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Theorem

When A\ ranges over all distinct partitions of n, {CS,, - s,} is a full
set of non-isomorphic simple CS,-modules.
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Proposition

All simple CS,-module V has a canonical decomposition
V=@V’
T
indexed by all possible chains
T=X,/... "\
where \; € §7, V € )\, and all VT are simple Si-modules.

Gelfand-Zetlin Basis

For each T we can choose a vector vy form each VT obtaining a
basis {vr} of V,which we call Gelfand-Zetlin basis.
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Permutation matrices
S
4 x4

V = {(Xl,XQ,X3,X4) e C*: X1+ X2 + X3 + Xa :0}

V=<(1,1,1,-3)>® <(1,1,-2,0)> ¢ <(1,-1,0,0)>.

Let v =(1,1,1,-3), v=(1,1,-2,0), w = (1,—1,0,0) and fix
the basis GZ = {u, v, w} for V.

(1) (12) (23) (34)
100 10 0 1 0 0 -3 20
010 01 0 0—%% 3 00
001 00 -1 o 3 3 0o 11
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Theorem[Clifford,Munn,Ponizovskii]

The number of irreducible representations of S (up to isomorphism)
is equal to the number of irreducible representations of its maximal
subgroups G, with J € U(S).
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The special case of the Rook Monoid
n.° of isoclasses of Irr. Rep. = sum of the n.° of isoclasses of Irr.

Rep of its maximal subgroup G,

The list of the maximal subgroups G, of Z,, will be isomorphic to

S0, Sy .., Sn. ﬂ

[IreRep(Z,)| = 3 | rRep(Sk)
k=0
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