Tânia Sofia Zaragoza Cotrim Silva

Young Women in Representation Theory Mathematical Institute of the University of Bonn

June 24, 2016

The special case of the Symmetric Group

n.° of isoclasses of Irr. Rep.of G = n.° of conjugacy classes in G

The special case of the Symmetric Group

n.° of isoclasses of Irr. Rep.of G = n.° of conjugacy classes in G

Two permutations are conjugate if and only if they have the same cycle type

└─ Introduction

The special case of the Symmetric Group

n.° of isoclasses of Irr. Rep.of G = n.° of conjugacy classes in G

Two permutations are conjugate if and only if they have the same cycle type

イロト 不得 トイヨト イヨト

Sac

n.° of isoclasses of Irr. Rep. of $S_n = n.°$ of partitions of n

└─ Introduction

Isoclasses of Irreducible Representations of S_n

(1)

n = 1

Isoclasses of Irreducible Representations of S_n

(1)			n = 1
(2)	(1,1)		<i>n</i> = 2

< ロ > < 母 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 < つ < ぐ</p>

Isoclasses of Irreducible Representations of S_n

((1)	n = 1
(2)	(1,1)	<i>n</i> = 2

$$(3) (2,1) (1,1,1) n=3$$

Isoclasses of Irreducible Representations of S_n

		(1)			n = 1
	(2) (1	.,1)		<i>n</i> = 2
	(3)	(2,1)	(1,1,1)		<i>n</i> = 3
(4)	(3,1)	(2,2)	(2,1,1)	(1,1,1,1)	<i>n</i> = 4

(5)

Isoclasses of Irreducible Representations of S_n

		(1)				n = 1	
	(2	2) (1,	1)			<i>n</i> = 2	
	(3)	(2,1)	(1,1,1)			<i>n</i> = 3	
(4)	(3,1)	(2,2)	(2,1,1)	(1,1,1,1)		<i>n</i> = 4	
(4,1)	(3,2)	(3,1,1)	(2,2,1)	(2,1,1,1)	(1,1,1,1,1)	<i>n</i> = 5	

< ロ > < 母 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 < つ < ぐ</p>

L The Symmetric Group

Introduction

└─ The Symmetric Group

Introduction

└─ The Symmetric Group

└─ Classic Approach

Classic Approach

$$\begin{cases} \lambda \\ \text{partition of } n \end{cases} \longleftrightarrow \begin{cases} S^{\lambda} \\ \text{Specht module} \end{cases} & \longleftrightarrow \begin{cases} \text{classe of irreducible} \\ \mathcal{S}_n - \text{representations} \end{cases}$$

└─ Classic Approach

Classic Approach

Classic Approach

Constructing the Specht Modules of \mathcal{S}_3

$$\lambda_1 = (3)$$
 $\lambda_2 = (2,1)$ $\lambda_3 = (1,1,1)$

ightarrow The Symmetric Group

└─ Classic Approach

Constructing the Specht Modules of S_3

L The Symmetric Group

└─ Classic Approach

Constructing the Specht Modules of S_3

$\lambda_1 = (3)$	$\lambda_2=(2,1)$	$\lambda_{3}=(1,1,1)$
Ļ	↓	*
123		2
Ļ	• •	3
$R_{\lambda_1} = S_3$	$R_{\lambda_2} = \{(1), (1\ 2)\}$	$R_{\lambda_3} = \{(1)\}$
$C_{\lambda_1} = \{(1)\}$	$C_{\lambda_3} = \{(1), (1 \ 3)\}$	$C_{\lambda_3} = S_3$

L The Symmetric Group

Classic Approach

Constructing the Specht Modules of S_3

$\lambda_1 = (3)$	$\lambda_2=(2,1)$	$\lambda_3=(1,1,1)$
	Ļ	*
		1 2 3
$R_{\lambda_1} = S_3$	$R_{\lambda_2} = \{(1), (1\ 2)\}$	$R_{\lambda_3} = \{(1)\}$
$\mathcal{C}_{\lambda_{1}}=\{(1)\}$	$C_{\lambda_3} = \{(1), (1 \ 3)\}$	$C_{\lambda_3} = S_3$
+	+	+
	Young symmetrizers	

$$\mathfrak{s}_{\lambda_i} = \left(\sum_{\sigma \in R_{\lambda_i}} \sigma\right) \left(\sum_{\sigma \in C_{\lambda_i}} \operatorname{sign}(\sigma) \sigma\right) \in \mathbb{CS}_3$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Classic Approach

