λ)’s form a complete set of non-isomorphic indecomposables of T , and all

indecomposable Uq-tilting modules Tq(λ) are uniquely determined by their maximal weight
λ ∈ X+, that is,

{indecomposable Uq-tilting modules} 1:1←→ X+. �

Proof. We start by constructing Tq(λ) for a given, fixed λ ∈ X+.
If the Weyl Uq-module ∆q(λ) is a Uq-tilting module, then we simply define Tq(λ) = ∆q(λ).
Otherwise, by Theorem 3.1, we can choose a Uq-weight µ2 ∈ X+ minimal such that

dim(Ext1
Uq

(∆q(µ2),∆q(λ))) = m2 6= 0 (note that all appearing Ext’s are finite-dimensional).

Then there is a non-splitting extension

0 // ∆q(λ) = M1
� � // M2

// // ∆q(µ2)⊕m2 // 0.

Note the important fact that necessarily µ2 < λ. This follows from the universal property of
∆q(λ) saying that

HomUq(∆q(λ),M) = {m ∈Mλ | E(r)
i m = 0 for all i = 1, . . . , n, r ∈ Z≥0}

for any Uq-module M (here Mλ again denotes the λ-weight space of M). This is the dual of
the (q-version of the) Frobenius reciprocity, i.e. the dual of (4).

If M2 is a Uq-tilting module, then we set Tq(λ) = M2. Otherwise, by Theorem 3.1 again, we
can choose µ3 ∈ X+ minimal with dim(Ext1

Uq
(∆q(µ3),M2)) = m3 6= 0 and we get a non-split

extension

0 // M2
� � // M3

// // ∆q(µ3)⊕m3 // 0.

Again µ3 < λ and also µ3 < µ2.
And hence, we can continue as above and obtain a filtration of the form

(24) · · · ⊃M3 ⊃M2 ⊃M1 ⊃M0 = 0

which is a ∆q-filtration by construction, since we have Mk′+1/Mk′
∼= ∆q(µk′+1)⊕mk′+1 for all

k′ = 0, 1, 2, . . . , where we use µ1 = λ and m1 = 1.
Thus, because there are only finitely many µ < λ (with µ ∈ X+), this process stops at some

point giving a Uq-module Mk. The Uq-module Mk has a ∇q-filtration, since otherwise there
would, by Proposition 3.5, exist a µk+1 ∈ X+ with Ext1

Uq
(∆q(µk+1),Mk) 6= 0. Moreover, we

have constructed a ∆q-filtration for Mk in (24) which shows that Mk is a Uq-tilting module.
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To show that Mk is indecomposable, let us denote T = Mk, U = Mk−1, m = mk and µ = µk
for short. By the above we have

0 // U �
�

// T // // ∆q(µ)⊕m // 0,

Ext1
Uq

(∆q(ν), T ) = 0 for all ν ∈ X+, Ext1
Uq

(∆q(ν), U) = 0 for all ν ∈ X+, ν 6= µ,

and with m minimal satisfying these properties. Note that U is the largest Uq-submodule of
T such that HomUq(U,∆q(µ)).

Assume that we have a decomposition T = T1 ⊕ T2. This thus induces a decomposition
U = U1⊕U2. By induction, U is indecomposable and so we can assume we can assume without
loss of generality that U1 = U and U2 = 0. Thus, T/U ∼= T1/U1 ⊕ T2

∼= ∆q(µ)⊕m. By the

Krull–Schmidt property we get T1/U1
∼= ∆q(µ)⊕j , T2

∼= ∆q(µ)⊕(m−j) for some j ≤ m and we
have a short exact sequence

0 // U �
�

// T1
// // ∆q(µ)⊕j // 0.(25)

Now, since Ext1
Uq

(∆q(ν),∆q(µ)) = 0 for ν ≥ µ, we have

Ext1
Uq

(∆q(ν), T ) ∼= Ext1
Uq

(∆q(ν), T1 ⊕ T2) ∼= Ext1
Uq

(∆q(ν), T1)

for any ν ≥ µ. Hence, by (25) and the minimality of m we obtain m = j which in turn implies
T2 = 0. This means that T = Mk is indecomposable, and setting Tq(λ) = T we are done.

We have to show that any indecomposable Uq-tilting module is isomorphic to some Tq(λ).
To this end let us suppose that T ∈ T is indecomposable. Choose any maximal Uq-weight
λ of T . Then we have HomU−v U0

v
(T,Kλ) 6= 0. By the Frobenius reciprocity (or, to be more

precise, the q-version of it) from (4), we get a non-zero Uq-homomorphism f : T → ∇q(λ). By
duality, we also get a non-zero Uq-homomorphism g : ∆q(λ) → T with f ◦ g 6= 0. Consider
now the diagram

(26)

∆q(λ) �
� ιλ //

g

$$

Tq(λ)
πλ // // ∇q(λ)

T

f

::

where ιλ is the inclusion of the first Uq-submodule in a ∆q-filtration of Tq(λ) and πλ is the
surjection onto the last quotient of in a ∇q-filtration of Tq(λ). Since both path in the diagram
(26) are non-zero, we can scale everything by some non-zero scalars in K such that (26)
commutes—which we assume in the following. (To see this, recall that there is an (up to
scalars) unique Uq-homomorphism cλ : ∆q(λ)→ ∇q(λ).)

As in the proof of Proposition 3.5, we see that

(27) Ext1
Uq

(∆q(λ), T ) = 0 = Ext1
Uq

(T,∇q(λ))⇒ Ext1
Uq

(coker(ιλ), T ) = 0 = Ext1
Uq

(T, ker(πλ))

holds. Here ker(πλ) and coker(ιλ) are the corresponding kernel and co-kernel respectively.
Thus, we see that the Uq-homomorphism g extends to an Uq-homomorphism g : Tq(λ)→ T

whereas f factors through T via f : T → Tq(λ). Then the composition f ◦g is an isomorphism
since it is so on Tq(λ)λ. Hence, Tq(λ) is a summand of T which shows T ∼= Tq(λ) since we
have assumed that T is indecomposable.
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Next, suppose that T1 ∈ T satisfies the characteristic properties of Tq(λ). Consider the
short exact sequences

0 // ∆q(λ) �
� ιλ // Tq(λ) // // coker(ιλ) // 0,

0 // ∆q(λ) �
� ι // T1

// // coker(ι) // 0,

where the cokernels have ∆q-flags. Thus, by Corollary 3.8, we have Ext1
Uq

(coker(ιλ), T1) = 0,

and so the restriction map

HomUq(Tq(λ), T1) // HomUq(∆q(λ), T1)

is surjective. In particular, the “identity map” ∆q(λ)→ im(ι) has a preimage f : Tq(λ)→ T1.

Similarly, we find a preimage g : T1 → Tq(λ) of ∆q(λ)→ im(ιλ). The composition g ◦ f is an
endomorphism of the indecomposable Uq-module Tq(λ), and thus an isomorphism since it is
not nilpotent. Hence, we get T1

∼= Tq(λ).
The other statements are direct consequences of the first three which finishes the proof. �

Remark 3. For a fixed λ ∈ X+ we have Uq-homomorphisms

∆q(λ) �
� ιλ // Tq(λ)

πλ // // ∇q(λ)

where ιλ is the inclusion of the first Uq-submodule in a ∆q-filtration of Tq(λ) and πλ is the
surjection onto the last quotient in a∇q-filtration of Tq(λ). Note that these are only defined up

to scalars. One can fix scalars such that πλ ◦ ιλ = cλ (where cλ is again the Uq-homomorphism
from (10)). This is done in [6] and crucial for the construction of the cellular basis therein. N

Remark 4. Let T ∈ T . An easy argument shows (see also the proof of Proposition 3.5) the
following crucial fact:

Ext1
Uq

(∆q(λ), T ) = 0 = Ext1
Uq

(T,∇q(λ))⇒ Ext1
Uq

(coker(ιλ), T ) = 0 = Ext1
Uq

(T, ker(πλ))

for all λ ∈ X+. Consequently, we see that any Uq-homomorphism g : ∆q(λ) → T extends to
a Uq-homomorphism g : Tq(λ) → T whereas any Uq-homomorphism f : T → ∇q(λ) factors

through Tq(λ) via some f : T → Tq(λ). N

Corollary 3.12. We have D(T ) ∼= T for T ∈ T , that is, all Uq-tilting modules T are self-dual.
In particular, we have for all λ ∈ X+ that

