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Abstract

We study the Ext-algebra of the direct sum of all parabolic Verma modules in
the principal block of the Bernstein-Gelfand-Gelfand category O for the her-
mitian symmetric pair (gln+m, gln ⊕ glm) and present the corresponding quiver
with relations for the cases n = 1, 2. The Kazhdan-Lusztig combinatorics is
used to deduce a general vanishing result for the higher multiplications in the
A∞-structure of a minimal model. An explicit calculations of the higher multi-
plications with non-vanishing m3 is included.
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Introduction

In 1988 Shelton determined inductively the graded dimension of the spaces of
extensions Extk(M(λ),M(µ)) =

⊕
k≥0 Extk(M(λ),M(µ)) of parabolic Verma

modules M(λ) and M(µ) in the parabolic category Op for the Hermitian sym-
metric cases [Sh]. More recently Biagioli reformulated the result combinatorially
and obtained a closed dimension formula [Bi]. A nice feature is the fact that
(parabolic) Verma modules form an exceptional sequence; i.e. they are labeled
by a partially ordered set (Λ,≤) of highest weights such that for all k ≥ 0 the
following holds:

Hom(M(λ),M(λ)) = C and Extk(M(λ),M(µ)) = 0 unless λ ≤ µ.

A priori the set Λ is in�nite, but the category Op decomposes into indecom-
posable summands, so-called blocks, each containing only �nitely many of the
parabolic Verma modules. TakingM to be the direct sum of those which appear
in the principal block yields a �nite dimensional vector space Ext(M,M) which
decomposes as the direct sum of eµExt(M,M)eλ = Ext(M(µ),M(λ)), where eµ
is the projection onto M(µ) along the sum of the other direct factors of M . It
comes along with a natural algebra structure (the Yoneda product) which can
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be obtained by viewing Ext(M,M) as the homology of the algebra Hom(P•, P•)
with P• a projective resolution of M ; the multiplication is given by the com-
position of maps between complexes. The construction of these projective res-
olutions and chain maps requires quite detailed knowledge of the projective
modules and morphisms between them. Note that already the question about
non-vanishing Hom-spaces between parabolic Verma modules is non-trivial (cf.
[Bo] or [Hu, Theorem 9.10]). The aim of this paper is to explore this Ext-
algebra in more detail for the Hermitian symmetric case of (glm+n, glm ⊕ gln).
In [BS3] Brundan and the second author developed a combinatorial description
of the category Op for g = glm+n and p the parabolic subalgebra with Levi
component glm ⊕ gln via a slight generalization of Khovanov's diagram algebra
(cf. Theorem 3.1). Using these combinatorial techniques along with classical
Lie theoretical results, provides enough tools to compute projective resolutions
and their morphisms. As a crucial tool and byproduct we obtain a version of
the Delorme-Schmid theorem (cf. [De], [Sc]) in our situation. The main results
of the �rst part of the paper are Theorems 4.6 and 4.7, which give an explicit
description of the Ext-algebra in terms of a path algebra of a quiver with rela-
tions for the cases n = 1 and n = 2, respectively. The �rst algebra also occurs
in the context of knot Floer Homology, [KhSe], see also [AK]. For a connection
to sutured Floer homology we refer to [GW].

In the context of Fukaya categories these algebras come along with a natural
A∞-algebra structure which encodes more information about the object. An
A∞-algebra, also known in topology as a strongly homotopic associative alge-
bra, has higher multiplications satisfying so-called Stashe� relations (cf. [Ke]).
As Keller for instance points out, working with minimal models provides the
possibility to recover the algebra of complexes �ltered by a family of modules
M(i) from some A∞-structure on Ext(

⊕
M(i),

⊕
M(i)). This A∞-structure

is constructed in the form of a minimal model, i.e. deduced from an algebra
structure on H∗(Hom(

⊕
P (i)•,

⊕
P (i)•)). In particular, there is a natural A∞-

structure on our space of extensions Ext(M,M). Since the projective objects
are �ltered by parabolic Verma modules and therefore parabolic Verma modules
generate the bounded derived category Db(Op) it is of interest to know more
about these A∞-structures. In the second part of the paper we construct an
explicit minimal model for our Ext-algebra from above. The results from the
�rst part, in particular the explicit construction of projective resolutions, allow
us to analyse the higher multiplications. For the construction of the minimal
models we mimic the approach of [LPWZ] and combine formulas obtained by
Merkulov [Me] (for the case of superalgebras) and Kontsevich and Soibelman
[KoSo] (for the F2-case). As for the Ext-algebra structure itself we keep track
of all the signs (which sometimes leads to tedious computations). Using these
techniques, we achieve the �rst vanishing theorem (Theorem 5.7) in case n = 1.
In this theorem we get the formality of the Ext-algebra, i.e. we construct a
minimal model with vanishing mk for k ≥ 3. For n = 2, in the second vanishing
theorem (Theorem 5.9) we have an A∞-structure with non-vanishing m3 but
vanishing mk for k ≥ 4. Thus, we obtain an example of an A∞-algebra with
non-trivial higher multiplications. The main result of the paper is presented in
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the general vanishing theorem (Theorem 5.6). It says that for arbitrary n we
get a minimal model with vanishing mk for k ≥ n2 + 2. A crucial ingredient
in the proof is a detailed analysis of the Kazhdan-Lusztig polynomials forcing
higher multiplications to vanish. This article is based on [Kl] and focuses on pre-
senting the main results and techniques. Some of the (very) technical detailed
calculations are therefore omitted, but can be found in [Kl].
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1. Preliminaries and Category Op

We �rst recall the de�nition of the Bernstein-Gelfand-Gelfand category O.
For a more detailed treatment see [Hu], [MP].

Let g be a �nite dimensional reductive Lie algebra over C and h ⊂ b ⊂ g �xed
Cartan and Borel subalgebras. Denote by Φ ⊂ h∗ the root system of g relative
to h with the sets ∆ ⊂ Φ+ ⊂ Φ of simple and positive roots respectively. For
α ∈ Φ we have the root space gα and the coroot αˇ∈ h normalized by α(α )̌ = 2.
Let g = n−⊕h⊕n+ be the triangular decomposition into negative roots spaces,
Cartan subalgebra and positive root spaces. Denote Λ+ := {λ ∈ h∗|〈λ, α 〉̌ ≥
0 for all α ∈ Φ+}, the set of dominant weights.