Constructing the Specht Modules of S_3

Young symmetrizers
$$\mathfrak{s}_{\lambda_i} = \left(\sum_{\sigma \in R_{\lambda_i}} \sigma\right) \left(\sum_{\sigma \in C_{\lambda_i}} \operatorname{sign}(\sigma) \sigma\right) \in \mathbb{CS}_3$$

¥	ŧ	¥
$\mathbb{C}\mathcal{S}_3\cdot\mathfrak{s}_{\lambda_1}$	$\mathbb{C}\mathcal{S}_3\cdot\mathfrak{s}_{\lambda_2}$	$\mathbb{C}\mathcal{S}_3\cdot\mathfrak{s}_{\lambda_3}$
$\mathbb{C}\sum_{\sigma\in\mathcal{S}_{3}}\sigma$	$\mathbb{C}\mathfrak{s}_{\lambda_2} + \mathbb{C}x$	$\mathbb{C}\sum\limits_{\sigma\in\mathcal{S}_{3}}sgn(\sigma)\sigma$

└─ Classic Approach

Theorem

When λ ranges over all distinct partitions of n, $\{\mathbb{C}S_n \cdot \mathfrak{s}_{\lambda}\}$ is a full set of non-isomorphic simple $\mathbb{C}S_n$ -modules.

・ロト ・ 日 ・ モ ・ ト ・ 日 ・ うへぐ

- └─ The Symmetric Group
 - └─ Classic Approach

L The Symmetric Group

└─ Different Approach

Branching Graph

Theorem

Let V be a simple \mathbb{CS}_n -module. The restriction $V|_{S_{n-1}}$ is multiplicity-free.

イロア 人口 ア イヨア イヨア コー ろくぐ

L The Symmetric Group

└─ Different Approach

Branching Graph

Theorem

Let V be a simple \mathbb{CS}_n -module. The restriction $V|_{S_{n-1}}$ is multiplicity-free.

n = 1

L The Symmetric Group

└─Different Approach

Branching Graph

Theorem

Let V be a simple \mathbb{CS}_n -module. The restriction $V|_{S_{n-1}}$ is multiplicity-free.

L The Symmetric Group

└─Different Approach

Branching Graph

Theorem

Let V be a simple \mathbb{CS}_n -module. The restriction $V|_{S_{n-1}}$ is multiplicity-free.

イロア 人口 ア イヨア イヨア コー ろくぐ

L The Symmetric Group

└─ Different Approach

Branching Graph

Theorem

Let V be a simple \mathbb{CS}_n -module. The restriction $V|_{S_{n-1}}$ is multiplicity-free.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

└─Different Approach

Branching Graph

Theorem

Let V be a simple \mathbb{CS}_n -module. The restriction $V|_{S_{n-1}}$ is multiplicity-free.

└─ Different Approach

Different Approach

▲ロト ▲屋 ト ▲ 臣 ト ▲ 臣 - のへぐ

Different Approach

Different Approach

└─ Different Approach

Example: The standard representation of S_4

└─ Different Approach

Example: The standard representation of S_4

└─Different Approach

Example: The standard representation of S_4

$$\rho: S_4 \to GL(V)$$

where for all $\sigma \in \mathcal{S}_4$

$$\rho(\sigma)(x_1, x_2, x_3, x_4) = (x_{\sigma^{-1}(1)}, x_{\sigma^{-1}(2)}, x_{\sigma^{-1}(3)}, x_{\sigma^{-1}(4)}).$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