(T : ∆q(λ)) = dim(HomUq(T,∇q(λ))) = dim(HomUq(∆q(λ), T )) = (T : ∇q(λ)). �

Proof. By the Krull–Schmidt property it suffices to show the statement for the indecomposable
Uq-tilting modules Tq(λ). Since D preserves characters, we see that D(Tq(λ)) has λ as unique
maximal weight, therefore D(Tq(λ)) ∼= Tq(λ) by Proposition 3.11. Moreover, the leftmost and
the rightmost equalities follow directly from Corollary 3.4. Finally

(Tq(λ) : ∆q(λ)) = (D(Tq(λ)) : D(∆q(λ))) = (D(Tq(λ)) : ∇q(λ)) = (Tq(λ) : ∇q(λ))

by definition and D(Tq(λ)) ∼= Tq(λ) from above, which settles also the middle equality. �
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Example 3.13. Let us go back to the sl2 case again. Then we obtain the family (Tq(i))i∈Z≥0

of indecomposable Uq-tilting modules as follows.
Start by setting Tq(0) ∼= ∆q(0) ∼= Lq(0) ∼= ∇q(0) and Tq(1) ∼= ∆q(1) ∼= Lq(1) ∼= ∇q(1).

Then we denote by m0 ∈ Tq(1) any eigenvector for K with eigenvalue q. For each i > 1
we define Tq(i) to be the indecomposable summand of Tq(1)⊗i which contains the vector
m0 ⊗ · · · ⊗m0 ∈ Tq(1)⊗i. The Uq(sl2)-tilting module Tq(1)⊗i is not indecomposable if i > 1:
by Proposition 3.11 we have (Tq(1)⊗i : ∆q(i)) = 1 and

Tq(1)⊗i ∼= Tq(i)⊕
⊕

k<i

Tq(k)⊕multk for some multk ∈ Z≥0.

In the case l = 3, we have for instance Tq(1)⊗2 ∼= Tq(2) ⊕ Tq(0) since the tensor product
Tq(1)⊗ Tq(1) looks as follows (abbreviation mij = mi ⊗mj):

⊗ m1
1 //

q−1

��
m0

1
oo

q+1

��

m1

1

��

q−1
33

m11
1 //

1

��

q−2

//
m01

1
oo

1

��

+

q0
oo

m0

1

OO

q+1
33

m10
1 //

1

OO

q0
//

m00
1
oo

1

OO

q+2

oo

.

By construction, the indecomposable Uq(sl2)-module Tq(2) contains m00 and therefore has to
be the C-span of {m00, q

−1m10 + m01,m11} as indicated above. The remaining summand is
the one-dimensional Uq-tilting module Tq(0) ∼= Lq(0) from before. N

The following is interesting in its own right.

Corollary 3.14. Let µ ∈ X+ be a minuscule Uq-weight. Then T = ∆q(µ)⊗d is a Uq-tilting
module for any d ∈ Z≥0 and dim(EndUq(T )) is independent of the field K and of q ∈ K∗, and
is given by

dim(EndUq(T )) =
∑

λ∈X+

(T : ∆q(λ))2 =
∑

λ∈X+

(T : ∇q(λ))2.(28)

In particular, this holds for ∆q(ω1) being the vector representation of Uq = Uq(g) for g of
type A, C or D. �

Proof. Since µ ∈ X+ is minuscule: ∆q(µ) ∼= Lq(µ) is a simple Uq-tilting module for any field
K and any q ∈ K∗. Thus, by Proposition 3.10 we see that T is a Uq-tilting module for any
d ∈ Z≥0. Hence, by Corollary 3.4—in particular by (18)—and Corollary 3.12, we have the
equality in (28). Now use the fact that the character of ∆q(µ) and ∇q(λ) is as in the classical
case, which implies the statement. �

3C. The characters of indecomposable Uq-tilting modules. In this section we describe
how to compute (Tq(λ) : ∆q(µ)) for all λ, µ ∈ X+ (which can be done algorithmically in the
case where q is a complex, primitive l-th root of unity). As an application, we illustrate how to
decompose tensor products of Uq-tilting modules. This shows that, in principle, our cellular
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basis for endomorphism rings EndUq(T ) of Uq-tilting modules T (as defined in [6, Section 3])
can be made more or less explicit.

We start with some preliminaries. Given an abelian category Ab, we denote its Grothendieck
group by G0(Ab) and its split Grothendieck group by K⊕0 (Ab). We point out that the notation
of the split Grothendieck group also makes sense for a given additive category that satisfies
the Krull–Schmidt property where we use the same notation. (We refer the reader unfamiliar
with these and the notation we use to [27, Section 1.2].)

Recall that G0 and K0 are Z-modules and one might ask for Z-basis of them. Moreover, if
the categories in question are monoidal, then G0 and K0 inherit the structure of Z-algebras.

The category Uq-Mod is abelian and we can consider G0(Uq-Mod). In contrast, T is
not abelian (see Example 3.9), but it is additive and satisfies the Krull–Schmidt property,
so we can consider K0(T ). Since both Uq-Mod and T are closed under tensor products,
G0(Uq-Mod) and K⊕0 (T ) get a—in fact isomorphic—induced Z-algebra structure.

Moreover, by Proposition 2.10 and Proposition 2.12, a Z-basis of G0(Uq-Mod) is given
by isomorphism classes {[∆q(λ)] | λ ∈ X+}. On the other hand, a Z-basis of K⊕0 (T ) is, by
Proposition 3.11, spanned by isomorphism classes {[Tq(λ)]⊕ | λ ∈ X+}.

Corollary 3.15. The inclusion of categories ι : T → Uq-Mod induces an isomorphism

[ι] : K⊕0 (T )→ G0(Uq-Mod), [Tq(λ)]⊕ 7→ [Tq(λ)], λ ∈ X+

of Z-algebras. �

Proof. The set B = {[Tq(λ)] | λ ∈ X+} forms a Z-basis of K⊕0 (T ) by Proposition 3.11 and it
is clear that [ι] is a well-defined Z-algebra homomorphism.

Moreover, we have

(29) [Tq(λ)] = [∆q(λ)] +
∑

µ<λ∈X+

(Tq(µ) : ∆q(µ))[∆q(µ)] ∈ G0(Uq-Mod)

with Tq(0) ∼= ∆q(0) by Proposition 3.11. Hence, [ι](B) is also a Z-basis of K0(Uq-Mod) since
the ∆q(λ)’s form a Z-basis and the claim follows. �

In Section 2B we have met Weyl’s character ring Z[X]. Further, recall that Z[X] carries an
action of the Weyl group W associated to the Cartan datum (see below). Thus, we can look
at the invariant part of this action, denoted by Z[X]W .

We obtain the following (known) categorification result.

Corollary 3.16. The tilting category T (naively) categorifies Z[X]W , that is,

K⊕0 (T ) ∼= Z[X]W as Z-algebras. �

Proof. It is known that there is an isomorphism K0(g-Mod)
∼=−→ Z[X]W given by sending

finite-dimensional g-modules to their characters (which can be regarded as elements in Z[X]W ).
Now the characters χ(∆q(λ)) of the ∆q(λ)’s are (as mentioned below Example 2.13) the

same as in the classical case. Thus, we can adopt the isomorphism from K0(g-Mod) to Z[X]W

from above. Details can, for example, be found in [8, Chapter VIII, §7.7].
Then the statement follows from Corollary 3.15. �
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For each simple root αi ∈ Π let si be the reflection

si(λ) = λ− 〈λ, α∨i 〉αi, for λ ∈ E,

in the hyperplane Hα∨i
= {x ∈ E | 〈x, α∨i 〉 = 0} orthogonal to αi. These reflections si generate

a group W , called Weyl group, associated to our Cartan datum.
For any fixed l ∈ Z≥0, the affine Weyl group Wl

∼= W n lZΠ is the group generated by the
reflections sβ,r in the affine hyperplanes H l

β∨,r = {x ∈ E | 〈x, β∨〉 = lr} for β ∈ Φ and r ∈ Z.
Note that, if l = 0, then W0

∼= W .