Denote by ρ = 1
2

∑
α∈Φ+ α the half-sum of positive roots and by λ0 the zero

weight. Let W be the Weyl group with its usual length function w 7→ l(w) of
taking the length of a reduced expression. We get a natural action of W on
h∗ with �xed point zero. Shifting this �xed point to −ρ de�nes the dot-action
w · λ = w(λ+ ρ)− ρ. where w ∈W,λ ∈ h∗.

For L any Lie algebra we denote by U(L) the universal enveloping algebra.
For λ ∈ h∗ andM an arbitrary U(g)-module the weight space of weight λ relative
to the action of the Cartan subalgebra h is de�ned as

Mλ := {v ∈M | h · v = λ(h)v, ∀ h ∈ h}.

We denote by U(g)−Mod the category of left U(g)-modules.

We �x now a standard parabolic subalgebra p containing b. This corresponds
to a choice of a subset J ⊂ ∆ with associated root system ΦJ ⊂ Φ such that
p = lJ ⊕ uJ with nilradical uJ and Levi subalgebra lJ = h⊕α∈ΦJ

gα.
In particular, the choice p = b corresponds to J = ∅ and lJ = h, whereas

p = g corresponds to J = ∆ and lJ = g. Let Wp be the Weyl group generated
by all α ∈ J . Denote by W p the set of minimal-length coset representatives for
Wp\W , that is

W p = {w ∈W | ∀ α ∈ J : l(sαw) > l(w)}.

De�ne the set of p-dominant weights as

Λ+
J := {λ ∈ h∗|〈λ, α 〉̌ ∈ Z+ for all α ∈ J}.
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Denote by E(λ) the �nite dimensional lJ -module with highest weight λ ∈ Λ+
J .

De�nition 1.1. The category Op is the full subcategory of U(g)−Mod whose
objects M satisfy the following conditions:

O1) M is a �nitely generated U(g)-module;

O2) M is h-semisimple, i.e., M =
⊕

λ∈h∗Mλ;

O3) M is locally p-�nite, i.e. dimC U(p) · v <∞ for all v ∈M .

We recall a few standard results on Op, see [Hu], [R-C] for details.

De�nition 1.2. For λ ∈ Λ+
J we de�ne the parabolic Verma module

M(λ) := U(g)⊗U(pJ ) E(λ).

It has highest weight λ and is the largest quotient contained in Op of the
ordinary Verma module with highest weight λ. In particular, it has a unique
simple quotient which is denoted by L(λ). The L(λ), for λ ∈ Λ+

J constitute
a complete set of non-isomorphic simple objects in Op. The category Op has
enough projective objects; for λ ∈ Λ+

J let P (λ) be the projective cover of L(λ).
The category Op splits into direct summands (so-called `blocks') Op

χ,

Op =
⊕
χ

Op
χ,

indexed by W -orbits under the dot-action. The summand Op
χ is the full sub-

category of modules containing only composition factors of the form L(λ) with
λ ∈ χ ∩ Λ+

J . In particular M(λ) and P (λ) are objects of Op
χ for λ ∈ χ. Let Op

0

be the principal block of Op corresponding to the orbit through zero which has
precisely the L(w · λ0) with w ∈W p as simple objects. Since we work with left
cosets, for better readability we write P (x · λ) =: P (λ.x); similarly for simple
modules and parabolic Verma modules.

Remark 1.3. To combine later on Lie-theoretical results for Op
0(slm+n) with

combinatorial results known for Op′

0 (glm+n) we will tacitly use the standard

equivalence of categories Op′

0 (glm+n) ∼= Op
0(slm+n) where p′ is the parabolic

subalgebra with corresponding Levi component glm ⊕ gln and p = p′ ∩ slm+n.

2. The Ext algebra

We �rst introduce the homological and internal shift functors, [i] and 〈i〉 for
i ∈ Z, on the category of complexes:

Convention 2.1. For a complex C• = (C•, d•) de�ne C[i]• by C[i]j = Cj−i
with di�erential d[i]j = (−1)idj . For M a graded A-module de�ne the internal
shift M〈i〉 by M〈i〉j = Mj−i. We denote by C•〈i〉 the (internally) shifted
complex C• obtained by just shifting each object; the di�erential maps stay
homogeneous of degree zero.
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Let A,B ∈ Ob(A) be objects in an abelian category A and assume that
A and B have �nite projective dimension. Given projective resolutions P•
and Q• of A and B, respectively, we de�ne a di�erential graded structure on
Hom(P•, Q•) with Hom(P•, Q•)

r =
∏
p Hom(Pp, Qp+r) and di�erential dp(f) =

d◦f − (−1)pf◦d (c.f. [GM, III.6.13]). The space of extensions Ext can then be
computed using the derived category,

Extk(A,B) = HomD(A)(A[0], B[k]) =HomD(A)(P•[0], Q•[k])

= HomK(A)(P•[0], Q•[k]) =HomK(A)(P•, Q•)[k]

= H0(Hom(P•, Q•)[k]) =Hk(Hom(P•, Q•)),

where the third equality holds because P• is a bounded complex of projectives.
In other words, Extk(A,B) can be determined by �rst computing the homomor-
phism spaces of the projective resolutions and afterwards taking its cohomology.
Cycles in Hom(P•, Q•) are chain maps (according to the degree commuting or
anticommuting) and boundaries are homotopies (up to sign). If considered as
chain maps between translated complexes (i.e. in HomDb(A)(P•[0], Q•[k])) with
the sign convention 2.1, the cycles become commuting chain maps and bound-
aries stay usual homotopies.

We are now interested in the case A = B and the algebra Extk(A,A) =
Hk(Hom(P•, P•)). The multiplication in Ext(A,A) is induced from the multipli-
cation in the algebra Hom(P•, P•), where it is given by composing of chain maps.
Multiplication will be written from left to right, i.e. for α, β ∈ Hom(P•, P•) we
have (α · β)(x) = β(α(x)).

If A =
⊕
α∈I

Aα and Pα• is a projective resolution of Aα with corresponding

decomposition P• =
⊕
α∈I

Pα• then Idα = [id] ∈ Ext0(Aα, Aα). The elements Idα

form a system of mutual orthogonal idempotents, hence we can write

Extk(A,A) =
⊕
α,β∈I

Idα Extk(Aα, Aβ) Idβ .

It is then enough to determine Extk(Aα, Aβ) for any k, α, β and the products

of elements x ∈ Extk(Aα, Aβ) and y ∈ Extl(Aβ , Aγ), interpreting their product
as

x · y = Idα x Idβ Idβ y Idγ ∈ Extk+l(A,A).

