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Cλ1 = {(1)}
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Rλ3 = {(1)}
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σ
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)
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C
∑
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σ Csλ2+Cx C
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σ∈S3

sgn(σ)σ
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set of non-isomorphic simple CSn-modules.
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Example: The standard representation of S4

S4
Permutation matrices

4× 4

ρ : S4 → GL(V )

where for all σ ∈ S4

ρ(σ)(x1, x2, x3, x4) = (xσ−1(1), xσ−1(2), xσ−1(3), xσ−1(4)).

V = {(x1, x2, x3, x4) ∈ C4 : x1 + x2 + x3 + x4 = 0}

ρ is an irreducible representation of S4
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V =
⊕
T

V T

indexed by all possible chains

T = λ1 ↗ . . .↗ λn

where λi ∈ S∧n , V ∈ λn and all V T are simple S1-modules.

Gelfand-Zetlin Basis

For each T we can choose a vector vT form each V T obtaining a

basis {vT} of V ,which we call Gelfand-Zetlin basis.
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γ(w) = (0,−1, 1, 2)

weights



Representation Theories of the Symmetric Group and the Rook Monoid

The Symmetric Group

Di�erent Approach

Example: The standard representation of S4

0 (1 2) (1 3) + (2 3) (1 4) + (2 4) + (3 4)0 0 0

0 0 0

0 0 0

 1 0 0

0 1 0

0 0 −1

 2 0 0

0 −1 0

0 0 1

 −1 0 0

0 2 0

0 0 2

 .
γ(u) = (0, 1, 2,−1)

γ(v) = (0, 1,−1, 2)

γ(w) = (0,−1, 1, 2)

weights



Representation Theories of the Symmetric Group and the Rook Monoid

The Symmetric Group

Di�erent Approach

Theorem

B ' Y



Representation Theories of the Symmetric Group and the Rook Monoid

The Symmetric Group

Di�erent Approach

n = 1

n = 2

n = 3

n = 4

n = 5



Representation Theories of the Symmetric Group and the Rook Monoid

The Symmetric Group

Di�erent Approach

Example

→ → →

!
1 2 3
4

→ → → !
1 2 4
3

→ → → !
1 3 4
2



Representation Theories of the Symmetric Group and the Rook Monoid

The Symmetric Group

Di�erent Approach

Example

→ → → !
1 2 3
4

→ → → !
1 2 4
3

→ → → !
1 3 4
2



Representation Theories of the Symmetric Group and the Rook Monoid

The Symmetric Group

Di�erent Approach

Example

→ → → !
1 2 3
4

→ → →

!
1 2 4
3

→ → → !
1 3 4
2



Representation Theories of the Symmetric Group and the Rook Monoid

The Symmetric Group

Di�erent Approach

Example

→ → → !
1 2 3
4

→ → → !
1 2 4
3

→ → → !
1 3 4
2



Representation Theories of the Symmetric Group and the Rook Monoid

The Symmetric Group

Di�erent Approach

Example

→ → → !
1 2 3
4

→ → → !
1 2 4
3

→ → →

!
1 3 4
2



Representation Theories of the Symmetric Group and the Rook Monoid

The Symmetric Group

Di�erent Approach

Example

→ → → !
1 2 3
4

→ → → !
1 2 4
3

→ → → !
1 3 4
2



Representation Theories of the Symmetric Group and the Rook Monoid

The Symmetric Group

Di�erent Approach

Example

Consider

Q1 = 1 2 3
4

, Q2 = 1 2 4
3

and Q3 = 1 3 4
2

.

We have:

δ(Q1) = (0, 1, 2,−1)

δ(Q2) = (0, 1,−1, 2)

δ(Q3) = (0,−1, 1, 2)

 contents = weights


γ(u) = (0, 1, 2,−1)

γ(v) = (0, 1,−1, 2)

γ(w) = (0,−1, 1, 2)



Representation Theories of the Symmetric Group and the Rook Monoid

The Symmetric Group

Di�erent Approach

Example

Consider

Q1 = 1 2 3
4

, Q2 = 1 2 4
3

and Q3 = 1 3 4
2

.

We have:

δ(Q1) = (0, 1, 2,−1)

δ(Q2) = (0, 1,−1, 2)

δ(Q3) = (0,−1, 1, 2)

 contents = weights


γ(u) = (0, 1, 2,−1)

γ(v) = (0, 1,−1, 2)

γ(w) = (0,−1, 1, 2)



Representation Theories of the Symmetric Group and the Rook Monoid

The Symmetric Group

Di�erent Approach

Example

Consider

Q1 = 1 2 3
4

, Q2 = 1 2 4
3

and Q3 = 1 3 4
2

.

We have:

δ(Q1) = (0, 1, 2,−1)

δ(Q2) = (0, 1,−1, 2)

δ(Q3) = (0,−1, 1, 2)

 contents

= weights


γ(u) = (0, 1, 2,−1)

γ(v) = (0, 1,−1, 2)

γ(w) = (0,−1, 1, 2)



Representation Theories of the Symmetric Group and the Rook Monoid

The Symmetric Group

Di�erent Approach

Example

Consider

Q1 = 1 2 3
4

, Q2 = 1 2 4
3

and Q3 = 1 3 4
2

.

We have:

δ(Q1) = (0, 1, 2,−1)

δ(Q2) = (0, 1,−1, 2)

δ(Q3) = (0,−1, 1, 2)

 contents = weights


γ(u) = (0, 1, 2,−1)

γ(v) = (0, 1,−1, 2)

γ(w) = (0,−1, 1, 2)



Representation Theories of the Symmetric Group and the Rook Monoid

The Symmetric Group
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The Spectrum and the Resume

Theorem

Let Ω be the set of all elements

x = (x1, . . . , xn) ∈ Cn

which verify the following properties:

1. x1 = 0;

2. {xi − 1, xi + 1} ∩ {x1, . . . , xi−1} 6= ∅, ∀i ∈ {2, . . . , n};
3. If xi = xj = a, for some i < j , then

{a−1, a + 1} ⊆ {xi+1, . . . , xj−1}.

We have

Ω = En = Rn.
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Theorem[Cli�ord,Munn,Ponizovskii]

The number of irreducible representations of S (up to isomorphism)

is equal to the number of irreducible representations of its maximal

subgroups GJ , with J ∈ U(S).



Representation Theories of the Symmetric Group and the Rook Monoid

The Rook Monoid

Introduction

The Rook Monoid


0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



0 0 1 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 1 0



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

[2 1] [2 1 3][5 4] (1)(2)(3)(4)(5)
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1 2 3
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1 2 3
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1 2 3
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1 2 3

1 2 3
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1 2 3

1 2 3
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1 2 3
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1 2 3
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1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3
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The special case of the Rook Monoid

n.o of isoclasses of Irr. Rep. = sum of the n.o of isoclasses of Irr.

Rep of its maximal subgroup GJ

The list of the maximal subgroups GJ of In will be isomorphic to

S0,S1, . . . ,Sn.

|IrrRep(In)| =
n∑

k=0

|IrrRep(Sk)|
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η3 = −ε∅ + ε{1} + ε{2} + ε{3} − ε{1,2} − ε{1,3} − ε{2,3} + ε{1,2,3}

In this case:

CI3 ' M1(CS0)⊕M3(CS1)⊕M3(CS2)⊕M1(CS3)

CIn ' CInη0 ⊕ . . .⊕ CInηn ' M(n
0
)(CS0)⊕ . . .⊕M(nn)

(CSn)

∴ CIn is semisimple.
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