Example 3.17. Here the prototypical example to keep in mind. We consider g = sl3 with
the Cartan datum from Example 2.1, i.e.:

E = R3/(1, 1, 1)(∼= R2),

α1 = (1,−1, 0) = α∨1 ,

α2 = (0, 1,−1) = α∨2 ,

α∨0 = (1, 0,−1) = α∨1 + α∨2 ,

A =

(
2 −1
−1 2

)

α∨1

α∨2

−α∨1

−α∨2−α∨1 − α∨2

α∨0
R2

where we—for simplicity—have identified the roots and coroots. Choosing l = 1 or l = 2 gives
then the following hyperplanes:

l = 1: H1
α∨1 ,r

= {(a, b, c) ∈ E | a− b = r}, H1
α∨2 ,r

= {(a, b, c) ∈ E | b− c = r},
l = 2: H2

α∨1 ,r
= {(a, b, c) ∈ E | a− b = 2r}, H2

α∨2 ,r
= {(a, b, c) ∈ E | b− c = 2r}.
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Using the isomorphism E = R3/(1, 1, 1) ∼= R2 (which we will in later sl3 examples), these can
be illustrated via the classical picture of the hyperplane arrangement for sl3:

H1
α∨
2
,0

H1
α∨
2
,1

H1
α∨
0
,−2

H1
α∨
0
,0

H1
α∨
1
,0

H1
α∨
1
,2

•

l = 1

H1
α∨
2
,0

H1
α∨
0
,−2

H1
α∨
0
,0

H1
α∨
1
,0

H1
α∨
1
,2

•

l = 2

In these pictures we have additionally chosen an origin and a fundamental alcove (as defined in
Definition 3.18 below). Note that both hyperplane arrangements are combinatorial the same,
but the precise coordinates of the lattice points within the regions differs. (Every second
hyperplane H1

α∨i ,r
is omitted in case l = 2.)

The affine Weyl group Wl is now generated by the reflections in these hyperplanes. N

For β ∈ Φ there exists w ∈ W such that β = w(αi) for some i = 1, . . . , n. We set lβ = li
where li = l

gcd(l,di)
. Using this, we have the dot-action of Wl on the Uq-weight lattice X via

sβ,r.λ = sβ(λ+ ρ)− ρ+ lβrβ.

Note that the case l = 1 recovers the usual action of the affine Weyl group W1 on X.

Definition 3.18. (Alcove combinatorics.) The fundamental alcove A0 is

(30) A0 = {λ ∈ X | 0 < 〈λ+ ρ, α∨〉 < l, for all α ∈ Φ+} ⊂ X+.

Its closure A0 is given by

(31) A0 = {λ ∈ X | 0 ≤ 〈λ+ ρ, α∨〉 ≤ l, for all α ∈ Φ+} ⊂ X+ − ρ.

The non-affine walls of A0 are

∂̌Ai0 = A0 ∩ (Hα∨i ,0
− ρ), i = 1, . . . , n, ∂̌A0 =

n⋃

i=1

∂̌Ai0.

Let α0 denote the maximal short root. The set

∂̂A0 = A0 ∩ (Hα∨0 ,1
− ρ)
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is called the affine wall of A0. We call the union of all these walls the boundary ∂A0 of A0.
More generally, an alcove A is a connected component of

E −
⋃

r∈Z,β∈Φ

(Hβ∨,r − ρ).

We denote the set of alcoves by Al. N

Note that the affine Weyl group Wl acts simply transitively on Al. Thus, we can associate
1 ∈Wl 7→ A(1) = A0 ∈ Al and in general w ∈Wl 7→ A(w) ∈ Al.

Example 3.19. In the case g = sl2 we have ρ = ω1 = 1. Consider for instance again l = 3.
Then k ∈ Z≥0 = X+ is contained in the fundamental alcove A0 if and only if 0 < k + 1 < 3.

Moreover, −ρ ∈ ∂̌A0 and 2 ∈ ∂̂A0 are on the walls. Thus, A0 can be visualized as

• •• •
−ρ 0 1 2

where the affine wall on the right is indicated in red and the non-affine wall on the left is
indicated in green.

The picture for bigger l is easy to obtain, e.g.:

• •• • •
−ρ 0 1 2 3

l = 4
• •• • • •
−ρ 0 1 2 3 4

l = 5
. . .

as we encourage the reader to verify. N

Example 3.20. Let us leave our running sl2 example for a second and do another example
which is graphically more interesting.

In the case g = sl3 we have ρ = α1 + α2 = ω1 + ω2 ∈ X+ and α0 = α1 + α2. Now consider
again l = 3. The condition (30) means that A0 consists of those λ = λ1ω1 + λ2ω2 for which

0 < 〈λ1ω1 + λ2ω2 + ω1 + ω2, α
∨
i 〉 < 3 for i = 1, 2, 0.

Thus, 0 < λ1 + 1 < 3, 0 < λ2 + 1 < 3 and 0 < λ1 +λ2 + 2 < 3. Hence, only the Uq(sl3)-weight
λ = (0, 0) ∈ X+ is in A0. In addition, we have by condition (31) that

∂̌A0 = {−ρ,−ω1,−ω2, ω1 − ω2, ω2 − ω1}, ∂̂A0 = {ω1, ω2, 2ω1 − ω2, 2ω2 − ω1}.
Hence, A0 can be visualized as (displayed without the −ρ shift on the left)

(1, 1)

•
• •

• •

0

ω2 ω1

2ω2+ω1 2ω1+ω2

α1α2

• •
• •

2ω12ω2

3ω13ω2

(0, 0)

•
• •

• •

−ρ

−ω1 −ω2

ω2 ω1

• •
• •

ω1−ω2ω2−ω1

2ω1−ω22ω2−ω1

where, as before, the affine wall at the top is indicated in red, the hyperplane orthogonal to
α1 on the left in green and the hyperplane orthogonal to α2 on the right in blue. See also
Example 3.17, where we again stress that the precise coordinates of points in the alcoves or
on their boundaries depend on l. N

We say λ ∈ X+ − ρ is linked to µ ∈ X+ if there exists w ∈ Wl such that w.λ = µ.
We note the following theorem, called the linkage principle, where we, by convention, set
Tq(λ) = ∆q(λ) = ∇q(λ) = Lq(λ) = 0 for λ ∈ ∂̌A0.
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Theorem 3.21. (The linkage principle.) All composition factors of Tq(λ) have maximal

weights µ linked to λ. Moreover, Tq(λ) is a simple Uq-module if λ ∈ A0.
If λ is linked to an element of A0, then Tq(λ) is a simple Uq-module if and only if λ ∈ A0.�

Proof. This is a slight reformulation of [2, Corollaries 4.4 and 4.6]. �
The linkage principle gives us now a decomposition into a direct sum of categories

T ∼=
⊕

λ∈A0

T λ ⊕
⊕

λ∈∂A0

T λ,

where each T λ consists of all T ∈ T whose indecomposable summands are all of the form
Tq(µ) for µ ∈ X+ lying in the Wl-dot orbit of λ ∈ A0 (or of λ ∈ ∂A0). We call these
categories blocks to stress that they are homologically unconnected—although they might be
decomposable. Moreover, if λ ∈ A0, then we call T λ an l-regular block, while the T λ’s with
λ ∈ ∂A0 are called l-singular blocks. (We say for short just regular and singular blocks in
what follows.)

In fact, by Proposition 3.11, the Uq-weights labeling the indecomposable Uq-tilting modules
are only the dominant (integral) weights λ ∈ X+. Let dC = {x ∈ E | 〈x, β∨〉 ≥ 0, β ∈ Φ}.
Then these Uq-weights correspond blockwise precisely to the alcoves

Al+ = Al ∩ dC,
contained in the dominant chamber dC. That is, they correspond to the set of coset represen-
tatives of minimal length in {wW0 | w ∈W1}. In formulas,

(32) Tq(w.λ) ∈ T λ! A(w) ∈ Al+ ! wW0 ⊂W1,

for all λ ∈ A0.