3. Op(glm+n(C)) via Khovanov's diagram algebra

We specialize now our setup to g = glm+n(C) with the standard Borel subal-
gebra b given by upper triangular matrices containing the Cartan h of diagonal
matrices. Let p be the parabolic subalgebra associated to the Levi subalgebra
l = glm(C)⊕ gln(C). Then our key tool is the following special case of the main
theorem from [BS3], �rst observed in [St]:

5



∧ ∧ ∨ ∨ ∨· · ·
−2−1 5 6 · · ·

Figure 1: the zero weight for n = 2 and m = 3

Theorem 3.1. There is an equivalence of categories from the principal block
of Op to the category of �nite dimensional left modules over the Khovanov dia-
gram algebra, Kn

m −mod, sending the simple module L(λ) ∈ Op to the simple
module L(λ) ∈ Kn

m−mod, the parabolic Verma module M(λ) to the cell module
M(λ) and the indecomposable projectives to the corresponding indecomposable
projectives.

Here Kn
m is the algebra de�ned diagrammatically in [BS3] with an explicit

distinguished basis given by certain diagrams (see below) and a multiplication
de�ned by an explicit �surgery� construction which can be expressed in terms of
an extended 2-dimensional TQFT construction, [St], generalizing a construction
of Khovanov [Kh]. The distinguished basis is in fact a (graded) cellular basis in
the sense of Graham and Lehrer [GL] in the graded version of Hu and Mathas
[HM]. The algebra is shown to be quasi-hereditary in [BS1]. Hence we have
cell or standard modules M(λ), their projective covers P (λ) and irreducible
quotients L(λ). This is meant by the notation used in the theorem.

3.1. The algebra Kn
m and its basic properties

For the construction of Kn
m, we recall from [BS1] the notions of weights,

cup/cap/circle diagrams adapted to our situation. Let λ ∈ Λ+
J be the highest

weight of a simple module in Op
0 = Op(glm+n(C)0 and let

ρ = εm+n−1 + 2εm+n−2 + · · ·+ (m+ n− 1)ε1 ∈ h∗.

The (diagrammatical) weight associated to λ is obtained by labeling the number
i on the real line by ∨ if i belongs to I∨(λ) and by ∧ if i belongs to I∧(λ)
respectively, where

I∨(λ) := {(λ+ ρ, ε1), . . . , (λ+ ρ, εm)}
I∧(λ) := {(λ+ ρ, εm+1), . . . , (λ+ ρ, εm+n)}.

Let Λnm be the set of diagrammatical weights obtained in this way. Note that the
labels are always on the (m+n) places i ∈ I = {0, . . . ,m+n− 1} which we call
vertices. The diagrammatical weight associated to λ0 is given by putting all ∧'s
to the left and all ∨'s to the right, see Figure 1. In fact, Λnm consists precisely of
the diagrams obtained by permuting the n ∧'s andm ∨'s establishing a bijection
between the highest weights of parabolic Verma modules in Op

0 and elements in
Λnm. The dot-action corresponds then to permuting the labels; swapping ∨'s to
the right means getting bigger in the Bruhat order, see [BS3, Section 1].
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∧ ∨ ∨ ∧ ∨ ∧ ∨ ∧ ∨ ∨ ∧ ∨ ∧ ∨

Figure 2: An oriented cup diagram and an oriented circle diagram.

We �x the above bijection and do not distinguish in notation between weights
and diagrammatical weights. For λ = λ0.x with x ∈ W p we write l(λ) for l(x).
For each i ∈ I de�ne the relative length

li(λ, µ) := #{j ∈ I | j ≤ i and vertex j of λ is labeled ∨}
−#{j ∈ I | j ≤ i and vertex j of µ is labeled ∨} (3.1)

and note that l(λ)− l(µ) =
∑
i∈I `i(λ, µ) by [BS1, Section 5].

A cup diagram is a diagram obtained by attaching rays and �nitely many
cups (lower semicircles) to the vertices I, so that cups join two vertices i ∈ I,
rays join vertices i ∈ I down to in�nity, and rays or cups do not intersect other
rays or cups. A cap diagram is the horizontal mirror image of a cup diagram,
so caps (i.e. upper semicircles) instead of cups are used. The mirror image of a
cup (resp. cap) diagram c is denoted by c∗.

If c is a cup diagram and λ a weight in Λnm, we can glue c and λ and obtain
a new diagram denoted cλ. It is called an oriented cup diagram if

• each cup is oriented, i.e. one of its vertices is labeled ∨, and one ∧;

• there are not two rays in c labeled ∨∧ in this order from left to right.

An example is given in Figure 2.
Similarly we can glue λ to a cap diagram c. The result λc is called oriented

cap diagram if c∗λ is an oriented cup diagram. A circle diagram is obtained by
gluing a cup and a cap diagram at the vertices I. It consists of circles and lines.
Gluing an oriented cap diagram with an oriented cup diagram along the same
weight gives an oriented circle diagram. For an example, see Figure 2.

The degree of an oriented cup/cap diagram aλ (or λb) means the total num-
ber of oriented cups (caps) that it contains. So in Kn

m one has deg(aλ) ≤ n,
since there are at most n cups. The degree of an oriented circle diagram aλb is
de�ned as the sum of the degree of aλ and the degree of λb. The cup diagram
associated to a weight λ is the unique cup diagram λ such that λλ is an oriented
cup diagram of degree 0. (For an explicit construction: Take any two neighbor-
ing vertices labeled by ∨∧ and connect them by a cup. Repeat this procedure
as long as possible, ignoring vertices which are already joined to others. Finally
draw rays to all vertices which are left.) The cap diagram associated to a weight
λ is de�ned as λ := (λ)∗. The vector space underlying Kn

m has a basis

{(aλb) |for all oriented circle diagrams with λ ∈ Λnm} .
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Each basis vector has a well-de�ned degree, turning the vector space into a
graded vector space equipped with a distinguished homogeneous basis. The
element eλ is de�ned to be the diagram λλλ. The product of two circle diagrams
aλb and cµd is zero except for b = c∗. The multiplication of aλb and b∗µd works
by the rules of the generalized surgery procedure de�ned in [BS1, Section 3
and Theorem 6.1.]. The vectors {eα|α ∈ Λnm} form a complete set of mutually
orthogonal idempotents in Kn

m. We get

Kn
m =

⊕
α,β∈Λn

m

eαK
n
meβ

where eαK
n
meβ has basis

{
(αλβ) |λ ∈ Λnm such that the diagram is oriented} .