└─Different Approach

Example: The standard representation of S_4

$$\rho: S_4 \to GL(V)$$

where for all $\sigma \in \mathcal{S}_4$

$$\rho(\sigma)(x_1, x_2, x_3, x_4) = (x_{\sigma^{-1}(1)}, x_{\sigma^{-1}(2)}, x_{\sigma^{-1}(3)}, x_{\sigma^{-1}(4)}).$$

$$V = \{(x_1, x_2, x_3, x_4) \in \mathbb{C}^4 : x_1 + x_2 + x_3 + x_4 = 0\}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

└─Different Approach

Example: The standard representation of S_4

$$\rho: S_4 \to GL(V)$$

where for all $\sigma \in \mathcal{S}_4$

$$\rho(\sigma)(x_1, x_2, x_3, x_4) = (x_{\sigma^{-1}(1)}, x_{\sigma^{-1}(2)}, x_{\sigma^{-1}(3)}, x_{\sigma^{-1}(4)}).$$

$$V = \{(x_1, x_2, x_3, x_4) \in \mathbb{C}^4 : x_1 + x_2 + x_3 + x_4 = 0\}$$

 ρ is an irreducible representation of \mathcal{S}_4

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ ��や

└─ Different Approach

Example: The standard representation of S_4

$$V = \{(x_1, x_2, x_3, x_4) \in \mathbb{C}^4 : x_1 + x_2 + x_3 + x_4 = 0\}$$

└─ Different Approach

Example: The standard representation of S_4

▲□▶ ▲□▶ ★ □▶ ★ □▶ = □ ● ● ●

└─ Different Approach

Example: The standard representation of S_4

▲□▶ ▲□▶ ★ □▶ ★ □▶ = □ ● ● ●
└─ Different Approach

Example: The standard representation of S_4

▲□▶ ▲□▶ ★ □▶ ★ □▶ = □ ● ● ●

└─ Different Approach

Example: The standard representation of S_4

▲□▶ ▲□▶ ★ □▶ ★ □▶ = □ ● ● ●

└─ Different Approach

Example: The standard representation of S_4

▲□▶ ▲□▶ ★ □▶ ★ □▶ = □ ● ● ●

L The Symmetric Group

└─ Different Approach

Branching Graph

└─ Different Approach

Branching Graph

└─ Different Approach

Branching Graph

└─Different Approach

Branching Graph

└─Different Approach

Branching Graph

└─Different Approach

Proposition

All simple $\mathbb{C}S_n$ -module V has a canonical decomposition

$$V = \bigoplus_{T} V^{T}$$

indexed by all possible chains

$$T = \lambda_1 \nearrow \ldots \nearrow \lambda_n$$

where $\lambda_i \in \mathcal{S}_n^{\wedge}$, $V \in \lambda_n$ and all V^T are simple \mathcal{S}_1 -modules.

└─Different Approach

Proposition

All simple $\mathbb{C}S_n$ -module V has a canonical decomposition

$$V = \bigoplus_{T} V^{T}$$

indexed by all possible chains

$$T = \lambda_1 \nearrow \ldots \nearrow \lambda_n$$

where $\lambda_i \in \mathcal{S}_n^{\wedge}$, $V \in \lambda_n$ and all V^T are simple \mathcal{S}_1 -modules.

Gelfand-Zetlin Basis

For each T we can choose a vector v_T form each V^T obtaining a basis $\{v_T\}$ of V, which we call **Gelfand-Zetlin basis**.

Different Approach

Example: The standard representation of S_4

$$V = \{(x_1, x_2, x_3, x_4) \in \mathbb{C}^4 : x_1 + x_2 + x_3 + x_4 = 0\}$$

$$V = \langle (1, 1, 1, -3) \rangle \oplus \langle (1, 1, -2, 0) \rangle \oplus \langle (1, -1, 0, 0) \rangle.$$

Let u = (1, 1, 1, -3), v = (1, 1, -2, 0), w = (1, -1, 0, 0) and fix the basis $GZ = \{u, v, w\}$ for V.