Example 3.22. In our pet example with g = sl2 and l = 3 we have, by Theorem 3.21 and
Example 3.19 a block decomposition

T ∼= • •• •T −1 T 0 T 1 T 2

(Taking direct sums of the categories on the right-hand side.) The Wl-dot orbit of 0 ∈ A0

respectively 1 ∈ A0 can be visualized as

• • • • • •0 4 6 10 121 3 7 9 13 · · · · · ·dead end r = 1 r = 2 r = 3 r = 4 r = 5

Compare also to [7, (2.4.1)].
It turns out that, for K = C, both singular blocks T −1 and T 2 are semisimple (in particular,

these blocks decompose further), see Example 3.27 or [7, Lemma 2.25].
All of this generalizes as already indicated in Example 3.19. N

Example 3.23. In the sl3 case with l = 3 we have the block decomposition

T ∼= T (0,0)

•
• •

• •

T −ρ

T −ω1
T −ω2

T ω2
T ω1

• •
• •

T ω1−ω2
T ω2−ω1

T 2ω1−ω2T 2ω2−ω1
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(Again, taking direct sums of the categories on the right-hand side.) Note that the singular
blocks are not necessarily semisimple anymore, even when K = C.

The Wl-dot orbit in AC+ of the regular block T (0,0) looks as follows.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

r = 1

r = 2

r = 3

r = 1

r = 2

r = 1

r = 2

α1α2

 

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

(0, 0)

(1, 1)
(0, 3) (3, 0)

(1, 4) (4, 1)
(0, 6) (6, 0)(3, 3)

sα∨
0
,2

Here we reflect either in a red (that is, α0 = (1, 1)), green (that is, α1 = (2,−1)) or blue (that
is, α2 = (−1, 2)) hyperplane, and the r measures the hyperplane-distance from the origin
(both indicated in the left picture above). In the right picture we have indicated the linkage
(we have also displayed one of the dot-reflections).

Theorem 3.21 means now that Tq((1, 1)) satisfies

(Tq((1, 1)) : ∆q(µ)) 6= 0 ⇒ µ ∈ {(0, 0), (1, 1)}
and Tq((3, 3)) satisfies

(Tq((3, 3)) : ∆q(µ)) 6= 0 ⇒ µ ∈ {(0, 0), (1, 1), (3, 0), (0, 3), (4, 1), (1, 4), (3, 3)}.
We calculate the precise values later in Example 3.25. N

In order to get our hands on the multiplicities, we need Soergel’s version of the (affine)
parabolic Kazhdan–Lusztig polynomials, which we denote by

(33) nµλ(t) ∈ Z[v, v−1], λ, µ ∈ X+ − ρ.
For brevity, we do not recall the definition of these polynomials—which can be computed
algorithmically—here, but refer to [34, Section 3] where the relevant polynomial is denoted
ny,x for x, y ∈ Wl (which translates by (32) to our notation). The main point for us is the
following theorem due to Soergel.

Theorem 3.24. (Multiplicity formula.) Suppose K = C and q is a complex, primitive l-th
root of unity. For each pair λ, µ ∈ X+ with λ being an l-regular Uq-weight (that is, Tq(λ)
belongs to a regular block of T ) we have

(Tq(λ) : ∆q(µ)) = (Tq(λ) : ∇q(µ)) = nµλ(1).

In particular, if λ, µ ∈ X+ are not linked, then nµλ(v) = 0. �
Proof. This follows from [33, Theorem 5.12], see also [34, Conjecture 7.1]. �

In addition to Theorem 3.24, we are going to describe now an algorithmic way to compute
(Tq(λ) : ∆q(µ)) for all Tq(λ) lying in a singular blocks of T . We point out that Theorem 3.26
below is valid for q ∈ K being a primitive l-th root of unity, where K is—in contrast to
Theorem 3.24—an arbitrary field.
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Assume in the following that λ ∈ X+ is not l-regular. Set Wλ = {w ∈ Wl | w.λ = λ}.
Then we can find a unique l-regular Uq-weight λ ∈ Wl.0 such that λ is in the closure of the

alcove containing λ and λ is maximal in Wλ.λ. Similarly, we find a can find a unique l-regular
Uq-weight λ ∈ Wl.0 such that λ is in the closure of the alcove containing λ and λ is minimal

in Wλ.λ. Some examples in the g = sl3 case are

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

•λ
•
λ•λ

•µ
•
µ •µ

•ν

•ν

•
ν

0

We stress that, in the µ case above, Theorem 3.26 is not valid: recall that in those cases
Tq(µ) = ∆q(µ) = Lq(µ) = ∇q(µ) = 0 and thus, we do not have to worry about these.

Example 3.25. Back to Example 3.23: For ν = ω1 + ω2 = (1, 1) we have nνν(v) = 1 and
nν(0,0)(v) = v, as shown in the left picture below. Similarly, for ξ = 3ω1 +3ω2 = (3, 3) the only
non-zero parabolic Kazhdan–Lusztig polynomials are nξξ(v) = 1, nξ(1,4)(v) = v = nξ(4,1)(v),

nξ(0,3)(v) = v2 = nξ(3,0)(v) and nξν(v) = v3 as illustrated on the right below.

ν :

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

v

1

ξ :

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

v3
v2 v2

v v
1

Therefore, we have, by Theorem 3.24, that (Tq(ν) : ∆q(µ)) = 1 if µ ∈ {(0, 0), (1, 1)} and
(Tq(ν) : ∆q(µ)) = 0 if µ /∈ {(0, 0), (1, 1)}. We encourage the reader to work out (Tq(ξ) : ∆q(µ))
by using the above patterns and Example 3.23. For all patterns in rank 2 see [35]. N

We are aiming to show the following Theorem.

Theorem 3.26. (Multiplicity formula—singular case.) We have

(Tq(λ) : ∆q(µ)) = (Tq(λ) : ∆q(µ))

for all µ ∈Wl.λ ∩X+.
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We consider the translation functors T ξ′ξ : T ξ → T ξ′ for various ξ, ξ′ ∈ X+ in the proof.

The reader unfamiliar with these can for example consider [19, Part II, Chapter 7]. We only

stress here that T ξ′ξ : T ξ → T ξ′ is the biadjoint of T ξξ′ : T ξ′ → T ξ.

Proof. In order to prove Theorem 3.26, we have to show some intermediate steps. We start
with the following two claims.

Claim3.26a. We have:

(34) [∆q(λ
′) : Lq(λ)] = 1 for all λ′ ∈Wλ.λ.

Moreover, for all λ′ ∈Wλ.λ:

(35) there is a unique ϕ ∈ HomUq(∆q(λ
′),∆q(λ)) with [Im(ϕ) : Lq(λ)] = 1.

Here uniqueness is meant up to scalars.

Proof of Claim3.26a. We start by showing (34). We have T λ
λ

(∆q(λ
′)) ∼= ∆q(λ). In addition,

for any λ′′ ∈Wl.λ ∩X+, we have T λ
λ

(Lq(λ
′′)) ∼= Lq(λ) if and only if λ′′ = λ ∈ X+.

Next, we show (35). We use descending induction. If λ′ = λ, then (35) is clear. So assume
λ′ < λ and denote by A′ the alcove containing λ′. Choose an upper wall H of A′ such that
the corresponding reflection sH belongs to Wλ. Then λ′′ = sH .λ

′ > λ′. Thus, by induction,
there exists an (up to scalars) unique non-zero Uq-homomorphism ψ : ∆q(λ

′′) → ∆q(λ) with

[Im(ψ) : Lq(λ)] = 1. We claim now that for all λ′ ∈Wλ.λ:

(36) there exists a unique ϕ̃ ∈ HomUq(∆q(λ
′),∆q(λ

′′)) with [Im(ϕ̃) : Lq(λ)] = 1.

Again uniqueness is meant up to scalars.
Because (36) implies that ϕ = ψ◦ϕ̃ is the (up to scalars) unique non-zero Uq-homomorphism

we are looking for, it remains to show (36). To this end, choose ν ∈ H. Then we have a short
exact sequence

0 // ∆q(λ
′′) �
�

// T λν ∆q(ν) // // ∆q(λ
′) // 0.