3.2. Modules

Theorem 3.1 establishes an equivalence of categories between Op
0 and the

category of �nite dimensional Kn
m-modules. Following [BS1], we consider the

category Kn
m − gmod of �nite dimensional graded left Kn

m-modules which can
be seen as a graded version of Op

0 with the following important objects:

• The simple modules L(λ) with λ ∈ Λnm.
These are 1-dimensional modules concentrated in degree zero. The idem-
potent eλ ∈ Kn

m acts by the identity, all other eµ by zero. Shifting the
internal degree gives all simple objects, L(λ)〈i〉, i ∈ Z.

• The projective cover P (λ) = Kn
meλ of the simple module L(λ) has homo-

geneous basis{
(αµλ) | for all α, µ ∈ Λnm such that the diagram is oriented} ;

with the action induced from the diagrammatical multiplication in the
algebra. By shifting the internal degree one obtains a full set of indecom-
posable graded projective modules.

• The cell or standard modules M(µ) with homogeneous basis{
(cµ|

∣∣ for all oriented cup diagrams cµ
}

such that (aλb)(cµ|) = (aµ|) or 0 depending on the elements.

After forgetting the grading, these modules correspond via Corollary 3.1 to
simple modules, projectives and Verma modules in the principal block of Op.

3.3. q-decomposition numbers

We have the following theorems about cell module �ltrations of projectives
and Jordan-Hölder �ltrations of cell modules, which say that Kn

m is quasi-
hereditary in the sense of Cline, Parshall and Scott [CPS].
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Lemma 3.2 ([BS1, Theorem 5.1]). For λ ∈ Λnm, enumerate the elements of
the set {µ ∈ Λnm | λµ is oriented} as µ1, µ2, . . . , µn = λ so that µi > µj implies
i < j. Let M(0) := {0} and for i = 1, . . . , n de�ne M(i) to be the subspace of
P (λ) generated by M(i− 1) and the vectors{

(cµiλ)
∣∣ for all oriented cup diagrams cµi

}
.

Then M(0) ⊂ M(1) ⊂ · · · ⊂ M(n) = P (λ) is a �ltration of P (λ) as graded
Kn
m-module such that M(i)/M(i− 1) ∼= M(µi)〈deg(µiλ)〉 for 1 ≤ i ≤ n.

Lemma 3.3 ([BS1, Theorem 5.2]). For µ ∈ Λnm, let N(j) be the submodule of
M(µ) spanned by all graded pieces of degree ≥ j. This de�nes a �nite �ltration
of the graded Kn

m-module M(µ) with simple subquotients

N(j)/N(j + 1) ∼=
⊕

λ⊂µwith

deg(λµ)=j

L(λ)〈j〉.

By the BGG-reciprocity [Hu, Theorem 9.8(f)] the two multiplicities diλ,µ :=
[M(µ) : L(λ)〈i〉] and [P (λ) : M(µ)〈i〉] are equal and we get the symmetric
q-Cartan matrix

CΛn
m

(q) = (cλ,µ(q))λ,µ∈Λn
m
,

where
cλ,µ(q) :=

∑
j∈Z

dim HomKn
m

(P (λ), P (µ))j q
j ∈ Z[q].

Set dλ,µ(q) =
∑
i d
i
λ,µq

i. Note that this sum in fact contains at most one non-
trivial summand, since dλ,µ 6= 0 implies λµ is oriented and λ ≤ µ in the Bruhat
ordering, in which case dλ,µ = qdeg(λµ) holds (cf. [BS1, 5.12]).

In a cup (cap) diagram we number the cups (caps) 1, 2, . . . according to their
right vertex from left two right. For a cup (cap) diagram a we denote by nesa(i)
for 1 ≤ i ≤ #{cups} the number of cups nested in the ith cup.

The following provides then explicit lower and upper bounds for the decom-
position numbers and the entries of the q-Cartan matrix:

Proposition 3.4. In Kn
m − gmod we have dλ,µ = 0 unless

0 ≤ l(λ)− l(µ) ≤ n+ 2
∑
i

nesλ(i) ≤ n2. (3.2)

In particular, cλ,µ = 0 unless l(λ)− l(µ) ≤ n+ 2
∑
i nesλ(i) ≤ n2.

Proof. Assume dλ,µ(q) 6= 0. This means that λµ is oriented. By [BS1, Lemma
2.3] it follows that λ ≤ µ in the Bruhat ordering, which leads to l(λ) ≥ l(µ).
Now we �nd λ and µ such that l(λ) − l(µ) is maximal and λµ is oriented.
Fix such λ and consider weights µ of smallest possible length such that λµ is
still oriented. This is obtained if all ∧'s and ∨'s on the end of a cup in λ are
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interchanged. Since a ∧ on the ith cup has been moved 1 + 2nesλ(i) positions
to the right, the length is changed by

∑
i(2nesλ(i) + 1). Therefore, we obtain

0 ≤ l(λ)− l(µ) ≤ n+ 2
∑
i

nesλ(i).

Since
∑
i nesa(i) is maximal if all cups are nested (i.e if the jth cup contains

precisely j − 1 cups). In that case we obtain

2
∑
i

nesa(i) = 2

n∑
i=1

(i− 1) = (n− 1)n

and therefore (3.2) holds. For cλ,µ 6= 0 a simple L(λ) must occur in P (µ),
especially it must occur in some M(ν), i.e. dλ,ν 6= 0 and dµ,ν 6= 0. Therefore,

l(λ)− l(ν) ≤ n+ 2
∑
i

nesλ(i)

and 0 ≤ l(µ)− l(ν) which implies

l(λ)− l(µ) ≤ l(λ)− l(ν) ≤ n+ 2
∑
i

nesλ(i),

which proves the second inequality.

3.4. Linear projective resolutions of cell modules

To compute the Ext-algebras of Verma modules it will be useful to construct
explicitly linear projective resolutions of the cell modules M(λ) ∈ Kn

m − gmod.
Recall that a projective resolution P• is linear if Pi is generated by its homoge-
neous component in degree i. From the description of projective modules it is
clear that

⊕
λ∈Λn

m
P (λ) ∼= Kn

m is a minimal projective generator of Kn
m −mod.

Any endomorphism is given by right multiplication with an element of the al-
gebra, and HomKn

m
(P (λ), P (µ)) = HomKn

m
(Kn

meλ,K
n
meµ) = eλK

n
meµ as vector

spaces, [BS1, (5.9)].
To construct the di�erentials in linear projective resolutions, we study �rst

the degree 1 component of HomKn
m

(P (λ), P (µ)), i.e. we search for elements ν
s.t. deg(λνµ) = 1. Since 1 = deg(λνµ) = deg(λν) + deg(νµ), one summand has
to be 0 and the other 1.