イロア 人口 ア イヨア イヨア コー ろくぐ

└─Different Approach

Example: The standard representation of S_4

$$V = \{(x_1, x_2, x_3, x_4) \in \mathbb{C}^4 : x_1 + x_2 + x_3 + x_4 = 0\}$$

$$V = \langle (1, 1, 1, -3) \rangle \oplus \langle (1, 1, -2, 0) \rangle \oplus \langle (1, -1, 0, 0) \rangle.$$

Let u = (1, 1, 1, -3), v = (1, 1, -2, 0), w = (1, -1, 0, 0) and fix the basis $GZ = \{u, v, w\}$ for V.

└─Different Approach

Example: The standard representation of S_4

ightarrow The Symmetric Group

└─ Different Approach

Example: The standard representation of S_4

0	(1 2)	(13) + (23)	(1 4) + (2 4) + (3 4)			
$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$	$\begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$egin{bmatrix} -1 & 0 & 0 \ 0 & 2 & 0 \ 0 & 0 & 2 \end{bmatrix}.$			
$\gamma(u)=(0,1,2,-1)$						
$\gamma(oldsymbol{ u})=(0,1,-1,2)$						
	$\gamma(w) = (0$, -1, 1, 2)				

ightarrow The Symmetric Group

└─ Different Approach

Example: The standard representation of S_4

0	(1 2)	(13) + (23)	(14) + (24) + (34)			
$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$	$\begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}.$			
$\gamma(u) = (0, 1, 2, -1)$						
	$\gamma(\mathbf{v}) = (0,$	$,1,-1,2)$ } we	ights			
	$\gamma(w) = (0$, −1, 1, 2) J				

(ロ)、(型)、(E)、(E)、(E)、(E)、(O)

└─ The Symmetric Group

└─ Different Approach

Theorem

$\mathbb{B}\simeq\mathbb{Y}$

- └─ The Symmetric Group
 - └─Different Approach

<□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

L The Symmetric Group

└─ Different Approach

Example

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

L The Symmetric Group

└─ Different Approach

Example

L The Symmetric Group

└─ Different Approach

Example

L The Symmetric Group

└─ Different Approach

Example

L The Symmetric Group

└─ Different Approach

Example

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

L The Symmetric Group

└─ Different Approach

Example

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

└─ The Symmetric Group

└─ Different Approach

Example

Consider

$$Q_1 = \begin{bmatrix} 1 & 2 & 3 \\ 4 & & \\ \end{bmatrix}, \quad Q_2 = \begin{bmatrix} 1 & 2 & 4 \\ 3 & & \\ \end{bmatrix} \text{ and } \quad Q_3 = \begin{bmatrix} 1 & 3 & 4 \\ 2 & & \\ \end{bmatrix}.$$

└─ The Symmetric Group

└─ Different Approach

Example

Consider

$$Q_1 = \begin{bmatrix} 1 & 2 & 3 \\ 4 & & \\ \end{bmatrix}, \quad Q_2 = \begin{bmatrix} 1 & 2 & 4 \\ 3 & & \\ \end{bmatrix} \text{ and } \quad Q_3 = \begin{bmatrix} 1 & 3 & 4 \\ 2 & & \\ \end{bmatrix}.$$

We have:

$$\delta(Q_1) = (0, 1, 2, -1)$$

 $\delta(Q_2) = (0, 1, -1, 2)$
 $\delta(Q_3) = (0, -1, 1, 2)$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

└─ The Symmetric Group

└─ Different Approach

Example

Consider

$$Q_1 = \begin{bmatrix} 1 & 2 & 3 \\ 4 & & \\ \end{bmatrix}, \quad Q_2 = \begin{bmatrix} 1 & 2 & 4 \\ 3 & & \\ \end{bmatrix} \text{ and } \quad Q_3 = \begin{bmatrix} 1 & 3 & 4 \\ 2 & & \\ \end{bmatrix}.$$

<□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

We have:

$$\left.\begin{array}{l} \delta(\mathcal{Q}_1) = (0,1,2,-1) \\ \delta(\mathcal{Q}_2) = (0,1,-1,2) \\ \delta(\mathcal{Q}_3) = (0,-1,1,2) \end{array}\right\} \text{ contents}$$