This sequence does not split since T λν ∆q(ν) has simple head Lq(λ
′). Thus, the inclusion

HomUq(∆q(λ
′),∆q(λ

′′)) ↪→ HomUq(∆q(λ
′), T λν ∆q(ν))

∼= HomUq(T νλ ∆q(λ
′),∆q(ν))

∼= EndUq(∆q(ν)) ∼= K

is an equality. So we can pick any non-zero Uq-homomorphism ϕ̃ ∈ HomUq(∆q(λ
′),∆q(λ

′′))
which will be unique up to scalars. Then Lq(λ

′) is a composition factor of Im(ϕ̃). This im-
plies that T ν

λ
ϕ̃ ∈ EndUq(∆q(ν)) is non-zero and thus, an isomorphism. In particular, Lq(λ) is

a composition factor of Im(ϕ̃), because T ν
λ
Lq(λ

′) 6= 0. Hence, (36) follows and thus, (35) holds.

Claim3.26b. We keep the notation from before.

(37) We have (Tq(λ) : ∆q(λ
′)) = 1 for all λ′ ∈Wλ.λ.
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Proof of Claim3.26b. By (35) we have HomUq(∆q(λ
′),∆q(λ)) ∼= K. This together with

HomUq(∆q(λ
′), Tq(λ)) ⊃ HomUq(∆q(λ

′),∆q(λ)) ∼= K
implies (37).

Claim3.26c. Our last claim is:

(38) We have T λλ Tq(λ) = Tq(λ).

Proof of Claim3.26c. We have T λλ Tq(λ) = Tq(λ) ⊕ rest where rest is some Uq-tilting module

with Uq-weights < λ. However, applying T λ
λ

(·), we get

Tq(λ)⊕|Wλ| ∼= T λ
λ
Tq(λ)⊕ T λ

λ
(rest).

However, by (37), we also have

T λ
λ
Tq(λ) ∼= Tq(λ)⊕|Wλ|.

Thus, T λ
λ

(rest) = 0. This implies rest = 0:

Suppose the contrary. Then there exists λ̃ ∈ X+ with

0 6= HomUq(Lq(λ̃), rest) ⊂ HomUq(Lq(λ̃), T λλ Tq(λ)) ∼= HomUq(T λλ Lq(λ̃), Tq(λ)).

But then 0 6= T λ
λ
Lq(λ̃) ⊂ T λ

λ
(rest). This is a contradiction. Hence, (38) follows.

We are now ready to prove the theorem itself. For this purpose, note that we get

(Tq(λ) : ∆q(w.λ)) = (Tq(λ) : ∆q(w.λ))) for all w ∈Wl with w.λ ∈ X+.

from (38). This in turn implies the statement of the theorem by the linkage principle. �
Since the polynomials from (33) can be computed inductively, we can use Theorem 3.24

and Theorem 3.26 in the case K = C to explicitly calculate the decomposition of a tensor
product of Uq-tilting modules T = Tq(λ1)⊗ · · · ⊗ Tq(λd) into its indecomposable summands:

• Calculate, by using Theorem 3.24 and Theorem 3.26, (Tq(λi) : ∆q(µ)) for i = 1, . . . , d.
• This gives the multiplicities of T , by the Corollary 3.15 and the fact that the characters

of the ∆q(λ)’s are as in the classical case.
• Use (29) to recursively compute the decomposition of T (starting with any maximal

Uq-weight of T ).

Example 3.27. Let us come back to our favourite case, that is, g = sl2, K = C and l = 3.
In the regular cases we have Tq(k) ∼= ∆q(k) for k = 0, 1 and the parabolic Kazhdan–Lusztig
polynomials are

njk(v) =





1, if j = k,

v, if j < k are separated by precisely one wall,

0, else,

for k > 1. By the above we obtain Tq(k) ∼= ∆q(k) for k ∈ Z≥0 singular, hence, the two singular
blocks T −1 and T 2 are semisimple.
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In Example 3.13 we have already calculated Tq(1)⊗Tq(1) ∼= Tq(2)⊕Tq(0). Let us go one step
further now: Tq(1)⊗ Tq(1)⊗ Tq(1) has only (Tq(1)⊗3 : ∆q(3)) = 1 and (Tq(1)⊗3 : ∆q(1)) = 2
as non-zero multiplicities. This means that Tq(3) is a summand of Tq(1)⊗Tq(1)⊗Tq(1). Since
Tq(3) has only (Tq(3) : ∆q(3)) = 1 and (Tq(3) : ∆q(1)) = 1 as non-zero multiplicities (by the
calculation of the periodic Kazhdan–Lusztig polynomials), we have

(39) Tq(1)⊗ Tq(1)⊗ Tq(1) ∼= Tq(3)⊕ Tq(1) ∈ T 1.

Moreover, we have (as we, as usual, encourage the reader to work out)

Tq(1)⊗ Tq(1)⊗ Tq(1)⊗ Tq(1) ∼= (Tq(4)⊕ Tq(0))⊕ (Tq(2)⊕ Tq(2)⊕ Tq(2)) ∈ T 0 ⊕ T 2.

To illustrate how this decomposition depends on l: Assume now that l > 3. Then, which
can be verified similarly as in Example 3.19, the Uq-tilting module Tq(3) is in the fundamental
alcove A0. Thus, by Theorem 3.21, Tq(3) is simple as in the generic case. Said otherwise, we
have Tq(3) ∼= ∆q(3). Hence, in the same spirit as above, we obtain as in the generic case

(40) Tq(1)⊗ Tq(1)⊗ Tq(1) ∼= Tq(3)⊕ (Tq(1)⊕ Tq(1)) ∈ T 3 ⊕ T 1

in contrast to the decomposition in (39). N

4. Cellular structures: examples and applications

4A. Cellular structures using Uq-tilting modules. The main result of [6] is the following.
To state it, we need to specify the cell datum. Set

(P,≤) = ({λ ∈ X+ | (T : ∇q(λ)) = (T : ∆q(λ)) 6= 0},≤),

where ≤ is the usual partial ordering on X+, see at the beginning of Section 2. Note that P
is finite since T is finite-dimensional. For each λ ∈ P define

Iλ = {1, . . . , (T : ∇q(λ))} = {1, . . . , (T : ∆q(λ))} = J λ,
and let i : EndUq(T ) → EndUq(T ), φ 7→ D(φ) denote the K-linear anti-involution induced by

the duality functor D(·). For f
λ
j and gλi as in [6, Section 3A] set

cλij = gλi ◦ i(gλj ) = gλi ◦ f
λ
j , for λ ∈ P, i, j ∈ Iλ.

Finally let C : Iλ × Iλ → EndUq(T ) be given by (i, j) 7→ cλij . Now we are ready to state the

main result from [6].

Theorem 4.1. ([6, Theorem 3.9]) The quadruple (P, I, C, i) is a cell datum for EndUq(T ).�

We also use the following consequences of Theorem 4.1. First note that each cellular algebra
gives rise to a construction of simple modules which we denote by L(λ) for λ ∈ P0 ⊂ X+ in
case of EndUq(T ). (The precise definition can be found in [6, Section 4].) Then:

Theorem 4.2. ([6, Theorem 4.12]) If λ ∈ P0, then dim(L(λ)) = mλ, where mλ is the
multiplicity of the indecomposable tilting module Tq(λ) in T . �

Theorem 4.3. ([6, Theorem 4.13]) The cellular algebra EndUq(T ) is semisimple if and only
if T is a semisimple Uq-module. �
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4B. (Graded) cellular structures and the Temperley–Lieb algebras: a comparison.
We want to present one explicit example, the Temperley–Lieb algebras, which is of particular
interest in low-dimensional topology and categorification. Our main goal is to construct new
(graded) cellular bases, and use our approach to establish semisimplicity conditions, and
construct and compute the dimensions of its simple modules in new ways.