1. deg(λν) = 0, i.e. λ = ν, so we look for an oriented cap diagram λµ of
degree 1. It exists i� λ > µ and µ = λ.w with w changing the ∧ and ∨
(in this ordering) at the end of a cup into a ∨ and ∧.

2. deg(νµ) = 0, i.e. µ = ν, so we look for an oriented cup diagram λµ of
degree 1. It exists i� µ > λ and λ = µ.w with w changing the ∨ and ∧ at
the end of a cap.
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µ ∨ ∧ ∨ ∨ ∧ ∨
li 0 1

0 0/1

λ ∨ ∨ ∨ ∨ ∧ ∧

Figure 3: the labeled cap diagram

Altogether we get dim HomKn
m

(P (λ), P (µ))1 ≤ 1 and the diagram calculus
de�nes a distinguished morphism fλ,µ in case this dimension equals 1.

On the other hand, the modules occurring in a linear projective resolution of
cell modules are determined by polynomials pλ,µ de�ned diagrammatically and
recursively in [BS2, Lemma 5.2.], namely certain Kazhdan-Lusztig polynomials
going back to work of Lascoux and Schützenberger [LS].

We recall the construction of these polynomials. Set pλ,µ = 0 if λ 6≤ µ. A
labeled cap diagram C is a cap diagram whose unbounded chambers are labeled
by zero and given two chambers separated by a cap, the label in the inside
chamber is greater than or equal to the label in the outside chamber.

De�nition 3.5. Denote by D(λ, µ) the set of all labeled cap diagrams obtained
by labeling the chambers of µ in such a way that for every inner cap c (a cap
containing no smaller one), the label l inside c satis�es l ≤ li(λ, µ), where i
denotes the vertex of c labeled by ∨. The polynomials are given by

pλ,µ(q) :=
∑
i

p
(i)
λ,µq

i := ql(λ)−l(µ)
∑

C∈D(λ,µ)

q−2|C|. (3.3)

where |C| denotes the sum of all labels in C.

Example 3.6. Figure 3 presents the possible labeled cap diagrams fromD(λ, µ)
for the chosen λ and µ. Since l(λ)− l(µ) = 4, we get pλ,µ(q) = q4 + q2.

Theorem 3.7 ([BS2, Theorem 5.3], [Kl, Theorem 3.20]). For λ ∈ Λnm the cell
module M(λ) has a linear projective resolution P•(λ) of the form

· · · d1−→ P1(λ)
d0−→ P0(λ)

ε−→M(λ) −→ 0 (3.4)

with P0(λ) = P (λ) and Pi(λ) =
⊕

µ∈Λn
m
p

(i)
λ,µP (µ)〈i〉 for i ≥ 0.

Using the above observations and tools from the proof of [BS2, Theorem
5.3], [Kl, �3.3.3] gives an explicit method to construct projective resolutions of
cell modules in Kn

m − gmod by an interesting simultaneous induction varying
the underlying algebra and the highest weights. For K0

m and Kn
0 we have, up

to isomorphism, only one indecomposable module, which is projective, simple
and cell module at once. This provides the starting point of the induction. In
the following we will �x such a projective resolution P•(λ) for each λ. Together
with the inequalities obtained before, we can deduce:

11



Proposition 3.8. If a projective module P (ν) occurs as a direct summand in
Pi(λ) with P•(λ) being the projective resolution constructed above, one has

l(λ)− i−

(
n2 − n− 2

∑
i

nesν(i)

)
≤ l(ν) ≤ l(λ)− i.

Proof. Let C be a cap connected with the jth ∧ occurring in ν and let it
be the kjth cup in our numbering with starting point i. Recall from (3.1)
that li(λ, ν) ≤ {k| k ≤ i and vertex k of ν is labeled ∧}, the latter counting the
numbers of ∧'s to the left of the cap. This equals j − 1− nesν(kj) counting to
ones the left of the jth ∧ without those lying inside the cap, and thus

0 ≤ |C| ≤
∑

j∈{1,...n}
cap ending on jth ∧

(j − 1− nesν(kj)) ≤
n(n− 1)

2
−
∑
i

nesν(i).

If a module P (ν) occurs in the resolution (say at homological degree i), one has

p
(i)
λ,ν > 0, i.e. there is a diagram C such that i = l(λ)− l(ν)− 2|C|. Taking the
upper and lower bound for C obtained before, one gets

l(λ)− i− (n2 − n− 2
∑
i

nesν(i)) ≤ l(ν) ≤ l(λ)− i

and the claim of the proposition follows.

The following is a vanishing result for Extk(M(λ),M(µ)):

Lemma 3.9. For λ, µ ∈ Λnm we have

Homk(P•(λ), P•(µ)) = 0 unless l(λ) ≤ l(µ) + n2 + k. (3.5)

Proof. A map between P•(λ) and P•(µ)[k] is in each component a morphism
between graded projective modules. Including the shift we therefore have to
consider morphisms between projectives P (ν) occurring in Pi(λ) and projectives
P (ν′) in Pi−k(µ). By Proposition 3.8 we know

l(λ)− i−

(
n2 − n− 2

∑
i

nesν(i)

)
≤ l(ν) and l(ν′) ≤ l(µ)− (i− k).

Therefore, we have

l(λ)− i−

(
n2 − n− 2

∑
i

nesν(i)

)
− (l(µ)− (i− k)) ≤ l(ν)− l(ν′). (3.6)

Since we have a morphism between these projectives we get from Lemma 3.4

l(ν)− l(ν′) ≤ n+ 2
∑
i

nesν(i). (3.7)

12



Combining the two inequalities (3.6) and (3.7), we obtain

l(λ)− i−

(
n2 − n− 2

∑
i

nesν(i)

)
− (l(µ)− (i− k)) ≤ n+ 2

∑
i

nesν(i), (3.8)

which implies l(λ) ≤ l(µ) + n2 + k. The claim follows.

4. The Ext-algebra of
⊕

x∈Wp M(λ0 · x)

Assume we are in the setup of Section 3 and denote

Enm =
⊕

x,y∈Wp

Ext (M(x · λ0),M(y · λ0)) =
⊕

λ,µ∈Λn
m

ExtKn
m

(M(λ),M(µ)) .