└─ The Symmetric Group

└─ Different Approach

Example

Consider

$$Q_1 = \begin{bmatrix} 1 & 2 & 3 \\ 4 & & \\ \end{bmatrix}, \quad Q_2 = \begin{bmatrix} 1 & 2 & 4 \\ 3 & & \\ \end{bmatrix} \text{ and } \quad Q_3 = \begin{bmatrix} 1 & 3 & 4 \\ 2 & & \\ \end{bmatrix}.$$

We have:

$$\begin{split} \delta(Q_1) &= (0, 1, 2, -1) \\ \delta(Q_2) &= (0, 1, -1, 2) \\ \delta(Q_3) &= (0, -1, 1, 2) \end{split} \} \text{ contents } = \text{ weights} \begin{cases} \gamma(u) &= (0, 1, 2, -1) \\ \gamma(v) &= (0, 1, -1, 2) \\ \gamma(w) &= (0, -1, 1, 2) \end{cases} \end{cases}$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

└─Different Approach

The Spectrum and the Resume

Theorem

Let Ω be the set of all elements

$$x = (x_1, \ldots, x_n) \in \mathbb{C}^n$$

which verify the following properties:

1.
$$x_1 = 0$$
;
2. $\{x_i - 1, x_i + 1\} \cap \{x_1, \dots, x_{i-1}\} \neq \emptyset$, $\forall i \in \{2, \dots, n\}$;
3. If $x_i = x_j = a$, for some $i < j$, then
 $\{a - 1, a + 1\} \subseteq \{x_{i+1}, \dots, x_{j-1}\}$.

└─Different Approach

The Spectrum and the Resume

Theorem

Let Ω be the set of all elements

$$x = (x_1, \ldots, x_n) \in \mathbb{C}^n$$

which verify the following properties:

1.
$$x_1 = 0$$
;
2. $\{x_i - 1, x_i + 1\} \cap \{x_1, \dots, x_{i-1}\} \neq \emptyset$, $\forall i \in \{2, \dots, n\}$;
3. If $x_i = x_j = a$, for some $i < j$, then
 $\{a-1, a+1\} \subseteq \{x_{i+1}, \dots, x_{i-1}\}$.

We have

$$\Omega = \mathcal{E}_n = \mathcal{R}_n.$$

オロトメロトメモトメモト モ 9900

└─ The Rook Monoid

└─ Introduction

Finite Semigroups Representation Theory

Finite Semigroup

<□▶ < □▶ < □▶ < □▶ < □▶ = □ の < ⊙

— The Rook Monoid

└─ Introduction

Finite Semigroups Representation Theory

Finite Semigroup

$$\mathcal{U}(S)$$

Regular $\mathcal J$ -classes

<ロト < 部 > < 注 > < 注 > < 注 > のへの

-The Rook Monoid

└─ Introduction

Finite Semigroups Representation Theory

Finite Semigroup

 $\mathcal{U}(S)$ Regular $\mathcal J$ -classes

Maximal Subgroups

<ロト < 部 > < 注 > < 注 > < 注 > のへの

-The Rook Monoid

└─ Introduction

Finite Semigroups Representation Theory

└─The Rook Monoid

Introduction

Theorem[Clifford, Munn, Ponizovskii]

The number of irreducible representations of S (up to isomorphism) is equal to the number of irreducible representations of its maximal subgroups G_J , with $J \in \mathcal{U}(S)$.