Fix δ = q + q−1 for q ∈ K∗.3 Recall that the Temperley–Lieb algebra T Ld(δ) in d strands
with parameter δ is the free diagram algebra over K with basis consisting of all possible
non-intersecting tangle diagrams with d bottom and top boundary points modulo boundary
preserving isotopy and the local relation for evaluating circles given by the parameter4 δ:

= δ = q + q−1 ∈ K.

The algebra T Ld(δ) is locally generated by

1 =

1 i− 1 i i+ 1i+ 2 d

1 i− 1 i i+ 1i+ 2 d

· · · · · · , Ui =

1 i− 1 i i+ 1i+ 2 d

1 i− 1 i i+ 1i+ 2 d

· · · · · ·

for i = 1, . . . , d − 1 called identity 1 and cap-cup Ui (which takes place between the strand i
and i+ 1). For simplicity, we suppress the boundary labels in the following.

The multiplication y ◦ x is giving by stacking diagram y on top of diagram x. For example

◦ = ◦ = = ∈ T L3(δ).

Recall from [6, 5A.3] (whose notation we use now; in particular, Uq = Uq(sl2)) that, by
quantum Schur–Weyl duality, we can use Theorem 4.1 to obtain a cellular basis of T Ld(δ).
The aim now is to compare our cellular bases to the one given by Graham and Lehrer in [14,
Theorem 6.7], where we point out that we do not obtain their cellular basis: our cellular basis
depends for instance on whether T Ld(δ) is semisimple or not. In the non-semisimple case, at
least for K = C, we obtain a non-trivially Z-graded cellular basis in the sense of [15, Definition
2.1], see Proposition 4.21.

Before stating our cellular basis, we provide a criterion which tells precisely whether T Ld(δ)
is semisimple or not. Recall that the following known criteria whether Weyl modules ∆q(i)

3The sl2 case works with any q ∈ K∗, including even roots of unity, see e.g. [7, Definition 2.3].
4We point out that there are two different conventions about circle evaluations in the literature: evaluating

to δ or to −δ. We use the first convention because we want to stay close to the cited literature.
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are simple, see e.g. [7, Proposition 2.7] or [4, Corollary 4.6]:

q 6= ±1: ∆q(i) is a simple Uq-module ⇔
{
q is not a root of unity,

q2l = 1 and (i < l or i ≡ −1 mod l).

q = ±1: ∆q(i) is a simple Uq-module ⇔
{

char(K) = 0,

char(K) = p and (i < p or i ≡ −1 mod p).

We use this criteria to prove the following.

Proposition 4.4. (Semisimplicity criterion for T Ld(δ).) We have the following.

(a) Let δ 6= 0. Then T Ld(δ) is semisimple if and only if [i] = q1−i + · · ·+ qi−1 6= 0 for all
i = 1, . . . , d if and only if q is not a root of unity with d < l = ord(q2), or q = 1 and
char(K) > d.

(b) Let char(K) = 0. Then T Ld(0) is semisimple if and only if d is odd (or d = 0).
(c) Let char(K) = p > 0. Then T Ld(0) is semisimple if and only if d ∈ {1, 3, 5, . . . , 2p−1}

(or d = 0). �
Proof. (a): We want to show that T = V ⊗d decomposes into simple Uq-modules if and only if
d < l, or q = 1 and char(K) > d, which is clearly equivalent to the non-vanishing of the [i]’s.

Assume that d < l. Since the maximal Uq-weight of V ⊗d is d and since all Weyl Uq-modules

∆q(i) for i < l are simple, we see that all indecomposable summands of V ⊗d are simple.
Otherwise, if l ≤ d, then Tq(d) (or Tq(d − 2) in the case d ≡ −1 mod l) is a non-simple,

indecomposable summand of V ⊗d (note that this arguments fails if l = 2, i.e. δ = 0).
The case q = 1 works similarly, and we can now use Theorem 4.3 to finish the proof of (a).
(b): Since δ = 0 if and only if q = ± 2

√
−1, we can use the linkage from e.g. [7, Theorem

2.23] in the case l = 2 to see that T = V ⊗d decomposes into a direct sum of simple Uq-modules
if and only if d is odd (or d = 0). This implies that T Ld(0) is semisimple if and only if d is
odd (or d = 0) by Theorem 4.3.

(c): If char(K) = p > 0 and δ = 0 (for p = 2 this is equivalent to q = 1), then we have
∆q(i) ∼= Lq(i) if and only if i = 0 or i ∈ {2apn − 1 | n ∈ Z≥0, 1 ≤ a < p}. In particular, this
means that for d ≥ 2 we have that either Tq(d) or Tq(d − 2) is a simple Uq-module if and

only if d ∈ {3, 5, . . . , 2p− 1}. Hence, using the same reasoning as above, we see that T = V ⊗d

is semisimple if and only if d ∈ {1, 3, 5, . . . , 2p − 1} (or d = 0). By Theorem 4.3 we see that
T Ld(0) is semisimple if and only if d ∈ {1, 3, 5, . . . , 2p− 1} (or d = 0). �
Example 4.5. We have that [k] 6= 0 for all k = 1, 2, 3 is satisfied if and only if q is not a
fourth or a sixth root of unity. By Proposition 4.4 we see that T L3(δ) is semisimple as long as
q is not one of these values from above. The other way around is only true for q being a sixth
root of unity (the conclusion from semisimplicity to non-vanishing of the quantum numbers
above does not work in the case q = ± 2

√
−1). N

Remark 5. The semisimplicity criterion for T Ld(δ) was already already found, using quite
different methods, in [39, Section 5] in the case δ 6= 0, and in the case δ = 0 in [26, Chapter
7] or [30, above Proposition 4.9]. For us it is an easy application of Theorem 4.3. N

A direct consequence of Proposition 4.4 is that the Temperley–Lieb algebra T Ld(δ) for
q ∈ K∗ − {1} not a root of unity is semisimple (or q = ±1 and char(K) = 0), regardless of d.
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4B.1. Temperley–Lieb algebra: the semisimple case. Assume that q ∈ K∗ − {1} is not a root
of unity (or q = ±1 and char(K) = 0). Thus, we are in the semisimple case.

Let us compare our cell datum (P, I, C, i) to the one of Graham and Lehrer (indicated by a
subscript GL) from [14, Section 6]. To this end, let us recall Graham and Lehrer’s cell datum
(PGL, IGL, CGL, iGL). The K-linear anti-involution iGL is given by “turning pictures upside
down”. For example

iGL7−→

For the insistent reader: more formally, the K-linear anti-involution iGL is the unique K-linear
anti-involution which fixes all Ui’s for i = 1, . . . , d− 1.

The data PGL and IGL are given combinatorially: PGL is the set Λ+(2, d) of all Young
diagrams with d nodes and at most two rows. For example, the elements of Λ+(2, 3) are

(41) λ = , µ = ,

where we point out that we use the English notation for Young diagrams. Now IλGL is the set
of all standard tableaux of shape λ, denoted by Std(λ), that is, all fillings of λ with numbers
1, . . . , d (non-repeating) such that the entries strictly increase along rows and columns. For
example, the elements of Std(µ) for µ as in (41) are

(42) t1 = 1 3
2

, t2 = 1 2
3

.

The set PGL is a poset where the order ≤ is the so-called dominance order on Young
diagrams. In the “at most two rows case” this is µ ≤ λ if and only if µ has fewer columns (an
example is (41) with the same notation).

The only thing missing is thus the parametrization of the cellular basis. This works as
follows: fix λ ∈ Λ+(2, d) and assign to each t ∈ Std(λ) a “half diagram” xt via the rule that
one “caps off” the strands whose numbers appear in the second row with the biggest possible
candidate to the left of the corresponding number (going from left to right in the second row).
Note that this is well-defined due to planarity. For example,

(43) s = 1 2 3 6
4 5

 xs = , t = 1 3 4 5
2 6

 xt =

Then one obtains cλst by “turning xs upside down and stacking it on top of xt”. For example,

cλst = iGL(xs) ◦ xt = ◦ =

for λ ∈ Λ+(2, 6) and s, t ∈ Std(λ) as in (43). The map CGL sends (s, t) ∈ IλGL × IλGL to cλst.