A very useful tool for describing Enm are Shelton's recursive dimension formulas
which he established in [Sh] more generally for all the hermitian symmetric
cases. For an arbitrary parabolic subalgebra p, there is no explicit formula, not
even a candidate.

Abbreviating Ek(x, y) = dim Extk(M(λ0.x),M(λ0.y)) for x, y ∈ W p, [Sh,
Theorem 1.3] can be formulated as follows:

Theorem 4.1 (Dimension of Ext-spaces). With g and p as above, let x, y ∈W p

and let s be a simple re�ection with x > xs and xs ∈ W p. The dimensions
Ek(x, y) are then given by the following formulas:

1. Ek(x, y) = 0 ∀ k unless y ≤ x;

2. Ek(x, x) =

{
1 for k = 0

0 otherwise.

For y < x there are the following recursion formulas:

3. Ek(x, y) = Ek(xs, ys) if y > ys and ys ∈W p;

4. Ek(x, y) = Ek−1(xs, y) if ys /∈W p;

5. Ek(x, y) = Ek−1(xs, y) + Ek(xs, y) if ys > y but xs 6> ys;

6. Ek(x, y) = Ek−1(xs, y)− Ek+1(xs, y)

+ Ek(xs, ys) if x > xs > ys > y.

To translate between our setup and Shelton's note that he denotes Ny =
M(λ0.ωmyω0) where ω0 and ωm are the longest elements in W and in Wp

respectively. Then it only remains to observe that for y, x ∈ W we have
ωmyω0 ∈ W p ⇔ y ∈ W p and ωmyω0 < ωmxω0 ⇔ y > x in the Bruhat or-
der.

Although the previous theorem determines all dimension of Ext-spaces, it
is convenient to have explicit vanishing conditions. Therefore, we reprove the
Delorme-Schmid Theorem (cf. [De], [Sc]) in our situation:
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Lemma 4.2. For λ, µ ∈ Λnm we have

Extk(M(λ),M(µ)) = 0 ∀ k > l(λ)− l(µ).

Proof. We claim that any chain map f : P•(λ)→ P•(µ)[k] with k > l(λ)− l(µ)
is homotopic to zero. On the kth component f induces a map fk : Pk(λ) →
P0(µ) = P (µ). For P (ν) occurring as a direct summand in Pk(λ) we have
l(ν) ≤ l(λ)− k < l(λ)− (l(λ)− l(µ)) = l(µ) by Lemma 3.8. By Proposition 3.4
L(ν) does not occur in M(µ) and so the composition P (ν) → P (µ) → M(µ)
is zero. Let PT• (λ) be the truncated complex with PTi (λ) = 0 for i < 0 and
PTi (λ) = Pi+k(λ) if i ≥ 0. This is a projective resolution of im dk, and f•
induces a morphism f̃• : PT• (λ)→ P•(µ) such that

0 // · · · //

��

PT0 (λ)

f̃0
��

// im dk //

0

��

// 0

0 // · · · // P (µ) // M(µ) // 0

where f̃ is a lift of the zero map. Since the zero map between the complexes is
also a lift of the zero map and two lifts are equal up to homotopy ([GM, Theorem

III.1.3]) the map f̃ is nullhomotopic by a homotopy H : PT• (λ) → P•(µ)[−1].
This extends to a homotopy H : P•(λ) → P•(µ)[−1] by de�ning it to be zero
on the other terms. The claim follows.

Remark 4.3. The result of Lemma 4.2 could also be deduced from Shelton's
formulas or from the explicit formulas [Bi, Theorem 3.4].

Now we want to describe the Ext-algebra in the cases (m,n) = (1, N) and
(m,n) = (2, N − 1). The �rst algebra is related to algebras appearing in (knot)
Floer homology, see [KhSe], [GW], the second invokes our theory in a more
substantial way and provides interesting A∞-structures.

Using the above tools, one can construct explicit maps between the projective
resolutions from Theorem 3.7 and determine their linear dependence up to null
homotopies. In this way we will obtain certain non-trivial elements in Exti

which, using Shelton's dimension formulas, can be shown form a basis. Finally
we compute the multiplication rules. Especially in the case for n = 2 the
computations are long and cumbersome and carried out in [Kl]. We present the
arguments and details for the case n = 1 here, the results and main idea for
n = 2, and refer to [Kl] for the details.

4.1. The case n = 1

The elements in W p are precisely s1 · · · sj , 0 ≤ j ≤ N − 1 and we abbreviate
(j) = λ0.s1s2 . . . sj . The �ltrations in Theorems 3.2 and 3.3 combined determine
the �ltration of projective modules in terms of simple modules; the Kazhdan-
Lusztig polynomials for (s) = µ ≥ λ = (j) are pλ,µ = qj−s, see Figure 4. By
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λ = (j) P (j)

j 6= 0
j 6= N

L(j)
L(j + 1)L(j − 1)

L(j)

j = 0
L(0)
L(1)

j = N
L(N)
L(N − 1)
L(N)

µ · · · ∨ ∧ · · ·
`i 0

0

λ · · · ∨ · · · ∧ · · ·

Figure 4: Jordan-Hölder series of P (λ) (the colours indicate the Verma module)

Theorem 3.7 there is then a unique summand occurring in the ith position of
the linear projective resolution ofM(λ), namely the projective module P (j− i),
and we have the distinguished morphism fk := fk,k+1, homogeneous of degree
1, from P (k) to P (k + 1). Set dn−k(n) = (−1)n+k+1fk.

Lemma 4.4. The chain complex

0→ P (0)〈n〉 d0→ P (1)〈n− 1〉 → · · · dn−1→ P (n)→ 0

is a (linear) projective resolution of M(n) in K1
N − gmod.

Proposition 4.5. For j ≥ l the identity maps id : P (s) → P (s) for all s ≤ l
de�ne a chain map

Id
(j)
(l) : P•(j)→ P•(l)[j − l]〈j − l〉

which induces a non-trivial element in Extj−l(M(j),M(l)). For j > l, the maps
fs,s−1 : P (s)→ P (s− 1) for all s ≤ l + 1 de�ne a chain map

F
(j)
(l) : P•(j)→ P•(l)[j − l − 1]〈j − l − 2〉

which induces a non-trivial element in Extj−l−1(M(j),M(l)).

Proof. We have to check that the maps are not nullhomotopic which is clear

in the clear in the �rst case. For F
(j)
(l) , a homotopy would be a map H ∈

Homj−l−2(P•(j), P•(l)〈j − l − 2〉) which cannot exist by Lemma 3.9 since j �
l + 12 + (j − l − 2).