└─ The Rook Monoid

Introduction

The Rook Monoid

└─ The Rook Monoid

└─ Introduction

The Rook Monoid

Representation Theories of the Symmetric Group and the Rook Monoid

└─ The Rook Monoid

Introduction

The Rook Monoid

Classical Approach

123 •••								
••• 1 2 3								
0								
1 2 3	123	123	123	123 •••	123 •••	123	123	123
1 2 3	1 2 3	1 2 3	000 1 2 3	• • • 1 2 3	• • • • 1 2 3	• • • 1 2 3	••• 1 2 3	••• 1 2 3
(1)	[1 2]	[1 3]	[2 1]	(2)	[2 3]	[3 1]	[3 2]	(3)
1 2 3	123	1 2 3	1 2 3	1 2 3	1 2 3	1 2 3	123	1 2 3
	1 2 3	1 2 3	1 2 3	1 2 3	1 2 3	1 2 3		1 2 3
(1)(2)	(1)[2 3]	(1)[3 2]	(1)(3)	(1 2)	[1 2 3]	[3 1 2]	[1 2](3)	[2 1 3]
123 Q Q Q			123 • 99	123 • • •	123 •••	123 •••	123	123 •••
1 2 3	1 2 3	• • • 1 2 3	000 1 2 3	1 2 3	1 2 3	••• 1 2 3	1 2 3	• • • • 1 2 3
(2)[1 3]	(13)	[1 3 2]	[3 2 1]	(3)[2 1]	(2)[3 1]	(2)(3)	(1)[2 3]	(23)
1 2 3	123	123	123	123	123			
III	IX	XI	X	X	Х			
1 2 3	1 2 3	1 2 3	123	1 2 3	1 2 3			
(1)(2)(3)	(1)(23)	(1 2)(3)	(123)	(132)	(13)(2)			

<□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Classical Approach

The special case of the Rook Monoid

n.° of isoclasses of Irr. Rep. = sum of the n.° of isoclasses of Irr. Rep of its maximal subgroup G_J

Classical Approach

The special case of the Rook Monoid

n.° of isoclasses of Irr. Rep. = sum of the n.° of isoclasses of Irr. Rep of its maximal subgroup G_{J}

The list of the maximal subgroups G_J of \mathcal{I}_n will be isomorphic to $\mathcal{S}_0, \mathcal{S}_1, \ldots, \mathcal{S}_n$.

◆□ > ◆□ > ◆三 > ◆三 > ● ● ●

Classical Approach

The special case of the Rook Monoid

n.° of isoclasses of Irr. Rep. = sum of the n.° of isoclasses of Irr. Rep of its maximal subgroup G_J

The list of the maximal subgroups G_J of \mathcal{I}_n will be isomorphic to $\mathcal{S}_0, \mathcal{S}_1, \dots, \mathcal{S}_n$.

$$|\mathit{IrrRep}(\mathcal{I}_n)| = \sum_{k=0}^n |\mathit{IrrRep}(\mathcal{S}_k)|$$

Classical Approach

Isoclasses of Irr. Rep. of \mathcal{I}_n

Ø

n = 0

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Classical Approach

Isoclasses of Irr. Rep. of \mathcal{I}_n

Ø

Ø

n = 0

n = 1

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Classical Approach

Isoclasses of Irr. Rep. of \mathcal{I}_n

<□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Classical Approach

Isoclasses of Irr. Rep. of \mathcal{I}_n

▲ロト ▲暦ト ▲恵ト ▲恵ト 三恵 - 釣んで

└─Different Approach

123 •••								
••• 1 2 3								
0								
1 2 3	123	123	123	123	123	123	123	123
1 2 3	1 2 3	1 2 3	123	1 2 3	1 2 3	1 2 3	1 2 3	123
(1)	[1 2]	[1 3]	[2 1]	(2)	[2 3]	[3 1]	[3 2]	(3)
1 2 3	1 2 3	1 2 3	1 2 3	1 2 3	1 2 3	1 2 3	1 2 3	123
ĬĬ.	IN	ĬZ	ĬĬĬ	X	11	X	XI	X
123	123	123	123	123	123	123	123	123
(1)(2)	(1)[2 3]	(1)[3 2]	(1)(3)	(12)	[1 2 3]	[3 1 2]	[1 2](3)	[2 1 3]
1 2 3	123	1 2 3	123	1 2 3	123	123	123	123
•••	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- V	***	·/ 1	•••		~~~	Ň
1 2 3	123	123	123	123	123	123	123	123
(2)[1 3]	(13)	[1 3 2]	[3 2 1]	(3)[2 1]	(2)[3 1]	(2)(3)	(1)[2 3]	(23)
1 2 3	123	1 2 3	123	1 2 3	123			
III	IX	XI	X	X	Ж			
1 2 3	123	1 2 3	123	1 2 3	123			
(1)(2)(3)	(1)(23)	(1 2)(3)	(1 2 3)	(1 3 2)	(13)(2)			