Theorem 4.6. ([14, Theorem 6.7]) The quadruple (PGL, IGL, CGL, iGL) is a cell datum for
the algebra T Ld(δ). �
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Example 4.7. For T L3(δ) we have five basis elements, namely

cλcc = , cµt1t1 = , cµt1t2 = , cµt2t1 = , cµt2t2 =

where we use the notation from (41) and (42) (and the “canonical” filling c for λ). N

Let us now compare the cell datum of Graham and Lehrer with our cell datum. We have
the poset PGL consisting of all λ ∈ Λ+(2, d) in Graham and Lehrer’s case and the poset P
consisting of all λ ∈ X+ such that ∆q(λ) is a factor of T in our case.

The two sets are the same: an element λ = (λ1, λ2) ∈ PGL corresponds to λ1 − λ2 ∈ P.
This is clearly an injection of sets. Moreover, ∆q(i)⊗∆q(1) ∼= ∆q(i+ 1)⊕∆q(i− 1) for i > 0
shows surjectivity. Two easy examples are

λ = (λ1, λ2) = (3, 0) = ∈ PGL  λ1 − λ2 = 3 ∈ P,
and

µ = (µ1, µ2) = (2, 1) = ∈ PGL  µ1 − µ2 = 1 ∈ P ,

which fits to the decomposition as in (40).
Similarly, an inductive reasoning shows that there is a factor ∆q(i) of T for any standard

filling for the Young diagram that gives rise to i under the identification from above. Thus,
IGL is also the same as our I.

As an example, we encourage the reader to compare (41) and (42) with (40).
To see that the K-linear anti-involution iGL is also our involution i, we note that we build

our basis from a “top” part gλi and a “bottom” part fλj and i switches top and bottom similarly
as the K-linear anti-involution iGL.

Thus, except for C and CGL, the cell data agree.
In order to state how our cellular basis for T Ld(δ) looks like, recall the following definition(s)

of the (generalized) Jones–Wenzl projectors.

Definition 4.8. (Jones–Wenzl projectors.) The d-th Jones–Wenzl projector, which we
denote by JWd ∈ T Ld(δ), is recursively defined via the recursion rule

· · ·

· · ·

JWd =

· · ·

· · ·

JWd−1 − [d− 1]

[d]

· · ·

· · ·

JWd−1

JWd−1

where we assume that JW1 is the identity diagram in one strand. N

Note that the projector JWd can be identified with the projection of T = V ⊗d onto its
maximal weight summand. These projectors were introduced by Jones in [20] and then further
studied by Wenzl in [38]. In fact, they can be generalized as follows.

Definition 4.9. (Generalized Jones–Wenzl projectors.) Given any d-tuple (with d > 0)

of the form ~ε = (ε1, . . . , εd) ∈ {±1}d such that
∑k

j=1 εj ≥ 0 for all k = 1, . . . , d. Set i =
∑d

j=1 εj .
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We define recursively two certain “half-diagrams” t(ε1,...,εd,±1) via

t(ε1,...,εd,+1) = · · ·

· · ·

· · ·

tε

JWi+1

, t(ε1,...,εd,−1) = · · ·

· · ·

· · ·

tε

JWi−1

where t(+1) ∈ T L1(δ) is defined to be the identity element. By convention, t(ε1,...,εd,−1) = 0
if i − 1 < 0. Note that t(ε1,...,εd,±1) has always d + 1 bottom boundary points, but i ± 1 top
boundary points.

Then we assign to any such ~ε a generalized Jones–Wenzl “projector” JW~ε ∈ T Ld(δ) via

JW~ε = i(t~ε) ◦ t~ε,
where i is, as above, the K-linear anti-involution that “turns pictures upside down”. N

Example 4.10. We point out again that the t~ε’s are “half-diagrams”. For example,

t(+1) = , t(+1,+1) = − 1

[2]
, t(+1,−1) = , t(+1,−1,+1) =

where we can read-off the top boundary points by summing the εi’s. N

Note that the Jones–Wenzl projectors are special cases of the construction in Definition 4.9,
i.e. JWd = JW(+1,...,+1). Moreover, while we think about the Jones–Wenzl projectors as pro-

jecting to the maximal weight summand of T = V ⊗d, the generalized Jones–Wenzl projectors

JW~ε project to the summands of T = V ⊗d of the form ∆q(i) where i is as above i =
∑d

j=1 εj .
To be more precise, we have the following.

Proposition 4.11. (Diagrammatic projectors.) There exist non-zero scalars a~ε ∈ K
such that JW ′~ε = a~εJW~ε are well-defined idempotents forming a complete set of mutually
orthogonal, primitive idempotents in T Ld(δ). �

Proof. That they are well-defined follows from the fact that no (appearing) quantum number
vanishes in the semisimple case, cf. Proposition 4.4.

The other statements can be proven as in [11, Proposition 2.19 and Theorem 2.20] (beware
that they call these projectors higher Jones–Wenzl projectors), since their arguments work –
mutatis mutandis – in the semisimple case as well. �

One can also show that the sum of the JW ′~ε’s for fixed i =
∑d

j=1 εj are central. These

should be thought of as being the projectors to the isotypic ∆q(i)-components of T = V ⊗d.

Example 4.12. Recall from Example 3.27 that we have the following decompositions.

(44) V ⊗1 = ∆q(1), V ⊗2 ∼= ∆q(2)⊕∆q(0), V ⊗3 ∼= ∆q(3)⊕∆q(1)⊕∆q(1).
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Moreover, there are the following ~ε vectors.

~ε1 = (+1), ~ε2 = (+1,+1), ~ε3 = (+1,−1),

~ε4 = (+1,+1,+1), ~ε5 = (+1,+1,−1), ~ε6 = (+1,−1,+1).

(We point out that (+1,−1,−1) does not satisfy the sum property from Definition 4.9.)
By construction, JW ′~ε1 = JW~ε1 is the identity strand in one variable and hence, is the

projector on the unique factor in (44). Moreover, we have

JW2 = JW ′~ε2 = JW~ε2 = − 1

[2]
, JW~ε3 =

where JW~ε2 is the projection onto ∆q(2) and JW~ε3 is the (up to scalars) projector onto ∆q(0)
as in (44), respectively. Furthermore, we have

JW3 = JW ′~ε4 = JW~ε4 = − [2]

[3]

(
+

)
+

1

[3]

(
+

)

is the projection to the ∆q(3) summand in (44). The other two (up to scalars) projectors are

JW~ε5 = − 1

[2]

(
+

)
+

1

[2]2
, JW~ε6 =

as we invite the reader to check. Note that their sum (up to scalars) is the projector on the
isotypic component ∆q(1)⊕∆q(1) in (44). N

Proposition 4.13. ((New) cellular bases.) The datum given by the quadruple (P, I, C, i)
for T Ld(δ) ∼= EndUq(T ) is a cell datum for T Ld(δ). Moreover, C 6= CGL for all d > 1 and
all choices involved in the definition of im(C). In particular, there is a choice such that all
generalized Jones–Wenzl projectors JW ′~ε are part of im(C). �

Proof. That we get a cell datum as stated follows from Theorem 4.1 and the discussion above.
That our cellular basis C will never be CGL for d > 1 is due to the fact that Graham and

Lehrer’s cellular basis always contains the identity (which corresponds to the unique standard
filling of the Young diagram associated to λ = (d, 0)).

In contrast, let λk = (d− k, k) for 0 ≤ k ≤ bd2c. Then

(45) T = V ⊗d ∼= ∆q(d)⊕
⊕

0<k≤b d
2
c
∆q(d− 2k)⊕mλk

for some multiplicities mλk ∈ Z>0, we see that for d > 1 the identity is never part of any of

our bases: all the ∆q(i)’s are simple Uq-modules and each ckij factors only through ∆q(k). In

particular, the basis element cλ11 for λ = λd has to be (a scalar multiple) of JW(+1,...,+1).
As in [6, 5A.1] we can choose for C an Artin-Wedderburn basis of EndUq(T ) ∼= T Ld(δ).
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By our construction, all basis elements ckij are block matrices of the form



Md 0 · · · 0
0 Md−2 · · · 0
...

...
. . .