Theorem 4.1 implies that we constructed a basis of E1
N . By composing chain

maps we obtain the following relations in Hom(P•, P•):

Id
(j)
(l) · Id

(l)
(m) = Id

(j)
(m), F

(j)
(l) · F

(l)
(m) = 0, Id

(j)
(l) ·F

(l)
(m) = F

(j)
(m), F

(j)
(l) · Id

(l)
(m) = F

(j)
(m)

Reformulating the above result in terms of quivers, we obtain:
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Theorem 4.6. The algebra E1
N is isomorphic to the path algebra of the quiver

(N)
**
44 · · ·

--
11 (j + 1)

**
44 (j)

--
11 (j − 1) 44

** · · · **
44 (0)

with relations

• (( •
//
• = 0, • )) • 11 • = • 55 • (( • .

The vertex • labeled i corresponds to the idempotent eλ where λ = λ0.s1 · . . . si.

4.2. The result for n = 2

Now consider (n,m) = (2, N − 1). The elements in W p are precisely the
elements s2 · . . . sk · s1 · · · · · sl with 0 ≤ l < k ≤ N . We denote the weight
λ = λ0.s2 · . . . · sk · s1 · . . . · sl by (k|l); the associated diagrammatical weight has
∧'s at the lth and kth position (starting to count with position zero).

Theorem 4.7. The algebra E2
N is isomorphic to the path algebra of the quiver

· · ·

		��

· · ·

		��

· · ·

		��
· · ·

//
// (k + 1|l + 1)

		��

--
11 (k|l + 1)

		��

..
00 (k − 1|l + 1)

		��

33
++ · · ·

· · ·
--
11 (k + 1|l)

		��

,,
22 (k|l)

		��

--
11 (k − 1|l)

		��

++
33 · · ·

· · ·
//
// (k + 1|l − 1)

����

--
11 (k|l − 1)

����

..
00 (k − 1|l − 1)

����

++
33 · · ·

· · · · · · · · ·

for k > l + 2 and in the other cases:

. . .
--
11 (l|l − 1)

		��

�� ��

· · ·
--
11 (l|l − 2)

..
00

		��

(l − 1|l − 2)

		��
· · ·

--
11 (l|l − 3)

..
00

����

(l − 1|l − 3)
..
00

����

(l − 2|l − 3)

����
· · · . . . · · ·

with relations as follows (in case that both sides of the relation exist):
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1.

•
= −
77 •

��

•

��
• • 77 •

2.

•
=

77 •

��

•

��
• • 77 •

3.

•
=

'' •

��

•

��
• • '' •

4.

•
=

'' •

��

•

��
• • '' •

5.

•

=
��

•

��
•

��

•

��
• •

6.

•
=

'' • 77 •

• 77 •
'' •

7.

•

=
��
•

��

0

•

8.

•
=

'' • '' •

0

These are all relations for the middle part of the quiver, i.e. in the upper
diagram. The additional relations for the boundaries can be found in [Kl].

5. The A∞-structure on En
m

A∞-algebras are a generalization of associative algebras, see [Ke] for an
overview, including historical and topological motivation. A very detailed ex-
position with most of the proofs is provided in [L-H].

De�nition 5.1. An A∞-algebra over a �eld k is a Z-graded k-vector space
A =

⊕
p∈ZA

p endowed with a family of graded k-linear maps

mn : A⊗n → A, n ≥ 1

of degree 2− n satisfying the following Stashe� identities:∑
(−1)r+stmr+t+1(Id⊗r ⊗ms ⊗ Id⊗t) = 0

where for �xed n the sum runs over all decompositions n = r+ s+ t with s ≥ 1,
and r, t ≥ 0.

We use the Koszul sign convention (f ⊗ g)(x ⊗ y) = (−1)|g||x|f(x) ⊗ g(y),
for tensor products, where x, y, f , g are homogeneous elements of degree
|x|, |y|, |f |, |g| respectively.
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De�nition 5.2. Let A and B be two A∞-algebras. A morphism of A∞-algebras
f : A → B is a family fn : A⊗n → B of graded k-linear maps of degree 1 − n
such that∑

(−1)r+stfr+t+1(Id⊗r ⊗ms ⊗ Id⊗t) =
∑

(−1)wmq(fi1 ⊗ · · · ⊗ fiq )

for all n ≥ 1. Here, the sum run over all decompositions n = r+ s+ t and over
all decompositions n = i1 + · · ·+ iq with 1 ≤ q ≤ n and all is ≥ 1 respectively.

The sign on the right-hand side is given by w =
∑q−1
j=1(q − j)(ij − 1).

A morphism f is a quasi-isomorphism if f1 is a quasi-isomorphism. It is strict
if fi = 0 for all i 6= 1.

Our goal is to put an A∞-structure on the Ext-algebras Enm. The �rst step
is to introduce an A∞-structure on the cohomology of an A∞-algebra (the so-
called minimal model) and then realize our Ext-algebra as the cohomology of
an A∞-algebra, namely the Hom-algebra introduced earlier.

Theorem 5.3 ([Ka1]). Let A be an A∞-algebra and H∗(A) its cohomology.
Then there is an A∞-structure on H∗(A) such that m1 = 0 and m2 is induced
by the multiplication on A, and there is a quasi-isomorphism of A∞-algebras
H∗(A)→ A lifting the identity of H∗(A). Moreover, this structure is unique up
to isomorphism of A∞-algebras.

All known (at least to us) proofs inductively construct the model, but the
approaches are slightly di�erent. We follow here Merkulov's more general con-
struction [Me] in the special situation of a di�erential graded algebra:

Proposition 5.4 ([Me]). Take (A, d) a di�erential graded algebra with grading
shift [ ]. Let B ⊂ A be a vector subspace of A and Π : A → B a projection
commuting with d. Assume that we are given a homotopy Q : A→ A[−1] such
that

1−Π = dQ+Qd. (5.1)

De�ne λn : A⊗n → A for n ≥ 2 by λ2(a1, a2) := a1 · a2 and recursively,

λn(a1, . . . , an)

= −
∑
k+l=n
k,l≥1

(−1)k+(l−1)(|a1|+···+|ak|)Q(λk(a1, . . . , ak)) ·Q(λl(ak+1, . . . , an)).

for n ≥ 3, setting formally Qλ1 = − Id. Then the maps m1 = d and mn =
Π(λn) de�ne an A∞-structure for a minimal model on B.