< ロ > < 母 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 < つ < ぐ</p>

└─Different Approach

rank 0		rank 1			rank 2		rank 3
1 2 3 •••	1 2 3 •••	123 •••	1 2 3			1 2 3 • • •	
1 2 3	1 2 3	• • • 1 2 3	••• 1 2 3	1 2 3	••• 1 2 3	1 2 3	123
ε_{\emptyset}	$\varepsilon_{\{1\}}$	$\varepsilon_{\{2\}}$	$\varepsilon_{\{3\}}$	$\varepsilon_{\{1,2\}}$	$\varepsilon_{\{1,3\}}$	$\varepsilon_{\{2,3\}}$	$\varepsilon_{\{1,2,3\}}$

└─Different Approach

rank 0		rank 1			rank 2		rank 3
1 2 3 •••	123 •••	123	1 2 3	1 2 3 • • •	1 2 3 • • •	1 2 3	
1 2 3	1 2 3	1 2 3	••• 1 2 3	1 2 3	1 2 3	1 2 3	123
ε_{\emptyset}	$\varepsilon_{\{1\}}$	$\varepsilon_{\{2\}}$	$\varepsilon_{\{3\}}$	$\varepsilon_{\{1,2\}}$	$\varepsilon_{\{1,3\}}$	$\varepsilon_{\{2,3\}}$	$\varepsilon_{\{1,2,3\}}$

$$\eta_0 = \varepsilon_{\emptyset}$$

$$\begin{split} \eta_1 &= -3\,\varepsilon_{\emptyset} + \varepsilon_{\{1\}} + \varepsilon_{\{2\}} + \varepsilon_{\{3\}} \\ \eta_2 &= 3\,\varepsilon_{\emptyset} - 2\,\varepsilon_{\{1\}} - 2\,\varepsilon_{\{2\}} - 2\,\varepsilon_{\{3\}} + \varepsilon_{\{1,2\}} + \varepsilon_{\{1,3\}} + \varepsilon_{\{2,3\}} \\ \eta_3 &= -\varepsilon_{\emptyset} + \varepsilon_{\{1\}} + \varepsilon_{\{2\}} + \varepsilon_{\{3\}} - \varepsilon_{\{1,2\}} - \varepsilon_{\{1,3\}} - \varepsilon_{\{2,3\}} + \varepsilon_{\{1,2,3\}} \end{split}$$

└─ Different Approach

rank 0		rank 1			rank 2		rank 3
1 2 3 •••	1 2 3 •••	123 •••	1 2 3 •••	123 •••			
1 2 3	1 2 3	• • • 1 2 3	••• 1 2 3	1 2 3	••• 1 2 3	• • • 1 2 3	123
ε_{\emptyset}	$\varepsilon_{\{1\}}$	$\varepsilon_{\{2\}}$	$\varepsilon_{\{3\}}$	$\varepsilon_{\{1,2\}}$	$\varepsilon_{\{1,3\}}$	$\varepsilon_{\{2,3\}}$	$\varepsilon_{\{1,2,3\}}$

 $\eta_{0}=\varepsilon_{\emptyset}$

$$\begin{split} \eta_1 &= -3\,\varepsilon_{\emptyset} + \varepsilon_{\{1\}} + \varepsilon_{\{2\}} + \varepsilon_{\{3\}} \\ \eta_2 &= 3\,\varepsilon_{\emptyset} - 2\,\varepsilon_{\{1\}} - 2\,\varepsilon_{\{2\}} - 2\,\varepsilon_{\{3\}} + \varepsilon_{\{1,2\}} + \varepsilon_{\{1,3\}} + \varepsilon_{\{2,3\}} \\ \eta_3 &= -\varepsilon_{\emptyset} + \varepsilon_{\{1\}} + \varepsilon_{\{2\}} + \varepsilon_{\{3\}} - \varepsilon_{\{1,2\}} - \varepsilon_{\{1,3\}} - \varepsilon_{\{2,3\}} + \varepsilon_{\{1,2,3\}} \\ \text{In this case:} \end{split}$$