...
0 0 · · · Mε




with ε = 0 if d is even and ε = 1 if d is odd (where we regard V as decomposed as in (45),
the indices should indicate the summands and Md−2k is of size mk ×mk).

Clearly, the block matrices of the form Ek
ii for i = 1, . . . ,mk with only non-zero entry in

the i-th column and row of Mk form a set of mutually orthogonal, primitive idempotents.
Hence, by Proposition 4.11, these have to be the generalized Jones–Wenzl projectors JW ′~ε for

k =
∑k

j=1 εj up to conjugation. �

Example 4.14. Let us consider T L3(δ) as in Example 4.7 for any q ∈ K∗ − {1,± 2
√
−1} that

is not a critical value as in Example 4.5. Then T L3(δ) is semisimple by Proposition 4.4.
In particular, we have a decomposition of V ⊗3 as in (44). Fix the same order as therein.

Identifying λ, µ with 3, 1, we can choose five basis elements

cλcc = E3
11, cµt1t1 = E1

11, cµt1t2 = E1
12, cµt2t1 = E1

21, cµt2t2 = E1
22,

where we use the notation from (41) and (42) (and the “canonical” filling c for λ) again.
Note that cλcc corresponds to the Jones–Wenzl projector JW3 = JW ′(+1+1+1), c

µ
t1t1

corre-

sponds to JW ′(+1+1−1) and cµt2t2 corresponds to JW ′(+1−1+1). Compare to Example 4.12. N

Note the following classification result (see for example [30, Corollary 5.2] for K = C).

Corollary 4.15. We have a complete set of pairwise non-isomorphic, simple T Ld(δ)-modules
L(λ), where λ = (λ1, λ2) is a length-two partition of d. Moreover, dim(L(λ)) = |Std(λ)|,
where Std(λ) is the set of all standard tableaux of shape λ. �
Proof. This follows directly from Proposition 4.13, the classification of simple modules for
EndUq(T ), see [6, Theorem 4.11], and Theorem 4.2 because we have mλ = |Std(λ)|. �
Example 4.16. The Temperley–Lieb algebra T L3(δ) in the semisimple case has

dim
(
L
( ))

= 1, dim

(
L

( ))
= 2.

Compare to (42). N
4B.2. Temperley–Lieb algebra: the non-semisimple case. Let us assume that we have fixed
q ∈ K∗ − {1,± 2

√
−1} to be a critical value such that [k] = 0 for some k = 1, . . . , d. Then, by

Proposition 4.4, the algebra T Ld(δ) is no longer semisimple. In particular, to the best of our
knowledge, there is no diagrammatic analog of the Jones–Wenzl projectors in general.

Proposition 4.17. ((New) cellular basis — the second.) The datum (P, I, C, i) with C
as in Theorem 4.1 for T Ld(δ) ∼= EndUq(T ) is a cell datum for T Ld(δ). Moreover, C 6= CGL for
all d > 1 and all choices involved in the definition of our basis. Thus, there is a choice such
that all generalized, non-semisimple Jones–Wenzl projectors are part of im(C). �
Proof. As in the proof of Proposition 4.13 and left to the reader. �
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Hence, directly from Proposition 4.17, the classification of simple modules for EndUq(T ),
see [6, Theorem 4.11], and Theorem 4.2, we obtain:

Corollary 4.18. We have a complete set of pairwise non-isomorphic, simple T Ld(δ)-modules
L(λ), where λ = (λ1, λ2) is a length-two partition of d. Moreover, dim(L(λ)) = mλ, where mλ

is the multiplicity of Tq(λ1 − λ2) as a summand of T = V ⊗d. �
Example 4.19. If q is a complex, primitive third root of unity, then T L3(δ) still has the
same indexing set of its simples as in Example 4.16, but now both are of dimension one, since
we have a decomposition of T = V ⊗3 as in (39). N
Remark 6. In the case K = C we can give a dimension formula, namely

dim(L(λ)) = mλ =

{
|Std(λ)|, if λ1 − λ2 ≡ −1 mod l,∑

µ=w.λ,µ≥λ∈Λ+(2,d)(−1)`(w)|Std(µ)|, if λ1 − λ2 6≡ −1 mod l,

where w ∈Wl is the affine Weyl group and `(w) is the length of a reduced word w ∈Wl. This
matches the formulas from, for example, [3, Proposition 6.7] or [30, Corollary 5.2]. N

Note that we can do better: as in Example 3.22 one gets a decomposition

(46) T ∼= T −1 ⊕ T 0 ⊕ T 1 ⊕ · · · ⊕ T l−3 ⊕ T l−2 ⊕ T l−1,

where the blocks T −1 and T l−1 are semisimple if K = C. Compare also to [7, Lemma 2.25].
Fix K = C. As explained in [7, Section 3.5] each block in the decomposition (46) can be

equipped with a non-trivial Z-grading coming from the zig-zag algebra from [17]. Hence, we
have the following.

Lemma 4.20. The C-algebra EndUq(T ) can be equipped with a non-trivial Z-grading. Thus,
T Ld(δ) over C can be equipped with a non-trivial Z-grading. �
Proof. The second statement follows directly from the first using quantum Schur–Weyl duality.
Hence, we only need to show the first.

Note that T = V ⊗d decomposes as in (45), but with Tq(k)’s instead of ∆q(k)’s, and we can
order this decomposition by blocks. Each block carries a Z-grading coming from the zig-zag
algebra, as explained in [7, Section 3]. In particular, we can choose the basis elements cλij in
such a way that we get the Z-graded basis obtained in Corollary 4.23 therein. Since there is
no interaction between different blocks, the statement follows. �

Recall from [15, Definition 2.1] that a Z-graded cell datum of a Z-graded algebra is a cell
datum for the algebra together with an additional degree function deg :

∐
λ∈P Iλ → Z, such

that deg(cλij) = deg(i) + deg(j). For us the choice of deg(·) is as follows.

If λ ∈ P is in one of the semisimple blocks, then we simply set deg(i) = 0 for all i ∈ Iλ.
Assume that λ ∈ P is not in the semisimple blocks. It is known that every Tq(λ) has

precisely two Weyl factors. The gλi that map ∆q(λ) into a higher Tq(µ) should be indexed by

a 1-colored i whereas the gλi mapping ∆q(λ) into Tq(λ) should have 0-colored i. Similarly for

the fλj ’s. Then the degree of the elements i ∈ Iλ should be the corresponding color. We get

the following. (Here C is as in Theorem 4.1.)

Proposition 4.21. (Graded cellular basis.) The datum (P, I, C, i) supplemented with the
function deg(·) from above is a Z-graded cell datum for the C-algebra T Ld(δ) ∼= EndUq(T ).�
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Proof. The hardest part is cellularity which directly follows from Theorem 4.1. That the
quintuple (P, I, C, i,deg) gives a Z-graded cell datum follows from the construction. �
Example 4.22. Let us consider T L3(δ) as in Example 4.14, namely q being a complex,
primitive third root of unity. Then T L3(δ) is non-semisimple by Proposition 4.4. In particular,
we have a decomposition of V ⊗3 different from (44), namely as in (39). In this case P = {1, 3},
I3 = {1, 3} and I1 = {1}. By our choice from above deg(i) = 0 if i = 1 ∈ I1 or i = 3 ∈ I3,
and deg(i) = 1 if i = 1 ∈ I3. As in Example 4.14 (if we use the ordering induced by
the decomposition from (39)), we can choose basis elements as c3

11 = E3
11, c

3
12 = E1

12, c
3
21 =

E1
21, c

3
22 = E1

22, c
1
11 = E1

33, where we use the notation from (41) and (42) again. These are of
degrees 0, 1, 1, 2 and 0. N
Remark 7. Our grading and the one found by Plaza and Ryom-Hansen in [29] agree (up to
a shift of the indecomposable summands). To see this, note that our algebra is isomorphic to
the algebra K1,n studied in [9] which is by (4.8) therein and [10, Theorem 6.3] a quotient of
some particular cyclotomic KL–R algebra (the compatibility of the grading follows for example
from [16, Corollary B.6]). The same holds, by construction, for the grading in [29]. N
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