Choosing Q in a clever way simpli�es computations, but our result will
depend on this choice. We make our choices following [LPWZ]. To de�ne Q,
we �rst divide the degree n part An of A into three subspaces, for this, denote
by Zn the cocycles of A and by Bn the coboundaries. As we work over a �eld,
we can �nd subspaces Hn and Ln such that

Zn = Bn ⊕Hn and An = Bn ⊕Hn ⊕ Ln. (5.2)
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We identify the nth cohomology group Hn(A) via (5.2) with Hn and want to
apply Proposition 5.4 with the choice B = H∗(A), the projection Π to the direct
summand H∗ and the map Q de�ned as follows:

1. When restricted to Zn by equation (5.1) and the condition that d|Zn equals
to zero, the map Q has to satisfy the relation 1− Π = dQ. In particular,
dQ|H has to be zero. We choose Q|H = 0.

2. On Bn the map Π is zero, and therefore the mapQ|B has to satisfy 1 = dQ,
i.e. Q has to be a preimage of d. We want to choose this preimage as small
as possible i.e. with no non-trivial terms from Zn (they would anyway be
annihilated by d). Since d is injective on L, we can choose Q|B = (d|L)−1.

3. We brie�y outline how to determine Q restricted to L (although it won't
play any role in our computations later on). From (5.1) we get the re-
striction 1 = Qd + dQ. As d(a) ∈ B for all a ∈ A we see that Qd|L =
(d|L)−1d|L = 1, so we can de�ne Q|L = 0.

Now the construction of a minimal model applies to our situation if we choose
A := Anm := Hom(P•, P•), where P• is the direct sum of all linear projective
resolutions of M(λ), λ ∈ Λnm from 3.7, and E = Extnm = H∗(A).

In the following we give an upper bound for the l with ml 6= 0. Already
in the case n = 2 we can show that not all ml for l > 2 vanish and therefore
our speci�c model provides interesting examples of A∞-algebras with non-trivial
higher multiplications. We start by stating the following Lemma generalizing
the fact that the multiplication of two morphisms can only be non zero if they
lie in appropriate Hom-spaces.

Lemma 5.5. Let ai, 1 ≤ i ≤ l be homogeneous elements of degree ki in Enm
of the form ai ∈ Extki(M(µi),M(νi)) 1 ≤ i ≤ l. Then we have λl(a1, ..., al) =
0 unless νi = µi+1 for all 1 ≤ i ≤ l − 1; and if λl(a1, ..., al) 6= 0 we have
λl(a1, ..., al) ∈ HomΣki+2−l(P•(µ1), P•(νl)).

Proof. The proof goes by induction on l, using Theorem 5.4, see [Kl].

We obtain the following General Vanishing Theorem:

Theorem 5.6. The A∞-structure on Enm satis�es ml = 0 for all l > n2 + 2.

Proof. We claim that λl = 0 if l > n2 + 2. Since λl is linear, we can work
with nonzero homogeneous basis elements and therefore by Lemma 5.5 take
ai ∈ Extki(M(µi),M(µi+1)) for 1 ≤ i ≤ l. By Lemma 4.2 there are di ≥ 0 such

that ki = l(µi)− l(µi+1)−di and therefore
∑l
i=1 ki = l(µ1)− l(µl+1)−

∑l
i=1 di.

From Lemma 5.5 we know that λl(a1, ..., al) ∈ HomΣki+2−l(P•(µ1), P•(νl)). If
λl 6= 0, then Lemma 3.9 implies l(µ1) ≤ l(µl+1) + n2 +

∑
ki + 2− l, thus

l(µ1) ≤ l(µl+1) + l(µ1)− l(µl+1)−
l∑
i=1

di + 2− l + n2,

which is equivalent to
∑l
i=1 di ≤ n2 + 2 − l. Since

∑l
i=1 di ≥ 0, we get 0 ≤

n2 + 2− l, equivalently l ≤ n2 + 2; providing the asserted upper bound.
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5.1. Explicit results for E1
N and E2

N−1

In the previous section we established general vanishing results for the higher
multiplications; in this section we describe explicit models for our small examples
n = 1 and n = 2. The �rst result in this situation is the following:

Theorem 5.7 (1st vanishing Theorem). The algebra EN1 is formal, i.e. there
is a minimal model such that mn = 0 for all n ≥ 3.

Proof. Recall that all multiplication rules in the algebra E1
N are already deter-

mined in A1
N = Hom(P•, P•). For all elements a1, a2 ∈ Ext(⊕M(λ),⊕M(λ)) =

H∗(Hom(P•, P•)) identi�ed with the subspace H∗ via the decomposition from
(5.2), the product a1 · a2 also lies in the subspace H∗ and has no boundary
component in B∗. Since we have chosen Q|H = 0, we obtain Q(a1 · a2) = 0.
Using the construction of the higher multiplications in Proposition 5.4 one gets
mn = 0 for all n ≥ 3.

The case of n = 2 turns out to be more interesting than the case n = 1
studied before, since we have non-vanishing higher multiplications. In contrast
to the previous example this phenomenon is possible, since some multiplications
in A1

N−2 = Hom(P•, P•) are only homotopic to their product in the Ext-algebra.
This yields the following theorem:

Theorem 5.8. In the minimal model above, there are non-vanishing m3.

A complete list of all the higher multiplications m3 is given in [Kl] where
a detailed knowledge about the structure of projective resolutions us used to
provides a stronger vanishing result than in the general case:

Theorem 5.9 (2nd Vanishing Theorem). The A∞-structure on E
2
N−2 given by

the construction above satis�es

mn = 0 ∀n ≥ 4.

5.2. Ideas how to prove non-formality

The non-vanishing of higher multiplications established above does not an-
swer the question whether the algebra is formal. To show that the algebra is
not formal, we have to prove that no model exists such that mn = 0 for all
n ≥ 3. As a tool one could use Hochschild cohomology. Given a dg-Algebra
A one can compute its Hochschild cohomology by using the A∞-structure on
a minimal model of A (cf. [L-H, Lemma B.4.1] and [Ka2]). Assume that we
have found a minimal model on H∗(A) with mn = 0 for 3 ≤ n ≤ p − 1. Then
the multiplication mp de�nes a cocycle for the Hochschild cohomology of A by
the construction in [L-H, Lemma B.4.1]. If we can prove that this class is not
trivial, we are done and have shown that the algebra is not formal. If we cannot,
we have to modify our model such that mp = 0 and then analyze whether mp+1

vanishes. This would go beyond the scope of this article.

Conjecture 5.10. In general, the algebra Enm is not formal.
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