 $\mathbb{C}\mathcal{I}_3 \simeq M_1(\mathbb{C}\mathcal{S}_0) \oplus M_3(\mathbb{C}\mathcal{S}_1) \oplus M_3(\mathbb{C}\mathcal{S}_2) \oplus M_1(\mathbb{C}\mathcal{S}_3)$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

└─ Different Approach

rank 0		rank 1			rank 2		rank 3
1 2 3 •••	1 2 3 •••	123 •••	1 2 3 •••	123 •••			
1 2 3	1 2 3	• • • 1 2 3	••• 1 2 3	1 2 3	••• 1 2 3	• • • 1 2 3	123
ε_{\emptyset}	$\varepsilon_{\{1\}}$	$\varepsilon_{\{2\}}$	$\varepsilon_{\{3\}}$	$\varepsilon_{\{1,2\}}$	$\varepsilon_{\{1,3\}}$	$\varepsilon_{\{2,3\}}$	$\varepsilon_{\{1,2,3\}}$

$$\eta_0 = \varepsilon_{\emptyset}$$

$$\begin{split} \eta_1 &= -3\,\varepsilon_{\emptyset} + \varepsilon_{\{1\}} + \varepsilon_{\{2\}} + \varepsilon_{\{3\}} \\ \eta_2 &= 3\,\varepsilon_{\emptyset} - 2\,\varepsilon_{\{1\}} - 2\,\varepsilon_{\{2\}} - 2\,\varepsilon_{\{3\}} + \varepsilon_{\{1,2\}} + \varepsilon_{\{1,3\}} + \varepsilon_{\{2,3\}} \\ \eta_3 &= -\varepsilon_{\emptyset} + \varepsilon_{\{1\}} + \varepsilon_{\{2\}} + \varepsilon_{\{3\}} - \varepsilon_{\{1,2\}} - \varepsilon_{\{1,3\}} - \varepsilon_{\{2,3\}} + \varepsilon_{\{1,2,3\}} \\ \ln \text{ this case:} \end{split}$$

 $\mathbb{CI}_3 \simeq M_1(\mathbb{CS}_0) \oplus M_3(\mathbb{CS}_1) \oplus M_3(\mathbb{CS}_2) \oplus M_1(\mathbb{CS}_3)$

$$\mathbb{C}\mathcal{I}_n \simeq \mathbb{C}\mathcal{I}_n\eta_0 \oplus \ldots \oplus \mathbb{C}\mathcal{I}_n\eta_n \simeq M_{\binom{n}{0}}(\mathbb{C}\mathcal{S}_0) \oplus \ldots \oplus M_{\binom{n}{n}}(\mathbb{C}\mathcal{S}_n)$$

 $\therefore \mathbb{CI}_n$ is semisimple.

< ロ > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < < つ < へ </p>

Main References

- Alexander Kleshchev. Linear and Projective Representations of Symmetric Groups. Cambridge University Press. 2005.
- Andrei Okounkov, Anatoly Vershik. A New Approach to Repesentation Theory of Symmetric Groups. Selecta Mathematica, New Series, vol. 2, No. 4,581-605. 1996.
- Louis Solomon. Representations of the rook monoid. Journal of Algebra 256, 309-342. 2002.
- W.D.Munn. The characters of the symmetric inverse semigroup. Proc. Cambridge Philos. Soc. 1957.

イロア 人口 ア イロア イロア イロア うくろ

Other References

- ► James Alexander "Sandy" Green. *Polynomial representations of GL_n*. Springer. Second edition. 2006.
- Benjamin Steinberg. The Representation Theory of Finite Monoids, preliminary version. Springer, 2016.
- C. Curtis, I. Reiner. Representation Theory of Finite Groups and Associative Algebras. American Mathematical Society. 1962.
- William Fulton and Joe Harris. Representation theory, volume 129 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1991. A first course, Readings in Mathematics.

イロア 人口 ア イロア イロア イロア うくろ